1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 378 { 379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 380 381 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 382 } 383 384 void *napi_alloc_frag(unsigned int fragsz) 385 { 386 fragsz = SKB_DATA_ALIGN(fragsz); 387 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * netdev_alloc_frag - allocate a page fragment 394 * @fragsz: fragment size 395 * 396 * Allocates a frag from a page for receive buffer. 397 * Uses GFP_ATOMIC allocations. 398 */ 399 void *netdev_alloc_frag(unsigned int fragsz) 400 { 401 struct page_frag_cache *nc; 402 void *data; 403 404 fragsz = SKB_DATA_ALIGN(fragsz); 405 if (in_irq() || irqs_disabled()) { 406 nc = this_cpu_ptr(&netdev_alloc_cache); 407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 408 } else { 409 local_bh_disable(); 410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 411 local_bh_enable(); 412 } 413 return data; 414 } 415 EXPORT_SYMBOL(netdev_alloc_frag); 416 417 /** 418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 419 * @dev: network device to receive on 420 * @len: length to allocate 421 * @gfp_mask: get_free_pages mask, passed to alloc_skb 422 * 423 * Allocate a new &sk_buff and assign it a usage count of one. The 424 * buffer has NET_SKB_PAD headroom built in. Users should allocate 425 * the headroom they think they need without accounting for the 426 * built in space. The built in space is used for optimisations. 427 * 428 * %NULL is returned if there is no free memory. 429 */ 430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 431 gfp_t gfp_mask) 432 { 433 struct page_frag_cache *nc; 434 struct sk_buff *skb; 435 bool pfmemalloc; 436 void *data; 437 438 len += NET_SKB_PAD; 439 440 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 441 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 442 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 443 if (!skb) 444 goto skb_fail; 445 goto skb_success; 446 } 447 448 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 449 len = SKB_DATA_ALIGN(len); 450 451 if (sk_memalloc_socks()) 452 gfp_mask |= __GFP_MEMALLOC; 453 454 if (in_irq() || irqs_disabled()) { 455 nc = this_cpu_ptr(&netdev_alloc_cache); 456 data = page_frag_alloc(nc, len, gfp_mask); 457 pfmemalloc = nc->pfmemalloc; 458 } else { 459 local_bh_disable(); 460 nc = this_cpu_ptr(&napi_alloc_cache.page); 461 data = page_frag_alloc(nc, len, gfp_mask); 462 pfmemalloc = nc->pfmemalloc; 463 local_bh_enable(); 464 } 465 466 if (unlikely(!data)) 467 return NULL; 468 469 skb = __build_skb(data, len); 470 if (unlikely(!skb)) { 471 skb_free_frag(data); 472 return NULL; 473 } 474 475 if (pfmemalloc) 476 skb->pfmemalloc = 1; 477 skb->head_frag = 1; 478 479 skb_success: 480 skb_reserve(skb, NET_SKB_PAD); 481 skb->dev = dev; 482 483 skb_fail: 484 return skb; 485 } 486 EXPORT_SYMBOL(__netdev_alloc_skb); 487 488 /** 489 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 490 * @napi: napi instance this buffer was allocated for 491 * @len: length to allocate 492 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 493 * 494 * Allocate a new sk_buff for use in NAPI receive. This buffer will 495 * attempt to allocate the head from a special reserved region used 496 * only for NAPI Rx allocation. By doing this we can save several 497 * CPU cycles by avoiding having to disable and re-enable IRQs. 498 * 499 * %NULL is returned if there is no free memory. 500 */ 501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 502 gfp_t gfp_mask) 503 { 504 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 505 struct sk_buff *skb; 506 void *data; 507 508 len += NET_SKB_PAD + NET_IP_ALIGN; 509 510 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 511 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 512 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 513 if (!skb) 514 goto skb_fail; 515 goto skb_success; 516 } 517 518 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 519 len = SKB_DATA_ALIGN(len); 520 521 if (sk_memalloc_socks()) 522 gfp_mask |= __GFP_MEMALLOC; 523 524 data = page_frag_alloc(&nc->page, len, gfp_mask); 525 if (unlikely(!data)) 526 return NULL; 527 528 skb = __build_skb(data, len); 529 if (unlikely(!skb)) { 530 skb_free_frag(data); 531 return NULL; 532 } 533 534 if (nc->page.pfmemalloc) 535 skb->pfmemalloc = 1; 536 skb->head_frag = 1; 537 538 skb_success: 539 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 540 skb->dev = napi->dev; 541 542 skb_fail: 543 return skb; 544 } 545 EXPORT_SYMBOL(__napi_alloc_skb); 546 547 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 548 int size, unsigned int truesize) 549 { 550 skb_fill_page_desc(skb, i, page, off, size); 551 skb->len += size; 552 skb->data_len += size; 553 skb->truesize += truesize; 554 } 555 EXPORT_SYMBOL(skb_add_rx_frag); 556 557 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 558 unsigned int truesize) 559 { 560 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 561 562 skb_frag_size_add(frag, size); 563 skb->len += size; 564 skb->data_len += size; 565 skb->truesize += truesize; 566 } 567 EXPORT_SYMBOL(skb_coalesce_rx_frag); 568 569 static void skb_drop_list(struct sk_buff **listp) 570 { 571 kfree_skb_list(*listp); 572 *listp = NULL; 573 } 574 575 static inline void skb_drop_fraglist(struct sk_buff *skb) 576 { 577 skb_drop_list(&skb_shinfo(skb)->frag_list); 578 } 579 580 static void skb_clone_fraglist(struct sk_buff *skb) 581 { 582 struct sk_buff *list; 583 584 skb_walk_frags(skb, list) 585 skb_get(list); 586 } 587 588 static void skb_free_head(struct sk_buff *skb) 589 { 590 unsigned char *head = skb->head; 591 592 if (skb->head_frag) 593 skb_free_frag(head); 594 else 595 kfree(head); 596 } 597 598 static void skb_release_data(struct sk_buff *skb) 599 { 600 struct skb_shared_info *shinfo = skb_shinfo(skb); 601 int i; 602 603 if (skb->cloned && 604 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 605 &shinfo->dataref)) 606 return; 607 608 for (i = 0; i < shinfo->nr_frags; i++) 609 __skb_frag_unref(&shinfo->frags[i]); 610 611 if (shinfo->frag_list) 612 kfree_skb_list(shinfo->frag_list); 613 614 skb_zcopy_clear(skb, true); 615 skb_free_head(skb); 616 } 617 618 /* 619 * Free an skbuff by memory without cleaning the state. 620 */ 621 static void kfree_skbmem(struct sk_buff *skb) 622 { 623 struct sk_buff_fclones *fclones; 624 625 switch (skb->fclone) { 626 case SKB_FCLONE_UNAVAILABLE: 627 kmem_cache_free(skbuff_head_cache, skb); 628 return; 629 630 case SKB_FCLONE_ORIG: 631 fclones = container_of(skb, struct sk_buff_fclones, skb1); 632 633 /* We usually free the clone (TX completion) before original skb 634 * This test would have no chance to be true for the clone, 635 * while here, branch prediction will be good. 636 */ 637 if (refcount_read(&fclones->fclone_ref) == 1) 638 goto fastpath; 639 break; 640 641 default: /* SKB_FCLONE_CLONE */ 642 fclones = container_of(skb, struct sk_buff_fclones, skb2); 643 break; 644 } 645 if (!refcount_dec_and_test(&fclones->fclone_ref)) 646 return; 647 fastpath: 648 kmem_cache_free(skbuff_fclone_cache, fclones); 649 } 650 651 void skb_release_head_state(struct sk_buff *skb) 652 { 653 skb_dst_drop(skb); 654 if (skb->destructor) { 655 WARN_ON(in_irq()); 656 skb->destructor(skb); 657 } 658 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 659 nf_conntrack_put(skb_nfct(skb)); 660 #endif 661 skb_ext_put(skb); 662 } 663 664 /* Free everything but the sk_buff shell. */ 665 static void skb_release_all(struct sk_buff *skb) 666 { 667 skb_release_head_state(skb); 668 if (likely(skb->head)) 669 skb_release_data(skb); 670 } 671 672 /** 673 * __kfree_skb - private function 674 * @skb: buffer 675 * 676 * Free an sk_buff. Release anything attached to the buffer. 677 * Clean the state. This is an internal helper function. Users should 678 * always call kfree_skb 679 */ 680 681 void __kfree_skb(struct sk_buff *skb) 682 { 683 skb_release_all(skb); 684 kfree_skbmem(skb); 685 } 686 EXPORT_SYMBOL(__kfree_skb); 687 688 /** 689 * kfree_skb - free an sk_buff 690 * @skb: buffer to free 691 * 692 * Drop a reference to the buffer and free it if the usage count has 693 * hit zero. 694 */ 695 void kfree_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_kfree_skb(skb, __builtin_return_address(0)); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(kfree_skb); 704 705 void kfree_skb_list(struct sk_buff *segs) 706 { 707 while (segs) { 708 struct sk_buff *next = segs->next; 709 710 kfree_skb(segs); 711 segs = next; 712 } 713 } 714 EXPORT_SYMBOL(kfree_skb_list); 715 716 /* Dump skb information and contents. 717 * 718 * Must only be called from net_ratelimit()-ed paths. 719 * 720 * Dumps whole packets if full_pkt, only headers otherwise. 721 */ 722 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 723 { 724 struct skb_shared_info *sh = skb_shinfo(skb); 725 struct net_device *dev = skb->dev; 726 struct sock *sk = skb->sk; 727 struct sk_buff *list_skb; 728 bool has_mac, has_trans; 729 int headroom, tailroom; 730 int i, len, seg_len; 731 732 if (full_pkt) 733 len = skb->len; 734 else 735 len = min_t(int, skb->len, MAX_HEADER + 128); 736 737 headroom = skb_headroom(skb); 738 tailroom = skb_tailroom(skb); 739 740 has_mac = skb_mac_header_was_set(skb); 741 has_trans = skb_transport_header_was_set(skb); 742 743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 744 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 748 level, skb->len, headroom, skb_headlen(skb), tailroom, 749 has_mac ? skb->mac_header : -1, 750 has_mac ? skb_mac_header_len(skb) : -1, 751 skb->network_header, 752 has_trans ? skb_network_header_len(skb) : -1, 753 has_trans ? skb->transport_header : -1, 754 sh->tx_flags, sh->nr_frags, 755 sh->gso_size, sh->gso_type, sh->gso_segs, 756 skb->csum, skb->ip_summed, skb->csum_complete_sw, 757 skb->csum_valid, skb->csum_level, 758 skb->hash, skb->sw_hash, skb->l4_hash, 759 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 760 761 if (dev) 762 printk("%sdev name=%s feat=0x%pNF\n", 763 level, dev->name, &dev->features); 764 if (sk) 765 printk("%ssk family=%hu type=%u proto=%u\n", 766 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 767 768 if (full_pkt && headroom) 769 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 770 16, 1, skb->head, headroom, false); 771 772 seg_len = min_t(int, skb_headlen(skb), len); 773 if (seg_len) 774 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 775 16, 1, skb->data, seg_len, false); 776 len -= seg_len; 777 778 if (full_pkt && tailroom) 779 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 780 16, 1, skb_tail_pointer(skb), tailroom, false); 781 782 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 784 u32 p_off, p_len, copied; 785 struct page *p; 786 u8 *vaddr; 787 788 skb_frag_foreach_page(frag, skb_frag_off(frag), 789 skb_frag_size(frag), p, p_off, p_len, 790 copied) { 791 seg_len = min_t(int, p_len, len); 792 vaddr = kmap_atomic(p); 793 print_hex_dump(level, "skb frag: ", 794 DUMP_PREFIX_OFFSET, 795 16, 1, vaddr + p_off, seg_len, false); 796 kunmap_atomic(vaddr); 797 len -= seg_len; 798 if (!len) 799 break; 800 } 801 } 802 803 if (full_pkt && skb_has_frag_list(skb)) { 804 printk("skb fraglist:\n"); 805 skb_walk_frags(skb, list_skb) 806 skb_dump(level, list_skb, true); 807 } 808 } 809 EXPORT_SYMBOL(skb_dump); 810 811 /** 812 * skb_tx_error - report an sk_buff xmit error 813 * @skb: buffer that triggered an error 814 * 815 * Report xmit error if a device callback is tracking this skb. 816 * skb must be freed afterwards. 817 */ 818 void skb_tx_error(struct sk_buff *skb) 819 { 820 skb_zcopy_clear(skb, true); 821 } 822 EXPORT_SYMBOL(skb_tx_error); 823 824 #ifdef CONFIG_TRACEPOINTS 825 /** 826 * consume_skb - free an skbuff 827 * @skb: buffer to free 828 * 829 * Drop a ref to the buffer and free it if the usage count has hit zero 830 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 831 * is being dropped after a failure and notes that 832 */ 833 void consume_skb(struct sk_buff *skb) 834 { 835 if (!skb_unref(skb)) 836 return; 837 838 trace_consume_skb(skb); 839 __kfree_skb(skb); 840 } 841 EXPORT_SYMBOL(consume_skb); 842 #endif 843 844 /** 845 * __consume_stateless_skb - free an skbuff, assuming it is stateless 846 * @skb: buffer to free 847 * 848 * Alike consume_skb(), but this variant assumes that this is the last 849 * skb reference and all the head states have been already dropped 850 */ 851 void __consume_stateless_skb(struct sk_buff *skb) 852 { 853 trace_consume_skb(skb); 854 skb_release_data(skb); 855 kfree_skbmem(skb); 856 } 857 858 void __kfree_skb_flush(void) 859 { 860 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 861 862 /* flush skb_cache if containing objects */ 863 if (nc->skb_count) { 864 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 865 nc->skb_cache); 866 nc->skb_count = 0; 867 } 868 } 869 870 static inline void _kfree_skb_defer(struct sk_buff *skb) 871 { 872 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 873 874 /* drop skb->head and call any destructors for packet */ 875 skb_release_all(skb); 876 877 /* record skb to CPU local list */ 878 nc->skb_cache[nc->skb_count++] = skb; 879 880 #ifdef CONFIG_SLUB 881 /* SLUB writes into objects when freeing */ 882 prefetchw(skb); 883 #endif 884 885 /* flush skb_cache if it is filled */ 886 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 887 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 888 nc->skb_cache); 889 nc->skb_count = 0; 890 } 891 } 892 void __kfree_skb_defer(struct sk_buff *skb) 893 { 894 _kfree_skb_defer(skb); 895 } 896 897 void napi_consume_skb(struct sk_buff *skb, int budget) 898 { 899 /* Zero budget indicate non-NAPI context called us, like netpoll */ 900 if (unlikely(!budget)) { 901 dev_consume_skb_any(skb); 902 return; 903 } 904 905 if (!skb_unref(skb)) 906 return; 907 908 /* if reaching here SKB is ready to free */ 909 trace_consume_skb(skb); 910 911 /* if SKB is a clone, don't handle this case */ 912 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 913 __kfree_skb(skb); 914 return; 915 } 916 917 _kfree_skb_defer(skb); 918 } 919 EXPORT_SYMBOL(napi_consume_skb); 920 921 /* Make sure a field is enclosed inside headers_start/headers_end section */ 922 #define CHECK_SKB_FIELD(field) \ 923 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 924 offsetof(struct sk_buff, headers_start)); \ 925 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 926 offsetof(struct sk_buff, headers_end)); \ 927 928 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 929 { 930 new->tstamp = old->tstamp; 931 /* We do not copy old->sk */ 932 new->dev = old->dev; 933 memcpy(new->cb, old->cb, sizeof(old->cb)); 934 skb_dst_copy(new, old); 935 __skb_ext_copy(new, old); 936 __nf_copy(new, old, false); 937 938 /* Note : this field could be in headers_start/headers_end section 939 * It is not yet because we do not want to have a 16 bit hole 940 */ 941 new->queue_mapping = old->queue_mapping; 942 943 memcpy(&new->headers_start, &old->headers_start, 944 offsetof(struct sk_buff, headers_end) - 945 offsetof(struct sk_buff, headers_start)); 946 CHECK_SKB_FIELD(protocol); 947 CHECK_SKB_FIELD(csum); 948 CHECK_SKB_FIELD(hash); 949 CHECK_SKB_FIELD(priority); 950 CHECK_SKB_FIELD(skb_iif); 951 CHECK_SKB_FIELD(vlan_proto); 952 CHECK_SKB_FIELD(vlan_tci); 953 CHECK_SKB_FIELD(transport_header); 954 CHECK_SKB_FIELD(network_header); 955 CHECK_SKB_FIELD(mac_header); 956 CHECK_SKB_FIELD(inner_protocol); 957 CHECK_SKB_FIELD(inner_transport_header); 958 CHECK_SKB_FIELD(inner_network_header); 959 CHECK_SKB_FIELD(inner_mac_header); 960 CHECK_SKB_FIELD(mark); 961 #ifdef CONFIG_NETWORK_SECMARK 962 CHECK_SKB_FIELD(secmark); 963 #endif 964 #ifdef CONFIG_NET_RX_BUSY_POLL 965 CHECK_SKB_FIELD(napi_id); 966 #endif 967 #ifdef CONFIG_XPS 968 CHECK_SKB_FIELD(sender_cpu); 969 #endif 970 #ifdef CONFIG_NET_SCHED 971 CHECK_SKB_FIELD(tc_index); 972 #endif 973 974 } 975 976 /* 977 * You should not add any new code to this function. Add it to 978 * __copy_skb_header above instead. 979 */ 980 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 981 { 982 #define C(x) n->x = skb->x 983 984 n->next = n->prev = NULL; 985 n->sk = NULL; 986 __copy_skb_header(n, skb); 987 988 C(len); 989 C(data_len); 990 C(mac_len); 991 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 992 n->cloned = 1; 993 n->nohdr = 0; 994 n->peeked = 0; 995 C(pfmemalloc); 996 n->destructor = NULL; 997 C(tail); 998 C(end); 999 C(head); 1000 C(head_frag); 1001 C(data); 1002 C(truesize); 1003 refcount_set(&n->users, 1); 1004 1005 atomic_inc(&(skb_shinfo(skb)->dataref)); 1006 skb->cloned = 1; 1007 1008 return n; 1009 #undef C 1010 } 1011 1012 /** 1013 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1014 * @first: first sk_buff of the msg 1015 */ 1016 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1017 { 1018 struct sk_buff *n; 1019 1020 n = alloc_skb(0, GFP_ATOMIC); 1021 if (!n) 1022 return NULL; 1023 1024 n->len = first->len; 1025 n->data_len = first->len; 1026 n->truesize = first->truesize; 1027 1028 skb_shinfo(n)->frag_list = first; 1029 1030 __copy_skb_header(n, first); 1031 n->destructor = NULL; 1032 1033 return n; 1034 } 1035 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1036 1037 /** 1038 * skb_morph - morph one skb into another 1039 * @dst: the skb to receive the contents 1040 * @src: the skb to supply the contents 1041 * 1042 * This is identical to skb_clone except that the target skb is 1043 * supplied by the user. 1044 * 1045 * The target skb is returned upon exit. 1046 */ 1047 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1048 { 1049 skb_release_all(dst); 1050 return __skb_clone(dst, src); 1051 } 1052 EXPORT_SYMBOL_GPL(skb_morph); 1053 1054 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1055 { 1056 unsigned long max_pg, num_pg, new_pg, old_pg; 1057 struct user_struct *user; 1058 1059 if (capable(CAP_IPC_LOCK) || !size) 1060 return 0; 1061 1062 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1063 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1064 user = mmp->user ? : current_user(); 1065 1066 do { 1067 old_pg = atomic_long_read(&user->locked_vm); 1068 new_pg = old_pg + num_pg; 1069 if (new_pg > max_pg) 1070 return -ENOBUFS; 1071 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1072 old_pg); 1073 1074 if (!mmp->user) { 1075 mmp->user = get_uid(user); 1076 mmp->num_pg = num_pg; 1077 } else { 1078 mmp->num_pg += num_pg; 1079 } 1080 1081 return 0; 1082 } 1083 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1084 1085 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1086 { 1087 if (mmp->user) { 1088 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1089 free_uid(mmp->user); 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1093 1094 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1095 { 1096 struct ubuf_info *uarg; 1097 struct sk_buff *skb; 1098 1099 WARN_ON_ONCE(!in_task()); 1100 1101 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1102 if (!skb) 1103 return NULL; 1104 1105 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1106 uarg = (void *)skb->cb; 1107 uarg->mmp.user = NULL; 1108 1109 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1110 kfree_skb(skb); 1111 return NULL; 1112 } 1113 1114 uarg->callback = sock_zerocopy_callback; 1115 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1116 uarg->len = 1; 1117 uarg->bytelen = size; 1118 uarg->zerocopy = 1; 1119 refcount_set(&uarg->refcnt, 1); 1120 sock_hold(sk); 1121 1122 return uarg; 1123 } 1124 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1125 1126 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1127 { 1128 return container_of((void *)uarg, struct sk_buff, cb); 1129 } 1130 1131 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1132 struct ubuf_info *uarg) 1133 { 1134 if (uarg) { 1135 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1136 u32 bytelen, next; 1137 1138 /* realloc only when socket is locked (TCP, UDP cork), 1139 * so uarg->len and sk_zckey access is serialized 1140 */ 1141 if (!sock_owned_by_user(sk)) { 1142 WARN_ON_ONCE(1); 1143 return NULL; 1144 } 1145 1146 bytelen = uarg->bytelen + size; 1147 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1148 /* TCP can create new skb to attach new uarg */ 1149 if (sk->sk_type == SOCK_STREAM) 1150 goto new_alloc; 1151 return NULL; 1152 } 1153 1154 next = (u32)atomic_read(&sk->sk_zckey); 1155 if ((u32)(uarg->id + uarg->len) == next) { 1156 if (mm_account_pinned_pages(&uarg->mmp, size)) 1157 return NULL; 1158 uarg->len++; 1159 uarg->bytelen = bytelen; 1160 atomic_set(&sk->sk_zckey, ++next); 1161 1162 /* no extra ref when appending to datagram (MSG_MORE) */ 1163 if (sk->sk_type == SOCK_STREAM) 1164 sock_zerocopy_get(uarg); 1165 1166 return uarg; 1167 } 1168 } 1169 1170 new_alloc: 1171 return sock_zerocopy_alloc(sk, size); 1172 } 1173 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1174 1175 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1176 { 1177 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1178 u32 old_lo, old_hi; 1179 u64 sum_len; 1180 1181 old_lo = serr->ee.ee_info; 1182 old_hi = serr->ee.ee_data; 1183 sum_len = old_hi - old_lo + 1ULL + len; 1184 1185 if (sum_len >= (1ULL << 32)) 1186 return false; 1187 1188 if (lo != old_hi + 1) 1189 return false; 1190 1191 serr->ee.ee_data += len; 1192 return true; 1193 } 1194 1195 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1196 { 1197 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1198 struct sock_exterr_skb *serr; 1199 struct sock *sk = skb->sk; 1200 struct sk_buff_head *q; 1201 unsigned long flags; 1202 u32 lo, hi; 1203 u16 len; 1204 1205 mm_unaccount_pinned_pages(&uarg->mmp); 1206 1207 /* if !len, there was only 1 call, and it was aborted 1208 * so do not queue a completion notification 1209 */ 1210 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1211 goto release; 1212 1213 len = uarg->len; 1214 lo = uarg->id; 1215 hi = uarg->id + len - 1; 1216 1217 serr = SKB_EXT_ERR(skb); 1218 memset(serr, 0, sizeof(*serr)); 1219 serr->ee.ee_errno = 0; 1220 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1221 serr->ee.ee_data = hi; 1222 serr->ee.ee_info = lo; 1223 if (!success) 1224 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1225 1226 q = &sk->sk_error_queue; 1227 spin_lock_irqsave(&q->lock, flags); 1228 tail = skb_peek_tail(q); 1229 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1230 !skb_zerocopy_notify_extend(tail, lo, len)) { 1231 __skb_queue_tail(q, skb); 1232 skb = NULL; 1233 } 1234 spin_unlock_irqrestore(&q->lock, flags); 1235 1236 sk->sk_error_report(sk); 1237 1238 release: 1239 consume_skb(skb); 1240 sock_put(sk); 1241 } 1242 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1243 1244 void sock_zerocopy_put(struct ubuf_info *uarg) 1245 { 1246 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1247 if (uarg->callback) 1248 uarg->callback(uarg, uarg->zerocopy); 1249 else 1250 consume_skb(skb_from_uarg(uarg)); 1251 } 1252 } 1253 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1254 1255 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1256 { 1257 if (uarg) { 1258 struct sock *sk = skb_from_uarg(uarg)->sk; 1259 1260 atomic_dec(&sk->sk_zckey); 1261 uarg->len--; 1262 1263 if (have_uref) 1264 sock_zerocopy_put(uarg); 1265 } 1266 } 1267 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1268 1269 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1270 { 1271 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1272 } 1273 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1274 1275 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1276 struct msghdr *msg, int len, 1277 struct ubuf_info *uarg) 1278 { 1279 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1280 struct iov_iter orig_iter = msg->msg_iter; 1281 int err, orig_len = skb->len; 1282 1283 /* An skb can only point to one uarg. This edge case happens when 1284 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1285 */ 1286 if (orig_uarg && uarg != orig_uarg) 1287 return -EEXIST; 1288 1289 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1290 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1291 struct sock *save_sk = skb->sk; 1292 1293 /* Streams do not free skb on error. Reset to prev state. */ 1294 msg->msg_iter = orig_iter; 1295 skb->sk = sk; 1296 ___pskb_trim(skb, orig_len); 1297 skb->sk = save_sk; 1298 return err; 1299 } 1300 1301 skb_zcopy_set(skb, uarg, NULL); 1302 return skb->len - orig_len; 1303 } 1304 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1305 1306 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1307 gfp_t gfp_mask) 1308 { 1309 if (skb_zcopy(orig)) { 1310 if (skb_zcopy(nskb)) { 1311 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1312 if (!gfp_mask) { 1313 WARN_ON_ONCE(1); 1314 return -ENOMEM; 1315 } 1316 if (skb_uarg(nskb) == skb_uarg(orig)) 1317 return 0; 1318 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1319 return -EIO; 1320 } 1321 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1322 } 1323 return 0; 1324 } 1325 1326 /** 1327 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1328 * @skb: the skb to modify 1329 * @gfp_mask: allocation priority 1330 * 1331 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1332 * It will copy all frags into kernel and drop the reference 1333 * to userspace pages. 1334 * 1335 * If this function is called from an interrupt gfp_mask() must be 1336 * %GFP_ATOMIC. 1337 * 1338 * Returns 0 on success or a negative error code on failure 1339 * to allocate kernel memory to copy to. 1340 */ 1341 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1342 { 1343 int num_frags = skb_shinfo(skb)->nr_frags; 1344 struct page *page, *head = NULL; 1345 int i, new_frags; 1346 u32 d_off; 1347 1348 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1349 return -EINVAL; 1350 1351 if (!num_frags) 1352 goto release; 1353 1354 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1355 for (i = 0; i < new_frags; i++) { 1356 page = alloc_page(gfp_mask); 1357 if (!page) { 1358 while (head) { 1359 struct page *next = (struct page *)page_private(head); 1360 put_page(head); 1361 head = next; 1362 } 1363 return -ENOMEM; 1364 } 1365 set_page_private(page, (unsigned long)head); 1366 head = page; 1367 } 1368 1369 page = head; 1370 d_off = 0; 1371 for (i = 0; i < num_frags; i++) { 1372 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1373 u32 p_off, p_len, copied; 1374 struct page *p; 1375 u8 *vaddr; 1376 1377 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1378 p, p_off, p_len, copied) { 1379 u32 copy, done = 0; 1380 vaddr = kmap_atomic(p); 1381 1382 while (done < p_len) { 1383 if (d_off == PAGE_SIZE) { 1384 d_off = 0; 1385 page = (struct page *)page_private(page); 1386 } 1387 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1388 memcpy(page_address(page) + d_off, 1389 vaddr + p_off + done, copy); 1390 done += copy; 1391 d_off += copy; 1392 } 1393 kunmap_atomic(vaddr); 1394 } 1395 } 1396 1397 /* skb frags release userspace buffers */ 1398 for (i = 0; i < num_frags; i++) 1399 skb_frag_unref(skb, i); 1400 1401 /* skb frags point to kernel buffers */ 1402 for (i = 0; i < new_frags - 1; i++) { 1403 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1404 head = (struct page *)page_private(head); 1405 } 1406 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1407 skb_shinfo(skb)->nr_frags = new_frags; 1408 1409 release: 1410 skb_zcopy_clear(skb, false); 1411 return 0; 1412 } 1413 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1414 1415 /** 1416 * skb_clone - duplicate an sk_buff 1417 * @skb: buffer to clone 1418 * @gfp_mask: allocation priority 1419 * 1420 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1421 * copies share the same packet data but not structure. The new 1422 * buffer has a reference count of 1. If the allocation fails the 1423 * function returns %NULL otherwise the new buffer is returned. 1424 * 1425 * If this function is called from an interrupt gfp_mask() must be 1426 * %GFP_ATOMIC. 1427 */ 1428 1429 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1430 { 1431 struct sk_buff_fclones *fclones = container_of(skb, 1432 struct sk_buff_fclones, 1433 skb1); 1434 struct sk_buff *n; 1435 1436 if (skb_orphan_frags(skb, gfp_mask)) 1437 return NULL; 1438 1439 if (skb->fclone == SKB_FCLONE_ORIG && 1440 refcount_read(&fclones->fclone_ref) == 1) { 1441 n = &fclones->skb2; 1442 refcount_set(&fclones->fclone_ref, 2); 1443 } else { 1444 if (skb_pfmemalloc(skb)) 1445 gfp_mask |= __GFP_MEMALLOC; 1446 1447 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1448 if (!n) 1449 return NULL; 1450 1451 n->fclone = SKB_FCLONE_UNAVAILABLE; 1452 } 1453 1454 return __skb_clone(n, skb); 1455 } 1456 EXPORT_SYMBOL(skb_clone); 1457 1458 void skb_headers_offset_update(struct sk_buff *skb, int off) 1459 { 1460 /* Only adjust this if it actually is csum_start rather than csum */ 1461 if (skb->ip_summed == CHECKSUM_PARTIAL) 1462 skb->csum_start += off; 1463 /* {transport,network,mac}_header and tail are relative to skb->head */ 1464 skb->transport_header += off; 1465 skb->network_header += off; 1466 if (skb_mac_header_was_set(skb)) 1467 skb->mac_header += off; 1468 skb->inner_transport_header += off; 1469 skb->inner_network_header += off; 1470 skb->inner_mac_header += off; 1471 } 1472 EXPORT_SYMBOL(skb_headers_offset_update); 1473 1474 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1475 { 1476 __copy_skb_header(new, old); 1477 1478 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1479 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1480 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1481 } 1482 EXPORT_SYMBOL(skb_copy_header); 1483 1484 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1485 { 1486 if (skb_pfmemalloc(skb)) 1487 return SKB_ALLOC_RX; 1488 return 0; 1489 } 1490 1491 /** 1492 * skb_copy - create private copy of an sk_buff 1493 * @skb: buffer to copy 1494 * @gfp_mask: allocation priority 1495 * 1496 * Make a copy of both an &sk_buff and its data. This is used when the 1497 * caller wishes to modify the data and needs a private copy of the 1498 * data to alter. Returns %NULL on failure or the pointer to the buffer 1499 * on success. The returned buffer has a reference count of 1. 1500 * 1501 * As by-product this function converts non-linear &sk_buff to linear 1502 * one, so that &sk_buff becomes completely private and caller is allowed 1503 * to modify all the data of returned buffer. This means that this 1504 * function is not recommended for use in circumstances when only 1505 * header is going to be modified. Use pskb_copy() instead. 1506 */ 1507 1508 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1509 { 1510 int headerlen = skb_headroom(skb); 1511 unsigned int size = skb_end_offset(skb) + skb->data_len; 1512 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1513 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1514 1515 if (!n) 1516 return NULL; 1517 1518 /* Set the data pointer */ 1519 skb_reserve(n, headerlen); 1520 /* Set the tail pointer and length */ 1521 skb_put(n, skb->len); 1522 1523 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1524 1525 skb_copy_header(n, skb); 1526 return n; 1527 } 1528 EXPORT_SYMBOL(skb_copy); 1529 1530 /** 1531 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1532 * @skb: buffer to copy 1533 * @headroom: headroom of new skb 1534 * @gfp_mask: allocation priority 1535 * @fclone: if true allocate the copy of the skb from the fclone 1536 * cache instead of the head cache; it is recommended to set this 1537 * to true for the cases where the copy will likely be cloned 1538 * 1539 * Make a copy of both an &sk_buff and part of its data, located 1540 * in header. Fragmented data remain shared. This is used when 1541 * the caller wishes to modify only header of &sk_buff and needs 1542 * private copy of the header to alter. Returns %NULL on failure 1543 * or the pointer to the buffer on success. 1544 * The returned buffer has a reference count of 1. 1545 */ 1546 1547 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1548 gfp_t gfp_mask, bool fclone) 1549 { 1550 unsigned int size = skb_headlen(skb) + headroom; 1551 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1552 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1553 1554 if (!n) 1555 goto out; 1556 1557 /* Set the data pointer */ 1558 skb_reserve(n, headroom); 1559 /* Set the tail pointer and length */ 1560 skb_put(n, skb_headlen(skb)); 1561 /* Copy the bytes */ 1562 skb_copy_from_linear_data(skb, n->data, n->len); 1563 1564 n->truesize += skb->data_len; 1565 n->data_len = skb->data_len; 1566 n->len = skb->len; 1567 1568 if (skb_shinfo(skb)->nr_frags) { 1569 int i; 1570 1571 if (skb_orphan_frags(skb, gfp_mask) || 1572 skb_zerocopy_clone(n, skb, gfp_mask)) { 1573 kfree_skb(n); 1574 n = NULL; 1575 goto out; 1576 } 1577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1578 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1579 skb_frag_ref(skb, i); 1580 } 1581 skb_shinfo(n)->nr_frags = i; 1582 } 1583 1584 if (skb_has_frag_list(skb)) { 1585 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1586 skb_clone_fraglist(n); 1587 } 1588 1589 skb_copy_header(n, skb); 1590 out: 1591 return n; 1592 } 1593 EXPORT_SYMBOL(__pskb_copy_fclone); 1594 1595 /** 1596 * pskb_expand_head - reallocate header of &sk_buff 1597 * @skb: buffer to reallocate 1598 * @nhead: room to add at head 1599 * @ntail: room to add at tail 1600 * @gfp_mask: allocation priority 1601 * 1602 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1603 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1604 * reference count of 1. Returns zero in the case of success or error, 1605 * if expansion failed. In the last case, &sk_buff is not changed. 1606 * 1607 * All the pointers pointing into skb header may change and must be 1608 * reloaded after call to this function. 1609 */ 1610 1611 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1612 gfp_t gfp_mask) 1613 { 1614 int i, osize = skb_end_offset(skb); 1615 int size = osize + nhead + ntail; 1616 long off; 1617 u8 *data; 1618 1619 BUG_ON(nhead < 0); 1620 1621 BUG_ON(skb_shared(skb)); 1622 1623 size = SKB_DATA_ALIGN(size); 1624 1625 if (skb_pfmemalloc(skb)) 1626 gfp_mask |= __GFP_MEMALLOC; 1627 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1628 gfp_mask, NUMA_NO_NODE, NULL); 1629 if (!data) 1630 goto nodata; 1631 size = SKB_WITH_OVERHEAD(ksize(data)); 1632 1633 /* Copy only real data... and, alas, header. This should be 1634 * optimized for the cases when header is void. 1635 */ 1636 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1637 1638 memcpy((struct skb_shared_info *)(data + size), 1639 skb_shinfo(skb), 1640 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1641 1642 /* 1643 * if shinfo is shared we must drop the old head gracefully, but if it 1644 * is not we can just drop the old head and let the existing refcount 1645 * be since all we did is relocate the values 1646 */ 1647 if (skb_cloned(skb)) { 1648 if (skb_orphan_frags(skb, gfp_mask)) 1649 goto nofrags; 1650 if (skb_zcopy(skb)) 1651 refcount_inc(&skb_uarg(skb)->refcnt); 1652 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1653 skb_frag_ref(skb, i); 1654 1655 if (skb_has_frag_list(skb)) 1656 skb_clone_fraglist(skb); 1657 1658 skb_release_data(skb); 1659 } else { 1660 skb_free_head(skb); 1661 } 1662 off = (data + nhead) - skb->head; 1663 1664 skb->head = data; 1665 skb->head_frag = 0; 1666 skb->data += off; 1667 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1668 skb->end = size; 1669 off = nhead; 1670 #else 1671 skb->end = skb->head + size; 1672 #endif 1673 skb->tail += off; 1674 skb_headers_offset_update(skb, nhead); 1675 skb->cloned = 0; 1676 skb->hdr_len = 0; 1677 skb->nohdr = 0; 1678 atomic_set(&skb_shinfo(skb)->dataref, 1); 1679 1680 skb_metadata_clear(skb); 1681 1682 /* It is not generally safe to change skb->truesize. 1683 * For the moment, we really care of rx path, or 1684 * when skb is orphaned (not attached to a socket). 1685 */ 1686 if (!skb->sk || skb->destructor == sock_edemux) 1687 skb->truesize += size - osize; 1688 1689 return 0; 1690 1691 nofrags: 1692 kfree(data); 1693 nodata: 1694 return -ENOMEM; 1695 } 1696 EXPORT_SYMBOL(pskb_expand_head); 1697 1698 /* Make private copy of skb with writable head and some headroom */ 1699 1700 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1701 { 1702 struct sk_buff *skb2; 1703 int delta = headroom - skb_headroom(skb); 1704 1705 if (delta <= 0) 1706 skb2 = pskb_copy(skb, GFP_ATOMIC); 1707 else { 1708 skb2 = skb_clone(skb, GFP_ATOMIC); 1709 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1710 GFP_ATOMIC)) { 1711 kfree_skb(skb2); 1712 skb2 = NULL; 1713 } 1714 } 1715 return skb2; 1716 } 1717 EXPORT_SYMBOL(skb_realloc_headroom); 1718 1719 /** 1720 * skb_copy_expand - copy and expand sk_buff 1721 * @skb: buffer to copy 1722 * @newheadroom: new free bytes at head 1723 * @newtailroom: new free bytes at tail 1724 * @gfp_mask: allocation priority 1725 * 1726 * Make a copy of both an &sk_buff and its data and while doing so 1727 * allocate additional space. 1728 * 1729 * This is used when the caller wishes to modify the data and needs a 1730 * private copy of the data to alter as well as more space for new fields. 1731 * Returns %NULL on failure or the pointer to the buffer 1732 * on success. The returned buffer has a reference count of 1. 1733 * 1734 * You must pass %GFP_ATOMIC as the allocation priority if this function 1735 * is called from an interrupt. 1736 */ 1737 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1738 int newheadroom, int newtailroom, 1739 gfp_t gfp_mask) 1740 { 1741 /* 1742 * Allocate the copy buffer 1743 */ 1744 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1745 gfp_mask, skb_alloc_rx_flag(skb), 1746 NUMA_NO_NODE); 1747 int oldheadroom = skb_headroom(skb); 1748 int head_copy_len, head_copy_off; 1749 1750 if (!n) 1751 return NULL; 1752 1753 skb_reserve(n, newheadroom); 1754 1755 /* Set the tail pointer and length */ 1756 skb_put(n, skb->len); 1757 1758 head_copy_len = oldheadroom; 1759 head_copy_off = 0; 1760 if (newheadroom <= head_copy_len) 1761 head_copy_len = newheadroom; 1762 else 1763 head_copy_off = newheadroom - head_copy_len; 1764 1765 /* Copy the linear header and data. */ 1766 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1767 skb->len + head_copy_len)); 1768 1769 skb_copy_header(n, skb); 1770 1771 skb_headers_offset_update(n, newheadroom - oldheadroom); 1772 1773 return n; 1774 } 1775 EXPORT_SYMBOL(skb_copy_expand); 1776 1777 /** 1778 * __skb_pad - zero pad the tail of an skb 1779 * @skb: buffer to pad 1780 * @pad: space to pad 1781 * @free_on_error: free buffer on error 1782 * 1783 * Ensure that a buffer is followed by a padding area that is zero 1784 * filled. Used by network drivers which may DMA or transfer data 1785 * beyond the buffer end onto the wire. 1786 * 1787 * May return error in out of memory cases. The skb is freed on error 1788 * if @free_on_error is true. 1789 */ 1790 1791 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1792 { 1793 int err; 1794 int ntail; 1795 1796 /* If the skbuff is non linear tailroom is always zero.. */ 1797 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1798 memset(skb->data+skb->len, 0, pad); 1799 return 0; 1800 } 1801 1802 ntail = skb->data_len + pad - (skb->end - skb->tail); 1803 if (likely(skb_cloned(skb) || ntail > 0)) { 1804 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1805 if (unlikely(err)) 1806 goto free_skb; 1807 } 1808 1809 /* FIXME: The use of this function with non-linear skb's really needs 1810 * to be audited. 1811 */ 1812 err = skb_linearize(skb); 1813 if (unlikely(err)) 1814 goto free_skb; 1815 1816 memset(skb->data + skb->len, 0, pad); 1817 return 0; 1818 1819 free_skb: 1820 if (free_on_error) 1821 kfree_skb(skb); 1822 return err; 1823 } 1824 EXPORT_SYMBOL(__skb_pad); 1825 1826 /** 1827 * pskb_put - add data to the tail of a potentially fragmented buffer 1828 * @skb: start of the buffer to use 1829 * @tail: tail fragment of the buffer to use 1830 * @len: amount of data to add 1831 * 1832 * This function extends the used data area of the potentially 1833 * fragmented buffer. @tail must be the last fragment of @skb -- or 1834 * @skb itself. If this would exceed the total buffer size the kernel 1835 * will panic. A pointer to the first byte of the extra data is 1836 * returned. 1837 */ 1838 1839 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1840 { 1841 if (tail != skb) { 1842 skb->data_len += len; 1843 skb->len += len; 1844 } 1845 return skb_put(tail, len); 1846 } 1847 EXPORT_SYMBOL_GPL(pskb_put); 1848 1849 /** 1850 * skb_put - add data to a buffer 1851 * @skb: buffer to use 1852 * @len: amount of data to add 1853 * 1854 * This function extends the used data area of the buffer. If this would 1855 * exceed the total buffer size the kernel will panic. A pointer to the 1856 * first byte of the extra data is returned. 1857 */ 1858 void *skb_put(struct sk_buff *skb, unsigned int len) 1859 { 1860 void *tmp = skb_tail_pointer(skb); 1861 SKB_LINEAR_ASSERT(skb); 1862 skb->tail += len; 1863 skb->len += len; 1864 if (unlikely(skb->tail > skb->end)) 1865 skb_over_panic(skb, len, __builtin_return_address(0)); 1866 return tmp; 1867 } 1868 EXPORT_SYMBOL(skb_put); 1869 1870 /** 1871 * skb_push - add data to the start of a buffer 1872 * @skb: buffer to use 1873 * @len: amount of data to add 1874 * 1875 * This function extends the used data area of the buffer at the buffer 1876 * start. If this would exceed the total buffer headroom the kernel will 1877 * panic. A pointer to the first byte of the extra data is returned. 1878 */ 1879 void *skb_push(struct sk_buff *skb, unsigned int len) 1880 { 1881 skb->data -= len; 1882 skb->len += len; 1883 if (unlikely(skb->data < skb->head)) 1884 skb_under_panic(skb, len, __builtin_return_address(0)); 1885 return skb->data; 1886 } 1887 EXPORT_SYMBOL(skb_push); 1888 1889 /** 1890 * skb_pull - remove data from the start of a buffer 1891 * @skb: buffer to use 1892 * @len: amount of data to remove 1893 * 1894 * This function removes data from the start of a buffer, returning 1895 * the memory to the headroom. A pointer to the next data in the buffer 1896 * is returned. Once the data has been pulled future pushes will overwrite 1897 * the old data. 1898 */ 1899 void *skb_pull(struct sk_buff *skb, unsigned int len) 1900 { 1901 return skb_pull_inline(skb, len); 1902 } 1903 EXPORT_SYMBOL(skb_pull); 1904 1905 /** 1906 * skb_trim - remove end from a buffer 1907 * @skb: buffer to alter 1908 * @len: new length 1909 * 1910 * Cut the length of a buffer down by removing data from the tail. If 1911 * the buffer is already under the length specified it is not modified. 1912 * The skb must be linear. 1913 */ 1914 void skb_trim(struct sk_buff *skb, unsigned int len) 1915 { 1916 if (skb->len > len) 1917 __skb_trim(skb, len); 1918 } 1919 EXPORT_SYMBOL(skb_trim); 1920 1921 /* Trims skb to length len. It can change skb pointers. 1922 */ 1923 1924 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1925 { 1926 struct sk_buff **fragp; 1927 struct sk_buff *frag; 1928 int offset = skb_headlen(skb); 1929 int nfrags = skb_shinfo(skb)->nr_frags; 1930 int i; 1931 int err; 1932 1933 if (skb_cloned(skb) && 1934 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1935 return err; 1936 1937 i = 0; 1938 if (offset >= len) 1939 goto drop_pages; 1940 1941 for (; i < nfrags; i++) { 1942 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1943 1944 if (end < len) { 1945 offset = end; 1946 continue; 1947 } 1948 1949 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1950 1951 drop_pages: 1952 skb_shinfo(skb)->nr_frags = i; 1953 1954 for (; i < nfrags; i++) 1955 skb_frag_unref(skb, i); 1956 1957 if (skb_has_frag_list(skb)) 1958 skb_drop_fraglist(skb); 1959 goto done; 1960 } 1961 1962 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1963 fragp = &frag->next) { 1964 int end = offset + frag->len; 1965 1966 if (skb_shared(frag)) { 1967 struct sk_buff *nfrag; 1968 1969 nfrag = skb_clone(frag, GFP_ATOMIC); 1970 if (unlikely(!nfrag)) 1971 return -ENOMEM; 1972 1973 nfrag->next = frag->next; 1974 consume_skb(frag); 1975 frag = nfrag; 1976 *fragp = frag; 1977 } 1978 1979 if (end < len) { 1980 offset = end; 1981 continue; 1982 } 1983 1984 if (end > len && 1985 unlikely((err = pskb_trim(frag, len - offset)))) 1986 return err; 1987 1988 if (frag->next) 1989 skb_drop_list(&frag->next); 1990 break; 1991 } 1992 1993 done: 1994 if (len > skb_headlen(skb)) { 1995 skb->data_len -= skb->len - len; 1996 skb->len = len; 1997 } else { 1998 skb->len = len; 1999 skb->data_len = 0; 2000 skb_set_tail_pointer(skb, len); 2001 } 2002 2003 if (!skb->sk || skb->destructor == sock_edemux) 2004 skb_condense(skb); 2005 return 0; 2006 } 2007 EXPORT_SYMBOL(___pskb_trim); 2008 2009 /* Note : use pskb_trim_rcsum() instead of calling this directly 2010 */ 2011 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2012 { 2013 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2014 int delta = skb->len - len; 2015 2016 skb->csum = csum_block_sub(skb->csum, 2017 skb_checksum(skb, len, delta, 0), 2018 len); 2019 } 2020 return __pskb_trim(skb, len); 2021 } 2022 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2023 2024 /** 2025 * __pskb_pull_tail - advance tail of skb header 2026 * @skb: buffer to reallocate 2027 * @delta: number of bytes to advance tail 2028 * 2029 * The function makes a sense only on a fragmented &sk_buff, 2030 * it expands header moving its tail forward and copying necessary 2031 * data from fragmented part. 2032 * 2033 * &sk_buff MUST have reference count of 1. 2034 * 2035 * Returns %NULL (and &sk_buff does not change) if pull failed 2036 * or value of new tail of skb in the case of success. 2037 * 2038 * All the pointers pointing into skb header may change and must be 2039 * reloaded after call to this function. 2040 */ 2041 2042 /* Moves tail of skb head forward, copying data from fragmented part, 2043 * when it is necessary. 2044 * 1. It may fail due to malloc failure. 2045 * 2. It may change skb pointers. 2046 * 2047 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2048 */ 2049 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2050 { 2051 /* If skb has not enough free space at tail, get new one 2052 * plus 128 bytes for future expansions. If we have enough 2053 * room at tail, reallocate without expansion only if skb is cloned. 2054 */ 2055 int i, k, eat = (skb->tail + delta) - skb->end; 2056 2057 if (eat > 0 || skb_cloned(skb)) { 2058 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2059 GFP_ATOMIC)) 2060 return NULL; 2061 } 2062 2063 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2064 skb_tail_pointer(skb), delta)); 2065 2066 /* Optimization: no fragments, no reasons to preestimate 2067 * size of pulled pages. Superb. 2068 */ 2069 if (!skb_has_frag_list(skb)) 2070 goto pull_pages; 2071 2072 /* Estimate size of pulled pages. */ 2073 eat = delta; 2074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2075 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2076 2077 if (size >= eat) 2078 goto pull_pages; 2079 eat -= size; 2080 } 2081 2082 /* If we need update frag list, we are in troubles. 2083 * Certainly, it is possible to add an offset to skb data, 2084 * but taking into account that pulling is expected to 2085 * be very rare operation, it is worth to fight against 2086 * further bloating skb head and crucify ourselves here instead. 2087 * Pure masohism, indeed. 8)8) 2088 */ 2089 if (eat) { 2090 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2091 struct sk_buff *clone = NULL; 2092 struct sk_buff *insp = NULL; 2093 2094 do { 2095 if (list->len <= eat) { 2096 /* Eaten as whole. */ 2097 eat -= list->len; 2098 list = list->next; 2099 insp = list; 2100 } else { 2101 /* Eaten partially. */ 2102 2103 if (skb_shared(list)) { 2104 /* Sucks! We need to fork list. :-( */ 2105 clone = skb_clone(list, GFP_ATOMIC); 2106 if (!clone) 2107 return NULL; 2108 insp = list->next; 2109 list = clone; 2110 } else { 2111 /* This may be pulled without 2112 * problems. */ 2113 insp = list; 2114 } 2115 if (!pskb_pull(list, eat)) { 2116 kfree_skb(clone); 2117 return NULL; 2118 } 2119 break; 2120 } 2121 } while (eat); 2122 2123 /* Free pulled out fragments. */ 2124 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2125 skb_shinfo(skb)->frag_list = list->next; 2126 kfree_skb(list); 2127 } 2128 /* And insert new clone at head. */ 2129 if (clone) { 2130 clone->next = list; 2131 skb_shinfo(skb)->frag_list = clone; 2132 } 2133 } 2134 /* Success! Now we may commit changes to skb data. */ 2135 2136 pull_pages: 2137 eat = delta; 2138 k = 0; 2139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2140 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2141 2142 if (size <= eat) { 2143 skb_frag_unref(skb, i); 2144 eat -= size; 2145 } else { 2146 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2147 2148 *frag = skb_shinfo(skb)->frags[i]; 2149 if (eat) { 2150 skb_frag_off_add(frag, eat); 2151 skb_frag_size_sub(frag, eat); 2152 if (!i) 2153 goto end; 2154 eat = 0; 2155 } 2156 k++; 2157 } 2158 } 2159 skb_shinfo(skb)->nr_frags = k; 2160 2161 end: 2162 skb->tail += delta; 2163 skb->data_len -= delta; 2164 2165 if (!skb->data_len) 2166 skb_zcopy_clear(skb, false); 2167 2168 return skb_tail_pointer(skb); 2169 } 2170 EXPORT_SYMBOL(__pskb_pull_tail); 2171 2172 /** 2173 * skb_copy_bits - copy bits from skb to kernel buffer 2174 * @skb: source skb 2175 * @offset: offset in source 2176 * @to: destination buffer 2177 * @len: number of bytes to copy 2178 * 2179 * Copy the specified number of bytes from the source skb to the 2180 * destination buffer. 2181 * 2182 * CAUTION ! : 2183 * If its prototype is ever changed, 2184 * check arch/{*}/net/{*}.S files, 2185 * since it is called from BPF assembly code. 2186 */ 2187 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2188 { 2189 int start = skb_headlen(skb); 2190 struct sk_buff *frag_iter; 2191 int i, copy; 2192 2193 if (offset > (int)skb->len - len) 2194 goto fault; 2195 2196 /* Copy header. */ 2197 if ((copy = start - offset) > 0) { 2198 if (copy > len) 2199 copy = len; 2200 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2201 if ((len -= copy) == 0) 2202 return 0; 2203 offset += copy; 2204 to += copy; 2205 } 2206 2207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2208 int end; 2209 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2210 2211 WARN_ON(start > offset + len); 2212 2213 end = start + skb_frag_size(f); 2214 if ((copy = end - offset) > 0) { 2215 u32 p_off, p_len, copied; 2216 struct page *p; 2217 u8 *vaddr; 2218 2219 if (copy > len) 2220 copy = len; 2221 2222 skb_frag_foreach_page(f, 2223 skb_frag_off(f) + offset - start, 2224 copy, p, p_off, p_len, copied) { 2225 vaddr = kmap_atomic(p); 2226 memcpy(to + copied, vaddr + p_off, p_len); 2227 kunmap_atomic(vaddr); 2228 } 2229 2230 if ((len -= copy) == 0) 2231 return 0; 2232 offset += copy; 2233 to += copy; 2234 } 2235 start = end; 2236 } 2237 2238 skb_walk_frags(skb, frag_iter) { 2239 int end; 2240 2241 WARN_ON(start > offset + len); 2242 2243 end = start + frag_iter->len; 2244 if ((copy = end - offset) > 0) { 2245 if (copy > len) 2246 copy = len; 2247 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2248 goto fault; 2249 if ((len -= copy) == 0) 2250 return 0; 2251 offset += copy; 2252 to += copy; 2253 } 2254 start = end; 2255 } 2256 2257 if (!len) 2258 return 0; 2259 2260 fault: 2261 return -EFAULT; 2262 } 2263 EXPORT_SYMBOL(skb_copy_bits); 2264 2265 /* 2266 * Callback from splice_to_pipe(), if we need to release some pages 2267 * at the end of the spd in case we error'ed out in filling the pipe. 2268 */ 2269 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2270 { 2271 put_page(spd->pages[i]); 2272 } 2273 2274 static struct page *linear_to_page(struct page *page, unsigned int *len, 2275 unsigned int *offset, 2276 struct sock *sk) 2277 { 2278 struct page_frag *pfrag = sk_page_frag(sk); 2279 2280 if (!sk_page_frag_refill(sk, pfrag)) 2281 return NULL; 2282 2283 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2284 2285 memcpy(page_address(pfrag->page) + pfrag->offset, 2286 page_address(page) + *offset, *len); 2287 *offset = pfrag->offset; 2288 pfrag->offset += *len; 2289 2290 return pfrag->page; 2291 } 2292 2293 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2294 struct page *page, 2295 unsigned int offset) 2296 { 2297 return spd->nr_pages && 2298 spd->pages[spd->nr_pages - 1] == page && 2299 (spd->partial[spd->nr_pages - 1].offset + 2300 spd->partial[spd->nr_pages - 1].len == offset); 2301 } 2302 2303 /* 2304 * Fill page/offset/length into spd, if it can hold more pages. 2305 */ 2306 static bool spd_fill_page(struct splice_pipe_desc *spd, 2307 struct pipe_inode_info *pipe, struct page *page, 2308 unsigned int *len, unsigned int offset, 2309 bool linear, 2310 struct sock *sk) 2311 { 2312 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2313 return true; 2314 2315 if (linear) { 2316 page = linear_to_page(page, len, &offset, sk); 2317 if (!page) 2318 return true; 2319 } 2320 if (spd_can_coalesce(spd, page, offset)) { 2321 spd->partial[spd->nr_pages - 1].len += *len; 2322 return false; 2323 } 2324 get_page(page); 2325 spd->pages[spd->nr_pages] = page; 2326 spd->partial[spd->nr_pages].len = *len; 2327 spd->partial[spd->nr_pages].offset = offset; 2328 spd->nr_pages++; 2329 2330 return false; 2331 } 2332 2333 static bool __splice_segment(struct page *page, unsigned int poff, 2334 unsigned int plen, unsigned int *off, 2335 unsigned int *len, 2336 struct splice_pipe_desc *spd, bool linear, 2337 struct sock *sk, 2338 struct pipe_inode_info *pipe) 2339 { 2340 if (!*len) 2341 return true; 2342 2343 /* skip this segment if already processed */ 2344 if (*off >= plen) { 2345 *off -= plen; 2346 return false; 2347 } 2348 2349 /* ignore any bits we already processed */ 2350 poff += *off; 2351 plen -= *off; 2352 *off = 0; 2353 2354 do { 2355 unsigned int flen = min(*len, plen); 2356 2357 if (spd_fill_page(spd, pipe, page, &flen, poff, 2358 linear, sk)) 2359 return true; 2360 poff += flen; 2361 plen -= flen; 2362 *len -= flen; 2363 } while (*len && plen); 2364 2365 return false; 2366 } 2367 2368 /* 2369 * Map linear and fragment data from the skb to spd. It reports true if the 2370 * pipe is full or if we already spliced the requested length. 2371 */ 2372 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2373 unsigned int *offset, unsigned int *len, 2374 struct splice_pipe_desc *spd, struct sock *sk) 2375 { 2376 int seg; 2377 struct sk_buff *iter; 2378 2379 /* map the linear part : 2380 * If skb->head_frag is set, this 'linear' part is backed by a 2381 * fragment, and if the head is not shared with any clones then 2382 * we can avoid a copy since we own the head portion of this page. 2383 */ 2384 if (__splice_segment(virt_to_page(skb->data), 2385 (unsigned long) skb->data & (PAGE_SIZE - 1), 2386 skb_headlen(skb), 2387 offset, len, spd, 2388 skb_head_is_locked(skb), 2389 sk, pipe)) 2390 return true; 2391 2392 /* 2393 * then map the fragments 2394 */ 2395 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2396 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2397 2398 if (__splice_segment(skb_frag_page(f), 2399 skb_frag_off(f), skb_frag_size(f), 2400 offset, len, spd, false, sk, pipe)) 2401 return true; 2402 } 2403 2404 skb_walk_frags(skb, iter) { 2405 if (*offset >= iter->len) { 2406 *offset -= iter->len; 2407 continue; 2408 } 2409 /* __skb_splice_bits() only fails if the output has no room 2410 * left, so no point in going over the frag_list for the error 2411 * case. 2412 */ 2413 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2414 return true; 2415 } 2416 2417 return false; 2418 } 2419 2420 /* 2421 * Map data from the skb to a pipe. Should handle both the linear part, 2422 * the fragments, and the frag list. 2423 */ 2424 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2425 struct pipe_inode_info *pipe, unsigned int tlen, 2426 unsigned int flags) 2427 { 2428 struct partial_page partial[MAX_SKB_FRAGS]; 2429 struct page *pages[MAX_SKB_FRAGS]; 2430 struct splice_pipe_desc spd = { 2431 .pages = pages, 2432 .partial = partial, 2433 .nr_pages_max = MAX_SKB_FRAGS, 2434 .ops = &nosteal_pipe_buf_ops, 2435 .spd_release = sock_spd_release, 2436 }; 2437 int ret = 0; 2438 2439 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2440 2441 if (spd.nr_pages) 2442 ret = splice_to_pipe(pipe, &spd); 2443 2444 return ret; 2445 } 2446 EXPORT_SYMBOL_GPL(skb_splice_bits); 2447 2448 /* Send skb data on a socket. Socket must be locked. */ 2449 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2450 int len) 2451 { 2452 unsigned int orig_len = len; 2453 struct sk_buff *head = skb; 2454 unsigned short fragidx; 2455 int slen, ret; 2456 2457 do_frag_list: 2458 2459 /* Deal with head data */ 2460 while (offset < skb_headlen(skb) && len) { 2461 struct kvec kv; 2462 struct msghdr msg; 2463 2464 slen = min_t(int, len, skb_headlen(skb) - offset); 2465 kv.iov_base = skb->data + offset; 2466 kv.iov_len = slen; 2467 memset(&msg, 0, sizeof(msg)); 2468 msg.msg_flags = MSG_DONTWAIT; 2469 2470 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2471 if (ret <= 0) 2472 goto error; 2473 2474 offset += ret; 2475 len -= ret; 2476 } 2477 2478 /* All the data was skb head? */ 2479 if (!len) 2480 goto out; 2481 2482 /* Make offset relative to start of frags */ 2483 offset -= skb_headlen(skb); 2484 2485 /* Find where we are in frag list */ 2486 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2487 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2488 2489 if (offset < skb_frag_size(frag)) 2490 break; 2491 2492 offset -= skb_frag_size(frag); 2493 } 2494 2495 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2496 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2497 2498 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2499 2500 while (slen) { 2501 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2502 skb_frag_off(frag) + offset, 2503 slen, MSG_DONTWAIT); 2504 if (ret <= 0) 2505 goto error; 2506 2507 len -= ret; 2508 offset += ret; 2509 slen -= ret; 2510 } 2511 2512 offset = 0; 2513 } 2514 2515 if (len) { 2516 /* Process any frag lists */ 2517 2518 if (skb == head) { 2519 if (skb_has_frag_list(skb)) { 2520 skb = skb_shinfo(skb)->frag_list; 2521 goto do_frag_list; 2522 } 2523 } else if (skb->next) { 2524 skb = skb->next; 2525 goto do_frag_list; 2526 } 2527 } 2528 2529 out: 2530 return orig_len - len; 2531 2532 error: 2533 return orig_len == len ? ret : orig_len - len; 2534 } 2535 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2536 2537 /** 2538 * skb_store_bits - store bits from kernel buffer to skb 2539 * @skb: destination buffer 2540 * @offset: offset in destination 2541 * @from: source buffer 2542 * @len: number of bytes to copy 2543 * 2544 * Copy the specified number of bytes from the source buffer to the 2545 * destination skb. This function handles all the messy bits of 2546 * traversing fragment lists and such. 2547 */ 2548 2549 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2550 { 2551 int start = skb_headlen(skb); 2552 struct sk_buff *frag_iter; 2553 int i, copy; 2554 2555 if (offset > (int)skb->len - len) 2556 goto fault; 2557 2558 if ((copy = start - offset) > 0) { 2559 if (copy > len) 2560 copy = len; 2561 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2562 if ((len -= copy) == 0) 2563 return 0; 2564 offset += copy; 2565 from += copy; 2566 } 2567 2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2570 int end; 2571 2572 WARN_ON(start > offset + len); 2573 2574 end = start + skb_frag_size(frag); 2575 if ((copy = end - offset) > 0) { 2576 u32 p_off, p_len, copied; 2577 struct page *p; 2578 u8 *vaddr; 2579 2580 if (copy > len) 2581 copy = len; 2582 2583 skb_frag_foreach_page(frag, 2584 skb_frag_off(frag) + offset - start, 2585 copy, p, p_off, p_len, copied) { 2586 vaddr = kmap_atomic(p); 2587 memcpy(vaddr + p_off, from + copied, p_len); 2588 kunmap_atomic(vaddr); 2589 } 2590 2591 if ((len -= copy) == 0) 2592 return 0; 2593 offset += copy; 2594 from += copy; 2595 } 2596 start = end; 2597 } 2598 2599 skb_walk_frags(skb, frag_iter) { 2600 int end; 2601 2602 WARN_ON(start > offset + len); 2603 2604 end = start + frag_iter->len; 2605 if ((copy = end - offset) > 0) { 2606 if (copy > len) 2607 copy = len; 2608 if (skb_store_bits(frag_iter, offset - start, 2609 from, copy)) 2610 goto fault; 2611 if ((len -= copy) == 0) 2612 return 0; 2613 offset += copy; 2614 from += copy; 2615 } 2616 start = end; 2617 } 2618 if (!len) 2619 return 0; 2620 2621 fault: 2622 return -EFAULT; 2623 } 2624 EXPORT_SYMBOL(skb_store_bits); 2625 2626 /* Checksum skb data. */ 2627 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2628 __wsum csum, const struct skb_checksum_ops *ops) 2629 { 2630 int start = skb_headlen(skb); 2631 int i, copy = start - offset; 2632 struct sk_buff *frag_iter; 2633 int pos = 0; 2634 2635 /* Checksum header. */ 2636 if (copy > 0) { 2637 if (copy > len) 2638 copy = len; 2639 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2640 skb->data + offset, copy, csum); 2641 if ((len -= copy) == 0) 2642 return csum; 2643 offset += copy; 2644 pos = copy; 2645 } 2646 2647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2648 int end; 2649 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2650 2651 WARN_ON(start > offset + len); 2652 2653 end = start + skb_frag_size(frag); 2654 if ((copy = end - offset) > 0) { 2655 u32 p_off, p_len, copied; 2656 struct page *p; 2657 __wsum csum2; 2658 u8 *vaddr; 2659 2660 if (copy > len) 2661 copy = len; 2662 2663 skb_frag_foreach_page(frag, 2664 skb_frag_off(frag) + offset - start, 2665 copy, p, p_off, p_len, copied) { 2666 vaddr = kmap_atomic(p); 2667 csum2 = INDIRECT_CALL_1(ops->update, 2668 csum_partial_ext, 2669 vaddr + p_off, p_len, 0); 2670 kunmap_atomic(vaddr); 2671 csum = INDIRECT_CALL_1(ops->combine, 2672 csum_block_add_ext, csum, 2673 csum2, pos, p_len); 2674 pos += p_len; 2675 } 2676 2677 if (!(len -= copy)) 2678 return csum; 2679 offset += copy; 2680 } 2681 start = end; 2682 } 2683 2684 skb_walk_frags(skb, frag_iter) { 2685 int end; 2686 2687 WARN_ON(start > offset + len); 2688 2689 end = start + frag_iter->len; 2690 if ((copy = end - offset) > 0) { 2691 __wsum csum2; 2692 if (copy > len) 2693 copy = len; 2694 csum2 = __skb_checksum(frag_iter, offset - start, 2695 copy, 0, ops); 2696 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2697 csum, csum2, pos, copy); 2698 if ((len -= copy) == 0) 2699 return csum; 2700 offset += copy; 2701 pos += copy; 2702 } 2703 start = end; 2704 } 2705 BUG_ON(len); 2706 2707 return csum; 2708 } 2709 EXPORT_SYMBOL(__skb_checksum); 2710 2711 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2712 int len, __wsum csum) 2713 { 2714 const struct skb_checksum_ops ops = { 2715 .update = csum_partial_ext, 2716 .combine = csum_block_add_ext, 2717 }; 2718 2719 return __skb_checksum(skb, offset, len, csum, &ops); 2720 } 2721 EXPORT_SYMBOL(skb_checksum); 2722 2723 /* Both of above in one bottle. */ 2724 2725 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2726 u8 *to, int len) 2727 { 2728 int start = skb_headlen(skb); 2729 int i, copy = start - offset; 2730 struct sk_buff *frag_iter; 2731 int pos = 0; 2732 __wsum csum = 0; 2733 2734 /* Copy header. */ 2735 if (copy > 0) { 2736 if (copy > len) 2737 copy = len; 2738 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2739 copy); 2740 if ((len -= copy) == 0) 2741 return csum; 2742 offset += copy; 2743 to += copy; 2744 pos = copy; 2745 } 2746 2747 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2748 int end; 2749 2750 WARN_ON(start > offset + len); 2751 2752 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2753 if ((copy = end - offset) > 0) { 2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2755 u32 p_off, p_len, copied; 2756 struct page *p; 2757 __wsum csum2; 2758 u8 *vaddr; 2759 2760 if (copy > len) 2761 copy = len; 2762 2763 skb_frag_foreach_page(frag, 2764 skb_frag_off(frag) + offset - start, 2765 copy, p, p_off, p_len, copied) { 2766 vaddr = kmap_atomic(p); 2767 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2768 to + copied, 2769 p_len); 2770 kunmap_atomic(vaddr); 2771 csum = csum_block_add(csum, csum2, pos); 2772 pos += p_len; 2773 } 2774 2775 if (!(len -= copy)) 2776 return csum; 2777 offset += copy; 2778 to += copy; 2779 } 2780 start = end; 2781 } 2782 2783 skb_walk_frags(skb, frag_iter) { 2784 __wsum csum2; 2785 int end; 2786 2787 WARN_ON(start > offset + len); 2788 2789 end = start + frag_iter->len; 2790 if ((copy = end - offset) > 0) { 2791 if (copy > len) 2792 copy = len; 2793 csum2 = skb_copy_and_csum_bits(frag_iter, 2794 offset - start, 2795 to, copy); 2796 csum = csum_block_add(csum, csum2, pos); 2797 if ((len -= copy) == 0) 2798 return csum; 2799 offset += copy; 2800 to += copy; 2801 pos += copy; 2802 } 2803 start = end; 2804 } 2805 BUG_ON(len); 2806 return csum; 2807 } 2808 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2809 2810 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2811 { 2812 __sum16 sum; 2813 2814 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2815 /* See comments in __skb_checksum_complete(). */ 2816 if (likely(!sum)) { 2817 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2818 !skb->csum_complete_sw) 2819 netdev_rx_csum_fault(skb->dev, skb); 2820 } 2821 if (!skb_shared(skb)) 2822 skb->csum_valid = !sum; 2823 return sum; 2824 } 2825 EXPORT_SYMBOL(__skb_checksum_complete_head); 2826 2827 /* This function assumes skb->csum already holds pseudo header's checksum, 2828 * which has been changed from the hardware checksum, for example, by 2829 * __skb_checksum_validate_complete(). And, the original skb->csum must 2830 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2831 * 2832 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2833 * zero. The new checksum is stored back into skb->csum unless the skb is 2834 * shared. 2835 */ 2836 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2837 { 2838 __wsum csum; 2839 __sum16 sum; 2840 2841 csum = skb_checksum(skb, 0, skb->len, 0); 2842 2843 sum = csum_fold(csum_add(skb->csum, csum)); 2844 /* This check is inverted, because we already knew the hardware 2845 * checksum is invalid before calling this function. So, if the 2846 * re-computed checksum is valid instead, then we have a mismatch 2847 * between the original skb->csum and skb_checksum(). This means either 2848 * the original hardware checksum is incorrect or we screw up skb->csum 2849 * when moving skb->data around. 2850 */ 2851 if (likely(!sum)) { 2852 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2853 !skb->csum_complete_sw) 2854 netdev_rx_csum_fault(skb->dev, skb); 2855 } 2856 2857 if (!skb_shared(skb)) { 2858 /* Save full packet checksum */ 2859 skb->csum = csum; 2860 skb->ip_summed = CHECKSUM_COMPLETE; 2861 skb->csum_complete_sw = 1; 2862 skb->csum_valid = !sum; 2863 } 2864 2865 return sum; 2866 } 2867 EXPORT_SYMBOL(__skb_checksum_complete); 2868 2869 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2870 { 2871 net_warn_ratelimited( 2872 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2873 __func__); 2874 return 0; 2875 } 2876 2877 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2878 int offset, int len) 2879 { 2880 net_warn_ratelimited( 2881 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2882 __func__); 2883 return 0; 2884 } 2885 2886 static const struct skb_checksum_ops default_crc32c_ops = { 2887 .update = warn_crc32c_csum_update, 2888 .combine = warn_crc32c_csum_combine, 2889 }; 2890 2891 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2892 &default_crc32c_ops; 2893 EXPORT_SYMBOL(crc32c_csum_stub); 2894 2895 /** 2896 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2897 * @from: source buffer 2898 * 2899 * Calculates the amount of linear headroom needed in the 'to' skb passed 2900 * into skb_zerocopy(). 2901 */ 2902 unsigned int 2903 skb_zerocopy_headlen(const struct sk_buff *from) 2904 { 2905 unsigned int hlen = 0; 2906 2907 if (!from->head_frag || 2908 skb_headlen(from) < L1_CACHE_BYTES || 2909 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2910 hlen = skb_headlen(from); 2911 2912 if (skb_has_frag_list(from)) 2913 hlen = from->len; 2914 2915 return hlen; 2916 } 2917 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2918 2919 /** 2920 * skb_zerocopy - Zero copy skb to skb 2921 * @to: destination buffer 2922 * @from: source buffer 2923 * @len: number of bytes to copy from source buffer 2924 * @hlen: size of linear headroom in destination buffer 2925 * 2926 * Copies up to `len` bytes from `from` to `to` by creating references 2927 * to the frags in the source buffer. 2928 * 2929 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2930 * headroom in the `to` buffer. 2931 * 2932 * Return value: 2933 * 0: everything is OK 2934 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2935 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2936 */ 2937 int 2938 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2939 { 2940 int i, j = 0; 2941 int plen = 0; /* length of skb->head fragment */ 2942 int ret; 2943 struct page *page; 2944 unsigned int offset; 2945 2946 BUG_ON(!from->head_frag && !hlen); 2947 2948 /* dont bother with small payloads */ 2949 if (len <= skb_tailroom(to)) 2950 return skb_copy_bits(from, 0, skb_put(to, len), len); 2951 2952 if (hlen) { 2953 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2954 if (unlikely(ret)) 2955 return ret; 2956 len -= hlen; 2957 } else { 2958 plen = min_t(int, skb_headlen(from), len); 2959 if (plen) { 2960 page = virt_to_head_page(from->head); 2961 offset = from->data - (unsigned char *)page_address(page); 2962 __skb_fill_page_desc(to, 0, page, offset, plen); 2963 get_page(page); 2964 j = 1; 2965 len -= plen; 2966 } 2967 } 2968 2969 to->truesize += len + plen; 2970 to->len += len + plen; 2971 to->data_len += len + plen; 2972 2973 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2974 skb_tx_error(from); 2975 return -ENOMEM; 2976 } 2977 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2978 2979 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2980 int size; 2981 2982 if (!len) 2983 break; 2984 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2985 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2986 len); 2987 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 2988 len -= size; 2989 skb_frag_ref(to, j); 2990 j++; 2991 } 2992 skb_shinfo(to)->nr_frags = j; 2993 2994 return 0; 2995 } 2996 EXPORT_SYMBOL_GPL(skb_zerocopy); 2997 2998 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2999 { 3000 __wsum csum; 3001 long csstart; 3002 3003 if (skb->ip_summed == CHECKSUM_PARTIAL) 3004 csstart = skb_checksum_start_offset(skb); 3005 else 3006 csstart = skb_headlen(skb); 3007 3008 BUG_ON(csstart > skb_headlen(skb)); 3009 3010 skb_copy_from_linear_data(skb, to, csstart); 3011 3012 csum = 0; 3013 if (csstart != skb->len) 3014 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3015 skb->len - csstart); 3016 3017 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3018 long csstuff = csstart + skb->csum_offset; 3019 3020 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3021 } 3022 } 3023 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3024 3025 /** 3026 * skb_dequeue - remove from the head of the queue 3027 * @list: list to dequeue from 3028 * 3029 * Remove the head of the list. The list lock is taken so the function 3030 * may be used safely with other locking list functions. The head item is 3031 * returned or %NULL if the list is empty. 3032 */ 3033 3034 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3035 { 3036 unsigned long flags; 3037 struct sk_buff *result; 3038 3039 spin_lock_irqsave(&list->lock, flags); 3040 result = __skb_dequeue(list); 3041 spin_unlock_irqrestore(&list->lock, flags); 3042 return result; 3043 } 3044 EXPORT_SYMBOL(skb_dequeue); 3045 3046 /** 3047 * skb_dequeue_tail - remove from the tail of the queue 3048 * @list: list to dequeue from 3049 * 3050 * Remove the tail of the list. The list lock is taken so the function 3051 * may be used safely with other locking list functions. The tail item is 3052 * returned or %NULL if the list is empty. 3053 */ 3054 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3055 { 3056 unsigned long flags; 3057 struct sk_buff *result; 3058 3059 spin_lock_irqsave(&list->lock, flags); 3060 result = __skb_dequeue_tail(list); 3061 spin_unlock_irqrestore(&list->lock, flags); 3062 return result; 3063 } 3064 EXPORT_SYMBOL(skb_dequeue_tail); 3065 3066 /** 3067 * skb_queue_purge - empty a list 3068 * @list: list to empty 3069 * 3070 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3071 * the list and one reference dropped. This function takes the list 3072 * lock and is atomic with respect to other list locking functions. 3073 */ 3074 void skb_queue_purge(struct sk_buff_head *list) 3075 { 3076 struct sk_buff *skb; 3077 while ((skb = skb_dequeue(list)) != NULL) 3078 kfree_skb(skb); 3079 } 3080 EXPORT_SYMBOL(skb_queue_purge); 3081 3082 /** 3083 * skb_rbtree_purge - empty a skb rbtree 3084 * @root: root of the rbtree to empty 3085 * Return value: the sum of truesizes of all purged skbs. 3086 * 3087 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3088 * the list and one reference dropped. This function does not take 3089 * any lock. Synchronization should be handled by the caller (e.g., TCP 3090 * out-of-order queue is protected by the socket lock). 3091 */ 3092 unsigned int skb_rbtree_purge(struct rb_root *root) 3093 { 3094 struct rb_node *p = rb_first(root); 3095 unsigned int sum = 0; 3096 3097 while (p) { 3098 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3099 3100 p = rb_next(p); 3101 rb_erase(&skb->rbnode, root); 3102 sum += skb->truesize; 3103 kfree_skb(skb); 3104 } 3105 return sum; 3106 } 3107 3108 /** 3109 * skb_queue_head - queue a buffer at the list head 3110 * @list: list to use 3111 * @newsk: buffer to queue 3112 * 3113 * Queue a buffer at the start of the list. This function takes the 3114 * list lock and can be used safely with other locking &sk_buff functions 3115 * safely. 3116 * 3117 * A buffer cannot be placed on two lists at the same time. 3118 */ 3119 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3120 { 3121 unsigned long flags; 3122 3123 spin_lock_irqsave(&list->lock, flags); 3124 __skb_queue_head(list, newsk); 3125 spin_unlock_irqrestore(&list->lock, flags); 3126 } 3127 EXPORT_SYMBOL(skb_queue_head); 3128 3129 /** 3130 * skb_queue_tail - queue a buffer at the list tail 3131 * @list: list to use 3132 * @newsk: buffer to queue 3133 * 3134 * Queue a buffer at the tail of the list. This function takes the 3135 * list lock and can be used safely with other locking &sk_buff functions 3136 * safely. 3137 * 3138 * A buffer cannot be placed on two lists at the same time. 3139 */ 3140 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3141 { 3142 unsigned long flags; 3143 3144 spin_lock_irqsave(&list->lock, flags); 3145 __skb_queue_tail(list, newsk); 3146 spin_unlock_irqrestore(&list->lock, flags); 3147 } 3148 EXPORT_SYMBOL(skb_queue_tail); 3149 3150 /** 3151 * skb_unlink - remove a buffer from a list 3152 * @skb: buffer to remove 3153 * @list: list to use 3154 * 3155 * Remove a packet from a list. The list locks are taken and this 3156 * function is atomic with respect to other list locked calls 3157 * 3158 * You must know what list the SKB is on. 3159 */ 3160 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3161 { 3162 unsigned long flags; 3163 3164 spin_lock_irqsave(&list->lock, flags); 3165 __skb_unlink(skb, list); 3166 spin_unlock_irqrestore(&list->lock, flags); 3167 } 3168 EXPORT_SYMBOL(skb_unlink); 3169 3170 /** 3171 * skb_append - append a buffer 3172 * @old: buffer to insert after 3173 * @newsk: buffer to insert 3174 * @list: list to use 3175 * 3176 * Place a packet after a given packet in a list. The list locks are taken 3177 * and this function is atomic with respect to other list locked calls. 3178 * A buffer cannot be placed on two lists at the same time. 3179 */ 3180 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3181 { 3182 unsigned long flags; 3183 3184 spin_lock_irqsave(&list->lock, flags); 3185 __skb_queue_after(list, old, newsk); 3186 spin_unlock_irqrestore(&list->lock, flags); 3187 } 3188 EXPORT_SYMBOL(skb_append); 3189 3190 static inline void skb_split_inside_header(struct sk_buff *skb, 3191 struct sk_buff* skb1, 3192 const u32 len, const int pos) 3193 { 3194 int i; 3195 3196 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3197 pos - len); 3198 /* And move data appendix as is. */ 3199 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3200 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3201 3202 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3203 skb_shinfo(skb)->nr_frags = 0; 3204 skb1->data_len = skb->data_len; 3205 skb1->len += skb1->data_len; 3206 skb->data_len = 0; 3207 skb->len = len; 3208 skb_set_tail_pointer(skb, len); 3209 } 3210 3211 static inline void skb_split_no_header(struct sk_buff *skb, 3212 struct sk_buff* skb1, 3213 const u32 len, int pos) 3214 { 3215 int i, k = 0; 3216 const int nfrags = skb_shinfo(skb)->nr_frags; 3217 3218 skb_shinfo(skb)->nr_frags = 0; 3219 skb1->len = skb1->data_len = skb->len - len; 3220 skb->len = len; 3221 skb->data_len = len - pos; 3222 3223 for (i = 0; i < nfrags; i++) { 3224 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3225 3226 if (pos + size > len) { 3227 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3228 3229 if (pos < len) { 3230 /* Split frag. 3231 * We have two variants in this case: 3232 * 1. Move all the frag to the second 3233 * part, if it is possible. F.e. 3234 * this approach is mandatory for TUX, 3235 * where splitting is expensive. 3236 * 2. Split is accurately. We make this. 3237 */ 3238 skb_frag_ref(skb, i); 3239 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3240 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3241 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3242 skb_shinfo(skb)->nr_frags++; 3243 } 3244 k++; 3245 } else 3246 skb_shinfo(skb)->nr_frags++; 3247 pos += size; 3248 } 3249 skb_shinfo(skb1)->nr_frags = k; 3250 } 3251 3252 /** 3253 * skb_split - Split fragmented skb to two parts at length len. 3254 * @skb: the buffer to split 3255 * @skb1: the buffer to receive the second part 3256 * @len: new length for skb 3257 */ 3258 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3259 { 3260 int pos = skb_headlen(skb); 3261 3262 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3263 SKBTX_SHARED_FRAG; 3264 skb_zerocopy_clone(skb1, skb, 0); 3265 if (len < pos) /* Split line is inside header. */ 3266 skb_split_inside_header(skb, skb1, len, pos); 3267 else /* Second chunk has no header, nothing to copy. */ 3268 skb_split_no_header(skb, skb1, len, pos); 3269 } 3270 EXPORT_SYMBOL(skb_split); 3271 3272 /* Shifting from/to a cloned skb is a no-go. 3273 * 3274 * Caller cannot keep skb_shinfo related pointers past calling here! 3275 */ 3276 static int skb_prepare_for_shift(struct sk_buff *skb) 3277 { 3278 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3279 } 3280 3281 /** 3282 * skb_shift - Shifts paged data partially from skb to another 3283 * @tgt: buffer into which tail data gets added 3284 * @skb: buffer from which the paged data comes from 3285 * @shiftlen: shift up to this many bytes 3286 * 3287 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3288 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3289 * It's up to caller to free skb if everything was shifted. 3290 * 3291 * If @tgt runs out of frags, the whole operation is aborted. 3292 * 3293 * Skb cannot include anything else but paged data while tgt is allowed 3294 * to have non-paged data as well. 3295 * 3296 * TODO: full sized shift could be optimized but that would need 3297 * specialized skb free'er to handle frags without up-to-date nr_frags. 3298 */ 3299 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3300 { 3301 int from, to, merge, todo; 3302 skb_frag_t *fragfrom, *fragto; 3303 3304 BUG_ON(shiftlen > skb->len); 3305 3306 if (skb_headlen(skb)) 3307 return 0; 3308 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3309 return 0; 3310 3311 todo = shiftlen; 3312 from = 0; 3313 to = skb_shinfo(tgt)->nr_frags; 3314 fragfrom = &skb_shinfo(skb)->frags[from]; 3315 3316 /* Actual merge is delayed until the point when we know we can 3317 * commit all, so that we don't have to undo partial changes 3318 */ 3319 if (!to || 3320 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3321 skb_frag_off(fragfrom))) { 3322 merge = -1; 3323 } else { 3324 merge = to - 1; 3325 3326 todo -= skb_frag_size(fragfrom); 3327 if (todo < 0) { 3328 if (skb_prepare_for_shift(skb) || 3329 skb_prepare_for_shift(tgt)) 3330 return 0; 3331 3332 /* All previous frag pointers might be stale! */ 3333 fragfrom = &skb_shinfo(skb)->frags[from]; 3334 fragto = &skb_shinfo(tgt)->frags[merge]; 3335 3336 skb_frag_size_add(fragto, shiftlen); 3337 skb_frag_size_sub(fragfrom, shiftlen); 3338 skb_frag_off_add(fragfrom, shiftlen); 3339 3340 goto onlymerged; 3341 } 3342 3343 from++; 3344 } 3345 3346 /* Skip full, not-fitting skb to avoid expensive operations */ 3347 if ((shiftlen == skb->len) && 3348 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3349 return 0; 3350 3351 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3352 return 0; 3353 3354 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3355 if (to == MAX_SKB_FRAGS) 3356 return 0; 3357 3358 fragfrom = &skb_shinfo(skb)->frags[from]; 3359 fragto = &skb_shinfo(tgt)->frags[to]; 3360 3361 if (todo >= skb_frag_size(fragfrom)) { 3362 *fragto = *fragfrom; 3363 todo -= skb_frag_size(fragfrom); 3364 from++; 3365 to++; 3366 3367 } else { 3368 __skb_frag_ref(fragfrom); 3369 skb_frag_page_copy(fragto, fragfrom); 3370 skb_frag_off_copy(fragto, fragfrom); 3371 skb_frag_size_set(fragto, todo); 3372 3373 skb_frag_off_add(fragfrom, todo); 3374 skb_frag_size_sub(fragfrom, todo); 3375 todo = 0; 3376 3377 to++; 3378 break; 3379 } 3380 } 3381 3382 /* Ready to "commit" this state change to tgt */ 3383 skb_shinfo(tgt)->nr_frags = to; 3384 3385 if (merge >= 0) { 3386 fragfrom = &skb_shinfo(skb)->frags[0]; 3387 fragto = &skb_shinfo(tgt)->frags[merge]; 3388 3389 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3390 __skb_frag_unref(fragfrom); 3391 } 3392 3393 /* Reposition in the original skb */ 3394 to = 0; 3395 while (from < skb_shinfo(skb)->nr_frags) 3396 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3397 skb_shinfo(skb)->nr_frags = to; 3398 3399 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3400 3401 onlymerged: 3402 /* Most likely the tgt won't ever need its checksum anymore, skb on 3403 * the other hand might need it if it needs to be resent 3404 */ 3405 tgt->ip_summed = CHECKSUM_PARTIAL; 3406 skb->ip_summed = CHECKSUM_PARTIAL; 3407 3408 /* Yak, is it really working this way? Some helper please? */ 3409 skb->len -= shiftlen; 3410 skb->data_len -= shiftlen; 3411 skb->truesize -= shiftlen; 3412 tgt->len += shiftlen; 3413 tgt->data_len += shiftlen; 3414 tgt->truesize += shiftlen; 3415 3416 return shiftlen; 3417 } 3418 3419 /** 3420 * skb_prepare_seq_read - Prepare a sequential read of skb data 3421 * @skb: the buffer to read 3422 * @from: lower offset of data to be read 3423 * @to: upper offset of data to be read 3424 * @st: state variable 3425 * 3426 * Initializes the specified state variable. Must be called before 3427 * invoking skb_seq_read() for the first time. 3428 */ 3429 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3430 unsigned int to, struct skb_seq_state *st) 3431 { 3432 st->lower_offset = from; 3433 st->upper_offset = to; 3434 st->root_skb = st->cur_skb = skb; 3435 st->frag_idx = st->stepped_offset = 0; 3436 st->frag_data = NULL; 3437 } 3438 EXPORT_SYMBOL(skb_prepare_seq_read); 3439 3440 /** 3441 * skb_seq_read - Sequentially read skb data 3442 * @consumed: number of bytes consumed by the caller so far 3443 * @data: destination pointer for data to be returned 3444 * @st: state variable 3445 * 3446 * Reads a block of skb data at @consumed relative to the 3447 * lower offset specified to skb_prepare_seq_read(). Assigns 3448 * the head of the data block to @data and returns the length 3449 * of the block or 0 if the end of the skb data or the upper 3450 * offset has been reached. 3451 * 3452 * The caller is not required to consume all of the data 3453 * returned, i.e. @consumed is typically set to the number 3454 * of bytes already consumed and the next call to 3455 * skb_seq_read() will return the remaining part of the block. 3456 * 3457 * Note 1: The size of each block of data returned can be arbitrary, 3458 * this limitation is the cost for zerocopy sequential 3459 * reads of potentially non linear data. 3460 * 3461 * Note 2: Fragment lists within fragments are not implemented 3462 * at the moment, state->root_skb could be replaced with 3463 * a stack for this purpose. 3464 */ 3465 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3466 struct skb_seq_state *st) 3467 { 3468 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3469 skb_frag_t *frag; 3470 3471 if (unlikely(abs_offset >= st->upper_offset)) { 3472 if (st->frag_data) { 3473 kunmap_atomic(st->frag_data); 3474 st->frag_data = NULL; 3475 } 3476 return 0; 3477 } 3478 3479 next_skb: 3480 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3481 3482 if (abs_offset < block_limit && !st->frag_data) { 3483 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3484 return block_limit - abs_offset; 3485 } 3486 3487 if (st->frag_idx == 0 && !st->frag_data) 3488 st->stepped_offset += skb_headlen(st->cur_skb); 3489 3490 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3491 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3492 block_limit = skb_frag_size(frag) + st->stepped_offset; 3493 3494 if (abs_offset < block_limit) { 3495 if (!st->frag_data) 3496 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3497 3498 *data = (u8 *) st->frag_data + skb_frag_off(frag) + 3499 (abs_offset - st->stepped_offset); 3500 3501 return block_limit - abs_offset; 3502 } 3503 3504 if (st->frag_data) { 3505 kunmap_atomic(st->frag_data); 3506 st->frag_data = NULL; 3507 } 3508 3509 st->frag_idx++; 3510 st->stepped_offset += skb_frag_size(frag); 3511 } 3512 3513 if (st->frag_data) { 3514 kunmap_atomic(st->frag_data); 3515 st->frag_data = NULL; 3516 } 3517 3518 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3519 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3520 st->frag_idx = 0; 3521 goto next_skb; 3522 } else if (st->cur_skb->next) { 3523 st->cur_skb = st->cur_skb->next; 3524 st->frag_idx = 0; 3525 goto next_skb; 3526 } 3527 3528 return 0; 3529 } 3530 EXPORT_SYMBOL(skb_seq_read); 3531 3532 /** 3533 * skb_abort_seq_read - Abort a sequential read of skb data 3534 * @st: state variable 3535 * 3536 * Must be called if skb_seq_read() was not called until it 3537 * returned 0. 3538 */ 3539 void skb_abort_seq_read(struct skb_seq_state *st) 3540 { 3541 if (st->frag_data) 3542 kunmap_atomic(st->frag_data); 3543 } 3544 EXPORT_SYMBOL(skb_abort_seq_read); 3545 3546 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3547 3548 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3549 struct ts_config *conf, 3550 struct ts_state *state) 3551 { 3552 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3553 } 3554 3555 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3556 { 3557 skb_abort_seq_read(TS_SKB_CB(state)); 3558 } 3559 3560 /** 3561 * skb_find_text - Find a text pattern in skb data 3562 * @skb: the buffer to look in 3563 * @from: search offset 3564 * @to: search limit 3565 * @config: textsearch configuration 3566 * 3567 * Finds a pattern in the skb data according to the specified 3568 * textsearch configuration. Use textsearch_next() to retrieve 3569 * subsequent occurrences of the pattern. Returns the offset 3570 * to the first occurrence or UINT_MAX if no match was found. 3571 */ 3572 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3573 unsigned int to, struct ts_config *config) 3574 { 3575 struct ts_state state; 3576 unsigned int ret; 3577 3578 config->get_next_block = skb_ts_get_next_block; 3579 config->finish = skb_ts_finish; 3580 3581 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3582 3583 ret = textsearch_find(config, &state); 3584 return (ret <= to - from ? ret : UINT_MAX); 3585 } 3586 EXPORT_SYMBOL(skb_find_text); 3587 3588 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3589 int offset, size_t size) 3590 { 3591 int i = skb_shinfo(skb)->nr_frags; 3592 3593 if (skb_can_coalesce(skb, i, page, offset)) { 3594 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3595 } else if (i < MAX_SKB_FRAGS) { 3596 get_page(page); 3597 skb_fill_page_desc(skb, i, page, offset, size); 3598 } else { 3599 return -EMSGSIZE; 3600 } 3601 3602 return 0; 3603 } 3604 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3605 3606 /** 3607 * skb_pull_rcsum - pull skb and update receive checksum 3608 * @skb: buffer to update 3609 * @len: length of data pulled 3610 * 3611 * This function performs an skb_pull on the packet and updates 3612 * the CHECKSUM_COMPLETE checksum. It should be used on 3613 * receive path processing instead of skb_pull unless you know 3614 * that the checksum difference is zero (e.g., a valid IP header) 3615 * or you are setting ip_summed to CHECKSUM_NONE. 3616 */ 3617 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3618 { 3619 unsigned char *data = skb->data; 3620 3621 BUG_ON(len > skb->len); 3622 __skb_pull(skb, len); 3623 skb_postpull_rcsum(skb, data, len); 3624 return skb->data; 3625 } 3626 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3627 3628 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3629 { 3630 skb_frag_t head_frag; 3631 struct page *page; 3632 3633 page = virt_to_head_page(frag_skb->head); 3634 __skb_frag_set_page(&head_frag, page); 3635 skb_frag_off_set(&head_frag, frag_skb->data - 3636 (unsigned char *)page_address(page)); 3637 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3638 return head_frag; 3639 } 3640 3641 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3642 netdev_features_t features, 3643 unsigned int offset) 3644 { 3645 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3646 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3647 unsigned int delta_truesize = 0; 3648 unsigned int delta_len = 0; 3649 struct sk_buff *tail = NULL; 3650 struct sk_buff *nskb; 3651 3652 skb_push(skb, -skb_network_offset(skb) + offset); 3653 3654 skb_shinfo(skb)->frag_list = NULL; 3655 3656 do { 3657 nskb = list_skb; 3658 list_skb = list_skb->next; 3659 3660 if (!tail) 3661 skb->next = nskb; 3662 else 3663 tail->next = nskb; 3664 3665 tail = nskb; 3666 3667 delta_len += nskb->len; 3668 delta_truesize += nskb->truesize; 3669 3670 skb_push(nskb, -skb_network_offset(nskb) + offset); 3671 3672 skb_release_head_state(nskb); 3673 __copy_skb_header(nskb, skb); 3674 3675 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3676 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3677 nskb->data - tnl_hlen, 3678 offset + tnl_hlen); 3679 3680 if (skb_needs_linearize(nskb, features) && 3681 __skb_linearize(nskb)) 3682 goto err_linearize; 3683 3684 } while (list_skb); 3685 3686 skb->truesize = skb->truesize - delta_truesize; 3687 skb->data_len = skb->data_len - delta_len; 3688 skb->len = skb->len - delta_len; 3689 3690 skb_gso_reset(skb); 3691 3692 skb->prev = tail; 3693 3694 if (skb_needs_linearize(skb, features) && 3695 __skb_linearize(skb)) 3696 goto err_linearize; 3697 3698 skb_get(skb); 3699 3700 return skb; 3701 3702 err_linearize: 3703 kfree_skb_list(skb->next); 3704 skb->next = NULL; 3705 return ERR_PTR(-ENOMEM); 3706 } 3707 EXPORT_SYMBOL_GPL(skb_segment_list); 3708 3709 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3710 { 3711 if (unlikely(p->len + skb->len >= 65536)) 3712 return -E2BIG; 3713 3714 if (NAPI_GRO_CB(p)->last == p) 3715 skb_shinfo(p)->frag_list = skb; 3716 else 3717 NAPI_GRO_CB(p)->last->next = skb; 3718 3719 skb_pull(skb, skb_gro_offset(skb)); 3720 3721 NAPI_GRO_CB(p)->last = skb; 3722 NAPI_GRO_CB(p)->count++; 3723 p->data_len += skb->len; 3724 p->truesize += skb->truesize; 3725 p->len += skb->len; 3726 3727 NAPI_GRO_CB(skb)->same_flow = 1; 3728 3729 return 0; 3730 } 3731 3732 /** 3733 * skb_segment - Perform protocol segmentation on skb. 3734 * @head_skb: buffer to segment 3735 * @features: features for the output path (see dev->features) 3736 * 3737 * This function performs segmentation on the given skb. It returns 3738 * a pointer to the first in a list of new skbs for the segments. 3739 * In case of error it returns ERR_PTR(err). 3740 */ 3741 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3742 netdev_features_t features) 3743 { 3744 struct sk_buff *segs = NULL; 3745 struct sk_buff *tail = NULL; 3746 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3747 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3748 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3749 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3750 struct sk_buff *frag_skb = head_skb; 3751 unsigned int offset = doffset; 3752 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3753 unsigned int partial_segs = 0; 3754 unsigned int headroom; 3755 unsigned int len = head_skb->len; 3756 __be16 proto; 3757 bool csum, sg; 3758 int nfrags = skb_shinfo(head_skb)->nr_frags; 3759 int err = -ENOMEM; 3760 int i = 0; 3761 int pos; 3762 3763 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3764 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3765 /* gso_size is untrusted, and we have a frag_list with a linear 3766 * non head_frag head. 3767 * 3768 * (we assume checking the first list_skb member suffices; 3769 * i.e if either of the list_skb members have non head_frag 3770 * head, then the first one has too). 3771 * 3772 * If head_skb's headlen does not fit requested gso_size, it 3773 * means that the frag_list members do NOT terminate on exact 3774 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3775 * sharing. Therefore we must fallback to copying the frag_list 3776 * skbs; we do so by disabling SG. 3777 */ 3778 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3779 features &= ~NETIF_F_SG; 3780 } 3781 3782 __skb_push(head_skb, doffset); 3783 proto = skb_network_protocol(head_skb, NULL); 3784 if (unlikely(!proto)) 3785 return ERR_PTR(-EINVAL); 3786 3787 sg = !!(features & NETIF_F_SG); 3788 csum = !!can_checksum_protocol(features, proto); 3789 3790 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3791 if (!(features & NETIF_F_GSO_PARTIAL)) { 3792 struct sk_buff *iter; 3793 unsigned int frag_len; 3794 3795 if (!list_skb || 3796 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3797 goto normal; 3798 3799 /* If we get here then all the required 3800 * GSO features except frag_list are supported. 3801 * Try to split the SKB to multiple GSO SKBs 3802 * with no frag_list. 3803 * Currently we can do that only when the buffers don't 3804 * have a linear part and all the buffers except 3805 * the last are of the same length. 3806 */ 3807 frag_len = list_skb->len; 3808 skb_walk_frags(head_skb, iter) { 3809 if (frag_len != iter->len && iter->next) 3810 goto normal; 3811 if (skb_headlen(iter) && !iter->head_frag) 3812 goto normal; 3813 3814 len -= iter->len; 3815 } 3816 3817 if (len != frag_len) 3818 goto normal; 3819 } 3820 3821 /* GSO partial only requires that we trim off any excess that 3822 * doesn't fit into an MSS sized block, so take care of that 3823 * now. 3824 */ 3825 partial_segs = len / mss; 3826 if (partial_segs > 1) 3827 mss *= partial_segs; 3828 else 3829 partial_segs = 0; 3830 } 3831 3832 normal: 3833 headroom = skb_headroom(head_skb); 3834 pos = skb_headlen(head_skb); 3835 3836 do { 3837 struct sk_buff *nskb; 3838 skb_frag_t *nskb_frag; 3839 int hsize; 3840 int size; 3841 3842 if (unlikely(mss == GSO_BY_FRAGS)) { 3843 len = list_skb->len; 3844 } else { 3845 len = head_skb->len - offset; 3846 if (len > mss) 3847 len = mss; 3848 } 3849 3850 hsize = skb_headlen(head_skb) - offset; 3851 if (hsize < 0) 3852 hsize = 0; 3853 if (hsize > len || !sg) 3854 hsize = len; 3855 3856 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3857 (skb_headlen(list_skb) == len || sg)) { 3858 BUG_ON(skb_headlen(list_skb) > len); 3859 3860 i = 0; 3861 nfrags = skb_shinfo(list_skb)->nr_frags; 3862 frag = skb_shinfo(list_skb)->frags; 3863 frag_skb = list_skb; 3864 pos += skb_headlen(list_skb); 3865 3866 while (pos < offset + len) { 3867 BUG_ON(i >= nfrags); 3868 3869 size = skb_frag_size(frag); 3870 if (pos + size > offset + len) 3871 break; 3872 3873 i++; 3874 pos += size; 3875 frag++; 3876 } 3877 3878 nskb = skb_clone(list_skb, GFP_ATOMIC); 3879 list_skb = list_skb->next; 3880 3881 if (unlikely(!nskb)) 3882 goto err; 3883 3884 if (unlikely(pskb_trim(nskb, len))) { 3885 kfree_skb(nskb); 3886 goto err; 3887 } 3888 3889 hsize = skb_end_offset(nskb); 3890 if (skb_cow_head(nskb, doffset + headroom)) { 3891 kfree_skb(nskb); 3892 goto err; 3893 } 3894 3895 nskb->truesize += skb_end_offset(nskb) - hsize; 3896 skb_release_head_state(nskb); 3897 __skb_push(nskb, doffset); 3898 } else { 3899 nskb = __alloc_skb(hsize + doffset + headroom, 3900 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3901 NUMA_NO_NODE); 3902 3903 if (unlikely(!nskb)) 3904 goto err; 3905 3906 skb_reserve(nskb, headroom); 3907 __skb_put(nskb, doffset); 3908 } 3909 3910 if (segs) 3911 tail->next = nskb; 3912 else 3913 segs = nskb; 3914 tail = nskb; 3915 3916 __copy_skb_header(nskb, head_skb); 3917 3918 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3919 skb_reset_mac_len(nskb); 3920 3921 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3922 nskb->data - tnl_hlen, 3923 doffset + tnl_hlen); 3924 3925 if (nskb->len == len + doffset) 3926 goto perform_csum_check; 3927 3928 if (!sg) { 3929 if (!csum) { 3930 if (!nskb->remcsum_offload) 3931 nskb->ip_summed = CHECKSUM_NONE; 3932 SKB_GSO_CB(nskb)->csum = 3933 skb_copy_and_csum_bits(head_skb, offset, 3934 skb_put(nskb, 3935 len), 3936 len); 3937 SKB_GSO_CB(nskb)->csum_start = 3938 skb_headroom(nskb) + doffset; 3939 } else { 3940 skb_copy_bits(head_skb, offset, 3941 skb_put(nskb, len), 3942 len); 3943 } 3944 continue; 3945 } 3946 3947 nskb_frag = skb_shinfo(nskb)->frags; 3948 3949 skb_copy_from_linear_data_offset(head_skb, offset, 3950 skb_put(nskb, hsize), hsize); 3951 3952 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3953 SKBTX_SHARED_FRAG; 3954 3955 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3956 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3957 goto err; 3958 3959 while (pos < offset + len) { 3960 if (i >= nfrags) { 3961 i = 0; 3962 nfrags = skb_shinfo(list_skb)->nr_frags; 3963 frag = skb_shinfo(list_skb)->frags; 3964 frag_skb = list_skb; 3965 if (!skb_headlen(list_skb)) { 3966 BUG_ON(!nfrags); 3967 } else { 3968 BUG_ON(!list_skb->head_frag); 3969 3970 /* to make room for head_frag. */ 3971 i--; 3972 frag--; 3973 } 3974 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3975 skb_zerocopy_clone(nskb, frag_skb, 3976 GFP_ATOMIC)) 3977 goto err; 3978 3979 list_skb = list_skb->next; 3980 } 3981 3982 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3983 MAX_SKB_FRAGS)) { 3984 net_warn_ratelimited( 3985 "skb_segment: too many frags: %u %u\n", 3986 pos, mss); 3987 err = -EINVAL; 3988 goto err; 3989 } 3990 3991 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3992 __skb_frag_ref(nskb_frag); 3993 size = skb_frag_size(nskb_frag); 3994 3995 if (pos < offset) { 3996 skb_frag_off_add(nskb_frag, offset - pos); 3997 skb_frag_size_sub(nskb_frag, offset - pos); 3998 } 3999 4000 skb_shinfo(nskb)->nr_frags++; 4001 4002 if (pos + size <= offset + len) { 4003 i++; 4004 frag++; 4005 pos += size; 4006 } else { 4007 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4008 goto skip_fraglist; 4009 } 4010 4011 nskb_frag++; 4012 } 4013 4014 skip_fraglist: 4015 nskb->data_len = len - hsize; 4016 nskb->len += nskb->data_len; 4017 nskb->truesize += nskb->data_len; 4018 4019 perform_csum_check: 4020 if (!csum) { 4021 if (skb_has_shared_frag(nskb) && 4022 __skb_linearize(nskb)) 4023 goto err; 4024 4025 if (!nskb->remcsum_offload) 4026 nskb->ip_summed = CHECKSUM_NONE; 4027 SKB_GSO_CB(nskb)->csum = 4028 skb_checksum(nskb, doffset, 4029 nskb->len - doffset, 0); 4030 SKB_GSO_CB(nskb)->csum_start = 4031 skb_headroom(nskb) + doffset; 4032 } 4033 } while ((offset += len) < head_skb->len); 4034 4035 /* Some callers want to get the end of the list. 4036 * Put it in segs->prev to avoid walking the list. 4037 * (see validate_xmit_skb_list() for example) 4038 */ 4039 segs->prev = tail; 4040 4041 if (partial_segs) { 4042 struct sk_buff *iter; 4043 int type = skb_shinfo(head_skb)->gso_type; 4044 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4045 4046 /* Update type to add partial and then remove dodgy if set */ 4047 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4048 type &= ~SKB_GSO_DODGY; 4049 4050 /* Update GSO info and prepare to start updating headers on 4051 * our way back down the stack of protocols. 4052 */ 4053 for (iter = segs; iter; iter = iter->next) { 4054 skb_shinfo(iter)->gso_size = gso_size; 4055 skb_shinfo(iter)->gso_segs = partial_segs; 4056 skb_shinfo(iter)->gso_type = type; 4057 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4058 } 4059 4060 if (tail->len - doffset <= gso_size) 4061 skb_shinfo(tail)->gso_size = 0; 4062 else if (tail != segs) 4063 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4064 } 4065 4066 /* Following permits correct backpressure, for protocols 4067 * using skb_set_owner_w(). 4068 * Idea is to tranfert ownership from head_skb to last segment. 4069 */ 4070 if (head_skb->destructor == sock_wfree) { 4071 swap(tail->truesize, head_skb->truesize); 4072 swap(tail->destructor, head_skb->destructor); 4073 swap(tail->sk, head_skb->sk); 4074 } 4075 return segs; 4076 4077 err: 4078 kfree_skb_list(segs); 4079 return ERR_PTR(err); 4080 } 4081 EXPORT_SYMBOL_GPL(skb_segment); 4082 4083 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4084 { 4085 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4086 unsigned int offset = skb_gro_offset(skb); 4087 unsigned int headlen = skb_headlen(skb); 4088 unsigned int len = skb_gro_len(skb); 4089 unsigned int delta_truesize; 4090 struct sk_buff *lp; 4091 4092 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4093 return -E2BIG; 4094 4095 lp = NAPI_GRO_CB(p)->last; 4096 pinfo = skb_shinfo(lp); 4097 4098 if (headlen <= offset) { 4099 skb_frag_t *frag; 4100 skb_frag_t *frag2; 4101 int i = skbinfo->nr_frags; 4102 int nr_frags = pinfo->nr_frags + i; 4103 4104 if (nr_frags > MAX_SKB_FRAGS) 4105 goto merge; 4106 4107 offset -= headlen; 4108 pinfo->nr_frags = nr_frags; 4109 skbinfo->nr_frags = 0; 4110 4111 frag = pinfo->frags + nr_frags; 4112 frag2 = skbinfo->frags + i; 4113 do { 4114 *--frag = *--frag2; 4115 } while (--i); 4116 4117 skb_frag_off_add(frag, offset); 4118 skb_frag_size_sub(frag, offset); 4119 4120 /* all fragments truesize : remove (head size + sk_buff) */ 4121 delta_truesize = skb->truesize - 4122 SKB_TRUESIZE(skb_end_offset(skb)); 4123 4124 skb->truesize -= skb->data_len; 4125 skb->len -= skb->data_len; 4126 skb->data_len = 0; 4127 4128 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4129 goto done; 4130 } else if (skb->head_frag) { 4131 int nr_frags = pinfo->nr_frags; 4132 skb_frag_t *frag = pinfo->frags + nr_frags; 4133 struct page *page = virt_to_head_page(skb->head); 4134 unsigned int first_size = headlen - offset; 4135 unsigned int first_offset; 4136 4137 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4138 goto merge; 4139 4140 first_offset = skb->data - 4141 (unsigned char *)page_address(page) + 4142 offset; 4143 4144 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4145 4146 __skb_frag_set_page(frag, page); 4147 skb_frag_off_set(frag, first_offset); 4148 skb_frag_size_set(frag, first_size); 4149 4150 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4151 /* We dont need to clear skbinfo->nr_frags here */ 4152 4153 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4154 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4155 goto done; 4156 } 4157 4158 merge: 4159 delta_truesize = skb->truesize; 4160 if (offset > headlen) { 4161 unsigned int eat = offset - headlen; 4162 4163 skb_frag_off_add(&skbinfo->frags[0], eat); 4164 skb_frag_size_sub(&skbinfo->frags[0], eat); 4165 skb->data_len -= eat; 4166 skb->len -= eat; 4167 offset = headlen; 4168 } 4169 4170 __skb_pull(skb, offset); 4171 4172 if (NAPI_GRO_CB(p)->last == p) 4173 skb_shinfo(p)->frag_list = skb; 4174 else 4175 NAPI_GRO_CB(p)->last->next = skb; 4176 NAPI_GRO_CB(p)->last = skb; 4177 __skb_header_release(skb); 4178 lp = p; 4179 4180 done: 4181 NAPI_GRO_CB(p)->count++; 4182 p->data_len += len; 4183 p->truesize += delta_truesize; 4184 p->len += len; 4185 if (lp != p) { 4186 lp->data_len += len; 4187 lp->truesize += delta_truesize; 4188 lp->len += len; 4189 } 4190 NAPI_GRO_CB(skb)->same_flow = 1; 4191 return 0; 4192 } 4193 4194 #ifdef CONFIG_SKB_EXTENSIONS 4195 #define SKB_EXT_ALIGN_VALUE 8 4196 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4197 4198 static const u8 skb_ext_type_len[] = { 4199 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4200 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4201 #endif 4202 #ifdef CONFIG_XFRM 4203 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4204 #endif 4205 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4206 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4207 #endif 4208 #if IS_ENABLED(CONFIG_MPTCP) 4209 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4210 #endif 4211 #if IS_ENABLED(CONFIG_KCOV) 4212 [SKB_EXT_KCOV_HANDLE] = SKB_EXT_CHUNKSIZEOF(u64), 4213 #endif 4214 }; 4215 4216 static __always_inline unsigned int skb_ext_total_length(void) 4217 { 4218 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4219 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4220 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4221 #endif 4222 #ifdef CONFIG_XFRM 4223 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4224 #endif 4225 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4226 skb_ext_type_len[TC_SKB_EXT] + 4227 #endif 4228 #if IS_ENABLED(CONFIG_MPTCP) 4229 skb_ext_type_len[SKB_EXT_MPTCP] + 4230 #endif 4231 #if IS_ENABLED(CONFIG_KCOV) 4232 skb_ext_type_len[SKB_EXT_KCOV_HANDLE] + 4233 #endif 4234 0; 4235 } 4236 4237 static void skb_extensions_init(void) 4238 { 4239 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4240 BUILD_BUG_ON(skb_ext_total_length() > 255); 4241 4242 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4243 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4244 0, 4245 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4246 NULL); 4247 } 4248 #else 4249 static void skb_extensions_init(void) {} 4250 #endif 4251 4252 void __init skb_init(void) 4253 { 4254 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4255 sizeof(struct sk_buff), 4256 0, 4257 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4258 offsetof(struct sk_buff, cb), 4259 sizeof_field(struct sk_buff, cb), 4260 NULL); 4261 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4262 sizeof(struct sk_buff_fclones), 4263 0, 4264 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4265 NULL); 4266 skb_extensions_init(); 4267 } 4268 4269 static int 4270 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4271 unsigned int recursion_level) 4272 { 4273 int start = skb_headlen(skb); 4274 int i, copy = start - offset; 4275 struct sk_buff *frag_iter; 4276 int elt = 0; 4277 4278 if (unlikely(recursion_level >= 24)) 4279 return -EMSGSIZE; 4280 4281 if (copy > 0) { 4282 if (copy > len) 4283 copy = len; 4284 sg_set_buf(sg, skb->data + offset, copy); 4285 elt++; 4286 if ((len -= copy) == 0) 4287 return elt; 4288 offset += copy; 4289 } 4290 4291 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4292 int end; 4293 4294 WARN_ON(start > offset + len); 4295 4296 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4297 if ((copy = end - offset) > 0) { 4298 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4299 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4300 return -EMSGSIZE; 4301 4302 if (copy > len) 4303 copy = len; 4304 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4305 skb_frag_off(frag) + offset - start); 4306 elt++; 4307 if (!(len -= copy)) 4308 return elt; 4309 offset += copy; 4310 } 4311 start = end; 4312 } 4313 4314 skb_walk_frags(skb, frag_iter) { 4315 int end, ret; 4316 4317 WARN_ON(start > offset + len); 4318 4319 end = start + frag_iter->len; 4320 if ((copy = end - offset) > 0) { 4321 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4322 return -EMSGSIZE; 4323 4324 if (copy > len) 4325 copy = len; 4326 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4327 copy, recursion_level + 1); 4328 if (unlikely(ret < 0)) 4329 return ret; 4330 elt += ret; 4331 if ((len -= copy) == 0) 4332 return elt; 4333 offset += copy; 4334 } 4335 start = end; 4336 } 4337 BUG_ON(len); 4338 return elt; 4339 } 4340 4341 /** 4342 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4343 * @skb: Socket buffer containing the buffers to be mapped 4344 * @sg: The scatter-gather list to map into 4345 * @offset: The offset into the buffer's contents to start mapping 4346 * @len: Length of buffer space to be mapped 4347 * 4348 * Fill the specified scatter-gather list with mappings/pointers into a 4349 * region of the buffer space attached to a socket buffer. Returns either 4350 * the number of scatterlist items used, or -EMSGSIZE if the contents 4351 * could not fit. 4352 */ 4353 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4354 { 4355 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4356 4357 if (nsg <= 0) 4358 return nsg; 4359 4360 sg_mark_end(&sg[nsg - 1]); 4361 4362 return nsg; 4363 } 4364 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4365 4366 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4367 * sglist without mark the sg which contain last skb data as the end. 4368 * So the caller can mannipulate sg list as will when padding new data after 4369 * the first call without calling sg_unmark_end to expend sg list. 4370 * 4371 * Scenario to use skb_to_sgvec_nomark: 4372 * 1. sg_init_table 4373 * 2. skb_to_sgvec_nomark(payload1) 4374 * 3. skb_to_sgvec_nomark(payload2) 4375 * 4376 * This is equivalent to: 4377 * 1. sg_init_table 4378 * 2. skb_to_sgvec(payload1) 4379 * 3. sg_unmark_end 4380 * 4. skb_to_sgvec(payload2) 4381 * 4382 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4383 * is more preferable. 4384 */ 4385 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4386 int offset, int len) 4387 { 4388 return __skb_to_sgvec(skb, sg, offset, len, 0); 4389 } 4390 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4391 4392 4393 4394 /** 4395 * skb_cow_data - Check that a socket buffer's data buffers are writable 4396 * @skb: The socket buffer to check. 4397 * @tailbits: Amount of trailing space to be added 4398 * @trailer: Returned pointer to the skb where the @tailbits space begins 4399 * 4400 * Make sure that the data buffers attached to a socket buffer are 4401 * writable. If they are not, private copies are made of the data buffers 4402 * and the socket buffer is set to use these instead. 4403 * 4404 * If @tailbits is given, make sure that there is space to write @tailbits 4405 * bytes of data beyond current end of socket buffer. @trailer will be 4406 * set to point to the skb in which this space begins. 4407 * 4408 * The number of scatterlist elements required to completely map the 4409 * COW'd and extended socket buffer will be returned. 4410 */ 4411 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4412 { 4413 int copyflag; 4414 int elt; 4415 struct sk_buff *skb1, **skb_p; 4416 4417 /* If skb is cloned or its head is paged, reallocate 4418 * head pulling out all the pages (pages are considered not writable 4419 * at the moment even if they are anonymous). 4420 */ 4421 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4422 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4423 return -ENOMEM; 4424 4425 /* Easy case. Most of packets will go this way. */ 4426 if (!skb_has_frag_list(skb)) { 4427 /* A little of trouble, not enough of space for trailer. 4428 * This should not happen, when stack is tuned to generate 4429 * good frames. OK, on miss we reallocate and reserve even more 4430 * space, 128 bytes is fair. */ 4431 4432 if (skb_tailroom(skb) < tailbits && 4433 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4434 return -ENOMEM; 4435 4436 /* Voila! */ 4437 *trailer = skb; 4438 return 1; 4439 } 4440 4441 /* Misery. We are in troubles, going to mincer fragments... */ 4442 4443 elt = 1; 4444 skb_p = &skb_shinfo(skb)->frag_list; 4445 copyflag = 0; 4446 4447 while ((skb1 = *skb_p) != NULL) { 4448 int ntail = 0; 4449 4450 /* The fragment is partially pulled by someone, 4451 * this can happen on input. Copy it and everything 4452 * after it. */ 4453 4454 if (skb_shared(skb1)) 4455 copyflag = 1; 4456 4457 /* If the skb is the last, worry about trailer. */ 4458 4459 if (skb1->next == NULL && tailbits) { 4460 if (skb_shinfo(skb1)->nr_frags || 4461 skb_has_frag_list(skb1) || 4462 skb_tailroom(skb1) < tailbits) 4463 ntail = tailbits + 128; 4464 } 4465 4466 if (copyflag || 4467 skb_cloned(skb1) || 4468 ntail || 4469 skb_shinfo(skb1)->nr_frags || 4470 skb_has_frag_list(skb1)) { 4471 struct sk_buff *skb2; 4472 4473 /* Fuck, we are miserable poor guys... */ 4474 if (ntail == 0) 4475 skb2 = skb_copy(skb1, GFP_ATOMIC); 4476 else 4477 skb2 = skb_copy_expand(skb1, 4478 skb_headroom(skb1), 4479 ntail, 4480 GFP_ATOMIC); 4481 if (unlikely(skb2 == NULL)) 4482 return -ENOMEM; 4483 4484 if (skb1->sk) 4485 skb_set_owner_w(skb2, skb1->sk); 4486 4487 /* Looking around. Are we still alive? 4488 * OK, link new skb, drop old one */ 4489 4490 skb2->next = skb1->next; 4491 *skb_p = skb2; 4492 kfree_skb(skb1); 4493 skb1 = skb2; 4494 } 4495 elt++; 4496 *trailer = skb1; 4497 skb_p = &skb1->next; 4498 } 4499 4500 return elt; 4501 } 4502 EXPORT_SYMBOL_GPL(skb_cow_data); 4503 4504 static void sock_rmem_free(struct sk_buff *skb) 4505 { 4506 struct sock *sk = skb->sk; 4507 4508 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4509 } 4510 4511 static void skb_set_err_queue(struct sk_buff *skb) 4512 { 4513 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4514 * So, it is safe to (mis)use it to mark skbs on the error queue. 4515 */ 4516 skb->pkt_type = PACKET_OUTGOING; 4517 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4518 } 4519 4520 /* 4521 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4522 */ 4523 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4524 { 4525 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4526 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4527 return -ENOMEM; 4528 4529 skb_orphan(skb); 4530 skb->sk = sk; 4531 skb->destructor = sock_rmem_free; 4532 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4533 skb_set_err_queue(skb); 4534 4535 /* before exiting rcu section, make sure dst is refcounted */ 4536 skb_dst_force(skb); 4537 4538 skb_queue_tail(&sk->sk_error_queue, skb); 4539 if (!sock_flag(sk, SOCK_DEAD)) 4540 sk->sk_error_report(sk); 4541 return 0; 4542 } 4543 EXPORT_SYMBOL(sock_queue_err_skb); 4544 4545 static bool is_icmp_err_skb(const struct sk_buff *skb) 4546 { 4547 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4548 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4549 } 4550 4551 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4552 { 4553 struct sk_buff_head *q = &sk->sk_error_queue; 4554 struct sk_buff *skb, *skb_next = NULL; 4555 bool icmp_next = false; 4556 unsigned long flags; 4557 4558 spin_lock_irqsave(&q->lock, flags); 4559 skb = __skb_dequeue(q); 4560 if (skb && (skb_next = skb_peek(q))) { 4561 icmp_next = is_icmp_err_skb(skb_next); 4562 if (icmp_next) 4563 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4564 } 4565 spin_unlock_irqrestore(&q->lock, flags); 4566 4567 if (is_icmp_err_skb(skb) && !icmp_next) 4568 sk->sk_err = 0; 4569 4570 if (skb_next) 4571 sk->sk_error_report(sk); 4572 4573 return skb; 4574 } 4575 EXPORT_SYMBOL(sock_dequeue_err_skb); 4576 4577 /** 4578 * skb_clone_sk - create clone of skb, and take reference to socket 4579 * @skb: the skb to clone 4580 * 4581 * This function creates a clone of a buffer that holds a reference on 4582 * sk_refcnt. Buffers created via this function are meant to be 4583 * returned using sock_queue_err_skb, or free via kfree_skb. 4584 * 4585 * When passing buffers allocated with this function to sock_queue_err_skb 4586 * it is necessary to wrap the call with sock_hold/sock_put in order to 4587 * prevent the socket from being released prior to being enqueued on 4588 * the sk_error_queue. 4589 */ 4590 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4591 { 4592 struct sock *sk = skb->sk; 4593 struct sk_buff *clone; 4594 4595 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4596 return NULL; 4597 4598 clone = skb_clone(skb, GFP_ATOMIC); 4599 if (!clone) { 4600 sock_put(sk); 4601 return NULL; 4602 } 4603 4604 clone->sk = sk; 4605 clone->destructor = sock_efree; 4606 4607 return clone; 4608 } 4609 EXPORT_SYMBOL(skb_clone_sk); 4610 4611 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4612 struct sock *sk, 4613 int tstype, 4614 bool opt_stats) 4615 { 4616 struct sock_exterr_skb *serr; 4617 int err; 4618 4619 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4620 4621 serr = SKB_EXT_ERR(skb); 4622 memset(serr, 0, sizeof(*serr)); 4623 serr->ee.ee_errno = ENOMSG; 4624 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4625 serr->ee.ee_info = tstype; 4626 serr->opt_stats = opt_stats; 4627 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4628 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4629 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4630 if (sk->sk_protocol == IPPROTO_TCP && 4631 sk->sk_type == SOCK_STREAM) 4632 serr->ee.ee_data -= sk->sk_tskey; 4633 } 4634 4635 err = sock_queue_err_skb(sk, skb); 4636 4637 if (err) 4638 kfree_skb(skb); 4639 } 4640 4641 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4642 { 4643 bool ret; 4644 4645 if (likely(sysctl_tstamp_allow_data || tsonly)) 4646 return true; 4647 4648 read_lock_bh(&sk->sk_callback_lock); 4649 ret = sk->sk_socket && sk->sk_socket->file && 4650 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4651 read_unlock_bh(&sk->sk_callback_lock); 4652 return ret; 4653 } 4654 4655 void skb_complete_tx_timestamp(struct sk_buff *skb, 4656 struct skb_shared_hwtstamps *hwtstamps) 4657 { 4658 struct sock *sk = skb->sk; 4659 4660 if (!skb_may_tx_timestamp(sk, false)) 4661 goto err; 4662 4663 /* Take a reference to prevent skb_orphan() from freeing the socket, 4664 * but only if the socket refcount is not zero. 4665 */ 4666 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4667 *skb_hwtstamps(skb) = *hwtstamps; 4668 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4669 sock_put(sk); 4670 return; 4671 } 4672 4673 err: 4674 kfree_skb(skb); 4675 } 4676 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4677 4678 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4679 struct skb_shared_hwtstamps *hwtstamps, 4680 struct sock *sk, int tstype) 4681 { 4682 struct sk_buff *skb; 4683 bool tsonly, opt_stats = false; 4684 4685 if (!sk) 4686 return; 4687 4688 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4689 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4690 return; 4691 4692 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4693 if (!skb_may_tx_timestamp(sk, tsonly)) 4694 return; 4695 4696 if (tsonly) { 4697 #ifdef CONFIG_INET 4698 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4699 sk->sk_protocol == IPPROTO_TCP && 4700 sk->sk_type == SOCK_STREAM) { 4701 skb = tcp_get_timestamping_opt_stats(sk, orig_skb); 4702 opt_stats = true; 4703 } else 4704 #endif 4705 skb = alloc_skb(0, GFP_ATOMIC); 4706 } else { 4707 skb = skb_clone(orig_skb, GFP_ATOMIC); 4708 } 4709 if (!skb) 4710 return; 4711 4712 if (tsonly) { 4713 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4714 SKBTX_ANY_TSTAMP; 4715 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4716 } 4717 4718 if (hwtstamps) 4719 *skb_hwtstamps(skb) = *hwtstamps; 4720 else 4721 skb->tstamp = ktime_get_real(); 4722 4723 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4724 } 4725 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4726 4727 void skb_tstamp_tx(struct sk_buff *orig_skb, 4728 struct skb_shared_hwtstamps *hwtstamps) 4729 { 4730 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4731 SCM_TSTAMP_SND); 4732 } 4733 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4734 4735 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4736 { 4737 struct sock *sk = skb->sk; 4738 struct sock_exterr_skb *serr; 4739 int err = 1; 4740 4741 skb->wifi_acked_valid = 1; 4742 skb->wifi_acked = acked; 4743 4744 serr = SKB_EXT_ERR(skb); 4745 memset(serr, 0, sizeof(*serr)); 4746 serr->ee.ee_errno = ENOMSG; 4747 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4748 4749 /* Take a reference to prevent skb_orphan() from freeing the socket, 4750 * but only if the socket refcount is not zero. 4751 */ 4752 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4753 err = sock_queue_err_skb(sk, skb); 4754 sock_put(sk); 4755 } 4756 if (err) 4757 kfree_skb(skb); 4758 } 4759 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4760 4761 /** 4762 * skb_partial_csum_set - set up and verify partial csum values for packet 4763 * @skb: the skb to set 4764 * @start: the number of bytes after skb->data to start checksumming. 4765 * @off: the offset from start to place the checksum. 4766 * 4767 * For untrusted partially-checksummed packets, we need to make sure the values 4768 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4769 * 4770 * This function checks and sets those values and skb->ip_summed: if this 4771 * returns false you should drop the packet. 4772 */ 4773 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4774 { 4775 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4776 u32 csum_start = skb_headroom(skb) + (u32)start; 4777 4778 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4779 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4780 start, off, skb_headroom(skb), skb_headlen(skb)); 4781 return false; 4782 } 4783 skb->ip_summed = CHECKSUM_PARTIAL; 4784 skb->csum_start = csum_start; 4785 skb->csum_offset = off; 4786 skb_set_transport_header(skb, start); 4787 return true; 4788 } 4789 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4790 4791 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4792 unsigned int max) 4793 { 4794 if (skb_headlen(skb) >= len) 4795 return 0; 4796 4797 /* If we need to pullup then pullup to the max, so we 4798 * won't need to do it again. 4799 */ 4800 if (max > skb->len) 4801 max = skb->len; 4802 4803 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4804 return -ENOMEM; 4805 4806 if (skb_headlen(skb) < len) 4807 return -EPROTO; 4808 4809 return 0; 4810 } 4811 4812 #define MAX_TCP_HDR_LEN (15 * 4) 4813 4814 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4815 typeof(IPPROTO_IP) proto, 4816 unsigned int off) 4817 { 4818 int err; 4819 4820 switch (proto) { 4821 case IPPROTO_TCP: 4822 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4823 off + MAX_TCP_HDR_LEN); 4824 if (!err && !skb_partial_csum_set(skb, off, 4825 offsetof(struct tcphdr, 4826 check))) 4827 err = -EPROTO; 4828 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4829 4830 case IPPROTO_UDP: 4831 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4832 off + sizeof(struct udphdr)); 4833 if (!err && !skb_partial_csum_set(skb, off, 4834 offsetof(struct udphdr, 4835 check))) 4836 err = -EPROTO; 4837 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4838 } 4839 4840 return ERR_PTR(-EPROTO); 4841 } 4842 4843 /* This value should be large enough to cover a tagged ethernet header plus 4844 * maximally sized IP and TCP or UDP headers. 4845 */ 4846 #define MAX_IP_HDR_LEN 128 4847 4848 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4849 { 4850 unsigned int off; 4851 bool fragment; 4852 __sum16 *csum; 4853 int err; 4854 4855 fragment = false; 4856 4857 err = skb_maybe_pull_tail(skb, 4858 sizeof(struct iphdr), 4859 MAX_IP_HDR_LEN); 4860 if (err < 0) 4861 goto out; 4862 4863 if (ip_is_fragment(ip_hdr(skb))) 4864 fragment = true; 4865 4866 off = ip_hdrlen(skb); 4867 4868 err = -EPROTO; 4869 4870 if (fragment) 4871 goto out; 4872 4873 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4874 if (IS_ERR(csum)) 4875 return PTR_ERR(csum); 4876 4877 if (recalculate) 4878 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4879 ip_hdr(skb)->daddr, 4880 skb->len - off, 4881 ip_hdr(skb)->protocol, 0); 4882 err = 0; 4883 4884 out: 4885 return err; 4886 } 4887 4888 /* This value should be large enough to cover a tagged ethernet header plus 4889 * an IPv6 header, all options, and a maximal TCP or UDP header. 4890 */ 4891 #define MAX_IPV6_HDR_LEN 256 4892 4893 #define OPT_HDR(type, skb, off) \ 4894 (type *)(skb_network_header(skb) + (off)) 4895 4896 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4897 { 4898 int err; 4899 u8 nexthdr; 4900 unsigned int off; 4901 unsigned int len; 4902 bool fragment; 4903 bool done; 4904 __sum16 *csum; 4905 4906 fragment = false; 4907 done = false; 4908 4909 off = sizeof(struct ipv6hdr); 4910 4911 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4912 if (err < 0) 4913 goto out; 4914 4915 nexthdr = ipv6_hdr(skb)->nexthdr; 4916 4917 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4918 while (off <= len && !done) { 4919 switch (nexthdr) { 4920 case IPPROTO_DSTOPTS: 4921 case IPPROTO_HOPOPTS: 4922 case IPPROTO_ROUTING: { 4923 struct ipv6_opt_hdr *hp; 4924 4925 err = skb_maybe_pull_tail(skb, 4926 off + 4927 sizeof(struct ipv6_opt_hdr), 4928 MAX_IPV6_HDR_LEN); 4929 if (err < 0) 4930 goto out; 4931 4932 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4933 nexthdr = hp->nexthdr; 4934 off += ipv6_optlen(hp); 4935 break; 4936 } 4937 case IPPROTO_AH: { 4938 struct ip_auth_hdr *hp; 4939 4940 err = skb_maybe_pull_tail(skb, 4941 off + 4942 sizeof(struct ip_auth_hdr), 4943 MAX_IPV6_HDR_LEN); 4944 if (err < 0) 4945 goto out; 4946 4947 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4948 nexthdr = hp->nexthdr; 4949 off += ipv6_authlen(hp); 4950 break; 4951 } 4952 case IPPROTO_FRAGMENT: { 4953 struct frag_hdr *hp; 4954 4955 err = skb_maybe_pull_tail(skb, 4956 off + 4957 sizeof(struct frag_hdr), 4958 MAX_IPV6_HDR_LEN); 4959 if (err < 0) 4960 goto out; 4961 4962 hp = OPT_HDR(struct frag_hdr, skb, off); 4963 4964 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4965 fragment = true; 4966 4967 nexthdr = hp->nexthdr; 4968 off += sizeof(struct frag_hdr); 4969 break; 4970 } 4971 default: 4972 done = true; 4973 break; 4974 } 4975 } 4976 4977 err = -EPROTO; 4978 4979 if (!done || fragment) 4980 goto out; 4981 4982 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4983 if (IS_ERR(csum)) 4984 return PTR_ERR(csum); 4985 4986 if (recalculate) 4987 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4988 &ipv6_hdr(skb)->daddr, 4989 skb->len - off, nexthdr, 0); 4990 err = 0; 4991 4992 out: 4993 return err; 4994 } 4995 4996 /** 4997 * skb_checksum_setup - set up partial checksum offset 4998 * @skb: the skb to set up 4999 * @recalculate: if true the pseudo-header checksum will be recalculated 5000 */ 5001 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5002 { 5003 int err; 5004 5005 switch (skb->protocol) { 5006 case htons(ETH_P_IP): 5007 err = skb_checksum_setup_ipv4(skb, recalculate); 5008 break; 5009 5010 case htons(ETH_P_IPV6): 5011 err = skb_checksum_setup_ipv6(skb, recalculate); 5012 break; 5013 5014 default: 5015 err = -EPROTO; 5016 break; 5017 } 5018 5019 return err; 5020 } 5021 EXPORT_SYMBOL(skb_checksum_setup); 5022 5023 /** 5024 * skb_checksum_maybe_trim - maybe trims the given skb 5025 * @skb: the skb to check 5026 * @transport_len: the data length beyond the network header 5027 * 5028 * Checks whether the given skb has data beyond the given transport length. 5029 * If so, returns a cloned skb trimmed to this transport length. 5030 * Otherwise returns the provided skb. Returns NULL in error cases 5031 * (e.g. transport_len exceeds skb length or out-of-memory). 5032 * 5033 * Caller needs to set the skb transport header and free any returned skb if it 5034 * differs from the provided skb. 5035 */ 5036 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5037 unsigned int transport_len) 5038 { 5039 struct sk_buff *skb_chk; 5040 unsigned int len = skb_transport_offset(skb) + transport_len; 5041 int ret; 5042 5043 if (skb->len < len) 5044 return NULL; 5045 else if (skb->len == len) 5046 return skb; 5047 5048 skb_chk = skb_clone(skb, GFP_ATOMIC); 5049 if (!skb_chk) 5050 return NULL; 5051 5052 ret = pskb_trim_rcsum(skb_chk, len); 5053 if (ret) { 5054 kfree_skb(skb_chk); 5055 return NULL; 5056 } 5057 5058 return skb_chk; 5059 } 5060 5061 /** 5062 * skb_checksum_trimmed - validate checksum of an skb 5063 * @skb: the skb to check 5064 * @transport_len: the data length beyond the network header 5065 * @skb_chkf: checksum function to use 5066 * 5067 * Applies the given checksum function skb_chkf to the provided skb. 5068 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5069 * 5070 * If the skb has data beyond the given transport length, then a 5071 * trimmed & cloned skb is checked and returned. 5072 * 5073 * Caller needs to set the skb transport header and free any returned skb if it 5074 * differs from the provided skb. 5075 */ 5076 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5077 unsigned int transport_len, 5078 __sum16(*skb_chkf)(struct sk_buff *skb)) 5079 { 5080 struct sk_buff *skb_chk; 5081 unsigned int offset = skb_transport_offset(skb); 5082 __sum16 ret; 5083 5084 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5085 if (!skb_chk) 5086 goto err; 5087 5088 if (!pskb_may_pull(skb_chk, offset)) 5089 goto err; 5090 5091 skb_pull_rcsum(skb_chk, offset); 5092 ret = skb_chkf(skb_chk); 5093 skb_push_rcsum(skb_chk, offset); 5094 5095 if (ret) 5096 goto err; 5097 5098 return skb_chk; 5099 5100 err: 5101 if (skb_chk && skb_chk != skb) 5102 kfree_skb(skb_chk); 5103 5104 return NULL; 5105 5106 } 5107 EXPORT_SYMBOL(skb_checksum_trimmed); 5108 5109 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5110 { 5111 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5112 skb->dev->name); 5113 } 5114 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5115 5116 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5117 { 5118 if (head_stolen) { 5119 skb_release_head_state(skb); 5120 kmem_cache_free(skbuff_head_cache, skb); 5121 } else { 5122 __kfree_skb(skb); 5123 } 5124 } 5125 EXPORT_SYMBOL(kfree_skb_partial); 5126 5127 /** 5128 * skb_try_coalesce - try to merge skb to prior one 5129 * @to: prior buffer 5130 * @from: buffer to add 5131 * @fragstolen: pointer to boolean 5132 * @delta_truesize: how much more was allocated than was requested 5133 */ 5134 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5135 bool *fragstolen, int *delta_truesize) 5136 { 5137 struct skb_shared_info *to_shinfo, *from_shinfo; 5138 int i, delta, len = from->len; 5139 5140 *fragstolen = false; 5141 5142 if (skb_cloned(to)) 5143 return false; 5144 5145 if (len <= skb_tailroom(to)) { 5146 if (len) 5147 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5148 *delta_truesize = 0; 5149 return true; 5150 } 5151 5152 to_shinfo = skb_shinfo(to); 5153 from_shinfo = skb_shinfo(from); 5154 if (to_shinfo->frag_list || from_shinfo->frag_list) 5155 return false; 5156 if (skb_zcopy(to) || skb_zcopy(from)) 5157 return false; 5158 5159 if (skb_headlen(from) != 0) { 5160 struct page *page; 5161 unsigned int offset; 5162 5163 if (to_shinfo->nr_frags + 5164 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5165 return false; 5166 5167 if (skb_head_is_locked(from)) 5168 return false; 5169 5170 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5171 5172 page = virt_to_head_page(from->head); 5173 offset = from->data - (unsigned char *)page_address(page); 5174 5175 skb_fill_page_desc(to, to_shinfo->nr_frags, 5176 page, offset, skb_headlen(from)); 5177 *fragstolen = true; 5178 } else { 5179 if (to_shinfo->nr_frags + 5180 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5181 return false; 5182 5183 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5184 } 5185 5186 WARN_ON_ONCE(delta < len); 5187 5188 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5189 from_shinfo->frags, 5190 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5191 to_shinfo->nr_frags += from_shinfo->nr_frags; 5192 5193 if (!skb_cloned(from)) 5194 from_shinfo->nr_frags = 0; 5195 5196 /* if the skb is not cloned this does nothing 5197 * since we set nr_frags to 0. 5198 */ 5199 for (i = 0; i < from_shinfo->nr_frags; i++) 5200 __skb_frag_ref(&from_shinfo->frags[i]); 5201 5202 to->truesize += delta; 5203 to->len += len; 5204 to->data_len += len; 5205 5206 *delta_truesize = delta; 5207 return true; 5208 } 5209 EXPORT_SYMBOL(skb_try_coalesce); 5210 5211 /** 5212 * skb_scrub_packet - scrub an skb 5213 * 5214 * @skb: buffer to clean 5215 * @xnet: packet is crossing netns 5216 * 5217 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5218 * into/from a tunnel. Some information have to be cleared during these 5219 * operations. 5220 * skb_scrub_packet can also be used to clean a skb before injecting it in 5221 * another namespace (@xnet == true). We have to clear all information in the 5222 * skb that could impact namespace isolation. 5223 */ 5224 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5225 { 5226 skb->pkt_type = PACKET_HOST; 5227 skb->skb_iif = 0; 5228 skb->ignore_df = 0; 5229 skb_dst_drop(skb); 5230 skb_ext_reset(skb); 5231 nf_reset_ct(skb); 5232 nf_reset_trace(skb); 5233 5234 #ifdef CONFIG_NET_SWITCHDEV 5235 skb->offload_fwd_mark = 0; 5236 skb->offload_l3_fwd_mark = 0; 5237 #endif 5238 5239 if (!xnet) 5240 return; 5241 5242 ipvs_reset(skb); 5243 skb->mark = 0; 5244 skb->tstamp = 0; 5245 } 5246 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5247 5248 /** 5249 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5250 * 5251 * @skb: GSO skb 5252 * 5253 * skb_gso_transport_seglen is used to determine the real size of the 5254 * individual segments, including Layer4 headers (TCP/UDP). 5255 * 5256 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5257 */ 5258 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5259 { 5260 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5261 unsigned int thlen = 0; 5262 5263 if (skb->encapsulation) { 5264 thlen = skb_inner_transport_header(skb) - 5265 skb_transport_header(skb); 5266 5267 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5268 thlen += inner_tcp_hdrlen(skb); 5269 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5270 thlen = tcp_hdrlen(skb); 5271 } else if (unlikely(skb_is_gso_sctp(skb))) { 5272 thlen = sizeof(struct sctphdr); 5273 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5274 thlen = sizeof(struct udphdr); 5275 } 5276 /* UFO sets gso_size to the size of the fragmentation 5277 * payload, i.e. the size of the L4 (UDP) header is already 5278 * accounted for. 5279 */ 5280 return thlen + shinfo->gso_size; 5281 } 5282 5283 /** 5284 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5285 * 5286 * @skb: GSO skb 5287 * 5288 * skb_gso_network_seglen is used to determine the real size of the 5289 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5290 * 5291 * The MAC/L2 header is not accounted for. 5292 */ 5293 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5294 { 5295 unsigned int hdr_len = skb_transport_header(skb) - 5296 skb_network_header(skb); 5297 5298 return hdr_len + skb_gso_transport_seglen(skb); 5299 } 5300 5301 /** 5302 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5303 * 5304 * @skb: GSO skb 5305 * 5306 * skb_gso_mac_seglen is used to determine the real size of the 5307 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5308 * headers (TCP/UDP). 5309 */ 5310 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5311 { 5312 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5313 5314 return hdr_len + skb_gso_transport_seglen(skb); 5315 } 5316 5317 /** 5318 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5319 * 5320 * There are a couple of instances where we have a GSO skb, and we 5321 * want to determine what size it would be after it is segmented. 5322 * 5323 * We might want to check: 5324 * - L3+L4+payload size (e.g. IP forwarding) 5325 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5326 * 5327 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5328 * 5329 * @skb: GSO skb 5330 * 5331 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5332 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5333 * 5334 * @max_len: The maximum permissible length. 5335 * 5336 * Returns true if the segmented length <= max length. 5337 */ 5338 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5339 unsigned int seg_len, 5340 unsigned int max_len) { 5341 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5342 const struct sk_buff *iter; 5343 5344 if (shinfo->gso_size != GSO_BY_FRAGS) 5345 return seg_len <= max_len; 5346 5347 /* Undo this so we can re-use header sizes */ 5348 seg_len -= GSO_BY_FRAGS; 5349 5350 skb_walk_frags(skb, iter) { 5351 if (seg_len + skb_headlen(iter) > max_len) 5352 return false; 5353 } 5354 5355 return true; 5356 } 5357 5358 /** 5359 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5360 * 5361 * @skb: GSO skb 5362 * @mtu: MTU to validate against 5363 * 5364 * skb_gso_validate_network_len validates if a given skb will fit a 5365 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5366 * payload. 5367 */ 5368 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5369 { 5370 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5371 } 5372 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5373 5374 /** 5375 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5376 * 5377 * @skb: GSO skb 5378 * @len: length to validate against 5379 * 5380 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5381 * length once split, including L2, L3 and L4 headers and the payload. 5382 */ 5383 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5384 { 5385 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5386 } 5387 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5388 5389 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5390 { 5391 int mac_len, meta_len; 5392 void *meta; 5393 5394 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5395 kfree_skb(skb); 5396 return NULL; 5397 } 5398 5399 mac_len = skb->data - skb_mac_header(skb); 5400 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5401 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5402 mac_len - VLAN_HLEN - ETH_TLEN); 5403 } 5404 5405 meta_len = skb_metadata_len(skb); 5406 if (meta_len) { 5407 meta = skb_metadata_end(skb) - meta_len; 5408 memmove(meta + VLAN_HLEN, meta, meta_len); 5409 } 5410 5411 skb->mac_header += VLAN_HLEN; 5412 return skb; 5413 } 5414 5415 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5416 { 5417 struct vlan_hdr *vhdr; 5418 u16 vlan_tci; 5419 5420 if (unlikely(skb_vlan_tag_present(skb))) { 5421 /* vlan_tci is already set-up so leave this for another time */ 5422 return skb; 5423 } 5424 5425 skb = skb_share_check(skb, GFP_ATOMIC); 5426 if (unlikely(!skb)) 5427 goto err_free; 5428 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5429 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5430 goto err_free; 5431 5432 vhdr = (struct vlan_hdr *)skb->data; 5433 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5434 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5435 5436 skb_pull_rcsum(skb, VLAN_HLEN); 5437 vlan_set_encap_proto(skb, vhdr); 5438 5439 skb = skb_reorder_vlan_header(skb); 5440 if (unlikely(!skb)) 5441 goto err_free; 5442 5443 skb_reset_network_header(skb); 5444 if (!skb_transport_header_was_set(skb)) 5445 skb_reset_transport_header(skb); 5446 skb_reset_mac_len(skb); 5447 5448 return skb; 5449 5450 err_free: 5451 kfree_skb(skb); 5452 return NULL; 5453 } 5454 EXPORT_SYMBOL(skb_vlan_untag); 5455 5456 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5457 { 5458 if (!pskb_may_pull(skb, write_len)) 5459 return -ENOMEM; 5460 5461 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5462 return 0; 5463 5464 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5465 } 5466 EXPORT_SYMBOL(skb_ensure_writable); 5467 5468 /* remove VLAN header from packet and update csum accordingly. 5469 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5470 */ 5471 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5472 { 5473 struct vlan_hdr *vhdr; 5474 int offset = skb->data - skb_mac_header(skb); 5475 int err; 5476 5477 if (WARN_ONCE(offset, 5478 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5479 offset)) { 5480 return -EINVAL; 5481 } 5482 5483 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5484 if (unlikely(err)) 5485 return err; 5486 5487 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5488 5489 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5490 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5491 5492 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5493 __skb_pull(skb, VLAN_HLEN); 5494 5495 vlan_set_encap_proto(skb, vhdr); 5496 skb->mac_header += VLAN_HLEN; 5497 5498 if (skb_network_offset(skb) < ETH_HLEN) 5499 skb_set_network_header(skb, ETH_HLEN); 5500 5501 skb_reset_mac_len(skb); 5502 5503 return err; 5504 } 5505 EXPORT_SYMBOL(__skb_vlan_pop); 5506 5507 /* Pop a vlan tag either from hwaccel or from payload. 5508 * Expects skb->data at mac header. 5509 */ 5510 int skb_vlan_pop(struct sk_buff *skb) 5511 { 5512 u16 vlan_tci; 5513 __be16 vlan_proto; 5514 int err; 5515 5516 if (likely(skb_vlan_tag_present(skb))) { 5517 __vlan_hwaccel_clear_tag(skb); 5518 } else { 5519 if (unlikely(!eth_type_vlan(skb->protocol))) 5520 return 0; 5521 5522 err = __skb_vlan_pop(skb, &vlan_tci); 5523 if (err) 5524 return err; 5525 } 5526 /* move next vlan tag to hw accel tag */ 5527 if (likely(!eth_type_vlan(skb->protocol))) 5528 return 0; 5529 5530 vlan_proto = skb->protocol; 5531 err = __skb_vlan_pop(skb, &vlan_tci); 5532 if (unlikely(err)) 5533 return err; 5534 5535 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5536 return 0; 5537 } 5538 EXPORT_SYMBOL(skb_vlan_pop); 5539 5540 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5541 * Expects skb->data at mac header. 5542 */ 5543 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5544 { 5545 if (skb_vlan_tag_present(skb)) { 5546 int offset = skb->data - skb_mac_header(skb); 5547 int err; 5548 5549 if (WARN_ONCE(offset, 5550 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5551 offset)) { 5552 return -EINVAL; 5553 } 5554 5555 err = __vlan_insert_tag(skb, skb->vlan_proto, 5556 skb_vlan_tag_get(skb)); 5557 if (err) 5558 return err; 5559 5560 skb->protocol = skb->vlan_proto; 5561 skb->mac_len += VLAN_HLEN; 5562 5563 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5564 } 5565 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5566 return 0; 5567 } 5568 EXPORT_SYMBOL(skb_vlan_push); 5569 5570 /** 5571 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5572 * 5573 * @skb: Socket buffer to modify 5574 * 5575 * Drop the Ethernet header of @skb. 5576 * 5577 * Expects that skb->data points to the mac header and that no VLAN tags are 5578 * present. 5579 * 5580 * Returns 0 on success, -errno otherwise. 5581 */ 5582 int skb_eth_pop(struct sk_buff *skb) 5583 { 5584 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5585 skb_network_offset(skb) < ETH_HLEN) 5586 return -EPROTO; 5587 5588 skb_pull_rcsum(skb, ETH_HLEN); 5589 skb_reset_mac_header(skb); 5590 skb_reset_mac_len(skb); 5591 5592 return 0; 5593 } 5594 EXPORT_SYMBOL(skb_eth_pop); 5595 5596 /** 5597 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5598 * 5599 * @skb: Socket buffer to modify 5600 * @dst: Destination MAC address of the new header 5601 * @src: Source MAC address of the new header 5602 * 5603 * Prepend @skb with a new Ethernet header. 5604 * 5605 * Expects that skb->data points to the mac header, which must be empty. 5606 * 5607 * Returns 0 on success, -errno otherwise. 5608 */ 5609 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5610 const unsigned char *src) 5611 { 5612 struct ethhdr *eth; 5613 int err; 5614 5615 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5616 return -EPROTO; 5617 5618 err = skb_cow_head(skb, sizeof(*eth)); 5619 if (err < 0) 5620 return err; 5621 5622 skb_push(skb, sizeof(*eth)); 5623 skb_reset_mac_header(skb); 5624 skb_reset_mac_len(skb); 5625 5626 eth = eth_hdr(skb); 5627 ether_addr_copy(eth->h_dest, dst); 5628 ether_addr_copy(eth->h_source, src); 5629 eth->h_proto = skb->protocol; 5630 5631 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5632 5633 return 0; 5634 } 5635 EXPORT_SYMBOL(skb_eth_push); 5636 5637 /* Update the ethertype of hdr and the skb csum value if required. */ 5638 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5639 __be16 ethertype) 5640 { 5641 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5642 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5643 5644 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5645 } 5646 5647 hdr->h_proto = ethertype; 5648 } 5649 5650 /** 5651 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5652 * the packet 5653 * 5654 * @skb: buffer 5655 * @mpls_lse: MPLS label stack entry to push 5656 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5657 * @mac_len: length of the MAC header 5658 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5659 * ethernet 5660 * 5661 * Expects skb->data at mac header. 5662 * 5663 * Returns 0 on success, -errno otherwise. 5664 */ 5665 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5666 int mac_len, bool ethernet) 5667 { 5668 struct mpls_shim_hdr *lse; 5669 int err; 5670 5671 if (unlikely(!eth_p_mpls(mpls_proto))) 5672 return -EINVAL; 5673 5674 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5675 if (skb->encapsulation) 5676 return -EINVAL; 5677 5678 err = skb_cow_head(skb, MPLS_HLEN); 5679 if (unlikely(err)) 5680 return err; 5681 5682 if (!skb->inner_protocol) { 5683 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5684 skb_set_inner_protocol(skb, skb->protocol); 5685 } 5686 5687 skb_push(skb, MPLS_HLEN); 5688 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5689 mac_len); 5690 skb_reset_mac_header(skb); 5691 skb_set_network_header(skb, mac_len); 5692 skb_reset_mac_len(skb); 5693 5694 lse = mpls_hdr(skb); 5695 lse->label_stack_entry = mpls_lse; 5696 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5697 5698 if (ethernet && mac_len >= ETH_HLEN) 5699 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5700 skb->protocol = mpls_proto; 5701 5702 return 0; 5703 } 5704 EXPORT_SYMBOL_GPL(skb_mpls_push); 5705 5706 /** 5707 * skb_mpls_pop() - pop the outermost MPLS header 5708 * 5709 * @skb: buffer 5710 * @next_proto: ethertype of header after popped MPLS header 5711 * @mac_len: length of the MAC header 5712 * @ethernet: flag to indicate if the packet is ethernet 5713 * 5714 * Expects skb->data at mac header. 5715 * 5716 * Returns 0 on success, -errno otherwise. 5717 */ 5718 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5719 bool ethernet) 5720 { 5721 int err; 5722 5723 if (unlikely(!eth_p_mpls(skb->protocol))) 5724 return 0; 5725 5726 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5727 if (unlikely(err)) 5728 return err; 5729 5730 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5731 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5732 mac_len); 5733 5734 __skb_pull(skb, MPLS_HLEN); 5735 skb_reset_mac_header(skb); 5736 skb_set_network_header(skb, mac_len); 5737 5738 if (ethernet && mac_len >= ETH_HLEN) { 5739 struct ethhdr *hdr; 5740 5741 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5742 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5743 skb_mod_eth_type(skb, hdr, next_proto); 5744 } 5745 skb->protocol = next_proto; 5746 5747 return 0; 5748 } 5749 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5750 5751 /** 5752 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5753 * 5754 * @skb: buffer 5755 * @mpls_lse: new MPLS label stack entry to update to 5756 * 5757 * Expects skb->data at mac header. 5758 * 5759 * Returns 0 on success, -errno otherwise. 5760 */ 5761 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5762 { 5763 int err; 5764 5765 if (unlikely(!eth_p_mpls(skb->protocol))) 5766 return -EINVAL; 5767 5768 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5769 if (unlikely(err)) 5770 return err; 5771 5772 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5773 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5774 5775 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5776 } 5777 5778 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5779 5780 return 0; 5781 } 5782 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5783 5784 /** 5785 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5786 * 5787 * @skb: buffer 5788 * 5789 * Expects skb->data at mac header. 5790 * 5791 * Returns 0 on success, -errno otherwise. 5792 */ 5793 int skb_mpls_dec_ttl(struct sk_buff *skb) 5794 { 5795 u32 lse; 5796 u8 ttl; 5797 5798 if (unlikely(!eth_p_mpls(skb->protocol))) 5799 return -EINVAL; 5800 5801 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5802 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5803 if (!--ttl) 5804 return -EINVAL; 5805 5806 lse &= ~MPLS_LS_TTL_MASK; 5807 lse |= ttl << MPLS_LS_TTL_SHIFT; 5808 5809 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5810 } 5811 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5812 5813 /** 5814 * alloc_skb_with_frags - allocate skb with page frags 5815 * 5816 * @header_len: size of linear part 5817 * @data_len: needed length in frags 5818 * @max_page_order: max page order desired. 5819 * @errcode: pointer to error code if any 5820 * @gfp_mask: allocation mask 5821 * 5822 * This can be used to allocate a paged skb, given a maximal order for frags. 5823 */ 5824 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5825 unsigned long data_len, 5826 int max_page_order, 5827 int *errcode, 5828 gfp_t gfp_mask) 5829 { 5830 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5831 unsigned long chunk; 5832 struct sk_buff *skb; 5833 struct page *page; 5834 int i; 5835 5836 *errcode = -EMSGSIZE; 5837 /* Note this test could be relaxed, if we succeed to allocate 5838 * high order pages... 5839 */ 5840 if (npages > MAX_SKB_FRAGS) 5841 return NULL; 5842 5843 *errcode = -ENOBUFS; 5844 skb = alloc_skb(header_len, gfp_mask); 5845 if (!skb) 5846 return NULL; 5847 5848 skb->truesize += npages << PAGE_SHIFT; 5849 5850 for (i = 0; npages > 0; i++) { 5851 int order = max_page_order; 5852 5853 while (order) { 5854 if (npages >= 1 << order) { 5855 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5856 __GFP_COMP | 5857 __GFP_NOWARN, 5858 order); 5859 if (page) 5860 goto fill_page; 5861 /* Do not retry other high order allocations */ 5862 order = 1; 5863 max_page_order = 0; 5864 } 5865 order--; 5866 } 5867 page = alloc_page(gfp_mask); 5868 if (!page) 5869 goto failure; 5870 fill_page: 5871 chunk = min_t(unsigned long, data_len, 5872 PAGE_SIZE << order); 5873 skb_fill_page_desc(skb, i, page, 0, chunk); 5874 data_len -= chunk; 5875 npages -= 1 << order; 5876 } 5877 return skb; 5878 5879 failure: 5880 kfree_skb(skb); 5881 return NULL; 5882 } 5883 EXPORT_SYMBOL(alloc_skb_with_frags); 5884 5885 /* carve out the first off bytes from skb when off < headlen */ 5886 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5887 const int headlen, gfp_t gfp_mask) 5888 { 5889 int i; 5890 int size = skb_end_offset(skb); 5891 int new_hlen = headlen - off; 5892 u8 *data; 5893 5894 size = SKB_DATA_ALIGN(size); 5895 5896 if (skb_pfmemalloc(skb)) 5897 gfp_mask |= __GFP_MEMALLOC; 5898 data = kmalloc_reserve(size + 5899 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5900 gfp_mask, NUMA_NO_NODE, NULL); 5901 if (!data) 5902 return -ENOMEM; 5903 5904 size = SKB_WITH_OVERHEAD(ksize(data)); 5905 5906 /* Copy real data, and all frags */ 5907 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5908 skb->len -= off; 5909 5910 memcpy((struct skb_shared_info *)(data + size), 5911 skb_shinfo(skb), 5912 offsetof(struct skb_shared_info, 5913 frags[skb_shinfo(skb)->nr_frags])); 5914 if (skb_cloned(skb)) { 5915 /* drop the old head gracefully */ 5916 if (skb_orphan_frags(skb, gfp_mask)) { 5917 kfree(data); 5918 return -ENOMEM; 5919 } 5920 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5921 skb_frag_ref(skb, i); 5922 if (skb_has_frag_list(skb)) 5923 skb_clone_fraglist(skb); 5924 skb_release_data(skb); 5925 } else { 5926 /* we can reuse existing recount- all we did was 5927 * relocate values 5928 */ 5929 skb_free_head(skb); 5930 } 5931 5932 skb->head = data; 5933 skb->data = data; 5934 skb->head_frag = 0; 5935 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5936 skb->end = size; 5937 #else 5938 skb->end = skb->head + size; 5939 #endif 5940 skb_set_tail_pointer(skb, skb_headlen(skb)); 5941 skb_headers_offset_update(skb, 0); 5942 skb->cloned = 0; 5943 skb->hdr_len = 0; 5944 skb->nohdr = 0; 5945 atomic_set(&skb_shinfo(skb)->dataref, 1); 5946 5947 return 0; 5948 } 5949 5950 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5951 5952 /* carve out the first eat bytes from skb's frag_list. May recurse into 5953 * pskb_carve() 5954 */ 5955 static int pskb_carve_frag_list(struct sk_buff *skb, 5956 struct skb_shared_info *shinfo, int eat, 5957 gfp_t gfp_mask) 5958 { 5959 struct sk_buff *list = shinfo->frag_list; 5960 struct sk_buff *clone = NULL; 5961 struct sk_buff *insp = NULL; 5962 5963 do { 5964 if (!list) { 5965 pr_err("Not enough bytes to eat. Want %d\n", eat); 5966 return -EFAULT; 5967 } 5968 if (list->len <= eat) { 5969 /* Eaten as whole. */ 5970 eat -= list->len; 5971 list = list->next; 5972 insp = list; 5973 } else { 5974 /* Eaten partially. */ 5975 if (skb_shared(list)) { 5976 clone = skb_clone(list, gfp_mask); 5977 if (!clone) 5978 return -ENOMEM; 5979 insp = list->next; 5980 list = clone; 5981 } else { 5982 /* This may be pulled without problems. */ 5983 insp = list; 5984 } 5985 if (pskb_carve(list, eat, gfp_mask) < 0) { 5986 kfree_skb(clone); 5987 return -ENOMEM; 5988 } 5989 break; 5990 } 5991 } while (eat); 5992 5993 /* Free pulled out fragments. */ 5994 while ((list = shinfo->frag_list) != insp) { 5995 shinfo->frag_list = list->next; 5996 kfree_skb(list); 5997 } 5998 /* And insert new clone at head. */ 5999 if (clone) { 6000 clone->next = list; 6001 shinfo->frag_list = clone; 6002 } 6003 return 0; 6004 } 6005 6006 /* carve off first len bytes from skb. Split line (off) is in the 6007 * non-linear part of skb 6008 */ 6009 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6010 int pos, gfp_t gfp_mask) 6011 { 6012 int i, k = 0; 6013 int size = skb_end_offset(skb); 6014 u8 *data; 6015 const int nfrags = skb_shinfo(skb)->nr_frags; 6016 struct skb_shared_info *shinfo; 6017 6018 size = SKB_DATA_ALIGN(size); 6019 6020 if (skb_pfmemalloc(skb)) 6021 gfp_mask |= __GFP_MEMALLOC; 6022 data = kmalloc_reserve(size + 6023 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6024 gfp_mask, NUMA_NO_NODE, NULL); 6025 if (!data) 6026 return -ENOMEM; 6027 6028 size = SKB_WITH_OVERHEAD(ksize(data)); 6029 6030 memcpy((struct skb_shared_info *)(data + size), 6031 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6032 if (skb_orphan_frags(skb, gfp_mask)) { 6033 kfree(data); 6034 return -ENOMEM; 6035 } 6036 shinfo = (struct skb_shared_info *)(data + size); 6037 for (i = 0; i < nfrags; i++) { 6038 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6039 6040 if (pos + fsize > off) { 6041 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6042 6043 if (pos < off) { 6044 /* Split frag. 6045 * We have two variants in this case: 6046 * 1. Move all the frag to the second 6047 * part, if it is possible. F.e. 6048 * this approach is mandatory for TUX, 6049 * where splitting is expensive. 6050 * 2. Split is accurately. We make this. 6051 */ 6052 skb_frag_off_add(&shinfo->frags[0], off - pos); 6053 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6054 } 6055 skb_frag_ref(skb, i); 6056 k++; 6057 } 6058 pos += fsize; 6059 } 6060 shinfo->nr_frags = k; 6061 if (skb_has_frag_list(skb)) 6062 skb_clone_fraglist(skb); 6063 6064 /* split line is in frag list */ 6065 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6066 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6067 if (skb_has_frag_list(skb)) 6068 kfree_skb_list(skb_shinfo(skb)->frag_list); 6069 kfree(data); 6070 return -ENOMEM; 6071 } 6072 skb_release_data(skb); 6073 6074 skb->head = data; 6075 skb->head_frag = 0; 6076 skb->data = data; 6077 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6078 skb->end = size; 6079 #else 6080 skb->end = skb->head + size; 6081 #endif 6082 skb_reset_tail_pointer(skb); 6083 skb_headers_offset_update(skb, 0); 6084 skb->cloned = 0; 6085 skb->hdr_len = 0; 6086 skb->nohdr = 0; 6087 skb->len -= off; 6088 skb->data_len = skb->len; 6089 atomic_set(&skb_shinfo(skb)->dataref, 1); 6090 return 0; 6091 } 6092 6093 /* remove len bytes from the beginning of the skb */ 6094 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6095 { 6096 int headlen = skb_headlen(skb); 6097 6098 if (len < headlen) 6099 return pskb_carve_inside_header(skb, len, headlen, gfp); 6100 else 6101 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6102 } 6103 6104 /* Extract to_copy bytes starting at off from skb, and return this in 6105 * a new skb 6106 */ 6107 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6108 int to_copy, gfp_t gfp) 6109 { 6110 struct sk_buff *clone = skb_clone(skb, gfp); 6111 6112 if (!clone) 6113 return NULL; 6114 6115 if (pskb_carve(clone, off, gfp) < 0 || 6116 pskb_trim(clone, to_copy)) { 6117 kfree_skb(clone); 6118 return NULL; 6119 } 6120 return clone; 6121 } 6122 EXPORT_SYMBOL(pskb_extract); 6123 6124 /** 6125 * skb_condense - try to get rid of fragments/frag_list if possible 6126 * @skb: buffer 6127 * 6128 * Can be used to save memory before skb is added to a busy queue. 6129 * If packet has bytes in frags and enough tail room in skb->head, 6130 * pull all of them, so that we can free the frags right now and adjust 6131 * truesize. 6132 * Notes: 6133 * We do not reallocate skb->head thus can not fail. 6134 * Caller must re-evaluate skb->truesize if needed. 6135 */ 6136 void skb_condense(struct sk_buff *skb) 6137 { 6138 if (skb->data_len) { 6139 if (skb->data_len > skb->end - skb->tail || 6140 skb_cloned(skb)) 6141 return; 6142 6143 /* Nice, we can free page frag(s) right now */ 6144 __pskb_pull_tail(skb, skb->data_len); 6145 } 6146 /* At this point, skb->truesize might be over estimated, 6147 * because skb had a fragment, and fragments do not tell 6148 * their truesize. 6149 * When we pulled its content into skb->head, fragment 6150 * was freed, but __pskb_pull_tail() could not possibly 6151 * adjust skb->truesize, not knowing the frag truesize. 6152 */ 6153 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6154 } 6155 6156 #ifdef CONFIG_SKB_EXTENSIONS 6157 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6158 { 6159 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6160 } 6161 6162 /** 6163 * __skb_ext_alloc - allocate a new skb extensions storage 6164 * 6165 * @flags: See kmalloc(). 6166 * 6167 * Returns the newly allocated pointer. The pointer can later attached to a 6168 * skb via __skb_ext_set(). 6169 * Note: caller must handle the skb_ext as an opaque data. 6170 */ 6171 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6172 { 6173 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6174 6175 if (new) { 6176 memset(new->offset, 0, sizeof(new->offset)); 6177 refcount_set(&new->refcnt, 1); 6178 } 6179 6180 return new; 6181 } 6182 6183 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6184 unsigned int old_active) 6185 { 6186 struct skb_ext *new; 6187 6188 if (refcount_read(&old->refcnt) == 1) 6189 return old; 6190 6191 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6192 if (!new) 6193 return NULL; 6194 6195 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6196 refcount_set(&new->refcnt, 1); 6197 6198 #ifdef CONFIG_XFRM 6199 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6200 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6201 unsigned int i; 6202 6203 for (i = 0; i < sp->len; i++) 6204 xfrm_state_hold(sp->xvec[i]); 6205 } 6206 #endif 6207 __skb_ext_put(old); 6208 return new; 6209 } 6210 6211 /** 6212 * __skb_ext_set - attach the specified extension storage to this skb 6213 * @skb: buffer 6214 * @id: extension id 6215 * @ext: extension storage previously allocated via __skb_ext_alloc() 6216 * 6217 * Existing extensions, if any, are cleared. 6218 * 6219 * Returns the pointer to the extension. 6220 */ 6221 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6222 struct skb_ext *ext) 6223 { 6224 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6225 6226 skb_ext_put(skb); 6227 newlen = newoff + skb_ext_type_len[id]; 6228 ext->chunks = newlen; 6229 ext->offset[id] = newoff; 6230 skb->extensions = ext; 6231 skb->active_extensions = 1 << id; 6232 return skb_ext_get_ptr(ext, id); 6233 } 6234 6235 /** 6236 * skb_ext_add - allocate space for given extension, COW if needed 6237 * @skb: buffer 6238 * @id: extension to allocate space for 6239 * 6240 * Allocates enough space for the given extension. 6241 * If the extension is already present, a pointer to that extension 6242 * is returned. 6243 * 6244 * If the skb was cloned, COW applies and the returned memory can be 6245 * modified without changing the extension space of clones buffers. 6246 * 6247 * Returns pointer to the extension or NULL on allocation failure. 6248 */ 6249 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6250 { 6251 struct skb_ext *new, *old = NULL; 6252 unsigned int newlen, newoff; 6253 6254 if (skb->active_extensions) { 6255 old = skb->extensions; 6256 6257 new = skb_ext_maybe_cow(old, skb->active_extensions); 6258 if (!new) 6259 return NULL; 6260 6261 if (__skb_ext_exist(new, id)) 6262 goto set_active; 6263 6264 newoff = new->chunks; 6265 } else { 6266 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6267 6268 new = __skb_ext_alloc(GFP_ATOMIC); 6269 if (!new) 6270 return NULL; 6271 } 6272 6273 newlen = newoff + skb_ext_type_len[id]; 6274 new->chunks = newlen; 6275 new->offset[id] = newoff; 6276 set_active: 6277 skb->extensions = new; 6278 skb->active_extensions |= 1 << id; 6279 return skb_ext_get_ptr(new, id); 6280 } 6281 EXPORT_SYMBOL(skb_ext_add); 6282 6283 #ifdef CONFIG_XFRM 6284 static void skb_ext_put_sp(struct sec_path *sp) 6285 { 6286 unsigned int i; 6287 6288 for (i = 0; i < sp->len; i++) 6289 xfrm_state_put(sp->xvec[i]); 6290 } 6291 #endif 6292 6293 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6294 { 6295 struct skb_ext *ext = skb->extensions; 6296 6297 skb->active_extensions &= ~(1 << id); 6298 if (skb->active_extensions == 0) { 6299 skb->extensions = NULL; 6300 __skb_ext_put(ext); 6301 #ifdef CONFIG_XFRM 6302 } else if (id == SKB_EXT_SEC_PATH && 6303 refcount_read(&ext->refcnt) == 1) { 6304 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6305 6306 skb_ext_put_sp(sp); 6307 sp->len = 0; 6308 #endif 6309 } 6310 } 6311 EXPORT_SYMBOL(__skb_ext_del); 6312 6313 void __skb_ext_put(struct skb_ext *ext) 6314 { 6315 /* If this is last clone, nothing can increment 6316 * it after check passes. Avoids one atomic op. 6317 */ 6318 if (refcount_read(&ext->refcnt) == 1) 6319 goto free_now; 6320 6321 if (!refcount_dec_and_test(&ext->refcnt)) 6322 return; 6323 free_now: 6324 #ifdef CONFIG_XFRM 6325 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6326 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6327 #endif 6328 6329 kmem_cache_free(skbuff_ext_cache, ext); 6330 } 6331 EXPORT_SYMBOL(__skb_ext_put); 6332 #endif /* CONFIG_SKB_EXTENSIONS */ 6333