1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 #include <linux/indirect_call_wrapper.h> 80 81 #include "datagram.h" 82 83 struct kmem_cache *skbuff_head_cache __ro_after_init; 84 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 85 #ifdef CONFIG_SKB_EXTENSIONS 86 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 87 #endif 88 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 89 EXPORT_SYMBOL(sysctl_max_skb_frags); 90 91 /** 92 * skb_panic - private function for out-of-line support 93 * @skb: buffer 94 * @sz: size 95 * @addr: address 96 * @msg: skb_over_panic or skb_under_panic 97 * 98 * Out-of-line support for skb_put() and skb_push(). 99 * Called via the wrapper skb_over_panic() or skb_under_panic(). 100 * Keep out of line to prevent kernel bloat. 101 * __builtin_return_address is not used because it is not always reliable. 102 */ 103 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 104 const char msg[]) 105 { 106 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 107 msg, addr, skb->len, sz, skb->head, skb->data, 108 (unsigned long)skb->tail, (unsigned long)skb->end, 109 skb->dev ? skb->dev->name : "<NULL>"); 110 BUG(); 111 } 112 113 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 119 { 120 skb_panic(skb, sz, addr, __func__); 121 } 122 123 #define NAPI_SKB_CACHE_SIZE 64 124 #define NAPI_SKB_CACHE_BULK 16 125 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 126 127 struct napi_alloc_cache { 128 struct page_frag_cache page; 129 unsigned int skb_count; 130 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 131 }; 132 133 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 134 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 135 136 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 137 unsigned int align_mask) 138 { 139 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 140 141 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 142 } 143 144 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 145 { 146 fragsz = SKB_DATA_ALIGN(fragsz); 147 148 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 149 } 150 EXPORT_SYMBOL(__napi_alloc_frag_align); 151 152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 153 { 154 struct page_frag_cache *nc; 155 void *data; 156 157 fragsz = SKB_DATA_ALIGN(fragsz); 158 if (in_irq() || irqs_disabled()) { 159 nc = this_cpu_ptr(&netdev_alloc_cache); 160 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 161 } else { 162 local_bh_disable(); 163 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 164 local_bh_enable(); 165 } 166 return data; 167 } 168 EXPORT_SYMBOL(__netdev_alloc_frag_align); 169 170 static struct sk_buff *napi_skb_cache_get(void) 171 { 172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 173 struct sk_buff *skb; 174 175 if (unlikely(!nc->skb_count)) 176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 177 GFP_ATOMIC, 178 NAPI_SKB_CACHE_BULK, 179 nc->skb_cache); 180 if (unlikely(!nc->skb_count)) 181 return NULL; 182 183 skb = nc->skb_cache[--nc->skb_count]; 184 kasan_unpoison_object_data(skbuff_head_cache, skb); 185 186 return skb; 187 } 188 189 /* Caller must provide SKB that is memset cleared */ 190 static void __build_skb_around(struct sk_buff *skb, void *data, 191 unsigned int frag_size) 192 { 193 struct skb_shared_info *shinfo; 194 unsigned int size = frag_size ? : ksize(data); 195 196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 197 198 /* Assumes caller memset cleared SKB */ 199 skb->truesize = SKB_TRUESIZE(size); 200 refcount_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 skb->mac_header = (typeof(skb->mac_header))~0U; 206 skb->transport_header = (typeof(skb->transport_header))~0U; 207 208 /* make sure we initialize shinfo sequentially */ 209 shinfo = skb_shinfo(skb); 210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 211 atomic_set(&shinfo->dataref, 1); 212 213 skb_set_kcov_handle(skb, kcov_common_handle()); 214 } 215 216 /** 217 * __build_skb - build a network buffer 218 * @data: data buffer provided by caller 219 * @frag_size: size of data, or 0 if head was kmalloced 220 * 221 * Allocate a new &sk_buff. Caller provides space holding head and 222 * skb_shared_info. @data must have been allocated by kmalloc() only if 223 * @frag_size is 0, otherwise data should come from the page allocator 224 * or vmalloc() 225 * The return is the new skb buffer. 226 * On a failure the return is %NULL, and @data is not freed. 227 * Notes : 228 * Before IO, driver allocates only data buffer where NIC put incoming frame 229 * Driver should add room at head (NET_SKB_PAD) and 230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 232 * before giving packet to stack. 233 * RX rings only contains data buffers, not full skbs. 234 */ 235 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 236 { 237 struct sk_buff *skb; 238 239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 240 if (unlikely(!skb)) 241 return NULL; 242 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 __build_skb_around(skb, data, frag_size); 245 246 return skb; 247 } 248 249 /* build_skb() is wrapper over __build_skb(), that specifically 250 * takes care of skb->head and skb->pfmemalloc 251 * This means that if @frag_size is not zero, then @data must be backed 252 * by a page fragment, not kmalloc() or vmalloc() 253 */ 254 struct sk_buff *build_skb(void *data, unsigned int frag_size) 255 { 256 struct sk_buff *skb = __build_skb(data, frag_size); 257 258 if (skb && frag_size) { 259 skb->head_frag = 1; 260 if (page_is_pfmemalloc(virt_to_head_page(data))) 261 skb->pfmemalloc = 1; 262 } 263 return skb; 264 } 265 EXPORT_SYMBOL(build_skb); 266 267 /** 268 * build_skb_around - build a network buffer around provided skb 269 * @skb: sk_buff provide by caller, must be memset cleared 270 * @data: data buffer provided by caller 271 * @frag_size: size of data, or 0 if head was kmalloced 272 */ 273 struct sk_buff *build_skb_around(struct sk_buff *skb, 274 void *data, unsigned int frag_size) 275 { 276 if (unlikely(!skb)) 277 return NULL; 278 279 __build_skb_around(skb, data, frag_size); 280 281 if (frag_size) { 282 skb->head_frag = 1; 283 if (page_is_pfmemalloc(virt_to_head_page(data))) 284 skb->pfmemalloc = 1; 285 } 286 return skb; 287 } 288 EXPORT_SYMBOL(build_skb_around); 289 290 /** 291 * __napi_build_skb - build a network buffer 292 * @data: data buffer provided by caller 293 * @frag_size: size of data, or 0 if head was kmalloced 294 * 295 * Version of __build_skb() that uses NAPI percpu caches to obtain 296 * skbuff_head instead of inplace allocation. 297 * 298 * Returns a new &sk_buff on success, %NULL on allocation failure. 299 */ 300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 301 { 302 struct sk_buff *skb; 303 304 skb = napi_skb_cache_get(); 305 if (unlikely(!skb)) 306 return NULL; 307 308 memset(skb, 0, offsetof(struct sk_buff, tail)); 309 __build_skb_around(skb, data, frag_size); 310 311 return skb; 312 } 313 314 /** 315 * napi_build_skb - build a network buffer 316 * @data: data buffer provided by caller 317 * @frag_size: size of data, or 0 if head was kmalloced 318 * 319 * Version of __napi_build_skb() that takes care of skb->head_frag 320 * and skb->pfmemalloc when the data is a page or page fragment. 321 * 322 * Returns a new &sk_buff on success, %NULL on allocation failure. 323 */ 324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 325 { 326 struct sk_buff *skb = __napi_build_skb(data, frag_size); 327 328 if (likely(skb) && frag_size) { 329 skb->head_frag = 1; 330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 331 } 332 333 return skb; 334 } 335 EXPORT_SYMBOL(napi_build_skb); 336 337 /* 338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 339 * the caller if emergency pfmemalloc reserves are being used. If it is and 340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 341 * may be used. Otherwise, the packet data may be discarded until enough 342 * memory is free 343 */ 344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 345 bool *pfmemalloc) 346 { 347 void *obj; 348 bool ret_pfmemalloc = false; 349 350 /* 351 * Try a regular allocation, when that fails and we're not entitled 352 * to the reserves, fail. 353 */ 354 obj = kmalloc_node_track_caller(size, 355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 356 node); 357 if (obj || !(gfp_pfmemalloc_allowed(flags))) 358 goto out; 359 360 /* Try again but now we are using pfmemalloc reserves */ 361 ret_pfmemalloc = true; 362 obj = kmalloc_node_track_caller(size, flags, node); 363 364 out: 365 if (pfmemalloc) 366 *pfmemalloc = ret_pfmemalloc; 367 368 return obj; 369 } 370 371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 372 * 'private' fields and also do memory statistics to find all the 373 * [BEEP] leaks. 374 * 375 */ 376 377 /** 378 * __alloc_skb - allocate a network buffer 379 * @size: size to allocate 380 * @gfp_mask: allocation mask 381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 382 * instead of head cache and allocate a cloned (child) skb. 383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 384 * allocations in case the data is required for writeback 385 * @node: numa node to allocate memory on 386 * 387 * Allocate a new &sk_buff. The returned buffer has no headroom and a 388 * tail room of at least size bytes. The object has a reference count 389 * of one. The return is the buffer. On a failure the return is %NULL. 390 * 391 * Buffers may only be allocated from interrupts using a @gfp_mask of 392 * %GFP_ATOMIC. 393 */ 394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 395 int flags, int node) 396 { 397 struct kmem_cache *cache; 398 struct sk_buff *skb; 399 u8 *data; 400 bool pfmemalloc; 401 402 cache = (flags & SKB_ALLOC_FCLONE) 403 ? skbuff_fclone_cache : skbuff_head_cache; 404 405 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 406 gfp_mask |= __GFP_MEMALLOC; 407 408 /* Get the HEAD */ 409 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 410 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 411 skb = napi_skb_cache_get(); 412 else 413 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 414 if (unlikely(!skb)) 415 return NULL; 416 prefetchw(skb); 417 418 /* We do our best to align skb_shared_info on a separate cache 419 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 420 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 421 * Both skb->head and skb_shared_info are cache line aligned. 422 */ 423 size = SKB_DATA_ALIGN(size); 424 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 425 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 426 if (unlikely(!data)) 427 goto nodata; 428 /* kmalloc(size) might give us more room than requested. 429 * Put skb_shared_info exactly at the end of allocated zone, 430 * to allow max possible filling before reallocation. 431 */ 432 size = SKB_WITH_OVERHEAD(ksize(data)); 433 prefetchw(data + size); 434 435 /* 436 * Only clear those fields we need to clear, not those that we will 437 * actually initialise below. Hence, don't put any more fields after 438 * the tail pointer in struct sk_buff! 439 */ 440 memset(skb, 0, offsetof(struct sk_buff, tail)); 441 __build_skb_around(skb, data, 0); 442 skb->pfmemalloc = pfmemalloc; 443 444 if (flags & SKB_ALLOC_FCLONE) { 445 struct sk_buff_fclones *fclones; 446 447 fclones = container_of(skb, struct sk_buff_fclones, skb1); 448 449 skb->fclone = SKB_FCLONE_ORIG; 450 refcount_set(&fclones->fclone_ref, 1); 451 452 fclones->skb2.fclone = SKB_FCLONE_CLONE; 453 } 454 455 return skb; 456 457 nodata: 458 kmem_cache_free(cache, skb); 459 return NULL; 460 } 461 EXPORT_SYMBOL(__alloc_skb); 462 463 /** 464 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 465 * @dev: network device to receive on 466 * @len: length to allocate 467 * @gfp_mask: get_free_pages mask, passed to alloc_skb 468 * 469 * Allocate a new &sk_buff and assign it a usage count of one. The 470 * buffer has NET_SKB_PAD headroom built in. Users should allocate 471 * the headroom they think they need without accounting for the 472 * built in space. The built in space is used for optimisations. 473 * 474 * %NULL is returned if there is no free memory. 475 */ 476 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 477 gfp_t gfp_mask) 478 { 479 struct page_frag_cache *nc; 480 struct sk_buff *skb; 481 bool pfmemalloc; 482 void *data; 483 484 len += NET_SKB_PAD; 485 486 /* If requested length is either too small or too big, 487 * we use kmalloc() for skb->head allocation. 488 */ 489 if (len <= SKB_WITH_OVERHEAD(1024) || 490 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 491 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 492 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 493 if (!skb) 494 goto skb_fail; 495 goto skb_success; 496 } 497 498 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 499 len = SKB_DATA_ALIGN(len); 500 501 if (sk_memalloc_socks()) 502 gfp_mask |= __GFP_MEMALLOC; 503 504 if (in_irq() || irqs_disabled()) { 505 nc = this_cpu_ptr(&netdev_alloc_cache); 506 data = page_frag_alloc(nc, len, gfp_mask); 507 pfmemalloc = nc->pfmemalloc; 508 } else { 509 local_bh_disable(); 510 nc = this_cpu_ptr(&napi_alloc_cache.page); 511 data = page_frag_alloc(nc, len, gfp_mask); 512 pfmemalloc = nc->pfmemalloc; 513 local_bh_enable(); 514 } 515 516 if (unlikely(!data)) 517 return NULL; 518 519 skb = __build_skb(data, len); 520 if (unlikely(!skb)) { 521 skb_free_frag(data); 522 return NULL; 523 } 524 525 if (pfmemalloc) 526 skb->pfmemalloc = 1; 527 skb->head_frag = 1; 528 529 skb_success: 530 skb_reserve(skb, NET_SKB_PAD); 531 skb->dev = dev; 532 533 skb_fail: 534 return skb; 535 } 536 EXPORT_SYMBOL(__netdev_alloc_skb); 537 538 /** 539 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 540 * @napi: napi instance this buffer was allocated for 541 * @len: length to allocate 542 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 543 * 544 * Allocate a new sk_buff for use in NAPI receive. This buffer will 545 * attempt to allocate the head from a special reserved region used 546 * only for NAPI Rx allocation. By doing this we can save several 547 * CPU cycles by avoiding having to disable and re-enable IRQs. 548 * 549 * %NULL is returned if there is no free memory. 550 */ 551 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 552 gfp_t gfp_mask) 553 { 554 struct napi_alloc_cache *nc; 555 struct sk_buff *skb; 556 void *data; 557 558 len += NET_SKB_PAD + NET_IP_ALIGN; 559 560 /* If requested length is either too small or too big, 561 * we use kmalloc() for skb->head allocation. 562 */ 563 if (len <= SKB_WITH_OVERHEAD(1024) || 564 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 565 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 566 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 567 NUMA_NO_NODE); 568 if (!skb) 569 goto skb_fail; 570 goto skb_success; 571 } 572 573 nc = this_cpu_ptr(&napi_alloc_cache); 574 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 575 len = SKB_DATA_ALIGN(len); 576 577 if (sk_memalloc_socks()) 578 gfp_mask |= __GFP_MEMALLOC; 579 580 data = page_frag_alloc(&nc->page, len, gfp_mask); 581 if (unlikely(!data)) 582 return NULL; 583 584 skb = __napi_build_skb(data, len); 585 if (unlikely(!skb)) { 586 skb_free_frag(data); 587 return NULL; 588 } 589 590 if (nc->page.pfmemalloc) 591 skb->pfmemalloc = 1; 592 skb->head_frag = 1; 593 594 skb_success: 595 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 596 skb->dev = napi->dev; 597 598 skb_fail: 599 return skb; 600 } 601 EXPORT_SYMBOL(__napi_alloc_skb); 602 603 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 604 int size, unsigned int truesize) 605 { 606 skb_fill_page_desc(skb, i, page, off, size); 607 skb->len += size; 608 skb->data_len += size; 609 skb->truesize += truesize; 610 } 611 EXPORT_SYMBOL(skb_add_rx_frag); 612 613 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 614 unsigned int truesize) 615 { 616 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 617 618 skb_frag_size_add(frag, size); 619 skb->len += size; 620 skb->data_len += size; 621 skb->truesize += truesize; 622 } 623 EXPORT_SYMBOL(skb_coalesce_rx_frag); 624 625 static void skb_drop_list(struct sk_buff **listp) 626 { 627 kfree_skb_list(*listp); 628 *listp = NULL; 629 } 630 631 static inline void skb_drop_fraglist(struct sk_buff *skb) 632 { 633 skb_drop_list(&skb_shinfo(skb)->frag_list); 634 } 635 636 static void skb_clone_fraglist(struct sk_buff *skb) 637 { 638 struct sk_buff *list; 639 640 skb_walk_frags(skb, list) 641 skb_get(list); 642 } 643 644 static void skb_free_head(struct sk_buff *skb) 645 { 646 unsigned char *head = skb->head; 647 648 if (skb->head_frag) 649 skb_free_frag(head); 650 else 651 kfree(head); 652 } 653 654 static void skb_release_data(struct sk_buff *skb) 655 { 656 struct skb_shared_info *shinfo = skb_shinfo(skb); 657 int i; 658 659 if (skb->cloned && 660 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 661 &shinfo->dataref)) 662 return; 663 664 skb_zcopy_clear(skb, true); 665 666 for (i = 0; i < shinfo->nr_frags; i++) 667 __skb_frag_unref(&shinfo->frags[i]); 668 669 if (shinfo->frag_list) 670 kfree_skb_list(shinfo->frag_list); 671 672 skb_free_head(skb); 673 } 674 675 /* 676 * Free an skbuff by memory without cleaning the state. 677 */ 678 static void kfree_skbmem(struct sk_buff *skb) 679 { 680 struct sk_buff_fclones *fclones; 681 682 switch (skb->fclone) { 683 case SKB_FCLONE_UNAVAILABLE: 684 kmem_cache_free(skbuff_head_cache, skb); 685 return; 686 687 case SKB_FCLONE_ORIG: 688 fclones = container_of(skb, struct sk_buff_fclones, skb1); 689 690 /* We usually free the clone (TX completion) before original skb 691 * This test would have no chance to be true for the clone, 692 * while here, branch prediction will be good. 693 */ 694 if (refcount_read(&fclones->fclone_ref) == 1) 695 goto fastpath; 696 break; 697 698 default: /* SKB_FCLONE_CLONE */ 699 fclones = container_of(skb, struct sk_buff_fclones, skb2); 700 break; 701 } 702 if (!refcount_dec_and_test(&fclones->fclone_ref)) 703 return; 704 fastpath: 705 kmem_cache_free(skbuff_fclone_cache, fclones); 706 } 707 708 void skb_release_head_state(struct sk_buff *skb) 709 { 710 skb_dst_drop(skb); 711 if (skb->destructor) { 712 WARN_ON(in_irq()); 713 skb->destructor(skb); 714 } 715 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 716 nf_conntrack_put(skb_nfct(skb)); 717 #endif 718 skb_ext_put(skb); 719 } 720 721 /* Free everything but the sk_buff shell. */ 722 static void skb_release_all(struct sk_buff *skb) 723 { 724 skb_release_head_state(skb); 725 if (likely(skb->head)) 726 skb_release_data(skb); 727 } 728 729 /** 730 * __kfree_skb - private function 731 * @skb: buffer 732 * 733 * Free an sk_buff. Release anything attached to the buffer. 734 * Clean the state. This is an internal helper function. Users should 735 * always call kfree_skb 736 */ 737 738 void __kfree_skb(struct sk_buff *skb) 739 { 740 skb_release_all(skb); 741 kfree_skbmem(skb); 742 } 743 EXPORT_SYMBOL(__kfree_skb); 744 745 /** 746 * kfree_skb - free an sk_buff 747 * @skb: buffer to free 748 * 749 * Drop a reference to the buffer and free it if the usage count has 750 * hit zero. 751 */ 752 void kfree_skb(struct sk_buff *skb) 753 { 754 if (!skb_unref(skb)) 755 return; 756 757 trace_kfree_skb(skb, __builtin_return_address(0)); 758 __kfree_skb(skb); 759 } 760 EXPORT_SYMBOL(kfree_skb); 761 762 void kfree_skb_list(struct sk_buff *segs) 763 { 764 while (segs) { 765 struct sk_buff *next = segs->next; 766 767 kfree_skb(segs); 768 segs = next; 769 } 770 } 771 EXPORT_SYMBOL(kfree_skb_list); 772 773 /* Dump skb information and contents. 774 * 775 * Must only be called from net_ratelimit()-ed paths. 776 * 777 * Dumps whole packets if full_pkt, only headers otherwise. 778 */ 779 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 780 { 781 struct skb_shared_info *sh = skb_shinfo(skb); 782 struct net_device *dev = skb->dev; 783 struct sock *sk = skb->sk; 784 struct sk_buff *list_skb; 785 bool has_mac, has_trans; 786 int headroom, tailroom; 787 int i, len, seg_len; 788 789 if (full_pkt) 790 len = skb->len; 791 else 792 len = min_t(int, skb->len, MAX_HEADER + 128); 793 794 headroom = skb_headroom(skb); 795 tailroom = skb_tailroom(skb); 796 797 has_mac = skb_mac_header_was_set(skb); 798 has_trans = skb_transport_header_was_set(skb); 799 800 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 801 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 802 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 803 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 804 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 805 level, skb->len, headroom, skb_headlen(skb), tailroom, 806 has_mac ? skb->mac_header : -1, 807 has_mac ? skb_mac_header_len(skb) : -1, 808 skb->network_header, 809 has_trans ? skb_network_header_len(skb) : -1, 810 has_trans ? skb->transport_header : -1, 811 sh->tx_flags, sh->nr_frags, 812 sh->gso_size, sh->gso_type, sh->gso_segs, 813 skb->csum, skb->ip_summed, skb->csum_complete_sw, 814 skb->csum_valid, skb->csum_level, 815 skb->hash, skb->sw_hash, skb->l4_hash, 816 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 817 818 if (dev) 819 printk("%sdev name=%s feat=0x%pNF\n", 820 level, dev->name, &dev->features); 821 if (sk) 822 printk("%ssk family=%hu type=%u proto=%u\n", 823 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 824 825 if (full_pkt && headroom) 826 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 827 16, 1, skb->head, headroom, false); 828 829 seg_len = min_t(int, skb_headlen(skb), len); 830 if (seg_len) 831 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 832 16, 1, skb->data, seg_len, false); 833 len -= seg_len; 834 835 if (full_pkt && tailroom) 836 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 837 16, 1, skb_tail_pointer(skb), tailroom, false); 838 839 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 840 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 841 u32 p_off, p_len, copied; 842 struct page *p; 843 u8 *vaddr; 844 845 skb_frag_foreach_page(frag, skb_frag_off(frag), 846 skb_frag_size(frag), p, p_off, p_len, 847 copied) { 848 seg_len = min_t(int, p_len, len); 849 vaddr = kmap_atomic(p); 850 print_hex_dump(level, "skb frag: ", 851 DUMP_PREFIX_OFFSET, 852 16, 1, vaddr + p_off, seg_len, false); 853 kunmap_atomic(vaddr); 854 len -= seg_len; 855 if (!len) 856 break; 857 } 858 } 859 860 if (full_pkt && skb_has_frag_list(skb)) { 861 printk("skb fraglist:\n"); 862 skb_walk_frags(skb, list_skb) 863 skb_dump(level, list_skb, true); 864 } 865 } 866 EXPORT_SYMBOL(skb_dump); 867 868 /** 869 * skb_tx_error - report an sk_buff xmit error 870 * @skb: buffer that triggered an error 871 * 872 * Report xmit error if a device callback is tracking this skb. 873 * skb must be freed afterwards. 874 */ 875 void skb_tx_error(struct sk_buff *skb) 876 { 877 skb_zcopy_clear(skb, true); 878 } 879 EXPORT_SYMBOL(skb_tx_error); 880 881 #ifdef CONFIG_TRACEPOINTS 882 /** 883 * consume_skb - free an skbuff 884 * @skb: buffer to free 885 * 886 * Drop a ref to the buffer and free it if the usage count has hit zero 887 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 888 * is being dropped after a failure and notes that 889 */ 890 void consume_skb(struct sk_buff *skb) 891 { 892 if (!skb_unref(skb)) 893 return; 894 895 trace_consume_skb(skb); 896 __kfree_skb(skb); 897 } 898 EXPORT_SYMBOL(consume_skb); 899 #endif 900 901 /** 902 * __consume_stateless_skb - free an skbuff, assuming it is stateless 903 * @skb: buffer to free 904 * 905 * Alike consume_skb(), but this variant assumes that this is the last 906 * skb reference and all the head states have been already dropped 907 */ 908 void __consume_stateless_skb(struct sk_buff *skb) 909 { 910 trace_consume_skb(skb); 911 skb_release_data(skb); 912 kfree_skbmem(skb); 913 } 914 915 static void napi_skb_cache_put(struct sk_buff *skb) 916 { 917 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 918 u32 i; 919 920 kasan_poison_object_data(skbuff_head_cache, skb); 921 nc->skb_cache[nc->skb_count++] = skb; 922 923 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 924 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 925 kasan_unpoison_object_data(skbuff_head_cache, 926 nc->skb_cache[i]); 927 928 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 929 nc->skb_cache + NAPI_SKB_CACHE_HALF); 930 nc->skb_count = NAPI_SKB_CACHE_HALF; 931 } 932 } 933 934 void __kfree_skb_defer(struct sk_buff *skb) 935 { 936 skb_release_all(skb); 937 napi_skb_cache_put(skb); 938 } 939 940 void napi_skb_free_stolen_head(struct sk_buff *skb) 941 { 942 skb_dst_drop(skb); 943 skb_ext_put(skb); 944 napi_skb_cache_put(skb); 945 } 946 947 void napi_consume_skb(struct sk_buff *skb, int budget) 948 { 949 /* Zero budget indicate non-NAPI context called us, like netpoll */ 950 if (unlikely(!budget)) { 951 dev_consume_skb_any(skb); 952 return; 953 } 954 955 lockdep_assert_in_softirq(); 956 957 if (!skb_unref(skb)) 958 return; 959 960 /* if reaching here SKB is ready to free */ 961 trace_consume_skb(skb); 962 963 /* if SKB is a clone, don't handle this case */ 964 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 965 __kfree_skb(skb); 966 return; 967 } 968 969 skb_release_all(skb); 970 napi_skb_cache_put(skb); 971 } 972 EXPORT_SYMBOL(napi_consume_skb); 973 974 /* Make sure a field is enclosed inside headers_start/headers_end section */ 975 #define CHECK_SKB_FIELD(field) \ 976 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 977 offsetof(struct sk_buff, headers_start)); \ 978 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 979 offsetof(struct sk_buff, headers_end)); \ 980 981 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 982 { 983 new->tstamp = old->tstamp; 984 /* We do not copy old->sk */ 985 new->dev = old->dev; 986 memcpy(new->cb, old->cb, sizeof(old->cb)); 987 skb_dst_copy(new, old); 988 __skb_ext_copy(new, old); 989 __nf_copy(new, old, false); 990 991 /* Note : this field could be in headers_start/headers_end section 992 * It is not yet because we do not want to have a 16 bit hole 993 */ 994 new->queue_mapping = old->queue_mapping; 995 996 memcpy(&new->headers_start, &old->headers_start, 997 offsetof(struct sk_buff, headers_end) - 998 offsetof(struct sk_buff, headers_start)); 999 CHECK_SKB_FIELD(protocol); 1000 CHECK_SKB_FIELD(csum); 1001 CHECK_SKB_FIELD(hash); 1002 CHECK_SKB_FIELD(priority); 1003 CHECK_SKB_FIELD(skb_iif); 1004 CHECK_SKB_FIELD(vlan_proto); 1005 CHECK_SKB_FIELD(vlan_tci); 1006 CHECK_SKB_FIELD(transport_header); 1007 CHECK_SKB_FIELD(network_header); 1008 CHECK_SKB_FIELD(mac_header); 1009 CHECK_SKB_FIELD(inner_protocol); 1010 CHECK_SKB_FIELD(inner_transport_header); 1011 CHECK_SKB_FIELD(inner_network_header); 1012 CHECK_SKB_FIELD(inner_mac_header); 1013 CHECK_SKB_FIELD(mark); 1014 #ifdef CONFIG_NETWORK_SECMARK 1015 CHECK_SKB_FIELD(secmark); 1016 #endif 1017 #ifdef CONFIG_NET_RX_BUSY_POLL 1018 CHECK_SKB_FIELD(napi_id); 1019 #endif 1020 #ifdef CONFIG_XPS 1021 CHECK_SKB_FIELD(sender_cpu); 1022 #endif 1023 #ifdef CONFIG_NET_SCHED 1024 CHECK_SKB_FIELD(tc_index); 1025 #endif 1026 1027 } 1028 1029 /* 1030 * You should not add any new code to this function. Add it to 1031 * __copy_skb_header above instead. 1032 */ 1033 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1034 { 1035 #define C(x) n->x = skb->x 1036 1037 n->next = n->prev = NULL; 1038 n->sk = NULL; 1039 __copy_skb_header(n, skb); 1040 1041 C(len); 1042 C(data_len); 1043 C(mac_len); 1044 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1045 n->cloned = 1; 1046 n->nohdr = 0; 1047 n->peeked = 0; 1048 C(pfmemalloc); 1049 n->destructor = NULL; 1050 C(tail); 1051 C(end); 1052 C(head); 1053 C(head_frag); 1054 C(data); 1055 C(truesize); 1056 refcount_set(&n->users, 1); 1057 1058 atomic_inc(&(skb_shinfo(skb)->dataref)); 1059 skb->cloned = 1; 1060 1061 return n; 1062 #undef C 1063 } 1064 1065 /** 1066 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1067 * @first: first sk_buff of the msg 1068 */ 1069 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1070 { 1071 struct sk_buff *n; 1072 1073 n = alloc_skb(0, GFP_ATOMIC); 1074 if (!n) 1075 return NULL; 1076 1077 n->len = first->len; 1078 n->data_len = first->len; 1079 n->truesize = first->truesize; 1080 1081 skb_shinfo(n)->frag_list = first; 1082 1083 __copy_skb_header(n, first); 1084 n->destructor = NULL; 1085 1086 return n; 1087 } 1088 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1089 1090 /** 1091 * skb_morph - morph one skb into another 1092 * @dst: the skb to receive the contents 1093 * @src: the skb to supply the contents 1094 * 1095 * This is identical to skb_clone except that the target skb is 1096 * supplied by the user. 1097 * 1098 * The target skb is returned upon exit. 1099 */ 1100 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1101 { 1102 skb_release_all(dst); 1103 return __skb_clone(dst, src); 1104 } 1105 EXPORT_SYMBOL_GPL(skb_morph); 1106 1107 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1108 { 1109 unsigned long max_pg, num_pg, new_pg, old_pg; 1110 struct user_struct *user; 1111 1112 if (capable(CAP_IPC_LOCK) || !size) 1113 return 0; 1114 1115 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1116 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1117 user = mmp->user ? : current_user(); 1118 1119 do { 1120 old_pg = atomic_long_read(&user->locked_vm); 1121 new_pg = old_pg + num_pg; 1122 if (new_pg > max_pg) 1123 return -ENOBUFS; 1124 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1125 old_pg); 1126 1127 if (!mmp->user) { 1128 mmp->user = get_uid(user); 1129 mmp->num_pg = num_pg; 1130 } else { 1131 mmp->num_pg += num_pg; 1132 } 1133 1134 return 0; 1135 } 1136 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1137 1138 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1139 { 1140 if (mmp->user) { 1141 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1142 free_uid(mmp->user); 1143 } 1144 } 1145 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1146 1147 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1148 { 1149 struct ubuf_info *uarg; 1150 struct sk_buff *skb; 1151 1152 WARN_ON_ONCE(!in_task()); 1153 1154 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1155 if (!skb) 1156 return NULL; 1157 1158 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1159 uarg = (void *)skb->cb; 1160 uarg->mmp.user = NULL; 1161 1162 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1163 kfree_skb(skb); 1164 return NULL; 1165 } 1166 1167 uarg->callback = msg_zerocopy_callback; 1168 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1169 uarg->len = 1; 1170 uarg->bytelen = size; 1171 uarg->zerocopy = 1; 1172 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1173 refcount_set(&uarg->refcnt, 1); 1174 sock_hold(sk); 1175 1176 return uarg; 1177 } 1178 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1179 1180 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1181 { 1182 return container_of((void *)uarg, struct sk_buff, cb); 1183 } 1184 1185 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1186 struct ubuf_info *uarg) 1187 { 1188 if (uarg) { 1189 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1190 u32 bytelen, next; 1191 1192 /* realloc only when socket is locked (TCP, UDP cork), 1193 * so uarg->len and sk_zckey access is serialized 1194 */ 1195 if (!sock_owned_by_user(sk)) { 1196 WARN_ON_ONCE(1); 1197 return NULL; 1198 } 1199 1200 bytelen = uarg->bytelen + size; 1201 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1202 /* TCP can create new skb to attach new uarg */ 1203 if (sk->sk_type == SOCK_STREAM) 1204 goto new_alloc; 1205 return NULL; 1206 } 1207 1208 next = (u32)atomic_read(&sk->sk_zckey); 1209 if ((u32)(uarg->id + uarg->len) == next) { 1210 if (mm_account_pinned_pages(&uarg->mmp, size)) 1211 return NULL; 1212 uarg->len++; 1213 uarg->bytelen = bytelen; 1214 atomic_set(&sk->sk_zckey, ++next); 1215 1216 /* no extra ref when appending to datagram (MSG_MORE) */ 1217 if (sk->sk_type == SOCK_STREAM) 1218 net_zcopy_get(uarg); 1219 1220 return uarg; 1221 } 1222 } 1223 1224 new_alloc: 1225 return msg_zerocopy_alloc(sk, size); 1226 } 1227 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1228 1229 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1230 { 1231 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1232 u32 old_lo, old_hi; 1233 u64 sum_len; 1234 1235 old_lo = serr->ee.ee_info; 1236 old_hi = serr->ee.ee_data; 1237 sum_len = old_hi - old_lo + 1ULL + len; 1238 1239 if (sum_len >= (1ULL << 32)) 1240 return false; 1241 1242 if (lo != old_hi + 1) 1243 return false; 1244 1245 serr->ee.ee_data += len; 1246 return true; 1247 } 1248 1249 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1250 { 1251 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1252 struct sock_exterr_skb *serr; 1253 struct sock *sk = skb->sk; 1254 struct sk_buff_head *q; 1255 unsigned long flags; 1256 u32 lo, hi; 1257 u16 len; 1258 1259 mm_unaccount_pinned_pages(&uarg->mmp); 1260 1261 /* if !len, there was only 1 call, and it was aborted 1262 * so do not queue a completion notification 1263 */ 1264 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1265 goto release; 1266 1267 len = uarg->len; 1268 lo = uarg->id; 1269 hi = uarg->id + len - 1; 1270 1271 serr = SKB_EXT_ERR(skb); 1272 memset(serr, 0, sizeof(*serr)); 1273 serr->ee.ee_errno = 0; 1274 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1275 serr->ee.ee_data = hi; 1276 serr->ee.ee_info = lo; 1277 if (!uarg->zerocopy) 1278 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1279 1280 q = &sk->sk_error_queue; 1281 spin_lock_irqsave(&q->lock, flags); 1282 tail = skb_peek_tail(q); 1283 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1284 !skb_zerocopy_notify_extend(tail, lo, len)) { 1285 __skb_queue_tail(q, skb); 1286 skb = NULL; 1287 } 1288 spin_unlock_irqrestore(&q->lock, flags); 1289 1290 sk->sk_error_report(sk); 1291 1292 release: 1293 consume_skb(skb); 1294 sock_put(sk); 1295 } 1296 1297 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1298 bool success) 1299 { 1300 uarg->zerocopy = uarg->zerocopy & success; 1301 1302 if (refcount_dec_and_test(&uarg->refcnt)) 1303 __msg_zerocopy_callback(uarg); 1304 } 1305 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1306 1307 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1308 { 1309 struct sock *sk = skb_from_uarg(uarg)->sk; 1310 1311 atomic_dec(&sk->sk_zckey); 1312 uarg->len--; 1313 1314 if (have_uref) 1315 msg_zerocopy_callback(NULL, uarg, true); 1316 } 1317 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1318 1319 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1320 { 1321 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1322 } 1323 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1324 1325 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1326 struct msghdr *msg, int len, 1327 struct ubuf_info *uarg) 1328 { 1329 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1330 struct iov_iter orig_iter = msg->msg_iter; 1331 int err, orig_len = skb->len; 1332 1333 /* An skb can only point to one uarg. This edge case happens when 1334 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1335 */ 1336 if (orig_uarg && uarg != orig_uarg) 1337 return -EEXIST; 1338 1339 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1340 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1341 struct sock *save_sk = skb->sk; 1342 1343 /* Streams do not free skb on error. Reset to prev state. */ 1344 msg->msg_iter = orig_iter; 1345 skb->sk = sk; 1346 ___pskb_trim(skb, orig_len); 1347 skb->sk = save_sk; 1348 return err; 1349 } 1350 1351 skb_zcopy_set(skb, uarg, NULL); 1352 return skb->len - orig_len; 1353 } 1354 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1355 1356 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1357 gfp_t gfp_mask) 1358 { 1359 if (skb_zcopy(orig)) { 1360 if (skb_zcopy(nskb)) { 1361 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1362 if (!gfp_mask) { 1363 WARN_ON_ONCE(1); 1364 return -ENOMEM; 1365 } 1366 if (skb_uarg(nskb) == skb_uarg(orig)) 1367 return 0; 1368 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1369 return -EIO; 1370 } 1371 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1372 } 1373 return 0; 1374 } 1375 1376 /** 1377 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1378 * @skb: the skb to modify 1379 * @gfp_mask: allocation priority 1380 * 1381 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1382 * It will copy all frags into kernel and drop the reference 1383 * to userspace pages. 1384 * 1385 * If this function is called from an interrupt gfp_mask() must be 1386 * %GFP_ATOMIC. 1387 * 1388 * Returns 0 on success or a negative error code on failure 1389 * to allocate kernel memory to copy to. 1390 */ 1391 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1392 { 1393 int num_frags = skb_shinfo(skb)->nr_frags; 1394 struct page *page, *head = NULL; 1395 int i, new_frags; 1396 u32 d_off; 1397 1398 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1399 return -EINVAL; 1400 1401 if (!num_frags) 1402 goto release; 1403 1404 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1405 for (i = 0; i < new_frags; i++) { 1406 page = alloc_page(gfp_mask); 1407 if (!page) { 1408 while (head) { 1409 struct page *next = (struct page *)page_private(head); 1410 put_page(head); 1411 head = next; 1412 } 1413 return -ENOMEM; 1414 } 1415 set_page_private(page, (unsigned long)head); 1416 head = page; 1417 } 1418 1419 page = head; 1420 d_off = 0; 1421 for (i = 0; i < num_frags; i++) { 1422 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1423 u32 p_off, p_len, copied; 1424 struct page *p; 1425 u8 *vaddr; 1426 1427 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1428 p, p_off, p_len, copied) { 1429 u32 copy, done = 0; 1430 vaddr = kmap_atomic(p); 1431 1432 while (done < p_len) { 1433 if (d_off == PAGE_SIZE) { 1434 d_off = 0; 1435 page = (struct page *)page_private(page); 1436 } 1437 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1438 memcpy(page_address(page) + d_off, 1439 vaddr + p_off + done, copy); 1440 done += copy; 1441 d_off += copy; 1442 } 1443 kunmap_atomic(vaddr); 1444 } 1445 } 1446 1447 /* skb frags release userspace buffers */ 1448 for (i = 0; i < num_frags; i++) 1449 skb_frag_unref(skb, i); 1450 1451 /* skb frags point to kernel buffers */ 1452 for (i = 0; i < new_frags - 1; i++) { 1453 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1454 head = (struct page *)page_private(head); 1455 } 1456 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1457 skb_shinfo(skb)->nr_frags = new_frags; 1458 1459 release: 1460 skb_zcopy_clear(skb, false); 1461 return 0; 1462 } 1463 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1464 1465 /** 1466 * skb_clone - duplicate an sk_buff 1467 * @skb: buffer to clone 1468 * @gfp_mask: allocation priority 1469 * 1470 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1471 * copies share the same packet data but not structure. The new 1472 * buffer has a reference count of 1. If the allocation fails the 1473 * function returns %NULL otherwise the new buffer is returned. 1474 * 1475 * If this function is called from an interrupt gfp_mask() must be 1476 * %GFP_ATOMIC. 1477 */ 1478 1479 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1480 { 1481 struct sk_buff_fclones *fclones = container_of(skb, 1482 struct sk_buff_fclones, 1483 skb1); 1484 struct sk_buff *n; 1485 1486 if (skb_orphan_frags(skb, gfp_mask)) 1487 return NULL; 1488 1489 if (skb->fclone == SKB_FCLONE_ORIG && 1490 refcount_read(&fclones->fclone_ref) == 1) { 1491 n = &fclones->skb2; 1492 refcount_set(&fclones->fclone_ref, 2); 1493 } else { 1494 if (skb_pfmemalloc(skb)) 1495 gfp_mask |= __GFP_MEMALLOC; 1496 1497 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1498 if (!n) 1499 return NULL; 1500 1501 n->fclone = SKB_FCLONE_UNAVAILABLE; 1502 } 1503 1504 return __skb_clone(n, skb); 1505 } 1506 EXPORT_SYMBOL(skb_clone); 1507 1508 void skb_headers_offset_update(struct sk_buff *skb, int off) 1509 { 1510 /* Only adjust this if it actually is csum_start rather than csum */ 1511 if (skb->ip_summed == CHECKSUM_PARTIAL) 1512 skb->csum_start += off; 1513 /* {transport,network,mac}_header and tail are relative to skb->head */ 1514 skb->transport_header += off; 1515 skb->network_header += off; 1516 if (skb_mac_header_was_set(skb)) 1517 skb->mac_header += off; 1518 skb->inner_transport_header += off; 1519 skb->inner_network_header += off; 1520 skb->inner_mac_header += off; 1521 } 1522 EXPORT_SYMBOL(skb_headers_offset_update); 1523 1524 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1525 { 1526 __copy_skb_header(new, old); 1527 1528 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1529 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1530 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1531 } 1532 EXPORT_SYMBOL(skb_copy_header); 1533 1534 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1535 { 1536 if (skb_pfmemalloc(skb)) 1537 return SKB_ALLOC_RX; 1538 return 0; 1539 } 1540 1541 /** 1542 * skb_copy - create private copy of an sk_buff 1543 * @skb: buffer to copy 1544 * @gfp_mask: allocation priority 1545 * 1546 * Make a copy of both an &sk_buff and its data. This is used when the 1547 * caller wishes to modify the data and needs a private copy of the 1548 * data to alter. Returns %NULL on failure or the pointer to the buffer 1549 * on success. The returned buffer has a reference count of 1. 1550 * 1551 * As by-product this function converts non-linear &sk_buff to linear 1552 * one, so that &sk_buff becomes completely private and caller is allowed 1553 * to modify all the data of returned buffer. This means that this 1554 * function is not recommended for use in circumstances when only 1555 * header is going to be modified. Use pskb_copy() instead. 1556 */ 1557 1558 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1559 { 1560 int headerlen = skb_headroom(skb); 1561 unsigned int size = skb_end_offset(skb) + skb->data_len; 1562 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1563 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1564 1565 if (!n) 1566 return NULL; 1567 1568 /* Set the data pointer */ 1569 skb_reserve(n, headerlen); 1570 /* Set the tail pointer and length */ 1571 skb_put(n, skb->len); 1572 1573 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1574 1575 skb_copy_header(n, skb); 1576 return n; 1577 } 1578 EXPORT_SYMBOL(skb_copy); 1579 1580 /** 1581 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1582 * @skb: buffer to copy 1583 * @headroom: headroom of new skb 1584 * @gfp_mask: allocation priority 1585 * @fclone: if true allocate the copy of the skb from the fclone 1586 * cache instead of the head cache; it is recommended to set this 1587 * to true for the cases where the copy will likely be cloned 1588 * 1589 * Make a copy of both an &sk_buff and part of its data, located 1590 * in header. Fragmented data remain shared. This is used when 1591 * the caller wishes to modify only header of &sk_buff and needs 1592 * private copy of the header to alter. Returns %NULL on failure 1593 * or the pointer to the buffer on success. 1594 * The returned buffer has a reference count of 1. 1595 */ 1596 1597 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1598 gfp_t gfp_mask, bool fclone) 1599 { 1600 unsigned int size = skb_headlen(skb) + headroom; 1601 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1602 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1603 1604 if (!n) 1605 goto out; 1606 1607 /* Set the data pointer */ 1608 skb_reserve(n, headroom); 1609 /* Set the tail pointer and length */ 1610 skb_put(n, skb_headlen(skb)); 1611 /* Copy the bytes */ 1612 skb_copy_from_linear_data(skb, n->data, n->len); 1613 1614 n->truesize += skb->data_len; 1615 n->data_len = skb->data_len; 1616 n->len = skb->len; 1617 1618 if (skb_shinfo(skb)->nr_frags) { 1619 int i; 1620 1621 if (skb_orphan_frags(skb, gfp_mask) || 1622 skb_zerocopy_clone(n, skb, gfp_mask)) { 1623 kfree_skb(n); 1624 n = NULL; 1625 goto out; 1626 } 1627 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1628 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1629 skb_frag_ref(skb, i); 1630 } 1631 skb_shinfo(n)->nr_frags = i; 1632 } 1633 1634 if (skb_has_frag_list(skb)) { 1635 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1636 skb_clone_fraglist(n); 1637 } 1638 1639 skb_copy_header(n, skb); 1640 out: 1641 return n; 1642 } 1643 EXPORT_SYMBOL(__pskb_copy_fclone); 1644 1645 /** 1646 * pskb_expand_head - reallocate header of &sk_buff 1647 * @skb: buffer to reallocate 1648 * @nhead: room to add at head 1649 * @ntail: room to add at tail 1650 * @gfp_mask: allocation priority 1651 * 1652 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1653 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1654 * reference count of 1. Returns zero in the case of success or error, 1655 * if expansion failed. In the last case, &sk_buff is not changed. 1656 * 1657 * All the pointers pointing into skb header may change and must be 1658 * reloaded after call to this function. 1659 */ 1660 1661 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1662 gfp_t gfp_mask) 1663 { 1664 int i, osize = skb_end_offset(skb); 1665 int size = osize + nhead + ntail; 1666 long off; 1667 u8 *data; 1668 1669 BUG_ON(nhead < 0); 1670 1671 BUG_ON(skb_shared(skb)); 1672 1673 size = SKB_DATA_ALIGN(size); 1674 1675 if (skb_pfmemalloc(skb)) 1676 gfp_mask |= __GFP_MEMALLOC; 1677 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1678 gfp_mask, NUMA_NO_NODE, NULL); 1679 if (!data) 1680 goto nodata; 1681 size = SKB_WITH_OVERHEAD(ksize(data)); 1682 1683 /* Copy only real data... and, alas, header. This should be 1684 * optimized for the cases when header is void. 1685 */ 1686 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1687 1688 memcpy((struct skb_shared_info *)(data + size), 1689 skb_shinfo(skb), 1690 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1691 1692 /* 1693 * if shinfo is shared we must drop the old head gracefully, but if it 1694 * is not we can just drop the old head and let the existing refcount 1695 * be since all we did is relocate the values 1696 */ 1697 if (skb_cloned(skb)) { 1698 if (skb_orphan_frags(skb, gfp_mask)) 1699 goto nofrags; 1700 if (skb_zcopy(skb)) 1701 refcount_inc(&skb_uarg(skb)->refcnt); 1702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1703 skb_frag_ref(skb, i); 1704 1705 if (skb_has_frag_list(skb)) 1706 skb_clone_fraglist(skb); 1707 1708 skb_release_data(skb); 1709 } else { 1710 skb_free_head(skb); 1711 } 1712 off = (data + nhead) - skb->head; 1713 1714 skb->head = data; 1715 skb->head_frag = 0; 1716 skb->data += off; 1717 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1718 skb->end = size; 1719 off = nhead; 1720 #else 1721 skb->end = skb->head + size; 1722 #endif 1723 skb->tail += off; 1724 skb_headers_offset_update(skb, nhead); 1725 skb->cloned = 0; 1726 skb->hdr_len = 0; 1727 skb->nohdr = 0; 1728 atomic_set(&skb_shinfo(skb)->dataref, 1); 1729 1730 skb_metadata_clear(skb); 1731 1732 /* It is not generally safe to change skb->truesize. 1733 * For the moment, we really care of rx path, or 1734 * when skb is orphaned (not attached to a socket). 1735 */ 1736 if (!skb->sk || skb->destructor == sock_edemux) 1737 skb->truesize += size - osize; 1738 1739 return 0; 1740 1741 nofrags: 1742 kfree(data); 1743 nodata: 1744 return -ENOMEM; 1745 } 1746 EXPORT_SYMBOL(pskb_expand_head); 1747 1748 /* Make private copy of skb with writable head and some headroom */ 1749 1750 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1751 { 1752 struct sk_buff *skb2; 1753 int delta = headroom - skb_headroom(skb); 1754 1755 if (delta <= 0) 1756 skb2 = pskb_copy(skb, GFP_ATOMIC); 1757 else { 1758 skb2 = skb_clone(skb, GFP_ATOMIC); 1759 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1760 GFP_ATOMIC)) { 1761 kfree_skb(skb2); 1762 skb2 = NULL; 1763 } 1764 } 1765 return skb2; 1766 } 1767 EXPORT_SYMBOL(skb_realloc_headroom); 1768 1769 /** 1770 * skb_copy_expand - copy and expand sk_buff 1771 * @skb: buffer to copy 1772 * @newheadroom: new free bytes at head 1773 * @newtailroom: new free bytes at tail 1774 * @gfp_mask: allocation priority 1775 * 1776 * Make a copy of both an &sk_buff and its data and while doing so 1777 * allocate additional space. 1778 * 1779 * This is used when the caller wishes to modify the data and needs a 1780 * private copy of the data to alter as well as more space for new fields. 1781 * Returns %NULL on failure or the pointer to the buffer 1782 * on success. The returned buffer has a reference count of 1. 1783 * 1784 * You must pass %GFP_ATOMIC as the allocation priority if this function 1785 * is called from an interrupt. 1786 */ 1787 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1788 int newheadroom, int newtailroom, 1789 gfp_t gfp_mask) 1790 { 1791 /* 1792 * Allocate the copy buffer 1793 */ 1794 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1795 gfp_mask, skb_alloc_rx_flag(skb), 1796 NUMA_NO_NODE); 1797 int oldheadroom = skb_headroom(skb); 1798 int head_copy_len, head_copy_off; 1799 1800 if (!n) 1801 return NULL; 1802 1803 skb_reserve(n, newheadroom); 1804 1805 /* Set the tail pointer and length */ 1806 skb_put(n, skb->len); 1807 1808 head_copy_len = oldheadroom; 1809 head_copy_off = 0; 1810 if (newheadroom <= head_copy_len) 1811 head_copy_len = newheadroom; 1812 else 1813 head_copy_off = newheadroom - head_copy_len; 1814 1815 /* Copy the linear header and data. */ 1816 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1817 skb->len + head_copy_len)); 1818 1819 skb_copy_header(n, skb); 1820 1821 skb_headers_offset_update(n, newheadroom - oldheadroom); 1822 1823 return n; 1824 } 1825 EXPORT_SYMBOL(skb_copy_expand); 1826 1827 /** 1828 * __skb_pad - zero pad the tail of an skb 1829 * @skb: buffer to pad 1830 * @pad: space to pad 1831 * @free_on_error: free buffer on error 1832 * 1833 * Ensure that a buffer is followed by a padding area that is zero 1834 * filled. Used by network drivers which may DMA or transfer data 1835 * beyond the buffer end onto the wire. 1836 * 1837 * May return error in out of memory cases. The skb is freed on error 1838 * if @free_on_error is true. 1839 */ 1840 1841 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1842 { 1843 int err; 1844 int ntail; 1845 1846 /* If the skbuff is non linear tailroom is always zero.. */ 1847 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1848 memset(skb->data+skb->len, 0, pad); 1849 return 0; 1850 } 1851 1852 ntail = skb->data_len + pad - (skb->end - skb->tail); 1853 if (likely(skb_cloned(skb) || ntail > 0)) { 1854 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1855 if (unlikely(err)) 1856 goto free_skb; 1857 } 1858 1859 /* FIXME: The use of this function with non-linear skb's really needs 1860 * to be audited. 1861 */ 1862 err = skb_linearize(skb); 1863 if (unlikely(err)) 1864 goto free_skb; 1865 1866 memset(skb->data + skb->len, 0, pad); 1867 return 0; 1868 1869 free_skb: 1870 if (free_on_error) 1871 kfree_skb(skb); 1872 return err; 1873 } 1874 EXPORT_SYMBOL(__skb_pad); 1875 1876 /** 1877 * pskb_put - add data to the tail of a potentially fragmented buffer 1878 * @skb: start of the buffer to use 1879 * @tail: tail fragment of the buffer to use 1880 * @len: amount of data to add 1881 * 1882 * This function extends the used data area of the potentially 1883 * fragmented buffer. @tail must be the last fragment of @skb -- or 1884 * @skb itself. If this would exceed the total buffer size the kernel 1885 * will panic. A pointer to the first byte of the extra data is 1886 * returned. 1887 */ 1888 1889 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1890 { 1891 if (tail != skb) { 1892 skb->data_len += len; 1893 skb->len += len; 1894 } 1895 return skb_put(tail, len); 1896 } 1897 EXPORT_SYMBOL_GPL(pskb_put); 1898 1899 /** 1900 * skb_put - add data to a buffer 1901 * @skb: buffer to use 1902 * @len: amount of data to add 1903 * 1904 * This function extends the used data area of the buffer. If this would 1905 * exceed the total buffer size the kernel will panic. A pointer to the 1906 * first byte of the extra data is returned. 1907 */ 1908 void *skb_put(struct sk_buff *skb, unsigned int len) 1909 { 1910 void *tmp = skb_tail_pointer(skb); 1911 SKB_LINEAR_ASSERT(skb); 1912 skb->tail += len; 1913 skb->len += len; 1914 if (unlikely(skb->tail > skb->end)) 1915 skb_over_panic(skb, len, __builtin_return_address(0)); 1916 return tmp; 1917 } 1918 EXPORT_SYMBOL(skb_put); 1919 1920 /** 1921 * skb_push - add data to the start of a buffer 1922 * @skb: buffer to use 1923 * @len: amount of data to add 1924 * 1925 * This function extends the used data area of the buffer at the buffer 1926 * start. If this would exceed the total buffer headroom the kernel will 1927 * panic. A pointer to the first byte of the extra data is returned. 1928 */ 1929 void *skb_push(struct sk_buff *skb, unsigned int len) 1930 { 1931 skb->data -= len; 1932 skb->len += len; 1933 if (unlikely(skb->data < skb->head)) 1934 skb_under_panic(skb, len, __builtin_return_address(0)); 1935 return skb->data; 1936 } 1937 EXPORT_SYMBOL(skb_push); 1938 1939 /** 1940 * skb_pull - remove data from the start of a buffer 1941 * @skb: buffer to use 1942 * @len: amount of data to remove 1943 * 1944 * This function removes data from the start of a buffer, returning 1945 * the memory to the headroom. A pointer to the next data in the buffer 1946 * is returned. Once the data has been pulled future pushes will overwrite 1947 * the old data. 1948 */ 1949 void *skb_pull(struct sk_buff *skb, unsigned int len) 1950 { 1951 return skb_pull_inline(skb, len); 1952 } 1953 EXPORT_SYMBOL(skb_pull); 1954 1955 /** 1956 * skb_trim - remove end from a buffer 1957 * @skb: buffer to alter 1958 * @len: new length 1959 * 1960 * Cut the length of a buffer down by removing data from the tail. If 1961 * the buffer is already under the length specified it is not modified. 1962 * The skb must be linear. 1963 */ 1964 void skb_trim(struct sk_buff *skb, unsigned int len) 1965 { 1966 if (skb->len > len) 1967 __skb_trim(skb, len); 1968 } 1969 EXPORT_SYMBOL(skb_trim); 1970 1971 /* Trims skb to length len. It can change skb pointers. 1972 */ 1973 1974 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1975 { 1976 struct sk_buff **fragp; 1977 struct sk_buff *frag; 1978 int offset = skb_headlen(skb); 1979 int nfrags = skb_shinfo(skb)->nr_frags; 1980 int i; 1981 int err; 1982 1983 if (skb_cloned(skb) && 1984 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1985 return err; 1986 1987 i = 0; 1988 if (offset >= len) 1989 goto drop_pages; 1990 1991 for (; i < nfrags; i++) { 1992 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1993 1994 if (end < len) { 1995 offset = end; 1996 continue; 1997 } 1998 1999 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2000 2001 drop_pages: 2002 skb_shinfo(skb)->nr_frags = i; 2003 2004 for (; i < nfrags; i++) 2005 skb_frag_unref(skb, i); 2006 2007 if (skb_has_frag_list(skb)) 2008 skb_drop_fraglist(skb); 2009 goto done; 2010 } 2011 2012 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2013 fragp = &frag->next) { 2014 int end = offset + frag->len; 2015 2016 if (skb_shared(frag)) { 2017 struct sk_buff *nfrag; 2018 2019 nfrag = skb_clone(frag, GFP_ATOMIC); 2020 if (unlikely(!nfrag)) 2021 return -ENOMEM; 2022 2023 nfrag->next = frag->next; 2024 consume_skb(frag); 2025 frag = nfrag; 2026 *fragp = frag; 2027 } 2028 2029 if (end < len) { 2030 offset = end; 2031 continue; 2032 } 2033 2034 if (end > len && 2035 unlikely((err = pskb_trim(frag, len - offset)))) 2036 return err; 2037 2038 if (frag->next) 2039 skb_drop_list(&frag->next); 2040 break; 2041 } 2042 2043 done: 2044 if (len > skb_headlen(skb)) { 2045 skb->data_len -= skb->len - len; 2046 skb->len = len; 2047 } else { 2048 skb->len = len; 2049 skb->data_len = 0; 2050 skb_set_tail_pointer(skb, len); 2051 } 2052 2053 if (!skb->sk || skb->destructor == sock_edemux) 2054 skb_condense(skb); 2055 return 0; 2056 } 2057 EXPORT_SYMBOL(___pskb_trim); 2058 2059 /* Note : use pskb_trim_rcsum() instead of calling this directly 2060 */ 2061 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2062 { 2063 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2064 int delta = skb->len - len; 2065 2066 skb->csum = csum_block_sub(skb->csum, 2067 skb_checksum(skb, len, delta, 0), 2068 len); 2069 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2070 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2071 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2072 2073 if (offset + sizeof(__sum16) > hdlen) 2074 return -EINVAL; 2075 } 2076 return __pskb_trim(skb, len); 2077 } 2078 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2079 2080 /** 2081 * __pskb_pull_tail - advance tail of skb header 2082 * @skb: buffer to reallocate 2083 * @delta: number of bytes to advance tail 2084 * 2085 * The function makes a sense only on a fragmented &sk_buff, 2086 * it expands header moving its tail forward and copying necessary 2087 * data from fragmented part. 2088 * 2089 * &sk_buff MUST have reference count of 1. 2090 * 2091 * Returns %NULL (and &sk_buff does not change) if pull failed 2092 * or value of new tail of skb in the case of success. 2093 * 2094 * All the pointers pointing into skb header may change and must be 2095 * reloaded after call to this function. 2096 */ 2097 2098 /* Moves tail of skb head forward, copying data from fragmented part, 2099 * when it is necessary. 2100 * 1. It may fail due to malloc failure. 2101 * 2. It may change skb pointers. 2102 * 2103 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2104 */ 2105 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2106 { 2107 /* If skb has not enough free space at tail, get new one 2108 * plus 128 bytes for future expansions. If we have enough 2109 * room at tail, reallocate without expansion only if skb is cloned. 2110 */ 2111 int i, k, eat = (skb->tail + delta) - skb->end; 2112 2113 if (eat > 0 || skb_cloned(skb)) { 2114 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2115 GFP_ATOMIC)) 2116 return NULL; 2117 } 2118 2119 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2120 skb_tail_pointer(skb), delta)); 2121 2122 /* Optimization: no fragments, no reasons to preestimate 2123 * size of pulled pages. Superb. 2124 */ 2125 if (!skb_has_frag_list(skb)) 2126 goto pull_pages; 2127 2128 /* Estimate size of pulled pages. */ 2129 eat = delta; 2130 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2131 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2132 2133 if (size >= eat) 2134 goto pull_pages; 2135 eat -= size; 2136 } 2137 2138 /* If we need update frag list, we are in troubles. 2139 * Certainly, it is possible to add an offset to skb data, 2140 * but taking into account that pulling is expected to 2141 * be very rare operation, it is worth to fight against 2142 * further bloating skb head and crucify ourselves here instead. 2143 * Pure masohism, indeed. 8)8) 2144 */ 2145 if (eat) { 2146 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2147 struct sk_buff *clone = NULL; 2148 struct sk_buff *insp = NULL; 2149 2150 do { 2151 if (list->len <= eat) { 2152 /* Eaten as whole. */ 2153 eat -= list->len; 2154 list = list->next; 2155 insp = list; 2156 } else { 2157 /* Eaten partially. */ 2158 2159 if (skb_shared(list)) { 2160 /* Sucks! We need to fork list. :-( */ 2161 clone = skb_clone(list, GFP_ATOMIC); 2162 if (!clone) 2163 return NULL; 2164 insp = list->next; 2165 list = clone; 2166 } else { 2167 /* This may be pulled without 2168 * problems. */ 2169 insp = list; 2170 } 2171 if (!pskb_pull(list, eat)) { 2172 kfree_skb(clone); 2173 return NULL; 2174 } 2175 break; 2176 } 2177 } while (eat); 2178 2179 /* Free pulled out fragments. */ 2180 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2181 skb_shinfo(skb)->frag_list = list->next; 2182 kfree_skb(list); 2183 } 2184 /* And insert new clone at head. */ 2185 if (clone) { 2186 clone->next = list; 2187 skb_shinfo(skb)->frag_list = clone; 2188 } 2189 } 2190 /* Success! Now we may commit changes to skb data. */ 2191 2192 pull_pages: 2193 eat = delta; 2194 k = 0; 2195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2196 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2197 2198 if (size <= eat) { 2199 skb_frag_unref(skb, i); 2200 eat -= size; 2201 } else { 2202 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2203 2204 *frag = skb_shinfo(skb)->frags[i]; 2205 if (eat) { 2206 skb_frag_off_add(frag, eat); 2207 skb_frag_size_sub(frag, eat); 2208 if (!i) 2209 goto end; 2210 eat = 0; 2211 } 2212 k++; 2213 } 2214 } 2215 skb_shinfo(skb)->nr_frags = k; 2216 2217 end: 2218 skb->tail += delta; 2219 skb->data_len -= delta; 2220 2221 if (!skb->data_len) 2222 skb_zcopy_clear(skb, false); 2223 2224 return skb_tail_pointer(skb); 2225 } 2226 EXPORT_SYMBOL(__pskb_pull_tail); 2227 2228 /** 2229 * skb_copy_bits - copy bits from skb to kernel buffer 2230 * @skb: source skb 2231 * @offset: offset in source 2232 * @to: destination buffer 2233 * @len: number of bytes to copy 2234 * 2235 * Copy the specified number of bytes from the source skb to the 2236 * destination buffer. 2237 * 2238 * CAUTION ! : 2239 * If its prototype is ever changed, 2240 * check arch/{*}/net/{*}.S files, 2241 * since it is called from BPF assembly code. 2242 */ 2243 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2244 { 2245 int start = skb_headlen(skb); 2246 struct sk_buff *frag_iter; 2247 int i, copy; 2248 2249 if (offset > (int)skb->len - len) 2250 goto fault; 2251 2252 /* Copy header. */ 2253 if ((copy = start - offset) > 0) { 2254 if (copy > len) 2255 copy = len; 2256 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2257 if ((len -= copy) == 0) 2258 return 0; 2259 offset += copy; 2260 to += copy; 2261 } 2262 2263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2264 int end; 2265 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2266 2267 WARN_ON(start > offset + len); 2268 2269 end = start + skb_frag_size(f); 2270 if ((copy = end - offset) > 0) { 2271 u32 p_off, p_len, copied; 2272 struct page *p; 2273 u8 *vaddr; 2274 2275 if (copy > len) 2276 copy = len; 2277 2278 skb_frag_foreach_page(f, 2279 skb_frag_off(f) + offset - start, 2280 copy, p, p_off, p_len, copied) { 2281 vaddr = kmap_atomic(p); 2282 memcpy(to + copied, vaddr + p_off, p_len); 2283 kunmap_atomic(vaddr); 2284 } 2285 2286 if ((len -= copy) == 0) 2287 return 0; 2288 offset += copy; 2289 to += copy; 2290 } 2291 start = end; 2292 } 2293 2294 skb_walk_frags(skb, frag_iter) { 2295 int end; 2296 2297 WARN_ON(start > offset + len); 2298 2299 end = start + frag_iter->len; 2300 if ((copy = end - offset) > 0) { 2301 if (copy > len) 2302 copy = len; 2303 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2304 goto fault; 2305 if ((len -= copy) == 0) 2306 return 0; 2307 offset += copy; 2308 to += copy; 2309 } 2310 start = end; 2311 } 2312 2313 if (!len) 2314 return 0; 2315 2316 fault: 2317 return -EFAULT; 2318 } 2319 EXPORT_SYMBOL(skb_copy_bits); 2320 2321 /* 2322 * Callback from splice_to_pipe(), if we need to release some pages 2323 * at the end of the spd in case we error'ed out in filling the pipe. 2324 */ 2325 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2326 { 2327 put_page(spd->pages[i]); 2328 } 2329 2330 static struct page *linear_to_page(struct page *page, unsigned int *len, 2331 unsigned int *offset, 2332 struct sock *sk) 2333 { 2334 struct page_frag *pfrag = sk_page_frag(sk); 2335 2336 if (!sk_page_frag_refill(sk, pfrag)) 2337 return NULL; 2338 2339 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2340 2341 memcpy(page_address(pfrag->page) + pfrag->offset, 2342 page_address(page) + *offset, *len); 2343 *offset = pfrag->offset; 2344 pfrag->offset += *len; 2345 2346 return pfrag->page; 2347 } 2348 2349 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2350 struct page *page, 2351 unsigned int offset) 2352 { 2353 return spd->nr_pages && 2354 spd->pages[spd->nr_pages - 1] == page && 2355 (spd->partial[spd->nr_pages - 1].offset + 2356 spd->partial[spd->nr_pages - 1].len == offset); 2357 } 2358 2359 /* 2360 * Fill page/offset/length into spd, if it can hold more pages. 2361 */ 2362 static bool spd_fill_page(struct splice_pipe_desc *spd, 2363 struct pipe_inode_info *pipe, struct page *page, 2364 unsigned int *len, unsigned int offset, 2365 bool linear, 2366 struct sock *sk) 2367 { 2368 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2369 return true; 2370 2371 if (linear) { 2372 page = linear_to_page(page, len, &offset, sk); 2373 if (!page) 2374 return true; 2375 } 2376 if (spd_can_coalesce(spd, page, offset)) { 2377 spd->partial[spd->nr_pages - 1].len += *len; 2378 return false; 2379 } 2380 get_page(page); 2381 spd->pages[spd->nr_pages] = page; 2382 spd->partial[spd->nr_pages].len = *len; 2383 spd->partial[spd->nr_pages].offset = offset; 2384 spd->nr_pages++; 2385 2386 return false; 2387 } 2388 2389 static bool __splice_segment(struct page *page, unsigned int poff, 2390 unsigned int plen, unsigned int *off, 2391 unsigned int *len, 2392 struct splice_pipe_desc *spd, bool linear, 2393 struct sock *sk, 2394 struct pipe_inode_info *pipe) 2395 { 2396 if (!*len) 2397 return true; 2398 2399 /* skip this segment if already processed */ 2400 if (*off >= plen) { 2401 *off -= plen; 2402 return false; 2403 } 2404 2405 /* ignore any bits we already processed */ 2406 poff += *off; 2407 plen -= *off; 2408 *off = 0; 2409 2410 do { 2411 unsigned int flen = min(*len, plen); 2412 2413 if (spd_fill_page(spd, pipe, page, &flen, poff, 2414 linear, sk)) 2415 return true; 2416 poff += flen; 2417 plen -= flen; 2418 *len -= flen; 2419 } while (*len && plen); 2420 2421 return false; 2422 } 2423 2424 /* 2425 * Map linear and fragment data from the skb to spd. It reports true if the 2426 * pipe is full or if we already spliced the requested length. 2427 */ 2428 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2429 unsigned int *offset, unsigned int *len, 2430 struct splice_pipe_desc *spd, struct sock *sk) 2431 { 2432 int seg; 2433 struct sk_buff *iter; 2434 2435 /* map the linear part : 2436 * If skb->head_frag is set, this 'linear' part is backed by a 2437 * fragment, and if the head is not shared with any clones then 2438 * we can avoid a copy since we own the head portion of this page. 2439 */ 2440 if (__splice_segment(virt_to_page(skb->data), 2441 (unsigned long) skb->data & (PAGE_SIZE - 1), 2442 skb_headlen(skb), 2443 offset, len, spd, 2444 skb_head_is_locked(skb), 2445 sk, pipe)) 2446 return true; 2447 2448 /* 2449 * then map the fragments 2450 */ 2451 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2452 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2453 2454 if (__splice_segment(skb_frag_page(f), 2455 skb_frag_off(f), skb_frag_size(f), 2456 offset, len, spd, false, sk, pipe)) 2457 return true; 2458 } 2459 2460 skb_walk_frags(skb, iter) { 2461 if (*offset >= iter->len) { 2462 *offset -= iter->len; 2463 continue; 2464 } 2465 /* __skb_splice_bits() only fails if the output has no room 2466 * left, so no point in going over the frag_list for the error 2467 * case. 2468 */ 2469 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2470 return true; 2471 } 2472 2473 return false; 2474 } 2475 2476 /* 2477 * Map data from the skb to a pipe. Should handle both the linear part, 2478 * the fragments, and the frag list. 2479 */ 2480 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2481 struct pipe_inode_info *pipe, unsigned int tlen, 2482 unsigned int flags) 2483 { 2484 struct partial_page partial[MAX_SKB_FRAGS]; 2485 struct page *pages[MAX_SKB_FRAGS]; 2486 struct splice_pipe_desc spd = { 2487 .pages = pages, 2488 .partial = partial, 2489 .nr_pages_max = MAX_SKB_FRAGS, 2490 .ops = &nosteal_pipe_buf_ops, 2491 .spd_release = sock_spd_release, 2492 }; 2493 int ret = 0; 2494 2495 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2496 2497 if (spd.nr_pages) 2498 ret = splice_to_pipe(pipe, &spd); 2499 2500 return ret; 2501 } 2502 EXPORT_SYMBOL_GPL(skb_splice_bits); 2503 2504 /* Send skb data on a socket. Socket must be locked. */ 2505 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2506 int len) 2507 { 2508 unsigned int orig_len = len; 2509 struct sk_buff *head = skb; 2510 unsigned short fragidx; 2511 int slen, ret; 2512 2513 do_frag_list: 2514 2515 /* Deal with head data */ 2516 while (offset < skb_headlen(skb) && len) { 2517 struct kvec kv; 2518 struct msghdr msg; 2519 2520 slen = min_t(int, len, skb_headlen(skb) - offset); 2521 kv.iov_base = skb->data + offset; 2522 kv.iov_len = slen; 2523 memset(&msg, 0, sizeof(msg)); 2524 msg.msg_flags = MSG_DONTWAIT; 2525 2526 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2527 if (ret <= 0) 2528 goto error; 2529 2530 offset += ret; 2531 len -= ret; 2532 } 2533 2534 /* All the data was skb head? */ 2535 if (!len) 2536 goto out; 2537 2538 /* Make offset relative to start of frags */ 2539 offset -= skb_headlen(skb); 2540 2541 /* Find where we are in frag list */ 2542 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2543 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2544 2545 if (offset < skb_frag_size(frag)) 2546 break; 2547 2548 offset -= skb_frag_size(frag); 2549 } 2550 2551 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2552 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2553 2554 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2555 2556 while (slen) { 2557 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2558 skb_frag_off(frag) + offset, 2559 slen, MSG_DONTWAIT); 2560 if (ret <= 0) 2561 goto error; 2562 2563 len -= ret; 2564 offset += ret; 2565 slen -= ret; 2566 } 2567 2568 offset = 0; 2569 } 2570 2571 if (len) { 2572 /* Process any frag lists */ 2573 2574 if (skb == head) { 2575 if (skb_has_frag_list(skb)) { 2576 skb = skb_shinfo(skb)->frag_list; 2577 goto do_frag_list; 2578 } 2579 } else if (skb->next) { 2580 skb = skb->next; 2581 goto do_frag_list; 2582 } 2583 } 2584 2585 out: 2586 return orig_len - len; 2587 2588 error: 2589 return orig_len == len ? ret : orig_len - len; 2590 } 2591 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2592 2593 /** 2594 * skb_store_bits - store bits from kernel buffer to skb 2595 * @skb: destination buffer 2596 * @offset: offset in destination 2597 * @from: source buffer 2598 * @len: number of bytes to copy 2599 * 2600 * Copy the specified number of bytes from the source buffer to the 2601 * destination skb. This function handles all the messy bits of 2602 * traversing fragment lists and such. 2603 */ 2604 2605 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2606 { 2607 int start = skb_headlen(skb); 2608 struct sk_buff *frag_iter; 2609 int i, copy; 2610 2611 if (offset > (int)skb->len - len) 2612 goto fault; 2613 2614 if ((copy = start - offset) > 0) { 2615 if (copy > len) 2616 copy = len; 2617 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2618 if ((len -= copy) == 0) 2619 return 0; 2620 offset += copy; 2621 from += copy; 2622 } 2623 2624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2625 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2626 int end; 2627 2628 WARN_ON(start > offset + len); 2629 2630 end = start + skb_frag_size(frag); 2631 if ((copy = end - offset) > 0) { 2632 u32 p_off, p_len, copied; 2633 struct page *p; 2634 u8 *vaddr; 2635 2636 if (copy > len) 2637 copy = len; 2638 2639 skb_frag_foreach_page(frag, 2640 skb_frag_off(frag) + offset - start, 2641 copy, p, p_off, p_len, copied) { 2642 vaddr = kmap_atomic(p); 2643 memcpy(vaddr + p_off, from + copied, p_len); 2644 kunmap_atomic(vaddr); 2645 } 2646 2647 if ((len -= copy) == 0) 2648 return 0; 2649 offset += copy; 2650 from += copy; 2651 } 2652 start = end; 2653 } 2654 2655 skb_walk_frags(skb, frag_iter) { 2656 int end; 2657 2658 WARN_ON(start > offset + len); 2659 2660 end = start + frag_iter->len; 2661 if ((copy = end - offset) > 0) { 2662 if (copy > len) 2663 copy = len; 2664 if (skb_store_bits(frag_iter, offset - start, 2665 from, copy)) 2666 goto fault; 2667 if ((len -= copy) == 0) 2668 return 0; 2669 offset += copy; 2670 from += copy; 2671 } 2672 start = end; 2673 } 2674 if (!len) 2675 return 0; 2676 2677 fault: 2678 return -EFAULT; 2679 } 2680 EXPORT_SYMBOL(skb_store_bits); 2681 2682 /* Checksum skb data. */ 2683 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2684 __wsum csum, const struct skb_checksum_ops *ops) 2685 { 2686 int start = skb_headlen(skb); 2687 int i, copy = start - offset; 2688 struct sk_buff *frag_iter; 2689 int pos = 0; 2690 2691 /* Checksum header. */ 2692 if (copy > 0) { 2693 if (copy > len) 2694 copy = len; 2695 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2696 skb->data + offset, copy, csum); 2697 if ((len -= copy) == 0) 2698 return csum; 2699 offset += copy; 2700 pos = copy; 2701 } 2702 2703 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2704 int end; 2705 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2706 2707 WARN_ON(start > offset + len); 2708 2709 end = start + skb_frag_size(frag); 2710 if ((copy = end - offset) > 0) { 2711 u32 p_off, p_len, copied; 2712 struct page *p; 2713 __wsum csum2; 2714 u8 *vaddr; 2715 2716 if (copy > len) 2717 copy = len; 2718 2719 skb_frag_foreach_page(frag, 2720 skb_frag_off(frag) + offset - start, 2721 copy, p, p_off, p_len, copied) { 2722 vaddr = kmap_atomic(p); 2723 csum2 = INDIRECT_CALL_1(ops->update, 2724 csum_partial_ext, 2725 vaddr + p_off, p_len, 0); 2726 kunmap_atomic(vaddr); 2727 csum = INDIRECT_CALL_1(ops->combine, 2728 csum_block_add_ext, csum, 2729 csum2, pos, p_len); 2730 pos += p_len; 2731 } 2732 2733 if (!(len -= copy)) 2734 return csum; 2735 offset += copy; 2736 } 2737 start = end; 2738 } 2739 2740 skb_walk_frags(skb, frag_iter) { 2741 int end; 2742 2743 WARN_ON(start > offset + len); 2744 2745 end = start + frag_iter->len; 2746 if ((copy = end - offset) > 0) { 2747 __wsum csum2; 2748 if (copy > len) 2749 copy = len; 2750 csum2 = __skb_checksum(frag_iter, offset - start, 2751 copy, 0, ops); 2752 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2753 csum, csum2, pos, copy); 2754 if ((len -= copy) == 0) 2755 return csum; 2756 offset += copy; 2757 pos += copy; 2758 } 2759 start = end; 2760 } 2761 BUG_ON(len); 2762 2763 return csum; 2764 } 2765 EXPORT_SYMBOL(__skb_checksum); 2766 2767 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2768 int len, __wsum csum) 2769 { 2770 const struct skb_checksum_ops ops = { 2771 .update = csum_partial_ext, 2772 .combine = csum_block_add_ext, 2773 }; 2774 2775 return __skb_checksum(skb, offset, len, csum, &ops); 2776 } 2777 EXPORT_SYMBOL(skb_checksum); 2778 2779 /* Both of above in one bottle. */ 2780 2781 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2782 u8 *to, int len) 2783 { 2784 int start = skb_headlen(skb); 2785 int i, copy = start - offset; 2786 struct sk_buff *frag_iter; 2787 int pos = 0; 2788 __wsum csum = 0; 2789 2790 /* Copy header. */ 2791 if (copy > 0) { 2792 if (copy > len) 2793 copy = len; 2794 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2795 copy); 2796 if ((len -= copy) == 0) 2797 return csum; 2798 offset += copy; 2799 to += copy; 2800 pos = copy; 2801 } 2802 2803 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2804 int end; 2805 2806 WARN_ON(start > offset + len); 2807 2808 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2809 if ((copy = end - offset) > 0) { 2810 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2811 u32 p_off, p_len, copied; 2812 struct page *p; 2813 __wsum csum2; 2814 u8 *vaddr; 2815 2816 if (copy > len) 2817 copy = len; 2818 2819 skb_frag_foreach_page(frag, 2820 skb_frag_off(frag) + offset - start, 2821 copy, p, p_off, p_len, copied) { 2822 vaddr = kmap_atomic(p); 2823 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2824 to + copied, 2825 p_len); 2826 kunmap_atomic(vaddr); 2827 csum = csum_block_add(csum, csum2, pos); 2828 pos += p_len; 2829 } 2830 2831 if (!(len -= copy)) 2832 return csum; 2833 offset += copy; 2834 to += copy; 2835 } 2836 start = end; 2837 } 2838 2839 skb_walk_frags(skb, frag_iter) { 2840 __wsum csum2; 2841 int end; 2842 2843 WARN_ON(start > offset + len); 2844 2845 end = start + frag_iter->len; 2846 if ((copy = end - offset) > 0) { 2847 if (copy > len) 2848 copy = len; 2849 csum2 = skb_copy_and_csum_bits(frag_iter, 2850 offset - start, 2851 to, copy); 2852 csum = csum_block_add(csum, csum2, pos); 2853 if ((len -= copy) == 0) 2854 return csum; 2855 offset += copy; 2856 to += copy; 2857 pos += copy; 2858 } 2859 start = end; 2860 } 2861 BUG_ON(len); 2862 return csum; 2863 } 2864 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2865 2866 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2867 { 2868 __sum16 sum; 2869 2870 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2871 /* See comments in __skb_checksum_complete(). */ 2872 if (likely(!sum)) { 2873 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2874 !skb->csum_complete_sw) 2875 netdev_rx_csum_fault(skb->dev, skb); 2876 } 2877 if (!skb_shared(skb)) 2878 skb->csum_valid = !sum; 2879 return sum; 2880 } 2881 EXPORT_SYMBOL(__skb_checksum_complete_head); 2882 2883 /* This function assumes skb->csum already holds pseudo header's checksum, 2884 * which has been changed from the hardware checksum, for example, by 2885 * __skb_checksum_validate_complete(). And, the original skb->csum must 2886 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2887 * 2888 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2889 * zero. The new checksum is stored back into skb->csum unless the skb is 2890 * shared. 2891 */ 2892 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2893 { 2894 __wsum csum; 2895 __sum16 sum; 2896 2897 csum = skb_checksum(skb, 0, skb->len, 0); 2898 2899 sum = csum_fold(csum_add(skb->csum, csum)); 2900 /* This check is inverted, because we already knew the hardware 2901 * checksum is invalid before calling this function. So, if the 2902 * re-computed checksum is valid instead, then we have a mismatch 2903 * between the original skb->csum and skb_checksum(). This means either 2904 * the original hardware checksum is incorrect or we screw up skb->csum 2905 * when moving skb->data around. 2906 */ 2907 if (likely(!sum)) { 2908 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2909 !skb->csum_complete_sw) 2910 netdev_rx_csum_fault(skb->dev, skb); 2911 } 2912 2913 if (!skb_shared(skb)) { 2914 /* Save full packet checksum */ 2915 skb->csum = csum; 2916 skb->ip_summed = CHECKSUM_COMPLETE; 2917 skb->csum_complete_sw = 1; 2918 skb->csum_valid = !sum; 2919 } 2920 2921 return sum; 2922 } 2923 EXPORT_SYMBOL(__skb_checksum_complete); 2924 2925 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2926 { 2927 net_warn_ratelimited( 2928 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2929 __func__); 2930 return 0; 2931 } 2932 2933 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2934 int offset, int len) 2935 { 2936 net_warn_ratelimited( 2937 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2938 __func__); 2939 return 0; 2940 } 2941 2942 static const struct skb_checksum_ops default_crc32c_ops = { 2943 .update = warn_crc32c_csum_update, 2944 .combine = warn_crc32c_csum_combine, 2945 }; 2946 2947 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2948 &default_crc32c_ops; 2949 EXPORT_SYMBOL(crc32c_csum_stub); 2950 2951 /** 2952 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2953 * @from: source buffer 2954 * 2955 * Calculates the amount of linear headroom needed in the 'to' skb passed 2956 * into skb_zerocopy(). 2957 */ 2958 unsigned int 2959 skb_zerocopy_headlen(const struct sk_buff *from) 2960 { 2961 unsigned int hlen = 0; 2962 2963 if (!from->head_frag || 2964 skb_headlen(from) < L1_CACHE_BYTES || 2965 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2966 hlen = skb_headlen(from); 2967 2968 if (skb_has_frag_list(from)) 2969 hlen = from->len; 2970 2971 return hlen; 2972 } 2973 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2974 2975 /** 2976 * skb_zerocopy - Zero copy skb to skb 2977 * @to: destination buffer 2978 * @from: source buffer 2979 * @len: number of bytes to copy from source buffer 2980 * @hlen: size of linear headroom in destination buffer 2981 * 2982 * Copies up to `len` bytes from `from` to `to` by creating references 2983 * to the frags in the source buffer. 2984 * 2985 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2986 * headroom in the `to` buffer. 2987 * 2988 * Return value: 2989 * 0: everything is OK 2990 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2991 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2992 */ 2993 int 2994 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2995 { 2996 int i, j = 0; 2997 int plen = 0; /* length of skb->head fragment */ 2998 int ret; 2999 struct page *page; 3000 unsigned int offset; 3001 3002 BUG_ON(!from->head_frag && !hlen); 3003 3004 /* dont bother with small payloads */ 3005 if (len <= skb_tailroom(to)) 3006 return skb_copy_bits(from, 0, skb_put(to, len), len); 3007 3008 if (hlen) { 3009 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3010 if (unlikely(ret)) 3011 return ret; 3012 len -= hlen; 3013 } else { 3014 plen = min_t(int, skb_headlen(from), len); 3015 if (plen) { 3016 page = virt_to_head_page(from->head); 3017 offset = from->data - (unsigned char *)page_address(page); 3018 __skb_fill_page_desc(to, 0, page, offset, plen); 3019 get_page(page); 3020 j = 1; 3021 len -= plen; 3022 } 3023 } 3024 3025 to->truesize += len + plen; 3026 to->len += len + plen; 3027 to->data_len += len + plen; 3028 3029 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3030 skb_tx_error(from); 3031 return -ENOMEM; 3032 } 3033 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3034 3035 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3036 int size; 3037 3038 if (!len) 3039 break; 3040 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3041 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3042 len); 3043 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3044 len -= size; 3045 skb_frag_ref(to, j); 3046 j++; 3047 } 3048 skb_shinfo(to)->nr_frags = j; 3049 3050 return 0; 3051 } 3052 EXPORT_SYMBOL_GPL(skb_zerocopy); 3053 3054 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3055 { 3056 __wsum csum; 3057 long csstart; 3058 3059 if (skb->ip_summed == CHECKSUM_PARTIAL) 3060 csstart = skb_checksum_start_offset(skb); 3061 else 3062 csstart = skb_headlen(skb); 3063 3064 BUG_ON(csstart > skb_headlen(skb)); 3065 3066 skb_copy_from_linear_data(skb, to, csstart); 3067 3068 csum = 0; 3069 if (csstart != skb->len) 3070 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3071 skb->len - csstart); 3072 3073 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3074 long csstuff = csstart + skb->csum_offset; 3075 3076 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3077 } 3078 } 3079 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3080 3081 /** 3082 * skb_dequeue - remove from the head of the queue 3083 * @list: list to dequeue from 3084 * 3085 * Remove the head of the list. The list lock is taken so the function 3086 * may be used safely with other locking list functions. The head item is 3087 * returned or %NULL if the list is empty. 3088 */ 3089 3090 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3091 { 3092 unsigned long flags; 3093 struct sk_buff *result; 3094 3095 spin_lock_irqsave(&list->lock, flags); 3096 result = __skb_dequeue(list); 3097 spin_unlock_irqrestore(&list->lock, flags); 3098 return result; 3099 } 3100 EXPORT_SYMBOL(skb_dequeue); 3101 3102 /** 3103 * skb_dequeue_tail - remove from the tail of the queue 3104 * @list: list to dequeue from 3105 * 3106 * Remove the tail of the list. The list lock is taken so the function 3107 * may be used safely with other locking list functions. The tail item is 3108 * returned or %NULL if the list is empty. 3109 */ 3110 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3111 { 3112 unsigned long flags; 3113 struct sk_buff *result; 3114 3115 spin_lock_irqsave(&list->lock, flags); 3116 result = __skb_dequeue_tail(list); 3117 spin_unlock_irqrestore(&list->lock, flags); 3118 return result; 3119 } 3120 EXPORT_SYMBOL(skb_dequeue_tail); 3121 3122 /** 3123 * skb_queue_purge - empty a list 3124 * @list: list to empty 3125 * 3126 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3127 * the list and one reference dropped. This function takes the list 3128 * lock and is atomic with respect to other list locking functions. 3129 */ 3130 void skb_queue_purge(struct sk_buff_head *list) 3131 { 3132 struct sk_buff *skb; 3133 while ((skb = skb_dequeue(list)) != NULL) 3134 kfree_skb(skb); 3135 } 3136 EXPORT_SYMBOL(skb_queue_purge); 3137 3138 /** 3139 * skb_rbtree_purge - empty a skb rbtree 3140 * @root: root of the rbtree to empty 3141 * Return value: the sum of truesizes of all purged skbs. 3142 * 3143 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3144 * the list and one reference dropped. This function does not take 3145 * any lock. Synchronization should be handled by the caller (e.g., TCP 3146 * out-of-order queue is protected by the socket lock). 3147 */ 3148 unsigned int skb_rbtree_purge(struct rb_root *root) 3149 { 3150 struct rb_node *p = rb_first(root); 3151 unsigned int sum = 0; 3152 3153 while (p) { 3154 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3155 3156 p = rb_next(p); 3157 rb_erase(&skb->rbnode, root); 3158 sum += skb->truesize; 3159 kfree_skb(skb); 3160 } 3161 return sum; 3162 } 3163 3164 /** 3165 * skb_queue_head - queue a buffer at the list head 3166 * @list: list to use 3167 * @newsk: buffer to queue 3168 * 3169 * Queue a buffer at the start of the list. This function takes the 3170 * list lock and can be used safely with other locking &sk_buff functions 3171 * safely. 3172 * 3173 * A buffer cannot be placed on two lists at the same time. 3174 */ 3175 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3176 { 3177 unsigned long flags; 3178 3179 spin_lock_irqsave(&list->lock, flags); 3180 __skb_queue_head(list, newsk); 3181 spin_unlock_irqrestore(&list->lock, flags); 3182 } 3183 EXPORT_SYMBOL(skb_queue_head); 3184 3185 /** 3186 * skb_queue_tail - queue a buffer at the list tail 3187 * @list: list to use 3188 * @newsk: buffer to queue 3189 * 3190 * Queue a buffer at the tail of the list. This function takes the 3191 * list lock and can be used safely with other locking &sk_buff functions 3192 * safely. 3193 * 3194 * A buffer cannot be placed on two lists at the same time. 3195 */ 3196 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3197 { 3198 unsigned long flags; 3199 3200 spin_lock_irqsave(&list->lock, flags); 3201 __skb_queue_tail(list, newsk); 3202 spin_unlock_irqrestore(&list->lock, flags); 3203 } 3204 EXPORT_SYMBOL(skb_queue_tail); 3205 3206 /** 3207 * skb_unlink - remove a buffer from a list 3208 * @skb: buffer to remove 3209 * @list: list to use 3210 * 3211 * Remove a packet from a list. The list locks are taken and this 3212 * function is atomic with respect to other list locked calls 3213 * 3214 * You must know what list the SKB is on. 3215 */ 3216 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3217 { 3218 unsigned long flags; 3219 3220 spin_lock_irqsave(&list->lock, flags); 3221 __skb_unlink(skb, list); 3222 spin_unlock_irqrestore(&list->lock, flags); 3223 } 3224 EXPORT_SYMBOL(skb_unlink); 3225 3226 /** 3227 * skb_append - append a buffer 3228 * @old: buffer to insert after 3229 * @newsk: buffer to insert 3230 * @list: list to use 3231 * 3232 * Place a packet after a given packet in a list. The list locks are taken 3233 * and this function is atomic with respect to other list locked calls. 3234 * A buffer cannot be placed on two lists at the same time. 3235 */ 3236 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3237 { 3238 unsigned long flags; 3239 3240 spin_lock_irqsave(&list->lock, flags); 3241 __skb_queue_after(list, old, newsk); 3242 spin_unlock_irqrestore(&list->lock, flags); 3243 } 3244 EXPORT_SYMBOL(skb_append); 3245 3246 static inline void skb_split_inside_header(struct sk_buff *skb, 3247 struct sk_buff* skb1, 3248 const u32 len, const int pos) 3249 { 3250 int i; 3251 3252 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3253 pos - len); 3254 /* And move data appendix as is. */ 3255 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3256 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3257 3258 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3259 skb_shinfo(skb)->nr_frags = 0; 3260 skb1->data_len = skb->data_len; 3261 skb1->len += skb1->data_len; 3262 skb->data_len = 0; 3263 skb->len = len; 3264 skb_set_tail_pointer(skb, len); 3265 } 3266 3267 static inline void skb_split_no_header(struct sk_buff *skb, 3268 struct sk_buff* skb1, 3269 const u32 len, int pos) 3270 { 3271 int i, k = 0; 3272 const int nfrags = skb_shinfo(skb)->nr_frags; 3273 3274 skb_shinfo(skb)->nr_frags = 0; 3275 skb1->len = skb1->data_len = skb->len - len; 3276 skb->len = len; 3277 skb->data_len = len - pos; 3278 3279 for (i = 0; i < nfrags; i++) { 3280 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3281 3282 if (pos + size > len) { 3283 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3284 3285 if (pos < len) { 3286 /* Split frag. 3287 * We have two variants in this case: 3288 * 1. Move all the frag to the second 3289 * part, if it is possible. F.e. 3290 * this approach is mandatory for TUX, 3291 * where splitting is expensive. 3292 * 2. Split is accurately. We make this. 3293 */ 3294 skb_frag_ref(skb, i); 3295 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3296 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3297 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3298 skb_shinfo(skb)->nr_frags++; 3299 } 3300 k++; 3301 } else 3302 skb_shinfo(skb)->nr_frags++; 3303 pos += size; 3304 } 3305 skb_shinfo(skb1)->nr_frags = k; 3306 } 3307 3308 /** 3309 * skb_split - Split fragmented skb to two parts at length len. 3310 * @skb: the buffer to split 3311 * @skb1: the buffer to receive the second part 3312 * @len: new length for skb 3313 */ 3314 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3315 { 3316 int pos = skb_headlen(skb); 3317 3318 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3319 skb_zerocopy_clone(skb1, skb, 0); 3320 if (len < pos) /* Split line is inside header. */ 3321 skb_split_inside_header(skb, skb1, len, pos); 3322 else /* Second chunk has no header, nothing to copy. */ 3323 skb_split_no_header(skb, skb1, len, pos); 3324 } 3325 EXPORT_SYMBOL(skb_split); 3326 3327 /* Shifting from/to a cloned skb is a no-go. 3328 * 3329 * Caller cannot keep skb_shinfo related pointers past calling here! 3330 */ 3331 static int skb_prepare_for_shift(struct sk_buff *skb) 3332 { 3333 int ret = 0; 3334 3335 if (skb_cloned(skb)) { 3336 /* Save and restore truesize: pskb_expand_head() may reallocate 3337 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3338 * cannot change truesize at this point. 3339 */ 3340 unsigned int save_truesize = skb->truesize; 3341 3342 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3343 skb->truesize = save_truesize; 3344 } 3345 return ret; 3346 } 3347 3348 /** 3349 * skb_shift - Shifts paged data partially from skb to another 3350 * @tgt: buffer into which tail data gets added 3351 * @skb: buffer from which the paged data comes from 3352 * @shiftlen: shift up to this many bytes 3353 * 3354 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3355 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3356 * It's up to caller to free skb if everything was shifted. 3357 * 3358 * If @tgt runs out of frags, the whole operation is aborted. 3359 * 3360 * Skb cannot include anything else but paged data while tgt is allowed 3361 * to have non-paged data as well. 3362 * 3363 * TODO: full sized shift could be optimized but that would need 3364 * specialized skb free'er to handle frags without up-to-date nr_frags. 3365 */ 3366 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3367 { 3368 int from, to, merge, todo; 3369 skb_frag_t *fragfrom, *fragto; 3370 3371 BUG_ON(shiftlen > skb->len); 3372 3373 if (skb_headlen(skb)) 3374 return 0; 3375 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3376 return 0; 3377 3378 todo = shiftlen; 3379 from = 0; 3380 to = skb_shinfo(tgt)->nr_frags; 3381 fragfrom = &skb_shinfo(skb)->frags[from]; 3382 3383 /* Actual merge is delayed until the point when we know we can 3384 * commit all, so that we don't have to undo partial changes 3385 */ 3386 if (!to || 3387 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3388 skb_frag_off(fragfrom))) { 3389 merge = -1; 3390 } else { 3391 merge = to - 1; 3392 3393 todo -= skb_frag_size(fragfrom); 3394 if (todo < 0) { 3395 if (skb_prepare_for_shift(skb) || 3396 skb_prepare_for_shift(tgt)) 3397 return 0; 3398 3399 /* All previous frag pointers might be stale! */ 3400 fragfrom = &skb_shinfo(skb)->frags[from]; 3401 fragto = &skb_shinfo(tgt)->frags[merge]; 3402 3403 skb_frag_size_add(fragto, shiftlen); 3404 skb_frag_size_sub(fragfrom, shiftlen); 3405 skb_frag_off_add(fragfrom, shiftlen); 3406 3407 goto onlymerged; 3408 } 3409 3410 from++; 3411 } 3412 3413 /* Skip full, not-fitting skb to avoid expensive operations */ 3414 if ((shiftlen == skb->len) && 3415 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3416 return 0; 3417 3418 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3419 return 0; 3420 3421 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3422 if (to == MAX_SKB_FRAGS) 3423 return 0; 3424 3425 fragfrom = &skb_shinfo(skb)->frags[from]; 3426 fragto = &skb_shinfo(tgt)->frags[to]; 3427 3428 if (todo >= skb_frag_size(fragfrom)) { 3429 *fragto = *fragfrom; 3430 todo -= skb_frag_size(fragfrom); 3431 from++; 3432 to++; 3433 3434 } else { 3435 __skb_frag_ref(fragfrom); 3436 skb_frag_page_copy(fragto, fragfrom); 3437 skb_frag_off_copy(fragto, fragfrom); 3438 skb_frag_size_set(fragto, todo); 3439 3440 skb_frag_off_add(fragfrom, todo); 3441 skb_frag_size_sub(fragfrom, todo); 3442 todo = 0; 3443 3444 to++; 3445 break; 3446 } 3447 } 3448 3449 /* Ready to "commit" this state change to tgt */ 3450 skb_shinfo(tgt)->nr_frags = to; 3451 3452 if (merge >= 0) { 3453 fragfrom = &skb_shinfo(skb)->frags[0]; 3454 fragto = &skb_shinfo(tgt)->frags[merge]; 3455 3456 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3457 __skb_frag_unref(fragfrom); 3458 } 3459 3460 /* Reposition in the original skb */ 3461 to = 0; 3462 while (from < skb_shinfo(skb)->nr_frags) 3463 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3464 skb_shinfo(skb)->nr_frags = to; 3465 3466 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3467 3468 onlymerged: 3469 /* Most likely the tgt won't ever need its checksum anymore, skb on 3470 * the other hand might need it if it needs to be resent 3471 */ 3472 tgt->ip_summed = CHECKSUM_PARTIAL; 3473 skb->ip_summed = CHECKSUM_PARTIAL; 3474 3475 /* Yak, is it really working this way? Some helper please? */ 3476 skb->len -= shiftlen; 3477 skb->data_len -= shiftlen; 3478 skb->truesize -= shiftlen; 3479 tgt->len += shiftlen; 3480 tgt->data_len += shiftlen; 3481 tgt->truesize += shiftlen; 3482 3483 return shiftlen; 3484 } 3485 3486 /** 3487 * skb_prepare_seq_read - Prepare a sequential read of skb data 3488 * @skb: the buffer to read 3489 * @from: lower offset of data to be read 3490 * @to: upper offset of data to be read 3491 * @st: state variable 3492 * 3493 * Initializes the specified state variable. Must be called before 3494 * invoking skb_seq_read() for the first time. 3495 */ 3496 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3497 unsigned int to, struct skb_seq_state *st) 3498 { 3499 st->lower_offset = from; 3500 st->upper_offset = to; 3501 st->root_skb = st->cur_skb = skb; 3502 st->frag_idx = st->stepped_offset = 0; 3503 st->frag_data = NULL; 3504 st->frag_off = 0; 3505 } 3506 EXPORT_SYMBOL(skb_prepare_seq_read); 3507 3508 /** 3509 * skb_seq_read - Sequentially read skb data 3510 * @consumed: number of bytes consumed by the caller so far 3511 * @data: destination pointer for data to be returned 3512 * @st: state variable 3513 * 3514 * Reads a block of skb data at @consumed relative to the 3515 * lower offset specified to skb_prepare_seq_read(). Assigns 3516 * the head of the data block to @data and returns the length 3517 * of the block or 0 if the end of the skb data or the upper 3518 * offset has been reached. 3519 * 3520 * The caller is not required to consume all of the data 3521 * returned, i.e. @consumed is typically set to the number 3522 * of bytes already consumed and the next call to 3523 * skb_seq_read() will return the remaining part of the block. 3524 * 3525 * Note 1: The size of each block of data returned can be arbitrary, 3526 * this limitation is the cost for zerocopy sequential 3527 * reads of potentially non linear data. 3528 * 3529 * Note 2: Fragment lists within fragments are not implemented 3530 * at the moment, state->root_skb could be replaced with 3531 * a stack for this purpose. 3532 */ 3533 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3534 struct skb_seq_state *st) 3535 { 3536 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3537 skb_frag_t *frag; 3538 3539 if (unlikely(abs_offset >= st->upper_offset)) { 3540 if (st->frag_data) { 3541 kunmap_atomic(st->frag_data); 3542 st->frag_data = NULL; 3543 } 3544 return 0; 3545 } 3546 3547 next_skb: 3548 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3549 3550 if (abs_offset < block_limit && !st->frag_data) { 3551 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3552 return block_limit - abs_offset; 3553 } 3554 3555 if (st->frag_idx == 0 && !st->frag_data) 3556 st->stepped_offset += skb_headlen(st->cur_skb); 3557 3558 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3559 unsigned int pg_idx, pg_off, pg_sz; 3560 3561 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3562 3563 pg_idx = 0; 3564 pg_off = skb_frag_off(frag); 3565 pg_sz = skb_frag_size(frag); 3566 3567 if (skb_frag_must_loop(skb_frag_page(frag))) { 3568 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3569 pg_off = offset_in_page(pg_off + st->frag_off); 3570 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3571 PAGE_SIZE - pg_off); 3572 } 3573 3574 block_limit = pg_sz + st->stepped_offset; 3575 if (abs_offset < block_limit) { 3576 if (!st->frag_data) 3577 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3578 3579 *data = (u8 *)st->frag_data + pg_off + 3580 (abs_offset - st->stepped_offset); 3581 3582 return block_limit - abs_offset; 3583 } 3584 3585 if (st->frag_data) { 3586 kunmap_atomic(st->frag_data); 3587 st->frag_data = NULL; 3588 } 3589 3590 st->stepped_offset += pg_sz; 3591 st->frag_off += pg_sz; 3592 if (st->frag_off == skb_frag_size(frag)) { 3593 st->frag_off = 0; 3594 st->frag_idx++; 3595 } 3596 } 3597 3598 if (st->frag_data) { 3599 kunmap_atomic(st->frag_data); 3600 st->frag_data = NULL; 3601 } 3602 3603 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3604 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3605 st->frag_idx = 0; 3606 goto next_skb; 3607 } else if (st->cur_skb->next) { 3608 st->cur_skb = st->cur_skb->next; 3609 st->frag_idx = 0; 3610 goto next_skb; 3611 } 3612 3613 return 0; 3614 } 3615 EXPORT_SYMBOL(skb_seq_read); 3616 3617 /** 3618 * skb_abort_seq_read - Abort a sequential read of skb data 3619 * @st: state variable 3620 * 3621 * Must be called if skb_seq_read() was not called until it 3622 * returned 0. 3623 */ 3624 void skb_abort_seq_read(struct skb_seq_state *st) 3625 { 3626 if (st->frag_data) 3627 kunmap_atomic(st->frag_data); 3628 } 3629 EXPORT_SYMBOL(skb_abort_seq_read); 3630 3631 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3632 3633 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3634 struct ts_config *conf, 3635 struct ts_state *state) 3636 { 3637 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3638 } 3639 3640 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3641 { 3642 skb_abort_seq_read(TS_SKB_CB(state)); 3643 } 3644 3645 /** 3646 * skb_find_text - Find a text pattern in skb data 3647 * @skb: the buffer to look in 3648 * @from: search offset 3649 * @to: search limit 3650 * @config: textsearch configuration 3651 * 3652 * Finds a pattern in the skb data according to the specified 3653 * textsearch configuration. Use textsearch_next() to retrieve 3654 * subsequent occurrences of the pattern. Returns the offset 3655 * to the first occurrence or UINT_MAX if no match was found. 3656 */ 3657 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3658 unsigned int to, struct ts_config *config) 3659 { 3660 struct ts_state state; 3661 unsigned int ret; 3662 3663 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3664 3665 config->get_next_block = skb_ts_get_next_block; 3666 config->finish = skb_ts_finish; 3667 3668 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3669 3670 ret = textsearch_find(config, &state); 3671 return (ret <= to - from ? ret : UINT_MAX); 3672 } 3673 EXPORT_SYMBOL(skb_find_text); 3674 3675 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3676 int offset, size_t size) 3677 { 3678 int i = skb_shinfo(skb)->nr_frags; 3679 3680 if (skb_can_coalesce(skb, i, page, offset)) { 3681 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3682 } else if (i < MAX_SKB_FRAGS) { 3683 get_page(page); 3684 skb_fill_page_desc(skb, i, page, offset, size); 3685 } else { 3686 return -EMSGSIZE; 3687 } 3688 3689 return 0; 3690 } 3691 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3692 3693 /** 3694 * skb_pull_rcsum - pull skb and update receive checksum 3695 * @skb: buffer to update 3696 * @len: length of data pulled 3697 * 3698 * This function performs an skb_pull on the packet and updates 3699 * the CHECKSUM_COMPLETE checksum. It should be used on 3700 * receive path processing instead of skb_pull unless you know 3701 * that the checksum difference is zero (e.g., a valid IP header) 3702 * or you are setting ip_summed to CHECKSUM_NONE. 3703 */ 3704 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3705 { 3706 unsigned char *data = skb->data; 3707 3708 BUG_ON(len > skb->len); 3709 __skb_pull(skb, len); 3710 skb_postpull_rcsum(skb, data, len); 3711 return skb->data; 3712 } 3713 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3714 3715 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3716 { 3717 skb_frag_t head_frag; 3718 struct page *page; 3719 3720 page = virt_to_head_page(frag_skb->head); 3721 __skb_frag_set_page(&head_frag, page); 3722 skb_frag_off_set(&head_frag, frag_skb->data - 3723 (unsigned char *)page_address(page)); 3724 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3725 return head_frag; 3726 } 3727 3728 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3729 netdev_features_t features, 3730 unsigned int offset) 3731 { 3732 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3733 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3734 unsigned int delta_truesize = 0; 3735 unsigned int delta_len = 0; 3736 struct sk_buff *tail = NULL; 3737 struct sk_buff *nskb, *tmp; 3738 int err; 3739 3740 skb_push(skb, -skb_network_offset(skb) + offset); 3741 3742 skb_shinfo(skb)->frag_list = NULL; 3743 3744 do { 3745 nskb = list_skb; 3746 list_skb = list_skb->next; 3747 3748 err = 0; 3749 if (skb_shared(nskb)) { 3750 tmp = skb_clone(nskb, GFP_ATOMIC); 3751 if (tmp) { 3752 consume_skb(nskb); 3753 nskb = tmp; 3754 err = skb_unclone(nskb, GFP_ATOMIC); 3755 } else { 3756 err = -ENOMEM; 3757 } 3758 } 3759 3760 if (!tail) 3761 skb->next = nskb; 3762 else 3763 tail->next = nskb; 3764 3765 if (unlikely(err)) { 3766 nskb->next = list_skb; 3767 goto err_linearize; 3768 } 3769 3770 tail = nskb; 3771 3772 delta_len += nskb->len; 3773 delta_truesize += nskb->truesize; 3774 3775 skb_push(nskb, -skb_network_offset(nskb) + offset); 3776 3777 skb_release_head_state(nskb); 3778 __copy_skb_header(nskb, skb); 3779 3780 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3781 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3782 nskb->data - tnl_hlen, 3783 offset + tnl_hlen); 3784 3785 if (skb_needs_linearize(nskb, features) && 3786 __skb_linearize(nskb)) 3787 goto err_linearize; 3788 3789 } while (list_skb); 3790 3791 skb->truesize = skb->truesize - delta_truesize; 3792 skb->data_len = skb->data_len - delta_len; 3793 skb->len = skb->len - delta_len; 3794 3795 skb_gso_reset(skb); 3796 3797 skb->prev = tail; 3798 3799 if (skb_needs_linearize(skb, features) && 3800 __skb_linearize(skb)) 3801 goto err_linearize; 3802 3803 skb_get(skb); 3804 3805 return skb; 3806 3807 err_linearize: 3808 kfree_skb_list(skb->next); 3809 skb->next = NULL; 3810 return ERR_PTR(-ENOMEM); 3811 } 3812 EXPORT_SYMBOL_GPL(skb_segment_list); 3813 3814 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3815 { 3816 if (unlikely(p->len + skb->len >= 65536)) 3817 return -E2BIG; 3818 3819 if (NAPI_GRO_CB(p)->last == p) 3820 skb_shinfo(p)->frag_list = skb; 3821 else 3822 NAPI_GRO_CB(p)->last->next = skb; 3823 3824 skb_pull(skb, skb_gro_offset(skb)); 3825 3826 NAPI_GRO_CB(p)->last = skb; 3827 NAPI_GRO_CB(p)->count++; 3828 p->data_len += skb->len; 3829 p->truesize += skb->truesize; 3830 p->len += skb->len; 3831 3832 NAPI_GRO_CB(skb)->same_flow = 1; 3833 3834 return 0; 3835 } 3836 3837 /** 3838 * skb_segment - Perform protocol segmentation on skb. 3839 * @head_skb: buffer to segment 3840 * @features: features for the output path (see dev->features) 3841 * 3842 * This function performs segmentation on the given skb. It returns 3843 * a pointer to the first in a list of new skbs for the segments. 3844 * In case of error it returns ERR_PTR(err). 3845 */ 3846 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3847 netdev_features_t features) 3848 { 3849 struct sk_buff *segs = NULL; 3850 struct sk_buff *tail = NULL; 3851 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3852 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3853 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3854 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3855 struct sk_buff *frag_skb = head_skb; 3856 unsigned int offset = doffset; 3857 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3858 unsigned int partial_segs = 0; 3859 unsigned int headroom; 3860 unsigned int len = head_skb->len; 3861 __be16 proto; 3862 bool csum, sg; 3863 int nfrags = skb_shinfo(head_skb)->nr_frags; 3864 int err = -ENOMEM; 3865 int i = 0; 3866 int pos; 3867 3868 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3869 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3870 /* gso_size is untrusted, and we have a frag_list with a linear 3871 * non head_frag head. 3872 * 3873 * (we assume checking the first list_skb member suffices; 3874 * i.e if either of the list_skb members have non head_frag 3875 * head, then the first one has too). 3876 * 3877 * If head_skb's headlen does not fit requested gso_size, it 3878 * means that the frag_list members do NOT terminate on exact 3879 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3880 * sharing. Therefore we must fallback to copying the frag_list 3881 * skbs; we do so by disabling SG. 3882 */ 3883 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3884 features &= ~NETIF_F_SG; 3885 } 3886 3887 __skb_push(head_skb, doffset); 3888 proto = skb_network_protocol(head_skb, NULL); 3889 if (unlikely(!proto)) 3890 return ERR_PTR(-EINVAL); 3891 3892 sg = !!(features & NETIF_F_SG); 3893 csum = !!can_checksum_protocol(features, proto); 3894 3895 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3896 if (!(features & NETIF_F_GSO_PARTIAL)) { 3897 struct sk_buff *iter; 3898 unsigned int frag_len; 3899 3900 if (!list_skb || 3901 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3902 goto normal; 3903 3904 /* If we get here then all the required 3905 * GSO features except frag_list are supported. 3906 * Try to split the SKB to multiple GSO SKBs 3907 * with no frag_list. 3908 * Currently we can do that only when the buffers don't 3909 * have a linear part and all the buffers except 3910 * the last are of the same length. 3911 */ 3912 frag_len = list_skb->len; 3913 skb_walk_frags(head_skb, iter) { 3914 if (frag_len != iter->len && iter->next) 3915 goto normal; 3916 if (skb_headlen(iter) && !iter->head_frag) 3917 goto normal; 3918 3919 len -= iter->len; 3920 } 3921 3922 if (len != frag_len) 3923 goto normal; 3924 } 3925 3926 /* GSO partial only requires that we trim off any excess that 3927 * doesn't fit into an MSS sized block, so take care of that 3928 * now. 3929 */ 3930 partial_segs = len / mss; 3931 if (partial_segs > 1) 3932 mss *= partial_segs; 3933 else 3934 partial_segs = 0; 3935 } 3936 3937 normal: 3938 headroom = skb_headroom(head_skb); 3939 pos = skb_headlen(head_skb); 3940 3941 do { 3942 struct sk_buff *nskb; 3943 skb_frag_t *nskb_frag; 3944 int hsize; 3945 int size; 3946 3947 if (unlikely(mss == GSO_BY_FRAGS)) { 3948 len = list_skb->len; 3949 } else { 3950 len = head_skb->len - offset; 3951 if (len > mss) 3952 len = mss; 3953 } 3954 3955 hsize = skb_headlen(head_skb) - offset; 3956 3957 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 3958 (skb_headlen(list_skb) == len || sg)) { 3959 BUG_ON(skb_headlen(list_skb) > len); 3960 3961 i = 0; 3962 nfrags = skb_shinfo(list_skb)->nr_frags; 3963 frag = skb_shinfo(list_skb)->frags; 3964 frag_skb = list_skb; 3965 pos += skb_headlen(list_skb); 3966 3967 while (pos < offset + len) { 3968 BUG_ON(i >= nfrags); 3969 3970 size = skb_frag_size(frag); 3971 if (pos + size > offset + len) 3972 break; 3973 3974 i++; 3975 pos += size; 3976 frag++; 3977 } 3978 3979 nskb = skb_clone(list_skb, GFP_ATOMIC); 3980 list_skb = list_skb->next; 3981 3982 if (unlikely(!nskb)) 3983 goto err; 3984 3985 if (unlikely(pskb_trim(nskb, len))) { 3986 kfree_skb(nskb); 3987 goto err; 3988 } 3989 3990 hsize = skb_end_offset(nskb); 3991 if (skb_cow_head(nskb, doffset + headroom)) { 3992 kfree_skb(nskb); 3993 goto err; 3994 } 3995 3996 nskb->truesize += skb_end_offset(nskb) - hsize; 3997 skb_release_head_state(nskb); 3998 __skb_push(nskb, doffset); 3999 } else { 4000 if (hsize < 0) 4001 hsize = 0; 4002 if (hsize > len || !sg) 4003 hsize = len; 4004 4005 nskb = __alloc_skb(hsize + doffset + headroom, 4006 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4007 NUMA_NO_NODE); 4008 4009 if (unlikely(!nskb)) 4010 goto err; 4011 4012 skb_reserve(nskb, headroom); 4013 __skb_put(nskb, doffset); 4014 } 4015 4016 if (segs) 4017 tail->next = nskb; 4018 else 4019 segs = nskb; 4020 tail = nskb; 4021 4022 __copy_skb_header(nskb, head_skb); 4023 4024 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4025 skb_reset_mac_len(nskb); 4026 4027 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4028 nskb->data - tnl_hlen, 4029 doffset + tnl_hlen); 4030 4031 if (nskb->len == len + doffset) 4032 goto perform_csum_check; 4033 4034 if (!sg) { 4035 if (!csum) { 4036 if (!nskb->remcsum_offload) 4037 nskb->ip_summed = CHECKSUM_NONE; 4038 SKB_GSO_CB(nskb)->csum = 4039 skb_copy_and_csum_bits(head_skb, offset, 4040 skb_put(nskb, 4041 len), 4042 len); 4043 SKB_GSO_CB(nskb)->csum_start = 4044 skb_headroom(nskb) + doffset; 4045 } else { 4046 skb_copy_bits(head_skb, offset, 4047 skb_put(nskb, len), 4048 len); 4049 } 4050 continue; 4051 } 4052 4053 nskb_frag = skb_shinfo(nskb)->frags; 4054 4055 skb_copy_from_linear_data_offset(head_skb, offset, 4056 skb_put(nskb, hsize), hsize); 4057 4058 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4059 SKBFL_SHARED_FRAG; 4060 4061 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4062 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4063 goto err; 4064 4065 while (pos < offset + len) { 4066 if (i >= nfrags) { 4067 i = 0; 4068 nfrags = skb_shinfo(list_skb)->nr_frags; 4069 frag = skb_shinfo(list_skb)->frags; 4070 frag_skb = list_skb; 4071 if (!skb_headlen(list_skb)) { 4072 BUG_ON(!nfrags); 4073 } else { 4074 BUG_ON(!list_skb->head_frag); 4075 4076 /* to make room for head_frag. */ 4077 i--; 4078 frag--; 4079 } 4080 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4081 skb_zerocopy_clone(nskb, frag_skb, 4082 GFP_ATOMIC)) 4083 goto err; 4084 4085 list_skb = list_skb->next; 4086 } 4087 4088 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4089 MAX_SKB_FRAGS)) { 4090 net_warn_ratelimited( 4091 "skb_segment: too many frags: %u %u\n", 4092 pos, mss); 4093 err = -EINVAL; 4094 goto err; 4095 } 4096 4097 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4098 __skb_frag_ref(nskb_frag); 4099 size = skb_frag_size(nskb_frag); 4100 4101 if (pos < offset) { 4102 skb_frag_off_add(nskb_frag, offset - pos); 4103 skb_frag_size_sub(nskb_frag, offset - pos); 4104 } 4105 4106 skb_shinfo(nskb)->nr_frags++; 4107 4108 if (pos + size <= offset + len) { 4109 i++; 4110 frag++; 4111 pos += size; 4112 } else { 4113 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4114 goto skip_fraglist; 4115 } 4116 4117 nskb_frag++; 4118 } 4119 4120 skip_fraglist: 4121 nskb->data_len = len - hsize; 4122 nskb->len += nskb->data_len; 4123 nskb->truesize += nskb->data_len; 4124 4125 perform_csum_check: 4126 if (!csum) { 4127 if (skb_has_shared_frag(nskb) && 4128 __skb_linearize(nskb)) 4129 goto err; 4130 4131 if (!nskb->remcsum_offload) 4132 nskb->ip_summed = CHECKSUM_NONE; 4133 SKB_GSO_CB(nskb)->csum = 4134 skb_checksum(nskb, doffset, 4135 nskb->len - doffset, 0); 4136 SKB_GSO_CB(nskb)->csum_start = 4137 skb_headroom(nskb) + doffset; 4138 } 4139 } while ((offset += len) < head_skb->len); 4140 4141 /* Some callers want to get the end of the list. 4142 * Put it in segs->prev to avoid walking the list. 4143 * (see validate_xmit_skb_list() for example) 4144 */ 4145 segs->prev = tail; 4146 4147 if (partial_segs) { 4148 struct sk_buff *iter; 4149 int type = skb_shinfo(head_skb)->gso_type; 4150 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4151 4152 /* Update type to add partial and then remove dodgy if set */ 4153 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4154 type &= ~SKB_GSO_DODGY; 4155 4156 /* Update GSO info and prepare to start updating headers on 4157 * our way back down the stack of protocols. 4158 */ 4159 for (iter = segs; iter; iter = iter->next) { 4160 skb_shinfo(iter)->gso_size = gso_size; 4161 skb_shinfo(iter)->gso_segs = partial_segs; 4162 skb_shinfo(iter)->gso_type = type; 4163 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4164 } 4165 4166 if (tail->len - doffset <= gso_size) 4167 skb_shinfo(tail)->gso_size = 0; 4168 else if (tail != segs) 4169 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4170 } 4171 4172 /* Following permits correct backpressure, for protocols 4173 * using skb_set_owner_w(). 4174 * Idea is to tranfert ownership from head_skb to last segment. 4175 */ 4176 if (head_skb->destructor == sock_wfree) { 4177 swap(tail->truesize, head_skb->truesize); 4178 swap(tail->destructor, head_skb->destructor); 4179 swap(tail->sk, head_skb->sk); 4180 } 4181 return segs; 4182 4183 err: 4184 kfree_skb_list(segs); 4185 return ERR_PTR(err); 4186 } 4187 EXPORT_SYMBOL_GPL(skb_segment); 4188 4189 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4190 { 4191 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4192 unsigned int offset = skb_gro_offset(skb); 4193 unsigned int headlen = skb_headlen(skb); 4194 unsigned int len = skb_gro_len(skb); 4195 unsigned int delta_truesize; 4196 struct sk_buff *lp; 4197 4198 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4199 return -E2BIG; 4200 4201 lp = NAPI_GRO_CB(p)->last; 4202 pinfo = skb_shinfo(lp); 4203 4204 if (headlen <= offset) { 4205 skb_frag_t *frag; 4206 skb_frag_t *frag2; 4207 int i = skbinfo->nr_frags; 4208 int nr_frags = pinfo->nr_frags + i; 4209 4210 if (nr_frags > MAX_SKB_FRAGS) 4211 goto merge; 4212 4213 offset -= headlen; 4214 pinfo->nr_frags = nr_frags; 4215 skbinfo->nr_frags = 0; 4216 4217 frag = pinfo->frags + nr_frags; 4218 frag2 = skbinfo->frags + i; 4219 do { 4220 *--frag = *--frag2; 4221 } while (--i); 4222 4223 skb_frag_off_add(frag, offset); 4224 skb_frag_size_sub(frag, offset); 4225 4226 /* all fragments truesize : remove (head size + sk_buff) */ 4227 delta_truesize = skb->truesize - 4228 SKB_TRUESIZE(skb_end_offset(skb)); 4229 4230 skb->truesize -= skb->data_len; 4231 skb->len -= skb->data_len; 4232 skb->data_len = 0; 4233 4234 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4235 goto done; 4236 } else if (skb->head_frag) { 4237 int nr_frags = pinfo->nr_frags; 4238 skb_frag_t *frag = pinfo->frags + nr_frags; 4239 struct page *page = virt_to_head_page(skb->head); 4240 unsigned int first_size = headlen - offset; 4241 unsigned int first_offset; 4242 4243 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4244 goto merge; 4245 4246 first_offset = skb->data - 4247 (unsigned char *)page_address(page) + 4248 offset; 4249 4250 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4251 4252 __skb_frag_set_page(frag, page); 4253 skb_frag_off_set(frag, first_offset); 4254 skb_frag_size_set(frag, first_size); 4255 4256 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4257 /* We dont need to clear skbinfo->nr_frags here */ 4258 4259 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4260 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4261 goto done; 4262 } 4263 4264 merge: 4265 delta_truesize = skb->truesize; 4266 if (offset > headlen) { 4267 unsigned int eat = offset - headlen; 4268 4269 skb_frag_off_add(&skbinfo->frags[0], eat); 4270 skb_frag_size_sub(&skbinfo->frags[0], eat); 4271 skb->data_len -= eat; 4272 skb->len -= eat; 4273 offset = headlen; 4274 } 4275 4276 __skb_pull(skb, offset); 4277 4278 if (NAPI_GRO_CB(p)->last == p) 4279 skb_shinfo(p)->frag_list = skb; 4280 else 4281 NAPI_GRO_CB(p)->last->next = skb; 4282 NAPI_GRO_CB(p)->last = skb; 4283 __skb_header_release(skb); 4284 lp = p; 4285 4286 done: 4287 NAPI_GRO_CB(p)->count++; 4288 p->data_len += len; 4289 p->truesize += delta_truesize; 4290 p->len += len; 4291 if (lp != p) { 4292 lp->data_len += len; 4293 lp->truesize += delta_truesize; 4294 lp->len += len; 4295 } 4296 NAPI_GRO_CB(skb)->same_flow = 1; 4297 return 0; 4298 } 4299 4300 #ifdef CONFIG_SKB_EXTENSIONS 4301 #define SKB_EXT_ALIGN_VALUE 8 4302 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4303 4304 static const u8 skb_ext_type_len[] = { 4305 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4306 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4307 #endif 4308 #ifdef CONFIG_XFRM 4309 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4310 #endif 4311 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4312 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4313 #endif 4314 #if IS_ENABLED(CONFIG_MPTCP) 4315 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4316 #endif 4317 }; 4318 4319 static __always_inline unsigned int skb_ext_total_length(void) 4320 { 4321 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4322 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4323 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4324 #endif 4325 #ifdef CONFIG_XFRM 4326 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4327 #endif 4328 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4329 skb_ext_type_len[TC_SKB_EXT] + 4330 #endif 4331 #if IS_ENABLED(CONFIG_MPTCP) 4332 skb_ext_type_len[SKB_EXT_MPTCP] + 4333 #endif 4334 0; 4335 } 4336 4337 static void skb_extensions_init(void) 4338 { 4339 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4340 BUILD_BUG_ON(skb_ext_total_length() > 255); 4341 4342 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4343 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4344 0, 4345 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4346 NULL); 4347 } 4348 #else 4349 static void skb_extensions_init(void) {} 4350 #endif 4351 4352 void __init skb_init(void) 4353 { 4354 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4355 sizeof(struct sk_buff), 4356 0, 4357 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4358 offsetof(struct sk_buff, cb), 4359 sizeof_field(struct sk_buff, cb), 4360 NULL); 4361 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4362 sizeof(struct sk_buff_fclones), 4363 0, 4364 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4365 NULL); 4366 skb_extensions_init(); 4367 } 4368 4369 static int 4370 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4371 unsigned int recursion_level) 4372 { 4373 int start = skb_headlen(skb); 4374 int i, copy = start - offset; 4375 struct sk_buff *frag_iter; 4376 int elt = 0; 4377 4378 if (unlikely(recursion_level >= 24)) 4379 return -EMSGSIZE; 4380 4381 if (copy > 0) { 4382 if (copy > len) 4383 copy = len; 4384 sg_set_buf(sg, skb->data + offset, copy); 4385 elt++; 4386 if ((len -= copy) == 0) 4387 return elt; 4388 offset += copy; 4389 } 4390 4391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4392 int end; 4393 4394 WARN_ON(start > offset + len); 4395 4396 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4397 if ((copy = end - offset) > 0) { 4398 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4399 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4400 return -EMSGSIZE; 4401 4402 if (copy > len) 4403 copy = len; 4404 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4405 skb_frag_off(frag) + offset - start); 4406 elt++; 4407 if (!(len -= copy)) 4408 return elt; 4409 offset += copy; 4410 } 4411 start = end; 4412 } 4413 4414 skb_walk_frags(skb, frag_iter) { 4415 int end, ret; 4416 4417 WARN_ON(start > offset + len); 4418 4419 end = start + frag_iter->len; 4420 if ((copy = end - offset) > 0) { 4421 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4422 return -EMSGSIZE; 4423 4424 if (copy > len) 4425 copy = len; 4426 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4427 copy, recursion_level + 1); 4428 if (unlikely(ret < 0)) 4429 return ret; 4430 elt += ret; 4431 if ((len -= copy) == 0) 4432 return elt; 4433 offset += copy; 4434 } 4435 start = end; 4436 } 4437 BUG_ON(len); 4438 return elt; 4439 } 4440 4441 /** 4442 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4443 * @skb: Socket buffer containing the buffers to be mapped 4444 * @sg: The scatter-gather list to map into 4445 * @offset: The offset into the buffer's contents to start mapping 4446 * @len: Length of buffer space to be mapped 4447 * 4448 * Fill the specified scatter-gather list with mappings/pointers into a 4449 * region of the buffer space attached to a socket buffer. Returns either 4450 * the number of scatterlist items used, or -EMSGSIZE if the contents 4451 * could not fit. 4452 */ 4453 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4454 { 4455 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4456 4457 if (nsg <= 0) 4458 return nsg; 4459 4460 sg_mark_end(&sg[nsg - 1]); 4461 4462 return nsg; 4463 } 4464 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4465 4466 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4467 * sglist without mark the sg which contain last skb data as the end. 4468 * So the caller can mannipulate sg list as will when padding new data after 4469 * the first call without calling sg_unmark_end to expend sg list. 4470 * 4471 * Scenario to use skb_to_sgvec_nomark: 4472 * 1. sg_init_table 4473 * 2. skb_to_sgvec_nomark(payload1) 4474 * 3. skb_to_sgvec_nomark(payload2) 4475 * 4476 * This is equivalent to: 4477 * 1. sg_init_table 4478 * 2. skb_to_sgvec(payload1) 4479 * 3. sg_unmark_end 4480 * 4. skb_to_sgvec(payload2) 4481 * 4482 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4483 * is more preferable. 4484 */ 4485 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4486 int offset, int len) 4487 { 4488 return __skb_to_sgvec(skb, sg, offset, len, 0); 4489 } 4490 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4491 4492 4493 4494 /** 4495 * skb_cow_data - Check that a socket buffer's data buffers are writable 4496 * @skb: The socket buffer to check. 4497 * @tailbits: Amount of trailing space to be added 4498 * @trailer: Returned pointer to the skb where the @tailbits space begins 4499 * 4500 * Make sure that the data buffers attached to a socket buffer are 4501 * writable. If they are not, private copies are made of the data buffers 4502 * and the socket buffer is set to use these instead. 4503 * 4504 * If @tailbits is given, make sure that there is space to write @tailbits 4505 * bytes of data beyond current end of socket buffer. @trailer will be 4506 * set to point to the skb in which this space begins. 4507 * 4508 * The number of scatterlist elements required to completely map the 4509 * COW'd and extended socket buffer will be returned. 4510 */ 4511 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4512 { 4513 int copyflag; 4514 int elt; 4515 struct sk_buff *skb1, **skb_p; 4516 4517 /* If skb is cloned or its head is paged, reallocate 4518 * head pulling out all the pages (pages are considered not writable 4519 * at the moment even if they are anonymous). 4520 */ 4521 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4522 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4523 return -ENOMEM; 4524 4525 /* Easy case. Most of packets will go this way. */ 4526 if (!skb_has_frag_list(skb)) { 4527 /* A little of trouble, not enough of space for trailer. 4528 * This should not happen, when stack is tuned to generate 4529 * good frames. OK, on miss we reallocate and reserve even more 4530 * space, 128 bytes is fair. */ 4531 4532 if (skb_tailroom(skb) < tailbits && 4533 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4534 return -ENOMEM; 4535 4536 /* Voila! */ 4537 *trailer = skb; 4538 return 1; 4539 } 4540 4541 /* Misery. We are in troubles, going to mincer fragments... */ 4542 4543 elt = 1; 4544 skb_p = &skb_shinfo(skb)->frag_list; 4545 copyflag = 0; 4546 4547 while ((skb1 = *skb_p) != NULL) { 4548 int ntail = 0; 4549 4550 /* The fragment is partially pulled by someone, 4551 * this can happen on input. Copy it and everything 4552 * after it. */ 4553 4554 if (skb_shared(skb1)) 4555 copyflag = 1; 4556 4557 /* If the skb is the last, worry about trailer. */ 4558 4559 if (skb1->next == NULL && tailbits) { 4560 if (skb_shinfo(skb1)->nr_frags || 4561 skb_has_frag_list(skb1) || 4562 skb_tailroom(skb1) < tailbits) 4563 ntail = tailbits + 128; 4564 } 4565 4566 if (copyflag || 4567 skb_cloned(skb1) || 4568 ntail || 4569 skb_shinfo(skb1)->nr_frags || 4570 skb_has_frag_list(skb1)) { 4571 struct sk_buff *skb2; 4572 4573 /* Fuck, we are miserable poor guys... */ 4574 if (ntail == 0) 4575 skb2 = skb_copy(skb1, GFP_ATOMIC); 4576 else 4577 skb2 = skb_copy_expand(skb1, 4578 skb_headroom(skb1), 4579 ntail, 4580 GFP_ATOMIC); 4581 if (unlikely(skb2 == NULL)) 4582 return -ENOMEM; 4583 4584 if (skb1->sk) 4585 skb_set_owner_w(skb2, skb1->sk); 4586 4587 /* Looking around. Are we still alive? 4588 * OK, link new skb, drop old one */ 4589 4590 skb2->next = skb1->next; 4591 *skb_p = skb2; 4592 kfree_skb(skb1); 4593 skb1 = skb2; 4594 } 4595 elt++; 4596 *trailer = skb1; 4597 skb_p = &skb1->next; 4598 } 4599 4600 return elt; 4601 } 4602 EXPORT_SYMBOL_GPL(skb_cow_data); 4603 4604 static void sock_rmem_free(struct sk_buff *skb) 4605 { 4606 struct sock *sk = skb->sk; 4607 4608 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4609 } 4610 4611 static void skb_set_err_queue(struct sk_buff *skb) 4612 { 4613 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4614 * So, it is safe to (mis)use it to mark skbs on the error queue. 4615 */ 4616 skb->pkt_type = PACKET_OUTGOING; 4617 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4618 } 4619 4620 /* 4621 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4622 */ 4623 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4624 { 4625 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4626 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4627 return -ENOMEM; 4628 4629 skb_orphan(skb); 4630 skb->sk = sk; 4631 skb->destructor = sock_rmem_free; 4632 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4633 skb_set_err_queue(skb); 4634 4635 /* before exiting rcu section, make sure dst is refcounted */ 4636 skb_dst_force(skb); 4637 4638 skb_queue_tail(&sk->sk_error_queue, skb); 4639 if (!sock_flag(sk, SOCK_DEAD)) 4640 sk->sk_error_report(sk); 4641 return 0; 4642 } 4643 EXPORT_SYMBOL(sock_queue_err_skb); 4644 4645 static bool is_icmp_err_skb(const struct sk_buff *skb) 4646 { 4647 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4648 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4649 } 4650 4651 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4652 { 4653 struct sk_buff_head *q = &sk->sk_error_queue; 4654 struct sk_buff *skb, *skb_next = NULL; 4655 bool icmp_next = false; 4656 unsigned long flags; 4657 4658 spin_lock_irqsave(&q->lock, flags); 4659 skb = __skb_dequeue(q); 4660 if (skb && (skb_next = skb_peek(q))) { 4661 icmp_next = is_icmp_err_skb(skb_next); 4662 if (icmp_next) 4663 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4664 } 4665 spin_unlock_irqrestore(&q->lock, flags); 4666 4667 if (is_icmp_err_skb(skb) && !icmp_next) 4668 sk->sk_err = 0; 4669 4670 if (skb_next) 4671 sk->sk_error_report(sk); 4672 4673 return skb; 4674 } 4675 EXPORT_SYMBOL(sock_dequeue_err_skb); 4676 4677 /** 4678 * skb_clone_sk - create clone of skb, and take reference to socket 4679 * @skb: the skb to clone 4680 * 4681 * This function creates a clone of a buffer that holds a reference on 4682 * sk_refcnt. Buffers created via this function are meant to be 4683 * returned using sock_queue_err_skb, or free via kfree_skb. 4684 * 4685 * When passing buffers allocated with this function to sock_queue_err_skb 4686 * it is necessary to wrap the call with sock_hold/sock_put in order to 4687 * prevent the socket from being released prior to being enqueued on 4688 * the sk_error_queue. 4689 */ 4690 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4691 { 4692 struct sock *sk = skb->sk; 4693 struct sk_buff *clone; 4694 4695 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4696 return NULL; 4697 4698 clone = skb_clone(skb, GFP_ATOMIC); 4699 if (!clone) { 4700 sock_put(sk); 4701 return NULL; 4702 } 4703 4704 clone->sk = sk; 4705 clone->destructor = sock_efree; 4706 4707 return clone; 4708 } 4709 EXPORT_SYMBOL(skb_clone_sk); 4710 4711 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4712 struct sock *sk, 4713 int tstype, 4714 bool opt_stats) 4715 { 4716 struct sock_exterr_skb *serr; 4717 int err; 4718 4719 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4720 4721 serr = SKB_EXT_ERR(skb); 4722 memset(serr, 0, sizeof(*serr)); 4723 serr->ee.ee_errno = ENOMSG; 4724 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4725 serr->ee.ee_info = tstype; 4726 serr->opt_stats = opt_stats; 4727 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4728 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4729 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4730 if (sk->sk_protocol == IPPROTO_TCP && 4731 sk->sk_type == SOCK_STREAM) 4732 serr->ee.ee_data -= sk->sk_tskey; 4733 } 4734 4735 err = sock_queue_err_skb(sk, skb); 4736 4737 if (err) 4738 kfree_skb(skb); 4739 } 4740 4741 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4742 { 4743 bool ret; 4744 4745 if (likely(sysctl_tstamp_allow_data || tsonly)) 4746 return true; 4747 4748 read_lock_bh(&sk->sk_callback_lock); 4749 ret = sk->sk_socket && sk->sk_socket->file && 4750 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4751 read_unlock_bh(&sk->sk_callback_lock); 4752 return ret; 4753 } 4754 4755 void skb_complete_tx_timestamp(struct sk_buff *skb, 4756 struct skb_shared_hwtstamps *hwtstamps) 4757 { 4758 struct sock *sk = skb->sk; 4759 4760 if (!skb_may_tx_timestamp(sk, false)) 4761 goto err; 4762 4763 /* Take a reference to prevent skb_orphan() from freeing the socket, 4764 * but only if the socket refcount is not zero. 4765 */ 4766 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4767 *skb_hwtstamps(skb) = *hwtstamps; 4768 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4769 sock_put(sk); 4770 return; 4771 } 4772 4773 err: 4774 kfree_skb(skb); 4775 } 4776 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4777 4778 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4779 const struct sk_buff *ack_skb, 4780 struct skb_shared_hwtstamps *hwtstamps, 4781 struct sock *sk, int tstype) 4782 { 4783 struct sk_buff *skb; 4784 bool tsonly, opt_stats = false; 4785 4786 if (!sk) 4787 return; 4788 4789 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4790 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4791 return; 4792 4793 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4794 if (!skb_may_tx_timestamp(sk, tsonly)) 4795 return; 4796 4797 if (tsonly) { 4798 #ifdef CONFIG_INET 4799 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4800 sk->sk_protocol == IPPROTO_TCP && 4801 sk->sk_type == SOCK_STREAM) { 4802 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4803 ack_skb); 4804 opt_stats = true; 4805 } else 4806 #endif 4807 skb = alloc_skb(0, GFP_ATOMIC); 4808 } else { 4809 skb = skb_clone(orig_skb, GFP_ATOMIC); 4810 } 4811 if (!skb) 4812 return; 4813 4814 if (tsonly) { 4815 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4816 SKBTX_ANY_TSTAMP; 4817 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4818 } 4819 4820 if (hwtstamps) 4821 *skb_hwtstamps(skb) = *hwtstamps; 4822 else 4823 skb->tstamp = ktime_get_real(); 4824 4825 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4826 } 4827 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4828 4829 void skb_tstamp_tx(struct sk_buff *orig_skb, 4830 struct skb_shared_hwtstamps *hwtstamps) 4831 { 4832 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4833 SCM_TSTAMP_SND); 4834 } 4835 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4836 4837 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4838 { 4839 struct sock *sk = skb->sk; 4840 struct sock_exterr_skb *serr; 4841 int err = 1; 4842 4843 skb->wifi_acked_valid = 1; 4844 skb->wifi_acked = acked; 4845 4846 serr = SKB_EXT_ERR(skb); 4847 memset(serr, 0, sizeof(*serr)); 4848 serr->ee.ee_errno = ENOMSG; 4849 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4850 4851 /* Take a reference to prevent skb_orphan() from freeing the socket, 4852 * but only if the socket refcount is not zero. 4853 */ 4854 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4855 err = sock_queue_err_skb(sk, skb); 4856 sock_put(sk); 4857 } 4858 if (err) 4859 kfree_skb(skb); 4860 } 4861 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4862 4863 /** 4864 * skb_partial_csum_set - set up and verify partial csum values for packet 4865 * @skb: the skb to set 4866 * @start: the number of bytes after skb->data to start checksumming. 4867 * @off: the offset from start to place the checksum. 4868 * 4869 * For untrusted partially-checksummed packets, we need to make sure the values 4870 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4871 * 4872 * This function checks and sets those values and skb->ip_summed: if this 4873 * returns false you should drop the packet. 4874 */ 4875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4876 { 4877 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4878 u32 csum_start = skb_headroom(skb) + (u32)start; 4879 4880 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4881 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4882 start, off, skb_headroom(skb), skb_headlen(skb)); 4883 return false; 4884 } 4885 skb->ip_summed = CHECKSUM_PARTIAL; 4886 skb->csum_start = csum_start; 4887 skb->csum_offset = off; 4888 skb_set_transport_header(skb, start); 4889 return true; 4890 } 4891 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4892 4893 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4894 unsigned int max) 4895 { 4896 if (skb_headlen(skb) >= len) 4897 return 0; 4898 4899 /* If we need to pullup then pullup to the max, so we 4900 * won't need to do it again. 4901 */ 4902 if (max > skb->len) 4903 max = skb->len; 4904 4905 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4906 return -ENOMEM; 4907 4908 if (skb_headlen(skb) < len) 4909 return -EPROTO; 4910 4911 return 0; 4912 } 4913 4914 #define MAX_TCP_HDR_LEN (15 * 4) 4915 4916 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4917 typeof(IPPROTO_IP) proto, 4918 unsigned int off) 4919 { 4920 int err; 4921 4922 switch (proto) { 4923 case IPPROTO_TCP: 4924 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4925 off + MAX_TCP_HDR_LEN); 4926 if (!err && !skb_partial_csum_set(skb, off, 4927 offsetof(struct tcphdr, 4928 check))) 4929 err = -EPROTO; 4930 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4931 4932 case IPPROTO_UDP: 4933 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4934 off + sizeof(struct udphdr)); 4935 if (!err && !skb_partial_csum_set(skb, off, 4936 offsetof(struct udphdr, 4937 check))) 4938 err = -EPROTO; 4939 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4940 } 4941 4942 return ERR_PTR(-EPROTO); 4943 } 4944 4945 /* This value should be large enough to cover a tagged ethernet header plus 4946 * maximally sized IP and TCP or UDP headers. 4947 */ 4948 #define MAX_IP_HDR_LEN 128 4949 4950 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4951 { 4952 unsigned int off; 4953 bool fragment; 4954 __sum16 *csum; 4955 int err; 4956 4957 fragment = false; 4958 4959 err = skb_maybe_pull_tail(skb, 4960 sizeof(struct iphdr), 4961 MAX_IP_HDR_LEN); 4962 if (err < 0) 4963 goto out; 4964 4965 if (ip_is_fragment(ip_hdr(skb))) 4966 fragment = true; 4967 4968 off = ip_hdrlen(skb); 4969 4970 err = -EPROTO; 4971 4972 if (fragment) 4973 goto out; 4974 4975 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4976 if (IS_ERR(csum)) 4977 return PTR_ERR(csum); 4978 4979 if (recalculate) 4980 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4981 ip_hdr(skb)->daddr, 4982 skb->len - off, 4983 ip_hdr(skb)->protocol, 0); 4984 err = 0; 4985 4986 out: 4987 return err; 4988 } 4989 4990 /* This value should be large enough to cover a tagged ethernet header plus 4991 * an IPv6 header, all options, and a maximal TCP or UDP header. 4992 */ 4993 #define MAX_IPV6_HDR_LEN 256 4994 4995 #define OPT_HDR(type, skb, off) \ 4996 (type *)(skb_network_header(skb) + (off)) 4997 4998 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4999 { 5000 int err; 5001 u8 nexthdr; 5002 unsigned int off; 5003 unsigned int len; 5004 bool fragment; 5005 bool done; 5006 __sum16 *csum; 5007 5008 fragment = false; 5009 done = false; 5010 5011 off = sizeof(struct ipv6hdr); 5012 5013 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5014 if (err < 0) 5015 goto out; 5016 5017 nexthdr = ipv6_hdr(skb)->nexthdr; 5018 5019 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5020 while (off <= len && !done) { 5021 switch (nexthdr) { 5022 case IPPROTO_DSTOPTS: 5023 case IPPROTO_HOPOPTS: 5024 case IPPROTO_ROUTING: { 5025 struct ipv6_opt_hdr *hp; 5026 5027 err = skb_maybe_pull_tail(skb, 5028 off + 5029 sizeof(struct ipv6_opt_hdr), 5030 MAX_IPV6_HDR_LEN); 5031 if (err < 0) 5032 goto out; 5033 5034 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5035 nexthdr = hp->nexthdr; 5036 off += ipv6_optlen(hp); 5037 break; 5038 } 5039 case IPPROTO_AH: { 5040 struct ip_auth_hdr *hp; 5041 5042 err = skb_maybe_pull_tail(skb, 5043 off + 5044 sizeof(struct ip_auth_hdr), 5045 MAX_IPV6_HDR_LEN); 5046 if (err < 0) 5047 goto out; 5048 5049 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5050 nexthdr = hp->nexthdr; 5051 off += ipv6_authlen(hp); 5052 break; 5053 } 5054 case IPPROTO_FRAGMENT: { 5055 struct frag_hdr *hp; 5056 5057 err = skb_maybe_pull_tail(skb, 5058 off + 5059 sizeof(struct frag_hdr), 5060 MAX_IPV6_HDR_LEN); 5061 if (err < 0) 5062 goto out; 5063 5064 hp = OPT_HDR(struct frag_hdr, skb, off); 5065 5066 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5067 fragment = true; 5068 5069 nexthdr = hp->nexthdr; 5070 off += sizeof(struct frag_hdr); 5071 break; 5072 } 5073 default: 5074 done = true; 5075 break; 5076 } 5077 } 5078 5079 err = -EPROTO; 5080 5081 if (!done || fragment) 5082 goto out; 5083 5084 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5085 if (IS_ERR(csum)) 5086 return PTR_ERR(csum); 5087 5088 if (recalculate) 5089 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5090 &ipv6_hdr(skb)->daddr, 5091 skb->len - off, nexthdr, 0); 5092 err = 0; 5093 5094 out: 5095 return err; 5096 } 5097 5098 /** 5099 * skb_checksum_setup - set up partial checksum offset 5100 * @skb: the skb to set up 5101 * @recalculate: if true the pseudo-header checksum will be recalculated 5102 */ 5103 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5104 { 5105 int err; 5106 5107 switch (skb->protocol) { 5108 case htons(ETH_P_IP): 5109 err = skb_checksum_setup_ipv4(skb, recalculate); 5110 break; 5111 5112 case htons(ETH_P_IPV6): 5113 err = skb_checksum_setup_ipv6(skb, recalculate); 5114 break; 5115 5116 default: 5117 err = -EPROTO; 5118 break; 5119 } 5120 5121 return err; 5122 } 5123 EXPORT_SYMBOL(skb_checksum_setup); 5124 5125 /** 5126 * skb_checksum_maybe_trim - maybe trims the given skb 5127 * @skb: the skb to check 5128 * @transport_len: the data length beyond the network header 5129 * 5130 * Checks whether the given skb has data beyond the given transport length. 5131 * If so, returns a cloned skb trimmed to this transport length. 5132 * Otherwise returns the provided skb. Returns NULL in error cases 5133 * (e.g. transport_len exceeds skb length or out-of-memory). 5134 * 5135 * Caller needs to set the skb transport header and free any returned skb if it 5136 * differs from the provided skb. 5137 */ 5138 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5139 unsigned int transport_len) 5140 { 5141 struct sk_buff *skb_chk; 5142 unsigned int len = skb_transport_offset(skb) + transport_len; 5143 int ret; 5144 5145 if (skb->len < len) 5146 return NULL; 5147 else if (skb->len == len) 5148 return skb; 5149 5150 skb_chk = skb_clone(skb, GFP_ATOMIC); 5151 if (!skb_chk) 5152 return NULL; 5153 5154 ret = pskb_trim_rcsum(skb_chk, len); 5155 if (ret) { 5156 kfree_skb(skb_chk); 5157 return NULL; 5158 } 5159 5160 return skb_chk; 5161 } 5162 5163 /** 5164 * skb_checksum_trimmed - validate checksum of an skb 5165 * @skb: the skb to check 5166 * @transport_len: the data length beyond the network header 5167 * @skb_chkf: checksum function to use 5168 * 5169 * Applies the given checksum function skb_chkf to the provided skb. 5170 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5171 * 5172 * If the skb has data beyond the given transport length, then a 5173 * trimmed & cloned skb is checked and returned. 5174 * 5175 * Caller needs to set the skb transport header and free any returned skb if it 5176 * differs from the provided skb. 5177 */ 5178 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5179 unsigned int transport_len, 5180 __sum16(*skb_chkf)(struct sk_buff *skb)) 5181 { 5182 struct sk_buff *skb_chk; 5183 unsigned int offset = skb_transport_offset(skb); 5184 __sum16 ret; 5185 5186 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5187 if (!skb_chk) 5188 goto err; 5189 5190 if (!pskb_may_pull(skb_chk, offset)) 5191 goto err; 5192 5193 skb_pull_rcsum(skb_chk, offset); 5194 ret = skb_chkf(skb_chk); 5195 skb_push_rcsum(skb_chk, offset); 5196 5197 if (ret) 5198 goto err; 5199 5200 return skb_chk; 5201 5202 err: 5203 if (skb_chk && skb_chk != skb) 5204 kfree_skb(skb_chk); 5205 5206 return NULL; 5207 5208 } 5209 EXPORT_SYMBOL(skb_checksum_trimmed); 5210 5211 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5212 { 5213 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5214 skb->dev->name); 5215 } 5216 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5217 5218 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5219 { 5220 if (head_stolen) { 5221 skb_release_head_state(skb); 5222 kmem_cache_free(skbuff_head_cache, skb); 5223 } else { 5224 __kfree_skb(skb); 5225 } 5226 } 5227 EXPORT_SYMBOL(kfree_skb_partial); 5228 5229 /** 5230 * skb_try_coalesce - try to merge skb to prior one 5231 * @to: prior buffer 5232 * @from: buffer to add 5233 * @fragstolen: pointer to boolean 5234 * @delta_truesize: how much more was allocated than was requested 5235 */ 5236 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5237 bool *fragstolen, int *delta_truesize) 5238 { 5239 struct skb_shared_info *to_shinfo, *from_shinfo; 5240 int i, delta, len = from->len; 5241 5242 *fragstolen = false; 5243 5244 if (skb_cloned(to)) 5245 return false; 5246 5247 if (len <= skb_tailroom(to)) { 5248 if (len) 5249 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5250 *delta_truesize = 0; 5251 return true; 5252 } 5253 5254 to_shinfo = skb_shinfo(to); 5255 from_shinfo = skb_shinfo(from); 5256 if (to_shinfo->frag_list || from_shinfo->frag_list) 5257 return false; 5258 if (skb_zcopy(to) || skb_zcopy(from)) 5259 return false; 5260 5261 if (skb_headlen(from) != 0) { 5262 struct page *page; 5263 unsigned int offset; 5264 5265 if (to_shinfo->nr_frags + 5266 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5267 return false; 5268 5269 if (skb_head_is_locked(from)) 5270 return false; 5271 5272 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5273 5274 page = virt_to_head_page(from->head); 5275 offset = from->data - (unsigned char *)page_address(page); 5276 5277 skb_fill_page_desc(to, to_shinfo->nr_frags, 5278 page, offset, skb_headlen(from)); 5279 *fragstolen = true; 5280 } else { 5281 if (to_shinfo->nr_frags + 5282 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5283 return false; 5284 5285 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5286 } 5287 5288 WARN_ON_ONCE(delta < len); 5289 5290 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5291 from_shinfo->frags, 5292 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5293 to_shinfo->nr_frags += from_shinfo->nr_frags; 5294 5295 if (!skb_cloned(from)) 5296 from_shinfo->nr_frags = 0; 5297 5298 /* if the skb is not cloned this does nothing 5299 * since we set nr_frags to 0. 5300 */ 5301 for (i = 0; i < from_shinfo->nr_frags; i++) 5302 __skb_frag_ref(&from_shinfo->frags[i]); 5303 5304 to->truesize += delta; 5305 to->len += len; 5306 to->data_len += len; 5307 5308 *delta_truesize = delta; 5309 return true; 5310 } 5311 EXPORT_SYMBOL(skb_try_coalesce); 5312 5313 /** 5314 * skb_scrub_packet - scrub an skb 5315 * 5316 * @skb: buffer to clean 5317 * @xnet: packet is crossing netns 5318 * 5319 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5320 * into/from a tunnel. Some information have to be cleared during these 5321 * operations. 5322 * skb_scrub_packet can also be used to clean a skb before injecting it in 5323 * another namespace (@xnet == true). We have to clear all information in the 5324 * skb that could impact namespace isolation. 5325 */ 5326 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5327 { 5328 skb->pkt_type = PACKET_HOST; 5329 skb->skb_iif = 0; 5330 skb->ignore_df = 0; 5331 skb_dst_drop(skb); 5332 skb_ext_reset(skb); 5333 nf_reset_ct(skb); 5334 nf_reset_trace(skb); 5335 5336 #ifdef CONFIG_NET_SWITCHDEV 5337 skb->offload_fwd_mark = 0; 5338 skb->offload_l3_fwd_mark = 0; 5339 #endif 5340 5341 if (!xnet) 5342 return; 5343 5344 ipvs_reset(skb); 5345 skb->mark = 0; 5346 skb->tstamp = 0; 5347 } 5348 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5349 5350 /** 5351 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5352 * 5353 * @skb: GSO skb 5354 * 5355 * skb_gso_transport_seglen is used to determine the real size of the 5356 * individual segments, including Layer4 headers (TCP/UDP). 5357 * 5358 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5359 */ 5360 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5361 { 5362 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5363 unsigned int thlen = 0; 5364 5365 if (skb->encapsulation) { 5366 thlen = skb_inner_transport_header(skb) - 5367 skb_transport_header(skb); 5368 5369 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5370 thlen += inner_tcp_hdrlen(skb); 5371 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5372 thlen = tcp_hdrlen(skb); 5373 } else if (unlikely(skb_is_gso_sctp(skb))) { 5374 thlen = sizeof(struct sctphdr); 5375 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5376 thlen = sizeof(struct udphdr); 5377 } 5378 /* UFO sets gso_size to the size of the fragmentation 5379 * payload, i.e. the size of the L4 (UDP) header is already 5380 * accounted for. 5381 */ 5382 return thlen + shinfo->gso_size; 5383 } 5384 5385 /** 5386 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5387 * 5388 * @skb: GSO skb 5389 * 5390 * skb_gso_network_seglen is used to determine the real size of the 5391 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5392 * 5393 * The MAC/L2 header is not accounted for. 5394 */ 5395 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5396 { 5397 unsigned int hdr_len = skb_transport_header(skb) - 5398 skb_network_header(skb); 5399 5400 return hdr_len + skb_gso_transport_seglen(skb); 5401 } 5402 5403 /** 5404 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5405 * 5406 * @skb: GSO skb 5407 * 5408 * skb_gso_mac_seglen is used to determine the real size of the 5409 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5410 * headers (TCP/UDP). 5411 */ 5412 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5413 { 5414 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5415 5416 return hdr_len + skb_gso_transport_seglen(skb); 5417 } 5418 5419 /** 5420 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5421 * 5422 * There are a couple of instances where we have a GSO skb, and we 5423 * want to determine what size it would be after it is segmented. 5424 * 5425 * We might want to check: 5426 * - L3+L4+payload size (e.g. IP forwarding) 5427 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5428 * 5429 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5430 * 5431 * @skb: GSO skb 5432 * 5433 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5434 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5435 * 5436 * @max_len: The maximum permissible length. 5437 * 5438 * Returns true if the segmented length <= max length. 5439 */ 5440 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5441 unsigned int seg_len, 5442 unsigned int max_len) { 5443 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5444 const struct sk_buff *iter; 5445 5446 if (shinfo->gso_size != GSO_BY_FRAGS) 5447 return seg_len <= max_len; 5448 5449 /* Undo this so we can re-use header sizes */ 5450 seg_len -= GSO_BY_FRAGS; 5451 5452 skb_walk_frags(skb, iter) { 5453 if (seg_len + skb_headlen(iter) > max_len) 5454 return false; 5455 } 5456 5457 return true; 5458 } 5459 5460 /** 5461 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5462 * 5463 * @skb: GSO skb 5464 * @mtu: MTU to validate against 5465 * 5466 * skb_gso_validate_network_len validates if a given skb will fit a 5467 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5468 * payload. 5469 */ 5470 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5471 { 5472 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5473 } 5474 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5475 5476 /** 5477 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5478 * 5479 * @skb: GSO skb 5480 * @len: length to validate against 5481 * 5482 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5483 * length once split, including L2, L3 and L4 headers and the payload. 5484 */ 5485 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5486 { 5487 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5488 } 5489 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5490 5491 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5492 { 5493 int mac_len, meta_len; 5494 void *meta; 5495 5496 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5497 kfree_skb(skb); 5498 return NULL; 5499 } 5500 5501 mac_len = skb->data - skb_mac_header(skb); 5502 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5503 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5504 mac_len - VLAN_HLEN - ETH_TLEN); 5505 } 5506 5507 meta_len = skb_metadata_len(skb); 5508 if (meta_len) { 5509 meta = skb_metadata_end(skb) - meta_len; 5510 memmove(meta + VLAN_HLEN, meta, meta_len); 5511 } 5512 5513 skb->mac_header += VLAN_HLEN; 5514 return skb; 5515 } 5516 5517 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5518 { 5519 struct vlan_hdr *vhdr; 5520 u16 vlan_tci; 5521 5522 if (unlikely(skb_vlan_tag_present(skb))) { 5523 /* vlan_tci is already set-up so leave this for another time */ 5524 return skb; 5525 } 5526 5527 skb = skb_share_check(skb, GFP_ATOMIC); 5528 if (unlikely(!skb)) 5529 goto err_free; 5530 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5531 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5532 goto err_free; 5533 5534 vhdr = (struct vlan_hdr *)skb->data; 5535 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5536 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5537 5538 skb_pull_rcsum(skb, VLAN_HLEN); 5539 vlan_set_encap_proto(skb, vhdr); 5540 5541 skb = skb_reorder_vlan_header(skb); 5542 if (unlikely(!skb)) 5543 goto err_free; 5544 5545 skb_reset_network_header(skb); 5546 if (!skb_transport_header_was_set(skb)) 5547 skb_reset_transport_header(skb); 5548 skb_reset_mac_len(skb); 5549 5550 return skb; 5551 5552 err_free: 5553 kfree_skb(skb); 5554 return NULL; 5555 } 5556 EXPORT_SYMBOL(skb_vlan_untag); 5557 5558 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5559 { 5560 if (!pskb_may_pull(skb, write_len)) 5561 return -ENOMEM; 5562 5563 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5564 return 0; 5565 5566 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5567 } 5568 EXPORT_SYMBOL(skb_ensure_writable); 5569 5570 /* remove VLAN header from packet and update csum accordingly. 5571 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5572 */ 5573 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5574 { 5575 struct vlan_hdr *vhdr; 5576 int offset = skb->data - skb_mac_header(skb); 5577 int err; 5578 5579 if (WARN_ONCE(offset, 5580 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5581 offset)) { 5582 return -EINVAL; 5583 } 5584 5585 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5586 if (unlikely(err)) 5587 return err; 5588 5589 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5590 5591 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5592 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5593 5594 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5595 __skb_pull(skb, VLAN_HLEN); 5596 5597 vlan_set_encap_proto(skb, vhdr); 5598 skb->mac_header += VLAN_HLEN; 5599 5600 if (skb_network_offset(skb) < ETH_HLEN) 5601 skb_set_network_header(skb, ETH_HLEN); 5602 5603 skb_reset_mac_len(skb); 5604 5605 return err; 5606 } 5607 EXPORT_SYMBOL(__skb_vlan_pop); 5608 5609 /* Pop a vlan tag either from hwaccel or from payload. 5610 * Expects skb->data at mac header. 5611 */ 5612 int skb_vlan_pop(struct sk_buff *skb) 5613 { 5614 u16 vlan_tci; 5615 __be16 vlan_proto; 5616 int err; 5617 5618 if (likely(skb_vlan_tag_present(skb))) { 5619 __vlan_hwaccel_clear_tag(skb); 5620 } else { 5621 if (unlikely(!eth_type_vlan(skb->protocol))) 5622 return 0; 5623 5624 err = __skb_vlan_pop(skb, &vlan_tci); 5625 if (err) 5626 return err; 5627 } 5628 /* move next vlan tag to hw accel tag */ 5629 if (likely(!eth_type_vlan(skb->protocol))) 5630 return 0; 5631 5632 vlan_proto = skb->protocol; 5633 err = __skb_vlan_pop(skb, &vlan_tci); 5634 if (unlikely(err)) 5635 return err; 5636 5637 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5638 return 0; 5639 } 5640 EXPORT_SYMBOL(skb_vlan_pop); 5641 5642 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5643 * Expects skb->data at mac header. 5644 */ 5645 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5646 { 5647 if (skb_vlan_tag_present(skb)) { 5648 int offset = skb->data - skb_mac_header(skb); 5649 int err; 5650 5651 if (WARN_ONCE(offset, 5652 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5653 offset)) { 5654 return -EINVAL; 5655 } 5656 5657 err = __vlan_insert_tag(skb, skb->vlan_proto, 5658 skb_vlan_tag_get(skb)); 5659 if (err) 5660 return err; 5661 5662 skb->protocol = skb->vlan_proto; 5663 skb->mac_len += VLAN_HLEN; 5664 5665 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5666 } 5667 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5668 return 0; 5669 } 5670 EXPORT_SYMBOL(skb_vlan_push); 5671 5672 /** 5673 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5674 * 5675 * @skb: Socket buffer to modify 5676 * 5677 * Drop the Ethernet header of @skb. 5678 * 5679 * Expects that skb->data points to the mac header and that no VLAN tags are 5680 * present. 5681 * 5682 * Returns 0 on success, -errno otherwise. 5683 */ 5684 int skb_eth_pop(struct sk_buff *skb) 5685 { 5686 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5687 skb_network_offset(skb) < ETH_HLEN) 5688 return -EPROTO; 5689 5690 skb_pull_rcsum(skb, ETH_HLEN); 5691 skb_reset_mac_header(skb); 5692 skb_reset_mac_len(skb); 5693 5694 return 0; 5695 } 5696 EXPORT_SYMBOL(skb_eth_pop); 5697 5698 /** 5699 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5700 * 5701 * @skb: Socket buffer to modify 5702 * @dst: Destination MAC address of the new header 5703 * @src: Source MAC address of the new header 5704 * 5705 * Prepend @skb with a new Ethernet header. 5706 * 5707 * Expects that skb->data points to the mac header, which must be empty. 5708 * 5709 * Returns 0 on success, -errno otherwise. 5710 */ 5711 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5712 const unsigned char *src) 5713 { 5714 struct ethhdr *eth; 5715 int err; 5716 5717 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5718 return -EPROTO; 5719 5720 err = skb_cow_head(skb, sizeof(*eth)); 5721 if (err < 0) 5722 return err; 5723 5724 skb_push(skb, sizeof(*eth)); 5725 skb_reset_mac_header(skb); 5726 skb_reset_mac_len(skb); 5727 5728 eth = eth_hdr(skb); 5729 ether_addr_copy(eth->h_dest, dst); 5730 ether_addr_copy(eth->h_source, src); 5731 eth->h_proto = skb->protocol; 5732 5733 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5734 5735 return 0; 5736 } 5737 EXPORT_SYMBOL(skb_eth_push); 5738 5739 /* Update the ethertype of hdr and the skb csum value if required. */ 5740 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5741 __be16 ethertype) 5742 { 5743 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5744 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5745 5746 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5747 } 5748 5749 hdr->h_proto = ethertype; 5750 } 5751 5752 /** 5753 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5754 * the packet 5755 * 5756 * @skb: buffer 5757 * @mpls_lse: MPLS label stack entry to push 5758 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5759 * @mac_len: length of the MAC header 5760 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5761 * ethernet 5762 * 5763 * Expects skb->data at mac header. 5764 * 5765 * Returns 0 on success, -errno otherwise. 5766 */ 5767 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5768 int mac_len, bool ethernet) 5769 { 5770 struct mpls_shim_hdr *lse; 5771 int err; 5772 5773 if (unlikely(!eth_p_mpls(mpls_proto))) 5774 return -EINVAL; 5775 5776 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5777 if (skb->encapsulation) 5778 return -EINVAL; 5779 5780 err = skb_cow_head(skb, MPLS_HLEN); 5781 if (unlikely(err)) 5782 return err; 5783 5784 if (!skb->inner_protocol) { 5785 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5786 skb_set_inner_protocol(skb, skb->protocol); 5787 } 5788 5789 skb_push(skb, MPLS_HLEN); 5790 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5791 mac_len); 5792 skb_reset_mac_header(skb); 5793 skb_set_network_header(skb, mac_len); 5794 skb_reset_mac_len(skb); 5795 5796 lse = mpls_hdr(skb); 5797 lse->label_stack_entry = mpls_lse; 5798 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5799 5800 if (ethernet && mac_len >= ETH_HLEN) 5801 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5802 skb->protocol = mpls_proto; 5803 5804 return 0; 5805 } 5806 EXPORT_SYMBOL_GPL(skb_mpls_push); 5807 5808 /** 5809 * skb_mpls_pop() - pop the outermost MPLS header 5810 * 5811 * @skb: buffer 5812 * @next_proto: ethertype of header after popped MPLS header 5813 * @mac_len: length of the MAC header 5814 * @ethernet: flag to indicate if the packet is ethernet 5815 * 5816 * Expects skb->data at mac header. 5817 * 5818 * Returns 0 on success, -errno otherwise. 5819 */ 5820 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5821 bool ethernet) 5822 { 5823 int err; 5824 5825 if (unlikely(!eth_p_mpls(skb->protocol))) 5826 return 0; 5827 5828 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5829 if (unlikely(err)) 5830 return err; 5831 5832 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5833 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5834 mac_len); 5835 5836 __skb_pull(skb, MPLS_HLEN); 5837 skb_reset_mac_header(skb); 5838 skb_set_network_header(skb, mac_len); 5839 5840 if (ethernet && mac_len >= ETH_HLEN) { 5841 struct ethhdr *hdr; 5842 5843 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5844 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5845 skb_mod_eth_type(skb, hdr, next_proto); 5846 } 5847 skb->protocol = next_proto; 5848 5849 return 0; 5850 } 5851 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5852 5853 /** 5854 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5855 * 5856 * @skb: buffer 5857 * @mpls_lse: new MPLS label stack entry to update to 5858 * 5859 * Expects skb->data at mac header. 5860 * 5861 * Returns 0 on success, -errno otherwise. 5862 */ 5863 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5864 { 5865 int err; 5866 5867 if (unlikely(!eth_p_mpls(skb->protocol))) 5868 return -EINVAL; 5869 5870 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5871 if (unlikely(err)) 5872 return err; 5873 5874 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5875 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5876 5877 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5878 } 5879 5880 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5881 5882 return 0; 5883 } 5884 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5885 5886 /** 5887 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5888 * 5889 * @skb: buffer 5890 * 5891 * Expects skb->data at mac header. 5892 * 5893 * Returns 0 on success, -errno otherwise. 5894 */ 5895 int skb_mpls_dec_ttl(struct sk_buff *skb) 5896 { 5897 u32 lse; 5898 u8 ttl; 5899 5900 if (unlikely(!eth_p_mpls(skb->protocol))) 5901 return -EINVAL; 5902 5903 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5904 return -ENOMEM; 5905 5906 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5907 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5908 if (!--ttl) 5909 return -EINVAL; 5910 5911 lse &= ~MPLS_LS_TTL_MASK; 5912 lse |= ttl << MPLS_LS_TTL_SHIFT; 5913 5914 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5915 } 5916 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5917 5918 /** 5919 * alloc_skb_with_frags - allocate skb with page frags 5920 * 5921 * @header_len: size of linear part 5922 * @data_len: needed length in frags 5923 * @max_page_order: max page order desired. 5924 * @errcode: pointer to error code if any 5925 * @gfp_mask: allocation mask 5926 * 5927 * This can be used to allocate a paged skb, given a maximal order for frags. 5928 */ 5929 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5930 unsigned long data_len, 5931 int max_page_order, 5932 int *errcode, 5933 gfp_t gfp_mask) 5934 { 5935 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5936 unsigned long chunk; 5937 struct sk_buff *skb; 5938 struct page *page; 5939 int i; 5940 5941 *errcode = -EMSGSIZE; 5942 /* Note this test could be relaxed, if we succeed to allocate 5943 * high order pages... 5944 */ 5945 if (npages > MAX_SKB_FRAGS) 5946 return NULL; 5947 5948 *errcode = -ENOBUFS; 5949 skb = alloc_skb(header_len, gfp_mask); 5950 if (!skb) 5951 return NULL; 5952 5953 skb->truesize += npages << PAGE_SHIFT; 5954 5955 for (i = 0; npages > 0; i++) { 5956 int order = max_page_order; 5957 5958 while (order) { 5959 if (npages >= 1 << order) { 5960 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5961 __GFP_COMP | 5962 __GFP_NOWARN, 5963 order); 5964 if (page) 5965 goto fill_page; 5966 /* Do not retry other high order allocations */ 5967 order = 1; 5968 max_page_order = 0; 5969 } 5970 order--; 5971 } 5972 page = alloc_page(gfp_mask); 5973 if (!page) 5974 goto failure; 5975 fill_page: 5976 chunk = min_t(unsigned long, data_len, 5977 PAGE_SIZE << order); 5978 skb_fill_page_desc(skb, i, page, 0, chunk); 5979 data_len -= chunk; 5980 npages -= 1 << order; 5981 } 5982 return skb; 5983 5984 failure: 5985 kfree_skb(skb); 5986 return NULL; 5987 } 5988 EXPORT_SYMBOL(alloc_skb_with_frags); 5989 5990 /* carve out the first off bytes from skb when off < headlen */ 5991 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5992 const int headlen, gfp_t gfp_mask) 5993 { 5994 int i; 5995 int size = skb_end_offset(skb); 5996 int new_hlen = headlen - off; 5997 u8 *data; 5998 5999 size = SKB_DATA_ALIGN(size); 6000 6001 if (skb_pfmemalloc(skb)) 6002 gfp_mask |= __GFP_MEMALLOC; 6003 data = kmalloc_reserve(size + 6004 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6005 gfp_mask, NUMA_NO_NODE, NULL); 6006 if (!data) 6007 return -ENOMEM; 6008 6009 size = SKB_WITH_OVERHEAD(ksize(data)); 6010 6011 /* Copy real data, and all frags */ 6012 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6013 skb->len -= off; 6014 6015 memcpy((struct skb_shared_info *)(data + size), 6016 skb_shinfo(skb), 6017 offsetof(struct skb_shared_info, 6018 frags[skb_shinfo(skb)->nr_frags])); 6019 if (skb_cloned(skb)) { 6020 /* drop the old head gracefully */ 6021 if (skb_orphan_frags(skb, gfp_mask)) { 6022 kfree(data); 6023 return -ENOMEM; 6024 } 6025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6026 skb_frag_ref(skb, i); 6027 if (skb_has_frag_list(skb)) 6028 skb_clone_fraglist(skb); 6029 skb_release_data(skb); 6030 } else { 6031 /* we can reuse existing recount- all we did was 6032 * relocate values 6033 */ 6034 skb_free_head(skb); 6035 } 6036 6037 skb->head = data; 6038 skb->data = data; 6039 skb->head_frag = 0; 6040 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6041 skb->end = size; 6042 #else 6043 skb->end = skb->head + size; 6044 #endif 6045 skb_set_tail_pointer(skb, skb_headlen(skb)); 6046 skb_headers_offset_update(skb, 0); 6047 skb->cloned = 0; 6048 skb->hdr_len = 0; 6049 skb->nohdr = 0; 6050 atomic_set(&skb_shinfo(skb)->dataref, 1); 6051 6052 return 0; 6053 } 6054 6055 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6056 6057 /* carve out the first eat bytes from skb's frag_list. May recurse into 6058 * pskb_carve() 6059 */ 6060 static int pskb_carve_frag_list(struct sk_buff *skb, 6061 struct skb_shared_info *shinfo, int eat, 6062 gfp_t gfp_mask) 6063 { 6064 struct sk_buff *list = shinfo->frag_list; 6065 struct sk_buff *clone = NULL; 6066 struct sk_buff *insp = NULL; 6067 6068 do { 6069 if (!list) { 6070 pr_err("Not enough bytes to eat. Want %d\n", eat); 6071 return -EFAULT; 6072 } 6073 if (list->len <= eat) { 6074 /* Eaten as whole. */ 6075 eat -= list->len; 6076 list = list->next; 6077 insp = list; 6078 } else { 6079 /* Eaten partially. */ 6080 if (skb_shared(list)) { 6081 clone = skb_clone(list, gfp_mask); 6082 if (!clone) 6083 return -ENOMEM; 6084 insp = list->next; 6085 list = clone; 6086 } else { 6087 /* This may be pulled without problems. */ 6088 insp = list; 6089 } 6090 if (pskb_carve(list, eat, gfp_mask) < 0) { 6091 kfree_skb(clone); 6092 return -ENOMEM; 6093 } 6094 break; 6095 } 6096 } while (eat); 6097 6098 /* Free pulled out fragments. */ 6099 while ((list = shinfo->frag_list) != insp) { 6100 shinfo->frag_list = list->next; 6101 kfree_skb(list); 6102 } 6103 /* And insert new clone at head. */ 6104 if (clone) { 6105 clone->next = list; 6106 shinfo->frag_list = clone; 6107 } 6108 return 0; 6109 } 6110 6111 /* carve off first len bytes from skb. Split line (off) is in the 6112 * non-linear part of skb 6113 */ 6114 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6115 int pos, gfp_t gfp_mask) 6116 { 6117 int i, k = 0; 6118 int size = skb_end_offset(skb); 6119 u8 *data; 6120 const int nfrags = skb_shinfo(skb)->nr_frags; 6121 struct skb_shared_info *shinfo; 6122 6123 size = SKB_DATA_ALIGN(size); 6124 6125 if (skb_pfmemalloc(skb)) 6126 gfp_mask |= __GFP_MEMALLOC; 6127 data = kmalloc_reserve(size + 6128 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6129 gfp_mask, NUMA_NO_NODE, NULL); 6130 if (!data) 6131 return -ENOMEM; 6132 6133 size = SKB_WITH_OVERHEAD(ksize(data)); 6134 6135 memcpy((struct skb_shared_info *)(data + size), 6136 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6137 if (skb_orphan_frags(skb, gfp_mask)) { 6138 kfree(data); 6139 return -ENOMEM; 6140 } 6141 shinfo = (struct skb_shared_info *)(data + size); 6142 for (i = 0; i < nfrags; i++) { 6143 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6144 6145 if (pos + fsize > off) { 6146 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6147 6148 if (pos < off) { 6149 /* Split frag. 6150 * We have two variants in this case: 6151 * 1. Move all the frag to the second 6152 * part, if it is possible. F.e. 6153 * this approach is mandatory for TUX, 6154 * where splitting is expensive. 6155 * 2. Split is accurately. We make this. 6156 */ 6157 skb_frag_off_add(&shinfo->frags[0], off - pos); 6158 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6159 } 6160 skb_frag_ref(skb, i); 6161 k++; 6162 } 6163 pos += fsize; 6164 } 6165 shinfo->nr_frags = k; 6166 if (skb_has_frag_list(skb)) 6167 skb_clone_fraglist(skb); 6168 6169 /* split line is in frag list */ 6170 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6171 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6172 if (skb_has_frag_list(skb)) 6173 kfree_skb_list(skb_shinfo(skb)->frag_list); 6174 kfree(data); 6175 return -ENOMEM; 6176 } 6177 skb_release_data(skb); 6178 6179 skb->head = data; 6180 skb->head_frag = 0; 6181 skb->data = data; 6182 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6183 skb->end = size; 6184 #else 6185 skb->end = skb->head + size; 6186 #endif 6187 skb_reset_tail_pointer(skb); 6188 skb_headers_offset_update(skb, 0); 6189 skb->cloned = 0; 6190 skb->hdr_len = 0; 6191 skb->nohdr = 0; 6192 skb->len -= off; 6193 skb->data_len = skb->len; 6194 atomic_set(&skb_shinfo(skb)->dataref, 1); 6195 return 0; 6196 } 6197 6198 /* remove len bytes from the beginning of the skb */ 6199 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6200 { 6201 int headlen = skb_headlen(skb); 6202 6203 if (len < headlen) 6204 return pskb_carve_inside_header(skb, len, headlen, gfp); 6205 else 6206 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6207 } 6208 6209 /* Extract to_copy bytes starting at off from skb, and return this in 6210 * a new skb 6211 */ 6212 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6213 int to_copy, gfp_t gfp) 6214 { 6215 struct sk_buff *clone = skb_clone(skb, gfp); 6216 6217 if (!clone) 6218 return NULL; 6219 6220 if (pskb_carve(clone, off, gfp) < 0 || 6221 pskb_trim(clone, to_copy)) { 6222 kfree_skb(clone); 6223 return NULL; 6224 } 6225 return clone; 6226 } 6227 EXPORT_SYMBOL(pskb_extract); 6228 6229 /** 6230 * skb_condense - try to get rid of fragments/frag_list if possible 6231 * @skb: buffer 6232 * 6233 * Can be used to save memory before skb is added to a busy queue. 6234 * If packet has bytes in frags and enough tail room in skb->head, 6235 * pull all of them, so that we can free the frags right now and adjust 6236 * truesize. 6237 * Notes: 6238 * We do not reallocate skb->head thus can not fail. 6239 * Caller must re-evaluate skb->truesize if needed. 6240 */ 6241 void skb_condense(struct sk_buff *skb) 6242 { 6243 if (skb->data_len) { 6244 if (skb->data_len > skb->end - skb->tail || 6245 skb_cloned(skb)) 6246 return; 6247 6248 /* Nice, we can free page frag(s) right now */ 6249 __pskb_pull_tail(skb, skb->data_len); 6250 } 6251 /* At this point, skb->truesize might be over estimated, 6252 * because skb had a fragment, and fragments do not tell 6253 * their truesize. 6254 * When we pulled its content into skb->head, fragment 6255 * was freed, but __pskb_pull_tail() could not possibly 6256 * adjust skb->truesize, not knowing the frag truesize. 6257 */ 6258 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6259 } 6260 6261 #ifdef CONFIG_SKB_EXTENSIONS 6262 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6263 { 6264 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6265 } 6266 6267 /** 6268 * __skb_ext_alloc - allocate a new skb extensions storage 6269 * 6270 * @flags: See kmalloc(). 6271 * 6272 * Returns the newly allocated pointer. The pointer can later attached to a 6273 * skb via __skb_ext_set(). 6274 * Note: caller must handle the skb_ext as an opaque data. 6275 */ 6276 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6277 { 6278 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6279 6280 if (new) { 6281 memset(new->offset, 0, sizeof(new->offset)); 6282 refcount_set(&new->refcnt, 1); 6283 } 6284 6285 return new; 6286 } 6287 6288 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6289 unsigned int old_active) 6290 { 6291 struct skb_ext *new; 6292 6293 if (refcount_read(&old->refcnt) == 1) 6294 return old; 6295 6296 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6297 if (!new) 6298 return NULL; 6299 6300 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6301 refcount_set(&new->refcnt, 1); 6302 6303 #ifdef CONFIG_XFRM 6304 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6305 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6306 unsigned int i; 6307 6308 for (i = 0; i < sp->len; i++) 6309 xfrm_state_hold(sp->xvec[i]); 6310 } 6311 #endif 6312 __skb_ext_put(old); 6313 return new; 6314 } 6315 6316 /** 6317 * __skb_ext_set - attach the specified extension storage to this skb 6318 * @skb: buffer 6319 * @id: extension id 6320 * @ext: extension storage previously allocated via __skb_ext_alloc() 6321 * 6322 * Existing extensions, if any, are cleared. 6323 * 6324 * Returns the pointer to the extension. 6325 */ 6326 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6327 struct skb_ext *ext) 6328 { 6329 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6330 6331 skb_ext_put(skb); 6332 newlen = newoff + skb_ext_type_len[id]; 6333 ext->chunks = newlen; 6334 ext->offset[id] = newoff; 6335 skb->extensions = ext; 6336 skb->active_extensions = 1 << id; 6337 return skb_ext_get_ptr(ext, id); 6338 } 6339 6340 /** 6341 * skb_ext_add - allocate space for given extension, COW if needed 6342 * @skb: buffer 6343 * @id: extension to allocate space for 6344 * 6345 * Allocates enough space for the given extension. 6346 * If the extension is already present, a pointer to that extension 6347 * is returned. 6348 * 6349 * If the skb was cloned, COW applies and the returned memory can be 6350 * modified without changing the extension space of clones buffers. 6351 * 6352 * Returns pointer to the extension or NULL on allocation failure. 6353 */ 6354 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6355 { 6356 struct skb_ext *new, *old = NULL; 6357 unsigned int newlen, newoff; 6358 6359 if (skb->active_extensions) { 6360 old = skb->extensions; 6361 6362 new = skb_ext_maybe_cow(old, skb->active_extensions); 6363 if (!new) 6364 return NULL; 6365 6366 if (__skb_ext_exist(new, id)) 6367 goto set_active; 6368 6369 newoff = new->chunks; 6370 } else { 6371 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6372 6373 new = __skb_ext_alloc(GFP_ATOMIC); 6374 if (!new) 6375 return NULL; 6376 } 6377 6378 newlen = newoff + skb_ext_type_len[id]; 6379 new->chunks = newlen; 6380 new->offset[id] = newoff; 6381 set_active: 6382 skb->extensions = new; 6383 skb->active_extensions |= 1 << id; 6384 return skb_ext_get_ptr(new, id); 6385 } 6386 EXPORT_SYMBOL(skb_ext_add); 6387 6388 #ifdef CONFIG_XFRM 6389 static void skb_ext_put_sp(struct sec_path *sp) 6390 { 6391 unsigned int i; 6392 6393 for (i = 0; i < sp->len; i++) 6394 xfrm_state_put(sp->xvec[i]); 6395 } 6396 #endif 6397 6398 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6399 { 6400 struct skb_ext *ext = skb->extensions; 6401 6402 skb->active_extensions &= ~(1 << id); 6403 if (skb->active_extensions == 0) { 6404 skb->extensions = NULL; 6405 __skb_ext_put(ext); 6406 #ifdef CONFIG_XFRM 6407 } else if (id == SKB_EXT_SEC_PATH && 6408 refcount_read(&ext->refcnt) == 1) { 6409 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6410 6411 skb_ext_put_sp(sp); 6412 sp->len = 0; 6413 #endif 6414 } 6415 } 6416 EXPORT_SYMBOL(__skb_ext_del); 6417 6418 void __skb_ext_put(struct skb_ext *ext) 6419 { 6420 /* If this is last clone, nothing can increment 6421 * it after check passes. Avoids one atomic op. 6422 */ 6423 if (refcount_read(&ext->refcnt) == 1) 6424 goto free_now; 6425 6426 if (!refcount_dec_and_test(&ext->refcnt)) 6427 return; 6428 free_now: 6429 #ifdef CONFIG_XFRM 6430 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6431 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6432 #endif 6433 6434 kmem_cache_free(skbuff_ext_cache, ext); 6435 } 6436 EXPORT_SYMBOL(__skb_ext_put); 6437 #endif /* CONFIG_SKB_EXTENSIONS */ 6438