xref: /linux/net/core/skbuff.c (revision d8f87aa5fa0a4276491fa8ef436cd22605a3f9ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68 
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/psp/types.h>
83 #include <net/dropreason.h>
84 #include <net/xdp_sock.h>
85 
86 #include <linux/uaccess.h>
87 #include <trace/events/skb.h>
88 #include <linux/highmem.h>
89 #include <linux/capability.h>
90 #include <linux/user_namespace.h>
91 #include <linux/indirect_call_wrapper.h>
92 #include <linux/textsearch.h>
93 
94 #include "dev.h"
95 #include "devmem.h"
96 #include "netmem_priv.h"
97 #include "sock_destructor.h"
98 
99 #ifdef CONFIG_SKB_EXTENSIONS
100 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
101 #endif
102 
103 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
105 					       GRO_MAX_HEAD_PAD))
106 
107 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
108  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
109  * size, and we can differentiate heads from skb_small_head_cache
110  * vs system slabs by looking at their size (skb_end_offset()).
111  */
112 #define SKB_SMALL_HEAD_CACHE_SIZE					\
113 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
114 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
115 		SKB_SMALL_HEAD_SIZE)
116 
117 #define SKB_SMALL_HEAD_HEADROOM						\
118 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
119 
120 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
121  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
122  * netmem is a page.
123  */
124 static_assert(offsetof(struct bio_vec, bv_page) ==
125 	      offsetof(skb_frag_t, netmem));
126 static_assert(sizeof_field(struct bio_vec, bv_page) ==
127 	      sizeof_field(skb_frag_t, netmem));
128 
129 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
130 static_assert(sizeof_field(struct bio_vec, bv_len) ==
131 	      sizeof_field(skb_frag_t, len));
132 
133 static_assert(offsetof(struct bio_vec, bv_offset) ==
134 	      offsetof(skb_frag_t, offset));
135 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
136 	      sizeof_field(skb_frag_t, offset));
137 
138 #undef FN
139 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
140 static const char * const drop_reasons[] = {
141 	[SKB_CONSUMED] = "CONSUMED",
142 	DEFINE_DROP_REASON(FN, FN)
143 };
144 
145 static const struct drop_reason_list drop_reasons_core = {
146 	.reasons = drop_reasons,
147 	.n_reasons = ARRAY_SIZE(drop_reasons),
148 };
149 
150 const struct drop_reason_list __rcu *
151 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
152 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
153 };
154 EXPORT_SYMBOL(drop_reasons_by_subsys);
155 
156 /**
157  * drop_reasons_register_subsys - register another drop reason subsystem
158  * @subsys: the subsystem to register, must not be the core
159  * @list: the list of drop reasons within the subsystem, must point to
160  *	a statically initialized list
161  */
162 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
163 				  const struct drop_reason_list *list)
164 {
165 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
166 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
167 		 "invalid subsystem %d\n", subsys))
168 		return;
169 
170 	/* must point to statically allocated memory, so INIT is OK */
171 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
172 }
173 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
174 
175 /**
176  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
177  * @subsys: the subsystem to remove, must not be the core
178  *
179  * Note: This will synchronize_rcu() to ensure no users when it returns.
180  */
181 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
182 {
183 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
184 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
185 		 "invalid subsystem %d\n", subsys))
186 		return;
187 
188 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
189 
190 	synchronize_rcu();
191 }
192 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
193 
194 /**
195  *	skb_panic - private function for out-of-line support
196  *	@skb:	buffer
197  *	@sz:	size
198  *	@addr:	address
199  *	@msg:	skb_over_panic or skb_under_panic
200  *
201  *	Out-of-line support for skb_put() and skb_push().
202  *	Called via the wrapper skb_over_panic() or skb_under_panic().
203  *	Keep out of line to prevent kernel bloat.
204  *	__builtin_return_address is not used because it is not always reliable.
205  */
206 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
207 		      const char msg[])
208 {
209 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
210 		 msg, addr, skb->len, sz, skb->head, skb->data,
211 		 (unsigned long)skb->tail, (unsigned long)skb->end,
212 		 skb->dev ? skb->dev->name : "<NULL>");
213 	BUG();
214 }
215 
216 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
217 {
218 	skb_panic(skb, sz, addr, __func__);
219 }
220 
221 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
222 {
223 	skb_panic(skb, sz, addr, __func__);
224 }
225 
226 #define NAPI_SKB_CACHE_SIZE	128
227 #define NAPI_SKB_CACHE_BULK	32
228 #define NAPI_SKB_CACHE_FREE	32
229 
230 struct napi_alloc_cache {
231 	local_lock_t bh_lock;
232 	struct page_frag_cache page;
233 	unsigned int skb_count;
234 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
235 };
236 
237 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
238 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
239 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
240 };
241 
242 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
243 {
244 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
245 	void *data;
246 
247 	fragsz = SKB_DATA_ALIGN(fragsz);
248 
249 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
250 	data = __page_frag_alloc_align(&nc->page, fragsz,
251 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
252 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
253 	return data;
254 
255 }
256 EXPORT_SYMBOL(__napi_alloc_frag_align);
257 
258 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
259 {
260 	void *data;
261 
262 	if (in_hardirq() || irqs_disabled()) {
263 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
264 
265 		fragsz = SKB_DATA_ALIGN(fragsz);
266 		data = __page_frag_alloc_align(nc, fragsz,
267 					       GFP_ATOMIC | __GFP_NOWARN,
268 					       align_mask);
269 	} else {
270 		local_bh_disable();
271 		data = __napi_alloc_frag_align(fragsz, align_mask);
272 		local_bh_enable();
273 	}
274 	return data;
275 }
276 EXPORT_SYMBOL(__netdev_alloc_frag_align);
277 
278 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler
279  * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset.
280  */
281 static u32 skbuff_cache_size __read_mostly;
282 
283 static inline struct sk_buff *napi_skb_cache_get(bool alloc)
284 {
285 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
286 	struct sk_buff *skb;
287 
288 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
289 	if (unlikely(!nc->skb_count)) {
290 		if (alloc)
291 			nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
292 						GFP_ATOMIC | __GFP_NOWARN,
293 						NAPI_SKB_CACHE_BULK,
294 						nc->skb_cache);
295 		if (unlikely(!nc->skb_count)) {
296 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
297 			return NULL;
298 		}
299 	}
300 
301 	skb = nc->skb_cache[--nc->skb_count];
302 	if (nc->skb_count)
303 		prefetch(nc->skb_cache[nc->skb_count - 1]);
304 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
305 	kasan_mempool_unpoison_object(skb, skbuff_cache_size);
306 
307 	return skb;
308 }
309 
310 /*
311  * Only clear those fields we need to clear, not those that we will
312  * actually initialise later. Hence, don't put any more fields after
313  * the tail pointer in struct sk_buff!
314  */
315 static inline void skbuff_clear(struct sk_buff *skb)
316 {
317 	/* Replace memset(skb, 0, offsetof(struct sk_buff, tail))
318 	 * with two smaller memset(), with a barrier() between them.
319 	 * This forces the compiler to inline both calls.
320 	 */
321 	BUILD_BUG_ON(offsetof(struct sk_buff, tail) <= 128);
322 	memset(skb, 0, 128);
323 	barrier();
324 	memset((void *)skb + 128, 0, offsetof(struct sk_buff, tail) - 128);
325 }
326 
327 /**
328  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
329  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
330  * @n: number of entries to provide
331  *
332  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
333  * the pointers into the provided array @skbs. If there are less entries
334  * available, tries to replenish the cache and bulk-allocates the diff from
335  * the MM layer if needed.
336  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
337  * ready for {,__}build_skb_around() and don't have any data buffers attached.
338  * Must be called *only* from the BH context.
339  *
340  * Return: number of successfully allocated skbs (@n if no actual allocation
341  *	   needed or kmem_cache_alloc_bulk() didn't fail).
342  */
343 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
344 {
345 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
346 	u32 bulk, total = n;
347 
348 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
349 
350 	if (nc->skb_count >= n)
351 		goto get;
352 
353 	/* No enough cached skbs. Try refilling the cache first */
354 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
355 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
356 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
357 					       &nc->skb_cache[nc->skb_count]);
358 	if (likely(nc->skb_count >= n))
359 		goto get;
360 
361 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
362 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
363 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
364 				   n - nc->skb_count, &skbs[nc->skb_count]);
365 	if (likely(nc->skb_count >= n))
366 		goto get;
367 
368 	/* kmem_cache didn't allocate the number we need, limit the output */
369 	total -= n - nc->skb_count;
370 	n = nc->skb_count;
371 
372 get:
373 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
374 		skbs[i] = nc->skb_cache[base + i];
375 
376 		kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size);
377 		skbuff_clear(skbs[i]);
378 	}
379 
380 	nc->skb_count -= n;
381 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
382 
383 	return total;
384 }
385 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
386 
387 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
388 					 unsigned int size)
389 {
390 	struct skb_shared_info *shinfo;
391 
392 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
393 
394 	/* Assumes caller memset cleared SKB */
395 	skb->truesize = SKB_TRUESIZE(size);
396 	refcount_set(&skb->users, 1);
397 	skb->head = data;
398 	skb->data = data;
399 	skb_reset_tail_pointer(skb);
400 	skb_set_end_offset(skb, size);
401 	skb->mac_header = (typeof(skb->mac_header))~0U;
402 	skb->transport_header = (typeof(skb->transport_header))~0U;
403 	skb->alloc_cpu = raw_smp_processor_id();
404 	/* make sure we initialize shinfo sequentially */
405 	shinfo = skb_shinfo(skb);
406 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
407 	atomic_set(&shinfo->dataref, 1);
408 
409 	skb_set_kcov_handle(skb, kcov_common_handle());
410 }
411 
412 static inline void *__slab_build_skb(void *data, unsigned int *size)
413 {
414 	void *resized;
415 
416 	/* Must find the allocation size (and grow it to match). */
417 	*size = ksize(data);
418 	/* krealloc() will immediately return "data" when
419 	 * "ksize(data)" is requested: it is the existing upper
420 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
421 	 * that this "new" pointer needs to be passed back to the
422 	 * caller for use so the __alloc_size hinting will be
423 	 * tracked correctly.
424 	 */
425 	resized = krealloc(data, *size, GFP_ATOMIC);
426 	WARN_ON_ONCE(resized != data);
427 	return resized;
428 }
429 
430 /* build_skb() variant which can operate on slab buffers.
431  * Note that this should be used sparingly as slab buffers
432  * cannot be combined efficiently by GRO!
433  */
434 struct sk_buff *slab_build_skb(void *data)
435 {
436 	struct sk_buff *skb;
437 	unsigned int size;
438 
439 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
440 			       GFP_ATOMIC | __GFP_NOWARN);
441 	if (unlikely(!skb))
442 		return NULL;
443 
444 	skbuff_clear(skb);
445 	data = __slab_build_skb(data, &size);
446 	__finalize_skb_around(skb, data, size);
447 
448 	return skb;
449 }
450 EXPORT_SYMBOL(slab_build_skb);
451 
452 /* Caller must provide SKB that is memset cleared */
453 static void __build_skb_around(struct sk_buff *skb, void *data,
454 			       unsigned int frag_size)
455 {
456 	unsigned int size = frag_size;
457 
458 	/* frag_size == 0 is considered deprecated now. Callers
459 	 * using slab buffer should use slab_build_skb() instead.
460 	 */
461 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
462 		data = __slab_build_skb(data, &size);
463 
464 	__finalize_skb_around(skb, data, size);
465 }
466 
467 /**
468  * __build_skb - build a network buffer
469  * @data: data buffer provided by caller
470  * @frag_size: size of data (must not be 0)
471  *
472  * Allocate a new &sk_buff. Caller provides space holding head and
473  * skb_shared_info. @data must have been allocated from the page
474  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
475  * allocation is deprecated, and callers should use slab_build_skb()
476  * instead.)
477  * The return is the new skb buffer.
478  * On a failure the return is %NULL, and @data is not freed.
479  * Notes :
480  *  Before IO, driver allocates only data buffer where NIC put incoming frame
481  *  Driver should add room at head (NET_SKB_PAD) and
482  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
483  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
484  *  before giving packet to stack.
485  *  RX rings only contains data buffers, not full skbs.
486  */
487 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
488 {
489 	struct sk_buff *skb;
490 
491 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
492 			       GFP_ATOMIC | __GFP_NOWARN);
493 	if (unlikely(!skb))
494 		return NULL;
495 
496 	skbuff_clear(skb);
497 	__build_skb_around(skb, data, frag_size);
498 
499 	return skb;
500 }
501 
502 /* build_skb() is wrapper over __build_skb(), that specifically
503  * takes care of skb->head and skb->pfmemalloc
504  */
505 struct sk_buff *build_skb(void *data, unsigned int frag_size)
506 {
507 	struct sk_buff *skb = __build_skb(data, frag_size);
508 
509 	if (likely(skb && frag_size)) {
510 		skb->head_frag = 1;
511 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
512 	}
513 	return skb;
514 }
515 EXPORT_SYMBOL(build_skb);
516 
517 /**
518  * build_skb_around - build a network buffer around provided skb
519  * @skb: sk_buff provide by caller, must be memset cleared
520  * @data: data buffer provided by caller
521  * @frag_size: size of data
522  */
523 struct sk_buff *build_skb_around(struct sk_buff *skb,
524 				 void *data, unsigned int frag_size)
525 {
526 	if (unlikely(!skb))
527 		return NULL;
528 
529 	__build_skb_around(skb, data, frag_size);
530 
531 	if (frag_size) {
532 		skb->head_frag = 1;
533 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
534 	}
535 	return skb;
536 }
537 EXPORT_SYMBOL(build_skb_around);
538 
539 /**
540  * __napi_build_skb - build a network buffer
541  * @data: data buffer provided by caller
542  * @frag_size: size of data
543  *
544  * Version of __build_skb() that uses NAPI percpu caches to obtain
545  * skbuff_head instead of inplace allocation.
546  *
547  * Returns a new &sk_buff on success, %NULL on allocation failure.
548  */
549 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
550 {
551 	struct sk_buff *skb;
552 
553 	skb = napi_skb_cache_get(true);
554 	if (unlikely(!skb))
555 		return NULL;
556 
557 	skbuff_clear(skb);
558 	__build_skb_around(skb, data, frag_size);
559 
560 	return skb;
561 }
562 
563 /**
564  * napi_build_skb - build a network buffer
565  * @data: data buffer provided by caller
566  * @frag_size: size of data
567  *
568  * Version of __napi_build_skb() that takes care of skb->head_frag
569  * and skb->pfmemalloc when the data is a page or page fragment.
570  *
571  * Returns a new &sk_buff on success, %NULL on allocation failure.
572  */
573 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
574 {
575 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
576 
577 	if (likely(skb) && frag_size) {
578 		skb->head_frag = 1;
579 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
580 	}
581 
582 	return skb;
583 }
584 EXPORT_SYMBOL(napi_build_skb);
585 
586 static void *kmalloc_pfmemalloc(size_t obj_size, gfp_t flags, int node)
587 {
588 	if (!gfp_pfmemalloc_allowed(flags))
589 		return NULL;
590 	if (!obj_size)
591 		return kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
592 					     flags, node);
593 	return kmalloc_node_track_caller(obj_size, flags, node);
594 }
595 
596 /*
597  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
598  * the caller if emergency pfmemalloc reserves are being used. If it is and
599  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
600  * may be used. Otherwise, the packet data may be discarded until enough
601  * memory is free
602  */
603 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
604 			     struct sk_buff *skb)
605 {
606 	size_t obj_size;
607 	void *obj;
608 
609 	obj_size = SKB_HEAD_ALIGN(*size);
610 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
611 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
612 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
613 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
614 				node);
615 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
616 		if (likely(obj))
617 			goto out;
618 		/* Try again but now we are using pfmemalloc reserves */
619 		if (skb)
620 			skb->pfmemalloc = true;
621 		return kmalloc_pfmemalloc(0, flags, node);
622 	}
623 
624 	obj_size = kmalloc_size_roundup(obj_size);
625 	/* The following cast might truncate high-order bits of obj_size, this
626 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
627 	 */
628 	*size = (unsigned int)obj_size;
629 
630 	/*
631 	 * Try a regular allocation, when that fails and we're not entitled
632 	 * to the reserves, fail.
633 	 */
634 	obj = kmalloc_node_track_caller(obj_size,
635 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
636 					node);
637 	if (likely(obj))
638 		goto out;
639 
640 	/* Try again but now we are using pfmemalloc reserves */
641 	if (skb)
642 		skb->pfmemalloc = true;
643 	obj = kmalloc_pfmemalloc(obj_size, flags, node);
644 out:
645 	return obj;
646 }
647 
648 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
649  *	'private' fields and also do memory statistics to find all the
650  *	[BEEP] leaks.
651  *
652  */
653 
654 /**
655  *	__alloc_skb	-	allocate a network buffer
656  *	@size: size to allocate
657  *	@gfp_mask: allocation mask
658  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
659  *		instead of head cache and allocate a cloned (child) skb.
660  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
661  *		allocations in case the data is required for writeback
662  *	@node: numa node to allocate memory on
663  *
664  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
665  *	tail room of at least size bytes. The object has a reference count
666  *	of one. The return is the buffer. On a failure the return is %NULL.
667  *
668  *	Buffers may only be allocated from interrupts using a @gfp_mask of
669  *	%GFP_ATOMIC.
670  */
671 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
672 			    int flags, int node)
673 {
674 	struct sk_buff *skb = NULL;
675 	struct kmem_cache *cache;
676 	u8 *data;
677 
678 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
679 		gfp_mask |= __GFP_MEMALLOC;
680 
681 	if (flags & SKB_ALLOC_FCLONE) {
682 		cache = net_hotdata.skbuff_fclone_cache;
683 		goto fallback;
684 	}
685 	cache = net_hotdata.skbuff_cache;
686 	if (unlikely(node != NUMA_NO_NODE && node != numa_mem_id()))
687 		goto fallback;
688 
689 	if (flags & SKB_ALLOC_NAPI) {
690 		skb = napi_skb_cache_get(true);
691 		if (unlikely(!skb))
692 			return NULL;
693 	} else if (!in_hardirq() && !irqs_disabled()) {
694 		local_bh_disable();
695 		skb = napi_skb_cache_get(false);
696 		local_bh_enable();
697 	}
698 
699 	if (!skb) {
700 fallback:
701 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
702 		if (unlikely(!skb))
703 			return NULL;
704 	}
705 	skbuff_clear(skb);
706 
707 	/* We do our best to align skb_shared_info on a separate cache
708 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
709 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
710 	 * Both skb->head and skb_shared_info are cache line aligned.
711 	 */
712 	data = kmalloc_reserve(&size, gfp_mask, node, skb);
713 	if (unlikely(!data))
714 		goto nodata;
715 	/* kmalloc_size_roundup() might give us more room than requested.
716 	 * Put skb_shared_info exactly at the end of allocated zone,
717 	 * to allow max possible filling before reallocation.
718 	 */
719 	__finalize_skb_around(skb, data, size);
720 
721 	if (flags & SKB_ALLOC_FCLONE) {
722 		struct sk_buff_fclones *fclones;
723 
724 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
725 
726 		/* skb->fclone is a 2bits field.
727 		 * Replace expensive RMW (skb->fclone = SKB_FCLONE_ORIG)
728 		 * with a single OR.
729 		 */
730 		BUILD_BUG_ON(SKB_FCLONE_UNAVAILABLE != 0);
731 		DEBUG_NET_WARN_ON_ONCE(skb->fclone != SKB_FCLONE_UNAVAILABLE);
732 		skb->fclone |= SKB_FCLONE_ORIG;
733 
734 		refcount_set(&fclones->fclone_ref, 1);
735 	}
736 
737 	return skb;
738 
739 nodata:
740 	kmem_cache_free(cache, skb);
741 	return NULL;
742 }
743 EXPORT_SYMBOL(__alloc_skb);
744 
745 /**
746  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
747  *	@dev: network device to receive on
748  *	@len: length to allocate
749  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
750  *
751  *	Allocate a new &sk_buff and assign it a usage count of one. The
752  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
753  *	the headroom they think they need without accounting for the
754  *	built in space. The built in space is used for optimisations.
755  *
756  *	%NULL is returned if there is no free memory.
757  */
758 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
759 				   gfp_t gfp_mask)
760 {
761 	struct page_frag_cache *nc;
762 	struct sk_buff *skb;
763 	bool pfmemalloc;
764 	void *data;
765 
766 	len += NET_SKB_PAD;
767 
768 	/* If requested length is either too small or too big,
769 	 * we use kmalloc() for skb->head allocation.
770 	 */
771 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
772 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
773 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
774 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
775 		if (!skb)
776 			goto skb_fail;
777 		goto skb_success;
778 	}
779 
780 	len = SKB_HEAD_ALIGN(len);
781 
782 	if (sk_memalloc_socks())
783 		gfp_mask |= __GFP_MEMALLOC;
784 
785 	if (in_hardirq() || irqs_disabled()) {
786 		nc = this_cpu_ptr(&netdev_alloc_cache);
787 		data = page_frag_alloc(nc, len, gfp_mask);
788 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
789 	} else {
790 		local_bh_disable();
791 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
792 
793 		nc = this_cpu_ptr(&napi_alloc_cache.page);
794 		data = page_frag_alloc(nc, len, gfp_mask);
795 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
796 
797 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
798 		local_bh_enable();
799 	}
800 
801 	if (unlikely(!data))
802 		return NULL;
803 
804 	skb = __build_skb(data, len);
805 	if (unlikely(!skb)) {
806 		skb_free_frag(data);
807 		return NULL;
808 	}
809 
810 	if (pfmemalloc)
811 		skb->pfmemalloc = 1;
812 	skb->head_frag = 1;
813 
814 skb_success:
815 	skb_reserve(skb, NET_SKB_PAD);
816 	skb->dev = dev;
817 
818 skb_fail:
819 	return skb;
820 }
821 EXPORT_SYMBOL(__netdev_alloc_skb);
822 
823 /**
824  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
825  *	@napi: napi instance this buffer was allocated for
826  *	@len: length to allocate
827  *
828  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
829  *	attempt to allocate the head from a special reserved region used
830  *	only for NAPI Rx allocation.  By doing this we can save several
831  *	CPU cycles by avoiding having to disable and re-enable IRQs.
832  *
833  *	%NULL is returned if there is no free memory.
834  */
835 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
836 {
837 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
838 	struct napi_alloc_cache *nc;
839 	struct sk_buff *skb;
840 	bool pfmemalloc;
841 	void *data;
842 
843 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
844 	len += NET_SKB_PAD + NET_IP_ALIGN;
845 
846 	/* If requested length is either too small or too big,
847 	 * we use kmalloc() for skb->head allocation.
848 	 */
849 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
850 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
851 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
852 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
853 				  NUMA_NO_NODE);
854 		if (!skb)
855 			goto skb_fail;
856 		goto skb_success;
857 	}
858 
859 	len = SKB_HEAD_ALIGN(len);
860 
861 	if (sk_memalloc_socks())
862 		gfp_mask |= __GFP_MEMALLOC;
863 
864 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
865 	nc = this_cpu_ptr(&napi_alloc_cache);
866 
867 	data = page_frag_alloc(&nc->page, len, gfp_mask);
868 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
869 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
870 
871 	if (unlikely(!data))
872 		return NULL;
873 
874 	skb = __napi_build_skb(data, len);
875 	if (unlikely(!skb)) {
876 		skb_free_frag(data);
877 		return NULL;
878 	}
879 
880 	if (pfmemalloc)
881 		skb->pfmemalloc = 1;
882 	skb->head_frag = 1;
883 
884 skb_success:
885 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
886 	skb->dev = napi->dev;
887 
888 skb_fail:
889 	return skb;
890 }
891 EXPORT_SYMBOL(napi_alloc_skb);
892 
893 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
894 			    int off, int size, unsigned int truesize)
895 {
896 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
897 
898 	skb_fill_netmem_desc(skb, i, netmem, off, size);
899 	skb->len += size;
900 	skb->data_len += size;
901 	skb->truesize += truesize;
902 }
903 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
904 
905 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
906 			  unsigned int truesize)
907 {
908 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
909 
910 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
911 
912 	skb_frag_size_add(frag, size);
913 	skb->len += size;
914 	skb->data_len += size;
915 	skb->truesize += truesize;
916 }
917 EXPORT_SYMBOL(skb_coalesce_rx_frag);
918 
919 static void skb_drop_list(struct sk_buff **listp)
920 {
921 	kfree_skb_list(*listp);
922 	*listp = NULL;
923 }
924 
925 static inline void skb_drop_fraglist(struct sk_buff *skb)
926 {
927 	skb_drop_list(&skb_shinfo(skb)->frag_list);
928 }
929 
930 static void skb_clone_fraglist(struct sk_buff *skb)
931 {
932 	struct sk_buff *list;
933 
934 	skb_walk_frags(skb, list)
935 		skb_get(list);
936 }
937 
938 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
939 		    unsigned int headroom)
940 {
941 #if IS_ENABLED(CONFIG_PAGE_POOL)
942 	u32 size, truesize, len, max_head_size, off;
943 	struct sk_buff *skb = *pskb, *nskb;
944 	int err, i, head_off;
945 	void *data;
946 
947 	/* XDP does not support fraglist so we need to linearize
948 	 * the skb.
949 	 */
950 	if (skb_has_frag_list(skb))
951 		return -EOPNOTSUPP;
952 
953 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
954 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
955 		return -ENOMEM;
956 
957 	size = min_t(u32, skb->len, max_head_size);
958 	truesize = SKB_HEAD_ALIGN(size) + headroom;
959 	data = page_pool_dev_alloc_va(pool, &truesize);
960 	if (!data)
961 		return -ENOMEM;
962 
963 	nskb = napi_build_skb(data, truesize);
964 	if (!nskb) {
965 		page_pool_free_va(pool, data, true);
966 		return -ENOMEM;
967 	}
968 
969 	skb_reserve(nskb, headroom);
970 	skb_copy_header(nskb, skb);
971 	skb_mark_for_recycle(nskb);
972 
973 	err = skb_copy_bits(skb, 0, nskb->data, size);
974 	if (err) {
975 		consume_skb(nskb);
976 		return err;
977 	}
978 	skb_put(nskb, size);
979 
980 	head_off = skb_headroom(nskb) - skb_headroom(skb);
981 	skb_headers_offset_update(nskb, head_off);
982 
983 	off = size;
984 	len = skb->len - off;
985 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
986 		struct page *page;
987 		u32 page_off;
988 
989 		size = min_t(u32, len, PAGE_SIZE);
990 		truesize = size;
991 
992 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
993 		if (!page) {
994 			consume_skb(nskb);
995 			return -ENOMEM;
996 		}
997 
998 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
999 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
1000 				    size);
1001 		if (err) {
1002 			consume_skb(nskb);
1003 			return err;
1004 		}
1005 
1006 		len -= size;
1007 		off += size;
1008 	}
1009 
1010 	consume_skb(skb);
1011 	*pskb = nskb;
1012 
1013 	return 0;
1014 #else
1015 	return -EOPNOTSUPP;
1016 #endif
1017 }
1018 EXPORT_SYMBOL(skb_pp_cow_data);
1019 
1020 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
1021 			 const struct bpf_prog *prog)
1022 {
1023 	if (!prog->aux->xdp_has_frags)
1024 		return -EINVAL;
1025 
1026 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1027 }
1028 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1029 
1030 #if IS_ENABLED(CONFIG_PAGE_POOL)
1031 bool napi_pp_put_page(netmem_ref netmem)
1032 {
1033 	netmem = netmem_compound_head(netmem);
1034 
1035 	if (unlikely(!netmem_is_pp(netmem)))
1036 		return false;
1037 
1038 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
1039 
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(napi_pp_put_page);
1043 #endif
1044 
1045 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1046 {
1047 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1048 		return false;
1049 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1050 }
1051 
1052 /**
1053  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1054  * @skb:	page pool aware skb
1055  *
1056  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1057  * intended to gain fragment references only for page pool aware skbs,
1058  * i.e. when skb->pp_recycle is true, and not for fragments in a
1059  * non-pp-recycling skb. It has a fallback to increase references on normal
1060  * pages, as page pool aware skbs may also have normal page fragments.
1061  */
1062 static int skb_pp_frag_ref(struct sk_buff *skb)
1063 {
1064 	struct skb_shared_info *shinfo;
1065 	netmem_ref head_netmem;
1066 	int i;
1067 
1068 	if (!skb->pp_recycle)
1069 		return -EINVAL;
1070 
1071 	shinfo = skb_shinfo(skb);
1072 
1073 	for (i = 0; i < shinfo->nr_frags; i++) {
1074 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1075 		if (likely(netmem_is_pp(head_netmem)))
1076 			page_pool_ref_netmem(head_netmem);
1077 		else
1078 			page_ref_inc(netmem_to_page(head_netmem));
1079 	}
1080 	return 0;
1081 }
1082 
1083 static void skb_kfree_head(void *head, unsigned int end_offset)
1084 {
1085 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1086 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1087 	else
1088 		kfree(head);
1089 }
1090 
1091 static void skb_free_head(struct sk_buff *skb)
1092 {
1093 	unsigned char *head = skb->head;
1094 
1095 	if (skb->head_frag) {
1096 		if (skb_pp_recycle(skb, head))
1097 			return;
1098 		skb_free_frag(head);
1099 	} else {
1100 		skb_kfree_head(head, skb_end_offset(skb));
1101 	}
1102 }
1103 
1104 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1105 {
1106 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1107 	int i;
1108 
1109 	if (!skb_data_unref(skb, shinfo))
1110 		goto exit;
1111 
1112 	if (skb_zcopy(skb)) {
1113 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1114 
1115 		skb_zcopy_clear(skb, true);
1116 		if (skip_unref)
1117 			goto free_head;
1118 	}
1119 
1120 	for (i = 0; i < shinfo->nr_frags; i++)
1121 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1122 
1123 free_head:
1124 	if (shinfo->frag_list)
1125 		kfree_skb_list_reason(shinfo->frag_list, reason);
1126 
1127 	skb_free_head(skb);
1128 exit:
1129 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1130 	 * bit is only set on the head though, so in order to avoid races
1131 	 * while trying to recycle fragments on __skb_frag_unref() we need
1132 	 * to make one SKB responsible for triggering the recycle path.
1133 	 * So disable the recycling bit if an SKB is cloned and we have
1134 	 * additional references to the fragmented part of the SKB.
1135 	 * Eventually the last SKB will have the recycling bit set and it's
1136 	 * dataref set to 0, which will trigger the recycling
1137 	 */
1138 	skb->pp_recycle = 0;
1139 }
1140 
1141 /*
1142  *	Free an skbuff by memory without cleaning the state.
1143  */
1144 static void kfree_skbmem(struct sk_buff *skb)
1145 {
1146 	struct sk_buff_fclones *fclones;
1147 
1148 	switch (skb->fclone) {
1149 	case SKB_FCLONE_UNAVAILABLE:
1150 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1151 		return;
1152 
1153 	case SKB_FCLONE_ORIG:
1154 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1155 
1156 		/* We usually free the clone (TX completion) before original skb
1157 		 * This test would have no chance to be true for the clone,
1158 		 * while here, branch prediction will be good.
1159 		 */
1160 		if (refcount_read(&fclones->fclone_ref) == 1)
1161 			goto fastpath;
1162 		break;
1163 
1164 	default: /* SKB_FCLONE_CLONE */
1165 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1166 		break;
1167 	}
1168 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1169 		return;
1170 fastpath:
1171 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1172 }
1173 
1174 void skb_release_head_state(struct sk_buff *skb)
1175 {
1176 	skb_dst_drop(skb);
1177 	if (skb->destructor) {
1178 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1179 #ifdef CONFIG_INET
1180 		INDIRECT_CALL_4(skb->destructor,
1181 				tcp_wfree, __sock_wfree, sock_wfree,
1182 				xsk_destruct_skb,
1183 				skb);
1184 #else
1185 		INDIRECT_CALL_2(skb->destructor,
1186 				sock_wfree, xsk_destruct_skb,
1187 				skb);
1188 
1189 #endif
1190 		skb->destructor = NULL;
1191 		skb->sk = NULL;
1192 	}
1193 	nf_reset_ct(skb);
1194 	skb_ext_reset(skb);
1195 }
1196 
1197 /* Free everything but the sk_buff shell. */
1198 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1199 {
1200 	skb_release_head_state(skb);
1201 	if (likely(skb->head))
1202 		skb_release_data(skb, reason);
1203 }
1204 
1205 /**
1206  *	__kfree_skb - private function
1207  *	@skb: buffer
1208  *
1209  *	Free an sk_buff. Release anything attached to the buffer.
1210  *	Clean the state. This is an internal helper function. Users should
1211  *	always call kfree_skb
1212  */
1213 
1214 void __kfree_skb(struct sk_buff *skb)
1215 {
1216 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1217 	kfree_skbmem(skb);
1218 }
1219 EXPORT_SYMBOL(__kfree_skb);
1220 
1221 static __always_inline
1222 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1223 			  enum skb_drop_reason reason)
1224 {
1225 	if (unlikely(!skb_unref(skb)))
1226 		return false;
1227 
1228 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1229 			       u32_get_bits(reason,
1230 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1231 				SKB_DROP_REASON_SUBSYS_NUM);
1232 
1233 	if (reason == SKB_CONSUMED)
1234 		trace_consume_skb(skb, __builtin_return_address(0));
1235 	else
1236 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1237 	return true;
1238 }
1239 
1240 /**
1241  *	sk_skb_reason_drop - free an sk_buff with special reason
1242  *	@sk: the socket to receive @skb, or NULL if not applicable
1243  *	@skb: buffer to free
1244  *	@reason: reason why this skb is dropped
1245  *
1246  *	Drop a reference to the buffer and free it if the usage count has hit
1247  *	zero. Meanwhile, pass the receiving socket and drop reason to
1248  *	'kfree_skb' tracepoint.
1249  */
1250 void __fix_address
1251 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1252 {
1253 	if (__sk_skb_reason_drop(sk, skb, reason))
1254 		__kfree_skb(skb);
1255 }
1256 EXPORT_SYMBOL(sk_skb_reason_drop);
1257 
1258 #define KFREE_SKB_BULK_SIZE	16
1259 
1260 struct skb_free_array {
1261 	unsigned int skb_count;
1262 	void *skb_array[KFREE_SKB_BULK_SIZE];
1263 };
1264 
1265 static void kfree_skb_add_bulk(struct sk_buff *skb,
1266 			       struct skb_free_array *sa,
1267 			       enum skb_drop_reason reason)
1268 {
1269 	/* if SKB is a clone, don't handle this case */
1270 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1271 		__kfree_skb(skb);
1272 		return;
1273 	}
1274 
1275 	skb_release_all(skb, reason);
1276 	sa->skb_array[sa->skb_count++] = skb;
1277 
1278 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1279 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1280 				     sa->skb_array);
1281 		sa->skb_count = 0;
1282 	}
1283 }
1284 
1285 void __fix_address
1286 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1287 {
1288 	struct skb_free_array sa;
1289 
1290 	sa.skb_count = 0;
1291 
1292 	while (segs) {
1293 		struct sk_buff *next = segs->next;
1294 
1295 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1296 			skb_poison_list(segs);
1297 			kfree_skb_add_bulk(segs, &sa, reason);
1298 		}
1299 
1300 		segs = next;
1301 	}
1302 
1303 	if (sa.skb_count)
1304 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1305 }
1306 EXPORT_SYMBOL(kfree_skb_list_reason);
1307 
1308 /* Dump skb information and contents.
1309  *
1310  * Must only be called from net_ratelimit()-ed paths.
1311  *
1312  * Dumps whole packets if full_pkt, only headers otherwise.
1313  */
1314 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1315 {
1316 	struct skb_shared_info *sh = skb_shinfo(skb);
1317 	struct net_device *dev = skb->dev;
1318 	struct sock *sk = skb->sk;
1319 	struct sk_buff *list_skb;
1320 	bool has_mac, has_trans;
1321 	int headroom, tailroom;
1322 	int i, len, seg_len;
1323 
1324 	if (full_pkt)
1325 		len = skb->len;
1326 	else
1327 		len = min_t(int, skb->len, MAX_HEADER + 128);
1328 
1329 	headroom = skb_headroom(skb);
1330 	tailroom = skb_tailroom(skb);
1331 
1332 	has_mac = skb_mac_header_was_set(skb);
1333 	has_trans = skb_transport_header_was_set(skb);
1334 
1335 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1336 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1337 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1338 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1339 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1340 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1341 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1342 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1343 	       has_mac ? skb->mac_header : -1,
1344 	       has_mac ? skb_mac_header_len(skb) : -1,
1345 	       skb->mac_len,
1346 	       skb->network_header,
1347 	       has_trans ? skb_network_header_len(skb) : -1,
1348 	       has_trans ? skb->transport_header : -1,
1349 	       sh->tx_flags, sh->nr_frags,
1350 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1351 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1352 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1353 	       skb->hash, skb->sw_hash, skb->l4_hash,
1354 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1355 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1356 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1357 	       skb->inner_network_header, skb->inner_transport_header);
1358 
1359 	if (dev)
1360 		printk("%sdev name=%s feat=%pNF\n",
1361 		       level, dev->name, &dev->features);
1362 	if (sk)
1363 		printk("%ssk family=%hu type=%u proto=%u\n",
1364 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1365 
1366 	if (full_pkt && headroom)
1367 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1368 			       16, 1, skb->head, headroom, false);
1369 
1370 	seg_len = min_t(int, skb_headlen(skb), len);
1371 	if (seg_len)
1372 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1373 			       16, 1, skb->data, seg_len, false);
1374 	len -= seg_len;
1375 
1376 	if (full_pkt && tailroom)
1377 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1378 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1379 
1380 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1381 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1382 		u32 p_off, p_len, copied;
1383 		struct page *p;
1384 		u8 *vaddr;
1385 
1386 		if (skb_frag_is_net_iov(frag)) {
1387 			printk("%sskb frag %d: not readable\n", level, i);
1388 			len -= skb_frag_size(frag);
1389 			if (!len)
1390 				break;
1391 			continue;
1392 		}
1393 
1394 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1395 				      skb_frag_size(frag), p, p_off, p_len,
1396 				      copied) {
1397 			seg_len = min_t(int, p_len, len);
1398 			vaddr = kmap_atomic(p);
1399 			print_hex_dump(level, "skb frag:     ",
1400 				       DUMP_PREFIX_OFFSET,
1401 				       16, 1, vaddr + p_off, seg_len, false);
1402 			kunmap_atomic(vaddr);
1403 			len -= seg_len;
1404 			if (!len)
1405 				break;
1406 		}
1407 	}
1408 
1409 	if (full_pkt && skb_has_frag_list(skb)) {
1410 		printk("skb fraglist:\n");
1411 		skb_walk_frags(skb, list_skb)
1412 			skb_dump(level, list_skb, true);
1413 	}
1414 }
1415 EXPORT_SYMBOL(skb_dump);
1416 
1417 /**
1418  *	skb_tx_error - report an sk_buff xmit error
1419  *	@skb: buffer that triggered an error
1420  *
1421  *	Report xmit error if a device callback is tracking this skb.
1422  *	skb must be freed afterwards.
1423  */
1424 void skb_tx_error(struct sk_buff *skb)
1425 {
1426 	if (skb) {
1427 		skb_zcopy_downgrade_managed(skb);
1428 		skb_zcopy_clear(skb, true);
1429 	}
1430 }
1431 EXPORT_SYMBOL(skb_tx_error);
1432 
1433 #ifdef CONFIG_TRACEPOINTS
1434 /**
1435  *	consume_skb - free an skbuff
1436  *	@skb: buffer to free
1437  *
1438  *	Drop a ref to the buffer and free it if the usage count has hit zero
1439  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1440  *	is being dropped after a failure and notes that
1441  */
1442 void consume_skb(struct sk_buff *skb)
1443 {
1444 	if (!skb_unref(skb))
1445 		return;
1446 
1447 	trace_consume_skb(skb, __builtin_return_address(0));
1448 	__kfree_skb(skb);
1449 }
1450 EXPORT_SYMBOL(consume_skb);
1451 #endif
1452 
1453 /**
1454  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1455  *	@skb: buffer to free
1456  *
1457  *	Alike consume_skb(), but this variant assumes that this is the last
1458  *	skb reference and all the head states have been already dropped
1459  */
1460 void __consume_stateless_skb(struct sk_buff *skb)
1461 {
1462 	trace_consume_skb(skb, __builtin_return_address(0));
1463 	skb_release_data(skb, SKB_CONSUMED);
1464 	kfree_skbmem(skb);
1465 }
1466 
1467 static void napi_skb_cache_put(struct sk_buff *skb)
1468 {
1469 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1470 
1471 	if (!kasan_mempool_poison_object(skb))
1472 		return;
1473 
1474 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1475 	nc->skb_cache[nc->skb_count++] = skb;
1476 
1477 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1478 		u32 i, remaining = NAPI_SKB_CACHE_SIZE - NAPI_SKB_CACHE_FREE;
1479 
1480 		for (i = remaining; i < NAPI_SKB_CACHE_SIZE; i++)
1481 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1482 						skbuff_cache_size);
1483 
1484 		kmem_cache_free_bulk(net_hotdata.skbuff_cache,
1485 				     NAPI_SKB_CACHE_FREE,
1486 				     nc->skb_cache + remaining);
1487 		nc->skb_count = remaining;
1488 	}
1489 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1490 }
1491 
1492 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1493 {
1494 	skb_release_all(skb, reason);
1495 	napi_skb_cache_put(skb);
1496 }
1497 
1498 void napi_skb_free_stolen_head(struct sk_buff *skb)
1499 {
1500 	if (unlikely(skb->slow_gro)) {
1501 		nf_reset_ct(skb);
1502 		skb_dst_drop(skb);
1503 		skb_ext_put(skb);
1504 		skb_orphan(skb);
1505 		skb->slow_gro = 0;
1506 	}
1507 	napi_skb_cache_put(skb);
1508 }
1509 
1510 /**
1511  * napi_consume_skb() - consume skb in NAPI context, try to feed skb cache
1512  * @skb: buffer to free
1513  * @budget: NAPI budget
1514  *
1515  * Non-zero @budget must come from the @budget argument passed by the core
1516  * to a NAPI poll function. Note that core may pass budget of 0 to NAPI poll
1517  * for example when polling for netpoll / netconsole.
1518  *
1519  * Passing @budget of 0 is safe from any context, it turns this function
1520  * into dev_consume_skb_any().
1521  */
1522 void napi_consume_skb(struct sk_buff *skb, int budget)
1523 {
1524 	if (unlikely(!budget || !skb)) {
1525 		dev_consume_skb_any(skb);
1526 		return;
1527 	}
1528 
1529 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1530 
1531 	if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) {
1532 		skb_release_head_state(skb);
1533 		return skb_attempt_defer_free(skb);
1534 	}
1535 
1536 	if (!skb_unref(skb))
1537 		return;
1538 
1539 	/* if reaching here SKB is ready to free */
1540 	trace_consume_skb(skb, __builtin_return_address(0));
1541 
1542 	/* if SKB is a clone, don't handle this case */
1543 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1544 		__kfree_skb(skb);
1545 		return;
1546 	}
1547 
1548 	skb_release_all(skb, SKB_CONSUMED);
1549 	napi_skb_cache_put(skb);
1550 }
1551 EXPORT_SYMBOL(napi_consume_skb);
1552 
1553 /* Make sure a field is contained by headers group */
1554 #define CHECK_SKB_FIELD(field) \
1555 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1556 		     offsetof(struct sk_buff, headers.field));	\
1557 
1558 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1559 {
1560 	new->tstamp		= old->tstamp;
1561 	/* We do not copy old->sk */
1562 	new->dev		= old->dev;
1563 	memcpy(new->cb, old->cb, sizeof(old->cb));
1564 	skb_dst_copy(new, old);
1565 	__skb_ext_copy(new, old);
1566 	__nf_copy(new, old, false);
1567 
1568 	/* Note : this field could be in the headers group.
1569 	 * It is not yet because we do not want to have a 16 bit hole
1570 	 */
1571 	new->queue_mapping = old->queue_mapping;
1572 
1573 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1574 	CHECK_SKB_FIELD(protocol);
1575 	CHECK_SKB_FIELD(csum);
1576 	CHECK_SKB_FIELD(hash);
1577 	CHECK_SKB_FIELD(priority);
1578 	CHECK_SKB_FIELD(skb_iif);
1579 	CHECK_SKB_FIELD(vlan_proto);
1580 	CHECK_SKB_FIELD(vlan_tci);
1581 	CHECK_SKB_FIELD(transport_header);
1582 	CHECK_SKB_FIELD(network_header);
1583 	CHECK_SKB_FIELD(mac_header);
1584 	CHECK_SKB_FIELD(inner_protocol);
1585 	CHECK_SKB_FIELD(inner_transport_header);
1586 	CHECK_SKB_FIELD(inner_network_header);
1587 	CHECK_SKB_FIELD(inner_mac_header);
1588 	CHECK_SKB_FIELD(mark);
1589 #ifdef CONFIG_NETWORK_SECMARK
1590 	CHECK_SKB_FIELD(secmark);
1591 #endif
1592 #ifdef CONFIG_NET_RX_BUSY_POLL
1593 	CHECK_SKB_FIELD(napi_id);
1594 #endif
1595 	CHECK_SKB_FIELD(alloc_cpu);
1596 #ifdef CONFIG_XPS
1597 	CHECK_SKB_FIELD(sender_cpu);
1598 #endif
1599 #ifdef CONFIG_NET_SCHED
1600 	CHECK_SKB_FIELD(tc_index);
1601 #endif
1602 
1603 }
1604 
1605 /*
1606  * You should not add any new code to this function.  Add it to
1607  * __copy_skb_header above instead.
1608  */
1609 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1610 {
1611 #define C(x) n->x = skb->x
1612 
1613 	n->next = n->prev = NULL;
1614 	n->sk = NULL;
1615 	__copy_skb_header(n, skb);
1616 
1617 	C(len);
1618 	C(data_len);
1619 	C(mac_len);
1620 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1621 	n->cloned = 1;
1622 	n->nohdr = 0;
1623 	n->peeked = 0;
1624 	C(pfmemalloc);
1625 	C(pp_recycle);
1626 	n->destructor = NULL;
1627 	C(tail);
1628 	C(end);
1629 	C(head);
1630 	C(head_frag);
1631 	C(data);
1632 	C(truesize);
1633 	refcount_set(&n->users, 1);
1634 
1635 	atomic_inc(&(skb_shinfo(skb)->dataref));
1636 	skb->cloned = 1;
1637 
1638 	return n;
1639 #undef C
1640 }
1641 
1642 /**
1643  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1644  * @first: first sk_buff of the msg
1645  */
1646 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1647 {
1648 	struct sk_buff *n;
1649 
1650 	n = alloc_skb(0, GFP_ATOMIC);
1651 	if (!n)
1652 		return NULL;
1653 
1654 	n->len = first->len;
1655 	n->data_len = first->len;
1656 	n->truesize = first->truesize;
1657 
1658 	skb_shinfo(n)->frag_list = first;
1659 
1660 	__copy_skb_header(n, first);
1661 	n->destructor = NULL;
1662 
1663 	return n;
1664 }
1665 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1666 
1667 /**
1668  *	skb_morph	-	morph one skb into another
1669  *	@dst: the skb to receive the contents
1670  *	@src: the skb to supply the contents
1671  *
1672  *	This is identical to skb_clone except that the target skb is
1673  *	supplied by the user.
1674  *
1675  *	The target skb is returned upon exit.
1676  */
1677 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1678 {
1679 	skb_release_all(dst, SKB_CONSUMED);
1680 	return __skb_clone(dst, src);
1681 }
1682 EXPORT_SYMBOL_GPL(skb_morph);
1683 
1684 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1685 {
1686 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1687 	struct user_struct *user;
1688 
1689 	if (capable(CAP_IPC_LOCK) || !size)
1690 		return 0;
1691 
1692 	rlim = rlimit(RLIMIT_MEMLOCK);
1693 	if (rlim == RLIM_INFINITY)
1694 		return 0;
1695 
1696 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1697 	max_pg = rlim >> PAGE_SHIFT;
1698 	user = mmp->user ? : current_user();
1699 
1700 	old_pg = atomic_long_read(&user->locked_vm);
1701 	do {
1702 		new_pg = old_pg + num_pg;
1703 		if (new_pg > max_pg)
1704 			return -ENOBUFS;
1705 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1706 
1707 	if (!mmp->user) {
1708 		mmp->user = get_uid(user);
1709 		mmp->num_pg = num_pg;
1710 	} else {
1711 		mmp->num_pg += num_pg;
1712 	}
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1717 
1718 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1719 {
1720 	if (mmp->user) {
1721 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1722 		free_uid(mmp->user);
1723 	}
1724 }
1725 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1726 
1727 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1728 					    bool devmem)
1729 {
1730 	struct ubuf_info_msgzc *uarg;
1731 	struct sk_buff *skb;
1732 
1733 	WARN_ON_ONCE(!in_task());
1734 
1735 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1736 	if (!skb)
1737 		return NULL;
1738 
1739 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1740 	uarg = (void *)skb->cb;
1741 	uarg->mmp.user = NULL;
1742 
1743 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1744 		kfree_skb(skb);
1745 		return NULL;
1746 	}
1747 
1748 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1749 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1750 	uarg->len = 1;
1751 	uarg->bytelen = size;
1752 	uarg->zerocopy = 1;
1753 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1754 	refcount_set(&uarg->ubuf.refcnt, 1);
1755 	sock_hold(sk);
1756 
1757 	return &uarg->ubuf;
1758 }
1759 
1760 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1761 {
1762 	return container_of((void *)uarg, struct sk_buff, cb);
1763 }
1764 
1765 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1766 				       struct ubuf_info *uarg, bool devmem)
1767 {
1768 	if (uarg) {
1769 		struct ubuf_info_msgzc *uarg_zc;
1770 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1771 		u32 bytelen, next;
1772 
1773 		/* there might be non MSG_ZEROCOPY users */
1774 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1775 			return NULL;
1776 
1777 		/* realloc only when socket is locked (TCP, UDP cork),
1778 		 * so uarg->len and sk_zckey access is serialized
1779 		 */
1780 		if (!sock_owned_by_user(sk)) {
1781 			WARN_ON_ONCE(1);
1782 			return NULL;
1783 		}
1784 
1785 		uarg_zc = uarg_to_msgzc(uarg);
1786 		bytelen = uarg_zc->bytelen + size;
1787 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1788 			/* TCP can create new skb to attach new uarg */
1789 			if (sk->sk_type == SOCK_STREAM)
1790 				goto new_alloc;
1791 			return NULL;
1792 		}
1793 
1794 		next = (u32)atomic_read(&sk->sk_zckey);
1795 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1796 			if (likely(!devmem) &&
1797 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1798 				return NULL;
1799 			uarg_zc->len++;
1800 			uarg_zc->bytelen = bytelen;
1801 			atomic_set(&sk->sk_zckey, ++next);
1802 
1803 			/* no extra ref when appending to datagram (MSG_MORE) */
1804 			if (sk->sk_type == SOCK_STREAM)
1805 				net_zcopy_get(uarg);
1806 
1807 			return uarg;
1808 		}
1809 	}
1810 
1811 new_alloc:
1812 	return msg_zerocopy_alloc(sk, size, devmem);
1813 }
1814 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1815 
1816 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1817 {
1818 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1819 	u32 old_lo, old_hi;
1820 	u64 sum_len;
1821 
1822 	old_lo = serr->ee.ee_info;
1823 	old_hi = serr->ee.ee_data;
1824 	sum_len = old_hi - old_lo + 1ULL + len;
1825 
1826 	if (sum_len >= (1ULL << 32))
1827 		return false;
1828 
1829 	if (lo != old_hi + 1)
1830 		return false;
1831 
1832 	serr->ee.ee_data += len;
1833 	return true;
1834 }
1835 
1836 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1837 {
1838 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1839 	struct sock_exterr_skb *serr;
1840 	struct sock *sk = skb->sk;
1841 	struct sk_buff_head *q;
1842 	unsigned long flags;
1843 	bool is_zerocopy;
1844 	u32 lo, hi;
1845 	u16 len;
1846 
1847 	mm_unaccount_pinned_pages(&uarg->mmp);
1848 
1849 	/* if !len, there was only 1 call, and it was aborted
1850 	 * so do not queue a completion notification
1851 	 */
1852 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1853 		goto release;
1854 
1855 	len = uarg->len;
1856 	lo = uarg->id;
1857 	hi = uarg->id + len - 1;
1858 	is_zerocopy = uarg->zerocopy;
1859 
1860 	serr = SKB_EXT_ERR(skb);
1861 	memset(serr, 0, sizeof(*serr));
1862 	serr->ee.ee_errno = 0;
1863 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1864 	serr->ee.ee_data = hi;
1865 	serr->ee.ee_info = lo;
1866 	if (!is_zerocopy)
1867 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1868 
1869 	q = &sk->sk_error_queue;
1870 	spin_lock_irqsave(&q->lock, flags);
1871 	tail = skb_peek_tail(q);
1872 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1873 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1874 		__skb_queue_tail(q, skb);
1875 		skb = NULL;
1876 	}
1877 	spin_unlock_irqrestore(&q->lock, flags);
1878 
1879 	sk_error_report(sk);
1880 
1881 release:
1882 	consume_skb(skb);
1883 	sock_put(sk);
1884 }
1885 
1886 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1887 				  bool success)
1888 {
1889 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1890 
1891 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1892 
1893 	if (refcount_dec_and_test(&uarg->refcnt))
1894 		__msg_zerocopy_callback(uarg_zc);
1895 }
1896 
1897 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1898 {
1899 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1900 
1901 	atomic_dec(&sk->sk_zckey);
1902 	uarg_to_msgzc(uarg)->len--;
1903 
1904 	if (have_uref)
1905 		msg_zerocopy_complete(NULL, uarg, true);
1906 }
1907 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1908 
1909 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1910 	.complete = msg_zerocopy_complete,
1911 };
1912 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1913 
1914 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1915 			     struct msghdr *msg, int len,
1916 			     struct ubuf_info *uarg,
1917 			     struct net_devmem_dmabuf_binding *binding)
1918 {
1919 	int err, orig_len = skb->len;
1920 
1921 	if (uarg->ops->link_skb) {
1922 		err = uarg->ops->link_skb(skb, uarg);
1923 		if (err)
1924 			return err;
1925 	} else {
1926 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1927 
1928 		/* An skb can only point to one uarg. This edge case happens
1929 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1930 		 * a new alloc.
1931 		 */
1932 		if (orig_uarg && uarg != orig_uarg)
1933 			return -EEXIST;
1934 	}
1935 
1936 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1937 				      binding);
1938 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1939 		struct sock *save_sk = skb->sk;
1940 
1941 		/* Streams do not free skb on error. Reset to prev state. */
1942 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1943 		skb->sk = sk;
1944 		___pskb_trim(skb, orig_len);
1945 		skb->sk = save_sk;
1946 		return err;
1947 	}
1948 
1949 	skb_zcopy_set(skb, uarg, NULL);
1950 	return skb->len - orig_len;
1951 }
1952 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1953 
1954 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1955 {
1956 	int i;
1957 
1958 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1959 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1960 		skb_frag_ref(skb, i);
1961 }
1962 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1963 
1964 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1965 			      gfp_t gfp_mask)
1966 {
1967 	if (skb_zcopy(orig)) {
1968 		if (skb_zcopy(nskb)) {
1969 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1970 			if (!gfp_mask) {
1971 				WARN_ON_ONCE(1);
1972 				return -ENOMEM;
1973 			}
1974 			if (skb_uarg(nskb) == skb_uarg(orig))
1975 				return 0;
1976 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1977 				return -EIO;
1978 		}
1979 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1980 	}
1981 	return 0;
1982 }
1983 
1984 /**
1985  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1986  *	@skb: the skb to modify
1987  *	@gfp_mask: allocation priority
1988  *
1989  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1990  *	It will copy all frags into kernel and drop the reference
1991  *	to userspace pages.
1992  *
1993  *	If this function is called from an interrupt gfp_mask() must be
1994  *	%GFP_ATOMIC.
1995  *
1996  *	Returns 0 on success or a negative error code on failure
1997  *	to allocate kernel memory to copy to.
1998  */
1999 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
2000 {
2001 	int num_frags = skb_shinfo(skb)->nr_frags;
2002 	struct page *page, *head = NULL;
2003 	int i, order, psize, new_frags;
2004 	u32 d_off;
2005 
2006 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
2007 		return -EINVAL;
2008 
2009 	if (!skb_frags_readable(skb))
2010 		return -EFAULT;
2011 
2012 	if (!num_frags)
2013 		goto release;
2014 
2015 	/* We might have to allocate high order pages, so compute what minimum
2016 	 * page order is needed.
2017 	 */
2018 	order = 0;
2019 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
2020 		order++;
2021 	psize = (PAGE_SIZE << order);
2022 
2023 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
2024 	for (i = 0; i < new_frags; i++) {
2025 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
2026 		if (!page) {
2027 			while (head) {
2028 				struct page *next = (struct page *)page_private(head);
2029 				put_page(head);
2030 				head = next;
2031 			}
2032 			return -ENOMEM;
2033 		}
2034 		set_page_private(page, (unsigned long)head);
2035 		head = page;
2036 	}
2037 
2038 	page = head;
2039 	d_off = 0;
2040 	for (i = 0; i < num_frags; i++) {
2041 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2042 		u32 p_off, p_len, copied;
2043 		struct page *p;
2044 		u8 *vaddr;
2045 
2046 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2047 				      p, p_off, p_len, copied) {
2048 			u32 copy, done = 0;
2049 			vaddr = kmap_atomic(p);
2050 
2051 			while (done < p_len) {
2052 				if (d_off == psize) {
2053 					d_off = 0;
2054 					page = (struct page *)page_private(page);
2055 				}
2056 				copy = min_t(u32, psize - d_off, p_len - done);
2057 				memcpy(page_address(page) + d_off,
2058 				       vaddr + p_off + done, copy);
2059 				done += copy;
2060 				d_off += copy;
2061 			}
2062 			kunmap_atomic(vaddr);
2063 		}
2064 	}
2065 
2066 	/* skb frags release userspace buffers */
2067 	for (i = 0; i < num_frags; i++)
2068 		skb_frag_unref(skb, i);
2069 
2070 	/* skb frags point to kernel buffers */
2071 	for (i = 0; i < new_frags - 1; i++) {
2072 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2073 		head = (struct page *)page_private(head);
2074 	}
2075 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2076 			       d_off);
2077 	skb_shinfo(skb)->nr_frags = new_frags;
2078 
2079 release:
2080 	skb_zcopy_clear(skb, false);
2081 	return 0;
2082 }
2083 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2084 
2085 /**
2086  *	skb_clone	-	duplicate an sk_buff
2087  *	@skb: buffer to clone
2088  *	@gfp_mask: allocation priority
2089  *
2090  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2091  *	copies share the same packet data but not structure. The new
2092  *	buffer has a reference count of 1. If the allocation fails the
2093  *	function returns %NULL otherwise the new buffer is returned.
2094  *
2095  *	If this function is called from an interrupt gfp_mask() must be
2096  *	%GFP_ATOMIC.
2097  */
2098 
2099 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2100 {
2101 	struct sk_buff_fclones *fclones = container_of(skb,
2102 						       struct sk_buff_fclones,
2103 						       skb1);
2104 	struct sk_buff *n;
2105 
2106 	if (skb_orphan_frags(skb, gfp_mask))
2107 		return NULL;
2108 
2109 	if (skb->fclone == SKB_FCLONE_ORIG &&
2110 	    refcount_read(&fclones->fclone_ref) == 1) {
2111 		n = &fclones->skb2;
2112 		refcount_set(&fclones->fclone_ref, 2);
2113 		n->fclone = SKB_FCLONE_CLONE;
2114 	} else {
2115 		if (skb_pfmemalloc(skb))
2116 			gfp_mask |= __GFP_MEMALLOC;
2117 
2118 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2119 		if (!n)
2120 			return NULL;
2121 
2122 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2123 	}
2124 
2125 	return __skb_clone(n, skb);
2126 }
2127 EXPORT_SYMBOL(skb_clone);
2128 
2129 void skb_headers_offset_update(struct sk_buff *skb, int off)
2130 {
2131 	/* Only adjust this if it actually is csum_start rather than csum */
2132 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2133 		skb->csum_start += off;
2134 	/* {transport,network,mac}_header and tail are relative to skb->head */
2135 	skb->transport_header += off;
2136 	skb->network_header   += off;
2137 	if (skb_mac_header_was_set(skb))
2138 		skb->mac_header += off;
2139 	skb->inner_transport_header += off;
2140 	skb->inner_network_header += off;
2141 	skb->inner_mac_header += off;
2142 }
2143 EXPORT_SYMBOL(skb_headers_offset_update);
2144 
2145 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2146 {
2147 	__copy_skb_header(new, old);
2148 
2149 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2150 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2151 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2152 }
2153 EXPORT_SYMBOL(skb_copy_header);
2154 
2155 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2156 {
2157 	if (skb_pfmemalloc(skb))
2158 		return SKB_ALLOC_RX;
2159 	return 0;
2160 }
2161 
2162 /**
2163  *	skb_copy	-	create private copy of an sk_buff
2164  *	@skb: buffer to copy
2165  *	@gfp_mask: allocation priority
2166  *
2167  *	Make a copy of both an &sk_buff and its data. This is used when the
2168  *	caller wishes to modify the data and needs a private copy of the
2169  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2170  *	on success. The returned buffer has a reference count of 1.
2171  *
2172  *	As by-product this function converts non-linear &sk_buff to linear
2173  *	one, so that &sk_buff becomes completely private and caller is allowed
2174  *	to modify all the data of returned buffer. This means that this
2175  *	function is not recommended for use in circumstances when only
2176  *	header is going to be modified. Use pskb_copy() instead.
2177  */
2178 
2179 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2180 {
2181 	struct sk_buff *n;
2182 	unsigned int size;
2183 	int headerlen;
2184 
2185 	if (!skb_frags_readable(skb))
2186 		return NULL;
2187 
2188 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2189 		return NULL;
2190 
2191 	headerlen = skb_headroom(skb);
2192 	size = skb_end_offset(skb) + skb->data_len;
2193 	n = __alloc_skb(size, gfp_mask,
2194 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2195 	if (!n)
2196 		return NULL;
2197 
2198 	/* Set the data pointer */
2199 	skb_reserve(n, headerlen);
2200 	/* Set the tail pointer and length */
2201 	skb_put(n, skb->len);
2202 
2203 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2204 
2205 	skb_copy_header(n, skb);
2206 	return n;
2207 }
2208 EXPORT_SYMBOL(skb_copy);
2209 
2210 /**
2211  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2212  *	@skb: buffer to copy
2213  *	@headroom: headroom of new skb
2214  *	@gfp_mask: allocation priority
2215  *	@fclone: if true allocate the copy of the skb from the fclone
2216  *	cache instead of the head cache; it is recommended to set this
2217  *	to true for the cases where the copy will likely be cloned
2218  *
2219  *	Make a copy of both an &sk_buff and part of its data, located
2220  *	in header. Fragmented data remain shared. This is used when
2221  *	the caller wishes to modify only header of &sk_buff and needs
2222  *	private copy of the header to alter. Returns %NULL on failure
2223  *	or the pointer to the buffer on success.
2224  *	The returned buffer has a reference count of 1.
2225  */
2226 
2227 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2228 				   gfp_t gfp_mask, bool fclone)
2229 {
2230 	unsigned int size = skb_headlen(skb) + headroom;
2231 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2232 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2233 
2234 	if (!n)
2235 		goto out;
2236 
2237 	/* Set the data pointer */
2238 	skb_reserve(n, headroom);
2239 	/* Set the tail pointer and length */
2240 	skb_put(n, skb_headlen(skb));
2241 	/* Copy the bytes */
2242 	skb_copy_from_linear_data(skb, n->data, n->len);
2243 
2244 	n->truesize += skb->data_len;
2245 	n->data_len  = skb->data_len;
2246 	n->len	     = skb->len;
2247 
2248 	if (skb_shinfo(skb)->nr_frags) {
2249 		int i;
2250 
2251 		if (skb_orphan_frags(skb, gfp_mask) ||
2252 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2253 			kfree_skb(n);
2254 			n = NULL;
2255 			goto out;
2256 		}
2257 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2258 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2259 			skb_frag_ref(skb, i);
2260 		}
2261 		skb_shinfo(n)->nr_frags = i;
2262 	}
2263 
2264 	if (skb_has_frag_list(skb)) {
2265 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2266 		skb_clone_fraglist(n);
2267 	}
2268 
2269 	skb_copy_header(n, skb);
2270 out:
2271 	return n;
2272 }
2273 EXPORT_SYMBOL(__pskb_copy_fclone);
2274 
2275 /**
2276  *	pskb_expand_head - reallocate header of &sk_buff
2277  *	@skb: buffer to reallocate
2278  *	@nhead: room to add at head
2279  *	@ntail: room to add at tail
2280  *	@gfp_mask: allocation priority
2281  *
2282  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2283  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2284  *	reference count of 1. Returns zero in the case of success or error,
2285  *	if expansion failed. In the last case, &sk_buff is not changed.
2286  *
2287  *	All the pointers pointing into skb header may change and must be
2288  *	reloaded after call to this function.
2289  *
2290  *	Note: If you skb_push() the start of the buffer after reallocating the
2291  *	header, call skb_postpush_data_move() first to move the metadata out of
2292  *	the way before writing to &sk_buff->data.
2293  */
2294 
2295 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2296 		     gfp_t gfp_mask)
2297 {
2298 	unsigned int osize = skb_end_offset(skb);
2299 	unsigned int size = osize + nhead + ntail;
2300 	long off;
2301 	u8 *data;
2302 	int i;
2303 
2304 	BUG_ON(nhead < 0);
2305 
2306 	BUG_ON(skb_shared(skb));
2307 
2308 	skb_zcopy_downgrade_managed(skb);
2309 
2310 	if (skb_pfmemalloc(skb))
2311 		gfp_mask |= __GFP_MEMALLOC;
2312 
2313 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2314 	if (!data)
2315 		goto nodata;
2316 	size = SKB_WITH_OVERHEAD(size);
2317 
2318 	/* Copy only real data... and, alas, header. This should be
2319 	 * optimized for the cases when header is void.
2320 	 */
2321 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2322 
2323 	memcpy((struct skb_shared_info *)(data + size),
2324 	       skb_shinfo(skb),
2325 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2326 
2327 	/*
2328 	 * if shinfo is shared we must drop the old head gracefully, but if it
2329 	 * is not we can just drop the old head and let the existing refcount
2330 	 * be since all we did is relocate the values
2331 	 */
2332 	if (skb_cloned(skb)) {
2333 		if (skb_orphan_frags(skb, gfp_mask))
2334 			goto nofrags;
2335 		if (skb_zcopy(skb))
2336 			refcount_inc(&skb_uarg(skb)->refcnt);
2337 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2338 			skb_frag_ref(skb, i);
2339 
2340 		if (skb_has_frag_list(skb))
2341 			skb_clone_fraglist(skb);
2342 
2343 		skb_release_data(skb, SKB_CONSUMED);
2344 	} else {
2345 		skb_free_head(skb);
2346 	}
2347 	off = (data + nhead) - skb->head;
2348 
2349 	skb->head     = data;
2350 	skb->head_frag = 0;
2351 	skb->data    += off;
2352 
2353 	skb_set_end_offset(skb, size);
2354 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2355 	off           = nhead;
2356 #endif
2357 	skb->tail	      += off;
2358 	skb_headers_offset_update(skb, nhead);
2359 	skb->cloned   = 0;
2360 	skb->hdr_len  = 0;
2361 	skb->nohdr    = 0;
2362 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2363 
2364 	/* It is not generally safe to change skb->truesize.
2365 	 * For the moment, we really care of rx path, or
2366 	 * when skb is orphaned (not attached to a socket).
2367 	 */
2368 	if (!skb->sk || skb->destructor == sock_edemux)
2369 		skb->truesize += size - osize;
2370 
2371 	return 0;
2372 
2373 nofrags:
2374 	skb_kfree_head(data, size);
2375 nodata:
2376 	return -ENOMEM;
2377 }
2378 EXPORT_SYMBOL(pskb_expand_head);
2379 
2380 /* Make private copy of skb with writable head and some headroom */
2381 
2382 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2383 {
2384 	struct sk_buff *skb2;
2385 	int delta = headroom - skb_headroom(skb);
2386 
2387 	if (delta <= 0)
2388 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2389 	else {
2390 		skb2 = skb_clone(skb, GFP_ATOMIC);
2391 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2392 					     GFP_ATOMIC)) {
2393 			kfree_skb(skb2);
2394 			skb2 = NULL;
2395 		}
2396 	}
2397 	return skb2;
2398 }
2399 EXPORT_SYMBOL(skb_realloc_headroom);
2400 
2401 /* Note: We plan to rework this in linux-6.4 */
2402 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2403 {
2404 	unsigned int saved_end_offset, saved_truesize;
2405 	struct skb_shared_info *shinfo;
2406 	int res;
2407 
2408 	saved_end_offset = skb_end_offset(skb);
2409 	saved_truesize = skb->truesize;
2410 
2411 	res = pskb_expand_head(skb, 0, 0, pri);
2412 	if (res)
2413 		return res;
2414 
2415 	skb->truesize = saved_truesize;
2416 
2417 	if (likely(skb_end_offset(skb) == saved_end_offset))
2418 		return 0;
2419 
2420 	/* We can not change skb->end if the original or new value
2421 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2422 	 */
2423 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2424 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2425 		/* We think this path should not be taken.
2426 		 * Add a temporary trace to warn us just in case.
2427 		 */
2428 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2429 			    saved_end_offset, skb_end_offset(skb));
2430 		WARN_ON_ONCE(1);
2431 		return 0;
2432 	}
2433 
2434 	shinfo = skb_shinfo(skb);
2435 
2436 	/* We are about to change back skb->end,
2437 	 * we need to move skb_shinfo() to its new location.
2438 	 */
2439 	memmove(skb->head + saved_end_offset,
2440 		shinfo,
2441 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2442 
2443 	skb_set_end_offset(skb, saved_end_offset);
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  *	skb_expand_head - reallocate header of &sk_buff
2450  *	@skb: buffer to reallocate
2451  *	@headroom: needed headroom
2452  *
2453  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2454  *	if possible; copies skb->sk to new skb as needed
2455  *	and frees original skb in case of failures.
2456  *
2457  *	It expect increased headroom and generates warning otherwise.
2458  */
2459 
2460 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2461 {
2462 	int delta = headroom - skb_headroom(skb);
2463 	int osize = skb_end_offset(skb);
2464 	struct sock *sk = skb->sk;
2465 
2466 	if (WARN_ONCE(delta <= 0,
2467 		      "%s is expecting an increase in the headroom", __func__))
2468 		return skb;
2469 
2470 	delta = SKB_DATA_ALIGN(delta);
2471 	/* pskb_expand_head() might crash, if skb is shared. */
2472 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2473 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2474 
2475 		if (unlikely(!nskb))
2476 			goto fail;
2477 
2478 		if (sk)
2479 			skb_set_owner_w(nskb, sk);
2480 		consume_skb(skb);
2481 		skb = nskb;
2482 	}
2483 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2484 		goto fail;
2485 
2486 	if (sk && is_skb_wmem(skb)) {
2487 		delta = skb_end_offset(skb) - osize;
2488 		refcount_add(delta, &sk->sk_wmem_alloc);
2489 		skb->truesize += delta;
2490 	}
2491 	return skb;
2492 
2493 fail:
2494 	kfree_skb(skb);
2495 	return NULL;
2496 }
2497 EXPORT_SYMBOL(skb_expand_head);
2498 
2499 /**
2500  *	skb_copy_expand	-	copy and expand sk_buff
2501  *	@skb: buffer to copy
2502  *	@newheadroom: new free bytes at head
2503  *	@newtailroom: new free bytes at tail
2504  *	@gfp_mask: allocation priority
2505  *
2506  *	Make a copy of both an &sk_buff and its data and while doing so
2507  *	allocate additional space.
2508  *
2509  *	This is used when the caller wishes to modify the data and needs a
2510  *	private copy of the data to alter as well as more space for new fields.
2511  *	Returns %NULL on failure or the pointer to the buffer
2512  *	on success. The returned buffer has a reference count of 1.
2513  *
2514  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2515  *	is called from an interrupt.
2516  */
2517 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2518 				int newheadroom, int newtailroom,
2519 				gfp_t gfp_mask)
2520 {
2521 	/*
2522 	 *	Allocate the copy buffer
2523 	 */
2524 	int head_copy_len, head_copy_off;
2525 	struct sk_buff *n;
2526 	int oldheadroom;
2527 
2528 	if (!skb_frags_readable(skb))
2529 		return NULL;
2530 
2531 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2532 		return NULL;
2533 
2534 	oldheadroom = skb_headroom(skb);
2535 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2536 			gfp_mask, skb_alloc_rx_flag(skb),
2537 			NUMA_NO_NODE);
2538 	if (!n)
2539 		return NULL;
2540 
2541 	skb_reserve(n, newheadroom);
2542 
2543 	/* Set the tail pointer and length */
2544 	skb_put(n, skb->len);
2545 
2546 	head_copy_len = oldheadroom;
2547 	head_copy_off = 0;
2548 	if (newheadroom <= head_copy_len)
2549 		head_copy_len = newheadroom;
2550 	else
2551 		head_copy_off = newheadroom - head_copy_len;
2552 
2553 	/* Copy the linear header and data. */
2554 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2555 			     skb->len + head_copy_len));
2556 
2557 	skb_copy_header(n, skb);
2558 
2559 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2560 
2561 	return n;
2562 }
2563 EXPORT_SYMBOL(skb_copy_expand);
2564 
2565 /**
2566  *	__skb_pad		-	zero pad the tail of an skb
2567  *	@skb: buffer to pad
2568  *	@pad: space to pad
2569  *	@free_on_error: free buffer on error
2570  *
2571  *	Ensure that a buffer is followed by a padding area that is zero
2572  *	filled. Used by network drivers which may DMA or transfer data
2573  *	beyond the buffer end onto the wire.
2574  *
2575  *	May return error in out of memory cases. The skb is freed on error
2576  *	if @free_on_error is true.
2577  */
2578 
2579 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2580 {
2581 	int err;
2582 	int ntail;
2583 
2584 	/* If the skbuff is non linear tailroom is always zero.. */
2585 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2586 		memset(skb->data+skb->len, 0, pad);
2587 		return 0;
2588 	}
2589 
2590 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2591 	if (likely(skb_cloned(skb) || ntail > 0)) {
2592 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2593 		if (unlikely(err))
2594 			goto free_skb;
2595 	}
2596 
2597 	/* FIXME: The use of this function with non-linear skb's really needs
2598 	 * to be audited.
2599 	 */
2600 	err = skb_linearize(skb);
2601 	if (unlikely(err))
2602 		goto free_skb;
2603 
2604 	memset(skb->data + skb->len, 0, pad);
2605 	return 0;
2606 
2607 free_skb:
2608 	if (free_on_error)
2609 		kfree_skb(skb);
2610 	return err;
2611 }
2612 EXPORT_SYMBOL(__skb_pad);
2613 
2614 /**
2615  *	pskb_put - add data to the tail of a potentially fragmented buffer
2616  *	@skb: start of the buffer to use
2617  *	@tail: tail fragment of the buffer to use
2618  *	@len: amount of data to add
2619  *
2620  *	This function extends the used data area of the potentially
2621  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2622  *	@skb itself. If this would exceed the total buffer size the kernel
2623  *	will panic. A pointer to the first byte of the extra data is
2624  *	returned.
2625  */
2626 
2627 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2628 {
2629 	if (tail != skb) {
2630 		skb->data_len += len;
2631 		skb->len += len;
2632 	}
2633 	return skb_put(tail, len);
2634 }
2635 EXPORT_SYMBOL_GPL(pskb_put);
2636 
2637 /**
2638  *	skb_put - add data to a buffer
2639  *	@skb: buffer to use
2640  *	@len: amount of data to add
2641  *
2642  *	This function extends the used data area of the buffer. If this would
2643  *	exceed the total buffer size the kernel will panic. A pointer to the
2644  *	first byte of the extra data is returned.
2645  */
2646 void *skb_put(struct sk_buff *skb, unsigned int len)
2647 {
2648 	void *tmp = skb_tail_pointer(skb);
2649 	SKB_LINEAR_ASSERT(skb);
2650 	skb->tail += len;
2651 	skb->len  += len;
2652 	if (unlikely(skb->tail > skb->end))
2653 		skb_over_panic(skb, len, __builtin_return_address(0));
2654 	return tmp;
2655 }
2656 EXPORT_SYMBOL(skb_put);
2657 
2658 /**
2659  *	skb_push - add data to the start of a buffer
2660  *	@skb: buffer to use
2661  *	@len: amount of data to add
2662  *
2663  *	This function extends the used data area of the buffer at the buffer
2664  *	start. If this would exceed the total buffer headroom the kernel will
2665  *	panic. A pointer to the first byte of the extra data is returned.
2666  */
2667 void *skb_push(struct sk_buff *skb, unsigned int len)
2668 {
2669 	skb->data -= len;
2670 	skb->len  += len;
2671 	if (unlikely(skb->data < skb->head))
2672 		skb_under_panic(skb, len, __builtin_return_address(0));
2673 	return skb->data;
2674 }
2675 EXPORT_SYMBOL(skb_push);
2676 
2677 /**
2678  *	skb_pull - remove data from the start of a buffer
2679  *	@skb: buffer to use
2680  *	@len: amount of data to remove
2681  *
2682  *	This function removes data from the start of a buffer, returning
2683  *	the memory to the headroom. A pointer to the next data in the buffer
2684  *	is returned. Once the data has been pulled future pushes will overwrite
2685  *	the old data.
2686  */
2687 void *skb_pull(struct sk_buff *skb, unsigned int len)
2688 {
2689 	return skb_pull_inline(skb, len);
2690 }
2691 EXPORT_SYMBOL(skb_pull);
2692 
2693 /**
2694  *	skb_pull_data - remove data from the start of a buffer returning its
2695  *	original position.
2696  *	@skb: buffer to use
2697  *	@len: amount of data to remove
2698  *
2699  *	This function removes data from the start of a buffer, returning
2700  *	the memory to the headroom. A pointer to the original data in the buffer
2701  *	is returned after checking if there is enough data to pull. Once the
2702  *	data has been pulled future pushes will overwrite the old data.
2703  */
2704 void *skb_pull_data(struct sk_buff *skb, size_t len)
2705 {
2706 	void *data = skb->data;
2707 
2708 	if (skb->len < len)
2709 		return NULL;
2710 
2711 	skb_pull(skb, len);
2712 
2713 	return data;
2714 }
2715 EXPORT_SYMBOL(skb_pull_data);
2716 
2717 /**
2718  *	skb_trim - remove end from a buffer
2719  *	@skb: buffer to alter
2720  *	@len: new length
2721  *
2722  *	Cut the length of a buffer down by removing data from the tail. If
2723  *	the buffer is already under the length specified it is not modified.
2724  *	The skb must be linear.
2725  */
2726 void skb_trim(struct sk_buff *skb, unsigned int len)
2727 {
2728 	if (skb->len > len)
2729 		__skb_trim(skb, len);
2730 }
2731 EXPORT_SYMBOL(skb_trim);
2732 
2733 /* Trims skb to length len. It can change skb pointers.
2734  */
2735 
2736 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2737 {
2738 	struct sk_buff **fragp;
2739 	struct sk_buff *frag;
2740 	int offset = skb_headlen(skb);
2741 	int nfrags = skb_shinfo(skb)->nr_frags;
2742 	int i;
2743 	int err;
2744 
2745 	if (skb_cloned(skb) &&
2746 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2747 		return err;
2748 
2749 	i = 0;
2750 	if (offset >= len)
2751 		goto drop_pages;
2752 
2753 	for (; i < nfrags; i++) {
2754 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2755 
2756 		if (end < len) {
2757 			offset = end;
2758 			continue;
2759 		}
2760 
2761 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2762 
2763 drop_pages:
2764 		skb_shinfo(skb)->nr_frags = i;
2765 
2766 		for (; i < nfrags; i++)
2767 			skb_frag_unref(skb, i);
2768 
2769 		if (skb_has_frag_list(skb))
2770 			skb_drop_fraglist(skb);
2771 		goto done;
2772 	}
2773 
2774 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2775 	     fragp = &frag->next) {
2776 		int end = offset + frag->len;
2777 
2778 		if (skb_shared(frag)) {
2779 			struct sk_buff *nfrag;
2780 
2781 			nfrag = skb_clone(frag, GFP_ATOMIC);
2782 			if (unlikely(!nfrag))
2783 				return -ENOMEM;
2784 
2785 			nfrag->next = frag->next;
2786 			consume_skb(frag);
2787 			frag = nfrag;
2788 			*fragp = frag;
2789 		}
2790 
2791 		if (end < len) {
2792 			offset = end;
2793 			continue;
2794 		}
2795 
2796 		if (end > len &&
2797 		    unlikely((err = pskb_trim(frag, len - offset))))
2798 			return err;
2799 
2800 		if (frag->next)
2801 			skb_drop_list(&frag->next);
2802 		break;
2803 	}
2804 
2805 done:
2806 	if (len > skb_headlen(skb)) {
2807 		skb->data_len -= skb->len - len;
2808 		skb->len       = len;
2809 	} else {
2810 		skb->len       = len;
2811 		skb->data_len  = 0;
2812 		skb_set_tail_pointer(skb, len);
2813 	}
2814 
2815 	if (!skb->sk || skb->destructor == sock_edemux)
2816 		skb_condense(skb);
2817 	return 0;
2818 }
2819 EXPORT_SYMBOL(___pskb_trim);
2820 
2821 /* Note : use pskb_trim_rcsum() instead of calling this directly
2822  */
2823 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2824 {
2825 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2826 		int delta = skb->len - len;
2827 
2828 		skb->csum = csum_block_sub(skb->csum,
2829 					   skb_checksum(skb, len, delta, 0),
2830 					   len);
2831 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2832 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2833 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2834 
2835 		if (offset + sizeof(__sum16) > hdlen)
2836 			return -EINVAL;
2837 	}
2838 	return __pskb_trim(skb, len);
2839 }
2840 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2841 
2842 /**
2843  *	__pskb_pull_tail - advance tail of skb header
2844  *	@skb: buffer to reallocate
2845  *	@delta: number of bytes to advance tail
2846  *
2847  *	The function makes a sense only on a fragmented &sk_buff,
2848  *	it expands header moving its tail forward and copying necessary
2849  *	data from fragmented part.
2850  *
2851  *	&sk_buff MUST have reference count of 1.
2852  *
2853  *	Returns %NULL (and &sk_buff does not change) if pull failed
2854  *	or value of new tail of skb in the case of success.
2855  *
2856  *	All the pointers pointing into skb header may change and must be
2857  *	reloaded after call to this function.
2858  */
2859 
2860 /* Moves tail of skb head forward, copying data from fragmented part,
2861  * when it is necessary.
2862  * 1. It may fail due to malloc failure.
2863  * 2. It may change skb pointers.
2864  *
2865  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2866  */
2867 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2868 {
2869 	/* If skb has not enough free space at tail, get new one
2870 	 * plus 128 bytes for future expansions. If we have enough
2871 	 * room at tail, reallocate without expansion only if skb is cloned.
2872 	 */
2873 	int i, k, eat = (skb->tail + delta) - skb->end;
2874 
2875 	if (!skb_frags_readable(skb))
2876 		return NULL;
2877 
2878 	if (eat > 0 || skb_cloned(skb)) {
2879 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2880 				     GFP_ATOMIC))
2881 			return NULL;
2882 	}
2883 
2884 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2885 			     skb_tail_pointer(skb), delta));
2886 
2887 	/* Optimization: no fragments, no reasons to preestimate
2888 	 * size of pulled pages. Superb.
2889 	 */
2890 	if (!skb_has_frag_list(skb))
2891 		goto pull_pages;
2892 
2893 	/* Estimate size of pulled pages. */
2894 	eat = delta;
2895 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2896 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2897 
2898 		if (size >= eat)
2899 			goto pull_pages;
2900 		eat -= size;
2901 	}
2902 
2903 	/* If we need update frag list, we are in troubles.
2904 	 * Certainly, it is possible to add an offset to skb data,
2905 	 * but taking into account that pulling is expected to
2906 	 * be very rare operation, it is worth to fight against
2907 	 * further bloating skb head and crucify ourselves here instead.
2908 	 * Pure masohism, indeed. 8)8)
2909 	 */
2910 	if (eat) {
2911 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2912 		struct sk_buff *clone = NULL;
2913 		struct sk_buff *insp = NULL;
2914 
2915 		do {
2916 			if (list->len <= eat) {
2917 				/* Eaten as whole. */
2918 				eat -= list->len;
2919 				list = list->next;
2920 				insp = list;
2921 			} else {
2922 				/* Eaten partially. */
2923 				if (skb_is_gso(skb) && !list->head_frag &&
2924 				    skb_headlen(list))
2925 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2926 
2927 				if (skb_shared(list)) {
2928 					/* Sucks! We need to fork list. :-( */
2929 					clone = skb_clone(list, GFP_ATOMIC);
2930 					if (!clone)
2931 						return NULL;
2932 					insp = list->next;
2933 					list = clone;
2934 				} else {
2935 					/* This may be pulled without
2936 					 * problems. */
2937 					insp = list;
2938 				}
2939 				if (!pskb_pull(list, eat)) {
2940 					kfree_skb(clone);
2941 					return NULL;
2942 				}
2943 				break;
2944 			}
2945 		} while (eat);
2946 
2947 		/* Free pulled out fragments. */
2948 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2949 			skb_shinfo(skb)->frag_list = list->next;
2950 			consume_skb(list);
2951 		}
2952 		/* And insert new clone at head. */
2953 		if (clone) {
2954 			clone->next = list;
2955 			skb_shinfo(skb)->frag_list = clone;
2956 		}
2957 	}
2958 	/* Success! Now we may commit changes to skb data. */
2959 
2960 pull_pages:
2961 	eat = delta;
2962 	k = 0;
2963 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2964 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2965 
2966 		if (size <= eat) {
2967 			skb_frag_unref(skb, i);
2968 			eat -= size;
2969 		} else {
2970 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2971 
2972 			*frag = skb_shinfo(skb)->frags[i];
2973 			if (eat) {
2974 				skb_frag_off_add(frag, eat);
2975 				skb_frag_size_sub(frag, eat);
2976 				if (!i)
2977 					goto end;
2978 				eat = 0;
2979 			}
2980 			k++;
2981 		}
2982 	}
2983 	skb_shinfo(skb)->nr_frags = k;
2984 
2985 end:
2986 	skb->tail     += delta;
2987 	skb->data_len -= delta;
2988 
2989 	if (!skb->data_len)
2990 		skb_zcopy_clear(skb, false);
2991 
2992 	return skb_tail_pointer(skb);
2993 }
2994 EXPORT_SYMBOL(__pskb_pull_tail);
2995 
2996 /**
2997  *	skb_copy_bits - copy bits from skb to kernel buffer
2998  *	@skb: source skb
2999  *	@offset: offset in source
3000  *	@to: destination buffer
3001  *	@len: number of bytes to copy
3002  *
3003  *	Copy the specified number of bytes from the source skb to the
3004  *	destination buffer.
3005  *
3006  *	CAUTION ! :
3007  *		If its prototype is ever changed,
3008  *		check arch/{*}/net/{*}.S files,
3009  *		since it is called from BPF assembly code.
3010  */
3011 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
3012 {
3013 	int start = skb_headlen(skb);
3014 	struct sk_buff *frag_iter;
3015 	int i, copy;
3016 
3017 	if (offset > (int)skb->len - len)
3018 		goto fault;
3019 
3020 	/* Copy header. */
3021 	if ((copy = start - offset) > 0) {
3022 		if (copy > len)
3023 			copy = len;
3024 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
3025 		if ((len -= copy) == 0)
3026 			return 0;
3027 		offset += copy;
3028 		to     += copy;
3029 	}
3030 
3031 	if (!skb_frags_readable(skb))
3032 		goto fault;
3033 
3034 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3035 		int end;
3036 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
3037 
3038 		WARN_ON(start > offset + len);
3039 
3040 		end = start + skb_frag_size(f);
3041 		if ((copy = end - offset) > 0) {
3042 			u32 p_off, p_len, copied;
3043 			struct page *p;
3044 			u8 *vaddr;
3045 
3046 			if (copy > len)
3047 				copy = len;
3048 
3049 			skb_frag_foreach_page(f,
3050 					      skb_frag_off(f) + offset - start,
3051 					      copy, p, p_off, p_len, copied) {
3052 				vaddr = kmap_atomic(p);
3053 				memcpy(to + copied, vaddr + p_off, p_len);
3054 				kunmap_atomic(vaddr);
3055 			}
3056 
3057 			if ((len -= copy) == 0)
3058 				return 0;
3059 			offset += copy;
3060 			to     += copy;
3061 		}
3062 		start = end;
3063 	}
3064 
3065 	skb_walk_frags(skb, frag_iter) {
3066 		int end;
3067 
3068 		WARN_ON(start > offset + len);
3069 
3070 		end = start + frag_iter->len;
3071 		if ((copy = end - offset) > 0) {
3072 			if (copy > len)
3073 				copy = len;
3074 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3075 				goto fault;
3076 			if ((len -= copy) == 0)
3077 				return 0;
3078 			offset += copy;
3079 			to     += copy;
3080 		}
3081 		start = end;
3082 	}
3083 
3084 	if (!len)
3085 		return 0;
3086 
3087 fault:
3088 	return -EFAULT;
3089 }
3090 EXPORT_SYMBOL(skb_copy_bits);
3091 
3092 /*
3093  * Callback from splice_to_pipe(), if we need to release some pages
3094  * at the end of the spd in case we error'ed out in filling the pipe.
3095  */
3096 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3097 {
3098 	put_page(spd->pages[i]);
3099 }
3100 
3101 static struct page *linear_to_page(struct page *page, unsigned int *len,
3102 				   unsigned int *offset,
3103 				   struct sock *sk)
3104 {
3105 	struct page_frag *pfrag = sk_page_frag(sk);
3106 
3107 	if (!sk_page_frag_refill(sk, pfrag))
3108 		return NULL;
3109 
3110 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3111 
3112 	memcpy(page_address(pfrag->page) + pfrag->offset,
3113 	       page_address(page) + *offset, *len);
3114 	*offset = pfrag->offset;
3115 	pfrag->offset += *len;
3116 
3117 	return pfrag->page;
3118 }
3119 
3120 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3121 			     struct page *page,
3122 			     unsigned int offset)
3123 {
3124 	return	spd->nr_pages &&
3125 		spd->pages[spd->nr_pages - 1] == page &&
3126 		(spd->partial[spd->nr_pages - 1].offset +
3127 		 spd->partial[spd->nr_pages - 1].len == offset);
3128 }
3129 
3130 /*
3131  * Fill page/offset/length into spd, if it can hold more pages.
3132  */
3133 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3134 			  unsigned int *len, unsigned int offset, bool linear,
3135 			  struct sock *sk)
3136 {
3137 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3138 		return true;
3139 
3140 	if (linear) {
3141 		page = linear_to_page(page, len, &offset, sk);
3142 		if (!page)
3143 			return true;
3144 	}
3145 	if (spd_can_coalesce(spd, page, offset)) {
3146 		spd->partial[spd->nr_pages - 1].len += *len;
3147 		return false;
3148 	}
3149 	get_page(page);
3150 	spd->pages[spd->nr_pages] = page;
3151 	spd->partial[spd->nr_pages].len = *len;
3152 	spd->partial[spd->nr_pages].offset = offset;
3153 	spd->nr_pages++;
3154 
3155 	return false;
3156 }
3157 
3158 static bool __splice_segment(struct page *page, unsigned int poff,
3159 			     unsigned int plen, unsigned int *off,
3160 			     unsigned int *len,
3161 			     struct splice_pipe_desc *spd, bool linear,
3162 			     struct sock *sk)
3163 {
3164 	if (!*len)
3165 		return true;
3166 
3167 	/* skip this segment if already processed */
3168 	if (*off >= plen) {
3169 		*off -= plen;
3170 		return false;
3171 	}
3172 
3173 	/* ignore any bits we already processed */
3174 	poff += *off;
3175 	plen -= *off;
3176 	*off = 0;
3177 
3178 	do {
3179 		unsigned int flen = min(*len, plen);
3180 
3181 		if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3182 			return true;
3183 		poff += flen;
3184 		plen -= flen;
3185 		*len -= flen;
3186 		if (!*len)
3187 			return true;
3188 	} while (plen);
3189 
3190 	return false;
3191 }
3192 
3193 /*
3194  * Map linear and fragment data from the skb to spd. It reports true if the
3195  * pipe is full or if we already spliced the requested length.
3196  */
3197 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3198 			      unsigned int *offset, unsigned int *len,
3199 			      struct splice_pipe_desc *spd, struct sock *sk)
3200 {
3201 	struct sk_buff *iter;
3202 	int seg;
3203 
3204 	/* map the linear part :
3205 	 * If skb->head_frag is set, this 'linear' part is backed by a
3206 	 * fragment, and if the head is not shared with any clones then
3207 	 * we can avoid a copy since we own the head portion of this page.
3208 	 */
3209 	if (__splice_segment(virt_to_page(skb->data),
3210 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3211 			     skb_headlen(skb),
3212 			     offset, len, spd,
3213 			     skb_head_is_locked(skb),
3214 			     sk))
3215 		return true;
3216 
3217 	/*
3218 	 * then map the fragments
3219 	 */
3220 	if (!skb_frags_readable(skb))
3221 		return false;
3222 
3223 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3224 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3225 
3226 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3227 			return false;
3228 
3229 		if (__splice_segment(skb_frag_page(f),
3230 				     skb_frag_off(f), skb_frag_size(f),
3231 				     offset, len, spd, false, sk))
3232 			return true;
3233 	}
3234 
3235 	skb_walk_frags(skb, iter) {
3236 		if (*offset >= iter->len) {
3237 			*offset -= iter->len;
3238 			continue;
3239 		}
3240 		/* __skb_splice_bits() only fails if the output has no room
3241 		 * left, so no point in going over the frag_list for the error
3242 		 * case.
3243 		 */
3244 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3245 			return true;
3246 	}
3247 
3248 	return false;
3249 }
3250 
3251 /*
3252  * Map data from the skb to a pipe. Should handle both the linear part,
3253  * the fragments, and the frag list.
3254  */
3255 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3256 		    struct pipe_inode_info *pipe, unsigned int tlen,
3257 		    unsigned int flags)
3258 {
3259 	struct partial_page partial[MAX_SKB_FRAGS];
3260 	struct page *pages[MAX_SKB_FRAGS];
3261 	struct splice_pipe_desc spd = {
3262 		.pages = pages,
3263 		.partial = partial,
3264 		.nr_pages_max = MAX_SKB_FRAGS,
3265 		.ops = &nosteal_pipe_buf_ops,
3266 		.spd_release = sock_spd_release,
3267 	};
3268 	int ret = 0;
3269 
3270 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3271 
3272 	if (spd.nr_pages)
3273 		ret = splice_to_pipe(pipe, &spd);
3274 
3275 	return ret;
3276 }
3277 EXPORT_SYMBOL_GPL(skb_splice_bits);
3278 
3279 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3280 {
3281 	struct socket *sock = sk->sk_socket;
3282 	size_t size = msg_data_left(msg);
3283 
3284 	if (!sock)
3285 		return -EINVAL;
3286 
3287 	if (!sock->ops->sendmsg_locked)
3288 		return sock_no_sendmsg_locked(sk, msg, size);
3289 
3290 	return sock->ops->sendmsg_locked(sk, msg, size);
3291 }
3292 
3293 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3294 {
3295 	struct socket *sock = sk->sk_socket;
3296 
3297 	if (!sock)
3298 		return -EINVAL;
3299 	return sock_sendmsg(sock, msg);
3300 }
3301 
3302 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3303 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3304 			   int len, sendmsg_func sendmsg, int flags)
3305 {
3306 	int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0;
3307 	unsigned int orig_len = len;
3308 	struct sk_buff *head = skb;
3309 	unsigned short fragidx;
3310 	int slen, ret;
3311 
3312 do_frag_list:
3313 
3314 	/* Deal with head data */
3315 	while (offset < skb_headlen(skb) && len) {
3316 		struct kvec kv;
3317 		struct msghdr msg;
3318 
3319 		slen = min_t(int, len, skb_headlen(skb) - offset);
3320 		kv.iov_base = skb->data + offset;
3321 		kv.iov_len = slen;
3322 		memset(&msg, 0, sizeof(msg));
3323 		msg.msg_flags = MSG_DONTWAIT | flags;
3324 		if (slen < len)
3325 			msg.msg_flags |= more_hint;
3326 
3327 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3328 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3329 				      sendmsg_unlocked, sk, &msg);
3330 		if (ret <= 0)
3331 			goto error;
3332 
3333 		offset += ret;
3334 		len -= ret;
3335 	}
3336 
3337 	/* All the data was skb head? */
3338 	if (!len)
3339 		goto out;
3340 
3341 	/* Make offset relative to start of frags */
3342 	offset -= skb_headlen(skb);
3343 
3344 	/* Find where we are in frag list */
3345 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3346 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3347 
3348 		if (offset < skb_frag_size(frag))
3349 			break;
3350 
3351 		offset -= skb_frag_size(frag);
3352 	}
3353 
3354 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3355 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3356 
3357 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3358 
3359 		while (slen) {
3360 			struct bio_vec bvec;
3361 			struct msghdr msg = {
3362 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3363 					     flags,
3364 			};
3365 
3366 			if (slen < len)
3367 				msg.msg_flags |= more_hint;
3368 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3369 				      skb_frag_off(frag) + offset);
3370 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3371 				      slen);
3372 
3373 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3374 					      sendmsg_unlocked, sk, &msg);
3375 			if (ret <= 0)
3376 				goto error;
3377 
3378 			len -= ret;
3379 			offset += ret;
3380 			slen -= ret;
3381 		}
3382 
3383 		offset = 0;
3384 	}
3385 
3386 	if (len) {
3387 		/* Process any frag lists */
3388 
3389 		if (skb == head) {
3390 			if (skb_has_frag_list(skb)) {
3391 				skb = skb_shinfo(skb)->frag_list;
3392 				goto do_frag_list;
3393 			}
3394 		} else if (skb->next) {
3395 			skb = skb->next;
3396 			goto do_frag_list;
3397 		}
3398 	}
3399 
3400 out:
3401 	return orig_len - len;
3402 
3403 error:
3404 	return orig_len == len ? ret : orig_len - len;
3405 }
3406 
3407 /* Send skb data on a socket. Socket must be locked. */
3408 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3409 			 int len)
3410 {
3411 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3412 }
3413 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3414 
3415 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3416 				    int offset, int len, int flags)
3417 {
3418 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3419 }
3420 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3421 
3422 /* Send skb data on a socket. Socket must be unlocked. */
3423 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3424 {
3425 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3426 }
3427 
3428 /**
3429  *	skb_store_bits - store bits from kernel buffer to skb
3430  *	@skb: destination buffer
3431  *	@offset: offset in destination
3432  *	@from: source buffer
3433  *	@len: number of bytes to copy
3434  *
3435  *	Copy the specified number of bytes from the source buffer to the
3436  *	destination skb.  This function handles all the messy bits of
3437  *	traversing fragment lists and such.
3438  */
3439 
3440 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3441 {
3442 	int start = skb_headlen(skb);
3443 	struct sk_buff *frag_iter;
3444 	int i, copy;
3445 
3446 	if (offset > (int)skb->len - len)
3447 		goto fault;
3448 
3449 	if ((copy = start - offset) > 0) {
3450 		if (copy > len)
3451 			copy = len;
3452 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3453 		if ((len -= copy) == 0)
3454 			return 0;
3455 		offset += copy;
3456 		from += copy;
3457 	}
3458 
3459 	if (!skb_frags_readable(skb))
3460 		goto fault;
3461 
3462 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3463 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3464 		int end;
3465 
3466 		WARN_ON(start > offset + len);
3467 
3468 		end = start + skb_frag_size(frag);
3469 		if ((copy = end - offset) > 0) {
3470 			u32 p_off, p_len, copied;
3471 			struct page *p;
3472 			u8 *vaddr;
3473 
3474 			if (copy > len)
3475 				copy = len;
3476 
3477 			skb_frag_foreach_page(frag,
3478 					      skb_frag_off(frag) + offset - start,
3479 					      copy, p, p_off, p_len, copied) {
3480 				vaddr = kmap_atomic(p);
3481 				memcpy(vaddr + p_off, from + copied, p_len);
3482 				kunmap_atomic(vaddr);
3483 			}
3484 
3485 			if ((len -= copy) == 0)
3486 				return 0;
3487 			offset += copy;
3488 			from += copy;
3489 		}
3490 		start = end;
3491 	}
3492 
3493 	skb_walk_frags(skb, frag_iter) {
3494 		int end;
3495 
3496 		WARN_ON(start > offset + len);
3497 
3498 		end = start + frag_iter->len;
3499 		if ((copy = end - offset) > 0) {
3500 			if (copy > len)
3501 				copy = len;
3502 			if (skb_store_bits(frag_iter, offset - start,
3503 					   from, copy))
3504 				goto fault;
3505 			if ((len -= copy) == 0)
3506 				return 0;
3507 			offset += copy;
3508 			from += copy;
3509 		}
3510 		start = end;
3511 	}
3512 	if (!len)
3513 		return 0;
3514 
3515 fault:
3516 	return -EFAULT;
3517 }
3518 EXPORT_SYMBOL(skb_store_bits);
3519 
3520 /* Checksum skb data. */
3521 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3522 {
3523 	int start = skb_headlen(skb);
3524 	int i, copy = start - offset;
3525 	struct sk_buff *frag_iter;
3526 	int pos = 0;
3527 
3528 	/* Checksum header. */
3529 	if (copy > 0) {
3530 		if (copy > len)
3531 			copy = len;
3532 		csum = csum_partial(skb->data + offset, copy, csum);
3533 		if ((len -= copy) == 0)
3534 			return csum;
3535 		offset += copy;
3536 		pos	= copy;
3537 	}
3538 
3539 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3540 		return 0;
3541 
3542 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3543 		int end;
3544 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3545 
3546 		WARN_ON(start > offset + len);
3547 
3548 		end = start + skb_frag_size(frag);
3549 		if ((copy = end - offset) > 0) {
3550 			u32 p_off, p_len, copied;
3551 			struct page *p;
3552 			__wsum csum2;
3553 			u8 *vaddr;
3554 
3555 			if (copy > len)
3556 				copy = len;
3557 
3558 			skb_frag_foreach_page(frag,
3559 					      skb_frag_off(frag) + offset - start,
3560 					      copy, p, p_off, p_len, copied) {
3561 				vaddr = kmap_atomic(p);
3562 				csum2 = csum_partial(vaddr + p_off, p_len, 0);
3563 				kunmap_atomic(vaddr);
3564 				csum = csum_block_add(csum, csum2, pos);
3565 				pos += p_len;
3566 			}
3567 
3568 			if (!(len -= copy))
3569 				return csum;
3570 			offset += copy;
3571 		}
3572 		start = end;
3573 	}
3574 
3575 	skb_walk_frags(skb, frag_iter) {
3576 		int end;
3577 
3578 		WARN_ON(start > offset + len);
3579 
3580 		end = start + frag_iter->len;
3581 		if ((copy = end - offset) > 0) {
3582 			__wsum csum2;
3583 			if (copy > len)
3584 				copy = len;
3585 			csum2 = skb_checksum(frag_iter, offset - start, copy,
3586 					     0);
3587 			csum = csum_block_add(csum, csum2, pos);
3588 			if ((len -= copy) == 0)
3589 				return csum;
3590 			offset += copy;
3591 			pos    += copy;
3592 		}
3593 		start = end;
3594 	}
3595 	BUG_ON(len);
3596 
3597 	return csum;
3598 }
3599 EXPORT_SYMBOL(skb_checksum);
3600 
3601 /* Both of above in one bottle. */
3602 
3603 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3604 				    u8 *to, int len)
3605 {
3606 	int start = skb_headlen(skb);
3607 	int i, copy = start - offset;
3608 	struct sk_buff *frag_iter;
3609 	int pos = 0;
3610 	__wsum csum = 0;
3611 
3612 	/* Copy header. */
3613 	if (copy > 0) {
3614 		if (copy > len)
3615 			copy = len;
3616 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3617 						 copy);
3618 		if ((len -= copy) == 0)
3619 			return csum;
3620 		offset += copy;
3621 		to     += copy;
3622 		pos	= copy;
3623 	}
3624 
3625 	if (!skb_frags_readable(skb))
3626 		return 0;
3627 
3628 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3629 		int end;
3630 
3631 		WARN_ON(start > offset + len);
3632 
3633 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3634 		if ((copy = end - offset) > 0) {
3635 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3636 			u32 p_off, p_len, copied;
3637 			struct page *p;
3638 			__wsum csum2;
3639 			u8 *vaddr;
3640 
3641 			if (copy > len)
3642 				copy = len;
3643 
3644 			skb_frag_foreach_page(frag,
3645 					      skb_frag_off(frag) + offset - start,
3646 					      copy, p, p_off, p_len, copied) {
3647 				vaddr = kmap_atomic(p);
3648 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3649 								  to + copied,
3650 								  p_len);
3651 				kunmap_atomic(vaddr);
3652 				csum = csum_block_add(csum, csum2, pos);
3653 				pos += p_len;
3654 			}
3655 
3656 			if (!(len -= copy))
3657 				return csum;
3658 			offset += copy;
3659 			to     += copy;
3660 		}
3661 		start = end;
3662 	}
3663 
3664 	skb_walk_frags(skb, frag_iter) {
3665 		__wsum csum2;
3666 		int end;
3667 
3668 		WARN_ON(start > offset + len);
3669 
3670 		end = start + frag_iter->len;
3671 		if ((copy = end - offset) > 0) {
3672 			if (copy > len)
3673 				copy = len;
3674 			csum2 = skb_copy_and_csum_bits(frag_iter,
3675 						       offset - start,
3676 						       to, copy);
3677 			csum = csum_block_add(csum, csum2, pos);
3678 			if ((len -= copy) == 0)
3679 				return csum;
3680 			offset += copy;
3681 			to     += copy;
3682 			pos    += copy;
3683 		}
3684 		start = end;
3685 	}
3686 	BUG_ON(len);
3687 	return csum;
3688 }
3689 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3690 
3691 #ifdef CONFIG_NET_CRC32C
3692 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3693 {
3694 	int start = skb_headlen(skb);
3695 	int i, copy = start - offset;
3696 	struct sk_buff *frag_iter;
3697 
3698 	if (copy > 0) {
3699 		copy = min(copy, len);
3700 		crc = crc32c(crc, skb->data + offset, copy);
3701 		len -= copy;
3702 		if (len == 0)
3703 			return crc;
3704 		offset += copy;
3705 	}
3706 
3707 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3708 		return 0;
3709 
3710 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3711 		int end;
3712 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3713 
3714 		WARN_ON(start > offset + len);
3715 
3716 		end = start + skb_frag_size(frag);
3717 		copy = end - offset;
3718 		if (copy > 0) {
3719 			u32 p_off, p_len, copied;
3720 			struct page *p;
3721 			u8 *vaddr;
3722 
3723 			copy = min(copy, len);
3724 			skb_frag_foreach_page(frag,
3725 					      skb_frag_off(frag) + offset - start,
3726 					      copy, p, p_off, p_len, copied) {
3727 				vaddr = kmap_atomic(p);
3728 				crc = crc32c(crc, vaddr + p_off, p_len);
3729 				kunmap_atomic(vaddr);
3730 			}
3731 			len -= copy;
3732 			if (len == 0)
3733 				return crc;
3734 			offset += copy;
3735 		}
3736 		start = end;
3737 	}
3738 
3739 	skb_walk_frags(skb, frag_iter) {
3740 		int end;
3741 
3742 		WARN_ON(start > offset + len);
3743 
3744 		end = start + frag_iter->len;
3745 		copy = end - offset;
3746 		if (copy > 0) {
3747 			copy = min(copy, len);
3748 			crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3749 			len -= copy;
3750 			if (len == 0)
3751 				return crc;
3752 			offset += copy;
3753 		}
3754 		start = end;
3755 	}
3756 	BUG_ON(len);
3757 
3758 	return crc;
3759 }
3760 EXPORT_SYMBOL(skb_crc32c);
3761 #endif /* CONFIG_NET_CRC32C */
3762 
3763 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3764 {
3765 	__sum16 sum;
3766 
3767 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3768 	/* See comments in __skb_checksum_complete(). */
3769 	if (likely(!sum)) {
3770 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3771 		    !skb->csum_complete_sw)
3772 			netdev_rx_csum_fault(skb->dev, skb);
3773 	}
3774 	if (!skb_shared(skb))
3775 		skb->csum_valid = !sum;
3776 	return sum;
3777 }
3778 EXPORT_SYMBOL(__skb_checksum_complete_head);
3779 
3780 /* This function assumes skb->csum already holds pseudo header's checksum,
3781  * which has been changed from the hardware checksum, for example, by
3782  * __skb_checksum_validate_complete(). And, the original skb->csum must
3783  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3784  *
3785  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3786  * zero. The new checksum is stored back into skb->csum unless the skb is
3787  * shared.
3788  */
3789 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3790 {
3791 	__wsum csum;
3792 	__sum16 sum;
3793 
3794 	csum = skb_checksum(skb, 0, skb->len, 0);
3795 
3796 	sum = csum_fold(csum_add(skb->csum, csum));
3797 	/* This check is inverted, because we already knew the hardware
3798 	 * checksum is invalid before calling this function. So, if the
3799 	 * re-computed checksum is valid instead, then we have a mismatch
3800 	 * between the original skb->csum and skb_checksum(). This means either
3801 	 * the original hardware checksum is incorrect or we screw up skb->csum
3802 	 * when moving skb->data around.
3803 	 */
3804 	if (likely(!sum)) {
3805 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3806 		    !skb->csum_complete_sw)
3807 			netdev_rx_csum_fault(skb->dev, skb);
3808 	}
3809 
3810 	if (!skb_shared(skb)) {
3811 		/* Save full packet checksum */
3812 		skb->csum = csum;
3813 		skb->ip_summed = CHECKSUM_COMPLETE;
3814 		skb->csum_complete_sw = 1;
3815 		skb->csum_valid = !sum;
3816 	}
3817 
3818 	return sum;
3819 }
3820 EXPORT_SYMBOL(__skb_checksum_complete);
3821 
3822  /**
3823  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3824  *	@from: source buffer
3825  *
3826  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3827  *	into skb_zerocopy().
3828  */
3829 unsigned int
3830 skb_zerocopy_headlen(const struct sk_buff *from)
3831 {
3832 	unsigned int hlen = 0;
3833 
3834 	if (!from->head_frag ||
3835 	    skb_headlen(from) < L1_CACHE_BYTES ||
3836 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3837 		hlen = skb_headlen(from);
3838 		if (!hlen)
3839 			hlen = from->len;
3840 	}
3841 
3842 	if (skb_has_frag_list(from))
3843 		hlen = from->len;
3844 
3845 	return hlen;
3846 }
3847 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3848 
3849 /**
3850  *	skb_zerocopy - Zero copy skb to skb
3851  *	@to: destination buffer
3852  *	@from: source buffer
3853  *	@len: number of bytes to copy from source buffer
3854  *	@hlen: size of linear headroom in destination buffer
3855  *
3856  *	Copies up to `len` bytes from `from` to `to` by creating references
3857  *	to the frags in the source buffer.
3858  *
3859  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3860  *	headroom in the `to` buffer.
3861  *
3862  *	Return value:
3863  *	0: everything is OK
3864  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3865  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3866  */
3867 int
3868 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3869 {
3870 	int i, j = 0;
3871 	int plen = 0; /* length of skb->head fragment */
3872 	int ret;
3873 	struct page *page;
3874 	unsigned int offset;
3875 
3876 	BUG_ON(!from->head_frag && !hlen);
3877 
3878 	/* dont bother with small payloads */
3879 	if (len <= skb_tailroom(to))
3880 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3881 
3882 	if (hlen) {
3883 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3884 		if (unlikely(ret))
3885 			return ret;
3886 		len -= hlen;
3887 	} else {
3888 		plen = min_t(int, skb_headlen(from), len);
3889 		if (plen) {
3890 			page = virt_to_head_page(from->head);
3891 			offset = from->data - (unsigned char *)page_address(page);
3892 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3893 					       offset, plen);
3894 			get_page(page);
3895 			j = 1;
3896 			len -= plen;
3897 		}
3898 	}
3899 
3900 	skb_len_add(to, len + plen);
3901 
3902 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3903 		skb_tx_error(from);
3904 		return -ENOMEM;
3905 	}
3906 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3907 
3908 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3909 		int size;
3910 
3911 		if (!len)
3912 			break;
3913 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3914 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3915 					len);
3916 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3917 		len -= size;
3918 		skb_frag_ref(to, j);
3919 		j++;
3920 	}
3921 	skb_shinfo(to)->nr_frags = j;
3922 
3923 	return 0;
3924 }
3925 EXPORT_SYMBOL_GPL(skb_zerocopy);
3926 
3927 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3928 {
3929 	__wsum csum;
3930 	long csstart;
3931 
3932 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3933 		csstart = skb_checksum_start_offset(skb);
3934 	else
3935 		csstart = skb_headlen(skb);
3936 
3937 	BUG_ON(csstart > skb_headlen(skb));
3938 
3939 	skb_copy_from_linear_data(skb, to, csstart);
3940 
3941 	csum = 0;
3942 	if (csstart != skb->len)
3943 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3944 					      skb->len - csstart);
3945 
3946 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3947 		long csstuff = csstart + skb->csum_offset;
3948 
3949 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3950 	}
3951 }
3952 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3953 
3954 /**
3955  *	skb_dequeue - remove from the head of the queue
3956  *	@list: list to dequeue from
3957  *
3958  *	Remove the head of the list. The list lock is taken so the function
3959  *	may be used safely with other locking list functions. The head item is
3960  *	returned or %NULL if the list is empty.
3961  */
3962 
3963 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3964 {
3965 	unsigned long flags;
3966 	struct sk_buff *result;
3967 
3968 	spin_lock_irqsave(&list->lock, flags);
3969 	result = __skb_dequeue(list);
3970 	spin_unlock_irqrestore(&list->lock, flags);
3971 	return result;
3972 }
3973 EXPORT_SYMBOL(skb_dequeue);
3974 
3975 /**
3976  *	skb_dequeue_tail - remove from the tail of the queue
3977  *	@list: list to dequeue from
3978  *
3979  *	Remove the tail of the list. The list lock is taken so the function
3980  *	may be used safely with other locking list functions. The tail item is
3981  *	returned or %NULL if the list is empty.
3982  */
3983 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3984 {
3985 	unsigned long flags;
3986 	struct sk_buff *result;
3987 
3988 	spin_lock_irqsave(&list->lock, flags);
3989 	result = __skb_dequeue_tail(list);
3990 	spin_unlock_irqrestore(&list->lock, flags);
3991 	return result;
3992 }
3993 EXPORT_SYMBOL(skb_dequeue_tail);
3994 
3995 /**
3996  *	skb_queue_purge_reason - empty a list
3997  *	@list: list to empty
3998  *	@reason: drop reason
3999  *
4000  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
4001  *	the list and one reference dropped. This function takes the list
4002  *	lock and is atomic with respect to other list locking functions.
4003  */
4004 void skb_queue_purge_reason(struct sk_buff_head *list,
4005 			    enum skb_drop_reason reason)
4006 {
4007 	struct sk_buff_head tmp;
4008 	unsigned long flags;
4009 
4010 	if (skb_queue_empty_lockless(list))
4011 		return;
4012 
4013 	__skb_queue_head_init(&tmp);
4014 
4015 	spin_lock_irqsave(&list->lock, flags);
4016 	skb_queue_splice_init(list, &tmp);
4017 	spin_unlock_irqrestore(&list->lock, flags);
4018 
4019 	__skb_queue_purge_reason(&tmp, reason);
4020 }
4021 EXPORT_SYMBOL(skb_queue_purge_reason);
4022 
4023 /**
4024  *	skb_rbtree_purge - empty a skb rbtree
4025  *	@root: root of the rbtree to empty
4026  *	Return value: the sum of truesizes of all purged skbs.
4027  *
4028  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
4029  *	the list and one reference dropped. This function does not take
4030  *	any lock. Synchronization should be handled by the caller (e.g., TCP
4031  *	out-of-order queue is protected by the socket lock).
4032  */
4033 unsigned int skb_rbtree_purge(struct rb_root *root)
4034 {
4035 	struct rb_node *p = rb_first(root);
4036 	unsigned int sum = 0;
4037 
4038 	while (p) {
4039 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
4040 
4041 		p = rb_next(p);
4042 		rb_erase(&skb->rbnode, root);
4043 		sum += skb->truesize;
4044 		kfree_skb(skb);
4045 	}
4046 	return sum;
4047 }
4048 
4049 void skb_errqueue_purge(struct sk_buff_head *list)
4050 {
4051 	struct sk_buff *skb, *next;
4052 	struct sk_buff_head kill;
4053 	unsigned long flags;
4054 
4055 	__skb_queue_head_init(&kill);
4056 
4057 	spin_lock_irqsave(&list->lock, flags);
4058 	skb_queue_walk_safe(list, skb, next) {
4059 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
4060 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
4061 			continue;
4062 		__skb_unlink(skb, list);
4063 		__skb_queue_tail(&kill, skb);
4064 	}
4065 	spin_unlock_irqrestore(&list->lock, flags);
4066 	__skb_queue_purge(&kill);
4067 }
4068 EXPORT_SYMBOL(skb_errqueue_purge);
4069 
4070 /**
4071  *	skb_queue_head - queue a buffer at the list head
4072  *	@list: list to use
4073  *	@newsk: buffer to queue
4074  *
4075  *	Queue a buffer at the start of the list. This function takes the
4076  *	list lock and can be used safely with other locking &sk_buff functions
4077  *	safely.
4078  *
4079  *	A buffer cannot be placed on two lists at the same time.
4080  */
4081 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4082 {
4083 	unsigned long flags;
4084 
4085 	spin_lock_irqsave(&list->lock, flags);
4086 	__skb_queue_head(list, newsk);
4087 	spin_unlock_irqrestore(&list->lock, flags);
4088 }
4089 EXPORT_SYMBOL(skb_queue_head);
4090 
4091 /**
4092  *	skb_queue_tail - queue a buffer at the list tail
4093  *	@list: list to use
4094  *	@newsk: buffer to queue
4095  *
4096  *	Queue a buffer at the tail of the list. This function takes the
4097  *	list lock and can be used safely with other locking &sk_buff functions
4098  *	safely.
4099  *
4100  *	A buffer cannot be placed on two lists at the same time.
4101  */
4102 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4103 {
4104 	unsigned long flags;
4105 
4106 	spin_lock_irqsave(&list->lock, flags);
4107 	__skb_queue_tail(list, newsk);
4108 	spin_unlock_irqrestore(&list->lock, flags);
4109 }
4110 EXPORT_SYMBOL(skb_queue_tail);
4111 
4112 /**
4113  *	skb_unlink	-	remove a buffer from a list
4114  *	@skb: buffer to remove
4115  *	@list: list to use
4116  *
4117  *	Remove a packet from a list. The list locks are taken and this
4118  *	function is atomic with respect to other list locked calls
4119  *
4120  *	You must know what list the SKB is on.
4121  */
4122 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4123 {
4124 	unsigned long flags;
4125 
4126 	spin_lock_irqsave(&list->lock, flags);
4127 	__skb_unlink(skb, list);
4128 	spin_unlock_irqrestore(&list->lock, flags);
4129 }
4130 EXPORT_SYMBOL(skb_unlink);
4131 
4132 /**
4133  *	skb_append	-	append a buffer
4134  *	@old: buffer to insert after
4135  *	@newsk: buffer to insert
4136  *	@list: list to use
4137  *
4138  *	Place a packet after a given packet in a list. The list locks are taken
4139  *	and this function is atomic with respect to other list locked calls.
4140  *	A buffer cannot be placed on two lists at the same time.
4141  */
4142 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4143 {
4144 	unsigned long flags;
4145 
4146 	spin_lock_irqsave(&list->lock, flags);
4147 	__skb_queue_after(list, old, newsk);
4148 	spin_unlock_irqrestore(&list->lock, flags);
4149 }
4150 EXPORT_SYMBOL(skb_append);
4151 
4152 static inline void skb_split_inside_header(struct sk_buff *skb,
4153 					   struct sk_buff* skb1,
4154 					   const u32 len, const int pos)
4155 {
4156 	int i;
4157 
4158 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4159 					 pos - len);
4160 	/* And move data appendix as is. */
4161 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4162 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4163 
4164 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4165 	skb1->unreadable	   = skb->unreadable;
4166 	skb_shinfo(skb)->nr_frags  = 0;
4167 	skb1->data_len		   = skb->data_len;
4168 	skb1->len		   += skb1->data_len;
4169 	skb->data_len		   = 0;
4170 	skb->len		   = len;
4171 	skb_set_tail_pointer(skb, len);
4172 }
4173 
4174 static inline void skb_split_no_header(struct sk_buff *skb,
4175 				       struct sk_buff* skb1,
4176 				       const u32 len, int pos)
4177 {
4178 	int i, k = 0;
4179 	const int nfrags = skb_shinfo(skb)->nr_frags;
4180 
4181 	skb_shinfo(skb)->nr_frags = 0;
4182 	skb1->len		  = skb1->data_len = skb->len - len;
4183 	skb->len		  = len;
4184 	skb->data_len		  = len - pos;
4185 
4186 	for (i = 0; i < nfrags; i++) {
4187 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4188 
4189 		if (pos + size > len) {
4190 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4191 
4192 			if (pos < len) {
4193 				/* Split frag.
4194 				 * We have two variants in this case:
4195 				 * 1. Move all the frag to the second
4196 				 *    part, if it is possible. F.e.
4197 				 *    this approach is mandatory for TUX,
4198 				 *    where splitting is expensive.
4199 				 * 2. Split is accurately. We make this.
4200 				 */
4201 				skb_frag_ref(skb, i);
4202 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4203 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4204 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4205 				skb_shinfo(skb)->nr_frags++;
4206 			}
4207 			k++;
4208 		} else
4209 			skb_shinfo(skb)->nr_frags++;
4210 		pos += size;
4211 	}
4212 	skb_shinfo(skb1)->nr_frags = k;
4213 
4214 	skb1->unreadable = skb->unreadable;
4215 }
4216 
4217 /**
4218  * skb_split - Split fragmented skb to two parts at length len.
4219  * @skb: the buffer to split
4220  * @skb1: the buffer to receive the second part
4221  * @len: new length for skb
4222  */
4223 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4224 {
4225 	int pos = skb_headlen(skb);
4226 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4227 
4228 	skb_zcopy_downgrade_managed(skb);
4229 
4230 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4231 	skb_zerocopy_clone(skb1, skb, 0);
4232 	if (len < pos)	/* Split line is inside header. */
4233 		skb_split_inside_header(skb, skb1, len, pos);
4234 	else		/* Second chunk has no header, nothing to copy. */
4235 		skb_split_no_header(skb, skb1, len, pos);
4236 }
4237 EXPORT_SYMBOL(skb_split);
4238 
4239 /* Shifting from/to a cloned skb is a no-go.
4240  *
4241  * Caller cannot keep skb_shinfo related pointers past calling here!
4242  */
4243 static int skb_prepare_for_shift(struct sk_buff *skb)
4244 {
4245 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4246 }
4247 
4248 /**
4249  * skb_shift - Shifts paged data partially from skb to another
4250  * @tgt: buffer into which tail data gets added
4251  * @skb: buffer from which the paged data comes from
4252  * @shiftlen: shift up to this many bytes
4253  *
4254  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4255  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4256  * It's up to caller to free skb if everything was shifted.
4257  *
4258  * If @tgt runs out of frags, the whole operation is aborted.
4259  *
4260  * Skb cannot include anything else but paged data while tgt is allowed
4261  * to have non-paged data as well.
4262  *
4263  * TODO: full sized shift could be optimized but that would need
4264  * specialized skb free'er to handle frags without up-to-date nr_frags.
4265  */
4266 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4267 {
4268 	int from, to, merge, todo;
4269 	skb_frag_t *fragfrom, *fragto;
4270 
4271 	BUG_ON(shiftlen > skb->len);
4272 
4273 	if (skb_headlen(skb))
4274 		return 0;
4275 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4276 		return 0;
4277 
4278 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4279 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4280 
4281 	todo = shiftlen;
4282 	from = 0;
4283 	to = skb_shinfo(tgt)->nr_frags;
4284 	fragfrom = &skb_shinfo(skb)->frags[from];
4285 
4286 	/* Actual merge is delayed until the point when we know we can
4287 	 * commit all, so that we don't have to undo partial changes
4288 	 */
4289 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4290 			      skb_frag_off(fragfrom))) {
4291 		merge = -1;
4292 	} else {
4293 		merge = to - 1;
4294 
4295 		todo -= skb_frag_size(fragfrom);
4296 		if (todo < 0) {
4297 			if (skb_prepare_for_shift(skb) ||
4298 			    skb_prepare_for_shift(tgt))
4299 				return 0;
4300 
4301 			/* All previous frag pointers might be stale! */
4302 			fragfrom = &skb_shinfo(skb)->frags[from];
4303 			fragto = &skb_shinfo(tgt)->frags[merge];
4304 
4305 			skb_frag_size_add(fragto, shiftlen);
4306 			skb_frag_size_sub(fragfrom, shiftlen);
4307 			skb_frag_off_add(fragfrom, shiftlen);
4308 
4309 			goto onlymerged;
4310 		}
4311 
4312 		from++;
4313 	}
4314 
4315 	/* Skip full, not-fitting skb to avoid expensive operations */
4316 	if ((shiftlen == skb->len) &&
4317 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4318 		return 0;
4319 
4320 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4321 		return 0;
4322 
4323 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4324 		if (to == MAX_SKB_FRAGS)
4325 			return 0;
4326 
4327 		fragfrom = &skb_shinfo(skb)->frags[from];
4328 		fragto = &skb_shinfo(tgt)->frags[to];
4329 
4330 		if (todo >= skb_frag_size(fragfrom)) {
4331 			*fragto = *fragfrom;
4332 			todo -= skb_frag_size(fragfrom);
4333 			from++;
4334 			to++;
4335 
4336 		} else {
4337 			__skb_frag_ref(fragfrom);
4338 			skb_frag_page_copy(fragto, fragfrom);
4339 			skb_frag_off_copy(fragto, fragfrom);
4340 			skb_frag_size_set(fragto, todo);
4341 
4342 			skb_frag_off_add(fragfrom, todo);
4343 			skb_frag_size_sub(fragfrom, todo);
4344 			todo = 0;
4345 
4346 			to++;
4347 			break;
4348 		}
4349 	}
4350 
4351 	/* Ready to "commit" this state change to tgt */
4352 	skb_shinfo(tgt)->nr_frags = to;
4353 
4354 	if (merge >= 0) {
4355 		fragfrom = &skb_shinfo(skb)->frags[0];
4356 		fragto = &skb_shinfo(tgt)->frags[merge];
4357 
4358 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4359 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4360 	}
4361 
4362 	/* Reposition in the original skb */
4363 	to = 0;
4364 	while (from < skb_shinfo(skb)->nr_frags)
4365 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4366 	skb_shinfo(skb)->nr_frags = to;
4367 
4368 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4369 
4370 onlymerged:
4371 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4372 	 * the other hand might need it if it needs to be resent
4373 	 */
4374 	tgt->ip_summed = CHECKSUM_PARTIAL;
4375 	skb->ip_summed = CHECKSUM_PARTIAL;
4376 
4377 	skb_len_add(skb, -shiftlen);
4378 	skb_len_add(tgt, shiftlen);
4379 
4380 	return shiftlen;
4381 }
4382 
4383 /**
4384  * skb_prepare_seq_read - Prepare a sequential read of skb data
4385  * @skb: the buffer to read
4386  * @from: lower offset of data to be read
4387  * @to: upper offset of data to be read
4388  * @st: state variable
4389  *
4390  * Initializes the specified state variable. Must be called before
4391  * invoking skb_seq_read() for the first time.
4392  */
4393 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4394 			  unsigned int to, struct skb_seq_state *st)
4395 {
4396 	st->lower_offset = from;
4397 	st->upper_offset = to;
4398 	st->root_skb = st->cur_skb = skb;
4399 	st->frag_idx = st->stepped_offset = 0;
4400 	st->frag_data = NULL;
4401 	st->frag_off = 0;
4402 }
4403 EXPORT_SYMBOL(skb_prepare_seq_read);
4404 
4405 /**
4406  * skb_seq_read - Sequentially read skb data
4407  * @consumed: number of bytes consumed by the caller so far
4408  * @data: destination pointer for data to be returned
4409  * @st: state variable
4410  *
4411  * Reads a block of skb data at @consumed relative to the
4412  * lower offset specified to skb_prepare_seq_read(). Assigns
4413  * the head of the data block to @data and returns the length
4414  * of the block or 0 if the end of the skb data or the upper
4415  * offset has been reached.
4416  *
4417  * The caller is not required to consume all of the data
4418  * returned, i.e. @consumed is typically set to the number
4419  * of bytes already consumed and the next call to
4420  * skb_seq_read() will return the remaining part of the block.
4421  *
4422  * Note 1: The size of each block of data returned can be arbitrary,
4423  *       this limitation is the cost for zerocopy sequential
4424  *       reads of potentially non linear data.
4425  *
4426  * Note 2: Fragment lists within fragments are not implemented
4427  *       at the moment, state->root_skb could be replaced with
4428  *       a stack for this purpose.
4429  */
4430 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4431 			  struct skb_seq_state *st)
4432 {
4433 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4434 	skb_frag_t *frag;
4435 
4436 	if (unlikely(abs_offset >= st->upper_offset)) {
4437 		if (st->frag_data) {
4438 			kunmap_atomic(st->frag_data);
4439 			st->frag_data = NULL;
4440 		}
4441 		return 0;
4442 	}
4443 
4444 next_skb:
4445 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4446 
4447 	if (abs_offset < block_limit && !st->frag_data) {
4448 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4449 		return block_limit - abs_offset;
4450 	}
4451 
4452 	if (!skb_frags_readable(st->cur_skb))
4453 		return 0;
4454 
4455 	if (st->frag_idx == 0 && !st->frag_data)
4456 		st->stepped_offset += skb_headlen(st->cur_skb);
4457 
4458 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4459 		unsigned int pg_idx, pg_off, pg_sz;
4460 
4461 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4462 
4463 		pg_idx = 0;
4464 		pg_off = skb_frag_off(frag);
4465 		pg_sz = skb_frag_size(frag);
4466 
4467 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4468 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4469 			pg_off = offset_in_page(pg_off + st->frag_off);
4470 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4471 						    PAGE_SIZE - pg_off);
4472 		}
4473 
4474 		block_limit = pg_sz + st->stepped_offset;
4475 		if (abs_offset < block_limit) {
4476 			if (!st->frag_data)
4477 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4478 
4479 			*data = (u8 *)st->frag_data + pg_off +
4480 				(abs_offset - st->stepped_offset);
4481 
4482 			return block_limit - abs_offset;
4483 		}
4484 
4485 		if (st->frag_data) {
4486 			kunmap_atomic(st->frag_data);
4487 			st->frag_data = NULL;
4488 		}
4489 
4490 		st->stepped_offset += pg_sz;
4491 		st->frag_off += pg_sz;
4492 		if (st->frag_off == skb_frag_size(frag)) {
4493 			st->frag_off = 0;
4494 			st->frag_idx++;
4495 		}
4496 	}
4497 
4498 	if (st->frag_data) {
4499 		kunmap_atomic(st->frag_data);
4500 		st->frag_data = NULL;
4501 	}
4502 
4503 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4504 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4505 		st->frag_idx = 0;
4506 		goto next_skb;
4507 	} else if (st->cur_skb->next) {
4508 		st->cur_skb = st->cur_skb->next;
4509 		st->frag_idx = 0;
4510 		goto next_skb;
4511 	}
4512 
4513 	return 0;
4514 }
4515 EXPORT_SYMBOL(skb_seq_read);
4516 
4517 /**
4518  * skb_abort_seq_read - Abort a sequential read of skb data
4519  * @st: state variable
4520  *
4521  * Must be called if skb_seq_read() was not called until it
4522  * returned 0.
4523  */
4524 void skb_abort_seq_read(struct skb_seq_state *st)
4525 {
4526 	if (st->frag_data)
4527 		kunmap_atomic(st->frag_data);
4528 }
4529 EXPORT_SYMBOL(skb_abort_seq_read);
4530 
4531 /**
4532  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4533  * @st: source skb_seq_state
4534  * @offset: offset in source
4535  * @to: destination buffer
4536  * @len: number of bytes to copy
4537  *
4538  * Copy @len bytes from @offset bytes into the source @st to the destination
4539  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4540  * call to this function. If offset needs to decrease from the previous use `st`
4541  * should be reset first.
4542  *
4543  * Return: 0 on success or -EINVAL if the copy ended early
4544  */
4545 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4546 {
4547 	const u8 *data;
4548 	u32 sqlen;
4549 
4550 	for (;;) {
4551 		sqlen = skb_seq_read(offset, &data, st);
4552 		if (sqlen == 0)
4553 			return -EINVAL;
4554 		if (sqlen >= len) {
4555 			memcpy(to, data, len);
4556 			return 0;
4557 		}
4558 		memcpy(to, data, sqlen);
4559 		to += sqlen;
4560 		offset += sqlen;
4561 		len -= sqlen;
4562 	}
4563 }
4564 EXPORT_SYMBOL(skb_copy_seq_read);
4565 
4566 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4567 
4568 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4569 					  struct ts_config *conf,
4570 					  struct ts_state *state)
4571 {
4572 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4573 }
4574 
4575 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4576 {
4577 	skb_abort_seq_read(TS_SKB_CB(state));
4578 }
4579 
4580 /**
4581  * skb_find_text - Find a text pattern in skb data
4582  * @skb: the buffer to look in
4583  * @from: search offset
4584  * @to: search limit
4585  * @config: textsearch configuration
4586  *
4587  * Finds a pattern in the skb data according to the specified
4588  * textsearch configuration. Use textsearch_next() to retrieve
4589  * subsequent occurrences of the pattern. Returns the offset
4590  * to the first occurrence or UINT_MAX if no match was found.
4591  */
4592 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4593 			   unsigned int to, struct ts_config *config)
4594 {
4595 	unsigned int patlen = config->ops->get_pattern_len(config);
4596 	struct ts_state state;
4597 	unsigned int ret;
4598 
4599 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4600 
4601 	config->get_next_block = skb_ts_get_next_block;
4602 	config->finish = skb_ts_finish;
4603 
4604 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4605 
4606 	ret = textsearch_find(config, &state);
4607 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4608 }
4609 EXPORT_SYMBOL(skb_find_text);
4610 
4611 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4612 			 int offset, size_t size, size_t max_frags)
4613 {
4614 	int i = skb_shinfo(skb)->nr_frags;
4615 
4616 	if (skb_can_coalesce(skb, i, page, offset)) {
4617 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4618 	} else if (i < max_frags) {
4619 		skb_zcopy_downgrade_managed(skb);
4620 		get_page(page);
4621 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4622 	} else {
4623 		return -EMSGSIZE;
4624 	}
4625 
4626 	return 0;
4627 }
4628 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4629 
4630 /**
4631  *	skb_pull_rcsum - pull skb and update receive checksum
4632  *	@skb: buffer to update
4633  *	@len: length of data pulled
4634  *
4635  *	This function performs an skb_pull on the packet and updates
4636  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4637  *	receive path processing instead of skb_pull unless you know
4638  *	that the checksum difference is zero (e.g., a valid IP header)
4639  *	or you are setting ip_summed to CHECKSUM_NONE.
4640  */
4641 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4642 {
4643 	unsigned char *data = skb->data;
4644 
4645 	BUG_ON(len > skb->len);
4646 	__skb_pull(skb, len);
4647 	skb_postpull_rcsum(skb, data, len);
4648 	return skb->data;
4649 }
4650 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4651 
4652 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4653 {
4654 	skb_frag_t head_frag;
4655 	struct page *page;
4656 
4657 	page = virt_to_head_page(frag_skb->head);
4658 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4659 				(unsigned char *)page_address(page),
4660 				skb_headlen(frag_skb));
4661 	return head_frag;
4662 }
4663 
4664 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4665 				 netdev_features_t features,
4666 				 unsigned int offset)
4667 {
4668 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4669 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4670 	unsigned int delta_len = 0;
4671 	struct sk_buff *tail = NULL;
4672 	struct sk_buff *nskb, *tmp;
4673 	int len_diff, err;
4674 
4675 	/* Only skb_gro_receive_list generated skbs arrive here */
4676 	DEBUG_NET_WARN_ON_ONCE(!(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST));
4677 
4678 	skb_push(skb, -skb_network_offset(skb) + offset);
4679 
4680 	/* Ensure the head is writeable before touching the shared info */
4681 	err = skb_unclone(skb, GFP_ATOMIC);
4682 	if (err)
4683 		goto err_linearize;
4684 
4685 	skb_shinfo(skb)->frag_list = NULL;
4686 
4687 	while (list_skb) {
4688 		nskb = list_skb;
4689 		list_skb = list_skb->next;
4690 
4691 		DEBUG_NET_WARN_ON_ONCE(nskb->sk);
4692 
4693 		err = 0;
4694 		if (skb_shared(nskb)) {
4695 			tmp = skb_clone(nskb, GFP_ATOMIC);
4696 			if (tmp) {
4697 				consume_skb(nskb);
4698 				nskb = tmp;
4699 				err = skb_unclone(nskb, GFP_ATOMIC);
4700 			} else {
4701 				err = -ENOMEM;
4702 			}
4703 		}
4704 
4705 		if (!tail)
4706 			skb->next = nskb;
4707 		else
4708 			tail->next = nskb;
4709 
4710 		if (unlikely(err)) {
4711 			nskb->next = list_skb;
4712 			goto err_linearize;
4713 		}
4714 
4715 		tail = nskb;
4716 
4717 		delta_len += nskb->len;
4718 
4719 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4720 
4721 		skb_release_head_state(nskb);
4722 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4723 		__copy_skb_header(nskb, skb);
4724 
4725 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4726 		nskb->transport_header += len_diff;
4727 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4728 						 nskb->data - tnl_hlen,
4729 						 offset + tnl_hlen);
4730 
4731 		if (skb_needs_linearize(nskb, features) &&
4732 		    __skb_linearize(nskb))
4733 			goto err_linearize;
4734 	}
4735 
4736 	skb->data_len = skb->data_len - delta_len;
4737 	skb->len = skb->len - delta_len;
4738 
4739 	skb_gso_reset(skb);
4740 
4741 	skb->prev = tail;
4742 
4743 	if (skb_needs_linearize(skb, features) &&
4744 	    __skb_linearize(skb))
4745 		goto err_linearize;
4746 
4747 	skb_get(skb);
4748 
4749 	return skb;
4750 
4751 err_linearize:
4752 	kfree_skb_list(skb->next);
4753 	skb->next = NULL;
4754 	return ERR_PTR(-ENOMEM);
4755 }
4756 EXPORT_SYMBOL_GPL(skb_segment_list);
4757 
4758 /**
4759  *	skb_segment - Perform protocol segmentation on skb.
4760  *	@head_skb: buffer to segment
4761  *	@features: features for the output path (see dev->features)
4762  *
4763  *	This function performs segmentation on the given skb.  It returns
4764  *	a pointer to the first in a list of new skbs for the segments.
4765  *	In case of error it returns ERR_PTR(err).
4766  */
4767 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4768 			    netdev_features_t features)
4769 {
4770 	struct sk_buff *segs = NULL;
4771 	struct sk_buff *tail = NULL;
4772 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4773 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4774 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4775 	unsigned int offset = doffset;
4776 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4777 	unsigned int partial_segs = 0;
4778 	unsigned int headroom;
4779 	unsigned int len = head_skb->len;
4780 	struct sk_buff *frag_skb;
4781 	skb_frag_t *frag;
4782 	__be16 proto;
4783 	bool csum, sg;
4784 	int err = -ENOMEM;
4785 	int i = 0;
4786 	int nfrags, pos;
4787 
4788 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4789 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4790 		struct sk_buff *check_skb;
4791 
4792 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4793 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4794 				/* gso_size is untrusted, and we have a frag_list with
4795 				 * a linear non head_frag item.
4796 				 *
4797 				 * If head_skb's headlen does not fit requested gso_size,
4798 				 * it means that the frag_list members do NOT terminate
4799 				 * on exact gso_size boundaries. Hence we cannot perform
4800 				 * skb_frag_t page sharing. Therefore we must fallback to
4801 				 * copying the frag_list skbs; we do so by disabling SG.
4802 				 */
4803 				features &= ~NETIF_F_SG;
4804 				break;
4805 			}
4806 		}
4807 	}
4808 
4809 	__skb_push(head_skb, doffset);
4810 	proto = skb_network_protocol(head_skb, NULL);
4811 	if (unlikely(!proto))
4812 		return ERR_PTR(-EINVAL);
4813 
4814 	sg = !!(features & NETIF_F_SG);
4815 	csum = !!can_checksum_protocol(features, proto);
4816 
4817 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4818 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4819 			struct sk_buff *iter;
4820 			unsigned int frag_len;
4821 
4822 			if (!list_skb ||
4823 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4824 				goto normal;
4825 
4826 			/* If we get here then all the required
4827 			 * GSO features except frag_list are supported.
4828 			 * Try to split the SKB to multiple GSO SKBs
4829 			 * with no frag_list.
4830 			 * Currently we can do that only when the buffers don't
4831 			 * have a linear part and all the buffers except
4832 			 * the last are of the same length.
4833 			 */
4834 			frag_len = list_skb->len;
4835 			skb_walk_frags(head_skb, iter) {
4836 				if (frag_len != iter->len && iter->next)
4837 					goto normal;
4838 				if (skb_headlen(iter) && !iter->head_frag)
4839 					goto normal;
4840 
4841 				len -= iter->len;
4842 			}
4843 
4844 			if (len != frag_len)
4845 				goto normal;
4846 		}
4847 
4848 		/* GSO partial only requires that we trim off any excess that
4849 		 * doesn't fit into an MSS sized block, so take care of that
4850 		 * now.
4851 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4852 		 */
4853 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4854 		if (partial_segs > 1)
4855 			mss *= partial_segs;
4856 		else
4857 			partial_segs = 0;
4858 	}
4859 
4860 normal:
4861 	headroom = skb_headroom(head_skb);
4862 	pos = skb_headlen(head_skb);
4863 
4864 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4865 		return ERR_PTR(-ENOMEM);
4866 
4867 	nfrags = skb_shinfo(head_skb)->nr_frags;
4868 	frag = skb_shinfo(head_skb)->frags;
4869 	frag_skb = head_skb;
4870 
4871 	do {
4872 		struct sk_buff *nskb;
4873 		skb_frag_t *nskb_frag;
4874 		int hsize;
4875 		int size;
4876 
4877 		if (unlikely(mss == GSO_BY_FRAGS)) {
4878 			len = list_skb->len;
4879 		} else {
4880 			len = head_skb->len - offset;
4881 			if (len > mss)
4882 				len = mss;
4883 		}
4884 
4885 		hsize = skb_headlen(head_skb) - offset;
4886 
4887 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4888 		    (skb_headlen(list_skb) == len || sg)) {
4889 			BUG_ON(skb_headlen(list_skb) > len);
4890 
4891 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4892 			if (unlikely(!nskb))
4893 				goto err;
4894 
4895 			i = 0;
4896 			nfrags = skb_shinfo(list_skb)->nr_frags;
4897 			frag = skb_shinfo(list_skb)->frags;
4898 			frag_skb = list_skb;
4899 			pos += skb_headlen(list_skb);
4900 
4901 			while (pos < offset + len) {
4902 				BUG_ON(i >= nfrags);
4903 
4904 				size = skb_frag_size(frag);
4905 				if (pos + size > offset + len)
4906 					break;
4907 
4908 				i++;
4909 				pos += size;
4910 				frag++;
4911 			}
4912 
4913 			list_skb = list_skb->next;
4914 
4915 			if (unlikely(pskb_trim(nskb, len))) {
4916 				kfree_skb(nskb);
4917 				goto err;
4918 			}
4919 
4920 			hsize = skb_end_offset(nskb);
4921 			if (skb_cow_head(nskb, doffset + headroom)) {
4922 				kfree_skb(nskb);
4923 				goto err;
4924 			}
4925 
4926 			nskb->truesize += skb_end_offset(nskb) - hsize;
4927 			skb_release_head_state(nskb);
4928 			__skb_push(nskb, doffset);
4929 		} else {
4930 			if (hsize < 0)
4931 				hsize = 0;
4932 			if (hsize > len || !sg)
4933 				hsize = len;
4934 
4935 			nskb = __alloc_skb(hsize + doffset + headroom,
4936 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4937 					   NUMA_NO_NODE);
4938 
4939 			if (unlikely(!nskb))
4940 				goto err;
4941 
4942 			skb_reserve(nskb, headroom);
4943 			__skb_put(nskb, doffset);
4944 		}
4945 
4946 		if (segs)
4947 			tail->next = nskb;
4948 		else
4949 			segs = nskb;
4950 		tail = nskb;
4951 
4952 		__copy_skb_header(nskb, head_skb);
4953 
4954 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4955 		skb_reset_mac_len(nskb);
4956 
4957 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4958 						 nskb->data - tnl_hlen,
4959 						 doffset + tnl_hlen);
4960 
4961 		if (nskb->len == len + doffset)
4962 			goto perform_csum_check;
4963 
4964 		if (!sg) {
4965 			if (!csum) {
4966 				if (!nskb->remcsum_offload)
4967 					nskb->ip_summed = CHECKSUM_NONE;
4968 				SKB_GSO_CB(nskb)->csum =
4969 					skb_copy_and_csum_bits(head_skb, offset,
4970 							       skb_put(nskb,
4971 								       len),
4972 							       len);
4973 				SKB_GSO_CB(nskb)->csum_start =
4974 					skb_headroom(nskb) + doffset;
4975 			} else {
4976 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4977 					goto err;
4978 			}
4979 			continue;
4980 		}
4981 
4982 		nskb_frag = skb_shinfo(nskb)->frags;
4983 
4984 		skb_copy_from_linear_data_offset(head_skb, offset,
4985 						 skb_put(nskb, hsize), hsize);
4986 
4987 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4988 					   SKBFL_SHARED_FRAG;
4989 
4990 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4991 			goto err;
4992 
4993 		while (pos < offset + len) {
4994 			if (i >= nfrags) {
4995 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4996 				    skb_zerocopy_clone(nskb, list_skb,
4997 						       GFP_ATOMIC))
4998 					goto err;
4999 
5000 				i = 0;
5001 				nfrags = skb_shinfo(list_skb)->nr_frags;
5002 				frag = skb_shinfo(list_skb)->frags;
5003 				frag_skb = list_skb;
5004 				if (!skb_headlen(list_skb)) {
5005 					BUG_ON(!nfrags);
5006 				} else {
5007 					BUG_ON(!list_skb->head_frag);
5008 
5009 					/* to make room for head_frag. */
5010 					i--;
5011 					frag--;
5012 				}
5013 
5014 				list_skb = list_skb->next;
5015 			}
5016 
5017 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
5018 				     MAX_SKB_FRAGS)) {
5019 				net_warn_ratelimited(
5020 					"skb_segment: too many frags: %u %u\n",
5021 					pos, mss);
5022 				err = -EINVAL;
5023 				goto err;
5024 			}
5025 
5026 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
5027 			__skb_frag_ref(nskb_frag);
5028 			size = skb_frag_size(nskb_frag);
5029 
5030 			if (pos < offset) {
5031 				skb_frag_off_add(nskb_frag, offset - pos);
5032 				skb_frag_size_sub(nskb_frag, offset - pos);
5033 			}
5034 
5035 			skb_shinfo(nskb)->nr_frags++;
5036 
5037 			if (pos + size <= offset + len) {
5038 				i++;
5039 				frag++;
5040 				pos += size;
5041 			} else {
5042 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
5043 				goto skip_fraglist;
5044 			}
5045 
5046 			nskb_frag++;
5047 		}
5048 
5049 skip_fraglist:
5050 		nskb->data_len = len - hsize;
5051 		nskb->len += nskb->data_len;
5052 		nskb->truesize += nskb->data_len;
5053 
5054 perform_csum_check:
5055 		if (!csum) {
5056 			if (skb_has_shared_frag(nskb) &&
5057 			    __skb_linearize(nskb))
5058 				goto err;
5059 
5060 			if (!nskb->remcsum_offload)
5061 				nskb->ip_summed = CHECKSUM_NONE;
5062 			SKB_GSO_CB(nskb)->csum =
5063 				skb_checksum(nskb, doffset,
5064 					     nskb->len - doffset, 0);
5065 			SKB_GSO_CB(nskb)->csum_start =
5066 				skb_headroom(nskb) + doffset;
5067 		}
5068 	} while ((offset += len) < head_skb->len);
5069 
5070 	/* Some callers want to get the end of the list.
5071 	 * Put it in segs->prev to avoid walking the list.
5072 	 * (see validate_xmit_skb_list() for example)
5073 	 */
5074 	segs->prev = tail;
5075 
5076 	if (partial_segs) {
5077 		struct sk_buff *iter;
5078 		int type = skb_shinfo(head_skb)->gso_type;
5079 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5080 
5081 		/* Update type to add partial and then remove dodgy if set */
5082 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5083 		type &= ~SKB_GSO_DODGY;
5084 
5085 		/* Update GSO info and prepare to start updating headers on
5086 		 * our way back down the stack of protocols.
5087 		 */
5088 		for (iter = segs; iter; iter = iter->next) {
5089 			skb_shinfo(iter)->gso_size = gso_size;
5090 			skb_shinfo(iter)->gso_segs = partial_segs;
5091 			skb_shinfo(iter)->gso_type = type;
5092 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5093 		}
5094 
5095 		if (tail->len - doffset <= gso_size)
5096 			skb_shinfo(tail)->gso_size = 0;
5097 		else if (tail != segs)
5098 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5099 	}
5100 
5101 	/* Following permits correct backpressure, for protocols
5102 	 * using skb_set_owner_w().
5103 	 * Idea is to tranfert ownership from head_skb to last segment.
5104 	 */
5105 	if (head_skb->destructor == sock_wfree) {
5106 		swap(tail->truesize, head_skb->truesize);
5107 		swap(tail->destructor, head_skb->destructor);
5108 		swap(tail->sk, head_skb->sk);
5109 	}
5110 	return segs;
5111 
5112 err:
5113 	kfree_skb_list(segs);
5114 	return ERR_PTR(err);
5115 }
5116 EXPORT_SYMBOL_GPL(skb_segment);
5117 
5118 #ifdef CONFIG_SKB_EXTENSIONS
5119 #define SKB_EXT_ALIGN_VALUE	8
5120 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5121 
5122 static const u8 skb_ext_type_len[] = {
5123 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5124 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5125 #endif
5126 #ifdef CONFIG_XFRM
5127 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5128 #endif
5129 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5130 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5131 #endif
5132 #if IS_ENABLED(CONFIG_MPTCP)
5133 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5134 #endif
5135 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5136 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5137 #endif
5138 #if IS_ENABLED(CONFIG_INET_PSP)
5139 	[SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext),
5140 #endif
5141 };
5142 
5143 static __always_inline unsigned int skb_ext_total_length(void)
5144 {
5145 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5146 	int i;
5147 
5148 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5149 		l += skb_ext_type_len[i];
5150 
5151 	return l;
5152 }
5153 
5154 static void skb_extensions_init(void)
5155 {
5156 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5157 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5158 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5159 #endif
5160 
5161 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5162 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5163 					     0,
5164 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5165 					     NULL);
5166 }
5167 #else
5168 static void skb_extensions_init(void) {}
5169 #endif
5170 
5171 /* The SKB kmem_cache slab is critical for network performance.  Never
5172  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5173  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5174  */
5175 #ifndef CONFIG_SLUB_TINY
5176 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5177 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5178 #define FLAG_SKB_NO_MERGE	0
5179 #endif
5180 
5181 void __init skb_init(void)
5182 {
5183 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5184 					      sizeof(struct sk_buff),
5185 					      0,
5186 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5187 						FLAG_SKB_NO_MERGE,
5188 					      offsetof(struct sk_buff, cb),
5189 					      sizeof_field(struct sk_buff, cb),
5190 					      NULL);
5191 	skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
5192 
5193 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5194 						sizeof(struct sk_buff_fclones),
5195 						0,
5196 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5197 						NULL);
5198 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5199 	 * struct skb_shared_info is located at the end of skb->head,
5200 	 * and should not be copied to/from user.
5201 	 */
5202 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5203 						SKB_SMALL_HEAD_CACHE_SIZE,
5204 						0,
5205 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5206 						0,
5207 						SKB_SMALL_HEAD_HEADROOM,
5208 						NULL);
5209 	skb_extensions_init();
5210 }
5211 
5212 static int
5213 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5214 	       unsigned int recursion_level)
5215 {
5216 	int start = skb_headlen(skb);
5217 	int i, copy = start - offset;
5218 	struct sk_buff *frag_iter;
5219 	int elt = 0;
5220 
5221 	if (unlikely(recursion_level >= 24))
5222 		return -EMSGSIZE;
5223 
5224 	if (copy > 0) {
5225 		if (copy > len)
5226 			copy = len;
5227 		sg_set_buf(sg, skb->data + offset, copy);
5228 		elt++;
5229 		if ((len -= copy) == 0)
5230 			return elt;
5231 		offset += copy;
5232 	}
5233 
5234 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5235 		int end;
5236 
5237 		WARN_ON(start > offset + len);
5238 
5239 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5240 		if ((copy = end - offset) > 0) {
5241 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5242 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5243 				return -EMSGSIZE;
5244 
5245 			if (copy > len)
5246 				copy = len;
5247 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5248 				    skb_frag_off(frag) + offset - start);
5249 			elt++;
5250 			if (!(len -= copy))
5251 				return elt;
5252 			offset += copy;
5253 		}
5254 		start = end;
5255 	}
5256 
5257 	skb_walk_frags(skb, frag_iter) {
5258 		int end, ret;
5259 
5260 		WARN_ON(start > offset + len);
5261 
5262 		end = start + frag_iter->len;
5263 		if ((copy = end - offset) > 0) {
5264 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5265 				return -EMSGSIZE;
5266 
5267 			if (copy > len)
5268 				copy = len;
5269 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5270 					      copy, recursion_level + 1);
5271 			if (unlikely(ret < 0))
5272 				return ret;
5273 			elt += ret;
5274 			if ((len -= copy) == 0)
5275 				return elt;
5276 			offset += copy;
5277 		}
5278 		start = end;
5279 	}
5280 	BUG_ON(len);
5281 	return elt;
5282 }
5283 
5284 /**
5285  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5286  *	@skb: Socket buffer containing the buffers to be mapped
5287  *	@sg: The scatter-gather list to map into
5288  *	@offset: The offset into the buffer's contents to start mapping
5289  *	@len: Length of buffer space to be mapped
5290  *
5291  *	Fill the specified scatter-gather list with mappings/pointers into a
5292  *	region of the buffer space attached to a socket buffer. Returns either
5293  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5294  *	could not fit.
5295  */
5296 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5297 {
5298 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5299 
5300 	if (nsg <= 0)
5301 		return nsg;
5302 
5303 	sg_mark_end(&sg[nsg - 1]);
5304 
5305 	return nsg;
5306 }
5307 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5308 
5309 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5310  * sglist without mark the sg which contain last skb data as the end.
5311  * So the caller can mannipulate sg list as will when padding new data after
5312  * the first call without calling sg_unmark_end to expend sg list.
5313  *
5314  * Scenario to use skb_to_sgvec_nomark:
5315  * 1. sg_init_table
5316  * 2. skb_to_sgvec_nomark(payload1)
5317  * 3. skb_to_sgvec_nomark(payload2)
5318  *
5319  * This is equivalent to:
5320  * 1. sg_init_table
5321  * 2. skb_to_sgvec(payload1)
5322  * 3. sg_unmark_end
5323  * 4. skb_to_sgvec(payload2)
5324  *
5325  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5326  * is more preferable.
5327  */
5328 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5329 			int offset, int len)
5330 {
5331 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5332 }
5333 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5334 
5335 
5336 
5337 /**
5338  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5339  *	@skb: The socket buffer to check.
5340  *	@tailbits: Amount of trailing space to be added
5341  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5342  *
5343  *	Make sure that the data buffers attached to a socket buffer are
5344  *	writable. If they are not, private copies are made of the data buffers
5345  *	and the socket buffer is set to use these instead.
5346  *
5347  *	If @tailbits is given, make sure that there is space to write @tailbits
5348  *	bytes of data beyond current end of socket buffer.  @trailer will be
5349  *	set to point to the skb in which this space begins.
5350  *
5351  *	The number of scatterlist elements required to completely map the
5352  *	COW'd and extended socket buffer will be returned.
5353  */
5354 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5355 {
5356 	int copyflag;
5357 	int elt;
5358 	struct sk_buff *skb1, **skb_p;
5359 
5360 	/* If skb is cloned or its head is paged, reallocate
5361 	 * head pulling out all the pages (pages are considered not writable
5362 	 * at the moment even if they are anonymous).
5363 	 */
5364 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5365 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5366 		return -ENOMEM;
5367 
5368 	/* Easy case. Most of packets will go this way. */
5369 	if (!skb_has_frag_list(skb)) {
5370 		/* A little of trouble, not enough of space for trailer.
5371 		 * This should not happen, when stack is tuned to generate
5372 		 * good frames. OK, on miss we reallocate and reserve even more
5373 		 * space, 128 bytes is fair. */
5374 
5375 		if (skb_tailroom(skb) < tailbits &&
5376 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5377 			return -ENOMEM;
5378 
5379 		/* Voila! */
5380 		*trailer = skb;
5381 		return 1;
5382 	}
5383 
5384 	/* Misery. We are in troubles, going to mincer fragments... */
5385 
5386 	elt = 1;
5387 	skb_p = &skb_shinfo(skb)->frag_list;
5388 	copyflag = 0;
5389 
5390 	while ((skb1 = *skb_p) != NULL) {
5391 		int ntail = 0;
5392 
5393 		/* The fragment is partially pulled by someone,
5394 		 * this can happen on input. Copy it and everything
5395 		 * after it. */
5396 
5397 		if (skb_shared(skb1))
5398 			copyflag = 1;
5399 
5400 		/* If the skb is the last, worry about trailer. */
5401 
5402 		if (skb1->next == NULL && tailbits) {
5403 			if (skb_shinfo(skb1)->nr_frags ||
5404 			    skb_has_frag_list(skb1) ||
5405 			    skb_tailroom(skb1) < tailbits)
5406 				ntail = tailbits + 128;
5407 		}
5408 
5409 		if (copyflag ||
5410 		    skb_cloned(skb1) ||
5411 		    ntail ||
5412 		    skb_shinfo(skb1)->nr_frags ||
5413 		    skb_has_frag_list(skb1)) {
5414 			struct sk_buff *skb2;
5415 
5416 			/* Fuck, we are miserable poor guys... */
5417 			if (ntail == 0)
5418 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5419 			else
5420 				skb2 = skb_copy_expand(skb1,
5421 						       skb_headroom(skb1),
5422 						       ntail,
5423 						       GFP_ATOMIC);
5424 			if (unlikely(skb2 == NULL))
5425 				return -ENOMEM;
5426 
5427 			if (skb1->sk)
5428 				skb_set_owner_w(skb2, skb1->sk);
5429 
5430 			/* Looking around. Are we still alive?
5431 			 * OK, link new skb, drop old one */
5432 
5433 			skb2->next = skb1->next;
5434 			*skb_p = skb2;
5435 			kfree_skb(skb1);
5436 			skb1 = skb2;
5437 		}
5438 		elt++;
5439 		*trailer = skb1;
5440 		skb_p = &skb1->next;
5441 	}
5442 
5443 	return elt;
5444 }
5445 EXPORT_SYMBOL_GPL(skb_cow_data);
5446 
5447 static void sock_rmem_free(struct sk_buff *skb)
5448 {
5449 	struct sock *sk = skb->sk;
5450 
5451 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5452 }
5453 
5454 static void skb_set_err_queue(struct sk_buff *skb)
5455 {
5456 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5457 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5458 	 */
5459 	skb->pkt_type = PACKET_OUTGOING;
5460 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5461 }
5462 
5463 /*
5464  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5465  */
5466 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5467 {
5468 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5469 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5470 		return -ENOMEM;
5471 
5472 	skb_orphan(skb);
5473 	skb->sk = sk;
5474 	skb->destructor = sock_rmem_free;
5475 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5476 	skb_set_err_queue(skb);
5477 
5478 	/* before exiting rcu section, make sure dst is refcounted */
5479 	skb_dst_force(skb);
5480 
5481 	skb_queue_tail(&sk->sk_error_queue, skb);
5482 	if (!sock_flag(sk, SOCK_DEAD))
5483 		sk_error_report(sk);
5484 	return 0;
5485 }
5486 EXPORT_SYMBOL(sock_queue_err_skb);
5487 
5488 static bool is_icmp_err_skb(const struct sk_buff *skb)
5489 {
5490 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5491 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5492 }
5493 
5494 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5495 {
5496 	struct sk_buff_head *q = &sk->sk_error_queue;
5497 	struct sk_buff *skb, *skb_next = NULL;
5498 	bool icmp_next = false;
5499 	unsigned long flags;
5500 
5501 	if (skb_queue_empty_lockless(q))
5502 		return NULL;
5503 
5504 	spin_lock_irqsave(&q->lock, flags);
5505 	skb = __skb_dequeue(q);
5506 	if (skb && (skb_next = skb_peek(q))) {
5507 		icmp_next = is_icmp_err_skb(skb_next);
5508 		if (icmp_next)
5509 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5510 	}
5511 	spin_unlock_irqrestore(&q->lock, flags);
5512 
5513 	if (is_icmp_err_skb(skb) && !icmp_next)
5514 		sk->sk_err = 0;
5515 
5516 	if (skb_next)
5517 		sk_error_report(sk);
5518 
5519 	return skb;
5520 }
5521 EXPORT_SYMBOL(sock_dequeue_err_skb);
5522 
5523 /**
5524  * skb_clone_sk - create clone of skb, and take reference to socket
5525  * @skb: the skb to clone
5526  *
5527  * This function creates a clone of a buffer that holds a reference on
5528  * sk_refcnt.  Buffers created via this function are meant to be
5529  * returned using sock_queue_err_skb, or free via kfree_skb.
5530  *
5531  * When passing buffers allocated with this function to sock_queue_err_skb
5532  * it is necessary to wrap the call with sock_hold/sock_put in order to
5533  * prevent the socket from being released prior to being enqueued on
5534  * the sk_error_queue.
5535  */
5536 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5537 {
5538 	struct sock *sk = skb->sk;
5539 	struct sk_buff *clone;
5540 
5541 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5542 		return NULL;
5543 
5544 	clone = skb_clone(skb, GFP_ATOMIC);
5545 	if (!clone) {
5546 		sock_put(sk);
5547 		return NULL;
5548 	}
5549 
5550 	clone->sk = sk;
5551 	clone->destructor = sock_efree;
5552 
5553 	return clone;
5554 }
5555 EXPORT_SYMBOL(skb_clone_sk);
5556 
5557 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5558 					struct sock *sk,
5559 					int tstype,
5560 					bool opt_stats)
5561 {
5562 	struct sock_exterr_skb *serr;
5563 	int err;
5564 
5565 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5566 
5567 	serr = SKB_EXT_ERR(skb);
5568 	memset(serr, 0, sizeof(*serr));
5569 	serr->ee.ee_errno = ENOMSG;
5570 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5571 	serr->ee.ee_info = tstype;
5572 	serr->opt_stats = opt_stats;
5573 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5574 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5575 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5576 		if (sk_is_tcp(sk))
5577 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5578 	}
5579 
5580 	err = sock_queue_err_skb(sk, skb);
5581 
5582 	if (err)
5583 		kfree_skb(skb);
5584 }
5585 
5586 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5587 {
5588 	bool ret;
5589 
5590 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5591 		return true;
5592 
5593 	read_lock_bh(&sk->sk_callback_lock);
5594 	ret = sk->sk_socket && sk->sk_socket->file &&
5595 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5596 	read_unlock_bh(&sk->sk_callback_lock);
5597 	return ret;
5598 }
5599 
5600 void skb_complete_tx_timestamp(struct sk_buff *skb,
5601 			       struct skb_shared_hwtstamps *hwtstamps)
5602 {
5603 	struct sock *sk = skb->sk;
5604 
5605 	if (!skb_may_tx_timestamp(sk, false))
5606 		goto err;
5607 
5608 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5609 	 * but only if the socket refcount is not zero.
5610 	 */
5611 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5612 		*skb_hwtstamps(skb) = *hwtstamps;
5613 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5614 		sock_put(sk);
5615 		return;
5616 	}
5617 
5618 err:
5619 	kfree_skb(skb);
5620 }
5621 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5622 
5623 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5624 						 struct skb_shared_hwtstamps *hwtstamps,
5625 						 int tstype)
5626 {
5627 	switch (tstype) {
5628 	case SCM_TSTAMP_SCHED:
5629 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5630 	case SCM_TSTAMP_SND:
5631 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5632 						    SKBTX_SW_TSTAMP);
5633 	case SCM_TSTAMP_ACK:
5634 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5635 	case SCM_TSTAMP_COMPLETION:
5636 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5637 	}
5638 
5639 	return false;
5640 }
5641 
5642 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5643 						  struct skb_shared_hwtstamps *hwtstamps,
5644 						  struct sock *sk,
5645 						  int tstype)
5646 {
5647 	int op;
5648 
5649 	switch (tstype) {
5650 	case SCM_TSTAMP_SCHED:
5651 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5652 		break;
5653 	case SCM_TSTAMP_SND:
5654 		if (hwtstamps) {
5655 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5656 			*skb_hwtstamps(skb) = *hwtstamps;
5657 		} else {
5658 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5659 		}
5660 		break;
5661 	case SCM_TSTAMP_ACK:
5662 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5663 		break;
5664 	default:
5665 		return;
5666 	}
5667 
5668 	bpf_skops_tx_timestamping(sk, skb, op);
5669 }
5670 
5671 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5672 		     const struct sk_buff *ack_skb,
5673 		     struct skb_shared_hwtstamps *hwtstamps,
5674 		     struct sock *sk, int tstype)
5675 {
5676 	struct sk_buff *skb;
5677 	bool tsonly, opt_stats = false;
5678 	u32 tsflags;
5679 
5680 	if (!sk)
5681 		return;
5682 
5683 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5684 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5685 						      sk, tstype);
5686 
5687 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5688 		return;
5689 
5690 	tsflags = READ_ONCE(sk->sk_tsflags);
5691 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5692 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5693 		return;
5694 
5695 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5696 	if (!skb_may_tx_timestamp(sk, tsonly))
5697 		return;
5698 
5699 	if (tsonly) {
5700 #ifdef CONFIG_INET
5701 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5702 		    sk_is_tcp(sk)) {
5703 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5704 							     ack_skb);
5705 			opt_stats = true;
5706 		} else
5707 #endif
5708 			skb = alloc_skb(0, GFP_ATOMIC);
5709 	} else {
5710 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5711 
5712 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5713 			kfree_skb(skb);
5714 			return;
5715 		}
5716 	}
5717 	if (!skb)
5718 		return;
5719 
5720 	if (tsonly) {
5721 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5722 					     SKBTX_ANY_TSTAMP;
5723 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5724 	}
5725 
5726 	if (hwtstamps)
5727 		*skb_hwtstamps(skb) = *hwtstamps;
5728 	else
5729 		__net_timestamp(skb);
5730 
5731 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5732 }
5733 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5734 
5735 void skb_tstamp_tx(struct sk_buff *orig_skb,
5736 		   struct skb_shared_hwtstamps *hwtstamps)
5737 {
5738 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5739 			       SCM_TSTAMP_SND);
5740 }
5741 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5742 
5743 #ifdef CONFIG_WIRELESS
5744 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5745 {
5746 	struct sock *sk = skb->sk;
5747 	struct sock_exterr_skb *serr;
5748 	int err = 1;
5749 
5750 	skb->wifi_acked_valid = 1;
5751 	skb->wifi_acked = acked;
5752 
5753 	serr = SKB_EXT_ERR(skb);
5754 	memset(serr, 0, sizeof(*serr));
5755 	serr->ee.ee_errno = ENOMSG;
5756 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5757 
5758 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5759 	 * but only if the socket refcount is not zero.
5760 	 */
5761 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5762 		err = sock_queue_err_skb(sk, skb);
5763 		sock_put(sk);
5764 	}
5765 	if (err)
5766 		kfree_skb(skb);
5767 }
5768 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5769 #endif /* CONFIG_WIRELESS */
5770 
5771 /**
5772  * skb_partial_csum_set - set up and verify partial csum values for packet
5773  * @skb: the skb to set
5774  * @start: the number of bytes after skb->data to start checksumming.
5775  * @off: the offset from start to place the checksum.
5776  *
5777  * For untrusted partially-checksummed packets, we need to make sure the values
5778  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5779  *
5780  * This function checks and sets those values and skb->ip_summed: if this
5781  * returns false you should drop the packet.
5782  */
5783 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5784 {
5785 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5786 	u32 csum_start = skb_headroom(skb) + (u32)start;
5787 
5788 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5789 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5790 				     start, off, skb_headroom(skb), skb_headlen(skb));
5791 		return false;
5792 	}
5793 	skb->ip_summed = CHECKSUM_PARTIAL;
5794 	skb->csum_start = csum_start;
5795 	skb->csum_offset = off;
5796 	skb->transport_header = csum_start;
5797 	return true;
5798 }
5799 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5800 
5801 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5802 			       unsigned int max)
5803 {
5804 	if (skb_headlen(skb) >= len)
5805 		return 0;
5806 
5807 	/* If we need to pullup then pullup to the max, so we
5808 	 * won't need to do it again.
5809 	 */
5810 	if (max > skb->len)
5811 		max = skb->len;
5812 
5813 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5814 		return -ENOMEM;
5815 
5816 	if (skb_headlen(skb) < len)
5817 		return -EPROTO;
5818 
5819 	return 0;
5820 }
5821 
5822 #define MAX_TCP_HDR_LEN (15 * 4)
5823 
5824 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5825 				      typeof(IPPROTO_IP) proto,
5826 				      unsigned int off)
5827 {
5828 	int err;
5829 
5830 	switch (proto) {
5831 	case IPPROTO_TCP:
5832 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5833 					  off + MAX_TCP_HDR_LEN);
5834 		if (!err && !skb_partial_csum_set(skb, off,
5835 						  offsetof(struct tcphdr,
5836 							   check)))
5837 			err = -EPROTO;
5838 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5839 
5840 	case IPPROTO_UDP:
5841 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5842 					  off + sizeof(struct udphdr));
5843 		if (!err && !skb_partial_csum_set(skb, off,
5844 						  offsetof(struct udphdr,
5845 							   check)))
5846 			err = -EPROTO;
5847 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5848 	}
5849 
5850 	return ERR_PTR(-EPROTO);
5851 }
5852 
5853 /* This value should be large enough to cover a tagged ethernet header plus
5854  * maximally sized IP and TCP or UDP headers.
5855  */
5856 #define MAX_IP_HDR_LEN 128
5857 
5858 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5859 {
5860 	unsigned int off;
5861 	bool fragment;
5862 	__sum16 *csum;
5863 	int err;
5864 
5865 	fragment = false;
5866 
5867 	err = skb_maybe_pull_tail(skb,
5868 				  sizeof(struct iphdr),
5869 				  MAX_IP_HDR_LEN);
5870 	if (err < 0)
5871 		goto out;
5872 
5873 	if (ip_is_fragment(ip_hdr(skb)))
5874 		fragment = true;
5875 
5876 	off = ip_hdrlen(skb);
5877 
5878 	err = -EPROTO;
5879 
5880 	if (fragment)
5881 		goto out;
5882 
5883 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5884 	if (IS_ERR(csum))
5885 		return PTR_ERR(csum);
5886 
5887 	if (recalculate)
5888 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5889 					   ip_hdr(skb)->daddr,
5890 					   skb->len - off,
5891 					   ip_hdr(skb)->protocol, 0);
5892 	err = 0;
5893 
5894 out:
5895 	return err;
5896 }
5897 
5898 /* This value should be large enough to cover a tagged ethernet header plus
5899  * an IPv6 header, all options, and a maximal TCP or UDP header.
5900  */
5901 #define MAX_IPV6_HDR_LEN 256
5902 
5903 #define OPT_HDR(type, skb, off) \
5904 	(type *)(skb_network_header(skb) + (off))
5905 
5906 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5907 {
5908 	int err;
5909 	u8 nexthdr;
5910 	unsigned int off;
5911 	unsigned int len;
5912 	bool fragment;
5913 	bool done;
5914 	__sum16 *csum;
5915 
5916 	fragment = false;
5917 	done = false;
5918 
5919 	off = sizeof(struct ipv6hdr);
5920 
5921 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5922 	if (err < 0)
5923 		goto out;
5924 
5925 	nexthdr = ipv6_hdr(skb)->nexthdr;
5926 
5927 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5928 	while (off <= len && !done) {
5929 		switch (nexthdr) {
5930 		case IPPROTO_DSTOPTS:
5931 		case IPPROTO_HOPOPTS:
5932 		case IPPROTO_ROUTING: {
5933 			struct ipv6_opt_hdr *hp;
5934 
5935 			err = skb_maybe_pull_tail(skb,
5936 						  off +
5937 						  sizeof(struct ipv6_opt_hdr),
5938 						  MAX_IPV6_HDR_LEN);
5939 			if (err < 0)
5940 				goto out;
5941 
5942 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5943 			nexthdr = hp->nexthdr;
5944 			off += ipv6_optlen(hp);
5945 			break;
5946 		}
5947 		case IPPROTO_AH: {
5948 			struct ip_auth_hdr *hp;
5949 
5950 			err = skb_maybe_pull_tail(skb,
5951 						  off +
5952 						  sizeof(struct ip_auth_hdr),
5953 						  MAX_IPV6_HDR_LEN);
5954 			if (err < 0)
5955 				goto out;
5956 
5957 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5958 			nexthdr = hp->nexthdr;
5959 			off += ipv6_authlen(hp);
5960 			break;
5961 		}
5962 		case IPPROTO_FRAGMENT: {
5963 			struct frag_hdr *hp;
5964 
5965 			err = skb_maybe_pull_tail(skb,
5966 						  off +
5967 						  sizeof(struct frag_hdr),
5968 						  MAX_IPV6_HDR_LEN);
5969 			if (err < 0)
5970 				goto out;
5971 
5972 			hp = OPT_HDR(struct frag_hdr, skb, off);
5973 
5974 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5975 				fragment = true;
5976 
5977 			nexthdr = hp->nexthdr;
5978 			off += sizeof(struct frag_hdr);
5979 			break;
5980 		}
5981 		default:
5982 			done = true;
5983 			break;
5984 		}
5985 	}
5986 
5987 	err = -EPROTO;
5988 
5989 	if (!done || fragment)
5990 		goto out;
5991 
5992 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5993 	if (IS_ERR(csum))
5994 		return PTR_ERR(csum);
5995 
5996 	if (recalculate)
5997 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5998 					 &ipv6_hdr(skb)->daddr,
5999 					 skb->len - off, nexthdr, 0);
6000 	err = 0;
6001 
6002 out:
6003 	return err;
6004 }
6005 
6006 /**
6007  * skb_checksum_setup - set up partial checksum offset
6008  * @skb: the skb to set up
6009  * @recalculate: if true the pseudo-header checksum will be recalculated
6010  */
6011 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
6012 {
6013 	int err;
6014 
6015 	switch (skb->protocol) {
6016 	case htons(ETH_P_IP):
6017 		err = skb_checksum_setup_ipv4(skb, recalculate);
6018 		break;
6019 
6020 	case htons(ETH_P_IPV6):
6021 		err = skb_checksum_setup_ipv6(skb, recalculate);
6022 		break;
6023 
6024 	default:
6025 		err = -EPROTO;
6026 		break;
6027 	}
6028 
6029 	return err;
6030 }
6031 EXPORT_SYMBOL(skb_checksum_setup);
6032 
6033 /**
6034  * skb_checksum_maybe_trim - maybe trims the given skb
6035  * @skb: the skb to check
6036  * @transport_len: the data length beyond the network header
6037  *
6038  * Checks whether the given skb has data beyond the given transport length.
6039  * If so, returns a cloned skb trimmed to this transport length.
6040  * Otherwise returns the provided skb. Returns NULL in error cases
6041  * (e.g. transport_len exceeds skb length or out-of-memory).
6042  *
6043  * Caller needs to set the skb transport header and free any returned skb if it
6044  * differs from the provided skb.
6045  */
6046 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
6047 					       unsigned int transport_len)
6048 {
6049 	struct sk_buff *skb_chk;
6050 	unsigned int len = skb_transport_offset(skb) + transport_len;
6051 	int ret;
6052 
6053 	if (skb->len < len)
6054 		return NULL;
6055 	else if (skb->len == len)
6056 		return skb;
6057 
6058 	skb_chk = skb_clone(skb, GFP_ATOMIC);
6059 	if (!skb_chk)
6060 		return NULL;
6061 
6062 	ret = pskb_trim_rcsum(skb_chk, len);
6063 	if (ret) {
6064 		kfree_skb(skb_chk);
6065 		return NULL;
6066 	}
6067 
6068 	return skb_chk;
6069 }
6070 
6071 /**
6072  * skb_checksum_trimmed - validate checksum of an skb
6073  * @skb: the skb to check
6074  * @transport_len: the data length beyond the network header
6075  * @skb_chkf: checksum function to use
6076  *
6077  * Applies the given checksum function skb_chkf to the provided skb.
6078  * Returns a checked and maybe trimmed skb. Returns NULL on error.
6079  *
6080  * If the skb has data beyond the given transport length, then a
6081  * trimmed & cloned skb is checked and returned.
6082  *
6083  * Caller needs to set the skb transport header and free any returned skb if it
6084  * differs from the provided skb.
6085  */
6086 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6087 				     unsigned int transport_len,
6088 				     __sum16(*skb_chkf)(struct sk_buff *skb))
6089 {
6090 	struct sk_buff *skb_chk;
6091 	unsigned int offset = skb_transport_offset(skb);
6092 	__sum16 ret;
6093 
6094 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6095 	if (!skb_chk)
6096 		goto err;
6097 
6098 	if (!pskb_may_pull(skb_chk, offset))
6099 		goto err;
6100 
6101 	skb_pull_rcsum(skb_chk, offset);
6102 	ret = skb_chkf(skb_chk);
6103 	skb_push_rcsum(skb_chk, offset);
6104 
6105 	if (ret)
6106 		goto err;
6107 
6108 	return skb_chk;
6109 
6110 err:
6111 	if (skb_chk && skb_chk != skb)
6112 		kfree_skb(skb_chk);
6113 
6114 	return NULL;
6115 
6116 }
6117 EXPORT_SYMBOL(skb_checksum_trimmed);
6118 
6119 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6120 {
6121 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6122 			     skb->dev->name);
6123 }
6124 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6125 
6126 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6127 {
6128 	if (head_stolen) {
6129 		skb_release_head_state(skb);
6130 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6131 	} else {
6132 		__kfree_skb(skb);
6133 	}
6134 }
6135 EXPORT_SYMBOL(kfree_skb_partial);
6136 
6137 /**
6138  * skb_try_coalesce - try to merge skb to prior one
6139  * @to: prior buffer
6140  * @from: buffer to add
6141  * @fragstolen: pointer to boolean
6142  * @delta_truesize: how much more was allocated than was requested
6143  */
6144 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6145 		      bool *fragstolen, int *delta_truesize)
6146 {
6147 	struct skb_shared_info *to_shinfo, *from_shinfo;
6148 	int i, delta, len = from->len;
6149 
6150 	*fragstolen = false;
6151 
6152 	if (skb_cloned(to))
6153 		return false;
6154 
6155 	/* In general, avoid mixing page_pool and non-page_pool allocated
6156 	 * pages within the same SKB. In theory we could take full
6157 	 * references if @from is cloned and !@to->pp_recycle but its
6158 	 * tricky (due to potential race with the clone disappearing) and
6159 	 * rare, so not worth dealing with.
6160 	 */
6161 	if (to->pp_recycle != from->pp_recycle)
6162 		return false;
6163 
6164 	if (skb_frags_readable(from) != skb_frags_readable(to))
6165 		return false;
6166 
6167 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6168 		if (len)
6169 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6170 		*delta_truesize = 0;
6171 		return true;
6172 	}
6173 
6174 	to_shinfo = skb_shinfo(to);
6175 	from_shinfo = skb_shinfo(from);
6176 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6177 		return false;
6178 	if (skb_zcopy(to) || skb_zcopy(from))
6179 		return false;
6180 
6181 	if (skb_headlen(from) != 0) {
6182 		struct page *page;
6183 		unsigned int offset;
6184 
6185 		if (to_shinfo->nr_frags +
6186 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6187 			return false;
6188 
6189 		if (skb_head_is_locked(from))
6190 			return false;
6191 
6192 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6193 
6194 		page = virt_to_head_page(from->head);
6195 		offset = from->data - (unsigned char *)page_address(page);
6196 
6197 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6198 				   page, offset, skb_headlen(from));
6199 		*fragstolen = true;
6200 	} else {
6201 		if (to_shinfo->nr_frags +
6202 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6203 			return false;
6204 
6205 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6206 	}
6207 
6208 	WARN_ON_ONCE(delta < len);
6209 
6210 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6211 	       from_shinfo->frags,
6212 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6213 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6214 
6215 	if (!skb_cloned(from))
6216 		from_shinfo->nr_frags = 0;
6217 
6218 	/* if the skb is not cloned this does nothing
6219 	 * since we set nr_frags to 0.
6220 	 */
6221 	if (skb_pp_frag_ref(from)) {
6222 		for (i = 0; i < from_shinfo->nr_frags; i++)
6223 			__skb_frag_ref(&from_shinfo->frags[i]);
6224 	}
6225 
6226 	to->truesize += delta;
6227 	to->len += len;
6228 	to->data_len += len;
6229 
6230 	*delta_truesize = delta;
6231 	return true;
6232 }
6233 EXPORT_SYMBOL(skb_try_coalesce);
6234 
6235 /**
6236  * skb_scrub_packet - scrub an skb
6237  *
6238  * @skb: buffer to clean
6239  * @xnet: packet is crossing netns
6240  *
6241  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6242  * into/from a tunnel. Some information have to be cleared during these
6243  * operations.
6244  * skb_scrub_packet can also be used to clean a skb before injecting it in
6245  * another namespace (@xnet == true). We have to clear all information in the
6246  * skb that could impact namespace isolation.
6247  */
6248 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6249 {
6250 	skb->pkt_type = PACKET_HOST;
6251 	skb->skb_iif = 0;
6252 	skb->ignore_df = 0;
6253 	skb_dst_drop(skb);
6254 	skb_ext_reset(skb);
6255 	nf_reset_ct(skb);
6256 	nf_reset_trace(skb);
6257 
6258 #ifdef CONFIG_NET_SWITCHDEV
6259 	skb->offload_fwd_mark = 0;
6260 	skb->offload_l3_fwd_mark = 0;
6261 #endif
6262 	ipvs_reset(skb);
6263 
6264 	if (!xnet)
6265 		return;
6266 
6267 	skb->mark = 0;
6268 	skb_clear_tstamp(skb);
6269 }
6270 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6271 
6272 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6273 {
6274 	int mac_len, meta_len;
6275 	void *meta;
6276 
6277 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6278 		kfree_skb(skb);
6279 		return NULL;
6280 	}
6281 
6282 	mac_len = skb->data - skb_mac_header(skb);
6283 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6284 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6285 			mac_len - VLAN_HLEN - ETH_TLEN);
6286 	}
6287 
6288 	meta_len = skb_metadata_len(skb);
6289 	if (meta_len) {
6290 		meta = skb_metadata_end(skb) - meta_len;
6291 		memmove(meta + VLAN_HLEN, meta, meta_len);
6292 	}
6293 
6294 	skb->mac_header += VLAN_HLEN;
6295 	return skb;
6296 }
6297 
6298 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6299 {
6300 	struct vlan_hdr *vhdr;
6301 	u16 vlan_tci;
6302 
6303 	if (unlikely(skb_vlan_tag_present(skb))) {
6304 		/* vlan_tci is already set-up so leave this for another time */
6305 		return skb;
6306 	}
6307 
6308 	skb = skb_share_check(skb, GFP_ATOMIC);
6309 	if (unlikely(!skb))
6310 		goto err_free;
6311 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6312 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6313 		goto err_free;
6314 
6315 	vhdr = (struct vlan_hdr *)skb->data;
6316 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6317 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6318 
6319 	skb_pull_rcsum(skb, VLAN_HLEN);
6320 	vlan_set_encap_proto(skb, vhdr);
6321 
6322 	skb = skb_reorder_vlan_header(skb);
6323 	if (unlikely(!skb))
6324 		goto err_free;
6325 
6326 	skb_reset_network_header(skb);
6327 	if (!skb_transport_header_was_set(skb))
6328 		skb_reset_transport_header(skb);
6329 	skb_reset_mac_len(skb);
6330 
6331 	return skb;
6332 
6333 err_free:
6334 	kfree_skb(skb);
6335 	return NULL;
6336 }
6337 EXPORT_SYMBOL(skb_vlan_untag);
6338 
6339 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6340 {
6341 	if (!pskb_may_pull(skb, write_len))
6342 		return -ENOMEM;
6343 
6344 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6345 		return 0;
6346 
6347 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6348 }
6349 EXPORT_SYMBOL(skb_ensure_writable);
6350 
6351 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6352 {
6353 	int needed_headroom = dev->needed_headroom;
6354 	int needed_tailroom = dev->needed_tailroom;
6355 
6356 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6357 	 * that the tail tag does not fail at its role of being at the end of
6358 	 * the packet, once the conduit interface pads the frame. Account for
6359 	 * that pad length here, and pad later.
6360 	 */
6361 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6362 		needed_tailroom += ETH_ZLEN - skb->len;
6363 	/* skb_headroom() returns unsigned int... */
6364 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6365 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6366 
6367 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6368 		/* No reallocation needed, yay! */
6369 		return 0;
6370 
6371 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6372 				GFP_ATOMIC);
6373 }
6374 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6375 
6376 /* remove VLAN header from packet and update csum accordingly.
6377  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6378  */
6379 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6380 {
6381 	int offset = skb->data - skb_mac_header(skb);
6382 	int err;
6383 
6384 	if (WARN_ONCE(offset,
6385 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6386 		      offset)) {
6387 		return -EINVAL;
6388 	}
6389 
6390 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6391 	if (unlikely(err))
6392 		return err;
6393 
6394 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6395 
6396 	vlan_remove_tag(skb, vlan_tci);
6397 
6398 	skb->mac_header += VLAN_HLEN;
6399 
6400 	if (skb_network_offset(skb) < ETH_HLEN)
6401 		skb_set_network_header(skb, ETH_HLEN);
6402 
6403 	skb_reset_mac_len(skb);
6404 
6405 	return err;
6406 }
6407 EXPORT_SYMBOL(__skb_vlan_pop);
6408 
6409 /* Pop a vlan tag either from hwaccel or from payload.
6410  * Expects skb->data at mac header.
6411  */
6412 int skb_vlan_pop(struct sk_buff *skb)
6413 {
6414 	u16 vlan_tci;
6415 	__be16 vlan_proto;
6416 	int err;
6417 
6418 	if (likely(skb_vlan_tag_present(skb))) {
6419 		__vlan_hwaccel_clear_tag(skb);
6420 	} else {
6421 		if (unlikely(!eth_type_vlan(skb->protocol)))
6422 			return 0;
6423 
6424 		err = __skb_vlan_pop(skb, &vlan_tci);
6425 		if (err)
6426 			return err;
6427 	}
6428 	/* move next vlan tag to hw accel tag */
6429 	if (likely(!eth_type_vlan(skb->protocol)))
6430 		return 0;
6431 
6432 	vlan_proto = skb->protocol;
6433 	err = __skb_vlan_pop(skb, &vlan_tci);
6434 	if (unlikely(err))
6435 		return err;
6436 
6437 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6438 	return 0;
6439 }
6440 EXPORT_SYMBOL(skb_vlan_pop);
6441 
6442 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6443  * Expects skb->data at mac header.
6444  */
6445 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6446 {
6447 	if (skb_vlan_tag_present(skb)) {
6448 		int offset = skb->data - skb_mac_header(skb);
6449 		int err;
6450 
6451 		if (WARN_ONCE(offset,
6452 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6453 			      offset)) {
6454 			return -EINVAL;
6455 		}
6456 
6457 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6458 					skb_vlan_tag_get(skb));
6459 		if (err)
6460 			return err;
6461 
6462 		skb->protocol = skb->vlan_proto;
6463 		skb->network_header -= VLAN_HLEN;
6464 
6465 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6466 	}
6467 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6468 	return 0;
6469 }
6470 EXPORT_SYMBOL(skb_vlan_push);
6471 
6472 /**
6473  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6474  *
6475  * @skb: Socket buffer to modify
6476  *
6477  * Drop the Ethernet header of @skb.
6478  *
6479  * Expects that skb->data points to the mac header and that no VLAN tags are
6480  * present.
6481  *
6482  * Returns 0 on success, -errno otherwise.
6483  */
6484 int skb_eth_pop(struct sk_buff *skb)
6485 {
6486 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6487 	    skb_network_offset(skb) < ETH_HLEN)
6488 		return -EPROTO;
6489 
6490 	skb_pull_rcsum(skb, ETH_HLEN);
6491 	skb_reset_mac_header(skb);
6492 	skb_reset_mac_len(skb);
6493 
6494 	return 0;
6495 }
6496 EXPORT_SYMBOL(skb_eth_pop);
6497 
6498 /**
6499  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6500  *
6501  * @skb: Socket buffer to modify
6502  * @dst: Destination MAC address of the new header
6503  * @src: Source MAC address of the new header
6504  *
6505  * Prepend @skb with a new Ethernet header.
6506  *
6507  * Expects that skb->data points to the mac header, which must be empty.
6508  *
6509  * Returns 0 on success, -errno otherwise.
6510  */
6511 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6512 		 const unsigned char *src)
6513 {
6514 	struct ethhdr *eth;
6515 	int err;
6516 
6517 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6518 		return -EPROTO;
6519 
6520 	err = skb_cow_head(skb, sizeof(*eth));
6521 	if (err < 0)
6522 		return err;
6523 
6524 	skb_push(skb, sizeof(*eth));
6525 	skb_reset_mac_header(skb);
6526 	skb_reset_mac_len(skb);
6527 
6528 	eth = eth_hdr(skb);
6529 	ether_addr_copy(eth->h_dest, dst);
6530 	ether_addr_copy(eth->h_source, src);
6531 	eth->h_proto = skb->protocol;
6532 
6533 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6534 
6535 	return 0;
6536 }
6537 EXPORT_SYMBOL(skb_eth_push);
6538 
6539 /* Update the ethertype of hdr and the skb csum value if required. */
6540 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6541 			     __be16 ethertype)
6542 {
6543 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6544 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6545 
6546 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6547 	}
6548 
6549 	hdr->h_proto = ethertype;
6550 }
6551 
6552 /**
6553  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6554  *                   the packet
6555  *
6556  * @skb: buffer
6557  * @mpls_lse: MPLS label stack entry to push
6558  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6559  * @mac_len: length of the MAC header
6560  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6561  *            ethernet
6562  *
6563  * Expects skb->data at mac header.
6564  *
6565  * Returns 0 on success, -errno otherwise.
6566  */
6567 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6568 		  int mac_len, bool ethernet)
6569 {
6570 	struct mpls_shim_hdr *lse;
6571 	int err;
6572 
6573 	if (unlikely(!eth_p_mpls(mpls_proto)))
6574 		return -EINVAL;
6575 
6576 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6577 	if (skb->encapsulation)
6578 		return -EINVAL;
6579 
6580 	err = skb_cow_head(skb, MPLS_HLEN);
6581 	if (unlikely(err))
6582 		return err;
6583 
6584 	if (!skb->inner_protocol) {
6585 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6586 		skb_set_inner_protocol(skb, skb->protocol);
6587 	}
6588 
6589 	skb_push(skb, MPLS_HLEN);
6590 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6591 		mac_len);
6592 	skb_reset_mac_header(skb);
6593 	skb_set_network_header(skb, mac_len);
6594 	skb_reset_mac_len(skb);
6595 
6596 	lse = mpls_hdr(skb);
6597 	lse->label_stack_entry = mpls_lse;
6598 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6599 
6600 	if (ethernet && mac_len >= ETH_HLEN)
6601 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6602 	skb->protocol = mpls_proto;
6603 
6604 	return 0;
6605 }
6606 EXPORT_SYMBOL_GPL(skb_mpls_push);
6607 
6608 /**
6609  * skb_mpls_pop() - pop the outermost MPLS header
6610  *
6611  * @skb: buffer
6612  * @next_proto: ethertype of header after popped MPLS header
6613  * @mac_len: length of the MAC header
6614  * @ethernet: flag to indicate if the packet is ethernet
6615  *
6616  * Expects skb->data at mac header.
6617  *
6618  * Returns 0 on success, -errno otherwise.
6619  */
6620 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6621 		 bool ethernet)
6622 {
6623 	int err;
6624 
6625 	if (unlikely(!eth_p_mpls(skb->protocol)))
6626 		return 0;
6627 
6628 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6629 	if (unlikely(err))
6630 		return err;
6631 
6632 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6633 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6634 		mac_len);
6635 
6636 	__skb_pull(skb, MPLS_HLEN);
6637 	skb_reset_mac_header(skb);
6638 	skb_set_network_header(skb, mac_len);
6639 
6640 	if (ethernet && mac_len >= ETH_HLEN) {
6641 		struct ethhdr *hdr;
6642 
6643 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6644 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6645 		skb_mod_eth_type(skb, hdr, next_proto);
6646 	}
6647 	skb->protocol = next_proto;
6648 
6649 	return 0;
6650 }
6651 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6652 
6653 /**
6654  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6655  *
6656  * @skb: buffer
6657  * @mpls_lse: new MPLS label stack entry to update to
6658  *
6659  * Expects skb->data at mac header.
6660  *
6661  * Returns 0 on success, -errno otherwise.
6662  */
6663 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6664 {
6665 	int err;
6666 
6667 	if (unlikely(!eth_p_mpls(skb->protocol)))
6668 		return -EINVAL;
6669 
6670 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6671 	if (unlikely(err))
6672 		return err;
6673 
6674 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6675 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6676 
6677 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6678 	}
6679 
6680 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6681 
6682 	return 0;
6683 }
6684 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6685 
6686 /**
6687  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6688  *
6689  * @skb: buffer
6690  *
6691  * Expects skb->data at mac header.
6692  *
6693  * Returns 0 on success, -errno otherwise.
6694  */
6695 int skb_mpls_dec_ttl(struct sk_buff *skb)
6696 {
6697 	u32 lse;
6698 	u8 ttl;
6699 
6700 	if (unlikely(!eth_p_mpls(skb->protocol)))
6701 		return -EINVAL;
6702 
6703 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6704 		return -ENOMEM;
6705 
6706 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6707 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6708 	if (!--ttl)
6709 		return -EINVAL;
6710 
6711 	lse &= ~MPLS_LS_TTL_MASK;
6712 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6713 
6714 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6715 }
6716 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6717 
6718 /**
6719  * alloc_skb_with_frags - allocate skb with page frags
6720  *
6721  * @header_len: size of linear part
6722  * @data_len: needed length in frags
6723  * @order: max page order desired.
6724  * @errcode: pointer to error code if any
6725  * @gfp_mask: allocation mask
6726  *
6727  * This can be used to allocate a paged skb, given a maximal order for frags.
6728  */
6729 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6730 				     unsigned long data_len,
6731 				     int order,
6732 				     int *errcode,
6733 				     gfp_t gfp_mask)
6734 {
6735 	unsigned long chunk;
6736 	struct sk_buff *skb;
6737 	struct page *page;
6738 	int nr_frags = 0;
6739 
6740 	*errcode = -EMSGSIZE;
6741 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6742 		return NULL;
6743 
6744 	*errcode = -ENOBUFS;
6745 	skb = alloc_skb(header_len, gfp_mask);
6746 	if (!skb)
6747 		return NULL;
6748 
6749 	while (data_len) {
6750 		if (nr_frags == MAX_SKB_FRAGS)
6751 			goto failure;
6752 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6753 			order--;
6754 
6755 		if (order) {
6756 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6757 					   __GFP_COMP |
6758 					   __GFP_NOWARN,
6759 					   order);
6760 			if (!page) {
6761 				order--;
6762 				continue;
6763 			}
6764 		} else {
6765 			page = alloc_page(gfp_mask);
6766 			if (!page)
6767 				goto failure;
6768 		}
6769 		chunk = min_t(unsigned long, data_len,
6770 			      PAGE_SIZE << order);
6771 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6772 		nr_frags++;
6773 		skb->truesize += (PAGE_SIZE << order);
6774 		data_len -= chunk;
6775 	}
6776 	return skb;
6777 
6778 failure:
6779 	kfree_skb(skb);
6780 	return NULL;
6781 }
6782 EXPORT_SYMBOL(alloc_skb_with_frags);
6783 
6784 /* carve out the first off bytes from skb when off < headlen */
6785 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6786 				    const int headlen, gfp_t gfp_mask)
6787 {
6788 	int i;
6789 	unsigned int size = skb_end_offset(skb);
6790 	int new_hlen = headlen - off;
6791 	u8 *data;
6792 
6793 	if (skb_pfmemalloc(skb))
6794 		gfp_mask |= __GFP_MEMALLOC;
6795 
6796 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6797 	if (!data)
6798 		return -ENOMEM;
6799 	size = SKB_WITH_OVERHEAD(size);
6800 
6801 	/* Copy real data, and all frags */
6802 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6803 	skb->len -= off;
6804 
6805 	memcpy((struct skb_shared_info *)(data + size),
6806 	       skb_shinfo(skb),
6807 	       offsetof(struct skb_shared_info,
6808 			frags[skb_shinfo(skb)->nr_frags]));
6809 	if (skb_cloned(skb)) {
6810 		/* drop the old head gracefully */
6811 		if (skb_orphan_frags(skb, gfp_mask)) {
6812 			skb_kfree_head(data, size);
6813 			return -ENOMEM;
6814 		}
6815 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6816 			skb_frag_ref(skb, i);
6817 		if (skb_has_frag_list(skb))
6818 			skb_clone_fraglist(skb);
6819 		skb_release_data(skb, SKB_CONSUMED);
6820 	} else {
6821 		/* we can reuse existing recount- all we did was
6822 		 * relocate values
6823 		 */
6824 		skb_free_head(skb);
6825 	}
6826 
6827 	skb->head = data;
6828 	skb->data = data;
6829 	skb->head_frag = 0;
6830 	skb_set_end_offset(skb, size);
6831 	skb_set_tail_pointer(skb, skb_headlen(skb));
6832 	skb_headers_offset_update(skb, 0);
6833 	skb->cloned = 0;
6834 	skb->hdr_len = 0;
6835 	skb->nohdr = 0;
6836 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6837 
6838 	return 0;
6839 }
6840 
6841 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6842 
6843 /* carve out the first eat bytes from skb's frag_list. May recurse into
6844  * pskb_carve()
6845  */
6846 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6847 				gfp_t gfp_mask)
6848 {
6849 	struct sk_buff *list = shinfo->frag_list;
6850 	struct sk_buff *clone = NULL;
6851 	struct sk_buff *insp = NULL;
6852 
6853 	do {
6854 		if (!list) {
6855 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6856 			return -EFAULT;
6857 		}
6858 		if (list->len <= eat) {
6859 			/* Eaten as whole. */
6860 			eat -= list->len;
6861 			list = list->next;
6862 			insp = list;
6863 		} else {
6864 			/* Eaten partially. */
6865 			if (skb_shared(list)) {
6866 				clone = skb_clone(list, gfp_mask);
6867 				if (!clone)
6868 					return -ENOMEM;
6869 				insp = list->next;
6870 				list = clone;
6871 			} else {
6872 				/* This may be pulled without problems. */
6873 				insp = list;
6874 			}
6875 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6876 				kfree_skb(clone);
6877 				return -ENOMEM;
6878 			}
6879 			break;
6880 		}
6881 	} while (eat);
6882 
6883 	/* Free pulled out fragments. */
6884 	while ((list = shinfo->frag_list) != insp) {
6885 		shinfo->frag_list = list->next;
6886 		consume_skb(list);
6887 	}
6888 	/* And insert new clone at head. */
6889 	if (clone) {
6890 		clone->next = list;
6891 		shinfo->frag_list = clone;
6892 	}
6893 	return 0;
6894 }
6895 
6896 /* carve off first len bytes from skb. Split line (off) is in the
6897  * non-linear part of skb
6898  */
6899 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6900 				       int pos, gfp_t gfp_mask)
6901 {
6902 	int i, k = 0;
6903 	unsigned int size = skb_end_offset(skb);
6904 	u8 *data;
6905 	const int nfrags = skb_shinfo(skb)->nr_frags;
6906 	struct skb_shared_info *shinfo;
6907 
6908 	if (skb_pfmemalloc(skb))
6909 		gfp_mask |= __GFP_MEMALLOC;
6910 
6911 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6912 	if (!data)
6913 		return -ENOMEM;
6914 	size = SKB_WITH_OVERHEAD(size);
6915 
6916 	memcpy((struct skb_shared_info *)(data + size),
6917 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6918 	if (skb_orphan_frags(skb, gfp_mask)) {
6919 		skb_kfree_head(data, size);
6920 		return -ENOMEM;
6921 	}
6922 	shinfo = (struct skb_shared_info *)(data + size);
6923 	for (i = 0; i < nfrags; i++) {
6924 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6925 
6926 		if (pos + fsize > off) {
6927 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6928 
6929 			if (pos < off) {
6930 				/* Split frag.
6931 				 * We have two variants in this case:
6932 				 * 1. Move all the frag to the second
6933 				 *    part, if it is possible. F.e.
6934 				 *    this approach is mandatory for TUX,
6935 				 *    where splitting is expensive.
6936 				 * 2. Split is accurately. We make this.
6937 				 */
6938 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6939 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6940 			}
6941 			skb_frag_ref(skb, i);
6942 			k++;
6943 		}
6944 		pos += fsize;
6945 	}
6946 	shinfo->nr_frags = k;
6947 	if (skb_has_frag_list(skb))
6948 		skb_clone_fraglist(skb);
6949 
6950 	/* split line is in frag list */
6951 	if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6952 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6953 		if (skb_has_frag_list(skb))
6954 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6955 		skb_kfree_head(data, size);
6956 		return -ENOMEM;
6957 	}
6958 	skb_release_data(skb, SKB_CONSUMED);
6959 
6960 	skb->head = data;
6961 	skb->head_frag = 0;
6962 	skb->data = data;
6963 	skb_set_end_offset(skb, size);
6964 	skb_reset_tail_pointer(skb);
6965 	skb_headers_offset_update(skb, 0);
6966 	skb->cloned   = 0;
6967 	skb->hdr_len  = 0;
6968 	skb->nohdr    = 0;
6969 	skb->len -= off;
6970 	skb->data_len = skb->len;
6971 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6972 	return 0;
6973 }
6974 
6975 /* remove len bytes from the beginning of the skb */
6976 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6977 {
6978 	int headlen = skb_headlen(skb);
6979 
6980 	if (len < headlen)
6981 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6982 	else
6983 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6984 }
6985 
6986 /* Extract to_copy bytes starting at off from skb, and return this in
6987  * a new skb
6988  */
6989 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6990 			     int to_copy, gfp_t gfp)
6991 {
6992 	struct sk_buff  *clone = skb_clone(skb, gfp);
6993 
6994 	if (!clone)
6995 		return NULL;
6996 
6997 	if (pskb_carve(clone, off, gfp) < 0 ||
6998 	    pskb_trim(clone, to_copy)) {
6999 		kfree_skb(clone);
7000 		return NULL;
7001 	}
7002 	return clone;
7003 }
7004 EXPORT_SYMBOL(pskb_extract);
7005 
7006 /**
7007  * skb_condense - try to get rid of fragments/frag_list if possible
7008  * @skb: buffer
7009  *
7010  * Can be used to save memory before skb is added to a busy queue.
7011  * If packet has bytes in frags and enough tail room in skb->head,
7012  * pull all of them, so that we can free the frags right now and adjust
7013  * truesize.
7014  * Notes:
7015  *	We do not reallocate skb->head thus can not fail.
7016  *	Caller must re-evaluate skb->truesize if needed.
7017  */
7018 void skb_condense(struct sk_buff *skb)
7019 {
7020 	if (skb->data_len) {
7021 		if (skb->data_len > skb->end - skb->tail ||
7022 		    skb_cloned(skb) || !skb_frags_readable(skb))
7023 			return;
7024 
7025 		/* Nice, we can free page frag(s) right now */
7026 		__pskb_pull_tail(skb, skb->data_len);
7027 	}
7028 	/* At this point, skb->truesize might be over estimated,
7029 	 * because skb had a fragment, and fragments do not tell
7030 	 * their truesize.
7031 	 * When we pulled its content into skb->head, fragment
7032 	 * was freed, but __pskb_pull_tail() could not possibly
7033 	 * adjust skb->truesize, not knowing the frag truesize.
7034 	 */
7035 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
7036 }
7037 EXPORT_SYMBOL(skb_condense);
7038 
7039 #ifdef CONFIG_SKB_EXTENSIONS
7040 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
7041 {
7042 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
7043 }
7044 
7045 /**
7046  * __skb_ext_alloc - allocate a new skb extensions storage
7047  *
7048  * @flags: See kmalloc().
7049  *
7050  * Returns the newly allocated pointer. The pointer can later attached to a
7051  * skb via __skb_ext_set().
7052  * Note: caller must handle the skb_ext as an opaque data.
7053  */
7054 struct skb_ext *__skb_ext_alloc(gfp_t flags)
7055 {
7056 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
7057 
7058 	if (new) {
7059 		memset(new->offset, 0, sizeof(new->offset));
7060 		refcount_set(&new->refcnt, 1);
7061 	}
7062 
7063 	return new;
7064 }
7065 
7066 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
7067 					 unsigned int old_active)
7068 {
7069 	struct skb_ext *new;
7070 
7071 	if (refcount_read(&old->refcnt) == 1)
7072 		return old;
7073 
7074 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
7075 	if (!new)
7076 		return NULL;
7077 
7078 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7079 	refcount_set(&new->refcnt, 1);
7080 
7081 #ifdef CONFIG_XFRM
7082 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7083 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7084 		unsigned int i;
7085 
7086 		for (i = 0; i < sp->len; i++)
7087 			xfrm_state_hold(sp->xvec[i]);
7088 	}
7089 #endif
7090 #ifdef CONFIG_MCTP_FLOWS
7091 	if (old_active & (1 << SKB_EXT_MCTP)) {
7092 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7093 
7094 		if (flow->key)
7095 			refcount_inc(&flow->key->refs);
7096 	}
7097 #endif
7098 	__skb_ext_put(old);
7099 	return new;
7100 }
7101 
7102 /**
7103  * __skb_ext_set - attach the specified extension storage to this skb
7104  * @skb: buffer
7105  * @id: extension id
7106  * @ext: extension storage previously allocated via __skb_ext_alloc()
7107  *
7108  * Existing extensions, if any, are cleared.
7109  *
7110  * Returns the pointer to the extension.
7111  */
7112 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7113 		    struct skb_ext *ext)
7114 {
7115 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7116 
7117 	skb_ext_put(skb);
7118 	newlen = newoff + skb_ext_type_len[id];
7119 	ext->chunks = newlen;
7120 	ext->offset[id] = newoff;
7121 	skb->extensions = ext;
7122 	skb->active_extensions = 1 << id;
7123 	return skb_ext_get_ptr(ext, id);
7124 }
7125 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL");
7126 
7127 /**
7128  * skb_ext_add - allocate space for given extension, COW if needed
7129  * @skb: buffer
7130  * @id: extension to allocate space for
7131  *
7132  * Allocates enough space for the given extension.
7133  * If the extension is already present, a pointer to that extension
7134  * is returned.
7135  *
7136  * If the skb was cloned, COW applies and the returned memory can be
7137  * modified without changing the extension space of clones buffers.
7138  *
7139  * Returns pointer to the extension or NULL on allocation failure.
7140  */
7141 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7142 {
7143 	struct skb_ext *new, *old = NULL;
7144 	unsigned int newlen, newoff;
7145 
7146 	if (skb->active_extensions) {
7147 		old = skb->extensions;
7148 
7149 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7150 		if (!new)
7151 			return NULL;
7152 
7153 		if (__skb_ext_exist(new, id))
7154 			goto set_active;
7155 
7156 		newoff = new->chunks;
7157 	} else {
7158 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7159 
7160 		new = __skb_ext_alloc(GFP_ATOMIC);
7161 		if (!new)
7162 			return NULL;
7163 	}
7164 
7165 	newlen = newoff + skb_ext_type_len[id];
7166 	new->chunks = newlen;
7167 	new->offset[id] = newoff;
7168 set_active:
7169 	skb->slow_gro = 1;
7170 	skb->extensions = new;
7171 	skb->active_extensions |= 1 << id;
7172 	return skb_ext_get_ptr(new, id);
7173 }
7174 EXPORT_SYMBOL(skb_ext_add);
7175 
7176 #ifdef CONFIG_XFRM
7177 static void skb_ext_put_sp(struct sec_path *sp)
7178 {
7179 	unsigned int i;
7180 
7181 	for (i = 0; i < sp->len; i++)
7182 		xfrm_state_put(sp->xvec[i]);
7183 }
7184 #endif
7185 
7186 #ifdef CONFIG_MCTP_FLOWS
7187 static void skb_ext_put_mctp(struct mctp_flow *flow)
7188 {
7189 	if (flow->key)
7190 		mctp_key_unref(flow->key);
7191 }
7192 #endif
7193 
7194 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7195 {
7196 	struct skb_ext *ext = skb->extensions;
7197 
7198 	skb->active_extensions &= ~(1 << id);
7199 	if (skb->active_extensions == 0) {
7200 		skb->extensions = NULL;
7201 		__skb_ext_put(ext);
7202 #ifdef CONFIG_XFRM
7203 	} else if (id == SKB_EXT_SEC_PATH &&
7204 		   refcount_read(&ext->refcnt) == 1) {
7205 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7206 
7207 		skb_ext_put_sp(sp);
7208 		sp->len = 0;
7209 #endif
7210 	}
7211 }
7212 EXPORT_SYMBOL(__skb_ext_del);
7213 
7214 void __skb_ext_put(struct skb_ext *ext)
7215 {
7216 	/* If this is last clone, nothing can increment
7217 	 * it after check passes.  Avoids one atomic op.
7218 	 */
7219 	if (refcount_read(&ext->refcnt) == 1)
7220 		goto free_now;
7221 
7222 	if (!refcount_dec_and_test(&ext->refcnt))
7223 		return;
7224 free_now:
7225 #ifdef CONFIG_XFRM
7226 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7227 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7228 #endif
7229 #ifdef CONFIG_MCTP_FLOWS
7230 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7231 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7232 #endif
7233 
7234 	kmem_cache_free(skbuff_ext_cache, ext);
7235 }
7236 EXPORT_SYMBOL(__skb_ext_put);
7237 #endif /* CONFIG_SKB_EXTENSIONS */
7238 
7239 static void kfree_skb_napi_cache(struct sk_buff *skb)
7240 {
7241 	/* if SKB is a clone, don't handle this case */
7242 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7243 		__kfree_skb(skb);
7244 		return;
7245 	}
7246 
7247 	local_bh_disable();
7248 	__napi_kfree_skb(skb, SKB_CONSUMED);
7249 	local_bh_enable();
7250 }
7251 
7252 /**
7253  * skb_attempt_defer_free - queue skb for remote freeing
7254  * @skb: buffer
7255  *
7256  * Put @skb in a per-cpu list, using the cpu which
7257  * allocated the skb/pages to reduce false sharing
7258  * and memory zone spinlock contention.
7259  */
7260 void skb_attempt_defer_free(struct sk_buff *skb)
7261 {
7262 	struct skb_defer_node *sdn;
7263 	unsigned long defer_count;
7264 	int cpu = skb->alloc_cpu;
7265 	unsigned int defer_max;
7266 	bool kick;
7267 
7268 	if (cpu == raw_smp_processor_id() ||
7269 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7270 	    !cpu_online(cpu)) {
7271 nodefer:	kfree_skb_napi_cache(skb);
7272 		return;
7273 	}
7274 
7275 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7276 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7277 	DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb));
7278 
7279 	sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id();
7280 
7281 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7282 	defer_count = atomic_long_inc_return(&sdn->defer_count);
7283 
7284 	if (defer_count >= defer_max)
7285 		goto nodefer;
7286 
7287 	llist_add(&skb->ll_node, &sdn->defer_list);
7288 
7289 	/* Send an IPI every time queue reaches half capacity. */
7290 	kick = (defer_count - 1) == (defer_max >> 1);
7291 
7292 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7293 	 * if we are unlucky enough (this seems very unlikely).
7294 	 */
7295 	if (unlikely(kick))
7296 		kick_defer_list_purge(cpu);
7297 }
7298 
7299 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7300 				 size_t offset, size_t len)
7301 {
7302 	const char *kaddr;
7303 	__wsum csum;
7304 
7305 	kaddr = kmap_local_page(page);
7306 	csum = csum_partial(kaddr + offset, len, 0);
7307 	kunmap_local(kaddr);
7308 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7309 }
7310 
7311 /**
7312  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7313  * @skb: The buffer to add pages to
7314  * @iter: Iterator representing the pages to be added
7315  * @maxsize: Maximum amount of pages to be added
7316  *
7317  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7318  * extracts pages from an iterator and adds them to the socket buffer if
7319  * possible, copying them to fragments if not possible (such as if they're slab
7320  * pages).
7321  *
7322  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7323  * insufficient space in the buffer to transfer anything.
7324  */
7325 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7326 			     ssize_t maxsize)
7327 {
7328 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7329 	struct page *pages[8], **ppages = pages;
7330 	ssize_t spliced = 0, ret = 0;
7331 	unsigned int i;
7332 
7333 	while (iter->count > 0) {
7334 		ssize_t space, nr, len;
7335 		size_t off;
7336 
7337 		ret = -EMSGSIZE;
7338 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7339 		if (space < 0)
7340 			break;
7341 
7342 		/* We might be able to coalesce without increasing nr_frags */
7343 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7344 
7345 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7346 		if (len <= 0) {
7347 			ret = len ?: -EIO;
7348 			break;
7349 		}
7350 
7351 		i = 0;
7352 		do {
7353 			struct page *page = pages[i++];
7354 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7355 
7356 			ret = -EIO;
7357 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7358 				goto out;
7359 
7360 			ret = skb_append_pagefrags(skb, page, off, part,
7361 						   frag_limit);
7362 			if (ret < 0) {
7363 				iov_iter_revert(iter, len);
7364 				goto out;
7365 			}
7366 
7367 			if (skb->ip_summed == CHECKSUM_NONE)
7368 				skb_splice_csum_page(skb, page, off, part);
7369 
7370 			off = 0;
7371 			spliced += part;
7372 			maxsize -= part;
7373 			len -= part;
7374 		} while (len > 0);
7375 
7376 		if (maxsize <= 0)
7377 			break;
7378 	}
7379 
7380 out:
7381 	skb_len_add(skb, spliced);
7382 	return spliced ?: ret;
7383 }
7384 EXPORT_SYMBOL(skb_splice_from_iter);
7385 
7386 static __always_inline
7387 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7388 			     size_t len, void *to, void *priv2)
7389 {
7390 	__wsum *csum = priv2;
7391 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7392 
7393 	*csum = csum_block_add(*csum, next, progress);
7394 	return 0;
7395 }
7396 
7397 static __always_inline
7398 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7399 				size_t len, void *to, void *priv2)
7400 {
7401 	__wsum next, *csum = priv2;
7402 
7403 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7404 	*csum = csum_block_add(*csum, next, progress);
7405 	return next ? 0 : len;
7406 }
7407 
7408 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7409 				  __wsum *csum, struct iov_iter *i)
7410 {
7411 	size_t copied;
7412 
7413 	if (WARN_ON_ONCE(!i->data_source))
7414 		return false;
7415 	copied = iterate_and_advance2(i, bytes, addr, csum,
7416 				      copy_from_user_iter_csum,
7417 				      memcpy_from_iter_csum);
7418 	if (likely(copied == bytes))
7419 		return true;
7420 	iov_iter_revert(i, copied);
7421 	return false;
7422 }
7423 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7424 
7425 void get_netmem(netmem_ref netmem)
7426 {
7427 	struct net_iov *niov;
7428 
7429 	if (netmem_is_net_iov(netmem)) {
7430 		niov = netmem_to_net_iov(netmem);
7431 		if (net_is_devmem_iov(niov))
7432 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7433 		return;
7434 	}
7435 	get_page(netmem_to_page(netmem));
7436 }
7437 EXPORT_SYMBOL(get_netmem);
7438 
7439 void put_netmem(netmem_ref netmem)
7440 {
7441 	struct net_iov *niov;
7442 
7443 	if (netmem_is_net_iov(netmem)) {
7444 		niov = netmem_to_net_iov(netmem);
7445 		if (net_is_devmem_iov(niov))
7446 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7447 		return;
7448 	}
7449 
7450 	put_page(netmem_to_page(netmem));
7451 }
7452 EXPORT_SYMBOL(put_netmem);
7453