xref: /linux/net/core/skbuff.c (revision e7bde1c581e41e396ab14275793f193ffbd5b2b1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /* The array 'drop_reasons' is auto-generated in dropreason_str.c */
95 EXPORT_SYMBOL(drop_reasons);
96 
97 /**
98  *	skb_panic - private function for out-of-line support
99  *	@skb:	buffer
100  *	@sz:	size
101  *	@addr:	address
102  *	@msg:	skb_over_panic or skb_under_panic
103  *
104  *	Out-of-line support for skb_put() and skb_push().
105  *	Called via the wrapper skb_over_panic() or skb_under_panic().
106  *	Keep out of line to prevent kernel bloat.
107  *	__builtin_return_address is not used because it is not always reliable.
108  */
109 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
110 		      const char msg[])
111 {
112 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
113 		 msg, addr, skb->len, sz, skb->head, skb->data,
114 		 (unsigned long)skb->tail, (unsigned long)skb->end,
115 		 skb->dev ? skb->dev->name : "<NULL>");
116 	BUG();
117 }
118 
119 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120 {
121 	skb_panic(skb, sz, addr, __func__);
122 }
123 
124 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125 {
126 	skb_panic(skb, sz, addr, __func__);
127 }
128 
129 #define NAPI_SKB_CACHE_SIZE	64
130 #define NAPI_SKB_CACHE_BULK	16
131 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
132 
133 struct napi_alloc_cache {
134 	struct page_frag_cache page;
135 	unsigned int skb_count;
136 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
137 };
138 
139 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
140 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
141 
142 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
143 {
144 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
145 
146 	fragsz = SKB_DATA_ALIGN(fragsz);
147 
148 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
149 }
150 EXPORT_SYMBOL(__napi_alloc_frag_align);
151 
152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
153 {
154 	void *data;
155 
156 	fragsz = SKB_DATA_ALIGN(fragsz);
157 	if (in_hardirq() || irqs_disabled()) {
158 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
159 
160 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
161 	} else {
162 		struct napi_alloc_cache *nc;
163 
164 		local_bh_disable();
165 		nc = this_cpu_ptr(&napi_alloc_cache);
166 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
167 		local_bh_enable();
168 	}
169 	return data;
170 }
171 EXPORT_SYMBOL(__netdev_alloc_frag_align);
172 
173 static struct sk_buff *napi_skb_cache_get(void)
174 {
175 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
176 	struct sk_buff *skb;
177 
178 	if (unlikely(!nc->skb_count)) {
179 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
180 						      GFP_ATOMIC,
181 						      NAPI_SKB_CACHE_BULK,
182 						      nc->skb_cache);
183 		if (unlikely(!nc->skb_count))
184 			return NULL;
185 	}
186 
187 	skb = nc->skb_cache[--nc->skb_count];
188 	kasan_unpoison_object_data(skbuff_head_cache, skb);
189 
190 	return skb;
191 }
192 
193 /* Caller must provide SKB that is memset cleared */
194 static void __build_skb_around(struct sk_buff *skb, void *data,
195 			       unsigned int frag_size)
196 {
197 	struct skb_shared_info *shinfo;
198 	unsigned int size = frag_size ? : ksize(data);
199 
200 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
201 
202 	/* Assumes caller memset cleared SKB */
203 	skb->truesize = SKB_TRUESIZE(size);
204 	refcount_set(&skb->users, 1);
205 	skb->head = data;
206 	skb->data = data;
207 	skb_reset_tail_pointer(skb);
208 	skb_set_end_offset(skb, size);
209 	skb->mac_header = (typeof(skb->mac_header))~0U;
210 	skb->transport_header = (typeof(skb->transport_header))~0U;
211 	skb->alloc_cpu = raw_smp_processor_id();
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
215 	atomic_set(&shinfo->dataref, 1);
216 
217 	skb_set_kcov_handle(skb, kcov_common_handle());
218 }
219 
220 /**
221  * __build_skb - build a network buffer
222  * @data: data buffer provided by caller
223  * @frag_size: size of data, or 0 if head was kmalloced
224  *
225  * Allocate a new &sk_buff. Caller provides space holding head and
226  * skb_shared_info. @data must have been allocated by kmalloc() only if
227  * @frag_size is 0, otherwise data should come from the page allocator
228  *  or vmalloc()
229  * The return is the new skb buffer.
230  * On a failure the return is %NULL, and @data is not freed.
231  * Notes :
232  *  Before IO, driver allocates only data buffer where NIC put incoming frame
233  *  Driver should add room at head (NET_SKB_PAD) and
234  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
235  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
236  *  before giving packet to stack.
237  *  RX rings only contains data buffers, not full skbs.
238  */
239 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
240 {
241 	struct sk_buff *skb;
242 
243 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
244 	if (unlikely(!skb))
245 		return NULL;
246 
247 	memset(skb, 0, offsetof(struct sk_buff, tail));
248 	__build_skb_around(skb, data, frag_size);
249 
250 	return skb;
251 }
252 
253 /* build_skb() is wrapper over __build_skb(), that specifically
254  * takes care of skb->head and skb->pfmemalloc
255  * This means that if @frag_size is not zero, then @data must be backed
256  * by a page fragment, not kmalloc() or vmalloc()
257  */
258 struct sk_buff *build_skb(void *data, unsigned int frag_size)
259 {
260 	struct sk_buff *skb = __build_skb(data, frag_size);
261 
262 	if (skb && frag_size) {
263 		skb->head_frag = 1;
264 		if (page_is_pfmemalloc(virt_to_head_page(data)))
265 			skb->pfmemalloc = 1;
266 	}
267 	return skb;
268 }
269 EXPORT_SYMBOL(build_skb);
270 
271 /**
272  * build_skb_around - build a network buffer around provided skb
273  * @skb: sk_buff provide by caller, must be memset cleared
274  * @data: data buffer provided by caller
275  * @frag_size: size of data, or 0 if head was kmalloced
276  */
277 struct sk_buff *build_skb_around(struct sk_buff *skb,
278 				 void *data, unsigned int frag_size)
279 {
280 	if (unlikely(!skb))
281 		return NULL;
282 
283 	__build_skb_around(skb, data, frag_size);
284 
285 	if (frag_size) {
286 		skb->head_frag = 1;
287 		if (page_is_pfmemalloc(virt_to_head_page(data)))
288 			skb->pfmemalloc = 1;
289 	}
290 	return skb;
291 }
292 EXPORT_SYMBOL(build_skb_around);
293 
294 /**
295  * __napi_build_skb - build a network buffer
296  * @data: data buffer provided by caller
297  * @frag_size: size of data, or 0 if head was kmalloced
298  *
299  * Version of __build_skb() that uses NAPI percpu caches to obtain
300  * skbuff_head instead of inplace allocation.
301  *
302  * Returns a new &sk_buff on success, %NULL on allocation failure.
303  */
304 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
305 {
306 	struct sk_buff *skb;
307 
308 	skb = napi_skb_cache_get();
309 	if (unlikely(!skb))
310 		return NULL;
311 
312 	memset(skb, 0, offsetof(struct sk_buff, tail));
313 	__build_skb_around(skb, data, frag_size);
314 
315 	return skb;
316 }
317 
318 /**
319  * napi_build_skb - build a network buffer
320  * @data: data buffer provided by caller
321  * @frag_size: size of data, or 0 if head was kmalloced
322  *
323  * Version of __napi_build_skb() that takes care of skb->head_frag
324  * and skb->pfmemalloc when the data is a page or page fragment.
325  *
326  * Returns a new &sk_buff on success, %NULL on allocation failure.
327  */
328 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
329 {
330 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
331 
332 	if (likely(skb) && frag_size) {
333 		skb->head_frag = 1;
334 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
335 	}
336 
337 	return skb;
338 }
339 EXPORT_SYMBOL(napi_build_skb);
340 
341 /*
342  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
343  * the caller if emergency pfmemalloc reserves are being used. If it is and
344  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
345  * may be used. Otherwise, the packet data may be discarded until enough
346  * memory is free
347  */
348 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
349 			     bool *pfmemalloc)
350 {
351 	void *obj;
352 	bool ret_pfmemalloc = false;
353 
354 	/*
355 	 * Try a regular allocation, when that fails and we're not entitled
356 	 * to the reserves, fail.
357 	 */
358 	obj = kmalloc_node_track_caller(size,
359 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
360 					node);
361 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
362 		goto out;
363 
364 	/* Try again but now we are using pfmemalloc reserves */
365 	ret_pfmemalloc = true;
366 	obj = kmalloc_node_track_caller(size, flags, node);
367 
368 out:
369 	if (pfmemalloc)
370 		*pfmemalloc = ret_pfmemalloc;
371 
372 	return obj;
373 }
374 
375 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
376  *	'private' fields and also do memory statistics to find all the
377  *	[BEEP] leaks.
378  *
379  */
380 
381 /**
382  *	__alloc_skb	-	allocate a network buffer
383  *	@size: size to allocate
384  *	@gfp_mask: allocation mask
385  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
386  *		instead of head cache and allocate a cloned (child) skb.
387  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
388  *		allocations in case the data is required for writeback
389  *	@node: numa node to allocate memory on
390  *
391  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
392  *	tail room of at least size bytes. The object has a reference count
393  *	of one. The return is the buffer. On a failure the return is %NULL.
394  *
395  *	Buffers may only be allocated from interrupts using a @gfp_mask of
396  *	%GFP_ATOMIC.
397  */
398 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
399 			    int flags, int node)
400 {
401 	struct kmem_cache *cache;
402 	struct sk_buff *skb;
403 	unsigned int osize;
404 	bool pfmemalloc;
405 	u8 *data;
406 
407 	cache = (flags & SKB_ALLOC_FCLONE)
408 		? skbuff_fclone_cache : skbuff_head_cache;
409 
410 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
411 		gfp_mask |= __GFP_MEMALLOC;
412 
413 	/* Get the HEAD */
414 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
415 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
416 		skb = napi_skb_cache_get();
417 	else
418 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
419 	if (unlikely(!skb))
420 		return NULL;
421 	prefetchw(skb);
422 
423 	/* We do our best to align skb_shared_info on a separate cache
424 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
425 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
426 	 * Both skb->head and skb_shared_info are cache line aligned.
427 	 */
428 	size = SKB_DATA_ALIGN(size);
429 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
430 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
431 	if (unlikely(!data))
432 		goto nodata;
433 	/* kmalloc(size) might give us more room than requested.
434 	 * Put skb_shared_info exactly at the end of allocated zone,
435 	 * to allow max possible filling before reallocation.
436 	 */
437 	osize = ksize(data);
438 	size = SKB_WITH_OVERHEAD(osize);
439 	prefetchw(data + size);
440 
441 	/*
442 	 * Only clear those fields we need to clear, not those that we will
443 	 * actually initialise below. Hence, don't put any more fields after
444 	 * the tail pointer in struct sk_buff!
445 	 */
446 	memset(skb, 0, offsetof(struct sk_buff, tail));
447 	__build_skb_around(skb, data, osize);
448 	skb->pfmemalloc = pfmemalloc;
449 
450 	if (flags & SKB_ALLOC_FCLONE) {
451 		struct sk_buff_fclones *fclones;
452 
453 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
454 
455 		skb->fclone = SKB_FCLONE_ORIG;
456 		refcount_set(&fclones->fclone_ref, 1);
457 	}
458 
459 	return skb;
460 
461 nodata:
462 	kmem_cache_free(cache, skb);
463 	return NULL;
464 }
465 EXPORT_SYMBOL(__alloc_skb);
466 
467 /**
468  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
469  *	@dev: network device to receive on
470  *	@len: length to allocate
471  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
472  *
473  *	Allocate a new &sk_buff and assign it a usage count of one. The
474  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
475  *	the headroom they think they need without accounting for the
476  *	built in space. The built in space is used for optimisations.
477  *
478  *	%NULL is returned if there is no free memory.
479  */
480 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
481 				   gfp_t gfp_mask)
482 {
483 	struct page_frag_cache *nc;
484 	struct sk_buff *skb;
485 	bool pfmemalloc;
486 	void *data;
487 
488 	len += NET_SKB_PAD;
489 
490 	/* If requested length is either too small or too big,
491 	 * we use kmalloc() for skb->head allocation.
492 	 */
493 	if (len <= SKB_WITH_OVERHEAD(1024) ||
494 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
495 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
497 		if (!skb)
498 			goto skb_fail;
499 		goto skb_success;
500 	}
501 
502 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 	len = SKB_DATA_ALIGN(len);
504 
505 	if (sk_memalloc_socks())
506 		gfp_mask |= __GFP_MEMALLOC;
507 
508 	if (in_hardirq() || irqs_disabled()) {
509 		nc = this_cpu_ptr(&netdev_alloc_cache);
510 		data = page_frag_alloc(nc, len, gfp_mask);
511 		pfmemalloc = nc->pfmemalloc;
512 	} else {
513 		local_bh_disable();
514 		nc = this_cpu_ptr(&napi_alloc_cache.page);
515 		data = page_frag_alloc(nc, len, gfp_mask);
516 		pfmemalloc = nc->pfmemalloc;
517 		local_bh_enable();
518 	}
519 
520 	if (unlikely(!data))
521 		return NULL;
522 
523 	skb = __build_skb(data, len);
524 	if (unlikely(!skb)) {
525 		skb_free_frag(data);
526 		return NULL;
527 	}
528 
529 	if (pfmemalloc)
530 		skb->pfmemalloc = 1;
531 	skb->head_frag = 1;
532 
533 skb_success:
534 	skb_reserve(skb, NET_SKB_PAD);
535 	skb->dev = dev;
536 
537 skb_fail:
538 	return skb;
539 }
540 EXPORT_SYMBOL(__netdev_alloc_skb);
541 
542 /**
543  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
544  *	@napi: napi instance this buffer was allocated for
545  *	@len: length to allocate
546  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
547  *
548  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
549  *	attempt to allocate the head from a special reserved region used
550  *	only for NAPI Rx allocation.  By doing this we can save several
551  *	CPU cycles by avoiding having to disable and re-enable IRQs.
552  *
553  *	%NULL is returned if there is no free memory.
554  */
555 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
556 				 gfp_t gfp_mask)
557 {
558 	struct napi_alloc_cache *nc;
559 	struct sk_buff *skb;
560 	void *data;
561 
562 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
563 	len += NET_SKB_PAD + NET_IP_ALIGN;
564 
565 	/* If requested length is either too small or too big,
566 	 * we use kmalloc() for skb->head allocation.
567 	 */
568 	if (len <= SKB_WITH_OVERHEAD(1024) ||
569 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
570 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
571 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
572 				  NUMA_NO_NODE);
573 		if (!skb)
574 			goto skb_fail;
575 		goto skb_success;
576 	}
577 
578 	nc = this_cpu_ptr(&napi_alloc_cache);
579 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
580 	len = SKB_DATA_ALIGN(len);
581 
582 	if (sk_memalloc_socks())
583 		gfp_mask |= __GFP_MEMALLOC;
584 
585 	data = page_frag_alloc(&nc->page, len, gfp_mask);
586 	if (unlikely(!data))
587 		return NULL;
588 
589 	skb = __napi_build_skb(data, len);
590 	if (unlikely(!skb)) {
591 		skb_free_frag(data);
592 		return NULL;
593 	}
594 
595 	if (nc->page.pfmemalloc)
596 		skb->pfmemalloc = 1;
597 	skb->head_frag = 1;
598 
599 skb_success:
600 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
601 	skb->dev = napi->dev;
602 
603 skb_fail:
604 	return skb;
605 }
606 EXPORT_SYMBOL(__napi_alloc_skb);
607 
608 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
609 		     int size, unsigned int truesize)
610 {
611 	skb_fill_page_desc(skb, i, page, off, size);
612 	skb->len += size;
613 	skb->data_len += size;
614 	skb->truesize += truesize;
615 }
616 EXPORT_SYMBOL(skb_add_rx_frag);
617 
618 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
619 			  unsigned int truesize)
620 {
621 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
622 
623 	skb_frag_size_add(frag, size);
624 	skb->len += size;
625 	skb->data_len += size;
626 	skb->truesize += truesize;
627 }
628 EXPORT_SYMBOL(skb_coalesce_rx_frag);
629 
630 static void skb_drop_list(struct sk_buff **listp)
631 {
632 	kfree_skb_list(*listp);
633 	*listp = NULL;
634 }
635 
636 static inline void skb_drop_fraglist(struct sk_buff *skb)
637 {
638 	skb_drop_list(&skb_shinfo(skb)->frag_list);
639 }
640 
641 static void skb_clone_fraglist(struct sk_buff *skb)
642 {
643 	struct sk_buff *list;
644 
645 	skb_walk_frags(skb, list)
646 		skb_get(list);
647 }
648 
649 static void skb_free_head(struct sk_buff *skb)
650 {
651 	unsigned char *head = skb->head;
652 
653 	if (skb->head_frag) {
654 		if (skb_pp_recycle(skb, head))
655 			return;
656 		skb_free_frag(head);
657 	} else {
658 		kfree(head);
659 	}
660 }
661 
662 static void skb_release_data(struct sk_buff *skb)
663 {
664 	struct skb_shared_info *shinfo = skb_shinfo(skb);
665 	int i;
666 
667 	if (skb->cloned &&
668 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
669 			      &shinfo->dataref))
670 		goto exit;
671 
672 	skb_zcopy_clear(skb, true);
673 
674 	for (i = 0; i < shinfo->nr_frags; i++)
675 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
676 
677 	if (shinfo->frag_list)
678 		kfree_skb_list(shinfo->frag_list);
679 
680 	skb_free_head(skb);
681 exit:
682 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
683 	 * bit is only set on the head though, so in order to avoid races
684 	 * while trying to recycle fragments on __skb_frag_unref() we need
685 	 * to make one SKB responsible for triggering the recycle path.
686 	 * So disable the recycling bit if an SKB is cloned and we have
687 	 * additional references to the fragmented part of the SKB.
688 	 * Eventually the last SKB will have the recycling bit set and it's
689 	 * dataref set to 0, which will trigger the recycling
690 	 */
691 	skb->pp_recycle = 0;
692 }
693 
694 /*
695  *	Free an skbuff by memory without cleaning the state.
696  */
697 static void kfree_skbmem(struct sk_buff *skb)
698 {
699 	struct sk_buff_fclones *fclones;
700 
701 	switch (skb->fclone) {
702 	case SKB_FCLONE_UNAVAILABLE:
703 		kmem_cache_free(skbuff_head_cache, skb);
704 		return;
705 
706 	case SKB_FCLONE_ORIG:
707 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
708 
709 		/* We usually free the clone (TX completion) before original skb
710 		 * This test would have no chance to be true for the clone,
711 		 * while here, branch prediction will be good.
712 		 */
713 		if (refcount_read(&fclones->fclone_ref) == 1)
714 			goto fastpath;
715 		break;
716 
717 	default: /* SKB_FCLONE_CLONE */
718 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
719 		break;
720 	}
721 	if (!refcount_dec_and_test(&fclones->fclone_ref))
722 		return;
723 fastpath:
724 	kmem_cache_free(skbuff_fclone_cache, fclones);
725 }
726 
727 void skb_release_head_state(struct sk_buff *skb)
728 {
729 	skb_dst_drop(skb);
730 	if (skb->destructor) {
731 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
732 		skb->destructor(skb);
733 	}
734 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
735 	nf_conntrack_put(skb_nfct(skb));
736 #endif
737 	skb_ext_put(skb);
738 }
739 
740 /* Free everything but the sk_buff shell. */
741 static void skb_release_all(struct sk_buff *skb)
742 {
743 	skb_release_head_state(skb);
744 	if (likely(skb->head))
745 		skb_release_data(skb);
746 }
747 
748 /**
749  *	__kfree_skb - private function
750  *	@skb: buffer
751  *
752  *	Free an sk_buff. Release anything attached to the buffer.
753  *	Clean the state. This is an internal helper function. Users should
754  *	always call kfree_skb
755  */
756 
757 void __kfree_skb(struct sk_buff *skb)
758 {
759 	skb_release_all(skb);
760 	kfree_skbmem(skb);
761 }
762 EXPORT_SYMBOL(__kfree_skb);
763 
764 /**
765  *	kfree_skb_reason - free an sk_buff with special reason
766  *	@skb: buffer to free
767  *	@reason: reason why this skb is dropped
768  *
769  *	Drop a reference to the buffer and free it if the usage count has
770  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
771  *	tracepoint.
772  */
773 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
774 {
775 	if (!skb_unref(skb))
776 		return;
777 
778 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
779 
780 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
781 	__kfree_skb(skb);
782 }
783 EXPORT_SYMBOL(kfree_skb_reason);
784 
785 void kfree_skb_list_reason(struct sk_buff *segs,
786 			   enum skb_drop_reason reason)
787 {
788 	while (segs) {
789 		struct sk_buff *next = segs->next;
790 
791 		kfree_skb_reason(segs, reason);
792 		segs = next;
793 	}
794 }
795 EXPORT_SYMBOL(kfree_skb_list_reason);
796 
797 /* Dump skb information and contents.
798  *
799  * Must only be called from net_ratelimit()-ed paths.
800  *
801  * Dumps whole packets if full_pkt, only headers otherwise.
802  */
803 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
804 {
805 	struct skb_shared_info *sh = skb_shinfo(skb);
806 	struct net_device *dev = skb->dev;
807 	struct sock *sk = skb->sk;
808 	struct sk_buff *list_skb;
809 	bool has_mac, has_trans;
810 	int headroom, tailroom;
811 	int i, len, seg_len;
812 
813 	if (full_pkt)
814 		len = skb->len;
815 	else
816 		len = min_t(int, skb->len, MAX_HEADER + 128);
817 
818 	headroom = skb_headroom(skb);
819 	tailroom = skb_tailroom(skb);
820 
821 	has_mac = skb_mac_header_was_set(skb);
822 	has_trans = skb_transport_header_was_set(skb);
823 
824 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
825 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
826 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
827 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
828 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
829 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
830 	       has_mac ? skb->mac_header : -1,
831 	       has_mac ? skb_mac_header_len(skb) : -1,
832 	       skb->network_header,
833 	       has_trans ? skb_network_header_len(skb) : -1,
834 	       has_trans ? skb->transport_header : -1,
835 	       sh->tx_flags, sh->nr_frags,
836 	       sh->gso_size, sh->gso_type, sh->gso_segs,
837 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
838 	       skb->csum_valid, skb->csum_level,
839 	       skb->hash, skb->sw_hash, skb->l4_hash,
840 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
841 
842 	if (dev)
843 		printk("%sdev name=%s feat=%pNF\n",
844 		       level, dev->name, &dev->features);
845 	if (sk)
846 		printk("%ssk family=%hu type=%u proto=%u\n",
847 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
848 
849 	if (full_pkt && headroom)
850 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
851 			       16, 1, skb->head, headroom, false);
852 
853 	seg_len = min_t(int, skb_headlen(skb), len);
854 	if (seg_len)
855 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
856 			       16, 1, skb->data, seg_len, false);
857 	len -= seg_len;
858 
859 	if (full_pkt && tailroom)
860 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
861 			       16, 1, skb_tail_pointer(skb), tailroom, false);
862 
863 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
864 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
865 		u32 p_off, p_len, copied;
866 		struct page *p;
867 		u8 *vaddr;
868 
869 		skb_frag_foreach_page(frag, skb_frag_off(frag),
870 				      skb_frag_size(frag), p, p_off, p_len,
871 				      copied) {
872 			seg_len = min_t(int, p_len, len);
873 			vaddr = kmap_atomic(p);
874 			print_hex_dump(level, "skb frag:     ",
875 				       DUMP_PREFIX_OFFSET,
876 				       16, 1, vaddr + p_off, seg_len, false);
877 			kunmap_atomic(vaddr);
878 			len -= seg_len;
879 			if (!len)
880 				break;
881 		}
882 	}
883 
884 	if (full_pkt && skb_has_frag_list(skb)) {
885 		printk("skb fraglist:\n");
886 		skb_walk_frags(skb, list_skb)
887 			skb_dump(level, list_skb, true);
888 	}
889 }
890 EXPORT_SYMBOL(skb_dump);
891 
892 /**
893  *	skb_tx_error - report an sk_buff xmit error
894  *	@skb: buffer that triggered an error
895  *
896  *	Report xmit error if a device callback is tracking this skb.
897  *	skb must be freed afterwards.
898  */
899 void skb_tx_error(struct sk_buff *skb)
900 {
901 	skb_zcopy_clear(skb, true);
902 }
903 EXPORT_SYMBOL(skb_tx_error);
904 
905 #ifdef CONFIG_TRACEPOINTS
906 /**
907  *	consume_skb - free an skbuff
908  *	@skb: buffer to free
909  *
910  *	Drop a ref to the buffer and free it if the usage count has hit zero
911  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
912  *	is being dropped after a failure and notes that
913  */
914 void consume_skb(struct sk_buff *skb)
915 {
916 	if (!skb_unref(skb))
917 		return;
918 
919 	trace_consume_skb(skb);
920 	__kfree_skb(skb);
921 }
922 EXPORT_SYMBOL(consume_skb);
923 #endif
924 
925 /**
926  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
927  *	@skb: buffer to free
928  *
929  *	Alike consume_skb(), but this variant assumes that this is the last
930  *	skb reference and all the head states have been already dropped
931  */
932 void __consume_stateless_skb(struct sk_buff *skb)
933 {
934 	trace_consume_skb(skb);
935 	skb_release_data(skb);
936 	kfree_skbmem(skb);
937 }
938 
939 static void napi_skb_cache_put(struct sk_buff *skb)
940 {
941 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
942 	u32 i;
943 
944 	kasan_poison_object_data(skbuff_head_cache, skb);
945 	nc->skb_cache[nc->skb_count++] = skb;
946 
947 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
948 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
949 			kasan_unpoison_object_data(skbuff_head_cache,
950 						   nc->skb_cache[i]);
951 
952 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
953 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
954 		nc->skb_count = NAPI_SKB_CACHE_HALF;
955 	}
956 }
957 
958 void __kfree_skb_defer(struct sk_buff *skb)
959 {
960 	skb_release_all(skb);
961 	napi_skb_cache_put(skb);
962 }
963 
964 void napi_skb_free_stolen_head(struct sk_buff *skb)
965 {
966 	if (unlikely(skb->slow_gro)) {
967 		nf_reset_ct(skb);
968 		skb_dst_drop(skb);
969 		skb_ext_put(skb);
970 		skb_orphan(skb);
971 		skb->slow_gro = 0;
972 	}
973 	napi_skb_cache_put(skb);
974 }
975 
976 void napi_consume_skb(struct sk_buff *skb, int budget)
977 {
978 	/* Zero budget indicate non-NAPI context called us, like netpoll */
979 	if (unlikely(!budget)) {
980 		dev_consume_skb_any(skb);
981 		return;
982 	}
983 
984 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
985 
986 	if (!skb_unref(skb))
987 		return;
988 
989 	/* if reaching here SKB is ready to free */
990 	trace_consume_skb(skb);
991 
992 	/* if SKB is a clone, don't handle this case */
993 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
994 		__kfree_skb(skb);
995 		return;
996 	}
997 
998 	skb_release_all(skb);
999 	napi_skb_cache_put(skb);
1000 }
1001 EXPORT_SYMBOL(napi_consume_skb);
1002 
1003 /* Make sure a field is contained by headers group */
1004 #define CHECK_SKB_FIELD(field) \
1005 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1006 		     offsetof(struct sk_buff, headers.field));	\
1007 
1008 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1009 {
1010 	new->tstamp		= old->tstamp;
1011 	/* We do not copy old->sk */
1012 	new->dev		= old->dev;
1013 	memcpy(new->cb, old->cb, sizeof(old->cb));
1014 	skb_dst_copy(new, old);
1015 	__skb_ext_copy(new, old);
1016 	__nf_copy(new, old, false);
1017 
1018 	/* Note : this field could be in the headers group.
1019 	 * It is not yet because we do not want to have a 16 bit hole
1020 	 */
1021 	new->queue_mapping = old->queue_mapping;
1022 
1023 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1024 	CHECK_SKB_FIELD(protocol);
1025 	CHECK_SKB_FIELD(csum);
1026 	CHECK_SKB_FIELD(hash);
1027 	CHECK_SKB_FIELD(priority);
1028 	CHECK_SKB_FIELD(skb_iif);
1029 	CHECK_SKB_FIELD(vlan_proto);
1030 	CHECK_SKB_FIELD(vlan_tci);
1031 	CHECK_SKB_FIELD(transport_header);
1032 	CHECK_SKB_FIELD(network_header);
1033 	CHECK_SKB_FIELD(mac_header);
1034 	CHECK_SKB_FIELD(inner_protocol);
1035 	CHECK_SKB_FIELD(inner_transport_header);
1036 	CHECK_SKB_FIELD(inner_network_header);
1037 	CHECK_SKB_FIELD(inner_mac_header);
1038 	CHECK_SKB_FIELD(mark);
1039 #ifdef CONFIG_NETWORK_SECMARK
1040 	CHECK_SKB_FIELD(secmark);
1041 #endif
1042 #ifdef CONFIG_NET_RX_BUSY_POLL
1043 	CHECK_SKB_FIELD(napi_id);
1044 #endif
1045 	CHECK_SKB_FIELD(alloc_cpu);
1046 #ifdef CONFIG_XPS
1047 	CHECK_SKB_FIELD(sender_cpu);
1048 #endif
1049 #ifdef CONFIG_NET_SCHED
1050 	CHECK_SKB_FIELD(tc_index);
1051 #endif
1052 
1053 }
1054 
1055 /*
1056  * You should not add any new code to this function.  Add it to
1057  * __copy_skb_header above instead.
1058  */
1059 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1060 {
1061 #define C(x) n->x = skb->x
1062 
1063 	n->next = n->prev = NULL;
1064 	n->sk = NULL;
1065 	__copy_skb_header(n, skb);
1066 
1067 	C(len);
1068 	C(data_len);
1069 	C(mac_len);
1070 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1071 	n->cloned = 1;
1072 	n->nohdr = 0;
1073 	n->peeked = 0;
1074 	C(pfmemalloc);
1075 	C(pp_recycle);
1076 	n->destructor = NULL;
1077 	C(tail);
1078 	C(end);
1079 	C(head);
1080 	C(head_frag);
1081 	C(data);
1082 	C(truesize);
1083 	refcount_set(&n->users, 1);
1084 
1085 	atomic_inc(&(skb_shinfo(skb)->dataref));
1086 	skb->cloned = 1;
1087 
1088 	return n;
1089 #undef C
1090 }
1091 
1092 /**
1093  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1094  * @first: first sk_buff of the msg
1095  */
1096 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1097 {
1098 	struct sk_buff *n;
1099 
1100 	n = alloc_skb(0, GFP_ATOMIC);
1101 	if (!n)
1102 		return NULL;
1103 
1104 	n->len = first->len;
1105 	n->data_len = first->len;
1106 	n->truesize = first->truesize;
1107 
1108 	skb_shinfo(n)->frag_list = first;
1109 
1110 	__copy_skb_header(n, first);
1111 	n->destructor = NULL;
1112 
1113 	return n;
1114 }
1115 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1116 
1117 /**
1118  *	skb_morph	-	morph one skb into another
1119  *	@dst: the skb to receive the contents
1120  *	@src: the skb to supply the contents
1121  *
1122  *	This is identical to skb_clone except that the target skb is
1123  *	supplied by the user.
1124  *
1125  *	The target skb is returned upon exit.
1126  */
1127 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1128 {
1129 	skb_release_all(dst);
1130 	return __skb_clone(dst, src);
1131 }
1132 EXPORT_SYMBOL_GPL(skb_morph);
1133 
1134 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1135 {
1136 	unsigned long max_pg, num_pg, new_pg, old_pg;
1137 	struct user_struct *user;
1138 
1139 	if (capable(CAP_IPC_LOCK) || !size)
1140 		return 0;
1141 
1142 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1143 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1144 	user = mmp->user ? : current_user();
1145 
1146 	do {
1147 		old_pg = atomic_long_read(&user->locked_vm);
1148 		new_pg = old_pg + num_pg;
1149 		if (new_pg > max_pg)
1150 			return -ENOBUFS;
1151 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1152 		 old_pg);
1153 
1154 	if (!mmp->user) {
1155 		mmp->user = get_uid(user);
1156 		mmp->num_pg = num_pg;
1157 	} else {
1158 		mmp->num_pg += num_pg;
1159 	}
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1164 
1165 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1166 {
1167 	if (mmp->user) {
1168 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1169 		free_uid(mmp->user);
1170 	}
1171 }
1172 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1173 
1174 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1175 {
1176 	struct ubuf_info *uarg;
1177 	struct sk_buff *skb;
1178 
1179 	WARN_ON_ONCE(!in_task());
1180 
1181 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1182 	if (!skb)
1183 		return NULL;
1184 
1185 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1186 	uarg = (void *)skb->cb;
1187 	uarg->mmp.user = NULL;
1188 
1189 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1190 		kfree_skb(skb);
1191 		return NULL;
1192 	}
1193 
1194 	uarg->callback = msg_zerocopy_callback;
1195 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1196 	uarg->len = 1;
1197 	uarg->bytelen = size;
1198 	uarg->zerocopy = 1;
1199 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1200 	refcount_set(&uarg->refcnt, 1);
1201 	sock_hold(sk);
1202 
1203 	return uarg;
1204 }
1205 
1206 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1207 {
1208 	return container_of((void *)uarg, struct sk_buff, cb);
1209 }
1210 
1211 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1212 				       struct ubuf_info *uarg)
1213 {
1214 	if (uarg) {
1215 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1216 		u32 bytelen, next;
1217 
1218 		/* realloc only when socket is locked (TCP, UDP cork),
1219 		 * so uarg->len and sk_zckey access is serialized
1220 		 */
1221 		if (!sock_owned_by_user(sk)) {
1222 			WARN_ON_ONCE(1);
1223 			return NULL;
1224 		}
1225 
1226 		bytelen = uarg->bytelen + size;
1227 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1228 			/* TCP can create new skb to attach new uarg */
1229 			if (sk->sk_type == SOCK_STREAM)
1230 				goto new_alloc;
1231 			return NULL;
1232 		}
1233 
1234 		next = (u32)atomic_read(&sk->sk_zckey);
1235 		if ((u32)(uarg->id + uarg->len) == next) {
1236 			if (mm_account_pinned_pages(&uarg->mmp, size))
1237 				return NULL;
1238 			uarg->len++;
1239 			uarg->bytelen = bytelen;
1240 			atomic_set(&sk->sk_zckey, ++next);
1241 
1242 			/* no extra ref when appending to datagram (MSG_MORE) */
1243 			if (sk->sk_type == SOCK_STREAM)
1244 				net_zcopy_get(uarg);
1245 
1246 			return uarg;
1247 		}
1248 	}
1249 
1250 new_alloc:
1251 	return msg_zerocopy_alloc(sk, size);
1252 }
1253 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1254 
1255 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1256 {
1257 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1258 	u32 old_lo, old_hi;
1259 	u64 sum_len;
1260 
1261 	old_lo = serr->ee.ee_info;
1262 	old_hi = serr->ee.ee_data;
1263 	sum_len = old_hi - old_lo + 1ULL + len;
1264 
1265 	if (sum_len >= (1ULL << 32))
1266 		return false;
1267 
1268 	if (lo != old_hi + 1)
1269 		return false;
1270 
1271 	serr->ee.ee_data += len;
1272 	return true;
1273 }
1274 
1275 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1276 {
1277 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1278 	struct sock_exterr_skb *serr;
1279 	struct sock *sk = skb->sk;
1280 	struct sk_buff_head *q;
1281 	unsigned long flags;
1282 	bool is_zerocopy;
1283 	u32 lo, hi;
1284 	u16 len;
1285 
1286 	mm_unaccount_pinned_pages(&uarg->mmp);
1287 
1288 	/* if !len, there was only 1 call, and it was aborted
1289 	 * so do not queue a completion notification
1290 	 */
1291 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1292 		goto release;
1293 
1294 	len = uarg->len;
1295 	lo = uarg->id;
1296 	hi = uarg->id + len - 1;
1297 	is_zerocopy = uarg->zerocopy;
1298 
1299 	serr = SKB_EXT_ERR(skb);
1300 	memset(serr, 0, sizeof(*serr));
1301 	serr->ee.ee_errno = 0;
1302 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1303 	serr->ee.ee_data = hi;
1304 	serr->ee.ee_info = lo;
1305 	if (!is_zerocopy)
1306 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1307 
1308 	q = &sk->sk_error_queue;
1309 	spin_lock_irqsave(&q->lock, flags);
1310 	tail = skb_peek_tail(q);
1311 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1312 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1313 		__skb_queue_tail(q, skb);
1314 		skb = NULL;
1315 	}
1316 	spin_unlock_irqrestore(&q->lock, flags);
1317 
1318 	sk_error_report(sk);
1319 
1320 release:
1321 	consume_skb(skb);
1322 	sock_put(sk);
1323 }
1324 
1325 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1326 			   bool success)
1327 {
1328 	uarg->zerocopy = uarg->zerocopy & success;
1329 
1330 	if (refcount_dec_and_test(&uarg->refcnt))
1331 		__msg_zerocopy_callback(uarg);
1332 }
1333 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1334 
1335 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1336 {
1337 	struct sock *sk = skb_from_uarg(uarg)->sk;
1338 
1339 	atomic_dec(&sk->sk_zckey);
1340 	uarg->len--;
1341 
1342 	if (have_uref)
1343 		msg_zerocopy_callback(NULL, uarg, true);
1344 }
1345 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1346 
1347 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1348 			     struct msghdr *msg, int len,
1349 			     struct ubuf_info *uarg)
1350 {
1351 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1352 	int err, orig_len = skb->len;
1353 
1354 	/* An skb can only point to one uarg. This edge case happens when
1355 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1356 	 */
1357 	if (orig_uarg && uarg != orig_uarg)
1358 		return -EEXIST;
1359 
1360 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1361 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1362 		struct sock *save_sk = skb->sk;
1363 
1364 		/* Streams do not free skb on error. Reset to prev state. */
1365 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1366 		skb->sk = sk;
1367 		___pskb_trim(skb, orig_len);
1368 		skb->sk = save_sk;
1369 		return err;
1370 	}
1371 
1372 	skb_zcopy_set(skb, uarg, NULL);
1373 	return skb->len - orig_len;
1374 }
1375 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1376 
1377 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1378 			      gfp_t gfp_mask)
1379 {
1380 	if (skb_zcopy(orig)) {
1381 		if (skb_zcopy(nskb)) {
1382 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1383 			if (!gfp_mask) {
1384 				WARN_ON_ONCE(1);
1385 				return -ENOMEM;
1386 			}
1387 			if (skb_uarg(nskb) == skb_uarg(orig))
1388 				return 0;
1389 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1390 				return -EIO;
1391 		}
1392 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1393 	}
1394 	return 0;
1395 }
1396 
1397 /**
1398  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1399  *	@skb: the skb to modify
1400  *	@gfp_mask: allocation priority
1401  *
1402  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1403  *	It will copy all frags into kernel and drop the reference
1404  *	to userspace pages.
1405  *
1406  *	If this function is called from an interrupt gfp_mask() must be
1407  *	%GFP_ATOMIC.
1408  *
1409  *	Returns 0 on success or a negative error code on failure
1410  *	to allocate kernel memory to copy to.
1411  */
1412 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1413 {
1414 	int num_frags = skb_shinfo(skb)->nr_frags;
1415 	struct page *page, *head = NULL;
1416 	int i, new_frags;
1417 	u32 d_off;
1418 
1419 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1420 		return -EINVAL;
1421 
1422 	if (!num_frags)
1423 		goto release;
1424 
1425 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1426 	for (i = 0; i < new_frags; i++) {
1427 		page = alloc_page(gfp_mask);
1428 		if (!page) {
1429 			while (head) {
1430 				struct page *next = (struct page *)page_private(head);
1431 				put_page(head);
1432 				head = next;
1433 			}
1434 			return -ENOMEM;
1435 		}
1436 		set_page_private(page, (unsigned long)head);
1437 		head = page;
1438 	}
1439 
1440 	page = head;
1441 	d_off = 0;
1442 	for (i = 0; i < num_frags; i++) {
1443 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1444 		u32 p_off, p_len, copied;
1445 		struct page *p;
1446 		u8 *vaddr;
1447 
1448 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1449 				      p, p_off, p_len, copied) {
1450 			u32 copy, done = 0;
1451 			vaddr = kmap_atomic(p);
1452 
1453 			while (done < p_len) {
1454 				if (d_off == PAGE_SIZE) {
1455 					d_off = 0;
1456 					page = (struct page *)page_private(page);
1457 				}
1458 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1459 				memcpy(page_address(page) + d_off,
1460 				       vaddr + p_off + done, copy);
1461 				done += copy;
1462 				d_off += copy;
1463 			}
1464 			kunmap_atomic(vaddr);
1465 		}
1466 	}
1467 
1468 	/* skb frags release userspace buffers */
1469 	for (i = 0; i < num_frags; i++)
1470 		skb_frag_unref(skb, i);
1471 
1472 	/* skb frags point to kernel buffers */
1473 	for (i = 0; i < new_frags - 1; i++) {
1474 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1475 		head = (struct page *)page_private(head);
1476 	}
1477 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1478 	skb_shinfo(skb)->nr_frags = new_frags;
1479 
1480 release:
1481 	skb_zcopy_clear(skb, false);
1482 	return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1485 
1486 /**
1487  *	skb_clone	-	duplicate an sk_buff
1488  *	@skb: buffer to clone
1489  *	@gfp_mask: allocation priority
1490  *
1491  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1492  *	copies share the same packet data but not structure. The new
1493  *	buffer has a reference count of 1. If the allocation fails the
1494  *	function returns %NULL otherwise the new buffer is returned.
1495  *
1496  *	If this function is called from an interrupt gfp_mask() must be
1497  *	%GFP_ATOMIC.
1498  */
1499 
1500 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1501 {
1502 	struct sk_buff_fclones *fclones = container_of(skb,
1503 						       struct sk_buff_fclones,
1504 						       skb1);
1505 	struct sk_buff *n;
1506 
1507 	if (skb_orphan_frags(skb, gfp_mask))
1508 		return NULL;
1509 
1510 	if (skb->fclone == SKB_FCLONE_ORIG &&
1511 	    refcount_read(&fclones->fclone_ref) == 1) {
1512 		n = &fclones->skb2;
1513 		refcount_set(&fclones->fclone_ref, 2);
1514 		n->fclone = SKB_FCLONE_CLONE;
1515 	} else {
1516 		if (skb_pfmemalloc(skb))
1517 			gfp_mask |= __GFP_MEMALLOC;
1518 
1519 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1520 		if (!n)
1521 			return NULL;
1522 
1523 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1524 	}
1525 
1526 	return __skb_clone(n, skb);
1527 }
1528 EXPORT_SYMBOL(skb_clone);
1529 
1530 void skb_headers_offset_update(struct sk_buff *skb, int off)
1531 {
1532 	/* Only adjust this if it actually is csum_start rather than csum */
1533 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1534 		skb->csum_start += off;
1535 	/* {transport,network,mac}_header and tail are relative to skb->head */
1536 	skb->transport_header += off;
1537 	skb->network_header   += off;
1538 	if (skb_mac_header_was_set(skb))
1539 		skb->mac_header += off;
1540 	skb->inner_transport_header += off;
1541 	skb->inner_network_header += off;
1542 	skb->inner_mac_header += off;
1543 }
1544 EXPORT_SYMBOL(skb_headers_offset_update);
1545 
1546 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1547 {
1548 	__copy_skb_header(new, old);
1549 
1550 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1551 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1552 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1553 }
1554 EXPORT_SYMBOL(skb_copy_header);
1555 
1556 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1557 {
1558 	if (skb_pfmemalloc(skb))
1559 		return SKB_ALLOC_RX;
1560 	return 0;
1561 }
1562 
1563 /**
1564  *	skb_copy	-	create private copy of an sk_buff
1565  *	@skb: buffer to copy
1566  *	@gfp_mask: allocation priority
1567  *
1568  *	Make a copy of both an &sk_buff and its data. This is used when the
1569  *	caller wishes to modify the data and needs a private copy of the
1570  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1571  *	on success. The returned buffer has a reference count of 1.
1572  *
1573  *	As by-product this function converts non-linear &sk_buff to linear
1574  *	one, so that &sk_buff becomes completely private and caller is allowed
1575  *	to modify all the data of returned buffer. This means that this
1576  *	function is not recommended for use in circumstances when only
1577  *	header is going to be modified. Use pskb_copy() instead.
1578  */
1579 
1580 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1581 {
1582 	int headerlen = skb_headroom(skb);
1583 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1584 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1585 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1586 
1587 	if (!n)
1588 		return NULL;
1589 
1590 	/* Set the data pointer */
1591 	skb_reserve(n, headerlen);
1592 	/* Set the tail pointer and length */
1593 	skb_put(n, skb->len);
1594 
1595 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1596 
1597 	skb_copy_header(n, skb);
1598 	return n;
1599 }
1600 EXPORT_SYMBOL(skb_copy);
1601 
1602 /**
1603  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1604  *	@skb: buffer to copy
1605  *	@headroom: headroom of new skb
1606  *	@gfp_mask: allocation priority
1607  *	@fclone: if true allocate the copy of the skb from the fclone
1608  *	cache instead of the head cache; it is recommended to set this
1609  *	to true for the cases where the copy will likely be cloned
1610  *
1611  *	Make a copy of both an &sk_buff and part of its data, located
1612  *	in header. Fragmented data remain shared. This is used when
1613  *	the caller wishes to modify only header of &sk_buff and needs
1614  *	private copy of the header to alter. Returns %NULL on failure
1615  *	or the pointer to the buffer on success.
1616  *	The returned buffer has a reference count of 1.
1617  */
1618 
1619 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1620 				   gfp_t gfp_mask, bool fclone)
1621 {
1622 	unsigned int size = skb_headlen(skb) + headroom;
1623 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1624 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1625 
1626 	if (!n)
1627 		goto out;
1628 
1629 	/* Set the data pointer */
1630 	skb_reserve(n, headroom);
1631 	/* Set the tail pointer and length */
1632 	skb_put(n, skb_headlen(skb));
1633 	/* Copy the bytes */
1634 	skb_copy_from_linear_data(skb, n->data, n->len);
1635 
1636 	n->truesize += skb->data_len;
1637 	n->data_len  = skb->data_len;
1638 	n->len	     = skb->len;
1639 
1640 	if (skb_shinfo(skb)->nr_frags) {
1641 		int i;
1642 
1643 		if (skb_orphan_frags(skb, gfp_mask) ||
1644 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1645 			kfree_skb(n);
1646 			n = NULL;
1647 			goto out;
1648 		}
1649 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1650 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1651 			skb_frag_ref(skb, i);
1652 		}
1653 		skb_shinfo(n)->nr_frags = i;
1654 	}
1655 
1656 	if (skb_has_frag_list(skb)) {
1657 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1658 		skb_clone_fraglist(n);
1659 	}
1660 
1661 	skb_copy_header(n, skb);
1662 out:
1663 	return n;
1664 }
1665 EXPORT_SYMBOL(__pskb_copy_fclone);
1666 
1667 /**
1668  *	pskb_expand_head - reallocate header of &sk_buff
1669  *	@skb: buffer to reallocate
1670  *	@nhead: room to add at head
1671  *	@ntail: room to add at tail
1672  *	@gfp_mask: allocation priority
1673  *
1674  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1675  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1676  *	reference count of 1. Returns zero in the case of success or error,
1677  *	if expansion failed. In the last case, &sk_buff is not changed.
1678  *
1679  *	All the pointers pointing into skb header may change and must be
1680  *	reloaded after call to this function.
1681  */
1682 
1683 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1684 		     gfp_t gfp_mask)
1685 {
1686 	int i, osize = skb_end_offset(skb);
1687 	int size = osize + nhead + ntail;
1688 	long off;
1689 	u8 *data;
1690 
1691 	BUG_ON(nhead < 0);
1692 
1693 	BUG_ON(skb_shared(skb));
1694 
1695 	size = SKB_DATA_ALIGN(size);
1696 
1697 	if (skb_pfmemalloc(skb))
1698 		gfp_mask |= __GFP_MEMALLOC;
1699 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1700 			       gfp_mask, NUMA_NO_NODE, NULL);
1701 	if (!data)
1702 		goto nodata;
1703 	size = SKB_WITH_OVERHEAD(ksize(data));
1704 
1705 	/* Copy only real data... and, alas, header. This should be
1706 	 * optimized for the cases when header is void.
1707 	 */
1708 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1709 
1710 	memcpy((struct skb_shared_info *)(data + size),
1711 	       skb_shinfo(skb),
1712 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1713 
1714 	/*
1715 	 * if shinfo is shared we must drop the old head gracefully, but if it
1716 	 * is not we can just drop the old head and let the existing refcount
1717 	 * be since all we did is relocate the values
1718 	 */
1719 	if (skb_cloned(skb)) {
1720 		if (skb_orphan_frags(skb, gfp_mask))
1721 			goto nofrags;
1722 		if (skb_zcopy(skb))
1723 			refcount_inc(&skb_uarg(skb)->refcnt);
1724 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1725 			skb_frag_ref(skb, i);
1726 
1727 		if (skb_has_frag_list(skb))
1728 			skb_clone_fraglist(skb);
1729 
1730 		skb_release_data(skb);
1731 	} else {
1732 		skb_free_head(skb);
1733 	}
1734 	off = (data + nhead) - skb->head;
1735 
1736 	skb->head     = data;
1737 	skb->head_frag = 0;
1738 	skb->data    += off;
1739 
1740 	skb_set_end_offset(skb, size);
1741 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1742 	off           = nhead;
1743 #endif
1744 	skb->tail	      += off;
1745 	skb_headers_offset_update(skb, nhead);
1746 	skb->cloned   = 0;
1747 	skb->hdr_len  = 0;
1748 	skb->nohdr    = 0;
1749 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1750 
1751 	skb_metadata_clear(skb);
1752 
1753 	/* It is not generally safe to change skb->truesize.
1754 	 * For the moment, we really care of rx path, or
1755 	 * when skb is orphaned (not attached to a socket).
1756 	 */
1757 	if (!skb->sk || skb->destructor == sock_edemux)
1758 		skb->truesize += size - osize;
1759 
1760 	return 0;
1761 
1762 nofrags:
1763 	kfree(data);
1764 nodata:
1765 	return -ENOMEM;
1766 }
1767 EXPORT_SYMBOL(pskb_expand_head);
1768 
1769 /* Make private copy of skb with writable head and some headroom */
1770 
1771 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1772 {
1773 	struct sk_buff *skb2;
1774 	int delta = headroom - skb_headroom(skb);
1775 
1776 	if (delta <= 0)
1777 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1778 	else {
1779 		skb2 = skb_clone(skb, GFP_ATOMIC);
1780 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1781 					     GFP_ATOMIC)) {
1782 			kfree_skb(skb2);
1783 			skb2 = NULL;
1784 		}
1785 	}
1786 	return skb2;
1787 }
1788 EXPORT_SYMBOL(skb_realloc_headroom);
1789 
1790 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1791 {
1792 	unsigned int saved_end_offset, saved_truesize;
1793 	struct skb_shared_info *shinfo;
1794 	int res;
1795 
1796 	saved_end_offset = skb_end_offset(skb);
1797 	saved_truesize = skb->truesize;
1798 
1799 	res = pskb_expand_head(skb, 0, 0, pri);
1800 	if (res)
1801 		return res;
1802 
1803 	skb->truesize = saved_truesize;
1804 
1805 	if (likely(skb_end_offset(skb) == saved_end_offset))
1806 		return 0;
1807 
1808 	shinfo = skb_shinfo(skb);
1809 
1810 	/* We are about to change back skb->end,
1811 	 * we need to move skb_shinfo() to its new location.
1812 	 */
1813 	memmove(skb->head + saved_end_offset,
1814 		shinfo,
1815 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1816 
1817 	skb_set_end_offset(skb, saved_end_offset);
1818 
1819 	return 0;
1820 }
1821 
1822 /**
1823  *	skb_expand_head - reallocate header of &sk_buff
1824  *	@skb: buffer to reallocate
1825  *	@headroom: needed headroom
1826  *
1827  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1828  *	if possible; copies skb->sk to new skb as needed
1829  *	and frees original skb in case of failures.
1830  *
1831  *	It expect increased headroom and generates warning otherwise.
1832  */
1833 
1834 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1835 {
1836 	int delta = headroom - skb_headroom(skb);
1837 	int osize = skb_end_offset(skb);
1838 	struct sock *sk = skb->sk;
1839 
1840 	if (WARN_ONCE(delta <= 0,
1841 		      "%s is expecting an increase in the headroom", __func__))
1842 		return skb;
1843 
1844 	delta = SKB_DATA_ALIGN(delta);
1845 	/* pskb_expand_head() might crash, if skb is shared. */
1846 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1847 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1848 
1849 		if (unlikely(!nskb))
1850 			goto fail;
1851 
1852 		if (sk)
1853 			skb_set_owner_w(nskb, sk);
1854 		consume_skb(skb);
1855 		skb = nskb;
1856 	}
1857 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1858 		goto fail;
1859 
1860 	if (sk && is_skb_wmem(skb)) {
1861 		delta = skb_end_offset(skb) - osize;
1862 		refcount_add(delta, &sk->sk_wmem_alloc);
1863 		skb->truesize += delta;
1864 	}
1865 	return skb;
1866 
1867 fail:
1868 	kfree_skb(skb);
1869 	return NULL;
1870 }
1871 EXPORT_SYMBOL(skb_expand_head);
1872 
1873 /**
1874  *	skb_copy_expand	-	copy and expand sk_buff
1875  *	@skb: buffer to copy
1876  *	@newheadroom: new free bytes at head
1877  *	@newtailroom: new free bytes at tail
1878  *	@gfp_mask: allocation priority
1879  *
1880  *	Make a copy of both an &sk_buff and its data and while doing so
1881  *	allocate additional space.
1882  *
1883  *	This is used when the caller wishes to modify the data and needs a
1884  *	private copy of the data to alter as well as more space for new fields.
1885  *	Returns %NULL on failure or the pointer to the buffer
1886  *	on success. The returned buffer has a reference count of 1.
1887  *
1888  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1889  *	is called from an interrupt.
1890  */
1891 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1892 				int newheadroom, int newtailroom,
1893 				gfp_t gfp_mask)
1894 {
1895 	/*
1896 	 *	Allocate the copy buffer
1897 	 */
1898 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1899 					gfp_mask, skb_alloc_rx_flag(skb),
1900 					NUMA_NO_NODE);
1901 	int oldheadroom = skb_headroom(skb);
1902 	int head_copy_len, head_copy_off;
1903 
1904 	if (!n)
1905 		return NULL;
1906 
1907 	skb_reserve(n, newheadroom);
1908 
1909 	/* Set the tail pointer and length */
1910 	skb_put(n, skb->len);
1911 
1912 	head_copy_len = oldheadroom;
1913 	head_copy_off = 0;
1914 	if (newheadroom <= head_copy_len)
1915 		head_copy_len = newheadroom;
1916 	else
1917 		head_copy_off = newheadroom - head_copy_len;
1918 
1919 	/* Copy the linear header and data. */
1920 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1921 			     skb->len + head_copy_len));
1922 
1923 	skb_copy_header(n, skb);
1924 
1925 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1926 
1927 	return n;
1928 }
1929 EXPORT_SYMBOL(skb_copy_expand);
1930 
1931 /**
1932  *	__skb_pad		-	zero pad the tail of an skb
1933  *	@skb: buffer to pad
1934  *	@pad: space to pad
1935  *	@free_on_error: free buffer on error
1936  *
1937  *	Ensure that a buffer is followed by a padding area that is zero
1938  *	filled. Used by network drivers which may DMA or transfer data
1939  *	beyond the buffer end onto the wire.
1940  *
1941  *	May return error in out of memory cases. The skb is freed on error
1942  *	if @free_on_error is true.
1943  */
1944 
1945 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1946 {
1947 	int err;
1948 	int ntail;
1949 
1950 	/* If the skbuff is non linear tailroom is always zero.. */
1951 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1952 		memset(skb->data+skb->len, 0, pad);
1953 		return 0;
1954 	}
1955 
1956 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1957 	if (likely(skb_cloned(skb) || ntail > 0)) {
1958 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1959 		if (unlikely(err))
1960 			goto free_skb;
1961 	}
1962 
1963 	/* FIXME: The use of this function with non-linear skb's really needs
1964 	 * to be audited.
1965 	 */
1966 	err = skb_linearize(skb);
1967 	if (unlikely(err))
1968 		goto free_skb;
1969 
1970 	memset(skb->data + skb->len, 0, pad);
1971 	return 0;
1972 
1973 free_skb:
1974 	if (free_on_error)
1975 		kfree_skb(skb);
1976 	return err;
1977 }
1978 EXPORT_SYMBOL(__skb_pad);
1979 
1980 /**
1981  *	pskb_put - add data to the tail of a potentially fragmented buffer
1982  *	@skb: start of the buffer to use
1983  *	@tail: tail fragment of the buffer to use
1984  *	@len: amount of data to add
1985  *
1986  *	This function extends the used data area of the potentially
1987  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1988  *	@skb itself. If this would exceed the total buffer size the kernel
1989  *	will panic. A pointer to the first byte of the extra data is
1990  *	returned.
1991  */
1992 
1993 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1994 {
1995 	if (tail != skb) {
1996 		skb->data_len += len;
1997 		skb->len += len;
1998 	}
1999 	return skb_put(tail, len);
2000 }
2001 EXPORT_SYMBOL_GPL(pskb_put);
2002 
2003 /**
2004  *	skb_put - add data to a buffer
2005  *	@skb: buffer to use
2006  *	@len: amount of data to add
2007  *
2008  *	This function extends the used data area of the buffer. If this would
2009  *	exceed the total buffer size the kernel will panic. A pointer to the
2010  *	first byte of the extra data is returned.
2011  */
2012 void *skb_put(struct sk_buff *skb, unsigned int len)
2013 {
2014 	void *tmp = skb_tail_pointer(skb);
2015 	SKB_LINEAR_ASSERT(skb);
2016 	skb->tail += len;
2017 	skb->len  += len;
2018 	if (unlikely(skb->tail > skb->end))
2019 		skb_over_panic(skb, len, __builtin_return_address(0));
2020 	return tmp;
2021 }
2022 EXPORT_SYMBOL(skb_put);
2023 
2024 /**
2025  *	skb_push - add data to the start of a buffer
2026  *	@skb: buffer to use
2027  *	@len: amount of data to add
2028  *
2029  *	This function extends the used data area of the buffer at the buffer
2030  *	start. If this would exceed the total buffer headroom the kernel will
2031  *	panic. A pointer to the first byte of the extra data is returned.
2032  */
2033 void *skb_push(struct sk_buff *skb, unsigned int len)
2034 {
2035 	skb->data -= len;
2036 	skb->len  += len;
2037 	if (unlikely(skb->data < skb->head))
2038 		skb_under_panic(skb, len, __builtin_return_address(0));
2039 	return skb->data;
2040 }
2041 EXPORT_SYMBOL(skb_push);
2042 
2043 /**
2044  *	skb_pull - remove data from the start of a buffer
2045  *	@skb: buffer to use
2046  *	@len: amount of data to remove
2047  *
2048  *	This function removes data from the start of a buffer, returning
2049  *	the memory to the headroom. A pointer to the next data in the buffer
2050  *	is returned. Once the data has been pulled future pushes will overwrite
2051  *	the old data.
2052  */
2053 void *skb_pull(struct sk_buff *skb, unsigned int len)
2054 {
2055 	return skb_pull_inline(skb, len);
2056 }
2057 EXPORT_SYMBOL(skb_pull);
2058 
2059 /**
2060  *	skb_pull_data - remove data from the start of a buffer returning its
2061  *	original position.
2062  *	@skb: buffer to use
2063  *	@len: amount of data to remove
2064  *
2065  *	This function removes data from the start of a buffer, returning
2066  *	the memory to the headroom. A pointer to the original data in the buffer
2067  *	is returned after checking if there is enough data to pull. Once the
2068  *	data has been pulled future pushes will overwrite the old data.
2069  */
2070 void *skb_pull_data(struct sk_buff *skb, size_t len)
2071 {
2072 	void *data = skb->data;
2073 
2074 	if (skb->len < len)
2075 		return NULL;
2076 
2077 	skb_pull(skb, len);
2078 
2079 	return data;
2080 }
2081 EXPORT_SYMBOL(skb_pull_data);
2082 
2083 /**
2084  *	skb_trim - remove end from a buffer
2085  *	@skb: buffer to alter
2086  *	@len: new length
2087  *
2088  *	Cut the length of a buffer down by removing data from the tail. If
2089  *	the buffer is already under the length specified it is not modified.
2090  *	The skb must be linear.
2091  */
2092 void skb_trim(struct sk_buff *skb, unsigned int len)
2093 {
2094 	if (skb->len > len)
2095 		__skb_trim(skb, len);
2096 }
2097 EXPORT_SYMBOL(skb_trim);
2098 
2099 /* Trims skb to length len. It can change skb pointers.
2100  */
2101 
2102 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2103 {
2104 	struct sk_buff **fragp;
2105 	struct sk_buff *frag;
2106 	int offset = skb_headlen(skb);
2107 	int nfrags = skb_shinfo(skb)->nr_frags;
2108 	int i;
2109 	int err;
2110 
2111 	if (skb_cloned(skb) &&
2112 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2113 		return err;
2114 
2115 	i = 0;
2116 	if (offset >= len)
2117 		goto drop_pages;
2118 
2119 	for (; i < nfrags; i++) {
2120 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2121 
2122 		if (end < len) {
2123 			offset = end;
2124 			continue;
2125 		}
2126 
2127 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2128 
2129 drop_pages:
2130 		skb_shinfo(skb)->nr_frags = i;
2131 
2132 		for (; i < nfrags; i++)
2133 			skb_frag_unref(skb, i);
2134 
2135 		if (skb_has_frag_list(skb))
2136 			skb_drop_fraglist(skb);
2137 		goto done;
2138 	}
2139 
2140 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2141 	     fragp = &frag->next) {
2142 		int end = offset + frag->len;
2143 
2144 		if (skb_shared(frag)) {
2145 			struct sk_buff *nfrag;
2146 
2147 			nfrag = skb_clone(frag, GFP_ATOMIC);
2148 			if (unlikely(!nfrag))
2149 				return -ENOMEM;
2150 
2151 			nfrag->next = frag->next;
2152 			consume_skb(frag);
2153 			frag = nfrag;
2154 			*fragp = frag;
2155 		}
2156 
2157 		if (end < len) {
2158 			offset = end;
2159 			continue;
2160 		}
2161 
2162 		if (end > len &&
2163 		    unlikely((err = pskb_trim(frag, len - offset))))
2164 			return err;
2165 
2166 		if (frag->next)
2167 			skb_drop_list(&frag->next);
2168 		break;
2169 	}
2170 
2171 done:
2172 	if (len > skb_headlen(skb)) {
2173 		skb->data_len -= skb->len - len;
2174 		skb->len       = len;
2175 	} else {
2176 		skb->len       = len;
2177 		skb->data_len  = 0;
2178 		skb_set_tail_pointer(skb, len);
2179 	}
2180 
2181 	if (!skb->sk || skb->destructor == sock_edemux)
2182 		skb_condense(skb);
2183 	return 0;
2184 }
2185 EXPORT_SYMBOL(___pskb_trim);
2186 
2187 /* Note : use pskb_trim_rcsum() instead of calling this directly
2188  */
2189 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2190 {
2191 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2192 		int delta = skb->len - len;
2193 
2194 		skb->csum = csum_block_sub(skb->csum,
2195 					   skb_checksum(skb, len, delta, 0),
2196 					   len);
2197 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2198 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2199 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2200 
2201 		if (offset + sizeof(__sum16) > hdlen)
2202 			return -EINVAL;
2203 	}
2204 	return __pskb_trim(skb, len);
2205 }
2206 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2207 
2208 /**
2209  *	__pskb_pull_tail - advance tail of skb header
2210  *	@skb: buffer to reallocate
2211  *	@delta: number of bytes to advance tail
2212  *
2213  *	The function makes a sense only on a fragmented &sk_buff,
2214  *	it expands header moving its tail forward and copying necessary
2215  *	data from fragmented part.
2216  *
2217  *	&sk_buff MUST have reference count of 1.
2218  *
2219  *	Returns %NULL (and &sk_buff does not change) if pull failed
2220  *	or value of new tail of skb in the case of success.
2221  *
2222  *	All the pointers pointing into skb header may change and must be
2223  *	reloaded after call to this function.
2224  */
2225 
2226 /* Moves tail of skb head forward, copying data from fragmented part,
2227  * when it is necessary.
2228  * 1. It may fail due to malloc failure.
2229  * 2. It may change skb pointers.
2230  *
2231  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2232  */
2233 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2234 {
2235 	/* If skb has not enough free space at tail, get new one
2236 	 * plus 128 bytes for future expansions. If we have enough
2237 	 * room at tail, reallocate without expansion only if skb is cloned.
2238 	 */
2239 	int i, k, eat = (skb->tail + delta) - skb->end;
2240 
2241 	if (eat > 0 || skb_cloned(skb)) {
2242 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2243 				     GFP_ATOMIC))
2244 			return NULL;
2245 	}
2246 
2247 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2248 			     skb_tail_pointer(skb), delta));
2249 
2250 	/* Optimization: no fragments, no reasons to preestimate
2251 	 * size of pulled pages. Superb.
2252 	 */
2253 	if (!skb_has_frag_list(skb))
2254 		goto pull_pages;
2255 
2256 	/* Estimate size of pulled pages. */
2257 	eat = delta;
2258 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2259 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2260 
2261 		if (size >= eat)
2262 			goto pull_pages;
2263 		eat -= size;
2264 	}
2265 
2266 	/* If we need update frag list, we are in troubles.
2267 	 * Certainly, it is possible to add an offset to skb data,
2268 	 * but taking into account that pulling is expected to
2269 	 * be very rare operation, it is worth to fight against
2270 	 * further bloating skb head and crucify ourselves here instead.
2271 	 * Pure masohism, indeed. 8)8)
2272 	 */
2273 	if (eat) {
2274 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2275 		struct sk_buff *clone = NULL;
2276 		struct sk_buff *insp = NULL;
2277 
2278 		do {
2279 			if (list->len <= eat) {
2280 				/* Eaten as whole. */
2281 				eat -= list->len;
2282 				list = list->next;
2283 				insp = list;
2284 			} else {
2285 				/* Eaten partially. */
2286 
2287 				if (skb_shared(list)) {
2288 					/* Sucks! We need to fork list. :-( */
2289 					clone = skb_clone(list, GFP_ATOMIC);
2290 					if (!clone)
2291 						return NULL;
2292 					insp = list->next;
2293 					list = clone;
2294 				} else {
2295 					/* This may be pulled without
2296 					 * problems. */
2297 					insp = list;
2298 				}
2299 				if (!pskb_pull(list, eat)) {
2300 					kfree_skb(clone);
2301 					return NULL;
2302 				}
2303 				break;
2304 			}
2305 		} while (eat);
2306 
2307 		/* Free pulled out fragments. */
2308 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2309 			skb_shinfo(skb)->frag_list = list->next;
2310 			consume_skb(list);
2311 		}
2312 		/* And insert new clone at head. */
2313 		if (clone) {
2314 			clone->next = list;
2315 			skb_shinfo(skb)->frag_list = clone;
2316 		}
2317 	}
2318 	/* Success! Now we may commit changes to skb data. */
2319 
2320 pull_pages:
2321 	eat = delta;
2322 	k = 0;
2323 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2324 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2325 
2326 		if (size <= eat) {
2327 			skb_frag_unref(skb, i);
2328 			eat -= size;
2329 		} else {
2330 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2331 
2332 			*frag = skb_shinfo(skb)->frags[i];
2333 			if (eat) {
2334 				skb_frag_off_add(frag, eat);
2335 				skb_frag_size_sub(frag, eat);
2336 				if (!i)
2337 					goto end;
2338 				eat = 0;
2339 			}
2340 			k++;
2341 		}
2342 	}
2343 	skb_shinfo(skb)->nr_frags = k;
2344 
2345 end:
2346 	skb->tail     += delta;
2347 	skb->data_len -= delta;
2348 
2349 	if (!skb->data_len)
2350 		skb_zcopy_clear(skb, false);
2351 
2352 	return skb_tail_pointer(skb);
2353 }
2354 EXPORT_SYMBOL(__pskb_pull_tail);
2355 
2356 /**
2357  *	skb_copy_bits - copy bits from skb to kernel buffer
2358  *	@skb: source skb
2359  *	@offset: offset in source
2360  *	@to: destination buffer
2361  *	@len: number of bytes to copy
2362  *
2363  *	Copy the specified number of bytes from the source skb to the
2364  *	destination buffer.
2365  *
2366  *	CAUTION ! :
2367  *		If its prototype is ever changed,
2368  *		check arch/{*}/net/{*}.S files,
2369  *		since it is called from BPF assembly code.
2370  */
2371 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2372 {
2373 	int start = skb_headlen(skb);
2374 	struct sk_buff *frag_iter;
2375 	int i, copy;
2376 
2377 	if (offset > (int)skb->len - len)
2378 		goto fault;
2379 
2380 	/* Copy header. */
2381 	if ((copy = start - offset) > 0) {
2382 		if (copy > len)
2383 			copy = len;
2384 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2385 		if ((len -= copy) == 0)
2386 			return 0;
2387 		offset += copy;
2388 		to     += copy;
2389 	}
2390 
2391 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2392 		int end;
2393 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2394 
2395 		WARN_ON(start > offset + len);
2396 
2397 		end = start + skb_frag_size(f);
2398 		if ((copy = end - offset) > 0) {
2399 			u32 p_off, p_len, copied;
2400 			struct page *p;
2401 			u8 *vaddr;
2402 
2403 			if (copy > len)
2404 				copy = len;
2405 
2406 			skb_frag_foreach_page(f,
2407 					      skb_frag_off(f) + offset - start,
2408 					      copy, p, p_off, p_len, copied) {
2409 				vaddr = kmap_atomic(p);
2410 				memcpy(to + copied, vaddr + p_off, p_len);
2411 				kunmap_atomic(vaddr);
2412 			}
2413 
2414 			if ((len -= copy) == 0)
2415 				return 0;
2416 			offset += copy;
2417 			to     += copy;
2418 		}
2419 		start = end;
2420 	}
2421 
2422 	skb_walk_frags(skb, frag_iter) {
2423 		int end;
2424 
2425 		WARN_ON(start > offset + len);
2426 
2427 		end = start + frag_iter->len;
2428 		if ((copy = end - offset) > 0) {
2429 			if (copy > len)
2430 				copy = len;
2431 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2432 				goto fault;
2433 			if ((len -= copy) == 0)
2434 				return 0;
2435 			offset += copy;
2436 			to     += copy;
2437 		}
2438 		start = end;
2439 	}
2440 
2441 	if (!len)
2442 		return 0;
2443 
2444 fault:
2445 	return -EFAULT;
2446 }
2447 EXPORT_SYMBOL(skb_copy_bits);
2448 
2449 /*
2450  * Callback from splice_to_pipe(), if we need to release some pages
2451  * at the end of the spd in case we error'ed out in filling the pipe.
2452  */
2453 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2454 {
2455 	put_page(spd->pages[i]);
2456 }
2457 
2458 static struct page *linear_to_page(struct page *page, unsigned int *len,
2459 				   unsigned int *offset,
2460 				   struct sock *sk)
2461 {
2462 	struct page_frag *pfrag = sk_page_frag(sk);
2463 
2464 	if (!sk_page_frag_refill(sk, pfrag))
2465 		return NULL;
2466 
2467 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2468 
2469 	memcpy(page_address(pfrag->page) + pfrag->offset,
2470 	       page_address(page) + *offset, *len);
2471 	*offset = pfrag->offset;
2472 	pfrag->offset += *len;
2473 
2474 	return pfrag->page;
2475 }
2476 
2477 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2478 			     struct page *page,
2479 			     unsigned int offset)
2480 {
2481 	return	spd->nr_pages &&
2482 		spd->pages[spd->nr_pages - 1] == page &&
2483 		(spd->partial[spd->nr_pages - 1].offset +
2484 		 spd->partial[spd->nr_pages - 1].len == offset);
2485 }
2486 
2487 /*
2488  * Fill page/offset/length into spd, if it can hold more pages.
2489  */
2490 static bool spd_fill_page(struct splice_pipe_desc *spd,
2491 			  struct pipe_inode_info *pipe, struct page *page,
2492 			  unsigned int *len, unsigned int offset,
2493 			  bool linear,
2494 			  struct sock *sk)
2495 {
2496 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2497 		return true;
2498 
2499 	if (linear) {
2500 		page = linear_to_page(page, len, &offset, sk);
2501 		if (!page)
2502 			return true;
2503 	}
2504 	if (spd_can_coalesce(spd, page, offset)) {
2505 		spd->partial[spd->nr_pages - 1].len += *len;
2506 		return false;
2507 	}
2508 	get_page(page);
2509 	spd->pages[spd->nr_pages] = page;
2510 	spd->partial[spd->nr_pages].len = *len;
2511 	spd->partial[spd->nr_pages].offset = offset;
2512 	spd->nr_pages++;
2513 
2514 	return false;
2515 }
2516 
2517 static bool __splice_segment(struct page *page, unsigned int poff,
2518 			     unsigned int plen, unsigned int *off,
2519 			     unsigned int *len,
2520 			     struct splice_pipe_desc *spd, bool linear,
2521 			     struct sock *sk,
2522 			     struct pipe_inode_info *pipe)
2523 {
2524 	if (!*len)
2525 		return true;
2526 
2527 	/* skip this segment if already processed */
2528 	if (*off >= plen) {
2529 		*off -= plen;
2530 		return false;
2531 	}
2532 
2533 	/* ignore any bits we already processed */
2534 	poff += *off;
2535 	plen -= *off;
2536 	*off = 0;
2537 
2538 	do {
2539 		unsigned int flen = min(*len, plen);
2540 
2541 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2542 				  linear, sk))
2543 			return true;
2544 		poff += flen;
2545 		plen -= flen;
2546 		*len -= flen;
2547 	} while (*len && plen);
2548 
2549 	return false;
2550 }
2551 
2552 /*
2553  * Map linear and fragment data from the skb to spd. It reports true if the
2554  * pipe is full or if we already spliced the requested length.
2555  */
2556 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2557 			      unsigned int *offset, unsigned int *len,
2558 			      struct splice_pipe_desc *spd, struct sock *sk)
2559 {
2560 	int seg;
2561 	struct sk_buff *iter;
2562 
2563 	/* map the linear part :
2564 	 * If skb->head_frag is set, this 'linear' part is backed by a
2565 	 * fragment, and if the head is not shared with any clones then
2566 	 * we can avoid a copy since we own the head portion of this page.
2567 	 */
2568 	if (__splice_segment(virt_to_page(skb->data),
2569 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2570 			     skb_headlen(skb),
2571 			     offset, len, spd,
2572 			     skb_head_is_locked(skb),
2573 			     sk, pipe))
2574 		return true;
2575 
2576 	/*
2577 	 * then map the fragments
2578 	 */
2579 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2580 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2581 
2582 		if (__splice_segment(skb_frag_page(f),
2583 				     skb_frag_off(f), skb_frag_size(f),
2584 				     offset, len, spd, false, sk, pipe))
2585 			return true;
2586 	}
2587 
2588 	skb_walk_frags(skb, iter) {
2589 		if (*offset >= iter->len) {
2590 			*offset -= iter->len;
2591 			continue;
2592 		}
2593 		/* __skb_splice_bits() only fails if the output has no room
2594 		 * left, so no point in going over the frag_list for the error
2595 		 * case.
2596 		 */
2597 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2598 			return true;
2599 	}
2600 
2601 	return false;
2602 }
2603 
2604 /*
2605  * Map data from the skb to a pipe. Should handle both the linear part,
2606  * the fragments, and the frag list.
2607  */
2608 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2609 		    struct pipe_inode_info *pipe, unsigned int tlen,
2610 		    unsigned int flags)
2611 {
2612 	struct partial_page partial[MAX_SKB_FRAGS];
2613 	struct page *pages[MAX_SKB_FRAGS];
2614 	struct splice_pipe_desc spd = {
2615 		.pages = pages,
2616 		.partial = partial,
2617 		.nr_pages_max = MAX_SKB_FRAGS,
2618 		.ops = &nosteal_pipe_buf_ops,
2619 		.spd_release = sock_spd_release,
2620 	};
2621 	int ret = 0;
2622 
2623 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2624 
2625 	if (spd.nr_pages)
2626 		ret = splice_to_pipe(pipe, &spd);
2627 
2628 	return ret;
2629 }
2630 EXPORT_SYMBOL_GPL(skb_splice_bits);
2631 
2632 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2633 			    struct kvec *vec, size_t num, size_t size)
2634 {
2635 	struct socket *sock = sk->sk_socket;
2636 
2637 	if (!sock)
2638 		return -EINVAL;
2639 	return kernel_sendmsg(sock, msg, vec, num, size);
2640 }
2641 
2642 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2643 			     size_t size, int flags)
2644 {
2645 	struct socket *sock = sk->sk_socket;
2646 
2647 	if (!sock)
2648 		return -EINVAL;
2649 	return kernel_sendpage(sock, page, offset, size, flags);
2650 }
2651 
2652 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2653 			    struct kvec *vec, size_t num, size_t size);
2654 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2655 			     size_t size, int flags);
2656 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2657 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2658 {
2659 	unsigned int orig_len = len;
2660 	struct sk_buff *head = skb;
2661 	unsigned short fragidx;
2662 	int slen, ret;
2663 
2664 do_frag_list:
2665 
2666 	/* Deal with head data */
2667 	while (offset < skb_headlen(skb) && len) {
2668 		struct kvec kv;
2669 		struct msghdr msg;
2670 
2671 		slen = min_t(int, len, skb_headlen(skb) - offset);
2672 		kv.iov_base = skb->data + offset;
2673 		kv.iov_len = slen;
2674 		memset(&msg, 0, sizeof(msg));
2675 		msg.msg_flags = MSG_DONTWAIT;
2676 
2677 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2678 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2679 		if (ret <= 0)
2680 			goto error;
2681 
2682 		offset += ret;
2683 		len -= ret;
2684 	}
2685 
2686 	/* All the data was skb head? */
2687 	if (!len)
2688 		goto out;
2689 
2690 	/* Make offset relative to start of frags */
2691 	offset -= skb_headlen(skb);
2692 
2693 	/* Find where we are in frag list */
2694 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2695 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2696 
2697 		if (offset < skb_frag_size(frag))
2698 			break;
2699 
2700 		offset -= skb_frag_size(frag);
2701 	}
2702 
2703 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2704 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2705 
2706 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2707 
2708 		while (slen) {
2709 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2710 					      sendpage_unlocked, sk,
2711 					      skb_frag_page(frag),
2712 					      skb_frag_off(frag) + offset,
2713 					      slen, MSG_DONTWAIT);
2714 			if (ret <= 0)
2715 				goto error;
2716 
2717 			len -= ret;
2718 			offset += ret;
2719 			slen -= ret;
2720 		}
2721 
2722 		offset = 0;
2723 	}
2724 
2725 	if (len) {
2726 		/* Process any frag lists */
2727 
2728 		if (skb == head) {
2729 			if (skb_has_frag_list(skb)) {
2730 				skb = skb_shinfo(skb)->frag_list;
2731 				goto do_frag_list;
2732 			}
2733 		} else if (skb->next) {
2734 			skb = skb->next;
2735 			goto do_frag_list;
2736 		}
2737 	}
2738 
2739 out:
2740 	return orig_len - len;
2741 
2742 error:
2743 	return orig_len == len ? ret : orig_len - len;
2744 }
2745 
2746 /* Send skb data on a socket. Socket must be locked. */
2747 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2748 			 int len)
2749 {
2750 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2751 			       kernel_sendpage_locked);
2752 }
2753 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2754 
2755 /* Send skb data on a socket. Socket must be unlocked. */
2756 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2757 {
2758 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2759 			       sendpage_unlocked);
2760 }
2761 
2762 /**
2763  *	skb_store_bits - store bits from kernel buffer to skb
2764  *	@skb: destination buffer
2765  *	@offset: offset in destination
2766  *	@from: source buffer
2767  *	@len: number of bytes to copy
2768  *
2769  *	Copy the specified number of bytes from the source buffer to the
2770  *	destination skb.  This function handles all the messy bits of
2771  *	traversing fragment lists and such.
2772  */
2773 
2774 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2775 {
2776 	int start = skb_headlen(skb);
2777 	struct sk_buff *frag_iter;
2778 	int i, copy;
2779 
2780 	if (offset > (int)skb->len - len)
2781 		goto fault;
2782 
2783 	if ((copy = start - offset) > 0) {
2784 		if (copy > len)
2785 			copy = len;
2786 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2787 		if ((len -= copy) == 0)
2788 			return 0;
2789 		offset += copy;
2790 		from += copy;
2791 	}
2792 
2793 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2794 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2795 		int end;
2796 
2797 		WARN_ON(start > offset + len);
2798 
2799 		end = start + skb_frag_size(frag);
2800 		if ((copy = end - offset) > 0) {
2801 			u32 p_off, p_len, copied;
2802 			struct page *p;
2803 			u8 *vaddr;
2804 
2805 			if (copy > len)
2806 				copy = len;
2807 
2808 			skb_frag_foreach_page(frag,
2809 					      skb_frag_off(frag) + offset - start,
2810 					      copy, p, p_off, p_len, copied) {
2811 				vaddr = kmap_atomic(p);
2812 				memcpy(vaddr + p_off, from + copied, p_len);
2813 				kunmap_atomic(vaddr);
2814 			}
2815 
2816 			if ((len -= copy) == 0)
2817 				return 0;
2818 			offset += copy;
2819 			from += copy;
2820 		}
2821 		start = end;
2822 	}
2823 
2824 	skb_walk_frags(skb, frag_iter) {
2825 		int end;
2826 
2827 		WARN_ON(start > offset + len);
2828 
2829 		end = start + frag_iter->len;
2830 		if ((copy = end - offset) > 0) {
2831 			if (copy > len)
2832 				copy = len;
2833 			if (skb_store_bits(frag_iter, offset - start,
2834 					   from, copy))
2835 				goto fault;
2836 			if ((len -= copy) == 0)
2837 				return 0;
2838 			offset += copy;
2839 			from += copy;
2840 		}
2841 		start = end;
2842 	}
2843 	if (!len)
2844 		return 0;
2845 
2846 fault:
2847 	return -EFAULT;
2848 }
2849 EXPORT_SYMBOL(skb_store_bits);
2850 
2851 /* Checksum skb data. */
2852 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2853 		      __wsum csum, const struct skb_checksum_ops *ops)
2854 {
2855 	int start = skb_headlen(skb);
2856 	int i, copy = start - offset;
2857 	struct sk_buff *frag_iter;
2858 	int pos = 0;
2859 
2860 	/* Checksum header. */
2861 	if (copy > 0) {
2862 		if (copy > len)
2863 			copy = len;
2864 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2865 				       skb->data + offset, copy, csum);
2866 		if ((len -= copy) == 0)
2867 			return csum;
2868 		offset += copy;
2869 		pos	= copy;
2870 	}
2871 
2872 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2873 		int end;
2874 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2875 
2876 		WARN_ON(start > offset + len);
2877 
2878 		end = start + skb_frag_size(frag);
2879 		if ((copy = end - offset) > 0) {
2880 			u32 p_off, p_len, copied;
2881 			struct page *p;
2882 			__wsum csum2;
2883 			u8 *vaddr;
2884 
2885 			if (copy > len)
2886 				copy = len;
2887 
2888 			skb_frag_foreach_page(frag,
2889 					      skb_frag_off(frag) + offset - start,
2890 					      copy, p, p_off, p_len, copied) {
2891 				vaddr = kmap_atomic(p);
2892 				csum2 = INDIRECT_CALL_1(ops->update,
2893 							csum_partial_ext,
2894 							vaddr + p_off, p_len, 0);
2895 				kunmap_atomic(vaddr);
2896 				csum = INDIRECT_CALL_1(ops->combine,
2897 						       csum_block_add_ext, csum,
2898 						       csum2, pos, p_len);
2899 				pos += p_len;
2900 			}
2901 
2902 			if (!(len -= copy))
2903 				return csum;
2904 			offset += copy;
2905 		}
2906 		start = end;
2907 	}
2908 
2909 	skb_walk_frags(skb, frag_iter) {
2910 		int end;
2911 
2912 		WARN_ON(start > offset + len);
2913 
2914 		end = start + frag_iter->len;
2915 		if ((copy = end - offset) > 0) {
2916 			__wsum csum2;
2917 			if (copy > len)
2918 				copy = len;
2919 			csum2 = __skb_checksum(frag_iter, offset - start,
2920 					       copy, 0, ops);
2921 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2922 					       csum, csum2, pos, copy);
2923 			if ((len -= copy) == 0)
2924 				return csum;
2925 			offset += copy;
2926 			pos    += copy;
2927 		}
2928 		start = end;
2929 	}
2930 	BUG_ON(len);
2931 
2932 	return csum;
2933 }
2934 EXPORT_SYMBOL(__skb_checksum);
2935 
2936 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2937 		    int len, __wsum csum)
2938 {
2939 	const struct skb_checksum_ops ops = {
2940 		.update  = csum_partial_ext,
2941 		.combine = csum_block_add_ext,
2942 	};
2943 
2944 	return __skb_checksum(skb, offset, len, csum, &ops);
2945 }
2946 EXPORT_SYMBOL(skb_checksum);
2947 
2948 /* Both of above in one bottle. */
2949 
2950 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2951 				    u8 *to, int len)
2952 {
2953 	int start = skb_headlen(skb);
2954 	int i, copy = start - offset;
2955 	struct sk_buff *frag_iter;
2956 	int pos = 0;
2957 	__wsum csum = 0;
2958 
2959 	/* Copy header. */
2960 	if (copy > 0) {
2961 		if (copy > len)
2962 			copy = len;
2963 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2964 						 copy);
2965 		if ((len -= copy) == 0)
2966 			return csum;
2967 		offset += copy;
2968 		to     += copy;
2969 		pos	= copy;
2970 	}
2971 
2972 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2973 		int end;
2974 
2975 		WARN_ON(start > offset + len);
2976 
2977 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2978 		if ((copy = end - offset) > 0) {
2979 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2980 			u32 p_off, p_len, copied;
2981 			struct page *p;
2982 			__wsum csum2;
2983 			u8 *vaddr;
2984 
2985 			if (copy > len)
2986 				copy = len;
2987 
2988 			skb_frag_foreach_page(frag,
2989 					      skb_frag_off(frag) + offset - start,
2990 					      copy, p, p_off, p_len, copied) {
2991 				vaddr = kmap_atomic(p);
2992 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2993 								  to + copied,
2994 								  p_len);
2995 				kunmap_atomic(vaddr);
2996 				csum = csum_block_add(csum, csum2, pos);
2997 				pos += p_len;
2998 			}
2999 
3000 			if (!(len -= copy))
3001 				return csum;
3002 			offset += copy;
3003 			to     += copy;
3004 		}
3005 		start = end;
3006 	}
3007 
3008 	skb_walk_frags(skb, frag_iter) {
3009 		__wsum csum2;
3010 		int end;
3011 
3012 		WARN_ON(start > offset + len);
3013 
3014 		end = start + frag_iter->len;
3015 		if ((copy = end - offset) > 0) {
3016 			if (copy > len)
3017 				copy = len;
3018 			csum2 = skb_copy_and_csum_bits(frag_iter,
3019 						       offset - start,
3020 						       to, copy);
3021 			csum = csum_block_add(csum, csum2, pos);
3022 			if ((len -= copy) == 0)
3023 				return csum;
3024 			offset += copy;
3025 			to     += copy;
3026 			pos    += copy;
3027 		}
3028 		start = end;
3029 	}
3030 	BUG_ON(len);
3031 	return csum;
3032 }
3033 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3034 
3035 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3036 {
3037 	__sum16 sum;
3038 
3039 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3040 	/* See comments in __skb_checksum_complete(). */
3041 	if (likely(!sum)) {
3042 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3043 		    !skb->csum_complete_sw)
3044 			netdev_rx_csum_fault(skb->dev, skb);
3045 	}
3046 	if (!skb_shared(skb))
3047 		skb->csum_valid = !sum;
3048 	return sum;
3049 }
3050 EXPORT_SYMBOL(__skb_checksum_complete_head);
3051 
3052 /* This function assumes skb->csum already holds pseudo header's checksum,
3053  * which has been changed from the hardware checksum, for example, by
3054  * __skb_checksum_validate_complete(). And, the original skb->csum must
3055  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3056  *
3057  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3058  * zero. The new checksum is stored back into skb->csum unless the skb is
3059  * shared.
3060  */
3061 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3062 {
3063 	__wsum csum;
3064 	__sum16 sum;
3065 
3066 	csum = skb_checksum(skb, 0, skb->len, 0);
3067 
3068 	sum = csum_fold(csum_add(skb->csum, csum));
3069 	/* This check is inverted, because we already knew the hardware
3070 	 * checksum is invalid before calling this function. So, if the
3071 	 * re-computed checksum is valid instead, then we have a mismatch
3072 	 * between the original skb->csum and skb_checksum(). This means either
3073 	 * the original hardware checksum is incorrect or we screw up skb->csum
3074 	 * when moving skb->data around.
3075 	 */
3076 	if (likely(!sum)) {
3077 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3078 		    !skb->csum_complete_sw)
3079 			netdev_rx_csum_fault(skb->dev, skb);
3080 	}
3081 
3082 	if (!skb_shared(skb)) {
3083 		/* Save full packet checksum */
3084 		skb->csum = csum;
3085 		skb->ip_summed = CHECKSUM_COMPLETE;
3086 		skb->csum_complete_sw = 1;
3087 		skb->csum_valid = !sum;
3088 	}
3089 
3090 	return sum;
3091 }
3092 EXPORT_SYMBOL(__skb_checksum_complete);
3093 
3094 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3095 {
3096 	net_warn_ratelimited(
3097 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3098 		__func__);
3099 	return 0;
3100 }
3101 
3102 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3103 				       int offset, int len)
3104 {
3105 	net_warn_ratelimited(
3106 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3107 		__func__);
3108 	return 0;
3109 }
3110 
3111 static const struct skb_checksum_ops default_crc32c_ops = {
3112 	.update  = warn_crc32c_csum_update,
3113 	.combine = warn_crc32c_csum_combine,
3114 };
3115 
3116 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3117 	&default_crc32c_ops;
3118 EXPORT_SYMBOL(crc32c_csum_stub);
3119 
3120  /**
3121  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3122  *	@from: source buffer
3123  *
3124  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3125  *	into skb_zerocopy().
3126  */
3127 unsigned int
3128 skb_zerocopy_headlen(const struct sk_buff *from)
3129 {
3130 	unsigned int hlen = 0;
3131 
3132 	if (!from->head_frag ||
3133 	    skb_headlen(from) < L1_CACHE_BYTES ||
3134 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3135 		hlen = skb_headlen(from);
3136 		if (!hlen)
3137 			hlen = from->len;
3138 	}
3139 
3140 	if (skb_has_frag_list(from))
3141 		hlen = from->len;
3142 
3143 	return hlen;
3144 }
3145 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3146 
3147 /**
3148  *	skb_zerocopy - Zero copy skb to skb
3149  *	@to: destination buffer
3150  *	@from: source buffer
3151  *	@len: number of bytes to copy from source buffer
3152  *	@hlen: size of linear headroom in destination buffer
3153  *
3154  *	Copies up to `len` bytes from `from` to `to` by creating references
3155  *	to the frags in the source buffer.
3156  *
3157  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3158  *	headroom in the `to` buffer.
3159  *
3160  *	Return value:
3161  *	0: everything is OK
3162  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3163  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3164  */
3165 int
3166 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3167 {
3168 	int i, j = 0;
3169 	int plen = 0; /* length of skb->head fragment */
3170 	int ret;
3171 	struct page *page;
3172 	unsigned int offset;
3173 
3174 	BUG_ON(!from->head_frag && !hlen);
3175 
3176 	/* dont bother with small payloads */
3177 	if (len <= skb_tailroom(to))
3178 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3179 
3180 	if (hlen) {
3181 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3182 		if (unlikely(ret))
3183 			return ret;
3184 		len -= hlen;
3185 	} else {
3186 		plen = min_t(int, skb_headlen(from), len);
3187 		if (plen) {
3188 			page = virt_to_head_page(from->head);
3189 			offset = from->data - (unsigned char *)page_address(page);
3190 			__skb_fill_page_desc(to, 0, page, offset, plen);
3191 			get_page(page);
3192 			j = 1;
3193 			len -= plen;
3194 		}
3195 	}
3196 
3197 	skb_len_add(to, len + plen);
3198 
3199 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3200 		skb_tx_error(from);
3201 		return -ENOMEM;
3202 	}
3203 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3204 
3205 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3206 		int size;
3207 
3208 		if (!len)
3209 			break;
3210 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3211 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3212 					len);
3213 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3214 		len -= size;
3215 		skb_frag_ref(to, j);
3216 		j++;
3217 	}
3218 	skb_shinfo(to)->nr_frags = j;
3219 
3220 	return 0;
3221 }
3222 EXPORT_SYMBOL_GPL(skb_zerocopy);
3223 
3224 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3225 {
3226 	__wsum csum;
3227 	long csstart;
3228 
3229 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3230 		csstart = skb_checksum_start_offset(skb);
3231 	else
3232 		csstart = skb_headlen(skb);
3233 
3234 	BUG_ON(csstart > skb_headlen(skb));
3235 
3236 	skb_copy_from_linear_data(skb, to, csstart);
3237 
3238 	csum = 0;
3239 	if (csstart != skb->len)
3240 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3241 					      skb->len - csstart);
3242 
3243 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3244 		long csstuff = csstart + skb->csum_offset;
3245 
3246 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3247 	}
3248 }
3249 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3250 
3251 /**
3252  *	skb_dequeue - remove from the head of the queue
3253  *	@list: list to dequeue from
3254  *
3255  *	Remove the head of the list. The list lock is taken so the function
3256  *	may be used safely with other locking list functions. The head item is
3257  *	returned or %NULL if the list is empty.
3258  */
3259 
3260 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3261 {
3262 	unsigned long flags;
3263 	struct sk_buff *result;
3264 
3265 	spin_lock_irqsave(&list->lock, flags);
3266 	result = __skb_dequeue(list);
3267 	spin_unlock_irqrestore(&list->lock, flags);
3268 	return result;
3269 }
3270 EXPORT_SYMBOL(skb_dequeue);
3271 
3272 /**
3273  *	skb_dequeue_tail - remove from the tail of the queue
3274  *	@list: list to dequeue from
3275  *
3276  *	Remove the tail of the list. The list lock is taken so the function
3277  *	may be used safely with other locking list functions. The tail item is
3278  *	returned or %NULL if the list is empty.
3279  */
3280 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3281 {
3282 	unsigned long flags;
3283 	struct sk_buff *result;
3284 
3285 	spin_lock_irqsave(&list->lock, flags);
3286 	result = __skb_dequeue_tail(list);
3287 	spin_unlock_irqrestore(&list->lock, flags);
3288 	return result;
3289 }
3290 EXPORT_SYMBOL(skb_dequeue_tail);
3291 
3292 /**
3293  *	skb_queue_purge - empty a list
3294  *	@list: list to empty
3295  *
3296  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3297  *	the list and one reference dropped. This function takes the list
3298  *	lock and is atomic with respect to other list locking functions.
3299  */
3300 void skb_queue_purge(struct sk_buff_head *list)
3301 {
3302 	struct sk_buff *skb;
3303 	while ((skb = skb_dequeue(list)) != NULL)
3304 		kfree_skb(skb);
3305 }
3306 EXPORT_SYMBOL(skb_queue_purge);
3307 
3308 /**
3309  *	skb_rbtree_purge - empty a skb rbtree
3310  *	@root: root of the rbtree to empty
3311  *	Return value: the sum of truesizes of all purged skbs.
3312  *
3313  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3314  *	the list and one reference dropped. This function does not take
3315  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3316  *	out-of-order queue is protected by the socket lock).
3317  */
3318 unsigned int skb_rbtree_purge(struct rb_root *root)
3319 {
3320 	struct rb_node *p = rb_first(root);
3321 	unsigned int sum = 0;
3322 
3323 	while (p) {
3324 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3325 
3326 		p = rb_next(p);
3327 		rb_erase(&skb->rbnode, root);
3328 		sum += skb->truesize;
3329 		kfree_skb(skb);
3330 	}
3331 	return sum;
3332 }
3333 
3334 /**
3335  *	skb_queue_head - queue a buffer at the list head
3336  *	@list: list to use
3337  *	@newsk: buffer to queue
3338  *
3339  *	Queue a buffer at the start of the list. This function takes the
3340  *	list lock and can be used safely with other locking &sk_buff functions
3341  *	safely.
3342  *
3343  *	A buffer cannot be placed on two lists at the same time.
3344  */
3345 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3346 {
3347 	unsigned long flags;
3348 
3349 	spin_lock_irqsave(&list->lock, flags);
3350 	__skb_queue_head(list, newsk);
3351 	spin_unlock_irqrestore(&list->lock, flags);
3352 }
3353 EXPORT_SYMBOL(skb_queue_head);
3354 
3355 /**
3356  *	skb_queue_tail - queue a buffer at the list tail
3357  *	@list: list to use
3358  *	@newsk: buffer to queue
3359  *
3360  *	Queue a buffer at the tail of the list. This function takes the
3361  *	list lock and can be used safely with other locking &sk_buff functions
3362  *	safely.
3363  *
3364  *	A buffer cannot be placed on two lists at the same time.
3365  */
3366 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3367 {
3368 	unsigned long flags;
3369 
3370 	spin_lock_irqsave(&list->lock, flags);
3371 	__skb_queue_tail(list, newsk);
3372 	spin_unlock_irqrestore(&list->lock, flags);
3373 }
3374 EXPORT_SYMBOL(skb_queue_tail);
3375 
3376 /**
3377  *	skb_unlink	-	remove a buffer from a list
3378  *	@skb: buffer to remove
3379  *	@list: list to use
3380  *
3381  *	Remove a packet from a list. The list locks are taken and this
3382  *	function is atomic with respect to other list locked calls
3383  *
3384  *	You must know what list the SKB is on.
3385  */
3386 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3387 {
3388 	unsigned long flags;
3389 
3390 	spin_lock_irqsave(&list->lock, flags);
3391 	__skb_unlink(skb, list);
3392 	spin_unlock_irqrestore(&list->lock, flags);
3393 }
3394 EXPORT_SYMBOL(skb_unlink);
3395 
3396 /**
3397  *	skb_append	-	append a buffer
3398  *	@old: buffer to insert after
3399  *	@newsk: buffer to insert
3400  *	@list: list to use
3401  *
3402  *	Place a packet after a given packet in a list. The list locks are taken
3403  *	and this function is atomic with respect to other list locked calls.
3404  *	A buffer cannot be placed on two lists at the same time.
3405  */
3406 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3407 {
3408 	unsigned long flags;
3409 
3410 	spin_lock_irqsave(&list->lock, flags);
3411 	__skb_queue_after(list, old, newsk);
3412 	spin_unlock_irqrestore(&list->lock, flags);
3413 }
3414 EXPORT_SYMBOL(skb_append);
3415 
3416 static inline void skb_split_inside_header(struct sk_buff *skb,
3417 					   struct sk_buff* skb1,
3418 					   const u32 len, const int pos)
3419 {
3420 	int i;
3421 
3422 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3423 					 pos - len);
3424 	/* And move data appendix as is. */
3425 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3426 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3427 
3428 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3429 	skb_shinfo(skb)->nr_frags  = 0;
3430 	skb1->data_len		   = skb->data_len;
3431 	skb1->len		   += skb1->data_len;
3432 	skb->data_len		   = 0;
3433 	skb->len		   = len;
3434 	skb_set_tail_pointer(skb, len);
3435 }
3436 
3437 static inline void skb_split_no_header(struct sk_buff *skb,
3438 				       struct sk_buff* skb1,
3439 				       const u32 len, int pos)
3440 {
3441 	int i, k = 0;
3442 	const int nfrags = skb_shinfo(skb)->nr_frags;
3443 
3444 	skb_shinfo(skb)->nr_frags = 0;
3445 	skb1->len		  = skb1->data_len = skb->len - len;
3446 	skb->len		  = len;
3447 	skb->data_len		  = len - pos;
3448 
3449 	for (i = 0; i < nfrags; i++) {
3450 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3451 
3452 		if (pos + size > len) {
3453 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3454 
3455 			if (pos < len) {
3456 				/* Split frag.
3457 				 * We have two variants in this case:
3458 				 * 1. Move all the frag to the second
3459 				 *    part, if it is possible. F.e.
3460 				 *    this approach is mandatory for TUX,
3461 				 *    where splitting is expensive.
3462 				 * 2. Split is accurately. We make this.
3463 				 */
3464 				skb_frag_ref(skb, i);
3465 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3466 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3467 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3468 				skb_shinfo(skb)->nr_frags++;
3469 			}
3470 			k++;
3471 		} else
3472 			skb_shinfo(skb)->nr_frags++;
3473 		pos += size;
3474 	}
3475 	skb_shinfo(skb1)->nr_frags = k;
3476 }
3477 
3478 /**
3479  * skb_split - Split fragmented skb to two parts at length len.
3480  * @skb: the buffer to split
3481  * @skb1: the buffer to receive the second part
3482  * @len: new length for skb
3483  */
3484 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3485 {
3486 	int pos = skb_headlen(skb);
3487 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3488 
3489 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3490 	skb_zerocopy_clone(skb1, skb, 0);
3491 	if (len < pos)	/* Split line is inside header. */
3492 		skb_split_inside_header(skb, skb1, len, pos);
3493 	else		/* Second chunk has no header, nothing to copy. */
3494 		skb_split_no_header(skb, skb1, len, pos);
3495 }
3496 EXPORT_SYMBOL(skb_split);
3497 
3498 /* Shifting from/to a cloned skb is a no-go.
3499  *
3500  * Caller cannot keep skb_shinfo related pointers past calling here!
3501  */
3502 static int skb_prepare_for_shift(struct sk_buff *skb)
3503 {
3504 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3505 }
3506 
3507 /**
3508  * skb_shift - Shifts paged data partially from skb to another
3509  * @tgt: buffer into which tail data gets added
3510  * @skb: buffer from which the paged data comes from
3511  * @shiftlen: shift up to this many bytes
3512  *
3513  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3514  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3515  * It's up to caller to free skb if everything was shifted.
3516  *
3517  * If @tgt runs out of frags, the whole operation is aborted.
3518  *
3519  * Skb cannot include anything else but paged data while tgt is allowed
3520  * to have non-paged data as well.
3521  *
3522  * TODO: full sized shift could be optimized but that would need
3523  * specialized skb free'er to handle frags without up-to-date nr_frags.
3524  */
3525 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3526 {
3527 	int from, to, merge, todo;
3528 	skb_frag_t *fragfrom, *fragto;
3529 
3530 	BUG_ON(shiftlen > skb->len);
3531 
3532 	if (skb_headlen(skb))
3533 		return 0;
3534 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3535 		return 0;
3536 
3537 	todo = shiftlen;
3538 	from = 0;
3539 	to = skb_shinfo(tgt)->nr_frags;
3540 	fragfrom = &skb_shinfo(skb)->frags[from];
3541 
3542 	/* Actual merge is delayed until the point when we know we can
3543 	 * commit all, so that we don't have to undo partial changes
3544 	 */
3545 	if (!to ||
3546 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3547 			      skb_frag_off(fragfrom))) {
3548 		merge = -1;
3549 	} else {
3550 		merge = to - 1;
3551 
3552 		todo -= skb_frag_size(fragfrom);
3553 		if (todo < 0) {
3554 			if (skb_prepare_for_shift(skb) ||
3555 			    skb_prepare_for_shift(tgt))
3556 				return 0;
3557 
3558 			/* All previous frag pointers might be stale! */
3559 			fragfrom = &skb_shinfo(skb)->frags[from];
3560 			fragto = &skb_shinfo(tgt)->frags[merge];
3561 
3562 			skb_frag_size_add(fragto, shiftlen);
3563 			skb_frag_size_sub(fragfrom, shiftlen);
3564 			skb_frag_off_add(fragfrom, shiftlen);
3565 
3566 			goto onlymerged;
3567 		}
3568 
3569 		from++;
3570 	}
3571 
3572 	/* Skip full, not-fitting skb to avoid expensive operations */
3573 	if ((shiftlen == skb->len) &&
3574 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3575 		return 0;
3576 
3577 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3578 		return 0;
3579 
3580 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3581 		if (to == MAX_SKB_FRAGS)
3582 			return 0;
3583 
3584 		fragfrom = &skb_shinfo(skb)->frags[from];
3585 		fragto = &skb_shinfo(tgt)->frags[to];
3586 
3587 		if (todo >= skb_frag_size(fragfrom)) {
3588 			*fragto = *fragfrom;
3589 			todo -= skb_frag_size(fragfrom);
3590 			from++;
3591 			to++;
3592 
3593 		} else {
3594 			__skb_frag_ref(fragfrom);
3595 			skb_frag_page_copy(fragto, fragfrom);
3596 			skb_frag_off_copy(fragto, fragfrom);
3597 			skb_frag_size_set(fragto, todo);
3598 
3599 			skb_frag_off_add(fragfrom, todo);
3600 			skb_frag_size_sub(fragfrom, todo);
3601 			todo = 0;
3602 
3603 			to++;
3604 			break;
3605 		}
3606 	}
3607 
3608 	/* Ready to "commit" this state change to tgt */
3609 	skb_shinfo(tgt)->nr_frags = to;
3610 
3611 	if (merge >= 0) {
3612 		fragfrom = &skb_shinfo(skb)->frags[0];
3613 		fragto = &skb_shinfo(tgt)->frags[merge];
3614 
3615 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3616 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3617 	}
3618 
3619 	/* Reposition in the original skb */
3620 	to = 0;
3621 	while (from < skb_shinfo(skb)->nr_frags)
3622 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3623 	skb_shinfo(skb)->nr_frags = to;
3624 
3625 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3626 
3627 onlymerged:
3628 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3629 	 * the other hand might need it if it needs to be resent
3630 	 */
3631 	tgt->ip_summed = CHECKSUM_PARTIAL;
3632 	skb->ip_summed = CHECKSUM_PARTIAL;
3633 
3634 	skb_len_add(skb, -shiftlen);
3635 	skb_len_add(tgt, shiftlen);
3636 
3637 	return shiftlen;
3638 }
3639 
3640 /**
3641  * skb_prepare_seq_read - Prepare a sequential read of skb data
3642  * @skb: the buffer to read
3643  * @from: lower offset of data to be read
3644  * @to: upper offset of data to be read
3645  * @st: state variable
3646  *
3647  * Initializes the specified state variable. Must be called before
3648  * invoking skb_seq_read() for the first time.
3649  */
3650 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3651 			  unsigned int to, struct skb_seq_state *st)
3652 {
3653 	st->lower_offset = from;
3654 	st->upper_offset = to;
3655 	st->root_skb = st->cur_skb = skb;
3656 	st->frag_idx = st->stepped_offset = 0;
3657 	st->frag_data = NULL;
3658 	st->frag_off = 0;
3659 }
3660 EXPORT_SYMBOL(skb_prepare_seq_read);
3661 
3662 /**
3663  * skb_seq_read - Sequentially read skb data
3664  * @consumed: number of bytes consumed by the caller so far
3665  * @data: destination pointer for data to be returned
3666  * @st: state variable
3667  *
3668  * Reads a block of skb data at @consumed relative to the
3669  * lower offset specified to skb_prepare_seq_read(). Assigns
3670  * the head of the data block to @data and returns the length
3671  * of the block or 0 if the end of the skb data or the upper
3672  * offset has been reached.
3673  *
3674  * The caller is not required to consume all of the data
3675  * returned, i.e. @consumed is typically set to the number
3676  * of bytes already consumed and the next call to
3677  * skb_seq_read() will return the remaining part of the block.
3678  *
3679  * Note 1: The size of each block of data returned can be arbitrary,
3680  *       this limitation is the cost for zerocopy sequential
3681  *       reads of potentially non linear data.
3682  *
3683  * Note 2: Fragment lists within fragments are not implemented
3684  *       at the moment, state->root_skb could be replaced with
3685  *       a stack for this purpose.
3686  */
3687 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3688 			  struct skb_seq_state *st)
3689 {
3690 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3691 	skb_frag_t *frag;
3692 
3693 	if (unlikely(abs_offset >= st->upper_offset)) {
3694 		if (st->frag_data) {
3695 			kunmap_atomic(st->frag_data);
3696 			st->frag_data = NULL;
3697 		}
3698 		return 0;
3699 	}
3700 
3701 next_skb:
3702 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3703 
3704 	if (abs_offset < block_limit && !st->frag_data) {
3705 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3706 		return block_limit - abs_offset;
3707 	}
3708 
3709 	if (st->frag_idx == 0 && !st->frag_data)
3710 		st->stepped_offset += skb_headlen(st->cur_skb);
3711 
3712 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3713 		unsigned int pg_idx, pg_off, pg_sz;
3714 
3715 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3716 
3717 		pg_idx = 0;
3718 		pg_off = skb_frag_off(frag);
3719 		pg_sz = skb_frag_size(frag);
3720 
3721 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3722 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3723 			pg_off = offset_in_page(pg_off + st->frag_off);
3724 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3725 						    PAGE_SIZE - pg_off);
3726 		}
3727 
3728 		block_limit = pg_sz + st->stepped_offset;
3729 		if (abs_offset < block_limit) {
3730 			if (!st->frag_data)
3731 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3732 
3733 			*data = (u8 *)st->frag_data + pg_off +
3734 				(abs_offset - st->stepped_offset);
3735 
3736 			return block_limit - abs_offset;
3737 		}
3738 
3739 		if (st->frag_data) {
3740 			kunmap_atomic(st->frag_data);
3741 			st->frag_data = NULL;
3742 		}
3743 
3744 		st->stepped_offset += pg_sz;
3745 		st->frag_off += pg_sz;
3746 		if (st->frag_off == skb_frag_size(frag)) {
3747 			st->frag_off = 0;
3748 			st->frag_idx++;
3749 		}
3750 	}
3751 
3752 	if (st->frag_data) {
3753 		kunmap_atomic(st->frag_data);
3754 		st->frag_data = NULL;
3755 	}
3756 
3757 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3758 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3759 		st->frag_idx = 0;
3760 		goto next_skb;
3761 	} else if (st->cur_skb->next) {
3762 		st->cur_skb = st->cur_skb->next;
3763 		st->frag_idx = 0;
3764 		goto next_skb;
3765 	}
3766 
3767 	return 0;
3768 }
3769 EXPORT_SYMBOL(skb_seq_read);
3770 
3771 /**
3772  * skb_abort_seq_read - Abort a sequential read of skb data
3773  * @st: state variable
3774  *
3775  * Must be called if skb_seq_read() was not called until it
3776  * returned 0.
3777  */
3778 void skb_abort_seq_read(struct skb_seq_state *st)
3779 {
3780 	if (st->frag_data)
3781 		kunmap_atomic(st->frag_data);
3782 }
3783 EXPORT_SYMBOL(skb_abort_seq_read);
3784 
3785 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3786 
3787 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3788 					  struct ts_config *conf,
3789 					  struct ts_state *state)
3790 {
3791 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3792 }
3793 
3794 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3795 {
3796 	skb_abort_seq_read(TS_SKB_CB(state));
3797 }
3798 
3799 /**
3800  * skb_find_text - Find a text pattern in skb data
3801  * @skb: the buffer to look in
3802  * @from: search offset
3803  * @to: search limit
3804  * @config: textsearch configuration
3805  *
3806  * Finds a pattern in the skb data according to the specified
3807  * textsearch configuration. Use textsearch_next() to retrieve
3808  * subsequent occurrences of the pattern. Returns the offset
3809  * to the first occurrence or UINT_MAX if no match was found.
3810  */
3811 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3812 			   unsigned int to, struct ts_config *config)
3813 {
3814 	struct ts_state state;
3815 	unsigned int ret;
3816 
3817 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3818 
3819 	config->get_next_block = skb_ts_get_next_block;
3820 	config->finish = skb_ts_finish;
3821 
3822 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3823 
3824 	ret = textsearch_find(config, &state);
3825 	return (ret <= to - from ? ret : UINT_MAX);
3826 }
3827 EXPORT_SYMBOL(skb_find_text);
3828 
3829 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3830 			 int offset, size_t size)
3831 {
3832 	int i = skb_shinfo(skb)->nr_frags;
3833 
3834 	if (skb_can_coalesce(skb, i, page, offset)) {
3835 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3836 	} else if (i < MAX_SKB_FRAGS) {
3837 		get_page(page);
3838 		skb_fill_page_desc(skb, i, page, offset, size);
3839 	} else {
3840 		return -EMSGSIZE;
3841 	}
3842 
3843 	return 0;
3844 }
3845 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3846 
3847 /**
3848  *	skb_pull_rcsum - pull skb and update receive checksum
3849  *	@skb: buffer to update
3850  *	@len: length of data pulled
3851  *
3852  *	This function performs an skb_pull on the packet and updates
3853  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3854  *	receive path processing instead of skb_pull unless you know
3855  *	that the checksum difference is zero (e.g., a valid IP header)
3856  *	or you are setting ip_summed to CHECKSUM_NONE.
3857  */
3858 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3859 {
3860 	unsigned char *data = skb->data;
3861 
3862 	BUG_ON(len > skb->len);
3863 	__skb_pull(skb, len);
3864 	skb_postpull_rcsum(skb, data, len);
3865 	return skb->data;
3866 }
3867 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3868 
3869 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3870 {
3871 	skb_frag_t head_frag;
3872 	struct page *page;
3873 
3874 	page = virt_to_head_page(frag_skb->head);
3875 	__skb_frag_set_page(&head_frag, page);
3876 	skb_frag_off_set(&head_frag, frag_skb->data -
3877 			 (unsigned char *)page_address(page));
3878 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3879 	return head_frag;
3880 }
3881 
3882 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3883 				 netdev_features_t features,
3884 				 unsigned int offset)
3885 {
3886 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3887 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3888 	unsigned int delta_truesize = 0;
3889 	unsigned int delta_len = 0;
3890 	struct sk_buff *tail = NULL;
3891 	struct sk_buff *nskb, *tmp;
3892 	int len_diff, err;
3893 
3894 	skb_push(skb, -skb_network_offset(skb) + offset);
3895 
3896 	skb_shinfo(skb)->frag_list = NULL;
3897 
3898 	do {
3899 		nskb = list_skb;
3900 		list_skb = list_skb->next;
3901 
3902 		err = 0;
3903 		delta_truesize += nskb->truesize;
3904 		if (skb_shared(nskb)) {
3905 			tmp = skb_clone(nskb, GFP_ATOMIC);
3906 			if (tmp) {
3907 				consume_skb(nskb);
3908 				nskb = tmp;
3909 				err = skb_unclone(nskb, GFP_ATOMIC);
3910 			} else {
3911 				err = -ENOMEM;
3912 			}
3913 		}
3914 
3915 		if (!tail)
3916 			skb->next = nskb;
3917 		else
3918 			tail->next = nskb;
3919 
3920 		if (unlikely(err)) {
3921 			nskb->next = list_skb;
3922 			goto err_linearize;
3923 		}
3924 
3925 		tail = nskb;
3926 
3927 		delta_len += nskb->len;
3928 
3929 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3930 
3931 		skb_release_head_state(nskb);
3932 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3933 		__copy_skb_header(nskb, skb);
3934 
3935 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3936 		nskb->transport_header += len_diff;
3937 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3938 						 nskb->data - tnl_hlen,
3939 						 offset + tnl_hlen);
3940 
3941 		if (skb_needs_linearize(nskb, features) &&
3942 		    __skb_linearize(nskb))
3943 			goto err_linearize;
3944 
3945 	} while (list_skb);
3946 
3947 	skb->truesize = skb->truesize - delta_truesize;
3948 	skb->data_len = skb->data_len - delta_len;
3949 	skb->len = skb->len - delta_len;
3950 
3951 	skb_gso_reset(skb);
3952 
3953 	skb->prev = tail;
3954 
3955 	if (skb_needs_linearize(skb, features) &&
3956 	    __skb_linearize(skb))
3957 		goto err_linearize;
3958 
3959 	skb_get(skb);
3960 
3961 	return skb;
3962 
3963 err_linearize:
3964 	kfree_skb_list(skb->next);
3965 	skb->next = NULL;
3966 	return ERR_PTR(-ENOMEM);
3967 }
3968 EXPORT_SYMBOL_GPL(skb_segment_list);
3969 
3970 /**
3971  *	skb_segment - Perform protocol segmentation on skb.
3972  *	@head_skb: buffer to segment
3973  *	@features: features for the output path (see dev->features)
3974  *
3975  *	This function performs segmentation on the given skb.  It returns
3976  *	a pointer to the first in a list of new skbs for the segments.
3977  *	In case of error it returns ERR_PTR(err).
3978  */
3979 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3980 			    netdev_features_t features)
3981 {
3982 	struct sk_buff *segs = NULL;
3983 	struct sk_buff *tail = NULL;
3984 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3985 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3986 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3987 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3988 	struct sk_buff *frag_skb = head_skb;
3989 	unsigned int offset = doffset;
3990 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3991 	unsigned int partial_segs = 0;
3992 	unsigned int headroom;
3993 	unsigned int len = head_skb->len;
3994 	__be16 proto;
3995 	bool csum, sg;
3996 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3997 	int err = -ENOMEM;
3998 	int i = 0;
3999 	int pos;
4000 
4001 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4002 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4003 		/* gso_size is untrusted, and we have a frag_list with a linear
4004 		 * non head_frag head.
4005 		 *
4006 		 * (we assume checking the first list_skb member suffices;
4007 		 * i.e if either of the list_skb members have non head_frag
4008 		 * head, then the first one has too).
4009 		 *
4010 		 * If head_skb's headlen does not fit requested gso_size, it
4011 		 * means that the frag_list members do NOT terminate on exact
4012 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4013 		 * sharing. Therefore we must fallback to copying the frag_list
4014 		 * skbs; we do so by disabling SG.
4015 		 */
4016 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4017 			features &= ~NETIF_F_SG;
4018 	}
4019 
4020 	__skb_push(head_skb, doffset);
4021 	proto = skb_network_protocol(head_skb, NULL);
4022 	if (unlikely(!proto))
4023 		return ERR_PTR(-EINVAL);
4024 
4025 	sg = !!(features & NETIF_F_SG);
4026 	csum = !!can_checksum_protocol(features, proto);
4027 
4028 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4029 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4030 			struct sk_buff *iter;
4031 			unsigned int frag_len;
4032 
4033 			if (!list_skb ||
4034 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4035 				goto normal;
4036 
4037 			/* If we get here then all the required
4038 			 * GSO features except frag_list are supported.
4039 			 * Try to split the SKB to multiple GSO SKBs
4040 			 * with no frag_list.
4041 			 * Currently we can do that only when the buffers don't
4042 			 * have a linear part and all the buffers except
4043 			 * the last are of the same length.
4044 			 */
4045 			frag_len = list_skb->len;
4046 			skb_walk_frags(head_skb, iter) {
4047 				if (frag_len != iter->len && iter->next)
4048 					goto normal;
4049 				if (skb_headlen(iter) && !iter->head_frag)
4050 					goto normal;
4051 
4052 				len -= iter->len;
4053 			}
4054 
4055 			if (len != frag_len)
4056 				goto normal;
4057 		}
4058 
4059 		/* GSO partial only requires that we trim off any excess that
4060 		 * doesn't fit into an MSS sized block, so take care of that
4061 		 * now.
4062 		 */
4063 		partial_segs = len / mss;
4064 		if (partial_segs > 1)
4065 			mss *= partial_segs;
4066 		else
4067 			partial_segs = 0;
4068 	}
4069 
4070 normal:
4071 	headroom = skb_headroom(head_skb);
4072 	pos = skb_headlen(head_skb);
4073 
4074 	do {
4075 		struct sk_buff *nskb;
4076 		skb_frag_t *nskb_frag;
4077 		int hsize;
4078 		int size;
4079 
4080 		if (unlikely(mss == GSO_BY_FRAGS)) {
4081 			len = list_skb->len;
4082 		} else {
4083 			len = head_skb->len - offset;
4084 			if (len > mss)
4085 				len = mss;
4086 		}
4087 
4088 		hsize = skb_headlen(head_skb) - offset;
4089 
4090 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4091 		    (skb_headlen(list_skb) == len || sg)) {
4092 			BUG_ON(skb_headlen(list_skb) > len);
4093 
4094 			i = 0;
4095 			nfrags = skb_shinfo(list_skb)->nr_frags;
4096 			frag = skb_shinfo(list_skb)->frags;
4097 			frag_skb = list_skb;
4098 			pos += skb_headlen(list_skb);
4099 
4100 			while (pos < offset + len) {
4101 				BUG_ON(i >= nfrags);
4102 
4103 				size = skb_frag_size(frag);
4104 				if (pos + size > offset + len)
4105 					break;
4106 
4107 				i++;
4108 				pos += size;
4109 				frag++;
4110 			}
4111 
4112 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4113 			list_skb = list_skb->next;
4114 
4115 			if (unlikely(!nskb))
4116 				goto err;
4117 
4118 			if (unlikely(pskb_trim(nskb, len))) {
4119 				kfree_skb(nskb);
4120 				goto err;
4121 			}
4122 
4123 			hsize = skb_end_offset(nskb);
4124 			if (skb_cow_head(nskb, doffset + headroom)) {
4125 				kfree_skb(nskb);
4126 				goto err;
4127 			}
4128 
4129 			nskb->truesize += skb_end_offset(nskb) - hsize;
4130 			skb_release_head_state(nskb);
4131 			__skb_push(nskb, doffset);
4132 		} else {
4133 			if (hsize < 0)
4134 				hsize = 0;
4135 			if (hsize > len || !sg)
4136 				hsize = len;
4137 
4138 			nskb = __alloc_skb(hsize + doffset + headroom,
4139 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4140 					   NUMA_NO_NODE);
4141 
4142 			if (unlikely(!nskb))
4143 				goto err;
4144 
4145 			skb_reserve(nskb, headroom);
4146 			__skb_put(nskb, doffset);
4147 		}
4148 
4149 		if (segs)
4150 			tail->next = nskb;
4151 		else
4152 			segs = nskb;
4153 		tail = nskb;
4154 
4155 		__copy_skb_header(nskb, head_skb);
4156 
4157 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4158 		skb_reset_mac_len(nskb);
4159 
4160 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4161 						 nskb->data - tnl_hlen,
4162 						 doffset + tnl_hlen);
4163 
4164 		if (nskb->len == len + doffset)
4165 			goto perform_csum_check;
4166 
4167 		if (!sg) {
4168 			if (!csum) {
4169 				if (!nskb->remcsum_offload)
4170 					nskb->ip_summed = CHECKSUM_NONE;
4171 				SKB_GSO_CB(nskb)->csum =
4172 					skb_copy_and_csum_bits(head_skb, offset,
4173 							       skb_put(nskb,
4174 								       len),
4175 							       len);
4176 				SKB_GSO_CB(nskb)->csum_start =
4177 					skb_headroom(nskb) + doffset;
4178 			} else {
4179 				skb_copy_bits(head_skb, offset,
4180 					      skb_put(nskb, len),
4181 					      len);
4182 			}
4183 			continue;
4184 		}
4185 
4186 		nskb_frag = skb_shinfo(nskb)->frags;
4187 
4188 		skb_copy_from_linear_data_offset(head_skb, offset,
4189 						 skb_put(nskb, hsize), hsize);
4190 
4191 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4192 					   SKBFL_SHARED_FRAG;
4193 
4194 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4195 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4196 			goto err;
4197 
4198 		while (pos < offset + len) {
4199 			if (i >= nfrags) {
4200 				i = 0;
4201 				nfrags = skb_shinfo(list_skb)->nr_frags;
4202 				frag = skb_shinfo(list_skb)->frags;
4203 				frag_skb = list_skb;
4204 				if (!skb_headlen(list_skb)) {
4205 					BUG_ON(!nfrags);
4206 				} else {
4207 					BUG_ON(!list_skb->head_frag);
4208 
4209 					/* to make room for head_frag. */
4210 					i--;
4211 					frag--;
4212 				}
4213 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4214 				    skb_zerocopy_clone(nskb, frag_skb,
4215 						       GFP_ATOMIC))
4216 					goto err;
4217 
4218 				list_skb = list_skb->next;
4219 			}
4220 
4221 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4222 				     MAX_SKB_FRAGS)) {
4223 				net_warn_ratelimited(
4224 					"skb_segment: too many frags: %u %u\n",
4225 					pos, mss);
4226 				err = -EINVAL;
4227 				goto err;
4228 			}
4229 
4230 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4231 			__skb_frag_ref(nskb_frag);
4232 			size = skb_frag_size(nskb_frag);
4233 
4234 			if (pos < offset) {
4235 				skb_frag_off_add(nskb_frag, offset - pos);
4236 				skb_frag_size_sub(nskb_frag, offset - pos);
4237 			}
4238 
4239 			skb_shinfo(nskb)->nr_frags++;
4240 
4241 			if (pos + size <= offset + len) {
4242 				i++;
4243 				frag++;
4244 				pos += size;
4245 			} else {
4246 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4247 				goto skip_fraglist;
4248 			}
4249 
4250 			nskb_frag++;
4251 		}
4252 
4253 skip_fraglist:
4254 		nskb->data_len = len - hsize;
4255 		nskb->len += nskb->data_len;
4256 		nskb->truesize += nskb->data_len;
4257 
4258 perform_csum_check:
4259 		if (!csum) {
4260 			if (skb_has_shared_frag(nskb) &&
4261 			    __skb_linearize(nskb))
4262 				goto err;
4263 
4264 			if (!nskb->remcsum_offload)
4265 				nskb->ip_summed = CHECKSUM_NONE;
4266 			SKB_GSO_CB(nskb)->csum =
4267 				skb_checksum(nskb, doffset,
4268 					     nskb->len - doffset, 0);
4269 			SKB_GSO_CB(nskb)->csum_start =
4270 				skb_headroom(nskb) + doffset;
4271 		}
4272 	} while ((offset += len) < head_skb->len);
4273 
4274 	/* Some callers want to get the end of the list.
4275 	 * Put it in segs->prev to avoid walking the list.
4276 	 * (see validate_xmit_skb_list() for example)
4277 	 */
4278 	segs->prev = tail;
4279 
4280 	if (partial_segs) {
4281 		struct sk_buff *iter;
4282 		int type = skb_shinfo(head_skb)->gso_type;
4283 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4284 
4285 		/* Update type to add partial and then remove dodgy if set */
4286 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4287 		type &= ~SKB_GSO_DODGY;
4288 
4289 		/* Update GSO info and prepare to start updating headers on
4290 		 * our way back down the stack of protocols.
4291 		 */
4292 		for (iter = segs; iter; iter = iter->next) {
4293 			skb_shinfo(iter)->gso_size = gso_size;
4294 			skb_shinfo(iter)->gso_segs = partial_segs;
4295 			skb_shinfo(iter)->gso_type = type;
4296 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4297 		}
4298 
4299 		if (tail->len - doffset <= gso_size)
4300 			skb_shinfo(tail)->gso_size = 0;
4301 		else if (tail != segs)
4302 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4303 	}
4304 
4305 	/* Following permits correct backpressure, for protocols
4306 	 * using skb_set_owner_w().
4307 	 * Idea is to tranfert ownership from head_skb to last segment.
4308 	 */
4309 	if (head_skb->destructor == sock_wfree) {
4310 		swap(tail->truesize, head_skb->truesize);
4311 		swap(tail->destructor, head_skb->destructor);
4312 		swap(tail->sk, head_skb->sk);
4313 	}
4314 	return segs;
4315 
4316 err:
4317 	kfree_skb_list(segs);
4318 	return ERR_PTR(err);
4319 }
4320 EXPORT_SYMBOL_GPL(skb_segment);
4321 
4322 #ifdef CONFIG_SKB_EXTENSIONS
4323 #define SKB_EXT_ALIGN_VALUE	8
4324 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4325 
4326 static const u8 skb_ext_type_len[] = {
4327 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4328 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4329 #endif
4330 #ifdef CONFIG_XFRM
4331 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4332 #endif
4333 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4334 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4335 #endif
4336 #if IS_ENABLED(CONFIG_MPTCP)
4337 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4338 #endif
4339 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4340 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4341 #endif
4342 };
4343 
4344 static __always_inline unsigned int skb_ext_total_length(void)
4345 {
4346 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4347 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4348 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4349 #endif
4350 #ifdef CONFIG_XFRM
4351 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4352 #endif
4353 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4354 		skb_ext_type_len[TC_SKB_EXT] +
4355 #endif
4356 #if IS_ENABLED(CONFIG_MPTCP)
4357 		skb_ext_type_len[SKB_EXT_MPTCP] +
4358 #endif
4359 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4360 		skb_ext_type_len[SKB_EXT_MCTP] +
4361 #endif
4362 		0;
4363 }
4364 
4365 static void skb_extensions_init(void)
4366 {
4367 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4368 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4369 
4370 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4371 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4372 					     0,
4373 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4374 					     NULL);
4375 }
4376 #else
4377 static void skb_extensions_init(void) {}
4378 #endif
4379 
4380 void __init skb_init(void)
4381 {
4382 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4383 					      sizeof(struct sk_buff),
4384 					      0,
4385 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4386 					      offsetof(struct sk_buff, cb),
4387 					      sizeof_field(struct sk_buff, cb),
4388 					      NULL);
4389 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4390 						sizeof(struct sk_buff_fclones),
4391 						0,
4392 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4393 						NULL);
4394 	skb_extensions_init();
4395 }
4396 
4397 static int
4398 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4399 	       unsigned int recursion_level)
4400 {
4401 	int start = skb_headlen(skb);
4402 	int i, copy = start - offset;
4403 	struct sk_buff *frag_iter;
4404 	int elt = 0;
4405 
4406 	if (unlikely(recursion_level >= 24))
4407 		return -EMSGSIZE;
4408 
4409 	if (copy > 0) {
4410 		if (copy > len)
4411 			copy = len;
4412 		sg_set_buf(sg, skb->data + offset, copy);
4413 		elt++;
4414 		if ((len -= copy) == 0)
4415 			return elt;
4416 		offset += copy;
4417 	}
4418 
4419 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4420 		int end;
4421 
4422 		WARN_ON(start > offset + len);
4423 
4424 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4425 		if ((copy = end - offset) > 0) {
4426 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4427 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4428 				return -EMSGSIZE;
4429 
4430 			if (copy > len)
4431 				copy = len;
4432 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4433 				    skb_frag_off(frag) + offset - start);
4434 			elt++;
4435 			if (!(len -= copy))
4436 				return elt;
4437 			offset += copy;
4438 		}
4439 		start = end;
4440 	}
4441 
4442 	skb_walk_frags(skb, frag_iter) {
4443 		int end, ret;
4444 
4445 		WARN_ON(start > offset + len);
4446 
4447 		end = start + frag_iter->len;
4448 		if ((copy = end - offset) > 0) {
4449 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4450 				return -EMSGSIZE;
4451 
4452 			if (copy > len)
4453 				copy = len;
4454 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4455 					      copy, recursion_level + 1);
4456 			if (unlikely(ret < 0))
4457 				return ret;
4458 			elt += ret;
4459 			if ((len -= copy) == 0)
4460 				return elt;
4461 			offset += copy;
4462 		}
4463 		start = end;
4464 	}
4465 	BUG_ON(len);
4466 	return elt;
4467 }
4468 
4469 /**
4470  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4471  *	@skb: Socket buffer containing the buffers to be mapped
4472  *	@sg: The scatter-gather list to map into
4473  *	@offset: The offset into the buffer's contents to start mapping
4474  *	@len: Length of buffer space to be mapped
4475  *
4476  *	Fill the specified scatter-gather list with mappings/pointers into a
4477  *	region of the buffer space attached to a socket buffer. Returns either
4478  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4479  *	could not fit.
4480  */
4481 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4482 {
4483 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4484 
4485 	if (nsg <= 0)
4486 		return nsg;
4487 
4488 	sg_mark_end(&sg[nsg - 1]);
4489 
4490 	return nsg;
4491 }
4492 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4493 
4494 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4495  * sglist without mark the sg which contain last skb data as the end.
4496  * So the caller can mannipulate sg list as will when padding new data after
4497  * the first call without calling sg_unmark_end to expend sg list.
4498  *
4499  * Scenario to use skb_to_sgvec_nomark:
4500  * 1. sg_init_table
4501  * 2. skb_to_sgvec_nomark(payload1)
4502  * 3. skb_to_sgvec_nomark(payload2)
4503  *
4504  * This is equivalent to:
4505  * 1. sg_init_table
4506  * 2. skb_to_sgvec(payload1)
4507  * 3. sg_unmark_end
4508  * 4. skb_to_sgvec(payload2)
4509  *
4510  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4511  * is more preferable.
4512  */
4513 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4514 			int offset, int len)
4515 {
4516 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4517 }
4518 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4519 
4520 
4521 
4522 /**
4523  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4524  *	@skb: The socket buffer to check.
4525  *	@tailbits: Amount of trailing space to be added
4526  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4527  *
4528  *	Make sure that the data buffers attached to a socket buffer are
4529  *	writable. If they are not, private copies are made of the data buffers
4530  *	and the socket buffer is set to use these instead.
4531  *
4532  *	If @tailbits is given, make sure that there is space to write @tailbits
4533  *	bytes of data beyond current end of socket buffer.  @trailer will be
4534  *	set to point to the skb in which this space begins.
4535  *
4536  *	The number of scatterlist elements required to completely map the
4537  *	COW'd and extended socket buffer will be returned.
4538  */
4539 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4540 {
4541 	int copyflag;
4542 	int elt;
4543 	struct sk_buff *skb1, **skb_p;
4544 
4545 	/* If skb is cloned or its head is paged, reallocate
4546 	 * head pulling out all the pages (pages are considered not writable
4547 	 * at the moment even if they are anonymous).
4548 	 */
4549 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4550 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4551 		return -ENOMEM;
4552 
4553 	/* Easy case. Most of packets will go this way. */
4554 	if (!skb_has_frag_list(skb)) {
4555 		/* A little of trouble, not enough of space for trailer.
4556 		 * This should not happen, when stack is tuned to generate
4557 		 * good frames. OK, on miss we reallocate and reserve even more
4558 		 * space, 128 bytes is fair. */
4559 
4560 		if (skb_tailroom(skb) < tailbits &&
4561 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4562 			return -ENOMEM;
4563 
4564 		/* Voila! */
4565 		*trailer = skb;
4566 		return 1;
4567 	}
4568 
4569 	/* Misery. We are in troubles, going to mincer fragments... */
4570 
4571 	elt = 1;
4572 	skb_p = &skb_shinfo(skb)->frag_list;
4573 	copyflag = 0;
4574 
4575 	while ((skb1 = *skb_p) != NULL) {
4576 		int ntail = 0;
4577 
4578 		/* The fragment is partially pulled by someone,
4579 		 * this can happen on input. Copy it and everything
4580 		 * after it. */
4581 
4582 		if (skb_shared(skb1))
4583 			copyflag = 1;
4584 
4585 		/* If the skb is the last, worry about trailer. */
4586 
4587 		if (skb1->next == NULL && tailbits) {
4588 			if (skb_shinfo(skb1)->nr_frags ||
4589 			    skb_has_frag_list(skb1) ||
4590 			    skb_tailroom(skb1) < tailbits)
4591 				ntail = tailbits + 128;
4592 		}
4593 
4594 		if (copyflag ||
4595 		    skb_cloned(skb1) ||
4596 		    ntail ||
4597 		    skb_shinfo(skb1)->nr_frags ||
4598 		    skb_has_frag_list(skb1)) {
4599 			struct sk_buff *skb2;
4600 
4601 			/* Fuck, we are miserable poor guys... */
4602 			if (ntail == 0)
4603 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4604 			else
4605 				skb2 = skb_copy_expand(skb1,
4606 						       skb_headroom(skb1),
4607 						       ntail,
4608 						       GFP_ATOMIC);
4609 			if (unlikely(skb2 == NULL))
4610 				return -ENOMEM;
4611 
4612 			if (skb1->sk)
4613 				skb_set_owner_w(skb2, skb1->sk);
4614 
4615 			/* Looking around. Are we still alive?
4616 			 * OK, link new skb, drop old one */
4617 
4618 			skb2->next = skb1->next;
4619 			*skb_p = skb2;
4620 			kfree_skb(skb1);
4621 			skb1 = skb2;
4622 		}
4623 		elt++;
4624 		*trailer = skb1;
4625 		skb_p = &skb1->next;
4626 	}
4627 
4628 	return elt;
4629 }
4630 EXPORT_SYMBOL_GPL(skb_cow_data);
4631 
4632 static void sock_rmem_free(struct sk_buff *skb)
4633 {
4634 	struct sock *sk = skb->sk;
4635 
4636 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4637 }
4638 
4639 static void skb_set_err_queue(struct sk_buff *skb)
4640 {
4641 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4642 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4643 	 */
4644 	skb->pkt_type = PACKET_OUTGOING;
4645 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4646 }
4647 
4648 /*
4649  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4650  */
4651 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4652 {
4653 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4654 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4655 		return -ENOMEM;
4656 
4657 	skb_orphan(skb);
4658 	skb->sk = sk;
4659 	skb->destructor = sock_rmem_free;
4660 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4661 	skb_set_err_queue(skb);
4662 
4663 	/* before exiting rcu section, make sure dst is refcounted */
4664 	skb_dst_force(skb);
4665 
4666 	skb_queue_tail(&sk->sk_error_queue, skb);
4667 	if (!sock_flag(sk, SOCK_DEAD))
4668 		sk_error_report(sk);
4669 	return 0;
4670 }
4671 EXPORT_SYMBOL(sock_queue_err_skb);
4672 
4673 static bool is_icmp_err_skb(const struct sk_buff *skb)
4674 {
4675 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4676 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4677 }
4678 
4679 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4680 {
4681 	struct sk_buff_head *q = &sk->sk_error_queue;
4682 	struct sk_buff *skb, *skb_next = NULL;
4683 	bool icmp_next = false;
4684 	unsigned long flags;
4685 
4686 	spin_lock_irqsave(&q->lock, flags);
4687 	skb = __skb_dequeue(q);
4688 	if (skb && (skb_next = skb_peek(q))) {
4689 		icmp_next = is_icmp_err_skb(skb_next);
4690 		if (icmp_next)
4691 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4692 	}
4693 	spin_unlock_irqrestore(&q->lock, flags);
4694 
4695 	if (is_icmp_err_skb(skb) && !icmp_next)
4696 		sk->sk_err = 0;
4697 
4698 	if (skb_next)
4699 		sk_error_report(sk);
4700 
4701 	return skb;
4702 }
4703 EXPORT_SYMBOL(sock_dequeue_err_skb);
4704 
4705 /**
4706  * skb_clone_sk - create clone of skb, and take reference to socket
4707  * @skb: the skb to clone
4708  *
4709  * This function creates a clone of a buffer that holds a reference on
4710  * sk_refcnt.  Buffers created via this function are meant to be
4711  * returned using sock_queue_err_skb, or free via kfree_skb.
4712  *
4713  * When passing buffers allocated with this function to sock_queue_err_skb
4714  * it is necessary to wrap the call with sock_hold/sock_put in order to
4715  * prevent the socket from being released prior to being enqueued on
4716  * the sk_error_queue.
4717  */
4718 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4719 {
4720 	struct sock *sk = skb->sk;
4721 	struct sk_buff *clone;
4722 
4723 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4724 		return NULL;
4725 
4726 	clone = skb_clone(skb, GFP_ATOMIC);
4727 	if (!clone) {
4728 		sock_put(sk);
4729 		return NULL;
4730 	}
4731 
4732 	clone->sk = sk;
4733 	clone->destructor = sock_efree;
4734 
4735 	return clone;
4736 }
4737 EXPORT_SYMBOL(skb_clone_sk);
4738 
4739 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4740 					struct sock *sk,
4741 					int tstype,
4742 					bool opt_stats)
4743 {
4744 	struct sock_exterr_skb *serr;
4745 	int err;
4746 
4747 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4748 
4749 	serr = SKB_EXT_ERR(skb);
4750 	memset(serr, 0, sizeof(*serr));
4751 	serr->ee.ee_errno = ENOMSG;
4752 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4753 	serr->ee.ee_info = tstype;
4754 	serr->opt_stats = opt_stats;
4755 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4756 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4757 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4758 		if (sk_is_tcp(sk))
4759 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4760 	}
4761 
4762 	err = sock_queue_err_skb(sk, skb);
4763 
4764 	if (err)
4765 		kfree_skb(skb);
4766 }
4767 
4768 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4769 {
4770 	bool ret;
4771 
4772 	if (likely(sysctl_tstamp_allow_data || tsonly))
4773 		return true;
4774 
4775 	read_lock_bh(&sk->sk_callback_lock);
4776 	ret = sk->sk_socket && sk->sk_socket->file &&
4777 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4778 	read_unlock_bh(&sk->sk_callback_lock);
4779 	return ret;
4780 }
4781 
4782 void skb_complete_tx_timestamp(struct sk_buff *skb,
4783 			       struct skb_shared_hwtstamps *hwtstamps)
4784 {
4785 	struct sock *sk = skb->sk;
4786 
4787 	if (!skb_may_tx_timestamp(sk, false))
4788 		goto err;
4789 
4790 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4791 	 * but only if the socket refcount is not zero.
4792 	 */
4793 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4794 		*skb_hwtstamps(skb) = *hwtstamps;
4795 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4796 		sock_put(sk);
4797 		return;
4798 	}
4799 
4800 err:
4801 	kfree_skb(skb);
4802 }
4803 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4804 
4805 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4806 		     const struct sk_buff *ack_skb,
4807 		     struct skb_shared_hwtstamps *hwtstamps,
4808 		     struct sock *sk, int tstype)
4809 {
4810 	struct sk_buff *skb;
4811 	bool tsonly, opt_stats = false;
4812 
4813 	if (!sk)
4814 		return;
4815 
4816 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4817 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4818 		return;
4819 
4820 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4821 	if (!skb_may_tx_timestamp(sk, tsonly))
4822 		return;
4823 
4824 	if (tsonly) {
4825 #ifdef CONFIG_INET
4826 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4827 		    sk_is_tcp(sk)) {
4828 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4829 							     ack_skb);
4830 			opt_stats = true;
4831 		} else
4832 #endif
4833 			skb = alloc_skb(0, GFP_ATOMIC);
4834 	} else {
4835 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4836 	}
4837 	if (!skb)
4838 		return;
4839 
4840 	if (tsonly) {
4841 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4842 					     SKBTX_ANY_TSTAMP;
4843 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4844 	}
4845 
4846 	if (hwtstamps)
4847 		*skb_hwtstamps(skb) = *hwtstamps;
4848 	else
4849 		__net_timestamp(skb);
4850 
4851 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4852 }
4853 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4854 
4855 void skb_tstamp_tx(struct sk_buff *orig_skb,
4856 		   struct skb_shared_hwtstamps *hwtstamps)
4857 {
4858 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4859 			       SCM_TSTAMP_SND);
4860 }
4861 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4862 
4863 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4864 {
4865 	struct sock *sk = skb->sk;
4866 	struct sock_exterr_skb *serr;
4867 	int err = 1;
4868 
4869 	skb->wifi_acked_valid = 1;
4870 	skb->wifi_acked = acked;
4871 
4872 	serr = SKB_EXT_ERR(skb);
4873 	memset(serr, 0, sizeof(*serr));
4874 	serr->ee.ee_errno = ENOMSG;
4875 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4876 
4877 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4878 	 * but only if the socket refcount is not zero.
4879 	 */
4880 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4881 		err = sock_queue_err_skb(sk, skb);
4882 		sock_put(sk);
4883 	}
4884 	if (err)
4885 		kfree_skb(skb);
4886 }
4887 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4888 
4889 /**
4890  * skb_partial_csum_set - set up and verify partial csum values for packet
4891  * @skb: the skb to set
4892  * @start: the number of bytes after skb->data to start checksumming.
4893  * @off: the offset from start to place the checksum.
4894  *
4895  * For untrusted partially-checksummed packets, we need to make sure the values
4896  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4897  *
4898  * This function checks and sets those values and skb->ip_summed: if this
4899  * returns false you should drop the packet.
4900  */
4901 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4902 {
4903 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4904 	u32 csum_start = skb_headroom(skb) + (u32)start;
4905 
4906 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4907 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4908 				     start, off, skb_headroom(skb), skb_headlen(skb));
4909 		return false;
4910 	}
4911 	skb->ip_summed = CHECKSUM_PARTIAL;
4912 	skb->csum_start = csum_start;
4913 	skb->csum_offset = off;
4914 	skb_set_transport_header(skb, start);
4915 	return true;
4916 }
4917 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4918 
4919 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4920 			       unsigned int max)
4921 {
4922 	if (skb_headlen(skb) >= len)
4923 		return 0;
4924 
4925 	/* If we need to pullup then pullup to the max, so we
4926 	 * won't need to do it again.
4927 	 */
4928 	if (max > skb->len)
4929 		max = skb->len;
4930 
4931 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4932 		return -ENOMEM;
4933 
4934 	if (skb_headlen(skb) < len)
4935 		return -EPROTO;
4936 
4937 	return 0;
4938 }
4939 
4940 #define MAX_TCP_HDR_LEN (15 * 4)
4941 
4942 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4943 				      typeof(IPPROTO_IP) proto,
4944 				      unsigned int off)
4945 {
4946 	int err;
4947 
4948 	switch (proto) {
4949 	case IPPROTO_TCP:
4950 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4951 					  off + MAX_TCP_HDR_LEN);
4952 		if (!err && !skb_partial_csum_set(skb, off,
4953 						  offsetof(struct tcphdr,
4954 							   check)))
4955 			err = -EPROTO;
4956 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4957 
4958 	case IPPROTO_UDP:
4959 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4960 					  off + sizeof(struct udphdr));
4961 		if (!err && !skb_partial_csum_set(skb, off,
4962 						  offsetof(struct udphdr,
4963 							   check)))
4964 			err = -EPROTO;
4965 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4966 	}
4967 
4968 	return ERR_PTR(-EPROTO);
4969 }
4970 
4971 /* This value should be large enough to cover a tagged ethernet header plus
4972  * maximally sized IP and TCP or UDP headers.
4973  */
4974 #define MAX_IP_HDR_LEN 128
4975 
4976 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4977 {
4978 	unsigned int off;
4979 	bool fragment;
4980 	__sum16 *csum;
4981 	int err;
4982 
4983 	fragment = false;
4984 
4985 	err = skb_maybe_pull_tail(skb,
4986 				  sizeof(struct iphdr),
4987 				  MAX_IP_HDR_LEN);
4988 	if (err < 0)
4989 		goto out;
4990 
4991 	if (ip_is_fragment(ip_hdr(skb)))
4992 		fragment = true;
4993 
4994 	off = ip_hdrlen(skb);
4995 
4996 	err = -EPROTO;
4997 
4998 	if (fragment)
4999 		goto out;
5000 
5001 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5002 	if (IS_ERR(csum))
5003 		return PTR_ERR(csum);
5004 
5005 	if (recalculate)
5006 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5007 					   ip_hdr(skb)->daddr,
5008 					   skb->len - off,
5009 					   ip_hdr(skb)->protocol, 0);
5010 	err = 0;
5011 
5012 out:
5013 	return err;
5014 }
5015 
5016 /* This value should be large enough to cover a tagged ethernet header plus
5017  * an IPv6 header, all options, and a maximal TCP or UDP header.
5018  */
5019 #define MAX_IPV6_HDR_LEN 256
5020 
5021 #define OPT_HDR(type, skb, off) \
5022 	(type *)(skb_network_header(skb) + (off))
5023 
5024 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5025 {
5026 	int err;
5027 	u8 nexthdr;
5028 	unsigned int off;
5029 	unsigned int len;
5030 	bool fragment;
5031 	bool done;
5032 	__sum16 *csum;
5033 
5034 	fragment = false;
5035 	done = false;
5036 
5037 	off = sizeof(struct ipv6hdr);
5038 
5039 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5040 	if (err < 0)
5041 		goto out;
5042 
5043 	nexthdr = ipv6_hdr(skb)->nexthdr;
5044 
5045 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5046 	while (off <= len && !done) {
5047 		switch (nexthdr) {
5048 		case IPPROTO_DSTOPTS:
5049 		case IPPROTO_HOPOPTS:
5050 		case IPPROTO_ROUTING: {
5051 			struct ipv6_opt_hdr *hp;
5052 
5053 			err = skb_maybe_pull_tail(skb,
5054 						  off +
5055 						  sizeof(struct ipv6_opt_hdr),
5056 						  MAX_IPV6_HDR_LEN);
5057 			if (err < 0)
5058 				goto out;
5059 
5060 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5061 			nexthdr = hp->nexthdr;
5062 			off += ipv6_optlen(hp);
5063 			break;
5064 		}
5065 		case IPPROTO_AH: {
5066 			struct ip_auth_hdr *hp;
5067 
5068 			err = skb_maybe_pull_tail(skb,
5069 						  off +
5070 						  sizeof(struct ip_auth_hdr),
5071 						  MAX_IPV6_HDR_LEN);
5072 			if (err < 0)
5073 				goto out;
5074 
5075 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5076 			nexthdr = hp->nexthdr;
5077 			off += ipv6_authlen(hp);
5078 			break;
5079 		}
5080 		case IPPROTO_FRAGMENT: {
5081 			struct frag_hdr *hp;
5082 
5083 			err = skb_maybe_pull_tail(skb,
5084 						  off +
5085 						  sizeof(struct frag_hdr),
5086 						  MAX_IPV6_HDR_LEN);
5087 			if (err < 0)
5088 				goto out;
5089 
5090 			hp = OPT_HDR(struct frag_hdr, skb, off);
5091 
5092 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5093 				fragment = true;
5094 
5095 			nexthdr = hp->nexthdr;
5096 			off += sizeof(struct frag_hdr);
5097 			break;
5098 		}
5099 		default:
5100 			done = true;
5101 			break;
5102 		}
5103 	}
5104 
5105 	err = -EPROTO;
5106 
5107 	if (!done || fragment)
5108 		goto out;
5109 
5110 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5111 	if (IS_ERR(csum))
5112 		return PTR_ERR(csum);
5113 
5114 	if (recalculate)
5115 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5116 					 &ipv6_hdr(skb)->daddr,
5117 					 skb->len - off, nexthdr, 0);
5118 	err = 0;
5119 
5120 out:
5121 	return err;
5122 }
5123 
5124 /**
5125  * skb_checksum_setup - set up partial checksum offset
5126  * @skb: the skb to set up
5127  * @recalculate: if true the pseudo-header checksum will be recalculated
5128  */
5129 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5130 {
5131 	int err;
5132 
5133 	switch (skb->protocol) {
5134 	case htons(ETH_P_IP):
5135 		err = skb_checksum_setup_ipv4(skb, recalculate);
5136 		break;
5137 
5138 	case htons(ETH_P_IPV6):
5139 		err = skb_checksum_setup_ipv6(skb, recalculate);
5140 		break;
5141 
5142 	default:
5143 		err = -EPROTO;
5144 		break;
5145 	}
5146 
5147 	return err;
5148 }
5149 EXPORT_SYMBOL(skb_checksum_setup);
5150 
5151 /**
5152  * skb_checksum_maybe_trim - maybe trims the given skb
5153  * @skb: the skb to check
5154  * @transport_len: the data length beyond the network header
5155  *
5156  * Checks whether the given skb has data beyond the given transport length.
5157  * If so, returns a cloned skb trimmed to this transport length.
5158  * Otherwise returns the provided skb. Returns NULL in error cases
5159  * (e.g. transport_len exceeds skb length or out-of-memory).
5160  *
5161  * Caller needs to set the skb transport header and free any returned skb if it
5162  * differs from the provided skb.
5163  */
5164 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5165 					       unsigned int transport_len)
5166 {
5167 	struct sk_buff *skb_chk;
5168 	unsigned int len = skb_transport_offset(skb) + transport_len;
5169 	int ret;
5170 
5171 	if (skb->len < len)
5172 		return NULL;
5173 	else if (skb->len == len)
5174 		return skb;
5175 
5176 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5177 	if (!skb_chk)
5178 		return NULL;
5179 
5180 	ret = pskb_trim_rcsum(skb_chk, len);
5181 	if (ret) {
5182 		kfree_skb(skb_chk);
5183 		return NULL;
5184 	}
5185 
5186 	return skb_chk;
5187 }
5188 
5189 /**
5190  * skb_checksum_trimmed - validate checksum of an skb
5191  * @skb: the skb to check
5192  * @transport_len: the data length beyond the network header
5193  * @skb_chkf: checksum function to use
5194  *
5195  * Applies the given checksum function skb_chkf to the provided skb.
5196  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5197  *
5198  * If the skb has data beyond the given transport length, then a
5199  * trimmed & cloned skb is checked and returned.
5200  *
5201  * Caller needs to set the skb transport header and free any returned skb if it
5202  * differs from the provided skb.
5203  */
5204 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5205 				     unsigned int transport_len,
5206 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5207 {
5208 	struct sk_buff *skb_chk;
5209 	unsigned int offset = skb_transport_offset(skb);
5210 	__sum16 ret;
5211 
5212 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5213 	if (!skb_chk)
5214 		goto err;
5215 
5216 	if (!pskb_may_pull(skb_chk, offset))
5217 		goto err;
5218 
5219 	skb_pull_rcsum(skb_chk, offset);
5220 	ret = skb_chkf(skb_chk);
5221 	skb_push_rcsum(skb_chk, offset);
5222 
5223 	if (ret)
5224 		goto err;
5225 
5226 	return skb_chk;
5227 
5228 err:
5229 	if (skb_chk && skb_chk != skb)
5230 		kfree_skb(skb_chk);
5231 
5232 	return NULL;
5233 
5234 }
5235 EXPORT_SYMBOL(skb_checksum_trimmed);
5236 
5237 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5238 {
5239 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5240 			     skb->dev->name);
5241 }
5242 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5243 
5244 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5245 {
5246 	if (head_stolen) {
5247 		skb_release_head_state(skb);
5248 		kmem_cache_free(skbuff_head_cache, skb);
5249 	} else {
5250 		__kfree_skb(skb);
5251 	}
5252 }
5253 EXPORT_SYMBOL(kfree_skb_partial);
5254 
5255 /**
5256  * skb_try_coalesce - try to merge skb to prior one
5257  * @to: prior buffer
5258  * @from: buffer to add
5259  * @fragstolen: pointer to boolean
5260  * @delta_truesize: how much more was allocated than was requested
5261  */
5262 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5263 		      bool *fragstolen, int *delta_truesize)
5264 {
5265 	struct skb_shared_info *to_shinfo, *from_shinfo;
5266 	int i, delta, len = from->len;
5267 
5268 	*fragstolen = false;
5269 
5270 	if (skb_cloned(to))
5271 		return false;
5272 
5273 	/* In general, avoid mixing slab allocated and page_pool allocated
5274 	 * pages within the same SKB. However when @to is not pp_recycle and
5275 	 * @from is cloned, we can transition frag pages from page_pool to
5276 	 * reference counted.
5277 	 *
5278 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5279 	 * @from is cloned, in case the SKB is using page_pool fragment
5280 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5281 	 * references for cloned SKBs at the moment that would result in
5282 	 * inconsistent reference counts.
5283 	 */
5284 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5285 		return false;
5286 
5287 	if (len <= skb_tailroom(to)) {
5288 		if (len)
5289 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5290 		*delta_truesize = 0;
5291 		return true;
5292 	}
5293 
5294 	to_shinfo = skb_shinfo(to);
5295 	from_shinfo = skb_shinfo(from);
5296 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5297 		return false;
5298 	if (skb_zcopy(to) || skb_zcopy(from))
5299 		return false;
5300 
5301 	if (skb_headlen(from) != 0) {
5302 		struct page *page;
5303 		unsigned int offset;
5304 
5305 		if (to_shinfo->nr_frags +
5306 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5307 			return false;
5308 
5309 		if (skb_head_is_locked(from))
5310 			return false;
5311 
5312 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5313 
5314 		page = virt_to_head_page(from->head);
5315 		offset = from->data - (unsigned char *)page_address(page);
5316 
5317 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5318 				   page, offset, skb_headlen(from));
5319 		*fragstolen = true;
5320 	} else {
5321 		if (to_shinfo->nr_frags +
5322 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5323 			return false;
5324 
5325 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5326 	}
5327 
5328 	WARN_ON_ONCE(delta < len);
5329 
5330 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5331 	       from_shinfo->frags,
5332 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5333 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5334 
5335 	if (!skb_cloned(from))
5336 		from_shinfo->nr_frags = 0;
5337 
5338 	/* if the skb is not cloned this does nothing
5339 	 * since we set nr_frags to 0.
5340 	 */
5341 	for (i = 0; i < from_shinfo->nr_frags; i++)
5342 		__skb_frag_ref(&from_shinfo->frags[i]);
5343 
5344 	to->truesize += delta;
5345 	to->len += len;
5346 	to->data_len += len;
5347 
5348 	*delta_truesize = delta;
5349 	return true;
5350 }
5351 EXPORT_SYMBOL(skb_try_coalesce);
5352 
5353 /**
5354  * skb_scrub_packet - scrub an skb
5355  *
5356  * @skb: buffer to clean
5357  * @xnet: packet is crossing netns
5358  *
5359  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5360  * into/from a tunnel. Some information have to be cleared during these
5361  * operations.
5362  * skb_scrub_packet can also be used to clean a skb before injecting it in
5363  * another namespace (@xnet == true). We have to clear all information in the
5364  * skb that could impact namespace isolation.
5365  */
5366 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5367 {
5368 	skb->pkt_type = PACKET_HOST;
5369 	skb->skb_iif = 0;
5370 	skb->ignore_df = 0;
5371 	skb_dst_drop(skb);
5372 	skb_ext_reset(skb);
5373 	nf_reset_ct(skb);
5374 	nf_reset_trace(skb);
5375 
5376 #ifdef CONFIG_NET_SWITCHDEV
5377 	skb->offload_fwd_mark = 0;
5378 	skb->offload_l3_fwd_mark = 0;
5379 #endif
5380 
5381 	if (!xnet)
5382 		return;
5383 
5384 	ipvs_reset(skb);
5385 	skb->mark = 0;
5386 	skb_clear_tstamp(skb);
5387 }
5388 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5389 
5390 /**
5391  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5392  *
5393  * @skb: GSO skb
5394  *
5395  * skb_gso_transport_seglen is used to determine the real size of the
5396  * individual segments, including Layer4 headers (TCP/UDP).
5397  *
5398  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5399  */
5400 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5401 {
5402 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5403 	unsigned int thlen = 0;
5404 
5405 	if (skb->encapsulation) {
5406 		thlen = skb_inner_transport_header(skb) -
5407 			skb_transport_header(skb);
5408 
5409 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5410 			thlen += inner_tcp_hdrlen(skb);
5411 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5412 		thlen = tcp_hdrlen(skb);
5413 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5414 		thlen = sizeof(struct sctphdr);
5415 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5416 		thlen = sizeof(struct udphdr);
5417 	}
5418 	/* UFO sets gso_size to the size of the fragmentation
5419 	 * payload, i.e. the size of the L4 (UDP) header is already
5420 	 * accounted for.
5421 	 */
5422 	return thlen + shinfo->gso_size;
5423 }
5424 
5425 /**
5426  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5427  *
5428  * @skb: GSO skb
5429  *
5430  * skb_gso_network_seglen is used to determine the real size of the
5431  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5432  *
5433  * The MAC/L2 header is not accounted for.
5434  */
5435 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5436 {
5437 	unsigned int hdr_len = skb_transport_header(skb) -
5438 			       skb_network_header(skb);
5439 
5440 	return hdr_len + skb_gso_transport_seglen(skb);
5441 }
5442 
5443 /**
5444  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5445  *
5446  * @skb: GSO skb
5447  *
5448  * skb_gso_mac_seglen is used to determine the real size of the
5449  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5450  * headers (TCP/UDP).
5451  */
5452 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5453 {
5454 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5455 
5456 	return hdr_len + skb_gso_transport_seglen(skb);
5457 }
5458 
5459 /**
5460  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5461  *
5462  * There are a couple of instances where we have a GSO skb, and we
5463  * want to determine what size it would be after it is segmented.
5464  *
5465  * We might want to check:
5466  * -    L3+L4+payload size (e.g. IP forwarding)
5467  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5468  *
5469  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5470  *
5471  * @skb: GSO skb
5472  *
5473  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5474  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5475  *
5476  * @max_len: The maximum permissible length.
5477  *
5478  * Returns true if the segmented length <= max length.
5479  */
5480 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5481 				      unsigned int seg_len,
5482 				      unsigned int max_len) {
5483 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5484 	const struct sk_buff *iter;
5485 
5486 	if (shinfo->gso_size != GSO_BY_FRAGS)
5487 		return seg_len <= max_len;
5488 
5489 	/* Undo this so we can re-use header sizes */
5490 	seg_len -= GSO_BY_FRAGS;
5491 
5492 	skb_walk_frags(skb, iter) {
5493 		if (seg_len + skb_headlen(iter) > max_len)
5494 			return false;
5495 	}
5496 
5497 	return true;
5498 }
5499 
5500 /**
5501  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5502  *
5503  * @skb: GSO skb
5504  * @mtu: MTU to validate against
5505  *
5506  * skb_gso_validate_network_len validates if a given skb will fit a
5507  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5508  * payload.
5509  */
5510 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5511 {
5512 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5513 }
5514 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5515 
5516 /**
5517  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5518  *
5519  * @skb: GSO skb
5520  * @len: length to validate against
5521  *
5522  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5523  * length once split, including L2, L3 and L4 headers and the payload.
5524  */
5525 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5526 {
5527 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5528 }
5529 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5530 
5531 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5532 {
5533 	int mac_len, meta_len;
5534 	void *meta;
5535 
5536 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5537 		kfree_skb(skb);
5538 		return NULL;
5539 	}
5540 
5541 	mac_len = skb->data - skb_mac_header(skb);
5542 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5543 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5544 			mac_len - VLAN_HLEN - ETH_TLEN);
5545 	}
5546 
5547 	meta_len = skb_metadata_len(skb);
5548 	if (meta_len) {
5549 		meta = skb_metadata_end(skb) - meta_len;
5550 		memmove(meta + VLAN_HLEN, meta, meta_len);
5551 	}
5552 
5553 	skb->mac_header += VLAN_HLEN;
5554 	return skb;
5555 }
5556 
5557 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5558 {
5559 	struct vlan_hdr *vhdr;
5560 	u16 vlan_tci;
5561 
5562 	if (unlikely(skb_vlan_tag_present(skb))) {
5563 		/* vlan_tci is already set-up so leave this for another time */
5564 		return skb;
5565 	}
5566 
5567 	skb = skb_share_check(skb, GFP_ATOMIC);
5568 	if (unlikely(!skb))
5569 		goto err_free;
5570 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5571 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5572 		goto err_free;
5573 
5574 	vhdr = (struct vlan_hdr *)skb->data;
5575 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5576 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5577 
5578 	skb_pull_rcsum(skb, VLAN_HLEN);
5579 	vlan_set_encap_proto(skb, vhdr);
5580 
5581 	skb = skb_reorder_vlan_header(skb);
5582 	if (unlikely(!skb))
5583 		goto err_free;
5584 
5585 	skb_reset_network_header(skb);
5586 	if (!skb_transport_header_was_set(skb))
5587 		skb_reset_transport_header(skb);
5588 	skb_reset_mac_len(skb);
5589 
5590 	return skb;
5591 
5592 err_free:
5593 	kfree_skb(skb);
5594 	return NULL;
5595 }
5596 EXPORT_SYMBOL(skb_vlan_untag);
5597 
5598 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5599 {
5600 	if (!pskb_may_pull(skb, write_len))
5601 		return -ENOMEM;
5602 
5603 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5604 		return 0;
5605 
5606 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5607 }
5608 EXPORT_SYMBOL(skb_ensure_writable);
5609 
5610 /* remove VLAN header from packet and update csum accordingly.
5611  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5612  */
5613 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5614 {
5615 	struct vlan_hdr *vhdr;
5616 	int offset = skb->data - skb_mac_header(skb);
5617 	int err;
5618 
5619 	if (WARN_ONCE(offset,
5620 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5621 		      offset)) {
5622 		return -EINVAL;
5623 	}
5624 
5625 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5626 	if (unlikely(err))
5627 		return err;
5628 
5629 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5630 
5631 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5632 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5633 
5634 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5635 	__skb_pull(skb, VLAN_HLEN);
5636 
5637 	vlan_set_encap_proto(skb, vhdr);
5638 	skb->mac_header += VLAN_HLEN;
5639 
5640 	if (skb_network_offset(skb) < ETH_HLEN)
5641 		skb_set_network_header(skb, ETH_HLEN);
5642 
5643 	skb_reset_mac_len(skb);
5644 
5645 	return err;
5646 }
5647 EXPORT_SYMBOL(__skb_vlan_pop);
5648 
5649 /* Pop a vlan tag either from hwaccel or from payload.
5650  * Expects skb->data at mac header.
5651  */
5652 int skb_vlan_pop(struct sk_buff *skb)
5653 {
5654 	u16 vlan_tci;
5655 	__be16 vlan_proto;
5656 	int err;
5657 
5658 	if (likely(skb_vlan_tag_present(skb))) {
5659 		__vlan_hwaccel_clear_tag(skb);
5660 	} else {
5661 		if (unlikely(!eth_type_vlan(skb->protocol)))
5662 			return 0;
5663 
5664 		err = __skb_vlan_pop(skb, &vlan_tci);
5665 		if (err)
5666 			return err;
5667 	}
5668 	/* move next vlan tag to hw accel tag */
5669 	if (likely(!eth_type_vlan(skb->protocol)))
5670 		return 0;
5671 
5672 	vlan_proto = skb->protocol;
5673 	err = __skb_vlan_pop(skb, &vlan_tci);
5674 	if (unlikely(err))
5675 		return err;
5676 
5677 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5678 	return 0;
5679 }
5680 EXPORT_SYMBOL(skb_vlan_pop);
5681 
5682 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5683  * Expects skb->data at mac header.
5684  */
5685 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5686 {
5687 	if (skb_vlan_tag_present(skb)) {
5688 		int offset = skb->data - skb_mac_header(skb);
5689 		int err;
5690 
5691 		if (WARN_ONCE(offset,
5692 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5693 			      offset)) {
5694 			return -EINVAL;
5695 		}
5696 
5697 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5698 					skb_vlan_tag_get(skb));
5699 		if (err)
5700 			return err;
5701 
5702 		skb->protocol = skb->vlan_proto;
5703 		skb->mac_len += VLAN_HLEN;
5704 
5705 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5706 	}
5707 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5708 	return 0;
5709 }
5710 EXPORT_SYMBOL(skb_vlan_push);
5711 
5712 /**
5713  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5714  *
5715  * @skb: Socket buffer to modify
5716  *
5717  * Drop the Ethernet header of @skb.
5718  *
5719  * Expects that skb->data points to the mac header and that no VLAN tags are
5720  * present.
5721  *
5722  * Returns 0 on success, -errno otherwise.
5723  */
5724 int skb_eth_pop(struct sk_buff *skb)
5725 {
5726 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5727 	    skb_network_offset(skb) < ETH_HLEN)
5728 		return -EPROTO;
5729 
5730 	skb_pull_rcsum(skb, ETH_HLEN);
5731 	skb_reset_mac_header(skb);
5732 	skb_reset_mac_len(skb);
5733 
5734 	return 0;
5735 }
5736 EXPORT_SYMBOL(skb_eth_pop);
5737 
5738 /**
5739  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5740  *
5741  * @skb: Socket buffer to modify
5742  * @dst: Destination MAC address of the new header
5743  * @src: Source MAC address of the new header
5744  *
5745  * Prepend @skb with a new Ethernet header.
5746  *
5747  * Expects that skb->data points to the mac header, which must be empty.
5748  *
5749  * Returns 0 on success, -errno otherwise.
5750  */
5751 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5752 		 const unsigned char *src)
5753 {
5754 	struct ethhdr *eth;
5755 	int err;
5756 
5757 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5758 		return -EPROTO;
5759 
5760 	err = skb_cow_head(skb, sizeof(*eth));
5761 	if (err < 0)
5762 		return err;
5763 
5764 	skb_push(skb, sizeof(*eth));
5765 	skb_reset_mac_header(skb);
5766 	skb_reset_mac_len(skb);
5767 
5768 	eth = eth_hdr(skb);
5769 	ether_addr_copy(eth->h_dest, dst);
5770 	ether_addr_copy(eth->h_source, src);
5771 	eth->h_proto = skb->protocol;
5772 
5773 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5774 
5775 	return 0;
5776 }
5777 EXPORT_SYMBOL(skb_eth_push);
5778 
5779 /* Update the ethertype of hdr and the skb csum value if required. */
5780 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5781 			     __be16 ethertype)
5782 {
5783 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5784 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5785 
5786 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5787 	}
5788 
5789 	hdr->h_proto = ethertype;
5790 }
5791 
5792 /**
5793  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5794  *                   the packet
5795  *
5796  * @skb: buffer
5797  * @mpls_lse: MPLS label stack entry to push
5798  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5799  * @mac_len: length of the MAC header
5800  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5801  *            ethernet
5802  *
5803  * Expects skb->data at mac header.
5804  *
5805  * Returns 0 on success, -errno otherwise.
5806  */
5807 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5808 		  int mac_len, bool ethernet)
5809 {
5810 	struct mpls_shim_hdr *lse;
5811 	int err;
5812 
5813 	if (unlikely(!eth_p_mpls(mpls_proto)))
5814 		return -EINVAL;
5815 
5816 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5817 	if (skb->encapsulation)
5818 		return -EINVAL;
5819 
5820 	err = skb_cow_head(skb, MPLS_HLEN);
5821 	if (unlikely(err))
5822 		return err;
5823 
5824 	if (!skb->inner_protocol) {
5825 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5826 		skb_set_inner_protocol(skb, skb->protocol);
5827 	}
5828 
5829 	skb_push(skb, MPLS_HLEN);
5830 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5831 		mac_len);
5832 	skb_reset_mac_header(skb);
5833 	skb_set_network_header(skb, mac_len);
5834 	skb_reset_mac_len(skb);
5835 
5836 	lse = mpls_hdr(skb);
5837 	lse->label_stack_entry = mpls_lse;
5838 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5839 
5840 	if (ethernet && mac_len >= ETH_HLEN)
5841 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5842 	skb->protocol = mpls_proto;
5843 
5844 	return 0;
5845 }
5846 EXPORT_SYMBOL_GPL(skb_mpls_push);
5847 
5848 /**
5849  * skb_mpls_pop() - pop the outermost MPLS header
5850  *
5851  * @skb: buffer
5852  * @next_proto: ethertype of header after popped MPLS header
5853  * @mac_len: length of the MAC header
5854  * @ethernet: flag to indicate if the packet is ethernet
5855  *
5856  * Expects skb->data at mac header.
5857  *
5858  * Returns 0 on success, -errno otherwise.
5859  */
5860 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5861 		 bool ethernet)
5862 {
5863 	int err;
5864 
5865 	if (unlikely(!eth_p_mpls(skb->protocol)))
5866 		return 0;
5867 
5868 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5869 	if (unlikely(err))
5870 		return err;
5871 
5872 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5873 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5874 		mac_len);
5875 
5876 	__skb_pull(skb, MPLS_HLEN);
5877 	skb_reset_mac_header(skb);
5878 	skb_set_network_header(skb, mac_len);
5879 
5880 	if (ethernet && mac_len >= ETH_HLEN) {
5881 		struct ethhdr *hdr;
5882 
5883 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5884 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5885 		skb_mod_eth_type(skb, hdr, next_proto);
5886 	}
5887 	skb->protocol = next_proto;
5888 
5889 	return 0;
5890 }
5891 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5892 
5893 /**
5894  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5895  *
5896  * @skb: buffer
5897  * @mpls_lse: new MPLS label stack entry to update to
5898  *
5899  * Expects skb->data at mac header.
5900  *
5901  * Returns 0 on success, -errno otherwise.
5902  */
5903 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5904 {
5905 	int err;
5906 
5907 	if (unlikely(!eth_p_mpls(skb->protocol)))
5908 		return -EINVAL;
5909 
5910 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5911 	if (unlikely(err))
5912 		return err;
5913 
5914 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5915 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5916 
5917 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5918 	}
5919 
5920 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5921 
5922 	return 0;
5923 }
5924 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5925 
5926 /**
5927  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5928  *
5929  * @skb: buffer
5930  *
5931  * Expects skb->data at mac header.
5932  *
5933  * Returns 0 on success, -errno otherwise.
5934  */
5935 int skb_mpls_dec_ttl(struct sk_buff *skb)
5936 {
5937 	u32 lse;
5938 	u8 ttl;
5939 
5940 	if (unlikely(!eth_p_mpls(skb->protocol)))
5941 		return -EINVAL;
5942 
5943 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5944 		return -ENOMEM;
5945 
5946 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5947 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5948 	if (!--ttl)
5949 		return -EINVAL;
5950 
5951 	lse &= ~MPLS_LS_TTL_MASK;
5952 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5953 
5954 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5955 }
5956 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5957 
5958 /**
5959  * alloc_skb_with_frags - allocate skb with page frags
5960  *
5961  * @header_len: size of linear part
5962  * @data_len: needed length in frags
5963  * @max_page_order: max page order desired.
5964  * @errcode: pointer to error code if any
5965  * @gfp_mask: allocation mask
5966  *
5967  * This can be used to allocate a paged skb, given a maximal order for frags.
5968  */
5969 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5970 				     unsigned long data_len,
5971 				     int max_page_order,
5972 				     int *errcode,
5973 				     gfp_t gfp_mask)
5974 {
5975 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5976 	unsigned long chunk;
5977 	struct sk_buff *skb;
5978 	struct page *page;
5979 	int i;
5980 
5981 	*errcode = -EMSGSIZE;
5982 	/* Note this test could be relaxed, if we succeed to allocate
5983 	 * high order pages...
5984 	 */
5985 	if (npages > MAX_SKB_FRAGS)
5986 		return NULL;
5987 
5988 	*errcode = -ENOBUFS;
5989 	skb = alloc_skb(header_len, gfp_mask);
5990 	if (!skb)
5991 		return NULL;
5992 
5993 	skb->truesize += npages << PAGE_SHIFT;
5994 
5995 	for (i = 0; npages > 0; i++) {
5996 		int order = max_page_order;
5997 
5998 		while (order) {
5999 			if (npages >= 1 << order) {
6000 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6001 						   __GFP_COMP |
6002 						   __GFP_NOWARN,
6003 						   order);
6004 				if (page)
6005 					goto fill_page;
6006 				/* Do not retry other high order allocations */
6007 				order = 1;
6008 				max_page_order = 0;
6009 			}
6010 			order--;
6011 		}
6012 		page = alloc_page(gfp_mask);
6013 		if (!page)
6014 			goto failure;
6015 fill_page:
6016 		chunk = min_t(unsigned long, data_len,
6017 			      PAGE_SIZE << order);
6018 		skb_fill_page_desc(skb, i, page, 0, chunk);
6019 		data_len -= chunk;
6020 		npages -= 1 << order;
6021 	}
6022 	return skb;
6023 
6024 failure:
6025 	kfree_skb(skb);
6026 	return NULL;
6027 }
6028 EXPORT_SYMBOL(alloc_skb_with_frags);
6029 
6030 /* carve out the first off bytes from skb when off < headlen */
6031 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6032 				    const int headlen, gfp_t gfp_mask)
6033 {
6034 	int i;
6035 	int size = skb_end_offset(skb);
6036 	int new_hlen = headlen - off;
6037 	u8 *data;
6038 
6039 	size = SKB_DATA_ALIGN(size);
6040 
6041 	if (skb_pfmemalloc(skb))
6042 		gfp_mask |= __GFP_MEMALLOC;
6043 	data = kmalloc_reserve(size +
6044 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6045 			       gfp_mask, NUMA_NO_NODE, NULL);
6046 	if (!data)
6047 		return -ENOMEM;
6048 
6049 	size = SKB_WITH_OVERHEAD(ksize(data));
6050 
6051 	/* Copy real data, and all frags */
6052 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6053 	skb->len -= off;
6054 
6055 	memcpy((struct skb_shared_info *)(data + size),
6056 	       skb_shinfo(skb),
6057 	       offsetof(struct skb_shared_info,
6058 			frags[skb_shinfo(skb)->nr_frags]));
6059 	if (skb_cloned(skb)) {
6060 		/* drop the old head gracefully */
6061 		if (skb_orphan_frags(skb, gfp_mask)) {
6062 			kfree(data);
6063 			return -ENOMEM;
6064 		}
6065 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6066 			skb_frag_ref(skb, i);
6067 		if (skb_has_frag_list(skb))
6068 			skb_clone_fraglist(skb);
6069 		skb_release_data(skb);
6070 	} else {
6071 		/* we can reuse existing recount- all we did was
6072 		 * relocate values
6073 		 */
6074 		skb_free_head(skb);
6075 	}
6076 
6077 	skb->head = data;
6078 	skb->data = data;
6079 	skb->head_frag = 0;
6080 	skb_set_end_offset(skb, size);
6081 	skb_set_tail_pointer(skb, skb_headlen(skb));
6082 	skb_headers_offset_update(skb, 0);
6083 	skb->cloned = 0;
6084 	skb->hdr_len = 0;
6085 	skb->nohdr = 0;
6086 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6087 
6088 	return 0;
6089 }
6090 
6091 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6092 
6093 /* carve out the first eat bytes from skb's frag_list. May recurse into
6094  * pskb_carve()
6095  */
6096 static int pskb_carve_frag_list(struct sk_buff *skb,
6097 				struct skb_shared_info *shinfo, int eat,
6098 				gfp_t gfp_mask)
6099 {
6100 	struct sk_buff *list = shinfo->frag_list;
6101 	struct sk_buff *clone = NULL;
6102 	struct sk_buff *insp = NULL;
6103 
6104 	do {
6105 		if (!list) {
6106 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6107 			return -EFAULT;
6108 		}
6109 		if (list->len <= eat) {
6110 			/* Eaten as whole. */
6111 			eat -= list->len;
6112 			list = list->next;
6113 			insp = list;
6114 		} else {
6115 			/* Eaten partially. */
6116 			if (skb_shared(list)) {
6117 				clone = skb_clone(list, gfp_mask);
6118 				if (!clone)
6119 					return -ENOMEM;
6120 				insp = list->next;
6121 				list = clone;
6122 			} else {
6123 				/* This may be pulled without problems. */
6124 				insp = list;
6125 			}
6126 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6127 				kfree_skb(clone);
6128 				return -ENOMEM;
6129 			}
6130 			break;
6131 		}
6132 	} while (eat);
6133 
6134 	/* Free pulled out fragments. */
6135 	while ((list = shinfo->frag_list) != insp) {
6136 		shinfo->frag_list = list->next;
6137 		consume_skb(list);
6138 	}
6139 	/* And insert new clone at head. */
6140 	if (clone) {
6141 		clone->next = list;
6142 		shinfo->frag_list = clone;
6143 	}
6144 	return 0;
6145 }
6146 
6147 /* carve off first len bytes from skb. Split line (off) is in the
6148  * non-linear part of skb
6149  */
6150 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6151 				       int pos, gfp_t gfp_mask)
6152 {
6153 	int i, k = 0;
6154 	int size = skb_end_offset(skb);
6155 	u8 *data;
6156 	const int nfrags = skb_shinfo(skb)->nr_frags;
6157 	struct skb_shared_info *shinfo;
6158 
6159 	size = SKB_DATA_ALIGN(size);
6160 
6161 	if (skb_pfmemalloc(skb))
6162 		gfp_mask |= __GFP_MEMALLOC;
6163 	data = kmalloc_reserve(size +
6164 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6165 			       gfp_mask, NUMA_NO_NODE, NULL);
6166 	if (!data)
6167 		return -ENOMEM;
6168 
6169 	size = SKB_WITH_OVERHEAD(ksize(data));
6170 
6171 	memcpy((struct skb_shared_info *)(data + size),
6172 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6173 	if (skb_orphan_frags(skb, gfp_mask)) {
6174 		kfree(data);
6175 		return -ENOMEM;
6176 	}
6177 	shinfo = (struct skb_shared_info *)(data + size);
6178 	for (i = 0; i < nfrags; i++) {
6179 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6180 
6181 		if (pos + fsize > off) {
6182 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6183 
6184 			if (pos < off) {
6185 				/* Split frag.
6186 				 * We have two variants in this case:
6187 				 * 1. Move all the frag to the second
6188 				 *    part, if it is possible. F.e.
6189 				 *    this approach is mandatory for TUX,
6190 				 *    where splitting is expensive.
6191 				 * 2. Split is accurately. We make this.
6192 				 */
6193 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6194 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6195 			}
6196 			skb_frag_ref(skb, i);
6197 			k++;
6198 		}
6199 		pos += fsize;
6200 	}
6201 	shinfo->nr_frags = k;
6202 	if (skb_has_frag_list(skb))
6203 		skb_clone_fraglist(skb);
6204 
6205 	/* split line is in frag list */
6206 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6207 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6208 		if (skb_has_frag_list(skb))
6209 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6210 		kfree(data);
6211 		return -ENOMEM;
6212 	}
6213 	skb_release_data(skb);
6214 
6215 	skb->head = data;
6216 	skb->head_frag = 0;
6217 	skb->data = data;
6218 	skb_set_end_offset(skb, size);
6219 	skb_reset_tail_pointer(skb);
6220 	skb_headers_offset_update(skb, 0);
6221 	skb->cloned   = 0;
6222 	skb->hdr_len  = 0;
6223 	skb->nohdr    = 0;
6224 	skb->len -= off;
6225 	skb->data_len = skb->len;
6226 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6227 	return 0;
6228 }
6229 
6230 /* remove len bytes from the beginning of the skb */
6231 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6232 {
6233 	int headlen = skb_headlen(skb);
6234 
6235 	if (len < headlen)
6236 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6237 	else
6238 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6239 }
6240 
6241 /* Extract to_copy bytes starting at off from skb, and return this in
6242  * a new skb
6243  */
6244 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6245 			     int to_copy, gfp_t gfp)
6246 {
6247 	struct sk_buff  *clone = skb_clone(skb, gfp);
6248 
6249 	if (!clone)
6250 		return NULL;
6251 
6252 	if (pskb_carve(clone, off, gfp) < 0 ||
6253 	    pskb_trim(clone, to_copy)) {
6254 		kfree_skb(clone);
6255 		return NULL;
6256 	}
6257 	return clone;
6258 }
6259 EXPORT_SYMBOL(pskb_extract);
6260 
6261 /**
6262  * skb_condense - try to get rid of fragments/frag_list if possible
6263  * @skb: buffer
6264  *
6265  * Can be used to save memory before skb is added to a busy queue.
6266  * If packet has bytes in frags and enough tail room in skb->head,
6267  * pull all of them, so that we can free the frags right now and adjust
6268  * truesize.
6269  * Notes:
6270  *	We do not reallocate skb->head thus can not fail.
6271  *	Caller must re-evaluate skb->truesize if needed.
6272  */
6273 void skb_condense(struct sk_buff *skb)
6274 {
6275 	if (skb->data_len) {
6276 		if (skb->data_len > skb->end - skb->tail ||
6277 		    skb_cloned(skb))
6278 			return;
6279 
6280 		/* Nice, we can free page frag(s) right now */
6281 		__pskb_pull_tail(skb, skb->data_len);
6282 	}
6283 	/* At this point, skb->truesize might be over estimated,
6284 	 * because skb had a fragment, and fragments do not tell
6285 	 * their truesize.
6286 	 * When we pulled its content into skb->head, fragment
6287 	 * was freed, but __pskb_pull_tail() could not possibly
6288 	 * adjust skb->truesize, not knowing the frag truesize.
6289 	 */
6290 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6291 }
6292 
6293 #ifdef CONFIG_SKB_EXTENSIONS
6294 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6295 {
6296 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6297 }
6298 
6299 /**
6300  * __skb_ext_alloc - allocate a new skb extensions storage
6301  *
6302  * @flags: See kmalloc().
6303  *
6304  * Returns the newly allocated pointer. The pointer can later attached to a
6305  * skb via __skb_ext_set().
6306  * Note: caller must handle the skb_ext as an opaque data.
6307  */
6308 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6309 {
6310 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6311 
6312 	if (new) {
6313 		memset(new->offset, 0, sizeof(new->offset));
6314 		refcount_set(&new->refcnt, 1);
6315 	}
6316 
6317 	return new;
6318 }
6319 
6320 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6321 					 unsigned int old_active)
6322 {
6323 	struct skb_ext *new;
6324 
6325 	if (refcount_read(&old->refcnt) == 1)
6326 		return old;
6327 
6328 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6329 	if (!new)
6330 		return NULL;
6331 
6332 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6333 	refcount_set(&new->refcnt, 1);
6334 
6335 #ifdef CONFIG_XFRM
6336 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6337 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6338 		unsigned int i;
6339 
6340 		for (i = 0; i < sp->len; i++)
6341 			xfrm_state_hold(sp->xvec[i]);
6342 	}
6343 #endif
6344 	__skb_ext_put(old);
6345 	return new;
6346 }
6347 
6348 /**
6349  * __skb_ext_set - attach the specified extension storage to this skb
6350  * @skb: buffer
6351  * @id: extension id
6352  * @ext: extension storage previously allocated via __skb_ext_alloc()
6353  *
6354  * Existing extensions, if any, are cleared.
6355  *
6356  * Returns the pointer to the extension.
6357  */
6358 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6359 		    struct skb_ext *ext)
6360 {
6361 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6362 
6363 	skb_ext_put(skb);
6364 	newlen = newoff + skb_ext_type_len[id];
6365 	ext->chunks = newlen;
6366 	ext->offset[id] = newoff;
6367 	skb->extensions = ext;
6368 	skb->active_extensions = 1 << id;
6369 	return skb_ext_get_ptr(ext, id);
6370 }
6371 
6372 /**
6373  * skb_ext_add - allocate space for given extension, COW if needed
6374  * @skb: buffer
6375  * @id: extension to allocate space for
6376  *
6377  * Allocates enough space for the given extension.
6378  * If the extension is already present, a pointer to that extension
6379  * is returned.
6380  *
6381  * If the skb was cloned, COW applies and the returned memory can be
6382  * modified without changing the extension space of clones buffers.
6383  *
6384  * Returns pointer to the extension or NULL on allocation failure.
6385  */
6386 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6387 {
6388 	struct skb_ext *new, *old = NULL;
6389 	unsigned int newlen, newoff;
6390 
6391 	if (skb->active_extensions) {
6392 		old = skb->extensions;
6393 
6394 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6395 		if (!new)
6396 			return NULL;
6397 
6398 		if (__skb_ext_exist(new, id))
6399 			goto set_active;
6400 
6401 		newoff = new->chunks;
6402 	} else {
6403 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6404 
6405 		new = __skb_ext_alloc(GFP_ATOMIC);
6406 		if (!new)
6407 			return NULL;
6408 	}
6409 
6410 	newlen = newoff + skb_ext_type_len[id];
6411 	new->chunks = newlen;
6412 	new->offset[id] = newoff;
6413 set_active:
6414 	skb->slow_gro = 1;
6415 	skb->extensions = new;
6416 	skb->active_extensions |= 1 << id;
6417 	return skb_ext_get_ptr(new, id);
6418 }
6419 EXPORT_SYMBOL(skb_ext_add);
6420 
6421 #ifdef CONFIG_XFRM
6422 static void skb_ext_put_sp(struct sec_path *sp)
6423 {
6424 	unsigned int i;
6425 
6426 	for (i = 0; i < sp->len; i++)
6427 		xfrm_state_put(sp->xvec[i]);
6428 }
6429 #endif
6430 
6431 #ifdef CONFIG_MCTP_FLOWS
6432 static void skb_ext_put_mctp(struct mctp_flow *flow)
6433 {
6434 	if (flow->key)
6435 		mctp_key_unref(flow->key);
6436 }
6437 #endif
6438 
6439 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6440 {
6441 	struct skb_ext *ext = skb->extensions;
6442 
6443 	skb->active_extensions &= ~(1 << id);
6444 	if (skb->active_extensions == 0) {
6445 		skb->extensions = NULL;
6446 		__skb_ext_put(ext);
6447 #ifdef CONFIG_XFRM
6448 	} else if (id == SKB_EXT_SEC_PATH &&
6449 		   refcount_read(&ext->refcnt) == 1) {
6450 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6451 
6452 		skb_ext_put_sp(sp);
6453 		sp->len = 0;
6454 #endif
6455 	}
6456 }
6457 EXPORT_SYMBOL(__skb_ext_del);
6458 
6459 void __skb_ext_put(struct skb_ext *ext)
6460 {
6461 	/* If this is last clone, nothing can increment
6462 	 * it after check passes.  Avoids one atomic op.
6463 	 */
6464 	if (refcount_read(&ext->refcnt) == 1)
6465 		goto free_now;
6466 
6467 	if (!refcount_dec_and_test(&ext->refcnt))
6468 		return;
6469 free_now:
6470 #ifdef CONFIG_XFRM
6471 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6472 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6473 #endif
6474 #ifdef CONFIG_MCTP_FLOWS
6475 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6476 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6477 #endif
6478 
6479 	kmem_cache_free(skbuff_ext_cache, ext);
6480 }
6481 EXPORT_SYMBOL(__skb_ext_put);
6482 #endif /* CONFIG_SKB_EXTENSIONS */
6483 
6484 /**
6485  * skb_attempt_defer_free - queue skb for remote freeing
6486  * @skb: buffer
6487  *
6488  * Put @skb in a per-cpu list, using the cpu which
6489  * allocated the skb/pages to reduce false sharing
6490  * and memory zone spinlock contention.
6491  */
6492 void skb_attempt_defer_free(struct sk_buff *skb)
6493 {
6494 	int cpu = skb->alloc_cpu;
6495 	struct softnet_data *sd;
6496 	unsigned long flags;
6497 	unsigned int defer_max;
6498 	bool kick;
6499 
6500 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6501 	    !cpu_online(cpu) ||
6502 	    cpu == raw_smp_processor_id()) {
6503 nodefer:	__kfree_skb(skb);
6504 		return;
6505 	}
6506 
6507 	sd = &per_cpu(softnet_data, cpu);
6508 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6509 	if (READ_ONCE(sd->defer_count) >= defer_max)
6510 		goto nodefer;
6511 
6512 	spin_lock_irqsave(&sd->defer_lock, flags);
6513 	/* Send an IPI every time queue reaches half capacity. */
6514 	kick = sd->defer_count == (defer_max >> 1);
6515 	/* Paired with the READ_ONCE() few lines above */
6516 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6517 
6518 	skb->next = sd->defer_list;
6519 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6520 	WRITE_ONCE(sd->defer_list, skb);
6521 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6522 
6523 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6524 	 * if we are unlucky enough (this seems very unlikely).
6525 	 */
6526 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6527 		smp_call_function_single_async(cpu, &sd->defer_csd);
6528 }
6529