xref: /linux/net/core/skbuff.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 	                  "data:%p tail:%p end:%p dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 	       skb->dev ? skb->dev->name : "<NULL>");
94 	BUG();
95 }
96 
97 /**
98  *	skb_under_panic	- 	private function
99  *	@skb: buffer
100  *	@sz: size
101  *	@here: address
102  *
103  *	Out of line support code for skb_push(). Not user callable.
104  */
105 
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 {
108 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 	                  "data:%p tail:%p end:%p dev:%s\n",
110 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 	       skb->dev ? skb->dev->name : "<NULL>");
112 	BUG();
113 }
114 
115 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
116  *	'private' fields and also do memory statistics to find all the
117  *	[BEEP] leaks.
118  *
119  */
120 
121 /**
122  *	__alloc_skb	-	allocate a network buffer
123  *	@size: size to allocate
124  *	@gfp_mask: allocation mask
125  *	@fclone: allocate from fclone cache instead of head cache
126  *		and allocate a cloned (child) skb
127  *
128  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
129  *	tail room of size bytes. The object has a reference count of one.
130  *	The return is the buffer. On a failure the return is %NULL.
131  *
132  *	Buffers may only be allocated from interrupts using a @gfp_mask of
133  *	%GFP_ATOMIC.
134  */
135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
136 			    int fclone)
137 {
138 	kmem_cache_t *cache;
139 	struct skb_shared_info *shinfo;
140 	struct sk_buff *skb;
141 	u8 *data;
142 
143 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
144 
145 	/* Get the HEAD */
146 	skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
147 	if (!skb)
148 		goto out;
149 
150 	/* Get the DATA. Size must match skb_add_mtu(). */
151 	size = SKB_DATA_ALIGN(size);
152 	data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
153 	if (!data)
154 		goto nodata;
155 
156 	memset(skb, 0, offsetof(struct sk_buff, truesize));
157 	skb->truesize = size + sizeof(struct sk_buff);
158 	atomic_set(&skb->users, 1);
159 	skb->head = data;
160 	skb->data = data;
161 	skb->tail = data;
162 	skb->end  = data + size;
163 	/* make sure we initialize shinfo sequentially */
164 	shinfo = skb_shinfo(skb);
165 	atomic_set(&shinfo->dataref, 1);
166 	shinfo->nr_frags  = 0;
167 	shinfo->tso_size = 0;
168 	shinfo->tso_segs = 0;
169 	shinfo->ufo_size = 0;
170 	shinfo->ip6_frag_id = 0;
171 	shinfo->frag_list = NULL;
172 
173 	if (fclone) {
174 		struct sk_buff *child = skb + 1;
175 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
176 
177 		skb->fclone = SKB_FCLONE_ORIG;
178 		atomic_set(fclone_ref, 1);
179 
180 		child->fclone = SKB_FCLONE_UNAVAILABLE;
181 	}
182 out:
183 	return skb;
184 nodata:
185 	kmem_cache_free(cache, skb);
186 	skb = NULL;
187 	goto out;
188 }
189 
190 /**
191  *	alloc_skb_from_cache	-	allocate a network buffer
192  *	@cp: kmem_cache from which to allocate the data area
193  *           (object size must be big enough for @size bytes + skb overheads)
194  *	@size: size to allocate
195  *	@gfp_mask: allocation mask
196  *
197  *	Allocate a new &sk_buff. The returned buffer has no headroom and
198  *	tail room of size bytes. The object has a reference count of one.
199  *	The return is the buffer. On a failure the return is %NULL.
200  *
201  *	Buffers may only be allocated from interrupts using a @gfp_mask of
202  *	%GFP_ATOMIC.
203  */
204 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
205 				     unsigned int size,
206 				     gfp_t gfp_mask)
207 {
208 	struct sk_buff *skb;
209 	u8 *data;
210 
211 	/* Get the HEAD */
212 	skb = kmem_cache_alloc(skbuff_head_cache,
213 			       gfp_mask & ~__GFP_DMA);
214 	if (!skb)
215 		goto out;
216 
217 	/* Get the DATA. */
218 	size = SKB_DATA_ALIGN(size);
219 	data = kmem_cache_alloc(cp, gfp_mask);
220 	if (!data)
221 		goto nodata;
222 
223 	memset(skb, 0, offsetof(struct sk_buff, truesize));
224 	skb->truesize = size + sizeof(struct sk_buff);
225 	atomic_set(&skb->users, 1);
226 	skb->head = data;
227 	skb->data = data;
228 	skb->tail = data;
229 	skb->end  = data + size;
230 
231 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
232 	skb_shinfo(skb)->nr_frags  = 0;
233 	skb_shinfo(skb)->tso_size = 0;
234 	skb_shinfo(skb)->tso_segs = 0;
235 	skb_shinfo(skb)->frag_list = NULL;
236 out:
237 	return skb;
238 nodata:
239 	kmem_cache_free(skbuff_head_cache, skb);
240 	skb = NULL;
241 	goto out;
242 }
243 
244 
245 static void skb_drop_fraglist(struct sk_buff *skb)
246 {
247 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
248 
249 	skb_shinfo(skb)->frag_list = NULL;
250 
251 	do {
252 		struct sk_buff *this = list;
253 		list = list->next;
254 		kfree_skb(this);
255 	} while (list);
256 }
257 
258 static void skb_clone_fraglist(struct sk_buff *skb)
259 {
260 	struct sk_buff *list;
261 
262 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
263 		skb_get(list);
264 }
265 
266 void skb_release_data(struct sk_buff *skb)
267 {
268 	if (!skb->cloned ||
269 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
270 			       &skb_shinfo(skb)->dataref)) {
271 		if (skb_shinfo(skb)->nr_frags) {
272 			int i;
273 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
274 				put_page(skb_shinfo(skb)->frags[i].page);
275 		}
276 
277 		if (skb_shinfo(skb)->frag_list)
278 			skb_drop_fraglist(skb);
279 
280 		kfree(skb->head);
281 	}
282 }
283 
284 /*
285  *	Free an skbuff by memory without cleaning the state.
286  */
287 void kfree_skbmem(struct sk_buff *skb)
288 {
289 	struct sk_buff *other;
290 	atomic_t *fclone_ref;
291 
292 	skb_release_data(skb);
293 	switch (skb->fclone) {
294 	case SKB_FCLONE_UNAVAILABLE:
295 		kmem_cache_free(skbuff_head_cache, skb);
296 		break;
297 
298 	case SKB_FCLONE_ORIG:
299 		fclone_ref = (atomic_t *) (skb + 2);
300 		if (atomic_dec_and_test(fclone_ref))
301 			kmem_cache_free(skbuff_fclone_cache, skb);
302 		break;
303 
304 	case SKB_FCLONE_CLONE:
305 		fclone_ref = (atomic_t *) (skb + 1);
306 		other = skb - 1;
307 
308 		/* The clone portion is available for
309 		 * fast-cloning again.
310 		 */
311 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
312 
313 		if (atomic_dec_and_test(fclone_ref))
314 			kmem_cache_free(skbuff_fclone_cache, other);
315 		break;
316 	};
317 }
318 
319 /**
320  *	__kfree_skb - private function
321  *	@skb: buffer
322  *
323  *	Free an sk_buff. Release anything attached to the buffer.
324  *	Clean the state. This is an internal helper function. Users should
325  *	always call kfree_skb
326  */
327 
328 void __kfree_skb(struct sk_buff *skb)
329 {
330 	dst_release(skb->dst);
331 #ifdef CONFIG_XFRM
332 	secpath_put(skb->sp);
333 #endif
334 	if (skb->destructor) {
335 		WARN_ON(in_irq());
336 		skb->destructor(skb);
337 	}
338 #ifdef CONFIG_NETFILTER
339 	nf_conntrack_put(skb->nfct);
340 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
341 	nf_conntrack_put_reasm(skb->nfct_reasm);
342 #endif
343 #ifdef CONFIG_BRIDGE_NETFILTER
344 	nf_bridge_put(skb->nf_bridge);
345 #endif
346 #endif
347 /* XXX: IS this still necessary? - JHS */
348 #ifdef CONFIG_NET_SCHED
349 	skb->tc_index = 0;
350 #ifdef CONFIG_NET_CLS_ACT
351 	skb->tc_verd = 0;
352 #endif
353 #endif
354 
355 	kfree_skbmem(skb);
356 }
357 
358 /**
359  *	kfree_skb - free an sk_buff
360  *	@skb: buffer to free
361  *
362  *	Drop a reference to the buffer and free it if the usage count has
363  *	hit zero.
364  */
365 void kfree_skb(struct sk_buff *skb)
366 {
367 	if (unlikely(!skb))
368 		return;
369 	if (likely(atomic_read(&skb->users) == 1))
370 		smp_rmb();
371 	else if (likely(!atomic_dec_and_test(&skb->users)))
372 		return;
373 	__kfree_skb(skb);
374 }
375 
376 /**
377  *	skb_clone	-	duplicate an sk_buff
378  *	@skb: buffer to clone
379  *	@gfp_mask: allocation priority
380  *
381  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
382  *	copies share the same packet data but not structure. The new
383  *	buffer has a reference count of 1. If the allocation fails the
384  *	function returns %NULL otherwise the new buffer is returned.
385  *
386  *	If this function is called from an interrupt gfp_mask() must be
387  *	%GFP_ATOMIC.
388  */
389 
390 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
391 {
392 	struct sk_buff *n;
393 
394 	n = skb + 1;
395 	if (skb->fclone == SKB_FCLONE_ORIG &&
396 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
397 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
398 		n->fclone = SKB_FCLONE_CLONE;
399 		atomic_inc(fclone_ref);
400 	} else {
401 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
402 		if (!n)
403 			return NULL;
404 		n->fclone = SKB_FCLONE_UNAVAILABLE;
405 	}
406 
407 #define C(x) n->x = skb->x
408 
409 	n->next = n->prev = NULL;
410 	n->sk = NULL;
411 	C(tstamp);
412 	C(dev);
413 	C(h);
414 	C(nh);
415 	C(mac);
416 	C(dst);
417 	dst_clone(skb->dst);
418 	C(sp);
419 #ifdef CONFIG_INET
420 	secpath_get(skb->sp);
421 #endif
422 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
423 	C(len);
424 	C(data_len);
425 	C(csum);
426 	C(local_df);
427 	n->cloned = 1;
428 	n->nohdr = 0;
429 	C(pkt_type);
430 	C(ip_summed);
431 	C(priority);
432 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
433 	C(ipvs_property);
434 #endif
435 	C(protocol);
436 	n->destructor = NULL;
437 #ifdef CONFIG_NETFILTER
438 	C(nfmark);
439 	C(nfct);
440 	nf_conntrack_get(skb->nfct);
441 	C(nfctinfo);
442 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
443 	C(nfct_reasm);
444 	nf_conntrack_get_reasm(skb->nfct_reasm);
445 #endif
446 #ifdef CONFIG_BRIDGE_NETFILTER
447 	C(nf_bridge);
448 	nf_bridge_get(skb->nf_bridge);
449 #endif
450 #endif /*CONFIG_NETFILTER*/
451 #ifdef CONFIG_NET_SCHED
452 	C(tc_index);
453 #ifdef CONFIG_NET_CLS_ACT
454 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
455 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
456 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
457 	C(input_dev);
458 #endif
459 
460 #endif
461 	C(truesize);
462 	atomic_set(&n->users, 1);
463 	C(head);
464 	C(data);
465 	C(tail);
466 	C(end);
467 
468 	atomic_inc(&(skb_shinfo(skb)->dataref));
469 	skb->cloned = 1;
470 
471 	return n;
472 }
473 
474 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
475 {
476 	/*
477 	 *	Shift between the two data areas in bytes
478 	 */
479 	unsigned long offset = new->data - old->data;
480 
481 	new->sk		= NULL;
482 	new->dev	= old->dev;
483 	new->priority	= old->priority;
484 	new->protocol	= old->protocol;
485 	new->dst	= dst_clone(old->dst);
486 #ifdef CONFIG_INET
487 	new->sp		= secpath_get(old->sp);
488 #endif
489 	new->h.raw	= old->h.raw + offset;
490 	new->nh.raw	= old->nh.raw + offset;
491 	new->mac.raw	= old->mac.raw + offset;
492 	memcpy(new->cb, old->cb, sizeof(old->cb));
493 	new->local_df	= old->local_df;
494 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
495 	new->pkt_type	= old->pkt_type;
496 	new->tstamp	= old->tstamp;
497 	new->destructor = NULL;
498 #ifdef CONFIG_NETFILTER
499 	new->nfmark	= old->nfmark;
500 	new->nfct	= old->nfct;
501 	nf_conntrack_get(old->nfct);
502 	new->nfctinfo	= old->nfctinfo;
503 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
504 	new->nfct_reasm = old->nfct_reasm;
505 	nf_conntrack_get_reasm(old->nfct_reasm);
506 #endif
507 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
508 	new->ipvs_property = old->ipvs_property;
509 #endif
510 #ifdef CONFIG_BRIDGE_NETFILTER
511 	new->nf_bridge	= old->nf_bridge;
512 	nf_bridge_get(old->nf_bridge);
513 #endif
514 #endif
515 #ifdef CONFIG_NET_SCHED
516 #ifdef CONFIG_NET_CLS_ACT
517 	new->tc_verd = old->tc_verd;
518 #endif
519 	new->tc_index	= old->tc_index;
520 #endif
521 	atomic_set(&new->users, 1);
522 	skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
523 	skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
524 }
525 
526 /**
527  *	skb_copy	-	create private copy of an sk_buff
528  *	@skb: buffer to copy
529  *	@gfp_mask: allocation priority
530  *
531  *	Make a copy of both an &sk_buff and its data. This is used when the
532  *	caller wishes to modify the data and needs a private copy of the
533  *	data to alter. Returns %NULL on failure or the pointer to the buffer
534  *	on success. The returned buffer has a reference count of 1.
535  *
536  *	As by-product this function converts non-linear &sk_buff to linear
537  *	one, so that &sk_buff becomes completely private and caller is allowed
538  *	to modify all the data of returned buffer. This means that this
539  *	function is not recommended for use in circumstances when only
540  *	header is going to be modified. Use pskb_copy() instead.
541  */
542 
543 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
544 {
545 	int headerlen = skb->data - skb->head;
546 	/*
547 	 *	Allocate the copy buffer
548 	 */
549 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
550 				      gfp_mask);
551 	if (!n)
552 		return NULL;
553 
554 	/* Set the data pointer */
555 	skb_reserve(n, headerlen);
556 	/* Set the tail pointer and length */
557 	skb_put(n, skb->len);
558 	n->csum	     = skb->csum;
559 	n->ip_summed = skb->ip_summed;
560 
561 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
562 		BUG();
563 
564 	copy_skb_header(n, skb);
565 	return n;
566 }
567 
568 
569 /**
570  *	pskb_copy	-	create copy of an sk_buff with private head.
571  *	@skb: buffer to copy
572  *	@gfp_mask: allocation priority
573  *
574  *	Make a copy of both an &sk_buff and part of its data, located
575  *	in header. Fragmented data remain shared. This is used when
576  *	the caller wishes to modify only header of &sk_buff and needs
577  *	private copy of the header to alter. Returns %NULL on failure
578  *	or the pointer to the buffer on success.
579  *	The returned buffer has a reference count of 1.
580  */
581 
582 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
583 {
584 	/*
585 	 *	Allocate the copy buffer
586 	 */
587 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
588 
589 	if (!n)
590 		goto out;
591 
592 	/* Set the data pointer */
593 	skb_reserve(n, skb->data - skb->head);
594 	/* Set the tail pointer and length */
595 	skb_put(n, skb_headlen(skb));
596 	/* Copy the bytes */
597 	memcpy(n->data, skb->data, n->len);
598 	n->csum	     = skb->csum;
599 	n->ip_summed = skb->ip_summed;
600 
601 	n->data_len  = skb->data_len;
602 	n->len	     = skb->len;
603 
604 	if (skb_shinfo(skb)->nr_frags) {
605 		int i;
606 
607 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
608 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
609 			get_page(skb_shinfo(n)->frags[i].page);
610 		}
611 		skb_shinfo(n)->nr_frags = i;
612 	}
613 
614 	if (skb_shinfo(skb)->frag_list) {
615 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
616 		skb_clone_fraglist(n);
617 	}
618 
619 	copy_skb_header(n, skb);
620 out:
621 	return n;
622 }
623 
624 /**
625  *	pskb_expand_head - reallocate header of &sk_buff
626  *	@skb: buffer to reallocate
627  *	@nhead: room to add at head
628  *	@ntail: room to add at tail
629  *	@gfp_mask: allocation priority
630  *
631  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
632  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
633  *	reference count of 1. Returns zero in the case of success or error,
634  *	if expansion failed. In the last case, &sk_buff is not changed.
635  *
636  *	All the pointers pointing into skb header may change and must be
637  *	reloaded after call to this function.
638  */
639 
640 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
641 		     gfp_t gfp_mask)
642 {
643 	int i;
644 	u8 *data;
645 	int size = nhead + (skb->end - skb->head) + ntail;
646 	long off;
647 
648 	if (skb_shared(skb))
649 		BUG();
650 
651 	size = SKB_DATA_ALIGN(size);
652 
653 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
654 	if (!data)
655 		goto nodata;
656 
657 	/* Copy only real data... and, alas, header. This should be
658 	 * optimized for the cases when header is void. */
659 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
660 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
661 
662 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
663 		get_page(skb_shinfo(skb)->frags[i].page);
664 
665 	if (skb_shinfo(skb)->frag_list)
666 		skb_clone_fraglist(skb);
667 
668 	skb_release_data(skb);
669 
670 	off = (data + nhead) - skb->head;
671 
672 	skb->head     = data;
673 	skb->end      = data + size;
674 	skb->data    += off;
675 	skb->tail    += off;
676 	skb->mac.raw += off;
677 	skb->h.raw   += off;
678 	skb->nh.raw  += off;
679 	skb->cloned   = 0;
680 	skb->nohdr    = 0;
681 	atomic_set(&skb_shinfo(skb)->dataref, 1);
682 	return 0;
683 
684 nodata:
685 	return -ENOMEM;
686 }
687 
688 /* Make private copy of skb with writable head and some headroom */
689 
690 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
691 {
692 	struct sk_buff *skb2;
693 	int delta = headroom - skb_headroom(skb);
694 
695 	if (delta <= 0)
696 		skb2 = pskb_copy(skb, GFP_ATOMIC);
697 	else {
698 		skb2 = skb_clone(skb, GFP_ATOMIC);
699 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
700 					     GFP_ATOMIC)) {
701 			kfree_skb(skb2);
702 			skb2 = NULL;
703 		}
704 	}
705 	return skb2;
706 }
707 
708 
709 /**
710  *	skb_copy_expand	-	copy and expand sk_buff
711  *	@skb: buffer to copy
712  *	@newheadroom: new free bytes at head
713  *	@newtailroom: new free bytes at tail
714  *	@gfp_mask: allocation priority
715  *
716  *	Make a copy of both an &sk_buff and its data and while doing so
717  *	allocate additional space.
718  *
719  *	This is used when the caller wishes to modify the data and needs a
720  *	private copy of the data to alter as well as more space for new fields.
721  *	Returns %NULL on failure or the pointer to the buffer
722  *	on success. The returned buffer has a reference count of 1.
723  *
724  *	You must pass %GFP_ATOMIC as the allocation priority if this function
725  *	is called from an interrupt.
726  *
727  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
728  *	only by netfilter in the cases when checksum is recalculated? --ANK
729  */
730 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
731 				int newheadroom, int newtailroom,
732 				gfp_t gfp_mask)
733 {
734 	/*
735 	 *	Allocate the copy buffer
736 	 */
737 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
738 				      gfp_mask);
739 	int head_copy_len, head_copy_off;
740 
741 	if (!n)
742 		return NULL;
743 
744 	skb_reserve(n, newheadroom);
745 
746 	/* Set the tail pointer and length */
747 	skb_put(n, skb->len);
748 
749 	head_copy_len = skb_headroom(skb);
750 	head_copy_off = 0;
751 	if (newheadroom <= head_copy_len)
752 		head_copy_len = newheadroom;
753 	else
754 		head_copy_off = newheadroom - head_copy_len;
755 
756 	/* Copy the linear header and data. */
757 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
758 			  skb->len + head_copy_len))
759 		BUG();
760 
761 	copy_skb_header(n, skb);
762 
763 	return n;
764 }
765 
766 /**
767  *	skb_pad			-	zero pad the tail of an skb
768  *	@skb: buffer to pad
769  *	@pad: space to pad
770  *
771  *	Ensure that a buffer is followed by a padding area that is zero
772  *	filled. Used by network drivers which may DMA or transfer data
773  *	beyond the buffer end onto the wire.
774  *
775  *	May return NULL in out of memory cases.
776  */
777 
778 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
779 {
780 	struct sk_buff *nskb;
781 
782 	/* If the skbuff is non linear tailroom is always zero.. */
783 	if (skb_tailroom(skb) >= pad) {
784 		memset(skb->data+skb->len, 0, pad);
785 		return skb;
786 	}
787 
788 	nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
789 	kfree_skb(skb);
790 	if (nskb)
791 		memset(nskb->data+nskb->len, 0, pad);
792 	return nskb;
793 }
794 
795 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
796  * If realloc==0 and trimming is impossible without change of data,
797  * it is BUG().
798  */
799 
800 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
801 {
802 	int offset = skb_headlen(skb);
803 	int nfrags = skb_shinfo(skb)->nr_frags;
804 	int i;
805 
806 	for (i = 0; i < nfrags; i++) {
807 		int end = offset + skb_shinfo(skb)->frags[i].size;
808 		if (end > len) {
809 			if (skb_cloned(skb)) {
810 				BUG_ON(!realloc);
811 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
812 					return -ENOMEM;
813 			}
814 			if (len <= offset) {
815 				put_page(skb_shinfo(skb)->frags[i].page);
816 				skb_shinfo(skb)->nr_frags--;
817 			} else {
818 				skb_shinfo(skb)->frags[i].size = len - offset;
819 			}
820 		}
821 		offset = end;
822 	}
823 
824 	if (offset < len) {
825 		skb->data_len -= skb->len - len;
826 		skb->len       = len;
827 	} else {
828 		if (len <= skb_headlen(skb)) {
829 			skb->len      = len;
830 			skb->data_len = 0;
831 			skb->tail     = skb->data + len;
832 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
833 				skb_drop_fraglist(skb);
834 		} else {
835 			skb->data_len -= skb->len - len;
836 			skb->len       = len;
837 		}
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  *	__pskb_pull_tail - advance tail of skb header
845  *	@skb: buffer to reallocate
846  *	@delta: number of bytes to advance tail
847  *
848  *	The function makes a sense only on a fragmented &sk_buff,
849  *	it expands header moving its tail forward and copying necessary
850  *	data from fragmented part.
851  *
852  *	&sk_buff MUST have reference count of 1.
853  *
854  *	Returns %NULL (and &sk_buff does not change) if pull failed
855  *	or value of new tail of skb in the case of success.
856  *
857  *	All the pointers pointing into skb header may change and must be
858  *	reloaded after call to this function.
859  */
860 
861 /* Moves tail of skb head forward, copying data from fragmented part,
862  * when it is necessary.
863  * 1. It may fail due to malloc failure.
864  * 2. It may change skb pointers.
865  *
866  * It is pretty complicated. Luckily, it is called only in exceptional cases.
867  */
868 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
869 {
870 	/* If skb has not enough free space at tail, get new one
871 	 * plus 128 bytes for future expansions. If we have enough
872 	 * room at tail, reallocate without expansion only if skb is cloned.
873 	 */
874 	int i, k, eat = (skb->tail + delta) - skb->end;
875 
876 	if (eat > 0 || skb_cloned(skb)) {
877 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
878 				     GFP_ATOMIC))
879 			return NULL;
880 	}
881 
882 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
883 		BUG();
884 
885 	/* Optimization: no fragments, no reasons to preestimate
886 	 * size of pulled pages. Superb.
887 	 */
888 	if (!skb_shinfo(skb)->frag_list)
889 		goto pull_pages;
890 
891 	/* Estimate size of pulled pages. */
892 	eat = delta;
893 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
894 		if (skb_shinfo(skb)->frags[i].size >= eat)
895 			goto pull_pages;
896 		eat -= skb_shinfo(skb)->frags[i].size;
897 	}
898 
899 	/* If we need update frag list, we are in troubles.
900 	 * Certainly, it possible to add an offset to skb data,
901 	 * but taking into account that pulling is expected to
902 	 * be very rare operation, it is worth to fight against
903 	 * further bloating skb head and crucify ourselves here instead.
904 	 * Pure masohism, indeed. 8)8)
905 	 */
906 	if (eat) {
907 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
908 		struct sk_buff *clone = NULL;
909 		struct sk_buff *insp = NULL;
910 
911 		do {
912 			BUG_ON(!list);
913 
914 			if (list->len <= eat) {
915 				/* Eaten as whole. */
916 				eat -= list->len;
917 				list = list->next;
918 				insp = list;
919 			} else {
920 				/* Eaten partially. */
921 
922 				if (skb_shared(list)) {
923 					/* Sucks! We need to fork list. :-( */
924 					clone = skb_clone(list, GFP_ATOMIC);
925 					if (!clone)
926 						return NULL;
927 					insp = list->next;
928 					list = clone;
929 				} else {
930 					/* This may be pulled without
931 					 * problems. */
932 					insp = list;
933 				}
934 				if (!pskb_pull(list, eat)) {
935 					if (clone)
936 						kfree_skb(clone);
937 					return NULL;
938 				}
939 				break;
940 			}
941 		} while (eat);
942 
943 		/* Free pulled out fragments. */
944 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
945 			skb_shinfo(skb)->frag_list = list->next;
946 			kfree_skb(list);
947 		}
948 		/* And insert new clone at head. */
949 		if (clone) {
950 			clone->next = list;
951 			skb_shinfo(skb)->frag_list = clone;
952 		}
953 	}
954 	/* Success! Now we may commit changes to skb data. */
955 
956 pull_pages:
957 	eat = delta;
958 	k = 0;
959 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
960 		if (skb_shinfo(skb)->frags[i].size <= eat) {
961 			put_page(skb_shinfo(skb)->frags[i].page);
962 			eat -= skb_shinfo(skb)->frags[i].size;
963 		} else {
964 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
965 			if (eat) {
966 				skb_shinfo(skb)->frags[k].page_offset += eat;
967 				skb_shinfo(skb)->frags[k].size -= eat;
968 				eat = 0;
969 			}
970 			k++;
971 		}
972 	}
973 	skb_shinfo(skb)->nr_frags = k;
974 
975 	skb->tail     += delta;
976 	skb->data_len -= delta;
977 
978 	return skb->tail;
979 }
980 
981 /* Copy some data bits from skb to kernel buffer. */
982 
983 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
984 {
985 	int i, copy;
986 	int start = skb_headlen(skb);
987 
988 	if (offset > (int)skb->len - len)
989 		goto fault;
990 
991 	/* Copy header. */
992 	if ((copy = start - offset) > 0) {
993 		if (copy > len)
994 			copy = len;
995 		memcpy(to, skb->data + offset, copy);
996 		if ((len -= copy) == 0)
997 			return 0;
998 		offset += copy;
999 		to     += copy;
1000 	}
1001 
1002 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1003 		int end;
1004 
1005 		BUG_TRAP(start <= offset + len);
1006 
1007 		end = start + skb_shinfo(skb)->frags[i].size;
1008 		if ((copy = end - offset) > 0) {
1009 			u8 *vaddr;
1010 
1011 			if (copy > len)
1012 				copy = len;
1013 
1014 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1015 			memcpy(to,
1016 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1017 			       offset - start, copy);
1018 			kunmap_skb_frag(vaddr);
1019 
1020 			if ((len -= copy) == 0)
1021 				return 0;
1022 			offset += copy;
1023 			to     += copy;
1024 		}
1025 		start = end;
1026 	}
1027 
1028 	if (skb_shinfo(skb)->frag_list) {
1029 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1030 
1031 		for (; list; list = list->next) {
1032 			int end;
1033 
1034 			BUG_TRAP(start <= offset + len);
1035 
1036 			end = start + list->len;
1037 			if ((copy = end - offset) > 0) {
1038 				if (copy > len)
1039 					copy = len;
1040 				if (skb_copy_bits(list, offset - start,
1041 						  to, copy))
1042 					goto fault;
1043 				if ((len -= copy) == 0)
1044 					return 0;
1045 				offset += copy;
1046 				to     += copy;
1047 			}
1048 			start = end;
1049 		}
1050 	}
1051 	if (!len)
1052 		return 0;
1053 
1054 fault:
1055 	return -EFAULT;
1056 }
1057 
1058 /**
1059  *	skb_store_bits - store bits from kernel buffer to skb
1060  *	@skb: destination buffer
1061  *	@offset: offset in destination
1062  *	@from: source buffer
1063  *	@len: number of bytes to copy
1064  *
1065  *	Copy the specified number of bytes from the source buffer to the
1066  *	destination skb.  This function handles all the messy bits of
1067  *	traversing fragment lists and such.
1068  */
1069 
1070 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1071 {
1072 	int i, copy;
1073 	int start = skb_headlen(skb);
1074 
1075 	if (offset > (int)skb->len - len)
1076 		goto fault;
1077 
1078 	if ((copy = start - offset) > 0) {
1079 		if (copy > len)
1080 			copy = len;
1081 		memcpy(skb->data + offset, from, copy);
1082 		if ((len -= copy) == 0)
1083 			return 0;
1084 		offset += copy;
1085 		from += copy;
1086 	}
1087 
1088 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1089 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1090 		int end;
1091 
1092 		BUG_TRAP(start <= offset + len);
1093 
1094 		end = start + frag->size;
1095 		if ((copy = end - offset) > 0) {
1096 			u8 *vaddr;
1097 
1098 			if (copy > len)
1099 				copy = len;
1100 
1101 			vaddr = kmap_skb_frag(frag);
1102 			memcpy(vaddr + frag->page_offset + offset - start,
1103 			       from, copy);
1104 			kunmap_skb_frag(vaddr);
1105 
1106 			if ((len -= copy) == 0)
1107 				return 0;
1108 			offset += copy;
1109 			from += copy;
1110 		}
1111 		start = end;
1112 	}
1113 
1114 	if (skb_shinfo(skb)->frag_list) {
1115 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1116 
1117 		for (; list; list = list->next) {
1118 			int end;
1119 
1120 			BUG_TRAP(start <= offset + len);
1121 
1122 			end = start + list->len;
1123 			if ((copy = end - offset) > 0) {
1124 				if (copy > len)
1125 					copy = len;
1126 				if (skb_store_bits(list, offset - start,
1127 						   from, copy))
1128 					goto fault;
1129 				if ((len -= copy) == 0)
1130 					return 0;
1131 				offset += copy;
1132 				from += copy;
1133 			}
1134 			start = end;
1135 		}
1136 	}
1137 	if (!len)
1138 		return 0;
1139 
1140 fault:
1141 	return -EFAULT;
1142 }
1143 
1144 EXPORT_SYMBOL(skb_store_bits);
1145 
1146 /* Checksum skb data. */
1147 
1148 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1149 			  int len, unsigned int csum)
1150 {
1151 	int start = skb_headlen(skb);
1152 	int i, copy = start - offset;
1153 	int pos = 0;
1154 
1155 	/* Checksum header. */
1156 	if (copy > 0) {
1157 		if (copy > len)
1158 			copy = len;
1159 		csum = csum_partial(skb->data + offset, copy, csum);
1160 		if ((len -= copy) == 0)
1161 			return csum;
1162 		offset += copy;
1163 		pos	= copy;
1164 	}
1165 
1166 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1167 		int end;
1168 
1169 		BUG_TRAP(start <= offset + len);
1170 
1171 		end = start + skb_shinfo(skb)->frags[i].size;
1172 		if ((copy = end - offset) > 0) {
1173 			unsigned int csum2;
1174 			u8 *vaddr;
1175 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1176 
1177 			if (copy > len)
1178 				copy = len;
1179 			vaddr = kmap_skb_frag(frag);
1180 			csum2 = csum_partial(vaddr + frag->page_offset +
1181 					     offset - start, copy, 0);
1182 			kunmap_skb_frag(vaddr);
1183 			csum = csum_block_add(csum, csum2, pos);
1184 			if (!(len -= copy))
1185 				return csum;
1186 			offset += copy;
1187 			pos    += copy;
1188 		}
1189 		start = end;
1190 	}
1191 
1192 	if (skb_shinfo(skb)->frag_list) {
1193 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1194 
1195 		for (; list; list = list->next) {
1196 			int end;
1197 
1198 			BUG_TRAP(start <= offset + len);
1199 
1200 			end = start + list->len;
1201 			if ((copy = end - offset) > 0) {
1202 				unsigned int csum2;
1203 				if (copy > len)
1204 					copy = len;
1205 				csum2 = skb_checksum(list, offset - start,
1206 						     copy, 0);
1207 				csum = csum_block_add(csum, csum2, pos);
1208 				if ((len -= copy) == 0)
1209 					return csum;
1210 				offset += copy;
1211 				pos    += copy;
1212 			}
1213 			start = end;
1214 		}
1215 	}
1216 	BUG_ON(len);
1217 
1218 	return csum;
1219 }
1220 
1221 /* Both of above in one bottle. */
1222 
1223 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1224 				    u8 *to, int len, unsigned int csum)
1225 {
1226 	int start = skb_headlen(skb);
1227 	int i, copy = start - offset;
1228 	int pos = 0;
1229 
1230 	/* Copy header. */
1231 	if (copy > 0) {
1232 		if (copy > len)
1233 			copy = len;
1234 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1235 						 copy, csum);
1236 		if ((len -= copy) == 0)
1237 			return csum;
1238 		offset += copy;
1239 		to     += copy;
1240 		pos	= copy;
1241 	}
1242 
1243 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1244 		int end;
1245 
1246 		BUG_TRAP(start <= offset + len);
1247 
1248 		end = start + skb_shinfo(skb)->frags[i].size;
1249 		if ((copy = end - offset) > 0) {
1250 			unsigned int csum2;
1251 			u8 *vaddr;
1252 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1253 
1254 			if (copy > len)
1255 				copy = len;
1256 			vaddr = kmap_skb_frag(frag);
1257 			csum2 = csum_partial_copy_nocheck(vaddr +
1258 							  frag->page_offset +
1259 							  offset - start, to,
1260 							  copy, 0);
1261 			kunmap_skb_frag(vaddr);
1262 			csum = csum_block_add(csum, csum2, pos);
1263 			if (!(len -= copy))
1264 				return csum;
1265 			offset += copy;
1266 			to     += copy;
1267 			pos    += copy;
1268 		}
1269 		start = end;
1270 	}
1271 
1272 	if (skb_shinfo(skb)->frag_list) {
1273 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1274 
1275 		for (; list; list = list->next) {
1276 			unsigned int csum2;
1277 			int end;
1278 
1279 			BUG_TRAP(start <= offset + len);
1280 
1281 			end = start + list->len;
1282 			if ((copy = end - offset) > 0) {
1283 				if (copy > len)
1284 					copy = len;
1285 				csum2 = skb_copy_and_csum_bits(list,
1286 							       offset - start,
1287 							       to, copy, 0);
1288 				csum = csum_block_add(csum, csum2, pos);
1289 				if ((len -= copy) == 0)
1290 					return csum;
1291 				offset += copy;
1292 				to     += copy;
1293 				pos    += copy;
1294 			}
1295 			start = end;
1296 		}
1297 	}
1298 	BUG_ON(len);
1299 	return csum;
1300 }
1301 
1302 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1303 {
1304 	unsigned int csum;
1305 	long csstart;
1306 
1307 	if (skb->ip_summed == CHECKSUM_HW)
1308 		csstart = skb->h.raw - skb->data;
1309 	else
1310 		csstart = skb_headlen(skb);
1311 
1312 	BUG_ON(csstart > skb_headlen(skb));
1313 
1314 	memcpy(to, skb->data, csstart);
1315 
1316 	csum = 0;
1317 	if (csstart != skb->len)
1318 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1319 					      skb->len - csstart, 0);
1320 
1321 	if (skb->ip_summed == CHECKSUM_HW) {
1322 		long csstuff = csstart + skb->csum;
1323 
1324 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1325 	}
1326 }
1327 
1328 /**
1329  *	skb_dequeue - remove from the head of the queue
1330  *	@list: list to dequeue from
1331  *
1332  *	Remove the head of the list. The list lock is taken so the function
1333  *	may be used safely with other locking list functions. The head item is
1334  *	returned or %NULL if the list is empty.
1335  */
1336 
1337 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1338 {
1339 	unsigned long flags;
1340 	struct sk_buff *result;
1341 
1342 	spin_lock_irqsave(&list->lock, flags);
1343 	result = __skb_dequeue(list);
1344 	spin_unlock_irqrestore(&list->lock, flags);
1345 	return result;
1346 }
1347 
1348 /**
1349  *	skb_dequeue_tail - remove from the tail of the queue
1350  *	@list: list to dequeue from
1351  *
1352  *	Remove the tail of the list. The list lock is taken so the function
1353  *	may be used safely with other locking list functions. The tail item is
1354  *	returned or %NULL if the list is empty.
1355  */
1356 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1357 {
1358 	unsigned long flags;
1359 	struct sk_buff *result;
1360 
1361 	spin_lock_irqsave(&list->lock, flags);
1362 	result = __skb_dequeue_tail(list);
1363 	spin_unlock_irqrestore(&list->lock, flags);
1364 	return result;
1365 }
1366 
1367 /**
1368  *	skb_queue_purge - empty a list
1369  *	@list: list to empty
1370  *
1371  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1372  *	the list and one reference dropped. This function takes the list
1373  *	lock and is atomic with respect to other list locking functions.
1374  */
1375 void skb_queue_purge(struct sk_buff_head *list)
1376 {
1377 	struct sk_buff *skb;
1378 	while ((skb = skb_dequeue(list)) != NULL)
1379 		kfree_skb(skb);
1380 }
1381 
1382 /**
1383  *	skb_queue_head - queue a buffer at the list head
1384  *	@list: list to use
1385  *	@newsk: buffer to queue
1386  *
1387  *	Queue a buffer at the start of the list. This function takes the
1388  *	list lock and can be used safely with other locking &sk_buff functions
1389  *	safely.
1390  *
1391  *	A buffer cannot be placed on two lists at the same time.
1392  */
1393 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1394 {
1395 	unsigned long flags;
1396 
1397 	spin_lock_irqsave(&list->lock, flags);
1398 	__skb_queue_head(list, newsk);
1399 	spin_unlock_irqrestore(&list->lock, flags);
1400 }
1401 
1402 /**
1403  *	skb_queue_tail - queue a buffer at the list tail
1404  *	@list: list to use
1405  *	@newsk: buffer to queue
1406  *
1407  *	Queue a buffer at the tail of the list. This function takes the
1408  *	list lock and can be used safely with other locking &sk_buff functions
1409  *	safely.
1410  *
1411  *	A buffer cannot be placed on two lists at the same time.
1412  */
1413 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1414 {
1415 	unsigned long flags;
1416 
1417 	spin_lock_irqsave(&list->lock, flags);
1418 	__skb_queue_tail(list, newsk);
1419 	spin_unlock_irqrestore(&list->lock, flags);
1420 }
1421 
1422 /**
1423  *	skb_unlink	-	remove a buffer from a list
1424  *	@skb: buffer to remove
1425  *	@list: list to use
1426  *
1427  *	Remove a packet from a list. The list locks are taken and this
1428  *	function is atomic with respect to other list locked calls
1429  *
1430  *	You must know what list the SKB is on.
1431  */
1432 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1433 {
1434 	unsigned long flags;
1435 
1436 	spin_lock_irqsave(&list->lock, flags);
1437 	__skb_unlink(skb, list);
1438 	spin_unlock_irqrestore(&list->lock, flags);
1439 }
1440 
1441 /**
1442  *	skb_append	-	append a buffer
1443  *	@old: buffer to insert after
1444  *	@newsk: buffer to insert
1445  *	@list: list to use
1446  *
1447  *	Place a packet after a given packet in a list. The list locks are taken
1448  *	and this function is atomic with respect to other list locked calls.
1449  *	A buffer cannot be placed on two lists at the same time.
1450  */
1451 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1452 {
1453 	unsigned long flags;
1454 
1455 	spin_lock_irqsave(&list->lock, flags);
1456 	__skb_append(old, newsk, list);
1457 	spin_unlock_irqrestore(&list->lock, flags);
1458 }
1459 
1460 
1461 /**
1462  *	skb_insert	-	insert a buffer
1463  *	@old: buffer to insert before
1464  *	@newsk: buffer to insert
1465  *	@list: list to use
1466  *
1467  *	Place a packet before a given packet in a list. The list locks are
1468  * 	taken and this function is atomic with respect to other list locked
1469  *	calls.
1470  *
1471  *	A buffer cannot be placed on two lists at the same time.
1472  */
1473 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1474 {
1475 	unsigned long flags;
1476 
1477 	spin_lock_irqsave(&list->lock, flags);
1478 	__skb_insert(newsk, old->prev, old, list);
1479 	spin_unlock_irqrestore(&list->lock, flags);
1480 }
1481 
1482 #if 0
1483 /*
1484  * 	Tune the memory allocator for a new MTU size.
1485  */
1486 void skb_add_mtu(int mtu)
1487 {
1488 	/* Must match allocation in alloc_skb */
1489 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1490 
1491 	kmem_add_cache_size(mtu);
1492 }
1493 #endif
1494 
1495 static inline void skb_split_inside_header(struct sk_buff *skb,
1496 					   struct sk_buff* skb1,
1497 					   const u32 len, const int pos)
1498 {
1499 	int i;
1500 
1501 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1502 
1503 	/* And move data appendix as is. */
1504 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1505 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1506 
1507 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1508 	skb_shinfo(skb)->nr_frags  = 0;
1509 	skb1->data_len		   = skb->data_len;
1510 	skb1->len		   += skb1->data_len;
1511 	skb->data_len		   = 0;
1512 	skb->len		   = len;
1513 	skb->tail		   = skb->data + len;
1514 }
1515 
1516 static inline void skb_split_no_header(struct sk_buff *skb,
1517 				       struct sk_buff* skb1,
1518 				       const u32 len, int pos)
1519 {
1520 	int i, k = 0;
1521 	const int nfrags = skb_shinfo(skb)->nr_frags;
1522 
1523 	skb_shinfo(skb)->nr_frags = 0;
1524 	skb1->len		  = skb1->data_len = skb->len - len;
1525 	skb->len		  = len;
1526 	skb->data_len		  = len - pos;
1527 
1528 	for (i = 0; i < nfrags; i++) {
1529 		int size = skb_shinfo(skb)->frags[i].size;
1530 
1531 		if (pos + size > len) {
1532 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1533 
1534 			if (pos < len) {
1535 				/* Split frag.
1536 				 * We have two variants in this case:
1537 				 * 1. Move all the frag to the second
1538 				 *    part, if it is possible. F.e.
1539 				 *    this approach is mandatory for TUX,
1540 				 *    where splitting is expensive.
1541 				 * 2. Split is accurately. We make this.
1542 				 */
1543 				get_page(skb_shinfo(skb)->frags[i].page);
1544 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1545 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1546 				skb_shinfo(skb)->frags[i].size	= len - pos;
1547 				skb_shinfo(skb)->nr_frags++;
1548 			}
1549 			k++;
1550 		} else
1551 			skb_shinfo(skb)->nr_frags++;
1552 		pos += size;
1553 	}
1554 	skb_shinfo(skb1)->nr_frags = k;
1555 }
1556 
1557 /**
1558  * skb_split - Split fragmented skb to two parts at length len.
1559  * @skb: the buffer to split
1560  * @skb1: the buffer to receive the second part
1561  * @len: new length for skb
1562  */
1563 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1564 {
1565 	int pos = skb_headlen(skb);
1566 
1567 	if (len < pos)	/* Split line is inside header. */
1568 		skb_split_inside_header(skb, skb1, len, pos);
1569 	else		/* Second chunk has no header, nothing to copy. */
1570 		skb_split_no_header(skb, skb1, len, pos);
1571 }
1572 
1573 /**
1574  * skb_prepare_seq_read - Prepare a sequential read of skb data
1575  * @skb: the buffer to read
1576  * @from: lower offset of data to be read
1577  * @to: upper offset of data to be read
1578  * @st: state variable
1579  *
1580  * Initializes the specified state variable. Must be called before
1581  * invoking skb_seq_read() for the first time.
1582  */
1583 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1584 			  unsigned int to, struct skb_seq_state *st)
1585 {
1586 	st->lower_offset = from;
1587 	st->upper_offset = to;
1588 	st->root_skb = st->cur_skb = skb;
1589 	st->frag_idx = st->stepped_offset = 0;
1590 	st->frag_data = NULL;
1591 }
1592 
1593 /**
1594  * skb_seq_read - Sequentially read skb data
1595  * @consumed: number of bytes consumed by the caller so far
1596  * @data: destination pointer for data to be returned
1597  * @st: state variable
1598  *
1599  * Reads a block of skb data at &consumed relative to the
1600  * lower offset specified to skb_prepare_seq_read(). Assigns
1601  * the head of the data block to &data and returns the length
1602  * of the block or 0 if the end of the skb data or the upper
1603  * offset has been reached.
1604  *
1605  * The caller is not required to consume all of the data
1606  * returned, i.e. &consumed is typically set to the number
1607  * of bytes already consumed and the next call to
1608  * skb_seq_read() will return the remaining part of the block.
1609  *
1610  * Note: The size of each block of data returned can be arbitary,
1611  *       this limitation is the cost for zerocopy seqeuental
1612  *       reads of potentially non linear data.
1613  *
1614  * Note: Fragment lists within fragments are not implemented
1615  *       at the moment, state->root_skb could be replaced with
1616  *       a stack for this purpose.
1617  */
1618 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1619 			  struct skb_seq_state *st)
1620 {
1621 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1622 	skb_frag_t *frag;
1623 
1624 	if (unlikely(abs_offset >= st->upper_offset))
1625 		return 0;
1626 
1627 next_skb:
1628 	block_limit = skb_headlen(st->cur_skb);
1629 
1630 	if (abs_offset < block_limit) {
1631 		*data = st->cur_skb->data + abs_offset;
1632 		return block_limit - abs_offset;
1633 	}
1634 
1635 	if (st->frag_idx == 0 && !st->frag_data)
1636 		st->stepped_offset += skb_headlen(st->cur_skb);
1637 
1638 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1639 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1640 		block_limit = frag->size + st->stepped_offset;
1641 
1642 		if (abs_offset < block_limit) {
1643 			if (!st->frag_data)
1644 				st->frag_data = kmap_skb_frag(frag);
1645 
1646 			*data = (u8 *) st->frag_data + frag->page_offset +
1647 				(abs_offset - st->stepped_offset);
1648 
1649 			return block_limit - abs_offset;
1650 		}
1651 
1652 		if (st->frag_data) {
1653 			kunmap_skb_frag(st->frag_data);
1654 			st->frag_data = NULL;
1655 		}
1656 
1657 		st->frag_idx++;
1658 		st->stepped_offset += frag->size;
1659 	}
1660 
1661 	if (st->cur_skb->next) {
1662 		st->cur_skb = st->cur_skb->next;
1663 		st->frag_idx = 0;
1664 		goto next_skb;
1665 	} else if (st->root_skb == st->cur_skb &&
1666 		   skb_shinfo(st->root_skb)->frag_list) {
1667 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1668 		goto next_skb;
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  * skb_abort_seq_read - Abort a sequential read of skb data
1676  * @st: state variable
1677  *
1678  * Must be called if skb_seq_read() was not called until it
1679  * returned 0.
1680  */
1681 void skb_abort_seq_read(struct skb_seq_state *st)
1682 {
1683 	if (st->frag_data)
1684 		kunmap_skb_frag(st->frag_data);
1685 }
1686 
1687 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1688 
1689 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1690 					  struct ts_config *conf,
1691 					  struct ts_state *state)
1692 {
1693 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1694 }
1695 
1696 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1697 {
1698 	skb_abort_seq_read(TS_SKB_CB(state));
1699 }
1700 
1701 /**
1702  * skb_find_text - Find a text pattern in skb data
1703  * @skb: the buffer to look in
1704  * @from: search offset
1705  * @to: search limit
1706  * @config: textsearch configuration
1707  * @state: uninitialized textsearch state variable
1708  *
1709  * Finds a pattern in the skb data according to the specified
1710  * textsearch configuration. Use textsearch_next() to retrieve
1711  * subsequent occurrences of the pattern. Returns the offset
1712  * to the first occurrence or UINT_MAX if no match was found.
1713  */
1714 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1715 			   unsigned int to, struct ts_config *config,
1716 			   struct ts_state *state)
1717 {
1718 	config->get_next_block = skb_ts_get_next_block;
1719 	config->finish = skb_ts_finish;
1720 
1721 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1722 
1723 	return textsearch_find(config, state);
1724 }
1725 
1726 /**
1727  * skb_append_datato_frags: - append the user data to a skb
1728  * @sk: sock  structure
1729  * @skb: skb structure to be appened with user data.
1730  * @getfrag: call back function to be used for getting the user data
1731  * @from: pointer to user message iov
1732  * @length: length of the iov message
1733  *
1734  * Description: This procedure append the user data in the fragment part
1735  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1736  */
1737 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1738 			int (*getfrag)(void *from, char *to, int offset,
1739 					int len, int odd, struct sk_buff *skb),
1740 			void *from, int length)
1741 {
1742 	int frg_cnt = 0;
1743 	skb_frag_t *frag = NULL;
1744 	struct page *page = NULL;
1745 	int copy, left;
1746 	int offset = 0;
1747 	int ret;
1748 
1749 	do {
1750 		/* Return error if we don't have space for new frag */
1751 		frg_cnt = skb_shinfo(skb)->nr_frags;
1752 		if (frg_cnt >= MAX_SKB_FRAGS)
1753 			return -EFAULT;
1754 
1755 		/* allocate a new page for next frag */
1756 		page = alloc_pages(sk->sk_allocation, 0);
1757 
1758 		/* If alloc_page fails just return failure and caller will
1759 		 * free previous allocated pages by doing kfree_skb()
1760 		 */
1761 		if (page == NULL)
1762 			return -ENOMEM;
1763 
1764 		/* initialize the next frag */
1765 		sk->sk_sndmsg_page = page;
1766 		sk->sk_sndmsg_off = 0;
1767 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1768 		skb->truesize += PAGE_SIZE;
1769 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1770 
1771 		/* get the new initialized frag */
1772 		frg_cnt = skb_shinfo(skb)->nr_frags;
1773 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1774 
1775 		/* copy the user data to page */
1776 		left = PAGE_SIZE - frag->page_offset;
1777 		copy = (length > left)? left : length;
1778 
1779 		ret = getfrag(from, (page_address(frag->page) +
1780 			    frag->page_offset + frag->size),
1781 			    offset, copy, 0, skb);
1782 		if (ret < 0)
1783 			return -EFAULT;
1784 
1785 		/* copy was successful so update the size parameters */
1786 		sk->sk_sndmsg_off += copy;
1787 		frag->size += copy;
1788 		skb->len += copy;
1789 		skb->data_len += copy;
1790 		offset += copy;
1791 		length -= copy;
1792 
1793 	} while (length > 0);
1794 
1795 	return 0;
1796 }
1797 
1798 /**
1799  *	skb_pull_rcsum - pull skb and update receive checksum
1800  *	@skb: buffer to update
1801  *	@start: start of data before pull
1802  *	@len: length of data pulled
1803  *
1804  *	This function performs an skb_pull on the packet and updates
1805  *	update the CHECKSUM_HW checksum.  It should be used on receive
1806  *	path processing instead of skb_pull unless you know that the
1807  *	checksum difference is zero (e.g., a valid IP header) or you
1808  *	are setting ip_summed to CHECKSUM_NONE.
1809  */
1810 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1811 {
1812 	BUG_ON(len > skb->len);
1813 	skb->len -= len;
1814 	BUG_ON(skb->len < skb->data_len);
1815 	skb_postpull_rcsum(skb, skb->data, len);
1816 	return skb->data += len;
1817 }
1818 
1819 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1820 
1821 void __init skb_init(void)
1822 {
1823 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1824 					      sizeof(struct sk_buff),
1825 					      0,
1826 					      SLAB_HWCACHE_ALIGN,
1827 					      NULL, NULL);
1828 	if (!skbuff_head_cache)
1829 		panic("cannot create skbuff cache");
1830 
1831 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1832 						(2*sizeof(struct sk_buff)) +
1833 						sizeof(atomic_t),
1834 						0,
1835 						SLAB_HWCACHE_ALIGN,
1836 						NULL, NULL);
1837 	if (!skbuff_fclone_cache)
1838 		panic("cannot create skbuff cache");
1839 }
1840 
1841 EXPORT_SYMBOL(___pskb_trim);
1842 EXPORT_SYMBOL(__kfree_skb);
1843 EXPORT_SYMBOL(kfree_skb);
1844 EXPORT_SYMBOL(__pskb_pull_tail);
1845 EXPORT_SYMBOL(__alloc_skb);
1846 EXPORT_SYMBOL(pskb_copy);
1847 EXPORT_SYMBOL(pskb_expand_head);
1848 EXPORT_SYMBOL(skb_checksum);
1849 EXPORT_SYMBOL(skb_clone);
1850 EXPORT_SYMBOL(skb_clone_fraglist);
1851 EXPORT_SYMBOL(skb_copy);
1852 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1853 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1854 EXPORT_SYMBOL(skb_copy_bits);
1855 EXPORT_SYMBOL(skb_copy_expand);
1856 EXPORT_SYMBOL(skb_over_panic);
1857 EXPORT_SYMBOL(skb_pad);
1858 EXPORT_SYMBOL(skb_realloc_headroom);
1859 EXPORT_SYMBOL(skb_under_panic);
1860 EXPORT_SYMBOL(skb_dequeue);
1861 EXPORT_SYMBOL(skb_dequeue_tail);
1862 EXPORT_SYMBOL(skb_insert);
1863 EXPORT_SYMBOL(skb_queue_purge);
1864 EXPORT_SYMBOL(skb_queue_head);
1865 EXPORT_SYMBOL(skb_queue_tail);
1866 EXPORT_SYMBOL(skb_unlink);
1867 EXPORT_SYMBOL(skb_append);
1868 EXPORT_SYMBOL(skb_split);
1869 EXPORT_SYMBOL(skb_prepare_seq_read);
1870 EXPORT_SYMBOL(skb_seq_read);
1871 EXPORT_SYMBOL(skb_abort_seq_read);
1872 EXPORT_SYMBOL(skb_find_text);
1873 EXPORT_SYMBOL(skb_append_datato_frags);
1874