1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/config.h> 42 #include <linux/module.h> 43 #include <linux/types.h> 44 #include <linux/kernel.h> 45 #include <linux/sched.h> 46 #include <linux/mm.h> 47 #include <linux/interrupt.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/slab.h> 51 #include <linux/netdevice.h> 52 #ifdef CONFIG_NET_CLS_ACT 53 #include <net/pkt_sched.h> 54 #endif 55 #include <linux/string.h> 56 #include <linux/skbuff.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/highmem.h> 61 62 #include <net/protocol.h> 63 #include <net/dst.h> 64 #include <net/sock.h> 65 #include <net/checksum.h> 66 #include <net/xfrm.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/system.h> 70 71 static kmem_cache_t *skbuff_head_cache __read_mostly; 72 static kmem_cache_t *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%p end:%p dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 93 skb->dev ? skb->dev->name : "<NULL>"); 94 BUG(); 95 } 96 97 /** 98 * skb_under_panic - private function 99 * @skb: buffer 100 * @sz: size 101 * @here: address 102 * 103 * Out of line support code for skb_push(). Not user callable. 104 */ 105 106 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 107 { 108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 109 "data:%p tail:%p end:%p dev:%s\n", 110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 111 skb->dev ? skb->dev->name : "<NULL>"); 112 BUG(); 113 } 114 115 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 116 * 'private' fields and also do memory statistics to find all the 117 * [BEEP] leaks. 118 * 119 */ 120 121 /** 122 * __alloc_skb - allocate a network buffer 123 * @size: size to allocate 124 * @gfp_mask: allocation mask 125 * @fclone: allocate from fclone cache instead of head cache 126 * and allocate a cloned (child) skb 127 * 128 * Allocate a new &sk_buff. The returned buffer has no headroom and a 129 * tail room of size bytes. The object has a reference count of one. 130 * The return is the buffer. On a failure the return is %NULL. 131 * 132 * Buffers may only be allocated from interrupts using a @gfp_mask of 133 * %GFP_ATOMIC. 134 */ 135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 136 int fclone) 137 { 138 kmem_cache_t *cache; 139 struct skb_shared_info *shinfo; 140 struct sk_buff *skb; 141 u8 *data; 142 143 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 144 145 /* Get the HEAD */ 146 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA); 147 if (!skb) 148 goto out; 149 150 /* Get the DATA. Size must match skb_add_mtu(). */ 151 size = SKB_DATA_ALIGN(size); 152 data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 153 if (!data) 154 goto nodata; 155 156 memset(skb, 0, offsetof(struct sk_buff, truesize)); 157 skb->truesize = size + sizeof(struct sk_buff); 158 atomic_set(&skb->users, 1); 159 skb->head = data; 160 skb->data = data; 161 skb->tail = data; 162 skb->end = data + size; 163 /* make sure we initialize shinfo sequentially */ 164 shinfo = skb_shinfo(skb); 165 atomic_set(&shinfo->dataref, 1); 166 shinfo->nr_frags = 0; 167 shinfo->tso_size = 0; 168 shinfo->tso_segs = 0; 169 shinfo->ufo_size = 0; 170 shinfo->ip6_frag_id = 0; 171 shinfo->frag_list = NULL; 172 173 if (fclone) { 174 struct sk_buff *child = skb + 1; 175 atomic_t *fclone_ref = (atomic_t *) (child + 1); 176 177 skb->fclone = SKB_FCLONE_ORIG; 178 atomic_set(fclone_ref, 1); 179 180 child->fclone = SKB_FCLONE_UNAVAILABLE; 181 } 182 out: 183 return skb; 184 nodata: 185 kmem_cache_free(cache, skb); 186 skb = NULL; 187 goto out; 188 } 189 190 /** 191 * alloc_skb_from_cache - allocate a network buffer 192 * @cp: kmem_cache from which to allocate the data area 193 * (object size must be big enough for @size bytes + skb overheads) 194 * @size: size to allocate 195 * @gfp_mask: allocation mask 196 * 197 * Allocate a new &sk_buff. The returned buffer has no headroom and 198 * tail room of size bytes. The object has a reference count of one. 199 * The return is the buffer. On a failure the return is %NULL. 200 * 201 * Buffers may only be allocated from interrupts using a @gfp_mask of 202 * %GFP_ATOMIC. 203 */ 204 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 205 unsigned int size, 206 gfp_t gfp_mask) 207 { 208 struct sk_buff *skb; 209 u8 *data; 210 211 /* Get the HEAD */ 212 skb = kmem_cache_alloc(skbuff_head_cache, 213 gfp_mask & ~__GFP_DMA); 214 if (!skb) 215 goto out; 216 217 /* Get the DATA. */ 218 size = SKB_DATA_ALIGN(size); 219 data = kmem_cache_alloc(cp, gfp_mask); 220 if (!data) 221 goto nodata; 222 223 memset(skb, 0, offsetof(struct sk_buff, truesize)); 224 skb->truesize = size + sizeof(struct sk_buff); 225 atomic_set(&skb->users, 1); 226 skb->head = data; 227 skb->data = data; 228 skb->tail = data; 229 skb->end = data + size; 230 231 atomic_set(&(skb_shinfo(skb)->dataref), 1); 232 skb_shinfo(skb)->nr_frags = 0; 233 skb_shinfo(skb)->tso_size = 0; 234 skb_shinfo(skb)->tso_segs = 0; 235 skb_shinfo(skb)->frag_list = NULL; 236 out: 237 return skb; 238 nodata: 239 kmem_cache_free(skbuff_head_cache, skb); 240 skb = NULL; 241 goto out; 242 } 243 244 245 static void skb_drop_fraglist(struct sk_buff *skb) 246 { 247 struct sk_buff *list = skb_shinfo(skb)->frag_list; 248 249 skb_shinfo(skb)->frag_list = NULL; 250 251 do { 252 struct sk_buff *this = list; 253 list = list->next; 254 kfree_skb(this); 255 } while (list); 256 } 257 258 static void skb_clone_fraglist(struct sk_buff *skb) 259 { 260 struct sk_buff *list; 261 262 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 263 skb_get(list); 264 } 265 266 void skb_release_data(struct sk_buff *skb) 267 { 268 if (!skb->cloned || 269 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 270 &skb_shinfo(skb)->dataref)) { 271 if (skb_shinfo(skb)->nr_frags) { 272 int i; 273 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 274 put_page(skb_shinfo(skb)->frags[i].page); 275 } 276 277 if (skb_shinfo(skb)->frag_list) 278 skb_drop_fraglist(skb); 279 280 kfree(skb->head); 281 } 282 } 283 284 /* 285 * Free an skbuff by memory without cleaning the state. 286 */ 287 void kfree_skbmem(struct sk_buff *skb) 288 { 289 struct sk_buff *other; 290 atomic_t *fclone_ref; 291 292 skb_release_data(skb); 293 switch (skb->fclone) { 294 case SKB_FCLONE_UNAVAILABLE: 295 kmem_cache_free(skbuff_head_cache, skb); 296 break; 297 298 case SKB_FCLONE_ORIG: 299 fclone_ref = (atomic_t *) (skb + 2); 300 if (atomic_dec_and_test(fclone_ref)) 301 kmem_cache_free(skbuff_fclone_cache, skb); 302 break; 303 304 case SKB_FCLONE_CLONE: 305 fclone_ref = (atomic_t *) (skb + 1); 306 other = skb - 1; 307 308 /* The clone portion is available for 309 * fast-cloning again. 310 */ 311 skb->fclone = SKB_FCLONE_UNAVAILABLE; 312 313 if (atomic_dec_and_test(fclone_ref)) 314 kmem_cache_free(skbuff_fclone_cache, other); 315 break; 316 }; 317 } 318 319 /** 320 * __kfree_skb - private function 321 * @skb: buffer 322 * 323 * Free an sk_buff. Release anything attached to the buffer. 324 * Clean the state. This is an internal helper function. Users should 325 * always call kfree_skb 326 */ 327 328 void __kfree_skb(struct sk_buff *skb) 329 { 330 dst_release(skb->dst); 331 #ifdef CONFIG_XFRM 332 secpath_put(skb->sp); 333 #endif 334 if (skb->destructor) { 335 WARN_ON(in_irq()); 336 skb->destructor(skb); 337 } 338 #ifdef CONFIG_NETFILTER 339 nf_conntrack_put(skb->nfct); 340 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 341 nf_conntrack_put_reasm(skb->nfct_reasm); 342 #endif 343 #ifdef CONFIG_BRIDGE_NETFILTER 344 nf_bridge_put(skb->nf_bridge); 345 #endif 346 #endif 347 /* XXX: IS this still necessary? - JHS */ 348 #ifdef CONFIG_NET_SCHED 349 skb->tc_index = 0; 350 #ifdef CONFIG_NET_CLS_ACT 351 skb->tc_verd = 0; 352 #endif 353 #endif 354 355 kfree_skbmem(skb); 356 } 357 358 /** 359 * kfree_skb - free an sk_buff 360 * @skb: buffer to free 361 * 362 * Drop a reference to the buffer and free it if the usage count has 363 * hit zero. 364 */ 365 void kfree_skb(struct sk_buff *skb) 366 { 367 if (unlikely(!skb)) 368 return; 369 if (likely(atomic_read(&skb->users) == 1)) 370 smp_rmb(); 371 else if (likely(!atomic_dec_and_test(&skb->users))) 372 return; 373 __kfree_skb(skb); 374 } 375 376 /** 377 * skb_clone - duplicate an sk_buff 378 * @skb: buffer to clone 379 * @gfp_mask: allocation priority 380 * 381 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 382 * copies share the same packet data but not structure. The new 383 * buffer has a reference count of 1. If the allocation fails the 384 * function returns %NULL otherwise the new buffer is returned. 385 * 386 * If this function is called from an interrupt gfp_mask() must be 387 * %GFP_ATOMIC. 388 */ 389 390 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 391 { 392 struct sk_buff *n; 393 394 n = skb + 1; 395 if (skb->fclone == SKB_FCLONE_ORIG && 396 n->fclone == SKB_FCLONE_UNAVAILABLE) { 397 atomic_t *fclone_ref = (atomic_t *) (n + 1); 398 n->fclone = SKB_FCLONE_CLONE; 399 atomic_inc(fclone_ref); 400 } else { 401 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 402 if (!n) 403 return NULL; 404 n->fclone = SKB_FCLONE_UNAVAILABLE; 405 } 406 407 #define C(x) n->x = skb->x 408 409 n->next = n->prev = NULL; 410 n->sk = NULL; 411 C(tstamp); 412 C(dev); 413 C(h); 414 C(nh); 415 C(mac); 416 C(dst); 417 dst_clone(skb->dst); 418 C(sp); 419 #ifdef CONFIG_INET 420 secpath_get(skb->sp); 421 #endif 422 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 423 C(len); 424 C(data_len); 425 C(csum); 426 C(local_df); 427 n->cloned = 1; 428 n->nohdr = 0; 429 C(pkt_type); 430 C(ip_summed); 431 C(priority); 432 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 433 C(ipvs_property); 434 #endif 435 C(protocol); 436 n->destructor = NULL; 437 #ifdef CONFIG_NETFILTER 438 C(nfmark); 439 C(nfct); 440 nf_conntrack_get(skb->nfct); 441 C(nfctinfo); 442 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 443 C(nfct_reasm); 444 nf_conntrack_get_reasm(skb->nfct_reasm); 445 #endif 446 #ifdef CONFIG_BRIDGE_NETFILTER 447 C(nf_bridge); 448 nf_bridge_get(skb->nf_bridge); 449 #endif 450 #endif /*CONFIG_NETFILTER*/ 451 #ifdef CONFIG_NET_SCHED 452 C(tc_index); 453 #ifdef CONFIG_NET_CLS_ACT 454 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 455 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 456 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 457 C(input_dev); 458 #endif 459 460 #endif 461 C(truesize); 462 atomic_set(&n->users, 1); 463 C(head); 464 C(data); 465 C(tail); 466 C(end); 467 468 atomic_inc(&(skb_shinfo(skb)->dataref)); 469 skb->cloned = 1; 470 471 return n; 472 } 473 474 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 475 { 476 /* 477 * Shift between the two data areas in bytes 478 */ 479 unsigned long offset = new->data - old->data; 480 481 new->sk = NULL; 482 new->dev = old->dev; 483 new->priority = old->priority; 484 new->protocol = old->protocol; 485 new->dst = dst_clone(old->dst); 486 #ifdef CONFIG_INET 487 new->sp = secpath_get(old->sp); 488 #endif 489 new->h.raw = old->h.raw + offset; 490 new->nh.raw = old->nh.raw + offset; 491 new->mac.raw = old->mac.raw + offset; 492 memcpy(new->cb, old->cb, sizeof(old->cb)); 493 new->local_df = old->local_df; 494 new->fclone = SKB_FCLONE_UNAVAILABLE; 495 new->pkt_type = old->pkt_type; 496 new->tstamp = old->tstamp; 497 new->destructor = NULL; 498 #ifdef CONFIG_NETFILTER 499 new->nfmark = old->nfmark; 500 new->nfct = old->nfct; 501 nf_conntrack_get(old->nfct); 502 new->nfctinfo = old->nfctinfo; 503 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 504 new->nfct_reasm = old->nfct_reasm; 505 nf_conntrack_get_reasm(old->nfct_reasm); 506 #endif 507 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 508 new->ipvs_property = old->ipvs_property; 509 #endif 510 #ifdef CONFIG_BRIDGE_NETFILTER 511 new->nf_bridge = old->nf_bridge; 512 nf_bridge_get(old->nf_bridge); 513 #endif 514 #endif 515 #ifdef CONFIG_NET_SCHED 516 #ifdef CONFIG_NET_CLS_ACT 517 new->tc_verd = old->tc_verd; 518 #endif 519 new->tc_index = old->tc_index; 520 #endif 521 atomic_set(&new->users, 1); 522 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size; 523 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs; 524 } 525 526 /** 527 * skb_copy - create private copy of an sk_buff 528 * @skb: buffer to copy 529 * @gfp_mask: allocation priority 530 * 531 * Make a copy of both an &sk_buff and its data. This is used when the 532 * caller wishes to modify the data and needs a private copy of the 533 * data to alter. Returns %NULL on failure or the pointer to the buffer 534 * on success. The returned buffer has a reference count of 1. 535 * 536 * As by-product this function converts non-linear &sk_buff to linear 537 * one, so that &sk_buff becomes completely private and caller is allowed 538 * to modify all the data of returned buffer. This means that this 539 * function is not recommended for use in circumstances when only 540 * header is going to be modified. Use pskb_copy() instead. 541 */ 542 543 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 544 { 545 int headerlen = skb->data - skb->head; 546 /* 547 * Allocate the copy buffer 548 */ 549 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 550 gfp_mask); 551 if (!n) 552 return NULL; 553 554 /* Set the data pointer */ 555 skb_reserve(n, headerlen); 556 /* Set the tail pointer and length */ 557 skb_put(n, skb->len); 558 n->csum = skb->csum; 559 n->ip_summed = skb->ip_summed; 560 561 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 562 BUG(); 563 564 copy_skb_header(n, skb); 565 return n; 566 } 567 568 569 /** 570 * pskb_copy - create copy of an sk_buff with private head. 571 * @skb: buffer to copy 572 * @gfp_mask: allocation priority 573 * 574 * Make a copy of both an &sk_buff and part of its data, located 575 * in header. Fragmented data remain shared. This is used when 576 * the caller wishes to modify only header of &sk_buff and needs 577 * private copy of the header to alter. Returns %NULL on failure 578 * or the pointer to the buffer on success. 579 * The returned buffer has a reference count of 1. 580 */ 581 582 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 583 { 584 /* 585 * Allocate the copy buffer 586 */ 587 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 588 589 if (!n) 590 goto out; 591 592 /* Set the data pointer */ 593 skb_reserve(n, skb->data - skb->head); 594 /* Set the tail pointer and length */ 595 skb_put(n, skb_headlen(skb)); 596 /* Copy the bytes */ 597 memcpy(n->data, skb->data, n->len); 598 n->csum = skb->csum; 599 n->ip_summed = skb->ip_summed; 600 601 n->data_len = skb->data_len; 602 n->len = skb->len; 603 604 if (skb_shinfo(skb)->nr_frags) { 605 int i; 606 607 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 608 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 609 get_page(skb_shinfo(n)->frags[i].page); 610 } 611 skb_shinfo(n)->nr_frags = i; 612 } 613 614 if (skb_shinfo(skb)->frag_list) { 615 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 616 skb_clone_fraglist(n); 617 } 618 619 copy_skb_header(n, skb); 620 out: 621 return n; 622 } 623 624 /** 625 * pskb_expand_head - reallocate header of &sk_buff 626 * @skb: buffer to reallocate 627 * @nhead: room to add at head 628 * @ntail: room to add at tail 629 * @gfp_mask: allocation priority 630 * 631 * Expands (or creates identical copy, if &nhead and &ntail are zero) 632 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 633 * reference count of 1. Returns zero in the case of success or error, 634 * if expansion failed. In the last case, &sk_buff is not changed. 635 * 636 * All the pointers pointing into skb header may change and must be 637 * reloaded after call to this function. 638 */ 639 640 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 641 gfp_t gfp_mask) 642 { 643 int i; 644 u8 *data; 645 int size = nhead + (skb->end - skb->head) + ntail; 646 long off; 647 648 if (skb_shared(skb)) 649 BUG(); 650 651 size = SKB_DATA_ALIGN(size); 652 653 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 654 if (!data) 655 goto nodata; 656 657 /* Copy only real data... and, alas, header. This should be 658 * optimized for the cases when header is void. */ 659 memcpy(data + nhead, skb->head, skb->tail - skb->head); 660 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 661 662 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 663 get_page(skb_shinfo(skb)->frags[i].page); 664 665 if (skb_shinfo(skb)->frag_list) 666 skb_clone_fraglist(skb); 667 668 skb_release_data(skb); 669 670 off = (data + nhead) - skb->head; 671 672 skb->head = data; 673 skb->end = data + size; 674 skb->data += off; 675 skb->tail += off; 676 skb->mac.raw += off; 677 skb->h.raw += off; 678 skb->nh.raw += off; 679 skb->cloned = 0; 680 skb->nohdr = 0; 681 atomic_set(&skb_shinfo(skb)->dataref, 1); 682 return 0; 683 684 nodata: 685 return -ENOMEM; 686 } 687 688 /* Make private copy of skb with writable head and some headroom */ 689 690 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 691 { 692 struct sk_buff *skb2; 693 int delta = headroom - skb_headroom(skb); 694 695 if (delta <= 0) 696 skb2 = pskb_copy(skb, GFP_ATOMIC); 697 else { 698 skb2 = skb_clone(skb, GFP_ATOMIC); 699 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 700 GFP_ATOMIC)) { 701 kfree_skb(skb2); 702 skb2 = NULL; 703 } 704 } 705 return skb2; 706 } 707 708 709 /** 710 * skb_copy_expand - copy and expand sk_buff 711 * @skb: buffer to copy 712 * @newheadroom: new free bytes at head 713 * @newtailroom: new free bytes at tail 714 * @gfp_mask: allocation priority 715 * 716 * Make a copy of both an &sk_buff and its data and while doing so 717 * allocate additional space. 718 * 719 * This is used when the caller wishes to modify the data and needs a 720 * private copy of the data to alter as well as more space for new fields. 721 * Returns %NULL on failure or the pointer to the buffer 722 * on success. The returned buffer has a reference count of 1. 723 * 724 * You must pass %GFP_ATOMIC as the allocation priority if this function 725 * is called from an interrupt. 726 * 727 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 728 * only by netfilter in the cases when checksum is recalculated? --ANK 729 */ 730 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 731 int newheadroom, int newtailroom, 732 gfp_t gfp_mask) 733 { 734 /* 735 * Allocate the copy buffer 736 */ 737 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 738 gfp_mask); 739 int head_copy_len, head_copy_off; 740 741 if (!n) 742 return NULL; 743 744 skb_reserve(n, newheadroom); 745 746 /* Set the tail pointer and length */ 747 skb_put(n, skb->len); 748 749 head_copy_len = skb_headroom(skb); 750 head_copy_off = 0; 751 if (newheadroom <= head_copy_len) 752 head_copy_len = newheadroom; 753 else 754 head_copy_off = newheadroom - head_copy_len; 755 756 /* Copy the linear header and data. */ 757 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 758 skb->len + head_copy_len)) 759 BUG(); 760 761 copy_skb_header(n, skb); 762 763 return n; 764 } 765 766 /** 767 * skb_pad - zero pad the tail of an skb 768 * @skb: buffer to pad 769 * @pad: space to pad 770 * 771 * Ensure that a buffer is followed by a padding area that is zero 772 * filled. Used by network drivers which may DMA or transfer data 773 * beyond the buffer end onto the wire. 774 * 775 * May return NULL in out of memory cases. 776 */ 777 778 struct sk_buff *skb_pad(struct sk_buff *skb, int pad) 779 { 780 struct sk_buff *nskb; 781 782 /* If the skbuff is non linear tailroom is always zero.. */ 783 if (skb_tailroom(skb) >= pad) { 784 memset(skb->data+skb->len, 0, pad); 785 return skb; 786 } 787 788 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC); 789 kfree_skb(skb); 790 if (nskb) 791 memset(nskb->data+nskb->len, 0, pad); 792 return nskb; 793 } 794 795 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1. 796 * If realloc==0 and trimming is impossible without change of data, 797 * it is BUG(). 798 */ 799 800 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc) 801 { 802 int offset = skb_headlen(skb); 803 int nfrags = skb_shinfo(skb)->nr_frags; 804 int i; 805 806 for (i = 0; i < nfrags; i++) { 807 int end = offset + skb_shinfo(skb)->frags[i].size; 808 if (end > len) { 809 if (skb_cloned(skb)) { 810 BUG_ON(!realloc); 811 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 812 return -ENOMEM; 813 } 814 if (len <= offset) { 815 put_page(skb_shinfo(skb)->frags[i].page); 816 skb_shinfo(skb)->nr_frags--; 817 } else { 818 skb_shinfo(skb)->frags[i].size = len - offset; 819 } 820 } 821 offset = end; 822 } 823 824 if (offset < len) { 825 skb->data_len -= skb->len - len; 826 skb->len = len; 827 } else { 828 if (len <= skb_headlen(skb)) { 829 skb->len = len; 830 skb->data_len = 0; 831 skb->tail = skb->data + len; 832 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb)) 833 skb_drop_fraglist(skb); 834 } else { 835 skb->data_len -= skb->len - len; 836 skb->len = len; 837 } 838 } 839 840 return 0; 841 } 842 843 /** 844 * __pskb_pull_tail - advance tail of skb header 845 * @skb: buffer to reallocate 846 * @delta: number of bytes to advance tail 847 * 848 * The function makes a sense only on a fragmented &sk_buff, 849 * it expands header moving its tail forward and copying necessary 850 * data from fragmented part. 851 * 852 * &sk_buff MUST have reference count of 1. 853 * 854 * Returns %NULL (and &sk_buff does not change) if pull failed 855 * or value of new tail of skb in the case of success. 856 * 857 * All the pointers pointing into skb header may change and must be 858 * reloaded after call to this function. 859 */ 860 861 /* Moves tail of skb head forward, copying data from fragmented part, 862 * when it is necessary. 863 * 1. It may fail due to malloc failure. 864 * 2. It may change skb pointers. 865 * 866 * It is pretty complicated. Luckily, it is called only in exceptional cases. 867 */ 868 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 869 { 870 /* If skb has not enough free space at tail, get new one 871 * plus 128 bytes for future expansions. If we have enough 872 * room at tail, reallocate without expansion only if skb is cloned. 873 */ 874 int i, k, eat = (skb->tail + delta) - skb->end; 875 876 if (eat > 0 || skb_cloned(skb)) { 877 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 878 GFP_ATOMIC)) 879 return NULL; 880 } 881 882 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 883 BUG(); 884 885 /* Optimization: no fragments, no reasons to preestimate 886 * size of pulled pages. Superb. 887 */ 888 if (!skb_shinfo(skb)->frag_list) 889 goto pull_pages; 890 891 /* Estimate size of pulled pages. */ 892 eat = delta; 893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 894 if (skb_shinfo(skb)->frags[i].size >= eat) 895 goto pull_pages; 896 eat -= skb_shinfo(skb)->frags[i].size; 897 } 898 899 /* If we need update frag list, we are in troubles. 900 * Certainly, it possible to add an offset to skb data, 901 * but taking into account that pulling is expected to 902 * be very rare operation, it is worth to fight against 903 * further bloating skb head and crucify ourselves here instead. 904 * Pure masohism, indeed. 8)8) 905 */ 906 if (eat) { 907 struct sk_buff *list = skb_shinfo(skb)->frag_list; 908 struct sk_buff *clone = NULL; 909 struct sk_buff *insp = NULL; 910 911 do { 912 BUG_ON(!list); 913 914 if (list->len <= eat) { 915 /* Eaten as whole. */ 916 eat -= list->len; 917 list = list->next; 918 insp = list; 919 } else { 920 /* Eaten partially. */ 921 922 if (skb_shared(list)) { 923 /* Sucks! We need to fork list. :-( */ 924 clone = skb_clone(list, GFP_ATOMIC); 925 if (!clone) 926 return NULL; 927 insp = list->next; 928 list = clone; 929 } else { 930 /* This may be pulled without 931 * problems. */ 932 insp = list; 933 } 934 if (!pskb_pull(list, eat)) { 935 if (clone) 936 kfree_skb(clone); 937 return NULL; 938 } 939 break; 940 } 941 } while (eat); 942 943 /* Free pulled out fragments. */ 944 while ((list = skb_shinfo(skb)->frag_list) != insp) { 945 skb_shinfo(skb)->frag_list = list->next; 946 kfree_skb(list); 947 } 948 /* And insert new clone at head. */ 949 if (clone) { 950 clone->next = list; 951 skb_shinfo(skb)->frag_list = clone; 952 } 953 } 954 /* Success! Now we may commit changes to skb data. */ 955 956 pull_pages: 957 eat = delta; 958 k = 0; 959 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 960 if (skb_shinfo(skb)->frags[i].size <= eat) { 961 put_page(skb_shinfo(skb)->frags[i].page); 962 eat -= skb_shinfo(skb)->frags[i].size; 963 } else { 964 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 965 if (eat) { 966 skb_shinfo(skb)->frags[k].page_offset += eat; 967 skb_shinfo(skb)->frags[k].size -= eat; 968 eat = 0; 969 } 970 k++; 971 } 972 } 973 skb_shinfo(skb)->nr_frags = k; 974 975 skb->tail += delta; 976 skb->data_len -= delta; 977 978 return skb->tail; 979 } 980 981 /* Copy some data bits from skb to kernel buffer. */ 982 983 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 984 { 985 int i, copy; 986 int start = skb_headlen(skb); 987 988 if (offset > (int)skb->len - len) 989 goto fault; 990 991 /* Copy header. */ 992 if ((copy = start - offset) > 0) { 993 if (copy > len) 994 copy = len; 995 memcpy(to, skb->data + offset, copy); 996 if ((len -= copy) == 0) 997 return 0; 998 offset += copy; 999 to += copy; 1000 } 1001 1002 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1003 int end; 1004 1005 BUG_TRAP(start <= offset + len); 1006 1007 end = start + skb_shinfo(skb)->frags[i].size; 1008 if ((copy = end - offset) > 0) { 1009 u8 *vaddr; 1010 1011 if (copy > len) 1012 copy = len; 1013 1014 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1015 memcpy(to, 1016 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1017 offset - start, copy); 1018 kunmap_skb_frag(vaddr); 1019 1020 if ((len -= copy) == 0) 1021 return 0; 1022 offset += copy; 1023 to += copy; 1024 } 1025 start = end; 1026 } 1027 1028 if (skb_shinfo(skb)->frag_list) { 1029 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1030 1031 for (; list; list = list->next) { 1032 int end; 1033 1034 BUG_TRAP(start <= offset + len); 1035 1036 end = start + list->len; 1037 if ((copy = end - offset) > 0) { 1038 if (copy > len) 1039 copy = len; 1040 if (skb_copy_bits(list, offset - start, 1041 to, copy)) 1042 goto fault; 1043 if ((len -= copy) == 0) 1044 return 0; 1045 offset += copy; 1046 to += copy; 1047 } 1048 start = end; 1049 } 1050 } 1051 if (!len) 1052 return 0; 1053 1054 fault: 1055 return -EFAULT; 1056 } 1057 1058 /** 1059 * skb_store_bits - store bits from kernel buffer to skb 1060 * @skb: destination buffer 1061 * @offset: offset in destination 1062 * @from: source buffer 1063 * @len: number of bytes to copy 1064 * 1065 * Copy the specified number of bytes from the source buffer to the 1066 * destination skb. This function handles all the messy bits of 1067 * traversing fragment lists and such. 1068 */ 1069 1070 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1071 { 1072 int i, copy; 1073 int start = skb_headlen(skb); 1074 1075 if (offset > (int)skb->len - len) 1076 goto fault; 1077 1078 if ((copy = start - offset) > 0) { 1079 if (copy > len) 1080 copy = len; 1081 memcpy(skb->data + offset, from, copy); 1082 if ((len -= copy) == 0) 1083 return 0; 1084 offset += copy; 1085 from += copy; 1086 } 1087 1088 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1089 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1090 int end; 1091 1092 BUG_TRAP(start <= offset + len); 1093 1094 end = start + frag->size; 1095 if ((copy = end - offset) > 0) { 1096 u8 *vaddr; 1097 1098 if (copy > len) 1099 copy = len; 1100 1101 vaddr = kmap_skb_frag(frag); 1102 memcpy(vaddr + frag->page_offset + offset - start, 1103 from, copy); 1104 kunmap_skb_frag(vaddr); 1105 1106 if ((len -= copy) == 0) 1107 return 0; 1108 offset += copy; 1109 from += copy; 1110 } 1111 start = end; 1112 } 1113 1114 if (skb_shinfo(skb)->frag_list) { 1115 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1116 1117 for (; list; list = list->next) { 1118 int end; 1119 1120 BUG_TRAP(start <= offset + len); 1121 1122 end = start + list->len; 1123 if ((copy = end - offset) > 0) { 1124 if (copy > len) 1125 copy = len; 1126 if (skb_store_bits(list, offset - start, 1127 from, copy)) 1128 goto fault; 1129 if ((len -= copy) == 0) 1130 return 0; 1131 offset += copy; 1132 from += copy; 1133 } 1134 start = end; 1135 } 1136 } 1137 if (!len) 1138 return 0; 1139 1140 fault: 1141 return -EFAULT; 1142 } 1143 1144 EXPORT_SYMBOL(skb_store_bits); 1145 1146 /* Checksum skb data. */ 1147 1148 unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1149 int len, unsigned int csum) 1150 { 1151 int start = skb_headlen(skb); 1152 int i, copy = start - offset; 1153 int pos = 0; 1154 1155 /* Checksum header. */ 1156 if (copy > 0) { 1157 if (copy > len) 1158 copy = len; 1159 csum = csum_partial(skb->data + offset, copy, csum); 1160 if ((len -= copy) == 0) 1161 return csum; 1162 offset += copy; 1163 pos = copy; 1164 } 1165 1166 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1167 int end; 1168 1169 BUG_TRAP(start <= offset + len); 1170 1171 end = start + skb_shinfo(skb)->frags[i].size; 1172 if ((copy = end - offset) > 0) { 1173 unsigned int csum2; 1174 u8 *vaddr; 1175 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1176 1177 if (copy > len) 1178 copy = len; 1179 vaddr = kmap_skb_frag(frag); 1180 csum2 = csum_partial(vaddr + frag->page_offset + 1181 offset - start, copy, 0); 1182 kunmap_skb_frag(vaddr); 1183 csum = csum_block_add(csum, csum2, pos); 1184 if (!(len -= copy)) 1185 return csum; 1186 offset += copy; 1187 pos += copy; 1188 } 1189 start = end; 1190 } 1191 1192 if (skb_shinfo(skb)->frag_list) { 1193 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1194 1195 for (; list; list = list->next) { 1196 int end; 1197 1198 BUG_TRAP(start <= offset + len); 1199 1200 end = start + list->len; 1201 if ((copy = end - offset) > 0) { 1202 unsigned int csum2; 1203 if (copy > len) 1204 copy = len; 1205 csum2 = skb_checksum(list, offset - start, 1206 copy, 0); 1207 csum = csum_block_add(csum, csum2, pos); 1208 if ((len -= copy) == 0) 1209 return csum; 1210 offset += copy; 1211 pos += copy; 1212 } 1213 start = end; 1214 } 1215 } 1216 BUG_ON(len); 1217 1218 return csum; 1219 } 1220 1221 /* Both of above in one bottle. */ 1222 1223 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1224 u8 *to, int len, unsigned int csum) 1225 { 1226 int start = skb_headlen(skb); 1227 int i, copy = start - offset; 1228 int pos = 0; 1229 1230 /* Copy header. */ 1231 if (copy > 0) { 1232 if (copy > len) 1233 copy = len; 1234 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1235 copy, csum); 1236 if ((len -= copy) == 0) 1237 return csum; 1238 offset += copy; 1239 to += copy; 1240 pos = copy; 1241 } 1242 1243 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1244 int end; 1245 1246 BUG_TRAP(start <= offset + len); 1247 1248 end = start + skb_shinfo(skb)->frags[i].size; 1249 if ((copy = end - offset) > 0) { 1250 unsigned int csum2; 1251 u8 *vaddr; 1252 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1253 1254 if (copy > len) 1255 copy = len; 1256 vaddr = kmap_skb_frag(frag); 1257 csum2 = csum_partial_copy_nocheck(vaddr + 1258 frag->page_offset + 1259 offset - start, to, 1260 copy, 0); 1261 kunmap_skb_frag(vaddr); 1262 csum = csum_block_add(csum, csum2, pos); 1263 if (!(len -= copy)) 1264 return csum; 1265 offset += copy; 1266 to += copy; 1267 pos += copy; 1268 } 1269 start = end; 1270 } 1271 1272 if (skb_shinfo(skb)->frag_list) { 1273 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1274 1275 for (; list; list = list->next) { 1276 unsigned int csum2; 1277 int end; 1278 1279 BUG_TRAP(start <= offset + len); 1280 1281 end = start + list->len; 1282 if ((copy = end - offset) > 0) { 1283 if (copy > len) 1284 copy = len; 1285 csum2 = skb_copy_and_csum_bits(list, 1286 offset - start, 1287 to, copy, 0); 1288 csum = csum_block_add(csum, csum2, pos); 1289 if ((len -= copy) == 0) 1290 return csum; 1291 offset += copy; 1292 to += copy; 1293 pos += copy; 1294 } 1295 start = end; 1296 } 1297 } 1298 BUG_ON(len); 1299 return csum; 1300 } 1301 1302 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1303 { 1304 unsigned int csum; 1305 long csstart; 1306 1307 if (skb->ip_summed == CHECKSUM_HW) 1308 csstart = skb->h.raw - skb->data; 1309 else 1310 csstart = skb_headlen(skb); 1311 1312 BUG_ON(csstart > skb_headlen(skb)); 1313 1314 memcpy(to, skb->data, csstart); 1315 1316 csum = 0; 1317 if (csstart != skb->len) 1318 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1319 skb->len - csstart, 0); 1320 1321 if (skb->ip_summed == CHECKSUM_HW) { 1322 long csstuff = csstart + skb->csum; 1323 1324 *((unsigned short *)(to + csstuff)) = csum_fold(csum); 1325 } 1326 } 1327 1328 /** 1329 * skb_dequeue - remove from the head of the queue 1330 * @list: list to dequeue from 1331 * 1332 * Remove the head of the list. The list lock is taken so the function 1333 * may be used safely with other locking list functions. The head item is 1334 * returned or %NULL if the list is empty. 1335 */ 1336 1337 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1338 { 1339 unsigned long flags; 1340 struct sk_buff *result; 1341 1342 spin_lock_irqsave(&list->lock, flags); 1343 result = __skb_dequeue(list); 1344 spin_unlock_irqrestore(&list->lock, flags); 1345 return result; 1346 } 1347 1348 /** 1349 * skb_dequeue_tail - remove from the tail of the queue 1350 * @list: list to dequeue from 1351 * 1352 * Remove the tail of the list. The list lock is taken so the function 1353 * may be used safely with other locking list functions. The tail item is 1354 * returned or %NULL if the list is empty. 1355 */ 1356 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1357 { 1358 unsigned long flags; 1359 struct sk_buff *result; 1360 1361 spin_lock_irqsave(&list->lock, flags); 1362 result = __skb_dequeue_tail(list); 1363 spin_unlock_irqrestore(&list->lock, flags); 1364 return result; 1365 } 1366 1367 /** 1368 * skb_queue_purge - empty a list 1369 * @list: list to empty 1370 * 1371 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1372 * the list and one reference dropped. This function takes the list 1373 * lock and is atomic with respect to other list locking functions. 1374 */ 1375 void skb_queue_purge(struct sk_buff_head *list) 1376 { 1377 struct sk_buff *skb; 1378 while ((skb = skb_dequeue(list)) != NULL) 1379 kfree_skb(skb); 1380 } 1381 1382 /** 1383 * skb_queue_head - queue a buffer at the list head 1384 * @list: list to use 1385 * @newsk: buffer to queue 1386 * 1387 * Queue a buffer at the start of the list. This function takes the 1388 * list lock and can be used safely with other locking &sk_buff functions 1389 * safely. 1390 * 1391 * A buffer cannot be placed on two lists at the same time. 1392 */ 1393 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1394 { 1395 unsigned long flags; 1396 1397 spin_lock_irqsave(&list->lock, flags); 1398 __skb_queue_head(list, newsk); 1399 spin_unlock_irqrestore(&list->lock, flags); 1400 } 1401 1402 /** 1403 * skb_queue_tail - queue a buffer at the list tail 1404 * @list: list to use 1405 * @newsk: buffer to queue 1406 * 1407 * Queue a buffer at the tail of the list. This function takes the 1408 * list lock and can be used safely with other locking &sk_buff functions 1409 * safely. 1410 * 1411 * A buffer cannot be placed on two lists at the same time. 1412 */ 1413 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1414 { 1415 unsigned long flags; 1416 1417 spin_lock_irqsave(&list->lock, flags); 1418 __skb_queue_tail(list, newsk); 1419 spin_unlock_irqrestore(&list->lock, flags); 1420 } 1421 1422 /** 1423 * skb_unlink - remove a buffer from a list 1424 * @skb: buffer to remove 1425 * @list: list to use 1426 * 1427 * Remove a packet from a list. The list locks are taken and this 1428 * function is atomic with respect to other list locked calls 1429 * 1430 * You must know what list the SKB is on. 1431 */ 1432 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1433 { 1434 unsigned long flags; 1435 1436 spin_lock_irqsave(&list->lock, flags); 1437 __skb_unlink(skb, list); 1438 spin_unlock_irqrestore(&list->lock, flags); 1439 } 1440 1441 /** 1442 * skb_append - append a buffer 1443 * @old: buffer to insert after 1444 * @newsk: buffer to insert 1445 * @list: list to use 1446 * 1447 * Place a packet after a given packet in a list. The list locks are taken 1448 * and this function is atomic with respect to other list locked calls. 1449 * A buffer cannot be placed on two lists at the same time. 1450 */ 1451 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1452 { 1453 unsigned long flags; 1454 1455 spin_lock_irqsave(&list->lock, flags); 1456 __skb_append(old, newsk, list); 1457 spin_unlock_irqrestore(&list->lock, flags); 1458 } 1459 1460 1461 /** 1462 * skb_insert - insert a buffer 1463 * @old: buffer to insert before 1464 * @newsk: buffer to insert 1465 * @list: list to use 1466 * 1467 * Place a packet before a given packet in a list. The list locks are 1468 * taken and this function is atomic with respect to other list locked 1469 * calls. 1470 * 1471 * A buffer cannot be placed on two lists at the same time. 1472 */ 1473 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1474 { 1475 unsigned long flags; 1476 1477 spin_lock_irqsave(&list->lock, flags); 1478 __skb_insert(newsk, old->prev, old, list); 1479 spin_unlock_irqrestore(&list->lock, flags); 1480 } 1481 1482 #if 0 1483 /* 1484 * Tune the memory allocator for a new MTU size. 1485 */ 1486 void skb_add_mtu(int mtu) 1487 { 1488 /* Must match allocation in alloc_skb */ 1489 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1490 1491 kmem_add_cache_size(mtu); 1492 } 1493 #endif 1494 1495 static inline void skb_split_inside_header(struct sk_buff *skb, 1496 struct sk_buff* skb1, 1497 const u32 len, const int pos) 1498 { 1499 int i; 1500 1501 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1502 1503 /* And move data appendix as is. */ 1504 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1505 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1506 1507 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1508 skb_shinfo(skb)->nr_frags = 0; 1509 skb1->data_len = skb->data_len; 1510 skb1->len += skb1->data_len; 1511 skb->data_len = 0; 1512 skb->len = len; 1513 skb->tail = skb->data + len; 1514 } 1515 1516 static inline void skb_split_no_header(struct sk_buff *skb, 1517 struct sk_buff* skb1, 1518 const u32 len, int pos) 1519 { 1520 int i, k = 0; 1521 const int nfrags = skb_shinfo(skb)->nr_frags; 1522 1523 skb_shinfo(skb)->nr_frags = 0; 1524 skb1->len = skb1->data_len = skb->len - len; 1525 skb->len = len; 1526 skb->data_len = len - pos; 1527 1528 for (i = 0; i < nfrags; i++) { 1529 int size = skb_shinfo(skb)->frags[i].size; 1530 1531 if (pos + size > len) { 1532 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1533 1534 if (pos < len) { 1535 /* Split frag. 1536 * We have two variants in this case: 1537 * 1. Move all the frag to the second 1538 * part, if it is possible. F.e. 1539 * this approach is mandatory for TUX, 1540 * where splitting is expensive. 1541 * 2. Split is accurately. We make this. 1542 */ 1543 get_page(skb_shinfo(skb)->frags[i].page); 1544 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1545 skb_shinfo(skb1)->frags[0].size -= len - pos; 1546 skb_shinfo(skb)->frags[i].size = len - pos; 1547 skb_shinfo(skb)->nr_frags++; 1548 } 1549 k++; 1550 } else 1551 skb_shinfo(skb)->nr_frags++; 1552 pos += size; 1553 } 1554 skb_shinfo(skb1)->nr_frags = k; 1555 } 1556 1557 /** 1558 * skb_split - Split fragmented skb to two parts at length len. 1559 * @skb: the buffer to split 1560 * @skb1: the buffer to receive the second part 1561 * @len: new length for skb 1562 */ 1563 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1564 { 1565 int pos = skb_headlen(skb); 1566 1567 if (len < pos) /* Split line is inside header. */ 1568 skb_split_inside_header(skb, skb1, len, pos); 1569 else /* Second chunk has no header, nothing to copy. */ 1570 skb_split_no_header(skb, skb1, len, pos); 1571 } 1572 1573 /** 1574 * skb_prepare_seq_read - Prepare a sequential read of skb data 1575 * @skb: the buffer to read 1576 * @from: lower offset of data to be read 1577 * @to: upper offset of data to be read 1578 * @st: state variable 1579 * 1580 * Initializes the specified state variable. Must be called before 1581 * invoking skb_seq_read() for the first time. 1582 */ 1583 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1584 unsigned int to, struct skb_seq_state *st) 1585 { 1586 st->lower_offset = from; 1587 st->upper_offset = to; 1588 st->root_skb = st->cur_skb = skb; 1589 st->frag_idx = st->stepped_offset = 0; 1590 st->frag_data = NULL; 1591 } 1592 1593 /** 1594 * skb_seq_read - Sequentially read skb data 1595 * @consumed: number of bytes consumed by the caller so far 1596 * @data: destination pointer for data to be returned 1597 * @st: state variable 1598 * 1599 * Reads a block of skb data at &consumed relative to the 1600 * lower offset specified to skb_prepare_seq_read(). Assigns 1601 * the head of the data block to &data and returns the length 1602 * of the block or 0 if the end of the skb data or the upper 1603 * offset has been reached. 1604 * 1605 * The caller is not required to consume all of the data 1606 * returned, i.e. &consumed is typically set to the number 1607 * of bytes already consumed and the next call to 1608 * skb_seq_read() will return the remaining part of the block. 1609 * 1610 * Note: The size of each block of data returned can be arbitary, 1611 * this limitation is the cost for zerocopy seqeuental 1612 * reads of potentially non linear data. 1613 * 1614 * Note: Fragment lists within fragments are not implemented 1615 * at the moment, state->root_skb could be replaced with 1616 * a stack for this purpose. 1617 */ 1618 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1619 struct skb_seq_state *st) 1620 { 1621 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1622 skb_frag_t *frag; 1623 1624 if (unlikely(abs_offset >= st->upper_offset)) 1625 return 0; 1626 1627 next_skb: 1628 block_limit = skb_headlen(st->cur_skb); 1629 1630 if (abs_offset < block_limit) { 1631 *data = st->cur_skb->data + abs_offset; 1632 return block_limit - abs_offset; 1633 } 1634 1635 if (st->frag_idx == 0 && !st->frag_data) 1636 st->stepped_offset += skb_headlen(st->cur_skb); 1637 1638 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1639 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1640 block_limit = frag->size + st->stepped_offset; 1641 1642 if (abs_offset < block_limit) { 1643 if (!st->frag_data) 1644 st->frag_data = kmap_skb_frag(frag); 1645 1646 *data = (u8 *) st->frag_data + frag->page_offset + 1647 (abs_offset - st->stepped_offset); 1648 1649 return block_limit - abs_offset; 1650 } 1651 1652 if (st->frag_data) { 1653 kunmap_skb_frag(st->frag_data); 1654 st->frag_data = NULL; 1655 } 1656 1657 st->frag_idx++; 1658 st->stepped_offset += frag->size; 1659 } 1660 1661 if (st->cur_skb->next) { 1662 st->cur_skb = st->cur_skb->next; 1663 st->frag_idx = 0; 1664 goto next_skb; 1665 } else if (st->root_skb == st->cur_skb && 1666 skb_shinfo(st->root_skb)->frag_list) { 1667 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1668 goto next_skb; 1669 } 1670 1671 return 0; 1672 } 1673 1674 /** 1675 * skb_abort_seq_read - Abort a sequential read of skb data 1676 * @st: state variable 1677 * 1678 * Must be called if skb_seq_read() was not called until it 1679 * returned 0. 1680 */ 1681 void skb_abort_seq_read(struct skb_seq_state *st) 1682 { 1683 if (st->frag_data) 1684 kunmap_skb_frag(st->frag_data); 1685 } 1686 1687 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1688 1689 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1690 struct ts_config *conf, 1691 struct ts_state *state) 1692 { 1693 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1694 } 1695 1696 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1697 { 1698 skb_abort_seq_read(TS_SKB_CB(state)); 1699 } 1700 1701 /** 1702 * skb_find_text - Find a text pattern in skb data 1703 * @skb: the buffer to look in 1704 * @from: search offset 1705 * @to: search limit 1706 * @config: textsearch configuration 1707 * @state: uninitialized textsearch state variable 1708 * 1709 * Finds a pattern in the skb data according to the specified 1710 * textsearch configuration. Use textsearch_next() to retrieve 1711 * subsequent occurrences of the pattern. Returns the offset 1712 * to the first occurrence or UINT_MAX if no match was found. 1713 */ 1714 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1715 unsigned int to, struct ts_config *config, 1716 struct ts_state *state) 1717 { 1718 config->get_next_block = skb_ts_get_next_block; 1719 config->finish = skb_ts_finish; 1720 1721 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1722 1723 return textsearch_find(config, state); 1724 } 1725 1726 /** 1727 * skb_append_datato_frags: - append the user data to a skb 1728 * @sk: sock structure 1729 * @skb: skb structure to be appened with user data. 1730 * @getfrag: call back function to be used for getting the user data 1731 * @from: pointer to user message iov 1732 * @length: length of the iov message 1733 * 1734 * Description: This procedure append the user data in the fragment part 1735 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1736 */ 1737 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1738 int (*getfrag)(void *from, char *to, int offset, 1739 int len, int odd, struct sk_buff *skb), 1740 void *from, int length) 1741 { 1742 int frg_cnt = 0; 1743 skb_frag_t *frag = NULL; 1744 struct page *page = NULL; 1745 int copy, left; 1746 int offset = 0; 1747 int ret; 1748 1749 do { 1750 /* Return error if we don't have space for new frag */ 1751 frg_cnt = skb_shinfo(skb)->nr_frags; 1752 if (frg_cnt >= MAX_SKB_FRAGS) 1753 return -EFAULT; 1754 1755 /* allocate a new page for next frag */ 1756 page = alloc_pages(sk->sk_allocation, 0); 1757 1758 /* If alloc_page fails just return failure and caller will 1759 * free previous allocated pages by doing kfree_skb() 1760 */ 1761 if (page == NULL) 1762 return -ENOMEM; 1763 1764 /* initialize the next frag */ 1765 sk->sk_sndmsg_page = page; 1766 sk->sk_sndmsg_off = 0; 1767 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1768 skb->truesize += PAGE_SIZE; 1769 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1770 1771 /* get the new initialized frag */ 1772 frg_cnt = skb_shinfo(skb)->nr_frags; 1773 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1774 1775 /* copy the user data to page */ 1776 left = PAGE_SIZE - frag->page_offset; 1777 copy = (length > left)? left : length; 1778 1779 ret = getfrag(from, (page_address(frag->page) + 1780 frag->page_offset + frag->size), 1781 offset, copy, 0, skb); 1782 if (ret < 0) 1783 return -EFAULT; 1784 1785 /* copy was successful so update the size parameters */ 1786 sk->sk_sndmsg_off += copy; 1787 frag->size += copy; 1788 skb->len += copy; 1789 skb->data_len += copy; 1790 offset += copy; 1791 length -= copy; 1792 1793 } while (length > 0); 1794 1795 return 0; 1796 } 1797 1798 /** 1799 * skb_pull_rcsum - pull skb and update receive checksum 1800 * @skb: buffer to update 1801 * @start: start of data before pull 1802 * @len: length of data pulled 1803 * 1804 * This function performs an skb_pull on the packet and updates 1805 * update the CHECKSUM_HW checksum. It should be used on receive 1806 * path processing instead of skb_pull unless you know that the 1807 * checksum difference is zero (e.g., a valid IP header) or you 1808 * are setting ip_summed to CHECKSUM_NONE. 1809 */ 1810 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1811 { 1812 BUG_ON(len > skb->len); 1813 skb->len -= len; 1814 BUG_ON(skb->len < skb->data_len); 1815 skb_postpull_rcsum(skb, skb->data, len); 1816 return skb->data += len; 1817 } 1818 1819 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1820 1821 void __init skb_init(void) 1822 { 1823 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 1824 sizeof(struct sk_buff), 1825 0, 1826 SLAB_HWCACHE_ALIGN, 1827 NULL, NULL); 1828 if (!skbuff_head_cache) 1829 panic("cannot create skbuff cache"); 1830 1831 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 1832 (2*sizeof(struct sk_buff)) + 1833 sizeof(atomic_t), 1834 0, 1835 SLAB_HWCACHE_ALIGN, 1836 NULL, NULL); 1837 if (!skbuff_fclone_cache) 1838 panic("cannot create skbuff cache"); 1839 } 1840 1841 EXPORT_SYMBOL(___pskb_trim); 1842 EXPORT_SYMBOL(__kfree_skb); 1843 EXPORT_SYMBOL(kfree_skb); 1844 EXPORT_SYMBOL(__pskb_pull_tail); 1845 EXPORT_SYMBOL(__alloc_skb); 1846 EXPORT_SYMBOL(pskb_copy); 1847 EXPORT_SYMBOL(pskb_expand_head); 1848 EXPORT_SYMBOL(skb_checksum); 1849 EXPORT_SYMBOL(skb_clone); 1850 EXPORT_SYMBOL(skb_clone_fraglist); 1851 EXPORT_SYMBOL(skb_copy); 1852 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1853 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1854 EXPORT_SYMBOL(skb_copy_bits); 1855 EXPORT_SYMBOL(skb_copy_expand); 1856 EXPORT_SYMBOL(skb_over_panic); 1857 EXPORT_SYMBOL(skb_pad); 1858 EXPORT_SYMBOL(skb_realloc_headroom); 1859 EXPORT_SYMBOL(skb_under_panic); 1860 EXPORT_SYMBOL(skb_dequeue); 1861 EXPORT_SYMBOL(skb_dequeue_tail); 1862 EXPORT_SYMBOL(skb_insert); 1863 EXPORT_SYMBOL(skb_queue_purge); 1864 EXPORT_SYMBOL(skb_queue_head); 1865 EXPORT_SYMBOL(skb_queue_tail); 1866 EXPORT_SYMBOL(skb_unlink); 1867 EXPORT_SYMBOL(skb_append); 1868 EXPORT_SYMBOL(skb_split); 1869 EXPORT_SYMBOL(skb_prepare_seq_read); 1870 EXPORT_SYMBOL(skb_seq_read); 1871 EXPORT_SYMBOL(skb_abort_seq_read); 1872 EXPORT_SYMBOL(skb_find_text); 1873 EXPORT_SYMBOL(skb_append_datato_frags); 1874