1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/mm.h> 44 #include <linux/interrupt.h> 45 #include <linux/in.h> 46 #include <linux/inet.h> 47 #include <linux/slab.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 #include <trace/events/skb.h> 70 71 #include "kmap_skb.h" 72 73 static struct kmem_cache *skbuff_head_cache __read_mostly; 74 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 75 76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 77 struct pipe_buffer *buf) 78 { 79 put_page(buf->page); 80 } 81 82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84 { 85 get_page(buf->page); 86 } 87 88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 return 1; 92 } 93 94 95 /* Pipe buffer operations for a socket. */ 96 static const struct pipe_buf_operations sock_pipe_buf_ops = { 97 .can_merge = 0, 98 .map = generic_pipe_buf_map, 99 .unmap = generic_pipe_buf_unmap, 100 .confirm = generic_pipe_buf_confirm, 101 .release = sock_pipe_buf_release, 102 .steal = sock_pipe_buf_steal, 103 .get = sock_pipe_buf_get, 104 }; 105 106 /* 107 * Keep out-of-line to prevent kernel bloat. 108 * __builtin_return_address is not used because it is not always 109 * reliable. 110 */ 111 112 /** 113 * skb_over_panic - private function 114 * @skb: buffer 115 * @sz: size 116 * @here: address 117 * 118 * Out of line support code for skb_put(). Not user callable. 119 */ 120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here) 121 { 122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 123 "data:%p tail:%#lx end:%#lx dev:%s\n", 124 here, skb->len, sz, skb->head, skb->data, 125 (unsigned long)skb->tail, (unsigned long)skb->end, 126 skb->dev ? skb->dev->name : "<NULL>"); 127 BUG(); 128 } 129 130 /** 131 * skb_under_panic - private function 132 * @skb: buffer 133 * @sz: size 134 * @here: address 135 * 136 * Out of line support code for skb_push(). Not user callable. 137 */ 138 139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here) 140 { 141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 142 "data:%p tail:%#lx end:%#lx dev:%s\n", 143 here, skb->len, sz, skb->head, skb->data, 144 (unsigned long)skb->tail, (unsigned long)skb->end, 145 skb->dev ? skb->dev->name : "<NULL>"); 146 BUG(); 147 } 148 149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 150 * 'private' fields and also do memory statistics to find all the 151 * [BEEP] leaks. 152 * 153 */ 154 155 /** 156 * __alloc_skb - allocate a network buffer 157 * @size: size to allocate 158 * @gfp_mask: allocation mask 159 * @fclone: allocate from fclone cache instead of head cache 160 * and allocate a cloned (child) skb 161 * @node: numa node to allocate memory on 162 * 163 * Allocate a new &sk_buff. The returned buffer has no headroom and a 164 * tail room of size bytes. The object has a reference count of one. 165 * The return is the buffer. On a failure the return is %NULL. 166 * 167 * Buffers may only be allocated from interrupts using a @gfp_mask of 168 * %GFP_ATOMIC. 169 */ 170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 171 int fclone, int node) 172 { 173 struct kmem_cache *cache; 174 struct skb_shared_info *shinfo; 175 struct sk_buff *skb; 176 u8 *data; 177 178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 179 180 /* Get the HEAD */ 181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 182 if (!skb) 183 goto out; 184 prefetchw(skb); 185 186 size = SKB_DATA_ALIGN(size); 187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 188 gfp_mask, node); 189 if (!data) 190 goto nodata; 191 prefetchw(data + size); 192 193 /* 194 * Only clear those fields we need to clear, not those that we will 195 * actually initialise below. Hence, don't put any more fields after 196 * the tail pointer in struct sk_buff! 197 */ 198 memset(skb, 0, offsetof(struct sk_buff, tail)); 199 skb->truesize = size + sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 #ifdef NET_SKBUFF_DATA_USES_OFFSET 206 skb->mac_header = ~0U; 207 #endif 208 209 /* make sure we initialize shinfo sequentially */ 210 shinfo = skb_shinfo(skb); 211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 212 atomic_set(&shinfo->dataref, 1); 213 214 if (fclone) { 215 struct sk_buff *child = skb + 1; 216 atomic_t *fclone_ref = (atomic_t *) (child + 1); 217 218 kmemcheck_annotate_bitfield(child, flags1); 219 kmemcheck_annotate_bitfield(child, flags2); 220 skb->fclone = SKB_FCLONE_ORIG; 221 atomic_set(fclone_ref, 1); 222 223 child->fclone = SKB_FCLONE_UNAVAILABLE; 224 } 225 out: 226 return skb; 227 nodata: 228 kmem_cache_free(cache, skb); 229 skb = NULL; 230 goto out; 231 } 232 EXPORT_SYMBOL(__alloc_skb); 233 234 /** 235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 236 * @dev: network device to receive on 237 * @length: length to allocate 238 * @gfp_mask: get_free_pages mask, passed to alloc_skb 239 * 240 * Allocate a new &sk_buff and assign it a usage count of one. The 241 * buffer has unspecified headroom built in. Users should allocate 242 * the headroom they think they need without accounting for the 243 * built in space. The built in space is used for optimisations. 244 * 245 * %NULL is returned if there is no free memory. 246 */ 247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 248 unsigned int length, gfp_t gfp_mask) 249 { 250 struct sk_buff *skb; 251 252 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE); 253 if (likely(skb)) { 254 skb_reserve(skb, NET_SKB_PAD); 255 skb->dev = dev; 256 } 257 return skb; 258 } 259 EXPORT_SYMBOL(__netdev_alloc_skb); 260 261 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 262 int size) 263 { 264 skb_fill_page_desc(skb, i, page, off, size); 265 skb->len += size; 266 skb->data_len += size; 267 skb->truesize += size; 268 } 269 EXPORT_SYMBOL(skb_add_rx_frag); 270 271 /** 272 * dev_alloc_skb - allocate an skbuff for receiving 273 * @length: length to allocate 274 * 275 * Allocate a new &sk_buff and assign it a usage count of one. The 276 * buffer has unspecified headroom built in. Users should allocate 277 * the headroom they think they need without accounting for the 278 * built in space. The built in space is used for optimisations. 279 * 280 * %NULL is returned if there is no free memory. Although this function 281 * allocates memory it can be called from an interrupt. 282 */ 283 struct sk_buff *dev_alloc_skb(unsigned int length) 284 { 285 /* 286 * There is more code here than it seems: 287 * __dev_alloc_skb is an inline 288 */ 289 return __dev_alloc_skb(length, GFP_ATOMIC); 290 } 291 EXPORT_SYMBOL(dev_alloc_skb); 292 293 static void skb_drop_list(struct sk_buff **listp) 294 { 295 struct sk_buff *list = *listp; 296 297 *listp = NULL; 298 299 do { 300 struct sk_buff *this = list; 301 list = list->next; 302 kfree_skb(this); 303 } while (list); 304 } 305 306 static inline void skb_drop_fraglist(struct sk_buff *skb) 307 { 308 skb_drop_list(&skb_shinfo(skb)->frag_list); 309 } 310 311 static void skb_clone_fraglist(struct sk_buff *skb) 312 { 313 struct sk_buff *list; 314 315 skb_walk_frags(skb, list) 316 skb_get(list); 317 } 318 319 static void skb_release_data(struct sk_buff *skb) 320 { 321 if (!skb->cloned || 322 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 323 &skb_shinfo(skb)->dataref)) { 324 if (skb_shinfo(skb)->nr_frags) { 325 int i; 326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 327 put_page(skb_shinfo(skb)->frags[i].page); 328 } 329 330 if (skb_has_frag_list(skb)) 331 skb_drop_fraglist(skb); 332 333 kfree(skb->head); 334 } 335 } 336 337 /* 338 * Free an skbuff by memory without cleaning the state. 339 */ 340 static void kfree_skbmem(struct sk_buff *skb) 341 { 342 struct sk_buff *other; 343 atomic_t *fclone_ref; 344 345 switch (skb->fclone) { 346 case SKB_FCLONE_UNAVAILABLE: 347 kmem_cache_free(skbuff_head_cache, skb); 348 break; 349 350 case SKB_FCLONE_ORIG: 351 fclone_ref = (atomic_t *) (skb + 2); 352 if (atomic_dec_and_test(fclone_ref)) 353 kmem_cache_free(skbuff_fclone_cache, skb); 354 break; 355 356 case SKB_FCLONE_CLONE: 357 fclone_ref = (atomic_t *) (skb + 1); 358 other = skb - 1; 359 360 /* The clone portion is available for 361 * fast-cloning again. 362 */ 363 skb->fclone = SKB_FCLONE_UNAVAILABLE; 364 365 if (atomic_dec_and_test(fclone_ref)) 366 kmem_cache_free(skbuff_fclone_cache, other); 367 break; 368 } 369 } 370 371 static void skb_release_head_state(struct sk_buff *skb) 372 { 373 skb_dst_drop(skb); 374 #ifdef CONFIG_XFRM 375 secpath_put(skb->sp); 376 #endif 377 if (skb->destructor) { 378 WARN_ON(in_irq()); 379 skb->destructor(skb); 380 } 381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 382 nf_conntrack_put(skb->nfct); 383 nf_conntrack_put_reasm(skb->nfct_reasm); 384 #endif 385 #ifdef CONFIG_BRIDGE_NETFILTER 386 nf_bridge_put(skb->nf_bridge); 387 #endif 388 /* XXX: IS this still necessary? - JHS */ 389 #ifdef CONFIG_NET_SCHED 390 skb->tc_index = 0; 391 #ifdef CONFIG_NET_CLS_ACT 392 skb->tc_verd = 0; 393 #endif 394 #endif 395 } 396 397 /* Free everything but the sk_buff shell. */ 398 static void skb_release_all(struct sk_buff *skb) 399 { 400 skb_release_head_state(skb); 401 skb_release_data(skb); 402 } 403 404 /** 405 * __kfree_skb - private function 406 * @skb: buffer 407 * 408 * Free an sk_buff. Release anything attached to the buffer. 409 * Clean the state. This is an internal helper function. Users should 410 * always call kfree_skb 411 */ 412 413 void __kfree_skb(struct sk_buff *skb) 414 { 415 skb_release_all(skb); 416 kfree_skbmem(skb); 417 } 418 EXPORT_SYMBOL(__kfree_skb); 419 420 /** 421 * kfree_skb - free an sk_buff 422 * @skb: buffer to free 423 * 424 * Drop a reference to the buffer and free it if the usage count has 425 * hit zero. 426 */ 427 void kfree_skb(struct sk_buff *skb) 428 { 429 if (unlikely(!skb)) 430 return; 431 if (likely(atomic_read(&skb->users) == 1)) 432 smp_rmb(); 433 else if (likely(!atomic_dec_and_test(&skb->users))) 434 return; 435 trace_kfree_skb(skb, __builtin_return_address(0)); 436 __kfree_skb(skb); 437 } 438 EXPORT_SYMBOL(kfree_skb); 439 440 /** 441 * consume_skb - free an skbuff 442 * @skb: buffer to free 443 * 444 * Drop a ref to the buffer and free it if the usage count has hit zero 445 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 446 * is being dropped after a failure and notes that 447 */ 448 void consume_skb(struct sk_buff *skb) 449 { 450 if (unlikely(!skb)) 451 return; 452 if (likely(atomic_read(&skb->users) == 1)) 453 smp_rmb(); 454 else if (likely(!atomic_dec_and_test(&skb->users))) 455 return; 456 trace_consume_skb(skb); 457 __kfree_skb(skb); 458 } 459 EXPORT_SYMBOL(consume_skb); 460 461 /** 462 * skb_recycle_check - check if skb can be reused for receive 463 * @skb: buffer 464 * @skb_size: minimum receive buffer size 465 * 466 * Checks that the skb passed in is not shared or cloned, and 467 * that it is linear and its head portion at least as large as 468 * skb_size so that it can be recycled as a receive buffer. 469 * If these conditions are met, this function does any necessary 470 * reference count dropping and cleans up the skbuff as if it 471 * just came from __alloc_skb(). 472 */ 473 bool skb_recycle_check(struct sk_buff *skb, int skb_size) 474 { 475 struct skb_shared_info *shinfo; 476 477 if (irqs_disabled()) 478 return false; 479 480 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 481 return false; 482 483 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 484 if (skb_end_pointer(skb) - skb->head < skb_size) 485 return false; 486 487 if (skb_shared(skb) || skb_cloned(skb)) 488 return false; 489 490 skb_release_head_state(skb); 491 492 shinfo = skb_shinfo(skb); 493 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 494 atomic_set(&shinfo->dataref, 1); 495 496 memset(skb, 0, offsetof(struct sk_buff, tail)); 497 skb->data = skb->head + NET_SKB_PAD; 498 skb_reset_tail_pointer(skb); 499 500 return true; 501 } 502 EXPORT_SYMBOL(skb_recycle_check); 503 504 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 505 { 506 new->tstamp = old->tstamp; 507 new->dev = old->dev; 508 new->transport_header = old->transport_header; 509 new->network_header = old->network_header; 510 new->mac_header = old->mac_header; 511 skb_dst_copy(new, old); 512 new->rxhash = old->rxhash; 513 #ifdef CONFIG_XFRM 514 new->sp = secpath_get(old->sp); 515 #endif 516 memcpy(new->cb, old->cb, sizeof(old->cb)); 517 new->csum = old->csum; 518 new->local_df = old->local_df; 519 new->pkt_type = old->pkt_type; 520 new->ip_summed = old->ip_summed; 521 skb_copy_queue_mapping(new, old); 522 new->priority = old->priority; 523 new->deliver_no_wcard = old->deliver_no_wcard; 524 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 525 new->ipvs_property = old->ipvs_property; 526 #endif 527 new->protocol = old->protocol; 528 new->mark = old->mark; 529 new->skb_iif = old->skb_iif; 530 __nf_copy(new, old); 531 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 532 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 533 new->nf_trace = old->nf_trace; 534 #endif 535 #ifdef CONFIG_NET_SCHED 536 new->tc_index = old->tc_index; 537 #ifdef CONFIG_NET_CLS_ACT 538 new->tc_verd = old->tc_verd; 539 #endif 540 #endif 541 new->vlan_tci = old->vlan_tci; 542 543 skb_copy_secmark(new, old); 544 } 545 546 /* 547 * You should not add any new code to this function. Add it to 548 * __copy_skb_header above instead. 549 */ 550 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 551 { 552 #define C(x) n->x = skb->x 553 554 n->next = n->prev = NULL; 555 n->sk = NULL; 556 __copy_skb_header(n, skb); 557 558 C(len); 559 C(data_len); 560 C(mac_len); 561 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 562 n->cloned = 1; 563 n->nohdr = 0; 564 n->destructor = NULL; 565 C(tail); 566 C(end); 567 C(head); 568 C(data); 569 C(truesize); 570 atomic_set(&n->users, 1); 571 572 atomic_inc(&(skb_shinfo(skb)->dataref)); 573 skb->cloned = 1; 574 575 return n; 576 #undef C 577 } 578 579 /** 580 * skb_morph - morph one skb into another 581 * @dst: the skb to receive the contents 582 * @src: the skb to supply the contents 583 * 584 * This is identical to skb_clone except that the target skb is 585 * supplied by the user. 586 * 587 * The target skb is returned upon exit. 588 */ 589 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 590 { 591 skb_release_all(dst); 592 return __skb_clone(dst, src); 593 } 594 EXPORT_SYMBOL_GPL(skb_morph); 595 596 /** 597 * skb_clone - duplicate an sk_buff 598 * @skb: buffer to clone 599 * @gfp_mask: allocation priority 600 * 601 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 602 * copies share the same packet data but not structure. The new 603 * buffer has a reference count of 1. If the allocation fails the 604 * function returns %NULL otherwise the new buffer is returned. 605 * 606 * If this function is called from an interrupt gfp_mask() must be 607 * %GFP_ATOMIC. 608 */ 609 610 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 611 { 612 struct sk_buff *n; 613 614 n = skb + 1; 615 if (skb->fclone == SKB_FCLONE_ORIG && 616 n->fclone == SKB_FCLONE_UNAVAILABLE) { 617 atomic_t *fclone_ref = (atomic_t *) (n + 1); 618 n->fclone = SKB_FCLONE_CLONE; 619 atomic_inc(fclone_ref); 620 } else { 621 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 622 if (!n) 623 return NULL; 624 625 kmemcheck_annotate_bitfield(n, flags1); 626 kmemcheck_annotate_bitfield(n, flags2); 627 n->fclone = SKB_FCLONE_UNAVAILABLE; 628 } 629 630 return __skb_clone(n, skb); 631 } 632 EXPORT_SYMBOL(skb_clone); 633 634 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 635 { 636 #ifndef NET_SKBUFF_DATA_USES_OFFSET 637 /* 638 * Shift between the two data areas in bytes 639 */ 640 unsigned long offset = new->data - old->data; 641 #endif 642 643 __copy_skb_header(new, old); 644 645 #ifndef NET_SKBUFF_DATA_USES_OFFSET 646 /* {transport,network,mac}_header are relative to skb->head */ 647 new->transport_header += offset; 648 new->network_header += offset; 649 if (skb_mac_header_was_set(new)) 650 new->mac_header += offset; 651 #endif 652 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 653 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 654 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 655 } 656 657 /** 658 * skb_copy - create private copy of an sk_buff 659 * @skb: buffer to copy 660 * @gfp_mask: allocation priority 661 * 662 * Make a copy of both an &sk_buff and its data. This is used when the 663 * caller wishes to modify the data and needs a private copy of the 664 * data to alter. Returns %NULL on failure or the pointer to the buffer 665 * on success. The returned buffer has a reference count of 1. 666 * 667 * As by-product this function converts non-linear &sk_buff to linear 668 * one, so that &sk_buff becomes completely private and caller is allowed 669 * to modify all the data of returned buffer. This means that this 670 * function is not recommended for use in circumstances when only 671 * header is going to be modified. Use pskb_copy() instead. 672 */ 673 674 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 675 { 676 int headerlen = skb_headroom(skb); 677 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len; 678 struct sk_buff *n = alloc_skb(size, gfp_mask); 679 680 if (!n) 681 return NULL; 682 683 /* Set the data pointer */ 684 skb_reserve(n, headerlen); 685 /* Set the tail pointer and length */ 686 skb_put(n, skb->len); 687 688 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 689 BUG(); 690 691 copy_skb_header(n, skb); 692 return n; 693 } 694 EXPORT_SYMBOL(skb_copy); 695 696 /** 697 * pskb_copy - create copy of an sk_buff with private head. 698 * @skb: buffer to copy 699 * @gfp_mask: allocation priority 700 * 701 * Make a copy of both an &sk_buff and part of its data, located 702 * in header. Fragmented data remain shared. This is used when 703 * the caller wishes to modify only header of &sk_buff and needs 704 * private copy of the header to alter. Returns %NULL on failure 705 * or the pointer to the buffer on success. 706 * The returned buffer has a reference count of 1. 707 */ 708 709 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 710 { 711 unsigned int size = skb_end_pointer(skb) - skb->head; 712 struct sk_buff *n = alloc_skb(size, gfp_mask); 713 714 if (!n) 715 goto out; 716 717 /* Set the data pointer */ 718 skb_reserve(n, skb_headroom(skb)); 719 /* Set the tail pointer and length */ 720 skb_put(n, skb_headlen(skb)); 721 /* Copy the bytes */ 722 skb_copy_from_linear_data(skb, n->data, n->len); 723 724 n->truesize += skb->data_len; 725 n->data_len = skb->data_len; 726 n->len = skb->len; 727 728 if (skb_shinfo(skb)->nr_frags) { 729 int i; 730 731 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 732 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 733 get_page(skb_shinfo(n)->frags[i].page); 734 } 735 skb_shinfo(n)->nr_frags = i; 736 } 737 738 if (skb_has_frag_list(skb)) { 739 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 740 skb_clone_fraglist(n); 741 } 742 743 copy_skb_header(n, skb); 744 out: 745 return n; 746 } 747 EXPORT_SYMBOL(pskb_copy); 748 749 /** 750 * pskb_expand_head - reallocate header of &sk_buff 751 * @skb: buffer to reallocate 752 * @nhead: room to add at head 753 * @ntail: room to add at tail 754 * @gfp_mask: allocation priority 755 * 756 * Expands (or creates identical copy, if &nhead and &ntail are zero) 757 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 758 * reference count of 1. Returns zero in the case of success or error, 759 * if expansion failed. In the last case, &sk_buff is not changed. 760 * 761 * All the pointers pointing into skb header may change and must be 762 * reloaded after call to this function. 763 */ 764 765 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 766 gfp_t gfp_mask) 767 { 768 int i; 769 u8 *data; 770 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail; 771 long off; 772 bool fastpath; 773 774 BUG_ON(nhead < 0); 775 776 if (skb_shared(skb)) 777 BUG(); 778 779 size = SKB_DATA_ALIGN(size); 780 781 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 782 if (!data) 783 goto nodata; 784 785 /* Copy only real data... and, alas, header. This should be 786 * optimized for the cases when header is void. 787 */ 788 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 789 790 memcpy((struct skb_shared_info *)(data + size), 791 skb_shinfo(skb), 792 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 793 794 /* Check if we can avoid taking references on fragments if we own 795 * the last reference on skb->head. (see skb_release_data()) 796 */ 797 if (!skb->cloned) 798 fastpath = true; 799 else { 800 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 801 802 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta; 803 } 804 805 if (fastpath) { 806 kfree(skb->head); 807 } else { 808 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 809 get_page(skb_shinfo(skb)->frags[i].page); 810 811 if (skb_has_frag_list(skb)) 812 skb_clone_fraglist(skb); 813 814 skb_release_data(skb); 815 } 816 off = (data + nhead) - skb->head; 817 818 skb->head = data; 819 skb->data += off; 820 #ifdef NET_SKBUFF_DATA_USES_OFFSET 821 skb->end = size; 822 off = nhead; 823 #else 824 skb->end = skb->head + size; 825 #endif 826 /* {transport,network,mac}_header and tail are relative to skb->head */ 827 skb->tail += off; 828 skb->transport_header += off; 829 skb->network_header += off; 830 if (skb_mac_header_was_set(skb)) 831 skb->mac_header += off; 832 /* Only adjust this if it actually is csum_start rather than csum */ 833 if (skb->ip_summed == CHECKSUM_PARTIAL) 834 skb->csum_start += nhead; 835 skb->cloned = 0; 836 skb->hdr_len = 0; 837 skb->nohdr = 0; 838 atomic_set(&skb_shinfo(skb)->dataref, 1); 839 return 0; 840 841 nodata: 842 return -ENOMEM; 843 } 844 EXPORT_SYMBOL(pskb_expand_head); 845 846 /* Make private copy of skb with writable head and some headroom */ 847 848 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 849 { 850 struct sk_buff *skb2; 851 int delta = headroom - skb_headroom(skb); 852 853 if (delta <= 0) 854 skb2 = pskb_copy(skb, GFP_ATOMIC); 855 else { 856 skb2 = skb_clone(skb, GFP_ATOMIC); 857 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 858 GFP_ATOMIC)) { 859 kfree_skb(skb2); 860 skb2 = NULL; 861 } 862 } 863 return skb2; 864 } 865 EXPORT_SYMBOL(skb_realloc_headroom); 866 867 /** 868 * skb_copy_expand - copy and expand sk_buff 869 * @skb: buffer to copy 870 * @newheadroom: new free bytes at head 871 * @newtailroom: new free bytes at tail 872 * @gfp_mask: allocation priority 873 * 874 * Make a copy of both an &sk_buff and its data and while doing so 875 * allocate additional space. 876 * 877 * This is used when the caller wishes to modify the data and needs a 878 * private copy of the data to alter as well as more space for new fields. 879 * Returns %NULL on failure or the pointer to the buffer 880 * on success. The returned buffer has a reference count of 1. 881 * 882 * You must pass %GFP_ATOMIC as the allocation priority if this function 883 * is called from an interrupt. 884 */ 885 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 886 int newheadroom, int newtailroom, 887 gfp_t gfp_mask) 888 { 889 /* 890 * Allocate the copy buffer 891 */ 892 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 893 gfp_mask); 894 int oldheadroom = skb_headroom(skb); 895 int head_copy_len, head_copy_off; 896 int off; 897 898 if (!n) 899 return NULL; 900 901 skb_reserve(n, newheadroom); 902 903 /* Set the tail pointer and length */ 904 skb_put(n, skb->len); 905 906 head_copy_len = oldheadroom; 907 head_copy_off = 0; 908 if (newheadroom <= head_copy_len) 909 head_copy_len = newheadroom; 910 else 911 head_copy_off = newheadroom - head_copy_len; 912 913 /* Copy the linear header and data. */ 914 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 915 skb->len + head_copy_len)) 916 BUG(); 917 918 copy_skb_header(n, skb); 919 920 off = newheadroom - oldheadroom; 921 if (n->ip_summed == CHECKSUM_PARTIAL) 922 n->csum_start += off; 923 #ifdef NET_SKBUFF_DATA_USES_OFFSET 924 n->transport_header += off; 925 n->network_header += off; 926 if (skb_mac_header_was_set(skb)) 927 n->mac_header += off; 928 #endif 929 930 return n; 931 } 932 EXPORT_SYMBOL(skb_copy_expand); 933 934 /** 935 * skb_pad - zero pad the tail of an skb 936 * @skb: buffer to pad 937 * @pad: space to pad 938 * 939 * Ensure that a buffer is followed by a padding area that is zero 940 * filled. Used by network drivers which may DMA or transfer data 941 * beyond the buffer end onto the wire. 942 * 943 * May return error in out of memory cases. The skb is freed on error. 944 */ 945 946 int skb_pad(struct sk_buff *skb, int pad) 947 { 948 int err; 949 int ntail; 950 951 /* If the skbuff is non linear tailroom is always zero.. */ 952 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 953 memset(skb->data+skb->len, 0, pad); 954 return 0; 955 } 956 957 ntail = skb->data_len + pad - (skb->end - skb->tail); 958 if (likely(skb_cloned(skb) || ntail > 0)) { 959 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 960 if (unlikely(err)) 961 goto free_skb; 962 } 963 964 /* FIXME: The use of this function with non-linear skb's really needs 965 * to be audited. 966 */ 967 err = skb_linearize(skb); 968 if (unlikely(err)) 969 goto free_skb; 970 971 memset(skb->data + skb->len, 0, pad); 972 return 0; 973 974 free_skb: 975 kfree_skb(skb); 976 return err; 977 } 978 EXPORT_SYMBOL(skb_pad); 979 980 /** 981 * skb_put - add data to a buffer 982 * @skb: buffer to use 983 * @len: amount of data to add 984 * 985 * This function extends the used data area of the buffer. If this would 986 * exceed the total buffer size the kernel will panic. A pointer to the 987 * first byte of the extra data is returned. 988 */ 989 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 990 { 991 unsigned char *tmp = skb_tail_pointer(skb); 992 SKB_LINEAR_ASSERT(skb); 993 skb->tail += len; 994 skb->len += len; 995 if (unlikely(skb->tail > skb->end)) 996 skb_over_panic(skb, len, __builtin_return_address(0)); 997 return tmp; 998 } 999 EXPORT_SYMBOL(skb_put); 1000 1001 /** 1002 * skb_push - add data to the start of a buffer 1003 * @skb: buffer to use 1004 * @len: amount of data to add 1005 * 1006 * This function extends the used data area of the buffer at the buffer 1007 * start. If this would exceed the total buffer headroom the kernel will 1008 * panic. A pointer to the first byte of the extra data is returned. 1009 */ 1010 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1011 { 1012 skb->data -= len; 1013 skb->len += len; 1014 if (unlikely(skb->data<skb->head)) 1015 skb_under_panic(skb, len, __builtin_return_address(0)); 1016 return skb->data; 1017 } 1018 EXPORT_SYMBOL(skb_push); 1019 1020 /** 1021 * skb_pull - remove data from the start of a buffer 1022 * @skb: buffer to use 1023 * @len: amount of data to remove 1024 * 1025 * This function removes data from the start of a buffer, returning 1026 * the memory to the headroom. A pointer to the next data in the buffer 1027 * is returned. Once the data has been pulled future pushes will overwrite 1028 * the old data. 1029 */ 1030 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1031 { 1032 return skb_pull_inline(skb, len); 1033 } 1034 EXPORT_SYMBOL(skb_pull); 1035 1036 /** 1037 * skb_trim - remove end from a buffer 1038 * @skb: buffer to alter 1039 * @len: new length 1040 * 1041 * Cut the length of a buffer down by removing data from the tail. If 1042 * the buffer is already under the length specified it is not modified. 1043 * The skb must be linear. 1044 */ 1045 void skb_trim(struct sk_buff *skb, unsigned int len) 1046 { 1047 if (skb->len > len) 1048 __skb_trim(skb, len); 1049 } 1050 EXPORT_SYMBOL(skb_trim); 1051 1052 /* Trims skb to length len. It can change skb pointers. 1053 */ 1054 1055 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1056 { 1057 struct sk_buff **fragp; 1058 struct sk_buff *frag; 1059 int offset = skb_headlen(skb); 1060 int nfrags = skb_shinfo(skb)->nr_frags; 1061 int i; 1062 int err; 1063 1064 if (skb_cloned(skb) && 1065 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1066 return err; 1067 1068 i = 0; 1069 if (offset >= len) 1070 goto drop_pages; 1071 1072 for (; i < nfrags; i++) { 1073 int end = offset + skb_shinfo(skb)->frags[i].size; 1074 1075 if (end < len) { 1076 offset = end; 1077 continue; 1078 } 1079 1080 skb_shinfo(skb)->frags[i++].size = len - offset; 1081 1082 drop_pages: 1083 skb_shinfo(skb)->nr_frags = i; 1084 1085 for (; i < nfrags; i++) 1086 put_page(skb_shinfo(skb)->frags[i].page); 1087 1088 if (skb_has_frag_list(skb)) 1089 skb_drop_fraglist(skb); 1090 goto done; 1091 } 1092 1093 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1094 fragp = &frag->next) { 1095 int end = offset + frag->len; 1096 1097 if (skb_shared(frag)) { 1098 struct sk_buff *nfrag; 1099 1100 nfrag = skb_clone(frag, GFP_ATOMIC); 1101 if (unlikely(!nfrag)) 1102 return -ENOMEM; 1103 1104 nfrag->next = frag->next; 1105 kfree_skb(frag); 1106 frag = nfrag; 1107 *fragp = frag; 1108 } 1109 1110 if (end < len) { 1111 offset = end; 1112 continue; 1113 } 1114 1115 if (end > len && 1116 unlikely((err = pskb_trim(frag, len - offset)))) 1117 return err; 1118 1119 if (frag->next) 1120 skb_drop_list(&frag->next); 1121 break; 1122 } 1123 1124 done: 1125 if (len > skb_headlen(skb)) { 1126 skb->data_len -= skb->len - len; 1127 skb->len = len; 1128 } else { 1129 skb->len = len; 1130 skb->data_len = 0; 1131 skb_set_tail_pointer(skb, len); 1132 } 1133 1134 return 0; 1135 } 1136 EXPORT_SYMBOL(___pskb_trim); 1137 1138 /** 1139 * __pskb_pull_tail - advance tail of skb header 1140 * @skb: buffer to reallocate 1141 * @delta: number of bytes to advance tail 1142 * 1143 * The function makes a sense only on a fragmented &sk_buff, 1144 * it expands header moving its tail forward and copying necessary 1145 * data from fragmented part. 1146 * 1147 * &sk_buff MUST have reference count of 1. 1148 * 1149 * Returns %NULL (and &sk_buff does not change) if pull failed 1150 * or value of new tail of skb in the case of success. 1151 * 1152 * All the pointers pointing into skb header may change and must be 1153 * reloaded after call to this function. 1154 */ 1155 1156 /* Moves tail of skb head forward, copying data from fragmented part, 1157 * when it is necessary. 1158 * 1. It may fail due to malloc failure. 1159 * 2. It may change skb pointers. 1160 * 1161 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1162 */ 1163 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1164 { 1165 /* If skb has not enough free space at tail, get new one 1166 * plus 128 bytes for future expansions. If we have enough 1167 * room at tail, reallocate without expansion only if skb is cloned. 1168 */ 1169 int i, k, eat = (skb->tail + delta) - skb->end; 1170 1171 if (eat > 0 || skb_cloned(skb)) { 1172 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1173 GFP_ATOMIC)) 1174 return NULL; 1175 } 1176 1177 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1178 BUG(); 1179 1180 /* Optimization: no fragments, no reasons to preestimate 1181 * size of pulled pages. Superb. 1182 */ 1183 if (!skb_has_frag_list(skb)) 1184 goto pull_pages; 1185 1186 /* Estimate size of pulled pages. */ 1187 eat = delta; 1188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1189 if (skb_shinfo(skb)->frags[i].size >= eat) 1190 goto pull_pages; 1191 eat -= skb_shinfo(skb)->frags[i].size; 1192 } 1193 1194 /* If we need update frag list, we are in troubles. 1195 * Certainly, it possible to add an offset to skb data, 1196 * but taking into account that pulling is expected to 1197 * be very rare operation, it is worth to fight against 1198 * further bloating skb head and crucify ourselves here instead. 1199 * Pure masohism, indeed. 8)8) 1200 */ 1201 if (eat) { 1202 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1203 struct sk_buff *clone = NULL; 1204 struct sk_buff *insp = NULL; 1205 1206 do { 1207 BUG_ON(!list); 1208 1209 if (list->len <= eat) { 1210 /* Eaten as whole. */ 1211 eat -= list->len; 1212 list = list->next; 1213 insp = list; 1214 } else { 1215 /* Eaten partially. */ 1216 1217 if (skb_shared(list)) { 1218 /* Sucks! We need to fork list. :-( */ 1219 clone = skb_clone(list, GFP_ATOMIC); 1220 if (!clone) 1221 return NULL; 1222 insp = list->next; 1223 list = clone; 1224 } else { 1225 /* This may be pulled without 1226 * problems. */ 1227 insp = list; 1228 } 1229 if (!pskb_pull(list, eat)) { 1230 kfree_skb(clone); 1231 return NULL; 1232 } 1233 break; 1234 } 1235 } while (eat); 1236 1237 /* Free pulled out fragments. */ 1238 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1239 skb_shinfo(skb)->frag_list = list->next; 1240 kfree_skb(list); 1241 } 1242 /* And insert new clone at head. */ 1243 if (clone) { 1244 clone->next = list; 1245 skb_shinfo(skb)->frag_list = clone; 1246 } 1247 } 1248 /* Success! Now we may commit changes to skb data. */ 1249 1250 pull_pages: 1251 eat = delta; 1252 k = 0; 1253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1254 if (skb_shinfo(skb)->frags[i].size <= eat) { 1255 put_page(skb_shinfo(skb)->frags[i].page); 1256 eat -= skb_shinfo(skb)->frags[i].size; 1257 } else { 1258 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1259 if (eat) { 1260 skb_shinfo(skb)->frags[k].page_offset += eat; 1261 skb_shinfo(skb)->frags[k].size -= eat; 1262 eat = 0; 1263 } 1264 k++; 1265 } 1266 } 1267 skb_shinfo(skb)->nr_frags = k; 1268 1269 skb->tail += delta; 1270 skb->data_len -= delta; 1271 1272 return skb_tail_pointer(skb); 1273 } 1274 EXPORT_SYMBOL(__pskb_pull_tail); 1275 1276 /* Copy some data bits from skb to kernel buffer. */ 1277 1278 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1279 { 1280 int start = skb_headlen(skb); 1281 struct sk_buff *frag_iter; 1282 int i, copy; 1283 1284 if (offset > (int)skb->len - len) 1285 goto fault; 1286 1287 /* Copy header. */ 1288 if ((copy = start - offset) > 0) { 1289 if (copy > len) 1290 copy = len; 1291 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1292 if ((len -= copy) == 0) 1293 return 0; 1294 offset += copy; 1295 to += copy; 1296 } 1297 1298 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1299 int end; 1300 1301 WARN_ON(start > offset + len); 1302 1303 end = start + skb_shinfo(skb)->frags[i].size; 1304 if ((copy = end - offset) > 0) { 1305 u8 *vaddr; 1306 1307 if (copy > len) 1308 copy = len; 1309 1310 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1311 memcpy(to, 1312 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1313 offset - start, copy); 1314 kunmap_skb_frag(vaddr); 1315 1316 if ((len -= copy) == 0) 1317 return 0; 1318 offset += copy; 1319 to += copy; 1320 } 1321 start = end; 1322 } 1323 1324 skb_walk_frags(skb, frag_iter) { 1325 int end; 1326 1327 WARN_ON(start > offset + len); 1328 1329 end = start + frag_iter->len; 1330 if ((copy = end - offset) > 0) { 1331 if (copy > len) 1332 copy = len; 1333 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1334 goto fault; 1335 if ((len -= copy) == 0) 1336 return 0; 1337 offset += copy; 1338 to += copy; 1339 } 1340 start = end; 1341 } 1342 if (!len) 1343 return 0; 1344 1345 fault: 1346 return -EFAULT; 1347 } 1348 EXPORT_SYMBOL(skb_copy_bits); 1349 1350 /* 1351 * Callback from splice_to_pipe(), if we need to release some pages 1352 * at the end of the spd in case we error'ed out in filling the pipe. 1353 */ 1354 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1355 { 1356 put_page(spd->pages[i]); 1357 } 1358 1359 static inline struct page *linear_to_page(struct page *page, unsigned int *len, 1360 unsigned int *offset, 1361 struct sk_buff *skb, struct sock *sk) 1362 { 1363 struct page *p = sk->sk_sndmsg_page; 1364 unsigned int off; 1365 1366 if (!p) { 1367 new_page: 1368 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1369 if (!p) 1370 return NULL; 1371 1372 off = sk->sk_sndmsg_off = 0; 1373 /* hold one ref to this page until it's full */ 1374 } else { 1375 unsigned int mlen; 1376 1377 off = sk->sk_sndmsg_off; 1378 mlen = PAGE_SIZE - off; 1379 if (mlen < 64 && mlen < *len) { 1380 put_page(p); 1381 goto new_page; 1382 } 1383 1384 *len = min_t(unsigned int, *len, mlen); 1385 } 1386 1387 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1388 sk->sk_sndmsg_off += *len; 1389 *offset = off; 1390 get_page(p); 1391 1392 return p; 1393 } 1394 1395 /* 1396 * Fill page/offset/length into spd, if it can hold more pages. 1397 */ 1398 static inline int spd_fill_page(struct splice_pipe_desc *spd, 1399 struct pipe_inode_info *pipe, struct page *page, 1400 unsigned int *len, unsigned int offset, 1401 struct sk_buff *skb, int linear, 1402 struct sock *sk) 1403 { 1404 if (unlikely(spd->nr_pages == pipe->buffers)) 1405 return 1; 1406 1407 if (linear) { 1408 page = linear_to_page(page, len, &offset, skb, sk); 1409 if (!page) 1410 return 1; 1411 } else 1412 get_page(page); 1413 1414 spd->pages[spd->nr_pages] = page; 1415 spd->partial[spd->nr_pages].len = *len; 1416 spd->partial[spd->nr_pages].offset = offset; 1417 spd->nr_pages++; 1418 1419 return 0; 1420 } 1421 1422 static inline void __segment_seek(struct page **page, unsigned int *poff, 1423 unsigned int *plen, unsigned int off) 1424 { 1425 unsigned long n; 1426 1427 *poff += off; 1428 n = *poff / PAGE_SIZE; 1429 if (n) 1430 *page = nth_page(*page, n); 1431 1432 *poff = *poff % PAGE_SIZE; 1433 *plen -= off; 1434 } 1435 1436 static inline int __splice_segment(struct page *page, unsigned int poff, 1437 unsigned int plen, unsigned int *off, 1438 unsigned int *len, struct sk_buff *skb, 1439 struct splice_pipe_desc *spd, int linear, 1440 struct sock *sk, 1441 struct pipe_inode_info *pipe) 1442 { 1443 if (!*len) 1444 return 1; 1445 1446 /* skip this segment if already processed */ 1447 if (*off >= plen) { 1448 *off -= plen; 1449 return 0; 1450 } 1451 1452 /* ignore any bits we already processed */ 1453 if (*off) { 1454 __segment_seek(&page, &poff, &plen, *off); 1455 *off = 0; 1456 } 1457 1458 do { 1459 unsigned int flen = min(*len, plen); 1460 1461 /* the linear region may spread across several pages */ 1462 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1463 1464 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk)) 1465 return 1; 1466 1467 __segment_seek(&page, &poff, &plen, flen); 1468 *len -= flen; 1469 1470 } while (*len && plen); 1471 1472 return 0; 1473 } 1474 1475 /* 1476 * Map linear and fragment data from the skb to spd. It reports failure if the 1477 * pipe is full or if we already spliced the requested length. 1478 */ 1479 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1480 unsigned int *offset, unsigned int *len, 1481 struct splice_pipe_desc *spd, struct sock *sk) 1482 { 1483 int seg; 1484 1485 /* 1486 * map the linear part 1487 */ 1488 if (__splice_segment(virt_to_page(skb->data), 1489 (unsigned long) skb->data & (PAGE_SIZE - 1), 1490 skb_headlen(skb), 1491 offset, len, skb, spd, 1, sk, pipe)) 1492 return 1; 1493 1494 /* 1495 * then map the fragments 1496 */ 1497 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1498 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1499 1500 if (__splice_segment(f->page, f->page_offset, f->size, 1501 offset, len, skb, spd, 0, sk, pipe)) 1502 return 1; 1503 } 1504 1505 return 0; 1506 } 1507 1508 /* 1509 * Map data from the skb to a pipe. Should handle both the linear part, 1510 * the fragments, and the frag list. It does NOT handle frag lists within 1511 * the frag list, if such a thing exists. We'd probably need to recurse to 1512 * handle that cleanly. 1513 */ 1514 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1515 struct pipe_inode_info *pipe, unsigned int tlen, 1516 unsigned int flags) 1517 { 1518 struct partial_page partial[PIPE_DEF_BUFFERS]; 1519 struct page *pages[PIPE_DEF_BUFFERS]; 1520 struct splice_pipe_desc spd = { 1521 .pages = pages, 1522 .partial = partial, 1523 .flags = flags, 1524 .ops = &sock_pipe_buf_ops, 1525 .spd_release = sock_spd_release, 1526 }; 1527 struct sk_buff *frag_iter; 1528 struct sock *sk = skb->sk; 1529 int ret = 0; 1530 1531 if (splice_grow_spd(pipe, &spd)) 1532 return -ENOMEM; 1533 1534 /* 1535 * __skb_splice_bits() only fails if the output has no room left, 1536 * so no point in going over the frag_list for the error case. 1537 */ 1538 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1539 goto done; 1540 else if (!tlen) 1541 goto done; 1542 1543 /* 1544 * now see if we have a frag_list to map 1545 */ 1546 skb_walk_frags(skb, frag_iter) { 1547 if (!tlen) 1548 break; 1549 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1550 break; 1551 } 1552 1553 done: 1554 if (spd.nr_pages) { 1555 /* 1556 * Drop the socket lock, otherwise we have reverse 1557 * locking dependencies between sk_lock and i_mutex 1558 * here as compared to sendfile(). We enter here 1559 * with the socket lock held, and splice_to_pipe() will 1560 * grab the pipe inode lock. For sendfile() emulation, 1561 * we call into ->sendpage() with the i_mutex lock held 1562 * and networking will grab the socket lock. 1563 */ 1564 release_sock(sk); 1565 ret = splice_to_pipe(pipe, &spd); 1566 lock_sock(sk); 1567 } 1568 1569 splice_shrink_spd(pipe, &spd); 1570 return ret; 1571 } 1572 1573 /** 1574 * skb_store_bits - store bits from kernel buffer to skb 1575 * @skb: destination buffer 1576 * @offset: offset in destination 1577 * @from: source buffer 1578 * @len: number of bytes to copy 1579 * 1580 * Copy the specified number of bytes from the source buffer to the 1581 * destination skb. This function handles all the messy bits of 1582 * traversing fragment lists and such. 1583 */ 1584 1585 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1586 { 1587 int start = skb_headlen(skb); 1588 struct sk_buff *frag_iter; 1589 int i, copy; 1590 1591 if (offset > (int)skb->len - len) 1592 goto fault; 1593 1594 if ((copy = start - offset) > 0) { 1595 if (copy > len) 1596 copy = len; 1597 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1598 if ((len -= copy) == 0) 1599 return 0; 1600 offset += copy; 1601 from += copy; 1602 } 1603 1604 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1606 int end; 1607 1608 WARN_ON(start > offset + len); 1609 1610 end = start + frag->size; 1611 if ((copy = end - offset) > 0) { 1612 u8 *vaddr; 1613 1614 if (copy > len) 1615 copy = len; 1616 1617 vaddr = kmap_skb_frag(frag); 1618 memcpy(vaddr + frag->page_offset + offset - start, 1619 from, copy); 1620 kunmap_skb_frag(vaddr); 1621 1622 if ((len -= copy) == 0) 1623 return 0; 1624 offset += copy; 1625 from += copy; 1626 } 1627 start = end; 1628 } 1629 1630 skb_walk_frags(skb, frag_iter) { 1631 int end; 1632 1633 WARN_ON(start > offset + len); 1634 1635 end = start + frag_iter->len; 1636 if ((copy = end - offset) > 0) { 1637 if (copy > len) 1638 copy = len; 1639 if (skb_store_bits(frag_iter, offset - start, 1640 from, copy)) 1641 goto fault; 1642 if ((len -= copy) == 0) 1643 return 0; 1644 offset += copy; 1645 from += copy; 1646 } 1647 start = end; 1648 } 1649 if (!len) 1650 return 0; 1651 1652 fault: 1653 return -EFAULT; 1654 } 1655 EXPORT_SYMBOL(skb_store_bits); 1656 1657 /* Checksum skb data. */ 1658 1659 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1660 int len, __wsum csum) 1661 { 1662 int start = skb_headlen(skb); 1663 int i, copy = start - offset; 1664 struct sk_buff *frag_iter; 1665 int pos = 0; 1666 1667 /* Checksum header. */ 1668 if (copy > 0) { 1669 if (copy > len) 1670 copy = len; 1671 csum = csum_partial(skb->data + offset, copy, csum); 1672 if ((len -= copy) == 0) 1673 return csum; 1674 offset += copy; 1675 pos = copy; 1676 } 1677 1678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1679 int end; 1680 1681 WARN_ON(start > offset + len); 1682 1683 end = start + skb_shinfo(skb)->frags[i].size; 1684 if ((copy = end - offset) > 0) { 1685 __wsum csum2; 1686 u8 *vaddr; 1687 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1688 1689 if (copy > len) 1690 copy = len; 1691 vaddr = kmap_skb_frag(frag); 1692 csum2 = csum_partial(vaddr + frag->page_offset + 1693 offset - start, copy, 0); 1694 kunmap_skb_frag(vaddr); 1695 csum = csum_block_add(csum, csum2, pos); 1696 if (!(len -= copy)) 1697 return csum; 1698 offset += copy; 1699 pos += copy; 1700 } 1701 start = end; 1702 } 1703 1704 skb_walk_frags(skb, frag_iter) { 1705 int end; 1706 1707 WARN_ON(start > offset + len); 1708 1709 end = start + frag_iter->len; 1710 if ((copy = end - offset) > 0) { 1711 __wsum csum2; 1712 if (copy > len) 1713 copy = len; 1714 csum2 = skb_checksum(frag_iter, offset - start, 1715 copy, 0); 1716 csum = csum_block_add(csum, csum2, pos); 1717 if ((len -= copy) == 0) 1718 return csum; 1719 offset += copy; 1720 pos += copy; 1721 } 1722 start = end; 1723 } 1724 BUG_ON(len); 1725 1726 return csum; 1727 } 1728 EXPORT_SYMBOL(skb_checksum); 1729 1730 /* Both of above in one bottle. */ 1731 1732 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1733 u8 *to, int len, __wsum csum) 1734 { 1735 int start = skb_headlen(skb); 1736 int i, copy = start - offset; 1737 struct sk_buff *frag_iter; 1738 int pos = 0; 1739 1740 /* Copy header. */ 1741 if (copy > 0) { 1742 if (copy > len) 1743 copy = len; 1744 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1745 copy, csum); 1746 if ((len -= copy) == 0) 1747 return csum; 1748 offset += copy; 1749 to += copy; 1750 pos = copy; 1751 } 1752 1753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1754 int end; 1755 1756 WARN_ON(start > offset + len); 1757 1758 end = start + skb_shinfo(skb)->frags[i].size; 1759 if ((copy = end - offset) > 0) { 1760 __wsum csum2; 1761 u8 *vaddr; 1762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1763 1764 if (copy > len) 1765 copy = len; 1766 vaddr = kmap_skb_frag(frag); 1767 csum2 = csum_partial_copy_nocheck(vaddr + 1768 frag->page_offset + 1769 offset - start, to, 1770 copy, 0); 1771 kunmap_skb_frag(vaddr); 1772 csum = csum_block_add(csum, csum2, pos); 1773 if (!(len -= copy)) 1774 return csum; 1775 offset += copy; 1776 to += copy; 1777 pos += copy; 1778 } 1779 start = end; 1780 } 1781 1782 skb_walk_frags(skb, frag_iter) { 1783 __wsum csum2; 1784 int end; 1785 1786 WARN_ON(start > offset + len); 1787 1788 end = start + frag_iter->len; 1789 if ((copy = end - offset) > 0) { 1790 if (copy > len) 1791 copy = len; 1792 csum2 = skb_copy_and_csum_bits(frag_iter, 1793 offset - start, 1794 to, copy, 0); 1795 csum = csum_block_add(csum, csum2, pos); 1796 if ((len -= copy) == 0) 1797 return csum; 1798 offset += copy; 1799 to += copy; 1800 pos += copy; 1801 } 1802 start = end; 1803 } 1804 BUG_ON(len); 1805 return csum; 1806 } 1807 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1808 1809 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1810 { 1811 __wsum csum; 1812 long csstart; 1813 1814 if (skb->ip_summed == CHECKSUM_PARTIAL) 1815 csstart = skb->csum_start - skb_headroom(skb); 1816 else 1817 csstart = skb_headlen(skb); 1818 1819 BUG_ON(csstart > skb_headlen(skb)); 1820 1821 skb_copy_from_linear_data(skb, to, csstart); 1822 1823 csum = 0; 1824 if (csstart != skb->len) 1825 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1826 skb->len - csstart, 0); 1827 1828 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1829 long csstuff = csstart + skb->csum_offset; 1830 1831 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1832 } 1833 } 1834 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1835 1836 /** 1837 * skb_dequeue - remove from the head of the queue 1838 * @list: list to dequeue from 1839 * 1840 * Remove the head of the list. The list lock is taken so the function 1841 * may be used safely with other locking list functions. The head item is 1842 * returned or %NULL if the list is empty. 1843 */ 1844 1845 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1846 { 1847 unsigned long flags; 1848 struct sk_buff *result; 1849 1850 spin_lock_irqsave(&list->lock, flags); 1851 result = __skb_dequeue(list); 1852 spin_unlock_irqrestore(&list->lock, flags); 1853 return result; 1854 } 1855 EXPORT_SYMBOL(skb_dequeue); 1856 1857 /** 1858 * skb_dequeue_tail - remove from the tail of the queue 1859 * @list: list to dequeue from 1860 * 1861 * Remove the tail of the list. The list lock is taken so the function 1862 * may be used safely with other locking list functions. The tail item is 1863 * returned or %NULL if the list is empty. 1864 */ 1865 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1866 { 1867 unsigned long flags; 1868 struct sk_buff *result; 1869 1870 spin_lock_irqsave(&list->lock, flags); 1871 result = __skb_dequeue_tail(list); 1872 spin_unlock_irqrestore(&list->lock, flags); 1873 return result; 1874 } 1875 EXPORT_SYMBOL(skb_dequeue_tail); 1876 1877 /** 1878 * skb_queue_purge - empty a list 1879 * @list: list to empty 1880 * 1881 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1882 * the list and one reference dropped. This function takes the list 1883 * lock and is atomic with respect to other list locking functions. 1884 */ 1885 void skb_queue_purge(struct sk_buff_head *list) 1886 { 1887 struct sk_buff *skb; 1888 while ((skb = skb_dequeue(list)) != NULL) 1889 kfree_skb(skb); 1890 } 1891 EXPORT_SYMBOL(skb_queue_purge); 1892 1893 /** 1894 * skb_queue_head - queue a buffer at the list head 1895 * @list: list to use 1896 * @newsk: buffer to queue 1897 * 1898 * Queue a buffer at the start of the list. This function takes the 1899 * list lock and can be used safely with other locking &sk_buff functions 1900 * safely. 1901 * 1902 * A buffer cannot be placed on two lists at the same time. 1903 */ 1904 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1905 { 1906 unsigned long flags; 1907 1908 spin_lock_irqsave(&list->lock, flags); 1909 __skb_queue_head(list, newsk); 1910 spin_unlock_irqrestore(&list->lock, flags); 1911 } 1912 EXPORT_SYMBOL(skb_queue_head); 1913 1914 /** 1915 * skb_queue_tail - queue a buffer at the list tail 1916 * @list: list to use 1917 * @newsk: buffer to queue 1918 * 1919 * Queue a buffer at the tail of the list. This function takes the 1920 * list lock and can be used safely with other locking &sk_buff functions 1921 * safely. 1922 * 1923 * A buffer cannot be placed on two lists at the same time. 1924 */ 1925 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1926 { 1927 unsigned long flags; 1928 1929 spin_lock_irqsave(&list->lock, flags); 1930 __skb_queue_tail(list, newsk); 1931 spin_unlock_irqrestore(&list->lock, flags); 1932 } 1933 EXPORT_SYMBOL(skb_queue_tail); 1934 1935 /** 1936 * skb_unlink - remove a buffer from a list 1937 * @skb: buffer to remove 1938 * @list: list to use 1939 * 1940 * Remove a packet from a list. The list locks are taken and this 1941 * function is atomic with respect to other list locked calls 1942 * 1943 * You must know what list the SKB is on. 1944 */ 1945 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1946 { 1947 unsigned long flags; 1948 1949 spin_lock_irqsave(&list->lock, flags); 1950 __skb_unlink(skb, list); 1951 spin_unlock_irqrestore(&list->lock, flags); 1952 } 1953 EXPORT_SYMBOL(skb_unlink); 1954 1955 /** 1956 * skb_append - append a buffer 1957 * @old: buffer to insert after 1958 * @newsk: buffer to insert 1959 * @list: list to use 1960 * 1961 * Place a packet after a given packet in a list. The list locks are taken 1962 * and this function is atomic with respect to other list locked calls. 1963 * A buffer cannot be placed on two lists at the same time. 1964 */ 1965 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1966 { 1967 unsigned long flags; 1968 1969 spin_lock_irqsave(&list->lock, flags); 1970 __skb_queue_after(list, old, newsk); 1971 spin_unlock_irqrestore(&list->lock, flags); 1972 } 1973 EXPORT_SYMBOL(skb_append); 1974 1975 /** 1976 * skb_insert - insert a buffer 1977 * @old: buffer to insert before 1978 * @newsk: buffer to insert 1979 * @list: list to use 1980 * 1981 * Place a packet before a given packet in a list. The list locks are 1982 * taken and this function is atomic with respect to other list locked 1983 * calls. 1984 * 1985 * A buffer cannot be placed on two lists at the same time. 1986 */ 1987 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1988 { 1989 unsigned long flags; 1990 1991 spin_lock_irqsave(&list->lock, flags); 1992 __skb_insert(newsk, old->prev, old, list); 1993 spin_unlock_irqrestore(&list->lock, flags); 1994 } 1995 EXPORT_SYMBOL(skb_insert); 1996 1997 static inline void skb_split_inside_header(struct sk_buff *skb, 1998 struct sk_buff* skb1, 1999 const u32 len, const int pos) 2000 { 2001 int i; 2002 2003 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2004 pos - len); 2005 /* And move data appendix as is. */ 2006 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2007 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2008 2009 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2010 skb_shinfo(skb)->nr_frags = 0; 2011 skb1->data_len = skb->data_len; 2012 skb1->len += skb1->data_len; 2013 skb->data_len = 0; 2014 skb->len = len; 2015 skb_set_tail_pointer(skb, len); 2016 } 2017 2018 static inline void skb_split_no_header(struct sk_buff *skb, 2019 struct sk_buff* skb1, 2020 const u32 len, int pos) 2021 { 2022 int i, k = 0; 2023 const int nfrags = skb_shinfo(skb)->nr_frags; 2024 2025 skb_shinfo(skb)->nr_frags = 0; 2026 skb1->len = skb1->data_len = skb->len - len; 2027 skb->len = len; 2028 skb->data_len = len - pos; 2029 2030 for (i = 0; i < nfrags; i++) { 2031 int size = skb_shinfo(skb)->frags[i].size; 2032 2033 if (pos + size > len) { 2034 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2035 2036 if (pos < len) { 2037 /* Split frag. 2038 * We have two variants in this case: 2039 * 1. Move all the frag to the second 2040 * part, if it is possible. F.e. 2041 * this approach is mandatory for TUX, 2042 * where splitting is expensive. 2043 * 2. Split is accurately. We make this. 2044 */ 2045 get_page(skb_shinfo(skb)->frags[i].page); 2046 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2047 skb_shinfo(skb1)->frags[0].size -= len - pos; 2048 skb_shinfo(skb)->frags[i].size = len - pos; 2049 skb_shinfo(skb)->nr_frags++; 2050 } 2051 k++; 2052 } else 2053 skb_shinfo(skb)->nr_frags++; 2054 pos += size; 2055 } 2056 skb_shinfo(skb1)->nr_frags = k; 2057 } 2058 2059 /** 2060 * skb_split - Split fragmented skb to two parts at length len. 2061 * @skb: the buffer to split 2062 * @skb1: the buffer to receive the second part 2063 * @len: new length for skb 2064 */ 2065 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2066 { 2067 int pos = skb_headlen(skb); 2068 2069 if (len < pos) /* Split line is inside header. */ 2070 skb_split_inside_header(skb, skb1, len, pos); 2071 else /* Second chunk has no header, nothing to copy. */ 2072 skb_split_no_header(skb, skb1, len, pos); 2073 } 2074 EXPORT_SYMBOL(skb_split); 2075 2076 /* Shifting from/to a cloned skb is a no-go. 2077 * 2078 * Caller cannot keep skb_shinfo related pointers past calling here! 2079 */ 2080 static int skb_prepare_for_shift(struct sk_buff *skb) 2081 { 2082 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2083 } 2084 2085 /** 2086 * skb_shift - Shifts paged data partially from skb to another 2087 * @tgt: buffer into which tail data gets added 2088 * @skb: buffer from which the paged data comes from 2089 * @shiftlen: shift up to this many bytes 2090 * 2091 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2092 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2093 * It's up to caller to free skb if everything was shifted. 2094 * 2095 * If @tgt runs out of frags, the whole operation is aborted. 2096 * 2097 * Skb cannot include anything else but paged data while tgt is allowed 2098 * to have non-paged data as well. 2099 * 2100 * TODO: full sized shift could be optimized but that would need 2101 * specialized skb free'er to handle frags without up-to-date nr_frags. 2102 */ 2103 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2104 { 2105 int from, to, merge, todo; 2106 struct skb_frag_struct *fragfrom, *fragto; 2107 2108 BUG_ON(shiftlen > skb->len); 2109 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2110 2111 todo = shiftlen; 2112 from = 0; 2113 to = skb_shinfo(tgt)->nr_frags; 2114 fragfrom = &skb_shinfo(skb)->frags[from]; 2115 2116 /* Actual merge is delayed until the point when we know we can 2117 * commit all, so that we don't have to undo partial changes 2118 */ 2119 if (!to || 2120 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) { 2121 merge = -1; 2122 } else { 2123 merge = to - 1; 2124 2125 todo -= fragfrom->size; 2126 if (todo < 0) { 2127 if (skb_prepare_for_shift(skb) || 2128 skb_prepare_for_shift(tgt)) 2129 return 0; 2130 2131 /* All previous frag pointers might be stale! */ 2132 fragfrom = &skb_shinfo(skb)->frags[from]; 2133 fragto = &skb_shinfo(tgt)->frags[merge]; 2134 2135 fragto->size += shiftlen; 2136 fragfrom->size -= shiftlen; 2137 fragfrom->page_offset += shiftlen; 2138 2139 goto onlymerged; 2140 } 2141 2142 from++; 2143 } 2144 2145 /* Skip full, not-fitting skb to avoid expensive operations */ 2146 if ((shiftlen == skb->len) && 2147 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2148 return 0; 2149 2150 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2151 return 0; 2152 2153 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2154 if (to == MAX_SKB_FRAGS) 2155 return 0; 2156 2157 fragfrom = &skb_shinfo(skb)->frags[from]; 2158 fragto = &skb_shinfo(tgt)->frags[to]; 2159 2160 if (todo >= fragfrom->size) { 2161 *fragto = *fragfrom; 2162 todo -= fragfrom->size; 2163 from++; 2164 to++; 2165 2166 } else { 2167 get_page(fragfrom->page); 2168 fragto->page = fragfrom->page; 2169 fragto->page_offset = fragfrom->page_offset; 2170 fragto->size = todo; 2171 2172 fragfrom->page_offset += todo; 2173 fragfrom->size -= todo; 2174 todo = 0; 2175 2176 to++; 2177 break; 2178 } 2179 } 2180 2181 /* Ready to "commit" this state change to tgt */ 2182 skb_shinfo(tgt)->nr_frags = to; 2183 2184 if (merge >= 0) { 2185 fragfrom = &skb_shinfo(skb)->frags[0]; 2186 fragto = &skb_shinfo(tgt)->frags[merge]; 2187 2188 fragto->size += fragfrom->size; 2189 put_page(fragfrom->page); 2190 } 2191 2192 /* Reposition in the original skb */ 2193 to = 0; 2194 while (from < skb_shinfo(skb)->nr_frags) 2195 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2196 skb_shinfo(skb)->nr_frags = to; 2197 2198 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2199 2200 onlymerged: 2201 /* Most likely the tgt won't ever need its checksum anymore, skb on 2202 * the other hand might need it if it needs to be resent 2203 */ 2204 tgt->ip_summed = CHECKSUM_PARTIAL; 2205 skb->ip_summed = CHECKSUM_PARTIAL; 2206 2207 /* Yak, is it really working this way? Some helper please? */ 2208 skb->len -= shiftlen; 2209 skb->data_len -= shiftlen; 2210 skb->truesize -= shiftlen; 2211 tgt->len += shiftlen; 2212 tgt->data_len += shiftlen; 2213 tgt->truesize += shiftlen; 2214 2215 return shiftlen; 2216 } 2217 2218 /** 2219 * skb_prepare_seq_read - Prepare a sequential read of skb data 2220 * @skb: the buffer to read 2221 * @from: lower offset of data to be read 2222 * @to: upper offset of data to be read 2223 * @st: state variable 2224 * 2225 * Initializes the specified state variable. Must be called before 2226 * invoking skb_seq_read() for the first time. 2227 */ 2228 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2229 unsigned int to, struct skb_seq_state *st) 2230 { 2231 st->lower_offset = from; 2232 st->upper_offset = to; 2233 st->root_skb = st->cur_skb = skb; 2234 st->frag_idx = st->stepped_offset = 0; 2235 st->frag_data = NULL; 2236 } 2237 EXPORT_SYMBOL(skb_prepare_seq_read); 2238 2239 /** 2240 * skb_seq_read - Sequentially read skb data 2241 * @consumed: number of bytes consumed by the caller so far 2242 * @data: destination pointer for data to be returned 2243 * @st: state variable 2244 * 2245 * Reads a block of skb data at &consumed relative to the 2246 * lower offset specified to skb_prepare_seq_read(). Assigns 2247 * the head of the data block to &data and returns the length 2248 * of the block or 0 if the end of the skb data or the upper 2249 * offset has been reached. 2250 * 2251 * The caller is not required to consume all of the data 2252 * returned, i.e. &consumed is typically set to the number 2253 * of bytes already consumed and the next call to 2254 * skb_seq_read() will return the remaining part of the block. 2255 * 2256 * Note 1: The size of each block of data returned can be arbitary, 2257 * this limitation is the cost for zerocopy seqeuental 2258 * reads of potentially non linear data. 2259 * 2260 * Note 2: Fragment lists within fragments are not implemented 2261 * at the moment, state->root_skb could be replaced with 2262 * a stack for this purpose. 2263 */ 2264 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2265 struct skb_seq_state *st) 2266 { 2267 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2268 skb_frag_t *frag; 2269 2270 if (unlikely(abs_offset >= st->upper_offset)) 2271 return 0; 2272 2273 next_skb: 2274 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2275 2276 if (abs_offset < block_limit && !st->frag_data) { 2277 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2278 return block_limit - abs_offset; 2279 } 2280 2281 if (st->frag_idx == 0 && !st->frag_data) 2282 st->stepped_offset += skb_headlen(st->cur_skb); 2283 2284 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2285 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2286 block_limit = frag->size + st->stepped_offset; 2287 2288 if (abs_offset < block_limit) { 2289 if (!st->frag_data) 2290 st->frag_data = kmap_skb_frag(frag); 2291 2292 *data = (u8 *) st->frag_data + frag->page_offset + 2293 (abs_offset - st->stepped_offset); 2294 2295 return block_limit - abs_offset; 2296 } 2297 2298 if (st->frag_data) { 2299 kunmap_skb_frag(st->frag_data); 2300 st->frag_data = NULL; 2301 } 2302 2303 st->frag_idx++; 2304 st->stepped_offset += frag->size; 2305 } 2306 2307 if (st->frag_data) { 2308 kunmap_skb_frag(st->frag_data); 2309 st->frag_data = NULL; 2310 } 2311 2312 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2313 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2314 st->frag_idx = 0; 2315 goto next_skb; 2316 } else if (st->cur_skb->next) { 2317 st->cur_skb = st->cur_skb->next; 2318 st->frag_idx = 0; 2319 goto next_skb; 2320 } 2321 2322 return 0; 2323 } 2324 EXPORT_SYMBOL(skb_seq_read); 2325 2326 /** 2327 * skb_abort_seq_read - Abort a sequential read of skb data 2328 * @st: state variable 2329 * 2330 * Must be called if skb_seq_read() was not called until it 2331 * returned 0. 2332 */ 2333 void skb_abort_seq_read(struct skb_seq_state *st) 2334 { 2335 if (st->frag_data) 2336 kunmap_skb_frag(st->frag_data); 2337 } 2338 EXPORT_SYMBOL(skb_abort_seq_read); 2339 2340 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2341 2342 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2343 struct ts_config *conf, 2344 struct ts_state *state) 2345 { 2346 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2347 } 2348 2349 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2350 { 2351 skb_abort_seq_read(TS_SKB_CB(state)); 2352 } 2353 2354 /** 2355 * skb_find_text - Find a text pattern in skb data 2356 * @skb: the buffer to look in 2357 * @from: search offset 2358 * @to: search limit 2359 * @config: textsearch configuration 2360 * @state: uninitialized textsearch state variable 2361 * 2362 * Finds a pattern in the skb data according to the specified 2363 * textsearch configuration. Use textsearch_next() to retrieve 2364 * subsequent occurrences of the pattern. Returns the offset 2365 * to the first occurrence or UINT_MAX if no match was found. 2366 */ 2367 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2368 unsigned int to, struct ts_config *config, 2369 struct ts_state *state) 2370 { 2371 unsigned int ret; 2372 2373 config->get_next_block = skb_ts_get_next_block; 2374 config->finish = skb_ts_finish; 2375 2376 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2377 2378 ret = textsearch_find(config, state); 2379 return (ret <= to - from ? ret : UINT_MAX); 2380 } 2381 EXPORT_SYMBOL(skb_find_text); 2382 2383 /** 2384 * skb_append_datato_frags: - append the user data to a skb 2385 * @sk: sock structure 2386 * @skb: skb structure to be appened with user data. 2387 * @getfrag: call back function to be used for getting the user data 2388 * @from: pointer to user message iov 2389 * @length: length of the iov message 2390 * 2391 * Description: This procedure append the user data in the fragment part 2392 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2393 */ 2394 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2395 int (*getfrag)(void *from, char *to, int offset, 2396 int len, int odd, struct sk_buff *skb), 2397 void *from, int length) 2398 { 2399 int frg_cnt = 0; 2400 skb_frag_t *frag = NULL; 2401 struct page *page = NULL; 2402 int copy, left; 2403 int offset = 0; 2404 int ret; 2405 2406 do { 2407 /* Return error if we don't have space for new frag */ 2408 frg_cnt = skb_shinfo(skb)->nr_frags; 2409 if (frg_cnt >= MAX_SKB_FRAGS) 2410 return -EFAULT; 2411 2412 /* allocate a new page for next frag */ 2413 page = alloc_pages(sk->sk_allocation, 0); 2414 2415 /* If alloc_page fails just return failure and caller will 2416 * free previous allocated pages by doing kfree_skb() 2417 */ 2418 if (page == NULL) 2419 return -ENOMEM; 2420 2421 /* initialize the next frag */ 2422 sk->sk_sndmsg_page = page; 2423 sk->sk_sndmsg_off = 0; 2424 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2425 skb->truesize += PAGE_SIZE; 2426 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2427 2428 /* get the new initialized frag */ 2429 frg_cnt = skb_shinfo(skb)->nr_frags; 2430 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2431 2432 /* copy the user data to page */ 2433 left = PAGE_SIZE - frag->page_offset; 2434 copy = (length > left)? left : length; 2435 2436 ret = getfrag(from, (page_address(frag->page) + 2437 frag->page_offset + frag->size), 2438 offset, copy, 0, skb); 2439 if (ret < 0) 2440 return -EFAULT; 2441 2442 /* copy was successful so update the size parameters */ 2443 sk->sk_sndmsg_off += copy; 2444 frag->size += copy; 2445 skb->len += copy; 2446 skb->data_len += copy; 2447 offset += copy; 2448 length -= copy; 2449 2450 } while (length > 0); 2451 2452 return 0; 2453 } 2454 EXPORT_SYMBOL(skb_append_datato_frags); 2455 2456 /** 2457 * skb_pull_rcsum - pull skb and update receive checksum 2458 * @skb: buffer to update 2459 * @len: length of data pulled 2460 * 2461 * This function performs an skb_pull on the packet and updates 2462 * the CHECKSUM_COMPLETE checksum. It should be used on 2463 * receive path processing instead of skb_pull unless you know 2464 * that the checksum difference is zero (e.g., a valid IP header) 2465 * or you are setting ip_summed to CHECKSUM_NONE. 2466 */ 2467 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2468 { 2469 BUG_ON(len > skb->len); 2470 skb->len -= len; 2471 BUG_ON(skb->len < skb->data_len); 2472 skb_postpull_rcsum(skb, skb->data, len); 2473 return skb->data += len; 2474 } 2475 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2476 2477 /** 2478 * skb_segment - Perform protocol segmentation on skb. 2479 * @skb: buffer to segment 2480 * @features: features for the output path (see dev->features) 2481 * 2482 * This function performs segmentation on the given skb. It returns 2483 * a pointer to the first in a list of new skbs for the segments. 2484 * In case of error it returns ERR_PTR(err). 2485 */ 2486 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2487 { 2488 struct sk_buff *segs = NULL; 2489 struct sk_buff *tail = NULL; 2490 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2491 unsigned int mss = skb_shinfo(skb)->gso_size; 2492 unsigned int doffset = skb->data - skb_mac_header(skb); 2493 unsigned int offset = doffset; 2494 unsigned int headroom; 2495 unsigned int len; 2496 int sg = features & NETIF_F_SG; 2497 int nfrags = skb_shinfo(skb)->nr_frags; 2498 int err = -ENOMEM; 2499 int i = 0; 2500 int pos; 2501 2502 __skb_push(skb, doffset); 2503 headroom = skb_headroom(skb); 2504 pos = skb_headlen(skb); 2505 2506 do { 2507 struct sk_buff *nskb; 2508 skb_frag_t *frag; 2509 int hsize; 2510 int size; 2511 2512 len = skb->len - offset; 2513 if (len > mss) 2514 len = mss; 2515 2516 hsize = skb_headlen(skb) - offset; 2517 if (hsize < 0) 2518 hsize = 0; 2519 if (hsize > len || !sg) 2520 hsize = len; 2521 2522 if (!hsize && i >= nfrags) { 2523 BUG_ON(fskb->len != len); 2524 2525 pos += len; 2526 nskb = skb_clone(fskb, GFP_ATOMIC); 2527 fskb = fskb->next; 2528 2529 if (unlikely(!nskb)) 2530 goto err; 2531 2532 hsize = skb_end_pointer(nskb) - nskb->head; 2533 if (skb_cow_head(nskb, doffset + headroom)) { 2534 kfree_skb(nskb); 2535 goto err; 2536 } 2537 2538 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2539 hsize; 2540 skb_release_head_state(nskb); 2541 __skb_push(nskb, doffset); 2542 } else { 2543 nskb = alloc_skb(hsize + doffset + headroom, 2544 GFP_ATOMIC); 2545 2546 if (unlikely(!nskb)) 2547 goto err; 2548 2549 skb_reserve(nskb, headroom); 2550 __skb_put(nskb, doffset); 2551 } 2552 2553 if (segs) 2554 tail->next = nskb; 2555 else 2556 segs = nskb; 2557 tail = nskb; 2558 2559 __copy_skb_header(nskb, skb); 2560 nskb->mac_len = skb->mac_len; 2561 2562 /* nskb and skb might have different headroom */ 2563 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2564 nskb->csum_start += skb_headroom(nskb) - headroom; 2565 2566 skb_reset_mac_header(nskb); 2567 skb_set_network_header(nskb, skb->mac_len); 2568 nskb->transport_header = (nskb->network_header + 2569 skb_network_header_len(skb)); 2570 skb_copy_from_linear_data(skb, nskb->data, doffset); 2571 2572 if (fskb != skb_shinfo(skb)->frag_list) 2573 continue; 2574 2575 if (!sg) { 2576 nskb->ip_summed = CHECKSUM_NONE; 2577 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2578 skb_put(nskb, len), 2579 len, 0); 2580 continue; 2581 } 2582 2583 frag = skb_shinfo(nskb)->frags; 2584 2585 skb_copy_from_linear_data_offset(skb, offset, 2586 skb_put(nskb, hsize), hsize); 2587 2588 while (pos < offset + len && i < nfrags) { 2589 *frag = skb_shinfo(skb)->frags[i]; 2590 get_page(frag->page); 2591 size = frag->size; 2592 2593 if (pos < offset) { 2594 frag->page_offset += offset - pos; 2595 frag->size -= offset - pos; 2596 } 2597 2598 skb_shinfo(nskb)->nr_frags++; 2599 2600 if (pos + size <= offset + len) { 2601 i++; 2602 pos += size; 2603 } else { 2604 frag->size -= pos + size - (offset + len); 2605 goto skip_fraglist; 2606 } 2607 2608 frag++; 2609 } 2610 2611 if (pos < offset + len) { 2612 struct sk_buff *fskb2 = fskb; 2613 2614 BUG_ON(pos + fskb->len != offset + len); 2615 2616 pos += fskb->len; 2617 fskb = fskb->next; 2618 2619 if (fskb2->next) { 2620 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2621 if (!fskb2) 2622 goto err; 2623 } else 2624 skb_get(fskb2); 2625 2626 SKB_FRAG_ASSERT(nskb); 2627 skb_shinfo(nskb)->frag_list = fskb2; 2628 } 2629 2630 skip_fraglist: 2631 nskb->data_len = len - hsize; 2632 nskb->len += nskb->data_len; 2633 nskb->truesize += nskb->data_len; 2634 } while ((offset += len) < skb->len); 2635 2636 return segs; 2637 2638 err: 2639 while ((skb = segs)) { 2640 segs = skb->next; 2641 kfree_skb(skb); 2642 } 2643 return ERR_PTR(err); 2644 } 2645 EXPORT_SYMBOL_GPL(skb_segment); 2646 2647 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2648 { 2649 struct sk_buff *p = *head; 2650 struct sk_buff *nskb; 2651 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2652 struct skb_shared_info *pinfo = skb_shinfo(p); 2653 unsigned int headroom; 2654 unsigned int len = skb_gro_len(skb); 2655 unsigned int offset = skb_gro_offset(skb); 2656 unsigned int headlen = skb_headlen(skb); 2657 2658 if (p->len + len >= 65536) 2659 return -E2BIG; 2660 2661 if (pinfo->frag_list) 2662 goto merge; 2663 else if (headlen <= offset) { 2664 skb_frag_t *frag; 2665 skb_frag_t *frag2; 2666 int i = skbinfo->nr_frags; 2667 int nr_frags = pinfo->nr_frags + i; 2668 2669 offset -= headlen; 2670 2671 if (nr_frags > MAX_SKB_FRAGS) 2672 return -E2BIG; 2673 2674 pinfo->nr_frags = nr_frags; 2675 skbinfo->nr_frags = 0; 2676 2677 frag = pinfo->frags + nr_frags; 2678 frag2 = skbinfo->frags + i; 2679 do { 2680 *--frag = *--frag2; 2681 } while (--i); 2682 2683 frag->page_offset += offset; 2684 frag->size -= offset; 2685 2686 skb->truesize -= skb->data_len; 2687 skb->len -= skb->data_len; 2688 skb->data_len = 0; 2689 2690 NAPI_GRO_CB(skb)->free = 1; 2691 goto done; 2692 } else if (skb_gro_len(p) != pinfo->gso_size) 2693 return -E2BIG; 2694 2695 headroom = skb_headroom(p); 2696 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 2697 if (unlikely(!nskb)) 2698 return -ENOMEM; 2699 2700 __copy_skb_header(nskb, p); 2701 nskb->mac_len = p->mac_len; 2702 2703 skb_reserve(nskb, headroom); 2704 __skb_put(nskb, skb_gro_offset(p)); 2705 2706 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2707 skb_set_network_header(nskb, skb_network_offset(p)); 2708 skb_set_transport_header(nskb, skb_transport_offset(p)); 2709 2710 __skb_pull(p, skb_gro_offset(p)); 2711 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2712 p->data - skb_mac_header(p)); 2713 2714 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2715 skb_shinfo(nskb)->frag_list = p; 2716 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 2717 pinfo->gso_size = 0; 2718 skb_header_release(p); 2719 nskb->prev = p; 2720 2721 nskb->data_len += p->len; 2722 nskb->truesize += p->len; 2723 nskb->len += p->len; 2724 2725 *head = nskb; 2726 nskb->next = p->next; 2727 p->next = NULL; 2728 2729 p = nskb; 2730 2731 merge: 2732 if (offset > headlen) { 2733 skbinfo->frags[0].page_offset += offset - headlen; 2734 skbinfo->frags[0].size -= offset - headlen; 2735 offset = headlen; 2736 } 2737 2738 __skb_pull(skb, offset); 2739 2740 p->prev->next = skb; 2741 p->prev = skb; 2742 skb_header_release(skb); 2743 2744 done: 2745 NAPI_GRO_CB(p)->count++; 2746 p->data_len += len; 2747 p->truesize += len; 2748 p->len += len; 2749 2750 NAPI_GRO_CB(skb)->same_flow = 1; 2751 return 0; 2752 } 2753 EXPORT_SYMBOL_GPL(skb_gro_receive); 2754 2755 void __init skb_init(void) 2756 { 2757 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2758 sizeof(struct sk_buff), 2759 0, 2760 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2761 NULL); 2762 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2763 (2*sizeof(struct sk_buff)) + 2764 sizeof(atomic_t), 2765 0, 2766 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2767 NULL); 2768 } 2769 2770 /** 2771 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2772 * @skb: Socket buffer containing the buffers to be mapped 2773 * @sg: The scatter-gather list to map into 2774 * @offset: The offset into the buffer's contents to start mapping 2775 * @len: Length of buffer space to be mapped 2776 * 2777 * Fill the specified scatter-gather list with mappings/pointers into a 2778 * region of the buffer space attached to a socket buffer. 2779 */ 2780 static int 2781 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2782 { 2783 int start = skb_headlen(skb); 2784 int i, copy = start - offset; 2785 struct sk_buff *frag_iter; 2786 int elt = 0; 2787 2788 if (copy > 0) { 2789 if (copy > len) 2790 copy = len; 2791 sg_set_buf(sg, skb->data + offset, copy); 2792 elt++; 2793 if ((len -= copy) == 0) 2794 return elt; 2795 offset += copy; 2796 } 2797 2798 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2799 int end; 2800 2801 WARN_ON(start > offset + len); 2802 2803 end = start + skb_shinfo(skb)->frags[i].size; 2804 if ((copy = end - offset) > 0) { 2805 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2806 2807 if (copy > len) 2808 copy = len; 2809 sg_set_page(&sg[elt], frag->page, copy, 2810 frag->page_offset+offset-start); 2811 elt++; 2812 if (!(len -= copy)) 2813 return elt; 2814 offset += copy; 2815 } 2816 start = end; 2817 } 2818 2819 skb_walk_frags(skb, frag_iter) { 2820 int end; 2821 2822 WARN_ON(start > offset + len); 2823 2824 end = start + frag_iter->len; 2825 if ((copy = end - offset) > 0) { 2826 if (copy > len) 2827 copy = len; 2828 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 2829 copy); 2830 if ((len -= copy) == 0) 2831 return elt; 2832 offset += copy; 2833 } 2834 start = end; 2835 } 2836 BUG_ON(len); 2837 return elt; 2838 } 2839 2840 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2841 { 2842 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2843 2844 sg_mark_end(&sg[nsg - 1]); 2845 2846 return nsg; 2847 } 2848 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2849 2850 /** 2851 * skb_cow_data - Check that a socket buffer's data buffers are writable 2852 * @skb: The socket buffer to check. 2853 * @tailbits: Amount of trailing space to be added 2854 * @trailer: Returned pointer to the skb where the @tailbits space begins 2855 * 2856 * Make sure that the data buffers attached to a socket buffer are 2857 * writable. If they are not, private copies are made of the data buffers 2858 * and the socket buffer is set to use these instead. 2859 * 2860 * If @tailbits is given, make sure that there is space to write @tailbits 2861 * bytes of data beyond current end of socket buffer. @trailer will be 2862 * set to point to the skb in which this space begins. 2863 * 2864 * The number of scatterlist elements required to completely map the 2865 * COW'd and extended socket buffer will be returned. 2866 */ 2867 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2868 { 2869 int copyflag; 2870 int elt; 2871 struct sk_buff *skb1, **skb_p; 2872 2873 /* If skb is cloned or its head is paged, reallocate 2874 * head pulling out all the pages (pages are considered not writable 2875 * at the moment even if they are anonymous). 2876 */ 2877 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2878 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2879 return -ENOMEM; 2880 2881 /* Easy case. Most of packets will go this way. */ 2882 if (!skb_has_frag_list(skb)) { 2883 /* A little of trouble, not enough of space for trailer. 2884 * This should not happen, when stack is tuned to generate 2885 * good frames. OK, on miss we reallocate and reserve even more 2886 * space, 128 bytes is fair. */ 2887 2888 if (skb_tailroom(skb) < tailbits && 2889 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2890 return -ENOMEM; 2891 2892 /* Voila! */ 2893 *trailer = skb; 2894 return 1; 2895 } 2896 2897 /* Misery. We are in troubles, going to mincer fragments... */ 2898 2899 elt = 1; 2900 skb_p = &skb_shinfo(skb)->frag_list; 2901 copyflag = 0; 2902 2903 while ((skb1 = *skb_p) != NULL) { 2904 int ntail = 0; 2905 2906 /* The fragment is partially pulled by someone, 2907 * this can happen on input. Copy it and everything 2908 * after it. */ 2909 2910 if (skb_shared(skb1)) 2911 copyflag = 1; 2912 2913 /* If the skb is the last, worry about trailer. */ 2914 2915 if (skb1->next == NULL && tailbits) { 2916 if (skb_shinfo(skb1)->nr_frags || 2917 skb_has_frag_list(skb1) || 2918 skb_tailroom(skb1) < tailbits) 2919 ntail = tailbits + 128; 2920 } 2921 2922 if (copyflag || 2923 skb_cloned(skb1) || 2924 ntail || 2925 skb_shinfo(skb1)->nr_frags || 2926 skb_has_frag_list(skb1)) { 2927 struct sk_buff *skb2; 2928 2929 /* Fuck, we are miserable poor guys... */ 2930 if (ntail == 0) 2931 skb2 = skb_copy(skb1, GFP_ATOMIC); 2932 else 2933 skb2 = skb_copy_expand(skb1, 2934 skb_headroom(skb1), 2935 ntail, 2936 GFP_ATOMIC); 2937 if (unlikely(skb2 == NULL)) 2938 return -ENOMEM; 2939 2940 if (skb1->sk) 2941 skb_set_owner_w(skb2, skb1->sk); 2942 2943 /* Looking around. Are we still alive? 2944 * OK, link new skb, drop old one */ 2945 2946 skb2->next = skb1->next; 2947 *skb_p = skb2; 2948 kfree_skb(skb1); 2949 skb1 = skb2; 2950 } 2951 elt++; 2952 *trailer = skb1; 2953 skb_p = &skb1->next; 2954 } 2955 2956 return elt; 2957 } 2958 EXPORT_SYMBOL_GPL(skb_cow_data); 2959 2960 static void sock_rmem_free(struct sk_buff *skb) 2961 { 2962 struct sock *sk = skb->sk; 2963 2964 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2965 } 2966 2967 /* 2968 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 2969 */ 2970 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 2971 { 2972 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 2973 (unsigned)sk->sk_rcvbuf) 2974 return -ENOMEM; 2975 2976 skb_orphan(skb); 2977 skb->sk = sk; 2978 skb->destructor = sock_rmem_free; 2979 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2980 2981 skb_queue_tail(&sk->sk_error_queue, skb); 2982 if (!sock_flag(sk, SOCK_DEAD)) 2983 sk->sk_data_ready(sk, skb->len); 2984 return 0; 2985 } 2986 EXPORT_SYMBOL(sock_queue_err_skb); 2987 2988 void skb_tstamp_tx(struct sk_buff *orig_skb, 2989 struct skb_shared_hwtstamps *hwtstamps) 2990 { 2991 struct sock *sk = orig_skb->sk; 2992 struct sock_exterr_skb *serr; 2993 struct sk_buff *skb; 2994 int err; 2995 2996 if (!sk) 2997 return; 2998 2999 skb = skb_clone(orig_skb, GFP_ATOMIC); 3000 if (!skb) 3001 return; 3002 3003 if (hwtstamps) { 3004 *skb_hwtstamps(skb) = 3005 *hwtstamps; 3006 } else { 3007 /* 3008 * no hardware time stamps available, 3009 * so keep the shared tx_flags and only 3010 * store software time stamp 3011 */ 3012 skb->tstamp = ktime_get_real(); 3013 } 3014 3015 serr = SKB_EXT_ERR(skb); 3016 memset(serr, 0, sizeof(*serr)); 3017 serr->ee.ee_errno = ENOMSG; 3018 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3019 3020 err = sock_queue_err_skb(sk, skb); 3021 3022 if (err) 3023 kfree_skb(skb); 3024 } 3025 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3026 3027 3028 /** 3029 * skb_partial_csum_set - set up and verify partial csum values for packet 3030 * @skb: the skb to set 3031 * @start: the number of bytes after skb->data to start checksumming. 3032 * @off: the offset from start to place the checksum. 3033 * 3034 * For untrusted partially-checksummed packets, we need to make sure the values 3035 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3036 * 3037 * This function checks and sets those values and skb->ip_summed: if this 3038 * returns false you should drop the packet. 3039 */ 3040 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3041 { 3042 if (unlikely(start > skb_headlen(skb)) || 3043 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3044 if (net_ratelimit()) 3045 printk(KERN_WARNING 3046 "bad partial csum: csum=%u/%u len=%u\n", 3047 start, off, skb_headlen(skb)); 3048 return false; 3049 } 3050 skb->ip_summed = CHECKSUM_PARTIAL; 3051 skb->csum_start = skb_headroom(skb) + start; 3052 skb->csum_offset = off; 3053 return true; 3054 } 3055 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3056 3057 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3058 { 3059 if (net_ratelimit()) 3060 pr_warning("%s: received packets cannot be forwarded" 3061 " while LRO is enabled\n", skb->dev->name); 3062 } 3063 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3064