xref: /linux/net/core/skbuff.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 
72 #include <linux/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
75 #include <linux/capability.h>
76 #include <linux/user_namespace.h>
77 #include <linux/indirect_call_wrapper.h>
78 
79 #include "datagram.h"
80 
81 struct kmem_cache *skbuff_head_cache __ro_after_init;
82 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
83 #ifdef CONFIG_SKB_EXTENSIONS
84 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
85 #endif
86 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
87 EXPORT_SYMBOL(sysctl_max_skb_frags);
88 
89 /**
90  *	skb_panic - private function for out-of-line support
91  *	@skb:	buffer
92  *	@sz:	size
93  *	@addr:	address
94  *	@msg:	skb_over_panic or skb_under_panic
95  *
96  *	Out-of-line support for skb_put() and skb_push().
97  *	Called via the wrapper skb_over_panic() or skb_under_panic().
98  *	Keep out of line to prevent kernel bloat.
99  *	__builtin_return_address is not used because it is not always reliable.
100  */
101 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
102 		      const char msg[])
103 {
104 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
105 		 msg, addr, skb->len, sz, skb->head, skb->data,
106 		 (unsigned long)skb->tail, (unsigned long)skb->end,
107 		 skb->dev ? skb->dev->name : "<NULL>");
108 	BUG();
109 }
110 
111 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
112 {
113 	skb_panic(skb, sz, addr, __func__);
114 }
115 
116 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 /*
122  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
123  * the caller if emergency pfmemalloc reserves are being used. If it is and
124  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
125  * may be used. Otherwise, the packet data may be discarded until enough
126  * memory is free
127  */
128 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
129 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
130 
131 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
132 			       unsigned long ip, bool *pfmemalloc)
133 {
134 	void *obj;
135 	bool ret_pfmemalloc = false;
136 
137 	/*
138 	 * Try a regular allocation, when that fails and we're not entitled
139 	 * to the reserves, fail.
140 	 */
141 	obj = kmalloc_node_track_caller(size,
142 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
143 					node);
144 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
145 		goto out;
146 
147 	/* Try again but now we are using pfmemalloc reserves */
148 	ret_pfmemalloc = true;
149 	obj = kmalloc_node_track_caller(size, flags, node);
150 
151 out:
152 	if (pfmemalloc)
153 		*pfmemalloc = ret_pfmemalloc;
154 
155 	return obj;
156 }
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
169  *		instead of head cache and allocate a cloned (child) skb.
170  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
171  *		allocations in case the data is required for writeback
172  *	@node: numa node to allocate memory on
173  *
174  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
175  *	tail room of at least size bytes. The object has a reference count
176  *	of one. The return is the buffer. On a failure the return is %NULL.
177  *
178  *	Buffers may only be allocated from interrupts using a @gfp_mask of
179  *	%GFP_ATOMIC.
180  */
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 			    int flags, int node)
183 {
184 	struct kmem_cache *cache;
185 	struct skb_shared_info *shinfo;
186 	struct sk_buff *skb;
187 	u8 *data;
188 	bool pfmemalloc;
189 
190 	cache = (flags & SKB_ALLOC_FCLONE)
191 		? skbuff_fclone_cache : skbuff_head_cache;
192 
193 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
194 		gfp_mask |= __GFP_MEMALLOC;
195 
196 	/* Get the HEAD */
197 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
198 	if (!skb)
199 		goto out;
200 	prefetchw(skb);
201 
202 	/* We do our best to align skb_shared_info on a separate cache
203 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
204 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
205 	 * Both skb->head and skb_shared_info are cache line aligned.
206 	 */
207 	size = SKB_DATA_ALIGN(size);
208 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
209 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
210 	if (!data)
211 		goto nodata;
212 	/* kmalloc(size) might give us more room than requested.
213 	 * Put skb_shared_info exactly at the end of allocated zone,
214 	 * to allow max possible filling before reallocation.
215 	 */
216 	size = SKB_WITH_OVERHEAD(ksize(data));
217 	prefetchw(data + size);
218 
219 	/*
220 	 * Only clear those fields we need to clear, not those that we will
221 	 * actually initialise below. Hence, don't put any more fields after
222 	 * the tail pointer in struct sk_buff!
223 	 */
224 	memset(skb, 0, offsetof(struct sk_buff, tail));
225 	/* Account for allocated memory : skb + skb->head */
226 	skb->truesize = SKB_TRUESIZE(size);
227 	skb->pfmemalloc = pfmemalloc;
228 	refcount_set(&skb->users, 1);
229 	skb->head = data;
230 	skb->data = data;
231 	skb_reset_tail_pointer(skb);
232 	skb->end = skb->tail + size;
233 	skb->mac_header = (typeof(skb->mac_header))~0U;
234 	skb->transport_header = (typeof(skb->transport_header))~0U;
235 
236 	/* make sure we initialize shinfo sequentially */
237 	shinfo = skb_shinfo(skb);
238 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
239 	atomic_set(&shinfo->dataref, 1);
240 
241 	if (flags & SKB_ALLOC_FCLONE) {
242 		struct sk_buff_fclones *fclones;
243 
244 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
245 
246 		skb->fclone = SKB_FCLONE_ORIG;
247 		refcount_set(&fclones->fclone_ref, 1);
248 
249 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
250 	}
251 out:
252 	return skb;
253 nodata:
254 	kmem_cache_free(cache, skb);
255 	skb = NULL;
256 	goto out;
257 }
258 EXPORT_SYMBOL(__alloc_skb);
259 
260 /* Caller must provide SKB that is memset cleared */
261 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
262 					  void *data, unsigned int frag_size)
263 {
264 	struct skb_shared_info *shinfo;
265 	unsigned int size = frag_size ? : ksize(data);
266 
267 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
268 
269 	/* Assumes caller memset cleared SKB */
270 	skb->truesize = SKB_TRUESIZE(size);
271 	refcount_set(&skb->users, 1);
272 	skb->head = data;
273 	skb->data = data;
274 	skb_reset_tail_pointer(skb);
275 	skb->end = skb->tail + size;
276 	skb->mac_header = (typeof(skb->mac_header))~0U;
277 	skb->transport_header = (typeof(skb->transport_header))~0U;
278 
279 	/* make sure we initialize shinfo sequentially */
280 	shinfo = skb_shinfo(skb);
281 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 	atomic_set(&shinfo->dataref, 1);
283 
284 	return skb;
285 }
286 
287 /**
288  * __build_skb - build a network buffer
289  * @data: data buffer provided by caller
290  * @frag_size: size of data, or 0 if head was kmalloced
291  *
292  * Allocate a new &sk_buff. Caller provides space holding head and
293  * skb_shared_info. @data must have been allocated by kmalloc() only if
294  * @frag_size is 0, otherwise data should come from the page allocator
295  *  or vmalloc()
296  * The return is the new skb buffer.
297  * On a failure the return is %NULL, and @data is not freed.
298  * Notes :
299  *  Before IO, driver allocates only data buffer where NIC put incoming frame
300  *  Driver should add room at head (NET_SKB_PAD) and
301  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
302  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
303  *  before giving packet to stack.
304  *  RX rings only contains data buffers, not full skbs.
305  */
306 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
307 {
308 	struct sk_buff *skb;
309 
310 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 	if (unlikely(!skb))
312 		return NULL;
313 
314 	memset(skb, 0, offsetof(struct sk_buff, tail));
315 
316 	return __build_skb_around(skb, data, frag_size);
317 }
318 
319 /* build_skb() is wrapper over __build_skb(), that specifically
320  * takes care of skb->head and skb->pfmemalloc
321  * This means that if @frag_size is not zero, then @data must be backed
322  * by a page fragment, not kmalloc() or vmalloc()
323  */
324 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __build_skb(data, frag_size);
327 
328 	if (skb && frag_size) {
329 		skb->head_frag = 1;
330 		if (page_is_pfmemalloc(virt_to_head_page(data)))
331 			skb->pfmemalloc = 1;
332 	}
333 	return skb;
334 }
335 EXPORT_SYMBOL(build_skb);
336 
337 /**
338  * build_skb_around - build a network buffer around provided skb
339  * @skb: sk_buff provide by caller, must be memset cleared
340  * @data: data buffer provided by caller
341  * @frag_size: size of data, or 0 if head was kmalloced
342  */
343 struct sk_buff *build_skb_around(struct sk_buff *skb,
344 				 void *data, unsigned int frag_size)
345 {
346 	if (unlikely(!skb))
347 		return NULL;
348 
349 	skb = __build_skb_around(skb, data, frag_size);
350 
351 	if (skb && frag_size) {
352 		skb->head_frag = 1;
353 		if (page_is_pfmemalloc(virt_to_head_page(data)))
354 			skb->pfmemalloc = 1;
355 	}
356 	return skb;
357 }
358 EXPORT_SYMBOL(build_skb_around);
359 
360 #define NAPI_SKB_CACHE_SIZE	64
361 
362 struct napi_alloc_cache {
363 	struct page_frag_cache page;
364 	unsigned int skb_count;
365 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
366 };
367 
368 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
369 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
370 
371 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
374 
375 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
376 }
377 
378 void *napi_alloc_frag(unsigned int fragsz)
379 {
380 	fragsz = SKB_DATA_ALIGN(fragsz);
381 
382 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
383 }
384 EXPORT_SYMBOL(napi_alloc_frag);
385 
386 /**
387  * netdev_alloc_frag - allocate a page fragment
388  * @fragsz: fragment size
389  *
390  * Allocates a frag from a page for receive buffer.
391  * Uses GFP_ATOMIC allocations.
392  */
393 void *netdev_alloc_frag(unsigned int fragsz)
394 {
395 	struct page_frag_cache *nc;
396 	void *data;
397 
398 	fragsz = SKB_DATA_ALIGN(fragsz);
399 	if (in_irq() || irqs_disabled()) {
400 		nc = this_cpu_ptr(&netdev_alloc_cache);
401 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
402 	} else {
403 		local_bh_disable();
404 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
405 		local_bh_enable();
406 	}
407 	return data;
408 }
409 EXPORT_SYMBOL(netdev_alloc_frag);
410 
411 /**
412  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
413  *	@dev: network device to receive on
414  *	@len: length to allocate
415  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
416  *
417  *	Allocate a new &sk_buff and assign it a usage count of one. The
418  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
419  *	the headroom they think they need without accounting for the
420  *	built in space. The built in space is used for optimisations.
421  *
422  *	%NULL is returned if there is no free memory.
423  */
424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
425 				   gfp_t gfp_mask)
426 {
427 	struct page_frag_cache *nc;
428 	struct sk_buff *skb;
429 	bool pfmemalloc;
430 	void *data;
431 
432 	len += NET_SKB_PAD;
433 
434 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
435 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
436 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
437 		if (!skb)
438 			goto skb_fail;
439 		goto skb_success;
440 	}
441 
442 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443 	len = SKB_DATA_ALIGN(len);
444 
445 	if (sk_memalloc_socks())
446 		gfp_mask |= __GFP_MEMALLOC;
447 
448 	if (in_irq() || irqs_disabled()) {
449 		nc = this_cpu_ptr(&netdev_alloc_cache);
450 		data = page_frag_alloc(nc, len, gfp_mask);
451 		pfmemalloc = nc->pfmemalloc;
452 	} else {
453 		local_bh_disable();
454 		nc = this_cpu_ptr(&napi_alloc_cache.page);
455 		data = page_frag_alloc(nc, len, gfp_mask);
456 		pfmemalloc = nc->pfmemalloc;
457 		local_bh_enable();
458 	}
459 
460 	if (unlikely(!data))
461 		return NULL;
462 
463 	skb = __build_skb(data, len);
464 	if (unlikely(!skb)) {
465 		skb_free_frag(data);
466 		return NULL;
467 	}
468 
469 	/* use OR instead of assignment to avoid clearing of bits in mask */
470 	if (pfmemalloc)
471 		skb->pfmemalloc = 1;
472 	skb->head_frag = 1;
473 
474 skb_success:
475 	skb_reserve(skb, NET_SKB_PAD);
476 	skb->dev = dev;
477 
478 skb_fail:
479 	return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482 
483 /**
484  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485  *	@napi: napi instance this buffer was allocated for
486  *	@len: length to allocate
487  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488  *
489  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
490  *	attempt to allocate the head from a special reserved region used
491  *	only for NAPI Rx allocation.  By doing this we can save several
492  *	CPU cycles by avoiding having to disable and re-enable IRQs.
493  *
494  *	%NULL is returned if there is no free memory.
495  */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 				 gfp_t gfp_mask)
498 {
499 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 	struct sk_buff *skb;
501 	void *data;
502 
503 	len += NET_SKB_PAD + NET_IP_ALIGN;
504 
505 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 		if (!skb)
509 			goto skb_fail;
510 		goto skb_success;
511 	}
512 
513 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 	len = SKB_DATA_ALIGN(len);
515 
516 	if (sk_memalloc_socks())
517 		gfp_mask |= __GFP_MEMALLOC;
518 
519 	data = page_frag_alloc(&nc->page, len, gfp_mask);
520 	if (unlikely(!data))
521 		return NULL;
522 
523 	skb = __build_skb(data, len);
524 	if (unlikely(!skb)) {
525 		skb_free_frag(data);
526 		return NULL;
527 	}
528 
529 	/* use OR instead of assignment to avoid clearing of bits in mask */
530 	if (nc->page.pfmemalloc)
531 		skb->pfmemalloc = 1;
532 	skb->head_frag = 1;
533 
534 skb_success:
535 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
536 	skb->dev = napi->dev;
537 
538 skb_fail:
539 	return skb;
540 }
541 EXPORT_SYMBOL(__napi_alloc_skb);
542 
543 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
544 		     int size, unsigned int truesize)
545 {
546 	skb_fill_page_desc(skb, i, page, off, size);
547 	skb->len += size;
548 	skb->data_len += size;
549 	skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_add_rx_frag);
552 
553 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
554 			  unsigned int truesize)
555 {
556 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
557 
558 	skb_frag_size_add(frag, size);
559 	skb->len += size;
560 	skb->data_len += size;
561 	skb->truesize += truesize;
562 }
563 EXPORT_SYMBOL(skb_coalesce_rx_frag);
564 
565 static void skb_drop_list(struct sk_buff **listp)
566 {
567 	kfree_skb_list(*listp);
568 	*listp = NULL;
569 }
570 
571 static inline void skb_drop_fraglist(struct sk_buff *skb)
572 {
573 	skb_drop_list(&skb_shinfo(skb)->frag_list);
574 }
575 
576 static void skb_clone_fraglist(struct sk_buff *skb)
577 {
578 	struct sk_buff *list;
579 
580 	skb_walk_frags(skb, list)
581 		skb_get(list);
582 }
583 
584 static void skb_free_head(struct sk_buff *skb)
585 {
586 	unsigned char *head = skb->head;
587 
588 	if (skb->head_frag)
589 		skb_free_frag(head);
590 	else
591 		kfree(head);
592 }
593 
594 static void skb_release_data(struct sk_buff *skb)
595 {
596 	struct skb_shared_info *shinfo = skb_shinfo(skb);
597 	int i;
598 
599 	if (skb->cloned &&
600 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
601 			      &shinfo->dataref))
602 		return;
603 
604 	for (i = 0; i < shinfo->nr_frags; i++)
605 		__skb_frag_unref(&shinfo->frags[i]);
606 
607 	if (shinfo->frag_list)
608 		kfree_skb_list(shinfo->frag_list);
609 
610 	skb_zcopy_clear(skb, true);
611 	skb_free_head(skb);
612 }
613 
614 /*
615  *	Free an skbuff by memory without cleaning the state.
616  */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 	struct sk_buff_fclones *fclones;
620 
621 	switch (skb->fclone) {
622 	case SKB_FCLONE_UNAVAILABLE:
623 		kmem_cache_free(skbuff_head_cache, skb);
624 		return;
625 
626 	case SKB_FCLONE_ORIG:
627 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
628 
629 		/* We usually free the clone (TX completion) before original skb
630 		 * This test would have no chance to be true for the clone,
631 		 * while here, branch prediction will be good.
632 		 */
633 		if (refcount_read(&fclones->fclone_ref) == 1)
634 			goto fastpath;
635 		break;
636 
637 	default: /* SKB_FCLONE_CLONE */
638 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 		break;
640 	}
641 	if (!refcount_dec_and_test(&fclones->fclone_ref))
642 		return;
643 fastpath:
644 	kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646 
647 void skb_release_head_state(struct sk_buff *skb)
648 {
649 	skb_dst_drop(skb);
650 	if (skb->destructor) {
651 		WARN_ON(in_irq());
652 		skb->destructor(skb);
653 	}
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 	nf_conntrack_put(skb_nfct(skb));
656 #endif
657 	skb_ext_put(skb);
658 }
659 
660 /* Free everything but the sk_buff shell. */
661 static void skb_release_all(struct sk_buff *skb)
662 {
663 	skb_release_head_state(skb);
664 	if (likely(skb->head))
665 		skb_release_data(skb);
666 }
667 
668 /**
669  *	__kfree_skb - private function
670  *	@skb: buffer
671  *
672  *	Free an sk_buff. Release anything attached to the buffer.
673  *	Clean the state. This is an internal helper function. Users should
674  *	always call kfree_skb
675  */
676 
677 void __kfree_skb(struct sk_buff *skb)
678 {
679 	skb_release_all(skb);
680 	kfree_skbmem(skb);
681 }
682 EXPORT_SYMBOL(__kfree_skb);
683 
684 /**
685  *	kfree_skb - free an sk_buff
686  *	@skb: buffer to free
687  *
688  *	Drop a reference to the buffer and free it if the usage count has
689  *	hit zero.
690  */
691 void kfree_skb(struct sk_buff *skb)
692 {
693 	if (!skb_unref(skb))
694 		return;
695 
696 	trace_kfree_skb(skb, __builtin_return_address(0));
697 	__kfree_skb(skb);
698 }
699 EXPORT_SYMBOL(kfree_skb);
700 
701 void kfree_skb_list(struct sk_buff *segs)
702 {
703 	while (segs) {
704 		struct sk_buff *next = segs->next;
705 
706 		kfree_skb(segs);
707 		segs = next;
708 	}
709 }
710 EXPORT_SYMBOL(kfree_skb_list);
711 
712 /* Dump skb information and contents.
713  *
714  * Must only be called from net_ratelimit()-ed paths.
715  *
716  * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717  */
718 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
719 {
720 	static atomic_t can_dump_full = ATOMIC_INIT(5);
721 	struct skb_shared_info *sh = skb_shinfo(skb);
722 	struct net_device *dev = skb->dev;
723 	struct sock *sk = skb->sk;
724 	struct sk_buff *list_skb;
725 	bool has_mac, has_trans;
726 	int headroom, tailroom;
727 	int i, len, seg_len;
728 
729 	if (full_pkt)
730 		full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
731 
732 	if (full_pkt)
733 		len = skb->len;
734 	else
735 		len = min_t(int, skb->len, MAX_HEADER + 128);
736 
737 	headroom = skb_headroom(skb);
738 	tailroom = skb_tailroom(skb);
739 
740 	has_mac = skb_mac_header_was_set(skb);
741 	has_trans = skb_transport_header_was_set(skb);
742 
743 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
749 	       has_mac ? skb->mac_header : -1,
750 	       has_mac ? skb_mac_header_len(skb) : -1,
751 	       skb->network_header,
752 	       has_trans ? skb_network_header_len(skb) : -1,
753 	       has_trans ? skb->transport_header : -1,
754 	       sh->tx_flags, sh->nr_frags,
755 	       sh->gso_size, sh->gso_type, sh->gso_segs,
756 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
757 	       skb->csum_valid, skb->csum_level,
758 	       skb->hash, skb->sw_hash, skb->l4_hash,
759 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760 
761 	if (dev)
762 		printk("%sdev name=%s feat=0x%pNF\n",
763 		       level, dev->name, &dev->features);
764 	if (sk)
765 		printk("%ssk family=%hu type=%u proto=%u\n",
766 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767 
768 	if (full_pkt && headroom)
769 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770 			       16, 1, skb->head, headroom, false);
771 
772 	seg_len = min_t(int, skb_headlen(skb), len);
773 	if (seg_len)
774 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
775 			       16, 1, skb->data, seg_len, false);
776 	len -= seg_len;
777 
778 	if (full_pkt && tailroom)
779 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb_tail_pointer(skb), tailroom, false);
781 
782 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784 		u32 p_off, p_len, copied;
785 		struct page *p;
786 		u8 *vaddr;
787 
788 		skb_frag_foreach_page(frag, skb_frag_off(frag),
789 				      skb_frag_size(frag), p, p_off, p_len,
790 				      copied) {
791 			seg_len = min_t(int, p_len, len);
792 			vaddr = kmap_atomic(p);
793 			print_hex_dump(level, "skb frag:     ",
794 				       DUMP_PREFIX_OFFSET,
795 				       16, 1, vaddr + p_off, seg_len, false);
796 			kunmap_atomic(vaddr);
797 			len -= seg_len;
798 			if (!len)
799 				break;
800 		}
801 	}
802 
803 	if (full_pkt && skb_has_frag_list(skb)) {
804 		printk("skb fraglist:\n");
805 		skb_walk_frags(skb, list_skb)
806 			skb_dump(level, list_skb, true);
807 	}
808 }
809 EXPORT_SYMBOL(skb_dump);
810 
811 /**
812  *	skb_tx_error - report an sk_buff xmit error
813  *	@skb: buffer that triggered an error
814  *
815  *	Report xmit error if a device callback is tracking this skb.
816  *	skb must be freed afterwards.
817  */
818 void skb_tx_error(struct sk_buff *skb)
819 {
820 	skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823 
824 /**
825  *	consume_skb - free an skbuff
826  *	@skb: buffer to free
827  *
828  *	Drop a ref to the buffer and free it if the usage count has hit zero
829  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
830  *	is being dropped after a failure and notes that
831  */
832 void consume_skb(struct sk_buff *skb)
833 {
834 	if (!skb_unref(skb))
835 		return;
836 
837 	trace_consume_skb(skb);
838 	__kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841 
842 /**
843  *	consume_stateless_skb - free an skbuff, assuming it is stateless
844  *	@skb: buffer to free
845  *
846  *	Alike consume_skb(), but this variant assumes that this is the last
847  *	skb reference and all the head states have been already dropped
848  */
849 void __consume_stateless_skb(struct sk_buff *skb)
850 {
851 	trace_consume_skb(skb);
852 	skb_release_data(skb);
853 	kfree_skbmem(skb);
854 }
855 
856 void __kfree_skb_flush(void)
857 {
858 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
859 
860 	/* flush skb_cache if containing objects */
861 	if (nc->skb_count) {
862 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
863 				     nc->skb_cache);
864 		nc->skb_count = 0;
865 	}
866 }
867 
868 static inline void _kfree_skb_defer(struct sk_buff *skb)
869 {
870 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871 
872 	/* drop skb->head and call any destructors for packet */
873 	skb_release_all(skb);
874 
875 	/* record skb to CPU local list */
876 	nc->skb_cache[nc->skb_count++] = skb;
877 
878 #ifdef CONFIG_SLUB
879 	/* SLUB writes into objects when freeing */
880 	prefetchw(skb);
881 #endif
882 
883 	/* flush skb_cache if it is filled */
884 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
885 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
886 				     nc->skb_cache);
887 		nc->skb_count = 0;
888 	}
889 }
890 void __kfree_skb_defer(struct sk_buff *skb)
891 {
892 	_kfree_skb_defer(skb);
893 }
894 
895 void napi_consume_skb(struct sk_buff *skb, int budget)
896 {
897 	if (unlikely(!skb))
898 		return;
899 
900 	/* Zero budget indicate non-NAPI context called us, like netpoll */
901 	if (unlikely(!budget)) {
902 		dev_consume_skb_any(skb);
903 		return;
904 	}
905 
906 	if (!skb_unref(skb))
907 		return;
908 
909 	/* if reaching here SKB is ready to free */
910 	trace_consume_skb(skb);
911 
912 	/* if SKB is a clone, don't handle this case */
913 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
914 		__kfree_skb(skb);
915 		return;
916 	}
917 
918 	_kfree_skb_defer(skb);
919 }
920 EXPORT_SYMBOL(napi_consume_skb);
921 
922 /* Make sure a field is enclosed inside headers_start/headers_end section */
923 #define CHECK_SKB_FIELD(field) \
924 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
925 		     offsetof(struct sk_buff, headers_start));	\
926 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
927 		     offsetof(struct sk_buff, headers_end));	\
928 
929 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 {
931 	new->tstamp		= old->tstamp;
932 	/* We do not copy old->sk */
933 	new->dev		= old->dev;
934 	memcpy(new->cb, old->cb, sizeof(old->cb));
935 	skb_dst_copy(new, old);
936 	__skb_ext_copy(new, old);
937 	__nf_copy(new, old, false);
938 
939 	/* Note : this field could be in headers_start/headers_end section
940 	 * It is not yet because we do not want to have a 16 bit hole
941 	 */
942 	new->queue_mapping = old->queue_mapping;
943 
944 	memcpy(&new->headers_start, &old->headers_start,
945 	       offsetof(struct sk_buff, headers_end) -
946 	       offsetof(struct sk_buff, headers_start));
947 	CHECK_SKB_FIELD(protocol);
948 	CHECK_SKB_FIELD(csum);
949 	CHECK_SKB_FIELD(hash);
950 	CHECK_SKB_FIELD(priority);
951 	CHECK_SKB_FIELD(skb_iif);
952 	CHECK_SKB_FIELD(vlan_proto);
953 	CHECK_SKB_FIELD(vlan_tci);
954 	CHECK_SKB_FIELD(transport_header);
955 	CHECK_SKB_FIELD(network_header);
956 	CHECK_SKB_FIELD(mac_header);
957 	CHECK_SKB_FIELD(inner_protocol);
958 	CHECK_SKB_FIELD(inner_transport_header);
959 	CHECK_SKB_FIELD(inner_network_header);
960 	CHECK_SKB_FIELD(inner_mac_header);
961 	CHECK_SKB_FIELD(mark);
962 #ifdef CONFIG_NETWORK_SECMARK
963 	CHECK_SKB_FIELD(secmark);
964 #endif
965 #ifdef CONFIG_NET_RX_BUSY_POLL
966 	CHECK_SKB_FIELD(napi_id);
967 #endif
968 #ifdef CONFIG_XPS
969 	CHECK_SKB_FIELD(sender_cpu);
970 #endif
971 #ifdef CONFIG_NET_SCHED
972 	CHECK_SKB_FIELD(tc_index);
973 #endif
974 
975 }
976 
977 /*
978  * You should not add any new code to this function.  Add it to
979  * __copy_skb_header above instead.
980  */
981 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
982 {
983 #define C(x) n->x = skb->x
984 
985 	n->next = n->prev = NULL;
986 	n->sk = NULL;
987 	__copy_skb_header(n, skb);
988 
989 	C(len);
990 	C(data_len);
991 	C(mac_len);
992 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
993 	n->cloned = 1;
994 	n->nohdr = 0;
995 	n->peeked = 0;
996 	C(pfmemalloc);
997 	n->destructor = NULL;
998 	C(tail);
999 	C(end);
1000 	C(head);
1001 	C(head_frag);
1002 	C(data);
1003 	C(truesize);
1004 	refcount_set(&n->users, 1);
1005 
1006 	atomic_inc(&(skb_shinfo(skb)->dataref));
1007 	skb->cloned = 1;
1008 
1009 	return n;
1010 #undef C
1011 }
1012 
1013 /**
1014  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1015  * @first: first sk_buff of the msg
1016  */
1017 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018 {
1019 	struct sk_buff *n;
1020 
1021 	n = alloc_skb(0, GFP_ATOMIC);
1022 	if (!n)
1023 		return NULL;
1024 
1025 	n->len = first->len;
1026 	n->data_len = first->len;
1027 	n->truesize = first->truesize;
1028 
1029 	skb_shinfo(n)->frag_list = first;
1030 
1031 	__copy_skb_header(n, first);
1032 	n->destructor = NULL;
1033 
1034 	return n;
1035 }
1036 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1037 
1038 /**
1039  *	skb_morph	-	morph one skb into another
1040  *	@dst: the skb to receive the contents
1041  *	@src: the skb to supply the contents
1042  *
1043  *	This is identical to skb_clone except that the target skb is
1044  *	supplied by the user.
1045  *
1046  *	The target skb is returned upon exit.
1047  */
1048 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049 {
1050 	skb_release_all(dst);
1051 	return __skb_clone(dst, src);
1052 }
1053 EXPORT_SYMBOL_GPL(skb_morph);
1054 
1055 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056 {
1057 	unsigned long max_pg, num_pg, new_pg, old_pg;
1058 	struct user_struct *user;
1059 
1060 	if (capable(CAP_IPC_LOCK) || !size)
1061 		return 0;
1062 
1063 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1064 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1065 	user = mmp->user ? : current_user();
1066 
1067 	do {
1068 		old_pg = atomic_long_read(&user->locked_vm);
1069 		new_pg = old_pg + num_pg;
1070 		if (new_pg > max_pg)
1071 			return -ENOBUFS;
1072 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1073 		 old_pg);
1074 
1075 	if (!mmp->user) {
1076 		mmp->user = get_uid(user);
1077 		mmp->num_pg = num_pg;
1078 	} else {
1079 		mmp->num_pg += num_pg;
1080 	}
1081 
1082 	return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085 
1086 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087 {
1088 	if (mmp->user) {
1089 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1090 		free_uid(mmp->user);
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094 
1095 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096 {
1097 	struct ubuf_info *uarg;
1098 	struct sk_buff *skb;
1099 
1100 	WARN_ON_ONCE(!in_task());
1101 
1102 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1103 	if (!skb)
1104 		return NULL;
1105 
1106 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1107 	uarg = (void *)skb->cb;
1108 	uarg->mmp.user = NULL;
1109 
1110 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1111 		kfree_skb(skb);
1112 		return NULL;
1113 	}
1114 
1115 	uarg->callback = sock_zerocopy_callback;
1116 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1117 	uarg->len = 1;
1118 	uarg->bytelen = size;
1119 	uarg->zerocopy = 1;
1120 	refcount_set(&uarg->refcnt, 1);
1121 	sock_hold(sk);
1122 
1123 	return uarg;
1124 }
1125 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126 
1127 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128 {
1129 	return container_of((void *)uarg, struct sk_buff, cb);
1130 }
1131 
1132 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1133 					struct ubuf_info *uarg)
1134 {
1135 	if (uarg) {
1136 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1137 		u32 bytelen, next;
1138 
1139 		/* realloc only when socket is locked (TCP, UDP cork),
1140 		 * so uarg->len and sk_zckey access is serialized
1141 		 */
1142 		if (!sock_owned_by_user(sk)) {
1143 			WARN_ON_ONCE(1);
1144 			return NULL;
1145 		}
1146 
1147 		bytelen = uarg->bytelen + size;
1148 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1149 			/* TCP can create new skb to attach new uarg */
1150 			if (sk->sk_type == SOCK_STREAM)
1151 				goto new_alloc;
1152 			return NULL;
1153 		}
1154 
1155 		next = (u32)atomic_read(&sk->sk_zckey);
1156 		if ((u32)(uarg->id + uarg->len) == next) {
1157 			if (mm_account_pinned_pages(&uarg->mmp, size))
1158 				return NULL;
1159 			uarg->len++;
1160 			uarg->bytelen = bytelen;
1161 			atomic_set(&sk->sk_zckey, ++next);
1162 
1163 			/* no extra ref when appending to datagram (MSG_MORE) */
1164 			if (sk->sk_type == SOCK_STREAM)
1165 				sock_zerocopy_get(uarg);
1166 
1167 			return uarg;
1168 		}
1169 	}
1170 
1171 new_alloc:
1172 	return sock_zerocopy_alloc(sk, size);
1173 }
1174 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175 
1176 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177 {
1178 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1179 	u32 old_lo, old_hi;
1180 	u64 sum_len;
1181 
1182 	old_lo = serr->ee.ee_info;
1183 	old_hi = serr->ee.ee_data;
1184 	sum_len = old_hi - old_lo + 1ULL + len;
1185 
1186 	if (sum_len >= (1ULL << 32))
1187 		return false;
1188 
1189 	if (lo != old_hi + 1)
1190 		return false;
1191 
1192 	serr->ee.ee_data += len;
1193 	return true;
1194 }
1195 
1196 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197 {
1198 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1199 	struct sock_exterr_skb *serr;
1200 	struct sock *sk = skb->sk;
1201 	struct sk_buff_head *q;
1202 	unsigned long flags;
1203 	u32 lo, hi;
1204 	u16 len;
1205 
1206 	mm_unaccount_pinned_pages(&uarg->mmp);
1207 
1208 	/* if !len, there was only 1 call, and it was aborted
1209 	 * so do not queue a completion notification
1210 	 */
1211 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1212 		goto release;
1213 
1214 	len = uarg->len;
1215 	lo = uarg->id;
1216 	hi = uarg->id + len - 1;
1217 
1218 	serr = SKB_EXT_ERR(skb);
1219 	memset(serr, 0, sizeof(*serr));
1220 	serr->ee.ee_errno = 0;
1221 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1222 	serr->ee.ee_data = hi;
1223 	serr->ee.ee_info = lo;
1224 	if (!success)
1225 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226 
1227 	q = &sk->sk_error_queue;
1228 	spin_lock_irqsave(&q->lock, flags);
1229 	tail = skb_peek_tail(q);
1230 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1231 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1232 		__skb_queue_tail(q, skb);
1233 		skb = NULL;
1234 	}
1235 	spin_unlock_irqrestore(&q->lock, flags);
1236 
1237 	sk->sk_error_report(sk);
1238 
1239 release:
1240 	consume_skb(skb);
1241 	sock_put(sk);
1242 }
1243 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244 
1245 void sock_zerocopy_put(struct ubuf_info *uarg)
1246 {
1247 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1248 		if (uarg->callback)
1249 			uarg->callback(uarg, uarg->zerocopy);
1250 		else
1251 			consume_skb(skb_from_uarg(uarg));
1252 	}
1253 }
1254 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255 
1256 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257 {
1258 	if (uarg) {
1259 		struct sock *sk = skb_from_uarg(uarg)->sk;
1260 
1261 		atomic_dec(&sk->sk_zckey);
1262 		uarg->len--;
1263 
1264 		if (have_uref)
1265 			sock_zerocopy_put(uarg);
1266 	}
1267 }
1268 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269 
1270 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271 {
1272 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273 }
1274 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275 
1276 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1277 			     struct msghdr *msg, int len,
1278 			     struct ubuf_info *uarg)
1279 {
1280 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1281 	struct iov_iter orig_iter = msg->msg_iter;
1282 	int err, orig_len = skb->len;
1283 
1284 	/* An skb can only point to one uarg. This edge case happens when
1285 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286 	 */
1287 	if (orig_uarg && uarg != orig_uarg)
1288 		return -EEXIST;
1289 
1290 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1291 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1292 		struct sock *save_sk = skb->sk;
1293 
1294 		/* Streams do not free skb on error. Reset to prev state. */
1295 		msg->msg_iter = orig_iter;
1296 		skb->sk = sk;
1297 		___pskb_trim(skb, orig_len);
1298 		skb->sk = save_sk;
1299 		return err;
1300 	}
1301 
1302 	skb_zcopy_set(skb, uarg, NULL);
1303 	return skb->len - orig_len;
1304 }
1305 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306 
1307 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1308 			      gfp_t gfp_mask)
1309 {
1310 	if (skb_zcopy(orig)) {
1311 		if (skb_zcopy(nskb)) {
1312 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1313 			if (!gfp_mask) {
1314 				WARN_ON_ONCE(1);
1315 				return -ENOMEM;
1316 			}
1317 			if (skb_uarg(nskb) == skb_uarg(orig))
1318 				return 0;
1319 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1320 				return -EIO;
1321 		}
1322 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323 	}
1324 	return 0;
1325 }
1326 
1327 /**
1328  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1329  *	@skb: the skb to modify
1330  *	@gfp_mask: allocation priority
1331  *
1332  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1333  *	It will copy all frags into kernel and drop the reference
1334  *	to userspace pages.
1335  *
1336  *	If this function is called from an interrupt gfp_mask() must be
1337  *	%GFP_ATOMIC.
1338  *
1339  *	Returns 0 on success or a negative error code on failure
1340  *	to allocate kernel memory to copy to.
1341  */
1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343 {
1344 	int num_frags = skb_shinfo(skb)->nr_frags;
1345 	struct page *page, *head = NULL;
1346 	int i, new_frags;
1347 	u32 d_off;
1348 
1349 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1350 		return -EINVAL;
1351 
1352 	if (!num_frags)
1353 		goto release;
1354 
1355 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356 	for (i = 0; i < new_frags; i++) {
1357 		page = alloc_page(gfp_mask);
1358 		if (!page) {
1359 			while (head) {
1360 				struct page *next = (struct page *)page_private(head);
1361 				put_page(head);
1362 				head = next;
1363 			}
1364 			return -ENOMEM;
1365 		}
1366 		set_page_private(page, (unsigned long)head);
1367 		head = page;
1368 	}
1369 
1370 	page = head;
1371 	d_off = 0;
1372 	for (i = 0; i < num_frags; i++) {
1373 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1374 		u32 p_off, p_len, copied;
1375 		struct page *p;
1376 		u8 *vaddr;
1377 
1378 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1379 				      p, p_off, p_len, copied) {
1380 			u32 copy, done = 0;
1381 			vaddr = kmap_atomic(p);
1382 
1383 			while (done < p_len) {
1384 				if (d_off == PAGE_SIZE) {
1385 					d_off = 0;
1386 					page = (struct page *)page_private(page);
1387 				}
1388 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1389 				memcpy(page_address(page) + d_off,
1390 				       vaddr + p_off + done, copy);
1391 				done += copy;
1392 				d_off += copy;
1393 			}
1394 			kunmap_atomic(vaddr);
1395 		}
1396 	}
1397 
1398 	/* skb frags release userspace buffers */
1399 	for (i = 0; i < num_frags; i++)
1400 		skb_frag_unref(skb, i);
1401 
1402 	/* skb frags point to kernel buffers */
1403 	for (i = 0; i < new_frags - 1; i++) {
1404 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1405 		head = (struct page *)page_private(head);
1406 	}
1407 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1408 	skb_shinfo(skb)->nr_frags = new_frags;
1409 
1410 release:
1411 	skb_zcopy_clear(skb, false);
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1415 
1416 /**
1417  *	skb_clone	-	duplicate an sk_buff
1418  *	@skb: buffer to clone
1419  *	@gfp_mask: allocation priority
1420  *
1421  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1422  *	copies share the same packet data but not structure. The new
1423  *	buffer has a reference count of 1. If the allocation fails the
1424  *	function returns %NULL otherwise the new buffer is returned.
1425  *
1426  *	If this function is called from an interrupt gfp_mask() must be
1427  *	%GFP_ATOMIC.
1428  */
1429 
1430 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431 {
1432 	struct sk_buff_fclones *fclones = container_of(skb,
1433 						       struct sk_buff_fclones,
1434 						       skb1);
1435 	struct sk_buff *n;
1436 
1437 	if (skb_orphan_frags(skb, gfp_mask))
1438 		return NULL;
1439 
1440 	if (skb->fclone == SKB_FCLONE_ORIG &&
1441 	    refcount_read(&fclones->fclone_ref) == 1) {
1442 		n = &fclones->skb2;
1443 		refcount_set(&fclones->fclone_ref, 2);
1444 	} else {
1445 		if (skb_pfmemalloc(skb))
1446 			gfp_mask |= __GFP_MEMALLOC;
1447 
1448 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1449 		if (!n)
1450 			return NULL;
1451 
1452 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1453 	}
1454 
1455 	return __skb_clone(n, skb);
1456 }
1457 EXPORT_SYMBOL(skb_clone);
1458 
1459 void skb_headers_offset_update(struct sk_buff *skb, int off)
1460 {
1461 	/* Only adjust this if it actually is csum_start rather than csum */
1462 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1463 		skb->csum_start += off;
1464 	/* {transport,network,mac}_header and tail are relative to skb->head */
1465 	skb->transport_header += off;
1466 	skb->network_header   += off;
1467 	if (skb_mac_header_was_set(skb))
1468 		skb->mac_header += off;
1469 	skb->inner_transport_header += off;
1470 	skb->inner_network_header += off;
1471 	skb->inner_mac_header += off;
1472 }
1473 EXPORT_SYMBOL(skb_headers_offset_update);
1474 
1475 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476 {
1477 	__copy_skb_header(new, old);
1478 
1479 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1480 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1481 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482 }
1483 EXPORT_SYMBOL(skb_copy_header);
1484 
1485 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486 {
1487 	if (skb_pfmemalloc(skb))
1488 		return SKB_ALLOC_RX;
1489 	return 0;
1490 }
1491 
1492 /**
1493  *	skb_copy	-	create private copy of an sk_buff
1494  *	@skb: buffer to copy
1495  *	@gfp_mask: allocation priority
1496  *
1497  *	Make a copy of both an &sk_buff and its data. This is used when the
1498  *	caller wishes to modify the data and needs a private copy of the
1499  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1500  *	on success. The returned buffer has a reference count of 1.
1501  *
1502  *	As by-product this function converts non-linear &sk_buff to linear
1503  *	one, so that &sk_buff becomes completely private and caller is allowed
1504  *	to modify all the data of returned buffer. This means that this
1505  *	function is not recommended for use in circumstances when only
1506  *	header is going to be modified. Use pskb_copy() instead.
1507  */
1508 
1509 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510 {
1511 	int headerlen = skb_headroom(skb);
1512 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1513 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1514 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515 
1516 	if (!n)
1517 		return NULL;
1518 
1519 	/* Set the data pointer */
1520 	skb_reserve(n, headerlen);
1521 	/* Set the tail pointer and length */
1522 	skb_put(n, skb->len);
1523 
1524 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1525 
1526 	skb_copy_header(n, skb);
1527 	return n;
1528 }
1529 EXPORT_SYMBOL(skb_copy);
1530 
1531 /**
1532  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1533  *	@skb: buffer to copy
1534  *	@headroom: headroom of new skb
1535  *	@gfp_mask: allocation priority
1536  *	@fclone: if true allocate the copy of the skb from the fclone
1537  *	cache instead of the head cache; it is recommended to set this
1538  *	to true for the cases where the copy will likely be cloned
1539  *
1540  *	Make a copy of both an &sk_buff and part of its data, located
1541  *	in header. Fragmented data remain shared. This is used when
1542  *	the caller wishes to modify only header of &sk_buff and needs
1543  *	private copy of the header to alter. Returns %NULL on failure
1544  *	or the pointer to the buffer on success.
1545  *	The returned buffer has a reference count of 1.
1546  */
1547 
1548 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1549 				   gfp_t gfp_mask, bool fclone)
1550 {
1551 	unsigned int size = skb_headlen(skb) + headroom;
1552 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1553 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554 
1555 	if (!n)
1556 		goto out;
1557 
1558 	/* Set the data pointer */
1559 	skb_reserve(n, headroom);
1560 	/* Set the tail pointer and length */
1561 	skb_put(n, skb_headlen(skb));
1562 	/* Copy the bytes */
1563 	skb_copy_from_linear_data(skb, n->data, n->len);
1564 
1565 	n->truesize += skb->data_len;
1566 	n->data_len  = skb->data_len;
1567 	n->len	     = skb->len;
1568 
1569 	if (skb_shinfo(skb)->nr_frags) {
1570 		int i;
1571 
1572 		if (skb_orphan_frags(skb, gfp_mask) ||
1573 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1574 			kfree_skb(n);
1575 			n = NULL;
1576 			goto out;
1577 		}
1578 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1579 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1580 			skb_frag_ref(skb, i);
1581 		}
1582 		skb_shinfo(n)->nr_frags = i;
1583 	}
1584 
1585 	if (skb_has_frag_list(skb)) {
1586 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1587 		skb_clone_fraglist(n);
1588 	}
1589 
1590 	skb_copy_header(n, skb);
1591 out:
1592 	return n;
1593 }
1594 EXPORT_SYMBOL(__pskb_copy_fclone);
1595 
1596 /**
1597  *	pskb_expand_head - reallocate header of &sk_buff
1598  *	@skb: buffer to reallocate
1599  *	@nhead: room to add at head
1600  *	@ntail: room to add at tail
1601  *	@gfp_mask: allocation priority
1602  *
1603  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1604  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1605  *	reference count of 1. Returns zero in the case of success or error,
1606  *	if expansion failed. In the last case, &sk_buff is not changed.
1607  *
1608  *	All the pointers pointing into skb header may change and must be
1609  *	reloaded after call to this function.
1610  */
1611 
1612 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1613 		     gfp_t gfp_mask)
1614 {
1615 	int i, osize = skb_end_offset(skb);
1616 	int size = osize + nhead + ntail;
1617 	long off;
1618 	u8 *data;
1619 
1620 	BUG_ON(nhead < 0);
1621 
1622 	BUG_ON(skb_shared(skb));
1623 
1624 	size = SKB_DATA_ALIGN(size);
1625 
1626 	if (skb_pfmemalloc(skb))
1627 		gfp_mask |= __GFP_MEMALLOC;
1628 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1629 			       gfp_mask, NUMA_NO_NODE, NULL);
1630 	if (!data)
1631 		goto nodata;
1632 	size = SKB_WITH_OVERHEAD(ksize(data));
1633 
1634 	/* Copy only real data... and, alas, header. This should be
1635 	 * optimized for the cases when header is void.
1636 	 */
1637 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638 
1639 	memcpy((struct skb_shared_info *)(data + size),
1640 	       skb_shinfo(skb),
1641 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1642 
1643 	/*
1644 	 * if shinfo is shared we must drop the old head gracefully, but if it
1645 	 * is not we can just drop the old head and let the existing refcount
1646 	 * be since all we did is relocate the values
1647 	 */
1648 	if (skb_cloned(skb)) {
1649 		if (skb_orphan_frags(skb, gfp_mask))
1650 			goto nofrags;
1651 		if (skb_zcopy(skb))
1652 			refcount_inc(&skb_uarg(skb)->refcnt);
1653 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1654 			skb_frag_ref(skb, i);
1655 
1656 		if (skb_has_frag_list(skb))
1657 			skb_clone_fraglist(skb);
1658 
1659 		skb_release_data(skb);
1660 	} else {
1661 		skb_free_head(skb);
1662 	}
1663 	off = (data + nhead) - skb->head;
1664 
1665 	skb->head     = data;
1666 	skb->head_frag = 0;
1667 	skb->data    += off;
1668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1669 	skb->end      = size;
1670 	off           = nhead;
1671 #else
1672 	skb->end      = skb->head + size;
1673 #endif
1674 	skb->tail	      += off;
1675 	skb_headers_offset_update(skb, nhead);
1676 	skb->cloned   = 0;
1677 	skb->hdr_len  = 0;
1678 	skb->nohdr    = 0;
1679 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1680 
1681 	skb_metadata_clear(skb);
1682 
1683 	/* It is not generally safe to change skb->truesize.
1684 	 * For the moment, we really care of rx path, or
1685 	 * when skb is orphaned (not attached to a socket).
1686 	 */
1687 	if (!skb->sk || skb->destructor == sock_edemux)
1688 		skb->truesize += size - osize;
1689 
1690 	return 0;
1691 
1692 nofrags:
1693 	kfree(data);
1694 nodata:
1695 	return -ENOMEM;
1696 }
1697 EXPORT_SYMBOL(pskb_expand_head);
1698 
1699 /* Make private copy of skb with writable head and some headroom */
1700 
1701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702 {
1703 	struct sk_buff *skb2;
1704 	int delta = headroom - skb_headroom(skb);
1705 
1706 	if (delta <= 0)
1707 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1708 	else {
1709 		skb2 = skb_clone(skb, GFP_ATOMIC);
1710 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1711 					     GFP_ATOMIC)) {
1712 			kfree_skb(skb2);
1713 			skb2 = NULL;
1714 		}
1715 	}
1716 	return skb2;
1717 }
1718 EXPORT_SYMBOL(skb_realloc_headroom);
1719 
1720 /**
1721  *	skb_copy_expand	-	copy and expand sk_buff
1722  *	@skb: buffer to copy
1723  *	@newheadroom: new free bytes at head
1724  *	@newtailroom: new free bytes at tail
1725  *	@gfp_mask: allocation priority
1726  *
1727  *	Make a copy of both an &sk_buff and its data and while doing so
1728  *	allocate additional space.
1729  *
1730  *	This is used when the caller wishes to modify the data and needs a
1731  *	private copy of the data to alter as well as more space for new fields.
1732  *	Returns %NULL on failure or the pointer to the buffer
1733  *	on success. The returned buffer has a reference count of 1.
1734  *
1735  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1736  *	is called from an interrupt.
1737  */
1738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1739 				int newheadroom, int newtailroom,
1740 				gfp_t gfp_mask)
1741 {
1742 	/*
1743 	 *	Allocate the copy buffer
1744 	 */
1745 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1746 					gfp_mask, skb_alloc_rx_flag(skb),
1747 					NUMA_NO_NODE);
1748 	int oldheadroom = skb_headroom(skb);
1749 	int head_copy_len, head_copy_off;
1750 
1751 	if (!n)
1752 		return NULL;
1753 
1754 	skb_reserve(n, newheadroom);
1755 
1756 	/* Set the tail pointer and length */
1757 	skb_put(n, skb->len);
1758 
1759 	head_copy_len = oldheadroom;
1760 	head_copy_off = 0;
1761 	if (newheadroom <= head_copy_len)
1762 		head_copy_len = newheadroom;
1763 	else
1764 		head_copy_off = newheadroom - head_copy_len;
1765 
1766 	/* Copy the linear header and data. */
1767 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1768 			     skb->len + head_copy_len));
1769 
1770 	skb_copy_header(n, skb);
1771 
1772 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1773 
1774 	return n;
1775 }
1776 EXPORT_SYMBOL(skb_copy_expand);
1777 
1778 /**
1779  *	__skb_pad		-	zero pad the tail of an skb
1780  *	@skb: buffer to pad
1781  *	@pad: space to pad
1782  *	@free_on_error: free buffer on error
1783  *
1784  *	Ensure that a buffer is followed by a padding area that is zero
1785  *	filled. Used by network drivers which may DMA or transfer data
1786  *	beyond the buffer end onto the wire.
1787  *
1788  *	May return error in out of memory cases. The skb is freed on error
1789  *	if @free_on_error is true.
1790  */
1791 
1792 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793 {
1794 	int err;
1795 	int ntail;
1796 
1797 	/* If the skbuff is non linear tailroom is always zero.. */
1798 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1799 		memset(skb->data+skb->len, 0, pad);
1800 		return 0;
1801 	}
1802 
1803 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1804 	if (likely(skb_cloned(skb) || ntail > 0)) {
1805 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1806 		if (unlikely(err))
1807 			goto free_skb;
1808 	}
1809 
1810 	/* FIXME: The use of this function with non-linear skb's really needs
1811 	 * to be audited.
1812 	 */
1813 	err = skb_linearize(skb);
1814 	if (unlikely(err))
1815 		goto free_skb;
1816 
1817 	memset(skb->data + skb->len, 0, pad);
1818 	return 0;
1819 
1820 free_skb:
1821 	if (free_on_error)
1822 		kfree_skb(skb);
1823 	return err;
1824 }
1825 EXPORT_SYMBOL(__skb_pad);
1826 
1827 /**
1828  *	pskb_put - add data to the tail of a potentially fragmented buffer
1829  *	@skb: start of the buffer to use
1830  *	@tail: tail fragment of the buffer to use
1831  *	@len: amount of data to add
1832  *
1833  *	This function extends the used data area of the potentially
1834  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1835  *	@skb itself. If this would exceed the total buffer size the kernel
1836  *	will panic. A pointer to the first byte of the extra data is
1837  *	returned.
1838  */
1839 
1840 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841 {
1842 	if (tail != skb) {
1843 		skb->data_len += len;
1844 		skb->len += len;
1845 	}
1846 	return skb_put(tail, len);
1847 }
1848 EXPORT_SYMBOL_GPL(pskb_put);
1849 
1850 /**
1851  *	skb_put - add data to a buffer
1852  *	@skb: buffer to use
1853  *	@len: amount of data to add
1854  *
1855  *	This function extends the used data area of the buffer. If this would
1856  *	exceed the total buffer size the kernel will panic. A pointer to the
1857  *	first byte of the extra data is returned.
1858  */
1859 void *skb_put(struct sk_buff *skb, unsigned int len)
1860 {
1861 	void *tmp = skb_tail_pointer(skb);
1862 	SKB_LINEAR_ASSERT(skb);
1863 	skb->tail += len;
1864 	skb->len  += len;
1865 	if (unlikely(skb->tail > skb->end))
1866 		skb_over_panic(skb, len, __builtin_return_address(0));
1867 	return tmp;
1868 }
1869 EXPORT_SYMBOL(skb_put);
1870 
1871 /**
1872  *	skb_push - add data to the start of a buffer
1873  *	@skb: buffer to use
1874  *	@len: amount of data to add
1875  *
1876  *	This function extends the used data area of the buffer at the buffer
1877  *	start. If this would exceed the total buffer headroom the kernel will
1878  *	panic. A pointer to the first byte of the extra data is returned.
1879  */
1880 void *skb_push(struct sk_buff *skb, unsigned int len)
1881 {
1882 	skb->data -= len;
1883 	skb->len  += len;
1884 	if (unlikely(skb->data < skb->head))
1885 		skb_under_panic(skb, len, __builtin_return_address(0));
1886 	return skb->data;
1887 }
1888 EXPORT_SYMBOL(skb_push);
1889 
1890 /**
1891  *	skb_pull - remove data from the start of a buffer
1892  *	@skb: buffer to use
1893  *	@len: amount of data to remove
1894  *
1895  *	This function removes data from the start of a buffer, returning
1896  *	the memory to the headroom. A pointer to the next data in the buffer
1897  *	is returned. Once the data has been pulled future pushes will overwrite
1898  *	the old data.
1899  */
1900 void *skb_pull(struct sk_buff *skb, unsigned int len)
1901 {
1902 	return skb_pull_inline(skb, len);
1903 }
1904 EXPORT_SYMBOL(skb_pull);
1905 
1906 /**
1907  *	skb_trim - remove end from a buffer
1908  *	@skb: buffer to alter
1909  *	@len: new length
1910  *
1911  *	Cut the length of a buffer down by removing data from the tail. If
1912  *	the buffer is already under the length specified it is not modified.
1913  *	The skb must be linear.
1914  */
1915 void skb_trim(struct sk_buff *skb, unsigned int len)
1916 {
1917 	if (skb->len > len)
1918 		__skb_trim(skb, len);
1919 }
1920 EXPORT_SYMBOL(skb_trim);
1921 
1922 /* Trims skb to length len. It can change skb pointers.
1923  */
1924 
1925 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927 	struct sk_buff **fragp;
1928 	struct sk_buff *frag;
1929 	int offset = skb_headlen(skb);
1930 	int nfrags = skb_shinfo(skb)->nr_frags;
1931 	int i;
1932 	int err;
1933 
1934 	if (skb_cloned(skb) &&
1935 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1936 		return err;
1937 
1938 	i = 0;
1939 	if (offset >= len)
1940 		goto drop_pages;
1941 
1942 	for (; i < nfrags; i++) {
1943 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944 
1945 		if (end < len) {
1946 			offset = end;
1947 			continue;
1948 		}
1949 
1950 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951 
1952 drop_pages:
1953 		skb_shinfo(skb)->nr_frags = i;
1954 
1955 		for (; i < nfrags; i++)
1956 			skb_frag_unref(skb, i);
1957 
1958 		if (skb_has_frag_list(skb))
1959 			skb_drop_fraglist(skb);
1960 		goto done;
1961 	}
1962 
1963 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1964 	     fragp = &frag->next) {
1965 		int end = offset + frag->len;
1966 
1967 		if (skb_shared(frag)) {
1968 			struct sk_buff *nfrag;
1969 
1970 			nfrag = skb_clone(frag, GFP_ATOMIC);
1971 			if (unlikely(!nfrag))
1972 				return -ENOMEM;
1973 
1974 			nfrag->next = frag->next;
1975 			consume_skb(frag);
1976 			frag = nfrag;
1977 			*fragp = frag;
1978 		}
1979 
1980 		if (end < len) {
1981 			offset = end;
1982 			continue;
1983 		}
1984 
1985 		if (end > len &&
1986 		    unlikely((err = pskb_trim(frag, len - offset))))
1987 			return err;
1988 
1989 		if (frag->next)
1990 			skb_drop_list(&frag->next);
1991 		break;
1992 	}
1993 
1994 done:
1995 	if (len > skb_headlen(skb)) {
1996 		skb->data_len -= skb->len - len;
1997 		skb->len       = len;
1998 	} else {
1999 		skb->len       = len;
2000 		skb->data_len  = 0;
2001 		skb_set_tail_pointer(skb, len);
2002 	}
2003 
2004 	if (!skb->sk || skb->destructor == sock_edemux)
2005 		skb_condense(skb);
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(___pskb_trim);
2009 
2010 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011  */
2012 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013 {
2014 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2015 		int delta = skb->len - len;
2016 
2017 		skb->csum = csum_block_sub(skb->csum,
2018 					   skb_checksum(skb, len, delta, 0),
2019 					   len);
2020 	}
2021 	return __pskb_trim(skb, len);
2022 }
2023 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2024 
2025 /**
2026  *	__pskb_pull_tail - advance tail of skb header
2027  *	@skb: buffer to reallocate
2028  *	@delta: number of bytes to advance tail
2029  *
2030  *	The function makes a sense only on a fragmented &sk_buff,
2031  *	it expands header moving its tail forward and copying necessary
2032  *	data from fragmented part.
2033  *
2034  *	&sk_buff MUST have reference count of 1.
2035  *
2036  *	Returns %NULL (and &sk_buff does not change) if pull failed
2037  *	or value of new tail of skb in the case of success.
2038  *
2039  *	All the pointers pointing into skb header may change and must be
2040  *	reloaded after call to this function.
2041  */
2042 
2043 /* Moves tail of skb head forward, copying data from fragmented part,
2044  * when it is necessary.
2045  * 1. It may fail due to malloc failure.
2046  * 2. It may change skb pointers.
2047  *
2048  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049  */
2050 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051 {
2052 	/* If skb has not enough free space at tail, get new one
2053 	 * plus 128 bytes for future expansions. If we have enough
2054 	 * room at tail, reallocate without expansion only if skb is cloned.
2055 	 */
2056 	int i, k, eat = (skb->tail + delta) - skb->end;
2057 
2058 	if (eat > 0 || skb_cloned(skb)) {
2059 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2060 				     GFP_ATOMIC))
2061 			return NULL;
2062 	}
2063 
2064 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2065 			     skb_tail_pointer(skb), delta));
2066 
2067 	/* Optimization: no fragments, no reasons to preestimate
2068 	 * size of pulled pages. Superb.
2069 	 */
2070 	if (!skb_has_frag_list(skb))
2071 		goto pull_pages;
2072 
2073 	/* Estimate size of pulled pages. */
2074 	eat = delta;
2075 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077 
2078 		if (size >= eat)
2079 			goto pull_pages;
2080 		eat -= size;
2081 	}
2082 
2083 	/* If we need update frag list, we are in troubles.
2084 	 * Certainly, it is possible to add an offset to skb data,
2085 	 * but taking into account that pulling is expected to
2086 	 * be very rare operation, it is worth to fight against
2087 	 * further bloating skb head and crucify ourselves here instead.
2088 	 * Pure masohism, indeed. 8)8)
2089 	 */
2090 	if (eat) {
2091 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2092 		struct sk_buff *clone = NULL;
2093 		struct sk_buff *insp = NULL;
2094 
2095 		do {
2096 			if (list->len <= eat) {
2097 				/* Eaten as whole. */
2098 				eat -= list->len;
2099 				list = list->next;
2100 				insp = list;
2101 			} else {
2102 				/* Eaten partially. */
2103 
2104 				if (skb_shared(list)) {
2105 					/* Sucks! We need to fork list. :-( */
2106 					clone = skb_clone(list, GFP_ATOMIC);
2107 					if (!clone)
2108 						return NULL;
2109 					insp = list->next;
2110 					list = clone;
2111 				} else {
2112 					/* This may be pulled without
2113 					 * problems. */
2114 					insp = list;
2115 				}
2116 				if (!pskb_pull(list, eat)) {
2117 					kfree_skb(clone);
2118 					return NULL;
2119 				}
2120 				break;
2121 			}
2122 		} while (eat);
2123 
2124 		/* Free pulled out fragments. */
2125 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2126 			skb_shinfo(skb)->frag_list = list->next;
2127 			kfree_skb(list);
2128 		}
2129 		/* And insert new clone at head. */
2130 		if (clone) {
2131 			clone->next = list;
2132 			skb_shinfo(skb)->frag_list = clone;
2133 		}
2134 	}
2135 	/* Success! Now we may commit changes to skb data. */
2136 
2137 pull_pages:
2138 	eat = delta;
2139 	k = 0;
2140 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142 
2143 		if (size <= eat) {
2144 			skb_frag_unref(skb, i);
2145 			eat -= size;
2146 		} else {
2147 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2148 
2149 			*frag = skb_shinfo(skb)->frags[i];
2150 			if (eat) {
2151 				skb_frag_off_add(frag, eat);
2152 				skb_frag_size_sub(frag, eat);
2153 				if (!i)
2154 					goto end;
2155 				eat = 0;
2156 			}
2157 			k++;
2158 		}
2159 	}
2160 	skb_shinfo(skb)->nr_frags = k;
2161 
2162 end:
2163 	skb->tail     += delta;
2164 	skb->data_len -= delta;
2165 
2166 	if (!skb->data_len)
2167 		skb_zcopy_clear(skb, false);
2168 
2169 	return skb_tail_pointer(skb);
2170 }
2171 EXPORT_SYMBOL(__pskb_pull_tail);
2172 
2173 /**
2174  *	skb_copy_bits - copy bits from skb to kernel buffer
2175  *	@skb: source skb
2176  *	@offset: offset in source
2177  *	@to: destination buffer
2178  *	@len: number of bytes to copy
2179  *
2180  *	Copy the specified number of bytes from the source skb to the
2181  *	destination buffer.
2182  *
2183  *	CAUTION ! :
2184  *		If its prototype is ever changed,
2185  *		check arch/{*}/net/{*}.S files,
2186  *		since it is called from BPF assembly code.
2187  */
2188 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2189 {
2190 	int start = skb_headlen(skb);
2191 	struct sk_buff *frag_iter;
2192 	int i, copy;
2193 
2194 	if (offset > (int)skb->len - len)
2195 		goto fault;
2196 
2197 	/* Copy header. */
2198 	if ((copy = start - offset) > 0) {
2199 		if (copy > len)
2200 			copy = len;
2201 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2202 		if ((len -= copy) == 0)
2203 			return 0;
2204 		offset += copy;
2205 		to     += copy;
2206 	}
2207 
2208 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209 		int end;
2210 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2211 
2212 		WARN_ON(start > offset + len);
2213 
2214 		end = start + skb_frag_size(f);
2215 		if ((copy = end - offset) > 0) {
2216 			u32 p_off, p_len, copied;
2217 			struct page *p;
2218 			u8 *vaddr;
2219 
2220 			if (copy > len)
2221 				copy = len;
2222 
2223 			skb_frag_foreach_page(f,
2224 					      skb_frag_off(f) + offset - start,
2225 					      copy, p, p_off, p_len, copied) {
2226 				vaddr = kmap_atomic(p);
2227 				memcpy(to + copied, vaddr + p_off, p_len);
2228 				kunmap_atomic(vaddr);
2229 			}
2230 
2231 			if ((len -= copy) == 0)
2232 				return 0;
2233 			offset += copy;
2234 			to     += copy;
2235 		}
2236 		start = end;
2237 	}
2238 
2239 	skb_walk_frags(skb, frag_iter) {
2240 		int end;
2241 
2242 		WARN_ON(start > offset + len);
2243 
2244 		end = start + frag_iter->len;
2245 		if ((copy = end - offset) > 0) {
2246 			if (copy > len)
2247 				copy = len;
2248 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2249 				goto fault;
2250 			if ((len -= copy) == 0)
2251 				return 0;
2252 			offset += copy;
2253 			to     += copy;
2254 		}
2255 		start = end;
2256 	}
2257 
2258 	if (!len)
2259 		return 0;
2260 
2261 fault:
2262 	return -EFAULT;
2263 }
2264 EXPORT_SYMBOL(skb_copy_bits);
2265 
2266 /*
2267  * Callback from splice_to_pipe(), if we need to release some pages
2268  * at the end of the spd in case we error'ed out in filling the pipe.
2269  */
2270 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2271 {
2272 	put_page(spd->pages[i]);
2273 }
2274 
2275 static struct page *linear_to_page(struct page *page, unsigned int *len,
2276 				   unsigned int *offset,
2277 				   struct sock *sk)
2278 {
2279 	struct page_frag *pfrag = sk_page_frag(sk);
2280 
2281 	if (!sk_page_frag_refill(sk, pfrag))
2282 		return NULL;
2283 
2284 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2285 
2286 	memcpy(page_address(pfrag->page) + pfrag->offset,
2287 	       page_address(page) + *offset, *len);
2288 	*offset = pfrag->offset;
2289 	pfrag->offset += *len;
2290 
2291 	return pfrag->page;
2292 }
2293 
2294 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2295 			     struct page *page,
2296 			     unsigned int offset)
2297 {
2298 	return	spd->nr_pages &&
2299 		spd->pages[spd->nr_pages - 1] == page &&
2300 		(spd->partial[spd->nr_pages - 1].offset +
2301 		 spd->partial[spd->nr_pages - 1].len == offset);
2302 }
2303 
2304 /*
2305  * Fill page/offset/length into spd, if it can hold more pages.
2306  */
2307 static bool spd_fill_page(struct splice_pipe_desc *spd,
2308 			  struct pipe_inode_info *pipe, struct page *page,
2309 			  unsigned int *len, unsigned int offset,
2310 			  bool linear,
2311 			  struct sock *sk)
2312 {
2313 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2314 		return true;
2315 
2316 	if (linear) {
2317 		page = linear_to_page(page, len, &offset, sk);
2318 		if (!page)
2319 			return true;
2320 	}
2321 	if (spd_can_coalesce(spd, page, offset)) {
2322 		spd->partial[spd->nr_pages - 1].len += *len;
2323 		return false;
2324 	}
2325 	get_page(page);
2326 	spd->pages[spd->nr_pages] = page;
2327 	spd->partial[spd->nr_pages].len = *len;
2328 	spd->partial[spd->nr_pages].offset = offset;
2329 	spd->nr_pages++;
2330 
2331 	return false;
2332 }
2333 
2334 static bool __splice_segment(struct page *page, unsigned int poff,
2335 			     unsigned int plen, unsigned int *off,
2336 			     unsigned int *len,
2337 			     struct splice_pipe_desc *spd, bool linear,
2338 			     struct sock *sk,
2339 			     struct pipe_inode_info *pipe)
2340 {
2341 	if (!*len)
2342 		return true;
2343 
2344 	/* skip this segment if already processed */
2345 	if (*off >= plen) {
2346 		*off -= plen;
2347 		return false;
2348 	}
2349 
2350 	/* ignore any bits we already processed */
2351 	poff += *off;
2352 	plen -= *off;
2353 	*off = 0;
2354 
2355 	do {
2356 		unsigned int flen = min(*len, plen);
2357 
2358 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2359 				  linear, sk))
2360 			return true;
2361 		poff += flen;
2362 		plen -= flen;
2363 		*len -= flen;
2364 	} while (*len && plen);
2365 
2366 	return false;
2367 }
2368 
2369 /*
2370  * Map linear and fragment data from the skb to spd. It reports true if the
2371  * pipe is full or if we already spliced the requested length.
2372  */
2373 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2374 			      unsigned int *offset, unsigned int *len,
2375 			      struct splice_pipe_desc *spd, struct sock *sk)
2376 {
2377 	int seg;
2378 	struct sk_buff *iter;
2379 
2380 	/* map the linear part :
2381 	 * If skb->head_frag is set, this 'linear' part is backed by a
2382 	 * fragment, and if the head is not shared with any clones then
2383 	 * we can avoid a copy since we own the head portion of this page.
2384 	 */
2385 	if (__splice_segment(virt_to_page(skb->data),
2386 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2387 			     skb_headlen(skb),
2388 			     offset, len, spd,
2389 			     skb_head_is_locked(skb),
2390 			     sk, pipe))
2391 		return true;
2392 
2393 	/*
2394 	 * then map the fragments
2395 	 */
2396 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2397 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2398 
2399 		if (__splice_segment(skb_frag_page(f),
2400 				     skb_frag_off(f), skb_frag_size(f),
2401 				     offset, len, spd, false, sk, pipe))
2402 			return true;
2403 	}
2404 
2405 	skb_walk_frags(skb, iter) {
2406 		if (*offset >= iter->len) {
2407 			*offset -= iter->len;
2408 			continue;
2409 		}
2410 		/* __skb_splice_bits() only fails if the output has no room
2411 		 * left, so no point in going over the frag_list for the error
2412 		 * case.
2413 		 */
2414 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2415 			return true;
2416 	}
2417 
2418 	return false;
2419 }
2420 
2421 /*
2422  * Map data from the skb to a pipe. Should handle both the linear part,
2423  * the fragments, and the frag list.
2424  */
2425 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2426 		    struct pipe_inode_info *pipe, unsigned int tlen,
2427 		    unsigned int flags)
2428 {
2429 	struct partial_page partial[MAX_SKB_FRAGS];
2430 	struct page *pages[MAX_SKB_FRAGS];
2431 	struct splice_pipe_desc spd = {
2432 		.pages = pages,
2433 		.partial = partial,
2434 		.nr_pages_max = MAX_SKB_FRAGS,
2435 		.ops = &nosteal_pipe_buf_ops,
2436 		.spd_release = sock_spd_release,
2437 	};
2438 	int ret = 0;
2439 
2440 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2441 
2442 	if (spd.nr_pages)
2443 		ret = splice_to_pipe(pipe, &spd);
2444 
2445 	return ret;
2446 }
2447 EXPORT_SYMBOL_GPL(skb_splice_bits);
2448 
2449 /* Send skb data on a socket. Socket must be locked. */
2450 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2451 			 int len)
2452 {
2453 	unsigned int orig_len = len;
2454 	struct sk_buff *head = skb;
2455 	unsigned short fragidx;
2456 	int slen, ret;
2457 
2458 do_frag_list:
2459 
2460 	/* Deal with head data */
2461 	while (offset < skb_headlen(skb) && len) {
2462 		struct kvec kv;
2463 		struct msghdr msg;
2464 
2465 		slen = min_t(int, len, skb_headlen(skb) - offset);
2466 		kv.iov_base = skb->data + offset;
2467 		kv.iov_len = slen;
2468 		memset(&msg, 0, sizeof(msg));
2469 		msg.msg_flags = MSG_DONTWAIT;
2470 
2471 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2472 		if (ret <= 0)
2473 			goto error;
2474 
2475 		offset += ret;
2476 		len -= ret;
2477 	}
2478 
2479 	/* All the data was skb head? */
2480 	if (!len)
2481 		goto out;
2482 
2483 	/* Make offset relative to start of frags */
2484 	offset -= skb_headlen(skb);
2485 
2486 	/* Find where we are in frag list */
2487 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2488 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2489 
2490 		if (offset < skb_frag_size(frag))
2491 			break;
2492 
2493 		offset -= skb_frag_size(frag);
2494 	}
2495 
2496 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2497 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2498 
2499 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2500 
2501 		while (slen) {
2502 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2503 						     skb_frag_off(frag) + offset,
2504 						     slen, MSG_DONTWAIT);
2505 			if (ret <= 0)
2506 				goto error;
2507 
2508 			len -= ret;
2509 			offset += ret;
2510 			slen -= ret;
2511 		}
2512 
2513 		offset = 0;
2514 	}
2515 
2516 	if (len) {
2517 		/* Process any frag lists */
2518 
2519 		if (skb == head) {
2520 			if (skb_has_frag_list(skb)) {
2521 				skb = skb_shinfo(skb)->frag_list;
2522 				goto do_frag_list;
2523 			}
2524 		} else if (skb->next) {
2525 			skb = skb->next;
2526 			goto do_frag_list;
2527 		}
2528 	}
2529 
2530 out:
2531 	return orig_len - len;
2532 
2533 error:
2534 	return orig_len == len ? ret : orig_len - len;
2535 }
2536 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2537 
2538 /**
2539  *	skb_store_bits - store bits from kernel buffer to skb
2540  *	@skb: destination buffer
2541  *	@offset: offset in destination
2542  *	@from: source buffer
2543  *	@len: number of bytes to copy
2544  *
2545  *	Copy the specified number of bytes from the source buffer to the
2546  *	destination skb.  This function handles all the messy bits of
2547  *	traversing fragment lists and such.
2548  */
2549 
2550 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2551 {
2552 	int start = skb_headlen(skb);
2553 	struct sk_buff *frag_iter;
2554 	int i, copy;
2555 
2556 	if (offset > (int)skb->len - len)
2557 		goto fault;
2558 
2559 	if ((copy = start - offset) > 0) {
2560 		if (copy > len)
2561 			copy = len;
2562 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2563 		if ((len -= copy) == 0)
2564 			return 0;
2565 		offset += copy;
2566 		from += copy;
2567 	}
2568 
2569 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2570 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2571 		int end;
2572 
2573 		WARN_ON(start > offset + len);
2574 
2575 		end = start + skb_frag_size(frag);
2576 		if ((copy = end - offset) > 0) {
2577 			u32 p_off, p_len, copied;
2578 			struct page *p;
2579 			u8 *vaddr;
2580 
2581 			if (copy > len)
2582 				copy = len;
2583 
2584 			skb_frag_foreach_page(frag,
2585 					      skb_frag_off(frag) + offset - start,
2586 					      copy, p, p_off, p_len, copied) {
2587 				vaddr = kmap_atomic(p);
2588 				memcpy(vaddr + p_off, from + copied, p_len);
2589 				kunmap_atomic(vaddr);
2590 			}
2591 
2592 			if ((len -= copy) == 0)
2593 				return 0;
2594 			offset += copy;
2595 			from += copy;
2596 		}
2597 		start = end;
2598 	}
2599 
2600 	skb_walk_frags(skb, frag_iter) {
2601 		int end;
2602 
2603 		WARN_ON(start > offset + len);
2604 
2605 		end = start + frag_iter->len;
2606 		if ((copy = end - offset) > 0) {
2607 			if (copy > len)
2608 				copy = len;
2609 			if (skb_store_bits(frag_iter, offset - start,
2610 					   from, copy))
2611 				goto fault;
2612 			if ((len -= copy) == 0)
2613 				return 0;
2614 			offset += copy;
2615 			from += copy;
2616 		}
2617 		start = end;
2618 	}
2619 	if (!len)
2620 		return 0;
2621 
2622 fault:
2623 	return -EFAULT;
2624 }
2625 EXPORT_SYMBOL(skb_store_bits);
2626 
2627 /* Checksum skb data. */
2628 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2629 		      __wsum csum, const struct skb_checksum_ops *ops)
2630 {
2631 	int start = skb_headlen(skb);
2632 	int i, copy = start - offset;
2633 	struct sk_buff *frag_iter;
2634 	int pos = 0;
2635 
2636 	/* Checksum header. */
2637 	if (copy > 0) {
2638 		if (copy > len)
2639 			copy = len;
2640 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2641 				       skb->data + offset, copy, csum);
2642 		if ((len -= copy) == 0)
2643 			return csum;
2644 		offset += copy;
2645 		pos	= copy;
2646 	}
2647 
2648 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2649 		int end;
2650 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2651 
2652 		WARN_ON(start > offset + len);
2653 
2654 		end = start + skb_frag_size(frag);
2655 		if ((copy = end - offset) > 0) {
2656 			u32 p_off, p_len, copied;
2657 			struct page *p;
2658 			__wsum csum2;
2659 			u8 *vaddr;
2660 
2661 			if (copy > len)
2662 				copy = len;
2663 
2664 			skb_frag_foreach_page(frag,
2665 					      skb_frag_off(frag) + offset - start,
2666 					      copy, p, p_off, p_len, copied) {
2667 				vaddr = kmap_atomic(p);
2668 				csum2 = INDIRECT_CALL_1(ops->update,
2669 							csum_partial_ext,
2670 							vaddr + p_off, p_len, 0);
2671 				kunmap_atomic(vaddr);
2672 				csum = INDIRECT_CALL_1(ops->combine,
2673 						       csum_block_add_ext, csum,
2674 						       csum2, pos, p_len);
2675 				pos += p_len;
2676 			}
2677 
2678 			if (!(len -= copy))
2679 				return csum;
2680 			offset += copy;
2681 		}
2682 		start = end;
2683 	}
2684 
2685 	skb_walk_frags(skb, frag_iter) {
2686 		int end;
2687 
2688 		WARN_ON(start > offset + len);
2689 
2690 		end = start + frag_iter->len;
2691 		if ((copy = end - offset) > 0) {
2692 			__wsum csum2;
2693 			if (copy > len)
2694 				copy = len;
2695 			csum2 = __skb_checksum(frag_iter, offset - start,
2696 					       copy, 0, ops);
2697 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2698 					       csum, csum2, pos, copy);
2699 			if ((len -= copy) == 0)
2700 				return csum;
2701 			offset += copy;
2702 			pos    += copy;
2703 		}
2704 		start = end;
2705 	}
2706 	BUG_ON(len);
2707 
2708 	return csum;
2709 }
2710 EXPORT_SYMBOL(__skb_checksum);
2711 
2712 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2713 		    int len, __wsum csum)
2714 {
2715 	const struct skb_checksum_ops ops = {
2716 		.update  = csum_partial_ext,
2717 		.combine = csum_block_add_ext,
2718 	};
2719 
2720 	return __skb_checksum(skb, offset, len, csum, &ops);
2721 }
2722 EXPORT_SYMBOL(skb_checksum);
2723 
2724 /* Both of above in one bottle. */
2725 
2726 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2727 				    u8 *to, int len, __wsum csum)
2728 {
2729 	int start = skb_headlen(skb);
2730 	int i, copy = start - offset;
2731 	struct sk_buff *frag_iter;
2732 	int pos = 0;
2733 
2734 	/* Copy header. */
2735 	if (copy > 0) {
2736 		if (copy > len)
2737 			copy = len;
2738 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2739 						 copy, csum);
2740 		if ((len -= copy) == 0)
2741 			return csum;
2742 		offset += copy;
2743 		to     += copy;
2744 		pos	= copy;
2745 	}
2746 
2747 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2748 		int end;
2749 
2750 		WARN_ON(start > offset + len);
2751 
2752 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2753 		if ((copy = end - offset) > 0) {
2754 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 			u32 p_off, p_len, copied;
2756 			struct page *p;
2757 			__wsum csum2;
2758 			u8 *vaddr;
2759 
2760 			if (copy > len)
2761 				copy = len;
2762 
2763 			skb_frag_foreach_page(frag,
2764 					      skb_frag_off(frag) + offset - start,
2765 					      copy, p, p_off, p_len, copied) {
2766 				vaddr = kmap_atomic(p);
2767 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2768 								  to + copied,
2769 								  p_len, 0);
2770 				kunmap_atomic(vaddr);
2771 				csum = csum_block_add(csum, csum2, pos);
2772 				pos += p_len;
2773 			}
2774 
2775 			if (!(len -= copy))
2776 				return csum;
2777 			offset += copy;
2778 			to     += copy;
2779 		}
2780 		start = end;
2781 	}
2782 
2783 	skb_walk_frags(skb, frag_iter) {
2784 		__wsum csum2;
2785 		int end;
2786 
2787 		WARN_ON(start > offset + len);
2788 
2789 		end = start + frag_iter->len;
2790 		if ((copy = end - offset) > 0) {
2791 			if (copy > len)
2792 				copy = len;
2793 			csum2 = skb_copy_and_csum_bits(frag_iter,
2794 						       offset - start,
2795 						       to, copy, 0);
2796 			csum = csum_block_add(csum, csum2, pos);
2797 			if ((len -= copy) == 0)
2798 				return csum;
2799 			offset += copy;
2800 			to     += copy;
2801 			pos    += copy;
2802 		}
2803 		start = end;
2804 	}
2805 	BUG_ON(len);
2806 	return csum;
2807 }
2808 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2809 
2810 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2811 {
2812 	__sum16 sum;
2813 
2814 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2815 	/* See comments in __skb_checksum_complete(). */
2816 	if (likely(!sum)) {
2817 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2818 		    !skb->csum_complete_sw)
2819 			netdev_rx_csum_fault(skb->dev, skb);
2820 	}
2821 	if (!skb_shared(skb))
2822 		skb->csum_valid = !sum;
2823 	return sum;
2824 }
2825 EXPORT_SYMBOL(__skb_checksum_complete_head);
2826 
2827 /* This function assumes skb->csum already holds pseudo header's checksum,
2828  * which has been changed from the hardware checksum, for example, by
2829  * __skb_checksum_validate_complete(). And, the original skb->csum must
2830  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2831  *
2832  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2833  * zero. The new checksum is stored back into skb->csum unless the skb is
2834  * shared.
2835  */
2836 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2837 {
2838 	__wsum csum;
2839 	__sum16 sum;
2840 
2841 	csum = skb_checksum(skb, 0, skb->len, 0);
2842 
2843 	sum = csum_fold(csum_add(skb->csum, csum));
2844 	/* This check is inverted, because we already knew the hardware
2845 	 * checksum is invalid before calling this function. So, if the
2846 	 * re-computed checksum is valid instead, then we have a mismatch
2847 	 * between the original skb->csum and skb_checksum(). This means either
2848 	 * the original hardware checksum is incorrect or we screw up skb->csum
2849 	 * when moving skb->data around.
2850 	 */
2851 	if (likely(!sum)) {
2852 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2853 		    !skb->csum_complete_sw)
2854 			netdev_rx_csum_fault(skb->dev, skb);
2855 	}
2856 
2857 	if (!skb_shared(skb)) {
2858 		/* Save full packet checksum */
2859 		skb->csum = csum;
2860 		skb->ip_summed = CHECKSUM_COMPLETE;
2861 		skb->csum_complete_sw = 1;
2862 		skb->csum_valid = !sum;
2863 	}
2864 
2865 	return sum;
2866 }
2867 EXPORT_SYMBOL(__skb_checksum_complete);
2868 
2869 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2870 {
2871 	net_warn_ratelimited(
2872 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2873 		__func__);
2874 	return 0;
2875 }
2876 
2877 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2878 				       int offset, int len)
2879 {
2880 	net_warn_ratelimited(
2881 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2882 		__func__);
2883 	return 0;
2884 }
2885 
2886 static const struct skb_checksum_ops default_crc32c_ops = {
2887 	.update  = warn_crc32c_csum_update,
2888 	.combine = warn_crc32c_csum_combine,
2889 };
2890 
2891 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2892 	&default_crc32c_ops;
2893 EXPORT_SYMBOL(crc32c_csum_stub);
2894 
2895  /**
2896  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2897  *	@from: source buffer
2898  *
2899  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2900  *	into skb_zerocopy().
2901  */
2902 unsigned int
2903 skb_zerocopy_headlen(const struct sk_buff *from)
2904 {
2905 	unsigned int hlen = 0;
2906 
2907 	if (!from->head_frag ||
2908 	    skb_headlen(from) < L1_CACHE_BYTES ||
2909 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2910 		hlen = skb_headlen(from);
2911 
2912 	if (skb_has_frag_list(from))
2913 		hlen = from->len;
2914 
2915 	return hlen;
2916 }
2917 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2918 
2919 /**
2920  *	skb_zerocopy - Zero copy skb to skb
2921  *	@to: destination buffer
2922  *	@from: source buffer
2923  *	@len: number of bytes to copy from source buffer
2924  *	@hlen: size of linear headroom in destination buffer
2925  *
2926  *	Copies up to `len` bytes from `from` to `to` by creating references
2927  *	to the frags in the source buffer.
2928  *
2929  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2930  *	headroom in the `to` buffer.
2931  *
2932  *	Return value:
2933  *	0: everything is OK
2934  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2935  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2936  */
2937 int
2938 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2939 {
2940 	int i, j = 0;
2941 	int plen = 0; /* length of skb->head fragment */
2942 	int ret;
2943 	struct page *page;
2944 	unsigned int offset;
2945 
2946 	BUG_ON(!from->head_frag && !hlen);
2947 
2948 	/* dont bother with small payloads */
2949 	if (len <= skb_tailroom(to))
2950 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2951 
2952 	if (hlen) {
2953 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2954 		if (unlikely(ret))
2955 			return ret;
2956 		len -= hlen;
2957 	} else {
2958 		plen = min_t(int, skb_headlen(from), len);
2959 		if (plen) {
2960 			page = virt_to_head_page(from->head);
2961 			offset = from->data - (unsigned char *)page_address(page);
2962 			__skb_fill_page_desc(to, 0, page, offset, plen);
2963 			get_page(page);
2964 			j = 1;
2965 			len -= plen;
2966 		}
2967 	}
2968 
2969 	to->truesize += len + plen;
2970 	to->len += len + plen;
2971 	to->data_len += len + plen;
2972 
2973 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2974 		skb_tx_error(from);
2975 		return -ENOMEM;
2976 	}
2977 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2978 
2979 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2980 		int size;
2981 
2982 		if (!len)
2983 			break;
2984 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2985 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2986 					len);
2987 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2988 		len -= size;
2989 		skb_frag_ref(to, j);
2990 		j++;
2991 	}
2992 	skb_shinfo(to)->nr_frags = j;
2993 
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(skb_zerocopy);
2997 
2998 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2999 {
3000 	__wsum csum;
3001 	long csstart;
3002 
3003 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3004 		csstart = skb_checksum_start_offset(skb);
3005 	else
3006 		csstart = skb_headlen(skb);
3007 
3008 	BUG_ON(csstart > skb_headlen(skb));
3009 
3010 	skb_copy_from_linear_data(skb, to, csstart);
3011 
3012 	csum = 0;
3013 	if (csstart != skb->len)
3014 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3015 					      skb->len - csstart, 0);
3016 
3017 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3018 		long csstuff = csstart + skb->csum_offset;
3019 
3020 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3021 	}
3022 }
3023 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3024 
3025 /**
3026  *	skb_dequeue - remove from the head of the queue
3027  *	@list: list to dequeue from
3028  *
3029  *	Remove the head of the list. The list lock is taken so the function
3030  *	may be used safely with other locking list functions. The head item is
3031  *	returned or %NULL if the list is empty.
3032  */
3033 
3034 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3035 {
3036 	unsigned long flags;
3037 	struct sk_buff *result;
3038 
3039 	spin_lock_irqsave(&list->lock, flags);
3040 	result = __skb_dequeue(list);
3041 	spin_unlock_irqrestore(&list->lock, flags);
3042 	return result;
3043 }
3044 EXPORT_SYMBOL(skb_dequeue);
3045 
3046 /**
3047  *	skb_dequeue_tail - remove from the tail of the queue
3048  *	@list: list to dequeue from
3049  *
3050  *	Remove the tail of the list. The list lock is taken so the function
3051  *	may be used safely with other locking list functions. The tail item is
3052  *	returned or %NULL if the list is empty.
3053  */
3054 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3055 {
3056 	unsigned long flags;
3057 	struct sk_buff *result;
3058 
3059 	spin_lock_irqsave(&list->lock, flags);
3060 	result = __skb_dequeue_tail(list);
3061 	spin_unlock_irqrestore(&list->lock, flags);
3062 	return result;
3063 }
3064 EXPORT_SYMBOL(skb_dequeue_tail);
3065 
3066 /**
3067  *	skb_queue_purge - empty a list
3068  *	@list: list to empty
3069  *
3070  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3071  *	the list and one reference dropped. This function takes the list
3072  *	lock and is atomic with respect to other list locking functions.
3073  */
3074 void skb_queue_purge(struct sk_buff_head *list)
3075 {
3076 	struct sk_buff *skb;
3077 	while ((skb = skb_dequeue(list)) != NULL)
3078 		kfree_skb(skb);
3079 }
3080 EXPORT_SYMBOL(skb_queue_purge);
3081 
3082 /**
3083  *	skb_rbtree_purge - empty a skb rbtree
3084  *	@root: root of the rbtree to empty
3085  *	Return value: the sum of truesizes of all purged skbs.
3086  *
3087  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3088  *	the list and one reference dropped. This function does not take
3089  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3090  *	out-of-order queue is protected by the socket lock).
3091  */
3092 unsigned int skb_rbtree_purge(struct rb_root *root)
3093 {
3094 	struct rb_node *p = rb_first(root);
3095 	unsigned int sum = 0;
3096 
3097 	while (p) {
3098 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3099 
3100 		p = rb_next(p);
3101 		rb_erase(&skb->rbnode, root);
3102 		sum += skb->truesize;
3103 		kfree_skb(skb);
3104 	}
3105 	return sum;
3106 }
3107 
3108 /**
3109  *	skb_queue_head - queue a buffer at the list head
3110  *	@list: list to use
3111  *	@newsk: buffer to queue
3112  *
3113  *	Queue a buffer at the start of the list. This function takes the
3114  *	list lock and can be used safely with other locking &sk_buff functions
3115  *	safely.
3116  *
3117  *	A buffer cannot be placed on two lists at the same time.
3118  */
3119 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3120 {
3121 	unsigned long flags;
3122 
3123 	spin_lock_irqsave(&list->lock, flags);
3124 	__skb_queue_head(list, newsk);
3125 	spin_unlock_irqrestore(&list->lock, flags);
3126 }
3127 EXPORT_SYMBOL(skb_queue_head);
3128 
3129 /**
3130  *	skb_queue_tail - queue a buffer at the list tail
3131  *	@list: list to use
3132  *	@newsk: buffer to queue
3133  *
3134  *	Queue a buffer at the tail of the list. This function takes the
3135  *	list lock and can be used safely with other locking &sk_buff functions
3136  *	safely.
3137  *
3138  *	A buffer cannot be placed on two lists at the same time.
3139  */
3140 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3141 {
3142 	unsigned long flags;
3143 
3144 	spin_lock_irqsave(&list->lock, flags);
3145 	__skb_queue_tail(list, newsk);
3146 	spin_unlock_irqrestore(&list->lock, flags);
3147 }
3148 EXPORT_SYMBOL(skb_queue_tail);
3149 
3150 /**
3151  *	skb_unlink	-	remove a buffer from a list
3152  *	@skb: buffer to remove
3153  *	@list: list to use
3154  *
3155  *	Remove a packet from a list. The list locks are taken and this
3156  *	function is atomic with respect to other list locked calls
3157  *
3158  *	You must know what list the SKB is on.
3159  */
3160 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3161 {
3162 	unsigned long flags;
3163 
3164 	spin_lock_irqsave(&list->lock, flags);
3165 	__skb_unlink(skb, list);
3166 	spin_unlock_irqrestore(&list->lock, flags);
3167 }
3168 EXPORT_SYMBOL(skb_unlink);
3169 
3170 /**
3171  *	skb_append	-	append a buffer
3172  *	@old: buffer to insert after
3173  *	@newsk: buffer to insert
3174  *	@list: list to use
3175  *
3176  *	Place a packet after a given packet in a list. The list locks are taken
3177  *	and this function is atomic with respect to other list locked calls.
3178  *	A buffer cannot be placed on two lists at the same time.
3179  */
3180 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3181 {
3182 	unsigned long flags;
3183 
3184 	spin_lock_irqsave(&list->lock, flags);
3185 	__skb_queue_after(list, old, newsk);
3186 	spin_unlock_irqrestore(&list->lock, flags);
3187 }
3188 EXPORT_SYMBOL(skb_append);
3189 
3190 static inline void skb_split_inside_header(struct sk_buff *skb,
3191 					   struct sk_buff* skb1,
3192 					   const u32 len, const int pos)
3193 {
3194 	int i;
3195 
3196 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3197 					 pos - len);
3198 	/* And move data appendix as is. */
3199 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3200 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3201 
3202 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3203 	skb_shinfo(skb)->nr_frags  = 0;
3204 	skb1->data_len		   = skb->data_len;
3205 	skb1->len		   += skb1->data_len;
3206 	skb->data_len		   = 0;
3207 	skb->len		   = len;
3208 	skb_set_tail_pointer(skb, len);
3209 }
3210 
3211 static inline void skb_split_no_header(struct sk_buff *skb,
3212 				       struct sk_buff* skb1,
3213 				       const u32 len, int pos)
3214 {
3215 	int i, k = 0;
3216 	const int nfrags = skb_shinfo(skb)->nr_frags;
3217 
3218 	skb_shinfo(skb)->nr_frags = 0;
3219 	skb1->len		  = skb1->data_len = skb->len - len;
3220 	skb->len		  = len;
3221 	skb->data_len		  = len - pos;
3222 
3223 	for (i = 0; i < nfrags; i++) {
3224 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3225 
3226 		if (pos + size > len) {
3227 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3228 
3229 			if (pos < len) {
3230 				/* Split frag.
3231 				 * We have two variants in this case:
3232 				 * 1. Move all the frag to the second
3233 				 *    part, if it is possible. F.e.
3234 				 *    this approach is mandatory for TUX,
3235 				 *    where splitting is expensive.
3236 				 * 2. Split is accurately. We make this.
3237 				 */
3238 				skb_frag_ref(skb, i);
3239 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3240 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3241 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3242 				skb_shinfo(skb)->nr_frags++;
3243 			}
3244 			k++;
3245 		} else
3246 			skb_shinfo(skb)->nr_frags++;
3247 		pos += size;
3248 	}
3249 	skb_shinfo(skb1)->nr_frags = k;
3250 }
3251 
3252 /**
3253  * skb_split - Split fragmented skb to two parts at length len.
3254  * @skb: the buffer to split
3255  * @skb1: the buffer to receive the second part
3256  * @len: new length for skb
3257  */
3258 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3259 {
3260 	int pos = skb_headlen(skb);
3261 
3262 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3263 				      SKBTX_SHARED_FRAG;
3264 	skb_zerocopy_clone(skb1, skb, 0);
3265 	if (len < pos)	/* Split line is inside header. */
3266 		skb_split_inside_header(skb, skb1, len, pos);
3267 	else		/* Second chunk has no header, nothing to copy. */
3268 		skb_split_no_header(skb, skb1, len, pos);
3269 }
3270 EXPORT_SYMBOL(skb_split);
3271 
3272 /* Shifting from/to a cloned skb is a no-go.
3273  *
3274  * Caller cannot keep skb_shinfo related pointers past calling here!
3275  */
3276 static int skb_prepare_for_shift(struct sk_buff *skb)
3277 {
3278 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3279 }
3280 
3281 /**
3282  * skb_shift - Shifts paged data partially from skb to another
3283  * @tgt: buffer into which tail data gets added
3284  * @skb: buffer from which the paged data comes from
3285  * @shiftlen: shift up to this many bytes
3286  *
3287  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3288  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3289  * It's up to caller to free skb if everything was shifted.
3290  *
3291  * If @tgt runs out of frags, the whole operation is aborted.
3292  *
3293  * Skb cannot include anything else but paged data while tgt is allowed
3294  * to have non-paged data as well.
3295  *
3296  * TODO: full sized shift could be optimized but that would need
3297  * specialized skb free'er to handle frags without up-to-date nr_frags.
3298  */
3299 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3300 {
3301 	int from, to, merge, todo;
3302 	skb_frag_t *fragfrom, *fragto;
3303 
3304 	BUG_ON(shiftlen > skb->len);
3305 
3306 	if (skb_headlen(skb))
3307 		return 0;
3308 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3309 		return 0;
3310 
3311 	todo = shiftlen;
3312 	from = 0;
3313 	to = skb_shinfo(tgt)->nr_frags;
3314 	fragfrom = &skb_shinfo(skb)->frags[from];
3315 
3316 	/* Actual merge is delayed until the point when we know we can
3317 	 * commit all, so that we don't have to undo partial changes
3318 	 */
3319 	if (!to ||
3320 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3321 			      skb_frag_off(fragfrom))) {
3322 		merge = -1;
3323 	} else {
3324 		merge = to - 1;
3325 
3326 		todo -= skb_frag_size(fragfrom);
3327 		if (todo < 0) {
3328 			if (skb_prepare_for_shift(skb) ||
3329 			    skb_prepare_for_shift(tgt))
3330 				return 0;
3331 
3332 			/* All previous frag pointers might be stale! */
3333 			fragfrom = &skb_shinfo(skb)->frags[from];
3334 			fragto = &skb_shinfo(tgt)->frags[merge];
3335 
3336 			skb_frag_size_add(fragto, shiftlen);
3337 			skb_frag_size_sub(fragfrom, shiftlen);
3338 			skb_frag_off_add(fragfrom, shiftlen);
3339 
3340 			goto onlymerged;
3341 		}
3342 
3343 		from++;
3344 	}
3345 
3346 	/* Skip full, not-fitting skb to avoid expensive operations */
3347 	if ((shiftlen == skb->len) &&
3348 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3349 		return 0;
3350 
3351 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3352 		return 0;
3353 
3354 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3355 		if (to == MAX_SKB_FRAGS)
3356 			return 0;
3357 
3358 		fragfrom = &skb_shinfo(skb)->frags[from];
3359 		fragto = &skb_shinfo(tgt)->frags[to];
3360 
3361 		if (todo >= skb_frag_size(fragfrom)) {
3362 			*fragto = *fragfrom;
3363 			todo -= skb_frag_size(fragfrom);
3364 			from++;
3365 			to++;
3366 
3367 		} else {
3368 			__skb_frag_ref(fragfrom);
3369 			skb_frag_page_copy(fragto, fragfrom);
3370 			skb_frag_off_copy(fragto, fragfrom);
3371 			skb_frag_size_set(fragto, todo);
3372 
3373 			skb_frag_off_add(fragfrom, todo);
3374 			skb_frag_size_sub(fragfrom, todo);
3375 			todo = 0;
3376 
3377 			to++;
3378 			break;
3379 		}
3380 	}
3381 
3382 	/* Ready to "commit" this state change to tgt */
3383 	skb_shinfo(tgt)->nr_frags = to;
3384 
3385 	if (merge >= 0) {
3386 		fragfrom = &skb_shinfo(skb)->frags[0];
3387 		fragto = &skb_shinfo(tgt)->frags[merge];
3388 
3389 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3390 		__skb_frag_unref(fragfrom);
3391 	}
3392 
3393 	/* Reposition in the original skb */
3394 	to = 0;
3395 	while (from < skb_shinfo(skb)->nr_frags)
3396 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3397 	skb_shinfo(skb)->nr_frags = to;
3398 
3399 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3400 
3401 onlymerged:
3402 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3403 	 * the other hand might need it if it needs to be resent
3404 	 */
3405 	tgt->ip_summed = CHECKSUM_PARTIAL;
3406 	skb->ip_summed = CHECKSUM_PARTIAL;
3407 
3408 	/* Yak, is it really working this way? Some helper please? */
3409 	skb->len -= shiftlen;
3410 	skb->data_len -= shiftlen;
3411 	skb->truesize -= shiftlen;
3412 	tgt->len += shiftlen;
3413 	tgt->data_len += shiftlen;
3414 	tgt->truesize += shiftlen;
3415 
3416 	return shiftlen;
3417 }
3418 
3419 /**
3420  * skb_prepare_seq_read - Prepare a sequential read of skb data
3421  * @skb: the buffer to read
3422  * @from: lower offset of data to be read
3423  * @to: upper offset of data to be read
3424  * @st: state variable
3425  *
3426  * Initializes the specified state variable. Must be called before
3427  * invoking skb_seq_read() for the first time.
3428  */
3429 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3430 			  unsigned int to, struct skb_seq_state *st)
3431 {
3432 	st->lower_offset = from;
3433 	st->upper_offset = to;
3434 	st->root_skb = st->cur_skb = skb;
3435 	st->frag_idx = st->stepped_offset = 0;
3436 	st->frag_data = NULL;
3437 }
3438 EXPORT_SYMBOL(skb_prepare_seq_read);
3439 
3440 /**
3441  * skb_seq_read - Sequentially read skb data
3442  * @consumed: number of bytes consumed by the caller so far
3443  * @data: destination pointer for data to be returned
3444  * @st: state variable
3445  *
3446  * Reads a block of skb data at @consumed relative to the
3447  * lower offset specified to skb_prepare_seq_read(). Assigns
3448  * the head of the data block to @data and returns the length
3449  * of the block or 0 if the end of the skb data or the upper
3450  * offset has been reached.
3451  *
3452  * The caller is not required to consume all of the data
3453  * returned, i.e. @consumed is typically set to the number
3454  * of bytes already consumed and the next call to
3455  * skb_seq_read() will return the remaining part of the block.
3456  *
3457  * Note 1: The size of each block of data returned can be arbitrary,
3458  *       this limitation is the cost for zerocopy sequential
3459  *       reads of potentially non linear data.
3460  *
3461  * Note 2: Fragment lists within fragments are not implemented
3462  *       at the moment, state->root_skb could be replaced with
3463  *       a stack for this purpose.
3464  */
3465 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3466 			  struct skb_seq_state *st)
3467 {
3468 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3469 	skb_frag_t *frag;
3470 
3471 	if (unlikely(abs_offset >= st->upper_offset)) {
3472 		if (st->frag_data) {
3473 			kunmap_atomic(st->frag_data);
3474 			st->frag_data = NULL;
3475 		}
3476 		return 0;
3477 	}
3478 
3479 next_skb:
3480 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3481 
3482 	if (abs_offset < block_limit && !st->frag_data) {
3483 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3484 		return block_limit - abs_offset;
3485 	}
3486 
3487 	if (st->frag_idx == 0 && !st->frag_data)
3488 		st->stepped_offset += skb_headlen(st->cur_skb);
3489 
3490 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3491 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3492 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3493 
3494 		if (abs_offset < block_limit) {
3495 			if (!st->frag_data)
3496 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3497 
3498 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3499 				(abs_offset - st->stepped_offset);
3500 
3501 			return block_limit - abs_offset;
3502 		}
3503 
3504 		if (st->frag_data) {
3505 			kunmap_atomic(st->frag_data);
3506 			st->frag_data = NULL;
3507 		}
3508 
3509 		st->frag_idx++;
3510 		st->stepped_offset += skb_frag_size(frag);
3511 	}
3512 
3513 	if (st->frag_data) {
3514 		kunmap_atomic(st->frag_data);
3515 		st->frag_data = NULL;
3516 	}
3517 
3518 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3519 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3520 		st->frag_idx = 0;
3521 		goto next_skb;
3522 	} else if (st->cur_skb->next) {
3523 		st->cur_skb = st->cur_skb->next;
3524 		st->frag_idx = 0;
3525 		goto next_skb;
3526 	}
3527 
3528 	return 0;
3529 }
3530 EXPORT_SYMBOL(skb_seq_read);
3531 
3532 /**
3533  * skb_abort_seq_read - Abort a sequential read of skb data
3534  * @st: state variable
3535  *
3536  * Must be called if skb_seq_read() was not called until it
3537  * returned 0.
3538  */
3539 void skb_abort_seq_read(struct skb_seq_state *st)
3540 {
3541 	if (st->frag_data)
3542 		kunmap_atomic(st->frag_data);
3543 }
3544 EXPORT_SYMBOL(skb_abort_seq_read);
3545 
3546 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3547 
3548 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3549 					  struct ts_config *conf,
3550 					  struct ts_state *state)
3551 {
3552 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3553 }
3554 
3555 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3556 {
3557 	skb_abort_seq_read(TS_SKB_CB(state));
3558 }
3559 
3560 /**
3561  * skb_find_text - Find a text pattern in skb data
3562  * @skb: the buffer to look in
3563  * @from: search offset
3564  * @to: search limit
3565  * @config: textsearch configuration
3566  *
3567  * Finds a pattern in the skb data according to the specified
3568  * textsearch configuration. Use textsearch_next() to retrieve
3569  * subsequent occurrences of the pattern. Returns the offset
3570  * to the first occurrence or UINT_MAX if no match was found.
3571  */
3572 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3573 			   unsigned int to, struct ts_config *config)
3574 {
3575 	struct ts_state state;
3576 	unsigned int ret;
3577 
3578 	config->get_next_block = skb_ts_get_next_block;
3579 	config->finish = skb_ts_finish;
3580 
3581 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3582 
3583 	ret = textsearch_find(config, &state);
3584 	return (ret <= to - from ? ret : UINT_MAX);
3585 }
3586 EXPORT_SYMBOL(skb_find_text);
3587 
3588 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3589 			 int offset, size_t size)
3590 {
3591 	int i = skb_shinfo(skb)->nr_frags;
3592 
3593 	if (skb_can_coalesce(skb, i, page, offset)) {
3594 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3595 	} else if (i < MAX_SKB_FRAGS) {
3596 		get_page(page);
3597 		skb_fill_page_desc(skb, i, page, offset, size);
3598 	} else {
3599 		return -EMSGSIZE;
3600 	}
3601 
3602 	return 0;
3603 }
3604 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3605 
3606 /**
3607  *	skb_pull_rcsum - pull skb and update receive checksum
3608  *	@skb: buffer to update
3609  *	@len: length of data pulled
3610  *
3611  *	This function performs an skb_pull on the packet and updates
3612  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3613  *	receive path processing instead of skb_pull unless you know
3614  *	that the checksum difference is zero (e.g., a valid IP header)
3615  *	or you are setting ip_summed to CHECKSUM_NONE.
3616  */
3617 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3618 {
3619 	unsigned char *data = skb->data;
3620 
3621 	BUG_ON(len > skb->len);
3622 	__skb_pull(skb, len);
3623 	skb_postpull_rcsum(skb, data, len);
3624 	return skb->data;
3625 }
3626 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3627 
3628 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3629 {
3630 	skb_frag_t head_frag;
3631 	struct page *page;
3632 
3633 	page = virt_to_head_page(frag_skb->head);
3634 	__skb_frag_set_page(&head_frag, page);
3635 	skb_frag_off_set(&head_frag, frag_skb->data -
3636 			 (unsigned char *)page_address(page));
3637 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3638 	return head_frag;
3639 }
3640 
3641 /**
3642  *	skb_segment - Perform protocol segmentation on skb.
3643  *	@head_skb: buffer to segment
3644  *	@features: features for the output path (see dev->features)
3645  *
3646  *	This function performs segmentation on the given skb.  It returns
3647  *	a pointer to the first in a list of new skbs for the segments.
3648  *	In case of error it returns ERR_PTR(err).
3649  */
3650 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3651 			    netdev_features_t features)
3652 {
3653 	struct sk_buff *segs = NULL;
3654 	struct sk_buff *tail = NULL;
3655 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3656 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3657 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3658 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3659 	struct sk_buff *frag_skb = head_skb;
3660 	unsigned int offset = doffset;
3661 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3662 	unsigned int partial_segs = 0;
3663 	unsigned int headroom;
3664 	unsigned int len = head_skb->len;
3665 	__be16 proto;
3666 	bool csum, sg;
3667 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3668 	int err = -ENOMEM;
3669 	int i = 0;
3670 	int pos;
3671 	int dummy;
3672 
3673 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3674 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3675 		/* gso_size is untrusted, and we have a frag_list with a linear
3676 		 * non head_frag head.
3677 		 *
3678 		 * (we assume checking the first list_skb member suffices;
3679 		 * i.e if either of the list_skb members have non head_frag
3680 		 * head, then the first one has too).
3681 		 *
3682 		 * If head_skb's headlen does not fit requested gso_size, it
3683 		 * means that the frag_list members do NOT terminate on exact
3684 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3685 		 * sharing. Therefore we must fallback to copying the frag_list
3686 		 * skbs; we do so by disabling SG.
3687 		 */
3688 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3689 			features &= ~NETIF_F_SG;
3690 	}
3691 
3692 	__skb_push(head_skb, doffset);
3693 	proto = skb_network_protocol(head_skb, &dummy);
3694 	if (unlikely(!proto))
3695 		return ERR_PTR(-EINVAL);
3696 
3697 	sg = !!(features & NETIF_F_SG);
3698 	csum = !!can_checksum_protocol(features, proto);
3699 
3700 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3701 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3702 			struct sk_buff *iter;
3703 			unsigned int frag_len;
3704 
3705 			if (!list_skb ||
3706 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3707 				goto normal;
3708 
3709 			/* If we get here then all the required
3710 			 * GSO features except frag_list are supported.
3711 			 * Try to split the SKB to multiple GSO SKBs
3712 			 * with no frag_list.
3713 			 * Currently we can do that only when the buffers don't
3714 			 * have a linear part and all the buffers except
3715 			 * the last are of the same length.
3716 			 */
3717 			frag_len = list_skb->len;
3718 			skb_walk_frags(head_skb, iter) {
3719 				if (frag_len != iter->len && iter->next)
3720 					goto normal;
3721 				if (skb_headlen(iter) && !iter->head_frag)
3722 					goto normal;
3723 
3724 				len -= iter->len;
3725 			}
3726 
3727 			if (len != frag_len)
3728 				goto normal;
3729 		}
3730 
3731 		/* GSO partial only requires that we trim off any excess that
3732 		 * doesn't fit into an MSS sized block, so take care of that
3733 		 * now.
3734 		 */
3735 		partial_segs = len / mss;
3736 		if (partial_segs > 1)
3737 			mss *= partial_segs;
3738 		else
3739 			partial_segs = 0;
3740 	}
3741 
3742 normal:
3743 	headroom = skb_headroom(head_skb);
3744 	pos = skb_headlen(head_skb);
3745 
3746 	do {
3747 		struct sk_buff *nskb;
3748 		skb_frag_t *nskb_frag;
3749 		int hsize;
3750 		int size;
3751 
3752 		if (unlikely(mss == GSO_BY_FRAGS)) {
3753 			len = list_skb->len;
3754 		} else {
3755 			len = head_skb->len - offset;
3756 			if (len > mss)
3757 				len = mss;
3758 		}
3759 
3760 		hsize = skb_headlen(head_skb) - offset;
3761 		if (hsize < 0)
3762 			hsize = 0;
3763 		if (hsize > len || !sg)
3764 			hsize = len;
3765 
3766 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3767 		    (skb_headlen(list_skb) == len || sg)) {
3768 			BUG_ON(skb_headlen(list_skb) > len);
3769 
3770 			i = 0;
3771 			nfrags = skb_shinfo(list_skb)->nr_frags;
3772 			frag = skb_shinfo(list_skb)->frags;
3773 			frag_skb = list_skb;
3774 			pos += skb_headlen(list_skb);
3775 
3776 			while (pos < offset + len) {
3777 				BUG_ON(i >= nfrags);
3778 
3779 				size = skb_frag_size(frag);
3780 				if (pos + size > offset + len)
3781 					break;
3782 
3783 				i++;
3784 				pos += size;
3785 				frag++;
3786 			}
3787 
3788 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3789 			list_skb = list_skb->next;
3790 
3791 			if (unlikely(!nskb))
3792 				goto err;
3793 
3794 			if (unlikely(pskb_trim(nskb, len))) {
3795 				kfree_skb(nskb);
3796 				goto err;
3797 			}
3798 
3799 			hsize = skb_end_offset(nskb);
3800 			if (skb_cow_head(nskb, doffset + headroom)) {
3801 				kfree_skb(nskb);
3802 				goto err;
3803 			}
3804 
3805 			nskb->truesize += skb_end_offset(nskb) - hsize;
3806 			skb_release_head_state(nskb);
3807 			__skb_push(nskb, doffset);
3808 		} else {
3809 			nskb = __alloc_skb(hsize + doffset + headroom,
3810 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3811 					   NUMA_NO_NODE);
3812 
3813 			if (unlikely(!nskb))
3814 				goto err;
3815 
3816 			skb_reserve(nskb, headroom);
3817 			__skb_put(nskb, doffset);
3818 		}
3819 
3820 		if (segs)
3821 			tail->next = nskb;
3822 		else
3823 			segs = nskb;
3824 		tail = nskb;
3825 
3826 		__copy_skb_header(nskb, head_skb);
3827 
3828 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3829 		skb_reset_mac_len(nskb);
3830 
3831 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3832 						 nskb->data - tnl_hlen,
3833 						 doffset + tnl_hlen);
3834 
3835 		if (nskb->len == len + doffset)
3836 			goto perform_csum_check;
3837 
3838 		if (!sg) {
3839 			if (!nskb->remcsum_offload)
3840 				nskb->ip_summed = CHECKSUM_NONE;
3841 			SKB_GSO_CB(nskb)->csum =
3842 				skb_copy_and_csum_bits(head_skb, offset,
3843 						       skb_put(nskb, len),
3844 						       len, 0);
3845 			SKB_GSO_CB(nskb)->csum_start =
3846 				skb_headroom(nskb) + doffset;
3847 			continue;
3848 		}
3849 
3850 		nskb_frag = skb_shinfo(nskb)->frags;
3851 
3852 		skb_copy_from_linear_data_offset(head_skb, offset,
3853 						 skb_put(nskb, hsize), hsize);
3854 
3855 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3856 					      SKBTX_SHARED_FRAG;
3857 
3858 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3859 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3860 			goto err;
3861 
3862 		while (pos < offset + len) {
3863 			if (i >= nfrags) {
3864 				i = 0;
3865 				nfrags = skb_shinfo(list_skb)->nr_frags;
3866 				frag = skb_shinfo(list_skb)->frags;
3867 				frag_skb = list_skb;
3868 				if (!skb_headlen(list_skb)) {
3869 					BUG_ON(!nfrags);
3870 				} else {
3871 					BUG_ON(!list_skb->head_frag);
3872 
3873 					/* to make room for head_frag. */
3874 					i--;
3875 					frag--;
3876 				}
3877 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3878 				    skb_zerocopy_clone(nskb, frag_skb,
3879 						       GFP_ATOMIC))
3880 					goto err;
3881 
3882 				list_skb = list_skb->next;
3883 			}
3884 
3885 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3886 				     MAX_SKB_FRAGS)) {
3887 				net_warn_ratelimited(
3888 					"skb_segment: too many frags: %u %u\n",
3889 					pos, mss);
3890 				err = -EINVAL;
3891 				goto err;
3892 			}
3893 
3894 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3895 			__skb_frag_ref(nskb_frag);
3896 			size = skb_frag_size(nskb_frag);
3897 
3898 			if (pos < offset) {
3899 				skb_frag_off_add(nskb_frag, offset - pos);
3900 				skb_frag_size_sub(nskb_frag, offset - pos);
3901 			}
3902 
3903 			skb_shinfo(nskb)->nr_frags++;
3904 
3905 			if (pos + size <= offset + len) {
3906 				i++;
3907 				frag++;
3908 				pos += size;
3909 			} else {
3910 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3911 				goto skip_fraglist;
3912 			}
3913 
3914 			nskb_frag++;
3915 		}
3916 
3917 skip_fraglist:
3918 		nskb->data_len = len - hsize;
3919 		nskb->len += nskb->data_len;
3920 		nskb->truesize += nskb->data_len;
3921 
3922 perform_csum_check:
3923 		if (!csum) {
3924 			if (skb_has_shared_frag(nskb) &&
3925 			    __skb_linearize(nskb))
3926 				goto err;
3927 
3928 			if (!nskb->remcsum_offload)
3929 				nskb->ip_summed = CHECKSUM_NONE;
3930 			SKB_GSO_CB(nskb)->csum =
3931 				skb_checksum(nskb, doffset,
3932 					     nskb->len - doffset, 0);
3933 			SKB_GSO_CB(nskb)->csum_start =
3934 				skb_headroom(nskb) + doffset;
3935 		}
3936 	} while ((offset += len) < head_skb->len);
3937 
3938 	/* Some callers want to get the end of the list.
3939 	 * Put it in segs->prev to avoid walking the list.
3940 	 * (see validate_xmit_skb_list() for example)
3941 	 */
3942 	segs->prev = tail;
3943 
3944 	if (partial_segs) {
3945 		struct sk_buff *iter;
3946 		int type = skb_shinfo(head_skb)->gso_type;
3947 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3948 
3949 		/* Update type to add partial and then remove dodgy if set */
3950 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3951 		type &= ~SKB_GSO_DODGY;
3952 
3953 		/* Update GSO info and prepare to start updating headers on
3954 		 * our way back down the stack of protocols.
3955 		 */
3956 		for (iter = segs; iter; iter = iter->next) {
3957 			skb_shinfo(iter)->gso_size = gso_size;
3958 			skb_shinfo(iter)->gso_segs = partial_segs;
3959 			skb_shinfo(iter)->gso_type = type;
3960 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3961 		}
3962 
3963 		if (tail->len - doffset <= gso_size)
3964 			skb_shinfo(tail)->gso_size = 0;
3965 		else if (tail != segs)
3966 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3967 	}
3968 
3969 	/* Following permits correct backpressure, for protocols
3970 	 * using skb_set_owner_w().
3971 	 * Idea is to tranfert ownership from head_skb to last segment.
3972 	 */
3973 	if (head_skb->destructor == sock_wfree) {
3974 		swap(tail->truesize, head_skb->truesize);
3975 		swap(tail->destructor, head_skb->destructor);
3976 		swap(tail->sk, head_skb->sk);
3977 	}
3978 	return segs;
3979 
3980 err:
3981 	kfree_skb_list(segs);
3982 	return ERR_PTR(err);
3983 }
3984 EXPORT_SYMBOL_GPL(skb_segment);
3985 
3986 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3987 {
3988 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3989 	unsigned int offset = skb_gro_offset(skb);
3990 	unsigned int headlen = skb_headlen(skb);
3991 	unsigned int len = skb_gro_len(skb);
3992 	unsigned int delta_truesize;
3993 	struct sk_buff *lp;
3994 
3995 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3996 		return -E2BIG;
3997 
3998 	lp = NAPI_GRO_CB(p)->last;
3999 	pinfo = skb_shinfo(lp);
4000 
4001 	if (headlen <= offset) {
4002 		skb_frag_t *frag;
4003 		skb_frag_t *frag2;
4004 		int i = skbinfo->nr_frags;
4005 		int nr_frags = pinfo->nr_frags + i;
4006 
4007 		if (nr_frags > MAX_SKB_FRAGS)
4008 			goto merge;
4009 
4010 		offset -= headlen;
4011 		pinfo->nr_frags = nr_frags;
4012 		skbinfo->nr_frags = 0;
4013 
4014 		frag = pinfo->frags + nr_frags;
4015 		frag2 = skbinfo->frags + i;
4016 		do {
4017 			*--frag = *--frag2;
4018 		} while (--i);
4019 
4020 		skb_frag_off_add(frag, offset);
4021 		skb_frag_size_sub(frag, offset);
4022 
4023 		/* all fragments truesize : remove (head size + sk_buff) */
4024 		delta_truesize = skb->truesize -
4025 				 SKB_TRUESIZE(skb_end_offset(skb));
4026 
4027 		skb->truesize -= skb->data_len;
4028 		skb->len -= skb->data_len;
4029 		skb->data_len = 0;
4030 
4031 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4032 		goto done;
4033 	} else if (skb->head_frag) {
4034 		int nr_frags = pinfo->nr_frags;
4035 		skb_frag_t *frag = pinfo->frags + nr_frags;
4036 		struct page *page = virt_to_head_page(skb->head);
4037 		unsigned int first_size = headlen - offset;
4038 		unsigned int first_offset;
4039 
4040 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4041 			goto merge;
4042 
4043 		first_offset = skb->data -
4044 			       (unsigned char *)page_address(page) +
4045 			       offset;
4046 
4047 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4048 
4049 		__skb_frag_set_page(frag, page);
4050 		skb_frag_off_set(frag, first_offset);
4051 		skb_frag_size_set(frag, first_size);
4052 
4053 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4054 		/* We dont need to clear skbinfo->nr_frags here */
4055 
4056 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4057 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4058 		goto done;
4059 	}
4060 
4061 merge:
4062 	delta_truesize = skb->truesize;
4063 	if (offset > headlen) {
4064 		unsigned int eat = offset - headlen;
4065 
4066 		skb_frag_off_add(&skbinfo->frags[0], eat);
4067 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4068 		skb->data_len -= eat;
4069 		skb->len -= eat;
4070 		offset = headlen;
4071 	}
4072 
4073 	__skb_pull(skb, offset);
4074 
4075 	if (NAPI_GRO_CB(p)->last == p)
4076 		skb_shinfo(p)->frag_list = skb;
4077 	else
4078 		NAPI_GRO_CB(p)->last->next = skb;
4079 	NAPI_GRO_CB(p)->last = skb;
4080 	__skb_header_release(skb);
4081 	lp = p;
4082 
4083 done:
4084 	NAPI_GRO_CB(p)->count++;
4085 	p->data_len += len;
4086 	p->truesize += delta_truesize;
4087 	p->len += len;
4088 	if (lp != p) {
4089 		lp->data_len += len;
4090 		lp->truesize += delta_truesize;
4091 		lp->len += len;
4092 	}
4093 	NAPI_GRO_CB(skb)->same_flow = 1;
4094 	return 0;
4095 }
4096 EXPORT_SYMBOL_GPL(skb_gro_receive);
4097 
4098 #ifdef CONFIG_SKB_EXTENSIONS
4099 #define SKB_EXT_ALIGN_VALUE	8
4100 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4101 
4102 static const u8 skb_ext_type_len[] = {
4103 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4104 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4105 #endif
4106 #ifdef CONFIG_XFRM
4107 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4108 #endif
4109 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4110 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4111 #endif
4112 };
4113 
4114 static __always_inline unsigned int skb_ext_total_length(void)
4115 {
4116 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4117 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4118 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4119 #endif
4120 #ifdef CONFIG_XFRM
4121 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4122 #endif
4123 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4124 		skb_ext_type_len[TC_SKB_EXT] +
4125 #endif
4126 		0;
4127 }
4128 
4129 static void skb_extensions_init(void)
4130 {
4131 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4132 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4133 
4134 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4135 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4136 					     0,
4137 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4138 					     NULL);
4139 }
4140 #else
4141 static void skb_extensions_init(void) {}
4142 #endif
4143 
4144 void __init skb_init(void)
4145 {
4146 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4147 					      sizeof(struct sk_buff),
4148 					      0,
4149 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4150 					      offsetof(struct sk_buff, cb),
4151 					      sizeof_field(struct sk_buff, cb),
4152 					      NULL);
4153 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4154 						sizeof(struct sk_buff_fclones),
4155 						0,
4156 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4157 						NULL);
4158 	skb_extensions_init();
4159 }
4160 
4161 static int
4162 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4163 	       unsigned int recursion_level)
4164 {
4165 	int start = skb_headlen(skb);
4166 	int i, copy = start - offset;
4167 	struct sk_buff *frag_iter;
4168 	int elt = 0;
4169 
4170 	if (unlikely(recursion_level >= 24))
4171 		return -EMSGSIZE;
4172 
4173 	if (copy > 0) {
4174 		if (copy > len)
4175 			copy = len;
4176 		sg_set_buf(sg, skb->data + offset, copy);
4177 		elt++;
4178 		if ((len -= copy) == 0)
4179 			return elt;
4180 		offset += copy;
4181 	}
4182 
4183 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4184 		int end;
4185 
4186 		WARN_ON(start > offset + len);
4187 
4188 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4189 		if ((copy = end - offset) > 0) {
4190 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4191 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4192 				return -EMSGSIZE;
4193 
4194 			if (copy > len)
4195 				copy = len;
4196 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4197 				    skb_frag_off(frag) + offset - start);
4198 			elt++;
4199 			if (!(len -= copy))
4200 				return elt;
4201 			offset += copy;
4202 		}
4203 		start = end;
4204 	}
4205 
4206 	skb_walk_frags(skb, frag_iter) {
4207 		int end, ret;
4208 
4209 		WARN_ON(start > offset + len);
4210 
4211 		end = start + frag_iter->len;
4212 		if ((copy = end - offset) > 0) {
4213 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4214 				return -EMSGSIZE;
4215 
4216 			if (copy > len)
4217 				copy = len;
4218 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4219 					      copy, recursion_level + 1);
4220 			if (unlikely(ret < 0))
4221 				return ret;
4222 			elt += ret;
4223 			if ((len -= copy) == 0)
4224 				return elt;
4225 			offset += copy;
4226 		}
4227 		start = end;
4228 	}
4229 	BUG_ON(len);
4230 	return elt;
4231 }
4232 
4233 /**
4234  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4235  *	@skb: Socket buffer containing the buffers to be mapped
4236  *	@sg: The scatter-gather list to map into
4237  *	@offset: The offset into the buffer's contents to start mapping
4238  *	@len: Length of buffer space to be mapped
4239  *
4240  *	Fill the specified scatter-gather list with mappings/pointers into a
4241  *	region of the buffer space attached to a socket buffer. Returns either
4242  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4243  *	could not fit.
4244  */
4245 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4246 {
4247 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4248 
4249 	if (nsg <= 0)
4250 		return nsg;
4251 
4252 	sg_mark_end(&sg[nsg - 1]);
4253 
4254 	return nsg;
4255 }
4256 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4257 
4258 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4259  * sglist without mark the sg which contain last skb data as the end.
4260  * So the caller can mannipulate sg list as will when padding new data after
4261  * the first call without calling sg_unmark_end to expend sg list.
4262  *
4263  * Scenario to use skb_to_sgvec_nomark:
4264  * 1. sg_init_table
4265  * 2. skb_to_sgvec_nomark(payload1)
4266  * 3. skb_to_sgvec_nomark(payload2)
4267  *
4268  * This is equivalent to:
4269  * 1. sg_init_table
4270  * 2. skb_to_sgvec(payload1)
4271  * 3. sg_unmark_end
4272  * 4. skb_to_sgvec(payload2)
4273  *
4274  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4275  * is more preferable.
4276  */
4277 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4278 			int offset, int len)
4279 {
4280 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4281 }
4282 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4283 
4284 
4285 
4286 /**
4287  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4288  *	@skb: The socket buffer to check.
4289  *	@tailbits: Amount of trailing space to be added
4290  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4291  *
4292  *	Make sure that the data buffers attached to a socket buffer are
4293  *	writable. If they are not, private copies are made of the data buffers
4294  *	and the socket buffer is set to use these instead.
4295  *
4296  *	If @tailbits is given, make sure that there is space to write @tailbits
4297  *	bytes of data beyond current end of socket buffer.  @trailer will be
4298  *	set to point to the skb in which this space begins.
4299  *
4300  *	The number of scatterlist elements required to completely map the
4301  *	COW'd and extended socket buffer will be returned.
4302  */
4303 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4304 {
4305 	int copyflag;
4306 	int elt;
4307 	struct sk_buff *skb1, **skb_p;
4308 
4309 	/* If skb is cloned or its head is paged, reallocate
4310 	 * head pulling out all the pages (pages are considered not writable
4311 	 * at the moment even if they are anonymous).
4312 	 */
4313 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4314 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4315 		return -ENOMEM;
4316 
4317 	/* Easy case. Most of packets will go this way. */
4318 	if (!skb_has_frag_list(skb)) {
4319 		/* A little of trouble, not enough of space for trailer.
4320 		 * This should not happen, when stack is tuned to generate
4321 		 * good frames. OK, on miss we reallocate and reserve even more
4322 		 * space, 128 bytes is fair. */
4323 
4324 		if (skb_tailroom(skb) < tailbits &&
4325 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4326 			return -ENOMEM;
4327 
4328 		/* Voila! */
4329 		*trailer = skb;
4330 		return 1;
4331 	}
4332 
4333 	/* Misery. We are in troubles, going to mincer fragments... */
4334 
4335 	elt = 1;
4336 	skb_p = &skb_shinfo(skb)->frag_list;
4337 	copyflag = 0;
4338 
4339 	while ((skb1 = *skb_p) != NULL) {
4340 		int ntail = 0;
4341 
4342 		/* The fragment is partially pulled by someone,
4343 		 * this can happen on input. Copy it and everything
4344 		 * after it. */
4345 
4346 		if (skb_shared(skb1))
4347 			copyflag = 1;
4348 
4349 		/* If the skb is the last, worry about trailer. */
4350 
4351 		if (skb1->next == NULL && tailbits) {
4352 			if (skb_shinfo(skb1)->nr_frags ||
4353 			    skb_has_frag_list(skb1) ||
4354 			    skb_tailroom(skb1) < tailbits)
4355 				ntail = tailbits + 128;
4356 		}
4357 
4358 		if (copyflag ||
4359 		    skb_cloned(skb1) ||
4360 		    ntail ||
4361 		    skb_shinfo(skb1)->nr_frags ||
4362 		    skb_has_frag_list(skb1)) {
4363 			struct sk_buff *skb2;
4364 
4365 			/* Fuck, we are miserable poor guys... */
4366 			if (ntail == 0)
4367 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4368 			else
4369 				skb2 = skb_copy_expand(skb1,
4370 						       skb_headroom(skb1),
4371 						       ntail,
4372 						       GFP_ATOMIC);
4373 			if (unlikely(skb2 == NULL))
4374 				return -ENOMEM;
4375 
4376 			if (skb1->sk)
4377 				skb_set_owner_w(skb2, skb1->sk);
4378 
4379 			/* Looking around. Are we still alive?
4380 			 * OK, link new skb, drop old one */
4381 
4382 			skb2->next = skb1->next;
4383 			*skb_p = skb2;
4384 			kfree_skb(skb1);
4385 			skb1 = skb2;
4386 		}
4387 		elt++;
4388 		*trailer = skb1;
4389 		skb_p = &skb1->next;
4390 	}
4391 
4392 	return elt;
4393 }
4394 EXPORT_SYMBOL_GPL(skb_cow_data);
4395 
4396 static void sock_rmem_free(struct sk_buff *skb)
4397 {
4398 	struct sock *sk = skb->sk;
4399 
4400 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4401 }
4402 
4403 static void skb_set_err_queue(struct sk_buff *skb)
4404 {
4405 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4406 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4407 	 */
4408 	skb->pkt_type = PACKET_OUTGOING;
4409 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4410 }
4411 
4412 /*
4413  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4414  */
4415 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4416 {
4417 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4418 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4419 		return -ENOMEM;
4420 
4421 	skb_orphan(skb);
4422 	skb->sk = sk;
4423 	skb->destructor = sock_rmem_free;
4424 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4425 	skb_set_err_queue(skb);
4426 
4427 	/* before exiting rcu section, make sure dst is refcounted */
4428 	skb_dst_force(skb);
4429 
4430 	skb_queue_tail(&sk->sk_error_queue, skb);
4431 	if (!sock_flag(sk, SOCK_DEAD))
4432 		sk->sk_error_report(sk);
4433 	return 0;
4434 }
4435 EXPORT_SYMBOL(sock_queue_err_skb);
4436 
4437 static bool is_icmp_err_skb(const struct sk_buff *skb)
4438 {
4439 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4440 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4441 }
4442 
4443 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4444 {
4445 	struct sk_buff_head *q = &sk->sk_error_queue;
4446 	struct sk_buff *skb, *skb_next = NULL;
4447 	bool icmp_next = false;
4448 	unsigned long flags;
4449 
4450 	spin_lock_irqsave(&q->lock, flags);
4451 	skb = __skb_dequeue(q);
4452 	if (skb && (skb_next = skb_peek(q))) {
4453 		icmp_next = is_icmp_err_skb(skb_next);
4454 		if (icmp_next)
4455 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4456 	}
4457 	spin_unlock_irqrestore(&q->lock, flags);
4458 
4459 	if (is_icmp_err_skb(skb) && !icmp_next)
4460 		sk->sk_err = 0;
4461 
4462 	if (skb_next)
4463 		sk->sk_error_report(sk);
4464 
4465 	return skb;
4466 }
4467 EXPORT_SYMBOL(sock_dequeue_err_skb);
4468 
4469 /**
4470  * skb_clone_sk - create clone of skb, and take reference to socket
4471  * @skb: the skb to clone
4472  *
4473  * This function creates a clone of a buffer that holds a reference on
4474  * sk_refcnt.  Buffers created via this function are meant to be
4475  * returned using sock_queue_err_skb, or free via kfree_skb.
4476  *
4477  * When passing buffers allocated with this function to sock_queue_err_skb
4478  * it is necessary to wrap the call with sock_hold/sock_put in order to
4479  * prevent the socket from being released prior to being enqueued on
4480  * the sk_error_queue.
4481  */
4482 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4483 {
4484 	struct sock *sk = skb->sk;
4485 	struct sk_buff *clone;
4486 
4487 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4488 		return NULL;
4489 
4490 	clone = skb_clone(skb, GFP_ATOMIC);
4491 	if (!clone) {
4492 		sock_put(sk);
4493 		return NULL;
4494 	}
4495 
4496 	clone->sk = sk;
4497 	clone->destructor = sock_efree;
4498 
4499 	return clone;
4500 }
4501 EXPORT_SYMBOL(skb_clone_sk);
4502 
4503 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4504 					struct sock *sk,
4505 					int tstype,
4506 					bool opt_stats)
4507 {
4508 	struct sock_exterr_skb *serr;
4509 	int err;
4510 
4511 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4512 
4513 	serr = SKB_EXT_ERR(skb);
4514 	memset(serr, 0, sizeof(*serr));
4515 	serr->ee.ee_errno = ENOMSG;
4516 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4517 	serr->ee.ee_info = tstype;
4518 	serr->opt_stats = opt_stats;
4519 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4520 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4521 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4522 		if (sk->sk_protocol == IPPROTO_TCP &&
4523 		    sk->sk_type == SOCK_STREAM)
4524 			serr->ee.ee_data -= sk->sk_tskey;
4525 	}
4526 
4527 	err = sock_queue_err_skb(sk, skb);
4528 
4529 	if (err)
4530 		kfree_skb(skb);
4531 }
4532 
4533 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4534 {
4535 	bool ret;
4536 
4537 	if (likely(sysctl_tstamp_allow_data || tsonly))
4538 		return true;
4539 
4540 	read_lock_bh(&sk->sk_callback_lock);
4541 	ret = sk->sk_socket && sk->sk_socket->file &&
4542 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4543 	read_unlock_bh(&sk->sk_callback_lock);
4544 	return ret;
4545 }
4546 
4547 void skb_complete_tx_timestamp(struct sk_buff *skb,
4548 			       struct skb_shared_hwtstamps *hwtstamps)
4549 {
4550 	struct sock *sk = skb->sk;
4551 
4552 	if (!skb_may_tx_timestamp(sk, false))
4553 		goto err;
4554 
4555 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4556 	 * but only if the socket refcount is not zero.
4557 	 */
4558 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4559 		*skb_hwtstamps(skb) = *hwtstamps;
4560 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4561 		sock_put(sk);
4562 		return;
4563 	}
4564 
4565 err:
4566 	kfree_skb(skb);
4567 }
4568 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4569 
4570 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4571 		     struct skb_shared_hwtstamps *hwtstamps,
4572 		     struct sock *sk, int tstype)
4573 {
4574 	struct sk_buff *skb;
4575 	bool tsonly, opt_stats = false;
4576 
4577 	if (!sk)
4578 		return;
4579 
4580 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4581 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4582 		return;
4583 
4584 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4585 	if (!skb_may_tx_timestamp(sk, tsonly))
4586 		return;
4587 
4588 	if (tsonly) {
4589 #ifdef CONFIG_INET
4590 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4591 		    sk->sk_protocol == IPPROTO_TCP &&
4592 		    sk->sk_type == SOCK_STREAM) {
4593 			skb = tcp_get_timestamping_opt_stats(sk);
4594 			opt_stats = true;
4595 		} else
4596 #endif
4597 			skb = alloc_skb(0, GFP_ATOMIC);
4598 	} else {
4599 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4600 	}
4601 	if (!skb)
4602 		return;
4603 
4604 	if (tsonly) {
4605 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4606 					     SKBTX_ANY_TSTAMP;
4607 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4608 	}
4609 
4610 	if (hwtstamps)
4611 		*skb_hwtstamps(skb) = *hwtstamps;
4612 	else
4613 		skb->tstamp = ktime_get_real();
4614 
4615 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4616 }
4617 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4618 
4619 void skb_tstamp_tx(struct sk_buff *orig_skb,
4620 		   struct skb_shared_hwtstamps *hwtstamps)
4621 {
4622 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4623 			       SCM_TSTAMP_SND);
4624 }
4625 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4626 
4627 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4628 {
4629 	struct sock *sk = skb->sk;
4630 	struct sock_exterr_skb *serr;
4631 	int err = 1;
4632 
4633 	skb->wifi_acked_valid = 1;
4634 	skb->wifi_acked = acked;
4635 
4636 	serr = SKB_EXT_ERR(skb);
4637 	memset(serr, 0, sizeof(*serr));
4638 	serr->ee.ee_errno = ENOMSG;
4639 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4640 
4641 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4642 	 * but only if the socket refcount is not zero.
4643 	 */
4644 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4645 		err = sock_queue_err_skb(sk, skb);
4646 		sock_put(sk);
4647 	}
4648 	if (err)
4649 		kfree_skb(skb);
4650 }
4651 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4652 
4653 /**
4654  * skb_partial_csum_set - set up and verify partial csum values for packet
4655  * @skb: the skb to set
4656  * @start: the number of bytes after skb->data to start checksumming.
4657  * @off: the offset from start to place the checksum.
4658  *
4659  * For untrusted partially-checksummed packets, we need to make sure the values
4660  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4661  *
4662  * This function checks and sets those values and skb->ip_summed: if this
4663  * returns false you should drop the packet.
4664  */
4665 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4666 {
4667 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4668 	u32 csum_start = skb_headroom(skb) + (u32)start;
4669 
4670 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4671 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4672 				     start, off, skb_headroom(skb), skb_headlen(skb));
4673 		return false;
4674 	}
4675 	skb->ip_summed = CHECKSUM_PARTIAL;
4676 	skb->csum_start = csum_start;
4677 	skb->csum_offset = off;
4678 	skb_set_transport_header(skb, start);
4679 	return true;
4680 }
4681 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4682 
4683 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4684 			       unsigned int max)
4685 {
4686 	if (skb_headlen(skb) >= len)
4687 		return 0;
4688 
4689 	/* If we need to pullup then pullup to the max, so we
4690 	 * won't need to do it again.
4691 	 */
4692 	if (max > skb->len)
4693 		max = skb->len;
4694 
4695 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4696 		return -ENOMEM;
4697 
4698 	if (skb_headlen(skb) < len)
4699 		return -EPROTO;
4700 
4701 	return 0;
4702 }
4703 
4704 #define MAX_TCP_HDR_LEN (15 * 4)
4705 
4706 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4707 				      typeof(IPPROTO_IP) proto,
4708 				      unsigned int off)
4709 {
4710 	switch (proto) {
4711 		int err;
4712 
4713 	case IPPROTO_TCP:
4714 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4715 					  off + MAX_TCP_HDR_LEN);
4716 		if (!err && !skb_partial_csum_set(skb, off,
4717 						  offsetof(struct tcphdr,
4718 							   check)))
4719 			err = -EPROTO;
4720 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4721 
4722 	case IPPROTO_UDP:
4723 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4724 					  off + sizeof(struct udphdr));
4725 		if (!err && !skb_partial_csum_set(skb, off,
4726 						  offsetof(struct udphdr,
4727 							   check)))
4728 			err = -EPROTO;
4729 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4730 	}
4731 
4732 	return ERR_PTR(-EPROTO);
4733 }
4734 
4735 /* This value should be large enough to cover a tagged ethernet header plus
4736  * maximally sized IP and TCP or UDP headers.
4737  */
4738 #define MAX_IP_HDR_LEN 128
4739 
4740 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4741 {
4742 	unsigned int off;
4743 	bool fragment;
4744 	__sum16 *csum;
4745 	int err;
4746 
4747 	fragment = false;
4748 
4749 	err = skb_maybe_pull_tail(skb,
4750 				  sizeof(struct iphdr),
4751 				  MAX_IP_HDR_LEN);
4752 	if (err < 0)
4753 		goto out;
4754 
4755 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4756 		fragment = true;
4757 
4758 	off = ip_hdrlen(skb);
4759 
4760 	err = -EPROTO;
4761 
4762 	if (fragment)
4763 		goto out;
4764 
4765 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4766 	if (IS_ERR(csum))
4767 		return PTR_ERR(csum);
4768 
4769 	if (recalculate)
4770 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4771 					   ip_hdr(skb)->daddr,
4772 					   skb->len - off,
4773 					   ip_hdr(skb)->protocol, 0);
4774 	err = 0;
4775 
4776 out:
4777 	return err;
4778 }
4779 
4780 /* This value should be large enough to cover a tagged ethernet header plus
4781  * an IPv6 header, all options, and a maximal TCP or UDP header.
4782  */
4783 #define MAX_IPV6_HDR_LEN 256
4784 
4785 #define OPT_HDR(type, skb, off) \
4786 	(type *)(skb_network_header(skb) + (off))
4787 
4788 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4789 {
4790 	int err;
4791 	u8 nexthdr;
4792 	unsigned int off;
4793 	unsigned int len;
4794 	bool fragment;
4795 	bool done;
4796 	__sum16 *csum;
4797 
4798 	fragment = false;
4799 	done = false;
4800 
4801 	off = sizeof(struct ipv6hdr);
4802 
4803 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4804 	if (err < 0)
4805 		goto out;
4806 
4807 	nexthdr = ipv6_hdr(skb)->nexthdr;
4808 
4809 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4810 	while (off <= len && !done) {
4811 		switch (nexthdr) {
4812 		case IPPROTO_DSTOPTS:
4813 		case IPPROTO_HOPOPTS:
4814 		case IPPROTO_ROUTING: {
4815 			struct ipv6_opt_hdr *hp;
4816 
4817 			err = skb_maybe_pull_tail(skb,
4818 						  off +
4819 						  sizeof(struct ipv6_opt_hdr),
4820 						  MAX_IPV6_HDR_LEN);
4821 			if (err < 0)
4822 				goto out;
4823 
4824 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4825 			nexthdr = hp->nexthdr;
4826 			off += ipv6_optlen(hp);
4827 			break;
4828 		}
4829 		case IPPROTO_AH: {
4830 			struct ip_auth_hdr *hp;
4831 
4832 			err = skb_maybe_pull_tail(skb,
4833 						  off +
4834 						  sizeof(struct ip_auth_hdr),
4835 						  MAX_IPV6_HDR_LEN);
4836 			if (err < 0)
4837 				goto out;
4838 
4839 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4840 			nexthdr = hp->nexthdr;
4841 			off += ipv6_authlen(hp);
4842 			break;
4843 		}
4844 		case IPPROTO_FRAGMENT: {
4845 			struct frag_hdr *hp;
4846 
4847 			err = skb_maybe_pull_tail(skb,
4848 						  off +
4849 						  sizeof(struct frag_hdr),
4850 						  MAX_IPV6_HDR_LEN);
4851 			if (err < 0)
4852 				goto out;
4853 
4854 			hp = OPT_HDR(struct frag_hdr, skb, off);
4855 
4856 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4857 				fragment = true;
4858 
4859 			nexthdr = hp->nexthdr;
4860 			off += sizeof(struct frag_hdr);
4861 			break;
4862 		}
4863 		default:
4864 			done = true;
4865 			break;
4866 		}
4867 	}
4868 
4869 	err = -EPROTO;
4870 
4871 	if (!done || fragment)
4872 		goto out;
4873 
4874 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4875 	if (IS_ERR(csum))
4876 		return PTR_ERR(csum);
4877 
4878 	if (recalculate)
4879 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4880 					 &ipv6_hdr(skb)->daddr,
4881 					 skb->len - off, nexthdr, 0);
4882 	err = 0;
4883 
4884 out:
4885 	return err;
4886 }
4887 
4888 /**
4889  * skb_checksum_setup - set up partial checksum offset
4890  * @skb: the skb to set up
4891  * @recalculate: if true the pseudo-header checksum will be recalculated
4892  */
4893 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4894 {
4895 	int err;
4896 
4897 	switch (skb->protocol) {
4898 	case htons(ETH_P_IP):
4899 		err = skb_checksum_setup_ipv4(skb, recalculate);
4900 		break;
4901 
4902 	case htons(ETH_P_IPV6):
4903 		err = skb_checksum_setup_ipv6(skb, recalculate);
4904 		break;
4905 
4906 	default:
4907 		err = -EPROTO;
4908 		break;
4909 	}
4910 
4911 	return err;
4912 }
4913 EXPORT_SYMBOL(skb_checksum_setup);
4914 
4915 /**
4916  * skb_checksum_maybe_trim - maybe trims the given skb
4917  * @skb: the skb to check
4918  * @transport_len: the data length beyond the network header
4919  *
4920  * Checks whether the given skb has data beyond the given transport length.
4921  * If so, returns a cloned skb trimmed to this transport length.
4922  * Otherwise returns the provided skb. Returns NULL in error cases
4923  * (e.g. transport_len exceeds skb length or out-of-memory).
4924  *
4925  * Caller needs to set the skb transport header and free any returned skb if it
4926  * differs from the provided skb.
4927  */
4928 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4929 					       unsigned int transport_len)
4930 {
4931 	struct sk_buff *skb_chk;
4932 	unsigned int len = skb_transport_offset(skb) + transport_len;
4933 	int ret;
4934 
4935 	if (skb->len < len)
4936 		return NULL;
4937 	else if (skb->len == len)
4938 		return skb;
4939 
4940 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4941 	if (!skb_chk)
4942 		return NULL;
4943 
4944 	ret = pskb_trim_rcsum(skb_chk, len);
4945 	if (ret) {
4946 		kfree_skb(skb_chk);
4947 		return NULL;
4948 	}
4949 
4950 	return skb_chk;
4951 }
4952 
4953 /**
4954  * skb_checksum_trimmed - validate checksum of an skb
4955  * @skb: the skb to check
4956  * @transport_len: the data length beyond the network header
4957  * @skb_chkf: checksum function to use
4958  *
4959  * Applies the given checksum function skb_chkf to the provided skb.
4960  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4961  *
4962  * If the skb has data beyond the given transport length, then a
4963  * trimmed & cloned skb is checked and returned.
4964  *
4965  * Caller needs to set the skb transport header and free any returned skb if it
4966  * differs from the provided skb.
4967  */
4968 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4969 				     unsigned int transport_len,
4970 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4971 {
4972 	struct sk_buff *skb_chk;
4973 	unsigned int offset = skb_transport_offset(skb);
4974 	__sum16 ret;
4975 
4976 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4977 	if (!skb_chk)
4978 		goto err;
4979 
4980 	if (!pskb_may_pull(skb_chk, offset))
4981 		goto err;
4982 
4983 	skb_pull_rcsum(skb_chk, offset);
4984 	ret = skb_chkf(skb_chk);
4985 	skb_push_rcsum(skb_chk, offset);
4986 
4987 	if (ret)
4988 		goto err;
4989 
4990 	return skb_chk;
4991 
4992 err:
4993 	if (skb_chk && skb_chk != skb)
4994 		kfree_skb(skb_chk);
4995 
4996 	return NULL;
4997 
4998 }
4999 EXPORT_SYMBOL(skb_checksum_trimmed);
5000 
5001 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5002 {
5003 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5004 			     skb->dev->name);
5005 }
5006 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5007 
5008 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5009 {
5010 	if (head_stolen) {
5011 		skb_release_head_state(skb);
5012 		kmem_cache_free(skbuff_head_cache, skb);
5013 	} else {
5014 		__kfree_skb(skb);
5015 	}
5016 }
5017 EXPORT_SYMBOL(kfree_skb_partial);
5018 
5019 /**
5020  * skb_try_coalesce - try to merge skb to prior one
5021  * @to: prior buffer
5022  * @from: buffer to add
5023  * @fragstolen: pointer to boolean
5024  * @delta_truesize: how much more was allocated than was requested
5025  */
5026 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5027 		      bool *fragstolen, int *delta_truesize)
5028 {
5029 	struct skb_shared_info *to_shinfo, *from_shinfo;
5030 	int i, delta, len = from->len;
5031 
5032 	*fragstolen = false;
5033 
5034 	if (skb_cloned(to))
5035 		return false;
5036 
5037 	if (len <= skb_tailroom(to)) {
5038 		if (len)
5039 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5040 		*delta_truesize = 0;
5041 		return true;
5042 	}
5043 
5044 	to_shinfo = skb_shinfo(to);
5045 	from_shinfo = skb_shinfo(from);
5046 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5047 		return false;
5048 	if (skb_zcopy(to) || skb_zcopy(from))
5049 		return false;
5050 
5051 	if (skb_headlen(from) != 0) {
5052 		struct page *page;
5053 		unsigned int offset;
5054 
5055 		if (to_shinfo->nr_frags +
5056 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5057 			return false;
5058 
5059 		if (skb_head_is_locked(from))
5060 			return false;
5061 
5062 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5063 
5064 		page = virt_to_head_page(from->head);
5065 		offset = from->data - (unsigned char *)page_address(page);
5066 
5067 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5068 				   page, offset, skb_headlen(from));
5069 		*fragstolen = true;
5070 	} else {
5071 		if (to_shinfo->nr_frags +
5072 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5073 			return false;
5074 
5075 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5076 	}
5077 
5078 	WARN_ON_ONCE(delta < len);
5079 
5080 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5081 	       from_shinfo->frags,
5082 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5083 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5084 
5085 	if (!skb_cloned(from))
5086 		from_shinfo->nr_frags = 0;
5087 
5088 	/* if the skb is not cloned this does nothing
5089 	 * since we set nr_frags to 0.
5090 	 */
5091 	for (i = 0; i < from_shinfo->nr_frags; i++)
5092 		__skb_frag_ref(&from_shinfo->frags[i]);
5093 
5094 	to->truesize += delta;
5095 	to->len += len;
5096 	to->data_len += len;
5097 
5098 	*delta_truesize = delta;
5099 	return true;
5100 }
5101 EXPORT_SYMBOL(skb_try_coalesce);
5102 
5103 /**
5104  * skb_scrub_packet - scrub an skb
5105  *
5106  * @skb: buffer to clean
5107  * @xnet: packet is crossing netns
5108  *
5109  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5110  * into/from a tunnel. Some information have to be cleared during these
5111  * operations.
5112  * skb_scrub_packet can also be used to clean a skb before injecting it in
5113  * another namespace (@xnet == true). We have to clear all information in the
5114  * skb that could impact namespace isolation.
5115  */
5116 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5117 {
5118 	skb->pkt_type = PACKET_HOST;
5119 	skb->skb_iif = 0;
5120 	skb->ignore_df = 0;
5121 	skb_dst_drop(skb);
5122 	skb_ext_reset(skb);
5123 	nf_reset_ct(skb);
5124 	nf_reset_trace(skb);
5125 
5126 #ifdef CONFIG_NET_SWITCHDEV
5127 	skb->offload_fwd_mark = 0;
5128 	skb->offload_l3_fwd_mark = 0;
5129 #endif
5130 
5131 	if (!xnet)
5132 		return;
5133 
5134 	ipvs_reset(skb);
5135 	skb->mark = 0;
5136 	skb->tstamp = 0;
5137 }
5138 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5139 
5140 /**
5141  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5142  *
5143  * @skb: GSO skb
5144  *
5145  * skb_gso_transport_seglen is used to determine the real size of the
5146  * individual segments, including Layer4 headers (TCP/UDP).
5147  *
5148  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5149  */
5150 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5151 {
5152 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5153 	unsigned int thlen = 0;
5154 
5155 	if (skb->encapsulation) {
5156 		thlen = skb_inner_transport_header(skb) -
5157 			skb_transport_header(skb);
5158 
5159 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5160 			thlen += inner_tcp_hdrlen(skb);
5161 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5162 		thlen = tcp_hdrlen(skb);
5163 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5164 		thlen = sizeof(struct sctphdr);
5165 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5166 		thlen = sizeof(struct udphdr);
5167 	}
5168 	/* UFO sets gso_size to the size of the fragmentation
5169 	 * payload, i.e. the size of the L4 (UDP) header is already
5170 	 * accounted for.
5171 	 */
5172 	return thlen + shinfo->gso_size;
5173 }
5174 
5175 /**
5176  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5177  *
5178  * @skb: GSO skb
5179  *
5180  * skb_gso_network_seglen is used to determine the real size of the
5181  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5182  *
5183  * The MAC/L2 header is not accounted for.
5184  */
5185 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5186 {
5187 	unsigned int hdr_len = skb_transport_header(skb) -
5188 			       skb_network_header(skb);
5189 
5190 	return hdr_len + skb_gso_transport_seglen(skb);
5191 }
5192 
5193 /**
5194  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5195  *
5196  * @skb: GSO skb
5197  *
5198  * skb_gso_mac_seglen is used to determine the real size of the
5199  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5200  * headers (TCP/UDP).
5201  */
5202 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5203 {
5204 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5205 
5206 	return hdr_len + skb_gso_transport_seglen(skb);
5207 }
5208 
5209 /**
5210  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5211  *
5212  * There are a couple of instances where we have a GSO skb, and we
5213  * want to determine what size it would be after it is segmented.
5214  *
5215  * We might want to check:
5216  * -    L3+L4+payload size (e.g. IP forwarding)
5217  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5218  *
5219  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5220  *
5221  * @skb: GSO skb
5222  *
5223  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5224  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5225  *
5226  * @max_len: The maximum permissible length.
5227  *
5228  * Returns true if the segmented length <= max length.
5229  */
5230 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5231 				      unsigned int seg_len,
5232 				      unsigned int max_len) {
5233 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5234 	const struct sk_buff *iter;
5235 
5236 	if (shinfo->gso_size != GSO_BY_FRAGS)
5237 		return seg_len <= max_len;
5238 
5239 	/* Undo this so we can re-use header sizes */
5240 	seg_len -= GSO_BY_FRAGS;
5241 
5242 	skb_walk_frags(skb, iter) {
5243 		if (seg_len + skb_headlen(iter) > max_len)
5244 			return false;
5245 	}
5246 
5247 	return true;
5248 }
5249 
5250 /**
5251  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5252  *
5253  * @skb: GSO skb
5254  * @mtu: MTU to validate against
5255  *
5256  * skb_gso_validate_network_len validates if a given skb will fit a
5257  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5258  * payload.
5259  */
5260 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5261 {
5262 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5263 }
5264 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5265 
5266 /**
5267  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5268  *
5269  * @skb: GSO skb
5270  * @len: length to validate against
5271  *
5272  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5273  * length once split, including L2, L3 and L4 headers and the payload.
5274  */
5275 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5276 {
5277 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5278 }
5279 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5280 
5281 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5282 {
5283 	int mac_len, meta_len;
5284 	void *meta;
5285 
5286 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5287 		kfree_skb(skb);
5288 		return NULL;
5289 	}
5290 
5291 	mac_len = skb->data - skb_mac_header(skb);
5292 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5293 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5294 			mac_len - VLAN_HLEN - ETH_TLEN);
5295 	}
5296 
5297 	meta_len = skb_metadata_len(skb);
5298 	if (meta_len) {
5299 		meta = skb_metadata_end(skb) - meta_len;
5300 		memmove(meta + VLAN_HLEN, meta, meta_len);
5301 	}
5302 
5303 	skb->mac_header += VLAN_HLEN;
5304 	return skb;
5305 }
5306 
5307 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5308 {
5309 	struct vlan_hdr *vhdr;
5310 	u16 vlan_tci;
5311 
5312 	if (unlikely(skb_vlan_tag_present(skb))) {
5313 		/* vlan_tci is already set-up so leave this for another time */
5314 		return skb;
5315 	}
5316 
5317 	skb = skb_share_check(skb, GFP_ATOMIC);
5318 	if (unlikely(!skb))
5319 		goto err_free;
5320 
5321 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5322 		goto err_free;
5323 
5324 	vhdr = (struct vlan_hdr *)skb->data;
5325 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5326 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5327 
5328 	skb_pull_rcsum(skb, VLAN_HLEN);
5329 	vlan_set_encap_proto(skb, vhdr);
5330 
5331 	skb = skb_reorder_vlan_header(skb);
5332 	if (unlikely(!skb))
5333 		goto err_free;
5334 
5335 	skb_reset_network_header(skb);
5336 	skb_reset_transport_header(skb);
5337 	skb_reset_mac_len(skb);
5338 
5339 	return skb;
5340 
5341 err_free:
5342 	kfree_skb(skb);
5343 	return NULL;
5344 }
5345 EXPORT_SYMBOL(skb_vlan_untag);
5346 
5347 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5348 {
5349 	if (!pskb_may_pull(skb, write_len))
5350 		return -ENOMEM;
5351 
5352 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5353 		return 0;
5354 
5355 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5356 }
5357 EXPORT_SYMBOL(skb_ensure_writable);
5358 
5359 /* remove VLAN header from packet and update csum accordingly.
5360  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5361  */
5362 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5363 {
5364 	struct vlan_hdr *vhdr;
5365 	int offset = skb->data - skb_mac_header(skb);
5366 	int err;
5367 
5368 	if (WARN_ONCE(offset,
5369 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5370 		      offset)) {
5371 		return -EINVAL;
5372 	}
5373 
5374 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5375 	if (unlikely(err))
5376 		return err;
5377 
5378 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5379 
5380 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5381 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5382 
5383 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5384 	__skb_pull(skb, VLAN_HLEN);
5385 
5386 	vlan_set_encap_proto(skb, vhdr);
5387 	skb->mac_header += VLAN_HLEN;
5388 
5389 	if (skb_network_offset(skb) < ETH_HLEN)
5390 		skb_set_network_header(skb, ETH_HLEN);
5391 
5392 	skb_reset_mac_len(skb);
5393 
5394 	return err;
5395 }
5396 EXPORT_SYMBOL(__skb_vlan_pop);
5397 
5398 /* Pop a vlan tag either from hwaccel or from payload.
5399  * Expects skb->data at mac header.
5400  */
5401 int skb_vlan_pop(struct sk_buff *skb)
5402 {
5403 	u16 vlan_tci;
5404 	__be16 vlan_proto;
5405 	int err;
5406 
5407 	if (likely(skb_vlan_tag_present(skb))) {
5408 		__vlan_hwaccel_clear_tag(skb);
5409 	} else {
5410 		if (unlikely(!eth_type_vlan(skb->protocol)))
5411 			return 0;
5412 
5413 		err = __skb_vlan_pop(skb, &vlan_tci);
5414 		if (err)
5415 			return err;
5416 	}
5417 	/* move next vlan tag to hw accel tag */
5418 	if (likely(!eth_type_vlan(skb->protocol)))
5419 		return 0;
5420 
5421 	vlan_proto = skb->protocol;
5422 	err = __skb_vlan_pop(skb, &vlan_tci);
5423 	if (unlikely(err))
5424 		return err;
5425 
5426 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5427 	return 0;
5428 }
5429 EXPORT_SYMBOL(skb_vlan_pop);
5430 
5431 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5432  * Expects skb->data at mac header.
5433  */
5434 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5435 {
5436 	if (skb_vlan_tag_present(skb)) {
5437 		int offset = skb->data - skb_mac_header(skb);
5438 		int err;
5439 
5440 		if (WARN_ONCE(offset,
5441 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5442 			      offset)) {
5443 			return -EINVAL;
5444 		}
5445 
5446 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5447 					skb_vlan_tag_get(skb));
5448 		if (err)
5449 			return err;
5450 
5451 		skb->protocol = skb->vlan_proto;
5452 		skb->mac_len += VLAN_HLEN;
5453 
5454 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5455 	}
5456 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5457 	return 0;
5458 }
5459 EXPORT_SYMBOL(skb_vlan_push);
5460 
5461 /* Update the ethertype of hdr and the skb csum value if required. */
5462 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5463 			     __be16 ethertype)
5464 {
5465 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5466 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5467 
5468 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5469 	}
5470 
5471 	hdr->h_proto = ethertype;
5472 }
5473 
5474 /**
5475  * skb_mpls_push() - push a new MPLS header after the mac header
5476  *
5477  * @skb: buffer
5478  * @mpls_lse: MPLS label stack entry to push
5479  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5480  * @mac_len: length of the MAC header
5481  *
5482  * Expects skb->data at mac header.
5483  *
5484  * Returns 0 on success, -errno otherwise.
5485  */
5486 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5487 		  int mac_len, bool ethernet)
5488 {
5489 	struct mpls_shim_hdr *lse;
5490 	int err;
5491 
5492 	if (unlikely(!eth_p_mpls(mpls_proto)))
5493 		return -EINVAL;
5494 
5495 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5496 	if (skb->encapsulation)
5497 		return -EINVAL;
5498 
5499 	err = skb_cow_head(skb, MPLS_HLEN);
5500 	if (unlikely(err))
5501 		return err;
5502 
5503 	if (!skb->inner_protocol) {
5504 		skb_set_inner_network_header(skb, mac_len);
5505 		skb_set_inner_protocol(skb, skb->protocol);
5506 	}
5507 
5508 	skb_push(skb, MPLS_HLEN);
5509 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5510 		mac_len);
5511 	skb_reset_mac_header(skb);
5512 	skb_set_network_header(skb, mac_len);
5513 
5514 	lse = mpls_hdr(skb);
5515 	lse->label_stack_entry = mpls_lse;
5516 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5517 
5518 	if (ethernet)
5519 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5520 	skb->protocol = mpls_proto;
5521 
5522 	return 0;
5523 }
5524 EXPORT_SYMBOL_GPL(skb_mpls_push);
5525 
5526 /**
5527  * skb_mpls_pop() - pop the outermost MPLS header
5528  *
5529  * @skb: buffer
5530  * @next_proto: ethertype of header after popped MPLS header
5531  * @mac_len: length of the MAC header
5532  * @ethernet: flag to indicate if ethernet header is present in packet
5533  *
5534  * Expects skb->data at mac header.
5535  *
5536  * Returns 0 on success, -errno otherwise.
5537  */
5538 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5539 		 bool ethernet)
5540 {
5541 	int err;
5542 
5543 	if (unlikely(!eth_p_mpls(skb->protocol)))
5544 		return 0;
5545 
5546 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5547 	if (unlikely(err))
5548 		return err;
5549 
5550 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5551 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5552 		mac_len);
5553 
5554 	__skb_pull(skb, MPLS_HLEN);
5555 	skb_reset_mac_header(skb);
5556 	skb_set_network_header(skb, mac_len);
5557 
5558 	if (ethernet) {
5559 		struct ethhdr *hdr;
5560 
5561 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5562 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5563 		skb_mod_eth_type(skb, hdr, next_proto);
5564 	}
5565 	skb->protocol = next_proto;
5566 
5567 	return 0;
5568 }
5569 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5570 
5571 /**
5572  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5573  *
5574  * @skb: buffer
5575  * @mpls_lse: new MPLS label stack entry to update to
5576  *
5577  * Expects skb->data at mac header.
5578  *
5579  * Returns 0 on success, -errno otherwise.
5580  */
5581 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5582 {
5583 	int err;
5584 
5585 	if (unlikely(!eth_p_mpls(skb->protocol)))
5586 		return -EINVAL;
5587 
5588 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5589 	if (unlikely(err))
5590 		return err;
5591 
5592 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5593 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5594 
5595 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5596 	}
5597 
5598 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5599 
5600 	return 0;
5601 }
5602 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5603 
5604 /**
5605  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5606  *
5607  * @skb: buffer
5608  *
5609  * Expects skb->data at mac header.
5610  *
5611  * Returns 0 on success, -errno otherwise.
5612  */
5613 int skb_mpls_dec_ttl(struct sk_buff *skb)
5614 {
5615 	u32 lse;
5616 	u8 ttl;
5617 
5618 	if (unlikely(!eth_p_mpls(skb->protocol)))
5619 		return -EINVAL;
5620 
5621 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5622 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5623 	if (!--ttl)
5624 		return -EINVAL;
5625 
5626 	lse &= ~MPLS_LS_TTL_MASK;
5627 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5628 
5629 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5630 }
5631 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5632 
5633 /**
5634  * alloc_skb_with_frags - allocate skb with page frags
5635  *
5636  * @header_len: size of linear part
5637  * @data_len: needed length in frags
5638  * @max_page_order: max page order desired.
5639  * @errcode: pointer to error code if any
5640  * @gfp_mask: allocation mask
5641  *
5642  * This can be used to allocate a paged skb, given a maximal order for frags.
5643  */
5644 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5645 				     unsigned long data_len,
5646 				     int max_page_order,
5647 				     int *errcode,
5648 				     gfp_t gfp_mask)
5649 {
5650 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5651 	unsigned long chunk;
5652 	struct sk_buff *skb;
5653 	struct page *page;
5654 	int i;
5655 
5656 	*errcode = -EMSGSIZE;
5657 	/* Note this test could be relaxed, if we succeed to allocate
5658 	 * high order pages...
5659 	 */
5660 	if (npages > MAX_SKB_FRAGS)
5661 		return NULL;
5662 
5663 	*errcode = -ENOBUFS;
5664 	skb = alloc_skb(header_len, gfp_mask);
5665 	if (!skb)
5666 		return NULL;
5667 
5668 	skb->truesize += npages << PAGE_SHIFT;
5669 
5670 	for (i = 0; npages > 0; i++) {
5671 		int order = max_page_order;
5672 
5673 		while (order) {
5674 			if (npages >= 1 << order) {
5675 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5676 						   __GFP_COMP |
5677 						   __GFP_NOWARN,
5678 						   order);
5679 				if (page)
5680 					goto fill_page;
5681 				/* Do not retry other high order allocations */
5682 				order = 1;
5683 				max_page_order = 0;
5684 			}
5685 			order--;
5686 		}
5687 		page = alloc_page(gfp_mask);
5688 		if (!page)
5689 			goto failure;
5690 fill_page:
5691 		chunk = min_t(unsigned long, data_len,
5692 			      PAGE_SIZE << order);
5693 		skb_fill_page_desc(skb, i, page, 0, chunk);
5694 		data_len -= chunk;
5695 		npages -= 1 << order;
5696 	}
5697 	return skb;
5698 
5699 failure:
5700 	kfree_skb(skb);
5701 	return NULL;
5702 }
5703 EXPORT_SYMBOL(alloc_skb_with_frags);
5704 
5705 /* carve out the first off bytes from skb when off < headlen */
5706 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5707 				    const int headlen, gfp_t gfp_mask)
5708 {
5709 	int i;
5710 	int size = skb_end_offset(skb);
5711 	int new_hlen = headlen - off;
5712 	u8 *data;
5713 
5714 	size = SKB_DATA_ALIGN(size);
5715 
5716 	if (skb_pfmemalloc(skb))
5717 		gfp_mask |= __GFP_MEMALLOC;
5718 	data = kmalloc_reserve(size +
5719 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5720 			       gfp_mask, NUMA_NO_NODE, NULL);
5721 	if (!data)
5722 		return -ENOMEM;
5723 
5724 	size = SKB_WITH_OVERHEAD(ksize(data));
5725 
5726 	/* Copy real data, and all frags */
5727 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5728 	skb->len -= off;
5729 
5730 	memcpy((struct skb_shared_info *)(data + size),
5731 	       skb_shinfo(skb),
5732 	       offsetof(struct skb_shared_info,
5733 			frags[skb_shinfo(skb)->nr_frags]));
5734 	if (skb_cloned(skb)) {
5735 		/* drop the old head gracefully */
5736 		if (skb_orphan_frags(skb, gfp_mask)) {
5737 			kfree(data);
5738 			return -ENOMEM;
5739 		}
5740 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5741 			skb_frag_ref(skb, i);
5742 		if (skb_has_frag_list(skb))
5743 			skb_clone_fraglist(skb);
5744 		skb_release_data(skb);
5745 	} else {
5746 		/* we can reuse existing recount- all we did was
5747 		 * relocate values
5748 		 */
5749 		skb_free_head(skb);
5750 	}
5751 
5752 	skb->head = data;
5753 	skb->data = data;
5754 	skb->head_frag = 0;
5755 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5756 	skb->end = size;
5757 #else
5758 	skb->end = skb->head + size;
5759 #endif
5760 	skb_set_tail_pointer(skb, skb_headlen(skb));
5761 	skb_headers_offset_update(skb, 0);
5762 	skb->cloned = 0;
5763 	skb->hdr_len = 0;
5764 	skb->nohdr = 0;
5765 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5766 
5767 	return 0;
5768 }
5769 
5770 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5771 
5772 /* carve out the first eat bytes from skb's frag_list. May recurse into
5773  * pskb_carve()
5774  */
5775 static int pskb_carve_frag_list(struct sk_buff *skb,
5776 				struct skb_shared_info *shinfo, int eat,
5777 				gfp_t gfp_mask)
5778 {
5779 	struct sk_buff *list = shinfo->frag_list;
5780 	struct sk_buff *clone = NULL;
5781 	struct sk_buff *insp = NULL;
5782 
5783 	do {
5784 		if (!list) {
5785 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5786 			return -EFAULT;
5787 		}
5788 		if (list->len <= eat) {
5789 			/* Eaten as whole. */
5790 			eat -= list->len;
5791 			list = list->next;
5792 			insp = list;
5793 		} else {
5794 			/* Eaten partially. */
5795 			if (skb_shared(list)) {
5796 				clone = skb_clone(list, gfp_mask);
5797 				if (!clone)
5798 					return -ENOMEM;
5799 				insp = list->next;
5800 				list = clone;
5801 			} else {
5802 				/* This may be pulled without problems. */
5803 				insp = list;
5804 			}
5805 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5806 				kfree_skb(clone);
5807 				return -ENOMEM;
5808 			}
5809 			break;
5810 		}
5811 	} while (eat);
5812 
5813 	/* Free pulled out fragments. */
5814 	while ((list = shinfo->frag_list) != insp) {
5815 		shinfo->frag_list = list->next;
5816 		kfree_skb(list);
5817 	}
5818 	/* And insert new clone at head. */
5819 	if (clone) {
5820 		clone->next = list;
5821 		shinfo->frag_list = clone;
5822 	}
5823 	return 0;
5824 }
5825 
5826 /* carve off first len bytes from skb. Split line (off) is in the
5827  * non-linear part of skb
5828  */
5829 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5830 				       int pos, gfp_t gfp_mask)
5831 {
5832 	int i, k = 0;
5833 	int size = skb_end_offset(skb);
5834 	u8 *data;
5835 	const int nfrags = skb_shinfo(skb)->nr_frags;
5836 	struct skb_shared_info *shinfo;
5837 
5838 	size = SKB_DATA_ALIGN(size);
5839 
5840 	if (skb_pfmemalloc(skb))
5841 		gfp_mask |= __GFP_MEMALLOC;
5842 	data = kmalloc_reserve(size +
5843 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5844 			       gfp_mask, NUMA_NO_NODE, NULL);
5845 	if (!data)
5846 		return -ENOMEM;
5847 
5848 	size = SKB_WITH_OVERHEAD(ksize(data));
5849 
5850 	memcpy((struct skb_shared_info *)(data + size),
5851 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5852 					 frags[skb_shinfo(skb)->nr_frags]));
5853 	if (skb_orphan_frags(skb, gfp_mask)) {
5854 		kfree(data);
5855 		return -ENOMEM;
5856 	}
5857 	shinfo = (struct skb_shared_info *)(data + size);
5858 	for (i = 0; i < nfrags; i++) {
5859 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5860 
5861 		if (pos + fsize > off) {
5862 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5863 
5864 			if (pos < off) {
5865 				/* Split frag.
5866 				 * We have two variants in this case:
5867 				 * 1. Move all the frag to the second
5868 				 *    part, if it is possible. F.e.
5869 				 *    this approach is mandatory for TUX,
5870 				 *    where splitting is expensive.
5871 				 * 2. Split is accurately. We make this.
5872 				 */
5873 				skb_frag_off_add(&shinfo->frags[0], off - pos);
5874 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5875 			}
5876 			skb_frag_ref(skb, i);
5877 			k++;
5878 		}
5879 		pos += fsize;
5880 	}
5881 	shinfo->nr_frags = k;
5882 	if (skb_has_frag_list(skb))
5883 		skb_clone_fraglist(skb);
5884 
5885 	if (k == 0) {
5886 		/* split line is in frag list */
5887 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5888 	}
5889 	skb_release_data(skb);
5890 
5891 	skb->head = data;
5892 	skb->head_frag = 0;
5893 	skb->data = data;
5894 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5895 	skb->end = size;
5896 #else
5897 	skb->end = skb->head + size;
5898 #endif
5899 	skb_reset_tail_pointer(skb);
5900 	skb_headers_offset_update(skb, 0);
5901 	skb->cloned   = 0;
5902 	skb->hdr_len  = 0;
5903 	skb->nohdr    = 0;
5904 	skb->len -= off;
5905 	skb->data_len = skb->len;
5906 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5907 	return 0;
5908 }
5909 
5910 /* remove len bytes from the beginning of the skb */
5911 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5912 {
5913 	int headlen = skb_headlen(skb);
5914 
5915 	if (len < headlen)
5916 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5917 	else
5918 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5919 }
5920 
5921 /* Extract to_copy bytes starting at off from skb, and return this in
5922  * a new skb
5923  */
5924 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5925 			     int to_copy, gfp_t gfp)
5926 {
5927 	struct sk_buff  *clone = skb_clone(skb, gfp);
5928 
5929 	if (!clone)
5930 		return NULL;
5931 
5932 	if (pskb_carve(clone, off, gfp) < 0 ||
5933 	    pskb_trim(clone, to_copy)) {
5934 		kfree_skb(clone);
5935 		return NULL;
5936 	}
5937 	return clone;
5938 }
5939 EXPORT_SYMBOL(pskb_extract);
5940 
5941 /**
5942  * skb_condense - try to get rid of fragments/frag_list if possible
5943  * @skb: buffer
5944  *
5945  * Can be used to save memory before skb is added to a busy queue.
5946  * If packet has bytes in frags and enough tail room in skb->head,
5947  * pull all of them, so that we can free the frags right now and adjust
5948  * truesize.
5949  * Notes:
5950  *	We do not reallocate skb->head thus can not fail.
5951  *	Caller must re-evaluate skb->truesize if needed.
5952  */
5953 void skb_condense(struct sk_buff *skb)
5954 {
5955 	if (skb->data_len) {
5956 		if (skb->data_len > skb->end - skb->tail ||
5957 		    skb_cloned(skb))
5958 			return;
5959 
5960 		/* Nice, we can free page frag(s) right now */
5961 		__pskb_pull_tail(skb, skb->data_len);
5962 	}
5963 	/* At this point, skb->truesize might be over estimated,
5964 	 * because skb had a fragment, and fragments do not tell
5965 	 * their truesize.
5966 	 * When we pulled its content into skb->head, fragment
5967 	 * was freed, but __pskb_pull_tail() could not possibly
5968 	 * adjust skb->truesize, not knowing the frag truesize.
5969 	 */
5970 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5971 }
5972 
5973 #ifdef CONFIG_SKB_EXTENSIONS
5974 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5975 {
5976 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5977 }
5978 
5979 static struct skb_ext *skb_ext_alloc(void)
5980 {
5981 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5982 
5983 	if (new) {
5984 		memset(new->offset, 0, sizeof(new->offset));
5985 		refcount_set(&new->refcnt, 1);
5986 	}
5987 
5988 	return new;
5989 }
5990 
5991 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5992 					 unsigned int old_active)
5993 {
5994 	struct skb_ext *new;
5995 
5996 	if (refcount_read(&old->refcnt) == 1)
5997 		return old;
5998 
5999 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6000 	if (!new)
6001 		return NULL;
6002 
6003 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6004 	refcount_set(&new->refcnt, 1);
6005 
6006 #ifdef CONFIG_XFRM
6007 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6008 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6009 		unsigned int i;
6010 
6011 		for (i = 0; i < sp->len; i++)
6012 			xfrm_state_hold(sp->xvec[i]);
6013 	}
6014 #endif
6015 	__skb_ext_put(old);
6016 	return new;
6017 }
6018 
6019 /**
6020  * skb_ext_add - allocate space for given extension, COW if needed
6021  * @skb: buffer
6022  * @id: extension to allocate space for
6023  *
6024  * Allocates enough space for the given extension.
6025  * If the extension is already present, a pointer to that extension
6026  * is returned.
6027  *
6028  * If the skb was cloned, COW applies and the returned memory can be
6029  * modified without changing the extension space of clones buffers.
6030  *
6031  * Returns pointer to the extension or NULL on allocation failure.
6032  */
6033 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6034 {
6035 	struct skb_ext *new, *old = NULL;
6036 	unsigned int newlen, newoff;
6037 
6038 	if (skb->active_extensions) {
6039 		old = skb->extensions;
6040 
6041 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6042 		if (!new)
6043 			return NULL;
6044 
6045 		if (__skb_ext_exist(new, id))
6046 			goto set_active;
6047 
6048 		newoff = new->chunks;
6049 	} else {
6050 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6051 
6052 		new = skb_ext_alloc();
6053 		if (!new)
6054 			return NULL;
6055 	}
6056 
6057 	newlen = newoff + skb_ext_type_len[id];
6058 	new->chunks = newlen;
6059 	new->offset[id] = newoff;
6060 set_active:
6061 	skb->extensions = new;
6062 	skb->active_extensions |= 1 << id;
6063 	return skb_ext_get_ptr(new, id);
6064 }
6065 EXPORT_SYMBOL(skb_ext_add);
6066 
6067 #ifdef CONFIG_XFRM
6068 static void skb_ext_put_sp(struct sec_path *sp)
6069 {
6070 	unsigned int i;
6071 
6072 	for (i = 0; i < sp->len; i++)
6073 		xfrm_state_put(sp->xvec[i]);
6074 }
6075 #endif
6076 
6077 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6078 {
6079 	struct skb_ext *ext = skb->extensions;
6080 
6081 	skb->active_extensions &= ~(1 << id);
6082 	if (skb->active_extensions == 0) {
6083 		skb->extensions = NULL;
6084 		__skb_ext_put(ext);
6085 #ifdef CONFIG_XFRM
6086 	} else if (id == SKB_EXT_SEC_PATH &&
6087 		   refcount_read(&ext->refcnt) == 1) {
6088 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6089 
6090 		skb_ext_put_sp(sp);
6091 		sp->len = 0;
6092 #endif
6093 	}
6094 }
6095 EXPORT_SYMBOL(__skb_ext_del);
6096 
6097 void __skb_ext_put(struct skb_ext *ext)
6098 {
6099 	/* If this is last clone, nothing can increment
6100 	 * it after check passes.  Avoids one atomic op.
6101 	 */
6102 	if (refcount_read(&ext->refcnt) == 1)
6103 		goto free_now;
6104 
6105 	if (!refcount_dec_and_test(&ext->refcnt))
6106 		return;
6107 free_now:
6108 #ifdef CONFIG_XFRM
6109 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6110 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6111 #endif
6112 
6113 	kmem_cache_free(skbuff_ext_cache, ext);
6114 }
6115 EXPORT_SYMBOL(__skb_ext_put);
6116 #endif /* CONFIG_SKB_EXTENSIONS */
6117