xref: /linux/net/core/skbuff.c (revision e958da0ddbe831197a0023251880a4a09d5ba268)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gso.h>
73 #include <net/hotdata.h>
74 #include <net/ip6_checksum.h>
75 #include <net/xfrm.h>
76 #include <net/mpls.h>
77 #include <net/mptcp.h>
78 #include <net/mctp.h>
79 #include <net/page_pool/helpers.h>
80 #include <net/dropreason.h>
81 
82 #include <linux/uaccess.h>
83 #include <trace/events/skb.h>
84 #include <linux/highmem.h>
85 #include <linux/capability.h>
86 #include <linux/user_namespace.h>
87 #include <linux/indirect_call_wrapper.h>
88 #include <linux/textsearch.h>
89 
90 #include "dev.h"
91 #include "sock_destructor.h"
92 
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
98 
99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
100  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
101  * size, and we can differentiate heads from skb_small_head_cache
102  * vs system slabs by looking at their size (skb_end_offset()).
103  */
104 #define SKB_SMALL_HEAD_CACHE_SIZE					\
105 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
106 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
107 		SKB_SMALL_HEAD_SIZE)
108 
109 #define SKB_SMALL_HEAD_HEADROOM						\
110 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
111 
112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
113  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
114  * netmem is a page.
115  */
116 static_assert(offsetof(struct bio_vec, bv_page) ==
117 	      offsetof(skb_frag_t, netmem));
118 static_assert(sizeof_field(struct bio_vec, bv_page) ==
119 	      sizeof_field(skb_frag_t, netmem));
120 
121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
122 static_assert(sizeof_field(struct bio_vec, bv_len) ==
123 	      sizeof_field(skb_frag_t, len));
124 
125 static_assert(offsetof(struct bio_vec, bv_offset) ==
126 	      offsetof(skb_frag_t, offset));
127 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
128 	      sizeof_field(skb_frag_t, offset));
129 
130 #undef FN
131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
132 static const char * const drop_reasons[] = {
133 	[SKB_CONSUMED] = "CONSUMED",
134 	DEFINE_DROP_REASON(FN, FN)
135 };
136 
137 static const struct drop_reason_list drop_reasons_core = {
138 	.reasons = drop_reasons,
139 	.n_reasons = ARRAY_SIZE(drop_reasons),
140 };
141 
142 const struct drop_reason_list __rcu *
143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
144 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
145 };
146 EXPORT_SYMBOL(drop_reasons_by_subsys);
147 
148 /**
149  * drop_reasons_register_subsys - register another drop reason subsystem
150  * @subsys: the subsystem to register, must not be the core
151  * @list: the list of drop reasons within the subsystem, must point to
152  *	a statically initialized list
153  */
154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
155 				  const struct drop_reason_list *list)
156 {
157 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
158 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
159 		 "invalid subsystem %d\n", subsys))
160 		return;
161 
162 	/* must point to statically allocated memory, so INIT is OK */
163 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
164 }
165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
166 
167 /**
168  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
169  * @subsys: the subsystem to remove, must not be the core
170  *
171  * Note: This will synchronize_rcu() to ensure no users when it returns.
172  */
173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
174 {
175 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
176 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
177 		 "invalid subsystem %d\n", subsys))
178 		return;
179 
180 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
181 
182 	synchronize_rcu();
183 }
184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
185 
186 /**
187  *	skb_panic - private function for out-of-line support
188  *	@skb:	buffer
189  *	@sz:	size
190  *	@addr:	address
191  *	@msg:	skb_over_panic or skb_under_panic
192  *
193  *	Out-of-line support for skb_put() and skb_push().
194  *	Called via the wrapper skb_over_panic() or skb_under_panic().
195  *	Keep out of line to prevent kernel bloat.
196  *	__builtin_return_address is not used because it is not always reliable.
197  */
198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
199 		      const char msg[])
200 {
201 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
202 		 msg, addr, skb->len, sz, skb->head, skb->data,
203 		 (unsigned long)skb->tail, (unsigned long)skb->end,
204 		 skb->dev ? skb->dev->name : "<NULL>");
205 	BUG();
206 }
207 
208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
209 {
210 	skb_panic(skb, sz, addr, __func__);
211 }
212 
213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
214 {
215 	skb_panic(skb, sz, addr, __func__);
216 }
217 
218 #define NAPI_SKB_CACHE_SIZE	64
219 #define NAPI_SKB_CACHE_BULK	16
220 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
221 
222 #if PAGE_SIZE == SZ_4K
223 
224 #define NAPI_HAS_SMALL_PAGE_FRAG	1
225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
226 
227 /* specialized page frag allocator using a single order 0 page
228  * and slicing it into 1K sized fragment. Constrained to systems
229  * with a very limited amount of 1K fragments fitting a single
230  * page - to avoid excessive truesize underestimation
231  */
232 
233 struct page_frag_1k {
234 	void *va;
235 	u16 offset;
236 	bool pfmemalloc;
237 };
238 
239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
240 {
241 	struct page *page;
242 	int offset;
243 
244 	offset = nc->offset - SZ_1K;
245 	if (likely(offset >= 0))
246 		goto use_frag;
247 
248 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
249 	if (!page)
250 		return NULL;
251 
252 	nc->va = page_address(page);
253 	nc->pfmemalloc = page_is_pfmemalloc(page);
254 	offset = PAGE_SIZE - SZ_1K;
255 	page_ref_add(page, offset / SZ_1K);
256 
257 use_frag:
258 	nc->offset = offset;
259 	return nc->va + offset;
260 }
261 #else
262 
263 /* the small page is actually unused in this build; add dummy helpers
264  * to please the compiler and avoid later preprocessor's conditionals
265  */
266 #define NAPI_HAS_SMALL_PAGE_FRAG	0
267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
268 
269 struct page_frag_1k {
270 };
271 
272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
273 {
274 	return NULL;
275 }
276 
277 #endif
278 
279 struct napi_alloc_cache {
280 	struct page_frag_cache page;
281 	struct page_frag_1k page_small;
282 	unsigned int skb_count;
283 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
284 };
285 
286 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
287 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
288 
289 /* Double check that napi_get_frags() allocates skbs with
290  * skb->head being backed by slab, not a page fragment.
291  * This is to make sure bug fixed in 3226b158e67c
292  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
293  * does not accidentally come back.
294  */
295 void napi_get_frags_check(struct napi_struct *napi)
296 {
297 	struct sk_buff *skb;
298 
299 	local_bh_disable();
300 	skb = napi_get_frags(napi);
301 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
302 	napi_free_frags(napi);
303 	local_bh_enable();
304 }
305 
306 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
307 {
308 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
309 
310 	fragsz = SKB_DATA_ALIGN(fragsz);
311 
312 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
313 				       align_mask);
314 }
315 EXPORT_SYMBOL(__napi_alloc_frag_align);
316 
317 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
318 {
319 	void *data;
320 
321 	fragsz = SKB_DATA_ALIGN(fragsz);
322 	if (in_hardirq() || irqs_disabled()) {
323 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
324 
325 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
326 					       align_mask);
327 	} else {
328 		struct napi_alloc_cache *nc;
329 
330 		local_bh_disable();
331 		nc = this_cpu_ptr(&napi_alloc_cache);
332 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
333 					       align_mask);
334 		local_bh_enable();
335 	}
336 	return data;
337 }
338 EXPORT_SYMBOL(__netdev_alloc_frag_align);
339 
340 static struct sk_buff *napi_skb_cache_get(void)
341 {
342 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
343 	struct sk_buff *skb;
344 
345 	if (unlikely(!nc->skb_count)) {
346 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
347 						      GFP_ATOMIC,
348 						      NAPI_SKB_CACHE_BULK,
349 						      nc->skb_cache);
350 		if (unlikely(!nc->skb_count))
351 			return NULL;
352 	}
353 
354 	skb = nc->skb_cache[--nc->skb_count];
355 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
356 
357 	return skb;
358 }
359 
360 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
361 					 unsigned int size)
362 {
363 	struct skb_shared_info *shinfo;
364 
365 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
366 
367 	/* Assumes caller memset cleared SKB */
368 	skb->truesize = SKB_TRUESIZE(size);
369 	refcount_set(&skb->users, 1);
370 	skb->head = data;
371 	skb->data = data;
372 	skb_reset_tail_pointer(skb);
373 	skb_set_end_offset(skb, size);
374 	skb->mac_header = (typeof(skb->mac_header))~0U;
375 	skb->transport_header = (typeof(skb->transport_header))~0U;
376 	skb->alloc_cpu = raw_smp_processor_id();
377 	/* make sure we initialize shinfo sequentially */
378 	shinfo = skb_shinfo(skb);
379 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
380 	atomic_set(&shinfo->dataref, 1);
381 
382 	skb_set_kcov_handle(skb, kcov_common_handle());
383 }
384 
385 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
386 				     unsigned int *size)
387 {
388 	void *resized;
389 
390 	/* Must find the allocation size (and grow it to match). */
391 	*size = ksize(data);
392 	/* krealloc() will immediately return "data" when
393 	 * "ksize(data)" is requested: it is the existing upper
394 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
395 	 * that this "new" pointer needs to be passed back to the
396 	 * caller for use so the __alloc_size hinting will be
397 	 * tracked correctly.
398 	 */
399 	resized = krealloc(data, *size, GFP_ATOMIC);
400 	WARN_ON_ONCE(resized != data);
401 	return resized;
402 }
403 
404 /* build_skb() variant which can operate on slab buffers.
405  * Note that this should be used sparingly as slab buffers
406  * cannot be combined efficiently by GRO!
407  */
408 struct sk_buff *slab_build_skb(void *data)
409 {
410 	struct sk_buff *skb;
411 	unsigned int size;
412 
413 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
414 	if (unlikely(!skb))
415 		return NULL;
416 
417 	memset(skb, 0, offsetof(struct sk_buff, tail));
418 	data = __slab_build_skb(skb, data, &size);
419 	__finalize_skb_around(skb, data, size);
420 
421 	return skb;
422 }
423 EXPORT_SYMBOL(slab_build_skb);
424 
425 /* Caller must provide SKB that is memset cleared */
426 static void __build_skb_around(struct sk_buff *skb, void *data,
427 			       unsigned int frag_size)
428 {
429 	unsigned int size = frag_size;
430 
431 	/* frag_size == 0 is considered deprecated now. Callers
432 	 * using slab buffer should use slab_build_skb() instead.
433 	 */
434 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
435 		data = __slab_build_skb(skb, data, &size);
436 
437 	__finalize_skb_around(skb, data, size);
438 }
439 
440 /**
441  * __build_skb - build a network buffer
442  * @data: data buffer provided by caller
443  * @frag_size: size of data (must not be 0)
444  *
445  * Allocate a new &sk_buff. Caller provides space holding head and
446  * skb_shared_info. @data must have been allocated from the page
447  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
448  * allocation is deprecated, and callers should use slab_build_skb()
449  * instead.)
450  * The return is the new skb buffer.
451  * On a failure the return is %NULL, and @data is not freed.
452  * Notes :
453  *  Before IO, driver allocates only data buffer where NIC put incoming frame
454  *  Driver should add room at head (NET_SKB_PAD) and
455  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
456  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
457  *  before giving packet to stack.
458  *  RX rings only contains data buffers, not full skbs.
459  */
460 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
461 {
462 	struct sk_buff *skb;
463 
464 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
465 	if (unlikely(!skb))
466 		return NULL;
467 
468 	memset(skb, 0, offsetof(struct sk_buff, tail));
469 	__build_skb_around(skb, data, frag_size);
470 
471 	return skb;
472 }
473 
474 /* build_skb() is wrapper over __build_skb(), that specifically
475  * takes care of skb->head and skb->pfmemalloc
476  */
477 struct sk_buff *build_skb(void *data, unsigned int frag_size)
478 {
479 	struct sk_buff *skb = __build_skb(data, frag_size);
480 
481 	if (likely(skb && frag_size)) {
482 		skb->head_frag = 1;
483 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
484 	}
485 	return skb;
486 }
487 EXPORT_SYMBOL(build_skb);
488 
489 /**
490  * build_skb_around - build a network buffer around provided skb
491  * @skb: sk_buff provide by caller, must be memset cleared
492  * @data: data buffer provided by caller
493  * @frag_size: size of data
494  */
495 struct sk_buff *build_skb_around(struct sk_buff *skb,
496 				 void *data, unsigned int frag_size)
497 {
498 	if (unlikely(!skb))
499 		return NULL;
500 
501 	__build_skb_around(skb, data, frag_size);
502 
503 	if (frag_size) {
504 		skb->head_frag = 1;
505 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
506 	}
507 	return skb;
508 }
509 EXPORT_SYMBOL(build_skb_around);
510 
511 /**
512  * __napi_build_skb - build a network buffer
513  * @data: data buffer provided by caller
514  * @frag_size: size of data
515  *
516  * Version of __build_skb() that uses NAPI percpu caches to obtain
517  * skbuff_head instead of inplace allocation.
518  *
519  * Returns a new &sk_buff on success, %NULL on allocation failure.
520  */
521 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
522 {
523 	struct sk_buff *skb;
524 
525 	skb = napi_skb_cache_get();
526 	if (unlikely(!skb))
527 		return NULL;
528 
529 	memset(skb, 0, offsetof(struct sk_buff, tail));
530 	__build_skb_around(skb, data, frag_size);
531 
532 	return skb;
533 }
534 
535 /**
536  * napi_build_skb - build a network buffer
537  * @data: data buffer provided by caller
538  * @frag_size: size of data
539  *
540  * Version of __napi_build_skb() that takes care of skb->head_frag
541  * and skb->pfmemalloc when the data is a page or page fragment.
542  *
543  * Returns a new &sk_buff on success, %NULL on allocation failure.
544  */
545 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
546 {
547 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
548 
549 	if (likely(skb) && frag_size) {
550 		skb->head_frag = 1;
551 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
552 	}
553 
554 	return skb;
555 }
556 EXPORT_SYMBOL(napi_build_skb);
557 
558 /*
559  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
560  * the caller if emergency pfmemalloc reserves are being used. If it is and
561  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
562  * may be used. Otherwise, the packet data may be discarded until enough
563  * memory is free
564  */
565 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
566 			     bool *pfmemalloc)
567 {
568 	bool ret_pfmemalloc = false;
569 	size_t obj_size;
570 	void *obj;
571 
572 	obj_size = SKB_HEAD_ALIGN(*size);
573 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
574 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
575 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
576 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
577 				node);
578 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
579 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
580 			goto out;
581 		/* Try again but now we are using pfmemalloc reserves */
582 		ret_pfmemalloc = true;
583 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
584 		goto out;
585 	}
586 
587 	obj_size = kmalloc_size_roundup(obj_size);
588 	/* The following cast might truncate high-order bits of obj_size, this
589 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
590 	 */
591 	*size = (unsigned int)obj_size;
592 
593 	/*
594 	 * Try a regular allocation, when that fails and we're not entitled
595 	 * to the reserves, fail.
596 	 */
597 	obj = kmalloc_node_track_caller(obj_size,
598 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
599 					node);
600 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
601 		goto out;
602 
603 	/* Try again but now we are using pfmemalloc reserves */
604 	ret_pfmemalloc = true;
605 	obj = kmalloc_node_track_caller(obj_size, flags, node);
606 
607 out:
608 	if (pfmemalloc)
609 		*pfmemalloc = ret_pfmemalloc;
610 
611 	return obj;
612 }
613 
614 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
615  *	'private' fields and also do memory statistics to find all the
616  *	[BEEP] leaks.
617  *
618  */
619 
620 /**
621  *	__alloc_skb	-	allocate a network buffer
622  *	@size: size to allocate
623  *	@gfp_mask: allocation mask
624  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
625  *		instead of head cache and allocate a cloned (child) skb.
626  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
627  *		allocations in case the data is required for writeback
628  *	@node: numa node to allocate memory on
629  *
630  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
631  *	tail room of at least size bytes. The object has a reference count
632  *	of one. The return is the buffer. On a failure the return is %NULL.
633  *
634  *	Buffers may only be allocated from interrupts using a @gfp_mask of
635  *	%GFP_ATOMIC.
636  */
637 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
638 			    int flags, int node)
639 {
640 	struct kmem_cache *cache;
641 	struct sk_buff *skb;
642 	bool pfmemalloc;
643 	u8 *data;
644 
645 	cache = (flags & SKB_ALLOC_FCLONE)
646 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
647 
648 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
649 		gfp_mask |= __GFP_MEMALLOC;
650 
651 	/* Get the HEAD */
652 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
653 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
654 		skb = napi_skb_cache_get();
655 	else
656 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
657 	if (unlikely(!skb))
658 		return NULL;
659 	prefetchw(skb);
660 
661 	/* We do our best to align skb_shared_info on a separate cache
662 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
663 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
664 	 * Both skb->head and skb_shared_info are cache line aligned.
665 	 */
666 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
667 	if (unlikely(!data))
668 		goto nodata;
669 	/* kmalloc_size_roundup() might give us more room than requested.
670 	 * Put skb_shared_info exactly at the end of allocated zone,
671 	 * to allow max possible filling before reallocation.
672 	 */
673 	prefetchw(data + SKB_WITH_OVERHEAD(size));
674 
675 	/*
676 	 * Only clear those fields we need to clear, not those that we will
677 	 * actually initialise below. Hence, don't put any more fields after
678 	 * the tail pointer in struct sk_buff!
679 	 */
680 	memset(skb, 0, offsetof(struct sk_buff, tail));
681 	__build_skb_around(skb, data, size);
682 	skb->pfmemalloc = pfmemalloc;
683 
684 	if (flags & SKB_ALLOC_FCLONE) {
685 		struct sk_buff_fclones *fclones;
686 
687 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
688 
689 		skb->fclone = SKB_FCLONE_ORIG;
690 		refcount_set(&fclones->fclone_ref, 1);
691 	}
692 
693 	return skb;
694 
695 nodata:
696 	kmem_cache_free(cache, skb);
697 	return NULL;
698 }
699 EXPORT_SYMBOL(__alloc_skb);
700 
701 /**
702  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
703  *	@dev: network device to receive on
704  *	@len: length to allocate
705  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
706  *
707  *	Allocate a new &sk_buff and assign it a usage count of one. The
708  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
709  *	the headroom they think they need without accounting for the
710  *	built in space. The built in space is used for optimisations.
711  *
712  *	%NULL is returned if there is no free memory.
713  */
714 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
715 				   gfp_t gfp_mask)
716 {
717 	struct page_frag_cache *nc;
718 	struct sk_buff *skb;
719 	bool pfmemalloc;
720 	void *data;
721 
722 	len += NET_SKB_PAD;
723 
724 	/* If requested length is either too small or too big,
725 	 * we use kmalloc() for skb->head allocation.
726 	 */
727 	if (len <= SKB_WITH_OVERHEAD(1024) ||
728 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
729 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
730 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
731 		if (!skb)
732 			goto skb_fail;
733 		goto skb_success;
734 	}
735 
736 	len = SKB_HEAD_ALIGN(len);
737 
738 	if (sk_memalloc_socks())
739 		gfp_mask |= __GFP_MEMALLOC;
740 
741 	if (in_hardirq() || irqs_disabled()) {
742 		nc = this_cpu_ptr(&netdev_alloc_cache);
743 		data = page_frag_alloc(nc, len, gfp_mask);
744 		pfmemalloc = nc->pfmemalloc;
745 	} else {
746 		local_bh_disable();
747 		nc = this_cpu_ptr(&napi_alloc_cache.page);
748 		data = page_frag_alloc(nc, len, gfp_mask);
749 		pfmemalloc = nc->pfmemalloc;
750 		local_bh_enable();
751 	}
752 
753 	if (unlikely(!data))
754 		return NULL;
755 
756 	skb = __build_skb(data, len);
757 	if (unlikely(!skb)) {
758 		skb_free_frag(data);
759 		return NULL;
760 	}
761 
762 	if (pfmemalloc)
763 		skb->pfmemalloc = 1;
764 	skb->head_frag = 1;
765 
766 skb_success:
767 	skb_reserve(skb, NET_SKB_PAD);
768 	skb->dev = dev;
769 
770 skb_fail:
771 	return skb;
772 }
773 EXPORT_SYMBOL(__netdev_alloc_skb);
774 
775 /**
776  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
777  *	@napi: napi instance this buffer was allocated for
778  *	@len: length to allocate
779  *
780  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
781  *	attempt to allocate the head from a special reserved region used
782  *	only for NAPI Rx allocation.  By doing this we can save several
783  *	CPU cycles by avoiding having to disable and re-enable IRQs.
784  *
785  *	%NULL is returned if there is no free memory.
786  */
787 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
788 {
789 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
790 	struct napi_alloc_cache *nc;
791 	struct sk_buff *skb;
792 	bool pfmemalloc;
793 	void *data;
794 
795 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
796 	len += NET_SKB_PAD + NET_IP_ALIGN;
797 
798 	/* If requested length is either too small or too big,
799 	 * we use kmalloc() for skb->head allocation.
800 	 * When the small frag allocator is available, prefer it over kmalloc
801 	 * for small fragments
802 	 */
803 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
804 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
805 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
806 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
807 				  NUMA_NO_NODE);
808 		if (!skb)
809 			goto skb_fail;
810 		goto skb_success;
811 	}
812 
813 	nc = this_cpu_ptr(&napi_alloc_cache);
814 
815 	if (sk_memalloc_socks())
816 		gfp_mask |= __GFP_MEMALLOC;
817 
818 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
819 		/* we are artificially inflating the allocation size, but
820 		 * that is not as bad as it may look like, as:
821 		 * - 'len' less than GRO_MAX_HEAD makes little sense
822 		 * - On most systems, larger 'len' values lead to fragment
823 		 *   size above 512 bytes
824 		 * - kmalloc would use the kmalloc-1k slab for such values
825 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
826 		 *   little networking, as that implies no WiFi and no
827 		 *   tunnels support, and 32 bits arches.
828 		 */
829 		len = SZ_1K;
830 
831 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
832 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
833 	} else {
834 		len = SKB_HEAD_ALIGN(len);
835 
836 		data = page_frag_alloc(&nc->page, len, gfp_mask);
837 		pfmemalloc = nc->page.pfmemalloc;
838 	}
839 
840 	if (unlikely(!data))
841 		return NULL;
842 
843 	skb = __napi_build_skb(data, len);
844 	if (unlikely(!skb)) {
845 		skb_free_frag(data);
846 		return NULL;
847 	}
848 
849 	if (pfmemalloc)
850 		skb->pfmemalloc = 1;
851 	skb->head_frag = 1;
852 
853 skb_success:
854 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
855 	skb->dev = napi->dev;
856 
857 skb_fail:
858 	return skb;
859 }
860 EXPORT_SYMBOL(napi_alloc_skb);
861 
862 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
863 			    int off, int size, unsigned int truesize)
864 {
865 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
866 
867 	skb_fill_netmem_desc(skb, i, netmem, off, size);
868 	skb->len += size;
869 	skb->data_len += size;
870 	skb->truesize += truesize;
871 }
872 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
873 
874 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
875 			  unsigned int truesize)
876 {
877 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
878 
879 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
880 
881 	skb_frag_size_add(frag, size);
882 	skb->len += size;
883 	skb->data_len += size;
884 	skb->truesize += truesize;
885 }
886 EXPORT_SYMBOL(skb_coalesce_rx_frag);
887 
888 static void skb_drop_list(struct sk_buff **listp)
889 {
890 	kfree_skb_list(*listp);
891 	*listp = NULL;
892 }
893 
894 static inline void skb_drop_fraglist(struct sk_buff *skb)
895 {
896 	skb_drop_list(&skb_shinfo(skb)->frag_list);
897 }
898 
899 static void skb_clone_fraglist(struct sk_buff *skb)
900 {
901 	struct sk_buff *list;
902 
903 	skb_walk_frags(skb, list)
904 		skb_get(list);
905 }
906 
907 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
908 		    unsigned int headroom)
909 {
910 #if IS_ENABLED(CONFIG_PAGE_POOL)
911 	u32 size, truesize, len, max_head_size, off;
912 	struct sk_buff *skb = *pskb, *nskb;
913 	int err, i, head_off;
914 	void *data;
915 
916 	/* XDP does not support fraglist so we need to linearize
917 	 * the skb.
918 	 */
919 	if (skb_has_frag_list(skb))
920 		return -EOPNOTSUPP;
921 
922 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
923 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
924 		return -ENOMEM;
925 
926 	size = min_t(u32, skb->len, max_head_size);
927 	truesize = SKB_HEAD_ALIGN(size) + headroom;
928 	data = page_pool_dev_alloc_va(pool, &truesize);
929 	if (!data)
930 		return -ENOMEM;
931 
932 	nskb = napi_build_skb(data, truesize);
933 	if (!nskb) {
934 		page_pool_free_va(pool, data, true);
935 		return -ENOMEM;
936 	}
937 
938 	skb_reserve(nskb, headroom);
939 	skb_copy_header(nskb, skb);
940 	skb_mark_for_recycle(nskb);
941 
942 	err = skb_copy_bits(skb, 0, nskb->data, size);
943 	if (err) {
944 		consume_skb(nskb);
945 		return err;
946 	}
947 	skb_put(nskb, size);
948 
949 	head_off = skb_headroom(nskb) - skb_headroom(skb);
950 	skb_headers_offset_update(nskb, head_off);
951 
952 	off = size;
953 	len = skb->len - off;
954 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
955 		struct page *page;
956 		u32 page_off;
957 
958 		size = min_t(u32, len, PAGE_SIZE);
959 		truesize = size;
960 
961 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
962 		if (!page) {
963 			consume_skb(nskb);
964 			return -ENOMEM;
965 		}
966 
967 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
968 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
969 				    size);
970 		if (err) {
971 			consume_skb(nskb);
972 			return err;
973 		}
974 
975 		len -= size;
976 		off += size;
977 	}
978 
979 	consume_skb(skb);
980 	*pskb = nskb;
981 
982 	return 0;
983 #else
984 	return -EOPNOTSUPP;
985 #endif
986 }
987 EXPORT_SYMBOL(skb_pp_cow_data);
988 
989 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
990 			 struct bpf_prog *prog)
991 {
992 	if (!prog->aux->xdp_has_frags)
993 		return -EINVAL;
994 
995 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
996 }
997 EXPORT_SYMBOL(skb_cow_data_for_xdp);
998 
999 #if IS_ENABLED(CONFIG_PAGE_POOL)
1000 bool napi_pp_put_page(struct page *page)
1001 {
1002 	page = compound_head(page);
1003 
1004 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1005 	 * in order to preserve any existing bits, such as bit 0 for the
1006 	 * head page of compound page and bit 1 for pfmemalloc page, so
1007 	 * mask those bits for freeing side when doing below checking,
1008 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1009 	 * to avoid recycling the pfmemalloc page.
1010 	 */
1011 	if (unlikely(!is_pp_page(page)))
1012 		return false;
1013 
1014 	page_pool_put_full_page(page->pp, page, false);
1015 
1016 	return true;
1017 }
1018 EXPORT_SYMBOL(napi_pp_put_page);
1019 #endif
1020 
1021 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1022 {
1023 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1024 		return false;
1025 	return napi_pp_put_page(virt_to_page(data));
1026 }
1027 
1028 static void skb_kfree_head(void *head, unsigned int end_offset)
1029 {
1030 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1031 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1032 	else
1033 		kfree(head);
1034 }
1035 
1036 static void skb_free_head(struct sk_buff *skb)
1037 {
1038 	unsigned char *head = skb->head;
1039 
1040 	if (skb->head_frag) {
1041 		if (skb_pp_recycle(skb, head))
1042 			return;
1043 		skb_free_frag(head);
1044 	} else {
1045 		skb_kfree_head(head, skb_end_offset(skb));
1046 	}
1047 }
1048 
1049 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1050 {
1051 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1052 	int i;
1053 
1054 	if (!skb_data_unref(skb, shinfo))
1055 		goto exit;
1056 
1057 	if (skb_zcopy(skb)) {
1058 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1059 
1060 		skb_zcopy_clear(skb, true);
1061 		if (skip_unref)
1062 			goto free_head;
1063 	}
1064 
1065 	for (i = 0; i < shinfo->nr_frags; i++)
1066 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1067 
1068 free_head:
1069 	if (shinfo->frag_list)
1070 		kfree_skb_list_reason(shinfo->frag_list, reason);
1071 
1072 	skb_free_head(skb);
1073 exit:
1074 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1075 	 * bit is only set on the head though, so in order to avoid races
1076 	 * while trying to recycle fragments on __skb_frag_unref() we need
1077 	 * to make one SKB responsible for triggering the recycle path.
1078 	 * So disable the recycling bit if an SKB is cloned and we have
1079 	 * additional references to the fragmented part of the SKB.
1080 	 * Eventually the last SKB will have the recycling bit set and it's
1081 	 * dataref set to 0, which will trigger the recycling
1082 	 */
1083 	skb->pp_recycle = 0;
1084 }
1085 
1086 /*
1087  *	Free an skbuff by memory without cleaning the state.
1088  */
1089 static void kfree_skbmem(struct sk_buff *skb)
1090 {
1091 	struct sk_buff_fclones *fclones;
1092 
1093 	switch (skb->fclone) {
1094 	case SKB_FCLONE_UNAVAILABLE:
1095 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1096 		return;
1097 
1098 	case SKB_FCLONE_ORIG:
1099 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1100 
1101 		/* We usually free the clone (TX completion) before original skb
1102 		 * This test would have no chance to be true for the clone,
1103 		 * while here, branch prediction will be good.
1104 		 */
1105 		if (refcount_read(&fclones->fclone_ref) == 1)
1106 			goto fastpath;
1107 		break;
1108 
1109 	default: /* SKB_FCLONE_CLONE */
1110 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1111 		break;
1112 	}
1113 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1114 		return;
1115 fastpath:
1116 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1117 }
1118 
1119 void skb_release_head_state(struct sk_buff *skb)
1120 {
1121 	skb_dst_drop(skb);
1122 	if (skb->destructor) {
1123 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1124 		skb->destructor(skb);
1125 	}
1126 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1127 	nf_conntrack_put(skb_nfct(skb));
1128 #endif
1129 	skb_ext_put(skb);
1130 }
1131 
1132 /* Free everything but the sk_buff shell. */
1133 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1134 {
1135 	skb_release_head_state(skb);
1136 	if (likely(skb->head))
1137 		skb_release_data(skb, reason);
1138 }
1139 
1140 /**
1141  *	__kfree_skb - private function
1142  *	@skb: buffer
1143  *
1144  *	Free an sk_buff. Release anything attached to the buffer.
1145  *	Clean the state. This is an internal helper function. Users should
1146  *	always call kfree_skb
1147  */
1148 
1149 void __kfree_skb(struct sk_buff *skb)
1150 {
1151 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1152 	kfree_skbmem(skb);
1153 }
1154 EXPORT_SYMBOL(__kfree_skb);
1155 
1156 static __always_inline
1157 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1158 {
1159 	if (unlikely(!skb_unref(skb)))
1160 		return false;
1161 
1162 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1163 			       u32_get_bits(reason,
1164 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1165 				SKB_DROP_REASON_SUBSYS_NUM);
1166 
1167 	if (reason == SKB_CONSUMED)
1168 		trace_consume_skb(skb, __builtin_return_address(0));
1169 	else
1170 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1171 	return true;
1172 }
1173 
1174 /**
1175  *	kfree_skb_reason - free an sk_buff with special reason
1176  *	@skb: buffer to free
1177  *	@reason: reason why this skb is dropped
1178  *
1179  *	Drop a reference to the buffer and free it if the usage count has
1180  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1181  *	tracepoint.
1182  */
1183 void __fix_address
1184 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1185 {
1186 	if (__kfree_skb_reason(skb, reason))
1187 		__kfree_skb(skb);
1188 }
1189 EXPORT_SYMBOL(kfree_skb_reason);
1190 
1191 #define KFREE_SKB_BULK_SIZE	16
1192 
1193 struct skb_free_array {
1194 	unsigned int skb_count;
1195 	void *skb_array[KFREE_SKB_BULK_SIZE];
1196 };
1197 
1198 static void kfree_skb_add_bulk(struct sk_buff *skb,
1199 			       struct skb_free_array *sa,
1200 			       enum skb_drop_reason reason)
1201 {
1202 	/* if SKB is a clone, don't handle this case */
1203 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1204 		__kfree_skb(skb);
1205 		return;
1206 	}
1207 
1208 	skb_release_all(skb, reason);
1209 	sa->skb_array[sa->skb_count++] = skb;
1210 
1211 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1212 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1213 				     sa->skb_array);
1214 		sa->skb_count = 0;
1215 	}
1216 }
1217 
1218 void __fix_address
1219 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1220 {
1221 	struct skb_free_array sa;
1222 
1223 	sa.skb_count = 0;
1224 
1225 	while (segs) {
1226 		struct sk_buff *next = segs->next;
1227 
1228 		if (__kfree_skb_reason(segs, reason)) {
1229 			skb_poison_list(segs);
1230 			kfree_skb_add_bulk(segs, &sa, reason);
1231 		}
1232 
1233 		segs = next;
1234 	}
1235 
1236 	if (sa.skb_count)
1237 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1238 }
1239 EXPORT_SYMBOL(kfree_skb_list_reason);
1240 
1241 /* Dump skb information and contents.
1242  *
1243  * Must only be called from net_ratelimit()-ed paths.
1244  *
1245  * Dumps whole packets if full_pkt, only headers otherwise.
1246  */
1247 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1248 {
1249 	struct skb_shared_info *sh = skb_shinfo(skb);
1250 	struct net_device *dev = skb->dev;
1251 	struct sock *sk = skb->sk;
1252 	struct sk_buff *list_skb;
1253 	bool has_mac, has_trans;
1254 	int headroom, tailroom;
1255 	int i, len, seg_len;
1256 
1257 	if (full_pkt)
1258 		len = skb->len;
1259 	else
1260 		len = min_t(int, skb->len, MAX_HEADER + 128);
1261 
1262 	headroom = skb_headroom(skb);
1263 	tailroom = skb_tailroom(skb);
1264 
1265 	has_mac = skb_mac_header_was_set(skb);
1266 	has_trans = skb_transport_header_was_set(skb);
1267 
1268 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1269 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1270 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1271 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1272 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1273 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1274 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1275 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1276 	       has_mac ? skb->mac_header : -1,
1277 	       has_mac ? skb_mac_header_len(skb) : -1,
1278 	       skb->mac_len,
1279 	       skb->network_header,
1280 	       has_trans ? skb_network_header_len(skb) : -1,
1281 	       has_trans ? skb->transport_header : -1,
1282 	       sh->tx_flags, sh->nr_frags,
1283 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1284 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1285 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1286 	       skb->hash, skb->sw_hash, skb->l4_hash,
1287 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1288 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1289 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1290 	       skb->inner_network_header, skb->inner_transport_header);
1291 
1292 	if (dev)
1293 		printk("%sdev name=%s feat=%pNF\n",
1294 		       level, dev->name, &dev->features);
1295 	if (sk)
1296 		printk("%ssk family=%hu type=%u proto=%u\n",
1297 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1298 
1299 	if (full_pkt && headroom)
1300 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1301 			       16, 1, skb->head, headroom, false);
1302 
1303 	seg_len = min_t(int, skb_headlen(skb), len);
1304 	if (seg_len)
1305 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1306 			       16, 1, skb->data, seg_len, false);
1307 	len -= seg_len;
1308 
1309 	if (full_pkt && tailroom)
1310 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1311 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1312 
1313 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1314 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1315 		u32 p_off, p_len, copied;
1316 		struct page *p;
1317 		u8 *vaddr;
1318 
1319 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1320 				      skb_frag_size(frag), p, p_off, p_len,
1321 				      copied) {
1322 			seg_len = min_t(int, p_len, len);
1323 			vaddr = kmap_atomic(p);
1324 			print_hex_dump(level, "skb frag:     ",
1325 				       DUMP_PREFIX_OFFSET,
1326 				       16, 1, vaddr + p_off, seg_len, false);
1327 			kunmap_atomic(vaddr);
1328 			len -= seg_len;
1329 			if (!len)
1330 				break;
1331 		}
1332 	}
1333 
1334 	if (full_pkt && skb_has_frag_list(skb)) {
1335 		printk("skb fraglist:\n");
1336 		skb_walk_frags(skb, list_skb)
1337 			skb_dump(level, list_skb, true);
1338 	}
1339 }
1340 EXPORT_SYMBOL(skb_dump);
1341 
1342 /**
1343  *	skb_tx_error - report an sk_buff xmit error
1344  *	@skb: buffer that triggered an error
1345  *
1346  *	Report xmit error if a device callback is tracking this skb.
1347  *	skb must be freed afterwards.
1348  */
1349 void skb_tx_error(struct sk_buff *skb)
1350 {
1351 	if (skb) {
1352 		skb_zcopy_downgrade_managed(skb);
1353 		skb_zcopy_clear(skb, true);
1354 	}
1355 }
1356 EXPORT_SYMBOL(skb_tx_error);
1357 
1358 #ifdef CONFIG_TRACEPOINTS
1359 /**
1360  *	consume_skb - free an skbuff
1361  *	@skb: buffer to free
1362  *
1363  *	Drop a ref to the buffer and free it if the usage count has hit zero
1364  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1365  *	is being dropped after a failure and notes that
1366  */
1367 void consume_skb(struct sk_buff *skb)
1368 {
1369 	if (!skb_unref(skb))
1370 		return;
1371 
1372 	trace_consume_skb(skb, __builtin_return_address(0));
1373 	__kfree_skb(skb);
1374 }
1375 EXPORT_SYMBOL(consume_skb);
1376 #endif
1377 
1378 /**
1379  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1380  *	@skb: buffer to free
1381  *
1382  *	Alike consume_skb(), but this variant assumes that this is the last
1383  *	skb reference and all the head states have been already dropped
1384  */
1385 void __consume_stateless_skb(struct sk_buff *skb)
1386 {
1387 	trace_consume_skb(skb, __builtin_return_address(0));
1388 	skb_release_data(skb, SKB_CONSUMED);
1389 	kfree_skbmem(skb);
1390 }
1391 
1392 static void napi_skb_cache_put(struct sk_buff *skb)
1393 {
1394 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1395 	u32 i;
1396 
1397 	if (!kasan_mempool_poison_object(skb))
1398 		return;
1399 
1400 	nc->skb_cache[nc->skb_count++] = skb;
1401 
1402 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1403 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1404 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1405 						kmem_cache_size(net_hotdata.skbuff_cache));
1406 
1407 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1408 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1409 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1410 	}
1411 }
1412 
1413 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1414 {
1415 	skb_release_all(skb, reason);
1416 	napi_skb_cache_put(skb);
1417 }
1418 
1419 void napi_skb_free_stolen_head(struct sk_buff *skb)
1420 {
1421 	if (unlikely(skb->slow_gro)) {
1422 		nf_reset_ct(skb);
1423 		skb_dst_drop(skb);
1424 		skb_ext_put(skb);
1425 		skb_orphan(skb);
1426 		skb->slow_gro = 0;
1427 	}
1428 	napi_skb_cache_put(skb);
1429 }
1430 
1431 void napi_consume_skb(struct sk_buff *skb, int budget)
1432 {
1433 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1434 	if (unlikely(!budget)) {
1435 		dev_consume_skb_any(skb);
1436 		return;
1437 	}
1438 
1439 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1440 
1441 	if (!skb_unref(skb))
1442 		return;
1443 
1444 	/* if reaching here SKB is ready to free */
1445 	trace_consume_skb(skb, __builtin_return_address(0));
1446 
1447 	/* if SKB is a clone, don't handle this case */
1448 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1449 		__kfree_skb(skb);
1450 		return;
1451 	}
1452 
1453 	skb_release_all(skb, SKB_CONSUMED);
1454 	napi_skb_cache_put(skb);
1455 }
1456 EXPORT_SYMBOL(napi_consume_skb);
1457 
1458 /* Make sure a field is contained by headers group */
1459 #define CHECK_SKB_FIELD(field) \
1460 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1461 		     offsetof(struct sk_buff, headers.field));	\
1462 
1463 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1464 {
1465 	new->tstamp		= old->tstamp;
1466 	/* We do not copy old->sk */
1467 	new->dev		= old->dev;
1468 	memcpy(new->cb, old->cb, sizeof(old->cb));
1469 	skb_dst_copy(new, old);
1470 	__skb_ext_copy(new, old);
1471 	__nf_copy(new, old, false);
1472 
1473 	/* Note : this field could be in the headers group.
1474 	 * It is not yet because we do not want to have a 16 bit hole
1475 	 */
1476 	new->queue_mapping = old->queue_mapping;
1477 
1478 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1479 	CHECK_SKB_FIELD(protocol);
1480 	CHECK_SKB_FIELD(csum);
1481 	CHECK_SKB_FIELD(hash);
1482 	CHECK_SKB_FIELD(priority);
1483 	CHECK_SKB_FIELD(skb_iif);
1484 	CHECK_SKB_FIELD(vlan_proto);
1485 	CHECK_SKB_FIELD(vlan_tci);
1486 	CHECK_SKB_FIELD(transport_header);
1487 	CHECK_SKB_FIELD(network_header);
1488 	CHECK_SKB_FIELD(mac_header);
1489 	CHECK_SKB_FIELD(inner_protocol);
1490 	CHECK_SKB_FIELD(inner_transport_header);
1491 	CHECK_SKB_FIELD(inner_network_header);
1492 	CHECK_SKB_FIELD(inner_mac_header);
1493 	CHECK_SKB_FIELD(mark);
1494 #ifdef CONFIG_NETWORK_SECMARK
1495 	CHECK_SKB_FIELD(secmark);
1496 #endif
1497 #ifdef CONFIG_NET_RX_BUSY_POLL
1498 	CHECK_SKB_FIELD(napi_id);
1499 #endif
1500 	CHECK_SKB_FIELD(alloc_cpu);
1501 #ifdef CONFIG_XPS
1502 	CHECK_SKB_FIELD(sender_cpu);
1503 #endif
1504 #ifdef CONFIG_NET_SCHED
1505 	CHECK_SKB_FIELD(tc_index);
1506 #endif
1507 
1508 }
1509 
1510 /*
1511  * You should not add any new code to this function.  Add it to
1512  * __copy_skb_header above instead.
1513  */
1514 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1515 {
1516 #define C(x) n->x = skb->x
1517 
1518 	n->next = n->prev = NULL;
1519 	n->sk = NULL;
1520 	__copy_skb_header(n, skb);
1521 
1522 	C(len);
1523 	C(data_len);
1524 	C(mac_len);
1525 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1526 	n->cloned = 1;
1527 	n->nohdr = 0;
1528 	n->peeked = 0;
1529 	C(pfmemalloc);
1530 	C(pp_recycle);
1531 	n->destructor = NULL;
1532 	C(tail);
1533 	C(end);
1534 	C(head);
1535 	C(head_frag);
1536 	C(data);
1537 	C(truesize);
1538 	refcount_set(&n->users, 1);
1539 
1540 	atomic_inc(&(skb_shinfo(skb)->dataref));
1541 	skb->cloned = 1;
1542 
1543 	return n;
1544 #undef C
1545 }
1546 
1547 /**
1548  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1549  * @first: first sk_buff of the msg
1550  */
1551 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1552 {
1553 	struct sk_buff *n;
1554 
1555 	n = alloc_skb(0, GFP_ATOMIC);
1556 	if (!n)
1557 		return NULL;
1558 
1559 	n->len = first->len;
1560 	n->data_len = first->len;
1561 	n->truesize = first->truesize;
1562 
1563 	skb_shinfo(n)->frag_list = first;
1564 
1565 	__copy_skb_header(n, first);
1566 	n->destructor = NULL;
1567 
1568 	return n;
1569 }
1570 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1571 
1572 /**
1573  *	skb_morph	-	morph one skb into another
1574  *	@dst: the skb to receive the contents
1575  *	@src: the skb to supply the contents
1576  *
1577  *	This is identical to skb_clone except that the target skb is
1578  *	supplied by the user.
1579  *
1580  *	The target skb is returned upon exit.
1581  */
1582 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1583 {
1584 	skb_release_all(dst, SKB_CONSUMED);
1585 	return __skb_clone(dst, src);
1586 }
1587 EXPORT_SYMBOL_GPL(skb_morph);
1588 
1589 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1590 {
1591 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1592 	struct user_struct *user;
1593 
1594 	if (capable(CAP_IPC_LOCK) || !size)
1595 		return 0;
1596 
1597 	rlim = rlimit(RLIMIT_MEMLOCK);
1598 	if (rlim == RLIM_INFINITY)
1599 		return 0;
1600 
1601 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1602 	max_pg = rlim >> PAGE_SHIFT;
1603 	user = mmp->user ? : current_user();
1604 
1605 	old_pg = atomic_long_read(&user->locked_vm);
1606 	do {
1607 		new_pg = old_pg + num_pg;
1608 		if (new_pg > max_pg)
1609 			return -ENOBUFS;
1610 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1611 
1612 	if (!mmp->user) {
1613 		mmp->user = get_uid(user);
1614 		mmp->num_pg = num_pg;
1615 	} else {
1616 		mmp->num_pg += num_pg;
1617 	}
1618 
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1622 
1623 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1624 {
1625 	if (mmp->user) {
1626 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1627 		free_uid(mmp->user);
1628 	}
1629 }
1630 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1631 
1632 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1633 {
1634 	struct ubuf_info_msgzc *uarg;
1635 	struct sk_buff *skb;
1636 
1637 	WARN_ON_ONCE(!in_task());
1638 
1639 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1640 	if (!skb)
1641 		return NULL;
1642 
1643 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1644 	uarg = (void *)skb->cb;
1645 	uarg->mmp.user = NULL;
1646 
1647 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1648 		kfree_skb(skb);
1649 		return NULL;
1650 	}
1651 
1652 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1653 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1654 	uarg->len = 1;
1655 	uarg->bytelen = size;
1656 	uarg->zerocopy = 1;
1657 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1658 	refcount_set(&uarg->ubuf.refcnt, 1);
1659 	sock_hold(sk);
1660 
1661 	return &uarg->ubuf;
1662 }
1663 
1664 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1665 {
1666 	return container_of((void *)uarg, struct sk_buff, cb);
1667 }
1668 
1669 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1670 				       struct ubuf_info *uarg)
1671 {
1672 	if (uarg) {
1673 		struct ubuf_info_msgzc *uarg_zc;
1674 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1675 		u32 bytelen, next;
1676 
1677 		/* there might be non MSG_ZEROCOPY users */
1678 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1679 			return NULL;
1680 
1681 		/* realloc only when socket is locked (TCP, UDP cork),
1682 		 * so uarg->len and sk_zckey access is serialized
1683 		 */
1684 		if (!sock_owned_by_user(sk)) {
1685 			WARN_ON_ONCE(1);
1686 			return NULL;
1687 		}
1688 
1689 		uarg_zc = uarg_to_msgzc(uarg);
1690 		bytelen = uarg_zc->bytelen + size;
1691 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1692 			/* TCP can create new skb to attach new uarg */
1693 			if (sk->sk_type == SOCK_STREAM)
1694 				goto new_alloc;
1695 			return NULL;
1696 		}
1697 
1698 		next = (u32)atomic_read(&sk->sk_zckey);
1699 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1700 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1701 				return NULL;
1702 			uarg_zc->len++;
1703 			uarg_zc->bytelen = bytelen;
1704 			atomic_set(&sk->sk_zckey, ++next);
1705 
1706 			/* no extra ref when appending to datagram (MSG_MORE) */
1707 			if (sk->sk_type == SOCK_STREAM)
1708 				net_zcopy_get(uarg);
1709 
1710 			return uarg;
1711 		}
1712 	}
1713 
1714 new_alloc:
1715 	return msg_zerocopy_alloc(sk, size);
1716 }
1717 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1718 
1719 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1720 {
1721 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1722 	u32 old_lo, old_hi;
1723 	u64 sum_len;
1724 
1725 	old_lo = serr->ee.ee_info;
1726 	old_hi = serr->ee.ee_data;
1727 	sum_len = old_hi - old_lo + 1ULL + len;
1728 
1729 	if (sum_len >= (1ULL << 32))
1730 		return false;
1731 
1732 	if (lo != old_hi + 1)
1733 		return false;
1734 
1735 	serr->ee.ee_data += len;
1736 	return true;
1737 }
1738 
1739 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1740 {
1741 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1742 	struct sock_exterr_skb *serr;
1743 	struct sock *sk = skb->sk;
1744 	struct sk_buff_head *q;
1745 	unsigned long flags;
1746 	bool is_zerocopy;
1747 	u32 lo, hi;
1748 	u16 len;
1749 
1750 	mm_unaccount_pinned_pages(&uarg->mmp);
1751 
1752 	/* if !len, there was only 1 call, and it was aborted
1753 	 * so do not queue a completion notification
1754 	 */
1755 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1756 		goto release;
1757 
1758 	len = uarg->len;
1759 	lo = uarg->id;
1760 	hi = uarg->id + len - 1;
1761 	is_zerocopy = uarg->zerocopy;
1762 
1763 	serr = SKB_EXT_ERR(skb);
1764 	memset(serr, 0, sizeof(*serr));
1765 	serr->ee.ee_errno = 0;
1766 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1767 	serr->ee.ee_data = hi;
1768 	serr->ee.ee_info = lo;
1769 	if (!is_zerocopy)
1770 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1771 
1772 	q = &sk->sk_error_queue;
1773 	spin_lock_irqsave(&q->lock, flags);
1774 	tail = skb_peek_tail(q);
1775 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1776 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1777 		__skb_queue_tail(q, skb);
1778 		skb = NULL;
1779 	}
1780 	spin_unlock_irqrestore(&q->lock, flags);
1781 
1782 	sk_error_report(sk);
1783 
1784 release:
1785 	consume_skb(skb);
1786 	sock_put(sk);
1787 }
1788 
1789 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1790 				  bool success)
1791 {
1792 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1793 
1794 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1795 
1796 	if (refcount_dec_and_test(&uarg->refcnt))
1797 		__msg_zerocopy_callback(uarg_zc);
1798 }
1799 
1800 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1801 {
1802 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1803 
1804 	atomic_dec(&sk->sk_zckey);
1805 	uarg_to_msgzc(uarg)->len--;
1806 
1807 	if (have_uref)
1808 		msg_zerocopy_complete(NULL, uarg, true);
1809 }
1810 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1811 
1812 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1813 	.complete = msg_zerocopy_complete,
1814 };
1815 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1816 
1817 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1818 			     struct msghdr *msg, int len,
1819 			     struct ubuf_info *uarg)
1820 {
1821 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1822 	int err, orig_len = skb->len;
1823 
1824 	if (uarg->ops->link_skb) {
1825 		err = uarg->ops->link_skb(skb, uarg);
1826 		if (err)
1827 			return err;
1828 	} else {
1829 		/* An skb can only point to one uarg. This edge case happens
1830 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1831 		 * a new alloc.
1832 		 */
1833 		if (orig_uarg && uarg != orig_uarg)
1834 			return -EEXIST;
1835 	}
1836 
1837 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1838 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1839 		struct sock *save_sk = skb->sk;
1840 
1841 		/* Streams do not free skb on error. Reset to prev state. */
1842 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1843 		skb->sk = sk;
1844 		___pskb_trim(skb, orig_len);
1845 		skb->sk = save_sk;
1846 		return err;
1847 	}
1848 
1849 	if (!uarg->ops->link_skb)
1850 		skb_zcopy_set(skb, uarg, NULL);
1851 	return skb->len - orig_len;
1852 }
1853 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1854 
1855 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1856 {
1857 	int i;
1858 
1859 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1860 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1861 		skb_frag_ref(skb, i);
1862 }
1863 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1864 
1865 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1866 			      gfp_t gfp_mask)
1867 {
1868 	if (skb_zcopy(orig)) {
1869 		if (skb_zcopy(nskb)) {
1870 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1871 			if (!gfp_mask) {
1872 				WARN_ON_ONCE(1);
1873 				return -ENOMEM;
1874 			}
1875 			if (skb_uarg(nskb) == skb_uarg(orig))
1876 				return 0;
1877 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1878 				return -EIO;
1879 		}
1880 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1881 	}
1882 	return 0;
1883 }
1884 
1885 /**
1886  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1887  *	@skb: the skb to modify
1888  *	@gfp_mask: allocation priority
1889  *
1890  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1891  *	It will copy all frags into kernel and drop the reference
1892  *	to userspace pages.
1893  *
1894  *	If this function is called from an interrupt gfp_mask() must be
1895  *	%GFP_ATOMIC.
1896  *
1897  *	Returns 0 on success or a negative error code on failure
1898  *	to allocate kernel memory to copy to.
1899  */
1900 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1901 {
1902 	int num_frags = skb_shinfo(skb)->nr_frags;
1903 	struct page *page, *head = NULL;
1904 	int i, order, psize, new_frags;
1905 	u32 d_off;
1906 
1907 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1908 		return -EINVAL;
1909 
1910 	if (!num_frags)
1911 		goto release;
1912 
1913 	/* We might have to allocate high order pages, so compute what minimum
1914 	 * page order is needed.
1915 	 */
1916 	order = 0;
1917 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1918 		order++;
1919 	psize = (PAGE_SIZE << order);
1920 
1921 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1922 	for (i = 0; i < new_frags; i++) {
1923 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1924 		if (!page) {
1925 			while (head) {
1926 				struct page *next = (struct page *)page_private(head);
1927 				put_page(head);
1928 				head = next;
1929 			}
1930 			return -ENOMEM;
1931 		}
1932 		set_page_private(page, (unsigned long)head);
1933 		head = page;
1934 	}
1935 
1936 	page = head;
1937 	d_off = 0;
1938 	for (i = 0; i < num_frags; i++) {
1939 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1940 		u32 p_off, p_len, copied;
1941 		struct page *p;
1942 		u8 *vaddr;
1943 
1944 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1945 				      p, p_off, p_len, copied) {
1946 			u32 copy, done = 0;
1947 			vaddr = kmap_atomic(p);
1948 
1949 			while (done < p_len) {
1950 				if (d_off == psize) {
1951 					d_off = 0;
1952 					page = (struct page *)page_private(page);
1953 				}
1954 				copy = min_t(u32, psize - d_off, p_len - done);
1955 				memcpy(page_address(page) + d_off,
1956 				       vaddr + p_off + done, copy);
1957 				done += copy;
1958 				d_off += copy;
1959 			}
1960 			kunmap_atomic(vaddr);
1961 		}
1962 	}
1963 
1964 	/* skb frags release userspace buffers */
1965 	for (i = 0; i < num_frags; i++)
1966 		skb_frag_unref(skb, i);
1967 
1968 	/* skb frags point to kernel buffers */
1969 	for (i = 0; i < new_frags - 1; i++) {
1970 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1971 		head = (struct page *)page_private(head);
1972 	}
1973 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
1974 			       d_off);
1975 	skb_shinfo(skb)->nr_frags = new_frags;
1976 
1977 release:
1978 	skb_zcopy_clear(skb, false);
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1982 
1983 /**
1984  *	skb_clone	-	duplicate an sk_buff
1985  *	@skb: buffer to clone
1986  *	@gfp_mask: allocation priority
1987  *
1988  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1989  *	copies share the same packet data but not structure. The new
1990  *	buffer has a reference count of 1. If the allocation fails the
1991  *	function returns %NULL otherwise the new buffer is returned.
1992  *
1993  *	If this function is called from an interrupt gfp_mask() must be
1994  *	%GFP_ATOMIC.
1995  */
1996 
1997 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1998 {
1999 	struct sk_buff_fclones *fclones = container_of(skb,
2000 						       struct sk_buff_fclones,
2001 						       skb1);
2002 	struct sk_buff *n;
2003 
2004 	if (skb_orphan_frags(skb, gfp_mask))
2005 		return NULL;
2006 
2007 	if (skb->fclone == SKB_FCLONE_ORIG &&
2008 	    refcount_read(&fclones->fclone_ref) == 1) {
2009 		n = &fclones->skb2;
2010 		refcount_set(&fclones->fclone_ref, 2);
2011 		n->fclone = SKB_FCLONE_CLONE;
2012 	} else {
2013 		if (skb_pfmemalloc(skb))
2014 			gfp_mask |= __GFP_MEMALLOC;
2015 
2016 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2017 		if (!n)
2018 			return NULL;
2019 
2020 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2021 	}
2022 
2023 	return __skb_clone(n, skb);
2024 }
2025 EXPORT_SYMBOL(skb_clone);
2026 
2027 void skb_headers_offset_update(struct sk_buff *skb, int off)
2028 {
2029 	/* Only adjust this if it actually is csum_start rather than csum */
2030 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2031 		skb->csum_start += off;
2032 	/* {transport,network,mac}_header and tail are relative to skb->head */
2033 	skb->transport_header += off;
2034 	skb->network_header   += off;
2035 	if (skb_mac_header_was_set(skb))
2036 		skb->mac_header += off;
2037 	skb->inner_transport_header += off;
2038 	skb->inner_network_header += off;
2039 	skb->inner_mac_header += off;
2040 }
2041 EXPORT_SYMBOL(skb_headers_offset_update);
2042 
2043 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2044 {
2045 	__copy_skb_header(new, old);
2046 
2047 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2048 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2049 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2050 }
2051 EXPORT_SYMBOL(skb_copy_header);
2052 
2053 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2054 {
2055 	if (skb_pfmemalloc(skb))
2056 		return SKB_ALLOC_RX;
2057 	return 0;
2058 }
2059 
2060 /**
2061  *	skb_copy	-	create private copy of an sk_buff
2062  *	@skb: buffer to copy
2063  *	@gfp_mask: allocation priority
2064  *
2065  *	Make a copy of both an &sk_buff and its data. This is used when the
2066  *	caller wishes to modify the data and needs a private copy of the
2067  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2068  *	on success. The returned buffer has a reference count of 1.
2069  *
2070  *	As by-product this function converts non-linear &sk_buff to linear
2071  *	one, so that &sk_buff becomes completely private and caller is allowed
2072  *	to modify all the data of returned buffer. This means that this
2073  *	function is not recommended for use in circumstances when only
2074  *	header is going to be modified. Use pskb_copy() instead.
2075  */
2076 
2077 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2078 {
2079 	struct sk_buff *n;
2080 	unsigned int size;
2081 	int headerlen;
2082 
2083 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2084 		return NULL;
2085 
2086 	headerlen = skb_headroom(skb);
2087 	size = skb_end_offset(skb) + skb->data_len;
2088 	n = __alloc_skb(size, gfp_mask,
2089 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2090 	if (!n)
2091 		return NULL;
2092 
2093 	/* Set the data pointer */
2094 	skb_reserve(n, headerlen);
2095 	/* Set the tail pointer and length */
2096 	skb_put(n, skb->len);
2097 
2098 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2099 
2100 	skb_copy_header(n, skb);
2101 	return n;
2102 }
2103 EXPORT_SYMBOL(skb_copy);
2104 
2105 /**
2106  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2107  *	@skb: buffer to copy
2108  *	@headroom: headroom of new skb
2109  *	@gfp_mask: allocation priority
2110  *	@fclone: if true allocate the copy of the skb from the fclone
2111  *	cache instead of the head cache; it is recommended to set this
2112  *	to true for the cases where the copy will likely be cloned
2113  *
2114  *	Make a copy of both an &sk_buff and part of its data, located
2115  *	in header. Fragmented data remain shared. This is used when
2116  *	the caller wishes to modify only header of &sk_buff and needs
2117  *	private copy of the header to alter. Returns %NULL on failure
2118  *	or the pointer to the buffer on success.
2119  *	The returned buffer has a reference count of 1.
2120  */
2121 
2122 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2123 				   gfp_t gfp_mask, bool fclone)
2124 {
2125 	unsigned int size = skb_headlen(skb) + headroom;
2126 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2127 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2128 
2129 	if (!n)
2130 		goto out;
2131 
2132 	/* Set the data pointer */
2133 	skb_reserve(n, headroom);
2134 	/* Set the tail pointer and length */
2135 	skb_put(n, skb_headlen(skb));
2136 	/* Copy the bytes */
2137 	skb_copy_from_linear_data(skb, n->data, n->len);
2138 
2139 	n->truesize += skb->data_len;
2140 	n->data_len  = skb->data_len;
2141 	n->len	     = skb->len;
2142 
2143 	if (skb_shinfo(skb)->nr_frags) {
2144 		int i;
2145 
2146 		if (skb_orphan_frags(skb, gfp_mask) ||
2147 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2148 			kfree_skb(n);
2149 			n = NULL;
2150 			goto out;
2151 		}
2152 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2153 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2154 			skb_frag_ref(skb, i);
2155 		}
2156 		skb_shinfo(n)->nr_frags = i;
2157 	}
2158 
2159 	if (skb_has_frag_list(skb)) {
2160 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2161 		skb_clone_fraglist(n);
2162 	}
2163 
2164 	skb_copy_header(n, skb);
2165 out:
2166 	return n;
2167 }
2168 EXPORT_SYMBOL(__pskb_copy_fclone);
2169 
2170 /**
2171  *	pskb_expand_head - reallocate header of &sk_buff
2172  *	@skb: buffer to reallocate
2173  *	@nhead: room to add at head
2174  *	@ntail: room to add at tail
2175  *	@gfp_mask: allocation priority
2176  *
2177  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2178  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2179  *	reference count of 1. Returns zero in the case of success or error,
2180  *	if expansion failed. In the last case, &sk_buff is not changed.
2181  *
2182  *	All the pointers pointing into skb header may change and must be
2183  *	reloaded after call to this function.
2184  */
2185 
2186 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2187 		     gfp_t gfp_mask)
2188 {
2189 	unsigned int osize = skb_end_offset(skb);
2190 	unsigned int size = osize + nhead + ntail;
2191 	long off;
2192 	u8 *data;
2193 	int i;
2194 
2195 	BUG_ON(nhead < 0);
2196 
2197 	BUG_ON(skb_shared(skb));
2198 
2199 	skb_zcopy_downgrade_managed(skb);
2200 
2201 	if (skb_pfmemalloc(skb))
2202 		gfp_mask |= __GFP_MEMALLOC;
2203 
2204 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2205 	if (!data)
2206 		goto nodata;
2207 	size = SKB_WITH_OVERHEAD(size);
2208 
2209 	/* Copy only real data... and, alas, header. This should be
2210 	 * optimized for the cases when header is void.
2211 	 */
2212 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2213 
2214 	memcpy((struct skb_shared_info *)(data + size),
2215 	       skb_shinfo(skb),
2216 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2217 
2218 	/*
2219 	 * if shinfo is shared we must drop the old head gracefully, but if it
2220 	 * is not we can just drop the old head and let the existing refcount
2221 	 * be since all we did is relocate the values
2222 	 */
2223 	if (skb_cloned(skb)) {
2224 		if (skb_orphan_frags(skb, gfp_mask))
2225 			goto nofrags;
2226 		if (skb_zcopy(skb))
2227 			refcount_inc(&skb_uarg(skb)->refcnt);
2228 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2229 			skb_frag_ref(skb, i);
2230 
2231 		if (skb_has_frag_list(skb))
2232 			skb_clone_fraglist(skb);
2233 
2234 		skb_release_data(skb, SKB_CONSUMED);
2235 	} else {
2236 		skb_free_head(skb);
2237 	}
2238 	off = (data + nhead) - skb->head;
2239 
2240 	skb->head     = data;
2241 	skb->head_frag = 0;
2242 	skb->data    += off;
2243 
2244 	skb_set_end_offset(skb, size);
2245 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2246 	off           = nhead;
2247 #endif
2248 	skb->tail	      += off;
2249 	skb_headers_offset_update(skb, nhead);
2250 	skb->cloned   = 0;
2251 	skb->hdr_len  = 0;
2252 	skb->nohdr    = 0;
2253 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2254 
2255 	skb_metadata_clear(skb);
2256 
2257 	/* It is not generally safe to change skb->truesize.
2258 	 * For the moment, we really care of rx path, or
2259 	 * when skb is orphaned (not attached to a socket).
2260 	 */
2261 	if (!skb->sk || skb->destructor == sock_edemux)
2262 		skb->truesize += size - osize;
2263 
2264 	return 0;
2265 
2266 nofrags:
2267 	skb_kfree_head(data, size);
2268 nodata:
2269 	return -ENOMEM;
2270 }
2271 EXPORT_SYMBOL(pskb_expand_head);
2272 
2273 /* Make private copy of skb with writable head and some headroom */
2274 
2275 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2276 {
2277 	struct sk_buff *skb2;
2278 	int delta = headroom - skb_headroom(skb);
2279 
2280 	if (delta <= 0)
2281 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2282 	else {
2283 		skb2 = skb_clone(skb, GFP_ATOMIC);
2284 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2285 					     GFP_ATOMIC)) {
2286 			kfree_skb(skb2);
2287 			skb2 = NULL;
2288 		}
2289 	}
2290 	return skb2;
2291 }
2292 EXPORT_SYMBOL(skb_realloc_headroom);
2293 
2294 /* Note: We plan to rework this in linux-6.4 */
2295 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2296 {
2297 	unsigned int saved_end_offset, saved_truesize;
2298 	struct skb_shared_info *shinfo;
2299 	int res;
2300 
2301 	saved_end_offset = skb_end_offset(skb);
2302 	saved_truesize = skb->truesize;
2303 
2304 	res = pskb_expand_head(skb, 0, 0, pri);
2305 	if (res)
2306 		return res;
2307 
2308 	skb->truesize = saved_truesize;
2309 
2310 	if (likely(skb_end_offset(skb) == saved_end_offset))
2311 		return 0;
2312 
2313 	/* We can not change skb->end if the original or new value
2314 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2315 	 */
2316 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2317 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2318 		/* We think this path should not be taken.
2319 		 * Add a temporary trace to warn us just in case.
2320 		 */
2321 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2322 			    saved_end_offset, skb_end_offset(skb));
2323 		WARN_ON_ONCE(1);
2324 		return 0;
2325 	}
2326 
2327 	shinfo = skb_shinfo(skb);
2328 
2329 	/* We are about to change back skb->end,
2330 	 * we need to move skb_shinfo() to its new location.
2331 	 */
2332 	memmove(skb->head + saved_end_offset,
2333 		shinfo,
2334 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2335 
2336 	skb_set_end_offset(skb, saved_end_offset);
2337 
2338 	return 0;
2339 }
2340 
2341 /**
2342  *	skb_expand_head - reallocate header of &sk_buff
2343  *	@skb: buffer to reallocate
2344  *	@headroom: needed headroom
2345  *
2346  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2347  *	if possible; copies skb->sk to new skb as needed
2348  *	and frees original skb in case of failures.
2349  *
2350  *	It expect increased headroom and generates warning otherwise.
2351  */
2352 
2353 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2354 {
2355 	int delta = headroom - skb_headroom(skb);
2356 	int osize = skb_end_offset(skb);
2357 	struct sock *sk = skb->sk;
2358 
2359 	if (WARN_ONCE(delta <= 0,
2360 		      "%s is expecting an increase in the headroom", __func__))
2361 		return skb;
2362 
2363 	delta = SKB_DATA_ALIGN(delta);
2364 	/* pskb_expand_head() might crash, if skb is shared. */
2365 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2366 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2367 
2368 		if (unlikely(!nskb))
2369 			goto fail;
2370 
2371 		if (sk)
2372 			skb_set_owner_w(nskb, sk);
2373 		consume_skb(skb);
2374 		skb = nskb;
2375 	}
2376 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2377 		goto fail;
2378 
2379 	if (sk && is_skb_wmem(skb)) {
2380 		delta = skb_end_offset(skb) - osize;
2381 		refcount_add(delta, &sk->sk_wmem_alloc);
2382 		skb->truesize += delta;
2383 	}
2384 	return skb;
2385 
2386 fail:
2387 	kfree_skb(skb);
2388 	return NULL;
2389 }
2390 EXPORT_SYMBOL(skb_expand_head);
2391 
2392 /**
2393  *	skb_copy_expand	-	copy and expand sk_buff
2394  *	@skb: buffer to copy
2395  *	@newheadroom: new free bytes at head
2396  *	@newtailroom: new free bytes at tail
2397  *	@gfp_mask: allocation priority
2398  *
2399  *	Make a copy of both an &sk_buff and its data and while doing so
2400  *	allocate additional space.
2401  *
2402  *	This is used when the caller wishes to modify the data and needs a
2403  *	private copy of the data to alter as well as more space for new fields.
2404  *	Returns %NULL on failure or the pointer to the buffer
2405  *	on success. The returned buffer has a reference count of 1.
2406  *
2407  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2408  *	is called from an interrupt.
2409  */
2410 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2411 				int newheadroom, int newtailroom,
2412 				gfp_t gfp_mask)
2413 {
2414 	/*
2415 	 *	Allocate the copy buffer
2416 	 */
2417 	int head_copy_len, head_copy_off;
2418 	struct sk_buff *n;
2419 	int oldheadroom;
2420 
2421 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2422 		return NULL;
2423 
2424 	oldheadroom = skb_headroom(skb);
2425 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2426 			gfp_mask, skb_alloc_rx_flag(skb),
2427 			NUMA_NO_NODE);
2428 	if (!n)
2429 		return NULL;
2430 
2431 	skb_reserve(n, newheadroom);
2432 
2433 	/* Set the tail pointer and length */
2434 	skb_put(n, skb->len);
2435 
2436 	head_copy_len = oldheadroom;
2437 	head_copy_off = 0;
2438 	if (newheadroom <= head_copy_len)
2439 		head_copy_len = newheadroom;
2440 	else
2441 		head_copy_off = newheadroom - head_copy_len;
2442 
2443 	/* Copy the linear header and data. */
2444 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2445 			     skb->len + head_copy_len));
2446 
2447 	skb_copy_header(n, skb);
2448 
2449 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2450 
2451 	return n;
2452 }
2453 EXPORT_SYMBOL(skb_copy_expand);
2454 
2455 /**
2456  *	__skb_pad		-	zero pad the tail of an skb
2457  *	@skb: buffer to pad
2458  *	@pad: space to pad
2459  *	@free_on_error: free buffer on error
2460  *
2461  *	Ensure that a buffer is followed by a padding area that is zero
2462  *	filled. Used by network drivers which may DMA or transfer data
2463  *	beyond the buffer end onto the wire.
2464  *
2465  *	May return error in out of memory cases. The skb is freed on error
2466  *	if @free_on_error is true.
2467  */
2468 
2469 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2470 {
2471 	int err;
2472 	int ntail;
2473 
2474 	/* If the skbuff is non linear tailroom is always zero.. */
2475 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2476 		memset(skb->data+skb->len, 0, pad);
2477 		return 0;
2478 	}
2479 
2480 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2481 	if (likely(skb_cloned(skb) || ntail > 0)) {
2482 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2483 		if (unlikely(err))
2484 			goto free_skb;
2485 	}
2486 
2487 	/* FIXME: The use of this function with non-linear skb's really needs
2488 	 * to be audited.
2489 	 */
2490 	err = skb_linearize(skb);
2491 	if (unlikely(err))
2492 		goto free_skb;
2493 
2494 	memset(skb->data + skb->len, 0, pad);
2495 	return 0;
2496 
2497 free_skb:
2498 	if (free_on_error)
2499 		kfree_skb(skb);
2500 	return err;
2501 }
2502 EXPORT_SYMBOL(__skb_pad);
2503 
2504 /**
2505  *	pskb_put - add data to the tail of a potentially fragmented buffer
2506  *	@skb: start of the buffer to use
2507  *	@tail: tail fragment of the buffer to use
2508  *	@len: amount of data to add
2509  *
2510  *	This function extends the used data area of the potentially
2511  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2512  *	@skb itself. If this would exceed the total buffer size the kernel
2513  *	will panic. A pointer to the first byte of the extra data is
2514  *	returned.
2515  */
2516 
2517 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2518 {
2519 	if (tail != skb) {
2520 		skb->data_len += len;
2521 		skb->len += len;
2522 	}
2523 	return skb_put(tail, len);
2524 }
2525 EXPORT_SYMBOL_GPL(pskb_put);
2526 
2527 /**
2528  *	skb_put - add data to a buffer
2529  *	@skb: buffer to use
2530  *	@len: amount of data to add
2531  *
2532  *	This function extends the used data area of the buffer. If this would
2533  *	exceed the total buffer size the kernel will panic. A pointer to the
2534  *	first byte of the extra data is returned.
2535  */
2536 void *skb_put(struct sk_buff *skb, unsigned int len)
2537 {
2538 	void *tmp = skb_tail_pointer(skb);
2539 	SKB_LINEAR_ASSERT(skb);
2540 	skb->tail += len;
2541 	skb->len  += len;
2542 	if (unlikely(skb->tail > skb->end))
2543 		skb_over_panic(skb, len, __builtin_return_address(0));
2544 	return tmp;
2545 }
2546 EXPORT_SYMBOL(skb_put);
2547 
2548 /**
2549  *	skb_push - add data to the start of a buffer
2550  *	@skb: buffer to use
2551  *	@len: amount of data to add
2552  *
2553  *	This function extends the used data area of the buffer at the buffer
2554  *	start. If this would exceed the total buffer headroom the kernel will
2555  *	panic. A pointer to the first byte of the extra data is returned.
2556  */
2557 void *skb_push(struct sk_buff *skb, unsigned int len)
2558 {
2559 	skb->data -= len;
2560 	skb->len  += len;
2561 	if (unlikely(skb->data < skb->head))
2562 		skb_under_panic(skb, len, __builtin_return_address(0));
2563 	return skb->data;
2564 }
2565 EXPORT_SYMBOL(skb_push);
2566 
2567 /**
2568  *	skb_pull - remove data from the start of a buffer
2569  *	@skb: buffer to use
2570  *	@len: amount of data to remove
2571  *
2572  *	This function removes data from the start of a buffer, returning
2573  *	the memory to the headroom. A pointer to the next data in the buffer
2574  *	is returned. Once the data has been pulled future pushes will overwrite
2575  *	the old data.
2576  */
2577 void *skb_pull(struct sk_buff *skb, unsigned int len)
2578 {
2579 	return skb_pull_inline(skb, len);
2580 }
2581 EXPORT_SYMBOL(skb_pull);
2582 
2583 /**
2584  *	skb_pull_data - remove data from the start of a buffer returning its
2585  *	original position.
2586  *	@skb: buffer to use
2587  *	@len: amount of data to remove
2588  *
2589  *	This function removes data from the start of a buffer, returning
2590  *	the memory to the headroom. A pointer to the original data in the buffer
2591  *	is returned after checking if there is enough data to pull. Once the
2592  *	data has been pulled future pushes will overwrite the old data.
2593  */
2594 void *skb_pull_data(struct sk_buff *skb, size_t len)
2595 {
2596 	void *data = skb->data;
2597 
2598 	if (skb->len < len)
2599 		return NULL;
2600 
2601 	skb_pull(skb, len);
2602 
2603 	return data;
2604 }
2605 EXPORT_SYMBOL(skb_pull_data);
2606 
2607 /**
2608  *	skb_trim - remove end from a buffer
2609  *	@skb: buffer to alter
2610  *	@len: new length
2611  *
2612  *	Cut the length of a buffer down by removing data from the tail. If
2613  *	the buffer is already under the length specified it is not modified.
2614  *	The skb must be linear.
2615  */
2616 void skb_trim(struct sk_buff *skb, unsigned int len)
2617 {
2618 	if (skb->len > len)
2619 		__skb_trim(skb, len);
2620 }
2621 EXPORT_SYMBOL(skb_trim);
2622 
2623 /* Trims skb to length len. It can change skb pointers.
2624  */
2625 
2626 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2627 {
2628 	struct sk_buff **fragp;
2629 	struct sk_buff *frag;
2630 	int offset = skb_headlen(skb);
2631 	int nfrags = skb_shinfo(skb)->nr_frags;
2632 	int i;
2633 	int err;
2634 
2635 	if (skb_cloned(skb) &&
2636 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2637 		return err;
2638 
2639 	i = 0;
2640 	if (offset >= len)
2641 		goto drop_pages;
2642 
2643 	for (; i < nfrags; i++) {
2644 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2645 
2646 		if (end < len) {
2647 			offset = end;
2648 			continue;
2649 		}
2650 
2651 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2652 
2653 drop_pages:
2654 		skb_shinfo(skb)->nr_frags = i;
2655 
2656 		for (; i < nfrags; i++)
2657 			skb_frag_unref(skb, i);
2658 
2659 		if (skb_has_frag_list(skb))
2660 			skb_drop_fraglist(skb);
2661 		goto done;
2662 	}
2663 
2664 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2665 	     fragp = &frag->next) {
2666 		int end = offset + frag->len;
2667 
2668 		if (skb_shared(frag)) {
2669 			struct sk_buff *nfrag;
2670 
2671 			nfrag = skb_clone(frag, GFP_ATOMIC);
2672 			if (unlikely(!nfrag))
2673 				return -ENOMEM;
2674 
2675 			nfrag->next = frag->next;
2676 			consume_skb(frag);
2677 			frag = nfrag;
2678 			*fragp = frag;
2679 		}
2680 
2681 		if (end < len) {
2682 			offset = end;
2683 			continue;
2684 		}
2685 
2686 		if (end > len &&
2687 		    unlikely((err = pskb_trim(frag, len - offset))))
2688 			return err;
2689 
2690 		if (frag->next)
2691 			skb_drop_list(&frag->next);
2692 		break;
2693 	}
2694 
2695 done:
2696 	if (len > skb_headlen(skb)) {
2697 		skb->data_len -= skb->len - len;
2698 		skb->len       = len;
2699 	} else {
2700 		skb->len       = len;
2701 		skb->data_len  = 0;
2702 		skb_set_tail_pointer(skb, len);
2703 	}
2704 
2705 	if (!skb->sk || skb->destructor == sock_edemux)
2706 		skb_condense(skb);
2707 	return 0;
2708 }
2709 EXPORT_SYMBOL(___pskb_trim);
2710 
2711 /* Note : use pskb_trim_rcsum() instead of calling this directly
2712  */
2713 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2714 {
2715 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2716 		int delta = skb->len - len;
2717 
2718 		skb->csum = csum_block_sub(skb->csum,
2719 					   skb_checksum(skb, len, delta, 0),
2720 					   len);
2721 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2722 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2723 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2724 
2725 		if (offset + sizeof(__sum16) > hdlen)
2726 			return -EINVAL;
2727 	}
2728 	return __pskb_trim(skb, len);
2729 }
2730 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2731 
2732 /**
2733  *	__pskb_pull_tail - advance tail of skb header
2734  *	@skb: buffer to reallocate
2735  *	@delta: number of bytes to advance tail
2736  *
2737  *	The function makes a sense only on a fragmented &sk_buff,
2738  *	it expands header moving its tail forward and copying necessary
2739  *	data from fragmented part.
2740  *
2741  *	&sk_buff MUST have reference count of 1.
2742  *
2743  *	Returns %NULL (and &sk_buff does not change) if pull failed
2744  *	or value of new tail of skb in the case of success.
2745  *
2746  *	All the pointers pointing into skb header may change and must be
2747  *	reloaded after call to this function.
2748  */
2749 
2750 /* Moves tail of skb head forward, copying data from fragmented part,
2751  * when it is necessary.
2752  * 1. It may fail due to malloc failure.
2753  * 2. It may change skb pointers.
2754  *
2755  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2756  */
2757 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2758 {
2759 	/* If skb has not enough free space at tail, get new one
2760 	 * plus 128 bytes for future expansions. If we have enough
2761 	 * room at tail, reallocate without expansion only if skb is cloned.
2762 	 */
2763 	int i, k, eat = (skb->tail + delta) - skb->end;
2764 
2765 	if (eat > 0 || skb_cloned(skb)) {
2766 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2767 				     GFP_ATOMIC))
2768 			return NULL;
2769 	}
2770 
2771 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2772 			     skb_tail_pointer(skb), delta));
2773 
2774 	/* Optimization: no fragments, no reasons to preestimate
2775 	 * size of pulled pages. Superb.
2776 	 */
2777 	if (!skb_has_frag_list(skb))
2778 		goto pull_pages;
2779 
2780 	/* Estimate size of pulled pages. */
2781 	eat = delta;
2782 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2783 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2784 
2785 		if (size >= eat)
2786 			goto pull_pages;
2787 		eat -= size;
2788 	}
2789 
2790 	/* If we need update frag list, we are in troubles.
2791 	 * Certainly, it is possible to add an offset to skb data,
2792 	 * but taking into account that pulling is expected to
2793 	 * be very rare operation, it is worth to fight against
2794 	 * further bloating skb head and crucify ourselves here instead.
2795 	 * Pure masohism, indeed. 8)8)
2796 	 */
2797 	if (eat) {
2798 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2799 		struct sk_buff *clone = NULL;
2800 		struct sk_buff *insp = NULL;
2801 
2802 		do {
2803 			if (list->len <= eat) {
2804 				/* Eaten as whole. */
2805 				eat -= list->len;
2806 				list = list->next;
2807 				insp = list;
2808 			} else {
2809 				/* Eaten partially. */
2810 				if (skb_is_gso(skb) && !list->head_frag &&
2811 				    skb_headlen(list))
2812 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2813 
2814 				if (skb_shared(list)) {
2815 					/* Sucks! We need to fork list. :-( */
2816 					clone = skb_clone(list, GFP_ATOMIC);
2817 					if (!clone)
2818 						return NULL;
2819 					insp = list->next;
2820 					list = clone;
2821 				} else {
2822 					/* This may be pulled without
2823 					 * problems. */
2824 					insp = list;
2825 				}
2826 				if (!pskb_pull(list, eat)) {
2827 					kfree_skb(clone);
2828 					return NULL;
2829 				}
2830 				break;
2831 			}
2832 		} while (eat);
2833 
2834 		/* Free pulled out fragments. */
2835 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2836 			skb_shinfo(skb)->frag_list = list->next;
2837 			consume_skb(list);
2838 		}
2839 		/* And insert new clone at head. */
2840 		if (clone) {
2841 			clone->next = list;
2842 			skb_shinfo(skb)->frag_list = clone;
2843 		}
2844 	}
2845 	/* Success! Now we may commit changes to skb data. */
2846 
2847 pull_pages:
2848 	eat = delta;
2849 	k = 0;
2850 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2851 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2852 
2853 		if (size <= eat) {
2854 			skb_frag_unref(skb, i);
2855 			eat -= size;
2856 		} else {
2857 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2858 
2859 			*frag = skb_shinfo(skb)->frags[i];
2860 			if (eat) {
2861 				skb_frag_off_add(frag, eat);
2862 				skb_frag_size_sub(frag, eat);
2863 				if (!i)
2864 					goto end;
2865 				eat = 0;
2866 			}
2867 			k++;
2868 		}
2869 	}
2870 	skb_shinfo(skb)->nr_frags = k;
2871 
2872 end:
2873 	skb->tail     += delta;
2874 	skb->data_len -= delta;
2875 
2876 	if (!skb->data_len)
2877 		skb_zcopy_clear(skb, false);
2878 
2879 	return skb_tail_pointer(skb);
2880 }
2881 EXPORT_SYMBOL(__pskb_pull_tail);
2882 
2883 /**
2884  *	skb_copy_bits - copy bits from skb to kernel buffer
2885  *	@skb: source skb
2886  *	@offset: offset in source
2887  *	@to: destination buffer
2888  *	@len: number of bytes to copy
2889  *
2890  *	Copy the specified number of bytes from the source skb to the
2891  *	destination buffer.
2892  *
2893  *	CAUTION ! :
2894  *		If its prototype is ever changed,
2895  *		check arch/{*}/net/{*}.S files,
2896  *		since it is called from BPF assembly code.
2897  */
2898 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2899 {
2900 	int start = skb_headlen(skb);
2901 	struct sk_buff *frag_iter;
2902 	int i, copy;
2903 
2904 	if (offset > (int)skb->len - len)
2905 		goto fault;
2906 
2907 	/* Copy header. */
2908 	if ((copy = start - offset) > 0) {
2909 		if (copy > len)
2910 			copy = len;
2911 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2912 		if ((len -= copy) == 0)
2913 			return 0;
2914 		offset += copy;
2915 		to     += copy;
2916 	}
2917 
2918 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2919 		int end;
2920 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2921 
2922 		WARN_ON(start > offset + len);
2923 
2924 		end = start + skb_frag_size(f);
2925 		if ((copy = end - offset) > 0) {
2926 			u32 p_off, p_len, copied;
2927 			struct page *p;
2928 			u8 *vaddr;
2929 
2930 			if (copy > len)
2931 				copy = len;
2932 
2933 			skb_frag_foreach_page(f,
2934 					      skb_frag_off(f) + offset - start,
2935 					      copy, p, p_off, p_len, copied) {
2936 				vaddr = kmap_atomic(p);
2937 				memcpy(to + copied, vaddr + p_off, p_len);
2938 				kunmap_atomic(vaddr);
2939 			}
2940 
2941 			if ((len -= copy) == 0)
2942 				return 0;
2943 			offset += copy;
2944 			to     += copy;
2945 		}
2946 		start = end;
2947 	}
2948 
2949 	skb_walk_frags(skb, frag_iter) {
2950 		int end;
2951 
2952 		WARN_ON(start > offset + len);
2953 
2954 		end = start + frag_iter->len;
2955 		if ((copy = end - offset) > 0) {
2956 			if (copy > len)
2957 				copy = len;
2958 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2959 				goto fault;
2960 			if ((len -= copy) == 0)
2961 				return 0;
2962 			offset += copy;
2963 			to     += copy;
2964 		}
2965 		start = end;
2966 	}
2967 
2968 	if (!len)
2969 		return 0;
2970 
2971 fault:
2972 	return -EFAULT;
2973 }
2974 EXPORT_SYMBOL(skb_copy_bits);
2975 
2976 /*
2977  * Callback from splice_to_pipe(), if we need to release some pages
2978  * at the end of the spd in case we error'ed out in filling the pipe.
2979  */
2980 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2981 {
2982 	put_page(spd->pages[i]);
2983 }
2984 
2985 static struct page *linear_to_page(struct page *page, unsigned int *len,
2986 				   unsigned int *offset,
2987 				   struct sock *sk)
2988 {
2989 	struct page_frag *pfrag = sk_page_frag(sk);
2990 
2991 	if (!sk_page_frag_refill(sk, pfrag))
2992 		return NULL;
2993 
2994 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2995 
2996 	memcpy(page_address(pfrag->page) + pfrag->offset,
2997 	       page_address(page) + *offset, *len);
2998 	*offset = pfrag->offset;
2999 	pfrag->offset += *len;
3000 
3001 	return pfrag->page;
3002 }
3003 
3004 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3005 			     struct page *page,
3006 			     unsigned int offset)
3007 {
3008 	return	spd->nr_pages &&
3009 		spd->pages[spd->nr_pages - 1] == page &&
3010 		(spd->partial[spd->nr_pages - 1].offset +
3011 		 spd->partial[spd->nr_pages - 1].len == offset);
3012 }
3013 
3014 /*
3015  * Fill page/offset/length into spd, if it can hold more pages.
3016  */
3017 static bool spd_fill_page(struct splice_pipe_desc *spd,
3018 			  struct pipe_inode_info *pipe, struct page *page,
3019 			  unsigned int *len, unsigned int offset,
3020 			  bool linear,
3021 			  struct sock *sk)
3022 {
3023 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3024 		return true;
3025 
3026 	if (linear) {
3027 		page = linear_to_page(page, len, &offset, sk);
3028 		if (!page)
3029 			return true;
3030 	}
3031 	if (spd_can_coalesce(spd, page, offset)) {
3032 		spd->partial[spd->nr_pages - 1].len += *len;
3033 		return false;
3034 	}
3035 	get_page(page);
3036 	spd->pages[spd->nr_pages] = page;
3037 	spd->partial[spd->nr_pages].len = *len;
3038 	spd->partial[spd->nr_pages].offset = offset;
3039 	spd->nr_pages++;
3040 
3041 	return false;
3042 }
3043 
3044 static bool __splice_segment(struct page *page, unsigned int poff,
3045 			     unsigned int plen, unsigned int *off,
3046 			     unsigned int *len,
3047 			     struct splice_pipe_desc *spd, bool linear,
3048 			     struct sock *sk,
3049 			     struct pipe_inode_info *pipe)
3050 {
3051 	if (!*len)
3052 		return true;
3053 
3054 	/* skip this segment if already processed */
3055 	if (*off >= plen) {
3056 		*off -= plen;
3057 		return false;
3058 	}
3059 
3060 	/* ignore any bits we already processed */
3061 	poff += *off;
3062 	plen -= *off;
3063 	*off = 0;
3064 
3065 	do {
3066 		unsigned int flen = min(*len, plen);
3067 
3068 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3069 				  linear, sk))
3070 			return true;
3071 		poff += flen;
3072 		plen -= flen;
3073 		*len -= flen;
3074 	} while (*len && plen);
3075 
3076 	return false;
3077 }
3078 
3079 /*
3080  * Map linear and fragment data from the skb to spd. It reports true if the
3081  * pipe is full or if we already spliced the requested length.
3082  */
3083 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3084 			      unsigned int *offset, unsigned int *len,
3085 			      struct splice_pipe_desc *spd, struct sock *sk)
3086 {
3087 	int seg;
3088 	struct sk_buff *iter;
3089 
3090 	/* map the linear part :
3091 	 * If skb->head_frag is set, this 'linear' part is backed by a
3092 	 * fragment, and if the head is not shared with any clones then
3093 	 * we can avoid a copy since we own the head portion of this page.
3094 	 */
3095 	if (__splice_segment(virt_to_page(skb->data),
3096 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3097 			     skb_headlen(skb),
3098 			     offset, len, spd,
3099 			     skb_head_is_locked(skb),
3100 			     sk, pipe))
3101 		return true;
3102 
3103 	/*
3104 	 * then map the fragments
3105 	 */
3106 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3107 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3108 
3109 		if (__splice_segment(skb_frag_page(f),
3110 				     skb_frag_off(f), skb_frag_size(f),
3111 				     offset, len, spd, false, sk, pipe))
3112 			return true;
3113 	}
3114 
3115 	skb_walk_frags(skb, iter) {
3116 		if (*offset >= iter->len) {
3117 			*offset -= iter->len;
3118 			continue;
3119 		}
3120 		/* __skb_splice_bits() only fails if the output has no room
3121 		 * left, so no point in going over the frag_list for the error
3122 		 * case.
3123 		 */
3124 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3125 			return true;
3126 	}
3127 
3128 	return false;
3129 }
3130 
3131 /*
3132  * Map data from the skb to a pipe. Should handle both the linear part,
3133  * the fragments, and the frag list.
3134  */
3135 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3136 		    struct pipe_inode_info *pipe, unsigned int tlen,
3137 		    unsigned int flags)
3138 {
3139 	struct partial_page partial[MAX_SKB_FRAGS];
3140 	struct page *pages[MAX_SKB_FRAGS];
3141 	struct splice_pipe_desc spd = {
3142 		.pages = pages,
3143 		.partial = partial,
3144 		.nr_pages_max = MAX_SKB_FRAGS,
3145 		.ops = &nosteal_pipe_buf_ops,
3146 		.spd_release = sock_spd_release,
3147 	};
3148 	int ret = 0;
3149 
3150 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3151 
3152 	if (spd.nr_pages)
3153 		ret = splice_to_pipe(pipe, &spd);
3154 
3155 	return ret;
3156 }
3157 EXPORT_SYMBOL_GPL(skb_splice_bits);
3158 
3159 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3160 {
3161 	struct socket *sock = sk->sk_socket;
3162 	size_t size = msg_data_left(msg);
3163 
3164 	if (!sock)
3165 		return -EINVAL;
3166 
3167 	if (!sock->ops->sendmsg_locked)
3168 		return sock_no_sendmsg_locked(sk, msg, size);
3169 
3170 	return sock->ops->sendmsg_locked(sk, msg, size);
3171 }
3172 
3173 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3174 {
3175 	struct socket *sock = sk->sk_socket;
3176 
3177 	if (!sock)
3178 		return -EINVAL;
3179 	return sock_sendmsg(sock, msg);
3180 }
3181 
3182 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3183 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3184 			   int len, sendmsg_func sendmsg)
3185 {
3186 	unsigned int orig_len = len;
3187 	struct sk_buff *head = skb;
3188 	unsigned short fragidx;
3189 	int slen, ret;
3190 
3191 do_frag_list:
3192 
3193 	/* Deal with head data */
3194 	while (offset < skb_headlen(skb) && len) {
3195 		struct kvec kv;
3196 		struct msghdr msg;
3197 
3198 		slen = min_t(int, len, skb_headlen(skb) - offset);
3199 		kv.iov_base = skb->data + offset;
3200 		kv.iov_len = slen;
3201 		memset(&msg, 0, sizeof(msg));
3202 		msg.msg_flags = MSG_DONTWAIT;
3203 
3204 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3205 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3206 				      sendmsg_unlocked, sk, &msg);
3207 		if (ret <= 0)
3208 			goto error;
3209 
3210 		offset += ret;
3211 		len -= ret;
3212 	}
3213 
3214 	/* All the data was skb head? */
3215 	if (!len)
3216 		goto out;
3217 
3218 	/* Make offset relative to start of frags */
3219 	offset -= skb_headlen(skb);
3220 
3221 	/* Find where we are in frag list */
3222 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3223 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3224 
3225 		if (offset < skb_frag_size(frag))
3226 			break;
3227 
3228 		offset -= skb_frag_size(frag);
3229 	}
3230 
3231 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3232 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3233 
3234 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3235 
3236 		while (slen) {
3237 			struct bio_vec bvec;
3238 			struct msghdr msg = {
3239 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3240 			};
3241 
3242 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3243 				      skb_frag_off(frag) + offset);
3244 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3245 				      slen);
3246 
3247 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3248 					      sendmsg_unlocked, sk, &msg);
3249 			if (ret <= 0)
3250 				goto error;
3251 
3252 			len -= ret;
3253 			offset += ret;
3254 			slen -= ret;
3255 		}
3256 
3257 		offset = 0;
3258 	}
3259 
3260 	if (len) {
3261 		/* Process any frag lists */
3262 
3263 		if (skb == head) {
3264 			if (skb_has_frag_list(skb)) {
3265 				skb = skb_shinfo(skb)->frag_list;
3266 				goto do_frag_list;
3267 			}
3268 		} else if (skb->next) {
3269 			skb = skb->next;
3270 			goto do_frag_list;
3271 		}
3272 	}
3273 
3274 out:
3275 	return orig_len - len;
3276 
3277 error:
3278 	return orig_len == len ? ret : orig_len - len;
3279 }
3280 
3281 /* Send skb data on a socket. Socket must be locked. */
3282 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3283 			 int len)
3284 {
3285 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3286 }
3287 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3288 
3289 /* Send skb data on a socket. Socket must be unlocked. */
3290 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3291 {
3292 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3293 }
3294 
3295 /**
3296  *	skb_store_bits - store bits from kernel buffer to skb
3297  *	@skb: destination buffer
3298  *	@offset: offset in destination
3299  *	@from: source buffer
3300  *	@len: number of bytes to copy
3301  *
3302  *	Copy the specified number of bytes from the source buffer to the
3303  *	destination skb.  This function handles all the messy bits of
3304  *	traversing fragment lists and such.
3305  */
3306 
3307 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3308 {
3309 	int start = skb_headlen(skb);
3310 	struct sk_buff *frag_iter;
3311 	int i, copy;
3312 
3313 	if (offset > (int)skb->len - len)
3314 		goto fault;
3315 
3316 	if ((copy = start - offset) > 0) {
3317 		if (copy > len)
3318 			copy = len;
3319 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3320 		if ((len -= copy) == 0)
3321 			return 0;
3322 		offset += copy;
3323 		from += copy;
3324 	}
3325 
3326 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3327 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3328 		int end;
3329 
3330 		WARN_ON(start > offset + len);
3331 
3332 		end = start + skb_frag_size(frag);
3333 		if ((copy = end - offset) > 0) {
3334 			u32 p_off, p_len, copied;
3335 			struct page *p;
3336 			u8 *vaddr;
3337 
3338 			if (copy > len)
3339 				copy = len;
3340 
3341 			skb_frag_foreach_page(frag,
3342 					      skb_frag_off(frag) + offset - start,
3343 					      copy, p, p_off, p_len, copied) {
3344 				vaddr = kmap_atomic(p);
3345 				memcpy(vaddr + p_off, from + copied, p_len);
3346 				kunmap_atomic(vaddr);
3347 			}
3348 
3349 			if ((len -= copy) == 0)
3350 				return 0;
3351 			offset += copy;
3352 			from += copy;
3353 		}
3354 		start = end;
3355 	}
3356 
3357 	skb_walk_frags(skb, frag_iter) {
3358 		int end;
3359 
3360 		WARN_ON(start > offset + len);
3361 
3362 		end = start + frag_iter->len;
3363 		if ((copy = end - offset) > 0) {
3364 			if (copy > len)
3365 				copy = len;
3366 			if (skb_store_bits(frag_iter, offset - start,
3367 					   from, copy))
3368 				goto fault;
3369 			if ((len -= copy) == 0)
3370 				return 0;
3371 			offset += copy;
3372 			from += copy;
3373 		}
3374 		start = end;
3375 	}
3376 	if (!len)
3377 		return 0;
3378 
3379 fault:
3380 	return -EFAULT;
3381 }
3382 EXPORT_SYMBOL(skb_store_bits);
3383 
3384 /* Checksum skb data. */
3385 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3386 		      __wsum csum, const struct skb_checksum_ops *ops)
3387 {
3388 	int start = skb_headlen(skb);
3389 	int i, copy = start - offset;
3390 	struct sk_buff *frag_iter;
3391 	int pos = 0;
3392 
3393 	/* Checksum header. */
3394 	if (copy > 0) {
3395 		if (copy > len)
3396 			copy = len;
3397 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3398 				       skb->data + offset, copy, csum);
3399 		if ((len -= copy) == 0)
3400 			return csum;
3401 		offset += copy;
3402 		pos	= copy;
3403 	}
3404 
3405 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3406 		int end;
3407 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3408 
3409 		WARN_ON(start > offset + len);
3410 
3411 		end = start + skb_frag_size(frag);
3412 		if ((copy = end - offset) > 0) {
3413 			u32 p_off, p_len, copied;
3414 			struct page *p;
3415 			__wsum csum2;
3416 			u8 *vaddr;
3417 
3418 			if (copy > len)
3419 				copy = len;
3420 
3421 			skb_frag_foreach_page(frag,
3422 					      skb_frag_off(frag) + offset - start,
3423 					      copy, p, p_off, p_len, copied) {
3424 				vaddr = kmap_atomic(p);
3425 				csum2 = INDIRECT_CALL_1(ops->update,
3426 							csum_partial_ext,
3427 							vaddr + p_off, p_len, 0);
3428 				kunmap_atomic(vaddr);
3429 				csum = INDIRECT_CALL_1(ops->combine,
3430 						       csum_block_add_ext, csum,
3431 						       csum2, pos, p_len);
3432 				pos += p_len;
3433 			}
3434 
3435 			if (!(len -= copy))
3436 				return csum;
3437 			offset += copy;
3438 		}
3439 		start = end;
3440 	}
3441 
3442 	skb_walk_frags(skb, frag_iter) {
3443 		int end;
3444 
3445 		WARN_ON(start > offset + len);
3446 
3447 		end = start + frag_iter->len;
3448 		if ((copy = end - offset) > 0) {
3449 			__wsum csum2;
3450 			if (copy > len)
3451 				copy = len;
3452 			csum2 = __skb_checksum(frag_iter, offset - start,
3453 					       copy, 0, ops);
3454 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3455 					       csum, csum2, pos, copy);
3456 			if ((len -= copy) == 0)
3457 				return csum;
3458 			offset += copy;
3459 			pos    += copy;
3460 		}
3461 		start = end;
3462 	}
3463 	BUG_ON(len);
3464 
3465 	return csum;
3466 }
3467 EXPORT_SYMBOL(__skb_checksum);
3468 
3469 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3470 		    int len, __wsum csum)
3471 {
3472 	const struct skb_checksum_ops ops = {
3473 		.update  = csum_partial_ext,
3474 		.combine = csum_block_add_ext,
3475 	};
3476 
3477 	return __skb_checksum(skb, offset, len, csum, &ops);
3478 }
3479 EXPORT_SYMBOL(skb_checksum);
3480 
3481 /* Both of above in one bottle. */
3482 
3483 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3484 				    u8 *to, int len)
3485 {
3486 	int start = skb_headlen(skb);
3487 	int i, copy = start - offset;
3488 	struct sk_buff *frag_iter;
3489 	int pos = 0;
3490 	__wsum csum = 0;
3491 
3492 	/* Copy header. */
3493 	if (copy > 0) {
3494 		if (copy > len)
3495 			copy = len;
3496 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3497 						 copy);
3498 		if ((len -= copy) == 0)
3499 			return csum;
3500 		offset += copy;
3501 		to     += copy;
3502 		pos	= copy;
3503 	}
3504 
3505 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3506 		int end;
3507 
3508 		WARN_ON(start > offset + len);
3509 
3510 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3511 		if ((copy = end - offset) > 0) {
3512 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3513 			u32 p_off, p_len, copied;
3514 			struct page *p;
3515 			__wsum csum2;
3516 			u8 *vaddr;
3517 
3518 			if (copy > len)
3519 				copy = len;
3520 
3521 			skb_frag_foreach_page(frag,
3522 					      skb_frag_off(frag) + offset - start,
3523 					      copy, p, p_off, p_len, copied) {
3524 				vaddr = kmap_atomic(p);
3525 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3526 								  to + copied,
3527 								  p_len);
3528 				kunmap_atomic(vaddr);
3529 				csum = csum_block_add(csum, csum2, pos);
3530 				pos += p_len;
3531 			}
3532 
3533 			if (!(len -= copy))
3534 				return csum;
3535 			offset += copy;
3536 			to     += copy;
3537 		}
3538 		start = end;
3539 	}
3540 
3541 	skb_walk_frags(skb, frag_iter) {
3542 		__wsum csum2;
3543 		int end;
3544 
3545 		WARN_ON(start > offset + len);
3546 
3547 		end = start + frag_iter->len;
3548 		if ((copy = end - offset) > 0) {
3549 			if (copy > len)
3550 				copy = len;
3551 			csum2 = skb_copy_and_csum_bits(frag_iter,
3552 						       offset - start,
3553 						       to, copy);
3554 			csum = csum_block_add(csum, csum2, pos);
3555 			if ((len -= copy) == 0)
3556 				return csum;
3557 			offset += copy;
3558 			to     += copy;
3559 			pos    += copy;
3560 		}
3561 		start = end;
3562 	}
3563 	BUG_ON(len);
3564 	return csum;
3565 }
3566 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3567 
3568 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3569 {
3570 	__sum16 sum;
3571 
3572 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3573 	/* See comments in __skb_checksum_complete(). */
3574 	if (likely(!sum)) {
3575 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3576 		    !skb->csum_complete_sw)
3577 			netdev_rx_csum_fault(skb->dev, skb);
3578 	}
3579 	if (!skb_shared(skb))
3580 		skb->csum_valid = !sum;
3581 	return sum;
3582 }
3583 EXPORT_SYMBOL(__skb_checksum_complete_head);
3584 
3585 /* This function assumes skb->csum already holds pseudo header's checksum,
3586  * which has been changed from the hardware checksum, for example, by
3587  * __skb_checksum_validate_complete(). And, the original skb->csum must
3588  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3589  *
3590  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3591  * zero. The new checksum is stored back into skb->csum unless the skb is
3592  * shared.
3593  */
3594 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3595 {
3596 	__wsum csum;
3597 	__sum16 sum;
3598 
3599 	csum = skb_checksum(skb, 0, skb->len, 0);
3600 
3601 	sum = csum_fold(csum_add(skb->csum, csum));
3602 	/* This check is inverted, because we already knew the hardware
3603 	 * checksum is invalid before calling this function. So, if the
3604 	 * re-computed checksum is valid instead, then we have a mismatch
3605 	 * between the original skb->csum and skb_checksum(). This means either
3606 	 * the original hardware checksum is incorrect or we screw up skb->csum
3607 	 * when moving skb->data around.
3608 	 */
3609 	if (likely(!sum)) {
3610 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3611 		    !skb->csum_complete_sw)
3612 			netdev_rx_csum_fault(skb->dev, skb);
3613 	}
3614 
3615 	if (!skb_shared(skb)) {
3616 		/* Save full packet checksum */
3617 		skb->csum = csum;
3618 		skb->ip_summed = CHECKSUM_COMPLETE;
3619 		skb->csum_complete_sw = 1;
3620 		skb->csum_valid = !sum;
3621 	}
3622 
3623 	return sum;
3624 }
3625 EXPORT_SYMBOL(__skb_checksum_complete);
3626 
3627 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3628 {
3629 	net_warn_ratelimited(
3630 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3631 		__func__);
3632 	return 0;
3633 }
3634 
3635 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3636 				       int offset, int len)
3637 {
3638 	net_warn_ratelimited(
3639 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3640 		__func__);
3641 	return 0;
3642 }
3643 
3644 static const struct skb_checksum_ops default_crc32c_ops = {
3645 	.update  = warn_crc32c_csum_update,
3646 	.combine = warn_crc32c_csum_combine,
3647 };
3648 
3649 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3650 	&default_crc32c_ops;
3651 EXPORT_SYMBOL(crc32c_csum_stub);
3652 
3653  /**
3654  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3655  *	@from: source buffer
3656  *
3657  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3658  *	into skb_zerocopy().
3659  */
3660 unsigned int
3661 skb_zerocopy_headlen(const struct sk_buff *from)
3662 {
3663 	unsigned int hlen = 0;
3664 
3665 	if (!from->head_frag ||
3666 	    skb_headlen(from) < L1_CACHE_BYTES ||
3667 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3668 		hlen = skb_headlen(from);
3669 		if (!hlen)
3670 			hlen = from->len;
3671 	}
3672 
3673 	if (skb_has_frag_list(from))
3674 		hlen = from->len;
3675 
3676 	return hlen;
3677 }
3678 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3679 
3680 /**
3681  *	skb_zerocopy - Zero copy skb to skb
3682  *	@to: destination buffer
3683  *	@from: source buffer
3684  *	@len: number of bytes to copy from source buffer
3685  *	@hlen: size of linear headroom in destination buffer
3686  *
3687  *	Copies up to `len` bytes from `from` to `to` by creating references
3688  *	to the frags in the source buffer.
3689  *
3690  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3691  *	headroom in the `to` buffer.
3692  *
3693  *	Return value:
3694  *	0: everything is OK
3695  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3696  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3697  */
3698 int
3699 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3700 {
3701 	int i, j = 0;
3702 	int plen = 0; /* length of skb->head fragment */
3703 	int ret;
3704 	struct page *page;
3705 	unsigned int offset;
3706 
3707 	BUG_ON(!from->head_frag && !hlen);
3708 
3709 	/* dont bother with small payloads */
3710 	if (len <= skb_tailroom(to))
3711 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3712 
3713 	if (hlen) {
3714 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3715 		if (unlikely(ret))
3716 			return ret;
3717 		len -= hlen;
3718 	} else {
3719 		plen = min_t(int, skb_headlen(from), len);
3720 		if (plen) {
3721 			page = virt_to_head_page(from->head);
3722 			offset = from->data - (unsigned char *)page_address(page);
3723 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3724 					       offset, plen);
3725 			get_page(page);
3726 			j = 1;
3727 			len -= plen;
3728 		}
3729 	}
3730 
3731 	skb_len_add(to, len + plen);
3732 
3733 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3734 		skb_tx_error(from);
3735 		return -ENOMEM;
3736 	}
3737 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3738 
3739 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3740 		int size;
3741 
3742 		if (!len)
3743 			break;
3744 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3745 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3746 					len);
3747 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3748 		len -= size;
3749 		skb_frag_ref(to, j);
3750 		j++;
3751 	}
3752 	skb_shinfo(to)->nr_frags = j;
3753 
3754 	return 0;
3755 }
3756 EXPORT_SYMBOL_GPL(skb_zerocopy);
3757 
3758 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3759 {
3760 	__wsum csum;
3761 	long csstart;
3762 
3763 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3764 		csstart = skb_checksum_start_offset(skb);
3765 	else
3766 		csstart = skb_headlen(skb);
3767 
3768 	BUG_ON(csstart > skb_headlen(skb));
3769 
3770 	skb_copy_from_linear_data(skb, to, csstart);
3771 
3772 	csum = 0;
3773 	if (csstart != skb->len)
3774 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3775 					      skb->len - csstart);
3776 
3777 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3778 		long csstuff = csstart + skb->csum_offset;
3779 
3780 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3781 	}
3782 }
3783 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3784 
3785 /**
3786  *	skb_dequeue - remove from the head of the queue
3787  *	@list: list to dequeue from
3788  *
3789  *	Remove the head of the list. The list lock is taken so the function
3790  *	may be used safely with other locking list functions. The head item is
3791  *	returned or %NULL if the list is empty.
3792  */
3793 
3794 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3795 {
3796 	unsigned long flags;
3797 	struct sk_buff *result;
3798 
3799 	spin_lock_irqsave(&list->lock, flags);
3800 	result = __skb_dequeue(list);
3801 	spin_unlock_irqrestore(&list->lock, flags);
3802 	return result;
3803 }
3804 EXPORT_SYMBOL(skb_dequeue);
3805 
3806 /**
3807  *	skb_dequeue_tail - remove from the tail of the queue
3808  *	@list: list to dequeue from
3809  *
3810  *	Remove the tail of the list. The list lock is taken so the function
3811  *	may be used safely with other locking list functions. The tail item is
3812  *	returned or %NULL if the list is empty.
3813  */
3814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3815 {
3816 	unsigned long flags;
3817 	struct sk_buff *result;
3818 
3819 	spin_lock_irqsave(&list->lock, flags);
3820 	result = __skb_dequeue_tail(list);
3821 	spin_unlock_irqrestore(&list->lock, flags);
3822 	return result;
3823 }
3824 EXPORT_SYMBOL(skb_dequeue_tail);
3825 
3826 /**
3827  *	skb_queue_purge_reason - empty a list
3828  *	@list: list to empty
3829  *	@reason: drop reason
3830  *
3831  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3832  *	the list and one reference dropped. This function takes the list
3833  *	lock and is atomic with respect to other list locking functions.
3834  */
3835 void skb_queue_purge_reason(struct sk_buff_head *list,
3836 			    enum skb_drop_reason reason)
3837 {
3838 	struct sk_buff_head tmp;
3839 	unsigned long flags;
3840 
3841 	if (skb_queue_empty_lockless(list))
3842 		return;
3843 
3844 	__skb_queue_head_init(&tmp);
3845 
3846 	spin_lock_irqsave(&list->lock, flags);
3847 	skb_queue_splice_init(list, &tmp);
3848 	spin_unlock_irqrestore(&list->lock, flags);
3849 
3850 	__skb_queue_purge_reason(&tmp, reason);
3851 }
3852 EXPORT_SYMBOL(skb_queue_purge_reason);
3853 
3854 /**
3855  *	skb_rbtree_purge - empty a skb rbtree
3856  *	@root: root of the rbtree to empty
3857  *	Return value: the sum of truesizes of all purged skbs.
3858  *
3859  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3860  *	the list and one reference dropped. This function does not take
3861  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3862  *	out-of-order queue is protected by the socket lock).
3863  */
3864 unsigned int skb_rbtree_purge(struct rb_root *root)
3865 {
3866 	struct rb_node *p = rb_first(root);
3867 	unsigned int sum = 0;
3868 
3869 	while (p) {
3870 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3871 
3872 		p = rb_next(p);
3873 		rb_erase(&skb->rbnode, root);
3874 		sum += skb->truesize;
3875 		kfree_skb(skb);
3876 	}
3877 	return sum;
3878 }
3879 
3880 void skb_errqueue_purge(struct sk_buff_head *list)
3881 {
3882 	struct sk_buff *skb, *next;
3883 	struct sk_buff_head kill;
3884 	unsigned long flags;
3885 
3886 	__skb_queue_head_init(&kill);
3887 
3888 	spin_lock_irqsave(&list->lock, flags);
3889 	skb_queue_walk_safe(list, skb, next) {
3890 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3891 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3892 			continue;
3893 		__skb_unlink(skb, list);
3894 		__skb_queue_tail(&kill, skb);
3895 	}
3896 	spin_unlock_irqrestore(&list->lock, flags);
3897 	__skb_queue_purge(&kill);
3898 }
3899 EXPORT_SYMBOL(skb_errqueue_purge);
3900 
3901 /**
3902  *	skb_queue_head - queue a buffer at the list head
3903  *	@list: list to use
3904  *	@newsk: buffer to queue
3905  *
3906  *	Queue a buffer at the start of the list. This function takes the
3907  *	list lock and can be used safely with other locking &sk_buff functions
3908  *	safely.
3909  *
3910  *	A buffer cannot be placed on two lists at the same time.
3911  */
3912 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3913 {
3914 	unsigned long flags;
3915 
3916 	spin_lock_irqsave(&list->lock, flags);
3917 	__skb_queue_head(list, newsk);
3918 	spin_unlock_irqrestore(&list->lock, flags);
3919 }
3920 EXPORT_SYMBOL(skb_queue_head);
3921 
3922 /**
3923  *	skb_queue_tail - queue a buffer at the list tail
3924  *	@list: list to use
3925  *	@newsk: buffer to queue
3926  *
3927  *	Queue a buffer at the tail of the list. This function takes the
3928  *	list lock and can be used safely with other locking &sk_buff functions
3929  *	safely.
3930  *
3931  *	A buffer cannot be placed on two lists at the same time.
3932  */
3933 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3934 {
3935 	unsigned long flags;
3936 
3937 	spin_lock_irqsave(&list->lock, flags);
3938 	__skb_queue_tail(list, newsk);
3939 	spin_unlock_irqrestore(&list->lock, flags);
3940 }
3941 EXPORT_SYMBOL(skb_queue_tail);
3942 
3943 /**
3944  *	skb_unlink	-	remove a buffer from a list
3945  *	@skb: buffer to remove
3946  *	@list: list to use
3947  *
3948  *	Remove a packet from a list. The list locks are taken and this
3949  *	function is atomic with respect to other list locked calls
3950  *
3951  *	You must know what list the SKB is on.
3952  */
3953 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3954 {
3955 	unsigned long flags;
3956 
3957 	spin_lock_irqsave(&list->lock, flags);
3958 	__skb_unlink(skb, list);
3959 	spin_unlock_irqrestore(&list->lock, flags);
3960 }
3961 EXPORT_SYMBOL(skb_unlink);
3962 
3963 /**
3964  *	skb_append	-	append a buffer
3965  *	@old: buffer to insert after
3966  *	@newsk: buffer to insert
3967  *	@list: list to use
3968  *
3969  *	Place a packet after a given packet in a list. The list locks are taken
3970  *	and this function is atomic with respect to other list locked calls.
3971  *	A buffer cannot be placed on two lists at the same time.
3972  */
3973 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3974 {
3975 	unsigned long flags;
3976 
3977 	spin_lock_irqsave(&list->lock, flags);
3978 	__skb_queue_after(list, old, newsk);
3979 	spin_unlock_irqrestore(&list->lock, flags);
3980 }
3981 EXPORT_SYMBOL(skb_append);
3982 
3983 static inline void skb_split_inside_header(struct sk_buff *skb,
3984 					   struct sk_buff* skb1,
3985 					   const u32 len, const int pos)
3986 {
3987 	int i;
3988 
3989 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3990 					 pos - len);
3991 	/* And move data appendix as is. */
3992 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3993 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3994 
3995 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3996 	skb_shinfo(skb)->nr_frags  = 0;
3997 	skb1->data_len		   = skb->data_len;
3998 	skb1->len		   += skb1->data_len;
3999 	skb->data_len		   = 0;
4000 	skb->len		   = len;
4001 	skb_set_tail_pointer(skb, len);
4002 }
4003 
4004 static inline void skb_split_no_header(struct sk_buff *skb,
4005 				       struct sk_buff* skb1,
4006 				       const u32 len, int pos)
4007 {
4008 	int i, k = 0;
4009 	const int nfrags = skb_shinfo(skb)->nr_frags;
4010 
4011 	skb_shinfo(skb)->nr_frags = 0;
4012 	skb1->len		  = skb1->data_len = skb->len - len;
4013 	skb->len		  = len;
4014 	skb->data_len		  = len - pos;
4015 
4016 	for (i = 0; i < nfrags; i++) {
4017 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4018 
4019 		if (pos + size > len) {
4020 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4021 
4022 			if (pos < len) {
4023 				/* Split frag.
4024 				 * We have two variants in this case:
4025 				 * 1. Move all the frag to the second
4026 				 *    part, if it is possible. F.e.
4027 				 *    this approach is mandatory for TUX,
4028 				 *    where splitting is expensive.
4029 				 * 2. Split is accurately. We make this.
4030 				 */
4031 				skb_frag_ref(skb, i);
4032 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4033 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4034 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4035 				skb_shinfo(skb)->nr_frags++;
4036 			}
4037 			k++;
4038 		} else
4039 			skb_shinfo(skb)->nr_frags++;
4040 		pos += size;
4041 	}
4042 	skb_shinfo(skb1)->nr_frags = k;
4043 }
4044 
4045 /**
4046  * skb_split - Split fragmented skb to two parts at length len.
4047  * @skb: the buffer to split
4048  * @skb1: the buffer to receive the second part
4049  * @len: new length for skb
4050  */
4051 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4052 {
4053 	int pos = skb_headlen(skb);
4054 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4055 
4056 	skb_zcopy_downgrade_managed(skb);
4057 
4058 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4059 	skb_zerocopy_clone(skb1, skb, 0);
4060 	if (len < pos)	/* Split line is inside header. */
4061 		skb_split_inside_header(skb, skb1, len, pos);
4062 	else		/* Second chunk has no header, nothing to copy. */
4063 		skb_split_no_header(skb, skb1, len, pos);
4064 }
4065 EXPORT_SYMBOL(skb_split);
4066 
4067 /* Shifting from/to a cloned skb is a no-go.
4068  *
4069  * Caller cannot keep skb_shinfo related pointers past calling here!
4070  */
4071 static int skb_prepare_for_shift(struct sk_buff *skb)
4072 {
4073 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4074 }
4075 
4076 /**
4077  * skb_shift - Shifts paged data partially from skb to another
4078  * @tgt: buffer into which tail data gets added
4079  * @skb: buffer from which the paged data comes from
4080  * @shiftlen: shift up to this many bytes
4081  *
4082  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4083  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4084  * It's up to caller to free skb if everything was shifted.
4085  *
4086  * If @tgt runs out of frags, the whole operation is aborted.
4087  *
4088  * Skb cannot include anything else but paged data while tgt is allowed
4089  * to have non-paged data as well.
4090  *
4091  * TODO: full sized shift could be optimized but that would need
4092  * specialized skb free'er to handle frags without up-to-date nr_frags.
4093  */
4094 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4095 {
4096 	int from, to, merge, todo;
4097 	skb_frag_t *fragfrom, *fragto;
4098 
4099 	BUG_ON(shiftlen > skb->len);
4100 
4101 	if (skb_headlen(skb))
4102 		return 0;
4103 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4104 		return 0;
4105 
4106 	todo = shiftlen;
4107 	from = 0;
4108 	to = skb_shinfo(tgt)->nr_frags;
4109 	fragfrom = &skb_shinfo(skb)->frags[from];
4110 
4111 	/* Actual merge is delayed until the point when we know we can
4112 	 * commit all, so that we don't have to undo partial changes
4113 	 */
4114 	if (!to ||
4115 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4116 			      skb_frag_off(fragfrom))) {
4117 		merge = -1;
4118 	} else {
4119 		merge = to - 1;
4120 
4121 		todo -= skb_frag_size(fragfrom);
4122 		if (todo < 0) {
4123 			if (skb_prepare_for_shift(skb) ||
4124 			    skb_prepare_for_shift(tgt))
4125 				return 0;
4126 
4127 			/* All previous frag pointers might be stale! */
4128 			fragfrom = &skb_shinfo(skb)->frags[from];
4129 			fragto = &skb_shinfo(tgt)->frags[merge];
4130 
4131 			skb_frag_size_add(fragto, shiftlen);
4132 			skb_frag_size_sub(fragfrom, shiftlen);
4133 			skb_frag_off_add(fragfrom, shiftlen);
4134 
4135 			goto onlymerged;
4136 		}
4137 
4138 		from++;
4139 	}
4140 
4141 	/* Skip full, not-fitting skb to avoid expensive operations */
4142 	if ((shiftlen == skb->len) &&
4143 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4144 		return 0;
4145 
4146 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4147 		return 0;
4148 
4149 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4150 		if (to == MAX_SKB_FRAGS)
4151 			return 0;
4152 
4153 		fragfrom = &skb_shinfo(skb)->frags[from];
4154 		fragto = &skb_shinfo(tgt)->frags[to];
4155 
4156 		if (todo >= skb_frag_size(fragfrom)) {
4157 			*fragto = *fragfrom;
4158 			todo -= skb_frag_size(fragfrom);
4159 			from++;
4160 			to++;
4161 
4162 		} else {
4163 			__skb_frag_ref(fragfrom, skb->pp_recycle);
4164 			skb_frag_page_copy(fragto, fragfrom);
4165 			skb_frag_off_copy(fragto, fragfrom);
4166 			skb_frag_size_set(fragto, todo);
4167 
4168 			skb_frag_off_add(fragfrom, todo);
4169 			skb_frag_size_sub(fragfrom, todo);
4170 			todo = 0;
4171 
4172 			to++;
4173 			break;
4174 		}
4175 	}
4176 
4177 	/* Ready to "commit" this state change to tgt */
4178 	skb_shinfo(tgt)->nr_frags = to;
4179 
4180 	if (merge >= 0) {
4181 		fragfrom = &skb_shinfo(skb)->frags[0];
4182 		fragto = &skb_shinfo(tgt)->frags[merge];
4183 
4184 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4185 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4186 	}
4187 
4188 	/* Reposition in the original skb */
4189 	to = 0;
4190 	while (from < skb_shinfo(skb)->nr_frags)
4191 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4192 	skb_shinfo(skb)->nr_frags = to;
4193 
4194 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4195 
4196 onlymerged:
4197 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4198 	 * the other hand might need it if it needs to be resent
4199 	 */
4200 	tgt->ip_summed = CHECKSUM_PARTIAL;
4201 	skb->ip_summed = CHECKSUM_PARTIAL;
4202 
4203 	skb_len_add(skb, -shiftlen);
4204 	skb_len_add(tgt, shiftlen);
4205 
4206 	return shiftlen;
4207 }
4208 
4209 /**
4210  * skb_prepare_seq_read - Prepare a sequential read of skb data
4211  * @skb: the buffer to read
4212  * @from: lower offset of data to be read
4213  * @to: upper offset of data to be read
4214  * @st: state variable
4215  *
4216  * Initializes the specified state variable. Must be called before
4217  * invoking skb_seq_read() for the first time.
4218  */
4219 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4220 			  unsigned int to, struct skb_seq_state *st)
4221 {
4222 	st->lower_offset = from;
4223 	st->upper_offset = to;
4224 	st->root_skb = st->cur_skb = skb;
4225 	st->frag_idx = st->stepped_offset = 0;
4226 	st->frag_data = NULL;
4227 	st->frag_off = 0;
4228 }
4229 EXPORT_SYMBOL(skb_prepare_seq_read);
4230 
4231 /**
4232  * skb_seq_read - Sequentially read skb data
4233  * @consumed: number of bytes consumed by the caller so far
4234  * @data: destination pointer for data to be returned
4235  * @st: state variable
4236  *
4237  * Reads a block of skb data at @consumed relative to the
4238  * lower offset specified to skb_prepare_seq_read(). Assigns
4239  * the head of the data block to @data and returns the length
4240  * of the block or 0 if the end of the skb data or the upper
4241  * offset has been reached.
4242  *
4243  * The caller is not required to consume all of the data
4244  * returned, i.e. @consumed is typically set to the number
4245  * of bytes already consumed and the next call to
4246  * skb_seq_read() will return the remaining part of the block.
4247  *
4248  * Note 1: The size of each block of data returned can be arbitrary,
4249  *       this limitation is the cost for zerocopy sequential
4250  *       reads of potentially non linear data.
4251  *
4252  * Note 2: Fragment lists within fragments are not implemented
4253  *       at the moment, state->root_skb could be replaced with
4254  *       a stack for this purpose.
4255  */
4256 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4257 			  struct skb_seq_state *st)
4258 {
4259 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4260 	skb_frag_t *frag;
4261 
4262 	if (unlikely(abs_offset >= st->upper_offset)) {
4263 		if (st->frag_data) {
4264 			kunmap_atomic(st->frag_data);
4265 			st->frag_data = NULL;
4266 		}
4267 		return 0;
4268 	}
4269 
4270 next_skb:
4271 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4272 
4273 	if (abs_offset < block_limit && !st->frag_data) {
4274 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4275 		return block_limit - abs_offset;
4276 	}
4277 
4278 	if (st->frag_idx == 0 && !st->frag_data)
4279 		st->stepped_offset += skb_headlen(st->cur_skb);
4280 
4281 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4282 		unsigned int pg_idx, pg_off, pg_sz;
4283 
4284 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4285 
4286 		pg_idx = 0;
4287 		pg_off = skb_frag_off(frag);
4288 		pg_sz = skb_frag_size(frag);
4289 
4290 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4291 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4292 			pg_off = offset_in_page(pg_off + st->frag_off);
4293 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4294 						    PAGE_SIZE - pg_off);
4295 		}
4296 
4297 		block_limit = pg_sz + st->stepped_offset;
4298 		if (abs_offset < block_limit) {
4299 			if (!st->frag_data)
4300 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4301 
4302 			*data = (u8 *)st->frag_data + pg_off +
4303 				(abs_offset - st->stepped_offset);
4304 
4305 			return block_limit - abs_offset;
4306 		}
4307 
4308 		if (st->frag_data) {
4309 			kunmap_atomic(st->frag_data);
4310 			st->frag_data = NULL;
4311 		}
4312 
4313 		st->stepped_offset += pg_sz;
4314 		st->frag_off += pg_sz;
4315 		if (st->frag_off == skb_frag_size(frag)) {
4316 			st->frag_off = 0;
4317 			st->frag_idx++;
4318 		}
4319 	}
4320 
4321 	if (st->frag_data) {
4322 		kunmap_atomic(st->frag_data);
4323 		st->frag_data = NULL;
4324 	}
4325 
4326 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4327 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4328 		st->frag_idx = 0;
4329 		goto next_skb;
4330 	} else if (st->cur_skb->next) {
4331 		st->cur_skb = st->cur_skb->next;
4332 		st->frag_idx = 0;
4333 		goto next_skb;
4334 	}
4335 
4336 	return 0;
4337 }
4338 EXPORT_SYMBOL(skb_seq_read);
4339 
4340 /**
4341  * skb_abort_seq_read - Abort a sequential read of skb data
4342  * @st: state variable
4343  *
4344  * Must be called if skb_seq_read() was not called until it
4345  * returned 0.
4346  */
4347 void skb_abort_seq_read(struct skb_seq_state *st)
4348 {
4349 	if (st->frag_data)
4350 		kunmap_atomic(st->frag_data);
4351 }
4352 EXPORT_SYMBOL(skb_abort_seq_read);
4353 
4354 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4355 
4356 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4357 					  struct ts_config *conf,
4358 					  struct ts_state *state)
4359 {
4360 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4361 }
4362 
4363 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4364 {
4365 	skb_abort_seq_read(TS_SKB_CB(state));
4366 }
4367 
4368 /**
4369  * skb_find_text - Find a text pattern in skb data
4370  * @skb: the buffer to look in
4371  * @from: search offset
4372  * @to: search limit
4373  * @config: textsearch configuration
4374  *
4375  * Finds a pattern in the skb data according to the specified
4376  * textsearch configuration. Use textsearch_next() to retrieve
4377  * subsequent occurrences of the pattern. Returns the offset
4378  * to the first occurrence or UINT_MAX if no match was found.
4379  */
4380 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4381 			   unsigned int to, struct ts_config *config)
4382 {
4383 	unsigned int patlen = config->ops->get_pattern_len(config);
4384 	struct ts_state state;
4385 	unsigned int ret;
4386 
4387 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4388 
4389 	config->get_next_block = skb_ts_get_next_block;
4390 	config->finish = skb_ts_finish;
4391 
4392 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4393 
4394 	ret = textsearch_find(config, &state);
4395 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4396 }
4397 EXPORT_SYMBOL(skb_find_text);
4398 
4399 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4400 			 int offset, size_t size, size_t max_frags)
4401 {
4402 	int i = skb_shinfo(skb)->nr_frags;
4403 
4404 	if (skb_can_coalesce(skb, i, page, offset)) {
4405 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4406 	} else if (i < max_frags) {
4407 		skb_zcopy_downgrade_managed(skb);
4408 		get_page(page);
4409 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4410 	} else {
4411 		return -EMSGSIZE;
4412 	}
4413 
4414 	return 0;
4415 }
4416 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4417 
4418 /**
4419  *	skb_pull_rcsum - pull skb and update receive checksum
4420  *	@skb: buffer to update
4421  *	@len: length of data pulled
4422  *
4423  *	This function performs an skb_pull on the packet and updates
4424  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4425  *	receive path processing instead of skb_pull unless you know
4426  *	that the checksum difference is zero (e.g., a valid IP header)
4427  *	or you are setting ip_summed to CHECKSUM_NONE.
4428  */
4429 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4430 {
4431 	unsigned char *data = skb->data;
4432 
4433 	BUG_ON(len > skb->len);
4434 	__skb_pull(skb, len);
4435 	skb_postpull_rcsum(skb, data, len);
4436 	return skb->data;
4437 }
4438 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4439 
4440 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4441 {
4442 	skb_frag_t head_frag;
4443 	struct page *page;
4444 
4445 	page = virt_to_head_page(frag_skb->head);
4446 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4447 				(unsigned char *)page_address(page),
4448 				skb_headlen(frag_skb));
4449 	return head_frag;
4450 }
4451 
4452 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4453 				 netdev_features_t features,
4454 				 unsigned int offset)
4455 {
4456 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4457 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4458 	unsigned int delta_truesize = 0;
4459 	unsigned int delta_len = 0;
4460 	struct sk_buff *tail = NULL;
4461 	struct sk_buff *nskb, *tmp;
4462 	int len_diff, err;
4463 
4464 	skb_push(skb, -skb_network_offset(skb) + offset);
4465 
4466 	/* Ensure the head is writeable before touching the shared info */
4467 	err = skb_unclone(skb, GFP_ATOMIC);
4468 	if (err)
4469 		goto err_linearize;
4470 
4471 	skb_shinfo(skb)->frag_list = NULL;
4472 
4473 	while (list_skb) {
4474 		nskb = list_skb;
4475 		list_skb = list_skb->next;
4476 
4477 		err = 0;
4478 		delta_truesize += nskb->truesize;
4479 		if (skb_shared(nskb)) {
4480 			tmp = skb_clone(nskb, GFP_ATOMIC);
4481 			if (tmp) {
4482 				consume_skb(nskb);
4483 				nskb = tmp;
4484 				err = skb_unclone(nskb, GFP_ATOMIC);
4485 			} else {
4486 				err = -ENOMEM;
4487 			}
4488 		}
4489 
4490 		if (!tail)
4491 			skb->next = nskb;
4492 		else
4493 			tail->next = nskb;
4494 
4495 		if (unlikely(err)) {
4496 			nskb->next = list_skb;
4497 			goto err_linearize;
4498 		}
4499 
4500 		tail = nskb;
4501 
4502 		delta_len += nskb->len;
4503 
4504 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4505 
4506 		skb_release_head_state(nskb);
4507 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4508 		__copy_skb_header(nskb, skb);
4509 
4510 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4511 		nskb->transport_header += len_diff;
4512 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4513 						 nskb->data - tnl_hlen,
4514 						 offset + tnl_hlen);
4515 
4516 		if (skb_needs_linearize(nskb, features) &&
4517 		    __skb_linearize(nskb))
4518 			goto err_linearize;
4519 	}
4520 
4521 	skb->truesize = skb->truesize - delta_truesize;
4522 	skb->data_len = skb->data_len - delta_len;
4523 	skb->len = skb->len - delta_len;
4524 
4525 	skb_gso_reset(skb);
4526 
4527 	skb->prev = tail;
4528 
4529 	if (skb_needs_linearize(skb, features) &&
4530 	    __skb_linearize(skb))
4531 		goto err_linearize;
4532 
4533 	skb_get(skb);
4534 
4535 	return skb;
4536 
4537 err_linearize:
4538 	kfree_skb_list(skb->next);
4539 	skb->next = NULL;
4540 	return ERR_PTR(-ENOMEM);
4541 }
4542 EXPORT_SYMBOL_GPL(skb_segment_list);
4543 
4544 /**
4545  *	skb_segment - Perform protocol segmentation on skb.
4546  *	@head_skb: buffer to segment
4547  *	@features: features for the output path (see dev->features)
4548  *
4549  *	This function performs segmentation on the given skb.  It returns
4550  *	a pointer to the first in a list of new skbs for the segments.
4551  *	In case of error it returns ERR_PTR(err).
4552  */
4553 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4554 			    netdev_features_t features)
4555 {
4556 	struct sk_buff *segs = NULL;
4557 	struct sk_buff *tail = NULL;
4558 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4559 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4560 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4561 	unsigned int offset = doffset;
4562 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4563 	unsigned int partial_segs = 0;
4564 	unsigned int headroom;
4565 	unsigned int len = head_skb->len;
4566 	struct sk_buff *frag_skb;
4567 	skb_frag_t *frag;
4568 	__be16 proto;
4569 	bool csum, sg;
4570 	int err = -ENOMEM;
4571 	int i = 0;
4572 	int nfrags, pos;
4573 
4574 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4575 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4576 		struct sk_buff *check_skb;
4577 
4578 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4579 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4580 				/* gso_size is untrusted, and we have a frag_list with
4581 				 * a linear non head_frag item.
4582 				 *
4583 				 * If head_skb's headlen does not fit requested gso_size,
4584 				 * it means that the frag_list members do NOT terminate
4585 				 * on exact gso_size boundaries. Hence we cannot perform
4586 				 * skb_frag_t page sharing. Therefore we must fallback to
4587 				 * copying the frag_list skbs; we do so by disabling SG.
4588 				 */
4589 				features &= ~NETIF_F_SG;
4590 				break;
4591 			}
4592 		}
4593 	}
4594 
4595 	__skb_push(head_skb, doffset);
4596 	proto = skb_network_protocol(head_skb, NULL);
4597 	if (unlikely(!proto))
4598 		return ERR_PTR(-EINVAL);
4599 
4600 	sg = !!(features & NETIF_F_SG);
4601 	csum = !!can_checksum_protocol(features, proto);
4602 
4603 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4604 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4605 			struct sk_buff *iter;
4606 			unsigned int frag_len;
4607 
4608 			if (!list_skb ||
4609 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4610 				goto normal;
4611 
4612 			/* If we get here then all the required
4613 			 * GSO features except frag_list are supported.
4614 			 * Try to split the SKB to multiple GSO SKBs
4615 			 * with no frag_list.
4616 			 * Currently we can do that only when the buffers don't
4617 			 * have a linear part and all the buffers except
4618 			 * the last are of the same length.
4619 			 */
4620 			frag_len = list_skb->len;
4621 			skb_walk_frags(head_skb, iter) {
4622 				if (frag_len != iter->len && iter->next)
4623 					goto normal;
4624 				if (skb_headlen(iter) && !iter->head_frag)
4625 					goto normal;
4626 
4627 				len -= iter->len;
4628 			}
4629 
4630 			if (len != frag_len)
4631 				goto normal;
4632 		}
4633 
4634 		/* GSO partial only requires that we trim off any excess that
4635 		 * doesn't fit into an MSS sized block, so take care of that
4636 		 * now.
4637 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4638 		 */
4639 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4640 		if (partial_segs > 1)
4641 			mss *= partial_segs;
4642 		else
4643 			partial_segs = 0;
4644 	}
4645 
4646 normal:
4647 	headroom = skb_headroom(head_skb);
4648 	pos = skb_headlen(head_skb);
4649 
4650 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4651 		return ERR_PTR(-ENOMEM);
4652 
4653 	nfrags = skb_shinfo(head_skb)->nr_frags;
4654 	frag = skb_shinfo(head_skb)->frags;
4655 	frag_skb = head_skb;
4656 
4657 	do {
4658 		struct sk_buff *nskb;
4659 		skb_frag_t *nskb_frag;
4660 		int hsize;
4661 		int size;
4662 
4663 		if (unlikely(mss == GSO_BY_FRAGS)) {
4664 			len = list_skb->len;
4665 		} else {
4666 			len = head_skb->len - offset;
4667 			if (len > mss)
4668 				len = mss;
4669 		}
4670 
4671 		hsize = skb_headlen(head_skb) - offset;
4672 
4673 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4674 		    (skb_headlen(list_skb) == len || sg)) {
4675 			BUG_ON(skb_headlen(list_skb) > len);
4676 
4677 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4678 			if (unlikely(!nskb))
4679 				goto err;
4680 
4681 			i = 0;
4682 			nfrags = skb_shinfo(list_skb)->nr_frags;
4683 			frag = skb_shinfo(list_skb)->frags;
4684 			frag_skb = list_skb;
4685 			pos += skb_headlen(list_skb);
4686 
4687 			while (pos < offset + len) {
4688 				BUG_ON(i >= nfrags);
4689 
4690 				size = skb_frag_size(frag);
4691 				if (pos + size > offset + len)
4692 					break;
4693 
4694 				i++;
4695 				pos += size;
4696 				frag++;
4697 			}
4698 
4699 			list_skb = list_skb->next;
4700 
4701 			if (unlikely(pskb_trim(nskb, len))) {
4702 				kfree_skb(nskb);
4703 				goto err;
4704 			}
4705 
4706 			hsize = skb_end_offset(nskb);
4707 			if (skb_cow_head(nskb, doffset + headroom)) {
4708 				kfree_skb(nskb);
4709 				goto err;
4710 			}
4711 
4712 			nskb->truesize += skb_end_offset(nskb) - hsize;
4713 			skb_release_head_state(nskb);
4714 			__skb_push(nskb, doffset);
4715 		} else {
4716 			if (hsize < 0)
4717 				hsize = 0;
4718 			if (hsize > len || !sg)
4719 				hsize = len;
4720 
4721 			nskb = __alloc_skb(hsize + doffset + headroom,
4722 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4723 					   NUMA_NO_NODE);
4724 
4725 			if (unlikely(!nskb))
4726 				goto err;
4727 
4728 			skb_reserve(nskb, headroom);
4729 			__skb_put(nskb, doffset);
4730 		}
4731 
4732 		if (segs)
4733 			tail->next = nskb;
4734 		else
4735 			segs = nskb;
4736 		tail = nskb;
4737 
4738 		__copy_skb_header(nskb, head_skb);
4739 
4740 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4741 		skb_reset_mac_len(nskb);
4742 
4743 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4744 						 nskb->data - tnl_hlen,
4745 						 doffset + tnl_hlen);
4746 
4747 		if (nskb->len == len + doffset)
4748 			goto perform_csum_check;
4749 
4750 		if (!sg) {
4751 			if (!csum) {
4752 				if (!nskb->remcsum_offload)
4753 					nskb->ip_summed = CHECKSUM_NONE;
4754 				SKB_GSO_CB(nskb)->csum =
4755 					skb_copy_and_csum_bits(head_skb, offset,
4756 							       skb_put(nskb,
4757 								       len),
4758 							       len);
4759 				SKB_GSO_CB(nskb)->csum_start =
4760 					skb_headroom(nskb) + doffset;
4761 			} else {
4762 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4763 					goto err;
4764 			}
4765 			continue;
4766 		}
4767 
4768 		nskb_frag = skb_shinfo(nskb)->frags;
4769 
4770 		skb_copy_from_linear_data_offset(head_skb, offset,
4771 						 skb_put(nskb, hsize), hsize);
4772 
4773 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4774 					   SKBFL_SHARED_FRAG;
4775 
4776 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4777 			goto err;
4778 
4779 		while (pos < offset + len) {
4780 			if (i >= nfrags) {
4781 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4782 				    skb_zerocopy_clone(nskb, list_skb,
4783 						       GFP_ATOMIC))
4784 					goto err;
4785 
4786 				i = 0;
4787 				nfrags = skb_shinfo(list_skb)->nr_frags;
4788 				frag = skb_shinfo(list_skb)->frags;
4789 				frag_skb = list_skb;
4790 				if (!skb_headlen(list_skb)) {
4791 					BUG_ON(!nfrags);
4792 				} else {
4793 					BUG_ON(!list_skb->head_frag);
4794 
4795 					/* to make room for head_frag. */
4796 					i--;
4797 					frag--;
4798 				}
4799 
4800 				list_skb = list_skb->next;
4801 			}
4802 
4803 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4804 				     MAX_SKB_FRAGS)) {
4805 				net_warn_ratelimited(
4806 					"skb_segment: too many frags: %u %u\n",
4807 					pos, mss);
4808 				err = -EINVAL;
4809 				goto err;
4810 			}
4811 
4812 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4813 			__skb_frag_ref(nskb_frag, nskb->pp_recycle);
4814 			size = skb_frag_size(nskb_frag);
4815 
4816 			if (pos < offset) {
4817 				skb_frag_off_add(nskb_frag, offset - pos);
4818 				skb_frag_size_sub(nskb_frag, offset - pos);
4819 			}
4820 
4821 			skb_shinfo(nskb)->nr_frags++;
4822 
4823 			if (pos + size <= offset + len) {
4824 				i++;
4825 				frag++;
4826 				pos += size;
4827 			} else {
4828 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4829 				goto skip_fraglist;
4830 			}
4831 
4832 			nskb_frag++;
4833 		}
4834 
4835 skip_fraglist:
4836 		nskb->data_len = len - hsize;
4837 		nskb->len += nskb->data_len;
4838 		nskb->truesize += nskb->data_len;
4839 
4840 perform_csum_check:
4841 		if (!csum) {
4842 			if (skb_has_shared_frag(nskb) &&
4843 			    __skb_linearize(nskb))
4844 				goto err;
4845 
4846 			if (!nskb->remcsum_offload)
4847 				nskb->ip_summed = CHECKSUM_NONE;
4848 			SKB_GSO_CB(nskb)->csum =
4849 				skb_checksum(nskb, doffset,
4850 					     nskb->len - doffset, 0);
4851 			SKB_GSO_CB(nskb)->csum_start =
4852 				skb_headroom(nskb) + doffset;
4853 		}
4854 	} while ((offset += len) < head_skb->len);
4855 
4856 	/* Some callers want to get the end of the list.
4857 	 * Put it in segs->prev to avoid walking the list.
4858 	 * (see validate_xmit_skb_list() for example)
4859 	 */
4860 	segs->prev = tail;
4861 
4862 	if (partial_segs) {
4863 		struct sk_buff *iter;
4864 		int type = skb_shinfo(head_skb)->gso_type;
4865 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4866 
4867 		/* Update type to add partial and then remove dodgy if set */
4868 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4869 		type &= ~SKB_GSO_DODGY;
4870 
4871 		/* Update GSO info and prepare to start updating headers on
4872 		 * our way back down the stack of protocols.
4873 		 */
4874 		for (iter = segs; iter; iter = iter->next) {
4875 			skb_shinfo(iter)->gso_size = gso_size;
4876 			skb_shinfo(iter)->gso_segs = partial_segs;
4877 			skb_shinfo(iter)->gso_type = type;
4878 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4879 		}
4880 
4881 		if (tail->len - doffset <= gso_size)
4882 			skb_shinfo(tail)->gso_size = 0;
4883 		else if (tail != segs)
4884 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4885 	}
4886 
4887 	/* Following permits correct backpressure, for protocols
4888 	 * using skb_set_owner_w().
4889 	 * Idea is to tranfert ownership from head_skb to last segment.
4890 	 */
4891 	if (head_skb->destructor == sock_wfree) {
4892 		swap(tail->truesize, head_skb->truesize);
4893 		swap(tail->destructor, head_skb->destructor);
4894 		swap(tail->sk, head_skb->sk);
4895 	}
4896 	return segs;
4897 
4898 err:
4899 	kfree_skb_list(segs);
4900 	return ERR_PTR(err);
4901 }
4902 EXPORT_SYMBOL_GPL(skb_segment);
4903 
4904 #ifdef CONFIG_SKB_EXTENSIONS
4905 #define SKB_EXT_ALIGN_VALUE	8
4906 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4907 
4908 static const u8 skb_ext_type_len[] = {
4909 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4910 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4911 #endif
4912 #ifdef CONFIG_XFRM
4913 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4914 #endif
4915 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4916 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4917 #endif
4918 #if IS_ENABLED(CONFIG_MPTCP)
4919 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4920 #endif
4921 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4922 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4923 #endif
4924 };
4925 
4926 static __always_inline unsigned int skb_ext_total_length(void)
4927 {
4928 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4929 	int i;
4930 
4931 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4932 		l += skb_ext_type_len[i];
4933 
4934 	return l;
4935 }
4936 
4937 static void skb_extensions_init(void)
4938 {
4939 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4940 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4941 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4942 #endif
4943 
4944 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4945 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4946 					     0,
4947 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4948 					     NULL);
4949 }
4950 #else
4951 static void skb_extensions_init(void) {}
4952 #endif
4953 
4954 /* The SKB kmem_cache slab is critical for network performance.  Never
4955  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4956  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4957  */
4958 #ifndef CONFIG_SLUB_TINY
4959 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4960 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4961 #define FLAG_SKB_NO_MERGE	0
4962 #endif
4963 
4964 void __init skb_init(void)
4965 {
4966 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4967 					      sizeof(struct sk_buff),
4968 					      0,
4969 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4970 						FLAG_SKB_NO_MERGE,
4971 					      offsetof(struct sk_buff, cb),
4972 					      sizeof_field(struct sk_buff, cb),
4973 					      NULL);
4974 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4975 						sizeof(struct sk_buff_fclones),
4976 						0,
4977 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4978 						NULL);
4979 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4980 	 * struct skb_shared_info is located at the end of skb->head,
4981 	 * and should not be copied to/from user.
4982 	 */
4983 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4984 						SKB_SMALL_HEAD_CACHE_SIZE,
4985 						0,
4986 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4987 						0,
4988 						SKB_SMALL_HEAD_HEADROOM,
4989 						NULL);
4990 	skb_extensions_init();
4991 }
4992 
4993 static int
4994 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4995 	       unsigned int recursion_level)
4996 {
4997 	int start = skb_headlen(skb);
4998 	int i, copy = start - offset;
4999 	struct sk_buff *frag_iter;
5000 	int elt = 0;
5001 
5002 	if (unlikely(recursion_level >= 24))
5003 		return -EMSGSIZE;
5004 
5005 	if (copy > 0) {
5006 		if (copy > len)
5007 			copy = len;
5008 		sg_set_buf(sg, skb->data + offset, copy);
5009 		elt++;
5010 		if ((len -= copy) == 0)
5011 			return elt;
5012 		offset += copy;
5013 	}
5014 
5015 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5016 		int end;
5017 
5018 		WARN_ON(start > offset + len);
5019 
5020 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5021 		if ((copy = end - offset) > 0) {
5022 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5023 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5024 				return -EMSGSIZE;
5025 
5026 			if (copy > len)
5027 				copy = len;
5028 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5029 				    skb_frag_off(frag) + offset - start);
5030 			elt++;
5031 			if (!(len -= copy))
5032 				return elt;
5033 			offset += copy;
5034 		}
5035 		start = end;
5036 	}
5037 
5038 	skb_walk_frags(skb, frag_iter) {
5039 		int end, ret;
5040 
5041 		WARN_ON(start > offset + len);
5042 
5043 		end = start + frag_iter->len;
5044 		if ((copy = end - offset) > 0) {
5045 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5046 				return -EMSGSIZE;
5047 
5048 			if (copy > len)
5049 				copy = len;
5050 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5051 					      copy, recursion_level + 1);
5052 			if (unlikely(ret < 0))
5053 				return ret;
5054 			elt += ret;
5055 			if ((len -= copy) == 0)
5056 				return elt;
5057 			offset += copy;
5058 		}
5059 		start = end;
5060 	}
5061 	BUG_ON(len);
5062 	return elt;
5063 }
5064 
5065 /**
5066  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5067  *	@skb: Socket buffer containing the buffers to be mapped
5068  *	@sg: The scatter-gather list to map into
5069  *	@offset: The offset into the buffer's contents to start mapping
5070  *	@len: Length of buffer space to be mapped
5071  *
5072  *	Fill the specified scatter-gather list with mappings/pointers into a
5073  *	region of the buffer space attached to a socket buffer. Returns either
5074  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5075  *	could not fit.
5076  */
5077 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5078 {
5079 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5080 
5081 	if (nsg <= 0)
5082 		return nsg;
5083 
5084 	sg_mark_end(&sg[nsg - 1]);
5085 
5086 	return nsg;
5087 }
5088 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5089 
5090 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5091  * sglist without mark the sg which contain last skb data as the end.
5092  * So the caller can mannipulate sg list as will when padding new data after
5093  * the first call without calling sg_unmark_end to expend sg list.
5094  *
5095  * Scenario to use skb_to_sgvec_nomark:
5096  * 1. sg_init_table
5097  * 2. skb_to_sgvec_nomark(payload1)
5098  * 3. skb_to_sgvec_nomark(payload2)
5099  *
5100  * This is equivalent to:
5101  * 1. sg_init_table
5102  * 2. skb_to_sgvec(payload1)
5103  * 3. sg_unmark_end
5104  * 4. skb_to_sgvec(payload2)
5105  *
5106  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5107  * is more preferable.
5108  */
5109 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5110 			int offset, int len)
5111 {
5112 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5113 }
5114 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5115 
5116 
5117 
5118 /**
5119  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5120  *	@skb: The socket buffer to check.
5121  *	@tailbits: Amount of trailing space to be added
5122  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5123  *
5124  *	Make sure that the data buffers attached to a socket buffer are
5125  *	writable. If they are not, private copies are made of the data buffers
5126  *	and the socket buffer is set to use these instead.
5127  *
5128  *	If @tailbits is given, make sure that there is space to write @tailbits
5129  *	bytes of data beyond current end of socket buffer.  @trailer will be
5130  *	set to point to the skb in which this space begins.
5131  *
5132  *	The number of scatterlist elements required to completely map the
5133  *	COW'd and extended socket buffer will be returned.
5134  */
5135 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5136 {
5137 	int copyflag;
5138 	int elt;
5139 	struct sk_buff *skb1, **skb_p;
5140 
5141 	/* If skb is cloned or its head is paged, reallocate
5142 	 * head pulling out all the pages (pages are considered not writable
5143 	 * at the moment even if they are anonymous).
5144 	 */
5145 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5146 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5147 		return -ENOMEM;
5148 
5149 	/* Easy case. Most of packets will go this way. */
5150 	if (!skb_has_frag_list(skb)) {
5151 		/* A little of trouble, not enough of space for trailer.
5152 		 * This should not happen, when stack is tuned to generate
5153 		 * good frames. OK, on miss we reallocate and reserve even more
5154 		 * space, 128 bytes is fair. */
5155 
5156 		if (skb_tailroom(skb) < tailbits &&
5157 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5158 			return -ENOMEM;
5159 
5160 		/* Voila! */
5161 		*trailer = skb;
5162 		return 1;
5163 	}
5164 
5165 	/* Misery. We are in troubles, going to mincer fragments... */
5166 
5167 	elt = 1;
5168 	skb_p = &skb_shinfo(skb)->frag_list;
5169 	copyflag = 0;
5170 
5171 	while ((skb1 = *skb_p) != NULL) {
5172 		int ntail = 0;
5173 
5174 		/* The fragment is partially pulled by someone,
5175 		 * this can happen on input. Copy it and everything
5176 		 * after it. */
5177 
5178 		if (skb_shared(skb1))
5179 			copyflag = 1;
5180 
5181 		/* If the skb is the last, worry about trailer. */
5182 
5183 		if (skb1->next == NULL && tailbits) {
5184 			if (skb_shinfo(skb1)->nr_frags ||
5185 			    skb_has_frag_list(skb1) ||
5186 			    skb_tailroom(skb1) < tailbits)
5187 				ntail = tailbits + 128;
5188 		}
5189 
5190 		if (copyflag ||
5191 		    skb_cloned(skb1) ||
5192 		    ntail ||
5193 		    skb_shinfo(skb1)->nr_frags ||
5194 		    skb_has_frag_list(skb1)) {
5195 			struct sk_buff *skb2;
5196 
5197 			/* Fuck, we are miserable poor guys... */
5198 			if (ntail == 0)
5199 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5200 			else
5201 				skb2 = skb_copy_expand(skb1,
5202 						       skb_headroom(skb1),
5203 						       ntail,
5204 						       GFP_ATOMIC);
5205 			if (unlikely(skb2 == NULL))
5206 				return -ENOMEM;
5207 
5208 			if (skb1->sk)
5209 				skb_set_owner_w(skb2, skb1->sk);
5210 
5211 			/* Looking around. Are we still alive?
5212 			 * OK, link new skb, drop old one */
5213 
5214 			skb2->next = skb1->next;
5215 			*skb_p = skb2;
5216 			kfree_skb(skb1);
5217 			skb1 = skb2;
5218 		}
5219 		elt++;
5220 		*trailer = skb1;
5221 		skb_p = &skb1->next;
5222 	}
5223 
5224 	return elt;
5225 }
5226 EXPORT_SYMBOL_GPL(skb_cow_data);
5227 
5228 static void sock_rmem_free(struct sk_buff *skb)
5229 {
5230 	struct sock *sk = skb->sk;
5231 
5232 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5233 }
5234 
5235 static void skb_set_err_queue(struct sk_buff *skb)
5236 {
5237 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5238 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5239 	 */
5240 	skb->pkt_type = PACKET_OUTGOING;
5241 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5242 }
5243 
5244 /*
5245  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5246  */
5247 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5248 {
5249 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5250 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5251 		return -ENOMEM;
5252 
5253 	skb_orphan(skb);
5254 	skb->sk = sk;
5255 	skb->destructor = sock_rmem_free;
5256 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5257 	skb_set_err_queue(skb);
5258 
5259 	/* before exiting rcu section, make sure dst is refcounted */
5260 	skb_dst_force(skb);
5261 
5262 	skb_queue_tail(&sk->sk_error_queue, skb);
5263 	if (!sock_flag(sk, SOCK_DEAD))
5264 		sk_error_report(sk);
5265 	return 0;
5266 }
5267 EXPORT_SYMBOL(sock_queue_err_skb);
5268 
5269 static bool is_icmp_err_skb(const struct sk_buff *skb)
5270 {
5271 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5272 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5273 }
5274 
5275 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5276 {
5277 	struct sk_buff_head *q = &sk->sk_error_queue;
5278 	struct sk_buff *skb, *skb_next = NULL;
5279 	bool icmp_next = false;
5280 	unsigned long flags;
5281 
5282 	if (skb_queue_empty_lockless(q))
5283 		return NULL;
5284 
5285 	spin_lock_irqsave(&q->lock, flags);
5286 	skb = __skb_dequeue(q);
5287 	if (skb && (skb_next = skb_peek(q))) {
5288 		icmp_next = is_icmp_err_skb(skb_next);
5289 		if (icmp_next)
5290 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5291 	}
5292 	spin_unlock_irqrestore(&q->lock, flags);
5293 
5294 	if (is_icmp_err_skb(skb) && !icmp_next)
5295 		sk->sk_err = 0;
5296 
5297 	if (skb_next)
5298 		sk_error_report(sk);
5299 
5300 	return skb;
5301 }
5302 EXPORT_SYMBOL(sock_dequeue_err_skb);
5303 
5304 /**
5305  * skb_clone_sk - create clone of skb, and take reference to socket
5306  * @skb: the skb to clone
5307  *
5308  * This function creates a clone of a buffer that holds a reference on
5309  * sk_refcnt.  Buffers created via this function are meant to be
5310  * returned using sock_queue_err_skb, or free via kfree_skb.
5311  *
5312  * When passing buffers allocated with this function to sock_queue_err_skb
5313  * it is necessary to wrap the call with sock_hold/sock_put in order to
5314  * prevent the socket from being released prior to being enqueued on
5315  * the sk_error_queue.
5316  */
5317 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5318 {
5319 	struct sock *sk = skb->sk;
5320 	struct sk_buff *clone;
5321 
5322 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5323 		return NULL;
5324 
5325 	clone = skb_clone(skb, GFP_ATOMIC);
5326 	if (!clone) {
5327 		sock_put(sk);
5328 		return NULL;
5329 	}
5330 
5331 	clone->sk = sk;
5332 	clone->destructor = sock_efree;
5333 
5334 	return clone;
5335 }
5336 EXPORT_SYMBOL(skb_clone_sk);
5337 
5338 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5339 					struct sock *sk,
5340 					int tstype,
5341 					bool opt_stats)
5342 {
5343 	struct sock_exterr_skb *serr;
5344 	int err;
5345 
5346 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5347 
5348 	serr = SKB_EXT_ERR(skb);
5349 	memset(serr, 0, sizeof(*serr));
5350 	serr->ee.ee_errno = ENOMSG;
5351 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5352 	serr->ee.ee_info = tstype;
5353 	serr->opt_stats = opt_stats;
5354 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5355 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5356 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5357 		if (sk_is_tcp(sk))
5358 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5359 	}
5360 
5361 	err = sock_queue_err_skb(sk, skb);
5362 
5363 	if (err)
5364 		kfree_skb(skb);
5365 }
5366 
5367 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5368 {
5369 	bool ret;
5370 
5371 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5372 		return true;
5373 
5374 	read_lock_bh(&sk->sk_callback_lock);
5375 	ret = sk->sk_socket && sk->sk_socket->file &&
5376 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5377 	read_unlock_bh(&sk->sk_callback_lock);
5378 	return ret;
5379 }
5380 
5381 void skb_complete_tx_timestamp(struct sk_buff *skb,
5382 			       struct skb_shared_hwtstamps *hwtstamps)
5383 {
5384 	struct sock *sk = skb->sk;
5385 
5386 	if (!skb_may_tx_timestamp(sk, false))
5387 		goto err;
5388 
5389 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5390 	 * but only if the socket refcount is not zero.
5391 	 */
5392 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5393 		*skb_hwtstamps(skb) = *hwtstamps;
5394 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5395 		sock_put(sk);
5396 		return;
5397 	}
5398 
5399 err:
5400 	kfree_skb(skb);
5401 }
5402 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5403 
5404 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5405 		     const struct sk_buff *ack_skb,
5406 		     struct skb_shared_hwtstamps *hwtstamps,
5407 		     struct sock *sk, int tstype)
5408 {
5409 	struct sk_buff *skb;
5410 	bool tsonly, opt_stats = false;
5411 	u32 tsflags;
5412 
5413 	if (!sk)
5414 		return;
5415 
5416 	tsflags = READ_ONCE(sk->sk_tsflags);
5417 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5418 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5419 		return;
5420 
5421 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5422 	if (!skb_may_tx_timestamp(sk, tsonly))
5423 		return;
5424 
5425 	if (tsonly) {
5426 #ifdef CONFIG_INET
5427 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5428 		    sk_is_tcp(sk)) {
5429 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5430 							     ack_skb);
5431 			opt_stats = true;
5432 		} else
5433 #endif
5434 			skb = alloc_skb(0, GFP_ATOMIC);
5435 	} else {
5436 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5437 
5438 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5439 			kfree_skb(skb);
5440 			return;
5441 		}
5442 	}
5443 	if (!skb)
5444 		return;
5445 
5446 	if (tsonly) {
5447 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5448 					     SKBTX_ANY_TSTAMP;
5449 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5450 	}
5451 
5452 	if (hwtstamps)
5453 		*skb_hwtstamps(skb) = *hwtstamps;
5454 	else
5455 		__net_timestamp(skb);
5456 
5457 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5458 }
5459 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5460 
5461 void skb_tstamp_tx(struct sk_buff *orig_skb,
5462 		   struct skb_shared_hwtstamps *hwtstamps)
5463 {
5464 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5465 			       SCM_TSTAMP_SND);
5466 }
5467 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5468 
5469 #ifdef CONFIG_WIRELESS
5470 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5471 {
5472 	struct sock *sk = skb->sk;
5473 	struct sock_exterr_skb *serr;
5474 	int err = 1;
5475 
5476 	skb->wifi_acked_valid = 1;
5477 	skb->wifi_acked = acked;
5478 
5479 	serr = SKB_EXT_ERR(skb);
5480 	memset(serr, 0, sizeof(*serr));
5481 	serr->ee.ee_errno = ENOMSG;
5482 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5483 
5484 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5485 	 * but only if the socket refcount is not zero.
5486 	 */
5487 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5488 		err = sock_queue_err_skb(sk, skb);
5489 		sock_put(sk);
5490 	}
5491 	if (err)
5492 		kfree_skb(skb);
5493 }
5494 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5495 #endif /* CONFIG_WIRELESS */
5496 
5497 /**
5498  * skb_partial_csum_set - set up and verify partial csum values for packet
5499  * @skb: the skb to set
5500  * @start: the number of bytes after skb->data to start checksumming.
5501  * @off: the offset from start to place the checksum.
5502  *
5503  * For untrusted partially-checksummed packets, we need to make sure the values
5504  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5505  *
5506  * This function checks and sets those values and skb->ip_summed: if this
5507  * returns false you should drop the packet.
5508  */
5509 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5510 {
5511 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5512 	u32 csum_start = skb_headroom(skb) + (u32)start;
5513 
5514 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5515 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5516 				     start, off, skb_headroom(skb), skb_headlen(skb));
5517 		return false;
5518 	}
5519 	skb->ip_summed = CHECKSUM_PARTIAL;
5520 	skb->csum_start = csum_start;
5521 	skb->csum_offset = off;
5522 	skb->transport_header = csum_start;
5523 	return true;
5524 }
5525 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5526 
5527 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5528 			       unsigned int max)
5529 {
5530 	if (skb_headlen(skb) >= len)
5531 		return 0;
5532 
5533 	/* If we need to pullup then pullup to the max, so we
5534 	 * won't need to do it again.
5535 	 */
5536 	if (max > skb->len)
5537 		max = skb->len;
5538 
5539 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5540 		return -ENOMEM;
5541 
5542 	if (skb_headlen(skb) < len)
5543 		return -EPROTO;
5544 
5545 	return 0;
5546 }
5547 
5548 #define MAX_TCP_HDR_LEN (15 * 4)
5549 
5550 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5551 				      typeof(IPPROTO_IP) proto,
5552 				      unsigned int off)
5553 {
5554 	int err;
5555 
5556 	switch (proto) {
5557 	case IPPROTO_TCP:
5558 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5559 					  off + MAX_TCP_HDR_LEN);
5560 		if (!err && !skb_partial_csum_set(skb, off,
5561 						  offsetof(struct tcphdr,
5562 							   check)))
5563 			err = -EPROTO;
5564 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5565 
5566 	case IPPROTO_UDP:
5567 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5568 					  off + sizeof(struct udphdr));
5569 		if (!err && !skb_partial_csum_set(skb, off,
5570 						  offsetof(struct udphdr,
5571 							   check)))
5572 			err = -EPROTO;
5573 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5574 	}
5575 
5576 	return ERR_PTR(-EPROTO);
5577 }
5578 
5579 /* This value should be large enough to cover a tagged ethernet header plus
5580  * maximally sized IP and TCP or UDP headers.
5581  */
5582 #define MAX_IP_HDR_LEN 128
5583 
5584 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5585 {
5586 	unsigned int off;
5587 	bool fragment;
5588 	__sum16 *csum;
5589 	int err;
5590 
5591 	fragment = false;
5592 
5593 	err = skb_maybe_pull_tail(skb,
5594 				  sizeof(struct iphdr),
5595 				  MAX_IP_HDR_LEN);
5596 	if (err < 0)
5597 		goto out;
5598 
5599 	if (ip_is_fragment(ip_hdr(skb)))
5600 		fragment = true;
5601 
5602 	off = ip_hdrlen(skb);
5603 
5604 	err = -EPROTO;
5605 
5606 	if (fragment)
5607 		goto out;
5608 
5609 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5610 	if (IS_ERR(csum))
5611 		return PTR_ERR(csum);
5612 
5613 	if (recalculate)
5614 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5615 					   ip_hdr(skb)->daddr,
5616 					   skb->len - off,
5617 					   ip_hdr(skb)->protocol, 0);
5618 	err = 0;
5619 
5620 out:
5621 	return err;
5622 }
5623 
5624 /* This value should be large enough to cover a tagged ethernet header plus
5625  * an IPv6 header, all options, and a maximal TCP or UDP header.
5626  */
5627 #define MAX_IPV6_HDR_LEN 256
5628 
5629 #define OPT_HDR(type, skb, off) \
5630 	(type *)(skb_network_header(skb) + (off))
5631 
5632 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5633 {
5634 	int err;
5635 	u8 nexthdr;
5636 	unsigned int off;
5637 	unsigned int len;
5638 	bool fragment;
5639 	bool done;
5640 	__sum16 *csum;
5641 
5642 	fragment = false;
5643 	done = false;
5644 
5645 	off = sizeof(struct ipv6hdr);
5646 
5647 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5648 	if (err < 0)
5649 		goto out;
5650 
5651 	nexthdr = ipv6_hdr(skb)->nexthdr;
5652 
5653 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5654 	while (off <= len && !done) {
5655 		switch (nexthdr) {
5656 		case IPPROTO_DSTOPTS:
5657 		case IPPROTO_HOPOPTS:
5658 		case IPPROTO_ROUTING: {
5659 			struct ipv6_opt_hdr *hp;
5660 
5661 			err = skb_maybe_pull_tail(skb,
5662 						  off +
5663 						  sizeof(struct ipv6_opt_hdr),
5664 						  MAX_IPV6_HDR_LEN);
5665 			if (err < 0)
5666 				goto out;
5667 
5668 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5669 			nexthdr = hp->nexthdr;
5670 			off += ipv6_optlen(hp);
5671 			break;
5672 		}
5673 		case IPPROTO_AH: {
5674 			struct ip_auth_hdr *hp;
5675 
5676 			err = skb_maybe_pull_tail(skb,
5677 						  off +
5678 						  sizeof(struct ip_auth_hdr),
5679 						  MAX_IPV6_HDR_LEN);
5680 			if (err < 0)
5681 				goto out;
5682 
5683 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5684 			nexthdr = hp->nexthdr;
5685 			off += ipv6_authlen(hp);
5686 			break;
5687 		}
5688 		case IPPROTO_FRAGMENT: {
5689 			struct frag_hdr *hp;
5690 
5691 			err = skb_maybe_pull_tail(skb,
5692 						  off +
5693 						  sizeof(struct frag_hdr),
5694 						  MAX_IPV6_HDR_LEN);
5695 			if (err < 0)
5696 				goto out;
5697 
5698 			hp = OPT_HDR(struct frag_hdr, skb, off);
5699 
5700 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5701 				fragment = true;
5702 
5703 			nexthdr = hp->nexthdr;
5704 			off += sizeof(struct frag_hdr);
5705 			break;
5706 		}
5707 		default:
5708 			done = true;
5709 			break;
5710 		}
5711 	}
5712 
5713 	err = -EPROTO;
5714 
5715 	if (!done || fragment)
5716 		goto out;
5717 
5718 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5719 	if (IS_ERR(csum))
5720 		return PTR_ERR(csum);
5721 
5722 	if (recalculate)
5723 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5724 					 &ipv6_hdr(skb)->daddr,
5725 					 skb->len - off, nexthdr, 0);
5726 	err = 0;
5727 
5728 out:
5729 	return err;
5730 }
5731 
5732 /**
5733  * skb_checksum_setup - set up partial checksum offset
5734  * @skb: the skb to set up
5735  * @recalculate: if true the pseudo-header checksum will be recalculated
5736  */
5737 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5738 {
5739 	int err;
5740 
5741 	switch (skb->protocol) {
5742 	case htons(ETH_P_IP):
5743 		err = skb_checksum_setup_ipv4(skb, recalculate);
5744 		break;
5745 
5746 	case htons(ETH_P_IPV6):
5747 		err = skb_checksum_setup_ipv6(skb, recalculate);
5748 		break;
5749 
5750 	default:
5751 		err = -EPROTO;
5752 		break;
5753 	}
5754 
5755 	return err;
5756 }
5757 EXPORT_SYMBOL(skb_checksum_setup);
5758 
5759 /**
5760  * skb_checksum_maybe_trim - maybe trims the given skb
5761  * @skb: the skb to check
5762  * @transport_len: the data length beyond the network header
5763  *
5764  * Checks whether the given skb has data beyond the given transport length.
5765  * If so, returns a cloned skb trimmed to this transport length.
5766  * Otherwise returns the provided skb. Returns NULL in error cases
5767  * (e.g. transport_len exceeds skb length or out-of-memory).
5768  *
5769  * Caller needs to set the skb transport header and free any returned skb if it
5770  * differs from the provided skb.
5771  */
5772 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5773 					       unsigned int transport_len)
5774 {
5775 	struct sk_buff *skb_chk;
5776 	unsigned int len = skb_transport_offset(skb) + transport_len;
5777 	int ret;
5778 
5779 	if (skb->len < len)
5780 		return NULL;
5781 	else if (skb->len == len)
5782 		return skb;
5783 
5784 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5785 	if (!skb_chk)
5786 		return NULL;
5787 
5788 	ret = pskb_trim_rcsum(skb_chk, len);
5789 	if (ret) {
5790 		kfree_skb(skb_chk);
5791 		return NULL;
5792 	}
5793 
5794 	return skb_chk;
5795 }
5796 
5797 /**
5798  * skb_checksum_trimmed - validate checksum of an skb
5799  * @skb: the skb to check
5800  * @transport_len: the data length beyond the network header
5801  * @skb_chkf: checksum function to use
5802  *
5803  * Applies the given checksum function skb_chkf to the provided skb.
5804  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5805  *
5806  * If the skb has data beyond the given transport length, then a
5807  * trimmed & cloned skb is checked and returned.
5808  *
5809  * Caller needs to set the skb transport header and free any returned skb if it
5810  * differs from the provided skb.
5811  */
5812 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5813 				     unsigned int transport_len,
5814 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5815 {
5816 	struct sk_buff *skb_chk;
5817 	unsigned int offset = skb_transport_offset(skb);
5818 	__sum16 ret;
5819 
5820 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5821 	if (!skb_chk)
5822 		goto err;
5823 
5824 	if (!pskb_may_pull(skb_chk, offset))
5825 		goto err;
5826 
5827 	skb_pull_rcsum(skb_chk, offset);
5828 	ret = skb_chkf(skb_chk);
5829 	skb_push_rcsum(skb_chk, offset);
5830 
5831 	if (ret)
5832 		goto err;
5833 
5834 	return skb_chk;
5835 
5836 err:
5837 	if (skb_chk && skb_chk != skb)
5838 		kfree_skb(skb_chk);
5839 
5840 	return NULL;
5841 
5842 }
5843 EXPORT_SYMBOL(skb_checksum_trimmed);
5844 
5845 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5846 {
5847 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5848 			     skb->dev->name);
5849 }
5850 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5851 
5852 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5853 {
5854 	if (head_stolen) {
5855 		skb_release_head_state(skb);
5856 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5857 	} else {
5858 		__kfree_skb(skb);
5859 	}
5860 }
5861 EXPORT_SYMBOL(kfree_skb_partial);
5862 
5863 /**
5864  * skb_try_coalesce - try to merge skb to prior one
5865  * @to: prior buffer
5866  * @from: buffer to add
5867  * @fragstolen: pointer to boolean
5868  * @delta_truesize: how much more was allocated than was requested
5869  */
5870 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5871 		      bool *fragstolen, int *delta_truesize)
5872 {
5873 	struct skb_shared_info *to_shinfo, *from_shinfo;
5874 	int i, delta, len = from->len;
5875 
5876 	*fragstolen = false;
5877 
5878 	if (skb_cloned(to))
5879 		return false;
5880 
5881 	/* In general, avoid mixing page_pool and non-page_pool allocated
5882 	 * pages within the same SKB. In theory we could take full
5883 	 * references if @from is cloned and !@to->pp_recycle but its
5884 	 * tricky (due to potential race with the clone disappearing) and
5885 	 * rare, so not worth dealing with.
5886 	 */
5887 	if (to->pp_recycle != from->pp_recycle)
5888 		return false;
5889 
5890 	if (len <= skb_tailroom(to)) {
5891 		if (len)
5892 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5893 		*delta_truesize = 0;
5894 		return true;
5895 	}
5896 
5897 	to_shinfo = skb_shinfo(to);
5898 	from_shinfo = skb_shinfo(from);
5899 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5900 		return false;
5901 	if (skb_zcopy(to) || skb_zcopy(from))
5902 		return false;
5903 
5904 	if (skb_headlen(from) != 0) {
5905 		struct page *page;
5906 		unsigned int offset;
5907 
5908 		if (to_shinfo->nr_frags +
5909 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5910 			return false;
5911 
5912 		if (skb_head_is_locked(from))
5913 			return false;
5914 
5915 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5916 
5917 		page = virt_to_head_page(from->head);
5918 		offset = from->data - (unsigned char *)page_address(page);
5919 
5920 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5921 				   page, offset, skb_headlen(from));
5922 		*fragstolen = true;
5923 	} else {
5924 		if (to_shinfo->nr_frags +
5925 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5926 			return false;
5927 
5928 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5929 	}
5930 
5931 	WARN_ON_ONCE(delta < len);
5932 
5933 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5934 	       from_shinfo->frags,
5935 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5936 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5937 
5938 	if (!skb_cloned(from))
5939 		from_shinfo->nr_frags = 0;
5940 
5941 	/* if the skb is not cloned this does nothing
5942 	 * since we set nr_frags to 0.
5943 	 */
5944 	for (i = 0; i < from_shinfo->nr_frags; i++)
5945 		__skb_frag_ref(&from_shinfo->frags[i], from->pp_recycle);
5946 
5947 	to->truesize += delta;
5948 	to->len += len;
5949 	to->data_len += len;
5950 
5951 	*delta_truesize = delta;
5952 	return true;
5953 }
5954 EXPORT_SYMBOL(skb_try_coalesce);
5955 
5956 /**
5957  * skb_scrub_packet - scrub an skb
5958  *
5959  * @skb: buffer to clean
5960  * @xnet: packet is crossing netns
5961  *
5962  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5963  * into/from a tunnel. Some information have to be cleared during these
5964  * operations.
5965  * skb_scrub_packet can also be used to clean a skb before injecting it in
5966  * another namespace (@xnet == true). We have to clear all information in the
5967  * skb that could impact namespace isolation.
5968  */
5969 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5970 {
5971 	skb->pkt_type = PACKET_HOST;
5972 	skb->skb_iif = 0;
5973 	skb->ignore_df = 0;
5974 	skb_dst_drop(skb);
5975 	skb_ext_reset(skb);
5976 	nf_reset_ct(skb);
5977 	nf_reset_trace(skb);
5978 
5979 #ifdef CONFIG_NET_SWITCHDEV
5980 	skb->offload_fwd_mark = 0;
5981 	skb->offload_l3_fwd_mark = 0;
5982 #endif
5983 
5984 	if (!xnet)
5985 		return;
5986 
5987 	ipvs_reset(skb);
5988 	skb->mark = 0;
5989 	skb_clear_tstamp(skb);
5990 }
5991 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5992 
5993 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5994 {
5995 	int mac_len, meta_len;
5996 	void *meta;
5997 
5998 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5999 		kfree_skb(skb);
6000 		return NULL;
6001 	}
6002 
6003 	mac_len = skb->data - skb_mac_header(skb);
6004 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6005 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6006 			mac_len - VLAN_HLEN - ETH_TLEN);
6007 	}
6008 
6009 	meta_len = skb_metadata_len(skb);
6010 	if (meta_len) {
6011 		meta = skb_metadata_end(skb) - meta_len;
6012 		memmove(meta + VLAN_HLEN, meta, meta_len);
6013 	}
6014 
6015 	skb->mac_header += VLAN_HLEN;
6016 	return skb;
6017 }
6018 
6019 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6020 {
6021 	struct vlan_hdr *vhdr;
6022 	u16 vlan_tci;
6023 
6024 	if (unlikely(skb_vlan_tag_present(skb))) {
6025 		/* vlan_tci is already set-up so leave this for another time */
6026 		return skb;
6027 	}
6028 
6029 	skb = skb_share_check(skb, GFP_ATOMIC);
6030 	if (unlikely(!skb))
6031 		goto err_free;
6032 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6033 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6034 		goto err_free;
6035 
6036 	vhdr = (struct vlan_hdr *)skb->data;
6037 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6038 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6039 
6040 	skb_pull_rcsum(skb, VLAN_HLEN);
6041 	vlan_set_encap_proto(skb, vhdr);
6042 
6043 	skb = skb_reorder_vlan_header(skb);
6044 	if (unlikely(!skb))
6045 		goto err_free;
6046 
6047 	skb_reset_network_header(skb);
6048 	if (!skb_transport_header_was_set(skb))
6049 		skb_reset_transport_header(skb);
6050 	skb_reset_mac_len(skb);
6051 
6052 	return skb;
6053 
6054 err_free:
6055 	kfree_skb(skb);
6056 	return NULL;
6057 }
6058 EXPORT_SYMBOL(skb_vlan_untag);
6059 
6060 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6061 {
6062 	if (!pskb_may_pull(skb, write_len))
6063 		return -ENOMEM;
6064 
6065 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6066 		return 0;
6067 
6068 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6069 }
6070 EXPORT_SYMBOL(skb_ensure_writable);
6071 
6072 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6073 {
6074 	int needed_headroom = dev->needed_headroom;
6075 	int needed_tailroom = dev->needed_tailroom;
6076 
6077 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6078 	 * that the tail tag does not fail at its role of being at the end of
6079 	 * the packet, once the conduit interface pads the frame. Account for
6080 	 * that pad length here, and pad later.
6081 	 */
6082 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6083 		needed_tailroom += ETH_ZLEN - skb->len;
6084 	/* skb_headroom() returns unsigned int... */
6085 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6086 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6087 
6088 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6089 		/* No reallocation needed, yay! */
6090 		return 0;
6091 
6092 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6093 				GFP_ATOMIC);
6094 }
6095 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6096 
6097 /* remove VLAN header from packet and update csum accordingly.
6098  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6099  */
6100 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6101 {
6102 	int offset = skb->data - skb_mac_header(skb);
6103 	int err;
6104 
6105 	if (WARN_ONCE(offset,
6106 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6107 		      offset)) {
6108 		return -EINVAL;
6109 	}
6110 
6111 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6112 	if (unlikely(err))
6113 		return err;
6114 
6115 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6116 
6117 	vlan_remove_tag(skb, vlan_tci);
6118 
6119 	skb->mac_header += VLAN_HLEN;
6120 
6121 	if (skb_network_offset(skb) < ETH_HLEN)
6122 		skb_set_network_header(skb, ETH_HLEN);
6123 
6124 	skb_reset_mac_len(skb);
6125 
6126 	return err;
6127 }
6128 EXPORT_SYMBOL(__skb_vlan_pop);
6129 
6130 /* Pop a vlan tag either from hwaccel or from payload.
6131  * Expects skb->data at mac header.
6132  */
6133 int skb_vlan_pop(struct sk_buff *skb)
6134 {
6135 	u16 vlan_tci;
6136 	__be16 vlan_proto;
6137 	int err;
6138 
6139 	if (likely(skb_vlan_tag_present(skb))) {
6140 		__vlan_hwaccel_clear_tag(skb);
6141 	} else {
6142 		if (unlikely(!eth_type_vlan(skb->protocol)))
6143 			return 0;
6144 
6145 		err = __skb_vlan_pop(skb, &vlan_tci);
6146 		if (err)
6147 			return err;
6148 	}
6149 	/* move next vlan tag to hw accel tag */
6150 	if (likely(!eth_type_vlan(skb->protocol)))
6151 		return 0;
6152 
6153 	vlan_proto = skb->protocol;
6154 	err = __skb_vlan_pop(skb, &vlan_tci);
6155 	if (unlikely(err))
6156 		return err;
6157 
6158 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6159 	return 0;
6160 }
6161 EXPORT_SYMBOL(skb_vlan_pop);
6162 
6163 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6164  * Expects skb->data at mac header.
6165  */
6166 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6167 {
6168 	if (skb_vlan_tag_present(skb)) {
6169 		int offset = skb->data - skb_mac_header(skb);
6170 		int err;
6171 
6172 		if (WARN_ONCE(offset,
6173 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6174 			      offset)) {
6175 			return -EINVAL;
6176 		}
6177 
6178 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6179 					skb_vlan_tag_get(skb));
6180 		if (err)
6181 			return err;
6182 
6183 		skb->protocol = skb->vlan_proto;
6184 		skb->mac_len += VLAN_HLEN;
6185 
6186 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6187 	}
6188 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6189 	return 0;
6190 }
6191 EXPORT_SYMBOL(skb_vlan_push);
6192 
6193 /**
6194  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6195  *
6196  * @skb: Socket buffer to modify
6197  *
6198  * Drop the Ethernet header of @skb.
6199  *
6200  * Expects that skb->data points to the mac header and that no VLAN tags are
6201  * present.
6202  *
6203  * Returns 0 on success, -errno otherwise.
6204  */
6205 int skb_eth_pop(struct sk_buff *skb)
6206 {
6207 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6208 	    skb_network_offset(skb) < ETH_HLEN)
6209 		return -EPROTO;
6210 
6211 	skb_pull_rcsum(skb, ETH_HLEN);
6212 	skb_reset_mac_header(skb);
6213 	skb_reset_mac_len(skb);
6214 
6215 	return 0;
6216 }
6217 EXPORT_SYMBOL(skb_eth_pop);
6218 
6219 /**
6220  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6221  *
6222  * @skb: Socket buffer to modify
6223  * @dst: Destination MAC address of the new header
6224  * @src: Source MAC address of the new header
6225  *
6226  * Prepend @skb with a new Ethernet header.
6227  *
6228  * Expects that skb->data points to the mac header, which must be empty.
6229  *
6230  * Returns 0 on success, -errno otherwise.
6231  */
6232 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6233 		 const unsigned char *src)
6234 {
6235 	struct ethhdr *eth;
6236 	int err;
6237 
6238 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6239 		return -EPROTO;
6240 
6241 	err = skb_cow_head(skb, sizeof(*eth));
6242 	if (err < 0)
6243 		return err;
6244 
6245 	skb_push(skb, sizeof(*eth));
6246 	skb_reset_mac_header(skb);
6247 	skb_reset_mac_len(skb);
6248 
6249 	eth = eth_hdr(skb);
6250 	ether_addr_copy(eth->h_dest, dst);
6251 	ether_addr_copy(eth->h_source, src);
6252 	eth->h_proto = skb->protocol;
6253 
6254 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6255 
6256 	return 0;
6257 }
6258 EXPORT_SYMBOL(skb_eth_push);
6259 
6260 /* Update the ethertype of hdr and the skb csum value if required. */
6261 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6262 			     __be16 ethertype)
6263 {
6264 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6265 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6266 
6267 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6268 	}
6269 
6270 	hdr->h_proto = ethertype;
6271 }
6272 
6273 /**
6274  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6275  *                   the packet
6276  *
6277  * @skb: buffer
6278  * @mpls_lse: MPLS label stack entry to push
6279  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6280  * @mac_len: length of the MAC header
6281  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6282  *            ethernet
6283  *
6284  * Expects skb->data at mac header.
6285  *
6286  * Returns 0 on success, -errno otherwise.
6287  */
6288 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6289 		  int mac_len, bool ethernet)
6290 {
6291 	struct mpls_shim_hdr *lse;
6292 	int err;
6293 
6294 	if (unlikely(!eth_p_mpls(mpls_proto)))
6295 		return -EINVAL;
6296 
6297 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6298 	if (skb->encapsulation)
6299 		return -EINVAL;
6300 
6301 	err = skb_cow_head(skb, MPLS_HLEN);
6302 	if (unlikely(err))
6303 		return err;
6304 
6305 	if (!skb->inner_protocol) {
6306 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6307 		skb_set_inner_protocol(skb, skb->protocol);
6308 	}
6309 
6310 	skb_push(skb, MPLS_HLEN);
6311 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6312 		mac_len);
6313 	skb_reset_mac_header(skb);
6314 	skb_set_network_header(skb, mac_len);
6315 	skb_reset_mac_len(skb);
6316 
6317 	lse = mpls_hdr(skb);
6318 	lse->label_stack_entry = mpls_lse;
6319 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6320 
6321 	if (ethernet && mac_len >= ETH_HLEN)
6322 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6323 	skb->protocol = mpls_proto;
6324 
6325 	return 0;
6326 }
6327 EXPORT_SYMBOL_GPL(skb_mpls_push);
6328 
6329 /**
6330  * skb_mpls_pop() - pop the outermost MPLS header
6331  *
6332  * @skb: buffer
6333  * @next_proto: ethertype of header after popped MPLS header
6334  * @mac_len: length of the MAC header
6335  * @ethernet: flag to indicate if the packet is ethernet
6336  *
6337  * Expects skb->data at mac header.
6338  *
6339  * Returns 0 on success, -errno otherwise.
6340  */
6341 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6342 		 bool ethernet)
6343 {
6344 	int err;
6345 
6346 	if (unlikely(!eth_p_mpls(skb->protocol)))
6347 		return 0;
6348 
6349 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6350 	if (unlikely(err))
6351 		return err;
6352 
6353 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6354 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6355 		mac_len);
6356 
6357 	__skb_pull(skb, MPLS_HLEN);
6358 	skb_reset_mac_header(skb);
6359 	skb_set_network_header(skb, mac_len);
6360 
6361 	if (ethernet && mac_len >= ETH_HLEN) {
6362 		struct ethhdr *hdr;
6363 
6364 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6365 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6366 		skb_mod_eth_type(skb, hdr, next_proto);
6367 	}
6368 	skb->protocol = next_proto;
6369 
6370 	return 0;
6371 }
6372 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6373 
6374 /**
6375  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6376  *
6377  * @skb: buffer
6378  * @mpls_lse: new MPLS label stack entry to update to
6379  *
6380  * Expects skb->data at mac header.
6381  *
6382  * Returns 0 on success, -errno otherwise.
6383  */
6384 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6385 {
6386 	int err;
6387 
6388 	if (unlikely(!eth_p_mpls(skb->protocol)))
6389 		return -EINVAL;
6390 
6391 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6392 	if (unlikely(err))
6393 		return err;
6394 
6395 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6396 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6397 
6398 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6399 	}
6400 
6401 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6402 
6403 	return 0;
6404 }
6405 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6406 
6407 /**
6408  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6409  *
6410  * @skb: buffer
6411  *
6412  * Expects skb->data at mac header.
6413  *
6414  * Returns 0 on success, -errno otherwise.
6415  */
6416 int skb_mpls_dec_ttl(struct sk_buff *skb)
6417 {
6418 	u32 lse;
6419 	u8 ttl;
6420 
6421 	if (unlikely(!eth_p_mpls(skb->protocol)))
6422 		return -EINVAL;
6423 
6424 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6425 		return -ENOMEM;
6426 
6427 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6428 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6429 	if (!--ttl)
6430 		return -EINVAL;
6431 
6432 	lse &= ~MPLS_LS_TTL_MASK;
6433 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6434 
6435 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6436 }
6437 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6438 
6439 /**
6440  * alloc_skb_with_frags - allocate skb with page frags
6441  *
6442  * @header_len: size of linear part
6443  * @data_len: needed length in frags
6444  * @order: max page order desired.
6445  * @errcode: pointer to error code if any
6446  * @gfp_mask: allocation mask
6447  *
6448  * This can be used to allocate a paged skb, given a maximal order for frags.
6449  */
6450 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6451 				     unsigned long data_len,
6452 				     int order,
6453 				     int *errcode,
6454 				     gfp_t gfp_mask)
6455 {
6456 	unsigned long chunk;
6457 	struct sk_buff *skb;
6458 	struct page *page;
6459 	int nr_frags = 0;
6460 
6461 	*errcode = -EMSGSIZE;
6462 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6463 		return NULL;
6464 
6465 	*errcode = -ENOBUFS;
6466 	skb = alloc_skb(header_len, gfp_mask);
6467 	if (!skb)
6468 		return NULL;
6469 
6470 	while (data_len) {
6471 		if (nr_frags == MAX_SKB_FRAGS - 1)
6472 			goto failure;
6473 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6474 			order--;
6475 
6476 		if (order) {
6477 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6478 					   __GFP_COMP |
6479 					   __GFP_NOWARN,
6480 					   order);
6481 			if (!page) {
6482 				order--;
6483 				continue;
6484 			}
6485 		} else {
6486 			page = alloc_page(gfp_mask);
6487 			if (!page)
6488 				goto failure;
6489 		}
6490 		chunk = min_t(unsigned long, data_len,
6491 			      PAGE_SIZE << order);
6492 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6493 		nr_frags++;
6494 		skb->truesize += (PAGE_SIZE << order);
6495 		data_len -= chunk;
6496 	}
6497 	return skb;
6498 
6499 failure:
6500 	kfree_skb(skb);
6501 	return NULL;
6502 }
6503 EXPORT_SYMBOL(alloc_skb_with_frags);
6504 
6505 /* carve out the first off bytes from skb when off < headlen */
6506 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6507 				    const int headlen, gfp_t gfp_mask)
6508 {
6509 	int i;
6510 	unsigned int size = skb_end_offset(skb);
6511 	int new_hlen = headlen - off;
6512 	u8 *data;
6513 
6514 	if (skb_pfmemalloc(skb))
6515 		gfp_mask |= __GFP_MEMALLOC;
6516 
6517 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6518 	if (!data)
6519 		return -ENOMEM;
6520 	size = SKB_WITH_OVERHEAD(size);
6521 
6522 	/* Copy real data, and all frags */
6523 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6524 	skb->len -= off;
6525 
6526 	memcpy((struct skb_shared_info *)(data + size),
6527 	       skb_shinfo(skb),
6528 	       offsetof(struct skb_shared_info,
6529 			frags[skb_shinfo(skb)->nr_frags]));
6530 	if (skb_cloned(skb)) {
6531 		/* drop the old head gracefully */
6532 		if (skb_orphan_frags(skb, gfp_mask)) {
6533 			skb_kfree_head(data, size);
6534 			return -ENOMEM;
6535 		}
6536 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6537 			skb_frag_ref(skb, i);
6538 		if (skb_has_frag_list(skb))
6539 			skb_clone_fraglist(skb);
6540 		skb_release_data(skb, SKB_CONSUMED);
6541 	} else {
6542 		/* we can reuse existing recount- all we did was
6543 		 * relocate values
6544 		 */
6545 		skb_free_head(skb);
6546 	}
6547 
6548 	skb->head = data;
6549 	skb->data = data;
6550 	skb->head_frag = 0;
6551 	skb_set_end_offset(skb, size);
6552 	skb_set_tail_pointer(skb, skb_headlen(skb));
6553 	skb_headers_offset_update(skb, 0);
6554 	skb->cloned = 0;
6555 	skb->hdr_len = 0;
6556 	skb->nohdr = 0;
6557 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6558 
6559 	return 0;
6560 }
6561 
6562 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6563 
6564 /* carve out the first eat bytes from skb's frag_list. May recurse into
6565  * pskb_carve()
6566  */
6567 static int pskb_carve_frag_list(struct sk_buff *skb,
6568 				struct skb_shared_info *shinfo, int eat,
6569 				gfp_t gfp_mask)
6570 {
6571 	struct sk_buff *list = shinfo->frag_list;
6572 	struct sk_buff *clone = NULL;
6573 	struct sk_buff *insp = NULL;
6574 
6575 	do {
6576 		if (!list) {
6577 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6578 			return -EFAULT;
6579 		}
6580 		if (list->len <= eat) {
6581 			/* Eaten as whole. */
6582 			eat -= list->len;
6583 			list = list->next;
6584 			insp = list;
6585 		} else {
6586 			/* Eaten partially. */
6587 			if (skb_shared(list)) {
6588 				clone = skb_clone(list, gfp_mask);
6589 				if (!clone)
6590 					return -ENOMEM;
6591 				insp = list->next;
6592 				list = clone;
6593 			} else {
6594 				/* This may be pulled without problems. */
6595 				insp = list;
6596 			}
6597 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6598 				kfree_skb(clone);
6599 				return -ENOMEM;
6600 			}
6601 			break;
6602 		}
6603 	} while (eat);
6604 
6605 	/* Free pulled out fragments. */
6606 	while ((list = shinfo->frag_list) != insp) {
6607 		shinfo->frag_list = list->next;
6608 		consume_skb(list);
6609 	}
6610 	/* And insert new clone at head. */
6611 	if (clone) {
6612 		clone->next = list;
6613 		shinfo->frag_list = clone;
6614 	}
6615 	return 0;
6616 }
6617 
6618 /* carve off first len bytes from skb. Split line (off) is in the
6619  * non-linear part of skb
6620  */
6621 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6622 				       int pos, gfp_t gfp_mask)
6623 {
6624 	int i, k = 0;
6625 	unsigned int size = skb_end_offset(skb);
6626 	u8 *data;
6627 	const int nfrags = skb_shinfo(skb)->nr_frags;
6628 	struct skb_shared_info *shinfo;
6629 
6630 	if (skb_pfmemalloc(skb))
6631 		gfp_mask |= __GFP_MEMALLOC;
6632 
6633 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6634 	if (!data)
6635 		return -ENOMEM;
6636 	size = SKB_WITH_OVERHEAD(size);
6637 
6638 	memcpy((struct skb_shared_info *)(data + size),
6639 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6640 	if (skb_orphan_frags(skb, gfp_mask)) {
6641 		skb_kfree_head(data, size);
6642 		return -ENOMEM;
6643 	}
6644 	shinfo = (struct skb_shared_info *)(data + size);
6645 	for (i = 0; i < nfrags; i++) {
6646 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6647 
6648 		if (pos + fsize > off) {
6649 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6650 
6651 			if (pos < off) {
6652 				/* Split frag.
6653 				 * We have two variants in this case:
6654 				 * 1. Move all the frag to the second
6655 				 *    part, if it is possible. F.e.
6656 				 *    this approach is mandatory for TUX,
6657 				 *    where splitting is expensive.
6658 				 * 2. Split is accurately. We make this.
6659 				 */
6660 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6661 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6662 			}
6663 			skb_frag_ref(skb, i);
6664 			k++;
6665 		}
6666 		pos += fsize;
6667 	}
6668 	shinfo->nr_frags = k;
6669 	if (skb_has_frag_list(skb))
6670 		skb_clone_fraglist(skb);
6671 
6672 	/* split line is in frag list */
6673 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6674 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6675 		if (skb_has_frag_list(skb))
6676 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6677 		skb_kfree_head(data, size);
6678 		return -ENOMEM;
6679 	}
6680 	skb_release_data(skb, SKB_CONSUMED);
6681 
6682 	skb->head = data;
6683 	skb->head_frag = 0;
6684 	skb->data = data;
6685 	skb_set_end_offset(skb, size);
6686 	skb_reset_tail_pointer(skb);
6687 	skb_headers_offset_update(skb, 0);
6688 	skb->cloned   = 0;
6689 	skb->hdr_len  = 0;
6690 	skb->nohdr    = 0;
6691 	skb->len -= off;
6692 	skb->data_len = skb->len;
6693 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6694 	return 0;
6695 }
6696 
6697 /* remove len bytes from the beginning of the skb */
6698 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6699 {
6700 	int headlen = skb_headlen(skb);
6701 
6702 	if (len < headlen)
6703 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6704 	else
6705 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6706 }
6707 
6708 /* Extract to_copy bytes starting at off from skb, and return this in
6709  * a new skb
6710  */
6711 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6712 			     int to_copy, gfp_t gfp)
6713 {
6714 	struct sk_buff  *clone = skb_clone(skb, gfp);
6715 
6716 	if (!clone)
6717 		return NULL;
6718 
6719 	if (pskb_carve(clone, off, gfp) < 0 ||
6720 	    pskb_trim(clone, to_copy)) {
6721 		kfree_skb(clone);
6722 		return NULL;
6723 	}
6724 	return clone;
6725 }
6726 EXPORT_SYMBOL(pskb_extract);
6727 
6728 /**
6729  * skb_condense - try to get rid of fragments/frag_list if possible
6730  * @skb: buffer
6731  *
6732  * Can be used to save memory before skb is added to a busy queue.
6733  * If packet has bytes in frags and enough tail room in skb->head,
6734  * pull all of them, so that we can free the frags right now and adjust
6735  * truesize.
6736  * Notes:
6737  *	We do not reallocate skb->head thus can not fail.
6738  *	Caller must re-evaluate skb->truesize if needed.
6739  */
6740 void skb_condense(struct sk_buff *skb)
6741 {
6742 	if (skb->data_len) {
6743 		if (skb->data_len > skb->end - skb->tail ||
6744 		    skb_cloned(skb))
6745 			return;
6746 
6747 		/* Nice, we can free page frag(s) right now */
6748 		__pskb_pull_tail(skb, skb->data_len);
6749 	}
6750 	/* At this point, skb->truesize might be over estimated,
6751 	 * because skb had a fragment, and fragments do not tell
6752 	 * their truesize.
6753 	 * When we pulled its content into skb->head, fragment
6754 	 * was freed, but __pskb_pull_tail() could not possibly
6755 	 * adjust skb->truesize, not knowing the frag truesize.
6756 	 */
6757 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6758 }
6759 EXPORT_SYMBOL(skb_condense);
6760 
6761 #ifdef CONFIG_SKB_EXTENSIONS
6762 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6763 {
6764 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6765 }
6766 
6767 /**
6768  * __skb_ext_alloc - allocate a new skb extensions storage
6769  *
6770  * @flags: See kmalloc().
6771  *
6772  * Returns the newly allocated pointer. The pointer can later attached to a
6773  * skb via __skb_ext_set().
6774  * Note: caller must handle the skb_ext as an opaque data.
6775  */
6776 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6777 {
6778 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6779 
6780 	if (new) {
6781 		memset(new->offset, 0, sizeof(new->offset));
6782 		refcount_set(&new->refcnt, 1);
6783 	}
6784 
6785 	return new;
6786 }
6787 
6788 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6789 					 unsigned int old_active)
6790 {
6791 	struct skb_ext *new;
6792 
6793 	if (refcount_read(&old->refcnt) == 1)
6794 		return old;
6795 
6796 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6797 	if (!new)
6798 		return NULL;
6799 
6800 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6801 	refcount_set(&new->refcnt, 1);
6802 
6803 #ifdef CONFIG_XFRM
6804 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6805 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6806 		unsigned int i;
6807 
6808 		for (i = 0; i < sp->len; i++)
6809 			xfrm_state_hold(sp->xvec[i]);
6810 	}
6811 #endif
6812 #ifdef CONFIG_MCTP_FLOWS
6813 	if (old_active & (1 << SKB_EXT_MCTP)) {
6814 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6815 
6816 		if (flow->key)
6817 			refcount_inc(&flow->key->refs);
6818 	}
6819 #endif
6820 	__skb_ext_put(old);
6821 	return new;
6822 }
6823 
6824 /**
6825  * __skb_ext_set - attach the specified extension storage to this skb
6826  * @skb: buffer
6827  * @id: extension id
6828  * @ext: extension storage previously allocated via __skb_ext_alloc()
6829  *
6830  * Existing extensions, if any, are cleared.
6831  *
6832  * Returns the pointer to the extension.
6833  */
6834 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6835 		    struct skb_ext *ext)
6836 {
6837 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6838 
6839 	skb_ext_put(skb);
6840 	newlen = newoff + skb_ext_type_len[id];
6841 	ext->chunks = newlen;
6842 	ext->offset[id] = newoff;
6843 	skb->extensions = ext;
6844 	skb->active_extensions = 1 << id;
6845 	return skb_ext_get_ptr(ext, id);
6846 }
6847 
6848 /**
6849  * skb_ext_add - allocate space for given extension, COW if needed
6850  * @skb: buffer
6851  * @id: extension to allocate space for
6852  *
6853  * Allocates enough space for the given extension.
6854  * If the extension is already present, a pointer to that extension
6855  * is returned.
6856  *
6857  * If the skb was cloned, COW applies and the returned memory can be
6858  * modified without changing the extension space of clones buffers.
6859  *
6860  * Returns pointer to the extension or NULL on allocation failure.
6861  */
6862 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6863 {
6864 	struct skb_ext *new, *old = NULL;
6865 	unsigned int newlen, newoff;
6866 
6867 	if (skb->active_extensions) {
6868 		old = skb->extensions;
6869 
6870 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6871 		if (!new)
6872 			return NULL;
6873 
6874 		if (__skb_ext_exist(new, id))
6875 			goto set_active;
6876 
6877 		newoff = new->chunks;
6878 	} else {
6879 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6880 
6881 		new = __skb_ext_alloc(GFP_ATOMIC);
6882 		if (!new)
6883 			return NULL;
6884 	}
6885 
6886 	newlen = newoff + skb_ext_type_len[id];
6887 	new->chunks = newlen;
6888 	new->offset[id] = newoff;
6889 set_active:
6890 	skb->slow_gro = 1;
6891 	skb->extensions = new;
6892 	skb->active_extensions |= 1 << id;
6893 	return skb_ext_get_ptr(new, id);
6894 }
6895 EXPORT_SYMBOL(skb_ext_add);
6896 
6897 #ifdef CONFIG_XFRM
6898 static void skb_ext_put_sp(struct sec_path *sp)
6899 {
6900 	unsigned int i;
6901 
6902 	for (i = 0; i < sp->len; i++)
6903 		xfrm_state_put(sp->xvec[i]);
6904 }
6905 #endif
6906 
6907 #ifdef CONFIG_MCTP_FLOWS
6908 static void skb_ext_put_mctp(struct mctp_flow *flow)
6909 {
6910 	if (flow->key)
6911 		mctp_key_unref(flow->key);
6912 }
6913 #endif
6914 
6915 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6916 {
6917 	struct skb_ext *ext = skb->extensions;
6918 
6919 	skb->active_extensions &= ~(1 << id);
6920 	if (skb->active_extensions == 0) {
6921 		skb->extensions = NULL;
6922 		__skb_ext_put(ext);
6923 #ifdef CONFIG_XFRM
6924 	} else if (id == SKB_EXT_SEC_PATH &&
6925 		   refcount_read(&ext->refcnt) == 1) {
6926 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6927 
6928 		skb_ext_put_sp(sp);
6929 		sp->len = 0;
6930 #endif
6931 	}
6932 }
6933 EXPORT_SYMBOL(__skb_ext_del);
6934 
6935 void __skb_ext_put(struct skb_ext *ext)
6936 {
6937 	/* If this is last clone, nothing can increment
6938 	 * it after check passes.  Avoids one atomic op.
6939 	 */
6940 	if (refcount_read(&ext->refcnt) == 1)
6941 		goto free_now;
6942 
6943 	if (!refcount_dec_and_test(&ext->refcnt))
6944 		return;
6945 free_now:
6946 #ifdef CONFIG_XFRM
6947 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6948 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6949 #endif
6950 #ifdef CONFIG_MCTP_FLOWS
6951 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6952 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6953 #endif
6954 
6955 	kmem_cache_free(skbuff_ext_cache, ext);
6956 }
6957 EXPORT_SYMBOL(__skb_ext_put);
6958 #endif /* CONFIG_SKB_EXTENSIONS */
6959 
6960 static void kfree_skb_napi_cache(struct sk_buff *skb)
6961 {
6962 	/* if SKB is a clone, don't handle this case */
6963 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
6964 		__kfree_skb(skb);
6965 		return;
6966 	}
6967 
6968 	local_bh_disable();
6969 	__napi_kfree_skb(skb, SKB_CONSUMED);
6970 	local_bh_enable();
6971 }
6972 
6973 /**
6974  * skb_attempt_defer_free - queue skb for remote freeing
6975  * @skb: buffer
6976  *
6977  * Put @skb in a per-cpu list, using the cpu which
6978  * allocated the skb/pages to reduce false sharing
6979  * and memory zone spinlock contention.
6980  */
6981 void skb_attempt_defer_free(struct sk_buff *skb)
6982 {
6983 	int cpu = skb->alloc_cpu;
6984 	struct softnet_data *sd;
6985 	unsigned int defer_max;
6986 	bool kick;
6987 
6988 	if (cpu == raw_smp_processor_id() ||
6989 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6990 	    !cpu_online(cpu)) {
6991 nodefer:	kfree_skb_napi_cache(skb);
6992 		return;
6993 	}
6994 
6995 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6996 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6997 
6998 	sd = &per_cpu(softnet_data, cpu);
6999 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7000 	if (READ_ONCE(sd->defer_count) >= defer_max)
7001 		goto nodefer;
7002 
7003 	spin_lock_bh(&sd->defer_lock);
7004 	/* Send an IPI every time queue reaches half capacity. */
7005 	kick = sd->defer_count == (defer_max >> 1);
7006 	/* Paired with the READ_ONCE() few lines above */
7007 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7008 
7009 	skb->next = sd->defer_list;
7010 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7011 	WRITE_ONCE(sd->defer_list, skb);
7012 	spin_unlock_bh(&sd->defer_lock);
7013 
7014 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7015 	 * if we are unlucky enough (this seems very unlikely).
7016 	 */
7017 	if (unlikely(kick))
7018 		kick_defer_list_purge(sd, cpu);
7019 }
7020 
7021 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7022 				 size_t offset, size_t len)
7023 {
7024 	const char *kaddr;
7025 	__wsum csum;
7026 
7027 	kaddr = kmap_local_page(page);
7028 	csum = csum_partial(kaddr + offset, len, 0);
7029 	kunmap_local(kaddr);
7030 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7031 }
7032 
7033 /**
7034  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7035  * @skb: The buffer to add pages to
7036  * @iter: Iterator representing the pages to be added
7037  * @maxsize: Maximum amount of pages to be added
7038  * @gfp: Allocation flags
7039  *
7040  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7041  * extracts pages from an iterator and adds them to the socket buffer if
7042  * possible, copying them to fragments if not possible (such as if they're slab
7043  * pages).
7044  *
7045  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7046  * insufficient space in the buffer to transfer anything.
7047  */
7048 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7049 			     ssize_t maxsize, gfp_t gfp)
7050 {
7051 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7052 	struct page *pages[8], **ppages = pages;
7053 	ssize_t spliced = 0, ret = 0;
7054 	unsigned int i;
7055 
7056 	while (iter->count > 0) {
7057 		ssize_t space, nr, len;
7058 		size_t off;
7059 
7060 		ret = -EMSGSIZE;
7061 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7062 		if (space < 0)
7063 			break;
7064 
7065 		/* We might be able to coalesce without increasing nr_frags */
7066 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7067 
7068 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7069 		if (len <= 0) {
7070 			ret = len ?: -EIO;
7071 			break;
7072 		}
7073 
7074 		i = 0;
7075 		do {
7076 			struct page *page = pages[i++];
7077 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7078 
7079 			ret = -EIO;
7080 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7081 				goto out;
7082 
7083 			ret = skb_append_pagefrags(skb, page, off, part,
7084 						   frag_limit);
7085 			if (ret < 0) {
7086 				iov_iter_revert(iter, len);
7087 				goto out;
7088 			}
7089 
7090 			if (skb->ip_summed == CHECKSUM_NONE)
7091 				skb_splice_csum_page(skb, page, off, part);
7092 
7093 			off = 0;
7094 			spliced += part;
7095 			maxsize -= part;
7096 			len -= part;
7097 		} while (len > 0);
7098 
7099 		if (maxsize <= 0)
7100 			break;
7101 	}
7102 
7103 out:
7104 	skb_len_add(skb, spliced);
7105 	return spliced ?: ret;
7106 }
7107 EXPORT_SYMBOL(skb_splice_from_iter);
7108 
7109 static __always_inline
7110 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7111 			     size_t len, void *to, void *priv2)
7112 {
7113 	__wsum *csum = priv2;
7114 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7115 
7116 	*csum = csum_block_add(*csum, next, progress);
7117 	return 0;
7118 }
7119 
7120 static __always_inline
7121 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7122 				size_t len, void *to, void *priv2)
7123 {
7124 	__wsum next, *csum = priv2;
7125 
7126 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7127 	*csum = csum_block_add(*csum, next, progress);
7128 	return next ? 0 : len;
7129 }
7130 
7131 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7132 				  __wsum *csum, struct iov_iter *i)
7133 {
7134 	size_t copied;
7135 
7136 	if (WARN_ON_ONCE(!i->data_source))
7137 		return false;
7138 	copied = iterate_and_advance2(i, bytes, addr, csum,
7139 				      copy_from_user_iter_csum,
7140 				      memcpy_from_iter_csum);
7141 	if (likely(copied == bytes))
7142 		return true;
7143 	iov_iter_revert(i, copied);
7144 	return false;
7145 }
7146 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7147