1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/config.h> 42 #include <linux/module.h> 43 #include <linux/types.h> 44 #include <linux/kernel.h> 45 #include <linux/sched.h> 46 #include <linux/mm.h> 47 #include <linux/interrupt.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/slab.h> 51 #include <linux/netdevice.h> 52 #ifdef CONFIG_NET_CLS_ACT 53 #include <net/pkt_sched.h> 54 #endif 55 #include <linux/string.h> 56 #include <linux/skbuff.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/highmem.h> 61 62 #include <net/protocol.h> 63 #include <net/dst.h> 64 #include <net/sock.h> 65 #include <net/checksum.h> 66 #include <net/xfrm.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/system.h> 70 71 static kmem_cache_t *skbuff_head_cache __read_mostly; 72 static kmem_cache_t *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%p end:%p dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 93 skb->dev ? skb->dev->name : "<NULL>"); 94 BUG(); 95 } 96 97 /** 98 * skb_under_panic - private function 99 * @skb: buffer 100 * @sz: size 101 * @here: address 102 * 103 * Out of line support code for skb_push(). Not user callable. 104 */ 105 106 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 107 { 108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 109 "data:%p tail:%p end:%p dev:%s\n", 110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 111 skb->dev ? skb->dev->name : "<NULL>"); 112 BUG(); 113 } 114 115 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 116 * 'private' fields and also do memory statistics to find all the 117 * [BEEP] leaks. 118 * 119 */ 120 121 /** 122 * __alloc_skb - allocate a network buffer 123 * @size: size to allocate 124 * @gfp_mask: allocation mask 125 * @fclone: allocate from fclone cache instead of head cache 126 * and allocate a cloned (child) skb 127 * 128 * Allocate a new &sk_buff. The returned buffer has no headroom and a 129 * tail room of size bytes. The object has a reference count of one. 130 * The return is the buffer. On a failure the return is %NULL. 131 * 132 * Buffers may only be allocated from interrupts using a @gfp_mask of 133 * %GFP_ATOMIC. 134 */ 135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 136 int fclone) 137 { 138 kmem_cache_t *cache; 139 struct skb_shared_info *shinfo; 140 struct sk_buff *skb; 141 u8 *data; 142 143 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 144 145 /* Get the HEAD */ 146 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA); 147 if (!skb) 148 goto out; 149 150 /* Get the DATA. Size must match skb_add_mtu(). */ 151 size = SKB_DATA_ALIGN(size); 152 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 153 if (!data) 154 goto nodata; 155 156 memset(skb, 0, offsetof(struct sk_buff, truesize)); 157 skb->truesize = size + sizeof(struct sk_buff); 158 atomic_set(&skb->users, 1); 159 skb->head = data; 160 skb->data = data; 161 skb->tail = data; 162 skb->end = data + size; 163 /* make sure we initialize shinfo sequentially */ 164 shinfo = skb_shinfo(skb); 165 atomic_set(&shinfo->dataref, 1); 166 shinfo->nr_frags = 0; 167 shinfo->tso_size = 0; 168 shinfo->tso_segs = 0; 169 shinfo->ufo_size = 0; 170 shinfo->ip6_frag_id = 0; 171 shinfo->frag_list = NULL; 172 173 if (fclone) { 174 struct sk_buff *child = skb + 1; 175 atomic_t *fclone_ref = (atomic_t *) (child + 1); 176 177 skb->fclone = SKB_FCLONE_ORIG; 178 atomic_set(fclone_ref, 1); 179 180 child->fclone = SKB_FCLONE_UNAVAILABLE; 181 } 182 out: 183 return skb; 184 nodata: 185 kmem_cache_free(cache, skb); 186 skb = NULL; 187 goto out; 188 } 189 190 /** 191 * alloc_skb_from_cache - allocate a network buffer 192 * @cp: kmem_cache from which to allocate the data area 193 * (object size must be big enough for @size bytes + skb overheads) 194 * @size: size to allocate 195 * @gfp_mask: allocation mask 196 * 197 * Allocate a new &sk_buff. The returned buffer has no headroom and 198 * tail room of size bytes. The object has a reference count of one. 199 * The return is the buffer. On a failure the return is %NULL. 200 * 201 * Buffers may only be allocated from interrupts using a @gfp_mask of 202 * %GFP_ATOMIC. 203 */ 204 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 205 unsigned int size, 206 gfp_t gfp_mask) 207 { 208 struct sk_buff *skb; 209 u8 *data; 210 211 /* Get the HEAD */ 212 skb = kmem_cache_alloc(skbuff_head_cache, 213 gfp_mask & ~__GFP_DMA); 214 if (!skb) 215 goto out; 216 217 /* Get the DATA. */ 218 size = SKB_DATA_ALIGN(size); 219 data = kmem_cache_alloc(cp, gfp_mask); 220 if (!data) 221 goto nodata; 222 223 memset(skb, 0, offsetof(struct sk_buff, truesize)); 224 skb->truesize = size + sizeof(struct sk_buff); 225 atomic_set(&skb->users, 1); 226 skb->head = data; 227 skb->data = data; 228 skb->tail = data; 229 skb->end = data + size; 230 231 atomic_set(&(skb_shinfo(skb)->dataref), 1); 232 skb_shinfo(skb)->nr_frags = 0; 233 skb_shinfo(skb)->tso_size = 0; 234 skb_shinfo(skb)->tso_segs = 0; 235 skb_shinfo(skb)->frag_list = NULL; 236 out: 237 return skb; 238 nodata: 239 kmem_cache_free(skbuff_head_cache, skb); 240 skb = NULL; 241 goto out; 242 } 243 244 245 static void skb_drop_fraglist(struct sk_buff *skb) 246 { 247 struct sk_buff *list = skb_shinfo(skb)->frag_list; 248 249 skb_shinfo(skb)->frag_list = NULL; 250 251 do { 252 struct sk_buff *this = list; 253 list = list->next; 254 kfree_skb(this); 255 } while (list); 256 } 257 258 static void skb_clone_fraglist(struct sk_buff *skb) 259 { 260 struct sk_buff *list; 261 262 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 263 skb_get(list); 264 } 265 266 void skb_release_data(struct sk_buff *skb) 267 { 268 if (!skb->cloned || 269 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 270 &skb_shinfo(skb)->dataref)) { 271 if (skb_shinfo(skb)->nr_frags) { 272 int i; 273 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 274 put_page(skb_shinfo(skb)->frags[i].page); 275 } 276 277 if (skb_shinfo(skb)->frag_list) 278 skb_drop_fraglist(skb); 279 280 kfree(skb->head); 281 } 282 } 283 284 /* 285 * Free an skbuff by memory without cleaning the state. 286 */ 287 void kfree_skbmem(struct sk_buff *skb) 288 { 289 struct sk_buff *other; 290 atomic_t *fclone_ref; 291 292 skb_release_data(skb); 293 switch (skb->fclone) { 294 case SKB_FCLONE_UNAVAILABLE: 295 kmem_cache_free(skbuff_head_cache, skb); 296 break; 297 298 case SKB_FCLONE_ORIG: 299 fclone_ref = (atomic_t *) (skb + 2); 300 if (atomic_dec_and_test(fclone_ref)) 301 kmem_cache_free(skbuff_fclone_cache, skb); 302 break; 303 304 case SKB_FCLONE_CLONE: 305 fclone_ref = (atomic_t *) (skb + 1); 306 other = skb - 1; 307 308 /* The clone portion is available for 309 * fast-cloning again. 310 */ 311 skb->fclone = SKB_FCLONE_UNAVAILABLE; 312 313 if (atomic_dec_and_test(fclone_ref)) 314 kmem_cache_free(skbuff_fclone_cache, other); 315 break; 316 }; 317 } 318 319 /** 320 * __kfree_skb - private function 321 * @skb: buffer 322 * 323 * Free an sk_buff. Release anything attached to the buffer. 324 * Clean the state. This is an internal helper function. Users should 325 * always call kfree_skb 326 */ 327 328 void __kfree_skb(struct sk_buff *skb) 329 { 330 dst_release(skb->dst); 331 #ifdef CONFIG_XFRM 332 secpath_put(skb->sp); 333 #endif 334 if (skb->destructor) { 335 WARN_ON(in_irq()); 336 skb->destructor(skb); 337 } 338 #ifdef CONFIG_NETFILTER 339 nf_conntrack_put(skb->nfct); 340 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 341 nf_conntrack_put_reasm(skb->nfct_reasm); 342 #endif 343 #ifdef CONFIG_BRIDGE_NETFILTER 344 nf_bridge_put(skb->nf_bridge); 345 #endif 346 #endif 347 /* XXX: IS this still necessary? - JHS */ 348 #ifdef CONFIG_NET_SCHED 349 skb->tc_index = 0; 350 #ifdef CONFIG_NET_CLS_ACT 351 skb->tc_verd = 0; 352 #endif 353 #endif 354 355 kfree_skbmem(skb); 356 } 357 358 /** 359 * skb_clone - duplicate an sk_buff 360 * @skb: buffer to clone 361 * @gfp_mask: allocation priority 362 * 363 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 364 * copies share the same packet data but not structure. The new 365 * buffer has a reference count of 1. If the allocation fails the 366 * function returns %NULL otherwise the new buffer is returned. 367 * 368 * If this function is called from an interrupt gfp_mask() must be 369 * %GFP_ATOMIC. 370 */ 371 372 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 373 { 374 struct sk_buff *n; 375 376 n = skb + 1; 377 if (skb->fclone == SKB_FCLONE_ORIG && 378 n->fclone == SKB_FCLONE_UNAVAILABLE) { 379 atomic_t *fclone_ref = (atomic_t *) (n + 1); 380 n->fclone = SKB_FCLONE_CLONE; 381 atomic_inc(fclone_ref); 382 } else { 383 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 384 if (!n) 385 return NULL; 386 n->fclone = SKB_FCLONE_UNAVAILABLE; 387 } 388 389 #define C(x) n->x = skb->x 390 391 n->next = n->prev = NULL; 392 n->sk = NULL; 393 C(tstamp); 394 C(dev); 395 C(h); 396 C(nh); 397 C(mac); 398 C(dst); 399 dst_clone(skb->dst); 400 C(sp); 401 #ifdef CONFIG_INET 402 secpath_get(skb->sp); 403 #endif 404 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 405 C(len); 406 C(data_len); 407 C(csum); 408 C(local_df); 409 n->cloned = 1; 410 n->nohdr = 0; 411 C(pkt_type); 412 C(ip_summed); 413 C(priority); 414 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 415 C(ipvs_property); 416 #endif 417 C(protocol); 418 n->destructor = NULL; 419 #ifdef CONFIG_NETFILTER 420 C(nfmark); 421 C(nfct); 422 nf_conntrack_get(skb->nfct); 423 C(nfctinfo); 424 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 425 C(nfct_reasm); 426 nf_conntrack_get_reasm(skb->nfct_reasm); 427 #endif 428 #ifdef CONFIG_BRIDGE_NETFILTER 429 C(nf_bridge); 430 nf_bridge_get(skb->nf_bridge); 431 #endif 432 #endif /*CONFIG_NETFILTER*/ 433 #ifdef CONFIG_NET_SCHED 434 C(tc_index); 435 #ifdef CONFIG_NET_CLS_ACT 436 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 437 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 438 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 439 C(input_dev); 440 #endif 441 442 #endif 443 C(truesize); 444 atomic_set(&n->users, 1); 445 C(head); 446 C(data); 447 C(tail); 448 C(end); 449 450 atomic_inc(&(skb_shinfo(skb)->dataref)); 451 skb->cloned = 1; 452 453 return n; 454 } 455 456 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 457 { 458 /* 459 * Shift between the two data areas in bytes 460 */ 461 unsigned long offset = new->data - old->data; 462 463 new->sk = NULL; 464 new->dev = old->dev; 465 new->priority = old->priority; 466 new->protocol = old->protocol; 467 new->dst = dst_clone(old->dst); 468 #ifdef CONFIG_INET 469 new->sp = secpath_get(old->sp); 470 #endif 471 new->h.raw = old->h.raw + offset; 472 new->nh.raw = old->nh.raw + offset; 473 new->mac.raw = old->mac.raw + offset; 474 memcpy(new->cb, old->cb, sizeof(old->cb)); 475 new->local_df = old->local_df; 476 new->fclone = SKB_FCLONE_UNAVAILABLE; 477 new->pkt_type = old->pkt_type; 478 new->tstamp = old->tstamp; 479 new->destructor = NULL; 480 #ifdef CONFIG_NETFILTER 481 new->nfmark = old->nfmark; 482 new->nfct = old->nfct; 483 nf_conntrack_get(old->nfct); 484 new->nfctinfo = old->nfctinfo; 485 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 486 new->nfct_reasm = old->nfct_reasm; 487 nf_conntrack_get_reasm(old->nfct_reasm); 488 #endif 489 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 490 new->ipvs_property = old->ipvs_property; 491 #endif 492 #ifdef CONFIG_BRIDGE_NETFILTER 493 new->nf_bridge = old->nf_bridge; 494 nf_bridge_get(old->nf_bridge); 495 #endif 496 #endif 497 #ifdef CONFIG_NET_SCHED 498 #ifdef CONFIG_NET_CLS_ACT 499 new->tc_verd = old->tc_verd; 500 #endif 501 new->tc_index = old->tc_index; 502 #endif 503 atomic_set(&new->users, 1); 504 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size; 505 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs; 506 } 507 508 /** 509 * skb_copy - create private copy of an sk_buff 510 * @skb: buffer to copy 511 * @gfp_mask: allocation priority 512 * 513 * Make a copy of both an &sk_buff and its data. This is used when the 514 * caller wishes to modify the data and needs a private copy of the 515 * data to alter. Returns %NULL on failure or the pointer to the buffer 516 * on success. The returned buffer has a reference count of 1. 517 * 518 * As by-product this function converts non-linear &sk_buff to linear 519 * one, so that &sk_buff becomes completely private and caller is allowed 520 * to modify all the data of returned buffer. This means that this 521 * function is not recommended for use in circumstances when only 522 * header is going to be modified. Use pskb_copy() instead. 523 */ 524 525 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 526 { 527 int headerlen = skb->data - skb->head; 528 /* 529 * Allocate the copy buffer 530 */ 531 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 532 gfp_mask); 533 if (!n) 534 return NULL; 535 536 /* Set the data pointer */ 537 skb_reserve(n, headerlen); 538 /* Set the tail pointer and length */ 539 skb_put(n, skb->len); 540 n->csum = skb->csum; 541 n->ip_summed = skb->ip_summed; 542 543 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 544 BUG(); 545 546 copy_skb_header(n, skb); 547 return n; 548 } 549 550 551 /** 552 * pskb_copy - create copy of an sk_buff with private head. 553 * @skb: buffer to copy 554 * @gfp_mask: allocation priority 555 * 556 * Make a copy of both an &sk_buff and part of its data, located 557 * in header. Fragmented data remain shared. This is used when 558 * the caller wishes to modify only header of &sk_buff and needs 559 * private copy of the header to alter. Returns %NULL on failure 560 * or the pointer to the buffer on success. 561 * The returned buffer has a reference count of 1. 562 */ 563 564 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 565 { 566 /* 567 * Allocate the copy buffer 568 */ 569 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 570 571 if (!n) 572 goto out; 573 574 /* Set the data pointer */ 575 skb_reserve(n, skb->data - skb->head); 576 /* Set the tail pointer and length */ 577 skb_put(n, skb_headlen(skb)); 578 /* Copy the bytes */ 579 memcpy(n->data, skb->data, n->len); 580 n->csum = skb->csum; 581 n->ip_summed = skb->ip_summed; 582 583 n->data_len = skb->data_len; 584 n->len = skb->len; 585 586 if (skb_shinfo(skb)->nr_frags) { 587 int i; 588 589 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 590 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 591 get_page(skb_shinfo(n)->frags[i].page); 592 } 593 skb_shinfo(n)->nr_frags = i; 594 } 595 596 if (skb_shinfo(skb)->frag_list) { 597 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 598 skb_clone_fraglist(n); 599 } 600 601 copy_skb_header(n, skb); 602 out: 603 return n; 604 } 605 606 /** 607 * pskb_expand_head - reallocate header of &sk_buff 608 * @skb: buffer to reallocate 609 * @nhead: room to add at head 610 * @ntail: room to add at tail 611 * @gfp_mask: allocation priority 612 * 613 * Expands (or creates identical copy, if &nhead and &ntail are zero) 614 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 615 * reference count of 1. Returns zero in the case of success or error, 616 * if expansion failed. In the last case, &sk_buff is not changed. 617 * 618 * All the pointers pointing into skb header may change and must be 619 * reloaded after call to this function. 620 */ 621 622 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 623 gfp_t gfp_mask) 624 { 625 int i; 626 u8 *data; 627 int size = nhead + (skb->end - skb->head) + ntail; 628 long off; 629 630 if (skb_shared(skb)) 631 BUG(); 632 633 size = SKB_DATA_ALIGN(size); 634 635 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 636 if (!data) 637 goto nodata; 638 639 /* Copy only real data... and, alas, header. This should be 640 * optimized for the cases when header is void. */ 641 memcpy(data + nhead, skb->head, skb->tail - skb->head); 642 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 643 644 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 645 get_page(skb_shinfo(skb)->frags[i].page); 646 647 if (skb_shinfo(skb)->frag_list) 648 skb_clone_fraglist(skb); 649 650 skb_release_data(skb); 651 652 off = (data + nhead) - skb->head; 653 654 skb->head = data; 655 skb->end = data + size; 656 skb->data += off; 657 skb->tail += off; 658 skb->mac.raw += off; 659 skb->h.raw += off; 660 skb->nh.raw += off; 661 skb->cloned = 0; 662 skb->nohdr = 0; 663 atomic_set(&skb_shinfo(skb)->dataref, 1); 664 return 0; 665 666 nodata: 667 return -ENOMEM; 668 } 669 670 /* Make private copy of skb with writable head and some headroom */ 671 672 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 673 { 674 struct sk_buff *skb2; 675 int delta = headroom - skb_headroom(skb); 676 677 if (delta <= 0) 678 skb2 = pskb_copy(skb, GFP_ATOMIC); 679 else { 680 skb2 = skb_clone(skb, GFP_ATOMIC); 681 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 682 GFP_ATOMIC)) { 683 kfree_skb(skb2); 684 skb2 = NULL; 685 } 686 } 687 return skb2; 688 } 689 690 691 /** 692 * skb_copy_expand - copy and expand sk_buff 693 * @skb: buffer to copy 694 * @newheadroom: new free bytes at head 695 * @newtailroom: new free bytes at tail 696 * @gfp_mask: allocation priority 697 * 698 * Make a copy of both an &sk_buff and its data and while doing so 699 * allocate additional space. 700 * 701 * This is used when the caller wishes to modify the data and needs a 702 * private copy of the data to alter as well as more space for new fields. 703 * Returns %NULL on failure or the pointer to the buffer 704 * on success. The returned buffer has a reference count of 1. 705 * 706 * You must pass %GFP_ATOMIC as the allocation priority if this function 707 * is called from an interrupt. 708 * 709 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 710 * only by netfilter in the cases when checksum is recalculated? --ANK 711 */ 712 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 713 int newheadroom, int newtailroom, 714 gfp_t gfp_mask) 715 { 716 /* 717 * Allocate the copy buffer 718 */ 719 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 720 gfp_mask); 721 int head_copy_len, head_copy_off; 722 723 if (!n) 724 return NULL; 725 726 skb_reserve(n, newheadroom); 727 728 /* Set the tail pointer and length */ 729 skb_put(n, skb->len); 730 731 head_copy_len = skb_headroom(skb); 732 head_copy_off = 0; 733 if (newheadroom <= head_copy_len) 734 head_copy_len = newheadroom; 735 else 736 head_copy_off = newheadroom - head_copy_len; 737 738 /* Copy the linear header and data. */ 739 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 740 skb->len + head_copy_len)) 741 BUG(); 742 743 copy_skb_header(n, skb); 744 745 return n; 746 } 747 748 /** 749 * skb_pad - zero pad the tail of an skb 750 * @skb: buffer to pad 751 * @pad: space to pad 752 * 753 * Ensure that a buffer is followed by a padding area that is zero 754 * filled. Used by network drivers which may DMA or transfer data 755 * beyond the buffer end onto the wire. 756 * 757 * May return NULL in out of memory cases. 758 */ 759 760 struct sk_buff *skb_pad(struct sk_buff *skb, int pad) 761 { 762 struct sk_buff *nskb; 763 764 /* If the skbuff is non linear tailroom is always zero.. */ 765 if (skb_tailroom(skb) >= pad) { 766 memset(skb->data+skb->len, 0, pad); 767 return skb; 768 } 769 770 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC); 771 kfree_skb(skb); 772 if (nskb) 773 memset(nskb->data+nskb->len, 0, pad); 774 return nskb; 775 } 776 777 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1. 778 * If realloc==0 and trimming is impossible without change of data, 779 * it is BUG(). 780 */ 781 782 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc) 783 { 784 int offset = skb_headlen(skb); 785 int nfrags = skb_shinfo(skb)->nr_frags; 786 int i; 787 788 for (i = 0; i < nfrags; i++) { 789 int end = offset + skb_shinfo(skb)->frags[i].size; 790 if (end > len) { 791 if (skb_cloned(skb)) { 792 BUG_ON(!realloc); 793 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 794 return -ENOMEM; 795 } 796 if (len <= offset) { 797 put_page(skb_shinfo(skb)->frags[i].page); 798 skb_shinfo(skb)->nr_frags--; 799 } else { 800 skb_shinfo(skb)->frags[i].size = len - offset; 801 } 802 } 803 offset = end; 804 } 805 806 if (offset < len) { 807 skb->data_len -= skb->len - len; 808 skb->len = len; 809 } else { 810 if (len <= skb_headlen(skb)) { 811 skb->len = len; 812 skb->data_len = 0; 813 skb->tail = skb->data + len; 814 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb)) 815 skb_drop_fraglist(skb); 816 } else { 817 skb->data_len -= skb->len - len; 818 skb->len = len; 819 } 820 } 821 822 return 0; 823 } 824 825 /** 826 * __pskb_pull_tail - advance tail of skb header 827 * @skb: buffer to reallocate 828 * @delta: number of bytes to advance tail 829 * 830 * The function makes a sense only on a fragmented &sk_buff, 831 * it expands header moving its tail forward and copying necessary 832 * data from fragmented part. 833 * 834 * &sk_buff MUST have reference count of 1. 835 * 836 * Returns %NULL (and &sk_buff does not change) if pull failed 837 * or value of new tail of skb in the case of success. 838 * 839 * All the pointers pointing into skb header may change and must be 840 * reloaded after call to this function. 841 */ 842 843 /* Moves tail of skb head forward, copying data from fragmented part, 844 * when it is necessary. 845 * 1. It may fail due to malloc failure. 846 * 2. It may change skb pointers. 847 * 848 * It is pretty complicated. Luckily, it is called only in exceptional cases. 849 */ 850 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 851 { 852 /* If skb has not enough free space at tail, get new one 853 * plus 128 bytes for future expansions. If we have enough 854 * room at tail, reallocate without expansion only if skb is cloned. 855 */ 856 int i, k, eat = (skb->tail + delta) - skb->end; 857 858 if (eat > 0 || skb_cloned(skb)) { 859 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 860 GFP_ATOMIC)) 861 return NULL; 862 } 863 864 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 865 BUG(); 866 867 /* Optimization: no fragments, no reasons to preestimate 868 * size of pulled pages. Superb. 869 */ 870 if (!skb_shinfo(skb)->frag_list) 871 goto pull_pages; 872 873 /* Estimate size of pulled pages. */ 874 eat = delta; 875 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 876 if (skb_shinfo(skb)->frags[i].size >= eat) 877 goto pull_pages; 878 eat -= skb_shinfo(skb)->frags[i].size; 879 } 880 881 /* If we need update frag list, we are in troubles. 882 * Certainly, it possible to add an offset to skb data, 883 * but taking into account that pulling is expected to 884 * be very rare operation, it is worth to fight against 885 * further bloating skb head and crucify ourselves here instead. 886 * Pure masohism, indeed. 8)8) 887 */ 888 if (eat) { 889 struct sk_buff *list = skb_shinfo(skb)->frag_list; 890 struct sk_buff *clone = NULL; 891 struct sk_buff *insp = NULL; 892 893 do { 894 BUG_ON(!list); 895 896 if (list->len <= eat) { 897 /* Eaten as whole. */ 898 eat -= list->len; 899 list = list->next; 900 insp = list; 901 } else { 902 /* Eaten partially. */ 903 904 if (skb_shared(list)) { 905 /* Sucks! We need to fork list. :-( */ 906 clone = skb_clone(list, GFP_ATOMIC); 907 if (!clone) 908 return NULL; 909 insp = list->next; 910 list = clone; 911 } else { 912 /* This may be pulled without 913 * problems. */ 914 insp = list; 915 } 916 if (!pskb_pull(list, eat)) { 917 if (clone) 918 kfree_skb(clone); 919 return NULL; 920 } 921 break; 922 } 923 } while (eat); 924 925 /* Free pulled out fragments. */ 926 while ((list = skb_shinfo(skb)->frag_list) != insp) { 927 skb_shinfo(skb)->frag_list = list->next; 928 kfree_skb(list); 929 } 930 /* And insert new clone at head. */ 931 if (clone) { 932 clone->next = list; 933 skb_shinfo(skb)->frag_list = clone; 934 } 935 } 936 /* Success! Now we may commit changes to skb data. */ 937 938 pull_pages: 939 eat = delta; 940 k = 0; 941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 942 if (skb_shinfo(skb)->frags[i].size <= eat) { 943 put_page(skb_shinfo(skb)->frags[i].page); 944 eat -= skb_shinfo(skb)->frags[i].size; 945 } else { 946 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 947 if (eat) { 948 skb_shinfo(skb)->frags[k].page_offset += eat; 949 skb_shinfo(skb)->frags[k].size -= eat; 950 eat = 0; 951 } 952 k++; 953 } 954 } 955 skb_shinfo(skb)->nr_frags = k; 956 957 skb->tail += delta; 958 skb->data_len -= delta; 959 960 return skb->tail; 961 } 962 963 /* Copy some data bits from skb to kernel buffer. */ 964 965 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 966 { 967 int i, copy; 968 int start = skb_headlen(skb); 969 970 if (offset > (int)skb->len - len) 971 goto fault; 972 973 /* Copy header. */ 974 if ((copy = start - offset) > 0) { 975 if (copy > len) 976 copy = len; 977 memcpy(to, skb->data + offset, copy); 978 if ((len -= copy) == 0) 979 return 0; 980 offset += copy; 981 to += copy; 982 } 983 984 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 985 int end; 986 987 BUG_TRAP(start <= offset + len); 988 989 end = start + skb_shinfo(skb)->frags[i].size; 990 if ((copy = end - offset) > 0) { 991 u8 *vaddr; 992 993 if (copy > len) 994 copy = len; 995 996 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 997 memcpy(to, 998 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 999 offset - start, copy); 1000 kunmap_skb_frag(vaddr); 1001 1002 if ((len -= copy) == 0) 1003 return 0; 1004 offset += copy; 1005 to += copy; 1006 } 1007 start = end; 1008 } 1009 1010 if (skb_shinfo(skb)->frag_list) { 1011 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1012 1013 for (; list; list = list->next) { 1014 int end; 1015 1016 BUG_TRAP(start <= offset + len); 1017 1018 end = start + list->len; 1019 if ((copy = end - offset) > 0) { 1020 if (copy > len) 1021 copy = len; 1022 if (skb_copy_bits(list, offset - start, 1023 to, copy)) 1024 goto fault; 1025 if ((len -= copy) == 0) 1026 return 0; 1027 offset += copy; 1028 to += copy; 1029 } 1030 start = end; 1031 } 1032 } 1033 if (!len) 1034 return 0; 1035 1036 fault: 1037 return -EFAULT; 1038 } 1039 1040 /** 1041 * skb_store_bits - store bits from kernel buffer to skb 1042 * @skb: destination buffer 1043 * @offset: offset in destination 1044 * @from: source buffer 1045 * @len: number of bytes to copy 1046 * 1047 * Copy the specified number of bytes from the source buffer to the 1048 * destination skb. This function handles all the messy bits of 1049 * traversing fragment lists and such. 1050 */ 1051 1052 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1053 { 1054 int i, copy; 1055 int start = skb_headlen(skb); 1056 1057 if (offset > (int)skb->len - len) 1058 goto fault; 1059 1060 if ((copy = start - offset) > 0) { 1061 if (copy > len) 1062 copy = len; 1063 memcpy(skb->data + offset, from, copy); 1064 if ((len -= copy) == 0) 1065 return 0; 1066 offset += copy; 1067 from += copy; 1068 } 1069 1070 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1071 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1072 int end; 1073 1074 BUG_TRAP(start <= offset + len); 1075 1076 end = start + frag->size; 1077 if ((copy = end - offset) > 0) { 1078 u8 *vaddr; 1079 1080 if (copy > len) 1081 copy = len; 1082 1083 vaddr = kmap_skb_frag(frag); 1084 memcpy(vaddr + frag->page_offset + offset - start, 1085 from, copy); 1086 kunmap_skb_frag(vaddr); 1087 1088 if ((len -= copy) == 0) 1089 return 0; 1090 offset += copy; 1091 from += copy; 1092 } 1093 start = end; 1094 } 1095 1096 if (skb_shinfo(skb)->frag_list) { 1097 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1098 1099 for (; list; list = list->next) { 1100 int end; 1101 1102 BUG_TRAP(start <= offset + len); 1103 1104 end = start + list->len; 1105 if ((copy = end - offset) > 0) { 1106 if (copy > len) 1107 copy = len; 1108 if (skb_store_bits(list, offset - start, 1109 from, copy)) 1110 goto fault; 1111 if ((len -= copy) == 0) 1112 return 0; 1113 offset += copy; 1114 from += copy; 1115 } 1116 start = end; 1117 } 1118 } 1119 if (!len) 1120 return 0; 1121 1122 fault: 1123 return -EFAULT; 1124 } 1125 1126 EXPORT_SYMBOL(skb_store_bits); 1127 1128 /* Checksum skb data. */ 1129 1130 unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1131 int len, unsigned int csum) 1132 { 1133 int start = skb_headlen(skb); 1134 int i, copy = start - offset; 1135 int pos = 0; 1136 1137 /* Checksum header. */ 1138 if (copy > 0) { 1139 if (copy > len) 1140 copy = len; 1141 csum = csum_partial(skb->data + offset, copy, csum); 1142 if ((len -= copy) == 0) 1143 return csum; 1144 offset += copy; 1145 pos = copy; 1146 } 1147 1148 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1149 int end; 1150 1151 BUG_TRAP(start <= offset + len); 1152 1153 end = start + skb_shinfo(skb)->frags[i].size; 1154 if ((copy = end - offset) > 0) { 1155 unsigned int csum2; 1156 u8 *vaddr; 1157 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1158 1159 if (copy > len) 1160 copy = len; 1161 vaddr = kmap_skb_frag(frag); 1162 csum2 = csum_partial(vaddr + frag->page_offset + 1163 offset - start, copy, 0); 1164 kunmap_skb_frag(vaddr); 1165 csum = csum_block_add(csum, csum2, pos); 1166 if (!(len -= copy)) 1167 return csum; 1168 offset += copy; 1169 pos += copy; 1170 } 1171 start = end; 1172 } 1173 1174 if (skb_shinfo(skb)->frag_list) { 1175 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1176 1177 for (; list; list = list->next) { 1178 int end; 1179 1180 BUG_TRAP(start <= offset + len); 1181 1182 end = start + list->len; 1183 if ((copy = end - offset) > 0) { 1184 unsigned int csum2; 1185 if (copy > len) 1186 copy = len; 1187 csum2 = skb_checksum(list, offset - start, 1188 copy, 0); 1189 csum = csum_block_add(csum, csum2, pos); 1190 if ((len -= copy) == 0) 1191 return csum; 1192 offset += copy; 1193 pos += copy; 1194 } 1195 start = end; 1196 } 1197 } 1198 BUG_ON(len); 1199 1200 return csum; 1201 } 1202 1203 /* Both of above in one bottle. */ 1204 1205 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1206 u8 *to, int len, unsigned int csum) 1207 { 1208 int start = skb_headlen(skb); 1209 int i, copy = start - offset; 1210 int pos = 0; 1211 1212 /* Copy header. */ 1213 if (copy > 0) { 1214 if (copy > len) 1215 copy = len; 1216 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1217 copy, csum); 1218 if ((len -= copy) == 0) 1219 return csum; 1220 offset += copy; 1221 to += copy; 1222 pos = copy; 1223 } 1224 1225 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1226 int end; 1227 1228 BUG_TRAP(start <= offset + len); 1229 1230 end = start + skb_shinfo(skb)->frags[i].size; 1231 if ((copy = end - offset) > 0) { 1232 unsigned int csum2; 1233 u8 *vaddr; 1234 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1235 1236 if (copy > len) 1237 copy = len; 1238 vaddr = kmap_skb_frag(frag); 1239 csum2 = csum_partial_copy_nocheck(vaddr + 1240 frag->page_offset + 1241 offset - start, to, 1242 copy, 0); 1243 kunmap_skb_frag(vaddr); 1244 csum = csum_block_add(csum, csum2, pos); 1245 if (!(len -= copy)) 1246 return csum; 1247 offset += copy; 1248 to += copy; 1249 pos += copy; 1250 } 1251 start = end; 1252 } 1253 1254 if (skb_shinfo(skb)->frag_list) { 1255 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1256 1257 for (; list; list = list->next) { 1258 unsigned int csum2; 1259 int end; 1260 1261 BUG_TRAP(start <= offset + len); 1262 1263 end = start + list->len; 1264 if ((copy = end - offset) > 0) { 1265 if (copy > len) 1266 copy = len; 1267 csum2 = skb_copy_and_csum_bits(list, 1268 offset - start, 1269 to, copy, 0); 1270 csum = csum_block_add(csum, csum2, pos); 1271 if ((len -= copy) == 0) 1272 return csum; 1273 offset += copy; 1274 to += copy; 1275 pos += copy; 1276 } 1277 start = end; 1278 } 1279 } 1280 BUG_ON(len); 1281 return csum; 1282 } 1283 1284 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1285 { 1286 unsigned int csum; 1287 long csstart; 1288 1289 if (skb->ip_summed == CHECKSUM_HW) 1290 csstart = skb->h.raw - skb->data; 1291 else 1292 csstart = skb_headlen(skb); 1293 1294 BUG_ON(csstart > skb_headlen(skb)); 1295 1296 memcpy(to, skb->data, csstart); 1297 1298 csum = 0; 1299 if (csstart != skb->len) 1300 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1301 skb->len - csstart, 0); 1302 1303 if (skb->ip_summed == CHECKSUM_HW) { 1304 long csstuff = csstart + skb->csum; 1305 1306 *((unsigned short *)(to + csstuff)) = csum_fold(csum); 1307 } 1308 } 1309 1310 /** 1311 * skb_dequeue - remove from the head of the queue 1312 * @list: list to dequeue from 1313 * 1314 * Remove the head of the list. The list lock is taken so the function 1315 * may be used safely with other locking list functions. The head item is 1316 * returned or %NULL if the list is empty. 1317 */ 1318 1319 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1320 { 1321 unsigned long flags; 1322 struct sk_buff *result; 1323 1324 spin_lock_irqsave(&list->lock, flags); 1325 result = __skb_dequeue(list); 1326 spin_unlock_irqrestore(&list->lock, flags); 1327 return result; 1328 } 1329 1330 /** 1331 * skb_dequeue_tail - remove from the tail of the queue 1332 * @list: list to dequeue from 1333 * 1334 * Remove the tail of the list. The list lock is taken so the function 1335 * may be used safely with other locking list functions. The tail item is 1336 * returned or %NULL if the list is empty. 1337 */ 1338 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1339 { 1340 unsigned long flags; 1341 struct sk_buff *result; 1342 1343 spin_lock_irqsave(&list->lock, flags); 1344 result = __skb_dequeue_tail(list); 1345 spin_unlock_irqrestore(&list->lock, flags); 1346 return result; 1347 } 1348 1349 /** 1350 * skb_queue_purge - empty a list 1351 * @list: list to empty 1352 * 1353 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1354 * the list and one reference dropped. This function takes the list 1355 * lock and is atomic with respect to other list locking functions. 1356 */ 1357 void skb_queue_purge(struct sk_buff_head *list) 1358 { 1359 struct sk_buff *skb; 1360 while ((skb = skb_dequeue(list)) != NULL) 1361 kfree_skb(skb); 1362 } 1363 1364 /** 1365 * skb_queue_head - queue a buffer at the list head 1366 * @list: list to use 1367 * @newsk: buffer to queue 1368 * 1369 * Queue a buffer at the start of the list. This function takes the 1370 * list lock and can be used safely with other locking &sk_buff functions 1371 * safely. 1372 * 1373 * A buffer cannot be placed on two lists at the same time. 1374 */ 1375 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1376 { 1377 unsigned long flags; 1378 1379 spin_lock_irqsave(&list->lock, flags); 1380 __skb_queue_head(list, newsk); 1381 spin_unlock_irqrestore(&list->lock, flags); 1382 } 1383 1384 /** 1385 * skb_queue_tail - queue a buffer at the list tail 1386 * @list: list to use 1387 * @newsk: buffer to queue 1388 * 1389 * Queue a buffer at the tail of the list. This function takes the 1390 * list lock and can be used safely with other locking &sk_buff functions 1391 * safely. 1392 * 1393 * A buffer cannot be placed on two lists at the same time. 1394 */ 1395 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1396 { 1397 unsigned long flags; 1398 1399 spin_lock_irqsave(&list->lock, flags); 1400 __skb_queue_tail(list, newsk); 1401 spin_unlock_irqrestore(&list->lock, flags); 1402 } 1403 1404 /** 1405 * skb_unlink - remove a buffer from a list 1406 * @skb: buffer to remove 1407 * @list: list to use 1408 * 1409 * Remove a packet from a list. The list locks are taken and this 1410 * function is atomic with respect to other list locked calls 1411 * 1412 * You must know what list the SKB is on. 1413 */ 1414 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1415 { 1416 unsigned long flags; 1417 1418 spin_lock_irqsave(&list->lock, flags); 1419 __skb_unlink(skb, list); 1420 spin_unlock_irqrestore(&list->lock, flags); 1421 } 1422 1423 /** 1424 * skb_append - append a buffer 1425 * @old: buffer to insert after 1426 * @newsk: buffer to insert 1427 * @list: list to use 1428 * 1429 * Place a packet after a given packet in a list. The list locks are taken 1430 * and this function is atomic with respect to other list locked calls. 1431 * A buffer cannot be placed on two lists at the same time. 1432 */ 1433 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1434 { 1435 unsigned long flags; 1436 1437 spin_lock_irqsave(&list->lock, flags); 1438 __skb_append(old, newsk, list); 1439 spin_unlock_irqrestore(&list->lock, flags); 1440 } 1441 1442 1443 /** 1444 * skb_insert - insert a buffer 1445 * @old: buffer to insert before 1446 * @newsk: buffer to insert 1447 * @list: list to use 1448 * 1449 * Place a packet before a given packet in a list. The list locks are 1450 * taken and this function is atomic with respect to other list locked 1451 * calls. 1452 * 1453 * A buffer cannot be placed on two lists at the same time. 1454 */ 1455 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1456 { 1457 unsigned long flags; 1458 1459 spin_lock_irqsave(&list->lock, flags); 1460 __skb_insert(newsk, old->prev, old, list); 1461 spin_unlock_irqrestore(&list->lock, flags); 1462 } 1463 1464 #if 0 1465 /* 1466 * Tune the memory allocator for a new MTU size. 1467 */ 1468 void skb_add_mtu(int mtu) 1469 { 1470 /* Must match allocation in alloc_skb */ 1471 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1472 1473 kmem_add_cache_size(mtu); 1474 } 1475 #endif 1476 1477 static inline void skb_split_inside_header(struct sk_buff *skb, 1478 struct sk_buff* skb1, 1479 const u32 len, const int pos) 1480 { 1481 int i; 1482 1483 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1484 1485 /* And move data appendix as is. */ 1486 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1487 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1488 1489 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1490 skb_shinfo(skb)->nr_frags = 0; 1491 skb1->data_len = skb->data_len; 1492 skb1->len += skb1->data_len; 1493 skb->data_len = 0; 1494 skb->len = len; 1495 skb->tail = skb->data + len; 1496 } 1497 1498 static inline void skb_split_no_header(struct sk_buff *skb, 1499 struct sk_buff* skb1, 1500 const u32 len, int pos) 1501 { 1502 int i, k = 0; 1503 const int nfrags = skb_shinfo(skb)->nr_frags; 1504 1505 skb_shinfo(skb)->nr_frags = 0; 1506 skb1->len = skb1->data_len = skb->len - len; 1507 skb->len = len; 1508 skb->data_len = len - pos; 1509 1510 for (i = 0; i < nfrags; i++) { 1511 int size = skb_shinfo(skb)->frags[i].size; 1512 1513 if (pos + size > len) { 1514 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1515 1516 if (pos < len) { 1517 /* Split frag. 1518 * We have two variants in this case: 1519 * 1. Move all the frag to the second 1520 * part, if it is possible. F.e. 1521 * this approach is mandatory for TUX, 1522 * where splitting is expensive. 1523 * 2. Split is accurately. We make this. 1524 */ 1525 get_page(skb_shinfo(skb)->frags[i].page); 1526 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1527 skb_shinfo(skb1)->frags[0].size -= len - pos; 1528 skb_shinfo(skb)->frags[i].size = len - pos; 1529 skb_shinfo(skb)->nr_frags++; 1530 } 1531 k++; 1532 } else 1533 skb_shinfo(skb)->nr_frags++; 1534 pos += size; 1535 } 1536 skb_shinfo(skb1)->nr_frags = k; 1537 } 1538 1539 /** 1540 * skb_split - Split fragmented skb to two parts at length len. 1541 * @skb: the buffer to split 1542 * @skb1: the buffer to receive the second part 1543 * @len: new length for skb 1544 */ 1545 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1546 { 1547 int pos = skb_headlen(skb); 1548 1549 if (len < pos) /* Split line is inside header. */ 1550 skb_split_inside_header(skb, skb1, len, pos); 1551 else /* Second chunk has no header, nothing to copy. */ 1552 skb_split_no_header(skb, skb1, len, pos); 1553 } 1554 1555 /** 1556 * skb_prepare_seq_read - Prepare a sequential read of skb data 1557 * @skb: the buffer to read 1558 * @from: lower offset of data to be read 1559 * @to: upper offset of data to be read 1560 * @st: state variable 1561 * 1562 * Initializes the specified state variable. Must be called before 1563 * invoking skb_seq_read() for the first time. 1564 */ 1565 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1566 unsigned int to, struct skb_seq_state *st) 1567 { 1568 st->lower_offset = from; 1569 st->upper_offset = to; 1570 st->root_skb = st->cur_skb = skb; 1571 st->frag_idx = st->stepped_offset = 0; 1572 st->frag_data = NULL; 1573 } 1574 1575 /** 1576 * skb_seq_read - Sequentially read skb data 1577 * @consumed: number of bytes consumed by the caller so far 1578 * @data: destination pointer for data to be returned 1579 * @st: state variable 1580 * 1581 * Reads a block of skb data at &consumed relative to the 1582 * lower offset specified to skb_prepare_seq_read(). Assigns 1583 * the head of the data block to &data and returns the length 1584 * of the block or 0 if the end of the skb data or the upper 1585 * offset has been reached. 1586 * 1587 * The caller is not required to consume all of the data 1588 * returned, i.e. &consumed is typically set to the number 1589 * of bytes already consumed and the next call to 1590 * skb_seq_read() will return the remaining part of the block. 1591 * 1592 * Note: The size of each block of data returned can be arbitary, 1593 * this limitation is the cost for zerocopy seqeuental 1594 * reads of potentially non linear data. 1595 * 1596 * Note: Fragment lists within fragments are not implemented 1597 * at the moment, state->root_skb could be replaced with 1598 * a stack for this purpose. 1599 */ 1600 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1601 struct skb_seq_state *st) 1602 { 1603 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1604 skb_frag_t *frag; 1605 1606 if (unlikely(abs_offset >= st->upper_offset)) 1607 return 0; 1608 1609 next_skb: 1610 block_limit = skb_headlen(st->cur_skb); 1611 1612 if (abs_offset < block_limit) { 1613 *data = st->cur_skb->data + abs_offset; 1614 return block_limit - abs_offset; 1615 } 1616 1617 if (st->frag_idx == 0 && !st->frag_data) 1618 st->stepped_offset += skb_headlen(st->cur_skb); 1619 1620 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1621 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1622 block_limit = frag->size + st->stepped_offset; 1623 1624 if (abs_offset < block_limit) { 1625 if (!st->frag_data) 1626 st->frag_data = kmap_skb_frag(frag); 1627 1628 *data = (u8 *) st->frag_data + frag->page_offset + 1629 (abs_offset - st->stepped_offset); 1630 1631 return block_limit - abs_offset; 1632 } 1633 1634 if (st->frag_data) { 1635 kunmap_skb_frag(st->frag_data); 1636 st->frag_data = NULL; 1637 } 1638 1639 st->frag_idx++; 1640 st->stepped_offset += frag->size; 1641 } 1642 1643 if (st->cur_skb->next) { 1644 st->cur_skb = st->cur_skb->next; 1645 st->frag_idx = 0; 1646 goto next_skb; 1647 } else if (st->root_skb == st->cur_skb && 1648 skb_shinfo(st->root_skb)->frag_list) { 1649 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1650 goto next_skb; 1651 } 1652 1653 return 0; 1654 } 1655 1656 /** 1657 * skb_abort_seq_read - Abort a sequential read of skb data 1658 * @st: state variable 1659 * 1660 * Must be called if skb_seq_read() was not called until it 1661 * returned 0. 1662 */ 1663 void skb_abort_seq_read(struct skb_seq_state *st) 1664 { 1665 if (st->frag_data) 1666 kunmap_skb_frag(st->frag_data); 1667 } 1668 1669 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1670 1671 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1672 struct ts_config *conf, 1673 struct ts_state *state) 1674 { 1675 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1676 } 1677 1678 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1679 { 1680 skb_abort_seq_read(TS_SKB_CB(state)); 1681 } 1682 1683 /** 1684 * skb_find_text - Find a text pattern in skb data 1685 * @skb: the buffer to look in 1686 * @from: search offset 1687 * @to: search limit 1688 * @config: textsearch configuration 1689 * @state: uninitialized textsearch state variable 1690 * 1691 * Finds a pattern in the skb data according to the specified 1692 * textsearch configuration. Use textsearch_next() to retrieve 1693 * subsequent occurrences of the pattern. Returns the offset 1694 * to the first occurrence or UINT_MAX if no match was found. 1695 */ 1696 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1697 unsigned int to, struct ts_config *config, 1698 struct ts_state *state) 1699 { 1700 config->get_next_block = skb_ts_get_next_block; 1701 config->finish = skb_ts_finish; 1702 1703 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1704 1705 return textsearch_find(config, state); 1706 } 1707 1708 /** 1709 * skb_append_datato_frags: - append the user data to a skb 1710 * @sk: sock structure 1711 * @skb: skb structure to be appened with user data. 1712 * @getfrag: call back function to be used for getting the user data 1713 * @from: pointer to user message iov 1714 * @length: length of the iov message 1715 * 1716 * Description: This procedure append the user data in the fragment part 1717 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1718 */ 1719 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1720 int (*getfrag)(void *from, char *to, int offset, 1721 int len, int odd, struct sk_buff *skb), 1722 void *from, int length) 1723 { 1724 int frg_cnt = 0; 1725 skb_frag_t *frag = NULL; 1726 struct page *page = NULL; 1727 int copy, left; 1728 int offset = 0; 1729 int ret; 1730 1731 do { 1732 /* Return error if we don't have space for new frag */ 1733 frg_cnt = skb_shinfo(skb)->nr_frags; 1734 if (frg_cnt >= MAX_SKB_FRAGS) 1735 return -EFAULT; 1736 1737 /* allocate a new page for next frag */ 1738 page = alloc_pages(sk->sk_allocation, 0); 1739 1740 /* If alloc_page fails just return failure and caller will 1741 * free previous allocated pages by doing kfree_skb() 1742 */ 1743 if (page == NULL) 1744 return -ENOMEM; 1745 1746 /* initialize the next frag */ 1747 sk->sk_sndmsg_page = page; 1748 sk->sk_sndmsg_off = 0; 1749 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1750 skb->truesize += PAGE_SIZE; 1751 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1752 1753 /* get the new initialized frag */ 1754 frg_cnt = skb_shinfo(skb)->nr_frags; 1755 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1756 1757 /* copy the user data to page */ 1758 left = PAGE_SIZE - frag->page_offset; 1759 copy = (length > left)? left : length; 1760 1761 ret = getfrag(from, (page_address(frag->page) + 1762 frag->page_offset + frag->size), 1763 offset, copy, 0, skb); 1764 if (ret < 0) 1765 return -EFAULT; 1766 1767 /* copy was successful so update the size parameters */ 1768 sk->sk_sndmsg_off += copy; 1769 frag->size += copy; 1770 skb->len += copy; 1771 skb->data_len += copy; 1772 offset += copy; 1773 length -= copy; 1774 1775 } while (length > 0); 1776 1777 return 0; 1778 } 1779 1780 void __init skb_init(void) 1781 { 1782 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 1783 sizeof(struct sk_buff), 1784 0, 1785 SLAB_HWCACHE_ALIGN, 1786 NULL, NULL); 1787 if (!skbuff_head_cache) 1788 panic("cannot create skbuff cache"); 1789 1790 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 1791 (2*sizeof(struct sk_buff)) + 1792 sizeof(atomic_t), 1793 0, 1794 SLAB_HWCACHE_ALIGN, 1795 NULL, NULL); 1796 if (!skbuff_fclone_cache) 1797 panic("cannot create skbuff cache"); 1798 } 1799 1800 EXPORT_SYMBOL(___pskb_trim); 1801 EXPORT_SYMBOL(__kfree_skb); 1802 EXPORT_SYMBOL(__pskb_pull_tail); 1803 EXPORT_SYMBOL(__alloc_skb); 1804 EXPORT_SYMBOL(pskb_copy); 1805 EXPORT_SYMBOL(pskb_expand_head); 1806 EXPORT_SYMBOL(skb_checksum); 1807 EXPORT_SYMBOL(skb_clone); 1808 EXPORT_SYMBOL(skb_clone_fraglist); 1809 EXPORT_SYMBOL(skb_copy); 1810 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1811 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1812 EXPORT_SYMBOL(skb_copy_bits); 1813 EXPORT_SYMBOL(skb_copy_expand); 1814 EXPORT_SYMBOL(skb_over_panic); 1815 EXPORT_SYMBOL(skb_pad); 1816 EXPORT_SYMBOL(skb_realloc_headroom); 1817 EXPORT_SYMBOL(skb_under_panic); 1818 EXPORT_SYMBOL(skb_dequeue); 1819 EXPORT_SYMBOL(skb_dequeue_tail); 1820 EXPORT_SYMBOL(skb_insert); 1821 EXPORT_SYMBOL(skb_queue_purge); 1822 EXPORT_SYMBOL(skb_queue_head); 1823 EXPORT_SYMBOL(skb_queue_tail); 1824 EXPORT_SYMBOL(skb_unlink); 1825 EXPORT_SYMBOL(skb_append); 1826 EXPORT_SYMBOL(skb_split); 1827 EXPORT_SYMBOL(skb_prepare_seq_read); 1828 EXPORT_SYMBOL(skb_seq_read); 1829 EXPORT_SYMBOL(skb_abort_seq_read); 1830 EXPORT_SYMBOL(skb_find_text); 1831 EXPORT_SYMBOL(skb_append_datato_frags); 1832