1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/gso.h> 73 #include <net/hotdata.h> 74 #include <net/ip6_checksum.h> 75 #include <net/xfrm.h> 76 #include <net/mpls.h> 77 #include <net/mptcp.h> 78 #include <net/mctp.h> 79 #include <net/page_pool/helpers.h> 80 #include <net/dropreason.h> 81 82 #include <linux/uaccess.h> 83 #include <trace/events/skb.h> 84 #include <linux/highmem.h> 85 #include <linux/capability.h> 86 #include <linux/user_namespace.h> 87 #include <linux/indirect_call_wrapper.h> 88 #include <linux/textsearch.h> 89 90 #include "dev.h" 91 #include "sock_destructor.h" 92 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 98 99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 100 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 101 * size, and we can differentiate heads from skb_small_head_cache 102 * vs system slabs by looking at their size (skb_end_offset()). 103 */ 104 #define SKB_SMALL_HEAD_CACHE_SIZE \ 105 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 106 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 107 SKB_SMALL_HEAD_SIZE) 108 109 #define SKB_SMALL_HEAD_HEADROOM \ 110 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 111 112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 113 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 114 * netmem is a page. 115 */ 116 static_assert(offsetof(struct bio_vec, bv_page) == 117 offsetof(skb_frag_t, netmem)); 118 static_assert(sizeof_field(struct bio_vec, bv_page) == 119 sizeof_field(skb_frag_t, netmem)); 120 121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 122 static_assert(sizeof_field(struct bio_vec, bv_len) == 123 sizeof_field(skb_frag_t, len)); 124 125 static_assert(offsetof(struct bio_vec, bv_offset) == 126 offsetof(skb_frag_t, offset)); 127 static_assert(sizeof_field(struct bio_vec, bv_offset) == 128 sizeof_field(skb_frag_t, offset)); 129 130 #undef FN 131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 132 static const char * const drop_reasons[] = { 133 [SKB_CONSUMED] = "CONSUMED", 134 DEFINE_DROP_REASON(FN, FN) 135 }; 136 137 static const struct drop_reason_list drop_reasons_core = { 138 .reasons = drop_reasons, 139 .n_reasons = ARRAY_SIZE(drop_reasons), 140 }; 141 142 const struct drop_reason_list __rcu * 143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 144 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 145 }; 146 EXPORT_SYMBOL(drop_reasons_by_subsys); 147 148 /** 149 * drop_reasons_register_subsys - register another drop reason subsystem 150 * @subsys: the subsystem to register, must not be the core 151 * @list: the list of drop reasons within the subsystem, must point to 152 * a statically initialized list 153 */ 154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 155 const struct drop_reason_list *list) 156 { 157 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 158 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 159 "invalid subsystem %d\n", subsys)) 160 return; 161 162 /* must point to statically allocated memory, so INIT is OK */ 163 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 164 } 165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 166 167 /** 168 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 169 * @subsys: the subsystem to remove, must not be the core 170 * 171 * Note: This will synchronize_rcu() to ensure no users when it returns. 172 */ 173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 174 { 175 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 176 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 177 "invalid subsystem %d\n", subsys)) 178 return; 179 180 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 181 182 synchronize_rcu(); 183 } 184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 185 186 /** 187 * skb_panic - private function for out-of-line support 188 * @skb: buffer 189 * @sz: size 190 * @addr: address 191 * @msg: skb_over_panic or skb_under_panic 192 * 193 * Out-of-line support for skb_put() and skb_push(). 194 * Called via the wrapper skb_over_panic() or skb_under_panic(). 195 * Keep out of line to prevent kernel bloat. 196 * __builtin_return_address is not used because it is not always reliable. 197 */ 198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 199 const char msg[]) 200 { 201 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 202 msg, addr, skb->len, sz, skb->head, skb->data, 203 (unsigned long)skb->tail, (unsigned long)skb->end, 204 skb->dev ? skb->dev->name : "<NULL>"); 205 BUG(); 206 } 207 208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 209 { 210 skb_panic(skb, sz, addr, __func__); 211 } 212 213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 214 { 215 skb_panic(skb, sz, addr, __func__); 216 } 217 218 #define NAPI_SKB_CACHE_SIZE 64 219 #define NAPI_SKB_CACHE_BULK 16 220 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 221 222 #if PAGE_SIZE == SZ_4K 223 224 #define NAPI_HAS_SMALL_PAGE_FRAG 1 225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 226 227 /* specialized page frag allocator using a single order 0 page 228 * and slicing it into 1K sized fragment. Constrained to systems 229 * with a very limited amount of 1K fragments fitting a single 230 * page - to avoid excessive truesize underestimation 231 */ 232 233 struct page_frag_1k { 234 void *va; 235 u16 offset; 236 bool pfmemalloc; 237 }; 238 239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 240 { 241 struct page *page; 242 int offset; 243 244 offset = nc->offset - SZ_1K; 245 if (likely(offset >= 0)) 246 goto use_frag; 247 248 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 249 if (!page) 250 return NULL; 251 252 nc->va = page_address(page); 253 nc->pfmemalloc = page_is_pfmemalloc(page); 254 offset = PAGE_SIZE - SZ_1K; 255 page_ref_add(page, offset / SZ_1K); 256 257 use_frag: 258 nc->offset = offset; 259 return nc->va + offset; 260 } 261 #else 262 263 /* the small page is actually unused in this build; add dummy helpers 264 * to please the compiler and avoid later preprocessor's conditionals 265 */ 266 #define NAPI_HAS_SMALL_PAGE_FRAG 0 267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 268 269 struct page_frag_1k { 270 }; 271 272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 273 { 274 return NULL; 275 } 276 277 #endif 278 279 struct napi_alloc_cache { 280 local_lock_t bh_lock; 281 struct page_frag_cache page; 282 struct page_frag_1k page_small; 283 unsigned int skb_count; 284 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 285 }; 286 287 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 288 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 289 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 290 }; 291 292 /* Double check that napi_get_frags() allocates skbs with 293 * skb->head being backed by slab, not a page fragment. 294 * This is to make sure bug fixed in 3226b158e67c 295 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 296 * does not accidentally come back. 297 */ 298 void napi_get_frags_check(struct napi_struct *napi) 299 { 300 struct sk_buff *skb; 301 302 local_bh_disable(); 303 skb = napi_get_frags(napi); 304 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 305 napi_free_frags(napi); 306 local_bh_enable(); 307 } 308 309 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 310 { 311 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 312 void *data; 313 314 fragsz = SKB_DATA_ALIGN(fragsz); 315 316 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 317 data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 318 align_mask); 319 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 320 return data; 321 322 } 323 EXPORT_SYMBOL(__napi_alloc_frag_align); 324 325 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 326 { 327 void *data; 328 329 if (in_hardirq() || irqs_disabled()) { 330 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 331 332 fragsz = SKB_DATA_ALIGN(fragsz); 333 data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, 334 align_mask); 335 } else { 336 local_bh_disable(); 337 data = __napi_alloc_frag_align(fragsz, align_mask); 338 local_bh_enable(); 339 } 340 return data; 341 } 342 EXPORT_SYMBOL(__netdev_alloc_frag_align); 343 344 static struct sk_buff *napi_skb_cache_get(void) 345 { 346 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 347 struct sk_buff *skb; 348 349 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 350 if (unlikely(!nc->skb_count)) { 351 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 352 GFP_ATOMIC, 353 NAPI_SKB_CACHE_BULK, 354 nc->skb_cache); 355 if (unlikely(!nc->skb_count)) { 356 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 357 return NULL; 358 } 359 } 360 361 skb = nc->skb_cache[--nc->skb_count]; 362 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 363 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 364 365 return skb; 366 } 367 368 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 369 unsigned int size) 370 { 371 struct skb_shared_info *shinfo; 372 373 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 374 375 /* Assumes caller memset cleared SKB */ 376 skb->truesize = SKB_TRUESIZE(size); 377 refcount_set(&skb->users, 1); 378 skb->head = data; 379 skb->data = data; 380 skb_reset_tail_pointer(skb); 381 skb_set_end_offset(skb, size); 382 skb->mac_header = (typeof(skb->mac_header))~0U; 383 skb->transport_header = (typeof(skb->transport_header))~0U; 384 skb->alloc_cpu = raw_smp_processor_id(); 385 /* make sure we initialize shinfo sequentially */ 386 shinfo = skb_shinfo(skb); 387 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 388 atomic_set(&shinfo->dataref, 1); 389 390 skb_set_kcov_handle(skb, kcov_common_handle()); 391 } 392 393 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 394 unsigned int *size) 395 { 396 void *resized; 397 398 /* Must find the allocation size (and grow it to match). */ 399 *size = ksize(data); 400 /* krealloc() will immediately return "data" when 401 * "ksize(data)" is requested: it is the existing upper 402 * bounds. As a result, GFP_ATOMIC will be ignored. Note 403 * that this "new" pointer needs to be passed back to the 404 * caller for use so the __alloc_size hinting will be 405 * tracked correctly. 406 */ 407 resized = krealloc(data, *size, GFP_ATOMIC); 408 WARN_ON_ONCE(resized != data); 409 return resized; 410 } 411 412 /* build_skb() variant which can operate on slab buffers. 413 * Note that this should be used sparingly as slab buffers 414 * cannot be combined efficiently by GRO! 415 */ 416 struct sk_buff *slab_build_skb(void *data) 417 { 418 struct sk_buff *skb; 419 unsigned int size; 420 421 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 422 if (unlikely(!skb)) 423 return NULL; 424 425 memset(skb, 0, offsetof(struct sk_buff, tail)); 426 data = __slab_build_skb(skb, data, &size); 427 __finalize_skb_around(skb, data, size); 428 429 return skb; 430 } 431 EXPORT_SYMBOL(slab_build_skb); 432 433 /* Caller must provide SKB that is memset cleared */ 434 static void __build_skb_around(struct sk_buff *skb, void *data, 435 unsigned int frag_size) 436 { 437 unsigned int size = frag_size; 438 439 /* frag_size == 0 is considered deprecated now. Callers 440 * using slab buffer should use slab_build_skb() instead. 441 */ 442 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 443 data = __slab_build_skb(skb, data, &size); 444 445 __finalize_skb_around(skb, data, size); 446 } 447 448 /** 449 * __build_skb - build a network buffer 450 * @data: data buffer provided by caller 451 * @frag_size: size of data (must not be 0) 452 * 453 * Allocate a new &sk_buff. Caller provides space holding head and 454 * skb_shared_info. @data must have been allocated from the page 455 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 456 * allocation is deprecated, and callers should use slab_build_skb() 457 * instead.) 458 * The return is the new skb buffer. 459 * On a failure the return is %NULL, and @data is not freed. 460 * Notes : 461 * Before IO, driver allocates only data buffer where NIC put incoming frame 462 * Driver should add room at head (NET_SKB_PAD) and 463 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 464 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 465 * before giving packet to stack. 466 * RX rings only contains data buffers, not full skbs. 467 */ 468 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 469 { 470 struct sk_buff *skb; 471 472 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 473 if (unlikely(!skb)) 474 return NULL; 475 476 memset(skb, 0, offsetof(struct sk_buff, tail)); 477 __build_skb_around(skb, data, frag_size); 478 479 return skb; 480 } 481 482 /* build_skb() is wrapper over __build_skb(), that specifically 483 * takes care of skb->head and skb->pfmemalloc 484 */ 485 struct sk_buff *build_skb(void *data, unsigned int frag_size) 486 { 487 struct sk_buff *skb = __build_skb(data, frag_size); 488 489 if (likely(skb && frag_size)) { 490 skb->head_frag = 1; 491 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 492 } 493 return skb; 494 } 495 EXPORT_SYMBOL(build_skb); 496 497 /** 498 * build_skb_around - build a network buffer around provided skb 499 * @skb: sk_buff provide by caller, must be memset cleared 500 * @data: data buffer provided by caller 501 * @frag_size: size of data 502 */ 503 struct sk_buff *build_skb_around(struct sk_buff *skb, 504 void *data, unsigned int frag_size) 505 { 506 if (unlikely(!skb)) 507 return NULL; 508 509 __build_skb_around(skb, data, frag_size); 510 511 if (frag_size) { 512 skb->head_frag = 1; 513 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 514 } 515 return skb; 516 } 517 EXPORT_SYMBOL(build_skb_around); 518 519 /** 520 * __napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __build_skb() that uses NAPI percpu caches to obtain 525 * skbuff_head instead of inplace allocation. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb; 532 533 skb = napi_skb_cache_get(); 534 if (unlikely(!skb)) 535 return NULL; 536 537 memset(skb, 0, offsetof(struct sk_buff, tail)); 538 __build_skb_around(skb, data, frag_size); 539 540 return skb; 541 } 542 543 /** 544 * napi_build_skb - build a network buffer 545 * @data: data buffer provided by caller 546 * @frag_size: size of data 547 * 548 * Version of __napi_build_skb() that takes care of skb->head_frag 549 * and skb->pfmemalloc when the data is a page or page fragment. 550 * 551 * Returns a new &sk_buff on success, %NULL on allocation failure. 552 */ 553 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 554 { 555 struct sk_buff *skb = __napi_build_skb(data, frag_size); 556 557 if (likely(skb) && frag_size) { 558 skb->head_frag = 1; 559 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 560 } 561 562 return skb; 563 } 564 EXPORT_SYMBOL(napi_build_skb); 565 566 /* 567 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 568 * the caller if emergency pfmemalloc reserves are being used. If it is and 569 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 570 * may be used. Otherwise, the packet data may be discarded until enough 571 * memory is free 572 */ 573 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 574 bool *pfmemalloc) 575 { 576 bool ret_pfmemalloc = false; 577 size_t obj_size; 578 void *obj; 579 580 obj_size = SKB_HEAD_ALIGN(*size); 581 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 582 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 583 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 584 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 585 node); 586 *size = SKB_SMALL_HEAD_CACHE_SIZE; 587 if (obj || !(gfp_pfmemalloc_allowed(flags))) 588 goto out; 589 /* Try again but now we are using pfmemalloc reserves */ 590 ret_pfmemalloc = true; 591 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 592 goto out; 593 } 594 595 obj_size = kmalloc_size_roundup(obj_size); 596 /* The following cast might truncate high-order bits of obj_size, this 597 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 598 */ 599 *size = (unsigned int)obj_size; 600 601 /* 602 * Try a regular allocation, when that fails and we're not entitled 603 * to the reserves, fail. 604 */ 605 obj = kmalloc_node_track_caller(obj_size, 606 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 607 node); 608 if (obj || !(gfp_pfmemalloc_allowed(flags))) 609 goto out; 610 611 /* Try again but now we are using pfmemalloc reserves */ 612 ret_pfmemalloc = true; 613 obj = kmalloc_node_track_caller(obj_size, flags, node); 614 615 out: 616 if (pfmemalloc) 617 *pfmemalloc = ret_pfmemalloc; 618 619 return obj; 620 } 621 622 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 623 * 'private' fields and also do memory statistics to find all the 624 * [BEEP] leaks. 625 * 626 */ 627 628 /** 629 * __alloc_skb - allocate a network buffer 630 * @size: size to allocate 631 * @gfp_mask: allocation mask 632 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 633 * instead of head cache and allocate a cloned (child) skb. 634 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 635 * allocations in case the data is required for writeback 636 * @node: numa node to allocate memory on 637 * 638 * Allocate a new &sk_buff. The returned buffer has no headroom and a 639 * tail room of at least size bytes. The object has a reference count 640 * of one. The return is the buffer. On a failure the return is %NULL. 641 * 642 * Buffers may only be allocated from interrupts using a @gfp_mask of 643 * %GFP_ATOMIC. 644 */ 645 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 646 int flags, int node) 647 { 648 struct kmem_cache *cache; 649 struct sk_buff *skb; 650 bool pfmemalloc; 651 u8 *data; 652 653 cache = (flags & SKB_ALLOC_FCLONE) 654 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 655 656 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 657 gfp_mask |= __GFP_MEMALLOC; 658 659 /* Get the HEAD */ 660 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 661 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 662 skb = napi_skb_cache_get(); 663 else 664 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 665 if (unlikely(!skb)) 666 return NULL; 667 prefetchw(skb); 668 669 /* We do our best to align skb_shared_info on a separate cache 670 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 671 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 672 * Both skb->head and skb_shared_info are cache line aligned. 673 */ 674 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 675 if (unlikely(!data)) 676 goto nodata; 677 /* kmalloc_size_roundup() might give us more room than requested. 678 * Put skb_shared_info exactly at the end of allocated zone, 679 * to allow max possible filling before reallocation. 680 */ 681 prefetchw(data + SKB_WITH_OVERHEAD(size)); 682 683 /* 684 * Only clear those fields we need to clear, not those that we will 685 * actually initialise below. Hence, don't put any more fields after 686 * the tail pointer in struct sk_buff! 687 */ 688 memset(skb, 0, offsetof(struct sk_buff, tail)); 689 __build_skb_around(skb, data, size); 690 skb->pfmemalloc = pfmemalloc; 691 692 if (flags & SKB_ALLOC_FCLONE) { 693 struct sk_buff_fclones *fclones; 694 695 fclones = container_of(skb, struct sk_buff_fclones, skb1); 696 697 skb->fclone = SKB_FCLONE_ORIG; 698 refcount_set(&fclones->fclone_ref, 1); 699 } 700 701 return skb; 702 703 nodata: 704 kmem_cache_free(cache, skb); 705 return NULL; 706 } 707 EXPORT_SYMBOL(__alloc_skb); 708 709 /** 710 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 711 * @dev: network device to receive on 712 * @len: length to allocate 713 * @gfp_mask: get_free_pages mask, passed to alloc_skb 714 * 715 * Allocate a new &sk_buff and assign it a usage count of one. The 716 * buffer has NET_SKB_PAD headroom built in. Users should allocate 717 * the headroom they think they need without accounting for the 718 * built in space. The built in space is used for optimisations. 719 * 720 * %NULL is returned if there is no free memory. 721 */ 722 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 723 gfp_t gfp_mask) 724 { 725 struct page_frag_cache *nc; 726 struct sk_buff *skb; 727 bool pfmemalloc; 728 void *data; 729 730 len += NET_SKB_PAD; 731 732 /* If requested length is either too small or too big, 733 * we use kmalloc() for skb->head allocation. 734 */ 735 if (len <= SKB_WITH_OVERHEAD(1024) || 736 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 737 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 738 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 739 if (!skb) 740 goto skb_fail; 741 goto skb_success; 742 } 743 744 len = SKB_HEAD_ALIGN(len); 745 746 if (sk_memalloc_socks()) 747 gfp_mask |= __GFP_MEMALLOC; 748 749 if (in_hardirq() || irqs_disabled()) { 750 nc = this_cpu_ptr(&netdev_alloc_cache); 751 data = page_frag_alloc(nc, len, gfp_mask); 752 pfmemalloc = nc->pfmemalloc; 753 } else { 754 local_bh_disable(); 755 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 756 757 nc = this_cpu_ptr(&napi_alloc_cache.page); 758 data = page_frag_alloc(nc, len, gfp_mask); 759 pfmemalloc = nc->pfmemalloc; 760 761 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 762 local_bh_enable(); 763 } 764 765 if (unlikely(!data)) 766 return NULL; 767 768 skb = __build_skb(data, len); 769 if (unlikely(!skb)) { 770 skb_free_frag(data); 771 return NULL; 772 } 773 774 if (pfmemalloc) 775 skb->pfmemalloc = 1; 776 skb->head_frag = 1; 777 778 skb_success: 779 skb_reserve(skb, NET_SKB_PAD); 780 skb->dev = dev; 781 782 skb_fail: 783 return skb; 784 } 785 EXPORT_SYMBOL(__netdev_alloc_skb); 786 787 /** 788 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 789 * @napi: napi instance this buffer was allocated for 790 * @len: length to allocate 791 * 792 * Allocate a new sk_buff for use in NAPI receive. This buffer will 793 * attempt to allocate the head from a special reserved region used 794 * only for NAPI Rx allocation. By doing this we can save several 795 * CPU cycles by avoiding having to disable and re-enable IRQs. 796 * 797 * %NULL is returned if there is no free memory. 798 */ 799 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 800 { 801 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 802 struct napi_alloc_cache *nc; 803 struct sk_buff *skb; 804 bool pfmemalloc; 805 void *data; 806 807 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 808 len += NET_SKB_PAD + NET_IP_ALIGN; 809 810 /* If requested length is either too small or too big, 811 * we use kmalloc() for skb->head allocation. 812 * When the small frag allocator is available, prefer it over kmalloc 813 * for small fragments 814 */ 815 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 816 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 817 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 818 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 819 NUMA_NO_NODE); 820 if (!skb) 821 goto skb_fail; 822 goto skb_success; 823 } 824 825 if (sk_memalloc_socks()) 826 gfp_mask |= __GFP_MEMALLOC; 827 828 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 829 nc = this_cpu_ptr(&napi_alloc_cache); 830 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 831 /* we are artificially inflating the allocation size, but 832 * that is not as bad as it may look like, as: 833 * - 'len' less than GRO_MAX_HEAD makes little sense 834 * - On most systems, larger 'len' values lead to fragment 835 * size above 512 bytes 836 * - kmalloc would use the kmalloc-1k slab for such values 837 * - Builds with smaller GRO_MAX_HEAD will very likely do 838 * little networking, as that implies no WiFi and no 839 * tunnels support, and 32 bits arches. 840 */ 841 len = SZ_1K; 842 843 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 844 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 845 } else { 846 len = SKB_HEAD_ALIGN(len); 847 848 data = page_frag_alloc(&nc->page, len, gfp_mask); 849 pfmemalloc = nc->page.pfmemalloc; 850 } 851 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 852 853 if (unlikely(!data)) 854 return NULL; 855 856 skb = __napi_build_skb(data, len); 857 if (unlikely(!skb)) { 858 skb_free_frag(data); 859 return NULL; 860 } 861 862 if (pfmemalloc) 863 skb->pfmemalloc = 1; 864 skb->head_frag = 1; 865 866 skb_success: 867 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 868 skb->dev = napi->dev; 869 870 skb_fail: 871 return skb; 872 } 873 EXPORT_SYMBOL(napi_alloc_skb); 874 875 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 876 int off, int size, unsigned int truesize) 877 { 878 DEBUG_NET_WARN_ON_ONCE(size > truesize); 879 880 skb_fill_netmem_desc(skb, i, netmem, off, size); 881 skb->len += size; 882 skb->data_len += size; 883 skb->truesize += truesize; 884 } 885 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 886 887 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 888 unsigned int truesize) 889 { 890 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 891 892 DEBUG_NET_WARN_ON_ONCE(size > truesize); 893 894 skb_frag_size_add(frag, size); 895 skb->len += size; 896 skb->data_len += size; 897 skb->truesize += truesize; 898 } 899 EXPORT_SYMBOL(skb_coalesce_rx_frag); 900 901 static void skb_drop_list(struct sk_buff **listp) 902 { 903 kfree_skb_list(*listp); 904 *listp = NULL; 905 } 906 907 static inline void skb_drop_fraglist(struct sk_buff *skb) 908 { 909 skb_drop_list(&skb_shinfo(skb)->frag_list); 910 } 911 912 static void skb_clone_fraglist(struct sk_buff *skb) 913 { 914 struct sk_buff *list; 915 916 skb_walk_frags(skb, list) 917 skb_get(list); 918 } 919 920 static bool is_pp_page(struct page *page) 921 { 922 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 923 } 924 925 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 926 unsigned int headroom) 927 { 928 #if IS_ENABLED(CONFIG_PAGE_POOL) 929 u32 size, truesize, len, max_head_size, off; 930 struct sk_buff *skb = *pskb, *nskb; 931 int err, i, head_off; 932 void *data; 933 934 /* XDP does not support fraglist so we need to linearize 935 * the skb. 936 */ 937 if (skb_has_frag_list(skb)) 938 return -EOPNOTSUPP; 939 940 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 941 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 942 return -ENOMEM; 943 944 size = min_t(u32, skb->len, max_head_size); 945 truesize = SKB_HEAD_ALIGN(size) + headroom; 946 data = page_pool_dev_alloc_va(pool, &truesize); 947 if (!data) 948 return -ENOMEM; 949 950 nskb = napi_build_skb(data, truesize); 951 if (!nskb) { 952 page_pool_free_va(pool, data, true); 953 return -ENOMEM; 954 } 955 956 skb_reserve(nskb, headroom); 957 skb_copy_header(nskb, skb); 958 skb_mark_for_recycle(nskb); 959 960 err = skb_copy_bits(skb, 0, nskb->data, size); 961 if (err) { 962 consume_skb(nskb); 963 return err; 964 } 965 skb_put(nskb, size); 966 967 head_off = skb_headroom(nskb) - skb_headroom(skb); 968 skb_headers_offset_update(nskb, head_off); 969 970 off = size; 971 len = skb->len - off; 972 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 973 struct page *page; 974 u32 page_off; 975 976 size = min_t(u32, len, PAGE_SIZE); 977 truesize = size; 978 979 page = page_pool_dev_alloc(pool, &page_off, &truesize); 980 if (!page) { 981 consume_skb(nskb); 982 return -ENOMEM; 983 } 984 985 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 986 err = skb_copy_bits(skb, off, page_address(page) + page_off, 987 size); 988 if (err) { 989 consume_skb(nskb); 990 return err; 991 } 992 993 len -= size; 994 off += size; 995 } 996 997 consume_skb(skb); 998 *pskb = nskb; 999 1000 return 0; 1001 #else 1002 return -EOPNOTSUPP; 1003 #endif 1004 } 1005 EXPORT_SYMBOL(skb_pp_cow_data); 1006 1007 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 1008 struct bpf_prog *prog) 1009 { 1010 if (!prog->aux->xdp_has_frags) 1011 return -EINVAL; 1012 1013 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1014 } 1015 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1016 1017 #if IS_ENABLED(CONFIG_PAGE_POOL) 1018 bool napi_pp_put_page(netmem_ref netmem) 1019 { 1020 struct page *page = netmem_to_page(netmem); 1021 1022 page = compound_head(page); 1023 1024 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 1025 * in order to preserve any existing bits, such as bit 0 for the 1026 * head page of compound page and bit 1 for pfmemalloc page, so 1027 * mask those bits for freeing side when doing below checking, 1028 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1029 * to avoid recycling the pfmemalloc page. 1030 */ 1031 if (unlikely(!is_pp_page(page))) 1032 return false; 1033 1034 page_pool_put_full_netmem(page->pp, page_to_netmem(page), false); 1035 1036 return true; 1037 } 1038 EXPORT_SYMBOL(napi_pp_put_page); 1039 #endif 1040 1041 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1042 { 1043 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1044 return false; 1045 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1046 } 1047 1048 /** 1049 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1050 * @skb: page pool aware skb 1051 * 1052 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1053 * intended to gain fragment references only for page pool aware skbs, 1054 * i.e. when skb->pp_recycle is true, and not for fragments in a 1055 * non-pp-recycling skb. It has a fallback to increase references on normal 1056 * pages, as page pool aware skbs may also have normal page fragments. 1057 */ 1058 static int skb_pp_frag_ref(struct sk_buff *skb) 1059 { 1060 struct skb_shared_info *shinfo; 1061 struct page *head_page; 1062 int i; 1063 1064 if (!skb->pp_recycle) 1065 return -EINVAL; 1066 1067 shinfo = skb_shinfo(skb); 1068 1069 for (i = 0; i < shinfo->nr_frags; i++) { 1070 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 1071 if (likely(is_pp_page(head_page))) 1072 page_pool_ref_page(head_page); 1073 else 1074 page_ref_inc(head_page); 1075 } 1076 return 0; 1077 } 1078 1079 static void skb_kfree_head(void *head, unsigned int end_offset) 1080 { 1081 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1082 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1083 else 1084 kfree(head); 1085 } 1086 1087 static void skb_free_head(struct sk_buff *skb) 1088 { 1089 unsigned char *head = skb->head; 1090 1091 if (skb->head_frag) { 1092 if (skb_pp_recycle(skb, head)) 1093 return; 1094 skb_free_frag(head); 1095 } else { 1096 skb_kfree_head(head, skb_end_offset(skb)); 1097 } 1098 } 1099 1100 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1101 { 1102 struct skb_shared_info *shinfo = skb_shinfo(skb); 1103 int i; 1104 1105 if (!skb_data_unref(skb, shinfo)) 1106 goto exit; 1107 1108 if (skb_zcopy(skb)) { 1109 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1110 1111 skb_zcopy_clear(skb, true); 1112 if (skip_unref) 1113 goto free_head; 1114 } 1115 1116 for (i = 0; i < shinfo->nr_frags; i++) 1117 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1118 1119 free_head: 1120 if (shinfo->frag_list) 1121 kfree_skb_list_reason(shinfo->frag_list, reason); 1122 1123 skb_free_head(skb); 1124 exit: 1125 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1126 * bit is only set on the head though, so in order to avoid races 1127 * while trying to recycle fragments on __skb_frag_unref() we need 1128 * to make one SKB responsible for triggering the recycle path. 1129 * So disable the recycling bit if an SKB is cloned and we have 1130 * additional references to the fragmented part of the SKB. 1131 * Eventually the last SKB will have the recycling bit set and it's 1132 * dataref set to 0, which will trigger the recycling 1133 */ 1134 skb->pp_recycle = 0; 1135 } 1136 1137 /* 1138 * Free an skbuff by memory without cleaning the state. 1139 */ 1140 static void kfree_skbmem(struct sk_buff *skb) 1141 { 1142 struct sk_buff_fclones *fclones; 1143 1144 switch (skb->fclone) { 1145 case SKB_FCLONE_UNAVAILABLE: 1146 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1147 return; 1148 1149 case SKB_FCLONE_ORIG: 1150 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1151 1152 /* We usually free the clone (TX completion) before original skb 1153 * This test would have no chance to be true for the clone, 1154 * while here, branch prediction will be good. 1155 */ 1156 if (refcount_read(&fclones->fclone_ref) == 1) 1157 goto fastpath; 1158 break; 1159 1160 default: /* SKB_FCLONE_CLONE */ 1161 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1162 break; 1163 } 1164 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1165 return; 1166 fastpath: 1167 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1168 } 1169 1170 void skb_release_head_state(struct sk_buff *skb) 1171 { 1172 skb_dst_drop(skb); 1173 if (skb->destructor) { 1174 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1175 skb->destructor(skb); 1176 } 1177 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1178 nf_conntrack_put(skb_nfct(skb)); 1179 #endif 1180 skb_ext_put(skb); 1181 } 1182 1183 /* Free everything but the sk_buff shell. */ 1184 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1185 { 1186 skb_release_head_state(skb); 1187 if (likely(skb->head)) 1188 skb_release_data(skb, reason); 1189 } 1190 1191 /** 1192 * __kfree_skb - private function 1193 * @skb: buffer 1194 * 1195 * Free an sk_buff. Release anything attached to the buffer. 1196 * Clean the state. This is an internal helper function. Users should 1197 * always call kfree_skb 1198 */ 1199 1200 void __kfree_skb(struct sk_buff *skb) 1201 { 1202 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1203 kfree_skbmem(skb); 1204 } 1205 EXPORT_SYMBOL(__kfree_skb); 1206 1207 static __always_inline 1208 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1209 enum skb_drop_reason reason) 1210 { 1211 if (unlikely(!skb_unref(skb))) 1212 return false; 1213 1214 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1215 u32_get_bits(reason, 1216 SKB_DROP_REASON_SUBSYS_MASK) >= 1217 SKB_DROP_REASON_SUBSYS_NUM); 1218 1219 if (reason == SKB_CONSUMED) 1220 trace_consume_skb(skb, __builtin_return_address(0)); 1221 else 1222 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1223 return true; 1224 } 1225 1226 /** 1227 * sk_skb_reason_drop - free an sk_buff with special reason 1228 * @sk: the socket to receive @skb, or NULL if not applicable 1229 * @skb: buffer to free 1230 * @reason: reason why this skb is dropped 1231 * 1232 * Drop a reference to the buffer and free it if the usage count has hit 1233 * zero. Meanwhile, pass the receiving socket and drop reason to 1234 * 'kfree_skb' tracepoint. 1235 */ 1236 void __fix_address 1237 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1238 { 1239 if (__sk_skb_reason_drop(sk, skb, reason)) 1240 __kfree_skb(skb); 1241 } 1242 EXPORT_SYMBOL(sk_skb_reason_drop); 1243 1244 #define KFREE_SKB_BULK_SIZE 16 1245 1246 struct skb_free_array { 1247 unsigned int skb_count; 1248 void *skb_array[KFREE_SKB_BULK_SIZE]; 1249 }; 1250 1251 static void kfree_skb_add_bulk(struct sk_buff *skb, 1252 struct skb_free_array *sa, 1253 enum skb_drop_reason reason) 1254 { 1255 /* if SKB is a clone, don't handle this case */ 1256 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1257 __kfree_skb(skb); 1258 return; 1259 } 1260 1261 skb_release_all(skb, reason); 1262 sa->skb_array[sa->skb_count++] = skb; 1263 1264 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1265 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1266 sa->skb_array); 1267 sa->skb_count = 0; 1268 } 1269 } 1270 1271 void __fix_address 1272 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1273 { 1274 struct skb_free_array sa; 1275 1276 sa.skb_count = 0; 1277 1278 while (segs) { 1279 struct sk_buff *next = segs->next; 1280 1281 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1282 skb_poison_list(segs); 1283 kfree_skb_add_bulk(segs, &sa, reason); 1284 } 1285 1286 segs = next; 1287 } 1288 1289 if (sa.skb_count) 1290 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1291 } 1292 EXPORT_SYMBOL(kfree_skb_list_reason); 1293 1294 /* Dump skb information and contents. 1295 * 1296 * Must only be called from net_ratelimit()-ed paths. 1297 * 1298 * Dumps whole packets if full_pkt, only headers otherwise. 1299 */ 1300 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1301 { 1302 struct skb_shared_info *sh = skb_shinfo(skb); 1303 struct net_device *dev = skb->dev; 1304 struct sock *sk = skb->sk; 1305 struct sk_buff *list_skb; 1306 bool has_mac, has_trans; 1307 int headroom, tailroom; 1308 int i, len, seg_len; 1309 1310 if (full_pkt) 1311 len = skb->len; 1312 else 1313 len = min_t(int, skb->len, MAX_HEADER + 128); 1314 1315 headroom = skb_headroom(skb); 1316 tailroom = skb_tailroom(skb); 1317 1318 has_mac = skb_mac_header_was_set(skb); 1319 has_trans = skb_transport_header_was_set(skb); 1320 1321 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1322 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1323 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1324 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1325 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1326 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1327 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1328 level, skb->len, headroom, skb_headlen(skb), tailroom, 1329 has_mac ? skb->mac_header : -1, 1330 has_mac ? skb_mac_header_len(skb) : -1, 1331 skb->mac_len, 1332 skb->network_header, 1333 has_trans ? skb_network_header_len(skb) : -1, 1334 has_trans ? skb->transport_header : -1, 1335 sh->tx_flags, sh->nr_frags, 1336 sh->gso_size, sh->gso_type, sh->gso_segs, 1337 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1338 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1339 skb->hash, skb->sw_hash, skb->l4_hash, 1340 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1341 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1342 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1343 skb->inner_network_header, skb->inner_transport_header); 1344 1345 if (dev) 1346 printk("%sdev name=%s feat=%pNF\n", 1347 level, dev->name, &dev->features); 1348 if (sk) 1349 printk("%ssk family=%hu type=%u proto=%u\n", 1350 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1351 1352 if (full_pkt && headroom) 1353 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1354 16, 1, skb->head, headroom, false); 1355 1356 seg_len = min_t(int, skb_headlen(skb), len); 1357 if (seg_len) 1358 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1359 16, 1, skb->data, seg_len, false); 1360 len -= seg_len; 1361 1362 if (full_pkt && tailroom) 1363 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1364 16, 1, skb_tail_pointer(skb), tailroom, false); 1365 1366 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1367 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1368 u32 p_off, p_len, copied; 1369 struct page *p; 1370 u8 *vaddr; 1371 1372 skb_frag_foreach_page(frag, skb_frag_off(frag), 1373 skb_frag_size(frag), p, p_off, p_len, 1374 copied) { 1375 seg_len = min_t(int, p_len, len); 1376 vaddr = kmap_atomic(p); 1377 print_hex_dump(level, "skb frag: ", 1378 DUMP_PREFIX_OFFSET, 1379 16, 1, vaddr + p_off, seg_len, false); 1380 kunmap_atomic(vaddr); 1381 len -= seg_len; 1382 if (!len) 1383 break; 1384 } 1385 } 1386 1387 if (full_pkt && skb_has_frag_list(skb)) { 1388 printk("skb fraglist:\n"); 1389 skb_walk_frags(skb, list_skb) 1390 skb_dump(level, list_skb, true); 1391 } 1392 } 1393 EXPORT_SYMBOL(skb_dump); 1394 1395 /** 1396 * skb_tx_error - report an sk_buff xmit error 1397 * @skb: buffer that triggered an error 1398 * 1399 * Report xmit error if a device callback is tracking this skb. 1400 * skb must be freed afterwards. 1401 */ 1402 void skb_tx_error(struct sk_buff *skb) 1403 { 1404 if (skb) { 1405 skb_zcopy_downgrade_managed(skb); 1406 skb_zcopy_clear(skb, true); 1407 } 1408 } 1409 EXPORT_SYMBOL(skb_tx_error); 1410 1411 #ifdef CONFIG_TRACEPOINTS 1412 /** 1413 * consume_skb - free an skbuff 1414 * @skb: buffer to free 1415 * 1416 * Drop a ref to the buffer and free it if the usage count has hit zero 1417 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1418 * is being dropped after a failure and notes that 1419 */ 1420 void consume_skb(struct sk_buff *skb) 1421 { 1422 if (!skb_unref(skb)) 1423 return; 1424 1425 trace_consume_skb(skb, __builtin_return_address(0)); 1426 __kfree_skb(skb); 1427 } 1428 EXPORT_SYMBOL(consume_skb); 1429 #endif 1430 1431 /** 1432 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1433 * @skb: buffer to free 1434 * 1435 * Alike consume_skb(), but this variant assumes that this is the last 1436 * skb reference and all the head states have been already dropped 1437 */ 1438 void __consume_stateless_skb(struct sk_buff *skb) 1439 { 1440 trace_consume_skb(skb, __builtin_return_address(0)); 1441 skb_release_data(skb, SKB_CONSUMED); 1442 kfree_skbmem(skb); 1443 } 1444 1445 static void napi_skb_cache_put(struct sk_buff *skb) 1446 { 1447 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1448 u32 i; 1449 1450 if (!kasan_mempool_poison_object(skb)) 1451 return; 1452 1453 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1454 nc->skb_cache[nc->skb_count++] = skb; 1455 1456 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1457 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1458 kasan_mempool_unpoison_object(nc->skb_cache[i], 1459 kmem_cache_size(net_hotdata.skbuff_cache)); 1460 1461 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1462 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1463 nc->skb_count = NAPI_SKB_CACHE_HALF; 1464 } 1465 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1466 } 1467 1468 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1469 { 1470 skb_release_all(skb, reason); 1471 napi_skb_cache_put(skb); 1472 } 1473 1474 void napi_skb_free_stolen_head(struct sk_buff *skb) 1475 { 1476 if (unlikely(skb->slow_gro)) { 1477 nf_reset_ct(skb); 1478 skb_dst_drop(skb); 1479 skb_ext_put(skb); 1480 skb_orphan(skb); 1481 skb->slow_gro = 0; 1482 } 1483 napi_skb_cache_put(skb); 1484 } 1485 1486 void napi_consume_skb(struct sk_buff *skb, int budget) 1487 { 1488 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1489 if (unlikely(!budget)) { 1490 dev_consume_skb_any(skb); 1491 return; 1492 } 1493 1494 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1495 1496 if (!skb_unref(skb)) 1497 return; 1498 1499 /* if reaching here SKB is ready to free */ 1500 trace_consume_skb(skb, __builtin_return_address(0)); 1501 1502 /* if SKB is a clone, don't handle this case */ 1503 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1504 __kfree_skb(skb); 1505 return; 1506 } 1507 1508 skb_release_all(skb, SKB_CONSUMED); 1509 napi_skb_cache_put(skb); 1510 } 1511 EXPORT_SYMBOL(napi_consume_skb); 1512 1513 /* Make sure a field is contained by headers group */ 1514 #define CHECK_SKB_FIELD(field) \ 1515 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1516 offsetof(struct sk_buff, headers.field)); \ 1517 1518 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1519 { 1520 new->tstamp = old->tstamp; 1521 /* We do not copy old->sk */ 1522 new->dev = old->dev; 1523 memcpy(new->cb, old->cb, sizeof(old->cb)); 1524 skb_dst_copy(new, old); 1525 __skb_ext_copy(new, old); 1526 __nf_copy(new, old, false); 1527 1528 /* Note : this field could be in the headers group. 1529 * It is not yet because we do not want to have a 16 bit hole 1530 */ 1531 new->queue_mapping = old->queue_mapping; 1532 1533 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1534 CHECK_SKB_FIELD(protocol); 1535 CHECK_SKB_FIELD(csum); 1536 CHECK_SKB_FIELD(hash); 1537 CHECK_SKB_FIELD(priority); 1538 CHECK_SKB_FIELD(skb_iif); 1539 CHECK_SKB_FIELD(vlan_proto); 1540 CHECK_SKB_FIELD(vlan_tci); 1541 CHECK_SKB_FIELD(transport_header); 1542 CHECK_SKB_FIELD(network_header); 1543 CHECK_SKB_FIELD(mac_header); 1544 CHECK_SKB_FIELD(inner_protocol); 1545 CHECK_SKB_FIELD(inner_transport_header); 1546 CHECK_SKB_FIELD(inner_network_header); 1547 CHECK_SKB_FIELD(inner_mac_header); 1548 CHECK_SKB_FIELD(mark); 1549 #ifdef CONFIG_NETWORK_SECMARK 1550 CHECK_SKB_FIELD(secmark); 1551 #endif 1552 #ifdef CONFIG_NET_RX_BUSY_POLL 1553 CHECK_SKB_FIELD(napi_id); 1554 #endif 1555 CHECK_SKB_FIELD(alloc_cpu); 1556 #ifdef CONFIG_XPS 1557 CHECK_SKB_FIELD(sender_cpu); 1558 #endif 1559 #ifdef CONFIG_NET_SCHED 1560 CHECK_SKB_FIELD(tc_index); 1561 #endif 1562 1563 } 1564 1565 /* 1566 * You should not add any new code to this function. Add it to 1567 * __copy_skb_header above instead. 1568 */ 1569 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1570 { 1571 #define C(x) n->x = skb->x 1572 1573 n->next = n->prev = NULL; 1574 n->sk = NULL; 1575 __copy_skb_header(n, skb); 1576 1577 C(len); 1578 C(data_len); 1579 C(mac_len); 1580 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1581 n->cloned = 1; 1582 n->nohdr = 0; 1583 n->peeked = 0; 1584 C(pfmemalloc); 1585 C(pp_recycle); 1586 n->destructor = NULL; 1587 C(tail); 1588 C(end); 1589 C(head); 1590 C(head_frag); 1591 C(data); 1592 C(truesize); 1593 refcount_set(&n->users, 1); 1594 1595 atomic_inc(&(skb_shinfo(skb)->dataref)); 1596 skb->cloned = 1; 1597 1598 return n; 1599 #undef C 1600 } 1601 1602 /** 1603 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1604 * @first: first sk_buff of the msg 1605 */ 1606 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1607 { 1608 struct sk_buff *n; 1609 1610 n = alloc_skb(0, GFP_ATOMIC); 1611 if (!n) 1612 return NULL; 1613 1614 n->len = first->len; 1615 n->data_len = first->len; 1616 n->truesize = first->truesize; 1617 1618 skb_shinfo(n)->frag_list = first; 1619 1620 __copy_skb_header(n, first); 1621 n->destructor = NULL; 1622 1623 return n; 1624 } 1625 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1626 1627 /** 1628 * skb_morph - morph one skb into another 1629 * @dst: the skb to receive the contents 1630 * @src: the skb to supply the contents 1631 * 1632 * This is identical to skb_clone except that the target skb is 1633 * supplied by the user. 1634 * 1635 * The target skb is returned upon exit. 1636 */ 1637 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1638 { 1639 skb_release_all(dst, SKB_CONSUMED); 1640 return __skb_clone(dst, src); 1641 } 1642 EXPORT_SYMBOL_GPL(skb_morph); 1643 1644 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1645 { 1646 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1647 struct user_struct *user; 1648 1649 if (capable(CAP_IPC_LOCK) || !size) 1650 return 0; 1651 1652 rlim = rlimit(RLIMIT_MEMLOCK); 1653 if (rlim == RLIM_INFINITY) 1654 return 0; 1655 1656 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1657 max_pg = rlim >> PAGE_SHIFT; 1658 user = mmp->user ? : current_user(); 1659 1660 old_pg = atomic_long_read(&user->locked_vm); 1661 do { 1662 new_pg = old_pg + num_pg; 1663 if (new_pg > max_pg) 1664 return -ENOBUFS; 1665 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1666 1667 if (!mmp->user) { 1668 mmp->user = get_uid(user); 1669 mmp->num_pg = num_pg; 1670 } else { 1671 mmp->num_pg += num_pg; 1672 } 1673 1674 return 0; 1675 } 1676 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1677 1678 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1679 { 1680 if (mmp->user) { 1681 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1682 free_uid(mmp->user); 1683 } 1684 } 1685 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1686 1687 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1688 { 1689 struct ubuf_info_msgzc *uarg; 1690 struct sk_buff *skb; 1691 1692 WARN_ON_ONCE(!in_task()); 1693 1694 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1695 if (!skb) 1696 return NULL; 1697 1698 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1699 uarg = (void *)skb->cb; 1700 uarg->mmp.user = NULL; 1701 1702 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1703 kfree_skb(skb); 1704 return NULL; 1705 } 1706 1707 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1708 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1709 uarg->len = 1; 1710 uarg->bytelen = size; 1711 uarg->zerocopy = 1; 1712 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1713 refcount_set(&uarg->ubuf.refcnt, 1); 1714 sock_hold(sk); 1715 1716 return &uarg->ubuf; 1717 } 1718 1719 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1720 { 1721 return container_of((void *)uarg, struct sk_buff, cb); 1722 } 1723 1724 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1725 struct ubuf_info *uarg) 1726 { 1727 if (uarg) { 1728 struct ubuf_info_msgzc *uarg_zc; 1729 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1730 u32 bytelen, next; 1731 1732 /* there might be non MSG_ZEROCOPY users */ 1733 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1734 return NULL; 1735 1736 /* realloc only when socket is locked (TCP, UDP cork), 1737 * so uarg->len and sk_zckey access is serialized 1738 */ 1739 if (!sock_owned_by_user(sk)) { 1740 WARN_ON_ONCE(1); 1741 return NULL; 1742 } 1743 1744 uarg_zc = uarg_to_msgzc(uarg); 1745 bytelen = uarg_zc->bytelen + size; 1746 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1747 /* TCP can create new skb to attach new uarg */ 1748 if (sk->sk_type == SOCK_STREAM) 1749 goto new_alloc; 1750 return NULL; 1751 } 1752 1753 next = (u32)atomic_read(&sk->sk_zckey); 1754 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1755 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1756 return NULL; 1757 uarg_zc->len++; 1758 uarg_zc->bytelen = bytelen; 1759 atomic_set(&sk->sk_zckey, ++next); 1760 1761 /* no extra ref when appending to datagram (MSG_MORE) */ 1762 if (sk->sk_type == SOCK_STREAM) 1763 net_zcopy_get(uarg); 1764 1765 return uarg; 1766 } 1767 } 1768 1769 new_alloc: 1770 return msg_zerocopy_alloc(sk, size); 1771 } 1772 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1773 1774 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1775 { 1776 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1777 u32 old_lo, old_hi; 1778 u64 sum_len; 1779 1780 old_lo = serr->ee.ee_info; 1781 old_hi = serr->ee.ee_data; 1782 sum_len = old_hi - old_lo + 1ULL + len; 1783 1784 if (sum_len >= (1ULL << 32)) 1785 return false; 1786 1787 if (lo != old_hi + 1) 1788 return false; 1789 1790 serr->ee.ee_data += len; 1791 return true; 1792 } 1793 1794 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1795 { 1796 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1797 struct sock_exterr_skb *serr; 1798 struct sock *sk = skb->sk; 1799 struct sk_buff_head *q; 1800 unsigned long flags; 1801 bool is_zerocopy; 1802 u32 lo, hi; 1803 u16 len; 1804 1805 mm_unaccount_pinned_pages(&uarg->mmp); 1806 1807 /* if !len, there was only 1 call, and it was aborted 1808 * so do not queue a completion notification 1809 */ 1810 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1811 goto release; 1812 1813 len = uarg->len; 1814 lo = uarg->id; 1815 hi = uarg->id + len - 1; 1816 is_zerocopy = uarg->zerocopy; 1817 1818 serr = SKB_EXT_ERR(skb); 1819 memset(serr, 0, sizeof(*serr)); 1820 serr->ee.ee_errno = 0; 1821 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1822 serr->ee.ee_data = hi; 1823 serr->ee.ee_info = lo; 1824 if (!is_zerocopy) 1825 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1826 1827 q = &sk->sk_error_queue; 1828 spin_lock_irqsave(&q->lock, flags); 1829 tail = skb_peek_tail(q); 1830 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1831 !skb_zerocopy_notify_extend(tail, lo, len)) { 1832 __skb_queue_tail(q, skb); 1833 skb = NULL; 1834 } 1835 spin_unlock_irqrestore(&q->lock, flags); 1836 1837 sk_error_report(sk); 1838 1839 release: 1840 consume_skb(skb); 1841 sock_put(sk); 1842 } 1843 1844 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1845 bool success) 1846 { 1847 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1848 1849 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1850 1851 if (refcount_dec_and_test(&uarg->refcnt)) 1852 __msg_zerocopy_callback(uarg_zc); 1853 } 1854 1855 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1856 { 1857 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1858 1859 atomic_dec(&sk->sk_zckey); 1860 uarg_to_msgzc(uarg)->len--; 1861 1862 if (have_uref) 1863 msg_zerocopy_complete(NULL, uarg, true); 1864 } 1865 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1866 1867 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1868 .complete = msg_zerocopy_complete, 1869 }; 1870 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1871 1872 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1873 struct msghdr *msg, int len, 1874 struct ubuf_info *uarg) 1875 { 1876 int err, orig_len = skb->len; 1877 1878 if (uarg->ops->link_skb) { 1879 err = uarg->ops->link_skb(skb, uarg); 1880 if (err) 1881 return err; 1882 } else { 1883 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1884 1885 /* An skb can only point to one uarg. This edge case happens 1886 * when TCP appends to an skb, but zerocopy_realloc triggered 1887 * a new alloc. 1888 */ 1889 if (orig_uarg && uarg != orig_uarg) 1890 return -EEXIST; 1891 } 1892 1893 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1894 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1895 struct sock *save_sk = skb->sk; 1896 1897 /* Streams do not free skb on error. Reset to prev state. */ 1898 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1899 skb->sk = sk; 1900 ___pskb_trim(skb, orig_len); 1901 skb->sk = save_sk; 1902 return err; 1903 } 1904 1905 skb_zcopy_set(skb, uarg, NULL); 1906 return skb->len - orig_len; 1907 } 1908 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1909 1910 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1911 { 1912 int i; 1913 1914 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1915 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1916 skb_frag_ref(skb, i); 1917 } 1918 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1919 1920 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1921 gfp_t gfp_mask) 1922 { 1923 if (skb_zcopy(orig)) { 1924 if (skb_zcopy(nskb)) { 1925 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1926 if (!gfp_mask) { 1927 WARN_ON_ONCE(1); 1928 return -ENOMEM; 1929 } 1930 if (skb_uarg(nskb) == skb_uarg(orig)) 1931 return 0; 1932 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1933 return -EIO; 1934 } 1935 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1936 } 1937 return 0; 1938 } 1939 1940 /** 1941 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1942 * @skb: the skb to modify 1943 * @gfp_mask: allocation priority 1944 * 1945 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1946 * It will copy all frags into kernel and drop the reference 1947 * to userspace pages. 1948 * 1949 * If this function is called from an interrupt gfp_mask() must be 1950 * %GFP_ATOMIC. 1951 * 1952 * Returns 0 on success or a negative error code on failure 1953 * to allocate kernel memory to copy to. 1954 */ 1955 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1956 { 1957 int num_frags = skb_shinfo(skb)->nr_frags; 1958 struct page *page, *head = NULL; 1959 int i, order, psize, new_frags; 1960 u32 d_off; 1961 1962 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1963 return -EINVAL; 1964 1965 if (!num_frags) 1966 goto release; 1967 1968 /* We might have to allocate high order pages, so compute what minimum 1969 * page order is needed. 1970 */ 1971 order = 0; 1972 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1973 order++; 1974 psize = (PAGE_SIZE << order); 1975 1976 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1977 for (i = 0; i < new_frags; i++) { 1978 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1979 if (!page) { 1980 while (head) { 1981 struct page *next = (struct page *)page_private(head); 1982 put_page(head); 1983 head = next; 1984 } 1985 return -ENOMEM; 1986 } 1987 set_page_private(page, (unsigned long)head); 1988 head = page; 1989 } 1990 1991 page = head; 1992 d_off = 0; 1993 for (i = 0; i < num_frags; i++) { 1994 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1995 u32 p_off, p_len, copied; 1996 struct page *p; 1997 u8 *vaddr; 1998 1999 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 2000 p, p_off, p_len, copied) { 2001 u32 copy, done = 0; 2002 vaddr = kmap_atomic(p); 2003 2004 while (done < p_len) { 2005 if (d_off == psize) { 2006 d_off = 0; 2007 page = (struct page *)page_private(page); 2008 } 2009 copy = min_t(u32, psize - d_off, p_len - done); 2010 memcpy(page_address(page) + d_off, 2011 vaddr + p_off + done, copy); 2012 done += copy; 2013 d_off += copy; 2014 } 2015 kunmap_atomic(vaddr); 2016 } 2017 } 2018 2019 /* skb frags release userspace buffers */ 2020 for (i = 0; i < num_frags; i++) 2021 skb_frag_unref(skb, i); 2022 2023 /* skb frags point to kernel buffers */ 2024 for (i = 0; i < new_frags - 1; i++) { 2025 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2026 head = (struct page *)page_private(head); 2027 } 2028 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2029 d_off); 2030 skb_shinfo(skb)->nr_frags = new_frags; 2031 2032 release: 2033 skb_zcopy_clear(skb, false); 2034 return 0; 2035 } 2036 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2037 2038 /** 2039 * skb_clone - duplicate an sk_buff 2040 * @skb: buffer to clone 2041 * @gfp_mask: allocation priority 2042 * 2043 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2044 * copies share the same packet data but not structure. The new 2045 * buffer has a reference count of 1. If the allocation fails the 2046 * function returns %NULL otherwise the new buffer is returned. 2047 * 2048 * If this function is called from an interrupt gfp_mask() must be 2049 * %GFP_ATOMIC. 2050 */ 2051 2052 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2053 { 2054 struct sk_buff_fclones *fclones = container_of(skb, 2055 struct sk_buff_fclones, 2056 skb1); 2057 struct sk_buff *n; 2058 2059 if (skb_orphan_frags(skb, gfp_mask)) 2060 return NULL; 2061 2062 if (skb->fclone == SKB_FCLONE_ORIG && 2063 refcount_read(&fclones->fclone_ref) == 1) { 2064 n = &fclones->skb2; 2065 refcount_set(&fclones->fclone_ref, 2); 2066 n->fclone = SKB_FCLONE_CLONE; 2067 } else { 2068 if (skb_pfmemalloc(skb)) 2069 gfp_mask |= __GFP_MEMALLOC; 2070 2071 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2072 if (!n) 2073 return NULL; 2074 2075 n->fclone = SKB_FCLONE_UNAVAILABLE; 2076 } 2077 2078 return __skb_clone(n, skb); 2079 } 2080 EXPORT_SYMBOL(skb_clone); 2081 2082 void skb_headers_offset_update(struct sk_buff *skb, int off) 2083 { 2084 /* Only adjust this if it actually is csum_start rather than csum */ 2085 if (skb->ip_summed == CHECKSUM_PARTIAL) 2086 skb->csum_start += off; 2087 /* {transport,network,mac}_header and tail are relative to skb->head */ 2088 skb->transport_header += off; 2089 skb->network_header += off; 2090 if (skb_mac_header_was_set(skb)) 2091 skb->mac_header += off; 2092 skb->inner_transport_header += off; 2093 skb->inner_network_header += off; 2094 skb->inner_mac_header += off; 2095 } 2096 EXPORT_SYMBOL(skb_headers_offset_update); 2097 2098 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2099 { 2100 __copy_skb_header(new, old); 2101 2102 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2103 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2104 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2105 } 2106 EXPORT_SYMBOL(skb_copy_header); 2107 2108 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2109 { 2110 if (skb_pfmemalloc(skb)) 2111 return SKB_ALLOC_RX; 2112 return 0; 2113 } 2114 2115 /** 2116 * skb_copy - create private copy of an sk_buff 2117 * @skb: buffer to copy 2118 * @gfp_mask: allocation priority 2119 * 2120 * Make a copy of both an &sk_buff and its data. This is used when the 2121 * caller wishes to modify the data and needs a private copy of the 2122 * data to alter. Returns %NULL on failure or the pointer to the buffer 2123 * on success. The returned buffer has a reference count of 1. 2124 * 2125 * As by-product this function converts non-linear &sk_buff to linear 2126 * one, so that &sk_buff becomes completely private and caller is allowed 2127 * to modify all the data of returned buffer. This means that this 2128 * function is not recommended for use in circumstances when only 2129 * header is going to be modified. Use pskb_copy() instead. 2130 */ 2131 2132 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2133 { 2134 struct sk_buff *n; 2135 unsigned int size; 2136 int headerlen; 2137 2138 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2139 return NULL; 2140 2141 headerlen = skb_headroom(skb); 2142 size = skb_end_offset(skb) + skb->data_len; 2143 n = __alloc_skb(size, gfp_mask, 2144 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2145 if (!n) 2146 return NULL; 2147 2148 /* Set the data pointer */ 2149 skb_reserve(n, headerlen); 2150 /* Set the tail pointer and length */ 2151 skb_put(n, skb->len); 2152 2153 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2154 2155 skb_copy_header(n, skb); 2156 return n; 2157 } 2158 EXPORT_SYMBOL(skb_copy); 2159 2160 /** 2161 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2162 * @skb: buffer to copy 2163 * @headroom: headroom of new skb 2164 * @gfp_mask: allocation priority 2165 * @fclone: if true allocate the copy of the skb from the fclone 2166 * cache instead of the head cache; it is recommended to set this 2167 * to true for the cases where the copy will likely be cloned 2168 * 2169 * Make a copy of both an &sk_buff and part of its data, located 2170 * in header. Fragmented data remain shared. This is used when 2171 * the caller wishes to modify only header of &sk_buff and needs 2172 * private copy of the header to alter. Returns %NULL on failure 2173 * or the pointer to the buffer on success. 2174 * The returned buffer has a reference count of 1. 2175 */ 2176 2177 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2178 gfp_t gfp_mask, bool fclone) 2179 { 2180 unsigned int size = skb_headlen(skb) + headroom; 2181 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2182 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2183 2184 if (!n) 2185 goto out; 2186 2187 /* Set the data pointer */ 2188 skb_reserve(n, headroom); 2189 /* Set the tail pointer and length */ 2190 skb_put(n, skb_headlen(skb)); 2191 /* Copy the bytes */ 2192 skb_copy_from_linear_data(skb, n->data, n->len); 2193 2194 n->truesize += skb->data_len; 2195 n->data_len = skb->data_len; 2196 n->len = skb->len; 2197 2198 if (skb_shinfo(skb)->nr_frags) { 2199 int i; 2200 2201 if (skb_orphan_frags(skb, gfp_mask) || 2202 skb_zerocopy_clone(n, skb, gfp_mask)) { 2203 kfree_skb(n); 2204 n = NULL; 2205 goto out; 2206 } 2207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2208 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2209 skb_frag_ref(skb, i); 2210 } 2211 skb_shinfo(n)->nr_frags = i; 2212 } 2213 2214 if (skb_has_frag_list(skb)) { 2215 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2216 skb_clone_fraglist(n); 2217 } 2218 2219 skb_copy_header(n, skb); 2220 out: 2221 return n; 2222 } 2223 EXPORT_SYMBOL(__pskb_copy_fclone); 2224 2225 /** 2226 * pskb_expand_head - reallocate header of &sk_buff 2227 * @skb: buffer to reallocate 2228 * @nhead: room to add at head 2229 * @ntail: room to add at tail 2230 * @gfp_mask: allocation priority 2231 * 2232 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2233 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2234 * reference count of 1. Returns zero in the case of success or error, 2235 * if expansion failed. In the last case, &sk_buff is not changed. 2236 * 2237 * All the pointers pointing into skb header may change and must be 2238 * reloaded after call to this function. 2239 */ 2240 2241 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2242 gfp_t gfp_mask) 2243 { 2244 unsigned int osize = skb_end_offset(skb); 2245 unsigned int size = osize + nhead + ntail; 2246 long off; 2247 u8 *data; 2248 int i; 2249 2250 BUG_ON(nhead < 0); 2251 2252 BUG_ON(skb_shared(skb)); 2253 2254 skb_zcopy_downgrade_managed(skb); 2255 2256 if (skb_pfmemalloc(skb)) 2257 gfp_mask |= __GFP_MEMALLOC; 2258 2259 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2260 if (!data) 2261 goto nodata; 2262 size = SKB_WITH_OVERHEAD(size); 2263 2264 /* Copy only real data... and, alas, header. This should be 2265 * optimized for the cases when header is void. 2266 */ 2267 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2268 2269 memcpy((struct skb_shared_info *)(data + size), 2270 skb_shinfo(skb), 2271 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2272 2273 /* 2274 * if shinfo is shared we must drop the old head gracefully, but if it 2275 * is not we can just drop the old head and let the existing refcount 2276 * be since all we did is relocate the values 2277 */ 2278 if (skb_cloned(skb)) { 2279 if (skb_orphan_frags(skb, gfp_mask)) 2280 goto nofrags; 2281 if (skb_zcopy(skb)) 2282 refcount_inc(&skb_uarg(skb)->refcnt); 2283 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2284 skb_frag_ref(skb, i); 2285 2286 if (skb_has_frag_list(skb)) 2287 skb_clone_fraglist(skb); 2288 2289 skb_release_data(skb, SKB_CONSUMED); 2290 } else { 2291 skb_free_head(skb); 2292 } 2293 off = (data + nhead) - skb->head; 2294 2295 skb->head = data; 2296 skb->head_frag = 0; 2297 skb->data += off; 2298 2299 skb_set_end_offset(skb, size); 2300 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2301 off = nhead; 2302 #endif 2303 skb->tail += off; 2304 skb_headers_offset_update(skb, nhead); 2305 skb->cloned = 0; 2306 skb->hdr_len = 0; 2307 skb->nohdr = 0; 2308 atomic_set(&skb_shinfo(skb)->dataref, 1); 2309 2310 skb_metadata_clear(skb); 2311 2312 /* It is not generally safe to change skb->truesize. 2313 * For the moment, we really care of rx path, or 2314 * when skb is orphaned (not attached to a socket). 2315 */ 2316 if (!skb->sk || skb->destructor == sock_edemux) 2317 skb->truesize += size - osize; 2318 2319 return 0; 2320 2321 nofrags: 2322 skb_kfree_head(data, size); 2323 nodata: 2324 return -ENOMEM; 2325 } 2326 EXPORT_SYMBOL(pskb_expand_head); 2327 2328 /* Make private copy of skb with writable head and some headroom */ 2329 2330 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2331 { 2332 struct sk_buff *skb2; 2333 int delta = headroom - skb_headroom(skb); 2334 2335 if (delta <= 0) 2336 skb2 = pskb_copy(skb, GFP_ATOMIC); 2337 else { 2338 skb2 = skb_clone(skb, GFP_ATOMIC); 2339 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2340 GFP_ATOMIC)) { 2341 kfree_skb(skb2); 2342 skb2 = NULL; 2343 } 2344 } 2345 return skb2; 2346 } 2347 EXPORT_SYMBOL(skb_realloc_headroom); 2348 2349 /* Note: We plan to rework this in linux-6.4 */ 2350 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2351 { 2352 unsigned int saved_end_offset, saved_truesize; 2353 struct skb_shared_info *shinfo; 2354 int res; 2355 2356 saved_end_offset = skb_end_offset(skb); 2357 saved_truesize = skb->truesize; 2358 2359 res = pskb_expand_head(skb, 0, 0, pri); 2360 if (res) 2361 return res; 2362 2363 skb->truesize = saved_truesize; 2364 2365 if (likely(skb_end_offset(skb) == saved_end_offset)) 2366 return 0; 2367 2368 /* We can not change skb->end if the original or new value 2369 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2370 */ 2371 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2372 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2373 /* We think this path should not be taken. 2374 * Add a temporary trace to warn us just in case. 2375 */ 2376 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2377 saved_end_offset, skb_end_offset(skb)); 2378 WARN_ON_ONCE(1); 2379 return 0; 2380 } 2381 2382 shinfo = skb_shinfo(skb); 2383 2384 /* We are about to change back skb->end, 2385 * we need to move skb_shinfo() to its new location. 2386 */ 2387 memmove(skb->head + saved_end_offset, 2388 shinfo, 2389 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2390 2391 skb_set_end_offset(skb, saved_end_offset); 2392 2393 return 0; 2394 } 2395 2396 /** 2397 * skb_expand_head - reallocate header of &sk_buff 2398 * @skb: buffer to reallocate 2399 * @headroom: needed headroom 2400 * 2401 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2402 * if possible; copies skb->sk to new skb as needed 2403 * and frees original skb in case of failures. 2404 * 2405 * It expect increased headroom and generates warning otherwise. 2406 */ 2407 2408 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2409 { 2410 int delta = headroom - skb_headroom(skb); 2411 int osize = skb_end_offset(skb); 2412 struct sock *sk = skb->sk; 2413 2414 if (WARN_ONCE(delta <= 0, 2415 "%s is expecting an increase in the headroom", __func__)) 2416 return skb; 2417 2418 delta = SKB_DATA_ALIGN(delta); 2419 /* pskb_expand_head() might crash, if skb is shared. */ 2420 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2421 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2422 2423 if (unlikely(!nskb)) 2424 goto fail; 2425 2426 if (sk) 2427 skb_set_owner_w(nskb, sk); 2428 consume_skb(skb); 2429 skb = nskb; 2430 } 2431 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2432 goto fail; 2433 2434 if (sk && is_skb_wmem(skb)) { 2435 delta = skb_end_offset(skb) - osize; 2436 refcount_add(delta, &sk->sk_wmem_alloc); 2437 skb->truesize += delta; 2438 } 2439 return skb; 2440 2441 fail: 2442 kfree_skb(skb); 2443 return NULL; 2444 } 2445 EXPORT_SYMBOL(skb_expand_head); 2446 2447 /** 2448 * skb_copy_expand - copy and expand sk_buff 2449 * @skb: buffer to copy 2450 * @newheadroom: new free bytes at head 2451 * @newtailroom: new free bytes at tail 2452 * @gfp_mask: allocation priority 2453 * 2454 * Make a copy of both an &sk_buff and its data and while doing so 2455 * allocate additional space. 2456 * 2457 * This is used when the caller wishes to modify the data and needs a 2458 * private copy of the data to alter as well as more space for new fields. 2459 * Returns %NULL on failure or the pointer to the buffer 2460 * on success. The returned buffer has a reference count of 1. 2461 * 2462 * You must pass %GFP_ATOMIC as the allocation priority if this function 2463 * is called from an interrupt. 2464 */ 2465 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2466 int newheadroom, int newtailroom, 2467 gfp_t gfp_mask) 2468 { 2469 /* 2470 * Allocate the copy buffer 2471 */ 2472 int head_copy_len, head_copy_off; 2473 struct sk_buff *n; 2474 int oldheadroom; 2475 2476 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2477 return NULL; 2478 2479 oldheadroom = skb_headroom(skb); 2480 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2481 gfp_mask, skb_alloc_rx_flag(skb), 2482 NUMA_NO_NODE); 2483 if (!n) 2484 return NULL; 2485 2486 skb_reserve(n, newheadroom); 2487 2488 /* Set the tail pointer and length */ 2489 skb_put(n, skb->len); 2490 2491 head_copy_len = oldheadroom; 2492 head_copy_off = 0; 2493 if (newheadroom <= head_copy_len) 2494 head_copy_len = newheadroom; 2495 else 2496 head_copy_off = newheadroom - head_copy_len; 2497 2498 /* Copy the linear header and data. */ 2499 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2500 skb->len + head_copy_len)); 2501 2502 skb_copy_header(n, skb); 2503 2504 skb_headers_offset_update(n, newheadroom - oldheadroom); 2505 2506 return n; 2507 } 2508 EXPORT_SYMBOL(skb_copy_expand); 2509 2510 /** 2511 * __skb_pad - zero pad the tail of an skb 2512 * @skb: buffer to pad 2513 * @pad: space to pad 2514 * @free_on_error: free buffer on error 2515 * 2516 * Ensure that a buffer is followed by a padding area that is zero 2517 * filled. Used by network drivers which may DMA or transfer data 2518 * beyond the buffer end onto the wire. 2519 * 2520 * May return error in out of memory cases. The skb is freed on error 2521 * if @free_on_error is true. 2522 */ 2523 2524 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2525 { 2526 int err; 2527 int ntail; 2528 2529 /* If the skbuff is non linear tailroom is always zero.. */ 2530 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2531 memset(skb->data+skb->len, 0, pad); 2532 return 0; 2533 } 2534 2535 ntail = skb->data_len + pad - (skb->end - skb->tail); 2536 if (likely(skb_cloned(skb) || ntail > 0)) { 2537 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2538 if (unlikely(err)) 2539 goto free_skb; 2540 } 2541 2542 /* FIXME: The use of this function with non-linear skb's really needs 2543 * to be audited. 2544 */ 2545 err = skb_linearize(skb); 2546 if (unlikely(err)) 2547 goto free_skb; 2548 2549 memset(skb->data + skb->len, 0, pad); 2550 return 0; 2551 2552 free_skb: 2553 if (free_on_error) 2554 kfree_skb(skb); 2555 return err; 2556 } 2557 EXPORT_SYMBOL(__skb_pad); 2558 2559 /** 2560 * pskb_put - add data to the tail of a potentially fragmented buffer 2561 * @skb: start of the buffer to use 2562 * @tail: tail fragment of the buffer to use 2563 * @len: amount of data to add 2564 * 2565 * This function extends the used data area of the potentially 2566 * fragmented buffer. @tail must be the last fragment of @skb -- or 2567 * @skb itself. If this would exceed the total buffer size the kernel 2568 * will panic. A pointer to the first byte of the extra data is 2569 * returned. 2570 */ 2571 2572 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2573 { 2574 if (tail != skb) { 2575 skb->data_len += len; 2576 skb->len += len; 2577 } 2578 return skb_put(tail, len); 2579 } 2580 EXPORT_SYMBOL_GPL(pskb_put); 2581 2582 /** 2583 * skb_put - add data to a buffer 2584 * @skb: buffer to use 2585 * @len: amount of data to add 2586 * 2587 * This function extends the used data area of the buffer. If this would 2588 * exceed the total buffer size the kernel will panic. A pointer to the 2589 * first byte of the extra data is returned. 2590 */ 2591 void *skb_put(struct sk_buff *skb, unsigned int len) 2592 { 2593 void *tmp = skb_tail_pointer(skb); 2594 SKB_LINEAR_ASSERT(skb); 2595 skb->tail += len; 2596 skb->len += len; 2597 if (unlikely(skb->tail > skb->end)) 2598 skb_over_panic(skb, len, __builtin_return_address(0)); 2599 return tmp; 2600 } 2601 EXPORT_SYMBOL(skb_put); 2602 2603 /** 2604 * skb_push - add data to the start of a buffer 2605 * @skb: buffer to use 2606 * @len: amount of data to add 2607 * 2608 * This function extends the used data area of the buffer at the buffer 2609 * start. If this would exceed the total buffer headroom the kernel will 2610 * panic. A pointer to the first byte of the extra data is returned. 2611 */ 2612 void *skb_push(struct sk_buff *skb, unsigned int len) 2613 { 2614 skb->data -= len; 2615 skb->len += len; 2616 if (unlikely(skb->data < skb->head)) 2617 skb_under_panic(skb, len, __builtin_return_address(0)); 2618 return skb->data; 2619 } 2620 EXPORT_SYMBOL(skb_push); 2621 2622 /** 2623 * skb_pull - remove data from the start of a buffer 2624 * @skb: buffer to use 2625 * @len: amount of data to remove 2626 * 2627 * This function removes data from the start of a buffer, returning 2628 * the memory to the headroom. A pointer to the next data in the buffer 2629 * is returned. Once the data has been pulled future pushes will overwrite 2630 * the old data. 2631 */ 2632 void *skb_pull(struct sk_buff *skb, unsigned int len) 2633 { 2634 return skb_pull_inline(skb, len); 2635 } 2636 EXPORT_SYMBOL(skb_pull); 2637 2638 /** 2639 * skb_pull_data - remove data from the start of a buffer returning its 2640 * original position. 2641 * @skb: buffer to use 2642 * @len: amount of data to remove 2643 * 2644 * This function removes data from the start of a buffer, returning 2645 * the memory to the headroom. A pointer to the original data in the buffer 2646 * is returned after checking if there is enough data to pull. Once the 2647 * data has been pulled future pushes will overwrite the old data. 2648 */ 2649 void *skb_pull_data(struct sk_buff *skb, size_t len) 2650 { 2651 void *data = skb->data; 2652 2653 if (skb->len < len) 2654 return NULL; 2655 2656 skb_pull(skb, len); 2657 2658 return data; 2659 } 2660 EXPORT_SYMBOL(skb_pull_data); 2661 2662 /** 2663 * skb_trim - remove end from a buffer 2664 * @skb: buffer to alter 2665 * @len: new length 2666 * 2667 * Cut the length of a buffer down by removing data from the tail. If 2668 * the buffer is already under the length specified it is not modified. 2669 * The skb must be linear. 2670 */ 2671 void skb_trim(struct sk_buff *skb, unsigned int len) 2672 { 2673 if (skb->len > len) 2674 __skb_trim(skb, len); 2675 } 2676 EXPORT_SYMBOL(skb_trim); 2677 2678 /* Trims skb to length len. It can change skb pointers. 2679 */ 2680 2681 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2682 { 2683 struct sk_buff **fragp; 2684 struct sk_buff *frag; 2685 int offset = skb_headlen(skb); 2686 int nfrags = skb_shinfo(skb)->nr_frags; 2687 int i; 2688 int err; 2689 2690 if (skb_cloned(skb) && 2691 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2692 return err; 2693 2694 i = 0; 2695 if (offset >= len) 2696 goto drop_pages; 2697 2698 for (; i < nfrags; i++) { 2699 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2700 2701 if (end < len) { 2702 offset = end; 2703 continue; 2704 } 2705 2706 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2707 2708 drop_pages: 2709 skb_shinfo(skb)->nr_frags = i; 2710 2711 for (; i < nfrags; i++) 2712 skb_frag_unref(skb, i); 2713 2714 if (skb_has_frag_list(skb)) 2715 skb_drop_fraglist(skb); 2716 goto done; 2717 } 2718 2719 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2720 fragp = &frag->next) { 2721 int end = offset + frag->len; 2722 2723 if (skb_shared(frag)) { 2724 struct sk_buff *nfrag; 2725 2726 nfrag = skb_clone(frag, GFP_ATOMIC); 2727 if (unlikely(!nfrag)) 2728 return -ENOMEM; 2729 2730 nfrag->next = frag->next; 2731 consume_skb(frag); 2732 frag = nfrag; 2733 *fragp = frag; 2734 } 2735 2736 if (end < len) { 2737 offset = end; 2738 continue; 2739 } 2740 2741 if (end > len && 2742 unlikely((err = pskb_trim(frag, len - offset)))) 2743 return err; 2744 2745 if (frag->next) 2746 skb_drop_list(&frag->next); 2747 break; 2748 } 2749 2750 done: 2751 if (len > skb_headlen(skb)) { 2752 skb->data_len -= skb->len - len; 2753 skb->len = len; 2754 } else { 2755 skb->len = len; 2756 skb->data_len = 0; 2757 skb_set_tail_pointer(skb, len); 2758 } 2759 2760 if (!skb->sk || skb->destructor == sock_edemux) 2761 skb_condense(skb); 2762 return 0; 2763 } 2764 EXPORT_SYMBOL(___pskb_trim); 2765 2766 /* Note : use pskb_trim_rcsum() instead of calling this directly 2767 */ 2768 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2769 { 2770 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2771 int delta = skb->len - len; 2772 2773 skb->csum = csum_block_sub(skb->csum, 2774 skb_checksum(skb, len, delta, 0), 2775 len); 2776 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2777 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2778 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2779 2780 if (offset + sizeof(__sum16) > hdlen) 2781 return -EINVAL; 2782 } 2783 return __pskb_trim(skb, len); 2784 } 2785 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2786 2787 /** 2788 * __pskb_pull_tail - advance tail of skb header 2789 * @skb: buffer to reallocate 2790 * @delta: number of bytes to advance tail 2791 * 2792 * The function makes a sense only on a fragmented &sk_buff, 2793 * it expands header moving its tail forward and copying necessary 2794 * data from fragmented part. 2795 * 2796 * &sk_buff MUST have reference count of 1. 2797 * 2798 * Returns %NULL (and &sk_buff does not change) if pull failed 2799 * or value of new tail of skb in the case of success. 2800 * 2801 * All the pointers pointing into skb header may change and must be 2802 * reloaded after call to this function. 2803 */ 2804 2805 /* Moves tail of skb head forward, copying data from fragmented part, 2806 * when it is necessary. 2807 * 1. It may fail due to malloc failure. 2808 * 2. It may change skb pointers. 2809 * 2810 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2811 */ 2812 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2813 { 2814 /* If skb has not enough free space at tail, get new one 2815 * plus 128 bytes for future expansions. If we have enough 2816 * room at tail, reallocate without expansion only if skb is cloned. 2817 */ 2818 int i, k, eat = (skb->tail + delta) - skb->end; 2819 2820 if (eat > 0 || skb_cloned(skb)) { 2821 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2822 GFP_ATOMIC)) 2823 return NULL; 2824 } 2825 2826 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2827 skb_tail_pointer(skb), delta)); 2828 2829 /* Optimization: no fragments, no reasons to preestimate 2830 * size of pulled pages. Superb. 2831 */ 2832 if (!skb_has_frag_list(skb)) 2833 goto pull_pages; 2834 2835 /* Estimate size of pulled pages. */ 2836 eat = delta; 2837 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2838 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2839 2840 if (size >= eat) 2841 goto pull_pages; 2842 eat -= size; 2843 } 2844 2845 /* If we need update frag list, we are in troubles. 2846 * Certainly, it is possible to add an offset to skb data, 2847 * but taking into account that pulling is expected to 2848 * be very rare operation, it is worth to fight against 2849 * further bloating skb head and crucify ourselves here instead. 2850 * Pure masohism, indeed. 8)8) 2851 */ 2852 if (eat) { 2853 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2854 struct sk_buff *clone = NULL; 2855 struct sk_buff *insp = NULL; 2856 2857 do { 2858 if (list->len <= eat) { 2859 /* Eaten as whole. */ 2860 eat -= list->len; 2861 list = list->next; 2862 insp = list; 2863 } else { 2864 /* Eaten partially. */ 2865 if (skb_is_gso(skb) && !list->head_frag && 2866 skb_headlen(list)) 2867 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2868 2869 if (skb_shared(list)) { 2870 /* Sucks! We need to fork list. :-( */ 2871 clone = skb_clone(list, GFP_ATOMIC); 2872 if (!clone) 2873 return NULL; 2874 insp = list->next; 2875 list = clone; 2876 } else { 2877 /* This may be pulled without 2878 * problems. */ 2879 insp = list; 2880 } 2881 if (!pskb_pull(list, eat)) { 2882 kfree_skb(clone); 2883 return NULL; 2884 } 2885 break; 2886 } 2887 } while (eat); 2888 2889 /* Free pulled out fragments. */ 2890 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2891 skb_shinfo(skb)->frag_list = list->next; 2892 consume_skb(list); 2893 } 2894 /* And insert new clone at head. */ 2895 if (clone) { 2896 clone->next = list; 2897 skb_shinfo(skb)->frag_list = clone; 2898 } 2899 } 2900 /* Success! Now we may commit changes to skb data. */ 2901 2902 pull_pages: 2903 eat = delta; 2904 k = 0; 2905 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2906 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2907 2908 if (size <= eat) { 2909 skb_frag_unref(skb, i); 2910 eat -= size; 2911 } else { 2912 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2913 2914 *frag = skb_shinfo(skb)->frags[i]; 2915 if (eat) { 2916 skb_frag_off_add(frag, eat); 2917 skb_frag_size_sub(frag, eat); 2918 if (!i) 2919 goto end; 2920 eat = 0; 2921 } 2922 k++; 2923 } 2924 } 2925 skb_shinfo(skb)->nr_frags = k; 2926 2927 end: 2928 skb->tail += delta; 2929 skb->data_len -= delta; 2930 2931 if (!skb->data_len) 2932 skb_zcopy_clear(skb, false); 2933 2934 return skb_tail_pointer(skb); 2935 } 2936 EXPORT_SYMBOL(__pskb_pull_tail); 2937 2938 /** 2939 * skb_copy_bits - copy bits from skb to kernel buffer 2940 * @skb: source skb 2941 * @offset: offset in source 2942 * @to: destination buffer 2943 * @len: number of bytes to copy 2944 * 2945 * Copy the specified number of bytes from the source skb to the 2946 * destination buffer. 2947 * 2948 * CAUTION ! : 2949 * If its prototype is ever changed, 2950 * check arch/{*}/net/{*}.S files, 2951 * since it is called from BPF assembly code. 2952 */ 2953 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2954 { 2955 int start = skb_headlen(skb); 2956 struct sk_buff *frag_iter; 2957 int i, copy; 2958 2959 if (offset > (int)skb->len - len) 2960 goto fault; 2961 2962 /* Copy header. */ 2963 if ((copy = start - offset) > 0) { 2964 if (copy > len) 2965 copy = len; 2966 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2967 if ((len -= copy) == 0) 2968 return 0; 2969 offset += copy; 2970 to += copy; 2971 } 2972 2973 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2974 int end; 2975 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2976 2977 WARN_ON(start > offset + len); 2978 2979 end = start + skb_frag_size(f); 2980 if ((copy = end - offset) > 0) { 2981 u32 p_off, p_len, copied; 2982 struct page *p; 2983 u8 *vaddr; 2984 2985 if (copy > len) 2986 copy = len; 2987 2988 skb_frag_foreach_page(f, 2989 skb_frag_off(f) + offset - start, 2990 copy, p, p_off, p_len, copied) { 2991 vaddr = kmap_atomic(p); 2992 memcpy(to + copied, vaddr + p_off, p_len); 2993 kunmap_atomic(vaddr); 2994 } 2995 2996 if ((len -= copy) == 0) 2997 return 0; 2998 offset += copy; 2999 to += copy; 3000 } 3001 start = end; 3002 } 3003 3004 skb_walk_frags(skb, frag_iter) { 3005 int end; 3006 3007 WARN_ON(start > offset + len); 3008 3009 end = start + frag_iter->len; 3010 if ((copy = end - offset) > 0) { 3011 if (copy > len) 3012 copy = len; 3013 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3014 goto fault; 3015 if ((len -= copy) == 0) 3016 return 0; 3017 offset += copy; 3018 to += copy; 3019 } 3020 start = end; 3021 } 3022 3023 if (!len) 3024 return 0; 3025 3026 fault: 3027 return -EFAULT; 3028 } 3029 EXPORT_SYMBOL(skb_copy_bits); 3030 3031 /* 3032 * Callback from splice_to_pipe(), if we need to release some pages 3033 * at the end of the spd in case we error'ed out in filling the pipe. 3034 */ 3035 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3036 { 3037 put_page(spd->pages[i]); 3038 } 3039 3040 static struct page *linear_to_page(struct page *page, unsigned int *len, 3041 unsigned int *offset, 3042 struct sock *sk) 3043 { 3044 struct page_frag *pfrag = sk_page_frag(sk); 3045 3046 if (!sk_page_frag_refill(sk, pfrag)) 3047 return NULL; 3048 3049 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3050 3051 memcpy(page_address(pfrag->page) + pfrag->offset, 3052 page_address(page) + *offset, *len); 3053 *offset = pfrag->offset; 3054 pfrag->offset += *len; 3055 3056 return pfrag->page; 3057 } 3058 3059 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3060 struct page *page, 3061 unsigned int offset) 3062 { 3063 return spd->nr_pages && 3064 spd->pages[spd->nr_pages - 1] == page && 3065 (spd->partial[spd->nr_pages - 1].offset + 3066 spd->partial[spd->nr_pages - 1].len == offset); 3067 } 3068 3069 /* 3070 * Fill page/offset/length into spd, if it can hold more pages. 3071 */ 3072 static bool spd_fill_page(struct splice_pipe_desc *spd, 3073 struct pipe_inode_info *pipe, struct page *page, 3074 unsigned int *len, unsigned int offset, 3075 bool linear, 3076 struct sock *sk) 3077 { 3078 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3079 return true; 3080 3081 if (linear) { 3082 page = linear_to_page(page, len, &offset, sk); 3083 if (!page) 3084 return true; 3085 } 3086 if (spd_can_coalesce(spd, page, offset)) { 3087 spd->partial[spd->nr_pages - 1].len += *len; 3088 return false; 3089 } 3090 get_page(page); 3091 spd->pages[spd->nr_pages] = page; 3092 spd->partial[spd->nr_pages].len = *len; 3093 spd->partial[spd->nr_pages].offset = offset; 3094 spd->nr_pages++; 3095 3096 return false; 3097 } 3098 3099 static bool __splice_segment(struct page *page, unsigned int poff, 3100 unsigned int plen, unsigned int *off, 3101 unsigned int *len, 3102 struct splice_pipe_desc *spd, bool linear, 3103 struct sock *sk, 3104 struct pipe_inode_info *pipe) 3105 { 3106 if (!*len) 3107 return true; 3108 3109 /* skip this segment if already processed */ 3110 if (*off >= plen) { 3111 *off -= plen; 3112 return false; 3113 } 3114 3115 /* ignore any bits we already processed */ 3116 poff += *off; 3117 plen -= *off; 3118 *off = 0; 3119 3120 do { 3121 unsigned int flen = min(*len, plen); 3122 3123 if (spd_fill_page(spd, pipe, page, &flen, poff, 3124 linear, sk)) 3125 return true; 3126 poff += flen; 3127 plen -= flen; 3128 *len -= flen; 3129 } while (*len && plen); 3130 3131 return false; 3132 } 3133 3134 /* 3135 * Map linear and fragment data from the skb to spd. It reports true if the 3136 * pipe is full or if we already spliced the requested length. 3137 */ 3138 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3139 unsigned int *offset, unsigned int *len, 3140 struct splice_pipe_desc *spd, struct sock *sk) 3141 { 3142 int seg; 3143 struct sk_buff *iter; 3144 3145 /* map the linear part : 3146 * If skb->head_frag is set, this 'linear' part is backed by a 3147 * fragment, and if the head is not shared with any clones then 3148 * we can avoid a copy since we own the head portion of this page. 3149 */ 3150 if (__splice_segment(virt_to_page(skb->data), 3151 (unsigned long) skb->data & (PAGE_SIZE - 1), 3152 skb_headlen(skb), 3153 offset, len, spd, 3154 skb_head_is_locked(skb), 3155 sk, pipe)) 3156 return true; 3157 3158 /* 3159 * then map the fragments 3160 */ 3161 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3162 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3163 3164 if (__splice_segment(skb_frag_page(f), 3165 skb_frag_off(f), skb_frag_size(f), 3166 offset, len, spd, false, sk, pipe)) 3167 return true; 3168 } 3169 3170 skb_walk_frags(skb, iter) { 3171 if (*offset >= iter->len) { 3172 *offset -= iter->len; 3173 continue; 3174 } 3175 /* __skb_splice_bits() only fails if the output has no room 3176 * left, so no point in going over the frag_list for the error 3177 * case. 3178 */ 3179 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3180 return true; 3181 } 3182 3183 return false; 3184 } 3185 3186 /* 3187 * Map data from the skb to a pipe. Should handle both the linear part, 3188 * the fragments, and the frag list. 3189 */ 3190 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3191 struct pipe_inode_info *pipe, unsigned int tlen, 3192 unsigned int flags) 3193 { 3194 struct partial_page partial[MAX_SKB_FRAGS]; 3195 struct page *pages[MAX_SKB_FRAGS]; 3196 struct splice_pipe_desc spd = { 3197 .pages = pages, 3198 .partial = partial, 3199 .nr_pages_max = MAX_SKB_FRAGS, 3200 .ops = &nosteal_pipe_buf_ops, 3201 .spd_release = sock_spd_release, 3202 }; 3203 int ret = 0; 3204 3205 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3206 3207 if (spd.nr_pages) 3208 ret = splice_to_pipe(pipe, &spd); 3209 3210 return ret; 3211 } 3212 EXPORT_SYMBOL_GPL(skb_splice_bits); 3213 3214 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3215 { 3216 struct socket *sock = sk->sk_socket; 3217 size_t size = msg_data_left(msg); 3218 3219 if (!sock) 3220 return -EINVAL; 3221 3222 if (!sock->ops->sendmsg_locked) 3223 return sock_no_sendmsg_locked(sk, msg, size); 3224 3225 return sock->ops->sendmsg_locked(sk, msg, size); 3226 } 3227 3228 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3229 { 3230 struct socket *sock = sk->sk_socket; 3231 3232 if (!sock) 3233 return -EINVAL; 3234 return sock_sendmsg(sock, msg); 3235 } 3236 3237 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3238 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3239 int len, sendmsg_func sendmsg) 3240 { 3241 unsigned int orig_len = len; 3242 struct sk_buff *head = skb; 3243 unsigned short fragidx; 3244 int slen, ret; 3245 3246 do_frag_list: 3247 3248 /* Deal with head data */ 3249 while (offset < skb_headlen(skb) && len) { 3250 struct kvec kv; 3251 struct msghdr msg; 3252 3253 slen = min_t(int, len, skb_headlen(skb) - offset); 3254 kv.iov_base = skb->data + offset; 3255 kv.iov_len = slen; 3256 memset(&msg, 0, sizeof(msg)); 3257 msg.msg_flags = MSG_DONTWAIT; 3258 3259 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3260 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3261 sendmsg_unlocked, sk, &msg); 3262 if (ret <= 0) 3263 goto error; 3264 3265 offset += ret; 3266 len -= ret; 3267 } 3268 3269 /* All the data was skb head? */ 3270 if (!len) 3271 goto out; 3272 3273 /* Make offset relative to start of frags */ 3274 offset -= skb_headlen(skb); 3275 3276 /* Find where we are in frag list */ 3277 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3278 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3279 3280 if (offset < skb_frag_size(frag)) 3281 break; 3282 3283 offset -= skb_frag_size(frag); 3284 } 3285 3286 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3287 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3288 3289 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3290 3291 while (slen) { 3292 struct bio_vec bvec; 3293 struct msghdr msg = { 3294 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3295 }; 3296 3297 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3298 skb_frag_off(frag) + offset); 3299 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3300 slen); 3301 3302 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3303 sendmsg_unlocked, sk, &msg); 3304 if (ret <= 0) 3305 goto error; 3306 3307 len -= ret; 3308 offset += ret; 3309 slen -= ret; 3310 } 3311 3312 offset = 0; 3313 } 3314 3315 if (len) { 3316 /* Process any frag lists */ 3317 3318 if (skb == head) { 3319 if (skb_has_frag_list(skb)) { 3320 skb = skb_shinfo(skb)->frag_list; 3321 goto do_frag_list; 3322 } 3323 } else if (skb->next) { 3324 skb = skb->next; 3325 goto do_frag_list; 3326 } 3327 } 3328 3329 out: 3330 return orig_len - len; 3331 3332 error: 3333 return orig_len == len ? ret : orig_len - len; 3334 } 3335 3336 /* Send skb data on a socket. Socket must be locked. */ 3337 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3338 int len) 3339 { 3340 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3341 } 3342 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3343 3344 /* Send skb data on a socket. Socket must be unlocked. */ 3345 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3346 { 3347 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3348 } 3349 3350 /** 3351 * skb_store_bits - store bits from kernel buffer to skb 3352 * @skb: destination buffer 3353 * @offset: offset in destination 3354 * @from: source buffer 3355 * @len: number of bytes to copy 3356 * 3357 * Copy the specified number of bytes from the source buffer to the 3358 * destination skb. This function handles all the messy bits of 3359 * traversing fragment lists and such. 3360 */ 3361 3362 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3363 { 3364 int start = skb_headlen(skb); 3365 struct sk_buff *frag_iter; 3366 int i, copy; 3367 3368 if (offset > (int)skb->len - len) 3369 goto fault; 3370 3371 if ((copy = start - offset) > 0) { 3372 if (copy > len) 3373 copy = len; 3374 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3375 if ((len -= copy) == 0) 3376 return 0; 3377 offset += copy; 3378 from += copy; 3379 } 3380 3381 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3382 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3383 int end; 3384 3385 WARN_ON(start > offset + len); 3386 3387 end = start + skb_frag_size(frag); 3388 if ((copy = end - offset) > 0) { 3389 u32 p_off, p_len, copied; 3390 struct page *p; 3391 u8 *vaddr; 3392 3393 if (copy > len) 3394 copy = len; 3395 3396 skb_frag_foreach_page(frag, 3397 skb_frag_off(frag) + offset - start, 3398 copy, p, p_off, p_len, copied) { 3399 vaddr = kmap_atomic(p); 3400 memcpy(vaddr + p_off, from + copied, p_len); 3401 kunmap_atomic(vaddr); 3402 } 3403 3404 if ((len -= copy) == 0) 3405 return 0; 3406 offset += copy; 3407 from += copy; 3408 } 3409 start = end; 3410 } 3411 3412 skb_walk_frags(skb, frag_iter) { 3413 int end; 3414 3415 WARN_ON(start > offset + len); 3416 3417 end = start + frag_iter->len; 3418 if ((copy = end - offset) > 0) { 3419 if (copy > len) 3420 copy = len; 3421 if (skb_store_bits(frag_iter, offset - start, 3422 from, copy)) 3423 goto fault; 3424 if ((len -= copy) == 0) 3425 return 0; 3426 offset += copy; 3427 from += copy; 3428 } 3429 start = end; 3430 } 3431 if (!len) 3432 return 0; 3433 3434 fault: 3435 return -EFAULT; 3436 } 3437 EXPORT_SYMBOL(skb_store_bits); 3438 3439 /* Checksum skb data. */ 3440 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3441 __wsum csum, const struct skb_checksum_ops *ops) 3442 { 3443 int start = skb_headlen(skb); 3444 int i, copy = start - offset; 3445 struct sk_buff *frag_iter; 3446 int pos = 0; 3447 3448 /* Checksum header. */ 3449 if (copy > 0) { 3450 if (copy > len) 3451 copy = len; 3452 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3453 skb->data + offset, copy, csum); 3454 if ((len -= copy) == 0) 3455 return csum; 3456 offset += copy; 3457 pos = copy; 3458 } 3459 3460 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3461 int end; 3462 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3463 3464 WARN_ON(start > offset + len); 3465 3466 end = start + skb_frag_size(frag); 3467 if ((copy = end - offset) > 0) { 3468 u32 p_off, p_len, copied; 3469 struct page *p; 3470 __wsum csum2; 3471 u8 *vaddr; 3472 3473 if (copy > len) 3474 copy = len; 3475 3476 skb_frag_foreach_page(frag, 3477 skb_frag_off(frag) + offset - start, 3478 copy, p, p_off, p_len, copied) { 3479 vaddr = kmap_atomic(p); 3480 csum2 = INDIRECT_CALL_1(ops->update, 3481 csum_partial_ext, 3482 vaddr + p_off, p_len, 0); 3483 kunmap_atomic(vaddr); 3484 csum = INDIRECT_CALL_1(ops->combine, 3485 csum_block_add_ext, csum, 3486 csum2, pos, p_len); 3487 pos += p_len; 3488 } 3489 3490 if (!(len -= copy)) 3491 return csum; 3492 offset += copy; 3493 } 3494 start = end; 3495 } 3496 3497 skb_walk_frags(skb, frag_iter) { 3498 int end; 3499 3500 WARN_ON(start > offset + len); 3501 3502 end = start + frag_iter->len; 3503 if ((copy = end - offset) > 0) { 3504 __wsum csum2; 3505 if (copy > len) 3506 copy = len; 3507 csum2 = __skb_checksum(frag_iter, offset - start, 3508 copy, 0, ops); 3509 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3510 csum, csum2, pos, copy); 3511 if ((len -= copy) == 0) 3512 return csum; 3513 offset += copy; 3514 pos += copy; 3515 } 3516 start = end; 3517 } 3518 BUG_ON(len); 3519 3520 return csum; 3521 } 3522 EXPORT_SYMBOL(__skb_checksum); 3523 3524 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3525 int len, __wsum csum) 3526 { 3527 const struct skb_checksum_ops ops = { 3528 .update = csum_partial_ext, 3529 .combine = csum_block_add_ext, 3530 }; 3531 3532 return __skb_checksum(skb, offset, len, csum, &ops); 3533 } 3534 EXPORT_SYMBOL(skb_checksum); 3535 3536 /* Both of above in one bottle. */ 3537 3538 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3539 u8 *to, int len) 3540 { 3541 int start = skb_headlen(skb); 3542 int i, copy = start - offset; 3543 struct sk_buff *frag_iter; 3544 int pos = 0; 3545 __wsum csum = 0; 3546 3547 /* Copy header. */ 3548 if (copy > 0) { 3549 if (copy > len) 3550 copy = len; 3551 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3552 copy); 3553 if ((len -= copy) == 0) 3554 return csum; 3555 offset += copy; 3556 to += copy; 3557 pos = copy; 3558 } 3559 3560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3561 int end; 3562 3563 WARN_ON(start > offset + len); 3564 3565 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3566 if ((copy = end - offset) > 0) { 3567 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3568 u32 p_off, p_len, copied; 3569 struct page *p; 3570 __wsum csum2; 3571 u8 *vaddr; 3572 3573 if (copy > len) 3574 copy = len; 3575 3576 skb_frag_foreach_page(frag, 3577 skb_frag_off(frag) + offset - start, 3578 copy, p, p_off, p_len, copied) { 3579 vaddr = kmap_atomic(p); 3580 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3581 to + copied, 3582 p_len); 3583 kunmap_atomic(vaddr); 3584 csum = csum_block_add(csum, csum2, pos); 3585 pos += p_len; 3586 } 3587 3588 if (!(len -= copy)) 3589 return csum; 3590 offset += copy; 3591 to += copy; 3592 } 3593 start = end; 3594 } 3595 3596 skb_walk_frags(skb, frag_iter) { 3597 __wsum csum2; 3598 int end; 3599 3600 WARN_ON(start > offset + len); 3601 3602 end = start + frag_iter->len; 3603 if ((copy = end - offset) > 0) { 3604 if (copy > len) 3605 copy = len; 3606 csum2 = skb_copy_and_csum_bits(frag_iter, 3607 offset - start, 3608 to, copy); 3609 csum = csum_block_add(csum, csum2, pos); 3610 if ((len -= copy) == 0) 3611 return csum; 3612 offset += copy; 3613 to += copy; 3614 pos += copy; 3615 } 3616 start = end; 3617 } 3618 BUG_ON(len); 3619 return csum; 3620 } 3621 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3622 3623 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3624 { 3625 __sum16 sum; 3626 3627 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3628 /* See comments in __skb_checksum_complete(). */ 3629 if (likely(!sum)) { 3630 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3631 !skb->csum_complete_sw) 3632 netdev_rx_csum_fault(skb->dev, skb); 3633 } 3634 if (!skb_shared(skb)) 3635 skb->csum_valid = !sum; 3636 return sum; 3637 } 3638 EXPORT_SYMBOL(__skb_checksum_complete_head); 3639 3640 /* This function assumes skb->csum already holds pseudo header's checksum, 3641 * which has been changed from the hardware checksum, for example, by 3642 * __skb_checksum_validate_complete(). And, the original skb->csum must 3643 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3644 * 3645 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3646 * zero. The new checksum is stored back into skb->csum unless the skb is 3647 * shared. 3648 */ 3649 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3650 { 3651 __wsum csum; 3652 __sum16 sum; 3653 3654 csum = skb_checksum(skb, 0, skb->len, 0); 3655 3656 sum = csum_fold(csum_add(skb->csum, csum)); 3657 /* This check is inverted, because we already knew the hardware 3658 * checksum is invalid before calling this function. So, if the 3659 * re-computed checksum is valid instead, then we have a mismatch 3660 * between the original skb->csum and skb_checksum(). This means either 3661 * the original hardware checksum is incorrect or we screw up skb->csum 3662 * when moving skb->data around. 3663 */ 3664 if (likely(!sum)) { 3665 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3666 !skb->csum_complete_sw) 3667 netdev_rx_csum_fault(skb->dev, skb); 3668 } 3669 3670 if (!skb_shared(skb)) { 3671 /* Save full packet checksum */ 3672 skb->csum = csum; 3673 skb->ip_summed = CHECKSUM_COMPLETE; 3674 skb->csum_complete_sw = 1; 3675 skb->csum_valid = !sum; 3676 } 3677 3678 return sum; 3679 } 3680 EXPORT_SYMBOL(__skb_checksum_complete); 3681 3682 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3683 { 3684 net_warn_ratelimited( 3685 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3686 __func__); 3687 return 0; 3688 } 3689 3690 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3691 int offset, int len) 3692 { 3693 net_warn_ratelimited( 3694 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3695 __func__); 3696 return 0; 3697 } 3698 3699 static const struct skb_checksum_ops default_crc32c_ops = { 3700 .update = warn_crc32c_csum_update, 3701 .combine = warn_crc32c_csum_combine, 3702 }; 3703 3704 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3705 &default_crc32c_ops; 3706 EXPORT_SYMBOL(crc32c_csum_stub); 3707 3708 /** 3709 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3710 * @from: source buffer 3711 * 3712 * Calculates the amount of linear headroom needed in the 'to' skb passed 3713 * into skb_zerocopy(). 3714 */ 3715 unsigned int 3716 skb_zerocopy_headlen(const struct sk_buff *from) 3717 { 3718 unsigned int hlen = 0; 3719 3720 if (!from->head_frag || 3721 skb_headlen(from) < L1_CACHE_BYTES || 3722 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3723 hlen = skb_headlen(from); 3724 if (!hlen) 3725 hlen = from->len; 3726 } 3727 3728 if (skb_has_frag_list(from)) 3729 hlen = from->len; 3730 3731 return hlen; 3732 } 3733 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3734 3735 /** 3736 * skb_zerocopy - Zero copy skb to skb 3737 * @to: destination buffer 3738 * @from: source buffer 3739 * @len: number of bytes to copy from source buffer 3740 * @hlen: size of linear headroom in destination buffer 3741 * 3742 * Copies up to `len` bytes from `from` to `to` by creating references 3743 * to the frags in the source buffer. 3744 * 3745 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3746 * headroom in the `to` buffer. 3747 * 3748 * Return value: 3749 * 0: everything is OK 3750 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3751 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3752 */ 3753 int 3754 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3755 { 3756 int i, j = 0; 3757 int plen = 0; /* length of skb->head fragment */ 3758 int ret; 3759 struct page *page; 3760 unsigned int offset; 3761 3762 BUG_ON(!from->head_frag && !hlen); 3763 3764 /* dont bother with small payloads */ 3765 if (len <= skb_tailroom(to)) 3766 return skb_copy_bits(from, 0, skb_put(to, len), len); 3767 3768 if (hlen) { 3769 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3770 if (unlikely(ret)) 3771 return ret; 3772 len -= hlen; 3773 } else { 3774 plen = min_t(int, skb_headlen(from), len); 3775 if (plen) { 3776 page = virt_to_head_page(from->head); 3777 offset = from->data - (unsigned char *)page_address(page); 3778 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3779 offset, plen); 3780 get_page(page); 3781 j = 1; 3782 len -= plen; 3783 } 3784 } 3785 3786 skb_len_add(to, len + plen); 3787 3788 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3789 skb_tx_error(from); 3790 return -ENOMEM; 3791 } 3792 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3793 3794 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3795 int size; 3796 3797 if (!len) 3798 break; 3799 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3800 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3801 len); 3802 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3803 len -= size; 3804 skb_frag_ref(to, j); 3805 j++; 3806 } 3807 skb_shinfo(to)->nr_frags = j; 3808 3809 return 0; 3810 } 3811 EXPORT_SYMBOL_GPL(skb_zerocopy); 3812 3813 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3814 { 3815 __wsum csum; 3816 long csstart; 3817 3818 if (skb->ip_summed == CHECKSUM_PARTIAL) 3819 csstart = skb_checksum_start_offset(skb); 3820 else 3821 csstart = skb_headlen(skb); 3822 3823 BUG_ON(csstart > skb_headlen(skb)); 3824 3825 skb_copy_from_linear_data(skb, to, csstart); 3826 3827 csum = 0; 3828 if (csstart != skb->len) 3829 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3830 skb->len - csstart); 3831 3832 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3833 long csstuff = csstart + skb->csum_offset; 3834 3835 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3836 } 3837 } 3838 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3839 3840 /** 3841 * skb_dequeue - remove from the head of the queue 3842 * @list: list to dequeue from 3843 * 3844 * Remove the head of the list. The list lock is taken so the function 3845 * may be used safely with other locking list functions. The head item is 3846 * returned or %NULL if the list is empty. 3847 */ 3848 3849 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3850 { 3851 unsigned long flags; 3852 struct sk_buff *result; 3853 3854 spin_lock_irqsave(&list->lock, flags); 3855 result = __skb_dequeue(list); 3856 spin_unlock_irqrestore(&list->lock, flags); 3857 return result; 3858 } 3859 EXPORT_SYMBOL(skb_dequeue); 3860 3861 /** 3862 * skb_dequeue_tail - remove from the tail of the queue 3863 * @list: list to dequeue from 3864 * 3865 * Remove the tail of the list. The list lock is taken so the function 3866 * may be used safely with other locking list functions. The tail item is 3867 * returned or %NULL if the list is empty. 3868 */ 3869 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3870 { 3871 unsigned long flags; 3872 struct sk_buff *result; 3873 3874 spin_lock_irqsave(&list->lock, flags); 3875 result = __skb_dequeue_tail(list); 3876 spin_unlock_irqrestore(&list->lock, flags); 3877 return result; 3878 } 3879 EXPORT_SYMBOL(skb_dequeue_tail); 3880 3881 /** 3882 * skb_queue_purge_reason - empty a list 3883 * @list: list to empty 3884 * @reason: drop reason 3885 * 3886 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3887 * the list and one reference dropped. This function takes the list 3888 * lock and is atomic with respect to other list locking functions. 3889 */ 3890 void skb_queue_purge_reason(struct sk_buff_head *list, 3891 enum skb_drop_reason reason) 3892 { 3893 struct sk_buff_head tmp; 3894 unsigned long flags; 3895 3896 if (skb_queue_empty_lockless(list)) 3897 return; 3898 3899 __skb_queue_head_init(&tmp); 3900 3901 spin_lock_irqsave(&list->lock, flags); 3902 skb_queue_splice_init(list, &tmp); 3903 spin_unlock_irqrestore(&list->lock, flags); 3904 3905 __skb_queue_purge_reason(&tmp, reason); 3906 } 3907 EXPORT_SYMBOL(skb_queue_purge_reason); 3908 3909 /** 3910 * skb_rbtree_purge - empty a skb rbtree 3911 * @root: root of the rbtree to empty 3912 * Return value: the sum of truesizes of all purged skbs. 3913 * 3914 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3915 * the list and one reference dropped. This function does not take 3916 * any lock. Synchronization should be handled by the caller (e.g., TCP 3917 * out-of-order queue is protected by the socket lock). 3918 */ 3919 unsigned int skb_rbtree_purge(struct rb_root *root) 3920 { 3921 struct rb_node *p = rb_first(root); 3922 unsigned int sum = 0; 3923 3924 while (p) { 3925 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3926 3927 p = rb_next(p); 3928 rb_erase(&skb->rbnode, root); 3929 sum += skb->truesize; 3930 kfree_skb(skb); 3931 } 3932 return sum; 3933 } 3934 3935 void skb_errqueue_purge(struct sk_buff_head *list) 3936 { 3937 struct sk_buff *skb, *next; 3938 struct sk_buff_head kill; 3939 unsigned long flags; 3940 3941 __skb_queue_head_init(&kill); 3942 3943 spin_lock_irqsave(&list->lock, flags); 3944 skb_queue_walk_safe(list, skb, next) { 3945 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3946 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3947 continue; 3948 __skb_unlink(skb, list); 3949 __skb_queue_tail(&kill, skb); 3950 } 3951 spin_unlock_irqrestore(&list->lock, flags); 3952 __skb_queue_purge(&kill); 3953 } 3954 EXPORT_SYMBOL(skb_errqueue_purge); 3955 3956 /** 3957 * skb_queue_head - queue a buffer at the list head 3958 * @list: list to use 3959 * @newsk: buffer to queue 3960 * 3961 * Queue a buffer at the start of the list. This function takes the 3962 * list lock and can be used safely with other locking &sk_buff functions 3963 * safely. 3964 * 3965 * A buffer cannot be placed on two lists at the same time. 3966 */ 3967 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3968 { 3969 unsigned long flags; 3970 3971 spin_lock_irqsave(&list->lock, flags); 3972 __skb_queue_head(list, newsk); 3973 spin_unlock_irqrestore(&list->lock, flags); 3974 } 3975 EXPORT_SYMBOL(skb_queue_head); 3976 3977 /** 3978 * skb_queue_tail - queue a buffer at the list tail 3979 * @list: list to use 3980 * @newsk: buffer to queue 3981 * 3982 * Queue a buffer at the tail of the list. This function takes the 3983 * list lock and can be used safely with other locking &sk_buff functions 3984 * safely. 3985 * 3986 * A buffer cannot be placed on two lists at the same time. 3987 */ 3988 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3989 { 3990 unsigned long flags; 3991 3992 spin_lock_irqsave(&list->lock, flags); 3993 __skb_queue_tail(list, newsk); 3994 spin_unlock_irqrestore(&list->lock, flags); 3995 } 3996 EXPORT_SYMBOL(skb_queue_tail); 3997 3998 /** 3999 * skb_unlink - remove a buffer from a list 4000 * @skb: buffer to remove 4001 * @list: list to use 4002 * 4003 * Remove a packet from a list. The list locks are taken and this 4004 * function is atomic with respect to other list locked calls 4005 * 4006 * You must know what list the SKB is on. 4007 */ 4008 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4009 { 4010 unsigned long flags; 4011 4012 spin_lock_irqsave(&list->lock, flags); 4013 __skb_unlink(skb, list); 4014 spin_unlock_irqrestore(&list->lock, flags); 4015 } 4016 EXPORT_SYMBOL(skb_unlink); 4017 4018 /** 4019 * skb_append - append a buffer 4020 * @old: buffer to insert after 4021 * @newsk: buffer to insert 4022 * @list: list to use 4023 * 4024 * Place a packet after a given packet in a list. The list locks are taken 4025 * and this function is atomic with respect to other list locked calls. 4026 * A buffer cannot be placed on two lists at the same time. 4027 */ 4028 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4029 { 4030 unsigned long flags; 4031 4032 spin_lock_irqsave(&list->lock, flags); 4033 __skb_queue_after(list, old, newsk); 4034 spin_unlock_irqrestore(&list->lock, flags); 4035 } 4036 EXPORT_SYMBOL(skb_append); 4037 4038 static inline void skb_split_inside_header(struct sk_buff *skb, 4039 struct sk_buff* skb1, 4040 const u32 len, const int pos) 4041 { 4042 int i; 4043 4044 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4045 pos - len); 4046 /* And move data appendix as is. */ 4047 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4048 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4049 4050 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4051 skb_shinfo(skb)->nr_frags = 0; 4052 skb1->data_len = skb->data_len; 4053 skb1->len += skb1->data_len; 4054 skb->data_len = 0; 4055 skb->len = len; 4056 skb_set_tail_pointer(skb, len); 4057 } 4058 4059 static inline void skb_split_no_header(struct sk_buff *skb, 4060 struct sk_buff* skb1, 4061 const u32 len, int pos) 4062 { 4063 int i, k = 0; 4064 const int nfrags = skb_shinfo(skb)->nr_frags; 4065 4066 skb_shinfo(skb)->nr_frags = 0; 4067 skb1->len = skb1->data_len = skb->len - len; 4068 skb->len = len; 4069 skb->data_len = len - pos; 4070 4071 for (i = 0; i < nfrags; i++) { 4072 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4073 4074 if (pos + size > len) { 4075 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4076 4077 if (pos < len) { 4078 /* Split frag. 4079 * We have two variants in this case: 4080 * 1. Move all the frag to the second 4081 * part, if it is possible. F.e. 4082 * this approach is mandatory for TUX, 4083 * where splitting is expensive. 4084 * 2. Split is accurately. We make this. 4085 */ 4086 skb_frag_ref(skb, i); 4087 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4088 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4089 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4090 skb_shinfo(skb)->nr_frags++; 4091 } 4092 k++; 4093 } else 4094 skb_shinfo(skb)->nr_frags++; 4095 pos += size; 4096 } 4097 skb_shinfo(skb1)->nr_frags = k; 4098 } 4099 4100 /** 4101 * skb_split - Split fragmented skb to two parts at length len. 4102 * @skb: the buffer to split 4103 * @skb1: the buffer to receive the second part 4104 * @len: new length for skb 4105 */ 4106 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4107 { 4108 int pos = skb_headlen(skb); 4109 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4110 4111 skb_zcopy_downgrade_managed(skb); 4112 4113 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4114 skb_zerocopy_clone(skb1, skb, 0); 4115 if (len < pos) /* Split line is inside header. */ 4116 skb_split_inside_header(skb, skb1, len, pos); 4117 else /* Second chunk has no header, nothing to copy. */ 4118 skb_split_no_header(skb, skb1, len, pos); 4119 } 4120 EXPORT_SYMBOL(skb_split); 4121 4122 /* Shifting from/to a cloned skb is a no-go. 4123 * 4124 * Caller cannot keep skb_shinfo related pointers past calling here! 4125 */ 4126 static int skb_prepare_for_shift(struct sk_buff *skb) 4127 { 4128 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4129 } 4130 4131 /** 4132 * skb_shift - Shifts paged data partially from skb to another 4133 * @tgt: buffer into which tail data gets added 4134 * @skb: buffer from which the paged data comes from 4135 * @shiftlen: shift up to this many bytes 4136 * 4137 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4138 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4139 * It's up to caller to free skb if everything was shifted. 4140 * 4141 * If @tgt runs out of frags, the whole operation is aborted. 4142 * 4143 * Skb cannot include anything else but paged data while tgt is allowed 4144 * to have non-paged data as well. 4145 * 4146 * TODO: full sized shift could be optimized but that would need 4147 * specialized skb free'er to handle frags without up-to-date nr_frags. 4148 */ 4149 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4150 { 4151 int from, to, merge, todo; 4152 skb_frag_t *fragfrom, *fragto; 4153 4154 BUG_ON(shiftlen > skb->len); 4155 4156 if (skb_headlen(skb)) 4157 return 0; 4158 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4159 return 0; 4160 4161 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4162 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4163 4164 todo = shiftlen; 4165 from = 0; 4166 to = skb_shinfo(tgt)->nr_frags; 4167 fragfrom = &skb_shinfo(skb)->frags[from]; 4168 4169 /* Actual merge is delayed until the point when we know we can 4170 * commit all, so that we don't have to undo partial changes 4171 */ 4172 if (!to || 4173 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4174 skb_frag_off(fragfrom))) { 4175 merge = -1; 4176 } else { 4177 merge = to - 1; 4178 4179 todo -= skb_frag_size(fragfrom); 4180 if (todo < 0) { 4181 if (skb_prepare_for_shift(skb) || 4182 skb_prepare_for_shift(tgt)) 4183 return 0; 4184 4185 /* All previous frag pointers might be stale! */ 4186 fragfrom = &skb_shinfo(skb)->frags[from]; 4187 fragto = &skb_shinfo(tgt)->frags[merge]; 4188 4189 skb_frag_size_add(fragto, shiftlen); 4190 skb_frag_size_sub(fragfrom, shiftlen); 4191 skb_frag_off_add(fragfrom, shiftlen); 4192 4193 goto onlymerged; 4194 } 4195 4196 from++; 4197 } 4198 4199 /* Skip full, not-fitting skb to avoid expensive operations */ 4200 if ((shiftlen == skb->len) && 4201 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4202 return 0; 4203 4204 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4205 return 0; 4206 4207 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4208 if (to == MAX_SKB_FRAGS) 4209 return 0; 4210 4211 fragfrom = &skb_shinfo(skb)->frags[from]; 4212 fragto = &skb_shinfo(tgt)->frags[to]; 4213 4214 if (todo >= skb_frag_size(fragfrom)) { 4215 *fragto = *fragfrom; 4216 todo -= skb_frag_size(fragfrom); 4217 from++; 4218 to++; 4219 4220 } else { 4221 __skb_frag_ref(fragfrom); 4222 skb_frag_page_copy(fragto, fragfrom); 4223 skb_frag_off_copy(fragto, fragfrom); 4224 skb_frag_size_set(fragto, todo); 4225 4226 skb_frag_off_add(fragfrom, todo); 4227 skb_frag_size_sub(fragfrom, todo); 4228 todo = 0; 4229 4230 to++; 4231 break; 4232 } 4233 } 4234 4235 /* Ready to "commit" this state change to tgt */ 4236 skb_shinfo(tgt)->nr_frags = to; 4237 4238 if (merge >= 0) { 4239 fragfrom = &skb_shinfo(skb)->frags[0]; 4240 fragto = &skb_shinfo(tgt)->frags[merge]; 4241 4242 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4243 __skb_frag_unref(fragfrom, skb->pp_recycle); 4244 } 4245 4246 /* Reposition in the original skb */ 4247 to = 0; 4248 while (from < skb_shinfo(skb)->nr_frags) 4249 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4250 skb_shinfo(skb)->nr_frags = to; 4251 4252 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4253 4254 onlymerged: 4255 /* Most likely the tgt won't ever need its checksum anymore, skb on 4256 * the other hand might need it if it needs to be resent 4257 */ 4258 tgt->ip_summed = CHECKSUM_PARTIAL; 4259 skb->ip_summed = CHECKSUM_PARTIAL; 4260 4261 skb_len_add(skb, -shiftlen); 4262 skb_len_add(tgt, shiftlen); 4263 4264 return shiftlen; 4265 } 4266 4267 /** 4268 * skb_prepare_seq_read - Prepare a sequential read of skb data 4269 * @skb: the buffer to read 4270 * @from: lower offset of data to be read 4271 * @to: upper offset of data to be read 4272 * @st: state variable 4273 * 4274 * Initializes the specified state variable. Must be called before 4275 * invoking skb_seq_read() for the first time. 4276 */ 4277 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4278 unsigned int to, struct skb_seq_state *st) 4279 { 4280 st->lower_offset = from; 4281 st->upper_offset = to; 4282 st->root_skb = st->cur_skb = skb; 4283 st->frag_idx = st->stepped_offset = 0; 4284 st->frag_data = NULL; 4285 st->frag_off = 0; 4286 } 4287 EXPORT_SYMBOL(skb_prepare_seq_read); 4288 4289 /** 4290 * skb_seq_read - Sequentially read skb data 4291 * @consumed: number of bytes consumed by the caller so far 4292 * @data: destination pointer for data to be returned 4293 * @st: state variable 4294 * 4295 * Reads a block of skb data at @consumed relative to the 4296 * lower offset specified to skb_prepare_seq_read(). Assigns 4297 * the head of the data block to @data and returns the length 4298 * of the block or 0 if the end of the skb data or the upper 4299 * offset has been reached. 4300 * 4301 * The caller is not required to consume all of the data 4302 * returned, i.e. @consumed is typically set to the number 4303 * of bytes already consumed and the next call to 4304 * skb_seq_read() will return the remaining part of the block. 4305 * 4306 * Note 1: The size of each block of data returned can be arbitrary, 4307 * this limitation is the cost for zerocopy sequential 4308 * reads of potentially non linear data. 4309 * 4310 * Note 2: Fragment lists within fragments are not implemented 4311 * at the moment, state->root_skb could be replaced with 4312 * a stack for this purpose. 4313 */ 4314 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4315 struct skb_seq_state *st) 4316 { 4317 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4318 skb_frag_t *frag; 4319 4320 if (unlikely(abs_offset >= st->upper_offset)) { 4321 if (st->frag_data) { 4322 kunmap_atomic(st->frag_data); 4323 st->frag_data = NULL; 4324 } 4325 return 0; 4326 } 4327 4328 next_skb: 4329 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4330 4331 if (abs_offset < block_limit && !st->frag_data) { 4332 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4333 return block_limit - abs_offset; 4334 } 4335 4336 if (st->frag_idx == 0 && !st->frag_data) 4337 st->stepped_offset += skb_headlen(st->cur_skb); 4338 4339 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4340 unsigned int pg_idx, pg_off, pg_sz; 4341 4342 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4343 4344 pg_idx = 0; 4345 pg_off = skb_frag_off(frag); 4346 pg_sz = skb_frag_size(frag); 4347 4348 if (skb_frag_must_loop(skb_frag_page(frag))) { 4349 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4350 pg_off = offset_in_page(pg_off + st->frag_off); 4351 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4352 PAGE_SIZE - pg_off); 4353 } 4354 4355 block_limit = pg_sz + st->stepped_offset; 4356 if (abs_offset < block_limit) { 4357 if (!st->frag_data) 4358 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4359 4360 *data = (u8 *)st->frag_data + pg_off + 4361 (abs_offset - st->stepped_offset); 4362 4363 return block_limit - abs_offset; 4364 } 4365 4366 if (st->frag_data) { 4367 kunmap_atomic(st->frag_data); 4368 st->frag_data = NULL; 4369 } 4370 4371 st->stepped_offset += pg_sz; 4372 st->frag_off += pg_sz; 4373 if (st->frag_off == skb_frag_size(frag)) { 4374 st->frag_off = 0; 4375 st->frag_idx++; 4376 } 4377 } 4378 4379 if (st->frag_data) { 4380 kunmap_atomic(st->frag_data); 4381 st->frag_data = NULL; 4382 } 4383 4384 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4385 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4386 st->frag_idx = 0; 4387 goto next_skb; 4388 } else if (st->cur_skb->next) { 4389 st->cur_skb = st->cur_skb->next; 4390 st->frag_idx = 0; 4391 goto next_skb; 4392 } 4393 4394 return 0; 4395 } 4396 EXPORT_SYMBOL(skb_seq_read); 4397 4398 /** 4399 * skb_abort_seq_read - Abort a sequential read of skb data 4400 * @st: state variable 4401 * 4402 * Must be called if skb_seq_read() was not called until it 4403 * returned 0. 4404 */ 4405 void skb_abort_seq_read(struct skb_seq_state *st) 4406 { 4407 if (st->frag_data) 4408 kunmap_atomic(st->frag_data); 4409 } 4410 EXPORT_SYMBOL(skb_abort_seq_read); 4411 4412 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4413 4414 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4415 struct ts_config *conf, 4416 struct ts_state *state) 4417 { 4418 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4419 } 4420 4421 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4422 { 4423 skb_abort_seq_read(TS_SKB_CB(state)); 4424 } 4425 4426 /** 4427 * skb_find_text - Find a text pattern in skb data 4428 * @skb: the buffer to look in 4429 * @from: search offset 4430 * @to: search limit 4431 * @config: textsearch configuration 4432 * 4433 * Finds a pattern in the skb data according to the specified 4434 * textsearch configuration. Use textsearch_next() to retrieve 4435 * subsequent occurrences of the pattern. Returns the offset 4436 * to the first occurrence or UINT_MAX if no match was found. 4437 */ 4438 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4439 unsigned int to, struct ts_config *config) 4440 { 4441 unsigned int patlen = config->ops->get_pattern_len(config); 4442 struct ts_state state; 4443 unsigned int ret; 4444 4445 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4446 4447 config->get_next_block = skb_ts_get_next_block; 4448 config->finish = skb_ts_finish; 4449 4450 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4451 4452 ret = textsearch_find(config, &state); 4453 return (ret + patlen <= to - from ? ret : UINT_MAX); 4454 } 4455 EXPORT_SYMBOL(skb_find_text); 4456 4457 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4458 int offset, size_t size, size_t max_frags) 4459 { 4460 int i = skb_shinfo(skb)->nr_frags; 4461 4462 if (skb_can_coalesce(skb, i, page, offset)) { 4463 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4464 } else if (i < max_frags) { 4465 skb_zcopy_downgrade_managed(skb); 4466 get_page(page); 4467 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4468 } else { 4469 return -EMSGSIZE; 4470 } 4471 4472 return 0; 4473 } 4474 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4475 4476 /** 4477 * skb_pull_rcsum - pull skb and update receive checksum 4478 * @skb: buffer to update 4479 * @len: length of data pulled 4480 * 4481 * This function performs an skb_pull on the packet and updates 4482 * the CHECKSUM_COMPLETE checksum. It should be used on 4483 * receive path processing instead of skb_pull unless you know 4484 * that the checksum difference is zero (e.g., a valid IP header) 4485 * or you are setting ip_summed to CHECKSUM_NONE. 4486 */ 4487 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4488 { 4489 unsigned char *data = skb->data; 4490 4491 BUG_ON(len > skb->len); 4492 __skb_pull(skb, len); 4493 skb_postpull_rcsum(skb, data, len); 4494 return skb->data; 4495 } 4496 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4497 4498 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4499 { 4500 skb_frag_t head_frag; 4501 struct page *page; 4502 4503 page = virt_to_head_page(frag_skb->head); 4504 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4505 (unsigned char *)page_address(page), 4506 skb_headlen(frag_skb)); 4507 return head_frag; 4508 } 4509 4510 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4511 netdev_features_t features, 4512 unsigned int offset) 4513 { 4514 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4515 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4516 unsigned int delta_truesize = 0; 4517 unsigned int delta_len = 0; 4518 struct sk_buff *tail = NULL; 4519 struct sk_buff *nskb, *tmp; 4520 int len_diff, err; 4521 4522 skb_push(skb, -skb_network_offset(skb) + offset); 4523 4524 /* Ensure the head is writeable before touching the shared info */ 4525 err = skb_unclone(skb, GFP_ATOMIC); 4526 if (err) 4527 goto err_linearize; 4528 4529 skb_shinfo(skb)->frag_list = NULL; 4530 4531 while (list_skb) { 4532 nskb = list_skb; 4533 list_skb = list_skb->next; 4534 4535 err = 0; 4536 delta_truesize += nskb->truesize; 4537 if (skb_shared(nskb)) { 4538 tmp = skb_clone(nskb, GFP_ATOMIC); 4539 if (tmp) { 4540 consume_skb(nskb); 4541 nskb = tmp; 4542 err = skb_unclone(nskb, GFP_ATOMIC); 4543 } else { 4544 err = -ENOMEM; 4545 } 4546 } 4547 4548 if (!tail) 4549 skb->next = nskb; 4550 else 4551 tail->next = nskb; 4552 4553 if (unlikely(err)) { 4554 nskb->next = list_skb; 4555 goto err_linearize; 4556 } 4557 4558 tail = nskb; 4559 4560 delta_len += nskb->len; 4561 4562 skb_push(nskb, -skb_network_offset(nskb) + offset); 4563 4564 skb_release_head_state(nskb); 4565 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4566 __copy_skb_header(nskb, skb); 4567 4568 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4569 nskb->transport_header += len_diff; 4570 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4571 nskb->data - tnl_hlen, 4572 offset + tnl_hlen); 4573 4574 if (skb_needs_linearize(nskb, features) && 4575 __skb_linearize(nskb)) 4576 goto err_linearize; 4577 } 4578 4579 skb->truesize = skb->truesize - delta_truesize; 4580 skb->data_len = skb->data_len - delta_len; 4581 skb->len = skb->len - delta_len; 4582 4583 skb_gso_reset(skb); 4584 4585 skb->prev = tail; 4586 4587 if (skb_needs_linearize(skb, features) && 4588 __skb_linearize(skb)) 4589 goto err_linearize; 4590 4591 skb_get(skb); 4592 4593 return skb; 4594 4595 err_linearize: 4596 kfree_skb_list(skb->next); 4597 skb->next = NULL; 4598 return ERR_PTR(-ENOMEM); 4599 } 4600 EXPORT_SYMBOL_GPL(skb_segment_list); 4601 4602 /** 4603 * skb_segment - Perform protocol segmentation on skb. 4604 * @head_skb: buffer to segment 4605 * @features: features for the output path (see dev->features) 4606 * 4607 * This function performs segmentation on the given skb. It returns 4608 * a pointer to the first in a list of new skbs for the segments. 4609 * In case of error it returns ERR_PTR(err). 4610 */ 4611 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4612 netdev_features_t features) 4613 { 4614 struct sk_buff *segs = NULL; 4615 struct sk_buff *tail = NULL; 4616 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4617 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4618 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4619 unsigned int offset = doffset; 4620 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4621 unsigned int partial_segs = 0; 4622 unsigned int headroom; 4623 unsigned int len = head_skb->len; 4624 struct sk_buff *frag_skb; 4625 skb_frag_t *frag; 4626 __be16 proto; 4627 bool csum, sg; 4628 int err = -ENOMEM; 4629 int i = 0; 4630 int nfrags, pos; 4631 4632 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4633 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4634 struct sk_buff *check_skb; 4635 4636 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4637 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4638 /* gso_size is untrusted, and we have a frag_list with 4639 * a linear non head_frag item. 4640 * 4641 * If head_skb's headlen does not fit requested gso_size, 4642 * it means that the frag_list members do NOT terminate 4643 * on exact gso_size boundaries. Hence we cannot perform 4644 * skb_frag_t page sharing. Therefore we must fallback to 4645 * copying the frag_list skbs; we do so by disabling SG. 4646 */ 4647 features &= ~NETIF_F_SG; 4648 break; 4649 } 4650 } 4651 } 4652 4653 __skb_push(head_skb, doffset); 4654 proto = skb_network_protocol(head_skb, NULL); 4655 if (unlikely(!proto)) 4656 return ERR_PTR(-EINVAL); 4657 4658 sg = !!(features & NETIF_F_SG); 4659 csum = !!can_checksum_protocol(features, proto); 4660 4661 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4662 if (!(features & NETIF_F_GSO_PARTIAL)) { 4663 struct sk_buff *iter; 4664 unsigned int frag_len; 4665 4666 if (!list_skb || 4667 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4668 goto normal; 4669 4670 /* If we get here then all the required 4671 * GSO features except frag_list are supported. 4672 * Try to split the SKB to multiple GSO SKBs 4673 * with no frag_list. 4674 * Currently we can do that only when the buffers don't 4675 * have a linear part and all the buffers except 4676 * the last are of the same length. 4677 */ 4678 frag_len = list_skb->len; 4679 skb_walk_frags(head_skb, iter) { 4680 if (frag_len != iter->len && iter->next) 4681 goto normal; 4682 if (skb_headlen(iter) && !iter->head_frag) 4683 goto normal; 4684 4685 len -= iter->len; 4686 } 4687 4688 if (len != frag_len) 4689 goto normal; 4690 } 4691 4692 /* GSO partial only requires that we trim off any excess that 4693 * doesn't fit into an MSS sized block, so take care of that 4694 * now. 4695 * Cap len to not accidentally hit GSO_BY_FRAGS. 4696 */ 4697 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4698 if (partial_segs > 1) 4699 mss *= partial_segs; 4700 else 4701 partial_segs = 0; 4702 } 4703 4704 normal: 4705 headroom = skb_headroom(head_skb); 4706 pos = skb_headlen(head_skb); 4707 4708 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4709 return ERR_PTR(-ENOMEM); 4710 4711 nfrags = skb_shinfo(head_skb)->nr_frags; 4712 frag = skb_shinfo(head_skb)->frags; 4713 frag_skb = head_skb; 4714 4715 do { 4716 struct sk_buff *nskb; 4717 skb_frag_t *nskb_frag; 4718 int hsize; 4719 int size; 4720 4721 if (unlikely(mss == GSO_BY_FRAGS)) { 4722 len = list_skb->len; 4723 } else { 4724 len = head_skb->len - offset; 4725 if (len > mss) 4726 len = mss; 4727 } 4728 4729 hsize = skb_headlen(head_skb) - offset; 4730 4731 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4732 (skb_headlen(list_skb) == len || sg)) { 4733 BUG_ON(skb_headlen(list_skb) > len); 4734 4735 nskb = skb_clone(list_skb, GFP_ATOMIC); 4736 if (unlikely(!nskb)) 4737 goto err; 4738 4739 i = 0; 4740 nfrags = skb_shinfo(list_skb)->nr_frags; 4741 frag = skb_shinfo(list_skb)->frags; 4742 frag_skb = list_skb; 4743 pos += skb_headlen(list_skb); 4744 4745 while (pos < offset + len) { 4746 BUG_ON(i >= nfrags); 4747 4748 size = skb_frag_size(frag); 4749 if (pos + size > offset + len) 4750 break; 4751 4752 i++; 4753 pos += size; 4754 frag++; 4755 } 4756 4757 list_skb = list_skb->next; 4758 4759 if (unlikely(pskb_trim(nskb, len))) { 4760 kfree_skb(nskb); 4761 goto err; 4762 } 4763 4764 hsize = skb_end_offset(nskb); 4765 if (skb_cow_head(nskb, doffset + headroom)) { 4766 kfree_skb(nskb); 4767 goto err; 4768 } 4769 4770 nskb->truesize += skb_end_offset(nskb) - hsize; 4771 skb_release_head_state(nskb); 4772 __skb_push(nskb, doffset); 4773 } else { 4774 if (hsize < 0) 4775 hsize = 0; 4776 if (hsize > len || !sg) 4777 hsize = len; 4778 4779 nskb = __alloc_skb(hsize + doffset + headroom, 4780 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4781 NUMA_NO_NODE); 4782 4783 if (unlikely(!nskb)) 4784 goto err; 4785 4786 skb_reserve(nskb, headroom); 4787 __skb_put(nskb, doffset); 4788 } 4789 4790 if (segs) 4791 tail->next = nskb; 4792 else 4793 segs = nskb; 4794 tail = nskb; 4795 4796 __copy_skb_header(nskb, head_skb); 4797 4798 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4799 skb_reset_mac_len(nskb); 4800 4801 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4802 nskb->data - tnl_hlen, 4803 doffset + tnl_hlen); 4804 4805 if (nskb->len == len + doffset) 4806 goto perform_csum_check; 4807 4808 if (!sg) { 4809 if (!csum) { 4810 if (!nskb->remcsum_offload) 4811 nskb->ip_summed = CHECKSUM_NONE; 4812 SKB_GSO_CB(nskb)->csum = 4813 skb_copy_and_csum_bits(head_skb, offset, 4814 skb_put(nskb, 4815 len), 4816 len); 4817 SKB_GSO_CB(nskb)->csum_start = 4818 skb_headroom(nskb) + doffset; 4819 } else { 4820 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4821 goto err; 4822 } 4823 continue; 4824 } 4825 4826 nskb_frag = skb_shinfo(nskb)->frags; 4827 4828 skb_copy_from_linear_data_offset(head_skb, offset, 4829 skb_put(nskb, hsize), hsize); 4830 4831 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4832 SKBFL_SHARED_FRAG; 4833 4834 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4835 goto err; 4836 4837 while (pos < offset + len) { 4838 if (i >= nfrags) { 4839 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4840 skb_zerocopy_clone(nskb, list_skb, 4841 GFP_ATOMIC)) 4842 goto err; 4843 4844 i = 0; 4845 nfrags = skb_shinfo(list_skb)->nr_frags; 4846 frag = skb_shinfo(list_skb)->frags; 4847 frag_skb = list_skb; 4848 if (!skb_headlen(list_skb)) { 4849 BUG_ON(!nfrags); 4850 } else { 4851 BUG_ON(!list_skb->head_frag); 4852 4853 /* to make room for head_frag. */ 4854 i--; 4855 frag--; 4856 } 4857 4858 list_skb = list_skb->next; 4859 } 4860 4861 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4862 MAX_SKB_FRAGS)) { 4863 net_warn_ratelimited( 4864 "skb_segment: too many frags: %u %u\n", 4865 pos, mss); 4866 err = -EINVAL; 4867 goto err; 4868 } 4869 4870 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4871 __skb_frag_ref(nskb_frag); 4872 size = skb_frag_size(nskb_frag); 4873 4874 if (pos < offset) { 4875 skb_frag_off_add(nskb_frag, offset - pos); 4876 skb_frag_size_sub(nskb_frag, offset - pos); 4877 } 4878 4879 skb_shinfo(nskb)->nr_frags++; 4880 4881 if (pos + size <= offset + len) { 4882 i++; 4883 frag++; 4884 pos += size; 4885 } else { 4886 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4887 goto skip_fraglist; 4888 } 4889 4890 nskb_frag++; 4891 } 4892 4893 skip_fraglist: 4894 nskb->data_len = len - hsize; 4895 nskb->len += nskb->data_len; 4896 nskb->truesize += nskb->data_len; 4897 4898 perform_csum_check: 4899 if (!csum) { 4900 if (skb_has_shared_frag(nskb) && 4901 __skb_linearize(nskb)) 4902 goto err; 4903 4904 if (!nskb->remcsum_offload) 4905 nskb->ip_summed = CHECKSUM_NONE; 4906 SKB_GSO_CB(nskb)->csum = 4907 skb_checksum(nskb, doffset, 4908 nskb->len - doffset, 0); 4909 SKB_GSO_CB(nskb)->csum_start = 4910 skb_headroom(nskb) + doffset; 4911 } 4912 } while ((offset += len) < head_skb->len); 4913 4914 /* Some callers want to get the end of the list. 4915 * Put it in segs->prev to avoid walking the list. 4916 * (see validate_xmit_skb_list() for example) 4917 */ 4918 segs->prev = tail; 4919 4920 if (partial_segs) { 4921 struct sk_buff *iter; 4922 int type = skb_shinfo(head_skb)->gso_type; 4923 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4924 4925 /* Update type to add partial and then remove dodgy if set */ 4926 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4927 type &= ~SKB_GSO_DODGY; 4928 4929 /* Update GSO info and prepare to start updating headers on 4930 * our way back down the stack of protocols. 4931 */ 4932 for (iter = segs; iter; iter = iter->next) { 4933 skb_shinfo(iter)->gso_size = gso_size; 4934 skb_shinfo(iter)->gso_segs = partial_segs; 4935 skb_shinfo(iter)->gso_type = type; 4936 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4937 } 4938 4939 if (tail->len - doffset <= gso_size) 4940 skb_shinfo(tail)->gso_size = 0; 4941 else if (tail != segs) 4942 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4943 } 4944 4945 /* Following permits correct backpressure, for protocols 4946 * using skb_set_owner_w(). 4947 * Idea is to tranfert ownership from head_skb to last segment. 4948 */ 4949 if (head_skb->destructor == sock_wfree) { 4950 swap(tail->truesize, head_skb->truesize); 4951 swap(tail->destructor, head_skb->destructor); 4952 swap(tail->sk, head_skb->sk); 4953 } 4954 return segs; 4955 4956 err: 4957 kfree_skb_list(segs); 4958 return ERR_PTR(err); 4959 } 4960 EXPORT_SYMBOL_GPL(skb_segment); 4961 4962 #ifdef CONFIG_SKB_EXTENSIONS 4963 #define SKB_EXT_ALIGN_VALUE 8 4964 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4965 4966 static const u8 skb_ext_type_len[] = { 4967 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4968 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4969 #endif 4970 #ifdef CONFIG_XFRM 4971 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4972 #endif 4973 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4974 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4975 #endif 4976 #if IS_ENABLED(CONFIG_MPTCP) 4977 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4978 #endif 4979 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4980 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4981 #endif 4982 }; 4983 4984 static __always_inline unsigned int skb_ext_total_length(void) 4985 { 4986 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4987 int i; 4988 4989 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4990 l += skb_ext_type_len[i]; 4991 4992 return l; 4993 } 4994 4995 static void skb_extensions_init(void) 4996 { 4997 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4998 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4999 BUILD_BUG_ON(skb_ext_total_length() > 255); 5000 #endif 5001 5002 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5003 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5004 0, 5005 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5006 NULL); 5007 } 5008 #else 5009 static void skb_extensions_init(void) {} 5010 #endif 5011 5012 /* The SKB kmem_cache slab is critical for network performance. Never 5013 * merge/alias the slab with similar sized objects. This avoids fragmentation 5014 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5015 */ 5016 #ifndef CONFIG_SLUB_TINY 5017 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5018 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5019 #define FLAG_SKB_NO_MERGE 0 5020 #endif 5021 5022 void __init skb_init(void) 5023 { 5024 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5025 sizeof(struct sk_buff), 5026 0, 5027 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5028 FLAG_SKB_NO_MERGE, 5029 offsetof(struct sk_buff, cb), 5030 sizeof_field(struct sk_buff, cb), 5031 NULL); 5032 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5033 sizeof(struct sk_buff_fclones), 5034 0, 5035 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5036 NULL); 5037 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5038 * struct skb_shared_info is located at the end of skb->head, 5039 * and should not be copied to/from user. 5040 */ 5041 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5042 SKB_SMALL_HEAD_CACHE_SIZE, 5043 0, 5044 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5045 0, 5046 SKB_SMALL_HEAD_HEADROOM, 5047 NULL); 5048 skb_extensions_init(); 5049 } 5050 5051 static int 5052 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5053 unsigned int recursion_level) 5054 { 5055 int start = skb_headlen(skb); 5056 int i, copy = start - offset; 5057 struct sk_buff *frag_iter; 5058 int elt = 0; 5059 5060 if (unlikely(recursion_level >= 24)) 5061 return -EMSGSIZE; 5062 5063 if (copy > 0) { 5064 if (copy > len) 5065 copy = len; 5066 sg_set_buf(sg, skb->data + offset, copy); 5067 elt++; 5068 if ((len -= copy) == 0) 5069 return elt; 5070 offset += copy; 5071 } 5072 5073 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5074 int end; 5075 5076 WARN_ON(start > offset + len); 5077 5078 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5079 if ((copy = end - offset) > 0) { 5080 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5081 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5082 return -EMSGSIZE; 5083 5084 if (copy > len) 5085 copy = len; 5086 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5087 skb_frag_off(frag) + offset - start); 5088 elt++; 5089 if (!(len -= copy)) 5090 return elt; 5091 offset += copy; 5092 } 5093 start = end; 5094 } 5095 5096 skb_walk_frags(skb, frag_iter) { 5097 int end, ret; 5098 5099 WARN_ON(start > offset + len); 5100 5101 end = start + frag_iter->len; 5102 if ((copy = end - offset) > 0) { 5103 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5104 return -EMSGSIZE; 5105 5106 if (copy > len) 5107 copy = len; 5108 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5109 copy, recursion_level + 1); 5110 if (unlikely(ret < 0)) 5111 return ret; 5112 elt += ret; 5113 if ((len -= copy) == 0) 5114 return elt; 5115 offset += copy; 5116 } 5117 start = end; 5118 } 5119 BUG_ON(len); 5120 return elt; 5121 } 5122 5123 /** 5124 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5125 * @skb: Socket buffer containing the buffers to be mapped 5126 * @sg: The scatter-gather list to map into 5127 * @offset: The offset into the buffer's contents to start mapping 5128 * @len: Length of buffer space to be mapped 5129 * 5130 * Fill the specified scatter-gather list with mappings/pointers into a 5131 * region of the buffer space attached to a socket buffer. Returns either 5132 * the number of scatterlist items used, or -EMSGSIZE if the contents 5133 * could not fit. 5134 */ 5135 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5136 { 5137 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5138 5139 if (nsg <= 0) 5140 return nsg; 5141 5142 sg_mark_end(&sg[nsg - 1]); 5143 5144 return nsg; 5145 } 5146 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5147 5148 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5149 * sglist without mark the sg which contain last skb data as the end. 5150 * So the caller can mannipulate sg list as will when padding new data after 5151 * the first call without calling sg_unmark_end to expend sg list. 5152 * 5153 * Scenario to use skb_to_sgvec_nomark: 5154 * 1. sg_init_table 5155 * 2. skb_to_sgvec_nomark(payload1) 5156 * 3. skb_to_sgvec_nomark(payload2) 5157 * 5158 * This is equivalent to: 5159 * 1. sg_init_table 5160 * 2. skb_to_sgvec(payload1) 5161 * 3. sg_unmark_end 5162 * 4. skb_to_sgvec(payload2) 5163 * 5164 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5165 * is more preferable. 5166 */ 5167 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5168 int offset, int len) 5169 { 5170 return __skb_to_sgvec(skb, sg, offset, len, 0); 5171 } 5172 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5173 5174 5175 5176 /** 5177 * skb_cow_data - Check that a socket buffer's data buffers are writable 5178 * @skb: The socket buffer to check. 5179 * @tailbits: Amount of trailing space to be added 5180 * @trailer: Returned pointer to the skb where the @tailbits space begins 5181 * 5182 * Make sure that the data buffers attached to a socket buffer are 5183 * writable. If they are not, private copies are made of the data buffers 5184 * and the socket buffer is set to use these instead. 5185 * 5186 * If @tailbits is given, make sure that there is space to write @tailbits 5187 * bytes of data beyond current end of socket buffer. @trailer will be 5188 * set to point to the skb in which this space begins. 5189 * 5190 * The number of scatterlist elements required to completely map the 5191 * COW'd and extended socket buffer will be returned. 5192 */ 5193 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5194 { 5195 int copyflag; 5196 int elt; 5197 struct sk_buff *skb1, **skb_p; 5198 5199 /* If skb is cloned or its head is paged, reallocate 5200 * head pulling out all the pages (pages are considered not writable 5201 * at the moment even if they are anonymous). 5202 */ 5203 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5204 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5205 return -ENOMEM; 5206 5207 /* Easy case. Most of packets will go this way. */ 5208 if (!skb_has_frag_list(skb)) { 5209 /* A little of trouble, not enough of space for trailer. 5210 * This should not happen, when stack is tuned to generate 5211 * good frames. OK, on miss we reallocate and reserve even more 5212 * space, 128 bytes is fair. */ 5213 5214 if (skb_tailroom(skb) < tailbits && 5215 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5216 return -ENOMEM; 5217 5218 /* Voila! */ 5219 *trailer = skb; 5220 return 1; 5221 } 5222 5223 /* Misery. We are in troubles, going to mincer fragments... */ 5224 5225 elt = 1; 5226 skb_p = &skb_shinfo(skb)->frag_list; 5227 copyflag = 0; 5228 5229 while ((skb1 = *skb_p) != NULL) { 5230 int ntail = 0; 5231 5232 /* The fragment is partially pulled by someone, 5233 * this can happen on input. Copy it and everything 5234 * after it. */ 5235 5236 if (skb_shared(skb1)) 5237 copyflag = 1; 5238 5239 /* If the skb is the last, worry about trailer. */ 5240 5241 if (skb1->next == NULL && tailbits) { 5242 if (skb_shinfo(skb1)->nr_frags || 5243 skb_has_frag_list(skb1) || 5244 skb_tailroom(skb1) < tailbits) 5245 ntail = tailbits + 128; 5246 } 5247 5248 if (copyflag || 5249 skb_cloned(skb1) || 5250 ntail || 5251 skb_shinfo(skb1)->nr_frags || 5252 skb_has_frag_list(skb1)) { 5253 struct sk_buff *skb2; 5254 5255 /* Fuck, we are miserable poor guys... */ 5256 if (ntail == 0) 5257 skb2 = skb_copy(skb1, GFP_ATOMIC); 5258 else 5259 skb2 = skb_copy_expand(skb1, 5260 skb_headroom(skb1), 5261 ntail, 5262 GFP_ATOMIC); 5263 if (unlikely(skb2 == NULL)) 5264 return -ENOMEM; 5265 5266 if (skb1->sk) 5267 skb_set_owner_w(skb2, skb1->sk); 5268 5269 /* Looking around. Are we still alive? 5270 * OK, link new skb, drop old one */ 5271 5272 skb2->next = skb1->next; 5273 *skb_p = skb2; 5274 kfree_skb(skb1); 5275 skb1 = skb2; 5276 } 5277 elt++; 5278 *trailer = skb1; 5279 skb_p = &skb1->next; 5280 } 5281 5282 return elt; 5283 } 5284 EXPORT_SYMBOL_GPL(skb_cow_data); 5285 5286 static void sock_rmem_free(struct sk_buff *skb) 5287 { 5288 struct sock *sk = skb->sk; 5289 5290 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5291 } 5292 5293 static void skb_set_err_queue(struct sk_buff *skb) 5294 { 5295 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5296 * So, it is safe to (mis)use it to mark skbs on the error queue. 5297 */ 5298 skb->pkt_type = PACKET_OUTGOING; 5299 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5300 } 5301 5302 /* 5303 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5304 */ 5305 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5306 { 5307 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5308 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5309 return -ENOMEM; 5310 5311 skb_orphan(skb); 5312 skb->sk = sk; 5313 skb->destructor = sock_rmem_free; 5314 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5315 skb_set_err_queue(skb); 5316 5317 /* before exiting rcu section, make sure dst is refcounted */ 5318 skb_dst_force(skb); 5319 5320 skb_queue_tail(&sk->sk_error_queue, skb); 5321 if (!sock_flag(sk, SOCK_DEAD)) 5322 sk_error_report(sk); 5323 return 0; 5324 } 5325 EXPORT_SYMBOL(sock_queue_err_skb); 5326 5327 static bool is_icmp_err_skb(const struct sk_buff *skb) 5328 { 5329 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5330 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5331 } 5332 5333 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5334 { 5335 struct sk_buff_head *q = &sk->sk_error_queue; 5336 struct sk_buff *skb, *skb_next = NULL; 5337 bool icmp_next = false; 5338 unsigned long flags; 5339 5340 if (skb_queue_empty_lockless(q)) 5341 return NULL; 5342 5343 spin_lock_irqsave(&q->lock, flags); 5344 skb = __skb_dequeue(q); 5345 if (skb && (skb_next = skb_peek(q))) { 5346 icmp_next = is_icmp_err_skb(skb_next); 5347 if (icmp_next) 5348 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5349 } 5350 spin_unlock_irqrestore(&q->lock, flags); 5351 5352 if (is_icmp_err_skb(skb) && !icmp_next) 5353 sk->sk_err = 0; 5354 5355 if (skb_next) 5356 sk_error_report(sk); 5357 5358 return skb; 5359 } 5360 EXPORT_SYMBOL(sock_dequeue_err_skb); 5361 5362 /** 5363 * skb_clone_sk - create clone of skb, and take reference to socket 5364 * @skb: the skb to clone 5365 * 5366 * This function creates a clone of a buffer that holds a reference on 5367 * sk_refcnt. Buffers created via this function are meant to be 5368 * returned using sock_queue_err_skb, or free via kfree_skb. 5369 * 5370 * When passing buffers allocated with this function to sock_queue_err_skb 5371 * it is necessary to wrap the call with sock_hold/sock_put in order to 5372 * prevent the socket from being released prior to being enqueued on 5373 * the sk_error_queue. 5374 */ 5375 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5376 { 5377 struct sock *sk = skb->sk; 5378 struct sk_buff *clone; 5379 5380 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5381 return NULL; 5382 5383 clone = skb_clone(skb, GFP_ATOMIC); 5384 if (!clone) { 5385 sock_put(sk); 5386 return NULL; 5387 } 5388 5389 clone->sk = sk; 5390 clone->destructor = sock_efree; 5391 5392 return clone; 5393 } 5394 EXPORT_SYMBOL(skb_clone_sk); 5395 5396 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5397 struct sock *sk, 5398 int tstype, 5399 bool opt_stats) 5400 { 5401 struct sock_exterr_skb *serr; 5402 int err; 5403 5404 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5405 5406 serr = SKB_EXT_ERR(skb); 5407 memset(serr, 0, sizeof(*serr)); 5408 serr->ee.ee_errno = ENOMSG; 5409 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5410 serr->ee.ee_info = tstype; 5411 serr->opt_stats = opt_stats; 5412 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5413 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5414 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5415 if (sk_is_tcp(sk)) 5416 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5417 } 5418 5419 err = sock_queue_err_skb(sk, skb); 5420 5421 if (err) 5422 kfree_skb(skb); 5423 } 5424 5425 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5426 { 5427 bool ret; 5428 5429 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5430 return true; 5431 5432 read_lock_bh(&sk->sk_callback_lock); 5433 ret = sk->sk_socket && sk->sk_socket->file && 5434 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5435 read_unlock_bh(&sk->sk_callback_lock); 5436 return ret; 5437 } 5438 5439 void skb_complete_tx_timestamp(struct sk_buff *skb, 5440 struct skb_shared_hwtstamps *hwtstamps) 5441 { 5442 struct sock *sk = skb->sk; 5443 5444 if (!skb_may_tx_timestamp(sk, false)) 5445 goto err; 5446 5447 /* Take a reference to prevent skb_orphan() from freeing the socket, 5448 * but only if the socket refcount is not zero. 5449 */ 5450 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5451 *skb_hwtstamps(skb) = *hwtstamps; 5452 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5453 sock_put(sk); 5454 return; 5455 } 5456 5457 err: 5458 kfree_skb(skb); 5459 } 5460 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5461 5462 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5463 const struct sk_buff *ack_skb, 5464 struct skb_shared_hwtstamps *hwtstamps, 5465 struct sock *sk, int tstype) 5466 { 5467 struct sk_buff *skb; 5468 bool tsonly, opt_stats = false; 5469 u32 tsflags; 5470 5471 if (!sk) 5472 return; 5473 5474 tsflags = READ_ONCE(sk->sk_tsflags); 5475 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5476 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5477 return; 5478 5479 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5480 if (!skb_may_tx_timestamp(sk, tsonly)) 5481 return; 5482 5483 if (tsonly) { 5484 #ifdef CONFIG_INET 5485 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5486 sk_is_tcp(sk)) { 5487 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5488 ack_skb); 5489 opt_stats = true; 5490 } else 5491 #endif 5492 skb = alloc_skb(0, GFP_ATOMIC); 5493 } else { 5494 skb = skb_clone(orig_skb, GFP_ATOMIC); 5495 5496 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5497 kfree_skb(skb); 5498 return; 5499 } 5500 } 5501 if (!skb) 5502 return; 5503 5504 if (tsonly) { 5505 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5506 SKBTX_ANY_TSTAMP; 5507 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5508 } 5509 5510 if (hwtstamps) 5511 *skb_hwtstamps(skb) = *hwtstamps; 5512 else 5513 __net_timestamp(skb); 5514 5515 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5516 } 5517 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5518 5519 void skb_tstamp_tx(struct sk_buff *orig_skb, 5520 struct skb_shared_hwtstamps *hwtstamps) 5521 { 5522 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5523 SCM_TSTAMP_SND); 5524 } 5525 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5526 5527 #ifdef CONFIG_WIRELESS 5528 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5529 { 5530 struct sock *sk = skb->sk; 5531 struct sock_exterr_skb *serr; 5532 int err = 1; 5533 5534 skb->wifi_acked_valid = 1; 5535 skb->wifi_acked = acked; 5536 5537 serr = SKB_EXT_ERR(skb); 5538 memset(serr, 0, sizeof(*serr)); 5539 serr->ee.ee_errno = ENOMSG; 5540 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5541 5542 /* Take a reference to prevent skb_orphan() from freeing the socket, 5543 * but only if the socket refcount is not zero. 5544 */ 5545 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5546 err = sock_queue_err_skb(sk, skb); 5547 sock_put(sk); 5548 } 5549 if (err) 5550 kfree_skb(skb); 5551 } 5552 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5553 #endif /* CONFIG_WIRELESS */ 5554 5555 /** 5556 * skb_partial_csum_set - set up and verify partial csum values for packet 5557 * @skb: the skb to set 5558 * @start: the number of bytes after skb->data to start checksumming. 5559 * @off: the offset from start to place the checksum. 5560 * 5561 * For untrusted partially-checksummed packets, we need to make sure the values 5562 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5563 * 5564 * This function checks and sets those values and skb->ip_summed: if this 5565 * returns false you should drop the packet. 5566 */ 5567 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5568 { 5569 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5570 u32 csum_start = skb_headroom(skb) + (u32)start; 5571 5572 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5573 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5574 start, off, skb_headroom(skb), skb_headlen(skb)); 5575 return false; 5576 } 5577 skb->ip_summed = CHECKSUM_PARTIAL; 5578 skb->csum_start = csum_start; 5579 skb->csum_offset = off; 5580 skb->transport_header = csum_start; 5581 return true; 5582 } 5583 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5584 5585 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5586 unsigned int max) 5587 { 5588 if (skb_headlen(skb) >= len) 5589 return 0; 5590 5591 /* If we need to pullup then pullup to the max, so we 5592 * won't need to do it again. 5593 */ 5594 if (max > skb->len) 5595 max = skb->len; 5596 5597 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5598 return -ENOMEM; 5599 5600 if (skb_headlen(skb) < len) 5601 return -EPROTO; 5602 5603 return 0; 5604 } 5605 5606 #define MAX_TCP_HDR_LEN (15 * 4) 5607 5608 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5609 typeof(IPPROTO_IP) proto, 5610 unsigned int off) 5611 { 5612 int err; 5613 5614 switch (proto) { 5615 case IPPROTO_TCP: 5616 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5617 off + MAX_TCP_HDR_LEN); 5618 if (!err && !skb_partial_csum_set(skb, off, 5619 offsetof(struct tcphdr, 5620 check))) 5621 err = -EPROTO; 5622 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5623 5624 case IPPROTO_UDP: 5625 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5626 off + sizeof(struct udphdr)); 5627 if (!err && !skb_partial_csum_set(skb, off, 5628 offsetof(struct udphdr, 5629 check))) 5630 err = -EPROTO; 5631 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5632 } 5633 5634 return ERR_PTR(-EPROTO); 5635 } 5636 5637 /* This value should be large enough to cover a tagged ethernet header plus 5638 * maximally sized IP and TCP or UDP headers. 5639 */ 5640 #define MAX_IP_HDR_LEN 128 5641 5642 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5643 { 5644 unsigned int off; 5645 bool fragment; 5646 __sum16 *csum; 5647 int err; 5648 5649 fragment = false; 5650 5651 err = skb_maybe_pull_tail(skb, 5652 sizeof(struct iphdr), 5653 MAX_IP_HDR_LEN); 5654 if (err < 0) 5655 goto out; 5656 5657 if (ip_is_fragment(ip_hdr(skb))) 5658 fragment = true; 5659 5660 off = ip_hdrlen(skb); 5661 5662 err = -EPROTO; 5663 5664 if (fragment) 5665 goto out; 5666 5667 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5668 if (IS_ERR(csum)) 5669 return PTR_ERR(csum); 5670 5671 if (recalculate) 5672 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5673 ip_hdr(skb)->daddr, 5674 skb->len - off, 5675 ip_hdr(skb)->protocol, 0); 5676 err = 0; 5677 5678 out: 5679 return err; 5680 } 5681 5682 /* This value should be large enough to cover a tagged ethernet header plus 5683 * an IPv6 header, all options, and a maximal TCP or UDP header. 5684 */ 5685 #define MAX_IPV6_HDR_LEN 256 5686 5687 #define OPT_HDR(type, skb, off) \ 5688 (type *)(skb_network_header(skb) + (off)) 5689 5690 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5691 { 5692 int err; 5693 u8 nexthdr; 5694 unsigned int off; 5695 unsigned int len; 5696 bool fragment; 5697 bool done; 5698 __sum16 *csum; 5699 5700 fragment = false; 5701 done = false; 5702 5703 off = sizeof(struct ipv6hdr); 5704 5705 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5706 if (err < 0) 5707 goto out; 5708 5709 nexthdr = ipv6_hdr(skb)->nexthdr; 5710 5711 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5712 while (off <= len && !done) { 5713 switch (nexthdr) { 5714 case IPPROTO_DSTOPTS: 5715 case IPPROTO_HOPOPTS: 5716 case IPPROTO_ROUTING: { 5717 struct ipv6_opt_hdr *hp; 5718 5719 err = skb_maybe_pull_tail(skb, 5720 off + 5721 sizeof(struct ipv6_opt_hdr), 5722 MAX_IPV6_HDR_LEN); 5723 if (err < 0) 5724 goto out; 5725 5726 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5727 nexthdr = hp->nexthdr; 5728 off += ipv6_optlen(hp); 5729 break; 5730 } 5731 case IPPROTO_AH: { 5732 struct ip_auth_hdr *hp; 5733 5734 err = skb_maybe_pull_tail(skb, 5735 off + 5736 sizeof(struct ip_auth_hdr), 5737 MAX_IPV6_HDR_LEN); 5738 if (err < 0) 5739 goto out; 5740 5741 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5742 nexthdr = hp->nexthdr; 5743 off += ipv6_authlen(hp); 5744 break; 5745 } 5746 case IPPROTO_FRAGMENT: { 5747 struct frag_hdr *hp; 5748 5749 err = skb_maybe_pull_tail(skb, 5750 off + 5751 sizeof(struct frag_hdr), 5752 MAX_IPV6_HDR_LEN); 5753 if (err < 0) 5754 goto out; 5755 5756 hp = OPT_HDR(struct frag_hdr, skb, off); 5757 5758 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5759 fragment = true; 5760 5761 nexthdr = hp->nexthdr; 5762 off += sizeof(struct frag_hdr); 5763 break; 5764 } 5765 default: 5766 done = true; 5767 break; 5768 } 5769 } 5770 5771 err = -EPROTO; 5772 5773 if (!done || fragment) 5774 goto out; 5775 5776 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5777 if (IS_ERR(csum)) 5778 return PTR_ERR(csum); 5779 5780 if (recalculate) 5781 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5782 &ipv6_hdr(skb)->daddr, 5783 skb->len - off, nexthdr, 0); 5784 err = 0; 5785 5786 out: 5787 return err; 5788 } 5789 5790 /** 5791 * skb_checksum_setup - set up partial checksum offset 5792 * @skb: the skb to set up 5793 * @recalculate: if true the pseudo-header checksum will be recalculated 5794 */ 5795 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5796 { 5797 int err; 5798 5799 switch (skb->protocol) { 5800 case htons(ETH_P_IP): 5801 err = skb_checksum_setup_ipv4(skb, recalculate); 5802 break; 5803 5804 case htons(ETH_P_IPV6): 5805 err = skb_checksum_setup_ipv6(skb, recalculate); 5806 break; 5807 5808 default: 5809 err = -EPROTO; 5810 break; 5811 } 5812 5813 return err; 5814 } 5815 EXPORT_SYMBOL(skb_checksum_setup); 5816 5817 /** 5818 * skb_checksum_maybe_trim - maybe trims the given skb 5819 * @skb: the skb to check 5820 * @transport_len: the data length beyond the network header 5821 * 5822 * Checks whether the given skb has data beyond the given transport length. 5823 * If so, returns a cloned skb trimmed to this transport length. 5824 * Otherwise returns the provided skb. Returns NULL in error cases 5825 * (e.g. transport_len exceeds skb length or out-of-memory). 5826 * 5827 * Caller needs to set the skb transport header and free any returned skb if it 5828 * differs from the provided skb. 5829 */ 5830 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5831 unsigned int transport_len) 5832 { 5833 struct sk_buff *skb_chk; 5834 unsigned int len = skb_transport_offset(skb) + transport_len; 5835 int ret; 5836 5837 if (skb->len < len) 5838 return NULL; 5839 else if (skb->len == len) 5840 return skb; 5841 5842 skb_chk = skb_clone(skb, GFP_ATOMIC); 5843 if (!skb_chk) 5844 return NULL; 5845 5846 ret = pskb_trim_rcsum(skb_chk, len); 5847 if (ret) { 5848 kfree_skb(skb_chk); 5849 return NULL; 5850 } 5851 5852 return skb_chk; 5853 } 5854 5855 /** 5856 * skb_checksum_trimmed - validate checksum of an skb 5857 * @skb: the skb to check 5858 * @transport_len: the data length beyond the network header 5859 * @skb_chkf: checksum function to use 5860 * 5861 * Applies the given checksum function skb_chkf to the provided skb. 5862 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5863 * 5864 * If the skb has data beyond the given transport length, then a 5865 * trimmed & cloned skb is checked and returned. 5866 * 5867 * Caller needs to set the skb transport header and free any returned skb if it 5868 * differs from the provided skb. 5869 */ 5870 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5871 unsigned int transport_len, 5872 __sum16(*skb_chkf)(struct sk_buff *skb)) 5873 { 5874 struct sk_buff *skb_chk; 5875 unsigned int offset = skb_transport_offset(skb); 5876 __sum16 ret; 5877 5878 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5879 if (!skb_chk) 5880 goto err; 5881 5882 if (!pskb_may_pull(skb_chk, offset)) 5883 goto err; 5884 5885 skb_pull_rcsum(skb_chk, offset); 5886 ret = skb_chkf(skb_chk); 5887 skb_push_rcsum(skb_chk, offset); 5888 5889 if (ret) 5890 goto err; 5891 5892 return skb_chk; 5893 5894 err: 5895 if (skb_chk && skb_chk != skb) 5896 kfree_skb(skb_chk); 5897 5898 return NULL; 5899 5900 } 5901 EXPORT_SYMBOL(skb_checksum_trimmed); 5902 5903 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5904 { 5905 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5906 skb->dev->name); 5907 } 5908 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5909 5910 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5911 { 5912 if (head_stolen) { 5913 skb_release_head_state(skb); 5914 kmem_cache_free(net_hotdata.skbuff_cache, skb); 5915 } else { 5916 __kfree_skb(skb); 5917 } 5918 } 5919 EXPORT_SYMBOL(kfree_skb_partial); 5920 5921 /** 5922 * skb_try_coalesce - try to merge skb to prior one 5923 * @to: prior buffer 5924 * @from: buffer to add 5925 * @fragstolen: pointer to boolean 5926 * @delta_truesize: how much more was allocated than was requested 5927 */ 5928 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5929 bool *fragstolen, int *delta_truesize) 5930 { 5931 struct skb_shared_info *to_shinfo, *from_shinfo; 5932 int i, delta, len = from->len; 5933 5934 *fragstolen = false; 5935 5936 if (skb_cloned(to)) 5937 return false; 5938 5939 /* In general, avoid mixing page_pool and non-page_pool allocated 5940 * pages within the same SKB. In theory we could take full 5941 * references if @from is cloned and !@to->pp_recycle but its 5942 * tricky (due to potential race with the clone disappearing) and 5943 * rare, so not worth dealing with. 5944 */ 5945 if (to->pp_recycle != from->pp_recycle) 5946 return false; 5947 5948 if (len <= skb_tailroom(to)) { 5949 if (len) 5950 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5951 *delta_truesize = 0; 5952 return true; 5953 } 5954 5955 to_shinfo = skb_shinfo(to); 5956 from_shinfo = skb_shinfo(from); 5957 if (to_shinfo->frag_list || from_shinfo->frag_list) 5958 return false; 5959 if (skb_zcopy(to) || skb_zcopy(from)) 5960 return false; 5961 5962 if (skb_headlen(from) != 0) { 5963 struct page *page; 5964 unsigned int offset; 5965 5966 if (to_shinfo->nr_frags + 5967 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5968 return false; 5969 5970 if (skb_head_is_locked(from)) 5971 return false; 5972 5973 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5974 5975 page = virt_to_head_page(from->head); 5976 offset = from->data - (unsigned char *)page_address(page); 5977 5978 skb_fill_page_desc(to, to_shinfo->nr_frags, 5979 page, offset, skb_headlen(from)); 5980 *fragstolen = true; 5981 } else { 5982 if (to_shinfo->nr_frags + 5983 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5984 return false; 5985 5986 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5987 } 5988 5989 WARN_ON_ONCE(delta < len); 5990 5991 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5992 from_shinfo->frags, 5993 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5994 to_shinfo->nr_frags += from_shinfo->nr_frags; 5995 5996 if (!skb_cloned(from)) 5997 from_shinfo->nr_frags = 0; 5998 5999 /* if the skb is not cloned this does nothing 6000 * since we set nr_frags to 0. 6001 */ 6002 if (skb_pp_frag_ref(from)) { 6003 for (i = 0; i < from_shinfo->nr_frags; i++) 6004 __skb_frag_ref(&from_shinfo->frags[i]); 6005 } 6006 6007 to->truesize += delta; 6008 to->len += len; 6009 to->data_len += len; 6010 6011 *delta_truesize = delta; 6012 return true; 6013 } 6014 EXPORT_SYMBOL(skb_try_coalesce); 6015 6016 /** 6017 * skb_scrub_packet - scrub an skb 6018 * 6019 * @skb: buffer to clean 6020 * @xnet: packet is crossing netns 6021 * 6022 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 6023 * into/from a tunnel. Some information have to be cleared during these 6024 * operations. 6025 * skb_scrub_packet can also be used to clean a skb before injecting it in 6026 * another namespace (@xnet == true). We have to clear all information in the 6027 * skb that could impact namespace isolation. 6028 */ 6029 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6030 { 6031 skb->pkt_type = PACKET_HOST; 6032 skb->skb_iif = 0; 6033 skb->ignore_df = 0; 6034 skb_dst_drop(skb); 6035 skb_ext_reset(skb); 6036 nf_reset_ct(skb); 6037 nf_reset_trace(skb); 6038 6039 #ifdef CONFIG_NET_SWITCHDEV 6040 skb->offload_fwd_mark = 0; 6041 skb->offload_l3_fwd_mark = 0; 6042 #endif 6043 6044 if (!xnet) 6045 return; 6046 6047 ipvs_reset(skb); 6048 skb->mark = 0; 6049 skb_clear_tstamp(skb); 6050 } 6051 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6052 6053 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6054 { 6055 int mac_len, meta_len; 6056 void *meta; 6057 6058 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6059 kfree_skb(skb); 6060 return NULL; 6061 } 6062 6063 mac_len = skb->data - skb_mac_header(skb); 6064 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6065 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6066 mac_len - VLAN_HLEN - ETH_TLEN); 6067 } 6068 6069 meta_len = skb_metadata_len(skb); 6070 if (meta_len) { 6071 meta = skb_metadata_end(skb) - meta_len; 6072 memmove(meta + VLAN_HLEN, meta, meta_len); 6073 } 6074 6075 skb->mac_header += VLAN_HLEN; 6076 return skb; 6077 } 6078 6079 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6080 { 6081 struct vlan_hdr *vhdr; 6082 u16 vlan_tci; 6083 6084 if (unlikely(skb_vlan_tag_present(skb))) { 6085 /* vlan_tci is already set-up so leave this for another time */ 6086 return skb; 6087 } 6088 6089 skb = skb_share_check(skb, GFP_ATOMIC); 6090 if (unlikely(!skb)) 6091 goto err_free; 6092 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6093 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6094 goto err_free; 6095 6096 vhdr = (struct vlan_hdr *)skb->data; 6097 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6098 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6099 6100 skb_pull_rcsum(skb, VLAN_HLEN); 6101 vlan_set_encap_proto(skb, vhdr); 6102 6103 skb = skb_reorder_vlan_header(skb); 6104 if (unlikely(!skb)) 6105 goto err_free; 6106 6107 skb_reset_network_header(skb); 6108 if (!skb_transport_header_was_set(skb)) 6109 skb_reset_transport_header(skb); 6110 skb_reset_mac_len(skb); 6111 6112 return skb; 6113 6114 err_free: 6115 kfree_skb(skb); 6116 return NULL; 6117 } 6118 EXPORT_SYMBOL(skb_vlan_untag); 6119 6120 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6121 { 6122 if (!pskb_may_pull(skb, write_len)) 6123 return -ENOMEM; 6124 6125 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6126 return 0; 6127 6128 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6129 } 6130 EXPORT_SYMBOL(skb_ensure_writable); 6131 6132 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6133 { 6134 int needed_headroom = dev->needed_headroom; 6135 int needed_tailroom = dev->needed_tailroom; 6136 6137 /* For tail taggers, we need to pad short frames ourselves, to ensure 6138 * that the tail tag does not fail at its role of being at the end of 6139 * the packet, once the conduit interface pads the frame. Account for 6140 * that pad length here, and pad later. 6141 */ 6142 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6143 needed_tailroom += ETH_ZLEN - skb->len; 6144 /* skb_headroom() returns unsigned int... */ 6145 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6146 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6147 6148 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6149 /* No reallocation needed, yay! */ 6150 return 0; 6151 6152 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6153 GFP_ATOMIC); 6154 } 6155 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6156 6157 /* remove VLAN header from packet and update csum accordingly. 6158 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6159 */ 6160 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6161 { 6162 int offset = skb->data - skb_mac_header(skb); 6163 int err; 6164 6165 if (WARN_ONCE(offset, 6166 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6167 offset)) { 6168 return -EINVAL; 6169 } 6170 6171 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6172 if (unlikely(err)) 6173 return err; 6174 6175 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6176 6177 vlan_remove_tag(skb, vlan_tci); 6178 6179 skb->mac_header += VLAN_HLEN; 6180 6181 if (skb_network_offset(skb) < ETH_HLEN) 6182 skb_set_network_header(skb, ETH_HLEN); 6183 6184 skb_reset_mac_len(skb); 6185 6186 return err; 6187 } 6188 EXPORT_SYMBOL(__skb_vlan_pop); 6189 6190 /* Pop a vlan tag either from hwaccel or from payload. 6191 * Expects skb->data at mac header. 6192 */ 6193 int skb_vlan_pop(struct sk_buff *skb) 6194 { 6195 u16 vlan_tci; 6196 __be16 vlan_proto; 6197 int err; 6198 6199 if (likely(skb_vlan_tag_present(skb))) { 6200 __vlan_hwaccel_clear_tag(skb); 6201 } else { 6202 if (unlikely(!eth_type_vlan(skb->protocol))) 6203 return 0; 6204 6205 err = __skb_vlan_pop(skb, &vlan_tci); 6206 if (err) 6207 return err; 6208 } 6209 /* move next vlan tag to hw accel tag */ 6210 if (likely(!eth_type_vlan(skb->protocol))) 6211 return 0; 6212 6213 vlan_proto = skb->protocol; 6214 err = __skb_vlan_pop(skb, &vlan_tci); 6215 if (unlikely(err)) 6216 return err; 6217 6218 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6219 return 0; 6220 } 6221 EXPORT_SYMBOL(skb_vlan_pop); 6222 6223 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6224 * Expects skb->data at mac header. 6225 */ 6226 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6227 { 6228 if (skb_vlan_tag_present(skb)) { 6229 int offset = skb->data - skb_mac_header(skb); 6230 int err; 6231 6232 if (WARN_ONCE(offset, 6233 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6234 offset)) { 6235 return -EINVAL; 6236 } 6237 6238 err = __vlan_insert_tag(skb, skb->vlan_proto, 6239 skb_vlan_tag_get(skb)); 6240 if (err) 6241 return err; 6242 6243 skb->protocol = skb->vlan_proto; 6244 skb->mac_len += VLAN_HLEN; 6245 6246 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6247 } 6248 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6249 return 0; 6250 } 6251 EXPORT_SYMBOL(skb_vlan_push); 6252 6253 /** 6254 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6255 * 6256 * @skb: Socket buffer to modify 6257 * 6258 * Drop the Ethernet header of @skb. 6259 * 6260 * Expects that skb->data points to the mac header and that no VLAN tags are 6261 * present. 6262 * 6263 * Returns 0 on success, -errno otherwise. 6264 */ 6265 int skb_eth_pop(struct sk_buff *skb) 6266 { 6267 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6268 skb_network_offset(skb) < ETH_HLEN) 6269 return -EPROTO; 6270 6271 skb_pull_rcsum(skb, ETH_HLEN); 6272 skb_reset_mac_header(skb); 6273 skb_reset_mac_len(skb); 6274 6275 return 0; 6276 } 6277 EXPORT_SYMBOL(skb_eth_pop); 6278 6279 /** 6280 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6281 * 6282 * @skb: Socket buffer to modify 6283 * @dst: Destination MAC address of the new header 6284 * @src: Source MAC address of the new header 6285 * 6286 * Prepend @skb with a new Ethernet header. 6287 * 6288 * Expects that skb->data points to the mac header, which must be empty. 6289 * 6290 * Returns 0 on success, -errno otherwise. 6291 */ 6292 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6293 const unsigned char *src) 6294 { 6295 struct ethhdr *eth; 6296 int err; 6297 6298 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6299 return -EPROTO; 6300 6301 err = skb_cow_head(skb, sizeof(*eth)); 6302 if (err < 0) 6303 return err; 6304 6305 skb_push(skb, sizeof(*eth)); 6306 skb_reset_mac_header(skb); 6307 skb_reset_mac_len(skb); 6308 6309 eth = eth_hdr(skb); 6310 ether_addr_copy(eth->h_dest, dst); 6311 ether_addr_copy(eth->h_source, src); 6312 eth->h_proto = skb->protocol; 6313 6314 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6315 6316 return 0; 6317 } 6318 EXPORT_SYMBOL(skb_eth_push); 6319 6320 /* Update the ethertype of hdr and the skb csum value if required. */ 6321 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6322 __be16 ethertype) 6323 { 6324 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6325 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6326 6327 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6328 } 6329 6330 hdr->h_proto = ethertype; 6331 } 6332 6333 /** 6334 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6335 * the packet 6336 * 6337 * @skb: buffer 6338 * @mpls_lse: MPLS label stack entry to push 6339 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6340 * @mac_len: length of the MAC header 6341 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6342 * ethernet 6343 * 6344 * Expects skb->data at mac header. 6345 * 6346 * Returns 0 on success, -errno otherwise. 6347 */ 6348 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6349 int mac_len, bool ethernet) 6350 { 6351 struct mpls_shim_hdr *lse; 6352 int err; 6353 6354 if (unlikely(!eth_p_mpls(mpls_proto))) 6355 return -EINVAL; 6356 6357 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6358 if (skb->encapsulation) 6359 return -EINVAL; 6360 6361 err = skb_cow_head(skb, MPLS_HLEN); 6362 if (unlikely(err)) 6363 return err; 6364 6365 if (!skb->inner_protocol) { 6366 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6367 skb_set_inner_protocol(skb, skb->protocol); 6368 } 6369 6370 skb_push(skb, MPLS_HLEN); 6371 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6372 mac_len); 6373 skb_reset_mac_header(skb); 6374 skb_set_network_header(skb, mac_len); 6375 skb_reset_mac_len(skb); 6376 6377 lse = mpls_hdr(skb); 6378 lse->label_stack_entry = mpls_lse; 6379 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6380 6381 if (ethernet && mac_len >= ETH_HLEN) 6382 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6383 skb->protocol = mpls_proto; 6384 6385 return 0; 6386 } 6387 EXPORT_SYMBOL_GPL(skb_mpls_push); 6388 6389 /** 6390 * skb_mpls_pop() - pop the outermost MPLS header 6391 * 6392 * @skb: buffer 6393 * @next_proto: ethertype of header after popped MPLS header 6394 * @mac_len: length of the MAC header 6395 * @ethernet: flag to indicate if the packet is ethernet 6396 * 6397 * Expects skb->data at mac header. 6398 * 6399 * Returns 0 on success, -errno otherwise. 6400 */ 6401 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6402 bool ethernet) 6403 { 6404 int err; 6405 6406 if (unlikely(!eth_p_mpls(skb->protocol))) 6407 return 0; 6408 6409 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6410 if (unlikely(err)) 6411 return err; 6412 6413 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6414 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6415 mac_len); 6416 6417 __skb_pull(skb, MPLS_HLEN); 6418 skb_reset_mac_header(skb); 6419 skb_set_network_header(skb, mac_len); 6420 6421 if (ethernet && mac_len >= ETH_HLEN) { 6422 struct ethhdr *hdr; 6423 6424 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6425 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6426 skb_mod_eth_type(skb, hdr, next_proto); 6427 } 6428 skb->protocol = next_proto; 6429 6430 return 0; 6431 } 6432 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6433 6434 /** 6435 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6436 * 6437 * @skb: buffer 6438 * @mpls_lse: new MPLS label stack entry to update to 6439 * 6440 * Expects skb->data at mac header. 6441 * 6442 * Returns 0 on success, -errno otherwise. 6443 */ 6444 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6445 { 6446 int err; 6447 6448 if (unlikely(!eth_p_mpls(skb->protocol))) 6449 return -EINVAL; 6450 6451 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6452 if (unlikely(err)) 6453 return err; 6454 6455 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6456 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6457 6458 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6459 } 6460 6461 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6462 6463 return 0; 6464 } 6465 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6466 6467 /** 6468 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6469 * 6470 * @skb: buffer 6471 * 6472 * Expects skb->data at mac header. 6473 * 6474 * Returns 0 on success, -errno otherwise. 6475 */ 6476 int skb_mpls_dec_ttl(struct sk_buff *skb) 6477 { 6478 u32 lse; 6479 u8 ttl; 6480 6481 if (unlikely(!eth_p_mpls(skb->protocol))) 6482 return -EINVAL; 6483 6484 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6485 return -ENOMEM; 6486 6487 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6488 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6489 if (!--ttl) 6490 return -EINVAL; 6491 6492 lse &= ~MPLS_LS_TTL_MASK; 6493 lse |= ttl << MPLS_LS_TTL_SHIFT; 6494 6495 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6496 } 6497 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6498 6499 /** 6500 * alloc_skb_with_frags - allocate skb with page frags 6501 * 6502 * @header_len: size of linear part 6503 * @data_len: needed length in frags 6504 * @order: max page order desired. 6505 * @errcode: pointer to error code if any 6506 * @gfp_mask: allocation mask 6507 * 6508 * This can be used to allocate a paged skb, given a maximal order for frags. 6509 */ 6510 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6511 unsigned long data_len, 6512 int order, 6513 int *errcode, 6514 gfp_t gfp_mask) 6515 { 6516 unsigned long chunk; 6517 struct sk_buff *skb; 6518 struct page *page; 6519 int nr_frags = 0; 6520 6521 *errcode = -EMSGSIZE; 6522 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6523 return NULL; 6524 6525 *errcode = -ENOBUFS; 6526 skb = alloc_skb(header_len, gfp_mask); 6527 if (!skb) 6528 return NULL; 6529 6530 while (data_len) { 6531 if (nr_frags == MAX_SKB_FRAGS - 1) 6532 goto failure; 6533 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6534 order--; 6535 6536 if (order) { 6537 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6538 __GFP_COMP | 6539 __GFP_NOWARN, 6540 order); 6541 if (!page) { 6542 order--; 6543 continue; 6544 } 6545 } else { 6546 page = alloc_page(gfp_mask); 6547 if (!page) 6548 goto failure; 6549 } 6550 chunk = min_t(unsigned long, data_len, 6551 PAGE_SIZE << order); 6552 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6553 nr_frags++; 6554 skb->truesize += (PAGE_SIZE << order); 6555 data_len -= chunk; 6556 } 6557 return skb; 6558 6559 failure: 6560 kfree_skb(skb); 6561 return NULL; 6562 } 6563 EXPORT_SYMBOL(alloc_skb_with_frags); 6564 6565 /* carve out the first off bytes from skb when off < headlen */ 6566 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6567 const int headlen, gfp_t gfp_mask) 6568 { 6569 int i; 6570 unsigned int size = skb_end_offset(skb); 6571 int new_hlen = headlen - off; 6572 u8 *data; 6573 6574 if (skb_pfmemalloc(skb)) 6575 gfp_mask |= __GFP_MEMALLOC; 6576 6577 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6578 if (!data) 6579 return -ENOMEM; 6580 size = SKB_WITH_OVERHEAD(size); 6581 6582 /* Copy real data, and all frags */ 6583 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6584 skb->len -= off; 6585 6586 memcpy((struct skb_shared_info *)(data + size), 6587 skb_shinfo(skb), 6588 offsetof(struct skb_shared_info, 6589 frags[skb_shinfo(skb)->nr_frags])); 6590 if (skb_cloned(skb)) { 6591 /* drop the old head gracefully */ 6592 if (skb_orphan_frags(skb, gfp_mask)) { 6593 skb_kfree_head(data, size); 6594 return -ENOMEM; 6595 } 6596 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6597 skb_frag_ref(skb, i); 6598 if (skb_has_frag_list(skb)) 6599 skb_clone_fraglist(skb); 6600 skb_release_data(skb, SKB_CONSUMED); 6601 } else { 6602 /* we can reuse existing recount- all we did was 6603 * relocate values 6604 */ 6605 skb_free_head(skb); 6606 } 6607 6608 skb->head = data; 6609 skb->data = data; 6610 skb->head_frag = 0; 6611 skb_set_end_offset(skb, size); 6612 skb_set_tail_pointer(skb, skb_headlen(skb)); 6613 skb_headers_offset_update(skb, 0); 6614 skb->cloned = 0; 6615 skb->hdr_len = 0; 6616 skb->nohdr = 0; 6617 atomic_set(&skb_shinfo(skb)->dataref, 1); 6618 6619 return 0; 6620 } 6621 6622 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6623 6624 /* carve out the first eat bytes from skb's frag_list. May recurse into 6625 * pskb_carve() 6626 */ 6627 static int pskb_carve_frag_list(struct sk_buff *skb, 6628 struct skb_shared_info *shinfo, int eat, 6629 gfp_t gfp_mask) 6630 { 6631 struct sk_buff *list = shinfo->frag_list; 6632 struct sk_buff *clone = NULL; 6633 struct sk_buff *insp = NULL; 6634 6635 do { 6636 if (!list) { 6637 pr_err("Not enough bytes to eat. Want %d\n", eat); 6638 return -EFAULT; 6639 } 6640 if (list->len <= eat) { 6641 /* Eaten as whole. */ 6642 eat -= list->len; 6643 list = list->next; 6644 insp = list; 6645 } else { 6646 /* Eaten partially. */ 6647 if (skb_shared(list)) { 6648 clone = skb_clone(list, gfp_mask); 6649 if (!clone) 6650 return -ENOMEM; 6651 insp = list->next; 6652 list = clone; 6653 } else { 6654 /* This may be pulled without problems. */ 6655 insp = list; 6656 } 6657 if (pskb_carve(list, eat, gfp_mask) < 0) { 6658 kfree_skb(clone); 6659 return -ENOMEM; 6660 } 6661 break; 6662 } 6663 } while (eat); 6664 6665 /* Free pulled out fragments. */ 6666 while ((list = shinfo->frag_list) != insp) { 6667 shinfo->frag_list = list->next; 6668 consume_skb(list); 6669 } 6670 /* And insert new clone at head. */ 6671 if (clone) { 6672 clone->next = list; 6673 shinfo->frag_list = clone; 6674 } 6675 return 0; 6676 } 6677 6678 /* carve off first len bytes from skb. Split line (off) is in the 6679 * non-linear part of skb 6680 */ 6681 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6682 int pos, gfp_t gfp_mask) 6683 { 6684 int i, k = 0; 6685 unsigned int size = skb_end_offset(skb); 6686 u8 *data; 6687 const int nfrags = skb_shinfo(skb)->nr_frags; 6688 struct skb_shared_info *shinfo; 6689 6690 if (skb_pfmemalloc(skb)) 6691 gfp_mask |= __GFP_MEMALLOC; 6692 6693 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6694 if (!data) 6695 return -ENOMEM; 6696 size = SKB_WITH_OVERHEAD(size); 6697 6698 memcpy((struct skb_shared_info *)(data + size), 6699 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6700 if (skb_orphan_frags(skb, gfp_mask)) { 6701 skb_kfree_head(data, size); 6702 return -ENOMEM; 6703 } 6704 shinfo = (struct skb_shared_info *)(data + size); 6705 for (i = 0; i < nfrags; i++) { 6706 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6707 6708 if (pos + fsize > off) { 6709 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6710 6711 if (pos < off) { 6712 /* Split frag. 6713 * We have two variants in this case: 6714 * 1. Move all the frag to the second 6715 * part, if it is possible. F.e. 6716 * this approach is mandatory for TUX, 6717 * where splitting is expensive. 6718 * 2. Split is accurately. We make this. 6719 */ 6720 skb_frag_off_add(&shinfo->frags[0], off - pos); 6721 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6722 } 6723 skb_frag_ref(skb, i); 6724 k++; 6725 } 6726 pos += fsize; 6727 } 6728 shinfo->nr_frags = k; 6729 if (skb_has_frag_list(skb)) 6730 skb_clone_fraglist(skb); 6731 6732 /* split line is in frag list */ 6733 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6734 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6735 if (skb_has_frag_list(skb)) 6736 kfree_skb_list(skb_shinfo(skb)->frag_list); 6737 skb_kfree_head(data, size); 6738 return -ENOMEM; 6739 } 6740 skb_release_data(skb, SKB_CONSUMED); 6741 6742 skb->head = data; 6743 skb->head_frag = 0; 6744 skb->data = data; 6745 skb_set_end_offset(skb, size); 6746 skb_reset_tail_pointer(skb); 6747 skb_headers_offset_update(skb, 0); 6748 skb->cloned = 0; 6749 skb->hdr_len = 0; 6750 skb->nohdr = 0; 6751 skb->len -= off; 6752 skb->data_len = skb->len; 6753 atomic_set(&skb_shinfo(skb)->dataref, 1); 6754 return 0; 6755 } 6756 6757 /* remove len bytes from the beginning of the skb */ 6758 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6759 { 6760 int headlen = skb_headlen(skb); 6761 6762 if (len < headlen) 6763 return pskb_carve_inside_header(skb, len, headlen, gfp); 6764 else 6765 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6766 } 6767 6768 /* Extract to_copy bytes starting at off from skb, and return this in 6769 * a new skb 6770 */ 6771 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6772 int to_copy, gfp_t gfp) 6773 { 6774 struct sk_buff *clone = skb_clone(skb, gfp); 6775 6776 if (!clone) 6777 return NULL; 6778 6779 if (pskb_carve(clone, off, gfp) < 0 || 6780 pskb_trim(clone, to_copy)) { 6781 kfree_skb(clone); 6782 return NULL; 6783 } 6784 return clone; 6785 } 6786 EXPORT_SYMBOL(pskb_extract); 6787 6788 /** 6789 * skb_condense - try to get rid of fragments/frag_list if possible 6790 * @skb: buffer 6791 * 6792 * Can be used to save memory before skb is added to a busy queue. 6793 * If packet has bytes in frags and enough tail room in skb->head, 6794 * pull all of them, so that we can free the frags right now and adjust 6795 * truesize. 6796 * Notes: 6797 * We do not reallocate skb->head thus can not fail. 6798 * Caller must re-evaluate skb->truesize if needed. 6799 */ 6800 void skb_condense(struct sk_buff *skb) 6801 { 6802 if (skb->data_len) { 6803 if (skb->data_len > skb->end - skb->tail || 6804 skb_cloned(skb)) 6805 return; 6806 6807 /* Nice, we can free page frag(s) right now */ 6808 __pskb_pull_tail(skb, skb->data_len); 6809 } 6810 /* At this point, skb->truesize might be over estimated, 6811 * because skb had a fragment, and fragments do not tell 6812 * their truesize. 6813 * When we pulled its content into skb->head, fragment 6814 * was freed, but __pskb_pull_tail() could not possibly 6815 * adjust skb->truesize, not knowing the frag truesize. 6816 */ 6817 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6818 } 6819 EXPORT_SYMBOL(skb_condense); 6820 6821 #ifdef CONFIG_SKB_EXTENSIONS 6822 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6823 { 6824 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6825 } 6826 6827 /** 6828 * __skb_ext_alloc - allocate a new skb extensions storage 6829 * 6830 * @flags: See kmalloc(). 6831 * 6832 * Returns the newly allocated pointer. The pointer can later attached to a 6833 * skb via __skb_ext_set(). 6834 * Note: caller must handle the skb_ext as an opaque data. 6835 */ 6836 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6837 { 6838 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6839 6840 if (new) { 6841 memset(new->offset, 0, sizeof(new->offset)); 6842 refcount_set(&new->refcnt, 1); 6843 } 6844 6845 return new; 6846 } 6847 6848 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6849 unsigned int old_active) 6850 { 6851 struct skb_ext *new; 6852 6853 if (refcount_read(&old->refcnt) == 1) 6854 return old; 6855 6856 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6857 if (!new) 6858 return NULL; 6859 6860 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6861 refcount_set(&new->refcnt, 1); 6862 6863 #ifdef CONFIG_XFRM 6864 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6865 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6866 unsigned int i; 6867 6868 for (i = 0; i < sp->len; i++) 6869 xfrm_state_hold(sp->xvec[i]); 6870 } 6871 #endif 6872 #ifdef CONFIG_MCTP_FLOWS 6873 if (old_active & (1 << SKB_EXT_MCTP)) { 6874 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6875 6876 if (flow->key) 6877 refcount_inc(&flow->key->refs); 6878 } 6879 #endif 6880 __skb_ext_put(old); 6881 return new; 6882 } 6883 6884 /** 6885 * __skb_ext_set - attach the specified extension storage to this skb 6886 * @skb: buffer 6887 * @id: extension id 6888 * @ext: extension storage previously allocated via __skb_ext_alloc() 6889 * 6890 * Existing extensions, if any, are cleared. 6891 * 6892 * Returns the pointer to the extension. 6893 */ 6894 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6895 struct skb_ext *ext) 6896 { 6897 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6898 6899 skb_ext_put(skb); 6900 newlen = newoff + skb_ext_type_len[id]; 6901 ext->chunks = newlen; 6902 ext->offset[id] = newoff; 6903 skb->extensions = ext; 6904 skb->active_extensions = 1 << id; 6905 return skb_ext_get_ptr(ext, id); 6906 } 6907 6908 /** 6909 * skb_ext_add - allocate space for given extension, COW if needed 6910 * @skb: buffer 6911 * @id: extension to allocate space for 6912 * 6913 * Allocates enough space for the given extension. 6914 * If the extension is already present, a pointer to that extension 6915 * is returned. 6916 * 6917 * If the skb was cloned, COW applies and the returned memory can be 6918 * modified without changing the extension space of clones buffers. 6919 * 6920 * Returns pointer to the extension or NULL on allocation failure. 6921 */ 6922 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6923 { 6924 struct skb_ext *new, *old = NULL; 6925 unsigned int newlen, newoff; 6926 6927 if (skb->active_extensions) { 6928 old = skb->extensions; 6929 6930 new = skb_ext_maybe_cow(old, skb->active_extensions); 6931 if (!new) 6932 return NULL; 6933 6934 if (__skb_ext_exist(new, id)) 6935 goto set_active; 6936 6937 newoff = new->chunks; 6938 } else { 6939 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6940 6941 new = __skb_ext_alloc(GFP_ATOMIC); 6942 if (!new) 6943 return NULL; 6944 } 6945 6946 newlen = newoff + skb_ext_type_len[id]; 6947 new->chunks = newlen; 6948 new->offset[id] = newoff; 6949 set_active: 6950 skb->slow_gro = 1; 6951 skb->extensions = new; 6952 skb->active_extensions |= 1 << id; 6953 return skb_ext_get_ptr(new, id); 6954 } 6955 EXPORT_SYMBOL(skb_ext_add); 6956 6957 #ifdef CONFIG_XFRM 6958 static void skb_ext_put_sp(struct sec_path *sp) 6959 { 6960 unsigned int i; 6961 6962 for (i = 0; i < sp->len; i++) 6963 xfrm_state_put(sp->xvec[i]); 6964 } 6965 #endif 6966 6967 #ifdef CONFIG_MCTP_FLOWS 6968 static void skb_ext_put_mctp(struct mctp_flow *flow) 6969 { 6970 if (flow->key) 6971 mctp_key_unref(flow->key); 6972 } 6973 #endif 6974 6975 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6976 { 6977 struct skb_ext *ext = skb->extensions; 6978 6979 skb->active_extensions &= ~(1 << id); 6980 if (skb->active_extensions == 0) { 6981 skb->extensions = NULL; 6982 __skb_ext_put(ext); 6983 #ifdef CONFIG_XFRM 6984 } else if (id == SKB_EXT_SEC_PATH && 6985 refcount_read(&ext->refcnt) == 1) { 6986 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6987 6988 skb_ext_put_sp(sp); 6989 sp->len = 0; 6990 #endif 6991 } 6992 } 6993 EXPORT_SYMBOL(__skb_ext_del); 6994 6995 void __skb_ext_put(struct skb_ext *ext) 6996 { 6997 /* If this is last clone, nothing can increment 6998 * it after check passes. Avoids one atomic op. 6999 */ 7000 if (refcount_read(&ext->refcnt) == 1) 7001 goto free_now; 7002 7003 if (!refcount_dec_and_test(&ext->refcnt)) 7004 return; 7005 free_now: 7006 #ifdef CONFIG_XFRM 7007 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7008 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7009 #endif 7010 #ifdef CONFIG_MCTP_FLOWS 7011 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7012 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7013 #endif 7014 7015 kmem_cache_free(skbuff_ext_cache, ext); 7016 } 7017 EXPORT_SYMBOL(__skb_ext_put); 7018 #endif /* CONFIG_SKB_EXTENSIONS */ 7019 7020 static void kfree_skb_napi_cache(struct sk_buff *skb) 7021 { 7022 /* if SKB is a clone, don't handle this case */ 7023 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7024 __kfree_skb(skb); 7025 return; 7026 } 7027 7028 local_bh_disable(); 7029 __napi_kfree_skb(skb, SKB_CONSUMED); 7030 local_bh_enable(); 7031 } 7032 7033 /** 7034 * skb_attempt_defer_free - queue skb for remote freeing 7035 * @skb: buffer 7036 * 7037 * Put @skb in a per-cpu list, using the cpu which 7038 * allocated the skb/pages to reduce false sharing 7039 * and memory zone spinlock contention. 7040 */ 7041 void skb_attempt_defer_free(struct sk_buff *skb) 7042 { 7043 int cpu = skb->alloc_cpu; 7044 struct softnet_data *sd; 7045 unsigned int defer_max; 7046 bool kick; 7047 7048 if (cpu == raw_smp_processor_id() || 7049 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7050 !cpu_online(cpu)) { 7051 nodefer: kfree_skb_napi_cache(skb); 7052 return; 7053 } 7054 7055 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7056 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7057 7058 sd = &per_cpu(softnet_data, cpu); 7059 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7060 if (READ_ONCE(sd->defer_count) >= defer_max) 7061 goto nodefer; 7062 7063 spin_lock_bh(&sd->defer_lock); 7064 /* Send an IPI every time queue reaches half capacity. */ 7065 kick = sd->defer_count == (defer_max >> 1); 7066 /* Paired with the READ_ONCE() few lines above */ 7067 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7068 7069 skb->next = sd->defer_list; 7070 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7071 WRITE_ONCE(sd->defer_list, skb); 7072 spin_unlock_bh(&sd->defer_lock); 7073 7074 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7075 * if we are unlucky enough (this seems very unlikely). 7076 */ 7077 if (unlikely(kick)) 7078 kick_defer_list_purge(sd, cpu); 7079 } 7080 7081 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7082 size_t offset, size_t len) 7083 { 7084 const char *kaddr; 7085 __wsum csum; 7086 7087 kaddr = kmap_local_page(page); 7088 csum = csum_partial(kaddr + offset, len, 0); 7089 kunmap_local(kaddr); 7090 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7091 } 7092 7093 /** 7094 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7095 * @skb: The buffer to add pages to 7096 * @iter: Iterator representing the pages to be added 7097 * @maxsize: Maximum amount of pages to be added 7098 * @gfp: Allocation flags 7099 * 7100 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7101 * extracts pages from an iterator and adds them to the socket buffer if 7102 * possible, copying them to fragments if not possible (such as if they're slab 7103 * pages). 7104 * 7105 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7106 * insufficient space in the buffer to transfer anything. 7107 */ 7108 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7109 ssize_t maxsize, gfp_t gfp) 7110 { 7111 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7112 struct page *pages[8], **ppages = pages; 7113 ssize_t spliced = 0, ret = 0; 7114 unsigned int i; 7115 7116 while (iter->count > 0) { 7117 ssize_t space, nr, len; 7118 size_t off; 7119 7120 ret = -EMSGSIZE; 7121 space = frag_limit - skb_shinfo(skb)->nr_frags; 7122 if (space < 0) 7123 break; 7124 7125 /* We might be able to coalesce without increasing nr_frags */ 7126 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7127 7128 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7129 if (len <= 0) { 7130 ret = len ?: -EIO; 7131 break; 7132 } 7133 7134 i = 0; 7135 do { 7136 struct page *page = pages[i++]; 7137 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7138 7139 ret = -EIO; 7140 if (WARN_ON_ONCE(!sendpage_ok(page))) 7141 goto out; 7142 7143 ret = skb_append_pagefrags(skb, page, off, part, 7144 frag_limit); 7145 if (ret < 0) { 7146 iov_iter_revert(iter, len); 7147 goto out; 7148 } 7149 7150 if (skb->ip_summed == CHECKSUM_NONE) 7151 skb_splice_csum_page(skb, page, off, part); 7152 7153 off = 0; 7154 spliced += part; 7155 maxsize -= part; 7156 len -= part; 7157 } while (len > 0); 7158 7159 if (maxsize <= 0) 7160 break; 7161 } 7162 7163 out: 7164 skb_len_add(skb, spliced); 7165 return spliced ?: ret; 7166 } 7167 EXPORT_SYMBOL(skb_splice_from_iter); 7168 7169 static __always_inline 7170 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7171 size_t len, void *to, void *priv2) 7172 { 7173 __wsum *csum = priv2; 7174 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7175 7176 *csum = csum_block_add(*csum, next, progress); 7177 return 0; 7178 } 7179 7180 static __always_inline 7181 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7182 size_t len, void *to, void *priv2) 7183 { 7184 __wsum next, *csum = priv2; 7185 7186 next = csum_and_copy_from_user(iter_from, to + progress, len); 7187 *csum = csum_block_add(*csum, next, progress); 7188 return next ? 0 : len; 7189 } 7190 7191 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7192 __wsum *csum, struct iov_iter *i) 7193 { 7194 size_t copied; 7195 7196 if (WARN_ON_ONCE(!i->data_source)) 7197 return false; 7198 copied = iterate_and_advance2(i, bytes, addr, csum, 7199 copy_from_user_iter_csum, 7200 memcpy_from_iter_csum); 7201 if (likely(copied == bytes)) 7202 return true; 7203 iov_iter_revert(i, copied); 7204 return false; 7205 } 7206 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7207