1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/gso.h> 73 #include <net/hotdata.h> 74 #include <net/ip6_checksum.h> 75 #include <net/xfrm.h> 76 #include <net/mpls.h> 77 #include <net/mptcp.h> 78 #include <net/mctp.h> 79 #include <net/page_pool/helpers.h> 80 #include <net/dropreason.h> 81 82 #include <linux/uaccess.h> 83 #include <trace/events/skb.h> 84 #include <linux/highmem.h> 85 #include <linux/capability.h> 86 #include <linux/user_namespace.h> 87 #include <linux/indirect_call_wrapper.h> 88 #include <linux/textsearch.h> 89 90 #include "dev.h" 91 #include "sock_destructor.h" 92 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 98 99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 100 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 101 * size, and we can differentiate heads from skb_small_head_cache 102 * vs system slabs by looking at their size (skb_end_offset()). 103 */ 104 #define SKB_SMALL_HEAD_CACHE_SIZE \ 105 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 106 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 107 SKB_SMALL_HEAD_SIZE) 108 109 #define SKB_SMALL_HEAD_HEADROOM \ 110 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 111 112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 113 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 114 * netmem is a page. 115 */ 116 static_assert(offsetof(struct bio_vec, bv_page) == 117 offsetof(skb_frag_t, netmem)); 118 static_assert(sizeof_field(struct bio_vec, bv_page) == 119 sizeof_field(skb_frag_t, netmem)); 120 121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 122 static_assert(sizeof_field(struct bio_vec, bv_len) == 123 sizeof_field(skb_frag_t, len)); 124 125 static_assert(offsetof(struct bio_vec, bv_offset) == 126 offsetof(skb_frag_t, offset)); 127 static_assert(sizeof_field(struct bio_vec, bv_offset) == 128 sizeof_field(skb_frag_t, offset)); 129 130 #undef FN 131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 132 static const char * const drop_reasons[] = { 133 [SKB_CONSUMED] = "CONSUMED", 134 DEFINE_DROP_REASON(FN, FN) 135 }; 136 137 static const struct drop_reason_list drop_reasons_core = { 138 .reasons = drop_reasons, 139 .n_reasons = ARRAY_SIZE(drop_reasons), 140 }; 141 142 const struct drop_reason_list __rcu * 143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 144 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 145 }; 146 EXPORT_SYMBOL(drop_reasons_by_subsys); 147 148 /** 149 * drop_reasons_register_subsys - register another drop reason subsystem 150 * @subsys: the subsystem to register, must not be the core 151 * @list: the list of drop reasons within the subsystem, must point to 152 * a statically initialized list 153 */ 154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 155 const struct drop_reason_list *list) 156 { 157 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 158 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 159 "invalid subsystem %d\n", subsys)) 160 return; 161 162 /* must point to statically allocated memory, so INIT is OK */ 163 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 164 } 165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 166 167 /** 168 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 169 * @subsys: the subsystem to remove, must not be the core 170 * 171 * Note: This will synchronize_rcu() to ensure no users when it returns. 172 */ 173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 174 { 175 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 176 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 177 "invalid subsystem %d\n", subsys)) 178 return; 179 180 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 181 182 synchronize_rcu(); 183 } 184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 185 186 /** 187 * skb_panic - private function for out-of-line support 188 * @skb: buffer 189 * @sz: size 190 * @addr: address 191 * @msg: skb_over_panic or skb_under_panic 192 * 193 * Out-of-line support for skb_put() and skb_push(). 194 * Called via the wrapper skb_over_panic() or skb_under_panic(). 195 * Keep out of line to prevent kernel bloat. 196 * __builtin_return_address is not used because it is not always reliable. 197 */ 198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 199 const char msg[]) 200 { 201 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 202 msg, addr, skb->len, sz, skb->head, skb->data, 203 (unsigned long)skb->tail, (unsigned long)skb->end, 204 skb->dev ? skb->dev->name : "<NULL>"); 205 BUG(); 206 } 207 208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 209 { 210 skb_panic(skb, sz, addr, __func__); 211 } 212 213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 214 { 215 skb_panic(skb, sz, addr, __func__); 216 } 217 218 #define NAPI_SKB_CACHE_SIZE 64 219 #define NAPI_SKB_CACHE_BULK 16 220 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 221 222 #if PAGE_SIZE == SZ_4K 223 224 #define NAPI_HAS_SMALL_PAGE_FRAG 1 225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 226 227 /* specialized page frag allocator using a single order 0 page 228 * and slicing it into 1K sized fragment. Constrained to systems 229 * with a very limited amount of 1K fragments fitting a single 230 * page - to avoid excessive truesize underestimation 231 */ 232 233 struct page_frag_1k { 234 void *va; 235 u16 offset; 236 bool pfmemalloc; 237 }; 238 239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 240 { 241 struct page *page; 242 int offset; 243 244 offset = nc->offset - SZ_1K; 245 if (likely(offset >= 0)) 246 goto use_frag; 247 248 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 249 if (!page) 250 return NULL; 251 252 nc->va = page_address(page); 253 nc->pfmemalloc = page_is_pfmemalloc(page); 254 offset = PAGE_SIZE - SZ_1K; 255 page_ref_add(page, offset / SZ_1K); 256 257 use_frag: 258 nc->offset = offset; 259 return nc->va + offset; 260 } 261 #else 262 263 /* the small page is actually unused in this build; add dummy helpers 264 * to please the compiler and avoid later preprocessor's conditionals 265 */ 266 #define NAPI_HAS_SMALL_PAGE_FRAG 0 267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 268 269 struct page_frag_1k { 270 }; 271 272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 273 { 274 return NULL; 275 } 276 277 #endif 278 279 struct napi_alloc_cache { 280 struct page_frag_cache page; 281 struct page_frag_1k page_small; 282 unsigned int skb_count; 283 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 284 }; 285 286 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 287 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 288 289 /* Double check that napi_get_frags() allocates skbs with 290 * skb->head being backed by slab, not a page fragment. 291 * This is to make sure bug fixed in 3226b158e67c 292 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 293 * does not accidentally come back. 294 */ 295 void napi_get_frags_check(struct napi_struct *napi) 296 { 297 struct sk_buff *skb; 298 299 local_bh_disable(); 300 skb = napi_get_frags(napi); 301 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 302 napi_free_frags(napi); 303 local_bh_enable(); 304 } 305 306 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 307 { 308 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 309 310 fragsz = SKB_DATA_ALIGN(fragsz); 311 312 return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 313 align_mask); 314 } 315 EXPORT_SYMBOL(__napi_alloc_frag_align); 316 317 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 318 { 319 void *data; 320 321 fragsz = SKB_DATA_ALIGN(fragsz); 322 if (in_hardirq() || irqs_disabled()) { 323 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 324 325 data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, 326 align_mask); 327 } else { 328 struct napi_alloc_cache *nc; 329 330 local_bh_disable(); 331 nc = this_cpu_ptr(&napi_alloc_cache); 332 data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 333 align_mask); 334 local_bh_enable(); 335 } 336 return data; 337 } 338 EXPORT_SYMBOL(__netdev_alloc_frag_align); 339 340 static struct sk_buff *napi_skb_cache_get(void) 341 { 342 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 343 struct sk_buff *skb; 344 345 if (unlikely(!nc->skb_count)) { 346 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 347 GFP_ATOMIC, 348 NAPI_SKB_CACHE_BULK, 349 nc->skb_cache); 350 if (unlikely(!nc->skb_count)) 351 return NULL; 352 } 353 354 skb = nc->skb_cache[--nc->skb_count]; 355 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 356 357 return skb; 358 } 359 360 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 361 unsigned int size) 362 { 363 struct skb_shared_info *shinfo; 364 365 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 366 367 /* Assumes caller memset cleared SKB */ 368 skb->truesize = SKB_TRUESIZE(size); 369 refcount_set(&skb->users, 1); 370 skb->head = data; 371 skb->data = data; 372 skb_reset_tail_pointer(skb); 373 skb_set_end_offset(skb, size); 374 skb->mac_header = (typeof(skb->mac_header))~0U; 375 skb->transport_header = (typeof(skb->transport_header))~0U; 376 skb->alloc_cpu = raw_smp_processor_id(); 377 /* make sure we initialize shinfo sequentially */ 378 shinfo = skb_shinfo(skb); 379 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 380 atomic_set(&shinfo->dataref, 1); 381 382 skb_set_kcov_handle(skb, kcov_common_handle()); 383 } 384 385 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 386 unsigned int *size) 387 { 388 void *resized; 389 390 /* Must find the allocation size (and grow it to match). */ 391 *size = ksize(data); 392 /* krealloc() will immediately return "data" when 393 * "ksize(data)" is requested: it is the existing upper 394 * bounds. As a result, GFP_ATOMIC will be ignored. Note 395 * that this "new" pointer needs to be passed back to the 396 * caller for use so the __alloc_size hinting will be 397 * tracked correctly. 398 */ 399 resized = krealloc(data, *size, GFP_ATOMIC); 400 WARN_ON_ONCE(resized != data); 401 return resized; 402 } 403 404 /* build_skb() variant which can operate on slab buffers. 405 * Note that this should be used sparingly as slab buffers 406 * cannot be combined efficiently by GRO! 407 */ 408 struct sk_buff *slab_build_skb(void *data) 409 { 410 struct sk_buff *skb; 411 unsigned int size; 412 413 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 414 if (unlikely(!skb)) 415 return NULL; 416 417 memset(skb, 0, offsetof(struct sk_buff, tail)); 418 data = __slab_build_skb(skb, data, &size); 419 __finalize_skb_around(skb, data, size); 420 421 return skb; 422 } 423 EXPORT_SYMBOL(slab_build_skb); 424 425 /* Caller must provide SKB that is memset cleared */ 426 static void __build_skb_around(struct sk_buff *skb, void *data, 427 unsigned int frag_size) 428 { 429 unsigned int size = frag_size; 430 431 /* frag_size == 0 is considered deprecated now. Callers 432 * using slab buffer should use slab_build_skb() instead. 433 */ 434 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 435 data = __slab_build_skb(skb, data, &size); 436 437 __finalize_skb_around(skb, data, size); 438 } 439 440 /** 441 * __build_skb - build a network buffer 442 * @data: data buffer provided by caller 443 * @frag_size: size of data (must not be 0) 444 * 445 * Allocate a new &sk_buff. Caller provides space holding head and 446 * skb_shared_info. @data must have been allocated from the page 447 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 448 * allocation is deprecated, and callers should use slab_build_skb() 449 * instead.) 450 * The return is the new skb buffer. 451 * On a failure the return is %NULL, and @data is not freed. 452 * Notes : 453 * Before IO, driver allocates only data buffer where NIC put incoming frame 454 * Driver should add room at head (NET_SKB_PAD) and 455 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 456 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 457 * before giving packet to stack. 458 * RX rings only contains data buffers, not full skbs. 459 */ 460 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 461 { 462 struct sk_buff *skb; 463 464 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 465 if (unlikely(!skb)) 466 return NULL; 467 468 memset(skb, 0, offsetof(struct sk_buff, tail)); 469 __build_skb_around(skb, data, frag_size); 470 471 return skb; 472 } 473 474 /* build_skb() is wrapper over __build_skb(), that specifically 475 * takes care of skb->head and skb->pfmemalloc 476 */ 477 struct sk_buff *build_skb(void *data, unsigned int frag_size) 478 { 479 struct sk_buff *skb = __build_skb(data, frag_size); 480 481 if (likely(skb && frag_size)) { 482 skb->head_frag = 1; 483 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 484 } 485 return skb; 486 } 487 EXPORT_SYMBOL(build_skb); 488 489 /** 490 * build_skb_around - build a network buffer around provided skb 491 * @skb: sk_buff provide by caller, must be memset cleared 492 * @data: data buffer provided by caller 493 * @frag_size: size of data 494 */ 495 struct sk_buff *build_skb_around(struct sk_buff *skb, 496 void *data, unsigned int frag_size) 497 { 498 if (unlikely(!skb)) 499 return NULL; 500 501 __build_skb_around(skb, data, frag_size); 502 503 if (frag_size) { 504 skb->head_frag = 1; 505 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 506 } 507 return skb; 508 } 509 EXPORT_SYMBOL(build_skb_around); 510 511 /** 512 * __napi_build_skb - build a network buffer 513 * @data: data buffer provided by caller 514 * @frag_size: size of data 515 * 516 * Version of __build_skb() that uses NAPI percpu caches to obtain 517 * skbuff_head instead of inplace allocation. 518 * 519 * Returns a new &sk_buff on success, %NULL on allocation failure. 520 */ 521 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 522 { 523 struct sk_buff *skb; 524 525 skb = napi_skb_cache_get(); 526 if (unlikely(!skb)) 527 return NULL; 528 529 memset(skb, 0, offsetof(struct sk_buff, tail)); 530 __build_skb_around(skb, data, frag_size); 531 532 return skb; 533 } 534 535 /** 536 * napi_build_skb - build a network buffer 537 * @data: data buffer provided by caller 538 * @frag_size: size of data 539 * 540 * Version of __napi_build_skb() that takes care of skb->head_frag 541 * and skb->pfmemalloc when the data is a page or page fragment. 542 * 543 * Returns a new &sk_buff on success, %NULL on allocation failure. 544 */ 545 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 546 { 547 struct sk_buff *skb = __napi_build_skb(data, frag_size); 548 549 if (likely(skb) && frag_size) { 550 skb->head_frag = 1; 551 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 552 } 553 554 return skb; 555 } 556 EXPORT_SYMBOL(napi_build_skb); 557 558 /* 559 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 560 * the caller if emergency pfmemalloc reserves are being used. If it is and 561 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 562 * may be used. Otherwise, the packet data may be discarded until enough 563 * memory is free 564 */ 565 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 566 bool *pfmemalloc) 567 { 568 bool ret_pfmemalloc = false; 569 size_t obj_size; 570 void *obj; 571 572 obj_size = SKB_HEAD_ALIGN(*size); 573 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 574 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 575 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 577 node); 578 *size = SKB_SMALL_HEAD_CACHE_SIZE; 579 if (obj || !(gfp_pfmemalloc_allowed(flags))) 580 goto out; 581 /* Try again but now we are using pfmemalloc reserves */ 582 ret_pfmemalloc = true; 583 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 584 goto out; 585 } 586 587 obj_size = kmalloc_size_roundup(obj_size); 588 /* The following cast might truncate high-order bits of obj_size, this 589 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 590 */ 591 *size = (unsigned int)obj_size; 592 593 /* 594 * Try a regular allocation, when that fails and we're not entitled 595 * to the reserves, fail. 596 */ 597 obj = kmalloc_node_track_caller(obj_size, 598 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 599 node); 600 if (obj || !(gfp_pfmemalloc_allowed(flags))) 601 goto out; 602 603 /* Try again but now we are using pfmemalloc reserves */ 604 ret_pfmemalloc = true; 605 obj = kmalloc_node_track_caller(obj_size, flags, node); 606 607 out: 608 if (pfmemalloc) 609 *pfmemalloc = ret_pfmemalloc; 610 611 return obj; 612 } 613 614 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 615 * 'private' fields and also do memory statistics to find all the 616 * [BEEP] leaks. 617 * 618 */ 619 620 /** 621 * __alloc_skb - allocate a network buffer 622 * @size: size to allocate 623 * @gfp_mask: allocation mask 624 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 625 * instead of head cache and allocate a cloned (child) skb. 626 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 627 * allocations in case the data is required for writeback 628 * @node: numa node to allocate memory on 629 * 630 * Allocate a new &sk_buff. The returned buffer has no headroom and a 631 * tail room of at least size bytes. The object has a reference count 632 * of one. The return is the buffer. On a failure the return is %NULL. 633 * 634 * Buffers may only be allocated from interrupts using a @gfp_mask of 635 * %GFP_ATOMIC. 636 */ 637 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 638 int flags, int node) 639 { 640 struct kmem_cache *cache; 641 struct sk_buff *skb; 642 bool pfmemalloc; 643 u8 *data; 644 645 cache = (flags & SKB_ALLOC_FCLONE) 646 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 647 648 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 649 gfp_mask |= __GFP_MEMALLOC; 650 651 /* Get the HEAD */ 652 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 653 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 654 skb = napi_skb_cache_get(); 655 else 656 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 657 if (unlikely(!skb)) 658 return NULL; 659 prefetchw(skb); 660 661 /* We do our best to align skb_shared_info on a separate cache 662 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 663 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 664 * Both skb->head and skb_shared_info are cache line aligned. 665 */ 666 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 667 if (unlikely(!data)) 668 goto nodata; 669 /* kmalloc_size_roundup() might give us more room than requested. 670 * Put skb_shared_info exactly at the end of allocated zone, 671 * to allow max possible filling before reallocation. 672 */ 673 prefetchw(data + SKB_WITH_OVERHEAD(size)); 674 675 /* 676 * Only clear those fields we need to clear, not those that we will 677 * actually initialise below. Hence, don't put any more fields after 678 * the tail pointer in struct sk_buff! 679 */ 680 memset(skb, 0, offsetof(struct sk_buff, tail)); 681 __build_skb_around(skb, data, size); 682 skb->pfmemalloc = pfmemalloc; 683 684 if (flags & SKB_ALLOC_FCLONE) { 685 struct sk_buff_fclones *fclones; 686 687 fclones = container_of(skb, struct sk_buff_fclones, skb1); 688 689 skb->fclone = SKB_FCLONE_ORIG; 690 refcount_set(&fclones->fclone_ref, 1); 691 } 692 693 return skb; 694 695 nodata: 696 kmem_cache_free(cache, skb); 697 return NULL; 698 } 699 EXPORT_SYMBOL(__alloc_skb); 700 701 /** 702 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 703 * @dev: network device to receive on 704 * @len: length to allocate 705 * @gfp_mask: get_free_pages mask, passed to alloc_skb 706 * 707 * Allocate a new &sk_buff and assign it a usage count of one. The 708 * buffer has NET_SKB_PAD headroom built in. Users should allocate 709 * the headroom they think they need without accounting for the 710 * built in space. The built in space is used for optimisations. 711 * 712 * %NULL is returned if there is no free memory. 713 */ 714 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 715 gfp_t gfp_mask) 716 { 717 struct page_frag_cache *nc; 718 struct sk_buff *skb; 719 bool pfmemalloc; 720 void *data; 721 722 len += NET_SKB_PAD; 723 724 /* If requested length is either too small or too big, 725 * we use kmalloc() for skb->head allocation. 726 */ 727 if (len <= SKB_WITH_OVERHEAD(1024) || 728 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 729 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 730 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 731 if (!skb) 732 goto skb_fail; 733 goto skb_success; 734 } 735 736 len = SKB_HEAD_ALIGN(len); 737 738 if (sk_memalloc_socks()) 739 gfp_mask |= __GFP_MEMALLOC; 740 741 if (in_hardirq() || irqs_disabled()) { 742 nc = this_cpu_ptr(&netdev_alloc_cache); 743 data = page_frag_alloc(nc, len, gfp_mask); 744 pfmemalloc = nc->pfmemalloc; 745 } else { 746 local_bh_disable(); 747 nc = this_cpu_ptr(&napi_alloc_cache.page); 748 data = page_frag_alloc(nc, len, gfp_mask); 749 pfmemalloc = nc->pfmemalloc; 750 local_bh_enable(); 751 } 752 753 if (unlikely(!data)) 754 return NULL; 755 756 skb = __build_skb(data, len); 757 if (unlikely(!skb)) { 758 skb_free_frag(data); 759 return NULL; 760 } 761 762 if (pfmemalloc) 763 skb->pfmemalloc = 1; 764 skb->head_frag = 1; 765 766 skb_success: 767 skb_reserve(skb, NET_SKB_PAD); 768 skb->dev = dev; 769 770 skb_fail: 771 return skb; 772 } 773 EXPORT_SYMBOL(__netdev_alloc_skb); 774 775 /** 776 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 777 * @napi: napi instance this buffer was allocated for 778 * @len: length to allocate 779 * 780 * Allocate a new sk_buff for use in NAPI receive. This buffer will 781 * attempt to allocate the head from a special reserved region used 782 * only for NAPI Rx allocation. By doing this we can save several 783 * CPU cycles by avoiding having to disable and re-enable IRQs. 784 * 785 * %NULL is returned if there is no free memory. 786 */ 787 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 788 { 789 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 790 struct napi_alloc_cache *nc; 791 struct sk_buff *skb; 792 bool pfmemalloc; 793 void *data; 794 795 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 796 len += NET_SKB_PAD + NET_IP_ALIGN; 797 798 /* If requested length is either too small or too big, 799 * we use kmalloc() for skb->head allocation. 800 * When the small frag allocator is available, prefer it over kmalloc 801 * for small fragments 802 */ 803 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 804 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 805 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 806 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 807 NUMA_NO_NODE); 808 if (!skb) 809 goto skb_fail; 810 goto skb_success; 811 } 812 813 nc = this_cpu_ptr(&napi_alloc_cache); 814 815 if (sk_memalloc_socks()) 816 gfp_mask |= __GFP_MEMALLOC; 817 818 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 819 /* we are artificially inflating the allocation size, but 820 * that is not as bad as it may look like, as: 821 * - 'len' less than GRO_MAX_HEAD makes little sense 822 * - On most systems, larger 'len' values lead to fragment 823 * size above 512 bytes 824 * - kmalloc would use the kmalloc-1k slab for such values 825 * - Builds with smaller GRO_MAX_HEAD will very likely do 826 * little networking, as that implies no WiFi and no 827 * tunnels support, and 32 bits arches. 828 */ 829 len = SZ_1K; 830 831 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 832 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 833 } else { 834 len = SKB_HEAD_ALIGN(len); 835 836 data = page_frag_alloc(&nc->page, len, gfp_mask); 837 pfmemalloc = nc->page.pfmemalloc; 838 } 839 840 if (unlikely(!data)) 841 return NULL; 842 843 skb = __napi_build_skb(data, len); 844 if (unlikely(!skb)) { 845 skb_free_frag(data); 846 return NULL; 847 } 848 849 if (pfmemalloc) 850 skb->pfmemalloc = 1; 851 skb->head_frag = 1; 852 853 skb_success: 854 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 855 skb->dev = napi->dev; 856 857 skb_fail: 858 return skb; 859 } 860 EXPORT_SYMBOL(napi_alloc_skb); 861 862 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 863 int off, int size, unsigned int truesize) 864 { 865 DEBUG_NET_WARN_ON_ONCE(size > truesize); 866 867 skb_fill_netmem_desc(skb, i, netmem, off, size); 868 skb->len += size; 869 skb->data_len += size; 870 skb->truesize += truesize; 871 } 872 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 873 874 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 875 unsigned int truesize) 876 { 877 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 878 879 DEBUG_NET_WARN_ON_ONCE(size > truesize); 880 881 skb_frag_size_add(frag, size); 882 skb->len += size; 883 skb->data_len += size; 884 skb->truesize += truesize; 885 } 886 EXPORT_SYMBOL(skb_coalesce_rx_frag); 887 888 static void skb_drop_list(struct sk_buff **listp) 889 { 890 kfree_skb_list(*listp); 891 *listp = NULL; 892 } 893 894 static inline void skb_drop_fraglist(struct sk_buff *skb) 895 { 896 skb_drop_list(&skb_shinfo(skb)->frag_list); 897 } 898 899 static void skb_clone_fraglist(struct sk_buff *skb) 900 { 901 struct sk_buff *list; 902 903 skb_walk_frags(skb, list) 904 skb_get(list); 905 } 906 907 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 908 unsigned int headroom) 909 { 910 #if IS_ENABLED(CONFIG_PAGE_POOL) 911 u32 size, truesize, len, max_head_size, off; 912 struct sk_buff *skb = *pskb, *nskb; 913 int err, i, head_off; 914 void *data; 915 916 /* XDP does not support fraglist so we need to linearize 917 * the skb. 918 */ 919 if (skb_has_frag_list(skb)) 920 return -EOPNOTSUPP; 921 922 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 923 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 924 return -ENOMEM; 925 926 size = min_t(u32, skb->len, max_head_size); 927 truesize = SKB_HEAD_ALIGN(size) + headroom; 928 data = page_pool_dev_alloc_va(pool, &truesize); 929 if (!data) 930 return -ENOMEM; 931 932 nskb = napi_build_skb(data, truesize); 933 if (!nskb) { 934 page_pool_free_va(pool, data, true); 935 return -ENOMEM; 936 } 937 938 skb_reserve(nskb, headroom); 939 skb_copy_header(nskb, skb); 940 skb_mark_for_recycle(nskb); 941 942 err = skb_copy_bits(skb, 0, nskb->data, size); 943 if (err) { 944 consume_skb(nskb); 945 return err; 946 } 947 skb_put(nskb, size); 948 949 head_off = skb_headroom(nskb) - skb_headroom(skb); 950 skb_headers_offset_update(nskb, head_off); 951 952 off = size; 953 len = skb->len - off; 954 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 955 struct page *page; 956 u32 page_off; 957 958 size = min_t(u32, len, PAGE_SIZE); 959 truesize = size; 960 961 page = page_pool_dev_alloc(pool, &page_off, &truesize); 962 if (!page) { 963 consume_skb(nskb); 964 return -ENOMEM; 965 } 966 967 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 968 err = skb_copy_bits(skb, off, page_address(page) + page_off, 969 size); 970 if (err) { 971 consume_skb(nskb); 972 return err; 973 } 974 975 len -= size; 976 off += size; 977 } 978 979 consume_skb(skb); 980 *pskb = nskb; 981 982 return 0; 983 #else 984 return -EOPNOTSUPP; 985 #endif 986 } 987 EXPORT_SYMBOL(skb_pp_cow_data); 988 989 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 990 struct bpf_prog *prog) 991 { 992 if (!prog->aux->xdp_has_frags) 993 return -EINVAL; 994 995 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 996 } 997 EXPORT_SYMBOL(skb_cow_data_for_xdp); 998 999 #if IS_ENABLED(CONFIG_PAGE_POOL) 1000 bool napi_pp_put_page(struct page *page) 1001 { 1002 page = compound_head(page); 1003 1004 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 1005 * in order to preserve any existing bits, such as bit 0 for the 1006 * head page of compound page and bit 1 for pfmemalloc page, so 1007 * mask those bits for freeing side when doing below checking, 1008 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1009 * to avoid recycling the pfmemalloc page. 1010 */ 1011 if (unlikely(!is_pp_page(page))) 1012 return false; 1013 1014 page_pool_put_full_page(page->pp, page, false); 1015 1016 return true; 1017 } 1018 EXPORT_SYMBOL(napi_pp_put_page); 1019 #endif 1020 1021 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1022 { 1023 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1024 return false; 1025 return napi_pp_put_page(virt_to_page(data)); 1026 } 1027 1028 static void skb_kfree_head(void *head, unsigned int end_offset) 1029 { 1030 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1031 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1032 else 1033 kfree(head); 1034 } 1035 1036 static void skb_free_head(struct sk_buff *skb) 1037 { 1038 unsigned char *head = skb->head; 1039 1040 if (skb->head_frag) { 1041 if (skb_pp_recycle(skb, head)) 1042 return; 1043 skb_free_frag(head); 1044 } else { 1045 skb_kfree_head(head, skb_end_offset(skb)); 1046 } 1047 } 1048 1049 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1050 { 1051 struct skb_shared_info *shinfo = skb_shinfo(skb); 1052 int i; 1053 1054 if (!skb_data_unref(skb, shinfo)) 1055 goto exit; 1056 1057 if (skb_zcopy(skb)) { 1058 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1059 1060 skb_zcopy_clear(skb, true); 1061 if (skip_unref) 1062 goto free_head; 1063 } 1064 1065 for (i = 0; i < shinfo->nr_frags; i++) 1066 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1067 1068 free_head: 1069 if (shinfo->frag_list) 1070 kfree_skb_list_reason(shinfo->frag_list, reason); 1071 1072 skb_free_head(skb); 1073 exit: 1074 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1075 * bit is only set on the head though, so in order to avoid races 1076 * while trying to recycle fragments on __skb_frag_unref() we need 1077 * to make one SKB responsible for triggering the recycle path. 1078 * So disable the recycling bit if an SKB is cloned and we have 1079 * additional references to the fragmented part of the SKB. 1080 * Eventually the last SKB will have the recycling bit set and it's 1081 * dataref set to 0, which will trigger the recycling 1082 */ 1083 skb->pp_recycle = 0; 1084 } 1085 1086 /* 1087 * Free an skbuff by memory without cleaning the state. 1088 */ 1089 static void kfree_skbmem(struct sk_buff *skb) 1090 { 1091 struct sk_buff_fclones *fclones; 1092 1093 switch (skb->fclone) { 1094 case SKB_FCLONE_UNAVAILABLE: 1095 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1096 return; 1097 1098 case SKB_FCLONE_ORIG: 1099 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1100 1101 /* We usually free the clone (TX completion) before original skb 1102 * This test would have no chance to be true for the clone, 1103 * while here, branch prediction will be good. 1104 */ 1105 if (refcount_read(&fclones->fclone_ref) == 1) 1106 goto fastpath; 1107 break; 1108 1109 default: /* SKB_FCLONE_CLONE */ 1110 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1111 break; 1112 } 1113 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1114 return; 1115 fastpath: 1116 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1117 } 1118 1119 void skb_release_head_state(struct sk_buff *skb) 1120 { 1121 skb_dst_drop(skb); 1122 if (skb->destructor) { 1123 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1124 skb->destructor(skb); 1125 } 1126 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1127 nf_conntrack_put(skb_nfct(skb)); 1128 #endif 1129 skb_ext_put(skb); 1130 } 1131 1132 /* Free everything but the sk_buff shell. */ 1133 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1134 { 1135 skb_release_head_state(skb); 1136 if (likely(skb->head)) 1137 skb_release_data(skb, reason); 1138 } 1139 1140 /** 1141 * __kfree_skb - private function 1142 * @skb: buffer 1143 * 1144 * Free an sk_buff. Release anything attached to the buffer. 1145 * Clean the state. This is an internal helper function. Users should 1146 * always call kfree_skb 1147 */ 1148 1149 void __kfree_skb(struct sk_buff *skb) 1150 { 1151 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1152 kfree_skbmem(skb); 1153 } 1154 EXPORT_SYMBOL(__kfree_skb); 1155 1156 static __always_inline 1157 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1158 { 1159 if (unlikely(!skb_unref(skb))) 1160 return false; 1161 1162 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1163 u32_get_bits(reason, 1164 SKB_DROP_REASON_SUBSYS_MASK) >= 1165 SKB_DROP_REASON_SUBSYS_NUM); 1166 1167 if (reason == SKB_CONSUMED) 1168 trace_consume_skb(skb, __builtin_return_address(0)); 1169 else 1170 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1171 return true; 1172 } 1173 1174 /** 1175 * kfree_skb_reason - free an sk_buff with special reason 1176 * @skb: buffer to free 1177 * @reason: reason why this skb is dropped 1178 * 1179 * Drop a reference to the buffer and free it if the usage count has 1180 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1181 * tracepoint. 1182 */ 1183 void __fix_address 1184 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1185 { 1186 if (__kfree_skb_reason(skb, reason)) 1187 __kfree_skb(skb); 1188 } 1189 EXPORT_SYMBOL(kfree_skb_reason); 1190 1191 #define KFREE_SKB_BULK_SIZE 16 1192 1193 struct skb_free_array { 1194 unsigned int skb_count; 1195 void *skb_array[KFREE_SKB_BULK_SIZE]; 1196 }; 1197 1198 static void kfree_skb_add_bulk(struct sk_buff *skb, 1199 struct skb_free_array *sa, 1200 enum skb_drop_reason reason) 1201 { 1202 /* if SKB is a clone, don't handle this case */ 1203 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1204 __kfree_skb(skb); 1205 return; 1206 } 1207 1208 skb_release_all(skb, reason); 1209 sa->skb_array[sa->skb_count++] = skb; 1210 1211 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1212 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1213 sa->skb_array); 1214 sa->skb_count = 0; 1215 } 1216 } 1217 1218 void __fix_address 1219 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1220 { 1221 struct skb_free_array sa; 1222 1223 sa.skb_count = 0; 1224 1225 while (segs) { 1226 struct sk_buff *next = segs->next; 1227 1228 if (__kfree_skb_reason(segs, reason)) { 1229 skb_poison_list(segs); 1230 kfree_skb_add_bulk(segs, &sa, reason); 1231 } 1232 1233 segs = next; 1234 } 1235 1236 if (sa.skb_count) 1237 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1238 } 1239 EXPORT_SYMBOL(kfree_skb_list_reason); 1240 1241 /* Dump skb information and contents. 1242 * 1243 * Must only be called from net_ratelimit()-ed paths. 1244 * 1245 * Dumps whole packets if full_pkt, only headers otherwise. 1246 */ 1247 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1248 { 1249 struct skb_shared_info *sh = skb_shinfo(skb); 1250 struct net_device *dev = skb->dev; 1251 struct sock *sk = skb->sk; 1252 struct sk_buff *list_skb; 1253 bool has_mac, has_trans; 1254 int headroom, tailroom; 1255 int i, len, seg_len; 1256 1257 if (full_pkt) 1258 len = skb->len; 1259 else 1260 len = min_t(int, skb->len, MAX_HEADER + 128); 1261 1262 headroom = skb_headroom(skb); 1263 tailroom = skb_tailroom(skb); 1264 1265 has_mac = skb_mac_header_was_set(skb); 1266 has_trans = skb_transport_header_was_set(skb); 1267 1268 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1269 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1270 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1271 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1272 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1273 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1274 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1275 level, skb->len, headroom, skb_headlen(skb), tailroom, 1276 has_mac ? skb->mac_header : -1, 1277 has_mac ? skb_mac_header_len(skb) : -1, 1278 skb->mac_len, 1279 skb->network_header, 1280 has_trans ? skb_network_header_len(skb) : -1, 1281 has_trans ? skb->transport_header : -1, 1282 sh->tx_flags, sh->nr_frags, 1283 sh->gso_size, sh->gso_type, sh->gso_segs, 1284 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1285 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1286 skb->hash, skb->sw_hash, skb->l4_hash, 1287 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1288 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1289 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1290 skb->inner_network_header, skb->inner_transport_header); 1291 1292 if (dev) 1293 printk("%sdev name=%s feat=%pNF\n", 1294 level, dev->name, &dev->features); 1295 if (sk) 1296 printk("%ssk family=%hu type=%u proto=%u\n", 1297 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1298 1299 if (full_pkt && headroom) 1300 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1301 16, 1, skb->head, headroom, false); 1302 1303 seg_len = min_t(int, skb_headlen(skb), len); 1304 if (seg_len) 1305 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1306 16, 1, skb->data, seg_len, false); 1307 len -= seg_len; 1308 1309 if (full_pkt && tailroom) 1310 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1311 16, 1, skb_tail_pointer(skb), tailroom, false); 1312 1313 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1314 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1315 u32 p_off, p_len, copied; 1316 struct page *p; 1317 u8 *vaddr; 1318 1319 skb_frag_foreach_page(frag, skb_frag_off(frag), 1320 skb_frag_size(frag), p, p_off, p_len, 1321 copied) { 1322 seg_len = min_t(int, p_len, len); 1323 vaddr = kmap_atomic(p); 1324 print_hex_dump(level, "skb frag: ", 1325 DUMP_PREFIX_OFFSET, 1326 16, 1, vaddr + p_off, seg_len, false); 1327 kunmap_atomic(vaddr); 1328 len -= seg_len; 1329 if (!len) 1330 break; 1331 } 1332 } 1333 1334 if (full_pkt && skb_has_frag_list(skb)) { 1335 printk("skb fraglist:\n"); 1336 skb_walk_frags(skb, list_skb) 1337 skb_dump(level, list_skb, true); 1338 } 1339 } 1340 EXPORT_SYMBOL(skb_dump); 1341 1342 /** 1343 * skb_tx_error - report an sk_buff xmit error 1344 * @skb: buffer that triggered an error 1345 * 1346 * Report xmit error if a device callback is tracking this skb. 1347 * skb must be freed afterwards. 1348 */ 1349 void skb_tx_error(struct sk_buff *skb) 1350 { 1351 if (skb) { 1352 skb_zcopy_downgrade_managed(skb); 1353 skb_zcopy_clear(skb, true); 1354 } 1355 } 1356 EXPORT_SYMBOL(skb_tx_error); 1357 1358 #ifdef CONFIG_TRACEPOINTS 1359 /** 1360 * consume_skb - free an skbuff 1361 * @skb: buffer to free 1362 * 1363 * Drop a ref to the buffer and free it if the usage count has hit zero 1364 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1365 * is being dropped after a failure and notes that 1366 */ 1367 void consume_skb(struct sk_buff *skb) 1368 { 1369 if (!skb_unref(skb)) 1370 return; 1371 1372 trace_consume_skb(skb, __builtin_return_address(0)); 1373 __kfree_skb(skb); 1374 } 1375 EXPORT_SYMBOL(consume_skb); 1376 #endif 1377 1378 /** 1379 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1380 * @skb: buffer to free 1381 * 1382 * Alike consume_skb(), but this variant assumes that this is the last 1383 * skb reference and all the head states have been already dropped 1384 */ 1385 void __consume_stateless_skb(struct sk_buff *skb) 1386 { 1387 trace_consume_skb(skb, __builtin_return_address(0)); 1388 skb_release_data(skb, SKB_CONSUMED); 1389 kfree_skbmem(skb); 1390 } 1391 1392 static void napi_skb_cache_put(struct sk_buff *skb) 1393 { 1394 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1395 u32 i; 1396 1397 if (!kasan_mempool_poison_object(skb)) 1398 return; 1399 1400 nc->skb_cache[nc->skb_count++] = skb; 1401 1402 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1403 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1404 kasan_mempool_unpoison_object(nc->skb_cache[i], 1405 kmem_cache_size(net_hotdata.skbuff_cache)); 1406 1407 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1408 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1409 nc->skb_count = NAPI_SKB_CACHE_HALF; 1410 } 1411 } 1412 1413 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1414 { 1415 skb_release_all(skb, reason); 1416 napi_skb_cache_put(skb); 1417 } 1418 1419 void napi_skb_free_stolen_head(struct sk_buff *skb) 1420 { 1421 if (unlikely(skb->slow_gro)) { 1422 nf_reset_ct(skb); 1423 skb_dst_drop(skb); 1424 skb_ext_put(skb); 1425 skb_orphan(skb); 1426 skb->slow_gro = 0; 1427 } 1428 napi_skb_cache_put(skb); 1429 } 1430 1431 void napi_consume_skb(struct sk_buff *skb, int budget) 1432 { 1433 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1434 if (unlikely(!budget)) { 1435 dev_consume_skb_any(skb); 1436 return; 1437 } 1438 1439 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1440 1441 if (!skb_unref(skb)) 1442 return; 1443 1444 /* if reaching here SKB is ready to free */ 1445 trace_consume_skb(skb, __builtin_return_address(0)); 1446 1447 /* if SKB is a clone, don't handle this case */ 1448 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1449 __kfree_skb(skb); 1450 return; 1451 } 1452 1453 skb_release_all(skb, SKB_CONSUMED); 1454 napi_skb_cache_put(skb); 1455 } 1456 EXPORT_SYMBOL(napi_consume_skb); 1457 1458 /* Make sure a field is contained by headers group */ 1459 #define CHECK_SKB_FIELD(field) \ 1460 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1461 offsetof(struct sk_buff, headers.field)); \ 1462 1463 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1464 { 1465 new->tstamp = old->tstamp; 1466 /* We do not copy old->sk */ 1467 new->dev = old->dev; 1468 memcpy(new->cb, old->cb, sizeof(old->cb)); 1469 skb_dst_copy(new, old); 1470 __skb_ext_copy(new, old); 1471 __nf_copy(new, old, false); 1472 1473 /* Note : this field could be in the headers group. 1474 * It is not yet because we do not want to have a 16 bit hole 1475 */ 1476 new->queue_mapping = old->queue_mapping; 1477 1478 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1479 CHECK_SKB_FIELD(protocol); 1480 CHECK_SKB_FIELD(csum); 1481 CHECK_SKB_FIELD(hash); 1482 CHECK_SKB_FIELD(priority); 1483 CHECK_SKB_FIELD(skb_iif); 1484 CHECK_SKB_FIELD(vlan_proto); 1485 CHECK_SKB_FIELD(vlan_tci); 1486 CHECK_SKB_FIELD(transport_header); 1487 CHECK_SKB_FIELD(network_header); 1488 CHECK_SKB_FIELD(mac_header); 1489 CHECK_SKB_FIELD(inner_protocol); 1490 CHECK_SKB_FIELD(inner_transport_header); 1491 CHECK_SKB_FIELD(inner_network_header); 1492 CHECK_SKB_FIELD(inner_mac_header); 1493 CHECK_SKB_FIELD(mark); 1494 #ifdef CONFIG_NETWORK_SECMARK 1495 CHECK_SKB_FIELD(secmark); 1496 #endif 1497 #ifdef CONFIG_NET_RX_BUSY_POLL 1498 CHECK_SKB_FIELD(napi_id); 1499 #endif 1500 CHECK_SKB_FIELD(alloc_cpu); 1501 #ifdef CONFIG_XPS 1502 CHECK_SKB_FIELD(sender_cpu); 1503 #endif 1504 #ifdef CONFIG_NET_SCHED 1505 CHECK_SKB_FIELD(tc_index); 1506 #endif 1507 1508 } 1509 1510 /* 1511 * You should not add any new code to this function. Add it to 1512 * __copy_skb_header above instead. 1513 */ 1514 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1515 { 1516 #define C(x) n->x = skb->x 1517 1518 n->next = n->prev = NULL; 1519 n->sk = NULL; 1520 __copy_skb_header(n, skb); 1521 1522 C(len); 1523 C(data_len); 1524 C(mac_len); 1525 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1526 n->cloned = 1; 1527 n->nohdr = 0; 1528 n->peeked = 0; 1529 C(pfmemalloc); 1530 C(pp_recycle); 1531 n->destructor = NULL; 1532 C(tail); 1533 C(end); 1534 C(head); 1535 C(head_frag); 1536 C(data); 1537 C(truesize); 1538 refcount_set(&n->users, 1); 1539 1540 atomic_inc(&(skb_shinfo(skb)->dataref)); 1541 skb->cloned = 1; 1542 1543 return n; 1544 #undef C 1545 } 1546 1547 /** 1548 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1549 * @first: first sk_buff of the msg 1550 */ 1551 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1552 { 1553 struct sk_buff *n; 1554 1555 n = alloc_skb(0, GFP_ATOMIC); 1556 if (!n) 1557 return NULL; 1558 1559 n->len = first->len; 1560 n->data_len = first->len; 1561 n->truesize = first->truesize; 1562 1563 skb_shinfo(n)->frag_list = first; 1564 1565 __copy_skb_header(n, first); 1566 n->destructor = NULL; 1567 1568 return n; 1569 } 1570 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1571 1572 /** 1573 * skb_morph - morph one skb into another 1574 * @dst: the skb to receive the contents 1575 * @src: the skb to supply the contents 1576 * 1577 * This is identical to skb_clone except that the target skb is 1578 * supplied by the user. 1579 * 1580 * The target skb is returned upon exit. 1581 */ 1582 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1583 { 1584 skb_release_all(dst, SKB_CONSUMED); 1585 return __skb_clone(dst, src); 1586 } 1587 EXPORT_SYMBOL_GPL(skb_morph); 1588 1589 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1590 { 1591 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1592 struct user_struct *user; 1593 1594 if (capable(CAP_IPC_LOCK) || !size) 1595 return 0; 1596 1597 rlim = rlimit(RLIMIT_MEMLOCK); 1598 if (rlim == RLIM_INFINITY) 1599 return 0; 1600 1601 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1602 max_pg = rlim >> PAGE_SHIFT; 1603 user = mmp->user ? : current_user(); 1604 1605 old_pg = atomic_long_read(&user->locked_vm); 1606 do { 1607 new_pg = old_pg + num_pg; 1608 if (new_pg > max_pg) 1609 return -ENOBUFS; 1610 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1611 1612 if (!mmp->user) { 1613 mmp->user = get_uid(user); 1614 mmp->num_pg = num_pg; 1615 } else { 1616 mmp->num_pg += num_pg; 1617 } 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1622 1623 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1624 { 1625 if (mmp->user) { 1626 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1627 free_uid(mmp->user); 1628 } 1629 } 1630 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1631 1632 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1633 { 1634 struct ubuf_info_msgzc *uarg; 1635 struct sk_buff *skb; 1636 1637 WARN_ON_ONCE(!in_task()); 1638 1639 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1640 if (!skb) 1641 return NULL; 1642 1643 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1644 uarg = (void *)skb->cb; 1645 uarg->mmp.user = NULL; 1646 1647 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1648 kfree_skb(skb); 1649 return NULL; 1650 } 1651 1652 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1653 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1654 uarg->len = 1; 1655 uarg->bytelen = size; 1656 uarg->zerocopy = 1; 1657 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1658 refcount_set(&uarg->ubuf.refcnt, 1); 1659 sock_hold(sk); 1660 1661 return &uarg->ubuf; 1662 } 1663 1664 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1665 { 1666 return container_of((void *)uarg, struct sk_buff, cb); 1667 } 1668 1669 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1670 struct ubuf_info *uarg) 1671 { 1672 if (uarg) { 1673 struct ubuf_info_msgzc *uarg_zc; 1674 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1675 u32 bytelen, next; 1676 1677 /* there might be non MSG_ZEROCOPY users */ 1678 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1679 return NULL; 1680 1681 /* realloc only when socket is locked (TCP, UDP cork), 1682 * so uarg->len and sk_zckey access is serialized 1683 */ 1684 if (!sock_owned_by_user(sk)) { 1685 WARN_ON_ONCE(1); 1686 return NULL; 1687 } 1688 1689 uarg_zc = uarg_to_msgzc(uarg); 1690 bytelen = uarg_zc->bytelen + size; 1691 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1692 /* TCP can create new skb to attach new uarg */ 1693 if (sk->sk_type == SOCK_STREAM) 1694 goto new_alloc; 1695 return NULL; 1696 } 1697 1698 next = (u32)atomic_read(&sk->sk_zckey); 1699 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1700 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1701 return NULL; 1702 uarg_zc->len++; 1703 uarg_zc->bytelen = bytelen; 1704 atomic_set(&sk->sk_zckey, ++next); 1705 1706 /* no extra ref when appending to datagram (MSG_MORE) */ 1707 if (sk->sk_type == SOCK_STREAM) 1708 net_zcopy_get(uarg); 1709 1710 return uarg; 1711 } 1712 } 1713 1714 new_alloc: 1715 return msg_zerocopy_alloc(sk, size); 1716 } 1717 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1718 1719 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1720 { 1721 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1722 u32 old_lo, old_hi; 1723 u64 sum_len; 1724 1725 old_lo = serr->ee.ee_info; 1726 old_hi = serr->ee.ee_data; 1727 sum_len = old_hi - old_lo + 1ULL + len; 1728 1729 if (sum_len >= (1ULL << 32)) 1730 return false; 1731 1732 if (lo != old_hi + 1) 1733 return false; 1734 1735 serr->ee.ee_data += len; 1736 return true; 1737 } 1738 1739 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1740 { 1741 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1742 struct sock_exterr_skb *serr; 1743 struct sock *sk = skb->sk; 1744 struct sk_buff_head *q; 1745 unsigned long flags; 1746 bool is_zerocopy; 1747 u32 lo, hi; 1748 u16 len; 1749 1750 mm_unaccount_pinned_pages(&uarg->mmp); 1751 1752 /* if !len, there was only 1 call, and it was aborted 1753 * so do not queue a completion notification 1754 */ 1755 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1756 goto release; 1757 1758 len = uarg->len; 1759 lo = uarg->id; 1760 hi = uarg->id + len - 1; 1761 is_zerocopy = uarg->zerocopy; 1762 1763 serr = SKB_EXT_ERR(skb); 1764 memset(serr, 0, sizeof(*serr)); 1765 serr->ee.ee_errno = 0; 1766 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1767 serr->ee.ee_data = hi; 1768 serr->ee.ee_info = lo; 1769 if (!is_zerocopy) 1770 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1771 1772 q = &sk->sk_error_queue; 1773 spin_lock_irqsave(&q->lock, flags); 1774 tail = skb_peek_tail(q); 1775 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1776 !skb_zerocopy_notify_extend(tail, lo, len)) { 1777 __skb_queue_tail(q, skb); 1778 skb = NULL; 1779 } 1780 spin_unlock_irqrestore(&q->lock, flags); 1781 1782 sk_error_report(sk); 1783 1784 release: 1785 consume_skb(skb); 1786 sock_put(sk); 1787 } 1788 1789 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1790 bool success) 1791 { 1792 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1793 1794 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1795 1796 if (refcount_dec_and_test(&uarg->refcnt)) 1797 __msg_zerocopy_callback(uarg_zc); 1798 } 1799 1800 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1801 { 1802 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1803 1804 atomic_dec(&sk->sk_zckey); 1805 uarg_to_msgzc(uarg)->len--; 1806 1807 if (have_uref) 1808 msg_zerocopy_complete(NULL, uarg, true); 1809 } 1810 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1811 1812 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1813 .complete = msg_zerocopy_complete, 1814 }; 1815 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1816 1817 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1818 struct msghdr *msg, int len, 1819 struct ubuf_info *uarg) 1820 { 1821 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1822 int err, orig_len = skb->len; 1823 1824 if (uarg->ops->link_skb) { 1825 err = uarg->ops->link_skb(skb, uarg); 1826 if (err) 1827 return err; 1828 } else { 1829 /* An skb can only point to one uarg. This edge case happens 1830 * when TCP appends to an skb, but zerocopy_realloc triggered 1831 * a new alloc. 1832 */ 1833 if (orig_uarg && uarg != orig_uarg) 1834 return -EEXIST; 1835 } 1836 1837 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1838 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1839 struct sock *save_sk = skb->sk; 1840 1841 /* Streams do not free skb on error. Reset to prev state. */ 1842 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1843 skb->sk = sk; 1844 ___pskb_trim(skb, orig_len); 1845 skb->sk = save_sk; 1846 return err; 1847 } 1848 1849 if (!uarg->ops->link_skb) 1850 skb_zcopy_set(skb, uarg, NULL); 1851 return skb->len - orig_len; 1852 } 1853 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1854 1855 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1856 { 1857 int i; 1858 1859 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1860 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1861 skb_frag_ref(skb, i); 1862 } 1863 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1864 1865 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1866 gfp_t gfp_mask) 1867 { 1868 if (skb_zcopy(orig)) { 1869 if (skb_zcopy(nskb)) { 1870 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1871 if (!gfp_mask) { 1872 WARN_ON_ONCE(1); 1873 return -ENOMEM; 1874 } 1875 if (skb_uarg(nskb) == skb_uarg(orig)) 1876 return 0; 1877 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1878 return -EIO; 1879 } 1880 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1881 } 1882 return 0; 1883 } 1884 1885 /** 1886 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1887 * @skb: the skb to modify 1888 * @gfp_mask: allocation priority 1889 * 1890 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1891 * It will copy all frags into kernel and drop the reference 1892 * to userspace pages. 1893 * 1894 * If this function is called from an interrupt gfp_mask() must be 1895 * %GFP_ATOMIC. 1896 * 1897 * Returns 0 on success or a negative error code on failure 1898 * to allocate kernel memory to copy to. 1899 */ 1900 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1901 { 1902 int num_frags = skb_shinfo(skb)->nr_frags; 1903 struct page *page, *head = NULL; 1904 int i, order, psize, new_frags; 1905 u32 d_off; 1906 1907 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1908 return -EINVAL; 1909 1910 if (!num_frags) 1911 goto release; 1912 1913 /* We might have to allocate high order pages, so compute what minimum 1914 * page order is needed. 1915 */ 1916 order = 0; 1917 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1918 order++; 1919 psize = (PAGE_SIZE << order); 1920 1921 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1922 for (i = 0; i < new_frags; i++) { 1923 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1924 if (!page) { 1925 while (head) { 1926 struct page *next = (struct page *)page_private(head); 1927 put_page(head); 1928 head = next; 1929 } 1930 return -ENOMEM; 1931 } 1932 set_page_private(page, (unsigned long)head); 1933 head = page; 1934 } 1935 1936 page = head; 1937 d_off = 0; 1938 for (i = 0; i < num_frags; i++) { 1939 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1940 u32 p_off, p_len, copied; 1941 struct page *p; 1942 u8 *vaddr; 1943 1944 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1945 p, p_off, p_len, copied) { 1946 u32 copy, done = 0; 1947 vaddr = kmap_atomic(p); 1948 1949 while (done < p_len) { 1950 if (d_off == psize) { 1951 d_off = 0; 1952 page = (struct page *)page_private(page); 1953 } 1954 copy = min_t(u32, psize - d_off, p_len - done); 1955 memcpy(page_address(page) + d_off, 1956 vaddr + p_off + done, copy); 1957 done += copy; 1958 d_off += copy; 1959 } 1960 kunmap_atomic(vaddr); 1961 } 1962 } 1963 1964 /* skb frags release userspace buffers */ 1965 for (i = 0; i < num_frags; i++) 1966 skb_frag_unref(skb, i); 1967 1968 /* skb frags point to kernel buffers */ 1969 for (i = 0; i < new_frags - 1; i++) { 1970 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 1971 head = (struct page *)page_private(head); 1972 } 1973 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 1974 d_off); 1975 skb_shinfo(skb)->nr_frags = new_frags; 1976 1977 release: 1978 skb_zcopy_clear(skb, false); 1979 return 0; 1980 } 1981 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1982 1983 /** 1984 * skb_clone - duplicate an sk_buff 1985 * @skb: buffer to clone 1986 * @gfp_mask: allocation priority 1987 * 1988 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1989 * copies share the same packet data but not structure. The new 1990 * buffer has a reference count of 1. If the allocation fails the 1991 * function returns %NULL otherwise the new buffer is returned. 1992 * 1993 * If this function is called from an interrupt gfp_mask() must be 1994 * %GFP_ATOMIC. 1995 */ 1996 1997 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1998 { 1999 struct sk_buff_fclones *fclones = container_of(skb, 2000 struct sk_buff_fclones, 2001 skb1); 2002 struct sk_buff *n; 2003 2004 if (skb_orphan_frags(skb, gfp_mask)) 2005 return NULL; 2006 2007 if (skb->fclone == SKB_FCLONE_ORIG && 2008 refcount_read(&fclones->fclone_ref) == 1) { 2009 n = &fclones->skb2; 2010 refcount_set(&fclones->fclone_ref, 2); 2011 n->fclone = SKB_FCLONE_CLONE; 2012 } else { 2013 if (skb_pfmemalloc(skb)) 2014 gfp_mask |= __GFP_MEMALLOC; 2015 2016 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2017 if (!n) 2018 return NULL; 2019 2020 n->fclone = SKB_FCLONE_UNAVAILABLE; 2021 } 2022 2023 return __skb_clone(n, skb); 2024 } 2025 EXPORT_SYMBOL(skb_clone); 2026 2027 void skb_headers_offset_update(struct sk_buff *skb, int off) 2028 { 2029 /* Only adjust this if it actually is csum_start rather than csum */ 2030 if (skb->ip_summed == CHECKSUM_PARTIAL) 2031 skb->csum_start += off; 2032 /* {transport,network,mac}_header and tail are relative to skb->head */ 2033 skb->transport_header += off; 2034 skb->network_header += off; 2035 if (skb_mac_header_was_set(skb)) 2036 skb->mac_header += off; 2037 skb->inner_transport_header += off; 2038 skb->inner_network_header += off; 2039 skb->inner_mac_header += off; 2040 } 2041 EXPORT_SYMBOL(skb_headers_offset_update); 2042 2043 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2044 { 2045 __copy_skb_header(new, old); 2046 2047 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2048 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2049 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2050 } 2051 EXPORT_SYMBOL(skb_copy_header); 2052 2053 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2054 { 2055 if (skb_pfmemalloc(skb)) 2056 return SKB_ALLOC_RX; 2057 return 0; 2058 } 2059 2060 /** 2061 * skb_copy - create private copy of an sk_buff 2062 * @skb: buffer to copy 2063 * @gfp_mask: allocation priority 2064 * 2065 * Make a copy of both an &sk_buff and its data. This is used when the 2066 * caller wishes to modify the data and needs a private copy of the 2067 * data to alter. Returns %NULL on failure or the pointer to the buffer 2068 * on success. The returned buffer has a reference count of 1. 2069 * 2070 * As by-product this function converts non-linear &sk_buff to linear 2071 * one, so that &sk_buff becomes completely private and caller is allowed 2072 * to modify all the data of returned buffer. This means that this 2073 * function is not recommended for use in circumstances when only 2074 * header is going to be modified. Use pskb_copy() instead. 2075 */ 2076 2077 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2078 { 2079 struct sk_buff *n; 2080 unsigned int size; 2081 int headerlen; 2082 2083 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2084 return NULL; 2085 2086 headerlen = skb_headroom(skb); 2087 size = skb_end_offset(skb) + skb->data_len; 2088 n = __alloc_skb(size, gfp_mask, 2089 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2090 if (!n) 2091 return NULL; 2092 2093 /* Set the data pointer */ 2094 skb_reserve(n, headerlen); 2095 /* Set the tail pointer and length */ 2096 skb_put(n, skb->len); 2097 2098 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2099 2100 skb_copy_header(n, skb); 2101 return n; 2102 } 2103 EXPORT_SYMBOL(skb_copy); 2104 2105 /** 2106 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2107 * @skb: buffer to copy 2108 * @headroom: headroom of new skb 2109 * @gfp_mask: allocation priority 2110 * @fclone: if true allocate the copy of the skb from the fclone 2111 * cache instead of the head cache; it is recommended to set this 2112 * to true for the cases where the copy will likely be cloned 2113 * 2114 * Make a copy of both an &sk_buff and part of its data, located 2115 * in header. Fragmented data remain shared. This is used when 2116 * the caller wishes to modify only header of &sk_buff and needs 2117 * private copy of the header to alter. Returns %NULL on failure 2118 * or the pointer to the buffer on success. 2119 * The returned buffer has a reference count of 1. 2120 */ 2121 2122 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2123 gfp_t gfp_mask, bool fclone) 2124 { 2125 unsigned int size = skb_headlen(skb) + headroom; 2126 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2127 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2128 2129 if (!n) 2130 goto out; 2131 2132 /* Set the data pointer */ 2133 skb_reserve(n, headroom); 2134 /* Set the tail pointer and length */ 2135 skb_put(n, skb_headlen(skb)); 2136 /* Copy the bytes */ 2137 skb_copy_from_linear_data(skb, n->data, n->len); 2138 2139 n->truesize += skb->data_len; 2140 n->data_len = skb->data_len; 2141 n->len = skb->len; 2142 2143 if (skb_shinfo(skb)->nr_frags) { 2144 int i; 2145 2146 if (skb_orphan_frags(skb, gfp_mask) || 2147 skb_zerocopy_clone(n, skb, gfp_mask)) { 2148 kfree_skb(n); 2149 n = NULL; 2150 goto out; 2151 } 2152 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2153 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2154 skb_frag_ref(skb, i); 2155 } 2156 skb_shinfo(n)->nr_frags = i; 2157 } 2158 2159 if (skb_has_frag_list(skb)) { 2160 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2161 skb_clone_fraglist(n); 2162 } 2163 2164 skb_copy_header(n, skb); 2165 out: 2166 return n; 2167 } 2168 EXPORT_SYMBOL(__pskb_copy_fclone); 2169 2170 /** 2171 * pskb_expand_head - reallocate header of &sk_buff 2172 * @skb: buffer to reallocate 2173 * @nhead: room to add at head 2174 * @ntail: room to add at tail 2175 * @gfp_mask: allocation priority 2176 * 2177 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2178 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2179 * reference count of 1. Returns zero in the case of success or error, 2180 * if expansion failed. In the last case, &sk_buff is not changed. 2181 * 2182 * All the pointers pointing into skb header may change and must be 2183 * reloaded after call to this function. 2184 */ 2185 2186 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2187 gfp_t gfp_mask) 2188 { 2189 unsigned int osize = skb_end_offset(skb); 2190 unsigned int size = osize + nhead + ntail; 2191 long off; 2192 u8 *data; 2193 int i; 2194 2195 BUG_ON(nhead < 0); 2196 2197 BUG_ON(skb_shared(skb)); 2198 2199 skb_zcopy_downgrade_managed(skb); 2200 2201 if (skb_pfmemalloc(skb)) 2202 gfp_mask |= __GFP_MEMALLOC; 2203 2204 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2205 if (!data) 2206 goto nodata; 2207 size = SKB_WITH_OVERHEAD(size); 2208 2209 /* Copy only real data... and, alas, header. This should be 2210 * optimized for the cases when header is void. 2211 */ 2212 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2213 2214 memcpy((struct skb_shared_info *)(data + size), 2215 skb_shinfo(skb), 2216 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2217 2218 /* 2219 * if shinfo is shared we must drop the old head gracefully, but if it 2220 * is not we can just drop the old head and let the existing refcount 2221 * be since all we did is relocate the values 2222 */ 2223 if (skb_cloned(skb)) { 2224 if (skb_orphan_frags(skb, gfp_mask)) 2225 goto nofrags; 2226 if (skb_zcopy(skb)) 2227 refcount_inc(&skb_uarg(skb)->refcnt); 2228 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2229 skb_frag_ref(skb, i); 2230 2231 if (skb_has_frag_list(skb)) 2232 skb_clone_fraglist(skb); 2233 2234 skb_release_data(skb, SKB_CONSUMED); 2235 } else { 2236 skb_free_head(skb); 2237 } 2238 off = (data + nhead) - skb->head; 2239 2240 skb->head = data; 2241 skb->head_frag = 0; 2242 skb->data += off; 2243 2244 skb_set_end_offset(skb, size); 2245 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2246 off = nhead; 2247 #endif 2248 skb->tail += off; 2249 skb_headers_offset_update(skb, nhead); 2250 skb->cloned = 0; 2251 skb->hdr_len = 0; 2252 skb->nohdr = 0; 2253 atomic_set(&skb_shinfo(skb)->dataref, 1); 2254 2255 skb_metadata_clear(skb); 2256 2257 /* It is not generally safe to change skb->truesize. 2258 * For the moment, we really care of rx path, or 2259 * when skb is orphaned (not attached to a socket). 2260 */ 2261 if (!skb->sk || skb->destructor == sock_edemux) 2262 skb->truesize += size - osize; 2263 2264 return 0; 2265 2266 nofrags: 2267 skb_kfree_head(data, size); 2268 nodata: 2269 return -ENOMEM; 2270 } 2271 EXPORT_SYMBOL(pskb_expand_head); 2272 2273 /* Make private copy of skb with writable head and some headroom */ 2274 2275 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2276 { 2277 struct sk_buff *skb2; 2278 int delta = headroom - skb_headroom(skb); 2279 2280 if (delta <= 0) 2281 skb2 = pskb_copy(skb, GFP_ATOMIC); 2282 else { 2283 skb2 = skb_clone(skb, GFP_ATOMIC); 2284 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2285 GFP_ATOMIC)) { 2286 kfree_skb(skb2); 2287 skb2 = NULL; 2288 } 2289 } 2290 return skb2; 2291 } 2292 EXPORT_SYMBOL(skb_realloc_headroom); 2293 2294 /* Note: We plan to rework this in linux-6.4 */ 2295 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2296 { 2297 unsigned int saved_end_offset, saved_truesize; 2298 struct skb_shared_info *shinfo; 2299 int res; 2300 2301 saved_end_offset = skb_end_offset(skb); 2302 saved_truesize = skb->truesize; 2303 2304 res = pskb_expand_head(skb, 0, 0, pri); 2305 if (res) 2306 return res; 2307 2308 skb->truesize = saved_truesize; 2309 2310 if (likely(skb_end_offset(skb) == saved_end_offset)) 2311 return 0; 2312 2313 /* We can not change skb->end if the original or new value 2314 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2315 */ 2316 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2317 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2318 /* We think this path should not be taken. 2319 * Add a temporary trace to warn us just in case. 2320 */ 2321 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2322 saved_end_offset, skb_end_offset(skb)); 2323 WARN_ON_ONCE(1); 2324 return 0; 2325 } 2326 2327 shinfo = skb_shinfo(skb); 2328 2329 /* We are about to change back skb->end, 2330 * we need to move skb_shinfo() to its new location. 2331 */ 2332 memmove(skb->head + saved_end_offset, 2333 shinfo, 2334 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2335 2336 skb_set_end_offset(skb, saved_end_offset); 2337 2338 return 0; 2339 } 2340 2341 /** 2342 * skb_expand_head - reallocate header of &sk_buff 2343 * @skb: buffer to reallocate 2344 * @headroom: needed headroom 2345 * 2346 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2347 * if possible; copies skb->sk to new skb as needed 2348 * and frees original skb in case of failures. 2349 * 2350 * It expect increased headroom and generates warning otherwise. 2351 */ 2352 2353 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2354 { 2355 int delta = headroom - skb_headroom(skb); 2356 int osize = skb_end_offset(skb); 2357 struct sock *sk = skb->sk; 2358 2359 if (WARN_ONCE(delta <= 0, 2360 "%s is expecting an increase in the headroom", __func__)) 2361 return skb; 2362 2363 delta = SKB_DATA_ALIGN(delta); 2364 /* pskb_expand_head() might crash, if skb is shared. */ 2365 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2366 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2367 2368 if (unlikely(!nskb)) 2369 goto fail; 2370 2371 if (sk) 2372 skb_set_owner_w(nskb, sk); 2373 consume_skb(skb); 2374 skb = nskb; 2375 } 2376 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2377 goto fail; 2378 2379 if (sk && is_skb_wmem(skb)) { 2380 delta = skb_end_offset(skb) - osize; 2381 refcount_add(delta, &sk->sk_wmem_alloc); 2382 skb->truesize += delta; 2383 } 2384 return skb; 2385 2386 fail: 2387 kfree_skb(skb); 2388 return NULL; 2389 } 2390 EXPORT_SYMBOL(skb_expand_head); 2391 2392 /** 2393 * skb_copy_expand - copy and expand sk_buff 2394 * @skb: buffer to copy 2395 * @newheadroom: new free bytes at head 2396 * @newtailroom: new free bytes at tail 2397 * @gfp_mask: allocation priority 2398 * 2399 * Make a copy of both an &sk_buff and its data and while doing so 2400 * allocate additional space. 2401 * 2402 * This is used when the caller wishes to modify the data and needs a 2403 * private copy of the data to alter as well as more space for new fields. 2404 * Returns %NULL on failure or the pointer to the buffer 2405 * on success. The returned buffer has a reference count of 1. 2406 * 2407 * You must pass %GFP_ATOMIC as the allocation priority if this function 2408 * is called from an interrupt. 2409 */ 2410 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2411 int newheadroom, int newtailroom, 2412 gfp_t gfp_mask) 2413 { 2414 /* 2415 * Allocate the copy buffer 2416 */ 2417 int head_copy_len, head_copy_off; 2418 struct sk_buff *n; 2419 int oldheadroom; 2420 2421 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2422 return NULL; 2423 2424 oldheadroom = skb_headroom(skb); 2425 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2426 gfp_mask, skb_alloc_rx_flag(skb), 2427 NUMA_NO_NODE); 2428 if (!n) 2429 return NULL; 2430 2431 skb_reserve(n, newheadroom); 2432 2433 /* Set the tail pointer and length */ 2434 skb_put(n, skb->len); 2435 2436 head_copy_len = oldheadroom; 2437 head_copy_off = 0; 2438 if (newheadroom <= head_copy_len) 2439 head_copy_len = newheadroom; 2440 else 2441 head_copy_off = newheadroom - head_copy_len; 2442 2443 /* Copy the linear header and data. */ 2444 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2445 skb->len + head_copy_len)); 2446 2447 skb_copy_header(n, skb); 2448 2449 skb_headers_offset_update(n, newheadroom - oldheadroom); 2450 2451 return n; 2452 } 2453 EXPORT_SYMBOL(skb_copy_expand); 2454 2455 /** 2456 * __skb_pad - zero pad the tail of an skb 2457 * @skb: buffer to pad 2458 * @pad: space to pad 2459 * @free_on_error: free buffer on error 2460 * 2461 * Ensure that a buffer is followed by a padding area that is zero 2462 * filled. Used by network drivers which may DMA or transfer data 2463 * beyond the buffer end onto the wire. 2464 * 2465 * May return error in out of memory cases. The skb is freed on error 2466 * if @free_on_error is true. 2467 */ 2468 2469 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2470 { 2471 int err; 2472 int ntail; 2473 2474 /* If the skbuff is non linear tailroom is always zero.. */ 2475 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2476 memset(skb->data+skb->len, 0, pad); 2477 return 0; 2478 } 2479 2480 ntail = skb->data_len + pad - (skb->end - skb->tail); 2481 if (likely(skb_cloned(skb) || ntail > 0)) { 2482 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2483 if (unlikely(err)) 2484 goto free_skb; 2485 } 2486 2487 /* FIXME: The use of this function with non-linear skb's really needs 2488 * to be audited. 2489 */ 2490 err = skb_linearize(skb); 2491 if (unlikely(err)) 2492 goto free_skb; 2493 2494 memset(skb->data + skb->len, 0, pad); 2495 return 0; 2496 2497 free_skb: 2498 if (free_on_error) 2499 kfree_skb(skb); 2500 return err; 2501 } 2502 EXPORT_SYMBOL(__skb_pad); 2503 2504 /** 2505 * pskb_put - add data to the tail of a potentially fragmented buffer 2506 * @skb: start of the buffer to use 2507 * @tail: tail fragment of the buffer to use 2508 * @len: amount of data to add 2509 * 2510 * This function extends the used data area of the potentially 2511 * fragmented buffer. @tail must be the last fragment of @skb -- or 2512 * @skb itself. If this would exceed the total buffer size the kernel 2513 * will panic. A pointer to the first byte of the extra data is 2514 * returned. 2515 */ 2516 2517 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2518 { 2519 if (tail != skb) { 2520 skb->data_len += len; 2521 skb->len += len; 2522 } 2523 return skb_put(tail, len); 2524 } 2525 EXPORT_SYMBOL_GPL(pskb_put); 2526 2527 /** 2528 * skb_put - add data to a buffer 2529 * @skb: buffer to use 2530 * @len: amount of data to add 2531 * 2532 * This function extends the used data area of the buffer. If this would 2533 * exceed the total buffer size the kernel will panic. A pointer to the 2534 * first byte of the extra data is returned. 2535 */ 2536 void *skb_put(struct sk_buff *skb, unsigned int len) 2537 { 2538 void *tmp = skb_tail_pointer(skb); 2539 SKB_LINEAR_ASSERT(skb); 2540 skb->tail += len; 2541 skb->len += len; 2542 if (unlikely(skb->tail > skb->end)) 2543 skb_over_panic(skb, len, __builtin_return_address(0)); 2544 return tmp; 2545 } 2546 EXPORT_SYMBOL(skb_put); 2547 2548 /** 2549 * skb_push - add data to the start of a buffer 2550 * @skb: buffer to use 2551 * @len: amount of data to add 2552 * 2553 * This function extends the used data area of the buffer at the buffer 2554 * start. If this would exceed the total buffer headroom the kernel will 2555 * panic. A pointer to the first byte of the extra data is returned. 2556 */ 2557 void *skb_push(struct sk_buff *skb, unsigned int len) 2558 { 2559 skb->data -= len; 2560 skb->len += len; 2561 if (unlikely(skb->data < skb->head)) 2562 skb_under_panic(skb, len, __builtin_return_address(0)); 2563 return skb->data; 2564 } 2565 EXPORT_SYMBOL(skb_push); 2566 2567 /** 2568 * skb_pull - remove data from the start of a buffer 2569 * @skb: buffer to use 2570 * @len: amount of data to remove 2571 * 2572 * This function removes data from the start of a buffer, returning 2573 * the memory to the headroom. A pointer to the next data in the buffer 2574 * is returned. Once the data has been pulled future pushes will overwrite 2575 * the old data. 2576 */ 2577 void *skb_pull(struct sk_buff *skb, unsigned int len) 2578 { 2579 return skb_pull_inline(skb, len); 2580 } 2581 EXPORT_SYMBOL(skb_pull); 2582 2583 /** 2584 * skb_pull_data - remove data from the start of a buffer returning its 2585 * original position. 2586 * @skb: buffer to use 2587 * @len: amount of data to remove 2588 * 2589 * This function removes data from the start of a buffer, returning 2590 * the memory to the headroom. A pointer to the original data in the buffer 2591 * is returned after checking if there is enough data to pull. Once the 2592 * data has been pulled future pushes will overwrite the old data. 2593 */ 2594 void *skb_pull_data(struct sk_buff *skb, size_t len) 2595 { 2596 void *data = skb->data; 2597 2598 if (skb->len < len) 2599 return NULL; 2600 2601 skb_pull(skb, len); 2602 2603 return data; 2604 } 2605 EXPORT_SYMBOL(skb_pull_data); 2606 2607 /** 2608 * skb_trim - remove end from a buffer 2609 * @skb: buffer to alter 2610 * @len: new length 2611 * 2612 * Cut the length of a buffer down by removing data from the tail. If 2613 * the buffer is already under the length specified it is not modified. 2614 * The skb must be linear. 2615 */ 2616 void skb_trim(struct sk_buff *skb, unsigned int len) 2617 { 2618 if (skb->len > len) 2619 __skb_trim(skb, len); 2620 } 2621 EXPORT_SYMBOL(skb_trim); 2622 2623 /* Trims skb to length len. It can change skb pointers. 2624 */ 2625 2626 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2627 { 2628 struct sk_buff **fragp; 2629 struct sk_buff *frag; 2630 int offset = skb_headlen(skb); 2631 int nfrags = skb_shinfo(skb)->nr_frags; 2632 int i; 2633 int err; 2634 2635 if (skb_cloned(skb) && 2636 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2637 return err; 2638 2639 i = 0; 2640 if (offset >= len) 2641 goto drop_pages; 2642 2643 for (; i < nfrags; i++) { 2644 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2645 2646 if (end < len) { 2647 offset = end; 2648 continue; 2649 } 2650 2651 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2652 2653 drop_pages: 2654 skb_shinfo(skb)->nr_frags = i; 2655 2656 for (; i < nfrags; i++) 2657 skb_frag_unref(skb, i); 2658 2659 if (skb_has_frag_list(skb)) 2660 skb_drop_fraglist(skb); 2661 goto done; 2662 } 2663 2664 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2665 fragp = &frag->next) { 2666 int end = offset + frag->len; 2667 2668 if (skb_shared(frag)) { 2669 struct sk_buff *nfrag; 2670 2671 nfrag = skb_clone(frag, GFP_ATOMIC); 2672 if (unlikely(!nfrag)) 2673 return -ENOMEM; 2674 2675 nfrag->next = frag->next; 2676 consume_skb(frag); 2677 frag = nfrag; 2678 *fragp = frag; 2679 } 2680 2681 if (end < len) { 2682 offset = end; 2683 continue; 2684 } 2685 2686 if (end > len && 2687 unlikely((err = pskb_trim(frag, len - offset)))) 2688 return err; 2689 2690 if (frag->next) 2691 skb_drop_list(&frag->next); 2692 break; 2693 } 2694 2695 done: 2696 if (len > skb_headlen(skb)) { 2697 skb->data_len -= skb->len - len; 2698 skb->len = len; 2699 } else { 2700 skb->len = len; 2701 skb->data_len = 0; 2702 skb_set_tail_pointer(skb, len); 2703 } 2704 2705 if (!skb->sk || skb->destructor == sock_edemux) 2706 skb_condense(skb); 2707 return 0; 2708 } 2709 EXPORT_SYMBOL(___pskb_trim); 2710 2711 /* Note : use pskb_trim_rcsum() instead of calling this directly 2712 */ 2713 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2714 { 2715 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2716 int delta = skb->len - len; 2717 2718 skb->csum = csum_block_sub(skb->csum, 2719 skb_checksum(skb, len, delta, 0), 2720 len); 2721 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2722 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2723 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2724 2725 if (offset + sizeof(__sum16) > hdlen) 2726 return -EINVAL; 2727 } 2728 return __pskb_trim(skb, len); 2729 } 2730 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2731 2732 /** 2733 * __pskb_pull_tail - advance tail of skb header 2734 * @skb: buffer to reallocate 2735 * @delta: number of bytes to advance tail 2736 * 2737 * The function makes a sense only on a fragmented &sk_buff, 2738 * it expands header moving its tail forward and copying necessary 2739 * data from fragmented part. 2740 * 2741 * &sk_buff MUST have reference count of 1. 2742 * 2743 * Returns %NULL (and &sk_buff does not change) if pull failed 2744 * or value of new tail of skb in the case of success. 2745 * 2746 * All the pointers pointing into skb header may change and must be 2747 * reloaded after call to this function. 2748 */ 2749 2750 /* Moves tail of skb head forward, copying data from fragmented part, 2751 * when it is necessary. 2752 * 1. It may fail due to malloc failure. 2753 * 2. It may change skb pointers. 2754 * 2755 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2756 */ 2757 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2758 { 2759 /* If skb has not enough free space at tail, get new one 2760 * plus 128 bytes for future expansions. If we have enough 2761 * room at tail, reallocate without expansion only if skb is cloned. 2762 */ 2763 int i, k, eat = (skb->tail + delta) - skb->end; 2764 2765 if (eat > 0 || skb_cloned(skb)) { 2766 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2767 GFP_ATOMIC)) 2768 return NULL; 2769 } 2770 2771 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2772 skb_tail_pointer(skb), delta)); 2773 2774 /* Optimization: no fragments, no reasons to preestimate 2775 * size of pulled pages. Superb. 2776 */ 2777 if (!skb_has_frag_list(skb)) 2778 goto pull_pages; 2779 2780 /* Estimate size of pulled pages. */ 2781 eat = delta; 2782 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2783 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2784 2785 if (size >= eat) 2786 goto pull_pages; 2787 eat -= size; 2788 } 2789 2790 /* If we need update frag list, we are in troubles. 2791 * Certainly, it is possible to add an offset to skb data, 2792 * but taking into account that pulling is expected to 2793 * be very rare operation, it is worth to fight against 2794 * further bloating skb head and crucify ourselves here instead. 2795 * Pure masohism, indeed. 8)8) 2796 */ 2797 if (eat) { 2798 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2799 struct sk_buff *clone = NULL; 2800 struct sk_buff *insp = NULL; 2801 2802 do { 2803 if (list->len <= eat) { 2804 /* Eaten as whole. */ 2805 eat -= list->len; 2806 list = list->next; 2807 insp = list; 2808 } else { 2809 /* Eaten partially. */ 2810 if (skb_is_gso(skb) && !list->head_frag && 2811 skb_headlen(list)) 2812 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2813 2814 if (skb_shared(list)) { 2815 /* Sucks! We need to fork list. :-( */ 2816 clone = skb_clone(list, GFP_ATOMIC); 2817 if (!clone) 2818 return NULL; 2819 insp = list->next; 2820 list = clone; 2821 } else { 2822 /* This may be pulled without 2823 * problems. */ 2824 insp = list; 2825 } 2826 if (!pskb_pull(list, eat)) { 2827 kfree_skb(clone); 2828 return NULL; 2829 } 2830 break; 2831 } 2832 } while (eat); 2833 2834 /* Free pulled out fragments. */ 2835 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2836 skb_shinfo(skb)->frag_list = list->next; 2837 consume_skb(list); 2838 } 2839 /* And insert new clone at head. */ 2840 if (clone) { 2841 clone->next = list; 2842 skb_shinfo(skb)->frag_list = clone; 2843 } 2844 } 2845 /* Success! Now we may commit changes to skb data. */ 2846 2847 pull_pages: 2848 eat = delta; 2849 k = 0; 2850 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2851 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2852 2853 if (size <= eat) { 2854 skb_frag_unref(skb, i); 2855 eat -= size; 2856 } else { 2857 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2858 2859 *frag = skb_shinfo(skb)->frags[i]; 2860 if (eat) { 2861 skb_frag_off_add(frag, eat); 2862 skb_frag_size_sub(frag, eat); 2863 if (!i) 2864 goto end; 2865 eat = 0; 2866 } 2867 k++; 2868 } 2869 } 2870 skb_shinfo(skb)->nr_frags = k; 2871 2872 end: 2873 skb->tail += delta; 2874 skb->data_len -= delta; 2875 2876 if (!skb->data_len) 2877 skb_zcopy_clear(skb, false); 2878 2879 return skb_tail_pointer(skb); 2880 } 2881 EXPORT_SYMBOL(__pskb_pull_tail); 2882 2883 /** 2884 * skb_copy_bits - copy bits from skb to kernel buffer 2885 * @skb: source skb 2886 * @offset: offset in source 2887 * @to: destination buffer 2888 * @len: number of bytes to copy 2889 * 2890 * Copy the specified number of bytes from the source skb to the 2891 * destination buffer. 2892 * 2893 * CAUTION ! : 2894 * If its prototype is ever changed, 2895 * check arch/{*}/net/{*}.S files, 2896 * since it is called from BPF assembly code. 2897 */ 2898 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2899 { 2900 int start = skb_headlen(skb); 2901 struct sk_buff *frag_iter; 2902 int i, copy; 2903 2904 if (offset > (int)skb->len - len) 2905 goto fault; 2906 2907 /* Copy header. */ 2908 if ((copy = start - offset) > 0) { 2909 if (copy > len) 2910 copy = len; 2911 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2912 if ((len -= copy) == 0) 2913 return 0; 2914 offset += copy; 2915 to += copy; 2916 } 2917 2918 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2919 int end; 2920 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2921 2922 WARN_ON(start > offset + len); 2923 2924 end = start + skb_frag_size(f); 2925 if ((copy = end - offset) > 0) { 2926 u32 p_off, p_len, copied; 2927 struct page *p; 2928 u8 *vaddr; 2929 2930 if (copy > len) 2931 copy = len; 2932 2933 skb_frag_foreach_page(f, 2934 skb_frag_off(f) + offset - start, 2935 copy, p, p_off, p_len, copied) { 2936 vaddr = kmap_atomic(p); 2937 memcpy(to + copied, vaddr + p_off, p_len); 2938 kunmap_atomic(vaddr); 2939 } 2940 2941 if ((len -= copy) == 0) 2942 return 0; 2943 offset += copy; 2944 to += copy; 2945 } 2946 start = end; 2947 } 2948 2949 skb_walk_frags(skb, frag_iter) { 2950 int end; 2951 2952 WARN_ON(start > offset + len); 2953 2954 end = start + frag_iter->len; 2955 if ((copy = end - offset) > 0) { 2956 if (copy > len) 2957 copy = len; 2958 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2959 goto fault; 2960 if ((len -= copy) == 0) 2961 return 0; 2962 offset += copy; 2963 to += copy; 2964 } 2965 start = end; 2966 } 2967 2968 if (!len) 2969 return 0; 2970 2971 fault: 2972 return -EFAULT; 2973 } 2974 EXPORT_SYMBOL(skb_copy_bits); 2975 2976 /* 2977 * Callback from splice_to_pipe(), if we need to release some pages 2978 * at the end of the spd in case we error'ed out in filling the pipe. 2979 */ 2980 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2981 { 2982 put_page(spd->pages[i]); 2983 } 2984 2985 static struct page *linear_to_page(struct page *page, unsigned int *len, 2986 unsigned int *offset, 2987 struct sock *sk) 2988 { 2989 struct page_frag *pfrag = sk_page_frag(sk); 2990 2991 if (!sk_page_frag_refill(sk, pfrag)) 2992 return NULL; 2993 2994 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2995 2996 memcpy(page_address(pfrag->page) + pfrag->offset, 2997 page_address(page) + *offset, *len); 2998 *offset = pfrag->offset; 2999 pfrag->offset += *len; 3000 3001 return pfrag->page; 3002 } 3003 3004 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3005 struct page *page, 3006 unsigned int offset) 3007 { 3008 return spd->nr_pages && 3009 spd->pages[spd->nr_pages - 1] == page && 3010 (spd->partial[spd->nr_pages - 1].offset + 3011 spd->partial[spd->nr_pages - 1].len == offset); 3012 } 3013 3014 /* 3015 * Fill page/offset/length into spd, if it can hold more pages. 3016 */ 3017 static bool spd_fill_page(struct splice_pipe_desc *spd, 3018 struct pipe_inode_info *pipe, struct page *page, 3019 unsigned int *len, unsigned int offset, 3020 bool linear, 3021 struct sock *sk) 3022 { 3023 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3024 return true; 3025 3026 if (linear) { 3027 page = linear_to_page(page, len, &offset, sk); 3028 if (!page) 3029 return true; 3030 } 3031 if (spd_can_coalesce(spd, page, offset)) { 3032 spd->partial[spd->nr_pages - 1].len += *len; 3033 return false; 3034 } 3035 get_page(page); 3036 spd->pages[spd->nr_pages] = page; 3037 spd->partial[spd->nr_pages].len = *len; 3038 spd->partial[spd->nr_pages].offset = offset; 3039 spd->nr_pages++; 3040 3041 return false; 3042 } 3043 3044 static bool __splice_segment(struct page *page, unsigned int poff, 3045 unsigned int plen, unsigned int *off, 3046 unsigned int *len, 3047 struct splice_pipe_desc *spd, bool linear, 3048 struct sock *sk, 3049 struct pipe_inode_info *pipe) 3050 { 3051 if (!*len) 3052 return true; 3053 3054 /* skip this segment if already processed */ 3055 if (*off >= plen) { 3056 *off -= plen; 3057 return false; 3058 } 3059 3060 /* ignore any bits we already processed */ 3061 poff += *off; 3062 plen -= *off; 3063 *off = 0; 3064 3065 do { 3066 unsigned int flen = min(*len, plen); 3067 3068 if (spd_fill_page(spd, pipe, page, &flen, poff, 3069 linear, sk)) 3070 return true; 3071 poff += flen; 3072 plen -= flen; 3073 *len -= flen; 3074 } while (*len && plen); 3075 3076 return false; 3077 } 3078 3079 /* 3080 * Map linear and fragment data from the skb to spd. It reports true if the 3081 * pipe is full or if we already spliced the requested length. 3082 */ 3083 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3084 unsigned int *offset, unsigned int *len, 3085 struct splice_pipe_desc *spd, struct sock *sk) 3086 { 3087 int seg; 3088 struct sk_buff *iter; 3089 3090 /* map the linear part : 3091 * If skb->head_frag is set, this 'linear' part is backed by a 3092 * fragment, and if the head is not shared with any clones then 3093 * we can avoid a copy since we own the head portion of this page. 3094 */ 3095 if (__splice_segment(virt_to_page(skb->data), 3096 (unsigned long) skb->data & (PAGE_SIZE - 1), 3097 skb_headlen(skb), 3098 offset, len, spd, 3099 skb_head_is_locked(skb), 3100 sk, pipe)) 3101 return true; 3102 3103 /* 3104 * then map the fragments 3105 */ 3106 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3107 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3108 3109 if (__splice_segment(skb_frag_page(f), 3110 skb_frag_off(f), skb_frag_size(f), 3111 offset, len, spd, false, sk, pipe)) 3112 return true; 3113 } 3114 3115 skb_walk_frags(skb, iter) { 3116 if (*offset >= iter->len) { 3117 *offset -= iter->len; 3118 continue; 3119 } 3120 /* __skb_splice_bits() only fails if the output has no room 3121 * left, so no point in going over the frag_list for the error 3122 * case. 3123 */ 3124 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3125 return true; 3126 } 3127 3128 return false; 3129 } 3130 3131 /* 3132 * Map data from the skb to a pipe. Should handle both the linear part, 3133 * the fragments, and the frag list. 3134 */ 3135 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3136 struct pipe_inode_info *pipe, unsigned int tlen, 3137 unsigned int flags) 3138 { 3139 struct partial_page partial[MAX_SKB_FRAGS]; 3140 struct page *pages[MAX_SKB_FRAGS]; 3141 struct splice_pipe_desc spd = { 3142 .pages = pages, 3143 .partial = partial, 3144 .nr_pages_max = MAX_SKB_FRAGS, 3145 .ops = &nosteal_pipe_buf_ops, 3146 .spd_release = sock_spd_release, 3147 }; 3148 int ret = 0; 3149 3150 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3151 3152 if (spd.nr_pages) 3153 ret = splice_to_pipe(pipe, &spd); 3154 3155 return ret; 3156 } 3157 EXPORT_SYMBOL_GPL(skb_splice_bits); 3158 3159 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3160 { 3161 struct socket *sock = sk->sk_socket; 3162 size_t size = msg_data_left(msg); 3163 3164 if (!sock) 3165 return -EINVAL; 3166 3167 if (!sock->ops->sendmsg_locked) 3168 return sock_no_sendmsg_locked(sk, msg, size); 3169 3170 return sock->ops->sendmsg_locked(sk, msg, size); 3171 } 3172 3173 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3174 { 3175 struct socket *sock = sk->sk_socket; 3176 3177 if (!sock) 3178 return -EINVAL; 3179 return sock_sendmsg(sock, msg); 3180 } 3181 3182 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3183 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3184 int len, sendmsg_func sendmsg) 3185 { 3186 unsigned int orig_len = len; 3187 struct sk_buff *head = skb; 3188 unsigned short fragidx; 3189 int slen, ret; 3190 3191 do_frag_list: 3192 3193 /* Deal with head data */ 3194 while (offset < skb_headlen(skb) && len) { 3195 struct kvec kv; 3196 struct msghdr msg; 3197 3198 slen = min_t(int, len, skb_headlen(skb) - offset); 3199 kv.iov_base = skb->data + offset; 3200 kv.iov_len = slen; 3201 memset(&msg, 0, sizeof(msg)); 3202 msg.msg_flags = MSG_DONTWAIT; 3203 3204 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3205 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3206 sendmsg_unlocked, sk, &msg); 3207 if (ret <= 0) 3208 goto error; 3209 3210 offset += ret; 3211 len -= ret; 3212 } 3213 3214 /* All the data was skb head? */ 3215 if (!len) 3216 goto out; 3217 3218 /* Make offset relative to start of frags */ 3219 offset -= skb_headlen(skb); 3220 3221 /* Find where we are in frag list */ 3222 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3223 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3224 3225 if (offset < skb_frag_size(frag)) 3226 break; 3227 3228 offset -= skb_frag_size(frag); 3229 } 3230 3231 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3232 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3233 3234 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3235 3236 while (slen) { 3237 struct bio_vec bvec; 3238 struct msghdr msg = { 3239 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3240 }; 3241 3242 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3243 skb_frag_off(frag) + offset); 3244 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3245 slen); 3246 3247 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3248 sendmsg_unlocked, sk, &msg); 3249 if (ret <= 0) 3250 goto error; 3251 3252 len -= ret; 3253 offset += ret; 3254 slen -= ret; 3255 } 3256 3257 offset = 0; 3258 } 3259 3260 if (len) { 3261 /* Process any frag lists */ 3262 3263 if (skb == head) { 3264 if (skb_has_frag_list(skb)) { 3265 skb = skb_shinfo(skb)->frag_list; 3266 goto do_frag_list; 3267 } 3268 } else if (skb->next) { 3269 skb = skb->next; 3270 goto do_frag_list; 3271 } 3272 } 3273 3274 out: 3275 return orig_len - len; 3276 3277 error: 3278 return orig_len == len ? ret : orig_len - len; 3279 } 3280 3281 /* Send skb data on a socket. Socket must be locked. */ 3282 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3283 int len) 3284 { 3285 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3286 } 3287 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3288 3289 /* Send skb data on a socket. Socket must be unlocked. */ 3290 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3291 { 3292 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3293 } 3294 3295 /** 3296 * skb_store_bits - store bits from kernel buffer to skb 3297 * @skb: destination buffer 3298 * @offset: offset in destination 3299 * @from: source buffer 3300 * @len: number of bytes to copy 3301 * 3302 * Copy the specified number of bytes from the source buffer to the 3303 * destination skb. This function handles all the messy bits of 3304 * traversing fragment lists and such. 3305 */ 3306 3307 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3308 { 3309 int start = skb_headlen(skb); 3310 struct sk_buff *frag_iter; 3311 int i, copy; 3312 3313 if (offset > (int)skb->len - len) 3314 goto fault; 3315 3316 if ((copy = start - offset) > 0) { 3317 if (copy > len) 3318 copy = len; 3319 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3320 if ((len -= copy) == 0) 3321 return 0; 3322 offset += copy; 3323 from += copy; 3324 } 3325 3326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3327 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3328 int end; 3329 3330 WARN_ON(start > offset + len); 3331 3332 end = start + skb_frag_size(frag); 3333 if ((copy = end - offset) > 0) { 3334 u32 p_off, p_len, copied; 3335 struct page *p; 3336 u8 *vaddr; 3337 3338 if (copy > len) 3339 copy = len; 3340 3341 skb_frag_foreach_page(frag, 3342 skb_frag_off(frag) + offset - start, 3343 copy, p, p_off, p_len, copied) { 3344 vaddr = kmap_atomic(p); 3345 memcpy(vaddr + p_off, from + copied, p_len); 3346 kunmap_atomic(vaddr); 3347 } 3348 3349 if ((len -= copy) == 0) 3350 return 0; 3351 offset += copy; 3352 from += copy; 3353 } 3354 start = end; 3355 } 3356 3357 skb_walk_frags(skb, frag_iter) { 3358 int end; 3359 3360 WARN_ON(start > offset + len); 3361 3362 end = start + frag_iter->len; 3363 if ((copy = end - offset) > 0) { 3364 if (copy > len) 3365 copy = len; 3366 if (skb_store_bits(frag_iter, offset - start, 3367 from, copy)) 3368 goto fault; 3369 if ((len -= copy) == 0) 3370 return 0; 3371 offset += copy; 3372 from += copy; 3373 } 3374 start = end; 3375 } 3376 if (!len) 3377 return 0; 3378 3379 fault: 3380 return -EFAULT; 3381 } 3382 EXPORT_SYMBOL(skb_store_bits); 3383 3384 /* Checksum skb data. */ 3385 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3386 __wsum csum, const struct skb_checksum_ops *ops) 3387 { 3388 int start = skb_headlen(skb); 3389 int i, copy = start - offset; 3390 struct sk_buff *frag_iter; 3391 int pos = 0; 3392 3393 /* Checksum header. */ 3394 if (copy > 0) { 3395 if (copy > len) 3396 copy = len; 3397 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3398 skb->data + offset, copy, csum); 3399 if ((len -= copy) == 0) 3400 return csum; 3401 offset += copy; 3402 pos = copy; 3403 } 3404 3405 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3406 int end; 3407 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3408 3409 WARN_ON(start > offset + len); 3410 3411 end = start + skb_frag_size(frag); 3412 if ((copy = end - offset) > 0) { 3413 u32 p_off, p_len, copied; 3414 struct page *p; 3415 __wsum csum2; 3416 u8 *vaddr; 3417 3418 if (copy > len) 3419 copy = len; 3420 3421 skb_frag_foreach_page(frag, 3422 skb_frag_off(frag) + offset - start, 3423 copy, p, p_off, p_len, copied) { 3424 vaddr = kmap_atomic(p); 3425 csum2 = INDIRECT_CALL_1(ops->update, 3426 csum_partial_ext, 3427 vaddr + p_off, p_len, 0); 3428 kunmap_atomic(vaddr); 3429 csum = INDIRECT_CALL_1(ops->combine, 3430 csum_block_add_ext, csum, 3431 csum2, pos, p_len); 3432 pos += p_len; 3433 } 3434 3435 if (!(len -= copy)) 3436 return csum; 3437 offset += copy; 3438 } 3439 start = end; 3440 } 3441 3442 skb_walk_frags(skb, frag_iter) { 3443 int end; 3444 3445 WARN_ON(start > offset + len); 3446 3447 end = start + frag_iter->len; 3448 if ((copy = end - offset) > 0) { 3449 __wsum csum2; 3450 if (copy > len) 3451 copy = len; 3452 csum2 = __skb_checksum(frag_iter, offset - start, 3453 copy, 0, ops); 3454 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3455 csum, csum2, pos, copy); 3456 if ((len -= copy) == 0) 3457 return csum; 3458 offset += copy; 3459 pos += copy; 3460 } 3461 start = end; 3462 } 3463 BUG_ON(len); 3464 3465 return csum; 3466 } 3467 EXPORT_SYMBOL(__skb_checksum); 3468 3469 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3470 int len, __wsum csum) 3471 { 3472 const struct skb_checksum_ops ops = { 3473 .update = csum_partial_ext, 3474 .combine = csum_block_add_ext, 3475 }; 3476 3477 return __skb_checksum(skb, offset, len, csum, &ops); 3478 } 3479 EXPORT_SYMBOL(skb_checksum); 3480 3481 /* Both of above in one bottle. */ 3482 3483 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3484 u8 *to, int len) 3485 { 3486 int start = skb_headlen(skb); 3487 int i, copy = start - offset; 3488 struct sk_buff *frag_iter; 3489 int pos = 0; 3490 __wsum csum = 0; 3491 3492 /* Copy header. */ 3493 if (copy > 0) { 3494 if (copy > len) 3495 copy = len; 3496 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3497 copy); 3498 if ((len -= copy) == 0) 3499 return csum; 3500 offset += copy; 3501 to += copy; 3502 pos = copy; 3503 } 3504 3505 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3506 int end; 3507 3508 WARN_ON(start > offset + len); 3509 3510 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3511 if ((copy = end - offset) > 0) { 3512 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3513 u32 p_off, p_len, copied; 3514 struct page *p; 3515 __wsum csum2; 3516 u8 *vaddr; 3517 3518 if (copy > len) 3519 copy = len; 3520 3521 skb_frag_foreach_page(frag, 3522 skb_frag_off(frag) + offset - start, 3523 copy, p, p_off, p_len, copied) { 3524 vaddr = kmap_atomic(p); 3525 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3526 to + copied, 3527 p_len); 3528 kunmap_atomic(vaddr); 3529 csum = csum_block_add(csum, csum2, pos); 3530 pos += p_len; 3531 } 3532 3533 if (!(len -= copy)) 3534 return csum; 3535 offset += copy; 3536 to += copy; 3537 } 3538 start = end; 3539 } 3540 3541 skb_walk_frags(skb, frag_iter) { 3542 __wsum csum2; 3543 int end; 3544 3545 WARN_ON(start > offset + len); 3546 3547 end = start + frag_iter->len; 3548 if ((copy = end - offset) > 0) { 3549 if (copy > len) 3550 copy = len; 3551 csum2 = skb_copy_and_csum_bits(frag_iter, 3552 offset - start, 3553 to, copy); 3554 csum = csum_block_add(csum, csum2, pos); 3555 if ((len -= copy) == 0) 3556 return csum; 3557 offset += copy; 3558 to += copy; 3559 pos += copy; 3560 } 3561 start = end; 3562 } 3563 BUG_ON(len); 3564 return csum; 3565 } 3566 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3567 3568 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3569 { 3570 __sum16 sum; 3571 3572 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3573 /* See comments in __skb_checksum_complete(). */ 3574 if (likely(!sum)) { 3575 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3576 !skb->csum_complete_sw) 3577 netdev_rx_csum_fault(skb->dev, skb); 3578 } 3579 if (!skb_shared(skb)) 3580 skb->csum_valid = !sum; 3581 return sum; 3582 } 3583 EXPORT_SYMBOL(__skb_checksum_complete_head); 3584 3585 /* This function assumes skb->csum already holds pseudo header's checksum, 3586 * which has been changed from the hardware checksum, for example, by 3587 * __skb_checksum_validate_complete(). And, the original skb->csum must 3588 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3589 * 3590 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3591 * zero. The new checksum is stored back into skb->csum unless the skb is 3592 * shared. 3593 */ 3594 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3595 { 3596 __wsum csum; 3597 __sum16 sum; 3598 3599 csum = skb_checksum(skb, 0, skb->len, 0); 3600 3601 sum = csum_fold(csum_add(skb->csum, csum)); 3602 /* This check is inverted, because we already knew the hardware 3603 * checksum is invalid before calling this function. So, if the 3604 * re-computed checksum is valid instead, then we have a mismatch 3605 * between the original skb->csum and skb_checksum(). This means either 3606 * the original hardware checksum is incorrect or we screw up skb->csum 3607 * when moving skb->data around. 3608 */ 3609 if (likely(!sum)) { 3610 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3611 !skb->csum_complete_sw) 3612 netdev_rx_csum_fault(skb->dev, skb); 3613 } 3614 3615 if (!skb_shared(skb)) { 3616 /* Save full packet checksum */ 3617 skb->csum = csum; 3618 skb->ip_summed = CHECKSUM_COMPLETE; 3619 skb->csum_complete_sw = 1; 3620 skb->csum_valid = !sum; 3621 } 3622 3623 return sum; 3624 } 3625 EXPORT_SYMBOL(__skb_checksum_complete); 3626 3627 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3628 { 3629 net_warn_ratelimited( 3630 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3631 __func__); 3632 return 0; 3633 } 3634 3635 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3636 int offset, int len) 3637 { 3638 net_warn_ratelimited( 3639 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3640 __func__); 3641 return 0; 3642 } 3643 3644 static const struct skb_checksum_ops default_crc32c_ops = { 3645 .update = warn_crc32c_csum_update, 3646 .combine = warn_crc32c_csum_combine, 3647 }; 3648 3649 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3650 &default_crc32c_ops; 3651 EXPORT_SYMBOL(crc32c_csum_stub); 3652 3653 /** 3654 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3655 * @from: source buffer 3656 * 3657 * Calculates the amount of linear headroom needed in the 'to' skb passed 3658 * into skb_zerocopy(). 3659 */ 3660 unsigned int 3661 skb_zerocopy_headlen(const struct sk_buff *from) 3662 { 3663 unsigned int hlen = 0; 3664 3665 if (!from->head_frag || 3666 skb_headlen(from) < L1_CACHE_BYTES || 3667 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3668 hlen = skb_headlen(from); 3669 if (!hlen) 3670 hlen = from->len; 3671 } 3672 3673 if (skb_has_frag_list(from)) 3674 hlen = from->len; 3675 3676 return hlen; 3677 } 3678 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3679 3680 /** 3681 * skb_zerocopy - Zero copy skb to skb 3682 * @to: destination buffer 3683 * @from: source buffer 3684 * @len: number of bytes to copy from source buffer 3685 * @hlen: size of linear headroom in destination buffer 3686 * 3687 * Copies up to `len` bytes from `from` to `to` by creating references 3688 * to the frags in the source buffer. 3689 * 3690 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3691 * headroom in the `to` buffer. 3692 * 3693 * Return value: 3694 * 0: everything is OK 3695 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3696 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3697 */ 3698 int 3699 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3700 { 3701 int i, j = 0; 3702 int plen = 0; /* length of skb->head fragment */ 3703 int ret; 3704 struct page *page; 3705 unsigned int offset; 3706 3707 BUG_ON(!from->head_frag && !hlen); 3708 3709 /* dont bother with small payloads */ 3710 if (len <= skb_tailroom(to)) 3711 return skb_copy_bits(from, 0, skb_put(to, len), len); 3712 3713 if (hlen) { 3714 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3715 if (unlikely(ret)) 3716 return ret; 3717 len -= hlen; 3718 } else { 3719 plen = min_t(int, skb_headlen(from), len); 3720 if (plen) { 3721 page = virt_to_head_page(from->head); 3722 offset = from->data - (unsigned char *)page_address(page); 3723 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3724 offset, plen); 3725 get_page(page); 3726 j = 1; 3727 len -= plen; 3728 } 3729 } 3730 3731 skb_len_add(to, len + plen); 3732 3733 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3734 skb_tx_error(from); 3735 return -ENOMEM; 3736 } 3737 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3738 3739 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3740 int size; 3741 3742 if (!len) 3743 break; 3744 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3745 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3746 len); 3747 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3748 len -= size; 3749 skb_frag_ref(to, j); 3750 j++; 3751 } 3752 skb_shinfo(to)->nr_frags = j; 3753 3754 return 0; 3755 } 3756 EXPORT_SYMBOL_GPL(skb_zerocopy); 3757 3758 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3759 { 3760 __wsum csum; 3761 long csstart; 3762 3763 if (skb->ip_summed == CHECKSUM_PARTIAL) 3764 csstart = skb_checksum_start_offset(skb); 3765 else 3766 csstart = skb_headlen(skb); 3767 3768 BUG_ON(csstart > skb_headlen(skb)); 3769 3770 skb_copy_from_linear_data(skb, to, csstart); 3771 3772 csum = 0; 3773 if (csstart != skb->len) 3774 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3775 skb->len - csstart); 3776 3777 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3778 long csstuff = csstart + skb->csum_offset; 3779 3780 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3781 } 3782 } 3783 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3784 3785 /** 3786 * skb_dequeue - remove from the head of the queue 3787 * @list: list to dequeue from 3788 * 3789 * Remove the head of the list. The list lock is taken so the function 3790 * may be used safely with other locking list functions. The head item is 3791 * returned or %NULL if the list is empty. 3792 */ 3793 3794 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3795 { 3796 unsigned long flags; 3797 struct sk_buff *result; 3798 3799 spin_lock_irqsave(&list->lock, flags); 3800 result = __skb_dequeue(list); 3801 spin_unlock_irqrestore(&list->lock, flags); 3802 return result; 3803 } 3804 EXPORT_SYMBOL(skb_dequeue); 3805 3806 /** 3807 * skb_dequeue_tail - remove from the tail of the queue 3808 * @list: list to dequeue from 3809 * 3810 * Remove the tail of the list. The list lock is taken so the function 3811 * may be used safely with other locking list functions. The tail item is 3812 * returned or %NULL if the list is empty. 3813 */ 3814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3815 { 3816 unsigned long flags; 3817 struct sk_buff *result; 3818 3819 spin_lock_irqsave(&list->lock, flags); 3820 result = __skb_dequeue_tail(list); 3821 spin_unlock_irqrestore(&list->lock, flags); 3822 return result; 3823 } 3824 EXPORT_SYMBOL(skb_dequeue_tail); 3825 3826 /** 3827 * skb_queue_purge_reason - empty a list 3828 * @list: list to empty 3829 * @reason: drop reason 3830 * 3831 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3832 * the list and one reference dropped. This function takes the list 3833 * lock and is atomic with respect to other list locking functions. 3834 */ 3835 void skb_queue_purge_reason(struct sk_buff_head *list, 3836 enum skb_drop_reason reason) 3837 { 3838 struct sk_buff_head tmp; 3839 unsigned long flags; 3840 3841 if (skb_queue_empty_lockless(list)) 3842 return; 3843 3844 __skb_queue_head_init(&tmp); 3845 3846 spin_lock_irqsave(&list->lock, flags); 3847 skb_queue_splice_init(list, &tmp); 3848 spin_unlock_irqrestore(&list->lock, flags); 3849 3850 __skb_queue_purge_reason(&tmp, reason); 3851 } 3852 EXPORT_SYMBOL(skb_queue_purge_reason); 3853 3854 /** 3855 * skb_rbtree_purge - empty a skb rbtree 3856 * @root: root of the rbtree to empty 3857 * Return value: the sum of truesizes of all purged skbs. 3858 * 3859 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3860 * the list and one reference dropped. This function does not take 3861 * any lock. Synchronization should be handled by the caller (e.g., TCP 3862 * out-of-order queue is protected by the socket lock). 3863 */ 3864 unsigned int skb_rbtree_purge(struct rb_root *root) 3865 { 3866 struct rb_node *p = rb_first(root); 3867 unsigned int sum = 0; 3868 3869 while (p) { 3870 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3871 3872 p = rb_next(p); 3873 rb_erase(&skb->rbnode, root); 3874 sum += skb->truesize; 3875 kfree_skb(skb); 3876 } 3877 return sum; 3878 } 3879 3880 void skb_errqueue_purge(struct sk_buff_head *list) 3881 { 3882 struct sk_buff *skb, *next; 3883 struct sk_buff_head kill; 3884 unsigned long flags; 3885 3886 __skb_queue_head_init(&kill); 3887 3888 spin_lock_irqsave(&list->lock, flags); 3889 skb_queue_walk_safe(list, skb, next) { 3890 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3891 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3892 continue; 3893 __skb_unlink(skb, list); 3894 __skb_queue_tail(&kill, skb); 3895 } 3896 spin_unlock_irqrestore(&list->lock, flags); 3897 __skb_queue_purge(&kill); 3898 } 3899 EXPORT_SYMBOL(skb_errqueue_purge); 3900 3901 /** 3902 * skb_queue_head - queue a buffer at the list head 3903 * @list: list to use 3904 * @newsk: buffer to queue 3905 * 3906 * Queue a buffer at the start of the list. This function takes the 3907 * list lock and can be used safely with other locking &sk_buff functions 3908 * safely. 3909 * 3910 * A buffer cannot be placed on two lists at the same time. 3911 */ 3912 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3913 { 3914 unsigned long flags; 3915 3916 spin_lock_irqsave(&list->lock, flags); 3917 __skb_queue_head(list, newsk); 3918 spin_unlock_irqrestore(&list->lock, flags); 3919 } 3920 EXPORT_SYMBOL(skb_queue_head); 3921 3922 /** 3923 * skb_queue_tail - queue a buffer at the list tail 3924 * @list: list to use 3925 * @newsk: buffer to queue 3926 * 3927 * Queue a buffer at the tail of the list. This function takes the 3928 * list lock and can be used safely with other locking &sk_buff functions 3929 * safely. 3930 * 3931 * A buffer cannot be placed on two lists at the same time. 3932 */ 3933 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3934 { 3935 unsigned long flags; 3936 3937 spin_lock_irqsave(&list->lock, flags); 3938 __skb_queue_tail(list, newsk); 3939 spin_unlock_irqrestore(&list->lock, flags); 3940 } 3941 EXPORT_SYMBOL(skb_queue_tail); 3942 3943 /** 3944 * skb_unlink - remove a buffer from a list 3945 * @skb: buffer to remove 3946 * @list: list to use 3947 * 3948 * Remove a packet from a list. The list locks are taken and this 3949 * function is atomic with respect to other list locked calls 3950 * 3951 * You must know what list the SKB is on. 3952 */ 3953 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3954 { 3955 unsigned long flags; 3956 3957 spin_lock_irqsave(&list->lock, flags); 3958 __skb_unlink(skb, list); 3959 spin_unlock_irqrestore(&list->lock, flags); 3960 } 3961 EXPORT_SYMBOL(skb_unlink); 3962 3963 /** 3964 * skb_append - append a buffer 3965 * @old: buffer to insert after 3966 * @newsk: buffer to insert 3967 * @list: list to use 3968 * 3969 * Place a packet after a given packet in a list. The list locks are taken 3970 * and this function is atomic with respect to other list locked calls. 3971 * A buffer cannot be placed on two lists at the same time. 3972 */ 3973 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3974 { 3975 unsigned long flags; 3976 3977 spin_lock_irqsave(&list->lock, flags); 3978 __skb_queue_after(list, old, newsk); 3979 spin_unlock_irqrestore(&list->lock, flags); 3980 } 3981 EXPORT_SYMBOL(skb_append); 3982 3983 static inline void skb_split_inside_header(struct sk_buff *skb, 3984 struct sk_buff* skb1, 3985 const u32 len, const int pos) 3986 { 3987 int i; 3988 3989 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3990 pos - len); 3991 /* And move data appendix as is. */ 3992 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3993 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3994 3995 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3996 skb_shinfo(skb)->nr_frags = 0; 3997 skb1->data_len = skb->data_len; 3998 skb1->len += skb1->data_len; 3999 skb->data_len = 0; 4000 skb->len = len; 4001 skb_set_tail_pointer(skb, len); 4002 } 4003 4004 static inline void skb_split_no_header(struct sk_buff *skb, 4005 struct sk_buff* skb1, 4006 const u32 len, int pos) 4007 { 4008 int i, k = 0; 4009 const int nfrags = skb_shinfo(skb)->nr_frags; 4010 4011 skb_shinfo(skb)->nr_frags = 0; 4012 skb1->len = skb1->data_len = skb->len - len; 4013 skb->len = len; 4014 skb->data_len = len - pos; 4015 4016 for (i = 0; i < nfrags; i++) { 4017 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4018 4019 if (pos + size > len) { 4020 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4021 4022 if (pos < len) { 4023 /* Split frag. 4024 * We have two variants in this case: 4025 * 1. Move all the frag to the second 4026 * part, if it is possible. F.e. 4027 * this approach is mandatory for TUX, 4028 * where splitting is expensive. 4029 * 2. Split is accurately. We make this. 4030 */ 4031 skb_frag_ref(skb, i); 4032 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4033 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4034 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4035 skb_shinfo(skb)->nr_frags++; 4036 } 4037 k++; 4038 } else 4039 skb_shinfo(skb)->nr_frags++; 4040 pos += size; 4041 } 4042 skb_shinfo(skb1)->nr_frags = k; 4043 } 4044 4045 /** 4046 * skb_split - Split fragmented skb to two parts at length len. 4047 * @skb: the buffer to split 4048 * @skb1: the buffer to receive the second part 4049 * @len: new length for skb 4050 */ 4051 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4052 { 4053 int pos = skb_headlen(skb); 4054 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4055 4056 skb_zcopy_downgrade_managed(skb); 4057 4058 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4059 skb_zerocopy_clone(skb1, skb, 0); 4060 if (len < pos) /* Split line is inside header. */ 4061 skb_split_inside_header(skb, skb1, len, pos); 4062 else /* Second chunk has no header, nothing to copy. */ 4063 skb_split_no_header(skb, skb1, len, pos); 4064 } 4065 EXPORT_SYMBOL(skb_split); 4066 4067 /* Shifting from/to a cloned skb is a no-go. 4068 * 4069 * Caller cannot keep skb_shinfo related pointers past calling here! 4070 */ 4071 static int skb_prepare_for_shift(struct sk_buff *skb) 4072 { 4073 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4074 } 4075 4076 /** 4077 * skb_shift - Shifts paged data partially from skb to another 4078 * @tgt: buffer into which tail data gets added 4079 * @skb: buffer from which the paged data comes from 4080 * @shiftlen: shift up to this many bytes 4081 * 4082 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4083 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4084 * It's up to caller to free skb if everything was shifted. 4085 * 4086 * If @tgt runs out of frags, the whole operation is aborted. 4087 * 4088 * Skb cannot include anything else but paged data while tgt is allowed 4089 * to have non-paged data as well. 4090 * 4091 * TODO: full sized shift could be optimized but that would need 4092 * specialized skb free'er to handle frags without up-to-date nr_frags. 4093 */ 4094 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4095 { 4096 int from, to, merge, todo; 4097 skb_frag_t *fragfrom, *fragto; 4098 4099 BUG_ON(shiftlen > skb->len); 4100 4101 if (skb_headlen(skb)) 4102 return 0; 4103 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4104 return 0; 4105 4106 todo = shiftlen; 4107 from = 0; 4108 to = skb_shinfo(tgt)->nr_frags; 4109 fragfrom = &skb_shinfo(skb)->frags[from]; 4110 4111 /* Actual merge is delayed until the point when we know we can 4112 * commit all, so that we don't have to undo partial changes 4113 */ 4114 if (!to || 4115 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4116 skb_frag_off(fragfrom))) { 4117 merge = -1; 4118 } else { 4119 merge = to - 1; 4120 4121 todo -= skb_frag_size(fragfrom); 4122 if (todo < 0) { 4123 if (skb_prepare_for_shift(skb) || 4124 skb_prepare_for_shift(tgt)) 4125 return 0; 4126 4127 /* All previous frag pointers might be stale! */ 4128 fragfrom = &skb_shinfo(skb)->frags[from]; 4129 fragto = &skb_shinfo(tgt)->frags[merge]; 4130 4131 skb_frag_size_add(fragto, shiftlen); 4132 skb_frag_size_sub(fragfrom, shiftlen); 4133 skb_frag_off_add(fragfrom, shiftlen); 4134 4135 goto onlymerged; 4136 } 4137 4138 from++; 4139 } 4140 4141 /* Skip full, not-fitting skb to avoid expensive operations */ 4142 if ((shiftlen == skb->len) && 4143 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4144 return 0; 4145 4146 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4147 return 0; 4148 4149 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4150 if (to == MAX_SKB_FRAGS) 4151 return 0; 4152 4153 fragfrom = &skb_shinfo(skb)->frags[from]; 4154 fragto = &skb_shinfo(tgt)->frags[to]; 4155 4156 if (todo >= skb_frag_size(fragfrom)) { 4157 *fragto = *fragfrom; 4158 todo -= skb_frag_size(fragfrom); 4159 from++; 4160 to++; 4161 4162 } else { 4163 __skb_frag_ref(fragfrom, skb->pp_recycle); 4164 skb_frag_page_copy(fragto, fragfrom); 4165 skb_frag_off_copy(fragto, fragfrom); 4166 skb_frag_size_set(fragto, todo); 4167 4168 skb_frag_off_add(fragfrom, todo); 4169 skb_frag_size_sub(fragfrom, todo); 4170 todo = 0; 4171 4172 to++; 4173 break; 4174 } 4175 } 4176 4177 /* Ready to "commit" this state change to tgt */ 4178 skb_shinfo(tgt)->nr_frags = to; 4179 4180 if (merge >= 0) { 4181 fragfrom = &skb_shinfo(skb)->frags[0]; 4182 fragto = &skb_shinfo(tgt)->frags[merge]; 4183 4184 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4185 __skb_frag_unref(fragfrom, skb->pp_recycle); 4186 } 4187 4188 /* Reposition in the original skb */ 4189 to = 0; 4190 while (from < skb_shinfo(skb)->nr_frags) 4191 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4192 skb_shinfo(skb)->nr_frags = to; 4193 4194 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4195 4196 onlymerged: 4197 /* Most likely the tgt won't ever need its checksum anymore, skb on 4198 * the other hand might need it if it needs to be resent 4199 */ 4200 tgt->ip_summed = CHECKSUM_PARTIAL; 4201 skb->ip_summed = CHECKSUM_PARTIAL; 4202 4203 skb_len_add(skb, -shiftlen); 4204 skb_len_add(tgt, shiftlen); 4205 4206 return shiftlen; 4207 } 4208 4209 /** 4210 * skb_prepare_seq_read - Prepare a sequential read of skb data 4211 * @skb: the buffer to read 4212 * @from: lower offset of data to be read 4213 * @to: upper offset of data to be read 4214 * @st: state variable 4215 * 4216 * Initializes the specified state variable. Must be called before 4217 * invoking skb_seq_read() for the first time. 4218 */ 4219 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4220 unsigned int to, struct skb_seq_state *st) 4221 { 4222 st->lower_offset = from; 4223 st->upper_offset = to; 4224 st->root_skb = st->cur_skb = skb; 4225 st->frag_idx = st->stepped_offset = 0; 4226 st->frag_data = NULL; 4227 st->frag_off = 0; 4228 } 4229 EXPORT_SYMBOL(skb_prepare_seq_read); 4230 4231 /** 4232 * skb_seq_read - Sequentially read skb data 4233 * @consumed: number of bytes consumed by the caller so far 4234 * @data: destination pointer for data to be returned 4235 * @st: state variable 4236 * 4237 * Reads a block of skb data at @consumed relative to the 4238 * lower offset specified to skb_prepare_seq_read(). Assigns 4239 * the head of the data block to @data and returns the length 4240 * of the block or 0 if the end of the skb data or the upper 4241 * offset has been reached. 4242 * 4243 * The caller is not required to consume all of the data 4244 * returned, i.e. @consumed is typically set to the number 4245 * of bytes already consumed and the next call to 4246 * skb_seq_read() will return the remaining part of the block. 4247 * 4248 * Note 1: The size of each block of data returned can be arbitrary, 4249 * this limitation is the cost for zerocopy sequential 4250 * reads of potentially non linear data. 4251 * 4252 * Note 2: Fragment lists within fragments are not implemented 4253 * at the moment, state->root_skb could be replaced with 4254 * a stack for this purpose. 4255 */ 4256 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4257 struct skb_seq_state *st) 4258 { 4259 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4260 skb_frag_t *frag; 4261 4262 if (unlikely(abs_offset >= st->upper_offset)) { 4263 if (st->frag_data) { 4264 kunmap_atomic(st->frag_data); 4265 st->frag_data = NULL; 4266 } 4267 return 0; 4268 } 4269 4270 next_skb: 4271 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4272 4273 if (abs_offset < block_limit && !st->frag_data) { 4274 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4275 return block_limit - abs_offset; 4276 } 4277 4278 if (st->frag_idx == 0 && !st->frag_data) 4279 st->stepped_offset += skb_headlen(st->cur_skb); 4280 4281 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4282 unsigned int pg_idx, pg_off, pg_sz; 4283 4284 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4285 4286 pg_idx = 0; 4287 pg_off = skb_frag_off(frag); 4288 pg_sz = skb_frag_size(frag); 4289 4290 if (skb_frag_must_loop(skb_frag_page(frag))) { 4291 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4292 pg_off = offset_in_page(pg_off + st->frag_off); 4293 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4294 PAGE_SIZE - pg_off); 4295 } 4296 4297 block_limit = pg_sz + st->stepped_offset; 4298 if (abs_offset < block_limit) { 4299 if (!st->frag_data) 4300 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4301 4302 *data = (u8 *)st->frag_data + pg_off + 4303 (abs_offset - st->stepped_offset); 4304 4305 return block_limit - abs_offset; 4306 } 4307 4308 if (st->frag_data) { 4309 kunmap_atomic(st->frag_data); 4310 st->frag_data = NULL; 4311 } 4312 4313 st->stepped_offset += pg_sz; 4314 st->frag_off += pg_sz; 4315 if (st->frag_off == skb_frag_size(frag)) { 4316 st->frag_off = 0; 4317 st->frag_idx++; 4318 } 4319 } 4320 4321 if (st->frag_data) { 4322 kunmap_atomic(st->frag_data); 4323 st->frag_data = NULL; 4324 } 4325 4326 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4327 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4328 st->frag_idx = 0; 4329 goto next_skb; 4330 } else if (st->cur_skb->next) { 4331 st->cur_skb = st->cur_skb->next; 4332 st->frag_idx = 0; 4333 goto next_skb; 4334 } 4335 4336 return 0; 4337 } 4338 EXPORT_SYMBOL(skb_seq_read); 4339 4340 /** 4341 * skb_abort_seq_read - Abort a sequential read of skb data 4342 * @st: state variable 4343 * 4344 * Must be called if skb_seq_read() was not called until it 4345 * returned 0. 4346 */ 4347 void skb_abort_seq_read(struct skb_seq_state *st) 4348 { 4349 if (st->frag_data) 4350 kunmap_atomic(st->frag_data); 4351 } 4352 EXPORT_SYMBOL(skb_abort_seq_read); 4353 4354 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4355 4356 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4357 struct ts_config *conf, 4358 struct ts_state *state) 4359 { 4360 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4361 } 4362 4363 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4364 { 4365 skb_abort_seq_read(TS_SKB_CB(state)); 4366 } 4367 4368 /** 4369 * skb_find_text - Find a text pattern in skb data 4370 * @skb: the buffer to look in 4371 * @from: search offset 4372 * @to: search limit 4373 * @config: textsearch configuration 4374 * 4375 * Finds a pattern in the skb data according to the specified 4376 * textsearch configuration. Use textsearch_next() to retrieve 4377 * subsequent occurrences of the pattern. Returns the offset 4378 * to the first occurrence or UINT_MAX if no match was found. 4379 */ 4380 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4381 unsigned int to, struct ts_config *config) 4382 { 4383 unsigned int patlen = config->ops->get_pattern_len(config); 4384 struct ts_state state; 4385 unsigned int ret; 4386 4387 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4388 4389 config->get_next_block = skb_ts_get_next_block; 4390 config->finish = skb_ts_finish; 4391 4392 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4393 4394 ret = textsearch_find(config, &state); 4395 return (ret + patlen <= to - from ? ret : UINT_MAX); 4396 } 4397 EXPORT_SYMBOL(skb_find_text); 4398 4399 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4400 int offset, size_t size, size_t max_frags) 4401 { 4402 int i = skb_shinfo(skb)->nr_frags; 4403 4404 if (skb_can_coalesce(skb, i, page, offset)) { 4405 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4406 } else if (i < max_frags) { 4407 skb_zcopy_downgrade_managed(skb); 4408 get_page(page); 4409 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4410 } else { 4411 return -EMSGSIZE; 4412 } 4413 4414 return 0; 4415 } 4416 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4417 4418 /** 4419 * skb_pull_rcsum - pull skb and update receive checksum 4420 * @skb: buffer to update 4421 * @len: length of data pulled 4422 * 4423 * This function performs an skb_pull on the packet and updates 4424 * the CHECKSUM_COMPLETE checksum. It should be used on 4425 * receive path processing instead of skb_pull unless you know 4426 * that the checksum difference is zero (e.g., a valid IP header) 4427 * or you are setting ip_summed to CHECKSUM_NONE. 4428 */ 4429 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4430 { 4431 unsigned char *data = skb->data; 4432 4433 BUG_ON(len > skb->len); 4434 __skb_pull(skb, len); 4435 skb_postpull_rcsum(skb, data, len); 4436 return skb->data; 4437 } 4438 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4439 4440 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4441 { 4442 skb_frag_t head_frag; 4443 struct page *page; 4444 4445 page = virt_to_head_page(frag_skb->head); 4446 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4447 (unsigned char *)page_address(page), 4448 skb_headlen(frag_skb)); 4449 return head_frag; 4450 } 4451 4452 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4453 netdev_features_t features, 4454 unsigned int offset) 4455 { 4456 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4457 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4458 unsigned int delta_truesize = 0; 4459 unsigned int delta_len = 0; 4460 struct sk_buff *tail = NULL; 4461 struct sk_buff *nskb, *tmp; 4462 int len_diff, err; 4463 4464 skb_push(skb, -skb_network_offset(skb) + offset); 4465 4466 /* Ensure the head is writeable before touching the shared info */ 4467 err = skb_unclone(skb, GFP_ATOMIC); 4468 if (err) 4469 goto err_linearize; 4470 4471 skb_shinfo(skb)->frag_list = NULL; 4472 4473 while (list_skb) { 4474 nskb = list_skb; 4475 list_skb = list_skb->next; 4476 4477 err = 0; 4478 delta_truesize += nskb->truesize; 4479 if (skb_shared(nskb)) { 4480 tmp = skb_clone(nskb, GFP_ATOMIC); 4481 if (tmp) { 4482 consume_skb(nskb); 4483 nskb = tmp; 4484 err = skb_unclone(nskb, GFP_ATOMIC); 4485 } else { 4486 err = -ENOMEM; 4487 } 4488 } 4489 4490 if (!tail) 4491 skb->next = nskb; 4492 else 4493 tail->next = nskb; 4494 4495 if (unlikely(err)) { 4496 nskb->next = list_skb; 4497 goto err_linearize; 4498 } 4499 4500 tail = nskb; 4501 4502 delta_len += nskb->len; 4503 4504 skb_push(nskb, -skb_network_offset(nskb) + offset); 4505 4506 skb_release_head_state(nskb); 4507 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4508 __copy_skb_header(nskb, skb); 4509 4510 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4511 nskb->transport_header += len_diff; 4512 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4513 nskb->data - tnl_hlen, 4514 offset + tnl_hlen); 4515 4516 if (skb_needs_linearize(nskb, features) && 4517 __skb_linearize(nskb)) 4518 goto err_linearize; 4519 } 4520 4521 skb->truesize = skb->truesize - delta_truesize; 4522 skb->data_len = skb->data_len - delta_len; 4523 skb->len = skb->len - delta_len; 4524 4525 skb_gso_reset(skb); 4526 4527 skb->prev = tail; 4528 4529 if (skb_needs_linearize(skb, features) && 4530 __skb_linearize(skb)) 4531 goto err_linearize; 4532 4533 skb_get(skb); 4534 4535 return skb; 4536 4537 err_linearize: 4538 kfree_skb_list(skb->next); 4539 skb->next = NULL; 4540 return ERR_PTR(-ENOMEM); 4541 } 4542 EXPORT_SYMBOL_GPL(skb_segment_list); 4543 4544 /** 4545 * skb_segment - Perform protocol segmentation on skb. 4546 * @head_skb: buffer to segment 4547 * @features: features for the output path (see dev->features) 4548 * 4549 * This function performs segmentation on the given skb. It returns 4550 * a pointer to the first in a list of new skbs for the segments. 4551 * In case of error it returns ERR_PTR(err). 4552 */ 4553 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4554 netdev_features_t features) 4555 { 4556 struct sk_buff *segs = NULL; 4557 struct sk_buff *tail = NULL; 4558 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4559 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4560 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4561 unsigned int offset = doffset; 4562 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4563 unsigned int partial_segs = 0; 4564 unsigned int headroom; 4565 unsigned int len = head_skb->len; 4566 struct sk_buff *frag_skb; 4567 skb_frag_t *frag; 4568 __be16 proto; 4569 bool csum, sg; 4570 int err = -ENOMEM; 4571 int i = 0; 4572 int nfrags, pos; 4573 4574 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4575 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4576 struct sk_buff *check_skb; 4577 4578 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4579 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4580 /* gso_size is untrusted, and we have a frag_list with 4581 * a linear non head_frag item. 4582 * 4583 * If head_skb's headlen does not fit requested gso_size, 4584 * it means that the frag_list members do NOT terminate 4585 * on exact gso_size boundaries. Hence we cannot perform 4586 * skb_frag_t page sharing. Therefore we must fallback to 4587 * copying the frag_list skbs; we do so by disabling SG. 4588 */ 4589 features &= ~NETIF_F_SG; 4590 break; 4591 } 4592 } 4593 } 4594 4595 __skb_push(head_skb, doffset); 4596 proto = skb_network_protocol(head_skb, NULL); 4597 if (unlikely(!proto)) 4598 return ERR_PTR(-EINVAL); 4599 4600 sg = !!(features & NETIF_F_SG); 4601 csum = !!can_checksum_protocol(features, proto); 4602 4603 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4604 if (!(features & NETIF_F_GSO_PARTIAL)) { 4605 struct sk_buff *iter; 4606 unsigned int frag_len; 4607 4608 if (!list_skb || 4609 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4610 goto normal; 4611 4612 /* If we get here then all the required 4613 * GSO features except frag_list are supported. 4614 * Try to split the SKB to multiple GSO SKBs 4615 * with no frag_list. 4616 * Currently we can do that only when the buffers don't 4617 * have a linear part and all the buffers except 4618 * the last are of the same length. 4619 */ 4620 frag_len = list_skb->len; 4621 skb_walk_frags(head_skb, iter) { 4622 if (frag_len != iter->len && iter->next) 4623 goto normal; 4624 if (skb_headlen(iter) && !iter->head_frag) 4625 goto normal; 4626 4627 len -= iter->len; 4628 } 4629 4630 if (len != frag_len) 4631 goto normal; 4632 } 4633 4634 /* GSO partial only requires that we trim off any excess that 4635 * doesn't fit into an MSS sized block, so take care of that 4636 * now. 4637 * Cap len to not accidentally hit GSO_BY_FRAGS. 4638 */ 4639 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4640 if (partial_segs > 1) 4641 mss *= partial_segs; 4642 else 4643 partial_segs = 0; 4644 } 4645 4646 normal: 4647 headroom = skb_headroom(head_skb); 4648 pos = skb_headlen(head_skb); 4649 4650 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4651 return ERR_PTR(-ENOMEM); 4652 4653 nfrags = skb_shinfo(head_skb)->nr_frags; 4654 frag = skb_shinfo(head_skb)->frags; 4655 frag_skb = head_skb; 4656 4657 do { 4658 struct sk_buff *nskb; 4659 skb_frag_t *nskb_frag; 4660 int hsize; 4661 int size; 4662 4663 if (unlikely(mss == GSO_BY_FRAGS)) { 4664 len = list_skb->len; 4665 } else { 4666 len = head_skb->len - offset; 4667 if (len > mss) 4668 len = mss; 4669 } 4670 4671 hsize = skb_headlen(head_skb) - offset; 4672 4673 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4674 (skb_headlen(list_skb) == len || sg)) { 4675 BUG_ON(skb_headlen(list_skb) > len); 4676 4677 nskb = skb_clone(list_skb, GFP_ATOMIC); 4678 if (unlikely(!nskb)) 4679 goto err; 4680 4681 i = 0; 4682 nfrags = skb_shinfo(list_skb)->nr_frags; 4683 frag = skb_shinfo(list_skb)->frags; 4684 frag_skb = list_skb; 4685 pos += skb_headlen(list_skb); 4686 4687 while (pos < offset + len) { 4688 BUG_ON(i >= nfrags); 4689 4690 size = skb_frag_size(frag); 4691 if (pos + size > offset + len) 4692 break; 4693 4694 i++; 4695 pos += size; 4696 frag++; 4697 } 4698 4699 list_skb = list_skb->next; 4700 4701 if (unlikely(pskb_trim(nskb, len))) { 4702 kfree_skb(nskb); 4703 goto err; 4704 } 4705 4706 hsize = skb_end_offset(nskb); 4707 if (skb_cow_head(nskb, doffset + headroom)) { 4708 kfree_skb(nskb); 4709 goto err; 4710 } 4711 4712 nskb->truesize += skb_end_offset(nskb) - hsize; 4713 skb_release_head_state(nskb); 4714 __skb_push(nskb, doffset); 4715 } else { 4716 if (hsize < 0) 4717 hsize = 0; 4718 if (hsize > len || !sg) 4719 hsize = len; 4720 4721 nskb = __alloc_skb(hsize + doffset + headroom, 4722 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4723 NUMA_NO_NODE); 4724 4725 if (unlikely(!nskb)) 4726 goto err; 4727 4728 skb_reserve(nskb, headroom); 4729 __skb_put(nskb, doffset); 4730 } 4731 4732 if (segs) 4733 tail->next = nskb; 4734 else 4735 segs = nskb; 4736 tail = nskb; 4737 4738 __copy_skb_header(nskb, head_skb); 4739 4740 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4741 skb_reset_mac_len(nskb); 4742 4743 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4744 nskb->data - tnl_hlen, 4745 doffset + tnl_hlen); 4746 4747 if (nskb->len == len + doffset) 4748 goto perform_csum_check; 4749 4750 if (!sg) { 4751 if (!csum) { 4752 if (!nskb->remcsum_offload) 4753 nskb->ip_summed = CHECKSUM_NONE; 4754 SKB_GSO_CB(nskb)->csum = 4755 skb_copy_and_csum_bits(head_skb, offset, 4756 skb_put(nskb, 4757 len), 4758 len); 4759 SKB_GSO_CB(nskb)->csum_start = 4760 skb_headroom(nskb) + doffset; 4761 } else { 4762 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4763 goto err; 4764 } 4765 continue; 4766 } 4767 4768 nskb_frag = skb_shinfo(nskb)->frags; 4769 4770 skb_copy_from_linear_data_offset(head_skb, offset, 4771 skb_put(nskb, hsize), hsize); 4772 4773 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4774 SKBFL_SHARED_FRAG; 4775 4776 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4777 goto err; 4778 4779 while (pos < offset + len) { 4780 if (i >= nfrags) { 4781 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4782 skb_zerocopy_clone(nskb, list_skb, 4783 GFP_ATOMIC)) 4784 goto err; 4785 4786 i = 0; 4787 nfrags = skb_shinfo(list_skb)->nr_frags; 4788 frag = skb_shinfo(list_skb)->frags; 4789 frag_skb = list_skb; 4790 if (!skb_headlen(list_skb)) { 4791 BUG_ON(!nfrags); 4792 } else { 4793 BUG_ON(!list_skb->head_frag); 4794 4795 /* to make room for head_frag. */ 4796 i--; 4797 frag--; 4798 } 4799 4800 list_skb = list_skb->next; 4801 } 4802 4803 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4804 MAX_SKB_FRAGS)) { 4805 net_warn_ratelimited( 4806 "skb_segment: too many frags: %u %u\n", 4807 pos, mss); 4808 err = -EINVAL; 4809 goto err; 4810 } 4811 4812 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4813 __skb_frag_ref(nskb_frag, nskb->pp_recycle); 4814 size = skb_frag_size(nskb_frag); 4815 4816 if (pos < offset) { 4817 skb_frag_off_add(nskb_frag, offset - pos); 4818 skb_frag_size_sub(nskb_frag, offset - pos); 4819 } 4820 4821 skb_shinfo(nskb)->nr_frags++; 4822 4823 if (pos + size <= offset + len) { 4824 i++; 4825 frag++; 4826 pos += size; 4827 } else { 4828 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4829 goto skip_fraglist; 4830 } 4831 4832 nskb_frag++; 4833 } 4834 4835 skip_fraglist: 4836 nskb->data_len = len - hsize; 4837 nskb->len += nskb->data_len; 4838 nskb->truesize += nskb->data_len; 4839 4840 perform_csum_check: 4841 if (!csum) { 4842 if (skb_has_shared_frag(nskb) && 4843 __skb_linearize(nskb)) 4844 goto err; 4845 4846 if (!nskb->remcsum_offload) 4847 nskb->ip_summed = CHECKSUM_NONE; 4848 SKB_GSO_CB(nskb)->csum = 4849 skb_checksum(nskb, doffset, 4850 nskb->len - doffset, 0); 4851 SKB_GSO_CB(nskb)->csum_start = 4852 skb_headroom(nskb) + doffset; 4853 } 4854 } while ((offset += len) < head_skb->len); 4855 4856 /* Some callers want to get the end of the list. 4857 * Put it in segs->prev to avoid walking the list. 4858 * (see validate_xmit_skb_list() for example) 4859 */ 4860 segs->prev = tail; 4861 4862 if (partial_segs) { 4863 struct sk_buff *iter; 4864 int type = skb_shinfo(head_skb)->gso_type; 4865 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4866 4867 /* Update type to add partial and then remove dodgy if set */ 4868 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4869 type &= ~SKB_GSO_DODGY; 4870 4871 /* Update GSO info and prepare to start updating headers on 4872 * our way back down the stack of protocols. 4873 */ 4874 for (iter = segs; iter; iter = iter->next) { 4875 skb_shinfo(iter)->gso_size = gso_size; 4876 skb_shinfo(iter)->gso_segs = partial_segs; 4877 skb_shinfo(iter)->gso_type = type; 4878 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4879 } 4880 4881 if (tail->len - doffset <= gso_size) 4882 skb_shinfo(tail)->gso_size = 0; 4883 else if (tail != segs) 4884 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4885 } 4886 4887 /* Following permits correct backpressure, for protocols 4888 * using skb_set_owner_w(). 4889 * Idea is to tranfert ownership from head_skb to last segment. 4890 */ 4891 if (head_skb->destructor == sock_wfree) { 4892 swap(tail->truesize, head_skb->truesize); 4893 swap(tail->destructor, head_skb->destructor); 4894 swap(tail->sk, head_skb->sk); 4895 } 4896 return segs; 4897 4898 err: 4899 kfree_skb_list(segs); 4900 return ERR_PTR(err); 4901 } 4902 EXPORT_SYMBOL_GPL(skb_segment); 4903 4904 #ifdef CONFIG_SKB_EXTENSIONS 4905 #define SKB_EXT_ALIGN_VALUE 8 4906 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4907 4908 static const u8 skb_ext_type_len[] = { 4909 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4910 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4911 #endif 4912 #ifdef CONFIG_XFRM 4913 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4914 #endif 4915 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4916 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4917 #endif 4918 #if IS_ENABLED(CONFIG_MPTCP) 4919 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4920 #endif 4921 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4922 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4923 #endif 4924 }; 4925 4926 static __always_inline unsigned int skb_ext_total_length(void) 4927 { 4928 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4929 int i; 4930 4931 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4932 l += skb_ext_type_len[i]; 4933 4934 return l; 4935 } 4936 4937 static void skb_extensions_init(void) 4938 { 4939 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4940 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4941 BUILD_BUG_ON(skb_ext_total_length() > 255); 4942 #endif 4943 4944 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4945 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4946 0, 4947 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4948 NULL); 4949 } 4950 #else 4951 static void skb_extensions_init(void) {} 4952 #endif 4953 4954 /* The SKB kmem_cache slab is critical for network performance. Never 4955 * merge/alias the slab with similar sized objects. This avoids fragmentation 4956 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4957 */ 4958 #ifndef CONFIG_SLUB_TINY 4959 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4960 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4961 #define FLAG_SKB_NO_MERGE 0 4962 #endif 4963 4964 void __init skb_init(void) 4965 { 4966 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4967 sizeof(struct sk_buff), 4968 0, 4969 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4970 FLAG_SKB_NO_MERGE, 4971 offsetof(struct sk_buff, cb), 4972 sizeof_field(struct sk_buff, cb), 4973 NULL); 4974 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4975 sizeof(struct sk_buff_fclones), 4976 0, 4977 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4978 NULL); 4979 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4980 * struct skb_shared_info is located at the end of skb->head, 4981 * and should not be copied to/from user. 4982 */ 4983 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4984 SKB_SMALL_HEAD_CACHE_SIZE, 4985 0, 4986 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4987 0, 4988 SKB_SMALL_HEAD_HEADROOM, 4989 NULL); 4990 skb_extensions_init(); 4991 } 4992 4993 static int 4994 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4995 unsigned int recursion_level) 4996 { 4997 int start = skb_headlen(skb); 4998 int i, copy = start - offset; 4999 struct sk_buff *frag_iter; 5000 int elt = 0; 5001 5002 if (unlikely(recursion_level >= 24)) 5003 return -EMSGSIZE; 5004 5005 if (copy > 0) { 5006 if (copy > len) 5007 copy = len; 5008 sg_set_buf(sg, skb->data + offset, copy); 5009 elt++; 5010 if ((len -= copy) == 0) 5011 return elt; 5012 offset += copy; 5013 } 5014 5015 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5016 int end; 5017 5018 WARN_ON(start > offset + len); 5019 5020 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5021 if ((copy = end - offset) > 0) { 5022 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5023 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5024 return -EMSGSIZE; 5025 5026 if (copy > len) 5027 copy = len; 5028 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5029 skb_frag_off(frag) + offset - start); 5030 elt++; 5031 if (!(len -= copy)) 5032 return elt; 5033 offset += copy; 5034 } 5035 start = end; 5036 } 5037 5038 skb_walk_frags(skb, frag_iter) { 5039 int end, ret; 5040 5041 WARN_ON(start > offset + len); 5042 5043 end = start + frag_iter->len; 5044 if ((copy = end - offset) > 0) { 5045 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5046 return -EMSGSIZE; 5047 5048 if (copy > len) 5049 copy = len; 5050 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5051 copy, recursion_level + 1); 5052 if (unlikely(ret < 0)) 5053 return ret; 5054 elt += ret; 5055 if ((len -= copy) == 0) 5056 return elt; 5057 offset += copy; 5058 } 5059 start = end; 5060 } 5061 BUG_ON(len); 5062 return elt; 5063 } 5064 5065 /** 5066 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5067 * @skb: Socket buffer containing the buffers to be mapped 5068 * @sg: The scatter-gather list to map into 5069 * @offset: The offset into the buffer's contents to start mapping 5070 * @len: Length of buffer space to be mapped 5071 * 5072 * Fill the specified scatter-gather list with mappings/pointers into a 5073 * region of the buffer space attached to a socket buffer. Returns either 5074 * the number of scatterlist items used, or -EMSGSIZE if the contents 5075 * could not fit. 5076 */ 5077 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5078 { 5079 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5080 5081 if (nsg <= 0) 5082 return nsg; 5083 5084 sg_mark_end(&sg[nsg - 1]); 5085 5086 return nsg; 5087 } 5088 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5089 5090 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5091 * sglist without mark the sg which contain last skb data as the end. 5092 * So the caller can mannipulate sg list as will when padding new data after 5093 * the first call without calling sg_unmark_end to expend sg list. 5094 * 5095 * Scenario to use skb_to_sgvec_nomark: 5096 * 1. sg_init_table 5097 * 2. skb_to_sgvec_nomark(payload1) 5098 * 3. skb_to_sgvec_nomark(payload2) 5099 * 5100 * This is equivalent to: 5101 * 1. sg_init_table 5102 * 2. skb_to_sgvec(payload1) 5103 * 3. sg_unmark_end 5104 * 4. skb_to_sgvec(payload2) 5105 * 5106 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5107 * is more preferable. 5108 */ 5109 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5110 int offset, int len) 5111 { 5112 return __skb_to_sgvec(skb, sg, offset, len, 0); 5113 } 5114 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5115 5116 5117 5118 /** 5119 * skb_cow_data - Check that a socket buffer's data buffers are writable 5120 * @skb: The socket buffer to check. 5121 * @tailbits: Amount of trailing space to be added 5122 * @trailer: Returned pointer to the skb where the @tailbits space begins 5123 * 5124 * Make sure that the data buffers attached to a socket buffer are 5125 * writable. If they are not, private copies are made of the data buffers 5126 * and the socket buffer is set to use these instead. 5127 * 5128 * If @tailbits is given, make sure that there is space to write @tailbits 5129 * bytes of data beyond current end of socket buffer. @trailer will be 5130 * set to point to the skb in which this space begins. 5131 * 5132 * The number of scatterlist elements required to completely map the 5133 * COW'd and extended socket buffer will be returned. 5134 */ 5135 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5136 { 5137 int copyflag; 5138 int elt; 5139 struct sk_buff *skb1, **skb_p; 5140 5141 /* If skb is cloned or its head is paged, reallocate 5142 * head pulling out all the pages (pages are considered not writable 5143 * at the moment even if they are anonymous). 5144 */ 5145 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5146 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5147 return -ENOMEM; 5148 5149 /* Easy case. Most of packets will go this way. */ 5150 if (!skb_has_frag_list(skb)) { 5151 /* A little of trouble, not enough of space for trailer. 5152 * This should not happen, when stack is tuned to generate 5153 * good frames. OK, on miss we reallocate and reserve even more 5154 * space, 128 bytes is fair. */ 5155 5156 if (skb_tailroom(skb) < tailbits && 5157 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5158 return -ENOMEM; 5159 5160 /* Voila! */ 5161 *trailer = skb; 5162 return 1; 5163 } 5164 5165 /* Misery. We are in troubles, going to mincer fragments... */ 5166 5167 elt = 1; 5168 skb_p = &skb_shinfo(skb)->frag_list; 5169 copyflag = 0; 5170 5171 while ((skb1 = *skb_p) != NULL) { 5172 int ntail = 0; 5173 5174 /* The fragment is partially pulled by someone, 5175 * this can happen on input. Copy it and everything 5176 * after it. */ 5177 5178 if (skb_shared(skb1)) 5179 copyflag = 1; 5180 5181 /* If the skb is the last, worry about trailer. */ 5182 5183 if (skb1->next == NULL && tailbits) { 5184 if (skb_shinfo(skb1)->nr_frags || 5185 skb_has_frag_list(skb1) || 5186 skb_tailroom(skb1) < tailbits) 5187 ntail = tailbits + 128; 5188 } 5189 5190 if (copyflag || 5191 skb_cloned(skb1) || 5192 ntail || 5193 skb_shinfo(skb1)->nr_frags || 5194 skb_has_frag_list(skb1)) { 5195 struct sk_buff *skb2; 5196 5197 /* Fuck, we are miserable poor guys... */ 5198 if (ntail == 0) 5199 skb2 = skb_copy(skb1, GFP_ATOMIC); 5200 else 5201 skb2 = skb_copy_expand(skb1, 5202 skb_headroom(skb1), 5203 ntail, 5204 GFP_ATOMIC); 5205 if (unlikely(skb2 == NULL)) 5206 return -ENOMEM; 5207 5208 if (skb1->sk) 5209 skb_set_owner_w(skb2, skb1->sk); 5210 5211 /* Looking around. Are we still alive? 5212 * OK, link new skb, drop old one */ 5213 5214 skb2->next = skb1->next; 5215 *skb_p = skb2; 5216 kfree_skb(skb1); 5217 skb1 = skb2; 5218 } 5219 elt++; 5220 *trailer = skb1; 5221 skb_p = &skb1->next; 5222 } 5223 5224 return elt; 5225 } 5226 EXPORT_SYMBOL_GPL(skb_cow_data); 5227 5228 static void sock_rmem_free(struct sk_buff *skb) 5229 { 5230 struct sock *sk = skb->sk; 5231 5232 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5233 } 5234 5235 static void skb_set_err_queue(struct sk_buff *skb) 5236 { 5237 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5238 * So, it is safe to (mis)use it to mark skbs on the error queue. 5239 */ 5240 skb->pkt_type = PACKET_OUTGOING; 5241 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5242 } 5243 5244 /* 5245 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5246 */ 5247 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5248 { 5249 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5250 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5251 return -ENOMEM; 5252 5253 skb_orphan(skb); 5254 skb->sk = sk; 5255 skb->destructor = sock_rmem_free; 5256 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5257 skb_set_err_queue(skb); 5258 5259 /* before exiting rcu section, make sure dst is refcounted */ 5260 skb_dst_force(skb); 5261 5262 skb_queue_tail(&sk->sk_error_queue, skb); 5263 if (!sock_flag(sk, SOCK_DEAD)) 5264 sk_error_report(sk); 5265 return 0; 5266 } 5267 EXPORT_SYMBOL(sock_queue_err_skb); 5268 5269 static bool is_icmp_err_skb(const struct sk_buff *skb) 5270 { 5271 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5272 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5273 } 5274 5275 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5276 { 5277 struct sk_buff_head *q = &sk->sk_error_queue; 5278 struct sk_buff *skb, *skb_next = NULL; 5279 bool icmp_next = false; 5280 unsigned long flags; 5281 5282 if (skb_queue_empty_lockless(q)) 5283 return NULL; 5284 5285 spin_lock_irqsave(&q->lock, flags); 5286 skb = __skb_dequeue(q); 5287 if (skb && (skb_next = skb_peek(q))) { 5288 icmp_next = is_icmp_err_skb(skb_next); 5289 if (icmp_next) 5290 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5291 } 5292 spin_unlock_irqrestore(&q->lock, flags); 5293 5294 if (is_icmp_err_skb(skb) && !icmp_next) 5295 sk->sk_err = 0; 5296 5297 if (skb_next) 5298 sk_error_report(sk); 5299 5300 return skb; 5301 } 5302 EXPORT_SYMBOL(sock_dequeue_err_skb); 5303 5304 /** 5305 * skb_clone_sk - create clone of skb, and take reference to socket 5306 * @skb: the skb to clone 5307 * 5308 * This function creates a clone of a buffer that holds a reference on 5309 * sk_refcnt. Buffers created via this function are meant to be 5310 * returned using sock_queue_err_skb, or free via kfree_skb. 5311 * 5312 * When passing buffers allocated with this function to sock_queue_err_skb 5313 * it is necessary to wrap the call with sock_hold/sock_put in order to 5314 * prevent the socket from being released prior to being enqueued on 5315 * the sk_error_queue. 5316 */ 5317 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5318 { 5319 struct sock *sk = skb->sk; 5320 struct sk_buff *clone; 5321 5322 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5323 return NULL; 5324 5325 clone = skb_clone(skb, GFP_ATOMIC); 5326 if (!clone) { 5327 sock_put(sk); 5328 return NULL; 5329 } 5330 5331 clone->sk = sk; 5332 clone->destructor = sock_efree; 5333 5334 return clone; 5335 } 5336 EXPORT_SYMBOL(skb_clone_sk); 5337 5338 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5339 struct sock *sk, 5340 int tstype, 5341 bool opt_stats) 5342 { 5343 struct sock_exterr_skb *serr; 5344 int err; 5345 5346 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5347 5348 serr = SKB_EXT_ERR(skb); 5349 memset(serr, 0, sizeof(*serr)); 5350 serr->ee.ee_errno = ENOMSG; 5351 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5352 serr->ee.ee_info = tstype; 5353 serr->opt_stats = opt_stats; 5354 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5355 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5356 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5357 if (sk_is_tcp(sk)) 5358 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5359 } 5360 5361 err = sock_queue_err_skb(sk, skb); 5362 5363 if (err) 5364 kfree_skb(skb); 5365 } 5366 5367 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5368 { 5369 bool ret; 5370 5371 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5372 return true; 5373 5374 read_lock_bh(&sk->sk_callback_lock); 5375 ret = sk->sk_socket && sk->sk_socket->file && 5376 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5377 read_unlock_bh(&sk->sk_callback_lock); 5378 return ret; 5379 } 5380 5381 void skb_complete_tx_timestamp(struct sk_buff *skb, 5382 struct skb_shared_hwtstamps *hwtstamps) 5383 { 5384 struct sock *sk = skb->sk; 5385 5386 if (!skb_may_tx_timestamp(sk, false)) 5387 goto err; 5388 5389 /* Take a reference to prevent skb_orphan() from freeing the socket, 5390 * but only if the socket refcount is not zero. 5391 */ 5392 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5393 *skb_hwtstamps(skb) = *hwtstamps; 5394 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5395 sock_put(sk); 5396 return; 5397 } 5398 5399 err: 5400 kfree_skb(skb); 5401 } 5402 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5403 5404 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5405 const struct sk_buff *ack_skb, 5406 struct skb_shared_hwtstamps *hwtstamps, 5407 struct sock *sk, int tstype) 5408 { 5409 struct sk_buff *skb; 5410 bool tsonly, opt_stats = false; 5411 u32 tsflags; 5412 5413 if (!sk) 5414 return; 5415 5416 tsflags = READ_ONCE(sk->sk_tsflags); 5417 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5418 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5419 return; 5420 5421 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5422 if (!skb_may_tx_timestamp(sk, tsonly)) 5423 return; 5424 5425 if (tsonly) { 5426 #ifdef CONFIG_INET 5427 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5428 sk_is_tcp(sk)) { 5429 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5430 ack_skb); 5431 opt_stats = true; 5432 } else 5433 #endif 5434 skb = alloc_skb(0, GFP_ATOMIC); 5435 } else { 5436 skb = skb_clone(orig_skb, GFP_ATOMIC); 5437 5438 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5439 kfree_skb(skb); 5440 return; 5441 } 5442 } 5443 if (!skb) 5444 return; 5445 5446 if (tsonly) { 5447 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5448 SKBTX_ANY_TSTAMP; 5449 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5450 } 5451 5452 if (hwtstamps) 5453 *skb_hwtstamps(skb) = *hwtstamps; 5454 else 5455 __net_timestamp(skb); 5456 5457 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5458 } 5459 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5460 5461 void skb_tstamp_tx(struct sk_buff *orig_skb, 5462 struct skb_shared_hwtstamps *hwtstamps) 5463 { 5464 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5465 SCM_TSTAMP_SND); 5466 } 5467 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5468 5469 #ifdef CONFIG_WIRELESS 5470 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5471 { 5472 struct sock *sk = skb->sk; 5473 struct sock_exterr_skb *serr; 5474 int err = 1; 5475 5476 skb->wifi_acked_valid = 1; 5477 skb->wifi_acked = acked; 5478 5479 serr = SKB_EXT_ERR(skb); 5480 memset(serr, 0, sizeof(*serr)); 5481 serr->ee.ee_errno = ENOMSG; 5482 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5483 5484 /* Take a reference to prevent skb_orphan() from freeing the socket, 5485 * but only if the socket refcount is not zero. 5486 */ 5487 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5488 err = sock_queue_err_skb(sk, skb); 5489 sock_put(sk); 5490 } 5491 if (err) 5492 kfree_skb(skb); 5493 } 5494 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5495 #endif /* CONFIG_WIRELESS */ 5496 5497 /** 5498 * skb_partial_csum_set - set up and verify partial csum values for packet 5499 * @skb: the skb to set 5500 * @start: the number of bytes after skb->data to start checksumming. 5501 * @off: the offset from start to place the checksum. 5502 * 5503 * For untrusted partially-checksummed packets, we need to make sure the values 5504 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5505 * 5506 * This function checks and sets those values and skb->ip_summed: if this 5507 * returns false you should drop the packet. 5508 */ 5509 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5510 { 5511 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5512 u32 csum_start = skb_headroom(skb) + (u32)start; 5513 5514 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5515 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5516 start, off, skb_headroom(skb), skb_headlen(skb)); 5517 return false; 5518 } 5519 skb->ip_summed = CHECKSUM_PARTIAL; 5520 skb->csum_start = csum_start; 5521 skb->csum_offset = off; 5522 skb->transport_header = csum_start; 5523 return true; 5524 } 5525 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5526 5527 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5528 unsigned int max) 5529 { 5530 if (skb_headlen(skb) >= len) 5531 return 0; 5532 5533 /* If we need to pullup then pullup to the max, so we 5534 * won't need to do it again. 5535 */ 5536 if (max > skb->len) 5537 max = skb->len; 5538 5539 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5540 return -ENOMEM; 5541 5542 if (skb_headlen(skb) < len) 5543 return -EPROTO; 5544 5545 return 0; 5546 } 5547 5548 #define MAX_TCP_HDR_LEN (15 * 4) 5549 5550 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5551 typeof(IPPROTO_IP) proto, 5552 unsigned int off) 5553 { 5554 int err; 5555 5556 switch (proto) { 5557 case IPPROTO_TCP: 5558 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5559 off + MAX_TCP_HDR_LEN); 5560 if (!err && !skb_partial_csum_set(skb, off, 5561 offsetof(struct tcphdr, 5562 check))) 5563 err = -EPROTO; 5564 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5565 5566 case IPPROTO_UDP: 5567 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5568 off + sizeof(struct udphdr)); 5569 if (!err && !skb_partial_csum_set(skb, off, 5570 offsetof(struct udphdr, 5571 check))) 5572 err = -EPROTO; 5573 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5574 } 5575 5576 return ERR_PTR(-EPROTO); 5577 } 5578 5579 /* This value should be large enough to cover a tagged ethernet header plus 5580 * maximally sized IP and TCP or UDP headers. 5581 */ 5582 #define MAX_IP_HDR_LEN 128 5583 5584 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5585 { 5586 unsigned int off; 5587 bool fragment; 5588 __sum16 *csum; 5589 int err; 5590 5591 fragment = false; 5592 5593 err = skb_maybe_pull_tail(skb, 5594 sizeof(struct iphdr), 5595 MAX_IP_HDR_LEN); 5596 if (err < 0) 5597 goto out; 5598 5599 if (ip_is_fragment(ip_hdr(skb))) 5600 fragment = true; 5601 5602 off = ip_hdrlen(skb); 5603 5604 err = -EPROTO; 5605 5606 if (fragment) 5607 goto out; 5608 5609 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5610 if (IS_ERR(csum)) 5611 return PTR_ERR(csum); 5612 5613 if (recalculate) 5614 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5615 ip_hdr(skb)->daddr, 5616 skb->len - off, 5617 ip_hdr(skb)->protocol, 0); 5618 err = 0; 5619 5620 out: 5621 return err; 5622 } 5623 5624 /* This value should be large enough to cover a tagged ethernet header plus 5625 * an IPv6 header, all options, and a maximal TCP or UDP header. 5626 */ 5627 #define MAX_IPV6_HDR_LEN 256 5628 5629 #define OPT_HDR(type, skb, off) \ 5630 (type *)(skb_network_header(skb) + (off)) 5631 5632 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5633 { 5634 int err; 5635 u8 nexthdr; 5636 unsigned int off; 5637 unsigned int len; 5638 bool fragment; 5639 bool done; 5640 __sum16 *csum; 5641 5642 fragment = false; 5643 done = false; 5644 5645 off = sizeof(struct ipv6hdr); 5646 5647 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5648 if (err < 0) 5649 goto out; 5650 5651 nexthdr = ipv6_hdr(skb)->nexthdr; 5652 5653 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5654 while (off <= len && !done) { 5655 switch (nexthdr) { 5656 case IPPROTO_DSTOPTS: 5657 case IPPROTO_HOPOPTS: 5658 case IPPROTO_ROUTING: { 5659 struct ipv6_opt_hdr *hp; 5660 5661 err = skb_maybe_pull_tail(skb, 5662 off + 5663 sizeof(struct ipv6_opt_hdr), 5664 MAX_IPV6_HDR_LEN); 5665 if (err < 0) 5666 goto out; 5667 5668 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5669 nexthdr = hp->nexthdr; 5670 off += ipv6_optlen(hp); 5671 break; 5672 } 5673 case IPPROTO_AH: { 5674 struct ip_auth_hdr *hp; 5675 5676 err = skb_maybe_pull_tail(skb, 5677 off + 5678 sizeof(struct ip_auth_hdr), 5679 MAX_IPV6_HDR_LEN); 5680 if (err < 0) 5681 goto out; 5682 5683 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5684 nexthdr = hp->nexthdr; 5685 off += ipv6_authlen(hp); 5686 break; 5687 } 5688 case IPPROTO_FRAGMENT: { 5689 struct frag_hdr *hp; 5690 5691 err = skb_maybe_pull_tail(skb, 5692 off + 5693 sizeof(struct frag_hdr), 5694 MAX_IPV6_HDR_LEN); 5695 if (err < 0) 5696 goto out; 5697 5698 hp = OPT_HDR(struct frag_hdr, skb, off); 5699 5700 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5701 fragment = true; 5702 5703 nexthdr = hp->nexthdr; 5704 off += sizeof(struct frag_hdr); 5705 break; 5706 } 5707 default: 5708 done = true; 5709 break; 5710 } 5711 } 5712 5713 err = -EPROTO; 5714 5715 if (!done || fragment) 5716 goto out; 5717 5718 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5719 if (IS_ERR(csum)) 5720 return PTR_ERR(csum); 5721 5722 if (recalculate) 5723 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5724 &ipv6_hdr(skb)->daddr, 5725 skb->len - off, nexthdr, 0); 5726 err = 0; 5727 5728 out: 5729 return err; 5730 } 5731 5732 /** 5733 * skb_checksum_setup - set up partial checksum offset 5734 * @skb: the skb to set up 5735 * @recalculate: if true the pseudo-header checksum will be recalculated 5736 */ 5737 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5738 { 5739 int err; 5740 5741 switch (skb->protocol) { 5742 case htons(ETH_P_IP): 5743 err = skb_checksum_setup_ipv4(skb, recalculate); 5744 break; 5745 5746 case htons(ETH_P_IPV6): 5747 err = skb_checksum_setup_ipv6(skb, recalculate); 5748 break; 5749 5750 default: 5751 err = -EPROTO; 5752 break; 5753 } 5754 5755 return err; 5756 } 5757 EXPORT_SYMBOL(skb_checksum_setup); 5758 5759 /** 5760 * skb_checksum_maybe_trim - maybe trims the given skb 5761 * @skb: the skb to check 5762 * @transport_len: the data length beyond the network header 5763 * 5764 * Checks whether the given skb has data beyond the given transport length. 5765 * If so, returns a cloned skb trimmed to this transport length. 5766 * Otherwise returns the provided skb. Returns NULL in error cases 5767 * (e.g. transport_len exceeds skb length or out-of-memory). 5768 * 5769 * Caller needs to set the skb transport header and free any returned skb if it 5770 * differs from the provided skb. 5771 */ 5772 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5773 unsigned int transport_len) 5774 { 5775 struct sk_buff *skb_chk; 5776 unsigned int len = skb_transport_offset(skb) + transport_len; 5777 int ret; 5778 5779 if (skb->len < len) 5780 return NULL; 5781 else if (skb->len == len) 5782 return skb; 5783 5784 skb_chk = skb_clone(skb, GFP_ATOMIC); 5785 if (!skb_chk) 5786 return NULL; 5787 5788 ret = pskb_trim_rcsum(skb_chk, len); 5789 if (ret) { 5790 kfree_skb(skb_chk); 5791 return NULL; 5792 } 5793 5794 return skb_chk; 5795 } 5796 5797 /** 5798 * skb_checksum_trimmed - validate checksum of an skb 5799 * @skb: the skb to check 5800 * @transport_len: the data length beyond the network header 5801 * @skb_chkf: checksum function to use 5802 * 5803 * Applies the given checksum function skb_chkf to the provided skb. 5804 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5805 * 5806 * If the skb has data beyond the given transport length, then a 5807 * trimmed & cloned skb is checked and returned. 5808 * 5809 * Caller needs to set the skb transport header and free any returned skb if it 5810 * differs from the provided skb. 5811 */ 5812 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5813 unsigned int transport_len, 5814 __sum16(*skb_chkf)(struct sk_buff *skb)) 5815 { 5816 struct sk_buff *skb_chk; 5817 unsigned int offset = skb_transport_offset(skb); 5818 __sum16 ret; 5819 5820 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5821 if (!skb_chk) 5822 goto err; 5823 5824 if (!pskb_may_pull(skb_chk, offset)) 5825 goto err; 5826 5827 skb_pull_rcsum(skb_chk, offset); 5828 ret = skb_chkf(skb_chk); 5829 skb_push_rcsum(skb_chk, offset); 5830 5831 if (ret) 5832 goto err; 5833 5834 return skb_chk; 5835 5836 err: 5837 if (skb_chk && skb_chk != skb) 5838 kfree_skb(skb_chk); 5839 5840 return NULL; 5841 5842 } 5843 EXPORT_SYMBOL(skb_checksum_trimmed); 5844 5845 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5846 { 5847 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5848 skb->dev->name); 5849 } 5850 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5851 5852 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5853 { 5854 if (head_stolen) { 5855 skb_release_head_state(skb); 5856 kmem_cache_free(net_hotdata.skbuff_cache, skb); 5857 } else { 5858 __kfree_skb(skb); 5859 } 5860 } 5861 EXPORT_SYMBOL(kfree_skb_partial); 5862 5863 /** 5864 * skb_try_coalesce - try to merge skb to prior one 5865 * @to: prior buffer 5866 * @from: buffer to add 5867 * @fragstolen: pointer to boolean 5868 * @delta_truesize: how much more was allocated than was requested 5869 */ 5870 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5871 bool *fragstolen, int *delta_truesize) 5872 { 5873 struct skb_shared_info *to_shinfo, *from_shinfo; 5874 int i, delta, len = from->len; 5875 5876 *fragstolen = false; 5877 5878 if (skb_cloned(to)) 5879 return false; 5880 5881 /* In general, avoid mixing page_pool and non-page_pool allocated 5882 * pages within the same SKB. In theory we could take full 5883 * references if @from is cloned and !@to->pp_recycle but its 5884 * tricky (due to potential race with the clone disappearing) and 5885 * rare, so not worth dealing with. 5886 */ 5887 if (to->pp_recycle != from->pp_recycle) 5888 return false; 5889 5890 if (len <= skb_tailroom(to)) { 5891 if (len) 5892 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5893 *delta_truesize = 0; 5894 return true; 5895 } 5896 5897 to_shinfo = skb_shinfo(to); 5898 from_shinfo = skb_shinfo(from); 5899 if (to_shinfo->frag_list || from_shinfo->frag_list) 5900 return false; 5901 if (skb_zcopy(to) || skb_zcopy(from)) 5902 return false; 5903 5904 if (skb_headlen(from) != 0) { 5905 struct page *page; 5906 unsigned int offset; 5907 5908 if (to_shinfo->nr_frags + 5909 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5910 return false; 5911 5912 if (skb_head_is_locked(from)) 5913 return false; 5914 5915 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5916 5917 page = virt_to_head_page(from->head); 5918 offset = from->data - (unsigned char *)page_address(page); 5919 5920 skb_fill_page_desc(to, to_shinfo->nr_frags, 5921 page, offset, skb_headlen(from)); 5922 *fragstolen = true; 5923 } else { 5924 if (to_shinfo->nr_frags + 5925 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5926 return false; 5927 5928 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5929 } 5930 5931 WARN_ON_ONCE(delta < len); 5932 5933 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5934 from_shinfo->frags, 5935 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5936 to_shinfo->nr_frags += from_shinfo->nr_frags; 5937 5938 if (!skb_cloned(from)) 5939 from_shinfo->nr_frags = 0; 5940 5941 /* if the skb is not cloned this does nothing 5942 * since we set nr_frags to 0. 5943 */ 5944 for (i = 0; i < from_shinfo->nr_frags; i++) 5945 __skb_frag_ref(&from_shinfo->frags[i], from->pp_recycle); 5946 5947 to->truesize += delta; 5948 to->len += len; 5949 to->data_len += len; 5950 5951 *delta_truesize = delta; 5952 return true; 5953 } 5954 EXPORT_SYMBOL(skb_try_coalesce); 5955 5956 /** 5957 * skb_scrub_packet - scrub an skb 5958 * 5959 * @skb: buffer to clean 5960 * @xnet: packet is crossing netns 5961 * 5962 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5963 * into/from a tunnel. Some information have to be cleared during these 5964 * operations. 5965 * skb_scrub_packet can also be used to clean a skb before injecting it in 5966 * another namespace (@xnet == true). We have to clear all information in the 5967 * skb that could impact namespace isolation. 5968 */ 5969 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5970 { 5971 skb->pkt_type = PACKET_HOST; 5972 skb->skb_iif = 0; 5973 skb->ignore_df = 0; 5974 skb_dst_drop(skb); 5975 skb_ext_reset(skb); 5976 nf_reset_ct(skb); 5977 nf_reset_trace(skb); 5978 5979 #ifdef CONFIG_NET_SWITCHDEV 5980 skb->offload_fwd_mark = 0; 5981 skb->offload_l3_fwd_mark = 0; 5982 #endif 5983 5984 if (!xnet) 5985 return; 5986 5987 ipvs_reset(skb); 5988 skb->mark = 0; 5989 skb_clear_tstamp(skb); 5990 } 5991 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5992 5993 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5994 { 5995 int mac_len, meta_len; 5996 void *meta; 5997 5998 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5999 kfree_skb(skb); 6000 return NULL; 6001 } 6002 6003 mac_len = skb->data - skb_mac_header(skb); 6004 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6005 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6006 mac_len - VLAN_HLEN - ETH_TLEN); 6007 } 6008 6009 meta_len = skb_metadata_len(skb); 6010 if (meta_len) { 6011 meta = skb_metadata_end(skb) - meta_len; 6012 memmove(meta + VLAN_HLEN, meta, meta_len); 6013 } 6014 6015 skb->mac_header += VLAN_HLEN; 6016 return skb; 6017 } 6018 6019 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6020 { 6021 struct vlan_hdr *vhdr; 6022 u16 vlan_tci; 6023 6024 if (unlikely(skb_vlan_tag_present(skb))) { 6025 /* vlan_tci is already set-up so leave this for another time */ 6026 return skb; 6027 } 6028 6029 skb = skb_share_check(skb, GFP_ATOMIC); 6030 if (unlikely(!skb)) 6031 goto err_free; 6032 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6033 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6034 goto err_free; 6035 6036 vhdr = (struct vlan_hdr *)skb->data; 6037 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6038 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6039 6040 skb_pull_rcsum(skb, VLAN_HLEN); 6041 vlan_set_encap_proto(skb, vhdr); 6042 6043 skb = skb_reorder_vlan_header(skb); 6044 if (unlikely(!skb)) 6045 goto err_free; 6046 6047 skb_reset_network_header(skb); 6048 if (!skb_transport_header_was_set(skb)) 6049 skb_reset_transport_header(skb); 6050 skb_reset_mac_len(skb); 6051 6052 return skb; 6053 6054 err_free: 6055 kfree_skb(skb); 6056 return NULL; 6057 } 6058 EXPORT_SYMBOL(skb_vlan_untag); 6059 6060 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6061 { 6062 if (!pskb_may_pull(skb, write_len)) 6063 return -ENOMEM; 6064 6065 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6066 return 0; 6067 6068 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6069 } 6070 EXPORT_SYMBOL(skb_ensure_writable); 6071 6072 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6073 { 6074 int needed_headroom = dev->needed_headroom; 6075 int needed_tailroom = dev->needed_tailroom; 6076 6077 /* For tail taggers, we need to pad short frames ourselves, to ensure 6078 * that the tail tag does not fail at its role of being at the end of 6079 * the packet, once the conduit interface pads the frame. Account for 6080 * that pad length here, and pad later. 6081 */ 6082 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6083 needed_tailroom += ETH_ZLEN - skb->len; 6084 /* skb_headroom() returns unsigned int... */ 6085 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6086 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6087 6088 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6089 /* No reallocation needed, yay! */ 6090 return 0; 6091 6092 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6093 GFP_ATOMIC); 6094 } 6095 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6096 6097 /* remove VLAN header from packet and update csum accordingly. 6098 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6099 */ 6100 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6101 { 6102 int offset = skb->data - skb_mac_header(skb); 6103 int err; 6104 6105 if (WARN_ONCE(offset, 6106 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6107 offset)) { 6108 return -EINVAL; 6109 } 6110 6111 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6112 if (unlikely(err)) 6113 return err; 6114 6115 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6116 6117 vlan_remove_tag(skb, vlan_tci); 6118 6119 skb->mac_header += VLAN_HLEN; 6120 6121 if (skb_network_offset(skb) < ETH_HLEN) 6122 skb_set_network_header(skb, ETH_HLEN); 6123 6124 skb_reset_mac_len(skb); 6125 6126 return err; 6127 } 6128 EXPORT_SYMBOL(__skb_vlan_pop); 6129 6130 /* Pop a vlan tag either from hwaccel or from payload. 6131 * Expects skb->data at mac header. 6132 */ 6133 int skb_vlan_pop(struct sk_buff *skb) 6134 { 6135 u16 vlan_tci; 6136 __be16 vlan_proto; 6137 int err; 6138 6139 if (likely(skb_vlan_tag_present(skb))) { 6140 __vlan_hwaccel_clear_tag(skb); 6141 } else { 6142 if (unlikely(!eth_type_vlan(skb->protocol))) 6143 return 0; 6144 6145 err = __skb_vlan_pop(skb, &vlan_tci); 6146 if (err) 6147 return err; 6148 } 6149 /* move next vlan tag to hw accel tag */ 6150 if (likely(!eth_type_vlan(skb->protocol))) 6151 return 0; 6152 6153 vlan_proto = skb->protocol; 6154 err = __skb_vlan_pop(skb, &vlan_tci); 6155 if (unlikely(err)) 6156 return err; 6157 6158 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6159 return 0; 6160 } 6161 EXPORT_SYMBOL(skb_vlan_pop); 6162 6163 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6164 * Expects skb->data at mac header. 6165 */ 6166 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6167 { 6168 if (skb_vlan_tag_present(skb)) { 6169 int offset = skb->data - skb_mac_header(skb); 6170 int err; 6171 6172 if (WARN_ONCE(offset, 6173 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6174 offset)) { 6175 return -EINVAL; 6176 } 6177 6178 err = __vlan_insert_tag(skb, skb->vlan_proto, 6179 skb_vlan_tag_get(skb)); 6180 if (err) 6181 return err; 6182 6183 skb->protocol = skb->vlan_proto; 6184 skb->mac_len += VLAN_HLEN; 6185 6186 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6187 } 6188 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6189 return 0; 6190 } 6191 EXPORT_SYMBOL(skb_vlan_push); 6192 6193 /** 6194 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6195 * 6196 * @skb: Socket buffer to modify 6197 * 6198 * Drop the Ethernet header of @skb. 6199 * 6200 * Expects that skb->data points to the mac header and that no VLAN tags are 6201 * present. 6202 * 6203 * Returns 0 on success, -errno otherwise. 6204 */ 6205 int skb_eth_pop(struct sk_buff *skb) 6206 { 6207 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6208 skb_network_offset(skb) < ETH_HLEN) 6209 return -EPROTO; 6210 6211 skb_pull_rcsum(skb, ETH_HLEN); 6212 skb_reset_mac_header(skb); 6213 skb_reset_mac_len(skb); 6214 6215 return 0; 6216 } 6217 EXPORT_SYMBOL(skb_eth_pop); 6218 6219 /** 6220 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6221 * 6222 * @skb: Socket buffer to modify 6223 * @dst: Destination MAC address of the new header 6224 * @src: Source MAC address of the new header 6225 * 6226 * Prepend @skb with a new Ethernet header. 6227 * 6228 * Expects that skb->data points to the mac header, which must be empty. 6229 * 6230 * Returns 0 on success, -errno otherwise. 6231 */ 6232 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6233 const unsigned char *src) 6234 { 6235 struct ethhdr *eth; 6236 int err; 6237 6238 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6239 return -EPROTO; 6240 6241 err = skb_cow_head(skb, sizeof(*eth)); 6242 if (err < 0) 6243 return err; 6244 6245 skb_push(skb, sizeof(*eth)); 6246 skb_reset_mac_header(skb); 6247 skb_reset_mac_len(skb); 6248 6249 eth = eth_hdr(skb); 6250 ether_addr_copy(eth->h_dest, dst); 6251 ether_addr_copy(eth->h_source, src); 6252 eth->h_proto = skb->protocol; 6253 6254 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6255 6256 return 0; 6257 } 6258 EXPORT_SYMBOL(skb_eth_push); 6259 6260 /* Update the ethertype of hdr and the skb csum value if required. */ 6261 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6262 __be16 ethertype) 6263 { 6264 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6265 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6266 6267 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6268 } 6269 6270 hdr->h_proto = ethertype; 6271 } 6272 6273 /** 6274 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6275 * the packet 6276 * 6277 * @skb: buffer 6278 * @mpls_lse: MPLS label stack entry to push 6279 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6280 * @mac_len: length of the MAC header 6281 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6282 * ethernet 6283 * 6284 * Expects skb->data at mac header. 6285 * 6286 * Returns 0 on success, -errno otherwise. 6287 */ 6288 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6289 int mac_len, bool ethernet) 6290 { 6291 struct mpls_shim_hdr *lse; 6292 int err; 6293 6294 if (unlikely(!eth_p_mpls(mpls_proto))) 6295 return -EINVAL; 6296 6297 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6298 if (skb->encapsulation) 6299 return -EINVAL; 6300 6301 err = skb_cow_head(skb, MPLS_HLEN); 6302 if (unlikely(err)) 6303 return err; 6304 6305 if (!skb->inner_protocol) { 6306 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6307 skb_set_inner_protocol(skb, skb->protocol); 6308 } 6309 6310 skb_push(skb, MPLS_HLEN); 6311 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6312 mac_len); 6313 skb_reset_mac_header(skb); 6314 skb_set_network_header(skb, mac_len); 6315 skb_reset_mac_len(skb); 6316 6317 lse = mpls_hdr(skb); 6318 lse->label_stack_entry = mpls_lse; 6319 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6320 6321 if (ethernet && mac_len >= ETH_HLEN) 6322 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6323 skb->protocol = mpls_proto; 6324 6325 return 0; 6326 } 6327 EXPORT_SYMBOL_GPL(skb_mpls_push); 6328 6329 /** 6330 * skb_mpls_pop() - pop the outermost MPLS header 6331 * 6332 * @skb: buffer 6333 * @next_proto: ethertype of header after popped MPLS header 6334 * @mac_len: length of the MAC header 6335 * @ethernet: flag to indicate if the packet is ethernet 6336 * 6337 * Expects skb->data at mac header. 6338 * 6339 * Returns 0 on success, -errno otherwise. 6340 */ 6341 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6342 bool ethernet) 6343 { 6344 int err; 6345 6346 if (unlikely(!eth_p_mpls(skb->protocol))) 6347 return 0; 6348 6349 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6350 if (unlikely(err)) 6351 return err; 6352 6353 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6354 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6355 mac_len); 6356 6357 __skb_pull(skb, MPLS_HLEN); 6358 skb_reset_mac_header(skb); 6359 skb_set_network_header(skb, mac_len); 6360 6361 if (ethernet && mac_len >= ETH_HLEN) { 6362 struct ethhdr *hdr; 6363 6364 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6365 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6366 skb_mod_eth_type(skb, hdr, next_proto); 6367 } 6368 skb->protocol = next_proto; 6369 6370 return 0; 6371 } 6372 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6373 6374 /** 6375 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6376 * 6377 * @skb: buffer 6378 * @mpls_lse: new MPLS label stack entry to update to 6379 * 6380 * Expects skb->data at mac header. 6381 * 6382 * Returns 0 on success, -errno otherwise. 6383 */ 6384 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6385 { 6386 int err; 6387 6388 if (unlikely(!eth_p_mpls(skb->protocol))) 6389 return -EINVAL; 6390 6391 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6392 if (unlikely(err)) 6393 return err; 6394 6395 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6396 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6397 6398 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6399 } 6400 6401 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6402 6403 return 0; 6404 } 6405 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6406 6407 /** 6408 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6409 * 6410 * @skb: buffer 6411 * 6412 * Expects skb->data at mac header. 6413 * 6414 * Returns 0 on success, -errno otherwise. 6415 */ 6416 int skb_mpls_dec_ttl(struct sk_buff *skb) 6417 { 6418 u32 lse; 6419 u8 ttl; 6420 6421 if (unlikely(!eth_p_mpls(skb->protocol))) 6422 return -EINVAL; 6423 6424 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6425 return -ENOMEM; 6426 6427 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6428 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6429 if (!--ttl) 6430 return -EINVAL; 6431 6432 lse &= ~MPLS_LS_TTL_MASK; 6433 lse |= ttl << MPLS_LS_TTL_SHIFT; 6434 6435 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6436 } 6437 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6438 6439 /** 6440 * alloc_skb_with_frags - allocate skb with page frags 6441 * 6442 * @header_len: size of linear part 6443 * @data_len: needed length in frags 6444 * @order: max page order desired. 6445 * @errcode: pointer to error code if any 6446 * @gfp_mask: allocation mask 6447 * 6448 * This can be used to allocate a paged skb, given a maximal order for frags. 6449 */ 6450 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6451 unsigned long data_len, 6452 int order, 6453 int *errcode, 6454 gfp_t gfp_mask) 6455 { 6456 unsigned long chunk; 6457 struct sk_buff *skb; 6458 struct page *page; 6459 int nr_frags = 0; 6460 6461 *errcode = -EMSGSIZE; 6462 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6463 return NULL; 6464 6465 *errcode = -ENOBUFS; 6466 skb = alloc_skb(header_len, gfp_mask); 6467 if (!skb) 6468 return NULL; 6469 6470 while (data_len) { 6471 if (nr_frags == MAX_SKB_FRAGS - 1) 6472 goto failure; 6473 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6474 order--; 6475 6476 if (order) { 6477 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6478 __GFP_COMP | 6479 __GFP_NOWARN, 6480 order); 6481 if (!page) { 6482 order--; 6483 continue; 6484 } 6485 } else { 6486 page = alloc_page(gfp_mask); 6487 if (!page) 6488 goto failure; 6489 } 6490 chunk = min_t(unsigned long, data_len, 6491 PAGE_SIZE << order); 6492 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6493 nr_frags++; 6494 skb->truesize += (PAGE_SIZE << order); 6495 data_len -= chunk; 6496 } 6497 return skb; 6498 6499 failure: 6500 kfree_skb(skb); 6501 return NULL; 6502 } 6503 EXPORT_SYMBOL(alloc_skb_with_frags); 6504 6505 /* carve out the first off bytes from skb when off < headlen */ 6506 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6507 const int headlen, gfp_t gfp_mask) 6508 { 6509 int i; 6510 unsigned int size = skb_end_offset(skb); 6511 int new_hlen = headlen - off; 6512 u8 *data; 6513 6514 if (skb_pfmemalloc(skb)) 6515 gfp_mask |= __GFP_MEMALLOC; 6516 6517 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6518 if (!data) 6519 return -ENOMEM; 6520 size = SKB_WITH_OVERHEAD(size); 6521 6522 /* Copy real data, and all frags */ 6523 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6524 skb->len -= off; 6525 6526 memcpy((struct skb_shared_info *)(data + size), 6527 skb_shinfo(skb), 6528 offsetof(struct skb_shared_info, 6529 frags[skb_shinfo(skb)->nr_frags])); 6530 if (skb_cloned(skb)) { 6531 /* drop the old head gracefully */ 6532 if (skb_orphan_frags(skb, gfp_mask)) { 6533 skb_kfree_head(data, size); 6534 return -ENOMEM; 6535 } 6536 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6537 skb_frag_ref(skb, i); 6538 if (skb_has_frag_list(skb)) 6539 skb_clone_fraglist(skb); 6540 skb_release_data(skb, SKB_CONSUMED); 6541 } else { 6542 /* we can reuse existing recount- all we did was 6543 * relocate values 6544 */ 6545 skb_free_head(skb); 6546 } 6547 6548 skb->head = data; 6549 skb->data = data; 6550 skb->head_frag = 0; 6551 skb_set_end_offset(skb, size); 6552 skb_set_tail_pointer(skb, skb_headlen(skb)); 6553 skb_headers_offset_update(skb, 0); 6554 skb->cloned = 0; 6555 skb->hdr_len = 0; 6556 skb->nohdr = 0; 6557 atomic_set(&skb_shinfo(skb)->dataref, 1); 6558 6559 return 0; 6560 } 6561 6562 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6563 6564 /* carve out the first eat bytes from skb's frag_list. May recurse into 6565 * pskb_carve() 6566 */ 6567 static int pskb_carve_frag_list(struct sk_buff *skb, 6568 struct skb_shared_info *shinfo, int eat, 6569 gfp_t gfp_mask) 6570 { 6571 struct sk_buff *list = shinfo->frag_list; 6572 struct sk_buff *clone = NULL; 6573 struct sk_buff *insp = NULL; 6574 6575 do { 6576 if (!list) { 6577 pr_err("Not enough bytes to eat. Want %d\n", eat); 6578 return -EFAULT; 6579 } 6580 if (list->len <= eat) { 6581 /* Eaten as whole. */ 6582 eat -= list->len; 6583 list = list->next; 6584 insp = list; 6585 } else { 6586 /* Eaten partially. */ 6587 if (skb_shared(list)) { 6588 clone = skb_clone(list, gfp_mask); 6589 if (!clone) 6590 return -ENOMEM; 6591 insp = list->next; 6592 list = clone; 6593 } else { 6594 /* This may be pulled without problems. */ 6595 insp = list; 6596 } 6597 if (pskb_carve(list, eat, gfp_mask) < 0) { 6598 kfree_skb(clone); 6599 return -ENOMEM; 6600 } 6601 break; 6602 } 6603 } while (eat); 6604 6605 /* Free pulled out fragments. */ 6606 while ((list = shinfo->frag_list) != insp) { 6607 shinfo->frag_list = list->next; 6608 consume_skb(list); 6609 } 6610 /* And insert new clone at head. */ 6611 if (clone) { 6612 clone->next = list; 6613 shinfo->frag_list = clone; 6614 } 6615 return 0; 6616 } 6617 6618 /* carve off first len bytes from skb. Split line (off) is in the 6619 * non-linear part of skb 6620 */ 6621 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6622 int pos, gfp_t gfp_mask) 6623 { 6624 int i, k = 0; 6625 unsigned int size = skb_end_offset(skb); 6626 u8 *data; 6627 const int nfrags = skb_shinfo(skb)->nr_frags; 6628 struct skb_shared_info *shinfo; 6629 6630 if (skb_pfmemalloc(skb)) 6631 gfp_mask |= __GFP_MEMALLOC; 6632 6633 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6634 if (!data) 6635 return -ENOMEM; 6636 size = SKB_WITH_OVERHEAD(size); 6637 6638 memcpy((struct skb_shared_info *)(data + size), 6639 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6640 if (skb_orphan_frags(skb, gfp_mask)) { 6641 skb_kfree_head(data, size); 6642 return -ENOMEM; 6643 } 6644 shinfo = (struct skb_shared_info *)(data + size); 6645 for (i = 0; i < nfrags; i++) { 6646 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6647 6648 if (pos + fsize > off) { 6649 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6650 6651 if (pos < off) { 6652 /* Split frag. 6653 * We have two variants in this case: 6654 * 1. Move all the frag to the second 6655 * part, if it is possible. F.e. 6656 * this approach is mandatory for TUX, 6657 * where splitting is expensive. 6658 * 2. Split is accurately. We make this. 6659 */ 6660 skb_frag_off_add(&shinfo->frags[0], off - pos); 6661 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6662 } 6663 skb_frag_ref(skb, i); 6664 k++; 6665 } 6666 pos += fsize; 6667 } 6668 shinfo->nr_frags = k; 6669 if (skb_has_frag_list(skb)) 6670 skb_clone_fraglist(skb); 6671 6672 /* split line is in frag list */ 6673 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6674 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6675 if (skb_has_frag_list(skb)) 6676 kfree_skb_list(skb_shinfo(skb)->frag_list); 6677 skb_kfree_head(data, size); 6678 return -ENOMEM; 6679 } 6680 skb_release_data(skb, SKB_CONSUMED); 6681 6682 skb->head = data; 6683 skb->head_frag = 0; 6684 skb->data = data; 6685 skb_set_end_offset(skb, size); 6686 skb_reset_tail_pointer(skb); 6687 skb_headers_offset_update(skb, 0); 6688 skb->cloned = 0; 6689 skb->hdr_len = 0; 6690 skb->nohdr = 0; 6691 skb->len -= off; 6692 skb->data_len = skb->len; 6693 atomic_set(&skb_shinfo(skb)->dataref, 1); 6694 return 0; 6695 } 6696 6697 /* remove len bytes from the beginning of the skb */ 6698 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6699 { 6700 int headlen = skb_headlen(skb); 6701 6702 if (len < headlen) 6703 return pskb_carve_inside_header(skb, len, headlen, gfp); 6704 else 6705 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6706 } 6707 6708 /* Extract to_copy bytes starting at off from skb, and return this in 6709 * a new skb 6710 */ 6711 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6712 int to_copy, gfp_t gfp) 6713 { 6714 struct sk_buff *clone = skb_clone(skb, gfp); 6715 6716 if (!clone) 6717 return NULL; 6718 6719 if (pskb_carve(clone, off, gfp) < 0 || 6720 pskb_trim(clone, to_copy)) { 6721 kfree_skb(clone); 6722 return NULL; 6723 } 6724 return clone; 6725 } 6726 EXPORT_SYMBOL(pskb_extract); 6727 6728 /** 6729 * skb_condense - try to get rid of fragments/frag_list if possible 6730 * @skb: buffer 6731 * 6732 * Can be used to save memory before skb is added to a busy queue. 6733 * If packet has bytes in frags and enough tail room in skb->head, 6734 * pull all of them, so that we can free the frags right now and adjust 6735 * truesize. 6736 * Notes: 6737 * We do not reallocate skb->head thus can not fail. 6738 * Caller must re-evaluate skb->truesize if needed. 6739 */ 6740 void skb_condense(struct sk_buff *skb) 6741 { 6742 if (skb->data_len) { 6743 if (skb->data_len > skb->end - skb->tail || 6744 skb_cloned(skb)) 6745 return; 6746 6747 /* Nice, we can free page frag(s) right now */ 6748 __pskb_pull_tail(skb, skb->data_len); 6749 } 6750 /* At this point, skb->truesize might be over estimated, 6751 * because skb had a fragment, and fragments do not tell 6752 * their truesize. 6753 * When we pulled its content into skb->head, fragment 6754 * was freed, but __pskb_pull_tail() could not possibly 6755 * adjust skb->truesize, not knowing the frag truesize. 6756 */ 6757 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6758 } 6759 EXPORT_SYMBOL(skb_condense); 6760 6761 #ifdef CONFIG_SKB_EXTENSIONS 6762 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6763 { 6764 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6765 } 6766 6767 /** 6768 * __skb_ext_alloc - allocate a new skb extensions storage 6769 * 6770 * @flags: See kmalloc(). 6771 * 6772 * Returns the newly allocated pointer. The pointer can later attached to a 6773 * skb via __skb_ext_set(). 6774 * Note: caller must handle the skb_ext as an opaque data. 6775 */ 6776 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6777 { 6778 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6779 6780 if (new) { 6781 memset(new->offset, 0, sizeof(new->offset)); 6782 refcount_set(&new->refcnt, 1); 6783 } 6784 6785 return new; 6786 } 6787 6788 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6789 unsigned int old_active) 6790 { 6791 struct skb_ext *new; 6792 6793 if (refcount_read(&old->refcnt) == 1) 6794 return old; 6795 6796 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6797 if (!new) 6798 return NULL; 6799 6800 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6801 refcount_set(&new->refcnt, 1); 6802 6803 #ifdef CONFIG_XFRM 6804 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6805 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6806 unsigned int i; 6807 6808 for (i = 0; i < sp->len; i++) 6809 xfrm_state_hold(sp->xvec[i]); 6810 } 6811 #endif 6812 #ifdef CONFIG_MCTP_FLOWS 6813 if (old_active & (1 << SKB_EXT_MCTP)) { 6814 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6815 6816 if (flow->key) 6817 refcount_inc(&flow->key->refs); 6818 } 6819 #endif 6820 __skb_ext_put(old); 6821 return new; 6822 } 6823 6824 /** 6825 * __skb_ext_set - attach the specified extension storage to this skb 6826 * @skb: buffer 6827 * @id: extension id 6828 * @ext: extension storage previously allocated via __skb_ext_alloc() 6829 * 6830 * Existing extensions, if any, are cleared. 6831 * 6832 * Returns the pointer to the extension. 6833 */ 6834 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6835 struct skb_ext *ext) 6836 { 6837 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6838 6839 skb_ext_put(skb); 6840 newlen = newoff + skb_ext_type_len[id]; 6841 ext->chunks = newlen; 6842 ext->offset[id] = newoff; 6843 skb->extensions = ext; 6844 skb->active_extensions = 1 << id; 6845 return skb_ext_get_ptr(ext, id); 6846 } 6847 6848 /** 6849 * skb_ext_add - allocate space for given extension, COW if needed 6850 * @skb: buffer 6851 * @id: extension to allocate space for 6852 * 6853 * Allocates enough space for the given extension. 6854 * If the extension is already present, a pointer to that extension 6855 * is returned. 6856 * 6857 * If the skb was cloned, COW applies and the returned memory can be 6858 * modified without changing the extension space of clones buffers. 6859 * 6860 * Returns pointer to the extension or NULL on allocation failure. 6861 */ 6862 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6863 { 6864 struct skb_ext *new, *old = NULL; 6865 unsigned int newlen, newoff; 6866 6867 if (skb->active_extensions) { 6868 old = skb->extensions; 6869 6870 new = skb_ext_maybe_cow(old, skb->active_extensions); 6871 if (!new) 6872 return NULL; 6873 6874 if (__skb_ext_exist(new, id)) 6875 goto set_active; 6876 6877 newoff = new->chunks; 6878 } else { 6879 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6880 6881 new = __skb_ext_alloc(GFP_ATOMIC); 6882 if (!new) 6883 return NULL; 6884 } 6885 6886 newlen = newoff + skb_ext_type_len[id]; 6887 new->chunks = newlen; 6888 new->offset[id] = newoff; 6889 set_active: 6890 skb->slow_gro = 1; 6891 skb->extensions = new; 6892 skb->active_extensions |= 1 << id; 6893 return skb_ext_get_ptr(new, id); 6894 } 6895 EXPORT_SYMBOL(skb_ext_add); 6896 6897 #ifdef CONFIG_XFRM 6898 static void skb_ext_put_sp(struct sec_path *sp) 6899 { 6900 unsigned int i; 6901 6902 for (i = 0; i < sp->len; i++) 6903 xfrm_state_put(sp->xvec[i]); 6904 } 6905 #endif 6906 6907 #ifdef CONFIG_MCTP_FLOWS 6908 static void skb_ext_put_mctp(struct mctp_flow *flow) 6909 { 6910 if (flow->key) 6911 mctp_key_unref(flow->key); 6912 } 6913 #endif 6914 6915 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6916 { 6917 struct skb_ext *ext = skb->extensions; 6918 6919 skb->active_extensions &= ~(1 << id); 6920 if (skb->active_extensions == 0) { 6921 skb->extensions = NULL; 6922 __skb_ext_put(ext); 6923 #ifdef CONFIG_XFRM 6924 } else if (id == SKB_EXT_SEC_PATH && 6925 refcount_read(&ext->refcnt) == 1) { 6926 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6927 6928 skb_ext_put_sp(sp); 6929 sp->len = 0; 6930 #endif 6931 } 6932 } 6933 EXPORT_SYMBOL(__skb_ext_del); 6934 6935 void __skb_ext_put(struct skb_ext *ext) 6936 { 6937 /* If this is last clone, nothing can increment 6938 * it after check passes. Avoids one atomic op. 6939 */ 6940 if (refcount_read(&ext->refcnt) == 1) 6941 goto free_now; 6942 6943 if (!refcount_dec_and_test(&ext->refcnt)) 6944 return; 6945 free_now: 6946 #ifdef CONFIG_XFRM 6947 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6948 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6949 #endif 6950 #ifdef CONFIG_MCTP_FLOWS 6951 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6952 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6953 #endif 6954 6955 kmem_cache_free(skbuff_ext_cache, ext); 6956 } 6957 EXPORT_SYMBOL(__skb_ext_put); 6958 #endif /* CONFIG_SKB_EXTENSIONS */ 6959 6960 static void kfree_skb_napi_cache(struct sk_buff *skb) 6961 { 6962 /* if SKB is a clone, don't handle this case */ 6963 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 6964 __kfree_skb(skb); 6965 return; 6966 } 6967 6968 local_bh_disable(); 6969 __napi_kfree_skb(skb, SKB_CONSUMED); 6970 local_bh_enable(); 6971 } 6972 6973 /** 6974 * skb_attempt_defer_free - queue skb for remote freeing 6975 * @skb: buffer 6976 * 6977 * Put @skb in a per-cpu list, using the cpu which 6978 * allocated the skb/pages to reduce false sharing 6979 * and memory zone spinlock contention. 6980 */ 6981 void skb_attempt_defer_free(struct sk_buff *skb) 6982 { 6983 int cpu = skb->alloc_cpu; 6984 struct softnet_data *sd; 6985 unsigned int defer_max; 6986 bool kick; 6987 6988 if (cpu == raw_smp_processor_id() || 6989 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6990 !cpu_online(cpu)) { 6991 nodefer: kfree_skb_napi_cache(skb); 6992 return; 6993 } 6994 6995 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6996 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6997 6998 sd = &per_cpu(softnet_data, cpu); 6999 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7000 if (READ_ONCE(sd->defer_count) >= defer_max) 7001 goto nodefer; 7002 7003 spin_lock_bh(&sd->defer_lock); 7004 /* Send an IPI every time queue reaches half capacity. */ 7005 kick = sd->defer_count == (defer_max >> 1); 7006 /* Paired with the READ_ONCE() few lines above */ 7007 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7008 7009 skb->next = sd->defer_list; 7010 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7011 WRITE_ONCE(sd->defer_list, skb); 7012 spin_unlock_bh(&sd->defer_lock); 7013 7014 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7015 * if we are unlucky enough (this seems very unlikely). 7016 */ 7017 if (unlikely(kick)) 7018 kick_defer_list_purge(sd, cpu); 7019 } 7020 7021 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7022 size_t offset, size_t len) 7023 { 7024 const char *kaddr; 7025 __wsum csum; 7026 7027 kaddr = kmap_local_page(page); 7028 csum = csum_partial(kaddr + offset, len, 0); 7029 kunmap_local(kaddr); 7030 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7031 } 7032 7033 /** 7034 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7035 * @skb: The buffer to add pages to 7036 * @iter: Iterator representing the pages to be added 7037 * @maxsize: Maximum amount of pages to be added 7038 * @gfp: Allocation flags 7039 * 7040 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7041 * extracts pages from an iterator and adds them to the socket buffer if 7042 * possible, copying them to fragments if not possible (such as if they're slab 7043 * pages). 7044 * 7045 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7046 * insufficient space in the buffer to transfer anything. 7047 */ 7048 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7049 ssize_t maxsize, gfp_t gfp) 7050 { 7051 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7052 struct page *pages[8], **ppages = pages; 7053 ssize_t spliced = 0, ret = 0; 7054 unsigned int i; 7055 7056 while (iter->count > 0) { 7057 ssize_t space, nr, len; 7058 size_t off; 7059 7060 ret = -EMSGSIZE; 7061 space = frag_limit - skb_shinfo(skb)->nr_frags; 7062 if (space < 0) 7063 break; 7064 7065 /* We might be able to coalesce without increasing nr_frags */ 7066 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7067 7068 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7069 if (len <= 0) { 7070 ret = len ?: -EIO; 7071 break; 7072 } 7073 7074 i = 0; 7075 do { 7076 struct page *page = pages[i++]; 7077 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7078 7079 ret = -EIO; 7080 if (WARN_ON_ONCE(!sendpage_ok(page))) 7081 goto out; 7082 7083 ret = skb_append_pagefrags(skb, page, off, part, 7084 frag_limit); 7085 if (ret < 0) { 7086 iov_iter_revert(iter, len); 7087 goto out; 7088 } 7089 7090 if (skb->ip_summed == CHECKSUM_NONE) 7091 skb_splice_csum_page(skb, page, off, part); 7092 7093 off = 0; 7094 spliced += part; 7095 maxsize -= part; 7096 len -= part; 7097 } while (len > 0); 7098 7099 if (maxsize <= 0) 7100 break; 7101 } 7102 7103 out: 7104 skb_len_add(skb, spliced); 7105 return spliced ?: ret; 7106 } 7107 EXPORT_SYMBOL(skb_splice_from_iter); 7108 7109 static __always_inline 7110 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7111 size_t len, void *to, void *priv2) 7112 { 7113 __wsum *csum = priv2; 7114 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7115 7116 *csum = csum_block_add(*csum, next, progress); 7117 return 0; 7118 } 7119 7120 static __always_inline 7121 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7122 size_t len, void *to, void *priv2) 7123 { 7124 __wsum next, *csum = priv2; 7125 7126 next = csum_and_copy_from_user(iter_from, to + progress, len); 7127 *csum = csum_block_add(*csum, next, progress); 7128 return next ? 0 : len; 7129 } 7130 7131 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7132 __wsum *csum, struct iov_iter *i) 7133 { 7134 size_t copied; 7135 7136 if (WARN_ON_ONCE(!i->data_source)) 7137 return false; 7138 copied = iterate_and_advance2(i, bytes, addr, csum, 7139 copy_from_user_iter_csum, 7140 memcpy_from_iter_csum); 7141 if (likely(copied == bytes)) 7142 return true; 7143 iov_iter_revert(i, copied); 7144 return false; 7145 } 7146 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7147