xref: /linux/net/core/skbuff.c (revision d6e4b3e326d8b44675b9e19534347d97073826aa)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 #ifdef CONFIG_SKB_EXTENSIONS
83 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
84 #endif
85 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
86 EXPORT_SYMBOL(sysctl_max_skb_frags);
87 
88 /**
89  *	skb_panic - private function for out-of-line support
90  *	@skb:	buffer
91  *	@sz:	size
92  *	@addr:	address
93  *	@msg:	skb_over_panic or skb_under_panic
94  *
95  *	Out-of-line support for skb_put() and skb_push().
96  *	Called via the wrapper skb_over_panic() or skb_under_panic().
97  *	Keep out of line to prevent kernel bloat.
98  *	__builtin_return_address is not used because it is not always reliable.
99  */
100 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
101 		      const char msg[])
102 {
103 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
104 		 msg, addr, skb->len, sz, skb->head, skb->data,
105 		 (unsigned long)skb->tail, (unsigned long)skb->end,
106 		 skb->dev ? skb->dev->name : "<NULL>");
107 	BUG();
108 }
109 
110 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 	skb_panic(skb, sz, addr, __func__);
113 }
114 
115 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
116 {
117 	skb_panic(skb, sz, addr, __func__);
118 }
119 
120 /*
121  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
122  * the caller if emergency pfmemalloc reserves are being used. If it is and
123  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
124  * may be used. Otherwise, the packet data may be discarded until enough
125  * memory is free
126  */
127 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
128 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
129 
130 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
131 			       unsigned long ip, bool *pfmemalloc)
132 {
133 	void *obj;
134 	bool ret_pfmemalloc = false;
135 
136 	/*
137 	 * Try a regular allocation, when that fails and we're not entitled
138 	 * to the reserves, fail.
139 	 */
140 	obj = kmalloc_node_track_caller(size,
141 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
142 					node);
143 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
144 		goto out;
145 
146 	/* Try again but now we are using pfmemalloc reserves */
147 	ret_pfmemalloc = true;
148 	obj = kmalloc_node_track_caller(size, flags, node);
149 
150 out:
151 	if (pfmemalloc)
152 		*pfmemalloc = ret_pfmemalloc;
153 
154 	return obj;
155 }
156 
157 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
158  *	'private' fields and also do memory statistics to find all the
159  *	[BEEP] leaks.
160  *
161  */
162 
163 /**
164  *	__alloc_skb	-	allocate a network buffer
165  *	@size: size to allocate
166  *	@gfp_mask: allocation mask
167  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
168  *		instead of head cache and allocate a cloned (child) skb.
169  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
170  *		allocations in case the data is required for writeback
171  *	@node: numa node to allocate memory on
172  *
173  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
174  *	tail room of at least size bytes. The object has a reference count
175  *	of one. The return is the buffer. On a failure the return is %NULL.
176  *
177  *	Buffers may only be allocated from interrupts using a @gfp_mask of
178  *	%GFP_ATOMIC.
179  */
180 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
181 			    int flags, int node)
182 {
183 	struct kmem_cache *cache;
184 	struct skb_shared_info *shinfo;
185 	struct sk_buff *skb;
186 	u8 *data;
187 	bool pfmemalloc;
188 
189 	cache = (flags & SKB_ALLOC_FCLONE)
190 		? skbuff_fclone_cache : skbuff_head_cache;
191 
192 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
193 		gfp_mask |= __GFP_MEMALLOC;
194 
195 	/* Get the HEAD */
196 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
197 	if (!skb)
198 		goto out;
199 	prefetchw(skb);
200 
201 	/* We do our best to align skb_shared_info on a separate cache
202 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
203 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
204 	 * Both skb->head and skb_shared_info are cache line aligned.
205 	 */
206 	size = SKB_DATA_ALIGN(size);
207 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
208 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
209 	if (!data)
210 		goto nodata;
211 	/* kmalloc(size) might give us more room than requested.
212 	 * Put skb_shared_info exactly at the end of allocated zone,
213 	 * to allow max possible filling before reallocation.
214 	 */
215 	size = SKB_WITH_OVERHEAD(ksize(data));
216 	prefetchw(data + size);
217 
218 	/*
219 	 * Only clear those fields we need to clear, not those that we will
220 	 * actually initialise below. Hence, don't put any more fields after
221 	 * the tail pointer in struct sk_buff!
222 	 */
223 	memset(skb, 0, offsetof(struct sk_buff, tail));
224 	/* Account for allocated memory : skb + skb->head */
225 	skb->truesize = SKB_TRUESIZE(size);
226 	skb->pfmemalloc = pfmemalloc;
227 	refcount_set(&skb->users, 1);
228 	skb->head = data;
229 	skb->data = data;
230 	skb_reset_tail_pointer(skb);
231 	skb->end = skb->tail + size;
232 	skb->mac_header = (typeof(skb->mac_header))~0U;
233 	skb->transport_header = (typeof(skb->transport_header))~0U;
234 
235 	/* make sure we initialize shinfo sequentially */
236 	shinfo = skb_shinfo(skb);
237 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
238 	atomic_set(&shinfo->dataref, 1);
239 
240 	if (flags & SKB_ALLOC_FCLONE) {
241 		struct sk_buff_fclones *fclones;
242 
243 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
244 
245 		skb->fclone = SKB_FCLONE_ORIG;
246 		refcount_set(&fclones->fclone_ref, 1);
247 
248 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 	}
250 out:
251 	return skb;
252 nodata:
253 	kmem_cache_free(cache, skb);
254 	skb = NULL;
255 	goto out;
256 }
257 EXPORT_SYMBOL(__alloc_skb);
258 
259 /**
260  * __build_skb - build a network buffer
261  * @data: data buffer provided by caller
262  * @frag_size: size of data, or 0 if head was kmalloced
263  *
264  * Allocate a new &sk_buff. Caller provides space holding head and
265  * skb_shared_info. @data must have been allocated by kmalloc() only if
266  * @frag_size is 0, otherwise data should come from the page allocator
267  *  or vmalloc()
268  * The return is the new skb buffer.
269  * On a failure the return is %NULL, and @data is not freed.
270  * Notes :
271  *  Before IO, driver allocates only data buffer where NIC put incoming frame
272  *  Driver should add room at head (NET_SKB_PAD) and
273  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
275  *  before giving packet to stack.
276  *  RX rings only contains data buffers, not full skbs.
277  */
278 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279 {
280 	struct skb_shared_info *shinfo;
281 	struct sk_buff *skb;
282 	unsigned int size = frag_size ? : ksize(data);
283 
284 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 	if (!skb)
286 		return NULL;
287 
288 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289 
290 	memset(skb, 0, offsetof(struct sk_buff, tail));
291 	skb->truesize = SKB_TRUESIZE(size);
292 	refcount_set(&skb->users, 1);
293 	skb->head = data;
294 	skb->data = data;
295 	skb_reset_tail_pointer(skb);
296 	skb->end = skb->tail + size;
297 	skb->mac_header = (typeof(skb->mac_header))~0U;
298 	skb->transport_header = (typeof(skb->transport_header))~0U;
299 
300 	/* make sure we initialize shinfo sequentially */
301 	shinfo = skb_shinfo(skb);
302 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 	atomic_set(&shinfo->dataref, 1);
304 
305 	return skb;
306 }
307 
308 /* build_skb() is wrapper over __build_skb(), that specifically
309  * takes care of skb->head and skb->pfmemalloc
310  * This means that if @frag_size is not zero, then @data must be backed
311  * by a page fragment, not kmalloc() or vmalloc()
312  */
313 struct sk_buff *build_skb(void *data, unsigned int frag_size)
314 {
315 	struct sk_buff *skb = __build_skb(data, frag_size);
316 
317 	if (skb && frag_size) {
318 		skb->head_frag = 1;
319 		if (page_is_pfmemalloc(virt_to_head_page(data)))
320 			skb->pfmemalloc = 1;
321 	}
322 	return skb;
323 }
324 EXPORT_SYMBOL(build_skb);
325 
326 #define NAPI_SKB_CACHE_SIZE	64
327 
328 struct napi_alloc_cache {
329 	struct page_frag_cache page;
330 	unsigned int skb_count;
331 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
332 };
333 
334 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
335 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
336 
337 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
338 {
339 	struct page_frag_cache *nc;
340 	unsigned long flags;
341 	void *data;
342 
343 	local_irq_save(flags);
344 	nc = this_cpu_ptr(&netdev_alloc_cache);
345 	data = page_frag_alloc(nc, fragsz, gfp_mask);
346 	local_irq_restore(flags);
347 	return data;
348 }
349 
350 /**
351  * netdev_alloc_frag - allocate a page fragment
352  * @fragsz: fragment size
353  *
354  * Allocates a frag from a page for receive buffer.
355  * Uses GFP_ATOMIC allocations.
356  */
357 void *netdev_alloc_frag(unsigned int fragsz)
358 {
359 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
360 }
361 EXPORT_SYMBOL(netdev_alloc_frag);
362 
363 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
366 
367 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
368 }
369 
370 void *napi_alloc_frag(unsigned int fragsz)
371 {
372 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
373 }
374 EXPORT_SYMBOL(napi_alloc_frag);
375 
376 /**
377  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
378  *	@dev: network device to receive on
379  *	@len: length to allocate
380  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
381  *
382  *	Allocate a new &sk_buff and assign it a usage count of one. The
383  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
384  *	the headroom they think they need without accounting for the
385  *	built in space. The built in space is used for optimisations.
386  *
387  *	%NULL is returned if there is no free memory.
388  */
389 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
390 				   gfp_t gfp_mask)
391 {
392 	struct page_frag_cache *nc;
393 	unsigned long flags;
394 	struct sk_buff *skb;
395 	bool pfmemalloc;
396 	void *data;
397 
398 	len += NET_SKB_PAD;
399 
400 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
401 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
402 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
403 		if (!skb)
404 			goto skb_fail;
405 		goto skb_success;
406 	}
407 
408 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
409 	len = SKB_DATA_ALIGN(len);
410 
411 	if (sk_memalloc_socks())
412 		gfp_mask |= __GFP_MEMALLOC;
413 
414 	local_irq_save(flags);
415 
416 	nc = this_cpu_ptr(&netdev_alloc_cache);
417 	data = page_frag_alloc(nc, len, gfp_mask);
418 	pfmemalloc = nc->pfmemalloc;
419 
420 	local_irq_restore(flags);
421 
422 	if (unlikely(!data))
423 		return NULL;
424 
425 	skb = __build_skb(data, len);
426 	if (unlikely(!skb)) {
427 		skb_free_frag(data);
428 		return NULL;
429 	}
430 
431 	/* use OR instead of assignment to avoid clearing of bits in mask */
432 	if (pfmemalloc)
433 		skb->pfmemalloc = 1;
434 	skb->head_frag = 1;
435 
436 skb_success:
437 	skb_reserve(skb, NET_SKB_PAD);
438 	skb->dev = dev;
439 
440 skb_fail:
441 	return skb;
442 }
443 EXPORT_SYMBOL(__netdev_alloc_skb);
444 
445 /**
446  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
447  *	@napi: napi instance this buffer was allocated for
448  *	@len: length to allocate
449  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
450  *
451  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
452  *	attempt to allocate the head from a special reserved region used
453  *	only for NAPI Rx allocation.  By doing this we can save several
454  *	CPU cycles by avoiding having to disable and re-enable IRQs.
455  *
456  *	%NULL is returned if there is no free memory.
457  */
458 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
459 				 gfp_t gfp_mask)
460 {
461 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
462 	struct sk_buff *skb;
463 	void *data;
464 
465 	len += NET_SKB_PAD + NET_IP_ALIGN;
466 
467 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
468 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
469 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
470 		if (!skb)
471 			goto skb_fail;
472 		goto skb_success;
473 	}
474 
475 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
476 	len = SKB_DATA_ALIGN(len);
477 
478 	if (sk_memalloc_socks())
479 		gfp_mask |= __GFP_MEMALLOC;
480 
481 	data = page_frag_alloc(&nc->page, len, gfp_mask);
482 	if (unlikely(!data))
483 		return NULL;
484 
485 	skb = __build_skb(data, len);
486 	if (unlikely(!skb)) {
487 		skb_free_frag(data);
488 		return NULL;
489 	}
490 
491 	/* use OR instead of assignment to avoid clearing of bits in mask */
492 	if (nc->page.pfmemalloc)
493 		skb->pfmemalloc = 1;
494 	skb->head_frag = 1;
495 
496 skb_success:
497 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
498 	skb->dev = napi->dev;
499 
500 skb_fail:
501 	return skb;
502 }
503 EXPORT_SYMBOL(__napi_alloc_skb);
504 
505 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
506 		     int size, unsigned int truesize)
507 {
508 	skb_fill_page_desc(skb, i, page, off, size);
509 	skb->len += size;
510 	skb->data_len += size;
511 	skb->truesize += truesize;
512 }
513 EXPORT_SYMBOL(skb_add_rx_frag);
514 
515 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
516 			  unsigned int truesize)
517 {
518 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
519 
520 	skb_frag_size_add(frag, size);
521 	skb->len += size;
522 	skb->data_len += size;
523 	skb->truesize += truesize;
524 }
525 EXPORT_SYMBOL(skb_coalesce_rx_frag);
526 
527 static void skb_drop_list(struct sk_buff **listp)
528 {
529 	kfree_skb_list(*listp);
530 	*listp = NULL;
531 }
532 
533 static inline void skb_drop_fraglist(struct sk_buff *skb)
534 {
535 	skb_drop_list(&skb_shinfo(skb)->frag_list);
536 }
537 
538 static void skb_clone_fraglist(struct sk_buff *skb)
539 {
540 	struct sk_buff *list;
541 
542 	skb_walk_frags(skb, list)
543 		skb_get(list);
544 }
545 
546 static void skb_free_head(struct sk_buff *skb)
547 {
548 	unsigned char *head = skb->head;
549 
550 	if (skb->head_frag)
551 		skb_free_frag(head);
552 	else
553 		kfree(head);
554 }
555 
556 static void skb_release_data(struct sk_buff *skb)
557 {
558 	struct skb_shared_info *shinfo = skb_shinfo(skb);
559 	int i;
560 
561 	if (skb->cloned &&
562 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
563 			      &shinfo->dataref))
564 		return;
565 
566 	for (i = 0; i < shinfo->nr_frags; i++)
567 		__skb_frag_unref(&shinfo->frags[i]);
568 
569 	if (shinfo->frag_list)
570 		kfree_skb_list(shinfo->frag_list);
571 
572 	skb_zcopy_clear(skb, true);
573 	skb_free_head(skb);
574 }
575 
576 /*
577  *	Free an skbuff by memory without cleaning the state.
578  */
579 static void kfree_skbmem(struct sk_buff *skb)
580 {
581 	struct sk_buff_fclones *fclones;
582 
583 	switch (skb->fclone) {
584 	case SKB_FCLONE_UNAVAILABLE:
585 		kmem_cache_free(skbuff_head_cache, skb);
586 		return;
587 
588 	case SKB_FCLONE_ORIG:
589 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
590 
591 		/* We usually free the clone (TX completion) before original skb
592 		 * This test would have no chance to be true for the clone,
593 		 * while here, branch prediction will be good.
594 		 */
595 		if (refcount_read(&fclones->fclone_ref) == 1)
596 			goto fastpath;
597 		break;
598 
599 	default: /* SKB_FCLONE_CLONE */
600 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
601 		break;
602 	}
603 	if (!refcount_dec_and_test(&fclones->fclone_ref))
604 		return;
605 fastpath:
606 	kmem_cache_free(skbuff_fclone_cache, fclones);
607 }
608 
609 void skb_release_head_state(struct sk_buff *skb)
610 {
611 	skb_dst_drop(skb);
612 	if (skb->destructor) {
613 		WARN_ON(in_irq());
614 		skb->destructor(skb);
615 	}
616 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
617 	nf_conntrack_put(skb_nfct(skb));
618 #endif
619 	skb_ext_put(skb);
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 	__skb_ext_copy(new, old);
800 	__nf_copy(new, old, false);
801 
802 	/* Note : this field could be in headers_start/headers_end section
803 	 * It is not yet because we do not want to have a 16 bit hole
804 	 */
805 	new->queue_mapping = old->queue_mapping;
806 
807 	memcpy(&new->headers_start, &old->headers_start,
808 	       offsetof(struct sk_buff, headers_end) -
809 	       offsetof(struct sk_buff, headers_start));
810 	CHECK_SKB_FIELD(protocol);
811 	CHECK_SKB_FIELD(csum);
812 	CHECK_SKB_FIELD(hash);
813 	CHECK_SKB_FIELD(priority);
814 	CHECK_SKB_FIELD(skb_iif);
815 	CHECK_SKB_FIELD(vlan_proto);
816 	CHECK_SKB_FIELD(vlan_tci);
817 	CHECK_SKB_FIELD(transport_header);
818 	CHECK_SKB_FIELD(network_header);
819 	CHECK_SKB_FIELD(mac_header);
820 	CHECK_SKB_FIELD(inner_protocol);
821 	CHECK_SKB_FIELD(inner_transport_header);
822 	CHECK_SKB_FIELD(inner_network_header);
823 	CHECK_SKB_FIELD(inner_mac_header);
824 	CHECK_SKB_FIELD(mark);
825 #ifdef CONFIG_NETWORK_SECMARK
826 	CHECK_SKB_FIELD(secmark);
827 #endif
828 #ifdef CONFIG_NET_RX_BUSY_POLL
829 	CHECK_SKB_FIELD(napi_id);
830 #endif
831 #ifdef CONFIG_XPS
832 	CHECK_SKB_FIELD(sender_cpu);
833 #endif
834 #ifdef CONFIG_NET_SCHED
835 	CHECK_SKB_FIELD(tc_index);
836 #endif
837 
838 }
839 
840 /*
841  * You should not add any new code to this function.  Add it to
842  * __copy_skb_header above instead.
843  */
844 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
845 {
846 #define C(x) n->x = skb->x
847 
848 	n->next = n->prev = NULL;
849 	n->sk = NULL;
850 	__copy_skb_header(n, skb);
851 
852 	C(len);
853 	C(data_len);
854 	C(mac_len);
855 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
856 	n->cloned = 1;
857 	n->nohdr = 0;
858 	n->peeked = 0;
859 	C(pfmemalloc);
860 	n->destructor = NULL;
861 	C(tail);
862 	C(end);
863 	C(head);
864 	C(head_frag);
865 	C(data);
866 	C(truesize);
867 	refcount_set(&n->users, 1);
868 
869 	atomic_inc(&(skb_shinfo(skb)->dataref));
870 	skb->cloned = 1;
871 
872 	return n;
873 #undef C
874 }
875 
876 /**
877  *	skb_morph	-	morph one skb into another
878  *	@dst: the skb to receive the contents
879  *	@src: the skb to supply the contents
880  *
881  *	This is identical to skb_clone except that the target skb is
882  *	supplied by the user.
883  *
884  *	The target skb is returned upon exit.
885  */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 	skb_release_all(dst);
889 	return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892 
893 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
894 {
895 	unsigned long max_pg, num_pg, new_pg, old_pg;
896 	struct user_struct *user;
897 
898 	if (capable(CAP_IPC_LOCK) || !size)
899 		return 0;
900 
901 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
902 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
903 	user = mmp->user ? : current_user();
904 
905 	do {
906 		old_pg = atomic_long_read(&user->locked_vm);
907 		new_pg = old_pg + num_pg;
908 		if (new_pg > max_pg)
909 			return -ENOBUFS;
910 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
911 		 old_pg);
912 
913 	if (!mmp->user) {
914 		mmp->user = get_uid(user);
915 		mmp->num_pg = num_pg;
916 	} else {
917 		mmp->num_pg += num_pg;
918 	}
919 
920 	return 0;
921 }
922 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
923 
924 void mm_unaccount_pinned_pages(struct mmpin *mmp)
925 {
926 	if (mmp->user) {
927 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
928 		free_uid(mmp->user);
929 	}
930 }
931 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
932 
933 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
934 {
935 	struct ubuf_info *uarg;
936 	struct sk_buff *skb;
937 
938 	WARN_ON_ONCE(!in_task());
939 
940 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
941 	if (!skb)
942 		return NULL;
943 
944 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
945 	uarg = (void *)skb->cb;
946 	uarg->mmp.user = NULL;
947 
948 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
949 		kfree_skb(skb);
950 		return NULL;
951 	}
952 
953 	uarg->callback = sock_zerocopy_callback;
954 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
955 	uarg->len = 1;
956 	uarg->bytelen = size;
957 	uarg->zerocopy = 1;
958 	refcount_set(&uarg->refcnt, 1);
959 	sock_hold(sk);
960 
961 	return uarg;
962 }
963 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
964 
965 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
966 {
967 	return container_of((void *)uarg, struct sk_buff, cb);
968 }
969 
970 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
971 					struct ubuf_info *uarg)
972 {
973 	if (uarg) {
974 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
975 		u32 bytelen, next;
976 
977 		/* realloc only when socket is locked (TCP, UDP cork),
978 		 * so uarg->len and sk_zckey access is serialized
979 		 */
980 		if (!sock_owned_by_user(sk)) {
981 			WARN_ON_ONCE(1);
982 			return NULL;
983 		}
984 
985 		bytelen = uarg->bytelen + size;
986 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
987 			/* TCP can create new skb to attach new uarg */
988 			if (sk->sk_type == SOCK_STREAM)
989 				goto new_alloc;
990 			return NULL;
991 		}
992 
993 		next = (u32)atomic_read(&sk->sk_zckey);
994 		if ((u32)(uarg->id + uarg->len) == next) {
995 			if (mm_account_pinned_pages(&uarg->mmp, size))
996 				return NULL;
997 			uarg->len++;
998 			uarg->bytelen = bytelen;
999 			atomic_set(&sk->sk_zckey, ++next);
1000 			sock_zerocopy_get(uarg);
1001 			return uarg;
1002 		}
1003 	}
1004 
1005 new_alloc:
1006 	return sock_zerocopy_alloc(sk, size);
1007 }
1008 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1009 
1010 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1011 {
1012 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1013 	u32 old_lo, old_hi;
1014 	u64 sum_len;
1015 
1016 	old_lo = serr->ee.ee_info;
1017 	old_hi = serr->ee.ee_data;
1018 	sum_len = old_hi - old_lo + 1ULL + len;
1019 
1020 	if (sum_len >= (1ULL << 32))
1021 		return false;
1022 
1023 	if (lo != old_hi + 1)
1024 		return false;
1025 
1026 	serr->ee.ee_data += len;
1027 	return true;
1028 }
1029 
1030 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1031 {
1032 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1033 	struct sock_exterr_skb *serr;
1034 	struct sock *sk = skb->sk;
1035 	struct sk_buff_head *q;
1036 	unsigned long flags;
1037 	u32 lo, hi;
1038 	u16 len;
1039 
1040 	mm_unaccount_pinned_pages(&uarg->mmp);
1041 
1042 	/* if !len, there was only 1 call, and it was aborted
1043 	 * so do not queue a completion notification
1044 	 */
1045 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1046 		goto release;
1047 
1048 	len = uarg->len;
1049 	lo = uarg->id;
1050 	hi = uarg->id + len - 1;
1051 
1052 	serr = SKB_EXT_ERR(skb);
1053 	memset(serr, 0, sizeof(*serr));
1054 	serr->ee.ee_errno = 0;
1055 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1056 	serr->ee.ee_data = hi;
1057 	serr->ee.ee_info = lo;
1058 	if (!success)
1059 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1060 
1061 	q = &sk->sk_error_queue;
1062 	spin_lock_irqsave(&q->lock, flags);
1063 	tail = skb_peek_tail(q);
1064 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1065 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1066 		__skb_queue_tail(q, skb);
1067 		skb = NULL;
1068 	}
1069 	spin_unlock_irqrestore(&q->lock, flags);
1070 
1071 	sk->sk_error_report(sk);
1072 
1073 release:
1074 	consume_skb(skb);
1075 	sock_put(sk);
1076 }
1077 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1078 
1079 void sock_zerocopy_put(struct ubuf_info *uarg)
1080 {
1081 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1082 		if (uarg->callback)
1083 			uarg->callback(uarg, uarg->zerocopy);
1084 		else
1085 			consume_skb(skb_from_uarg(uarg));
1086 	}
1087 }
1088 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1089 
1090 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1091 {
1092 	if (uarg) {
1093 		struct sock *sk = skb_from_uarg(uarg)->sk;
1094 
1095 		atomic_dec(&sk->sk_zckey);
1096 		uarg->len--;
1097 
1098 		if (have_uref)
1099 			sock_zerocopy_put(uarg);
1100 	}
1101 }
1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1103 
1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1105 				   struct iov_iter *from, size_t length);
1106 
1107 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1108 {
1109 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1110 }
1111 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1112 
1113 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1114 			     struct msghdr *msg, int len,
1115 			     struct ubuf_info *uarg)
1116 {
1117 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1118 	struct iov_iter orig_iter = msg->msg_iter;
1119 	int err, orig_len = skb->len;
1120 
1121 	/* An skb can only point to one uarg. This edge case happens when
1122 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1123 	 */
1124 	if (orig_uarg && uarg != orig_uarg)
1125 		return -EEXIST;
1126 
1127 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1128 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1129 		struct sock *save_sk = skb->sk;
1130 
1131 		/* Streams do not free skb on error. Reset to prev state. */
1132 		msg->msg_iter = orig_iter;
1133 		skb->sk = sk;
1134 		___pskb_trim(skb, orig_len);
1135 		skb->sk = save_sk;
1136 		return err;
1137 	}
1138 
1139 	skb_zcopy_set(skb, uarg, NULL);
1140 	return skb->len - orig_len;
1141 }
1142 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1143 
1144 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1145 			      gfp_t gfp_mask)
1146 {
1147 	if (skb_zcopy(orig)) {
1148 		if (skb_zcopy(nskb)) {
1149 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1150 			if (!gfp_mask) {
1151 				WARN_ON_ONCE(1);
1152 				return -ENOMEM;
1153 			}
1154 			if (skb_uarg(nskb) == skb_uarg(orig))
1155 				return 0;
1156 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1157 				return -EIO;
1158 		}
1159 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1160 	}
1161 	return 0;
1162 }
1163 
1164 /**
1165  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1166  *	@skb: the skb to modify
1167  *	@gfp_mask: allocation priority
1168  *
1169  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1170  *	It will copy all frags into kernel and drop the reference
1171  *	to userspace pages.
1172  *
1173  *	If this function is called from an interrupt gfp_mask() must be
1174  *	%GFP_ATOMIC.
1175  *
1176  *	Returns 0 on success or a negative error code on failure
1177  *	to allocate kernel memory to copy to.
1178  */
1179 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1180 {
1181 	int num_frags = skb_shinfo(skb)->nr_frags;
1182 	struct page *page, *head = NULL;
1183 	int i, new_frags;
1184 	u32 d_off;
1185 
1186 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1187 		return -EINVAL;
1188 
1189 	if (!num_frags)
1190 		goto release;
1191 
1192 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1193 	for (i = 0; i < new_frags; i++) {
1194 		page = alloc_page(gfp_mask);
1195 		if (!page) {
1196 			while (head) {
1197 				struct page *next = (struct page *)page_private(head);
1198 				put_page(head);
1199 				head = next;
1200 			}
1201 			return -ENOMEM;
1202 		}
1203 		set_page_private(page, (unsigned long)head);
1204 		head = page;
1205 	}
1206 
1207 	page = head;
1208 	d_off = 0;
1209 	for (i = 0; i < num_frags; i++) {
1210 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1211 		u32 p_off, p_len, copied;
1212 		struct page *p;
1213 		u8 *vaddr;
1214 
1215 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1216 				      p, p_off, p_len, copied) {
1217 			u32 copy, done = 0;
1218 			vaddr = kmap_atomic(p);
1219 
1220 			while (done < p_len) {
1221 				if (d_off == PAGE_SIZE) {
1222 					d_off = 0;
1223 					page = (struct page *)page_private(page);
1224 				}
1225 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1226 				memcpy(page_address(page) + d_off,
1227 				       vaddr + p_off + done, copy);
1228 				done += copy;
1229 				d_off += copy;
1230 			}
1231 			kunmap_atomic(vaddr);
1232 		}
1233 	}
1234 
1235 	/* skb frags release userspace buffers */
1236 	for (i = 0; i < num_frags; i++)
1237 		skb_frag_unref(skb, i);
1238 
1239 	/* skb frags point to kernel buffers */
1240 	for (i = 0; i < new_frags - 1; i++) {
1241 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1242 		head = (struct page *)page_private(head);
1243 	}
1244 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1245 	skb_shinfo(skb)->nr_frags = new_frags;
1246 
1247 release:
1248 	skb_zcopy_clear(skb, false);
1249 	return 0;
1250 }
1251 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1252 
1253 /**
1254  *	skb_clone	-	duplicate an sk_buff
1255  *	@skb: buffer to clone
1256  *	@gfp_mask: allocation priority
1257  *
1258  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1259  *	copies share the same packet data but not structure. The new
1260  *	buffer has a reference count of 1. If the allocation fails the
1261  *	function returns %NULL otherwise the new buffer is returned.
1262  *
1263  *	If this function is called from an interrupt gfp_mask() must be
1264  *	%GFP_ATOMIC.
1265  */
1266 
1267 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1268 {
1269 	struct sk_buff_fclones *fclones = container_of(skb,
1270 						       struct sk_buff_fclones,
1271 						       skb1);
1272 	struct sk_buff *n;
1273 
1274 	if (skb_orphan_frags(skb, gfp_mask))
1275 		return NULL;
1276 
1277 	if (skb->fclone == SKB_FCLONE_ORIG &&
1278 	    refcount_read(&fclones->fclone_ref) == 1) {
1279 		n = &fclones->skb2;
1280 		refcount_set(&fclones->fclone_ref, 2);
1281 	} else {
1282 		if (skb_pfmemalloc(skb))
1283 			gfp_mask |= __GFP_MEMALLOC;
1284 
1285 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1286 		if (!n)
1287 			return NULL;
1288 
1289 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1290 	}
1291 
1292 	return __skb_clone(n, skb);
1293 }
1294 EXPORT_SYMBOL(skb_clone);
1295 
1296 void skb_headers_offset_update(struct sk_buff *skb, int off)
1297 {
1298 	/* Only adjust this if it actually is csum_start rather than csum */
1299 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1300 		skb->csum_start += off;
1301 	/* {transport,network,mac}_header and tail are relative to skb->head */
1302 	skb->transport_header += off;
1303 	skb->network_header   += off;
1304 	if (skb_mac_header_was_set(skb))
1305 		skb->mac_header += off;
1306 	skb->inner_transport_header += off;
1307 	skb->inner_network_header += off;
1308 	skb->inner_mac_header += off;
1309 }
1310 EXPORT_SYMBOL(skb_headers_offset_update);
1311 
1312 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1313 {
1314 	__copy_skb_header(new, old);
1315 
1316 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1317 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1318 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1319 }
1320 EXPORT_SYMBOL(skb_copy_header);
1321 
1322 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1323 {
1324 	if (skb_pfmemalloc(skb))
1325 		return SKB_ALLOC_RX;
1326 	return 0;
1327 }
1328 
1329 /**
1330  *	skb_copy	-	create private copy of an sk_buff
1331  *	@skb: buffer to copy
1332  *	@gfp_mask: allocation priority
1333  *
1334  *	Make a copy of both an &sk_buff and its data. This is used when the
1335  *	caller wishes to modify the data and needs a private copy of the
1336  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1337  *	on success. The returned buffer has a reference count of 1.
1338  *
1339  *	As by-product this function converts non-linear &sk_buff to linear
1340  *	one, so that &sk_buff becomes completely private and caller is allowed
1341  *	to modify all the data of returned buffer. This means that this
1342  *	function is not recommended for use in circumstances when only
1343  *	header is going to be modified. Use pskb_copy() instead.
1344  */
1345 
1346 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1347 {
1348 	int headerlen = skb_headroom(skb);
1349 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1350 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1351 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1352 
1353 	if (!n)
1354 		return NULL;
1355 
1356 	/* Set the data pointer */
1357 	skb_reserve(n, headerlen);
1358 	/* Set the tail pointer and length */
1359 	skb_put(n, skb->len);
1360 
1361 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1362 
1363 	skb_copy_header(n, skb);
1364 	return n;
1365 }
1366 EXPORT_SYMBOL(skb_copy);
1367 
1368 /**
1369  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1370  *	@skb: buffer to copy
1371  *	@headroom: headroom of new skb
1372  *	@gfp_mask: allocation priority
1373  *	@fclone: if true allocate the copy of the skb from the fclone
1374  *	cache instead of the head cache; it is recommended to set this
1375  *	to true for the cases where the copy will likely be cloned
1376  *
1377  *	Make a copy of both an &sk_buff and part of its data, located
1378  *	in header. Fragmented data remain shared. This is used when
1379  *	the caller wishes to modify only header of &sk_buff and needs
1380  *	private copy of the header to alter. Returns %NULL on failure
1381  *	or the pointer to the buffer on success.
1382  *	The returned buffer has a reference count of 1.
1383  */
1384 
1385 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1386 				   gfp_t gfp_mask, bool fclone)
1387 {
1388 	unsigned int size = skb_headlen(skb) + headroom;
1389 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1390 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1391 
1392 	if (!n)
1393 		goto out;
1394 
1395 	/* Set the data pointer */
1396 	skb_reserve(n, headroom);
1397 	/* Set the tail pointer and length */
1398 	skb_put(n, skb_headlen(skb));
1399 	/* Copy the bytes */
1400 	skb_copy_from_linear_data(skb, n->data, n->len);
1401 
1402 	n->truesize += skb->data_len;
1403 	n->data_len  = skb->data_len;
1404 	n->len	     = skb->len;
1405 
1406 	if (skb_shinfo(skb)->nr_frags) {
1407 		int i;
1408 
1409 		if (skb_orphan_frags(skb, gfp_mask) ||
1410 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1411 			kfree_skb(n);
1412 			n = NULL;
1413 			goto out;
1414 		}
1415 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1416 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1417 			skb_frag_ref(skb, i);
1418 		}
1419 		skb_shinfo(n)->nr_frags = i;
1420 	}
1421 
1422 	if (skb_has_frag_list(skb)) {
1423 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1424 		skb_clone_fraglist(n);
1425 	}
1426 
1427 	skb_copy_header(n, skb);
1428 out:
1429 	return n;
1430 }
1431 EXPORT_SYMBOL(__pskb_copy_fclone);
1432 
1433 /**
1434  *	pskb_expand_head - reallocate header of &sk_buff
1435  *	@skb: buffer to reallocate
1436  *	@nhead: room to add at head
1437  *	@ntail: room to add at tail
1438  *	@gfp_mask: allocation priority
1439  *
1440  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1441  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1442  *	reference count of 1. Returns zero in the case of success or error,
1443  *	if expansion failed. In the last case, &sk_buff is not changed.
1444  *
1445  *	All the pointers pointing into skb header may change and must be
1446  *	reloaded after call to this function.
1447  */
1448 
1449 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1450 		     gfp_t gfp_mask)
1451 {
1452 	int i, osize = skb_end_offset(skb);
1453 	int size = osize + nhead + ntail;
1454 	long off;
1455 	u8 *data;
1456 
1457 	BUG_ON(nhead < 0);
1458 
1459 	BUG_ON(skb_shared(skb));
1460 
1461 	size = SKB_DATA_ALIGN(size);
1462 
1463 	if (skb_pfmemalloc(skb))
1464 		gfp_mask |= __GFP_MEMALLOC;
1465 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1466 			       gfp_mask, NUMA_NO_NODE, NULL);
1467 	if (!data)
1468 		goto nodata;
1469 	size = SKB_WITH_OVERHEAD(ksize(data));
1470 
1471 	/* Copy only real data... and, alas, header. This should be
1472 	 * optimized for the cases when header is void.
1473 	 */
1474 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1475 
1476 	memcpy((struct skb_shared_info *)(data + size),
1477 	       skb_shinfo(skb),
1478 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1479 
1480 	/*
1481 	 * if shinfo is shared we must drop the old head gracefully, but if it
1482 	 * is not we can just drop the old head and let the existing refcount
1483 	 * be since all we did is relocate the values
1484 	 */
1485 	if (skb_cloned(skb)) {
1486 		if (skb_orphan_frags(skb, gfp_mask))
1487 			goto nofrags;
1488 		if (skb_zcopy(skb))
1489 			refcount_inc(&skb_uarg(skb)->refcnt);
1490 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1491 			skb_frag_ref(skb, i);
1492 
1493 		if (skb_has_frag_list(skb))
1494 			skb_clone_fraglist(skb);
1495 
1496 		skb_release_data(skb);
1497 	} else {
1498 		skb_free_head(skb);
1499 	}
1500 	off = (data + nhead) - skb->head;
1501 
1502 	skb->head     = data;
1503 	skb->head_frag = 0;
1504 	skb->data    += off;
1505 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1506 	skb->end      = size;
1507 	off           = nhead;
1508 #else
1509 	skb->end      = skb->head + size;
1510 #endif
1511 	skb->tail	      += off;
1512 	skb_headers_offset_update(skb, nhead);
1513 	skb->cloned   = 0;
1514 	skb->hdr_len  = 0;
1515 	skb->nohdr    = 0;
1516 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1517 
1518 	skb_metadata_clear(skb);
1519 
1520 	/* It is not generally safe to change skb->truesize.
1521 	 * For the moment, we really care of rx path, or
1522 	 * when skb is orphaned (not attached to a socket).
1523 	 */
1524 	if (!skb->sk || skb->destructor == sock_edemux)
1525 		skb->truesize += size - osize;
1526 
1527 	return 0;
1528 
1529 nofrags:
1530 	kfree(data);
1531 nodata:
1532 	return -ENOMEM;
1533 }
1534 EXPORT_SYMBOL(pskb_expand_head);
1535 
1536 /* Make private copy of skb with writable head and some headroom */
1537 
1538 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1539 {
1540 	struct sk_buff *skb2;
1541 	int delta = headroom - skb_headroom(skb);
1542 
1543 	if (delta <= 0)
1544 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1545 	else {
1546 		skb2 = skb_clone(skb, GFP_ATOMIC);
1547 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1548 					     GFP_ATOMIC)) {
1549 			kfree_skb(skb2);
1550 			skb2 = NULL;
1551 		}
1552 	}
1553 	return skb2;
1554 }
1555 EXPORT_SYMBOL(skb_realloc_headroom);
1556 
1557 /**
1558  *	skb_copy_expand	-	copy and expand sk_buff
1559  *	@skb: buffer to copy
1560  *	@newheadroom: new free bytes at head
1561  *	@newtailroom: new free bytes at tail
1562  *	@gfp_mask: allocation priority
1563  *
1564  *	Make a copy of both an &sk_buff and its data and while doing so
1565  *	allocate additional space.
1566  *
1567  *	This is used when the caller wishes to modify the data and needs a
1568  *	private copy of the data to alter as well as more space for new fields.
1569  *	Returns %NULL on failure or the pointer to the buffer
1570  *	on success. The returned buffer has a reference count of 1.
1571  *
1572  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1573  *	is called from an interrupt.
1574  */
1575 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1576 				int newheadroom, int newtailroom,
1577 				gfp_t gfp_mask)
1578 {
1579 	/*
1580 	 *	Allocate the copy buffer
1581 	 */
1582 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1583 					gfp_mask, skb_alloc_rx_flag(skb),
1584 					NUMA_NO_NODE);
1585 	int oldheadroom = skb_headroom(skb);
1586 	int head_copy_len, head_copy_off;
1587 
1588 	if (!n)
1589 		return NULL;
1590 
1591 	skb_reserve(n, newheadroom);
1592 
1593 	/* Set the tail pointer and length */
1594 	skb_put(n, skb->len);
1595 
1596 	head_copy_len = oldheadroom;
1597 	head_copy_off = 0;
1598 	if (newheadroom <= head_copy_len)
1599 		head_copy_len = newheadroom;
1600 	else
1601 		head_copy_off = newheadroom - head_copy_len;
1602 
1603 	/* Copy the linear header and data. */
1604 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1605 			     skb->len + head_copy_len));
1606 
1607 	skb_copy_header(n, skb);
1608 
1609 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1610 
1611 	return n;
1612 }
1613 EXPORT_SYMBOL(skb_copy_expand);
1614 
1615 /**
1616  *	__skb_pad		-	zero pad the tail of an skb
1617  *	@skb: buffer to pad
1618  *	@pad: space to pad
1619  *	@free_on_error: free buffer on error
1620  *
1621  *	Ensure that a buffer is followed by a padding area that is zero
1622  *	filled. Used by network drivers which may DMA or transfer data
1623  *	beyond the buffer end onto the wire.
1624  *
1625  *	May return error in out of memory cases. The skb is freed on error
1626  *	if @free_on_error is true.
1627  */
1628 
1629 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1630 {
1631 	int err;
1632 	int ntail;
1633 
1634 	/* If the skbuff is non linear tailroom is always zero.. */
1635 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1636 		memset(skb->data+skb->len, 0, pad);
1637 		return 0;
1638 	}
1639 
1640 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1641 	if (likely(skb_cloned(skb) || ntail > 0)) {
1642 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1643 		if (unlikely(err))
1644 			goto free_skb;
1645 	}
1646 
1647 	/* FIXME: The use of this function with non-linear skb's really needs
1648 	 * to be audited.
1649 	 */
1650 	err = skb_linearize(skb);
1651 	if (unlikely(err))
1652 		goto free_skb;
1653 
1654 	memset(skb->data + skb->len, 0, pad);
1655 	return 0;
1656 
1657 free_skb:
1658 	if (free_on_error)
1659 		kfree_skb(skb);
1660 	return err;
1661 }
1662 EXPORT_SYMBOL(__skb_pad);
1663 
1664 /**
1665  *	pskb_put - add data to the tail of a potentially fragmented buffer
1666  *	@skb: start of the buffer to use
1667  *	@tail: tail fragment of the buffer to use
1668  *	@len: amount of data to add
1669  *
1670  *	This function extends the used data area of the potentially
1671  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1672  *	@skb itself. If this would exceed the total buffer size the kernel
1673  *	will panic. A pointer to the first byte of the extra data is
1674  *	returned.
1675  */
1676 
1677 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1678 {
1679 	if (tail != skb) {
1680 		skb->data_len += len;
1681 		skb->len += len;
1682 	}
1683 	return skb_put(tail, len);
1684 }
1685 EXPORT_SYMBOL_GPL(pskb_put);
1686 
1687 /**
1688  *	skb_put - add data to a buffer
1689  *	@skb: buffer to use
1690  *	@len: amount of data to add
1691  *
1692  *	This function extends the used data area of the buffer. If this would
1693  *	exceed the total buffer size the kernel will panic. A pointer to the
1694  *	first byte of the extra data is returned.
1695  */
1696 void *skb_put(struct sk_buff *skb, unsigned int len)
1697 {
1698 	void *tmp = skb_tail_pointer(skb);
1699 	SKB_LINEAR_ASSERT(skb);
1700 	skb->tail += len;
1701 	skb->len  += len;
1702 	if (unlikely(skb->tail > skb->end))
1703 		skb_over_panic(skb, len, __builtin_return_address(0));
1704 	return tmp;
1705 }
1706 EXPORT_SYMBOL(skb_put);
1707 
1708 /**
1709  *	skb_push - add data to the start of a buffer
1710  *	@skb: buffer to use
1711  *	@len: amount of data to add
1712  *
1713  *	This function extends the used data area of the buffer at the buffer
1714  *	start. If this would exceed the total buffer headroom the kernel will
1715  *	panic. A pointer to the first byte of the extra data is returned.
1716  */
1717 void *skb_push(struct sk_buff *skb, unsigned int len)
1718 {
1719 	skb->data -= len;
1720 	skb->len  += len;
1721 	if (unlikely(skb->data < skb->head))
1722 		skb_under_panic(skb, len, __builtin_return_address(0));
1723 	return skb->data;
1724 }
1725 EXPORT_SYMBOL(skb_push);
1726 
1727 /**
1728  *	skb_pull - remove data from the start of a buffer
1729  *	@skb: buffer to use
1730  *	@len: amount of data to remove
1731  *
1732  *	This function removes data from the start of a buffer, returning
1733  *	the memory to the headroom. A pointer to the next data in the buffer
1734  *	is returned. Once the data has been pulled future pushes will overwrite
1735  *	the old data.
1736  */
1737 void *skb_pull(struct sk_buff *skb, unsigned int len)
1738 {
1739 	return skb_pull_inline(skb, len);
1740 }
1741 EXPORT_SYMBOL(skb_pull);
1742 
1743 /**
1744  *	skb_trim - remove end from a buffer
1745  *	@skb: buffer to alter
1746  *	@len: new length
1747  *
1748  *	Cut the length of a buffer down by removing data from the tail. If
1749  *	the buffer is already under the length specified it is not modified.
1750  *	The skb must be linear.
1751  */
1752 void skb_trim(struct sk_buff *skb, unsigned int len)
1753 {
1754 	if (skb->len > len)
1755 		__skb_trim(skb, len);
1756 }
1757 EXPORT_SYMBOL(skb_trim);
1758 
1759 /* Trims skb to length len. It can change skb pointers.
1760  */
1761 
1762 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1763 {
1764 	struct sk_buff **fragp;
1765 	struct sk_buff *frag;
1766 	int offset = skb_headlen(skb);
1767 	int nfrags = skb_shinfo(skb)->nr_frags;
1768 	int i;
1769 	int err;
1770 
1771 	if (skb_cloned(skb) &&
1772 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1773 		return err;
1774 
1775 	i = 0;
1776 	if (offset >= len)
1777 		goto drop_pages;
1778 
1779 	for (; i < nfrags; i++) {
1780 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1781 
1782 		if (end < len) {
1783 			offset = end;
1784 			continue;
1785 		}
1786 
1787 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1788 
1789 drop_pages:
1790 		skb_shinfo(skb)->nr_frags = i;
1791 
1792 		for (; i < nfrags; i++)
1793 			skb_frag_unref(skb, i);
1794 
1795 		if (skb_has_frag_list(skb))
1796 			skb_drop_fraglist(skb);
1797 		goto done;
1798 	}
1799 
1800 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1801 	     fragp = &frag->next) {
1802 		int end = offset + frag->len;
1803 
1804 		if (skb_shared(frag)) {
1805 			struct sk_buff *nfrag;
1806 
1807 			nfrag = skb_clone(frag, GFP_ATOMIC);
1808 			if (unlikely(!nfrag))
1809 				return -ENOMEM;
1810 
1811 			nfrag->next = frag->next;
1812 			consume_skb(frag);
1813 			frag = nfrag;
1814 			*fragp = frag;
1815 		}
1816 
1817 		if (end < len) {
1818 			offset = end;
1819 			continue;
1820 		}
1821 
1822 		if (end > len &&
1823 		    unlikely((err = pskb_trim(frag, len - offset))))
1824 			return err;
1825 
1826 		if (frag->next)
1827 			skb_drop_list(&frag->next);
1828 		break;
1829 	}
1830 
1831 done:
1832 	if (len > skb_headlen(skb)) {
1833 		skb->data_len -= skb->len - len;
1834 		skb->len       = len;
1835 	} else {
1836 		skb->len       = len;
1837 		skb->data_len  = 0;
1838 		skb_set_tail_pointer(skb, len);
1839 	}
1840 
1841 	if (!skb->sk || skb->destructor == sock_edemux)
1842 		skb_condense(skb);
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL(___pskb_trim);
1846 
1847 /* Note : use pskb_trim_rcsum() instead of calling this directly
1848  */
1849 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1850 {
1851 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1852 		int delta = skb->len - len;
1853 
1854 		skb->csum = csum_block_sub(skb->csum,
1855 					   skb_checksum(skb, len, delta, 0),
1856 					   len);
1857 	}
1858 	return __pskb_trim(skb, len);
1859 }
1860 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1861 
1862 /**
1863  *	__pskb_pull_tail - advance tail of skb header
1864  *	@skb: buffer to reallocate
1865  *	@delta: number of bytes to advance tail
1866  *
1867  *	The function makes a sense only on a fragmented &sk_buff,
1868  *	it expands header moving its tail forward and copying necessary
1869  *	data from fragmented part.
1870  *
1871  *	&sk_buff MUST have reference count of 1.
1872  *
1873  *	Returns %NULL (and &sk_buff does not change) if pull failed
1874  *	or value of new tail of skb in the case of success.
1875  *
1876  *	All the pointers pointing into skb header may change and must be
1877  *	reloaded after call to this function.
1878  */
1879 
1880 /* Moves tail of skb head forward, copying data from fragmented part,
1881  * when it is necessary.
1882  * 1. It may fail due to malloc failure.
1883  * 2. It may change skb pointers.
1884  *
1885  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1886  */
1887 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1888 {
1889 	/* If skb has not enough free space at tail, get new one
1890 	 * plus 128 bytes for future expansions. If we have enough
1891 	 * room at tail, reallocate without expansion only if skb is cloned.
1892 	 */
1893 	int i, k, eat = (skb->tail + delta) - skb->end;
1894 
1895 	if (eat > 0 || skb_cloned(skb)) {
1896 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1897 				     GFP_ATOMIC))
1898 			return NULL;
1899 	}
1900 
1901 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1902 			     skb_tail_pointer(skb), delta));
1903 
1904 	/* Optimization: no fragments, no reasons to preestimate
1905 	 * size of pulled pages. Superb.
1906 	 */
1907 	if (!skb_has_frag_list(skb))
1908 		goto pull_pages;
1909 
1910 	/* Estimate size of pulled pages. */
1911 	eat = delta;
1912 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1913 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1914 
1915 		if (size >= eat)
1916 			goto pull_pages;
1917 		eat -= size;
1918 	}
1919 
1920 	/* If we need update frag list, we are in troubles.
1921 	 * Certainly, it is possible to add an offset to skb data,
1922 	 * but taking into account that pulling is expected to
1923 	 * be very rare operation, it is worth to fight against
1924 	 * further bloating skb head and crucify ourselves here instead.
1925 	 * Pure masohism, indeed. 8)8)
1926 	 */
1927 	if (eat) {
1928 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1929 		struct sk_buff *clone = NULL;
1930 		struct sk_buff *insp = NULL;
1931 
1932 		do {
1933 			if (list->len <= eat) {
1934 				/* Eaten as whole. */
1935 				eat -= list->len;
1936 				list = list->next;
1937 				insp = list;
1938 			} else {
1939 				/* Eaten partially. */
1940 
1941 				if (skb_shared(list)) {
1942 					/* Sucks! We need to fork list. :-( */
1943 					clone = skb_clone(list, GFP_ATOMIC);
1944 					if (!clone)
1945 						return NULL;
1946 					insp = list->next;
1947 					list = clone;
1948 				} else {
1949 					/* This may be pulled without
1950 					 * problems. */
1951 					insp = list;
1952 				}
1953 				if (!pskb_pull(list, eat)) {
1954 					kfree_skb(clone);
1955 					return NULL;
1956 				}
1957 				break;
1958 			}
1959 		} while (eat);
1960 
1961 		/* Free pulled out fragments. */
1962 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1963 			skb_shinfo(skb)->frag_list = list->next;
1964 			kfree_skb(list);
1965 		}
1966 		/* And insert new clone at head. */
1967 		if (clone) {
1968 			clone->next = list;
1969 			skb_shinfo(skb)->frag_list = clone;
1970 		}
1971 	}
1972 	/* Success! Now we may commit changes to skb data. */
1973 
1974 pull_pages:
1975 	eat = delta;
1976 	k = 0;
1977 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1978 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1979 
1980 		if (size <= eat) {
1981 			skb_frag_unref(skb, i);
1982 			eat -= size;
1983 		} else {
1984 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1985 			if (eat) {
1986 				skb_shinfo(skb)->frags[k].page_offset += eat;
1987 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1988 				if (!i)
1989 					goto end;
1990 				eat = 0;
1991 			}
1992 			k++;
1993 		}
1994 	}
1995 	skb_shinfo(skb)->nr_frags = k;
1996 
1997 end:
1998 	skb->tail     += delta;
1999 	skb->data_len -= delta;
2000 
2001 	if (!skb->data_len)
2002 		skb_zcopy_clear(skb, false);
2003 
2004 	return skb_tail_pointer(skb);
2005 }
2006 EXPORT_SYMBOL(__pskb_pull_tail);
2007 
2008 /**
2009  *	skb_copy_bits - copy bits from skb to kernel buffer
2010  *	@skb: source skb
2011  *	@offset: offset in source
2012  *	@to: destination buffer
2013  *	@len: number of bytes to copy
2014  *
2015  *	Copy the specified number of bytes from the source skb to the
2016  *	destination buffer.
2017  *
2018  *	CAUTION ! :
2019  *		If its prototype is ever changed,
2020  *		check arch/{*}/net/{*}.S files,
2021  *		since it is called from BPF assembly code.
2022  */
2023 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2024 {
2025 	int start = skb_headlen(skb);
2026 	struct sk_buff *frag_iter;
2027 	int i, copy;
2028 
2029 	if (offset > (int)skb->len - len)
2030 		goto fault;
2031 
2032 	/* Copy header. */
2033 	if ((copy = start - offset) > 0) {
2034 		if (copy > len)
2035 			copy = len;
2036 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2037 		if ((len -= copy) == 0)
2038 			return 0;
2039 		offset += copy;
2040 		to     += copy;
2041 	}
2042 
2043 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2044 		int end;
2045 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2046 
2047 		WARN_ON(start > offset + len);
2048 
2049 		end = start + skb_frag_size(f);
2050 		if ((copy = end - offset) > 0) {
2051 			u32 p_off, p_len, copied;
2052 			struct page *p;
2053 			u8 *vaddr;
2054 
2055 			if (copy > len)
2056 				copy = len;
2057 
2058 			skb_frag_foreach_page(f,
2059 					      f->page_offset + offset - start,
2060 					      copy, p, p_off, p_len, copied) {
2061 				vaddr = kmap_atomic(p);
2062 				memcpy(to + copied, vaddr + p_off, p_len);
2063 				kunmap_atomic(vaddr);
2064 			}
2065 
2066 			if ((len -= copy) == 0)
2067 				return 0;
2068 			offset += copy;
2069 			to     += copy;
2070 		}
2071 		start = end;
2072 	}
2073 
2074 	skb_walk_frags(skb, frag_iter) {
2075 		int end;
2076 
2077 		WARN_ON(start > offset + len);
2078 
2079 		end = start + frag_iter->len;
2080 		if ((copy = end - offset) > 0) {
2081 			if (copy > len)
2082 				copy = len;
2083 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2084 				goto fault;
2085 			if ((len -= copy) == 0)
2086 				return 0;
2087 			offset += copy;
2088 			to     += copy;
2089 		}
2090 		start = end;
2091 	}
2092 
2093 	if (!len)
2094 		return 0;
2095 
2096 fault:
2097 	return -EFAULT;
2098 }
2099 EXPORT_SYMBOL(skb_copy_bits);
2100 
2101 /*
2102  * Callback from splice_to_pipe(), if we need to release some pages
2103  * at the end of the spd in case we error'ed out in filling the pipe.
2104  */
2105 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2106 {
2107 	put_page(spd->pages[i]);
2108 }
2109 
2110 static struct page *linear_to_page(struct page *page, unsigned int *len,
2111 				   unsigned int *offset,
2112 				   struct sock *sk)
2113 {
2114 	struct page_frag *pfrag = sk_page_frag(sk);
2115 
2116 	if (!sk_page_frag_refill(sk, pfrag))
2117 		return NULL;
2118 
2119 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2120 
2121 	memcpy(page_address(pfrag->page) + pfrag->offset,
2122 	       page_address(page) + *offset, *len);
2123 	*offset = pfrag->offset;
2124 	pfrag->offset += *len;
2125 
2126 	return pfrag->page;
2127 }
2128 
2129 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2130 			     struct page *page,
2131 			     unsigned int offset)
2132 {
2133 	return	spd->nr_pages &&
2134 		spd->pages[spd->nr_pages - 1] == page &&
2135 		(spd->partial[spd->nr_pages - 1].offset +
2136 		 spd->partial[spd->nr_pages - 1].len == offset);
2137 }
2138 
2139 /*
2140  * Fill page/offset/length into spd, if it can hold more pages.
2141  */
2142 static bool spd_fill_page(struct splice_pipe_desc *spd,
2143 			  struct pipe_inode_info *pipe, struct page *page,
2144 			  unsigned int *len, unsigned int offset,
2145 			  bool linear,
2146 			  struct sock *sk)
2147 {
2148 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2149 		return true;
2150 
2151 	if (linear) {
2152 		page = linear_to_page(page, len, &offset, sk);
2153 		if (!page)
2154 			return true;
2155 	}
2156 	if (spd_can_coalesce(spd, page, offset)) {
2157 		spd->partial[spd->nr_pages - 1].len += *len;
2158 		return false;
2159 	}
2160 	get_page(page);
2161 	spd->pages[spd->nr_pages] = page;
2162 	spd->partial[spd->nr_pages].len = *len;
2163 	spd->partial[spd->nr_pages].offset = offset;
2164 	spd->nr_pages++;
2165 
2166 	return false;
2167 }
2168 
2169 static bool __splice_segment(struct page *page, unsigned int poff,
2170 			     unsigned int plen, unsigned int *off,
2171 			     unsigned int *len,
2172 			     struct splice_pipe_desc *spd, bool linear,
2173 			     struct sock *sk,
2174 			     struct pipe_inode_info *pipe)
2175 {
2176 	if (!*len)
2177 		return true;
2178 
2179 	/* skip this segment if already processed */
2180 	if (*off >= plen) {
2181 		*off -= plen;
2182 		return false;
2183 	}
2184 
2185 	/* ignore any bits we already processed */
2186 	poff += *off;
2187 	plen -= *off;
2188 	*off = 0;
2189 
2190 	do {
2191 		unsigned int flen = min(*len, plen);
2192 
2193 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2194 				  linear, sk))
2195 			return true;
2196 		poff += flen;
2197 		plen -= flen;
2198 		*len -= flen;
2199 	} while (*len && plen);
2200 
2201 	return false;
2202 }
2203 
2204 /*
2205  * Map linear and fragment data from the skb to spd. It reports true if the
2206  * pipe is full or if we already spliced the requested length.
2207  */
2208 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2209 			      unsigned int *offset, unsigned int *len,
2210 			      struct splice_pipe_desc *spd, struct sock *sk)
2211 {
2212 	int seg;
2213 	struct sk_buff *iter;
2214 
2215 	/* map the linear part :
2216 	 * If skb->head_frag is set, this 'linear' part is backed by a
2217 	 * fragment, and if the head is not shared with any clones then
2218 	 * we can avoid a copy since we own the head portion of this page.
2219 	 */
2220 	if (__splice_segment(virt_to_page(skb->data),
2221 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2222 			     skb_headlen(skb),
2223 			     offset, len, spd,
2224 			     skb_head_is_locked(skb),
2225 			     sk, pipe))
2226 		return true;
2227 
2228 	/*
2229 	 * then map the fragments
2230 	 */
2231 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2232 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2233 
2234 		if (__splice_segment(skb_frag_page(f),
2235 				     f->page_offset, skb_frag_size(f),
2236 				     offset, len, spd, false, sk, pipe))
2237 			return true;
2238 	}
2239 
2240 	skb_walk_frags(skb, iter) {
2241 		if (*offset >= iter->len) {
2242 			*offset -= iter->len;
2243 			continue;
2244 		}
2245 		/* __skb_splice_bits() only fails if the output has no room
2246 		 * left, so no point in going over the frag_list for the error
2247 		 * case.
2248 		 */
2249 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2250 			return true;
2251 	}
2252 
2253 	return false;
2254 }
2255 
2256 /*
2257  * Map data from the skb to a pipe. Should handle both the linear part,
2258  * the fragments, and the frag list.
2259  */
2260 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2261 		    struct pipe_inode_info *pipe, unsigned int tlen,
2262 		    unsigned int flags)
2263 {
2264 	struct partial_page partial[MAX_SKB_FRAGS];
2265 	struct page *pages[MAX_SKB_FRAGS];
2266 	struct splice_pipe_desc spd = {
2267 		.pages = pages,
2268 		.partial = partial,
2269 		.nr_pages_max = MAX_SKB_FRAGS,
2270 		.ops = &nosteal_pipe_buf_ops,
2271 		.spd_release = sock_spd_release,
2272 	};
2273 	int ret = 0;
2274 
2275 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2276 
2277 	if (spd.nr_pages)
2278 		ret = splice_to_pipe(pipe, &spd);
2279 
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL_GPL(skb_splice_bits);
2283 
2284 /* Send skb data on a socket. Socket must be locked. */
2285 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2286 			 int len)
2287 {
2288 	unsigned int orig_len = len;
2289 	struct sk_buff *head = skb;
2290 	unsigned short fragidx;
2291 	int slen, ret;
2292 
2293 do_frag_list:
2294 
2295 	/* Deal with head data */
2296 	while (offset < skb_headlen(skb) && len) {
2297 		struct kvec kv;
2298 		struct msghdr msg;
2299 
2300 		slen = min_t(int, len, skb_headlen(skb) - offset);
2301 		kv.iov_base = skb->data + offset;
2302 		kv.iov_len = slen;
2303 		memset(&msg, 0, sizeof(msg));
2304 
2305 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2306 		if (ret <= 0)
2307 			goto error;
2308 
2309 		offset += ret;
2310 		len -= ret;
2311 	}
2312 
2313 	/* All the data was skb head? */
2314 	if (!len)
2315 		goto out;
2316 
2317 	/* Make offset relative to start of frags */
2318 	offset -= skb_headlen(skb);
2319 
2320 	/* Find where we are in frag list */
2321 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2322 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2323 
2324 		if (offset < frag->size)
2325 			break;
2326 
2327 		offset -= frag->size;
2328 	}
2329 
2330 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2331 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2332 
2333 		slen = min_t(size_t, len, frag->size - offset);
2334 
2335 		while (slen) {
2336 			ret = kernel_sendpage_locked(sk, frag->page.p,
2337 						     frag->page_offset + offset,
2338 						     slen, MSG_DONTWAIT);
2339 			if (ret <= 0)
2340 				goto error;
2341 
2342 			len -= ret;
2343 			offset += ret;
2344 			slen -= ret;
2345 		}
2346 
2347 		offset = 0;
2348 	}
2349 
2350 	if (len) {
2351 		/* Process any frag lists */
2352 
2353 		if (skb == head) {
2354 			if (skb_has_frag_list(skb)) {
2355 				skb = skb_shinfo(skb)->frag_list;
2356 				goto do_frag_list;
2357 			}
2358 		} else if (skb->next) {
2359 			skb = skb->next;
2360 			goto do_frag_list;
2361 		}
2362 	}
2363 
2364 out:
2365 	return orig_len - len;
2366 
2367 error:
2368 	return orig_len == len ? ret : orig_len - len;
2369 }
2370 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2371 
2372 /**
2373  *	skb_store_bits - store bits from kernel buffer to skb
2374  *	@skb: destination buffer
2375  *	@offset: offset in destination
2376  *	@from: source buffer
2377  *	@len: number of bytes to copy
2378  *
2379  *	Copy the specified number of bytes from the source buffer to the
2380  *	destination skb.  This function handles all the messy bits of
2381  *	traversing fragment lists and such.
2382  */
2383 
2384 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2385 {
2386 	int start = skb_headlen(skb);
2387 	struct sk_buff *frag_iter;
2388 	int i, copy;
2389 
2390 	if (offset > (int)skb->len - len)
2391 		goto fault;
2392 
2393 	if ((copy = start - offset) > 0) {
2394 		if (copy > len)
2395 			copy = len;
2396 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2397 		if ((len -= copy) == 0)
2398 			return 0;
2399 		offset += copy;
2400 		from += copy;
2401 	}
2402 
2403 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2404 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2405 		int end;
2406 
2407 		WARN_ON(start > offset + len);
2408 
2409 		end = start + skb_frag_size(frag);
2410 		if ((copy = end - offset) > 0) {
2411 			u32 p_off, p_len, copied;
2412 			struct page *p;
2413 			u8 *vaddr;
2414 
2415 			if (copy > len)
2416 				copy = len;
2417 
2418 			skb_frag_foreach_page(frag,
2419 					      frag->page_offset + offset - start,
2420 					      copy, p, p_off, p_len, copied) {
2421 				vaddr = kmap_atomic(p);
2422 				memcpy(vaddr + p_off, from + copied, p_len);
2423 				kunmap_atomic(vaddr);
2424 			}
2425 
2426 			if ((len -= copy) == 0)
2427 				return 0;
2428 			offset += copy;
2429 			from += copy;
2430 		}
2431 		start = end;
2432 	}
2433 
2434 	skb_walk_frags(skb, frag_iter) {
2435 		int end;
2436 
2437 		WARN_ON(start > offset + len);
2438 
2439 		end = start + frag_iter->len;
2440 		if ((copy = end - offset) > 0) {
2441 			if (copy > len)
2442 				copy = len;
2443 			if (skb_store_bits(frag_iter, offset - start,
2444 					   from, copy))
2445 				goto fault;
2446 			if ((len -= copy) == 0)
2447 				return 0;
2448 			offset += copy;
2449 			from += copy;
2450 		}
2451 		start = end;
2452 	}
2453 	if (!len)
2454 		return 0;
2455 
2456 fault:
2457 	return -EFAULT;
2458 }
2459 EXPORT_SYMBOL(skb_store_bits);
2460 
2461 /* Checksum skb data. */
2462 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2463 		      __wsum csum, const struct skb_checksum_ops *ops)
2464 {
2465 	int start = skb_headlen(skb);
2466 	int i, copy = start - offset;
2467 	struct sk_buff *frag_iter;
2468 	int pos = 0;
2469 
2470 	/* Checksum header. */
2471 	if (copy > 0) {
2472 		if (copy > len)
2473 			copy = len;
2474 		csum = ops->update(skb->data + offset, copy, csum);
2475 		if ((len -= copy) == 0)
2476 			return csum;
2477 		offset += copy;
2478 		pos	= copy;
2479 	}
2480 
2481 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2482 		int end;
2483 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2484 
2485 		WARN_ON(start > offset + len);
2486 
2487 		end = start + skb_frag_size(frag);
2488 		if ((copy = end - offset) > 0) {
2489 			u32 p_off, p_len, copied;
2490 			struct page *p;
2491 			__wsum csum2;
2492 			u8 *vaddr;
2493 
2494 			if (copy > len)
2495 				copy = len;
2496 
2497 			skb_frag_foreach_page(frag,
2498 					      frag->page_offset + offset - start,
2499 					      copy, p, p_off, p_len, copied) {
2500 				vaddr = kmap_atomic(p);
2501 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2502 				kunmap_atomic(vaddr);
2503 				csum = ops->combine(csum, csum2, pos, p_len);
2504 				pos += p_len;
2505 			}
2506 
2507 			if (!(len -= copy))
2508 				return csum;
2509 			offset += copy;
2510 		}
2511 		start = end;
2512 	}
2513 
2514 	skb_walk_frags(skb, frag_iter) {
2515 		int end;
2516 
2517 		WARN_ON(start > offset + len);
2518 
2519 		end = start + frag_iter->len;
2520 		if ((copy = end - offset) > 0) {
2521 			__wsum csum2;
2522 			if (copy > len)
2523 				copy = len;
2524 			csum2 = __skb_checksum(frag_iter, offset - start,
2525 					       copy, 0, ops);
2526 			csum = ops->combine(csum, csum2, pos, copy);
2527 			if ((len -= copy) == 0)
2528 				return csum;
2529 			offset += copy;
2530 			pos    += copy;
2531 		}
2532 		start = end;
2533 	}
2534 	BUG_ON(len);
2535 
2536 	return csum;
2537 }
2538 EXPORT_SYMBOL(__skb_checksum);
2539 
2540 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2541 		    int len, __wsum csum)
2542 {
2543 	const struct skb_checksum_ops ops = {
2544 		.update  = csum_partial_ext,
2545 		.combine = csum_block_add_ext,
2546 	};
2547 
2548 	return __skb_checksum(skb, offset, len, csum, &ops);
2549 }
2550 EXPORT_SYMBOL(skb_checksum);
2551 
2552 /* Both of above in one bottle. */
2553 
2554 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2555 				    u8 *to, int len, __wsum csum)
2556 {
2557 	int start = skb_headlen(skb);
2558 	int i, copy = start - offset;
2559 	struct sk_buff *frag_iter;
2560 	int pos = 0;
2561 
2562 	/* Copy header. */
2563 	if (copy > 0) {
2564 		if (copy > len)
2565 			copy = len;
2566 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2567 						 copy, csum);
2568 		if ((len -= copy) == 0)
2569 			return csum;
2570 		offset += copy;
2571 		to     += copy;
2572 		pos	= copy;
2573 	}
2574 
2575 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2576 		int end;
2577 
2578 		WARN_ON(start > offset + len);
2579 
2580 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2581 		if ((copy = end - offset) > 0) {
2582 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2583 			u32 p_off, p_len, copied;
2584 			struct page *p;
2585 			__wsum csum2;
2586 			u8 *vaddr;
2587 
2588 			if (copy > len)
2589 				copy = len;
2590 
2591 			skb_frag_foreach_page(frag,
2592 					      frag->page_offset + offset - start,
2593 					      copy, p, p_off, p_len, copied) {
2594 				vaddr = kmap_atomic(p);
2595 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2596 								  to + copied,
2597 								  p_len, 0);
2598 				kunmap_atomic(vaddr);
2599 				csum = csum_block_add(csum, csum2, pos);
2600 				pos += p_len;
2601 			}
2602 
2603 			if (!(len -= copy))
2604 				return csum;
2605 			offset += copy;
2606 			to     += copy;
2607 		}
2608 		start = end;
2609 	}
2610 
2611 	skb_walk_frags(skb, frag_iter) {
2612 		__wsum csum2;
2613 		int end;
2614 
2615 		WARN_ON(start > offset + len);
2616 
2617 		end = start + frag_iter->len;
2618 		if ((copy = end - offset) > 0) {
2619 			if (copy > len)
2620 				copy = len;
2621 			csum2 = skb_copy_and_csum_bits(frag_iter,
2622 						       offset - start,
2623 						       to, copy, 0);
2624 			csum = csum_block_add(csum, csum2, pos);
2625 			if ((len -= copy) == 0)
2626 				return csum;
2627 			offset += copy;
2628 			to     += copy;
2629 			pos    += copy;
2630 		}
2631 		start = end;
2632 	}
2633 	BUG_ON(len);
2634 	return csum;
2635 }
2636 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2637 
2638 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2639 {
2640 	__sum16 sum;
2641 
2642 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2643 	/* See comments in __skb_checksum_complete(). */
2644 	if (likely(!sum)) {
2645 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2646 		    !skb->csum_complete_sw)
2647 			netdev_rx_csum_fault(skb->dev, skb);
2648 	}
2649 	if (!skb_shared(skb))
2650 		skb->csum_valid = !sum;
2651 	return sum;
2652 }
2653 EXPORT_SYMBOL(__skb_checksum_complete_head);
2654 
2655 /* This function assumes skb->csum already holds pseudo header's checksum,
2656  * which has been changed from the hardware checksum, for example, by
2657  * __skb_checksum_validate_complete(). And, the original skb->csum must
2658  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2659  *
2660  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2661  * zero. The new checksum is stored back into skb->csum unless the skb is
2662  * shared.
2663  */
2664 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2665 {
2666 	__wsum csum;
2667 	__sum16 sum;
2668 
2669 	csum = skb_checksum(skb, 0, skb->len, 0);
2670 
2671 	sum = csum_fold(csum_add(skb->csum, csum));
2672 	/* This check is inverted, because we already knew the hardware
2673 	 * checksum is invalid before calling this function. So, if the
2674 	 * re-computed checksum is valid instead, then we have a mismatch
2675 	 * between the original skb->csum and skb_checksum(). This means either
2676 	 * the original hardware checksum is incorrect or we screw up skb->csum
2677 	 * when moving skb->data around.
2678 	 */
2679 	if (likely(!sum)) {
2680 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2681 		    !skb->csum_complete_sw)
2682 			netdev_rx_csum_fault(skb->dev, skb);
2683 	}
2684 
2685 	if (!skb_shared(skb)) {
2686 		/* Save full packet checksum */
2687 		skb->csum = csum;
2688 		skb->ip_summed = CHECKSUM_COMPLETE;
2689 		skb->csum_complete_sw = 1;
2690 		skb->csum_valid = !sum;
2691 	}
2692 
2693 	return sum;
2694 }
2695 EXPORT_SYMBOL(__skb_checksum_complete);
2696 
2697 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2698 {
2699 	net_warn_ratelimited(
2700 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2701 		__func__);
2702 	return 0;
2703 }
2704 
2705 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2706 				       int offset, int len)
2707 {
2708 	net_warn_ratelimited(
2709 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2710 		__func__);
2711 	return 0;
2712 }
2713 
2714 static const struct skb_checksum_ops default_crc32c_ops = {
2715 	.update  = warn_crc32c_csum_update,
2716 	.combine = warn_crc32c_csum_combine,
2717 };
2718 
2719 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2720 	&default_crc32c_ops;
2721 EXPORT_SYMBOL(crc32c_csum_stub);
2722 
2723  /**
2724  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2725  *	@from: source buffer
2726  *
2727  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2728  *	into skb_zerocopy().
2729  */
2730 unsigned int
2731 skb_zerocopy_headlen(const struct sk_buff *from)
2732 {
2733 	unsigned int hlen = 0;
2734 
2735 	if (!from->head_frag ||
2736 	    skb_headlen(from) < L1_CACHE_BYTES ||
2737 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2738 		hlen = skb_headlen(from);
2739 
2740 	if (skb_has_frag_list(from))
2741 		hlen = from->len;
2742 
2743 	return hlen;
2744 }
2745 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2746 
2747 /**
2748  *	skb_zerocopy - Zero copy skb to skb
2749  *	@to: destination buffer
2750  *	@from: source buffer
2751  *	@len: number of bytes to copy from source buffer
2752  *	@hlen: size of linear headroom in destination buffer
2753  *
2754  *	Copies up to `len` bytes from `from` to `to` by creating references
2755  *	to the frags in the source buffer.
2756  *
2757  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2758  *	headroom in the `to` buffer.
2759  *
2760  *	Return value:
2761  *	0: everything is OK
2762  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2763  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2764  */
2765 int
2766 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2767 {
2768 	int i, j = 0;
2769 	int plen = 0; /* length of skb->head fragment */
2770 	int ret;
2771 	struct page *page;
2772 	unsigned int offset;
2773 
2774 	BUG_ON(!from->head_frag && !hlen);
2775 
2776 	/* dont bother with small payloads */
2777 	if (len <= skb_tailroom(to))
2778 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2779 
2780 	if (hlen) {
2781 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2782 		if (unlikely(ret))
2783 			return ret;
2784 		len -= hlen;
2785 	} else {
2786 		plen = min_t(int, skb_headlen(from), len);
2787 		if (plen) {
2788 			page = virt_to_head_page(from->head);
2789 			offset = from->data - (unsigned char *)page_address(page);
2790 			__skb_fill_page_desc(to, 0, page, offset, plen);
2791 			get_page(page);
2792 			j = 1;
2793 			len -= plen;
2794 		}
2795 	}
2796 
2797 	to->truesize += len + plen;
2798 	to->len += len + plen;
2799 	to->data_len += len + plen;
2800 
2801 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2802 		skb_tx_error(from);
2803 		return -ENOMEM;
2804 	}
2805 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2806 
2807 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2808 		if (!len)
2809 			break;
2810 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2811 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2812 		len -= skb_shinfo(to)->frags[j].size;
2813 		skb_frag_ref(to, j);
2814 		j++;
2815 	}
2816 	skb_shinfo(to)->nr_frags = j;
2817 
2818 	return 0;
2819 }
2820 EXPORT_SYMBOL_GPL(skb_zerocopy);
2821 
2822 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2823 {
2824 	__wsum csum;
2825 	long csstart;
2826 
2827 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2828 		csstart = skb_checksum_start_offset(skb);
2829 	else
2830 		csstart = skb_headlen(skb);
2831 
2832 	BUG_ON(csstart > skb_headlen(skb));
2833 
2834 	skb_copy_from_linear_data(skb, to, csstart);
2835 
2836 	csum = 0;
2837 	if (csstart != skb->len)
2838 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2839 					      skb->len - csstart, 0);
2840 
2841 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2842 		long csstuff = csstart + skb->csum_offset;
2843 
2844 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2845 	}
2846 }
2847 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2848 
2849 /**
2850  *	skb_dequeue - remove from the head of the queue
2851  *	@list: list to dequeue from
2852  *
2853  *	Remove the head of the list. The list lock is taken so the function
2854  *	may be used safely with other locking list functions. The head item is
2855  *	returned or %NULL if the list is empty.
2856  */
2857 
2858 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2859 {
2860 	unsigned long flags;
2861 	struct sk_buff *result;
2862 
2863 	spin_lock_irqsave(&list->lock, flags);
2864 	result = __skb_dequeue(list);
2865 	spin_unlock_irqrestore(&list->lock, flags);
2866 	return result;
2867 }
2868 EXPORT_SYMBOL(skb_dequeue);
2869 
2870 /**
2871  *	skb_dequeue_tail - remove from the tail of the queue
2872  *	@list: list to dequeue from
2873  *
2874  *	Remove the tail of the list. The list lock is taken so the function
2875  *	may be used safely with other locking list functions. The tail item is
2876  *	returned or %NULL if the list is empty.
2877  */
2878 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2879 {
2880 	unsigned long flags;
2881 	struct sk_buff *result;
2882 
2883 	spin_lock_irqsave(&list->lock, flags);
2884 	result = __skb_dequeue_tail(list);
2885 	spin_unlock_irqrestore(&list->lock, flags);
2886 	return result;
2887 }
2888 EXPORT_SYMBOL(skb_dequeue_tail);
2889 
2890 /**
2891  *	skb_queue_purge - empty a list
2892  *	@list: list to empty
2893  *
2894  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2895  *	the list and one reference dropped. This function takes the list
2896  *	lock and is atomic with respect to other list locking functions.
2897  */
2898 void skb_queue_purge(struct sk_buff_head *list)
2899 {
2900 	struct sk_buff *skb;
2901 	while ((skb = skb_dequeue(list)) != NULL)
2902 		kfree_skb(skb);
2903 }
2904 EXPORT_SYMBOL(skb_queue_purge);
2905 
2906 /**
2907  *	skb_rbtree_purge - empty a skb rbtree
2908  *	@root: root of the rbtree to empty
2909  *	Return value: the sum of truesizes of all purged skbs.
2910  *
2911  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2912  *	the list and one reference dropped. This function does not take
2913  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2914  *	out-of-order queue is protected by the socket lock).
2915  */
2916 unsigned int skb_rbtree_purge(struct rb_root *root)
2917 {
2918 	struct rb_node *p = rb_first(root);
2919 	unsigned int sum = 0;
2920 
2921 	while (p) {
2922 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2923 
2924 		p = rb_next(p);
2925 		rb_erase(&skb->rbnode, root);
2926 		sum += skb->truesize;
2927 		kfree_skb(skb);
2928 	}
2929 	return sum;
2930 }
2931 
2932 /**
2933  *	skb_queue_head - queue a buffer at the list head
2934  *	@list: list to use
2935  *	@newsk: buffer to queue
2936  *
2937  *	Queue a buffer at the start of the list. This function takes the
2938  *	list lock and can be used safely with other locking &sk_buff functions
2939  *	safely.
2940  *
2941  *	A buffer cannot be placed on two lists at the same time.
2942  */
2943 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2944 {
2945 	unsigned long flags;
2946 
2947 	spin_lock_irqsave(&list->lock, flags);
2948 	__skb_queue_head(list, newsk);
2949 	spin_unlock_irqrestore(&list->lock, flags);
2950 }
2951 EXPORT_SYMBOL(skb_queue_head);
2952 
2953 /**
2954  *	skb_queue_tail - queue a buffer at the list tail
2955  *	@list: list to use
2956  *	@newsk: buffer to queue
2957  *
2958  *	Queue a buffer at the tail of the list. This function takes the
2959  *	list lock and can be used safely with other locking &sk_buff functions
2960  *	safely.
2961  *
2962  *	A buffer cannot be placed on two lists at the same time.
2963  */
2964 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2965 {
2966 	unsigned long flags;
2967 
2968 	spin_lock_irqsave(&list->lock, flags);
2969 	__skb_queue_tail(list, newsk);
2970 	spin_unlock_irqrestore(&list->lock, flags);
2971 }
2972 EXPORT_SYMBOL(skb_queue_tail);
2973 
2974 /**
2975  *	skb_unlink	-	remove a buffer from a list
2976  *	@skb: buffer to remove
2977  *	@list: list to use
2978  *
2979  *	Remove a packet from a list. The list locks are taken and this
2980  *	function is atomic with respect to other list locked calls
2981  *
2982  *	You must know what list the SKB is on.
2983  */
2984 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2985 {
2986 	unsigned long flags;
2987 
2988 	spin_lock_irqsave(&list->lock, flags);
2989 	__skb_unlink(skb, list);
2990 	spin_unlock_irqrestore(&list->lock, flags);
2991 }
2992 EXPORT_SYMBOL(skb_unlink);
2993 
2994 /**
2995  *	skb_append	-	append a buffer
2996  *	@old: buffer to insert after
2997  *	@newsk: buffer to insert
2998  *	@list: list to use
2999  *
3000  *	Place a packet after a given packet in a list. The list locks are taken
3001  *	and this function is atomic with respect to other list locked calls.
3002  *	A buffer cannot be placed on two lists at the same time.
3003  */
3004 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3005 {
3006 	unsigned long flags;
3007 
3008 	spin_lock_irqsave(&list->lock, flags);
3009 	__skb_queue_after(list, old, newsk);
3010 	spin_unlock_irqrestore(&list->lock, flags);
3011 }
3012 EXPORT_SYMBOL(skb_append);
3013 
3014 static inline void skb_split_inside_header(struct sk_buff *skb,
3015 					   struct sk_buff* skb1,
3016 					   const u32 len, const int pos)
3017 {
3018 	int i;
3019 
3020 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3021 					 pos - len);
3022 	/* And move data appendix as is. */
3023 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3024 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3025 
3026 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3027 	skb_shinfo(skb)->nr_frags  = 0;
3028 	skb1->data_len		   = skb->data_len;
3029 	skb1->len		   += skb1->data_len;
3030 	skb->data_len		   = 0;
3031 	skb->len		   = len;
3032 	skb_set_tail_pointer(skb, len);
3033 }
3034 
3035 static inline void skb_split_no_header(struct sk_buff *skb,
3036 				       struct sk_buff* skb1,
3037 				       const u32 len, int pos)
3038 {
3039 	int i, k = 0;
3040 	const int nfrags = skb_shinfo(skb)->nr_frags;
3041 
3042 	skb_shinfo(skb)->nr_frags = 0;
3043 	skb1->len		  = skb1->data_len = skb->len - len;
3044 	skb->len		  = len;
3045 	skb->data_len		  = len - pos;
3046 
3047 	for (i = 0; i < nfrags; i++) {
3048 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3049 
3050 		if (pos + size > len) {
3051 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3052 
3053 			if (pos < len) {
3054 				/* Split frag.
3055 				 * We have two variants in this case:
3056 				 * 1. Move all the frag to the second
3057 				 *    part, if it is possible. F.e.
3058 				 *    this approach is mandatory for TUX,
3059 				 *    where splitting is expensive.
3060 				 * 2. Split is accurately. We make this.
3061 				 */
3062 				skb_frag_ref(skb, i);
3063 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3064 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3065 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3066 				skb_shinfo(skb)->nr_frags++;
3067 			}
3068 			k++;
3069 		} else
3070 			skb_shinfo(skb)->nr_frags++;
3071 		pos += size;
3072 	}
3073 	skb_shinfo(skb1)->nr_frags = k;
3074 }
3075 
3076 /**
3077  * skb_split - Split fragmented skb to two parts at length len.
3078  * @skb: the buffer to split
3079  * @skb1: the buffer to receive the second part
3080  * @len: new length for skb
3081  */
3082 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3083 {
3084 	int pos = skb_headlen(skb);
3085 
3086 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3087 				      SKBTX_SHARED_FRAG;
3088 	skb_zerocopy_clone(skb1, skb, 0);
3089 	if (len < pos)	/* Split line is inside header. */
3090 		skb_split_inside_header(skb, skb1, len, pos);
3091 	else		/* Second chunk has no header, nothing to copy. */
3092 		skb_split_no_header(skb, skb1, len, pos);
3093 }
3094 EXPORT_SYMBOL(skb_split);
3095 
3096 /* Shifting from/to a cloned skb is a no-go.
3097  *
3098  * Caller cannot keep skb_shinfo related pointers past calling here!
3099  */
3100 static int skb_prepare_for_shift(struct sk_buff *skb)
3101 {
3102 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3103 }
3104 
3105 /**
3106  * skb_shift - Shifts paged data partially from skb to another
3107  * @tgt: buffer into which tail data gets added
3108  * @skb: buffer from which the paged data comes from
3109  * @shiftlen: shift up to this many bytes
3110  *
3111  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3112  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3113  * It's up to caller to free skb if everything was shifted.
3114  *
3115  * If @tgt runs out of frags, the whole operation is aborted.
3116  *
3117  * Skb cannot include anything else but paged data while tgt is allowed
3118  * to have non-paged data as well.
3119  *
3120  * TODO: full sized shift could be optimized but that would need
3121  * specialized skb free'er to handle frags without up-to-date nr_frags.
3122  */
3123 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3124 {
3125 	int from, to, merge, todo;
3126 	struct skb_frag_struct *fragfrom, *fragto;
3127 
3128 	BUG_ON(shiftlen > skb->len);
3129 
3130 	if (skb_headlen(skb))
3131 		return 0;
3132 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3133 		return 0;
3134 
3135 	todo = shiftlen;
3136 	from = 0;
3137 	to = skb_shinfo(tgt)->nr_frags;
3138 	fragfrom = &skb_shinfo(skb)->frags[from];
3139 
3140 	/* Actual merge is delayed until the point when we know we can
3141 	 * commit all, so that we don't have to undo partial changes
3142 	 */
3143 	if (!to ||
3144 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3145 			      fragfrom->page_offset)) {
3146 		merge = -1;
3147 	} else {
3148 		merge = to - 1;
3149 
3150 		todo -= skb_frag_size(fragfrom);
3151 		if (todo < 0) {
3152 			if (skb_prepare_for_shift(skb) ||
3153 			    skb_prepare_for_shift(tgt))
3154 				return 0;
3155 
3156 			/* All previous frag pointers might be stale! */
3157 			fragfrom = &skb_shinfo(skb)->frags[from];
3158 			fragto = &skb_shinfo(tgt)->frags[merge];
3159 
3160 			skb_frag_size_add(fragto, shiftlen);
3161 			skb_frag_size_sub(fragfrom, shiftlen);
3162 			fragfrom->page_offset += shiftlen;
3163 
3164 			goto onlymerged;
3165 		}
3166 
3167 		from++;
3168 	}
3169 
3170 	/* Skip full, not-fitting skb to avoid expensive operations */
3171 	if ((shiftlen == skb->len) &&
3172 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3173 		return 0;
3174 
3175 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3176 		return 0;
3177 
3178 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3179 		if (to == MAX_SKB_FRAGS)
3180 			return 0;
3181 
3182 		fragfrom = &skb_shinfo(skb)->frags[from];
3183 		fragto = &skb_shinfo(tgt)->frags[to];
3184 
3185 		if (todo >= skb_frag_size(fragfrom)) {
3186 			*fragto = *fragfrom;
3187 			todo -= skb_frag_size(fragfrom);
3188 			from++;
3189 			to++;
3190 
3191 		} else {
3192 			__skb_frag_ref(fragfrom);
3193 			fragto->page = fragfrom->page;
3194 			fragto->page_offset = fragfrom->page_offset;
3195 			skb_frag_size_set(fragto, todo);
3196 
3197 			fragfrom->page_offset += todo;
3198 			skb_frag_size_sub(fragfrom, todo);
3199 			todo = 0;
3200 
3201 			to++;
3202 			break;
3203 		}
3204 	}
3205 
3206 	/* Ready to "commit" this state change to tgt */
3207 	skb_shinfo(tgt)->nr_frags = to;
3208 
3209 	if (merge >= 0) {
3210 		fragfrom = &skb_shinfo(skb)->frags[0];
3211 		fragto = &skb_shinfo(tgt)->frags[merge];
3212 
3213 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3214 		__skb_frag_unref(fragfrom);
3215 	}
3216 
3217 	/* Reposition in the original skb */
3218 	to = 0;
3219 	while (from < skb_shinfo(skb)->nr_frags)
3220 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3221 	skb_shinfo(skb)->nr_frags = to;
3222 
3223 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3224 
3225 onlymerged:
3226 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3227 	 * the other hand might need it if it needs to be resent
3228 	 */
3229 	tgt->ip_summed = CHECKSUM_PARTIAL;
3230 	skb->ip_summed = CHECKSUM_PARTIAL;
3231 
3232 	/* Yak, is it really working this way? Some helper please? */
3233 	skb->len -= shiftlen;
3234 	skb->data_len -= shiftlen;
3235 	skb->truesize -= shiftlen;
3236 	tgt->len += shiftlen;
3237 	tgt->data_len += shiftlen;
3238 	tgt->truesize += shiftlen;
3239 
3240 	return shiftlen;
3241 }
3242 
3243 /**
3244  * skb_prepare_seq_read - Prepare a sequential read of skb data
3245  * @skb: the buffer to read
3246  * @from: lower offset of data to be read
3247  * @to: upper offset of data to be read
3248  * @st: state variable
3249  *
3250  * Initializes the specified state variable. Must be called before
3251  * invoking skb_seq_read() for the first time.
3252  */
3253 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3254 			  unsigned int to, struct skb_seq_state *st)
3255 {
3256 	st->lower_offset = from;
3257 	st->upper_offset = to;
3258 	st->root_skb = st->cur_skb = skb;
3259 	st->frag_idx = st->stepped_offset = 0;
3260 	st->frag_data = NULL;
3261 }
3262 EXPORT_SYMBOL(skb_prepare_seq_read);
3263 
3264 /**
3265  * skb_seq_read - Sequentially read skb data
3266  * @consumed: number of bytes consumed by the caller so far
3267  * @data: destination pointer for data to be returned
3268  * @st: state variable
3269  *
3270  * Reads a block of skb data at @consumed relative to the
3271  * lower offset specified to skb_prepare_seq_read(). Assigns
3272  * the head of the data block to @data and returns the length
3273  * of the block or 0 if the end of the skb data or the upper
3274  * offset has been reached.
3275  *
3276  * The caller is not required to consume all of the data
3277  * returned, i.e. @consumed is typically set to the number
3278  * of bytes already consumed and the next call to
3279  * skb_seq_read() will return the remaining part of the block.
3280  *
3281  * Note 1: The size of each block of data returned can be arbitrary,
3282  *       this limitation is the cost for zerocopy sequential
3283  *       reads of potentially non linear data.
3284  *
3285  * Note 2: Fragment lists within fragments are not implemented
3286  *       at the moment, state->root_skb could be replaced with
3287  *       a stack for this purpose.
3288  */
3289 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3290 			  struct skb_seq_state *st)
3291 {
3292 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3293 	skb_frag_t *frag;
3294 
3295 	if (unlikely(abs_offset >= st->upper_offset)) {
3296 		if (st->frag_data) {
3297 			kunmap_atomic(st->frag_data);
3298 			st->frag_data = NULL;
3299 		}
3300 		return 0;
3301 	}
3302 
3303 next_skb:
3304 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3305 
3306 	if (abs_offset < block_limit && !st->frag_data) {
3307 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3308 		return block_limit - abs_offset;
3309 	}
3310 
3311 	if (st->frag_idx == 0 && !st->frag_data)
3312 		st->stepped_offset += skb_headlen(st->cur_skb);
3313 
3314 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3315 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3316 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3317 
3318 		if (abs_offset < block_limit) {
3319 			if (!st->frag_data)
3320 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3321 
3322 			*data = (u8 *) st->frag_data + frag->page_offset +
3323 				(abs_offset - st->stepped_offset);
3324 
3325 			return block_limit - abs_offset;
3326 		}
3327 
3328 		if (st->frag_data) {
3329 			kunmap_atomic(st->frag_data);
3330 			st->frag_data = NULL;
3331 		}
3332 
3333 		st->frag_idx++;
3334 		st->stepped_offset += skb_frag_size(frag);
3335 	}
3336 
3337 	if (st->frag_data) {
3338 		kunmap_atomic(st->frag_data);
3339 		st->frag_data = NULL;
3340 	}
3341 
3342 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3343 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3344 		st->frag_idx = 0;
3345 		goto next_skb;
3346 	} else if (st->cur_skb->next) {
3347 		st->cur_skb = st->cur_skb->next;
3348 		st->frag_idx = 0;
3349 		goto next_skb;
3350 	}
3351 
3352 	return 0;
3353 }
3354 EXPORT_SYMBOL(skb_seq_read);
3355 
3356 /**
3357  * skb_abort_seq_read - Abort a sequential read of skb data
3358  * @st: state variable
3359  *
3360  * Must be called if skb_seq_read() was not called until it
3361  * returned 0.
3362  */
3363 void skb_abort_seq_read(struct skb_seq_state *st)
3364 {
3365 	if (st->frag_data)
3366 		kunmap_atomic(st->frag_data);
3367 }
3368 EXPORT_SYMBOL(skb_abort_seq_read);
3369 
3370 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3371 
3372 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3373 					  struct ts_config *conf,
3374 					  struct ts_state *state)
3375 {
3376 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3377 }
3378 
3379 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3380 {
3381 	skb_abort_seq_read(TS_SKB_CB(state));
3382 }
3383 
3384 /**
3385  * skb_find_text - Find a text pattern in skb data
3386  * @skb: the buffer to look in
3387  * @from: search offset
3388  * @to: search limit
3389  * @config: textsearch configuration
3390  *
3391  * Finds a pattern in the skb data according to the specified
3392  * textsearch configuration. Use textsearch_next() to retrieve
3393  * subsequent occurrences of the pattern. Returns the offset
3394  * to the first occurrence or UINT_MAX if no match was found.
3395  */
3396 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3397 			   unsigned int to, struct ts_config *config)
3398 {
3399 	struct ts_state state;
3400 	unsigned int ret;
3401 
3402 	config->get_next_block = skb_ts_get_next_block;
3403 	config->finish = skb_ts_finish;
3404 
3405 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3406 
3407 	ret = textsearch_find(config, &state);
3408 	return (ret <= to - from ? ret : UINT_MAX);
3409 }
3410 EXPORT_SYMBOL(skb_find_text);
3411 
3412 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3413 			 int offset, size_t size)
3414 {
3415 	int i = skb_shinfo(skb)->nr_frags;
3416 
3417 	if (skb_can_coalesce(skb, i, page, offset)) {
3418 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3419 	} else if (i < MAX_SKB_FRAGS) {
3420 		get_page(page);
3421 		skb_fill_page_desc(skb, i, page, offset, size);
3422 	} else {
3423 		return -EMSGSIZE;
3424 	}
3425 
3426 	return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3429 
3430 /**
3431  *	skb_pull_rcsum - pull skb and update receive checksum
3432  *	@skb: buffer to update
3433  *	@len: length of data pulled
3434  *
3435  *	This function performs an skb_pull on the packet and updates
3436  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3437  *	receive path processing instead of skb_pull unless you know
3438  *	that the checksum difference is zero (e.g., a valid IP header)
3439  *	or you are setting ip_summed to CHECKSUM_NONE.
3440  */
3441 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3442 {
3443 	unsigned char *data = skb->data;
3444 
3445 	BUG_ON(len > skb->len);
3446 	__skb_pull(skb, len);
3447 	skb_postpull_rcsum(skb, data, len);
3448 	return skb->data;
3449 }
3450 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3451 
3452 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3453 {
3454 	skb_frag_t head_frag;
3455 	struct page *page;
3456 
3457 	page = virt_to_head_page(frag_skb->head);
3458 	head_frag.page.p = page;
3459 	head_frag.page_offset = frag_skb->data -
3460 		(unsigned char *)page_address(page);
3461 	head_frag.size = skb_headlen(frag_skb);
3462 	return head_frag;
3463 }
3464 
3465 /**
3466  *	skb_segment - Perform protocol segmentation on skb.
3467  *	@head_skb: buffer to segment
3468  *	@features: features for the output path (see dev->features)
3469  *
3470  *	This function performs segmentation on the given skb.  It returns
3471  *	a pointer to the first in a list of new skbs for the segments.
3472  *	In case of error it returns ERR_PTR(err).
3473  */
3474 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3475 			    netdev_features_t features)
3476 {
3477 	struct sk_buff *segs = NULL;
3478 	struct sk_buff *tail = NULL;
3479 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3480 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3481 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3482 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3483 	struct sk_buff *frag_skb = head_skb;
3484 	unsigned int offset = doffset;
3485 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3486 	unsigned int partial_segs = 0;
3487 	unsigned int headroom;
3488 	unsigned int len = head_skb->len;
3489 	__be16 proto;
3490 	bool csum, sg;
3491 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3492 	int err = -ENOMEM;
3493 	int i = 0;
3494 	int pos;
3495 	int dummy;
3496 
3497 	__skb_push(head_skb, doffset);
3498 	proto = skb_network_protocol(head_skb, &dummy);
3499 	if (unlikely(!proto))
3500 		return ERR_PTR(-EINVAL);
3501 
3502 	sg = !!(features & NETIF_F_SG);
3503 	csum = !!can_checksum_protocol(features, proto);
3504 
3505 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3506 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3507 			struct sk_buff *iter;
3508 			unsigned int frag_len;
3509 
3510 			if (!list_skb ||
3511 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3512 				goto normal;
3513 
3514 			/* If we get here then all the required
3515 			 * GSO features except frag_list are supported.
3516 			 * Try to split the SKB to multiple GSO SKBs
3517 			 * with no frag_list.
3518 			 * Currently we can do that only when the buffers don't
3519 			 * have a linear part and all the buffers except
3520 			 * the last are of the same length.
3521 			 */
3522 			frag_len = list_skb->len;
3523 			skb_walk_frags(head_skb, iter) {
3524 				if (frag_len != iter->len && iter->next)
3525 					goto normal;
3526 				if (skb_headlen(iter) && !iter->head_frag)
3527 					goto normal;
3528 
3529 				len -= iter->len;
3530 			}
3531 
3532 			if (len != frag_len)
3533 				goto normal;
3534 		}
3535 
3536 		/* GSO partial only requires that we trim off any excess that
3537 		 * doesn't fit into an MSS sized block, so take care of that
3538 		 * now.
3539 		 */
3540 		partial_segs = len / mss;
3541 		if (partial_segs > 1)
3542 			mss *= partial_segs;
3543 		else
3544 			partial_segs = 0;
3545 	}
3546 
3547 normal:
3548 	headroom = skb_headroom(head_skb);
3549 	pos = skb_headlen(head_skb);
3550 
3551 	do {
3552 		struct sk_buff *nskb;
3553 		skb_frag_t *nskb_frag;
3554 		int hsize;
3555 		int size;
3556 
3557 		if (unlikely(mss == GSO_BY_FRAGS)) {
3558 			len = list_skb->len;
3559 		} else {
3560 			len = head_skb->len - offset;
3561 			if (len > mss)
3562 				len = mss;
3563 		}
3564 
3565 		hsize = skb_headlen(head_skb) - offset;
3566 		if (hsize < 0)
3567 			hsize = 0;
3568 		if (hsize > len || !sg)
3569 			hsize = len;
3570 
3571 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3572 		    (skb_headlen(list_skb) == len || sg)) {
3573 			BUG_ON(skb_headlen(list_skb) > len);
3574 
3575 			i = 0;
3576 			nfrags = skb_shinfo(list_skb)->nr_frags;
3577 			frag = skb_shinfo(list_skb)->frags;
3578 			frag_skb = list_skb;
3579 			pos += skb_headlen(list_skb);
3580 
3581 			while (pos < offset + len) {
3582 				BUG_ON(i >= nfrags);
3583 
3584 				size = skb_frag_size(frag);
3585 				if (pos + size > offset + len)
3586 					break;
3587 
3588 				i++;
3589 				pos += size;
3590 				frag++;
3591 			}
3592 
3593 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3594 			list_skb = list_skb->next;
3595 
3596 			if (unlikely(!nskb))
3597 				goto err;
3598 
3599 			if (unlikely(pskb_trim(nskb, len))) {
3600 				kfree_skb(nskb);
3601 				goto err;
3602 			}
3603 
3604 			hsize = skb_end_offset(nskb);
3605 			if (skb_cow_head(nskb, doffset + headroom)) {
3606 				kfree_skb(nskb);
3607 				goto err;
3608 			}
3609 
3610 			nskb->truesize += skb_end_offset(nskb) - hsize;
3611 			skb_release_head_state(nskb);
3612 			__skb_push(nskb, doffset);
3613 		} else {
3614 			nskb = __alloc_skb(hsize + doffset + headroom,
3615 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3616 					   NUMA_NO_NODE);
3617 
3618 			if (unlikely(!nskb))
3619 				goto err;
3620 
3621 			skb_reserve(nskb, headroom);
3622 			__skb_put(nskb, doffset);
3623 		}
3624 
3625 		if (segs)
3626 			tail->next = nskb;
3627 		else
3628 			segs = nskb;
3629 		tail = nskb;
3630 
3631 		__copy_skb_header(nskb, head_skb);
3632 
3633 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3634 		skb_reset_mac_len(nskb);
3635 
3636 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3637 						 nskb->data - tnl_hlen,
3638 						 doffset + tnl_hlen);
3639 
3640 		if (nskb->len == len + doffset)
3641 			goto perform_csum_check;
3642 
3643 		if (!sg) {
3644 			if (!nskb->remcsum_offload)
3645 				nskb->ip_summed = CHECKSUM_NONE;
3646 			SKB_GSO_CB(nskb)->csum =
3647 				skb_copy_and_csum_bits(head_skb, offset,
3648 						       skb_put(nskb, len),
3649 						       len, 0);
3650 			SKB_GSO_CB(nskb)->csum_start =
3651 				skb_headroom(nskb) + doffset;
3652 			continue;
3653 		}
3654 
3655 		nskb_frag = skb_shinfo(nskb)->frags;
3656 
3657 		skb_copy_from_linear_data_offset(head_skb, offset,
3658 						 skb_put(nskb, hsize), hsize);
3659 
3660 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3661 					      SKBTX_SHARED_FRAG;
3662 
3663 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3664 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3665 			goto err;
3666 
3667 		while (pos < offset + len) {
3668 			if (i >= nfrags) {
3669 				i = 0;
3670 				nfrags = skb_shinfo(list_skb)->nr_frags;
3671 				frag = skb_shinfo(list_skb)->frags;
3672 				frag_skb = list_skb;
3673 				if (!skb_headlen(list_skb)) {
3674 					BUG_ON(!nfrags);
3675 				} else {
3676 					BUG_ON(!list_skb->head_frag);
3677 
3678 					/* to make room for head_frag. */
3679 					i--;
3680 					frag--;
3681 				}
3682 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3683 				    skb_zerocopy_clone(nskb, frag_skb,
3684 						       GFP_ATOMIC))
3685 					goto err;
3686 
3687 				list_skb = list_skb->next;
3688 			}
3689 
3690 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3691 				     MAX_SKB_FRAGS)) {
3692 				net_warn_ratelimited(
3693 					"skb_segment: too many frags: %u %u\n",
3694 					pos, mss);
3695 				err = -EINVAL;
3696 				goto err;
3697 			}
3698 
3699 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3700 			__skb_frag_ref(nskb_frag);
3701 			size = skb_frag_size(nskb_frag);
3702 
3703 			if (pos < offset) {
3704 				nskb_frag->page_offset += offset - pos;
3705 				skb_frag_size_sub(nskb_frag, offset - pos);
3706 			}
3707 
3708 			skb_shinfo(nskb)->nr_frags++;
3709 
3710 			if (pos + size <= offset + len) {
3711 				i++;
3712 				frag++;
3713 				pos += size;
3714 			} else {
3715 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3716 				goto skip_fraglist;
3717 			}
3718 
3719 			nskb_frag++;
3720 		}
3721 
3722 skip_fraglist:
3723 		nskb->data_len = len - hsize;
3724 		nskb->len += nskb->data_len;
3725 		nskb->truesize += nskb->data_len;
3726 
3727 perform_csum_check:
3728 		if (!csum) {
3729 			if (skb_has_shared_frag(nskb) &&
3730 			    __skb_linearize(nskb))
3731 				goto err;
3732 
3733 			if (!nskb->remcsum_offload)
3734 				nskb->ip_summed = CHECKSUM_NONE;
3735 			SKB_GSO_CB(nskb)->csum =
3736 				skb_checksum(nskb, doffset,
3737 					     nskb->len - doffset, 0);
3738 			SKB_GSO_CB(nskb)->csum_start =
3739 				skb_headroom(nskb) + doffset;
3740 		}
3741 	} while ((offset += len) < head_skb->len);
3742 
3743 	/* Some callers want to get the end of the list.
3744 	 * Put it in segs->prev to avoid walking the list.
3745 	 * (see validate_xmit_skb_list() for example)
3746 	 */
3747 	segs->prev = tail;
3748 
3749 	if (partial_segs) {
3750 		struct sk_buff *iter;
3751 		int type = skb_shinfo(head_skb)->gso_type;
3752 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3753 
3754 		/* Update type to add partial and then remove dodgy if set */
3755 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3756 		type &= ~SKB_GSO_DODGY;
3757 
3758 		/* Update GSO info and prepare to start updating headers on
3759 		 * our way back down the stack of protocols.
3760 		 */
3761 		for (iter = segs; iter; iter = iter->next) {
3762 			skb_shinfo(iter)->gso_size = gso_size;
3763 			skb_shinfo(iter)->gso_segs = partial_segs;
3764 			skb_shinfo(iter)->gso_type = type;
3765 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3766 		}
3767 
3768 		if (tail->len - doffset <= gso_size)
3769 			skb_shinfo(tail)->gso_size = 0;
3770 		else if (tail != segs)
3771 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3772 	}
3773 
3774 	/* Following permits correct backpressure, for protocols
3775 	 * using skb_set_owner_w().
3776 	 * Idea is to tranfert ownership from head_skb to last segment.
3777 	 */
3778 	if (head_skb->destructor == sock_wfree) {
3779 		swap(tail->truesize, head_skb->truesize);
3780 		swap(tail->destructor, head_skb->destructor);
3781 		swap(tail->sk, head_skb->sk);
3782 	}
3783 	return segs;
3784 
3785 err:
3786 	kfree_skb_list(segs);
3787 	return ERR_PTR(err);
3788 }
3789 EXPORT_SYMBOL_GPL(skb_segment);
3790 
3791 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3792 {
3793 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3794 	unsigned int offset = skb_gro_offset(skb);
3795 	unsigned int headlen = skb_headlen(skb);
3796 	unsigned int len = skb_gro_len(skb);
3797 	unsigned int delta_truesize;
3798 	struct sk_buff *lp;
3799 
3800 	if (unlikely(p->len + len >= 65536))
3801 		return -E2BIG;
3802 
3803 	lp = NAPI_GRO_CB(p)->last;
3804 	pinfo = skb_shinfo(lp);
3805 
3806 	if (headlen <= offset) {
3807 		skb_frag_t *frag;
3808 		skb_frag_t *frag2;
3809 		int i = skbinfo->nr_frags;
3810 		int nr_frags = pinfo->nr_frags + i;
3811 
3812 		if (nr_frags > MAX_SKB_FRAGS)
3813 			goto merge;
3814 
3815 		offset -= headlen;
3816 		pinfo->nr_frags = nr_frags;
3817 		skbinfo->nr_frags = 0;
3818 
3819 		frag = pinfo->frags + nr_frags;
3820 		frag2 = skbinfo->frags + i;
3821 		do {
3822 			*--frag = *--frag2;
3823 		} while (--i);
3824 
3825 		frag->page_offset += offset;
3826 		skb_frag_size_sub(frag, offset);
3827 
3828 		/* all fragments truesize : remove (head size + sk_buff) */
3829 		delta_truesize = skb->truesize -
3830 				 SKB_TRUESIZE(skb_end_offset(skb));
3831 
3832 		skb->truesize -= skb->data_len;
3833 		skb->len -= skb->data_len;
3834 		skb->data_len = 0;
3835 
3836 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3837 		goto done;
3838 	} else if (skb->head_frag) {
3839 		int nr_frags = pinfo->nr_frags;
3840 		skb_frag_t *frag = pinfo->frags + nr_frags;
3841 		struct page *page = virt_to_head_page(skb->head);
3842 		unsigned int first_size = headlen - offset;
3843 		unsigned int first_offset;
3844 
3845 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3846 			goto merge;
3847 
3848 		first_offset = skb->data -
3849 			       (unsigned char *)page_address(page) +
3850 			       offset;
3851 
3852 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3853 
3854 		frag->page.p	  = page;
3855 		frag->page_offset = first_offset;
3856 		skb_frag_size_set(frag, first_size);
3857 
3858 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3859 		/* We dont need to clear skbinfo->nr_frags here */
3860 
3861 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3862 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3863 		goto done;
3864 	}
3865 
3866 merge:
3867 	delta_truesize = skb->truesize;
3868 	if (offset > headlen) {
3869 		unsigned int eat = offset - headlen;
3870 
3871 		skbinfo->frags[0].page_offset += eat;
3872 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3873 		skb->data_len -= eat;
3874 		skb->len -= eat;
3875 		offset = headlen;
3876 	}
3877 
3878 	__skb_pull(skb, offset);
3879 
3880 	if (NAPI_GRO_CB(p)->last == p)
3881 		skb_shinfo(p)->frag_list = skb;
3882 	else
3883 		NAPI_GRO_CB(p)->last->next = skb;
3884 	NAPI_GRO_CB(p)->last = skb;
3885 	__skb_header_release(skb);
3886 	lp = p;
3887 
3888 done:
3889 	NAPI_GRO_CB(p)->count++;
3890 	p->data_len += len;
3891 	p->truesize += delta_truesize;
3892 	p->len += len;
3893 	if (lp != p) {
3894 		lp->data_len += len;
3895 		lp->truesize += delta_truesize;
3896 		lp->len += len;
3897 	}
3898 	NAPI_GRO_CB(skb)->same_flow = 1;
3899 	return 0;
3900 }
3901 EXPORT_SYMBOL_GPL(skb_gro_receive);
3902 
3903 #ifdef CONFIG_SKB_EXTENSIONS
3904 #define SKB_EXT_ALIGN_VALUE	8
3905 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
3906 
3907 static const u8 skb_ext_type_len[] = {
3908 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3909 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
3910 #endif
3911 #ifdef CONFIG_XFRM
3912 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
3913 #endif
3914 };
3915 
3916 static __always_inline unsigned int skb_ext_total_length(void)
3917 {
3918 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
3919 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3920 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
3921 #endif
3922 #ifdef CONFIG_XFRM
3923 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
3924 #endif
3925 		0;
3926 }
3927 
3928 static void skb_extensions_init(void)
3929 {
3930 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
3931 	BUILD_BUG_ON(skb_ext_total_length() > 255);
3932 
3933 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
3934 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
3935 					     0,
3936 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3937 					     NULL);
3938 }
3939 #else
3940 static void skb_extensions_init(void) {}
3941 #endif
3942 
3943 void __init skb_init(void)
3944 {
3945 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3946 					      sizeof(struct sk_buff),
3947 					      0,
3948 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3949 					      offsetof(struct sk_buff, cb),
3950 					      sizeof_field(struct sk_buff, cb),
3951 					      NULL);
3952 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3953 						sizeof(struct sk_buff_fclones),
3954 						0,
3955 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3956 						NULL);
3957 	skb_extensions_init();
3958 }
3959 
3960 static int
3961 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3962 	       unsigned int recursion_level)
3963 {
3964 	int start = skb_headlen(skb);
3965 	int i, copy = start - offset;
3966 	struct sk_buff *frag_iter;
3967 	int elt = 0;
3968 
3969 	if (unlikely(recursion_level >= 24))
3970 		return -EMSGSIZE;
3971 
3972 	if (copy > 0) {
3973 		if (copy > len)
3974 			copy = len;
3975 		sg_set_buf(sg, skb->data + offset, copy);
3976 		elt++;
3977 		if ((len -= copy) == 0)
3978 			return elt;
3979 		offset += copy;
3980 	}
3981 
3982 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3983 		int end;
3984 
3985 		WARN_ON(start > offset + len);
3986 
3987 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3988 		if ((copy = end - offset) > 0) {
3989 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3990 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3991 				return -EMSGSIZE;
3992 
3993 			if (copy > len)
3994 				copy = len;
3995 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3996 					frag->page_offset+offset-start);
3997 			elt++;
3998 			if (!(len -= copy))
3999 				return elt;
4000 			offset += copy;
4001 		}
4002 		start = end;
4003 	}
4004 
4005 	skb_walk_frags(skb, frag_iter) {
4006 		int end, ret;
4007 
4008 		WARN_ON(start > offset + len);
4009 
4010 		end = start + frag_iter->len;
4011 		if ((copy = end - offset) > 0) {
4012 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4013 				return -EMSGSIZE;
4014 
4015 			if (copy > len)
4016 				copy = len;
4017 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4018 					      copy, recursion_level + 1);
4019 			if (unlikely(ret < 0))
4020 				return ret;
4021 			elt += ret;
4022 			if ((len -= copy) == 0)
4023 				return elt;
4024 			offset += copy;
4025 		}
4026 		start = end;
4027 	}
4028 	BUG_ON(len);
4029 	return elt;
4030 }
4031 
4032 /**
4033  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4034  *	@skb: Socket buffer containing the buffers to be mapped
4035  *	@sg: The scatter-gather list to map into
4036  *	@offset: The offset into the buffer's contents to start mapping
4037  *	@len: Length of buffer space to be mapped
4038  *
4039  *	Fill the specified scatter-gather list with mappings/pointers into a
4040  *	region of the buffer space attached to a socket buffer. Returns either
4041  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4042  *	could not fit.
4043  */
4044 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4045 {
4046 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4047 
4048 	if (nsg <= 0)
4049 		return nsg;
4050 
4051 	sg_mark_end(&sg[nsg - 1]);
4052 
4053 	return nsg;
4054 }
4055 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4056 
4057 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4058  * sglist without mark the sg which contain last skb data as the end.
4059  * So the caller can mannipulate sg list as will when padding new data after
4060  * the first call without calling sg_unmark_end to expend sg list.
4061  *
4062  * Scenario to use skb_to_sgvec_nomark:
4063  * 1. sg_init_table
4064  * 2. skb_to_sgvec_nomark(payload1)
4065  * 3. skb_to_sgvec_nomark(payload2)
4066  *
4067  * This is equivalent to:
4068  * 1. sg_init_table
4069  * 2. skb_to_sgvec(payload1)
4070  * 3. sg_unmark_end
4071  * 4. skb_to_sgvec(payload2)
4072  *
4073  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4074  * is more preferable.
4075  */
4076 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4077 			int offset, int len)
4078 {
4079 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4080 }
4081 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4082 
4083 
4084 
4085 /**
4086  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4087  *	@skb: The socket buffer to check.
4088  *	@tailbits: Amount of trailing space to be added
4089  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4090  *
4091  *	Make sure that the data buffers attached to a socket buffer are
4092  *	writable. If they are not, private copies are made of the data buffers
4093  *	and the socket buffer is set to use these instead.
4094  *
4095  *	If @tailbits is given, make sure that there is space to write @tailbits
4096  *	bytes of data beyond current end of socket buffer.  @trailer will be
4097  *	set to point to the skb in which this space begins.
4098  *
4099  *	The number of scatterlist elements required to completely map the
4100  *	COW'd and extended socket buffer will be returned.
4101  */
4102 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4103 {
4104 	int copyflag;
4105 	int elt;
4106 	struct sk_buff *skb1, **skb_p;
4107 
4108 	/* If skb is cloned or its head is paged, reallocate
4109 	 * head pulling out all the pages (pages are considered not writable
4110 	 * at the moment even if they are anonymous).
4111 	 */
4112 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4113 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4114 		return -ENOMEM;
4115 
4116 	/* Easy case. Most of packets will go this way. */
4117 	if (!skb_has_frag_list(skb)) {
4118 		/* A little of trouble, not enough of space for trailer.
4119 		 * This should not happen, when stack is tuned to generate
4120 		 * good frames. OK, on miss we reallocate and reserve even more
4121 		 * space, 128 bytes is fair. */
4122 
4123 		if (skb_tailroom(skb) < tailbits &&
4124 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4125 			return -ENOMEM;
4126 
4127 		/* Voila! */
4128 		*trailer = skb;
4129 		return 1;
4130 	}
4131 
4132 	/* Misery. We are in troubles, going to mincer fragments... */
4133 
4134 	elt = 1;
4135 	skb_p = &skb_shinfo(skb)->frag_list;
4136 	copyflag = 0;
4137 
4138 	while ((skb1 = *skb_p) != NULL) {
4139 		int ntail = 0;
4140 
4141 		/* The fragment is partially pulled by someone,
4142 		 * this can happen on input. Copy it and everything
4143 		 * after it. */
4144 
4145 		if (skb_shared(skb1))
4146 			copyflag = 1;
4147 
4148 		/* If the skb is the last, worry about trailer. */
4149 
4150 		if (skb1->next == NULL && tailbits) {
4151 			if (skb_shinfo(skb1)->nr_frags ||
4152 			    skb_has_frag_list(skb1) ||
4153 			    skb_tailroom(skb1) < tailbits)
4154 				ntail = tailbits + 128;
4155 		}
4156 
4157 		if (copyflag ||
4158 		    skb_cloned(skb1) ||
4159 		    ntail ||
4160 		    skb_shinfo(skb1)->nr_frags ||
4161 		    skb_has_frag_list(skb1)) {
4162 			struct sk_buff *skb2;
4163 
4164 			/* Fuck, we are miserable poor guys... */
4165 			if (ntail == 0)
4166 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4167 			else
4168 				skb2 = skb_copy_expand(skb1,
4169 						       skb_headroom(skb1),
4170 						       ntail,
4171 						       GFP_ATOMIC);
4172 			if (unlikely(skb2 == NULL))
4173 				return -ENOMEM;
4174 
4175 			if (skb1->sk)
4176 				skb_set_owner_w(skb2, skb1->sk);
4177 
4178 			/* Looking around. Are we still alive?
4179 			 * OK, link new skb, drop old one */
4180 
4181 			skb2->next = skb1->next;
4182 			*skb_p = skb2;
4183 			kfree_skb(skb1);
4184 			skb1 = skb2;
4185 		}
4186 		elt++;
4187 		*trailer = skb1;
4188 		skb_p = &skb1->next;
4189 	}
4190 
4191 	return elt;
4192 }
4193 EXPORT_SYMBOL_GPL(skb_cow_data);
4194 
4195 static void sock_rmem_free(struct sk_buff *skb)
4196 {
4197 	struct sock *sk = skb->sk;
4198 
4199 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4200 }
4201 
4202 static void skb_set_err_queue(struct sk_buff *skb)
4203 {
4204 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4205 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4206 	 */
4207 	skb->pkt_type = PACKET_OUTGOING;
4208 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4209 }
4210 
4211 /*
4212  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4213  */
4214 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4215 {
4216 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4217 	    (unsigned int)sk->sk_rcvbuf)
4218 		return -ENOMEM;
4219 
4220 	skb_orphan(skb);
4221 	skb->sk = sk;
4222 	skb->destructor = sock_rmem_free;
4223 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4224 	skb_set_err_queue(skb);
4225 
4226 	/* before exiting rcu section, make sure dst is refcounted */
4227 	skb_dst_force(skb);
4228 
4229 	skb_queue_tail(&sk->sk_error_queue, skb);
4230 	if (!sock_flag(sk, SOCK_DEAD))
4231 		sk->sk_error_report(sk);
4232 	return 0;
4233 }
4234 EXPORT_SYMBOL(sock_queue_err_skb);
4235 
4236 static bool is_icmp_err_skb(const struct sk_buff *skb)
4237 {
4238 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4239 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4240 }
4241 
4242 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4243 {
4244 	struct sk_buff_head *q = &sk->sk_error_queue;
4245 	struct sk_buff *skb, *skb_next = NULL;
4246 	bool icmp_next = false;
4247 	unsigned long flags;
4248 
4249 	spin_lock_irqsave(&q->lock, flags);
4250 	skb = __skb_dequeue(q);
4251 	if (skb && (skb_next = skb_peek(q))) {
4252 		icmp_next = is_icmp_err_skb(skb_next);
4253 		if (icmp_next)
4254 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4255 	}
4256 	spin_unlock_irqrestore(&q->lock, flags);
4257 
4258 	if (is_icmp_err_skb(skb) && !icmp_next)
4259 		sk->sk_err = 0;
4260 
4261 	if (skb_next)
4262 		sk->sk_error_report(sk);
4263 
4264 	return skb;
4265 }
4266 EXPORT_SYMBOL(sock_dequeue_err_skb);
4267 
4268 /**
4269  * skb_clone_sk - create clone of skb, and take reference to socket
4270  * @skb: the skb to clone
4271  *
4272  * This function creates a clone of a buffer that holds a reference on
4273  * sk_refcnt.  Buffers created via this function are meant to be
4274  * returned using sock_queue_err_skb, or free via kfree_skb.
4275  *
4276  * When passing buffers allocated with this function to sock_queue_err_skb
4277  * it is necessary to wrap the call with sock_hold/sock_put in order to
4278  * prevent the socket from being released prior to being enqueued on
4279  * the sk_error_queue.
4280  */
4281 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4282 {
4283 	struct sock *sk = skb->sk;
4284 	struct sk_buff *clone;
4285 
4286 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4287 		return NULL;
4288 
4289 	clone = skb_clone(skb, GFP_ATOMIC);
4290 	if (!clone) {
4291 		sock_put(sk);
4292 		return NULL;
4293 	}
4294 
4295 	clone->sk = sk;
4296 	clone->destructor = sock_efree;
4297 
4298 	return clone;
4299 }
4300 EXPORT_SYMBOL(skb_clone_sk);
4301 
4302 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4303 					struct sock *sk,
4304 					int tstype,
4305 					bool opt_stats)
4306 {
4307 	struct sock_exterr_skb *serr;
4308 	int err;
4309 
4310 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4311 
4312 	serr = SKB_EXT_ERR(skb);
4313 	memset(serr, 0, sizeof(*serr));
4314 	serr->ee.ee_errno = ENOMSG;
4315 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4316 	serr->ee.ee_info = tstype;
4317 	serr->opt_stats = opt_stats;
4318 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4319 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4320 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4321 		if (sk->sk_protocol == IPPROTO_TCP &&
4322 		    sk->sk_type == SOCK_STREAM)
4323 			serr->ee.ee_data -= sk->sk_tskey;
4324 	}
4325 
4326 	err = sock_queue_err_skb(sk, skb);
4327 
4328 	if (err)
4329 		kfree_skb(skb);
4330 }
4331 
4332 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4333 {
4334 	bool ret;
4335 
4336 	if (likely(sysctl_tstamp_allow_data || tsonly))
4337 		return true;
4338 
4339 	read_lock_bh(&sk->sk_callback_lock);
4340 	ret = sk->sk_socket && sk->sk_socket->file &&
4341 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4342 	read_unlock_bh(&sk->sk_callback_lock);
4343 	return ret;
4344 }
4345 
4346 void skb_complete_tx_timestamp(struct sk_buff *skb,
4347 			       struct skb_shared_hwtstamps *hwtstamps)
4348 {
4349 	struct sock *sk = skb->sk;
4350 
4351 	if (!skb_may_tx_timestamp(sk, false))
4352 		goto err;
4353 
4354 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4355 	 * but only if the socket refcount is not zero.
4356 	 */
4357 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4358 		*skb_hwtstamps(skb) = *hwtstamps;
4359 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4360 		sock_put(sk);
4361 		return;
4362 	}
4363 
4364 err:
4365 	kfree_skb(skb);
4366 }
4367 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4368 
4369 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4370 		     struct skb_shared_hwtstamps *hwtstamps,
4371 		     struct sock *sk, int tstype)
4372 {
4373 	struct sk_buff *skb;
4374 	bool tsonly, opt_stats = false;
4375 
4376 	if (!sk)
4377 		return;
4378 
4379 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4380 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4381 		return;
4382 
4383 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4384 	if (!skb_may_tx_timestamp(sk, tsonly))
4385 		return;
4386 
4387 	if (tsonly) {
4388 #ifdef CONFIG_INET
4389 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4390 		    sk->sk_protocol == IPPROTO_TCP &&
4391 		    sk->sk_type == SOCK_STREAM) {
4392 			skb = tcp_get_timestamping_opt_stats(sk);
4393 			opt_stats = true;
4394 		} else
4395 #endif
4396 			skb = alloc_skb(0, GFP_ATOMIC);
4397 	} else {
4398 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4399 	}
4400 	if (!skb)
4401 		return;
4402 
4403 	if (tsonly) {
4404 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4405 					     SKBTX_ANY_TSTAMP;
4406 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4407 	}
4408 
4409 	if (hwtstamps)
4410 		*skb_hwtstamps(skb) = *hwtstamps;
4411 	else
4412 		skb->tstamp = ktime_get_real();
4413 
4414 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4415 }
4416 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4417 
4418 void skb_tstamp_tx(struct sk_buff *orig_skb,
4419 		   struct skb_shared_hwtstamps *hwtstamps)
4420 {
4421 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4422 			       SCM_TSTAMP_SND);
4423 }
4424 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4425 
4426 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4427 {
4428 	struct sock *sk = skb->sk;
4429 	struct sock_exterr_skb *serr;
4430 	int err = 1;
4431 
4432 	skb->wifi_acked_valid = 1;
4433 	skb->wifi_acked = acked;
4434 
4435 	serr = SKB_EXT_ERR(skb);
4436 	memset(serr, 0, sizeof(*serr));
4437 	serr->ee.ee_errno = ENOMSG;
4438 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4439 
4440 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4441 	 * but only if the socket refcount is not zero.
4442 	 */
4443 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4444 		err = sock_queue_err_skb(sk, skb);
4445 		sock_put(sk);
4446 	}
4447 	if (err)
4448 		kfree_skb(skb);
4449 }
4450 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4451 
4452 /**
4453  * skb_partial_csum_set - set up and verify partial csum values for packet
4454  * @skb: the skb to set
4455  * @start: the number of bytes after skb->data to start checksumming.
4456  * @off: the offset from start to place the checksum.
4457  *
4458  * For untrusted partially-checksummed packets, we need to make sure the values
4459  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4460  *
4461  * This function checks and sets those values and skb->ip_summed: if this
4462  * returns false you should drop the packet.
4463  */
4464 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4465 {
4466 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4467 	u32 csum_start = skb_headroom(skb) + (u32)start;
4468 
4469 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4470 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4471 				     start, off, skb_headroom(skb), skb_headlen(skb));
4472 		return false;
4473 	}
4474 	skb->ip_summed = CHECKSUM_PARTIAL;
4475 	skb->csum_start = csum_start;
4476 	skb->csum_offset = off;
4477 	skb_set_transport_header(skb, start);
4478 	return true;
4479 }
4480 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4481 
4482 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4483 			       unsigned int max)
4484 {
4485 	if (skb_headlen(skb) >= len)
4486 		return 0;
4487 
4488 	/* If we need to pullup then pullup to the max, so we
4489 	 * won't need to do it again.
4490 	 */
4491 	if (max > skb->len)
4492 		max = skb->len;
4493 
4494 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4495 		return -ENOMEM;
4496 
4497 	if (skb_headlen(skb) < len)
4498 		return -EPROTO;
4499 
4500 	return 0;
4501 }
4502 
4503 #define MAX_TCP_HDR_LEN (15 * 4)
4504 
4505 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4506 				      typeof(IPPROTO_IP) proto,
4507 				      unsigned int off)
4508 {
4509 	switch (proto) {
4510 		int err;
4511 
4512 	case IPPROTO_TCP:
4513 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4514 					  off + MAX_TCP_HDR_LEN);
4515 		if (!err && !skb_partial_csum_set(skb, off,
4516 						  offsetof(struct tcphdr,
4517 							   check)))
4518 			err = -EPROTO;
4519 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4520 
4521 	case IPPROTO_UDP:
4522 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4523 					  off + sizeof(struct udphdr));
4524 		if (!err && !skb_partial_csum_set(skb, off,
4525 						  offsetof(struct udphdr,
4526 							   check)))
4527 			err = -EPROTO;
4528 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4529 	}
4530 
4531 	return ERR_PTR(-EPROTO);
4532 }
4533 
4534 /* This value should be large enough to cover a tagged ethernet header plus
4535  * maximally sized IP and TCP or UDP headers.
4536  */
4537 #define MAX_IP_HDR_LEN 128
4538 
4539 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4540 {
4541 	unsigned int off;
4542 	bool fragment;
4543 	__sum16 *csum;
4544 	int err;
4545 
4546 	fragment = false;
4547 
4548 	err = skb_maybe_pull_tail(skb,
4549 				  sizeof(struct iphdr),
4550 				  MAX_IP_HDR_LEN);
4551 	if (err < 0)
4552 		goto out;
4553 
4554 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4555 		fragment = true;
4556 
4557 	off = ip_hdrlen(skb);
4558 
4559 	err = -EPROTO;
4560 
4561 	if (fragment)
4562 		goto out;
4563 
4564 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4565 	if (IS_ERR(csum))
4566 		return PTR_ERR(csum);
4567 
4568 	if (recalculate)
4569 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4570 					   ip_hdr(skb)->daddr,
4571 					   skb->len - off,
4572 					   ip_hdr(skb)->protocol, 0);
4573 	err = 0;
4574 
4575 out:
4576 	return err;
4577 }
4578 
4579 /* This value should be large enough to cover a tagged ethernet header plus
4580  * an IPv6 header, all options, and a maximal TCP or UDP header.
4581  */
4582 #define MAX_IPV6_HDR_LEN 256
4583 
4584 #define OPT_HDR(type, skb, off) \
4585 	(type *)(skb_network_header(skb) + (off))
4586 
4587 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4588 {
4589 	int err;
4590 	u8 nexthdr;
4591 	unsigned int off;
4592 	unsigned int len;
4593 	bool fragment;
4594 	bool done;
4595 	__sum16 *csum;
4596 
4597 	fragment = false;
4598 	done = false;
4599 
4600 	off = sizeof(struct ipv6hdr);
4601 
4602 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4603 	if (err < 0)
4604 		goto out;
4605 
4606 	nexthdr = ipv6_hdr(skb)->nexthdr;
4607 
4608 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4609 	while (off <= len && !done) {
4610 		switch (nexthdr) {
4611 		case IPPROTO_DSTOPTS:
4612 		case IPPROTO_HOPOPTS:
4613 		case IPPROTO_ROUTING: {
4614 			struct ipv6_opt_hdr *hp;
4615 
4616 			err = skb_maybe_pull_tail(skb,
4617 						  off +
4618 						  sizeof(struct ipv6_opt_hdr),
4619 						  MAX_IPV6_HDR_LEN);
4620 			if (err < 0)
4621 				goto out;
4622 
4623 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4624 			nexthdr = hp->nexthdr;
4625 			off += ipv6_optlen(hp);
4626 			break;
4627 		}
4628 		case IPPROTO_AH: {
4629 			struct ip_auth_hdr *hp;
4630 
4631 			err = skb_maybe_pull_tail(skb,
4632 						  off +
4633 						  sizeof(struct ip_auth_hdr),
4634 						  MAX_IPV6_HDR_LEN);
4635 			if (err < 0)
4636 				goto out;
4637 
4638 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4639 			nexthdr = hp->nexthdr;
4640 			off += ipv6_authlen(hp);
4641 			break;
4642 		}
4643 		case IPPROTO_FRAGMENT: {
4644 			struct frag_hdr *hp;
4645 
4646 			err = skb_maybe_pull_tail(skb,
4647 						  off +
4648 						  sizeof(struct frag_hdr),
4649 						  MAX_IPV6_HDR_LEN);
4650 			if (err < 0)
4651 				goto out;
4652 
4653 			hp = OPT_HDR(struct frag_hdr, skb, off);
4654 
4655 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4656 				fragment = true;
4657 
4658 			nexthdr = hp->nexthdr;
4659 			off += sizeof(struct frag_hdr);
4660 			break;
4661 		}
4662 		default:
4663 			done = true;
4664 			break;
4665 		}
4666 	}
4667 
4668 	err = -EPROTO;
4669 
4670 	if (!done || fragment)
4671 		goto out;
4672 
4673 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4674 	if (IS_ERR(csum))
4675 		return PTR_ERR(csum);
4676 
4677 	if (recalculate)
4678 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4679 					 &ipv6_hdr(skb)->daddr,
4680 					 skb->len - off, nexthdr, 0);
4681 	err = 0;
4682 
4683 out:
4684 	return err;
4685 }
4686 
4687 /**
4688  * skb_checksum_setup - set up partial checksum offset
4689  * @skb: the skb to set up
4690  * @recalculate: if true the pseudo-header checksum will be recalculated
4691  */
4692 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4693 {
4694 	int err;
4695 
4696 	switch (skb->protocol) {
4697 	case htons(ETH_P_IP):
4698 		err = skb_checksum_setup_ipv4(skb, recalculate);
4699 		break;
4700 
4701 	case htons(ETH_P_IPV6):
4702 		err = skb_checksum_setup_ipv6(skb, recalculate);
4703 		break;
4704 
4705 	default:
4706 		err = -EPROTO;
4707 		break;
4708 	}
4709 
4710 	return err;
4711 }
4712 EXPORT_SYMBOL(skb_checksum_setup);
4713 
4714 /**
4715  * skb_checksum_maybe_trim - maybe trims the given skb
4716  * @skb: the skb to check
4717  * @transport_len: the data length beyond the network header
4718  *
4719  * Checks whether the given skb has data beyond the given transport length.
4720  * If so, returns a cloned skb trimmed to this transport length.
4721  * Otherwise returns the provided skb. Returns NULL in error cases
4722  * (e.g. transport_len exceeds skb length or out-of-memory).
4723  *
4724  * Caller needs to set the skb transport header and free any returned skb if it
4725  * differs from the provided skb.
4726  */
4727 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4728 					       unsigned int transport_len)
4729 {
4730 	struct sk_buff *skb_chk;
4731 	unsigned int len = skb_transport_offset(skb) + transport_len;
4732 	int ret;
4733 
4734 	if (skb->len < len)
4735 		return NULL;
4736 	else if (skb->len == len)
4737 		return skb;
4738 
4739 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4740 	if (!skb_chk)
4741 		return NULL;
4742 
4743 	ret = pskb_trim_rcsum(skb_chk, len);
4744 	if (ret) {
4745 		kfree_skb(skb_chk);
4746 		return NULL;
4747 	}
4748 
4749 	return skb_chk;
4750 }
4751 
4752 /**
4753  * skb_checksum_trimmed - validate checksum of an skb
4754  * @skb: the skb to check
4755  * @transport_len: the data length beyond the network header
4756  * @skb_chkf: checksum function to use
4757  *
4758  * Applies the given checksum function skb_chkf to the provided skb.
4759  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4760  *
4761  * If the skb has data beyond the given transport length, then a
4762  * trimmed & cloned skb is checked and returned.
4763  *
4764  * Caller needs to set the skb transport header and free any returned skb if it
4765  * differs from the provided skb.
4766  */
4767 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4768 				     unsigned int transport_len,
4769 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4770 {
4771 	struct sk_buff *skb_chk;
4772 	unsigned int offset = skb_transport_offset(skb);
4773 	__sum16 ret;
4774 
4775 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4776 	if (!skb_chk)
4777 		goto err;
4778 
4779 	if (!pskb_may_pull(skb_chk, offset))
4780 		goto err;
4781 
4782 	skb_pull_rcsum(skb_chk, offset);
4783 	ret = skb_chkf(skb_chk);
4784 	skb_push_rcsum(skb_chk, offset);
4785 
4786 	if (ret)
4787 		goto err;
4788 
4789 	return skb_chk;
4790 
4791 err:
4792 	if (skb_chk && skb_chk != skb)
4793 		kfree_skb(skb_chk);
4794 
4795 	return NULL;
4796 
4797 }
4798 EXPORT_SYMBOL(skb_checksum_trimmed);
4799 
4800 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4801 {
4802 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4803 			     skb->dev->name);
4804 }
4805 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4806 
4807 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4808 {
4809 	if (head_stolen) {
4810 		skb_release_head_state(skb);
4811 		kmem_cache_free(skbuff_head_cache, skb);
4812 	} else {
4813 		__kfree_skb(skb);
4814 	}
4815 }
4816 EXPORT_SYMBOL(kfree_skb_partial);
4817 
4818 /**
4819  * skb_try_coalesce - try to merge skb to prior one
4820  * @to: prior buffer
4821  * @from: buffer to add
4822  * @fragstolen: pointer to boolean
4823  * @delta_truesize: how much more was allocated than was requested
4824  */
4825 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4826 		      bool *fragstolen, int *delta_truesize)
4827 {
4828 	struct skb_shared_info *to_shinfo, *from_shinfo;
4829 	int i, delta, len = from->len;
4830 
4831 	*fragstolen = false;
4832 
4833 	if (skb_cloned(to))
4834 		return false;
4835 
4836 	if (len <= skb_tailroom(to)) {
4837 		if (len)
4838 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4839 		*delta_truesize = 0;
4840 		return true;
4841 	}
4842 
4843 	to_shinfo = skb_shinfo(to);
4844 	from_shinfo = skb_shinfo(from);
4845 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4846 		return false;
4847 	if (skb_zcopy(to) || skb_zcopy(from))
4848 		return false;
4849 
4850 	if (skb_headlen(from) != 0) {
4851 		struct page *page;
4852 		unsigned int offset;
4853 
4854 		if (to_shinfo->nr_frags +
4855 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4856 			return false;
4857 
4858 		if (skb_head_is_locked(from))
4859 			return false;
4860 
4861 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4862 
4863 		page = virt_to_head_page(from->head);
4864 		offset = from->data - (unsigned char *)page_address(page);
4865 
4866 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4867 				   page, offset, skb_headlen(from));
4868 		*fragstolen = true;
4869 	} else {
4870 		if (to_shinfo->nr_frags +
4871 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4872 			return false;
4873 
4874 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4875 	}
4876 
4877 	WARN_ON_ONCE(delta < len);
4878 
4879 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4880 	       from_shinfo->frags,
4881 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4882 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4883 
4884 	if (!skb_cloned(from))
4885 		from_shinfo->nr_frags = 0;
4886 
4887 	/* if the skb is not cloned this does nothing
4888 	 * since we set nr_frags to 0.
4889 	 */
4890 	for (i = 0; i < from_shinfo->nr_frags; i++)
4891 		__skb_frag_ref(&from_shinfo->frags[i]);
4892 
4893 	to->truesize += delta;
4894 	to->len += len;
4895 	to->data_len += len;
4896 
4897 	*delta_truesize = delta;
4898 	return true;
4899 }
4900 EXPORT_SYMBOL(skb_try_coalesce);
4901 
4902 /**
4903  * skb_scrub_packet - scrub an skb
4904  *
4905  * @skb: buffer to clean
4906  * @xnet: packet is crossing netns
4907  *
4908  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4909  * into/from a tunnel. Some information have to be cleared during these
4910  * operations.
4911  * skb_scrub_packet can also be used to clean a skb before injecting it in
4912  * another namespace (@xnet == true). We have to clear all information in the
4913  * skb that could impact namespace isolation.
4914  */
4915 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4916 {
4917 	skb->pkt_type = PACKET_HOST;
4918 	skb->skb_iif = 0;
4919 	skb->ignore_df = 0;
4920 	skb_dst_drop(skb);
4921 	secpath_reset(skb);
4922 	nf_reset(skb);
4923 	nf_reset_trace(skb);
4924 
4925 #ifdef CONFIG_NET_SWITCHDEV
4926 	skb->offload_fwd_mark = 0;
4927 	skb->offload_l3_fwd_mark = 0;
4928 #endif
4929 
4930 	if (!xnet)
4931 		return;
4932 
4933 	ipvs_reset(skb);
4934 	skb->mark = 0;
4935 	skb->tstamp = 0;
4936 }
4937 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4938 
4939 /**
4940  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4941  *
4942  * @skb: GSO skb
4943  *
4944  * skb_gso_transport_seglen is used to determine the real size of the
4945  * individual segments, including Layer4 headers (TCP/UDP).
4946  *
4947  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4948  */
4949 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4950 {
4951 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4952 	unsigned int thlen = 0;
4953 
4954 	if (skb->encapsulation) {
4955 		thlen = skb_inner_transport_header(skb) -
4956 			skb_transport_header(skb);
4957 
4958 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4959 			thlen += inner_tcp_hdrlen(skb);
4960 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4961 		thlen = tcp_hdrlen(skb);
4962 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4963 		thlen = sizeof(struct sctphdr);
4964 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4965 		thlen = sizeof(struct udphdr);
4966 	}
4967 	/* UFO sets gso_size to the size of the fragmentation
4968 	 * payload, i.e. the size of the L4 (UDP) header is already
4969 	 * accounted for.
4970 	 */
4971 	return thlen + shinfo->gso_size;
4972 }
4973 
4974 /**
4975  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4976  *
4977  * @skb: GSO skb
4978  *
4979  * skb_gso_network_seglen is used to determine the real size of the
4980  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4981  *
4982  * The MAC/L2 header is not accounted for.
4983  */
4984 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4985 {
4986 	unsigned int hdr_len = skb_transport_header(skb) -
4987 			       skb_network_header(skb);
4988 
4989 	return hdr_len + skb_gso_transport_seglen(skb);
4990 }
4991 
4992 /**
4993  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4994  *
4995  * @skb: GSO skb
4996  *
4997  * skb_gso_mac_seglen is used to determine the real size of the
4998  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4999  * headers (TCP/UDP).
5000  */
5001 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5002 {
5003 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5004 
5005 	return hdr_len + skb_gso_transport_seglen(skb);
5006 }
5007 
5008 /**
5009  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5010  *
5011  * There are a couple of instances where we have a GSO skb, and we
5012  * want to determine what size it would be after it is segmented.
5013  *
5014  * We might want to check:
5015  * -    L3+L4+payload size (e.g. IP forwarding)
5016  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5017  *
5018  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5019  *
5020  * @skb: GSO skb
5021  *
5022  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5023  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5024  *
5025  * @max_len: The maximum permissible length.
5026  *
5027  * Returns true if the segmented length <= max length.
5028  */
5029 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5030 				      unsigned int seg_len,
5031 				      unsigned int max_len) {
5032 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5033 	const struct sk_buff *iter;
5034 
5035 	if (shinfo->gso_size != GSO_BY_FRAGS)
5036 		return seg_len <= max_len;
5037 
5038 	/* Undo this so we can re-use header sizes */
5039 	seg_len -= GSO_BY_FRAGS;
5040 
5041 	skb_walk_frags(skb, iter) {
5042 		if (seg_len + skb_headlen(iter) > max_len)
5043 			return false;
5044 	}
5045 
5046 	return true;
5047 }
5048 
5049 /**
5050  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5051  *
5052  * @skb: GSO skb
5053  * @mtu: MTU to validate against
5054  *
5055  * skb_gso_validate_network_len validates if a given skb will fit a
5056  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5057  * payload.
5058  */
5059 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5060 {
5061 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5062 }
5063 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5064 
5065 /**
5066  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5067  *
5068  * @skb: GSO skb
5069  * @len: length to validate against
5070  *
5071  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5072  * length once split, including L2, L3 and L4 headers and the payload.
5073  */
5074 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5075 {
5076 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5077 }
5078 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5079 
5080 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5081 {
5082 	int mac_len;
5083 
5084 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5085 		kfree_skb(skb);
5086 		return NULL;
5087 	}
5088 
5089 	mac_len = skb->data - skb_mac_header(skb);
5090 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5091 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5092 			mac_len - VLAN_HLEN - ETH_TLEN);
5093 	}
5094 	skb->mac_header += VLAN_HLEN;
5095 	return skb;
5096 }
5097 
5098 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5099 {
5100 	struct vlan_hdr *vhdr;
5101 	u16 vlan_tci;
5102 
5103 	if (unlikely(skb_vlan_tag_present(skb))) {
5104 		/* vlan_tci is already set-up so leave this for another time */
5105 		return skb;
5106 	}
5107 
5108 	skb = skb_share_check(skb, GFP_ATOMIC);
5109 	if (unlikely(!skb))
5110 		goto err_free;
5111 
5112 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5113 		goto err_free;
5114 
5115 	vhdr = (struct vlan_hdr *)skb->data;
5116 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5117 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5118 
5119 	skb_pull_rcsum(skb, VLAN_HLEN);
5120 	vlan_set_encap_proto(skb, vhdr);
5121 
5122 	skb = skb_reorder_vlan_header(skb);
5123 	if (unlikely(!skb))
5124 		goto err_free;
5125 
5126 	skb_reset_network_header(skb);
5127 	skb_reset_transport_header(skb);
5128 	skb_reset_mac_len(skb);
5129 
5130 	return skb;
5131 
5132 err_free:
5133 	kfree_skb(skb);
5134 	return NULL;
5135 }
5136 EXPORT_SYMBOL(skb_vlan_untag);
5137 
5138 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5139 {
5140 	if (!pskb_may_pull(skb, write_len))
5141 		return -ENOMEM;
5142 
5143 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5144 		return 0;
5145 
5146 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5147 }
5148 EXPORT_SYMBOL(skb_ensure_writable);
5149 
5150 /* remove VLAN header from packet and update csum accordingly.
5151  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5152  */
5153 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5154 {
5155 	struct vlan_hdr *vhdr;
5156 	int offset = skb->data - skb_mac_header(skb);
5157 	int err;
5158 
5159 	if (WARN_ONCE(offset,
5160 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5161 		      offset)) {
5162 		return -EINVAL;
5163 	}
5164 
5165 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5166 	if (unlikely(err))
5167 		return err;
5168 
5169 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5170 
5171 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5172 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5173 
5174 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5175 	__skb_pull(skb, VLAN_HLEN);
5176 
5177 	vlan_set_encap_proto(skb, vhdr);
5178 	skb->mac_header += VLAN_HLEN;
5179 
5180 	if (skb_network_offset(skb) < ETH_HLEN)
5181 		skb_set_network_header(skb, ETH_HLEN);
5182 
5183 	skb_reset_mac_len(skb);
5184 
5185 	return err;
5186 }
5187 EXPORT_SYMBOL(__skb_vlan_pop);
5188 
5189 /* Pop a vlan tag either from hwaccel or from payload.
5190  * Expects skb->data at mac header.
5191  */
5192 int skb_vlan_pop(struct sk_buff *skb)
5193 {
5194 	u16 vlan_tci;
5195 	__be16 vlan_proto;
5196 	int err;
5197 
5198 	if (likely(skb_vlan_tag_present(skb))) {
5199 		__vlan_hwaccel_clear_tag(skb);
5200 	} else {
5201 		if (unlikely(!eth_type_vlan(skb->protocol)))
5202 			return 0;
5203 
5204 		err = __skb_vlan_pop(skb, &vlan_tci);
5205 		if (err)
5206 			return err;
5207 	}
5208 	/* move next vlan tag to hw accel tag */
5209 	if (likely(!eth_type_vlan(skb->protocol)))
5210 		return 0;
5211 
5212 	vlan_proto = skb->protocol;
5213 	err = __skb_vlan_pop(skb, &vlan_tci);
5214 	if (unlikely(err))
5215 		return err;
5216 
5217 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5218 	return 0;
5219 }
5220 EXPORT_SYMBOL(skb_vlan_pop);
5221 
5222 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5223  * Expects skb->data at mac header.
5224  */
5225 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5226 {
5227 	if (skb_vlan_tag_present(skb)) {
5228 		int offset = skb->data - skb_mac_header(skb);
5229 		int err;
5230 
5231 		if (WARN_ONCE(offset,
5232 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5233 			      offset)) {
5234 			return -EINVAL;
5235 		}
5236 
5237 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5238 					skb_vlan_tag_get(skb));
5239 		if (err)
5240 			return err;
5241 
5242 		skb->protocol = skb->vlan_proto;
5243 		skb->mac_len += VLAN_HLEN;
5244 
5245 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5246 	}
5247 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5248 	return 0;
5249 }
5250 EXPORT_SYMBOL(skb_vlan_push);
5251 
5252 /**
5253  * alloc_skb_with_frags - allocate skb with page frags
5254  *
5255  * @header_len: size of linear part
5256  * @data_len: needed length in frags
5257  * @max_page_order: max page order desired.
5258  * @errcode: pointer to error code if any
5259  * @gfp_mask: allocation mask
5260  *
5261  * This can be used to allocate a paged skb, given a maximal order for frags.
5262  */
5263 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5264 				     unsigned long data_len,
5265 				     int max_page_order,
5266 				     int *errcode,
5267 				     gfp_t gfp_mask)
5268 {
5269 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5270 	unsigned long chunk;
5271 	struct sk_buff *skb;
5272 	struct page *page;
5273 	gfp_t gfp_head;
5274 	int i;
5275 
5276 	*errcode = -EMSGSIZE;
5277 	/* Note this test could be relaxed, if we succeed to allocate
5278 	 * high order pages...
5279 	 */
5280 	if (npages > MAX_SKB_FRAGS)
5281 		return NULL;
5282 
5283 	gfp_head = gfp_mask;
5284 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5285 		gfp_head |= __GFP_RETRY_MAYFAIL;
5286 
5287 	*errcode = -ENOBUFS;
5288 	skb = alloc_skb(header_len, gfp_head);
5289 	if (!skb)
5290 		return NULL;
5291 
5292 	skb->truesize += npages << PAGE_SHIFT;
5293 
5294 	for (i = 0; npages > 0; i++) {
5295 		int order = max_page_order;
5296 
5297 		while (order) {
5298 			if (npages >= 1 << order) {
5299 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5300 						   __GFP_COMP |
5301 						   __GFP_NOWARN,
5302 						   order);
5303 				if (page)
5304 					goto fill_page;
5305 				/* Do not retry other high order allocations */
5306 				order = 1;
5307 				max_page_order = 0;
5308 			}
5309 			order--;
5310 		}
5311 		page = alloc_page(gfp_mask);
5312 		if (!page)
5313 			goto failure;
5314 fill_page:
5315 		chunk = min_t(unsigned long, data_len,
5316 			      PAGE_SIZE << order);
5317 		skb_fill_page_desc(skb, i, page, 0, chunk);
5318 		data_len -= chunk;
5319 		npages -= 1 << order;
5320 	}
5321 	return skb;
5322 
5323 failure:
5324 	kfree_skb(skb);
5325 	return NULL;
5326 }
5327 EXPORT_SYMBOL(alloc_skb_with_frags);
5328 
5329 /* carve out the first off bytes from skb when off < headlen */
5330 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5331 				    const int headlen, gfp_t gfp_mask)
5332 {
5333 	int i;
5334 	int size = skb_end_offset(skb);
5335 	int new_hlen = headlen - off;
5336 	u8 *data;
5337 
5338 	size = SKB_DATA_ALIGN(size);
5339 
5340 	if (skb_pfmemalloc(skb))
5341 		gfp_mask |= __GFP_MEMALLOC;
5342 	data = kmalloc_reserve(size +
5343 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5344 			       gfp_mask, NUMA_NO_NODE, NULL);
5345 	if (!data)
5346 		return -ENOMEM;
5347 
5348 	size = SKB_WITH_OVERHEAD(ksize(data));
5349 
5350 	/* Copy real data, and all frags */
5351 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5352 	skb->len -= off;
5353 
5354 	memcpy((struct skb_shared_info *)(data + size),
5355 	       skb_shinfo(skb),
5356 	       offsetof(struct skb_shared_info,
5357 			frags[skb_shinfo(skb)->nr_frags]));
5358 	if (skb_cloned(skb)) {
5359 		/* drop the old head gracefully */
5360 		if (skb_orphan_frags(skb, gfp_mask)) {
5361 			kfree(data);
5362 			return -ENOMEM;
5363 		}
5364 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5365 			skb_frag_ref(skb, i);
5366 		if (skb_has_frag_list(skb))
5367 			skb_clone_fraglist(skb);
5368 		skb_release_data(skb);
5369 	} else {
5370 		/* we can reuse existing recount- all we did was
5371 		 * relocate values
5372 		 */
5373 		skb_free_head(skb);
5374 	}
5375 
5376 	skb->head = data;
5377 	skb->data = data;
5378 	skb->head_frag = 0;
5379 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5380 	skb->end = size;
5381 #else
5382 	skb->end = skb->head + size;
5383 #endif
5384 	skb_set_tail_pointer(skb, skb_headlen(skb));
5385 	skb_headers_offset_update(skb, 0);
5386 	skb->cloned = 0;
5387 	skb->hdr_len = 0;
5388 	skb->nohdr = 0;
5389 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5390 
5391 	return 0;
5392 }
5393 
5394 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5395 
5396 /* carve out the first eat bytes from skb's frag_list. May recurse into
5397  * pskb_carve()
5398  */
5399 static int pskb_carve_frag_list(struct sk_buff *skb,
5400 				struct skb_shared_info *shinfo, int eat,
5401 				gfp_t gfp_mask)
5402 {
5403 	struct sk_buff *list = shinfo->frag_list;
5404 	struct sk_buff *clone = NULL;
5405 	struct sk_buff *insp = NULL;
5406 
5407 	do {
5408 		if (!list) {
5409 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5410 			return -EFAULT;
5411 		}
5412 		if (list->len <= eat) {
5413 			/* Eaten as whole. */
5414 			eat -= list->len;
5415 			list = list->next;
5416 			insp = list;
5417 		} else {
5418 			/* Eaten partially. */
5419 			if (skb_shared(list)) {
5420 				clone = skb_clone(list, gfp_mask);
5421 				if (!clone)
5422 					return -ENOMEM;
5423 				insp = list->next;
5424 				list = clone;
5425 			} else {
5426 				/* This may be pulled without problems. */
5427 				insp = list;
5428 			}
5429 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5430 				kfree_skb(clone);
5431 				return -ENOMEM;
5432 			}
5433 			break;
5434 		}
5435 	} while (eat);
5436 
5437 	/* Free pulled out fragments. */
5438 	while ((list = shinfo->frag_list) != insp) {
5439 		shinfo->frag_list = list->next;
5440 		kfree_skb(list);
5441 	}
5442 	/* And insert new clone at head. */
5443 	if (clone) {
5444 		clone->next = list;
5445 		shinfo->frag_list = clone;
5446 	}
5447 	return 0;
5448 }
5449 
5450 /* carve off first len bytes from skb. Split line (off) is in the
5451  * non-linear part of skb
5452  */
5453 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5454 				       int pos, gfp_t gfp_mask)
5455 {
5456 	int i, k = 0;
5457 	int size = skb_end_offset(skb);
5458 	u8 *data;
5459 	const int nfrags = skb_shinfo(skb)->nr_frags;
5460 	struct skb_shared_info *shinfo;
5461 
5462 	size = SKB_DATA_ALIGN(size);
5463 
5464 	if (skb_pfmemalloc(skb))
5465 		gfp_mask |= __GFP_MEMALLOC;
5466 	data = kmalloc_reserve(size +
5467 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5468 			       gfp_mask, NUMA_NO_NODE, NULL);
5469 	if (!data)
5470 		return -ENOMEM;
5471 
5472 	size = SKB_WITH_OVERHEAD(ksize(data));
5473 
5474 	memcpy((struct skb_shared_info *)(data + size),
5475 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5476 					 frags[skb_shinfo(skb)->nr_frags]));
5477 	if (skb_orphan_frags(skb, gfp_mask)) {
5478 		kfree(data);
5479 		return -ENOMEM;
5480 	}
5481 	shinfo = (struct skb_shared_info *)(data + size);
5482 	for (i = 0; i < nfrags; i++) {
5483 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5484 
5485 		if (pos + fsize > off) {
5486 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5487 
5488 			if (pos < off) {
5489 				/* Split frag.
5490 				 * We have two variants in this case:
5491 				 * 1. Move all the frag to the second
5492 				 *    part, if it is possible. F.e.
5493 				 *    this approach is mandatory for TUX,
5494 				 *    where splitting is expensive.
5495 				 * 2. Split is accurately. We make this.
5496 				 */
5497 				shinfo->frags[0].page_offset += off - pos;
5498 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5499 			}
5500 			skb_frag_ref(skb, i);
5501 			k++;
5502 		}
5503 		pos += fsize;
5504 	}
5505 	shinfo->nr_frags = k;
5506 	if (skb_has_frag_list(skb))
5507 		skb_clone_fraglist(skb);
5508 
5509 	if (k == 0) {
5510 		/* split line is in frag list */
5511 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5512 	}
5513 	skb_release_data(skb);
5514 
5515 	skb->head = data;
5516 	skb->head_frag = 0;
5517 	skb->data = data;
5518 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5519 	skb->end = size;
5520 #else
5521 	skb->end = skb->head + size;
5522 #endif
5523 	skb_reset_tail_pointer(skb);
5524 	skb_headers_offset_update(skb, 0);
5525 	skb->cloned   = 0;
5526 	skb->hdr_len  = 0;
5527 	skb->nohdr    = 0;
5528 	skb->len -= off;
5529 	skb->data_len = skb->len;
5530 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5531 	return 0;
5532 }
5533 
5534 /* remove len bytes from the beginning of the skb */
5535 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5536 {
5537 	int headlen = skb_headlen(skb);
5538 
5539 	if (len < headlen)
5540 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5541 	else
5542 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5543 }
5544 
5545 /* Extract to_copy bytes starting at off from skb, and return this in
5546  * a new skb
5547  */
5548 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5549 			     int to_copy, gfp_t gfp)
5550 {
5551 	struct sk_buff  *clone = skb_clone(skb, gfp);
5552 
5553 	if (!clone)
5554 		return NULL;
5555 
5556 	if (pskb_carve(clone, off, gfp) < 0 ||
5557 	    pskb_trim(clone, to_copy)) {
5558 		kfree_skb(clone);
5559 		return NULL;
5560 	}
5561 	return clone;
5562 }
5563 EXPORT_SYMBOL(pskb_extract);
5564 
5565 /**
5566  * skb_condense - try to get rid of fragments/frag_list if possible
5567  * @skb: buffer
5568  *
5569  * Can be used to save memory before skb is added to a busy queue.
5570  * If packet has bytes in frags and enough tail room in skb->head,
5571  * pull all of them, so that we can free the frags right now and adjust
5572  * truesize.
5573  * Notes:
5574  *	We do not reallocate skb->head thus can not fail.
5575  *	Caller must re-evaluate skb->truesize if needed.
5576  */
5577 void skb_condense(struct sk_buff *skb)
5578 {
5579 	if (skb->data_len) {
5580 		if (skb->data_len > skb->end - skb->tail ||
5581 		    skb_cloned(skb))
5582 			return;
5583 
5584 		/* Nice, we can free page frag(s) right now */
5585 		__pskb_pull_tail(skb, skb->data_len);
5586 	}
5587 	/* At this point, skb->truesize might be over estimated,
5588 	 * because skb had a fragment, and fragments do not tell
5589 	 * their truesize.
5590 	 * When we pulled its content into skb->head, fragment
5591 	 * was freed, but __pskb_pull_tail() could not possibly
5592 	 * adjust skb->truesize, not knowing the frag truesize.
5593 	 */
5594 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5595 }
5596 
5597 #ifdef CONFIG_SKB_EXTENSIONS
5598 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5599 {
5600 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5601 }
5602 
5603 static struct skb_ext *skb_ext_alloc(void)
5604 {
5605 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5606 
5607 	if (new) {
5608 		memset(new->offset, 0, sizeof(new->offset));
5609 		refcount_set(&new->refcnt, 1);
5610 	}
5611 
5612 	return new;
5613 }
5614 
5615 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5616 					 unsigned int old_active)
5617 {
5618 	struct skb_ext *new;
5619 
5620 	if (refcount_read(&old->refcnt) == 1)
5621 		return old;
5622 
5623 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5624 	if (!new)
5625 		return NULL;
5626 
5627 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5628 	refcount_set(&new->refcnt, 1);
5629 
5630 #ifdef CONFIG_XFRM
5631 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5632 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5633 		unsigned int i;
5634 
5635 		for (i = 0; i < sp->len; i++)
5636 			xfrm_state_hold(sp->xvec[i]);
5637 	}
5638 #endif
5639 	__skb_ext_put(old);
5640 	return new;
5641 }
5642 
5643 /**
5644  * skb_ext_add - allocate space for given extension, COW if needed
5645  * @skb: buffer
5646  * @id: extension to allocate space for
5647  *
5648  * Allocates enough space for the given extension.
5649  * If the extension is already present, a pointer to that extension
5650  * is returned.
5651  *
5652  * If the skb was cloned, COW applies and the returned memory can be
5653  * modified without changing the extension space of clones buffers.
5654  *
5655  * Returns pointer to the extension or NULL on allocation failure.
5656  */
5657 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5658 {
5659 	struct skb_ext *new, *old = NULL;
5660 	unsigned int newlen, newoff;
5661 
5662 	if (skb->active_extensions) {
5663 		old = skb->extensions;
5664 
5665 		new = skb_ext_maybe_cow(old, skb->active_extensions);
5666 		if (!new)
5667 			return NULL;
5668 
5669 		if (__skb_ext_exist(new, id))
5670 			goto set_active;
5671 
5672 		newoff = new->chunks;
5673 	} else {
5674 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
5675 
5676 		new = skb_ext_alloc();
5677 		if (!new)
5678 			return NULL;
5679 	}
5680 
5681 	newlen = newoff + skb_ext_type_len[id];
5682 	new->chunks = newlen;
5683 	new->offset[id] = newoff;
5684 set_active:
5685 	skb->extensions = new;
5686 	skb->active_extensions |= 1 << id;
5687 	return skb_ext_get_ptr(new, id);
5688 }
5689 EXPORT_SYMBOL(skb_ext_add);
5690 
5691 #ifdef CONFIG_XFRM
5692 static void skb_ext_put_sp(struct sec_path *sp)
5693 {
5694 	unsigned int i;
5695 
5696 	for (i = 0; i < sp->len; i++)
5697 		xfrm_state_put(sp->xvec[i]);
5698 }
5699 #endif
5700 
5701 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
5702 {
5703 	struct skb_ext *ext = skb->extensions;
5704 
5705 	skb->active_extensions &= ~(1 << id);
5706 	if (skb->active_extensions == 0) {
5707 		skb->extensions = NULL;
5708 		__skb_ext_put(ext);
5709 #ifdef CONFIG_XFRM
5710 	} else if (id == SKB_EXT_SEC_PATH &&
5711 		   refcount_read(&ext->refcnt) == 1) {
5712 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
5713 
5714 		skb_ext_put_sp(sp);
5715 		sp->len = 0;
5716 #endif
5717 	}
5718 }
5719 EXPORT_SYMBOL(__skb_ext_del);
5720 
5721 void __skb_ext_put(struct skb_ext *ext)
5722 {
5723 	/* If this is last clone, nothing can increment
5724 	 * it after check passes.  Avoids one atomic op.
5725 	 */
5726 	if (refcount_read(&ext->refcnt) == 1)
5727 		goto free_now;
5728 
5729 	if (!refcount_dec_and_test(&ext->refcnt))
5730 		return;
5731 free_now:
5732 #ifdef CONFIG_XFRM
5733 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
5734 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
5735 #endif
5736 
5737 	kmem_cache_free(skbuff_ext_cache, ext);
5738 }
5739 EXPORT_SYMBOL(__skb_ext_put);
5740 #endif /* CONFIG_SKB_EXTENSIONS */
5741