xref: /linux/net/core/skbuff.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 #include <linux/errqueue.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <trace/events/skb.h>
69 
70 #include "kmap_skb.h"
71 
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 				  struct pipe_buffer *buf)
77 {
78 	put_page(buf->page);
79 }
80 
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 				struct pipe_buffer *buf)
83 {
84 	get_page(buf->page);
85 }
86 
87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
88 			       struct pipe_buffer *buf)
89 {
90 	return 1;
91 }
92 
93 
94 /* Pipe buffer operations for a socket. */
95 static struct pipe_buf_operations sock_pipe_buf_ops = {
96 	.can_merge = 0,
97 	.map = generic_pipe_buf_map,
98 	.unmap = generic_pipe_buf_unmap,
99 	.confirm = generic_pipe_buf_confirm,
100 	.release = sock_pipe_buf_release,
101 	.steal = sock_pipe_buf_steal,
102 	.get = sock_pipe_buf_get,
103 };
104 
105 /*
106  *	Keep out-of-line to prevent kernel bloat.
107  *	__builtin_return_address is not used because it is not always
108  *	reliable.
109  */
110 
111 /**
112  *	skb_over_panic	- 	private function
113  *	@skb: buffer
114  *	@sz: size
115  *	@here: address
116  *
117  *	Out of line support code for skb_put(). Not user callable.
118  */
119 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 {
121 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
122 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
123 	       here, skb->len, sz, skb->head, skb->data,
124 	       (unsigned long)skb->tail, (unsigned long)skb->end,
125 	       skb->dev ? skb->dev->name : "<NULL>");
126 	BUG();
127 }
128 EXPORT_SYMBOL(skb_over_panic);
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
143 	       here, skb->len, sz, skb->head, skb->data,
144 	       (unsigned long)skb->tail, (unsigned long)skb->end,
145 	       skb->dev ? skb->dev->name : "<NULL>");
146 	BUG();
147 }
148 EXPORT_SYMBOL(skb_under_panic);
149 
150 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
151  *	'private' fields and also do memory statistics to find all the
152  *	[BEEP] leaks.
153  *
154  */
155 
156 /**
157  *	__alloc_skb	-	allocate a network buffer
158  *	@size: size to allocate
159  *	@gfp_mask: allocation mask
160  *	@fclone: allocate from fclone cache instead of head cache
161  *		and allocate a cloned (child) skb
162  *	@node: numa node to allocate memory on
163  *
164  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
165  *	tail room of size bytes. The object has a reference count of one.
166  *	The return is the buffer. On a failure the return is %NULL.
167  *
168  *	Buffers may only be allocated from interrupts using a @gfp_mask of
169  *	%GFP_ATOMIC.
170  */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 			    int fclone, int node)
173 {
174 	struct kmem_cache *cache;
175 	struct skb_shared_info *shinfo;
176 	struct sk_buff *skb;
177 	u8 *data;
178 
179 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180 
181 	/* Get the HEAD */
182 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 	if (!skb)
184 		goto out;
185 
186 	size = SKB_DATA_ALIGN(size);
187 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 			gfp_mask, node);
189 	if (!data)
190 		goto nodata;
191 
192 	/*
193 	 * Only clear those fields we need to clear, not those that we will
194 	 * actually initialise below. Hence, don't put any more fields after
195 	 * the tail pointer in struct sk_buff!
196 	 */
197 	memset(skb, 0, offsetof(struct sk_buff, tail));
198 	skb->truesize = size + sizeof(struct sk_buff);
199 	atomic_set(&skb->users, 1);
200 	skb->head = data;
201 	skb->data = data;
202 	skb_reset_tail_pointer(skb);
203 	skb->end = skb->tail + size;
204 	/* make sure we initialize shinfo sequentially */
205 	shinfo = skb_shinfo(skb);
206 	atomic_set(&shinfo->dataref, 1);
207 	shinfo->nr_frags  = 0;
208 	shinfo->gso_size = 0;
209 	shinfo->gso_segs = 0;
210 	shinfo->gso_type = 0;
211 	shinfo->ip6_frag_id = 0;
212 	shinfo->tx_flags.flags = 0;
213 	skb_frag_list_init(skb);
214 	memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
215 
216 	if (fclone) {
217 		struct sk_buff *child = skb + 1;
218 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
219 
220 		skb->fclone = SKB_FCLONE_ORIG;
221 		atomic_set(fclone_ref, 1);
222 
223 		child->fclone = SKB_FCLONE_UNAVAILABLE;
224 	}
225 out:
226 	return skb;
227 nodata:
228 	kmem_cache_free(cache, skb);
229 	skb = NULL;
230 	goto out;
231 }
232 EXPORT_SYMBOL(__alloc_skb);
233 
234 /**
235  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
236  *	@dev: network device to receive on
237  *	@length: length to allocate
238  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
239  *
240  *	Allocate a new &sk_buff and assign it a usage count of one. The
241  *	buffer has unspecified headroom built in. Users should allocate
242  *	the headroom they think they need without accounting for the
243  *	built in space. The built in space is used for optimisations.
244  *
245  *	%NULL is returned if there is no free memory.
246  */
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 		unsigned int length, gfp_t gfp_mask)
249 {
250 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
251 	struct sk_buff *skb;
252 
253 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
254 	if (likely(skb)) {
255 		skb_reserve(skb, NET_SKB_PAD);
256 		skb->dev = dev;
257 	}
258 	return skb;
259 }
260 EXPORT_SYMBOL(__netdev_alloc_skb);
261 
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 {
264 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 	struct page *page;
266 
267 	page = alloc_pages_node(node, gfp_mask, 0);
268 	return page;
269 }
270 EXPORT_SYMBOL(__netdev_alloc_page);
271 
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 		int size)
274 {
275 	skb_fill_page_desc(skb, i, page, off, size);
276 	skb->len += size;
277 	skb->data_len += size;
278 	skb->truesize += size;
279 }
280 EXPORT_SYMBOL(skb_add_rx_frag);
281 
282 /**
283  *	dev_alloc_skb - allocate an skbuff for receiving
284  *	@length: length to allocate
285  *
286  *	Allocate a new &sk_buff and assign it a usage count of one. The
287  *	buffer has unspecified headroom built in. Users should allocate
288  *	the headroom they think they need without accounting for the
289  *	built in space. The built in space is used for optimisations.
290  *
291  *	%NULL is returned if there is no free memory. Although this function
292  *	allocates memory it can be called from an interrupt.
293  */
294 struct sk_buff *dev_alloc_skb(unsigned int length)
295 {
296 	/*
297 	 * There is more code here than it seems:
298 	 * __dev_alloc_skb is an inline
299 	 */
300 	return __dev_alloc_skb(length, GFP_ATOMIC);
301 }
302 EXPORT_SYMBOL(dev_alloc_skb);
303 
304 static void skb_drop_list(struct sk_buff **listp)
305 {
306 	struct sk_buff *list = *listp;
307 
308 	*listp = NULL;
309 
310 	do {
311 		struct sk_buff *this = list;
312 		list = list->next;
313 		kfree_skb(this);
314 	} while (list);
315 }
316 
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 {
319 	skb_drop_list(&skb_shinfo(skb)->frag_list);
320 }
321 
322 static void skb_clone_fraglist(struct sk_buff *skb)
323 {
324 	struct sk_buff *list;
325 
326 	skb_walk_frags(skb, list)
327 		skb_get(list);
328 }
329 
330 static void skb_release_data(struct sk_buff *skb)
331 {
332 	if (!skb->cloned ||
333 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 			       &skb_shinfo(skb)->dataref)) {
335 		if (skb_shinfo(skb)->nr_frags) {
336 			int i;
337 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 				put_page(skb_shinfo(skb)->frags[i].page);
339 		}
340 
341 		if (skb_has_frags(skb))
342 			skb_drop_fraglist(skb);
343 
344 		kfree(skb->head);
345 	}
346 }
347 
348 /*
349  *	Free an skbuff by memory without cleaning the state.
350  */
351 static void kfree_skbmem(struct sk_buff *skb)
352 {
353 	struct sk_buff *other;
354 	atomic_t *fclone_ref;
355 
356 	switch (skb->fclone) {
357 	case SKB_FCLONE_UNAVAILABLE:
358 		kmem_cache_free(skbuff_head_cache, skb);
359 		break;
360 
361 	case SKB_FCLONE_ORIG:
362 		fclone_ref = (atomic_t *) (skb + 2);
363 		if (atomic_dec_and_test(fclone_ref))
364 			kmem_cache_free(skbuff_fclone_cache, skb);
365 		break;
366 
367 	case SKB_FCLONE_CLONE:
368 		fclone_ref = (atomic_t *) (skb + 1);
369 		other = skb - 1;
370 
371 		/* The clone portion is available for
372 		 * fast-cloning again.
373 		 */
374 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
375 
376 		if (atomic_dec_and_test(fclone_ref))
377 			kmem_cache_free(skbuff_fclone_cache, other);
378 		break;
379 	}
380 }
381 
382 static void skb_release_head_state(struct sk_buff *skb)
383 {
384 	skb_dst_drop(skb);
385 #ifdef CONFIG_XFRM
386 	secpath_put(skb->sp);
387 #endif
388 	if (skb->destructor) {
389 		WARN_ON(in_irq());
390 		skb->destructor(skb);
391 	}
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 	nf_conntrack_put(skb->nfct);
394 	nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 	nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 	skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 	skb->tc_verd = 0;
404 #endif
405 #endif
406 }
407 
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
410 {
411 	skb_release_head_state(skb);
412 	skb_release_data(skb);
413 }
414 
415 /**
416  *	__kfree_skb - private function
417  *	@skb: buffer
418  *
419  *	Free an sk_buff. Release anything attached to the buffer.
420  *	Clean the state. This is an internal helper function. Users should
421  *	always call kfree_skb
422  */
423 
424 void __kfree_skb(struct sk_buff *skb)
425 {
426 	skb_release_all(skb);
427 	kfree_skbmem(skb);
428 }
429 EXPORT_SYMBOL(__kfree_skb);
430 
431 /**
432  *	kfree_skb - free an sk_buff
433  *	@skb: buffer to free
434  *
435  *	Drop a reference to the buffer and free it if the usage count has
436  *	hit zero.
437  */
438 void kfree_skb(struct sk_buff *skb)
439 {
440 	if (unlikely(!skb))
441 		return;
442 	if (likely(atomic_read(&skb->users) == 1))
443 		smp_rmb();
444 	else if (likely(!atomic_dec_and_test(&skb->users)))
445 		return;
446 	trace_kfree_skb(skb, __builtin_return_address(0));
447 	__kfree_skb(skb);
448 }
449 EXPORT_SYMBOL(kfree_skb);
450 
451 /**
452  *	consume_skb - free an skbuff
453  *	@skb: buffer to free
454  *
455  *	Drop a ref to the buffer and free it if the usage count has hit zero
456  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
457  *	is being dropped after a failure and notes that
458  */
459 void consume_skb(struct sk_buff *skb)
460 {
461 	if (unlikely(!skb))
462 		return;
463 	if (likely(atomic_read(&skb->users) == 1))
464 		smp_rmb();
465 	else if (likely(!atomic_dec_and_test(&skb->users)))
466 		return;
467 	__kfree_skb(skb);
468 }
469 EXPORT_SYMBOL(consume_skb);
470 
471 /**
472  *	skb_recycle_check - check if skb can be reused for receive
473  *	@skb: buffer
474  *	@skb_size: minimum receive buffer size
475  *
476  *	Checks that the skb passed in is not shared or cloned, and
477  *	that it is linear and its head portion at least as large as
478  *	skb_size so that it can be recycled as a receive buffer.
479  *	If these conditions are met, this function does any necessary
480  *	reference count dropping and cleans up the skbuff as if it
481  *	just came from __alloc_skb().
482  */
483 int skb_recycle_check(struct sk_buff *skb, int skb_size)
484 {
485 	struct skb_shared_info *shinfo;
486 
487 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
488 		return 0;
489 
490 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
491 	if (skb_end_pointer(skb) - skb->head < skb_size)
492 		return 0;
493 
494 	if (skb_shared(skb) || skb_cloned(skb))
495 		return 0;
496 
497 	skb_release_head_state(skb);
498 	shinfo = skb_shinfo(skb);
499 	atomic_set(&shinfo->dataref, 1);
500 	shinfo->nr_frags = 0;
501 	shinfo->gso_size = 0;
502 	shinfo->gso_segs = 0;
503 	shinfo->gso_type = 0;
504 	shinfo->ip6_frag_id = 0;
505 	shinfo->tx_flags.flags = 0;
506 	skb_frag_list_init(skb);
507 	memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
508 
509 	memset(skb, 0, offsetof(struct sk_buff, tail));
510 	skb->data = skb->head + NET_SKB_PAD;
511 	skb_reset_tail_pointer(skb);
512 
513 	return 1;
514 }
515 EXPORT_SYMBOL(skb_recycle_check);
516 
517 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
518 {
519 	new->tstamp		= old->tstamp;
520 	new->dev		= old->dev;
521 	new->transport_header	= old->transport_header;
522 	new->network_header	= old->network_header;
523 	new->mac_header		= old->mac_header;
524 	skb_dst_set(new, dst_clone(skb_dst(old)));
525 #ifdef CONFIG_XFRM
526 	new->sp			= secpath_get(old->sp);
527 #endif
528 	memcpy(new->cb, old->cb, sizeof(old->cb));
529 	new->csum		= old->csum;
530 	new->local_df		= old->local_df;
531 	new->pkt_type		= old->pkt_type;
532 	new->ip_summed		= old->ip_summed;
533 	skb_copy_queue_mapping(new, old);
534 	new->priority		= old->priority;
535 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
536 	new->ipvs_property	= old->ipvs_property;
537 #endif
538 	new->protocol		= old->protocol;
539 	new->mark		= old->mark;
540 	new->iif		= old->iif;
541 	__nf_copy(new, old);
542 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
543     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
544 	new->nf_trace		= old->nf_trace;
545 #endif
546 #ifdef CONFIG_NET_SCHED
547 	new->tc_index		= old->tc_index;
548 #ifdef CONFIG_NET_CLS_ACT
549 	new->tc_verd		= old->tc_verd;
550 #endif
551 #endif
552 	new->vlan_tci		= old->vlan_tci;
553 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
554 	new->do_not_encrypt	= old->do_not_encrypt;
555 #endif
556 
557 	skb_copy_secmark(new, old);
558 }
559 
560 /*
561  * You should not add any new code to this function.  Add it to
562  * __copy_skb_header above instead.
563  */
564 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
565 {
566 #define C(x) n->x = skb->x
567 
568 	n->next = n->prev = NULL;
569 	n->sk = NULL;
570 	__copy_skb_header(n, skb);
571 
572 	C(len);
573 	C(data_len);
574 	C(mac_len);
575 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
576 	n->cloned = 1;
577 	n->nohdr = 0;
578 	n->destructor = NULL;
579 	C(tail);
580 	C(end);
581 	C(head);
582 	C(data);
583 	C(truesize);
584 	atomic_set(&n->users, 1);
585 
586 	atomic_inc(&(skb_shinfo(skb)->dataref));
587 	skb->cloned = 1;
588 
589 	return n;
590 #undef C
591 }
592 
593 /**
594  *	skb_morph	-	morph one skb into another
595  *	@dst: the skb to receive the contents
596  *	@src: the skb to supply the contents
597  *
598  *	This is identical to skb_clone except that the target skb is
599  *	supplied by the user.
600  *
601  *	The target skb is returned upon exit.
602  */
603 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
604 {
605 	skb_release_all(dst);
606 	return __skb_clone(dst, src);
607 }
608 EXPORT_SYMBOL_GPL(skb_morph);
609 
610 /**
611  *	skb_clone	-	duplicate an sk_buff
612  *	@skb: buffer to clone
613  *	@gfp_mask: allocation priority
614  *
615  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
616  *	copies share the same packet data but not structure. The new
617  *	buffer has a reference count of 1. If the allocation fails the
618  *	function returns %NULL otherwise the new buffer is returned.
619  *
620  *	If this function is called from an interrupt gfp_mask() must be
621  *	%GFP_ATOMIC.
622  */
623 
624 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
625 {
626 	struct sk_buff *n;
627 
628 	n = skb + 1;
629 	if (skb->fclone == SKB_FCLONE_ORIG &&
630 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
631 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
632 		n->fclone = SKB_FCLONE_CLONE;
633 		atomic_inc(fclone_ref);
634 	} else {
635 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
636 		if (!n)
637 			return NULL;
638 		n->fclone = SKB_FCLONE_UNAVAILABLE;
639 	}
640 
641 	return __skb_clone(n, skb);
642 }
643 EXPORT_SYMBOL(skb_clone);
644 
645 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
646 {
647 #ifndef NET_SKBUFF_DATA_USES_OFFSET
648 	/*
649 	 *	Shift between the two data areas in bytes
650 	 */
651 	unsigned long offset = new->data - old->data;
652 #endif
653 
654 	__copy_skb_header(new, old);
655 
656 #ifndef NET_SKBUFF_DATA_USES_OFFSET
657 	/* {transport,network,mac}_header are relative to skb->head */
658 	new->transport_header += offset;
659 	new->network_header   += offset;
660 	new->mac_header	      += offset;
661 #endif
662 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
663 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
664 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
665 }
666 
667 /**
668  *	skb_copy	-	create private copy of an sk_buff
669  *	@skb: buffer to copy
670  *	@gfp_mask: allocation priority
671  *
672  *	Make a copy of both an &sk_buff and its data. This is used when the
673  *	caller wishes to modify the data and needs a private copy of the
674  *	data to alter. Returns %NULL on failure or the pointer to the buffer
675  *	on success. The returned buffer has a reference count of 1.
676  *
677  *	As by-product this function converts non-linear &sk_buff to linear
678  *	one, so that &sk_buff becomes completely private and caller is allowed
679  *	to modify all the data of returned buffer. This means that this
680  *	function is not recommended for use in circumstances when only
681  *	header is going to be modified. Use pskb_copy() instead.
682  */
683 
684 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
685 {
686 	int headerlen = skb->data - skb->head;
687 	/*
688 	 *	Allocate the copy buffer
689 	 */
690 	struct sk_buff *n;
691 #ifdef NET_SKBUFF_DATA_USES_OFFSET
692 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
693 #else
694 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
695 #endif
696 	if (!n)
697 		return NULL;
698 
699 	/* Set the data pointer */
700 	skb_reserve(n, headerlen);
701 	/* Set the tail pointer and length */
702 	skb_put(n, skb->len);
703 
704 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
705 		BUG();
706 
707 	copy_skb_header(n, skb);
708 	return n;
709 }
710 EXPORT_SYMBOL(skb_copy);
711 
712 /**
713  *	pskb_copy	-	create copy of an sk_buff with private head.
714  *	@skb: buffer to copy
715  *	@gfp_mask: allocation priority
716  *
717  *	Make a copy of both an &sk_buff and part of its data, located
718  *	in header. Fragmented data remain shared. This is used when
719  *	the caller wishes to modify only header of &sk_buff and needs
720  *	private copy of the header to alter. Returns %NULL on failure
721  *	or the pointer to the buffer on success.
722  *	The returned buffer has a reference count of 1.
723  */
724 
725 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
726 {
727 	/*
728 	 *	Allocate the copy buffer
729 	 */
730 	struct sk_buff *n;
731 #ifdef NET_SKBUFF_DATA_USES_OFFSET
732 	n = alloc_skb(skb->end, gfp_mask);
733 #else
734 	n = alloc_skb(skb->end - skb->head, gfp_mask);
735 #endif
736 	if (!n)
737 		goto out;
738 
739 	/* Set the data pointer */
740 	skb_reserve(n, skb->data - skb->head);
741 	/* Set the tail pointer and length */
742 	skb_put(n, skb_headlen(skb));
743 	/* Copy the bytes */
744 	skb_copy_from_linear_data(skb, n->data, n->len);
745 
746 	n->truesize += skb->data_len;
747 	n->data_len  = skb->data_len;
748 	n->len	     = skb->len;
749 
750 	if (skb_shinfo(skb)->nr_frags) {
751 		int i;
752 
753 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
754 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
755 			get_page(skb_shinfo(n)->frags[i].page);
756 		}
757 		skb_shinfo(n)->nr_frags = i;
758 	}
759 
760 	if (skb_has_frags(skb)) {
761 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
762 		skb_clone_fraglist(n);
763 	}
764 
765 	copy_skb_header(n, skb);
766 out:
767 	return n;
768 }
769 EXPORT_SYMBOL(pskb_copy);
770 
771 /**
772  *	pskb_expand_head - reallocate header of &sk_buff
773  *	@skb: buffer to reallocate
774  *	@nhead: room to add at head
775  *	@ntail: room to add at tail
776  *	@gfp_mask: allocation priority
777  *
778  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
779  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
780  *	reference count of 1. Returns zero in the case of success or error,
781  *	if expansion failed. In the last case, &sk_buff is not changed.
782  *
783  *	All the pointers pointing into skb header may change and must be
784  *	reloaded after call to this function.
785  */
786 
787 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
788 		     gfp_t gfp_mask)
789 {
790 	int i;
791 	u8 *data;
792 #ifdef NET_SKBUFF_DATA_USES_OFFSET
793 	int size = nhead + skb->end + ntail;
794 #else
795 	int size = nhead + (skb->end - skb->head) + ntail;
796 #endif
797 	long off;
798 
799 	BUG_ON(nhead < 0);
800 
801 	if (skb_shared(skb))
802 		BUG();
803 
804 	size = SKB_DATA_ALIGN(size);
805 
806 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
807 	if (!data)
808 		goto nodata;
809 
810 	/* Copy only real data... and, alas, header. This should be
811 	 * optimized for the cases when header is void. */
812 #ifdef NET_SKBUFF_DATA_USES_OFFSET
813 	memcpy(data + nhead, skb->head, skb->tail);
814 #else
815 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
816 #endif
817 	memcpy(data + size, skb_end_pointer(skb),
818 	       sizeof(struct skb_shared_info));
819 
820 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
821 		get_page(skb_shinfo(skb)->frags[i].page);
822 
823 	if (skb_has_frags(skb))
824 		skb_clone_fraglist(skb);
825 
826 	skb_release_data(skb);
827 
828 	off = (data + nhead) - skb->head;
829 
830 	skb->head     = data;
831 	skb->data    += off;
832 #ifdef NET_SKBUFF_DATA_USES_OFFSET
833 	skb->end      = size;
834 	off           = nhead;
835 #else
836 	skb->end      = skb->head + size;
837 #endif
838 	/* {transport,network,mac}_header and tail are relative to skb->head */
839 	skb->tail	      += off;
840 	skb->transport_header += off;
841 	skb->network_header   += off;
842 	skb->mac_header	      += off;
843 	skb->csum_start       += nhead;
844 	skb->cloned   = 0;
845 	skb->hdr_len  = 0;
846 	skb->nohdr    = 0;
847 	atomic_set(&skb_shinfo(skb)->dataref, 1);
848 	return 0;
849 
850 nodata:
851 	return -ENOMEM;
852 }
853 EXPORT_SYMBOL(pskb_expand_head);
854 
855 /* Make private copy of skb with writable head and some headroom */
856 
857 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
858 {
859 	struct sk_buff *skb2;
860 	int delta = headroom - skb_headroom(skb);
861 
862 	if (delta <= 0)
863 		skb2 = pskb_copy(skb, GFP_ATOMIC);
864 	else {
865 		skb2 = skb_clone(skb, GFP_ATOMIC);
866 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
867 					     GFP_ATOMIC)) {
868 			kfree_skb(skb2);
869 			skb2 = NULL;
870 		}
871 	}
872 	return skb2;
873 }
874 EXPORT_SYMBOL(skb_realloc_headroom);
875 
876 /**
877  *	skb_copy_expand	-	copy and expand sk_buff
878  *	@skb: buffer to copy
879  *	@newheadroom: new free bytes at head
880  *	@newtailroom: new free bytes at tail
881  *	@gfp_mask: allocation priority
882  *
883  *	Make a copy of both an &sk_buff and its data and while doing so
884  *	allocate additional space.
885  *
886  *	This is used when the caller wishes to modify the data and needs a
887  *	private copy of the data to alter as well as more space for new fields.
888  *	Returns %NULL on failure or the pointer to the buffer
889  *	on success. The returned buffer has a reference count of 1.
890  *
891  *	You must pass %GFP_ATOMIC as the allocation priority if this function
892  *	is called from an interrupt.
893  */
894 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
895 				int newheadroom, int newtailroom,
896 				gfp_t gfp_mask)
897 {
898 	/*
899 	 *	Allocate the copy buffer
900 	 */
901 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
902 				      gfp_mask);
903 	int oldheadroom = skb_headroom(skb);
904 	int head_copy_len, head_copy_off;
905 	int off;
906 
907 	if (!n)
908 		return NULL;
909 
910 	skb_reserve(n, newheadroom);
911 
912 	/* Set the tail pointer and length */
913 	skb_put(n, skb->len);
914 
915 	head_copy_len = oldheadroom;
916 	head_copy_off = 0;
917 	if (newheadroom <= head_copy_len)
918 		head_copy_len = newheadroom;
919 	else
920 		head_copy_off = newheadroom - head_copy_len;
921 
922 	/* Copy the linear header and data. */
923 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
924 			  skb->len + head_copy_len))
925 		BUG();
926 
927 	copy_skb_header(n, skb);
928 
929 	off                  = newheadroom - oldheadroom;
930 	n->csum_start       += off;
931 #ifdef NET_SKBUFF_DATA_USES_OFFSET
932 	n->transport_header += off;
933 	n->network_header   += off;
934 	n->mac_header	    += off;
935 #endif
936 
937 	return n;
938 }
939 EXPORT_SYMBOL(skb_copy_expand);
940 
941 /**
942  *	skb_pad			-	zero pad the tail of an skb
943  *	@skb: buffer to pad
944  *	@pad: space to pad
945  *
946  *	Ensure that a buffer is followed by a padding area that is zero
947  *	filled. Used by network drivers which may DMA or transfer data
948  *	beyond the buffer end onto the wire.
949  *
950  *	May return error in out of memory cases. The skb is freed on error.
951  */
952 
953 int skb_pad(struct sk_buff *skb, int pad)
954 {
955 	int err;
956 	int ntail;
957 
958 	/* If the skbuff is non linear tailroom is always zero.. */
959 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
960 		memset(skb->data+skb->len, 0, pad);
961 		return 0;
962 	}
963 
964 	ntail = skb->data_len + pad - (skb->end - skb->tail);
965 	if (likely(skb_cloned(skb) || ntail > 0)) {
966 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
967 		if (unlikely(err))
968 			goto free_skb;
969 	}
970 
971 	/* FIXME: The use of this function with non-linear skb's really needs
972 	 * to be audited.
973 	 */
974 	err = skb_linearize(skb);
975 	if (unlikely(err))
976 		goto free_skb;
977 
978 	memset(skb->data + skb->len, 0, pad);
979 	return 0;
980 
981 free_skb:
982 	kfree_skb(skb);
983 	return err;
984 }
985 EXPORT_SYMBOL(skb_pad);
986 
987 /**
988  *	skb_put - add data to a buffer
989  *	@skb: buffer to use
990  *	@len: amount of data to add
991  *
992  *	This function extends the used data area of the buffer. If this would
993  *	exceed the total buffer size the kernel will panic. A pointer to the
994  *	first byte of the extra data is returned.
995  */
996 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
997 {
998 	unsigned char *tmp = skb_tail_pointer(skb);
999 	SKB_LINEAR_ASSERT(skb);
1000 	skb->tail += len;
1001 	skb->len  += len;
1002 	if (unlikely(skb->tail > skb->end))
1003 		skb_over_panic(skb, len, __builtin_return_address(0));
1004 	return tmp;
1005 }
1006 EXPORT_SYMBOL(skb_put);
1007 
1008 /**
1009  *	skb_push - add data to the start of a buffer
1010  *	@skb: buffer to use
1011  *	@len: amount of data to add
1012  *
1013  *	This function extends the used data area of the buffer at the buffer
1014  *	start. If this would exceed the total buffer headroom the kernel will
1015  *	panic. A pointer to the first byte of the extra data is returned.
1016  */
1017 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1018 {
1019 	skb->data -= len;
1020 	skb->len  += len;
1021 	if (unlikely(skb->data<skb->head))
1022 		skb_under_panic(skb, len, __builtin_return_address(0));
1023 	return skb->data;
1024 }
1025 EXPORT_SYMBOL(skb_push);
1026 
1027 /**
1028  *	skb_pull - remove data from the start of a buffer
1029  *	@skb: buffer to use
1030  *	@len: amount of data to remove
1031  *
1032  *	This function removes data from the start of a buffer, returning
1033  *	the memory to the headroom. A pointer to the next data in the buffer
1034  *	is returned. Once the data has been pulled future pushes will overwrite
1035  *	the old data.
1036  */
1037 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1038 {
1039 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1040 }
1041 EXPORT_SYMBOL(skb_pull);
1042 
1043 /**
1044  *	skb_trim - remove end from a buffer
1045  *	@skb: buffer to alter
1046  *	@len: new length
1047  *
1048  *	Cut the length of a buffer down by removing data from the tail. If
1049  *	the buffer is already under the length specified it is not modified.
1050  *	The skb must be linear.
1051  */
1052 void skb_trim(struct sk_buff *skb, unsigned int len)
1053 {
1054 	if (skb->len > len)
1055 		__skb_trim(skb, len);
1056 }
1057 EXPORT_SYMBOL(skb_trim);
1058 
1059 /* Trims skb to length len. It can change skb pointers.
1060  */
1061 
1062 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1063 {
1064 	struct sk_buff **fragp;
1065 	struct sk_buff *frag;
1066 	int offset = skb_headlen(skb);
1067 	int nfrags = skb_shinfo(skb)->nr_frags;
1068 	int i;
1069 	int err;
1070 
1071 	if (skb_cloned(skb) &&
1072 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1073 		return err;
1074 
1075 	i = 0;
1076 	if (offset >= len)
1077 		goto drop_pages;
1078 
1079 	for (; i < nfrags; i++) {
1080 		int end = offset + skb_shinfo(skb)->frags[i].size;
1081 
1082 		if (end < len) {
1083 			offset = end;
1084 			continue;
1085 		}
1086 
1087 		skb_shinfo(skb)->frags[i++].size = len - offset;
1088 
1089 drop_pages:
1090 		skb_shinfo(skb)->nr_frags = i;
1091 
1092 		for (; i < nfrags; i++)
1093 			put_page(skb_shinfo(skb)->frags[i].page);
1094 
1095 		if (skb_has_frags(skb))
1096 			skb_drop_fraglist(skb);
1097 		goto done;
1098 	}
1099 
1100 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1101 	     fragp = &frag->next) {
1102 		int end = offset + frag->len;
1103 
1104 		if (skb_shared(frag)) {
1105 			struct sk_buff *nfrag;
1106 
1107 			nfrag = skb_clone(frag, GFP_ATOMIC);
1108 			if (unlikely(!nfrag))
1109 				return -ENOMEM;
1110 
1111 			nfrag->next = frag->next;
1112 			kfree_skb(frag);
1113 			frag = nfrag;
1114 			*fragp = frag;
1115 		}
1116 
1117 		if (end < len) {
1118 			offset = end;
1119 			continue;
1120 		}
1121 
1122 		if (end > len &&
1123 		    unlikely((err = pskb_trim(frag, len - offset))))
1124 			return err;
1125 
1126 		if (frag->next)
1127 			skb_drop_list(&frag->next);
1128 		break;
1129 	}
1130 
1131 done:
1132 	if (len > skb_headlen(skb)) {
1133 		skb->data_len -= skb->len - len;
1134 		skb->len       = len;
1135 	} else {
1136 		skb->len       = len;
1137 		skb->data_len  = 0;
1138 		skb_set_tail_pointer(skb, len);
1139 	}
1140 
1141 	return 0;
1142 }
1143 EXPORT_SYMBOL(___pskb_trim);
1144 
1145 /**
1146  *	__pskb_pull_tail - advance tail of skb header
1147  *	@skb: buffer to reallocate
1148  *	@delta: number of bytes to advance tail
1149  *
1150  *	The function makes a sense only on a fragmented &sk_buff,
1151  *	it expands header moving its tail forward and copying necessary
1152  *	data from fragmented part.
1153  *
1154  *	&sk_buff MUST have reference count of 1.
1155  *
1156  *	Returns %NULL (and &sk_buff does not change) if pull failed
1157  *	or value of new tail of skb in the case of success.
1158  *
1159  *	All the pointers pointing into skb header may change and must be
1160  *	reloaded after call to this function.
1161  */
1162 
1163 /* Moves tail of skb head forward, copying data from fragmented part,
1164  * when it is necessary.
1165  * 1. It may fail due to malloc failure.
1166  * 2. It may change skb pointers.
1167  *
1168  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1169  */
1170 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1171 {
1172 	/* If skb has not enough free space at tail, get new one
1173 	 * plus 128 bytes for future expansions. If we have enough
1174 	 * room at tail, reallocate without expansion only if skb is cloned.
1175 	 */
1176 	int i, k, eat = (skb->tail + delta) - skb->end;
1177 
1178 	if (eat > 0 || skb_cloned(skb)) {
1179 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1180 				     GFP_ATOMIC))
1181 			return NULL;
1182 	}
1183 
1184 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1185 		BUG();
1186 
1187 	/* Optimization: no fragments, no reasons to preestimate
1188 	 * size of pulled pages. Superb.
1189 	 */
1190 	if (!skb_has_frags(skb))
1191 		goto pull_pages;
1192 
1193 	/* Estimate size of pulled pages. */
1194 	eat = delta;
1195 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1196 		if (skb_shinfo(skb)->frags[i].size >= eat)
1197 			goto pull_pages;
1198 		eat -= skb_shinfo(skb)->frags[i].size;
1199 	}
1200 
1201 	/* If we need update frag list, we are in troubles.
1202 	 * Certainly, it possible to add an offset to skb data,
1203 	 * but taking into account that pulling is expected to
1204 	 * be very rare operation, it is worth to fight against
1205 	 * further bloating skb head and crucify ourselves here instead.
1206 	 * Pure masohism, indeed. 8)8)
1207 	 */
1208 	if (eat) {
1209 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1210 		struct sk_buff *clone = NULL;
1211 		struct sk_buff *insp = NULL;
1212 
1213 		do {
1214 			BUG_ON(!list);
1215 
1216 			if (list->len <= eat) {
1217 				/* Eaten as whole. */
1218 				eat -= list->len;
1219 				list = list->next;
1220 				insp = list;
1221 			} else {
1222 				/* Eaten partially. */
1223 
1224 				if (skb_shared(list)) {
1225 					/* Sucks! We need to fork list. :-( */
1226 					clone = skb_clone(list, GFP_ATOMIC);
1227 					if (!clone)
1228 						return NULL;
1229 					insp = list->next;
1230 					list = clone;
1231 				} else {
1232 					/* This may be pulled without
1233 					 * problems. */
1234 					insp = list;
1235 				}
1236 				if (!pskb_pull(list, eat)) {
1237 					kfree_skb(clone);
1238 					return NULL;
1239 				}
1240 				break;
1241 			}
1242 		} while (eat);
1243 
1244 		/* Free pulled out fragments. */
1245 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1246 			skb_shinfo(skb)->frag_list = list->next;
1247 			kfree_skb(list);
1248 		}
1249 		/* And insert new clone at head. */
1250 		if (clone) {
1251 			clone->next = list;
1252 			skb_shinfo(skb)->frag_list = clone;
1253 		}
1254 	}
1255 	/* Success! Now we may commit changes to skb data. */
1256 
1257 pull_pages:
1258 	eat = delta;
1259 	k = 0;
1260 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1261 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1262 			put_page(skb_shinfo(skb)->frags[i].page);
1263 			eat -= skb_shinfo(skb)->frags[i].size;
1264 		} else {
1265 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1266 			if (eat) {
1267 				skb_shinfo(skb)->frags[k].page_offset += eat;
1268 				skb_shinfo(skb)->frags[k].size -= eat;
1269 				eat = 0;
1270 			}
1271 			k++;
1272 		}
1273 	}
1274 	skb_shinfo(skb)->nr_frags = k;
1275 
1276 	skb->tail     += delta;
1277 	skb->data_len -= delta;
1278 
1279 	return skb_tail_pointer(skb);
1280 }
1281 EXPORT_SYMBOL(__pskb_pull_tail);
1282 
1283 /* Copy some data bits from skb to kernel buffer. */
1284 
1285 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1286 {
1287 	int start = skb_headlen(skb);
1288 	struct sk_buff *frag_iter;
1289 	int i, copy;
1290 
1291 	if (offset > (int)skb->len - len)
1292 		goto fault;
1293 
1294 	/* Copy header. */
1295 	if ((copy = start - offset) > 0) {
1296 		if (copy > len)
1297 			copy = len;
1298 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1299 		if ((len -= copy) == 0)
1300 			return 0;
1301 		offset += copy;
1302 		to     += copy;
1303 	}
1304 
1305 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1306 		int end;
1307 
1308 		WARN_ON(start > offset + len);
1309 
1310 		end = start + skb_shinfo(skb)->frags[i].size;
1311 		if ((copy = end - offset) > 0) {
1312 			u8 *vaddr;
1313 
1314 			if (copy > len)
1315 				copy = len;
1316 
1317 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1318 			memcpy(to,
1319 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1320 			       offset - start, copy);
1321 			kunmap_skb_frag(vaddr);
1322 
1323 			if ((len -= copy) == 0)
1324 				return 0;
1325 			offset += copy;
1326 			to     += copy;
1327 		}
1328 		start = end;
1329 	}
1330 
1331 	skb_walk_frags(skb, frag_iter) {
1332 		int end;
1333 
1334 		WARN_ON(start > offset + len);
1335 
1336 		end = start + frag_iter->len;
1337 		if ((copy = end - offset) > 0) {
1338 			if (copy > len)
1339 				copy = len;
1340 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1341 				goto fault;
1342 			if ((len -= copy) == 0)
1343 				return 0;
1344 			offset += copy;
1345 			to     += copy;
1346 		}
1347 		start = end;
1348 	}
1349 	if (!len)
1350 		return 0;
1351 
1352 fault:
1353 	return -EFAULT;
1354 }
1355 EXPORT_SYMBOL(skb_copy_bits);
1356 
1357 /*
1358  * Callback from splice_to_pipe(), if we need to release some pages
1359  * at the end of the spd in case we error'ed out in filling the pipe.
1360  */
1361 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1362 {
1363 	put_page(spd->pages[i]);
1364 }
1365 
1366 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1367 					  unsigned int *offset,
1368 					  struct sk_buff *skb, struct sock *sk)
1369 {
1370 	struct page *p = sk->sk_sndmsg_page;
1371 	unsigned int off;
1372 
1373 	if (!p) {
1374 new_page:
1375 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1376 		if (!p)
1377 			return NULL;
1378 
1379 		off = sk->sk_sndmsg_off = 0;
1380 		/* hold one ref to this page until it's full */
1381 	} else {
1382 		unsigned int mlen;
1383 
1384 		off = sk->sk_sndmsg_off;
1385 		mlen = PAGE_SIZE - off;
1386 		if (mlen < 64 && mlen < *len) {
1387 			put_page(p);
1388 			goto new_page;
1389 		}
1390 
1391 		*len = min_t(unsigned int, *len, mlen);
1392 	}
1393 
1394 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1395 	sk->sk_sndmsg_off += *len;
1396 	*offset = off;
1397 	get_page(p);
1398 
1399 	return p;
1400 }
1401 
1402 /*
1403  * Fill page/offset/length into spd, if it can hold more pages.
1404  */
1405 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1406 				unsigned int *len, unsigned int offset,
1407 				struct sk_buff *skb, int linear,
1408 				struct sock *sk)
1409 {
1410 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1411 		return 1;
1412 
1413 	if (linear) {
1414 		page = linear_to_page(page, len, &offset, skb, sk);
1415 		if (!page)
1416 			return 1;
1417 	} else
1418 		get_page(page);
1419 
1420 	spd->pages[spd->nr_pages] = page;
1421 	spd->partial[spd->nr_pages].len = *len;
1422 	spd->partial[spd->nr_pages].offset = offset;
1423 	spd->nr_pages++;
1424 
1425 	return 0;
1426 }
1427 
1428 static inline void __segment_seek(struct page **page, unsigned int *poff,
1429 				  unsigned int *plen, unsigned int off)
1430 {
1431 	unsigned long n;
1432 
1433 	*poff += off;
1434 	n = *poff / PAGE_SIZE;
1435 	if (n)
1436 		*page = nth_page(*page, n);
1437 
1438 	*poff = *poff % PAGE_SIZE;
1439 	*plen -= off;
1440 }
1441 
1442 static inline int __splice_segment(struct page *page, unsigned int poff,
1443 				   unsigned int plen, unsigned int *off,
1444 				   unsigned int *len, struct sk_buff *skb,
1445 				   struct splice_pipe_desc *spd, int linear,
1446 				   struct sock *sk)
1447 {
1448 	if (!*len)
1449 		return 1;
1450 
1451 	/* skip this segment if already processed */
1452 	if (*off >= plen) {
1453 		*off -= plen;
1454 		return 0;
1455 	}
1456 
1457 	/* ignore any bits we already processed */
1458 	if (*off) {
1459 		__segment_seek(&page, &poff, &plen, *off);
1460 		*off = 0;
1461 	}
1462 
1463 	do {
1464 		unsigned int flen = min(*len, plen);
1465 
1466 		/* the linear region may spread across several pages  */
1467 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1468 
1469 		if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1470 			return 1;
1471 
1472 		__segment_seek(&page, &poff, &plen, flen);
1473 		*len -= flen;
1474 
1475 	} while (*len && plen);
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Map linear and fragment data from the skb to spd. It reports failure if the
1482  * pipe is full or if we already spliced the requested length.
1483  */
1484 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1485 			     unsigned int *len, struct splice_pipe_desc *spd,
1486 			     struct sock *sk)
1487 {
1488 	int seg;
1489 
1490 	/*
1491 	 * map the linear part
1492 	 */
1493 	if (__splice_segment(virt_to_page(skb->data),
1494 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1495 			     skb_headlen(skb),
1496 			     offset, len, skb, spd, 1, sk))
1497 		return 1;
1498 
1499 	/*
1500 	 * then map the fragments
1501 	 */
1502 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1503 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1504 
1505 		if (__splice_segment(f->page, f->page_offset, f->size,
1506 				     offset, len, skb, spd, 0, sk))
1507 			return 1;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 /*
1514  * Map data from the skb to a pipe. Should handle both the linear part,
1515  * the fragments, and the frag list. It does NOT handle frag lists within
1516  * the frag list, if such a thing exists. We'd probably need to recurse to
1517  * handle that cleanly.
1518  */
1519 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1520 		    struct pipe_inode_info *pipe, unsigned int tlen,
1521 		    unsigned int flags)
1522 {
1523 	struct partial_page partial[PIPE_BUFFERS];
1524 	struct page *pages[PIPE_BUFFERS];
1525 	struct splice_pipe_desc spd = {
1526 		.pages = pages,
1527 		.partial = partial,
1528 		.flags = flags,
1529 		.ops = &sock_pipe_buf_ops,
1530 		.spd_release = sock_spd_release,
1531 	};
1532 	struct sk_buff *frag_iter;
1533 	struct sock *sk = skb->sk;
1534 
1535 	/*
1536 	 * __skb_splice_bits() only fails if the output has no room left,
1537 	 * so no point in going over the frag_list for the error case.
1538 	 */
1539 	if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1540 		goto done;
1541 	else if (!tlen)
1542 		goto done;
1543 
1544 	/*
1545 	 * now see if we have a frag_list to map
1546 	 */
1547 	skb_walk_frags(skb, frag_iter) {
1548 		if (!tlen)
1549 			break;
1550 		if (__skb_splice_bits(frag_iter, &offset, &tlen, &spd, sk))
1551 			break;
1552 	}
1553 
1554 done:
1555 	if (spd.nr_pages) {
1556 		int ret;
1557 
1558 		/*
1559 		 * Drop the socket lock, otherwise we have reverse
1560 		 * locking dependencies between sk_lock and i_mutex
1561 		 * here as compared to sendfile(). We enter here
1562 		 * with the socket lock held, and splice_to_pipe() will
1563 		 * grab the pipe inode lock. For sendfile() emulation,
1564 		 * we call into ->sendpage() with the i_mutex lock held
1565 		 * and networking will grab the socket lock.
1566 		 */
1567 		release_sock(sk);
1568 		ret = splice_to_pipe(pipe, &spd);
1569 		lock_sock(sk);
1570 		return ret;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 /**
1577  *	skb_store_bits - store bits from kernel buffer to skb
1578  *	@skb: destination buffer
1579  *	@offset: offset in destination
1580  *	@from: source buffer
1581  *	@len: number of bytes to copy
1582  *
1583  *	Copy the specified number of bytes from the source buffer to the
1584  *	destination skb.  This function handles all the messy bits of
1585  *	traversing fragment lists and such.
1586  */
1587 
1588 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1589 {
1590 	int start = skb_headlen(skb);
1591 	struct sk_buff *frag_iter;
1592 	int i, copy;
1593 
1594 	if (offset > (int)skb->len - len)
1595 		goto fault;
1596 
1597 	if ((copy = start - offset) > 0) {
1598 		if (copy > len)
1599 			copy = len;
1600 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1601 		if ((len -= copy) == 0)
1602 			return 0;
1603 		offset += copy;
1604 		from += copy;
1605 	}
1606 
1607 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1608 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1609 		int end;
1610 
1611 		WARN_ON(start > offset + len);
1612 
1613 		end = start + frag->size;
1614 		if ((copy = end - offset) > 0) {
1615 			u8 *vaddr;
1616 
1617 			if (copy > len)
1618 				copy = len;
1619 
1620 			vaddr = kmap_skb_frag(frag);
1621 			memcpy(vaddr + frag->page_offset + offset - start,
1622 			       from, copy);
1623 			kunmap_skb_frag(vaddr);
1624 
1625 			if ((len -= copy) == 0)
1626 				return 0;
1627 			offset += copy;
1628 			from += copy;
1629 		}
1630 		start = end;
1631 	}
1632 
1633 	skb_walk_frags(skb, frag_iter) {
1634 		int end;
1635 
1636 		WARN_ON(start > offset + len);
1637 
1638 		end = start + frag_iter->len;
1639 		if ((copy = end - offset) > 0) {
1640 			if (copy > len)
1641 				copy = len;
1642 			if (skb_store_bits(frag_iter, offset - start,
1643 					   from, copy))
1644 				goto fault;
1645 			if ((len -= copy) == 0)
1646 				return 0;
1647 			offset += copy;
1648 			from += copy;
1649 		}
1650 		start = end;
1651 	}
1652 	if (!len)
1653 		return 0;
1654 
1655 fault:
1656 	return -EFAULT;
1657 }
1658 EXPORT_SYMBOL(skb_store_bits);
1659 
1660 /* Checksum skb data. */
1661 
1662 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1663 			  int len, __wsum csum)
1664 {
1665 	int start = skb_headlen(skb);
1666 	int i, copy = start - offset;
1667 	struct sk_buff *frag_iter;
1668 	int pos = 0;
1669 
1670 	/* Checksum header. */
1671 	if (copy > 0) {
1672 		if (copy > len)
1673 			copy = len;
1674 		csum = csum_partial(skb->data + offset, copy, csum);
1675 		if ((len -= copy) == 0)
1676 			return csum;
1677 		offset += copy;
1678 		pos	= copy;
1679 	}
1680 
1681 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1682 		int end;
1683 
1684 		WARN_ON(start > offset + len);
1685 
1686 		end = start + skb_shinfo(skb)->frags[i].size;
1687 		if ((copy = end - offset) > 0) {
1688 			__wsum csum2;
1689 			u8 *vaddr;
1690 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1691 
1692 			if (copy > len)
1693 				copy = len;
1694 			vaddr = kmap_skb_frag(frag);
1695 			csum2 = csum_partial(vaddr + frag->page_offset +
1696 					     offset - start, copy, 0);
1697 			kunmap_skb_frag(vaddr);
1698 			csum = csum_block_add(csum, csum2, pos);
1699 			if (!(len -= copy))
1700 				return csum;
1701 			offset += copy;
1702 			pos    += copy;
1703 		}
1704 		start = end;
1705 	}
1706 
1707 	skb_walk_frags(skb, frag_iter) {
1708 		int end;
1709 
1710 		WARN_ON(start > offset + len);
1711 
1712 		end = start + frag_iter->len;
1713 		if ((copy = end - offset) > 0) {
1714 			__wsum csum2;
1715 			if (copy > len)
1716 				copy = len;
1717 			csum2 = skb_checksum(frag_iter, offset - start,
1718 					     copy, 0);
1719 			csum = csum_block_add(csum, csum2, pos);
1720 			if ((len -= copy) == 0)
1721 				return csum;
1722 			offset += copy;
1723 			pos    += copy;
1724 		}
1725 		start = end;
1726 	}
1727 	BUG_ON(len);
1728 
1729 	return csum;
1730 }
1731 EXPORT_SYMBOL(skb_checksum);
1732 
1733 /* Both of above in one bottle. */
1734 
1735 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1736 				    u8 *to, int len, __wsum csum)
1737 {
1738 	int start = skb_headlen(skb);
1739 	int i, copy = start - offset;
1740 	struct sk_buff *frag_iter;
1741 	int pos = 0;
1742 
1743 	/* Copy header. */
1744 	if (copy > 0) {
1745 		if (copy > len)
1746 			copy = len;
1747 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1748 						 copy, csum);
1749 		if ((len -= copy) == 0)
1750 			return csum;
1751 		offset += copy;
1752 		to     += copy;
1753 		pos	= copy;
1754 	}
1755 
1756 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1757 		int end;
1758 
1759 		WARN_ON(start > offset + len);
1760 
1761 		end = start + skb_shinfo(skb)->frags[i].size;
1762 		if ((copy = end - offset) > 0) {
1763 			__wsum csum2;
1764 			u8 *vaddr;
1765 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1766 
1767 			if (copy > len)
1768 				copy = len;
1769 			vaddr = kmap_skb_frag(frag);
1770 			csum2 = csum_partial_copy_nocheck(vaddr +
1771 							  frag->page_offset +
1772 							  offset - start, to,
1773 							  copy, 0);
1774 			kunmap_skb_frag(vaddr);
1775 			csum = csum_block_add(csum, csum2, pos);
1776 			if (!(len -= copy))
1777 				return csum;
1778 			offset += copy;
1779 			to     += copy;
1780 			pos    += copy;
1781 		}
1782 		start = end;
1783 	}
1784 
1785 	skb_walk_frags(skb, frag_iter) {
1786 		__wsum csum2;
1787 		int end;
1788 
1789 		WARN_ON(start > offset + len);
1790 
1791 		end = start + frag_iter->len;
1792 		if ((copy = end - offset) > 0) {
1793 			if (copy > len)
1794 				copy = len;
1795 			csum2 = skb_copy_and_csum_bits(frag_iter,
1796 						       offset - start,
1797 						       to, copy, 0);
1798 			csum = csum_block_add(csum, csum2, pos);
1799 			if ((len -= copy) == 0)
1800 				return csum;
1801 			offset += copy;
1802 			to     += copy;
1803 			pos    += copy;
1804 		}
1805 		start = end;
1806 	}
1807 	BUG_ON(len);
1808 	return csum;
1809 }
1810 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1811 
1812 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1813 {
1814 	__wsum csum;
1815 	long csstart;
1816 
1817 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1818 		csstart = skb->csum_start - skb_headroom(skb);
1819 	else
1820 		csstart = skb_headlen(skb);
1821 
1822 	BUG_ON(csstart > skb_headlen(skb));
1823 
1824 	skb_copy_from_linear_data(skb, to, csstart);
1825 
1826 	csum = 0;
1827 	if (csstart != skb->len)
1828 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1829 					      skb->len - csstart, 0);
1830 
1831 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1832 		long csstuff = csstart + skb->csum_offset;
1833 
1834 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1835 	}
1836 }
1837 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1838 
1839 /**
1840  *	skb_dequeue - remove from the head of the queue
1841  *	@list: list to dequeue from
1842  *
1843  *	Remove the head of the list. The list lock is taken so the function
1844  *	may be used safely with other locking list functions. The head item is
1845  *	returned or %NULL if the list is empty.
1846  */
1847 
1848 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1849 {
1850 	unsigned long flags;
1851 	struct sk_buff *result;
1852 
1853 	spin_lock_irqsave(&list->lock, flags);
1854 	result = __skb_dequeue(list);
1855 	spin_unlock_irqrestore(&list->lock, flags);
1856 	return result;
1857 }
1858 EXPORT_SYMBOL(skb_dequeue);
1859 
1860 /**
1861  *	skb_dequeue_tail - remove from the tail of the queue
1862  *	@list: list to dequeue from
1863  *
1864  *	Remove the tail of the list. The list lock is taken so the function
1865  *	may be used safely with other locking list functions. The tail item is
1866  *	returned or %NULL if the list is empty.
1867  */
1868 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1869 {
1870 	unsigned long flags;
1871 	struct sk_buff *result;
1872 
1873 	spin_lock_irqsave(&list->lock, flags);
1874 	result = __skb_dequeue_tail(list);
1875 	spin_unlock_irqrestore(&list->lock, flags);
1876 	return result;
1877 }
1878 EXPORT_SYMBOL(skb_dequeue_tail);
1879 
1880 /**
1881  *	skb_queue_purge - empty a list
1882  *	@list: list to empty
1883  *
1884  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1885  *	the list and one reference dropped. This function takes the list
1886  *	lock and is atomic with respect to other list locking functions.
1887  */
1888 void skb_queue_purge(struct sk_buff_head *list)
1889 {
1890 	struct sk_buff *skb;
1891 	while ((skb = skb_dequeue(list)) != NULL)
1892 		kfree_skb(skb);
1893 }
1894 EXPORT_SYMBOL(skb_queue_purge);
1895 
1896 /**
1897  *	skb_queue_head - queue a buffer at the list head
1898  *	@list: list to use
1899  *	@newsk: buffer to queue
1900  *
1901  *	Queue a buffer at the start of the list. This function takes the
1902  *	list lock and can be used safely with other locking &sk_buff functions
1903  *	safely.
1904  *
1905  *	A buffer cannot be placed on two lists at the same time.
1906  */
1907 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1908 {
1909 	unsigned long flags;
1910 
1911 	spin_lock_irqsave(&list->lock, flags);
1912 	__skb_queue_head(list, newsk);
1913 	spin_unlock_irqrestore(&list->lock, flags);
1914 }
1915 EXPORT_SYMBOL(skb_queue_head);
1916 
1917 /**
1918  *	skb_queue_tail - queue a buffer at the list tail
1919  *	@list: list to use
1920  *	@newsk: buffer to queue
1921  *
1922  *	Queue a buffer at the tail of the list. This function takes the
1923  *	list lock and can be used safely with other locking &sk_buff functions
1924  *	safely.
1925  *
1926  *	A buffer cannot be placed on two lists at the same time.
1927  */
1928 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1929 {
1930 	unsigned long flags;
1931 
1932 	spin_lock_irqsave(&list->lock, flags);
1933 	__skb_queue_tail(list, newsk);
1934 	spin_unlock_irqrestore(&list->lock, flags);
1935 }
1936 EXPORT_SYMBOL(skb_queue_tail);
1937 
1938 /**
1939  *	skb_unlink	-	remove a buffer from a list
1940  *	@skb: buffer to remove
1941  *	@list: list to use
1942  *
1943  *	Remove a packet from a list. The list locks are taken and this
1944  *	function is atomic with respect to other list locked calls
1945  *
1946  *	You must know what list the SKB is on.
1947  */
1948 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1949 {
1950 	unsigned long flags;
1951 
1952 	spin_lock_irqsave(&list->lock, flags);
1953 	__skb_unlink(skb, list);
1954 	spin_unlock_irqrestore(&list->lock, flags);
1955 }
1956 EXPORT_SYMBOL(skb_unlink);
1957 
1958 /**
1959  *	skb_append	-	append a buffer
1960  *	@old: buffer to insert after
1961  *	@newsk: buffer to insert
1962  *	@list: list to use
1963  *
1964  *	Place a packet after a given packet in a list. The list locks are taken
1965  *	and this function is atomic with respect to other list locked calls.
1966  *	A buffer cannot be placed on two lists at the same time.
1967  */
1968 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1969 {
1970 	unsigned long flags;
1971 
1972 	spin_lock_irqsave(&list->lock, flags);
1973 	__skb_queue_after(list, old, newsk);
1974 	spin_unlock_irqrestore(&list->lock, flags);
1975 }
1976 EXPORT_SYMBOL(skb_append);
1977 
1978 /**
1979  *	skb_insert	-	insert a buffer
1980  *	@old: buffer to insert before
1981  *	@newsk: buffer to insert
1982  *	@list: list to use
1983  *
1984  *	Place a packet before a given packet in a list. The list locks are
1985  * 	taken and this function is atomic with respect to other list locked
1986  *	calls.
1987  *
1988  *	A buffer cannot be placed on two lists at the same time.
1989  */
1990 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1991 {
1992 	unsigned long flags;
1993 
1994 	spin_lock_irqsave(&list->lock, flags);
1995 	__skb_insert(newsk, old->prev, old, list);
1996 	spin_unlock_irqrestore(&list->lock, flags);
1997 }
1998 EXPORT_SYMBOL(skb_insert);
1999 
2000 static inline void skb_split_inside_header(struct sk_buff *skb,
2001 					   struct sk_buff* skb1,
2002 					   const u32 len, const int pos)
2003 {
2004 	int i;
2005 
2006 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2007 					 pos - len);
2008 	/* And move data appendix as is. */
2009 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2010 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2011 
2012 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2013 	skb_shinfo(skb)->nr_frags  = 0;
2014 	skb1->data_len		   = skb->data_len;
2015 	skb1->len		   += skb1->data_len;
2016 	skb->data_len		   = 0;
2017 	skb->len		   = len;
2018 	skb_set_tail_pointer(skb, len);
2019 }
2020 
2021 static inline void skb_split_no_header(struct sk_buff *skb,
2022 				       struct sk_buff* skb1,
2023 				       const u32 len, int pos)
2024 {
2025 	int i, k = 0;
2026 	const int nfrags = skb_shinfo(skb)->nr_frags;
2027 
2028 	skb_shinfo(skb)->nr_frags = 0;
2029 	skb1->len		  = skb1->data_len = skb->len - len;
2030 	skb->len		  = len;
2031 	skb->data_len		  = len - pos;
2032 
2033 	for (i = 0; i < nfrags; i++) {
2034 		int size = skb_shinfo(skb)->frags[i].size;
2035 
2036 		if (pos + size > len) {
2037 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2038 
2039 			if (pos < len) {
2040 				/* Split frag.
2041 				 * We have two variants in this case:
2042 				 * 1. Move all the frag to the second
2043 				 *    part, if it is possible. F.e.
2044 				 *    this approach is mandatory for TUX,
2045 				 *    where splitting is expensive.
2046 				 * 2. Split is accurately. We make this.
2047 				 */
2048 				get_page(skb_shinfo(skb)->frags[i].page);
2049 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2050 				skb_shinfo(skb1)->frags[0].size -= len - pos;
2051 				skb_shinfo(skb)->frags[i].size	= len - pos;
2052 				skb_shinfo(skb)->nr_frags++;
2053 			}
2054 			k++;
2055 		} else
2056 			skb_shinfo(skb)->nr_frags++;
2057 		pos += size;
2058 	}
2059 	skb_shinfo(skb1)->nr_frags = k;
2060 }
2061 
2062 /**
2063  * skb_split - Split fragmented skb to two parts at length len.
2064  * @skb: the buffer to split
2065  * @skb1: the buffer to receive the second part
2066  * @len: new length for skb
2067  */
2068 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2069 {
2070 	int pos = skb_headlen(skb);
2071 
2072 	if (len < pos)	/* Split line is inside header. */
2073 		skb_split_inside_header(skb, skb1, len, pos);
2074 	else		/* Second chunk has no header, nothing to copy. */
2075 		skb_split_no_header(skb, skb1, len, pos);
2076 }
2077 EXPORT_SYMBOL(skb_split);
2078 
2079 /* Shifting from/to a cloned skb is a no-go.
2080  *
2081  * Caller cannot keep skb_shinfo related pointers past calling here!
2082  */
2083 static int skb_prepare_for_shift(struct sk_buff *skb)
2084 {
2085 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2086 }
2087 
2088 /**
2089  * skb_shift - Shifts paged data partially from skb to another
2090  * @tgt: buffer into which tail data gets added
2091  * @skb: buffer from which the paged data comes from
2092  * @shiftlen: shift up to this many bytes
2093  *
2094  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2095  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2096  * It's up to caller to free skb if everything was shifted.
2097  *
2098  * If @tgt runs out of frags, the whole operation is aborted.
2099  *
2100  * Skb cannot include anything else but paged data while tgt is allowed
2101  * to have non-paged data as well.
2102  *
2103  * TODO: full sized shift could be optimized but that would need
2104  * specialized skb free'er to handle frags without up-to-date nr_frags.
2105  */
2106 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2107 {
2108 	int from, to, merge, todo;
2109 	struct skb_frag_struct *fragfrom, *fragto;
2110 
2111 	BUG_ON(shiftlen > skb->len);
2112 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2113 
2114 	todo = shiftlen;
2115 	from = 0;
2116 	to = skb_shinfo(tgt)->nr_frags;
2117 	fragfrom = &skb_shinfo(skb)->frags[from];
2118 
2119 	/* Actual merge is delayed until the point when we know we can
2120 	 * commit all, so that we don't have to undo partial changes
2121 	 */
2122 	if (!to ||
2123 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2124 		merge = -1;
2125 	} else {
2126 		merge = to - 1;
2127 
2128 		todo -= fragfrom->size;
2129 		if (todo < 0) {
2130 			if (skb_prepare_for_shift(skb) ||
2131 			    skb_prepare_for_shift(tgt))
2132 				return 0;
2133 
2134 			/* All previous frag pointers might be stale! */
2135 			fragfrom = &skb_shinfo(skb)->frags[from];
2136 			fragto = &skb_shinfo(tgt)->frags[merge];
2137 
2138 			fragto->size += shiftlen;
2139 			fragfrom->size -= shiftlen;
2140 			fragfrom->page_offset += shiftlen;
2141 
2142 			goto onlymerged;
2143 		}
2144 
2145 		from++;
2146 	}
2147 
2148 	/* Skip full, not-fitting skb to avoid expensive operations */
2149 	if ((shiftlen == skb->len) &&
2150 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2151 		return 0;
2152 
2153 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2154 		return 0;
2155 
2156 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2157 		if (to == MAX_SKB_FRAGS)
2158 			return 0;
2159 
2160 		fragfrom = &skb_shinfo(skb)->frags[from];
2161 		fragto = &skb_shinfo(tgt)->frags[to];
2162 
2163 		if (todo >= fragfrom->size) {
2164 			*fragto = *fragfrom;
2165 			todo -= fragfrom->size;
2166 			from++;
2167 			to++;
2168 
2169 		} else {
2170 			get_page(fragfrom->page);
2171 			fragto->page = fragfrom->page;
2172 			fragto->page_offset = fragfrom->page_offset;
2173 			fragto->size = todo;
2174 
2175 			fragfrom->page_offset += todo;
2176 			fragfrom->size -= todo;
2177 			todo = 0;
2178 
2179 			to++;
2180 			break;
2181 		}
2182 	}
2183 
2184 	/* Ready to "commit" this state change to tgt */
2185 	skb_shinfo(tgt)->nr_frags = to;
2186 
2187 	if (merge >= 0) {
2188 		fragfrom = &skb_shinfo(skb)->frags[0];
2189 		fragto = &skb_shinfo(tgt)->frags[merge];
2190 
2191 		fragto->size += fragfrom->size;
2192 		put_page(fragfrom->page);
2193 	}
2194 
2195 	/* Reposition in the original skb */
2196 	to = 0;
2197 	while (from < skb_shinfo(skb)->nr_frags)
2198 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2199 	skb_shinfo(skb)->nr_frags = to;
2200 
2201 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2202 
2203 onlymerged:
2204 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2205 	 * the other hand might need it if it needs to be resent
2206 	 */
2207 	tgt->ip_summed = CHECKSUM_PARTIAL;
2208 	skb->ip_summed = CHECKSUM_PARTIAL;
2209 
2210 	/* Yak, is it really working this way? Some helper please? */
2211 	skb->len -= shiftlen;
2212 	skb->data_len -= shiftlen;
2213 	skb->truesize -= shiftlen;
2214 	tgt->len += shiftlen;
2215 	tgt->data_len += shiftlen;
2216 	tgt->truesize += shiftlen;
2217 
2218 	return shiftlen;
2219 }
2220 
2221 /**
2222  * skb_prepare_seq_read - Prepare a sequential read of skb data
2223  * @skb: the buffer to read
2224  * @from: lower offset of data to be read
2225  * @to: upper offset of data to be read
2226  * @st: state variable
2227  *
2228  * Initializes the specified state variable. Must be called before
2229  * invoking skb_seq_read() for the first time.
2230  */
2231 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2232 			  unsigned int to, struct skb_seq_state *st)
2233 {
2234 	st->lower_offset = from;
2235 	st->upper_offset = to;
2236 	st->root_skb = st->cur_skb = skb;
2237 	st->frag_idx = st->stepped_offset = 0;
2238 	st->frag_data = NULL;
2239 }
2240 EXPORT_SYMBOL(skb_prepare_seq_read);
2241 
2242 /**
2243  * skb_seq_read - Sequentially read skb data
2244  * @consumed: number of bytes consumed by the caller so far
2245  * @data: destination pointer for data to be returned
2246  * @st: state variable
2247  *
2248  * Reads a block of skb data at &consumed relative to the
2249  * lower offset specified to skb_prepare_seq_read(). Assigns
2250  * the head of the data block to &data and returns the length
2251  * of the block or 0 if the end of the skb data or the upper
2252  * offset has been reached.
2253  *
2254  * The caller is not required to consume all of the data
2255  * returned, i.e. &consumed is typically set to the number
2256  * of bytes already consumed and the next call to
2257  * skb_seq_read() will return the remaining part of the block.
2258  *
2259  * Note 1: The size of each block of data returned can be arbitary,
2260  *       this limitation is the cost for zerocopy seqeuental
2261  *       reads of potentially non linear data.
2262  *
2263  * Note 2: Fragment lists within fragments are not implemented
2264  *       at the moment, state->root_skb could be replaced with
2265  *       a stack for this purpose.
2266  */
2267 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2268 			  struct skb_seq_state *st)
2269 {
2270 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2271 	skb_frag_t *frag;
2272 
2273 	if (unlikely(abs_offset >= st->upper_offset))
2274 		return 0;
2275 
2276 next_skb:
2277 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2278 
2279 	if (abs_offset < block_limit && !st->frag_data) {
2280 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2281 		return block_limit - abs_offset;
2282 	}
2283 
2284 	if (st->frag_idx == 0 && !st->frag_data)
2285 		st->stepped_offset += skb_headlen(st->cur_skb);
2286 
2287 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2288 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2289 		block_limit = frag->size + st->stepped_offset;
2290 
2291 		if (abs_offset < block_limit) {
2292 			if (!st->frag_data)
2293 				st->frag_data = kmap_skb_frag(frag);
2294 
2295 			*data = (u8 *) st->frag_data + frag->page_offset +
2296 				(abs_offset - st->stepped_offset);
2297 
2298 			return block_limit - abs_offset;
2299 		}
2300 
2301 		if (st->frag_data) {
2302 			kunmap_skb_frag(st->frag_data);
2303 			st->frag_data = NULL;
2304 		}
2305 
2306 		st->frag_idx++;
2307 		st->stepped_offset += frag->size;
2308 	}
2309 
2310 	if (st->frag_data) {
2311 		kunmap_skb_frag(st->frag_data);
2312 		st->frag_data = NULL;
2313 	}
2314 
2315 	if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) {
2316 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2317 		st->frag_idx = 0;
2318 		goto next_skb;
2319 	} else if (st->cur_skb->next) {
2320 		st->cur_skb = st->cur_skb->next;
2321 		st->frag_idx = 0;
2322 		goto next_skb;
2323 	}
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(skb_seq_read);
2328 
2329 /**
2330  * skb_abort_seq_read - Abort a sequential read of skb data
2331  * @st: state variable
2332  *
2333  * Must be called if skb_seq_read() was not called until it
2334  * returned 0.
2335  */
2336 void skb_abort_seq_read(struct skb_seq_state *st)
2337 {
2338 	if (st->frag_data)
2339 		kunmap_skb_frag(st->frag_data);
2340 }
2341 EXPORT_SYMBOL(skb_abort_seq_read);
2342 
2343 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2344 
2345 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2346 					  struct ts_config *conf,
2347 					  struct ts_state *state)
2348 {
2349 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2350 }
2351 
2352 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2353 {
2354 	skb_abort_seq_read(TS_SKB_CB(state));
2355 }
2356 
2357 /**
2358  * skb_find_text - Find a text pattern in skb data
2359  * @skb: the buffer to look in
2360  * @from: search offset
2361  * @to: search limit
2362  * @config: textsearch configuration
2363  * @state: uninitialized textsearch state variable
2364  *
2365  * Finds a pattern in the skb data according to the specified
2366  * textsearch configuration. Use textsearch_next() to retrieve
2367  * subsequent occurrences of the pattern. Returns the offset
2368  * to the first occurrence or UINT_MAX if no match was found.
2369  */
2370 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2371 			   unsigned int to, struct ts_config *config,
2372 			   struct ts_state *state)
2373 {
2374 	unsigned int ret;
2375 
2376 	config->get_next_block = skb_ts_get_next_block;
2377 	config->finish = skb_ts_finish;
2378 
2379 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2380 
2381 	ret = textsearch_find(config, state);
2382 	return (ret <= to - from ? ret : UINT_MAX);
2383 }
2384 EXPORT_SYMBOL(skb_find_text);
2385 
2386 /**
2387  * skb_append_datato_frags: - append the user data to a skb
2388  * @sk: sock  structure
2389  * @skb: skb structure to be appened with user data.
2390  * @getfrag: call back function to be used for getting the user data
2391  * @from: pointer to user message iov
2392  * @length: length of the iov message
2393  *
2394  * Description: This procedure append the user data in the fragment part
2395  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2396  */
2397 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2398 			int (*getfrag)(void *from, char *to, int offset,
2399 					int len, int odd, struct sk_buff *skb),
2400 			void *from, int length)
2401 {
2402 	int frg_cnt = 0;
2403 	skb_frag_t *frag = NULL;
2404 	struct page *page = NULL;
2405 	int copy, left;
2406 	int offset = 0;
2407 	int ret;
2408 
2409 	do {
2410 		/* Return error if we don't have space for new frag */
2411 		frg_cnt = skb_shinfo(skb)->nr_frags;
2412 		if (frg_cnt >= MAX_SKB_FRAGS)
2413 			return -EFAULT;
2414 
2415 		/* allocate a new page for next frag */
2416 		page = alloc_pages(sk->sk_allocation, 0);
2417 
2418 		/* If alloc_page fails just return failure and caller will
2419 		 * free previous allocated pages by doing kfree_skb()
2420 		 */
2421 		if (page == NULL)
2422 			return -ENOMEM;
2423 
2424 		/* initialize the next frag */
2425 		sk->sk_sndmsg_page = page;
2426 		sk->sk_sndmsg_off = 0;
2427 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2428 		skb->truesize += PAGE_SIZE;
2429 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2430 
2431 		/* get the new initialized frag */
2432 		frg_cnt = skb_shinfo(skb)->nr_frags;
2433 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2434 
2435 		/* copy the user data to page */
2436 		left = PAGE_SIZE - frag->page_offset;
2437 		copy = (length > left)? left : length;
2438 
2439 		ret = getfrag(from, (page_address(frag->page) +
2440 			    frag->page_offset + frag->size),
2441 			    offset, copy, 0, skb);
2442 		if (ret < 0)
2443 			return -EFAULT;
2444 
2445 		/* copy was successful so update the size parameters */
2446 		sk->sk_sndmsg_off += copy;
2447 		frag->size += copy;
2448 		skb->len += copy;
2449 		skb->data_len += copy;
2450 		offset += copy;
2451 		length -= copy;
2452 
2453 	} while (length > 0);
2454 
2455 	return 0;
2456 }
2457 EXPORT_SYMBOL(skb_append_datato_frags);
2458 
2459 /**
2460  *	skb_pull_rcsum - pull skb and update receive checksum
2461  *	@skb: buffer to update
2462  *	@len: length of data pulled
2463  *
2464  *	This function performs an skb_pull on the packet and updates
2465  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2466  *	receive path processing instead of skb_pull unless you know
2467  *	that the checksum difference is zero (e.g., a valid IP header)
2468  *	or you are setting ip_summed to CHECKSUM_NONE.
2469  */
2470 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2471 {
2472 	BUG_ON(len > skb->len);
2473 	skb->len -= len;
2474 	BUG_ON(skb->len < skb->data_len);
2475 	skb_postpull_rcsum(skb, skb->data, len);
2476 	return skb->data += len;
2477 }
2478 
2479 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2480 
2481 /**
2482  *	skb_segment - Perform protocol segmentation on skb.
2483  *	@skb: buffer to segment
2484  *	@features: features for the output path (see dev->features)
2485  *
2486  *	This function performs segmentation on the given skb.  It returns
2487  *	a pointer to the first in a list of new skbs for the segments.
2488  *	In case of error it returns ERR_PTR(err).
2489  */
2490 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2491 {
2492 	struct sk_buff *segs = NULL;
2493 	struct sk_buff *tail = NULL;
2494 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2495 	unsigned int mss = skb_shinfo(skb)->gso_size;
2496 	unsigned int doffset = skb->data - skb_mac_header(skb);
2497 	unsigned int offset = doffset;
2498 	unsigned int headroom;
2499 	unsigned int len;
2500 	int sg = features & NETIF_F_SG;
2501 	int nfrags = skb_shinfo(skb)->nr_frags;
2502 	int err = -ENOMEM;
2503 	int i = 0;
2504 	int pos;
2505 
2506 	__skb_push(skb, doffset);
2507 	headroom = skb_headroom(skb);
2508 	pos = skb_headlen(skb);
2509 
2510 	do {
2511 		struct sk_buff *nskb;
2512 		skb_frag_t *frag;
2513 		int hsize;
2514 		int size;
2515 
2516 		len = skb->len - offset;
2517 		if (len > mss)
2518 			len = mss;
2519 
2520 		hsize = skb_headlen(skb) - offset;
2521 		if (hsize < 0)
2522 			hsize = 0;
2523 		if (hsize > len || !sg)
2524 			hsize = len;
2525 
2526 		if (!hsize && i >= nfrags) {
2527 			BUG_ON(fskb->len != len);
2528 
2529 			pos += len;
2530 			nskb = skb_clone(fskb, GFP_ATOMIC);
2531 			fskb = fskb->next;
2532 
2533 			if (unlikely(!nskb))
2534 				goto err;
2535 
2536 			hsize = skb_end_pointer(nskb) - nskb->head;
2537 			if (skb_cow_head(nskb, doffset + headroom)) {
2538 				kfree_skb(nskb);
2539 				goto err;
2540 			}
2541 
2542 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2543 					  hsize;
2544 			skb_release_head_state(nskb);
2545 			__skb_push(nskb, doffset);
2546 		} else {
2547 			nskb = alloc_skb(hsize + doffset + headroom,
2548 					 GFP_ATOMIC);
2549 
2550 			if (unlikely(!nskb))
2551 				goto err;
2552 
2553 			skb_reserve(nskb, headroom);
2554 			__skb_put(nskb, doffset);
2555 		}
2556 
2557 		if (segs)
2558 			tail->next = nskb;
2559 		else
2560 			segs = nskb;
2561 		tail = nskb;
2562 
2563 		__copy_skb_header(nskb, skb);
2564 		nskb->mac_len = skb->mac_len;
2565 
2566 		skb_reset_mac_header(nskb);
2567 		skb_set_network_header(nskb, skb->mac_len);
2568 		nskb->transport_header = (nskb->network_header +
2569 					  skb_network_header_len(skb));
2570 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2571 
2572 		if (fskb != skb_shinfo(skb)->frag_list)
2573 			continue;
2574 
2575 		if (!sg) {
2576 			nskb->ip_summed = CHECKSUM_NONE;
2577 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2578 							    skb_put(nskb, len),
2579 							    len, 0);
2580 			continue;
2581 		}
2582 
2583 		frag = skb_shinfo(nskb)->frags;
2584 
2585 		skb_copy_from_linear_data_offset(skb, offset,
2586 						 skb_put(nskb, hsize), hsize);
2587 
2588 		while (pos < offset + len && i < nfrags) {
2589 			*frag = skb_shinfo(skb)->frags[i];
2590 			get_page(frag->page);
2591 			size = frag->size;
2592 
2593 			if (pos < offset) {
2594 				frag->page_offset += offset - pos;
2595 				frag->size -= offset - pos;
2596 			}
2597 
2598 			skb_shinfo(nskb)->nr_frags++;
2599 
2600 			if (pos + size <= offset + len) {
2601 				i++;
2602 				pos += size;
2603 			} else {
2604 				frag->size -= pos + size - (offset + len);
2605 				goto skip_fraglist;
2606 			}
2607 
2608 			frag++;
2609 		}
2610 
2611 		if (pos < offset + len) {
2612 			struct sk_buff *fskb2 = fskb;
2613 
2614 			BUG_ON(pos + fskb->len != offset + len);
2615 
2616 			pos += fskb->len;
2617 			fskb = fskb->next;
2618 
2619 			if (fskb2->next) {
2620 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2621 				if (!fskb2)
2622 					goto err;
2623 			} else
2624 				skb_get(fskb2);
2625 
2626 			SKB_FRAG_ASSERT(nskb);
2627 			skb_shinfo(nskb)->frag_list = fskb2;
2628 		}
2629 
2630 skip_fraglist:
2631 		nskb->data_len = len - hsize;
2632 		nskb->len += nskb->data_len;
2633 		nskb->truesize += nskb->data_len;
2634 	} while ((offset += len) < skb->len);
2635 
2636 	return segs;
2637 
2638 err:
2639 	while ((skb = segs)) {
2640 		segs = skb->next;
2641 		kfree_skb(skb);
2642 	}
2643 	return ERR_PTR(err);
2644 }
2645 EXPORT_SYMBOL_GPL(skb_segment);
2646 
2647 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2648 {
2649 	struct sk_buff *p = *head;
2650 	struct sk_buff *nskb;
2651 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2652 	struct skb_shared_info *pinfo = skb_shinfo(p);
2653 	unsigned int headroom;
2654 	unsigned int len = skb_gro_len(skb);
2655 	unsigned int offset = skb_gro_offset(skb);
2656 	unsigned int headlen = skb_headlen(skb);
2657 
2658 	if (p->len + len >= 65536)
2659 		return -E2BIG;
2660 
2661 	if (pinfo->frag_list)
2662 		goto merge;
2663 	else if (headlen <= offset) {
2664 		skb_frag_t *frag;
2665 		skb_frag_t *frag2;
2666 		int i = skbinfo->nr_frags;
2667 		int nr_frags = pinfo->nr_frags + i;
2668 
2669 		offset -= headlen;
2670 
2671 		if (nr_frags > MAX_SKB_FRAGS)
2672 			return -E2BIG;
2673 
2674 		pinfo->nr_frags = nr_frags;
2675 		skbinfo->nr_frags = 0;
2676 
2677 		frag = pinfo->frags + nr_frags;
2678 		frag2 = skbinfo->frags + i;
2679 		do {
2680 			*--frag = *--frag2;
2681 		} while (--i);
2682 
2683 		frag->page_offset += offset;
2684 		frag->size -= offset;
2685 
2686 		skb->truesize -= skb->data_len;
2687 		skb->len -= skb->data_len;
2688 		skb->data_len = 0;
2689 
2690 		NAPI_GRO_CB(skb)->free = 1;
2691 		goto done;
2692 	}
2693 
2694 	headroom = skb_headroom(p);
2695 	nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2696 	if (unlikely(!nskb))
2697 		return -ENOMEM;
2698 
2699 	__copy_skb_header(nskb, p);
2700 	nskb->mac_len = p->mac_len;
2701 
2702 	skb_reserve(nskb, headroom);
2703 	__skb_put(nskb, skb_gro_offset(p));
2704 
2705 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2706 	skb_set_network_header(nskb, skb_network_offset(p));
2707 	skb_set_transport_header(nskb, skb_transport_offset(p));
2708 
2709 	__skb_pull(p, skb_gro_offset(p));
2710 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2711 	       p->data - skb_mac_header(p));
2712 
2713 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2714 	skb_shinfo(nskb)->frag_list = p;
2715 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2716 	skb_header_release(p);
2717 	nskb->prev = p;
2718 
2719 	nskb->data_len += p->len;
2720 	nskb->truesize += p->len;
2721 	nskb->len += p->len;
2722 
2723 	*head = nskb;
2724 	nskb->next = p->next;
2725 	p->next = NULL;
2726 
2727 	p = nskb;
2728 
2729 merge:
2730 	if (offset > headlen) {
2731 		skbinfo->frags[0].page_offset += offset - headlen;
2732 		skbinfo->frags[0].size -= offset - headlen;
2733 		offset = headlen;
2734 	}
2735 
2736 	__skb_pull(skb, offset);
2737 
2738 	p->prev->next = skb;
2739 	p->prev = skb;
2740 	skb_header_release(skb);
2741 
2742 done:
2743 	NAPI_GRO_CB(p)->count++;
2744 	p->data_len += len;
2745 	p->truesize += len;
2746 	p->len += len;
2747 
2748 	NAPI_GRO_CB(skb)->same_flow = 1;
2749 	return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(skb_gro_receive);
2752 
2753 void __init skb_init(void)
2754 {
2755 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2756 					      sizeof(struct sk_buff),
2757 					      0,
2758 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2759 					      NULL);
2760 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2761 						(2*sizeof(struct sk_buff)) +
2762 						sizeof(atomic_t),
2763 						0,
2764 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2765 						NULL);
2766 }
2767 
2768 /**
2769  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2770  *	@skb: Socket buffer containing the buffers to be mapped
2771  *	@sg: The scatter-gather list to map into
2772  *	@offset: The offset into the buffer's contents to start mapping
2773  *	@len: Length of buffer space to be mapped
2774  *
2775  *	Fill the specified scatter-gather list with mappings/pointers into a
2776  *	region of the buffer space attached to a socket buffer.
2777  */
2778 static int
2779 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2780 {
2781 	int start = skb_headlen(skb);
2782 	int i, copy = start - offset;
2783 	struct sk_buff *frag_iter;
2784 	int elt = 0;
2785 
2786 	if (copy > 0) {
2787 		if (copy > len)
2788 			copy = len;
2789 		sg_set_buf(sg, skb->data + offset, copy);
2790 		elt++;
2791 		if ((len -= copy) == 0)
2792 			return elt;
2793 		offset += copy;
2794 	}
2795 
2796 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2797 		int end;
2798 
2799 		WARN_ON(start > offset + len);
2800 
2801 		end = start + skb_shinfo(skb)->frags[i].size;
2802 		if ((copy = end - offset) > 0) {
2803 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2804 
2805 			if (copy > len)
2806 				copy = len;
2807 			sg_set_page(&sg[elt], frag->page, copy,
2808 					frag->page_offset+offset-start);
2809 			elt++;
2810 			if (!(len -= copy))
2811 				return elt;
2812 			offset += copy;
2813 		}
2814 		start = end;
2815 	}
2816 
2817 	skb_walk_frags(skb, frag_iter) {
2818 		int end;
2819 
2820 		WARN_ON(start > offset + len);
2821 
2822 		end = start + frag_iter->len;
2823 		if ((copy = end - offset) > 0) {
2824 			if (copy > len)
2825 				copy = len;
2826 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2827 					      copy);
2828 			if ((len -= copy) == 0)
2829 				return elt;
2830 			offset += copy;
2831 		}
2832 		start = end;
2833 	}
2834 	BUG_ON(len);
2835 	return elt;
2836 }
2837 
2838 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2839 {
2840 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2841 
2842 	sg_mark_end(&sg[nsg - 1]);
2843 
2844 	return nsg;
2845 }
2846 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2847 
2848 /**
2849  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2850  *	@skb: The socket buffer to check.
2851  *	@tailbits: Amount of trailing space to be added
2852  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2853  *
2854  *	Make sure that the data buffers attached to a socket buffer are
2855  *	writable. If they are not, private copies are made of the data buffers
2856  *	and the socket buffer is set to use these instead.
2857  *
2858  *	If @tailbits is given, make sure that there is space to write @tailbits
2859  *	bytes of data beyond current end of socket buffer.  @trailer will be
2860  *	set to point to the skb in which this space begins.
2861  *
2862  *	The number of scatterlist elements required to completely map the
2863  *	COW'd and extended socket buffer will be returned.
2864  */
2865 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2866 {
2867 	int copyflag;
2868 	int elt;
2869 	struct sk_buff *skb1, **skb_p;
2870 
2871 	/* If skb is cloned or its head is paged, reallocate
2872 	 * head pulling out all the pages (pages are considered not writable
2873 	 * at the moment even if they are anonymous).
2874 	 */
2875 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2876 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2877 		return -ENOMEM;
2878 
2879 	/* Easy case. Most of packets will go this way. */
2880 	if (!skb_has_frags(skb)) {
2881 		/* A little of trouble, not enough of space for trailer.
2882 		 * This should not happen, when stack is tuned to generate
2883 		 * good frames. OK, on miss we reallocate and reserve even more
2884 		 * space, 128 bytes is fair. */
2885 
2886 		if (skb_tailroom(skb) < tailbits &&
2887 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2888 			return -ENOMEM;
2889 
2890 		/* Voila! */
2891 		*trailer = skb;
2892 		return 1;
2893 	}
2894 
2895 	/* Misery. We are in troubles, going to mincer fragments... */
2896 
2897 	elt = 1;
2898 	skb_p = &skb_shinfo(skb)->frag_list;
2899 	copyflag = 0;
2900 
2901 	while ((skb1 = *skb_p) != NULL) {
2902 		int ntail = 0;
2903 
2904 		/* The fragment is partially pulled by someone,
2905 		 * this can happen on input. Copy it and everything
2906 		 * after it. */
2907 
2908 		if (skb_shared(skb1))
2909 			copyflag = 1;
2910 
2911 		/* If the skb is the last, worry about trailer. */
2912 
2913 		if (skb1->next == NULL && tailbits) {
2914 			if (skb_shinfo(skb1)->nr_frags ||
2915 			    skb_has_frags(skb1) ||
2916 			    skb_tailroom(skb1) < tailbits)
2917 				ntail = tailbits + 128;
2918 		}
2919 
2920 		if (copyflag ||
2921 		    skb_cloned(skb1) ||
2922 		    ntail ||
2923 		    skb_shinfo(skb1)->nr_frags ||
2924 		    skb_has_frags(skb1)) {
2925 			struct sk_buff *skb2;
2926 
2927 			/* Fuck, we are miserable poor guys... */
2928 			if (ntail == 0)
2929 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2930 			else
2931 				skb2 = skb_copy_expand(skb1,
2932 						       skb_headroom(skb1),
2933 						       ntail,
2934 						       GFP_ATOMIC);
2935 			if (unlikely(skb2 == NULL))
2936 				return -ENOMEM;
2937 
2938 			if (skb1->sk)
2939 				skb_set_owner_w(skb2, skb1->sk);
2940 
2941 			/* Looking around. Are we still alive?
2942 			 * OK, link new skb, drop old one */
2943 
2944 			skb2->next = skb1->next;
2945 			*skb_p = skb2;
2946 			kfree_skb(skb1);
2947 			skb1 = skb2;
2948 		}
2949 		elt++;
2950 		*trailer = skb1;
2951 		skb_p = &skb1->next;
2952 	}
2953 
2954 	return elt;
2955 }
2956 EXPORT_SYMBOL_GPL(skb_cow_data);
2957 
2958 void skb_tstamp_tx(struct sk_buff *orig_skb,
2959 		struct skb_shared_hwtstamps *hwtstamps)
2960 {
2961 	struct sock *sk = orig_skb->sk;
2962 	struct sock_exterr_skb *serr;
2963 	struct sk_buff *skb;
2964 	int err;
2965 
2966 	if (!sk)
2967 		return;
2968 
2969 	skb = skb_clone(orig_skb, GFP_ATOMIC);
2970 	if (!skb)
2971 		return;
2972 
2973 	if (hwtstamps) {
2974 		*skb_hwtstamps(skb) =
2975 			*hwtstamps;
2976 	} else {
2977 		/*
2978 		 * no hardware time stamps available,
2979 		 * so keep the skb_shared_tx and only
2980 		 * store software time stamp
2981 		 */
2982 		skb->tstamp = ktime_get_real();
2983 	}
2984 
2985 	serr = SKB_EXT_ERR(skb);
2986 	memset(serr, 0, sizeof(*serr));
2987 	serr->ee.ee_errno = ENOMSG;
2988 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
2989 	err = sock_queue_err_skb(sk, skb);
2990 	if (err)
2991 		kfree_skb(skb);
2992 }
2993 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
2994 
2995 
2996 /**
2997  * skb_partial_csum_set - set up and verify partial csum values for packet
2998  * @skb: the skb to set
2999  * @start: the number of bytes after skb->data to start checksumming.
3000  * @off: the offset from start to place the checksum.
3001  *
3002  * For untrusted partially-checksummed packets, we need to make sure the values
3003  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3004  *
3005  * This function checks and sets those values and skb->ip_summed: if this
3006  * returns false you should drop the packet.
3007  */
3008 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3009 {
3010 	if (unlikely(start > skb_headlen(skb)) ||
3011 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3012 		if (net_ratelimit())
3013 			printk(KERN_WARNING
3014 			       "bad partial csum: csum=%u/%u len=%u\n",
3015 			       start, off, skb_headlen(skb));
3016 		return false;
3017 	}
3018 	skb->ip_summed = CHECKSUM_PARTIAL;
3019 	skb->csum_start = skb_headroom(skb) + start;
3020 	skb->csum_offset = off;
3021 	return true;
3022 }
3023 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3024 
3025 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3026 {
3027 	if (net_ratelimit())
3028 		pr_warning("%s: received packets cannot be forwarded"
3029 			   " while LRO is enabled\n", skb->dev->name);
3030 }
3031 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3032