xref: /linux/net/core/skbuff.c (revision e0fcfb086fbbb6233de1062d4b2f05e9afedab3b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 
72 #include <linux/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
75 #include <linux/capability.h>
76 #include <linux/user_namespace.h>
77 #include <linux/indirect_call_wrapper.h>
78 
79 #include "datagram.h"
80 
81 struct kmem_cache *skbuff_head_cache __ro_after_init;
82 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
83 #ifdef CONFIG_SKB_EXTENSIONS
84 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
85 #endif
86 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
87 EXPORT_SYMBOL(sysctl_max_skb_frags);
88 
89 /**
90  *	skb_panic - private function for out-of-line support
91  *	@skb:	buffer
92  *	@sz:	size
93  *	@addr:	address
94  *	@msg:	skb_over_panic or skb_under_panic
95  *
96  *	Out-of-line support for skb_put() and skb_push().
97  *	Called via the wrapper skb_over_panic() or skb_under_panic().
98  *	Keep out of line to prevent kernel bloat.
99  *	__builtin_return_address is not used because it is not always reliable.
100  */
101 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
102 		      const char msg[])
103 {
104 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
105 		 msg, addr, skb->len, sz, skb->head, skb->data,
106 		 (unsigned long)skb->tail, (unsigned long)skb->end,
107 		 skb->dev ? skb->dev->name : "<NULL>");
108 	BUG();
109 }
110 
111 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
112 {
113 	skb_panic(skb, sz, addr, __func__);
114 }
115 
116 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 /*
122  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
123  * the caller if emergency pfmemalloc reserves are being used. If it is and
124  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
125  * may be used. Otherwise, the packet data may be discarded until enough
126  * memory is free
127  */
128 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
129 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
130 
131 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
132 			       unsigned long ip, bool *pfmemalloc)
133 {
134 	void *obj;
135 	bool ret_pfmemalloc = false;
136 
137 	/*
138 	 * Try a regular allocation, when that fails and we're not entitled
139 	 * to the reserves, fail.
140 	 */
141 	obj = kmalloc_node_track_caller(size,
142 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
143 					node);
144 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
145 		goto out;
146 
147 	/* Try again but now we are using pfmemalloc reserves */
148 	ret_pfmemalloc = true;
149 	obj = kmalloc_node_track_caller(size, flags, node);
150 
151 out:
152 	if (pfmemalloc)
153 		*pfmemalloc = ret_pfmemalloc;
154 
155 	return obj;
156 }
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
169  *		instead of head cache and allocate a cloned (child) skb.
170  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
171  *		allocations in case the data is required for writeback
172  *	@node: numa node to allocate memory on
173  *
174  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
175  *	tail room of at least size bytes. The object has a reference count
176  *	of one. The return is the buffer. On a failure the return is %NULL.
177  *
178  *	Buffers may only be allocated from interrupts using a @gfp_mask of
179  *	%GFP_ATOMIC.
180  */
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 			    int flags, int node)
183 {
184 	struct kmem_cache *cache;
185 	struct skb_shared_info *shinfo;
186 	struct sk_buff *skb;
187 	u8 *data;
188 	bool pfmemalloc;
189 
190 	cache = (flags & SKB_ALLOC_FCLONE)
191 		? skbuff_fclone_cache : skbuff_head_cache;
192 
193 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
194 		gfp_mask |= __GFP_MEMALLOC;
195 
196 	/* Get the HEAD */
197 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
198 	if (!skb)
199 		goto out;
200 	prefetchw(skb);
201 
202 	/* We do our best to align skb_shared_info on a separate cache
203 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
204 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
205 	 * Both skb->head and skb_shared_info are cache line aligned.
206 	 */
207 	size = SKB_DATA_ALIGN(size);
208 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
209 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
210 	if (!data)
211 		goto nodata;
212 	/* kmalloc(size) might give us more room than requested.
213 	 * Put skb_shared_info exactly at the end of allocated zone,
214 	 * to allow max possible filling before reallocation.
215 	 */
216 	size = SKB_WITH_OVERHEAD(ksize(data));
217 	prefetchw(data + size);
218 
219 	/*
220 	 * Only clear those fields we need to clear, not those that we will
221 	 * actually initialise below. Hence, don't put any more fields after
222 	 * the tail pointer in struct sk_buff!
223 	 */
224 	memset(skb, 0, offsetof(struct sk_buff, tail));
225 	/* Account for allocated memory : skb + skb->head */
226 	skb->truesize = SKB_TRUESIZE(size);
227 	skb->pfmemalloc = pfmemalloc;
228 	refcount_set(&skb->users, 1);
229 	skb->head = data;
230 	skb->data = data;
231 	skb_reset_tail_pointer(skb);
232 	skb->end = skb->tail + size;
233 	skb->mac_header = (typeof(skb->mac_header))~0U;
234 	skb->transport_header = (typeof(skb->transport_header))~0U;
235 
236 	/* make sure we initialize shinfo sequentially */
237 	shinfo = skb_shinfo(skb);
238 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
239 	atomic_set(&shinfo->dataref, 1);
240 
241 	if (flags & SKB_ALLOC_FCLONE) {
242 		struct sk_buff_fclones *fclones;
243 
244 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
245 
246 		skb->fclone = SKB_FCLONE_ORIG;
247 		refcount_set(&fclones->fclone_ref, 1);
248 
249 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
250 	}
251 out:
252 	return skb;
253 nodata:
254 	kmem_cache_free(cache, skb);
255 	skb = NULL;
256 	goto out;
257 }
258 EXPORT_SYMBOL(__alloc_skb);
259 
260 /* Caller must provide SKB that is memset cleared */
261 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
262 					  void *data, unsigned int frag_size)
263 {
264 	struct skb_shared_info *shinfo;
265 	unsigned int size = frag_size ? : ksize(data);
266 
267 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
268 
269 	/* Assumes caller memset cleared SKB */
270 	skb->truesize = SKB_TRUESIZE(size);
271 	refcount_set(&skb->users, 1);
272 	skb->head = data;
273 	skb->data = data;
274 	skb_reset_tail_pointer(skb);
275 	skb->end = skb->tail + size;
276 	skb->mac_header = (typeof(skb->mac_header))~0U;
277 	skb->transport_header = (typeof(skb->transport_header))~0U;
278 
279 	/* make sure we initialize shinfo sequentially */
280 	shinfo = skb_shinfo(skb);
281 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 	atomic_set(&shinfo->dataref, 1);
283 
284 	return skb;
285 }
286 
287 /**
288  * __build_skb - build a network buffer
289  * @data: data buffer provided by caller
290  * @frag_size: size of data, or 0 if head was kmalloced
291  *
292  * Allocate a new &sk_buff. Caller provides space holding head and
293  * skb_shared_info. @data must have been allocated by kmalloc() only if
294  * @frag_size is 0, otherwise data should come from the page allocator
295  *  or vmalloc()
296  * The return is the new skb buffer.
297  * On a failure the return is %NULL, and @data is not freed.
298  * Notes :
299  *  Before IO, driver allocates only data buffer where NIC put incoming frame
300  *  Driver should add room at head (NET_SKB_PAD) and
301  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
302  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
303  *  before giving packet to stack.
304  *  RX rings only contains data buffers, not full skbs.
305  */
306 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
307 {
308 	struct sk_buff *skb;
309 
310 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 	if (unlikely(!skb))
312 		return NULL;
313 
314 	memset(skb, 0, offsetof(struct sk_buff, tail));
315 
316 	return __build_skb_around(skb, data, frag_size);
317 }
318 
319 /* build_skb() is wrapper over __build_skb(), that specifically
320  * takes care of skb->head and skb->pfmemalloc
321  * This means that if @frag_size is not zero, then @data must be backed
322  * by a page fragment, not kmalloc() or vmalloc()
323  */
324 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __build_skb(data, frag_size);
327 
328 	if (skb && frag_size) {
329 		skb->head_frag = 1;
330 		if (page_is_pfmemalloc(virt_to_head_page(data)))
331 			skb->pfmemalloc = 1;
332 	}
333 	return skb;
334 }
335 EXPORT_SYMBOL(build_skb);
336 
337 /**
338  * build_skb_around - build a network buffer around provided skb
339  * @skb: sk_buff provide by caller, must be memset cleared
340  * @data: data buffer provided by caller
341  * @frag_size: size of data, or 0 if head was kmalloced
342  */
343 struct sk_buff *build_skb_around(struct sk_buff *skb,
344 				 void *data, unsigned int frag_size)
345 {
346 	if (unlikely(!skb))
347 		return NULL;
348 
349 	skb = __build_skb_around(skb, data, frag_size);
350 
351 	if (skb && frag_size) {
352 		skb->head_frag = 1;
353 		if (page_is_pfmemalloc(virt_to_head_page(data)))
354 			skb->pfmemalloc = 1;
355 	}
356 	return skb;
357 }
358 EXPORT_SYMBOL(build_skb_around);
359 
360 #define NAPI_SKB_CACHE_SIZE	64
361 
362 struct napi_alloc_cache {
363 	struct page_frag_cache page;
364 	unsigned int skb_count;
365 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
366 };
367 
368 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
369 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
370 
371 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
374 
375 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
376 }
377 
378 void *napi_alloc_frag(unsigned int fragsz)
379 {
380 	fragsz = SKB_DATA_ALIGN(fragsz);
381 
382 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
383 }
384 EXPORT_SYMBOL(napi_alloc_frag);
385 
386 /**
387  * netdev_alloc_frag - allocate a page fragment
388  * @fragsz: fragment size
389  *
390  * Allocates a frag from a page for receive buffer.
391  * Uses GFP_ATOMIC allocations.
392  */
393 void *netdev_alloc_frag(unsigned int fragsz)
394 {
395 	struct page_frag_cache *nc;
396 	void *data;
397 
398 	fragsz = SKB_DATA_ALIGN(fragsz);
399 	if (in_irq() || irqs_disabled()) {
400 		nc = this_cpu_ptr(&netdev_alloc_cache);
401 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
402 	} else {
403 		local_bh_disable();
404 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
405 		local_bh_enable();
406 	}
407 	return data;
408 }
409 EXPORT_SYMBOL(netdev_alloc_frag);
410 
411 /**
412  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
413  *	@dev: network device to receive on
414  *	@len: length to allocate
415  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
416  *
417  *	Allocate a new &sk_buff and assign it a usage count of one. The
418  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
419  *	the headroom they think they need without accounting for the
420  *	built in space. The built in space is used for optimisations.
421  *
422  *	%NULL is returned if there is no free memory.
423  */
424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
425 				   gfp_t gfp_mask)
426 {
427 	struct page_frag_cache *nc;
428 	struct sk_buff *skb;
429 	bool pfmemalloc;
430 	void *data;
431 
432 	len += NET_SKB_PAD;
433 
434 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
435 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
436 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
437 		if (!skb)
438 			goto skb_fail;
439 		goto skb_success;
440 	}
441 
442 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443 	len = SKB_DATA_ALIGN(len);
444 
445 	if (sk_memalloc_socks())
446 		gfp_mask |= __GFP_MEMALLOC;
447 
448 	if (in_irq() || irqs_disabled()) {
449 		nc = this_cpu_ptr(&netdev_alloc_cache);
450 		data = page_frag_alloc(nc, len, gfp_mask);
451 		pfmemalloc = nc->pfmemalloc;
452 	} else {
453 		local_bh_disable();
454 		nc = this_cpu_ptr(&napi_alloc_cache.page);
455 		data = page_frag_alloc(nc, len, gfp_mask);
456 		pfmemalloc = nc->pfmemalloc;
457 		local_bh_enable();
458 	}
459 
460 	if (unlikely(!data))
461 		return NULL;
462 
463 	skb = __build_skb(data, len);
464 	if (unlikely(!skb)) {
465 		skb_free_frag(data);
466 		return NULL;
467 	}
468 
469 	/* use OR instead of assignment to avoid clearing of bits in mask */
470 	if (pfmemalloc)
471 		skb->pfmemalloc = 1;
472 	skb->head_frag = 1;
473 
474 skb_success:
475 	skb_reserve(skb, NET_SKB_PAD);
476 	skb->dev = dev;
477 
478 skb_fail:
479 	return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482 
483 /**
484  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485  *	@napi: napi instance this buffer was allocated for
486  *	@len: length to allocate
487  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488  *
489  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
490  *	attempt to allocate the head from a special reserved region used
491  *	only for NAPI Rx allocation.  By doing this we can save several
492  *	CPU cycles by avoiding having to disable and re-enable IRQs.
493  *
494  *	%NULL is returned if there is no free memory.
495  */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 				 gfp_t gfp_mask)
498 {
499 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 	struct sk_buff *skb;
501 	void *data;
502 
503 	len += NET_SKB_PAD + NET_IP_ALIGN;
504 
505 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 		if (!skb)
509 			goto skb_fail;
510 		goto skb_success;
511 	}
512 
513 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 	len = SKB_DATA_ALIGN(len);
515 
516 	if (sk_memalloc_socks())
517 		gfp_mask |= __GFP_MEMALLOC;
518 
519 	data = page_frag_alloc(&nc->page, len, gfp_mask);
520 	if (unlikely(!data))
521 		return NULL;
522 
523 	skb = __build_skb(data, len);
524 	if (unlikely(!skb)) {
525 		skb_free_frag(data);
526 		return NULL;
527 	}
528 
529 	/* use OR instead of assignment to avoid clearing of bits in mask */
530 	if (nc->page.pfmemalloc)
531 		skb->pfmemalloc = 1;
532 	skb->head_frag = 1;
533 
534 skb_success:
535 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
536 	skb->dev = napi->dev;
537 
538 skb_fail:
539 	return skb;
540 }
541 EXPORT_SYMBOL(__napi_alloc_skb);
542 
543 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
544 		     int size, unsigned int truesize)
545 {
546 	skb_fill_page_desc(skb, i, page, off, size);
547 	skb->len += size;
548 	skb->data_len += size;
549 	skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_add_rx_frag);
552 
553 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
554 			  unsigned int truesize)
555 {
556 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
557 
558 	skb_frag_size_add(frag, size);
559 	skb->len += size;
560 	skb->data_len += size;
561 	skb->truesize += truesize;
562 }
563 EXPORT_SYMBOL(skb_coalesce_rx_frag);
564 
565 static void skb_drop_list(struct sk_buff **listp)
566 {
567 	kfree_skb_list(*listp);
568 	*listp = NULL;
569 }
570 
571 static inline void skb_drop_fraglist(struct sk_buff *skb)
572 {
573 	skb_drop_list(&skb_shinfo(skb)->frag_list);
574 }
575 
576 static void skb_clone_fraglist(struct sk_buff *skb)
577 {
578 	struct sk_buff *list;
579 
580 	skb_walk_frags(skb, list)
581 		skb_get(list);
582 }
583 
584 static void skb_free_head(struct sk_buff *skb)
585 {
586 	unsigned char *head = skb->head;
587 
588 	if (skb->head_frag)
589 		skb_free_frag(head);
590 	else
591 		kfree(head);
592 }
593 
594 static void skb_release_data(struct sk_buff *skb)
595 {
596 	struct skb_shared_info *shinfo = skb_shinfo(skb);
597 	int i;
598 
599 	if (skb->cloned &&
600 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
601 			      &shinfo->dataref))
602 		return;
603 
604 	for (i = 0; i < shinfo->nr_frags; i++)
605 		__skb_frag_unref(&shinfo->frags[i]);
606 
607 	if (shinfo->frag_list)
608 		kfree_skb_list(shinfo->frag_list);
609 
610 	skb_zcopy_clear(skb, true);
611 	skb_free_head(skb);
612 }
613 
614 /*
615  *	Free an skbuff by memory without cleaning the state.
616  */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 	struct sk_buff_fclones *fclones;
620 
621 	switch (skb->fclone) {
622 	case SKB_FCLONE_UNAVAILABLE:
623 		kmem_cache_free(skbuff_head_cache, skb);
624 		return;
625 
626 	case SKB_FCLONE_ORIG:
627 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
628 
629 		/* We usually free the clone (TX completion) before original skb
630 		 * This test would have no chance to be true for the clone,
631 		 * while here, branch prediction will be good.
632 		 */
633 		if (refcount_read(&fclones->fclone_ref) == 1)
634 			goto fastpath;
635 		break;
636 
637 	default: /* SKB_FCLONE_CLONE */
638 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 		break;
640 	}
641 	if (!refcount_dec_and_test(&fclones->fclone_ref))
642 		return;
643 fastpath:
644 	kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646 
647 void skb_release_head_state(struct sk_buff *skb)
648 {
649 	skb_dst_drop(skb);
650 	if (skb->destructor) {
651 		WARN_ON(in_irq());
652 		skb->destructor(skb);
653 	}
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 	nf_conntrack_put(skb_nfct(skb));
656 #endif
657 	skb_ext_put(skb);
658 }
659 
660 /* Free everything but the sk_buff shell. */
661 static void skb_release_all(struct sk_buff *skb)
662 {
663 	skb_release_head_state(skb);
664 	if (likely(skb->head))
665 		skb_release_data(skb);
666 }
667 
668 /**
669  *	__kfree_skb - private function
670  *	@skb: buffer
671  *
672  *	Free an sk_buff. Release anything attached to the buffer.
673  *	Clean the state. This is an internal helper function. Users should
674  *	always call kfree_skb
675  */
676 
677 void __kfree_skb(struct sk_buff *skb)
678 {
679 	skb_release_all(skb);
680 	kfree_skbmem(skb);
681 }
682 EXPORT_SYMBOL(__kfree_skb);
683 
684 /**
685  *	kfree_skb - free an sk_buff
686  *	@skb: buffer to free
687  *
688  *	Drop a reference to the buffer and free it if the usage count has
689  *	hit zero.
690  */
691 void kfree_skb(struct sk_buff *skb)
692 {
693 	if (!skb_unref(skb))
694 		return;
695 
696 	trace_kfree_skb(skb, __builtin_return_address(0));
697 	__kfree_skb(skb);
698 }
699 EXPORT_SYMBOL(kfree_skb);
700 
701 void kfree_skb_list(struct sk_buff *segs)
702 {
703 	while (segs) {
704 		struct sk_buff *next = segs->next;
705 
706 		kfree_skb(segs);
707 		segs = next;
708 	}
709 }
710 EXPORT_SYMBOL(kfree_skb_list);
711 
712 /* Dump skb information and contents.
713  *
714  * Must only be called from net_ratelimit()-ed paths.
715  *
716  * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717  */
718 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
719 {
720 	static atomic_t can_dump_full = ATOMIC_INIT(5);
721 	struct skb_shared_info *sh = skb_shinfo(skb);
722 	struct net_device *dev = skb->dev;
723 	struct sock *sk = skb->sk;
724 	struct sk_buff *list_skb;
725 	bool has_mac, has_trans;
726 	int headroom, tailroom;
727 	int i, len, seg_len;
728 
729 	if (full_pkt)
730 		full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
731 
732 	if (full_pkt)
733 		len = skb->len;
734 	else
735 		len = min_t(int, skb->len, MAX_HEADER + 128);
736 
737 	headroom = skb_headroom(skb);
738 	tailroom = skb_tailroom(skb);
739 
740 	has_mac = skb_mac_header_was_set(skb);
741 	has_trans = skb_transport_header_was_set(skb);
742 
743 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
749 	       has_mac ? skb->mac_header : -1,
750 	       has_mac ? skb_mac_header_len(skb) : -1,
751 	       skb->network_header,
752 	       has_trans ? skb_network_header_len(skb) : -1,
753 	       has_trans ? skb->transport_header : -1,
754 	       sh->tx_flags, sh->nr_frags,
755 	       sh->gso_size, sh->gso_type, sh->gso_segs,
756 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
757 	       skb->csum_valid, skb->csum_level,
758 	       skb->hash, skb->sw_hash, skb->l4_hash,
759 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760 
761 	if (dev)
762 		printk("%sdev name=%s feat=0x%pNF\n",
763 		       level, dev->name, &dev->features);
764 	if (sk)
765 		printk("%ssk family=%hu type=%u proto=%u\n",
766 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767 
768 	if (full_pkt && headroom)
769 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770 			       16, 1, skb->head, headroom, false);
771 
772 	seg_len = min_t(int, skb_headlen(skb), len);
773 	if (seg_len)
774 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
775 			       16, 1, skb->data, seg_len, false);
776 	len -= seg_len;
777 
778 	if (full_pkt && tailroom)
779 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb_tail_pointer(skb), tailroom, false);
781 
782 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784 		u32 p_off, p_len, copied;
785 		struct page *p;
786 		u8 *vaddr;
787 
788 		skb_frag_foreach_page(frag, frag->page_offset,
789 				      skb_frag_size(frag), p, p_off, p_len,
790 				      copied) {
791 			seg_len = min_t(int, p_len, len);
792 			vaddr = kmap_atomic(p);
793 			print_hex_dump(level, "skb frag:     ",
794 				       DUMP_PREFIX_OFFSET,
795 				       16, 1, vaddr + p_off, seg_len, false);
796 			kunmap_atomic(vaddr);
797 			len -= seg_len;
798 			if (!len)
799 				break;
800 		}
801 	}
802 
803 	if (full_pkt && skb_has_frag_list(skb)) {
804 		printk("skb fraglist:\n");
805 		skb_walk_frags(skb, list_skb)
806 			skb_dump(level, list_skb, true);
807 	}
808 }
809 EXPORT_SYMBOL(skb_dump);
810 
811 /**
812  *	skb_tx_error - report an sk_buff xmit error
813  *	@skb: buffer that triggered an error
814  *
815  *	Report xmit error if a device callback is tracking this skb.
816  *	skb must be freed afterwards.
817  */
818 void skb_tx_error(struct sk_buff *skb)
819 {
820 	skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823 
824 /**
825  *	consume_skb - free an skbuff
826  *	@skb: buffer to free
827  *
828  *	Drop a ref to the buffer and free it if the usage count has hit zero
829  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
830  *	is being dropped after a failure and notes that
831  */
832 void consume_skb(struct sk_buff *skb)
833 {
834 	if (!skb_unref(skb))
835 		return;
836 
837 	trace_consume_skb(skb);
838 	__kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841 
842 /**
843  *	consume_stateless_skb - free an skbuff, assuming it is stateless
844  *	@skb: buffer to free
845  *
846  *	Alike consume_skb(), but this variant assumes that this is the last
847  *	skb reference and all the head states have been already dropped
848  */
849 void __consume_stateless_skb(struct sk_buff *skb)
850 {
851 	trace_consume_skb(skb);
852 	skb_release_data(skb);
853 	kfree_skbmem(skb);
854 }
855 
856 void __kfree_skb_flush(void)
857 {
858 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
859 
860 	/* flush skb_cache if containing objects */
861 	if (nc->skb_count) {
862 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
863 				     nc->skb_cache);
864 		nc->skb_count = 0;
865 	}
866 }
867 
868 static inline void _kfree_skb_defer(struct sk_buff *skb)
869 {
870 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871 
872 	/* drop skb->head and call any destructors for packet */
873 	skb_release_all(skb);
874 
875 	/* record skb to CPU local list */
876 	nc->skb_cache[nc->skb_count++] = skb;
877 
878 #ifdef CONFIG_SLUB
879 	/* SLUB writes into objects when freeing */
880 	prefetchw(skb);
881 #endif
882 
883 	/* flush skb_cache if it is filled */
884 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
885 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
886 				     nc->skb_cache);
887 		nc->skb_count = 0;
888 	}
889 }
890 void __kfree_skb_defer(struct sk_buff *skb)
891 {
892 	_kfree_skb_defer(skb);
893 }
894 
895 void napi_consume_skb(struct sk_buff *skb, int budget)
896 {
897 	if (unlikely(!skb))
898 		return;
899 
900 	/* Zero budget indicate non-NAPI context called us, like netpoll */
901 	if (unlikely(!budget)) {
902 		dev_consume_skb_any(skb);
903 		return;
904 	}
905 
906 	if (!skb_unref(skb))
907 		return;
908 
909 	/* if reaching here SKB is ready to free */
910 	trace_consume_skb(skb);
911 
912 	/* if SKB is a clone, don't handle this case */
913 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
914 		__kfree_skb(skb);
915 		return;
916 	}
917 
918 	_kfree_skb_defer(skb);
919 }
920 EXPORT_SYMBOL(napi_consume_skb);
921 
922 /* Make sure a field is enclosed inside headers_start/headers_end section */
923 #define CHECK_SKB_FIELD(field) \
924 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
925 		     offsetof(struct sk_buff, headers_start));	\
926 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
927 		     offsetof(struct sk_buff, headers_end));	\
928 
929 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 {
931 	new->tstamp		= old->tstamp;
932 	/* We do not copy old->sk */
933 	new->dev		= old->dev;
934 	memcpy(new->cb, old->cb, sizeof(old->cb));
935 	skb_dst_copy(new, old);
936 	__skb_ext_copy(new, old);
937 	__nf_copy(new, old, false);
938 
939 	/* Note : this field could be in headers_start/headers_end section
940 	 * It is not yet because we do not want to have a 16 bit hole
941 	 */
942 	new->queue_mapping = old->queue_mapping;
943 
944 	memcpy(&new->headers_start, &old->headers_start,
945 	       offsetof(struct sk_buff, headers_end) -
946 	       offsetof(struct sk_buff, headers_start));
947 	CHECK_SKB_FIELD(protocol);
948 	CHECK_SKB_FIELD(csum);
949 	CHECK_SKB_FIELD(hash);
950 	CHECK_SKB_FIELD(priority);
951 	CHECK_SKB_FIELD(skb_iif);
952 	CHECK_SKB_FIELD(vlan_proto);
953 	CHECK_SKB_FIELD(vlan_tci);
954 	CHECK_SKB_FIELD(transport_header);
955 	CHECK_SKB_FIELD(network_header);
956 	CHECK_SKB_FIELD(mac_header);
957 	CHECK_SKB_FIELD(inner_protocol);
958 	CHECK_SKB_FIELD(inner_transport_header);
959 	CHECK_SKB_FIELD(inner_network_header);
960 	CHECK_SKB_FIELD(inner_mac_header);
961 	CHECK_SKB_FIELD(mark);
962 #ifdef CONFIG_NETWORK_SECMARK
963 	CHECK_SKB_FIELD(secmark);
964 #endif
965 #ifdef CONFIG_NET_RX_BUSY_POLL
966 	CHECK_SKB_FIELD(napi_id);
967 #endif
968 #ifdef CONFIG_XPS
969 	CHECK_SKB_FIELD(sender_cpu);
970 #endif
971 #ifdef CONFIG_NET_SCHED
972 	CHECK_SKB_FIELD(tc_index);
973 #endif
974 
975 }
976 
977 /*
978  * You should not add any new code to this function.  Add it to
979  * __copy_skb_header above instead.
980  */
981 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
982 {
983 #define C(x) n->x = skb->x
984 
985 	n->next = n->prev = NULL;
986 	n->sk = NULL;
987 	__copy_skb_header(n, skb);
988 
989 	C(len);
990 	C(data_len);
991 	C(mac_len);
992 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
993 	n->cloned = 1;
994 	n->nohdr = 0;
995 	n->peeked = 0;
996 	C(pfmemalloc);
997 	n->destructor = NULL;
998 	C(tail);
999 	C(end);
1000 	C(head);
1001 	C(head_frag);
1002 	C(data);
1003 	C(truesize);
1004 	refcount_set(&n->users, 1);
1005 
1006 	atomic_inc(&(skb_shinfo(skb)->dataref));
1007 	skb->cloned = 1;
1008 
1009 	return n;
1010 #undef C
1011 }
1012 
1013 /**
1014  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1015  * @first: first sk_buff of the msg
1016  */
1017 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018 {
1019 	struct sk_buff *n;
1020 
1021 	n = alloc_skb(0, GFP_ATOMIC);
1022 	if (!n)
1023 		return NULL;
1024 
1025 	n->len = first->len;
1026 	n->data_len = first->len;
1027 	n->truesize = first->truesize;
1028 
1029 	skb_shinfo(n)->frag_list = first;
1030 
1031 	__copy_skb_header(n, first);
1032 	n->destructor = NULL;
1033 
1034 	return n;
1035 }
1036 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1037 
1038 /**
1039  *	skb_morph	-	morph one skb into another
1040  *	@dst: the skb to receive the contents
1041  *	@src: the skb to supply the contents
1042  *
1043  *	This is identical to skb_clone except that the target skb is
1044  *	supplied by the user.
1045  *
1046  *	The target skb is returned upon exit.
1047  */
1048 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049 {
1050 	skb_release_all(dst);
1051 	return __skb_clone(dst, src);
1052 }
1053 EXPORT_SYMBOL_GPL(skb_morph);
1054 
1055 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056 {
1057 	unsigned long max_pg, num_pg, new_pg, old_pg;
1058 	struct user_struct *user;
1059 
1060 	if (capable(CAP_IPC_LOCK) || !size)
1061 		return 0;
1062 
1063 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1064 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1065 	user = mmp->user ? : current_user();
1066 
1067 	do {
1068 		old_pg = atomic_long_read(&user->locked_vm);
1069 		new_pg = old_pg + num_pg;
1070 		if (new_pg > max_pg)
1071 			return -ENOBUFS;
1072 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1073 		 old_pg);
1074 
1075 	if (!mmp->user) {
1076 		mmp->user = get_uid(user);
1077 		mmp->num_pg = num_pg;
1078 	} else {
1079 		mmp->num_pg += num_pg;
1080 	}
1081 
1082 	return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085 
1086 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087 {
1088 	if (mmp->user) {
1089 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1090 		free_uid(mmp->user);
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094 
1095 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096 {
1097 	struct ubuf_info *uarg;
1098 	struct sk_buff *skb;
1099 
1100 	WARN_ON_ONCE(!in_task());
1101 
1102 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1103 	if (!skb)
1104 		return NULL;
1105 
1106 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1107 	uarg = (void *)skb->cb;
1108 	uarg->mmp.user = NULL;
1109 
1110 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1111 		kfree_skb(skb);
1112 		return NULL;
1113 	}
1114 
1115 	uarg->callback = sock_zerocopy_callback;
1116 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1117 	uarg->len = 1;
1118 	uarg->bytelen = size;
1119 	uarg->zerocopy = 1;
1120 	refcount_set(&uarg->refcnt, 1);
1121 	sock_hold(sk);
1122 
1123 	return uarg;
1124 }
1125 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126 
1127 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128 {
1129 	return container_of((void *)uarg, struct sk_buff, cb);
1130 }
1131 
1132 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1133 					struct ubuf_info *uarg)
1134 {
1135 	if (uarg) {
1136 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1137 		u32 bytelen, next;
1138 
1139 		/* realloc only when socket is locked (TCP, UDP cork),
1140 		 * so uarg->len and sk_zckey access is serialized
1141 		 */
1142 		if (!sock_owned_by_user(sk)) {
1143 			WARN_ON_ONCE(1);
1144 			return NULL;
1145 		}
1146 
1147 		bytelen = uarg->bytelen + size;
1148 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1149 			/* TCP can create new skb to attach new uarg */
1150 			if (sk->sk_type == SOCK_STREAM)
1151 				goto new_alloc;
1152 			return NULL;
1153 		}
1154 
1155 		next = (u32)atomic_read(&sk->sk_zckey);
1156 		if ((u32)(uarg->id + uarg->len) == next) {
1157 			if (mm_account_pinned_pages(&uarg->mmp, size))
1158 				return NULL;
1159 			uarg->len++;
1160 			uarg->bytelen = bytelen;
1161 			atomic_set(&sk->sk_zckey, ++next);
1162 
1163 			/* no extra ref when appending to datagram (MSG_MORE) */
1164 			if (sk->sk_type == SOCK_STREAM)
1165 				sock_zerocopy_get(uarg);
1166 
1167 			return uarg;
1168 		}
1169 	}
1170 
1171 new_alloc:
1172 	return sock_zerocopy_alloc(sk, size);
1173 }
1174 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175 
1176 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177 {
1178 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1179 	u32 old_lo, old_hi;
1180 	u64 sum_len;
1181 
1182 	old_lo = serr->ee.ee_info;
1183 	old_hi = serr->ee.ee_data;
1184 	sum_len = old_hi - old_lo + 1ULL + len;
1185 
1186 	if (sum_len >= (1ULL << 32))
1187 		return false;
1188 
1189 	if (lo != old_hi + 1)
1190 		return false;
1191 
1192 	serr->ee.ee_data += len;
1193 	return true;
1194 }
1195 
1196 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197 {
1198 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1199 	struct sock_exterr_skb *serr;
1200 	struct sock *sk = skb->sk;
1201 	struct sk_buff_head *q;
1202 	unsigned long flags;
1203 	u32 lo, hi;
1204 	u16 len;
1205 
1206 	mm_unaccount_pinned_pages(&uarg->mmp);
1207 
1208 	/* if !len, there was only 1 call, and it was aborted
1209 	 * so do not queue a completion notification
1210 	 */
1211 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1212 		goto release;
1213 
1214 	len = uarg->len;
1215 	lo = uarg->id;
1216 	hi = uarg->id + len - 1;
1217 
1218 	serr = SKB_EXT_ERR(skb);
1219 	memset(serr, 0, sizeof(*serr));
1220 	serr->ee.ee_errno = 0;
1221 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1222 	serr->ee.ee_data = hi;
1223 	serr->ee.ee_info = lo;
1224 	if (!success)
1225 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226 
1227 	q = &sk->sk_error_queue;
1228 	spin_lock_irqsave(&q->lock, flags);
1229 	tail = skb_peek_tail(q);
1230 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1231 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1232 		__skb_queue_tail(q, skb);
1233 		skb = NULL;
1234 	}
1235 	spin_unlock_irqrestore(&q->lock, flags);
1236 
1237 	sk->sk_error_report(sk);
1238 
1239 release:
1240 	consume_skb(skb);
1241 	sock_put(sk);
1242 }
1243 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244 
1245 void sock_zerocopy_put(struct ubuf_info *uarg)
1246 {
1247 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1248 		if (uarg->callback)
1249 			uarg->callback(uarg, uarg->zerocopy);
1250 		else
1251 			consume_skb(skb_from_uarg(uarg));
1252 	}
1253 }
1254 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255 
1256 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257 {
1258 	if (uarg) {
1259 		struct sock *sk = skb_from_uarg(uarg)->sk;
1260 
1261 		atomic_dec(&sk->sk_zckey);
1262 		uarg->len--;
1263 
1264 		if (have_uref)
1265 			sock_zerocopy_put(uarg);
1266 	}
1267 }
1268 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269 
1270 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271 {
1272 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273 }
1274 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275 
1276 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1277 			     struct msghdr *msg, int len,
1278 			     struct ubuf_info *uarg)
1279 {
1280 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1281 	struct iov_iter orig_iter = msg->msg_iter;
1282 	int err, orig_len = skb->len;
1283 
1284 	/* An skb can only point to one uarg. This edge case happens when
1285 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286 	 */
1287 	if (orig_uarg && uarg != orig_uarg)
1288 		return -EEXIST;
1289 
1290 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1291 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1292 		struct sock *save_sk = skb->sk;
1293 
1294 		/* Streams do not free skb on error. Reset to prev state. */
1295 		msg->msg_iter = orig_iter;
1296 		skb->sk = sk;
1297 		___pskb_trim(skb, orig_len);
1298 		skb->sk = save_sk;
1299 		return err;
1300 	}
1301 
1302 	skb_zcopy_set(skb, uarg, NULL);
1303 	return skb->len - orig_len;
1304 }
1305 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306 
1307 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1308 			      gfp_t gfp_mask)
1309 {
1310 	if (skb_zcopy(orig)) {
1311 		if (skb_zcopy(nskb)) {
1312 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1313 			if (!gfp_mask) {
1314 				WARN_ON_ONCE(1);
1315 				return -ENOMEM;
1316 			}
1317 			if (skb_uarg(nskb) == skb_uarg(orig))
1318 				return 0;
1319 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1320 				return -EIO;
1321 		}
1322 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323 	}
1324 	return 0;
1325 }
1326 
1327 /**
1328  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1329  *	@skb: the skb to modify
1330  *	@gfp_mask: allocation priority
1331  *
1332  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1333  *	It will copy all frags into kernel and drop the reference
1334  *	to userspace pages.
1335  *
1336  *	If this function is called from an interrupt gfp_mask() must be
1337  *	%GFP_ATOMIC.
1338  *
1339  *	Returns 0 on success or a negative error code on failure
1340  *	to allocate kernel memory to copy to.
1341  */
1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343 {
1344 	int num_frags = skb_shinfo(skb)->nr_frags;
1345 	struct page *page, *head = NULL;
1346 	int i, new_frags;
1347 	u32 d_off;
1348 
1349 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1350 		return -EINVAL;
1351 
1352 	if (!num_frags)
1353 		goto release;
1354 
1355 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356 	for (i = 0; i < new_frags; i++) {
1357 		page = alloc_page(gfp_mask);
1358 		if (!page) {
1359 			while (head) {
1360 				struct page *next = (struct page *)page_private(head);
1361 				put_page(head);
1362 				head = next;
1363 			}
1364 			return -ENOMEM;
1365 		}
1366 		set_page_private(page, (unsigned long)head);
1367 		head = page;
1368 	}
1369 
1370 	page = head;
1371 	d_off = 0;
1372 	for (i = 0; i < num_frags; i++) {
1373 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1374 		u32 p_off, p_len, copied;
1375 		struct page *p;
1376 		u8 *vaddr;
1377 
1378 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1379 				      p, p_off, p_len, copied) {
1380 			u32 copy, done = 0;
1381 			vaddr = kmap_atomic(p);
1382 
1383 			while (done < p_len) {
1384 				if (d_off == PAGE_SIZE) {
1385 					d_off = 0;
1386 					page = (struct page *)page_private(page);
1387 				}
1388 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1389 				memcpy(page_address(page) + d_off,
1390 				       vaddr + p_off + done, copy);
1391 				done += copy;
1392 				d_off += copy;
1393 			}
1394 			kunmap_atomic(vaddr);
1395 		}
1396 	}
1397 
1398 	/* skb frags release userspace buffers */
1399 	for (i = 0; i < num_frags; i++)
1400 		skb_frag_unref(skb, i);
1401 
1402 	/* skb frags point to kernel buffers */
1403 	for (i = 0; i < new_frags - 1; i++) {
1404 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1405 		head = (struct page *)page_private(head);
1406 	}
1407 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1408 	skb_shinfo(skb)->nr_frags = new_frags;
1409 
1410 release:
1411 	skb_zcopy_clear(skb, false);
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1415 
1416 /**
1417  *	skb_clone	-	duplicate an sk_buff
1418  *	@skb: buffer to clone
1419  *	@gfp_mask: allocation priority
1420  *
1421  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1422  *	copies share the same packet data but not structure. The new
1423  *	buffer has a reference count of 1. If the allocation fails the
1424  *	function returns %NULL otherwise the new buffer is returned.
1425  *
1426  *	If this function is called from an interrupt gfp_mask() must be
1427  *	%GFP_ATOMIC.
1428  */
1429 
1430 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431 {
1432 	struct sk_buff_fclones *fclones = container_of(skb,
1433 						       struct sk_buff_fclones,
1434 						       skb1);
1435 	struct sk_buff *n;
1436 
1437 	if (skb_orphan_frags(skb, gfp_mask))
1438 		return NULL;
1439 
1440 	if (skb->fclone == SKB_FCLONE_ORIG &&
1441 	    refcount_read(&fclones->fclone_ref) == 1) {
1442 		n = &fclones->skb2;
1443 		refcount_set(&fclones->fclone_ref, 2);
1444 	} else {
1445 		if (skb_pfmemalloc(skb))
1446 			gfp_mask |= __GFP_MEMALLOC;
1447 
1448 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1449 		if (!n)
1450 			return NULL;
1451 
1452 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1453 	}
1454 
1455 	return __skb_clone(n, skb);
1456 }
1457 EXPORT_SYMBOL(skb_clone);
1458 
1459 void skb_headers_offset_update(struct sk_buff *skb, int off)
1460 {
1461 	/* Only adjust this if it actually is csum_start rather than csum */
1462 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1463 		skb->csum_start += off;
1464 	/* {transport,network,mac}_header and tail are relative to skb->head */
1465 	skb->transport_header += off;
1466 	skb->network_header   += off;
1467 	if (skb_mac_header_was_set(skb))
1468 		skb->mac_header += off;
1469 	skb->inner_transport_header += off;
1470 	skb->inner_network_header += off;
1471 	skb->inner_mac_header += off;
1472 }
1473 EXPORT_SYMBOL(skb_headers_offset_update);
1474 
1475 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476 {
1477 	__copy_skb_header(new, old);
1478 
1479 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1480 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1481 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482 }
1483 EXPORT_SYMBOL(skb_copy_header);
1484 
1485 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486 {
1487 	if (skb_pfmemalloc(skb))
1488 		return SKB_ALLOC_RX;
1489 	return 0;
1490 }
1491 
1492 /**
1493  *	skb_copy	-	create private copy of an sk_buff
1494  *	@skb: buffer to copy
1495  *	@gfp_mask: allocation priority
1496  *
1497  *	Make a copy of both an &sk_buff and its data. This is used when the
1498  *	caller wishes to modify the data and needs a private copy of the
1499  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1500  *	on success. The returned buffer has a reference count of 1.
1501  *
1502  *	As by-product this function converts non-linear &sk_buff to linear
1503  *	one, so that &sk_buff becomes completely private and caller is allowed
1504  *	to modify all the data of returned buffer. This means that this
1505  *	function is not recommended for use in circumstances when only
1506  *	header is going to be modified. Use pskb_copy() instead.
1507  */
1508 
1509 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510 {
1511 	int headerlen = skb_headroom(skb);
1512 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1513 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1514 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515 
1516 	if (!n)
1517 		return NULL;
1518 
1519 	/* Set the data pointer */
1520 	skb_reserve(n, headerlen);
1521 	/* Set the tail pointer and length */
1522 	skb_put(n, skb->len);
1523 
1524 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1525 
1526 	skb_copy_header(n, skb);
1527 	return n;
1528 }
1529 EXPORT_SYMBOL(skb_copy);
1530 
1531 /**
1532  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1533  *	@skb: buffer to copy
1534  *	@headroom: headroom of new skb
1535  *	@gfp_mask: allocation priority
1536  *	@fclone: if true allocate the copy of the skb from the fclone
1537  *	cache instead of the head cache; it is recommended to set this
1538  *	to true for the cases where the copy will likely be cloned
1539  *
1540  *	Make a copy of both an &sk_buff and part of its data, located
1541  *	in header. Fragmented data remain shared. This is used when
1542  *	the caller wishes to modify only header of &sk_buff and needs
1543  *	private copy of the header to alter. Returns %NULL on failure
1544  *	or the pointer to the buffer on success.
1545  *	The returned buffer has a reference count of 1.
1546  */
1547 
1548 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1549 				   gfp_t gfp_mask, bool fclone)
1550 {
1551 	unsigned int size = skb_headlen(skb) + headroom;
1552 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1553 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554 
1555 	if (!n)
1556 		goto out;
1557 
1558 	/* Set the data pointer */
1559 	skb_reserve(n, headroom);
1560 	/* Set the tail pointer and length */
1561 	skb_put(n, skb_headlen(skb));
1562 	/* Copy the bytes */
1563 	skb_copy_from_linear_data(skb, n->data, n->len);
1564 
1565 	n->truesize += skb->data_len;
1566 	n->data_len  = skb->data_len;
1567 	n->len	     = skb->len;
1568 
1569 	if (skb_shinfo(skb)->nr_frags) {
1570 		int i;
1571 
1572 		if (skb_orphan_frags(skb, gfp_mask) ||
1573 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1574 			kfree_skb(n);
1575 			n = NULL;
1576 			goto out;
1577 		}
1578 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1579 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1580 			skb_frag_ref(skb, i);
1581 		}
1582 		skb_shinfo(n)->nr_frags = i;
1583 	}
1584 
1585 	if (skb_has_frag_list(skb)) {
1586 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1587 		skb_clone_fraglist(n);
1588 	}
1589 
1590 	skb_copy_header(n, skb);
1591 out:
1592 	return n;
1593 }
1594 EXPORT_SYMBOL(__pskb_copy_fclone);
1595 
1596 /**
1597  *	pskb_expand_head - reallocate header of &sk_buff
1598  *	@skb: buffer to reallocate
1599  *	@nhead: room to add at head
1600  *	@ntail: room to add at tail
1601  *	@gfp_mask: allocation priority
1602  *
1603  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1604  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1605  *	reference count of 1. Returns zero in the case of success or error,
1606  *	if expansion failed. In the last case, &sk_buff is not changed.
1607  *
1608  *	All the pointers pointing into skb header may change and must be
1609  *	reloaded after call to this function.
1610  */
1611 
1612 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1613 		     gfp_t gfp_mask)
1614 {
1615 	int i, osize = skb_end_offset(skb);
1616 	int size = osize + nhead + ntail;
1617 	long off;
1618 	u8 *data;
1619 
1620 	BUG_ON(nhead < 0);
1621 
1622 	BUG_ON(skb_shared(skb));
1623 
1624 	size = SKB_DATA_ALIGN(size);
1625 
1626 	if (skb_pfmemalloc(skb))
1627 		gfp_mask |= __GFP_MEMALLOC;
1628 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1629 			       gfp_mask, NUMA_NO_NODE, NULL);
1630 	if (!data)
1631 		goto nodata;
1632 	size = SKB_WITH_OVERHEAD(ksize(data));
1633 
1634 	/* Copy only real data... and, alas, header. This should be
1635 	 * optimized for the cases when header is void.
1636 	 */
1637 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638 
1639 	memcpy((struct skb_shared_info *)(data + size),
1640 	       skb_shinfo(skb),
1641 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1642 
1643 	/*
1644 	 * if shinfo is shared we must drop the old head gracefully, but if it
1645 	 * is not we can just drop the old head and let the existing refcount
1646 	 * be since all we did is relocate the values
1647 	 */
1648 	if (skb_cloned(skb)) {
1649 		if (skb_orphan_frags(skb, gfp_mask))
1650 			goto nofrags;
1651 		if (skb_zcopy(skb))
1652 			refcount_inc(&skb_uarg(skb)->refcnt);
1653 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1654 			skb_frag_ref(skb, i);
1655 
1656 		if (skb_has_frag_list(skb))
1657 			skb_clone_fraglist(skb);
1658 
1659 		skb_release_data(skb);
1660 	} else {
1661 		skb_free_head(skb);
1662 	}
1663 	off = (data + nhead) - skb->head;
1664 
1665 	skb->head     = data;
1666 	skb->head_frag = 0;
1667 	skb->data    += off;
1668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1669 	skb->end      = size;
1670 	off           = nhead;
1671 #else
1672 	skb->end      = skb->head + size;
1673 #endif
1674 	skb->tail	      += off;
1675 	skb_headers_offset_update(skb, nhead);
1676 	skb->cloned   = 0;
1677 	skb->hdr_len  = 0;
1678 	skb->nohdr    = 0;
1679 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1680 
1681 	skb_metadata_clear(skb);
1682 
1683 	/* It is not generally safe to change skb->truesize.
1684 	 * For the moment, we really care of rx path, or
1685 	 * when skb is orphaned (not attached to a socket).
1686 	 */
1687 	if (!skb->sk || skb->destructor == sock_edemux)
1688 		skb->truesize += size - osize;
1689 
1690 	return 0;
1691 
1692 nofrags:
1693 	kfree(data);
1694 nodata:
1695 	return -ENOMEM;
1696 }
1697 EXPORT_SYMBOL(pskb_expand_head);
1698 
1699 /* Make private copy of skb with writable head and some headroom */
1700 
1701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702 {
1703 	struct sk_buff *skb2;
1704 	int delta = headroom - skb_headroom(skb);
1705 
1706 	if (delta <= 0)
1707 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1708 	else {
1709 		skb2 = skb_clone(skb, GFP_ATOMIC);
1710 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1711 					     GFP_ATOMIC)) {
1712 			kfree_skb(skb2);
1713 			skb2 = NULL;
1714 		}
1715 	}
1716 	return skb2;
1717 }
1718 EXPORT_SYMBOL(skb_realloc_headroom);
1719 
1720 /**
1721  *	skb_copy_expand	-	copy and expand sk_buff
1722  *	@skb: buffer to copy
1723  *	@newheadroom: new free bytes at head
1724  *	@newtailroom: new free bytes at tail
1725  *	@gfp_mask: allocation priority
1726  *
1727  *	Make a copy of both an &sk_buff and its data and while doing so
1728  *	allocate additional space.
1729  *
1730  *	This is used when the caller wishes to modify the data and needs a
1731  *	private copy of the data to alter as well as more space for new fields.
1732  *	Returns %NULL on failure or the pointer to the buffer
1733  *	on success. The returned buffer has a reference count of 1.
1734  *
1735  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1736  *	is called from an interrupt.
1737  */
1738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1739 				int newheadroom, int newtailroom,
1740 				gfp_t gfp_mask)
1741 {
1742 	/*
1743 	 *	Allocate the copy buffer
1744 	 */
1745 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1746 					gfp_mask, skb_alloc_rx_flag(skb),
1747 					NUMA_NO_NODE);
1748 	int oldheadroom = skb_headroom(skb);
1749 	int head_copy_len, head_copy_off;
1750 
1751 	if (!n)
1752 		return NULL;
1753 
1754 	skb_reserve(n, newheadroom);
1755 
1756 	/* Set the tail pointer and length */
1757 	skb_put(n, skb->len);
1758 
1759 	head_copy_len = oldheadroom;
1760 	head_copy_off = 0;
1761 	if (newheadroom <= head_copy_len)
1762 		head_copy_len = newheadroom;
1763 	else
1764 		head_copy_off = newheadroom - head_copy_len;
1765 
1766 	/* Copy the linear header and data. */
1767 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1768 			     skb->len + head_copy_len));
1769 
1770 	skb_copy_header(n, skb);
1771 
1772 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1773 
1774 	return n;
1775 }
1776 EXPORT_SYMBOL(skb_copy_expand);
1777 
1778 /**
1779  *	__skb_pad		-	zero pad the tail of an skb
1780  *	@skb: buffer to pad
1781  *	@pad: space to pad
1782  *	@free_on_error: free buffer on error
1783  *
1784  *	Ensure that a buffer is followed by a padding area that is zero
1785  *	filled. Used by network drivers which may DMA or transfer data
1786  *	beyond the buffer end onto the wire.
1787  *
1788  *	May return error in out of memory cases. The skb is freed on error
1789  *	if @free_on_error is true.
1790  */
1791 
1792 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793 {
1794 	int err;
1795 	int ntail;
1796 
1797 	/* If the skbuff is non linear tailroom is always zero.. */
1798 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1799 		memset(skb->data+skb->len, 0, pad);
1800 		return 0;
1801 	}
1802 
1803 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1804 	if (likely(skb_cloned(skb) || ntail > 0)) {
1805 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1806 		if (unlikely(err))
1807 			goto free_skb;
1808 	}
1809 
1810 	/* FIXME: The use of this function with non-linear skb's really needs
1811 	 * to be audited.
1812 	 */
1813 	err = skb_linearize(skb);
1814 	if (unlikely(err))
1815 		goto free_skb;
1816 
1817 	memset(skb->data + skb->len, 0, pad);
1818 	return 0;
1819 
1820 free_skb:
1821 	if (free_on_error)
1822 		kfree_skb(skb);
1823 	return err;
1824 }
1825 EXPORT_SYMBOL(__skb_pad);
1826 
1827 /**
1828  *	pskb_put - add data to the tail of a potentially fragmented buffer
1829  *	@skb: start of the buffer to use
1830  *	@tail: tail fragment of the buffer to use
1831  *	@len: amount of data to add
1832  *
1833  *	This function extends the used data area of the potentially
1834  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1835  *	@skb itself. If this would exceed the total buffer size the kernel
1836  *	will panic. A pointer to the first byte of the extra data is
1837  *	returned.
1838  */
1839 
1840 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841 {
1842 	if (tail != skb) {
1843 		skb->data_len += len;
1844 		skb->len += len;
1845 	}
1846 	return skb_put(tail, len);
1847 }
1848 EXPORT_SYMBOL_GPL(pskb_put);
1849 
1850 /**
1851  *	skb_put - add data to a buffer
1852  *	@skb: buffer to use
1853  *	@len: amount of data to add
1854  *
1855  *	This function extends the used data area of the buffer. If this would
1856  *	exceed the total buffer size the kernel will panic. A pointer to the
1857  *	first byte of the extra data is returned.
1858  */
1859 void *skb_put(struct sk_buff *skb, unsigned int len)
1860 {
1861 	void *tmp = skb_tail_pointer(skb);
1862 	SKB_LINEAR_ASSERT(skb);
1863 	skb->tail += len;
1864 	skb->len  += len;
1865 	if (unlikely(skb->tail > skb->end))
1866 		skb_over_panic(skb, len, __builtin_return_address(0));
1867 	return tmp;
1868 }
1869 EXPORT_SYMBOL(skb_put);
1870 
1871 /**
1872  *	skb_push - add data to the start of a buffer
1873  *	@skb: buffer to use
1874  *	@len: amount of data to add
1875  *
1876  *	This function extends the used data area of the buffer at the buffer
1877  *	start. If this would exceed the total buffer headroom the kernel will
1878  *	panic. A pointer to the first byte of the extra data is returned.
1879  */
1880 void *skb_push(struct sk_buff *skb, unsigned int len)
1881 {
1882 	skb->data -= len;
1883 	skb->len  += len;
1884 	if (unlikely(skb->data < skb->head))
1885 		skb_under_panic(skb, len, __builtin_return_address(0));
1886 	return skb->data;
1887 }
1888 EXPORT_SYMBOL(skb_push);
1889 
1890 /**
1891  *	skb_pull - remove data from the start of a buffer
1892  *	@skb: buffer to use
1893  *	@len: amount of data to remove
1894  *
1895  *	This function removes data from the start of a buffer, returning
1896  *	the memory to the headroom. A pointer to the next data in the buffer
1897  *	is returned. Once the data has been pulled future pushes will overwrite
1898  *	the old data.
1899  */
1900 void *skb_pull(struct sk_buff *skb, unsigned int len)
1901 {
1902 	return skb_pull_inline(skb, len);
1903 }
1904 EXPORT_SYMBOL(skb_pull);
1905 
1906 /**
1907  *	skb_trim - remove end from a buffer
1908  *	@skb: buffer to alter
1909  *	@len: new length
1910  *
1911  *	Cut the length of a buffer down by removing data from the tail. If
1912  *	the buffer is already under the length specified it is not modified.
1913  *	The skb must be linear.
1914  */
1915 void skb_trim(struct sk_buff *skb, unsigned int len)
1916 {
1917 	if (skb->len > len)
1918 		__skb_trim(skb, len);
1919 }
1920 EXPORT_SYMBOL(skb_trim);
1921 
1922 /* Trims skb to length len. It can change skb pointers.
1923  */
1924 
1925 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927 	struct sk_buff **fragp;
1928 	struct sk_buff *frag;
1929 	int offset = skb_headlen(skb);
1930 	int nfrags = skb_shinfo(skb)->nr_frags;
1931 	int i;
1932 	int err;
1933 
1934 	if (skb_cloned(skb) &&
1935 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1936 		return err;
1937 
1938 	i = 0;
1939 	if (offset >= len)
1940 		goto drop_pages;
1941 
1942 	for (; i < nfrags; i++) {
1943 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944 
1945 		if (end < len) {
1946 			offset = end;
1947 			continue;
1948 		}
1949 
1950 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951 
1952 drop_pages:
1953 		skb_shinfo(skb)->nr_frags = i;
1954 
1955 		for (; i < nfrags; i++)
1956 			skb_frag_unref(skb, i);
1957 
1958 		if (skb_has_frag_list(skb))
1959 			skb_drop_fraglist(skb);
1960 		goto done;
1961 	}
1962 
1963 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1964 	     fragp = &frag->next) {
1965 		int end = offset + frag->len;
1966 
1967 		if (skb_shared(frag)) {
1968 			struct sk_buff *nfrag;
1969 
1970 			nfrag = skb_clone(frag, GFP_ATOMIC);
1971 			if (unlikely(!nfrag))
1972 				return -ENOMEM;
1973 
1974 			nfrag->next = frag->next;
1975 			consume_skb(frag);
1976 			frag = nfrag;
1977 			*fragp = frag;
1978 		}
1979 
1980 		if (end < len) {
1981 			offset = end;
1982 			continue;
1983 		}
1984 
1985 		if (end > len &&
1986 		    unlikely((err = pskb_trim(frag, len - offset))))
1987 			return err;
1988 
1989 		if (frag->next)
1990 			skb_drop_list(&frag->next);
1991 		break;
1992 	}
1993 
1994 done:
1995 	if (len > skb_headlen(skb)) {
1996 		skb->data_len -= skb->len - len;
1997 		skb->len       = len;
1998 	} else {
1999 		skb->len       = len;
2000 		skb->data_len  = 0;
2001 		skb_set_tail_pointer(skb, len);
2002 	}
2003 
2004 	if (!skb->sk || skb->destructor == sock_edemux)
2005 		skb_condense(skb);
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(___pskb_trim);
2009 
2010 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011  */
2012 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013 {
2014 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2015 		int delta = skb->len - len;
2016 
2017 		skb->csum = csum_block_sub(skb->csum,
2018 					   skb_checksum(skb, len, delta, 0),
2019 					   len);
2020 	}
2021 	return __pskb_trim(skb, len);
2022 }
2023 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2024 
2025 /**
2026  *	__pskb_pull_tail - advance tail of skb header
2027  *	@skb: buffer to reallocate
2028  *	@delta: number of bytes to advance tail
2029  *
2030  *	The function makes a sense only on a fragmented &sk_buff,
2031  *	it expands header moving its tail forward and copying necessary
2032  *	data from fragmented part.
2033  *
2034  *	&sk_buff MUST have reference count of 1.
2035  *
2036  *	Returns %NULL (and &sk_buff does not change) if pull failed
2037  *	or value of new tail of skb in the case of success.
2038  *
2039  *	All the pointers pointing into skb header may change and must be
2040  *	reloaded after call to this function.
2041  */
2042 
2043 /* Moves tail of skb head forward, copying data from fragmented part,
2044  * when it is necessary.
2045  * 1. It may fail due to malloc failure.
2046  * 2. It may change skb pointers.
2047  *
2048  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049  */
2050 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051 {
2052 	/* If skb has not enough free space at tail, get new one
2053 	 * plus 128 bytes for future expansions. If we have enough
2054 	 * room at tail, reallocate without expansion only if skb is cloned.
2055 	 */
2056 	int i, k, eat = (skb->tail + delta) - skb->end;
2057 
2058 	if (eat > 0 || skb_cloned(skb)) {
2059 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2060 				     GFP_ATOMIC))
2061 			return NULL;
2062 	}
2063 
2064 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2065 			     skb_tail_pointer(skb), delta));
2066 
2067 	/* Optimization: no fragments, no reasons to preestimate
2068 	 * size of pulled pages. Superb.
2069 	 */
2070 	if (!skb_has_frag_list(skb))
2071 		goto pull_pages;
2072 
2073 	/* Estimate size of pulled pages. */
2074 	eat = delta;
2075 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077 
2078 		if (size >= eat)
2079 			goto pull_pages;
2080 		eat -= size;
2081 	}
2082 
2083 	/* If we need update frag list, we are in troubles.
2084 	 * Certainly, it is possible to add an offset to skb data,
2085 	 * but taking into account that pulling is expected to
2086 	 * be very rare operation, it is worth to fight against
2087 	 * further bloating skb head and crucify ourselves here instead.
2088 	 * Pure masohism, indeed. 8)8)
2089 	 */
2090 	if (eat) {
2091 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2092 		struct sk_buff *clone = NULL;
2093 		struct sk_buff *insp = NULL;
2094 
2095 		do {
2096 			if (list->len <= eat) {
2097 				/* Eaten as whole. */
2098 				eat -= list->len;
2099 				list = list->next;
2100 				insp = list;
2101 			} else {
2102 				/* Eaten partially. */
2103 
2104 				if (skb_shared(list)) {
2105 					/* Sucks! We need to fork list. :-( */
2106 					clone = skb_clone(list, GFP_ATOMIC);
2107 					if (!clone)
2108 						return NULL;
2109 					insp = list->next;
2110 					list = clone;
2111 				} else {
2112 					/* This may be pulled without
2113 					 * problems. */
2114 					insp = list;
2115 				}
2116 				if (!pskb_pull(list, eat)) {
2117 					kfree_skb(clone);
2118 					return NULL;
2119 				}
2120 				break;
2121 			}
2122 		} while (eat);
2123 
2124 		/* Free pulled out fragments. */
2125 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2126 			skb_shinfo(skb)->frag_list = list->next;
2127 			kfree_skb(list);
2128 		}
2129 		/* And insert new clone at head. */
2130 		if (clone) {
2131 			clone->next = list;
2132 			skb_shinfo(skb)->frag_list = clone;
2133 		}
2134 	}
2135 	/* Success! Now we may commit changes to skb data. */
2136 
2137 pull_pages:
2138 	eat = delta;
2139 	k = 0;
2140 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142 
2143 		if (size <= eat) {
2144 			skb_frag_unref(skb, i);
2145 			eat -= size;
2146 		} else {
2147 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
2148 			if (eat) {
2149 				skb_shinfo(skb)->frags[k].page_offset += eat;
2150 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
2151 				if (!i)
2152 					goto end;
2153 				eat = 0;
2154 			}
2155 			k++;
2156 		}
2157 	}
2158 	skb_shinfo(skb)->nr_frags = k;
2159 
2160 end:
2161 	skb->tail     += delta;
2162 	skb->data_len -= delta;
2163 
2164 	if (!skb->data_len)
2165 		skb_zcopy_clear(skb, false);
2166 
2167 	return skb_tail_pointer(skb);
2168 }
2169 EXPORT_SYMBOL(__pskb_pull_tail);
2170 
2171 /**
2172  *	skb_copy_bits - copy bits from skb to kernel buffer
2173  *	@skb: source skb
2174  *	@offset: offset in source
2175  *	@to: destination buffer
2176  *	@len: number of bytes to copy
2177  *
2178  *	Copy the specified number of bytes from the source skb to the
2179  *	destination buffer.
2180  *
2181  *	CAUTION ! :
2182  *		If its prototype is ever changed,
2183  *		check arch/{*}/net/{*}.S files,
2184  *		since it is called from BPF assembly code.
2185  */
2186 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2187 {
2188 	int start = skb_headlen(skb);
2189 	struct sk_buff *frag_iter;
2190 	int i, copy;
2191 
2192 	if (offset > (int)skb->len - len)
2193 		goto fault;
2194 
2195 	/* Copy header. */
2196 	if ((copy = start - offset) > 0) {
2197 		if (copy > len)
2198 			copy = len;
2199 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2200 		if ((len -= copy) == 0)
2201 			return 0;
2202 		offset += copy;
2203 		to     += copy;
2204 	}
2205 
2206 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2207 		int end;
2208 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2209 
2210 		WARN_ON(start > offset + len);
2211 
2212 		end = start + skb_frag_size(f);
2213 		if ((copy = end - offset) > 0) {
2214 			u32 p_off, p_len, copied;
2215 			struct page *p;
2216 			u8 *vaddr;
2217 
2218 			if (copy > len)
2219 				copy = len;
2220 
2221 			skb_frag_foreach_page(f,
2222 					      f->page_offset + offset - start,
2223 					      copy, p, p_off, p_len, copied) {
2224 				vaddr = kmap_atomic(p);
2225 				memcpy(to + copied, vaddr + p_off, p_len);
2226 				kunmap_atomic(vaddr);
2227 			}
2228 
2229 			if ((len -= copy) == 0)
2230 				return 0;
2231 			offset += copy;
2232 			to     += copy;
2233 		}
2234 		start = end;
2235 	}
2236 
2237 	skb_walk_frags(skb, frag_iter) {
2238 		int end;
2239 
2240 		WARN_ON(start > offset + len);
2241 
2242 		end = start + frag_iter->len;
2243 		if ((copy = end - offset) > 0) {
2244 			if (copy > len)
2245 				copy = len;
2246 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2247 				goto fault;
2248 			if ((len -= copy) == 0)
2249 				return 0;
2250 			offset += copy;
2251 			to     += copy;
2252 		}
2253 		start = end;
2254 	}
2255 
2256 	if (!len)
2257 		return 0;
2258 
2259 fault:
2260 	return -EFAULT;
2261 }
2262 EXPORT_SYMBOL(skb_copy_bits);
2263 
2264 /*
2265  * Callback from splice_to_pipe(), if we need to release some pages
2266  * at the end of the spd in case we error'ed out in filling the pipe.
2267  */
2268 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2269 {
2270 	put_page(spd->pages[i]);
2271 }
2272 
2273 static struct page *linear_to_page(struct page *page, unsigned int *len,
2274 				   unsigned int *offset,
2275 				   struct sock *sk)
2276 {
2277 	struct page_frag *pfrag = sk_page_frag(sk);
2278 
2279 	if (!sk_page_frag_refill(sk, pfrag))
2280 		return NULL;
2281 
2282 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2283 
2284 	memcpy(page_address(pfrag->page) + pfrag->offset,
2285 	       page_address(page) + *offset, *len);
2286 	*offset = pfrag->offset;
2287 	pfrag->offset += *len;
2288 
2289 	return pfrag->page;
2290 }
2291 
2292 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2293 			     struct page *page,
2294 			     unsigned int offset)
2295 {
2296 	return	spd->nr_pages &&
2297 		spd->pages[spd->nr_pages - 1] == page &&
2298 		(spd->partial[spd->nr_pages - 1].offset +
2299 		 spd->partial[spd->nr_pages - 1].len == offset);
2300 }
2301 
2302 /*
2303  * Fill page/offset/length into spd, if it can hold more pages.
2304  */
2305 static bool spd_fill_page(struct splice_pipe_desc *spd,
2306 			  struct pipe_inode_info *pipe, struct page *page,
2307 			  unsigned int *len, unsigned int offset,
2308 			  bool linear,
2309 			  struct sock *sk)
2310 {
2311 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2312 		return true;
2313 
2314 	if (linear) {
2315 		page = linear_to_page(page, len, &offset, sk);
2316 		if (!page)
2317 			return true;
2318 	}
2319 	if (spd_can_coalesce(spd, page, offset)) {
2320 		spd->partial[spd->nr_pages - 1].len += *len;
2321 		return false;
2322 	}
2323 	get_page(page);
2324 	spd->pages[spd->nr_pages] = page;
2325 	spd->partial[spd->nr_pages].len = *len;
2326 	spd->partial[spd->nr_pages].offset = offset;
2327 	spd->nr_pages++;
2328 
2329 	return false;
2330 }
2331 
2332 static bool __splice_segment(struct page *page, unsigned int poff,
2333 			     unsigned int plen, unsigned int *off,
2334 			     unsigned int *len,
2335 			     struct splice_pipe_desc *spd, bool linear,
2336 			     struct sock *sk,
2337 			     struct pipe_inode_info *pipe)
2338 {
2339 	if (!*len)
2340 		return true;
2341 
2342 	/* skip this segment if already processed */
2343 	if (*off >= plen) {
2344 		*off -= plen;
2345 		return false;
2346 	}
2347 
2348 	/* ignore any bits we already processed */
2349 	poff += *off;
2350 	plen -= *off;
2351 	*off = 0;
2352 
2353 	do {
2354 		unsigned int flen = min(*len, plen);
2355 
2356 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2357 				  linear, sk))
2358 			return true;
2359 		poff += flen;
2360 		plen -= flen;
2361 		*len -= flen;
2362 	} while (*len && plen);
2363 
2364 	return false;
2365 }
2366 
2367 /*
2368  * Map linear and fragment data from the skb to spd. It reports true if the
2369  * pipe is full or if we already spliced the requested length.
2370  */
2371 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2372 			      unsigned int *offset, unsigned int *len,
2373 			      struct splice_pipe_desc *spd, struct sock *sk)
2374 {
2375 	int seg;
2376 	struct sk_buff *iter;
2377 
2378 	/* map the linear part :
2379 	 * If skb->head_frag is set, this 'linear' part is backed by a
2380 	 * fragment, and if the head is not shared with any clones then
2381 	 * we can avoid a copy since we own the head portion of this page.
2382 	 */
2383 	if (__splice_segment(virt_to_page(skb->data),
2384 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2385 			     skb_headlen(skb),
2386 			     offset, len, spd,
2387 			     skb_head_is_locked(skb),
2388 			     sk, pipe))
2389 		return true;
2390 
2391 	/*
2392 	 * then map the fragments
2393 	 */
2394 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2395 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2396 
2397 		if (__splice_segment(skb_frag_page(f),
2398 				     f->page_offset, skb_frag_size(f),
2399 				     offset, len, spd, false, sk, pipe))
2400 			return true;
2401 	}
2402 
2403 	skb_walk_frags(skb, iter) {
2404 		if (*offset >= iter->len) {
2405 			*offset -= iter->len;
2406 			continue;
2407 		}
2408 		/* __skb_splice_bits() only fails if the output has no room
2409 		 * left, so no point in going over the frag_list for the error
2410 		 * case.
2411 		 */
2412 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2413 			return true;
2414 	}
2415 
2416 	return false;
2417 }
2418 
2419 /*
2420  * Map data from the skb to a pipe. Should handle both the linear part,
2421  * the fragments, and the frag list.
2422  */
2423 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2424 		    struct pipe_inode_info *pipe, unsigned int tlen,
2425 		    unsigned int flags)
2426 {
2427 	struct partial_page partial[MAX_SKB_FRAGS];
2428 	struct page *pages[MAX_SKB_FRAGS];
2429 	struct splice_pipe_desc spd = {
2430 		.pages = pages,
2431 		.partial = partial,
2432 		.nr_pages_max = MAX_SKB_FRAGS,
2433 		.ops = &nosteal_pipe_buf_ops,
2434 		.spd_release = sock_spd_release,
2435 	};
2436 	int ret = 0;
2437 
2438 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2439 
2440 	if (spd.nr_pages)
2441 		ret = splice_to_pipe(pipe, &spd);
2442 
2443 	return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(skb_splice_bits);
2446 
2447 /* Send skb data on a socket. Socket must be locked. */
2448 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2449 			 int len)
2450 {
2451 	unsigned int orig_len = len;
2452 	struct sk_buff *head = skb;
2453 	unsigned short fragidx;
2454 	int slen, ret;
2455 
2456 do_frag_list:
2457 
2458 	/* Deal with head data */
2459 	while (offset < skb_headlen(skb) && len) {
2460 		struct kvec kv;
2461 		struct msghdr msg;
2462 
2463 		slen = min_t(int, len, skb_headlen(skb) - offset);
2464 		kv.iov_base = skb->data + offset;
2465 		kv.iov_len = slen;
2466 		memset(&msg, 0, sizeof(msg));
2467 		msg.msg_flags = MSG_DONTWAIT;
2468 
2469 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2470 		if (ret <= 0)
2471 			goto error;
2472 
2473 		offset += ret;
2474 		len -= ret;
2475 	}
2476 
2477 	/* All the data was skb head? */
2478 	if (!len)
2479 		goto out;
2480 
2481 	/* Make offset relative to start of frags */
2482 	offset -= skb_headlen(skb);
2483 
2484 	/* Find where we are in frag list */
2485 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2486 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2487 
2488 		if (offset < frag->size)
2489 			break;
2490 
2491 		offset -= frag->size;
2492 	}
2493 
2494 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2495 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2496 
2497 		slen = min_t(size_t, len, frag->size - offset);
2498 
2499 		while (slen) {
2500 			ret = kernel_sendpage_locked(sk, frag->page.p,
2501 						     frag->page_offset + offset,
2502 						     slen, MSG_DONTWAIT);
2503 			if (ret <= 0)
2504 				goto error;
2505 
2506 			len -= ret;
2507 			offset += ret;
2508 			slen -= ret;
2509 		}
2510 
2511 		offset = 0;
2512 	}
2513 
2514 	if (len) {
2515 		/* Process any frag lists */
2516 
2517 		if (skb == head) {
2518 			if (skb_has_frag_list(skb)) {
2519 				skb = skb_shinfo(skb)->frag_list;
2520 				goto do_frag_list;
2521 			}
2522 		} else if (skb->next) {
2523 			skb = skb->next;
2524 			goto do_frag_list;
2525 		}
2526 	}
2527 
2528 out:
2529 	return orig_len - len;
2530 
2531 error:
2532 	return orig_len == len ? ret : orig_len - len;
2533 }
2534 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2535 
2536 /**
2537  *	skb_store_bits - store bits from kernel buffer to skb
2538  *	@skb: destination buffer
2539  *	@offset: offset in destination
2540  *	@from: source buffer
2541  *	@len: number of bytes to copy
2542  *
2543  *	Copy the specified number of bytes from the source buffer to the
2544  *	destination skb.  This function handles all the messy bits of
2545  *	traversing fragment lists and such.
2546  */
2547 
2548 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2549 {
2550 	int start = skb_headlen(skb);
2551 	struct sk_buff *frag_iter;
2552 	int i, copy;
2553 
2554 	if (offset > (int)skb->len - len)
2555 		goto fault;
2556 
2557 	if ((copy = start - offset) > 0) {
2558 		if (copy > len)
2559 			copy = len;
2560 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2561 		if ((len -= copy) == 0)
2562 			return 0;
2563 		offset += copy;
2564 		from += copy;
2565 	}
2566 
2567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2569 		int end;
2570 
2571 		WARN_ON(start > offset + len);
2572 
2573 		end = start + skb_frag_size(frag);
2574 		if ((copy = end - offset) > 0) {
2575 			u32 p_off, p_len, copied;
2576 			struct page *p;
2577 			u8 *vaddr;
2578 
2579 			if (copy > len)
2580 				copy = len;
2581 
2582 			skb_frag_foreach_page(frag,
2583 					      frag->page_offset + offset - start,
2584 					      copy, p, p_off, p_len, copied) {
2585 				vaddr = kmap_atomic(p);
2586 				memcpy(vaddr + p_off, from + copied, p_len);
2587 				kunmap_atomic(vaddr);
2588 			}
2589 
2590 			if ((len -= copy) == 0)
2591 				return 0;
2592 			offset += copy;
2593 			from += copy;
2594 		}
2595 		start = end;
2596 	}
2597 
2598 	skb_walk_frags(skb, frag_iter) {
2599 		int end;
2600 
2601 		WARN_ON(start > offset + len);
2602 
2603 		end = start + frag_iter->len;
2604 		if ((copy = end - offset) > 0) {
2605 			if (copy > len)
2606 				copy = len;
2607 			if (skb_store_bits(frag_iter, offset - start,
2608 					   from, copy))
2609 				goto fault;
2610 			if ((len -= copy) == 0)
2611 				return 0;
2612 			offset += copy;
2613 			from += copy;
2614 		}
2615 		start = end;
2616 	}
2617 	if (!len)
2618 		return 0;
2619 
2620 fault:
2621 	return -EFAULT;
2622 }
2623 EXPORT_SYMBOL(skb_store_bits);
2624 
2625 /* Checksum skb data. */
2626 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2627 		      __wsum csum, const struct skb_checksum_ops *ops)
2628 {
2629 	int start = skb_headlen(skb);
2630 	int i, copy = start - offset;
2631 	struct sk_buff *frag_iter;
2632 	int pos = 0;
2633 
2634 	/* Checksum header. */
2635 	if (copy > 0) {
2636 		if (copy > len)
2637 			copy = len;
2638 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2639 				       skb->data + offset, copy, csum);
2640 		if ((len -= copy) == 0)
2641 			return csum;
2642 		offset += copy;
2643 		pos	= copy;
2644 	}
2645 
2646 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2647 		int end;
2648 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2649 
2650 		WARN_ON(start > offset + len);
2651 
2652 		end = start + skb_frag_size(frag);
2653 		if ((copy = end - offset) > 0) {
2654 			u32 p_off, p_len, copied;
2655 			struct page *p;
2656 			__wsum csum2;
2657 			u8 *vaddr;
2658 
2659 			if (copy > len)
2660 				copy = len;
2661 
2662 			skb_frag_foreach_page(frag,
2663 					      frag->page_offset + offset - start,
2664 					      copy, p, p_off, p_len, copied) {
2665 				vaddr = kmap_atomic(p);
2666 				csum2 = INDIRECT_CALL_1(ops->update,
2667 							csum_partial_ext,
2668 							vaddr + p_off, p_len, 0);
2669 				kunmap_atomic(vaddr);
2670 				csum = INDIRECT_CALL_1(ops->combine,
2671 						       csum_block_add_ext, csum,
2672 						       csum2, pos, p_len);
2673 				pos += p_len;
2674 			}
2675 
2676 			if (!(len -= copy))
2677 				return csum;
2678 			offset += copy;
2679 		}
2680 		start = end;
2681 	}
2682 
2683 	skb_walk_frags(skb, frag_iter) {
2684 		int end;
2685 
2686 		WARN_ON(start > offset + len);
2687 
2688 		end = start + frag_iter->len;
2689 		if ((copy = end - offset) > 0) {
2690 			__wsum csum2;
2691 			if (copy > len)
2692 				copy = len;
2693 			csum2 = __skb_checksum(frag_iter, offset - start,
2694 					       copy, 0, ops);
2695 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2696 					       csum, csum2, pos, copy);
2697 			if ((len -= copy) == 0)
2698 				return csum;
2699 			offset += copy;
2700 			pos    += copy;
2701 		}
2702 		start = end;
2703 	}
2704 	BUG_ON(len);
2705 
2706 	return csum;
2707 }
2708 EXPORT_SYMBOL(__skb_checksum);
2709 
2710 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2711 		    int len, __wsum csum)
2712 {
2713 	const struct skb_checksum_ops ops = {
2714 		.update  = csum_partial_ext,
2715 		.combine = csum_block_add_ext,
2716 	};
2717 
2718 	return __skb_checksum(skb, offset, len, csum, &ops);
2719 }
2720 EXPORT_SYMBOL(skb_checksum);
2721 
2722 /* Both of above in one bottle. */
2723 
2724 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2725 				    u8 *to, int len, __wsum csum)
2726 {
2727 	int start = skb_headlen(skb);
2728 	int i, copy = start - offset;
2729 	struct sk_buff *frag_iter;
2730 	int pos = 0;
2731 
2732 	/* Copy header. */
2733 	if (copy > 0) {
2734 		if (copy > len)
2735 			copy = len;
2736 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2737 						 copy, csum);
2738 		if ((len -= copy) == 0)
2739 			return csum;
2740 		offset += copy;
2741 		to     += copy;
2742 		pos	= copy;
2743 	}
2744 
2745 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2746 		int end;
2747 
2748 		WARN_ON(start > offset + len);
2749 
2750 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2751 		if ((copy = end - offset) > 0) {
2752 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2753 			u32 p_off, p_len, copied;
2754 			struct page *p;
2755 			__wsum csum2;
2756 			u8 *vaddr;
2757 
2758 			if (copy > len)
2759 				copy = len;
2760 
2761 			skb_frag_foreach_page(frag,
2762 					      frag->page_offset + offset - start,
2763 					      copy, p, p_off, p_len, copied) {
2764 				vaddr = kmap_atomic(p);
2765 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2766 								  to + copied,
2767 								  p_len, 0);
2768 				kunmap_atomic(vaddr);
2769 				csum = csum_block_add(csum, csum2, pos);
2770 				pos += p_len;
2771 			}
2772 
2773 			if (!(len -= copy))
2774 				return csum;
2775 			offset += copy;
2776 			to     += copy;
2777 		}
2778 		start = end;
2779 	}
2780 
2781 	skb_walk_frags(skb, frag_iter) {
2782 		__wsum csum2;
2783 		int end;
2784 
2785 		WARN_ON(start > offset + len);
2786 
2787 		end = start + frag_iter->len;
2788 		if ((copy = end - offset) > 0) {
2789 			if (copy > len)
2790 				copy = len;
2791 			csum2 = skb_copy_and_csum_bits(frag_iter,
2792 						       offset - start,
2793 						       to, copy, 0);
2794 			csum = csum_block_add(csum, csum2, pos);
2795 			if ((len -= copy) == 0)
2796 				return csum;
2797 			offset += copy;
2798 			to     += copy;
2799 			pos    += copy;
2800 		}
2801 		start = end;
2802 	}
2803 	BUG_ON(len);
2804 	return csum;
2805 }
2806 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2807 
2808 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2809 {
2810 	__sum16 sum;
2811 
2812 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2813 	/* See comments in __skb_checksum_complete(). */
2814 	if (likely(!sum)) {
2815 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2816 		    !skb->csum_complete_sw)
2817 			netdev_rx_csum_fault(skb->dev, skb);
2818 	}
2819 	if (!skb_shared(skb))
2820 		skb->csum_valid = !sum;
2821 	return sum;
2822 }
2823 EXPORT_SYMBOL(__skb_checksum_complete_head);
2824 
2825 /* This function assumes skb->csum already holds pseudo header's checksum,
2826  * which has been changed from the hardware checksum, for example, by
2827  * __skb_checksum_validate_complete(). And, the original skb->csum must
2828  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2829  *
2830  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2831  * zero. The new checksum is stored back into skb->csum unless the skb is
2832  * shared.
2833  */
2834 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2835 {
2836 	__wsum csum;
2837 	__sum16 sum;
2838 
2839 	csum = skb_checksum(skb, 0, skb->len, 0);
2840 
2841 	sum = csum_fold(csum_add(skb->csum, csum));
2842 	/* This check is inverted, because we already knew the hardware
2843 	 * checksum is invalid before calling this function. So, if the
2844 	 * re-computed checksum is valid instead, then we have a mismatch
2845 	 * between the original skb->csum and skb_checksum(). This means either
2846 	 * the original hardware checksum is incorrect or we screw up skb->csum
2847 	 * when moving skb->data around.
2848 	 */
2849 	if (likely(!sum)) {
2850 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2851 		    !skb->csum_complete_sw)
2852 			netdev_rx_csum_fault(skb->dev, skb);
2853 	}
2854 
2855 	if (!skb_shared(skb)) {
2856 		/* Save full packet checksum */
2857 		skb->csum = csum;
2858 		skb->ip_summed = CHECKSUM_COMPLETE;
2859 		skb->csum_complete_sw = 1;
2860 		skb->csum_valid = !sum;
2861 	}
2862 
2863 	return sum;
2864 }
2865 EXPORT_SYMBOL(__skb_checksum_complete);
2866 
2867 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2868 {
2869 	net_warn_ratelimited(
2870 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2871 		__func__);
2872 	return 0;
2873 }
2874 
2875 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2876 				       int offset, int len)
2877 {
2878 	net_warn_ratelimited(
2879 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2880 		__func__);
2881 	return 0;
2882 }
2883 
2884 static const struct skb_checksum_ops default_crc32c_ops = {
2885 	.update  = warn_crc32c_csum_update,
2886 	.combine = warn_crc32c_csum_combine,
2887 };
2888 
2889 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2890 	&default_crc32c_ops;
2891 EXPORT_SYMBOL(crc32c_csum_stub);
2892 
2893  /**
2894  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2895  *	@from: source buffer
2896  *
2897  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2898  *	into skb_zerocopy().
2899  */
2900 unsigned int
2901 skb_zerocopy_headlen(const struct sk_buff *from)
2902 {
2903 	unsigned int hlen = 0;
2904 
2905 	if (!from->head_frag ||
2906 	    skb_headlen(from) < L1_CACHE_BYTES ||
2907 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2908 		hlen = skb_headlen(from);
2909 
2910 	if (skb_has_frag_list(from))
2911 		hlen = from->len;
2912 
2913 	return hlen;
2914 }
2915 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2916 
2917 /**
2918  *	skb_zerocopy - Zero copy skb to skb
2919  *	@to: destination buffer
2920  *	@from: source buffer
2921  *	@len: number of bytes to copy from source buffer
2922  *	@hlen: size of linear headroom in destination buffer
2923  *
2924  *	Copies up to `len` bytes from `from` to `to` by creating references
2925  *	to the frags in the source buffer.
2926  *
2927  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2928  *	headroom in the `to` buffer.
2929  *
2930  *	Return value:
2931  *	0: everything is OK
2932  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2933  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2934  */
2935 int
2936 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2937 {
2938 	int i, j = 0;
2939 	int plen = 0; /* length of skb->head fragment */
2940 	int ret;
2941 	struct page *page;
2942 	unsigned int offset;
2943 
2944 	BUG_ON(!from->head_frag && !hlen);
2945 
2946 	/* dont bother with small payloads */
2947 	if (len <= skb_tailroom(to))
2948 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2949 
2950 	if (hlen) {
2951 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2952 		if (unlikely(ret))
2953 			return ret;
2954 		len -= hlen;
2955 	} else {
2956 		plen = min_t(int, skb_headlen(from), len);
2957 		if (plen) {
2958 			page = virt_to_head_page(from->head);
2959 			offset = from->data - (unsigned char *)page_address(page);
2960 			__skb_fill_page_desc(to, 0, page, offset, plen);
2961 			get_page(page);
2962 			j = 1;
2963 			len -= plen;
2964 		}
2965 	}
2966 
2967 	to->truesize += len + plen;
2968 	to->len += len + plen;
2969 	to->data_len += len + plen;
2970 
2971 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2972 		skb_tx_error(from);
2973 		return -ENOMEM;
2974 	}
2975 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2976 
2977 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2978 		if (!len)
2979 			break;
2980 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2981 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2982 		len -= skb_shinfo(to)->frags[j].size;
2983 		skb_frag_ref(to, j);
2984 		j++;
2985 	}
2986 	skb_shinfo(to)->nr_frags = j;
2987 
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(skb_zerocopy);
2991 
2992 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2993 {
2994 	__wsum csum;
2995 	long csstart;
2996 
2997 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2998 		csstart = skb_checksum_start_offset(skb);
2999 	else
3000 		csstart = skb_headlen(skb);
3001 
3002 	BUG_ON(csstart > skb_headlen(skb));
3003 
3004 	skb_copy_from_linear_data(skb, to, csstart);
3005 
3006 	csum = 0;
3007 	if (csstart != skb->len)
3008 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3009 					      skb->len - csstart, 0);
3010 
3011 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3012 		long csstuff = csstart + skb->csum_offset;
3013 
3014 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3015 	}
3016 }
3017 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3018 
3019 /**
3020  *	skb_dequeue - remove from the head of the queue
3021  *	@list: list to dequeue from
3022  *
3023  *	Remove the head of the list. The list lock is taken so the function
3024  *	may be used safely with other locking list functions. The head item is
3025  *	returned or %NULL if the list is empty.
3026  */
3027 
3028 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3029 {
3030 	unsigned long flags;
3031 	struct sk_buff *result;
3032 
3033 	spin_lock_irqsave(&list->lock, flags);
3034 	result = __skb_dequeue(list);
3035 	spin_unlock_irqrestore(&list->lock, flags);
3036 	return result;
3037 }
3038 EXPORT_SYMBOL(skb_dequeue);
3039 
3040 /**
3041  *	skb_dequeue_tail - remove from the tail of the queue
3042  *	@list: list to dequeue from
3043  *
3044  *	Remove the tail of the list. The list lock is taken so the function
3045  *	may be used safely with other locking list functions. The tail item is
3046  *	returned or %NULL if the list is empty.
3047  */
3048 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3049 {
3050 	unsigned long flags;
3051 	struct sk_buff *result;
3052 
3053 	spin_lock_irqsave(&list->lock, flags);
3054 	result = __skb_dequeue_tail(list);
3055 	spin_unlock_irqrestore(&list->lock, flags);
3056 	return result;
3057 }
3058 EXPORT_SYMBOL(skb_dequeue_tail);
3059 
3060 /**
3061  *	skb_queue_purge - empty a list
3062  *	@list: list to empty
3063  *
3064  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3065  *	the list and one reference dropped. This function takes the list
3066  *	lock and is atomic with respect to other list locking functions.
3067  */
3068 void skb_queue_purge(struct sk_buff_head *list)
3069 {
3070 	struct sk_buff *skb;
3071 	while ((skb = skb_dequeue(list)) != NULL)
3072 		kfree_skb(skb);
3073 }
3074 EXPORT_SYMBOL(skb_queue_purge);
3075 
3076 /**
3077  *	skb_rbtree_purge - empty a skb rbtree
3078  *	@root: root of the rbtree to empty
3079  *	Return value: the sum of truesizes of all purged skbs.
3080  *
3081  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3082  *	the list and one reference dropped. This function does not take
3083  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3084  *	out-of-order queue is protected by the socket lock).
3085  */
3086 unsigned int skb_rbtree_purge(struct rb_root *root)
3087 {
3088 	struct rb_node *p = rb_first(root);
3089 	unsigned int sum = 0;
3090 
3091 	while (p) {
3092 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3093 
3094 		p = rb_next(p);
3095 		rb_erase(&skb->rbnode, root);
3096 		sum += skb->truesize;
3097 		kfree_skb(skb);
3098 	}
3099 	return sum;
3100 }
3101 
3102 /**
3103  *	skb_queue_head - queue a buffer at the list head
3104  *	@list: list to use
3105  *	@newsk: buffer to queue
3106  *
3107  *	Queue a buffer at the start of the list. This function takes the
3108  *	list lock and can be used safely with other locking &sk_buff functions
3109  *	safely.
3110  *
3111  *	A buffer cannot be placed on two lists at the same time.
3112  */
3113 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3114 {
3115 	unsigned long flags;
3116 
3117 	spin_lock_irqsave(&list->lock, flags);
3118 	__skb_queue_head(list, newsk);
3119 	spin_unlock_irqrestore(&list->lock, flags);
3120 }
3121 EXPORT_SYMBOL(skb_queue_head);
3122 
3123 /**
3124  *	skb_queue_tail - queue a buffer at the list tail
3125  *	@list: list to use
3126  *	@newsk: buffer to queue
3127  *
3128  *	Queue a buffer at the tail of the list. This function takes the
3129  *	list lock and can be used safely with other locking &sk_buff functions
3130  *	safely.
3131  *
3132  *	A buffer cannot be placed on two lists at the same time.
3133  */
3134 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3135 {
3136 	unsigned long flags;
3137 
3138 	spin_lock_irqsave(&list->lock, flags);
3139 	__skb_queue_tail(list, newsk);
3140 	spin_unlock_irqrestore(&list->lock, flags);
3141 }
3142 EXPORT_SYMBOL(skb_queue_tail);
3143 
3144 /**
3145  *	skb_unlink	-	remove a buffer from a list
3146  *	@skb: buffer to remove
3147  *	@list: list to use
3148  *
3149  *	Remove a packet from a list. The list locks are taken and this
3150  *	function is atomic with respect to other list locked calls
3151  *
3152  *	You must know what list the SKB is on.
3153  */
3154 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3155 {
3156 	unsigned long flags;
3157 
3158 	spin_lock_irqsave(&list->lock, flags);
3159 	__skb_unlink(skb, list);
3160 	spin_unlock_irqrestore(&list->lock, flags);
3161 }
3162 EXPORT_SYMBOL(skb_unlink);
3163 
3164 /**
3165  *	skb_append	-	append a buffer
3166  *	@old: buffer to insert after
3167  *	@newsk: buffer to insert
3168  *	@list: list to use
3169  *
3170  *	Place a packet after a given packet in a list. The list locks are taken
3171  *	and this function is atomic with respect to other list locked calls.
3172  *	A buffer cannot be placed on two lists at the same time.
3173  */
3174 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3175 {
3176 	unsigned long flags;
3177 
3178 	spin_lock_irqsave(&list->lock, flags);
3179 	__skb_queue_after(list, old, newsk);
3180 	spin_unlock_irqrestore(&list->lock, flags);
3181 }
3182 EXPORT_SYMBOL(skb_append);
3183 
3184 static inline void skb_split_inside_header(struct sk_buff *skb,
3185 					   struct sk_buff* skb1,
3186 					   const u32 len, const int pos)
3187 {
3188 	int i;
3189 
3190 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3191 					 pos - len);
3192 	/* And move data appendix as is. */
3193 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3194 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3195 
3196 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3197 	skb_shinfo(skb)->nr_frags  = 0;
3198 	skb1->data_len		   = skb->data_len;
3199 	skb1->len		   += skb1->data_len;
3200 	skb->data_len		   = 0;
3201 	skb->len		   = len;
3202 	skb_set_tail_pointer(skb, len);
3203 }
3204 
3205 static inline void skb_split_no_header(struct sk_buff *skb,
3206 				       struct sk_buff* skb1,
3207 				       const u32 len, int pos)
3208 {
3209 	int i, k = 0;
3210 	const int nfrags = skb_shinfo(skb)->nr_frags;
3211 
3212 	skb_shinfo(skb)->nr_frags = 0;
3213 	skb1->len		  = skb1->data_len = skb->len - len;
3214 	skb->len		  = len;
3215 	skb->data_len		  = len - pos;
3216 
3217 	for (i = 0; i < nfrags; i++) {
3218 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3219 
3220 		if (pos + size > len) {
3221 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3222 
3223 			if (pos < len) {
3224 				/* Split frag.
3225 				 * We have two variants in this case:
3226 				 * 1. Move all the frag to the second
3227 				 *    part, if it is possible. F.e.
3228 				 *    this approach is mandatory for TUX,
3229 				 *    where splitting is expensive.
3230 				 * 2. Split is accurately. We make this.
3231 				 */
3232 				skb_frag_ref(skb, i);
3233 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3234 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3235 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3236 				skb_shinfo(skb)->nr_frags++;
3237 			}
3238 			k++;
3239 		} else
3240 			skb_shinfo(skb)->nr_frags++;
3241 		pos += size;
3242 	}
3243 	skb_shinfo(skb1)->nr_frags = k;
3244 }
3245 
3246 /**
3247  * skb_split - Split fragmented skb to two parts at length len.
3248  * @skb: the buffer to split
3249  * @skb1: the buffer to receive the second part
3250  * @len: new length for skb
3251  */
3252 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3253 {
3254 	int pos = skb_headlen(skb);
3255 
3256 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3257 				      SKBTX_SHARED_FRAG;
3258 	skb_zerocopy_clone(skb1, skb, 0);
3259 	if (len < pos)	/* Split line is inside header. */
3260 		skb_split_inside_header(skb, skb1, len, pos);
3261 	else		/* Second chunk has no header, nothing to copy. */
3262 		skb_split_no_header(skb, skb1, len, pos);
3263 }
3264 EXPORT_SYMBOL(skb_split);
3265 
3266 /* Shifting from/to a cloned skb is a no-go.
3267  *
3268  * Caller cannot keep skb_shinfo related pointers past calling here!
3269  */
3270 static int skb_prepare_for_shift(struct sk_buff *skb)
3271 {
3272 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3273 }
3274 
3275 /**
3276  * skb_shift - Shifts paged data partially from skb to another
3277  * @tgt: buffer into which tail data gets added
3278  * @skb: buffer from which the paged data comes from
3279  * @shiftlen: shift up to this many bytes
3280  *
3281  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3282  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3283  * It's up to caller to free skb if everything was shifted.
3284  *
3285  * If @tgt runs out of frags, the whole operation is aborted.
3286  *
3287  * Skb cannot include anything else but paged data while tgt is allowed
3288  * to have non-paged data as well.
3289  *
3290  * TODO: full sized shift could be optimized but that would need
3291  * specialized skb free'er to handle frags without up-to-date nr_frags.
3292  */
3293 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3294 {
3295 	int from, to, merge, todo;
3296 	struct skb_frag_struct *fragfrom, *fragto;
3297 
3298 	BUG_ON(shiftlen > skb->len);
3299 
3300 	if (skb_headlen(skb))
3301 		return 0;
3302 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3303 		return 0;
3304 
3305 	todo = shiftlen;
3306 	from = 0;
3307 	to = skb_shinfo(tgt)->nr_frags;
3308 	fragfrom = &skb_shinfo(skb)->frags[from];
3309 
3310 	/* Actual merge is delayed until the point when we know we can
3311 	 * commit all, so that we don't have to undo partial changes
3312 	 */
3313 	if (!to ||
3314 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3315 			      fragfrom->page_offset)) {
3316 		merge = -1;
3317 	} else {
3318 		merge = to - 1;
3319 
3320 		todo -= skb_frag_size(fragfrom);
3321 		if (todo < 0) {
3322 			if (skb_prepare_for_shift(skb) ||
3323 			    skb_prepare_for_shift(tgt))
3324 				return 0;
3325 
3326 			/* All previous frag pointers might be stale! */
3327 			fragfrom = &skb_shinfo(skb)->frags[from];
3328 			fragto = &skb_shinfo(tgt)->frags[merge];
3329 
3330 			skb_frag_size_add(fragto, shiftlen);
3331 			skb_frag_size_sub(fragfrom, shiftlen);
3332 			fragfrom->page_offset += shiftlen;
3333 
3334 			goto onlymerged;
3335 		}
3336 
3337 		from++;
3338 	}
3339 
3340 	/* Skip full, not-fitting skb to avoid expensive operations */
3341 	if ((shiftlen == skb->len) &&
3342 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3343 		return 0;
3344 
3345 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3346 		return 0;
3347 
3348 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3349 		if (to == MAX_SKB_FRAGS)
3350 			return 0;
3351 
3352 		fragfrom = &skb_shinfo(skb)->frags[from];
3353 		fragto = &skb_shinfo(tgt)->frags[to];
3354 
3355 		if (todo >= skb_frag_size(fragfrom)) {
3356 			*fragto = *fragfrom;
3357 			todo -= skb_frag_size(fragfrom);
3358 			from++;
3359 			to++;
3360 
3361 		} else {
3362 			__skb_frag_ref(fragfrom);
3363 			fragto->page = fragfrom->page;
3364 			fragto->page_offset = fragfrom->page_offset;
3365 			skb_frag_size_set(fragto, todo);
3366 
3367 			fragfrom->page_offset += todo;
3368 			skb_frag_size_sub(fragfrom, todo);
3369 			todo = 0;
3370 
3371 			to++;
3372 			break;
3373 		}
3374 	}
3375 
3376 	/* Ready to "commit" this state change to tgt */
3377 	skb_shinfo(tgt)->nr_frags = to;
3378 
3379 	if (merge >= 0) {
3380 		fragfrom = &skb_shinfo(skb)->frags[0];
3381 		fragto = &skb_shinfo(tgt)->frags[merge];
3382 
3383 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3384 		__skb_frag_unref(fragfrom);
3385 	}
3386 
3387 	/* Reposition in the original skb */
3388 	to = 0;
3389 	while (from < skb_shinfo(skb)->nr_frags)
3390 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3391 	skb_shinfo(skb)->nr_frags = to;
3392 
3393 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3394 
3395 onlymerged:
3396 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3397 	 * the other hand might need it if it needs to be resent
3398 	 */
3399 	tgt->ip_summed = CHECKSUM_PARTIAL;
3400 	skb->ip_summed = CHECKSUM_PARTIAL;
3401 
3402 	/* Yak, is it really working this way? Some helper please? */
3403 	skb->len -= shiftlen;
3404 	skb->data_len -= shiftlen;
3405 	skb->truesize -= shiftlen;
3406 	tgt->len += shiftlen;
3407 	tgt->data_len += shiftlen;
3408 	tgt->truesize += shiftlen;
3409 
3410 	return shiftlen;
3411 }
3412 
3413 /**
3414  * skb_prepare_seq_read - Prepare a sequential read of skb data
3415  * @skb: the buffer to read
3416  * @from: lower offset of data to be read
3417  * @to: upper offset of data to be read
3418  * @st: state variable
3419  *
3420  * Initializes the specified state variable. Must be called before
3421  * invoking skb_seq_read() for the first time.
3422  */
3423 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3424 			  unsigned int to, struct skb_seq_state *st)
3425 {
3426 	st->lower_offset = from;
3427 	st->upper_offset = to;
3428 	st->root_skb = st->cur_skb = skb;
3429 	st->frag_idx = st->stepped_offset = 0;
3430 	st->frag_data = NULL;
3431 }
3432 EXPORT_SYMBOL(skb_prepare_seq_read);
3433 
3434 /**
3435  * skb_seq_read - Sequentially read skb data
3436  * @consumed: number of bytes consumed by the caller so far
3437  * @data: destination pointer for data to be returned
3438  * @st: state variable
3439  *
3440  * Reads a block of skb data at @consumed relative to the
3441  * lower offset specified to skb_prepare_seq_read(). Assigns
3442  * the head of the data block to @data and returns the length
3443  * of the block or 0 if the end of the skb data or the upper
3444  * offset has been reached.
3445  *
3446  * The caller is not required to consume all of the data
3447  * returned, i.e. @consumed is typically set to the number
3448  * of bytes already consumed and the next call to
3449  * skb_seq_read() will return the remaining part of the block.
3450  *
3451  * Note 1: The size of each block of data returned can be arbitrary,
3452  *       this limitation is the cost for zerocopy sequential
3453  *       reads of potentially non linear data.
3454  *
3455  * Note 2: Fragment lists within fragments are not implemented
3456  *       at the moment, state->root_skb could be replaced with
3457  *       a stack for this purpose.
3458  */
3459 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3460 			  struct skb_seq_state *st)
3461 {
3462 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3463 	skb_frag_t *frag;
3464 
3465 	if (unlikely(abs_offset >= st->upper_offset)) {
3466 		if (st->frag_data) {
3467 			kunmap_atomic(st->frag_data);
3468 			st->frag_data = NULL;
3469 		}
3470 		return 0;
3471 	}
3472 
3473 next_skb:
3474 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3475 
3476 	if (abs_offset < block_limit && !st->frag_data) {
3477 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3478 		return block_limit - abs_offset;
3479 	}
3480 
3481 	if (st->frag_idx == 0 && !st->frag_data)
3482 		st->stepped_offset += skb_headlen(st->cur_skb);
3483 
3484 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3485 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3486 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3487 
3488 		if (abs_offset < block_limit) {
3489 			if (!st->frag_data)
3490 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3491 
3492 			*data = (u8 *) st->frag_data + frag->page_offset +
3493 				(abs_offset - st->stepped_offset);
3494 
3495 			return block_limit - abs_offset;
3496 		}
3497 
3498 		if (st->frag_data) {
3499 			kunmap_atomic(st->frag_data);
3500 			st->frag_data = NULL;
3501 		}
3502 
3503 		st->frag_idx++;
3504 		st->stepped_offset += skb_frag_size(frag);
3505 	}
3506 
3507 	if (st->frag_data) {
3508 		kunmap_atomic(st->frag_data);
3509 		st->frag_data = NULL;
3510 	}
3511 
3512 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3513 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3514 		st->frag_idx = 0;
3515 		goto next_skb;
3516 	} else if (st->cur_skb->next) {
3517 		st->cur_skb = st->cur_skb->next;
3518 		st->frag_idx = 0;
3519 		goto next_skb;
3520 	}
3521 
3522 	return 0;
3523 }
3524 EXPORT_SYMBOL(skb_seq_read);
3525 
3526 /**
3527  * skb_abort_seq_read - Abort a sequential read of skb data
3528  * @st: state variable
3529  *
3530  * Must be called if skb_seq_read() was not called until it
3531  * returned 0.
3532  */
3533 void skb_abort_seq_read(struct skb_seq_state *st)
3534 {
3535 	if (st->frag_data)
3536 		kunmap_atomic(st->frag_data);
3537 }
3538 EXPORT_SYMBOL(skb_abort_seq_read);
3539 
3540 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3541 
3542 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3543 					  struct ts_config *conf,
3544 					  struct ts_state *state)
3545 {
3546 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3547 }
3548 
3549 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3550 {
3551 	skb_abort_seq_read(TS_SKB_CB(state));
3552 }
3553 
3554 /**
3555  * skb_find_text - Find a text pattern in skb data
3556  * @skb: the buffer to look in
3557  * @from: search offset
3558  * @to: search limit
3559  * @config: textsearch configuration
3560  *
3561  * Finds a pattern in the skb data according to the specified
3562  * textsearch configuration. Use textsearch_next() to retrieve
3563  * subsequent occurrences of the pattern. Returns the offset
3564  * to the first occurrence or UINT_MAX if no match was found.
3565  */
3566 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3567 			   unsigned int to, struct ts_config *config)
3568 {
3569 	struct ts_state state;
3570 	unsigned int ret;
3571 
3572 	config->get_next_block = skb_ts_get_next_block;
3573 	config->finish = skb_ts_finish;
3574 
3575 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3576 
3577 	ret = textsearch_find(config, &state);
3578 	return (ret <= to - from ? ret : UINT_MAX);
3579 }
3580 EXPORT_SYMBOL(skb_find_text);
3581 
3582 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3583 			 int offset, size_t size)
3584 {
3585 	int i = skb_shinfo(skb)->nr_frags;
3586 
3587 	if (skb_can_coalesce(skb, i, page, offset)) {
3588 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3589 	} else if (i < MAX_SKB_FRAGS) {
3590 		get_page(page);
3591 		skb_fill_page_desc(skb, i, page, offset, size);
3592 	} else {
3593 		return -EMSGSIZE;
3594 	}
3595 
3596 	return 0;
3597 }
3598 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3599 
3600 /**
3601  *	skb_pull_rcsum - pull skb and update receive checksum
3602  *	@skb: buffer to update
3603  *	@len: length of data pulled
3604  *
3605  *	This function performs an skb_pull on the packet and updates
3606  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3607  *	receive path processing instead of skb_pull unless you know
3608  *	that the checksum difference is zero (e.g., a valid IP header)
3609  *	or you are setting ip_summed to CHECKSUM_NONE.
3610  */
3611 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3612 {
3613 	unsigned char *data = skb->data;
3614 
3615 	BUG_ON(len > skb->len);
3616 	__skb_pull(skb, len);
3617 	skb_postpull_rcsum(skb, data, len);
3618 	return skb->data;
3619 }
3620 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3621 
3622 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3623 {
3624 	skb_frag_t head_frag;
3625 	struct page *page;
3626 
3627 	page = virt_to_head_page(frag_skb->head);
3628 	head_frag.page.p = page;
3629 	head_frag.page_offset = frag_skb->data -
3630 		(unsigned char *)page_address(page);
3631 	head_frag.size = skb_headlen(frag_skb);
3632 	return head_frag;
3633 }
3634 
3635 /**
3636  *	skb_segment - Perform protocol segmentation on skb.
3637  *	@head_skb: buffer to segment
3638  *	@features: features for the output path (see dev->features)
3639  *
3640  *	This function performs segmentation on the given skb.  It returns
3641  *	a pointer to the first in a list of new skbs for the segments.
3642  *	In case of error it returns ERR_PTR(err).
3643  */
3644 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3645 			    netdev_features_t features)
3646 {
3647 	struct sk_buff *segs = NULL;
3648 	struct sk_buff *tail = NULL;
3649 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3650 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3651 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3652 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3653 	struct sk_buff *frag_skb = head_skb;
3654 	unsigned int offset = doffset;
3655 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3656 	unsigned int partial_segs = 0;
3657 	unsigned int headroom;
3658 	unsigned int len = head_skb->len;
3659 	__be16 proto;
3660 	bool csum, sg;
3661 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3662 	int err = -ENOMEM;
3663 	int i = 0;
3664 	int pos;
3665 	int dummy;
3666 
3667 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3668 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3669 		/* gso_size is untrusted, and we have a frag_list with a linear
3670 		 * non head_frag head.
3671 		 *
3672 		 * (we assume checking the first list_skb member suffices;
3673 		 * i.e if either of the list_skb members have non head_frag
3674 		 * head, then the first one has too).
3675 		 *
3676 		 * If head_skb's headlen does not fit requested gso_size, it
3677 		 * means that the frag_list members do NOT terminate on exact
3678 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3679 		 * sharing. Therefore we must fallback to copying the frag_list
3680 		 * skbs; we do so by disabling SG.
3681 		 */
3682 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3683 			features &= ~NETIF_F_SG;
3684 	}
3685 
3686 	__skb_push(head_skb, doffset);
3687 	proto = skb_network_protocol(head_skb, &dummy);
3688 	if (unlikely(!proto))
3689 		return ERR_PTR(-EINVAL);
3690 
3691 	sg = !!(features & NETIF_F_SG);
3692 	csum = !!can_checksum_protocol(features, proto);
3693 
3694 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3695 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3696 			struct sk_buff *iter;
3697 			unsigned int frag_len;
3698 
3699 			if (!list_skb ||
3700 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3701 				goto normal;
3702 
3703 			/* If we get here then all the required
3704 			 * GSO features except frag_list are supported.
3705 			 * Try to split the SKB to multiple GSO SKBs
3706 			 * with no frag_list.
3707 			 * Currently we can do that only when the buffers don't
3708 			 * have a linear part and all the buffers except
3709 			 * the last are of the same length.
3710 			 */
3711 			frag_len = list_skb->len;
3712 			skb_walk_frags(head_skb, iter) {
3713 				if (frag_len != iter->len && iter->next)
3714 					goto normal;
3715 				if (skb_headlen(iter) && !iter->head_frag)
3716 					goto normal;
3717 
3718 				len -= iter->len;
3719 			}
3720 
3721 			if (len != frag_len)
3722 				goto normal;
3723 		}
3724 
3725 		/* GSO partial only requires that we trim off any excess that
3726 		 * doesn't fit into an MSS sized block, so take care of that
3727 		 * now.
3728 		 */
3729 		partial_segs = len / mss;
3730 		if (partial_segs > 1)
3731 			mss *= partial_segs;
3732 		else
3733 			partial_segs = 0;
3734 	}
3735 
3736 normal:
3737 	headroom = skb_headroom(head_skb);
3738 	pos = skb_headlen(head_skb);
3739 
3740 	do {
3741 		struct sk_buff *nskb;
3742 		skb_frag_t *nskb_frag;
3743 		int hsize;
3744 		int size;
3745 
3746 		if (unlikely(mss == GSO_BY_FRAGS)) {
3747 			len = list_skb->len;
3748 		} else {
3749 			len = head_skb->len - offset;
3750 			if (len > mss)
3751 				len = mss;
3752 		}
3753 
3754 		hsize = skb_headlen(head_skb) - offset;
3755 		if (hsize < 0)
3756 			hsize = 0;
3757 		if (hsize > len || !sg)
3758 			hsize = len;
3759 
3760 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3761 		    (skb_headlen(list_skb) == len || sg)) {
3762 			BUG_ON(skb_headlen(list_skb) > len);
3763 
3764 			i = 0;
3765 			nfrags = skb_shinfo(list_skb)->nr_frags;
3766 			frag = skb_shinfo(list_skb)->frags;
3767 			frag_skb = list_skb;
3768 			pos += skb_headlen(list_skb);
3769 
3770 			while (pos < offset + len) {
3771 				BUG_ON(i >= nfrags);
3772 
3773 				size = skb_frag_size(frag);
3774 				if (pos + size > offset + len)
3775 					break;
3776 
3777 				i++;
3778 				pos += size;
3779 				frag++;
3780 			}
3781 
3782 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3783 			list_skb = list_skb->next;
3784 
3785 			if (unlikely(!nskb))
3786 				goto err;
3787 
3788 			if (unlikely(pskb_trim(nskb, len))) {
3789 				kfree_skb(nskb);
3790 				goto err;
3791 			}
3792 
3793 			hsize = skb_end_offset(nskb);
3794 			if (skb_cow_head(nskb, doffset + headroom)) {
3795 				kfree_skb(nskb);
3796 				goto err;
3797 			}
3798 
3799 			nskb->truesize += skb_end_offset(nskb) - hsize;
3800 			skb_release_head_state(nskb);
3801 			__skb_push(nskb, doffset);
3802 		} else {
3803 			nskb = __alloc_skb(hsize + doffset + headroom,
3804 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3805 					   NUMA_NO_NODE);
3806 
3807 			if (unlikely(!nskb))
3808 				goto err;
3809 
3810 			skb_reserve(nskb, headroom);
3811 			__skb_put(nskb, doffset);
3812 		}
3813 
3814 		if (segs)
3815 			tail->next = nskb;
3816 		else
3817 			segs = nskb;
3818 		tail = nskb;
3819 
3820 		__copy_skb_header(nskb, head_skb);
3821 
3822 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3823 		skb_reset_mac_len(nskb);
3824 
3825 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3826 						 nskb->data - tnl_hlen,
3827 						 doffset + tnl_hlen);
3828 
3829 		if (nskb->len == len + doffset)
3830 			goto perform_csum_check;
3831 
3832 		if (!sg) {
3833 			if (!nskb->remcsum_offload)
3834 				nskb->ip_summed = CHECKSUM_NONE;
3835 			SKB_GSO_CB(nskb)->csum =
3836 				skb_copy_and_csum_bits(head_skb, offset,
3837 						       skb_put(nskb, len),
3838 						       len, 0);
3839 			SKB_GSO_CB(nskb)->csum_start =
3840 				skb_headroom(nskb) + doffset;
3841 			continue;
3842 		}
3843 
3844 		nskb_frag = skb_shinfo(nskb)->frags;
3845 
3846 		skb_copy_from_linear_data_offset(head_skb, offset,
3847 						 skb_put(nskb, hsize), hsize);
3848 
3849 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3850 					      SKBTX_SHARED_FRAG;
3851 
3852 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3853 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3854 			goto err;
3855 
3856 		while (pos < offset + len) {
3857 			if (i >= nfrags) {
3858 				i = 0;
3859 				nfrags = skb_shinfo(list_skb)->nr_frags;
3860 				frag = skb_shinfo(list_skb)->frags;
3861 				frag_skb = list_skb;
3862 				if (!skb_headlen(list_skb)) {
3863 					BUG_ON(!nfrags);
3864 				} else {
3865 					BUG_ON(!list_skb->head_frag);
3866 
3867 					/* to make room for head_frag. */
3868 					i--;
3869 					frag--;
3870 				}
3871 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3872 				    skb_zerocopy_clone(nskb, frag_skb,
3873 						       GFP_ATOMIC))
3874 					goto err;
3875 
3876 				list_skb = list_skb->next;
3877 			}
3878 
3879 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3880 				     MAX_SKB_FRAGS)) {
3881 				net_warn_ratelimited(
3882 					"skb_segment: too many frags: %u %u\n",
3883 					pos, mss);
3884 				err = -EINVAL;
3885 				goto err;
3886 			}
3887 
3888 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3889 			__skb_frag_ref(nskb_frag);
3890 			size = skb_frag_size(nskb_frag);
3891 
3892 			if (pos < offset) {
3893 				nskb_frag->page_offset += offset - pos;
3894 				skb_frag_size_sub(nskb_frag, offset - pos);
3895 			}
3896 
3897 			skb_shinfo(nskb)->nr_frags++;
3898 
3899 			if (pos + size <= offset + len) {
3900 				i++;
3901 				frag++;
3902 				pos += size;
3903 			} else {
3904 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3905 				goto skip_fraglist;
3906 			}
3907 
3908 			nskb_frag++;
3909 		}
3910 
3911 skip_fraglist:
3912 		nskb->data_len = len - hsize;
3913 		nskb->len += nskb->data_len;
3914 		nskb->truesize += nskb->data_len;
3915 
3916 perform_csum_check:
3917 		if (!csum) {
3918 			if (skb_has_shared_frag(nskb) &&
3919 			    __skb_linearize(nskb))
3920 				goto err;
3921 
3922 			if (!nskb->remcsum_offload)
3923 				nskb->ip_summed = CHECKSUM_NONE;
3924 			SKB_GSO_CB(nskb)->csum =
3925 				skb_checksum(nskb, doffset,
3926 					     nskb->len - doffset, 0);
3927 			SKB_GSO_CB(nskb)->csum_start =
3928 				skb_headroom(nskb) + doffset;
3929 		}
3930 	} while ((offset += len) < head_skb->len);
3931 
3932 	/* Some callers want to get the end of the list.
3933 	 * Put it in segs->prev to avoid walking the list.
3934 	 * (see validate_xmit_skb_list() for example)
3935 	 */
3936 	segs->prev = tail;
3937 
3938 	if (partial_segs) {
3939 		struct sk_buff *iter;
3940 		int type = skb_shinfo(head_skb)->gso_type;
3941 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3942 
3943 		/* Update type to add partial and then remove dodgy if set */
3944 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3945 		type &= ~SKB_GSO_DODGY;
3946 
3947 		/* Update GSO info and prepare to start updating headers on
3948 		 * our way back down the stack of protocols.
3949 		 */
3950 		for (iter = segs; iter; iter = iter->next) {
3951 			skb_shinfo(iter)->gso_size = gso_size;
3952 			skb_shinfo(iter)->gso_segs = partial_segs;
3953 			skb_shinfo(iter)->gso_type = type;
3954 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3955 		}
3956 
3957 		if (tail->len - doffset <= gso_size)
3958 			skb_shinfo(tail)->gso_size = 0;
3959 		else if (tail != segs)
3960 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3961 	}
3962 
3963 	/* Following permits correct backpressure, for protocols
3964 	 * using skb_set_owner_w().
3965 	 * Idea is to tranfert ownership from head_skb to last segment.
3966 	 */
3967 	if (head_skb->destructor == sock_wfree) {
3968 		swap(tail->truesize, head_skb->truesize);
3969 		swap(tail->destructor, head_skb->destructor);
3970 		swap(tail->sk, head_skb->sk);
3971 	}
3972 	return segs;
3973 
3974 err:
3975 	kfree_skb_list(segs);
3976 	return ERR_PTR(err);
3977 }
3978 EXPORT_SYMBOL_GPL(skb_segment);
3979 
3980 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3981 {
3982 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3983 	unsigned int offset = skb_gro_offset(skb);
3984 	unsigned int headlen = skb_headlen(skb);
3985 	unsigned int len = skb_gro_len(skb);
3986 	unsigned int delta_truesize;
3987 	struct sk_buff *lp;
3988 
3989 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3990 		return -E2BIG;
3991 
3992 	lp = NAPI_GRO_CB(p)->last;
3993 	pinfo = skb_shinfo(lp);
3994 
3995 	if (headlen <= offset) {
3996 		skb_frag_t *frag;
3997 		skb_frag_t *frag2;
3998 		int i = skbinfo->nr_frags;
3999 		int nr_frags = pinfo->nr_frags + i;
4000 
4001 		if (nr_frags > MAX_SKB_FRAGS)
4002 			goto merge;
4003 
4004 		offset -= headlen;
4005 		pinfo->nr_frags = nr_frags;
4006 		skbinfo->nr_frags = 0;
4007 
4008 		frag = pinfo->frags + nr_frags;
4009 		frag2 = skbinfo->frags + i;
4010 		do {
4011 			*--frag = *--frag2;
4012 		} while (--i);
4013 
4014 		frag->page_offset += offset;
4015 		skb_frag_size_sub(frag, offset);
4016 
4017 		/* all fragments truesize : remove (head size + sk_buff) */
4018 		delta_truesize = skb->truesize -
4019 				 SKB_TRUESIZE(skb_end_offset(skb));
4020 
4021 		skb->truesize -= skb->data_len;
4022 		skb->len -= skb->data_len;
4023 		skb->data_len = 0;
4024 
4025 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4026 		goto done;
4027 	} else if (skb->head_frag) {
4028 		int nr_frags = pinfo->nr_frags;
4029 		skb_frag_t *frag = pinfo->frags + nr_frags;
4030 		struct page *page = virt_to_head_page(skb->head);
4031 		unsigned int first_size = headlen - offset;
4032 		unsigned int first_offset;
4033 
4034 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4035 			goto merge;
4036 
4037 		first_offset = skb->data -
4038 			       (unsigned char *)page_address(page) +
4039 			       offset;
4040 
4041 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4042 
4043 		frag->page.p	  = page;
4044 		frag->page_offset = first_offset;
4045 		skb_frag_size_set(frag, first_size);
4046 
4047 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4048 		/* We dont need to clear skbinfo->nr_frags here */
4049 
4050 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4051 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4052 		goto done;
4053 	}
4054 
4055 merge:
4056 	delta_truesize = skb->truesize;
4057 	if (offset > headlen) {
4058 		unsigned int eat = offset - headlen;
4059 
4060 		skbinfo->frags[0].page_offset += eat;
4061 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4062 		skb->data_len -= eat;
4063 		skb->len -= eat;
4064 		offset = headlen;
4065 	}
4066 
4067 	__skb_pull(skb, offset);
4068 
4069 	if (NAPI_GRO_CB(p)->last == p)
4070 		skb_shinfo(p)->frag_list = skb;
4071 	else
4072 		NAPI_GRO_CB(p)->last->next = skb;
4073 	NAPI_GRO_CB(p)->last = skb;
4074 	__skb_header_release(skb);
4075 	lp = p;
4076 
4077 done:
4078 	NAPI_GRO_CB(p)->count++;
4079 	p->data_len += len;
4080 	p->truesize += delta_truesize;
4081 	p->len += len;
4082 	if (lp != p) {
4083 		lp->data_len += len;
4084 		lp->truesize += delta_truesize;
4085 		lp->len += len;
4086 	}
4087 	NAPI_GRO_CB(skb)->same_flow = 1;
4088 	return 0;
4089 }
4090 EXPORT_SYMBOL_GPL(skb_gro_receive);
4091 
4092 #ifdef CONFIG_SKB_EXTENSIONS
4093 #define SKB_EXT_ALIGN_VALUE	8
4094 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4095 
4096 static const u8 skb_ext_type_len[] = {
4097 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4098 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4099 #endif
4100 #ifdef CONFIG_XFRM
4101 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4102 #endif
4103 };
4104 
4105 static __always_inline unsigned int skb_ext_total_length(void)
4106 {
4107 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4108 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4109 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4110 #endif
4111 #ifdef CONFIG_XFRM
4112 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4113 #endif
4114 		0;
4115 }
4116 
4117 static void skb_extensions_init(void)
4118 {
4119 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4120 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4121 
4122 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4123 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4124 					     0,
4125 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4126 					     NULL);
4127 }
4128 #else
4129 static void skb_extensions_init(void) {}
4130 #endif
4131 
4132 void __init skb_init(void)
4133 {
4134 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4135 					      sizeof(struct sk_buff),
4136 					      0,
4137 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4138 					      offsetof(struct sk_buff, cb),
4139 					      sizeof_field(struct sk_buff, cb),
4140 					      NULL);
4141 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4142 						sizeof(struct sk_buff_fclones),
4143 						0,
4144 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4145 						NULL);
4146 	skb_extensions_init();
4147 }
4148 
4149 static int
4150 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4151 	       unsigned int recursion_level)
4152 {
4153 	int start = skb_headlen(skb);
4154 	int i, copy = start - offset;
4155 	struct sk_buff *frag_iter;
4156 	int elt = 0;
4157 
4158 	if (unlikely(recursion_level >= 24))
4159 		return -EMSGSIZE;
4160 
4161 	if (copy > 0) {
4162 		if (copy > len)
4163 			copy = len;
4164 		sg_set_buf(sg, skb->data + offset, copy);
4165 		elt++;
4166 		if ((len -= copy) == 0)
4167 			return elt;
4168 		offset += copy;
4169 	}
4170 
4171 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4172 		int end;
4173 
4174 		WARN_ON(start > offset + len);
4175 
4176 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4177 		if ((copy = end - offset) > 0) {
4178 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4179 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4180 				return -EMSGSIZE;
4181 
4182 			if (copy > len)
4183 				copy = len;
4184 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4185 					frag->page_offset+offset-start);
4186 			elt++;
4187 			if (!(len -= copy))
4188 				return elt;
4189 			offset += copy;
4190 		}
4191 		start = end;
4192 	}
4193 
4194 	skb_walk_frags(skb, frag_iter) {
4195 		int end, ret;
4196 
4197 		WARN_ON(start > offset + len);
4198 
4199 		end = start + frag_iter->len;
4200 		if ((copy = end - offset) > 0) {
4201 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4202 				return -EMSGSIZE;
4203 
4204 			if (copy > len)
4205 				copy = len;
4206 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4207 					      copy, recursion_level + 1);
4208 			if (unlikely(ret < 0))
4209 				return ret;
4210 			elt += ret;
4211 			if ((len -= copy) == 0)
4212 				return elt;
4213 			offset += copy;
4214 		}
4215 		start = end;
4216 	}
4217 	BUG_ON(len);
4218 	return elt;
4219 }
4220 
4221 /**
4222  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4223  *	@skb: Socket buffer containing the buffers to be mapped
4224  *	@sg: The scatter-gather list to map into
4225  *	@offset: The offset into the buffer's contents to start mapping
4226  *	@len: Length of buffer space to be mapped
4227  *
4228  *	Fill the specified scatter-gather list with mappings/pointers into a
4229  *	region of the buffer space attached to a socket buffer. Returns either
4230  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4231  *	could not fit.
4232  */
4233 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4234 {
4235 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4236 
4237 	if (nsg <= 0)
4238 		return nsg;
4239 
4240 	sg_mark_end(&sg[nsg - 1]);
4241 
4242 	return nsg;
4243 }
4244 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4245 
4246 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4247  * sglist without mark the sg which contain last skb data as the end.
4248  * So the caller can mannipulate sg list as will when padding new data after
4249  * the first call without calling sg_unmark_end to expend sg list.
4250  *
4251  * Scenario to use skb_to_sgvec_nomark:
4252  * 1. sg_init_table
4253  * 2. skb_to_sgvec_nomark(payload1)
4254  * 3. skb_to_sgvec_nomark(payload2)
4255  *
4256  * This is equivalent to:
4257  * 1. sg_init_table
4258  * 2. skb_to_sgvec(payload1)
4259  * 3. sg_unmark_end
4260  * 4. skb_to_sgvec(payload2)
4261  *
4262  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4263  * is more preferable.
4264  */
4265 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4266 			int offset, int len)
4267 {
4268 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4269 }
4270 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4271 
4272 
4273 
4274 /**
4275  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4276  *	@skb: The socket buffer to check.
4277  *	@tailbits: Amount of trailing space to be added
4278  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4279  *
4280  *	Make sure that the data buffers attached to a socket buffer are
4281  *	writable. If they are not, private copies are made of the data buffers
4282  *	and the socket buffer is set to use these instead.
4283  *
4284  *	If @tailbits is given, make sure that there is space to write @tailbits
4285  *	bytes of data beyond current end of socket buffer.  @trailer will be
4286  *	set to point to the skb in which this space begins.
4287  *
4288  *	The number of scatterlist elements required to completely map the
4289  *	COW'd and extended socket buffer will be returned.
4290  */
4291 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4292 {
4293 	int copyflag;
4294 	int elt;
4295 	struct sk_buff *skb1, **skb_p;
4296 
4297 	/* If skb is cloned or its head is paged, reallocate
4298 	 * head pulling out all the pages (pages are considered not writable
4299 	 * at the moment even if they are anonymous).
4300 	 */
4301 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4302 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4303 		return -ENOMEM;
4304 
4305 	/* Easy case. Most of packets will go this way. */
4306 	if (!skb_has_frag_list(skb)) {
4307 		/* A little of trouble, not enough of space for trailer.
4308 		 * This should not happen, when stack is tuned to generate
4309 		 * good frames. OK, on miss we reallocate and reserve even more
4310 		 * space, 128 bytes is fair. */
4311 
4312 		if (skb_tailroom(skb) < tailbits &&
4313 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4314 			return -ENOMEM;
4315 
4316 		/* Voila! */
4317 		*trailer = skb;
4318 		return 1;
4319 	}
4320 
4321 	/* Misery. We are in troubles, going to mincer fragments... */
4322 
4323 	elt = 1;
4324 	skb_p = &skb_shinfo(skb)->frag_list;
4325 	copyflag = 0;
4326 
4327 	while ((skb1 = *skb_p) != NULL) {
4328 		int ntail = 0;
4329 
4330 		/* The fragment is partially pulled by someone,
4331 		 * this can happen on input. Copy it and everything
4332 		 * after it. */
4333 
4334 		if (skb_shared(skb1))
4335 			copyflag = 1;
4336 
4337 		/* If the skb is the last, worry about trailer. */
4338 
4339 		if (skb1->next == NULL && tailbits) {
4340 			if (skb_shinfo(skb1)->nr_frags ||
4341 			    skb_has_frag_list(skb1) ||
4342 			    skb_tailroom(skb1) < tailbits)
4343 				ntail = tailbits + 128;
4344 		}
4345 
4346 		if (copyflag ||
4347 		    skb_cloned(skb1) ||
4348 		    ntail ||
4349 		    skb_shinfo(skb1)->nr_frags ||
4350 		    skb_has_frag_list(skb1)) {
4351 			struct sk_buff *skb2;
4352 
4353 			/* Fuck, we are miserable poor guys... */
4354 			if (ntail == 0)
4355 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4356 			else
4357 				skb2 = skb_copy_expand(skb1,
4358 						       skb_headroom(skb1),
4359 						       ntail,
4360 						       GFP_ATOMIC);
4361 			if (unlikely(skb2 == NULL))
4362 				return -ENOMEM;
4363 
4364 			if (skb1->sk)
4365 				skb_set_owner_w(skb2, skb1->sk);
4366 
4367 			/* Looking around. Are we still alive?
4368 			 * OK, link new skb, drop old one */
4369 
4370 			skb2->next = skb1->next;
4371 			*skb_p = skb2;
4372 			kfree_skb(skb1);
4373 			skb1 = skb2;
4374 		}
4375 		elt++;
4376 		*trailer = skb1;
4377 		skb_p = &skb1->next;
4378 	}
4379 
4380 	return elt;
4381 }
4382 EXPORT_SYMBOL_GPL(skb_cow_data);
4383 
4384 static void sock_rmem_free(struct sk_buff *skb)
4385 {
4386 	struct sock *sk = skb->sk;
4387 
4388 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4389 }
4390 
4391 static void skb_set_err_queue(struct sk_buff *skb)
4392 {
4393 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4394 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4395 	 */
4396 	skb->pkt_type = PACKET_OUTGOING;
4397 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4398 }
4399 
4400 /*
4401  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4402  */
4403 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4404 {
4405 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4406 	    (unsigned int)sk->sk_rcvbuf)
4407 		return -ENOMEM;
4408 
4409 	skb_orphan(skb);
4410 	skb->sk = sk;
4411 	skb->destructor = sock_rmem_free;
4412 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4413 	skb_set_err_queue(skb);
4414 
4415 	/* before exiting rcu section, make sure dst is refcounted */
4416 	skb_dst_force(skb);
4417 
4418 	skb_queue_tail(&sk->sk_error_queue, skb);
4419 	if (!sock_flag(sk, SOCK_DEAD))
4420 		sk->sk_error_report(sk);
4421 	return 0;
4422 }
4423 EXPORT_SYMBOL(sock_queue_err_skb);
4424 
4425 static bool is_icmp_err_skb(const struct sk_buff *skb)
4426 {
4427 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4428 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4429 }
4430 
4431 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4432 {
4433 	struct sk_buff_head *q = &sk->sk_error_queue;
4434 	struct sk_buff *skb, *skb_next = NULL;
4435 	bool icmp_next = false;
4436 	unsigned long flags;
4437 
4438 	spin_lock_irqsave(&q->lock, flags);
4439 	skb = __skb_dequeue(q);
4440 	if (skb && (skb_next = skb_peek(q))) {
4441 		icmp_next = is_icmp_err_skb(skb_next);
4442 		if (icmp_next)
4443 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4444 	}
4445 	spin_unlock_irqrestore(&q->lock, flags);
4446 
4447 	if (is_icmp_err_skb(skb) && !icmp_next)
4448 		sk->sk_err = 0;
4449 
4450 	if (skb_next)
4451 		sk->sk_error_report(sk);
4452 
4453 	return skb;
4454 }
4455 EXPORT_SYMBOL(sock_dequeue_err_skb);
4456 
4457 /**
4458  * skb_clone_sk - create clone of skb, and take reference to socket
4459  * @skb: the skb to clone
4460  *
4461  * This function creates a clone of a buffer that holds a reference on
4462  * sk_refcnt.  Buffers created via this function are meant to be
4463  * returned using sock_queue_err_skb, or free via kfree_skb.
4464  *
4465  * When passing buffers allocated with this function to sock_queue_err_skb
4466  * it is necessary to wrap the call with sock_hold/sock_put in order to
4467  * prevent the socket from being released prior to being enqueued on
4468  * the sk_error_queue.
4469  */
4470 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4471 {
4472 	struct sock *sk = skb->sk;
4473 	struct sk_buff *clone;
4474 
4475 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4476 		return NULL;
4477 
4478 	clone = skb_clone(skb, GFP_ATOMIC);
4479 	if (!clone) {
4480 		sock_put(sk);
4481 		return NULL;
4482 	}
4483 
4484 	clone->sk = sk;
4485 	clone->destructor = sock_efree;
4486 
4487 	return clone;
4488 }
4489 EXPORT_SYMBOL(skb_clone_sk);
4490 
4491 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4492 					struct sock *sk,
4493 					int tstype,
4494 					bool opt_stats)
4495 {
4496 	struct sock_exterr_skb *serr;
4497 	int err;
4498 
4499 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4500 
4501 	serr = SKB_EXT_ERR(skb);
4502 	memset(serr, 0, sizeof(*serr));
4503 	serr->ee.ee_errno = ENOMSG;
4504 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4505 	serr->ee.ee_info = tstype;
4506 	serr->opt_stats = opt_stats;
4507 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4508 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4509 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4510 		if (sk->sk_protocol == IPPROTO_TCP &&
4511 		    sk->sk_type == SOCK_STREAM)
4512 			serr->ee.ee_data -= sk->sk_tskey;
4513 	}
4514 
4515 	err = sock_queue_err_skb(sk, skb);
4516 
4517 	if (err)
4518 		kfree_skb(skb);
4519 }
4520 
4521 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4522 {
4523 	bool ret;
4524 
4525 	if (likely(sysctl_tstamp_allow_data || tsonly))
4526 		return true;
4527 
4528 	read_lock_bh(&sk->sk_callback_lock);
4529 	ret = sk->sk_socket && sk->sk_socket->file &&
4530 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4531 	read_unlock_bh(&sk->sk_callback_lock);
4532 	return ret;
4533 }
4534 
4535 void skb_complete_tx_timestamp(struct sk_buff *skb,
4536 			       struct skb_shared_hwtstamps *hwtstamps)
4537 {
4538 	struct sock *sk = skb->sk;
4539 
4540 	if (!skb_may_tx_timestamp(sk, false))
4541 		goto err;
4542 
4543 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4544 	 * but only if the socket refcount is not zero.
4545 	 */
4546 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4547 		*skb_hwtstamps(skb) = *hwtstamps;
4548 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4549 		sock_put(sk);
4550 		return;
4551 	}
4552 
4553 err:
4554 	kfree_skb(skb);
4555 }
4556 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4557 
4558 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4559 		     struct skb_shared_hwtstamps *hwtstamps,
4560 		     struct sock *sk, int tstype)
4561 {
4562 	struct sk_buff *skb;
4563 	bool tsonly, opt_stats = false;
4564 
4565 	if (!sk)
4566 		return;
4567 
4568 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4569 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4570 		return;
4571 
4572 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4573 	if (!skb_may_tx_timestamp(sk, tsonly))
4574 		return;
4575 
4576 	if (tsonly) {
4577 #ifdef CONFIG_INET
4578 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4579 		    sk->sk_protocol == IPPROTO_TCP &&
4580 		    sk->sk_type == SOCK_STREAM) {
4581 			skb = tcp_get_timestamping_opt_stats(sk);
4582 			opt_stats = true;
4583 		} else
4584 #endif
4585 			skb = alloc_skb(0, GFP_ATOMIC);
4586 	} else {
4587 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4588 	}
4589 	if (!skb)
4590 		return;
4591 
4592 	if (tsonly) {
4593 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4594 					     SKBTX_ANY_TSTAMP;
4595 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4596 	}
4597 
4598 	if (hwtstamps)
4599 		*skb_hwtstamps(skb) = *hwtstamps;
4600 	else
4601 		skb->tstamp = ktime_get_real();
4602 
4603 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4604 }
4605 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4606 
4607 void skb_tstamp_tx(struct sk_buff *orig_skb,
4608 		   struct skb_shared_hwtstamps *hwtstamps)
4609 {
4610 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4611 			       SCM_TSTAMP_SND);
4612 }
4613 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4614 
4615 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4616 {
4617 	struct sock *sk = skb->sk;
4618 	struct sock_exterr_skb *serr;
4619 	int err = 1;
4620 
4621 	skb->wifi_acked_valid = 1;
4622 	skb->wifi_acked = acked;
4623 
4624 	serr = SKB_EXT_ERR(skb);
4625 	memset(serr, 0, sizeof(*serr));
4626 	serr->ee.ee_errno = ENOMSG;
4627 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4628 
4629 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4630 	 * but only if the socket refcount is not zero.
4631 	 */
4632 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4633 		err = sock_queue_err_skb(sk, skb);
4634 		sock_put(sk);
4635 	}
4636 	if (err)
4637 		kfree_skb(skb);
4638 }
4639 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4640 
4641 /**
4642  * skb_partial_csum_set - set up and verify partial csum values for packet
4643  * @skb: the skb to set
4644  * @start: the number of bytes after skb->data to start checksumming.
4645  * @off: the offset from start to place the checksum.
4646  *
4647  * For untrusted partially-checksummed packets, we need to make sure the values
4648  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4649  *
4650  * This function checks and sets those values and skb->ip_summed: if this
4651  * returns false you should drop the packet.
4652  */
4653 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4654 {
4655 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4656 	u32 csum_start = skb_headroom(skb) + (u32)start;
4657 
4658 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4659 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4660 				     start, off, skb_headroom(skb), skb_headlen(skb));
4661 		return false;
4662 	}
4663 	skb->ip_summed = CHECKSUM_PARTIAL;
4664 	skb->csum_start = csum_start;
4665 	skb->csum_offset = off;
4666 	skb_set_transport_header(skb, start);
4667 	return true;
4668 }
4669 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4670 
4671 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4672 			       unsigned int max)
4673 {
4674 	if (skb_headlen(skb) >= len)
4675 		return 0;
4676 
4677 	/* If we need to pullup then pullup to the max, so we
4678 	 * won't need to do it again.
4679 	 */
4680 	if (max > skb->len)
4681 		max = skb->len;
4682 
4683 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4684 		return -ENOMEM;
4685 
4686 	if (skb_headlen(skb) < len)
4687 		return -EPROTO;
4688 
4689 	return 0;
4690 }
4691 
4692 #define MAX_TCP_HDR_LEN (15 * 4)
4693 
4694 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4695 				      typeof(IPPROTO_IP) proto,
4696 				      unsigned int off)
4697 {
4698 	switch (proto) {
4699 		int err;
4700 
4701 	case IPPROTO_TCP:
4702 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4703 					  off + MAX_TCP_HDR_LEN);
4704 		if (!err && !skb_partial_csum_set(skb, off,
4705 						  offsetof(struct tcphdr,
4706 							   check)))
4707 			err = -EPROTO;
4708 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4709 
4710 	case IPPROTO_UDP:
4711 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4712 					  off + sizeof(struct udphdr));
4713 		if (!err && !skb_partial_csum_set(skb, off,
4714 						  offsetof(struct udphdr,
4715 							   check)))
4716 			err = -EPROTO;
4717 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4718 	}
4719 
4720 	return ERR_PTR(-EPROTO);
4721 }
4722 
4723 /* This value should be large enough to cover a tagged ethernet header plus
4724  * maximally sized IP and TCP or UDP headers.
4725  */
4726 #define MAX_IP_HDR_LEN 128
4727 
4728 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4729 {
4730 	unsigned int off;
4731 	bool fragment;
4732 	__sum16 *csum;
4733 	int err;
4734 
4735 	fragment = false;
4736 
4737 	err = skb_maybe_pull_tail(skb,
4738 				  sizeof(struct iphdr),
4739 				  MAX_IP_HDR_LEN);
4740 	if (err < 0)
4741 		goto out;
4742 
4743 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4744 		fragment = true;
4745 
4746 	off = ip_hdrlen(skb);
4747 
4748 	err = -EPROTO;
4749 
4750 	if (fragment)
4751 		goto out;
4752 
4753 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4754 	if (IS_ERR(csum))
4755 		return PTR_ERR(csum);
4756 
4757 	if (recalculate)
4758 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4759 					   ip_hdr(skb)->daddr,
4760 					   skb->len - off,
4761 					   ip_hdr(skb)->protocol, 0);
4762 	err = 0;
4763 
4764 out:
4765 	return err;
4766 }
4767 
4768 /* This value should be large enough to cover a tagged ethernet header plus
4769  * an IPv6 header, all options, and a maximal TCP or UDP header.
4770  */
4771 #define MAX_IPV6_HDR_LEN 256
4772 
4773 #define OPT_HDR(type, skb, off) \
4774 	(type *)(skb_network_header(skb) + (off))
4775 
4776 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4777 {
4778 	int err;
4779 	u8 nexthdr;
4780 	unsigned int off;
4781 	unsigned int len;
4782 	bool fragment;
4783 	bool done;
4784 	__sum16 *csum;
4785 
4786 	fragment = false;
4787 	done = false;
4788 
4789 	off = sizeof(struct ipv6hdr);
4790 
4791 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4792 	if (err < 0)
4793 		goto out;
4794 
4795 	nexthdr = ipv6_hdr(skb)->nexthdr;
4796 
4797 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4798 	while (off <= len && !done) {
4799 		switch (nexthdr) {
4800 		case IPPROTO_DSTOPTS:
4801 		case IPPROTO_HOPOPTS:
4802 		case IPPROTO_ROUTING: {
4803 			struct ipv6_opt_hdr *hp;
4804 
4805 			err = skb_maybe_pull_tail(skb,
4806 						  off +
4807 						  sizeof(struct ipv6_opt_hdr),
4808 						  MAX_IPV6_HDR_LEN);
4809 			if (err < 0)
4810 				goto out;
4811 
4812 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4813 			nexthdr = hp->nexthdr;
4814 			off += ipv6_optlen(hp);
4815 			break;
4816 		}
4817 		case IPPROTO_AH: {
4818 			struct ip_auth_hdr *hp;
4819 
4820 			err = skb_maybe_pull_tail(skb,
4821 						  off +
4822 						  sizeof(struct ip_auth_hdr),
4823 						  MAX_IPV6_HDR_LEN);
4824 			if (err < 0)
4825 				goto out;
4826 
4827 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4828 			nexthdr = hp->nexthdr;
4829 			off += ipv6_authlen(hp);
4830 			break;
4831 		}
4832 		case IPPROTO_FRAGMENT: {
4833 			struct frag_hdr *hp;
4834 
4835 			err = skb_maybe_pull_tail(skb,
4836 						  off +
4837 						  sizeof(struct frag_hdr),
4838 						  MAX_IPV6_HDR_LEN);
4839 			if (err < 0)
4840 				goto out;
4841 
4842 			hp = OPT_HDR(struct frag_hdr, skb, off);
4843 
4844 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4845 				fragment = true;
4846 
4847 			nexthdr = hp->nexthdr;
4848 			off += sizeof(struct frag_hdr);
4849 			break;
4850 		}
4851 		default:
4852 			done = true;
4853 			break;
4854 		}
4855 	}
4856 
4857 	err = -EPROTO;
4858 
4859 	if (!done || fragment)
4860 		goto out;
4861 
4862 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4863 	if (IS_ERR(csum))
4864 		return PTR_ERR(csum);
4865 
4866 	if (recalculate)
4867 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4868 					 &ipv6_hdr(skb)->daddr,
4869 					 skb->len - off, nexthdr, 0);
4870 	err = 0;
4871 
4872 out:
4873 	return err;
4874 }
4875 
4876 /**
4877  * skb_checksum_setup - set up partial checksum offset
4878  * @skb: the skb to set up
4879  * @recalculate: if true the pseudo-header checksum will be recalculated
4880  */
4881 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4882 {
4883 	int err;
4884 
4885 	switch (skb->protocol) {
4886 	case htons(ETH_P_IP):
4887 		err = skb_checksum_setup_ipv4(skb, recalculate);
4888 		break;
4889 
4890 	case htons(ETH_P_IPV6):
4891 		err = skb_checksum_setup_ipv6(skb, recalculate);
4892 		break;
4893 
4894 	default:
4895 		err = -EPROTO;
4896 		break;
4897 	}
4898 
4899 	return err;
4900 }
4901 EXPORT_SYMBOL(skb_checksum_setup);
4902 
4903 /**
4904  * skb_checksum_maybe_trim - maybe trims the given skb
4905  * @skb: the skb to check
4906  * @transport_len: the data length beyond the network header
4907  *
4908  * Checks whether the given skb has data beyond the given transport length.
4909  * If so, returns a cloned skb trimmed to this transport length.
4910  * Otherwise returns the provided skb. Returns NULL in error cases
4911  * (e.g. transport_len exceeds skb length or out-of-memory).
4912  *
4913  * Caller needs to set the skb transport header and free any returned skb if it
4914  * differs from the provided skb.
4915  */
4916 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4917 					       unsigned int transport_len)
4918 {
4919 	struct sk_buff *skb_chk;
4920 	unsigned int len = skb_transport_offset(skb) + transport_len;
4921 	int ret;
4922 
4923 	if (skb->len < len)
4924 		return NULL;
4925 	else if (skb->len == len)
4926 		return skb;
4927 
4928 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4929 	if (!skb_chk)
4930 		return NULL;
4931 
4932 	ret = pskb_trim_rcsum(skb_chk, len);
4933 	if (ret) {
4934 		kfree_skb(skb_chk);
4935 		return NULL;
4936 	}
4937 
4938 	return skb_chk;
4939 }
4940 
4941 /**
4942  * skb_checksum_trimmed - validate checksum of an skb
4943  * @skb: the skb to check
4944  * @transport_len: the data length beyond the network header
4945  * @skb_chkf: checksum function to use
4946  *
4947  * Applies the given checksum function skb_chkf to the provided skb.
4948  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4949  *
4950  * If the skb has data beyond the given transport length, then a
4951  * trimmed & cloned skb is checked and returned.
4952  *
4953  * Caller needs to set the skb transport header and free any returned skb if it
4954  * differs from the provided skb.
4955  */
4956 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4957 				     unsigned int transport_len,
4958 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4959 {
4960 	struct sk_buff *skb_chk;
4961 	unsigned int offset = skb_transport_offset(skb);
4962 	__sum16 ret;
4963 
4964 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4965 	if (!skb_chk)
4966 		goto err;
4967 
4968 	if (!pskb_may_pull(skb_chk, offset))
4969 		goto err;
4970 
4971 	skb_pull_rcsum(skb_chk, offset);
4972 	ret = skb_chkf(skb_chk);
4973 	skb_push_rcsum(skb_chk, offset);
4974 
4975 	if (ret)
4976 		goto err;
4977 
4978 	return skb_chk;
4979 
4980 err:
4981 	if (skb_chk && skb_chk != skb)
4982 		kfree_skb(skb_chk);
4983 
4984 	return NULL;
4985 
4986 }
4987 EXPORT_SYMBOL(skb_checksum_trimmed);
4988 
4989 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4990 {
4991 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4992 			     skb->dev->name);
4993 }
4994 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4995 
4996 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4997 {
4998 	if (head_stolen) {
4999 		skb_release_head_state(skb);
5000 		kmem_cache_free(skbuff_head_cache, skb);
5001 	} else {
5002 		__kfree_skb(skb);
5003 	}
5004 }
5005 EXPORT_SYMBOL(kfree_skb_partial);
5006 
5007 /**
5008  * skb_try_coalesce - try to merge skb to prior one
5009  * @to: prior buffer
5010  * @from: buffer to add
5011  * @fragstolen: pointer to boolean
5012  * @delta_truesize: how much more was allocated than was requested
5013  */
5014 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5015 		      bool *fragstolen, int *delta_truesize)
5016 {
5017 	struct skb_shared_info *to_shinfo, *from_shinfo;
5018 	int i, delta, len = from->len;
5019 
5020 	*fragstolen = false;
5021 
5022 	if (skb_cloned(to))
5023 		return false;
5024 
5025 	if (len <= skb_tailroom(to)) {
5026 		if (len)
5027 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5028 		*delta_truesize = 0;
5029 		return true;
5030 	}
5031 
5032 	to_shinfo = skb_shinfo(to);
5033 	from_shinfo = skb_shinfo(from);
5034 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5035 		return false;
5036 	if (skb_zcopy(to) || skb_zcopy(from))
5037 		return false;
5038 
5039 	if (skb_headlen(from) != 0) {
5040 		struct page *page;
5041 		unsigned int offset;
5042 
5043 		if (to_shinfo->nr_frags +
5044 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5045 			return false;
5046 
5047 		if (skb_head_is_locked(from))
5048 			return false;
5049 
5050 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5051 
5052 		page = virt_to_head_page(from->head);
5053 		offset = from->data - (unsigned char *)page_address(page);
5054 
5055 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5056 				   page, offset, skb_headlen(from));
5057 		*fragstolen = true;
5058 	} else {
5059 		if (to_shinfo->nr_frags +
5060 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5061 			return false;
5062 
5063 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5064 	}
5065 
5066 	WARN_ON_ONCE(delta < len);
5067 
5068 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5069 	       from_shinfo->frags,
5070 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5071 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5072 
5073 	if (!skb_cloned(from))
5074 		from_shinfo->nr_frags = 0;
5075 
5076 	/* if the skb is not cloned this does nothing
5077 	 * since we set nr_frags to 0.
5078 	 */
5079 	for (i = 0; i < from_shinfo->nr_frags; i++)
5080 		__skb_frag_ref(&from_shinfo->frags[i]);
5081 
5082 	to->truesize += delta;
5083 	to->len += len;
5084 	to->data_len += len;
5085 
5086 	*delta_truesize = delta;
5087 	return true;
5088 }
5089 EXPORT_SYMBOL(skb_try_coalesce);
5090 
5091 /**
5092  * skb_scrub_packet - scrub an skb
5093  *
5094  * @skb: buffer to clean
5095  * @xnet: packet is crossing netns
5096  *
5097  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5098  * into/from a tunnel. Some information have to be cleared during these
5099  * operations.
5100  * skb_scrub_packet can also be used to clean a skb before injecting it in
5101  * another namespace (@xnet == true). We have to clear all information in the
5102  * skb that could impact namespace isolation.
5103  */
5104 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5105 {
5106 	skb->pkt_type = PACKET_HOST;
5107 	skb->skb_iif = 0;
5108 	skb->ignore_df = 0;
5109 	skb_dst_drop(skb);
5110 	secpath_reset(skb);
5111 	nf_reset(skb);
5112 	nf_reset_trace(skb);
5113 
5114 #ifdef CONFIG_NET_SWITCHDEV
5115 	skb->offload_fwd_mark = 0;
5116 	skb->offload_l3_fwd_mark = 0;
5117 #endif
5118 
5119 	if (!xnet)
5120 		return;
5121 
5122 	ipvs_reset(skb);
5123 	skb->mark = 0;
5124 	skb->tstamp = 0;
5125 }
5126 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5127 
5128 /**
5129  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5130  *
5131  * @skb: GSO skb
5132  *
5133  * skb_gso_transport_seglen is used to determine the real size of the
5134  * individual segments, including Layer4 headers (TCP/UDP).
5135  *
5136  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5137  */
5138 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5139 {
5140 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5141 	unsigned int thlen = 0;
5142 
5143 	if (skb->encapsulation) {
5144 		thlen = skb_inner_transport_header(skb) -
5145 			skb_transport_header(skb);
5146 
5147 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5148 			thlen += inner_tcp_hdrlen(skb);
5149 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5150 		thlen = tcp_hdrlen(skb);
5151 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5152 		thlen = sizeof(struct sctphdr);
5153 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5154 		thlen = sizeof(struct udphdr);
5155 	}
5156 	/* UFO sets gso_size to the size of the fragmentation
5157 	 * payload, i.e. the size of the L4 (UDP) header is already
5158 	 * accounted for.
5159 	 */
5160 	return thlen + shinfo->gso_size;
5161 }
5162 
5163 /**
5164  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5165  *
5166  * @skb: GSO skb
5167  *
5168  * skb_gso_network_seglen is used to determine the real size of the
5169  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5170  *
5171  * The MAC/L2 header is not accounted for.
5172  */
5173 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5174 {
5175 	unsigned int hdr_len = skb_transport_header(skb) -
5176 			       skb_network_header(skb);
5177 
5178 	return hdr_len + skb_gso_transport_seglen(skb);
5179 }
5180 
5181 /**
5182  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5183  *
5184  * @skb: GSO skb
5185  *
5186  * skb_gso_mac_seglen is used to determine the real size of the
5187  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5188  * headers (TCP/UDP).
5189  */
5190 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5191 {
5192 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5193 
5194 	return hdr_len + skb_gso_transport_seglen(skb);
5195 }
5196 
5197 /**
5198  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5199  *
5200  * There are a couple of instances where we have a GSO skb, and we
5201  * want to determine what size it would be after it is segmented.
5202  *
5203  * We might want to check:
5204  * -    L3+L4+payload size (e.g. IP forwarding)
5205  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5206  *
5207  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5208  *
5209  * @skb: GSO skb
5210  *
5211  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5212  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5213  *
5214  * @max_len: The maximum permissible length.
5215  *
5216  * Returns true if the segmented length <= max length.
5217  */
5218 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5219 				      unsigned int seg_len,
5220 				      unsigned int max_len) {
5221 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5222 	const struct sk_buff *iter;
5223 
5224 	if (shinfo->gso_size != GSO_BY_FRAGS)
5225 		return seg_len <= max_len;
5226 
5227 	/* Undo this so we can re-use header sizes */
5228 	seg_len -= GSO_BY_FRAGS;
5229 
5230 	skb_walk_frags(skb, iter) {
5231 		if (seg_len + skb_headlen(iter) > max_len)
5232 			return false;
5233 	}
5234 
5235 	return true;
5236 }
5237 
5238 /**
5239  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5240  *
5241  * @skb: GSO skb
5242  * @mtu: MTU to validate against
5243  *
5244  * skb_gso_validate_network_len validates if a given skb will fit a
5245  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5246  * payload.
5247  */
5248 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5249 {
5250 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5251 }
5252 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5253 
5254 /**
5255  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5256  *
5257  * @skb: GSO skb
5258  * @len: length to validate against
5259  *
5260  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5261  * length once split, including L2, L3 and L4 headers and the payload.
5262  */
5263 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5264 {
5265 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5266 }
5267 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5268 
5269 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5270 {
5271 	int mac_len, meta_len;
5272 	void *meta;
5273 
5274 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5275 		kfree_skb(skb);
5276 		return NULL;
5277 	}
5278 
5279 	mac_len = skb->data - skb_mac_header(skb);
5280 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5281 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5282 			mac_len - VLAN_HLEN - ETH_TLEN);
5283 	}
5284 
5285 	meta_len = skb_metadata_len(skb);
5286 	if (meta_len) {
5287 		meta = skb_metadata_end(skb) - meta_len;
5288 		memmove(meta + VLAN_HLEN, meta, meta_len);
5289 	}
5290 
5291 	skb->mac_header += VLAN_HLEN;
5292 	return skb;
5293 }
5294 
5295 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5296 {
5297 	struct vlan_hdr *vhdr;
5298 	u16 vlan_tci;
5299 
5300 	if (unlikely(skb_vlan_tag_present(skb))) {
5301 		/* vlan_tci is already set-up so leave this for another time */
5302 		return skb;
5303 	}
5304 
5305 	skb = skb_share_check(skb, GFP_ATOMIC);
5306 	if (unlikely(!skb))
5307 		goto err_free;
5308 
5309 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5310 		goto err_free;
5311 
5312 	vhdr = (struct vlan_hdr *)skb->data;
5313 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5314 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5315 
5316 	skb_pull_rcsum(skb, VLAN_HLEN);
5317 	vlan_set_encap_proto(skb, vhdr);
5318 
5319 	skb = skb_reorder_vlan_header(skb);
5320 	if (unlikely(!skb))
5321 		goto err_free;
5322 
5323 	skb_reset_network_header(skb);
5324 	skb_reset_transport_header(skb);
5325 	skb_reset_mac_len(skb);
5326 
5327 	return skb;
5328 
5329 err_free:
5330 	kfree_skb(skb);
5331 	return NULL;
5332 }
5333 EXPORT_SYMBOL(skb_vlan_untag);
5334 
5335 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5336 {
5337 	if (!pskb_may_pull(skb, write_len))
5338 		return -ENOMEM;
5339 
5340 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5341 		return 0;
5342 
5343 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5344 }
5345 EXPORT_SYMBOL(skb_ensure_writable);
5346 
5347 /* remove VLAN header from packet and update csum accordingly.
5348  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5349  */
5350 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5351 {
5352 	struct vlan_hdr *vhdr;
5353 	int offset = skb->data - skb_mac_header(skb);
5354 	int err;
5355 
5356 	if (WARN_ONCE(offset,
5357 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5358 		      offset)) {
5359 		return -EINVAL;
5360 	}
5361 
5362 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5363 	if (unlikely(err))
5364 		return err;
5365 
5366 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5367 
5368 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5369 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5370 
5371 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5372 	__skb_pull(skb, VLAN_HLEN);
5373 
5374 	vlan_set_encap_proto(skb, vhdr);
5375 	skb->mac_header += VLAN_HLEN;
5376 
5377 	if (skb_network_offset(skb) < ETH_HLEN)
5378 		skb_set_network_header(skb, ETH_HLEN);
5379 
5380 	skb_reset_mac_len(skb);
5381 
5382 	return err;
5383 }
5384 EXPORT_SYMBOL(__skb_vlan_pop);
5385 
5386 /* Pop a vlan tag either from hwaccel or from payload.
5387  * Expects skb->data at mac header.
5388  */
5389 int skb_vlan_pop(struct sk_buff *skb)
5390 {
5391 	u16 vlan_tci;
5392 	__be16 vlan_proto;
5393 	int err;
5394 
5395 	if (likely(skb_vlan_tag_present(skb))) {
5396 		__vlan_hwaccel_clear_tag(skb);
5397 	} else {
5398 		if (unlikely(!eth_type_vlan(skb->protocol)))
5399 			return 0;
5400 
5401 		err = __skb_vlan_pop(skb, &vlan_tci);
5402 		if (err)
5403 			return err;
5404 	}
5405 	/* move next vlan tag to hw accel tag */
5406 	if (likely(!eth_type_vlan(skb->protocol)))
5407 		return 0;
5408 
5409 	vlan_proto = skb->protocol;
5410 	err = __skb_vlan_pop(skb, &vlan_tci);
5411 	if (unlikely(err))
5412 		return err;
5413 
5414 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5415 	return 0;
5416 }
5417 EXPORT_SYMBOL(skb_vlan_pop);
5418 
5419 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5420  * Expects skb->data at mac header.
5421  */
5422 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5423 {
5424 	if (skb_vlan_tag_present(skb)) {
5425 		int offset = skb->data - skb_mac_header(skb);
5426 		int err;
5427 
5428 		if (WARN_ONCE(offset,
5429 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5430 			      offset)) {
5431 			return -EINVAL;
5432 		}
5433 
5434 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5435 					skb_vlan_tag_get(skb));
5436 		if (err)
5437 			return err;
5438 
5439 		skb->protocol = skb->vlan_proto;
5440 		skb->mac_len += VLAN_HLEN;
5441 
5442 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5443 	}
5444 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5445 	return 0;
5446 }
5447 EXPORT_SYMBOL(skb_vlan_push);
5448 
5449 /* Update the ethertype of hdr and the skb csum value if required. */
5450 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5451 			     __be16 ethertype)
5452 {
5453 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5454 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5455 
5456 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5457 	}
5458 
5459 	hdr->h_proto = ethertype;
5460 }
5461 
5462 /**
5463  * skb_mpls_push() - push a new MPLS header after the mac header
5464  *
5465  * @skb: buffer
5466  * @mpls_lse: MPLS label stack entry to push
5467  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5468  *
5469  * Expects skb->data at mac header.
5470  *
5471  * Returns 0 on success, -errno otherwise.
5472  */
5473 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto)
5474 {
5475 	struct mpls_shim_hdr *lse;
5476 	int err;
5477 
5478 	if (unlikely(!eth_p_mpls(mpls_proto)))
5479 		return -EINVAL;
5480 
5481 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5482 	if (skb->encapsulation)
5483 		return -EINVAL;
5484 
5485 	err = skb_cow_head(skb, MPLS_HLEN);
5486 	if (unlikely(err))
5487 		return err;
5488 
5489 	if (!skb->inner_protocol) {
5490 		skb_set_inner_network_header(skb, skb->mac_len);
5491 		skb_set_inner_protocol(skb, skb->protocol);
5492 	}
5493 
5494 	skb_push(skb, MPLS_HLEN);
5495 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5496 		skb->mac_len);
5497 	skb_reset_mac_header(skb);
5498 	skb_set_network_header(skb, skb->mac_len);
5499 
5500 	lse = mpls_hdr(skb);
5501 	lse->label_stack_entry = mpls_lse;
5502 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5503 
5504 	if (skb->dev && skb->dev->type == ARPHRD_ETHER)
5505 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5506 	skb->protocol = mpls_proto;
5507 
5508 	return 0;
5509 }
5510 EXPORT_SYMBOL_GPL(skb_mpls_push);
5511 
5512 /**
5513  * skb_mpls_pop() - pop the outermost MPLS header
5514  *
5515  * @skb: buffer
5516  * @next_proto: ethertype of header after popped MPLS header
5517  *
5518  * Expects skb->data at mac header.
5519  *
5520  * Returns 0 on success, -errno otherwise.
5521  */
5522 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto)
5523 {
5524 	int err;
5525 
5526 	if (unlikely(!eth_p_mpls(skb->protocol)))
5527 		return -EINVAL;
5528 
5529 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5530 	if (unlikely(err))
5531 		return err;
5532 
5533 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5534 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5535 		skb->mac_len);
5536 
5537 	__skb_pull(skb, MPLS_HLEN);
5538 	skb_reset_mac_header(skb);
5539 	skb_set_network_header(skb, skb->mac_len);
5540 
5541 	if (skb->dev && skb->dev->type == ARPHRD_ETHER) {
5542 		struct ethhdr *hdr;
5543 
5544 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5545 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5546 		skb_mod_eth_type(skb, hdr, next_proto);
5547 	}
5548 	skb->protocol = next_proto;
5549 
5550 	return 0;
5551 }
5552 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5553 
5554 /**
5555  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5556  *
5557  * @skb: buffer
5558  * @mpls_lse: new MPLS label stack entry to update to
5559  *
5560  * Expects skb->data at mac header.
5561  *
5562  * Returns 0 on success, -errno otherwise.
5563  */
5564 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5565 {
5566 	int err;
5567 
5568 	if (unlikely(!eth_p_mpls(skb->protocol)))
5569 		return -EINVAL;
5570 
5571 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5572 	if (unlikely(err))
5573 		return err;
5574 
5575 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5576 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5577 
5578 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5579 	}
5580 
5581 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5582 
5583 	return 0;
5584 }
5585 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5586 
5587 /**
5588  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5589  *
5590  * @skb: buffer
5591  *
5592  * Expects skb->data at mac header.
5593  *
5594  * Returns 0 on success, -errno otherwise.
5595  */
5596 int skb_mpls_dec_ttl(struct sk_buff *skb)
5597 {
5598 	u32 lse;
5599 	u8 ttl;
5600 
5601 	if (unlikely(!eth_p_mpls(skb->protocol)))
5602 		return -EINVAL;
5603 
5604 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5605 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5606 	if (!--ttl)
5607 		return -EINVAL;
5608 
5609 	lse &= ~MPLS_LS_TTL_MASK;
5610 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5611 
5612 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5613 }
5614 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5615 
5616 /**
5617  * alloc_skb_with_frags - allocate skb with page frags
5618  *
5619  * @header_len: size of linear part
5620  * @data_len: needed length in frags
5621  * @max_page_order: max page order desired.
5622  * @errcode: pointer to error code if any
5623  * @gfp_mask: allocation mask
5624  *
5625  * This can be used to allocate a paged skb, given a maximal order for frags.
5626  */
5627 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5628 				     unsigned long data_len,
5629 				     int max_page_order,
5630 				     int *errcode,
5631 				     gfp_t gfp_mask)
5632 {
5633 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5634 	unsigned long chunk;
5635 	struct sk_buff *skb;
5636 	struct page *page;
5637 	int i;
5638 
5639 	*errcode = -EMSGSIZE;
5640 	/* Note this test could be relaxed, if we succeed to allocate
5641 	 * high order pages...
5642 	 */
5643 	if (npages > MAX_SKB_FRAGS)
5644 		return NULL;
5645 
5646 	*errcode = -ENOBUFS;
5647 	skb = alloc_skb(header_len, gfp_mask);
5648 	if (!skb)
5649 		return NULL;
5650 
5651 	skb->truesize += npages << PAGE_SHIFT;
5652 
5653 	for (i = 0; npages > 0; i++) {
5654 		int order = max_page_order;
5655 
5656 		while (order) {
5657 			if (npages >= 1 << order) {
5658 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5659 						   __GFP_COMP |
5660 						   __GFP_NOWARN,
5661 						   order);
5662 				if (page)
5663 					goto fill_page;
5664 				/* Do not retry other high order allocations */
5665 				order = 1;
5666 				max_page_order = 0;
5667 			}
5668 			order--;
5669 		}
5670 		page = alloc_page(gfp_mask);
5671 		if (!page)
5672 			goto failure;
5673 fill_page:
5674 		chunk = min_t(unsigned long, data_len,
5675 			      PAGE_SIZE << order);
5676 		skb_fill_page_desc(skb, i, page, 0, chunk);
5677 		data_len -= chunk;
5678 		npages -= 1 << order;
5679 	}
5680 	return skb;
5681 
5682 failure:
5683 	kfree_skb(skb);
5684 	return NULL;
5685 }
5686 EXPORT_SYMBOL(alloc_skb_with_frags);
5687 
5688 /* carve out the first off bytes from skb when off < headlen */
5689 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5690 				    const int headlen, gfp_t gfp_mask)
5691 {
5692 	int i;
5693 	int size = skb_end_offset(skb);
5694 	int new_hlen = headlen - off;
5695 	u8 *data;
5696 
5697 	size = SKB_DATA_ALIGN(size);
5698 
5699 	if (skb_pfmemalloc(skb))
5700 		gfp_mask |= __GFP_MEMALLOC;
5701 	data = kmalloc_reserve(size +
5702 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5703 			       gfp_mask, NUMA_NO_NODE, NULL);
5704 	if (!data)
5705 		return -ENOMEM;
5706 
5707 	size = SKB_WITH_OVERHEAD(ksize(data));
5708 
5709 	/* Copy real data, and all frags */
5710 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5711 	skb->len -= off;
5712 
5713 	memcpy((struct skb_shared_info *)(data + size),
5714 	       skb_shinfo(skb),
5715 	       offsetof(struct skb_shared_info,
5716 			frags[skb_shinfo(skb)->nr_frags]));
5717 	if (skb_cloned(skb)) {
5718 		/* drop the old head gracefully */
5719 		if (skb_orphan_frags(skb, gfp_mask)) {
5720 			kfree(data);
5721 			return -ENOMEM;
5722 		}
5723 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5724 			skb_frag_ref(skb, i);
5725 		if (skb_has_frag_list(skb))
5726 			skb_clone_fraglist(skb);
5727 		skb_release_data(skb);
5728 	} else {
5729 		/* we can reuse existing recount- all we did was
5730 		 * relocate values
5731 		 */
5732 		skb_free_head(skb);
5733 	}
5734 
5735 	skb->head = data;
5736 	skb->data = data;
5737 	skb->head_frag = 0;
5738 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5739 	skb->end = size;
5740 #else
5741 	skb->end = skb->head + size;
5742 #endif
5743 	skb_set_tail_pointer(skb, skb_headlen(skb));
5744 	skb_headers_offset_update(skb, 0);
5745 	skb->cloned = 0;
5746 	skb->hdr_len = 0;
5747 	skb->nohdr = 0;
5748 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5749 
5750 	return 0;
5751 }
5752 
5753 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5754 
5755 /* carve out the first eat bytes from skb's frag_list. May recurse into
5756  * pskb_carve()
5757  */
5758 static int pskb_carve_frag_list(struct sk_buff *skb,
5759 				struct skb_shared_info *shinfo, int eat,
5760 				gfp_t gfp_mask)
5761 {
5762 	struct sk_buff *list = shinfo->frag_list;
5763 	struct sk_buff *clone = NULL;
5764 	struct sk_buff *insp = NULL;
5765 
5766 	do {
5767 		if (!list) {
5768 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5769 			return -EFAULT;
5770 		}
5771 		if (list->len <= eat) {
5772 			/* Eaten as whole. */
5773 			eat -= list->len;
5774 			list = list->next;
5775 			insp = list;
5776 		} else {
5777 			/* Eaten partially. */
5778 			if (skb_shared(list)) {
5779 				clone = skb_clone(list, gfp_mask);
5780 				if (!clone)
5781 					return -ENOMEM;
5782 				insp = list->next;
5783 				list = clone;
5784 			} else {
5785 				/* This may be pulled without problems. */
5786 				insp = list;
5787 			}
5788 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5789 				kfree_skb(clone);
5790 				return -ENOMEM;
5791 			}
5792 			break;
5793 		}
5794 	} while (eat);
5795 
5796 	/* Free pulled out fragments. */
5797 	while ((list = shinfo->frag_list) != insp) {
5798 		shinfo->frag_list = list->next;
5799 		kfree_skb(list);
5800 	}
5801 	/* And insert new clone at head. */
5802 	if (clone) {
5803 		clone->next = list;
5804 		shinfo->frag_list = clone;
5805 	}
5806 	return 0;
5807 }
5808 
5809 /* carve off first len bytes from skb. Split line (off) is in the
5810  * non-linear part of skb
5811  */
5812 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5813 				       int pos, gfp_t gfp_mask)
5814 {
5815 	int i, k = 0;
5816 	int size = skb_end_offset(skb);
5817 	u8 *data;
5818 	const int nfrags = skb_shinfo(skb)->nr_frags;
5819 	struct skb_shared_info *shinfo;
5820 
5821 	size = SKB_DATA_ALIGN(size);
5822 
5823 	if (skb_pfmemalloc(skb))
5824 		gfp_mask |= __GFP_MEMALLOC;
5825 	data = kmalloc_reserve(size +
5826 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5827 			       gfp_mask, NUMA_NO_NODE, NULL);
5828 	if (!data)
5829 		return -ENOMEM;
5830 
5831 	size = SKB_WITH_OVERHEAD(ksize(data));
5832 
5833 	memcpy((struct skb_shared_info *)(data + size),
5834 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5835 					 frags[skb_shinfo(skb)->nr_frags]));
5836 	if (skb_orphan_frags(skb, gfp_mask)) {
5837 		kfree(data);
5838 		return -ENOMEM;
5839 	}
5840 	shinfo = (struct skb_shared_info *)(data + size);
5841 	for (i = 0; i < nfrags; i++) {
5842 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5843 
5844 		if (pos + fsize > off) {
5845 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5846 
5847 			if (pos < off) {
5848 				/* Split frag.
5849 				 * We have two variants in this case:
5850 				 * 1. Move all the frag to the second
5851 				 *    part, if it is possible. F.e.
5852 				 *    this approach is mandatory for TUX,
5853 				 *    where splitting is expensive.
5854 				 * 2. Split is accurately. We make this.
5855 				 */
5856 				shinfo->frags[0].page_offset += off - pos;
5857 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5858 			}
5859 			skb_frag_ref(skb, i);
5860 			k++;
5861 		}
5862 		pos += fsize;
5863 	}
5864 	shinfo->nr_frags = k;
5865 	if (skb_has_frag_list(skb))
5866 		skb_clone_fraglist(skb);
5867 
5868 	if (k == 0) {
5869 		/* split line is in frag list */
5870 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5871 	}
5872 	skb_release_data(skb);
5873 
5874 	skb->head = data;
5875 	skb->head_frag = 0;
5876 	skb->data = data;
5877 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5878 	skb->end = size;
5879 #else
5880 	skb->end = skb->head + size;
5881 #endif
5882 	skb_reset_tail_pointer(skb);
5883 	skb_headers_offset_update(skb, 0);
5884 	skb->cloned   = 0;
5885 	skb->hdr_len  = 0;
5886 	skb->nohdr    = 0;
5887 	skb->len -= off;
5888 	skb->data_len = skb->len;
5889 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5890 	return 0;
5891 }
5892 
5893 /* remove len bytes from the beginning of the skb */
5894 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5895 {
5896 	int headlen = skb_headlen(skb);
5897 
5898 	if (len < headlen)
5899 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5900 	else
5901 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5902 }
5903 
5904 /* Extract to_copy bytes starting at off from skb, and return this in
5905  * a new skb
5906  */
5907 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5908 			     int to_copy, gfp_t gfp)
5909 {
5910 	struct sk_buff  *clone = skb_clone(skb, gfp);
5911 
5912 	if (!clone)
5913 		return NULL;
5914 
5915 	if (pskb_carve(clone, off, gfp) < 0 ||
5916 	    pskb_trim(clone, to_copy)) {
5917 		kfree_skb(clone);
5918 		return NULL;
5919 	}
5920 	return clone;
5921 }
5922 EXPORT_SYMBOL(pskb_extract);
5923 
5924 /**
5925  * skb_condense - try to get rid of fragments/frag_list if possible
5926  * @skb: buffer
5927  *
5928  * Can be used to save memory before skb is added to a busy queue.
5929  * If packet has bytes in frags and enough tail room in skb->head,
5930  * pull all of them, so that we can free the frags right now and adjust
5931  * truesize.
5932  * Notes:
5933  *	We do not reallocate skb->head thus can not fail.
5934  *	Caller must re-evaluate skb->truesize if needed.
5935  */
5936 void skb_condense(struct sk_buff *skb)
5937 {
5938 	if (skb->data_len) {
5939 		if (skb->data_len > skb->end - skb->tail ||
5940 		    skb_cloned(skb))
5941 			return;
5942 
5943 		/* Nice, we can free page frag(s) right now */
5944 		__pskb_pull_tail(skb, skb->data_len);
5945 	}
5946 	/* At this point, skb->truesize might be over estimated,
5947 	 * because skb had a fragment, and fragments do not tell
5948 	 * their truesize.
5949 	 * When we pulled its content into skb->head, fragment
5950 	 * was freed, but __pskb_pull_tail() could not possibly
5951 	 * adjust skb->truesize, not knowing the frag truesize.
5952 	 */
5953 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5954 }
5955 
5956 #ifdef CONFIG_SKB_EXTENSIONS
5957 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5958 {
5959 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5960 }
5961 
5962 static struct skb_ext *skb_ext_alloc(void)
5963 {
5964 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5965 
5966 	if (new) {
5967 		memset(new->offset, 0, sizeof(new->offset));
5968 		refcount_set(&new->refcnt, 1);
5969 	}
5970 
5971 	return new;
5972 }
5973 
5974 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5975 					 unsigned int old_active)
5976 {
5977 	struct skb_ext *new;
5978 
5979 	if (refcount_read(&old->refcnt) == 1)
5980 		return old;
5981 
5982 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5983 	if (!new)
5984 		return NULL;
5985 
5986 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5987 	refcount_set(&new->refcnt, 1);
5988 
5989 #ifdef CONFIG_XFRM
5990 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5991 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5992 		unsigned int i;
5993 
5994 		for (i = 0; i < sp->len; i++)
5995 			xfrm_state_hold(sp->xvec[i]);
5996 	}
5997 #endif
5998 	__skb_ext_put(old);
5999 	return new;
6000 }
6001 
6002 /**
6003  * skb_ext_add - allocate space for given extension, COW if needed
6004  * @skb: buffer
6005  * @id: extension to allocate space for
6006  *
6007  * Allocates enough space for the given extension.
6008  * If the extension is already present, a pointer to that extension
6009  * is returned.
6010  *
6011  * If the skb was cloned, COW applies and the returned memory can be
6012  * modified without changing the extension space of clones buffers.
6013  *
6014  * Returns pointer to the extension or NULL on allocation failure.
6015  */
6016 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6017 {
6018 	struct skb_ext *new, *old = NULL;
6019 	unsigned int newlen, newoff;
6020 
6021 	if (skb->active_extensions) {
6022 		old = skb->extensions;
6023 
6024 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6025 		if (!new)
6026 			return NULL;
6027 
6028 		if (__skb_ext_exist(new, id))
6029 			goto set_active;
6030 
6031 		newoff = new->chunks;
6032 	} else {
6033 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6034 
6035 		new = skb_ext_alloc();
6036 		if (!new)
6037 			return NULL;
6038 	}
6039 
6040 	newlen = newoff + skb_ext_type_len[id];
6041 	new->chunks = newlen;
6042 	new->offset[id] = newoff;
6043 set_active:
6044 	skb->extensions = new;
6045 	skb->active_extensions |= 1 << id;
6046 	return skb_ext_get_ptr(new, id);
6047 }
6048 EXPORT_SYMBOL(skb_ext_add);
6049 
6050 #ifdef CONFIG_XFRM
6051 static void skb_ext_put_sp(struct sec_path *sp)
6052 {
6053 	unsigned int i;
6054 
6055 	for (i = 0; i < sp->len; i++)
6056 		xfrm_state_put(sp->xvec[i]);
6057 }
6058 #endif
6059 
6060 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6061 {
6062 	struct skb_ext *ext = skb->extensions;
6063 
6064 	skb->active_extensions &= ~(1 << id);
6065 	if (skb->active_extensions == 0) {
6066 		skb->extensions = NULL;
6067 		__skb_ext_put(ext);
6068 #ifdef CONFIG_XFRM
6069 	} else if (id == SKB_EXT_SEC_PATH &&
6070 		   refcount_read(&ext->refcnt) == 1) {
6071 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6072 
6073 		skb_ext_put_sp(sp);
6074 		sp->len = 0;
6075 #endif
6076 	}
6077 }
6078 EXPORT_SYMBOL(__skb_ext_del);
6079 
6080 void __skb_ext_put(struct skb_ext *ext)
6081 {
6082 	/* If this is last clone, nothing can increment
6083 	 * it after check passes.  Avoids one atomic op.
6084 	 */
6085 	if (refcount_read(&ext->refcnt) == 1)
6086 		goto free_now;
6087 
6088 	if (!refcount_dec_and_test(&ext->refcnt))
6089 		return;
6090 free_now:
6091 #ifdef CONFIG_XFRM
6092 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6093 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6094 #endif
6095 
6096 	kmem_cache_free(skbuff_ext_cache, ext);
6097 }
6098 EXPORT_SYMBOL(__skb_ext_put);
6099 #endif /* CONFIG_SKB_EXTENSIONS */
6100