xref: /linux/net/core/skbuff.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 	                  "data:%p tail:%p end:%p dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 	       skb->dev ? skb->dev->name : "<NULL>");
94 	BUG();
95 }
96 
97 /**
98  *	skb_under_panic	- 	private function
99  *	@skb: buffer
100  *	@sz: size
101  *	@here: address
102  *
103  *	Out of line support code for skb_push(). Not user callable.
104  */
105 
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 {
108 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 	                  "data:%p tail:%p end:%p dev:%s\n",
110 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 	       skb->dev ? skb->dev->name : "<NULL>");
112 	BUG();
113 }
114 
115 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
116  *	'private' fields and also do memory statistics to find all the
117  *	[BEEP] leaks.
118  *
119  */
120 
121 /**
122  *	__alloc_skb	-	allocate a network buffer
123  *	@size: size to allocate
124  *	@gfp_mask: allocation mask
125  *	@fclone: allocate from fclone cache instead of head cache
126  *		and allocate a cloned (child) skb
127  *
128  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
129  *	tail room of size bytes. The object has a reference count of one.
130  *	The return is the buffer. On a failure the return is %NULL.
131  *
132  *	Buffers may only be allocated from interrupts using a @gfp_mask of
133  *	%GFP_ATOMIC.
134  */
135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
136 			    int fclone)
137 {
138 	kmem_cache_t *cache;
139 	struct skb_shared_info *shinfo;
140 	struct sk_buff *skb;
141 	u8 *data;
142 
143 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
144 
145 	/* Get the HEAD */
146 	skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
147 	if (!skb)
148 		goto out;
149 
150 	/* Get the DATA. Size must match skb_add_mtu(). */
151 	size = SKB_DATA_ALIGN(size);
152 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
153 	if (!data)
154 		goto nodata;
155 
156 	memset(skb, 0, offsetof(struct sk_buff, truesize));
157 	skb->truesize = size + sizeof(struct sk_buff);
158 	atomic_set(&skb->users, 1);
159 	skb->head = data;
160 	skb->data = data;
161 	skb->tail = data;
162 	skb->end  = data + size;
163 	/* make sure we initialize shinfo sequentially */
164 	shinfo = skb_shinfo(skb);
165 	atomic_set(&shinfo->dataref, 1);
166 	shinfo->nr_frags  = 0;
167 	shinfo->tso_size = 0;
168 	shinfo->tso_segs = 0;
169 	shinfo->ufo_size = 0;
170 	shinfo->ip6_frag_id = 0;
171 	shinfo->frag_list = NULL;
172 
173 	if (fclone) {
174 		struct sk_buff *child = skb + 1;
175 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
176 
177 		skb->fclone = SKB_FCLONE_ORIG;
178 		atomic_set(fclone_ref, 1);
179 
180 		child->fclone = SKB_FCLONE_UNAVAILABLE;
181 	}
182 out:
183 	return skb;
184 nodata:
185 	kmem_cache_free(cache, skb);
186 	skb = NULL;
187 	goto out;
188 }
189 
190 /**
191  *	alloc_skb_from_cache	-	allocate a network buffer
192  *	@cp: kmem_cache from which to allocate the data area
193  *           (object size must be big enough for @size bytes + skb overheads)
194  *	@size: size to allocate
195  *	@gfp_mask: allocation mask
196  *
197  *	Allocate a new &sk_buff. The returned buffer has no headroom and
198  *	tail room of size bytes. The object has a reference count of one.
199  *	The return is the buffer. On a failure the return is %NULL.
200  *
201  *	Buffers may only be allocated from interrupts using a @gfp_mask of
202  *	%GFP_ATOMIC.
203  */
204 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
205 				     unsigned int size,
206 				     gfp_t gfp_mask)
207 {
208 	struct sk_buff *skb;
209 	u8 *data;
210 
211 	/* Get the HEAD */
212 	skb = kmem_cache_alloc(skbuff_head_cache,
213 			       gfp_mask & ~__GFP_DMA);
214 	if (!skb)
215 		goto out;
216 
217 	/* Get the DATA. */
218 	size = SKB_DATA_ALIGN(size);
219 	data = kmem_cache_alloc(cp, gfp_mask);
220 	if (!data)
221 		goto nodata;
222 
223 	memset(skb, 0, offsetof(struct sk_buff, truesize));
224 	skb->truesize = size + sizeof(struct sk_buff);
225 	atomic_set(&skb->users, 1);
226 	skb->head = data;
227 	skb->data = data;
228 	skb->tail = data;
229 	skb->end  = data + size;
230 
231 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
232 	skb_shinfo(skb)->nr_frags  = 0;
233 	skb_shinfo(skb)->tso_size = 0;
234 	skb_shinfo(skb)->tso_segs = 0;
235 	skb_shinfo(skb)->frag_list = NULL;
236 out:
237 	return skb;
238 nodata:
239 	kmem_cache_free(skbuff_head_cache, skb);
240 	skb = NULL;
241 	goto out;
242 }
243 
244 
245 static void skb_drop_fraglist(struct sk_buff *skb)
246 {
247 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
248 
249 	skb_shinfo(skb)->frag_list = NULL;
250 
251 	do {
252 		struct sk_buff *this = list;
253 		list = list->next;
254 		kfree_skb(this);
255 	} while (list);
256 }
257 
258 static void skb_clone_fraglist(struct sk_buff *skb)
259 {
260 	struct sk_buff *list;
261 
262 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
263 		skb_get(list);
264 }
265 
266 void skb_release_data(struct sk_buff *skb)
267 {
268 	if (!skb->cloned ||
269 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
270 			       &skb_shinfo(skb)->dataref)) {
271 		if (skb_shinfo(skb)->nr_frags) {
272 			int i;
273 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
274 				put_page(skb_shinfo(skb)->frags[i].page);
275 		}
276 
277 		if (skb_shinfo(skb)->frag_list)
278 			skb_drop_fraglist(skb);
279 
280 		kfree(skb->head);
281 	}
282 }
283 
284 /*
285  *	Free an skbuff by memory without cleaning the state.
286  */
287 void kfree_skbmem(struct sk_buff *skb)
288 {
289 	struct sk_buff *other;
290 	atomic_t *fclone_ref;
291 
292 	skb_release_data(skb);
293 	switch (skb->fclone) {
294 	case SKB_FCLONE_UNAVAILABLE:
295 		kmem_cache_free(skbuff_head_cache, skb);
296 		break;
297 
298 	case SKB_FCLONE_ORIG:
299 		fclone_ref = (atomic_t *) (skb + 2);
300 		if (atomic_dec_and_test(fclone_ref))
301 			kmem_cache_free(skbuff_fclone_cache, skb);
302 		break;
303 
304 	case SKB_FCLONE_CLONE:
305 		fclone_ref = (atomic_t *) (skb + 1);
306 		other = skb - 1;
307 
308 		/* The clone portion is available for
309 		 * fast-cloning again.
310 		 */
311 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
312 
313 		if (atomic_dec_and_test(fclone_ref))
314 			kmem_cache_free(skbuff_fclone_cache, other);
315 		break;
316 	};
317 }
318 
319 /**
320  *	__kfree_skb - private function
321  *	@skb: buffer
322  *
323  *	Free an sk_buff. Release anything attached to the buffer.
324  *	Clean the state. This is an internal helper function. Users should
325  *	always call kfree_skb
326  */
327 
328 void __kfree_skb(struct sk_buff *skb)
329 {
330 	dst_release(skb->dst);
331 #ifdef CONFIG_XFRM
332 	secpath_put(skb->sp);
333 #endif
334 	if (skb->destructor) {
335 		WARN_ON(in_irq());
336 		skb->destructor(skb);
337 	}
338 #ifdef CONFIG_NETFILTER
339 	nf_conntrack_put(skb->nfct);
340 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
341 	nf_conntrack_put_reasm(skb->nfct_reasm);
342 #endif
343 #ifdef CONFIG_BRIDGE_NETFILTER
344 	nf_bridge_put(skb->nf_bridge);
345 #endif
346 #endif
347 /* XXX: IS this still necessary? - JHS */
348 #ifdef CONFIG_NET_SCHED
349 	skb->tc_index = 0;
350 #ifdef CONFIG_NET_CLS_ACT
351 	skb->tc_verd = 0;
352 #endif
353 #endif
354 
355 	kfree_skbmem(skb);
356 }
357 
358 /**
359  *	skb_clone	-	duplicate an sk_buff
360  *	@skb: buffer to clone
361  *	@gfp_mask: allocation priority
362  *
363  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
364  *	copies share the same packet data but not structure. The new
365  *	buffer has a reference count of 1. If the allocation fails the
366  *	function returns %NULL otherwise the new buffer is returned.
367  *
368  *	If this function is called from an interrupt gfp_mask() must be
369  *	%GFP_ATOMIC.
370  */
371 
372 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
373 {
374 	struct sk_buff *n;
375 
376 	n = skb + 1;
377 	if (skb->fclone == SKB_FCLONE_ORIG &&
378 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
379 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
380 		n->fclone = SKB_FCLONE_CLONE;
381 		atomic_inc(fclone_ref);
382 	} else {
383 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
384 		if (!n)
385 			return NULL;
386 		n->fclone = SKB_FCLONE_UNAVAILABLE;
387 	}
388 
389 #define C(x) n->x = skb->x
390 
391 	n->next = n->prev = NULL;
392 	n->sk = NULL;
393 	C(tstamp);
394 	C(dev);
395 	C(h);
396 	C(nh);
397 	C(mac);
398 	C(dst);
399 	dst_clone(skb->dst);
400 	C(sp);
401 #ifdef CONFIG_INET
402 	secpath_get(skb->sp);
403 #endif
404 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
405 	C(len);
406 	C(data_len);
407 	C(csum);
408 	C(local_df);
409 	n->cloned = 1;
410 	n->nohdr = 0;
411 	C(pkt_type);
412 	C(ip_summed);
413 	C(priority);
414 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
415 	C(ipvs_property);
416 #endif
417 	C(protocol);
418 	n->destructor = NULL;
419 #ifdef CONFIG_NETFILTER
420 	C(nfmark);
421 	C(nfct);
422 	nf_conntrack_get(skb->nfct);
423 	C(nfctinfo);
424 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
425 	C(nfct_reasm);
426 	nf_conntrack_get_reasm(skb->nfct_reasm);
427 #endif
428 #ifdef CONFIG_BRIDGE_NETFILTER
429 	C(nf_bridge);
430 	nf_bridge_get(skb->nf_bridge);
431 #endif
432 #endif /*CONFIG_NETFILTER*/
433 #ifdef CONFIG_NET_SCHED
434 	C(tc_index);
435 #ifdef CONFIG_NET_CLS_ACT
436 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
437 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
438 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
439 	C(input_dev);
440 #endif
441 
442 #endif
443 	C(truesize);
444 	atomic_set(&n->users, 1);
445 	C(head);
446 	C(data);
447 	C(tail);
448 	C(end);
449 
450 	atomic_inc(&(skb_shinfo(skb)->dataref));
451 	skb->cloned = 1;
452 
453 	return n;
454 }
455 
456 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
457 {
458 	/*
459 	 *	Shift between the two data areas in bytes
460 	 */
461 	unsigned long offset = new->data - old->data;
462 
463 	new->sk		= NULL;
464 	new->dev	= old->dev;
465 	new->priority	= old->priority;
466 	new->protocol	= old->protocol;
467 	new->dst	= dst_clone(old->dst);
468 #ifdef CONFIG_INET
469 	new->sp		= secpath_get(old->sp);
470 #endif
471 	new->h.raw	= old->h.raw + offset;
472 	new->nh.raw	= old->nh.raw + offset;
473 	new->mac.raw	= old->mac.raw + offset;
474 	memcpy(new->cb, old->cb, sizeof(old->cb));
475 	new->local_df	= old->local_df;
476 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
477 	new->pkt_type	= old->pkt_type;
478 	new->tstamp	= old->tstamp;
479 	new->destructor = NULL;
480 #ifdef CONFIG_NETFILTER
481 	new->nfmark	= old->nfmark;
482 	new->nfct	= old->nfct;
483 	nf_conntrack_get(old->nfct);
484 	new->nfctinfo	= old->nfctinfo;
485 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
486 	new->nfct_reasm = old->nfct_reasm;
487 	nf_conntrack_get_reasm(old->nfct_reasm);
488 #endif
489 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
490 	new->ipvs_property = old->ipvs_property;
491 #endif
492 #ifdef CONFIG_BRIDGE_NETFILTER
493 	new->nf_bridge	= old->nf_bridge;
494 	nf_bridge_get(old->nf_bridge);
495 #endif
496 #endif
497 #ifdef CONFIG_NET_SCHED
498 #ifdef CONFIG_NET_CLS_ACT
499 	new->tc_verd = old->tc_verd;
500 #endif
501 	new->tc_index	= old->tc_index;
502 #endif
503 	atomic_set(&new->users, 1);
504 	skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
505 	skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
506 }
507 
508 /**
509  *	skb_copy	-	create private copy of an sk_buff
510  *	@skb: buffer to copy
511  *	@gfp_mask: allocation priority
512  *
513  *	Make a copy of both an &sk_buff and its data. This is used when the
514  *	caller wishes to modify the data and needs a private copy of the
515  *	data to alter. Returns %NULL on failure or the pointer to the buffer
516  *	on success. The returned buffer has a reference count of 1.
517  *
518  *	As by-product this function converts non-linear &sk_buff to linear
519  *	one, so that &sk_buff becomes completely private and caller is allowed
520  *	to modify all the data of returned buffer. This means that this
521  *	function is not recommended for use in circumstances when only
522  *	header is going to be modified. Use pskb_copy() instead.
523  */
524 
525 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
526 {
527 	int headerlen = skb->data - skb->head;
528 	/*
529 	 *	Allocate the copy buffer
530 	 */
531 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
532 				      gfp_mask);
533 	if (!n)
534 		return NULL;
535 
536 	/* Set the data pointer */
537 	skb_reserve(n, headerlen);
538 	/* Set the tail pointer and length */
539 	skb_put(n, skb->len);
540 	n->csum	     = skb->csum;
541 	n->ip_summed = skb->ip_summed;
542 
543 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
544 		BUG();
545 
546 	copy_skb_header(n, skb);
547 	return n;
548 }
549 
550 
551 /**
552  *	pskb_copy	-	create copy of an sk_buff with private head.
553  *	@skb: buffer to copy
554  *	@gfp_mask: allocation priority
555  *
556  *	Make a copy of both an &sk_buff and part of its data, located
557  *	in header. Fragmented data remain shared. This is used when
558  *	the caller wishes to modify only header of &sk_buff and needs
559  *	private copy of the header to alter. Returns %NULL on failure
560  *	or the pointer to the buffer on success.
561  *	The returned buffer has a reference count of 1.
562  */
563 
564 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
565 {
566 	/*
567 	 *	Allocate the copy buffer
568 	 */
569 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
570 
571 	if (!n)
572 		goto out;
573 
574 	/* Set the data pointer */
575 	skb_reserve(n, skb->data - skb->head);
576 	/* Set the tail pointer and length */
577 	skb_put(n, skb_headlen(skb));
578 	/* Copy the bytes */
579 	memcpy(n->data, skb->data, n->len);
580 	n->csum	     = skb->csum;
581 	n->ip_summed = skb->ip_summed;
582 
583 	n->data_len  = skb->data_len;
584 	n->len	     = skb->len;
585 
586 	if (skb_shinfo(skb)->nr_frags) {
587 		int i;
588 
589 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
590 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
591 			get_page(skb_shinfo(n)->frags[i].page);
592 		}
593 		skb_shinfo(n)->nr_frags = i;
594 	}
595 
596 	if (skb_shinfo(skb)->frag_list) {
597 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
598 		skb_clone_fraglist(n);
599 	}
600 
601 	copy_skb_header(n, skb);
602 out:
603 	return n;
604 }
605 
606 /**
607  *	pskb_expand_head - reallocate header of &sk_buff
608  *	@skb: buffer to reallocate
609  *	@nhead: room to add at head
610  *	@ntail: room to add at tail
611  *	@gfp_mask: allocation priority
612  *
613  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
614  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
615  *	reference count of 1. Returns zero in the case of success or error,
616  *	if expansion failed. In the last case, &sk_buff is not changed.
617  *
618  *	All the pointers pointing into skb header may change and must be
619  *	reloaded after call to this function.
620  */
621 
622 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
623 		     gfp_t gfp_mask)
624 {
625 	int i;
626 	u8 *data;
627 	int size = nhead + (skb->end - skb->head) + ntail;
628 	long off;
629 
630 	if (skb_shared(skb))
631 		BUG();
632 
633 	size = SKB_DATA_ALIGN(size);
634 
635 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
636 	if (!data)
637 		goto nodata;
638 
639 	/* Copy only real data... and, alas, header. This should be
640 	 * optimized for the cases when header is void. */
641 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
642 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
643 
644 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
645 		get_page(skb_shinfo(skb)->frags[i].page);
646 
647 	if (skb_shinfo(skb)->frag_list)
648 		skb_clone_fraglist(skb);
649 
650 	skb_release_data(skb);
651 
652 	off = (data + nhead) - skb->head;
653 
654 	skb->head     = data;
655 	skb->end      = data + size;
656 	skb->data    += off;
657 	skb->tail    += off;
658 	skb->mac.raw += off;
659 	skb->h.raw   += off;
660 	skb->nh.raw  += off;
661 	skb->cloned   = 0;
662 	skb->nohdr    = 0;
663 	atomic_set(&skb_shinfo(skb)->dataref, 1);
664 	return 0;
665 
666 nodata:
667 	return -ENOMEM;
668 }
669 
670 /* Make private copy of skb with writable head and some headroom */
671 
672 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
673 {
674 	struct sk_buff *skb2;
675 	int delta = headroom - skb_headroom(skb);
676 
677 	if (delta <= 0)
678 		skb2 = pskb_copy(skb, GFP_ATOMIC);
679 	else {
680 		skb2 = skb_clone(skb, GFP_ATOMIC);
681 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
682 					     GFP_ATOMIC)) {
683 			kfree_skb(skb2);
684 			skb2 = NULL;
685 		}
686 	}
687 	return skb2;
688 }
689 
690 
691 /**
692  *	skb_copy_expand	-	copy and expand sk_buff
693  *	@skb: buffer to copy
694  *	@newheadroom: new free bytes at head
695  *	@newtailroom: new free bytes at tail
696  *	@gfp_mask: allocation priority
697  *
698  *	Make a copy of both an &sk_buff and its data and while doing so
699  *	allocate additional space.
700  *
701  *	This is used when the caller wishes to modify the data and needs a
702  *	private copy of the data to alter as well as more space for new fields.
703  *	Returns %NULL on failure or the pointer to the buffer
704  *	on success. The returned buffer has a reference count of 1.
705  *
706  *	You must pass %GFP_ATOMIC as the allocation priority if this function
707  *	is called from an interrupt.
708  *
709  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
710  *	only by netfilter in the cases when checksum is recalculated? --ANK
711  */
712 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
713 				int newheadroom, int newtailroom,
714 				gfp_t gfp_mask)
715 {
716 	/*
717 	 *	Allocate the copy buffer
718 	 */
719 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
720 				      gfp_mask);
721 	int head_copy_len, head_copy_off;
722 
723 	if (!n)
724 		return NULL;
725 
726 	skb_reserve(n, newheadroom);
727 
728 	/* Set the tail pointer and length */
729 	skb_put(n, skb->len);
730 
731 	head_copy_len = skb_headroom(skb);
732 	head_copy_off = 0;
733 	if (newheadroom <= head_copy_len)
734 		head_copy_len = newheadroom;
735 	else
736 		head_copy_off = newheadroom - head_copy_len;
737 
738 	/* Copy the linear header and data. */
739 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
740 			  skb->len + head_copy_len))
741 		BUG();
742 
743 	copy_skb_header(n, skb);
744 
745 	return n;
746 }
747 
748 /**
749  *	skb_pad			-	zero pad the tail of an skb
750  *	@skb: buffer to pad
751  *	@pad: space to pad
752  *
753  *	Ensure that a buffer is followed by a padding area that is zero
754  *	filled. Used by network drivers which may DMA or transfer data
755  *	beyond the buffer end onto the wire.
756  *
757  *	May return NULL in out of memory cases.
758  */
759 
760 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
761 {
762 	struct sk_buff *nskb;
763 
764 	/* If the skbuff is non linear tailroom is always zero.. */
765 	if (skb_tailroom(skb) >= pad) {
766 		memset(skb->data+skb->len, 0, pad);
767 		return skb;
768 	}
769 
770 	nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
771 	kfree_skb(skb);
772 	if (nskb)
773 		memset(nskb->data+nskb->len, 0, pad);
774 	return nskb;
775 }
776 
777 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
778  * If realloc==0 and trimming is impossible without change of data,
779  * it is BUG().
780  */
781 
782 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
783 {
784 	int offset = skb_headlen(skb);
785 	int nfrags = skb_shinfo(skb)->nr_frags;
786 	int i;
787 
788 	for (i = 0; i < nfrags; i++) {
789 		int end = offset + skb_shinfo(skb)->frags[i].size;
790 		if (end > len) {
791 			if (skb_cloned(skb)) {
792 				BUG_ON(!realloc);
793 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
794 					return -ENOMEM;
795 			}
796 			if (len <= offset) {
797 				put_page(skb_shinfo(skb)->frags[i].page);
798 				skb_shinfo(skb)->nr_frags--;
799 			} else {
800 				skb_shinfo(skb)->frags[i].size = len - offset;
801 			}
802 		}
803 		offset = end;
804 	}
805 
806 	if (offset < len) {
807 		skb->data_len -= skb->len - len;
808 		skb->len       = len;
809 	} else {
810 		if (len <= skb_headlen(skb)) {
811 			skb->len      = len;
812 			skb->data_len = 0;
813 			skb->tail     = skb->data + len;
814 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
815 				skb_drop_fraglist(skb);
816 		} else {
817 			skb->data_len -= skb->len - len;
818 			skb->len       = len;
819 		}
820 	}
821 
822 	return 0;
823 }
824 
825 /**
826  *	__pskb_pull_tail - advance tail of skb header
827  *	@skb: buffer to reallocate
828  *	@delta: number of bytes to advance tail
829  *
830  *	The function makes a sense only on a fragmented &sk_buff,
831  *	it expands header moving its tail forward and copying necessary
832  *	data from fragmented part.
833  *
834  *	&sk_buff MUST have reference count of 1.
835  *
836  *	Returns %NULL (and &sk_buff does not change) if pull failed
837  *	or value of new tail of skb in the case of success.
838  *
839  *	All the pointers pointing into skb header may change and must be
840  *	reloaded after call to this function.
841  */
842 
843 /* Moves tail of skb head forward, copying data from fragmented part,
844  * when it is necessary.
845  * 1. It may fail due to malloc failure.
846  * 2. It may change skb pointers.
847  *
848  * It is pretty complicated. Luckily, it is called only in exceptional cases.
849  */
850 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
851 {
852 	/* If skb has not enough free space at tail, get new one
853 	 * plus 128 bytes for future expansions. If we have enough
854 	 * room at tail, reallocate without expansion only if skb is cloned.
855 	 */
856 	int i, k, eat = (skb->tail + delta) - skb->end;
857 
858 	if (eat > 0 || skb_cloned(skb)) {
859 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
860 				     GFP_ATOMIC))
861 			return NULL;
862 	}
863 
864 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
865 		BUG();
866 
867 	/* Optimization: no fragments, no reasons to preestimate
868 	 * size of pulled pages. Superb.
869 	 */
870 	if (!skb_shinfo(skb)->frag_list)
871 		goto pull_pages;
872 
873 	/* Estimate size of pulled pages. */
874 	eat = delta;
875 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
876 		if (skb_shinfo(skb)->frags[i].size >= eat)
877 			goto pull_pages;
878 		eat -= skb_shinfo(skb)->frags[i].size;
879 	}
880 
881 	/* If we need update frag list, we are in troubles.
882 	 * Certainly, it possible to add an offset to skb data,
883 	 * but taking into account that pulling is expected to
884 	 * be very rare operation, it is worth to fight against
885 	 * further bloating skb head and crucify ourselves here instead.
886 	 * Pure masohism, indeed. 8)8)
887 	 */
888 	if (eat) {
889 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
890 		struct sk_buff *clone = NULL;
891 		struct sk_buff *insp = NULL;
892 
893 		do {
894 			BUG_ON(!list);
895 
896 			if (list->len <= eat) {
897 				/* Eaten as whole. */
898 				eat -= list->len;
899 				list = list->next;
900 				insp = list;
901 			} else {
902 				/* Eaten partially. */
903 
904 				if (skb_shared(list)) {
905 					/* Sucks! We need to fork list. :-( */
906 					clone = skb_clone(list, GFP_ATOMIC);
907 					if (!clone)
908 						return NULL;
909 					insp = list->next;
910 					list = clone;
911 				} else {
912 					/* This may be pulled without
913 					 * problems. */
914 					insp = list;
915 				}
916 				if (!pskb_pull(list, eat)) {
917 					if (clone)
918 						kfree_skb(clone);
919 					return NULL;
920 				}
921 				break;
922 			}
923 		} while (eat);
924 
925 		/* Free pulled out fragments. */
926 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
927 			skb_shinfo(skb)->frag_list = list->next;
928 			kfree_skb(list);
929 		}
930 		/* And insert new clone at head. */
931 		if (clone) {
932 			clone->next = list;
933 			skb_shinfo(skb)->frag_list = clone;
934 		}
935 	}
936 	/* Success! Now we may commit changes to skb data. */
937 
938 pull_pages:
939 	eat = delta;
940 	k = 0;
941 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
942 		if (skb_shinfo(skb)->frags[i].size <= eat) {
943 			put_page(skb_shinfo(skb)->frags[i].page);
944 			eat -= skb_shinfo(skb)->frags[i].size;
945 		} else {
946 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
947 			if (eat) {
948 				skb_shinfo(skb)->frags[k].page_offset += eat;
949 				skb_shinfo(skb)->frags[k].size -= eat;
950 				eat = 0;
951 			}
952 			k++;
953 		}
954 	}
955 	skb_shinfo(skb)->nr_frags = k;
956 
957 	skb->tail     += delta;
958 	skb->data_len -= delta;
959 
960 	return skb->tail;
961 }
962 
963 /* Copy some data bits from skb to kernel buffer. */
964 
965 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
966 {
967 	int i, copy;
968 	int start = skb_headlen(skb);
969 
970 	if (offset > (int)skb->len - len)
971 		goto fault;
972 
973 	/* Copy header. */
974 	if ((copy = start - offset) > 0) {
975 		if (copy > len)
976 			copy = len;
977 		memcpy(to, skb->data + offset, copy);
978 		if ((len -= copy) == 0)
979 			return 0;
980 		offset += copy;
981 		to     += copy;
982 	}
983 
984 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
985 		int end;
986 
987 		BUG_TRAP(start <= offset + len);
988 
989 		end = start + skb_shinfo(skb)->frags[i].size;
990 		if ((copy = end - offset) > 0) {
991 			u8 *vaddr;
992 
993 			if (copy > len)
994 				copy = len;
995 
996 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
997 			memcpy(to,
998 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
999 			       offset - start, copy);
1000 			kunmap_skb_frag(vaddr);
1001 
1002 			if ((len -= copy) == 0)
1003 				return 0;
1004 			offset += copy;
1005 			to     += copy;
1006 		}
1007 		start = end;
1008 	}
1009 
1010 	if (skb_shinfo(skb)->frag_list) {
1011 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1012 
1013 		for (; list; list = list->next) {
1014 			int end;
1015 
1016 			BUG_TRAP(start <= offset + len);
1017 
1018 			end = start + list->len;
1019 			if ((copy = end - offset) > 0) {
1020 				if (copy > len)
1021 					copy = len;
1022 				if (skb_copy_bits(list, offset - start,
1023 						  to, copy))
1024 					goto fault;
1025 				if ((len -= copy) == 0)
1026 					return 0;
1027 				offset += copy;
1028 				to     += copy;
1029 			}
1030 			start = end;
1031 		}
1032 	}
1033 	if (!len)
1034 		return 0;
1035 
1036 fault:
1037 	return -EFAULT;
1038 }
1039 
1040 /**
1041  *	skb_store_bits - store bits from kernel buffer to skb
1042  *	@skb: destination buffer
1043  *	@offset: offset in destination
1044  *	@from: source buffer
1045  *	@len: number of bytes to copy
1046  *
1047  *	Copy the specified number of bytes from the source buffer to the
1048  *	destination skb.  This function handles all the messy bits of
1049  *	traversing fragment lists and such.
1050  */
1051 
1052 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1053 {
1054 	int i, copy;
1055 	int start = skb_headlen(skb);
1056 
1057 	if (offset > (int)skb->len - len)
1058 		goto fault;
1059 
1060 	if ((copy = start - offset) > 0) {
1061 		if (copy > len)
1062 			copy = len;
1063 		memcpy(skb->data + offset, from, copy);
1064 		if ((len -= copy) == 0)
1065 			return 0;
1066 		offset += copy;
1067 		from += copy;
1068 	}
1069 
1070 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1071 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1072 		int end;
1073 
1074 		BUG_TRAP(start <= offset + len);
1075 
1076 		end = start + frag->size;
1077 		if ((copy = end - offset) > 0) {
1078 			u8 *vaddr;
1079 
1080 			if (copy > len)
1081 				copy = len;
1082 
1083 			vaddr = kmap_skb_frag(frag);
1084 			memcpy(vaddr + frag->page_offset + offset - start,
1085 			       from, copy);
1086 			kunmap_skb_frag(vaddr);
1087 
1088 			if ((len -= copy) == 0)
1089 				return 0;
1090 			offset += copy;
1091 			from += copy;
1092 		}
1093 		start = end;
1094 	}
1095 
1096 	if (skb_shinfo(skb)->frag_list) {
1097 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1098 
1099 		for (; list; list = list->next) {
1100 			int end;
1101 
1102 			BUG_TRAP(start <= offset + len);
1103 
1104 			end = start + list->len;
1105 			if ((copy = end - offset) > 0) {
1106 				if (copy > len)
1107 					copy = len;
1108 				if (skb_store_bits(list, offset - start,
1109 						   from, copy))
1110 					goto fault;
1111 				if ((len -= copy) == 0)
1112 					return 0;
1113 				offset += copy;
1114 				from += copy;
1115 			}
1116 			start = end;
1117 		}
1118 	}
1119 	if (!len)
1120 		return 0;
1121 
1122 fault:
1123 	return -EFAULT;
1124 }
1125 
1126 EXPORT_SYMBOL(skb_store_bits);
1127 
1128 /* Checksum skb data. */
1129 
1130 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1131 			  int len, unsigned int csum)
1132 {
1133 	int start = skb_headlen(skb);
1134 	int i, copy = start - offset;
1135 	int pos = 0;
1136 
1137 	/* Checksum header. */
1138 	if (copy > 0) {
1139 		if (copy > len)
1140 			copy = len;
1141 		csum = csum_partial(skb->data + offset, copy, csum);
1142 		if ((len -= copy) == 0)
1143 			return csum;
1144 		offset += copy;
1145 		pos	= copy;
1146 	}
1147 
1148 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1149 		int end;
1150 
1151 		BUG_TRAP(start <= offset + len);
1152 
1153 		end = start + skb_shinfo(skb)->frags[i].size;
1154 		if ((copy = end - offset) > 0) {
1155 			unsigned int csum2;
1156 			u8 *vaddr;
1157 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1158 
1159 			if (copy > len)
1160 				copy = len;
1161 			vaddr = kmap_skb_frag(frag);
1162 			csum2 = csum_partial(vaddr + frag->page_offset +
1163 					     offset - start, copy, 0);
1164 			kunmap_skb_frag(vaddr);
1165 			csum = csum_block_add(csum, csum2, pos);
1166 			if (!(len -= copy))
1167 				return csum;
1168 			offset += copy;
1169 			pos    += copy;
1170 		}
1171 		start = end;
1172 	}
1173 
1174 	if (skb_shinfo(skb)->frag_list) {
1175 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1176 
1177 		for (; list; list = list->next) {
1178 			int end;
1179 
1180 			BUG_TRAP(start <= offset + len);
1181 
1182 			end = start + list->len;
1183 			if ((copy = end - offset) > 0) {
1184 				unsigned int csum2;
1185 				if (copy > len)
1186 					copy = len;
1187 				csum2 = skb_checksum(list, offset - start,
1188 						     copy, 0);
1189 				csum = csum_block_add(csum, csum2, pos);
1190 				if ((len -= copy) == 0)
1191 					return csum;
1192 				offset += copy;
1193 				pos    += copy;
1194 			}
1195 			start = end;
1196 		}
1197 	}
1198 	BUG_ON(len);
1199 
1200 	return csum;
1201 }
1202 
1203 /* Both of above in one bottle. */
1204 
1205 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1206 				    u8 *to, int len, unsigned int csum)
1207 {
1208 	int start = skb_headlen(skb);
1209 	int i, copy = start - offset;
1210 	int pos = 0;
1211 
1212 	/* Copy header. */
1213 	if (copy > 0) {
1214 		if (copy > len)
1215 			copy = len;
1216 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1217 						 copy, csum);
1218 		if ((len -= copy) == 0)
1219 			return csum;
1220 		offset += copy;
1221 		to     += copy;
1222 		pos	= copy;
1223 	}
1224 
1225 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1226 		int end;
1227 
1228 		BUG_TRAP(start <= offset + len);
1229 
1230 		end = start + skb_shinfo(skb)->frags[i].size;
1231 		if ((copy = end - offset) > 0) {
1232 			unsigned int csum2;
1233 			u8 *vaddr;
1234 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1235 
1236 			if (copy > len)
1237 				copy = len;
1238 			vaddr = kmap_skb_frag(frag);
1239 			csum2 = csum_partial_copy_nocheck(vaddr +
1240 							  frag->page_offset +
1241 							  offset - start, to,
1242 							  copy, 0);
1243 			kunmap_skb_frag(vaddr);
1244 			csum = csum_block_add(csum, csum2, pos);
1245 			if (!(len -= copy))
1246 				return csum;
1247 			offset += copy;
1248 			to     += copy;
1249 			pos    += copy;
1250 		}
1251 		start = end;
1252 	}
1253 
1254 	if (skb_shinfo(skb)->frag_list) {
1255 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1256 
1257 		for (; list; list = list->next) {
1258 			unsigned int csum2;
1259 			int end;
1260 
1261 			BUG_TRAP(start <= offset + len);
1262 
1263 			end = start + list->len;
1264 			if ((copy = end - offset) > 0) {
1265 				if (copy > len)
1266 					copy = len;
1267 				csum2 = skb_copy_and_csum_bits(list,
1268 							       offset - start,
1269 							       to, copy, 0);
1270 				csum = csum_block_add(csum, csum2, pos);
1271 				if ((len -= copy) == 0)
1272 					return csum;
1273 				offset += copy;
1274 				to     += copy;
1275 				pos    += copy;
1276 			}
1277 			start = end;
1278 		}
1279 	}
1280 	BUG_ON(len);
1281 	return csum;
1282 }
1283 
1284 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1285 {
1286 	unsigned int csum;
1287 	long csstart;
1288 
1289 	if (skb->ip_summed == CHECKSUM_HW)
1290 		csstart = skb->h.raw - skb->data;
1291 	else
1292 		csstart = skb_headlen(skb);
1293 
1294 	BUG_ON(csstart > skb_headlen(skb));
1295 
1296 	memcpy(to, skb->data, csstart);
1297 
1298 	csum = 0;
1299 	if (csstart != skb->len)
1300 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1301 					      skb->len - csstart, 0);
1302 
1303 	if (skb->ip_summed == CHECKSUM_HW) {
1304 		long csstuff = csstart + skb->csum;
1305 
1306 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1307 	}
1308 }
1309 
1310 /**
1311  *	skb_dequeue - remove from the head of the queue
1312  *	@list: list to dequeue from
1313  *
1314  *	Remove the head of the list. The list lock is taken so the function
1315  *	may be used safely with other locking list functions. The head item is
1316  *	returned or %NULL if the list is empty.
1317  */
1318 
1319 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1320 {
1321 	unsigned long flags;
1322 	struct sk_buff *result;
1323 
1324 	spin_lock_irqsave(&list->lock, flags);
1325 	result = __skb_dequeue(list);
1326 	spin_unlock_irqrestore(&list->lock, flags);
1327 	return result;
1328 }
1329 
1330 /**
1331  *	skb_dequeue_tail - remove from the tail of the queue
1332  *	@list: list to dequeue from
1333  *
1334  *	Remove the tail of the list. The list lock is taken so the function
1335  *	may be used safely with other locking list functions. The tail item is
1336  *	returned or %NULL if the list is empty.
1337  */
1338 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1339 {
1340 	unsigned long flags;
1341 	struct sk_buff *result;
1342 
1343 	spin_lock_irqsave(&list->lock, flags);
1344 	result = __skb_dequeue_tail(list);
1345 	spin_unlock_irqrestore(&list->lock, flags);
1346 	return result;
1347 }
1348 
1349 /**
1350  *	skb_queue_purge - empty a list
1351  *	@list: list to empty
1352  *
1353  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1354  *	the list and one reference dropped. This function takes the list
1355  *	lock and is atomic with respect to other list locking functions.
1356  */
1357 void skb_queue_purge(struct sk_buff_head *list)
1358 {
1359 	struct sk_buff *skb;
1360 	while ((skb = skb_dequeue(list)) != NULL)
1361 		kfree_skb(skb);
1362 }
1363 
1364 /**
1365  *	skb_queue_head - queue a buffer at the list head
1366  *	@list: list to use
1367  *	@newsk: buffer to queue
1368  *
1369  *	Queue a buffer at the start of the list. This function takes the
1370  *	list lock and can be used safely with other locking &sk_buff functions
1371  *	safely.
1372  *
1373  *	A buffer cannot be placed on two lists at the same time.
1374  */
1375 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1376 {
1377 	unsigned long flags;
1378 
1379 	spin_lock_irqsave(&list->lock, flags);
1380 	__skb_queue_head(list, newsk);
1381 	spin_unlock_irqrestore(&list->lock, flags);
1382 }
1383 
1384 /**
1385  *	skb_queue_tail - queue a buffer at the list tail
1386  *	@list: list to use
1387  *	@newsk: buffer to queue
1388  *
1389  *	Queue a buffer at the tail of the list. This function takes the
1390  *	list lock and can be used safely with other locking &sk_buff functions
1391  *	safely.
1392  *
1393  *	A buffer cannot be placed on two lists at the same time.
1394  */
1395 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1396 {
1397 	unsigned long flags;
1398 
1399 	spin_lock_irqsave(&list->lock, flags);
1400 	__skb_queue_tail(list, newsk);
1401 	spin_unlock_irqrestore(&list->lock, flags);
1402 }
1403 
1404 /**
1405  *	skb_unlink	-	remove a buffer from a list
1406  *	@skb: buffer to remove
1407  *	@list: list to use
1408  *
1409  *	Remove a packet from a list. The list locks are taken and this
1410  *	function is atomic with respect to other list locked calls
1411  *
1412  *	You must know what list the SKB is on.
1413  */
1414 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1415 {
1416 	unsigned long flags;
1417 
1418 	spin_lock_irqsave(&list->lock, flags);
1419 	__skb_unlink(skb, list);
1420 	spin_unlock_irqrestore(&list->lock, flags);
1421 }
1422 
1423 /**
1424  *	skb_append	-	append a buffer
1425  *	@old: buffer to insert after
1426  *	@newsk: buffer to insert
1427  *	@list: list to use
1428  *
1429  *	Place a packet after a given packet in a list. The list locks are taken
1430  *	and this function is atomic with respect to other list locked calls.
1431  *	A buffer cannot be placed on two lists at the same time.
1432  */
1433 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1434 {
1435 	unsigned long flags;
1436 
1437 	spin_lock_irqsave(&list->lock, flags);
1438 	__skb_append(old, newsk, list);
1439 	spin_unlock_irqrestore(&list->lock, flags);
1440 }
1441 
1442 
1443 /**
1444  *	skb_insert	-	insert a buffer
1445  *	@old: buffer to insert before
1446  *	@newsk: buffer to insert
1447  *	@list: list to use
1448  *
1449  *	Place a packet before a given packet in a list. The list locks are
1450  * 	taken and this function is atomic with respect to other list locked
1451  *	calls.
1452  *
1453  *	A buffer cannot be placed on two lists at the same time.
1454  */
1455 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1456 {
1457 	unsigned long flags;
1458 
1459 	spin_lock_irqsave(&list->lock, flags);
1460 	__skb_insert(newsk, old->prev, old, list);
1461 	spin_unlock_irqrestore(&list->lock, flags);
1462 }
1463 
1464 #if 0
1465 /*
1466  * 	Tune the memory allocator for a new MTU size.
1467  */
1468 void skb_add_mtu(int mtu)
1469 {
1470 	/* Must match allocation in alloc_skb */
1471 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1472 
1473 	kmem_add_cache_size(mtu);
1474 }
1475 #endif
1476 
1477 static inline void skb_split_inside_header(struct sk_buff *skb,
1478 					   struct sk_buff* skb1,
1479 					   const u32 len, const int pos)
1480 {
1481 	int i;
1482 
1483 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1484 
1485 	/* And move data appendix as is. */
1486 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1487 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1488 
1489 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1490 	skb_shinfo(skb)->nr_frags  = 0;
1491 	skb1->data_len		   = skb->data_len;
1492 	skb1->len		   += skb1->data_len;
1493 	skb->data_len		   = 0;
1494 	skb->len		   = len;
1495 	skb->tail		   = skb->data + len;
1496 }
1497 
1498 static inline void skb_split_no_header(struct sk_buff *skb,
1499 				       struct sk_buff* skb1,
1500 				       const u32 len, int pos)
1501 {
1502 	int i, k = 0;
1503 	const int nfrags = skb_shinfo(skb)->nr_frags;
1504 
1505 	skb_shinfo(skb)->nr_frags = 0;
1506 	skb1->len		  = skb1->data_len = skb->len - len;
1507 	skb->len		  = len;
1508 	skb->data_len		  = len - pos;
1509 
1510 	for (i = 0; i < nfrags; i++) {
1511 		int size = skb_shinfo(skb)->frags[i].size;
1512 
1513 		if (pos + size > len) {
1514 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1515 
1516 			if (pos < len) {
1517 				/* Split frag.
1518 				 * We have two variants in this case:
1519 				 * 1. Move all the frag to the second
1520 				 *    part, if it is possible. F.e.
1521 				 *    this approach is mandatory for TUX,
1522 				 *    where splitting is expensive.
1523 				 * 2. Split is accurately. We make this.
1524 				 */
1525 				get_page(skb_shinfo(skb)->frags[i].page);
1526 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1527 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1528 				skb_shinfo(skb)->frags[i].size	= len - pos;
1529 				skb_shinfo(skb)->nr_frags++;
1530 			}
1531 			k++;
1532 		} else
1533 			skb_shinfo(skb)->nr_frags++;
1534 		pos += size;
1535 	}
1536 	skb_shinfo(skb1)->nr_frags = k;
1537 }
1538 
1539 /**
1540  * skb_split - Split fragmented skb to two parts at length len.
1541  * @skb: the buffer to split
1542  * @skb1: the buffer to receive the second part
1543  * @len: new length for skb
1544  */
1545 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1546 {
1547 	int pos = skb_headlen(skb);
1548 
1549 	if (len < pos)	/* Split line is inside header. */
1550 		skb_split_inside_header(skb, skb1, len, pos);
1551 	else		/* Second chunk has no header, nothing to copy. */
1552 		skb_split_no_header(skb, skb1, len, pos);
1553 }
1554 
1555 /**
1556  * skb_prepare_seq_read - Prepare a sequential read of skb data
1557  * @skb: the buffer to read
1558  * @from: lower offset of data to be read
1559  * @to: upper offset of data to be read
1560  * @st: state variable
1561  *
1562  * Initializes the specified state variable. Must be called before
1563  * invoking skb_seq_read() for the first time.
1564  */
1565 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1566 			  unsigned int to, struct skb_seq_state *st)
1567 {
1568 	st->lower_offset = from;
1569 	st->upper_offset = to;
1570 	st->root_skb = st->cur_skb = skb;
1571 	st->frag_idx = st->stepped_offset = 0;
1572 	st->frag_data = NULL;
1573 }
1574 
1575 /**
1576  * skb_seq_read - Sequentially read skb data
1577  * @consumed: number of bytes consumed by the caller so far
1578  * @data: destination pointer for data to be returned
1579  * @st: state variable
1580  *
1581  * Reads a block of skb data at &consumed relative to the
1582  * lower offset specified to skb_prepare_seq_read(). Assigns
1583  * the head of the data block to &data and returns the length
1584  * of the block or 0 if the end of the skb data or the upper
1585  * offset has been reached.
1586  *
1587  * The caller is not required to consume all of the data
1588  * returned, i.e. &consumed is typically set to the number
1589  * of bytes already consumed and the next call to
1590  * skb_seq_read() will return the remaining part of the block.
1591  *
1592  * Note: The size of each block of data returned can be arbitary,
1593  *       this limitation is the cost for zerocopy seqeuental
1594  *       reads of potentially non linear data.
1595  *
1596  * Note: Fragment lists within fragments are not implemented
1597  *       at the moment, state->root_skb could be replaced with
1598  *       a stack for this purpose.
1599  */
1600 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1601 			  struct skb_seq_state *st)
1602 {
1603 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1604 	skb_frag_t *frag;
1605 
1606 	if (unlikely(abs_offset >= st->upper_offset))
1607 		return 0;
1608 
1609 next_skb:
1610 	block_limit = skb_headlen(st->cur_skb);
1611 
1612 	if (abs_offset < block_limit) {
1613 		*data = st->cur_skb->data + abs_offset;
1614 		return block_limit - abs_offset;
1615 	}
1616 
1617 	if (st->frag_idx == 0 && !st->frag_data)
1618 		st->stepped_offset += skb_headlen(st->cur_skb);
1619 
1620 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1621 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1622 		block_limit = frag->size + st->stepped_offset;
1623 
1624 		if (abs_offset < block_limit) {
1625 			if (!st->frag_data)
1626 				st->frag_data = kmap_skb_frag(frag);
1627 
1628 			*data = (u8 *) st->frag_data + frag->page_offset +
1629 				(abs_offset - st->stepped_offset);
1630 
1631 			return block_limit - abs_offset;
1632 		}
1633 
1634 		if (st->frag_data) {
1635 			kunmap_skb_frag(st->frag_data);
1636 			st->frag_data = NULL;
1637 		}
1638 
1639 		st->frag_idx++;
1640 		st->stepped_offset += frag->size;
1641 	}
1642 
1643 	if (st->cur_skb->next) {
1644 		st->cur_skb = st->cur_skb->next;
1645 		st->frag_idx = 0;
1646 		goto next_skb;
1647 	} else if (st->root_skb == st->cur_skb &&
1648 		   skb_shinfo(st->root_skb)->frag_list) {
1649 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1650 		goto next_skb;
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 /**
1657  * skb_abort_seq_read - Abort a sequential read of skb data
1658  * @st: state variable
1659  *
1660  * Must be called if skb_seq_read() was not called until it
1661  * returned 0.
1662  */
1663 void skb_abort_seq_read(struct skb_seq_state *st)
1664 {
1665 	if (st->frag_data)
1666 		kunmap_skb_frag(st->frag_data);
1667 }
1668 
1669 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1670 
1671 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1672 					  struct ts_config *conf,
1673 					  struct ts_state *state)
1674 {
1675 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1676 }
1677 
1678 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1679 {
1680 	skb_abort_seq_read(TS_SKB_CB(state));
1681 }
1682 
1683 /**
1684  * skb_find_text - Find a text pattern in skb data
1685  * @skb: the buffer to look in
1686  * @from: search offset
1687  * @to: search limit
1688  * @config: textsearch configuration
1689  * @state: uninitialized textsearch state variable
1690  *
1691  * Finds a pattern in the skb data according to the specified
1692  * textsearch configuration. Use textsearch_next() to retrieve
1693  * subsequent occurrences of the pattern. Returns the offset
1694  * to the first occurrence or UINT_MAX if no match was found.
1695  */
1696 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1697 			   unsigned int to, struct ts_config *config,
1698 			   struct ts_state *state)
1699 {
1700 	config->get_next_block = skb_ts_get_next_block;
1701 	config->finish = skb_ts_finish;
1702 
1703 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1704 
1705 	return textsearch_find(config, state);
1706 }
1707 
1708 /**
1709  * skb_append_datato_frags: - append the user data to a skb
1710  * @sk: sock  structure
1711  * @skb: skb structure to be appened with user data.
1712  * @getfrag: call back function to be used for getting the user data
1713  * @from: pointer to user message iov
1714  * @length: length of the iov message
1715  *
1716  * Description: This procedure append the user data in the fragment part
1717  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1718  */
1719 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1720 			int (*getfrag)(void *from, char *to, int offset,
1721 					int len, int odd, struct sk_buff *skb),
1722 			void *from, int length)
1723 {
1724 	int frg_cnt = 0;
1725 	skb_frag_t *frag = NULL;
1726 	struct page *page = NULL;
1727 	int copy, left;
1728 	int offset = 0;
1729 	int ret;
1730 
1731 	do {
1732 		/* Return error if we don't have space for new frag */
1733 		frg_cnt = skb_shinfo(skb)->nr_frags;
1734 		if (frg_cnt >= MAX_SKB_FRAGS)
1735 			return -EFAULT;
1736 
1737 		/* allocate a new page for next frag */
1738 		page = alloc_pages(sk->sk_allocation, 0);
1739 
1740 		/* If alloc_page fails just return failure and caller will
1741 		 * free previous allocated pages by doing kfree_skb()
1742 		 */
1743 		if (page == NULL)
1744 			return -ENOMEM;
1745 
1746 		/* initialize the next frag */
1747 		sk->sk_sndmsg_page = page;
1748 		sk->sk_sndmsg_off = 0;
1749 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1750 		skb->truesize += PAGE_SIZE;
1751 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1752 
1753 		/* get the new initialized frag */
1754 		frg_cnt = skb_shinfo(skb)->nr_frags;
1755 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1756 
1757 		/* copy the user data to page */
1758 		left = PAGE_SIZE - frag->page_offset;
1759 		copy = (length > left)? left : length;
1760 
1761 		ret = getfrag(from, (page_address(frag->page) +
1762 			    frag->page_offset + frag->size),
1763 			    offset, copy, 0, skb);
1764 		if (ret < 0)
1765 			return -EFAULT;
1766 
1767 		/* copy was successful so update the size parameters */
1768 		sk->sk_sndmsg_off += copy;
1769 		frag->size += copy;
1770 		skb->len += copy;
1771 		skb->data_len += copy;
1772 		offset += copy;
1773 		length -= copy;
1774 
1775 	} while (length > 0);
1776 
1777 	return 0;
1778 }
1779 
1780 void __init skb_init(void)
1781 {
1782 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1783 					      sizeof(struct sk_buff),
1784 					      0,
1785 					      SLAB_HWCACHE_ALIGN,
1786 					      NULL, NULL);
1787 	if (!skbuff_head_cache)
1788 		panic("cannot create skbuff cache");
1789 
1790 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1791 						(2*sizeof(struct sk_buff)) +
1792 						sizeof(atomic_t),
1793 						0,
1794 						SLAB_HWCACHE_ALIGN,
1795 						NULL, NULL);
1796 	if (!skbuff_fclone_cache)
1797 		panic("cannot create skbuff cache");
1798 }
1799 
1800 EXPORT_SYMBOL(___pskb_trim);
1801 EXPORT_SYMBOL(__kfree_skb);
1802 EXPORT_SYMBOL(__pskb_pull_tail);
1803 EXPORT_SYMBOL(__alloc_skb);
1804 EXPORT_SYMBOL(pskb_copy);
1805 EXPORT_SYMBOL(pskb_expand_head);
1806 EXPORT_SYMBOL(skb_checksum);
1807 EXPORT_SYMBOL(skb_clone);
1808 EXPORT_SYMBOL(skb_clone_fraglist);
1809 EXPORT_SYMBOL(skb_copy);
1810 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1811 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1812 EXPORT_SYMBOL(skb_copy_bits);
1813 EXPORT_SYMBOL(skb_copy_expand);
1814 EXPORT_SYMBOL(skb_over_panic);
1815 EXPORT_SYMBOL(skb_pad);
1816 EXPORT_SYMBOL(skb_realloc_headroom);
1817 EXPORT_SYMBOL(skb_under_panic);
1818 EXPORT_SYMBOL(skb_dequeue);
1819 EXPORT_SYMBOL(skb_dequeue_tail);
1820 EXPORT_SYMBOL(skb_insert);
1821 EXPORT_SYMBOL(skb_queue_purge);
1822 EXPORT_SYMBOL(skb_queue_head);
1823 EXPORT_SYMBOL(skb_queue_tail);
1824 EXPORT_SYMBOL(skb_unlink);
1825 EXPORT_SYMBOL(skb_append);
1826 EXPORT_SYMBOL(skb_split);
1827 EXPORT_SYMBOL(skb_prepare_seq_read);
1828 EXPORT_SYMBOL(skb_seq_read);
1829 EXPORT_SYMBOL(skb_abort_seq_read);
1830 EXPORT_SYMBOL(skb_find_text);
1831 EXPORT_SYMBOL(skb_append_datato_frags);
1832