1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "datagram.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 /** 95 * skb_panic - private function for out-of-line support 96 * @skb: buffer 97 * @sz: size 98 * @addr: address 99 * @msg: skb_over_panic or skb_under_panic 100 * 101 * Out-of-line support for skb_put() and skb_push(). 102 * Called via the wrapper skb_over_panic() or skb_under_panic(). 103 * Keep out of line to prevent kernel bloat. 104 * __builtin_return_address is not used because it is not always reliable. 105 */ 106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 107 const char msg[]) 108 { 109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 110 msg, addr, skb->len, sz, skb->head, skb->data, 111 (unsigned long)skb->tail, (unsigned long)skb->end, 112 skb->dev ? skb->dev->name : "<NULL>"); 113 BUG(); 114 } 115 116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 117 { 118 skb_panic(skb, sz, addr, __func__); 119 } 120 121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 122 { 123 skb_panic(skb, sz, addr, __func__); 124 } 125 126 #define NAPI_SKB_CACHE_SIZE 64 127 #define NAPI_SKB_CACHE_BULK 16 128 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 129 130 struct napi_alloc_cache { 131 struct page_frag_cache page; 132 unsigned int skb_count; 133 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 134 }; 135 136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 138 139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 140 { 141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 142 143 fragsz = SKB_DATA_ALIGN(fragsz); 144 145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 146 } 147 EXPORT_SYMBOL(__napi_alloc_frag_align); 148 149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 150 { 151 void *data; 152 153 fragsz = SKB_DATA_ALIGN(fragsz); 154 if (in_hardirq() || irqs_disabled()) { 155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 156 157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 158 } else { 159 struct napi_alloc_cache *nc; 160 161 local_bh_disable(); 162 nc = this_cpu_ptr(&napi_alloc_cache); 163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 164 local_bh_enable(); 165 } 166 return data; 167 } 168 EXPORT_SYMBOL(__netdev_alloc_frag_align); 169 170 static struct sk_buff *napi_skb_cache_get(void) 171 { 172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 173 struct sk_buff *skb; 174 175 if (unlikely(!nc->skb_count)) 176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 177 GFP_ATOMIC, 178 NAPI_SKB_CACHE_BULK, 179 nc->skb_cache); 180 if (unlikely(!nc->skb_count)) 181 return NULL; 182 183 skb = nc->skb_cache[--nc->skb_count]; 184 kasan_unpoison_object_data(skbuff_head_cache, skb); 185 186 return skb; 187 } 188 189 /* Caller must provide SKB that is memset cleared */ 190 static void __build_skb_around(struct sk_buff *skb, void *data, 191 unsigned int frag_size) 192 { 193 struct skb_shared_info *shinfo; 194 unsigned int size = frag_size ? : ksize(data); 195 196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 197 198 /* Assumes caller memset cleared SKB */ 199 skb->truesize = SKB_TRUESIZE(size); 200 refcount_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 skb->mac_header = (typeof(skb->mac_header))~0U; 206 skb->transport_header = (typeof(skb->transport_header))~0U; 207 208 /* make sure we initialize shinfo sequentially */ 209 shinfo = skb_shinfo(skb); 210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 211 atomic_set(&shinfo->dataref, 1); 212 213 skb_set_kcov_handle(skb, kcov_common_handle()); 214 } 215 216 /** 217 * __build_skb - build a network buffer 218 * @data: data buffer provided by caller 219 * @frag_size: size of data, or 0 if head was kmalloced 220 * 221 * Allocate a new &sk_buff. Caller provides space holding head and 222 * skb_shared_info. @data must have been allocated by kmalloc() only if 223 * @frag_size is 0, otherwise data should come from the page allocator 224 * or vmalloc() 225 * The return is the new skb buffer. 226 * On a failure the return is %NULL, and @data is not freed. 227 * Notes : 228 * Before IO, driver allocates only data buffer where NIC put incoming frame 229 * Driver should add room at head (NET_SKB_PAD) and 230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 232 * before giving packet to stack. 233 * RX rings only contains data buffers, not full skbs. 234 */ 235 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 236 { 237 struct sk_buff *skb; 238 239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 240 if (unlikely(!skb)) 241 return NULL; 242 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 __build_skb_around(skb, data, frag_size); 245 246 return skb; 247 } 248 249 /* build_skb() is wrapper over __build_skb(), that specifically 250 * takes care of skb->head and skb->pfmemalloc 251 * This means that if @frag_size is not zero, then @data must be backed 252 * by a page fragment, not kmalloc() or vmalloc() 253 */ 254 struct sk_buff *build_skb(void *data, unsigned int frag_size) 255 { 256 struct sk_buff *skb = __build_skb(data, frag_size); 257 258 if (skb && frag_size) { 259 skb->head_frag = 1; 260 if (page_is_pfmemalloc(virt_to_head_page(data))) 261 skb->pfmemalloc = 1; 262 } 263 return skb; 264 } 265 EXPORT_SYMBOL(build_skb); 266 267 /** 268 * build_skb_around - build a network buffer around provided skb 269 * @skb: sk_buff provide by caller, must be memset cleared 270 * @data: data buffer provided by caller 271 * @frag_size: size of data, or 0 if head was kmalloced 272 */ 273 struct sk_buff *build_skb_around(struct sk_buff *skb, 274 void *data, unsigned int frag_size) 275 { 276 if (unlikely(!skb)) 277 return NULL; 278 279 __build_skb_around(skb, data, frag_size); 280 281 if (frag_size) { 282 skb->head_frag = 1; 283 if (page_is_pfmemalloc(virt_to_head_page(data))) 284 skb->pfmemalloc = 1; 285 } 286 return skb; 287 } 288 EXPORT_SYMBOL(build_skb_around); 289 290 /** 291 * __napi_build_skb - build a network buffer 292 * @data: data buffer provided by caller 293 * @frag_size: size of data, or 0 if head was kmalloced 294 * 295 * Version of __build_skb() that uses NAPI percpu caches to obtain 296 * skbuff_head instead of inplace allocation. 297 * 298 * Returns a new &sk_buff on success, %NULL on allocation failure. 299 */ 300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 301 { 302 struct sk_buff *skb; 303 304 skb = napi_skb_cache_get(); 305 if (unlikely(!skb)) 306 return NULL; 307 308 memset(skb, 0, offsetof(struct sk_buff, tail)); 309 __build_skb_around(skb, data, frag_size); 310 311 return skb; 312 } 313 314 /** 315 * napi_build_skb - build a network buffer 316 * @data: data buffer provided by caller 317 * @frag_size: size of data, or 0 if head was kmalloced 318 * 319 * Version of __napi_build_skb() that takes care of skb->head_frag 320 * and skb->pfmemalloc when the data is a page or page fragment. 321 * 322 * Returns a new &sk_buff on success, %NULL on allocation failure. 323 */ 324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 325 { 326 struct sk_buff *skb = __napi_build_skb(data, frag_size); 327 328 if (likely(skb) && frag_size) { 329 skb->head_frag = 1; 330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 331 } 332 333 return skb; 334 } 335 EXPORT_SYMBOL(napi_build_skb); 336 337 /* 338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 339 * the caller if emergency pfmemalloc reserves are being used. If it is and 340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 341 * may be used. Otherwise, the packet data may be discarded until enough 342 * memory is free 343 */ 344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 345 bool *pfmemalloc) 346 { 347 void *obj; 348 bool ret_pfmemalloc = false; 349 350 /* 351 * Try a regular allocation, when that fails and we're not entitled 352 * to the reserves, fail. 353 */ 354 obj = kmalloc_node_track_caller(size, 355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 356 node); 357 if (obj || !(gfp_pfmemalloc_allowed(flags))) 358 goto out; 359 360 /* Try again but now we are using pfmemalloc reserves */ 361 ret_pfmemalloc = true; 362 obj = kmalloc_node_track_caller(size, flags, node); 363 364 out: 365 if (pfmemalloc) 366 *pfmemalloc = ret_pfmemalloc; 367 368 return obj; 369 } 370 371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 372 * 'private' fields and also do memory statistics to find all the 373 * [BEEP] leaks. 374 * 375 */ 376 377 /** 378 * __alloc_skb - allocate a network buffer 379 * @size: size to allocate 380 * @gfp_mask: allocation mask 381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 382 * instead of head cache and allocate a cloned (child) skb. 383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 384 * allocations in case the data is required for writeback 385 * @node: numa node to allocate memory on 386 * 387 * Allocate a new &sk_buff. The returned buffer has no headroom and a 388 * tail room of at least size bytes. The object has a reference count 389 * of one. The return is the buffer. On a failure the return is %NULL. 390 * 391 * Buffers may only be allocated from interrupts using a @gfp_mask of 392 * %GFP_ATOMIC. 393 */ 394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 395 int flags, int node) 396 { 397 struct kmem_cache *cache; 398 struct sk_buff *skb; 399 unsigned int osize; 400 bool pfmemalloc; 401 u8 *data; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 osize = ksize(data); 434 size = SKB_WITH_OVERHEAD(osize); 435 prefetchw(data + size); 436 437 /* 438 * Only clear those fields we need to clear, not those that we will 439 * actually initialise below. Hence, don't put any more fields after 440 * the tail pointer in struct sk_buff! 441 */ 442 memset(skb, 0, offsetof(struct sk_buff, tail)); 443 __build_skb_around(skb, data, osize); 444 skb->pfmemalloc = pfmemalloc; 445 446 if (flags & SKB_ALLOC_FCLONE) { 447 struct sk_buff_fclones *fclones; 448 449 fclones = container_of(skb, struct sk_buff_fclones, skb1); 450 451 skb->fclone = SKB_FCLONE_ORIG; 452 refcount_set(&fclones->fclone_ref, 1); 453 454 fclones->skb2.fclone = SKB_FCLONE_CLONE; 455 } 456 457 return skb; 458 459 nodata: 460 kmem_cache_free(cache, skb); 461 return NULL; 462 } 463 EXPORT_SYMBOL(__alloc_skb); 464 465 /** 466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 467 * @dev: network device to receive on 468 * @len: length to allocate 469 * @gfp_mask: get_free_pages mask, passed to alloc_skb 470 * 471 * Allocate a new &sk_buff and assign it a usage count of one. The 472 * buffer has NET_SKB_PAD headroom built in. Users should allocate 473 * the headroom they think they need without accounting for the 474 * built in space. The built in space is used for optimisations. 475 * 476 * %NULL is returned if there is no free memory. 477 */ 478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 479 gfp_t gfp_mask) 480 { 481 struct page_frag_cache *nc; 482 struct sk_buff *skb; 483 bool pfmemalloc; 484 void *data; 485 486 len += NET_SKB_PAD; 487 488 /* If requested length is either too small or too big, 489 * we use kmalloc() for skb->head allocation. 490 */ 491 if (len <= SKB_WITH_OVERHEAD(1024) || 492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 495 if (!skb) 496 goto skb_fail; 497 goto skb_success; 498 } 499 500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 501 len = SKB_DATA_ALIGN(len); 502 503 if (sk_memalloc_socks()) 504 gfp_mask |= __GFP_MEMALLOC; 505 506 if (in_hardirq() || irqs_disabled()) { 507 nc = this_cpu_ptr(&netdev_alloc_cache); 508 data = page_frag_alloc(nc, len, gfp_mask); 509 pfmemalloc = nc->pfmemalloc; 510 } else { 511 local_bh_disable(); 512 nc = this_cpu_ptr(&napi_alloc_cache.page); 513 data = page_frag_alloc(nc, len, gfp_mask); 514 pfmemalloc = nc->pfmemalloc; 515 local_bh_enable(); 516 } 517 518 if (unlikely(!data)) 519 return NULL; 520 521 skb = __build_skb(data, len); 522 if (unlikely(!skb)) { 523 skb_free_frag(data); 524 return NULL; 525 } 526 527 if (pfmemalloc) 528 skb->pfmemalloc = 1; 529 skb->head_frag = 1; 530 531 skb_success: 532 skb_reserve(skb, NET_SKB_PAD); 533 skb->dev = dev; 534 535 skb_fail: 536 return skb; 537 } 538 EXPORT_SYMBOL(__netdev_alloc_skb); 539 540 /** 541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 542 * @napi: napi instance this buffer was allocated for 543 * @len: length to allocate 544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 545 * 546 * Allocate a new sk_buff for use in NAPI receive. This buffer will 547 * attempt to allocate the head from a special reserved region used 548 * only for NAPI Rx allocation. By doing this we can save several 549 * CPU cycles by avoiding having to disable and re-enable IRQs. 550 * 551 * %NULL is returned if there is no free memory. 552 */ 553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 554 gfp_t gfp_mask) 555 { 556 struct napi_alloc_cache *nc; 557 struct sk_buff *skb; 558 void *data; 559 560 len += NET_SKB_PAD + NET_IP_ALIGN; 561 562 /* If requested length is either too small or too big, 563 * we use kmalloc() for skb->head allocation. 564 */ 565 if (len <= SKB_WITH_OVERHEAD(1024) || 566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 569 NUMA_NO_NODE); 570 if (!skb) 571 goto skb_fail; 572 goto skb_success; 573 } 574 575 nc = this_cpu_ptr(&napi_alloc_cache); 576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 577 len = SKB_DATA_ALIGN(len); 578 579 if (sk_memalloc_socks()) 580 gfp_mask |= __GFP_MEMALLOC; 581 582 data = page_frag_alloc(&nc->page, len, gfp_mask); 583 if (unlikely(!data)) 584 return NULL; 585 586 skb = __napi_build_skb(data, len); 587 if (unlikely(!skb)) { 588 skb_free_frag(data); 589 return NULL; 590 } 591 592 if (nc->page.pfmemalloc) 593 skb->pfmemalloc = 1; 594 skb->head_frag = 1; 595 596 skb_success: 597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 598 skb->dev = napi->dev; 599 600 skb_fail: 601 return skb; 602 } 603 EXPORT_SYMBOL(__napi_alloc_skb); 604 605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 606 int size, unsigned int truesize) 607 { 608 skb_fill_page_desc(skb, i, page, off, size); 609 skb->len += size; 610 skb->data_len += size; 611 skb->truesize += truesize; 612 } 613 EXPORT_SYMBOL(skb_add_rx_frag); 614 615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 616 unsigned int truesize) 617 { 618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 619 620 skb_frag_size_add(frag, size); 621 skb->len += size; 622 skb->data_len += size; 623 skb->truesize += truesize; 624 } 625 EXPORT_SYMBOL(skb_coalesce_rx_frag); 626 627 static void skb_drop_list(struct sk_buff **listp) 628 { 629 kfree_skb_list(*listp); 630 *listp = NULL; 631 } 632 633 static inline void skb_drop_fraglist(struct sk_buff *skb) 634 { 635 skb_drop_list(&skb_shinfo(skb)->frag_list); 636 } 637 638 static void skb_clone_fraglist(struct sk_buff *skb) 639 { 640 struct sk_buff *list; 641 642 skb_walk_frags(skb, list) 643 skb_get(list); 644 } 645 646 static void skb_free_head(struct sk_buff *skb) 647 { 648 unsigned char *head = skb->head; 649 650 if (skb->head_frag) { 651 if (skb_pp_recycle(skb, head)) 652 return; 653 skb_free_frag(head); 654 } else { 655 kfree(head); 656 } 657 } 658 659 static void skb_release_data(struct sk_buff *skb) 660 { 661 struct skb_shared_info *shinfo = skb_shinfo(skb); 662 int i; 663 664 if (skb->cloned && 665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 666 &shinfo->dataref)) 667 goto exit; 668 669 skb_zcopy_clear(skb, true); 670 671 for (i = 0; i < shinfo->nr_frags; i++) 672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 673 674 if (shinfo->frag_list) 675 kfree_skb_list(shinfo->frag_list); 676 677 skb_free_head(skb); 678 exit: 679 /* When we clone an SKB we copy the reycling bit. The pp_recycle 680 * bit is only set on the head though, so in order to avoid races 681 * while trying to recycle fragments on __skb_frag_unref() we need 682 * to make one SKB responsible for triggering the recycle path. 683 * So disable the recycling bit if an SKB is cloned and we have 684 * additional references to to the fragmented part of the SKB. 685 * Eventually the last SKB will have the recycling bit set and it's 686 * dataref set to 0, which will trigger the recycling 687 */ 688 skb->pp_recycle = 0; 689 } 690 691 /* 692 * Free an skbuff by memory without cleaning the state. 693 */ 694 static void kfree_skbmem(struct sk_buff *skb) 695 { 696 struct sk_buff_fclones *fclones; 697 698 switch (skb->fclone) { 699 case SKB_FCLONE_UNAVAILABLE: 700 kmem_cache_free(skbuff_head_cache, skb); 701 return; 702 703 case SKB_FCLONE_ORIG: 704 fclones = container_of(skb, struct sk_buff_fclones, skb1); 705 706 /* We usually free the clone (TX completion) before original skb 707 * This test would have no chance to be true for the clone, 708 * while here, branch prediction will be good. 709 */ 710 if (refcount_read(&fclones->fclone_ref) == 1) 711 goto fastpath; 712 break; 713 714 default: /* SKB_FCLONE_CLONE */ 715 fclones = container_of(skb, struct sk_buff_fclones, skb2); 716 break; 717 } 718 if (!refcount_dec_and_test(&fclones->fclone_ref)) 719 return; 720 fastpath: 721 kmem_cache_free(skbuff_fclone_cache, fclones); 722 } 723 724 void skb_release_head_state(struct sk_buff *skb) 725 { 726 skb_dst_drop(skb); 727 if (skb->destructor) { 728 WARN_ON(in_hardirq()); 729 skb->destructor(skb); 730 } 731 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 732 nf_conntrack_put(skb_nfct(skb)); 733 #endif 734 skb_ext_put(skb); 735 } 736 737 /* Free everything but the sk_buff shell. */ 738 static void skb_release_all(struct sk_buff *skb) 739 { 740 skb_release_head_state(skb); 741 if (likely(skb->head)) 742 skb_release_data(skb); 743 } 744 745 /** 746 * __kfree_skb - private function 747 * @skb: buffer 748 * 749 * Free an sk_buff. Release anything attached to the buffer. 750 * Clean the state. This is an internal helper function. Users should 751 * always call kfree_skb 752 */ 753 754 void __kfree_skb(struct sk_buff *skb) 755 { 756 skb_release_all(skb); 757 kfree_skbmem(skb); 758 } 759 EXPORT_SYMBOL(__kfree_skb); 760 761 /** 762 * kfree_skb - free an sk_buff 763 * @skb: buffer to free 764 * 765 * Drop a reference to the buffer and free it if the usage count has 766 * hit zero. 767 */ 768 void kfree_skb(struct sk_buff *skb) 769 { 770 if (!skb_unref(skb)) 771 return; 772 773 trace_kfree_skb(skb, __builtin_return_address(0)); 774 __kfree_skb(skb); 775 } 776 EXPORT_SYMBOL(kfree_skb); 777 778 void kfree_skb_list(struct sk_buff *segs) 779 { 780 while (segs) { 781 struct sk_buff *next = segs->next; 782 783 kfree_skb(segs); 784 segs = next; 785 } 786 } 787 EXPORT_SYMBOL(kfree_skb_list); 788 789 /* Dump skb information and contents. 790 * 791 * Must only be called from net_ratelimit()-ed paths. 792 * 793 * Dumps whole packets if full_pkt, only headers otherwise. 794 */ 795 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 796 { 797 struct skb_shared_info *sh = skb_shinfo(skb); 798 struct net_device *dev = skb->dev; 799 struct sock *sk = skb->sk; 800 struct sk_buff *list_skb; 801 bool has_mac, has_trans; 802 int headroom, tailroom; 803 int i, len, seg_len; 804 805 if (full_pkt) 806 len = skb->len; 807 else 808 len = min_t(int, skb->len, MAX_HEADER + 128); 809 810 headroom = skb_headroom(skb); 811 tailroom = skb_tailroom(skb); 812 813 has_mac = skb_mac_header_was_set(skb); 814 has_trans = skb_transport_header_was_set(skb); 815 816 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 817 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 818 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 819 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 820 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 821 level, skb->len, headroom, skb_headlen(skb), tailroom, 822 has_mac ? skb->mac_header : -1, 823 has_mac ? skb_mac_header_len(skb) : -1, 824 skb->network_header, 825 has_trans ? skb_network_header_len(skb) : -1, 826 has_trans ? skb->transport_header : -1, 827 sh->tx_flags, sh->nr_frags, 828 sh->gso_size, sh->gso_type, sh->gso_segs, 829 skb->csum, skb->ip_summed, skb->csum_complete_sw, 830 skb->csum_valid, skb->csum_level, 831 skb->hash, skb->sw_hash, skb->l4_hash, 832 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 833 834 if (dev) 835 printk("%sdev name=%s feat=0x%pNF\n", 836 level, dev->name, &dev->features); 837 if (sk) 838 printk("%ssk family=%hu type=%u proto=%u\n", 839 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 840 841 if (full_pkt && headroom) 842 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 843 16, 1, skb->head, headroom, false); 844 845 seg_len = min_t(int, skb_headlen(skb), len); 846 if (seg_len) 847 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 848 16, 1, skb->data, seg_len, false); 849 len -= seg_len; 850 851 if (full_pkt && tailroom) 852 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 853 16, 1, skb_tail_pointer(skb), tailroom, false); 854 855 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 856 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 857 u32 p_off, p_len, copied; 858 struct page *p; 859 u8 *vaddr; 860 861 skb_frag_foreach_page(frag, skb_frag_off(frag), 862 skb_frag_size(frag), p, p_off, p_len, 863 copied) { 864 seg_len = min_t(int, p_len, len); 865 vaddr = kmap_atomic(p); 866 print_hex_dump(level, "skb frag: ", 867 DUMP_PREFIX_OFFSET, 868 16, 1, vaddr + p_off, seg_len, false); 869 kunmap_atomic(vaddr); 870 len -= seg_len; 871 if (!len) 872 break; 873 } 874 } 875 876 if (full_pkt && skb_has_frag_list(skb)) { 877 printk("skb fraglist:\n"); 878 skb_walk_frags(skb, list_skb) 879 skb_dump(level, list_skb, true); 880 } 881 } 882 EXPORT_SYMBOL(skb_dump); 883 884 /** 885 * skb_tx_error - report an sk_buff xmit error 886 * @skb: buffer that triggered an error 887 * 888 * Report xmit error if a device callback is tracking this skb. 889 * skb must be freed afterwards. 890 */ 891 void skb_tx_error(struct sk_buff *skb) 892 { 893 skb_zcopy_clear(skb, true); 894 } 895 EXPORT_SYMBOL(skb_tx_error); 896 897 #ifdef CONFIG_TRACEPOINTS 898 /** 899 * consume_skb - free an skbuff 900 * @skb: buffer to free 901 * 902 * Drop a ref to the buffer and free it if the usage count has hit zero 903 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 904 * is being dropped after a failure and notes that 905 */ 906 void consume_skb(struct sk_buff *skb) 907 { 908 if (!skb_unref(skb)) 909 return; 910 911 trace_consume_skb(skb); 912 __kfree_skb(skb); 913 } 914 EXPORT_SYMBOL(consume_skb); 915 #endif 916 917 /** 918 * __consume_stateless_skb - free an skbuff, assuming it is stateless 919 * @skb: buffer to free 920 * 921 * Alike consume_skb(), but this variant assumes that this is the last 922 * skb reference and all the head states have been already dropped 923 */ 924 void __consume_stateless_skb(struct sk_buff *skb) 925 { 926 trace_consume_skb(skb); 927 skb_release_data(skb); 928 kfree_skbmem(skb); 929 } 930 931 static void napi_skb_cache_put(struct sk_buff *skb) 932 { 933 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 934 u32 i; 935 936 kasan_poison_object_data(skbuff_head_cache, skb); 937 nc->skb_cache[nc->skb_count++] = skb; 938 939 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 940 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 941 kasan_unpoison_object_data(skbuff_head_cache, 942 nc->skb_cache[i]); 943 944 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 945 nc->skb_cache + NAPI_SKB_CACHE_HALF); 946 nc->skb_count = NAPI_SKB_CACHE_HALF; 947 } 948 } 949 950 void __kfree_skb_defer(struct sk_buff *skb) 951 { 952 skb_release_all(skb); 953 napi_skb_cache_put(skb); 954 } 955 956 void napi_skb_free_stolen_head(struct sk_buff *skb) 957 { 958 if (unlikely(skb->slow_gro)) { 959 nf_reset_ct(skb); 960 skb_dst_drop(skb); 961 skb_ext_put(skb); 962 skb_orphan(skb); 963 skb->slow_gro = 0; 964 } 965 napi_skb_cache_put(skb); 966 } 967 968 void napi_consume_skb(struct sk_buff *skb, int budget) 969 { 970 /* Zero budget indicate non-NAPI context called us, like netpoll */ 971 if (unlikely(!budget)) { 972 dev_consume_skb_any(skb); 973 return; 974 } 975 976 lockdep_assert_in_softirq(); 977 978 if (!skb_unref(skb)) 979 return; 980 981 /* if reaching here SKB is ready to free */ 982 trace_consume_skb(skb); 983 984 /* if SKB is a clone, don't handle this case */ 985 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 986 __kfree_skb(skb); 987 return; 988 } 989 990 skb_release_all(skb); 991 napi_skb_cache_put(skb); 992 } 993 EXPORT_SYMBOL(napi_consume_skb); 994 995 /* Make sure a field is enclosed inside headers_start/headers_end section */ 996 #define CHECK_SKB_FIELD(field) \ 997 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 998 offsetof(struct sk_buff, headers_start)); \ 999 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 1000 offsetof(struct sk_buff, headers_end)); \ 1001 1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1003 { 1004 new->tstamp = old->tstamp; 1005 /* We do not copy old->sk */ 1006 new->dev = old->dev; 1007 memcpy(new->cb, old->cb, sizeof(old->cb)); 1008 skb_dst_copy(new, old); 1009 __skb_ext_copy(new, old); 1010 __nf_copy(new, old, false); 1011 1012 /* Note : this field could be in headers_start/headers_end section 1013 * It is not yet because we do not want to have a 16 bit hole 1014 */ 1015 new->queue_mapping = old->queue_mapping; 1016 1017 memcpy(&new->headers_start, &old->headers_start, 1018 offsetof(struct sk_buff, headers_end) - 1019 offsetof(struct sk_buff, headers_start)); 1020 CHECK_SKB_FIELD(protocol); 1021 CHECK_SKB_FIELD(csum); 1022 CHECK_SKB_FIELD(hash); 1023 CHECK_SKB_FIELD(priority); 1024 CHECK_SKB_FIELD(skb_iif); 1025 CHECK_SKB_FIELD(vlan_proto); 1026 CHECK_SKB_FIELD(vlan_tci); 1027 CHECK_SKB_FIELD(transport_header); 1028 CHECK_SKB_FIELD(network_header); 1029 CHECK_SKB_FIELD(mac_header); 1030 CHECK_SKB_FIELD(inner_protocol); 1031 CHECK_SKB_FIELD(inner_transport_header); 1032 CHECK_SKB_FIELD(inner_network_header); 1033 CHECK_SKB_FIELD(inner_mac_header); 1034 CHECK_SKB_FIELD(mark); 1035 #ifdef CONFIG_NETWORK_SECMARK 1036 CHECK_SKB_FIELD(secmark); 1037 #endif 1038 #ifdef CONFIG_NET_RX_BUSY_POLL 1039 CHECK_SKB_FIELD(napi_id); 1040 #endif 1041 #ifdef CONFIG_XPS 1042 CHECK_SKB_FIELD(sender_cpu); 1043 #endif 1044 #ifdef CONFIG_NET_SCHED 1045 CHECK_SKB_FIELD(tc_index); 1046 #endif 1047 1048 } 1049 1050 /* 1051 * You should not add any new code to this function. Add it to 1052 * __copy_skb_header above instead. 1053 */ 1054 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1055 { 1056 #define C(x) n->x = skb->x 1057 1058 n->next = n->prev = NULL; 1059 n->sk = NULL; 1060 __copy_skb_header(n, skb); 1061 1062 C(len); 1063 C(data_len); 1064 C(mac_len); 1065 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1066 n->cloned = 1; 1067 n->nohdr = 0; 1068 n->peeked = 0; 1069 C(pfmemalloc); 1070 C(pp_recycle); 1071 n->destructor = NULL; 1072 C(tail); 1073 C(end); 1074 C(head); 1075 C(head_frag); 1076 C(data); 1077 C(truesize); 1078 refcount_set(&n->users, 1); 1079 1080 atomic_inc(&(skb_shinfo(skb)->dataref)); 1081 skb->cloned = 1; 1082 1083 return n; 1084 #undef C 1085 } 1086 1087 /** 1088 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1089 * @first: first sk_buff of the msg 1090 */ 1091 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1092 { 1093 struct sk_buff *n; 1094 1095 n = alloc_skb(0, GFP_ATOMIC); 1096 if (!n) 1097 return NULL; 1098 1099 n->len = first->len; 1100 n->data_len = first->len; 1101 n->truesize = first->truesize; 1102 1103 skb_shinfo(n)->frag_list = first; 1104 1105 __copy_skb_header(n, first); 1106 n->destructor = NULL; 1107 1108 return n; 1109 } 1110 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1111 1112 /** 1113 * skb_morph - morph one skb into another 1114 * @dst: the skb to receive the contents 1115 * @src: the skb to supply the contents 1116 * 1117 * This is identical to skb_clone except that the target skb is 1118 * supplied by the user. 1119 * 1120 * The target skb is returned upon exit. 1121 */ 1122 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1123 { 1124 skb_release_all(dst); 1125 return __skb_clone(dst, src); 1126 } 1127 EXPORT_SYMBOL_GPL(skb_morph); 1128 1129 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1130 { 1131 unsigned long max_pg, num_pg, new_pg, old_pg; 1132 struct user_struct *user; 1133 1134 if (capable(CAP_IPC_LOCK) || !size) 1135 return 0; 1136 1137 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1138 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1139 user = mmp->user ? : current_user(); 1140 1141 do { 1142 old_pg = atomic_long_read(&user->locked_vm); 1143 new_pg = old_pg + num_pg; 1144 if (new_pg > max_pg) 1145 return -ENOBUFS; 1146 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1147 old_pg); 1148 1149 if (!mmp->user) { 1150 mmp->user = get_uid(user); 1151 mmp->num_pg = num_pg; 1152 } else { 1153 mmp->num_pg += num_pg; 1154 } 1155 1156 return 0; 1157 } 1158 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1159 1160 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1161 { 1162 if (mmp->user) { 1163 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1164 free_uid(mmp->user); 1165 } 1166 } 1167 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1168 1169 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1170 { 1171 struct ubuf_info *uarg; 1172 struct sk_buff *skb; 1173 1174 WARN_ON_ONCE(!in_task()); 1175 1176 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1177 if (!skb) 1178 return NULL; 1179 1180 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1181 uarg = (void *)skb->cb; 1182 uarg->mmp.user = NULL; 1183 1184 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1185 kfree_skb(skb); 1186 return NULL; 1187 } 1188 1189 uarg->callback = msg_zerocopy_callback; 1190 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1191 uarg->len = 1; 1192 uarg->bytelen = size; 1193 uarg->zerocopy = 1; 1194 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1195 refcount_set(&uarg->refcnt, 1); 1196 sock_hold(sk); 1197 1198 return uarg; 1199 } 1200 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1201 1202 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1203 { 1204 return container_of((void *)uarg, struct sk_buff, cb); 1205 } 1206 1207 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1208 struct ubuf_info *uarg) 1209 { 1210 if (uarg) { 1211 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1212 u32 bytelen, next; 1213 1214 /* realloc only when socket is locked (TCP, UDP cork), 1215 * so uarg->len and sk_zckey access is serialized 1216 */ 1217 if (!sock_owned_by_user(sk)) { 1218 WARN_ON_ONCE(1); 1219 return NULL; 1220 } 1221 1222 bytelen = uarg->bytelen + size; 1223 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1224 /* TCP can create new skb to attach new uarg */ 1225 if (sk->sk_type == SOCK_STREAM) 1226 goto new_alloc; 1227 return NULL; 1228 } 1229 1230 next = (u32)atomic_read(&sk->sk_zckey); 1231 if ((u32)(uarg->id + uarg->len) == next) { 1232 if (mm_account_pinned_pages(&uarg->mmp, size)) 1233 return NULL; 1234 uarg->len++; 1235 uarg->bytelen = bytelen; 1236 atomic_set(&sk->sk_zckey, ++next); 1237 1238 /* no extra ref when appending to datagram (MSG_MORE) */ 1239 if (sk->sk_type == SOCK_STREAM) 1240 net_zcopy_get(uarg); 1241 1242 return uarg; 1243 } 1244 } 1245 1246 new_alloc: 1247 return msg_zerocopy_alloc(sk, size); 1248 } 1249 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1250 1251 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1252 { 1253 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1254 u32 old_lo, old_hi; 1255 u64 sum_len; 1256 1257 old_lo = serr->ee.ee_info; 1258 old_hi = serr->ee.ee_data; 1259 sum_len = old_hi - old_lo + 1ULL + len; 1260 1261 if (sum_len >= (1ULL << 32)) 1262 return false; 1263 1264 if (lo != old_hi + 1) 1265 return false; 1266 1267 serr->ee.ee_data += len; 1268 return true; 1269 } 1270 1271 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1272 { 1273 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1274 struct sock_exterr_skb *serr; 1275 struct sock *sk = skb->sk; 1276 struct sk_buff_head *q; 1277 unsigned long flags; 1278 bool is_zerocopy; 1279 u32 lo, hi; 1280 u16 len; 1281 1282 mm_unaccount_pinned_pages(&uarg->mmp); 1283 1284 /* if !len, there was only 1 call, and it was aborted 1285 * so do not queue a completion notification 1286 */ 1287 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1288 goto release; 1289 1290 len = uarg->len; 1291 lo = uarg->id; 1292 hi = uarg->id + len - 1; 1293 is_zerocopy = uarg->zerocopy; 1294 1295 serr = SKB_EXT_ERR(skb); 1296 memset(serr, 0, sizeof(*serr)); 1297 serr->ee.ee_errno = 0; 1298 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1299 serr->ee.ee_data = hi; 1300 serr->ee.ee_info = lo; 1301 if (!is_zerocopy) 1302 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1303 1304 q = &sk->sk_error_queue; 1305 spin_lock_irqsave(&q->lock, flags); 1306 tail = skb_peek_tail(q); 1307 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1308 !skb_zerocopy_notify_extend(tail, lo, len)) { 1309 __skb_queue_tail(q, skb); 1310 skb = NULL; 1311 } 1312 spin_unlock_irqrestore(&q->lock, flags); 1313 1314 sk_error_report(sk); 1315 1316 release: 1317 consume_skb(skb); 1318 sock_put(sk); 1319 } 1320 1321 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1322 bool success) 1323 { 1324 uarg->zerocopy = uarg->zerocopy & success; 1325 1326 if (refcount_dec_and_test(&uarg->refcnt)) 1327 __msg_zerocopy_callback(uarg); 1328 } 1329 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1330 1331 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1332 { 1333 struct sock *sk = skb_from_uarg(uarg)->sk; 1334 1335 atomic_dec(&sk->sk_zckey); 1336 uarg->len--; 1337 1338 if (have_uref) 1339 msg_zerocopy_callback(NULL, uarg, true); 1340 } 1341 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1342 1343 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1344 { 1345 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1346 } 1347 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1348 1349 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1350 struct msghdr *msg, int len, 1351 struct ubuf_info *uarg) 1352 { 1353 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1354 struct iov_iter orig_iter = msg->msg_iter; 1355 int err, orig_len = skb->len; 1356 1357 /* An skb can only point to one uarg. This edge case happens when 1358 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1359 */ 1360 if (orig_uarg && uarg != orig_uarg) 1361 return -EEXIST; 1362 1363 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1364 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1365 struct sock *save_sk = skb->sk; 1366 1367 /* Streams do not free skb on error. Reset to prev state. */ 1368 msg->msg_iter = orig_iter; 1369 skb->sk = sk; 1370 ___pskb_trim(skb, orig_len); 1371 skb->sk = save_sk; 1372 return err; 1373 } 1374 1375 skb_zcopy_set(skb, uarg, NULL); 1376 return skb->len - orig_len; 1377 } 1378 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1379 1380 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1381 gfp_t gfp_mask) 1382 { 1383 if (skb_zcopy(orig)) { 1384 if (skb_zcopy(nskb)) { 1385 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1386 if (!gfp_mask) { 1387 WARN_ON_ONCE(1); 1388 return -ENOMEM; 1389 } 1390 if (skb_uarg(nskb) == skb_uarg(orig)) 1391 return 0; 1392 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1393 return -EIO; 1394 } 1395 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1396 } 1397 return 0; 1398 } 1399 1400 /** 1401 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1402 * @skb: the skb to modify 1403 * @gfp_mask: allocation priority 1404 * 1405 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1406 * It will copy all frags into kernel and drop the reference 1407 * to userspace pages. 1408 * 1409 * If this function is called from an interrupt gfp_mask() must be 1410 * %GFP_ATOMIC. 1411 * 1412 * Returns 0 on success or a negative error code on failure 1413 * to allocate kernel memory to copy to. 1414 */ 1415 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1416 { 1417 int num_frags = skb_shinfo(skb)->nr_frags; 1418 struct page *page, *head = NULL; 1419 int i, new_frags; 1420 u32 d_off; 1421 1422 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1423 return -EINVAL; 1424 1425 if (!num_frags) 1426 goto release; 1427 1428 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1429 for (i = 0; i < new_frags; i++) { 1430 page = alloc_page(gfp_mask); 1431 if (!page) { 1432 while (head) { 1433 struct page *next = (struct page *)page_private(head); 1434 put_page(head); 1435 head = next; 1436 } 1437 return -ENOMEM; 1438 } 1439 set_page_private(page, (unsigned long)head); 1440 head = page; 1441 } 1442 1443 page = head; 1444 d_off = 0; 1445 for (i = 0; i < num_frags; i++) { 1446 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1447 u32 p_off, p_len, copied; 1448 struct page *p; 1449 u8 *vaddr; 1450 1451 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1452 p, p_off, p_len, copied) { 1453 u32 copy, done = 0; 1454 vaddr = kmap_atomic(p); 1455 1456 while (done < p_len) { 1457 if (d_off == PAGE_SIZE) { 1458 d_off = 0; 1459 page = (struct page *)page_private(page); 1460 } 1461 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1462 memcpy(page_address(page) + d_off, 1463 vaddr + p_off + done, copy); 1464 done += copy; 1465 d_off += copy; 1466 } 1467 kunmap_atomic(vaddr); 1468 } 1469 } 1470 1471 /* skb frags release userspace buffers */ 1472 for (i = 0; i < num_frags; i++) 1473 skb_frag_unref(skb, i); 1474 1475 /* skb frags point to kernel buffers */ 1476 for (i = 0; i < new_frags - 1; i++) { 1477 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1478 head = (struct page *)page_private(head); 1479 } 1480 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1481 skb_shinfo(skb)->nr_frags = new_frags; 1482 1483 release: 1484 skb_zcopy_clear(skb, false); 1485 return 0; 1486 } 1487 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1488 1489 /** 1490 * skb_clone - duplicate an sk_buff 1491 * @skb: buffer to clone 1492 * @gfp_mask: allocation priority 1493 * 1494 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1495 * copies share the same packet data but not structure. The new 1496 * buffer has a reference count of 1. If the allocation fails the 1497 * function returns %NULL otherwise the new buffer is returned. 1498 * 1499 * If this function is called from an interrupt gfp_mask() must be 1500 * %GFP_ATOMIC. 1501 */ 1502 1503 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1504 { 1505 struct sk_buff_fclones *fclones = container_of(skb, 1506 struct sk_buff_fclones, 1507 skb1); 1508 struct sk_buff *n; 1509 1510 if (skb_orphan_frags(skb, gfp_mask)) 1511 return NULL; 1512 1513 if (skb->fclone == SKB_FCLONE_ORIG && 1514 refcount_read(&fclones->fclone_ref) == 1) { 1515 n = &fclones->skb2; 1516 refcount_set(&fclones->fclone_ref, 2); 1517 } else { 1518 if (skb_pfmemalloc(skb)) 1519 gfp_mask |= __GFP_MEMALLOC; 1520 1521 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1522 if (!n) 1523 return NULL; 1524 1525 n->fclone = SKB_FCLONE_UNAVAILABLE; 1526 } 1527 1528 return __skb_clone(n, skb); 1529 } 1530 EXPORT_SYMBOL(skb_clone); 1531 1532 void skb_headers_offset_update(struct sk_buff *skb, int off) 1533 { 1534 /* Only adjust this if it actually is csum_start rather than csum */ 1535 if (skb->ip_summed == CHECKSUM_PARTIAL) 1536 skb->csum_start += off; 1537 /* {transport,network,mac}_header and tail are relative to skb->head */ 1538 skb->transport_header += off; 1539 skb->network_header += off; 1540 if (skb_mac_header_was_set(skb)) 1541 skb->mac_header += off; 1542 skb->inner_transport_header += off; 1543 skb->inner_network_header += off; 1544 skb->inner_mac_header += off; 1545 } 1546 EXPORT_SYMBOL(skb_headers_offset_update); 1547 1548 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1549 { 1550 __copy_skb_header(new, old); 1551 1552 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1553 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1554 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1555 } 1556 EXPORT_SYMBOL(skb_copy_header); 1557 1558 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1559 { 1560 if (skb_pfmemalloc(skb)) 1561 return SKB_ALLOC_RX; 1562 return 0; 1563 } 1564 1565 /** 1566 * skb_copy - create private copy of an sk_buff 1567 * @skb: buffer to copy 1568 * @gfp_mask: allocation priority 1569 * 1570 * Make a copy of both an &sk_buff and its data. This is used when the 1571 * caller wishes to modify the data and needs a private copy of the 1572 * data to alter. Returns %NULL on failure or the pointer to the buffer 1573 * on success. The returned buffer has a reference count of 1. 1574 * 1575 * As by-product this function converts non-linear &sk_buff to linear 1576 * one, so that &sk_buff becomes completely private and caller is allowed 1577 * to modify all the data of returned buffer. This means that this 1578 * function is not recommended for use in circumstances when only 1579 * header is going to be modified. Use pskb_copy() instead. 1580 */ 1581 1582 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1583 { 1584 int headerlen = skb_headroom(skb); 1585 unsigned int size = skb_end_offset(skb) + skb->data_len; 1586 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1587 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1588 1589 if (!n) 1590 return NULL; 1591 1592 /* Set the data pointer */ 1593 skb_reserve(n, headerlen); 1594 /* Set the tail pointer and length */ 1595 skb_put(n, skb->len); 1596 1597 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1598 1599 skb_copy_header(n, skb); 1600 return n; 1601 } 1602 EXPORT_SYMBOL(skb_copy); 1603 1604 /** 1605 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1606 * @skb: buffer to copy 1607 * @headroom: headroom of new skb 1608 * @gfp_mask: allocation priority 1609 * @fclone: if true allocate the copy of the skb from the fclone 1610 * cache instead of the head cache; it is recommended to set this 1611 * to true for the cases where the copy will likely be cloned 1612 * 1613 * Make a copy of both an &sk_buff and part of its data, located 1614 * in header. Fragmented data remain shared. This is used when 1615 * the caller wishes to modify only header of &sk_buff and needs 1616 * private copy of the header to alter. Returns %NULL on failure 1617 * or the pointer to the buffer on success. 1618 * The returned buffer has a reference count of 1. 1619 */ 1620 1621 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1622 gfp_t gfp_mask, bool fclone) 1623 { 1624 unsigned int size = skb_headlen(skb) + headroom; 1625 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1626 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1627 1628 if (!n) 1629 goto out; 1630 1631 /* Set the data pointer */ 1632 skb_reserve(n, headroom); 1633 /* Set the tail pointer and length */ 1634 skb_put(n, skb_headlen(skb)); 1635 /* Copy the bytes */ 1636 skb_copy_from_linear_data(skb, n->data, n->len); 1637 1638 n->truesize += skb->data_len; 1639 n->data_len = skb->data_len; 1640 n->len = skb->len; 1641 1642 if (skb_shinfo(skb)->nr_frags) { 1643 int i; 1644 1645 if (skb_orphan_frags(skb, gfp_mask) || 1646 skb_zerocopy_clone(n, skb, gfp_mask)) { 1647 kfree_skb(n); 1648 n = NULL; 1649 goto out; 1650 } 1651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1652 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1653 skb_frag_ref(skb, i); 1654 } 1655 skb_shinfo(n)->nr_frags = i; 1656 } 1657 1658 if (skb_has_frag_list(skb)) { 1659 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1660 skb_clone_fraglist(n); 1661 } 1662 1663 skb_copy_header(n, skb); 1664 out: 1665 return n; 1666 } 1667 EXPORT_SYMBOL(__pskb_copy_fclone); 1668 1669 /** 1670 * pskb_expand_head - reallocate header of &sk_buff 1671 * @skb: buffer to reallocate 1672 * @nhead: room to add at head 1673 * @ntail: room to add at tail 1674 * @gfp_mask: allocation priority 1675 * 1676 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1677 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1678 * reference count of 1. Returns zero in the case of success or error, 1679 * if expansion failed. In the last case, &sk_buff is not changed. 1680 * 1681 * All the pointers pointing into skb header may change and must be 1682 * reloaded after call to this function. 1683 */ 1684 1685 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1686 gfp_t gfp_mask) 1687 { 1688 int i, osize = skb_end_offset(skb); 1689 int size = osize + nhead + ntail; 1690 long off; 1691 u8 *data; 1692 1693 BUG_ON(nhead < 0); 1694 1695 BUG_ON(skb_shared(skb)); 1696 1697 size = SKB_DATA_ALIGN(size); 1698 1699 if (skb_pfmemalloc(skb)) 1700 gfp_mask |= __GFP_MEMALLOC; 1701 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1702 gfp_mask, NUMA_NO_NODE, NULL); 1703 if (!data) 1704 goto nodata; 1705 size = SKB_WITH_OVERHEAD(ksize(data)); 1706 1707 /* Copy only real data... and, alas, header. This should be 1708 * optimized for the cases when header is void. 1709 */ 1710 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1711 1712 memcpy((struct skb_shared_info *)(data + size), 1713 skb_shinfo(skb), 1714 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1715 1716 /* 1717 * if shinfo is shared we must drop the old head gracefully, but if it 1718 * is not we can just drop the old head and let the existing refcount 1719 * be since all we did is relocate the values 1720 */ 1721 if (skb_cloned(skb)) { 1722 if (skb_orphan_frags(skb, gfp_mask)) 1723 goto nofrags; 1724 if (skb_zcopy(skb)) 1725 refcount_inc(&skb_uarg(skb)->refcnt); 1726 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1727 skb_frag_ref(skb, i); 1728 1729 if (skb_has_frag_list(skb)) 1730 skb_clone_fraglist(skb); 1731 1732 skb_release_data(skb); 1733 } else { 1734 skb_free_head(skb); 1735 } 1736 off = (data + nhead) - skb->head; 1737 1738 skb->head = data; 1739 skb->head_frag = 0; 1740 skb->data += off; 1741 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1742 skb->end = size; 1743 off = nhead; 1744 #else 1745 skb->end = skb->head + size; 1746 #endif 1747 skb->tail += off; 1748 skb_headers_offset_update(skb, nhead); 1749 skb->cloned = 0; 1750 skb->hdr_len = 0; 1751 skb->nohdr = 0; 1752 atomic_set(&skb_shinfo(skb)->dataref, 1); 1753 1754 skb_metadata_clear(skb); 1755 1756 /* It is not generally safe to change skb->truesize. 1757 * For the moment, we really care of rx path, or 1758 * when skb is orphaned (not attached to a socket). 1759 */ 1760 if (!skb->sk || skb->destructor == sock_edemux) 1761 skb->truesize += size - osize; 1762 1763 return 0; 1764 1765 nofrags: 1766 kfree(data); 1767 nodata: 1768 return -ENOMEM; 1769 } 1770 EXPORT_SYMBOL(pskb_expand_head); 1771 1772 /* Make private copy of skb with writable head and some headroom */ 1773 1774 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1775 { 1776 struct sk_buff *skb2; 1777 int delta = headroom - skb_headroom(skb); 1778 1779 if (delta <= 0) 1780 skb2 = pskb_copy(skb, GFP_ATOMIC); 1781 else { 1782 skb2 = skb_clone(skb, GFP_ATOMIC); 1783 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1784 GFP_ATOMIC)) { 1785 kfree_skb(skb2); 1786 skb2 = NULL; 1787 } 1788 } 1789 return skb2; 1790 } 1791 EXPORT_SYMBOL(skb_realloc_headroom); 1792 1793 /** 1794 * skb_expand_head - reallocate header of &sk_buff 1795 * @skb: buffer to reallocate 1796 * @headroom: needed headroom 1797 * 1798 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1799 * if possible; copies skb->sk to new skb as needed 1800 * and frees original skb in case of failures. 1801 * 1802 * It expect increased headroom and generates warning otherwise. 1803 */ 1804 1805 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1806 { 1807 int delta = headroom - skb_headroom(skb); 1808 int osize = skb_end_offset(skb); 1809 struct sock *sk = skb->sk; 1810 1811 if (WARN_ONCE(delta <= 0, 1812 "%s is expecting an increase in the headroom", __func__)) 1813 return skb; 1814 1815 delta = SKB_DATA_ALIGN(delta); 1816 /* pskb_expand_head() might crash, if skb is shared. */ 1817 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1818 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1819 1820 if (unlikely(!nskb)) 1821 goto fail; 1822 1823 if (sk) 1824 skb_set_owner_w(nskb, sk); 1825 consume_skb(skb); 1826 skb = nskb; 1827 } 1828 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1829 goto fail; 1830 1831 if (sk && is_skb_wmem(skb)) { 1832 delta = skb_end_offset(skb) - osize; 1833 refcount_add(delta, &sk->sk_wmem_alloc); 1834 skb->truesize += delta; 1835 } 1836 return skb; 1837 1838 fail: 1839 kfree_skb(skb); 1840 return NULL; 1841 } 1842 EXPORT_SYMBOL(skb_expand_head); 1843 1844 /** 1845 * skb_copy_expand - copy and expand sk_buff 1846 * @skb: buffer to copy 1847 * @newheadroom: new free bytes at head 1848 * @newtailroom: new free bytes at tail 1849 * @gfp_mask: allocation priority 1850 * 1851 * Make a copy of both an &sk_buff and its data and while doing so 1852 * allocate additional space. 1853 * 1854 * This is used when the caller wishes to modify the data and needs a 1855 * private copy of the data to alter as well as more space for new fields. 1856 * Returns %NULL on failure or the pointer to the buffer 1857 * on success. The returned buffer has a reference count of 1. 1858 * 1859 * You must pass %GFP_ATOMIC as the allocation priority if this function 1860 * is called from an interrupt. 1861 */ 1862 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1863 int newheadroom, int newtailroom, 1864 gfp_t gfp_mask) 1865 { 1866 /* 1867 * Allocate the copy buffer 1868 */ 1869 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1870 gfp_mask, skb_alloc_rx_flag(skb), 1871 NUMA_NO_NODE); 1872 int oldheadroom = skb_headroom(skb); 1873 int head_copy_len, head_copy_off; 1874 1875 if (!n) 1876 return NULL; 1877 1878 skb_reserve(n, newheadroom); 1879 1880 /* Set the tail pointer and length */ 1881 skb_put(n, skb->len); 1882 1883 head_copy_len = oldheadroom; 1884 head_copy_off = 0; 1885 if (newheadroom <= head_copy_len) 1886 head_copy_len = newheadroom; 1887 else 1888 head_copy_off = newheadroom - head_copy_len; 1889 1890 /* Copy the linear header and data. */ 1891 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1892 skb->len + head_copy_len)); 1893 1894 skb_copy_header(n, skb); 1895 1896 skb_headers_offset_update(n, newheadroom - oldheadroom); 1897 1898 return n; 1899 } 1900 EXPORT_SYMBOL(skb_copy_expand); 1901 1902 /** 1903 * __skb_pad - zero pad the tail of an skb 1904 * @skb: buffer to pad 1905 * @pad: space to pad 1906 * @free_on_error: free buffer on error 1907 * 1908 * Ensure that a buffer is followed by a padding area that is zero 1909 * filled. Used by network drivers which may DMA or transfer data 1910 * beyond the buffer end onto the wire. 1911 * 1912 * May return error in out of memory cases. The skb is freed on error 1913 * if @free_on_error is true. 1914 */ 1915 1916 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1917 { 1918 int err; 1919 int ntail; 1920 1921 /* If the skbuff is non linear tailroom is always zero.. */ 1922 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1923 memset(skb->data+skb->len, 0, pad); 1924 return 0; 1925 } 1926 1927 ntail = skb->data_len + pad - (skb->end - skb->tail); 1928 if (likely(skb_cloned(skb) || ntail > 0)) { 1929 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1930 if (unlikely(err)) 1931 goto free_skb; 1932 } 1933 1934 /* FIXME: The use of this function with non-linear skb's really needs 1935 * to be audited. 1936 */ 1937 err = skb_linearize(skb); 1938 if (unlikely(err)) 1939 goto free_skb; 1940 1941 memset(skb->data + skb->len, 0, pad); 1942 return 0; 1943 1944 free_skb: 1945 if (free_on_error) 1946 kfree_skb(skb); 1947 return err; 1948 } 1949 EXPORT_SYMBOL(__skb_pad); 1950 1951 /** 1952 * pskb_put - add data to the tail of a potentially fragmented buffer 1953 * @skb: start of the buffer to use 1954 * @tail: tail fragment of the buffer to use 1955 * @len: amount of data to add 1956 * 1957 * This function extends the used data area of the potentially 1958 * fragmented buffer. @tail must be the last fragment of @skb -- or 1959 * @skb itself. If this would exceed the total buffer size the kernel 1960 * will panic. A pointer to the first byte of the extra data is 1961 * returned. 1962 */ 1963 1964 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1965 { 1966 if (tail != skb) { 1967 skb->data_len += len; 1968 skb->len += len; 1969 } 1970 return skb_put(tail, len); 1971 } 1972 EXPORT_SYMBOL_GPL(pskb_put); 1973 1974 /** 1975 * skb_put - add data to a buffer 1976 * @skb: buffer to use 1977 * @len: amount of data to add 1978 * 1979 * This function extends the used data area of the buffer. If this would 1980 * exceed the total buffer size the kernel will panic. A pointer to the 1981 * first byte of the extra data is returned. 1982 */ 1983 void *skb_put(struct sk_buff *skb, unsigned int len) 1984 { 1985 void *tmp = skb_tail_pointer(skb); 1986 SKB_LINEAR_ASSERT(skb); 1987 skb->tail += len; 1988 skb->len += len; 1989 if (unlikely(skb->tail > skb->end)) 1990 skb_over_panic(skb, len, __builtin_return_address(0)); 1991 return tmp; 1992 } 1993 EXPORT_SYMBOL(skb_put); 1994 1995 /** 1996 * skb_push - add data to the start of a buffer 1997 * @skb: buffer to use 1998 * @len: amount of data to add 1999 * 2000 * This function extends the used data area of the buffer at the buffer 2001 * start. If this would exceed the total buffer headroom the kernel will 2002 * panic. A pointer to the first byte of the extra data is returned. 2003 */ 2004 void *skb_push(struct sk_buff *skb, unsigned int len) 2005 { 2006 skb->data -= len; 2007 skb->len += len; 2008 if (unlikely(skb->data < skb->head)) 2009 skb_under_panic(skb, len, __builtin_return_address(0)); 2010 return skb->data; 2011 } 2012 EXPORT_SYMBOL(skb_push); 2013 2014 /** 2015 * skb_pull - remove data from the start of a buffer 2016 * @skb: buffer to use 2017 * @len: amount of data to remove 2018 * 2019 * This function removes data from the start of a buffer, returning 2020 * the memory to the headroom. A pointer to the next data in the buffer 2021 * is returned. Once the data has been pulled future pushes will overwrite 2022 * the old data. 2023 */ 2024 void *skb_pull(struct sk_buff *skb, unsigned int len) 2025 { 2026 return skb_pull_inline(skb, len); 2027 } 2028 EXPORT_SYMBOL(skb_pull); 2029 2030 /** 2031 * skb_trim - remove end from a buffer 2032 * @skb: buffer to alter 2033 * @len: new length 2034 * 2035 * Cut the length of a buffer down by removing data from the tail. If 2036 * the buffer is already under the length specified it is not modified. 2037 * The skb must be linear. 2038 */ 2039 void skb_trim(struct sk_buff *skb, unsigned int len) 2040 { 2041 if (skb->len > len) 2042 __skb_trim(skb, len); 2043 } 2044 EXPORT_SYMBOL(skb_trim); 2045 2046 /* Trims skb to length len. It can change skb pointers. 2047 */ 2048 2049 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2050 { 2051 struct sk_buff **fragp; 2052 struct sk_buff *frag; 2053 int offset = skb_headlen(skb); 2054 int nfrags = skb_shinfo(skb)->nr_frags; 2055 int i; 2056 int err; 2057 2058 if (skb_cloned(skb) && 2059 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2060 return err; 2061 2062 i = 0; 2063 if (offset >= len) 2064 goto drop_pages; 2065 2066 for (; i < nfrags; i++) { 2067 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2068 2069 if (end < len) { 2070 offset = end; 2071 continue; 2072 } 2073 2074 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2075 2076 drop_pages: 2077 skb_shinfo(skb)->nr_frags = i; 2078 2079 for (; i < nfrags; i++) 2080 skb_frag_unref(skb, i); 2081 2082 if (skb_has_frag_list(skb)) 2083 skb_drop_fraglist(skb); 2084 goto done; 2085 } 2086 2087 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2088 fragp = &frag->next) { 2089 int end = offset + frag->len; 2090 2091 if (skb_shared(frag)) { 2092 struct sk_buff *nfrag; 2093 2094 nfrag = skb_clone(frag, GFP_ATOMIC); 2095 if (unlikely(!nfrag)) 2096 return -ENOMEM; 2097 2098 nfrag->next = frag->next; 2099 consume_skb(frag); 2100 frag = nfrag; 2101 *fragp = frag; 2102 } 2103 2104 if (end < len) { 2105 offset = end; 2106 continue; 2107 } 2108 2109 if (end > len && 2110 unlikely((err = pskb_trim(frag, len - offset)))) 2111 return err; 2112 2113 if (frag->next) 2114 skb_drop_list(&frag->next); 2115 break; 2116 } 2117 2118 done: 2119 if (len > skb_headlen(skb)) { 2120 skb->data_len -= skb->len - len; 2121 skb->len = len; 2122 } else { 2123 skb->len = len; 2124 skb->data_len = 0; 2125 skb_set_tail_pointer(skb, len); 2126 } 2127 2128 if (!skb->sk || skb->destructor == sock_edemux) 2129 skb_condense(skb); 2130 return 0; 2131 } 2132 EXPORT_SYMBOL(___pskb_trim); 2133 2134 /* Note : use pskb_trim_rcsum() instead of calling this directly 2135 */ 2136 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2137 { 2138 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2139 int delta = skb->len - len; 2140 2141 skb->csum = csum_block_sub(skb->csum, 2142 skb_checksum(skb, len, delta, 0), 2143 len); 2144 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2145 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2146 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2147 2148 if (offset + sizeof(__sum16) > hdlen) 2149 return -EINVAL; 2150 } 2151 return __pskb_trim(skb, len); 2152 } 2153 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2154 2155 /** 2156 * __pskb_pull_tail - advance tail of skb header 2157 * @skb: buffer to reallocate 2158 * @delta: number of bytes to advance tail 2159 * 2160 * The function makes a sense only on a fragmented &sk_buff, 2161 * it expands header moving its tail forward and copying necessary 2162 * data from fragmented part. 2163 * 2164 * &sk_buff MUST have reference count of 1. 2165 * 2166 * Returns %NULL (and &sk_buff does not change) if pull failed 2167 * or value of new tail of skb in the case of success. 2168 * 2169 * All the pointers pointing into skb header may change and must be 2170 * reloaded after call to this function. 2171 */ 2172 2173 /* Moves tail of skb head forward, copying data from fragmented part, 2174 * when it is necessary. 2175 * 1. It may fail due to malloc failure. 2176 * 2. It may change skb pointers. 2177 * 2178 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2179 */ 2180 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2181 { 2182 /* If skb has not enough free space at tail, get new one 2183 * plus 128 bytes for future expansions. If we have enough 2184 * room at tail, reallocate without expansion only if skb is cloned. 2185 */ 2186 int i, k, eat = (skb->tail + delta) - skb->end; 2187 2188 if (eat > 0 || skb_cloned(skb)) { 2189 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2190 GFP_ATOMIC)) 2191 return NULL; 2192 } 2193 2194 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2195 skb_tail_pointer(skb), delta)); 2196 2197 /* Optimization: no fragments, no reasons to preestimate 2198 * size of pulled pages. Superb. 2199 */ 2200 if (!skb_has_frag_list(skb)) 2201 goto pull_pages; 2202 2203 /* Estimate size of pulled pages. */ 2204 eat = delta; 2205 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2206 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2207 2208 if (size >= eat) 2209 goto pull_pages; 2210 eat -= size; 2211 } 2212 2213 /* If we need update frag list, we are in troubles. 2214 * Certainly, it is possible to add an offset to skb data, 2215 * but taking into account that pulling is expected to 2216 * be very rare operation, it is worth to fight against 2217 * further bloating skb head and crucify ourselves here instead. 2218 * Pure masohism, indeed. 8)8) 2219 */ 2220 if (eat) { 2221 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2222 struct sk_buff *clone = NULL; 2223 struct sk_buff *insp = NULL; 2224 2225 do { 2226 if (list->len <= eat) { 2227 /* Eaten as whole. */ 2228 eat -= list->len; 2229 list = list->next; 2230 insp = list; 2231 } else { 2232 /* Eaten partially. */ 2233 2234 if (skb_shared(list)) { 2235 /* Sucks! We need to fork list. :-( */ 2236 clone = skb_clone(list, GFP_ATOMIC); 2237 if (!clone) 2238 return NULL; 2239 insp = list->next; 2240 list = clone; 2241 } else { 2242 /* This may be pulled without 2243 * problems. */ 2244 insp = list; 2245 } 2246 if (!pskb_pull(list, eat)) { 2247 kfree_skb(clone); 2248 return NULL; 2249 } 2250 break; 2251 } 2252 } while (eat); 2253 2254 /* Free pulled out fragments. */ 2255 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2256 skb_shinfo(skb)->frag_list = list->next; 2257 kfree_skb(list); 2258 } 2259 /* And insert new clone at head. */ 2260 if (clone) { 2261 clone->next = list; 2262 skb_shinfo(skb)->frag_list = clone; 2263 } 2264 } 2265 /* Success! Now we may commit changes to skb data. */ 2266 2267 pull_pages: 2268 eat = delta; 2269 k = 0; 2270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2271 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2272 2273 if (size <= eat) { 2274 skb_frag_unref(skb, i); 2275 eat -= size; 2276 } else { 2277 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2278 2279 *frag = skb_shinfo(skb)->frags[i]; 2280 if (eat) { 2281 skb_frag_off_add(frag, eat); 2282 skb_frag_size_sub(frag, eat); 2283 if (!i) 2284 goto end; 2285 eat = 0; 2286 } 2287 k++; 2288 } 2289 } 2290 skb_shinfo(skb)->nr_frags = k; 2291 2292 end: 2293 skb->tail += delta; 2294 skb->data_len -= delta; 2295 2296 if (!skb->data_len) 2297 skb_zcopy_clear(skb, false); 2298 2299 return skb_tail_pointer(skb); 2300 } 2301 EXPORT_SYMBOL(__pskb_pull_tail); 2302 2303 /** 2304 * skb_copy_bits - copy bits from skb to kernel buffer 2305 * @skb: source skb 2306 * @offset: offset in source 2307 * @to: destination buffer 2308 * @len: number of bytes to copy 2309 * 2310 * Copy the specified number of bytes from the source skb to the 2311 * destination buffer. 2312 * 2313 * CAUTION ! : 2314 * If its prototype is ever changed, 2315 * check arch/{*}/net/{*}.S files, 2316 * since it is called from BPF assembly code. 2317 */ 2318 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2319 { 2320 int start = skb_headlen(skb); 2321 struct sk_buff *frag_iter; 2322 int i, copy; 2323 2324 if (offset > (int)skb->len - len) 2325 goto fault; 2326 2327 /* Copy header. */ 2328 if ((copy = start - offset) > 0) { 2329 if (copy > len) 2330 copy = len; 2331 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2332 if ((len -= copy) == 0) 2333 return 0; 2334 offset += copy; 2335 to += copy; 2336 } 2337 2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2339 int end; 2340 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2341 2342 WARN_ON(start > offset + len); 2343 2344 end = start + skb_frag_size(f); 2345 if ((copy = end - offset) > 0) { 2346 u32 p_off, p_len, copied; 2347 struct page *p; 2348 u8 *vaddr; 2349 2350 if (copy > len) 2351 copy = len; 2352 2353 skb_frag_foreach_page(f, 2354 skb_frag_off(f) + offset - start, 2355 copy, p, p_off, p_len, copied) { 2356 vaddr = kmap_atomic(p); 2357 memcpy(to + copied, vaddr + p_off, p_len); 2358 kunmap_atomic(vaddr); 2359 } 2360 2361 if ((len -= copy) == 0) 2362 return 0; 2363 offset += copy; 2364 to += copy; 2365 } 2366 start = end; 2367 } 2368 2369 skb_walk_frags(skb, frag_iter) { 2370 int end; 2371 2372 WARN_ON(start > offset + len); 2373 2374 end = start + frag_iter->len; 2375 if ((copy = end - offset) > 0) { 2376 if (copy > len) 2377 copy = len; 2378 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2379 goto fault; 2380 if ((len -= copy) == 0) 2381 return 0; 2382 offset += copy; 2383 to += copy; 2384 } 2385 start = end; 2386 } 2387 2388 if (!len) 2389 return 0; 2390 2391 fault: 2392 return -EFAULT; 2393 } 2394 EXPORT_SYMBOL(skb_copy_bits); 2395 2396 /* 2397 * Callback from splice_to_pipe(), if we need to release some pages 2398 * at the end of the spd in case we error'ed out in filling the pipe. 2399 */ 2400 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2401 { 2402 put_page(spd->pages[i]); 2403 } 2404 2405 static struct page *linear_to_page(struct page *page, unsigned int *len, 2406 unsigned int *offset, 2407 struct sock *sk) 2408 { 2409 struct page_frag *pfrag = sk_page_frag(sk); 2410 2411 if (!sk_page_frag_refill(sk, pfrag)) 2412 return NULL; 2413 2414 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2415 2416 memcpy(page_address(pfrag->page) + pfrag->offset, 2417 page_address(page) + *offset, *len); 2418 *offset = pfrag->offset; 2419 pfrag->offset += *len; 2420 2421 return pfrag->page; 2422 } 2423 2424 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2425 struct page *page, 2426 unsigned int offset) 2427 { 2428 return spd->nr_pages && 2429 spd->pages[spd->nr_pages - 1] == page && 2430 (spd->partial[spd->nr_pages - 1].offset + 2431 spd->partial[spd->nr_pages - 1].len == offset); 2432 } 2433 2434 /* 2435 * Fill page/offset/length into spd, if it can hold more pages. 2436 */ 2437 static bool spd_fill_page(struct splice_pipe_desc *spd, 2438 struct pipe_inode_info *pipe, struct page *page, 2439 unsigned int *len, unsigned int offset, 2440 bool linear, 2441 struct sock *sk) 2442 { 2443 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2444 return true; 2445 2446 if (linear) { 2447 page = linear_to_page(page, len, &offset, sk); 2448 if (!page) 2449 return true; 2450 } 2451 if (spd_can_coalesce(spd, page, offset)) { 2452 spd->partial[spd->nr_pages - 1].len += *len; 2453 return false; 2454 } 2455 get_page(page); 2456 spd->pages[spd->nr_pages] = page; 2457 spd->partial[spd->nr_pages].len = *len; 2458 spd->partial[spd->nr_pages].offset = offset; 2459 spd->nr_pages++; 2460 2461 return false; 2462 } 2463 2464 static bool __splice_segment(struct page *page, unsigned int poff, 2465 unsigned int plen, unsigned int *off, 2466 unsigned int *len, 2467 struct splice_pipe_desc *spd, bool linear, 2468 struct sock *sk, 2469 struct pipe_inode_info *pipe) 2470 { 2471 if (!*len) 2472 return true; 2473 2474 /* skip this segment if already processed */ 2475 if (*off >= plen) { 2476 *off -= plen; 2477 return false; 2478 } 2479 2480 /* ignore any bits we already processed */ 2481 poff += *off; 2482 plen -= *off; 2483 *off = 0; 2484 2485 do { 2486 unsigned int flen = min(*len, plen); 2487 2488 if (spd_fill_page(spd, pipe, page, &flen, poff, 2489 linear, sk)) 2490 return true; 2491 poff += flen; 2492 plen -= flen; 2493 *len -= flen; 2494 } while (*len && plen); 2495 2496 return false; 2497 } 2498 2499 /* 2500 * Map linear and fragment data from the skb to spd. It reports true if the 2501 * pipe is full or if we already spliced the requested length. 2502 */ 2503 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2504 unsigned int *offset, unsigned int *len, 2505 struct splice_pipe_desc *spd, struct sock *sk) 2506 { 2507 int seg; 2508 struct sk_buff *iter; 2509 2510 /* map the linear part : 2511 * If skb->head_frag is set, this 'linear' part is backed by a 2512 * fragment, and if the head is not shared with any clones then 2513 * we can avoid a copy since we own the head portion of this page. 2514 */ 2515 if (__splice_segment(virt_to_page(skb->data), 2516 (unsigned long) skb->data & (PAGE_SIZE - 1), 2517 skb_headlen(skb), 2518 offset, len, spd, 2519 skb_head_is_locked(skb), 2520 sk, pipe)) 2521 return true; 2522 2523 /* 2524 * then map the fragments 2525 */ 2526 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2527 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2528 2529 if (__splice_segment(skb_frag_page(f), 2530 skb_frag_off(f), skb_frag_size(f), 2531 offset, len, spd, false, sk, pipe)) 2532 return true; 2533 } 2534 2535 skb_walk_frags(skb, iter) { 2536 if (*offset >= iter->len) { 2537 *offset -= iter->len; 2538 continue; 2539 } 2540 /* __skb_splice_bits() only fails if the output has no room 2541 * left, so no point in going over the frag_list for the error 2542 * case. 2543 */ 2544 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2545 return true; 2546 } 2547 2548 return false; 2549 } 2550 2551 /* 2552 * Map data from the skb to a pipe. Should handle both the linear part, 2553 * the fragments, and the frag list. 2554 */ 2555 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2556 struct pipe_inode_info *pipe, unsigned int tlen, 2557 unsigned int flags) 2558 { 2559 struct partial_page partial[MAX_SKB_FRAGS]; 2560 struct page *pages[MAX_SKB_FRAGS]; 2561 struct splice_pipe_desc spd = { 2562 .pages = pages, 2563 .partial = partial, 2564 .nr_pages_max = MAX_SKB_FRAGS, 2565 .ops = &nosteal_pipe_buf_ops, 2566 .spd_release = sock_spd_release, 2567 }; 2568 int ret = 0; 2569 2570 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2571 2572 if (spd.nr_pages) 2573 ret = splice_to_pipe(pipe, &spd); 2574 2575 return ret; 2576 } 2577 EXPORT_SYMBOL_GPL(skb_splice_bits); 2578 2579 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2580 struct kvec *vec, size_t num, size_t size) 2581 { 2582 struct socket *sock = sk->sk_socket; 2583 2584 if (!sock) 2585 return -EINVAL; 2586 return kernel_sendmsg(sock, msg, vec, num, size); 2587 } 2588 2589 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2590 size_t size, int flags) 2591 { 2592 struct socket *sock = sk->sk_socket; 2593 2594 if (!sock) 2595 return -EINVAL; 2596 return kernel_sendpage(sock, page, offset, size, flags); 2597 } 2598 2599 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2600 struct kvec *vec, size_t num, size_t size); 2601 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2602 size_t size, int flags); 2603 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2604 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2605 { 2606 unsigned int orig_len = len; 2607 struct sk_buff *head = skb; 2608 unsigned short fragidx; 2609 int slen, ret; 2610 2611 do_frag_list: 2612 2613 /* Deal with head data */ 2614 while (offset < skb_headlen(skb) && len) { 2615 struct kvec kv; 2616 struct msghdr msg; 2617 2618 slen = min_t(int, len, skb_headlen(skb) - offset); 2619 kv.iov_base = skb->data + offset; 2620 kv.iov_len = slen; 2621 memset(&msg, 0, sizeof(msg)); 2622 msg.msg_flags = MSG_DONTWAIT; 2623 2624 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2625 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2626 if (ret <= 0) 2627 goto error; 2628 2629 offset += ret; 2630 len -= ret; 2631 } 2632 2633 /* All the data was skb head? */ 2634 if (!len) 2635 goto out; 2636 2637 /* Make offset relative to start of frags */ 2638 offset -= skb_headlen(skb); 2639 2640 /* Find where we are in frag list */ 2641 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2642 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2643 2644 if (offset < skb_frag_size(frag)) 2645 break; 2646 2647 offset -= skb_frag_size(frag); 2648 } 2649 2650 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2652 2653 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2654 2655 while (slen) { 2656 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2657 sendpage_unlocked, sk, 2658 skb_frag_page(frag), 2659 skb_frag_off(frag) + offset, 2660 slen, MSG_DONTWAIT); 2661 if (ret <= 0) 2662 goto error; 2663 2664 len -= ret; 2665 offset += ret; 2666 slen -= ret; 2667 } 2668 2669 offset = 0; 2670 } 2671 2672 if (len) { 2673 /* Process any frag lists */ 2674 2675 if (skb == head) { 2676 if (skb_has_frag_list(skb)) { 2677 skb = skb_shinfo(skb)->frag_list; 2678 goto do_frag_list; 2679 } 2680 } else if (skb->next) { 2681 skb = skb->next; 2682 goto do_frag_list; 2683 } 2684 } 2685 2686 out: 2687 return orig_len - len; 2688 2689 error: 2690 return orig_len == len ? ret : orig_len - len; 2691 } 2692 2693 /* Send skb data on a socket. Socket must be locked. */ 2694 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2695 int len) 2696 { 2697 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2698 kernel_sendpage_locked); 2699 } 2700 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2701 2702 /* Send skb data on a socket. Socket must be unlocked. */ 2703 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2704 { 2705 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2706 sendpage_unlocked); 2707 } 2708 2709 /** 2710 * skb_store_bits - store bits from kernel buffer to skb 2711 * @skb: destination buffer 2712 * @offset: offset in destination 2713 * @from: source buffer 2714 * @len: number of bytes to copy 2715 * 2716 * Copy the specified number of bytes from the source buffer to the 2717 * destination skb. This function handles all the messy bits of 2718 * traversing fragment lists and such. 2719 */ 2720 2721 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2722 { 2723 int start = skb_headlen(skb); 2724 struct sk_buff *frag_iter; 2725 int i, copy; 2726 2727 if (offset > (int)skb->len - len) 2728 goto fault; 2729 2730 if ((copy = start - offset) > 0) { 2731 if (copy > len) 2732 copy = len; 2733 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2734 if ((len -= copy) == 0) 2735 return 0; 2736 offset += copy; 2737 from += copy; 2738 } 2739 2740 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2741 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2742 int end; 2743 2744 WARN_ON(start > offset + len); 2745 2746 end = start + skb_frag_size(frag); 2747 if ((copy = end - offset) > 0) { 2748 u32 p_off, p_len, copied; 2749 struct page *p; 2750 u8 *vaddr; 2751 2752 if (copy > len) 2753 copy = len; 2754 2755 skb_frag_foreach_page(frag, 2756 skb_frag_off(frag) + offset - start, 2757 copy, p, p_off, p_len, copied) { 2758 vaddr = kmap_atomic(p); 2759 memcpy(vaddr + p_off, from + copied, p_len); 2760 kunmap_atomic(vaddr); 2761 } 2762 2763 if ((len -= copy) == 0) 2764 return 0; 2765 offset += copy; 2766 from += copy; 2767 } 2768 start = end; 2769 } 2770 2771 skb_walk_frags(skb, frag_iter) { 2772 int end; 2773 2774 WARN_ON(start > offset + len); 2775 2776 end = start + frag_iter->len; 2777 if ((copy = end - offset) > 0) { 2778 if (copy > len) 2779 copy = len; 2780 if (skb_store_bits(frag_iter, offset - start, 2781 from, copy)) 2782 goto fault; 2783 if ((len -= copy) == 0) 2784 return 0; 2785 offset += copy; 2786 from += copy; 2787 } 2788 start = end; 2789 } 2790 if (!len) 2791 return 0; 2792 2793 fault: 2794 return -EFAULT; 2795 } 2796 EXPORT_SYMBOL(skb_store_bits); 2797 2798 /* Checksum skb data. */ 2799 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2800 __wsum csum, const struct skb_checksum_ops *ops) 2801 { 2802 int start = skb_headlen(skb); 2803 int i, copy = start - offset; 2804 struct sk_buff *frag_iter; 2805 int pos = 0; 2806 2807 /* Checksum header. */ 2808 if (copy > 0) { 2809 if (copy > len) 2810 copy = len; 2811 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2812 skb->data + offset, copy, csum); 2813 if ((len -= copy) == 0) 2814 return csum; 2815 offset += copy; 2816 pos = copy; 2817 } 2818 2819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2820 int end; 2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2822 2823 WARN_ON(start > offset + len); 2824 2825 end = start + skb_frag_size(frag); 2826 if ((copy = end - offset) > 0) { 2827 u32 p_off, p_len, copied; 2828 struct page *p; 2829 __wsum csum2; 2830 u8 *vaddr; 2831 2832 if (copy > len) 2833 copy = len; 2834 2835 skb_frag_foreach_page(frag, 2836 skb_frag_off(frag) + offset - start, 2837 copy, p, p_off, p_len, copied) { 2838 vaddr = kmap_atomic(p); 2839 csum2 = INDIRECT_CALL_1(ops->update, 2840 csum_partial_ext, 2841 vaddr + p_off, p_len, 0); 2842 kunmap_atomic(vaddr); 2843 csum = INDIRECT_CALL_1(ops->combine, 2844 csum_block_add_ext, csum, 2845 csum2, pos, p_len); 2846 pos += p_len; 2847 } 2848 2849 if (!(len -= copy)) 2850 return csum; 2851 offset += copy; 2852 } 2853 start = end; 2854 } 2855 2856 skb_walk_frags(skb, frag_iter) { 2857 int end; 2858 2859 WARN_ON(start > offset + len); 2860 2861 end = start + frag_iter->len; 2862 if ((copy = end - offset) > 0) { 2863 __wsum csum2; 2864 if (copy > len) 2865 copy = len; 2866 csum2 = __skb_checksum(frag_iter, offset - start, 2867 copy, 0, ops); 2868 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2869 csum, csum2, pos, copy); 2870 if ((len -= copy) == 0) 2871 return csum; 2872 offset += copy; 2873 pos += copy; 2874 } 2875 start = end; 2876 } 2877 BUG_ON(len); 2878 2879 return csum; 2880 } 2881 EXPORT_SYMBOL(__skb_checksum); 2882 2883 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2884 int len, __wsum csum) 2885 { 2886 const struct skb_checksum_ops ops = { 2887 .update = csum_partial_ext, 2888 .combine = csum_block_add_ext, 2889 }; 2890 2891 return __skb_checksum(skb, offset, len, csum, &ops); 2892 } 2893 EXPORT_SYMBOL(skb_checksum); 2894 2895 /* Both of above in one bottle. */ 2896 2897 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2898 u8 *to, int len) 2899 { 2900 int start = skb_headlen(skb); 2901 int i, copy = start - offset; 2902 struct sk_buff *frag_iter; 2903 int pos = 0; 2904 __wsum csum = 0; 2905 2906 /* Copy header. */ 2907 if (copy > 0) { 2908 if (copy > len) 2909 copy = len; 2910 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2911 copy); 2912 if ((len -= copy) == 0) 2913 return csum; 2914 offset += copy; 2915 to += copy; 2916 pos = copy; 2917 } 2918 2919 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2920 int end; 2921 2922 WARN_ON(start > offset + len); 2923 2924 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2925 if ((copy = end - offset) > 0) { 2926 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2927 u32 p_off, p_len, copied; 2928 struct page *p; 2929 __wsum csum2; 2930 u8 *vaddr; 2931 2932 if (copy > len) 2933 copy = len; 2934 2935 skb_frag_foreach_page(frag, 2936 skb_frag_off(frag) + offset - start, 2937 copy, p, p_off, p_len, copied) { 2938 vaddr = kmap_atomic(p); 2939 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2940 to + copied, 2941 p_len); 2942 kunmap_atomic(vaddr); 2943 csum = csum_block_add(csum, csum2, pos); 2944 pos += p_len; 2945 } 2946 2947 if (!(len -= copy)) 2948 return csum; 2949 offset += copy; 2950 to += copy; 2951 } 2952 start = end; 2953 } 2954 2955 skb_walk_frags(skb, frag_iter) { 2956 __wsum csum2; 2957 int end; 2958 2959 WARN_ON(start > offset + len); 2960 2961 end = start + frag_iter->len; 2962 if ((copy = end - offset) > 0) { 2963 if (copy > len) 2964 copy = len; 2965 csum2 = skb_copy_and_csum_bits(frag_iter, 2966 offset - start, 2967 to, copy); 2968 csum = csum_block_add(csum, csum2, pos); 2969 if ((len -= copy) == 0) 2970 return csum; 2971 offset += copy; 2972 to += copy; 2973 pos += copy; 2974 } 2975 start = end; 2976 } 2977 BUG_ON(len); 2978 return csum; 2979 } 2980 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2981 2982 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2983 { 2984 __sum16 sum; 2985 2986 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2987 /* See comments in __skb_checksum_complete(). */ 2988 if (likely(!sum)) { 2989 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2990 !skb->csum_complete_sw) 2991 netdev_rx_csum_fault(skb->dev, skb); 2992 } 2993 if (!skb_shared(skb)) 2994 skb->csum_valid = !sum; 2995 return sum; 2996 } 2997 EXPORT_SYMBOL(__skb_checksum_complete_head); 2998 2999 /* This function assumes skb->csum already holds pseudo header's checksum, 3000 * which has been changed from the hardware checksum, for example, by 3001 * __skb_checksum_validate_complete(). And, the original skb->csum must 3002 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3003 * 3004 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3005 * zero. The new checksum is stored back into skb->csum unless the skb is 3006 * shared. 3007 */ 3008 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3009 { 3010 __wsum csum; 3011 __sum16 sum; 3012 3013 csum = skb_checksum(skb, 0, skb->len, 0); 3014 3015 sum = csum_fold(csum_add(skb->csum, csum)); 3016 /* This check is inverted, because we already knew the hardware 3017 * checksum is invalid before calling this function. So, if the 3018 * re-computed checksum is valid instead, then we have a mismatch 3019 * between the original skb->csum and skb_checksum(). This means either 3020 * the original hardware checksum is incorrect or we screw up skb->csum 3021 * when moving skb->data around. 3022 */ 3023 if (likely(!sum)) { 3024 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3025 !skb->csum_complete_sw) 3026 netdev_rx_csum_fault(skb->dev, skb); 3027 } 3028 3029 if (!skb_shared(skb)) { 3030 /* Save full packet checksum */ 3031 skb->csum = csum; 3032 skb->ip_summed = CHECKSUM_COMPLETE; 3033 skb->csum_complete_sw = 1; 3034 skb->csum_valid = !sum; 3035 } 3036 3037 return sum; 3038 } 3039 EXPORT_SYMBOL(__skb_checksum_complete); 3040 3041 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3042 { 3043 net_warn_ratelimited( 3044 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3045 __func__); 3046 return 0; 3047 } 3048 3049 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3050 int offset, int len) 3051 { 3052 net_warn_ratelimited( 3053 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3054 __func__); 3055 return 0; 3056 } 3057 3058 static const struct skb_checksum_ops default_crc32c_ops = { 3059 .update = warn_crc32c_csum_update, 3060 .combine = warn_crc32c_csum_combine, 3061 }; 3062 3063 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3064 &default_crc32c_ops; 3065 EXPORT_SYMBOL(crc32c_csum_stub); 3066 3067 /** 3068 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3069 * @from: source buffer 3070 * 3071 * Calculates the amount of linear headroom needed in the 'to' skb passed 3072 * into skb_zerocopy(). 3073 */ 3074 unsigned int 3075 skb_zerocopy_headlen(const struct sk_buff *from) 3076 { 3077 unsigned int hlen = 0; 3078 3079 if (!from->head_frag || 3080 skb_headlen(from) < L1_CACHE_BYTES || 3081 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3082 hlen = skb_headlen(from); 3083 if (!hlen) 3084 hlen = from->len; 3085 } 3086 3087 if (skb_has_frag_list(from)) 3088 hlen = from->len; 3089 3090 return hlen; 3091 } 3092 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3093 3094 /** 3095 * skb_zerocopy - Zero copy skb to skb 3096 * @to: destination buffer 3097 * @from: source buffer 3098 * @len: number of bytes to copy from source buffer 3099 * @hlen: size of linear headroom in destination buffer 3100 * 3101 * Copies up to `len` bytes from `from` to `to` by creating references 3102 * to the frags in the source buffer. 3103 * 3104 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3105 * headroom in the `to` buffer. 3106 * 3107 * Return value: 3108 * 0: everything is OK 3109 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3110 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3111 */ 3112 int 3113 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3114 { 3115 int i, j = 0; 3116 int plen = 0; /* length of skb->head fragment */ 3117 int ret; 3118 struct page *page; 3119 unsigned int offset; 3120 3121 BUG_ON(!from->head_frag && !hlen); 3122 3123 /* dont bother with small payloads */ 3124 if (len <= skb_tailroom(to)) 3125 return skb_copy_bits(from, 0, skb_put(to, len), len); 3126 3127 if (hlen) { 3128 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3129 if (unlikely(ret)) 3130 return ret; 3131 len -= hlen; 3132 } else { 3133 plen = min_t(int, skb_headlen(from), len); 3134 if (plen) { 3135 page = virt_to_head_page(from->head); 3136 offset = from->data - (unsigned char *)page_address(page); 3137 __skb_fill_page_desc(to, 0, page, offset, plen); 3138 get_page(page); 3139 j = 1; 3140 len -= plen; 3141 } 3142 } 3143 3144 to->truesize += len + plen; 3145 to->len += len + plen; 3146 to->data_len += len + plen; 3147 3148 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3149 skb_tx_error(from); 3150 return -ENOMEM; 3151 } 3152 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3153 3154 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3155 int size; 3156 3157 if (!len) 3158 break; 3159 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3160 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3161 len); 3162 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3163 len -= size; 3164 skb_frag_ref(to, j); 3165 j++; 3166 } 3167 skb_shinfo(to)->nr_frags = j; 3168 3169 return 0; 3170 } 3171 EXPORT_SYMBOL_GPL(skb_zerocopy); 3172 3173 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3174 { 3175 __wsum csum; 3176 long csstart; 3177 3178 if (skb->ip_summed == CHECKSUM_PARTIAL) 3179 csstart = skb_checksum_start_offset(skb); 3180 else 3181 csstart = skb_headlen(skb); 3182 3183 BUG_ON(csstart > skb_headlen(skb)); 3184 3185 skb_copy_from_linear_data(skb, to, csstart); 3186 3187 csum = 0; 3188 if (csstart != skb->len) 3189 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3190 skb->len - csstart); 3191 3192 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3193 long csstuff = csstart + skb->csum_offset; 3194 3195 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3196 } 3197 } 3198 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3199 3200 /** 3201 * skb_dequeue - remove from the head of the queue 3202 * @list: list to dequeue from 3203 * 3204 * Remove the head of the list. The list lock is taken so the function 3205 * may be used safely with other locking list functions. The head item is 3206 * returned or %NULL if the list is empty. 3207 */ 3208 3209 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3210 { 3211 unsigned long flags; 3212 struct sk_buff *result; 3213 3214 spin_lock_irqsave(&list->lock, flags); 3215 result = __skb_dequeue(list); 3216 spin_unlock_irqrestore(&list->lock, flags); 3217 return result; 3218 } 3219 EXPORT_SYMBOL(skb_dequeue); 3220 3221 /** 3222 * skb_dequeue_tail - remove from the tail of the queue 3223 * @list: list to dequeue from 3224 * 3225 * Remove the tail of the list. The list lock is taken so the function 3226 * may be used safely with other locking list functions. The tail item is 3227 * returned or %NULL if the list is empty. 3228 */ 3229 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3230 { 3231 unsigned long flags; 3232 struct sk_buff *result; 3233 3234 spin_lock_irqsave(&list->lock, flags); 3235 result = __skb_dequeue_tail(list); 3236 spin_unlock_irqrestore(&list->lock, flags); 3237 return result; 3238 } 3239 EXPORT_SYMBOL(skb_dequeue_tail); 3240 3241 /** 3242 * skb_queue_purge - empty a list 3243 * @list: list to empty 3244 * 3245 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3246 * the list and one reference dropped. This function takes the list 3247 * lock and is atomic with respect to other list locking functions. 3248 */ 3249 void skb_queue_purge(struct sk_buff_head *list) 3250 { 3251 struct sk_buff *skb; 3252 while ((skb = skb_dequeue(list)) != NULL) 3253 kfree_skb(skb); 3254 } 3255 EXPORT_SYMBOL(skb_queue_purge); 3256 3257 /** 3258 * skb_rbtree_purge - empty a skb rbtree 3259 * @root: root of the rbtree to empty 3260 * Return value: the sum of truesizes of all purged skbs. 3261 * 3262 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3263 * the list and one reference dropped. This function does not take 3264 * any lock. Synchronization should be handled by the caller (e.g., TCP 3265 * out-of-order queue is protected by the socket lock). 3266 */ 3267 unsigned int skb_rbtree_purge(struct rb_root *root) 3268 { 3269 struct rb_node *p = rb_first(root); 3270 unsigned int sum = 0; 3271 3272 while (p) { 3273 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3274 3275 p = rb_next(p); 3276 rb_erase(&skb->rbnode, root); 3277 sum += skb->truesize; 3278 kfree_skb(skb); 3279 } 3280 return sum; 3281 } 3282 3283 /** 3284 * skb_queue_head - queue a buffer at the list head 3285 * @list: list to use 3286 * @newsk: buffer to queue 3287 * 3288 * Queue a buffer at the start of the list. This function takes the 3289 * list lock and can be used safely with other locking &sk_buff functions 3290 * safely. 3291 * 3292 * A buffer cannot be placed on two lists at the same time. 3293 */ 3294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3295 { 3296 unsigned long flags; 3297 3298 spin_lock_irqsave(&list->lock, flags); 3299 __skb_queue_head(list, newsk); 3300 spin_unlock_irqrestore(&list->lock, flags); 3301 } 3302 EXPORT_SYMBOL(skb_queue_head); 3303 3304 /** 3305 * skb_queue_tail - queue a buffer at the list tail 3306 * @list: list to use 3307 * @newsk: buffer to queue 3308 * 3309 * Queue a buffer at the tail of the list. This function takes the 3310 * list lock and can be used safely with other locking &sk_buff functions 3311 * safely. 3312 * 3313 * A buffer cannot be placed on two lists at the same time. 3314 */ 3315 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3316 { 3317 unsigned long flags; 3318 3319 spin_lock_irqsave(&list->lock, flags); 3320 __skb_queue_tail(list, newsk); 3321 spin_unlock_irqrestore(&list->lock, flags); 3322 } 3323 EXPORT_SYMBOL(skb_queue_tail); 3324 3325 /** 3326 * skb_unlink - remove a buffer from a list 3327 * @skb: buffer to remove 3328 * @list: list to use 3329 * 3330 * Remove a packet from a list. The list locks are taken and this 3331 * function is atomic with respect to other list locked calls 3332 * 3333 * You must know what list the SKB is on. 3334 */ 3335 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3336 { 3337 unsigned long flags; 3338 3339 spin_lock_irqsave(&list->lock, flags); 3340 __skb_unlink(skb, list); 3341 spin_unlock_irqrestore(&list->lock, flags); 3342 } 3343 EXPORT_SYMBOL(skb_unlink); 3344 3345 /** 3346 * skb_append - append a buffer 3347 * @old: buffer to insert after 3348 * @newsk: buffer to insert 3349 * @list: list to use 3350 * 3351 * Place a packet after a given packet in a list. The list locks are taken 3352 * and this function is atomic with respect to other list locked calls. 3353 * A buffer cannot be placed on two lists at the same time. 3354 */ 3355 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3356 { 3357 unsigned long flags; 3358 3359 spin_lock_irqsave(&list->lock, flags); 3360 __skb_queue_after(list, old, newsk); 3361 spin_unlock_irqrestore(&list->lock, flags); 3362 } 3363 EXPORT_SYMBOL(skb_append); 3364 3365 static inline void skb_split_inside_header(struct sk_buff *skb, 3366 struct sk_buff* skb1, 3367 const u32 len, const int pos) 3368 { 3369 int i; 3370 3371 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3372 pos - len); 3373 /* And move data appendix as is. */ 3374 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3375 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3376 3377 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3378 skb_shinfo(skb)->nr_frags = 0; 3379 skb1->data_len = skb->data_len; 3380 skb1->len += skb1->data_len; 3381 skb->data_len = 0; 3382 skb->len = len; 3383 skb_set_tail_pointer(skb, len); 3384 } 3385 3386 static inline void skb_split_no_header(struct sk_buff *skb, 3387 struct sk_buff* skb1, 3388 const u32 len, int pos) 3389 { 3390 int i, k = 0; 3391 const int nfrags = skb_shinfo(skb)->nr_frags; 3392 3393 skb_shinfo(skb)->nr_frags = 0; 3394 skb1->len = skb1->data_len = skb->len - len; 3395 skb->len = len; 3396 skb->data_len = len - pos; 3397 3398 for (i = 0; i < nfrags; i++) { 3399 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3400 3401 if (pos + size > len) { 3402 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3403 3404 if (pos < len) { 3405 /* Split frag. 3406 * We have two variants in this case: 3407 * 1. Move all the frag to the second 3408 * part, if it is possible. F.e. 3409 * this approach is mandatory for TUX, 3410 * where splitting is expensive. 3411 * 2. Split is accurately. We make this. 3412 */ 3413 skb_frag_ref(skb, i); 3414 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3415 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3416 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3417 skb_shinfo(skb)->nr_frags++; 3418 } 3419 k++; 3420 } else 3421 skb_shinfo(skb)->nr_frags++; 3422 pos += size; 3423 } 3424 skb_shinfo(skb1)->nr_frags = k; 3425 } 3426 3427 /** 3428 * skb_split - Split fragmented skb to two parts at length len. 3429 * @skb: the buffer to split 3430 * @skb1: the buffer to receive the second part 3431 * @len: new length for skb 3432 */ 3433 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3434 { 3435 int pos = skb_headlen(skb); 3436 3437 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3438 skb_zerocopy_clone(skb1, skb, 0); 3439 if (len < pos) /* Split line is inside header. */ 3440 skb_split_inside_header(skb, skb1, len, pos); 3441 else /* Second chunk has no header, nothing to copy. */ 3442 skb_split_no_header(skb, skb1, len, pos); 3443 } 3444 EXPORT_SYMBOL(skb_split); 3445 3446 /* Shifting from/to a cloned skb is a no-go. 3447 * 3448 * Caller cannot keep skb_shinfo related pointers past calling here! 3449 */ 3450 static int skb_prepare_for_shift(struct sk_buff *skb) 3451 { 3452 int ret = 0; 3453 3454 if (skb_cloned(skb)) { 3455 /* Save and restore truesize: pskb_expand_head() may reallocate 3456 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3457 * cannot change truesize at this point. 3458 */ 3459 unsigned int save_truesize = skb->truesize; 3460 3461 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3462 skb->truesize = save_truesize; 3463 } 3464 return ret; 3465 } 3466 3467 /** 3468 * skb_shift - Shifts paged data partially from skb to another 3469 * @tgt: buffer into which tail data gets added 3470 * @skb: buffer from which the paged data comes from 3471 * @shiftlen: shift up to this many bytes 3472 * 3473 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3474 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3475 * It's up to caller to free skb if everything was shifted. 3476 * 3477 * If @tgt runs out of frags, the whole operation is aborted. 3478 * 3479 * Skb cannot include anything else but paged data while tgt is allowed 3480 * to have non-paged data as well. 3481 * 3482 * TODO: full sized shift could be optimized but that would need 3483 * specialized skb free'er to handle frags without up-to-date nr_frags. 3484 */ 3485 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3486 { 3487 int from, to, merge, todo; 3488 skb_frag_t *fragfrom, *fragto; 3489 3490 BUG_ON(shiftlen > skb->len); 3491 3492 if (skb_headlen(skb)) 3493 return 0; 3494 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3495 return 0; 3496 3497 todo = shiftlen; 3498 from = 0; 3499 to = skb_shinfo(tgt)->nr_frags; 3500 fragfrom = &skb_shinfo(skb)->frags[from]; 3501 3502 /* Actual merge is delayed until the point when we know we can 3503 * commit all, so that we don't have to undo partial changes 3504 */ 3505 if (!to || 3506 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3507 skb_frag_off(fragfrom))) { 3508 merge = -1; 3509 } else { 3510 merge = to - 1; 3511 3512 todo -= skb_frag_size(fragfrom); 3513 if (todo < 0) { 3514 if (skb_prepare_for_shift(skb) || 3515 skb_prepare_for_shift(tgt)) 3516 return 0; 3517 3518 /* All previous frag pointers might be stale! */ 3519 fragfrom = &skb_shinfo(skb)->frags[from]; 3520 fragto = &skb_shinfo(tgt)->frags[merge]; 3521 3522 skb_frag_size_add(fragto, shiftlen); 3523 skb_frag_size_sub(fragfrom, shiftlen); 3524 skb_frag_off_add(fragfrom, shiftlen); 3525 3526 goto onlymerged; 3527 } 3528 3529 from++; 3530 } 3531 3532 /* Skip full, not-fitting skb to avoid expensive operations */ 3533 if ((shiftlen == skb->len) && 3534 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3535 return 0; 3536 3537 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3538 return 0; 3539 3540 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3541 if (to == MAX_SKB_FRAGS) 3542 return 0; 3543 3544 fragfrom = &skb_shinfo(skb)->frags[from]; 3545 fragto = &skb_shinfo(tgt)->frags[to]; 3546 3547 if (todo >= skb_frag_size(fragfrom)) { 3548 *fragto = *fragfrom; 3549 todo -= skb_frag_size(fragfrom); 3550 from++; 3551 to++; 3552 3553 } else { 3554 __skb_frag_ref(fragfrom); 3555 skb_frag_page_copy(fragto, fragfrom); 3556 skb_frag_off_copy(fragto, fragfrom); 3557 skb_frag_size_set(fragto, todo); 3558 3559 skb_frag_off_add(fragfrom, todo); 3560 skb_frag_size_sub(fragfrom, todo); 3561 todo = 0; 3562 3563 to++; 3564 break; 3565 } 3566 } 3567 3568 /* Ready to "commit" this state change to tgt */ 3569 skb_shinfo(tgt)->nr_frags = to; 3570 3571 if (merge >= 0) { 3572 fragfrom = &skb_shinfo(skb)->frags[0]; 3573 fragto = &skb_shinfo(tgt)->frags[merge]; 3574 3575 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3576 __skb_frag_unref(fragfrom, skb->pp_recycle); 3577 } 3578 3579 /* Reposition in the original skb */ 3580 to = 0; 3581 while (from < skb_shinfo(skb)->nr_frags) 3582 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3583 skb_shinfo(skb)->nr_frags = to; 3584 3585 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3586 3587 onlymerged: 3588 /* Most likely the tgt won't ever need its checksum anymore, skb on 3589 * the other hand might need it if it needs to be resent 3590 */ 3591 tgt->ip_summed = CHECKSUM_PARTIAL; 3592 skb->ip_summed = CHECKSUM_PARTIAL; 3593 3594 /* Yak, is it really working this way? Some helper please? */ 3595 skb->len -= shiftlen; 3596 skb->data_len -= shiftlen; 3597 skb->truesize -= shiftlen; 3598 tgt->len += shiftlen; 3599 tgt->data_len += shiftlen; 3600 tgt->truesize += shiftlen; 3601 3602 return shiftlen; 3603 } 3604 3605 /** 3606 * skb_prepare_seq_read - Prepare a sequential read of skb data 3607 * @skb: the buffer to read 3608 * @from: lower offset of data to be read 3609 * @to: upper offset of data to be read 3610 * @st: state variable 3611 * 3612 * Initializes the specified state variable. Must be called before 3613 * invoking skb_seq_read() for the first time. 3614 */ 3615 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3616 unsigned int to, struct skb_seq_state *st) 3617 { 3618 st->lower_offset = from; 3619 st->upper_offset = to; 3620 st->root_skb = st->cur_skb = skb; 3621 st->frag_idx = st->stepped_offset = 0; 3622 st->frag_data = NULL; 3623 st->frag_off = 0; 3624 } 3625 EXPORT_SYMBOL(skb_prepare_seq_read); 3626 3627 /** 3628 * skb_seq_read - Sequentially read skb data 3629 * @consumed: number of bytes consumed by the caller so far 3630 * @data: destination pointer for data to be returned 3631 * @st: state variable 3632 * 3633 * Reads a block of skb data at @consumed relative to the 3634 * lower offset specified to skb_prepare_seq_read(). Assigns 3635 * the head of the data block to @data and returns the length 3636 * of the block or 0 if the end of the skb data or the upper 3637 * offset has been reached. 3638 * 3639 * The caller is not required to consume all of the data 3640 * returned, i.e. @consumed is typically set to the number 3641 * of bytes already consumed and the next call to 3642 * skb_seq_read() will return the remaining part of the block. 3643 * 3644 * Note 1: The size of each block of data returned can be arbitrary, 3645 * this limitation is the cost for zerocopy sequential 3646 * reads of potentially non linear data. 3647 * 3648 * Note 2: Fragment lists within fragments are not implemented 3649 * at the moment, state->root_skb could be replaced with 3650 * a stack for this purpose. 3651 */ 3652 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3653 struct skb_seq_state *st) 3654 { 3655 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3656 skb_frag_t *frag; 3657 3658 if (unlikely(abs_offset >= st->upper_offset)) { 3659 if (st->frag_data) { 3660 kunmap_atomic(st->frag_data); 3661 st->frag_data = NULL; 3662 } 3663 return 0; 3664 } 3665 3666 next_skb: 3667 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3668 3669 if (abs_offset < block_limit && !st->frag_data) { 3670 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3671 return block_limit - abs_offset; 3672 } 3673 3674 if (st->frag_idx == 0 && !st->frag_data) 3675 st->stepped_offset += skb_headlen(st->cur_skb); 3676 3677 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3678 unsigned int pg_idx, pg_off, pg_sz; 3679 3680 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3681 3682 pg_idx = 0; 3683 pg_off = skb_frag_off(frag); 3684 pg_sz = skb_frag_size(frag); 3685 3686 if (skb_frag_must_loop(skb_frag_page(frag))) { 3687 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3688 pg_off = offset_in_page(pg_off + st->frag_off); 3689 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3690 PAGE_SIZE - pg_off); 3691 } 3692 3693 block_limit = pg_sz + st->stepped_offset; 3694 if (abs_offset < block_limit) { 3695 if (!st->frag_data) 3696 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3697 3698 *data = (u8 *)st->frag_data + pg_off + 3699 (abs_offset - st->stepped_offset); 3700 3701 return block_limit - abs_offset; 3702 } 3703 3704 if (st->frag_data) { 3705 kunmap_atomic(st->frag_data); 3706 st->frag_data = NULL; 3707 } 3708 3709 st->stepped_offset += pg_sz; 3710 st->frag_off += pg_sz; 3711 if (st->frag_off == skb_frag_size(frag)) { 3712 st->frag_off = 0; 3713 st->frag_idx++; 3714 } 3715 } 3716 3717 if (st->frag_data) { 3718 kunmap_atomic(st->frag_data); 3719 st->frag_data = NULL; 3720 } 3721 3722 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3723 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3724 st->frag_idx = 0; 3725 goto next_skb; 3726 } else if (st->cur_skb->next) { 3727 st->cur_skb = st->cur_skb->next; 3728 st->frag_idx = 0; 3729 goto next_skb; 3730 } 3731 3732 return 0; 3733 } 3734 EXPORT_SYMBOL(skb_seq_read); 3735 3736 /** 3737 * skb_abort_seq_read - Abort a sequential read of skb data 3738 * @st: state variable 3739 * 3740 * Must be called if skb_seq_read() was not called until it 3741 * returned 0. 3742 */ 3743 void skb_abort_seq_read(struct skb_seq_state *st) 3744 { 3745 if (st->frag_data) 3746 kunmap_atomic(st->frag_data); 3747 } 3748 EXPORT_SYMBOL(skb_abort_seq_read); 3749 3750 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3751 3752 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3753 struct ts_config *conf, 3754 struct ts_state *state) 3755 { 3756 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3757 } 3758 3759 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3760 { 3761 skb_abort_seq_read(TS_SKB_CB(state)); 3762 } 3763 3764 /** 3765 * skb_find_text - Find a text pattern in skb data 3766 * @skb: the buffer to look in 3767 * @from: search offset 3768 * @to: search limit 3769 * @config: textsearch configuration 3770 * 3771 * Finds a pattern in the skb data according to the specified 3772 * textsearch configuration. Use textsearch_next() to retrieve 3773 * subsequent occurrences of the pattern. Returns the offset 3774 * to the first occurrence or UINT_MAX if no match was found. 3775 */ 3776 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3777 unsigned int to, struct ts_config *config) 3778 { 3779 struct ts_state state; 3780 unsigned int ret; 3781 3782 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3783 3784 config->get_next_block = skb_ts_get_next_block; 3785 config->finish = skb_ts_finish; 3786 3787 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3788 3789 ret = textsearch_find(config, &state); 3790 return (ret <= to - from ? ret : UINT_MAX); 3791 } 3792 EXPORT_SYMBOL(skb_find_text); 3793 3794 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3795 int offset, size_t size) 3796 { 3797 int i = skb_shinfo(skb)->nr_frags; 3798 3799 if (skb_can_coalesce(skb, i, page, offset)) { 3800 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3801 } else if (i < MAX_SKB_FRAGS) { 3802 get_page(page); 3803 skb_fill_page_desc(skb, i, page, offset, size); 3804 } else { 3805 return -EMSGSIZE; 3806 } 3807 3808 return 0; 3809 } 3810 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3811 3812 /** 3813 * skb_pull_rcsum - pull skb and update receive checksum 3814 * @skb: buffer to update 3815 * @len: length of data pulled 3816 * 3817 * This function performs an skb_pull on the packet and updates 3818 * the CHECKSUM_COMPLETE checksum. It should be used on 3819 * receive path processing instead of skb_pull unless you know 3820 * that the checksum difference is zero (e.g., a valid IP header) 3821 * or you are setting ip_summed to CHECKSUM_NONE. 3822 */ 3823 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3824 { 3825 unsigned char *data = skb->data; 3826 3827 BUG_ON(len > skb->len); 3828 __skb_pull(skb, len); 3829 skb_postpull_rcsum(skb, data, len); 3830 return skb->data; 3831 } 3832 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3833 3834 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3835 { 3836 skb_frag_t head_frag; 3837 struct page *page; 3838 3839 page = virt_to_head_page(frag_skb->head); 3840 __skb_frag_set_page(&head_frag, page); 3841 skb_frag_off_set(&head_frag, frag_skb->data - 3842 (unsigned char *)page_address(page)); 3843 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3844 return head_frag; 3845 } 3846 3847 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3848 netdev_features_t features, 3849 unsigned int offset) 3850 { 3851 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3852 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3853 unsigned int delta_truesize = 0; 3854 unsigned int delta_len = 0; 3855 struct sk_buff *tail = NULL; 3856 struct sk_buff *nskb, *tmp; 3857 int err; 3858 3859 skb_push(skb, -skb_network_offset(skb) + offset); 3860 3861 skb_shinfo(skb)->frag_list = NULL; 3862 3863 do { 3864 nskb = list_skb; 3865 list_skb = list_skb->next; 3866 3867 err = 0; 3868 if (skb_shared(nskb)) { 3869 tmp = skb_clone(nskb, GFP_ATOMIC); 3870 if (tmp) { 3871 consume_skb(nskb); 3872 nskb = tmp; 3873 err = skb_unclone(nskb, GFP_ATOMIC); 3874 } else { 3875 err = -ENOMEM; 3876 } 3877 } 3878 3879 if (!tail) 3880 skb->next = nskb; 3881 else 3882 tail->next = nskb; 3883 3884 if (unlikely(err)) { 3885 nskb->next = list_skb; 3886 goto err_linearize; 3887 } 3888 3889 tail = nskb; 3890 3891 delta_len += nskb->len; 3892 delta_truesize += nskb->truesize; 3893 3894 skb_push(nskb, -skb_network_offset(nskb) + offset); 3895 3896 skb_release_head_state(nskb); 3897 __copy_skb_header(nskb, skb); 3898 3899 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3900 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3901 nskb->data - tnl_hlen, 3902 offset + tnl_hlen); 3903 3904 if (skb_needs_linearize(nskb, features) && 3905 __skb_linearize(nskb)) 3906 goto err_linearize; 3907 3908 } while (list_skb); 3909 3910 skb->truesize = skb->truesize - delta_truesize; 3911 skb->data_len = skb->data_len - delta_len; 3912 skb->len = skb->len - delta_len; 3913 3914 skb_gso_reset(skb); 3915 3916 skb->prev = tail; 3917 3918 if (skb_needs_linearize(skb, features) && 3919 __skb_linearize(skb)) 3920 goto err_linearize; 3921 3922 skb_get(skb); 3923 3924 return skb; 3925 3926 err_linearize: 3927 kfree_skb_list(skb->next); 3928 skb->next = NULL; 3929 return ERR_PTR(-ENOMEM); 3930 } 3931 EXPORT_SYMBOL_GPL(skb_segment_list); 3932 3933 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3934 { 3935 if (unlikely(p->len + skb->len >= 65536)) 3936 return -E2BIG; 3937 3938 if (NAPI_GRO_CB(p)->last == p) 3939 skb_shinfo(p)->frag_list = skb; 3940 else 3941 NAPI_GRO_CB(p)->last->next = skb; 3942 3943 skb_pull(skb, skb_gro_offset(skb)); 3944 3945 NAPI_GRO_CB(p)->last = skb; 3946 NAPI_GRO_CB(p)->count++; 3947 p->data_len += skb->len; 3948 3949 /* sk owenrship - if any - completely transferred to the aggregated packet */ 3950 skb->destructor = NULL; 3951 p->truesize += skb->truesize; 3952 p->len += skb->len; 3953 3954 NAPI_GRO_CB(skb)->same_flow = 1; 3955 3956 return 0; 3957 } 3958 3959 /** 3960 * skb_segment - Perform protocol segmentation on skb. 3961 * @head_skb: buffer to segment 3962 * @features: features for the output path (see dev->features) 3963 * 3964 * This function performs segmentation on the given skb. It returns 3965 * a pointer to the first in a list of new skbs for the segments. 3966 * In case of error it returns ERR_PTR(err). 3967 */ 3968 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3969 netdev_features_t features) 3970 { 3971 struct sk_buff *segs = NULL; 3972 struct sk_buff *tail = NULL; 3973 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3974 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3975 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3976 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3977 struct sk_buff *frag_skb = head_skb; 3978 unsigned int offset = doffset; 3979 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3980 unsigned int partial_segs = 0; 3981 unsigned int headroom; 3982 unsigned int len = head_skb->len; 3983 __be16 proto; 3984 bool csum, sg; 3985 int nfrags = skb_shinfo(head_skb)->nr_frags; 3986 int err = -ENOMEM; 3987 int i = 0; 3988 int pos; 3989 3990 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3991 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3992 /* gso_size is untrusted, and we have a frag_list with a linear 3993 * non head_frag head. 3994 * 3995 * (we assume checking the first list_skb member suffices; 3996 * i.e if either of the list_skb members have non head_frag 3997 * head, then the first one has too). 3998 * 3999 * If head_skb's headlen does not fit requested gso_size, it 4000 * means that the frag_list members do NOT terminate on exact 4001 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4002 * sharing. Therefore we must fallback to copying the frag_list 4003 * skbs; we do so by disabling SG. 4004 */ 4005 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4006 features &= ~NETIF_F_SG; 4007 } 4008 4009 __skb_push(head_skb, doffset); 4010 proto = skb_network_protocol(head_skb, NULL); 4011 if (unlikely(!proto)) 4012 return ERR_PTR(-EINVAL); 4013 4014 sg = !!(features & NETIF_F_SG); 4015 csum = !!can_checksum_protocol(features, proto); 4016 4017 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4018 if (!(features & NETIF_F_GSO_PARTIAL)) { 4019 struct sk_buff *iter; 4020 unsigned int frag_len; 4021 4022 if (!list_skb || 4023 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4024 goto normal; 4025 4026 /* If we get here then all the required 4027 * GSO features except frag_list are supported. 4028 * Try to split the SKB to multiple GSO SKBs 4029 * with no frag_list. 4030 * Currently we can do that only when the buffers don't 4031 * have a linear part and all the buffers except 4032 * the last are of the same length. 4033 */ 4034 frag_len = list_skb->len; 4035 skb_walk_frags(head_skb, iter) { 4036 if (frag_len != iter->len && iter->next) 4037 goto normal; 4038 if (skb_headlen(iter) && !iter->head_frag) 4039 goto normal; 4040 4041 len -= iter->len; 4042 } 4043 4044 if (len != frag_len) 4045 goto normal; 4046 } 4047 4048 /* GSO partial only requires that we trim off any excess that 4049 * doesn't fit into an MSS sized block, so take care of that 4050 * now. 4051 */ 4052 partial_segs = len / mss; 4053 if (partial_segs > 1) 4054 mss *= partial_segs; 4055 else 4056 partial_segs = 0; 4057 } 4058 4059 normal: 4060 headroom = skb_headroom(head_skb); 4061 pos = skb_headlen(head_skb); 4062 4063 do { 4064 struct sk_buff *nskb; 4065 skb_frag_t *nskb_frag; 4066 int hsize; 4067 int size; 4068 4069 if (unlikely(mss == GSO_BY_FRAGS)) { 4070 len = list_skb->len; 4071 } else { 4072 len = head_skb->len - offset; 4073 if (len > mss) 4074 len = mss; 4075 } 4076 4077 hsize = skb_headlen(head_skb) - offset; 4078 4079 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4080 (skb_headlen(list_skb) == len || sg)) { 4081 BUG_ON(skb_headlen(list_skb) > len); 4082 4083 i = 0; 4084 nfrags = skb_shinfo(list_skb)->nr_frags; 4085 frag = skb_shinfo(list_skb)->frags; 4086 frag_skb = list_skb; 4087 pos += skb_headlen(list_skb); 4088 4089 while (pos < offset + len) { 4090 BUG_ON(i >= nfrags); 4091 4092 size = skb_frag_size(frag); 4093 if (pos + size > offset + len) 4094 break; 4095 4096 i++; 4097 pos += size; 4098 frag++; 4099 } 4100 4101 nskb = skb_clone(list_skb, GFP_ATOMIC); 4102 list_skb = list_skb->next; 4103 4104 if (unlikely(!nskb)) 4105 goto err; 4106 4107 if (unlikely(pskb_trim(nskb, len))) { 4108 kfree_skb(nskb); 4109 goto err; 4110 } 4111 4112 hsize = skb_end_offset(nskb); 4113 if (skb_cow_head(nskb, doffset + headroom)) { 4114 kfree_skb(nskb); 4115 goto err; 4116 } 4117 4118 nskb->truesize += skb_end_offset(nskb) - hsize; 4119 skb_release_head_state(nskb); 4120 __skb_push(nskb, doffset); 4121 } else { 4122 if (hsize < 0) 4123 hsize = 0; 4124 if (hsize > len || !sg) 4125 hsize = len; 4126 4127 nskb = __alloc_skb(hsize + doffset + headroom, 4128 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4129 NUMA_NO_NODE); 4130 4131 if (unlikely(!nskb)) 4132 goto err; 4133 4134 skb_reserve(nskb, headroom); 4135 __skb_put(nskb, doffset); 4136 } 4137 4138 if (segs) 4139 tail->next = nskb; 4140 else 4141 segs = nskb; 4142 tail = nskb; 4143 4144 __copy_skb_header(nskb, head_skb); 4145 4146 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4147 skb_reset_mac_len(nskb); 4148 4149 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4150 nskb->data - tnl_hlen, 4151 doffset + tnl_hlen); 4152 4153 if (nskb->len == len + doffset) 4154 goto perform_csum_check; 4155 4156 if (!sg) { 4157 if (!csum) { 4158 if (!nskb->remcsum_offload) 4159 nskb->ip_summed = CHECKSUM_NONE; 4160 SKB_GSO_CB(nskb)->csum = 4161 skb_copy_and_csum_bits(head_skb, offset, 4162 skb_put(nskb, 4163 len), 4164 len); 4165 SKB_GSO_CB(nskb)->csum_start = 4166 skb_headroom(nskb) + doffset; 4167 } else { 4168 skb_copy_bits(head_skb, offset, 4169 skb_put(nskb, len), 4170 len); 4171 } 4172 continue; 4173 } 4174 4175 nskb_frag = skb_shinfo(nskb)->frags; 4176 4177 skb_copy_from_linear_data_offset(head_skb, offset, 4178 skb_put(nskb, hsize), hsize); 4179 4180 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4181 SKBFL_SHARED_FRAG; 4182 4183 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4184 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4185 goto err; 4186 4187 while (pos < offset + len) { 4188 if (i >= nfrags) { 4189 i = 0; 4190 nfrags = skb_shinfo(list_skb)->nr_frags; 4191 frag = skb_shinfo(list_skb)->frags; 4192 frag_skb = list_skb; 4193 if (!skb_headlen(list_skb)) { 4194 BUG_ON(!nfrags); 4195 } else { 4196 BUG_ON(!list_skb->head_frag); 4197 4198 /* to make room for head_frag. */ 4199 i--; 4200 frag--; 4201 } 4202 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4203 skb_zerocopy_clone(nskb, frag_skb, 4204 GFP_ATOMIC)) 4205 goto err; 4206 4207 list_skb = list_skb->next; 4208 } 4209 4210 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4211 MAX_SKB_FRAGS)) { 4212 net_warn_ratelimited( 4213 "skb_segment: too many frags: %u %u\n", 4214 pos, mss); 4215 err = -EINVAL; 4216 goto err; 4217 } 4218 4219 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4220 __skb_frag_ref(nskb_frag); 4221 size = skb_frag_size(nskb_frag); 4222 4223 if (pos < offset) { 4224 skb_frag_off_add(nskb_frag, offset - pos); 4225 skb_frag_size_sub(nskb_frag, offset - pos); 4226 } 4227 4228 skb_shinfo(nskb)->nr_frags++; 4229 4230 if (pos + size <= offset + len) { 4231 i++; 4232 frag++; 4233 pos += size; 4234 } else { 4235 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4236 goto skip_fraglist; 4237 } 4238 4239 nskb_frag++; 4240 } 4241 4242 skip_fraglist: 4243 nskb->data_len = len - hsize; 4244 nskb->len += nskb->data_len; 4245 nskb->truesize += nskb->data_len; 4246 4247 perform_csum_check: 4248 if (!csum) { 4249 if (skb_has_shared_frag(nskb) && 4250 __skb_linearize(nskb)) 4251 goto err; 4252 4253 if (!nskb->remcsum_offload) 4254 nskb->ip_summed = CHECKSUM_NONE; 4255 SKB_GSO_CB(nskb)->csum = 4256 skb_checksum(nskb, doffset, 4257 nskb->len - doffset, 0); 4258 SKB_GSO_CB(nskb)->csum_start = 4259 skb_headroom(nskb) + doffset; 4260 } 4261 } while ((offset += len) < head_skb->len); 4262 4263 /* Some callers want to get the end of the list. 4264 * Put it in segs->prev to avoid walking the list. 4265 * (see validate_xmit_skb_list() for example) 4266 */ 4267 segs->prev = tail; 4268 4269 if (partial_segs) { 4270 struct sk_buff *iter; 4271 int type = skb_shinfo(head_skb)->gso_type; 4272 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4273 4274 /* Update type to add partial and then remove dodgy if set */ 4275 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4276 type &= ~SKB_GSO_DODGY; 4277 4278 /* Update GSO info and prepare to start updating headers on 4279 * our way back down the stack of protocols. 4280 */ 4281 for (iter = segs; iter; iter = iter->next) { 4282 skb_shinfo(iter)->gso_size = gso_size; 4283 skb_shinfo(iter)->gso_segs = partial_segs; 4284 skb_shinfo(iter)->gso_type = type; 4285 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4286 } 4287 4288 if (tail->len - doffset <= gso_size) 4289 skb_shinfo(tail)->gso_size = 0; 4290 else if (tail != segs) 4291 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4292 } 4293 4294 /* Following permits correct backpressure, for protocols 4295 * using skb_set_owner_w(). 4296 * Idea is to tranfert ownership from head_skb to last segment. 4297 */ 4298 if (head_skb->destructor == sock_wfree) { 4299 swap(tail->truesize, head_skb->truesize); 4300 swap(tail->destructor, head_skb->destructor); 4301 swap(tail->sk, head_skb->sk); 4302 } 4303 return segs; 4304 4305 err: 4306 kfree_skb_list(segs); 4307 return ERR_PTR(err); 4308 } 4309 EXPORT_SYMBOL_GPL(skb_segment); 4310 4311 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4312 { 4313 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4314 unsigned int offset = skb_gro_offset(skb); 4315 unsigned int headlen = skb_headlen(skb); 4316 unsigned int len = skb_gro_len(skb); 4317 unsigned int delta_truesize; 4318 unsigned int new_truesize; 4319 struct sk_buff *lp; 4320 4321 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4322 return -E2BIG; 4323 4324 lp = NAPI_GRO_CB(p)->last; 4325 pinfo = skb_shinfo(lp); 4326 4327 if (headlen <= offset) { 4328 skb_frag_t *frag; 4329 skb_frag_t *frag2; 4330 int i = skbinfo->nr_frags; 4331 int nr_frags = pinfo->nr_frags + i; 4332 4333 if (nr_frags > MAX_SKB_FRAGS) 4334 goto merge; 4335 4336 offset -= headlen; 4337 pinfo->nr_frags = nr_frags; 4338 skbinfo->nr_frags = 0; 4339 4340 frag = pinfo->frags + nr_frags; 4341 frag2 = skbinfo->frags + i; 4342 do { 4343 *--frag = *--frag2; 4344 } while (--i); 4345 4346 skb_frag_off_add(frag, offset); 4347 skb_frag_size_sub(frag, offset); 4348 4349 /* all fragments truesize : remove (head size + sk_buff) */ 4350 new_truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4351 delta_truesize = skb->truesize - new_truesize; 4352 4353 skb->truesize = new_truesize; 4354 skb->len -= skb->data_len; 4355 skb->data_len = 0; 4356 4357 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4358 goto done; 4359 } else if (skb->head_frag) { 4360 int nr_frags = pinfo->nr_frags; 4361 skb_frag_t *frag = pinfo->frags + nr_frags; 4362 struct page *page = virt_to_head_page(skb->head); 4363 unsigned int first_size = headlen - offset; 4364 unsigned int first_offset; 4365 4366 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4367 goto merge; 4368 4369 first_offset = skb->data - 4370 (unsigned char *)page_address(page) + 4371 offset; 4372 4373 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4374 4375 __skb_frag_set_page(frag, page); 4376 skb_frag_off_set(frag, first_offset); 4377 skb_frag_size_set(frag, first_size); 4378 4379 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4380 /* We dont need to clear skbinfo->nr_frags here */ 4381 4382 new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4383 delta_truesize = skb->truesize - new_truesize; 4384 skb->truesize = new_truesize; 4385 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4386 goto done; 4387 } 4388 4389 merge: 4390 /* sk owenrship - if any - completely transferred to the aggregated packet */ 4391 skb->destructor = NULL; 4392 delta_truesize = skb->truesize; 4393 if (offset > headlen) { 4394 unsigned int eat = offset - headlen; 4395 4396 skb_frag_off_add(&skbinfo->frags[0], eat); 4397 skb_frag_size_sub(&skbinfo->frags[0], eat); 4398 skb->data_len -= eat; 4399 skb->len -= eat; 4400 offset = headlen; 4401 } 4402 4403 __skb_pull(skb, offset); 4404 4405 if (NAPI_GRO_CB(p)->last == p) 4406 skb_shinfo(p)->frag_list = skb; 4407 else 4408 NAPI_GRO_CB(p)->last->next = skb; 4409 NAPI_GRO_CB(p)->last = skb; 4410 __skb_header_release(skb); 4411 lp = p; 4412 4413 done: 4414 NAPI_GRO_CB(p)->count++; 4415 p->data_len += len; 4416 p->truesize += delta_truesize; 4417 p->len += len; 4418 if (lp != p) { 4419 lp->data_len += len; 4420 lp->truesize += delta_truesize; 4421 lp->len += len; 4422 } 4423 NAPI_GRO_CB(skb)->same_flow = 1; 4424 return 0; 4425 } 4426 4427 #ifdef CONFIG_SKB_EXTENSIONS 4428 #define SKB_EXT_ALIGN_VALUE 8 4429 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4430 4431 static const u8 skb_ext_type_len[] = { 4432 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4433 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4434 #endif 4435 #ifdef CONFIG_XFRM 4436 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4437 #endif 4438 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4439 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4440 #endif 4441 #if IS_ENABLED(CONFIG_MPTCP) 4442 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4443 #endif 4444 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4445 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4446 #endif 4447 }; 4448 4449 static __always_inline unsigned int skb_ext_total_length(void) 4450 { 4451 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4452 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4453 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4454 #endif 4455 #ifdef CONFIG_XFRM 4456 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4457 #endif 4458 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4459 skb_ext_type_len[TC_SKB_EXT] + 4460 #endif 4461 #if IS_ENABLED(CONFIG_MPTCP) 4462 skb_ext_type_len[SKB_EXT_MPTCP] + 4463 #endif 4464 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4465 skb_ext_type_len[SKB_EXT_MCTP] + 4466 #endif 4467 0; 4468 } 4469 4470 static void skb_extensions_init(void) 4471 { 4472 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4473 BUILD_BUG_ON(skb_ext_total_length() > 255); 4474 4475 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4476 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4477 0, 4478 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4479 NULL); 4480 } 4481 #else 4482 static void skb_extensions_init(void) {} 4483 #endif 4484 4485 void __init skb_init(void) 4486 { 4487 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4488 sizeof(struct sk_buff), 4489 0, 4490 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4491 offsetof(struct sk_buff, cb), 4492 sizeof_field(struct sk_buff, cb), 4493 NULL); 4494 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4495 sizeof(struct sk_buff_fclones), 4496 0, 4497 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4498 NULL); 4499 skb_extensions_init(); 4500 } 4501 4502 static int 4503 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4504 unsigned int recursion_level) 4505 { 4506 int start = skb_headlen(skb); 4507 int i, copy = start - offset; 4508 struct sk_buff *frag_iter; 4509 int elt = 0; 4510 4511 if (unlikely(recursion_level >= 24)) 4512 return -EMSGSIZE; 4513 4514 if (copy > 0) { 4515 if (copy > len) 4516 copy = len; 4517 sg_set_buf(sg, skb->data + offset, copy); 4518 elt++; 4519 if ((len -= copy) == 0) 4520 return elt; 4521 offset += copy; 4522 } 4523 4524 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4525 int end; 4526 4527 WARN_ON(start > offset + len); 4528 4529 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4530 if ((copy = end - offset) > 0) { 4531 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4532 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4533 return -EMSGSIZE; 4534 4535 if (copy > len) 4536 copy = len; 4537 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4538 skb_frag_off(frag) + offset - start); 4539 elt++; 4540 if (!(len -= copy)) 4541 return elt; 4542 offset += copy; 4543 } 4544 start = end; 4545 } 4546 4547 skb_walk_frags(skb, frag_iter) { 4548 int end, ret; 4549 4550 WARN_ON(start > offset + len); 4551 4552 end = start + frag_iter->len; 4553 if ((copy = end - offset) > 0) { 4554 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4555 return -EMSGSIZE; 4556 4557 if (copy > len) 4558 copy = len; 4559 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4560 copy, recursion_level + 1); 4561 if (unlikely(ret < 0)) 4562 return ret; 4563 elt += ret; 4564 if ((len -= copy) == 0) 4565 return elt; 4566 offset += copy; 4567 } 4568 start = end; 4569 } 4570 BUG_ON(len); 4571 return elt; 4572 } 4573 4574 /** 4575 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4576 * @skb: Socket buffer containing the buffers to be mapped 4577 * @sg: The scatter-gather list to map into 4578 * @offset: The offset into the buffer's contents to start mapping 4579 * @len: Length of buffer space to be mapped 4580 * 4581 * Fill the specified scatter-gather list with mappings/pointers into a 4582 * region of the buffer space attached to a socket buffer. Returns either 4583 * the number of scatterlist items used, or -EMSGSIZE if the contents 4584 * could not fit. 4585 */ 4586 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4587 { 4588 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4589 4590 if (nsg <= 0) 4591 return nsg; 4592 4593 sg_mark_end(&sg[nsg - 1]); 4594 4595 return nsg; 4596 } 4597 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4598 4599 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4600 * sglist without mark the sg which contain last skb data as the end. 4601 * So the caller can mannipulate sg list as will when padding new data after 4602 * the first call without calling sg_unmark_end to expend sg list. 4603 * 4604 * Scenario to use skb_to_sgvec_nomark: 4605 * 1. sg_init_table 4606 * 2. skb_to_sgvec_nomark(payload1) 4607 * 3. skb_to_sgvec_nomark(payload2) 4608 * 4609 * This is equivalent to: 4610 * 1. sg_init_table 4611 * 2. skb_to_sgvec(payload1) 4612 * 3. sg_unmark_end 4613 * 4. skb_to_sgvec(payload2) 4614 * 4615 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4616 * is more preferable. 4617 */ 4618 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4619 int offset, int len) 4620 { 4621 return __skb_to_sgvec(skb, sg, offset, len, 0); 4622 } 4623 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4624 4625 4626 4627 /** 4628 * skb_cow_data - Check that a socket buffer's data buffers are writable 4629 * @skb: The socket buffer to check. 4630 * @tailbits: Amount of trailing space to be added 4631 * @trailer: Returned pointer to the skb where the @tailbits space begins 4632 * 4633 * Make sure that the data buffers attached to a socket buffer are 4634 * writable. If they are not, private copies are made of the data buffers 4635 * and the socket buffer is set to use these instead. 4636 * 4637 * If @tailbits is given, make sure that there is space to write @tailbits 4638 * bytes of data beyond current end of socket buffer. @trailer will be 4639 * set to point to the skb in which this space begins. 4640 * 4641 * The number of scatterlist elements required to completely map the 4642 * COW'd and extended socket buffer will be returned. 4643 */ 4644 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4645 { 4646 int copyflag; 4647 int elt; 4648 struct sk_buff *skb1, **skb_p; 4649 4650 /* If skb is cloned or its head is paged, reallocate 4651 * head pulling out all the pages (pages are considered not writable 4652 * at the moment even if they are anonymous). 4653 */ 4654 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4655 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4656 return -ENOMEM; 4657 4658 /* Easy case. Most of packets will go this way. */ 4659 if (!skb_has_frag_list(skb)) { 4660 /* A little of trouble, not enough of space for trailer. 4661 * This should not happen, when stack is tuned to generate 4662 * good frames. OK, on miss we reallocate and reserve even more 4663 * space, 128 bytes is fair. */ 4664 4665 if (skb_tailroom(skb) < tailbits && 4666 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4667 return -ENOMEM; 4668 4669 /* Voila! */ 4670 *trailer = skb; 4671 return 1; 4672 } 4673 4674 /* Misery. We are in troubles, going to mincer fragments... */ 4675 4676 elt = 1; 4677 skb_p = &skb_shinfo(skb)->frag_list; 4678 copyflag = 0; 4679 4680 while ((skb1 = *skb_p) != NULL) { 4681 int ntail = 0; 4682 4683 /* The fragment is partially pulled by someone, 4684 * this can happen on input. Copy it and everything 4685 * after it. */ 4686 4687 if (skb_shared(skb1)) 4688 copyflag = 1; 4689 4690 /* If the skb is the last, worry about trailer. */ 4691 4692 if (skb1->next == NULL && tailbits) { 4693 if (skb_shinfo(skb1)->nr_frags || 4694 skb_has_frag_list(skb1) || 4695 skb_tailroom(skb1) < tailbits) 4696 ntail = tailbits + 128; 4697 } 4698 4699 if (copyflag || 4700 skb_cloned(skb1) || 4701 ntail || 4702 skb_shinfo(skb1)->nr_frags || 4703 skb_has_frag_list(skb1)) { 4704 struct sk_buff *skb2; 4705 4706 /* Fuck, we are miserable poor guys... */ 4707 if (ntail == 0) 4708 skb2 = skb_copy(skb1, GFP_ATOMIC); 4709 else 4710 skb2 = skb_copy_expand(skb1, 4711 skb_headroom(skb1), 4712 ntail, 4713 GFP_ATOMIC); 4714 if (unlikely(skb2 == NULL)) 4715 return -ENOMEM; 4716 4717 if (skb1->sk) 4718 skb_set_owner_w(skb2, skb1->sk); 4719 4720 /* Looking around. Are we still alive? 4721 * OK, link new skb, drop old one */ 4722 4723 skb2->next = skb1->next; 4724 *skb_p = skb2; 4725 kfree_skb(skb1); 4726 skb1 = skb2; 4727 } 4728 elt++; 4729 *trailer = skb1; 4730 skb_p = &skb1->next; 4731 } 4732 4733 return elt; 4734 } 4735 EXPORT_SYMBOL_GPL(skb_cow_data); 4736 4737 static void sock_rmem_free(struct sk_buff *skb) 4738 { 4739 struct sock *sk = skb->sk; 4740 4741 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4742 } 4743 4744 static void skb_set_err_queue(struct sk_buff *skb) 4745 { 4746 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4747 * So, it is safe to (mis)use it to mark skbs on the error queue. 4748 */ 4749 skb->pkt_type = PACKET_OUTGOING; 4750 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4751 } 4752 4753 /* 4754 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4755 */ 4756 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4757 { 4758 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4759 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4760 return -ENOMEM; 4761 4762 skb_orphan(skb); 4763 skb->sk = sk; 4764 skb->destructor = sock_rmem_free; 4765 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4766 skb_set_err_queue(skb); 4767 4768 /* before exiting rcu section, make sure dst is refcounted */ 4769 skb_dst_force(skb); 4770 4771 skb_queue_tail(&sk->sk_error_queue, skb); 4772 if (!sock_flag(sk, SOCK_DEAD)) 4773 sk_error_report(sk); 4774 return 0; 4775 } 4776 EXPORT_SYMBOL(sock_queue_err_skb); 4777 4778 static bool is_icmp_err_skb(const struct sk_buff *skb) 4779 { 4780 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4781 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4782 } 4783 4784 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4785 { 4786 struct sk_buff_head *q = &sk->sk_error_queue; 4787 struct sk_buff *skb, *skb_next = NULL; 4788 bool icmp_next = false; 4789 unsigned long flags; 4790 4791 spin_lock_irqsave(&q->lock, flags); 4792 skb = __skb_dequeue(q); 4793 if (skb && (skb_next = skb_peek(q))) { 4794 icmp_next = is_icmp_err_skb(skb_next); 4795 if (icmp_next) 4796 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4797 } 4798 spin_unlock_irqrestore(&q->lock, flags); 4799 4800 if (is_icmp_err_skb(skb) && !icmp_next) 4801 sk->sk_err = 0; 4802 4803 if (skb_next) 4804 sk_error_report(sk); 4805 4806 return skb; 4807 } 4808 EXPORT_SYMBOL(sock_dequeue_err_skb); 4809 4810 /** 4811 * skb_clone_sk - create clone of skb, and take reference to socket 4812 * @skb: the skb to clone 4813 * 4814 * This function creates a clone of a buffer that holds a reference on 4815 * sk_refcnt. Buffers created via this function are meant to be 4816 * returned using sock_queue_err_skb, or free via kfree_skb. 4817 * 4818 * When passing buffers allocated with this function to sock_queue_err_skb 4819 * it is necessary to wrap the call with sock_hold/sock_put in order to 4820 * prevent the socket from being released prior to being enqueued on 4821 * the sk_error_queue. 4822 */ 4823 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4824 { 4825 struct sock *sk = skb->sk; 4826 struct sk_buff *clone; 4827 4828 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4829 return NULL; 4830 4831 clone = skb_clone(skb, GFP_ATOMIC); 4832 if (!clone) { 4833 sock_put(sk); 4834 return NULL; 4835 } 4836 4837 clone->sk = sk; 4838 clone->destructor = sock_efree; 4839 4840 return clone; 4841 } 4842 EXPORT_SYMBOL(skb_clone_sk); 4843 4844 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4845 struct sock *sk, 4846 int tstype, 4847 bool opt_stats) 4848 { 4849 struct sock_exterr_skb *serr; 4850 int err; 4851 4852 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4853 4854 serr = SKB_EXT_ERR(skb); 4855 memset(serr, 0, sizeof(*serr)); 4856 serr->ee.ee_errno = ENOMSG; 4857 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4858 serr->ee.ee_info = tstype; 4859 serr->opt_stats = opt_stats; 4860 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4861 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4862 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4863 if (sk->sk_protocol == IPPROTO_TCP && 4864 sk->sk_type == SOCK_STREAM) 4865 serr->ee.ee_data -= sk->sk_tskey; 4866 } 4867 4868 err = sock_queue_err_skb(sk, skb); 4869 4870 if (err) 4871 kfree_skb(skb); 4872 } 4873 4874 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4875 { 4876 bool ret; 4877 4878 if (likely(sysctl_tstamp_allow_data || tsonly)) 4879 return true; 4880 4881 read_lock_bh(&sk->sk_callback_lock); 4882 ret = sk->sk_socket && sk->sk_socket->file && 4883 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4884 read_unlock_bh(&sk->sk_callback_lock); 4885 return ret; 4886 } 4887 4888 void skb_complete_tx_timestamp(struct sk_buff *skb, 4889 struct skb_shared_hwtstamps *hwtstamps) 4890 { 4891 struct sock *sk = skb->sk; 4892 4893 if (!skb_may_tx_timestamp(sk, false)) 4894 goto err; 4895 4896 /* Take a reference to prevent skb_orphan() from freeing the socket, 4897 * but only if the socket refcount is not zero. 4898 */ 4899 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4900 *skb_hwtstamps(skb) = *hwtstamps; 4901 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4902 sock_put(sk); 4903 return; 4904 } 4905 4906 err: 4907 kfree_skb(skb); 4908 } 4909 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4910 4911 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4912 const struct sk_buff *ack_skb, 4913 struct skb_shared_hwtstamps *hwtstamps, 4914 struct sock *sk, int tstype) 4915 { 4916 struct sk_buff *skb; 4917 bool tsonly, opt_stats = false; 4918 4919 if (!sk) 4920 return; 4921 4922 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4923 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4924 return; 4925 4926 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4927 if (!skb_may_tx_timestamp(sk, tsonly)) 4928 return; 4929 4930 if (tsonly) { 4931 #ifdef CONFIG_INET 4932 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4933 sk->sk_protocol == IPPROTO_TCP && 4934 sk->sk_type == SOCK_STREAM) { 4935 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4936 ack_skb); 4937 opt_stats = true; 4938 } else 4939 #endif 4940 skb = alloc_skb(0, GFP_ATOMIC); 4941 } else { 4942 skb = skb_clone(orig_skb, GFP_ATOMIC); 4943 } 4944 if (!skb) 4945 return; 4946 4947 if (tsonly) { 4948 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4949 SKBTX_ANY_TSTAMP; 4950 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4951 } 4952 4953 if (hwtstamps) 4954 *skb_hwtstamps(skb) = *hwtstamps; 4955 else 4956 skb->tstamp = ktime_get_real(); 4957 4958 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4959 } 4960 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4961 4962 void skb_tstamp_tx(struct sk_buff *orig_skb, 4963 struct skb_shared_hwtstamps *hwtstamps) 4964 { 4965 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4966 SCM_TSTAMP_SND); 4967 } 4968 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4969 4970 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4971 { 4972 struct sock *sk = skb->sk; 4973 struct sock_exterr_skb *serr; 4974 int err = 1; 4975 4976 skb->wifi_acked_valid = 1; 4977 skb->wifi_acked = acked; 4978 4979 serr = SKB_EXT_ERR(skb); 4980 memset(serr, 0, sizeof(*serr)); 4981 serr->ee.ee_errno = ENOMSG; 4982 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4983 4984 /* Take a reference to prevent skb_orphan() from freeing the socket, 4985 * but only if the socket refcount is not zero. 4986 */ 4987 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4988 err = sock_queue_err_skb(sk, skb); 4989 sock_put(sk); 4990 } 4991 if (err) 4992 kfree_skb(skb); 4993 } 4994 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4995 4996 /** 4997 * skb_partial_csum_set - set up and verify partial csum values for packet 4998 * @skb: the skb to set 4999 * @start: the number of bytes after skb->data to start checksumming. 5000 * @off: the offset from start to place the checksum. 5001 * 5002 * For untrusted partially-checksummed packets, we need to make sure the values 5003 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5004 * 5005 * This function checks and sets those values and skb->ip_summed: if this 5006 * returns false you should drop the packet. 5007 */ 5008 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5009 { 5010 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5011 u32 csum_start = skb_headroom(skb) + (u32)start; 5012 5013 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 5014 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5015 start, off, skb_headroom(skb), skb_headlen(skb)); 5016 return false; 5017 } 5018 skb->ip_summed = CHECKSUM_PARTIAL; 5019 skb->csum_start = csum_start; 5020 skb->csum_offset = off; 5021 skb_set_transport_header(skb, start); 5022 return true; 5023 } 5024 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5025 5026 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5027 unsigned int max) 5028 { 5029 if (skb_headlen(skb) >= len) 5030 return 0; 5031 5032 /* If we need to pullup then pullup to the max, so we 5033 * won't need to do it again. 5034 */ 5035 if (max > skb->len) 5036 max = skb->len; 5037 5038 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5039 return -ENOMEM; 5040 5041 if (skb_headlen(skb) < len) 5042 return -EPROTO; 5043 5044 return 0; 5045 } 5046 5047 #define MAX_TCP_HDR_LEN (15 * 4) 5048 5049 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5050 typeof(IPPROTO_IP) proto, 5051 unsigned int off) 5052 { 5053 int err; 5054 5055 switch (proto) { 5056 case IPPROTO_TCP: 5057 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5058 off + MAX_TCP_HDR_LEN); 5059 if (!err && !skb_partial_csum_set(skb, off, 5060 offsetof(struct tcphdr, 5061 check))) 5062 err = -EPROTO; 5063 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5064 5065 case IPPROTO_UDP: 5066 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5067 off + sizeof(struct udphdr)); 5068 if (!err && !skb_partial_csum_set(skb, off, 5069 offsetof(struct udphdr, 5070 check))) 5071 err = -EPROTO; 5072 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5073 } 5074 5075 return ERR_PTR(-EPROTO); 5076 } 5077 5078 /* This value should be large enough to cover a tagged ethernet header plus 5079 * maximally sized IP and TCP or UDP headers. 5080 */ 5081 #define MAX_IP_HDR_LEN 128 5082 5083 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5084 { 5085 unsigned int off; 5086 bool fragment; 5087 __sum16 *csum; 5088 int err; 5089 5090 fragment = false; 5091 5092 err = skb_maybe_pull_tail(skb, 5093 sizeof(struct iphdr), 5094 MAX_IP_HDR_LEN); 5095 if (err < 0) 5096 goto out; 5097 5098 if (ip_is_fragment(ip_hdr(skb))) 5099 fragment = true; 5100 5101 off = ip_hdrlen(skb); 5102 5103 err = -EPROTO; 5104 5105 if (fragment) 5106 goto out; 5107 5108 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5109 if (IS_ERR(csum)) 5110 return PTR_ERR(csum); 5111 5112 if (recalculate) 5113 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5114 ip_hdr(skb)->daddr, 5115 skb->len - off, 5116 ip_hdr(skb)->protocol, 0); 5117 err = 0; 5118 5119 out: 5120 return err; 5121 } 5122 5123 /* This value should be large enough to cover a tagged ethernet header plus 5124 * an IPv6 header, all options, and a maximal TCP or UDP header. 5125 */ 5126 #define MAX_IPV6_HDR_LEN 256 5127 5128 #define OPT_HDR(type, skb, off) \ 5129 (type *)(skb_network_header(skb) + (off)) 5130 5131 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5132 { 5133 int err; 5134 u8 nexthdr; 5135 unsigned int off; 5136 unsigned int len; 5137 bool fragment; 5138 bool done; 5139 __sum16 *csum; 5140 5141 fragment = false; 5142 done = false; 5143 5144 off = sizeof(struct ipv6hdr); 5145 5146 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5147 if (err < 0) 5148 goto out; 5149 5150 nexthdr = ipv6_hdr(skb)->nexthdr; 5151 5152 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5153 while (off <= len && !done) { 5154 switch (nexthdr) { 5155 case IPPROTO_DSTOPTS: 5156 case IPPROTO_HOPOPTS: 5157 case IPPROTO_ROUTING: { 5158 struct ipv6_opt_hdr *hp; 5159 5160 err = skb_maybe_pull_tail(skb, 5161 off + 5162 sizeof(struct ipv6_opt_hdr), 5163 MAX_IPV6_HDR_LEN); 5164 if (err < 0) 5165 goto out; 5166 5167 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5168 nexthdr = hp->nexthdr; 5169 off += ipv6_optlen(hp); 5170 break; 5171 } 5172 case IPPROTO_AH: { 5173 struct ip_auth_hdr *hp; 5174 5175 err = skb_maybe_pull_tail(skb, 5176 off + 5177 sizeof(struct ip_auth_hdr), 5178 MAX_IPV6_HDR_LEN); 5179 if (err < 0) 5180 goto out; 5181 5182 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5183 nexthdr = hp->nexthdr; 5184 off += ipv6_authlen(hp); 5185 break; 5186 } 5187 case IPPROTO_FRAGMENT: { 5188 struct frag_hdr *hp; 5189 5190 err = skb_maybe_pull_tail(skb, 5191 off + 5192 sizeof(struct frag_hdr), 5193 MAX_IPV6_HDR_LEN); 5194 if (err < 0) 5195 goto out; 5196 5197 hp = OPT_HDR(struct frag_hdr, skb, off); 5198 5199 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5200 fragment = true; 5201 5202 nexthdr = hp->nexthdr; 5203 off += sizeof(struct frag_hdr); 5204 break; 5205 } 5206 default: 5207 done = true; 5208 break; 5209 } 5210 } 5211 5212 err = -EPROTO; 5213 5214 if (!done || fragment) 5215 goto out; 5216 5217 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5218 if (IS_ERR(csum)) 5219 return PTR_ERR(csum); 5220 5221 if (recalculate) 5222 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5223 &ipv6_hdr(skb)->daddr, 5224 skb->len - off, nexthdr, 0); 5225 err = 0; 5226 5227 out: 5228 return err; 5229 } 5230 5231 /** 5232 * skb_checksum_setup - set up partial checksum offset 5233 * @skb: the skb to set up 5234 * @recalculate: if true the pseudo-header checksum will be recalculated 5235 */ 5236 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5237 { 5238 int err; 5239 5240 switch (skb->protocol) { 5241 case htons(ETH_P_IP): 5242 err = skb_checksum_setup_ipv4(skb, recalculate); 5243 break; 5244 5245 case htons(ETH_P_IPV6): 5246 err = skb_checksum_setup_ipv6(skb, recalculate); 5247 break; 5248 5249 default: 5250 err = -EPROTO; 5251 break; 5252 } 5253 5254 return err; 5255 } 5256 EXPORT_SYMBOL(skb_checksum_setup); 5257 5258 /** 5259 * skb_checksum_maybe_trim - maybe trims the given skb 5260 * @skb: the skb to check 5261 * @transport_len: the data length beyond the network header 5262 * 5263 * Checks whether the given skb has data beyond the given transport length. 5264 * If so, returns a cloned skb trimmed to this transport length. 5265 * Otherwise returns the provided skb. Returns NULL in error cases 5266 * (e.g. transport_len exceeds skb length or out-of-memory). 5267 * 5268 * Caller needs to set the skb transport header and free any returned skb if it 5269 * differs from the provided skb. 5270 */ 5271 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5272 unsigned int transport_len) 5273 { 5274 struct sk_buff *skb_chk; 5275 unsigned int len = skb_transport_offset(skb) + transport_len; 5276 int ret; 5277 5278 if (skb->len < len) 5279 return NULL; 5280 else if (skb->len == len) 5281 return skb; 5282 5283 skb_chk = skb_clone(skb, GFP_ATOMIC); 5284 if (!skb_chk) 5285 return NULL; 5286 5287 ret = pskb_trim_rcsum(skb_chk, len); 5288 if (ret) { 5289 kfree_skb(skb_chk); 5290 return NULL; 5291 } 5292 5293 return skb_chk; 5294 } 5295 5296 /** 5297 * skb_checksum_trimmed - validate checksum of an skb 5298 * @skb: the skb to check 5299 * @transport_len: the data length beyond the network header 5300 * @skb_chkf: checksum function to use 5301 * 5302 * Applies the given checksum function skb_chkf to the provided skb. 5303 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5304 * 5305 * If the skb has data beyond the given transport length, then a 5306 * trimmed & cloned skb is checked and returned. 5307 * 5308 * Caller needs to set the skb transport header and free any returned skb if it 5309 * differs from the provided skb. 5310 */ 5311 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5312 unsigned int transport_len, 5313 __sum16(*skb_chkf)(struct sk_buff *skb)) 5314 { 5315 struct sk_buff *skb_chk; 5316 unsigned int offset = skb_transport_offset(skb); 5317 __sum16 ret; 5318 5319 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5320 if (!skb_chk) 5321 goto err; 5322 5323 if (!pskb_may_pull(skb_chk, offset)) 5324 goto err; 5325 5326 skb_pull_rcsum(skb_chk, offset); 5327 ret = skb_chkf(skb_chk); 5328 skb_push_rcsum(skb_chk, offset); 5329 5330 if (ret) 5331 goto err; 5332 5333 return skb_chk; 5334 5335 err: 5336 if (skb_chk && skb_chk != skb) 5337 kfree_skb(skb_chk); 5338 5339 return NULL; 5340 5341 } 5342 EXPORT_SYMBOL(skb_checksum_trimmed); 5343 5344 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5345 { 5346 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5347 skb->dev->name); 5348 } 5349 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5350 5351 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5352 { 5353 if (head_stolen) { 5354 skb_release_head_state(skb); 5355 kmem_cache_free(skbuff_head_cache, skb); 5356 } else { 5357 __kfree_skb(skb); 5358 } 5359 } 5360 EXPORT_SYMBOL(kfree_skb_partial); 5361 5362 /** 5363 * skb_try_coalesce - try to merge skb to prior one 5364 * @to: prior buffer 5365 * @from: buffer to add 5366 * @fragstolen: pointer to boolean 5367 * @delta_truesize: how much more was allocated than was requested 5368 */ 5369 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5370 bool *fragstolen, int *delta_truesize) 5371 { 5372 struct skb_shared_info *to_shinfo, *from_shinfo; 5373 int i, delta, len = from->len; 5374 5375 *fragstolen = false; 5376 5377 if (skb_cloned(to)) 5378 return false; 5379 5380 /* The page pool signature of struct page will eventually figure out 5381 * which pages can be recycled or not but for now let's prohibit slab 5382 * allocated and page_pool allocated SKBs from being coalesced. 5383 */ 5384 if (to->pp_recycle != from->pp_recycle) 5385 return false; 5386 5387 if (len <= skb_tailroom(to)) { 5388 if (len) 5389 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5390 *delta_truesize = 0; 5391 return true; 5392 } 5393 5394 to_shinfo = skb_shinfo(to); 5395 from_shinfo = skb_shinfo(from); 5396 if (to_shinfo->frag_list || from_shinfo->frag_list) 5397 return false; 5398 if (skb_zcopy(to) || skb_zcopy(from)) 5399 return false; 5400 5401 if (skb_headlen(from) != 0) { 5402 struct page *page; 5403 unsigned int offset; 5404 5405 if (to_shinfo->nr_frags + 5406 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5407 return false; 5408 5409 if (skb_head_is_locked(from)) 5410 return false; 5411 5412 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5413 5414 page = virt_to_head_page(from->head); 5415 offset = from->data - (unsigned char *)page_address(page); 5416 5417 skb_fill_page_desc(to, to_shinfo->nr_frags, 5418 page, offset, skb_headlen(from)); 5419 *fragstolen = true; 5420 } else { 5421 if (to_shinfo->nr_frags + 5422 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5423 return false; 5424 5425 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5426 } 5427 5428 WARN_ON_ONCE(delta < len); 5429 5430 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5431 from_shinfo->frags, 5432 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5433 to_shinfo->nr_frags += from_shinfo->nr_frags; 5434 5435 if (!skb_cloned(from)) 5436 from_shinfo->nr_frags = 0; 5437 5438 /* if the skb is not cloned this does nothing 5439 * since we set nr_frags to 0. 5440 */ 5441 for (i = 0; i < from_shinfo->nr_frags; i++) 5442 __skb_frag_ref(&from_shinfo->frags[i]); 5443 5444 to->truesize += delta; 5445 to->len += len; 5446 to->data_len += len; 5447 5448 *delta_truesize = delta; 5449 return true; 5450 } 5451 EXPORT_SYMBOL(skb_try_coalesce); 5452 5453 /** 5454 * skb_scrub_packet - scrub an skb 5455 * 5456 * @skb: buffer to clean 5457 * @xnet: packet is crossing netns 5458 * 5459 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5460 * into/from a tunnel. Some information have to be cleared during these 5461 * operations. 5462 * skb_scrub_packet can also be used to clean a skb before injecting it in 5463 * another namespace (@xnet == true). We have to clear all information in the 5464 * skb that could impact namespace isolation. 5465 */ 5466 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5467 { 5468 skb->pkt_type = PACKET_HOST; 5469 skb->skb_iif = 0; 5470 skb->ignore_df = 0; 5471 skb_dst_drop(skb); 5472 skb_ext_reset(skb); 5473 nf_reset_ct(skb); 5474 nf_reset_trace(skb); 5475 5476 #ifdef CONFIG_NET_SWITCHDEV 5477 skb->offload_fwd_mark = 0; 5478 skb->offload_l3_fwd_mark = 0; 5479 #endif 5480 5481 if (!xnet) 5482 return; 5483 5484 ipvs_reset(skb); 5485 skb->mark = 0; 5486 skb->tstamp = 0; 5487 } 5488 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5489 5490 /** 5491 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5492 * 5493 * @skb: GSO skb 5494 * 5495 * skb_gso_transport_seglen is used to determine the real size of the 5496 * individual segments, including Layer4 headers (TCP/UDP). 5497 * 5498 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5499 */ 5500 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5501 { 5502 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5503 unsigned int thlen = 0; 5504 5505 if (skb->encapsulation) { 5506 thlen = skb_inner_transport_header(skb) - 5507 skb_transport_header(skb); 5508 5509 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5510 thlen += inner_tcp_hdrlen(skb); 5511 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5512 thlen = tcp_hdrlen(skb); 5513 } else if (unlikely(skb_is_gso_sctp(skb))) { 5514 thlen = sizeof(struct sctphdr); 5515 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5516 thlen = sizeof(struct udphdr); 5517 } 5518 /* UFO sets gso_size to the size of the fragmentation 5519 * payload, i.e. the size of the L4 (UDP) header is already 5520 * accounted for. 5521 */ 5522 return thlen + shinfo->gso_size; 5523 } 5524 5525 /** 5526 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5527 * 5528 * @skb: GSO skb 5529 * 5530 * skb_gso_network_seglen is used to determine the real size of the 5531 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5532 * 5533 * The MAC/L2 header is not accounted for. 5534 */ 5535 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5536 { 5537 unsigned int hdr_len = skb_transport_header(skb) - 5538 skb_network_header(skb); 5539 5540 return hdr_len + skb_gso_transport_seglen(skb); 5541 } 5542 5543 /** 5544 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5545 * 5546 * @skb: GSO skb 5547 * 5548 * skb_gso_mac_seglen is used to determine the real size of the 5549 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5550 * headers (TCP/UDP). 5551 */ 5552 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5553 { 5554 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5555 5556 return hdr_len + skb_gso_transport_seglen(skb); 5557 } 5558 5559 /** 5560 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5561 * 5562 * There are a couple of instances where we have a GSO skb, and we 5563 * want to determine what size it would be after it is segmented. 5564 * 5565 * We might want to check: 5566 * - L3+L4+payload size (e.g. IP forwarding) 5567 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5568 * 5569 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5570 * 5571 * @skb: GSO skb 5572 * 5573 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5574 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5575 * 5576 * @max_len: The maximum permissible length. 5577 * 5578 * Returns true if the segmented length <= max length. 5579 */ 5580 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5581 unsigned int seg_len, 5582 unsigned int max_len) { 5583 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5584 const struct sk_buff *iter; 5585 5586 if (shinfo->gso_size != GSO_BY_FRAGS) 5587 return seg_len <= max_len; 5588 5589 /* Undo this so we can re-use header sizes */ 5590 seg_len -= GSO_BY_FRAGS; 5591 5592 skb_walk_frags(skb, iter) { 5593 if (seg_len + skb_headlen(iter) > max_len) 5594 return false; 5595 } 5596 5597 return true; 5598 } 5599 5600 /** 5601 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5602 * 5603 * @skb: GSO skb 5604 * @mtu: MTU to validate against 5605 * 5606 * skb_gso_validate_network_len validates if a given skb will fit a 5607 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5608 * payload. 5609 */ 5610 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5611 { 5612 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5613 } 5614 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5615 5616 /** 5617 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5618 * 5619 * @skb: GSO skb 5620 * @len: length to validate against 5621 * 5622 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5623 * length once split, including L2, L3 and L4 headers and the payload. 5624 */ 5625 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5626 { 5627 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5628 } 5629 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5630 5631 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5632 { 5633 int mac_len, meta_len; 5634 void *meta; 5635 5636 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5637 kfree_skb(skb); 5638 return NULL; 5639 } 5640 5641 mac_len = skb->data - skb_mac_header(skb); 5642 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5643 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5644 mac_len - VLAN_HLEN - ETH_TLEN); 5645 } 5646 5647 meta_len = skb_metadata_len(skb); 5648 if (meta_len) { 5649 meta = skb_metadata_end(skb) - meta_len; 5650 memmove(meta + VLAN_HLEN, meta, meta_len); 5651 } 5652 5653 skb->mac_header += VLAN_HLEN; 5654 return skb; 5655 } 5656 5657 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5658 { 5659 struct vlan_hdr *vhdr; 5660 u16 vlan_tci; 5661 5662 if (unlikely(skb_vlan_tag_present(skb))) { 5663 /* vlan_tci is already set-up so leave this for another time */ 5664 return skb; 5665 } 5666 5667 skb = skb_share_check(skb, GFP_ATOMIC); 5668 if (unlikely(!skb)) 5669 goto err_free; 5670 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5671 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5672 goto err_free; 5673 5674 vhdr = (struct vlan_hdr *)skb->data; 5675 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5676 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5677 5678 skb_pull_rcsum(skb, VLAN_HLEN); 5679 vlan_set_encap_proto(skb, vhdr); 5680 5681 skb = skb_reorder_vlan_header(skb); 5682 if (unlikely(!skb)) 5683 goto err_free; 5684 5685 skb_reset_network_header(skb); 5686 if (!skb_transport_header_was_set(skb)) 5687 skb_reset_transport_header(skb); 5688 skb_reset_mac_len(skb); 5689 5690 return skb; 5691 5692 err_free: 5693 kfree_skb(skb); 5694 return NULL; 5695 } 5696 EXPORT_SYMBOL(skb_vlan_untag); 5697 5698 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5699 { 5700 if (!pskb_may_pull(skb, write_len)) 5701 return -ENOMEM; 5702 5703 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5704 return 0; 5705 5706 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5707 } 5708 EXPORT_SYMBOL(skb_ensure_writable); 5709 5710 /* remove VLAN header from packet and update csum accordingly. 5711 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5712 */ 5713 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5714 { 5715 struct vlan_hdr *vhdr; 5716 int offset = skb->data - skb_mac_header(skb); 5717 int err; 5718 5719 if (WARN_ONCE(offset, 5720 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5721 offset)) { 5722 return -EINVAL; 5723 } 5724 5725 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5726 if (unlikely(err)) 5727 return err; 5728 5729 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5730 5731 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5732 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5733 5734 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5735 __skb_pull(skb, VLAN_HLEN); 5736 5737 vlan_set_encap_proto(skb, vhdr); 5738 skb->mac_header += VLAN_HLEN; 5739 5740 if (skb_network_offset(skb) < ETH_HLEN) 5741 skb_set_network_header(skb, ETH_HLEN); 5742 5743 skb_reset_mac_len(skb); 5744 5745 return err; 5746 } 5747 EXPORT_SYMBOL(__skb_vlan_pop); 5748 5749 /* Pop a vlan tag either from hwaccel or from payload. 5750 * Expects skb->data at mac header. 5751 */ 5752 int skb_vlan_pop(struct sk_buff *skb) 5753 { 5754 u16 vlan_tci; 5755 __be16 vlan_proto; 5756 int err; 5757 5758 if (likely(skb_vlan_tag_present(skb))) { 5759 __vlan_hwaccel_clear_tag(skb); 5760 } else { 5761 if (unlikely(!eth_type_vlan(skb->protocol))) 5762 return 0; 5763 5764 err = __skb_vlan_pop(skb, &vlan_tci); 5765 if (err) 5766 return err; 5767 } 5768 /* move next vlan tag to hw accel tag */ 5769 if (likely(!eth_type_vlan(skb->protocol))) 5770 return 0; 5771 5772 vlan_proto = skb->protocol; 5773 err = __skb_vlan_pop(skb, &vlan_tci); 5774 if (unlikely(err)) 5775 return err; 5776 5777 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5778 return 0; 5779 } 5780 EXPORT_SYMBOL(skb_vlan_pop); 5781 5782 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5783 * Expects skb->data at mac header. 5784 */ 5785 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5786 { 5787 if (skb_vlan_tag_present(skb)) { 5788 int offset = skb->data - skb_mac_header(skb); 5789 int err; 5790 5791 if (WARN_ONCE(offset, 5792 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5793 offset)) { 5794 return -EINVAL; 5795 } 5796 5797 err = __vlan_insert_tag(skb, skb->vlan_proto, 5798 skb_vlan_tag_get(skb)); 5799 if (err) 5800 return err; 5801 5802 skb->protocol = skb->vlan_proto; 5803 skb->mac_len += VLAN_HLEN; 5804 5805 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5806 } 5807 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5808 return 0; 5809 } 5810 EXPORT_SYMBOL(skb_vlan_push); 5811 5812 /** 5813 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5814 * 5815 * @skb: Socket buffer to modify 5816 * 5817 * Drop the Ethernet header of @skb. 5818 * 5819 * Expects that skb->data points to the mac header and that no VLAN tags are 5820 * present. 5821 * 5822 * Returns 0 on success, -errno otherwise. 5823 */ 5824 int skb_eth_pop(struct sk_buff *skb) 5825 { 5826 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5827 skb_network_offset(skb) < ETH_HLEN) 5828 return -EPROTO; 5829 5830 skb_pull_rcsum(skb, ETH_HLEN); 5831 skb_reset_mac_header(skb); 5832 skb_reset_mac_len(skb); 5833 5834 return 0; 5835 } 5836 EXPORT_SYMBOL(skb_eth_pop); 5837 5838 /** 5839 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5840 * 5841 * @skb: Socket buffer to modify 5842 * @dst: Destination MAC address of the new header 5843 * @src: Source MAC address of the new header 5844 * 5845 * Prepend @skb with a new Ethernet header. 5846 * 5847 * Expects that skb->data points to the mac header, which must be empty. 5848 * 5849 * Returns 0 on success, -errno otherwise. 5850 */ 5851 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5852 const unsigned char *src) 5853 { 5854 struct ethhdr *eth; 5855 int err; 5856 5857 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5858 return -EPROTO; 5859 5860 err = skb_cow_head(skb, sizeof(*eth)); 5861 if (err < 0) 5862 return err; 5863 5864 skb_push(skb, sizeof(*eth)); 5865 skb_reset_mac_header(skb); 5866 skb_reset_mac_len(skb); 5867 5868 eth = eth_hdr(skb); 5869 ether_addr_copy(eth->h_dest, dst); 5870 ether_addr_copy(eth->h_source, src); 5871 eth->h_proto = skb->protocol; 5872 5873 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5874 5875 return 0; 5876 } 5877 EXPORT_SYMBOL(skb_eth_push); 5878 5879 /* Update the ethertype of hdr and the skb csum value if required. */ 5880 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5881 __be16 ethertype) 5882 { 5883 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5884 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5885 5886 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5887 } 5888 5889 hdr->h_proto = ethertype; 5890 } 5891 5892 /** 5893 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5894 * the packet 5895 * 5896 * @skb: buffer 5897 * @mpls_lse: MPLS label stack entry to push 5898 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5899 * @mac_len: length of the MAC header 5900 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5901 * ethernet 5902 * 5903 * Expects skb->data at mac header. 5904 * 5905 * Returns 0 on success, -errno otherwise. 5906 */ 5907 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5908 int mac_len, bool ethernet) 5909 { 5910 struct mpls_shim_hdr *lse; 5911 int err; 5912 5913 if (unlikely(!eth_p_mpls(mpls_proto))) 5914 return -EINVAL; 5915 5916 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5917 if (skb->encapsulation) 5918 return -EINVAL; 5919 5920 err = skb_cow_head(skb, MPLS_HLEN); 5921 if (unlikely(err)) 5922 return err; 5923 5924 if (!skb->inner_protocol) { 5925 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5926 skb_set_inner_protocol(skb, skb->protocol); 5927 } 5928 5929 skb_push(skb, MPLS_HLEN); 5930 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5931 mac_len); 5932 skb_reset_mac_header(skb); 5933 skb_set_network_header(skb, mac_len); 5934 skb_reset_mac_len(skb); 5935 5936 lse = mpls_hdr(skb); 5937 lse->label_stack_entry = mpls_lse; 5938 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5939 5940 if (ethernet && mac_len >= ETH_HLEN) 5941 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5942 skb->protocol = mpls_proto; 5943 5944 return 0; 5945 } 5946 EXPORT_SYMBOL_GPL(skb_mpls_push); 5947 5948 /** 5949 * skb_mpls_pop() - pop the outermost MPLS header 5950 * 5951 * @skb: buffer 5952 * @next_proto: ethertype of header after popped MPLS header 5953 * @mac_len: length of the MAC header 5954 * @ethernet: flag to indicate if the packet is ethernet 5955 * 5956 * Expects skb->data at mac header. 5957 * 5958 * Returns 0 on success, -errno otherwise. 5959 */ 5960 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5961 bool ethernet) 5962 { 5963 int err; 5964 5965 if (unlikely(!eth_p_mpls(skb->protocol))) 5966 return 0; 5967 5968 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5969 if (unlikely(err)) 5970 return err; 5971 5972 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5973 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5974 mac_len); 5975 5976 __skb_pull(skb, MPLS_HLEN); 5977 skb_reset_mac_header(skb); 5978 skb_set_network_header(skb, mac_len); 5979 5980 if (ethernet && mac_len >= ETH_HLEN) { 5981 struct ethhdr *hdr; 5982 5983 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5984 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5985 skb_mod_eth_type(skb, hdr, next_proto); 5986 } 5987 skb->protocol = next_proto; 5988 5989 return 0; 5990 } 5991 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5992 5993 /** 5994 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5995 * 5996 * @skb: buffer 5997 * @mpls_lse: new MPLS label stack entry to update to 5998 * 5999 * Expects skb->data at mac header. 6000 * 6001 * Returns 0 on success, -errno otherwise. 6002 */ 6003 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6004 { 6005 int err; 6006 6007 if (unlikely(!eth_p_mpls(skb->protocol))) 6008 return -EINVAL; 6009 6010 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6011 if (unlikely(err)) 6012 return err; 6013 6014 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6015 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6016 6017 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6018 } 6019 6020 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6021 6022 return 0; 6023 } 6024 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6025 6026 /** 6027 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6028 * 6029 * @skb: buffer 6030 * 6031 * Expects skb->data at mac header. 6032 * 6033 * Returns 0 on success, -errno otherwise. 6034 */ 6035 int skb_mpls_dec_ttl(struct sk_buff *skb) 6036 { 6037 u32 lse; 6038 u8 ttl; 6039 6040 if (unlikely(!eth_p_mpls(skb->protocol))) 6041 return -EINVAL; 6042 6043 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6044 return -ENOMEM; 6045 6046 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6047 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6048 if (!--ttl) 6049 return -EINVAL; 6050 6051 lse &= ~MPLS_LS_TTL_MASK; 6052 lse |= ttl << MPLS_LS_TTL_SHIFT; 6053 6054 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6055 } 6056 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6057 6058 /** 6059 * alloc_skb_with_frags - allocate skb with page frags 6060 * 6061 * @header_len: size of linear part 6062 * @data_len: needed length in frags 6063 * @max_page_order: max page order desired. 6064 * @errcode: pointer to error code if any 6065 * @gfp_mask: allocation mask 6066 * 6067 * This can be used to allocate a paged skb, given a maximal order for frags. 6068 */ 6069 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6070 unsigned long data_len, 6071 int max_page_order, 6072 int *errcode, 6073 gfp_t gfp_mask) 6074 { 6075 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6076 unsigned long chunk; 6077 struct sk_buff *skb; 6078 struct page *page; 6079 int i; 6080 6081 *errcode = -EMSGSIZE; 6082 /* Note this test could be relaxed, if we succeed to allocate 6083 * high order pages... 6084 */ 6085 if (npages > MAX_SKB_FRAGS) 6086 return NULL; 6087 6088 *errcode = -ENOBUFS; 6089 skb = alloc_skb(header_len, gfp_mask); 6090 if (!skb) 6091 return NULL; 6092 6093 skb->truesize += npages << PAGE_SHIFT; 6094 6095 for (i = 0; npages > 0; i++) { 6096 int order = max_page_order; 6097 6098 while (order) { 6099 if (npages >= 1 << order) { 6100 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6101 __GFP_COMP | 6102 __GFP_NOWARN, 6103 order); 6104 if (page) 6105 goto fill_page; 6106 /* Do not retry other high order allocations */ 6107 order = 1; 6108 max_page_order = 0; 6109 } 6110 order--; 6111 } 6112 page = alloc_page(gfp_mask); 6113 if (!page) 6114 goto failure; 6115 fill_page: 6116 chunk = min_t(unsigned long, data_len, 6117 PAGE_SIZE << order); 6118 skb_fill_page_desc(skb, i, page, 0, chunk); 6119 data_len -= chunk; 6120 npages -= 1 << order; 6121 } 6122 return skb; 6123 6124 failure: 6125 kfree_skb(skb); 6126 return NULL; 6127 } 6128 EXPORT_SYMBOL(alloc_skb_with_frags); 6129 6130 /* carve out the first off bytes from skb when off < headlen */ 6131 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6132 const int headlen, gfp_t gfp_mask) 6133 { 6134 int i; 6135 int size = skb_end_offset(skb); 6136 int new_hlen = headlen - off; 6137 u8 *data; 6138 6139 size = SKB_DATA_ALIGN(size); 6140 6141 if (skb_pfmemalloc(skb)) 6142 gfp_mask |= __GFP_MEMALLOC; 6143 data = kmalloc_reserve(size + 6144 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6145 gfp_mask, NUMA_NO_NODE, NULL); 6146 if (!data) 6147 return -ENOMEM; 6148 6149 size = SKB_WITH_OVERHEAD(ksize(data)); 6150 6151 /* Copy real data, and all frags */ 6152 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6153 skb->len -= off; 6154 6155 memcpy((struct skb_shared_info *)(data + size), 6156 skb_shinfo(skb), 6157 offsetof(struct skb_shared_info, 6158 frags[skb_shinfo(skb)->nr_frags])); 6159 if (skb_cloned(skb)) { 6160 /* drop the old head gracefully */ 6161 if (skb_orphan_frags(skb, gfp_mask)) { 6162 kfree(data); 6163 return -ENOMEM; 6164 } 6165 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6166 skb_frag_ref(skb, i); 6167 if (skb_has_frag_list(skb)) 6168 skb_clone_fraglist(skb); 6169 skb_release_data(skb); 6170 } else { 6171 /* we can reuse existing recount- all we did was 6172 * relocate values 6173 */ 6174 skb_free_head(skb); 6175 } 6176 6177 skb->head = data; 6178 skb->data = data; 6179 skb->head_frag = 0; 6180 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6181 skb->end = size; 6182 #else 6183 skb->end = skb->head + size; 6184 #endif 6185 skb_set_tail_pointer(skb, skb_headlen(skb)); 6186 skb_headers_offset_update(skb, 0); 6187 skb->cloned = 0; 6188 skb->hdr_len = 0; 6189 skb->nohdr = 0; 6190 atomic_set(&skb_shinfo(skb)->dataref, 1); 6191 6192 return 0; 6193 } 6194 6195 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6196 6197 /* carve out the first eat bytes from skb's frag_list. May recurse into 6198 * pskb_carve() 6199 */ 6200 static int pskb_carve_frag_list(struct sk_buff *skb, 6201 struct skb_shared_info *shinfo, int eat, 6202 gfp_t gfp_mask) 6203 { 6204 struct sk_buff *list = shinfo->frag_list; 6205 struct sk_buff *clone = NULL; 6206 struct sk_buff *insp = NULL; 6207 6208 do { 6209 if (!list) { 6210 pr_err("Not enough bytes to eat. Want %d\n", eat); 6211 return -EFAULT; 6212 } 6213 if (list->len <= eat) { 6214 /* Eaten as whole. */ 6215 eat -= list->len; 6216 list = list->next; 6217 insp = list; 6218 } else { 6219 /* Eaten partially. */ 6220 if (skb_shared(list)) { 6221 clone = skb_clone(list, gfp_mask); 6222 if (!clone) 6223 return -ENOMEM; 6224 insp = list->next; 6225 list = clone; 6226 } else { 6227 /* This may be pulled without problems. */ 6228 insp = list; 6229 } 6230 if (pskb_carve(list, eat, gfp_mask) < 0) { 6231 kfree_skb(clone); 6232 return -ENOMEM; 6233 } 6234 break; 6235 } 6236 } while (eat); 6237 6238 /* Free pulled out fragments. */ 6239 while ((list = shinfo->frag_list) != insp) { 6240 shinfo->frag_list = list->next; 6241 kfree_skb(list); 6242 } 6243 /* And insert new clone at head. */ 6244 if (clone) { 6245 clone->next = list; 6246 shinfo->frag_list = clone; 6247 } 6248 return 0; 6249 } 6250 6251 /* carve off first len bytes from skb. Split line (off) is in the 6252 * non-linear part of skb 6253 */ 6254 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6255 int pos, gfp_t gfp_mask) 6256 { 6257 int i, k = 0; 6258 int size = skb_end_offset(skb); 6259 u8 *data; 6260 const int nfrags = skb_shinfo(skb)->nr_frags; 6261 struct skb_shared_info *shinfo; 6262 6263 size = SKB_DATA_ALIGN(size); 6264 6265 if (skb_pfmemalloc(skb)) 6266 gfp_mask |= __GFP_MEMALLOC; 6267 data = kmalloc_reserve(size + 6268 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6269 gfp_mask, NUMA_NO_NODE, NULL); 6270 if (!data) 6271 return -ENOMEM; 6272 6273 size = SKB_WITH_OVERHEAD(ksize(data)); 6274 6275 memcpy((struct skb_shared_info *)(data + size), 6276 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6277 if (skb_orphan_frags(skb, gfp_mask)) { 6278 kfree(data); 6279 return -ENOMEM; 6280 } 6281 shinfo = (struct skb_shared_info *)(data + size); 6282 for (i = 0; i < nfrags; i++) { 6283 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6284 6285 if (pos + fsize > off) { 6286 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6287 6288 if (pos < off) { 6289 /* Split frag. 6290 * We have two variants in this case: 6291 * 1. Move all the frag to the second 6292 * part, if it is possible. F.e. 6293 * this approach is mandatory for TUX, 6294 * where splitting is expensive. 6295 * 2. Split is accurately. We make this. 6296 */ 6297 skb_frag_off_add(&shinfo->frags[0], off - pos); 6298 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6299 } 6300 skb_frag_ref(skb, i); 6301 k++; 6302 } 6303 pos += fsize; 6304 } 6305 shinfo->nr_frags = k; 6306 if (skb_has_frag_list(skb)) 6307 skb_clone_fraglist(skb); 6308 6309 /* split line is in frag list */ 6310 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6311 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6312 if (skb_has_frag_list(skb)) 6313 kfree_skb_list(skb_shinfo(skb)->frag_list); 6314 kfree(data); 6315 return -ENOMEM; 6316 } 6317 skb_release_data(skb); 6318 6319 skb->head = data; 6320 skb->head_frag = 0; 6321 skb->data = data; 6322 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6323 skb->end = size; 6324 #else 6325 skb->end = skb->head + size; 6326 #endif 6327 skb_reset_tail_pointer(skb); 6328 skb_headers_offset_update(skb, 0); 6329 skb->cloned = 0; 6330 skb->hdr_len = 0; 6331 skb->nohdr = 0; 6332 skb->len -= off; 6333 skb->data_len = skb->len; 6334 atomic_set(&skb_shinfo(skb)->dataref, 1); 6335 return 0; 6336 } 6337 6338 /* remove len bytes from the beginning of the skb */ 6339 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6340 { 6341 int headlen = skb_headlen(skb); 6342 6343 if (len < headlen) 6344 return pskb_carve_inside_header(skb, len, headlen, gfp); 6345 else 6346 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6347 } 6348 6349 /* Extract to_copy bytes starting at off from skb, and return this in 6350 * a new skb 6351 */ 6352 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6353 int to_copy, gfp_t gfp) 6354 { 6355 struct sk_buff *clone = skb_clone(skb, gfp); 6356 6357 if (!clone) 6358 return NULL; 6359 6360 if (pskb_carve(clone, off, gfp) < 0 || 6361 pskb_trim(clone, to_copy)) { 6362 kfree_skb(clone); 6363 return NULL; 6364 } 6365 return clone; 6366 } 6367 EXPORT_SYMBOL(pskb_extract); 6368 6369 /** 6370 * skb_condense - try to get rid of fragments/frag_list if possible 6371 * @skb: buffer 6372 * 6373 * Can be used to save memory before skb is added to a busy queue. 6374 * If packet has bytes in frags and enough tail room in skb->head, 6375 * pull all of them, so that we can free the frags right now and adjust 6376 * truesize. 6377 * Notes: 6378 * We do not reallocate skb->head thus can not fail. 6379 * Caller must re-evaluate skb->truesize if needed. 6380 */ 6381 void skb_condense(struct sk_buff *skb) 6382 { 6383 if (skb->data_len) { 6384 if (skb->data_len > skb->end - skb->tail || 6385 skb_cloned(skb)) 6386 return; 6387 6388 /* Nice, we can free page frag(s) right now */ 6389 __pskb_pull_tail(skb, skb->data_len); 6390 } 6391 /* At this point, skb->truesize might be over estimated, 6392 * because skb had a fragment, and fragments do not tell 6393 * their truesize. 6394 * When we pulled its content into skb->head, fragment 6395 * was freed, but __pskb_pull_tail() could not possibly 6396 * adjust skb->truesize, not knowing the frag truesize. 6397 */ 6398 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6399 } 6400 6401 #ifdef CONFIG_SKB_EXTENSIONS 6402 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6403 { 6404 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6405 } 6406 6407 /** 6408 * __skb_ext_alloc - allocate a new skb extensions storage 6409 * 6410 * @flags: See kmalloc(). 6411 * 6412 * Returns the newly allocated pointer. The pointer can later attached to a 6413 * skb via __skb_ext_set(). 6414 * Note: caller must handle the skb_ext as an opaque data. 6415 */ 6416 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6417 { 6418 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6419 6420 if (new) { 6421 memset(new->offset, 0, sizeof(new->offset)); 6422 refcount_set(&new->refcnt, 1); 6423 } 6424 6425 return new; 6426 } 6427 6428 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6429 unsigned int old_active) 6430 { 6431 struct skb_ext *new; 6432 6433 if (refcount_read(&old->refcnt) == 1) 6434 return old; 6435 6436 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6437 if (!new) 6438 return NULL; 6439 6440 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6441 refcount_set(&new->refcnt, 1); 6442 6443 #ifdef CONFIG_XFRM 6444 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6445 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6446 unsigned int i; 6447 6448 for (i = 0; i < sp->len; i++) 6449 xfrm_state_hold(sp->xvec[i]); 6450 } 6451 #endif 6452 __skb_ext_put(old); 6453 return new; 6454 } 6455 6456 /** 6457 * __skb_ext_set - attach the specified extension storage to this skb 6458 * @skb: buffer 6459 * @id: extension id 6460 * @ext: extension storage previously allocated via __skb_ext_alloc() 6461 * 6462 * Existing extensions, if any, are cleared. 6463 * 6464 * Returns the pointer to the extension. 6465 */ 6466 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6467 struct skb_ext *ext) 6468 { 6469 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6470 6471 skb_ext_put(skb); 6472 newlen = newoff + skb_ext_type_len[id]; 6473 ext->chunks = newlen; 6474 ext->offset[id] = newoff; 6475 skb->extensions = ext; 6476 skb->active_extensions = 1 << id; 6477 return skb_ext_get_ptr(ext, id); 6478 } 6479 6480 /** 6481 * skb_ext_add - allocate space for given extension, COW if needed 6482 * @skb: buffer 6483 * @id: extension to allocate space for 6484 * 6485 * Allocates enough space for the given extension. 6486 * If the extension is already present, a pointer to that extension 6487 * is returned. 6488 * 6489 * If the skb was cloned, COW applies and the returned memory can be 6490 * modified without changing the extension space of clones buffers. 6491 * 6492 * Returns pointer to the extension or NULL on allocation failure. 6493 */ 6494 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6495 { 6496 struct skb_ext *new, *old = NULL; 6497 unsigned int newlen, newoff; 6498 6499 if (skb->active_extensions) { 6500 old = skb->extensions; 6501 6502 new = skb_ext_maybe_cow(old, skb->active_extensions); 6503 if (!new) 6504 return NULL; 6505 6506 if (__skb_ext_exist(new, id)) 6507 goto set_active; 6508 6509 newoff = new->chunks; 6510 } else { 6511 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6512 6513 new = __skb_ext_alloc(GFP_ATOMIC); 6514 if (!new) 6515 return NULL; 6516 } 6517 6518 newlen = newoff + skb_ext_type_len[id]; 6519 new->chunks = newlen; 6520 new->offset[id] = newoff; 6521 set_active: 6522 skb->slow_gro = 1; 6523 skb->extensions = new; 6524 skb->active_extensions |= 1 << id; 6525 return skb_ext_get_ptr(new, id); 6526 } 6527 EXPORT_SYMBOL(skb_ext_add); 6528 6529 #ifdef CONFIG_XFRM 6530 static void skb_ext_put_sp(struct sec_path *sp) 6531 { 6532 unsigned int i; 6533 6534 for (i = 0; i < sp->len; i++) 6535 xfrm_state_put(sp->xvec[i]); 6536 } 6537 #endif 6538 6539 #ifdef CONFIG_MCTP_FLOWS 6540 static void skb_ext_put_mctp(struct mctp_flow *flow) 6541 { 6542 if (flow->key) 6543 mctp_key_unref(flow->key); 6544 } 6545 #endif 6546 6547 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6548 { 6549 struct skb_ext *ext = skb->extensions; 6550 6551 skb->active_extensions &= ~(1 << id); 6552 if (skb->active_extensions == 0) { 6553 skb->extensions = NULL; 6554 __skb_ext_put(ext); 6555 #ifdef CONFIG_XFRM 6556 } else if (id == SKB_EXT_SEC_PATH && 6557 refcount_read(&ext->refcnt) == 1) { 6558 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6559 6560 skb_ext_put_sp(sp); 6561 sp->len = 0; 6562 #endif 6563 } 6564 } 6565 EXPORT_SYMBOL(__skb_ext_del); 6566 6567 void __skb_ext_put(struct skb_ext *ext) 6568 { 6569 /* If this is last clone, nothing can increment 6570 * it after check passes. Avoids one atomic op. 6571 */ 6572 if (refcount_read(&ext->refcnt) == 1) 6573 goto free_now; 6574 6575 if (!refcount_dec_and_test(&ext->refcnt)) 6576 return; 6577 free_now: 6578 #ifdef CONFIG_XFRM 6579 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6580 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6581 #endif 6582 #ifdef CONFIG_MCTP_FLOWS 6583 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6584 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6585 #endif 6586 6587 kmem_cache_free(skbuff_ext_cache, ext); 6588 } 6589 EXPORT_SYMBOL(__skb_ext_put); 6590 #endif /* CONFIG_SKB_EXTENSIONS */ 6591