xref: /linux/net/core/skbuff.c (revision e5d3a64e650c721f9e9b1f76e5df8c62f16b734d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	DEFINE_DROP_REASON(FN, FN)
98 };
99 EXPORT_SYMBOL(drop_reasons);
100 
101 /**
102  *	skb_panic - private function for out-of-line support
103  *	@skb:	buffer
104  *	@sz:	size
105  *	@addr:	address
106  *	@msg:	skb_over_panic or skb_under_panic
107  *
108  *	Out-of-line support for skb_put() and skb_push().
109  *	Called via the wrapper skb_over_panic() or skb_under_panic().
110  *	Keep out of line to prevent kernel bloat.
111  *	__builtin_return_address is not used because it is not always reliable.
112  */
113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
114 		      const char msg[])
115 {
116 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
117 		 msg, addr, skb->len, sz, skb->head, skb->data,
118 		 (unsigned long)skb->tail, (unsigned long)skb->end,
119 		 skb->dev ? skb->dev->name : "<NULL>");
120 	BUG();
121 }
122 
123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
124 {
125 	skb_panic(skb, sz, addr, __func__);
126 }
127 
128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
129 {
130 	skb_panic(skb, sz, addr, __func__);
131 }
132 
133 #define NAPI_SKB_CACHE_SIZE	64
134 #define NAPI_SKB_CACHE_BULK	16
135 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
136 
137 #if PAGE_SIZE == SZ_4K
138 
139 #define NAPI_HAS_SMALL_PAGE_FRAG	1
140 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
141 
142 /* specialized page frag allocator using a single order 0 page
143  * and slicing it into 1K sized fragment. Constrained to systems
144  * with a very limited amount of 1K fragments fitting a single
145  * page - to avoid excessive truesize underestimation
146  */
147 
148 struct page_frag_1k {
149 	void *va;
150 	u16 offset;
151 	bool pfmemalloc;
152 };
153 
154 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
155 {
156 	struct page *page;
157 	int offset;
158 
159 	offset = nc->offset - SZ_1K;
160 	if (likely(offset >= 0))
161 		goto use_frag;
162 
163 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
164 	if (!page)
165 		return NULL;
166 
167 	nc->va = page_address(page);
168 	nc->pfmemalloc = page_is_pfmemalloc(page);
169 	offset = PAGE_SIZE - SZ_1K;
170 	page_ref_add(page, offset / SZ_1K);
171 
172 use_frag:
173 	nc->offset = offset;
174 	return nc->va + offset;
175 }
176 #else
177 
178 /* the small page is actually unused in this build; add dummy helpers
179  * to please the compiler and avoid later preprocessor's conditionals
180  */
181 #define NAPI_HAS_SMALL_PAGE_FRAG	0
182 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
183 
184 struct page_frag_1k {
185 };
186 
187 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
188 {
189 	return NULL;
190 }
191 
192 #endif
193 
194 struct napi_alloc_cache {
195 	struct page_frag_cache page;
196 	struct page_frag_1k page_small;
197 	unsigned int skb_count;
198 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
199 };
200 
201 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
202 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
203 
204 /* Double check that napi_get_frags() allocates skbs with
205  * skb->head being backed by slab, not a page fragment.
206  * This is to make sure bug fixed in 3226b158e67c
207  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
208  * does not accidentally come back.
209  */
210 void napi_get_frags_check(struct napi_struct *napi)
211 {
212 	struct sk_buff *skb;
213 
214 	local_bh_disable();
215 	skb = napi_get_frags(napi);
216 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
217 	napi_free_frags(napi);
218 	local_bh_enable();
219 }
220 
221 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
222 {
223 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
224 
225 	fragsz = SKB_DATA_ALIGN(fragsz);
226 
227 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
228 }
229 EXPORT_SYMBOL(__napi_alloc_frag_align);
230 
231 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
232 {
233 	void *data;
234 
235 	fragsz = SKB_DATA_ALIGN(fragsz);
236 	if (in_hardirq() || irqs_disabled()) {
237 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
238 
239 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
240 	} else {
241 		struct napi_alloc_cache *nc;
242 
243 		local_bh_disable();
244 		nc = this_cpu_ptr(&napi_alloc_cache);
245 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
246 		local_bh_enable();
247 	}
248 	return data;
249 }
250 EXPORT_SYMBOL(__netdev_alloc_frag_align);
251 
252 static struct sk_buff *napi_skb_cache_get(void)
253 {
254 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
255 	struct sk_buff *skb;
256 
257 	if (unlikely(!nc->skb_count)) {
258 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
259 						      GFP_ATOMIC,
260 						      NAPI_SKB_CACHE_BULK,
261 						      nc->skb_cache);
262 		if (unlikely(!nc->skb_count))
263 			return NULL;
264 	}
265 
266 	skb = nc->skb_cache[--nc->skb_count];
267 	kasan_unpoison_object_data(skbuff_head_cache, skb);
268 
269 	return skb;
270 }
271 
272 /* Caller must provide SKB that is memset cleared */
273 static void __build_skb_around(struct sk_buff *skb, void *data,
274 			       unsigned int frag_size)
275 {
276 	struct skb_shared_info *shinfo;
277 	unsigned int size = frag_size ? : ksize(data);
278 
279 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
280 
281 	/* Assumes caller memset cleared SKB */
282 	skb->truesize = SKB_TRUESIZE(size);
283 	refcount_set(&skb->users, 1);
284 	skb->head = data;
285 	skb->data = data;
286 	skb_reset_tail_pointer(skb);
287 	skb_set_end_offset(skb, size);
288 	skb->mac_header = (typeof(skb->mac_header))~0U;
289 	skb->transport_header = (typeof(skb->transport_header))~0U;
290 	skb->alloc_cpu = raw_smp_processor_id();
291 	/* make sure we initialize shinfo sequentially */
292 	shinfo = skb_shinfo(skb);
293 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
294 	atomic_set(&shinfo->dataref, 1);
295 
296 	skb_set_kcov_handle(skb, kcov_common_handle());
297 }
298 
299 /**
300  * __build_skb - build a network buffer
301  * @data: data buffer provided by caller
302  * @frag_size: size of data, or 0 if head was kmalloced
303  *
304  * Allocate a new &sk_buff. Caller provides space holding head and
305  * skb_shared_info. @data must have been allocated by kmalloc() only if
306  * @frag_size is 0, otherwise data should come from the page allocator
307  *  or vmalloc()
308  * The return is the new skb buffer.
309  * On a failure the return is %NULL, and @data is not freed.
310  * Notes :
311  *  Before IO, driver allocates only data buffer where NIC put incoming frame
312  *  Driver should add room at head (NET_SKB_PAD) and
313  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
314  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
315  *  before giving packet to stack.
316  *  RX rings only contains data buffers, not full skbs.
317  */
318 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
319 {
320 	struct sk_buff *skb;
321 
322 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
323 	if (unlikely(!skb))
324 		return NULL;
325 
326 	memset(skb, 0, offsetof(struct sk_buff, tail));
327 	__build_skb_around(skb, data, frag_size);
328 
329 	return skb;
330 }
331 
332 /* build_skb() is wrapper over __build_skb(), that specifically
333  * takes care of skb->head and skb->pfmemalloc
334  * This means that if @frag_size is not zero, then @data must be backed
335  * by a page fragment, not kmalloc() or vmalloc()
336  */
337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 	struct sk_buff *skb = __build_skb(data, frag_size);
340 
341 	if (skb && frag_size) {
342 		skb->head_frag = 1;
343 		if (page_is_pfmemalloc(virt_to_head_page(data)))
344 			skb->pfmemalloc = 1;
345 	}
346 	return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349 
350 /**
351  * build_skb_around - build a network buffer around provided skb
352  * @skb: sk_buff provide by caller, must be memset cleared
353  * @data: data buffer provided by caller
354  * @frag_size: size of data, or 0 if head was kmalloced
355  */
356 struct sk_buff *build_skb_around(struct sk_buff *skb,
357 				 void *data, unsigned int frag_size)
358 {
359 	if (unlikely(!skb))
360 		return NULL;
361 
362 	__build_skb_around(skb, data, frag_size);
363 
364 	if (frag_size) {
365 		skb->head_frag = 1;
366 		if (page_is_pfmemalloc(virt_to_head_page(data)))
367 			skb->pfmemalloc = 1;
368 	}
369 	return skb;
370 }
371 EXPORT_SYMBOL(build_skb_around);
372 
373 /**
374  * __napi_build_skb - build a network buffer
375  * @data: data buffer provided by caller
376  * @frag_size: size of data, or 0 if head was kmalloced
377  *
378  * Version of __build_skb() that uses NAPI percpu caches to obtain
379  * skbuff_head instead of inplace allocation.
380  *
381  * Returns a new &sk_buff on success, %NULL on allocation failure.
382  */
383 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
384 {
385 	struct sk_buff *skb;
386 
387 	skb = napi_skb_cache_get();
388 	if (unlikely(!skb))
389 		return NULL;
390 
391 	memset(skb, 0, offsetof(struct sk_buff, tail));
392 	__build_skb_around(skb, data, frag_size);
393 
394 	return skb;
395 }
396 
397 /**
398  * napi_build_skb - build a network buffer
399  * @data: data buffer provided by caller
400  * @frag_size: size of data, or 0 if head was kmalloced
401  *
402  * Version of __napi_build_skb() that takes care of skb->head_frag
403  * and skb->pfmemalloc when the data is a page or page fragment.
404  *
405  * Returns a new &sk_buff on success, %NULL on allocation failure.
406  */
407 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
408 {
409 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
410 
411 	if (likely(skb) && frag_size) {
412 		skb->head_frag = 1;
413 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
414 	}
415 
416 	return skb;
417 }
418 EXPORT_SYMBOL(napi_build_skb);
419 
420 /*
421  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
422  * the caller if emergency pfmemalloc reserves are being used. If it is and
423  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
424  * may be used. Otherwise, the packet data may be discarded until enough
425  * memory is free
426  */
427 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
428 			     bool *pfmemalloc)
429 {
430 	void *obj;
431 	bool ret_pfmemalloc = false;
432 
433 	/*
434 	 * Try a regular allocation, when that fails and we're not entitled
435 	 * to the reserves, fail.
436 	 */
437 	obj = kmalloc_node_track_caller(size,
438 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
439 					node);
440 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
441 		goto out;
442 
443 	/* Try again but now we are using pfmemalloc reserves */
444 	ret_pfmemalloc = true;
445 	obj = kmalloc_node_track_caller(size, flags, node);
446 
447 out:
448 	if (pfmemalloc)
449 		*pfmemalloc = ret_pfmemalloc;
450 
451 	return obj;
452 }
453 
454 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
455  *	'private' fields and also do memory statistics to find all the
456  *	[BEEP] leaks.
457  *
458  */
459 
460 /**
461  *	__alloc_skb	-	allocate a network buffer
462  *	@size: size to allocate
463  *	@gfp_mask: allocation mask
464  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
465  *		instead of head cache and allocate a cloned (child) skb.
466  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
467  *		allocations in case the data is required for writeback
468  *	@node: numa node to allocate memory on
469  *
470  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
471  *	tail room of at least size bytes. The object has a reference count
472  *	of one. The return is the buffer. On a failure the return is %NULL.
473  *
474  *	Buffers may only be allocated from interrupts using a @gfp_mask of
475  *	%GFP_ATOMIC.
476  */
477 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
478 			    int flags, int node)
479 {
480 	struct kmem_cache *cache;
481 	struct sk_buff *skb;
482 	unsigned int osize;
483 	bool pfmemalloc;
484 	u8 *data;
485 
486 	cache = (flags & SKB_ALLOC_FCLONE)
487 		? skbuff_fclone_cache : skbuff_head_cache;
488 
489 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
490 		gfp_mask |= __GFP_MEMALLOC;
491 
492 	/* Get the HEAD */
493 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
494 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
495 		skb = napi_skb_cache_get();
496 	else
497 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
498 	if (unlikely(!skb))
499 		return NULL;
500 	prefetchw(skb);
501 
502 	/* We do our best to align skb_shared_info on a separate cache
503 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
504 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
505 	 * Both skb->head and skb_shared_info are cache line aligned.
506 	 */
507 	size = SKB_DATA_ALIGN(size);
508 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
509 	osize = kmalloc_size_roundup(size);
510 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
511 	if (unlikely(!data))
512 		goto nodata;
513 	/* kmalloc_size_roundup() might give us more room than requested.
514 	 * Put skb_shared_info exactly at the end of allocated zone,
515 	 * to allow max possible filling before reallocation.
516 	 */
517 	size = SKB_WITH_OVERHEAD(osize);
518 	prefetchw(data + size);
519 
520 	/*
521 	 * Only clear those fields we need to clear, not those that we will
522 	 * actually initialise below. Hence, don't put any more fields after
523 	 * the tail pointer in struct sk_buff!
524 	 */
525 	memset(skb, 0, offsetof(struct sk_buff, tail));
526 	__build_skb_around(skb, data, osize);
527 	skb->pfmemalloc = pfmemalloc;
528 
529 	if (flags & SKB_ALLOC_FCLONE) {
530 		struct sk_buff_fclones *fclones;
531 
532 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
533 
534 		skb->fclone = SKB_FCLONE_ORIG;
535 		refcount_set(&fclones->fclone_ref, 1);
536 	}
537 
538 	return skb;
539 
540 nodata:
541 	kmem_cache_free(cache, skb);
542 	return NULL;
543 }
544 EXPORT_SYMBOL(__alloc_skb);
545 
546 /**
547  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
548  *	@dev: network device to receive on
549  *	@len: length to allocate
550  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
551  *
552  *	Allocate a new &sk_buff and assign it a usage count of one. The
553  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
554  *	the headroom they think they need without accounting for the
555  *	built in space. The built in space is used for optimisations.
556  *
557  *	%NULL is returned if there is no free memory.
558  */
559 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
560 				   gfp_t gfp_mask)
561 {
562 	struct page_frag_cache *nc;
563 	struct sk_buff *skb;
564 	bool pfmemalloc;
565 	void *data;
566 
567 	len += NET_SKB_PAD;
568 
569 	/* If requested length is either too small or too big,
570 	 * we use kmalloc() for skb->head allocation.
571 	 */
572 	if (len <= SKB_WITH_OVERHEAD(1024) ||
573 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
574 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
575 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
576 		if (!skb)
577 			goto skb_fail;
578 		goto skb_success;
579 	}
580 
581 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
582 	len = SKB_DATA_ALIGN(len);
583 
584 	if (sk_memalloc_socks())
585 		gfp_mask |= __GFP_MEMALLOC;
586 
587 	if (in_hardirq() || irqs_disabled()) {
588 		nc = this_cpu_ptr(&netdev_alloc_cache);
589 		data = page_frag_alloc(nc, len, gfp_mask);
590 		pfmemalloc = nc->pfmemalloc;
591 	} else {
592 		local_bh_disable();
593 		nc = this_cpu_ptr(&napi_alloc_cache.page);
594 		data = page_frag_alloc(nc, len, gfp_mask);
595 		pfmemalloc = nc->pfmemalloc;
596 		local_bh_enable();
597 	}
598 
599 	if (unlikely(!data))
600 		return NULL;
601 
602 	skb = __build_skb(data, len);
603 	if (unlikely(!skb)) {
604 		skb_free_frag(data);
605 		return NULL;
606 	}
607 
608 	if (pfmemalloc)
609 		skb->pfmemalloc = 1;
610 	skb->head_frag = 1;
611 
612 skb_success:
613 	skb_reserve(skb, NET_SKB_PAD);
614 	skb->dev = dev;
615 
616 skb_fail:
617 	return skb;
618 }
619 EXPORT_SYMBOL(__netdev_alloc_skb);
620 
621 /**
622  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
623  *	@napi: napi instance this buffer was allocated for
624  *	@len: length to allocate
625  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
626  *
627  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
628  *	attempt to allocate the head from a special reserved region used
629  *	only for NAPI Rx allocation.  By doing this we can save several
630  *	CPU cycles by avoiding having to disable and re-enable IRQs.
631  *
632  *	%NULL is returned if there is no free memory.
633  */
634 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
635 				 gfp_t gfp_mask)
636 {
637 	struct napi_alloc_cache *nc;
638 	struct sk_buff *skb;
639 	bool pfmemalloc;
640 	void *data;
641 
642 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
643 	len += NET_SKB_PAD + NET_IP_ALIGN;
644 
645 	/* If requested length is either too small or too big,
646 	 * we use kmalloc() for skb->head allocation.
647 	 * When the small frag allocator is available, prefer it over kmalloc
648 	 * for small fragments
649 	 */
650 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
651 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
652 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
653 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
654 				  NUMA_NO_NODE);
655 		if (!skb)
656 			goto skb_fail;
657 		goto skb_success;
658 	}
659 
660 	nc = this_cpu_ptr(&napi_alloc_cache);
661 
662 	if (sk_memalloc_socks())
663 		gfp_mask |= __GFP_MEMALLOC;
664 
665 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
666 		/* we are artificially inflating the allocation size, but
667 		 * that is not as bad as it may look like, as:
668 		 * - 'len' less than GRO_MAX_HEAD makes little sense
669 		 * - On most systems, larger 'len' values lead to fragment
670 		 *   size above 512 bytes
671 		 * - kmalloc would use the kmalloc-1k slab for such values
672 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
673 		 *   little networking, as that implies no WiFi and no
674 		 *   tunnels support, and 32 bits arches.
675 		 */
676 		len = SZ_1K;
677 
678 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
679 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
680 	} else {
681 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
682 		len = SKB_DATA_ALIGN(len);
683 
684 		data = page_frag_alloc(&nc->page, len, gfp_mask);
685 		pfmemalloc = nc->page.pfmemalloc;
686 	}
687 
688 	if (unlikely(!data))
689 		return NULL;
690 
691 	skb = __napi_build_skb(data, len);
692 	if (unlikely(!skb)) {
693 		skb_free_frag(data);
694 		return NULL;
695 	}
696 
697 	if (pfmemalloc)
698 		skb->pfmemalloc = 1;
699 	skb->head_frag = 1;
700 
701 skb_success:
702 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
703 	skb->dev = napi->dev;
704 
705 skb_fail:
706 	return skb;
707 }
708 EXPORT_SYMBOL(__napi_alloc_skb);
709 
710 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
711 		     int size, unsigned int truesize)
712 {
713 	skb_fill_page_desc(skb, i, page, off, size);
714 	skb->len += size;
715 	skb->data_len += size;
716 	skb->truesize += truesize;
717 }
718 EXPORT_SYMBOL(skb_add_rx_frag);
719 
720 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
721 			  unsigned int truesize)
722 {
723 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
724 
725 	skb_frag_size_add(frag, size);
726 	skb->len += size;
727 	skb->data_len += size;
728 	skb->truesize += truesize;
729 }
730 EXPORT_SYMBOL(skb_coalesce_rx_frag);
731 
732 static void skb_drop_list(struct sk_buff **listp)
733 {
734 	kfree_skb_list(*listp);
735 	*listp = NULL;
736 }
737 
738 static inline void skb_drop_fraglist(struct sk_buff *skb)
739 {
740 	skb_drop_list(&skb_shinfo(skb)->frag_list);
741 }
742 
743 static void skb_clone_fraglist(struct sk_buff *skb)
744 {
745 	struct sk_buff *list;
746 
747 	skb_walk_frags(skb, list)
748 		skb_get(list);
749 }
750 
751 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
752 {
753 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
754 		return false;
755 	return page_pool_return_skb_page(virt_to_page(data));
756 }
757 
758 static void skb_free_head(struct sk_buff *skb)
759 {
760 	unsigned char *head = skb->head;
761 
762 	if (skb->head_frag) {
763 		if (skb_pp_recycle(skb, head))
764 			return;
765 		skb_free_frag(head);
766 	} else {
767 		kfree(head);
768 	}
769 }
770 
771 static void skb_release_data(struct sk_buff *skb)
772 {
773 	struct skb_shared_info *shinfo = skb_shinfo(skb);
774 	int i;
775 
776 	if (skb->cloned &&
777 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
778 			      &shinfo->dataref))
779 		goto exit;
780 
781 	if (skb_zcopy(skb)) {
782 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
783 
784 		skb_zcopy_clear(skb, true);
785 		if (skip_unref)
786 			goto free_head;
787 	}
788 
789 	for (i = 0; i < shinfo->nr_frags; i++)
790 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
791 
792 free_head:
793 	if (shinfo->frag_list)
794 		kfree_skb_list(shinfo->frag_list);
795 
796 	skb_free_head(skb);
797 exit:
798 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
799 	 * bit is only set on the head though, so in order to avoid races
800 	 * while trying to recycle fragments on __skb_frag_unref() we need
801 	 * to make one SKB responsible for triggering the recycle path.
802 	 * So disable the recycling bit if an SKB is cloned and we have
803 	 * additional references to the fragmented part of the SKB.
804 	 * Eventually the last SKB will have the recycling bit set and it's
805 	 * dataref set to 0, which will trigger the recycling
806 	 */
807 	skb->pp_recycle = 0;
808 }
809 
810 /*
811  *	Free an skbuff by memory without cleaning the state.
812  */
813 static void kfree_skbmem(struct sk_buff *skb)
814 {
815 	struct sk_buff_fclones *fclones;
816 
817 	switch (skb->fclone) {
818 	case SKB_FCLONE_UNAVAILABLE:
819 		kmem_cache_free(skbuff_head_cache, skb);
820 		return;
821 
822 	case SKB_FCLONE_ORIG:
823 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
824 
825 		/* We usually free the clone (TX completion) before original skb
826 		 * This test would have no chance to be true for the clone,
827 		 * while here, branch prediction will be good.
828 		 */
829 		if (refcount_read(&fclones->fclone_ref) == 1)
830 			goto fastpath;
831 		break;
832 
833 	default: /* SKB_FCLONE_CLONE */
834 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
835 		break;
836 	}
837 	if (!refcount_dec_and_test(&fclones->fclone_ref))
838 		return;
839 fastpath:
840 	kmem_cache_free(skbuff_fclone_cache, fclones);
841 }
842 
843 void skb_release_head_state(struct sk_buff *skb)
844 {
845 	skb_dst_drop(skb);
846 	if (skb->destructor) {
847 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
848 		skb->destructor(skb);
849 	}
850 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
851 	nf_conntrack_put(skb_nfct(skb));
852 #endif
853 	skb_ext_put(skb);
854 }
855 
856 /* Free everything but the sk_buff shell. */
857 static void skb_release_all(struct sk_buff *skb)
858 {
859 	skb_release_head_state(skb);
860 	if (likely(skb->head))
861 		skb_release_data(skb);
862 }
863 
864 /**
865  *	__kfree_skb - private function
866  *	@skb: buffer
867  *
868  *	Free an sk_buff. Release anything attached to the buffer.
869  *	Clean the state. This is an internal helper function. Users should
870  *	always call kfree_skb
871  */
872 
873 void __kfree_skb(struct sk_buff *skb)
874 {
875 	skb_release_all(skb);
876 	kfree_skbmem(skb);
877 }
878 EXPORT_SYMBOL(__kfree_skb);
879 
880 /**
881  *	kfree_skb_reason - free an sk_buff with special reason
882  *	@skb: buffer to free
883  *	@reason: reason why this skb is dropped
884  *
885  *	Drop a reference to the buffer and free it if the usage count has
886  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
887  *	tracepoint.
888  */
889 void __fix_address
890 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
891 {
892 	if (unlikely(!skb_unref(skb)))
893 		return;
894 
895 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
896 
897 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
898 	__kfree_skb(skb);
899 }
900 EXPORT_SYMBOL(kfree_skb_reason);
901 
902 void kfree_skb_list_reason(struct sk_buff *segs,
903 			   enum skb_drop_reason reason)
904 {
905 	while (segs) {
906 		struct sk_buff *next = segs->next;
907 
908 		kfree_skb_reason(segs, reason);
909 		segs = next;
910 	}
911 }
912 EXPORT_SYMBOL(kfree_skb_list_reason);
913 
914 /* Dump skb information and contents.
915  *
916  * Must only be called from net_ratelimit()-ed paths.
917  *
918  * Dumps whole packets if full_pkt, only headers otherwise.
919  */
920 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
921 {
922 	struct skb_shared_info *sh = skb_shinfo(skb);
923 	struct net_device *dev = skb->dev;
924 	struct sock *sk = skb->sk;
925 	struct sk_buff *list_skb;
926 	bool has_mac, has_trans;
927 	int headroom, tailroom;
928 	int i, len, seg_len;
929 
930 	if (full_pkt)
931 		len = skb->len;
932 	else
933 		len = min_t(int, skb->len, MAX_HEADER + 128);
934 
935 	headroom = skb_headroom(skb);
936 	tailroom = skb_tailroom(skb);
937 
938 	has_mac = skb_mac_header_was_set(skb);
939 	has_trans = skb_transport_header_was_set(skb);
940 
941 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
942 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
943 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
944 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
945 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
946 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
947 	       has_mac ? skb->mac_header : -1,
948 	       has_mac ? skb_mac_header_len(skb) : -1,
949 	       skb->network_header,
950 	       has_trans ? skb_network_header_len(skb) : -1,
951 	       has_trans ? skb->transport_header : -1,
952 	       sh->tx_flags, sh->nr_frags,
953 	       sh->gso_size, sh->gso_type, sh->gso_segs,
954 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
955 	       skb->csum_valid, skb->csum_level,
956 	       skb->hash, skb->sw_hash, skb->l4_hash,
957 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
958 
959 	if (dev)
960 		printk("%sdev name=%s feat=%pNF\n",
961 		       level, dev->name, &dev->features);
962 	if (sk)
963 		printk("%ssk family=%hu type=%u proto=%u\n",
964 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
965 
966 	if (full_pkt && headroom)
967 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
968 			       16, 1, skb->head, headroom, false);
969 
970 	seg_len = min_t(int, skb_headlen(skb), len);
971 	if (seg_len)
972 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
973 			       16, 1, skb->data, seg_len, false);
974 	len -= seg_len;
975 
976 	if (full_pkt && tailroom)
977 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
978 			       16, 1, skb_tail_pointer(skb), tailroom, false);
979 
980 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
981 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
982 		u32 p_off, p_len, copied;
983 		struct page *p;
984 		u8 *vaddr;
985 
986 		skb_frag_foreach_page(frag, skb_frag_off(frag),
987 				      skb_frag_size(frag), p, p_off, p_len,
988 				      copied) {
989 			seg_len = min_t(int, p_len, len);
990 			vaddr = kmap_atomic(p);
991 			print_hex_dump(level, "skb frag:     ",
992 				       DUMP_PREFIX_OFFSET,
993 				       16, 1, vaddr + p_off, seg_len, false);
994 			kunmap_atomic(vaddr);
995 			len -= seg_len;
996 			if (!len)
997 				break;
998 		}
999 	}
1000 
1001 	if (full_pkt && skb_has_frag_list(skb)) {
1002 		printk("skb fraglist:\n");
1003 		skb_walk_frags(skb, list_skb)
1004 			skb_dump(level, list_skb, true);
1005 	}
1006 }
1007 EXPORT_SYMBOL(skb_dump);
1008 
1009 /**
1010  *	skb_tx_error - report an sk_buff xmit error
1011  *	@skb: buffer that triggered an error
1012  *
1013  *	Report xmit error if a device callback is tracking this skb.
1014  *	skb must be freed afterwards.
1015  */
1016 void skb_tx_error(struct sk_buff *skb)
1017 {
1018 	if (skb) {
1019 		skb_zcopy_downgrade_managed(skb);
1020 		skb_zcopy_clear(skb, true);
1021 	}
1022 }
1023 EXPORT_SYMBOL(skb_tx_error);
1024 
1025 #ifdef CONFIG_TRACEPOINTS
1026 /**
1027  *	consume_skb - free an skbuff
1028  *	@skb: buffer to free
1029  *
1030  *	Drop a ref to the buffer and free it if the usage count has hit zero
1031  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1032  *	is being dropped after a failure and notes that
1033  */
1034 void consume_skb(struct sk_buff *skb)
1035 {
1036 	if (!skb_unref(skb))
1037 		return;
1038 
1039 	trace_consume_skb(skb);
1040 	__kfree_skb(skb);
1041 }
1042 EXPORT_SYMBOL(consume_skb);
1043 #endif
1044 
1045 /**
1046  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1047  *	@skb: buffer to free
1048  *
1049  *	Alike consume_skb(), but this variant assumes that this is the last
1050  *	skb reference and all the head states have been already dropped
1051  */
1052 void __consume_stateless_skb(struct sk_buff *skb)
1053 {
1054 	trace_consume_skb(skb);
1055 	skb_release_data(skb);
1056 	kfree_skbmem(skb);
1057 }
1058 
1059 static void napi_skb_cache_put(struct sk_buff *skb)
1060 {
1061 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1062 	u32 i;
1063 
1064 	kasan_poison_object_data(skbuff_head_cache, skb);
1065 	nc->skb_cache[nc->skb_count++] = skb;
1066 
1067 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1068 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1069 			kasan_unpoison_object_data(skbuff_head_cache,
1070 						   nc->skb_cache[i]);
1071 
1072 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1073 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1074 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1075 	}
1076 }
1077 
1078 void __kfree_skb_defer(struct sk_buff *skb)
1079 {
1080 	skb_release_all(skb);
1081 	napi_skb_cache_put(skb);
1082 }
1083 
1084 void napi_skb_free_stolen_head(struct sk_buff *skb)
1085 {
1086 	if (unlikely(skb->slow_gro)) {
1087 		nf_reset_ct(skb);
1088 		skb_dst_drop(skb);
1089 		skb_ext_put(skb);
1090 		skb_orphan(skb);
1091 		skb->slow_gro = 0;
1092 	}
1093 	napi_skb_cache_put(skb);
1094 }
1095 
1096 void napi_consume_skb(struct sk_buff *skb, int budget)
1097 {
1098 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1099 	if (unlikely(!budget)) {
1100 		dev_consume_skb_any(skb);
1101 		return;
1102 	}
1103 
1104 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1105 
1106 	if (!skb_unref(skb))
1107 		return;
1108 
1109 	/* if reaching here SKB is ready to free */
1110 	trace_consume_skb(skb);
1111 
1112 	/* if SKB is a clone, don't handle this case */
1113 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1114 		__kfree_skb(skb);
1115 		return;
1116 	}
1117 
1118 	skb_release_all(skb);
1119 	napi_skb_cache_put(skb);
1120 }
1121 EXPORT_SYMBOL(napi_consume_skb);
1122 
1123 /* Make sure a field is contained by headers group */
1124 #define CHECK_SKB_FIELD(field) \
1125 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1126 		     offsetof(struct sk_buff, headers.field));	\
1127 
1128 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1129 {
1130 	new->tstamp		= old->tstamp;
1131 	/* We do not copy old->sk */
1132 	new->dev		= old->dev;
1133 	memcpy(new->cb, old->cb, sizeof(old->cb));
1134 	skb_dst_copy(new, old);
1135 	__skb_ext_copy(new, old);
1136 	__nf_copy(new, old, false);
1137 
1138 	/* Note : this field could be in the headers group.
1139 	 * It is not yet because we do not want to have a 16 bit hole
1140 	 */
1141 	new->queue_mapping = old->queue_mapping;
1142 
1143 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1144 	CHECK_SKB_FIELD(protocol);
1145 	CHECK_SKB_FIELD(csum);
1146 	CHECK_SKB_FIELD(hash);
1147 	CHECK_SKB_FIELD(priority);
1148 	CHECK_SKB_FIELD(skb_iif);
1149 	CHECK_SKB_FIELD(vlan_proto);
1150 	CHECK_SKB_FIELD(vlan_tci);
1151 	CHECK_SKB_FIELD(transport_header);
1152 	CHECK_SKB_FIELD(network_header);
1153 	CHECK_SKB_FIELD(mac_header);
1154 	CHECK_SKB_FIELD(inner_protocol);
1155 	CHECK_SKB_FIELD(inner_transport_header);
1156 	CHECK_SKB_FIELD(inner_network_header);
1157 	CHECK_SKB_FIELD(inner_mac_header);
1158 	CHECK_SKB_FIELD(mark);
1159 #ifdef CONFIG_NETWORK_SECMARK
1160 	CHECK_SKB_FIELD(secmark);
1161 #endif
1162 #ifdef CONFIG_NET_RX_BUSY_POLL
1163 	CHECK_SKB_FIELD(napi_id);
1164 #endif
1165 	CHECK_SKB_FIELD(alloc_cpu);
1166 #ifdef CONFIG_XPS
1167 	CHECK_SKB_FIELD(sender_cpu);
1168 #endif
1169 #ifdef CONFIG_NET_SCHED
1170 	CHECK_SKB_FIELD(tc_index);
1171 #endif
1172 
1173 }
1174 
1175 /*
1176  * You should not add any new code to this function.  Add it to
1177  * __copy_skb_header above instead.
1178  */
1179 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1180 {
1181 #define C(x) n->x = skb->x
1182 
1183 	n->next = n->prev = NULL;
1184 	n->sk = NULL;
1185 	__copy_skb_header(n, skb);
1186 
1187 	C(len);
1188 	C(data_len);
1189 	C(mac_len);
1190 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1191 	n->cloned = 1;
1192 	n->nohdr = 0;
1193 	n->peeked = 0;
1194 	C(pfmemalloc);
1195 	C(pp_recycle);
1196 	n->destructor = NULL;
1197 	C(tail);
1198 	C(end);
1199 	C(head);
1200 	C(head_frag);
1201 	C(data);
1202 	C(truesize);
1203 	refcount_set(&n->users, 1);
1204 
1205 	atomic_inc(&(skb_shinfo(skb)->dataref));
1206 	skb->cloned = 1;
1207 
1208 	return n;
1209 #undef C
1210 }
1211 
1212 /**
1213  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1214  * @first: first sk_buff of the msg
1215  */
1216 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1217 {
1218 	struct sk_buff *n;
1219 
1220 	n = alloc_skb(0, GFP_ATOMIC);
1221 	if (!n)
1222 		return NULL;
1223 
1224 	n->len = first->len;
1225 	n->data_len = first->len;
1226 	n->truesize = first->truesize;
1227 
1228 	skb_shinfo(n)->frag_list = first;
1229 
1230 	__copy_skb_header(n, first);
1231 	n->destructor = NULL;
1232 
1233 	return n;
1234 }
1235 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1236 
1237 /**
1238  *	skb_morph	-	morph one skb into another
1239  *	@dst: the skb to receive the contents
1240  *	@src: the skb to supply the contents
1241  *
1242  *	This is identical to skb_clone except that the target skb is
1243  *	supplied by the user.
1244  *
1245  *	The target skb is returned upon exit.
1246  */
1247 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1248 {
1249 	skb_release_all(dst);
1250 	return __skb_clone(dst, src);
1251 }
1252 EXPORT_SYMBOL_GPL(skb_morph);
1253 
1254 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1255 {
1256 	unsigned long max_pg, num_pg, new_pg, old_pg;
1257 	struct user_struct *user;
1258 
1259 	if (capable(CAP_IPC_LOCK) || !size)
1260 		return 0;
1261 
1262 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1263 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1264 	user = mmp->user ? : current_user();
1265 
1266 	do {
1267 		old_pg = atomic_long_read(&user->locked_vm);
1268 		new_pg = old_pg + num_pg;
1269 		if (new_pg > max_pg)
1270 			return -ENOBUFS;
1271 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1272 		 old_pg);
1273 
1274 	if (!mmp->user) {
1275 		mmp->user = get_uid(user);
1276 		mmp->num_pg = num_pg;
1277 	} else {
1278 		mmp->num_pg += num_pg;
1279 	}
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1284 
1285 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1286 {
1287 	if (mmp->user) {
1288 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1289 		free_uid(mmp->user);
1290 	}
1291 }
1292 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1293 
1294 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1295 {
1296 	struct ubuf_info_msgzc *uarg;
1297 	struct sk_buff *skb;
1298 
1299 	WARN_ON_ONCE(!in_task());
1300 
1301 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1302 	if (!skb)
1303 		return NULL;
1304 
1305 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1306 	uarg = (void *)skb->cb;
1307 	uarg->mmp.user = NULL;
1308 
1309 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1310 		kfree_skb(skb);
1311 		return NULL;
1312 	}
1313 
1314 	uarg->ubuf.callback = msg_zerocopy_callback;
1315 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1316 	uarg->len = 1;
1317 	uarg->bytelen = size;
1318 	uarg->zerocopy = 1;
1319 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1320 	refcount_set(&uarg->ubuf.refcnt, 1);
1321 	sock_hold(sk);
1322 
1323 	return &uarg->ubuf;
1324 }
1325 
1326 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1327 {
1328 	return container_of((void *)uarg, struct sk_buff, cb);
1329 }
1330 
1331 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1332 				       struct ubuf_info *uarg)
1333 {
1334 	if (uarg) {
1335 		struct ubuf_info_msgzc *uarg_zc;
1336 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1337 		u32 bytelen, next;
1338 
1339 		/* there might be non MSG_ZEROCOPY users */
1340 		if (uarg->callback != msg_zerocopy_callback)
1341 			return NULL;
1342 
1343 		/* realloc only when socket is locked (TCP, UDP cork),
1344 		 * so uarg->len and sk_zckey access is serialized
1345 		 */
1346 		if (!sock_owned_by_user(sk)) {
1347 			WARN_ON_ONCE(1);
1348 			return NULL;
1349 		}
1350 
1351 		uarg_zc = uarg_to_msgzc(uarg);
1352 		bytelen = uarg_zc->bytelen + size;
1353 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1354 			/* TCP can create new skb to attach new uarg */
1355 			if (sk->sk_type == SOCK_STREAM)
1356 				goto new_alloc;
1357 			return NULL;
1358 		}
1359 
1360 		next = (u32)atomic_read(&sk->sk_zckey);
1361 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1362 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1363 				return NULL;
1364 			uarg_zc->len++;
1365 			uarg_zc->bytelen = bytelen;
1366 			atomic_set(&sk->sk_zckey, ++next);
1367 
1368 			/* no extra ref when appending to datagram (MSG_MORE) */
1369 			if (sk->sk_type == SOCK_STREAM)
1370 				net_zcopy_get(uarg);
1371 
1372 			return uarg;
1373 		}
1374 	}
1375 
1376 new_alloc:
1377 	return msg_zerocopy_alloc(sk, size);
1378 }
1379 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1380 
1381 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1382 {
1383 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1384 	u32 old_lo, old_hi;
1385 	u64 sum_len;
1386 
1387 	old_lo = serr->ee.ee_info;
1388 	old_hi = serr->ee.ee_data;
1389 	sum_len = old_hi - old_lo + 1ULL + len;
1390 
1391 	if (sum_len >= (1ULL << 32))
1392 		return false;
1393 
1394 	if (lo != old_hi + 1)
1395 		return false;
1396 
1397 	serr->ee.ee_data += len;
1398 	return true;
1399 }
1400 
1401 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1402 {
1403 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1404 	struct sock_exterr_skb *serr;
1405 	struct sock *sk = skb->sk;
1406 	struct sk_buff_head *q;
1407 	unsigned long flags;
1408 	bool is_zerocopy;
1409 	u32 lo, hi;
1410 	u16 len;
1411 
1412 	mm_unaccount_pinned_pages(&uarg->mmp);
1413 
1414 	/* if !len, there was only 1 call, and it was aborted
1415 	 * so do not queue a completion notification
1416 	 */
1417 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1418 		goto release;
1419 
1420 	len = uarg->len;
1421 	lo = uarg->id;
1422 	hi = uarg->id + len - 1;
1423 	is_zerocopy = uarg->zerocopy;
1424 
1425 	serr = SKB_EXT_ERR(skb);
1426 	memset(serr, 0, sizeof(*serr));
1427 	serr->ee.ee_errno = 0;
1428 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1429 	serr->ee.ee_data = hi;
1430 	serr->ee.ee_info = lo;
1431 	if (!is_zerocopy)
1432 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1433 
1434 	q = &sk->sk_error_queue;
1435 	spin_lock_irqsave(&q->lock, flags);
1436 	tail = skb_peek_tail(q);
1437 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1438 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1439 		__skb_queue_tail(q, skb);
1440 		skb = NULL;
1441 	}
1442 	spin_unlock_irqrestore(&q->lock, flags);
1443 
1444 	sk_error_report(sk);
1445 
1446 release:
1447 	consume_skb(skb);
1448 	sock_put(sk);
1449 }
1450 
1451 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1452 			   bool success)
1453 {
1454 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1455 
1456 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1457 
1458 	if (refcount_dec_and_test(&uarg->refcnt))
1459 		__msg_zerocopy_callback(uarg_zc);
1460 }
1461 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1462 
1463 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1464 {
1465 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1466 
1467 	atomic_dec(&sk->sk_zckey);
1468 	uarg_to_msgzc(uarg)->len--;
1469 
1470 	if (have_uref)
1471 		msg_zerocopy_callback(NULL, uarg, true);
1472 }
1473 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1474 
1475 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1476 			     struct msghdr *msg, int len,
1477 			     struct ubuf_info *uarg)
1478 {
1479 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1480 	int err, orig_len = skb->len;
1481 
1482 	/* An skb can only point to one uarg. This edge case happens when
1483 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1484 	 */
1485 	if (orig_uarg && uarg != orig_uarg)
1486 		return -EEXIST;
1487 
1488 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1489 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1490 		struct sock *save_sk = skb->sk;
1491 
1492 		/* Streams do not free skb on error. Reset to prev state. */
1493 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1494 		skb->sk = sk;
1495 		___pskb_trim(skb, orig_len);
1496 		skb->sk = save_sk;
1497 		return err;
1498 	}
1499 
1500 	skb_zcopy_set(skb, uarg, NULL);
1501 	return skb->len - orig_len;
1502 }
1503 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1504 
1505 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1506 {
1507 	int i;
1508 
1509 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1510 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1511 		skb_frag_ref(skb, i);
1512 }
1513 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1514 
1515 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1516 			      gfp_t gfp_mask)
1517 {
1518 	if (skb_zcopy(orig)) {
1519 		if (skb_zcopy(nskb)) {
1520 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1521 			if (!gfp_mask) {
1522 				WARN_ON_ONCE(1);
1523 				return -ENOMEM;
1524 			}
1525 			if (skb_uarg(nskb) == skb_uarg(orig))
1526 				return 0;
1527 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1528 				return -EIO;
1529 		}
1530 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1531 	}
1532 	return 0;
1533 }
1534 
1535 /**
1536  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1537  *	@skb: the skb to modify
1538  *	@gfp_mask: allocation priority
1539  *
1540  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1541  *	It will copy all frags into kernel and drop the reference
1542  *	to userspace pages.
1543  *
1544  *	If this function is called from an interrupt gfp_mask() must be
1545  *	%GFP_ATOMIC.
1546  *
1547  *	Returns 0 on success or a negative error code on failure
1548  *	to allocate kernel memory to copy to.
1549  */
1550 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1551 {
1552 	int num_frags = skb_shinfo(skb)->nr_frags;
1553 	struct page *page, *head = NULL;
1554 	int i, new_frags;
1555 	u32 d_off;
1556 
1557 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1558 		return -EINVAL;
1559 
1560 	if (!num_frags)
1561 		goto release;
1562 
1563 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1564 	for (i = 0; i < new_frags; i++) {
1565 		page = alloc_page(gfp_mask);
1566 		if (!page) {
1567 			while (head) {
1568 				struct page *next = (struct page *)page_private(head);
1569 				put_page(head);
1570 				head = next;
1571 			}
1572 			return -ENOMEM;
1573 		}
1574 		set_page_private(page, (unsigned long)head);
1575 		head = page;
1576 	}
1577 
1578 	page = head;
1579 	d_off = 0;
1580 	for (i = 0; i < num_frags; i++) {
1581 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1582 		u32 p_off, p_len, copied;
1583 		struct page *p;
1584 		u8 *vaddr;
1585 
1586 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1587 				      p, p_off, p_len, copied) {
1588 			u32 copy, done = 0;
1589 			vaddr = kmap_atomic(p);
1590 
1591 			while (done < p_len) {
1592 				if (d_off == PAGE_SIZE) {
1593 					d_off = 0;
1594 					page = (struct page *)page_private(page);
1595 				}
1596 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1597 				memcpy(page_address(page) + d_off,
1598 				       vaddr + p_off + done, copy);
1599 				done += copy;
1600 				d_off += copy;
1601 			}
1602 			kunmap_atomic(vaddr);
1603 		}
1604 	}
1605 
1606 	/* skb frags release userspace buffers */
1607 	for (i = 0; i < num_frags; i++)
1608 		skb_frag_unref(skb, i);
1609 
1610 	/* skb frags point to kernel buffers */
1611 	for (i = 0; i < new_frags - 1; i++) {
1612 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1613 		head = (struct page *)page_private(head);
1614 	}
1615 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1616 	skb_shinfo(skb)->nr_frags = new_frags;
1617 
1618 release:
1619 	skb_zcopy_clear(skb, false);
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1623 
1624 /**
1625  *	skb_clone	-	duplicate an sk_buff
1626  *	@skb: buffer to clone
1627  *	@gfp_mask: allocation priority
1628  *
1629  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1630  *	copies share the same packet data but not structure. The new
1631  *	buffer has a reference count of 1. If the allocation fails the
1632  *	function returns %NULL otherwise the new buffer is returned.
1633  *
1634  *	If this function is called from an interrupt gfp_mask() must be
1635  *	%GFP_ATOMIC.
1636  */
1637 
1638 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1639 {
1640 	struct sk_buff_fclones *fclones = container_of(skb,
1641 						       struct sk_buff_fclones,
1642 						       skb1);
1643 	struct sk_buff *n;
1644 
1645 	if (skb_orphan_frags(skb, gfp_mask))
1646 		return NULL;
1647 
1648 	if (skb->fclone == SKB_FCLONE_ORIG &&
1649 	    refcount_read(&fclones->fclone_ref) == 1) {
1650 		n = &fclones->skb2;
1651 		refcount_set(&fclones->fclone_ref, 2);
1652 		n->fclone = SKB_FCLONE_CLONE;
1653 	} else {
1654 		if (skb_pfmemalloc(skb))
1655 			gfp_mask |= __GFP_MEMALLOC;
1656 
1657 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1658 		if (!n)
1659 			return NULL;
1660 
1661 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1662 	}
1663 
1664 	return __skb_clone(n, skb);
1665 }
1666 EXPORT_SYMBOL(skb_clone);
1667 
1668 void skb_headers_offset_update(struct sk_buff *skb, int off)
1669 {
1670 	/* Only adjust this if it actually is csum_start rather than csum */
1671 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1672 		skb->csum_start += off;
1673 	/* {transport,network,mac}_header and tail are relative to skb->head */
1674 	skb->transport_header += off;
1675 	skb->network_header   += off;
1676 	if (skb_mac_header_was_set(skb))
1677 		skb->mac_header += off;
1678 	skb->inner_transport_header += off;
1679 	skb->inner_network_header += off;
1680 	skb->inner_mac_header += off;
1681 }
1682 EXPORT_SYMBOL(skb_headers_offset_update);
1683 
1684 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1685 {
1686 	__copy_skb_header(new, old);
1687 
1688 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1689 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1690 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1691 }
1692 EXPORT_SYMBOL(skb_copy_header);
1693 
1694 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1695 {
1696 	if (skb_pfmemalloc(skb))
1697 		return SKB_ALLOC_RX;
1698 	return 0;
1699 }
1700 
1701 /**
1702  *	skb_copy	-	create private copy of an sk_buff
1703  *	@skb: buffer to copy
1704  *	@gfp_mask: allocation priority
1705  *
1706  *	Make a copy of both an &sk_buff and its data. This is used when the
1707  *	caller wishes to modify the data and needs a private copy of the
1708  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1709  *	on success. The returned buffer has a reference count of 1.
1710  *
1711  *	As by-product this function converts non-linear &sk_buff to linear
1712  *	one, so that &sk_buff becomes completely private and caller is allowed
1713  *	to modify all the data of returned buffer. This means that this
1714  *	function is not recommended for use in circumstances when only
1715  *	header is going to be modified. Use pskb_copy() instead.
1716  */
1717 
1718 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1719 {
1720 	int headerlen = skb_headroom(skb);
1721 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1722 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1723 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1724 
1725 	if (!n)
1726 		return NULL;
1727 
1728 	/* Set the data pointer */
1729 	skb_reserve(n, headerlen);
1730 	/* Set the tail pointer and length */
1731 	skb_put(n, skb->len);
1732 
1733 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1734 
1735 	skb_copy_header(n, skb);
1736 	return n;
1737 }
1738 EXPORT_SYMBOL(skb_copy);
1739 
1740 /**
1741  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1742  *	@skb: buffer to copy
1743  *	@headroom: headroom of new skb
1744  *	@gfp_mask: allocation priority
1745  *	@fclone: if true allocate the copy of the skb from the fclone
1746  *	cache instead of the head cache; it is recommended to set this
1747  *	to true for the cases where the copy will likely be cloned
1748  *
1749  *	Make a copy of both an &sk_buff and part of its data, located
1750  *	in header. Fragmented data remain shared. This is used when
1751  *	the caller wishes to modify only header of &sk_buff and needs
1752  *	private copy of the header to alter. Returns %NULL on failure
1753  *	or the pointer to the buffer on success.
1754  *	The returned buffer has a reference count of 1.
1755  */
1756 
1757 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1758 				   gfp_t gfp_mask, bool fclone)
1759 {
1760 	unsigned int size = skb_headlen(skb) + headroom;
1761 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1762 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1763 
1764 	if (!n)
1765 		goto out;
1766 
1767 	/* Set the data pointer */
1768 	skb_reserve(n, headroom);
1769 	/* Set the tail pointer and length */
1770 	skb_put(n, skb_headlen(skb));
1771 	/* Copy the bytes */
1772 	skb_copy_from_linear_data(skb, n->data, n->len);
1773 
1774 	n->truesize += skb->data_len;
1775 	n->data_len  = skb->data_len;
1776 	n->len	     = skb->len;
1777 
1778 	if (skb_shinfo(skb)->nr_frags) {
1779 		int i;
1780 
1781 		if (skb_orphan_frags(skb, gfp_mask) ||
1782 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1783 			kfree_skb(n);
1784 			n = NULL;
1785 			goto out;
1786 		}
1787 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1788 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1789 			skb_frag_ref(skb, i);
1790 		}
1791 		skb_shinfo(n)->nr_frags = i;
1792 	}
1793 
1794 	if (skb_has_frag_list(skb)) {
1795 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1796 		skb_clone_fraglist(n);
1797 	}
1798 
1799 	skb_copy_header(n, skb);
1800 out:
1801 	return n;
1802 }
1803 EXPORT_SYMBOL(__pskb_copy_fclone);
1804 
1805 /**
1806  *	pskb_expand_head - reallocate header of &sk_buff
1807  *	@skb: buffer to reallocate
1808  *	@nhead: room to add at head
1809  *	@ntail: room to add at tail
1810  *	@gfp_mask: allocation priority
1811  *
1812  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1813  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1814  *	reference count of 1. Returns zero in the case of success or error,
1815  *	if expansion failed. In the last case, &sk_buff is not changed.
1816  *
1817  *	All the pointers pointing into skb header may change and must be
1818  *	reloaded after call to this function.
1819  */
1820 
1821 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1822 		     gfp_t gfp_mask)
1823 {
1824 	unsigned int osize = skb_end_offset(skb);
1825 	unsigned int size = osize + nhead + ntail;
1826 	long off;
1827 	u8 *data;
1828 	int i;
1829 
1830 	BUG_ON(nhead < 0);
1831 
1832 	BUG_ON(skb_shared(skb));
1833 
1834 	skb_zcopy_downgrade_managed(skb);
1835 
1836 	if (skb_pfmemalloc(skb))
1837 		gfp_mask |= __GFP_MEMALLOC;
1838 
1839 	size = SKB_DATA_ALIGN(size);
1840 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1841 	size = kmalloc_size_roundup(size);
1842 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1843 	if (!data)
1844 		goto nodata;
1845 	size = SKB_WITH_OVERHEAD(size);
1846 
1847 	/* Copy only real data... and, alas, header. This should be
1848 	 * optimized for the cases when header is void.
1849 	 */
1850 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1851 
1852 	memcpy((struct skb_shared_info *)(data + size),
1853 	       skb_shinfo(skb),
1854 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1855 
1856 	/*
1857 	 * if shinfo is shared we must drop the old head gracefully, but if it
1858 	 * is not we can just drop the old head and let the existing refcount
1859 	 * be since all we did is relocate the values
1860 	 */
1861 	if (skb_cloned(skb)) {
1862 		if (skb_orphan_frags(skb, gfp_mask))
1863 			goto nofrags;
1864 		if (skb_zcopy(skb))
1865 			refcount_inc(&skb_uarg(skb)->refcnt);
1866 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1867 			skb_frag_ref(skb, i);
1868 
1869 		if (skb_has_frag_list(skb))
1870 			skb_clone_fraglist(skb);
1871 
1872 		skb_release_data(skb);
1873 	} else {
1874 		skb_free_head(skb);
1875 	}
1876 	off = (data + nhead) - skb->head;
1877 
1878 	skb->head     = data;
1879 	skb->head_frag = 0;
1880 	skb->data    += off;
1881 
1882 	skb_set_end_offset(skb, size);
1883 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1884 	off           = nhead;
1885 #endif
1886 	skb->tail	      += off;
1887 	skb_headers_offset_update(skb, nhead);
1888 	skb->cloned   = 0;
1889 	skb->hdr_len  = 0;
1890 	skb->nohdr    = 0;
1891 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1892 
1893 	skb_metadata_clear(skb);
1894 
1895 	/* It is not generally safe to change skb->truesize.
1896 	 * For the moment, we really care of rx path, or
1897 	 * when skb is orphaned (not attached to a socket).
1898 	 */
1899 	if (!skb->sk || skb->destructor == sock_edemux)
1900 		skb->truesize += size - osize;
1901 
1902 	return 0;
1903 
1904 nofrags:
1905 	kfree(data);
1906 nodata:
1907 	return -ENOMEM;
1908 }
1909 EXPORT_SYMBOL(pskb_expand_head);
1910 
1911 /* Make private copy of skb with writable head and some headroom */
1912 
1913 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1914 {
1915 	struct sk_buff *skb2;
1916 	int delta = headroom - skb_headroom(skb);
1917 
1918 	if (delta <= 0)
1919 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1920 	else {
1921 		skb2 = skb_clone(skb, GFP_ATOMIC);
1922 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1923 					     GFP_ATOMIC)) {
1924 			kfree_skb(skb2);
1925 			skb2 = NULL;
1926 		}
1927 	}
1928 	return skb2;
1929 }
1930 EXPORT_SYMBOL(skb_realloc_headroom);
1931 
1932 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1933 {
1934 	unsigned int saved_end_offset, saved_truesize;
1935 	struct skb_shared_info *shinfo;
1936 	int res;
1937 
1938 	saved_end_offset = skb_end_offset(skb);
1939 	saved_truesize = skb->truesize;
1940 
1941 	res = pskb_expand_head(skb, 0, 0, pri);
1942 	if (res)
1943 		return res;
1944 
1945 	skb->truesize = saved_truesize;
1946 
1947 	if (likely(skb_end_offset(skb) == saved_end_offset))
1948 		return 0;
1949 
1950 	shinfo = skb_shinfo(skb);
1951 
1952 	/* We are about to change back skb->end,
1953 	 * we need to move skb_shinfo() to its new location.
1954 	 */
1955 	memmove(skb->head + saved_end_offset,
1956 		shinfo,
1957 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1958 
1959 	skb_set_end_offset(skb, saved_end_offset);
1960 
1961 	return 0;
1962 }
1963 
1964 /**
1965  *	skb_expand_head - reallocate header of &sk_buff
1966  *	@skb: buffer to reallocate
1967  *	@headroom: needed headroom
1968  *
1969  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1970  *	if possible; copies skb->sk to new skb as needed
1971  *	and frees original skb in case of failures.
1972  *
1973  *	It expect increased headroom and generates warning otherwise.
1974  */
1975 
1976 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1977 {
1978 	int delta = headroom - skb_headroom(skb);
1979 	int osize = skb_end_offset(skb);
1980 	struct sock *sk = skb->sk;
1981 
1982 	if (WARN_ONCE(delta <= 0,
1983 		      "%s is expecting an increase in the headroom", __func__))
1984 		return skb;
1985 
1986 	delta = SKB_DATA_ALIGN(delta);
1987 	/* pskb_expand_head() might crash, if skb is shared. */
1988 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1989 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1990 
1991 		if (unlikely(!nskb))
1992 			goto fail;
1993 
1994 		if (sk)
1995 			skb_set_owner_w(nskb, sk);
1996 		consume_skb(skb);
1997 		skb = nskb;
1998 	}
1999 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2000 		goto fail;
2001 
2002 	if (sk && is_skb_wmem(skb)) {
2003 		delta = skb_end_offset(skb) - osize;
2004 		refcount_add(delta, &sk->sk_wmem_alloc);
2005 		skb->truesize += delta;
2006 	}
2007 	return skb;
2008 
2009 fail:
2010 	kfree_skb(skb);
2011 	return NULL;
2012 }
2013 EXPORT_SYMBOL(skb_expand_head);
2014 
2015 /**
2016  *	skb_copy_expand	-	copy and expand sk_buff
2017  *	@skb: buffer to copy
2018  *	@newheadroom: new free bytes at head
2019  *	@newtailroom: new free bytes at tail
2020  *	@gfp_mask: allocation priority
2021  *
2022  *	Make a copy of both an &sk_buff and its data and while doing so
2023  *	allocate additional space.
2024  *
2025  *	This is used when the caller wishes to modify the data and needs a
2026  *	private copy of the data to alter as well as more space for new fields.
2027  *	Returns %NULL on failure or the pointer to the buffer
2028  *	on success. The returned buffer has a reference count of 1.
2029  *
2030  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2031  *	is called from an interrupt.
2032  */
2033 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2034 				int newheadroom, int newtailroom,
2035 				gfp_t gfp_mask)
2036 {
2037 	/*
2038 	 *	Allocate the copy buffer
2039 	 */
2040 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2041 					gfp_mask, skb_alloc_rx_flag(skb),
2042 					NUMA_NO_NODE);
2043 	int oldheadroom = skb_headroom(skb);
2044 	int head_copy_len, head_copy_off;
2045 
2046 	if (!n)
2047 		return NULL;
2048 
2049 	skb_reserve(n, newheadroom);
2050 
2051 	/* Set the tail pointer and length */
2052 	skb_put(n, skb->len);
2053 
2054 	head_copy_len = oldheadroom;
2055 	head_copy_off = 0;
2056 	if (newheadroom <= head_copy_len)
2057 		head_copy_len = newheadroom;
2058 	else
2059 		head_copy_off = newheadroom - head_copy_len;
2060 
2061 	/* Copy the linear header and data. */
2062 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2063 			     skb->len + head_copy_len));
2064 
2065 	skb_copy_header(n, skb);
2066 
2067 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2068 
2069 	return n;
2070 }
2071 EXPORT_SYMBOL(skb_copy_expand);
2072 
2073 /**
2074  *	__skb_pad		-	zero pad the tail of an skb
2075  *	@skb: buffer to pad
2076  *	@pad: space to pad
2077  *	@free_on_error: free buffer on error
2078  *
2079  *	Ensure that a buffer is followed by a padding area that is zero
2080  *	filled. Used by network drivers which may DMA or transfer data
2081  *	beyond the buffer end onto the wire.
2082  *
2083  *	May return error in out of memory cases. The skb is freed on error
2084  *	if @free_on_error is true.
2085  */
2086 
2087 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2088 {
2089 	int err;
2090 	int ntail;
2091 
2092 	/* If the skbuff is non linear tailroom is always zero.. */
2093 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2094 		memset(skb->data+skb->len, 0, pad);
2095 		return 0;
2096 	}
2097 
2098 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2099 	if (likely(skb_cloned(skb) || ntail > 0)) {
2100 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2101 		if (unlikely(err))
2102 			goto free_skb;
2103 	}
2104 
2105 	/* FIXME: The use of this function with non-linear skb's really needs
2106 	 * to be audited.
2107 	 */
2108 	err = skb_linearize(skb);
2109 	if (unlikely(err))
2110 		goto free_skb;
2111 
2112 	memset(skb->data + skb->len, 0, pad);
2113 	return 0;
2114 
2115 free_skb:
2116 	if (free_on_error)
2117 		kfree_skb(skb);
2118 	return err;
2119 }
2120 EXPORT_SYMBOL(__skb_pad);
2121 
2122 /**
2123  *	pskb_put - add data to the tail of a potentially fragmented buffer
2124  *	@skb: start of the buffer to use
2125  *	@tail: tail fragment of the buffer to use
2126  *	@len: amount of data to add
2127  *
2128  *	This function extends the used data area of the potentially
2129  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2130  *	@skb itself. If this would exceed the total buffer size the kernel
2131  *	will panic. A pointer to the first byte of the extra data is
2132  *	returned.
2133  */
2134 
2135 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2136 {
2137 	if (tail != skb) {
2138 		skb->data_len += len;
2139 		skb->len += len;
2140 	}
2141 	return skb_put(tail, len);
2142 }
2143 EXPORT_SYMBOL_GPL(pskb_put);
2144 
2145 /**
2146  *	skb_put - add data to a buffer
2147  *	@skb: buffer to use
2148  *	@len: amount of data to add
2149  *
2150  *	This function extends the used data area of the buffer. If this would
2151  *	exceed the total buffer size the kernel will panic. A pointer to the
2152  *	first byte of the extra data is returned.
2153  */
2154 void *skb_put(struct sk_buff *skb, unsigned int len)
2155 {
2156 	void *tmp = skb_tail_pointer(skb);
2157 	SKB_LINEAR_ASSERT(skb);
2158 	skb->tail += len;
2159 	skb->len  += len;
2160 	if (unlikely(skb->tail > skb->end))
2161 		skb_over_panic(skb, len, __builtin_return_address(0));
2162 	return tmp;
2163 }
2164 EXPORT_SYMBOL(skb_put);
2165 
2166 /**
2167  *	skb_push - add data to the start of a buffer
2168  *	@skb: buffer to use
2169  *	@len: amount of data to add
2170  *
2171  *	This function extends the used data area of the buffer at the buffer
2172  *	start. If this would exceed the total buffer headroom the kernel will
2173  *	panic. A pointer to the first byte of the extra data is returned.
2174  */
2175 void *skb_push(struct sk_buff *skb, unsigned int len)
2176 {
2177 	skb->data -= len;
2178 	skb->len  += len;
2179 	if (unlikely(skb->data < skb->head))
2180 		skb_under_panic(skb, len, __builtin_return_address(0));
2181 	return skb->data;
2182 }
2183 EXPORT_SYMBOL(skb_push);
2184 
2185 /**
2186  *	skb_pull - remove data from the start of a buffer
2187  *	@skb: buffer to use
2188  *	@len: amount of data to remove
2189  *
2190  *	This function removes data from the start of a buffer, returning
2191  *	the memory to the headroom. A pointer to the next data in the buffer
2192  *	is returned. Once the data has been pulled future pushes will overwrite
2193  *	the old data.
2194  */
2195 void *skb_pull(struct sk_buff *skb, unsigned int len)
2196 {
2197 	return skb_pull_inline(skb, len);
2198 }
2199 EXPORT_SYMBOL(skb_pull);
2200 
2201 /**
2202  *	skb_pull_data - remove data from the start of a buffer returning its
2203  *	original position.
2204  *	@skb: buffer to use
2205  *	@len: amount of data to remove
2206  *
2207  *	This function removes data from the start of a buffer, returning
2208  *	the memory to the headroom. A pointer to the original data in the buffer
2209  *	is returned after checking if there is enough data to pull. Once the
2210  *	data has been pulled future pushes will overwrite the old data.
2211  */
2212 void *skb_pull_data(struct sk_buff *skb, size_t len)
2213 {
2214 	void *data = skb->data;
2215 
2216 	if (skb->len < len)
2217 		return NULL;
2218 
2219 	skb_pull(skb, len);
2220 
2221 	return data;
2222 }
2223 EXPORT_SYMBOL(skb_pull_data);
2224 
2225 /**
2226  *	skb_trim - remove end from a buffer
2227  *	@skb: buffer to alter
2228  *	@len: new length
2229  *
2230  *	Cut the length of a buffer down by removing data from the tail. If
2231  *	the buffer is already under the length specified it is not modified.
2232  *	The skb must be linear.
2233  */
2234 void skb_trim(struct sk_buff *skb, unsigned int len)
2235 {
2236 	if (skb->len > len)
2237 		__skb_trim(skb, len);
2238 }
2239 EXPORT_SYMBOL(skb_trim);
2240 
2241 /* Trims skb to length len. It can change skb pointers.
2242  */
2243 
2244 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2245 {
2246 	struct sk_buff **fragp;
2247 	struct sk_buff *frag;
2248 	int offset = skb_headlen(skb);
2249 	int nfrags = skb_shinfo(skb)->nr_frags;
2250 	int i;
2251 	int err;
2252 
2253 	if (skb_cloned(skb) &&
2254 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2255 		return err;
2256 
2257 	i = 0;
2258 	if (offset >= len)
2259 		goto drop_pages;
2260 
2261 	for (; i < nfrags; i++) {
2262 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2263 
2264 		if (end < len) {
2265 			offset = end;
2266 			continue;
2267 		}
2268 
2269 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2270 
2271 drop_pages:
2272 		skb_shinfo(skb)->nr_frags = i;
2273 
2274 		for (; i < nfrags; i++)
2275 			skb_frag_unref(skb, i);
2276 
2277 		if (skb_has_frag_list(skb))
2278 			skb_drop_fraglist(skb);
2279 		goto done;
2280 	}
2281 
2282 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2283 	     fragp = &frag->next) {
2284 		int end = offset + frag->len;
2285 
2286 		if (skb_shared(frag)) {
2287 			struct sk_buff *nfrag;
2288 
2289 			nfrag = skb_clone(frag, GFP_ATOMIC);
2290 			if (unlikely(!nfrag))
2291 				return -ENOMEM;
2292 
2293 			nfrag->next = frag->next;
2294 			consume_skb(frag);
2295 			frag = nfrag;
2296 			*fragp = frag;
2297 		}
2298 
2299 		if (end < len) {
2300 			offset = end;
2301 			continue;
2302 		}
2303 
2304 		if (end > len &&
2305 		    unlikely((err = pskb_trim(frag, len - offset))))
2306 			return err;
2307 
2308 		if (frag->next)
2309 			skb_drop_list(&frag->next);
2310 		break;
2311 	}
2312 
2313 done:
2314 	if (len > skb_headlen(skb)) {
2315 		skb->data_len -= skb->len - len;
2316 		skb->len       = len;
2317 	} else {
2318 		skb->len       = len;
2319 		skb->data_len  = 0;
2320 		skb_set_tail_pointer(skb, len);
2321 	}
2322 
2323 	if (!skb->sk || skb->destructor == sock_edemux)
2324 		skb_condense(skb);
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(___pskb_trim);
2328 
2329 /* Note : use pskb_trim_rcsum() instead of calling this directly
2330  */
2331 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2332 {
2333 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2334 		int delta = skb->len - len;
2335 
2336 		skb->csum = csum_block_sub(skb->csum,
2337 					   skb_checksum(skb, len, delta, 0),
2338 					   len);
2339 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2340 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2341 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2342 
2343 		if (offset + sizeof(__sum16) > hdlen)
2344 			return -EINVAL;
2345 	}
2346 	return __pskb_trim(skb, len);
2347 }
2348 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2349 
2350 /**
2351  *	__pskb_pull_tail - advance tail of skb header
2352  *	@skb: buffer to reallocate
2353  *	@delta: number of bytes to advance tail
2354  *
2355  *	The function makes a sense only on a fragmented &sk_buff,
2356  *	it expands header moving its tail forward and copying necessary
2357  *	data from fragmented part.
2358  *
2359  *	&sk_buff MUST have reference count of 1.
2360  *
2361  *	Returns %NULL (and &sk_buff does not change) if pull failed
2362  *	or value of new tail of skb in the case of success.
2363  *
2364  *	All the pointers pointing into skb header may change and must be
2365  *	reloaded after call to this function.
2366  */
2367 
2368 /* Moves tail of skb head forward, copying data from fragmented part,
2369  * when it is necessary.
2370  * 1. It may fail due to malloc failure.
2371  * 2. It may change skb pointers.
2372  *
2373  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2374  */
2375 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2376 {
2377 	/* If skb has not enough free space at tail, get new one
2378 	 * plus 128 bytes for future expansions. If we have enough
2379 	 * room at tail, reallocate without expansion only if skb is cloned.
2380 	 */
2381 	int i, k, eat = (skb->tail + delta) - skb->end;
2382 
2383 	if (eat > 0 || skb_cloned(skb)) {
2384 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2385 				     GFP_ATOMIC))
2386 			return NULL;
2387 	}
2388 
2389 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2390 			     skb_tail_pointer(skb), delta));
2391 
2392 	/* Optimization: no fragments, no reasons to preestimate
2393 	 * size of pulled pages. Superb.
2394 	 */
2395 	if (!skb_has_frag_list(skb))
2396 		goto pull_pages;
2397 
2398 	/* Estimate size of pulled pages. */
2399 	eat = delta;
2400 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2401 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2402 
2403 		if (size >= eat)
2404 			goto pull_pages;
2405 		eat -= size;
2406 	}
2407 
2408 	/* If we need update frag list, we are in troubles.
2409 	 * Certainly, it is possible to add an offset to skb data,
2410 	 * but taking into account that pulling is expected to
2411 	 * be very rare operation, it is worth to fight against
2412 	 * further bloating skb head and crucify ourselves here instead.
2413 	 * Pure masohism, indeed. 8)8)
2414 	 */
2415 	if (eat) {
2416 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2417 		struct sk_buff *clone = NULL;
2418 		struct sk_buff *insp = NULL;
2419 
2420 		do {
2421 			if (list->len <= eat) {
2422 				/* Eaten as whole. */
2423 				eat -= list->len;
2424 				list = list->next;
2425 				insp = list;
2426 			} else {
2427 				/* Eaten partially. */
2428 
2429 				if (skb_shared(list)) {
2430 					/* Sucks! We need to fork list. :-( */
2431 					clone = skb_clone(list, GFP_ATOMIC);
2432 					if (!clone)
2433 						return NULL;
2434 					insp = list->next;
2435 					list = clone;
2436 				} else {
2437 					/* This may be pulled without
2438 					 * problems. */
2439 					insp = list;
2440 				}
2441 				if (!pskb_pull(list, eat)) {
2442 					kfree_skb(clone);
2443 					return NULL;
2444 				}
2445 				break;
2446 			}
2447 		} while (eat);
2448 
2449 		/* Free pulled out fragments. */
2450 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2451 			skb_shinfo(skb)->frag_list = list->next;
2452 			consume_skb(list);
2453 		}
2454 		/* And insert new clone at head. */
2455 		if (clone) {
2456 			clone->next = list;
2457 			skb_shinfo(skb)->frag_list = clone;
2458 		}
2459 	}
2460 	/* Success! Now we may commit changes to skb data. */
2461 
2462 pull_pages:
2463 	eat = delta;
2464 	k = 0;
2465 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2467 
2468 		if (size <= eat) {
2469 			skb_frag_unref(skb, i);
2470 			eat -= size;
2471 		} else {
2472 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2473 
2474 			*frag = skb_shinfo(skb)->frags[i];
2475 			if (eat) {
2476 				skb_frag_off_add(frag, eat);
2477 				skb_frag_size_sub(frag, eat);
2478 				if (!i)
2479 					goto end;
2480 				eat = 0;
2481 			}
2482 			k++;
2483 		}
2484 	}
2485 	skb_shinfo(skb)->nr_frags = k;
2486 
2487 end:
2488 	skb->tail     += delta;
2489 	skb->data_len -= delta;
2490 
2491 	if (!skb->data_len)
2492 		skb_zcopy_clear(skb, false);
2493 
2494 	return skb_tail_pointer(skb);
2495 }
2496 EXPORT_SYMBOL(__pskb_pull_tail);
2497 
2498 /**
2499  *	skb_copy_bits - copy bits from skb to kernel buffer
2500  *	@skb: source skb
2501  *	@offset: offset in source
2502  *	@to: destination buffer
2503  *	@len: number of bytes to copy
2504  *
2505  *	Copy the specified number of bytes from the source skb to the
2506  *	destination buffer.
2507  *
2508  *	CAUTION ! :
2509  *		If its prototype is ever changed,
2510  *		check arch/{*}/net/{*}.S files,
2511  *		since it is called from BPF assembly code.
2512  */
2513 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2514 {
2515 	int start = skb_headlen(skb);
2516 	struct sk_buff *frag_iter;
2517 	int i, copy;
2518 
2519 	if (offset > (int)skb->len - len)
2520 		goto fault;
2521 
2522 	/* Copy header. */
2523 	if ((copy = start - offset) > 0) {
2524 		if (copy > len)
2525 			copy = len;
2526 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2527 		if ((len -= copy) == 0)
2528 			return 0;
2529 		offset += copy;
2530 		to     += copy;
2531 	}
2532 
2533 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2534 		int end;
2535 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2536 
2537 		WARN_ON(start > offset + len);
2538 
2539 		end = start + skb_frag_size(f);
2540 		if ((copy = end - offset) > 0) {
2541 			u32 p_off, p_len, copied;
2542 			struct page *p;
2543 			u8 *vaddr;
2544 
2545 			if (copy > len)
2546 				copy = len;
2547 
2548 			skb_frag_foreach_page(f,
2549 					      skb_frag_off(f) + offset - start,
2550 					      copy, p, p_off, p_len, copied) {
2551 				vaddr = kmap_atomic(p);
2552 				memcpy(to + copied, vaddr + p_off, p_len);
2553 				kunmap_atomic(vaddr);
2554 			}
2555 
2556 			if ((len -= copy) == 0)
2557 				return 0;
2558 			offset += copy;
2559 			to     += copy;
2560 		}
2561 		start = end;
2562 	}
2563 
2564 	skb_walk_frags(skb, frag_iter) {
2565 		int end;
2566 
2567 		WARN_ON(start > offset + len);
2568 
2569 		end = start + frag_iter->len;
2570 		if ((copy = end - offset) > 0) {
2571 			if (copy > len)
2572 				copy = len;
2573 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2574 				goto fault;
2575 			if ((len -= copy) == 0)
2576 				return 0;
2577 			offset += copy;
2578 			to     += copy;
2579 		}
2580 		start = end;
2581 	}
2582 
2583 	if (!len)
2584 		return 0;
2585 
2586 fault:
2587 	return -EFAULT;
2588 }
2589 EXPORT_SYMBOL(skb_copy_bits);
2590 
2591 /*
2592  * Callback from splice_to_pipe(), if we need to release some pages
2593  * at the end of the spd in case we error'ed out in filling the pipe.
2594  */
2595 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2596 {
2597 	put_page(spd->pages[i]);
2598 }
2599 
2600 static struct page *linear_to_page(struct page *page, unsigned int *len,
2601 				   unsigned int *offset,
2602 				   struct sock *sk)
2603 {
2604 	struct page_frag *pfrag = sk_page_frag(sk);
2605 
2606 	if (!sk_page_frag_refill(sk, pfrag))
2607 		return NULL;
2608 
2609 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2610 
2611 	memcpy(page_address(pfrag->page) + pfrag->offset,
2612 	       page_address(page) + *offset, *len);
2613 	*offset = pfrag->offset;
2614 	pfrag->offset += *len;
2615 
2616 	return pfrag->page;
2617 }
2618 
2619 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2620 			     struct page *page,
2621 			     unsigned int offset)
2622 {
2623 	return	spd->nr_pages &&
2624 		spd->pages[spd->nr_pages - 1] == page &&
2625 		(spd->partial[spd->nr_pages - 1].offset +
2626 		 spd->partial[spd->nr_pages - 1].len == offset);
2627 }
2628 
2629 /*
2630  * Fill page/offset/length into spd, if it can hold more pages.
2631  */
2632 static bool spd_fill_page(struct splice_pipe_desc *spd,
2633 			  struct pipe_inode_info *pipe, struct page *page,
2634 			  unsigned int *len, unsigned int offset,
2635 			  bool linear,
2636 			  struct sock *sk)
2637 {
2638 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2639 		return true;
2640 
2641 	if (linear) {
2642 		page = linear_to_page(page, len, &offset, sk);
2643 		if (!page)
2644 			return true;
2645 	}
2646 	if (spd_can_coalesce(spd, page, offset)) {
2647 		spd->partial[spd->nr_pages - 1].len += *len;
2648 		return false;
2649 	}
2650 	get_page(page);
2651 	spd->pages[spd->nr_pages] = page;
2652 	spd->partial[spd->nr_pages].len = *len;
2653 	spd->partial[spd->nr_pages].offset = offset;
2654 	spd->nr_pages++;
2655 
2656 	return false;
2657 }
2658 
2659 static bool __splice_segment(struct page *page, unsigned int poff,
2660 			     unsigned int plen, unsigned int *off,
2661 			     unsigned int *len,
2662 			     struct splice_pipe_desc *spd, bool linear,
2663 			     struct sock *sk,
2664 			     struct pipe_inode_info *pipe)
2665 {
2666 	if (!*len)
2667 		return true;
2668 
2669 	/* skip this segment if already processed */
2670 	if (*off >= plen) {
2671 		*off -= plen;
2672 		return false;
2673 	}
2674 
2675 	/* ignore any bits we already processed */
2676 	poff += *off;
2677 	plen -= *off;
2678 	*off = 0;
2679 
2680 	do {
2681 		unsigned int flen = min(*len, plen);
2682 
2683 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2684 				  linear, sk))
2685 			return true;
2686 		poff += flen;
2687 		plen -= flen;
2688 		*len -= flen;
2689 	} while (*len && plen);
2690 
2691 	return false;
2692 }
2693 
2694 /*
2695  * Map linear and fragment data from the skb to spd. It reports true if the
2696  * pipe is full or if we already spliced the requested length.
2697  */
2698 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2699 			      unsigned int *offset, unsigned int *len,
2700 			      struct splice_pipe_desc *spd, struct sock *sk)
2701 {
2702 	int seg;
2703 	struct sk_buff *iter;
2704 
2705 	/* map the linear part :
2706 	 * If skb->head_frag is set, this 'linear' part is backed by a
2707 	 * fragment, and if the head is not shared with any clones then
2708 	 * we can avoid a copy since we own the head portion of this page.
2709 	 */
2710 	if (__splice_segment(virt_to_page(skb->data),
2711 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2712 			     skb_headlen(skb),
2713 			     offset, len, spd,
2714 			     skb_head_is_locked(skb),
2715 			     sk, pipe))
2716 		return true;
2717 
2718 	/*
2719 	 * then map the fragments
2720 	 */
2721 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2722 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2723 
2724 		if (__splice_segment(skb_frag_page(f),
2725 				     skb_frag_off(f), skb_frag_size(f),
2726 				     offset, len, spd, false, sk, pipe))
2727 			return true;
2728 	}
2729 
2730 	skb_walk_frags(skb, iter) {
2731 		if (*offset >= iter->len) {
2732 			*offset -= iter->len;
2733 			continue;
2734 		}
2735 		/* __skb_splice_bits() only fails if the output has no room
2736 		 * left, so no point in going over the frag_list for the error
2737 		 * case.
2738 		 */
2739 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2740 			return true;
2741 	}
2742 
2743 	return false;
2744 }
2745 
2746 /*
2747  * Map data from the skb to a pipe. Should handle both the linear part,
2748  * the fragments, and the frag list.
2749  */
2750 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2751 		    struct pipe_inode_info *pipe, unsigned int tlen,
2752 		    unsigned int flags)
2753 {
2754 	struct partial_page partial[MAX_SKB_FRAGS];
2755 	struct page *pages[MAX_SKB_FRAGS];
2756 	struct splice_pipe_desc spd = {
2757 		.pages = pages,
2758 		.partial = partial,
2759 		.nr_pages_max = MAX_SKB_FRAGS,
2760 		.ops = &nosteal_pipe_buf_ops,
2761 		.spd_release = sock_spd_release,
2762 	};
2763 	int ret = 0;
2764 
2765 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2766 
2767 	if (spd.nr_pages)
2768 		ret = splice_to_pipe(pipe, &spd);
2769 
2770 	return ret;
2771 }
2772 EXPORT_SYMBOL_GPL(skb_splice_bits);
2773 
2774 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2775 			    struct kvec *vec, size_t num, size_t size)
2776 {
2777 	struct socket *sock = sk->sk_socket;
2778 
2779 	if (!sock)
2780 		return -EINVAL;
2781 	return kernel_sendmsg(sock, msg, vec, num, size);
2782 }
2783 
2784 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2785 			     size_t size, int flags)
2786 {
2787 	struct socket *sock = sk->sk_socket;
2788 
2789 	if (!sock)
2790 		return -EINVAL;
2791 	return kernel_sendpage(sock, page, offset, size, flags);
2792 }
2793 
2794 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2795 			    struct kvec *vec, size_t num, size_t size);
2796 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2797 			     size_t size, int flags);
2798 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2799 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2800 {
2801 	unsigned int orig_len = len;
2802 	struct sk_buff *head = skb;
2803 	unsigned short fragidx;
2804 	int slen, ret;
2805 
2806 do_frag_list:
2807 
2808 	/* Deal with head data */
2809 	while (offset < skb_headlen(skb) && len) {
2810 		struct kvec kv;
2811 		struct msghdr msg;
2812 
2813 		slen = min_t(int, len, skb_headlen(skb) - offset);
2814 		kv.iov_base = skb->data + offset;
2815 		kv.iov_len = slen;
2816 		memset(&msg, 0, sizeof(msg));
2817 		msg.msg_flags = MSG_DONTWAIT;
2818 
2819 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2820 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2821 		if (ret <= 0)
2822 			goto error;
2823 
2824 		offset += ret;
2825 		len -= ret;
2826 	}
2827 
2828 	/* All the data was skb head? */
2829 	if (!len)
2830 		goto out;
2831 
2832 	/* Make offset relative to start of frags */
2833 	offset -= skb_headlen(skb);
2834 
2835 	/* Find where we are in frag list */
2836 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2837 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2838 
2839 		if (offset < skb_frag_size(frag))
2840 			break;
2841 
2842 		offset -= skb_frag_size(frag);
2843 	}
2844 
2845 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2846 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2847 
2848 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2849 
2850 		while (slen) {
2851 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2852 					      sendpage_unlocked, sk,
2853 					      skb_frag_page(frag),
2854 					      skb_frag_off(frag) + offset,
2855 					      slen, MSG_DONTWAIT);
2856 			if (ret <= 0)
2857 				goto error;
2858 
2859 			len -= ret;
2860 			offset += ret;
2861 			slen -= ret;
2862 		}
2863 
2864 		offset = 0;
2865 	}
2866 
2867 	if (len) {
2868 		/* Process any frag lists */
2869 
2870 		if (skb == head) {
2871 			if (skb_has_frag_list(skb)) {
2872 				skb = skb_shinfo(skb)->frag_list;
2873 				goto do_frag_list;
2874 			}
2875 		} else if (skb->next) {
2876 			skb = skb->next;
2877 			goto do_frag_list;
2878 		}
2879 	}
2880 
2881 out:
2882 	return orig_len - len;
2883 
2884 error:
2885 	return orig_len == len ? ret : orig_len - len;
2886 }
2887 
2888 /* Send skb data on a socket. Socket must be locked. */
2889 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2890 			 int len)
2891 {
2892 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2893 			       kernel_sendpage_locked);
2894 }
2895 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2896 
2897 /* Send skb data on a socket. Socket must be unlocked. */
2898 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2899 {
2900 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2901 			       sendpage_unlocked);
2902 }
2903 
2904 /**
2905  *	skb_store_bits - store bits from kernel buffer to skb
2906  *	@skb: destination buffer
2907  *	@offset: offset in destination
2908  *	@from: source buffer
2909  *	@len: number of bytes to copy
2910  *
2911  *	Copy the specified number of bytes from the source buffer to the
2912  *	destination skb.  This function handles all the messy bits of
2913  *	traversing fragment lists and such.
2914  */
2915 
2916 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2917 {
2918 	int start = skb_headlen(skb);
2919 	struct sk_buff *frag_iter;
2920 	int i, copy;
2921 
2922 	if (offset > (int)skb->len - len)
2923 		goto fault;
2924 
2925 	if ((copy = start - offset) > 0) {
2926 		if (copy > len)
2927 			copy = len;
2928 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2929 		if ((len -= copy) == 0)
2930 			return 0;
2931 		offset += copy;
2932 		from += copy;
2933 	}
2934 
2935 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2936 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2937 		int end;
2938 
2939 		WARN_ON(start > offset + len);
2940 
2941 		end = start + skb_frag_size(frag);
2942 		if ((copy = end - offset) > 0) {
2943 			u32 p_off, p_len, copied;
2944 			struct page *p;
2945 			u8 *vaddr;
2946 
2947 			if (copy > len)
2948 				copy = len;
2949 
2950 			skb_frag_foreach_page(frag,
2951 					      skb_frag_off(frag) + offset - start,
2952 					      copy, p, p_off, p_len, copied) {
2953 				vaddr = kmap_atomic(p);
2954 				memcpy(vaddr + p_off, from + copied, p_len);
2955 				kunmap_atomic(vaddr);
2956 			}
2957 
2958 			if ((len -= copy) == 0)
2959 				return 0;
2960 			offset += copy;
2961 			from += copy;
2962 		}
2963 		start = end;
2964 	}
2965 
2966 	skb_walk_frags(skb, frag_iter) {
2967 		int end;
2968 
2969 		WARN_ON(start > offset + len);
2970 
2971 		end = start + frag_iter->len;
2972 		if ((copy = end - offset) > 0) {
2973 			if (copy > len)
2974 				copy = len;
2975 			if (skb_store_bits(frag_iter, offset - start,
2976 					   from, copy))
2977 				goto fault;
2978 			if ((len -= copy) == 0)
2979 				return 0;
2980 			offset += copy;
2981 			from += copy;
2982 		}
2983 		start = end;
2984 	}
2985 	if (!len)
2986 		return 0;
2987 
2988 fault:
2989 	return -EFAULT;
2990 }
2991 EXPORT_SYMBOL(skb_store_bits);
2992 
2993 /* Checksum skb data. */
2994 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2995 		      __wsum csum, const struct skb_checksum_ops *ops)
2996 {
2997 	int start = skb_headlen(skb);
2998 	int i, copy = start - offset;
2999 	struct sk_buff *frag_iter;
3000 	int pos = 0;
3001 
3002 	/* Checksum header. */
3003 	if (copy > 0) {
3004 		if (copy > len)
3005 			copy = len;
3006 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3007 				       skb->data + offset, copy, csum);
3008 		if ((len -= copy) == 0)
3009 			return csum;
3010 		offset += copy;
3011 		pos	= copy;
3012 	}
3013 
3014 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3015 		int end;
3016 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3017 
3018 		WARN_ON(start > offset + len);
3019 
3020 		end = start + skb_frag_size(frag);
3021 		if ((copy = end - offset) > 0) {
3022 			u32 p_off, p_len, copied;
3023 			struct page *p;
3024 			__wsum csum2;
3025 			u8 *vaddr;
3026 
3027 			if (copy > len)
3028 				copy = len;
3029 
3030 			skb_frag_foreach_page(frag,
3031 					      skb_frag_off(frag) + offset - start,
3032 					      copy, p, p_off, p_len, copied) {
3033 				vaddr = kmap_atomic(p);
3034 				csum2 = INDIRECT_CALL_1(ops->update,
3035 							csum_partial_ext,
3036 							vaddr + p_off, p_len, 0);
3037 				kunmap_atomic(vaddr);
3038 				csum = INDIRECT_CALL_1(ops->combine,
3039 						       csum_block_add_ext, csum,
3040 						       csum2, pos, p_len);
3041 				pos += p_len;
3042 			}
3043 
3044 			if (!(len -= copy))
3045 				return csum;
3046 			offset += copy;
3047 		}
3048 		start = end;
3049 	}
3050 
3051 	skb_walk_frags(skb, frag_iter) {
3052 		int end;
3053 
3054 		WARN_ON(start > offset + len);
3055 
3056 		end = start + frag_iter->len;
3057 		if ((copy = end - offset) > 0) {
3058 			__wsum csum2;
3059 			if (copy > len)
3060 				copy = len;
3061 			csum2 = __skb_checksum(frag_iter, offset - start,
3062 					       copy, 0, ops);
3063 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3064 					       csum, csum2, pos, copy);
3065 			if ((len -= copy) == 0)
3066 				return csum;
3067 			offset += copy;
3068 			pos    += copy;
3069 		}
3070 		start = end;
3071 	}
3072 	BUG_ON(len);
3073 
3074 	return csum;
3075 }
3076 EXPORT_SYMBOL(__skb_checksum);
3077 
3078 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3079 		    int len, __wsum csum)
3080 {
3081 	const struct skb_checksum_ops ops = {
3082 		.update  = csum_partial_ext,
3083 		.combine = csum_block_add_ext,
3084 	};
3085 
3086 	return __skb_checksum(skb, offset, len, csum, &ops);
3087 }
3088 EXPORT_SYMBOL(skb_checksum);
3089 
3090 /* Both of above in one bottle. */
3091 
3092 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3093 				    u8 *to, int len)
3094 {
3095 	int start = skb_headlen(skb);
3096 	int i, copy = start - offset;
3097 	struct sk_buff *frag_iter;
3098 	int pos = 0;
3099 	__wsum csum = 0;
3100 
3101 	/* Copy header. */
3102 	if (copy > 0) {
3103 		if (copy > len)
3104 			copy = len;
3105 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3106 						 copy);
3107 		if ((len -= copy) == 0)
3108 			return csum;
3109 		offset += copy;
3110 		to     += copy;
3111 		pos	= copy;
3112 	}
3113 
3114 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3115 		int end;
3116 
3117 		WARN_ON(start > offset + len);
3118 
3119 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3120 		if ((copy = end - offset) > 0) {
3121 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3122 			u32 p_off, p_len, copied;
3123 			struct page *p;
3124 			__wsum csum2;
3125 			u8 *vaddr;
3126 
3127 			if (copy > len)
3128 				copy = len;
3129 
3130 			skb_frag_foreach_page(frag,
3131 					      skb_frag_off(frag) + offset - start,
3132 					      copy, p, p_off, p_len, copied) {
3133 				vaddr = kmap_atomic(p);
3134 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3135 								  to + copied,
3136 								  p_len);
3137 				kunmap_atomic(vaddr);
3138 				csum = csum_block_add(csum, csum2, pos);
3139 				pos += p_len;
3140 			}
3141 
3142 			if (!(len -= copy))
3143 				return csum;
3144 			offset += copy;
3145 			to     += copy;
3146 		}
3147 		start = end;
3148 	}
3149 
3150 	skb_walk_frags(skb, frag_iter) {
3151 		__wsum csum2;
3152 		int end;
3153 
3154 		WARN_ON(start > offset + len);
3155 
3156 		end = start + frag_iter->len;
3157 		if ((copy = end - offset) > 0) {
3158 			if (copy > len)
3159 				copy = len;
3160 			csum2 = skb_copy_and_csum_bits(frag_iter,
3161 						       offset - start,
3162 						       to, copy);
3163 			csum = csum_block_add(csum, csum2, pos);
3164 			if ((len -= copy) == 0)
3165 				return csum;
3166 			offset += copy;
3167 			to     += copy;
3168 			pos    += copy;
3169 		}
3170 		start = end;
3171 	}
3172 	BUG_ON(len);
3173 	return csum;
3174 }
3175 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3176 
3177 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3178 {
3179 	__sum16 sum;
3180 
3181 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3182 	/* See comments in __skb_checksum_complete(). */
3183 	if (likely(!sum)) {
3184 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3185 		    !skb->csum_complete_sw)
3186 			netdev_rx_csum_fault(skb->dev, skb);
3187 	}
3188 	if (!skb_shared(skb))
3189 		skb->csum_valid = !sum;
3190 	return sum;
3191 }
3192 EXPORT_SYMBOL(__skb_checksum_complete_head);
3193 
3194 /* This function assumes skb->csum already holds pseudo header's checksum,
3195  * which has been changed from the hardware checksum, for example, by
3196  * __skb_checksum_validate_complete(). And, the original skb->csum must
3197  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3198  *
3199  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3200  * zero. The new checksum is stored back into skb->csum unless the skb is
3201  * shared.
3202  */
3203 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3204 {
3205 	__wsum csum;
3206 	__sum16 sum;
3207 
3208 	csum = skb_checksum(skb, 0, skb->len, 0);
3209 
3210 	sum = csum_fold(csum_add(skb->csum, csum));
3211 	/* This check is inverted, because we already knew the hardware
3212 	 * checksum is invalid before calling this function. So, if the
3213 	 * re-computed checksum is valid instead, then we have a mismatch
3214 	 * between the original skb->csum and skb_checksum(). This means either
3215 	 * the original hardware checksum is incorrect or we screw up skb->csum
3216 	 * when moving skb->data around.
3217 	 */
3218 	if (likely(!sum)) {
3219 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3220 		    !skb->csum_complete_sw)
3221 			netdev_rx_csum_fault(skb->dev, skb);
3222 	}
3223 
3224 	if (!skb_shared(skb)) {
3225 		/* Save full packet checksum */
3226 		skb->csum = csum;
3227 		skb->ip_summed = CHECKSUM_COMPLETE;
3228 		skb->csum_complete_sw = 1;
3229 		skb->csum_valid = !sum;
3230 	}
3231 
3232 	return sum;
3233 }
3234 EXPORT_SYMBOL(__skb_checksum_complete);
3235 
3236 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3237 {
3238 	net_warn_ratelimited(
3239 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3240 		__func__);
3241 	return 0;
3242 }
3243 
3244 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3245 				       int offset, int len)
3246 {
3247 	net_warn_ratelimited(
3248 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3249 		__func__);
3250 	return 0;
3251 }
3252 
3253 static const struct skb_checksum_ops default_crc32c_ops = {
3254 	.update  = warn_crc32c_csum_update,
3255 	.combine = warn_crc32c_csum_combine,
3256 };
3257 
3258 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3259 	&default_crc32c_ops;
3260 EXPORT_SYMBOL(crc32c_csum_stub);
3261 
3262  /**
3263  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3264  *	@from: source buffer
3265  *
3266  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3267  *	into skb_zerocopy().
3268  */
3269 unsigned int
3270 skb_zerocopy_headlen(const struct sk_buff *from)
3271 {
3272 	unsigned int hlen = 0;
3273 
3274 	if (!from->head_frag ||
3275 	    skb_headlen(from) < L1_CACHE_BYTES ||
3276 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3277 		hlen = skb_headlen(from);
3278 		if (!hlen)
3279 			hlen = from->len;
3280 	}
3281 
3282 	if (skb_has_frag_list(from))
3283 		hlen = from->len;
3284 
3285 	return hlen;
3286 }
3287 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3288 
3289 /**
3290  *	skb_zerocopy - Zero copy skb to skb
3291  *	@to: destination buffer
3292  *	@from: source buffer
3293  *	@len: number of bytes to copy from source buffer
3294  *	@hlen: size of linear headroom in destination buffer
3295  *
3296  *	Copies up to `len` bytes from `from` to `to` by creating references
3297  *	to the frags in the source buffer.
3298  *
3299  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3300  *	headroom in the `to` buffer.
3301  *
3302  *	Return value:
3303  *	0: everything is OK
3304  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3305  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3306  */
3307 int
3308 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3309 {
3310 	int i, j = 0;
3311 	int plen = 0; /* length of skb->head fragment */
3312 	int ret;
3313 	struct page *page;
3314 	unsigned int offset;
3315 
3316 	BUG_ON(!from->head_frag && !hlen);
3317 
3318 	/* dont bother with small payloads */
3319 	if (len <= skb_tailroom(to))
3320 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3321 
3322 	if (hlen) {
3323 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3324 		if (unlikely(ret))
3325 			return ret;
3326 		len -= hlen;
3327 	} else {
3328 		plen = min_t(int, skb_headlen(from), len);
3329 		if (plen) {
3330 			page = virt_to_head_page(from->head);
3331 			offset = from->data - (unsigned char *)page_address(page);
3332 			__skb_fill_page_desc(to, 0, page, offset, plen);
3333 			get_page(page);
3334 			j = 1;
3335 			len -= plen;
3336 		}
3337 	}
3338 
3339 	skb_len_add(to, len + plen);
3340 
3341 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3342 		skb_tx_error(from);
3343 		return -ENOMEM;
3344 	}
3345 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3346 
3347 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3348 		int size;
3349 
3350 		if (!len)
3351 			break;
3352 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3353 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3354 					len);
3355 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3356 		len -= size;
3357 		skb_frag_ref(to, j);
3358 		j++;
3359 	}
3360 	skb_shinfo(to)->nr_frags = j;
3361 
3362 	return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(skb_zerocopy);
3365 
3366 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3367 {
3368 	__wsum csum;
3369 	long csstart;
3370 
3371 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3372 		csstart = skb_checksum_start_offset(skb);
3373 	else
3374 		csstart = skb_headlen(skb);
3375 
3376 	BUG_ON(csstart > skb_headlen(skb));
3377 
3378 	skb_copy_from_linear_data(skb, to, csstart);
3379 
3380 	csum = 0;
3381 	if (csstart != skb->len)
3382 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3383 					      skb->len - csstart);
3384 
3385 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3386 		long csstuff = csstart + skb->csum_offset;
3387 
3388 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3389 	}
3390 }
3391 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3392 
3393 /**
3394  *	skb_dequeue - remove from the head of the queue
3395  *	@list: list to dequeue from
3396  *
3397  *	Remove the head of the list. The list lock is taken so the function
3398  *	may be used safely with other locking list functions. The head item is
3399  *	returned or %NULL if the list is empty.
3400  */
3401 
3402 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3403 {
3404 	unsigned long flags;
3405 	struct sk_buff *result;
3406 
3407 	spin_lock_irqsave(&list->lock, flags);
3408 	result = __skb_dequeue(list);
3409 	spin_unlock_irqrestore(&list->lock, flags);
3410 	return result;
3411 }
3412 EXPORT_SYMBOL(skb_dequeue);
3413 
3414 /**
3415  *	skb_dequeue_tail - remove from the tail of the queue
3416  *	@list: list to dequeue from
3417  *
3418  *	Remove the tail of the list. The list lock is taken so the function
3419  *	may be used safely with other locking list functions. The tail item is
3420  *	returned or %NULL if the list is empty.
3421  */
3422 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3423 {
3424 	unsigned long flags;
3425 	struct sk_buff *result;
3426 
3427 	spin_lock_irqsave(&list->lock, flags);
3428 	result = __skb_dequeue_tail(list);
3429 	spin_unlock_irqrestore(&list->lock, flags);
3430 	return result;
3431 }
3432 EXPORT_SYMBOL(skb_dequeue_tail);
3433 
3434 /**
3435  *	skb_queue_purge - empty a list
3436  *	@list: list to empty
3437  *
3438  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3439  *	the list and one reference dropped. This function takes the list
3440  *	lock and is atomic with respect to other list locking functions.
3441  */
3442 void skb_queue_purge(struct sk_buff_head *list)
3443 {
3444 	struct sk_buff *skb;
3445 	while ((skb = skb_dequeue(list)) != NULL)
3446 		kfree_skb(skb);
3447 }
3448 EXPORT_SYMBOL(skb_queue_purge);
3449 
3450 /**
3451  *	skb_rbtree_purge - empty a skb rbtree
3452  *	@root: root of the rbtree to empty
3453  *	Return value: the sum of truesizes of all purged skbs.
3454  *
3455  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3456  *	the list and one reference dropped. This function does not take
3457  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3458  *	out-of-order queue is protected by the socket lock).
3459  */
3460 unsigned int skb_rbtree_purge(struct rb_root *root)
3461 {
3462 	struct rb_node *p = rb_first(root);
3463 	unsigned int sum = 0;
3464 
3465 	while (p) {
3466 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3467 
3468 		p = rb_next(p);
3469 		rb_erase(&skb->rbnode, root);
3470 		sum += skb->truesize;
3471 		kfree_skb(skb);
3472 	}
3473 	return sum;
3474 }
3475 
3476 /**
3477  *	skb_queue_head - queue a buffer at the list head
3478  *	@list: list to use
3479  *	@newsk: buffer to queue
3480  *
3481  *	Queue a buffer at the start of the list. This function takes the
3482  *	list lock and can be used safely with other locking &sk_buff functions
3483  *	safely.
3484  *
3485  *	A buffer cannot be placed on two lists at the same time.
3486  */
3487 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3488 {
3489 	unsigned long flags;
3490 
3491 	spin_lock_irqsave(&list->lock, flags);
3492 	__skb_queue_head(list, newsk);
3493 	spin_unlock_irqrestore(&list->lock, flags);
3494 }
3495 EXPORT_SYMBOL(skb_queue_head);
3496 
3497 /**
3498  *	skb_queue_tail - queue a buffer at the list tail
3499  *	@list: list to use
3500  *	@newsk: buffer to queue
3501  *
3502  *	Queue a buffer at the tail of the list. This function takes the
3503  *	list lock and can be used safely with other locking &sk_buff functions
3504  *	safely.
3505  *
3506  *	A buffer cannot be placed on two lists at the same time.
3507  */
3508 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3509 {
3510 	unsigned long flags;
3511 
3512 	spin_lock_irqsave(&list->lock, flags);
3513 	__skb_queue_tail(list, newsk);
3514 	spin_unlock_irqrestore(&list->lock, flags);
3515 }
3516 EXPORT_SYMBOL(skb_queue_tail);
3517 
3518 /**
3519  *	skb_unlink	-	remove a buffer from a list
3520  *	@skb: buffer to remove
3521  *	@list: list to use
3522  *
3523  *	Remove a packet from a list. The list locks are taken and this
3524  *	function is atomic with respect to other list locked calls
3525  *
3526  *	You must know what list the SKB is on.
3527  */
3528 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3529 {
3530 	unsigned long flags;
3531 
3532 	spin_lock_irqsave(&list->lock, flags);
3533 	__skb_unlink(skb, list);
3534 	spin_unlock_irqrestore(&list->lock, flags);
3535 }
3536 EXPORT_SYMBOL(skb_unlink);
3537 
3538 /**
3539  *	skb_append	-	append a buffer
3540  *	@old: buffer to insert after
3541  *	@newsk: buffer to insert
3542  *	@list: list to use
3543  *
3544  *	Place a packet after a given packet in a list. The list locks are taken
3545  *	and this function is atomic with respect to other list locked calls.
3546  *	A buffer cannot be placed on two lists at the same time.
3547  */
3548 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3549 {
3550 	unsigned long flags;
3551 
3552 	spin_lock_irqsave(&list->lock, flags);
3553 	__skb_queue_after(list, old, newsk);
3554 	spin_unlock_irqrestore(&list->lock, flags);
3555 }
3556 EXPORT_SYMBOL(skb_append);
3557 
3558 static inline void skb_split_inside_header(struct sk_buff *skb,
3559 					   struct sk_buff* skb1,
3560 					   const u32 len, const int pos)
3561 {
3562 	int i;
3563 
3564 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3565 					 pos - len);
3566 	/* And move data appendix as is. */
3567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3568 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3569 
3570 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3571 	skb_shinfo(skb)->nr_frags  = 0;
3572 	skb1->data_len		   = skb->data_len;
3573 	skb1->len		   += skb1->data_len;
3574 	skb->data_len		   = 0;
3575 	skb->len		   = len;
3576 	skb_set_tail_pointer(skb, len);
3577 }
3578 
3579 static inline void skb_split_no_header(struct sk_buff *skb,
3580 				       struct sk_buff* skb1,
3581 				       const u32 len, int pos)
3582 {
3583 	int i, k = 0;
3584 	const int nfrags = skb_shinfo(skb)->nr_frags;
3585 
3586 	skb_shinfo(skb)->nr_frags = 0;
3587 	skb1->len		  = skb1->data_len = skb->len - len;
3588 	skb->len		  = len;
3589 	skb->data_len		  = len - pos;
3590 
3591 	for (i = 0; i < nfrags; i++) {
3592 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3593 
3594 		if (pos + size > len) {
3595 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3596 
3597 			if (pos < len) {
3598 				/* Split frag.
3599 				 * We have two variants in this case:
3600 				 * 1. Move all the frag to the second
3601 				 *    part, if it is possible. F.e.
3602 				 *    this approach is mandatory for TUX,
3603 				 *    where splitting is expensive.
3604 				 * 2. Split is accurately. We make this.
3605 				 */
3606 				skb_frag_ref(skb, i);
3607 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3608 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3609 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3610 				skb_shinfo(skb)->nr_frags++;
3611 			}
3612 			k++;
3613 		} else
3614 			skb_shinfo(skb)->nr_frags++;
3615 		pos += size;
3616 	}
3617 	skb_shinfo(skb1)->nr_frags = k;
3618 }
3619 
3620 /**
3621  * skb_split - Split fragmented skb to two parts at length len.
3622  * @skb: the buffer to split
3623  * @skb1: the buffer to receive the second part
3624  * @len: new length for skb
3625  */
3626 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3627 {
3628 	int pos = skb_headlen(skb);
3629 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3630 
3631 	skb_zcopy_downgrade_managed(skb);
3632 
3633 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3634 	skb_zerocopy_clone(skb1, skb, 0);
3635 	if (len < pos)	/* Split line is inside header. */
3636 		skb_split_inside_header(skb, skb1, len, pos);
3637 	else		/* Second chunk has no header, nothing to copy. */
3638 		skb_split_no_header(skb, skb1, len, pos);
3639 }
3640 EXPORT_SYMBOL(skb_split);
3641 
3642 /* Shifting from/to a cloned skb is a no-go.
3643  *
3644  * Caller cannot keep skb_shinfo related pointers past calling here!
3645  */
3646 static int skb_prepare_for_shift(struct sk_buff *skb)
3647 {
3648 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3649 }
3650 
3651 /**
3652  * skb_shift - Shifts paged data partially from skb to another
3653  * @tgt: buffer into which tail data gets added
3654  * @skb: buffer from which the paged data comes from
3655  * @shiftlen: shift up to this many bytes
3656  *
3657  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3658  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3659  * It's up to caller to free skb if everything was shifted.
3660  *
3661  * If @tgt runs out of frags, the whole operation is aborted.
3662  *
3663  * Skb cannot include anything else but paged data while tgt is allowed
3664  * to have non-paged data as well.
3665  *
3666  * TODO: full sized shift could be optimized but that would need
3667  * specialized skb free'er to handle frags without up-to-date nr_frags.
3668  */
3669 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3670 {
3671 	int from, to, merge, todo;
3672 	skb_frag_t *fragfrom, *fragto;
3673 
3674 	BUG_ON(shiftlen > skb->len);
3675 
3676 	if (skb_headlen(skb))
3677 		return 0;
3678 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3679 		return 0;
3680 
3681 	todo = shiftlen;
3682 	from = 0;
3683 	to = skb_shinfo(tgt)->nr_frags;
3684 	fragfrom = &skb_shinfo(skb)->frags[from];
3685 
3686 	/* Actual merge is delayed until the point when we know we can
3687 	 * commit all, so that we don't have to undo partial changes
3688 	 */
3689 	if (!to ||
3690 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3691 			      skb_frag_off(fragfrom))) {
3692 		merge = -1;
3693 	} else {
3694 		merge = to - 1;
3695 
3696 		todo -= skb_frag_size(fragfrom);
3697 		if (todo < 0) {
3698 			if (skb_prepare_for_shift(skb) ||
3699 			    skb_prepare_for_shift(tgt))
3700 				return 0;
3701 
3702 			/* All previous frag pointers might be stale! */
3703 			fragfrom = &skb_shinfo(skb)->frags[from];
3704 			fragto = &skb_shinfo(tgt)->frags[merge];
3705 
3706 			skb_frag_size_add(fragto, shiftlen);
3707 			skb_frag_size_sub(fragfrom, shiftlen);
3708 			skb_frag_off_add(fragfrom, shiftlen);
3709 
3710 			goto onlymerged;
3711 		}
3712 
3713 		from++;
3714 	}
3715 
3716 	/* Skip full, not-fitting skb to avoid expensive operations */
3717 	if ((shiftlen == skb->len) &&
3718 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3719 		return 0;
3720 
3721 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3722 		return 0;
3723 
3724 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3725 		if (to == MAX_SKB_FRAGS)
3726 			return 0;
3727 
3728 		fragfrom = &skb_shinfo(skb)->frags[from];
3729 		fragto = &skb_shinfo(tgt)->frags[to];
3730 
3731 		if (todo >= skb_frag_size(fragfrom)) {
3732 			*fragto = *fragfrom;
3733 			todo -= skb_frag_size(fragfrom);
3734 			from++;
3735 			to++;
3736 
3737 		} else {
3738 			__skb_frag_ref(fragfrom);
3739 			skb_frag_page_copy(fragto, fragfrom);
3740 			skb_frag_off_copy(fragto, fragfrom);
3741 			skb_frag_size_set(fragto, todo);
3742 
3743 			skb_frag_off_add(fragfrom, todo);
3744 			skb_frag_size_sub(fragfrom, todo);
3745 			todo = 0;
3746 
3747 			to++;
3748 			break;
3749 		}
3750 	}
3751 
3752 	/* Ready to "commit" this state change to tgt */
3753 	skb_shinfo(tgt)->nr_frags = to;
3754 
3755 	if (merge >= 0) {
3756 		fragfrom = &skb_shinfo(skb)->frags[0];
3757 		fragto = &skb_shinfo(tgt)->frags[merge];
3758 
3759 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3760 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3761 	}
3762 
3763 	/* Reposition in the original skb */
3764 	to = 0;
3765 	while (from < skb_shinfo(skb)->nr_frags)
3766 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3767 	skb_shinfo(skb)->nr_frags = to;
3768 
3769 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3770 
3771 onlymerged:
3772 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3773 	 * the other hand might need it if it needs to be resent
3774 	 */
3775 	tgt->ip_summed = CHECKSUM_PARTIAL;
3776 	skb->ip_summed = CHECKSUM_PARTIAL;
3777 
3778 	skb_len_add(skb, -shiftlen);
3779 	skb_len_add(tgt, shiftlen);
3780 
3781 	return shiftlen;
3782 }
3783 
3784 /**
3785  * skb_prepare_seq_read - Prepare a sequential read of skb data
3786  * @skb: the buffer to read
3787  * @from: lower offset of data to be read
3788  * @to: upper offset of data to be read
3789  * @st: state variable
3790  *
3791  * Initializes the specified state variable. Must be called before
3792  * invoking skb_seq_read() for the first time.
3793  */
3794 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3795 			  unsigned int to, struct skb_seq_state *st)
3796 {
3797 	st->lower_offset = from;
3798 	st->upper_offset = to;
3799 	st->root_skb = st->cur_skb = skb;
3800 	st->frag_idx = st->stepped_offset = 0;
3801 	st->frag_data = NULL;
3802 	st->frag_off = 0;
3803 }
3804 EXPORT_SYMBOL(skb_prepare_seq_read);
3805 
3806 /**
3807  * skb_seq_read - Sequentially read skb data
3808  * @consumed: number of bytes consumed by the caller so far
3809  * @data: destination pointer for data to be returned
3810  * @st: state variable
3811  *
3812  * Reads a block of skb data at @consumed relative to the
3813  * lower offset specified to skb_prepare_seq_read(). Assigns
3814  * the head of the data block to @data and returns the length
3815  * of the block or 0 if the end of the skb data or the upper
3816  * offset has been reached.
3817  *
3818  * The caller is not required to consume all of the data
3819  * returned, i.e. @consumed is typically set to the number
3820  * of bytes already consumed and the next call to
3821  * skb_seq_read() will return the remaining part of the block.
3822  *
3823  * Note 1: The size of each block of data returned can be arbitrary,
3824  *       this limitation is the cost for zerocopy sequential
3825  *       reads of potentially non linear data.
3826  *
3827  * Note 2: Fragment lists within fragments are not implemented
3828  *       at the moment, state->root_skb could be replaced with
3829  *       a stack for this purpose.
3830  */
3831 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3832 			  struct skb_seq_state *st)
3833 {
3834 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3835 	skb_frag_t *frag;
3836 
3837 	if (unlikely(abs_offset >= st->upper_offset)) {
3838 		if (st->frag_data) {
3839 			kunmap_atomic(st->frag_data);
3840 			st->frag_data = NULL;
3841 		}
3842 		return 0;
3843 	}
3844 
3845 next_skb:
3846 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3847 
3848 	if (abs_offset < block_limit && !st->frag_data) {
3849 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3850 		return block_limit - abs_offset;
3851 	}
3852 
3853 	if (st->frag_idx == 0 && !st->frag_data)
3854 		st->stepped_offset += skb_headlen(st->cur_skb);
3855 
3856 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3857 		unsigned int pg_idx, pg_off, pg_sz;
3858 
3859 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3860 
3861 		pg_idx = 0;
3862 		pg_off = skb_frag_off(frag);
3863 		pg_sz = skb_frag_size(frag);
3864 
3865 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3866 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3867 			pg_off = offset_in_page(pg_off + st->frag_off);
3868 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3869 						    PAGE_SIZE - pg_off);
3870 		}
3871 
3872 		block_limit = pg_sz + st->stepped_offset;
3873 		if (abs_offset < block_limit) {
3874 			if (!st->frag_data)
3875 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3876 
3877 			*data = (u8 *)st->frag_data + pg_off +
3878 				(abs_offset - st->stepped_offset);
3879 
3880 			return block_limit - abs_offset;
3881 		}
3882 
3883 		if (st->frag_data) {
3884 			kunmap_atomic(st->frag_data);
3885 			st->frag_data = NULL;
3886 		}
3887 
3888 		st->stepped_offset += pg_sz;
3889 		st->frag_off += pg_sz;
3890 		if (st->frag_off == skb_frag_size(frag)) {
3891 			st->frag_off = 0;
3892 			st->frag_idx++;
3893 		}
3894 	}
3895 
3896 	if (st->frag_data) {
3897 		kunmap_atomic(st->frag_data);
3898 		st->frag_data = NULL;
3899 	}
3900 
3901 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3902 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3903 		st->frag_idx = 0;
3904 		goto next_skb;
3905 	} else if (st->cur_skb->next) {
3906 		st->cur_skb = st->cur_skb->next;
3907 		st->frag_idx = 0;
3908 		goto next_skb;
3909 	}
3910 
3911 	return 0;
3912 }
3913 EXPORT_SYMBOL(skb_seq_read);
3914 
3915 /**
3916  * skb_abort_seq_read - Abort a sequential read of skb data
3917  * @st: state variable
3918  *
3919  * Must be called if skb_seq_read() was not called until it
3920  * returned 0.
3921  */
3922 void skb_abort_seq_read(struct skb_seq_state *st)
3923 {
3924 	if (st->frag_data)
3925 		kunmap_atomic(st->frag_data);
3926 }
3927 EXPORT_SYMBOL(skb_abort_seq_read);
3928 
3929 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3930 
3931 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3932 					  struct ts_config *conf,
3933 					  struct ts_state *state)
3934 {
3935 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3936 }
3937 
3938 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3939 {
3940 	skb_abort_seq_read(TS_SKB_CB(state));
3941 }
3942 
3943 /**
3944  * skb_find_text - Find a text pattern in skb data
3945  * @skb: the buffer to look in
3946  * @from: search offset
3947  * @to: search limit
3948  * @config: textsearch configuration
3949  *
3950  * Finds a pattern in the skb data according to the specified
3951  * textsearch configuration. Use textsearch_next() to retrieve
3952  * subsequent occurrences of the pattern. Returns the offset
3953  * to the first occurrence or UINT_MAX if no match was found.
3954  */
3955 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3956 			   unsigned int to, struct ts_config *config)
3957 {
3958 	struct ts_state state;
3959 	unsigned int ret;
3960 
3961 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3962 
3963 	config->get_next_block = skb_ts_get_next_block;
3964 	config->finish = skb_ts_finish;
3965 
3966 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3967 
3968 	ret = textsearch_find(config, &state);
3969 	return (ret <= to - from ? ret : UINT_MAX);
3970 }
3971 EXPORT_SYMBOL(skb_find_text);
3972 
3973 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3974 			 int offset, size_t size)
3975 {
3976 	int i = skb_shinfo(skb)->nr_frags;
3977 
3978 	if (skb_can_coalesce(skb, i, page, offset)) {
3979 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3980 	} else if (i < MAX_SKB_FRAGS) {
3981 		skb_zcopy_downgrade_managed(skb);
3982 		get_page(page);
3983 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
3984 	} else {
3985 		return -EMSGSIZE;
3986 	}
3987 
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3991 
3992 /**
3993  *	skb_pull_rcsum - pull skb and update receive checksum
3994  *	@skb: buffer to update
3995  *	@len: length of data pulled
3996  *
3997  *	This function performs an skb_pull on the packet and updates
3998  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3999  *	receive path processing instead of skb_pull unless you know
4000  *	that the checksum difference is zero (e.g., a valid IP header)
4001  *	or you are setting ip_summed to CHECKSUM_NONE.
4002  */
4003 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4004 {
4005 	unsigned char *data = skb->data;
4006 
4007 	BUG_ON(len > skb->len);
4008 	__skb_pull(skb, len);
4009 	skb_postpull_rcsum(skb, data, len);
4010 	return skb->data;
4011 }
4012 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4013 
4014 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4015 {
4016 	skb_frag_t head_frag;
4017 	struct page *page;
4018 
4019 	page = virt_to_head_page(frag_skb->head);
4020 	__skb_frag_set_page(&head_frag, page);
4021 	skb_frag_off_set(&head_frag, frag_skb->data -
4022 			 (unsigned char *)page_address(page));
4023 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4024 	return head_frag;
4025 }
4026 
4027 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4028 				 netdev_features_t features,
4029 				 unsigned int offset)
4030 {
4031 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4032 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4033 	unsigned int delta_truesize = 0;
4034 	unsigned int delta_len = 0;
4035 	struct sk_buff *tail = NULL;
4036 	struct sk_buff *nskb, *tmp;
4037 	int len_diff, err;
4038 
4039 	skb_push(skb, -skb_network_offset(skb) + offset);
4040 
4041 	skb_shinfo(skb)->frag_list = NULL;
4042 
4043 	do {
4044 		nskb = list_skb;
4045 		list_skb = list_skb->next;
4046 
4047 		err = 0;
4048 		delta_truesize += nskb->truesize;
4049 		if (skb_shared(nskb)) {
4050 			tmp = skb_clone(nskb, GFP_ATOMIC);
4051 			if (tmp) {
4052 				consume_skb(nskb);
4053 				nskb = tmp;
4054 				err = skb_unclone(nskb, GFP_ATOMIC);
4055 			} else {
4056 				err = -ENOMEM;
4057 			}
4058 		}
4059 
4060 		if (!tail)
4061 			skb->next = nskb;
4062 		else
4063 			tail->next = nskb;
4064 
4065 		if (unlikely(err)) {
4066 			nskb->next = list_skb;
4067 			goto err_linearize;
4068 		}
4069 
4070 		tail = nskb;
4071 
4072 		delta_len += nskb->len;
4073 
4074 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4075 
4076 		skb_release_head_state(nskb);
4077 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4078 		__copy_skb_header(nskb, skb);
4079 
4080 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4081 		nskb->transport_header += len_diff;
4082 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4083 						 nskb->data - tnl_hlen,
4084 						 offset + tnl_hlen);
4085 
4086 		if (skb_needs_linearize(nskb, features) &&
4087 		    __skb_linearize(nskb))
4088 			goto err_linearize;
4089 
4090 	} while (list_skb);
4091 
4092 	skb->truesize = skb->truesize - delta_truesize;
4093 	skb->data_len = skb->data_len - delta_len;
4094 	skb->len = skb->len - delta_len;
4095 
4096 	skb_gso_reset(skb);
4097 
4098 	skb->prev = tail;
4099 
4100 	if (skb_needs_linearize(skb, features) &&
4101 	    __skb_linearize(skb))
4102 		goto err_linearize;
4103 
4104 	skb_get(skb);
4105 
4106 	return skb;
4107 
4108 err_linearize:
4109 	kfree_skb_list(skb->next);
4110 	skb->next = NULL;
4111 	return ERR_PTR(-ENOMEM);
4112 }
4113 EXPORT_SYMBOL_GPL(skb_segment_list);
4114 
4115 /**
4116  *	skb_segment - Perform protocol segmentation on skb.
4117  *	@head_skb: buffer to segment
4118  *	@features: features for the output path (see dev->features)
4119  *
4120  *	This function performs segmentation on the given skb.  It returns
4121  *	a pointer to the first in a list of new skbs for the segments.
4122  *	In case of error it returns ERR_PTR(err).
4123  */
4124 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4125 			    netdev_features_t features)
4126 {
4127 	struct sk_buff *segs = NULL;
4128 	struct sk_buff *tail = NULL;
4129 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4130 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4131 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4132 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4133 	struct sk_buff *frag_skb = head_skb;
4134 	unsigned int offset = doffset;
4135 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4136 	unsigned int partial_segs = 0;
4137 	unsigned int headroom;
4138 	unsigned int len = head_skb->len;
4139 	__be16 proto;
4140 	bool csum, sg;
4141 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4142 	int err = -ENOMEM;
4143 	int i = 0;
4144 	int pos;
4145 
4146 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4147 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4148 		/* gso_size is untrusted, and we have a frag_list with a linear
4149 		 * non head_frag head.
4150 		 *
4151 		 * (we assume checking the first list_skb member suffices;
4152 		 * i.e if either of the list_skb members have non head_frag
4153 		 * head, then the first one has too).
4154 		 *
4155 		 * If head_skb's headlen does not fit requested gso_size, it
4156 		 * means that the frag_list members do NOT terminate on exact
4157 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4158 		 * sharing. Therefore we must fallback to copying the frag_list
4159 		 * skbs; we do so by disabling SG.
4160 		 */
4161 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4162 			features &= ~NETIF_F_SG;
4163 	}
4164 
4165 	__skb_push(head_skb, doffset);
4166 	proto = skb_network_protocol(head_skb, NULL);
4167 	if (unlikely(!proto))
4168 		return ERR_PTR(-EINVAL);
4169 
4170 	sg = !!(features & NETIF_F_SG);
4171 	csum = !!can_checksum_protocol(features, proto);
4172 
4173 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4174 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4175 			struct sk_buff *iter;
4176 			unsigned int frag_len;
4177 
4178 			if (!list_skb ||
4179 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4180 				goto normal;
4181 
4182 			/* If we get here then all the required
4183 			 * GSO features except frag_list are supported.
4184 			 * Try to split the SKB to multiple GSO SKBs
4185 			 * with no frag_list.
4186 			 * Currently we can do that only when the buffers don't
4187 			 * have a linear part and all the buffers except
4188 			 * the last are of the same length.
4189 			 */
4190 			frag_len = list_skb->len;
4191 			skb_walk_frags(head_skb, iter) {
4192 				if (frag_len != iter->len && iter->next)
4193 					goto normal;
4194 				if (skb_headlen(iter) && !iter->head_frag)
4195 					goto normal;
4196 
4197 				len -= iter->len;
4198 			}
4199 
4200 			if (len != frag_len)
4201 				goto normal;
4202 		}
4203 
4204 		/* GSO partial only requires that we trim off any excess that
4205 		 * doesn't fit into an MSS sized block, so take care of that
4206 		 * now.
4207 		 */
4208 		partial_segs = len / mss;
4209 		if (partial_segs > 1)
4210 			mss *= partial_segs;
4211 		else
4212 			partial_segs = 0;
4213 	}
4214 
4215 normal:
4216 	headroom = skb_headroom(head_skb);
4217 	pos = skb_headlen(head_skb);
4218 
4219 	do {
4220 		struct sk_buff *nskb;
4221 		skb_frag_t *nskb_frag;
4222 		int hsize;
4223 		int size;
4224 
4225 		if (unlikely(mss == GSO_BY_FRAGS)) {
4226 			len = list_skb->len;
4227 		} else {
4228 			len = head_skb->len - offset;
4229 			if (len > mss)
4230 				len = mss;
4231 		}
4232 
4233 		hsize = skb_headlen(head_skb) - offset;
4234 
4235 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4236 		    (skb_headlen(list_skb) == len || sg)) {
4237 			BUG_ON(skb_headlen(list_skb) > len);
4238 
4239 			i = 0;
4240 			nfrags = skb_shinfo(list_skb)->nr_frags;
4241 			frag = skb_shinfo(list_skb)->frags;
4242 			frag_skb = list_skb;
4243 			pos += skb_headlen(list_skb);
4244 
4245 			while (pos < offset + len) {
4246 				BUG_ON(i >= nfrags);
4247 
4248 				size = skb_frag_size(frag);
4249 				if (pos + size > offset + len)
4250 					break;
4251 
4252 				i++;
4253 				pos += size;
4254 				frag++;
4255 			}
4256 
4257 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4258 			list_skb = list_skb->next;
4259 
4260 			if (unlikely(!nskb))
4261 				goto err;
4262 
4263 			if (unlikely(pskb_trim(nskb, len))) {
4264 				kfree_skb(nskb);
4265 				goto err;
4266 			}
4267 
4268 			hsize = skb_end_offset(nskb);
4269 			if (skb_cow_head(nskb, doffset + headroom)) {
4270 				kfree_skb(nskb);
4271 				goto err;
4272 			}
4273 
4274 			nskb->truesize += skb_end_offset(nskb) - hsize;
4275 			skb_release_head_state(nskb);
4276 			__skb_push(nskb, doffset);
4277 		} else {
4278 			if (hsize < 0)
4279 				hsize = 0;
4280 			if (hsize > len || !sg)
4281 				hsize = len;
4282 
4283 			nskb = __alloc_skb(hsize + doffset + headroom,
4284 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4285 					   NUMA_NO_NODE);
4286 
4287 			if (unlikely(!nskb))
4288 				goto err;
4289 
4290 			skb_reserve(nskb, headroom);
4291 			__skb_put(nskb, doffset);
4292 		}
4293 
4294 		if (segs)
4295 			tail->next = nskb;
4296 		else
4297 			segs = nskb;
4298 		tail = nskb;
4299 
4300 		__copy_skb_header(nskb, head_skb);
4301 
4302 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4303 		skb_reset_mac_len(nskb);
4304 
4305 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4306 						 nskb->data - tnl_hlen,
4307 						 doffset + tnl_hlen);
4308 
4309 		if (nskb->len == len + doffset)
4310 			goto perform_csum_check;
4311 
4312 		if (!sg) {
4313 			if (!csum) {
4314 				if (!nskb->remcsum_offload)
4315 					nskb->ip_summed = CHECKSUM_NONE;
4316 				SKB_GSO_CB(nskb)->csum =
4317 					skb_copy_and_csum_bits(head_skb, offset,
4318 							       skb_put(nskb,
4319 								       len),
4320 							       len);
4321 				SKB_GSO_CB(nskb)->csum_start =
4322 					skb_headroom(nskb) + doffset;
4323 			} else {
4324 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4325 					goto err;
4326 			}
4327 			continue;
4328 		}
4329 
4330 		nskb_frag = skb_shinfo(nskb)->frags;
4331 
4332 		skb_copy_from_linear_data_offset(head_skb, offset,
4333 						 skb_put(nskb, hsize), hsize);
4334 
4335 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4336 					   SKBFL_SHARED_FRAG;
4337 
4338 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4339 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4340 			goto err;
4341 
4342 		while (pos < offset + len) {
4343 			if (i >= nfrags) {
4344 				i = 0;
4345 				nfrags = skb_shinfo(list_skb)->nr_frags;
4346 				frag = skb_shinfo(list_skb)->frags;
4347 				frag_skb = list_skb;
4348 				if (!skb_headlen(list_skb)) {
4349 					BUG_ON(!nfrags);
4350 				} else {
4351 					BUG_ON(!list_skb->head_frag);
4352 
4353 					/* to make room for head_frag. */
4354 					i--;
4355 					frag--;
4356 				}
4357 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4358 				    skb_zerocopy_clone(nskb, frag_skb,
4359 						       GFP_ATOMIC))
4360 					goto err;
4361 
4362 				list_skb = list_skb->next;
4363 			}
4364 
4365 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4366 				     MAX_SKB_FRAGS)) {
4367 				net_warn_ratelimited(
4368 					"skb_segment: too many frags: %u %u\n",
4369 					pos, mss);
4370 				err = -EINVAL;
4371 				goto err;
4372 			}
4373 
4374 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4375 			__skb_frag_ref(nskb_frag);
4376 			size = skb_frag_size(nskb_frag);
4377 
4378 			if (pos < offset) {
4379 				skb_frag_off_add(nskb_frag, offset - pos);
4380 				skb_frag_size_sub(nskb_frag, offset - pos);
4381 			}
4382 
4383 			skb_shinfo(nskb)->nr_frags++;
4384 
4385 			if (pos + size <= offset + len) {
4386 				i++;
4387 				frag++;
4388 				pos += size;
4389 			} else {
4390 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4391 				goto skip_fraglist;
4392 			}
4393 
4394 			nskb_frag++;
4395 		}
4396 
4397 skip_fraglist:
4398 		nskb->data_len = len - hsize;
4399 		nskb->len += nskb->data_len;
4400 		nskb->truesize += nskb->data_len;
4401 
4402 perform_csum_check:
4403 		if (!csum) {
4404 			if (skb_has_shared_frag(nskb) &&
4405 			    __skb_linearize(nskb))
4406 				goto err;
4407 
4408 			if (!nskb->remcsum_offload)
4409 				nskb->ip_summed = CHECKSUM_NONE;
4410 			SKB_GSO_CB(nskb)->csum =
4411 				skb_checksum(nskb, doffset,
4412 					     nskb->len - doffset, 0);
4413 			SKB_GSO_CB(nskb)->csum_start =
4414 				skb_headroom(nskb) + doffset;
4415 		}
4416 	} while ((offset += len) < head_skb->len);
4417 
4418 	/* Some callers want to get the end of the list.
4419 	 * Put it in segs->prev to avoid walking the list.
4420 	 * (see validate_xmit_skb_list() for example)
4421 	 */
4422 	segs->prev = tail;
4423 
4424 	if (partial_segs) {
4425 		struct sk_buff *iter;
4426 		int type = skb_shinfo(head_skb)->gso_type;
4427 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4428 
4429 		/* Update type to add partial and then remove dodgy if set */
4430 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4431 		type &= ~SKB_GSO_DODGY;
4432 
4433 		/* Update GSO info and prepare to start updating headers on
4434 		 * our way back down the stack of protocols.
4435 		 */
4436 		for (iter = segs; iter; iter = iter->next) {
4437 			skb_shinfo(iter)->gso_size = gso_size;
4438 			skb_shinfo(iter)->gso_segs = partial_segs;
4439 			skb_shinfo(iter)->gso_type = type;
4440 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4441 		}
4442 
4443 		if (tail->len - doffset <= gso_size)
4444 			skb_shinfo(tail)->gso_size = 0;
4445 		else if (tail != segs)
4446 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4447 	}
4448 
4449 	/* Following permits correct backpressure, for protocols
4450 	 * using skb_set_owner_w().
4451 	 * Idea is to tranfert ownership from head_skb to last segment.
4452 	 */
4453 	if (head_skb->destructor == sock_wfree) {
4454 		swap(tail->truesize, head_skb->truesize);
4455 		swap(tail->destructor, head_skb->destructor);
4456 		swap(tail->sk, head_skb->sk);
4457 	}
4458 	return segs;
4459 
4460 err:
4461 	kfree_skb_list(segs);
4462 	return ERR_PTR(err);
4463 }
4464 EXPORT_SYMBOL_GPL(skb_segment);
4465 
4466 #ifdef CONFIG_SKB_EXTENSIONS
4467 #define SKB_EXT_ALIGN_VALUE	8
4468 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4469 
4470 static const u8 skb_ext_type_len[] = {
4471 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4472 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4473 #endif
4474 #ifdef CONFIG_XFRM
4475 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4476 #endif
4477 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4478 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4479 #endif
4480 #if IS_ENABLED(CONFIG_MPTCP)
4481 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4482 #endif
4483 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4484 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4485 #endif
4486 };
4487 
4488 static __always_inline unsigned int skb_ext_total_length(void)
4489 {
4490 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4491 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4492 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4493 #endif
4494 #ifdef CONFIG_XFRM
4495 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4496 #endif
4497 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4498 		skb_ext_type_len[TC_SKB_EXT] +
4499 #endif
4500 #if IS_ENABLED(CONFIG_MPTCP)
4501 		skb_ext_type_len[SKB_EXT_MPTCP] +
4502 #endif
4503 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4504 		skb_ext_type_len[SKB_EXT_MCTP] +
4505 #endif
4506 		0;
4507 }
4508 
4509 static void skb_extensions_init(void)
4510 {
4511 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4512 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4513 
4514 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4515 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4516 					     0,
4517 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4518 					     NULL);
4519 }
4520 #else
4521 static void skb_extensions_init(void) {}
4522 #endif
4523 
4524 void __init skb_init(void)
4525 {
4526 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4527 					      sizeof(struct sk_buff),
4528 					      0,
4529 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4530 					      offsetof(struct sk_buff, cb),
4531 					      sizeof_field(struct sk_buff, cb),
4532 					      NULL);
4533 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4534 						sizeof(struct sk_buff_fclones),
4535 						0,
4536 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4537 						NULL);
4538 	skb_extensions_init();
4539 }
4540 
4541 static int
4542 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4543 	       unsigned int recursion_level)
4544 {
4545 	int start = skb_headlen(skb);
4546 	int i, copy = start - offset;
4547 	struct sk_buff *frag_iter;
4548 	int elt = 0;
4549 
4550 	if (unlikely(recursion_level >= 24))
4551 		return -EMSGSIZE;
4552 
4553 	if (copy > 0) {
4554 		if (copy > len)
4555 			copy = len;
4556 		sg_set_buf(sg, skb->data + offset, copy);
4557 		elt++;
4558 		if ((len -= copy) == 0)
4559 			return elt;
4560 		offset += copy;
4561 	}
4562 
4563 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4564 		int end;
4565 
4566 		WARN_ON(start > offset + len);
4567 
4568 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4569 		if ((copy = end - offset) > 0) {
4570 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4571 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4572 				return -EMSGSIZE;
4573 
4574 			if (copy > len)
4575 				copy = len;
4576 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4577 				    skb_frag_off(frag) + offset - start);
4578 			elt++;
4579 			if (!(len -= copy))
4580 				return elt;
4581 			offset += copy;
4582 		}
4583 		start = end;
4584 	}
4585 
4586 	skb_walk_frags(skb, frag_iter) {
4587 		int end, ret;
4588 
4589 		WARN_ON(start > offset + len);
4590 
4591 		end = start + frag_iter->len;
4592 		if ((copy = end - offset) > 0) {
4593 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4594 				return -EMSGSIZE;
4595 
4596 			if (copy > len)
4597 				copy = len;
4598 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4599 					      copy, recursion_level + 1);
4600 			if (unlikely(ret < 0))
4601 				return ret;
4602 			elt += ret;
4603 			if ((len -= copy) == 0)
4604 				return elt;
4605 			offset += copy;
4606 		}
4607 		start = end;
4608 	}
4609 	BUG_ON(len);
4610 	return elt;
4611 }
4612 
4613 /**
4614  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4615  *	@skb: Socket buffer containing the buffers to be mapped
4616  *	@sg: The scatter-gather list to map into
4617  *	@offset: The offset into the buffer's contents to start mapping
4618  *	@len: Length of buffer space to be mapped
4619  *
4620  *	Fill the specified scatter-gather list with mappings/pointers into a
4621  *	region of the buffer space attached to a socket buffer. Returns either
4622  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4623  *	could not fit.
4624  */
4625 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4626 {
4627 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4628 
4629 	if (nsg <= 0)
4630 		return nsg;
4631 
4632 	sg_mark_end(&sg[nsg - 1]);
4633 
4634 	return nsg;
4635 }
4636 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4637 
4638 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4639  * sglist without mark the sg which contain last skb data as the end.
4640  * So the caller can mannipulate sg list as will when padding new data after
4641  * the first call without calling sg_unmark_end to expend sg list.
4642  *
4643  * Scenario to use skb_to_sgvec_nomark:
4644  * 1. sg_init_table
4645  * 2. skb_to_sgvec_nomark(payload1)
4646  * 3. skb_to_sgvec_nomark(payload2)
4647  *
4648  * This is equivalent to:
4649  * 1. sg_init_table
4650  * 2. skb_to_sgvec(payload1)
4651  * 3. sg_unmark_end
4652  * 4. skb_to_sgvec(payload2)
4653  *
4654  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4655  * is more preferable.
4656  */
4657 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4658 			int offset, int len)
4659 {
4660 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4661 }
4662 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4663 
4664 
4665 
4666 /**
4667  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4668  *	@skb: The socket buffer to check.
4669  *	@tailbits: Amount of trailing space to be added
4670  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4671  *
4672  *	Make sure that the data buffers attached to a socket buffer are
4673  *	writable. If they are not, private copies are made of the data buffers
4674  *	and the socket buffer is set to use these instead.
4675  *
4676  *	If @tailbits is given, make sure that there is space to write @tailbits
4677  *	bytes of data beyond current end of socket buffer.  @trailer will be
4678  *	set to point to the skb in which this space begins.
4679  *
4680  *	The number of scatterlist elements required to completely map the
4681  *	COW'd and extended socket buffer will be returned.
4682  */
4683 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4684 {
4685 	int copyflag;
4686 	int elt;
4687 	struct sk_buff *skb1, **skb_p;
4688 
4689 	/* If skb is cloned or its head is paged, reallocate
4690 	 * head pulling out all the pages (pages are considered not writable
4691 	 * at the moment even if they are anonymous).
4692 	 */
4693 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4694 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4695 		return -ENOMEM;
4696 
4697 	/* Easy case. Most of packets will go this way. */
4698 	if (!skb_has_frag_list(skb)) {
4699 		/* A little of trouble, not enough of space for trailer.
4700 		 * This should not happen, when stack is tuned to generate
4701 		 * good frames. OK, on miss we reallocate and reserve even more
4702 		 * space, 128 bytes is fair. */
4703 
4704 		if (skb_tailroom(skb) < tailbits &&
4705 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4706 			return -ENOMEM;
4707 
4708 		/* Voila! */
4709 		*trailer = skb;
4710 		return 1;
4711 	}
4712 
4713 	/* Misery. We are in troubles, going to mincer fragments... */
4714 
4715 	elt = 1;
4716 	skb_p = &skb_shinfo(skb)->frag_list;
4717 	copyflag = 0;
4718 
4719 	while ((skb1 = *skb_p) != NULL) {
4720 		int ntail = 0;
4721 
4722 		/* The fragment is partially pulled by someone,
4723 		 * this can happen on input. Copy it and everything
4724 		 * after it. */
4725 
4726 		if (skb_shared(skb1))
4727 			copyflag = 1;
4728 
4729 		/* If the skb is the last, worry about trailer. */
4730 
4731 		if (skb1->next == NULL && tailbits) {
4732 			if (skb_shinfo(skb1)->nr_frags ||
4733 			    skb_has_frag_list(skb1) ||
4734 			    skb_tailroom(skb1) < tailbits)
4735 				ntail = tailbits + 128;
4736 		}
4737 
4738 		if (copyflag ||
4739 		    skb_cloned(skb1) ||
4740 		    ntail ||
4741 		    skb_shinfo(skb1)->nr_frags ||
4742 		    skb_has_frag_list(skb1)) {
4743 			struct sk_buff *skb2;
4744 
4745 			/* Fuck, we are miserable poor guys... */
4746 			if (ntail == 0)
4747 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4748 			else
4749 				skb2 = skb_copy_expand(skb1,
4750 						       skb_headroom(skb1),
4751 						       ntail,
4752 						       GFP_ATOMIC);
4753 			if (unlikely(skb2 == NULL))
4754 				return -ENOMEM;
4755 
4756 			if (skb1->sk)
4757 				skb_set_owner_w(skb2, skb1->sk);
4758 
4759 			/* Looking around. Are we still alive?
4760 			 * OK, link new skb, drop old one */
4761 
4762 			skb2->next = skb1->next;
4763 			*skb_p = skb2;
4764 			kfree_skb(skb1);
4765 			skb1 = skb2;
4766 		}
4767 		elt++;
4768 		*trailer = skb1;
4769 		skb_p = &skb1->next;
4770 	}
4771 
4772 	return elt;
4773 }
4774 EXPORT_SYMBOL_GPL(skb_cow_data);
4775 
4776 static void sock_rmem_free(struct sk_buff *skb)
4777 {
4778 	struct sock *sk = skb->sk;
4779 
4780 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4781 }
4782 
4783 static void skb_set_err_queue(struct sk_buff *skb)
4784 {
4785 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4786 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4787 	 */
4788 	skb->pkt_type = PACKET_OUTGOING;
4789 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4790 }
4791 
4792 /*
4793  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4794  */
4795 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4796 {
4797 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4798 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4799 		return -ENOMEM;
4800 
4801 	skb_orphan(skb);
4802 	skb->sk = sk;
4803 	skb->destructor = sock_rmem_free;
4804 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4805 	skb_set_err_queue(skb);
4806 
4807 	/* before exiting rcu section, make sure dst is refcounted */
4808 	skb_dst_force(skb);
4809 
4810 	skb_queue_tail(&sk->sk_error_queue, skb);
4811 	if (!sock_flag(sk, SOCK_DEAD))
4812 		sk_error_report(sk);
4813 	return 0;
4814 }
4815 EXPORT_SYMBOL(sock_queue_err_skb);
4816 
4817 static bool is_icmp_err_skb(const struct sk_buff *skb)
4818 {
4819 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4820 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4821 }
4822 
4823 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4824 {
4825 	struct sk_buff_head *q = &sk->sk_error_queue;
4826 	struct sk_buff *skb, *skb_next = NULL;
4827 	bool icmp_next = false;
4828 	unsigned long flags;
4829 
4830 	spin_lock_irqsave(&q->lock, flags);
4831 	skb = __skb_dequeue(q);
4832 	if (skb && (skb_next = skb_peek(q))) {
4833 		icmp_next = is_icmp_err_skb(skb_next);
4834 		if (icmp_next)
4835 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4836 	}
4837 	spin_unlock_irqrestore(&q->lock, flags);
4838 
4839 	if (is_icmp_err_skb(skb) && !icmp_next)
4840 		sk->sk_err = 0;
4841 
4842 	if (skb_next)
4843 		sk_error_report(sk);
4844 
4845 	return skb;
4846 }
4847 EXPORT_SYMBOL(sock_dequeue_err_skb);
4848 
4849 /**
4850  * skb_clone_sk - create clone of skb, and take reference to socket
4851  * @skb: the skb to clone
4852  *
4853  * This function creates a clone of a buffer that holds a reference on
4854  * sk_refcnt.  Buffers created via this function are meant to be
4855  * returned using sock_queue_err_skb, or free via kfree_skb.
4856  *
4857  * When passing buffers allocated with this function to sock_queue_err_skb
4858  * it is necessary to wrap the call with sock_hold/sock_put in order to
4859  * prevent the socket from being released prior to being enqueued on
4860  * the sk_error_queue.
4861  */
4862 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4863 {
4864 	struct sock *sk = skb->sk;
4865 	struct sk_buff *clone;
4866 
4867 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4868 		return NULL;
4869 
4870 	clone = skb_clone(skb, GFP_ATOMIC);
4871 	if (!clone) {
4872 		sock_put(sk);
4873 		return NULL;
4874 	}
4875 
4876 	clone->sk = sk;
4877 	clone->destructor = sock_efree;
4878 
4879 	return clone;
4880 }
4881 EXPORT_SYMBOL(skb_clone_sk);
4882 
4883 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4884 					struct sock *sk,
4885 					int tstype,
4886 					bool opt_stats)
4887 {
4888 	struct sock_exterr_skb *serr;
4889 	int err;
4890 
4891 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4892 
4893 	serr = SKB_EXT_ERR(skb);
4894 	memset(serr, 0, sizeof(*serr));
4895 	serr->ee.ee_errno = ENOMSG;
4896 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4897 	serr->ee.ee_info = tstype;
4898 	serr->opt_stats = opt_stats;
4899 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4900 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4901 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4902 		if (sk_is_tcp(sk))
4903 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4904 	}
4905 
4906 	err = sock_queue_err_skb(sk, skb);
4907 
4908 	if (err)
4909 		kfree_skb(skb);
4910 }
4911 
4912 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4913 {
4914 	bool ret;
4915 
4916 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4917 		return true;
4918 
4919 	read_lock_bh(&sk->sk_callback_lock);
4920 	ret = sk->sk_socket && sk->sk_socket->file &&
4921 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4922 	read_unlock_bh(&sk->sk_callback_lock);
4923 	return ret;
4924 }
4925 
4926 void skb_complete_tx_timestamp(struct sk_buff *skb,
4927 			       struct skb_shared_hwtstamps *hwtstamps)
4928 {
4929 	struct sock *sk = skb->sk;
4930 
4931 	if (!skb_may_tx_timestamp(sk, false))
4932 		goto err;
4933 
4934 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4935 	 * but only if the socket refcount is not zero.
4936 	 */
4937 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4938 		*skb_hwtstamps(skb) = *hwtstamps;
4939 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4940 		sock_put(sk);
4941 		return;
4942 	}
4943 
4944 err:
4945 	kfree_skb(skb);
4946 }
4947 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4948 
4949 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4950 		     const struct sk_buff *ack_skb,
4951 		     struct skb_shared_hwtstamps *hwtstamps,
4952 		     struct sock *sk, int tstype)
4953 {
4954 	struct sk_buff *skb;
4955 	bool tsonly, opt_stats = false;
4956 
4957 	if (!sk)
4958 		return;
4959 
4960 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4961 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4962 		return;
4963 
4964 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4965 	if (!skb_may_tx_timestamp(sk, tsonly))
4966 		return;
4967 
4968 	if (tsonly) {
4969 #ifdef CONFIG_INET
4970 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4971 		    sk_is_tcp(sk)) {
4972 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4973 							     ack_skb);
4974 			opt_stats = true;
4975 		} else
4976 #endif
4977 			skb = alloc_skb(0, GFP_ATOMIC);
4978 	} else {
4979 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4980 	}
4981 	if (!skb)
4982 		return;
4983 
4984 	if (tsonly) {
4985 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4986 					     SKBTX_ANY_TSTAMP;
4987 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4988 	}
4989 
4990 	if (hwtstamps)
4991 		*skb_hwtstamps(skb) = *hwtstamps;
4992 	else
4993 		__net_timestamp(skb);
4994 
4995 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4996 }
4997 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4998 
4999 void skb_tstamp_tx(struct sk_buff *orig_skb,
5000 		   struct skb_shared_hwtstamps *hwtstamps)
5001 {
5002 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5003 			       SCM_TSTAMP_SND);
5004 }
5005 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5006 
5007 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5008 {
5009 	struct sock *sk = skb->sk;
5010 	struct sock_exterr_skb *serr;
5011 	int err = 1;
5012 
5013 	skb->wifi_acked_valid = 1;
5014 	skb->wifi_acked = acked;
5015 
5016 	serr = SKB_EXT_ERR(skb);
5017 	memset(serr, 0, sizeof(*serr));
5018 	serr->ee.ee_errno = ENOMSG;
5019 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5020 
5021 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5022 	 * but only if the socket refcount is not zero.
5023 	 */
5024 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5025 		err = sock_queue_err_skb(sk, skb);
5026 		sock_put(sk);
5027 	}
5028 	if (err)
5029 		kfree_skb(skb);
5030 }
5031 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5032 
5033 /**
5034  * skb_partial_csum_set - set up and verify partial csum values for packet
5035  * @skb: the skb to set
5036  * @start: the number of bytes after skb->data to start checksumming.
5037  * @off: the offset from start to place the checksum.
5038  *
5039  * For untrusted partially-checksummed packets, we need to make sure the values
5040  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5041  *
5042  * This function checks and sets those values and skb->ip_summed: if this
5043  * returns false you should drop the packet.
5044  */
5045 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5046 {
5047 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5048 	u32 csum_start = skb_headroom(skb) + (u32)start;
5049 
5050 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5051 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5052 				     start, off, skb_headroom(skb), skb_headlen(skb));
5053 		return false;
5054 	}
5055 	skb->ip_summed = CHECKSUM_PARTIAL;
5056 	skb->csum_start = csum_start;
5057 	skb->csum_offset = off;
5058 	skb_set_transport_header(skb, start);
5059 	return true;
5060 }
5061 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5062 
5063 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5064 			       unsigned int max)
5065 {
5066 	if (skb_headlen(skb) >= len)
5067 		return 0;
5068 
5069 	/* If we need to pullup then pullup to the max, so we
5070 	 * won't need to do it again.
5071 	 */
5072 	if (max > skb->len)
5073 		max = skb->len;
5074 
5075 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5076 		return -ENOMEM;
5077 
5078 	if (skb_headlen(skb) < len)
5079 		return -EPROTO;
5080 
5081 	return 0;
5082 }
5083 
5084 #define MAX_TCP_HDR_LEN (15 * 4)
5085 
5086 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5087 				      typeof(IPPROTO_IP) proto,
5088 				      unsigned int off)
5089 {
5090 	int err;
5091 
5092 	switch (proto) {
5093 	case IPPROTO_TCP:
5094 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5095 					  off + MAX_TCP_HDR_LEN);
5096 		if (!err && !skb_partial_csum_set(skb, off,
5097 						  offsetof(struct tcphdr,
5098 							   check)))
5099 			err = -EPROTO;
5100 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5101 
5102 	case IPPROTO_UDP:
5103 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5104 					  off + sizeof(struct udphdr));
5105 		if (!err && !skb_partial_csum_set(skb, off,
5106 						  offsetof(struct udphdr,
5107 							   check)))
5108 			err = -EPROTO;
5109 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5110 	}
5111 
5112 	return ERR_PTR(-EPROTO);
5113 }
5114 
5115 /* This value should be large enough to cover a tagged ethernet header plus
5116  * maximally sized IP and TCP or UDP headers.
5117  */
5118 #define MAX_IP_HDR_LEN 128
5119 
5120 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5121 {
5122 	unsigned int off;
5123 	bool fragment;
5124 	__sum16 *csum;
5125 	int err;
5126 
5127 	fragment = false;
5128 
5129 	err = skb_maybe_pull_tail(skb,
5130 				  sizeof(struct iphdr),
5131 				  MAX_IP_HDR_LEN);
5132 	if (err < 0)
5133 		goto out;
5134 
5135 	if (ip_is_fragment(ip_hdr(skb)))
5136 		fragment = true;
5137 
5138 	off = ip_hdrlen(skb);
5139 
5140 	err = -EPROTO;
5141 
5142 	if (fragment)
5143 		goto out;
5144 
5145 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5146 	if (IS_ERR(csum))
5147 		return PTR_ERR(csum);
5148 
5149 	if (recalculate)
5150 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5151 					   ip_hdr(skb)->daddr,
5152 					   skb->len - off,
5153 					   ip_hdr(skb)->protocol, 0);
5154 	err = 0;
5155 
5156 out:
5157 	return err;
5158 }
5159 
5160 /* This value should be large enough to cover a tagged ethernet header plus
5161  * an IPv6 header, all options, and a maximal TCP or UDP header.
5162  */
5163 #define MAX_IPV6_HDR_LEN 256
5164 
5165 #define OPT_HDR(type, skb, off) \
5166 	(type *)(skb_network_header(skb) + (off))
5167 
5168 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5169 {
5170 	int err;
5171 	u8 nexthdr;
5172 	unsigned int off;
5173 	unsigned int len;
5174 	bool fragment;
5175 	bool done;
5176 	__sum16 *csum;
5177 
5178 	fragment = false;
5179 	done = false;
5180 
5181 	off = sizeof(struct ipv6hdr);
5182 
5183 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5184 	if (err < 0)
5185 		goto out;
5186 
5187 	nexthdr = ipv6_hdr(skb)->nexthdr;
5188 
5189 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5190 	while (off <= len && !done) {
5191 		switch (nexthdr) {
5192 		case IPPROTO_DSTOPTS:
5193 		case IPPROTO_HOPOPTS:
5194 		case IPPROTO_ROUTING: {
5195 			struct ipv6_opt_hdr *hp;
5196 
5197 			err = skb_maybe_pull_tail(skb,
5198 						  off +
5199 						  sizeof(struct ipv6_opt_hdr),
5200 						  MAX_IPV6_HDR_LEN);
5201 			if (err < 0)
5202 				goto out;
5203 
5204 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5205 			nexthdr = hp->nexthdr;
5206 			off += ipv6_optlen(hp);
5207 			break;
5208 		}
5209 		case IPPROTO_AH: {
5210 			struct ip_auth_hdr *hp;
5211 
5212 			err = skb_maybe_pull_tail(skb,
5213 						  off +
5214 						  sizeof(struct ip_auth_hdr),
5215 						  MAX_IPV6_HDR_LEN);
5216 			if (err < 0)
5217 				goto out;
5218 
5219 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5220 			nexthdr = hp->nexthdr;
5221 			off += ipv6_authlen(hp);
5222 			break;
5223 		}
5224 		case IPPROTO_FRAGMENT: {
5225 			struct frag_hdr *hp;
5226 
5227 			err = skb_maybe_pull_tail(skb,
5228 						  off +
5229 						  sizeof(struct frag_hdr),
5230 						  MAX_IPV6_HDR_LEN);
5231 			if (err < 0)
5232 				goto out;
5233 
5234 			hp = OPT_HDR(struct frag_hdr, skb, off);
5235 
5236 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5237 				fragment = true;
5238 
5239 			nexthdr = hp->nexthdr;
5240 			off += sizeof(struct frag_hdr);
5241 			break;
5242 		}
5243 		default:
5244 			done = true;
5245 			break;
5246 		}
5247 	}
5248 
5249 	err = -EPROTO;
5250 
5251 	if (!done || fragment)
5252 		goto out;
5253 
5254 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5255 	if (IS_ERR(csum))
5256 		return PTR_ERR(csum);
5257 
5258 	if (recalculate)
5259 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5260 					 &ipv6_hdr(skb)->daddr,
5261 					 skb->len - off, nexthdr, 0);
5262 	err = 0;
5263 
5264 out:
5265 	return err;
5266 }
5267 
5268 /**
5269  * skb_checksum_setup - set up partial checksum offset
5270  * @skb: the skb to set up
5271  * @recalculate: if true the pseudo-header checksum will be recalculated
5272  */
5273 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5274 {
5275 	int err;
5276 
5277 	switch (skb->protocol) {
5278 	case htons(ETH_P_IP):
5279 		err = skb_checksum_setup_ipv4(skb, recalculate);
5280 		break;
5281 
5282 	case htons(ETH_P_IPV6):
5283 		err = skb_checksum_setup_ipv6(skb, recalculate);
5284 		break;
5285 
5286 	default:
5287 		err = -EPROTO;
5288 		break;
5289 	}
5290 
5291 	return err;
5292 }
5293 EXPORT_SYMBOL(skb_checksum_setup);
5294 
5295 /**
5296  * skb_checksum_maybe_trim - maybe trims the given skb
5297  * @skb: the skb to check
5298  * @transport_len: the data length beyond the network header
5299  *
5300  * Checks whether the given skb has data beyond the given transport length.
5301  * If so, returns a cloned skb trimmed to this transport length.
5302  * Otherwise returns the provided skb. Returns NULL in error cases
5303  * (e.g. transport_len exceeds skb length or out-of-memory).
5304  *
5305  * Caller needs to set the skb transport header and free any returned skb if it
5306  * differs from the provided skb.
5307  */
5308 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5309 					       unsigned int transport_len)
5310 {
5311 	struct sk_buff *skb_chk;
5312 	unsigned int len = skb_transport_offset(skb) + transport_len;
5313 	int ret;
5314 
5315 	if (skb->len < len)
5316 		return NULL;
5317 	else if (skb->len == len)
5318 		return skb;
5319 
5320 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5321 	if (!skb_chk)
5322 		return NULL;
5323 
5324 	ret = pskb_trim_rcsum(skb_chk, len);
5325 	if (ret) {
5326 		kfree_skb(skb_chk);
5327 		return NULL;
5328 	}
5329 
5330 	return skb_chk;
5331 }
5332 
5333 /**
5334  * skb_checksum_trimmed - validate checksum of an skb
5335  * @skb: the skb to check
5336  * @transport_len: the data length beyond the network header
5337  * @skb_chkf: checksum function to use
5338  *
5339  * Applies the given checksum function skb_chkf to the provided skb.
5340  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5341  *
5342  * If the skb has data beyond the given transport length, then a
5343  * trimmed & cloned skb is checked and returned.
5344  *
5345  * Caller needs to set the skb transport header and free any returned skb if it
5346  * differs from the provided skb.
5347  */
5348 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5349 				     unsigned int transport_len,
5350 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5351 {
5352 	struct sk_buff *skb_chk;
5353 	unsigned int offset = skb_transport_offset(skb);
5354 	__sum16 ret;
5355 
5356 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5357 	if (!skb_chk)
5358 		goto err;
5359 
5360 	if (!pskb_may_pull(skb_chk, offset))
5361 		goto err;
5362 
5363 	skb_pull_rcsum(skb_chk, offset);
5364 	ret = skb_chkf(skb_chk);
5365 	skb_push_rcsum(skb_chk, offset);
5366 
5367 	if (ret)
5368 		goto err;
5369 
5370 	return skb_chk;
5371 
5372 err:
5373 	if (skb_chk && skb_chk != skb)
5374 		kfree_skb(skb_chk);
5375 
5376 	return NULL;
5377 
5378 }
5379 EXPORT_SYMBOL(skb_checksum_trimmed);
5380 
5381 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5382 {
5383 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5384 			     skb->dev->name);
5385 }
5386 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5387 
5388 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5389 {
5390 	if (head_stolen) {
5391 		skb_release_head_state(skb);
5392 		kmem_cache_free(skbuff_head_cache, skb);
5393 	} else {
5394 		__kfree_skb(skb);
5395 	}
5396 }
5397 EXPORT_SYMBOL(kfree_skb_partial);
5398 
5399 /**
5400  * skb_try_coalesce - try to merge skb to prior one
5401  * @to: prior buffer
5402  * @from: buffer to add
5403  * @fragstolen: pointer to boolean
5404  * @delta_truesize: how much more was allocated than was requested
5405  */
5406 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5407 		      bool *fragstolen, int *delta_truesize)
5408 {
5409 	struct skb_shared_info *to_shinfo, *from_shinfo;
5410 	int i, delta, len = from->len;
5411 
5412 	*fragstolen = false;
5413 
5414 	if (skb_cloned(to))
5415 		return false;
5416 
5417 	/* In general, avoid mixing slab allocated and page_pool allocated
5418 	 * pages within the same SKB. However when @to is not pp_recycle and
5419 	 * @from is cloned, we can transition frag pages from page_pool to
5420 	 * reference counted.
5421 	 *
5422 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5423 	 * @from is cloned, in case the SKB is using page_pool fragment
5424 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5425 	 * references for cloned SKBs at the moment that would result in
5426 	 * inconsistent reference counts.
5427 	 */
5428 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5429 		return false;
5430 
5431 	if (len <= skb_tailroom(to)) {
5432 		if (len)
5433 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5434 		*delta_truesize = 0;
5435 		return true;
5436 	}
5437 
5438 	to_shinfo = skb_shinfo(to);
5439 	from_shinfo = skb_shinfo(from);
5440 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5441 		return false;
5442 	if (skb_zcopy(to) || skb_zcopy(from))
5443 		return false;
5444 
5445 	if (skb_headlen(from) != 0) {
5446 		struct page *page;
5447 		unsigned int offset;
5448 
5449 		if (to_shinfo->nr_frags +
5450 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5451 			return false;
5452 
5453 		if (skb_head_is_locked(from))
5454 			return false;
5455 
5456 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5457 
5458 		page = virt_to_head_page(from->head);
5459 		offset = from->data - (unsigned char *)page_address(page);
5460 
5461 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5462 				   page, offset, skb_headlen(from));
5463 		*fragstolen = true;
5464 	} else {
5465 		if (to_shinfo->nr_frags +
5466 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5467 			return false;
5468 
5469 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5470 	}
5471 
5472 	WARN_ON_ONCE(delta < len);
5473 
5474 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5475 	       from_shinfo->frags,
5476 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5477 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5478 
5479 	if (!skb_cloned(from))
5480 		from_shinfo->nr_frags = 0;
5481 
5482 	/* if the skb is not cloned this does nothing
5483 	 * since we set nr_frags to 0.
5484 	 */
5485 	for (i = 0; i < from_shinfo->nr_frags; i++)
5486 		__skb_frag_ref(&from_shinfo->frags[i]);
5487 
5488 	to->truesize += delta;
5489 	to->len += len;
5490 	to->data_len += len;
5491 
5492 	*delta_truesize = delta;
5493 	return true;
5494 }
5495 EXPORT_SYMBOL(skb_try_coalesce);
5496 
5497 /**
5498  * skb_scrub_packet - scrub an skb
5499  *
5500  * @skb: buffer to clean
5501  * @xnet: packet is crossing netns
5502  *
5503  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5504  * into/from a tunnel. Some information have to be cleared during these
5505  * operations.
5506  * skb_scrub_packet can also be used to clean a skb before injecting it in
5507  * another namespace (@xnet == true). We have to clear all information in the
5508  * skb that could impact namespace isolation.
5509  */
5510 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5511 {
5512 	skb->pkt_type = PACKET_HOST;
5513 	skb->skb_iif = 0;
5514 	skb->ignore_df = 0;
5515 	skb_dst_drop(skb);
5516 	skb_ext_reset(skb);
5517 	nf_reset_ct(skb);
5518 	nf_reset_trace(skb);
5519 
5520 #ifdef CONFIG_NET_SWITCHDEV
5521 	skb->offload_fwd_mark = 0;
5522 	skb->offload_l3_fwd_mark = 0;
5523 #endif
5524 
5525 	if (!xnet)
5526 		return;
5527 
5528 	ipvs_reset(skb);
5529 	skb->mark = 0;
5530 	skb_clear_tstamp(skb);
5531 }
5532 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5533 
5534 /**
5535  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5536  *
5537  * @skb: GSO skb
5538  *
5539  * skb_gso_transport_seglen is used to determine the real size of the
5540  * individual segments, including Layer4 headers (TCP/UDP).
5541  *
5542  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5543  */
5544 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5545 {
5546 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5547 	unsigned int thlen = 0;
5548 
5549 	if (skb->encapsulation) {
5550 		thlen = skb_inner_transport_header(skb) -
5551 			skb_transport_header(skb);
5552 
5553 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5554 			thlen += inner_tcp_hdrlen(skb);
5555 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5556 		thlen = tcp_hdrlen(skb);
5557 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5558 		thlen = sizeof(struct sctphdr);
5559 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5560 		thlen = sizeof(struct udphdr);
5561 	}
5562 	/* UFO sets gso_size to the size of the fragmentation
5563 	 * payload, i.e. the size of the L4 (UDP) header is already
5564 	 * accounted for.
5565 	 */
5566 	return thlen + shinfo->gso_size;
5567 }
5568 
5569 /**
5570  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5571  *
5572  * @skb: GSO skb
5573  *
5574  * skb_gso_network_seglen is used to determine the real size of the
5575  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5576  *
5577  * The MAC/L2 header is not accounted for.
5578  */
5579 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5580 {
5581 	unsigned int hdr_len = skb_transport_header(skb) -
5582 			       skb_network_header(skb);
5583 
5584 	return hdr_len + skb_gso_transport_seglen(skb);
5585 }
5586 
5587 /**
5588  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5589  *
5590  * @skb: GSO skb
5591  *
5592  * skb_gso_mac_seglen is used to determine the real size of the
5593  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5594  * headers (TCP/UDP).
5595  */
5596 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5597 {
5598 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5599 
5600 	return hdr_len + skb_gso_transport_seglen(skb);
5601 }
5602 
5603 /**
5604  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5605  *
5606  * There are a couple of instances where we have a GSO skb, and we
5607  * want to determine what size it would be after it is segmented.
5608  *
5609  * We might want to check:
5610  * -    L3+L4+payload size (e.g. IP forwarding)
5611  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5612  *
5613  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5614  *
5615  * @skb: GSO skb
5616  *
5617  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5618  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5619  *
5620  * @max_len: The maximum permissible length.
5621  *
5622  * Returns true if the segmented length <= max length.
5623  */
5624 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5625 				      unsigned int seg_len,
5626 				      unsigned int max_len) {
5627 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5628 	const struct sk_buff *iter;
5629 
5630 	if (shinfo->gso_size != GSO_BY_FRAGS)
5631 		return seg_len <= max_len;
5632 
5633 	/* Undo this so we can re-use header sizes */
5634 	seg_len -= GSO_BY_FRAGS;
5635 
5636 	skb_walk_frags(skb, iter) {
5637 		if (seg_len + skb_headlen(iter) > max_len)
5638 			return false;
5639 	}
5640 
5641 	return true;
5642 }
5643 
5644 /**
5645  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5646  *
5647  * @skb: GSO skb
5648  * @mtu: MTU to validate against
5649  *
5650  * skb_gso_validate_network_len validates if a given skb will fit a
5651  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5652  * payload.
5653  */
5654 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5655 {
5656 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5657 }
5658 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5659 
5660 /**
5661  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5662  *
5663  * @skb: GSO skb
5664  * @len: length to validate against
5665  *
5666  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5667  * length once split, including L2, L3 and L4 headers and the payload.
5668  */
5669 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5670 {
5671 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5672 }
5673 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5674 
5675 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5676 {
5677 	int mac_len, meta_len;
5678 	void *meta;
5679 
5680 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5681 		kfree_skb(skb);
5682 		return NULL;
5683 	}
5684 
5685 	mac_len = skb->data - skb_mac_header(skb);
5686 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5687 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5688 			mac_len - VLAN_HLEN - ETH_TLEN);
5689 	}
5690 
5691 	meta_len = skb_metadata_len(skb);
5692 	if (meta_len) {
5693 		meta = skb_metadata_end(skb) - meta_len;
5694 		memmove(meta + VLAN_HLEN, meta, meta_len);
5695 	}
5696 
5697 	skb->mac_header += VLAN_HLEN;
5698 	return skb;
5699 }
5700 
5701 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5702 {
5703 	struct vlan_hdr *vhdr;
5704 	u16 vlan_tci;
5705 
5706 	if (unlikely(skb_vlan_tag_present(skb))) {
5707 		/* vlan_tci is already set-up so leave this for another time */
5708 		return skb;
5709 	}
5710 
5711 	skb = skb_share_check(skb, GFP_ATOMIC);
5712 	if (unlikely(!skb))
5713 		goto err_free;
5714 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5715 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5716 		goto err_free;
5717 
5718 	vhdr = (struct vlan_hdr *)skb->data;
5719 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5720 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5721 
5722 	skb_pull_rcsum(skb, VLAN_HLEN);
5723 	vlan_set_encap_proto(skb, vhdr);
5724 
5725 	skb = skb_reorder_vlan_header(skb);
5726 	if (unlikely(!skb))
5727 		goto err_free;
5728 
5729 	skb_reset_network_header(skb);
5730 	if (!skb_transport_header_was_set(skb))
5731 		skb_reset_transport_header(skb);
5732 	skb_reset_mac_len(skb);
5733 
5734 	return skb;
5735 
5736 err_free:
5737 	kfree_skb(skb);
5738 	return NULL;
5739 }
5740 EXPORT_SYMBOL(skb_vlan_untag);
5741 
5742 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5743 {
5744 	if (!pskb_may_pull(skb, write_len))
5745 		return -ENOMEM;
5746 
5747 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5748 		return 0;
5749 
5750 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5751 }
5752 EXPORT_SYMBOL(skb_ensure_writable);
5753 
5754 /* remove VLAN header from packet and update csum accordingly.
5755  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5756  */
5757 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5758 {
5759 	struct vlan_hdr *vhdr;
5760 	int offset = skb->data - skb_mac_header(skb);
5761 	int err;
5762 
5763 	if (WARN_ONCE(offset,
5764 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5765 		      offset)) {
5766 		return -EINVAL;
5767 	}
5768 
5769 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5770 	if (unlikely(err))
5771 		return err;
5772 
5773 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5774 
5775 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5776 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5777 
5778 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5779 	__skb_pull(skb, VLAN_HLEN);
5780 
5781 	vlan_set_encap_proto(skb, vhdr);
5782 	skb->mac_header += VLAN_HLEN;
5783 
5784 	if (skb_network_offset(skb) < ETH_HLEN)
5785 		skb_set_network_header(skb, ETH_HLEN);
5786 
5787 	skb_reset_mac_len(skb);
5788 
5789 	return err;
5790 }
5791 EXPORT_SYMBOL(__skb_vlan_pop);
5792 
5793 /* Pop a vlan tag either from hwaccel or from payload.
5794  * Expects skb->data at mac header.
5795  */
5796 int skb_vlan_pop(struct sk_buff *skb)
5797 {
5798 	u16 vlan_tci;
5799 	__be16 vlan_proto;
5800 	int err;
5801 
5802 	if (likely(skb_vlan_tag_present(skb))) {
5803 		__vlan_hwaccel_clear_tag(skb);
5804 	} else {
5805 		if (unlikely(!eth_type_vlan(skb->protocol)))
5806 			return 0;
5807 
5808 		err = __skb_vlan_pop(skb, &vlan_tci);
5809 		if (err)
5810 			return err;
5811 	}
5812 	/* move next vlan tag to hw accel tag */
5813 	if (likely(!eth_type_vlan(skb->protocol)))
5814 		return 0;
5815 
5816 	vlan_proto = skb->protocol;
5817 	err = __skb_vlan_pop(skb, &vlan_tci);
5818 	if (unlikely(err))
5819 		return err;
5820 
5821 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5822 	return 0;
5823 }
5824 EXPORT_SYMBOL(skb_vlan_pop);
5825 
5826 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5827  * Expects skb->data at mac header.
5828  */
5829 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5830 {
5831 	if (skb_vlan_tag_present(skb)) {
5832 		int offset = skb->data - skb_mac_header(skb);
5833 		int err;
5834 
5835 		if (WARN_ONCE(offset,
5836 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5837 			      offset)) {
5838 			return -EINVAL;
5839 		}
5840 
5841 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5842 					skb_vlan_tag_get(skb));
5843 		if (err)
5844 			return err;
5845 
5846 		skb->protocol = skb->vlan_proto;
5847 		skb->mac_len += VLAN_HLEN;
5848 
5849 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5850 	}
5851 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5852 	return 0;
5853 }
5854 EXPORT_SYMBOL(skb_vlan_push);
5855 
5856 /**
5857  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5858  *
5859  * @skb: Socket buffer to modify
5860  *
5861  * Drop the Ethernet header of @skb.
5862  *
5863  * Expects that skb->data points to the mac header and that no VLAN tags are
5864  * present.
5865  *
5866  * Returns 0 on success, -errno otherwise.
5867  */
5868 int skb_eth_pop(struct sk_buff *skb)
5869 {
5870 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5871 	    skb_network_offset(skb) < ETH_HLEN)
5872 		return -EPROTO;
5873 
5874 	skb_pull_rcsum(skb, ETH_HLEN);
5875 	skb_reset_mac_header(skb);
5876 	skb_reset_mac_len(skb);
5877 
5878 	return 0;
5879 }
5880 EXPORT_SYMBOL(skb_eth_pop);
5881 
5882 /**
5883  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5884  *
5885  * @skb: Socket buffer to modify
5886  * @dst: Destination MAC address of the new header
5887  * @src: Source MAC address of the new header
5888  *
5889  * Prepend @skb with a new Ethernet header.
5890  *
5891  * Expects that skb->data points to the mac header, which must be empty.
5892  *
5893  * Returns 0 on success, -errno otherwise.
5894  */
5895 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5896 		 const unsigned char *src)
5897 {
5898 	struct ethhdr *eth;
5899 	int err;
5900 
5901 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5902 		return -EPROTO;
5903 
5904 	err = skb_cow_head(skb, sizeof(*eth));
5905 	if (err < 0)
5906 		return err;
5907 
5908 	skb_push(skb, sizeof(*eth));
5909 	skb_reset_mac_header(skb);
5910 	skb_reset_mac_len(skb);
5911 
5912 	eth = eth_hdr(skb);
5913 	ether_addr_copy(eth->h_dest, dst);
5914 	ether_addr_copy(eth->h_source, src);
5915 	eth->h_proto = skb->protocol;
5916 
5917 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5918 
5919 	return 0;
5920 }
5921 EXPORT_SYMBOL(skb_eth_push);
5922 
5923 /* Update the ethertype of hdr and the skb csum value if required. */
5924 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5925 			     __be16 ethertype)
5926 {
5927 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5928 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5929 
5930 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5931 	}
5932 
5933 	hdr->h_proto = ethertype;
5934 }
5935 
5936 /**
5937  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5938  *                   the packet
5939  *
5940  * @skb: buffer
5941  * @mpls_lse: MPLS label stack entry to push
5942  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5943  * @mac_len: length of the MAC header
5944  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5945  *            ethernet
5946  *
5947  * Expects skb->data at mac header.
5948  *
5949  * Returns 0 on success, -errno otherwise.
5950  */
5951 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5952 		  int mac_len, bool ethernet)
5953 {
5954 	struct mpls_shim_hdr *lse;
5955 	int err;
5956 
5957 	if (unlikely(!eth_p_mpls(mpls_proto)))
5958 		return -EINVAL;
5959 
5960 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5961 	if (skb->encapsulation)
5962 		return -EINVAL;
5963 
5964 	err = skb_cow_head(skb, MPLS_HLEN);
5965 	if (unlikely(err))
5966 		return err;
5967 
5968 	if (!skb->inner_protocol) {
5969 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5970 		skb_set_inner_protocol(skb, skb->protocol);
5971 	}
5972 
5973 	skb_push(skb, MPLS_HLEN);
5974 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5975 		mac_len);
5976 	skb_reset_mac_header(skb);
5977 	skb_set_network_header(skb, mac_len);
5978 	skb_reset_mac_len(skb);
5979 
5980 	lse = mpls_hdr(skb);
5981 	lse->label_stack_entry = mpls_lse;
5982 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5983 
5984 	if (ethernet && mac_len >= ETH_HLEN)
5985 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5986 	skb->protocol = mpls_proto;
5987 
5988 	return 0;
5989 }
5990 EXPORT_SYMBOL_GPL(skb_mpls_push);
5991 
5992 /**
5993  * skb_mpls_pop() - pop the outermost MPLS header
5994  *
5995  * @skb: buffer
5996  * @next_proto: ethertype of header after popped MPLS header
5997  * @mac_len: length of the MAC header
5998  * @ethernet: flag to indicate if the packet is ethernet
5999  *
6000  * Expects skb->data at mac header.
6001  *
6002  * Returns 0 on success, -errno otherwise.
6003  */
6004 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6005 		 bool ethernet)
6006 {
6007 	int err;
6008 
6009 	if (unlikely(!eth_p_mpls(skb->protocol)))
6010 		return 0;
6011 
6012 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6013 	if (unlikely(err))
6014 		return err;
6015 
6016 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6017 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6018 		mac_len);
6019 
6020 	__skb_pull(skb, MPLS_HLEN);
6021 	skb_reset_mac_header(skb);
6022 	skb_set_network_header(skb, mac_len);
6023 
6024 	if (ethernet && mac_len >= ETH_HLEN) {
6025 		struct ethhdr *hdr;
6026 
6027 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6028 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6029 		skb_mod_eth_type(skb, hdr, next_proto);
6030 	}
6031 	skb->protocol = next_proto;
6032 
6033 	return 0;
6034 }
6035 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6036 
6037 /**
6038  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6039  *
6040  * @skb: buffer
6041  * @mpls_lse: new MPLS label stack entry to update to
6042  *
6043  * Expects skb->data at mac header.
6044  *
6045  * Returns 0 on success, -errno otherwise.
6046  */
6047 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6048 {
6049 	int err;
6050 
6051 	if (unlikely(!eth_p_mpls(skb->protocol)))
6052 		return -EINVAL;
6053 
6054 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6055 	if (unlikely(err))
6056 		return err;
6057 
6058 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6059 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6060 
6061 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6062 	}
6063 
6064 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6065 
6066 	return 0;
6067 }
6068 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6069 
6070 /**
6071  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6072  *
6073  * @skb: buffer
6074  *
6075  * Expects skb->data at mac header.
6076  *
6077  * Returns 0 on success, -errno otherwise.
6078  */
6079 int skb_mpls_dec_ttl(struct sk_buff *skb)
6080 {
6081 	u32 lse;
6082 	u8 ttl;
6083 
6084 	if (unlikely(!eth_p_mpls(skb->protocol)))
6085 		return -EINVAL;
6086 
6087 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6088 		return -ENOMEM;
6089 
6090 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6091 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6092 	if (!--ttl)
6093 		return -EINVAL;
6094 
6095 	lse &= ~MPLS_LS_TTL_MASK;
6096 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6097 
6098 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6099 }
6100 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6101 
6102 /**
6103  * alloc_skb_with_frags - allocate skb with page frags
6104  *
6105  * @header_len: size of linear part
6106  * @data_len: needed length in frags
6107  * @max_page_order: max page order desired.
6108  * @errcode: pointer to error code if any
6109  * @gfp_mask: allocation mask
6110  *
6111  * This can be used to allocate a paged skb, given a maximal order for frags.
6112  */
6113 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6114 				     unsigned long data_len,
6115 				     int max_page_order,
6116 				     int *errcode,
6117 				     gfp_t gfp_mask)
6118 {
6119 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6120 	unsigned long chunk;
6121 	struct sk_buff *skb;
6122 	struct page *page;
6123 	int i;
6124 
6125 	*errcode = -EMSGSIZE;
6126 	/* Note this test could be relaxed, if we succeed to allocate
6127 	 * high order pages...
6128 	 */
6129 	if (npages > MAX_SKB_FRAGS)
6130 		return NULL;
6131 
6132 	*errcode = -ENOBUFS;
6133 	skb = alloc_skb(header_len, gfp_mask);
6134 	if (!skb)
6135 		return NULL;
6136 
6137 	skb->truesize += npages << PAGE_SHIFT;
6138 
6139 	for (i = 0; npages > 0; i++) {
6140 		int order = max_page_order;
6141 
6142 		while (order) {
6143 			if (npages >= 1 << order) {
6144 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6145 						   __GFP_COMP |
6146 						   __GFP_NOWARN,
6147 						   order);
6148 				if (page)
6149 					goto fill_page;
6150 				/* Do not retry other high order allocations */
6151 				order = 1;
6152 				max_page_order = 0;
6153 			}
6154 			order--;
6155 		}
6156 		page = alloc_page(gfp_mask);
6157 		if (!page)
6158 			goto failure;
6159 fill_page:
6160 		chunk = min_t(unsigned long, data_len,
6161 			      PAGE_SIZE << order);
6162 		skb_fill_page_desc(skb, i, page, 0, chunk);
6163 		data_len -= chunk;
6164 		npages -= 1 << order;
6165 	}
6166 	return skb;
6167 
6168 failure:
6169 	kfree_skb(skb);
6170 	return NULL;
6171 }
6172 EXPORT_SYMBOL(alloc_skb_with_frags);
6173 
6174 /* carve out the first off bytes from skb when off < headlen */
6175 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6176 				    const int headlen, gfp_t gfp_mask)
6177 {
6178 	int i;
6179 	unsigned int size = skb_end_offset(skb);
6180 	int new_hlen = headlen - off;
6181 	u8 *data;
6182 
6183 	if (skb_pfmemalloc(skb))
6184 		gfp_mask |= __GFP_MEMALLOC;
6185 
6186 	size = SKB_DATA_ALIGN(size);
6187 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6188 	size = kmalloc_size_roundup(size);
6189 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6190 	if (!data)
6191 		return -ENOMEM;
6192 	size = SKB_WITH_OVERHEAD(size);
6193 
6194 	/* Copy real data, and all frags */
6195 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6196 	skb->len -= off;
6197 
6198 	memcpy((struct skb_shared_info *)(data + size),
6199 	       skb_shinfo(skb),
6200 	       offsetof(struct skb_shared_info,
6201 			frags[skb_shinfo(skb)->nr_frags]));
6202 	if (skb_cloned(skb)) {
6203 		/* drop the old head gracefully */
6204 		if (skb_orphan_frags(skb, gfp_mask)) {
6205 			kfree(data);
6206 			return -ENOMEM;
6207 		}
6208 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6209 			skb_frag_ref(skb, i);
6210 		if (skb_has_frag_list(skb))
6211 			skb_clone_fraglist(skb);
6212 		skb_release_data(skb);
6213 	} else {
6214 		/* we can reuse existing recount- all we did was
6215 		 * relocate values
6216 		 */
6217 		skb_free_head(skb);
6218 	}
6219 
6220 	skb->head = data;
6221 	skb->data = data;
6222 	skb->head_frag = 0;
6223 	skb_set_end_offset(skb, size);
6224 	skb_set_tail_pointer(skb, skb_headlen(skb));
6225 	skb_headers_offset_update(skb, 0);
6226 	skb->cloned = 0;
6227 	skb->hdr_len = 0;
6228 	skb->nohdr = 0;
6229 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6230 
6231 	return 0;
6232 }
6233 
6234 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6235 
6236 /* carve out the first eat bytes from skb's frag_list. May recurse into
6237  * pskb_carve()
6238  */
6239 static int pskb_carve_frag_list(struct sk_buff *skb,
6240 				struct skb_shared_info *shinfo, int eat,
6241 				gfp_t gfp_mask)
6242 {
6243 	struct sk_buff *list = shinfo->frag_list;
6244 	struct sk_buff *clone = NULL;
6245 	struct sk_buff *insp = NULL;
6246 
6247 	do {
6248 		if (!list) {
6249 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6250 			return -EFAULT;
6251 		}
6252 		if (list->len <= eat) {
6253 			/* Eaten as whole. */
6254 			eat -= list->len;
6255 			list = list->next;
6256 			insp = list;
6257 		} else {
6258 			/* Eaten partially. */
6259 			if (skb_shared(list)) {
6260 				clone = skb_clone(list, gfp_mask);
6261 				if (!clone)
6262 					return -ENOMEM;
6263 				insp = list->next;
6264 				list = clone;
6265 			} else {
6266 				/* This may be pulled without problems. */
6267 				insp = list;
6268 			}
6269 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6270 				kfree_skb(clone);
6271 				return -ENOMEM;
6272 			}
6273 			break;
6274 		}
6275 	} while (eat);
6276 
6277 	/* Free pulled out fragments. */
6278 	while ((list = shinfo->frag_list) != insp) {
6279 		shinfo->frag_list = list->next;
6280 		consume_skb(list);
6281 	}
6282 	/* And insert new clone at head. */
6283 	if (clone) {
6284 		clone->next = list;
6285 		shinfo->frag_list = clone;
6286 	}
6287 	return 0;
6288 }
6289 
6290 /* carve off first len bytes from skb. Split line (off) is in the
6291  * non-linear part of skb
6292  */
6293 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6294 				       int pos, gfp_t gfp_mask)
6295 {
6296 	int i, k = 0;
6297 	unsigned int size = skb_end_offset(skb);
6298 	u8 *data;
6299 	const int nfrags = skb_shinfo(skb)->nr_frags;
6300 	struct skb_shared_info *shinfo;
6301 
6302 	if (skb_pfmemalloc(skb))
6303 		gfp_mask |= __GFP_MEMALLOC;
6304 
6305 	size = SKB_DATA_ALIGN(size);
6306 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6307 	size = kmalloc_size_roundup(size);
6308 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6309 	if (!data)
6310 		return -ENOMEM;
6311 	size = SKB_WITH_OVERHEAD(size);
6312 
6313 	memcpy((struct skb_shared_info *)(data + size),
6314 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6315 	if (skb_orphan_frags(skb, gfp_mask)) {
6316 		kfree(data);
6317 		return -ENOMEM;
6318 	}
6319 	shinfo = (struct skb_shared_info *)(data + size);
6320 	for (i = 0; i < nfrags; i++) {
6321 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6322 
6323 		if (pos + fsize > off) {
6324 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6325 
6326 			if (pos < off) {
6327 				/* Split frag.
6328 				 * We have two variants in this case:
6329 				 * 1. Move all the frag to the second
6330 				 *    part, if it is possible. F.e.
6331 				 *    this approach is mandatory for TUX,
6332 				 *    where splitting is expensive.
6333 				 * 2. Split is accurately. We make this.
6334 				 */
6335 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6336 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6337 			}
6338 			skb_frag_ref(skb, i);
6339 			k++;
6340 		}
6341 		pos += fsize;
6342 	}
6343 	shinfo->nr_frags = k;
6344 	if (skb_has_frag_list(skb))
6345 		skb_clone_fraglist(skb);
6346 
6347 	/* split line is in frag list */
6348 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6349 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6350 		if (skb_has_frag_list(skb))
6351 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6352 		kfree(data);
6353 		return -ENOMEM;
6354 	}
6355 	skb_release_data(skb);
6356 
6357 	skb->head = data;
6358 	skb->head_frag = 0;
6359 	skb->data = data;
6360 	skb_set_end_offset(skb, size);
6361 	skb_reset_tail_pointer(skb);
6362 	skb_headers_offset_update(skb, 0);
6363 	skb->cloned   = 0;
6364 	skb->hdr_len  = 0;
6365 	skb->nohdr    = 0;
6366 	skb->len -= off;
6367 	skb->data_len = skb->len;
6368 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6369 	return 0;
6370 }
6371 
6372 /* remove len bytes from the beginning of the skb */
6373 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6374 {
6375 	int headlen = skb_headlen(skb);
6376 
6377 	if (len < headlen)
6378 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6379 	else
6380 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6381 }
6382 
6383 /* Extract to_copy bytes starting at off from skb, and return this in
6384  * a new skb
6385  */
6386 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6387 			     int to_copy, gfp_t gfp)
6388 {
6389 	struct sk_buff  *clone = skb_clone(skb, gfp);
6390 
6391 	if (!clone)
6392 		return NULL;
6393 
6394 	if (pskb_carve(clone, off, gfp) < 0 ||
6395 	    pskb_trim(clone, to_copy)) {
6396 		kfree_skb(clone);
6397 		return NULL;
6398 	}
6399 	return clone;
6400 }
6401 EXPORT_SYMBOL(pskb_extract);
6402 
6403 /**
6404  * skb_condense - try to get rid of fragments/frag_list if possible
6405  * @skb: buffer
6406  *
6407  * Can be used to save memory before skb is added to a busy queue.
6408  * If packet has bytes in frags and enough tail room in skb->head,
6409  * pull all of them, so that we can free the frags right now and adjust
6410  * truesize.
6411  * Notes:
6412  *	We do not reallocate skb->head thus can not fail.
6413  *	Caller must re-evaluate skb->truesize if needed.
6414  */
6415 void skb_condense(struct sk_buff *skb)
6416 {
6417 	if (skb->data_len) {
6418 		if (skb->data_len > skb->end - skb->tail ||
6419 		    skb_cloned(skb))
6420 			return;
6421 
6422 		/* Nice, we can free page frag(s) right now */
6423 		__pskb_pull_tail(skb, skb->data_len);
6424 	}
6425 	/* At this point, skb->truesize might be over estimated,
6426 	 * because skb had a fragment, and fragments do not tell
6427 	 * their truesize.
6428 	 * When we pulled its content into skb->head, fragment
6429 	 * was freed, but __pskb_pull_tail() could not possibly
6430 	 * adjust skb->truesize, not knowing the frag truesize.
6431 	 */
6432 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6433 }
6434 
6435 #ifdef CONFIG_SKB_EXTENSIONS
6436 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6437 {
6438 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6439 }
6440 
6441 /**
6442  * __skb_ext_alloc - allocate a new skb extensions storage
6443  *
6444  * @flags: See kmalloc().
6445  *
6446  * Returns the newly allocated pointer. The pointer can later attached to a
6447  * skb via __skb_ext_set().
6448  * Note: caller must handle the skb_ext as an opaque data.
6449  */
6450 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6451 {
6452 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6453 
6454 	if (new) {
6455 		memset(new->offset, 0, sizeof(new->offset));
6456 		refcount_set(&new->refcnt, 1);
6457 	}
6458 
6459 	return new;
6460 }
6461 
6462 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6463 					 unsigned int old_active)
6464 {
6465 	struct skb_ext *new;
6466 
6467 	if (refcount_read(&old->refcnt) == 1)
6468 		return old;
6469 
6470 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6471 	if (!new)
6472 		return NULL;
6473 
6474 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6475 	refcount_set(&new->refcnt, 1);
6476 
6477 #ifdef CONFIG_XFRM
6478 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6479 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6480 		unsigned int i;
6481 
6482 		for (i = 0; i < sp->len; i++)
6483 			xfrm_state_hold(sp->xvec[i]);
6484 	}
6485 #endif
6486 	__skb_ext_put(old);
6487 	return new;
6488 }
6489 
6490 /**
6491  * __skb_ext_set - attach the specified extension storage to this skb
6492  * @skb: buffer
6493  * @id: extension id
6494  * @ext: extension storage previously allocated via __skb_ext_alloc()
6495  *
6496  * Existing extensions, if any, are cleared.
6497  *
6498  * Returns the pointer to the extension.
6499  */
6500 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6501 		    struct skb_ext *ext)
6502 {
6503 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6504 
6505 	skb_ext_put(skb);
6506 	newlen = newoff + skb_ext_type_len[id];
6507 	ext->chunks = newlen;
6508 	ext->offset[id] = newoff;
6509 	skb->extensions = ext;
6510 	skb->active_extensions = 1 << id;
6511 	return skb_ext_get_ptr(ext, id);
6512 }
6513 
6514 /**
6515  * skb_ext_add - allocate space for given extension, COW if needed
6516  * @skb: buffer
6517  * @id: extension to allocate space for
6518  *
6519  * Allocates enough space for the given extension.
6520  * If the extension is already present, a pointer to that extension
6521  * is returned.
6522  *
6523  * If the skb was cloned, COW applies and the returned memory can be
6524  * modified without changing the extension space of clones buffers.
6525  *
6526  * Returns pointer to the extension or NULL on allocation failure.
6527  */
6528 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6529 {
6530 	struct skb_ext *new, *old = NULL;
6531 	unsigned int newlen, newoff;
6532 
6533 	if (skb->active_extensions) {
6534 		old = skb->extensions;
6535 
6536 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6537 		if (!new)
6538 			return NULL;
6539 
6540 		if (__skb_ext_exist(new, id))
6541 			goto set_active;
6542 
6543 		newoff = new->chunks;
6544 	} else {
6545 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6546 
6547 		new = __skb_ext_alloc(GFP_ATOMIC);
6548 		if (!new)
6549 			return NULL;
6550 	}
6551 
6552 	newlen = newoff + skb_ext_type_len[id];
6553 	new->chunks = newlen;
6554 	new->offset[id] = newoff;
6555 set_active:
6556 	skb->slow_gro = 1;
6557 	skb->extensions = new;
6558 	skb->active_extensions |= 1 << id;
6559 	return skb_ext_get_ptr(new, id);
6560 }
6561 EXPORT_SYMBOL(skb_ext_add);
6562 
6563 #ifdef CONFIG_XFRM
6564 static void skb_ext_put_sp(struct sec_path *sp)
6565 {
6566 	unsigned int i;
6567 
6568 	for (i = 0; i < sp->len; i++)
6569 		xfrm_state_put(sp->xvec[i]);
6570 }
6571 #endif
6572 
6573 #ifdef CONFIG_MCTP_FLOWS
6574 static void skb_ext_put_mctp(struct mctp_flow *flow)
6575 {
6576 	if (flow->key)
6577 		mctp_key_unref(flow->key);
6578 }
6579 #endif
6580 
6581 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6582 {
6583 	struct skb_ext *ext = skb->extensions;
6584 
6585 	skb->active_extensions &= ~(1 << id);
6586 	if (skb->active_extensions == 0) {
6587 		skb->extensions = NULL;
6588 		__skb_ext_put(ext);
6589 #ifdef CONFIG_XFRM
6590 	} else if (id == SKB_EXT_SEC_PATH &&
6591 		   refcount_read(&ext->refcnt) == 1) {
6592 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6593 
6594 		skb_ext_put_sp(sp);
6595 		sp->len = 0;
6596 #endif
6597 	}
6598 }
6599 EXPORT_SYMBOL(__skb_ext_del);
6600 
6601 void __skb_ext_put(struct skb_ext *ext)
6602 {
6603 	/* If this is last clone, nothing can increment
6604 	 * it after check passes.  Avoids one atomic op.
6605 	 */
6606 	if (refcount_read(&ext->refcnt) == 1)
6607 		goto free_now;
6608 
6609 	if (!refcount_dec_and_test(&ext->refcnt))
6610 		return;
6611 free_now:
6612 #ifdef CONFIG_XFRM
6613 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6614 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6615 #endif
6616 #ifdef CONFIG_MCTP_FLOWS
6617 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6618 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6619 #endif
6620 
6621 	kmem_cache_free(skbuff_ext_cache, ext);
6622 }
6623 EXPORT_SYMBOL(__skb_ext_put);
6624 #endif /* CONFIG_SKB_EXTENSIONS */
6625 
6626 /**
6627  * skb_attempt_defer_free - queue skb for remote freeing
6628  * @skb: buffer
6629  *
6630  * Put @skb in a per-cpu list, using the cpu which
6631  * allocated the skb/pages to reduce false sharing
6632  * and memory zone spinlock contention.
6633  */
6634 void skb_attempt_defer_free(struct sk_buff *skb)
6635 {
6636 	int cpu = skb->alloc_cpu;
6637 	struct softnet_data *sd;
6638 	unsigned long flags;
6639 	unsigned int defer_max;
6640 	bool kick;
6641 
6642 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6643 	    !cpu_online(cpu) ||
6644 	    cpu == raw_smp_processor_id()) {
6645 nodefer:	__kfree_skb(skb);
6646 		return;
6647 	}
6648 
6649 	sd = &per_cpu(softnet_data, cpu);
6650 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6651 	if (READ_ONCE(sd->defer_count) >= defer_max)
6652 		goto nodefer;
6653 
6654 	spin_lock_irqsave(&sd->defer_lock, flags);
6655 	/* Send an IPI every time queue reaches half capacity. */
6656 	kick = sd->defer_count == (defer_max >> 1);
6657 	/* Paired with the READ_ONCE() few lines above */
6658 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6659 
6660 	skb->next = sd->defer_list;
6661 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6662 	WRITE_ONCE(sd->defer_list, skb);
6663 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6664 
6665 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6666 	 * if we are unlucky enough (this seems very unlikely).
6667 	 */
6668 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6669 		smp_call_function_single_async(cpu, &sd->defer_csd);
6670 }
6671