xref: /linux/net/core/skbuff.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 		 __func__, here, skb->len, sz, skb->head, skb->data,
125 		 (unsigned long)skb->tail, (unsigned long)skb->end,
126 		 skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 		 __func__, here, skb->len, sz, skb->head, skb->data,
143 		 (unsigned long)skb->tail, (unsigned long)skb->end,
144 		 skb->dev ? skb->dev->name : "<NULL>");
145 	BUG();
146 }
147 
148 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
149  *	'private' fields and also do memory statistics to find all the
150  *	[BEEP] leaks.
151  *
152  */
153 
154 /**
155  *	__alloc_skb	-	allocate a network buffer
156  *	@size: size to allocate
157  *	@gfp_mask: allocation mask
158  *	@fclone: allocate from fclone cache instead of head cache
159  *		and allocate a cloned (child) skb
160  *	@node: numa node to allocate memory on
161  *
162  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
163  *	tail room of size bytes. The object has a reference count of one.
164  *	The return is the buffer. On a failure the return is %NULL.
165  *
166  *	Buffers may only be allocated from interrupts using a @gfp_mask of
167  *	%GFP_ATOMIC.
168  */
169 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
170 			    int fclone, int node)
171 {
172 	struct kmem_cache *cache;
173 	struct skb_shared_info *shinfo;
174 	struct sk_buff *skb;
175 	u8 *data;
176 
177 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
178 
179 	/* Get the HEAD */
180 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
181 	if (!skb)
182 		goto out;
183 	prefetchw(skb);
184 
185 	/* We do our best to align skb_shared_info on a separate cache
186 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
187 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
188 	 * Both skb->head and skb_shared_info are cache line aligned.
189 	 */
190 	size = SKB_DATA_ALIGN(size);
191 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 	data = kmalloc_node_track_caller(size, gfp_mask, node);
193 	if (!data)
194 		goto nodata;
195 	/* kmalloc(size) might give us more room than requested.
196 	 * Put skb_shared_info exactly at the end of allocated zone,
197 	 * to allow max possible filling before reallocation.
198 	 */
199 	size = SKB_WITH_OVERHEAD(ksize(data));
200 	prefetchw(data + size);
201 
202 	/*
203 	 * Only clear those fields we need to clear, not those that we will
204 	 * actually initialise below. Hence, don't put any more fields after
205 	 * the tail pointer in struct sk_buff!
206 	 */
207 	memset(skb, 0, offsetof(struct sk_buff, tail));
208 	/* Account for allocated memory : skb + skb->head */
209 	skb->truesize = SKB_TRUESIZE(size);
210 	atomic_set(&skb->users, 1);
211 	skb->head = data;
212 	skb->data = data;
213 	skb_reset_tail_pointer(skb);
214 	skb->end = skb->tail + size;
215 #ifdef NET_SKBUFF_DATA_USES_OFFSET
216 	skb->mac_header = ~0U;
217 #endif
218 
219 	/* make sure we initialize shinfo sequentially */
220 	shinfo = skb_shinfo(skb);
221 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
222 	atomic_set(&shinfo->dataref, 1);
223 	kmemcheck_annotate_variable(shinfo->destructor_arg);
224 
225 	if (fclone) {
226 		struct sk_buff *child = skb + 1;
227 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
228 
229 		kmemcheck_annotate_bitfield(child, flags1);
230 		kmemcheck_annotate_bitfield(child, flags2);
231 		skb->fclone = SKB_FCLONE_ORIG;
232 		atomic_set(fclone_ref, 1);
233 
234 		child->fclone = SKB_FCLONE_UNAVAILABLE;
235 	}
236 out:
237 	return skb;
238 nodata:
239 	kmem_cache_free(cache, skb);
240 	skb = NULL;
241 	goto out;
242 }
243 EXPORT_SYMBOL(__alloc_skb);
244 
245 /**
246  * build_skb - build a network buffer
247  * @data: data buffer provided by caller
248  * @frag_size: size of fragment, or 0 if head was kmalloced
249  *
250  * Allocate a new &sk_buff. Caller provides space holding head and
251  * skb_shared_info. @data must have been allocated by kmalloc()
252  * The return is the new skb buffer.
253  * On a failure the return is %NULL, and @data is not freed.
254  * Notes :
255  *  Before IO, driver allocates only data buffer where NIC put incoming frame
256  *  Driver should add room at head (NET_SKB_PAD) and
257  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
258  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
259  *  before giving packet to stack.
260  *  RX rings only contains data buffers, not full skbs.
261  */
262 struct sk_buff *build_skb(void *data, unsigned int frag_size)
263 {
264 	struct skb_shared_info *shinfo;
265 	struct sk_buff *skb;
266 	unsigned int size = frag_size ? : ksize(data);
267 
268 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
269 	if (!skb)
270 		return NULL;
271 
272 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273 
274 	memset(skb, 0, offsetof(struct sk_buff, tail));
275 	skb->truesize = SKB_TRUESIZE(size);
276 	skb->head_frag = frag_size != 0;
277 	atomic_set(&skb->users, 1);
278 	skb->head = data;
279 	skb->data = data;
280 	skb_reset_tail_pointer(skb);
281 	skb->end = skb->tail + size;
282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
283 	skb->mac_header = ~0U;
284 #endif
285 
286 	/* make sure we initialize shinfo sequentially */
287 	shinfo = skb_shinfo(skb);
288 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
289 	atomic_set(&shinfo->dataref, 1);
290 	kmemcheck_annotate_variable(shinfo->destructor_arg);
291 
292 	return skb;
293 }
294 EXPORT_SYMBOL(build_skb);
295 
296 struct netdev_alloc_cache {
297 	struct page *page;
298 	unsigned int offset;
299 };
300 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
301 
302 /**
303  * netdev_alloc_frag - allocate a page fragment
304  * @fragsz: fragment size
305  *
306  * Allocates a frag from a page for receive buffer.
307  * Uses GFP_ATOMIC allocations.
308  */
309 void *netdev_alloc_frag(unsigned int fragsz)
310 {
311 	struct netdev_alloc_cache *nc;
312 	void *data = NULL;
313 	unsigned long flags;
314 
315 	local_irq_save(flags);
316 	nc = &__get_cpu_var(netdev_alloc_cache);
317 	if (unlikely(!nc->page)) {
318 refill:
319 		nc->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
320 		nc->offset = 0;
321 	}
322 	if (likely(nc->page)) {
323 		if (nc->offset + fragsz > PAGE_SIZE) {
324 			put_page(nc->page);
325 			goto refill;
326 		}
327 		data = page_address(nc->page) + nc->offset;
328 		nc->offset += fragsz;
329 		get_page(nc->page);
330 	}
331 	local_irq_restore(flags);
332 	return data;
333 }
334 EXPORT_SYMBOL(netdev_alloc_frag);
335 
336 /**
337  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
338  *	@dev: network device to receive on
339  *	@length: length to allocate
340  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
341  *
342  *	Allocate a new &sk_buff and assign it a usage count of one. The
343  *	buffer has unspecified headroom built in. Users should allocate
344  *	the headroom they think they need without accounting for the
345  *	built in space. The built in space is used for optimisations.
346  *
347  *	%NULL is returned if there is no free memory.
348  */
349 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
350 				   unsigned int length, gfp_t gfp_mask)
351 {
352 	struct sk_buff *skb = NULL;
353 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
354 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
355 
356 	if (fragsz <= PAGE_SIZE && !(gfp_mask & __GFP_WAIT)) {
357 		void *data = netdev_alloc_frag(fragsz);
358 
359 		if (likely(data)) {
360 			skb = build_skb(data, fragsz);
361 			if (unlikely(!skb))
362 				put_page(virt_to_head_page(data));
363 		}
364 	} else {
365 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
366 	}
367 	if (likely(skb)) {
368 		skb_reserve(skb, NET_SKB_PAD);
369 		skb->dev = dev;
370 	}
371 	return skb;
372 }
373 EXPORT_SYMBOL(__netdev_alloc_skb);
374 
375 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
376 		     int size, unsigned int truesize)
377 {
378 	skb_fill_page_desc(skb, i, page, off, size);
379 	skb->len += size;
380 	skb->data_len += size;
381 	skb->truesize += truesize;
382 }
383 EXPORT_SYMBOL(skb_add_rx_frag);
384 
385 static void skb_drop_list(struct sk_buff **listp)
386 {
387 	struct sk_buff *list = *listp;
388 
389 	*listp = NULL;
390 
391 	do {
392 		struct sk_buff *this = list;
393 		list = list->next;
394 		kfree_skb(this);
395 	} while (list);
396 }
397 
398 static inline void skb_drop_fraglist(struct sk_buff *skb)
399 {
400 	skb_drop_list(&skb_shinfo(skb)->frag_list);
401 }
402 
403 static void skb_clone_fraglist(struct sk_buff *skb)
404 {
405 	struct sk_buff *list;
406 
407 	skb_walk_frags(skb, list)
408 		skb_get(list);
409 }
410 
411 static void skb_free_head(struct sk_buff *skb)
412 {
413 	if (skb->head_frag)
414 		put_page(virt_to_head_page(skb->head));
415 	else
416 		kfree(skb->head);
417 }
418 
419 static void skb_release_data(struct sk_buff *skb)
420 {
421 	if (!skb->cloned ||
422 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
423 			       &skb_shinfo(skb)->dataref)) {
424 		if (skb_shinfo(skb)->nr_frags) {
425 			int i;
426 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
427 				skb_frag_unref(skb, i);
428 		}
429 
430 		/*
431 		 * If skb buf is from userspace, we need to notify the caller
432 		 * the lower device DMA has done;
433 		 */
434 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
435 			struct ubuf_info *uarg;
436 
437 			uarg = skb_shinfo(skb)->destructor_arg;
438 			if (uarg->callback)
439 				uarg->callback(uarg);
440 		}
441 
442 		if (skb_has_frag_list(skb))
443 			skb_drop_fraglist(skb);
444 
445 		skb_free_head(skb);
446 	}
447 }
448 
449 /*
450  *	Free an skbuff by memory without cleaning the state.
451  */
452 static void kfree_skbmem(struct sk_buff *skb)
453 {
454 	struct sk_buff *other;
455 	atomic_t *fclone_ref;
456 
457 	switch (skb->fclone) {
458 	case SKB_FCLONE_UNAVAILABLE:
459 		kmem_cache_free(skbuff_head_cache, skb);
460 		break;
461 
462 	case SKB_FCLONE_ORIG:
463 		fclone_ref = (atomic_t *) (skb + 2);
464 		if (atomic_dec_and_test(fclone_ref))
465 			kmem_cache_free(skbuff_fclone_cache, skb);
466 		break;
467 
468 	case SKB_FCLONE_CLONE:
469 		fclone_ref = (atomic_t *) (skb + 1);
470 		other = skb - 1;
471 
472 		/* The clone portion is available for
473 		 * fast-cloning again.
474 		 */
475 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
476 
477 		if (atomic_dec_and_test(fclone_ref))
478 			kmem_cache_free(skbuff_fclone_cache, other);
479 		break;
480 	}
481 }
482 
483 static void skb_release_head_state(struct sk_buff *skb)
484 {
485 	skb_dst_drop(skb);
486 #ifdef CONFIG_XFRM
487 	secpath_put(skb->sp);
488 #endif
489 	if (skb->destructor) {
490 		WARN_ON(in_irq());
491 		skb->destructor(skb);
492 	}
493 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
494 	nf_conntrack_put(skb->nfct);
495 #endif
496 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
497 	nf_conntrack_put_reasm(skb->nfct_reasm);
498 #endif
499 #ifdef CONFIG_BRIDGE_NETFILTER
500 	nf_bridge_put(skb->nf_bridge);
501 #endif
502 /* XXX: IS this still necessary? - JHS */
503 #ifdef CONFIG_NET_SCHED
504 	skb->tc_index = 0;
505 #ifdef CONFIG_NET_CLS_ACT
506 	skb->tc_verd = 0;
507 #endif
508 #endif
509 }
510 
511 /* Free everything but the sk_buff shell. */
512 static void skb_release_all(struct sk_buff *skb)
513 {
514 	skb_release_head_state(skb);
515 	skb_release_data(skb);
516 }
517 
518 /**
519  *	__kfree_skb - private function
520  *	@skb: buffer
521  *
522  *	Free an sk_buff. Release anything attached to the buffer.
523  *	Clean the state. This is an internal helper function. Users should
524  *	always call kfree_skb
525  */
526 
527 void __kfree_skb(struct sk_buff *skb)
528 {
529 	skb_release_all(skb);
530 	kfree_skbmem(skb);
531 }
532 EXPORT_SYMBOL(__kfree_skb);
533 
534 /**
535  *	kfree_skb - free an sk_buff
536  *	@skb: buffer to free
537  *
538  *	Drop a reference to the buffer and free it if the usage count has
539  *	hit zero.
540  */
541 void kfree_skb(struct sk_buff *skb)
542 {
543 	if (unlikely(!skb))
544 		return;
545 	if (likely(atomic_read(&skb->users) == 1))
546 		smp_rmb();
547 	else if (likely(!atomic_dec_and_test(&skb->users)))
548 		return;
549 	trace_kfree_skb(skb, __builtin_return_address(0));
550 	__kfree_skb(skb);
551 }
552 EXPORT_SYMBOL(kfree_skb);
553 
554 /**
555  *	consume_skb - free an skbuff
556  *	@skb: buffer to free
557  *
558  *	Drop a ref to the buffer and free it if the usage count has hit zero
559  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
560  *	is being dropped after a failure and notes that
561  */
562 void consume_skb(struct sk_buff *skb)
563 {
564 	if (unlikely(!skb))
565 		return;
566 	if (likely(atomic_read(&skb->users) == 1))
567 		smp_rmb();
568 	else if (likely(!atomic_dec_and_test(&skb->users)))
569 		return;
570 	trace_consume_skb(skb);
571 	__kfree_skb(skb);
572 }
573 EXPORT_SYMBOL(consume_skb);
574 
575 /**
576  * 	skb_recycle - clean up an skb for reuse
577  * 	@skb: buffer
578  *
579  * 	Recycles the skb to be reused as a receive buffer. This
580  * 	function does any necessary reference count dropping, and
581  * 	cleans up the skbuff as if it just came from __alloc_skb().
582  */
583 void skb_recycle(struct sk_buff *skb)
584 {
585 	struct skb_shared_info *shinfo;
586 
587 	skb_release_head_state(skb);
588 
589 	shinfo = skb_shinfo(skb);
590 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
591 	atomic_set(&shinfo->dataref, 1);
592 
593 	memset(skb, 0, offsetof(struct sk_buff, tail));
594 	skb->data = skb->head + NET_SKB_PAD;
595 	skb_reset_tail_pointer(skb);
596 }
597 EXPORT_SYMBOL(skb_recycle);
598 
599 /**
600  *	skb_recycle_check - check if skb can be reused for receive
601  *	@skb: buffer
602  *	@skb_size: minimum receive buffer size
603  *
604  *	Checks that the skb passed in is not shared or cloned, and
605  *	that it is linear and its head portion at least as large as
606  *	skb_size so that it can be recycled as a receive buffer.
607  *	If these conditions are met, this function does any necessary
608  *	reference count dropping and cleans up the skbuff as if it
609  *	just came from __alloc_skb().
610  */
611 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
612 {
613 	if (!skb_is_recycleable(skb, skb_size))
614 		return false;
615 
616 	skb_recycle(skb);
617 
618 	return true;
619 }
620 EXPORT_SYMBOL(skb_recycle_check);
621 
622 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
623 {
624 	new->tstamp		= old->tstamp;
625 	new->dev		= old->dev;
626 	new->transport_header	= old->transport_header;
627 	new->network_header	= old->network_header;
628 	new->mac_header		= old->mac_header;
629 	skb_dst_copy(new, old);
630 	new->rxhash		= old->rxhash;
631 	new->ooo_okay		= old->ooo_okay;
632 	new->l4_rxhash		= old->l4_rxhash;
633 	new->no_fcs		= old->no_fcs;
634 #ifdef CONFIG_XFRM
635 	new->sp			= secpath_get(old->sp);
636 #endif
637 	memcpy(new->cb, old->cb, sizeof(old->cb));
638 	new->csum		= old->csum;
639 	new->local_df		= old->local_df;
640 	new->pkt_type		= old->pkt_type;
641 	new->ip_summed		= old->ip_summed;
642 	skb_copy_queue_mapping(new, old);
643 	new->priority		= old->priority;
644 #if IS_ENABLED(CONFIG_IP_VS)
645 	new->ipvs_property	= old->ipvs_property;
646 #endif
647 	new->protocol		= old->protocol;
648 	new->mark		= old->mark;
649 	new->skb_iif		= old->skb_iif;
650 	__nf_copy(new, old);
651 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
652 	new->nf_trace		= old->nf_trace;
653 #endif
654 #ifdef CONFIG_NET_SCHED
655 	new->tc_index		= old->tc_index;
656 #ifdef CONFIG_NET_CLS_ACT
657 	new->tc_verd		= old->tc_verd;
658 #endif
659 #endif
660 	new->vlan_tci		= old->vlan_tci;
661 
662 	skb_copy_secmark(new, old);
663 }
664 
665 /*
666  * You should not add any new code to this function.  Add it to
667  * __copy_skb_header above instead.
668  */
669 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
670 {
671 #define C(x) n->x = skb->x
672 
673 	n->next = n->prev = NULL;
674 	n->sk = NULL;
675 	__copy_skb_header(n, skb);
676 
677 	C(len);
678 	C(data_len);
679 	C(mac_len);
680 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
681 	n->cloned = 1;
682 	n->nohdr = 0;
683 	n->destructor = NULL;
684 	C(tail);
685 	C(end);
686 	C(head);
687 	C(head_frag);
688 	C(data);
689 	C(truesize);
690 	atomic_set(&n->users, 1);
691 
692 	atomic_inc(&(skb_shinfo(skb)->dataref));
693 	skb->cloned = 1;
694 
695 	return n;
696 #undef C
697 }
698 
699 /**
700  *	skb_morph	-	morph one skb into another
701  *	@dst: the skb to receive the contents
702  *	@src: the skb to supply the contents
703  *
704  *	This is identical to skb_clone except that the target skb is
705  *	supplied by the user.
706  *
707  *	The target skb is returned upon exit.
708  */
709 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
710 {
711 	skb_release_all(dst);
712 	return __skb_clone(dst, src);
713 }
714 EXPORT_SYMBOL_GPL(skb_morph);
715 
716 /*	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
717  *	@skb: the skb to modify
718  *	@gfp_mask: allocation priority
719  *
720  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
721  *	It will copy all frags into kernel and drop the reference
722  *	to userspace pages.
723  *
724  *	If this function is called from an interrupt gfp_mask() must be
725  *	%GFP_ATOMIC.
726  *
727  *	Returns 0 on success or a negative error code on failure
728  *	to allocate kernel memory to copy to.
729  */
730 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
731 {
732 	int i;
733 	int num_frags = skb_shinfo(skb)->nr_frags;
734 	struct page *page, *head = NULL;
735 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
736 
737 	for (i = 0; i < num_frags; i++) {
738 		u8 *vaddr;
739 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
740 
741 		page = alloc_page(GFP_ATOMIC);
742 		if (!page) {
743 			while (head) {
744 				struct page *next = (struct page *)head->private;
745 				put_page(head);
746 				head = next;
747 			}
748 			return -ENOMEM;
749 		}
750 		vaddr = kmap_atomic(skb_frag_page(f));
751 		memcpy(page_address(page),
752 		       vaddr + f->page_offset, skb_frag_size(f));
753 		kunmap_atomic(vaddr);
754 		page->private = (unsigned long)head;
755 		head = page;
756 	}
757 
758 	/* skb frags release userspace buffers */
759 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
760 		skb_frag_unref(skb, i);
761 
762 	uarg->callback(uarg);
763 
764 	/* skb frags point to kernel buffers */
765 	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
766 		__skb_fill_page_desc(skb, i-1, head, 0,
767 				     skb_shinfo(skb)->frags[i - 1].size);
768 		head = (struct page *)head->private;
769 	}
770 
771 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
772 	return 0;
773 }
774 
775 
776 /**
777  *	skb_clone	-	duplicate an sk_buff
778  *	@skb: buffer to clone
779  *	@gfp_mask: allocation priority
780  *
781  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
782  *	copies share the same packet data but not structure. The new
783  *	buffer has a reference count of 1. If the allocation fails the
784  *	function returns %NULL otherwise the new buffer is returned.
785  *
786  *	If this function is called from an interrupt gfp_mask() must be
787  *	%GFP_ATOMIC.
788  */
789 
790 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
791 {
792 	struct sk_buff *n;
793 
794 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
795 		if (skb_copy_ubufs(skb, gfp_mask))
796 			return NULL;
797 	}
798 
799 	n = skb + 1;
800 	if (skb->fclone == SKB_FCLONE_ORIG &&
801 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
802 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
803 		n->fclone = SKB_FCLONE_CLONE;
804 		atomic_inc(fclone_ref);
805 	} else {
806 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
807 		if (!n)
808 			return NULL;
809 
810 		kmemcheck_annotate_bitfield(n, flags1);
811 		kmemcheck_annotate_bitfield(n, flags2);
812 		n->fclone = SKB_FCLONE_UNAVAILABLE;
813 	}
814 
815 	return __skb_clone(n, skb);
816 }
817 EXPORT_SYMBOL(skb_clone);
818 
819 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
820 {
821 #ifndef NET_SKBUFF_DATA_USES_OFFSET
822 	/*
823 	 *	Shift between the two data areas in bytes
824 	 */
825 	unsigned long offset = new->data - old->data;
826 #endif
827 
828 	__copy_skb_header(new, old);
829 
830 #ifndef NET_SKBUFF_DATA_USES_OFFSET
831 	/* {transport,network,mac}_header are relative to skb->head */
832 	new->transport_header += offset;
833 	new->network_header   += offset;
834 	if (skb_mac_header_was_set(new))
835 		new->mac_header	      += offset;
836 #endif
837 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
838 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
839 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
840 }
841 
842 /**
843  *	skb_copy	-	create private copy of an sk_buff
844  *	@skb: buffer to copy
845  *	@gfp_mask: allocation priority
846  *
847  *	Make a copy of both an &sk_buff and its data. This is used when the
848  *	caller wishes to modify the data and needs a private copy of the
849  *	data to alter. Returns %NULL on failure or the pointer to the buffer
850  *	on success. The returned buffer has a reference count of 1.
851  *
852  *	As by-product this function converts non-linear &sk_buff to linear
853  *	one, so that &sk_buff becomes completely private and caller is allowed
854  *	to modify all the data of returned buffer. This means that this
855  *	function is not recommended for use in circumstances when only
856  *	header is going to be modified. Use pskb_copy() instead.
857  */
858 
859 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
860 {
861 	int headerlen = skb_headroom(skb);
862 	unsigned int size = skb_end_offset(skb) + skb->data_len;
863 	struct sk_buff *n = alloc_skb(size, gfp_mask);
864 
865 	if (!n)
866 		return NULL;
867 
868 	/* Set the data pointer */
869 	skb_reserve(n, headerlen);
870 	/* Set the tail pointer and length */
871 	skb_put(n, skb->len);
872 
873 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
874 		BUG();
875 
876 	copy_skb_header(n, skb);
877 	return n;
878 }
879 EXPORT_SYMBOL(skb_copy);
880 
881 /**
882  *	__pskb_copy	-	create copy of an sk_buff with private head.
883  *	@skb: buffer to copy
884  *	@headroom: headroom of new skb
885  *	@gfp_mask: allocation priority
886  *
887  *	Make a copy of both an &sk_buff and part of its data, located
888  *	in header. Fragmented data remain shared. This is used when
889  *	the caller wishes to modify only header of &sk_buff and needs
890  *	private copy of the header to alter. Returns %NULL on failure
891  *	or the pointer to the buffer on success.
892  *	The returned buffer has a reference count of 1.
893  */
894 
895 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
896 {
897 	unsigned int size = skb_headlen(skb) + headroom;
898 	struct sk_buff *n = alloc_skb(size, gfp_mask);
899 
900 	if (!n)
901 		goto out;
902 
903 	/* Set the data pointer */
904 	skb_reserve(n, headroom);
905 	/* Set the tail pointer and length */
906 	skb_put(n, skb_headlen(skb));
907 	/* Copy the bytes */
908 	skb_copy_from_linear_data(skb, n->data, n->len);
909 
910 	n->truesize += skb->data_len;
911 	n->data_len  = skb->data_len;
912 	n->len	     = skb->len;
913 
914 	if (skb_shinfo(skb)->nr_frags) {
915 		int i;
916 
917 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
918 			if (skb_copy_ubufs(skb, gfp_mask)) {
919 				kfree_skb(n);
920 				n = NULL;
921 				goto out;
922 			}
923 		}
924 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
925 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
926 			skb_frag_ref(skb, i);
927 		}
928 		skb_shinfo(n)->nr_frags = i;
929 	}
930 
931 	if (skb_has_frag_list(skb)) {
932 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
933 		skb_clone_fraglist(n);
934 	}
935 
936 	copy_skb_header(n, skb);
937 out:
938 	return n;
939 }
940 EXPORT_SYMBOL(__pskb_copy);
941 
942 /**
943  *	pskb_expand_head - reallocate header of &sk_buff
944  *	@skb: buffer to reallocate
945  *	@nhead: room to add at head
946  *	@ntail: room to add at tail
947  *	@gfp_mask: allocation priority
948  *
949  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
950  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
951  *	reference count of 1. Returns zero in the case of success or error,
952  *	if expansion failed. In the last case, &sk_buff is not changed.
953  *
954  *	All the pointers pointing into skb header may change and must be
955  *	reloaded after call to this function.
956  */
957 
958 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
959 		     gfp_t gfp_mask)
960 {
961 	int i;
962 	u8 *data;
963 	int size = nhead + skb_end_offset(skb) + ntail;
964 	long off;
965 
966 	BUG_ON(nhead < 0);
967 
968 	if (skb_shared(skb))
969 		BUG();
970 
971 	size = SKB_DATA_ALIGN(size);
972 
973 	data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
974 		       gfp_mask);
975 	if (!data)
976 		goto nodata;
977 	size = SKB_WITH_OVERHEAD(ksize(data));
978 
979 	/* Copy only real data... and, alas, header. This should be
980 	 * optimized for the cases when header is void.
981 	 */
982 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
983 
984 	memcpy((struct skb_shared_info *)(data + size),
985 	       skb_shinfo(skb),
986 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
987 
988 	/*
989 	 * if shinfo is shared we must drop the old head gracefully, but if it
990 	 * is not we can just drop the old head and let the existing refcount
991 	 * be since all we did is relocate the values
992 	 */
993 	if (skb_cloned(skb)) {
994 		/* copy this zero copy skb frags */
995 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
996 			if (skb_copy_ubufs(skb, gfp_mask))
997 				goto nofrags;
998 		}
999 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1000 			skb_frag_ref(skb, i);
1001 
1002 		if (skb_has_frag_list(skb))
1003 			skb_clone_fraglist(skb);
1004 
1005 		skb_release_data(skb);
1006 	} else {
1007 		skb_free_head(skb);
1008 	}
1009 	off = (data + nhead) - skb->head;
1010 
1011 	skb->head     = data;
1012 	skb->head_frag = 0;
1013 	skb->data    += off;
1014 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1015 	skb->end      = size;
1016 	off           = nhead;
1017 #else
1018 	skb->end      = skb->head + size;
1019 #endif
1020 	/* {transport,network,mac}_header and tail are relative to skb->head */
1021 	skb->tail	      += off;
1022 	skb->transport_header += off;
1023 	skb->network_header   += off;
1024 	if (skb_mac_header_was_set(skb))
1025 		skb->mac_header += off;
1026 	/* Only adjust this if it actually is csum_start rather than csum */
1027 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1028 		skb->csum_start += nhead;
1029 	skb->cloned   = 0;
1030 	skb->hdr_len  = 0;
1031 	skb->nohdr    = 0;
1032 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1033 	return 0;
1034 
1035 nofrags:
1036 	kfree(data);
1037 nodata:
1038 	return -ENOMEM;
1039 }
1040 EXPORT_SYMBOL(pskb_expand_head);
1041 
1042 /* Make private copy of skb with writable head and some headroom */
1043 
1044 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1045 {
1046 	struct sk_buff *skb2;
1047 	int delta = headroom - skb_headroom(skb);
1048 
1049 	if (delta <= 0)
1050 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1051 	else {
1052 		skb2 = skb_clone(skb, GFP_ATOMIC);
1053 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1054 					     GFP_ATOMIC)) {
1055 			kfree_skb(skb2);
1056 			skb2 = NULL;
1057 		}
1058 	}
1059 	return skb2;
1060 }
1061 EXPORT_SYMBOL(skb_realloc_headroom);
1062 
1063 /**
1064  *	skb_copy_expand	-	copy and expand sk_buff
1065  *	@skb: buffer to copy
1066  *	@newheadroom: new free bytes at head
1067  *	@newtailroom: new free bytes at tail
1068  *	@gfp_mask: allocation priority
1069  *
1070  *	Make a copy of both an &sk_buff and its data and while doing so
1071  *	allocate additional space.
1072  *
1073  *	This is used when the caller wishes to modify the data and needs a
1074  *	private copy of the data to alter as well as more space for new fields.
1075  *	Returns %NULL on failure or the pointer to the buffer
1076  *	on success. The returned buffer has a reference count of 1.
1077  *
1078  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1079  *	is called from an interrupt.
1080  */
1081 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1082 				int newheadroom, int newtailroom,
1083 				gfp_t gfp_mask)
1084 {
1085 	/*
1086 	 *	Allocate the copy buffer
1087 	 */
1088 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1089 				      gfp_mask);
1090 	int oldheadroom = skb_headroom(skb);
1091 	int head_copy_len, head_copy_off;
1092 	int off;
1093 
1094 	if (!n)
1095 		return NULL;
1096 
1097 	skb_reserve(n, newheadroom);
1098 
1099 	/* Set the tail pointer and length */
1100 	skb_put(n, skb->len);
1101 
1102 	head_copy_len = oldheadroom;
1103 	head_copy_off = 0;
1104 	if (newheadroom <= head_copy_len)
1105 		head_copy_len = newheadroom;
1106 	else
1107 		head_copy_off = newheadroom - head_copy_len;
1108 
1109 	/* Copy the linear header and data. */
1110 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1111 			  skb->len + head_copy_len))
1112 		BUG();
1113 
1114 	copy_skb_header(n, skb);
1115 
1116 	off                  = newheadroom - oldheadroom;
1117 	if (n->ip_summed == CHECKSUM_PARTIAL)
1118 		n->csum_start += off;
1119 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1120 	n->transport_header += off;
1121 	n->network_header   += off;
1122 	if (skb_mac_header_was_set(skb))
1123 		n->mac_header += off;
1124 #endif
1125 
1126 	return n;
1127 }
1128 EXPORT_SYMBOL(skb_copy_expand);
1129 
1130 /**
1131  *	skb_pad			-	zero pad the tail of an skb
1132  *	@skb: buffer to pad
1133  *	@pad: space to pad
1134  *
1135  *	Ensure that a buffer is followed by a padding area that is zero
1136  *	filled. Used by network drivers which may DMA or transfer data
1137  *	beyond the buffer end onto the wire.
1138  *
1139  *	May return error in out of memory cases. The skb is freed on error.
1140  */
1141 
1142 int skb_pad(struct sk_buff *skb, int pad)
1143 {
1144 	int err;
1145 	int ntail;
1146 
1147 	/* If the skbuff is non linear tailroom is always zero.. */
1148 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1149 		memset(skb->data+skb->len, 0, pad);
1150 		return 0;
1151 	}
1152 
1153 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1154 	if (likely(skb_cloned(skb) || ntail > 0)) {
1155 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1156 		if (unlikely(err))
1157 			goto free_skb;
1158 	}
1159 
1160 	/* FIXME: The use of this function with non-linear skb's really needs
1161 	 * to be audited.
1162 	 */
1163 	err = skb_linearize(skb);
1164 	if (unlikely(err))
1165 		goto free_skb;
1166 
1167 	memset(skb->data + skb->len, 0, pad);
1168 	return 0;
1169 
1170 free_skb:
1171 	kfree_skb(skb);
1172 	return err;
1173 }
1174 EXPORT_SYMBOL(skb_pad);
1175 
1176 /**
1177  *	skb_put - add data to a buffer
1178  *	@skb: buffer to use
1179  *	@len: amount of data to add
1180  *
1181  *	This function extends the used data area of the buffer. If this would
1182  *	exceed the total buffer size the kernel will panic. A pointer to the
1183  *	first byte of the extra data is returned.
1184  */
1185 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1186 {
1187 	unsigned char *tmp = skb_tail_pointer(skb);
1188 	SKB_LINEAR_ASSERT(skb);
1189 	skb->tail += len;
1190 	skb->len  += len;
1191 	if (unlikely(skb->tail > skb->end))
1192 		skb_over_panic(skb, len, __builtin_return_address(0));
1193 	return tmp;
1194 }
1195 EXPORT_SYMBOL(skb_put);
1196 
1197 /**
1198  *	skb_push - add data to the start of a buffer
1199  *	@skb: buffer to use
1200  *	@len: amount of data to add
1201  *
1202  *	This function extends the used data area of the buffer at the buffer
1203  *	start. If this would exceed the total buffer headroom the kernel will
1204  *	panic. A pointer to the first byte of the extra data is returned.
1205  */
1206 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1207 {
1208 	skb->data -= len;
1209 	skb->len  += len;
1210 	if (unlikely(skb->data<skb->head))
1211 		skb_under_panic(skb, len, __builtin_return_address(0));
1212 	return skb->data;
1213 }
1214 EXPORT_SYMBOL(skb_push);
1215 
1216 /**
1217  *	skb_pull - remove data from the start of a buffer
1218  *	@skb: buffer to use
1219  *	@len: amount of data to remove
1220  *
1221  *	This function removes data from the start of a buffer, returning
1222  *	the memory to the headroom. A pointer to the next data in the buffer
1223  *	is returned. Once the data has been pulled future pushes will overwrite
1224  *	the old data.
1225  */
1226 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1227 {
1228 	return skb_pull_inline(skb, len);
1229 }
1230 EXPORT_SYMBOL(skb_pull);
1231 
1232 /**
1233  *	skb_trim - remove end from a buffer
1234  *	@skb: buffer to alter
1235  *	@len: new length
1236  *
1237  *	Cut the length of a buffer down by removing data from the tail. If
1238  *	the buffer is already under the length specified it is not modified.
1239  *	The skb must be linear.
1240  */
1241 void skb_trim(struct sk_buff *skb, unsigned int len)
1242 {
1243 	if (skb->len > len)
1244 		__skb_trim(skb, len);
1245 }
1246 EXPORT_SYMBOL(skb_trim);
1247 
1248 /* Trims skb to length len. It can change skb pointers.
1249  */
1250 
1251 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1252 {
1253 	struct sk_buff **fragp;
1254 	struct sk_buff *frag;
1255 	int offset = skb_headlen(skb);
1256 	int nfrags = skb_shinfo(skb)->nr_frags;
1257 	int i;
1258 	int err;
1259 
1260 	if (skb_cloned(skb) &&
1261 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1262 		return err;
1263 
1264 	i = 0;
1265 	if (offset >= len)
1266 		goto drop_pages;
1267 
1268 	for (; i < nfrags; i++) {
1269 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1270 
1271 		if (end < len) {
1272 			offset = end;
1273 			continue;
1274 		}
1275 
1276 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1277 
1278 drop_pages:
1279 		skb_shinfo(skb)->nr_frags = i;
1280 
1281 		for (; i < nfrags; i++)
1282 			skb_frag_unref(skb, i);
1283 
1284 		if (skb_has_frag_list(skb))
1285 			skb_drop_fraglist(skb);
1286 		goto done;
1287 	}
1288 
1289 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1290 	     fragp = &frag->next) {
1291 		int end = offset + frag->len;
1292 
1293 		if (skb_shared(frag)) {
1294 			struct sk_buff *nfrag;
1295 
1296 			nfrag = skb_clone(frag, GFP_ATOMIC);
1297 			if (unlikely(!nfrag))
1298 				return -ENOMEM;
1299 
1300 			nfrag->next = frag->next;
1301 			consume_skb(frag);
1302 			frag = nfrag;
1303 			*fragp = frag;
1304 		}
1305 
1306 		if (end < len) {
1307 			offset = end;
1308 			continue;
1309 		}
1310 
1311 		if (end > len &&
1312 		    unlikely((err = pskb_trim(frag, len - offset))))
1313 			return err;
1314 
1315 		if (frag->next)
1316 			skb_drop_list(&frag->next);
1317 		break;
1318 	}
1319 
1320 done:
1321 	if (len > skb_headlen(skb)) {
1322 		skb->data_len -= skb->len - len;
1323 		skb->len       = len;
1324 	} else {
1325 		skb->len       = len;
1326 		skb->data_len  = 0;
1327 		skb_set_tail_pointer(skb, len);
1328 	}
1329 
1330 	return 0;
1331 }
1332 EXPORT_SYMBOL(___pskb_trim);
1333 
1334 /**
1335  *	__pskb_pull_tail - advance tail of skb header
1336  *	@skb: buffer to reallocate
1337  *	@delta: number of bytes to advance tail
1338  *
1339  *	The function makes a sense only on a fragmented &sk_buff,
1340  *	it expands header moving its tail forward and copying necessary
1341  *	data from fragmented part.
1342  *
1343  *	&sk_buff MUST have reference count of 1.
1344  *
1345  *	Returns %NULL (and &sk_buff does not change) if pull failed
1346  *	or value of new tail of skb in the case of success.
1347  *
1348  *	All the pointers pointing into skb header may change and must be
1349  *	reloaded after call to this function.
1350  */
1351 
1352 /* Moves tail of skb head forward, copying data from fragmented part,
1353  * when it is necessary.
1354  * 1. It may fail due to malloc failure.
1355  * 2. It may change skb pointers.
1356  *
1357  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1358  */
1359 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1360 {
1361 	/* If skb has not enough free space at tail, get new one
1362 	 * plus 128 bytes for future expansions. If we have enough
1363 	 * room at tail, reallocate without expansion only if skb is cloned.
1364 	 */
1365 	int i, k, eat = (skb->tail + delta) - skb->end;
1366 
1367 	if (eat > 0 || skb_cloned(skb)) {
1368 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1369 				     GFP_ATOMIC))
1370 			return NULL;
1371 	}
1372 
1373 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1374 		BUG();
1375 
1376 	/* Optimization: no fragments, no reasons to preestimate
1377 	 * size of pulled pages. Superb.
1378 	 */
1379 	if (!skb_has_frag_list(skb))
1380 		goto pull_pages;
1381 
1382 	/* Estimate size of pulled pages. */
1383 	eat = delta;
1384 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1385 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1386 
1387 		if (size >= eat)
1388 			goto pull_pages;
1389 		eat -= size;
1390 	}
1391 
1392 	/* If we need update frag list, we are in troubles.
1393 	 * Certainly, it possible to add an offset to skb data,
1394 	 * but taking into account that pulling is expected to
1395 	 * be very rare operation, it is worth to fight against
1396 	 * further bloating skb head and crucify ourselves here instead.
1397 	 * Pure masohism, indeed. 8)8)
1398 	 */
1399 	if (eat) {
1400 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1401 		struct sk_buff *clone = NULL;
1402 		struct sk_buff *insp = NULL;
1403 
1404 		do {
1405 			BUG_ON(!list);
1406 
1407 			if (list->len <= eat) {
1408 				/* Eaten as whole. */
1409 				eat -= list->len;
1410 				list = list->next;
1411 				insp = list;
1412 			} else {
1413 				/* Eaten partially. */
1414 
1415 				if (skb_shared(list)) {
1416 					/* Sucks! We need to fork list. :-( */
1417 					clone = skb_clone(list, GFP_ATOMIC);
1418 					if (!clone)
1419 						return NULL;
1420 					insp = list->next;
1421 					list = clone;
1422 				} else {
1423 					/* This may be pulled without
1424 					 * problems. */
1425 					insp = list;
1426 				}
1427 				if (!pskb_pull(list, eat)) {
1428 					kfree_skb(clone);
1429 					return NULL;
1430 				}
1431 				break;
1432 			}
1433 		} while (eat);
1434 
1435 		/* Free pulled out fragments. */
1436 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1437 			skb_shinfo(skb)->frag_list = list->next;
1438 			kfree_skb(list);
1439 		}
1440 		/* And insert new clone at head. */
1441 		if (clone) {
1442 			clone->next = list;
1443 			skb_shinfo(skb)->frag_list = clone;
1444 		}
1445 	}
1446 	/* Success! Now we may commit changes to skb data. */
1447 
1448 pull_pages:
1449 	eat = delta;
1450 	k = 0;
1451 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1452 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1453 
1454 		if (size <= eat) {
1455 			skb_frag_unref(skb, i);
1456 			eat -= size;
1457 		} else {
1458 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1459 			if (eat) {
1460 				skb_shinfo(skb)->frags[k].page_offset += eat;
1461 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1462 				eat = 0;
1463 			}
1464 			k++;
1465 		}
1466 	}
1467 	skb_shinfo(skb)->nr_frags = k;
1468 
1469 	skb->tail     += delta;
1470 	skb->data_len -= delta;
1471 
1472 	return skb_tail_pointer(skb);
1473 }
1474 EXPORT_SYMBOL(__pskb_pull_tail);
1475 
1476 /**
1477  *	skb_copy_bits - copy bits from skb to kernel buffer
1478  *	@skb: source skb
1479  *	@offset: offset in source
1480  *	@to: destination buffer
1481  *	@len: number of bytes to copy
1482  *
1483  *	Copy the specified number of bytes from the source skb to the
1484  *	destination buffer.
1485  *
1486  *	CAUTION ! :
1487  *		If its prototype is ever changed,
1488  *		check arch/{*}/net/{*}.S files,
1489  *		since it is called from BPF assembly code.
1490  */
1491 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1492 {
1493 	int start = skb_headlen(skb);
1494 	struct sk_buff *frag_iter;
1495 	int i, copy;
1496 
1497 	if (offset > (int)skb->len - len)
1498 		goto fault;
1499 
1500 	/* Copy header. */
1501 	if ((copy = start - offset) > 0) {
1502 		if (copy > len)
1503 			copy = len;
1504 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1505 		if ((len -= copy) == 0)
1506 			return 0;
1507 		offset += copy;
1508 		to     += copy;
1509 	}
1510 
1511 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1512 		int end;
1513 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1514 
1515 		WARN_ON(start > offset + len);
1516 
1517 		end = start + skb_frag_size(f);
1518 		if ((copy = end - offset) > 0) {
1519 			u8 *vaddr;
1520 
1521 			if (copy > len)
1522 				copy = len;
1523 
1524 			vaddr = kmap_atomic(skb_frag_page(f));
1525 			memcpy(to,
1526 			       vaddr + f->page_offset + offset - start,
1527 			       copy);
1528 			kunmap_atomic(vaddr);
1529 
1530 			if ((len -= copy) == 0)
1531 				return 0;
1532 			offset += copy;
1533 			to     += copy;
1534 		}
1535 		start = end;
1536 	}
1537 
1538 	skb_walk_frags(skb, frag_iter) {
1539 		int end;
1540 
1541 		WARN_ON(start > offset + len);
1542 
1543 		end = start + frag_iter->len;
1544 		if ((copy = end - offset) > 0) {
1545 			if (copy > len)
1546 				copy = len;
1547 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1548 				goto fault;
1549 			if ((len -= copy) == 0)
1550 				return 0;
1551 			offset += copy;
1552 			to     += copy;
1553 		}
1554 		start = end;
1555 	}
1556 
1557 	if (!len)
1558 		return 0;
1559 
1560 fault:
1561 	return -EFAULT;
1562 }
1563 EXPORT_SYMBOL(skb_copy_bits);
1564 
1565 /*
1566  * Callback from splice_to_pipe(), if we need to release some pages
1567  * at the end of the spd in case we error'ed out in filling the pipe.
1568  */
1569 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1570 {
1571 	put_page(spd->pages[i]);
1572 }
1573 
1574 static struct page *linear_to_page(struct page *page, unsigned int *len,
1575 				   unsigned int *offset,
1576 				   struct sk_buff *skb, struct sock *sk)
1577 {
1578 	struct page *p = sk->sk_sndmsg_page;
1579 	unsigned int off;
1580 
1581 	if (!p) {
1582 new_page:
1583 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1584 		if (!p)
1585 			return NULL;
1586 
1587 		off = sk->sk_sndmsg_off = 0;
1588 		/* hold one ref to this page until it's full */
1589 	} else {
1590 		unsigned int mlen;
1591 
1592 		/* If we are the only user of the page, we can reset offset */
1593 		if (page_count(p) == 1)
1594 			sk->sk_sndmsg_off = 0;
1595 		off = sk->sk_sndmsg_off;
1596 		mlen = PAGE_SIZE - off;
1597 		if (mlen < 64 && mlen < *len) {
1598 			put_page(p);
1599 			goto new_page;
1600 		}
1601 
1602 		*len = min_t(unsigned int, *len, mlen);
1603 	}
1604 
1605 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1606 	sk->sk_sndmsg_off += *len;
1607 	*offset = off;
1608 
1609 	return p;
1610 }
1611 
1612 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1613 			     struct page *page,
1614 			     unsigned int offset)
1615 {
1616 	return	spd->nr_pages &&
1617 		spd->pages[spd->nr_pages - 1] == page &&
1618 		(spd->partial[spd->nr_pages - 1].offset +
1619 		 spd->partial[spd->nr_pages - 1].len == offset);
1620 }
1621 
1622 /*
1623  * Fill page/offset/length into spd, if it can hold more pages.
1624  */
1625 static bool spd_fill_page(struct splice_pipe_desc *spd,
1626 			  struct pipe_inode_info *pipe, struct page *page,
1627 			  unsigned int *len, unsigned int offset,
1628 			  struct sk_buff *skb, bool linear,
1629 			  struct sock *sk)
1630 {
1631 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1632 		return true;
1633 
1634 	if (linear) {
1635 		page = linear_to_page(page, len, &offset, skb, sk);
1636 		if (!page)
1637 			return true;
1638 	}
1639 	if (spd_can_coalesce(spd, page, offset)) {
1640 		spd->partial[spd->nr_pages - 1].len += *len;
1641 		return false;
1642 	}
1643 	get_page(page);
1644 	spd->pages[spd->nr_pages] = page;
1645 	spd->partial[spd->nr_pages].len = *len;
1646 	spd->partial[spd->nr_pages].offset = offset;
1647 	spd->nr_pages++;
1648 
1649 	return false;
1650 }
1651 
1652 static inline void __segment_seek(struct page **page, unsigned int *poff,
1653 				  unsigned int *plen, unsigned int off)
1654 {
1655 	unsigned long n;
1656 
1657 	*poff += off;
1658 	n = *poff / PAGE_SIZE;
1659 	if (n)
1660 		*page = nth_page(*page, n);
1661 
1662 	*poff = *poff % PAGE_SIZE;
1663 	*plen -= off;
1664 }
1665 
1666 static bool __splice_segment(struct page *page, unsigned int poff,
1667 			     unsigned int plen, unsigned int *off,
1668 			     unsigned int *len, struct sk_buff *skb,
1669 			     struct splice_pipe_desc *spd, bool linear,
1670 			     struct sock *sk,
1671 			     struct pipe_inode_info *pipe)
1672 {
1673 	if (!*len)
1674 		return true;
1675 
1676 	/* skip this segment if already processed */
1677 	if (*off >= plen) {
1678 		*off -= plen;
1679 		return false;
1680 	}
1681 
1682 	/* ignore any bits we already processed */
1683 	if (*off) {
1684 		__segment_seek(&page, &poff, &plen, *off);
1685 		*off = 0;
1686 	}
1687 
1688 	do {
1689 		unsigned int flen = min(*len, plen);
1690 
1691 		/* the linear region may spread across several pages  */
1692 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1693 
1694 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1695 			return true;
1696 
1697 		__segment_seek(&page, &poff, &plen, flen);
1698 		*len -= flen;
1699 
1700 	} while (*len && plen);
1701 
1702 	return false;
1703 }
1704 
1705 /*
1706  * Map linear and fragment data from the skb to spd. It reports true if the
1707  * pipe is full or if we already spliced the requested length.
1708  */
1709 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1710 			      unsigned int *offset, unsigned int *len,
1711 			      struct splice_pipe_desc *spd, struct sock *sk)
1712 {
1713 	int seg;
1714 
1715 	/* map the linear part :
1716 	 * If skb->head_frag is set, this 'linear' part is backed by a
1717 	 * fragment, and if the head is not shared with any clones then
1718 	 * we can avoid a copy since we own the head portion of this page.
1719 	 */
1720 	if (__splice_segment(virt_to_page(skb->data),
1721 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1722 			     skb_headlen(skb),
1723 			     offset, len, skb, spd,
1724 			     skb_head_is_locked(skb),
1725 			     sk, pipe))
1726 		return true;
1727 
1728 	/*
1729 	 * then map the fragments
1730 	 */
1731 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1732 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1733 
1734 		if (__splice_segment(skb_frag_page(f),
1735 				     f->page_offset, skb_frag_size(f),
1736 				     offset, len, skb, spd, false, sk, pipe))
1737 			return true;
1738 	}
1739 
1740 	return false;
1741 }
1742 
1743 /*
1744  * Map data from the skb to a pipe. Should handle both the linear part,
1745  * the fragments, and the frag list. It does NOT handle frag lists within
1746  * the frag list, if such a thing exists. We'd probably need to recurse to
1747  * handle that cleanly.
1748  */
1749 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1750 		    struct pipe_inode_info *pipe, unsigned int tlen,
1751 		    unsigned int flags)
1752 {
1753 	struct partial_page partial[MAX_SKB_FRAGS];
1754 	struct page *pages[MAX_SKB_FRAGS];
1755 	struct splice_pipe_desc spd = {
1756 		.pages = pages,
1757 		.partial = partial,
1758 		.nr_pages_max = MAX_SKB_FRAGS,
1759 		.flags = flags,
1760 		.ops = &sock_pipe_buf_ops,
1761 		.spd_release = sock_spd_release,
1762 	};
1763 	struct sk_buff *frag_iter;
1764 	struct sock *sk = skb->sk;
1765 	int ret = 0;
1766 
1767 	/*
1768 	 * __skb_splice_bits() only fails if the output has no room left,
1769 	 * so no point in going over the frag_list for the error case.
1770 	 */
1771 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1772 		goto done;
1773 	else if (!tlen)
1774 		goto done;
1775 
1776 	/*
1777 	 * now see if we have a frag_list to map
1778 	 */
1779 	skb_walk_frags(skb, frag_iter) {
1780 		if (!tlen)
1781 			break;
1782 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1783 			break;
1784 	}
1785 
1786 done:
1787 	if (spd.nr_pages) {
1788 		/*
1789 		 * Drop the socket lock, otherwise we have reverse
1790 		 * locking dependencies between sk_lock and i_mutex
1791 		 * here as compared to sendfile(). We enter here
1792 		 * with the socket lock held, and splice_to_pipe() will
1793 		 * grab the pipe inode lock. For sendfile() emulation,
1794 		 * we call into ->sendpage() with the i_mutex lock held
1795 		 * and networking will grab the socket lock.
1796 		 */
1797 		release_sock(sk);
1798 		ret = splice_to_pipe(pipe, &spd);
1799 		lock_sock(sk);
1800 	}
1801 
1802 	return ret;
1803 }
1804 
1805 /**
1806  *	skb_store_bits - store bits from kernel buffer to skb
1807  *	@skb: destination buffer
1808  *	@offset: offset in destination
1809  *	@from: source buffer
1810  *	@len: number of bytes to copy
1811  *
1812  *	Copy the specified number of bytes from the source buffer to the
1813  *	destination skb.  This function handles all the messy bits of
1814  *	traversing fragment lists and such.
1815  */
1816 
1817 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1818 {
1819 	int start = skb_headlen(skb);
1820 	struct sk_buff *frag_iter;
1821 	int i, copy;
1822 
1823 	if (offset > (int)skb->len - len)
1824 		goto fault;
1825 
1826 	if ((copy = start - offset) > 0) {
1827 		if (copy > len)
1828 			copy = len;
1829 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1830 		if ((len -= copy) == 0)
1831 			return 0;
1832 		offset += copy;
1833 		from += copy;
1834 	}
1835 
1836 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1837 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1838 		int end;
1839 
1840 		WARN_ON(start > offset + len);
1841 
1842 		end = start + skb_frag_size(frag);
1843 		if ((copy = end - offset) > 0) {
1844 			u8 *vaddr;
1845 
1846 			if (copy > len)
1847 				copy = len;
1848 
1849 			vaddr = kmap_atomic(skb_frag_page(frag));
1850 			memcpy(vaddr + frag->page_offset + offset - start,
1851 			       from, copy);
1852 			kunmap_atomic(vaddr);
1853 
1854 			if ((len -= copy) == 0)
1855 				return 0;
1856 			offset += copy;
1857 			from += copy;
1858 		}
1859 		start = end;
1860 	}
1861 
1862 	skb_walk_frags(skb, frag_iter) {
1863 		int end;
1864 
1865 		WARN_ON(start > offset + len);
1866 
1867 		end = start + frag_iter->len;
1868 		if ((copy = end - offset) > 0) {
1869 			if (copy > len)
1870 				copy = len;
1871 			if (skb_store_bits(frag_iter, offset - start,
1872 					   from, copy))
1873 				goto fault;
1874 			if ((len -= copy) == 0)
1875 				return 0;
1876 			offset += copy;
1877 			from += copy;
1878 		}
1879 		start = end;
1880 	}
1881 	if (!len)
1882 		return 0;
1883 
1884 fault:
1885 	return -EFAULT;
1886 }
1887 EXPORT_SYMBOL(skb_store_bits);
1888 
1889 /* Checksum skb data. */
1890 
1891 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1892 			  int len, __wsum csum)
1893 {
1894 	int start = skb_headlen(skb);
1895 	int i, copy = start - offset;
1896 	struct sk_buff *frag_iter;
1897 	int pos = 0;
1898 
1899 	/* Checksum header. */
1900 	if (copy > 0) {
1901 		if (copy > len)
1902 			copy = len;
1903 		csum = csum_partial(skb->data + offset, copy, csum);
1904 		if ((len -= copy) == 0)
1905 			return csum;
1906 		offset += copy;
1907 		pos	= copy;
1908 	}
1909 
1910 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1911 		int end;
1912 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1913 
1914 		WARN_ON(start > offset + len);
1915 
1916 		end = start + skb_frag_size(frag);
1917 		if ((copy = end - offset) > 0) {
1918 			__wsum csum2;
1919 			u8 *vaddr;
1920 
1921 			if (copy > len)
1922 				copy = len;
1923 			vaddr = kmap_atomic(skb_frag_page(frag));
1924 			csum2 = csum_partial(vaddr + frag->page_offset +
1925 					     offset - start, copy, 0);
1926 			kunmap_atomic(vaddr);
1927 			csum = csum_block_add(csum, csum2, pos);
1928 			if (!(len -= copy))
1929 				return csum;
1930 			offset += copy;
1931 			pos    += copy;
1932 		}
1933 		start = end;
1934 	}
1935 
1936 	skb_walk_frags(skb, frag_iter) {
1937 		int end;
1938 
1939 		WARN_ON(start > offset + len);
1940 
1941 		end = start + frag_iter->len;
1942 		if ((copy = end - offset) > 0) {
1943 			__wsum csum2;
1944 			if (copy > len)
1945 				copy = len;
1946 			csum2 = skb_checksum(frag_iter, offset - start,
1947 					     copy, 0);
1948 			csum = csum_block_add(csum, csum2, pos);
1949 			if ((len -= copy) == 0)
1950 				return csum;
1951 			offset += copy;
1952 			pos    += copy;
1953 		}
1954 		start = end;
1955 	}
1956 	BUG_ON(len);
1957 
1958 	return csum;
1959 }
1960 EXPORT_SYMBOL(skb_checksum);
1961 
1962 /* Both of above in one bottle. */
1963 
1964 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1965 				    u8 *to, int len, __wsum csum)
1966 {
1967 	int start = skb_headlen(skb);
1968 	int i, copy = start - offset;
1969 	struct sk_buff *frag_iter;
1970 	int pos = 0;
1971 
1972 	/* Copy header. */
1973 	if (copy > 0) {
1974 		if (copy > len)
1975 			copy = len;
1976 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1977 						 copy, csum);
1978 		if ((len -= copy) == 0)
1979 			return csum;
1980 		offset += copy;
1981 		to     += copy;
1982 		pos	= copy;
1983 	}
1984 
1985 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1986 		int end;
1987 
1988 		WARN_ON(start > offset + len);
1989 
1990 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1991 		if ((copy = end - offset) > 0) {
1992 			__wsum csum2;
1993 			u8 *vaddr;
1994 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1995 
1996 			if (copy > len)
1997 				copy = len;
1998 			vaddr = kmap_atomic(skb_frag_page(frag));
1999 			csum2 = csum_partial_copy_nocheck(vaddr +
2000 							  frag->page_offset +
2001 							  offset - start, to,
2002 							  copy, 0);
2003 			kunmap_atomic(vaddr);
2004 			csum = csum_block_add(csum, csum2, pos);
2005 			if (!(len -= copy))
2006 				return csum;
2007 			offset += copy;
2008 			to     += copy;
2009 			pos    += copy;
2010 		}
2011 		start = end;
2012 	}
2013 
2014 	skb_walk_frags(skb, frag_iter) {
2015 		__wsum csum2;
2016 		int end;
2017 
2018 		WARN_ON(start > offset + len);
2019 
2020 		end = start + frag_iter->len;
2021 		if ((copy = end - offset) > 0) {
2022 			if (copy > len)
2023 				copy = len;
2024 			csum2 = skb_copy_and_csum_bits(frag_iter,
2025 						       offset - start,
2026 						       to, copy, 0);
2027 			csum = csum_block_add(csum, csum2, pos);
2028 			if ((len -= copy) == 0)
2029 				return csum;
2030 			offset += copy;
2031 			to     += copy;
2032 			pos    += copy;
2033 		}
2034 		start = end;
2035 	}
2036 	BUG_ON(len);
2037 	return csum;
2038 }
2039 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2040 
2041 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2042 {
2043 	__wsum csum;
2044 	long csstart;
2045 
2046 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2047 		csstart = skb_checksum_start_offset(skb);
2048 	else
2049 		csstart = skb_headlen(skb);
2050 
2051 	BUG_ON(csstart > skb_headlen(skb));
2052 
2053 	skb_copy_from_linear_data(skb, to, csstart);
2054 
2055 	csum = 0;
2056 	if (csstart != skb->len)
2057 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2058 					      skb->len - csstart, 0);
2059 
2060 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2061 		long csstuff = csstart + skb->csum_offset;
2062 
2063 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2064 	}
2065 }
2066 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2067 
2068 /**
2069  *	skb_dequeue - remove from the head of the queue
2070  *	@list: list to dequeue from
2071  *
2072  *	Remove the head of the list. The list lock is taken so the function
2073  *	may be used safely with other locking list functions. The head item is
2074  *	returned or %NULL if the list is empty.
2075  */
2076 
2077 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2078 {
2079 	unsigned long flags;
2080 	struct sk_buff *result;
2081 
2082 	spin_lock_irqsave(&list->lock, flags);
2083 	result = __skb_dequeue(list);
2084 	spin_unlock_irqrestore(&list->lock, flags);
2085 	return result;
2086 }
2087 EXPORT_SYMBOL(skb_dequeue);
2088 
2089 /**
2090  *	skb_dequeue_tail - remove from the tail of the queue
2091  *	@list: list to dequeue from
2092  *
2093  *	Remove the tail of the list. The list lock is taken so the function
2094  *	may be used safely with other locking list functions. The tail item is
2095  *	returned or %NULL if the list is empty.
2096  */
2097 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2098 {
2099 	unsigned long flags;
2100 	struct sk_buff *result;
2101 
2102 	spin_lock_irqsave(&list->lock, flags);
2103 	result = __skb_dequeue_tail(list);
2104 	spin_unlock_irqrestore(&list->lock, flags);
2105 	return result;
2106 }
2107 EXPORT_SYMBOL(skb_dequeue_tail);
2108 
2109 /**
2110  *	skb_queue_purge - empty a list
2111  *	@list: list to empty
2112  *
2113  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2114  *	the list and one reference dropped. This function takes the list
2115  *	lock and is atomic with respect to other list locking functions.
2116  */
2117 void skb_queue_purge(struct sk_buff_head *list)
2118 {
2119 	struct sk_buff *skb;
2120 	while ((skb = skb_dequeue(list)) != NULL)
2121 		kfree_skb(skb);
2122 }
2123 EXPORT_SYMBOL(skb_queue_purge);
2124 
2125 /**
2126  *	skb_queue_head - queue a buffer at the list head
2127  *	@list: list to use
2128  *	@newsk: buffer to queue
2129  *
2130  *	Queue a buffer at the start of the list. This function takes the
2131  *	list lock and can be used safely with other locking &sk_buff functions
2132  *	safely.
2133  *
2134  *	A buffer cannot be placed on two lists at the same time.
2135  */
2136 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2137 {
2138 	unsigned long flags;
2139 
2140 	spin_lock_irqsave(&list->lock, flags);
2141 	__skb_queue_head(list, newsk);
2142 	spin_unlock_irqrestore(&list->lock, flags);
2143 }
2144 EXPORT_SYMBOL(skb_queue_head);
2145 
2146 /**
2147  *	skb_queue_tail - queue a buffer at the list tail
2148  *	@list: list to use
2149  *	@newsk: buffer to queue
2150  *
2151  *	Queue a buffer at the tail of the list. This function takes the
2152  *	list lock and can be used safely with other locking &sk_buff functions
2153  *	safely.
2154  *
2155  *	A buffer cannot be placed on two lists at the same time.
2156  */
2157 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2158 {
2159 	unsigned long flags;
2160 
2161 	spin_lock_irqsave(&list->lock, flags);
2162 	__skb_queue_tail(list, newsk);
2163 	spin_unlock_irqrestore(&list->lock, flags);
2164 }
2165 EXPORT_SYMBOL(skb_queue_tail);
2166 
2167 /**
2168  *	skb_unlink	-	remove a buffer from a list
2169  *	@skb: buffer to remove
2170  *	@list: list to use
2171  *
2172  *	Remove a packet from a list. The list locks are taken and this
2173  *	function is atomic with respect to other list locked calls
2174  *
2175  *	You must know what list the SKB is on.
2176  */
2177 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2178 {
2179 	unsigned long flags;
2180 
2181 	spin_lock_irqsave(&list->lock, flags);
2182 	__skb_unlink(skb, list);
2183 	spin_unlock_irqrestore(&list->lock, flags);
2184 }
2185 EXPORT_SYMBOL(skb_unlink);
2186 
2187 /**
2188  *	skb_append	-	append a buffer
2189  *	@old: buffer to insert after
2190  *	@newsk: buffer to insert
2191  *	@list: list to use
2192  *
2193  *	Place a packet after a given packet in a list. The list locks are taken
2194  *	and this function is atomic with respect to other list locked calls.
2195  *	A buffer cannot be placed on two lists at the same time.
2196  */
2197 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2198 {
2199 	unsigned long flags;
2200 
2201 	spin_lock_irqsave(&list->lock, flags);
2202 	__skb_queue_after(list, old, newsk);
2203 	spin_unlock_irqrestore(&list->lock, flags);
2204 }
2205 EXPORT_SYMBOL(skb_append);
2206 
2207 /**
2208  *	skb_insert	-	insert a buffer
2209  *	@old: buffer to insert before
2210  *	@newsk: buffer to insert
2211  *	@list: list to use
2212  *
2213  *	Place a packet before a given packet in a list. The list locks are
2214  * 	taken and this function is atomic with respect to other list locked
2215  *	calls.
2216  *
2217  *	A buffer cannot be placed on two lists at the same time.
2218  */
2219 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2220 {
2221 	unsigned long flags;
2222 
2223 	spin_lock_irqsave(&list->lock, flags);
2224 	__skb_insert(newsk, old->prev, old, list);
2225 	spin_unlock_irqrestore(&list->lock, flags);
2226 }
2227 EXPORT_SYMBOL(skb_insert);
2228 
2229 static inline void skb_split_inside_header(struct sk_buff *skb,
2230 					   struct sk_buff* skb1,
2231 					   const u32 len, const int pos)
2232 {
2233 	int i;
2234 
2235 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2236 					 pos - len);
2237 	/* And move data appendix as is. */
2238 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2239 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2240 
2241 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2242 	skb_shinfo(skb)->nr_frags  = 0;
2243 	skb1->data_len		   = skb->data_len;
2244 	skb1->len		   += skb1->data_len;
2245 	skb->data_len		   = 0;
2246 	skb->len		   = len;
2247 	skb_set_tail_pointer(skb, len);
2248 }
2249 
2250 static inline void skb_split_no_header(struct sk_buff *skb,
2251 				       struct sk_buff* skb1,
2252 				       const u32 len, int pos)
2253 {
2254 	int i, k = 0;
2255 	const int nfrags = skb_shinfo(skb)->nr_frags;
2256 
2257 	skb_shinfo(skb)->nr_frags = 0;
2258 	skb1->len		  = skb1->data_len = skb->len - len;
2259 	skb->len		  = len;
2260 	skb->data_len		  = len - pos;
2261 
2262 	for (i = 0; i < nfrags; i++) {
2263 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2264 
2265 		if (pos + size > len) {
2266 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2267 
2268 			if (pos < len) {
2269 				/* Split frag.
2270 				 * We have two variants in this case:
2271 				 * 1. Move all the frag to the second
2272 				 *    part, if it is possible. F.e.
2273 				 *    this approach is mandatory for TUX,
2274 				 *    where splitting is expensive.
2275 				 * 2. Split is accurately. We make this.
2276 				 */
2277 				skb_frag_ref(skb, i);
2278 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2279 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2280 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2281 				skb_shinfo(skb)->nr_frags++;
2282 			}
2283 			k++;
2284 		} else
2285 			skb_shinfo(skb)->nr_frags++;
2286 		pos += size;
2287 	}
2288 	skb_shinfo(skb1)->nr_frags = k;
2289 }
2290 
2291 /**
2292  * skb_split - Split fragmented skb to two parts at length len.
2293  * @skb: the buffer to split
2294  * @skb1: the buffer to receive the second part
2295  * @len: new length for skb
2296  */
2297 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2298 {
2299 	int pos = skb_headlen(skb);
2300 
2301 	if (len < pos)	/* Split line is inside header. */
2302 		skb_split_inside_header(skb, skb1, len, pos);
2303 	else		/* Second chunk has no header, nothing to copy. */
2304 		skb_split_no_header(skb, skb1, len, pos);
2305 }
2306 EXPORT_SYMBOL(skb_split);
2307 
2308 /* Shifting from/to a cloned skb is a no-go.
2309  *
2310  * Caller cannot keep skb_shinfo related pointers past calling here!
2311  */
2312 static int skb_prepare_for_shift(struct sk_buff *skb)
2313 {
2314 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2315 }
2316 
2317 /**
2318  * skb_shift - Shifts paged data partially from skb to another
2319  * @tgt: buffer into which tail data gets added
2320  * @skb: buffer from which the paged data comes from
2321  * @shiftlen: shift up to this many bytes
2322  *
2323  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2324  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2325  * It's up to caller to free skb if everything was shifted.
2326  *
2327  * If @tgt runs out of frags, the whole operation is aborted.
2328  *
2329  * Skb cannot include anything else but paged data while tgt is allowed
2330  * to have non-paged data as well.
2331  *
2332  * TODO: full sized shift could be optimized but that would need
2333  * specialized skb free'er to handle frags without up-to-date nr_frags.
2334  */
2335 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2336 {
2337 	int from, to, merge, todo;
2338 	struct skb_frag_struct *fragfrom, *fragto;
2339 
2340 	BUG_ON(shiftlen > skb->len);
2341 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2342 
2343 	todo = shiftlen;
2344 	from = 0;
2345 	to = skb_shinfo(tgt)->nr_frags;
2346 	fragfrom = &skb_shinfo(skb)->frags[from];
2347 
2348 	/* Actual merge is delayed until the point when we know we can
2349 	 * commit all, so that we don't have to undo partial changes
2350 	 */
2351 	if (!to ||
2352 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2353 			      fragfrom->page_offset)) {
2354 		merge = -1;
2355 	} else {
2356 		merge = to - 1;
2357 
2358 		todo -= skb_frag_size(fragfrom);
2359 		if (todo < 0) {
2360 			if (skb_prepare_for_shift(skb) ||
2361 			    skb_prepare_for_shift(tgt))
2362 				return 0;
2363 
2364 			/* All previous frag pointers might be stale! */
2365 			fragfrom = &skb_shinfo(skb)->frags[from];
2366 			fragto = &skb_shinfo(tgt)->frags[merge];
2367 
2368 			skb_frag_size_add(fragto, shiftlen);
2369 			skb_frag_size_sub(fragfrom, shiftlen);
2370 			fragfrom->page_offset += shiftlen;
2371 
2372 			goto onlymerged;
2373 		}
2374 
2375 		from++;
2376 	}
2377 
2378 	/* Skip full, not-fitting skb to avoid expensive operations */
2379 	if ((shiftlen == skb->len) &&
2380 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2381 		return 0;
2382 
2383 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2384 		return 0;
2385 
2386 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2387 		if (to == MAX_SKB_FRAGS)
2388 			return 0;
2389 
2390 		fragfrom = &skb_shinfo(skb)->frags[from];
2391 		fragto = &skb_shinfo(tgt)->frags[to];
2392 
2393 		if (todo >= skb_frag_size(fragfrom)) {
2394 			*fragto = *fragfrom;
2395 			todo -= skb_frag_size(fragfrom);
2396 			from++;
2397 			to++;
2398 
2399 		} else {
2400 			__skb_frag_ref(fragfrom);
2401 			fragto->page = fragfrom->page;
2402 			fragto->page_offset = fragfrom->page_offset;
2403 			skb_frag_size_set(fragto, todo);
2404 
2405 			fragfrom->page_offset += todo;
2406 			skb_frag_size_sub(fragfrom, todo);
2407 			todo = 0;
2408 
2409 			to++;
2410 			break;
2411 		}
2412 	}
2413 
2414 	/* Ready to "commit" this state change to tgt */
2415 	skb_shinfo(tgt)->nr_frags = to;
2416 
2417 	if (merge >= 0) {
2418 		fragfrom = &skb_shinfo(skb)->frags[0];
2419 		fragto = &skb_shinfo(tgt)->frags[merge];
2420 
2421 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2422 		__skb_frag_unref(fragfrom);
2423 	}
2424 
2425 	/* Reposition in the original skb */
2426 	to = 0;
2427 	while (from < skb_shinfo(skb)->nr_frags)
2428 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2429 	skb_shinfo(skb)->nr_frags = to;
2430 
2431 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2432 
2433 onlymerged:
2434 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2435 	 * the other hand might need it if it needs to be resent
2436 	 */
2437 	tgt->ip_summed = CHECKSUM_PARTIAL;
2438 	skb->ip_summed = CHECKSUM_PARTIAL;
2439 
2440 	/* Yak, is it really working this way? Some helper please? */
2441 	skb->len -= shiftlen;
2442 	skb->data_len -= shiftlen;
2443 	skb->truesize -= shiftlen;
2444 	tgt->len += shiftlen;
2445 	tgt->data_len += shiftlen;
2446 	tgt->truesize += shiftlen;
2447 
2448 	return shiftlen;
2449 }
2450 
2451 /**
2452  * skb_prepare_seq_read - Prepare a sequential read of skb data
2453  * @skb: the buffer to read
2454  * @from: lower offset of data to be read
2455  * @to: upper offset of data to be read
2456  * @st: state variable
2457  *
2458  * Initializes the specified state variable. Must be called before
2459  * invoking skb_seq_read() for the first time.
2460  */
2461 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2462 			  unsigned int to, struct skb_seq_state *st)
2463 {
2464 	st->lower_offset = from;
2465 	st->upper_offset = to;
2466 	st->root_skb = st->cur_skb = skb;
2467 	st->frag_idx = st->stepped_offset = 0;
2468 	st->frag_data = NULL;
2469 }
2470 EXPORT_SYMBOL(skb_prepare_seq_read);
2471 
2472 /**
2473  * skb_seq_read - Sequentially read skb data
2474  * @consumed: number of bytes consumed by the caller so far
2475  * @data: destination pointer for data to be returned
2476  * @st: state variable
2477  *
2478  * Reads a block of skb data at &consumed relative to the
2479  * lower offset specified to skb_prepare_seq_read(). Assigns
2480  * the head of the data block to &data and returns the length
2481  * of the block or 0 if the end of the skb data or the upper
2482  * offset has been reached.
2483  *
2484  * The caller is not required to consume all of the data
2485  * returned, i.e. &consumed is typically set to the number
2486  * of bytes already consumed and the next call to
2487  * skb_seq_read() will return the remaining part of the block.
2488  *
2489  * Note 1: The size of each block of data returned can be arbitrary,
2490  *       this limitation is the cost for zerocopy seqeuental
2491  *       reads of potentially non linear data.
2492  *
2493  * Note 2: Fragment lists within fragments are not implemented
2494  *       at the moment, state->root_skb could be replaced with
2495  *       a stack for this purpose.
2496  */
2497 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2498 			  struct skb_seq_state *st)
2499 {
2500 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2501 	skb_frag_t *frag;
2502 
2503 	if (unlikely(abs_offset >= st->upper_offset))
2504 		return 0;
2505 
2506 next_skb:
2507 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2508 
2509 	if (abs_offset < block_limit && !st->frag_data) {
2510 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2511 		return block_limit - abs_offset;
2512 	}
2513 
2514 	if (st->frag_idx == 0 && !st->frag_data)
2515 		st->stepped_offset += skb_headlen(st->cur_skb);
2516 
2517 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2518 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2519 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2520 
2521 		if (abs_offset < block_limit) {
2522 			if (!st->frag_data)
2523 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2524 
2525 			*data = (u8 *) st->frag_data + frag->page_offset +
2526 				(abs_offset - st->stepped_offset);
2527 
2528 			return block_limit - abs_offset;
2529 		}
2530 
2531 		if (st->frag_data) {
2532 			kunmap_atomic(st->frag_data);
2533 			st->frag_data = NULL;
2534 		}
2535 
2536 		st->frag_idx++;
2537 		st->stepped_offset += skb_frag_size(frag);
2538 	}
2539 
2540 	if (st->frag_data) {
2541 		kunmap_atomic(st->frag_data);
2542 		st->frag_data = NULL;
2543 	}
2544 
2545 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2546 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2547 		st->frag_idx = 0;
2548 		goto next_skb;
2549 	} else if (st->cur_skb->next) {
2550 		st->cur_skb = st->cur_skb->next;
2551 		st->frag_idx = 0;
2552 		goto next_skb;
2553 	}
2554 
2555 	return 0;
2556 }
2557 EXPORT_SYMBOL(skb_seq_read);
2558 
2559 /**
2560  * skb_abort_seq_read - Abort a sequential read of skb data
2561  * @st: state variable
2562  *
2563  * Must be called if skb_seq_read() was not called until it
2564  * returned 0.
2565  */
2566 void skb_abort_seq_read(struct skb_seq_state *st)
2567 {
2568 	if (st->frag_data)
2569 		kunmap_atomic(st->frag_data);
2570 }
2571 EXPORT_SYMBOL(skb_abort_seq_read);
2572 
2573 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2574 
2575 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2576 					  struct ts_config *conf,
2577 					  struct ts_state *state)
2578 {
2579 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2580 }
2581 
2582 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2583 {
2584 	skb_abort_seq_read(TS_SKB_CB(state));
2585 }
2586 
2587 /**
2588  * skb_find_text - Find a text pattern in skb data
2589  * @skb: the buffer to look in
2590  * @from: search offset
2591  * @to: search limit
2592  * @config: textsearch configuration
2593  * @state: uninitialized textsearch state variable
2594  *
2595  * Finds a pattern in the skb data according to the specified
2596  * textsearch configuration. Use textsearch_next() to retrieve
2597  * subsequent occurrences of the pattern. Returns the offset
2598  * to the first occurrence or UINT_MAX if no match was found.
2599  */
2600 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2601 			   unsigned int to, struct ts_config *config,
2602 			   struct ts_state *state)
2603 {
2604 	unsigned int ret;
2605 
2606 	config->get_next_block = skb_ts_get_next_block;
2607 	config->finish = skb_ts_finish;
2608 
2609 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2610 
2611 	ret = textsearch_find(config, state);
2612 	return (ret <= to - from ? ret : UINT_MAX);
2613 }
2614 EXPORT_SYMBOL(skb_find_text);
2615 
2616 /**
2617  * skb_append_datato_frags: - append the user data to a skb
2618  * @sk: sock  structure
2619  * @skb: skb structure to be appened with user data.
2620  * @getfrag: call back function to be used for getting the user data
2621  * @from: pointer to user message iov
2622  * @length: length of the iov message
2623  *
2624  * Description: This procedure append the user data in the fragment part
2625  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2626  */
2627 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2628 			int (*getfrag)(void *from, char *to, int offset,
2629 					int len, int odd, struct sk_buff *skb),
2630 			void *from, int length)
2631 {
2632 	int frg_cnt = 0;
2633 	skb_frag_t *frag = NULL;
2634 	struct page *page = NULL;
2635 	int copy, left;
2636 	int offset = 0;
2637 	int ret;
2638 
2639 	do {
2640 		/* Return error if we don't have space for new frag */
2641 		frg_cnt = skb_shinfo(skb)->nr_frags;
2642 		if (frg_cnt >= MAX_SKB_FRAGS)
2643 			return -EFAULT;
2644 
2645 		/* allocate a new page for next frag */
2646 		page = alloc_pages(sk->sk_allocation, 0);
2647 
2648 		/* If alloc_page fails just return failure and caller will
2649 		 * free previous allocated pages by doing kfree_skb()
2650 		 */
2651 		if (page == NULL)
2652 			return -ENOMEM;
2653 
2654 		/* initialize the next frag */
2655 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2656 		skb->truesize += PAGE_SIZE;
2657 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2658 
2659 		/* get the new initialized frag */
2660 		frg_cnt = skb_shinfo(skb)->nr_frags;
2661 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2662 
2663 		/* copy the user data to page */
2664 		left = PAGE_SIZE - frag->page_offset;
2665 		copy = (length > left)? left : length;
2666 
2667 		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2668 			    offset, copy, 0, skb);
2669 		if (ret < 0)
2670 			return -EFAULT;
2671 
2672 		/* copy was successful so update the size parameters */
2673 		skb_frag_size_add(frag, copy);
2674 		skb->len += copy;
2675 		skb->data_len += copy;
2676 		offset += copy;
2677 		length -= copy;
2678 
2679 	} while (length > 0);
2680 
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL(skb_append_datato_frags);
2684 
2685 /**
2686  *	skb_pull_rcsum - pull skb and update receive checksum
2687  *	@skb: buffer to update
2688  *	@len: length of data pulled
2689  *
2690  *	This function performs an skb_pull on the packet and updates
2691  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2692  *	receive path processing instead of skb_pull unless you know
2693  *	that the checksum difference is zero (e.g., a valid IP header)
2694  *	or you are setting ip_summed to CHECKSUM_NONE.
2695  */
2696 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2697 {
2698 	BUG_ON(len > skb->len);
2699 	skb->len -= len;
2700 	BUG_ON(skb->len < skb->data_len);
2701 	skb_postpull_rcsum(skb, skb->data, len);
2702 	return skb->data += len;
2703 }
2704 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2705 
2706 /**
2707  *	skb_segment - Perform protocol segmentation on skb.
2708  *	@skb: buffer to segment
2709  *	@features: features for the output path (see dev->features)
2710  *
2711  *	This function performs segmentation on the given skb.  It returns
2712  *	a pointer to the first in a list of new skbs for the segments.
2713  *	In case of error it returns ERR_PTR(err).
2714  */
2715 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2716 {
2717 	struct sk_buff *segs = NULL;
2718 	struct sk_buff *tail = NULL;
2719 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2720 	unsigned int mss = skb_shinfo(skb)->gso_size;
2721 	unsigned int doffset = skb->data - skb_mac_header(skb);
2722 	unsigned int offset = doffset;
2723 	unsigned int headroom;
2724 	unsigned int len;
2725 	int sg = !!(features & NETIF_F_SG);
2726 	int nfrags = skb_shinfo(skb)->nr_frags;
2727 	int err = -ENOMEM;
2728 	int i = 0;
2729 	int pos;
2730 
2731 	__skb_push(skb, doffset);
2732 	headroom = skb_headroom(skb);
2733 	pos = skb_headlen(skb);
2734 
2735 	do {
2736 		struct sk_buff *nskb;
2737 		skb_frag_t *frag;
2738 		int hsize;
2739 		int size;
2740 
2741 		len = skb->len - offset;
2742 		if (len > mss)
2743 			len = mss;
2744 
2745 		hsize = skb_headlen(skb) - offset;
2746 		if (hsize < 0)
2747 			hsize = 0;
2748 		if (hsize > len || !sg)
2749 			hsize = len;
2750 
2751 		if (!hsize && i >= nfrags) {
2752 			BUG_ON(fskb->len != len);
2753 
2754 			pos += len;
2755 			nskb = skb_clone(fskb, GFP_ATOMIC);
2756 			fskb = fskb->next;
2757 
2758 			if (unlikely(!nskb))
2759 				goto err;
2760 
2761 			hsize = skb_end_offset(nskb);
2762 			if (skb_cow_head(nskb, doffset + headroom)) {
2763 				kfree_skb(nskb);
2764 				goto err;
2765 			}
2766 
2767 			nskb->truesize += skb_end_offset(nskb) - hsize;
2768 			skb_release_head_state(nskb);
2769 			__skb_push(nskb, doffset);
2770 		} else {
2771 			nskb = alloc_skb(hsize + doffset + headroom,
2772 					 GFP_ATOMIC);
2773 
2774 			if (unlikely(!nskb))
2775 				goto err;
2776 
2777 			skb_reserve(nskb, headroom);
2778 			__skb_put(nskb, doffset);
2779 		}
2780 
2781 		if (segs)
2782 			tail->next = nskb;
2783 		else
2784 			segs = nskb;
2785 		tail = nskb;
2786 
2787 		__copy_skb_header(nskb, skb);
2788 		nskb->mac_len = skb->mac_len;
2789 
2790 		/* nskb and skb might have different headroom */
2791 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2792 			nskb->csum_start += skb_headroom(nskb) - headroom;
2793 
2794 		skb_reset_mac_header(nskb);
2795 		skb_set_network_header(nskb, skb->mac_len);
2796 		nskb->transport_header = (nskb->network_header +
2797 					  skb_network_header_len(skb));
2798 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2799 
2800 		if (fskb != skb_shinfo(skb)->frag_list)
2801 			continue;
2802 
2803 		if (!sg) {
2804 			nskb->ip_summed = CHECKSUM_NONE;
2805 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2806 							    skb_put(nskb, len),
2807 							    len, 0);
2808 			continue;
2809 		}
2810 
2811 		frag = skb_shinfo(nskb)->frags;
2812 
2813 		skb_copy_from_linear_data_offset(skb, offset,
2814 						 skb_put(nskb, hsize), hsize);
2815 
2816 		while (pos < offset + len && i < nfrags) {
2817 			*frag = skb_shinfo(skb)->frags[i];
2818 			__skb_frag_ref(frag);
2819 			size = skb_frag_size(frag);
2820 
2821 			if (pos < offset) {
2822 				frag->page_offset += offset - pos;
2823 				skb_frag_size_sub(frag, offset - pos);
2824 			}
2825 
2826 			skb_shinfo(nskb)->nr_frags++;
2827 
2828 			if (pos + size <= offset + len) {
2829 				i++;
2830 				pos += size;
2831 			} else {
2832 				skb_frag_size_sub(frag, pos + size - (offset + len));
2833 				goto skip_fraglist;
2834 			}
2835 
2836 			frag++;
2837 		}
2838 
2839 		if (pos < offset + len) {
2840 			struct sk_buff *fskb2 = fskb;
2841 
2842 			BUG_ON(pos + fskb->len != offset + len);
2843 
2844 			pos += fskb->len;
2845 			fskb = fskb->next;
2846 
2847 			if (fskb2->next) {
2848 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2849 				if (!fskb2)
2850 					goto err;
2851 			} else
2852 				skb_get(fskb2);
2853 
2854 			SKB_FRAG_ASSERT(nskb);
2855 			skb_shinfo(nskb)->frag_list = fskb2;
2856 		}
2857 
2858 skip_fraglist:
2859 		nskb->data_len = len - hsize;
2860 		nskb->len += nskb->data_len;
2861 		nskb->truesize += nskb->data_len;
2862 	} while ((offset += len) < skb->len);
2863 
2864 	return segs;
2865 
2866 err:
2867 	while ((skb = segs)) {
2868 		segs = skb->next;
2869 		kfree_skb(skb);
2870 	}
2871 	return ERR_PTR(err);
2872 }
2873 EXPORT_SYMBOL_GPL(skb_segment);
2874 
2875 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2876 {
2877 	struct sk_buff *p = *head;
2878 	struct sk_buff *nskb;
2879 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2880 	struct skb_shared_info *pinfo = skb_shinfo(p);
2881 	unsigned int headroom;
2882 	unsigned int len = skb_gro_len(skb);
2883 	unsigned int offset = skb_gro_offset(skb);
2884 	unsigned int headlen = skb_headlen(skb);
2885 	unsigned int delta_truesize;
2886 
2887 	if (p->len + len >= 65536)
2888 		return -E2BIG;
2889 
2890 	if (pinfo->frag_list)
2891 		goto merge;
2892 	else if (headlen <= offset) {
2893 		skb_frag_t *frag;
2894 		skb_frag_t *frag2;
2895 		int i = skbinfo->nr_frags;
2896 		int nr_frags = pinfo->nr_frags + i;
2897 
2898 		offset -= headlen;
2899 
2900 		if (nr_frags > MAX_SKB_FRAGS)
2901 			return -E2BIG;
2902 
2903 		pinfo->nr_frags = nr_frags;
2904 		skbinfo->nr_frags = 0;
2905 
2906 		frag = pinfo->frags + nr_frags;
2907 		frag2 = skbinfo->frags + i;
2908 		do {
2909 			*--frag = *--frag2;
2910 		} while (--i);
2911 
2912 		frag->page_offset += offset;
2913 		skb_frag_size_sub(frag, offset);
2914 
2915 		/* all fragments truesize : remove (head size + sk_buff) */
2916 		delta_truesize = skb->truesize -
2917 				 SKB_TRUESIZE(skb_end_offset(skb));
2918 
2919 		skb->truesize -= skb->data_len;
2920 		skb->len -= skb->data_len;
2921 		skb->data_len = 0;
2922 
2923 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2924 		goto done;
2925 	} else if (skb->head_frag) {
2926 		int nr_frags = pinfo->nr_frags;
2927 		skb_frag_t *frag = pinfo->frags + nr_frags;
2928 		struct page *page = virt_to_head_page(skb->head);
2929 		unsigned int first_size = headlen - offset;
2930 		unsigned int first_offset;
2931 
2932 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2933 			return -E2BIG;
2934 
2935 		first_offset = skb->data -
2936 			       (unsigned char *)page_address(page) +
2937 			       offset;
2938 
2939 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2940 
2941 		frag->page.p	  = page;
2942 		frag->page_offset = first_offset;
2943 		skb_frag_size_set(frag, first_size);
2944 
2945 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2946 		/* We dont need to clear skbinfo->nr_frags here */
2947 
2948 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2949 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2950 		goto done;
2951 	} else if (skb_gro_len(p) != pinfo->gso_size)
2952 		return -E2BIG;
2953 
2954 	headroom = skb_headroom(p);
2955 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2956 	if (unlikely(!nskb))
2957 		return -ENOMEM;
2958 
2959 	__copy_skb_header(nskb, p);
2960 	nskb->mac_len = p->mac_len;
2961 
2962 	skb_reserve(nskb, headroom);
2963 	__skb_put(nskb, skb_gro_offset(p));
2964 
2965 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2966 	skb_set_network_header(nskb, skb_network_offset(p));
2967 	skb_set_transport_header(nskb, skb_transport_offset(p));
2968 
2969 	__skb_pull(p, skb_gro_offset(p));
2970 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2971 	       p->data - skb_mac_header(p));
2972 
2973 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2974 	skb_shinfo(nskb)->frag_list = p;
2975 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2976 	pinfo->gso_size = 0;
2977 	skb_header_release(p);
2978 	nskb->prev = p;
2979 
2980 	nskb->data_len += p->len;
2981 	nskb->truesize += p->truesize;
2982 	nskb->len += p->len;
2983 
2984 	*head = nskb;
2985 	nskb->next = p->next;
2986 	p->next = NULL;
2987 
2988 	p = nskb;
2989 
2990 merge:
2991 	delta_truesize = skb->truesize;
2992 	if (offset > headlen) {
2993 		unsigned int eat = offset - headlen;
2994 
2995 		skbinfo->frags[0].page_offset += eat;
2996 		skb_frag_size_sub(&skbinfo->frags[0], eat);
2997 		skb->data_len -= eat;
2998 		skb->len -= eat;
2999 		offset = headlen;
3000 	}
3001 
3002 	__skb_pull(skb, offset);
3003 
3004 	p->prev->next = skb;
3005 	p->prev = skb;
3006 	skb_header_release(skb);
3007 
3008 done:
3009 	NAPI_GRO_CB(p)->count++;
3010 	p->data_len += len;
3011 	p->truesize += delta_truesize;
3012 	p->len += len;
3013 
3014 	NAPI_GRO_CB(skb)->same_flow = 1;
3015 	return 0;
3016 }
3017 EXPORT_SYMBOL_GPL(skb_gro_receive);
3018 
3019 void __init skb_init(void)
3020 {
3021 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3022 					      sizeof(struct sk_buff),
3023 					      0,
3024 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3025 					      NULL);
3026 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3027 						(2*sizeof(struct sk_buff)) +
3028 						sizeof(atomic_t),
3029 						0,
3030 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3031 						NULL);
3032 }
3033 
3034 /**
3035  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3036  *	@skb: Socket buffer containing the buffers to be mapped
3037  *	@sg: The scatter-gather list to map into
3038  *	@offset: The offset into the buffer's contents to start mapping
3039  *	@len: Length of buffer space to be mapped
3040  *
3041  *	Fill the specified scatter-gather list with mappings/pointers into a
3042  *	region of the buffer space attached to a socket buffer.
3043  */
3044 static int
3045 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3046 {
3047 	int start = skb_headlen(skb);
3048 	int i, copy = start - offset;
3049 	struct sk_buff *frag_iter;
3050 	int elt = 0;
3051 
3052 	if (copy > 0) {
3053 		if (copy > len)
3054 			copy = len;
3055 		sg_set_buf(sg, skb->data + offset, copy);
3056 		elt++;
3057 		if ((len -= copy) == 0)
3058 			return elt;
3059 		offset += copy;
3060 	}
3061 
3062 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3063 		int end;
3064 
3065 		WARN_ON(start > offset + len);
3066 
3067 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3068 		if ((copy = end - offset) > 0) {
3069 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3070 
3071 			if (copy > len)
3072 				copy = len;
3073 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3074 					frag->page_offset+offset-start);
3075 			elt++;
3076 			if (!(len -= copy))
3077 				return elt;
3078 			offset += copy;
3079 		}
3080 		start = end;
3081 	}
3082 
3083 	skb_walk_frags(skb, frag_iter) {
3084 		int end;
3085 
3086 		WARN_ON(start > offset + len);
3087 
3088 		end = start + frag_iter->len;
3089 		if ((copy = end - offset) > 0) {
3090 			if (copy > len)
3091 				copy = len;
3092 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3093 					      copy);
3094 			if ((len -= copy) == 0)
3095 				return elt;
3096 			offset += copy;
3097 		}
3098 		start = end;
3099 	}
3100 	BUG_ON(len);
3101 	return elt;
3102 }
3103 
3104 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3105 {
3106 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3107 
3108 	sg_mark_end(&sg[nsg - 1]);
3109 
3110 	return nsg;
3111 }
3112 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3113 
3114 /**
3115  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3116  *	@skb: The socket buffer to check.
3117  *	@tailbits: Amount of trailing space to be added
3118  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3119  *
3120  *	Make sure that the data buffers attached to a socket buffer are
3121  *	writable. If they are not, private copies are made of the data buffers
3122  *	and the socket buffer is set to use these instead.
3123  *
3124  *	If @tailbits is given, make sure that there is space to write @tailbits
3125  *	bytes of data beyond current end of socket buffer.  @trailer will be
3126  *	set to point to the skb in which this space begins.
3127  *
3128  *	The number of scatterlist elements required to completely map the
3129  *	COW'd and extended socket buffer will be returned.
3130  */
3131 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3132 {
3133 	int copyflag;
3134 	int elt;
3135 	struct sk_buff *skb1, **skb_p;
3136 
3137 	/* If skb is cloned or its head is paged, reallocate
3138 	 * head pulling out all the pages (pages are considered not writable
3139 	 * at the moment even if they are anonymous).
3140 	 */
3141 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3142 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3143 		return -ENOMEM;
3144 
3145 	/* Easy case. Most of packets will go this way. */
3146 	if (!skb_has_frag_list(skb)) {
3147 		/* A little of trouble, not enough of space for trailer.
3148 		 * This should not happen, when stack is tuned to generate
3149 		 * good frames. OK, on miss we reallocate and reserve even more
3150 		 * space, 128 bytes is fair. */
3151 
3152 		if (skb_tailroom(skb) < tailbits &&
3153 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3154 			return -ENOMEM;
3155 
3156 		/* Voila! */
3157 		*trailer = skb;
3158 		return 1;
3159 	}
3160 
3161 	/* Misery. We are in troubles, going to mincer fragments... */
3162 
3163 	elt = 1;
3164 	skb_p = &skb_shinfo(skb)->frag_list;
3165 	copyflag = 0;
3166 
3167 	while ((skb1 = *skb_p) != NULL) {
3168 		int ntail = 0;
3169 
3170 		/* The fragment is partially pulled by someone,
3171 		 * this can happen on input. Copy it and everything
3172 		 * after it. */
3173 
3174 		if (skb_shared(skb1))
3175 			copyflag = 1;
3176 
3177 		/* If the skb is the last, worry about trailer. */
3178 
3179 		if (skb1->next == NULL && tailbits) {
3180 			if (skb_shinfo(skb1)->nr_frags ||
3181 			    skb_has_frag_list(skb1) ||
3182 			    skb_tailroom(skb1) < tailbits)
3183 				ntail = tailbits + 128;
3184 		}
3185 
3186 		if (copyflag ||
3187 		    skb_cloned(skb1) ||
3188 		    ntail ||
3189 		    skb_shinfo(skb1)->nr_frags ||
3190 		    skb_has_frag_list(skb1)) {
3191 			struct sk_buff *skb2;
3192 
3193 			/* Fuck, we are miserable poor guys... */
3194 			if (ntail == 0)
3195 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3196 			else
3197 				skb2 = skb_copy_expand(skb1,
3198 						       skb_headroom(skb1),
3199 						       ntail,
3200 						       GFP_ATOMIC);
3201 			if (unlikely(skb2 == NULL))
3202 				return -ENOMEM;
3203 
3204 			if (skb1->sk)
3205 				skb_set_owner_w(skb2, skb1->sk);
3206 
3207 			/* Looking around. Are we still alive?
3208 			 * OK, link new skb, drop old one */
3209 
3210 			skb2->next = skb1->next;
3211 			*skb_p = skb2;
3212 			kfree_skb(skb1);
3213 			skb1 = skb2;
3214 		}
3215 		elt++;
3216 		*trailer = skb1;
3217 		skb_p = &skb1->next;
3218 	}
3219 
3220 	return elt;
3221 }
3222 EXPORT_SYMBOL_GPL(skb_cow_data);
3223 
3224 static void sock_rmem_free(struct sk_buff *skb)
3225 {
3226 	struct sock *sk = skb->sk;
3227 
3228 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3229 }
3230 
3231 /*
3232  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3233  */
3234 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3235 {
3236 	int len = skb->len;
3237 
3238 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3239 	    (unsigned int)sk->sk_rcvbuf)
3240 		return -ENOMEM;
3241 
3242 	skb_orphan(skb);
3243 	skb->sk = sk;
3244 	skb->destructor = sock_rmem_free;
3245 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3246 
3247 	/* before exiting rcu section, make sure dst is refcounted */
3248 	skb_dst_force(skb);
3249 
3250 	skb_queue_tail(&sk->sk_error_queue, skb);
3251 	if (!sock_flag(sk, SOCK_DEAD))
3252 		sk->sk_data_ready(sk, len);
3253 	return 0;
3254 }
3255 EXPORT_SYMBOL(sock_queue_err_skb);
3256 
3257 void skb_tstamp_tx(struct sk_buff *orig_skb,
3258 		struct skb_shared_hwtstamps *hwtstamps)
3259 {
3260 	struct sock *sk = orig_skb->sk;
3261 	struct sock_exterr_skb *serr;
3262 	struct sk_buff *skb;
3263 	int err;
3264 
3265 	if (!sk)
3266 		return;
3267 
3268 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3269 	if (!skb)
3270 		return;
3271 
3272 	if (hwtstamps) {
3273 		*skb_hwtstamps(skb) =
3274 			*hwtstamps;
3275 	} else {
3276 		/*
3277 		 * no hardware time stamps available,
3278 		 * so keep the shared tx_flags and only
3279 		 * store software time stamp
3280 		 */
3281 		skb->tstamp = ktime_get_real();
3282 	}
3283 
3284 	serr = SKB_EXT_ERR(skb);
3285 	memset(serr, 0, sizeof(*serr));
3286 	serr->ee.ee_errno = ENOMSG;
3287 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3288 
3289 	err = sock_queue_err_skb(sk, skb);
3290 
3291 	if (err)
3292 		kfree_skb(skb);
3293 }
3294 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3295 
3296 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3297 {
3298 	struct sock *sk = skb->sk;
3299 	struct sock_exterr_skb *serr;
3300 	int err;
3301 
3302 	skb->wifi_acked_valid = 1;
3303 	skb->wifi_acked = acked;
3304 
3305 	serr = SKB_EXT_ERR(skb);
3306 	memset(serr, 0, sizeof(*serr));
3307 	serr->ee.ee_errno = ENOMSG;
3308 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3309 
3310 	err = sock_queue_err_skb(sk, skb);
3311 	if (err)
3312 		kfree_skb(skb);
3313 }
3314 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3315 
3316 
3317 /**
3318  * skb_partial_csum_set - set up and verify partial csum values for packet
3319  * @skb: the skb to set
3320  * @start: the number of bytes after skb->data to start checksumming.
3321  * @off: the offset from start to place the checksum.
3322  *
3323  * For untrusted partially-checksummed packets, we need to make sure the values
3324  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3325  *
3326  * This function checks and sets those values and skb->ip_summed: if this
3327  * returns false you should drop the packet.
3328  */
3329 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3330 {
3331 	if (unlikely(start > skb_headlen(skb)) ||
3332 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3333 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3334 				     start, off, skb_headlen(skb));
3335 		return false;
3336 	}
3337 	skb->ip_summed = CHECKSUM_PARTIAL;
3338 	skb->csum_start = skb_headroom(skb) + start;
3339 	skb->csum_offset = off;
3340 	return true;
3341 }
3342 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3343 
3344 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3345 {
3346 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3347 			     skb->dev->name);
3348 }
3349 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3350 
3351 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3352 {
3353 	if (head_stolen)
3354 		kmem_cache_free(skbuff_head_cache, skb);
3355 	else
3356 		__kfree_skb(skb);
3357 }
3358 EXPORT_SYMBOL(kfree_skb_partial);
3359 
3360 /**
3361  * skb_try_coalesce - try to merge skb to prior one
3362  * @to: prior buffer
3363  * @from: buffer to add
3364  * @fragstolen: pointer to boolean
3365  * @delta_truesize: how much more was allocated than was requested
3366  */
3367 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3368 		      bool *fragstolen, int *delta_truesize)
3369 {
3370 	int i, delta, len = from->len;
3371 
3372 	*fragstolen = false;
3373 
3374 	if (skb_cloned(to))
3375 		return false;
3376 
3377 	if (len <= skb_tailroom(to)) {
3378 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3379 		*delta_truesize = 0;
3380 		return true;
3381 	}
3382 
3383 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3384 		return false;
3385 
3386 	if (skb_headlen(from) != 0) {
3387 		struct page *page;
3388 		unsigned int offset;
3389 
3390 		if (skb_shinfo(to)->nr_frags +
3391 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3392 			return false;
3393 
3394 		if (skb_head_is_locked(from))
3395 			return false;
3396 
3397 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3398 
3399 		page = virt_to_head_page(from->head);
3400 		offset = from->data - (unsigned char *)page_address(page);
3401 
3402 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3403 				   page, offset, skb_headlen(from));
3404 		*fragstolen = true;
3405 	} else {
3406 		if (skb_shinfo(to)->nr_frags +
3407 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3408 			return false;
3409 
3410 		delta = from->truesize -
3411 			SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3412 	}
3413 
3414 	WARN_ON_ONCE(delta < len);
3415 
3416 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3417 	       skb_shinfo(from)->frags,
3418 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3419 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3420 
3421 	if (!skb_cloned(from))
3422 		skb_shinfo(from)->nr_frags = 0;
3423 
3424 	/* if the skb is cloned this does nothing since we set nr_frags to 0 */
3425 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3426 		skb_frag_ref(from, i);
3427 
3428 	to->truesize += delta;
3429 	to->len += len;
3430 	to->data_len += len;
3431 
3432 	*delta_truesize = delta;
3433 	return true;
3434 }
3435 EXPORT_SYMBOL(skb_try_coalesce);
3436