xref: /linux/net/core/skbuff.c (revision ea23fbd2a8f7dadfa9cd9b9d73f3b8a69eec0671)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/gso.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 #include <net/mpls.h>
74 #include <net/mptcp.h>
75 #include <net/mctp.h>
76 #include <net/page_pool/helpers.h>
77 #include <net/dropreason.h>
78 
79 #include <linux/uaccess.h>
80 #include <trace/events/skb.h>
81 #include <linux/highmem.h>
82 #include <linux/capability.h>
83 #include <linux/user_namespace.h>
84 #include <linux/indirect_call_wrapper.h>
85 #include <linux/textsearch.h>
86 
87 #include "dev.h"
88 #include "sock_destructor.h"
89 
90 struct kmem_cache *skbuff_cache __ro_after_init;
91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95 
96 
97 static struct kmem_cache *skb_small_head_cache __ro_after_init;
98 
99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
100 
101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
102  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
103  * size, and we can differentiate heads from skb_small_head_cache
104  * vs system slabs by looking at their size (skb_end_offset()).
105  */
106 #define SKB_SMALL_HEAD_CACHE_SIZE					\
107 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
108 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
109 		SKB_SMALL_HEAD_SIZE)
110 
111 #define SKB_SMALL_HEAD_HEADROOM						\
112 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
113 
114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
115 EXPORT_SYMBOL(sysctl_max_skb_frags);
116 
117 #undef FN
118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
119 static const char * const drop_reasons[] = {
120 	[SKB_CONSUMED] = "CONSUMED",
121 	DEFINE_DROP_REASON(FN, FN)
122 };
123 
124 static const struct drop_reason_list drop_reasons_core = {
125 	.reasons = drop_reasons,
126 	.n_reasons = ARRAY_SIZE(drop_reasons),
127 };
128 
129 const struct drop_reason_list __rcu *
130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
131 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
132 };
133 EXPORT_SYMBOL(drop_reasons_by_subsys);
134 
135 /**
136  * drop_reasons_register_subsys - register another drop reason subsystem
137  * @subsys: the subsystem to register, must not be the core
138  * @list: the list of drop reasons within the subsystem, must point to
139  *	a statically initialized list
140  */
141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
142 				  const struct drop_reason_list *list)
143 {
144 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
145 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
146 		 "invalid subsystem %d\n", subsys))
147 		return;
148 
149 	/* must point to statically allocated memory, so INIT is OK */
150 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
151 }
152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
153 
154 /**
155  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
156  * @subsys: the subsystem to remove, must not be the core
157  *
158  * Note: This will synchronize_rcu() to ensure no users when it returns.
159  */
160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
161 {
162 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
163 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
164 		 "invalid subsystem %d\n", subsys))
165 		return;
166 
167 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
168 
169 	synchronize_rcu();
170 }
171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
172 
173 /**
174  *	skb_panic - private function for out-of-line support
175  *	@skb:	buffer
176  *	@sz:	size
177  *	@addr:	address
178  *	@msg:	skb_over_panic or skb_under_panic
179  *
180  *	Out-of-line support for skb_put() and skb_push().
181  *	Called via the wrapper skb_over_panic() or skb_under_panic().
182  *	Keep out of line to prevent kernel bloat.
183  *	__builtin_return_address is not used because it is not always reliable.
184  */
185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
186 		      const char msg[])
187 {
188 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
189 		 msg, addr, skb->len, sz, skb->head, skb->data,
190 		 (unsigned long)skb->tail, (unsigned long)skb->end,
191 		 skb->dev ? skb->dev->name : "<NULL>");
192 	BUG();
193 }
194 
195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
196 {
197 	skb_panic(skb, sz, addr, __func__);
198 }
199 
200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
201 {
202 	skb_panic(skb, sz, addr, __func__);
203 }
204 
205 #define NAPI_SKB_CACHE_SIZE	64
206 #define NAPI_SKB_CACHE_BULK	16
207 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
208 
209 #if PAGE_SIZE == SZ_4K
210 
211 #define NAPI_HAS_SMALL_PAGE_FRAG	1
212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
213 
214 /* specialized page frag allocator using a single order 0 page
215  * and slicing it into 1K sized fragment. Constrained to systems
216  * with a very limited amount of 1K fragments fitting a single
217  * page - to avoid excessive truesize underestimation
218  */
219 
220 struct page_frag_1k {
221 	void *va;
222 	u16 offset;
223 	bool pfmemalloc;
224 };
225 
226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
227 {
228 	struct page *page;
229 	int offset;
230 
231 	offset = nc->offset - SZ_1K;
232 	if (likely(offset >= 0))
233 		goto use_frag;
234 
235 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
236 	if (!page)
237 		return NULL;
238 
239 	nc->va = page_address(page);
240 	nc->pfmemalloc = page_is_pfmemalloc(page);
241 	offset = PAGE_SIZE - SZ_1K;
242 	page_ref_add(page, offset / SZ_1K);
243 
244 use_frag:
245 	nc->offset = offset;
246 	return nc->va + offset;
247 }
248 #else
249 
250 /* the small page is actually unused in this build; add dummy helpers
251  * to please the compiler and avoid later preprocessor's conditionals
252  */
253 #define NAPI_HAS_SMALL_PAGE_FRAG	0
254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
255 
256 struct page_frag_1k {
257 };
258 
259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
260 {
261 	return NULL;
262 }
263 
264 #endif
265 
266 struct napi_alloc_cache {
267 	struct page_frag_cache page;
268 	struct page_frag_1k page_small;
269 	unsigned int skb_count;
270 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
271 };
272 
273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
275 
276 /* Double check that napi_get_frags() allocates skbs with
277  * skb->head being backed by slab, not a page fragment.
278  * This is to make sure bug fixed in 3226b158e67c
279  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
280  * does not accidentally come back.
281  */
282 void napi_get_frags_check(struct napi_struct *napi)
283 {
284 	struct sk_buff *skb;
285 
286 	local_bh_disable();
287 	skb = napi_get_frags(napi);
288 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
289 	napi_free_frags(napi);
290 	local_bh_enable();
291 }
292 
293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
294 {
295 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
296 
297 	fragsz = SKB_DATA_ALIGN(fragsz);
298 
299 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
300 }
301 EXPORT_SYMBOL(__napi_alloc_frag_align);
302 
303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
304 {
305 	void *data;
306 
307 	fragsz = SKB_DATA_ALIGN(fragsz);
308 	if (in_hardirq() || irqs_disabled()) {
309 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
310 
311 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
312 	} else {
313 		struct napi_alloc_cache *nc;
314 
315 		local_bh_disable();
316 		nc = this_cpu_ptr(&napi_alloc_cache);
317 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
318 		local_bh_enable();
319 	}
320 	return data;
321 }
322 EXPORT_SYMBOL(__netdev_alloc_frag_align);
323 
324 static struct sk_buff *napi_skb_cache_get(void)
325 {
326 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
327 	struct sk_buff *skb;
328 
329 	if (unlikely(!nc->skb_count)) {
330 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
331 						      GFP_ATOMIC,
332 						      NAPI_SKB_CACHE_BULK,
333 						      nc->skb_cache);
334 		if (unlikely(!nc->skb_count))
335 			return NULL;
336 	}
337 
338 	skb = nc->skb_cache[--nc->skb_count];
339 	kasan_unpoison_object_data(skbuff_cache, skb);
340 
341 	return skb;
342 }
343 
344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
345 					 unsigned int size)
346 {
347 	struct skb_shared_info *shinfo;
348 
349 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
350 
351 	/* Assumes caller memset cleared SKB */
352 	skb->truesize = SKB_TRUESIZE(size);
353 	refcount_set(&skb->users, 1);
354 	skb->head = data;
355 	skb->data = data;
356 	skb_reset_tail_pointer(skb);
357 	skb_set_end_offset(skb, size);
358 	skb->mac_header = (typeof(skb->mac_header))~0U;
359 	skb->transport_header = (typeof(skb->transport_header))~0U;
360 	skb->alloc_cpu = raw_smp_processor_id();
361 	/* make sure we initialize shinfo sequentially */
362 	shinfo = skb_shinfo(skb);
363 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
364 	atomic_set(&shinfo->dataref, 1);
365 
366 	skb_set_kcov_handle(skb, kcov_common_handle());
367 }
368 
369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
370 				     unsigned int *size)
371 {
372 	void *resized;
373 
374 	/* Must find the allocation size (and grow it to match). */
375 	*size = ksize(data);
376 	/* krealloc() will immediately return "data" when
377 	 * "ksize(data)" is requested: it is the existing upper
378 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
379 	 * that this "new" pointer needs to be passed back to the
380 	 * caller for use so the __alloc_size hinting will be
381 	 * tracked correctly.
382 	 */
383 	resized = krealloc(data, *size, GFP_ATOMIC);
384 	WARN_ON_ONCE(resized != data);
385 	return resized;
386 }
387 
388 /* build_skb() variant which can operate on slab buffers.
389  * Note that this should be used sparingly as slab buffers
390  * cannot be combined efficiently by GRO!
391  */
392 struct sk_buff *slab_build_skb(void *data)
393 {
394 	struct sk_buff *skb;
395 	unsigned int size;
396 
397 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
398 	if (unlikely(!skb))
399 		return NULL;
400 
401 	memset(skb, 0, offsetof(struct sk_buff, tail));
402 	data = __slab_build_skb(skb, data, &size);
403 	__finalize_skb_around(skb, data, size);
404 
405 	return skb;
406 }
407 EXPORT_SYMBOL(slab_build_skb);
408 
409 /* Caller must provide SKB that is memset cleared */
410 static void __build_skb_around(struct sk_buff *skb, void *data,
411 			       unsigned int frag_size)
412 {
413 	unsigned int size = frag_size;
414 
415 	/* frag_size == 0 is considered deprecated now. Callers
416 	 * using slab buffer should use slab_build_skb() instead.
417 	 */
418 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
419 		data = __slab_build_skb(skb, data, &size);
420 
421 	__finalize_skb_around(skb, data, size);
422 }
423 
424 /**
425  * __build_skb - build a network buffer
426  * @data: data buffer provided by caller
427  * @frag_size: size of data (must not be 0)
428  *
429  * Allocate a new &sk_buff. Caller provides space holding head and
430  * skb_shared_info. @data must have been allocated from the page
431  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
432  * allocation is deprecated, and callers should use slab_build_skb()
433  * instead.)
434  * The return is the new skb buffer.
435  * On a failure the return is %NULL, and @data is not freed.
436  * Notes :
437  *  Before IO, driver allocates only data buffer where NIC put incoming frame
438  *  Driver should add room at head (NET_SKB_PAD) and
439  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
440  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
441  *  before giving packet to stack.
442  *  RX rings only contains data buffers, not full skbs.
443  */
444 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
445 {
446 	struct sk_buff *skb;
447 
448 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
449 	if (unlikely(!skb))
450 		return NULL;
451 
452 	memset(skb, 0, offsetof(struct sk_buff, tail));
453 	__build_skb_around(skb, data, frag_size);
454 
455 	return skb;
456 }
457 
458 /* build_skb() is wrapper over __build_skb(), that specifically
459  * takes care of skb->head and skb->pfmemalloc
460  */
461 struct sk_buff *build_skb(void *data, unsigned int frag_size)
462 {
463 	struct sk_buff *skb = __build_skb(data, frag_size);
464 
465 	if (likely(skb && frag_size)) {
466 		skb->head_frag = 1;
467 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
468 	}
469 	return skb;
470 }
471 EXPORT_SYMBOL(build_skb);
472 
473 /**
474  * build_skb_around - build a network buffer around provided skb
475  * @skb: sk_buff provide by caller, must be memset cleared
476  * @data: data buffer provided by caller
477  * @frag_size: size of data
478  */
479 struct sk_buff *build_skb_around(struct sk_buff *skb,
480 				 void *data, unsigned int frag_size)
481 {
482 	if (unlikely(!skb))
483 		return NULL;
484 
485 	__build_skb_around(skb, data, frag_size);
486 
487 	if (frag_size) {
488 		skb->head_frag = 1;
489 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
490 	}
491 	return skb;
492 }
493 EXPORT_SYMBOL(build_skb_around);
494 
495 /**
496  * __napi_build_skb - build a network buffer
497  * @data: data buffer provided by caller
498  * @frag_size: size of data
499  *
500  * Version of __build_skb() that uses NAPI percpu caches to obtain
501  * skbuff_head instead of inplace allocation.
502  *
503  * Returns a new &sk_buff on success, %NULL on allocation failure.
504  */
505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
506 {
507 	struct sk_buff *skb;
508 
509 	skb = napi_skb_cache_get();
510 	if (unlikely(!skb))
511 		return NULL;
512 
513 	memset(skb, 0, offsetof(struct sk_buff, tail));
514 	__build_skb_around(skb, data, frag_size);
515 
516 	return skb;
517 }
518 
519 /**
520  * napi_build_skb - build a network buffer
521  * @data: data buffer provided by caller
522  * @frag_size: size of data
523  *
524  * Version of __napi_build_skb() that takes care of skb->head_frag
525  * and skb->pfmemalloc when the data is a page or page fragment.
526  *
527  * Returns a new &sk_buff on success, %NULL on allocation failure.
528  */
529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
530 {
531 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
532 
533 	if (likely(skb) && frag_size) {
534 		skb->head_frag = 1;
535 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
536 	}
537 
538 	return skb;
539 }
540 EXPORT_SYMBOL(napi_build_skb);
541 
542 /*
543  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
544  * the caller if emergency pfmemalloc reserves are being used. If it is and
545  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
546  * may be used. Otherwise, the packet data may be discarded until enough
547  * memory is free
548  */
549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
550 			     bool *pfmemalloc)
551 {
552 	bool ret_pfmemalloc = false;
553 	size_t obj_size;
554 	void *obj;
555 
556 	obj_size = SKB_HEAD_ALIGN(*size);
557 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
558 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
559 		obj = kmem_cache_alloc_node(skb_small_head_cache,
560 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
561 				node);
562 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
563 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
564 			goto out;
565 		/* Try again but now we are using pfmemalloc reserves */
566 		ret_pfmemalloc = true;
567 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
568 		goto out;
569 	}
570 
571 	obj_size = kmalloc_size_roundup(obj_size);
572 	/* The following cast might truncate high-order bits of obj_size, this
573 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
574 	 */
575 	*size = (unsigned int)obj_size;
576 
577 	/*
578 	 * Try a regular allocation, when that fails and we're not entitled
579 	 * to the reserves, fail.
580 	 */
581 	obj = kmalloc_node_track_caller(obj_size,
582 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
583 					node);
584 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
585 		goto out;
586 
587 	/* Try again but now we are using pfmemalloc reserves */
588 	ret_pfmemalloc = true;
589 	obj = kmalloc_node_track_caller(obj_size, flags, node);
590 
591 out:
592 	if (pfmemalloc)
593 		*pfmemalloc = ret_pfmemalloc;
594 
595 	return obj;
596 }
597 
598 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
599  *	'private' fields and also do memory statistics to find all the
600  *	[BEEP] leaks.
601  *
602  */
603 
604 /**
605  *	__alloc_skb	-	allocate a network buffer
606  *	@size: size to allocate
607  *	@gfp_mask: allocation mask
608  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
609  *		instead of head cache and allocate a cloned (child) skb.
610  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
611  *		allocations in case the data is required for writeback
612  *	@node: numa node to allocate memory on
613  *
614  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
615  *	tail room of at least size bytes. The object has a reference count
616  *	of one. The return is the buffer. On a failure the return is %NULL.
617  *
618  *	Buffers may only be allocated from interrupts using a @gfp_mask of
619  *	%GFP_ATOMIC.
620  */
621 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
622 			    int flags, int node)
623 {
624 	struct kmem_cache *cache;
625 	struct sk_buff *skb;
626 	bool pfmemalloc;
627 	u8 *data;
628 
629 	cache = (flags & SKB_ALLOC_FCLONE)
630 		? skbuff_fclone_cache : skbuff_cache;
631 
632 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
633 		gfp_mask |= __GFP_MEMALLOC;
634 
635 	/* Get the HEAD */
636 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
637 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
638 		skb = napi_skb_cache_get();
639 	else
640 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
641 	if (unlikely(!skb))
642 		return NULL;
643 	prefetchw(skb);
644 
645 	/* We do our best to align skb_shared_info on a separate cache
646 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
647 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
648 	 * Both skb->head and skb_shared_info are cache line aligned.
649 	 */
650 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
651 	if (unlikely(!data))
652 		goto nodata;
653 	/* kmalloc_size_roundup() might give us more room than requested.
654 	 * Put skb_shared_info exactly at the end of allocated zone,
655 	 * to allow max possible filling before reallocation.
656 	 */
657 	prefetchw(data + SKB_WITH_OVERHEAD(size));
658 
659 	/*
660 	 * Only clear those fields we need to clear, not those that we will
661 	 * actually initialise below. Hence, don't put any more fields after
662 	 * the tail pointer in struct sk_buff!
663 	 */
664 	memset(skb, 0, offsetof(struct sk_buff, tail));
665 	__build_skb_around(skb, data, size);
666 	skb->pfmemalloc = pfmemalloc;
667 
668 	if (flags & SKB_ALLOC_FCLONE) {
669 		struct sk_buff_fclones *fclones;
670 
671 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
672 
673 		skb->fclone = SKB_FCLONE_ORIG;
674 		refcount_set(&fclones->fclone_ref, 1);
675 	}
676 
677 	return skb;
678 
679 nodata:
680 	kmem_cache_free(cache, skb);
681 	return NULL;
682 }
683 EXPORT_SYMBOL(__alloc_skb);
684 
685 /**
686  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
687  *	@dev: network device to receive on
688  *	@len: length to allocate
689  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
690  *
691  *	Allocate a new &sk_buff and assign it a usage count of one. The
692  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
693  *	the headroom they think they need without accounting for the
694  *	built in space. The built in space is used for optimisations.
695  *
696  *	%NULL is returned if there is no free memory.
697  */
698 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
699 				   gfp_t gfp_mask)
700 {
701 	struct page_frag_cache *nc;
702 	struct sk_buff *skb;
703 	bool pfmemalloc;
704 	void *data;
705 
706 	len += NET_SKB_PAD;
707 
708 	/* If requested length is either too small or too big,
709 	 * we use kmalloc() for skb->head allocation.
710 	 */
711 	if (len <= SKB_WITH_OVERHEAD(1024) ||
712 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
713 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
714 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
715 		if (!skb)
716 			goto skb_fail;
717 		goto skb_success;
718 	}
719 
720 	len = SKB_HEAD_ALIGN(len);
721 
722 	if (sk_memalloc_socks())
723 		gfp_mask |= __GFP_MEMALLOC;
724 
725 	if (in_hardirq() || irqs_disabled()) {
726 		nc = this_cpu_ptr(&netdev_alloc_cache);
727 		data = page_frag_alloc(nc, len, gfp_mask);
728 		pfmemalloc = nc->pfmemalloc;
729 	} else {
730 		local_bh_disable();
731 		nc = this_cpu_ptr(&napi_alloc_cache.page);
732 		data = page_frag_alloc(nc, len, gfp_mask);
733 		pfmemalloc = nc->pfmemalloc;
734 		local_bh_enable();
735 	}
736 
737 	if (unlikely(!data))
738 		return NULL;
739 
740 	skb = __build_skb(data, len);
741 	if (unlikely(!skb)) {
742 		skb_free_frag(data);
743 		return NULL;
744 	}
745 
746 	if (pfmemalloc)
747 		skb->pfmemalloc = 1;
748 	skb->head_frag = 1;
749 
750 skb_success:
751 	skb_reserve(skb, NET_SKB_PAD);
752 	skb->dev = dev;
753 
754 skb_fail:
755 	return skb;
756 }
757 EXPORT_SYMBOL(__netdev_alloc_skb);
758 
759 /**
760  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
761  *	@napi: napi instance this buffer was allocated for
762  *	@len: length to allocate
763  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
764  *
765  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
766  *	attempt to allocate the head from a special reserved region used
767  *	only for NAPI Rx allocation.  By doing this we can save several
768  *	CPU cycles by avoiding having to disable and re-enable IRQs.
769  *
770  *	%NULL is returned if there is no free memory.
771  */
772 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
773 				 gfp_t gfp_mask)
774 {
775 	struct napi_alloc_cache *nc;
776 	struct sk_buff *skb;
777 	bool pfmemalloc;
778 	void *data;
779 
780 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
781 	len += NET_SKB_PAD + NET_IP_ALIGN;
782 
783 	/* If requested length is either too small or too big,
784 	 * we use kmalloc() for skb->head allocation.
785 	 * When the small frag allocator is available, prefer it over kmalloc
786 	 * for small fragments
787 	 */
788 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
789 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
790 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
791 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
792 				  NUMA_NO_NODE);
793 		if (!skb)
794 			goto skb_fail;
795 		goto skb_success;
796 	}
797 
798 	nc = this_cpu_ptr(&napi_alloc_cache);
799 
800 	if (sk_memalloc_socks())
801 		gfp_mask |= __GFP_MEMALLOC;
802 
803 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
804 		/* we are artificially inflating the allocation size, but
805 		 * that is not as bad as it may look like, as:
806 		 * - 'len' less than GRO_MAX_HEAD makes little sense
807 		 * - On most systems, larger 'len' values lead to fragment
808 		 *   size above 512 bytes
809 		 * - kmalloc would use the kmalloc-1k slab for such values
810 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
811 		 *   little networking, as that implies no WiFi and no
812 		 *   tunnels support, and 32 bits arches.
813 		 */
814 		len = SZ_1K;
815 
816 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
817 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
818 	} else {
819 		len = SKB_HEAD_ALIGN(len);
820 
821 		data = page_frag_alloc(&nc->page, len, gfp_mask);
822 		pfmemalloc = nc->page.pfmemalloc;
823 	}
824 
825 	if (unlikely(!data))
826 		return NULL;
827 
828 	skb = __napi_build_skb(data, len);
829 	if (unlikely(!skb)) {
830 		skb_free_frag(data);
831 		return NULL;
832 	}
833 
834 	if (pfmemalloc)
835 		skb->pfmemalloc = 1;
836 	skb->head_frag = 1;
837 
838 skb_success:
839 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
840 	skb->dev = napi->dev;
841 
842 skb_fail:
843 	return skb;
844 }
845 EXPORT_SYMBOL(__napi_alloc_skb);
846 
847 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
848 		     int size, unsigned int truesize)
849 {
850 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
851 
852 	skb_fill_page_desc(skb, i, page, off, size);
853 	skb->len += size;
854 	skb->data_len += size;
855 	skb->truesize += truesize;
856 }
857 EXPORT_SYMBOL(skb_add_rx_frag);
858 
859 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
860 			  unsigned int truesize)
861 {
862 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
863 
864 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
865 
866 	skb_frag_size_add(frag, size);
867 	skb->len += size;
868 	skb->data_len += size;
869 	skb->truesize += truesize;
870 }
871 EXPORT_SYMBOL(skb_coalesce_rx_frag);
872 
873 static void skb_drop_list(struct sk_buff **listp)
874 {
875 	kfree_skb_list(*listp);
876 	*listp = NULL;
877 }
878 
879 static inline void skb_drop_fraglist(struct sk_buff *skb)
880 {
881 	skb_drop_list(&skb_shinfo(skb)->frag_list);
882 }
883 
884 static void skb_clone_fraglist(struct sk_buff *skb)
885 {
886 	struct sk_buff *list;
887 
888 	skb_walk_frags(skb, list)
889 		skb_get(list);
890 }
891 
892 #if IS_ENABLED(CONFIG_PAGE_POOL)
893 bool napi_pp_put_page(struct page *page, bool napi_safe)
894 {
895 	bool allow_direct = false;
896 	struct page_pool *pp;
897 
898 	page = compound_head(page);
899 
900 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
901 	 * in order to preserve any existing bits, such as bit 0 for the
902 	 * head page of compound page and bit 1 for pfmemalloc page, so
903 	 * mask those bits for freeing side when doing below checking,
904 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
905 	 * to avoid recycling the pfmemalloc page.
906 	 */
907 	if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
908 		return false;
909 
910 	pp = page->pp;
911 
912 	/* Allow direct recycle if we have reasons to believe that we are
913 	 * in the same context as the consumer would run, so there's
914 	 * no possible race.
915 	 * __page_pool_put_page() makes sure we're not in hardirq context
916 	 * and interrupts are enabled prior to accessing the cache.
917 	 */
918 	if (napi_safe || in_softirq()) {
919 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
920 
921 		allow_direct = napi &&
922 			READ_ONCE(napi->list_owner) == smp_processor_id();
923 	}
924 
925 	/* Driver set this to memory recycling info. Reset it on recycle.
926 	 * This will *not* work for NIC using a split-page memory model.
927 	 * The page will be returned to the pool here regardless of the
928 	 * 'flipped' fragment being in use or not.
929 	 */
930 	page_pool_put_full_page(pp, page, allow_direct);
931 
932 	return true;
933 }
934 EXPORT_SYMBOL(napi_pp_put_page);
935 #endif
936 
937 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
938 {
939 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
940 		return false;
941 	return napi_pp_put_page(virt_to_page(data), napi_safe);
942 }
943 
944 static void skb_kfree_head(void *head, unsigned int end_offset)
945 {
946 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
947 		kmem_cache_free(skb_small_head_cache, head);
948 	else
949 		kfree(head);
950 }
951 
952 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
953 {
954 	unsigned char *head = skb->head;
955 
956 	if (skb->head_frag) {
957 		if (skb_pp_recycle(skb, head, napi_safe))
958 			return;
959 		skb_free_frag(head);
960 	} else {
961 		skb_kfree_head(head, skb_end_offset(skb));
962 	}
963 }
964 
965 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
966 			     bool napi_safe)
967 {
968 	struct skb_shared_info *shinfo = skb_shinfo(skb);
969 	int i;
970 
971 	if (skb->cloned &&
972 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
973 			      &shinfo->dataref))
974 		goto exit;
975 
976 	if (skb_zcopy(skb)) {
977 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
978 
979 		skb_zcopy_clear(skb, true);
980 		if (skip_unref)
981 			goto free_head;
982 	}
983 
984 	for (i = 0; i < shinfo->nr_frags; i++)
985 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
986 
987 free_head:
988 	if (shinfo->frag_list)
989 		kfree_skb_list_reason(shinfo->frag_list, reason);
990 
991 	skb_free_head(skb, napi_safe);
992 exit:
993 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
994 	 * bit is only set on the head though, so in order to avoid races
995 	 * while trying to recycle fragments on __skb_frag_unref() we need
996 	 * to make one SKB responsible for triggering the recycle path.
997 	 * So disable the recycling bit if an SKB is cloned and we have
998 	 * additional references to the fragmented part of the SKB.
999 	 * Eventually the last SKB will have the recycling bit set and it's
1000 	 * dataref set to 0, which will trigger the recycling
1001 	 */
1002 	skb->pp_recycle = 0;
1003 }
1004 
1005 /*
1006  *	Free an skbuff by memory without cleaning the state.
1007  */
1008 static void kfree_skbmem(struct sk_buff *skb)
1009 {
1010 	struct sk_buff_fclones *fclones;
1011 
1012 	switch (skb->fclone) {
1013 	case SKB_FCLONE_UNAVAILABLE:
1014 		kmem_cache_free(skbuff_cache, skb);
1015 		return;
1016 
1017 	case SKB_FCLONE_ORIG:
1018 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1019 
1020 		/* We usually free the clone (TX completion) before original skb
1021 		 * This test would have no chance to be true for the clone,
1022 		 * while here, branch prediction will be good.
1023 		 */
1024 		if (refcount_read(&fclones->fclone_ref) == 1)
1025 			goto fastpath;
1026 		break;
1027 
1028 	default: /* SKB_FCLONE_CLONE */
1029 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1030 		break;
1031 	}
1032 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1033 		return;
1034 fastpath:
1035 	kmem_cache_free(skbuff_fclone_cache, fclones);
1036 }
1037 
1038 void skb_release_head_state(struct sk_buff *skb)
1039 {
1040 	skb_dst_drop(skb);
1041 	if (skb->destructor) {
1042 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1043 		skb->destructor(skb);
1044 	}
1045 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1046 	nf_conntrack_put(skb_nfct(skb));
1047 #endif
1048 	skb_ext_put(skb);
1049 }
1050 
1051 /* Free everything but the sk_buff shell. */
1052 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1053 			    bool napi_safe)
1054 {
1055 	skb_release_head_state(skb);
1056 	if (likely(skb->head))
1057 		skb_release_data(skb, reason, napi_safe);
1058 }
1059 
1060 /**
1061  *	__kfree_skb - private function
1062  *	@skb: buffer
1063  *
1064  *	Free an sk_buff. Release anything attached to the buffer.
1065  *	Clean the state. This is an internal helper function. Users should
1066  *	always call kfree_skb
1067  */
1068 
1069 void __kfree_skb(struct sk_buff *skb)
1070 {
1071 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1072 	kfree_skbmem(skb);
1073 }
1074 EXPORT_SYMBOL(__kfree_skb);
1075 
1076 static __always_inline
1077 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1078 {
1079 	if (unlikely(!skb_unref(skb)))
1080 		return false;
1081 
1082 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1083 			       u32_get_bits(reason,
1084 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1085 				SKB_DROP_REASON_SUBSYS_NUM);
1086 
1087 	if (reason == SKB_CONSUMED)
1088 		trace_consume_skb(skb, __builtin_return_address(0));
1089 	else
1090 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1091 	return true;
1092 }
1093 
1094 /**
1095  *	kfree_skb_reason - free an sk_buff with special reason
1096  *	@skb: buffer to free
1097  *	@reason: reason why this skb is dropped
1098  *
1099  *	Drop a reference to the buffer and free it if the usage count has
1100  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1101  *	tracepoint.
1102  */
1103 void __fix_address
1104 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1105 {
1106 	if (__kfree_skb_reason(skb, reason))
1107 		__kfree_skb(skb);
1108 }
1109 EXPORT_SYMBOL(kfree_skb_reason);
1110 
1111 #define KFREE_SKB_BULK_SIZE	16
1112 
1113 struct skb_free_array {
1114 	unsigned int skb_count;
1115 	void *skb_array[KFREE_SKB_BULK_SIZE];
1116 };
1117 
1118 static void kfree_skb_add_bulk(struct sk_buff *skb,
1119 			       struct skb_free_array *sa,
1120 			       enum skb_drop_reason reason)
1121 {
1122 	/* if SKB is a clone, don't handle this case */
1123 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1124 		__kfree_skb(skb);
1125 		return;
1126 	}
1127 
1128 	skb_release_all(skb, reason, false);
1129 	sa->skb_array[sa->skb_count++] = skb;
1130 
1131 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1132 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1133 				     sa->skb_array);
1134 		sa->skb_count = 0;
1135 	}
1136 }
1137 
1138 void __fix_address
1139 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1140 {
1141 	struct skb_free_array sa;
1142 
1143 	sa.skb_count = 0;
1144 
1145 	while (segs) {
1146 		struct sk_buff *next = segs->next;
1147 
1148 		if (__kfree_skb_reason(segs, reason)) {
1149 			skb_poison_list(segs);
1150 			kfree_skb_add_bulk(segs, &sa, reason);
1151 		}
1152 
1153 		segs = next;
1154 	}
1155 
1156 	if (sa.skb_count)
1157 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1158 }
1159 EXPORT_SYMBOL(kfree_skb_list_reason);
1160 
1161 /* Dump skb information and contents.
1162  *
1163  * Must only be called from net_ratelimit()-ed paths.
1164  *
1165  * Dumps whole packets if full_pkt, only headers otherwise.
1166  */
1167 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1168 {
1169 	struct skb_shared_info *sh = skb_shinfo(skb);
1170 	struct net_device *dev = skb->dev;
1171 	struct sock *sk = skb->sk;
1172 	struct sk_buff *list_skb;
1173 	bool has_mac, has_trans;
1174 	int headroom, tailroom;
1175 	int i, len, seg_len;
1176 
1177 	if (full_pkt)
1178 		len = skb->len;
1179 	else
1180 		len = min_t(int, skb->len, MAX_HEADER + 128);
1181 
1182 	headroom = skb_headroom(skb);
1183 	tailroom = skb_tailroom(skb);
1184 
1185 	has_mac = skb_mac_header_was_set(skb);
1186 	has_trans = skb_transport_header_was_set(skb);
1187 
1188 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1189 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1190 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1191 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1192 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1193 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1194 	       has_mac ? skb->mac_header : -1,
1195 	       has_mac ? skb_mac_header_len(skb) : -1,
1196 	       skb->network_header,
1197 	       has_trans ? skb_network_header_len(skb) : -1,
1198 	       has_trans ? skb->transport_header : -1,
1199 	       sh->tx_flags, sh->nr_frags,
1200 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1201 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1202 	       skb->csum_valid, skb->csum_level,
1203 	       skb->hash, skb->sw_hash, skb->l4_hash,
1204 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1205 
1206 	if (dev)
1207 		printk("%sdev name=%s feat=%pNF\n",
1208 		       level, dev->name, &dev->features);
1209 	if (sk)
1210 		printk("%ssk family=%hu type=%u proto=%u\n",
1211 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1212 
1213 	if (full_pkt && headroom)
1214 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1215 			       16, 1, skb->head, headroom, false);
1216 
1217 	seg_len = min_t(int, skb_headlen(skb), len);
1218 	if (seg_len)
1219 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1220 			       16, 1, skb->data, seg_len, false);
1221 	len -= seg_len;
1222 
1223 	if (full_pkt && tailroom)
1224 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1225 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1226 
1227 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1228 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1229 		u32 p_off, p_len, copied;
1230 		struct page *p;
1231 		u8 *vaddr;
1232 
1233 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1234 				      skb_frag_size(frag), p, p_off, p_len,
1235 				      copied) {
1236 			seg_len = min_t(int, p_len, len);
1237 			vaddr = kmap_atomic(p);
1238 			print_hex_dump(level, "skb frag:     ",
1239 				       DUMP_PREFIX_OFFSET,
1240 				       16, 1, vaddr + p_off, seg_len, false);
1241 			kunmap_atomic(vaddr);
1242 			len -= seg_len;
1243 			if (!len)
1244 				break;
1245 		}
1246 	}
1247 
1248 	if (full_pkt && skb_has_frag_list(skb)) {
1249 		printk("skb fraglist:\n");
1250 		skb_walk_frags(skb, list_skb)
1251 			skb_dump(level, list_skb, true);
1252 	}
1253 }
1254 EXPORT_SYMBOL(skb_dump);
1255 
1256 /**
1257  *	skb_tx_error - report an sk_buff xmit error
1258  *	@skb: buffer that triggered an error
1259  *
1260  *	Report xmit error if a device callback is tracking this skb.
1261  *	skb must be freed afterwards.
1262  */
1263 void skb_tx_error(struct sk_buff *skb)
1264 {
1265 	if (skb) {
1266 		skb_zcopy_downgrade_managed(skb);
1267 		skb_zcopy_clear(skb, true);
1268 	}
1269 }
1270 EXPORT_SYMBOL(skb_tx_error);
1271 
1272 #ifdef CONFIG_TRACEPOINTS
1273 /**
1274  *	consume_skb - free an skbuff
1275  *	@skb: buffer to free
1276  *
1277  *	Drop a ref to the buffer and free it if the usage count has hit zero
1278  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1279  *	is being dropped after a failure and notes that
1280  */
1281 void consume_skb(struct sk_buff *skb)
1282 {
1283 	if (!skb_unref(skb))
1284 		return;
1285 
1286 	trace_consume_skb(skb, __builtin_return_address(0));
1287 	__kfree_skb(skb);
1288 }
1289 EXPORT_SYMBOL(consume_skb);
1290 #endif
1291 
1292 /**
1293  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1294  *	@skb: buffer to free
1295  *
1296  *	Alike consume_skb(), but this variant assumes that this is the last
1297  *	skb reference and all the head states have been already dropped
1298  */
1299 void __consume_stateless_skb(struct sk_buff *skb)
1300 {
1301 	trace_consume_skb(skb, __builtin_return_address(0));
1302 	skb_release_data(skb, SKB_CONSUMED, false);
1303 	kfree_skbmem(skb);
1304 }
1305 
1306 static void napi_skb_cache_put(struct sk_buff *skb)
1307 {
1308 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1309 	u32 i;
1310 
1311 	kasan_poison_object_data(skbuff_cache, skb);
1312 	nc->skb_cache[nc->skb_count++] = skb;
1313 
1314 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1315 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1316 			kasan_unpoison_object_data(skbuff_cache,
1317 						   nc->skb_cache[i]);
1318 
1319 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1320 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1321 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1322 	}
1323 }
1324 
1325 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1326 {
1327 	skb_release_all(skb, reason, true);
1328 	napi_skb_cache_put(skb);
1329 }
1330 
1331 void napi_skb_free_stolen_head(struct sk_buff *skb)
1332 {
1333 	if (unlikely(skb->slow_gro)) {
1334 		nf_reset_ct(skb);
1335 		skb_dst_drop(skb);
1336 		skb_ext_put(skb);
1337 		skb_orphan(skb);
1338 		skb->slow_gro = 0;
1339 	}
1340 	napi_skb_cache_put(skb);
1341 }
1342 
1343 void napi_consume_skb(struct sk_buff *skb, int budget)
1344 {
1345 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1346 	if (unlikely(!budget)) {
1347 		dev_consume_skb_any(skb);
1348 		return;
1349 	}
1350 
1351 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1352 
1353 	if (!skb_unref(skb))
1354 		return;
1355 
1356 	/* if reaching here SKB is ready to free */
1357 	trace_consume_skb(skb, __builtin_return_address(0));
1358 
1359 	/* if SKB is a clone, don't handle this case */
1360 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1361 		__kfree_skb(skb);
1362 		return;
1363 	}
1364 
1365 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1366 	napi_skb_cache_put(skb);
1367 }
1368 EXPORT_SYMBOL(napi_consume_skb);
1369 
1370 /* Make sure a field is contained by headers group */
1371 #define CHECK_SKB_FIELD(field) \
1372 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1373 		     offsetof(struct sk_buff, headers.field));	\
1374 
1375 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1376 {
1377 	new->tstamp		= old->tstamp;
1378 	/* We do not copy old->sk */
1379 	new->dev		= old->dev;
1380 	memcpy(new->cb, old->cb, sizeof(old->cb));
1381 	skb_dst_copy(new, old);
1382 	__skb_ext_copy(new, old);
1383 	__nf_copy(new, old, false);
1384 
1385 	/* Note : this field could be in the headers group.
1386 	 * It is not yet because we do not want to have a 16 bit hole
1387 	 */
1388 	new->queue_mapping = old->queue_mapping;
1389 
1390 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1391 	CHECK_SKB_FIELD(protocol);
1392 	CHECK_SKB_FIELD(csum);
1393 	CHECK_SKB_FIELD(hash);
1394 	CHECK_SKB_FIELD(priority);
1395 	CHECK_SKB_FIELD(skb_iif);
1396 	CHECK_SKB_FIELD(vlan_proto);
1397 	CHECK_SKB_FIELD(vlan_tci);
1398 	CHECK_SKB_FIELD(transport_header);
1399 	CHECK_SKB_FIELD(network_header);
1400 	CHECK_SKB_FIELD(mac_header);
1401 	CHECK_SKB_FIELD(inner_protocol);
1402 	CHECK_SKB_FIELD(inner_transport_header);
1403 	CHECK_SKB_FIELD(inner_network_header);
1404 	CHECK_SKB_FIELD(inner_mac_header);
1405 	CHECK_SKB_FIELD(mark);
1406 #ifdef CONFIG_NETWORK_SECMARK
1407 	CHECK_SKB_FIELD(secmark);
1408 #endif
1409 #ifdef CONFIG_NET_RX_BUSY_POLL
1410 	CHECK_SKB_FIELD(napi_id);
1411 #endif
1412 	CHECK_SKB_FIELD(alloc_cpu);
1413 #ifdef CONFIG_XPS
1414 	CHECK_SKB_FIELD(sender_cpu);
1415 #endif
1416 #ifdef CONFIG_NET_SCHED
1417 	CHECK_SKB_FIELD(tc_index);
1418 #endif
1419 
1420 }
1421 
1422 /*
1423  * You should not add any new code to this function.  Add it to
1424  * __copy_skb_header above instead.
1425  */
1426 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1427 {
1428 #define C(x) n->x = skb->x
1429 
1430 	n->next = n->prev = NULL;
1431 	n->sk = NULL;
1432 	__copy_skb_header(n, skb);
1433 
1434 	C(len);
1435 	C(data_len);
1436 	C(mac_len);
1437 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1438 	n->cloned = 1;
1439 	n->nohdr = 0;
1440 	n->peeked = 0;
1441 	C(pfmemalloc);
1442 	C(pp_recycle);
1443 	n->destructor = NULL;
1444 	C(tail);
1445 	C(end);
1446 	C(head);
1447 	C(head_frag);
1448 	C(data);
1449 	C(truesize);
1450 	refcount_set(&n->users, 1);
1451 
1452 	atomic_inc(&(skb_shinfo(skb)->dataref));
1453 	skb->cloned = 1;
1454 
1455 	return n;
1456 #undef C
1457 }
1458 
1459 /**
1460  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1461  * @first: first sk_buff of the msg
1462  */
1463 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1464 {
1465 	struct sk_buff *n;
1466 
1467 	n = alloc_skb(0, GFP_ATOMIC);
1468 	if (!n)
1469 		return NULL;
1470 
1471 	n->len = first->len;
1472 	n->data_len = first->len;
1473 	n->truesize = first->truesize;
1474 
1475 	skb_shinfo(n)->frag_list = first;
1476 
1477 	__copy_skb_header(n, first);
1478 	n->destructor = NULL;
1479 
1480 	return n;
1481 }
1482 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1483 
1484 /**
1485  *	skb_morph	-	morph one skb into another
1486  *	@dst: the skb to receive the contents
1487  *	@src: the skb to supply the contents
1488  *
1489  *	This is identical to skb_clone except that the target skb is
1490  *	supplied by the user.
1491  *
1492  *	The target skb is returned upon exit.
1493  */
1494 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1495 {
1496 	skb_release_all(dst, SKB_CONSUMED, false);
1497 	return __skb_clone(dst, src);
1498 }
1499 EXPORT_SYMBOL_GPL(skb_morph);
1500 
1501 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1502 {
1503 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1504 	struct user_struct *user;
1505 
1506 	if (capable(CAP_IPC_LOCK) || !size)
1507 		return 0;
1508 
1509 	rlim = rlimit(RLIMIT_MEMLOCK);
1510 	if (rlim == RLIM_INFINITY)
1511 		return 0;
1512 
1513 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1514 	max_pg = rlim >> PAGE_SHIFT;
1515 	user = mmp->user ? : current_user();
1516 
1517 	old_pg = atomic_long_read(&user->locked_vm);
1518 	do {
1519 		new_pg = old_pg + num_pg;
1520 		if (new_pg > max_pg)
1521 			return -ENOBUFS;
1522 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1523 
1524 	if (!mmp->user) {
1525 		mmp->user = get_uid(user);
1526 		mmp->num_pg = num_pg;
1527 	} else {
1528 		mmp->num_pg += num_pg;
1529 	}
1530 
1531 	return 0;
1532 }
1533 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1534 
1535 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1536 {
1537 	if (mmp->user) {
1538 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1539 		free_uid(mmp->user);
1540 	}
1541 }
1542 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1543 
1544 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1545 {
1546 	struct ubuf_info_msgzc *uarg;
1547 	struct sk_buff *skb;
1548 
1549 	WARN_ON_ONCE(!in_task());
1550 
1551 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1552 	if (!skb)
1553 		return NULL;
1554 
1555 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1556 	uarg = (void *)skb->cb;
1557 	uarg->mmp.user = NULL;
1558 
1559 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1560 		kfree_skb(skb);
1561 		return NULL;
1562 	}
1563 
1564 	uarg->ubuf.callback = msg_zerocopy_callback;
1565 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1566 	uarg->len = 1;
1567 	uarg->bytelen = size;
1568 	uarg->zerocopy = 1;
1569 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1570 	refcount_set(&uarg->ubuf.refcnt, 1);
1571 	sock_hold(sk);
1572 
1573 	return &uarg->ubuf;
1574 }
1575 
1576 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1577 {
1578 	return container_of((void *)uarg, struct sk_buff, cb);
1579 }
1580 
1581 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1582 				       struct ubuf_info *uarg)
1583 {
1584 	if (uarg) {
1585 		struct ubuf_info_msgzc *uarg_zc;
1586 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1587 		u32 bytelen, next;
1588 
1589 		/* there might be non MSG_ZEROCOPY users */
1590 		if (uarg->callback != msg_zerocopy_callback)
1591 			return NULL;
1592 
1593 		/* realloc only when socket is locked (TCP, UDP cork),
1594 		 * so uarg->len and sk_zckey access is serialized
1595 		 */
1596 		if (!sock_owned_by_user(sk)) {
1597 			WARN_ON_ONCE(1);
1598 			return NULL;
1599 		}
1600 
1601 		uarg_zc = uarg_to_msgzc(uarg);
1602 		bytelen = uarg_zc->bytelen + size;
1603 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1604 			/* TCP can create new skb to attach new uarg */
1605 			if (sk->sk_type == SOCK_STREAM)
1606 				goto new_alloc;
1607 			return NULL;
1608 		}
1609 
1610 		next = (u32)atomic_read(&sk->sk_zckey);
1611 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1612 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1613 				return NULL;
1614 			uarg_zc->len++;
1615 			uarg_zc->bytelen = bytelen;
1616 			atomic_set(&sk->sk_zckey, ++next);
1617 
1618 			/* no extra ref when appending to datagram (MSG_MORE) */
1619 			if (sk->sk_type == SOCK_STREAM)
1620 				net_zcopy_get(uarg);
1621 
1622 			return uarg;
1623 		}
1624 	}
1625 
1626 new_alloc:
1627 	return msg_zerocopy_alloc(sk, size);
1628 }
1629 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1630 
1631 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1632 {
1633 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1634 	u32 old_lo, old_hi;
1635 	u64 sum_len;
1636 
1637 	old_lo = serr->ee.ee_info;
1638 	old_hi = serr->ee.ee_data;
1639 	sum_len = old_hi - old_lo + 1ULL + len;
1640 
1641 	if (sum_len >= (1ULL << 32))
1642 		return false;
1643 
1644 	if (lo != old_hi + 1)
1645 		return false;
1646 
1647 	serr->ee.ee_data += len;
1648 	return true;
1649 }
1650 
1651 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1652 {
1653 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1654 	struct sock_exterr_skb *serr;
1655 	struct sock *sk = skb->sk;
1656 	struct sk_buff_head *q;
1657 	unsigned long flags;
1658 	bool is_zerocopy;
1659 	u32 lo, hi;
1660 	u16 len;
1661 
1662 	mm_unaccount_pinned_pages(&uarg->mmp);
1663 
1664 	/* if !len, there was only 1 call, and it was aborted
1665 	 * so do not queue a completion notification
1666 	 */
1667 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1668 		goto release;
1669 
1670 	len = uarg->len;
1671 	lo = uarg->id;
1672 	hi = uarg->id + len - 1;
1673 	is_zerocopy = uarg->zerocopy;
1674 
1675 	serr = SKB_EXT_ERR(skb);
1676 	memset(serr, 0, sizeof(*serr));
1677 	serr->ee.ee_errno = 0;
1678 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1679 	serr->ee.ee_data = hi;
1680 	serr->ee.ee_info = lo;
1681 	if (!is_zerocopy)
1682 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1683 
1684 	q = &sk->sk_error_queue;
1685 	spin_lock_irqsave(&q->lock, flags);
1686 	tail = skb_peek_tail(q);
1687 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1688 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1689 		__skb_queue_tail(q, skb);
1690 		skb = NULL;
1691 	}
1692 	spin_unlock_irqrestore(&q->lock, flags);
1693 
1694 	sk_error_report(sk);
1695 
1696 release:
1697 	consume_skb(skb);
1698 	sock_put(sk);
1699 }
1700 
1701 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1702 			   bool success)
1703 {
1704 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1705 
1706 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1707 
1708 	if (refcount_dec_and_test(&uarg->refcnt))
1709 		__msg_zerocopy_callback(uarg_zc);
1710 }
1711 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1712 
1713 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1714 {
1715 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1716 
1717 	atomic_dec(&sk->sk_zckey);
1718 	uarg_to_msgzc(uarg)->len--;
1719 
1720 	if (have_uref)
1721 		msg_zerocopy_callback(NULL, uarg, true);
1722 }
1723 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1724 
1725 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1726 			     struct msghdr *msg, int len,
1727 			     struct ubuf_info *uarg)
1728 {
1729 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1730 	int err, orig_len = skb->len;
1731 
1732 	/* An skb can only point to one uarg. This edge case happens when
1733 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1734 	 */
1735 	if (orig_uarg && uarg != orig_uarg)
1736 		return -EEXIST;
1737 
1738 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1739 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1740 		struct sock *save_sk = skb->sk;
1741 
1742 		/* Streams do not free skb on error. Reset to prev state. */
1743 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1744 		skb->sk = sk;
1745 		___pskb_trim(skb, orig_len);
1746 		skb->sk = save_sk;
1747 		return err;
1748 	}
1749 
1750 	skb_zcopy_set(skb, uarg, NULL);
1751 	return skb->len - orig_len;
1752 }
1753 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1754 
1755 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1756 {
1757 	int i;
1758 
1759 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1760 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1761 		skb_frag_ref(skb, i);
1762 }
1763 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1764 
1765 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1766 			      gfp_t gfp_mask)
1767 {
1768 	if (skb_zcopy(orig)) {
1769 		if (skb_zcopy(nskb)) {
1770 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1771 			if (!gfp_mask) {
1772 				WARN_ON_ONCE(1);
1773 				return -ENOMEM;
1774 			}
1775 			if (skb_uarg(nskb) == skb_uarg(orig))
1776 				return 0;
1777 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1778 				return -EIO;
1779 		}
1780 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1781 	}
1782 	return 0;
1783 }
1784 
1785 /**
1786  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1787  *	@skb: the skb to modify
1788  *	@gfp_mask: allocation priority
1789  *
1790  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1791  *	It will copy all frags into kernel and drop the reference
1792  *	to userspace pages.
1793  *
1794  *	If this function is called from an interrupt gfp_mask() must be
1795  *	%GFP_ATOMIC.
1796  *
1797  *	Returns 0 on success or a negative error code on failure
1798  *	to allocate kernel memory to copy to.
1799  */
1800 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1801 {
1802 	int num_frags = skb_shinfo(skb)->nr_frags;
1803 	struct page *page, *head = NULL;
1804 	int i, order, psize, new_frags;
1805 	u32 d_off;
1806 
1807 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1808 		return -EINVAL;
1809 
1810 	if (!num_frags)
1811 		goto release;
1812 
1813 	/* We might have to allocate high order pages, so compute what minimum
1814 	 * page order is needed.
1815 	 */
1816 	order = 0;
1817 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1818 		order++;
1819 	psize = (PAGE_SIZE << order);
1820 
1821 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1822 	for (i = 0; i < new_frags; i++) {
1823 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1824 		if (!page) {
1825 			while (head) {
1826 				struct page *next = (struct page *)page_private(head);
1827 				put_page(head);
1828 				head = next;
1829 			}
1830 			return -ENOMEM;
1831 		}
1832 		set_page_private(page, (unsigned long)head);
1833 		head = page;
1834 	}
1835 
1836 	page = head;
1837 	d_off = 0;
1838 	for (i = 0; i < num_frags; i++) {
1839 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1840 		u32 p_off, p_len, copied;
1841 		struct page *p;
1842 		u8 *vaddr;
1843 
1844 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1845 				      p, p_off, p_len, copied) {
1846 			u32 copy, done = 0;
1847 			vaddr = kmap_atomic(p);
1848 
1849 			while (done < p_len) {
1850 				if (d_off == psize) {
1851 					d_off = 0;
1852 					page = (struct page *)page_private(page);
1853 				}
1854 				copy = min_t(u32, psize - d_off, p_len - done);
1855 				memcpy(page_address(page) + d_off,
1856 				       vaddr + p_off + done, copy);
1857 				done += copy;
1858 				d_off += copy;
1859 			}
1860 			kunmap_atomic(vaddr);
1861 		}
1862 	}
1863 
1864 	/* skb frags release userspace buffers */
1865 	for (i = 0; i < num_frags; i++)
1866 		skb_frag_unref(skb, i);
1867 
1868 	/* skb frags point to kernel buffers */
1869 	for (i = 0; i < new_frags - 1; i++) {
1870 		__skb_fill_page_desc(skb, i, head, 0, psize);
1871 		head = (struct page *)page_private(head);
1872 	}
1873 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1874 	skb_shinfo(skb)->nr_frags = new_frags;
1875 
1876 release:
1877 	skb_zcopy_clear(skb, false);
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1881 
1882 /**
1883  *	skb_clone	-	duplicate an sk_buff
1884  *	@skb: buffer to clone
1885  *	@gfp_mask: allocation priority
1886  *
1887  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1888  *	copies share the same packet data but not structure. The new
1889  *	buffer has a reference count of 1. If the allocation fails the
1890  *	function returns %NULL otherwise the new buffer is returned.
1891  *
1892  *	If this function is called from an interrupt gfp_mask() must be
1893  *	%GFP_ATOMIC.
1894  */
1895 
1896 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1897 {
1898 	struct sk_buff_fclones *fclones = container_of(skb,
1899 						       struct sk_buff_fclones,
1900 						       skb1);
1901 	struct sk_buff *n;
1902 
1903 	if (skb_orphan_frags(skb, gfp_mask))
1904 		return NULL;
1905 
1906 	if (skb->fclone == SKB_FCLONE_ORIG &&
1907 	    refcount_read(&fclones->fclone_ref) == 1) {
1908 		n = &fclones->skb2;
1909 		refcount_set(&fclones->fclone_ref, 2);
1910 		n->fclone = SKB_FCLONE_CLONE;
1911 	} else {
1912 		if (skb_pfmemalloc(skb))
1913 			gfp_mask |= __GFP_MEMALLOC;
1914 
1915 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1916 		if (!n)
1917 			return NULL;
1918 
1919 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1920 	}
1921 
1922 	return __skb_clone(n, skb);
1923 }
1924 EXPORT_SYMBOL(skb_clone);
1925 
1926 void skb_headers_offset_update(struct sk_buff *skb, int off)
1927 {
1928 	/* Only adjust this if it actually is csum_start rather than csum */
1929 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1930 		skb->csum_start += off;
1931 	/* {transport,network,mac}_header and tail are relative to skb->head */
1932 	skb->transport_header += off;
1933 	skb->network_header   += off;
1934 	if (skb_mac_header_was_set(skb))
1935 		skb->mac_header += off;
1936 	skb->inner_transport_header += off;
1937 	skb->inner_network_header += off;
1938 	skb->inner_mac_header += off;
1939 }
1940 EXPORT_SYMBOL(skb_headers_offset_update);
1941 
1942 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1943 {
1944 	__copy_skb_header(new, old);
1945 
1946 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1947 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1948 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1949 }
1950 EXPORT_SYMBOL(skb_copy_header);
1951 
1952 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1953 {
1954 	if (skb_pfmemalloc(skb))
1955 		return SKB_ALLOC_RX;
1956 	return 0;
1957 }
1958 
1959 /**
1960  *	skb_copy	-	create private copy of an sk_buff
1961  *	@skb: buffer to copy
1962  *	@gfp_mask: allocation priority
1963  *
1964  *	Make a copy of both an &sk_buff and its data. This is used when the
1965  *	caller wishes to modify the data and needs a private copy of the
1966  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1967  *	on success. The returned buffer has a reference count of 1.
1968  *
1969  *	As by-product this function converts non-linear &sk_buff to linear
1970  *	one, so that &sk_buff becomes completely private and caller is allowed
1971  *	to modify all the data of returned buffer. This means that this
1972  *	function is not recommended for use in circumstances when only
1973  *	header is going to be modified. Use pskb_copy() instead.
1974  */
1975 
1976 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1977 {
1978 	int headerlen = skb_headroom(skb);
1979 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1980 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1981 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1982 
1983 	if (!n)
1984 		return NULL;
1985 
1986 	/* Set the data pointer */
1987 	skb_reserve(n, headerlen);
1988 	/* Set the tail pointer and length */
1989 	skb_put(n, skb->len);
1990 
1991 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1992 
1993 	skb_copy_header(n, skb);
1994 	return n;
1995 }
1996 EXPORT_SYMBOL(skb_copy);
1997 
1998 /**
1999  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2000  *	@skb: buffer to copy
2001  *	@headroom: headroom of new skb
2002  *	@gfp_mask: allocation priority
2003  *	@fclone: if true allocate the copy of the skb from the fclone
2004  *	cache instead of the head cache; it is recommended to set this
2005  *	to true for the cases where the copy will likely be cloned
2006  *
2007  *	Make a copy of both an &sk_buff and part of its data, located
2008  *	in header. Fragmented data remain shared. This is used when
2009  *	the caller wishes to modify only header of &sk_buff and needs
2010  *	private copy of the header to alter. Returns %NULL on failure
2011  *	or the pointer to the buffer on success.
2012  *	The returned buffer has a reference count of 1.
2013  */
2014 
2015 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2016 				   gfp_t gfp_mask, bool fclone)
2017 {
2018 	unsigned int size = skb_headlen(skb) + headroom;
2019 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2020 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2021 
2022 	if (!n)
2023 		goto out;
2024 
2025 	/* Set the data pointer */
2026 	skb_reserve(n, headroom);
2027 	/* Set the tail pointer and length */
2028 	skb_put(n, skb_headlen(skb));
2029 	/* Copy the bytes */
2030 	skb_copy_from_linear_data(skb, n->data, n->len);
2031 
2032 	n->truesize += skb->data_len;
2033 	n->data_len  = skb->data_len;
2034 	n->len	     = skb->len;
2035 
2036 	if (skb_shinfo(skb)->nr_frags) {
2037 		int i;
2038 
2039 		if (skb_orphan_frags(skb, gfp_mask) ||
2040 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2041 			kfree_skb(n);
2042 			n = NULL;
2043 			goto out;
2044 		}
2045 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2046 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2047 			skb_frag_ref(skb, i);
2048 		}
2049 		skb_shinfo(n)->nr_frags = i;
2050 	}
2051 
2052 	if (skb_has_frag_list(skb)) {
2053 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2054 		skb_clone_fraglist(n);
2055 	}
2056 
2057 	skb_copy_header(n, skb);
2058 out:
2059 	return n;
2060 }
2061 EXPORT_SYMBOL(__pskb_copy_fclone);
2062 
2063 /**
2064  *	pskb_expand_head - reallocate header of &sk_buff
2065  *	@skb: buffer to reallocate
2066  *	@nhead: room to add at head
2067  *	@ntail: room to add at tail
2068  *	@gfp_mask: allocation priority
2069  *
2070  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2071  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2072  *	reference count of 1. Returns zero in the case of success or error,
2073  *	if expansion failed. In the last case, &sk_buff is not changed.
2074  *
2075  *	All the pointers pointing into skb header may change and must be
2076  *	reloaded after call to this function.
2077  */
2078 
2079 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2080 		     gfp_t gfp_mask)
2081 {
2082 	unsigned int osize = skb_end_offset(skb);
2083 	unsigned int size = osize + nhead + ntail;
2084 	long off;
2085 	u8 *data;
2086 	int i;
2087 
2088 	BUG_ON(nhead < 0);
2089 
2090 	BUG_ON(skb_shared(skb));
2091 
2092 	skb_zcopy_downgrade_managed(skb);
2093 
2094 	if (skb_pfmemalloc(skb))
2095 		gfp_mask |= __GFP_MEMALLOC;
2096 
2097 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2098 	if (!data)
2099 		goto nodata;
2100 	size = SKB_WITH_OVERHEAD(size);
2101 
2102 	/* Copy only real data... and, alas, header. This should be
2103 	 * optimized for the cases when header is void.
2104 	 */
2105 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2106 
2107 	memcpy((struct skb_shared_info *)(data + size),
2108 	       skb_shinfo(skb),
2109 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2110 
2111 	/*
2112 	 * if shinfo is shared we must drop the old head gracefully, but if it
2113 	 * is not we can just drop the old head and let the existing refcount
2114 	 * be since all we did is relocate the values
2115 	 */
2116 	if (skb_cloned(skb)) {
2117 		if (skb_orphan_frags(skb, gfp_mask))
2118 			goto nofrags;
2119 		if (skb_zcopy(skb))
2120 			refcount_inc(&skb_uarg(skb)->refcnt);
2121 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2122 			skb_frag_ref(skb, i);
2123 
2124 		if (skb_has_frag_list(skb))
2125 			skb_clone_fraglist(skb);
2126 
2127 		skb_release_data(skb, SKB_CONSUMED, false);
2128 	} else {
2129 		skb_free_head(skb, false);
2130 	}
2131 	off = (data + nhead) - skb->head;
2132 
2133 	skb->head     = data;
2134 	skb->head_frag = 0;
2135 	skb->data    += off;
2136 
2137 	skb_set_end_offset(skb, size);
2138 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2139 	off           = nhead;
2140 #endif
2141 	skb->tail	      += off;
2142 	skb_headers_offset_update(skb, nhead);
2143 	skb->cloned   = 0;
2144 	skb->hdr_len  = 0;
2145 	skb->nohdr    = 0;
2146 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2147 
2148 	skb_metadata_clear(skb);
2149 
2150 	/* It is not generally safe to change skb->truesize.
2151 	 * For the moment, we really care of rx path, or
2152 	 * when skb is orphaned (not attached to a socket).
2153 	 */
2154 	if (!skb->sk || skb->destructor == sock_edemux)
2155 		skb->truesize += size - osize;
2156 
2157 	return 0;
2158 
2159 nofrags:
2160 	skb_kfree_head(data, size);
2161 nodata:
2162 	return -ENOMEM;
2163 }
2164 EXPORT_SYMBOL(pskb_expand_head);
2165 
2166 /* Make private copy of skb with writable head and some headroom */
2167 
2168 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2169 {
2170 	struct sk_buff *skb2;
2171 	int delta = headroom - skb_headroom(skb);
2172 
2173 	if (delta <= 0)
2174 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2175 	else {
2176 		skb2 = skb_clone(skb, GFP_ATOMIC);
2177 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2178 					     GFP_ATOMIC)) {
2179 			kfree_skb(skb2);
2180 			skb2 = NULL;
2181 		}
2182 	}
2183 	return skb2;
2184 }
2185 EXPORT_SYMBOL(skb_realloc_headroom);
2186 
2187 /* Note: We plan to rework this in linux-6.4 */
2188 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2189 {
2190 	unsigned int saved_end_offset, saved_truesize;
2191 	struct skb_shared_info *shinfo;
2192 	int res;
2193 
2194 	saved_end_offset = skb_end_offset(skb);
2195 	saved_truesize = skb->truesize;
2196 
2197 	res = pskb_expand_head(skb, 0, 0, pri);
2198 	if (res)
2199 		return res;
2200 
2201 	skb->truesize = saved_truesize;
2202 
2203 	if (likely(skb_end_offset(skb) == saved_end_offset))
2204 		return 0;
2205 
2206 	/* We can not change skb->end if the original or new value
2207 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2208 	 */
2209 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2210 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2211 		/* We think this path should not be taken.
2212 		 * Add a temporary trace to warn us just in case.
2213 		 */
2214 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2215 			    saved_end_offset, skb_end_offset(skb));
2216 		WARN_ON_ONCE(1);
2217 		return 0;
2218 	}
2219 
2220 	shinfo = skb_shinfo(skb);
2221 
2222 	/* We are about to change back skb->end,
2223 	 * we need to move skb_shinfo() to its new location.
2224 	 */
2225 	memmove(skb->head + saved_end_offset,
2226 		shinfo,
2227 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2228 
2229 	skb_set_end_offset(skb, saved_end_offset);
2230 
2231 	return 0;
2232 }
2233 
2234 /**
2235  *	skb_expand_head - reallocate header of &sk_buff
2236  *	@skb: buffer to reallocate
2237  *	@headroom: needed headroom
2238  *
2239  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2240  *	if possible; copies skb->sk to new skb as needed
2241  *	and frees original skb in case of failures.
2242  *
2243  *	It expect increased headroom and generates warning otherwise.
2244  */
2245 
2246 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2247 {
2248 	int delta = headroom - skb_headroom(skb);
2249 	int osize = skb_end_offset(skb);
2250 	struct sock *sk = skb->sk;
2251 
2252 	if (WARN_ONCE(delta <= 0,
2253 		      "%s is expecting an increase in the headroom", __func__))
2254 		return skb;
2255 
2256 	delta = SKB_DATA_ALIGN(delta);
2257 	/* pskb_expand_head() might crash, if skb is shared. */
2258 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2259 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2260 
2261 		if (unlikely(!nskb))
2262 			goto fail;
2263 
2264 		if (sk)
2265 			skb_set_owner_w(nskb, sk);
2266 		consume_skb(skb);
2267 		skb = nskb;
2268 	}
2269 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2270 		goto fail;
2271 
2272 	if (sk && is_skb_wmem(skb)) {
2273 		delta = skb_end_offset(skb) - osize;
2274 		refcount_add(delta, &sk->sk_wmem_alloc);
2275 		skb->truesize += delta;
2276 	}
2277 	return skb;
2278 
2279 fail:
2280 	kfree_skb(skb);
2281 	return NULL;
2282 }
2283 EXPORT_SYMBOL(skb_expand_head);
2284 
2285 /**
2286  *	skb_copy_expand	-	copy and expand sk_buff
2287  *	@skb: buffer to copy
2288  *	@newheadroom: new free bytes at head
2289  *	@newtailroom: new free bytes at tail
2290  *	@gfp_mask: allocation priority
2291  *
2292  *	Make a copy of both an &sk_buff and its data and while doing so
2293  *	allocate additional space.
2294  *
2295  *	This is used when the caller wishes to modify the data and needs a
2296  *	private copy of the data to alter as well as more space for new fields.
2297  *	Returns %NULL on failure or the pointer to the buffer
2298  *	on success. The returned buffer has a reference count of 1.
2299  *
2300  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2301  *	is called from an interrupt.
2302  */
2303 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2304 				int newheadroom, int newtailroom,
2305 				gfp_t gfp_mask)
2306 {
2307 	/*
2308 	 *	Allocate the copy buffer
2309 	 */
2310 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2311 					gfp_mask, skb_alloc_rx_flag(skb),
2312 					NUMA_NO_NODE);
2313 	int oldheadroom = skb_headroom(skb);
2314 	int head_copy_len, head_copy_off;
2315 
2316 	if (!n)
2317 		return NULL;
2318 
2319 	skb_reserve(n, newheadroom);
2320 
2321 	/* Set the tail pointer and length */
2322 	skb_put(n, skb->len);
2323 
2324 	head_copy_len = oldheadroom;
2325 	head_copy_off = 0;
2326 	if (newheadroom <= head_copy_len)
2327 		head_copy_len = newheadroom;
2328 	else
2329 		head_copy_off = newheadroom - head_copy_len;
2330 
2331 	/* Copy the linear header and data. */
2332 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2333 			     skb->len + head_copy_len));
2334 
2335 	skb_copy_header(n, skb);
2336 
2337 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2338 
2339 	return n;
2340 }
2341 EXPORT_SYMBOL(skb_copy_expand);
2342 
2343 /**
2344  *	__skb_pad		-	zero pad the tail of an skb
2345  *	@skb: buffer to pad
2346  *	@pad: space to pad
2347  *	@free_on_error: free buffer on error
2348  *
2349  *	Ensure that a buffer is followed by a padding area that is zero
2350  *	filled. Used by network drivers which may DMA or transfer data
2351  *	beyond the buffer end onto the wire.
2352  *
2353  *	May return error in out of memory cases. The skb is freed on error
2354  *	if @free_on_error is true.
2355  */
2356 
2357 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2358 {
2359 	int err;
2360 	int ntail;
2361 
2362 	/* If the skbuff is non linear tailroom is always zero.. */
2363 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2364 		memset(skb->data+skb->len, 0, pad);
2365 		return 0;
2366 	}
2367 
2368 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2369 	if (likely(skb_cloned(skb) || ntail > 0)) {
2370 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2371 		if (unlikely(err))
2372 			goto free_skb;
2373 	}
2374 
2375 	/* FIXME: The use of this function with non-linear skb's really needs
2376 	 * to be audited.
2377 	 */
2378 	err = skb_linearize(skb);
2379 	if (unlikely(err))
2380 		goto free_skb;
2381 
2382 	memset(skb->data + skb->len, 0, pad);
2383 	return 0;
2384 
2385 free_skb:
2386 	if (free_on_error)
2387 		kfree_skb(skb);
2388 	return err;
2389 }
2390 EXPORT_SYMBOL(__skb_pad);
2391 
2392 /**
2393  *	pskb_put - add data to the tail of a potentially fragmented buffer
2394  *	@skb: start of the buffer to use
2395  *	@tail: tail fragment of the buffer to use
2396  *	@len: amount of data to add
2397  *
2398  *	This function extends the used data area of the potentially
2399  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2400  *	@skb itself. If this would exceed the total buffer size the kernel
2401  *	will panic. A pointer to the first byte of the extra data is
2402  *	returned.
2403  */
2404 
2405 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2406 {
2407 	if (tail != skb) {
2408 		skb->data_len += len;
2409 		skb->len += len;
2410 	}
2411 	return skb_put(tail, len);
2412 }
2413 EXPORT_SYMBOL_GPL(pskb_put);
2414 
2415 /**
2416  *	skb_put - add data to a buffer
2417  *	@skb: buffer to use
2418  *	@len: amount of data to add
2419  *
2420  *	This function extends the used data area of the buffer. If this would
2421  *	exceed the total buffer size the kernel will panic. A pointer to the
2422  *	first byte of the extra data is returned.
2423  */
2424 void *skb_put(struct sk_buff *skb, unsigned int len)
2425 {
2426 	void *tmp = skb_tail_pointer(skb);
2427 	SKB_LINEAR_ASSERT(skb);
2428 	skb->tail += len;
2429 	skb->len  += len;
2430 	if (unlikely(skb->tail > skb->end))
2431 		skb_over_panic(skb, len, __builtin_return_address(0));
2432 	return tmp;
2433 }
2434 EXPORT_SYMBOL(skb_put);
2435 
2436 /**
2437  *	skb_push - add data to the start of a buffer
2438  *	@skb: buffer to use
2439  *	@len: amount of data to add
2440  *
2441  *	This function extends the used data area of the buffer at the buffer
2442  *	start. If this would exceed the total buffer headroom the kernel will
2443  *	panic. A pointer to the first byte of the extra data is returned.
2444  */
2445 void *skb_push(struct sk_buff *skb, unsigned int len)
2446 {
2447 	skb->data -= len;
2448 	skb->len  += len;
2449 	if (unlikely(skb->data < skb->head))
2450 		skb_under_panic(skb, len, __builtin_return_address(0));
2451 	return skb->data;
2452 }
2453 EXPORT_SYMBOL(skb_push);
2454 
2455 /**
2456  *	skb_pull - remove data from the start of a buffer
2457  *	@skb: buffer to use
2458  *	@len: amount of data to remove
2459  *
2460  *	This function removes data from the start of a buffer, returning
2461  *	the memory to the headroom. A pointer to the next data in the buffer
2462  *	is returned. Once the data has been pulled future pushes will overwrite
2463  *	the old data.
2464  */
2465 void *skb_pull(struct sk_buff *skb, unsigned int len)
2466 {
2467 	return skb_pull_inline(skb, len);
2468 }
2469 EXPORT_SYMBOL(skb_pull);
2470 
2471 /**
2472  *	skb_pull_data - remove data from the start of a buffer returning its
2473  *	original position.
2474  *	@skb: buffer to use
2475  *	@len: amount of data to remove
2476  *
2477  *	This function removes data from the start of a buffer, returning
2478  *	the memory to the headroom. A pointer to the original data in the buffer
2479  *	is returned after checking if there is enough data to pull. Once the
2480  *	data has been pulled future pushes will overwrite the old data.
2481  */
2482 void *skb_pull_data(struct sk_buff *skb, size_t len)
2483 {
2484 	void *data = skb->data;
2485 
2486 	if (skb->len < len)
2487 		return NULL;
2488 
2489 	skb_pull(skb, len);
2490 
2491 	return data;
2492 }
2493 EXPORT_SYMBOL(skb_pull_data);
2494 
2495 /**
2496  *	skb_trim - remove end from a buffer
2497  *	@skb: buffer to alter
2498  *	@len: new length
2499  *
2500  *	Cut the length of a buffer down by removing data from the tail. If
2501  *	the buffer is already under the length specified it is not modified.
2502  *	The skb must be linear.
2503  */
2504 void skb_trim(struct sk_buff *skb, unsigned int len)
2505 {
2506 	if (skb->len > len)
2507 		__skb_trim(skb, len);
2508 }
2509 EXPORT_SYMBOL(skb_trim);
2510 
2511 /* Trims skb to length len. It can change skb pointers.
2512  */
2513 
2514 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2515 {
2516 	struct sk_buff **fragp;
2517 	struct sk_buff *frag;
2518 	int offset = skb_headlen(skb);
2519 	int nfrags = skb_shinfo(skb)->nr_frags;
2520 	int i;
2521 	int err;
2522 
2523 	if (skb_cloned(skb) &&
2524 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2525 		return err;
2526 
2527 	i = 0;
2528 	if (offset >= len)
2529 		goto drop_pages;
2530 
2531 	for (; i < nfrags; i++) {
2532 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2533 
2534 		if (end < len) {
2535 			offset = end;
2536 			continue;
2537 		}
2538 
2539 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2540 
2541 drop_pages:
2542 		skb_shinfo(skb)->nr_frags = i;
2543 
2544 		for (; i < nfrags; i++)
2545 			skb_frag_unref(skb, i);
2546 
2547 		if (skb_has_frag_list(skb))
2548 			skb_drop_fraglist(skb);
2549 		goto done;
2550 	}
2551 
2552 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2553 	     fragp = &frag->next) {
2554 		int end = offset + frag->len;
2555 
2556 		if (skb_shared(frag)) {
2557 			struct sk_buff *nfrag;
2558 
2559 			nfrag = skb_clone(frag, GFP_ATOMIC);
2560 			if (unlikely(!nfrag))
2561 				return -ENOMEM;
2562 
2563 			nfrag->next = frag->next;
2564 			consume_skb(frag);
2565 			frag = nfrag;
2566 			*fragp = frag;
2567 		}
2568 
2569 		if (end < len) {
2570 			offset = end;
2571 			continue;
2572 		}
2573 
2574 		if (end > len &&
2575 		    unlikely((err = pskb_trim(frag, len - offset))))
2576 			return err;
2577 
2578 		if (frag->next)
2579 			skb_drop_list(&frag->next);
2580 		break;
2581 	}
2582 
2583 done:
2584 	if (len > skb_headlen(skb)) {
2585 		skb->data_len -= skb->len - len;
2586 		skb->len       = len;
2587 	} else {
2588 		skb->len       = len;
2589 		skb->data_len  = 0;
2590 		skb_set_tail_pointer(skb, len);
2591 	}
2592 
2593 	if (!skb->sk || skb->destructor == sock_edemux)
2594 		skb_condense(skb);
2595 	return 0;
2596 }
2597 EXPORT_SYMBOL(___pskb_trim);
2598 
2599 /* Note : use pskb_trim_rcsum() instead of calling this directly
2600  */
2601 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2602 {
2603 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2604 		int delta = skb->len - len;
2605 
2606 		skb->csum = csum_block_sub(skb->csum,
2607 					   skb_checksum(skb, len, delta, 0),
2608 					   len);
2609 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2610 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2611 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2612 
2613 		if (offset + sizeof(__sum16) > hdlen)
2614 			return -EINVAL;
2615 	}
2616 	return __pskb_trim(skb, len);
2617 }
2618 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2619 
2620 /**
2621  *	__pskb_pull_tail - advance tail of skb header
2622  *	@skb: buffer to reallocate
2623  *	@delta: number of bytes to advance tail
2624  *
2625  *	The function makes a sense only on a fragmented &sk_buff,
2626  *	it expands header moving its tail forward and copying necessary
2627  *	data from fragmented part.
2628  *
2629  *	&sk_buff MUST have reference count of 1.
2630  *
2631  *	Returns %NULL (and &sk_buff does not change) if pull failed
2632  *	or value of new tail of skb in the case of success.
2633  *
2634  *	All the pointers pointing into skb header may change and must be
2635  *	reloaded after call to this function.
2636  */
2637 
2638 /* Moves tail of skb head forward, copying data from fragmented part,
2639  * when it is necessary.
2640  * 1. It may fail due to malloc failure.
2641  * 2. It may change skb pointers.
2642  *
2643  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2644  */
2645 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2646 {
2647 	/* If skb has not enough free space at tail, get new one
2648 	 * plus 128 bytes for future expansions. If we have enough
2649 	 * room at tail, reallocate without expansion only if skb is cloned.
2650 	 */
2651 	int i, k, eat = (skb->tail + delta) - skb->end;
2652 
2653 	if (eat > 0 || skb_cloned(skb)) {
2654 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2655 				     GFP_ATOMIC))
2656 			return NULL;
2657 	}
2658 
2659 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2660 			     skb_tail_pointer(skb), delta));
2661 
2662 	/* Optimization: no fragments, no reasons to preestimate
2663 	 * size of pulled pages. Superb.
2664 	 */
2665 	if (!skb_has_frag_list(skb))
2666 		goto pull_pages;
2667 
2668 	/* Estimate size of pulled pages. */
2669 	eat = delta;
2670 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2671 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2672 
2673 		if (size >= eat)
2674 			goto pull_pages;
2675 		eat -= size;
2676 	}
2677 
2678 	/* If we need update frag list, we are in troubles.
2679 	 * Certainly, it is possible to add an offset to skb data,
2680 	 * but taking into account that pulling is expected to
2681 	 * be very rare operation, it is worth to fight against
2682 	 * further bloating skb head and crucify ourselves here instead.
2683 	 * Pure masohism, indeed. 8)8)
2684 	 */
2685 	if (eat) {
2686 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2687 		struct sk_buff *clone = NULL;
2688 		struct sk_buff *insp = NULL;
2689 
2690 		do {
2691 			if (list->len <= eat) {
2692 				/* Eaten as whole. */
2693 				eat -= list->len;
2694 				list = list->next;
2695 				insp = list;
2696 			} else {
2697 				/* Eaten partially. */
2698 				if (skb_is_gso(skb) && !list->head_frag &&
2699 				    skb_headlen(list))
2700 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2701 
2702 				if (skb_shared(list)) {
2703 					/* Sucks! We need to fork list. :-( */
2704 					clone = skb_clone(list, GFP_ATOMIC);
2705 					if (!clone)
2706 						return NULL;
2707 					insp = list->next;
2708 					list = clone;
2709 				} else {
2710 					/* This may be pulled without
2711 					 * problems. */
2712 					insp = list;
2713 				}
2714 				if (!pskb_pull(list, eat)) {
2715 					kfree_skb(clone);
2716 					return NULL;
2717 				}
2718 				break;
2719 			}
2720 		} while (eat);
2721 
2722 		/* Free pulled out fragments. */
2723 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2724 			skb_shinfo(skb)->frag_list = list->next;
2725 			consume_skb(list);
2726 		}
2727 		/* And insert new clone at head. */
2728 		if (clone) {
2729 			clone->next = list;
2730 			skb_shinfo(skb)->frag_list = clone;
2731 		}
2732 	}
2733 	/* Success! Now we may commit changes to skb data. */
2734 
2735 pull_pages:
2736 	eat = delta;
2737 	k = 0;
2738 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2739 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2740 
2741 		if (size <= eat) {
2742 			skb_frag_unref(skb, i);
2743 			eat -= size;
2744 		} else {
2745 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2746 
2747 			*frag = skb_shinfo(skb)->frags[i];
2748 			if (eat) {
2749 				skb_frag_off_add(frag, eat);
2750 				skb_frag_size_sub(frag, eat);
2751 				if (!i)
2752 					goto end;
2753 				eat = 0;
2754 			}
2755 			k++;
2756 		}
2757 	}
2758 	skb_shinfo(skb)->nr_frags = k;
2759 
2760 end:
2761 	skb->tail     += delta;
2762 	skb->data_len -= delta;
2763 
2764 	if (!skb->data_len)
2765 		skb_zcopy_clear(skb, false);
2766 
2767 	return skb_tail_pointer(skb);
2768 }
2769 EXPORT_SYMBOL(__pskb_pull_tail);
2770 
2771 /**
2772  *	skb_copy_bits - copy bits from skb to kernel buffer
2773  *	@skb: source skb
2774  *	@offset: offset in source
2775  *	@to: destination buffer
2776  *	@len: number of bytes to copy
2777  *
2778  *	Copy the specified number of bytes from the source skb to the
2779  *	destination buffer.
2780  *
2781  *	CAUTION ! :
2782  *		If its prototype is ever changed,
2783  *		check arch/{*}/net/{*}.S files,
2784  *		since it is called from BPF assembly code.
2785  */
2786 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2787 {
2788 	int start = skb_headlen(skb);
2789 	struct sk_buff *frag_iter;
2790 	int i, copy;
2791 
2792 	if (offset > (int)skb->len - len)
2793 		goto fault;
2794 
2795 	/* Copy header. */
2796 	if ((copy = start - offset) > 0) {
2797 		if (copy > len)
2798 			copy = len;
2799 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2800 		if ((len -= copy) == 0)
2801 			return 0;
2802 		offset += copy;
2803 		to     += copy;
2804 	}
2805 
2806 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2807 		int end;
2808 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2809 
2810 		WARN_ON(start > offset + len);
2811 
2812 		end = start + skb_frag_size(f);
2813 		if ((copy = end - offset) > 0) {
2814 			u32 p_off, p_len, copied;
2815 			struct page *p;
2816 			u8 *vaddr;
2817 
2818 			if (copy > len)
2819 				copy = len;
2820 
2821 			skb_frag_foreach_page(f,
2822 					      skb_frag_off(f) + offset - start,
2823 					      copy, p, p_off, p_len, copied) {
2824 				vaddr = kmap_atomic(p);
2825 				memcpy(to + copied, vaddr + p_off, p_len);
2826 				kunmap_atomic(vaddr);
2827 			}
2828 
2829 			if ((len -= copy) == 0)
2830 				return 0;
2831 			offset += copy;
2832 			to     += copy;
2833 		}
2834 		start = end;
2835 	}
2836 
2837 	skb_walk_frags(skb, frag_iter) {
2838 		int end;
2839 
2840 		WARN_ON(start > offset + len);
2841 
2842 		end = start + frag_iter->len;
2843 		if ((copy = end - offset) > 0) {
2844 			if (copy > len)
2845 				copy = len;
2846 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2847 				goto fault;
2848 			if ((len -= copy) == 0)
2849 				return 0;
2850 			offset += copy;
2851 			to     += copy;
2852 		}
2853 		start = end;
2854 	}
2855 
2856 	if (!len)
2857 		return 0;
2858 
2859 fault:
2860 	return -EFAULT;
2861 }
2862 EXPORT_SYMBOL(skb_copy_bits);
2863 
2864 /*
2865  * Callback from splice_to_pipe(), if we need to release some pages
2866  * at the end of the spd in case we error'ed out in filling the pipe.
2867  */
2868 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2869 {
2870 	put_page(spd->pages[i]);
2871 }
2872 
2873 static struct page *linear_to_page(struct page *page, unsigned int *len,
2874 				   unsigned int *offset,
2875 				   struct sock *sk)
2876 {
2877 	struct page_frag *pfrag = sk_page_frag(sk);
2878 
2879 	if (!sk_page_frag_refill(sk, pfrag))
2880 		return NULL;
2881 
2882 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2883 
2884 	memcpy(page_address(pfrag->page) + pfrag->offset,
2885 	       page_address(page) + *offset, *len);
2886 	*offset = pfrag->offset;
2887 	pfrag->offset += *len;
2888 
2889 	return pfrag->page;
2890 }
2891 
2892 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2893 			     struct page *page,
2894 			     unsigned int offset)
2895 {
2896 	return	spd->nr_pages &&
2897 		spd->pages[spd->nr_pages - 1] == page &&
2898 		(spd->partial[spd->nr_pages - 1].offset +
2899 		 spd->partial[spd->nr_pages - 1].len == offset);
2900 }
2901 
2902 /*
2903  * Fill page/offset/length into spd, if it can hold more pages.
2904  */
2905 static bool spd_fill_page(struct splice_pipe_desc *spd,
2906 			  struct pipe_inode_info *pipe, struct page *page,
2907 			  unsigned int *len, unsigned int offset,
2908 			  bool linear,
2909 			  struct sock *sk)
2910 {
2911 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2912 		return true;
2913 
2914 	if (linear) {
2915 		page = linear_to_page(page, len, &offset, sk);
2916 		if (!page)
2917 			return true;
2918 	}
2919 	if (spd_can_coalesce(spd, page, offset)) {
2920 		spd->partial[spd->nr_pages - 1].len += *len;
2921 		return false;
2922 	}
2923 	get_page(page);
2924 	spd->pages[spd->nr_pages] = page;
2925 	spd->partial[spd->nr_pages].len = *len;
2926 	spd->partial[spd->nr_pages].offset = offset;
2927 	spd->nr_pages++;
2928 
2929 	return false;
2930 }
2931 
2932 static bool __splice_segment(struct page *page, unsigned int poff,
2933 			     unsigned int plen, unsigned int *off,
2934 			     unsigned int *len,
2935 			     struct splice_pipe_desc *spd, bool linear,
2936 			     struct sock *sk,
2937 			     struct pipe_inode_info *pipe)
2938 {
2939 	if (!*len)
2940 		return true;
2941 
2942 	/* skip this segment if already processed */
2943 	if (*off >= plen) {
2944 		*off -= plen;
2945 		return false;
2946 	}
2947 
2948 	/* ignore any bits we already processed */
2949 	poff += *off;
2950 	plen -= *off;
2951 	*off = 0;
2952 
2953 	do {
2954 		unsigned int flen = min(*len, plen);
2955 
2956 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2957 				  linear, sk))
2958 			return true;
2959 		poff += flen;
2960 		plen -= flen;
2961 		*len -= flen;
2962 	} while (*len && plen);
2963 
2964 	return false;
2965 }
2966 
2967 /*
2968  * Map linear and fragment data from the skb to spd. It reports true if the
2969  * pipe is full or if we already spliced the requested length.
2970  */
2971 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2972 			      unsigned int *offset, unsigned int *len,
2973 			      struct splice_pipe_desc *spd, struct sock *sk)
2974 {
2975 	int seg;
2976 	struct sk_buff *iter;
2977 
2978 	/* map the linear part :
2979 	 * If skb->head_frag is set, this 'linear' part is backed by a
2980 	 * fragment, and if the head is not shared with any clones then
2981 	 * we can avoid a copy since we own the head portion of this page.
2982 	 */
2983 	if (__splice_segment(virt_to_page(skb->data),
2984 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2985 			     skb_headlen(skb),
2986 			     offset, len, spd,
2987 			     skb_head_is_locked(skb),
2988 			     sk, pipe))
2989 		return true;
2990 
2991 	/*
2992 	 * then map the fragments
2993 	 */
2994 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2995 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2996 
2997 		if (__splice_segment(skb_frag_page(f),
2998 				     skb_frag_off(f), skb_frag_size(f),
2999 				     offset, len, spd, false, sk, pipe))
3000 			return true;
3001 	}
3002 
3003 	skb_walk_frags(skb, iter) {
3004 		if (*offset >= iter->len) {
3005 			*offset -= iter->len;
3006 			continue;
3007 		}
3008 		/* __skb_splice_bits() only fails if the output has no room
3009 		 * left, so no point in going over the frag_list for the error
3010 		 * case.
3011 		 */
3012 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3013 			return true;
3014 	}
3015 
3016 	return false;
3017 }
3018 
3019 /*
3020  * Map data from the skb to a pipe. Should handle both the linear part,
3021  * the fragments, and the frag list.
3022  */
3023 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3024 		    struct pipe_inode_info *pipe, unsigned int tlen,
3025 		    unsigned int flags)
3026 {
3027 	struct partial_page partial[MAX_SKB_FRAGS];
3028 	struct page *pages[MAX_SKB_FRAGS];
3029 	struct splice_pipe_desc spd = {
3030 		.pages = pages,
3031 		.partial = partial,
3032 		.nr_pages_max = MAX_SKB_FRAGS,
3033 		.ops = &nosteal_pipe_buf_ops,
3034 		.spd_release = sock_spd_release,
3035 	};
3036 	int ret = 0;
3037 
3038 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3039 
3040 	if (spd.nr_pages)
3041 		ret = splice_to_pipe(pipe, &spd);
3042 
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(skb_splice_bits);
3046 
3047 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3048 {
3049 	struct socket *sock = sk->sk_socket;
3050 	size_t size = msg_data_left(msg);
3051 
3052 	if (!sock)
3053 		return -EINVAL;
3054 
3055 	if (!sock->ops->sendmsg_locked)
3056 		return sock_no_sendmsg_locked(sk, msg, size);
3057 
3058 	return sock->ops->sendmsg_locked(sk, msg, size);
3059 }
3060 
3061 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3062 {
3063 	struct socket *sock = sk->sk_socket;
3064 
3065 	if (!sock)
3066 		return -EINVAL;
3067 	return sock_sendmsg(sock, msg);
3068 }
3069 
3070 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3071 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3072 			   int len, sendmsg_func sendmsg)
3073 {
3074 	unsigned int orig_len = len;
3075 	struct sk_buff *head = skb;
3076 	unsigned short fragidx;
3077 	int slen, ret;
3078 
3079 do_frag_list:
3080 
3081 	/* Deal with head data */
3082 	while (offset < skb_headlen(skb) && len) {
3083 		struct kvec kv;
3084 		struct msghdr msg;
3085 
3086 		slen = min_t(int, len, skb_headlen(skb) - offset);
3087 		kv.iov_base = skb->data + offset;
3088 		kv.iov_len = slen;
3089 		memset(&msg, 0, sizeof(msg));
3090 		msg.msg_flags = MSG_DONTWAIT;
3091 
3092 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3093 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3094 				      sendmsg_unlocked, sk, &msg);
3095 		if (ret <= 0)
3096 			goto error;
3097 
3098 		offset += ret;
3099 		len -= ret;
3100 	}
3101 
3102 	/* All the data was skb head? */
3103 	if (!len)
3104 		goto out;
3105 
3106 	/* Make offset relative to start of frags */
3107 	offset -= skb_headlen(skb);
3108 
3109 	/* Find where we are in frag list */
3110 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3111 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3112 
3113 		if (offset < skb_frag_size(frag))
3114 			break;
3115 
3116 		offset -= skb_frag_size(frag);
3117 	}
3118 
3119 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3120 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3121 
3122 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3123 
3124 		while (slen) {
3125 			struct bio_vec bvec;
3126 			struct msghdr msg = {
3127 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3128 			};
3129 
3130 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3131 				      skb_frag_off(frag) + offset);
3132 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3133 				      slen);
3134 
3135 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3136 					      sendmsg_unlocked, sk, &msg);
3137 			if (ret <= 0)
3138 				goto error;
3139 
3140 			len -= ret;
3141 			offset += ret;
3142 			slen -= ret;
3143 		}
3144 
3145 		offset = 0;
3146 	}
3147 
3148 	if (len) {
3149 		/* Process any frag lists */
3150 
3151 		if (skb == head) {
3152 			if (skb_has_frag_list(skb)) {
3153 				skb = skb_shinfo(skb)->frag_list;
3154 				goto do_frag_list;
3155 			}
3156 		} else if (skb->next) {
3157 			skb = skb->next;
3158 			goto do_frag_list;
3159 		}
3160 	}
3161 
3162 out:
3163 	return orig_len - len;
3164 
3165 error:
3166 	return orig_len == len ? ret : orig_len - len;
3167 }
3168 
3169 /* Send skb data on a socket. Socket must be locked. */
3170 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3171 			 int len)
3172 {
3173 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3174 }
3175 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3176 
3177 /* Send skb data on a socket. Socket must be unlocked. */
3178 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3179 {
3180 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3181 }
3182 
3183 /**
3184  *	skb_store_bits - store bits from kernel buffer to skb
3185  *	@skb: destination buffer
3186  *	@offset: offset in destination
3187  *	@from: source buffer
3188  *	@len: number of bytes to copy
3189  *
3190  *	Copy the specified number of bytes from the source buffer to the
3191  *	destination skb.  This function handles all the messy bits of
3192  *	traversing fragment lists and such.
3193  */
3194 
3195 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3196 {
3197 	int start = skb_headlen(skb);
3198 	struct sk_buff *frag_iter;
3199 	int i, copy;
3200 
3201 	if (offset > (int)skb->len - len)
3202 		goto fault;
3203 
3204 	if ((copy = start - offset) > 0) {
3205 		if (copy > len)
3206 			copy = len;
3207 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3208 		if ((len -= copy) == 0)
3209 			return 0;
3210 		offset += copy;
3211 		from += copy;
3212 	}
3213 
3214 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3215 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3216 		int end;
3217 
3218 		WARN_ON(start > offset + len);
3219 
3220 		end = start + skb_frag_size(frag);
3221 		if ((copy = end - offset) > 0) {
3222 			u32 p_off, p_len, copied;
3223 			struct page *p;
3224 			u8 *vaddr;
3225 
3226 			if (copy > len)
3227 				copy = len;
3228 
3229 			skb_frag_foreach_page(frag,
3230 					      skb_frag_off(frag) + offset - start,
3231 					      copy, p, p_off, p_len, copied) {
3232 				vaddr = kmap_atomic(p);
3233 				memcpy(vaddr + p_off, from + copied, p_len);
3234 				kunmap_atomic(vaddr);
3235 			}
3236 
3237 			if ((len -= copy) == 0)
3238 				return 0;
3239 			offset += copy;
3240 			from += copy;
3241 		}
3242 		start = end;
3243 	}
3244 
3245 	skb_walk_frags(skb, frag_iter) {
3246 		int end;
3247 
3248 		WARN_ON(start > offset + len);
3249 
3250 		end = start + frag_iter->len;
3251 		if ((copy = end - offset) > 0) {
3252 			if (copy > len)
3253 				copy = len;
3254 			if (skb_store_bits(frag_iter, offset - start,
3255 					   from, copy))
3256 				goto fault;
3257 			if ((len -= copy) == 0)
3258 				return 0;
3259 			offset += copy;
3260 			from += copy;
3261 		}
3262 		start = end;
3263 	}
3264 	if (!len)
3265 		return 0;
3266 
3267 fault:
3268 	return -EFAULT;
3269 }
3270 EXPORT_SYMBOL(skb_store_bits);
3271 
3272 /* Checksum skb data. */
3273 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3274 		      __wsum csum, const struct skb_checksum_ops *ops)
3275 {
3276 	int start = skb_headlen(skb);
3277 	int i, copy = start - offset;
3278 	struct sk_buff *frag_iter;
3279 	int pos = 0;
3280 
3281 	/* Checksum header. */
3282 	if (copy > 0) {
3283 		if (copy > len)
3284 			copy = len;
3285 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3286 				       skb->data + offset, copy, csum);
3287 		if ((len -= copy) == 0)
3288 			return csum;
3289 		offset += copy;
3290 		pos	= copy;
3291 	}
3292 
3293 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3294 		int end;
3295 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3296 
3297 		WARN_ON(start > offset + len);
3298 
3299 		end = start + skb_frag_size(frag);
3300 		if ((copy = end - offset) > 0) {
3301 			u32 p_off, p_len, copied;
3302 			struct page *p;
3303 			__wsum csum2;
3304 			u8 *vaddr;
3305 
3306 			if (copy > len)
3307 				copy = len;
3308 
3309 			skb_frag_foreach_page(frag,
3310 					      skb_frag_off(frag) + offset - start,
3311 					      copy, p, p_off, p_len, copied) {
3312 				vaddr = kmap_atomic(p);
3313 				csum2 = INDIRECT_CALL_1(ops->update,
3314 							csum_partial_ext,
3315 							vaddr + p_off, p_len, 0);
3316 				kunmap_atomic(vaddr);
3317 				csum = INDIRECT_CALL_1(ops->combine,
3318 						       csum_block_add_ext, csum,
3319 						       csum2, pos, p_len);
3320 				pos += p_len;
3321 			}
3322 
3323 			if (!(len -= copy))
3324 				return csum;
3325 			offset += copy;
3326 		}
3327 		start = end;
3328 	}
3329 
3330 	skb_walk_frags(skb, frag_iter) {
3331 		int end;
3332 
3333 		WARN_ON(start > offset + len);
3334 
3335 		end = start + frag_iter->len;
3336 		if ((copy = end - offset) > 0) {
3337 			__wsum csum2;
3338 			if (copy > len)
3339 				copy = len;
3340 			csum2 = __skb_checksum(frag_iter, offset - start,
3341 					       copy, 0, ops);
3342 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3343 					       csum, csum2, pos, copy);
3344 			if ((len -= copy) == 0)
3345 				return csum;
3346 			offset += copy;
3347 			pos    += copy;
3348 		}
3349 		start = end;
3350 	}
3351 	BUG_ON(len);
3352 
3353 	return csum;
3354 }
3355 EXPORT_SYMBOL(__skb_checksum);
3356 
3357 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3358 		    int len, __wsum csum)
3359 {
3360 	const struct skb_checksum_ops ops = {
3361 		.update  = csum_partial_ext,
3362 		.combine = csum_block_add_ext,
3363 	};
3364 
3365 	return __skb_checksum(skb, offset, len, csum, &ops);
3366 }
3367 EXPORT_SYMBOL(skb_checksum);
3368 
3369 /* Both of above in one bottle. */
3370 
3371 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3372 				    u8 *to, int len)
3373 {
3374 	int start = skb_headlen(skb);
3375 	int i, copy = start - offset;
3376 	struct sk_buff *frag_iter;
3377 	int pos = 0;
3378 	__wsum csum = 0;
3379 
3380 	/* Copy header. */
3381 	if (copy > 0) {
3382 		if (copy > len)
3383 			copy = len;
3384 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3385 						 copy);
3386 		if ((len -= copy) == 0)
3387 			return csum;
3388 		offset += copy;
3389 		to     += copy;
3390 		pos	= copy;
3391 	}
3392 
3393 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3394 		int end;
3395 
3396 		WARN_ON(start > offset + len);
3397 
3398 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3399 		if ((copy = end - offset) > 0) {
3400 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401 			u32 p_off, p_len, copied;
3402 			struct page *p;
3403 			__wsum csum2;
3404 			u8 *vaddr;
3405 
3406 			if (copy > len)
3407 				copy = len;
3408 
3409 			skb_frag_foreach_page(frag,
3410 					      skb_frag_off(frag) + offset - start,
3411 					      copy, p, p_off, p_len, copied) {
3412 				vaddr = kmap_atomic(p);
3413 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3414 								  to + copied,
3415 								  p_len);
3416 				kunmap_atomic(vaddr);
3417 				csum = csum_block_add(csum, csum2, pos);
3418 				pos += p_len;
3419 			}
3420 
3421 			if (!(len -= copy))
3422 				return csum;
3423 			offset += copy;
3424 			to     += copy;
3425 		}
3426 		start = end;
3427 	}
3428 
3429 	skb_walk_frags(skb, frag_iter) {
3430 		__wsum csum2;
3431 		int end;
3432 
3433 		WARN_ON(start > offset + len);
3434 
3435 		end = start + frag_iter->len;
3436 		if ((copy = end - offset) > 0) {
3437 			if (copy > len)
3438 				copy = len;
3439 			csum2 = skb_copy_and_csum_bits(frag_iter,
3440 						       offset - start,
3441 						       to, copy);
3442 			csum = csum_block_add(csum, csum2, pos);
3443 			if ((len -= copy) == 0)
3444 				return csum;
3445 			offset += copy;
3446 			to     += copy;
3447 			pos    += copy;
3448 		}
3449 		start = end;
3450 	}
3451 	BUG_ON(len);
3452 	return csum;
3453 }
3454 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3455 
3456 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3457 {
3458 	__sum16 sum;
3459 
3460 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3461 	/* See comments in __skb_checksum_complete(). */
3462 	if (likely(!sum)) {
3463 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3464 		    !skb->csum_complete_sw)
3465 			netdev_rx_csum_fault(skb->dev, skb);
3466 	}
3467 	if (!skb_shared(skb))
3468 		skb->csum_valid = !sum;
3469 	return sum;
3470 }
3471 EXPORT_SYMBOL(__skb_checksum_complete_head);
3472 
3473 /* This function assumes skb->csum already holds pseudo header's checksum,
3474  * which has been changed from the hardware checksum, for example, by
3475  * __skb_checksum_validate_complete(). And, the original skb->csum must
3476  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3477  *
3478  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3479  * zero. The new checksum is stored back into skb->csum unless the skb is
3480  * shared.
3481  */
3482 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3483 {
3484 	__wsum csum;
3485 	__sum16 sum;
3486 
3487 	csum = skb_checksum(skb, 0, skb->len, 0);
3488 
3489 	sum = csum_fold(csum_add(skb->csum, csum));
3490 	/* This check is inverted, because we already knew the hardware
3491 	 * checksum is invalid before calling this function. So, if the
3492 	 * re-computed checksum is valid instead, then we have a mismatch
3493 	 * between the original skb->csum and skb_checksum(). This means either
3494 	 * the original hardware checksum is incorrect or we screw up skb->csum
3495 	 * when moving skb->data around.
3496 	 */
3497 	if (likely(!sum)) {
3498 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3499 		    !skb->csum_complete_sw)
3500 			netdev_rx_csum_fault(skb->dev, skb);
3501 	}
3502 
3503 	if (!skb_shared(skb)) {
3504 		/* Save full packet checksum */
3505 		skb->csum = csum;
3506 		skb->ip_summed = CHECKSUM_COMPLETE;
3507 		skb->csum_complete_sw = 1;
3508 		skb->csum_valid = !sum;
3509 	}
3510 
3511 	return sum;
3512 }
3513 EXPORT_SYMBOL(__skb_checksum_complete);
3514 
3515 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3516 {
3517 	net_warn_ratelimited(
3518 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3519 		__func__);
3520 	return 0;
3521 }
3522 
3523 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3524 				       int offset, int len)
3525 {
3526 	net_warn_ratelimited(
3527 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3528 		__func__);
3529 	return 0;
3530 }
3531 
3532 static const struct skb_checksum_ops default_crc32c_ops = {
3533 	.update  = warn_crc32c_csum_update,
3534 	.combine = warn_crc32c_csum_combine,
3535 };
3536 
3537 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3538 	&default_crc32c_ops;
3539 EXPORT_SYMBOL(crc32c_csum_stub);
3540 
3541  /**
3542  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3543  *	@from: source buffer
3544  *
3545  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3546  *	into skb_zerocopy().
3547  */
3548 unsigned int
3549 skb_zerocopy_headlen(const struct sk_buff *from)
3550 {
3551 	unsigned int hlen = 0;
3552 
3553 	if (!from->head_frag ||
3554 	    skb_headlen(from) < L1_CACHE_BYTES ||
3555 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3556 		hlen = skb_headlen(from);
3557 		if (!hlen)
3558 			hlen = from->len;
3559 	}
3560 
3561 	if (skb_has_frag_list(from))
3562 		hlen = from->len;
3563 
3564 	return hlen;
3565 }
3566 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3567 
3568 /**
3569  *	skb_zerocopy - Zero copy skb to skb
3570  *	@to: destination buffer
3571  *	@from: source buffer
3572  *	@len: number of bytes to copy from source buffer
3573  *	@hlen: size of linear headroom in destination buffer
3574  *
3575  *	Copies up to `len` bytes from `from` to `to` by creating references
3576  *	to the frags in the source buffer.
3577  *
3578  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3579  *	headroom in the `to` buffer.
3580  *
3581  *	Return value:
3582  *	0: everything is OK
3583  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3584  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3585  */
3586 int
3587 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3588 {
3589 	int i, j = 0;
3590 	int plen = 0; /* length of skb->head fragment */
3591 	int ret;
3592 	struct page *page;
3593 	unsigned int offset;
3594 
3595 	BUG_ON(!from->head_frag && !hlen);
3596 
3597 	/* dont bother with small payloads */
3598 	if (len <= skb_tailroom(to))
3599 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3600 
3601 	if (hlen) {
3602 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3603 		if (unlikely(ret))
3604 			return ret;
3605 		len -= hlen;
3606 	} else {
3607 		plen = min_t(int, skb_headlen(from), len);
3608 		if (plen) {
3609 			page = virt_to_head_page(from->head);
3610 			offset = from->data - (unsigned char *)page_address(page);
3611 			__skb_fill_page_desc(to, 0, page, offset, plen);
3612 			get_page(page);
3613 			j = 1;
3614 			len -= plen;
3615 		}
3616 	}
3617 
3618 	skb_len_add(to, len + plen);
3619 
3620 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3621 		skb_tx_error(from);
3622 		return -ENOMEM;
3623 	}
3624 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3625 
3626 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3627 		int size;
3628 
3629 		if (!len)
3630 			break;
3631 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3632 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3633 					len);
3634 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3635 		len -= size;
3636 		skb_frag_ref(to, j);
3637 		j++;
3638 	}
3639 	skb_shinfo(to)->nr_frags = j;
3640 
3641 	return 0;
3642 }
3643 EXPORT_SYMBOL_GPL(skb_zerocopy);
3644 
3645 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3646 {
3647 	__wsum csum;
3648 	long csstart;
3649 
3650 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3651 		csstart = skb_checksum_start_offset(skb);
3652 	else
3653 		csstart = skb_headlen(skb);
3654 
3655 	BUG_ON(csstart > skb_headlen(skb));
3656 
3657 	skb_copy_from_linear_data(skb, to, csstart);
3658 
3659 	csum = 0;
3660 	if (csstart != skb->len)
3661 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3662 					      skb->len - csstart);
3663 
3664 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3665 		long csstuff = csstart + skb->csum_offset;
3666 
3667 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3668 	}
3669 }
3670 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3671 
3672 /**
3673  *	skb_dequeue - remove from the head of the queue
3674  *	@list: list to dequeue from
3675  *
3676  *	Remove the head of the list. The list lock is taken so the function
3677  *	may be used safely with other locking list functions. The head item is
3678  *	returned or %NULL if the list is empty.
3679  */
3680 
3681 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3682 {
3683 	unsigned long flags;
3684 	struct sk_buff *result;
3685 
3686 	spin_lock_irqsave(&list->lock, flags);
3687 	result = __skb_dequeue(list);
3688 	spin_unlock_irqrestore(&list->lock, flags);
3689 	return result;
3690 }
3691 EXPORT_SYMBOL(skb_dequeue);
3692 
3693 /**
3694  *	skb_dequeue_tail - remove from the tail of the queue
3695  *	@list: list to dequeue from
3696  *
3697  *	Remove the tail of the list. The list lock is taken so the function
3698  *	may be used safely with other locking list functions. The tail item is
3699  *	returned or %NULL if the list is empty.
3700  */
3701 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3702 {
3703 	unsigned long flags;
3704 	struct sk_buff *result;
3705 
3706 	spin_lock_irqsave(&list->lock, flags);
3707 	result = __skb_dequeue_tail(list);
3708 	spin_unlock_irqrestore(&list->lock, flags);
3709 	return result;
3710 }
3711 EXPORT_SYMBOL(skb_dequeue_tail);
3712 
3713 /**
3714  *	skb_queue_purge_reason - empty a list
3715  *	@list: list to empty
3716  *	@reason: drop reason
3717  *
3718  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3719  *	the list and one reference dropped. This function takes the list
3720  *	lock and is atomic with respect to other list locking functions.
3721  */
3722 void skb_queue_purge_reason(struct sk_buff_head *list,
3723 			    enum skb_drop_reason reason)
3724 {
3725 	struct sk_buff_head tmp;
3726 	unsigned long flags;
3727 
3728 	if (skb_queue_empty_lockless(list))
3729 		return;
3730 
3731 	__skb_queue_head_init(&tmp);
3732 
3733 	spin_lock_irqsave(&list->lock, flags);
3734 	skb_queue_splice_init(list, &tmp);
3735 	spin_unlock_irqrestore(&list->lock, flags);
3736 
3737 	__skb_queue_purge_reason(&tmp, reason);
3738 }
3739 EXPORT_SYMBOL(skb_queue_purge_reason);
3740 
3741 /**
3742  *	skb_rbtree_purge - empty a skb rbtree
3743  *	@root: root of the rbtree to empty
3744  *	Return value: the sum of truesizes of all purged skbs.
3745  *
3746  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3747  *	the list and one reference dropped. This function does not take
3748  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3749  *	out-of-order queue is protected by the socket lock).
3750  */
3751 unsigned int skb_rbtree_purge(struct rb_root *root)
3752 {
3753 	struct rb_node *p = rb_first(root);
3754 	unsigned int sum = 0;
3755 
3756 	while (p) {
3757 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3758 
3759 		p = rb_next(p);
3760 		rb_erase(&skb->rbnode, root);
3761 		sum += skb->truesize;
3762 		kfree_skb(skb);
3763 	}
3764 	return sum;
3765 }
3766 
3767 void skb_errqueue_purge(struct sk_buff_head *list)
3768 {
3769 	struct sk_buff *skb, *next;
3770 	struct sk_buff_head kill;
3771 	unsigned long flags;
3772 
3773 	__skb_queue_head_init(&kill);
3774 
3775 	spin_lock_irqsave(&list->lock, flags);
3776 	skb_queue_walk_safe(list, skb, next) {
3777 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3778 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3779 			continue;
3780 		__skb_unlink(skb, list);
3781 		__skb_queue_tail(&kill, skb);
3782 	}
3783 	spin_unlock_irqrestore(&list->lock, flags);
3784 	__skb_queue_purge(&kill);
3785 }
3786 EXPORT_SYMBOL(skb_errqueue_purge);
3787 
3788 /**
3789  *	skb_queue_head - queue a buffer at the list head
3790  *	@list: list to use
3791  *	@newsk: buffer to queue
3792  *
3793  *	Queue a buffer at the start of the list. This function takes the
3794  *	list lock and can be used safely with other locking &sk_buff functions
3795  *	safely.
3796  *
3797  *	A buffer cannot be placed on two lists at the same time.
3798  */
3799 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3800 {
3801 	unsigned long flags;
3802 
3803 	spin_lock_irqsave(&list->lock, flags);
3804 	__skb_queue_head(list, newsk);
3805 	spin_unlock_irqrestore(&list->lock, flags);
3806 }
3807 EXPORT_SYMBOL(skb_queue_head);
3808 
3809 /**
3810  *	skb_queue_tail - queue a buffer at the list tail
3811  *	@list: list to use
3812  *	@newsk: buffer to queue
3813  *
3814  *	Queue a buffer at the tail of the list. This function takes the
3815  *	list lock and can be used safely with other locking &sk_buff functions
3816  *	safely.
3817  *
3818  *	A buffer cannot be placed on two lists at the same time.
3819  */
3820 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3821 {
3822 	unsigned long flags;
3823 
3824 	spin_lock_irqsave(&list->lock, flags);
3825 	__skb_queue_tail(list, newsk);
3826 	spin_unlock_irqrestore(&list->lock, flags);
3827 }
3828 EXPORT_SYMBOL(skb_queue_tail);
3829 
3830 /**
3831  *	skb_unlink	-	remove a buffer from a list
3832  *	@skb: buffer to remove
3833  *	@list: list to use
3834  *
3835  *	Remove a packet from a list. The list locks are taken and this
3836  *	function is atomic with respect to other list locked calls
3837  *
3838  *	You must know what list the SKB is on.
3839  */
3840 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3841 {
3842 	unsigned long flags;
3843 
3844 	spin_lock_irqsave(&list->lock, flags);
3845 	__skb_unlink(skb, list);
3846 	spin_unlock_irqrestore(&list->lock, flags);
3847 }
3848 EXPORT_SYMBOL(skb_unlink);
3849 
3850 /**
3851  *	skb_append	-	append a buffer
3852  *	@old: buffer to insert after
3853  *	@newsk: buffer to insert
3854  *	@list: list to use
3855  *
3856  *	Place a packet after a given packet in a list. The list locks are taken
3857  *	and this function is atomic with respect to other list locked calls.
3858  *	A buffer cannot be placed on two lists at the same time.
3859  */
3860 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3861 {
3862 	unsigned long flags;
3863 
3864 	spin_lock_irqsave(&list->lock, flags);
3865 	__skb_queue_after(list, old, newsk);
3866 	spin_unlock_irqrestore(&list->lock, flags);
3867 }
3868 EXPORT_SYMBOL(skb_append);
3869 
3870 static inline void skb_split_inside_header(struct sk_buff *skb,
3871 					   struct sk_buff* skb1,
3872 					   const u32 len, const int pos)
3873 {
3874 	int i;
3875 
3876 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3877 					 pos - len);
3878 	/* And move data appendix as is. */
3879 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3880 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3881 
3882 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3883 	skb_shinfo(skb)->nr_frags  = 0;
3884 	skb1->data_len		   = skb->data_len;
3885 	skb1->len		   += skb1->data_len;
3886 	skb->data_len		   = 0;
3887 	skb->len		   = len;
3888 	skb_set_tail_pointer(skb, len);
3889 }
3890 
3891 static inline void skb_split_no_header(struct sk_buff *skb,
3892 				       struct sk_buff* skb1,
3893 				       const u32 len, int pos)
3894 {
3895 	int i, k = 0;
3896 	const int nfrags = skb_shinfo(skb)->nr_frags;
3897 
3898 	skb_shinfo(skb)->nr_frags = 0;
3899 	skb1->len		  = skb1->data_len = skb->len - len;
3900 	skb->len		  = len;
3901 	skb->data_len		  = len - pos;
3902 
3903 	for (i = 0; i < nfrags; i++) {
3904 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3905 
3906 		if (pos + size > len) {
3907 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3908 
3909 			if (pos < len) {
3910 				/* Split frag.
3911 				 * We have two variants in this case:
3912 				 * 1. Move all the frag to the second
3913 				 *    part, if it is possible. F.e.
3914 				 *    this approach is mandatory for TUX,
3915 				 *    where splitting is expensive.
3916 				 * 2. Split is accurately. We make this.
3917 				 */
3918 				skb_frag_ref(skb, i);
3919 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3920 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3921 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3922 				skb_shinfo(skb)->nr_frags++;
3923 			}
3924 			k++;
3925 		} else
3926 			skb_shinfo(skb)->nr_frags++;
3927 		pos += size;
3928 	}
3929 	skb_shinfo(skb1)->nr_frags = k;
3930 }
3931 
3932 /**
3933  * skb_split - Split fragmented skb to two parts at length len.
3934  * @skb: the buffer to split
3935  * @skb1: the buffer to receive the second part
3936  * @len: new length for skb
3937  */
3938 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3939 {
3940 	int pos = skb_headlen(skb);
3941 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3942 
3943 	skb_zcopy_downgrade_managed(skb);
3944 
3945 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3946 	skb_zerocopy_clone(skb1, skb, 0);
3947 	if (len < pos)	/* Split line is inside header. */
3948 		skb_split_inside_header(skb, skb1, len, pos);
3949 	else		/* Second chunk has no header, nothing to copy. */
3950 		skb_split_no_header(skb, skb1, len, pos);
3951 }
3952 EXPORT_SYMBOL(skb_split);
3953 
3954 /* Shifting from/to a cloned skb is a no-go.
3955  *
3956  * Caller cannot keep skb_shinfo related pointers past calling here!
3957  */
3958 static int skb_prepare_for_shift(struct sk_buff *skb)
3959 {
3960 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3961 }
3962 
3963 /**
3964  * skb_shift - Shifts paged data partially from skb to another
3965  * @tgt: buffer into which tail data gets added
3966  * @skb: buffer from which the paged data comes from
3967  * @shiftlen: shift up to this many bytes
3968  *
3969  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3970  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3971  * It's up to caller to free skb if everything was shifted.
3972  *
3973  * If @tgt runs out of frags, the whole operation is aborted.
3974  *
3975  * Skb cannot include anything else but paged data while tgt is allowed
3976  * to have non-paged data as well.
3977  *
3978  * TODO: full sized shift could be optimized but that would need
3979  * specialized skb free'er to handle frags without up-to-date nr_frags.
3980  */
3981 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3982 {
3983 	int from, to, merge, todo;
3984 	skb_frag_t *fragfrom, *fragto;
3985 
3986 	BUG_ON(shiftlen > skb->len);
3987 
3988 	if (skb_headlen(skb))
3989 		return 0;
3990 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3991 		return 0;
3992 
3993 	todo = shiftlen;
3994 	from = 0;
3995 	to = skb_shinfo(tgt)->nr_frags;
3996 	fragfrom = &skb_shinfo(skb)->frags[from];
3997 
3998 	/* Actual merge is delayed until the point when we know we can
3999 	 * commit all, so that we don't have to undo partial changes
4000 	 */
4001 	if (!to ||
4002 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4003 			      skb_frag_off(fragfrom))) {
4004 		merge = -1;
4005 	} else {
4006 		merge = to - 1;
4007 
4008 		todo -= skb_frag_size(fragfrom);
4009 		if (todo < 0) {
4010 			if (skb_prepare_for_shift(skb) ||
4011 			    skb_prepare_for_shift(tgt))
4012 				return 0;
4013 
4014 			/* All previous frag pointers might be stale! */
4015 			fragfrom = &skb_shinfo(skb)->frags[from];
4016 			fragto = &skb_shinfo(tgt)->frags[merge];
4017 
4018 			skb_frag_size_add(fragto, shiftlen);
4019 			skb_frag_size_sub(fragfrom, shiftlen);
4020 			skb_frag_off_add(fragfrom, shiftlen);
4021 
4022 			goto onlymerged;
4023 		}
4024 
4025 		from++;
4026 	}
4027 
4028 	/* Skip full, not-fitting skb to avoid expensive operations */
4029 	if ((shiftlen == skb->len) &&
4030 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4031 		return 0;
4032 
4033 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4034 		return 0;
4035 
4036 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4037 		if (to == MAX_SKB_FRAGS)
4038 			return 0;
4039 
4040 		fragfrom = &skb_shinfo(skb)->frags[from];
4041 		fragto = &skb_shinfo(tgt)->frags[to];
4042 
4043 		if (todo >= skb_frag_size(fragfrom)) {
4044 			*fragto = *fragfrom;
4045 			todo -= skb_frag_size(fragfrom);
4046 			from++;
4047 			to++;
4048 
4049 		} else {
4050 			__skb_frag_ref(fragfrom);
4051 			skb_frag_page_copy(fragto, fragfrom);
4052 			skb_frag_off_copy(fragto, fragfrom);
4053 			skb_frag_size_set(fragto, todo);
4054 
4055 			skb_frag_off_add(fragfrom, todo);
4056 			skb_frag_size_sub(fragfrom, todo);
4057 			todo = 0;
4058 
4059 			to++;
4060 			break;
4061 		}
4062 	}
4063 
4064 	/* Ready to "commit" this state change to tgt */
4065 	skb_shinfo(tgt)->nr_frags = to;
4066 
4067 	if (merge >= 0) {
4068 		fragfrom = &skb_shinfo(skb)->frags[0];
4069 		fragto = &skb_shinfo(tgt)->frags[merge];
4070 
4071 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4072 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4073 	}
4074 
4075 	/* Reposition in the original skb */
4076 	to = 0;
4077 	while (from < skb_shinfo(skb)->nr_frags)
4078 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4079 	skb_shinfo(skb)->nr_frags = to;
4080 
4081 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4082 
4083 onlymerged:
4084 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4085 	 * the other hand might need it if it needs to be resent
4086 	 */
4087 	tgt->ip_summed = CHECKSUM_PARTIAL;
4088 	skb->ip_summed = CHECKSUM_PARTIAL;
4089 
4090 	skb_len_add(skb, -shiftlen);
4091 	skb_len_add(tgt, shiftlen);
4092 
4093 	return shiftlen;
4094 }
4095 
4096 /**
4097  * skb_prepare_seq_read - Prepare a sequential read of skb data
4098  * @skb: the buffer to read
4099  * @from: lower offset of data to be read
4100  * @to: upper offset of data to be read
4101  * @st: state variable
4102  *
4103  * Initializes the specified state variable. Must be called before
4104  * invoking skb_seq_read() for the first time.
4105  */
4106 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4107 			  unsigned int to, struct skb_seq_state *st)
4108 {
4109 	st->lower_offset = from;
4110 	st->upper_offset = to;
4111 	st->root_skb = st->cur_skb = skb;
4112 	st->frag_idx = st->stepped_offset = 0;
4113 	st->frag_data = NULL;
4114 	st->frag_off = 0;
4115 }
4116 EXPORT_SYMBOL(skb_prepare_seq_read);
4117 
4118 /**
4119  * skb_seq_read - Sequentially read skb data
4120  * @consumed: number of bytes consumed by the caller so far
4121  * @data: destination pointer for data to be returned
4122  * @st: state variable
4123  *
4124  * Reads a block of skb data at @consumed relative to the
4125  * lower offset specified to skb_prepare_seq_read(). Assigns
4126  * the head of the data block to @data and returns the length
4127  * of the block or 0 if the end of the skb data or the upper
4128  * offset has been reached.
4129  *
4130  * The caller is not required to consume all of the data
4131  * returned, i.e. @consumed is typically set to the number
4132  * of bytes already consumed and the next call to
4133  * skb_seq_read() will return the remaining part of the block.
4134  *
4135  * Note 1: The size of each block of data returned can be arbitrary,
4136  *       this limitation is the cost for zerocopy sequential
4137  *       reads of potentially non linear data.
4138  *
4139  * Note 2: Fragment lists within fragments are not implemented
4140  *       at the moment, state->root_skb could be replaced with
4141  *       a stack for this purpose.
4142  */
4143 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4144 			  struct skb_seq_state *st)
4145 {
4146 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4147 	skb_frag_t *frag;
4148 
4149 	if (unlikely(abs_offset >= st->upper_offset)) {
4150 		if (st->frag_data) {
4151 			kunmap_atomic(st->frag_data);
4152 			st->frag_data = NULL;
4153 		}
4154 		return 0;
4155 	}
4156 
4157 next_skb:
4158 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4159 
4160 	if (abs_offset < block_limit && !st->frag_data) {
4161 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4162 		return block_limit - abs_offset;
4163 	}
4164 
4165 	if (st->frag_idx == 0 && !st->frag_data)
4166 		st->stepped_offset += skb_headlen(st->cur_skb);
4167 
4168 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4169 		unsigned int pg_idx, pg_off, pg_sz;
4170 
4171 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4172 
4173 		pg_idx = 0;
4174 		pg_off = skb_frag_off(frag);
4175 		pg_sz = skb_frag_size(frag);
4176 
4177 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4178 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4179 			pg_off = offset_in_page(pg_off + st->frag_off);
4180 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4181 						    PAGE_SIZE - pg_off);
4182 		}
4183 
4184 		block_limit = pg_sz + st->stepped_offset;
4185 		if (abs_offset < block_limit) {
4186 			if (!st->frag_data)
4187 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4188 
4189 			*data = (u8 *)st->frag_data + pg_off +
4190 				(abs_offset - st->stepped_offset);
4191 
4192 			return block_limit - abs_offset;
4193 		}
4194 
4195 		if (st->frag_data) {
4196 			kunmap_atomic(st->frag_data);
4197 			st->frag_data = NULL;
4198 		}
4199 
4200 		st->stepped_offset += pg_sz;
4201 		st->frag_off += pg_sz;
4202 		if (st->frag_off == skb_frag_size(frag)) {
4203 			st->frag_off = 0;
4204 			st->frag_idx++;
4205 		}
4206 	}
4207 
4208 	if (st->frag_data) {
4209 		kunmap_atomic(st->frag_data);
4210 		st->frag_data = NULL;
4211 	}
4212 
4213 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4214 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4215 		st->frag_idx = 0;
4216 		goto next_skb;
4217 	} else if (st->cur_skb->next) {
4218 		st->cur_skb = st->cur_skb->next;
4219 		st->frag_idx = 0;
4220 		goto next_skb;
4221 	}
4222 
4223 	return 0;
4224 }
4225 EXPORT_SYMBOL(skb_seq_read);
4226 
4227 /**
4228  * skb_abort_seq_read - Abort a sequential read of skb data
4229  * @st: state variable
4230  *
4231  * Must be called if skb_seq_read() was not called until it
4232  * returned 0.
4233  */
4234 void skb_abort_seq_read(struct skb_seq_state *st)
4235 {
4236 	if (st->frag_data)
4237 		kunmap_atomic(st->frag_data);
4238 }
4239 EXPORT_SYMBOL(skb_abort_seq_read);
4240 
4241 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4242 
4243 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4244 					  struct ts_config *conf,
4245 					  struct ts_state *state)
4246 {
4247 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4248 }
4249 
4250 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4251 {
4252 	skb_abort_seq_read(TS_SKB_CB(state));
4253 }
4254 
4255 /**
4256  * skb_find_text - Find a text pattern in skb data
4257  * @skb: the buffer to look in
4258  * @from: search offset
4259  * @to: search limit
4260  * @config: textsearch configuration
4261  *
4262  * Finds a pattern in the skb data according to the specified
4263  * textsearch configuration. Use textsearch_next() to retrieve
4264  * subsequent occurrences of the pattern. Returns the offset
4265  * to the first occurrence or UINT_MAX if no match was found.
4266  */
4267 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4268 			   unsigned int to, struct ts_config *config)
4269 {
4270 	unsigned int patlen = config->ops->get_pattern_len(config);
4271 	struct ts_state state;
4272 	unsigned int ret;
4273 
4274 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4275 
4276 	config->get_next_block = skb_ts_get_next_block;
4277 	config->finish = skb_ts_finish;
4278 
4279 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4280 
4281 	ret = textsearch_find(config, &state);
4282 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4283 }
4284 EXPORT_SYMBOL(skb_find_text);
4285 
4286 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4287 			 int offset, size_t size, size_t max_frags)
4288 {
4289 	int i = skb_shinfo(skb)->nr_frags;
4290 
4291 	if (skb_can_coalesce(skb, i, page, offset)) {
4292 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4293 	} else if (i < max_frags) {
4294 		skb_zcopy_downgrade_managed(skb);
4295 		get_page(page);
4296 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4297 	} else {
4298 		return -EMSGSIZE;
4299 	}
4300 
4301 	return 0;
4302 }
4303 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4304 
4305 /**
4306  *	skb_pull_rcsum - pull skb and update receive checksum
4307  *	@skb: buffer to update
4308  *	@len: length of data pulled
4309  *
4310  *	This function performs an skb_pull on the packet and updates
4311  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4312  *	receive path processing instead of skb_pull unless you know
4313  *	that the checksum difference is zero (e.g., a valid IP header)
4314  *	or you are setting ip_summed to CHECKSUM_NONE.
4315  */
4316 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4317 {
4318 	unsigned char *data = skb->data;
4319 
4320 	BUG_ON(len > skb->len);
4321 	__skb_pull(skb, len);
4322 	skb_postpull_rcsum(skb, data, len);
4323 	return skb->data;
4324 }
4325 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4326 
4327 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4328 {
4329 	skb_frag_t head_frag;
4330 	struct page *page;
4331 
4332 	page = virt_to_head_page(frag_skb->head);
4333 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4334 				(unsigned char *)page_address(page),
4335 				skb_headlen(frag_skb));
4336 	return head_frag;
4337 }
4338 
4339 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4340 				 netdev_features_t features,
4341 				 unsigned int offset)
4342 {
4343 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4344 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4345 	unsigned int delta_truesize = 0;
4346 	unsigned int delta_len = 0;
4347 	struct sk_buff *tail = NULL;
4348 	struct sk_buff *nskb, *tmp;
4349 	int len_diff, err;
4350 
4351 	skb_push(skb, -skb_network_offset(skb) + offset);
4352 
4353 	/* Ensure the head is writeable before touching the shared info */
4354 	err = skb_unclone(skb, GFP_ATOMIC);
4355 	if (err)
4356 		goto err_linearize;
4357 
4358 	skb_shinfo(skb)->frag_list = NULL;
4359 
4360 	while (list_skb) {
4361 		nskb = list_skb;
4362 		list_skb = list_skb->next;
4363 
4364 		err = 0;
4365 		delta_truesize += nskb->truesize;
4366 		if (skb_shared(nskb)) {
4367 			tmp = skb_clone(nskb, GFP_ATOMIC);
4368 			if (tmp) {
4369 				consume_skb(nskb);
4370 				nskb = tmp;
4371 				err = skb_unclone(nskb, GFP_ATOMIC);
4372 			} else {
4373 				err = -ENOMEM;
4374 			}
4375 		}
4376 
4377 		if (!tail)
4378 			skb->next = nskb;
4379 		else
4380 			tail->next = nskb;
4381 
4382 		if (unlikely(err)) {
4383 			nskb->next = list_skb;
4384 			goto err_linearize;
4385 		}
4386 
4387 		tail = nskb;
4388 
4389 		delta_len += nskb->len;
4390 
4391 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4392 
4393 		skb_release_head_state(nskb);
4394 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4395 		__copy_skb_header(nskb, skb);
4396 
4397 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4398 		nskb->transport_header += len_diff;
4399 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4400 						 nskb->data - tnl_hlen,
4401 						 offset + tnl_hlen);
4402 
4403 		if (skb_needs_linearize(nskb, features) &&
4404 		    __skb_linearize(nskb))
4405 			goto err_linearize;
4406 	}
4407 
4408 	skb->truesize = skb->truesize - delta_truesize;
4409 	skb->data_len = skb->data_len - delta_len;
4410 	skb->len = skb->len - delta_len;
4411 
4412 	skb_gso_reset(skb);
4413 
4414 	skb->prev = tail;
4415 
4416 	if (skb_needs_linearize(skb, features) &&
4417 	    __skb_linearize(skb))
4418 		goto err_linearize;
4419 
4420 	skb_get(skb);
4421 
4422 	return skb;
4423 
4424 err_linearize:
4425 	kfree_skb_list(skb->next);
4426 	skb->next = NULL;
4427 	return ERR_PTR(-ENOMEM);
4428 }
4429 EXPORT_SYMBOL_GPL(skb_segment_list);
4430 
4431 /**
4432  *	skb_segment - Perform protocol segmentation on skb.
4433  *	@head_skb: buffer to segment
4434  *	@features: features for the output path (see dev->features)
4435  *
4436  *	This function performs segmentation on the given skb.  It returns
4437  *	a pointer to the first in a list of new skbs for the segments.
4438  *	In case of error it returns ERR_PTR(err).
4439  */
4440 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4441 			    netdev_features_t features)
4442 {
4443 	struct sk_buff *segs = NULL;
4444 	struct sk_buff *tail = NULL;
4445 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4446 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4447 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4448 	unsigned int offset = doffset;
4449 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4450 	unsigned int partial_segs = 0;
4451 	unsigned int headroom;
4452 	unsigned int len = head_skb->len;
4453 	struct sk_buff *frag_skb;
4454 	skb_frag_t *frag;
4455 	__be16 proto;
4456 	bool csum, sg;
4457 	int err = -ENOMEM;
4458 	int i = 0;
4459 	int nfrags, pos;
4460 
4461 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4462 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4463 		struct sk_buff *check_skb;
4464 
4465 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4466 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4467 				/* gso_size is untrusted, and we have a frag_list with
4468 				 * a linear non head_frag item.
4469 				 *
4470 				 * If head_skb's headlen does not fit requested gso_size,
4471 				 * it means that the frag_list members do NOT terminate
4472 				 * on exact gso_size boundaries. Hence we cannot perform
4473 				 * skb_frag_t page sharing. Therefore we must fallback to
4474 				 * copying the frag_list skbs; we do so by disabling SG.
4475 				 */
4476 				features &= ~NETIF_F_SG;
4477 				break;
4478 			}
4479 		}
4480 	}
4481 
4482 	__skb_push(head_skb, doffset);
4483 	proto = skb_network_protocol(head_skb, NULL);
4484 	if (unlikely(!proto))
4485 		return ERR_PTR(-EINVAL);
4486 
4487 	sg = !!(features & NETIF_F_SG);
4488 	csum = !!can_checksum_protocol(features, proto);
4489 
4490 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4491 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4492 			struct sk_buff *iter;
4493 			unsigned int frag_len;
4494 
4495 			if (!list_skb ||
4496 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4497 				goto normal;
4498 
4499 			/* If we get here then all the required
4500 			 * GSO features except frag_list are supported.
4501 			 * Try to split the SKB to multiple GSO SKBs
4502 			 * with no frag_list.
4503 			 * Currently we can do that only when the buffers don't
4504 			 * have a linear part and all the buffers except
4505 			 * the last are of the same length.
4506 			 */
4507 			frag_len = list_skb->len;
4508 			skb_walk_frags(head_skb, iter) {
4509 				if (frag_len != iter->len && iter->next)
4510 					goto normal;
4511 				if (skb_headlen(iter) && !iter->head_frag)
4512 					goto normal;
4513 
4514 				len -= iter->len;
4515 			}
4516 
4517 			if (len != frag_len)
4518 				goto normal;
4519 		}
4520 
4521 		/* GSO partial only requires that we trim off any excess that
4522 		 * doesn't fit into an MSS sized block, so take care of that
4523 		 * now.
4524 		 */
4525 		partial_segs = len / mss;
4526 		if (partial_segs > 1)
4527 			mss *= partial_segs;
4528 		else
4529 			partial_segs = 0;
4530 	}
4531 
4532 normal:
4533 	headroom = skb_headroom(head_skb);
4534 	pos = skb_headlen(head_skb);
4535 
4536 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4537 		return ERR_PTR(-ENOMEM);
4538 
4539 	nfrags = skb_shinfo(head_skb)->nr_frags;
4540 	frag = skb_shinfo(head_skb)->frags;
4541 	frag_skb = head_skb;
4542 
4543 	do {
4544 		struct sk_buff *nskb;
4545 		skb_frag_t *nskb_frag;
4546 		int hsize;
4547 		int size;
4548 
4549 		if (unlikely(mss == GSO_BY_FRAGS)) {
4550 			len = list_skb->len;
4551 		} else {
4552 			len = head_skb->len - offset;
4553 			if (len > mss)
4554 				len = mss;
4555 		}
4556 
4557 		hsize = skb_headlen(head_skb) - offset;
4558 
4559 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4560 		    (skb_headlen(list_skb) == len || sg)) {
4561 			BUG_ON(skb_headlen(list_skb) > len);
4562 
4563 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4564 			if (unlikely(!nskb))
4565 				goto err;
4566 
4567 			i = 0;
4568 			nfrags = skb_shinfo(list_skb)->nr_frags;
4569 			frag = skb_shinfo(list_skb)->frags;
4570 			frag_skb = list_skb;
4571 			pos += skb_headlen(list_skb);
4572 
4573 			while (pos < offset + len) {
4574 				BUG_ON(i >= nfrags);
4575 
4576 				size = skb_frag_size(frag);
4577 				if (pos + size > offset + len)
4578 					break;
4579 
4580 				i++;
4581 				pos += size;
4582 				frag++;
4583 			}
4584 
4585 			list_skb = list_skb->next;
4586 
4587 			if (unlikely(pskb_trim(nskb, len))) {
4588 				kfree_skb(nskb);
4589 				goto err;
4590 			}
4591 
4592 			hsize = skb_end_offset(nskb);
4593 			if (skb_cow_head(nskb, doffset + headroom)) {
4594 				kfree_skb(nskb);
4595 				goto err;
4596 			}
4597 
4598 			nskb->truesize += skb_end_offset(nskb) - hsize;
4599 			skb_release_head_state(nskb);
4600 			__skb_push(nskb, doffset);
4601 		} else {
4602 			if (hsize < 0)
4603 				hsize = 0;
4604 			if (hsize > len || !sg)
4605 				hsize = len;
4606 
4607 			nskb = __alloc_skb(hsize + doffset + headroom,
4608 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4609 					   NUMA_NO_NODE);
4610 
4611 			if (unlikely(!nskb))
4612 				goto err;
4613 
4614 			skb_reserve(nskb, headroom);
4615 			__skb_put(nskb, doffset);
4616 		}
4617 
4618 		if (segs)
4619 			tail->next = nskb;
4620 		else
4621 			segs = nskb;
4622 		tail = nskb;
4623 
4624 		__copy_skb_header(nskb, head_skb);
4625 
4626 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4627 		skb_reset_mac_len(nskb);
4628 
4629 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4630 						 nskb->data - tnl_hlen,
4631 						 doffset + tnl_hlen);
4632 
4633 		if (nskb->len == len + doffset)
4634 			goto perform_csum_check;
4635 
4636 		if (!sg) {
4637 			if (!csum) {
4638 				if (!nskb->remcsum_offload)
4639 					nskb->ip_summed = CHECKSUM_NONE;
4640 				SKB_GSO_CB(nskb)->csum =
4641 					skb_copy_and_csum_bits(head_skb, offset,
4642 							       skb_put(nskb,
4643 								       len),
4644 							       len);
4645 				SKB_GSO_CB(nskb)->csum_start =
4646 					skb_headroom(nskb) + doffset;
4647 			} else {
4648 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4649 					goto err;
4650 			}
4651 			continue;
4652 		}
4653 
4654 		nskb_frag = skb_shinfo(nskb)->frags;
4655 
4656 		skb_copy_from_linear_data_offset(head_skb, offset,
4657 						 skb_put(nskb, hsize), hsize);
4658 
4659 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4660 					   SKBFL_SHARED_FRAG;
4661 
4662 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4663 			goto err;
4664 
4665 		while (pos < offset + len) {
4666 			if (i >= nfrags) {
4667 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4668 				    skb_zerocopy_clone(nskb, list_skb,
4669 						       GFP_ATOMIC))
4670 					goto err;
4671 
4672 				i = 0;
4673 				nfrags = skb_shinfo(list_skb)->nr_frags;
4674 				frag = skb_shinfo(list_skb)->frags;
4675 				frag_skb = list_skb;
4676 				if (!skb_headlen(list_skb)) {
4677 					BUG_ON(!nfrags);
4678 				} else {
4679 					BUG_ON(!list_skb->head_frag);
4680 
4681 					/* to make room for head_frag. */
4682 					i--;
4683 					frag--;
4684 				}
4685 
4686 				list_skb = list_skb->next;
4687 			}
4688 
4689 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4690 				     MAX_SKB_FRAGS)) {
4691 				net_warn_ratelimited(
4692 					"skb_segment: too many frags: %u %u\n",
4693 					pos, mss);
4694 				err = -EINVAL;
4695 				goto err;
4696 			}
4697 
4698 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4699 			__skb_frag_ref(nskb_frag);
4700 			size = skb_frag_size(nskb_frag);
4701 
4702 			if (pos < offset) {
4703 				skb_frag_off_add(nskb_frag, offset - pos);
4704 				skb_frag_size_sub(nskb_frag, offset - pos);
4705 			}
4706 
4707 			skb_shinfo(nskb)->nr_frags++;
4708 
4709 			if (pos + size <= offset + len) {
4710 				i++;
4711 				frag++;
4712 				pos += size;
4713 			} else {
4714 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4715 				goto skip_fraglist;
4716 			}
4717 
4718 			nskb_frag++;
4719 		}
4720 
4721 skip_fraglist:
4722 		nskb->data_len = len - hsize;
4723 		nskb->len += nskb->data_len;
4724 		nskb->truesize += nskb->data_len;
4725 
4726 perform_csum_check:
4727 		if (!csum) {
4728 			if (skb_has_shared_frag(nskb) &&
4729 			    __skb_linearize(nskb))
4730 				goto err;
4731 
4732 			if (!nskb->remcsum_offload)
4733 				nskb->ip_summed = CHECKSUM_NONE;
4734 			SKB_GSO_CB(nskb)->csum =
4735 				skb_checksum(nskb, doffset,
4736 					     nskb->len - doffset, 0);
4737 			SKB_GSO_CB(nskb)->csum_start =
4738 				skb_headroom(nskb) + doffset;
4739 		}
4740 	} while ((offset += len) < head_skb->len);
4741 
4742 	/* Some callers want to get the end of the list.
4743 	 * Put it in segs->prev to avoid walking the list.
4744 	 * (see validate_xmit_skb_list() for example)
4745 	 */
4746 	segs->prev = tail;
4747 
4748 	if (partial_segs) {
4749 		struct sk_buff *iter;
4750 		int type = skb_shinfo(head_skb)->gso_type;
4751 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4752 
4753 		/* Update type to add partial and then remove dodgy if set */
4754 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4755 		type &= ~SKB_GSO_DODGY;
4756 
4757 		/* Update GSO info and prepare to start updating headers on
4758 		 * our way back down the stack of protocols.
4759 		 */
4760 		for (iter = segs; iter; iter = iter->next) {
4761 			skb_shinfo(iter)->gso_size = gso_size;
4762 			skb_shinfo(iter)->gso_segs = partial_segs;
4763 			skb_shinfo(iter)->gso_type = type;
4764 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4765 		}
4766 
4767 		if (tail->len - doffset <= gso_size)
4768 			skb_shinfo(tail)->gso_size = 0;
4769 		else if (tail != segs)
4770 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4771 	}
4772 
4773 	/* Following permits correct backpressure, for protocols
4774 	 * using skb_set_owner_w().
4775 	 * Idea is to tranfert ownership from head_skb to last segment.
4776 	 */
4777 	if (head_skb->destructor == sock_wfree) {
4778 		swap(tail->truesize, head_skb->truesize);
4779 		swap(tail->destructor, head_skb->destructor);
4780 		swap(tail->sk, head_skb->sk);
4781 	}
4782 	return segs;
4783 
4784 err:
4785 	kfree_skb_list(segs);
4786 	return ERR_PTR(err);
4787 }
4788 EXPORT_SYMBOL_GPL(skb_segment);
4789 
4790 #ifdef CONFIG_SKB_EXTENSIONS
4791 #define SKB_EXT_ALIGN_VALUE	8
4792 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4793 
4794 static const u8 skb_ext_type_len[] = {
4795 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4796 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4797 #endif
4798 #ifdef CONFIG_XFRM
4799 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4800 #endif
4801 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4802 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4803 #endif
4804 #if IS_ENABLED(CONFIG_MPTCP)
4805 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4806 #endif
4807 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4808 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4809 #endif
4810 };
4811 
4812 static __always_inline unsigned int skb_ext_total_length(void)
4813 {
4814 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4815 	int i;
4816 
4817 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4818 		l += skb_ext_type_len[i];
4819 
4820 	return l;
4821 }
4822 
4823 static void skb_extensions_init(void)
4824 {
4825 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4826 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4827 
4828 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4829 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4830 					     0,
4831 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4832 					     NULL);
4833 }
4834 #else
4835 static void skb_extensions_init(void) {}
4836 #endif
4837 
4838 /* The SKB kmem_cache slab is critical for network performance.  Never
4839  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4840  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4841  */
4842 #ifndef CONFIG_SLUB_TINY
4843 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4844 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4845 #define FLAG_SKB_NO_MERGE	0
4846 #endif
4847 
4848 void __init skb_init(void)
4849 {
4850 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4851 					      sizeof(struct sk_buff),
4852 					      0,
4853 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4854 						FLAG_SKB_NO_MERGE,
4855 					      offsetof(struct sk_buff, cb),
4856 					      sizeof_field(struct sk_buff, cb),
4857 					      NULL);
4858 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4859 						sizeof(struct sk_buff_fclones),
4860 						0,
4861 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4862 						NULL);
4863 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4864 	 * struct skb_shared_info is located at the end of skb->head,
4865 	 * and should not be copied to/from user.
4866 	 */
4867 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4868 						SKB_SMALL_HEAD_CACHE_SIZE,
4869 						0,
4870 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4871 						0,
4872 						SKB_SMALL_HEAD_HEADROOM,
4873 						NULL);
4874 	skb_extensions_init();
4875 }
4876 
4877 static int
4878 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4879 	       unsigned int recursion_level)
4880 {
4881 	int start = skb_headlen(skb);
4882 	int i, copy = start - offset;
4883 	struct sk_buff *frag_iter;
4884 	int elt = 0;
4885 
4886 	if (unlikely(recursion_level >= 24))
4887 		return -EMSGSIZE;
4888 
4889 	if (copy > 0) {
4890 		if (copy > len)
4891 			copy = len;
4892 		sg_set_buf(sg, skb->data + offset, copy);
4893 		elt++;
4894 		if ((len -= copy) == 0)
4895 			return elt;
4896 		offset += copy;
4897 	}
4898 
4899 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4900 		int end;
4901 
4902 		WARN_ON(start > offset + len);
4903 
4904 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4905 		if ((copy = end - offset) > 0) {
4906 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4907 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4908 				return -EMSGSIZE;
4909 
4910 			if (copy > len)
4911 				copy = len;
4912 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4913 				    skb_frag_off(frag) + offset - start);
4914 			elt++;
4915 			if (!(len -= copy))
4916 				return elt;
4917 			offset += copy;
4918 		}
4919 		start = end;
4920 	}
4921 
4922 	skb_walk_frags(skb, frag_iter) {
4923 		int end, ret;
4924 
4925 		WARN_ON(start > offset + len);
4926 
4927 		end = start + frag_iter->len;
4928 		if ((copy = end - offset) > 0) {
4929 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4930 				return -EMSGSIZE;
4931 
4932 			if (copy > len)
4933 				copy = len;
4934 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4935 					      copy, recursion_level + 1);
4936 			if (unlikely(ret < 0))
4937 				return ret;
4938 			elt += ret;
4939 			if ((len -= copy) == 0)
4940 				return elt;
4941 			offset += copy;
4942 		}
4943 		start = end;
4944 	}
4945 	BUG_ON(len);
4946 	return elt;
4947 }
4948 
4949 /**
4950  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4951  *	@skb: Socket buffer containing the buffers to be mapped
4952  *	@sg: The scatter-gather list to map into
4953  *	@offset: The offset into the buffer's contents to start mapping
4954  *	@len: Length of buffer space to be mapped
4955  *
4956  *	Fill the specified scatter-gather list with mappings/pointers into a
4957  *	region of the buffer space attached to a socket buffer. Returns either
4958  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4959  *	could not fit.
4960  */
4961 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4962 {
4963 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4964 
4965 	if (nsg <= 0)
4966 		return nsg;
4967 
4968 	sg_mark_end(&sg[nsg - 1]);
4969 
4970 	return nsg;
4971 }
4972 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4973 
4974 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4975  * sglist without mark the sg which contain last skb data as the end.
4976  * So the caller can mannipulate sg list as will when padding new data after
4977  * the first call without calling sg_unmark_end to expend sg list.
4978  *
4979  * Scenario to use skb_to_sgvec_nomark:
4980  * 1. sg_init_table
4981  * 2. skb_to_sgvec_nomark(payload1)
4982  * 3. skb_to_sgvec_nomark(payload2)
4983  *
4984  * This is equivalent to:
4985  * 1. sg_init_table
4986  * 2. skb_to_sgvec(payload1)
4987  * 3. sg_unmark_end
4988  * 4. skb_to_sgvec(payload2)
4989  *
4990  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4991  * is more preferable.
4992  */
4993 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4994 			int offset, int len)
4995 {
4996 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4997 }
4998 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4999 
5000 
5001 
5002 /**
5003  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5004  *	@skb: The socket buffer to check.
5005  *	@tailbits: Amount of trailing space to be added
5006  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5007  *
5008  *	Make sure that the data buffers attached to a socket buffer are
5009  *	writable. If they are not, private copies are made of the data buffers
5010  *	and the socket buffer is set to use these instead.
5011  *
5012  *	If @tailbits is given, make sure that there is space to write @tailbits
5013  *	bytes of data beyond current end of socket buffer.  @trailer will be
5014  *	set to point to the skb in which this space begins.
5015  *
5016  *	The number of scatterlist elements required to completely map the
5017  *	COW'd and extended socket buffer will be returned.
5018  */
5019 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5020 {
5021 	int copyflag;
5022 	int elt;
5023 	struct sk_buff *skb1, **skb_p;
5024 
5025 	/* If skb is cloned or its head is paged, reallocate
5026 	 * head pulling out all the pages (pages are considered not writable
5027 	 * at the moment even if they are anonymous).
5028 	 */
5029 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5030 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5031 		return -ENOMEM;
5032 
5033 	/* Easy case. Most of packets will go this way. */
5034 	if (!skb_has_frag_list(skb)) {
5035 		/* A little of trouble, not enough of space for trailer.
5036 		 * This should not happen, when stack is tuned to generate
5037 		 * good frames. OK, on miss we reallocate and reserve even more
5038 		 * space, 128 bytes is fair. */
5039 
5040 		if (skb_tailroom(skb) < tailbits &&
5041 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5042 			return -ENOMEM;
5043 
5044 		/* Voila! */
5045 		*trailer = skb;
5046 		return 1;
5047 	}
5048 
5049 	/* Misery. We are in troubles, going to mincer fragments... */
5050 
5051 	elt = 1;
5052 	skb_p = &skb_shinfo(skb)->frag_list;
5053 	copyflag = 0;
5054 
5055 	while ((skb1 = *skb_p) != NULL) {
5056 		int ntail = 0;
5057 
5058 		/* The fragment is partially pulled by someone,
5059 		 * this can happen on input. Copy it and everything
5060 		 * after it. */
5061 
5062 		if (skb_shared(skb1))
5063 			copyflag = 1;
5064 
5065 		/* If the skb is the last, worry about trailer. */
5066 
5067 		if (skb1->next == NULL && tailbits) {
5068 			if (skb_shinfo(skb1)->nr_frags ||
5069 			    skb_has_frag_list(skb1) ||
5070 			    skb_tailroom(skb1) < tailbits)
5071 				ntail = tailbits + 128;
5072 		}
5073 
5074 		if (copyflag ||
5075 		    skb_cloned(skb1) ||
5076 		    ntail ||
5077 		    skb_shinfo(skb1)->nr_frags ||
5078 		    skb_has_frag_list(skb1)) {
5079 			struct sk_buff *skb2;
5080 
5081 			/* Fuck, we are miserable poor guys... */
5082 			if (ntail == 0)
5083 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5084 			else
5085 				skb2 = skb_copy_expand(skb1,
5086 						       skb_headroom(skb1),
5087 						       ntail,
5088 						       GFP_ATOMIC);
5089 			if (unlikely(skb2 == NULL))
5090 				return -ENOMEM;
5091 
5092 			if (skb1->sk)
5093 				skb_set_owner_w(skb2, skb1->sk);
5094 
5095 			/* Looking around. Are we still alive?
5096 			 * OK, link new skb, drop old one */
5097 
5098 			skb2->next = skb1->next;
5099 			*skb_p = skb2;
5100 			kfree_skb(skb1);
5101 			skb1 = skb2;
5102 		}
5103 		elt++;
5104 		*trailer = skb1;
5105 		skb_p = &skb1->next;
5106 	}
5107 
5108 	return elt;
5109 }
5110 EXPORT_SYMBOL_GPL(skb_cow_data);
5111 
5112 static void sock_rmem_free(struct sk_buff *skb)
5113 {
5114 	struct sock *sk = skb->sk;
5115 
5116 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5117 }
5118 
5119 static void skb_set_err_queue(struct sk_buff *skb)
5120 {
5121 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5122 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5123 	 */
5124 	skb->pkt_type = PACKET_OUTGOING;
5125 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5126 }
5127 
5128 /*
5129  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5130  */
5131 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5132 {
5133 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5134 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5135 		return -ENOMEM;
5136 
5137 	skb_orphan(skb);
5138 	skb->sk = sk;
5139 	skb->destructor = sock_rmem_free;
5140 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5141 	skb_set_err_queue(skb);
5142 
5143 	/* before exiting rcu section, make sure dst is refcounted */
5144 	skb_dst_force(skb);
5145 
5146 	skb_queue_tail(&sk->sk_error_queue, skb);
5147 	if (!sock_flag(sk, SOCK_DEAD))
5148 		sk_error_report(sk);
5149 	return 0;
5150 }
5151 EXPORT_SYMBOL(sock_queue_err_skb);
5152 
5153 static bool is_icmp_err_skb(const struct sk_buff *skb)
5154 {
5155 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5156 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5157 }
5158 
5159 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5160 {
5161 	struct sk_buff_head *q = &sk->sk_error_queue;
5162 	struct sk_buff *skb, *skb_next = NULL;
5163 	bool icmp_next = false;
5164 	unsigned long flags;
5165 
5166 	if (skb_queue_empty_lockless(q))
5167 		return NULL;
5168 
5169 	spin_lock_irqsave(&q->lock, flags);
5170 	skb = __skb_dequeue(q);
5171 	if (skb && (skb_next = skb_peek(q))) {
5172 		icmp_next = is_icmp_err_skb(skb_next);
5173 		if (icmp_next)
5174 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5175 	}
5176 	spin_unlock_irqrestore(&q->lock, flags);
5177 
5178 	if (is_icmp_err_skb(skb) && !icmp_next)
5179 		sk->sk_err = 0;
5180 
5181 	if (skb_next)
5182 		sk_error_report(sk);
5183 
5184 	return skb;
5185 }
5186 EXPORT_SYMBOL(sock_dequeue_err_skb);
5187 
5188 /**
5189  * skb_clone_sk - create clone of skb, and take reference to socket
5190  * @skb: the skb to clone
5191  *
5192  * This function creates a clone of a buffer that holds a reference on
5193  * sk_refcnt.  Buffers created via this function are meant to be
5194  * returned using sock_queue_err_skb, or free via kfree_skb.
5195  *
5196  * When passing buffers allocated with this function to sock_queue_err_skb
5197  * it is necessary to wrap the call with sock_hold/sock_put in order to
5198  * prevent the socket from being released prior to being enqueued on
5199  * the sk_error_queue.
5200  */
5201 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5202 {
5203 	struct sock *sk = skb->sk;
5204 	struct sk_buff *clone;
5205 
5206 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5207 		return NULL;
5208 
5209 	clone = skb_clone(skb, GFP_ATOMIC);
5210 	if (!clone) {
5211 		sock_put(sk);
5212 		return NULL;
5213 	}
5214 
5215 	clone->sk = sk;
5216 	clone->destructor = sock_efree;
5217 
5218 	return clone;
5219 }
5220 EXPORT_SYMBOL(skb_clone_sk);
5221 
5222 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5223 					struct sock *sk,
5224 					int tstype,
5225 					bool opt_stats)
5226 {
5227 	struct sock_exterr_skb *serr;
5228 	int err;
5229 
5230 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5231 
5232 	serr = SKB_EXT_ERR(skb);
5233 	memset(serr, 0, sizeof(*serr));
5234 	serr->ee.ee_errno = ENOMSG;
5235 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5236 	serr->ee.ee_info = tstype;
5237 	serr->opt_stats = opt_stats;
5238 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5239 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5240 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5241 		if (sk_is_tcp(sk))
5242 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5243 	}
5244 
5245 	err = sock_queue_err_skb(sk, skb);
5246 
5247 	if (err)
5248 		kfree_skb(skb);
5249 }
5250 
5251 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5252 {
5253 	bool ret;
5254 
5255 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5256 		return true;
5257 
5258 	read_lock_bh(&sk->sk_callback_lock);
5259 	ret = sk->sk_socket && sk->sk_socket->file &&
5260 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5261 	read_unlock_bh(&sk->sk_callback_lock);
5262 	return ret;
5263 }
5264 
5265 void skb_complete_tx_timestamp(struct sk_buff *skb,
5266 			       struct skb_shared_hwtstamps *hwtstamps)
5267 {
5268 	struct sock *sk = skb->sk;
5269 
5270 	if (!skb_may_tx_timestamp(sk, false))
5271 		goto err;
5272 
5273 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5274 	 * but only if the socket refcount is not zero.
5275 	 */
5276 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5277 		*skb_hwtstamps(skb) = *hwtstamps;
5278 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5279 		sock_put(sk);
5280 		return;
5281 	}
5282 
5283 err:
5284 	kfree_skb(skb);
5285 }
5286 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5287 
5288 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5289 		     const struct sk_buff *ack_skb,
5290 		     struct skb_shared_hwtstamps *hwtstamps,
5291 		     struct sock *sk, int tstype)
5292 {
5293 	struct sk_buff *skb;
5294 	bool tsonly, opt_stats = false;
5295 	u32 tsflags;
5296 
5297 	if (!sk)
5298 		return;
5299 
5300 	tsflags = READ_ONCE(sk->sk_tsflags);
5301 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5302 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5303 		return;
5304 
5305 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5306 	if (!skb_may_tx_timestamp(sk, tsonly))
5307 		return;
5308 
5309 	if (tsonly) {
5310 #ifdef CONFIG_INET
5311 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5312 		    sk_is_tcp(sk)) {
5313 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5314 							     ack_skb);
5315 			opt_stats = true;
5316 		} else
5317 #endif
5318 			skb = alloc_skb(0, GFP_ATOMIC);
5319 	} else {
5320 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5321 
5322 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5323 			kfree_skb(skb);
5324 			return;
5325 		}
5326 	}
5327 	if (!skb)
5328 		return;
5329 
5330 	if (tsonly) {
5331 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5332 					     SKBTX_ANY_TSTAMP;
5333 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5334 	}
5335 
5336 	if (hwtstamps)
5337 		*skb_hwtstamps(skb) = *hwtstamps;
5338 	else
5339 		__net_timestamp(skb);
5340 
5341 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5342 }
5343 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5344 
5345 void skb_tstamp_tx(struct sk_buff *orig_skb,
5346 		   struct skb_shared_hwtstamps *hwtstamps)
5347 {
5348 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5349 			       SCM_TSTAMP_SND);
5350 }
5351 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5352 
5353 #ifdef CONFIG_WIRELESS
5354 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5355 {
5356 	struct sock *sk = skb->sk;
5357 	struct sock_exterr_skb *serr;
5358 	int err = 1;
5359 
5360 	skb->wifi_acked_valid = 1;
5361 	skb->wifi_acked = acked;
5362 
5363 	serr = SKB_EXT_ERR(skb);
5364 	memset(serr, 0, sizeof(*serr));
5365 	serr->ee.ee_errno = ENOMSG;
5366 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5367 
5368 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5369 	 * but only if the socket refcount is not zero.
5370 	 */
5371 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5372 		err = sock_queue_err_skb(sk, skb);
5373 		sock_put(sk);
5374 	}
5375 	if (err)
5376 		kfree_skb(skb);
5377 }
5378 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5379 #endif /* CONFIG_WIRELESS */
5380 
5381 /**
5382  * skb_partial_csum_set - set up and verify partial csum values for packet
5383  * @skb: the skb to set
5384  * @start: the number of bytes after skb->data to start checksumming.
5385  * @off: the offset from start to place the checksum.
5386  *
5387  * For untrusted partially-checksummed packets, we need to make sure the values
5388  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5389  *
5390  * This function checks and sets those values and skb->ip_summed: if this
5391  * returns false you should drop the packet.
5392  */
5393 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5394 {
5395 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5396 	u32 csum_start = skb_headroom(skb) + (u32)start;
5397 
5398 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5399 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5400 				     start, off, skb_headroom(skb), skb_headlen(skb));
5401 		return false;
5402 	}
5403 	skb->ip_summed = CHECKSUM_PARTIAL;
5404 	skb->csum_start = csum_start;
5405 	skb->csum_offset = off;
5406 	skb->transport_header = csum_start;
5407 	return true;
5408 }
5409 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5410 
5411 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5412 			       unsigned int max)
5413 {
5414 	if (skb_headlen(skb) >= len)
5415 		return 0;
5416 
5417 	/* If we need to pullup then pullup to the max, so we
5418 	 * won't need to do it again.
5419 	 */
5420 	if (max > skb->len)
5421 		max = skb->len;
5422 
5423 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5424 		return -ENOMEM;
5425 
5426 	if (skb_headlen(skb) < len)
5427 		return -EPROTO;
5428 
5429 	return 0;
5430 }
5431 
5432 #define MAX_TCP_HDR_LEN (15 * 4)
5433 
5434 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5435 				      typeof(IPPROTO_IP) proto,
5436 				      unsigned int off)
5437 {
5438 	int err;
5439 
5440 	switch (proto) {
5441 	case IPPROTO_TCP:
5442 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5443 					  off + MAX_TCP_HDR_LEN);
5444 		if (!err && !skb_partial_csum_set(skb, off,
5445 						  offsetof(struct tcphdr,
5446 							   check)))
5447 			err = -EPROTO;
5448 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5449 
5450 	case IPPROTO_UDP:
5451 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5452 					  off + sizeof(struct udphdr));
5453 		if (!err && !skb_partial_csum_set(skb, off,
5454 						  offsetof(struct udphdr,
5455 							   check)))
5456 			err = -EPROTO;
5457 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5458 	}
5459 
5460 	return ERR_PTR(-EPROTO);
5461 }
5462 
5463 /* This value should be large enough to cover a tagged ethernet header plus
5464  * maximally sized IP and TCP or UDP headers.
5465  */
5466 #define MAX_IP_HDR_LEN 128
5467 
5468 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5469 {
5470 	unsigned int off;
5471 	bool fragment;
5472 	__sum16 *csum;
5473 	int err;
5474 
5475 	fragment = false;
5476 
5477 	err = skb_maybe_pull_tail(skb,
5478 				  sizeof(struct iphdr),
5479 				  MAX_IP_HDR_LEN);
5480 	if (err < 0)
5481 		goto out;
5482 
5483 	if (ip_is_fragment(ip_hdr(skb)))
5484 		fragment = true;
5485 
5486 	off = ip_hdrlen(skb);
5487 
5488 	err = -EPROTO;
5489 
5490 	if (fragment)
5491 		goto out;
5492 
5493 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5494 	if (IS_ERR(csum))
5495 		return PTR_ERR(csum);
5496 
5497 	if (recalculate)
5498 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5499 					   ip_hdr(skb)->daddr,
5500 					   skb->len - off,
5501 					   ip_hdr(skb)->protocol, 0);
5502 	err = 0;
5503 
5504 out:
5505 	return err;
5506 }
5507 
5508 /* This value should be large enough to cover a tagged ethernet header plus
5509  * an IPv6 header, all options, and a maximal TCP or UDP header.
5510  */
5511 #define MAX_IPV6_HDR_LEN 256
5512 
5513 #define OPT_HDR(type, skb, off) \
5514 	(type *)(skb_network_header(skb) + (off))
5515 
5516 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5517 {
5518 	int err;
5519 	u8 nexthdr;
5520 	unsigned int off;
5521 	unsigned int len;
5522 	bool fragment;
5523 	bool done;
5524 	__sum16 *csum;
5525 
5526 	fragment = false;
5527 	done = false;
5528 
5529 	off = sizeof(struct ipv6hdr);
5530 
5531 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5532 	if (err < 0)
5533 		goto out;
5534 
5535 	nexthdr = ipv6_hdr(skb)->nexthdr;
5536 
5537 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5538 	while (off <= len && !done) {
5539 		switch (nexthdr) {
5540 		case IPPROTO_DSTOPTS:
5541 		case IPPROTO_HOPOPTS:
5542 		case IPPROTO_ROUTING: {
5543 			struct ipv6_opt_hdr *hp;
5544 
5545 			err = skb_maybe_pull_tail(skb,
5546 						  off +
5547 						  sizeof(struct ipv6_opt_hdr),
5548 						  MAX_IPV6_HDR_LEN);
5549 			if (err < 0)
5550 				goto out;
5551 
5552 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5553 			nexthdr = hp->nexthdr;
5554 			off += ipv6_optlen(hp);
5555 			break;
5556 		}
5557 		case IPPROTO_AH: {
5558 			struct ip_auth_hdr *hp;
5559 
5560 			err = skb_maybe_pull_tail(skb,
5561 						  off +
5562 						  sizeof(struct ip_auth_hdr),
5563 						  MAX_IPV6_HDR_LEN);
5564 			if (err < 0)
5565 				goto out;
5566 
5567 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5568 			nexthdr = hp->nexthdr;
5569 			off += ipv6_authlen(hp);
5570 			break;
5571 		}
5572 		case IPPROTO_FRAGMENT: {
5573 			struct frag_hdr *hp;
5574 
5575 			err = skb_maybe_pull_tail(skb,
5576 						  off +
5577 						  sizeof(struct frag_hdr),
5578 						  MAX_IPV6_HDR_LEN);
5579 			if (err < 0)
5580 				goto out;
5581 
5582 			hp = OPT_HDR(struct frag_hdr, skb, off);
5583 
5584 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5585 				fragment = true;
5586 
5587 			nexthdr = hp->nexthdr;
5588 			off += sizeof(struct frag_hdr);
5589 			break;
5590 		}
5591 		default:
5592 			done = true;
5593 			break;
5594 		}
5595 	}
5596 
5597 	err = -EPROTO;
5598 
5599 	if (!done || fragment)
5600 		goto out;
5601 
5602 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5603 	if (IS_ERR(csum))
5604 		return PTR_ERR(csum);
5605 
5606 	if (recalculate)
5607 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5608 					 &ipv6_hdr(skb)->daddr,
5609 					 skb->len - off, nexthdr, 0);
5610 	err = 0;
5611 
5612 out:
5613 	return err;
5614 }
5615 
5616 /**
5617  * skb_checksum_setup - set up partial checksum offset
5618  * @skb: the skb to set up
5619  * @recalculate: if true the pseudo-header checksum will be recalculated
5620  */
5621 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5622 {
5623 	int err;
5624 
5625 	switch (skb->protocol) {
5626 	case htons(ETH_P_IP):
5627 		err = skb_checksum_setup_ipv4(skb, recalculate);
5628 		break;
5629 
5630 	case htons(ETH_P_IPV6):
5631 		err = skb_checksum_setup_ipv6(skb, recalculate);
5632 		break;
5633 
5634 	default:
5635 		err = -EPROTO;
5636 		break;
5637 	}
5638 
5639 	return err;
5640 }
5641 EXPORT_SYMBOL(skb_checksum_setup);
5642 
5643 /**
5644  * skb_checksum_maybe_trim - maybe trims the given skb
5645  * @skb: the skb to check
5646  * @transport_len: the data length beyond the network header
5647  *
5648  * Checks whether the given skb has data beyond the given transport length.
5649  * If so, returns a cloned skb trimmed to this transport length.
5650  * Otherwise returns the provided skb. Returns NULL in error cases
5651  * (e.g. transport_len exceeds skb length or out-of-memory).
5652  *
5653  * Caller needs to set the skb transport header and free any returned skb if it
5654  * differs from the provided skb.
5655  */
5656 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5657 					       unsigned int transport_len)
5658 {
5659 	struct sk_buff *skb_chk;
5660 	unsigned int len = skb_transport_offset(skb) + transport_len;
5661 	int ret;
5662 
5663 	if (skb->len < len)
5664 		return NULL;
5665 	else if (skb->len == len)
5666 		return skb;
5667 
5668 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5669 	if (!skb_chk)
5670 		return NULL;
5671 
5672 	ret = pskb_trim_rcsum(skb_chk, len);
5673 	if (ret) {
5674 		kfree_skb(skb_chk);
5675 		return NULL;
5676 	}
5677 
5678 	return skb_chk;
5679 }
5680 
5681 /**
5682  * skb_checksum_trimmed - validate checksum of an skb
5683  * @skb: the skb to check
5684  * @transport_len: the data length beyond the network header
5685  * @skb_chkf: checksum function to use
5686  *
5687  * Applies the given checksum function skb_chkf to the provided skb.
5688  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5689  *
5690  * If the skb has data beyond the given transport length, then a
5691  * trimmed & cloned skb is checked and returned.
5692  *
5693  * Caller needs to set the skb transport header and free any returned skb if it
5694  * differs from the provided skb.
5695  */
5696 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5697 				     unsigned int transport_len,
5698 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5699 {
5700 	struct sk_buff *skb_chk;
5701 	unsigned int offset = skb_transport_offset(skb);
5702 	__sum16 ret;
5703 
5704 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5705 	if (!skb_chk)
5706 		goto err;
5707 
5708 	if (!pskb_may_pull(skb_chk, offset))
5709 		goto err;
5710 
5711 	skb_pull_rcsum(skb_chk, offset);
5712 	ret = skb_chkf(skb_chk);
5713 	skb_push_rcsum(skb_chk, offset);
5714 
5715 	if (ret)
5716 		goto err;
5717 
5718 	return skb_chk;
5719 
5720 err:
5721 	if (skb_chk && skb_chk != skb)
5722 		kfree_skb(skb_chk);
5723 
5724 	return NULL;
5725 
5726 }
5727 EXPORT_SYMBOL(skb_checksum_trimmed);
5728 
5729 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5730 {
5731 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5732 			     skb->dev->name);
5733 }
5734 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5735 
5736 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5737 {
5738 	if (head_stolen) {
5739 		skb_release_head_state(skb);
5740 		kmem_cache_free(skbuff_cache, skb);
5741 	} else {
5742 		__kfree_skb(skb);
5743 	}
5744 }
5745 EXPORT_SYMBOL(kfree_skb_partial);
5746 
5747 /**
5748  * skb_try_coalesce - try to merge skb to prior one
5749  * @to: prior buffer
5750  * @from: buffer to add
5751  * @fragstolen: pointer to boolean
5752  * @delta_truesize: how much more was allocated than was requested
5753  */
5754 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5755 		      bool *fragstolen, int *delta_truesize)
5756 {
5757 	struct skb_shared_info *to_shinfo, *from_shinfo;
5758 	int i, delta, len = from->len;
5759 
5760 	*fragstolen = false;
5761 
5762 	if (skb_cloned(to))
5763 		return false;
5764 
5765 	/* In general, avoid mixing page_pool and non-page_pool allocated
5766 	 * pages within the same SKB. Additionally avoid dealing with clones
5767 	 * with page_pool pages, in case the SKB is using page_pool fragment
5768 	 * references (page_pool_alloc_frag()). Since we only take full page
5769 	 * references for cloned SKBs at the moment that would result in
5770 	 * inconsistent reference counts.
5771 	 * In theory we could take full references if @from is cloned and
5772 	 * !@to->pp_recycle but its tricky (due to potential race with
5773 	 * the clone disappearing) and rare, so not worth dealing with.
5774 	 */
5775 	if (to->pp_recycle != from->pp_recycle ||
5776 	    (from->pp_recycle && skb_cloned(from)))
5777 		return false;
5778 
5779 	if (len <= skb_tailroom(to)) {
5780 		if (len)
5781 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5782 		*delta_truesize = 0;
5783 		return true;
5784 	}
5785 
5786 	to_shinfo = skb_shinfo(to);
5787 	from_shinfo = skb_shinfo(from);
5788 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5789 		return false;
5790 	if (skb_zcopy(to) || skb_zcopy(from))
5791 		return false;
5792 
5793 	if (skb_headlen(from) != 0) {
5794 		struct page *page;
5795 		unsigned int offset;
5796 
5797 		if (to_shinfo->nr_frags +
5798 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5799 			return false;
5800 
5801 		if (skb_head_is_locked(from))
5802 			return false;
5803 
5804 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5805 
5806 		page = virt_to_head_page(from->head);
5807 		offset = from->data - (unsigned char *)page_address(page);
5808 
5809 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5810 				   page, offset, skb_headlen(from));
5811 		*fragstolen = true;
5812 	} else {
5813 		if (to_shinfo->nr_frags +
5814 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5815 			return false;
5816 
5817 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5818 	}
5819 
5820 	WARN_ON_ONCE(delta < len);
5821 
5822 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5823 	       from_shinfo->frags,
5824 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5825 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5826 
5827 	if (!skb_cloned(from))
5828 		from_shinfo->nr_frags = 0;
5829 
5830 	/* if the skb is not cloned this does nothing
5831 	 * since we set nr_frags to 0.
5832 	 */
5833 	for (i = 0; i < from_shinfo->nr_frags; i++)
5834 		__skb_frag_ref(&from_shinfo->frags[i]);
5835 
5836 	to->truesize += delta;
5837 	to->len += len;
5838 	to->data_len += len;
5839 
5840 	*delta_truesize = delta;
5841 	return true;
5842 }
5843 EXPORT_SYMBOL(skb_try_coalesce);
5844 
5845 /**
5846  * skb_scrub_packet - scrub an skb
5847  *
5848  * @skb: buffer to clean
5849  * @xnet: packet is crossing netns
5850  *
5851  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5852  * into/from a tunnel. Some information have to be cleared during these
5853  * operations.
5854  * skb_scrub_packet can also be used to clean a skb before injecting it in
5855  * another namespace (@xnet == true). We have to clear all information in the
5856  * skb that could impact namespace isolation.
5857  */
5858 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5859 {
5860 	skb->pkt_type = PACKET_HOST;
5861 	skb->skb_iif = 0;
5862 	skb->ignore_df = 0;
5863 	skb_dst_drop(skb);
5864 	skb_ext_reset(skb);
5865 	nf_reset_ct(skb);
5866 	nf_reset_trace(skb);
5867 
5868 #ifdef CONFIG_NET_SWITCHDEV
5869 	skb->offload_fwd_mark = 0;
5870 	skb->offload_l3_fwd_mark = 0;
5871 #endif
5872 
5873 	if (!xnet)
5874 		return;
5875 
5876 	ipvs_reset(skb);
5877 	skb->mark = 0;
5878 	skb_clear_tstamp(skb);
5879 }
5880 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5881 
5882 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5883 {
5884 	int mac_len, meta_len;
5885 	void *meta;
5886 
5887 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5888 		kfree_skb(skb);
5889 		return NULL;
5890 	}
5891 
5892 	mac_len = skb->data - skb_mac_header(skb);
5893 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5894 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5895 			mac_len - VLAN_HLEN - ETH_TLEN);
5896 	}
5897 
5898 	meta_len = skb_metadata_len(skb);
5899 	if (meta_len) {
5900 		meta = skb_metadata_end(skb) - meta_len;
5901 		memmove(meta + VLAN_HLEN, meta, meta_len);
5902 	}
5903 
5904 	skb->mac_header += VLAN_HLEN;
5905 	return skb;
5906 }
5907 
5908 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5909 {
5910 	struct vlan_hdr *vhdr;
5911 	u16 vlan_tci;
5912 
5913 	if (unlikely(skb_vlan_tag_present(skb))) {
5914 		/* vlan_tci is already set-up so leave this for another time */
5915 		return skb;
5916 	}
5917 
5918 	skb = skb_share_check(skb, GFP_ATOMIC);
5919 	if (unlikely(!skb))
5920 		goto err_free;
5921 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5922 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5923 		goto err_free;
5924 
5925 	vhdr = (struct vlan_hdr *)skb->data;
5926 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5927 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5928 
5929 	skb_pull_rcsum(skb, VLAN_HLEN);
5930 	vlan_set_encap_proto(skb, vhdr);
5931 
5932 	skb = skb_reorder_vlan_header(skb);
5933 	if (unlikely(!skb))
5934 		goto err_free;
5935 
5936 	skb_reset_network_header(skb);
5937 	if (!skb_transport_header_was_set(skb))
5938 		skb_reset_transport_header(skb);
5939 	skb_reset_mac_len(skb);
5940 
5941 	return skb;
5942 
5943 err_free:
5944 	kfree_skb(skb);
5945 	return NULL;
5946 }
5947 EXPORT_SYMBOL(skb_vlan_untag);
5948 
5949 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5950 {
5951 	if (!pskb_may_pull(skb, write_len))
5952 		return -ENOMEM;
5953 
5954 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5955 		return 0;
5956 
5957 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5958 }
5959 EXPORT_SYMBOL(skb_ensure_writable);
5960 
5961 /* remove VLAN header from packet and update csum accordingly.
5962  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5963  */
5964 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5965 {
5966 	int offset = skb->data - skb_mac_header(skb);
5967 	int err;
5968 
5969 	if (WARN_ONCE(offset,
5970 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5971 		      offset)) {
5972 		return -EINVAL;
5973 	}
5974 
5975 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5976 	if (unlikely(err))
5977 		return err;
5978 
5979 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5980 
5981 	vlan_remove_tag(skb, vlan_tci);
5982 
5983 	skb->mac_header += VLAN_HLEN;
5984 
5985 	if (skb_network_offset(skb) < ETH_HLEN)
5986 		skb_set_network_header(skb, ETH_HLEN);
5987 
5988 	skb_reset_mac_len(skb);
5989 
5990 	return err;
5991 }
5992 EXPORT_SYMBOL(__skb_vlan_pop);
5993 
5994 /* Pop a vlan tag either from hwaccel or from payload.
5995  * Expects skb->data at mac header.
5996  */
5997 int skb_vlan_pop(struct sk_buff *skb)
5998 {
5999 	u16 vlan_tci;
6000 	__be16 vlan_proto;
6001 	int err;
6002 
6003 	if (likely(skb_vlan_tag_present(skb))) {
6004 		__vlan_hwaccel_clear_tag(skb);
6005 	} else {
6006 		if (unlikely(!eth_type_vlan(skb->protocol)))
6007 			return 0;
6008 
6009 		err = __skb_vlan_pop(skb, &vlan_tci);
6010 		if (err)
6011 			return err;
6012 	}
6013 	/* move next vlan tag to hw accel tag */
6014 	if (likely(!eth_type_vlan(skb->protocol)))
6015 		return 0;
6016 
6017 	vlan_proto = skb->protocol;
6018 	err = __skb_vlan_pop(skb, &vlan_tci);
6019 	if (unlikely(err))
6020 		return err;
6021 
6022 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6023 	return 0;
6024 }
6025 EXPORT_SYMBOL(skb_vlan_pop);
6026 
6027 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6028  * Expects skb->data at mac header.
6029  */
6030 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6031 {
6032 	if (skb_vlan_tag_present(skb)) {
6033 		int offset = skb->data - skb_mac_header(skb);
6034 		int err;
6035 
6036 		if (WARN_ONCE(offset,
6037 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6038 			      offset)) {
6039 			return -EINVAL;
6040 		}
6041 
6042 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6043 					skb_vlan_tag_get(skb));
6044 		if (err)
6045 			return err;
6046 
6047 		skb->protocol = skb->vlan_proto;
6048 		skb->mac_len += VLAN_HLEN;
6049 
6050 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6051 	}
6052 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6053 	return 0;
6054 }
6055 EXPORT_SYMBOL(skb_vlan_push);
6056 
6057 /**
6058  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6059  *
6060  * @skb: Socket buffer to modify
6061  *
6062  * Drop the Ethernet header of @skb.
6063  *
6064  * Expects that skb->data points to the mac header and that no VLAN tags are
6065  * present.
6066  *
6067  * Returns 0 on success, -errno otherwise.
6068  */
6069 int skb_eth_pop(struct sk_buff *skb)
6070 {
6071 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6072 	    skb_network_offset(skb) < ETH_HLEN)
6073 		return -EPROTO;
6074 
6075 	skb_pull_rcsum(skb, ETH_HLEN);
6076 	skb_reset_mac_header(skb);
6077 	skb_reset_mac_len(skb);
6078 
6079 	return 0;
6080 }
6081 EXPORT_SYMBOL(skb_eth_pop);
6082 
6083 /**
6084  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6085  *
6086  * @skb: Socket buffer to modify
6087  * @dst: Destination MAC address of the new header
6088  * @src: Source MAC address of the new header
6089  *
6090  * Prepend @skb with a new Ethernet header.
6091  *
6092  * Expects that skb->data points to the mac header, which must be empty.
6093  *
6094  * Returns 0 on success, -errno otherwise.
6095  */
6096 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6097 		 const unsigned char *src)
6098 {
6099 	struct ethhdr *eth;
6100 	int err;
6101 
6102 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6103 		return -EPROTO;
6104 
6105 	err = skb_cow_head(skb, sizeof(*eth));
6106 	if (err < 0)
6107 		return err;
6108 
6109 	skb_push(skb, sizeof(*eth));
6110 	skb_reset_mac_header(skb);
6111 	skb_reset_mac_len(skb);
6112 
6113 	eth = eth_hdr(skb);
6114 	ether_addr_copy(eth->h_dest, dst);
6115 	ether_addr_copy(eth->h_source, src);
6116 	eth->h_proto = skb->protocol;
6117 
6118 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6119 
6120 	return 0;
6121 }
6122 EXPORT_SYMBOL(skb_eth_push);
6123 
6124 /* Update the ethertype of hdr and the skb csum value if required. */
6125 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6126 			     __be16 ethertype)
6127 {
6128 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6129 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6130 
6131 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6132 	}
6133 
6134 	hdr->h_proto = ethertype;
6135 }
6136 
6137 /**
6138  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6139  *                   the packet
6140  *
6141  * @skb: buffer
6142  * @mpls_lse: MPLS label stack entry to push
6143  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6144  * @mac_len: length of the MAC header
6145  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6146  *            ethernet
6147  *
6148  * Expects skb->data at mac header.
6149  *
6150  * Returns 0 on success, -errno otherwise.
6151  */
6152 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6153 		  int mac_len, bool ethernet)
6154 {
6155 	struct mpls_shim_hdr *lse;
6156 	int err;
6157 
6158 	if (unlikely(!eth_p_mpls(mpls_proto)))
6159 		return -EINVAL;
6160 
6161 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6162 	if (skb->encapsulation)
6163 		return -EINVAL;
6164 
6165 	err = skb_cow_head(skb, MPLS_HLEN);
6166 	if (unlikely(err))
6167 		return err;
6168 
6169 	if (!skb->inner_protocol) {
6170 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6171 		skb_set_inner_protocol(skb, skb->protocol);
6172 	}
6173 
6174 	skb_push(skb, MPLS_HLEN);
6175 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6176 		mac_len);
6177 	skb_reset_mac_header(skb);
6178 	skb_set_network_header(skb, mac_len);
6179 	skb_reset_mac_len(skb);
6180 
6181 	lse = mpls_hdr(skb);
6182 	lse->label_stack_entry = mpls_lse;
6183 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6184 
6185 	if (ethernet && mac_len >= ETH_HLEN)
6186 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6187 	skb->protocol = mpls_proto;
6188 
6189 	return 0;
6190 }
6191 EXPORT_SYMBOL_GPL(skb_mpls_push);
6192 
6193 /**
6194  * skb_mpls_pop() - pop the outermost MPLS header
6195  *
6196  * @skb: buffer
6197  * @next_proto: ethertype of header after popped MPLS header
6198  * @mac_len: length of the MAC header
6199  * @ethernet: flag to indicate if the packet is ethernet
6200  *
6201  * Expects skb->data at mac header.
6202  *
6203  * Returns 0 on success, -errno otherwise.
6204  */
6205 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6206 		 bool ethernet)
6207 {
6208 	int err;
6209 
6210 	if (unlikely(!eth_p_mpls(skb->protocol)))
6211 		return 0;
6212 
6213 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6214 	if (unlikely(err))
6215 		return err;
6216 
6217 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6218 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6219 		mac_len);
6220 
6221 	__skb_pull(skb, MPLS_HLEN);
6222 	skb_reset_mac_header(skb);
6223 	skb_set_network_header(skb, mac_len);
6224 
6225 	if (ethernet && mac_len >= ETH_HLEN) {
6226 		struct ethhdr *hdr;
6227 
6228 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6229 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6230 		skb_mod_eth_type(skb, hdr, next_proto);
6231 	}
6232 	skb->protocol = next_proto;
6233 
6234 	return 0;
6235 }
6236 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6237 
6238 /**
6239  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6240  *
6241  * @skb: buffer
6242  * @mpls_lse: new MPLS label stack entry to update to
6243  *
6244  * Expects skb->data at mac header.
6245  *
6246  * Returns 0 on success, -errno otherwise.
6247  */
6248 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6249 {
6250 	int err;
6251 
6252 	if (unlikely(!eth_p_mpls(skb->protocol)))
6253 		return -EINVAL;
6254 
6255 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6256 	if (unlikely(err))
6257 		return err;
6258 
6259 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6260 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6261 
6262 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6263 	}
6264 
6265 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6266 
6267 	return 0;
6268 }
6269 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6270 
6271 /**
6272  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6273  *
6274  * @skb: buffer
6275  *
6276  * Expects skb->data at mac header.
6277  *
6278  * Returns 0 on success, -errno otherwise.
6279  */
6280 int skb_mpls_dec_ttl(struct sk_buff *skb)
6281 {
6282 	u32 lse;
6283 	u8 ttl;
6284 
6285 	if (unlikely(!eth_p_mpls(skb->protocol)))
6286 		return -EINVAL;
6287 
6288 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6289 		return -ENOMEM;
6290 
6291 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6292 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6293 	if (!--ttl)
6294 		return -EINVAL;
6295 
6296 	lse &= ~MPLS_LS_TTL_MASK;
6297 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6298 
6299 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6300 }
6301 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6302 
6303 /**
6304  * alloc_skb_with_frags - allocate skb with page frags
6305  *
6306  * @header_len: size of linear part
6307  * @data_len: needed length in frags
6308  * @order: max page order desired.
6309  * @errcode: pointer to error code if any
6310  * @gfp_mask: allocation mask
6311  *
6312  * This can be used to allocate a paged skb, given a maximal order for frags.
6313  */
6314 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6315 				     unsigned long data_len,
6316 				     int order,
6317 				     int *errcode,
6318 				     gfp_t gfp_mask)
6319 {
6320 	unsigned long chunk;
6321 	struct sk_buff *skb;
6322 	struct page *page;
6323 	int nr_frags = 0;
6324 
6325 	*errcode = -EMSGSIZE;
6326 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6327 		return NULL;
6328 
6329 	*errcode = -ENOBUFS;
6330 	skb = alloc_skb(header_len, gfp_mask);
6331 	if (!skb)
6332 		return NULL;
6333 
6334 	while (data_len) {
6335 		if (nr_frags == MAX_SKB_FRAGS - 1)
6336 			goto failure;
6337 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6338 			order--;
6339 
6340 		if (order) {
6341 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6342 					   __GFP_COMP |
6343 					   __GFP_NOWARN,
6344 					   order);
6345 			if (!page) {
6346 				order--;
6347 				continue;
6348 			}
6349 		} else {
6350 			page = alloc_page(gfp_mask);
6351 			if (!page)
6352 				goto failure;
6353 		}
6354 		chunk = min_t(unsigned long, data_len,
6355 			      PAGE_SIZE << order);
6356 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6357 		nr_frags++;
6358 		skb->truesize += (PAGE_SIZE << order);
6359 		data_len -= chunk;
6360 	}
6361 	return skb;
6362 
6363 failure:
6364 	kfree_skb(skb);
6365 	return NULL;
6366 }
6367 EXPORT_SYMBOL(alloc_skb_with_frags);
6368 
6369 /* carve out the first off bytes from skb when off < headlen */
6370 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6371 				    const int headlen, gfp_t gfp_mask)
6372 {
6373 	int i;
6374 	unsigned int size = skb_end_offset(skb);
6375 	int new_hlen = headlen - off;
6376 	u8 *data;
6377 
6378 	if (skb_pfmemalloc(skb))
6379 		gfp_mask |= __GFP_MEMALLOC;
6380 
6381 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6382 	if (!data)
6383 		return -ENOMEM;
6384 	size = SKB_WITH_OVERHEAD(size);
6385 
6386 	/* Copy real data, and all frags */
6387 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6388 	skb->len -= off;
6389 
6390 	memcpy((struct skb_shared_info *)(data + size),
6391 	       skb_shinfo(skb),
6392 	       offsetof(struct skb_shared_info,
6393 			frags[skb_shinfo(skb)->nr_frags]));
6394 	if (skb_cloned(skb)) {
6395 		/* drop the old head gracefully */
6396 		if (skb_orphan_frags(skb, gfp_mask)) {
6397 			skb_kfree_head(data, size);
6398 			return -ENOMEM;
6399 		}
6400 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6401 			skb_frag_ref(skb, i);
6402 		if (skb_has_frag_list(skb))
6403 			skb_clone_fraglist(skb);
6404 		skb_release_data(skb, SKB_CONSUMED, false);
6405 	} else {
6406 		/* we can reuse existing recount- all we did was
6407 		 * relocate values
6408 		 */
6409 		skb_free_head(skb, false);
6410 	}
6411 
6412 	skb->head = data;
6413 	skb->data = data;
6414 	skb->head_frag = 0;
6415 	skb_set_end_offset(skb, size);
6416 	skb_set_tail_pointer(skb, skb_headlen(skb));
6417 	skb_headers_offset_update(skb, 0);
6418 	skb->cloned = 0;
6419 	skb->hdr_len = 0;
6420 	skb->nohdr = 0;
6421 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6422 
6423 	return 0;
6424 }
6425 
6426 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6427 
6428 /* carve out the first eat bytes from skb's frag_list. May recurse into
6429  * pskb_carve()
6430  */
6431 static int pskb_carve_frag_list(struct sk_buff *skb,
6432 				struct skb_shared_info *shinfo, int eat,
6433 				gfp_t gfp_mask)
6434 {
6435 	struct sk_buff *list = shinfo->frag_list;
6436 	struct sk_buff *clone = NULL;
6437 	struct sk_buff *insp = NULL;
6438 
6439 	do {
6440 		if (!list) {
6441 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6442 			return -EFAULT;
6443 		}
6444 		if (list->len <= eat) {
6445 			/* Eaten as whole. */
6446 			eat -= list->len;
6447 			list = list->next;
6448 			insp = list;
6449 		} else {
6450 			/* Eaten partially. */
6451 			if (skb_shared(list)) {
6452 				clone = skb_clone(list, gfp_mask);
6453 				if (!clone)
6454 					return -ENOMEM;
6455 				insp = list->next;
6456 				list = clone;
6457 			} else {
6458 				/* This may be pulled without problems. */
6459 				insp = list;
6460 			}
6461 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6462 				kfree_skb(clone);
6463 				return -ENOMEM;
6464 			}
6465 			break;
6466 		}
6467 	} while (eat);
6468 
6469 	/* Free pulled out fragments. */
6470 	while ((list = shinfo->frag_list) != insp) {
6471 		shinfo->frag_list = list->next;
6472 		consume_skb(list);
6473 	}
6474 	/* And insert new clone at head. */
6475 	if (clone) {
6476 		clone->next = list;
6477 		shinfo->frag_list = clone;
6478 	}
6479 	return 0;
6480 }
6481 
6482 /* carve off first len bytes from skb. Split line (off) is in the
6483  * non-linear part of skb
6484  */
6485 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6486 				       int pos, gfp_t gfp_mask)
6487 {
6488 	int i, k = 0;
6489 	unsigned int size = skb_end_offset(skb);
6490 	u8 *data;
6491 	const int nfrags = skb_shinfo(skb)->nr_frags;
6492 	struct skb_shared_info *shinfo;
6493 
6494 	if (skb_pfmemalloc(skb))
6495 		gfp_mask |= __GFP_MEMALLOC;
6496 
6497 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6498 	if (!data)
6499 		return -ENOMEM;
6500 	size = SKB_WITH_OVERHEAD(size);
6501 
6502 	memcpy((struct skb_shared_info *)(data + size),
6503 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6504 	if (skb_orphan_frags(skb, gfp_mask)) {
6505 		skb_kfree_head(data, size);
6506 		return -ENOMEM;
6507 	}
6508 	shinfo = (struct skb_shared_info *)(data + size);
6509 	for (i = 0; i < nfrags; i++) {
6510 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6511 
6512 		if (pos + fsize > off) {
6513 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6514 
6515 			if (pos < off) {
6516 				/* Split frag.
6517 				 * We have two variants in this case:
6518 				 * 1. Move all the frag to the second
6519 				 *    part, if it is possible. F.e.
6520 				 *    this approach is mandatory for TUX,
6521 				 *    where splitting is expensive.
6522 				 * 2. Split is accurately. We make this.
6523 				 */
6524 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6525 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6526 			}
6527 			skb_frag_ref(skb, i);
6528 			k++;
6529 		}
6530 		pos += fsize;
6531 	}
6532 	shinfo->nr_frags = k;
6533 	if (skb_has_frag_list(skb))
6534 		skb_clone_fraglist(skb);
6535 
6536 	/* split line is in frag list */
6537 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6538 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6539 		if (skb_has_frag_list(skb))
6540 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6541 		skb_kfree_head(data, size);
6542 		return -ENOMEM;
6543 	}
6544 	skb_release_data(skb, SKB_CONSUMED, false);
6545 
6546 	skb->head = data;
6547 	skb->head_frag = 0;
6548 	skb->data = data;
6549 	skb_set_end_offset(skb, size);
6550 	skb_reset_tail_pointer(skb);
6551 	skb_headers_offset_update(skb, 0);
6552 	skb->cloned   = 0;
6553 	skb->hdr_len  = 0;
6554 	skb->nohdr    = 0;
6555 	skb->len -= off;
6556 	skb->data_len = skb->len;
6557 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6558 	return 0;
6559 }
6560 
6561 /* remove len bytes from the beginning of the skb */
6562 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6563 {
6564 	int headlen = skb_headlen(skb);
6565 
6566 	if (len < headlen)
6567 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6568 	else
6569 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6570 }
6571 
6572 /* Extract to_copy bytes starting at off from skb, and return this in
6573  * a new skb
6574  */
6575 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6576 			     int to_copy, gfp_t gfp)
6577 {
6578 	struct sk_buff  *clone = skb_clone(skb, gfp);
6579 
6580 	if (!clone)
6581 		return NULL;
6582 
6583 	if (pskb_carve(clone, off, gfp) < 0 ||
6584 	    pskb_trim(clone, to_copy)) {
6585 		kfree_skb(clone);
6586 		return NULL;
6587 	}
6588 	return clone;
6589 }
6590 EXPORT_SYMBOL(pskb_extract);
6591 
6592 /**
6593  * skb_condense - try to get rid of fragments/frag_list if possible
6594  * @skb: buffer
6595  *
6596  * Can be used to save memory before skb is added to a busy queue.
6597  * If packet has bytes in frags and enough tail room in skb->head,
6598  * pull all of them, so that we can free the frags right now and adjust
6599  * truesize.
6600  * Notes:
6601  *	We do not reallocate skb->head thus can not fail.
6602  *	Caller must re-evaluate skb->truesize if needed.
6603  */
6604 void skb_condense(struct sk_buff *skb)
6605 {
6606 	if (skb->data_len) {
6607 		if (skb->data_len > skb->end - skb->tail ||
6608 		    skb_cloned(skb))
6609 			return;
6610 
6611 		/* Nice, we can free page frag(s) right now */
6612 		__pskb_pull_tail(skb, skb->data_len);
6613 	}
6614 	/* At this point, skb->truesize might be over estimated,
6615 	 * because skb had a fragment, and fragments do not tell
6616 	 * their truesize.
6617 	 * When we pulled its content into skb->head, fragment
6618 	 * was freed, but __pskb_pull_tail() could not possibly
6619 	 * adjust skb->truesize, not knowing the frag truesize.
6620 	 */
6621 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6622 }
6623 EXPORT_SYMBOL(skb_condense);
6624 
6625 #ifdef CONFIG_SKB_EXTENSIONS
6626 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6627 {
6628 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6629 }
6630 
6631 /**
6632  * __skb_ext_alloc - allocate a new skb extensions storage
6633  *
6634  * @flags: See kmalloc().
6635  *
6636  * Returns the newly allocated pointer. The pointer can later attached to a
6637  * skb via __skb_ext_set().
6638  * Note: caller must handle the skb_ext as an opaque data.
6639  */
6640 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6641 {
6642 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6643 
6644 	if (new) {
6645 		memset(new->offset, 0, sizeof(new->offset));
6646 		refcount_set(&new->refcnt, 1);
6647 	}
6648 
6649 	return new;
6650 }
6651 
6652 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6653 					 unsigned int old_active)
6654 {
6655 	struct skb_ext *new;
6656 
6657 	if (refcount_read(&old->refcnt) == 1)
6658 		return old;
6659 
6660 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6661 	if (!new)
6662 		return NULL;
6663 
6664 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6665 	refcount_set(&new->refcnt, 1);
6666 
6667 #ifdef CONFIG_XFRM
6668 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6669 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6670 		unsigned int i;
6671 
6672 		for (i = 0; i < sp->len; i++)
6673 			xfrm_state_hold(sp->xvec[i]);
6674 	}
6675 #endif
6676 	__skb_ext_put(old);
6677 	return new;
6678 }
6679 
6680 /**
6681  * __skb_ext_set - attach the specified extension storage to this skb
6682  * @skb: buffer
6683  * @id: extension id
6684  * @ext: extension storage previously allocated via __skb_ext_alloc()
6685  *
6686  * Existing extensions, if any, are cleared.
6687  *
6688  * Returns the pointer to the extension.
6689  */
6690 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6691 		    struct skb_ext *ext)
6692 {
6693 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6694 
6695 	skb_ext_put(skb);
6696 	newlen = newoff + skb_ext_type_len[id];
6697 	ext->chunks = newlen;
6698 	ext->offset[id] = newoff;
6699 	skb->extensions = ext;
6700 	skb->active_extensions = 1 << id;
6701 	return skb_ext_get_ptr(ext, id);
6702 }
6703 
6704 /**
6705  * skb_ext_add - allocate space for given extension, COW if needed
6706  * @skb: buffer
6707  * @id: extension to allocate space for
6708  *
6709  * Allocates enough space for the given extension.
6710  * If the extension is already present, a pointer to that extension
6711  * is returned.
6712  *
6713  * If the skb was cloned, COW applies and the returned memory can be
6714  * modified without changing the extension space of clones buffers.
6715  *
6716  * Returns pointer to the extension or NULL on allocation failure.
6717  */
6718 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6719 {
6720 	struct skb_ext *new, *old = NULL;
6721 	unsigned int newlen, newoff;
6722 
6723 	if (skb->active_extensions) {
6724 		old = skb->extensions;
6725 
6726 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6727 		if (!new)
6728 			return NULL;
6729 
6730 		if (__skb_ext_exist(new, id))
6731 			goto set_active;
6732 
6733 		newoff = new->chunks;
6734 	} else {
6735 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6736 
6737 		new = __skb_ext_alloc(GFP_ATOMIC);
6738 		if (!new)
6739 			return NULL;
6740 	}
6741 
6742 	newlen = newoff + skb_ext_type_len[id];
6743 	new->chunks = newlen;
6744 	new->offset[id] = newoff;
6745 set_active:
6746 	skb->slow_gro = 1;
6747 	skb->extensions = new;
6748 	skb->active_extensions |= 1 << id;
6749 	return skb_ext_get_ptr(new, id);
6750 }
6751 EXPORT_SYMBOL(skb_ext_add);
6752 
6753 #ifdef CONFIG_XFRM
6754 static void skb_ext_put_sp(struct sec_path *sp)
6755 {
6756 	unsigned int i;
6757 
6758 	for (i = 0; i < sp->len; i++)
6759 		xfrm_state_put(sp->xvec[i]);
6760 }
6761 #endif
6762 
6763 #ifdef CONFIG_MCTP_FLOWS
6764 static void skb_ext_put_mctp(struct mctp_flow *flow)
6765 {
6766 	if (flow->key)
6767 		mctp_key_unref(flow->key);
6768 }
6769 #endif
6770 
6771 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6772 {
6773 	struct skb_ext *ext = skb->extensions;
6774 
6775 	skb->active_extensions &= ~(1 << id);
6776 	if (skb->active_extensions == 0) {
6777 		skb->extensions = NULL;
6778 		__skb_ext_put(ext);
6779 #ifdef CONFIG_XFRM
6780 	} else if (id == SKB_EXT_SEC_PATH &&
6781 		   refcount_read(&ext->refcnt) == 1) {
6782 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6783 
6784 		skb_ext_put_sp(sp);
6785 		sp->len = 0;
6786 #endif
6787 	}
6788 }
6789 EXPORT_SYMBOL(__skb_ext_del);
6790 
6791 void __skb_ext_put(struct skb_ext *ext)
6792 {
6793 	/* If this is last clone, nothing can increment
6794 	 * it after check passes.  Avoids one atomic op.
6795 	 */
6796 	if (refcount_read(&ext->refcnt) == 1)
6797 		goto free_now;
6798 
6799 	if (!refcount_dec_and_test(&ext->refcnt))
6800 		return;
6801 free_now:
6802 #ifdef CONFIG_XFRM
6803 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6804 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6805 #endif
6806 #ifdef CONFIG_MCTP_FLOWS
6807 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6808 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6809 #endif
6810 
6811 	kmem_cache_free(skbuff_ext_cache, ext);
6812 }
6813 EXPORT_SYMBOL(__skb_ext_put);
6814 #endif /* CONFIG_SKB_EXTENSIONS */
6815 
6816 /**
6817  * skb_attempt_defer_free - queue skb for remote freeing
6818  * @skb: buffer
6819  *
6820  * Put @skb in a per-cpu list, using the cpu which
6821  * allocated the skb/pages to reduce false sharing
6822  * and memory zone spinlock contention.
6823  */
6824 void skb_attempt_defer_free(struct sk_buff *skb)
6825 {
6826 	int cpu = skb->alloc_cpu;
6827 	struct softnet_data *sd;
6828 	unsigned int defer_max;
6829 	bool kick;
6830 
6831 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6832 	    !cpu_online(cpu) ||
6833 	    cpu == raw_smp_processor_id()) {
6834 nodefer:	__kfree_skb(skb);
6835 		return;
6836 	}
6837 
6838 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6839 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6840 
6841 	sd = &per_cpu(softnet_data, cpu);
6842 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6843 	if (READ_ONCE(sd->defer_count) >= defer_max)
6844 		goto nodefer;
6845 
6846 	spin_lock_bh(&sd->defer_lock);
6847 	/* Send an IPI every time queue reaches half capacity. */
6848 	kick = sd->defer_count == (defer_max >> 1);
6849 	/* Paired with the READ_ONCE() few lines above */
6850 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6851 
6852 	skb->next = sd->defer_list;
6853 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6854 	WRITE_ONCE(sd->defer_list, skb);
6855 	spin_unlock_bh(&sd->defer_lock);
6856 
6857 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6858 	 * if we are unlucky enough (this seems very unlikely).
6859 	 */
6860 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6861 		smp_call_function_single_async(cpu, &sd->defer_csd);
6862 }
6863 
6864 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6865 				 size_t offset, size_t len)
6866 {
6867 	const char *kaddr;
6868 	__wsum csum;
6869 
6870 	kaddr = kmap_local_page(page);
6871 	csum = csum_partial(kaddr + offset, len, 0);
6872 	kunmap_local(kaddr);
6873 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
6874 }
6875 
6876 /**
6877  * skb_splice_from_iter - Splice (or copy) pages to skbuff
6878  * @skb: The buffer to add pages to
6879  * @iter: Iterator representing the pages to be added
6880  * @maxsize: Maximum amount of pages to be added
6881  * @gfp: Allocation flags
6882  *
6883  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
6884  * extracts pages from an iterator and adds them to the socket buffer if
6885  * possible, copying them to fragments if not possible (such as if they're slab
6886  * pages).
6887  *
6888  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6889  * insufficient space in the buffer to transfer anything.
6890  */
6891 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6892 			     ssize_t maxsize, gfp_t gfp)
6893 {
6894 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6895 	struct page *pages[8], **ppages = pages;
6896 	ssize_t spliced = 0, ret = 0;
6897 	unsigned int i;
6898 
6899 	while (iter->count > 0) {
6900 		ssize_t space, nr, len;
6901 		size_t off;
6902 
6903 		ret = -EMSGSIZE;
6904 		space = frag_limit - skb_shinfo(skb)->nr_frags;
6905 		if (space < 0)
6906 			break;
6907 
6908 		/* We might be able to coalesce without increasing nr_frags */
6909 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6910 
6911 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6912 		if (len <= 0) {
6913 			ret = len ?: -EIO;
6914 			break;
6915 		}
6916 
6917 		i = 0;
6918 		do {
6919 			struct page *page = pages[i++];
6920 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
6921 
6922 			ret = -EIO;
6923 			if (WARN_ON_ONCE(!sendpage_ok(page)))
6924 				goto out;
6925 
6926 			ret = skb_append_pagefrags(skb, page, off, part,
6927 						   frag_limit);
6928 			if (ret < 0) {
6929 				iov_iter_revert(iter, len);
6930 				goto out;
6931 			}
6932 
6933 			if (skb->ip_summed == CHECKSUM_NONE)
6934 				skb_splice_csum_page(skb, page, off, part);
6935 
6936 			off = 0;
6937 			spliced += part;
6938 			maxsize -= part;
6939 			len -= part;
6940 		} while (len > 0);
6941 
6942 		if (maxsize <= 0)
6943 			break;
6944 	}
6945 
6946 out:
6947 	skb_len_add(skb, spliced);
6948 	return spliced ?: ret;
6949 }
6950 EXPORT_SYMBOL(skb_splice_from_iter);
6951