xref: /linux/net/core/skbuff.c (revision cff9c565e65f3622e8dc1dcc21c1520a083dff35)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 #include <net/mpls.h>
75 #include <net/mptcp.h>
76 #include <net/mctp.h>
77 #include <net/page_pool/helpers.h>
78 #include <net/dropreason.h>
79 
80 #include <linux/uaccess.h>
81 #include <trace/events/skb.h>
82 #include <linux/highmem.h>
83 #include <linux/capability.h>
84 #include <linux/user_namespace.h>
85 #include <linux/indirect_call_wrapper.h>
86 #include <linux/textsearch.h>
87 
88 #include "dev.h"
89 #include "sock_destructor.h"
90 
91 struct kmem_cache *skbuff_cache __ro_after_init;
92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 
98 static struct kmem_cache *skb_small_head_cache __ro_after_init;
99 
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101 
102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104  * size, and we can differentiate heads from skb_small_head_cache
105  * vs system slabs by looking at their size (skb_end_offset()).
106  */
107 #define SKB_SMALL_HEAD_CACHE_SIZE					\
108 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
109 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
110 		SKB_SMALL_HEAD_SIZE)
111 
112 #define SKB_SMALL_HEAD_HEADROOM						\
113 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114 
115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116 EXPORT_SYMBOL(sysctl_max_skb_frags);
117 
118 #undef FN
119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120 static const char * const drop_reasons[] = {
121 	[SKB_CONSUMED] = "CONSUMED",
122 	DEFINE_DROP_REASON(FN, FN)
123 };
124 
125 static const struct drop_reason_list drop_reasons_core = {
126 	.reasons = drop_reasons,
127 	.n_reasons = ARRAY_SIZE(drop_reasons),
128 };
129 
130 const struct drop_reason_list __rcu *
131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133 };
134 EXPORT_SYMBOL(drop_reasons_by_subsys);
135 
136 /**
137  * drop_reasons_register_subsys - register another drop reason subsystem
138  * @subsys: the subsystem to register, must not be the core
139  * @list: the list of drop reasons within the subsystem, must point to
140  *	a statically initialized list
141  */
142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 				  const struct drop_reason_list *list)
144 {
145 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 		 "invalid subsystem %d\n", subsys))
148 		return;
149 
150 	/* must point to statically allocated memory, so INIT is OK */
151 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152 }
153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154 
155 /**
156  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157  * @subsys: the subsystem to remove, must not be the core
158  *
159  * Note: This will synchronize_rcu() to ensure no users when it returns.
160  */
161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162 {
163 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 		 "invalid subsystem %d\n", subsys))
166 		return;
167 
168 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169 
170 	synchronize_rcu();
171 }
172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173 
174 /**
175  *	skb_panic - private function for out-of-line support
176  *	@skb:	buffer
177  *	@sz:	size
178  *	@addr:	address
179  *	@msg:	skb_over_panic or skb_under_panic
180  *
181  *	Out-of-line support for skb_put() and skb_push().
182  *	Called via the wrapper skb_over_panic() or skb_under_panic().
183  *	Keep out of line to prevent kernel bloat.
184  *	__builtin_return_address is not used because it is not always reliable.
185  */
186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 		      const char msg[])
188 {
189 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 		 msg, addr, skb->len, sz, skb->head, skb->data,
191 		 (unsigned long)skb->tail, (unsigned long)skb->end,
192 		 skb->dev ? skb->dev->name : "<NULL>");
193 	BUG();
194 }
195 
196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197 {
198 	skb_panic(skb, sz, addr, __func__);
199 }
200 
201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202 {
203 	skb_panic(skb, sz, addr, __func__);
204 }
205 
206 #define NAPI_SKB_CACHE_SIZE	64
207 #define NAPI_SKB_CACHE_BULK	16
208 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
209 
210 #if PAGE_SIZE == SZ_4K
211 
212 #define NAPI_HAS_SMALL_PAGE_FRAG	1
213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
214 
215 /* specialized page frag allocator using a single order 0 page
216  * and slicing it into 1K sized fragment. Constrained to systems
217  * with a very limited amount of 1K fragments fitting a single
218  * page - to avoid excessive truesize underestimation
219  */
220 
221 struct page_frag_1k {
222 	void *va;
223 	u16 offset;
224 	bool pfmemalloc;
225 };
226 
227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228 {
229 	struct page *page;
230 	int offset;
231 
232 	offset = nc->offset - SZ_1K;
233 	if (likely(offset >= 0))
234 		goto use_frag;
235 
236 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 	if (!page)
238 		return NULL;
239 
240 	nc->va = page_address(page);
241 	nc->pfmemalloc = page_is_pfmemalloc(page);
242 	offset = PAGE_SIZE - SZ_1K;
243 	page_ref_add(page, offset / SZ_1K);
244 
245 use_frag:
246 	nc->offset = offset;
247 	return nc->va + offset;
248 }
249 #else
250 
251 /* the small page is actually unused in this build; add dummy helpers
252  * to please the compiler and avoid later preprocessor's conditionals
253  */
254 #define NAPI_HAS_SMALL_PAGE_FRAG	0
255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
256 
257 struct page_frag_1k {
258 };
259 
260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261 {
262 	return NULL;
263 }
264 
265 #endif
266 
267 struct napi_alloc_cache {
268 	struct page_frag_cache page;
269 	struct page_frag_1k page_small;
270 	unsigned int skb_count;
271 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
272 };
273 
274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276 
277 /* Double check that napi_get_frags() allocates skbs with
278  * skb->head being backed by slab, not a page fragment.
279  * This is to make sure bug fixed in 3226b158e67c
280  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281  * does not accidentally come back.
282  */
283 void napi_get_frags_check(struct napi_struct *napi)
284 {
285 	struct sk_buff *skb;
286 
287 	local_bh_disable();
288 	skb = napi_get_frags(napi);
289 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 	napi_free_frags(napi);
291 	local_bh_enable();
292 }
293 
294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295 {
296 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297 
298 	fragsz = SKB_DATA_ALIGN(fragsz);
299 
300 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301 }
302 EXPORT_SYMBOL(__napi_alloc_frag_align);
303 
304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305 {
306 	void *data;
307 
308 	fragsz = SKB_DATA_ALIGN(fragsz);
309 	if (in_hardirq() || irqs_disabled()) {
310 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311 
312 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 	} else {
314 		struct napi_alloc_cache *nc;
315 
316 		local_bh_disable();
317 		nc = this_cpu_ptr(&napi_alloc_cache);
318 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 		local_bh_enable();
320 	}
321 	return data;
322 }
323 EXPORT_SYMBOL(__netdev_alloc_frag_align);
324 
325 static struct sk_buff *napi_skb_cache_get(void)
326 {
327 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 	struct sk_buff *skb;
329 
330 	if (unlikely(!nc->skb_count)) {
331 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 						      GFP_ATOMIC,
333 						      NAPI_SKB_CACHE_BULK,
334 						      nc->skb_cache);
335 		if (unlikely(!nc->skb_count))
336 			return NULL;
337 	}
338 
339 	skb = nc->skb_cache[--nc->skb_count];
340 	kasan_unpoison_object_data(skbuff_cache, skb);
341 
342 	return skb;
343 }
344 
345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 					 unsigned int size)
347 {
348 	struct skb_shared_info *shinfo;
349 
350 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351 
352 	/* Assumes caller memset cleared SKB */
353 	skb->truesize = SKB_TRUESIZE(size);
354 	refcount_set(&skb->users, 1);
355 	skb->head = data;
356 	skb->data = data;
357 	skb_reset_tail_pointer(skb);
358 	skb_set_end_offset(skb, size);
359 	skb->mac_header = (typeof(skb->mac_header))~0U;
360 	skb->transport_header = (typeof(skb->transport_header))~0U;
361 	skb->alloc_cpu = raw_smp_processor_id();
362 	/* make sure we initialize shinfo sequentially */
363 	shinfo = skb_shinfo(skb);
364 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 	atomic_set(&shinfo->dataref, 1);
366 
367 	skb_set_kcov_handle(skb, kcov_common_handle());
368 }
369 
370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 				     unsigned int *size)
372 {
373 	void *resized;
374 
375 	/* Must find the allocation size (and grow it to match). */
376 	*size = ksize(data);
377 	/* krealloc() will immediately return "data" when
378 	 * "ksize(data)" is requested: it is the existing upper
379 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 	 * that this "new" pointer needs to be passed back to the
381 	 * caller for use so the __alloc_size hinting will be
382 	 * tracked correctly.
383 	 */
384 	resized = krealloc(data, *size, GFP_ATOMIC);
385 	WARN_ON_ONCE(resized != data);
386 	return resized;
387 }
388 
389 /* build_skb() variant which can operate on slab buffers.
390  * Note that this should be used sparingly as slab buffers
391  * cannot be combined efficiently by GRO!
392  */
393 struct sk_buff *slab_build_skb(void *data)
394 {
395 	struct sk_buff *skb;
396 	unsigned int size;
397 
398 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 	if (unlikely(!skb))
400 		return NULL;
401 
402 	memset(skb, 0, offsetof(struct sk_buff, tail));
403 	data = __slab_build_skb(skb, data, &size);
404 	__finalize_skb_around(skb, data, size);
405 
406 	return skb;
407 }
408 EXPORT_SYMBOL(slab_build_skb);
409 
410 /* Caller must provide SKB that is memset cleared */
411 static void __build_skb_around(struct sk_buff *skb, void *data,
412 			       unsigned int frag_size)
413 {
414 	unsigned int size = frag_size;
415 
416 	/* frag_size == 0 is considered deprecated now. Callers
417 	 * using slab buffer should use slab_build_skb() instead.
418 	 */
419 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 		data = __slab_build_skb(skb, data, &size);
421 
422 	__finalize_skb_around(skb, data, size);
423 }
424 
425 /**
426  * __build_skb - build a network buffer
427  * @data: data buffer provided by caller
428  * @frag_size: size of data (must not be 0)
429  *
430  * Allocate a new &sk_buff. Caller provides space holding head and
431  * skb_shared_info. @data must have been allocated from the page
432  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433  * allocation is deprecated, and callers should use slab_build_skb()
434  * instead.)
435  * The return is the new skb buffer.
436  * On a failure the return is %NULL, and @data is not freed.
437  * Notes :
438  *  Before IO, driver allocates only data buffer where NIC put incoming frame
439  *  Driver should add room at head (NET_SKB_PAD) and
440  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
442  *  before giving packet to stack.
443  *  RX rings only contains data buffers, not full skbs.
444  */
445 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446 {
447 	struct sk_buff *skb;
448 
449 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 	if (unlikely(!skb))
451 		return NULL;
452 
453 	memset(skb, 0, offsetof(struct sk_buff, tail));
454 	__build_skb_around(skb, data, frag_size);
455 
456 	return skb;
457 }
458 
459 /* build_skb() is wrapper over __build_skb(), that specifically
460  * takes care of skb->head and skb->pfmemalloc
461  */
462 struct sk_buff *build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb = __build_skb(data, frag_size);
465 
466 	if (likely(skb && frag_size)) {
467 		skb->head_frag = 1;
468 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 	}
470 	return skb;
471 }
472 EXPORT_SYMBOL(build_skb);
473 
474 /**
475  * build_skb_around - build a network buffer around provided skb
476  * @skb: sk_buff provide by caller, must be memset cleared
477  * @data: data buffer provided by caller
478  * @frag_size: size of data
479  */
480 struct sk_buff *build_skb_around(struct sk_buff *skb,
481 				 void *data, unsigned int frag_size)
482 {
483 	if (unlikely(!skb))
484 		return NULL;
485 
486 	__build_skb_around(skb, data, frag_size);
487 
488 	if (frag_size) {
489 		skb->head_frag = 1;
490 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 	}
492 	return skb;
493 }
494 EXPORT_SYMBOL(build_skb_around);
495 
496 /**
497  * __napi_build_skb - build a network buffer
498  * @data: data buffer provided by caller
499  * @frag_size: size of data
500  *
501  * Version of __build_skb() that uses NAPI percpu caches to obtain
502  * skbuff_head instead of inplace allocation.
503  *
504  * Returns a new &sk_buff on success, %NULL on allocation failure.
505  */
506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507 {
508 	struct sk_buff *skb;
509 
510 	skb = napi_skb_cache_get();
511 	if (unlikely(!skb))
512 		return NULL;
513 
514 	memset(skb, 0, offsetof(struct sk_buff, tail));
515 	__build_skb_around(skb, data, frag_size);
516 
517 	return skb;
518 }
519 
520 /**
521  * napi_build_skb - build a network buffer
522  * @data: data buffer provided by caller
523  * @frag_size: size of data
524  *
525  * Version of __napi_build_skb() that takes care of skb->head_frag
526  * and skb->pfmemalloc when the data is a page or page fragment.
527  *
528  * Returns a new &sk_buff on success, %NULL on allocation failure.
529  */
530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531 {
532 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
533 
534 	if (likely(skb) && frag_size) {
535 		skb->head_frag = 1;
536 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 	}
538 
539 	return skb;
540 }
541 EXPORT_SYMBOL(napi_build_skb);
542 
543 /*
544  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545  * the caller if emergency pfmemalloc reserves are being used. If it is and
546  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547  * may be used. Otherwise, the packet data may be discarded until enough
548  * memory is free
549  */
550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 			     bool *pfmemalloc)
552 {
553 	bool ret_pfmemalloc = false;
554 	size_t obj_size;
555 	void *obj;
556 
557 	obj_size = SKB_HEAD_ALIGN(*size);
558 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 		obj = kmem_cache_alloc_node(skb_small_head_cache,
561 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 				node);
563 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
564 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 			goto out;
566 		/* Try again but now we are using pfmemalloc reserves */
567 		ret_pfmemalloc = true;
568 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 		goto out;
570 	}
571 
572 	obj_size = kmalloc_size_roundup(obj_size);
573 	/* The following cast might truncate high-order bits of obj_size, this
574 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 	 */
576 	*size = (unsigned int)obj_size;
577 
578 	/*
579 	 * Try a regular allocation, when that fails and we're not entitled
580 	 * to the reserves, fail.
581 	 */
582 	obj = kmalloc_node_track_caller(obj_size,
583 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 					node);
585 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 		goto out;
587 
588 	/* Try again but now we are using pfmemalloc reserves */
589 	ret_pfmemalloc = true;
590 	obj = kmalloc_node_track_caller(obj_size, flags, node);
591 
592 out:
593 	if (pfmemalloc)
594 		*pfmemalloc = ret_pfmemalloc;
595 
596 	return obj;
597 }
598 
599 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
600  *	'private' fields and also do memory statistics to find all the
601  *	[BEEP] leaks.
602  *
603  */
604 
605 /**
606  *	__alloc_skb	-	allocate a network buffer
607  *	@size: size to allocate
608  *	@gfp_mask: allocation mask
609  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610  *		instead of head cache and allocate a cloned (child) skb.
611  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612  *		allocations in case the data is required for writeback
613  *	@node: numa node to allocate memory on
614  *
615  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
616  *	tail room of at least size bytes. The object has a reference count
617  *	of one. The return is the buffer. On a failure the return is %NULL.
618  *
619  *	Buffers may only be allocated from interrupts using a @gfp_mask of
620  *	%GFP_ATOMIC.
621  */
622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 			    int flags, int node)
624 {
625 	struct kmem_cache *cache;
626 	struct sk_buff *skb;
627 	bool pfmemalloc;
628 	u8 *data;
629 
630 	cache = (flags & SKB_ALLOC_FCLONE)
631 		? skbuff_fclone_cache : skbuff_cache;
632 
633 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 		gfp_mask |= __GFP_MEMALLOC;
635 
636 	/* Get the HEAD */
637 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 		skb = napi_skb_cache_get();
640 	else
641 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 	if (unlikely(!skb))
643 		return NULL;
644 	prefetchw(skb);
645 
646 	/* We do our best to align skb_shared_info on a separate cache
647 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 	 * Both skb->head and skb_shared_info are cache line aligned.
650 	 */
651 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 	if (unlikely(!data))
653 		goto nodata;
654 	/* kmalloc_size_roundup() might give us more room than requested.
655 	 * Put skb_shared_info exactly at the end of allocated zone,
656 	 * to allow max possible filling before reallocation.
657 	 */
658 	prefetchw(data + SKB_WITH_OVERHEAD(size));
659 
660 	/*
661 	 * Only clear those fields we need to clear, not those that we will
662 	 * actually initialise below. Hence, don't put any more fields after
663 	 * the tail pointer in struct sk_buff!
664 	 */
665 	memset(skb, 0, offsetof(struct sk_buff, tail));
666 	__build_skb_around(skb, data, size);
667 	skb->pfmemalloc = pfmemalloc;
668 
669 	if (flags & SKB_ALLOC_FCLONE) {
670 		struct sk_buff_fclones *fclones;
671 
672 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
673 
674 		skb->fclone = SKB_FCLONE_ORIG;
675 		refcount_set(&fclones->fclone_ref, 1);
676 	}
677 
678 	return skb;
679 
680 nodata:
681 	kmem_cache_free(cache, skb);
682 	return NULL;
683 }
684 EXPORT_SYMBOL(__alloc_skb);
685 
686 /**
687  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
688  *	@dev: network device to receive on
689  *	@len: length to allocate
690  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
691  *
692  *	Allocate a new &sk_buff and assign it a usage count of one. The
693  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
694  *	the headroom they think they need without accounting for the
695  *	built in space. The built in space is used for optimisations.
696  *
697  *	%NULL is returned if there is no free memory.
698  */
699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 				   gfp_t gfp_mask)
701 {
702 	struct page_frag_cache *nc;
703 	struct sk_buff *skb;
704 	bool pfmemalloc;
705 	void *data;
706 
707 	len += NET_SKB_PAD;
708 
709 	/* If requested length is either too small or too big,
710 	 * we use kmalloc() for skb->head allocation.
711 	 */
712 	if (len <= SKB_WITH_OVERHEAD(1024) ||
713 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 		if (!skb)
717 			goto skb_fail;
718 		goto skb_success;
719 	}
720 
721 	len = SKB_HEAD_ALIGN(len);
722 
723 	if (sk_memalloc_socks())
724 		gfp_mask |= __GFP_MEMALLOC;
725 
726 	if (in_hardirq() || irqs_disabled()) {
727 		nc = this_cpu_ptr(&netdev_alloc_cache);
728 		data = page_frag_alloc(nc, len, gfp_mask);
729 		pfmemalloc = nc->pfmemalloc;
730 	} else {
731 		local_bh_disable();
732 		nc = this_cpu_ptr(&napi_alloc_cache.page);
733 		data = page_frag_alloc(nc, len, gfp_mask);
734 		pfmemalloc = nc->pfmemalloc;
735 		local_bh_enable();
736 	}
737 
738 	if (unlikely(!data))
739 		return NULL;
740 
741 	skb = __build_skb(data, len);
742 	if (unlikely(!skb)) {
743 		skb_free_frag(data);
744 		return NULL;
745 	}
746 
747 	if (pfmemalloc)
748 		skb->pfmemalloc = 1;
749 	skb->head_frag = 1;
750 
751 skb_success:
752 	skb_reserve(skb, NET_SKB_PAD);
753 	skb->dev = dev;
754 
755 skb_fail:
756 	return skb;
757 }
758 EXPORT_SYMBOL(__netdev_alloc_skb);
759 
760 /**
761  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762  *	@napi: napi instance this buffer was allocated for
763  *	@len: length to allocate
764  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765  *
766  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
767  *	attempt to allocate the head from a special reserved region used
768  *	only for NAPI Rx allocation.  By doing this we can save several
769  *	CPU cycles by avoiding having to disable and re-enable IRQs.
770  *
771  *	%NULL is returned if there is no free memory.
772  */
773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 				 gfp_t gfp_mask)
775 {
776 	struct napi_alloc_cache *nc;
777 	struct sk_buff *skb;
778 	bool pfmemalloc;
779 	void *data;
780 
781 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 	len += NET_SKB_PAD + NET_IP_ALIGN;
783 
784 	/* If requested length is either too small or too big,
785 	 * we use kmalloc() for skb->head allocation.
786 	 * When the small frag allocator is available, prefer it over kmalloc
787 	 * for small fragments
788 	 */
789 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 				  NUMA_NO_NODE);
794 		if (!skb)
795 			goto skb_fail;
796 		goto skb_success;
797 	}
798 
799 	nc = this_cpu_ptr(&napi_alloc_cache);
800 
801 	if (sk_memalloc_socks())
802 		gfp_mask |= __GFP_MEMALLOC;
803 
804 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 		/* we are artificially inflating the allocation size, but
806 		 * that is not as bad as it may look like, as:
807 		 * - 'len' less than GRO_MAX_HEAD makes little sense
808 		 * - On most systems, larger 'len' values lead to fragment
809 		 *   size above 512 bytes
810 		 * - kmalloc would use the kmalloc-1k slab for such values
811 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 		 *   little networking, as that implies no WiFi and no
813 		 *   tunnels support, and 32 bits arches.
814 		 */
815 		len = SZ_1K;
816 
817 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 	} else {
820 		len = SKB_HEAD_ALIGN(len);
821 
822 		data = page_frag_alloc(&nc->page, len, gfp_mask);
823 		pfmemalloc = nc->page.pfmemalloc;
824 	}
825 
826 	if (unlikely(!data))
827 		return NULL;
828 
829 	skb = __napi_build_skb(data, len);
830 	if (unlikely(!skb)) {
831 		skb_free_frag(data);
832 		return NULL;
833 	}
834 
835 	if (pfmemalloc)
836 		skb->pfmemalloc = 1;
837 	skb->head_frag = 1;
838 
839 skb_success:
840 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 	skb->dev = napi->dev;
842 
843 skb_fail:
844 	return skb;
845 }
846 EXPORT_SYMBOL(__napi_alloc_skb);
847 
848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 		     int size, unsigned int truesize)
850 {
851 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
852 
853 	skb_fill_page_desc(skb, i, page, off, size);
854 	skb->len += size;
855 	skb->data_len += size;
856 	skb->truesize += truesize;
857 }
858 EXPORT_SYMBOL(skb_add_rx_frag);
859 
860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 			  unsigned int truesize)
862 {
863 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864 
865 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
866 
867 	skb_frag_size_add(frag, size);
868 	skb->len += size;
869 	skb->data_len += size;
870 	skb->truesize += truesize;
871 }
872 EXPORT_SYMBOL(skb_coalesce_rx_frag);
873 
874 static void skb_drop_list(struct sk_buff **listp)
875 {
876 	kfree_skb_list(*listp);
877 	*listp = NULL;
878 }
879 
880 static inline void skb_drop_fraglist(struct sk_buff *skb)
881 {
882 	skb_drop_list(&skb_shinfo(skb)->frag_list);
883 }
884 
885 static void skb_clone_fraglist(struct sk_buff *skb)
886 {
887 	struct sk_buff *list;
888 
889 	skb_walk_frags(skb, list)
890 		skb_get(list);
891 }
892 
893 static bool is_pp_page(struct page *page)
894 {
895 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
896 }
897 
898 #if IS_ENABLED(CONFIG_PAGE_POOL)
899 bool napi_pp_put_page(struct page *page, bool napi_safe)
900 {
901 	bool allow_direct = false;
902 	struct page_pool *pp;
903 
904 	page = compound_head(page);
905 
906 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
907 	 * in order to preserve any existing bits, such as bit 0 for the
908 	 * head page of compound page and bit 1 for pfmemalloc page, so
909 	 * mask those bits for freeing side when doing below checking,
910 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
911 	 * to avoid recycling the pfmemalloc page.
912 	 */
913 	if (unlikely(!is_pp_page(page)))
914 		return false;
915 
916 	pp = page->pp;
917 
918 	/* Allow direct recycle if we have reasons to believe that we are
919 	 * in the same context as the consumer would run, so there's
920 	 * no possible race.
921 	 * __page_pool_put_page() makes sure we're not in hardirq context
922 	 * and interrupts are enabled prior to accessing the cache.
923 	 */
924 	if (napi_safe || in_softirq()) {
925 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
926 
927 		allow_direct = napi &&
928 			READ_ONCE(napi->list_owner) == smp_processor_id();
929 	}
930 
931 	/* Driver set this to memory recycling info. Reset it on recycle.
932 	 * This will *not* work for NIC using a split-page memory model.
933 	 * The page will be returned to the pool here regardless of the
934 	 * 'flipped' fragment being in use or not.
935 	 */
936 	page_pool_put_full_page(pp, page, allow_direct);
937 
938 	return true;
939 }
940 EXPORT_SYMBOL(napi_pp_put_page);
941 #endif
942 
943 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
944 {
945 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
946 		return false;
947 	return napi_pp_put_page(virt_to_page(data), napi_safe);
948 }
949 
950 /**
951  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
952  * @skb:	page pool aware skb
953  *
954  * Increase the fragment reference count (pp_ref_count) of a skb. This is
955  * intended to gain fragment references only for page pool aware skbs,
956  * i.e. when skb->pp_recycle is true, and not for fragments in a
957  * non-pp-recycling skb. It has a fallback to increase references on normal
958  * pages, as page pool aware skbs may also have normal page fragments.
959  */
960 static int skb_pp_frag_ref(struct sk_buff *skb)
961 {
962 	struct skb_shared_info *shinfo;
963 	struct page *head_page;
964 	int i;
965 
966 	if (!skb->pp_recycle)
967 		return -EINVAL;
968 
969 	shinfo = skb_shinfo(skb);
970 
971 	for (i = 0; i < shinfo->nr_frags; i++) {
972 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
973 		if (likely(is_pp_page(head_page)))
974 			page_pool_ref_page(head_page);
975 		else
976 			page_ref_inc(head_page);
977 	}
978 	return 0;
979 }
980 
981 static void skb_kfree_head(void *head, unsigned int end_offset)
982 {
983 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
984 		kmem_cache_free(skb_small_head_cache, head);
985 	else
986 		kfree(head);
987 }
988 
989 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
990 {
991 	unsigned char *head = skb->head;
992 
993 	if (skb->head_frag) {
994 		if (skb_pp_recycle(skb, head, napi_safe))
995 			return;
996 		skb_free_frag(head);
997 	} else {
998 		skb_kfree_head(head, skb_end_offset(skb));
999 	}
1000 }
1001 
1002 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1003 			     bool napi_safe)
1004 {
1005 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1006 	int i;
1007 
1008 	if (skb->cloned &&
1009 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
1010 			      &shinfo->dataref))
1011 		goto exit;
1012 
1013 	if (skb_zcopy(skb)) {
1014 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1015 
1016 		skb_zcopy_clear(skb, true);
1017 		if (skip_unref)
1018 			goto free_head;
1019 	}
1020 
1021 	for (i = 0; i < shinfo->nr_frags; i++)
1022 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1023 
1024 free_head:
1025 	if (shinfo->frag_list)
1026 		kfree_skb_list_reason(shinfo->frag_list, reason);
1027 
1028 	skb_free_head(skb, napi_safe);
1029 exit:
1030 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1031 	 * bit is only set on the head though, so in order to avoid races
1032 	 * while trying to recycle fragments on __skb_frag_unref() we need
1033 	 * to make one SKB responsible for triggering the recycle path.
1034 	 * So disable the recycling bit if an SKB is cloned and we have
1035 	 * additional references to the fragmented part of the SKB.
1036 	 * Eventually the last SKB will have the recycling bit set and it's
1037 	 * dataref set to 0, which will trigger the recycling
1038 	 */
1039 	skb->pp_recycle = 0;
1040 }
1041 
1042 /*
1043  *	Free an skbuff by memory without cleaning the state.
1044  */
1045 static void kfree_skbmem(struct sk_buff *skb)
1046 {
1047 	struct sk_buff_fclones *fclones;
1048 
1049 	switch (skb->fclone) {
1050 	case SKB_FCLONE_UNAVAILABLE:
1051 		kmem_cache_free(skbuff_cache, skb);
1052 		return;
1053 
1054 	case SKB_FCLONE_ORIG:
1055 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1056 
1057 		/* We usually free the clone (TX completion) before original skb
1058 		 * This test would have no chance to be true for the clone,
1059 		 * while here, branch prediction will be good.
1060 		 */
1061 		if (refcount_read(&fclones->fclone_ref) == 1)
1062 			goto fastpath;
1063 		break;
1064 
1065 	default: /* SKB_FCLONE_CLONE */
1066 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1067 		break;
1068 	}
1069 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1070 		return;
1071 fastpath:
1072 	kmem_cache_free(skbuff_fclone_cache, fclones);
1073 }
1074 
1075 void skb_release_head_state(struct sk_buff *skb)
1076 {
1077 	skb_dst_drop(skb);
1078 	if (skb->destructor) {
1079 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1080 		skb->destructor(skb);
1081 	}
1082 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1083 	nf_conntrack_put(skb_nfct(skb));
1084 #endif
1085 	skb_ext_put(skb);
1086 }
1087 
1088 /* Free everything but the sk_buff shell. */
1089 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1090 			    bool napi_safe)
1091 {
1092 	skb_release_head_state(skb);
1093 	if (likely(skb->head))
1094 		skb_release_data(skb, reason, napi_safe);
1095 }
1096 
1097 /**
1098  *	__kfree_skb - private function
1099  *	@skb: buffer
1100  *
1101  *	Free an sk_buff. Release anything attached to the buffer.
1102  *	Clean the state. This is an internal helper function. Users should
1103  *	always call kfree_skb
1104  */
1105 
1106 void __kfree_skb(struct sk_buff *skb)
1107 {
1108 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1109 	kfree_skbmem(skb);
1110 }
1111 EXPORT_SYMBOL(__kfree_skb);
1112 
1113 static __always_inline
1114 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1115 {
1116 	if (unlikely(!skb_unref(skb)))
1117 		return false;
1118 
1119 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1120 			       u32_get_bits(reason,
1121 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1122 				SKB_DROP_REASON_SUBSYS_NUM);
1123 
1124 	if (reason == SKB_CONSUMED)
1125 		trace_consume_skb(skb, __builtin_return_address(0));
1126 	else
1127 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1128 	return true;
1129 }
1130 
1131 /**
1132  *	kfree_skb_reason - free an sk_buff with special reason
1133  *	@skb: buffer to free
1134  *	@reason: reason why this skb is dropped
1135  *
1136  *	Drop a reference to the buffer and free it if the usage count has
1137  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1138  *	tracepoint.
1139  */
1140 void __fix_address
1141 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1142 {
1143 	if (__kfree_skb_reason(skb, reason))
1144 		__kfree_skb(skb);
1145 }
1146 EXPORT_SYMBOL(kfree_skb_reason);
1147 
1148 #define KFREE_SKB_BULK_SIZE	16
1149 
1150 struct skb_free_array {
1151 	unsigned int skb_count;
1152 	void *skb_array[KFREE_SKB_BULK_SIZE];
1153 };
1154 
1155 static void kfree_skb_add_bulk(struct sk_buff *skb,
1156 			       struct skb_free_array *sa,
1157 			       enum skb_drop_reason reason)
1158 {
1159 	/* if SKB is a clone, don't handle this case */
1160 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1161 		__kfree_skb(skb);
1162 		return;
1163 	}
1164 
1165 	skb_release_all(skb, reason, false);
1166 	sa->skb_array[sa->skb_count++] = skb;
1167 
1168 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1169 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1170 				     sa->skb_array);
1171 		sa->skb_count = 0;
1172 	}
1173 }
1174 
1175 void __fix_address
1176 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1177 {
1178 	struct skb_free_array sa;
1179 
1180 	sa.skb_count = 0;
1181 
1182 	while (segs) {
1183 		struct sk_buff *next = segs->next;
1184 
1185 		if (__kfree_skb_reason(segs, reason)) {
1186 			skb_poison_list(segs);
1187 			kfree_skb_add_bulk(segs, &sa, reason);
1188 		}
1189 
1190 		segs = next;
1191 	}
1192 
1193 	if (sa.skb_count)
1194 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1195 }
1196 EXPORT_SYMBOL(kfree_skb_list_reason);
1197 
1198 /* Dump skb information and contents.
1199  *
1200  * Must only be called from net_ratelimit()-ed paths.
1201  *
1202  * Dumps whole packets if full_pkt, only headers otherwise.
1203  */
1204 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1205 {
1206 	struct skb_shared_info *sh = skb_shinfo(skb);
1207 	struct net_device *dev = skb->dev;
1208 	struct sock *sk = skb->sk;
1209 	struct sk_buff *list_skb;
1210 	bool has_mac, has_trans;
1211 	int headroom, tailroom;
1212 	int i, len, seg_len;
1213 
1214 	if (full_pkt)
1215 		len = skb->len;
1216 	else
1217 		len = min_t(int, skb->len, MAX_HEADER + 128);
1218 
1219 	headroom = skb_headroom(skb);
1220 	tailroom = skb_tailroom(skb);
1221 
1222 	has_mac = skb_mac_header_was_set(skb);
1223 	has_trans = skb_transport_header_was_set(skb);
1224 
1225 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1226 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1227 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1228 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1229 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1230 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1231 	       has_mac ? skb->mac_header : -1,
1232 	       has_mac ? skb_mac_header_len(skb) : -1,
1233 	       skb->network_header,
1234 	       has_trans ? skb_network_header_len(skb) : -1,
1235 	       has_trans ? skb->transport_header : -1,
1236 	       sh->tx_flags, sh->nr_frags,
1237 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1238 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1239 	       skb->csum_valid, skb->csum_level,
1240 	       skb->hash, skb->sw_hash, skb->l4_hash,
1241 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1242 
1243 	if (dev)
1244 		printk("%sdev name=%s feat=%pNF\n",
1245 		       level, dev->name, &dev->features);
1246 	if (sk)
1247 		printk("%ssk family=%hu type=%u proto=%u\n",
1248 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1249 
1250 	if (full_pkt && headroom)
1251 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1252 			       16, 1, skb->head, headroom, false);
1253 
1254 	seg_len = min_t(int, skb_headlen(skb), len);
1255 	if (seg_len)
1256 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1257 			       16, 1, skb->data, seg_len, false);
1258 	len -= seg_len;
1259 
1260 	if (full_pkt && tailroom)
1261 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1262 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1263 
1264 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1265 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1266 		u32 p_off, p_len, copied;
1267 		struct page *p;
1268 		u8 *vaddr;
1269 
1270 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1271 				      skb_frag_size(frag), p, p_off, p_len,
1272 				      copied) {
1273 			seg_len = min_t(int, p_len, len);
1274 			vaddr = kmap_atomic(p);
1275 			print_hex_dump(level, "skb frag:     ",
1276 				       DUMP_PREFIX_OFFSET,
1277 				       16, 1, vaddr + p_off, seg_len, false);
1278 			kunmap_atomic(vaddr);
1279 			len -= seg_len;
1280 			if (!len)
1281 				break;
1282 		}
1283 	}
1284 
1285 	if (full_pkt && skb_has_frag_list(skb)) {
1286 		printk("skb fraglist:\n");
1287 		skb_walk_frags(skb, list_skb)
1288 			skb_dump(level, list_skb, true);
1289 	}
1290 }
1291 EXPORT_SYMBOL(skb_dump);
1292 
1293 /**
1294  *	skb_tx_error - report an sk_buff xmit error
1295  *	@skb: buffer that triggered an error
1296  *
1297  *	Report xmit error if a device callback is tracking this skb.
1298  *	skb must be freed afterwards.
1299  */
1300 void skb_tx_error(struct sk_buff *skb)
1301 {
1302 	if (skb) {
1303 		skb_zcopy_downgrade_managed(skb);
1304 		skb_zcopy_clear(skb, true);
1305 	}
1306 }
1307 EXPORT_SYMBOL(skb_tx_error);
1308 
1309 #ifdef CONFIG_TRACEPOINTS
1310 /**
1311  *	consume_skb - free an skbuff
1312  *	@skb: buffer to free
1313  *
1314  *	Drop a ref to the buffer and free it if the usage count has hit zero
1315  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1316  *	is being dropped after a failure and notes that
1317  */
1318 void consume_skb(struct sk_buff *skb)
1319 {
1320 	if (!skb_unref(skb))
1321 		return;
1322 
1323 	trace_consume_skb(skb, __builtin_return_address(0));
1324 	__kfree_skb(skb);
1325 }
1326 EXPORT_SYMBOL(consume_skb);
1327 #endif
1328 
1329 /**
1330  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1331  *	@skb: buffer to free
1332  *
1333  *	Alike consume_skb(), but this variant assumes that this is the last
1334  *	skb reference and all the head states have been already dropped
1335  */
1336 void __consume_stateless_skb(struct sk_buff *skb)
1337 {
1338 	trace_consume_skb(skb, __builtin_return_address(0));
1339 	skb_release_data(skb, SKB_CONSUMED, false);
1340 	kfree_skbmem(skb);
1341 }
1342 
1343 static void napi_skb_cache_put(struct sk_buff *skb)
1344 {
1345 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1346 	u32 i;
1347 
1348 	kasan_poison_object_data(skbuff_cache, skb);
1349 	nc->skb_cache[nc->skb_count++] = skb;
1350 
1351 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1352 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1353 			kasan_unpoison_object_data(skbuff_cache,
1354 						   nc->skb_cache[i]);
1355 
1356 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1357 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1358 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1359 	}
1360 }
1361 
1362 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1363 {
1364 	skb_release_all(skb, reason, true);
1365 	napi_skb_cache_put(skb);
1366 }
1367 
1368 void napi_skb_free_stolen_head(struct sk_buff *skb)
1369 {
1370 	if (unlikely(skb->slow_gro)) {
1371 		nf_reset_ct(skb);
1372 		skb_dst_drop(skb);
1373 		skb_ext_put(skb);
1374 		skb_orphan(skb);
1375 		skb->slow_gro = 0;
1376 	}
1377 	napi_skb_cache_put(skb);
1378 }
1379 
1380 void napi_consume_skb(struct sk_buff *skb, int budget)
1381 {
1382 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1383 	if (unlikely(!budget)) {
1384 		dev_consume_skb_any(skb);
1385 		return;
1386 	}
1387 
1388 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1389 
1390 	if (!skb_unref(skb))
1391 		return;
1392 
1393 	/* if reaching here SKB is ready to free */
1394 	trace_consume_skb(skb, __builtin_return_address(0));
1395 
1396 	/* if SKB is a clone, don't handle this case */
1397 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1398 		__kfree_skb(skb);
1399 		return;
1400 	}
1401 
1402 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1403 	napi_skb_cache_put(skb);
1404 }
1405 EXPORT_SYMBOL(napi_consume_skb);
1406 
1407 /* Make sure a field is contained by headers group */
1408 #define CHECK_SKB_FIELD(field) \
1409 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1410 		     offsetof(struct sk_buff, headers.field));	\
1411 
1412 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1413 {
1414 	new->tstamp		= old->tstamp;
1415 	/* We do not copy old->sk */
1416 	new->dev		= old->dev;
1417 	memcpy(new->cb, old->cb, sizeof(old->cb));
1418 	skb_dst_copy(new, old);
1419 	__skb_ext_copy(new, old);
1420 	__nf_copy(new, old, false);
1421 
1422 	/* Note : this field could be in the headers group.
1423 	 * It is not yet because we do not want to have a 16 bit hole
1424 	 */
1425 	new->queue_mapping = old->queue_mapping;
1426 
1427 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1428 	CHECK_SKB_FIELD(protocol);
1429 	CHECK_SKB_FIELD(csum);
1430 	CHECK_SKB_FIELD(hash);
1431 	CHECK_SKB_FIELD(priority);
1432 	CHECK_SKB_FIELD(skb_iif);
1433 	CHECK_SKB_FIELD(vlan_proto);
1434 	CHECK_SKB_FIELD(vlan_tci);
1435 	CHECK_SKB_FIELD(transport_header);
1436 	CHECK_SKB_FIELD(network_header);
1437 	CHECK_SKB_FIELD(mac_header);
1438 	CHECK_SKB_FIELD(inner_protocol);
1439 	CHECK_SKB_FIELD(inner_transport_header);
1440 	CHECK_SKB_FIELD(inner_network_header);
1441 	CHECK_SKB_FIELD(inner_mac_header);
1442 	CHECK_SKB_FIELD(mark);
1443 #ifdef CONFIG_NETWORK_SECMARK
1444 	CHECK_SKB_FIELD(secmark);
1445 #endif
1446 #ifdef CONFIG_NET_RX_BUSY_POLL
1447 	CHECK_SKB_FIELD(napi_id);
1448 #endif
1449 	CHECK_SKB_FIELD(alloc_cpu);
1450 #ifdef CONFIG_XPS
1451 	CHECK_SKB_FIELD(sender_cpu);
1452 #endif
1453 #ifdef CONFIG_NET_SCHED
1454 	CHECK_SKB_FIELD(tc_index);
1455 #endif
1456 
1457 }
1458 
1459 /*
1460  * You should not add any new code to this function.  Add it to
1461  * __copy_skb_header above instead.
1462  */
1463 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1464 {
1465 #define C(x) n->x = skb->x
1466 
1467 	n->next = n->prev = NULL;
1468 	n->sk = NULL;
1469 	__copy_skb_header(n, skb);
1470 
1471 	C(len);
1472 	C(data_len);
1473 	C(mac_len);
1474 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1475 	n->cloned = 1;
1476 	n->nohdr = 0;
1477 	n->peeked = 0;
1478 	C(pfmemalloc);
1479 	C(pp_recycle);
1480 	n->destructor = NULL;
1481 	C(tail);
1482 	C(end);
1483 	C(head);
1484 	C(head_frag);
1485 	C(data);
1486 	C(truesize);
1487 	refcount_set(&n->users, 1);
1488 
1489 	atomic_inc(&(skb_shinfo(skb)->dataref));
1490 	skb->cloned = 1;
1491 
1492 	return n;
1493 #undef C
1494 }
1495 
1496 /**
1497  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1498  * @first: first sk_buff of the msg
1499  */
1500 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1501 {
1502 	struct sk_buff *n;
1503 
1504 	n = alloc_skb(0, GFP_ATOMIC);
1505 	if (!n)
1506 		return NULL;
1507 
1508 	n->len = first->len;
1509 	n->data_len = first->len;
1510 	n->truesize = first->truesize;
1511 
1512 	skb_shinfo(n)->frag_list = first;
1513 
1514 	__copy_skb_header(n, first);
1515 	n->destructor = NULL;
1516 
1517 	return n;
1518 }
1519 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1520 
1521 /**
1522  *	skb_morph	-	morph one skb into another
1523  *	@dst: the skb to receive the contents
1524  *	@src: the skb to supply the contents
1525  *
1526  *	This is identical to skb_clone except that the target skb is
1527  *	supplied by the user.
1528  *
1529  *	The target skb is returned upon exit.
1530  */
1531 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1532 {
1533 	skb_release_all(dst, SKB_CONSUMED, false);
1534 	return __skb_clone(dst, src);
1535 }
1536 EXPORT_SYMBOL_GPL(skb_morph);
1537 
1538 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1539 {
1540 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1541 	struct user_struct *user;
1542 
1543 	if (capable(CAP_IPC_LOCK) || !size)
1544 		return 0;
1545 
1546 	rlim = rlimit(RLIMIT_MEMLOCK);
1547 	if (rlim == RLIM_INFINITY)
1548 		return 0;
1549 
1550 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1551 	max_pg = rlim >> PAGE_SHIFT;
1552 	user = mmp->user ? : current_user();
1553 
1554 	old_pg = atomic_long_read(&user->locked_vm);
1555 	do {
1556 		new_pg = old_pg + num_pg;
1557 		if (new_pg > max_pg)
1558 			return -ENOBUFS;
1559 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1560 
1561 	if (!mmp->user) {
1562 		mmp->user = get_uid(user);
1563 		mmp->num_pg = num_pg;
1564 	} else {
1565 		mmp->num_pg += num_pg;
1566 	}
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1571 
1572 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1573 {
1574 	if (mmp->user) {
1575 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1576 		free_uid(mmp->user);
1577 	}
1578 }
1579 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1580 
1581 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1582 {
1583 	struct ubuf_info_msgzc *uarg;
1584 	struct sk_buff *skb;
1585 
1586 	WARN_ON_ONCE(!in_task());
1587 
1588 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1589 	if (!skb)
1590 		return NULL;
1591 
1592 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1593 	uarg = (void *)skb->cb;
1594 	uarg->mmp.user = NULL;
1595 
1596 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1597 		kfree_skb(skb);
1598 		return NULL;
1599 	}
1600 
1601 	uarg->ubuf.callback = msg_zerocopy_callback;
1602 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1603 	uarg->len = 1;
1604 	uarg->bytelen = size;
1605 	uarg->zerocopy = 1;
1606 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1607 	refcount_set(&uarg->ubuf.refcnt, 1);
1608 	sock_hold(sk);
1609 
1610 	return &uarg->ubuf;
1611 }
1612 
1613 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1614 {
1615 	return container_of((void *)uarg, struct sk_buff, cb);
1616 }
1617 
1618 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1619 				       struct ubuf_info *uarg)
1620 {
1621 	if (uarg) {
1622 		struct ubuf_info_msgzc *uarg_zc;
1623 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1624 		u32 bytelen, next;
1625 
1626 		/* there might be non MSG_ZEROCOPY users */
1627 		if (uarg->callback != msg_zerocopy_callback)
1628 			return NULL;
1629 
1630 		/* realloc only when socket is locked (TCP, UDP cork),
1631 		 * so uarg->len and sk_zckey access is serialized
1632 		 */
1633 		if (!sock_owned_by_user(sk)) {
1634 			WARN_ON_ONCE(1);
1635 			return NULL;
1636 		}
1637 
1638 		uarg_zc = uarg_to_msgzc(uarg);
1639 		bytelen = uarg_zc->bytelen + size;
1640 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1641 			/* TCP can create new skb to attach new uarg */
1642 			if (sk->sk_type == SOCK_STREAM)
1643 				goto new_alloc;
1644 			return NULL;
1645 		}
1646 
1647 		next = (u32)atomic_read(&sk->sk_zckey);
1648 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1649 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1650 				return NULL;
1651 			uarg_zc->len++;
1652 			uarg_zc->bytelen = bytelen;
1653 			atomic_set(&sk->sk_zckey, ++next);
1654 
1655 			/* no extra ref when appending to datagram (MSG_MORE) */
1656 			if (sk->sk_type == SOCK_STREAM)
1657 				net_zcopy_get(uarg);
1658 
1659 			return uarg;
1660 		}
1661 	}
1662 
1663 new_alloc:
1664 	return msg_zerocopy_alloc(sk, size);
1665 }
1666 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1667 
1668 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1669 {
1670 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1671 	u32 old_lo, old_hi;
1672 	u64 sum_len;
1673 
1674 	old_lo = serr->ee.ee_info;
1675 	old_hi = serr->ee.ee_data;
1676 	sum_len = old_hi - old_lo + 1ULL + len;
1677 
1678 	if (sum_len >= (1ULL << 32))
1679 		return false;
1680 
1681 	if (lo != old_hi + 1)
1682 		return false;
1683 
1684 	serr->ee.ee_data += len;
1685 	return true;
1686 }
1687 
1688 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1689 {
1690 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1691 	struct sock_exterr_skb *serr;
1692 	struct sock *sk = skb->sk;
1693 	struct sk_buff_head *q;
1694 	unsigned long flags;
1695 	bool is_zerocopy;
1696 	u32 lo, hi;
1697 	u16 len;
1698 
1699 	mm_unaccount_pinned_pages(&uarg->mmp);
1700 
1701 	/* if !len, there was only 1 call, and it was aborted
1702 	 * so do not queue a completion notification
1703 	 */
1704 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1705 		goto release;
1706 
1707 	len = uarg->len;
1708 	lo = uarg->id;
1709 	hi = uarg->id + len - 1;
1710 	is_zerocopy = uarg->zerocopy;
1711 
1712 	serr = SKB_EXT_ERR(skb);
1713 	memset(serr, 0, sizeof(*serr));
1714 	serr->ee.ee_errno = 0;
1715 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1716 	serr->ee.ee_data = hi;
1717 	serr->ee.ee_info = lo;
1718 	if (!is_zerocopy)
1719 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1720 
1721 	q = &sk->sk_error_queue;
1722 	spin_lock_irqsave(&q->lock, flags);
1723 	tail = skb_peek_tail(q);
1724 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1725 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1726 		__skb_queue_tail(q, skb);
1727 		skb = NULL;
1728 	}
1729 	spin_unlock_irqrestore(&q->lock, flags);
1730 
1731 	sk_error_report(sk);
1732 
1733 release:
1734 	consume_skb(skb);
1735 	sock_put(sk);
1736 }
1737 
1738 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1739 			   bool success)
1740 {
1741 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1742 
1743 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1744 
1745 	if (refcount_dec_and_test(&uarg->refcnt))
1746 		__msg_zerocopy_callback(uarg_zc);
1747 }
1748 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1749 
1750 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1751 {
1752 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1753 
1754 	atomic_dec(&sk->sk_zckey);
1755 	uarg_to_msgzc(uarg)->len--;
1756 
1757 	if (have_uref)
1758 		msg_zerocopy_callback(NULL, uarg, true);
1759 }
1760 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1761 
1762 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1763 			     struct msghdr *msg, int len,
1764 			     struct ubuf_info *uarg)
1765 {
1766 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1767 	int err, orig_len = skb->len;
1768 
1769 	/* An skb can only point to one uarg. This edge case happens when
1770 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1771 	 */
1772 	if (orig_uarg && uarg != orig_uarg)
1773 		return -EEXIST;
1774 
1775 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1776 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1777 		struct sock *save_sk = skb->sk;
1778 
1779 		/* Streams do not free skb on error. Reset to prev state. */
1780 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1781 		skb->sk = sk;
1782 		___pskb_trim(skb, orig_len);
1783 		skb->sk = save_sk;
1784 		return err;
1785 	}
1786 
1787 	skb_zcopy_set(skb, uarg, NULL);
1788 	return skb->len - orig_len;
1789 }
1790 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1791 
1792 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1793 {
1794 	int i;
1795 
1796 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1797 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1798 		skb_frag_ref(skb, i);
1799 }
1800 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1801 
1802 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1803 			      gfp_t gfp_mask)
1804 {
1805 	if (skb_zcopy(orig)) {
1806 		if (skb_zcopy(nskb)) {
1807 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1808 			if (!gfp_mask) {
1809 				WARN_ON_ONCE(1);
1810 				return -ENOMEM;
1811 			}
1812 			if (skb_uarg(nskb) == skb_uarg(orig))
1813 				return 0;
1814 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1815 				return -EIO;
1816 		}
1817 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1818 	}
1819 	return 0;
1820 }
1821 
1822 /**
1823  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1824  *	@skb: the skb to modify
1825  *	@gfp_mask: allocation priority
1826  *
1827  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1828  *	It will copy all frags into kernel and drop the reference
1829  *	to userspace pages.
1830  *
1831  *	If this function is called from an interrupt gfp_mask() must be
1832  *	%GFP_ATOMIC.
1833  *
1834  *	Returns 0 on success or a negative error code on failure
1835  *	to allocate kernel memory to copy to.
1836  */
1837 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1838 {
1839 	int num_frags = skb_shinfo(skb)->nr_frags;
1840 	struct page *page, *head = NULL;
1841 	int i, order, psize, new_frags;
1842 	u32 d_off;
1843 
1844 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1845 		return -EINVAL;
1846 
1847 	if (!num_frags)
1848 		goto release;
1849 
1850 	/* We might have to allocate high order pages, so compute what minimum
1851 	 * page order is needed.
1852 	 */
1853 	order = 0;
1854 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1855 		order++;
1856 	psize = (PAGE_SIZE << order);
1857 
1858 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1859 	for (i = 0; i < new_frags; i++) {
1860 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1861 		if (!page) {
1862 			while (head) {
1863 				struct page *next = (struct page *)page_private(head);
1864 				put_page(head);
1865 				head = next;
1866 			}
1867 			return -ENOMEM;
1868 		}
1869 		set_page_private(page, (unsigned long)head);
1870 		head = page;
1871 	}
1872 
1873 	page = head;
1874 	d_off = 0;
1875 	for (i = 0; i < num_frags; i++) {
1876 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1877 		u32 p_off, p_len, copied;
1878 		struct page *p;
1879 		u8 *vaddr;
1880 
1881 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1882 				      p, p_off, p_len, copied) {
1883 			u32 copy, done = 0;
1884 			vaddr = kmap_atomic(p);
1885 
1886 			while (done < p_len) {
1887 				if (d_off == psize) {
1888 					d_off = 0;
1889 					page = (struct page *)page_private(page);
1890 				}
1891 				copy = min_t(u32, psize - d_off, p_len - done);
1892 				memcpy(page_address(page) + d_off,
1893 				       vaddr + p_off + done, copy);
1894 				done += copy;
1895 				d_off += copy;
1896 			}
1897 			kunmap_atomic(vaddr);
1898 		}
1899 	}
1900 
1901 	/* skb frags release userspace buffers */
1902 	for (i = 0; i < num_frags; i++)
1903 		skb_frag_unref(skb, i);
1904 
1905 	/* skb frags point to kernel buffers */
1906 	for (i = 0; i < new_frags - 1; i++) {
1907 		__skb_fill_page_desc(skb, i, head, 0, psize);
1908 		head = (struct page *)page_private(head);
1909 	}
1910 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1911 	skb_shinfo(skb)->nr_frags = new_frags;
1912 
1913 release:
1914 	skb_zcopy_clear(skb, false);
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1918 
1919 /**
1920  *	skb_clone	-	duplicate an sk_buff
1921  *	@skb: buffer to clone
1922  *	@gfp_mask: allocation priority
1923  *
1924  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1925  *	copies share the same packet data but not structure. The new
1926  *	buffer has a reference count of 1. If the allocation fails the
1927  *	function returns %NULL otherwise the new buffer is returned.
1928  *
1929  *	If this function is called from an interrupt gfp_mask() must be
1930  *	%GFP_ATOMIC.
1931  */
1932 
1933 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1934 {
1935 	struct sk_buff_fclones *fclones = container_of(skb,
1936 						       struct sk_buff_fclones,
1937 						       skb1);
1938 	struct sk_buff *n;
1939 
1940 	if (skb_orphan_frags(skb, gfp_mask))
1941 		return NULL;
1942 
1943 	if (skb->fclone == SKB_FCLONE_ORIG &&
1944 	    refcount_read(&fclones->fclone_ref) == 1) {
1945 		n = &fclones->skb2;
1946 		refcount_set(&fclones->fclone_ref, 2);
1947 		n->fclone = SKB_FCLONE_CLONE;
1948 	} else {
1949 		if (skb_pfmemalloc(skb))
1950 			gfp_mask |= __GFP_MEMALLOC;
1951 
1952 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1953 		if (!n)
1954 			return NULL;
1955 
1956 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1957 	}
1958 
1959 	return __skb_clone(n, skb);
1960 }
1961 EXPORT_SYMBOL(skb_clone);
1962 
1963 void skb_headers_offset_update(struct sk_buff *skb, int off)
1964 {
1965 	/* Only adjust this if it actually is csum_start rather than csum */
1966 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1967 		skb->csum_start += off;
1968 	/* {transport,network,mac}_header and tail are relative to skb->head */
1969 	skb->transport_header += off;
1970 	skb->network_header   += off;
1971 	if (skb_mac_header_was_set(skb))
1972 		skb->mac_header += off;
1973 	skb->inner_transport_header += off;
1974 	skb->inner_network_header += off;
1975 	skb->inner_mac_header += off;
1976 }
1977 EXPORT_SYMBOL(skb_headers_offset_update);
1978 
1979 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1980 {
1981 	__copy_skb_header(new, old);
1982 
1983 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1984 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1985 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1986 }
1987 EXPORT_SYMBOL(skb_copy_header);
1988 
1989 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1990 {
1991 	if (skb_pfmemalloc(skb))
1992 		return SKB_ALLOC_RX;
1993 	return 0;
1994 }
1995 
1996 /**
1997  *	skb_copy	-	create private copy of an sk_buff
1998  *	@skb: buffer to copy
1999  *	@gfp_mask: allocation priority
2000  *
2001  *	Make a copy of both an &sk_buff and its data. This is used when the
2002  *	caller wishes to modify the data and needs a private copy of the
2003  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2004  *	on success. The returned buffer has a reference count of 1.
2005  *
2006  *	As by-product this function converts non-linear &sk_buff to linear
2007  *	one, so that &sk_buff becomes completely private and caller is allowed
2008  *	to modify all the data of returned buffer. This means that this
2009  *	function is not recommended for use in circumstances when only
2010  *	header is going to be modified. Use pskb_copy() instead.
2011  */
2012 
2013 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2014 {
2015 	int headerlen = skb_headroom(skb);
2016 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2017 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2018 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2019 
2020 	if (!n)
2021 		return NULL;
2022 
2023 	/* Set the data pointer */
2024 	skb_reserve(n, headerlen);
2025 	/* Set the tail pointer and length */
2026 	skb_put(n, skb->len);
2027 
2028 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2029 
2030 	skb_copy_header(n, skb);
2031 	return n;
2032 }
2033 EXPORT_SYMBOL(skb_copy);
2034 
2035 /**
2036  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2037  *	@skb: buffer to copy
2038  *	@headroom: headroom of new skb
2039  *	@gfp_mask: allocation priority
2040  *	@fclone: if true allocate the copy of the skb from the fclone
2041  *	cache instead of the head cache; it is recommended to set this
2042  *	to true for the cases where the copy will likely be cloned
2043  *
2044  *	Make a copy of both an &sk_buff and part of its data, located
2045  *	in header. Fragmented data remain shared. This is used when
2046  *	the caller wishes to modify only header of &sk_buff and needs
2047  *	private copy of the header to alter. Returns %NULL on failure
2048  *	or the pointer to the buffer on success.
2049  *	The returned buffer has a reference count of 1.
2050  */
2051 
2052 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2053 				   gfp_t gfp_mask, bool fclone)
2054 {
2055 	unsigned int size = skb_headlen(skb) + headroom;
2056 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2057 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2058 
2059 	if (!n)
2060 		goto out;
2061 
2062 	/* Set the data pointer */
2063 	skb_reserve(n, headroom);
2064 	/* Set the tail pointer and length */
2065 	skb_put(n, skb_headlen(skb));
2066 	/* Copy the bytes */
2067 	skb_copy_from_linear_data(skb, n->data, n->len);
2068 
2069 	n->truesize += skb->data_len;
2070 	n->data_len  = skb->data_len;
2071 	n->len	     = skb->len;
2072 
2073 	if (skb_shinfo(skb)->nr_frags) {
2074 		int i;
2075 
2076 		if (skb_orphan_frags(skb, gfp_mask) ||
2077 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2078 			kfree_skb(n);
2079 			n = NULL;
2080 			goto out;
2081 		}
2082 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2083 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2084 			skb_frag_ref(skb, i);
2085 		}
2086 		skb_shinfo(n)->nr_frags = i;
2087 	}
2088 
2089 	if (skb_has_frag_list(skb)) {
2090 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2091 		skb_clone_fraglist(n);
2092 	}
2093 
2094 	skb_copy_header(n, skb);
2095 out:
2096 	return n;
2097 }
2098 EXPORT_SYMBOL(__pskb_copy_fclone);
2099 
2100 /**
2101  *	pskb_expand_head - reallocate header of &sk_buff
2102  *	@skb: buffer to reallocate
2103  *	@nhead: room to add at head
2104  *	@ntail: room to add at tail
2105  *	@gfp_mask: allocation priority
2106  *
2107  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2108  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2109  *	reference count of 1. Returns zero in the case of success or error,
2110  *	if expansion failed. In the last case, &sk_buff is not changed.
2111  *
2112  *	All the pointers pointing into skb header may change and must be
2113  *	reloaded after call to this function.
2114  */
2115 
2116 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2117 		     gfp_t gfp_mask)
2118 {
2119 	unsigned int osize = skb_end_offset(skb);
2120 	unsigned int size = osize + nhead + ntail;
2121 	long off;
2122 	u8 *data;
2123 	int i;
2124 
2125 	BUG_ON(nhead < 0);
2126 
2127 	BUG_ON(skb_shared(skb));
2128 
2129 	skb_zcopy_downgrade_managed(skb);
2130 
2131 	if (skb_pfmemalloc(skb))
2132 		gfp_mask |= __GFP_MEMALLOC;
2133 
2134 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2135 	if (!data)
2136 		goto nodata;
2137 	size = SKB_WITH_OVERHEAD(size);
2138 
2139 	/* Copy only real data... and, alas, header. This should be
2140 	 * optimized for the cases when header is void.
2141 	 */
2142 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2143 
2144 	memcpy((struct skb_shared_info *)(data + size),
2145 	       skb_shinfo(skb),
2146 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2147 
2148 	/*
2149 	 * if shinfo is shared we must drop the old head gracefully, but if it
2150 	 * is not we can just drop the old head and let the existing refcount
2151 	 * be since all we did is relocate the values
2152 	 */
2153 	if (skb_cloned(skb)) {
2154 		if (skb_orphan_frags(skb, gfp_mask))
2155 			goto nofrags;
2156 		if (skb_zcopy(skb))
2157 			refcount_inc(&skb_uarg(skb)->refcnt);
2158 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2159 			skb_frag_ref(skb, i);
2160 
2161 		if (skb_has_frag_list(skb))
2162 			skb_clone_fraglist(skb);
2163 
2164 		skb_release_data(skb, SKB_CONSUMED, false);
2165 	} else {
2166 		skb_free_head(skb, false);
2167 	}
2168 	off = (data + nhead) - skb->head;
2169 
2170 	skb->head     = data;
2171 	skb->head_frag = 0;
2172 	skb->data    += off;
2173 
2174 	skb_set_end_offset(skb, size);
2175 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2176 	off           = nhead;
2177 #endif
2178 	skb->tail	      += off;
2179 	skb_headers_offset_update(skb, nhead);
2180 	skb->cloned   = 0;
2181 	skb->hdr_len  = 0;
2182 	skb->nohdr    = 0;
2183 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2184 
2185 	skb_metadata_clear(skb);
2186 
2187 	/* It is not generally safe to change skb->truesize.
2188 	 * For the moment, we really care of rx path, or
2189 	 * when skb is orphaned (not attached to a socket).
2190 	 */
2191 	if (!skb->sk || skb->destructor == sock_edemux)
2192 		skb->truesize += size - osize;
2193 
2194 	return 0;
2195 
2196 nofrags:
2197 	skb_kfree_head(data, size);
2198 nodata:
2199 	return -ENOMEM;
2200 }
2201 EXPORT_SYMBOL(pskb_expand_head);
2202 
2203 /* Make private copy of skb with writable head and some headroom */
2204 
2205 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2206 {
2207 	struct sk_buff *skb2;
2208 	int delta = headroom - skb_headroom(skb);
2209 
2210 	if (delta <= 0)
2211 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2212 	else {
2213 		skb2 = skb_clone(skb, GFP_ATOMIC);
2214 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2215 					     GFP_ATOMIC)) {
2216 			kfree_skb(skb2);
2217 			skb2 = NULL;
2218 		}
2219 	}
2220 	return skb2;
2221 }
2222 EXPORT_SYMBOL(skb_realloc_headroom);
2223 
2224 /* Note: We plan to rework this in linux-6.4 */
2225 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2226 {
2227 	unsigned int saved_end_offset, saved_truesize;
2228 	struct skb_shared_info *shinfo;
2229 	int res;
2230 
2231 	saved_end_offset = skb_end_offset(skb);
2232 	saved_truesize = skb->truesize;
2233 
2234 	res = pskb_expand_head(skb, 0, 0, pri);
2235 	if (res)
2236 		return res;
2237 
2238 	skb->truesize = saved_truesize;
2239 
2240 	if (likely(skb_end_offset(skb) == saved_end_offset))
2241 		return 0;
2242 
2243 	/* We can not change skb->end if the original or new value
2244 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2245 	 */
2246 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2247 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2248 		/* We think this path should not be taken.
2249 		 * Add a temporary trace to warn us just in case.
2250 		 */
2251 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2252 			    saved_end_offset, skb_end_offset(skb));
2253 		WARN_ON_ONCE(1);
2254 		return 0;
2255 	}
2256 
2257 	shinfo = skb_shinfo(skb);
2258 
2259 	/* We are about to change back skb->end,
2260 	 * we need to move skb_shinfo() to its new location.
2261 	 */
2262 	memmove(skb->head + saved_end_offset,
2263 		shinfo,
2264 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2265 
2266 	skb_set_end_offset(skb, saved_end_offset);
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  *	skb_expand_head - reallocate header of &sk_buff
2273  *	@skb: buffer to reallocate
2274  *	@headroom: needed headroom
2275  *
2276  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2277  *	if possible; copies skb->sk to new skb as needed
2278  *	and frees original skb in case of failures.
2279  *
2280  *	It expect increased headroom and generates warning otherwise.
2281  */
2282 
2283 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2284 {
2285 	int delta = headroom - skb_headroom(skb);
2286 	int osize = skb_end_offset(skb);
2287 	struct sock *sk = skb->sk;
2288 
2289 	if (WARN_ONCE(delta <= 0,
2290 		      "%s is expecting an increase in the headroom", __func__))
2291 		return skb;
2292 
2293 	delta = SKB_DATA_ALIGN(delta);
2294 	/* pskb_expand_head() might crash, if skb is shared. */
2295 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2296 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2297 
2298 		if (unlikely(!nskb))
2299 			goto fail;
2300 
2301 		if (sk)
2302 			skb_set_owner_w(nskb, sk);
2303 		consume_skb(skb);
2304 		skb = nskb;
2305 	}
2306 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2307 		goto fail;
2308 
2309 	if (sk && is_skb_wmem(skb)) {
2310 		delta = skb_end_offset(skb) - osize;
2311 		refcount_add(delta, &sk->sk_wmem_alloc);
2312 		skb->truesize += delta;
2313 	}
2314 	return skb;
2315 
2316 fail:
2317 	kfree_skb(skb);
2318 	return NULL;
2319 }
2320 EXPORT_SYMBOL(skb_expand_head);
2321 
2322 /**
2323  *	skb_copy_expand	-	copy and expand sk_buff
2324  *	@skb: buffer to copy
2325  *	@newheadroom: new free bytes at head
2326  *	@newtailroom: new free bytes at tail
2327  *	@gfp_mask: allocation priority
2328  *
2329  *	Make a copy of both an &sk_buff and its data and while doing so
2330  *	allocate additional space.
2331  *
2332  *	This is used when the caller wishes to modify the data and needs a
2333  *	private copy of the data to alter as well as more space for new fields.
2334  *	Returns %NULL on failure or the pointer to the buffer
2335  *	on success. The returned buffer has a reference count of 1.
2336  *
2337  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2338  *	is called from an interrupt.
2339  */
2340 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2341 				int newheadroom, int newtailroom,
2342 				gfp_t gfp_mask)
2343 {
2344 	/*
2345 	 *	Allocate the copy buffer
2346 	 */
2347 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2348 					gfp_mask, skb_alloc_rx_flag(skb),
2349 					NUMA_NO_NODE);
2350 	int oldheadroom = skb_headroom(skb);
2351 	int head_copy_len, head_copy_off;
2352 
2353 	if (!n)
2354 		return NULL;
2355 
2356 	skb_reserve(n, newheadroom);
2357 
2358 	/* Set the tail pointer and length */
2359 	skb_put(n, skb->len);
2360 
2361 	head_copy_len = oldheadroom;
2362 	head_copy_off = 0;
2363 	if (newheadroom <= head_copy_len)
2364 		head_copy_len = newheadroom;
2365 	else
2366 		head_copy_off = newheadroom - head_copy_len;
2367 
2368 	/* Copy the linear header and data. */
2369 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2370 			     skb->len + head_copy_len));
2371 
2372 	skb_copy_header(n, skb);
2373 
2374 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2375 
2376 	return n;
2377 }
2378 EXPORT_SYMBOL(skb_copy_expand);
2379 
2380 /**
2381  *	__skb_pad		-	zero pad the tail of an skb
2382  *	@skb: buffer to pad
2383  *	@pad: space to pad
2384  *	@free_on_error: free buffer on error
2385  *
2386  *	Ensure that a buffer is followed by a padding area that is zero
2387  *	filled. Used by network drivers which may DMA or transfer data
2388  *	beyond the buffer end onto the wire.
2389  *
2390  *	May return error in out of memory cases. The skb is freed on error
2391  *	if @free_on_error is true.
2392  */
2393 
2394 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2395 {
2396 	int err;
2397 	int ntail;
2398 
2399 	/* If the skbuff is non linear tailroom is always zero.. */
2400 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2401 		memset(skb->data+skb->len, 0, pad);
2402 		return 0;
2403 	}
2404 
2405 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2406 	if (likely(skb_cloned(skb) || ntail > 0)) {
2407 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2408 		if (unlikely(err))
2409 			goto free_skb;
2410 	}
2411 
2412 	/* FIXME: The use of this function with non-linear skb's really needs
2413 	 * to be audited.
2414 	 */
2415 	err = skb_linearize(skb);
2416 	if (unlikely(err))
2417 		goto free_skb;
2418 
2419 	memset(skb->data + skb->len, 0, pad);
2420 	return 0;
2421 
2422 free_skb:
2423 	if (free_on_error)
2424 		kfree_skb(skb);
2425 	return err;
2426 }
2427 EXPORT_SYMBOL(__skb_pad);
2428 
2429 /**
2430  *	pskb_put - add data to the tail of a potentially fragmented buffer
2431  *	@skb: start of the buffer to use
2432  *	@tail: tail fragment of the buffer to use
2433  *	@len: amount of data to add
2434  *
2435  *	This function extends the used data area of the potentially
2436  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2437  *	@skb itself. If this would exceed the total buffer size the kernel
2438  *	will panic. A pointer to the first byte of the extra data is
2439  *	returned.
2440  */
2441 
2442 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2443 {
2444 	if (tail != skb) {
2445 		skb->data_len += len;
2446 		skb->len += len;
2447 	}
2448 	return skb_put(tail, len);
2449 }
2450 EXPORT_SYMBOL_GPL(pskb_put);
2451 
2452 /**
2453  *	skb_put - add data to a buffer
2454  *	@skb: buffer to use
2455  *	@len: amount of data to add
2456  *
2457  *	This function extends the used data area of the buffer. If this would
2458  *	exceed the total buffer size the kernel will panic. A pointer to the
2459  *	first byte of the extra data is returned.
2460  */
2461 void *skb_put(struct sk_buff *skb, unsigned int len)
2462 {
2463 	void *tmp = skb_tail_pointer(skb);
2464 	SKB_LINEAR_ASSERT(skb);
2465 	skb->tail += len;
2466 	skb->len  += len;
2467 	if (unlikely(skb->tail > skb->end))
2468 		skb_over_panic(skb, len, __builtin_return_address(0));
2469 	return tmp;
2470 }
2471 EXPORT_SYMBOL(skb_put);
2472 
2473 /**
2474  *	skb_push - add data to the start of a buffer
2475  *	@skb: buffer to use
2476  *	@len: amount of data to add
2477  *
2478  *	This function extends the used data area of the buffer at the buffer
2479  *	start. If this would exceed the total buffer headroom the kernel will
2480  *	panic. A pointer to the first byte of the extra data is returned.
2481  */
2482 void *skb_push(struct sk_buff *skb, unsigned int len)
2483 {
2484 	skb->data -= len;
2485 	skb->len  += len;
2486 	if (unlikely(skb->data < skb->head))
2487 		skb_under_panic(skb, len, __builtin_return_address(0));
2488 	return skb->data;
2489 }
2490 EXPORT_SYMBOL(skb_push);
2491 
2492 /**
2493  *	skb_pull - remove data from the start of a buffer
2494  *	@skb: buffer to use
2495  *	@len: amount of data to remove
2496  *
2497  *	This function removes data from the start of a buffer, returning
2498  *	the memory to the headroom. A pointer to the next data in the buffer
2499  *	is returned. Once the data has been pulled future pushes will overwrite
2500  *	the old data.
2501  */
2502 void *skb_pull(struct sk_buff *skb, unsigned int len)
2503 {
2504 	return skb_pull_inline(skb, len);
2505 }
2506 EXPORT_SYMBOL(skb_pull);
2507 
2508 /**
2509  *	skb_pull_data - remove data from the start of a buffer returning its
2510  *	original position.
2511  *	@skb: buffer to use
2512  *	@len: amount of data to remove
2513  *
2514  *	This function removes data from the start of a buffer, returning
2515  *	the memory to the headroom. A pointer to the original data in the buffer
2516  *	is returned after checking if there is enough data to pull. Once the
2517  *	data has been pulled future pushes will overwrite the old data.
2518  */
2519 void *skb_pull_data(struct sk_buff *skb, size_t len)
2520 {
2521 	void *data = skb->data;
2522 
2523 	if (skb->len < len)
2524 		return NULL;
2525 
2526 	skb_pull(skb, len);
2527 
2528 	return data;
2529 }
2530 EXPORT_SYMBOL(skb_pull_data);
2531 
2532 /**
2533  *	skb_trim - remove end from a buffer
2534  *	@skb: buffer to alter
2535  *	@len: new length
2536  *
2537  *	Cut the length of a buffer down by removing data from the tail. If
2538  *	the buffer is already under the length specified it is not modified.
2539  *	The skb must be linear.
2540  */
2541 void skb_trim(struct sk_buff *skb, unsigned int len)
2542 {
2543 	if (skb->len > len)
2544 		__skb_trim(skb, len);
2545 }
2546 EXPORT_SYMBOL(skb_trim);
2547 
2548 /* Trims skb to length len. It can change skb pointers.
2549  */
2550 
2551 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2552 {
2553 	struct sk_buff **fragp;
2554 	struct sk_buff *frag;
2555 	int offset = skb_headlen(skb);
2556 	int nfrags = skb_shinfo(skb)->nr_frags;
2557 	int i;
2558 	int err;
2559 
2560 	if (skb_cloned(skb) &&
2561 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2562 		return err;
2563 
2564 	i = 0;
2565 	if (offset >= len)
2566 		goto drop_pages;
2567 
2568 	for (; i < nfrags; i++) {
2569 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2570 
2571 		if (end < len) {
2572 			offset = end;
2573 			continue;
2574 		}
2575 
2576 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2577 
2578 drop_pages:
2579 		skb_shinfo(skb)->nr_frags = i;
2580 
2581 		for (; i < nfrags; i++)
2582 			skb_frag_unref(skb, i);
2583 
2584 		if (skb_has_frag_list(skb))
2585 			skb_drop_fraglist(skb);
2586 		goto done;
2587 	}
2588 
2589 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2590 	     fragp = &frag->next) {
2591 		int end = offset + frag->len;
2592 
2593 		if (skb_shared(frag)) {
2594 			struct sk_buff *nfrag;
2595 
2596 			nfrag = skb_clone(frag, GFP_ATOMIC);
2597 			if (unlikely(!nfrag))
2598 				return -ENOMEM;
2599 
2600 			nfrag->next = frag->next;
2601 			consume_skb(frag);
2602 			frag = nfrag;
2603 			*fragp = frag;
2604 		}
2605 
2606 		if (end < len) {
2607 			offset = end;
2608 			continue;
2609 		}
2610 
2611 		if (end > len &&
2612 		    unlikely((err = pskb_trim(frag, len - offset))))
2613 			return err;
2614 
2615 		if (frag->next)
2616 			skb_drop_list(&frag->next);
2617 		break;
2618 	}
2619 
2620 done:
2621 	if (len > skb_headlen(skb)) {
2622 		skb->data_len -= skb->len - len;
2623 		skb->len       = len;
2624 	} else {
2625 		skb->len       = len;
2626 		skb->data_len  = 0;
2627 		skb_set_tail_pointer(skb, len);
2628 	}
2629 
2630 	if (!skb->sk || skb->destructor == sock_edemux)
2631 		skb_condense(skb);
2632 	return 0;
2633 }
2634 EXPORT_SYMBOL(___pskb_trim);
2635 
2636 /* Note : use pskb_trim_rcsum() instead of calling this directly
2637  */
2638 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2639 {
2640 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2641 		int delta = skb->len - len;
2642 
2643 		skb->csum = csum_block_sub(skb->csum,
2644 					   skb_checksum(skb, len, delta, 0),
2645 					   len);
2646 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2647 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2648 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2649 
2650 		if (offset + sizeof(__sum16) > hdlen)
2651 			return -EINVAL;
2652 	}
2653 	return __pskb_trim(skb, len);
2654 }
2655 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2656 
2657 /**
2658  *	__pskb_pull_tail - advance tail of skb header
2659  *	@skb: buffer to reallocate
2660  *	@delta: number of bytes to advance tail
2661  *
2662  *	The function makes a sense only on a fragmented &sk_buff,
2663  *	it expands header moving its tail forward and copying necessary
2664  *	data from fragmented part.
2665  *
2666  *	&sk_buff MUST have reference count of 1.
2667  *
2668  *	Returns %NULL (and &sk_buff does not change) if pull failed
2669  *	or value of new tail of skb in the case of success.
2670  *
2671  *	All the pointers pointing into skb header may change and must be
2672  *	reloaded after call to this function.
2673  */
2674 
2675 /* Moves tail of skb head forward, copying data from fragmented part,
2676  * when it is necessary.
2677  * 1. It may fail due to malloc failure.
2678  * 2. It may change skb pointers.
2679  *
2680  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2681  */
2682 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2683 {
2684 	/* If skb has not enough free space at tail, get new one
2685 	 * plus 128 bytes for future expansions. If we have enough
2686 	 * room at tail, reallocate without expansion only if skb is cloned.
2687 	 */
2688 	int i, k, eat = (skb->tail + delta) - skb->end;
2689 
2690 	if (eat > 0 || skb_cloned(skb)) {
2691 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2692 				     GFP_ATOMIC))
2693 			return NULL;
2694 	}
2695 
2696 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2697 			     skb_tail_pointer(skb), delta));
2698 
2699 	/* Optimization: no fragments, no reasons to preestimate
2700 	 * size of pulled pages. Superb.
2701 	 */
2702 	if (!skb_has_frag_list(skb))
2703 		goto pull_pages;
2704 
2705 	/* Estimate size of pulled pages. */
2706 	eat = delta;
2707 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2708 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2709 
2710 		if (size >= eat)
2711 			goto pull_pages;
2712 		eat -= size;
2713 	}
2714 
2715 	/* If we need update frag list, we are in troubles.
2716 	 * Certainly, it is possible to add an offset to skb data,
2717 	 * but taking into account that pulling is expected to
2718 	 * be very rare operation, it is worth to fight against
2719 	 * further bloating skb head and crucify ourselves here instead.
2720 	 * Pure masohism, indeed. 8)8)
2721 	 */
2722 	if (eat) {
2723 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2724 		struct sk_buff *clone = NULL;
2725 		struct sk_buff *insp = NULL;
2726 
2727 		do {
2728 			if (list->len <= eat) {
2729 				/* Eaten as whole. */
2730 				eat -= list->len;
2731 				list = list->next;
2732 				insp = list;
2733 			} else {
2734 				/* Eaten partially. */
2735 				if (skb_is_gso(skb) && !list->head_frag &&
2736 				    skb_headlen(list))
2737 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2738 
2739 				if (skb_shared(list)) {
2740 					/* Sucks! We need to fork list. :-( */
2741 					clone = skb_clone(list, GFP_ATOMIC);
2742 					if (!clone)
2743 						return NULL;
2744 					insp = list->next;
2745 					list = clone;
2746 				} else {
2747 					/* This may be pulled without
2748 					 * problems. */
2749 					insp = list;
2750 				}
2751 				if (!pskb_pull(list, eat)) {
2752 					kfree_skb(clone);
2753 					return NULL;
2754 				}
2755 				break;
2756 			}
2757 		} while (eat);
2758 
2759 		/* Free pulled out fragments. */
2760 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2761 			skb_shinfo(skb)->frag_list = list->next;
2762 			consume_skb(list);
2763 		}
2764 		/* And insert new clone at head. */
2765 		if (clone) {
2766 			clone->next = list;
2767 			skb_shinfo(skb)->frag_list = clone;
2768 		}
2769 	}
2770 	/* Success! Now we may commit changes to skb data. */
2771 
2772 pull_pages:
2773 	eat = delta;
2774 	k = 0;
2775 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2776 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2777 
2778 		if (size <= eat) {
2779 			skb_frag_unref(skb, i);
2780 			eat -= size;
2781 		} else {
2782 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2783 
2784 			*frag = skb_shinfo(skb)->frags[i];
2785 			if (eat) {
2786 				skb_frag_off_add(frag, eat);
2787 				skb_frag_size_sub(frag, eat);
2788 				if (!i)
2789 					goto end;
2790 				eat = 0;
2791 			}
2792 			k++;
2793 		}
2794 	}
2795 	skb_shinfo(skb)->nr_frags = k;
2796 
2797 end:
2798 	skb->tail     += delta;
2799 	skb->data_len -= delta;
2800 
2801 	if (!skb->data_len)
2802 		skb_zcopy_clear(skb, false);
2803 
2804 	return skb_tail_pointer(skb);
2805 }
2806 EXPORT_SYMBOL(__pskb_pull_tail);
2807 
2808 /**
2809  *	skb_copy_bits - copy bits from skb to kernel buffer
2810  *	@skb: source skb
2811  *	@offset: offset in source
2812  *	@to: destination buffer
2813  *	@len: number of bytes to copy
2814  *
2815  *	Copy the specified number of bytes from the source skb to the
2816  *	destination buffer.
2817  *
2818  *	CAUTION ! :
2819  *		If its prototype is ever changed,
2820  *		check arch/{*}/net/{*}.S files,
2821  *		since it is called from BPF assembly code.
2822  */
2823 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2824 {
2825 	int start = skb_headlen(skb);
2826 	struct sk_buff *frag_iter;
2827 	int i, copy;
2828 
2829 	if (offset > (int)skb->len - len)
2830 		goto fault;
2831 
2832 	/* Copy header. */
2833 	if ((copy = start - offset) > 0) {
2834 		if (copy > len)
2835 			copy = len;
2836 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2837 		if ((len -= copy) == 0)
2838 			return 0;
2839 		offset += copy;
2840 		to     += copy;
2841 	}
2842 
2843 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2844 		int end;
2845 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2846 
2847 		WARN_ON(start > offset + len);
2848 
2849 		end = start + skb_frag_size(f);
2850 		if ((copy = end - offset) > 0) {
2851 			u32 p_off, p_len, copied;
2852 			struct page *p;
2853 			u8 *vaddr;
2854 
2855 			if (copy > len)
2856 				copy = len;
2857 
2858 			skb_frag_foreach_page(f,
2859 					      skb_frag_off(f) + offset - start,
2860 					      copy, p, p_off, p_len, copied) {
2861 				vaddr = kmap_atomic(p);
2862 				memcpy(to + copied, vaddr + p_off, p_len);
2863 				kunmap_atomic(vaddr);
2864 			}
2865 
2866 			if ((len -= copy) == 0)
2867 				return 0;
2868 			offset += copy;
2869 			to     += copy;
2870 		}
2871 		start = end;
2872 	}
2873 
2874 	skb_walk_frags(skb, frag_iter) {
2875 		int end;
2876 
2877 		WARN_ON(start > offset + len);
2878 
2879 		end = start + frag_iter->len;
2880 		if ((copy = end - offset) > 0) {
2881 			if (copy > len)
2882 				copy = len;
2883 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2884 				goto fault;
2885 			if ((len -= copy) == 0)
2886 				return 0;
2887 			offset += copy;
2888 			to     += copy;
2889 		}
2890 		start = end;
2891 	}
2892 
2893 	if (!len)
2894 		return 0;
2895 
2896 fault:
2897 	return -EFAULT;
2898 }
2899 EXPORT_SYMBOL(skb_copy_bits);
2900 
2901 /*
2902  * Callback from splice_to_pipe(), if we need to release some pages
2903  * at the end of the spd in case we error'ed out in filling the pipe.
2904  */
2905 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2906 {
2907 	put_page(spd->pages[i]);
2908 }
2909 
2910 static struct page *linear_to_page(struct page *page, unsigned int *len,
2911 				   unsigned int *offset,
2912 				   struct sock *sk)
2913 {
2914 	struct page_frag *pfrag = sk_page_frag(sk);
2915 
2916 	if (!sk_page_frag_refill(sk, pfrag))
2917 		return NULL;
2918 
2919 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2920 
2921 	memcpy(page_address(pfrag->page) + pfrag->offset,
2922 	       page_address(page) + *offset, *len);
2923 	*offset = pfrag->offset;
2924 	pfrag->offset += *len;
2925 
2926 	return pfrag->page;
2927 }
2928 
2929 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2930 			     struct page *page,
2931 			     unsigned int offset)
2932 {
2933 	return	spd->nr_pages &&
2934 		spd->pages[spd->nr_pages - 1] == page &&
2935 		(spd->partial[spd->nr_pages - 1].offset +
2936 		 spd->partial[spd->nr_pages - 1].len == offset);
2937 }
2938 
2939 /*
2940  * Fill page/offset/length into spd, if it can hold more pages.
2941  */
2942 static bool spd_fill_page(struct splice_pipe_desc *spd,
2943 			  struct pipe_inode_info *pipe, struct page *page,
2944 			  unsigned int *len, unsigned int offset,
2945 			  bool linear,
2946 			  struct sock *sk)
2947 {
2948 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2949 		return true;
2950 
2951 	if (linear) {
2952 		page = linear_to_page(page, len, &offset, sk);
2953 		if (!page)
2954 			return true;
2955 	}
2956 	if (spd_can_coalesce(spd, page, offset)) {
2957 		spd->partial[spd->nr_pages - 1].len += *len;
2958 		return false;
2959 	}
2960 	get_page(page);
2961 	spd->pages[spd->nr_pages] = page;
2962 	spd->partial[spd->nr_pages].len = *len;
2963 	spd->partial[spd->nr_pages].offset = offset;
2964 	spd->nr_pages++;
2965 
2966 	return false;
2967 }
2968 
2969 static bool __splice_segment(struct page *page, unsigned int poff,
2970 			     unsigned int plen, unsigned int *off,
2971 			     unsigned int *len,
2972 			     struct splice_pipe_desc *spd, bool linear,
2973 			     struct sock *sk,
2974 			     struct pipe_inode_info *pipe)
2975 {
2976 	if (!*len)
2977 		return true;
2978 
2979 	/* skip this segment if already processed */
2980 	if (*off >= plen) {
2981 		*off -= plen;
2982 		return false;
2983 	}
2984 
2985 	/* ignore any bits we already processed */
2986 	poff += *off;
2987 	plen -= *off;
2988 	*off = 0;
2989 
2990 	do {
2991 		unsigned int flen = min(*len, plen);
2992 
2993 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2994 				  linear, sk))
2995 			return true;
2996 		poff += flen;
2997 		plen -= flen;
2998 		*len -= flen;
2999 	} while (*len && plen);
3000 
3001 	return false;
3002 }
3003 
3004 /*
3005  * Map linear and fragment data from the skb to spd. It reports true if the
3006  * pipe is full or if we already spliced the requested length.
3007  */
3008 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3009 			      unsigned int *offset, unsigned int *len,
3010 			      struct splice_pipe_desc *spd, struct sock *sk)
3011 {
3012 	int seg;
3013 	struct sk_buff *iter;
3014 
3015 	/* map the linear part :
3016 	 * If skb->head_frag is set, this 'linear' part is backed by a
3017 	 * fragment, and if the head is not shared with any clones then
3018 	 * we can avoid a copy since we own the head portion of this page.
3019 	 */
3020 	if (__splice_segment(virt_to_page(skb->data),
3021 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3022 			     skb_headlen(skb),
3023 			     offset, len, spd,
3024 			     skb_head_is_locked(skb),
3025 			     sk, pipe))
3026 		return true;
3027 
3028 	/*
3029 	 * then map the fragments
3030 	 */
3031 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3032 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3033 
3034 		if (__splice_segment(skb_frag_page(f),
3035 				     skb_frag_off(f), skb_frag_size(f),
3036 				     offset, len, spd, false, sk, pipe))
3037 			return true;
3038 	}
3039 
3040 	skb_walk_frags(skb, iter) {
3041 		if (*offset >= iter->len) {
3042 			*offset -= iter->len;
3043 			continue;
3044 		}
3045 		/* __skb_splice_bits() only fails if the output has no room
3046 		 * left, so no point in going over the frag_list for the error
3047 		 * case.
3048 		 */
3049 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3050 			return true;
3051 	}
3052 
3053 	return false;
3054 }
3055 
3056 /*
3057  * Map data from the skb to a pipe. Should handle both the linear part,
3058  * the fragments, and the frag list.
3059  */
3060 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3061 		    struct pipe_inode_info *pipe, unsigned int tlen,
3062 		    unsigned int flags)
3063 {
3064 	struct partial_page partial[MAX_SKB_FRAGS];
3065 	struct page *pages[MAX_SKB_FRAGS];
3066 	struct splice_pipe_desc spd = {
3067 		.pages = pages,
3068 		.partial = partial,
3069 		.nr_pages_max = MAX_SKB_FRAGS,
3070 		.ops = &nosteal_pipe_buf_ops,
3071 		.spd_release = sock_spd_release,
3072 	};
3073 	int ret = 0;
3074 
3075 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3076 
3077 	if (spd.nr_pages)
3078 		ret = splice_to_pipe(pipe, &spd);
3079 
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL_GPL(skb_splice_bits);
3083 
3084 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3085 {
3086 	struct socket *sock = sk->sk_socket;
3087 	size_t size = msg_data_left(msg);
3088 
3089 	if (!sock)
3090 		return -EINVAL;
3091 
3092 	if (!sock->ops->sendmsg_locked)
3093 		return sock_no_sendmsg_locked(sk, msg, size);
3094 
3095 	return sock->ops->sendmsg_locked(sk, msg, size);
3096 }
3097 
3098 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3099 {
3100 	struct socket *sock = sk->sk_socket;
3101 
3102 	if (!sock)
3103 		return -EINVAL;
3104 	return sock_sendmsg(sock, msg);
3105 }
3106 
3107 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3108 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3109 			   int len, sendmsg_func sendmsg)
3110 {
3111 	unsigned int orig_len = len;
3112 	struct sk_buff *head = skb;
3113 	unsigned short fragidx;
3114 	int slen, ret;
3115 
3116 do_frag_list:
3117 
3118 	/* Deal with head data */
3119 	while (offset < skb_headlen(skb) && len) {
3120 		struct kvec kv;
3121 		struct msghdr msg;
3122 
3123 		slen = min_t(int, len, skb_headlen(skb) - offset);
3124 		kv.iov_base = skb->data + offset;
3125 		kv.iov_len = slen;
3126 		memset(&msg, 0, sizeof(msg));
3127 		msg.msg_flags = MSG_DONTWAIT;
3128 
3129 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3130 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3131 				      sendmsg_unlocked, sk, &msg);
3132 		if (ret <= 0)
3133 			goto error;
3134 
3135 		offset += ret;
3136 		len -= ret;
3137 	}
3138 
3139 	/* All the data was skb head? */
3140 	if (!len)
3141 		goto out;
3142 
3143 	/* Make offset relative to start of frags */
3144 	offset -= skb_headlen(skb);
3145 
3146 	/* Find where we are in frag list */
3147 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3148 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3149 
3150 		if (offset < skb_frag_size(frag))
3151 			break;
3152 
3153 		offset -= skb_frag_size(frag);
3154 	}
3155 
3156 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3157 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3158 
3159 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3160 
3161 		while (slen) {
3162 			struct bio_vec bvec;
3163 			struct msghdr msg = {
3164 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3165 			};
3166 
3167 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3168 				      skb_frag_off(frag) + offset);
3169 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3170 				      slen);
3171 
3172 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3173 					      sendmsg_unlocked, sk, &msg);
3174 			if (ret <= 0)
3175 				goto error;
3176 
3177 			len -= ret;
3178 			offset += ret;
3179 			slen -= ret;
3180 		}
3181 
3182 		offset = 0;
3183 	}
3184 
3185 	if (len) {
3186 		/* Process any frag lists */
3187 
3188 		if (skb == head) {
3189 			if (skb_has_frag_list(skb)) {
3190 				skb = skb_shinfo(skb)->frag_list;
3191 				goto do_frag_list;
3192 			}
3193 		} else if (skb->next) {
3194 			skb = skb->next;
3195 			goto do_frag_list;
3196 		}
3197 	}
3198 
3199 out:
3200 	return orig_len - len;
3201 
3202 error:
3203 	return orig_len == len ? ret : orig_len - len;
3204 }
3205 
3206 /* Send skb data on a socket. Socket must be locked. */
3207 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3208 			 int len)
3209 {
3210 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3211 }
3212 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3213 
3214 /* Send skb data on a socket. Socket must be unlocked. */
3215 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3216 {
3217 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3218 }
3219 
3220 /**
3221  *	skb_store_bits - store bits from kernel buffer to skb
3222  *	@skb: destination buffer
3223  *	@offset: offset in destination
3224  *	@from: source buffer
3225  *	@len: number of bytes to copy
3226  *
3227  *	Copy the specified number of bytes from the source buffer to the
3228  *	destination skb.  This function handles all the messy bits of
3229  *	traversing fragment lists and such.
3230  */
3231 
3232 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3233 {
3234 	int start = skb_headlen(skb);
3235 	struct sk_buff *frag_iter;
3236 	int i, copy;
3237 
3238 	if (offset > (int)skb->len - len)
3239 		goto fault;
3240 
3241 	if ((copy = start - offset) > 0) {
3242 		if (copy > len)
3243 			copy = len;
3244 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3245 		if ((len -= copy) == 0)
3246 			return 0;
3247 		offset += copy;
3248 		from += copy;
3249 	}
3250 
3251 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3252 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3253 		int end;
3254 
3255 		WARN_ON(start > offset + len);
3256 
3257 		end = start + skb_frag_size(frag);
3258 		if ((copy = end - offset) > 0) {
3259 			u32 p_off, p_len, copied;
3260 			struct page *p;
3261 			u8 *vaddr;
3262 
3263 			if (copy > len)
3264 				copy = len;
3265 
3266 			skb_frag_foreach_page(frag,
3267 					      skb_frag_off(frag) + offset - start,
3268 					      copy, p, p_off, p_len, copied) {
3269 				vaddr = kmap_atomic(p);
3270 				memcpy(vaddr + p_off, from + copied, p_len);
3271 				kunmap_atomic(vaddr);
3272 			}
3273 
3274 			if ((len -= copy) == 0)
3275 				return 0;
3276 			offset += copy;
3277 			from += copy;
3278 		}
3279 		start = end;
3280 	}
3281 
3282 	skb_walk_frags(skb, frag_iter) {
3283 		int end;
3284 
3285 		WARN_ON(start > offset + len);
3286 
3287 		end = start + frag_iter->len;
3288 		if ((copy = end - offset) > 0) {
3289 			if (copy > len)
3290 				copy = len;
3291 			if (skb_store_bits(frag_iter, offset - start,
3292 					   from, copy))
3293 				goto fault;
3294 			if ((len -= copy) == 0)
3295 				return 0;
3296 			offset += copy;
3297 			from += copy;
3298 		}
3299 		start = end;
3300 	}
3301 	if (!len)
3302 		return 0;
3303 
3304 fault:
3305 	return -EFAULT;
3306 }
3307 EXPORT_SYMBOL(skb_store_bits);
3308 
3309 /* Checksum skb data. */
3310 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3311 		      __wsum csum, const struct skb_checksum_ops *ops)
3312 {
3313 	int start = skb_headlen(skb);
3314 	int i, copy = start - offset;
3315 	struct sk_buff *frag_iter;
3316 	int pos = 0;
3317 
3318 	/* Checksum header. */
3319 	if (copy > 0) {
3320 		if (copy > len)
3321 			copy = len;
3322 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3323 				       skb->data + offset, copy, csum);
3324 		if ((len -= copy) == 0)
3325 			return csum;
3326 		offset += copy;
3327 		pos	= copy;
3328 	}
3329 
3330 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3331 		int end;
3332 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3333 
3334 		WARN_ON(start > offset + len);
3335 
3336 		end = start + skb_frag_size(frag);
3337 		if ((copy = end - offset) > 0) {
3338 			u32 p_off, p_len, copied;
3339 			struct page *p;
3340 			__wsum csum2;
3341 			u8 *vaddr;
3342 
3343 			if (copy > len)
3344 				copy = len;
3345 
3346 			skb_frag_foreach_page(frag,
3347 					      skb_frag_off(frag) + offset - start,
3348 					      copy, p, p_off, p_len, copied) {
3349 				vaddr = kmap_atomic(p);
3350 				csum2 = INDIRECT_CALL_1(ops->update,
3351 							csum_partial_ext,
3352 							vaddr + p_off, p_len, 0);
3353 				kunmap_atomic(vaddr);
3354 				csum = INDIRECT_CALL_1(ops->combine,
3355 						       csum_block_add_ext, csum,
3356 						       csum2, pos, p_len);
3357 				pos += p_len;
3358 			}
3359 
3360 			if (!(len -= copy))
3361 				return csum;
3362 			offset += copy;
3363 		}
3364 		start = end;
3365 	}
3366 
3367 	skb_walk_frags(skb, frag_iter) {
3368 		int end;
3369 
3370 		WARN_ON(start > offset + len);
3371 
3372 		end = start + frag_iter->len;
3373 		if ((copy = end - offset) > 0) {
3374 			__wsum csum2;
3375 			if (copy > len)
3376 				copy = len;
3377 			csum2 = __skb_checksum(frag_iter, offset - start,
3378 					       copy, 0, ops);
3379 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3380 					       csum, csum2, pos, copy);
3381 			if ((len -= copy) == 0)
3382 				return csum;
3383 			offset += copy;
3384 			pos    += copy;
3385 		}
3386 		start = end;
3387 	}
3388 	BUG_ON(len);
3389 
3390 	return csum;
3391 }
3392 EXPORT_SYMBOL(__skb_checksum);
3393 
3394 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3395 		    int len, __wsum csum)
3396 {
3397 	const struct skb_checksum_ops ops = {
3398 		.update  = csum_partial_ext,
3399 		.combine = csum_block_add_ext,
3400 	};
3401 
3402 	return __skb_checksum(skb, offset, len, csum, &ops);
3403 }
3404 EXPORT_SYMBOL(skb_checksum);
3405 
3406 /* Both of above in one bottle. */
3407 
3408 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3409 				    u8 *to, int len)
3410 {
3411 	int start = skb_headlen(skb);
3412 	int i, copy = start - offset;
3413 	struct sk_buff *frag_iter;
3414 	int pos = 0;
3415 	__wsum csum = 0;
3416 
3417 	/* Copy header. */
3418 	if (copy > 0) {
3419 		if (copy > len)
3420 			copy = len;
3421 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3422 						 copy);
3423 		if ((len -= copy) == 0)
3424 			return csum;
3425 		offset += copy;
3426 		to     += copy;
3427 		pos	= copy;
3428 	}
3429 
3430 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3431 		int end;
3432 
3433 		WARN_ON(start > offset + len);
3434 
3435 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3436 		if ((copy = end - offset) > 0) {
3437 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3438 			u32 p_off, p_len, copied;
3439 			struct page *p;
3440 			__wsum csum2;
3441 			u8 *vaddr;
3442 
3443 			if (copy > len)
3444 				copy = len;
3445 
3446 			skb_frag_foreach_page(frag,
3447 					      skb_frag_off(frag) + offset - start,
3448 					      copy, p, p_off, p_len, copied) {
3449 				vaddr = kmap_atomic(p);
3450 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3451 								  to + copied,
3452 								  p_len);
3453 				kunmap_atomic(vaddr);
3454 				csum = csum_block_add(csum, csum2, pos);
3455 				pos += p_len;
3456 			}
3457 
3458 			if (!(len -= copy))
3459 				return csum;
3460 			offset += copy;
3461 			to     += copy;
3462 		}
3463 		start = end;
3464 	}
3465 
3466 	skb_walk_frags(skb, frag_iter) {
3467 		__wsum csum2;
3468 		int end;
3469 
3470 		WARN_ON(start > offset + len);
3471 
3472 		end = start + frag_iter->len;
3473 		if ((copy = end - offset) > 0) {
3474 			if (copy > len)
3475 				copy = len;
3476 			csum2 = skb_copy_and_csum_bits(frag_iter,
3477 						       offset - start,
3478 						       to, copy);
3479 			csum = csum_block_add(csum, csum2, pos);
3480 			if ((len -= copy) == 0)
3481 				return csum;
3482 			offset += copy;
3483 			to     += copy;
3484 			pos    += copy;
3485 		}
3486 		start = end;
3487 	}
3488 	BUG_ON(len);
3489 	return csum;
3490 }
3491 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3492 
3493 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3494 {
3495 	__sum16 sum;
3496 
3497 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3498 	/* See comments in __skb_checksum_complete(). */
3499 	if (likely(!sum)) {
3500 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3501 		    !skb->csum_complete_sw)
3502 			netdev_rx_csum_fault(skb->dev, skb);
3503 	}
3504 	if (!skb_shared(skb))
3505 		skb->csum_valid = !sum;
3506 	return sum;
3507 }
3508 EXPORT_SYMBOL(__skb_checksum_complete_head);
3509 
3510 /* This function assumes skb->csum already holds pseudo header's checksum,
3511  * which has been changed from the hardware checksum, for example, by
3512  * __skb_checksum_validate_complete(). And, the original skb->csum must
3513  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3514  *
3515  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3516  * zero. The new checksum is stored back into skb->csum unless the skb is
3517  * shared.
3518  */
3519 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3520 {
3521 	__wsum csum;
3522 	__sum16 sum;
3523 
3524 	csum = skb_checksum(skb, 0, skb->len, 0);
3525 
3526 	sum = csum_fold(csum_add(skb->csum, csum));
3527 	/* This check is inverted, because we already knew the hardware
3528 	 * checksum is invalid before calling this function. So, if the
3529 	 * re-computed checksum is valid instead, then we have a mismatch
3530 	 * between the original skb->csum and skb_checksum(). This means either
3531 	 * the original hardware checksum is incorrect or we screw up skb->csum
3532 	 * when moving skb->data around.
3533 	 */
3534 	if (likely(!sum)) {
3535 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3536 		    !skb->csum_complete_sw)
3537 			netdev_rx_csum_fault(skb->dev, skb);
3538 	}
3539 
3540 	if (!skb_shared(skb)) {
3541 		/* Save full packet checksum */
3542 		skb->csum = csum;
3543 		skb->ip_summed = CHECKSUM_COMPLETE;
3544 		skb->csum_complete_sw = 1;
3545 		skb->csum_valid = !sum;
3546 	}
3547 
3548 	return sum;
3549 }
3550 EXPORT_SYMBOL(__skb_checksum_complete);
3551 
3552 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3553 {
3554 	net_warn_ratelimited(
3555 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3556 		__func__);
3557 	return 0;
3558 }
3559 
3560 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3561 				       int offset, int len)
3562 {
3563 	net_warn_ratelimited(
3564 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3565 		__func__);
3566 	return 0;
3567 }
3568 
3569 static const struct skb_checksum_ops default_crc32c_ops = {
3570 	.update  = warn_crc32c_csum_update,
3571 	.combine = warn_crc32c_csum_combine,
3572 };
3573 
3574 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3575 	&default_crc32c_ops;
3576 EXPORT_SYMBOL(crc32c_csum_stub);
3577 
3578  /**
3579  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3580  *	@from: source buffer
3581  *
3582  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3583  *	into skb_zerocopy().
3584  */
3585 unsigned int
3586 skb_zerocopy_headlen(const struct sk_buff *from)
3587 {
3588 	unsigned int hlen = 0;
3589 
3590 	if (!from->head_frag ||
3591 	    skb_headlen(from) < L1_CACHE_BYTES ||
3592 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3593 		hlen = skb_headlen(from);
3594 		if (!hlen)
3595 			hlen = from->len;
3596 	}
3597 
3598 	if (skb_has_frag_list(from))
3599 		hlen = from->len;
3600 
3601 	return hlen;
3602 }
3603 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3604 
3605 /**
3606  *	skb_zerocopy - Zero copy skb to skb
3607  *	@to: destination buffer
3608  *	@from: source buffer
3609  *	@len: number of bytes to copy from source buffer
3610  *	@hlen: size of linear headroom in destination buffer
3611  *
3612  *	Copies up to `len` bytes from `from` to `to` by creating references
3613  *	to the frags in the source buffer.
3614  *
3615  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3616  *	headroom in the `to` buffer.
3617  *
3618  *	Return value:
3619  *	0: everything is OK
3620  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3621  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3622  */
3623 int
3624 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3625 {
3626 	int i, j = 0;
3627 	int plen = 0; /* length of skb->head fragment */
3628 	int ret;
3629 	struct page *page;
3630 	unsigned int offset;
3631 
3632 	BUG_ON(!from->head_frag && !hlen);
3633 
3634 	/* dont bother with small payloads */
3635 	if (len <= skb_tailroom(to))
3636 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3637 
3638 	if (hlen) {
3639 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3640 		if (unlikely(ret))
3641 			return ret;
3642 		len -= hlen;
3643 	} else {
3644 		plen = min_t(int, skb_headlen(from), len);
3645 		if (plen) {
3646 			page = virt_to_head_page(from->head);
3647 			offset = from->data - (unsigned char *)page_address(page);
3648 			__skb_fill_page_desc(to, 0, page, offset, plen);
3649 			get_page(page);
3650 			j = 1;
3651 			len -= plen;
3652 		}
3653 	}
3654 
3655 	skb_len_add(to, len + plen);
3656 
3657 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3658 		skb_tx_error(from);
3659 		return -ENOMEM;
3660 	}
3661 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3662 
3663 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3664 		int size;
3665 
3666 		if (!len)
3667 			break;
3668 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3669 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3670 					len);
3671 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3672 		len -= size;
3673 		skb_frag_ref(to, j);
3674 		j++;
3675 	}
3676 	skb_shinfo(to)->nr_frags = j;
3677 
3678 	return 0;
3679 }
3680 EXPORT_SYMBOL_GPL(skb_zerocopy);
3681 
3682 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3683 {
3684 	__wsum csum;
3685 	long csstart;
3686 
3687 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3688 		csstart = skb_checksum_start_offset(skb);
3689 	else
3690 		csstart = skb_headlen(skb);
3691 
3692 	BUG_ON(csstart > skb_headlen(skb));
3693 
3694 	skb_copy_from_linear_data(skb, to, csstart);
3695 
3696 	csum = 0;
3697 	if (csstart != skb->len)
3698 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3699 					      skb->len - csstart);
3700 
3701 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3702 		long csstuff = csstart + skb->csum_offset;
3703 
3704 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3705 	}
3706 }
3707 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3708 
3709 /**
3710  *	skb_dequeue - remove from the head of the queue
3711  *	@list: list to dequeue from
3712  *
3713  *	Remove the head of the list. The list lock is taken so the function
3714  *	may be used safely with other locking list functions. The head item is
3715  *	returned or %NULL if the list is empty.
3716  */
3717 
3718 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3719 {
3720 	unsigned long flags;
3721 	struct sk_buff *result;
3722 
3723 	spin_lock_irqsave(&list->lock, flags);
3724 	result = __skb_dequeue(list);
3725 	spin_unlock_irqrestore(&list->lock, flags);
3726 	return result;
3727 }
3728 EXPORT_SYMBOL(skb_dequeue);
3729 
3730 /**
3731  *	skb_dequeue_tail - remove from the tail of the queue
3732  *	@list: list to dequeue from
3733  *
3734  *	Remove the tail of the list. The list lock is taken so the function
3735  *	may be used safely with other locking list functions. The tail item is
3736  *	returned or %NULL if the list is empty.
3737  */
3738 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3739 {
3740 	unsigned long flags;
3741 	struct sk_buff *result;
3742 
3743 	spin_lock_irqsave(&list->lock, flags);
3744 	result = __skb_dequeue_tail(list);
3745 	spin_unlock_irqrestore(&list->lock, flags);
3746 	return result;
3747 }
3748 EXPORT_SYMBOL(skb_dequeue_tail);
3749 
3750 /**
3751  *	skb_queue_purge_reason - empty a list
3752  *	@list: list to empty
3753  *	@reason: drop reason
3754  *
3755  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3756  *	the list and one reference dropped. This function takes the list
3757  *	lock and is atomic with respect to other list locking functions.
3758  */
3759 void skb_queue_purge_reason(struct sk_buff_head *list,
3760 			    enum skb_drop_reason reason)
3761 {
3762 	struct sk_buff_head tmp;
3763 	unsigned long flags;
3764 
3765 	if (skb_queue_empty_lockless(list))
3766 		return;
3767 
3768 	__skb_queue_head_init(&tmp);
3769 
3770 	spin_lock_irqsave(&list->lock, flags);
3771 	skb_queue_splice_init(list, &tmp);
3772 	spin_unlock_irqrestore(&list->lock, flags);
3773 
3774 	__skb_queue_purge_reason(&tmp, reason);
3775 }
3776 EXPORT_SYMBOL(skb_queue_purge_reason);
3777 
3778 /**
3779  *	skb_rbtree_purge - empty a skb rbtree
3780  *	@root: root of the rbtree to empty
3781  *	Return value: the sum of truesizes of all purged skbs.
3782  *
3783  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3784  *	the list and one reference dropped. This function does not take
3785  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3786  *	out-of-order queue is protected by the socket lock).
3787  */
3788 unsigned int skb_rbtree_purge(struct rb_root *root)
3789 {
3790 	struct rb_node *p = rb_first(root);
3791 	unsigned int sum = 0;
3792 
3793 	while (p) {
3794 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3795 
3796 		p = rb_next(p);
3797 		rb_erase(&skb->rbnode, root);
3798 		sum += skb->truesize;
3799 		kfree_skb(skb);
3800 	}
3801 	return sum;
3802 }
3803 
3804 void skb_errqueue_purge(struct sk_buff_head *list)
3805 {
3806 	struct sk_buff *skb, *next;
3807 	struct sk_buff_head kill;
3808 	unsigned long flags;
3809 
3810 	__skb_queue_head_init(&kill);
3811 
3812 	spin_lock_irqsave(&list->lock, flags);
3813 	skb_queue_walk_safe(list, skb, next) {
3814 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3815 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3816 			continue;
3817 		__skb_unlink(skb, list);
3818 		__skb_queue_tail(&kill, skb);
3819 	}
3820 	spin_unlock_irqrestore(&list->lock, flags);
3821 	__skb_queue_purge(&kill);
3822 }
3823 EXPORT_SYMBOL(skb_errqueue_purge);
3824 
3825 /**
3826  *	skb_queue_head - queue a buffer at the list head
3827  *	@list: list to use
3828  *	@newsk: buffer to queue
3829  *
3830  *	Queue a buffer at the start of the list. This function takes the
3831  *	list lock and can be used safely with other locking &sk_buff functions
3832  *	safely.
3833  *
3834  *	A buffer cannot be placed on two lists at the same time.
3835  */
3836 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3837 {
3838 	unsigned long flags;
3839 
3840 	spin_lock_irqsave(&list->lock, flags);
3841 	__skb_queue_head(list, newsk);
3842 	spin_unlock_irqrestore(&list->lock, flags);
3843 }
3844 EXPORT_SYMBOL(skb_queue_head);
3845 
3846 /**
3847  *	skb_queue_tail - queue a buffer at the list tail
3848  *	@list: list to use
3849  *	@newsk: buffer to queue
3850  *
3851  *	Queue a buffer at the tail of the list. This function takes the
3852  *	list lock and can be used safely with other locking &sk_buff functions
3853  *	safely.
3854  *
3855  *	A buffer cannot be placed on two lists at the same time.
3856  */
3857 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3858 {
3859 	unsigned long flags;
3860 
3861 	spin_lock_irqsave(&list->lock, flags);
3862 	__skb_queue_tail(list, newsk);
3863 	spin_unlock_irqrestore(&list->lock, flags);
3864 }
3865 EXPORT_SYMBOL(skb_queue_tail);
3866 
3867 /**
3868  *	skb_unlink	-	remove a buffer from a list
3869  *	@skb: buffer to remove
3870  *	@list: list to use
3871  *
3872  *	Remove a packet from a list. The list locks are taken and this
3873  *	function is atomic with respect to other list locked calls
3874  *
3875  *	You must know what list the SKB is on.
3876  */
3877 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3878 {
3879 	unsigned long flags;
3880 
3881 	spin_lock_irqsave(&list->lock, flags);
3882 	__skb_unlink(skb, list);
3883 	spin_unlock_irqrestore(&list->lock, flags);
3884 }
3885 EXPORT_SYMBOL(skb_unlink);
3886 
3887 /**
3888  *	skb_append	-	append a buffer
3889  *	@old: buffer to insert after
3890  *	@newsk: buffer to insert
3891  *	@list: list to use
3892  *
3893  *	Place a packet after a given packet in a list. The list locks are taken
3894  *	and this function is atomic with respect to other list locked calls.
3895  *	A buffer cannot be placed on two lists at the same time.
3896  */
3897 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3898 {
3899 	unsigned long flags;
3900 
3901 	spin_lock_irqsave(&list->lock, flags);
3902 	__skb_queue_after(list, old, newsk);
3903 	spin_unlock_irqrestore(&list->lock, flags);
3904 }
3905 EXPORT_SYMBOL(skb_append);
3906 
3907 static inline void skb_split_inside_header(struct sk_buff *skb,
3908 					   struct sk_buff* skb1,
3909 					   const u32 len, const int pos)
3910 {
3911 	int i;
3912 
3913 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3914 					 pos - len);
3915 	/* And move data appendix as is. */
3916 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3917 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3918 
3919 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3920 	skb_shinfo(skb)->nr_frags  = 0;
3921 	skb1->data_len		   = skb->data_len;
3922 	skb1->len		   += skb1->data_len;
3923 	skb->data_len		   = 0;
3924 	skb->len		   = len;
3925 	skb_set_tail_pointer(skb, len);
3926 }
3927 
3928 static inline void skb_split_no_header(struct sk_buff *skb,
3929 				       struct sk_buff* skb1,
3930 				       const u32 len, int pos)
3931 {
3932 	int i, k = 0;
3933 	const int nfrags = skb_shinfo(skb)->nr_frags;
3934 
3935 	skb_shinfo(skb)->nr_frags = 0;
3936 	skb1->len		  = skb1->data_len = skb->len - len;
3937 	skb->len		  = len;
3938 	skb->data_len		  = len - pos;
3939 
3940 	for (i = 0; i < nfrags; i++) {
3941 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3942 
3943 		if (pos + size > len) {
3944 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3945 
3946 			if (pos < len) {
3947 				/* Split frag.
3948 				 * We have two variants in this case:
3949 				 * 1. Move all the frag to the second
3950 				 *    part, if it is possible. F.e.
3951 				 *    this approach is mandatory for TUX,
3952 				 *    where splitting is expensive.
3953 				 * 2. Split is accurately. We make this.
3954 				 */
3955 				skb_frag_ref(skb, i);
3956 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3957 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3958 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3959 				skb_shinfo(skb)->nr_frags++;
3960 			}
3961 			k++;
3962 		} else
3963 			skb_shinfo(skb)->nr_frags++;
3964 		pos += size;
3965 	}
3966 	skb_shinfo(skb1)->nr_frags = k;
3967 }
3968 
3969 /**
3970  * skb_split - Split fragmented skb to two parts at length len.
3971  * @skb: the buffer to split
3972  * @skb1: the buffer to receive the second part
3973  * @len: new length for skb
3974  */
3975 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3976 {
3977 	int pos = skb_headlen(skb);
3978 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3979 
3980 	skb_zcopy_downgrade_managed(skb);
3981 
3982 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3983 	skb_zerocopy_clone(skb1, skb, 0);
3984 	if (len < pos)	/* Split line is inside header. */
3985 		skb_split_inside_header(skb, skb1, len, pos);
3986 	else		/* Second chunk has no header, nothing to copy. */
3987 		skb_split_no_header(skb, skb1, len, pos);
3988 }
3989 EXPORT_SYMBOL(skb_split);
3990 
3991 /* Shifting from/to a cloned skb is a no-go.
3992  *
3993  * Caller cannot keep skb_shinfo related pointers past calling here!
3994  */
3995 static int skb_prepare_for_shift(struct sk_buff *skb)
3996 {
3997 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3998 }
3999 
4000 /**
4001  * skb_shift - Shifts paged data partially from skb to another
4002  * @tgt: buffer into which tail data gets added
4003  * @skb: buffer from which the paged data comes from
4004  * @shiftlen: shift up to this many bytes
4005  *
4006  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4007  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4008  * It's up to caller to free skb if everything was shifted.
4009  *
4010  * If @tgt runs out of frags, the whole operation is aborted.
4011  *
4012  * Skb cannot include anything else but paged data while tgt is allowed
4013  * to have non-paged data as well.
4014  *
4015  * TODO: full sized shift could be optimized but that would need
4016  * specialized skb free'er to handle frags without up-to-date nr_frags.
4017  */
4018 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4019 {
4020 	int from, to, merge, todo;
4021 	skb_frag_t *fragfrom, *fragto;
4022 
4023 	BUG_ON(shiftlen > skb->len);
4024 
4025 	if (skb_headlen(skb))
4026 		return 0;
4027 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4028 		return 0;
4029 
4030 	todo = shiftlen;
4031 	from = 0;
4032 	to = skb_shinfo(tgt)->nr_frags;
4033 	fragfrom = &skb_shinfo(skb)->frags[from];
4034 
4035 	/* Actual merge is delayed until the point when we know we can
4036 	 * commit all, so that we don't have to undo partial changes
4037 	 */
4038 	if (!to ||
4039 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4040 			      skb_frag_off(fragfrom))) {
4041 		merge = -1;
4042 	} else {
4043 		merge = to - 1;
4044 
4045 		todo -= skb_frag_size(fragfrom);
4046 		if (todo < 0) {
4047 			if (skb_prepare_for_shift(skb) ||
4048 			    skb_prepare_for_shift(tgt))
4049 				return 0;
4050 
4051 			/* All previous frag pointers might be stale! */
4052 			fragfrom = &skb_shinfo(skb)->frags[from];
4053 			fragto = &skb_shinfo(tgt)->frags[merge];
4054 
4055 			skb_frag_size_add(fragto, shiftlen);
4056 			skb_frag_size_sub(fragfrom, shiftlen);
4057 			skb_frag_off_add(fragfrom, shiftlen);
4058 
4059 			goto onlymerged;
4060 		}
4061 
4062 		from++;
4063 	}
4064 
4065 	/* Skip full, not-fitting skb to avoid expensive operations */
4066 	if ((shiftlen == skb->len) &&
4067 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4068 		return 0;
4069 
4070 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4071 		return 0;
4072 
4073 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4074 		if (to == MAX_SKB_FRAGS)
4075 			return 0;
4076 
4077 		fragfrom = &skb_shinfo(skb)->frags[from];
4078 		fragto = &skb_shinfo(tgt)->frags[to];
4079 
4080 		if (todo >= skb_frag_size(fragfrom)) {
4081 			*fragto = *fragfrom;
4082 			todo -= skb_frag_size(fragfrom);
4083 			from++;
4084 			to++;
4085 
4086 		} else {
4087 			__skb_frag_ref(fragfrom);
4088 			skb_frag_page_copy(fragto, fragfrom);
4089 			skb_frag_off_copy(fragto, fragfrom);
4090 			skb_frag_size_set(fragto, todo);
4091 
4092 			skb_frag_off_add(fragfrom, todo);
4093 			skb_frag_size_sub(fragfrom, todo);
4094 			todo = 0;
4095 
4096 			to++;
4097 			break;
4098 		}
4099 	}
4100 
4101 	/* Ready to "commit" this state change to tgt */
4102 	skb_shinfo(tgt)->nr_frags = to;
4103 
4104 	if (merge >= 0) {
4105 		fragfrom = &skb_shinfo(skb)->frags[0];
4106 		fragto = &skb_shinfo(tgt)->frags[merge];
4107 
4108 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4109 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4110 	}
4111 
4112 	/* Reposition in the original skb */
4113 	to = 0;
4114 	while (from < skb_shinfo(skb)->nr_frags)
4115 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4116 	skb_shinfo(skb)->nr_frags = to;
4117 
4118 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4119 
4120 onlymerged:
4121 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4122 	 * the other hand might need it if it needs to be resent
4123 	 */
4124 	tgt->ip_summed = CHECKSUM_PARTIAL;
4125 	skb->ip_summed = CHECKSUM_PARTIAL;
4126 
4127 	skb_len_add(skb, -shiftlen);
4128 	skb_len_add(tgt, shiftlen);
4129 
4130 	return shiftlen;
4131 }
4132 
4133 /**
4134  * skb_prepare_seq_read - Prepare a sequential read of skb data
4135  * @skb: the buffer to read
4136  * @from: lower offset of data to be read
4137  * @to: upper offset of data to be read
4138  * @st: state variable
4139  *
4140  * Initializes the specified state variable. Must be called before
4141  * invoking skb_seq_read() for the first time.
4142  */
4143 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4144 			  unsigned int to, struct skb_seq_state *st)
4145 {
4146 	st->lower_offset = from;
4147 	st->upper_offset = to;
4148 	st->root_skb = st->cur_skb = skb;
4149 	st->frag_idx = st->stepped_offset = 0;
4150 	st->frag_data = NULL;
4151 	st->frag_off = 0;
4152 }
4153 EXPORT_SYMBOL(skb_prepare_seq_read);
4154 
4155 /**
4156  * skb_seq_read - Sequentially read skb data
4157  * @consumed: number of bytes consumed by the caller so far
4158  * @data: destination pointer for data to be returned
4159  * @st: state variable
4160  *
4161  * Reads a block of skb data at @consumed relative to the
4162  * lower offset specified to skb_prepare_seq_read(). Assigns
4163  * the head of the data block to @data and returns the length
4164  * of the block or 0 if the end of the skb data or the upper
4165  * offset has been reached.
4166  *
4167  * The caller is not required to consume all of the data
4168  * returned, i.e. @consumed is typically set to the number
4169  * of bytes already consumed and the next call to
4170  * skb_seq_read() will return the remaining part of the block.
4171  *
4172  * Note 1: The size of each block of data returned can be arbitrary,
4173  *       this limitation is the cost for zerocopy sequential
4174  *       reads of potentially non linear data.
4175  *
4176  * Note 2: Fragment lists within fragments are not implemented
4177  *       at the moment, state->root_skb could be replaced with
4178  *       a stack for this purpose.
4179  */
4180 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4181 			  struct skb_seq_state *st)
4182 {
4183 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4184 	skb_frag_t *frag;
4185 
4186 	if (unlikely(abs_offset >= st->upper_offset)) {
4187 		if (st->frag_data) {
4188 			kunmap_atomic(st->frag_data);
4189 			st->frag_data = NULL;
4190 		}
4191 		return 0;
4192 	}
4193 
4194 next_skb:
4195 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4196 
4197 	if (abs_offset < block_limit && !st->frag_data) {
4198 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4199 		return block_limit - abs_offset;
4200 	}
4201 
4202 	if (st->frag_idx == 0 && !st->frag_data)
4203 		st->stepped_offset += skb_headlen(st->cur_skb);
4204 
4205 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4206 		unsigned int pg_idx, pg_off, pg_sz;
4207 
4208 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4209 
4210 		pg_idx = 0;
4211 		pg_off = skb_frag_off(frag);
4212 		pg_sz = skb_frag_size(frag);
4213 
4214 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4215 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4216 			pg_off = offset_in_page(pg_off + st->frag_off);
4217 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4218 						    PAGE_SIZE - pg_off);
4219 		}
4220 
4221 		block_limit = pg_sz + st->stepped_offset;
4222 		if (abs_offset < block_limit) {
4223 			if (!st->frag_data)
4224 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4225 
4226 			*data = (u8 *)st->frag_data + pg_off +
4227 				(abs_offset - st->stepped_offset);
4228 
4229 			return block_limit - abs_offset;
4230 		}
4231 
4232 		if (st->frag_data) {
4233 			kunmap_atomic(st->frag_data);
4234 			st->frag_data = NULL;
4235 		}
4236 
4237 		st->stepped_offset += pg_sz;
4238 		st->frag_off += pg_sz;
4239 		if (st->frag_off == skb_frag_size(frag)) {
4240 			st->frag_off = 0;
4241 			st->frag_idx++;
4242 		}
4243 	}
4244 
4245 	if (st->frag_data) {
4246 		kunmap_atomic(st->frag_data);
4247 		st->frag_data = NULL;
4248 	}
4249 
4250 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4251 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4252 		st->frag_idx = 0;
4253 		goto next_skb;
4254 	} else if (st->cur_skb->next) {
4255 		st->cur_skb = st->cur_skb->next;
4256 		st->frag_idx = 0;
4257 		goto next_skb;
4258 	}
4259 
4260 	return 0;
4261 }
4262 EXPORT_SYMBOL(skb_seq_read);
4263 
4264 /**
4265  * skb_abort_seq_read - Abort a sequential read of skb data
4266  * @st: state variable
4267  *
4268  * Must be called if skb_seq_read() was not called until it
4269  * returned 0.
4270  */
4271 void skb_abort_seq_read(struct skb_seq_state *st)
4272 {
4273 	if (st->frag_data)
4274 		kunmap_atomic(st->frag_data);
4275 }
4276 EXPORT_SYMBOL(skb_abort_seq_read);
4277 
4278 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4279 
4280 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4281 					  struct ts_config *conf,
4282 					  struct ts_state *state)
4283 {
4284 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4285 }
4286 
4287 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4288 {
4289 	skb_abort_seq_read(TS_SKB_CB(state));
4290 }
4291 
4292 /**
4293  * skb_find_text - Find a text pattern in skb data
4294  * @skb: the buffer to look in
4295  * @from: search offset
4296  * @to: search limit
4297  * @config: textsearch configuration
4298  *
4299  * Finds a pattern in the skb data according to the specified
4300  * textsearch configuration. Use textsearch_next() to retrieve
4301  * subsequent occurrences of the pattern. Returns the offset
4302  * to the first occurrence or UINT_MAX if no match was found.
4303  */
4304 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4305 			   unsigned int to, struct ts_config *config)
4306 {
4307 	unsigned int patlen = config->ops->get_pattern_len(config);
4308 	struct ts_state state;
4309 	unsigned int ret;
4310 
4311 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4312 
4313 	config->get_next_block = skb_ts_get_next_block;
4314 	config->finish = skb_ts_finish;
4315 
4316 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4317 
4318 	ret = textsearch_find(config, &state);
4319 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4320 }
4321 EXPORT_SYMBOL(skb_find_text);
4322 
4323 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4324 			 int offset, size_t size, size_t max_frags)
4325 {
4326 	int i = skb_shinfo(skb)->nr_frags;
4327 
4328 	if (skb_can_coalesce(skb, i, page, offset)) {
4329 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4330 	} else if (i < max_frags) {
4331 		skb_zcopy_downgrade_managed(skb);
4332 		get_page(page);
4333 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4334 	} else {
4335 		return -EMSGSIZE;
4336 	}
4337 
4338 	return 0;
4339 }
4340 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4341 
4342 /**
4343  *	skb_pull_rcsum - pull skb and update receive checksum
4344  *	@skb: buffer to update
4345  *	@len: length of data pulled
4346  *
4347  *	This function performs an skb_pull on the packet and updates
4348  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4349  *	receive path processing instead of skb_pull unless you know
4350  *	that the checksum difference is zero (e.g., a valid IP header)
4351  *	or you are setting ip_summed to CHECKSUM_NONE.
4352  */
4353 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4354 {
4355 	unsigned char *data = skb->data;
4356 
4357 	BUG_ON(len > skb->len);
4358 	__skb_pull(skb, len);
4359 	skb_postpull_rcsum(skb, data, len);
4360 	return skb->data;
4361 }
4362 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4363 
4364 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4365 {
4366 	skb_frag_t head_frag;
4367 	struct page *page;
4368 
4369 	page = virt_to_head_page(frag_skb->head);
4370 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4371 				(unsigned char *)page_address(page),
4372 				skb_headlen(frag_skb));
4373 	return head_frag;
4374 }
4375 
4376 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4377 				 netdev_features_t features,
4378 				 unsigned int offset)
4379 {
4380 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4381 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4382 	unsigned int delta_truesize = 0;
4383 	unsigned int delta_len = 0;
4384 	struct sk_buff *tail = NULL;
4385 	struct sk_buff *nskb, *tmp;
4386 	int len_diff, err;
4387 
4388 	skb_push(skb, -skb_network_offset(skb) + offset);
4389 
4390 	/* Ensure the head is writeable before touching the shared info */
4391 	err = skb_unclone(skb, GFP_ATOMIC);
4392 	if (err)
4393 		goto err_linearize;
4394 
4395 	skb_shinfo(skb)->frag_list = NULL;
4396 
4397 	while (list_skb) {
4398 		nskb = list_skb;
4399 		list_skb = list_skb->next;
4400 
4401 		err = 0;
4402 		delta_truesize += nskb->truesize;
4403 		if (skb_shared(nskb)) {
4404 			tmp = skb_clone(nskb, GFP_ATOMIC);
4405 			if (tmp) {
4406 				consume_skb(nskb);
4407 				nskb = tmp;
4408 				err = skb_unclone(nskb, GFP_ATOMIC);
4409 			} else {
4410 				err = -ENOMEM;
4411 			}
4412 		}
4413 
4414 		if (!tail)
4415 			skb->next = nskb;
4416 		else
4417 			tail->next = nskb;
4418 
4419 		if (unlikely(err)) {
4420 			nskb->next = list_skb;
4421 			goto err_linearize;
4422 		}
4423 
4424 		tail = nskb;
4425 
4426 		delta_len += nskb->len;
4427 
4428 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4429 
4430 		skb_release_head_state(nskb);
4431 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4432 		__copy_skb_header(nskb, skb);
4433 
4434 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4435 		nskb->transport_header += len_diff;
4436 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4437 						 nskb->data - tnl_hlen,
4438 						 offset + tnl_hlen);
4439 
4440 		if (skb_needs_linearize(nskb, features) &&
4441 		    __skb_linearize(nskb))
4442 			goto err_linearize;
4443 	}
4444 
4445 	skb->truesize = skb->truesize - delta_truesize;
4446 	skb->data_len = skb->data_len - delta_len;
4447 	skb->len = skb->len - delta_len;
4448 
4449 	skb_gso_reset(skb);
4450 
4451 	skb->prev = tail;
4452 
4453 	if (skb_needs_linearize(skb, features) &&
4454 	    __skb_linearize(skb))
4455 		goto err_linearize;
4456 
4457 	skb_get(skb);
4458 
4459 	return skb;
4460 
4461 err_linearize:
4462 	kfree_skb_list(skb->next);
4463 	skb->next = NULL;
4464 	return ERR_PTR(-ENOMEM);
4465 }
4466 EXPORT_SYMBOL_GPL(skb_segment_list);
4467 
4468 /**
4469  *	skb_segment - Perform protocol segmentation on skb.
4470  *	@head_skb: buffer to segment
4471  *	@features: features for the output path (see dev->features)
4472  *
4473  *	This function performs segmentation on the given skb.  It returns
4474  *	a pointer to the first in a list of new skbs for the segments.
4475  *	In case of error it returns ERR_PTR(err).
4476  */
4477 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4478 			    netdev_features_t features)
4479 {
4480 	struct sk_buff *segs = NULL;
4481 	struct sk_buff *tail = NULL;
4482 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4483 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4484 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4485 	unsigned int offset = doffset;
4486 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4487 	unsigned int partial_segs = 0;
4488 	unsigned int headroom;
4489 	unsigned int len = head_skb->len;
4490 	struct sk_buff *frag_skb;
4491 	skb_frag_t *frag;
4492 	__be16 proto;
4493 	bool csum, sg;
4494 	int err = -ENOMEM;
4495 	int i = 0;
4496 	int nfrags, pos;
4497 
4498 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4499 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4500 		struct sk_buff *check_skb;
4501 
4502 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4503 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4504 				/* gso_size is untrusted, and we have a frag_list with
4505 				 * a linear non head_frag item.
4506 				 *
4507 				 * If head_skb's headlen does not fit requested gso_size,
4508 				 * it means that the frag_list members do NOT terminate
4509 				 * on exact gso_size boundaries. Hence we cannot perform
4510 				 * skb_frag_t page sharing. Therefore we must fallback to
4511 				 * copying the frag_list skbs; we do so by disabling SG.
4512 				 */
4513 				features &= ~NETIF_F_SG;
4514 				break;
4515 			}
4516 		}
4517 	}
4518 
4519 	__skb_push(head_skb, doffset);
4520 	proto = skb_network_protocol(head_skb, NULL);
4521 	if (unlikely(!proto))
4522 		return ERR_PTR(-EINVAL);
4523 
4524 	sg = !!(features & NETIF_F_SG);
4525 	csum = !!can_checksum_protocol(features, proto);
4526 
4527 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4528 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4529 			struct sk_buff *iter;
4530 			unsigned int frag_len;
4531 
4532 			if (!list_skb ||
4533 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4534 				goto normal;
4535 
4536 			/* If we get here then all the required
4537 			 * GSO features except frag_list are supported.
4538 			 * Try to split the SKB to multiple GSO SKBs
4539 			 * with no frag_list.
4540 			 * Currently we can do that only when the buffers don't
4541 			 * have a linear part and all the buffers except
4542 			 * the last are of the same length.
4543 			 */
4544 			frag_len = list_skb->len;
4545 			skb_walk_frags(head_skb, iter) {
4546 				if (frag_len != iter->len && iter->next)
4547 					goto normal;
4548 				if (skb_headlen(iter) && !iter->head_frag)
4549 					goto normal;
4550 
4551 				len -= iter->len;
4552 			}
4553 
4554 			if (len != frag_len)
4555 				goto normal;
4556 		}
4557 
4558 		/* GSO partial only requires that we trim off any excess that
4559 		 * doesn't fit into an MSS sized block, so take care of that
4560 		 * now.
4561 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4562 		 */
4563 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4564 		if (partial_segs > 1)
4565 			mss *= partial_segs;
4566 		else
4567 			partial_segs = 0;
4568 	}
4569 
4570 normal:
4571 	headroom = skb_headroom(head_skb);
4572 	pos = skb_headlen(head_skb);
4573 
4574 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4575 		return ERR_PTR(-ENOMEM);
4576 
4577 	nfrags = skb_shinfo(head_skb)->nr_frags;
4578 	frag = skb_shinfo(head_skb)->frags;
4579 	frag_skb = head_skb;
4580 
4581 	do {
4582 		struct sk_buff *nskb;
4583 		skb_frag_t *nskb_frag;
4584 		int hsize;
4585 		int size;
4586 
4587 		if (unlikely(mss == GSO_BY_FRAGS)) {
4588 			len = list_skb->len;
4589 		} else {
4590 			len = head_skb->len - offset;
4591 			if (len > mss)
4592 				len = mss;
4593 		}
4594 
4595 		hsize = skb_headlen(head_skb) - offset;
4596 
4597 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4598 		    (skb_headlen(list_skb) == len || sg)) {
4599 			BUG_ON(skb_headlen(list_skb) > len);
4600 
4601 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4602 			if (unlikely(!nskb))
4603 				goto err;
4604 
4605 			i = 0;
4606 			nfrags = skb_shinfo(list_skb)->nr_frags;
4607 			frag = skb_shinfo(list_skb)->frags;
4608 			frag_skb = list_skb;
4609 			pos += skb_headlen(list_skb);
4610 
4611 			while (pos < offset + len) {
4612 				BUG_ON(i >= nfrags);
4613 
4614 				size = skb_frag_size(frag);
4615 				if (pos + size > offset + len)
4616 					break;
4617 
4618 				i++;
4619 				pos += size;
4620 				frag++;
4621 			}
4622 
4623 			list_skb = list_skb->next;
4624 
4625 			if (unlikely(pskb_trim(nskb, len))) {
4626 				kfree_skb(nskb);
4627 				goto err;
4628 			}
4629 
4630 			hsize = skb_end_offset(nskb);
4631 			if (skb_cow_head(nskb, doffset + headroom)) {
4632 				kfree_skb(nskb);
4633 				goto err;
4634 			}
4635 
4636 			nskb->truesize += skb_end_offset(nskb) - hsize;
4637 			skb_release_head_state(nskb);
4638 			__skb_push(nskb, doffset);
4639 		} else {
4640 			if (hsize < 0)
4641 				hsize = 0;
4642 			if (hsize > len || !sg)
4643 				hsize = len;
4644 
4645 			nskb = __alloc_skb(hsize + doffset + headroom,
4646 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4647 					   NUMA_NO_NODE);
4648 
4649 			if (unlikely(!nskb))
4650 				goto err;
4651 
4652 			skb_reserve(nskb, headroom);
4653 			__skb_put(nskb, doffset);
4654 		}
4655 
4656 		if (segs)
4657 			tail->next = nskb;
4658 		else
4659 			segs = nskb;
4660 		tail = nskb;
4661 
4662 		__copy_skb_header(nskb, head_skb);
4663 
4664 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4665 		skb_reset_mac_len(nskb);
4666 
4667 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4668 						 nskb->data - tnl_hlen,
4669 						 doffset + tnl_hlen);
4670 
4671 		if (nskb->len == len + doffset)
4672 			goto perform_csum_check;
4673 
4674 		if (!sg) {
4675 			if (!csum) {
4676 				if (!nskb->remcsum_offload)
4677 					nskb->ip_summed = CHECKSUM_NONE;
4678 				SKB_GSO_CB(nskb)->csum =
4679 					skb_copy_and_csum_bits(head_skb, offset,
4680 							       skb_put(nskb,
4681 								       len),
4682 							       len);
4683 				SKB_GSO_CB(nskb)->csum_start =
4684 					skb_headroom(nskb) + doffset;
4685 			} else {
4686 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4687 					goto err;
4688 			}
4689 			continue;
4690 		}
4691 
4692 		nskb_frag = skb_shinfo(nskb)->frags;
4693 
4694 		skb_copy_from_linear_data_offset(head_skb, offset,
4695 						 skb_put(nskb, hsize), hsize);
4696 
4697 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4698 					   SKBFL_SHARED_FRAG;
4699 
4700 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4701 			goto err;
4702 
4703 		while (pos < offset + len) {
4704 			if (i >= nfrags) {
4705 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4706 				    skb_zerocopy_clone(nskb, list_skb,
4707 						       GFP_ATOMIC))
4708 					goto err;
4709 
4710 				i = 0;
4711 				nfrags = skb_shinfo(list_skb)->nr_frags;
4712 				frag = skb_shinfo(list_skb)->frags;
4713 				frag_skb = list_skb;
4714 				if (!skb_headlen(list_skb)) {
4715 					BUG_ON(!nfrags);
4716 				} else {
4717 					BUG_ON(!list_skb->head_frag);
4718 
4719 					/* to make room for head_frag. */
4720 					i--;
4721 					frag--;
4722 				}
4723 
4724 				list_skb = list_skb->next;
4725 			}
4726 
4727 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4728 				     MAX_SKB_FRAGS)) {
4729 				net_warn_ratelimited(
4730 					"skb_segment: too many frags: %u %u\n",
4731 					pos, mss);
4732 				err = -EINVAL;
4733 				goto err;
4734 			}
4735 
4736 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4737 			__skb_frag_ref(nskb_frag);
4738 			size = skb_frag_size(nskb_frag);
4739 
4740 			if (pos < offset) {
4741 				skb_frag_off_add(nskb_frag, offset - pos);
4742 				skb_frag_size_sub(nskb_frag, offset - pos);
4743 			}
4744 
4745 			skb_shinfo(nskb)->nr_frags++;
4746 
4747 			if (pos + size <= offset + len) {
4748 				i++;
4749 				frag++;
4750 				pos += size;
4751 			} else {
4752 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4753 				goto skip_fraglist;
4754 			}
4755 
4756 			nskb_frag++;
4757 		}
4758 
4759 skip_fraglist:
4760 		nskb->data_len = len - hsize;
4761 		nskb->len += nskb->data_len;
4762 		nskb->truesize += nskb->data_len;
4763 
4764 perform_csum_check:
4765 		if (!csum) {
4766 			if (skb_has_shared_frag(nskb) &&
4767 			    __skb_linearize(nskb))
4768 				goto err;
4769 
4770 			if (!nskb->remcsum_offload)
4771 				nskb->ip_summed = CHECKSUM_NONE;
4772 			SKB_GSO_CB(nskb)->csum =
4773 				skb_checksum(nskb, doffset,
4774 					     nskb->len - doffset, 0);
4775 			SKB_GSO_CB(nskb)->csum_start =
4776 				skb_headroom(nskb) + doffset;
4777 		}
4778 	} while ((offset += len) < head_skb->len);
4779 
4780 	/* Some callers want to get the end of the list.
4781 	 * Put it in segs->prev to avoid walking the list.
4782 	 * (see validate_xmit_skb_list() for example)
4783 	 */
4784 	segs->prev = tail;
4785 
4786 	if (partial_segs) {
4787 		struct sk_buff *iter;
4788 		int type = skb_shinfo(head_skb)->gso_type;
4789 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4790 
4791 		/* Update type to add partial and then remove dodgy if set */
4792 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4793 		type &= ~SKB_GSO_DODGY;
4794 
4795 		/* Update GSO info and prepare to start updating headers on
4796 		 * our way back down the stack of protocols.
4797 		 */
4798 		for (iter = segs; iter; iter = iter->next) {
4799 			skb_shinfo(iter)->gso_size = gso_size;
4800 			skb_shinfo(iter)->gso_segs = partial_segs;
4801 			skb_shinfo(iter)->gso_type = type;
4802 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4803 		}
4804 
4805 		if (tail->len - doffset <= gso_size)
4806 			skb_shinfo(tail)->gso_size = 0;
4807 		else if (tail != segs)
4808 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4809 	}
4810 
4811 	/* Following permits correct backpressure, for protocols
4812 	 * using skb_set_owner_w().
4813 	 * Idea is to tranfert ownership from head_skb to last segment.
4814 	 */
4815 	if (head_skb->destructor == sock_wfree) {
4816 		swap(tail->truesize, head_skb->truesize);
4817 		swap(tail->destructor, head_skb->destructor);
4818 		swap(tail->sk, head_skb->sk);
4819 	}
4820 	return segs;
4821 
4822 err:
4823 	kfree_skb_list(segs);
4824 	return ERR_PTR(err);
4825 }
4826 EXPORT_SYMBOL_GPL(skb_segment);
4827 
4828 #ifdef CONFIG_SKB_EXTENSIONS
4829 #define SKB_EXT_ALIGN_VALUE	8
4830 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4831 
4832 static const u8 skb_ext_type_len[] = {
4833 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4834 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4835 #endif
4836 #ifdef CONFIG_XFRM
4837 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4838 #endif
4839 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4840 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4841 #endif
4842 #if IS_ENABLED(CONFIG_MPTCP)
4843 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4844 #endif
4845 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4846 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4847 #endif
4848 };
4849 
4850 static __always_inline unsigned int skb_ext_total_length(void)
4851 {
4852 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4853 	int i;
4854 
4855 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4856 		l += skb_ext_type_len[i];
4857 
4858 	return l;
4859 }
4860 
4861 static void skb_extensions_init(void)
4862 {
4863 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4864 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4865 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4866 #endif
4867 
4868 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4869 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4870 					     0,
4871 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4872 					     NULL);
4873 }
4874 #else
4875 static void skb_extensions_init(void) {}
4876 #endif
4877 
4878 /* The SKB kmem_cache slab is critical for network performance.  Never
4879  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4880  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4881  */
4882 #ifndef CONFIG_SLUB_TINY
4883 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4884 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4885 #define FLAG_SKB_NO_MERGE	0
4886 #endif
4887 
4888 void __init skb_init(void)
4889 {
4890 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4891 					      sizeof(struct sk_buff),
4892 					      0,
4893 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4894 						FLAG_SKB_NO_MERGE,
4895 					      offsetof(struct sk_buff, cb),
4896 					      sizeof_field(struct sk_buff, cb),
4897 					      NULL);
4898 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4899 						sizeof(struct sk_buff_fclones),
4900 						0,
4901 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4902 						NULL);
4903 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4904 	 * struct skb_shared_info is located at the end of skb->head,
4905 	 * and should not be copied to/from user.
4906 	 */
4907 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4908 						SKB_SMALL_HEAD_CACHE_SIZE,
4909 						0,
4910 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4911 						0,
4912 						SKB_SMALL_HEAD_HEADROOM,
4913 						NULL);
4914 	skb_extensions_init();
4915 }
4916 
4917 static int
4918 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4919 	       unsigned int recursion_level)
4920 {
4921 	int start = skb_headlen(skb);
4922 	int i, copy = start - offset;
4923 	struct sk_buff *frag_iter;
4924 	int elt = 0;
4925 
4926 	if (unlikely(recursion_level >= 24))
4927 		return -EMSGSIZE;
4928 
4929 	if (copy > 0) {
4930 		if (copy > len)
4931 			copy = len;
4932 		sg_set_buf(sg, skb->data + offset, copy);
4933 		elt++;
4934 		if ((len -= copy) == 0)
4935 			return elt;
4936 		offset += copy;
4937 	}
4938 
4939 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4940 		int end;
4941 
4942 		WARN_ON(start > offset + len);
4943 
4944 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4945 		if ((copy = end - offset) > 0) {
4946 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4947 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4948 				return -EMSGSIZE;
4949 
4950 			if (copy > len)
4951 				copy = len;
4952 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4953 				    skb_frag_off(frag) + offset - start);
4954 			elt++;
4955 			if (!(len -= copy))
4956 				return elt;
4957 			offset += copy;
4958 		}
4959 		start = end;
4960 	}
4961 
4962 	skb_walk_frags(skb, frag_iter) {
4963 		int end, ret;
4964 
4965 		WARN_ON(start > offset + len);
4966 
4967 		end = start + frag_iter->len;
4968 		if ((copy = end - offset) > 0) {
4969 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4970 				return -EMSGSIZE;
4971 
4972 			if (copy > len)
4973 				copy = len;
4974 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4975 					      copy, recursion_level + 1);
4976 			if (unlikely(ret < 0))
4977 				return ret;
4978 			elt += ret;
4979 			if ((len -= copy) == 0)
4980 				return elt;
4981 			offset += copy;
4982 		}
4983 		start = end;
4984 	}
4985 	BUG_ON(len);
4986 	return elt;
4987 }
4988 
4989 /**
4990  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4991  *	@skb: Socket buffer containing the buffers to be mapped
4992  *	@sg: The scatter-gather list to map into
4993  *	@offset: The offset into the buffer's contents to start mapping
4994  *	@len: Length of buffer space to be mapped
4995  *
4996  *	Fill the specified scatter-gather list with mappings/pointers into a
4997  *	region of the buffer space attached to a socket buffer. Returns either
4998  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4999  *	could not fit.
5000  */
5001 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5002 {
5003 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5004 
5005 	if (nsg <= 0)
5006 		return nsg;
5007 
5008 	sg_mark_end(&sg[nsg - 1]);
5009 
5010 	return nsg;
5011 }
5012 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5013 
5014 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5015  * sglist without mark the sg which contain last skb data as the end.
5016  * So the caller can mannipulate sg list as will when padding new data after
5017  * the first call without calling sg_unmark_end to expend sg list.
5018  *
5019  * Scenario to use skb_to_sgvec_nomark:
5020  * 1. sg_init_table
5021  * 2. skb_to_sgvec_nomark(payload1)
5022  * 3. skb_to_sgvec_nomark(payload2)
5023  *
5024  * This is equivalent to:
5025  * 1. sg_init_table
5026  * 2. skb_to_sgvec(payload1)
5027  * 3. sg_unmark_end
5028  * 4. skb_to_sgvec(payload2)
5029  *
5030  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5031  * is more preferable.
5032  */
5033 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5034 			int offset, int len)
5035 {
5036 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5037 }
5038 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5039 
5040 
5041 
5042 /**
5043  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5044  *	@skb: The socket buffer to check.
5045  *	@tailbits: Amount of trailing space to be added
5046  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5047  *
5048  *	Make sure that the data buffers attached to a socket buffer are
5049  *	writable. If they are not, private copies are made of the data buffers
5050  *	and the socket buffer is set to use these instead.
5051  *
5052  *	If @tailbits is given, make sure that there is space to write @tailbits
5053  *	bytes of data beyond current end of socket buffer.  @trailer will be
5054  *	set to point to the skb in which this space begins.
5055  *
5056  *	The number of scatterlist elements required to completely map the
5057  *	COW'd and extended socket buffer will be returned.
5058  */
5059 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5060 {
5061 	int copyflag;
5062 	int elt;
5063 	struct sk_buff *skb1, **skb_p;
5064 
5065 	/* If skb is cloned or its head is paged, reallocate
5066 	 * head pulling out all the pages (pages are considered not writable
5067 	 * at the moment even if they are anonymous).
5068 	 */
5069 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5070 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5071 		return -ENOMEM;
5072 
5073 	/* Easy case. Most of packets will go this way. */
5074 	if (!skb_has_frag_list(skb)) {
5075 		/* A little of trouble, not enough of space for trailer.
5076 		 * This should not happen, when stack is tuned to generate
5077 		 * good frames. OK, on miss we reallocate and reserve even more
5078 		 * space, 128 bytes is fair. */
5079 
5080 		if (skb_tailroom(skb) < tailbits &&
5081 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5082 			return -ENOMEM;
5083 
5084 		/* Voila! */
5085 		*trailer = skb;
5086 		return 1;
5087 	}
5088 
5089 	/* Misery. We are in troubles, going to mincer fragments... */
5090 
5091 	elt = 1;
5092 	skb_p = &skb_shinfo(skb)->frag_list;
5093 	copyflag = 0;
5094 
5095 	while ((skb1 = *skb_p) != NULL) {
5096 		int ntail = 0;
5097 
5098 		/* The fragment is partially pulled by someone,
5099 		 * this can happen on input. Copy it and everything
5100 		 * after it. */
5101 
5102 		if (skb_shared(skb1))
5103 			copyflag = 1;
5104 
5105 		/* If the skb is the last, worry about trailer. */
5106 
5107 		if (skb1->next == NULL && tailbits) {
5108 			if (skb_shinfo(skb1)->nr_frags ||
5109 			    skb_has_frag_list(skb1) ||
5110 			    skb_tailroom(skb1) < tailbits)
5111 				ntail = tailbits + 128;
5112 		}
5113 
5114 		if (copyflag ||
5115 		    skb_cloned(skb1) ||
5116 		    ntail ||
5117 		    skb_shinfo(skb1)->nr_frags ||
5118 		    skb_has_frag_list(skb1)) {
5119 			struct sk_buff *skb2;
5120 
5121 			/* Fuck, we are miserable poor guys... */
5122 			if (ntail == 0)
5123 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5124 			else
5125 				skb2 = skb_copy_expand(skb1,
5126 						       skb_headroom(skb1),
5127 						       ntail,
5128 						       GFP_ATOMIC);
5129 			if (unlikely(skb2 == NULL))
5130 				return -ENOMEM;
5131 
5132 			if (skb1->sk)
5133 				skb_set_owner_w(skb2, skb1->sk);
5134 
5135 			/* Looking around. Are we still alive?
5136 			 * OK, link new skb, drop old one */
5137 
5138 			skb2->next = skb1->next;
5139 			*skb_p = skb2;
5140 			kfree_skb(skb1);
5141 			skb1 = skb2;
5142 		}
5143 		elt++;
5144 		*trailer = skb1;
5145 		skb_p = &skb1->next;
5146 	}
5147 
5148 	return elt;
5149 }
5150 EXPORT_SYMBOL_GPL(skb_cow_data);
5151 
5152 static void sock_rmem_free(struct sk_buff *skb)
5153 {
5154 	struct sock *sk = skb->sk;
5155 
5156 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5157 }
5158 
5159 static void skb_set_err_queue(struct sk_buff *skb)
5160 {
5161 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5162 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5163 	 */
5164 	skb->pkt_type = PACKET_OUTGOING;
5165 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5166 }
5167 
5168 /*
5169  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5170  */
5171 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5172 {
5173 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5174 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5175 		return -ENOMEM;
5176 
5177 	skb_orphan(skb);
5178 	skb->sk = sk;
5179 	skb->destructor = sock_rmem_free;
5180 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5181 	skb_set_err_queue(skb);
5182 
5183 	/* before exiting rcu section, make sure dst is refcounted */
5184 	skb_dst_force(skb);
5185 
5186 	skb_queue_tail(&sk->sk_error_queue, skb);
5187 	if (!sock_flag(sk, SOCK_DEAD))
5188 		sk_error_report(sk);
5189 	return 0;
5190 }
5191 EXPORT_SYMBOL(sock_queue_err_skb);
5192 
5193 static bool is_icmp_err_skb(const struct sk_buff *skb)
5194 {
5195 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5196 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5197 }
5198 
5199 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5200 {
5201 	struct sk_buff_head *q = &sk->sk_error_queue;
5202 	struct sk_buff *skb, *skb_next = NULL;
5203 	bool icmp_next = false;
5204 	unsigned long flags;
5205 
5206 	if (skb_queue_empty_lockless(q))
5207 		return NULL;
5208 
5209 	spin_lock_irqsave(&q->lock, flags);
5210 	skb = __skb_dequeue(q);
5211 	if (skb && (skb_next = skb_peek(q))) {
5212 		icmp_next = is_icmp_err_skb(skb_next);
5213 		if (icmp_next)
5214 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5215 	}
5216 	spin_unlock_irqrestore(&q->lock, flags);
5217 
5218 	if (is_icmp_err_skb(skb) && !icmp_next)
5219 		sk->sk_err = 0;
5220 
5221 	if (skb_next)
5222 		sk_error_report(sk);
5223 
5224 	return skb;
5225 }
5226 EXPORT_SYMBOL(sock_dequeue_err_skb);
5227 
5228 /**
5229  * skb_clone_sk - create clone of skb, and take reference to socket
5230  * @skb: the skb to clone
5231  *
5232  * This function creates a clone of a buffer that holds a reference on
5233  * sk_refcnt.  Buffers created via this function are meant to be
5234  * returned using sock_queue_err_skb, or free via kfree_skb.
5235  *
5236  * When passing buffers allocated with this function to sock_queue_err_skb
5237  * it is necessary to wrap the call with sock_hold/sock_put in order to
5238  * prevent the socket from being released prior to being enqueued on
5239  * the sk_error_queue.
5240  */
5241 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5242 {
5243 	struct sock *sk = skb->sk;
5244 	struct sk_buff *clone;
5245 
5246 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5247 		return NULL;
5248 
5249 	clone = skb_clone(skb, GFP_ATOMIC);
5250 	if (!clone) {
5251 		sock_put(sk);
5252 		return NULL;
5253 	}
5254 
5255 	clone->sk = sk;
5256 	clone->destructor = sock_efree;
5257 
5258 	return clone;
5259 }
5260 EXPORT_SYMBOL(skb_clone_sk);
5261 
5262 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5263 					struct sock *sk,
5264 					int tstype,
5265 					bool opt_stats)
5266 {
5267 	struct sock_exterr_skb *serr;
5268 	int err;
5269 
5270 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5271 
5272 	serr = SKB_EXT_ERR(skb);
5273 	memset(serr, 0, sizeof(*serr));
5274 	serr->ee.ee_errno = ENOMSG;
5275 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5276 	serr->ee.ee_info = tstype;
5277 	serr->opt_stats = opt_stats;
5278 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5279 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5280 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5281 		if (sk_is_tcp(sk))
5282 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5283 	}
5284 
5285 	err = sock_queue_err_skb(sk, skb);
5286 
5287 	if (err)
5288 		kfree_skb(skb);
5289 }
5290 
5291 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5292 {
5293 	bool ret;
5294 
5295 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5296 		return true;
5297 
5298 	read_lock_bh(&sk->sk_callback_lock);
5299 	ret = sk->sk_socket && sk->sk_socket->file &&
5300 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5301 	read_unlock_bh(&sk->sk_callback_lock);
5302 	return ret;
5303 }
5304 
5305 void skb_complete_tx_timestamp(struct sk_buff *skb,
5306 			       struct skb_shared_hwtstamps *hwtstamps)
5307 {
5308 	struct sock *sk = skb->sk;
5309 
5310 	if (!skb_may_tx_timestamp(sk, false))
5311 		goto err;
5312 
5313 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5314 	 * but only if the socket refcount is not zero.
5315 	 */
5316 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5317 		*skb_hwtstamps(skb) = *hwtstamps;
5318 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5319 		sock_put(sk);
5320 		return;
5321 	}
5322 
5323 err:
5324 	kfree_skb(skb);
5325 }
5326 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5327 
5328 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5329 		     const struct sk_buff *ack_skb,
5330 		     struct skb_shared_hwtstamps *hwtstamps,
5331 		     struct sock *sk, int tstype)
5332 {
5333 	struct sk_buff *skb;
5334 	bool tsonly, opt_stats = false;
5335 	u32 tsflags;
5336 
5337 	if (!sk)
5338 		return;
5339 
5340 	tsflags = READ_ONCE(sk->sk_tsflags);
5341 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5342 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5343 		return;
5344 
5345 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5346 	if (!skb_may_tx_timestamp(sk, tsonly))
5347 		return;
5348 
5349 	if (tsonly) {
5350 #ifdef CONFIG_INET
5351 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5352 		    sk_is_tcp(sk)) {
5353 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5354 							     ack_skb);
5355 			opt_stats = true;
5356 		} else
5357 #endif
5358 			skb = alloc_skb(0, GFP_ATOMIC);
5359 	} else {
5360 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5361 
5362 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5363 			kfree_skb(skb);
5364 			return;
5365 		}
5366 	}
5367 	if (!skb)
5368 		return;
5369 
5370 	if (tsonly) {
5371 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5372 					     SKBTX_ANY_TSTAMP;
5373 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5374 	}
5375 
5376 	if (hwtstamps)
5377 		*skb_hwtstamps(skb) = *hwtstamps;
5378 	else
5379 		__net_timestamp(skb);
5380 
5381 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5382 }
5383 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5384 
5385 void skb_tstamp_tx(struct sk_buff *orig_skb,
5386 		   struct skb_shared_hwtstamps *hwtstamps)
5387 {
5388 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5389 			       SCM_TSTAMP_SND);
5390 }
5391 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5392 
5393 #ifdef CONFIG_WIRELESS
5394 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5395 {
5396 	struct sock *sk = skb->sk;
5397 	struct sock_exterr_skb *serr;
5398 	int err = 1;
5399 
5400 	skb->wifi_acked_valid = 1;
5401 	skb->wifi_acked = acked;
5402 
5403 	serr = SKB_EXT_ERR(skb);
5404 	memset(serr, 0, sizeof(*serr));
5405 	serr->ee.ee_errno = ENOMSG;
5406 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5407 
5408 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5409 	 * but only if the socket refcount is not zero.
5410 	 */
5411 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5412 		err = sock_queue_err_skb(sk, skb);
5413 		sock_put(sk);
5414 	}
5415 	if (err)
5416 		kfree_skb(skb);
5417 }
5418 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5419 #endif /* CONFIG_WIRELESS */
5420 
5421 /**
5422  * skb_partial_csum_set - set up and verify partial csum values for packet
5423  * @skb: the skb to set
5424  * @start: the number of bytes after skb->data to start checksumming.
5425  * @off: the offset from start to place the checksum.
5426  *
5427  * For untrusted partially-checksummed packets, we need to make sure the values
5428  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5429  *
5430  * This function checks and sets those values and skb->ip_summed: if this
5431  * returns false you should drop the packet.
5432  */
5433 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5434 {
5435 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5436 	u32 csum_start = skb_headroom(skb) + (u32)start;
5437 
5438 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5439 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5440 				     start, off, skb_headroom(skb), skb_headlen(skb));
5441 		return false;
5442 	}
5443 	skb->ip_summed = CHECKSUM_PARTIAL;
5444 	skb->csum_start = csum_start;
5445 	skb->csum_offset = off;
5446 	skb->transport_header = csum_start;
5447 	return true;
5448 }
5449 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5450 
5451 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5452 			       unsigned int max)
5453 {
5454 	if (skb_headlen(skb) >= len)
5455 		return 0;
5456 
5457 	/* If we need to pullup then pullup to the max, so we
5458 	 * won't need to do it again.
5459 	 */
5460 	if (max > skb->len)
5461 		max = skb->len;
5462 
5463 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5464 		return -ENOMEM;
5465 
5466 	if (skb_headlen(skb) < len)
5467 		return -EPROTO;
5468 
5469 	return 0;
5470 }
5471 
5472 #define MAX_TCP_HDR_LEN (15 * 4)
5473 
5474 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5475 				      typeof(IPPROTO_IP) proto,
5476 				      unsigned int off)
5477 {
5478 	int err;
5479 
5480 	switch (proto) {
5481 	case IPPROTO_TCP:
5482 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5483 					  off + MAX_TCP_HDR_LEN);
5484 		if (!err && !skb_partial_csum_set(skb, off,
5485 						  offsetof(struct tcphdr,
5486 							   check)))
5487 			err = -EPROTO;
5488 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5489 
5490 	case IPPROTO_UDP:
5491 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5492 					  off + sizeof(struct udphdr));
5493 		if (!err && !skb_partial_csum_set(skb, off,
5494 						  offsetof(struct udphdr,
5495 							   check)))
5496 			err = -EPROTO;
5497 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5498 	}
5499 
5500 	return ERR_PTR(-EPROTO);
5501 }
5502 
5503 /* This value should be large enough to cover a tagged ethernet header plus
5504  * maximally sized IP and TCP or UDP headers.
5505  */
5506 #define MAX_IP_HDR_LEN 128
5507 
5508 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5509 {
5510 	unsigned int off;
5511 	bool fragment;
5512 	__sum16 *csum;
5513 	int err;
5514 
5515 	fragment = false;
5516 
5517 	err = skb_maybe_pull_tail(skb,
5518 				  sizeof(struct iphdr),
5519 				  MAX_IP_HDR_LEN);
5520 	if (err < 0)
5521 		goto out;
5522 
5523 	if (ip_is_fragment(ip_hdr(skb)))
5524 		fragment = true;
5525 
5526 	off = ip_hdrlen(skb);
5527 
5528 	err = -EPROTO;
5529 
5530 	if (fragment)
5531 		goto out;
5532 
5533 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5534 	if (IS_ERR(csum))
5535 		return PTR_ERR(csum);
5536 
5537 	if (recalculate)
5538 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5539 					   ip_hdr(skb)->daddr,
5540 					   skb->len - off,
5541 					   ip_hdr(skb)->protocol, 0);
5542 	err = 0;
5543 
5544 out:
5545 	return err;
5546 }
5547 
5548 /* This value should be large enough to cover a tagged ethernet header plus
5549  * an IPv6 header, all options, and a maximal TCP or UDP header.
5550  */
5551 #define MAX_IPV6_HDR_LEN 256
5552 
5553 #define OPT_HDR(type, skb, off) \
5554 	(type *)(skb_network_header(skb) + (off))
5555 
5556 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5557 {
5558 	int err;
5559 	u8 nexthdr;
5560 	unsigned int off;
5561 	unsigned int len;
5562 	bool fragment;
5563 	bool done;
5564 	__sum16 *csum;
5565 
5566 	fragment = false;
5567 	done = false;
5568 
5569 	off = sizeof(struct ipv6hdr);
5570 
5571 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5572 	if (err < 0)
5573 		goto out;
5574 
5575 	nexthdr = ipv6_hdr(skb)->nexthdr;
5576 
5577 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5578 	while (off <= len && !done) {
5579 		switch (nexthdr) {
5580 		case IPPROTO_DSTOPTS:
5581 		case IPPROTO_HOPOPTS:
5582 		case IPPROTO_ROUTING: {
5583 			struct ipv6_opt_hdr *hp;
5584 
5585 			err = skb_maybe_pull_tail(skb,
5586 						  off +
5587 						  sizeof(struct ipv6_opt_hdr),
5588 						  MAX_IPV6_HDR_LEN);
5589 			if (err < 0)
5590 				goto out;
5591 
5592 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5593 			nexthdr = hp->nexthdr;
5594 			off += ipv6_optlen(hp);
5595 			break;
5596 		}
5597 		case IPPROTO_AH: {
5598 			struct ip_auth_hdr *hp;
5599 
5600 			err = skb_maybe_pull_tail(skb,
5601 						  off +
5602 						  sizeof(struct ip_auth_hdr),
5603 						  MAX_IPV6_HDR_LEN);
5604 			if (err < 0)
5605 				goto out;
5606 
5607 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5608 			nexthdr = hp->nexthdr;
5609 			off += ipv6_authlen(hp);
5610 			break;
5611 		}
5612 		case IPPROTO_FRAGMENT: {
5613 			struct frag_hdr *hp;
5614 
5615 			err = skb_maybe_pull_tail(skb,
5616 						  off +
5617 						  sizeof(struct frag_hdr),
5618 						  MAX_IPV6_HDR_LEN);
5619 			if (err < 0)
5620 				goto out;
5621 
5622 			hp = OPT_HDR(struct frag_hdr, skb, off);
5623 
5624 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5625 				fragment = true;
5626 
5627 			nexthdr = hp->nexthdr;
5628 			off += sizeof(struct frag_hdr);
5629 			break;
5630 		}
5631 		default:
5632 			done = true;
5633 			break;
5634 		}
5635 	}
5636 
5637 	err = -EPROTO;
5638 
5639 	if (!done || fragment)
5640 		goto out;
5641 
5642 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5643 	if (IS_ERR(csum))
5644 		return PTR_ERR(csum);
5645 
5646 	if (recalculate)
5647 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5648 					 &ipv6_hdr(skb)->daddr,
5649 					 skb->len - off, nexthdr, 0);
5650 	err = 0;
5651 
5652 out:
5653 	return err;
5654 }
5655 
5656 /**
5657  * skb_checksum_setup - set up partial checksum offset
5658  * @skb: the skb to set up
5659  * @recalculate: if true the pseudo-header checksum will be recalculated
5660  */
5661 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5662 {
5663 	int err;
5664 
5665 	switch (skb->protocol) {
5666 	case htons(ETH_P_IP):
5667 		err = skb_checksum_setup_ipv4(skb, recalculate);
5668 		break;
5669 
5670 	case htons(ETH_P_IPV6):
5671 		err = skb_checksum_setup_ipv6(skb, recalculate);
5672 		break;
5673 
5674 	default:
5675 		err = -EPROTO;
5676 		break;
5677 	}
5678 
5679 	return err;
5680 }
5681 EXPORT_SYMBOL(skb_checksum_setup);
5682 
5683 /**
5684  * skb_checksum_maybe_trim - maybe trims the given skb
5685  * @skb: the skb to check
5686  * @transport_len: the data length beyond the network header
5687  *
5688  * Checks whether the given skb has data beyond the given transport length.
5689  * If so, returns a cloned skb trimmed to this transport length.
5690  * Otherwise returns the provided skb. Returns NULL in error cases
5691  * (e.g. transport_len exceeds skb length or out-of-memory).
5692  *
5693  * Caller needs to set the skb transport header and free any returned skb if it
5694  * differs from the provided skb.
5695  */
5696 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5697 					       unsigned int transport_len)
5698 {
5699 	struct sk_buff *skb_chk;
5700 	unsigned int len = skb_transport_offset(skb) + transport_len;
5701 	int ret;
5702 
5703 	if (skb->len < len)
5704 		return NULL;
5705 	else if (skb->len == len)
5706 		return skb;
5707 
5708 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5709 	if (!skb_chk)
5710 		return NULL;
5711 
5712 	ret = pskb_trim_rcsum(skb_chk, len);
5713 	if (ret) {
5714 		kfree_skb(skb_chk);
5715 		return NULL;
5716 	}
5717 
5718 	return skb_chk;
5719 }
5720 
5721 /**
5722  * skb_checksum_trimmed - validate checksum of an skb
5723  * @skb: the skb to check
5724  * @transport_len: the data length beyond the network header
5725  * @skb_chkf: checksum function to use
5726  *
5727  * Applies the given checksum function skb_chkf to the provided skb.
5728  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5729  *
5730  * If the skb has data beyond the given transport length, then a
5731  * trimmed & cloned skb is checked and returned.
5732  *
5733  * Caller needs to set the skb transport header and free any returned skb if it
5734  * differs from the provided skb.
5735  */
5736 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5737 				     unsigned int transport_len,
5738 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5739 {
5740 	struct sk_buff *skb_chk;
5741 	unsigned int offset = skb_transport_offset(skb);
5742 	__sum16 ret;
5743 
5744 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5745 	if (!skb_chk)
5746 		goto err;
5747 
5748 	if (!pskb_may_pull(skb_chk, offset))
5749 		goto err;
5750 
5751 	skb_pull_rcsum(skb_chk, offset);
5752 	ret = skb_chkf(skb_chk);
5753 	skb_push_rcsum(skb_chk, offset);
5754 
5755 	if (ret)
5756 		goto err;
5757 
5758 	return skb_chk;
5759 
5760 err:
5761 	if (skb_chk && skb_chk != skb)
5762 		kfree_skb(skb_chk);
5763 
5764 	return NULL;
5765 
5766 }
5767 EXPORT_SYMBOL(skb_checksum_trimmed);
5768 
5769 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5770 {
5771 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5772 			     skb->dev->name);
5773 }
5774 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5775 
5776 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5777 {
5778 	if (head_stolen) {
5779 		skb_release_head_state(skb);
5780 		kmem_cache_free(skbuff_cache, skb);
5781 	} else {
5782 		__kfree_skb(skb);
5783 	}
5784 }
5785 EXPORT_SYMBOL(kfree_skb_partial);
5786 
5787 /**
5788  * skb_try_coalesce - try to merge skb to prior one
5789  * @to: prior buffer
5790  * @from: buffer to add
5791  * @fragstolen: pointer to boolean
5792  * @delta_truesize: how much more was allocated than was requested
5793  */
5794 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5795 		      bool *fragstolen, int *delta_truesize)
5796 {
5797 	struct skb_shared_info *to_shinfo, *from_shinfo;
5798 	int i, delta, len = from->len;
5799 
5800 	*fragstolen = false;
5801 
5802 	if (skb_cloned(to))
5803 		return false;
5804 
5805 	/* In general, avoid mixing page_pool and non-page_pool allocated
5806 	 * pages within the same SKB. In theory we could take full
5807 	 * references if @from is cloned and !@to->pp_recycle but its
5808 	 * tricky (due to potential race with the clone disappearing) and
5809 	 * rare, so not worth dealing with.
5810 	 */
5811 	if (to->pp_recycle != from->pp_recycle)
5812 		return false;
5813 
5814 	if (len <= skb_tailroom(to)) {
5815 		if (len)
5816 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5817 		*delta_truesize = 0;
5818 		return true;
5819 	}
5820 
5821 	to_shinfo = skb_shinfo(to);
5822 	from_shinfo = skb_shinfo(from);
5823 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5824 		return false;
5825 	if (skb_zcopy(to) || skb_zcopy(from))
5826 		return false;
5827 
5828 	if (skb_headlen(from) != 0) {
5829 		struct page *page;
5830 		unsigned int offset;
5831 
5832 		if (to_shinfo->nr_frags +
5833 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5834 			return false;
5835 
5836 		if (skb_head_is_locked(from))
5837 			return false;
5838 
5839 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5840 
5841 		page = virt_to_head_page(from->head);
5842 		offset = from->data - (unsigned char *)page_address(page);
5843 
5844 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5845 				   page, offset, skb_headlen(from));
5846 		*fragstolen = true;
5847 	} else {
5848 		if (to_shinfo->nr_frags +
5849 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5850 			return false;
5851 
5852 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5853 	}
5854 
5855 	WARN_ON_ONCE(delta < len);
5856 
5857 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5858 	       from_shinfo->frags,
5859 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5860 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5861 
5862 	if (!skb_cloned(from))
5863 		from_shinfo->nr_frags = 0;
5864 
5865 	/* if the skb is not cloned this does nothing
5866 	 * since we set nr_frags to 0.
5867 	 */
5868 	if (skb_pp_frag_ref(from)) {
5869 		for (i = 0; i < from_shinfo->nr_frags; i++)
5870 			__skb_frag_ref(&from_shinfo->frags[i]);
5871 	}
5872 
5873 	to->truesize += delta;
5874 	to->len += len;
5875 	to->data_len += len;
5876 
5877 	*delta_truesize = delta;
5878 	return true;
5879 }
5880 EXPORT_SYMBOL(skb_try_coalesce);
5881 
5882 /**
5883  * skb_scrub_packet - scrub an skb
5884  *
5885  * @skb: buffer to clean
5886  * @xnet: packet is crossing netns
5887  *
5888  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5889  * into/from a tunnel. Some information have to be cleared during these
5890  * operations.
5891  * skb_scrub_packet can also be used to clean a skb before injecting it in
5892  * another namespace (@xnet == true). We have to clear all information in the
5893  * skb that could impact namespace isolation.
5894  */
5895 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5896 {
5897 	skb->pkt_type = PACKET_HOST;
5898 	skb->skb_iif = 0;
5899 	skb->ignore_df = 0;
5900 	skb_dst_drop(skb);
5901 	skb_ext_reset(skb);
5902 	nf_reset_ct(skb);
5903 	nf_reset_trace(skb);
5904 
5905 #ifdef CONFIG_NET_SWITCHDEV
5906 	skb->offload_fwd_mark = 0;
5907 	skb->offload_l3_fwd_mark = 0;
5908 #endif
5909 
5910 	if (!xnet)
5911 		return;
5912 
5913 	ipvs_reset(skb);
5914 	skb->mark = 0;
5915 	skb_clear_tstamp(skb);
5916 }
5917 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5918 
5919 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5920 {
5921 	int mac_len, meta_len;
5922 	void *meta;
5923 
5924 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5925 		kfree_skb(skb);
5926 		return NULL;
5927 	}
5928 
5929 	mac_len = skb->data - skb_mac_header(skb);
5930 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5931 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5932 			mac_len - VLAN_HLEN - ETH_TLEN);
5933 	}
5934 
5935 	meta_len = skb_metadata_len(skb);
5936 	if (meta_len) {
5937 		meta = skb_metadata_end(skb) - meta_len;
5938 		memmove(meta + VLAN_HLEN, meta, meta_len);
5939 	}
5940 
5941 	skb->mac_header += VLAN_HLEN;
5942 	return skb;
5943 }
5944 
5945 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5946 {
5947 	struct vlan_hdr *vhdr;
5948 	u16 vlan_tci;
5949 
5950 	if (unlikely(skb_vlan_tag_present(skb))) {
5951 		/* vlan_tci is already set-up so leave this for another time */
5952 		return skb;
5953 	}
5954 
5955 	skb = skb_share_check(skb, GFP_ATOMIC);
5956 	if (unlikely(!skb))
5957 		goto err_free;
5958 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5959 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5960 		goto err_free;
5961 
5962 	vhdr = (struct vlan_hdr *)skb->data;
5963 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5964 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5965 
5966 	skb_pull_rcsum(skb, VLAN_HLEN);
5967 	vlan_set_encap_proto(skb, vhdr);
5968 
5969 	skb = skb_reorder_vlan_header(skb);
5970 	if (unlikely(!skb))
5971 		goto err_free;
5972 
5973 	skb_reset_network_header(skb);
5974 	if (!skb_transport_header_was_set(skb))
5975 		skb_reset_transport_header(skb);
5976 	skb_reset_mac_len(skb);
5977 
5978 	return skb;
5979 
5980 err_free:
5981 	kfree_skb(skb);
5982 	return NULL;
5983 }
5984 EXPORT_SYMBOL(skb_vlan_untag);
5985 
5986 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5987 {
5988 	if (!pskb_may_pull(skb, write_len))
5989 		return -ENOMEM;
5990 
5991 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5992 		return 0;
5993 
5994 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5995 }
5996 EXPORT_SYMBOL(skb_ensure_writable);
5997 
5998 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
5999 {
6000 	int needed_headroom = dev->needed_headroom;
6001 	int needed_tailroom = dev->needed_tailroom;
6002 
6003 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6004 	 * that the tail tag does not fail at its role of being at the end of
6005 	 * the packet, once the conduit interface pads the frame. Account for
6006 	 * that pad length here, and pad later.
6007 	 */
6008 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6009 		needed_tailroom += ETH_ZLEN - skb->len;
6010 	/* skb_headroom() returns unsigned int... */
6011 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6012 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6013 
6014 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6015 		/* No reallocation needed, yay! */
6016 		return 0;
6017 
6018 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6019 				GFP_ATOMIC);
6020 }
6021 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6022 
6023 /* remove VLAN header from packet and update csum accordingly.
6024  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6025  */
6026 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6027 {
6028 	int offset = skb->data - skb_mac_header(skb);
6029 	int err;
6030 
6031 	if (WARN_ONCE(offset,
6032 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6033 		      offset)) {
6034 		return -EINVAL;
6035 	}
6036 
6037 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6038 	if (unlikely(err))
6039 		return err;
6040 
6041 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6042 
6043 	vlan_remove_tag(skb, vlan_tci);
6044 
6045 	skb->mac_header += VLAN_HLEN;
6046 
6047 	if (skb_network_offset(skb) < ETH_HLEN)
6048 		skb_set_network_header(skb, ETH_HLEN);
6049 
6050 	skb_reset_mac_len(skb);
6051 
6052 	return err;
6053 }
6054 EXPORT_SYMBOL(__skb_vlan_pop);
6055 
6056 /* Pop a vlan tag either from hwaccel or from payload.
6057  * Expects skb->data at mac header.
6058  */
6059 int skb_vlan_pop(struct sk_buff *skb)
6060 {
6061 	u16 vlan_tci;
6062 	__be16 vlan_proto;
6063 	int err;
6064 
6065 	if (likely(skb_vlan_tag_present(skb))) {
6066 		__vlan_hwaccel_clear_tag(skb);
6067 	} else {
6068 		if (unlikely(!eth_type_vlan(skb->protocol)))
6069 			return 0;
6070 
6071 		err = __skb_vlan_pop(skb, &vlan_tci);
6072 		if (err)
6073 			return err;
6074 	}
6075 	/* move next vlan tag to hw accel tag */
6076 	if (likely(!eth_type_vlan(skb->protocol)))
6077 		return 0;
6078 
6079 	vlan_proto = skb->protocol;
6080 	err = __skb_vlan_pop(skb, &vlan_tci);
6081 	if (unlikely(err))
6082 		return err;
6083 
6084 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6085 	return 0;
6086 }
6087 EXPORT_SYMBOL(skb_vlan_pop);
6088 
6089 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6090  * Expects skb->data at mac header.
6091  */
6092 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6093 {
6094 	if (skb_vlan_tag_present(skb)) {
6095 		int offset = skb->data - skb_mac_header(skb);
6096 		int err;
6097 
6098 		if (WARN_ONCE(offset,
6099 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6100 			      offset)) {
6101 			return -EINVAL;
6102 		}
6103 
6104 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6105 					skb_vlan_tag_get(skb));
6106 		if (err)
6107 			return err;
6108 
6109 		skb->protocol = skb->vlan_proto;
6110 		skb->mac_len += VLAN_HLEN;
6111 
6112 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6113 	}
6114 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6115 	return 0;
6116 }
6117 EXPORT_SYMBOL(skb_vlan_push);
6118 
6119 /**
6120  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6121  *
6122  * @skb: Socket buffer to modify
6123  *
6124  * Drop the Ethernet header of @skb.
6125  *
6126  * Expects that skb->data points to the mac header and that no VLAN tags are
6127  * present.
6128  *
6129  * Returns 0 on success, -errno otherwise.
6130  */
6131 int skb_eth_pop(struct sk_buff *skb)
6132 {
6133 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6134 	    skb_network_offset(skb) < ETH_HLEN)
6135 		return -EPROTO;
6136 
6137 	skb_pull_rcsum(skb, ETH_HLEN);
6138 	skb_reset_mac_header(skb);
6139 	skb_reset_mac_len(skb);
6140 
6141 	return 0;
6142 }
6143 EXPORT_SYMBOL(skb_eth_pop);
6144 
6145 /**
6146  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6147  *
6148  * @skb: Socket buffer to modify
6149  * @dst: Destination MAC address of the new header
6150  * @src: Source MAC address of the new header
6151  *
6152  * Prepend @skb with a new Ethernet header.
6153  *
6154  * Expects that skb->data points to the mac header, which must be empty.
6155  *
6156  * Returns 0 on success, -errno otherwise.
6157  */
6158 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6159 		 const unsigned char *src)
6160 {
6161 	struct ethhdr *eth;
6162 	int err;
6163 
6164 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6165 		return -EPROTO;
6166 
6167 	err = skb_cow_head(skb, sizeof(*eth));
6168 	if (err < 0)
6169 		return err;
6170 
6171 	skb_push(skb, sizeof(*eth));
6172 	skb_reset_mac_header(skb);
6173 	skb_reset_mac_len(skb);
6174 
6175 	eth = eth_hdr(skb);
6176 	ether_addr_copy(eth->h_dest, dst);
6177 	ether_addr_copy(eth->h_source, src);
6178 	eth->h_proto = skb->protocol;
6179 
6180 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6181 
6182 	return 0;
6183 }
6184 EXPORT_SYMBOL(skb_eth_push);
6185 
6186 /* Update the ethertype of hdr and the skb csum value if required. */
6187 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6188 			     __be16 ethertype)
6189 {
6190 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6191 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6192 
6193 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6194 	}
6195 
6196 	hdr->h_proto = ethertype;
6197 }
6198 
6199 /**
6200  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6201  *                   the packet
6202  *
6203  * @skb: buffer
6204  * @mpls_lse: MPLS label stack entry to push
6205  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6206  * @mac_len: length of the MAC header
6207  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6208  *            ethernet
6209  *
6210  * Expects skb->data at mac header.
6211  *
6212  * Returns 0 on success, -errno otherwise.
6213  */
6214 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6215 		  int mac_len, bool ethernet)
6216 {
6217 	struct mpls_shim_hdr *lse;
6218 	int err;
6219 
6220 	if (unlikely(!eth_p_mpls(mpls_proto)))
6221 		return -EINVAL;
6222 
6223 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6224 	if (skb->encapsulation)
6225 		return -EINVAL;
6226 
6227 	err = skb_cow_head(skb, MPLS_HLEN);
6228 	if (unlikely(err))
6229 		return err;
6230 
6231 	if (!skb->inner_protocol) {
6232 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6233 		skb_set_inner_protocol(skb, skb->protocol);
6234 	}
6235 
6236 	skb_push(skb, MPLS_HLEN);
6237 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6238 		mac_len);
6239 	skb_reset_mac_header(skb);
6240 	skb_set_network_header(skb, mac_len);
6241 	skb_reset_mac_len(skb);
6242 
6243 	lse = mpls_hdr(skb);
6244 	lse->label_stack_entry = mpls_lse;
6245 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6246 
6247 	if (ethernet && mac_len >= ETH_HLEN)
6248 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6249 	skb->protocol = mpls_proto;
6250 
6251 	return 0;
6252 }
6253 EXPORT_SYMBOL_GPL(skb_mpls_push);
6254 
6255 /**
6256  * skb_mpls_pop() - pop the outermost MPLS header
6257  *
6258  * @skb: buffer
6259  * @next_proto: ethertype of header after popped MPLS header
6260  * @mac_len: length of the MAC header
6261  * @ethernet: flag to indicate if the packet is ethernet
6262  *
6263  * Expects skb->data at mac header.
6264  *
6265  * Returns 0 on success, -errno otherwise.
6266  */
6267 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6268 		 bool ethernet)
6269 {
6270 	int err;
6271 
6272 	if (unlikely(!eth_p_mpls(skb->protocol)))
6273 		return 0;
6274 
6275 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6276 	if (unlikely(err))
6277 		return err;
6278 
6279 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6280 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6281 		mac_len);
6282 
6283 	__skb_pull(skb, MPLS_HLEN);
6284 	skb_reset_mac_header(skb);
6285 	skb_set_network_header(skb, mac_len);
6286 
6287 	if (ethernet && mac_len >= ETH_HLEN) {
6288 		struct ethhdr *hdr;
6289 
6290 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6291 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6292 		skb_mod_eth_type(skb, hdr, next_proto);
6293 	}
6294 	skb->protocol = next_proto;
6295 
6296 	return 0;
6297 }
6298 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6299 
6300 /**
6301  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6302  *
6303  * @skb: buffer
6304  * @mpls_lse: new MPLS label stack entry to update to
6305  *
6306  * Expects skb->data at mac header.
6307  *
6308  * Returns 0 on success, -errno otherwise.
6309  */
6310 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6311 {
6312 	int err;
6313 
6314 	if (unlikely(!eth_p_mpls(skb->protocol)))
6315 		return -EINVAL;
6316 
6317 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6318 	if (unlikely(err))
6319 		return err;
6320 
6321 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6322 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6323 
6324 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6325 	}
6326 
6327 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6328 
6329 	return 0;
6330 }
6331 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6332 
6333 /**
6334  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6335  *
6336  * @skb: buffer
6337  *
6338  * Expects skb->data at mac header.
6339  *
6340  * Returns 0 on success, -errno otherwise.
6341  */
6342 int skb_mpls_dec_ttl(struct sk_buff *skb)
6343 {
6344 	u32 lse;
6345 	u8 ttl;
6346 
6347 	if (unlikely(!eth_p_mpls(skb->protocol)))
6348 		return -EINVAL;
6349 
6350 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6351 		return -ENOMEM;
6352 
6353 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6354 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6355 	if (!--ttl)
6356 		return -EINVAL;
6357 
6358 	lse &= ~MPLS_LS_TTL_MASK;
6359 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6360 
6361 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6362 }
6363 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6364 
6365 /**
6366  * alloc_skb_with_frags - allocate skb with page frags
6367  *
6368  * @header_len: size of linear part
6369  * @data_len: needed length in frags
6370  * @order: max page order desired.
6371  * @errcode: pointer to error code if any
6372  * @gfp_mask: allocation mask
6373  *
6374  * This can be used to allocate a paged skb, given a maximal order for frags.
6375  */
6376 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6377 				     unsigned long data_len,
6378 				     int order,
6379 				     int *errcode,
6380 				     gfp_t gfp_mask)
6381 {
6382 	unsigned long chunk;
6383 	struct sk_buff *skb;
6384 	struct page *page;
6385 	int nr_frags = 0;
6386 
6387 	*errcode = -EMSGSIZE;
6388 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6389 		return NULL;
6390 
6391 	*errcode = -ENOBUFS;
6392 	skb = alloc_skb(header_len, gfp_mask);
6393 	if (!skb)
6394 		return NULL;
6395 
6396 	while (data_len) {
6397 		if (nr_frags == MAX_SKB_FRAGS - 1)
6398 			goto failure;
6399 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6400 			order--;
6401 
6402 		if (order) {
6403 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6404 					   __GFP_COMP |
6405 					   __GFP_NOWARN,
6406 					   order);
6407 			if (!page) {
6408 				order--;
6409 				continue;
6410 			}
6411 		} else {
6412 			page = alloc_page(gfp_mask);
6413 			if (!page)
6414 				goto failure;
6415 		}
6416 		chunk = min_t(unsigned long, data_len,
6417 			      PAGE_SIZE << order);
6418 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6419 		nr_frags++;
6420 		skb->truesize += (PAGE_SIZE << order);
6421 		data_len -= chunk;
6422 	}
6423 	return skb;
6424 
6425 failure:
6426 	kfree_skb(skb);
6427 	return NULL;
6428 }
6429 EXPORT_SYMBOL(alloc_skb_with_frags);
6430 
6431 /* carve out the first off bytes from skb when off < headlen */
6432 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6433 				    const int headlen, gfp_t gfp_mask)
6434 {
6435 	int i;
6436 	unsigned int size = skb_end_offset(skb);
6437 	int new_hlen = headlen - off;
6438 	u8 *data;
6439 
6440 	if (skb_pfmemalloc(skb))
6441 		gfp_mask |= __GFP_MEMALLOC;
6442 
6443 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6444 	if (!data)
6445 		return -ENOMEM;
6446 	size = SKB_WITH_OVERHEAD(size);
6447 
6448 	/* Copy real data, and all frags */
6449 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6450 	skb->len -= off;
6451 
6452 	memcpy((struct skb_shared_info *)(data + size),
6453 	       skb_shinfo(skb),
6454 	       offsetof(struct skb_shared_info,
6455 			frags[skb_shinfo(skb)->nr_frags]));
6456 	if (skb_cloned(skb)) {
6457 		/* drop the old head gracefully */
6458 		if (skb_orphan_frags(skb, gfp_mask)) {
6459 			skb_kfree_head(data, size);
6460 			return -ENOMEM;
6461 		}
6462 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6463 			skb_frag_ref(skb, i);
6464 		if (skb_has_frag_list(skb))
6465 			skb_clone_fraglist(skb);
6466 		skb_release_data(skb, SKB_CONSUMED, false);
6467 	} else {
6468 		/* we can reuse existing recount- all we did was
6469 		 * relocate values
6470 		 */
6471 		skb_free_head(skb, false);
6472 	}
6473 
6474 	skb->head = data;
6475 	skb->data = data;
6476 	skb->head_frag = 0;
6477 	skb_set_end_offset(skb, size);
6478 	skb_set_tail_pointer(skb, skb_headlen(skb));
6479 	skb_headers_offset_update(skb, 0);
6480 	skb->cloned = 0;
6481 	skb->hdr_len = 0;
6482 	skb->nohdr = 0;
6483 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6484 
6485 	return 0;
6486 }
6487 
6488 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6489 
6490 /* carve out the first eat bytes from skb's frag_list. May recurse into
6491  * pskb_carve()
6492  */
6493 static int pskb_carve_frag_list(struct sk_buff *skb,
6494 				struct skb_shared_info *shinfo, int eat,
6495 				gfp_t gfp_mask)
6496 {
6497 	struct sk_buff *list = shinfo->frag_list;
6498 	struct sk_buff *clone = NULL;
6499 	struct sk_buff *insp = NULL;
6500 
6501 	do {
6502 		if (!list) {
6503 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6504 			return -EFAULT;
6505 		}
6506 		if (list->len <= eat) {
6507 			/* Eaten as whole. */
6508 			eat -= list->len;
6509 			list = list->next;
6510 			insp = list;
6511 		} else {
6512 			/* Eaten partially. */
6513 			if (skb_shared(list)) {
6514 				clone = skb_clone(list, gfp_mask);
6515 				if (!clone)
6516 					return -ENOMEM;
6517 				insp = list->next;
6518 				list = clone;
6519 			} else {
6520 				/* This may be pulled without problems. */
6521 				insp = list;
6522 			}
6523 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6524 				kfree_skb(clone);
6525 				return -ENOMEM;
6526 			}
6527 			break;
6528 		}
6529 	} while (eat);
6530 
6531 	/* Free pulled out fragments. */
6532 	while ((list = shinfo->frag_list) != insp) {
6533 		shinfo->frag_list = list->next;
6534 		consume_skb(list);
6535 	}
6536 	/* And insert new clone at head. */
6537 	if (clone) {
6538 		clone->next = list;
6539 		shinfo->frag_list = clone;
6540 	}
6541 	return 0;
6542 }
6543 
6544 /* carve off first len bytes from skb. Split line (off) is in the
6545  * non-linear part of skb
6546  */
6547 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6548 				       int pos, gfp_t gfp_mask)
6549 {
6550 	int i, k = 0;
6551 	unsigned int size = skb_end_offset(skb);
6552 	u8 *data;
6553 	const int nfrags = skb_shinfo(skb)->nr_frags;
6554 	struct skb_shared_info *shinfo;
6555 
6556 	if (skb_pfmemalloc(skb))
6557 		gfp_mask |= __GFP_MEMALLOC;
6558 
6559 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6560 	if (!data)
6561 		return -ENOMEM;
6562 	size = SKB_WITH_OVERHEAD(size);
6563 
6564 	memcpy((struct skb_shared_info *)(data + size),
6565 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6566 	if (skb_orphan_frags(skb, gfp_mask)) {
6567 		skb_kfree_head(data, size);
6568 		return -ENOMEM;
6569 	}
6570 	shinfo = (struct skb_shared_info *)(data + size);
6571 	for (i = 0; i < nfrags; i++) {
6572 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6573 
6574 		if (pos + fsize > off) {
6575 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6576 
6577 			if (pos < off) {
6578 				/* Split frag.
6579 				 * We have two variants in this case:
6580 				 * 1. Move all the frag to the second
6581 				 *    part, if it is possible. F.e.
6582 				 *    this approach is mandatory for TUX,
6583 				 *    where splitting is expensive.
6584 				 * 2. Split is accurately. We make this.
6585 				 */
6586 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6587 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6588 			}
6589 			skb_frag_ref(skb, i);
6590 			k++;
6591 		}
6592 		pos += fsize;
6593 	}
6594 	shinfo->nr_frags = k;
6595 	if (skb_has_frag_list(skb))
6596 		skb_clone_fraglist(skb);
6597 
6598 	/* split line is in frag list */
6599 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6600 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6601 		if (skb_has_frag_list(skb))
6602 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6603 		skb_kfree_head(data, size);
6604 		return -ENOMEM;
6605 	}
6606 	skb_release_data(skb, SKB_CONSUMED, false);
6607 
6608 	skb->head = data;
6609 	skb->head_frag = 0;
6610 	skb->data = data;
6611 	skb_set_end_offset(skb, size);
6612 	skb_reset_tail_pointer(skb);
6613 	skb_headers_offset_update(skb, 0);
6614 	skb->cloned   = 0;
6615 	skb->hdr_len  = 0;
6616 	skb->nohdr    = 0;
6617 	skb->len -= off;
6618 	skb->data_len = skb->len;
6619 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6620 	return 0;
6621 }
6622 
6623 /* remove len bytes from the beginning of the skb */
6624 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6625 {
6626 	int headlen = skb_headlen(skb);
6627 
6628 	if (len < headlen)
6629 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6630 	else
6631 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6632 }
6633 
6634 /* Extract to_copy bytes starting at off from skb, and return this in
6635  * a new skb
6636  */
6637 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6638 			     int to_copy, gfp_t gfp)
6639 {
6640 	struct sk_buff  *clone = skb_clone(skb, gfp);
6641 
6642 	if (!clone)
6643 		return NULL;
6644 
6645 	if (pskb_carve(clone, off, gfp) < 0 ||
6646 	    pskb_trim(clone, to_copy)) {
6647 		kfree_skb(clone);
6648 		return NULL;
6649 	}
6650 	return clone;
6651 }
6652 EXPORT_SYMBOL(pskb_extract);
6653 
6654 /**
6655  * skb_condense - try to get rid of fragments/frag_list if possible
6656  * @skb: buffer
6657  *
6658  * Can be used to save memory before skb is added to a busy queue.
6659  * If packet has bytes in frags and enough tail room in skb->head,
6660  * pull all of them, so that we can free the frags right now and adjust
6661  * truesize.
6662  * Notes:
6663  *	We do not reallocate skb->head thus can not fail.
6664  *	Caller must re-evaluate skb->truesize if needed.
6665  */
6666 void skb_condense(struct sk_buff *skb)
6667 {
6668 	if (skb->data_len) {
6669 		if (skb->data_len > skb->end - skb->tail ||
6670 		    skb_cloned(skb))
6671 			return;
6672 
6673 		/* Nice, we can free page frag(s) right now */
6674 		__pskb_pull_tail(skb, skb->data_len);
6675 	}
6676 	/* At this point, skb->truesize might be over estimated,
6677 	 * because skb had a fragment, and fragments do not tell
6678 	 * their truesize.
6679 	 * When we pulled its content into skb->head, fragment
6680 	 * was freed, but __pskb_pull_tail() could not possibly
6681 	 * adjust skb->truesize, not knowing the frag truesize.
6682 	 */
6683 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6684 }
6685 EXPORT_SYMBOL(skb_condense);
6686 
6687 #ifdef CONFIG_SKB_EXTENSIONS
6688 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6689 {
6690 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6691 }
6692 
6693 /**
6694  * __skb_ext_alloc - allocate a new skb extensions storage
6695  *
6696  * @flags: See kmalloc().
6697  *
6698  * Returns the newly allocated pointer. The pointer can later attached to a
6699  * skb via __skb_ext_set().
6700  * Note: caller must handle the skb_ext as an opaque data.
6701  */
6702 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6703 {
6704 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6705 
6706 	if (new) {
6707 		memset(new->offset, 0, sizeof(new->offset));
6708 		refcount_set(&new->refcnt, 1);
6709 	}
6710 
6711 	return new;
6712 }
6713 
6714 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6715 					 unsigned int old_active)
6716 {
6717 	struct skb_ext *new;
6718 
6719 	if (refcount_read(&old->refcnt) == 1)
6720 		return old;
6721 
6722 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6723 	if (!new)
6724 		return NULL;
6725 
6726 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6727 	refcount_set(&new->refcnt, 1);
6728 
6729 #ifdef CONFIG_XFRM
6730 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6731 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6732 		unsigned int i;
6733 
6734 		for (i = 0; i < sp->len; i++)
6735 			xfrm_state_hold(sp->xvec[i]);
6736 	}
6737 #endif
6738 	__skb_ext_put(old);
6739 	return new;
6740 }
6741 
6742 /**
6743  * __skb_ext_set - attach the specified extension storage to this skb
6744  * @skb: buffer
6745  * @id: extension id
6746  * @ext: extension storage previously allocated via __skb_ext_alloc()
6747  *
6748  * Existing extensions, if any, are cleared.
6749  *
6750  * Returns the pointer to the extension.
6751  */
6752 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6753 		    struct skb_ext *ext)
6754 {
6755 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6756 
6757 	skb_ext_put(skb);
6758 	newlen = newoff + skb_ext_type_len[id];
6759 	ext->chunks = newlen;
6760 	ext->offset[id] = newoff;
6761 	skb->extensions = ext;
6762 	skb->active_extensions = 1 << id;
6763 	return skb_ext_get_ptr(ext, id);
6764 }
6765 
6766 /**
6767  * skb_ext_add - allocate space for given extension, COW if needed
6768  * @skb: buffer
6769  * @id: extension to allocate space for
6770  *
6771  * Allocates enough space for the given extension.
6772  * If the extension is already present, a pointer to that extension
6773  * is returned.
6774  *
6775  * If the skb was cloned, COW applies and the returned memory can be
6776  * modified without changing the extension space of clones buffers.
6777  *
6778  * Returns pointer to the extension or NULL on allocation failure.
6779  */
6780 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6781 {
6782 	struct skb_ext *new, *old = NULL;
6783 	unsigned int newlen, newoff;
6784 
6785 	if (skb->active_extensions) {
6786 		old = skb->extensions;
6787 
6788 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6789 		if (!new)
6790 			return NULL;
6791 
6792 		if (__skb_ext_exist(new, id))
6793 			goto set_active;
6794 
6795 		newoff = new->chunks;
6796 	} else {
6797 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6798 
6799 		new = __skb_ext_alloc(GFP_ATOMIC);
6800 		if (!new)
6801 			return NULL;
6802 	}
6803 
6804 	newlen = newoff + skb_ext_type_len[id];
6805 	new->chunks = newlen;
6806 	new->offset[id] = newoff;
6807 set_active:
6808 	skb->slow_gro = 1;
6809 	skb->extensions = new;
6810 	skb->active_extensions |= 1 << id;
6811 	return skb_ext_get_ptr(new, id);
6812 }
6813 EXPORT_SYMBOL(skb_ext_add);
6814 
6815 #ifdef CONFIG_XFRM
6816 static void skb_ext_put_sp(struct sec_path *sp)
6817 {
6818 	unsigned int i;
6819 
6820 	for (i = 0; i < sp->len; i++)
6821 		xfrm_state_put(sp->xvec[i]);
6822 }
6823 #endif
6824 
6825 #ifdef CONFIG_MCTP_FLOWS
6826 static void skb_ext_put_mctp(struct mctp_flow *flow)
6827 {
6828 	if (flow->key)
6829 		mctp_key_unref(flow->key);
6830 }
6831 #endif
6832 
6833 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6834 {
6835 	struct skb_ext *ext = skb->extensions;
6836 
6837 	skb->active_extensions &= ~(1 << id);
6838 	if (skb->active_extensions == 0) {
6839 		skb->extensions = NULL;
6840 		__skb_ext_put(ext);
6841 #ifdef CONFIG_XFRM
6842 	} else if (id == SKB_EXT_SEC_PATH &&
6843 		   refcount_read(&ext->refcnt) == 1) {
6844 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6845 
6846 		skb_ext_put_sp(sp);
6847 		sp->len = 0;
6848 #endif
6849 	}
6850 }
6851 EXPORT_SYMBOL(__skb_ext_del);
6852 
6853 void __skb_ext_put(struct skb_ext *ext)
6854 {
6855 	/* If this is last clone, nothing can increment
6856 	 * it after check passes.  Avoids one atomic op.
6857 	 */
6858 	if (refcount_read(&ext->refcnt) == 1)
6859 		goto free_now;
6860 
6861 	if (!refcount_dec_and_test(&ext->refcnt))
6862 		return;
6863 free_now:
6864 #ifdef CONFIG_XFRM
6865 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6866 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6867 #endif
6868 #ifdef CONFIG_MCTP_FLOWS
6869 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6870 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6871 #endif
6872 
6873 	kmem_cache_free(skbuff_ext_cache, ext);
6874 }
6875 EXPORT_SYMBOL(__skb_ext_put);
6876 #endif /* CONFIG_SKB_EXTENSIONS */
6877 
6878 /**
6879  * skb_attempt_defer_free - queue skb for remote freeing
6880  * @skb: buffer
6881  *
6882  * Put @skb in a per-cpu list, using the cpu which
6883  * allocated the skb/pages to reduce false sharing
6884  * and memory zone spinlock contention.
6885  */
6886 void skb_attempt_defer_free(struct sk_buff *skb)
6887 {
6888 	int cpu = skb->alloc_cpu;
6889 	struct softnet_data *sd;
6890 	unsigned int defer_max;
6891 	bool kick;
6892 
6893 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6894 	    !cpu_online(cpu) ||
6895 	    cpu == raw_smp_processor_id()) {
6896 nodefer:	__kfree_skb(skb);
6897 		return;
6898 	}
6899 
6900 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6901 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6902 
6903 	sd = &per_cpu(softnet_data, cpu);
6904 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6905 	if (READ_ONCE(sd->defer_count) >= defer_max)
6906 		goto nodefer;
6907 
6908 	spin_lock_bh(&sd->defer_lock);
6909 	/* Send an IPI every time queue reaches half capacity. */
6910 	kick = sd->defer_count == (defer_max >> 1);
6911 	/* Paired with the READ_ONCE() few lines above */
6912 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6913 
6914 	skb->next = sd->defer_list;
6915 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6916 	WRITE_ONCE(sd->defer_list, skb);
6917 	spin_unlock_bh(&sd->defer_lock);
6918 
6919 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6920 	 * if we are unlucky enough (this seems very unlikely).
6921 	 */
6922 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6923 		smp_call_function_single_async(cpu, &sd->defer_csd);
6924 }
6925 
6926 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6927 				 size_t offset, size_t len)
6928 {
6929 	const char *kaddr;
6930 	__wsum csum;
6931 
6932 	kaddr = kmap_local_page(page);
6933 	csum = csum_partial(kaddr + offset, len, 0);
6934 	kunmap_local(kaddr);
6935 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
6936 }
6937 
6938 /**
6939  * skb_splice_from_iter - Splice (or copy) pages to skbuff
6940  * @skb: The buffer to add pages to
6941  * @iter: Iterator representing the pages to be added
6942  * @maxsize: Maximum amount of pages to be added
6943  * @gfp: Allocation flags
6944  *
6945  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
6946  * extracts pages from an iterator and adds them to the socket buffer if
6947  * possible, copying them to fragments if not possible (such as if they're slab
6948  * pages).
6949  *
6950  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6951  * insufficient space in the buffer to transfer anything.
6952  */
6953 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6954 			     ssize_t maxsize, gfp_t gfp)
6955 {
6956 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6957 	struct page *pages[8], **ppages = pages;
6958 	ssize_t spliced = 0, ret = 0;
6959 	unsigned int i;
6960 
6961 	while (iter->count > 0) {
6962 		ssize_t space, nr, len;
6963 		size_t off;
6964 
6965 		ret = -EMSGSIZE;
6966 		space = frag_limit - skb_shinfo(skb)->nr_frags;
6967 		if (space < 0)
6968 			break;
6969 
6970 		/* We might be able to coalesce without increasing nr_frags */
6971 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6972 
6973 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6974 		if (len <= 0) {
6975 			ret = len ?: -EIO;
6976 			break;
6977 		}
6978 
6979 		i = 0;
6980 		do {
6981 			struct page *page = pages[i++];
6982 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
6983 
6984 			ret = -EIO;
6985 			if (WARN_ON_ONCE(!sendpage_ok(page)))
6986 				goto out;
6987 
6988 			ret = skb_append_pagefrags(skb, page, off, part,
6989 						   frag_limit);
6990 			if (ret < 0) {
6991 				iov_iter_revert(iter, len);
6992 				goto out;
6993 			}
6994 
6995 			if (skb->ip_summed == CHECKSUM_NONE)
6996 				skb_splice_csum_page(skb, page, off, part);
6997 
6998 			off = 0;
6999 			spliced += part;
7000 			maxsize -= part;
7001 			len -= part;
7002 		} while (len > 0);
7003 
7004 		if (maxsize <= 0)
7005 			break;
7006 	}
7007 
7008 out:
7009 	skb_len_add(skb, spliced);
7010 	return spliced ?: ret;
7011 }
7012 EXPORT_SYMBOL(skb_splice_from_iter);
7013 
7014 static __always_inline
7015 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7016 			     size_t len, void *to, void *priv2)
7017 {
7018 	__wsum *csum = priv2;
7019 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7020 
7021 	*csum = csum_block_add(*csum, next, progress);
7022 	return 0;
7023 }
7024 
7025 static __always_inline
7026 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7027 				size_t len, void *to, void *priv2)
7028 {
7029 	__wsum next, *csum = priv2;
7030 
7031 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7032 	*csum = csum_block_add(*csum, next, progress);
7033 	return next ? 0 : len;
7034 }
7035 
7036 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7037 				  __wsum *csum, struct iov_iter *i)
7038 {
7039 	size_t copied;
7040 
7041 	if (WARN_ON_ONCE(!i->data_source))
7042 		return false;
7043 	copied = iterate_and_advance2(i, bytes, addr, csum,
7044 				      copy_from_user_iter_csum,
7045 				      memcpy_from_iter_csum);
7046 	if (likely(copied == bytes))
7047 		return true;
7048 	iov_iter_revert(i, copied);
7049 	return false;
7050 }
7051 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7052