xref: /linux/net/core/skbuff.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 		 __func__, here, skb->len, sz, skb->head, skb->data,
125 		 (unsigned long)skb->tail, (unsigned long)skb->end,
126 		 skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 		 __func__, here, skb->len, sz, skb->head, skb->data,
143 		 (unsigned long)skb->tail, (unsigned long)skb->end,
144 		 skb->dev ? skb->dev->name : "<NULL>");
145 	BUG();
146 }
147 
148 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
149  *	'private' fields and also do memory statistics to find all the
150  *	[BEEP] leaks.
151  *
152  */
153 
154 /**
155  *	__alloc_skb	-	allocate a network buffer
156  *	@size: size to allocate
157  *	@gfp_mask: allocation mask
158  *	@fclone: allocate from fclone cache instead of head cache
159  *		and allocate a cloned (child) skb
160  *	@node: numa node to allocate memory on
161  *
162  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
163  *	tail room of at least size bytes. The object has a reference count
164  *	of one. The return is the buffer. On a failure the return is %NULL.
165  *
166  *	Buffers may only be allocated from interrupts using a @gfp_mask of
167  *	%GFP_ATOMIC.
168  */
169 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
170 			    int fclone, int node)
171 {
172 	struct kmem_cache *cache;
173 	struct skb_shared_info *shinfo;
174 	struct sk_buff *skb;
175 	u8 *data;
176 
177 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
178 
179 	/* Get the HEAD */
180 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
181 	if (!skb)
182 		goto out;
183 	prefetchw(skb);
184 
185 	/* We do our best to align skb_shared_info on a separate cache
186 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
187 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
188 	 * Both skb->head and skb_shared_info are cache line aligned.
189 	 */
190 	size = SKB_DATA_ALIGN(size);
191 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 	data = kmalloc_node_track_caller(size, gfp_mask, node);
193 	if (!data)
194 		goto nodata;
195 	/* kmalloc(size) might give us more room than requested.
196 	 * Put skb_shared_info exactly at the end of allocated zone,
197 	 * to allow max possible filling before reallocation.
198 	 */
199 	size = SKB_WITH_OVERHEAD(ksize(data));
200 	prefetchw(data + size);
201 
202 	/*
203 	 * Only clear those fields we need to clear, not those that we will
204 	 * actually initialise below. Hence, don't put any more fields after
205 	 * the tail pointer in struct sk_buff!
206 	 */
207 	memset(skb, 0, offsetof(struct sk_buff, tail));
208 	/* Account for allocated memory : skb + skb->head */
209 	skb->truesize = SKB_TRUESIZE(size);
210 	atomic_set(&skb->users, 1);
211 	skb->head = data;
212 	skb->data = data;
213 	skb_reset_tail_pointer(skb);
214 	skb->end = skb->tail + size;
215 #ifdef NET_SKBUFF_DATA_USES_OFFSET
216 	skb->mac_header = ~0U;
217 #endif
218 
219 	/* make sure we initialize shinfo sequentially */
220 	shinfo = skb_shinfo(skb);
221 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
222 	atomic_set(&shinfo->dataref, 1);
223 	kmemcheck_annotate_variable(shinfo->destructor_arg);
224 
225 	if (fclone) {
226 		struct sk_buff *child = skb + 1;
227 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
228 
229 		kmemcheck_annotate_bitfield(child, flags1);
230 		kmemcheck_annotate_bitfield(child, flags2);
231 		skb->fclone = SKB_FCLONE_ORIG;
232 		atomic_set(fclone_ref, 1);
233 
234 		child->fclone = SKB_FCLONE_UNAVAILABLE;
235 	}
236 out:
237 	return skb;
238 nodata:
239 	kmem_cache_free(cache, skb);
240 	skb = NULL;
241 	goto out;
242 }
243 EXPORT_SYMBOL(__alloc_skb);
244 
245 /**
246  * build_skb - build a network buffer
247  * @data: data buffer provided by caller
248  * @frag_size: size of fragment, or 0 if head was kmalloced
249  *
250  * Allocate a new &sk_buff. Caller provides space holding head and
251  * skb_shared_info. @data must have been allocated by kmalloc()
252  * The return is the new skb buffer.
253  * On a failure the return is %NULL, and @data is not freed.
254  * Notes :
255  *  Before IO, driver allocates only data buffer where NIC put incoming frame
256  *  Driver should add room at head (NET_SKB_PAD) and
257  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
258  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
259  *  before giving packet to stack.
260  *  RX rings only contains data buffers, not full skbs.
261  */
262 struct sk_buff *build_skb(void *data, unsigned int frag_size)
263 {
264 	struct skb_shared_info *shinfo;
265 	struct sk_buff *skb;
266 	unsigned int size = frag_size ? : ksize(data);
267 
268 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
269 	if (!skb)
270 		return NULL;
271 
272 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273 
274 	memset(skb, 0, offsetof(struct sk_buff, tail));
275 	skb->truesize = SKB_TRUESIZE(size);
276 	skb->head_frag = frag_size != 0;
277 	atomic_set(&skb->users, 1);
278 	skb->head = data;
279 	skb->data = data;
280 	skb_reset_tail_pointer(skb);
281 	skb->end = skb->tail + size;
282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
283 	skb->mac_header = ~0U;
284 #endif
285 
286 	/* make sure we initialize shinfo sequentially */
287 	shinfo = skb_shinfo(skb);
288 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
289 	atomic_set(&shinfo->dataref, 1);
290 	kmemcheck_annotate_variable(shinfo->destructor_arg);
291 
292 	return skb;
293 }
294 EXPORT_SYMBOL(build_skb);
295 
296 struct netdev_alloc_cache {
297 	struct page *page;
298 	unsigned int offset;
299 	unsigned int pagecnt_bias;
300 };
301 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
302 
303 #define NETDEV_PAGECNT_BIAS (PAGE_SIZE / SMP_CACHE_BYTES)
304 
305 /**
306  * netdev_alloc_frag - allocate a page fragment
307  * @fragsz: fragment size
308  *
309  * Allocates a frag from a page for receive buffer.
310  * Uses GFP_ATOMIC allocations.
311  */
312 void *netdev_alloc_frag(unsigned int fragsz)
313 {
314 	struct netdev_alloc_cache *nc;
315 	void *data = NULL;
316 	unsigned long flags;
317 
318 	local_irq_save(flags);
319 	nc = &__get_cpu_var(netdev_alloc_cache);
320 	if (unlikely(!nc->page)) {
321 refill:
322 		nc->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
323 		if (unlikely(!nc->page))
324 			goto end;
325 recycle:
326 		atomic_set(&nc->page->_count, NETDEV_PAGECNT_BIAS);
327 		nc->pagecnt_bias = NETDEV_PAGECNT_BIAS;
328 		nc->offset = 0;
329 	}
330 
331 	if (nc->offset + fragsz > PAGE_SIZE) {
332 		/* avoid unnecessary locked operations if possible */
333 		if ((atomic_read(&nc->page->_count) == nc->pagecnt_bias) ||
334 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->page->_count))
335 			goto recycle;
336 		goto refill;
337 	}
338 
339 	data = page_address(nc->page) + nc->offset;
340 	nc->offset += fragsz;
341 	nc->pagecnt_bias--;
342 end:
343 	local_irq_restore(flags);
344 	return data;
345 }
346 EXPORT_SYMBOL(netdev_alloc_frag);
347 
348 /**
349  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
350  *	@dev: network device to receive on
351  *	@length: length to allocate
352  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
353  *
354  *	Allocate a new &sk_buff and assign it a usage count of one. The
355  *	buffer has unspecified headroom built in. Users should allocate
356  *	the headroom they think they need without accounting for the
357  *	built in space. The built in space is used for optimisations.
358  *
359  *	%NULL is returned if there is no free memory.
360  */
361 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
362 				   unsigned int length, gfp_t gfp_mask)
363 {
364 	struct sk_buff *skb = NULL;
365 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
366 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
367 
368 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
369 		void *data = netdev_alloc_frag(fragsz);
370 
371 		if (likely(data)) {
372 			skb = build_skb(data, fragsz);
373 			if (unlikely(!skb))
374 				put_page(virt_to_head_page(data));
375 		}
376 	} else {
377 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
378 	}
379 	if (likely(skb)) {
380 		skb_reserve(skb, NET_SKB_PAD);
381 		skb->dev = dev;
382 	}
383 	return skb;
384 }
385 EXPORT_SYMBOL(__netdev_alloc_skb);
386 
387 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
388 		     int size, unsigned int truesize)
389 {
390 	skb_fill_page_desc(skb, i, page, off, size);
391 	skb->len += size;
392 	skb->data_len += size;
393 	skb->truesize += truesize;
394 }
395 EXPORT_SYMBOL(skb_add_rx_frag);
396 
397 static void skb_drop_list(struct sk_buff **listp)
398 {
399 	struct sk_buff *list = *listp;
400 
401 	*listp = NULL;
402 
403 	do {
404 		struct sk_buff *this = list;
405 		list = list->next;
406 		kfree_skb(this);
407 	} while (list);
408 }
409 
410 static inline void skb_drop_fraglist(struct sk_buff *skb)
411 {
412 	skb_drop_list(&skb_shinfo(skb)->frag_list);
413 }
414 
415 static void skb_clone_fraglist(struct sk_buff *skb)
416 {
417 	struct sk_buff *list;
418 
419 	skb_walk_frags(skb, list)
420 		skb_get(list);
421 }
422 
423 static void skb_free_head(struct sk_buff *skb)
424 {
425 	if (skb->head_frag)
426 		put_page(virt_to_head_page(skb->head));
427 	else
428 		kfree(skb->head);
429 }
430 
431 static void skb_release_data(struct sk_buff *skb)
432 {
433 	if (!skb->cloned ||
434 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
435 			       &skb_shinfo(skb)->dataref)) {
436 		if (skb_shinfo(skb)->nr_frags) {
437 			int i;
438 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
439 				skb_frag_unref(skb, i);
440 		}
441 
442 		/*
443 		 * If skb buf is from userspace, we need to notify the caller
444 		 * the lower device DMA has done;
445 		 */
446 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
447 			struct ubuf_info *uarg;
448 
449 			uarg = skb_shinfo(skb)->destructor_arg;
450 			if (uarg->callback)
451 				uarg->callback(uarg);
452 		}
453 
454 		if (skb_has_frag_list(skb))
455 			skb_drop_fraglist(skb);
456 
457 		skb_free_head(skb);
458 	}
459 }
460 
461 /*
462  *	Free an skbuff by memory without cleaning the state.
463  */
464 static void kfree_skbmem(struct sk_buff *skb)
465 {
466 	struct sk_buff *other;
467 	atomic_t *fclone_ref;
468 
469 	switch (skb->fclone) {
470 	case SKB_FCLONE_UNAVAILABLE:
471 		kmem_cache_free(skbuff_head_cache, skb);
472 		break;
473 
474 	case SKB_FCLONE_ORIG:
475 		fclone_ref = (atomic_t *) (skb + 2);
476 		if (atomic_dec_and_test(fclone_ref))
477 			kmem_cache_free(skbuff_fclone_cache, skb);
478 		break;
479 
480 	case SKB_FCLONE_CLONE:
481 		fclone_ref = (atomic_t *) (skb + 1);
482 		other = skb - 1;
483 
484 		/* The clone portion is available for
485 		 * fast-cloning again.
486 		 */
487 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
488 
489 		if (atomic_dec_and_test(fclone_ref))
490 			kmem_cache_free(skbuff_fclone_cache, other);
491 		break;
492 	}
493 }
494 
495 static void skb_release_head_state(struct sk_buff *skb)
496 {
497 	skb_dst_drop(skb);
498 #ifdef CONFIG_XFRM
499 	secpath_put(skb->sp);
500 #endif
501 	if (skb->destructor) {
502 		WARN_ON(in_irq());
503 		skb->destructor(skb);
504 	}
505 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
506 	nf_conntrack_put(skb->nfct);
507 #endif
508 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
509 	nf_conntrack_put_reasm(skb->nfct_reasm);
510 #endif
511 #ifdef CONFIG_BRIDGE_NETFILTER
512 	nf_bridge_put(skb->nf_bridge);
513 #endif
514 /* XXX: IS this still necessary? - JHS */
515 #ifdef CONFIG_NET_SCHED
516 	skb->tc_index = 0;
517 #ifdef CONFIG_NET_CLS_ACT
518 	skb->tc_verd = 0;
519 #endif
520 #endif
521 }
522 
523 /* Free everything but the sk_buff shell. */
524 static void skb_release_all(struct sk_buff *skb)
525 {
526 	skb_release_head_state(skb);
527 	skb_release_data(skb);
528 }
529 
530 /**
531  *	__kfree_skb - private function
532  *	@skb: buffer
533  *
534  *	Free an sk_buff. Release anything attached to the buffer.
535  *	Clean the state. This is an internal helper function. Users should
536  *	always call kfree_skb
537  */
538 
539 void __kfree_skb(struct sk_buff *skb)
540 {
541 	skb_release_all(skb);
542 	kfree_skbmem(skb);
543 }
544 EXPORT_SYMBOL(__kfree_skb);
545 
546 /**
547  *	kfree_skb - free an sk_buff
548  *	@skb: buffer to free
549  *
550  *	Drop a reference to the buffer and free it if the usage count has
551  *	hit zero.
552  */
553 void kfree_skb(struct sk_buff *skb)
554 {
555 	if (unlikely(!skb))
556 		return;
557 	if (likely(atomic_read(&skb->users) == 1))
558 		smp_rmb();
559 	else if (likely(!atomic_dec_and_test(&skb->users)))
560 		return;
561 	trace_kfree_skb(skb, __builtin_return_address(0));
562 	__kfree_skb(skb);
563 }
564 EXPORT_SYMBOL(kfree_skb);
565 
566 /**
567  *	consume_skb - free an skbuff
568  *	@skb: buffer to free
569  *
570  *	Drop a ref to the buffer and free it if the usage count has hit zero
571  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
572  *	is being dropped after a failure and notes that
573  */
574 void consume_skb(struct sk_buff *skb)
575 {
576 	if (unlikely(!skb))
577 		return;
578 	if (likely(atomic_read(&skb->users) == 1))
579 		smp_rmb();
580 	else if (likely(!atomic_dec_and_test(&skb->users)))
581 		return;
582 	trace_consume_skb(skb);
583 	__kfree_skb(skb);
584 }
585 EXPORT_SYMBOL(consume_skb);
586 
587 /**
588  * 	skb_recycle - clean up an skb for reuse
589  * 	@skb: buffer
590  *
591  * 	Recycles the skb to be reused as a receive buffer. This
592  * 	function does any necessary reference count dropping, and
593  * 	cleans up the skbuff as if it just came from __alloc_skb().
594  */
595 void skb_recycle(struct sk_buff *skb)
596 {
597 	struct skb_shared_info *shinfo;
598 
599 	skb_release_head_state(skb);
600 
601 	shinfo = skb_shinfo(skb);
602 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
603 	atomic_set(&shinfo->dataref, 1);
604 
605 	memset(skb, 0, offsetof(struct sk_buff, tail));
606 	skb->data = skb->head + NET_SKB_PAD;
607 	skb_reset_tail_pointer(skb);
608 }
609 EXPORT_SYMBOL(skb_recycle);
610 
611 /**
612  *	skb_recycle_check - check if skb can be reused for receive
613  *	@skb: buffer
614  *	@skb_size: minimum receive buffer size
615  *
616  *	Checks that the skb passed in is not shared or cloned, and
617  *	that it is linear and its head portion at least as large as
618  *	skb_size so that it can be recycled as a receive buffer.
619  *	If these conditions are met, this function does any necessary
620  *	reference count dropping and cleans up the skbuff as if it
621  *	just came from __alloc_skb().
622  */
623 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
624 {
625 	if (!skb_is_recycleable(skb, skb_size))
626 		return false;
627 
628 	skb_recycle(skb);
629 
630 	return true;
631 }
632 EXPORT_SYMBOL(skb_recycle_check);
633 
634 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
635 {
636 	new->tstamp		= old->tstamp;
637 	new->dev		= old->dev;
638 	new->transport_header	= old->transport_header;
639 	new->network_header	= old->network_header;
640 	new->mac_header		= old->mac_header;
641 	skb_dst_copy(new, old);
642 	new->rxhash		= old->rxhash;
643 	new->ooo_okay		= old->ooo_okay;
644 	new->l4_rxhash		= old->l4_rxhash;
645 	new->no_fcs		= old->no_fcs;
646 #ifdef CONFIG_XFRM
647 	new->sp			= secpath_get(old->sp);
648 #endif
649 	memcpy(new->cb, old->cb, sizeof(old->cb));
650 	new->csum		= old->csum;
651 	new->local_df		= old->local_df;
652 	new->pkt_type		= old->pkt_type;
653 	new->ip_summed		= old->ip_summed;
654 	skb_copy_queue_mapping(new, old);
655 	new->priority		= old->priority;
656 #if IS_ENABLED(CONFIG_IP_VS)
657 	new->ipvs_property	= old->ipvs_property;
658 #endif
659 	new->protocol		= old->protocol;
660 	new->mark		= old->mark;
661 	new->skb_iif		= old->skb_iif;
662 	__nf_copy(new, old);
663 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
664 	new->nf_trace		= old->nf_trace;
665 #endif
666 #ifdef CONFIG_NET_SCHED
667 	new->tc_index		= old->tc_index;
668 #ifdef CONFIG_NET_CLS_ACT
669 	new->tc_verd		= old->tc_verd;
670 #endif
671 #endif
672 	new->vlan_tci		= old->vlan_tci;
673 
674 	skb_copy_secmark(new, old);
675 }
676 
677 /*
678  * You should not add any new code to this function.  Add it to
679  * __copy_skb_header above instead.
680  */
681 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
682 {
683 #define C(x) n->x = skb->x
684 
685 	n->next = n->prev = NULL;
686 	n->sk = NULL;
687 	__copy_skb_header(n, skb);
688 
689 	C(len);
690 	C(data_len);
691 	C(mac_len);
692 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
693 	n->cloned = 1;
694 	n->nohdr = 0;
695 	n->destructor = NULL;
696 	C(tail);
697 	C(end);
698 	C(head);
699 	C(head_frag);
700 	C(data);
701 	C(truesize);
702 	atomic_set(&n->users, 1);
703 
704 	atomic_inc(&(skb_shinfo(skb)->dataref));
705 	skb->cloned = 1;
706 
707 	return n;
708 #undef C
709 }
710 
711 /**
712  *	skb_morph	-	morph one skb into another
713  *	@dst: the skb to receive the contents
714  *	@src: the skb to supply the contents
715  *
716  *	This is identical to skb_clone except that the target skb is
717  *	supplied by the user.
718  *
719  *	The target skb is returned upon exit.
720  */
721 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
722 {
723 	skb_release_all(dst);
724 	return __skb_clone(dst, src);
725 }
726 EXPORT_SYMBOL_GPL(skb_morph);
727 
728 /**
729  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
730  *	@skb: the skb to modify
731  *	@gfp_mask: allocation priority
732  *
733  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
734  *	It will copy all frags into kernel and drop the reference
735  *	to userspace pages.
736  *
737  *	If this function is called from an interrupt gfp_mask() must be
738  *	%GFP_ATOMIC.
739  *
740  *	Returns 0 on success or a negative error code on failure
741  *	to allocate kernel memory to copy to.
742  */
743 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
744 {
745 	int i;
746 	int num_frags = skb_shinfo(skb)->nr_frags;
747 	struct page *page, *head = NULL;
748 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
749 
750 	for (i = 0; i < num_frags; i++) {
751 		u8 *vaddr;
752 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
753 
754 		page = alloc_page(gfp_mask);
755 		if (!page) {
756 			while (head) {
757 				struct page *next = (struct page *)head->private;
758 				put_page(head);
759 				head = next;
760 			}
761 			return -ENOMEM;
762 		}
763 		vaddr = kmap_atomic(skb_frag_page(f));
764 		memcpy(page_address(page),
765 		       vaddr + f->page_offset, skb_frag_size(f));
766 		kunmap_atomic(vaddr);
767 		page->private = (unsigned long)head;
768 		head = page;
769 	}
770 
771 	/* skb frags release userspace buffers */
772 	for (i = 0; i < num_frags; i++)
773 		skb_frag_unref(skb, i);
774 
775 	uarg->callback(uarg);
776 
777 	/* skb frags point to kernel buffers */
778 	for (i = num_frags - 1; i >= 0; i--) {
779 		__skb_fill_page_desc(skb, i, head, 0,
780 				     skb_shinfo(skb)->frags[i].size);
781 		head = (struct page *)head->private;
782 	}
783 
784 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
785 	return 0;
786 }
787 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
788 
789 /**
790  *	skb_clone	-	duplicate an sk_buff
791  *	@skb: buffer to clone
792  *	@gfp_mask: allocation priority
793  *
794  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
795  *	copies share the same packet data but not structure. The new
796  *	buffer has a reference count of 1. If the allocation fails the
797  *	function returns %NULL otherwise the new buffer is returned.
798  *
799  *	If this function is called from an interrupt gfp_mask() must be
800  *	%GFP_ATOMIC.
801  */
802 
803 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
804 {
805 	struct sk_buff *n;
806 
807 	if (skb_orphan_frags(skb, gfp_mask))
808 		return NULL;
809 
810 	n = skb + 1;
811 	if (skb->fclone == SKB_FCLONE_ORIG &&
812 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
813 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
814 		n->fclone = SKB_FCLONE_CLONE;
815 		atomic_inc(fclone_ref);
816 	} else {
817 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
818 		if (!n)
819 			return NULL;
820 
821 		kmemcheck_annotate_bitfield(n, flags1);
822 		kmemcheck_annotate_bitfield(n, flags2);
823 		n->fclone = SKB_FCLONE_UNAVAILABLE;
824 	}
825 
826 	return __skb_clone(n, skb);
827 }
828 EXPORT_SYMBOL(skb_clone);
829 
830 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
831 {
832 #ifndef NET_SKBUFF_DATA_USES_OFFSET
833 	/*
834 	 *	Shift between the two data areas in bytes
835 	 */
836 	unsigned long offset = new->data - old->data;
837 #endif
838 
839 	__copy_skb_header(new, old);
840 
841 #ifndef NET_SKBUFF_DATA_USES_OFFSET
842 	/* {transport,network,mac}_header are relative to skb->head */
843 	new->transport_header += offset;
844 	new->network_header   += offset;
845 	if (skb_mac_header_was_set(new))
846 		new->mac_header	      += offset;
847 #endif
848 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
849 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
850 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
851 }
852 
853 /**
854  *	skb_copy	-	create private copy of an sk_buff
855  *	@skb: buffer to copy
856  *	@gfp_mask: allocation priority
857  *
858  *	Make a copy of both an &sk_buff and its data. This is used when the
859  *	caller wishes to modify the data and needs a private copy of the
860  *	data to alter. Returns %NULL on failure or the pointer to the buffer
861  *	on success. The returned buffer has a reference count of 1.
862  *
863  *	As by-product this function converts non-linear &sk_buff to linear
864  *	one, so that &sk_buff becomes completely private and caller is allowed
865  *	to modify all the data of returned buffer. This means that this
866  *	function is not recommended for use in circumstances when only
867  *	header is going to be modified. Use pskb_copy() instead.
868  */
869 
870 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
871 {
872 	int headerlen = skb_headroom(skb);
873 	unsigned int size = skb_end_offset(skb) + skb->data_len;
874 	struct sk_buff *n = alloc_skb(size, gfp_mask);
875 
876 	if (!n)
877 		return NULL;
878 
879 	/* Set the data pointer */
880 	skb_reserve(n, headerlen);
881 	/* Set the tail pointer and length */
882 	skb_put(n, skb->len);
883 
884 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
885 		BUG();
886 
887 	copy_skb_header(n, skb);
888 	return n;
889 }
890 EXPORT_SYMBOL(skb_copy);
891 
892 /**
893  *	__pskb_copy	-	create copy of an sk_buff with private head.
894  *	@skb: buffer to copy
895  *	@headroom: headroom of new skb
896  *	@gfp_mask: allocation priority
897  *
898  *	Make a copy of both an &sk_buff and part of its data, located
899  *	in header. Fragmented data remain shared. This is used when
900  *	the caller wishes to modify only header of &sk_buff and needs
901  *	private copy of the header to alter. Returns %NULL on failure
902  *	or the pointer to the buffer on success.
903  *	The returned buffer has a reference count of 1.
904  */
905 
906 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
907 {
908 	unsigned int size = skb_headlen(skb) + headroom;
909 	struct sk_buff *n = alloc_skb(size, gfp_mask);
910 
911 	if (!n)
912 		goto out;
913 
914 	/* Set the data pointer */
915 	skb_reserve(n, headroom);
916 	/* Set the tail pointer and length */
917 	skb_put(n, skb_headlen(skb));
918 	/* Copy the bytes */
919 	skb_copy_from_linear_data(skb, n->data, n->len);
920 
921 	n->truesize += skb->data_len;
922 	n->data_len  = skb->data_len;
923 	n->len	     = skb->len;
924 
925 	if (skb_shinfo(skb)->nr_frags) {
926 		int i;
927 
928 		if (skb_orphan_frags(skb, gfp_mask)) {
929 			kfree_skb(n);
930 			n = NULL;
931 			goto out;
932 		}
933 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
934 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
935 			skb_frag_ref(skb, i);
936 		}
937 		skb_shinfo(n)->nr_frags = i;
938 	}
939 
940 	if (skb_has_frag_list(skb)) {
941 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
942 		skb_clone_fraglist(n);
943 	}
944 
945 	copy_skb_header(n, skb);
946 out:
947 	return n;
948 }
949 EXPORT_SYMBOL(__pskb_copy);
950 
951 /**
952  *	pskb_expand_head - reallocate header of &sk_buff
953  *	@skb: buffer to reallocate
954  *	@nhead: room to add at head
955  *	@ntail: room to add at tail
956  *	@gfp_mask: allocation priority
957  *
958  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
959  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
960  *	reference count of 1. Returns zero in the case of success or error,
961  *	if expansion failed. In the last case, &sk_buff is not changed.
962  *
963  *	All the pointers pointing into skb header may change and must be
964  *	reloaded after call to this function.
965  */
966 
967 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
968 		     gfp_t gfp_mask)
969 {
970 	int i;
971 	u8 *data;
972 	int size = nhead + skb_end_offset(skb) + ntail;
973 	long off;
974 
975 	BUG_ON(nhead < 0);
976 
977 	if (skb_shared(skb))
978 		BUG();
979 
980 	size = SKB_DATA_ALIGN(size);
981 
982 	data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
983 		       gfp_mask);
984 	if (!data)
985 		goto nodata;
986 	size = SKB_WITH_OVERHEAD(ksize(data));
987 
988 	/* Copy only real data... and, alas, header. This should be
989 	 * optimized for the cases when header is void.
990 	 */
991 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
992 
993 	memcpy((struct skb_shared_info *)(data + size),
994 	       skb_shinfo(skb),
995 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
996 
997 	/*
998 	 * if shinfo is shared we must drop the old head gracefully, but if it
999 	 * is not we can just drop the old head and let the existing refcount
1000 	 * be since all we did is relocate the values
1001 	 */
1002 	if (skb_cloned(skb)) {
1003 		/* copy this zero copy skb frags */
1004 		if (skb_orphan_frags(skb, gfp_mask))
1005 			goto nofrags;
1006 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1007 			skb_frag_ref(skb, i);
1008 
1009 		if (skb_has_frag_list(skb))
1010 			skb_clone_fraglist(skb);
1011 
1012 		skb_release_data(skb);
1013 	} else {
1014 		skb_free_head(skb);
1015 	}
1016 	off = (data + nhead) - skb->head;
1017 
1018 	skb->head     = data;
1019 	skb->head_frag = 0;
1020 	skb->data    += off;
1021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1022 	skb->end      = size;
1023 	off           = nhead;
1024 #else
1025 	skb->end      = skb->head + size;
1026 #endif
1027 	/* {transport,network,mac}_header and tail are relative to skb->head */
1028 	skb->tail	      += off;
1029 	skb->transport_header += off;
1030 	skb->network_header   += off;
1031 	if (skb_mac_header_was_set(skb))
1032 		skb->mac_header += off;
1033 	/* Only adjust this if it actually is csum_start rather than csum */
1034 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1035 		skb->csum_start += nhead;
1036 	skb->cloned   = 0;
1037 	skb->hdr_len  = 0;
1038 	skb->nohdr    = 0;
1039 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1040 	return 0;
1041 
1042 nofrags:
1043 	kfree(data);
1044 nodata:
1045 	return -ENOMEM;
1046 }
1047 EXPORT_SYMBOL(pskb_expand_head);
1048 
1049 /* Make private copy of skb with writable head and some headroom */
1050 
1051 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1052 {
1053 	struct sk_buff *skb2;
1054 	int delta = headroom - skb_headroom(skb);
1055 
1056 	if (delta <= 0)
1057 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1058 	else {
1059 		skb2 = skb_clone(skb, GFP_ATOMIC);
1060 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1061 					     GFP_ATOMIC)) {
1062 			kfree_skb(skb2);
1063 			skb2 = NULL;
1064 		}
1065 	}
1066 	return skb2;
1067 }
1068 EXPORT_SYMBOL(skb_realloc_headroom);
1069 
1070 /**
1071  *	skb_copy_expand	-	copy and expand sk_buff
1072  *	@skb: buffer to copy
1073  *	@newheadroom: new free bytes at head
1074  *	@newtailroom: new free bytes at tail
1075  *	@gfp_mask: allocation priority
1076  *
1077  *	Make a copy of both an &sk_buff and its data and while doing so
1078  *	allocate additional space.
1079  *
1080  *	This is used when the caller wishes to modify the data and needs a
1081  *	private copy of the data to alter as well as more space for new fields.
1082  *	Returns %NULL on failure or the pointer to the buffer
1083  *	on success. The returned buffer has a reference count of 1.
1084  *
1085  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1086  *	is called from an interrupt.
1087  */
1088 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1089 				int newheadroom, int newtailroom,
1090 				gfp_t gfp_mask)
1091 {
1092 	/*
1093 	 *	Allocate the copy buffer
1094 	 */
1095 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1096 				      gfp_mask);
1097 	int oldheadroom = skb_headroom(skb);
1098 	int head_copy_len, head_copy_off;
1099 	int off;
1100 
1101 	if (!n)
1102 		return NULL;
1103 
1104 	skb_reserve(n, newheadroom);
1105 
1106 	/* Set the tail pointer and length */
1107 	skb_put(n, skb->len);
1108 
1109 	head_copy_len = oldheadroom;
1110 	head_copy_off = 0;
1111 	if (newheadroom <= head_copy_len)
1112 		head_copy_len = newheadroom;
1113 	else
1114 		head_copy_off = newheadroom - head_copy_len;
1115 
1116 	/* Copy the linear header and data. */
1117 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1118 			  skb->len + head_copy_len))
1119 		BUG();
1120 
1121 	copy_skb_header(n, skb);
1122 
1123 	off                  = newheadroom - oldheadroom;
1124 	if (n->ip_summed == CHECKSUM_PARTIAL)
1125 		n->csum_start += off;
1126 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1127 	n->transport_header += off;
1128 	n->network_header   += off;
1129 	if (skb_mac_header_was_set(skb))
1130 		n->mac_header += off;
1131 #endif
1132 
1133 	return n;
1134 }
1135 EXPORT_SYMBOL(skb_copy_expand);
1136 
1137 /**
1138  *	skb_pad			-	zero pad the tail of an skb
1139  *	@skb: buffer to pad
1140  *	@pad: space to pad
1141  *
1142  *	Ensure that a buffer is followed by a padding area that is zero
1143  *	filled. Used by network drivers which may DMA or transfer data
1144  *	beyond the buffer end onto the wire.
1145  *
1146  *	May return error in out of memory cases. The skb is freed on error.
1147  */
1148 
1149 int skb_pad(struct sk_buff *skb, int pad)
1150 {
1151 	int err;
1152 	int ntail;
1153 
1154 	/* If the skbuff is non linear tailroom is always zero.. */
1155 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1156 		memset(skb->data+skb->len, 0, pad);
1157 		return 0;
1158 	}
1159 
1160 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1161 	if (likely(skb_cloned(skb) || ntail > 0)) {
1162 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1163 		if (unlikely(err))
1164 			goto free_skb;
1165 	}
1166 
1167 	/* FIXME: The use of this function with non-linear skb's really needs
1168 	 * to be audited.
1169 	 */
1170 	err = skb_linearize(skb);
1171 	if (unlikely(err))
1172 		goto free_skb;
1173 
1174 	memset(skb->data + skb->len, 0, pad);
1175 	return 0;
1176 
1177 free_skb:
1178 	kfree_skb(skb);
1179 	return err;
1180 }
1181 EXPORT_SYMBOL(skb_pad);
1182 
1183 /**
1184  *	skb_put - add data to a buffer
1185  *	@skb: buffer to use
1186  *	@len: amount of data to add
1187  *
1188  *	This function extends the used data area of the buffer. If this would
1189  *	exceed the total buffer size the kernel will panic. A pointer to the
1190  *	first byte of the extra data is returned.
1191  */
1192 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1193 {
1194 	unsigned char *tmp = skb_tail_pointer(skb);
1195 	SKB_LINEAR_ASSERT(skb);
1196 	skb->tail += len;
1197 	skb->len  += len;
1198 	if (unlikely(skb->tail > skb->end))
1199 		skb_over_panic(skb, len, __builtin_return_address(0));
1200 	return tmp;
1201 }
1202 EXPORT_SYMBOL(skb_put);
1203 
1204 /**
1205  *	skb_push - add data to the start of a buffer
1206  *	@skb: buffer to use
1207  *	@len: amount of data to add
1208  *
1209  *	This function extends the used data area of the buffer at the buffer
1210  *	start. If this would exceed the total buffer headroom the kernel will
1211  *	panic. A pointer to the first byte of the extra data is returned.
1212  */
1213 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1214 {
1215 	skb->data -= len;
1216 	skb->len  += len;
1217 	if (unlikely(skb->data<skb->head))
1218 		skb_under_panic(skb, len, __builtin_return_address(0));
1219 	return skb->data;
1220 }
1221 EXPORT_SYMBOL(skb_push);
1222 
1223 /**
1224  *	skb_pull - remove data from the start of a buffer
1225  *	@skb: buffer to use
1226  *	@len: amount of data to remove
1227  *
1228  *	This function removes data from the start of a buffer, returning
1229  *	the memory to the headroom. A pointer to the next data in the buffer
1230  *	is returned. Once the data has been pulled future pushes will overwrite
1231  *	the old data.
1232  */
1233 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1234 {
1235 	return skb_pull_inline(skb, len);
1236 }
1237 EXPORT_SYMBOL(skb_pull);
1238 
1239 /**
1240  *	skb_trim - remove end from a buffer
1241  *	@skb: buffer to alter
1242  *	@len: new length
1243  *
1244  *	Cut the length of a buffer down by removing data from the tail. If
1245  *	the buffer is already under the length specified it is not modified.
1246  *	The skb must be linear.
1247  */
1248 void skb_trim(struct sk_buff *skb, unsigned int len)
1249 {
1250 	if (skb->len > len)
1251 		__skb_trim(skb, len);
1252 }
1253 EXPORT_SYMBOL(skb_trim);
1254 
1255 /* Trims skb to length len. It can change skb pointers.
1256  */
1257 
1258 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1259 {
1260 	struct sk_buff **fragp;
1261 	struct sk_buff *frag;
1262 	int offset = skb_headlen(skb);
1263 	int nfrags = skb_shinfo(skb)->nr_frags;
1264 	int i;
1265 	int err;
1266 
1267 	if (skb_cloned(skb) &&
1268 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1269 		return err;
1270 
1271 	i = 0;
1272 	if (offset >= len)
1273 		goto drop_pages;
1274 
1275 	for (; i < nfrags; i++) {
1276 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1277 
1278 		if (end < len) {
1279 			offset = end;
1280 			continue;
1281 		}
1282 
1283 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1284 
1285 drop_pages:
1286 		skb_shinfo(skb)->nr_frags = i;
1287 
1288 		for (; i < nfrags; i++)
1289 			skb_frag_unref(skb, i);
1290 
1291 		if (skb_has_frag_list(skb))
1292 			skb_drop_fraglist(skb);
1293 		goto done;
1294 	}
1295 
1296 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1297 	     fragp = &frag->next) {
1298 		int end = offset + frag->len;
1299 
1300 		if (skb_shared(frag)) {
1301 			struct sk_buff *nfrag;
1302 
1303 			nfrag = skb_clone(frag, GFP_ATOMIC);
1304 			if (unlikely(!nfrag))
1305 				return -ENOMEM;
1306 
1307 			nfrag->next = frag->next;
1308 			consume_skb(frag);
1309 			frag = nfrag;
1310 			*fragp = frag;
1311 		}
1312 
1313 		if (end < len) {
1314 			offset = end;
1315 			continue;
1316 		}
1317 
1318 		if (end > len &&
1319 		    unlikely((err = pskb_trim(frag, len - offset))))
1320 			return err;
1321 
1322 		if (frag->next)
1323 			skb_drop_list(&frag->next);
1324 		break;
1325 	}
1326 
1327 done:
1328 	if (len > skb_headlen(skb)) {
1329 		skb->data_len -= skb->len - len;
1330 		skb->len       = len;
1331 	} else {
1332 		skb->len       = len;
1333 		skb->data_len  = 0;
1334 		skb_set_tail_pointer(skb, len);
1335 	}
1336 
1337 	return 0;
1338 }
1339 EXPORT_SYMBOL(___pskb_trim);
1340 
1341 /**
1342  *	__pskb_pull_tail - advance tail of skb header
1343  *	@skb: buffer to reallocate
1344  *	@delta: number of bytes to advance tail
1345  *
1346  *	The function makes a sense only on a fragmented &sk_buff,
1347  *	it expands header moving its tail forward and copying necessary
1348  *	data from fragmented part.
1349  *
1350  *	&sk_buff MUST have reference count of 1.
1351  *
1352  *	Returns %NULL (and &sk_buff does not change) if pull failed
1353  *	or value of new tail of skb in the case of success.
1354  *
1355  *	All the pointers pointing into skb header may change and must be
1356  *	reloaded after call to this function.
1357  */
1358 
1359 /* Moves tail of skb head forward, copying data from fragmented part,
1360  * when it is necessary.
1361  * 1. It may fail due to malloc failure.
1362  * 2. It may change skb pointers.
1363  *
1364  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1365  */
1366 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1367 {
1368 	/* If skb has not enough free space at tail, get new one
1369 	 * plus 128 bytes for future expansions. If we have enough
1370 	 * room at tail, reallocate without expansion only if skb is cloned.
1371 	 */
1372 	int i, k, eat = (skb->tail + delta) - skb->end;
1373 
1374 	if (eat > 0 || skb_cloned(skb)) {
1375 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1376 				     GFP_ATOMIC))
1377 			return NULL;
1378 	}
1379 
1380 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1381 		BUG();
1382 
1383 	/* Optimization: no fragments, no reasons to preestimate
1384 	 * size of pulled pages. Superb.
1385 	 */
1386 	if (!skb_has_frag_list(skb))
1387 		goto pull_pages;
1388 
1389 	/* Estimate size of pulled pages. */
1390 	eat = delta;
1391 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1392 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1393 
1394 		if (size >= eat)
1395 			goto pull_pages;
1396 		eat -= size;
1397 	}
1398 
1399 	/* If we need update frag list, we are in troubles.
1400 	 * Certainly, it possible to add an offset to skb data,
1401 	 * but taking into account that pulling is expected to
1402 	 * be very rare operation, it is worth to fight against
1403 	 * further bloating skb head and crucify ourselves here instead.
1404 	 * Pure masohism, indeed. 8)8)
1405 	 */
1406 	if (eat) {
1407 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1408 		struct sk_buff *clone = NULL;
1409 		struct sk_buff *insp = NULL;
1410 
1411 		do {
1412 			BUG_ON(!list);
1413 
1414 			if (list->len <= eat) {
1415 				/* Eaten as whole. */
1416 				eat -= list->len;
1417 				list = list->next;
1418 				insp = list;
1419 			} else {
1420 				/* Eaten partially. */
1421 
1422 				if (skb_shared(list)) {
1423 					/* Sucks! We need to fork list. :-( */
1424 					clone = skb_clone(list, GFP_ATOMIC);
1425 					if (!clone)
1426 						return NULL;
1427 					insp = list->next;
1428 					list = clone;
1429 				} else {
1430 					/* This may be pulled without
1431 					 * problems. */
1432 					insp = list;
1433 				}
1434 				if (!pskb_pull(list, eat)) {
1435 					kfree_skb(clone);
1436 					return NULL;
1437 				}
1438 				break;
1439 			}
1440 		} while (eat);
1441 
1442 		/* Free pulled out fragments. */
1443 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1444 			skb_shinfo(skb)->frag_list = list->next;
1445 			kfree_skb(list);
1446 		}
1447 		/* And insert new clone at head. */
1448 		if (clone) {
1449 			clone->next = list;
1450 			skb_shinfo(skb)->frag_list = clone;
1451 		}
1452 	}
1453 	/* Success! Now we may commit changes to skb data. */
1454 
1455 pull_pages:
1456 	eat = delta;
1457 	k = 0;
1458 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1459 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1460 
1461 		if (size <= eat) {
1462 			skb_frag_unref(skb, i);
1463 			eat -= size;
1464 		} else {
1465 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1466 			if (eat) {
1467 				skb_shinfo(skb)->frags[k].page_offset += eat;
1468 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1469 				eat = 0;
1470 			}
1471 			k++;
1472 		}
1473 	}
1474 	skb_shinfo(skb)->nr_frags = k;
1475 
1476 	skb->tail     += delta;
1477 	skb->data_len -= delta;
1478 
1479 	return skb_tail_pointer(skb);
1480 }
1481 EXPORT_SYMBOL(__pskb_pull_tail);
1482 
1483 /**
1484  *	skb_copy_bits - copy bits from skb to kernel buffer
1485  *	@skb: source skb
1486  *	@offset: offset in source
1487  *	@to: destination buffer
1488  *	@len: number of bytes to copy
1489  *
1490  *	Copy the specified number of bytes from the source skb to the
1491  *	destination buffer.
1492  *
1493  *	CAUTION ! :
1494  *		If its prototype is ever changed,
1495  *		check arch/{*}/net/{*}.S files,
1496  *		since it is called from BPF assembly code.
1497  */
1498 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1499 {
1500 	int start = skb_headlen(skb);
1501 	struct sk_buff *frag_iter;
1502 	int i, copy;
1503 
1504 	if (offset > (int)skb->len - len)
1505 		goto fault;
1506 
1507 	/* Copy header. */
1508 	if ((copy = start - offset) > 0) {
1509 		if (copy > len)
1510 			copy = len;
1511 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1512 		if ((len -= copy) == 0)
1513 			return 0;
1514 		offset += copy;
1515 		to     += copy;
1516 	}
1517 
1518 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1519 		int end;
1520 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1521 
1522 		WARN_ON(start > offset + len);
1523 
1524 		end = start + skb_frag_size(f);
1525 		if ((copy = end - offset) > 0) {
1526 			u8 *vaddr;
1527 
1528 			if (copy > len)
1529 				copy = len;
1530 
1531 			vaddr = kmap_atomic(skb_frag_page(f));
1532 			memcpy(to,
1533 			       vaddr + f->page_offset + offset - start,
1534 			       copy);
1535 			kunmap_atomic(vaddr);
1536 
1537 			if ((len -= copy) == 0)
1538 				return 0;
1539 			offset += copy;
1540 			to     += copy;
1541 		}
1542 		start = end;
1543 	}
1544 
1545 	skb_walk_frags(skb, frag_iter) {
1546 		int end;
1547 
1548 		WARN_ON(start > offset + len);
1549 
1550 		end = start + frag_iter->len;
1551 		if ((copy = end - offset) > 0) {
1552 			if (copy > len)
1553 				copy = len;
1554 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1555 				goto fault;
1556 			if ((len -= copy) == 0)
1557 				return 0;
1558 			offset += copy;
1559 			to     += copy;
1560 		}
1561 		start = end;
1562 	}
1563 
1564 	if (!len)
1565 		return 0;
1566 
1567 fault:
1568 	return -EFAULT;
1569 }
1570 EXPORT_SYMBOL(skb_copy_bits);
1571 
1572 /*
1573  * Callback from splice_to_pipe(), if we need to release some pages
1574  * at the end of the spd in case we error'ed out in filling the pipe.
1575  */
1576 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1577 {
1578 	put_page(spd->pages[i]);
1579 }
1580 
1581 static struct page *linear_to_page(struct page *page, unsigned int *len,
1582 				   unsigned int *offset,
1583 				   struct sk_buff *skb, struct sock *sk)
1584 {
1585 	struct page *p = sk->sk_sndmsg_page;
1586 	unsigned int off;
1587 
1588 	if (!p) {
1589 new_page:
1590 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1591 		if (!p)
1592 			return NULL;
1593 
1594 		off = sk->sk_sndmsg_off = 0;
1595 		/* hold one ref to this page until it's full */
1596 	} else {
1597 		unsigned int mlen;
1598 
1599 		/* If we are the only user of the page, we can reset offset */
1600 		if (page_count(p) == 1)
1601 			sk->sk_sndmsg_off = 0;
1602 		off = sk->sk_sndmsg_off;
1603 		mlen = PAGE_SIZE - off;
1604 		if (mlen < 64 && mlen < *len) {
1605 			put_page(p);
1606 			goto new_page;
1607 		}
1608 
1609 		*len = min_t(unsigned int, *len, mlen);
1610 	}
1611 
1612 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1613 	sk->sk_sndmsg_off += *len;
1614 	*offset = off;
1615 
1616 	return p;
1617 }
1618 
1619 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1620 			     struct page *page,
1621 			     unsigned int offset)
1622 {
1623 	return	spd->nr_pages &&
1624 		spd->pages[spd->nr_pages - 1] == page &&
1625 		(spd->partial[spd->nr_pages - 1].offset +
1626 		 spd->partial[spd->nr_pages - 1].len == offset);
1627 }
1628 
1629 /*
1630  * Fill page/offset/length into spd, if it can hold more pages.
1631  */
1632 static bool spd_fill_page(struct splice_pipe_desc *spd,
1633 			  struct pipe_inode_info *pipe, struct page *page,
1634 			  unsigned int *len, unsigned int offset,
1635 			  struct sk_buff *skb, bool linear,
1636 			  struct sock *sk)
1637 {
1638 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1639 		return true;
1640 
1641 	if (linear) {
1642 		page = linear_to_page(page, len, &offset, skb, sk);
1643 		if (!page)
1644 			return true;
1645 	}
1646 	if (spd_can_coalesce(spd, page, offset)) {
1647 		spd->partial[spd->nr_pages - 1].len += *len;
1648 		return false;
1649 	}
1650 	get_page(page);
1651 	spd->pages[spd->nr_pages] = page;
1652 	spd->partial[spd->nr_pages].len = *len;
1653 	spd->partial[spd->nr_pages].offset = offset;
1654 	spd->nr_pages++;
1655 
1656 	return false;
1657 }
1658 
1659 static inline void __segment_seek(struct page **page, unsigned int *poff,
1660 				  unsigned int *plen, unsigned int off)
1661 {
1662 	unsigned long n;
1663 
1664 	*poff += off;
1665 	n = *poff / PAGE_SIZE;
1666 	if (n)
1667 		*page = nth_page(*page, n);
1668 
1669 	*poff = *poff % PAGE_SIZE;
1670 	*plen -= off;
1671 }
1672 
1673 static bool __splice_segment(struct page *page, unsigned int poff,
1674 			     unsigned int plen, unsigned int *off,
1675 			     unsigned int *len, struct sk_buff *skb,
1676 			     struct splice_pipe_desc *spd, bool linear,
1677 			     struct sock *sk,
1678 			     struct pipe_inode_info *pipe)
1679 {
1680 	if (!*len)
1681 		return true;
1682 
1683 	/* skip this segment if already processed */
1684 	if (*off >= plen) {
1685 		*off -= plen;
1686 		return false;
1687 	}
1688 
1689 	/* ignore any bits we already processed */
1690 	if (*off) {
1691 		__segment_seek(&page, &poff, &plen, *off);
1692 		*off = 0;
1693 	}
1694 
1695 	do {
1696 		unsigned int flen = min(*len, plen);
1697 
1698 		/* the linear region may spread across several pages  */
1699 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1700 
1701 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1702 			return true;
1703 
1704 		__segment_seek(&page, &poff, &plen, flen);
1705 		*len -= flen;
1706 
1707 	} while (*len && plen);
1708 
1709 	return false;
1710 }
1711 
1712 /*
1713  * Map linear and fragment data from the skb to spd. It reports true if the
1714  * pipe is full or if we already spliced the requested length.
1715  */
1716 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1717 			      unsigned int *offset, unsigned int *len,
1718 			      struct splice_pipe_desc *spd, struct sock *sk)
1719 {
1720 	int seg;
1721 
1722 	/* map the linear part :
1723 	 * If skb->head_frag is set, this 'linear' part is backed by a
1724 	 * fragment, and if the head is not shared with any clones then
1725 	 * we can avoid a copy since we own the head portion of this page.
1726 	 */
1727 	if (__splice_segment(virt_to_page(skb->data),
1728 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1729 			     skb_headlen(skb),
1730 			     offset, len, skb, spd,
1731 			     skb_head_is_locked(skb),
1732 			     sk, pipe))
1733 		return true;
1734 
1735 	/*
1736 	 * then map the fragments
1737 	 */
1738 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1739 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1740 
1741 		if (__splice_segment(skb_frag_page(f),
1742 				     f->page_offset, skb_frag_size(f),
1743 				     offset, len, skb, spd, false, sk, pipe))
1744 			return true;
1745 	}
1746 
1747 	return false;
1748 }
1749 
1750 /*
1751  * Map data from the skb to a pipe. Should handle both the linear part,
1752  * the fragments, and the frag list. It does NOT handle frag lists within
1753  * the frag list, if such a thing exists. We'd probably need to recurse to
1754  * handle that cleanly.
1755  */
1756 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1757 		    struct pipe_inode_info *pipe, unsigned int tlen,
1758 		    unsigned int flags)
1759 {
1760 	struct partial_page partial[MAX_SKB_FRAGS];
1761 	struct page *pages[MAX_SKB_FRAGS];
1762 	struct splice_pipe_desc spd = {
1763 		.pages = pages,
1764 		.partial = partial,
1765 		.nr_pages_max = MAX_SKB_FRAGS,
1766 		.flags = flags,
1767 		.ops = &sock_pipe_buf_ops,
1768 		.spd_release = sock_spd_release,
1769 	};
1770 	struct sk_buff *frag_iter;
1771 	struct sock *sk = skb->sk;
1772 	int ret = 0;
1773 
1774 	/*
1775 	 * __skb_splice_bits() only fails if the output has no room left,
1776 	 * so no point in going over the frag_list for the error case.
1777 	 */
1778 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1779 		goto done;
1780 	else if (!tlen)
1781 		goto done;
1782 
1783 	/*
1784 	 * now see if we have a frag_list to map
1785 	 */
1786 	skb_walk_frags(skb, frag_iter) {
1787 		if (!tlen)
1788 			break;
1789 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1790 			break;
1791 	}
1792 
1793 done:
1794 	if (spd.nr_pages) {
1795 		/*
1796 		 * Drop the socket lock, otherwise we have reverse
1797 		 * locking dependencies between sk_lock and i_mutex
1798 		 * here as compared to sendfile(). We enter here
1799 		 * with the socket lock held, and splice_to_pipe() will
1800 		 * grab the pipe inode lock. For sendfile() emulation,
1801 		 * we call into ->sendpage() with the i_mutex lock held
1802 		 * and networking will grab the socket lock.
1803 		 */
1804 		release_sock(sk);
1805 		ret = splice_to_pipe(pipe, &spd);
1806 		lock_sock(sk);
1807 	}
1808 
1809 	return ret;
1810 }
1811 
1812 /**
1813  *	skb_store_bits - store bits from kernel buffer to skb
1814  *	@skb: destination buffer
1815  *	@offset: offset in destination
1816  *	@from: source buffer
1817  *	@len: number of bytes to copy
1818  *
1819  *	Copy the specified number of bytes from the source buffer to the
1820  *	destination skb.  This function handles all the messy bits of
1821  *	traversing fragment lists and such.
1822  */
1823 
1824 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1825 {
1826 	int start = skb_headlen(skb);
1827 	struct sk_buff *frag_iter;
1828 	int i, copy;
1829 
1830 	if (offset > (int)skb->len - len)
1831 		goto fault;
1832 
1833 	if ((copy = start - offset) > 0) {
1834 		if (copy > len)
1835 			copy = len;
1836 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1837 		if ((len -= copy) == 0)
1838 			return 0;
1839 		offset += copy;
1840 		from += copy;
1841 	}
1842 
1843 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1844 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1845 		int end;
1846 
1847 		WARN_ON(start > offset + len);
1848 
1849 		end = start + skb_frag_size(frag);
1850 		if ((copy = end - offset) > 0) {
1851 			u8 *vaddr;
1852 
1853 			if (copy > len)
1854 				copy = len;
1855 
1856 			vaddr = kmap_atomic(skb_frag_page(frag));
1857 			memcpy(vaddr + frag->page_offset + offset - start,
1858 			       from, copy);
1859 			kunmap_atomic(vaddr);
1860 
1861 			if ((len -= copy) == 0)
1862 				return 0;
1863 			offset += copy;
1864 			from += copy;
1865 		}
1866 		start = end;
1867 	}
1868 
1869 	skb_walk_frags(skb, frag_iter) {
1870 		int end;
1871 
1872 		WARN_ON(start > offset + len);
1873 
1874 		end = start + frag_iter->len;
1875 		if ((copy = end - offset) > 0) {
1876 			if (copy > len)
1877 				copy = len;
1878 			if (skb_store_bits(frag_iter, offset - start,
1879 					   from, copy))
1880 				goto fault;
1881 			if ((len -= copy) == 0)
1882 				return 0;
1883 			offset += copy;
1884 			from += copy;
1885 		}
1886 		start = end;
1887 	}
1888 	if (!len)
1889 		return 0;
1890 
1891 fault:
1892 	return -EFAULT;
1893 }
1894 EXPORT_SYMBOL(skb_store_bits);
1895 
1896 /* Checksum skb data. */
1897 
1898 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1899 			  int len, __wsum csum)
1900 {
1901 	int start = skb_headlen(skb);
1902 	int i, copy = start - offset;
1903 	struct sk_buff *frag_iter;
1904 	int pos = 0;
1905 
1906 	/* Checksum header. */
1907 	if (copy > 0) {
1908 		if (copy > len)
1909 			copy = len;
1910 		csum = csum_partial(skb->data + offset, copy, csum);
1911 		if ((len -= copy) == 0)
1912 			return csum;
1913 		offset += copy;
1914 		pos	= copy;
1915 	}
1916 
1917 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1918 		int end;
1919 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1920 
1921 		WARN_ON(start > offset + len);
1922 
1923 		end = start + skb_frag_size(frag);
1924 		if ((copy = end - offset) > 0) {
1925 			__wsum csum2;
1926 			u8 *vaddr;
1927 
1928 			if (copy > len)
1929 				copy = len;
1930 			vaddr = kmap_atomic(skb_frag_page(frag));
1931 			csum2 = csum_partial(vaddr + frag->page_offset +
1932 					     offset - start, copy, 0);
1933 			kunmap_atomic(vaddr);
1934 			csum = csum_block_add(csum, csum2, pos);
1935 			if (!(len -= copy))
1936 				return csum;
1937 			offset += copy;
1938 			pos    += copy;
1939 		}
1940 		start = end;
1941 	}
1942 
1943 	skb_walk_frags(skb, frag_iter) {
1944 		int end;
1945 
1946 		WARN_ON(start > offset + len);
1947 
1948 		end = start + frag_iter->len;
1949 		if ((copy = end - offset) > 0) {
1950 			__wsum csum2;
1951 			if (copy > len)
1952 				copy = len;
1953 			csum2 = skb_checksum(frag_iter, offset - start,
1954 					     copy, 0);
1955 			csum = csum_block_add(csum, csum2, pos);
1956 			if ((len -= copy) == 0)
1957 				return csum;
1958 			offset += copy;
1959 			pos    += copy;
1960 		}
1961 		start = end;
1962 	}
1963 	BUG_ON(len);
1964 
1965 	return csum;
1966 }
1967 EXPORT_SYMBOL(skb_checksum);
1968 
1969 /* Both of above in one bottle. */
1970 
1971 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1972 				    u8 *to, int len, __wsum csum)
1973 {
1974 	int start = skb_headlen(skb);
1975 	int i, copy = start - offset;
1976 	struct sk_buff *frag_iter;
1977 	int pos = 0;
1978 
1979 	/* Copy header. */
1980 	if (copy > 0) {
1981 		if (copy > len)
1982 			copy = len;
1983 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1984 						 copy, csum);
1985 		if ((len -= copy) == 0)
1986 			return csum;
1987 		offset += copy;
1988 		to     += copy;
1989 		pos	= copy;
1990 	}
1991 
1992 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1993 		int end;
1994 
1995 		WARN_ON(start > offset + len);
1996 
1997 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1998 		if ((copy = end - offset) > 0) {
1999 			__wsum csum2;
2000 			u8 *vaddr;
2001 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2002 
2003 			if (copy > len)
2004 				copy = len;
2005 			vaddr = kmap_atomic(skb_frag_page(frag));
2006 			csum2 = csum_partial_copy_nocheck(vaddr +
2007 							  frag->page_offset +
2008 							  offset - start, to,
2009 							  copy, 0);
2010 			kunmap_atomic(vaddr);
2011 			csum = csum_block_add(csum, csum2, pos);
2012 			if (!(len -= copy))
2013 				return csum;
2014 			offset += copy;
2015 			to     += copy;
2016 			pos    += copy;
2017 		}
2018 		start = end;
2019 	}
2020 
2021 	skb_walk_frags(skb, frag_iter) {
2022 		__wsum csum2;
2023 		int end;
2024 
2025 		WARN_ON(start > offset + len);
2026 
2027 		end = start + frag_iter->len;
2028 		if ((copy = end - offset) > 0) {
2029 			if (copy > len)
2030 				copy = len;
2031 			csum2 = skb_copy_and_csum_bits(frag_iter,
2032 						       offset - start,
2033 						       to, copy, 0);
2034 			csum = csum_block_add(csum, csum2, pos);
2035 			if ((len -= copy) == 0)
2036 				return csum;
2037 			offset += copy;
2038 			to     += copy;
2039 			pos    += copy;
2040 		}
2041 		start = end;
2042 	}
2043 	BUG_ON(len);
2044 	return csum;
2045 }
2046 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2047 
2048 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2049 {
2050 	__wsum csum;
2051 	long csstart;
2052 
2053 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2054 		csstart = skb_checksum_start_offset(skb);
2055 	else
2056 		csstart = skb_headlen(skb);
2057 
2058 	BUG_ON(csstart > skb_headlen(skb));
2059 
2060 	skb_copy_from_linear_data(skb, to, csstart);
2061 
2062 	csum = 0;
2063 	if (csstart != skb->len)
2064 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2065 					      skb->len - csstart, 0);
2066 
2067 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2068 		long csstuff = csstart + skb->csum_offset;
2069 
2070 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2071 	}
2072 }
2073 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2074 
2075 /**
2076  *	skb_dequeue - remove from the head of the queue
2077  *	@list: list to dequeue from
2078  *
2079  *	Remove the head of the list. The list lock is taken so the function
2080  *	may be used safely with other locking list functions. The head item is
2081  *	returned or %NULL if the list is empty.
2082  */
2083 
2084 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2085 {
2086 	unsigned long flags;
2087 	struct sk_buff *result;
2088 
2089 	spin_lock_irqsave(&list->lock, flags);
2090 	result = __skb_dequeue(list);
2091 	spin_unlock_irqrestore(&list->lock, flags);
2092 	return result;
2093 }
2094 EXPORT_SYMBOL(skb_dequeue);
2095 
2096 /**
2097  *	skb_dequeue_tail - remove from the tail of the queue
2098  *	@list: list to dequeue from
2099  *
2100  *	Remove the tail of the list. The list lock is taken so the function
2101  *	may be used safely with other locking list functions. The tail item is
2102  *	returned or %NULL if the list is empty.
2103  */
2104 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2105 {
2106 	unsigned long flags;
2107 	struct sk_buff *result;
2108 
2109 	spin_lock_irqsave(&list->lock, flags);
2110 	result = __skb_dequeue_tail(list);
2111 	spin_unlock_irqrestore(&list->lock, flags);
2112 	return result;
2113 }
2114 EXPORT_SYMBOL(skb_dequeue_tail);
2115 
2116 /**
2117  *	skb_queue_purge - empty a list
2118  *	@list: list to empty
2119  *
2120  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2121  *	the list and one reference dropped. This function takes the list
2122  *	lock and is atomic with respect to other list locking functions.
2123  */
2124 void skb_queue_purge(struct sk_buff_head *list)
2125 {
2126 	struct sk_buff *skb;
2127 	while ((skb = skb_dequeue(list)) != NULL)
2128 		kfree_skb(skb);
2129 }
2130 EXPORT_SYMBOL(skb_queue_purge);
2131 
2132 /**
2133  *	skb_queue_head - queue a buffer at the list head
2134  *	@list: list to use
2135  *	@newsk: buffer to queue
2136  *
2137  *	Queue a buffer at the start of the list. This function takes the
2138  *	list lock and can be used safely with other locking &sk_buff functions
2139  *	safely.
2140  *
2141  *	A buffer cannot be placed on two lists at the same time.
2142  */
2143 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2144 {
2145 	unsigned long flags;
2146 
2147 	spin_lock_irqsave(&list->lock, flags);
2148 	__skb_queue_head(list, newsk);
2149 	spin_unlock_irqrestore(&list->lock, flags);
2150 }
2151 EXPORT_SYMBOL(skb_queue_head);
2152 
2153 /**
2154  *	skb_queue_tail - queue a buffer at the list tail
2155  *	@list: list to use
2156  *	@newsk: buffer to queue
2157  *
2158  *	Queue a buffer at the tail of the list. This function takes the
2159  *	list lock and can be used safely with other locking &sk_buff functions
2160  *	safely.
2161  *
2162  *	A buffer cannot be placed on two lists at the same time.
2163  */
2164 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2165 {
2166 	unsigned long flags;
2167 
2168 	spin_lock_irqsave(&list->lock, flags);
2169 	__skb_queue_tail(list, newsk);
2170 	spin_unlock_irqrestore(&list->lock, flags);
2171 }
2172 EXPORT_SYMBOL(skb_queue_tail);
2173 
2174 /**
2175  *	skb_unlink	-	remove a buffer from a list
2176  *	@skb: buffer to remove
2177  *	@list: list to use
2178  *
2179  *	Remove a packet from a list. The list locks are taken and this
2180  *	function is atomic with respect to other list locked calls
2181  *
2182  *	You must know what list the SKB is on.
2183  */
2184 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2185 {
2186 	unsigned long flags;
2187 
2188 	spin_lock_irqsave(&list->lock, flags);
2189 	__skb_unlink(skb, list);
2190 	spin_unlock_irqrestore(&list->lock, flags);
2191 }
2192 EXPORT_SYMBOL(skb_unlink);
2193 
2194 /**
2195  *	skb_append	-	append a buffer
2196  *	@old: buffer to insert after
2197  *	@newsk: buffer to insert
2198  *	@list: list to use
2199  *
2200  *	Place a packet after a given packet in a list. The list locks are taken
2201  *	and this function is atomic with respect to other list locked calls.
2202  *	A buffer cannot be placed on two lists at the same time.
2203  */
2204 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2205 {
2206 	unsigned long flags;
2207 
2208 	spin_lock_irqsave(&list->lock, flags);
2209 	__skb_queue_after(list, old, newsk);
2210 	spin_unlock_irqrestore(&list->lock, flags);
2211 }
2212 EXPORT_SYMBOL(skb_append);
2213 
2214 /**
2215  *	skb_insert	-	insert a buffer
2216  *	@old: buffer to insert before
2217  *	@newsk: buffer to insert
2218  *	@list: list to use
2219  *
2220  *	Place a packet before a given packet in a list. The list locks are
2221  * 	taken and this function is atomic with respect to other list locked
2222  *	calls.
2223  *
2224  *	A buffer cannot be placed on two lists at the same time.
2225  */
2226 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2227 {
2228 	unsigned long flags;
2229 
2230 	spin_lock_irqsave(&list->lock, flags);
2231 	__skb_insert(newsk, old->prev, old, list);
2232 	spin_unlock_irqrestore(&list->lock, flags);
2233 }
2234 EXPORT_SYMBOL(skb_insert);
2235 
2236 static inline void skb_split_inside_header(struct sk_buff *skb,
2237 					   struct sk_buff* skb1,
2238 					   const u32 len, const int pos)
2239 {
2240 	int i;
2241 
2242 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2243 					 pos - len);
2244 	/* And move data appendix as is. */
2245 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2246 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2247 
2248 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2249 	skb_shinfo(skb)->nr_frags  = 0;
2250 	skb1->data_len		   = skb->data_len;
2251 	skb1->len		   += skb1->data_len;
2252 	skb->data_len		   = 0;
2253 	skb->len		   = len;
2254 	skb_set_tail_pointer(skb, len);
2255 }
2256 
2257 static inline void skb_split_no_header(struct sk_buff *skb,
2258 				       struct sk_buff* skb1,
2259 				       const u32 len, int pos)
2260 {
2261 	int i, k = 0;
2262 	const int nfrags = skb_shinfo(skb)->nr_frags;
2263 
2264 	skb_shinfo(skb)->nr_frags = 0;
2265 	skb1->len		  = skb1->data_len = skb->len - len;
2266 	skb->len		  = len;
2267 	skb->data_len		  = len - pos;
2268 
2269 	for (i = 0; i < nfrags; i++) {
2270 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2271 
2272 		if (pos + size > len) {
2273 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2274 
2275 			if (pos < len) {
2276 				/* Split frag.
2277 				 * We have two variants in this case:
2278 				 * 1. Move all the frag to the second
2279 				 *    part, if it is possible. F.e.
2280 				 *    this approach is mandatory for TUX,
2281 				 *    where splitting is expensive.
2282 				 * 2. Split is accurately. We make this.
2283 				 */
2284 				skb_frag_ref(skb, i);
2285 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2286 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2287 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2288 				skb_shinfo(skb)->nr_frags++;
2289 			}
2290 			k++;
2291 		} else
2292 			skb_shinfo(skb)->nr_frags++;
2293 		pos += size;
2294 	}
2295 	skb_shinfo(skb1)->nr_frags = k;
2296 }
2297 
2298 /**
2299  * skb_split - Split fragmented skb to two parts at length len.
2300  * @skb: the buffer to split
2301  * @skb1: the buffer to receive the second part
2302  * @len: new length for skb
2303  */
2304 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2305 {
2306 	int pos = skb_headlen(skb);
2307 
2308 	if (len < pos)	/* Split line is inside header. */
2309 		skb_split_inside_header(skb, skb1, len, pos);
2310 	else		/* Second chunk has no header, nothing to copy. */
2311 		skb_split_no_header(skb, skb1, len, pos);
2312 }
2313 EXPORT_SYMBOL(skb_split);
2314 
2315 /* Shifting from/to a cloned skb is a no-go.
2316  *
2317  * Caller cannot keep skb_shinfo related pointers past calling here!
2318  */
2319 static int skb_prepare_for_shift(struct sk_buff *skb)
2320 {
2321 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2322 }
2323 
2324 /**
2325  * skb_shift - Shifts paged data partially from skb to another
2326  * @tgt: buffer into which tail data gets added
2327  * @skb: buffer from which the paged data comes from
2328  * @shiftlen: shift up to this many bytes
2329  *
2330  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2331  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2332  * It's up to caller to free skb if everything was shifted.
2333  *
2334  * If @tgt runs out of frags, the whole operation is aborted.
2335  *
2336  * Skb cannot include anything else but paged data while tgt is allowed
2337  * to have non-paged data as well.
2338  *
2339  * TODO: full sized shift could be optimized but that would need
2340  * specialized skb free'er to handle frags without up-to-date nr_frags.
2341  */
2342 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2343 {
2344 	int from, to, merge, todo;
2345 	struct skb_frag_struct *fragfrom, *fragto;
2346 
2347 	BUG_ON(shiftlen > skb->len);
2348 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2349 
2350 	todo = shiftlen;
2351 	from = 0;
2352 	to = skb_shinfo(tgt)->nr_frags;
2353 	fragfrom = &skb_shinfo(skb)->frags[from];
2354 
2355 	/* Actual merge is delayed until the point when we know we can
2356 	 * commit all, so that we don't have to undo partial changes
2357 	 */
2358 	if (!to ||
2359 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2360 			      fragfrom->page_offset)) {
2361 		merge = -1;
2362 	} else {
2363 		merge = to - 1;
2364 
2365 		todo -= skb_frag_size(fragfrom);
2366 		if (todo < 0) {
2367 			if (skb_prepare_for_shift(skb) ||
2368 			    skb_prepare_for_shift(tgt))
2369 				return 0;
2370 
2371 			/* All previous frag pointers might be stale! */
2372 			fragfrom = &skb_shinfo(skb)->frags[from];
2373 			fragto = &skb_shinfo(tgt)->frags[merge];
2374 
2375 			skb_frag_size_add(fragto, shiftlen);
2376 			skb_frag_size_sub(fragfrom, shiftlen);
2377 			fragfrom->page_offset += shiftlen;
2378 
2379 			goto onlymerged;
2380 		}
2381 
2382 		from++;
2383 	}
2384 
2385 	/* Skip full, not-fitting skb to avoid expensive operations */
2386 	if ((shiftlen == skb->len) &&
2387 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2388 		return 0;
2389 
2390 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2391 		return 0;
2392 
2393 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2394 		if (to == MAX_SKB_FRAGS)
2395 			return 0;
2396 
2397 		fragfrom = &skb_shinfo(skb)->frags[from];
2398 		fragto = &skb_shinfo(tgt)->frags[to];
2399 
2400 		if (todo >= skb_frag_size(fragfrom)) {
2401 			*fragto = *fragfrom;
2402 			todo -= skb_frag_size(fragfrom);
2403 			from++;
2404 			to++;
2405 
2406 		} else {
2407 			__skb_frag_ref(fragfrom);
2408 			fragto->page = fragfrom->page;
2409 			fragto->page_offset = fragfrom->page_offset;
2410 			skb_frag_size_set(fragto, todo);
2411 
2412 			fragfrom->page_offset += todo;
2413 			skb_frag_size_sub(fragfrom, todo);
2414 			todo = 0;
2415 
2416 			to++;
2417 			break;
2418 		}
2419 	}
2420 
2421 	/* Ready to "commit" this state change to tgt */
2422 	skb_shinfo(tgt)->nr_frags = to;
2423 
2424 	if (merge >= 0) {
2425 		fragfrom = &skb_shinfo(skb)->frags[0];
2426 		fragto = &skb_shinfo(tgt)->frags[merge];
2427 
2428 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2429 		__skb_frag_unref(fragfrom);
2430 	}
2431 
2432 	/* Reposition in the original skb */
2433 	to = 0;
2434 	while (from < skb_shinfo(skb)->nr_frags)
2435 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2436 	skb_shinfo(skb)->nr_frags = to;
2437 
2438 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2439 
2440 onlymerged:
2441 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2442 	 * the other hand might need it if it needs to be resent
2443 	 */
2444 	tgt->ip_summed = CHECKSUM_PARTIAL;
2445 	skb->ip_summed = CHECKSUM_PARTIAL;
2446 
2447 	/* Yak, is it really working this way? Some helper please? */
2448 	skb->len -= shiftlen;
2449 	skb->data_len -= shiftlen;
2450 	skb->truesize -= shiftlen;
2451 	tgt->len += shiftlen;
2452 	tgt->data_len += shiftlen;
2453 	tgt->truesize += shiftlen;
2454 
2455 	return shiftlen;
2456 }
2457 
2458 /**
2459  * skb_prepare_seq_read - Prepare a sequential read of skb data
2460  * @skb: the buffer to read
2461  * @from: lower offset of data to be read
2462  * @to: upper offset of data to be read
2463  * @st: state variable
2464  *
2465  * Initializes the specified state variable. Must be called before
2466  * invoking skb_seq_read() for the first time.
2467  */
2468 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2469 			  unsigned int to, struct skb_seq_state *st)
2470 {
2471 	st->lower_offset = from;
2472 	st->upper_offset = to;
2473 	st->root_skb = st->cur_skb = skb;
2474 	st->frag_idx = st->stepped_offset = 0;
2475 	st->frag_data = NULL;
2476 }
2477 EXPORT_SYMBOL(skb_prepare_seq_read);
2478 
2479 /**
2480  * skb_seq_read - Sequentially read skb data
2481  * @consumed: number of bytes consumed by the caller so far
2482  * @data: destination pointer for data to be returned
2483  * @st: state variable
2484  *
2485  * Reads a block of skb data at &consumed relative to the
2486  * lower offset specified to skb_prepare_seq_read(). Assigns
2487  * the head of the data block to &data and returns the length
2488  * of the block or 0 if the end of the skb data or the upper
2489  * offset has been reached.
2490  *
2491  * The caller is not required to consume all of the data
2492  * returned, i.e. &consumed is typically set to the number
2493  * of bytes already consumed and the next call to
2494  * skb_seq_read() will return the remaining part of the block.
2495  *
2496  * Note 1: The size of each block of data returned can be arbitrary,
2497  *       this limitation is the cost for zerocopy seqeuental
2498  *       reads of potentially non linear data.
2499  *
2500  * Note 2: Fragment lists within fragments are not implemented
2501  *       at the moment, state->root_skb could be replaced with
2502  *       a stack for this purpose.
2503  */
2504 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2505 			  struct skb_seq_state *st)
2506 {
2507 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2508 	skb_frag_t *frag;
2509 
2510 	if (unlikely(abs_offset >= st->upper_offset))
2511 		return 0;
2512 
2513 next_skb:
2514 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2515 
2516 	if (abs_offset < block_limit && !st->frag_data) {
2517 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2518 		return block_limit - abs_offset;
2519 	}
2520 
2521 	if (st->frag_idx == 0 && !st->frag_data)
2522 		st->stepped_offset += skb_headlen(st->cur_skb);
2523 
2524 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2525 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2526 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2527 
2528 		if (abs_offset < block_limit) {
2529 			if (!st->frag_data)
2530 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2531 
2532 			*data = (u8 *) st->frag_data + frag->page_offset +
2533 				(abs_offset - st->stepped_offset);
2534 
2535 			return block_limit - abs_offset;
2536 		}
2537 
2538 		if (st->frag_data) {
2539 			kunmap_atomic(st->frag_data);
2540 			st->frag_data = NULL;
2541 		}
2542 
2543 		st->frag_idx++;
2544 		st->stepped_offset += skb_frag_size(frag);
2545 	}
2546 
2547 	if (st->frag_data) {
2548 		kunmap_atomic(st->frag_data);
2549 		st->frag_data = NULL;
2550 	}
2551 
2552 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2553 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2554 		st->frag_idx = 0;
2555 		goto next_skb;
2556 	} else if (st->cur_skb->next) {
2557 		st->cur_skb = st->cur_skb->next;
2558 		st->frag_idx = 0;
2559 		goto next_skb;
2560 	}
2561 
2562 	return 0;
2563 }
2564 EXPORT_SYMBOL(skb_seq_read);
2565 
2566 /**
2567  * skb_abort_seq_read - Abort a sequential read of skb data
2568  * @st: state variable
2569  *
2570  * Must be called if skb_seq_read() was not called until it
2571  * returned 0.
2572  */
2573 void skb_abort_seq_read(struct skb_seq_state *st)
2574 {
2575 	if (st->frag_data)
2576 		kunmap_atomic(st->frag_data);
2577 }
2578 EXPORT_SYMBOL(skb_abort_seq_read);
2579 
2580 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2581 
2582 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2583 					  struct ts_config *conf,
2584 					  struct ts_state *state)
2585 {
2586 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2587 }
2588 
2589 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2590 {
2591 	skb_abort_seq_read(TS_SKB_CB(state));
2592 }
2593 
2594 /**
2595  * skb_find_text - Find a text pattern in skb data
2596  * @skb: the buffer to look in
2597  * @from: search offset
2598  * @to: search limit
2599  * @config: textsearch configuration
2600  * @state: uninitialized textsearch state variable
2601  *
2602  * Finds a pattern in the skb data according to the specified
2603  * textsearch configuration. Use textsearch_next() to retrieve
2604  * subsequent occurrences of the pattern. Returns the offset
2605  * to the first occurrence or UINT_MAX if no match was found.
2606  */
2607 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2608 			   unsigned int to, struct ts_config *config,
2609 			   struct ts_state *state)
2610 {
2611 	unsigned int ret;
2612 
2613 	config->get_next_block = skb_ts_get_next_block;
2614 	config->finish = skb_ts_finish;
2615 
2616 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2617 
2618 	ret = textsearch_find(config, state);
2619 	return (ret <= to - from ? ret : UINT_MAX);
2620 }
2621 EXPORT_SYMBOL(skb_find_text);
2622 
2623 /**
2624  * skb_append_datato_frags - append the user data to a skb
2625  * @sk: sock  structure
2626  * @skb: skb structure to be appened with user data.
2627  * @getfrag: call back function to be used for getting the user data
2628  * @from: pointer to user message iov
2629  * @length: length of the iov message
2630  *
2631  * Description: This procedure append the user data in the fragment part
2632  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2633  */
2634 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2635 			int (*getfrag)(void *from, char *to, int offset,
2636 					int len, int odd, struct sk_buff *skb),
2637 			void *from, int length)
2638 {
2639 	int frg_cnt = 0;
2640 	skb_frag_t *frag = NULL;
2641 	struct page *page = NULL;
2642 	int copy, left;
2643 	int offset = 0;
2644 	int ret;
2645 
2646 	do {
2647 		/* Return error if we don't have space for new frag */
2648 		frg_cnt = skb_shinfo(skb)->nr_frags;
2649 		if (frg_cnt >= MAX_SKB_FRAGS)
2650 			return -EFAULT;
2651 
2652 		/* allocate a new page for next frag */
2653 		page = alloc_pages(sk->sk_allocation, 0);
2654 
2655 		/* If alloc_page fails just return failure and caller will
2656 		 * free previous allocated pages by doing kfree_skb()
2657 		 */
2658 		if (page == NULL)
2659 			return -ENOMEM;
2660 
2661 		/* initialize the next frag */
2662 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2663 		skb->truesize += PAGE_SIZE;
2664 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2665 
2666 		/* get the new initialized frag */
2667 		frg_cnt = skb_shinfo(skb)->nr_frags;
2668 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2669 
2670 		/* copy the user data to page */
2671 		left = PAGE_SIZE - frag->page_offset;
2672 		copy = (length > left)? left : length;
2673 
2674 		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2675 			    offset, copy, 0, skb);
2676 		if (ret < 0)
2677 			return -EFAULT;
2678 
2679 		/* copy was successful so update the size parameters */
2680 		skb_frag_size_add(frag, copy);
2681 		skb->len += copy;
2682 		skb->data_len += copy;
2683 		offset += copy;
2684 		length -= copy;
2685 
2686 	} while (length > 0);
2687 
2688 	return 0;
2689 }
2690 EXPORT_SYMBOL(skb_append_datato_frags);
2691 
2692 /**
2693  *	skb_pull_rcsum - pull skb and update receive checksum
2694  *	@skb: buffer to update
2695  *	@len: length of data pulled
2696  *
2697  *	This function performs an skb_pull on the packet and updates
2698  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2699  *	receive path processing instead of skb_pull unless you know
2700  *	that the checksum difference is zero (e.g., a valid IP header)
2701  *	or you are setting ip_summed to CHECKSUM_NONE.
2702  */
2703 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2704 {
2705 	BUG_ON(len > skb->len);
2706 	skb->len -= len;
2707 	BUG_ON(skb->len < skb->data_len);
2708 	skb_postpull_rcsum(skb, skb->data, len);
2709 	return skb->data += len;
2710 }
2711 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2712 
2713 /**
2714  *	skb_segment - Perform protocol segmentation on skb.
2715  *	@skb: buffer to segment
2716  *	@features: features for the output path (see dev->features)
2717  *
2718  *	This function performs segmentation on the given skb.  It returns
2719  *	a pointer to the first in a list of new skbs for the segments.
2720  *	In case of error it returns ERR_PTR(err).
2721  */
2722 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2723 {
2724 	struct sk_buff *segs = NULL;
2725 	struct sk_buff *tail = NULL;
2726 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2727 	unsigned int mss = skb_shinfo(skb)->gso_size;
2728 	unsigned int doffset = skb->data - skb_mac_header(skb);
2729 	unsigned int offset = doffset;
2730 	unsigned int headroom;
2731 	unsigned int len;
2732 	int sg = !!(features & NETIF_F_SG);
2733 	int nfrags = skb_shinfo(skb)->nr_frags;
2734 	int err = -ENOMEM;
2735 	int i = 0;
2736 	int pos;
2737 
2738 	__skb_push(skb, doffset);
2739 	headroom = skb_headroom(skb);
2740 	pos = skb_headlen(skb);
2741 
2742 	do {
2743 		struct sk_buff *nskb;
2744 		skb_frag_t *frag;
2745 		int hsize;
2746 		int size;
2747 
2748 		len = skb->len - offset;
2749 		if (len > mss)
2750 			len = mss;
2751 
2752 		hsize = skb_headlen(skb) - offset;
2753 		if (hsize < 0)
2754 			hsize = 0;
2755 		if (hsize > len || !sg)
2756 			hsize = len;
2757 
2758 		if (!hsize && i >= nfrags) {
2759 			BUG_ON(fskb->len != len);
2760 
2761 			pos += len;
2762 			nskb = skb_clone(fskb, GFP_ATOMIC);
2763 			fskb = fskb->next;
2764 
2765 			if (unlikely(!nskb))
2766 				goto err;
2767 
2768 			hsize = skb_end_offset(nskb);
2769 			if (skb_cow_head(nskb, doffset + headroom)) {
2770 				kfree_skb(nskb);
2771 				goto err;
2772 			}
2773 
2774 			nskb->truesize += skb_end_offset(nskb) - hsize;
2775 			skb_release_head_state(nskb);
2776 			__skb_push(nskb, doffset);
2777 		} else {
2778 			nskb = alloc_skb(hsize + doffset + headroom,
2779 					 GFP_ATOMIC);
2780 
2781 			if (unlikely(!nskb))
2782 				goto err;
2783 
2784 			skb_reserve(nskb, headroom);
2785 			__skb_put(nskb, doffset);
2786 		}
2787 
2788 		if (segs)
2789 			tail->next = nskb;
2790 		else
2791 			segs = nskb;
2792 		tail = nskb;
2793 
2794 		__copy_skb_header(nskb, skb);
2795 		nskb->mac_len = skb->mac_len;
2796 
2797 		/* nskb and skb might have different headroom */
2798 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2799 			nskb->csum_start += skb_headroom(nskb) - headroom;
2800 
2801 		skb_reset_mac_header(nskb);
2802 		skb_set_network_header(nskb, skb->mac_len);
2803 		nskb->transport_header = (nskb->network_header +
2804 					  skb_network_header_len(skb));
2805 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2806 
2807 		if (fskb != skb_shinfo(skb)->frag_list)
2808 			continue;
2809 
2810 		if (!sg) {
2811 			nskb->ip_summed = CHECKSUM_NONE;
2812 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2813 							    skb_put(nskb, len),
2814 							    len, 0);
2815 			continue;
2816 		}
2817 
2818 		frag = skb_shinfo(nskb)->frags;
2819 
2820 		skb_copy_from_linear_data_offset(skb, offset,
2821 						 skb_put(nskb, hsize), hsize);
2822 
2823 		while (pos < offset + len && i < nfrags) {
2824 			*frag = skb_shinfo(skb)->frags[i];
2825 			__skb_frag_ref(frag);
2826 			size = skb_frag_size(frag);
2827 
2828 			if (pos < offset) {
2829 				frag->page_offset += offset - pos;
2830 				skb_frag_size_sub(frag, offset - pos);
2831 			}
2832 
2833 			skb_shinfo(nskb)->nr_frags++;
2834 
2835 			if (pos + size <= offset + len) {
2836 				i++;
2837 				pos += size;
2838 			} else {
2839 				skb_frag_size_sub(frag, pos + size - (offset + len));
2840 				goto skip_fraglist;
2841 			}
2842 
2843 			frag++;
2844 		}
2845 
2846 		if (pos < offset + len) {
2847 			struct sk_buff *fskb2 = fskb;
2848 
2849 			BUG_ON(pos + fskb->len != offset + len);
2850 
2851 			pos += fskb->len;
2852 			fskb = fskb->next;
2853 
2854 			if (fskb2->next) {
2855 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2856 				if (!fskb2)
2857 					goto err;
2858 			} else
2859 				skb_get(fskb2);
2860 
2861 			SKB_FRAG_ASSERT(nskb);
2862 			skb_shinfo(nskb)->frag_list = fskb2;
2863 		}
2864 
2865 skip_fraglist:
2866 		nskb->data_len = len - hsize;
2867 		nskb->len += nskb->data_len;
2868 		nskb->truesize += nskb->data_len;
2869 	} while ((offset += len) < skb->len);
2870 
2871 	return segs;
2872 
2873 err:
2874 	while ((skb = segs)) {
2875 		segs = skb->next;
2876 		kfree_skb(skb);
2877 	}
2878 	return ERR_PTR(err);
2879 }
2880 EXPORT_SYMBOL_GPL(skb_segment);
2881 
2882 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2883 {
2884 	struct sk_buff *p = *head;
2885 	struct sk_buff *nskb;
2886 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2887 	struct skb_shared_info *pinfo = skb_shinfo(p);
2888 	unsigned int headroom;
2889 	unsigned int len = skb_gro_len(skb);
2890 	unsigned int offset = skb_gro_offset(skb);
2891 	unsigned int headlen = skb_headlen(skb);
2892 	unsigned int delta_truesize;
2893 
2894 	if (p->len + len >= 65536)
2895 		return -E2BIG;
2896 
2897 	if (pinfo->frag_list)
2898 		goto merge;
2899 	else if (headlen <= offset) {
2900 		skb_frag_t *frag;
2901 		skb_frag_t *frag2;
2902 		int i = skbinfo->nr_frags;
2903 		int nr_frags = pinfo->nr_frags + i;
2904 
2905 		offset -= headlen;
2906 
2907 		if (nr_frags > MAX_SKB_FRAGS)
2908 			return -E2BIG;
2909 
2910 		pinfo->nr_frags = nr_frags;
2911 		skbinfo->nr_frags = 0;
2912 
2913 		frag = pinfo->frags + nr_frags;
2914 		frag2 = skbinfo->frags + i;
2915 		do {
2916 			*--frag = *--frag2;
2917 		} while (--i);
2918 
2919 		frag->page_offset += offset;
2920 		skb_frag_size_sub(frag, offset);
2921 
2922 		/* all fragments truesize : remove (head size + sk_buff) */
2923 		delta_truesize = skb->truesize -
2924 				 SKB_TRUESIZE(skb_end_offset(skb));
2925 
2926 		skb->truesize -= skb->data_len;
2927 		skb->len -= skb->data_len;
2928 		skb->data_len = 0;
2929 
2930 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2931 		goto done;
2932 	} else if (skb->head_frag) {
2933 		int nr_frags = pinfo->nr_frags;
2934 		skb_frag_t *frag = pinfo->frags + nr_frags;
2935 		struct page *page = virt_to_head_page(skb->head);
2936 		unsigned int first_size = headlen - offset;
2937 		unsigned int first_offset;
2938 
2939 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2940 			return -E2BIG;
2941 
2942 		first_offset = skb->data -
2943 			       (unsigned char *)page_address(page) +
2944 			       offset;
2945 
2946 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2947 
2948 		frag->page.p	  = page;
2949 		frag->page_offset = first_offset;
2950 		skb_frag_size_set(frag, first_size);
2951 
2952 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2953 		/* We dont need to clear skbinfo->nr_frags here */
2954 
2955 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2956 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2957 		goto done;
2958 	} else if (skb_gro_len(p) != pinfo->gso_size)
2959 		return -E2BIG;
2960 
2961 	headroom = skb_headroom(p);
2962 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2963 	if (unlikely(!nskb))
2964 		return -ENOMEM;
2965 
2966 	__copy_skb_header(nskb, p);
2967 	nskb->mac_len = p->mac_len;
2968 
2969 	skb_reserve(nskb, headroom);
2970 	__skb_put(nskb, skb_gro_offset(p));
2971 
2972 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2973 	skb_set_network_header(nskb, skb_network_offset(p));
2974 	skb_set_transport_header(nskb, skb_transport_offset(p));
2975 
2976 	__skb_pull(p, skb_gro_offset(p));
2977 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2978 	       p->data - skb_mac_header(p));
2979 
2980 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2981 	skb_shinfo(nskb)->frag_list = p;
2982 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2983 	pinfo->gso_size = 0;
2984 	skb_header_release(p);
2985 	nskb->prev = p;
2986 
2987 	nskb->data_len += p->len;
2988 	nskb->truesize += p->truesize;
2989 	nskb->len += p->len;
2990 
2991 	*head = nskb;
2992 	nskb->next = p->next;
2993 	p->next = NULL;
2994 
2995 	p = nskb;
2996 
2997 merge:
2998 	delta_truesize = skb->truesize;
2999 	if (offset > headlen) {
3000 		unsigned int eat = offset - headlen;
3001 
3002 		skbinfo->frags[0].page_offset += eat;
3003 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3004 		skb->data_len -= eat;
3005 		skb->len -= eat;
3006 		offset = headlen;
3007 	}
3008 
3009 	__skb_pull(skb, offset);
3010 
3011 	p->prev->next = skb;
3012 	p->prev = skb;
3013 	skb_header_release(skb);
3014 
3015 done:
3016 	NAPI_GRO_CB(p)->count++;
3017 	p->data_len += len;
3018 	p->truesize += delta_truesize;
3019 	p->len += len;
3020 
3021 	NAPI_GRO_CB(skb)->same_flow = 1;
3022 	return 0;
3023 }
3024 EXPORT_SYMBOL_GPL(skb_gro_receive);
3025 
3026 void __init skb_init(void)
3027 {
3028 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3029 					      sizeof(struct sk_buff),
3030 					      0,
3031 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3032 					      NULL);
3033 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3034 						(2*sizeof(struct sk_buff)) +
3035 						sizeof(atomic_t),
3036 						0,
3037 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3038 						NULL);
3039 }
3040 
3041 /**
3042  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3043  *	@skb: Socket buffer containing the buffers to be mapped
3044  *	@sg: The scatter-gather list to map into
3045  *	@offset: The offset into the buffer's contents to start mapping
3046  *	@len: Length of buffer space to be mapped
3047  *
3048  *	Fill the specified scatter-gather list with mappings/pointers into a
3049  *	region of the buffer space attached to a socket buffer.
3050  */
3051 static int
3052 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3053 {
3054 	int start = skb_headlen(skb);
3055 	int i, copy = start - offset;
3056 	struct sk_buff *frag_iter;
3057 	int elt = 0;
3058 
3059 	if (copy > 0) {
3060 		if (copy > len)
3061 			copy = len;
3062 		sg_set_buf(sg, skb->data + offset, copy);
3063 		elt++;
3064 		if ((len -= copy) == 0)
3065 			return elt;
3066 		offset += copy;
3067 	}
3068 
3069 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3070 		int end;
3071 
3072 		WARN_ON(start > offset + len);
3073 
3074 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3075 		if ((copy = end - offset) > 0) {
3076 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077 
3078 			if (copy > len)
3079 				copy = len;
3080 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3081 					frag->page_offset+offset-start);
3082 			elt++;
3083 			if (!(len -= copy))
3084 				return elt;
3085 			offset += copy;
3086 		}
3087 		start = end;
3088 	}
3089 
3090 	skb_walk_frags(skb, frag_iter) {
3091 		int end;
3092 
3093 		WARN_ON(start > offset + len);
3094 
3095 		end = start + frag_iter->len;
3096 		if ((copy = end - offset) > 0) {
3097 			if (copy > len)
3098 				copy = len;
3099 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3100 					      copy);
3101 			if ((len -= copy) == 0)
3102 				return elt;
3103 			offset += copy;
3104 		}
3105 		start = end;
3106 	}
3107 	BUG_ON(len);
3108 	return elt;
3109 }
3110 
3111 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3112 {
3113 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3114 
3115 	sg_mark_end(&sg[nsg - 1]);
3116 
3117 	return nsg;
3118 }
3119 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3120 
3121 /**
3122  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3123  *	@skb: The socket buffer to check.
3124  *	@tailbits: Amount of trailing space to be added
3125  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3126  *
3127  *	Make sure that the data buffers attached to a socket buffer are
3128  *	writable. If they are not, private copies are made of the data buffers
3129  *	and the socket buffer is set to use these instead.
3130  *
3131  *	If @tailbits is given, make sure that there is space to write @tailbits
3132  *	bytes of data beyond current end of socket buffer.  @trailer will be
3133  *	set to point to the skb in which this space begins.
3134  *
3135  *	The number of scatterlist elements required to completely map the
3136  *	COW'd and extended socket buffer will be returned.
3137  */
3138 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3139 {
3140 	int copyflag;
3141 	int elt;
3142 	struct sk_buff *skb1, **skb_p;
3143 
3144 	/* If skb is cloned or its head is paged, reallocate
3145 	 * head pulling out all the pages (pages are considered not writable
3146 	 * at the moment even if they are anonymous).
3147 	 */
3148 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3149 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3150 		return -ENOMEM;
3151 
3152 	/* Easy case. Most of packets will go this way. */
3153 	if (!skb_has_frag_list(skb)) {
3154 		/* A little of trouble, not enough of space for trailer.
3155 		 * This should not happen, when stack is tuned to generate
3156 		 * good frames. OK, on miss we reallocate and reserve even more
3157 		 * space, 128 bytes is fair. */
3158 
3159 		if (skb_tailroom(skb) < tailbits &&
3160 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3161 			return -ENOMEM;
3162 
3163 		/* Voila! */
3164 		*trailer = skb;
3165 		return 1;
3166 	}
3167 
3168 	/* Misery. We are in troubles, going to mincer fragments... */
3169 
3170 	elt = 1;
3171 	skb_p = &skb_shinfo(skb)->frag_list;
3172 	copyflag = 0;
3173 
3174 	while ((skb1 = *skb_p) != NULL) {
3175 		int ntail = 0;
3176 
3177 		/* The fragment is partially pulled by someone,
3178 		 * this can happen on input. Copy it and everything
3179 		 * after it. */
3180 
3181 		if (skb_shared(skb1))
3182 			copyflag = 1;
3183 
3184 		/* If the skb is the last, worry about trailer. */
3185 
3186 		if (skb1->next == NULL && tailbits) {
3187 			if (skb_shinfo(skb1)->nr_frags ||
3188 			    skb_has_frag_list(skb1) ||
3189 			    skb_tailroom(skb1) < tailbits)
3190 				ntail = tailbits + 128;
3191 		}
3192 
3193 		if (copyflag ||
3194 		    skb_cloned(skb1) ||
3195 		    ntail ||
3196 		    skb_shinfo(skb1)->nr_frags ||
3197 		    skb_has_frag_list(skb1)) {
3198 			struct sk_buff *skb2;
3199 
3200 			/* Fuck, we are miserable poor guys... */
3201 			if (ntail == 0)
3202 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3203 			else
3204 				skb2 = skb_copy_expand(skb1,
3205 						       skb_headroom(skb1),
3206 						       ntail,
3207 						       GFP_ATOMIC);
3208 			if (unlikely(skb2 == NULL))
3209 				return -ENOMEM;
3210 
3211 			if (skb1->sk)
3212 				skb_set_owner_w(skb2, skb1->sk);
3213 
3214 			/* Looking around. Are we still alive?
3215 			 * OK, link new skb, drop old one */
3216 
3217 			skb2->next = skb1->next;
3218 			*skb_p = skb2;
3219 			kfree_skb(skb1);
3220 			skb1 = skb2;
3221 		}
3222 		elt++;
3223 		*trailer = skb1;
3224 		skb_p = &skb1->next;
3225 	}
3226 
3227 	return elt;
3228 }
3229 EXPORT_SYMBOL_GPL(skb_cow_data);
3230 
3231 static void sock_rmem_free(struct sk_buff *skb)
3232 {
3233 	struct sock *sk = skb->sk;
3234 
3235 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3236 }
3237 
3238 /*
3239  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3240  */
3241 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3242 {
3243 	int len = skb->len;
3244 
3245 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3246 	    (unsigned int)sk->sk_rcvbuf)
3247 		return -ENOMEM;
3248 
3249 	skb_orphan(skb);
3250 	skb->sk = sk;
3251 	skb->destructor = sock_rmem_free;
3252 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3253 
3254 	/* before exiting rcu section, make sure dst is refcounted */
3255 	skb_dst_force(skb);
3256 
3257 	skb_queue_tail(&sk->sk_error_queue, skb);
3258 	if (!sock_flag(sk, SOCK_DEAD))
3259 		sk->sk_data_ready(sk, len);
3260 	return 0;
3261 }
3262 EXPORT_SYMBOL(sock_queue_err_skb);
3263 
3264 void skb_tstamp_tx(struct sk_buff *orig_skb,
3265 		struct skb_shared_hwtstamps *hwtstamps)
3266 {
3267 	struct sock *sk = orig_skb->sk;
3268 	struct sock_exterr_skb *serr;
3269 	struct sk_buff *skb;
3270 	int err;
3271 
3272 	if (!sk)
3273 		return;
3274 
3275 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3276 	if (!skb)
3277 		return;
3278 
3279 	if (hwtstamps) {
3280 		*skb_hwtstamps(skb) =
3281 			*hwtstamps;
3282 	} else {
3283 		/*
3284 		 * no hardware time stamps available,
3285 		 * so keep the shared tx_flags and only
3286 		 * store software time stamp
3287 		 */
3288 		skb->tstamp = ktime_get_real();
3289 	}
3290 
3291 	serr = SKB_EXT_ERR(skb);
3292 	memset(serr, 0, sizeof(*serr));
3293 	serr->ee.ee_errno = ENOMSG;
3294 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3295 
3296 	err = sock_queue_err_skb(sk, skb);
3297 
3298 	if (err)
3299 		kfree_skb(skb);
3300 }
3301 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3302 
3303 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3304 {
3305 	struct sock *sk = skb->sk;
3306 	struct sock_exterr_skb *serr;
3307 	int err;
3308 
3309 	skb->wifi_acked_valid = 1;
3310 	skb->wifi_acked = acked;
3311 
3312 	serr = SKB_EXT_ERR(skb);
3313 	memset(serr, 0, sizeof(*serr));
3314 	serr->ee.ee_errno = ENOMSG;
3315 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3316 
3317 	err = sock_queue_err_skb(sk, skb);
3318 	if (err)
3319 		kfree_skb(skb);
3320 }
3321 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3322 
3323 
3324 /**
3325  * skb_partial_csum_set - set up and verify partial csum values for packet
3326  * @skb: the skb to set
3327  * @start: the number of bytes after skb->data to start checksumming.
3328  * @off: the offset from start to place the checksum.
3329  *
3330  * For untrusted partially-checksummed packets, we need to make sure the values
3331  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3332  *
3333  * This function checks and sets those values and skb->ip_summed: if this
3334  * returns false you should drop the packet.
3335  */
3336 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3337 {
3338 	if (unlikely(start > skb_headlen(skb)) ||
3339 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3340 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3341 				     start, off, skb_headlen(skb));
3342 		return false;
3343 	}
3344 	skb->ip_summed = CHECKSUM_PARTIAL;
3345 	skb->csum_start = skb_headroom(skb) + start;
3346 	skb->csum_offset = off;
3347 	return true;
3348 }
3349 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3350 
3351 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3352 {
3353 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3354 			     skb->dev->name);
3355 }
3356 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3357 
3358 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3359 {
3360 	if (head_stolen)
3361 		kmem_cache_free(skbuff_head_cache, skb);
3362 	else
3363 		__kfree_skb(skb);
3364 }
3365 EXPORT_SYMBOL(kfree_skb_partial);
3366 
3367 /**
3368  * skb_try_coalesce - try to merge skb to prior one
3369  * @to: prior buffer
3370  * @from: buffer to add
3371  * @fragstolen: pointer to boolean
3372  * @delta_truesize: how much more was allocated than was requested
3373  */
3374 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3375 		      bool *fragstolen, int *delta_truesize)
3376 {
3377 	int i, delta, len = from->len;
3378 
3379 	*fragstolen = false;
3380 
3381 	if (skb_cloned(to))
3382 		return false;
3383 
3384 	if (len <= skb_tailroom(to)) {
3385 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3386 		*delta_truesize = 0;
3387 		return true;
3388 	}
3389 
3390 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3391 		return false;
3392 
3393 	if (skb_headlen(from) != 0) {
3394 		struct page *page;
3395 		unsigned int offset;
3396 
3397 		if (skb_shinfo(to)->nr_frags +
3398 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3399 			return false;
3400 
3401 		if (skb_head_is_locked(from))
3402 			return false;
3403 
3404 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3405 
3406 		page = virt_to_head_page(from->head);
3407 		offset = from->data - (unsigned char *)page_address(page);
3408 
3409 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3410 				   page, offset, skb_headlen(from));
3411 		*fragstolen = true;
3412 	} else {
3413 		if (skb_shinfo(to)->nr_frags +
3414 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3415 			return false;
3416 
3417 		delta = from->truesize -
3418 			SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3419 	}
3420 
3421 	WARN_ON_ONCE(delta < len);
3422 
3423 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3424 	       skb_shinfo(from)->frags,
3425 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3426 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3427 
3428 	if (!skb_cloned(from))
3429 		skb_shinfo(from)->nr_frags = 0;
3430 
3431 	/* if the skb is cloned this does nothing since we set nr_frags to 0 */
3432 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3433 		skb_frag_ref(from, i);
3434 
3435 	to->truesize += delta;
3436 	to->len += len;
3437 	to->data_len += len;
3438 
3439 	*delta_truesize = delta;
3440 	return true;
3441 }
3442 EXPORT_SYMBOL(skb_try_coalesce);
3443