xref: /linux/net/core/skbuff.c (revision ca6c080eef42e4149110f79cf73a48a6ec4e965d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 #include <net/mpls.h>
75 #include <net/mptcp.h>
76 #include <net/mctp.h>
77 #include <net/page_pool/helpers.h>
78 #include <net/dropreason.h>
79 
80 #include <linux/uaccess.h>
81 #include <trace/events/skb.h>
82 #include <linux/highmem.h>
83 #include <linux/capability.h>
84 #include <linux/user_namespace.h>
85 #include <linux/indirect_call_wrapper.h>
86 #include <linux/textsearch.h>
87 
88 #include "dev.h"
89 #include "sock_destructor.h"
90 
91 struct kmem_cache *skbuff_cache __ro_after_init;
92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 
98 static struct kmem_cache *skb_small_head_cache __ro_after_init;
99 
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101 
102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104  * size, and we can differentiate heads from skb_small_head_cache
105  * vs system slabs by looking at their size (skb_end_offset()).
106  */
107 #define SKB_SMALL_HEAD_CACHE_SIZE					\
108 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
109 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
110 		SKB_SMALL_HEAD_SIZE)
111 
112 #define SKB_SMALL_HEAD_HEADROOM						\
113 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114 
115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116 EXPORT_SYMBOL(sysctl_max_skb_frags);
117 
118 #undef FN
119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120 static const char * const drop_reasons[] = {
121 	[SKB_CONSUMED] = "CONSUMED",
122 	DEFINE_DROP_REASON(FN, FN)
123 };
124 
125 static const struct drop_reason_list drop_reasons_core = {
126 	.reasons = drop_reasons,
127 	.n_reasons = ARRAY_SIZE(drop_reasons),
128 };
129 
130 const struct drop_reason_list __rcu *
131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133 };
134 EXPORT_SYMBOL(drop_reasons_by_subsys);
135 
136 /**
137  * drop_reasons_register_subsys - register another drop reason subsystem
138  * @subsys: the subsystem to register, must not be the core
139  * @list: the list of drop reasons within the subsystem, must point to
140  *	a statically initialized list
141  */
142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 				  const struct drop_reason_list *list)
144 {
145 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 		 "invalid subsystem %d\n", subsys))
148 		return;
149 
150 	/* must point to statically allocated memory, so INIT is OK */
151 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152 }
153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154 
155 /**
156  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157  * @subsys: the subsystem to remove, must not be the core
158  *
159  * Note: This will synchronize_rcu() to ensure no users when it returns.
160  */
161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162 {
163 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 		 "invalid subsystem %d\n", subsys))
166 		return;
167 
168 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169 
170 	synchronize_rcu();
171 }
172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173 
174 /**
175  *	skb_panic - private function for out-of-line support
176  *	@skb:	buffer
177  *	@sz:	size
178  *	@addr:	address
179  *	@msg:	skb_over_panic or skb_under_panic
180  *
181  *	Out-of-line support for skb_put() and skb_push().
182  *	Called via the wrapper skb_over_panic() or skb_under_panic().
183  *	Keep out of line to prevent kernel bloat.
184  *	__builtin_return_address is not used because it is not always reliable.
185  */
186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 		      const char msg[])
188 {
189 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 		 msg, addr, skb->len, sz, skb->head, skb->data,
191 		 (unsigned long)skb->tail, (unsigned long)skb->end,
192 		 skb->dev ? skb->dev->name : "<NULL>");
193 	BUG();
194 }
195 
196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197 {
198 	skb_panic(skb, sz, addr, __func__);
199 }
200 
201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202 {
203 	skb_panic(skb, sz, addr, __func__);
204 }
205 
206 #define NAPI_SKB_CACHE_SIZE	64
207 #define NAPI_SKB_CACHE_BULK	16
208 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
209 
210 #if PAGE_SIZE == SZ_4K
211 
212 #define NAPI_HAS_SMALL_PAGE_FRAG	1
213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
214 
215 /* specialized page frag allocator using a single order 0 page
216  * and slicing it into 1K sized fragment. Constrained to systems
217  * with a very limited amount of 1K fragments fitting a single
218  * page - to avoid excessive truesize underestimation
219  */
220 
221 struct page_frag_1k {
222 	void *va;
223 	u16 offset;
224 	bool pfmemalloc;
225 };
226 
227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228 {
229 	struct page *page;
230 	int offset;
231 
232 	offset = nc->offset - SZ_1K;
233 	if (likely(offset >= 0))
234 		goto use_frag;
235 
236 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 	if (!page)
238 		return NULL;
239 
240 	nc->va = page_address(page);
241 	nc->pfmemalloc = page_is_pfmemalloc(page);
242 	offset = PAGE_SIZE - SZ_1K;
243 	page_ref_add(page, offset / SZ_1K);
244 
245 use_frag:
246 	nc->offset = offset;
247 	return nc->va + offset;
248 }
249 #else
250 
251 /* the small page is actually unused in this build; add dummy helpers
252  * to please the compiler and avoid later preprocessor's conditionals
253  */
254 #define NAPI_HAS_SMALL_PAGE_FRAG	0
255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
256 
257 struct page_frag_1k {
258 };
259 
260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261 {
262 	return NULL;
263 }
264 
265 #endif
266 
267 struct napi_alloc_cache {
268 	struct page_frag_cache page;
269 	struct page_frag_1k page_small;
270 	unsigned int skb_count;
271 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
272 };
273 
274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276 
277 /* Double check that napi_get_frags() allocates skbs with
278  * skb->head being backed by slab, not a page fragment.
279  * This is to make sure bug fixed in 3226b158e67c
280  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281  * does not accidentally come back.
282  */
283 void napi_get_frags_check(struct napi_struct *napi)
284 {
285 	struct sk_buff *skb;
286 
287 	local_bh_disable();
288 	skb = napi_get_frags(napi);
289 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 	napi_free_frags(napi);
291 	local_bh_enable();
292 }
293 
294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295 {
296 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297 
298 	fragsz = SKB_DATA_ALIGN(fragsz);
299 
300 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301 }
302 EXPORT_SYMBOL(__napi_alloc_frag_align);
303 
304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305 {
306 	void *data;
307 
308 	fragsz = SKB_DATA_ALIGN(fragsz);
309 	if (in_hardirq() || irqs_disabled()) {
310 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311 
312 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 	} else {
314 		struct napi_alloc_cache *nc;
315 
316 		local_bh_disable();
317 		nc = this_cpu_ptr(&napi_alloc_cache);
318 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 		local_bh_enable();
320 	}
321 	return data;
322 }
323 EXPORT_SYMBOL(__netdev_alloc_frag_align);
324 
325 static struct sk_buff *napi_skb_cache_get(void)
326 {
327 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 	struct sk_buff *skb;
329 
330 	if (unlikely(!nc->skb_count)) {
331 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 						      GFP_ATOMIC,
333 						      NAPI_SKB_CACHE_BULK,
334 						      nc->skb_cache);
335 		if (unlikely(!nc->skb_count))
336 			return NULL;
337 	}
338 
339 	skb = nc->skb_cache[--nc->skb_count];
340 	kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache));
341 
342 	return skb;
343 }
344 
345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 					 unsigned int size)
347 {
348 	struct skb_shared_info *shinfo;
349 
350 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351 
352 	/* Assumes caller memset cleared SKB */
353 	skb->truesize = SKB_TRUESIZE(size);
354 	refcount_set(&skb->users, 1);
355 	skb->head = data;
356 	skb->data = data;
357 	skb_reset_tail_pointer(skb);
358 	skb_set_end_offset(skb, size);
359 	skb->mac_header = (typeof(skb->mac_header))~0U;
360 	skb->transport_header = (typeof(skb->transport_header))~0U;
361 	skb->alloc_cpu = raw_smp_processor_id();
362 	/* make sure we initialize shinfo sequentially */
363 	shinfo = skb_shinfo(skb);
364 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 	atomic_set(&shinfo->dataref, 1);
366 
367 	skb_set_kcov_handle(skb, kcov_common_handle());
368 }
369 
370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 				     unsigned int *size)
372 {
373 	void *resized;
374 
375 	/* Must find the allocation size (and grow it to match). */
376 	*size = ksize(data);
377 	/* krealloc() will immediately return "data" when
378 	 * "ksize(data)" is requested: it is the existing upper
379 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 	 * that this "new" pointer needs to be passed back to the
381 	 * caller for use so the __alloc_size hinting will be
382 	 * tracked correctly.
383 	 */
384 	resized = krealloc(data, *size, GFP_ATOMIC);
385 	WARN_ON_ONCE(resized != data);
386 	return resized;
387 }
388 
389 /* build_skb() variant which can operate on slab buffers.
390  * Note that this should be used sparingly as slab buffers
391  * cannot be combined efficiently by GRO!
392  */
393 struct sk_buff *slab_build_skb(void *data)
394 {
395 	struct sk_buff *skb;
396 	unsigned int size;
397 
398 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 	if (unlikely(!skb))
400 		return NULL;
401 
402 	memset(skb, 0, offsetof(struct sk_buff, tail));
403 	data = __slab_build_skb(skb, data, &size);
404 	__finalize_skb_around(skb, data, size);
405 
406 	return skb;
407 }
408 EXPORT_SYMBOL(slab_build_skb);
409 
410 /* Caller must provide SKB that is memset cleared */
411 static void __build_skb_around(struct sk_buff *skb, void *data,
412 			       unsigned int frag_size)
413 {
414 	unsigned int size = frag_size;
415 
416 	/* frag_size == 0 is considered deprecated now. Callers
417 	 * using slab buffer should use slab_build_skb() instead.
418 	 */
419 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 		data = __slab_build_skb(skb, data, &size);
421 
422 	__finalize_skb_around(skb, data, size);
423 }
424 
425 /**
426  * __build_skb - build a network buffer
427  * @data: data buffer provided by caller
428  * @frag_size: size of data (must not be 0)
429  *
430  * Allocate a new &sk_buff. Caller provides space holding head and
431  * skb_shared_info. @data must have been allocated from the page
432  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433  * allocation is deprecated, and callers should use slab_build_skb()
434  * instead.)
435  * The return is the new skb buffer.
436  * On a failure the return is %NULL, and @data is not freed.
437  * Notes :
438  *  Before IO, driver allocates only data buffer where NIC put incoming frame
439  *  Driver should add room at head (NET_SKB_PAD) and
440  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
442  *  before giving packet to stack.
443  *  RX rings only contains data buffers, not full skbs.
444  */
445 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446 {
447 	struct sk_buff *skb;
448 
449 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 	if (unlikely(!skb))
451 		return NULL;
452 
453 	memset(skb, 0, offsetof(struct sk_buff, tail));
454 	__build_skb_around(skb, data, frag_size);
455 
456 	return skb;
457 }
458 
459 /* build_skb() is wrapper over __build_skb(), that specifically
460  * takes care of skb->head and skb->pfmemalloc
461  */
462 struct sk_buff *build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb = __build_skb(data, frag_size);
465 
466 	if (likely(skb && frag_size)) {
467 		skb->head_frag = 1;
468 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 	}
470 	return skb;
471 }
472 EXPORT_SYMBOL(build_skb);
473 
474 /**
475  * build_skb_around - build a network buffer around provided skb
476  * @skb: sk_buff provide by caller, must be memset cleared
477  * @data: data buffer provided by caller
478  * @frag_size: size of data
479  */
480 struct sk_buff *build_skb_around(struct sk_buff *skb,
481 				 void *data, unsigned int frag_size)
482 {
483 	if (unlikely(!skb))
484 		return NULL;
485 
486 	__build_skb_around(skb, data, frag_size);
487 
488 	if (frag_size) {
489 		skb->head_frag = 1;
490 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 	}
492 	return skb;
493 }
494 EXPORT_SYMBOL(build_skb_around);
495 
496 /**
497  * __napi_build_skb - build a network buffer
498  * @data: data buffer provided by caller
499  * @frag_size: size of data
500  *
501  * Version of __build_skb() that uses NAPI percpu caches to obtain
502  * skbuff_head instead of inplace allocation.
503  *
504  * Returns a new &sk_buff on success, %NULL on allocation failure.
505  */
506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507 {
508 	struct sk_buff *skb;
509 
510 	skb = napi_skb_cache_get();
511 	if (unlikely(!skb))
512 		return NULL;
513 
514 	memset(skb, 0, offsetof(struct sk_buff, tail));
515 	__build_skb_around(skb, data, frag_size);
516 
517 	return skb;
518 }
519 
520 /**
521  * napi_build_skb - build a network buffer
522  * @data: data buffer provided by caller
523  * @frag_size: size of data
524  *
525  * Version of __napi_build_skb() that takes care of skb->head_frag
526  * and skb->pfmemalloc when the data is a page or page fragment.
527  *
528  * Returns a new &sk_buff on success, %NULL on allocation failure.
529  */
530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531 {
532 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
533 
534 	if (likely(skb) && frag_size) {
535 		skb->head_frag = 1;
536 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 	}
538 
539 	return skb;
540 }
541 EXPORT_SYMBOL(napi_build_skb);
542 
543 /*
544  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545  * the caller if emergency pfmemalloc reserves are being used. If it is and
546  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547  * may be used. Otherwise, the packet data may be discarded until enough
548  * memory is free
549  */
550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 			     bool *pfmemalloc)
552 {
553 	bool ret_pfmemalloc = false;
554 	size_t obj_size;
555 	void *obj;
556 
557 	obj_size = SKB_HEAD_ALIGN(*size);
558 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 		obj = kmem_cache_alloc_node(skb_small_head_cache,
561 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 				node);
563 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
564 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 			goto out;
566 		/* Try again but now we are using pfmemalloc reserves */
567 		ret_pfmemalloc = true;
568 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 		goto out;
570 	}
571 
572 	obj_size = kmalloc_size_roundup(obj_size);
573 	/* The following cast might truncate high-order bits of obj_size, this
574 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 	 */
576 	*size = (unsigned int)obj_size;
577 
578 	/*
579 	 * Try a regular allocation, when that fails and we're not entitled
580 	 * to the reserves, fail.
581 	 */
582 	obj = kmalloc_node_track_caller(obj_size,
583 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 					node);
585 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 		goto out;
587 
588 	/* Try again but now we are using pfmemalloc reserves */
589 	ret_pfmemalloc = true;
590 	obj = kmalloc_node_track_caller(obj_size, flags, node);
591 
592 out:
593 	if (pfmemalloc)
594 		*pfmemalloc = ret_pfmemalloc;
595 
596 	return obj;
597 }
598 
599 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
600  *	'private' fields and also do memory statistics to find all the
601  *	[BEEP] leaks.
602  *
603  */
604 
605 /**
606  *	__alloc_skb	-	allocate a network buffer
607  *	@size: size to allocate
608  *	@gfp_mask: allocation mask
609  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610  *		instead of head cache and allocate a cloned (child) skb.
611  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612  *		allocations in case the data is required for writeback
613  *	@node: numa node to allocate memory on
614  *
615  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
616  *	tail room of at least size bytes. The object has a reference count
617  *	of one. The return is the buffer. On a failure the return is %NULL.
618  *
619  *	Buffers may only be allocated from interrupts using a @gfp_mask of
620  *	%GFP_ATOMIC.
621  */
622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 			    int flags, int node)
624 {
625 	struct kmem_cache *cache;
626 	struct sk_buff *skb;
627 	bool pfmemalloc;
628 	u8 *data;
629 
630 	cache = (flags & SKB_ALLOC_FCLONE)
631 		? skbuff_fclone_cache : skbuff_cache;
632 
633 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 		gfp_mask |= __GFP_MEMALLOC;
635 
636 	/* Get the HEAD */
637 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 		skb = napi_skb_cache_get();
640 	else
641 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 	if (unlikely(!skb))
643 		return NULL;
644 	prefetchw(skb);
645 
646 	/* We do our best to align skb_shared_info on a separate cache
647 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 	 * Both skb->head and skb_shared_info are cache line aligned.
650 	 */
651 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 	if (unlikely(!data))
653 		goto nodata;
654 	/* kmalloc_size_roundup() might give us more room than requested.
655 	 * Put skb_shared_info exactly at the end of allocated zone,
656 	 * to allow max possible filling before reallocation.
657 	 */
658 	prefetchw(data + SKB_WITH_OVERHEAD(size));
659 
660 	/*
661 	 * Only clear those fields we need to clear, not those that we will
662 	 * actually initialise below. Hence, don't put any more fields after
663 	 * the tail pointer in struct sk_buff!
664 	 */
665 	memset(skb, 0, offsetof(struct sk_buff, tail));
666 	__build_skb_around(skb, data, size);
667 	skb->pfmemalloc = pfmemalloc;
668 
669 	if (flags & SKB_ALLOC_FCLONE) {
670 		struct sk_buff_fclones *fclones;
671 
672 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
673 
674 		skb->fclone = SKB_FCLONE_ORIG;
675 		refcount_set(&fclones->fclone_ref, 1);
676 	}
677 
678 	return skb;
679 
680 nodata:
681 	kmem_cache_free(cache, skb);
682 	return NULL;
683 }
684 EXPORT_SYMBOL(__alloc_skb);
685 
686 /**
687  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
688  *	@dev: network device to receive on
689  *	@len: length to allocate
690  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
691  *
692  *	Allocate a new &sk_buff and assign it a usage count of one. The
693  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
694  *	the headroom they think they need without accounting for the
695  *	built in space. The built in space is used for optimisations.
696  *
697  *	%NULL is returned if there is no free memory.
698  */
699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 				   gfp_t gfp_mask)
701 {
702 	struct page_frag_cache *nc;
703 	struct sk_buff *skb;
704 	bool pfmemalloc;
705 	void *data;
706 
707 	len += NET_SKB_PAD;
708 
709 	/* If requested length is either too small or too big,
710 	 * we use kmalloc() for skb->head allocation.
711 	 */
712 	if (len <= SKB_WITH_OVERHEAD(1024) ||
713 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 		if (!skb)
717 			goto skb_fail;
718 		goto skb_success;
719 	}
720 
721 	len = SKB_HEAD_ALIGN(len);
722 
723 	if (sk_memalloc_socks())
724 		gfp_mask |= __GFP_MEMALLOC;
725 
726 	if (in_hardirq() || irqs_disabled()) {
727 		nc = this_cpu_ptr(&netdev_alloc_cache);
728 		data = page_frag_alloc(nc, len, gfp_mask);
729 		pfmemalloc = nc->pfmemalloc;
730 	} else {
731 		local_bh_disable();
732 		nc = this_cpu_ptr(&napi_alloc_cache.page);
733 		data = page_frag_alloc(nc, len, gfp_mask);
734 		pfmemalloc = nc->pfmemalloc;
735 		local_bh_enable();
736 	}
737 
738 	if (unlikely(!data))
739 		return NULL;
740 
741 	skb = __build_skb(data, len);
742 	if (unlikely(!skb)) {
743 		skb_free_frag(data);
744 		return NULL;
745 	}
746 
747 	if (pfmemalloc)
748 		skb->pfmemalloc = 1;
749 	skb->head_frag = 1;
750 
751 skb_success:
752 	skb_reserve(skb, NET_SKB_PAD);
753 	skb->dev = dev;
754 
755 skb_fail:
756 	return skb;
757 }
758 EXPORT_SYMBOL(__netdev_alloc_skb);
759 
760 /**
761  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762  *	@napi: napi instance this buffer was allocated for
763  *	@len: length to allocate
764  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765  *
766  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
767  *	attempt to allocate the head from a special reserved region used
768  *	only for NAPI Rx allocation.  By doing this we can save several
769  *	CPU cycles by avoiding having to disable and re-enable IRQs.
770  *
771  *	%NULL is returned if there is no free memory.
772  */
773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 				 gfp_t gfp_mask)
775 {
776 	struct napi_alloc_cache *nc;
777 	struct sk_buff *skb;
778 	bool pfmemalloc;
779 	void *data;
780 
781 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 	len += NET_SKB_PAD + NET_IP_ALIGN;
783 
784 	/* If requested length is either too small or too big,
785 	 * we use kmalloc() for skb->head allocation.
786 	 * When the small frag allocator is available, prefer it over kmalloc
787 	 * for small fragments
788 	 */
789 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 				  NUMA_NO_NODE);
794 		if (!skb)
795 			goto skb_fail;
796 		goto skb_success;
797 	}
798 
799 	nc = this_cpu_ptr(&napi_alloc_cache);
800 
801 	if (sk_memalloc_socks())
802 		gfp_mask |= __GFP_MEMALLOC;
803 
804 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 		/* we are artificially inflating the allocation size, but
806 		 * that is not as bad as it may look like, as:
807 		 * - 'len' less than GRO_MAX_HEAD makes little sense
808 		 * - On most systems, larger 'len' values lead to fragment
809 		 *   size above 512 bytes
810 		 * - kmalloc would use the kmalloc-1k slab for such values
811 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 		 *   little networking, as that implies no WiFi and no
813 		 *   tunnels support, and 32 bits arches.
814 		 */
815 		len = SZ_1K;
816 
817 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 	} else {
820 		len = SKB_HEAD_ALIGN(len);
821 
822 		data = page_frag_alloc(&nc->page, len, gfp_mask);
823 		pfmemalloc = nc->page.pfmemalloc;
824 	}
825 
826 	if (unlikely(!data))
827 		return NULL;
828 
829 	skb = __napi_build_skb(data, len);
830 	if (unlikely(!skb)) {
831 		skb_free_frag(data);
832 		return NULL;
833 	}
834 
835 	if (pfmemalloc)
836 		skb->pfmemalloc = 1;
837 	skb->head_frag = 1;
838 
839 skb_success:
840 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 	skb->dev = napi->dev;
842 
843 skb_fail:
844 	return skb;
845 }
846 EXPORT_SYMBOL(__napi_alloc_skb);
847 
848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 		     int size, unsigned int truesize)
850 {
851 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
852 
853 	skb_fill_page_desc(skb, i, page, off, size);
854 	skb->len += size;
855 	skb->data_len += size;
856 	skb->truesize += truesize;
857 }
858 EXPORT_SYMBOL(skb_add_rx_frag);
859 
860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 			  unsigned int truesize)
862 {
863 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864 
865 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
866 
867 	skb_frag_size_add(frag, size);
868 	skb->len += size;
869 	skb->data_len += size;
870 	skb->truesize += truesize;
871 }
872 EXPORT_SYMBOL(skb_coalesce_rx_frag);
873 
874 static void skb_drop_list(struct sk_buff **listp)
875 {
876 	kfree_skb_list(*listp);
877 	*listp = NULL;
878 }
879 
880 static inline void skb_drop_fraglist(struct sk_buff *skb)
881 {
882 	skb_drop_list(&skb_shinfo(skb)->frag_list);
883 }
884 
885 static void skb_clone_fraglist(struct sk_buff *skb)
886 {
887 	struct sk_buff *list;
888 
889 	skb_walk_frags(skb, list)
890 		skb_get(list);
891 }
892 
893 #if IS_ENABLED(CONFIG_PAGE_POOL)
894 bool napi_pp_put_page(struct page *page, bool napi_safe)
895 {
896 	bool allow_direct = false;
897 	struct page_pool *pp;
898 
899 	page = compound_head(page);
900 
901 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
902 	 * in order to preserve any existing bits, such as bit 0 for the
903 	 * head page of compound page and bit 1 for pfmemalloc page, so
904 	 * mask those bits for freeing side when doing below checking,
905 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
906 	 * to avoid recycling the pfmemalloc page.
907 	 */
908 	if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
909 		return false;
910 
911 	pp = page->pp;
912 
913 	/* Allow direct recycle if we have reasons to believe that we are
914 	 * in the same context as the consumer would run, so there's
915 	 * no possible race.
916 	 * __page_pool_put_page() makes sure we're not in hardirq context
917 	 * and interrupts are enabled prior to accessing the cache.
918 	 */
919 	if (napi_safe || in_softirq()) {
920 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
921 
922 		allow_direct = napi &&
923 			READ_ONCE(napi->list_owner) == smp_processor_id();
924 	}
925 
926 	/* Driver set this to memory recycling info. Reset it on recycle.
927 	 * This will *not* work for NIC using a split-page memory model.
928 	 * The page will be returned to the pool here regardless of the
929 	 * 'flipped' fragment being in use or not.
930 	 */
931 	page_pool_put_full_page(pp, page, allow_direct);
932 
933 	return true;
934 }
935 EXPORT_SYMBOL(napi_pp_put_page);
936 #endif
937 
938 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
939 {
940 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
941 		return false;
942 	return napi_pp_put_page(virt_to_page(data), napi_safe);
943 }
944 
945 static void skb_kfree_head(void *head, unsigned int end_offset)
946 {
947 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
948 		kmem_cache_free(skb_small_head_cache, head);
949 	else
950 		kfree(head);
951 }
952 
953 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
954 {
955 	unsigned char *head = skb->head;
956 
957 	if (skb->head_frag) {
958 		if (skb_pp_recycle(skb, head, napi_safe))
959 			return;
960 		skb_free_frag(head);
961 	} else {
962 		skb_kfree_head(head, skb_end_offset(skb));
963 	}
964 }
965 
966 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
967 			     bool napi_safe)
968 {
969 	struct skb_shared_info *shinfo = skb_shinfo(skb);
970 	int i;
971 
972 	if (skb->cloned &&
973 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
974 			      &shinfo->dataref))
975 		goto exit;
976 
977 	if (skb_zcopy(skb)) {
978 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
979 
980 		skb_zcopy_clear(skb, true);
981 		if (skip_unref)
982 			goto free_head;
983 	}
984 
985 	for (i = 0; i < shinfo->nr_frags; i++)
986 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
987 
988 free_head:
989 	if (shinfo->frag_list)
990 		kfree_skb_list_reason(shinfo->frag_list, reason);
991 
992 	skb_free_head(skb, napi_safe);
993 exit:
994 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
995 	 * bit is only set on the head though, so in order to avoid races
996 	 * while trying to recycle fragments on __skb_frag_unref() we need
997 	 * to make one SKB responsible for triggering the recycle path.
998 	 * So disable the recycling bit if an SKB is cloned and we have
999 	 * additional references to the fragmented part of the SKB.
1000 	 * Eventually the last SKB will have the recycling bit set and it's
1001 	 * dataref set to 0, which will trigger the recycling
1002 	 */
1003 	skb->pp_recycle = 0;
1004 }
1005 
1006 /*
1007  *	Free an skbuff by memory without cleaning the state.
1008  */
1009 static void kfree_skbmem(struct sk_buff *skb)
1010 {
1011 	struct sk_buff_fclones *fclones;
1012 
1013 	switch (skb->fclone) {
1014 	case SKB_FCLONE_UNAVAILABLE:
1015 		kmem_cache_free(skbuff_cache, skb);
1016 		return;
1017 
1018 	case SKB_FCLONE_ORIG:
1019 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1020 
1021 		/* We usually free the clone (TX completion) before original skb
1022 		 * This test would have no chance to be true for the clone,
1023 		 * while here, branch prediction will be good.
1024 		 */
1025 		if (refcount_read(&fclones->fclone_ref) == 1)
1026 			goto fastpath;
1027 		break;
1028 
1029 	default: /* SKB_FCLONE_CLONE */
1030 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1031 		break;
1032 	}
1033 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1034 		return;
1035 fastpath:
1036 	kmem_cache_free(skbuff_fclone_cache, fclones);
1037 }
1038 
1039 void skb_release_head_state(struct sk_buff *skb)
1040 {
1041 	skb_dst_drop(skb);
1042 	if (skb->destructor) {
1043 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1044 		skb->destructor(skb);
1045 	}
1046 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1047 	nf_conntrack_put(skb_nfct(skb));
1048 #endif
1049 	skb_ext_put(skb);
1050 }
1051 
1052 /* Free everything but the sk_buff shell. */
1053 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1054 			    bool napi_safe)
1055 {
1056 	skb_release_head_state(skb);
1057 	if (likely(skb->head))
1058 		skb_release_data(skb, reason, napi_safe);
1059 }
1060 
1061 /**
1062  *	__kfree_skb - private function
1063  *	@skb: buffer
1064  *
1065  *	Free an sk_buff. Release anything attached to the buffer.
1066  *	Clean the state. This is an internal helper function. Users should
1067  *	always call kfree_skb
1068  */
1069 
1070 void __kfree_skb(struct sk_buff *skb)
1071 {
1072 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1073 	kfree_skbmem(skb);
1074 }
1075 EXPORT_SYMBOL(__kfree_skb);
1076 
1077 static __always_inline
1078 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1079 {
1080 	if (unlikely(!skb_unref(skb)))
1081 		return false;
1082 
1083 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1084 			       u32_get_bits(reason,
1085 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1086 				SKB_DROP_REASON_SUBSYS_NUM);
1087 
1088 	if (reason == SKB_CONSUMED)
1089 		trace_consume_skb(skb, __builtin_return_address(0));
1090 	else
1091 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1092 	return true;
1093 }
1094 
1095 /**
1096  *	kfree_skb_reason - free an sk_buff with special reason
1097  *	@skb: buffer to free
1098  *	@reason: reason why this skb is dropped
1099  *
1100  *	Drop a reference to the buffer and free it if the usage count has
1101  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1102  *	tracepoint.
1103  */
1104 void __fix_address
1105 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1106 {
1107 	if (__kfree_skb_reason(skb, reason))
1108 		__kfree_skb(skb);
1109 }
1110 EXPORT_SYMBOL(kfree_skb_reason);
1111 
1112 #define KFREE_SKB_BULK_SIZE	16
1113 
1114 struct skb_free_array {
1115 	unsigned int skb_count;
1116 	void *skb_array[KFREE_SKB_BULK_SIZE];
1117 };
1118 
1119 static void kfree_skb_add_bulk(struct sk_buff *skb,
1120 			       struct skb_free_array *sa,
1121 			       enum skb_drop_reason reason)
1122 {
1123 	/* if SKB is a clone, don't handle this case */
1124 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1125 		__kfree_skb(skb);
1126 		return;
1127 	}
1128 
1129 	skb_release_all(skb, reason, false);
1130 	sa->skb_array[sa->skb_count++] = skb;
1131 
1132 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1133 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1134 				     sa->skb_array);
1135 		sa->skb_count = 0;
1136 	}
1137 }
1138 
1139 void __fix_address
1140 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1141 {
1142 	struct skb_free_array sa;
1143 
1144 	sa.skb_count = 0;
1145 
1146 	while (segs) {
1147 		struct sk_buff *next = segs->next;
1148 
1149 		if (__kfree_skb_reason(segs, reason)) {
1150 			skb_poison_list(segs);
1151 			kfree_skb_add_bulk(segs, &sa, reason);
1152 		}
1153 
1154 		segs = next;
1155 	}
1156 
1157 	if (sa.skb_count)
1158 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1159 }
1160 EXPORT_SYMBOL(kfree_skb_list_reason);
1161 
1162 /* Dump skb information and contents.
1163  *
1164  * Must only be called from net_ratelimit()-ed paths.
1165  *
1166  * Dumps whole packets if full_pkt, only headers otherwise.
1167  */
1168 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1169 {
1170 	struct skb_shared_info *sh = skb_shinfo(skb);
1171 	struct net_device *dev = skb->dev;
1172 	struct sock *sk = skb->sk;
1173 	struct sk_buff *list_skb;
1174 	bool has_mac, has_trans;
1175 	int headroom, tailroom;
1176 	int i, len, seg_len;
1177 
1178 	if (full_pkt)
1179 		len = skb->len;
1180 	else
1181 		len = min_t(int, skb->len, MAX_HEADER + 128);
1182 
1183 	headroom = skb_headroom(skb);
1184 	tailroom = skb_tailroom(skb);
1185 
1186 	has_mac = skb_mac_header_was_set(skb);
1187 	has_trans = skb_transport_header_was_set(skb);
1188 
1189 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1190 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1191 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1192 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1193 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1194 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1195 	       has_mac ? skb->mac_header : -1,
1196 	       has_mac ? skb_mac_header_len(skb) : -1,
1197 	       skb->network_header,
1198 	       has_trans ? skb_network_header_len(skb) : -1,
1199 	       has_trans ? skb->transport_header : -1,
1200 	       sh->tx_flags, sh->nr_frags,
1201 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1202 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1203 	       skb->csum_valid, skb->csum_level,
1204 	       skb->hash, skb->sw_hash, skb->l4_hash,
1205 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1206 
1207 	if (dev)
1208 		printk("%sdev name=%s feat=%pNF\n",
1209 		       level, dev->name, &dev->features);
1210 	if (sk)
1211 		printk("%ssk family=%hu type=%u proto=%u\n",
1212 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1213 
1214 	if (full_pkt && headroom)
1215 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1216 			       16, 1, skb->head, headroom, false);
1217 
1218 	seg_len = min_t(int, skb_headlen(skb), len);
1219 	if (seg_len)
1220 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1221 			       16, 1, skb->data, seg_len, false);
1222 	len -= seg_len;
1223 
1224 	if (full_pkt && tailroom)
1225 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1226 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1227 
1228 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1229 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1230 		u32 p_off, p_len, copied;
1231 		struct page *p;
1232 		u8 *vaddr;
1233 
1234 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1235 				      skb_frag_size(frag), p, p_off, p_len,
1236 				      copied) {
1237 			seg_len = min_t(int, p_len, len);
1238 			vaddr = kmap_atomic(p);
1239 			print_hex_dump(level, "skb frag:     ",
1240 				       DUMP_PREFIX_OFFSET,
1241 				       16, 1, vaddr + p_off, seg_len, false);
1242 			kunmap_atomic(vaddr);
1243 			len -= seg_len;
1244 			if (!len)
1245 				break;
1246 		}
1247 	}
1248 
1249 	if (full_pkt && skb_has_frag_list(skb)) {
1250 		printk("skb fraglist:\n");
1251 		skb_walk_frags(skb, list_skb)
1252 			skb_dump(level, list_skb, true);
1253 	}
1254 }
1255 EXPORT_SYMBOL(skb_dump);
1256 
1257 /**
1258  *	skb_tx_error - report an sk_buff xmit error
1259  *	@skb: buffer that triggered an error
1260  *
1261  *	Report xmit error if a device callback is tracking this skb.
1262  *	skb must be freed afterwards.
1263  */
1264 void skb_tx_error(struct sk_buff *skb)
1265 {
1266 	if (skb) {
1267 		skb_zcopy_downgrade_managed(skb);
1268 		skb_zcopy_clear(skb, true);
1269 	}
1270 }
1271 EXPORT_SYMBOL(skb_tx_error);
1272 
1273 #ifdef CONFIG_TRACEPOINTS
1274 /**
1275  *	consume_skb - free an skbuff
1276  *	@skb: buffer to free
1277  *
1278  *	Drop a ref to the buffer and free it if the usage count has hit zero
1279  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1280  *	is being dropped after a failure and notes that
1281  */
1282 void consume_skb(struct sk_buff *skb)
1283 {
1284 	if (!skb_unref(skb))
1285 		return;
1286 
1287 	trace_consume_skb(skb, __builtin_return_address(0));
1288 	__kfree_skb(skb);
1289 }
1290 EXPORT_SYMBOL(consume_skb);
1291 #endif
1292 
1293 /**
1294  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1295  *	@skb: buffer to free
1296  *
1297  *	Alike consume_skb(), but this variant assumes that this is the last
1298  *	skb reference and all the head states have been already dropped
1299  */
1300 void __consume_stateless_skb(struct sk_buff *skb)
1301 {
1302 	trace_consume_skb(skb, __builtin_return_address(0));
1303 	skb_release_data(skb, SKB_CONSUMED, false);
1304 	kfree_skbmem(skb);
1305 }
1306 
1307 static void napi_skb_cache_put(struct sk_buff *skb)
1308 {
1309 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1310 	u32 i;
1311 
1312 	if (!kasan_mempool_poison_object(skb))
1313 		return;
1314 
1315 	nc->skb_cache[nc->skb_count++] = skb;
1316 
1317 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1318 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1319 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1320 						kmem_cache_size(skbuff_cache));
1321 
1322 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1323 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1324 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1325 	}
1326 }
1327 
1328 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1329 {
1330 	skb_release_all(skb, reason, true);
1331 	napi_skb_cache_put(skb);
1332 }
1333 
1334 void napi_skb_free_stolen_head(struct sk_buff *skb)
1335 {
1336 	if (unlikely(skb->slow_gro)) {
1337 		nf_reset_ct(skb);
1338 		skb_dst_drop(skb);
1339 		skb_ext_put(skb);
1340 		skb_orphan(skb);
1341 		skb->slow_gro = 0;
1342 	}
1343 	napi_skb_cache_put(skb);
1344 }
1345 
1346 void napi_consume_skb(struct sk_buff *skb, int budget)
1347 {
1348 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1349 	if (unlikely(!budget)) {
1350 		dev_consume_skb_any(skb);
1351 		return;
1352 	}
1353 
1354 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1355 
1356 	if (!skb_unref(skb))
1357 		return;
1358 
1359 	/* if reaching here SKB is ready to free */
1360 	trace_consume_skb(skb, __builtin_return_address(0));
1361 
1362 	/* if SKB is a clone, don't handle this case */
1363 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1364 		__kfree_skb(skb);
1365 		return;
1366 	}
1367 
1368 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1369 	napi_skb_cache_put(skb);
1370 }
1371 EXPORT_SYMBOL(napi_consume_skb);
1372 
1373 /* Make sure a field is contained by headers group */
1374 #define CHECK_SKB_FIELD(field) \
1375 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1376 		     offsetof(struct sk_buff, headers.field));	\
1377 
1378 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1379 {
1380 	new->tstamp		= old->tstamp;
1381 	/* We do not copy old->sk */
1382 	new->dev		= old->dev;
1383 	memcpy(new->cb, old->cb, sizeof(old->cb));
1384 	skb_dst_copy(new, old);
1385 	__skb_ext_copy(new, old);
1386 	__nf_copy(new, old, false);
1387 
1388 	/* Note : this field could be in the headers group.
1389 	 * It is not yet because we do not want to have a 16 bit hole
1390 	 */
1391 	new->queue_mapping = old->queue_mapping;
1392 
1393 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1394 	CHECK_SKB_FIELD(protocol);
1395 	CHECK_SKB_FIELD(csum);
1396 	CHECK_SKB_FIELD(hash);
1397 	CHECK_SKB_FIELD(priority);
1398 	CHECK_SKB_FIELD(skb_iif);
1399 	CHECK_SKB_FIELD(vlan_proto);
1400 	CHECK_SKB_FIELD(vlan_tci);
1401 	CHECK_SKB_FIELD(transport_header);
1402 	CHECK_SKB_FIELD(network_header);
1403 	CHECK_SKB_FIELD(mac_header);
1404 	CHECK_SKB_FIELD(inner_protocol);
1405 	CHECK_SKB_FIELD(inner_transport_header);
1406 	CHECK_SKB_FIELD(inner_network_header);
1407 	CHECK_SKB_FIELD(inner_mac_header);
1408 	CHECK_SKB_FIELD(mark);
1409 #ifdef CONFIG_NETWORK_SECMARK
1410 	CHECK_SKB_FIELD(secmark);
1411 #endif
1412 #ifdef CONFIG_NET_RX_BUSY_POLL
1413 	CHECK_SKB_FIELD(napi_id);
1414 #endif
1415 	CHECK_SKB_FIELD(alloc_cpu);
1416 #ifdef CONFIG_XPS
1417 	CHECK_SKB_FIELD(sender_cpu);
1418 #endif
1419 #ifdef CONFIG_NET_SCHED
1420 	CHECK_SKB_FIELD(tc_index);
1421 #endif
1422 
1423 }
1424 
1425 /*
1426  * You should not add any new code to this function.  Add it to
1427  * __copy_skb_header above instead.
1428  */
1429 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1430 {
1431 #define C(x) n->x = skb->x
1432 
1433 	n->next = n->prev = NULL;
1434 	n->sk = NULL;
1435 	__copy_skb_header(n, skb);
1436 
1437 	C(len);
1438 	C(data_len);
1439 	C(mac_len);
1440 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1441 	n->cloned = 1;
1442 	n->nohdr = 0;
1443 	n->peeked = 0;
1444 	C(pfmemalloc);
1445 	C(pp_recycle);
1446 	n->destructor = NULL;
1447 	C(tail);
1448 	C(end);
1449 	C(head);
1450 	C(head_frag);
1451 	C(data);
1452 	C(truesize);
1453 	refcount_set(&n->users, 1);
1454 
1455 	atomic_inc(&(skb_shinfo(skb)->dataref));
1456 	skb->cloned = 1;
1457 
1458 	return n;
1459 #undef C
1460 }
1461 
1462 /**
1463  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1464  * @first: first sk_buff of the msg
1465  */
1466 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1467 {
1468 	struct sk_buff *n;
1469 
1470 	n = alloc_skb(0, GFP_ATOMIC);
1471 	if (!n)
1472 		return NULL;
1473 
1474 	n->len = first->len;
1475 	n->data_len = first->len;
1476 	n->truesize = first->truesize;
1477 
1478 	skb_shinfo(n)->frag_list = first;
1479 
1480 	__copy_skb_header(n, first);
1481 	n->destructor = NULL;
1482 
1483 	return n;
1484 }
1485 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1486 
1487 /**
1488  *	skb_morph	-	morph one skb into another
1489  *	@dst: the skb to receive the contents
1490  *	@src: the skb to supply the contents
1491  *
1492  *	This is identical to skb_clone except that the target skb is
1493  *	supplied by the user.
1494  *
1495  *	The target skb is returned upon exit.
1496  */
1497 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1498 {
1499 	skb_release_all(dst, SKB_CONSUMED, false);
1500 	return __skb_clone(dst, src);
1501 }
1502 EXPORT_SYMBOL_GPL(skb_morph);
1503 
1504 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1505 {
1506 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1507 	struct user_struct *user;
1508 
1509 	if (capable(CAP_IPC_LOCK) || !size)
1510 		return 0;
1511 
1512 	rlim = rlimit(RLIMIT_MEMLOCK);
1513 	if (rlim == RLIM_INFINITY)
1514 		return 0;
1515 
1516 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1517 	max_pg = rlim >> PAGE_SHIFT;
1518 	user = mmp->user ? : current_user();
1519 
1520 	old_pg = atomic_long_read(&user->locked_vm);
1521 	do {
1522 		new_pg = old_pg + num_pg;
1523 		if (new_pg > max_pg)
1524 			return -ENOBUFS;
1525 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1526 
1527 	if (!mmp->user) {
1528 		mmp->user = get_uid(user);
1529 		mmp->num_pg = num_pg;
1530 	} else {
1531 		mmp->num_pg += num_pg;
1532 	}
1533 
1534 	return 0;
1535 }
1536 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1537 
1538 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1539 {
1540 	if (mmp->user) {
1541 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1542 		free_uid(mmp->user);
1543 	}
1544 }
1545 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1546 
1547 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1548 {
1549 	struct ubuf_info_msgzc *uarg;
1550 	struct sk_buff *skb;
1551 
1552 	WARN_ON_ONCE(!in_task());
1553 
1554 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1555 	if (!skb)
1556 		return NULL;
1557 
1558 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1559 	uarg = (void *)skb->cb;
1560 	uarg->mmp.user = NULL;
1561 
1562 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1563 		kfree_skb(skb);
1564 		return NULL;
1565 	}
1566 
1567 	uarg->ubuf.callback = msg_zerocopy_callback;
1568 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1569 	uarg->len = 1;
1570 	uarg->bytelen = size;
1571 	uarg->zerocopy = 1;
1572 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1573 	refcount_set(&uarg->ubuf.refcnt, 1);
1574 	sock_hold(sk);
1575 
1576 	return &uarg->ubuf;
1577 }
1578 
1579 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1580 {
1581 	return container_of((void *)uarg, struct sk_buff, cb);
1582 }
1583 
1584 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1585 				       struct ubuf_info *uarg)
1586 {
1587 	if (uarg) {
1588 		struct ubuf_info_msgzc *uarg_zc;
1589 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1590 		u32 bytelen, next;
1591 
1592 		/* there might be non MSG_ZEROCOPY users */
1593 		if (uarg->callback != msg_zerocopy_callback)
1594 			return NULL;
1595 
1596 		/* realloc only when socket is locked (TCP, UDP cork),
1597 		 * so uarg->len and sk_zckey access is serialized
1598 		 */
1599 		if (!sock_owned_by_user(sk)) {
1600 			WARN_ON_ONCE(1);
1601 			return NULL;
1602 		}
1603 
1604 		uarg_zc = uarg_to_msgzc(uarg);
1605 		bytelen = uarg_zc->bytelen + size;
1606 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1607 			/* TCP can create new skb to attach new uarg */
1608 			if (sk->sk_type == SOCK_STREAM)
1609 				goto new_alloc;
1610 			return NULL;
1611 		}
1612 
1613 		next = (u32)atomic_read(&sk->sk_zckey);
1614 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1615 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1616 				return NULL;
1617 			uarg_zc->len++;
1618 			uarg_zc->bytelen = bytelen;
1619 			atomic_set(&sk->sk_zckey, ++next);
1620 
1621 			/* no extra ref when appending to datagram (MSG_MORE) */
1622 			if (sk->sk_type == SOCK_STREAM)
1623 				net_zcopy_get(uarg);
1624 
1625 			return uarg;
1626 		}
1627 	}
1628 
1629 new_alloc:
1630 	return msg_zerocopy_alloc(sk, size);
1631 }
1632 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1633 
1634 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1635 {
1636 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1637 	u32 old_lo, old_hi;
1638 	u64 sum_len;
1639 
1640 	old_lo = serr->ee.ee_info;
1641 	old_hi = serr->ee.ee_data;
1642 	sum_len = old_hi - old_lo + 1ULL + len;
1643 
1644 	if (sum_len >= (1ULL << 32))
1645 		return false;
1646 
1647 	if (lo != old_hi + 1)
1648 		return false;
1649 
1650 	serr->ee.ee_data += len;
1651 	return true;
1652 }
1653 
1654 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1655 {
1656 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1657 	struct sock_exterr_skb *serr;
1658 	struct sock *sk = skb->sk;
1659 	struct sk_buff_head *q;
1660 	unsigned long flags;
1661 	bool is_zerocopy;
1662 	u32 lo, hi;
1663 	u16 len;
1664 
1665 	mm_unaccount_pinned_pages(&uarg->mmp);
1666 
1667 	/* if !len, there was only 1 call, and it was aborted
1668 	 * so do not queue a completion notification
1669 	 */
1670 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1671 		goto release;
1672 
1673 	len = uarg->len;
1674 	lo = uarg->id;
1675 	hi = uarg->id + len - 1;
1676 	is_zerocopy = uarg->zerocopy;
1677 
1678 	serr = SKB_EXT_ERR(skb);
1679 	memset(serr, 0, sizeof(*serr));
1680 	serr->ee.ee_errno = 0;
1681 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1682 	serr->ee.ee_data = hi;
1683 	serr->ee.ee_info = lo;
1684 	if (!is_zerocopy)
1685 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1686 
1687 	q = &sk->sk_error_queue;
1688 	spin_lock_irqsave(&q->lock, flags);
1689 	tail = skb_peek_tail(q);
1690 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1691 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1692 		__skb_queue_tail(q, skb);
1693 		skb = NULL;
1694 	}
1695 	spin_unlock_irqrestore(&q->lock, flags);
1696 
1697 	sk_error_report(sk);
1698 
1699 release:
1700 	consume_skb(skb);
1701 	sock_put(sk);
1702 }
1703 
1704 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1705 			   bool success)
1706 {
1707 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1708 
1709 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1710 
1711 	if (refcount_dec_and_test(&uarg->refcnt))
1712 		__msg_zerocopy_callback(uarg_zc);
1713 }
1714 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1715 
1716 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1717 {
1718 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1719 
1720 	atomic_dec(&sk->sk_zckey);
1721 	uarg_to_msgzc(uarg)->len--;
1722 
1723 	if (have_uref)
1724 		msg_zerocopy_callback(NULL, uarg, true);
1725 }
1726 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1727 
1728 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1729 			     struct msghdr *msg, int len,
1730 			     struct ubuf_info *uarg)
1731 {
1732 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1733 	int err, orig_len = skb->len;
1734 
1735 	/* An skb can only point to one uarg. This edge case happens when
1736 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1737 	 */
1738 	if (orig_uarg && uarg != orig_uarg)
1739 		return -EEXIST;
1740 
1741 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1742 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1743 		struct sock *save_sk = skb->sk;
1744 
1745 		/* Streams do not free skb on error. Reset to prev state. */
1746 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1747 		skb->sk = sk;
1748 		___pskb_trim(skb, orig_len);
1749 		skb->sk = save_sk;
1750 		return err;
1751 	}
1752 
1753 	skb_zcopy_set(skb, uarg, NULL);
1754 	return skb->len - orig_len;
1755 }
1756 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1757 
1758 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1759 {
1760 	int i;
1761 
1762 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1763 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1764 		skb_frag_ref(skb, i);
1765 }
1766 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1767 
1768 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1769 			      gfp_t gfp_mask)
1770 {
1771 	if (skb_zcopy(orig)) {
1772 		if (skb_zcopy(nskb)) {
1773 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1774 			if (!gfp_mask) {
1775 				WARN_ON_ONCE(1);
1776 				return -ENOMEM;
1777 			}
1778 			if (skb_uarg(nskb) == skb_uarg(orig))
1779 				return 0;
1780 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1781 				return -EIO;
1782 		}
1783 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1784 	}
1785 	return 0;
1786 }
1787 
1788 /**
1789  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1790  *	@skb: the skb to modify
1791  *	@gfp_mask: allocation priority
1792  *
1793  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1794  *	It will copy all frags into kernel and drop the reference
1795  *	to userspace pages.
1796  *
1797  *	If this function is called from an interrupt gfp_mask() must be
1798  *	%GFP_ATOMIC.
1799  *
1800  *	Returns 0 on success or a negative error code on failure
1801  *	to allocate kernel memory to copy to.
1802  */
1803 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1804 {
1805 	int num_frags = skb_shinfo(skb)->nr_frags;
1806 	struct page *page, *head = NULL;
1807 	int i, order, psize, new_frags;
1808 	u32 d_off;
1809 
1810 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1811 		return -EINVAL;
1812 
1813 	if (!num_frags)
1814 		goto release;
1815 
1816 	/* We might have to allocate high order pages, so compute what minimum
1817 	 * page order is needed.
1818 	 */
1819 	order = 0;
1820 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1821 		order++;
1822 	psize = (PAGE_SIZE << order);
1823 
1824 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1825 	for (i = 0; i < new_frags; i++) {
1826 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1827 		if (!page) {
1828 			while (head) {
1829 				struct page *next = (struct page *)page_private(head);
1830 				put_page(head);
1831 				head = next;
1832 			}
1833 			return -ENOMEM;
1834 		}
1835 		set_page_private(page, (unsigned long)head);
1836 		head = page;
1837 	}
1838 
1839 	page = head;
1840 	d_off = 0;
1841 	for (i = 0; i < num_frags; i++) {
1842 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1843 		u32 p_off, p_len, copied;
1844 		struct page *p;
1845 		u8 *vaddr;
1846 
1847 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1848 				      p, p_off, p_len, copied) {
1849 			u32 copy, done = 0;
1850 			vaddr = kmap_atomic(p);
1851 
1852 			while (done < p_len) {
1853 				if (d_off == psize) {
1854 					d_off = 0;
1855 					page = (struct page *)page_private(page);
1856 				}
1857 				copy = min_t(u32, psize - d_off, p_len - done);
1858 				memcpy(page_address(page) + d_off,
1859 				       vaddr + p_off + done, copy);
1860 				done += copy;
1861 				d_off += copy;
1862 			}
1863 			kunmap_atomic(vaddr);
1864 		}
1865 	}
1866 
1867 	/* skb frags release userspace buffers */
1868 	for (i = 0; i < num_frags; i++)
1869 		skb_frag_unref(skb, i);
1870 
1871 	/* skb frags point to kernel buffers */
1872 	for (i = 0; i < new_frags - 1; i++) {
1873 		__skb_fill_page_desc(skb, i, head, 0, psize);
1874 		head = (struct page *)page_private(head);
1875 	}
1876 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1877 	skb_shinfo(skb)->nr_frags = new_frags;
1878 
1879 release:
1880 	skb_zcopy_clear(skb, false);
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1884 
1885 /**
1886  *	skb_clone	-	duplicate an sk_buff
1887  *	@skb: buffer to clone
1888  *	@gfp_mask: allocation priority
1889  *
1890  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1891  *	copies share the same packet data but not structure. The new
1892  *	buffer has a reference count of 1. If the allocation fails the
1893  *	function returns %NULL otherwise the new buffer is returned.
1894  *
1895  *	If this function is called from an interrupt gfp_mask() must be
1896  *	%GFP_ATOMIC.
1897  */
1898 
1899 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1900 {
1901 	struct sk_buff_fclones *fclones = container_of(skb,
1902 						       struct sk_buff_fclones,
1903 						       skb1);
1904 	struct sk_buff *n;
1905 
1906 	if (skb_orphan_frags(skb, gfp_mask))
1907 		return NULL;
1908 
1909 	if (skb->fclone == SKB_FCLONE_ORIG &&
1910 	    refcount_read(&fclones->fclone_ref) == 1) {
1911 		n = &fclones->skb2;
1912 		refcount_set(&fclones->fclone_ref, 2);
1913 		n->fclone = SKB_FCLONE_CLONE;
1914 	} else {
1915 		if (skb_pfmemalloc(skb))
1916 			gfp_mask |= __GFP_MEMALLOC;
1917 
1918 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1919 		if (!n)
1920 			return NULL;
1921 
1922 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1923 	}
1924 
1925 	return __skb_clone(n, skb);
1926 }
1927 EXPORT_SYMBOL(skb_clone);
1928 
1929 void skb_headers_offset_update(struct sk_buff *skb, int off)
1930 {
1931 	/* Only adjust this if it actually is csum_start rather than csum */
1932 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1933 		skb->csum_start += off;
1934 	/* {transport,network,mac}_header and tail are relative to skb->head */
1935 	skb->transport_header += off;
1936 	skb->network_header   += off;
1937 	if (skb_mac_header_was_set(skb))
1938 		skb->mac_header += off;
1939 	skb->inner_transport_header += off;
1940 	skb->inner_network_header += off;
1941 	skb->inner_mac_header += off;
1942 }
1943 EXPORT_SYMBOL(skb_headers_offset_update);
1944 
1945 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1946 {
1947 	__copy_skb_header(new, old);
1948 
1949 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1950 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1951 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1952 }
1953 EXPORT_SYMBOL(skb_copy_header);
1954 
1955 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1956 {
1957 	if (skb_pfmemalloc(skb))
1958 		return SKB_ALLOC_RX;
1959 	return 0;
1960 }
1961 
1962 /**
1963  *	skb_copy	-	create private copy of an sk_buff
1964  *	@skb: buffer to copy
1965  *	@gfp_mask: allocation priority
1966  *
1967  *	Make a copy of both an &sk_buff and its data. This is used when the
1968  *	caller wishes to modify the data and needs a private copy of the
1969  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1970  *	on success. The returned buffer has a reference count of 1.
1971  *
1972  *	As by-product this function converts non-linear &sk_buff to linear
1973  *	one, so that &sk_buff becomes completely private and caller is allowed
1974  *	to modify all the data of returned buffer. This means that this
1975  *	function is not recommended for use in circumstances when only
1976  *	header is going to be modified. Use pskb_copy() instead.
1977  */
1978 
1979 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1980 {
1981 	int headerlen = skb_headroom(skb);
1982 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1983 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1984 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1985 
1986 	if (!n)
1987 		return NULL;
1988 
1989 	/* Set the data pointer */
1990 	skb_reserve(n, headerlen);
1991 	/* Set the tail pointer and length */
1992 	skb_put(n, skb->len);
1993 
1994 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1995 
1996 	skb_copy_header(n, skb);
1997 	return n;
1998 }
1999 EXPORT_SYMBOL(skb_copy);
2000 
2001 /**
2002  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2003  *	@skb: buffer to copy
2004  *	@headroom: headroom of new skb
2005  *	@gfp_mask: allocation priority
2006  *	@fclone: if true allocate the copy of the skb from the fclone
2007  *	cache instead of the head cache; it is recommended to set this
2008  *	to true for the cases where the copy will likely be cloned
2009  *
2010  *	Make a copy of both an &sk_buff and part of its data, located
2011  *	in header. Fragmented data remain shared. This is used when
2012  *	the caller wishes to modify only header of &sk_buff and needs
2013  *	private copy of the header to alter. Returns %NULL on failure
2014  *	or the pointer to the buffer on success.
2015  *	The returned buffer has a reference count of 1.
2016  */
2017 
2018 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2019 				   gfp_t gfp_mask, bool fclone)
2020 {
2021 	unsigned int size = skb_headlen(skb) + headroom;
2022 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2023 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2024 
2025 	if (!n)
2026 		goto out;
2027 
2028 	/* Set the data pointer */
2029 	skb_reserve(n, headroom);
2030 	/* Set the tail pointer and length */
2031 	skb_put(n, skb_headlen(skb));
2032 	/* Copy the bytes */
2033 	skb_copy_from_linear_data(skb, n->data, n->len);
2034 
2035 	n->truesize += skb->data_len;
2036 	n->data_len  = skb->data_len;
2037 	n->len	     = skb->len;
2038 
2039 	if (skb_shinfo(skb)->nr_frags) {
2040 		int i;
2041 
2042 		if (skb_orphan_frags(skb, gfp_mask) ||
2043 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2044 			kfree_skb(n);
2045 			n = NULL;
2046 			goto out;
2047 		}
2048 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2050 			skb_frag_ref(skb, i);
2051 		}
2052 		skb_shinfo(n)->nr_frags = i;
2053 	}
2054 
2055 	if (skb_has_frag_list(skb)) {
2056 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2057 		skb_clone_fraglist(n);
2058 	}
2059 
2060 	skb_copy_header(n, skb);
2061 out:
2062 	return n;
2063 }
2064 EXPORT_SYMBOL(__pskb_copy_fclone);
2065 
2066 /**
2067  *	pskb_expand_head - reallocate header of &sk_buff
2068  *	@skb: buffer to reallocate
2069  *	@nhead: room to add at head
2070  *	@ntail: room to add at tail
2071  *	@gfp_mask: allocation priority
2072  *
2073  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2074  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2075  *	reference count of 1. Returns zero in the case of success or error,
2076  *	if expansion failed. In the last case, &sk_buff is not changed.
2077  *
2078  *	All the pointers pointing into skb header may change and must be
2079  *	reloaded after call to this function.
2080  */
2081 
2082 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2083 		     gfp_t gfp_mask)
2084 {
2085 	unsigned int osize = skb_end_offset(skb);
2086 	unsigned int size = osize + nhead + ntail;
2087 	long off;
2088 	u8 *data;
2089 	int i;
2090 
2091 	BUG_ON(nhead < 0);
2092 
2093 	BUG_ON(skb_shared(skb));
2094 
2095 	skb_zcopy_downgrade_managed(skb);
2096 
2097 	if (skb_pfmemalloc(skb))
2098 		gfp_mask |= __GFP_MEMALLOC;
2099 
2100 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2101 	if (!data)
2102 		goto nodata;
2103 	size = SKB_WITH_OVERHEAD(size);
2104 
2105 	/* Copy only real data... and, alas, header. This should be
2106 	 * optimized for the cases when header is void.
2107 	 */
2108 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2109 
2110 	memcpy((struct skb_shared_info *)(data + size),
2111 	       skb_shinfo(skb),
2112 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2113 
2114 	/*
2115 	 * if shinfo is shared we must drop the old head gracefully, but if it
2116 	 * is not we can just drop the old head and let the existing refcount
2117 	 * be since all we did is relocate the values
2118 	 */
2119 	if (skb_cloned(skb)) {
2120 		if (skb_orphan_frags(skb, gfp_mask))
2121 			goto nofrags;
2122 		if (skb_zcopy(skb))
2123 			refcount_inc(&skb_uarg(skb)->refcnt);
2124 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2125 			skb_frag_ref(skb, i);
2126 
2127 		if (skb_has_frag_list(skb))
2128 			skb_clone_fraglist(skb);
2129 
2130 		skb_release_data(skb, SKB_CONSUMED, false);
2131 	} else {
2132 		skb_free_head(skb, false);
2133 	}
2134 	off = (data + nhead) - skb->head;
2135 
2136 	skb->head     = data;
2137 	skb->head_frag = 0;
2138 	skb->data    += off;
2139 
2140 	skb_set_end_offset(skb, size);
2141 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2142 	off           = nhead;
2143 #endif
2144 	skb->tail	      += off;
2145 	skb_headers_offset_update(skb, nhead);
2146 	skb->cloned   = 0;
2147 	skb->hdr_len  = 0;
2148 	skb->nohdr    = 0;
2149 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2150 
2151 	skb_metadata_clear(skb);
2152 
2153 	/* It is not generally safe to change skb->truesize.
2154 	 * For the moment, we really care of rx path, or
2155 	 * when skb is orphaned (not attached to a socket).
2156 	 */
2157 	if (!skb->sk || skb->destructor == sock_edemux)
2158 		skb->truesize += size - osize;
2159 
2160 	return 0;
2161 
2162 nofrags:
2163 	skb_kfree_head(data, size);
2164 nodata:
2165 	return -ENOMEM;
2166 }
2167 EXPORT_SYMBOL(pskb_expand_head);
2168 
2169 /* Make private copy of skb with writable head and some headroom */
2170 
2171 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2172 {
2173 	struct sk_buff *skb2;
2174 	int delta = headroom - skb_headroom(skb);
2175 
2176 	if (delta <= 0)
2177 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2178 	else {
2179 		skb2 = skb_clone(skb, GFP_ATOMIC);
2180 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2181 					     GFP_ATOMIC)) {
2182 			kfree_skb(skb2);
2183 			skb2 = NULL;
2184 		}
2185 	}
2186 	return skb2;
2187 }
2188 EXPORT_SYMBOL(skb_realloc_headroom);
2189 
2190 /* Note: We plan to rework this in linux-6.4 */
2191 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2192 {
2193 	unsigned int saved_end_offset, saved_truesize;
2194 	struct skb_shared_info *shinfo;
2195 	int res;
2196 
2197 	saved_end_offset = skb_end_offset(skb);
2198 	saved_truesize = skb->truesize;
2199 
2200 	res = pskb_expand_head(skb, 0, 0, pri);
2201 	if (res)
2202 		return res;
2203 
2204 	skb->truesize = saved_truesize;
2205 
2206 	if (likely(skb_end_offset(skb) == saved_end_offset))
2207 		return 0;
2208 
2209 	/* We can not change skb->end if the original or new value
2210 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2211 	 */
2212 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2213 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2214 		/* We think this path should not be taken.
2215 		 * Add a temporary trace to warn us just in case.
2216 		 */
2217 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2218 			    saved_end_offset, skb_end_offset(skb));
2219 		WARN_ON_ONCE(1);
2220 		return 0;
2221 	}
2222 
2223 	shinfo = skb_shinfo(skb);
2224 
2225 	/* We are about to change back skb->end,
2226 	 * we need to move skb_shinfo() to its new location.
2227 	 */
2228 	memmove(skb->head + saved_end_offset,
2229 		shinfo,
2230 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2231 
2232 	skb_set_end_offset(skb, saved_end_offset);
2233 
2234 	return 0;
2235 }
2236 
2237 /**
2238  *	skb_expand_head - reallocate header of &sk_buff
2239  *	@skb: buffer to reallocate
2240  *	@headroom: needed headroom
2241  *
2242  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2243  *	if possible; copies skb->sk to new skb as needed
2244  *	and frees original skb in case of failures.
2245  *
2246  *	It expect increased headroom and generates warning otherwise.
2247  */
2248 
2249 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2250 {
2251 	int delta = headroom - skb_headroom(skb);
2252 	int osize = skb_end_offset(skb);
2253 	struct sock *sk = skb->sk;
2254 
2255 	if (WARN_ONCE(delta <= 0,
2256 		      "%s is expecting an increase in the headroom", __func__))
2257 		return skb;
2258 
2259 	delta = SKB_DATA_ALIGN(delta);
2260 	/* pskb_expand_head() might crash, if skb is shared. */
2261 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2262 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2263 
2264 		if (unlikely(!nskb))
2265 			goto fail;
2266 
2267 		if (sk)
2268 			skb_set_owner_w(nskb, sk);
2269 		consume_skb(skb);
2270 		skb = nskb;
2271 	}
2272 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2273 		goto fail;
2274 
2275 	if (sk && is_skb_wmem(skb)) {
2276 		delta = skb_end_offset(skb) - osize;
2277 		refcount_add(delta, &sk->sk_wmem_alloc);
2278 		skb->truesize += delta;
2279 	}
2280 	return skb;
2281 
2282 fail:
2283 	kfree_skb(skb);
2284 	return NULL;
2285 }
2286 EXPORT_SYMBOL(skb_expand_head);
2287 
2288 /**
2289  *	skb_copy_expand	-	copy and expand sk_buff
2290  *	@skb: buffer to copy
2291  *	@newheadroom: new free bytes at head
2292  *	@newtailroom: new free bytes at tail
2293  *	@gfp_mask: allocation priority
2294  *
2295  *	Make a copy of both an &sk_buff and its data and while doing so
2296  *	allocate additional space.
2297  *
2298  *	This is used when the caller wishes to modify the data and needs a
2299  *	private copy of the data to alter as well as more space for new fields.
2300  *	Returns %NULL on failure or the pointer to the buffer
2301  *	on success. The returned buffer has a reference count of 1.
2302  *
2303  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2304  *	is called from an interrupt.
2305  */
2306 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2307 				int newheadroom, int newtailroom,
2308 				gfp_t gfp_mask)
2309 {
2310 	/*
2311 	 *	Allocate the copy buffer
2312 	 */
2313 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2314 					gfp_mask, skb_alloc_rx_flag(skb),
2315 					NUMA_NO_NODE);
2316 	int oldheadroom = skb_headroom(skb);
2317 	int head_copy_len, head_copy_off;
2318 
2319 	if (!n)
2320 		return NULL;
2321 
2322 	skb_reserve(n, newheadroom);
2323 
2324 	/* Set the tail pointer and length */
2325 	skb_put(n, skb->len);
2326 
2327 	head_copy_len = oldheadroom;
2328 	head_copy_off = 0;
2329 	if (newheadroom <= head_copy_len)
2330 		head_copy_len = newheadroom;
2331 	else
2332 		head_copy_off = newheadroom - head_copy_len;
2333 
2334 	/* Copy the linear header and data. */
2335 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2336 			     skb->len + head_copy_len));
2337 
2338 	skb_copy_header(n, skb);
2339 
2340 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2341 
2342 	return n;
2343 }
2344 EXPORT_SYMBOL(skb_copy_expand);
2345 
2346 /**
2347  *	__skb_pad		-	zero pad the tail of an skb
2348  *	@skb: buffer to pad
2349  *	@pad: space to pad
2350  *	@free_on_error: free buffer on error
2351  *
2352  *	Ensure that a buffer is followed by a padding area that is zero
2353  *	filled. Used by network drivers which may DMA or transfer data
2354  *	beyond the buffer end onto the wire.
2355  *
2356  *	May return error in out of memory cases. The skb is freed on error
2357  *	if @free_on_error is true.
2358  */
2359 
2360 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2361 {
2362 	int err;
2363 	int ntail;
2364 
2365 	/* If the skbuff is non linear tailroom is always zero.. */
2366 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2367 		memset(skb->data+skb->len, 0, pad);
2368 		return 0;
2369 	}
2370 
2371 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2372 	if (likely(skb_cloned(skb) || ntail > 0)) {
2373 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2374 		if (unlikely(err))
2375 			goto free_skb;
2376 	}
2377 
2378 	/* FIXME: The use of this function with non-linear skb's really needs
2379 	 * to be audited.
2380 	 */
2381 	err = skb_linearize(skb);
2382 	if (unlikely(err))
2383 		goto free_skb;
2384 
2385 	memset(skb->data + skb->len, 0, pad);
2386 	return 0;
2387 
2388 free_skb:
2389 	if (free_on_error)
2390 		kfree_skb(skb);
2391 	return err;
2392 }
2393 EXPORT_SYMBOL(__skb_pad);
2394 
2395 /**
2396  *	pskb_put - add data to the tail of a potentially fragmented buffer
2397  *	@skb: start of the buffer to use
2398  *	@tail: tail fragment of the buffer to use
2399  *	@len: amount of data to add
2400  *
2401  *	This function extends the used data area of the potentially
2402  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2403  *	@skb itself. If this would exceed the total buffer size the kernel
2404  *	will panic. A pointer to the first byte of the extra data is
2405  *	returned.
2406  */
2407 
2408 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2409 {
2410 	if (tail != skb) {
2411 		skb->data_len += len;
2412 		skb->len += len;
2413 	}
2414 	return skb_put(tail, len);
2415 }
2416 EXPORT_SYMBOL_GPL(pskb_put);
2417 
2418 /**
2419  *	skb_put - add data to a buffer
2420  *	@skb: buffer to use
2421  *	@len: amount of data to add
2422  *
2423  *	This function extends the used data area of the buffer. If this would
2424  *	exceed the total buffer size the kernel will panic. A pointer to the
2425  *	first byte of the extra data is returned.
2426  */
2427 void *skb_put(struct sk_buff *skb, unsigned int len)
2428 {
2429 	void *tmp = skb_tail_pointer(skb);
2430 	SKB_LINEAR_ASSERT(skb);
2431 	skb->tail += len;
2432 	skb->len  += len;
2433 	if (unlikely(skb->tail > skb->end))
2434 		skb_over_panic(skb, len, __builtin_return_address(0));
2435 	return tmp;
2436 }
2437 EXPORT_SYMBOL(skb_put);
2438 
2439 /**
2440  *	skb_push - add data to the start of a buffer
2441  *	@skb: buffer to use
2442  *	@len: amount of data to add
2443  *
2444  *	This function extends the used data area of the buffer at the buffer
2445  *	start. If this would exceed the total buffer headroom the kernel will
2446  *	panic. A pointer to the first byte of the extra data is returned.
2447  */
2448 void *skb_push(struct sk_buff *skb, unsigned int len)
2449 {
2450 	skb->data -= len;
2451 	skb->len  += len;
2452 	if (unlikely(skb->data < skb->head))
2453 		skb_under_panic(skb, len, __builtin_return_address(0));
2454 	return skb->data;
2455 }
2456 EXPORT_SYMBOL(skb_push);
2457 
2458 /**
2459  *	skb_pull - remove data from the start of a buffer
2460  *	@skb: buffer to use
2461  *	@len: amount of data to remove
2462  *
2463  *	This function removes data from the start of a buffer, returning
2464  *	the memory to the headroom. A pointer to the next data in the buffer
2465  *	is returned. Once the data has been pulled future pushes will overwrite
2466  *	the old data.
2467  */
2468 void *skb_pull(struct sk_buff *skb, unsigned int len)
2469 {
2470 	return skb_pull_inline(skb, len);
2471 }
2472 EXPORT_SYMBOL(skb_pull);
2473 
2474 /**
2475  *	skb_pull_data - remove data from the start of a buffer returning its
2476  *	original position.
2477  *	@skb: buffer to use
2478  *	@len: amount of data to remove
2479  *
2480  *	This function removes data from the start of a buffer, returning
2481  *	the memory to the headroom. A pointer to the original data in the buffer
2482  *	is returned after checking if there is enough data to pull. Once the
2483  *	data has been pulled future pushes will overwrite the old data.
2484  */
2485 void *skb_pull_data(struct sk_buff *skb, size_t len)
2486 {
2487 	void *data = skb->data;
2488 
2489 	if (skb->len < len)
2490 		return NULL;
2491 
2492 	skb_pull(skb, len);
2493 
2494 	return data;
2495 }
2496 EXPORT_SYMBOL(skb_pull_data);
2497 
2498 /**
2499  *	skb_trim - remove end from a buffer
2500  *	@skb: buffer to alter
2501  *	@len: new length
2502  *
2503  *	Cut the length of a buffer down by removing data from the tail. If
2504  *	the buffer is already under the length specified it is not modified.
2505  *	The skb must be linear.
2506  */
2507 void skb_trim(struct sk_buff *skb, unsigned int len)
2508 {
2509 	if (skb->len > len)
2510 		__skb_trim(skb, len);
2511 }
2512 EXPORT_SYMBOL(skb_trim);
2513 
2514 /* Trims skb to length len. It can change skb pointers.
2515  */
2516 
2517 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2518 {
2519 	struct sk_buff **fragp;
2520 	struct sk_buff *frag;
2521 	int offset = skb_headlen(skb);
2522 	int nfrags = skb_shinfo(skb)->nr_frags;
2523 	int i;
2524 	int err;
2525 
2526 	if (skb_cloned(skb) &&
2527 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2528 		return err;
2529 
2530 	i = 0;
2531 	if (offset >= len)
2532 		goto drop_pages;
2533 
2534 	for (; i < nfrags; i++) {
2535 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2536 
2537 		if (end < len) {
2538 			offset = end;
2539 			continue;
2540 		}
2541 
2542 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2543 
2544 drop_pages:
2545 		skb_shinfo(skb)->nr_frags = i;
2546 
2547 		for (; i < nfrags; i++)
2548 			skb_frag_unref(skb, i);
2549 
2550 		if (skb_has_frag_list(skb))
2551 			skb_drop_fraglist(skb);
2552 		goto done;
2553 	}
2554 
2555 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2556 	     fragp = &frag->next) {
2557 		int end = offset + frag->len;
2558 
2559 		if (skb_shared(frag)) {
2560 			struct sk_buff *nfrag;
2561 
2562 			nfrag = skb_clone(frag, GFP_ATOMIC);
2563 			if (unlikely(!nfrag))
2564 				return -ENOMEM;
2565 
2566 			nfrag->next = frag->next;
2567 			consume_skb(frag);
2568 			frag = nfrag;
2569 			*fragp = frag;
2570 		}
2571 
2572 		if (end < len) {
2573 			offset = end;
2574 			continue;
2575 		}
2576 
2577 		if (end > len &&
2578 		    unlikely((err = pskb_trim(frag, len - offset))))
2579 			return err;
2580 
2581 		if (frag->next)
2582 			skb_drop_list(&frag->next);
2583 		break;
2584 	}
2585 
2586 done:
2587 	if (len > skb_headlen(skb)) {
2588 		skb->data_len -= skb->len - len;
2589 		skb->len       = len;
2590 	} else {
2591 		skb->len       = len;
2592 		skb->data_len  = 0;
2593 		skb_set_tail_pointer(skb, len);
2594 	}
2595 
2596 	if (!skb->sk || skb->destructor == sock_edemux)
2597 		skb_condense(skb);
2598 	return 0;
2599 }
2600 EXPORT_SYMBOL(___pskb_trim);
2601 
2602 /* Note : use pskb_trim_rcsum() instead of calling this directly
2603  */
2604 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2605 {
2606 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2607 		int delta = skb->len - len;
2608 
2609 		skb->csum = csum_block_sub(skb->csum,
2610 					   skb_checksum(skb, len, delta, 0),
2611 					   len);
2612 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2613 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2614 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2615 
2616 		if (offset + sizeof(__sum16) > hdlen)
2617 			return -EINVAL;
2618 	}
2619 	return __pskb_trim(skb, len);
2620 }
2621 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2622 
2623 /**
2624  *	__pskb_pull_tail - advance tail of skb header
2625  *	@skb: buffer to reallocate
2626  *	@delta: number of bytes to advance tail
2627  *
2628  *	The function makes a sense only on a fragmented &sk_buff,
2629  *	it expands header moving its tail forward and copying necessary
2630  *	data from fragmented part.
2631  *
2632  *	&sk_buff MUST have reference count of 1.
2633  *
2634  *	Returns %NULL (and &sk_buff does not change) if pull failed
2635  *	or value of new tail of skb in the case of success.
2636  *
2637  *	All the pointers pointing into skb header may change and must be
2638  *	reloaded after call to this function.
2639  */
2640 
2641 /* Moves tail of skb head forward, copying data from fragmented part,
2642  * when it is necessary.
2643  * 1. It may fail due to malloc failure.
2644  * 2. It may change skb pointers.
2645  *
2646  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2647  */
2648 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2649 {
2650 	/* If skb has not enough free space at tail, get new one
2651 	 * plus 128 bytes for future expansions. If we have enough
2652 	 * room at tail, reallocate without expansion only if skb is cloned.
2653 	 */
2654 	int i, k, eat = (skb->tail + delta) - skb->end;
2655 
2656 	if (eat > 0 || skb_cloned(skb)) {
2657 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2658 				     GFP_ATOMIC))
2659 			return NULL;
2660 	}
2661 
2662 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2663 			     skb_tail_pointer(skb), delta));
2664 
2665 	/* Optimization: no fragments, no reasons to preestimate
2666 	 * size of pulled pages. Superb.
2667 	 */
2668 	if (!skb_has_frag_list(skb))
2669 		goto pull_pages;
2670 
2671 	/* Estimate size of pulled pages. */
2672 	eat = delta;
2673 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2674 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2675 
2676 		if (size >= eat)
2677 			goto pull_pages;
2678 		eat -= size;
2679 	}
2680 
2681 	/* If we need update frag list, we are in troubles.
2682 	 * Certainly, it is possible to add an offset to skb data,
2683 	 * but taking into account that pulling is expected to
2684 	 * be very rare operation, it is worth to fight against
2685 	 * further bloating skb head and crucify ourselves here instead.
2686 	 * Pure masohism, indeed. 8)8)
2687 	 */
2688 	if (eat) {
2689 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2690 		struct sk_buff *clone = NULL;
2691 		struct sk_buff *insp = NULL;
2692 
2693 		do {
2694 			if (list->len <= eat) {
2695 				/* Eaten as whole. */
2696 				eat -= list->len;
2697 				list = list->next;
2698 				insp = list;
2699 			} else {
2700 				/* Eaten partially. */
2701 				if (skb_is_gso(skb) && !list->head_frag &&
2702 				    skb_headlen(list))
2703 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2704 
2705 				if (skb_shared(list)) {
2706 					/* Sucks! We need to fork list. :-( */
2707 					clone = skb_clone(list, GFP_ATOMIC);
2708 					if (!clone)
2709 						return NULL;
2710 					insp = list->next;
2711 					list = clone;
2712 				} else {
2713 					/* This may be pulled without
2714 					 * problems. */
2715 					insp = list;
2716 				}
2717 				if (!pskb_pull(list, eat)) {
2718 					kfree_skb(clone);
2719 					return NULL;
2720 				}
2721 				break;
2722 			}
2723 		} while (eat);
2724 
2725 		/* Free pulled out fragments. */
2726 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2727 			skb_shinfo(skb)->frag_list = list->next;
2728 			consume_skb(list);
2729 		}
2730 		/* And insert new clone at head. */
2731 		if (clone) {
2732 			clone->next = list;
2733 			skb_shinfo(skb)->frag_list = clone;
2734 		}
2735 	}
2736 	/* Success! Now we may commit changes to skb data. */
2737 
2738 pull_pages:
2739 	eat = delta;
2740 	k = 0;
2741 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2743 
2744 		if (size <= eat) {
2745 			skb_frag_unref(skb, i);
2746 			eat -= size;
2747 		} else {
2748 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2749 
2750 			*frag = skb_shinfo(skb)->frags[i];
2751 			if (eat) {
2752 				skb_frag_off_add(frag, eat);
2753 				skb_frag_size_sub(frag, eat);
2754 				if (!i)
2755 					goto end;
2756 				eat = 0;
2757 			}
2758 			k++;
2759 		}
2760 	}
2761 	skb_shinfo(skb)->nr_frags = k;
2762 
2763 end:
2764 	skb->tail     += delta;
2765 	skb->data_len -= delta;
2766 
2767 	if (!skb->data_len)
2768 		skb_zcopy_clear(skb, false);
2769 
2770 	return skb_tail_pointer(skb);
2771 }
2772 EXPORT_SYMBOL(__pskb_pull_tail);
2773 
2774 /**
2775  *	skb_copy_bits - copy bits from skb to kernel buffer
2776  *	@skb: source skb
2777  *	@offset: offset in source
2778  *	@to: destination buffer
2779  *	@len: number of bytes to copy
2780  *
2781  *	Copy the specified number of bytes from the source skb to the
2782  *	destination buffer.
2783  *
2784  *	CAUTION ! :
2785  *		If its prototype is ever changed,
2786  *		check arch/{*}/net/{*}.S files,
2787  *		since it is called from BPF assembly code.
2788  */
2789 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2790 {
2791 	int start = skb_headlen(skb);
2792 	struct sk_buff *frag_iter;
2793 	int i, copy;
2794 
2795 	if (offset > (int)skb->len - len)
2796 		goto fault;
2797 
2798 	/* Copy header. */
2799 	if ((copy = start - offset) > 0) {
2800 		if (copy > len)
2801 			copy = len;
2802 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2803 		if ((len -= copy) == 0)
2804 			return 0;
2805 		offset += copy;
2806 		to     += copy;
2807 	}
2808 
2809 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2810 		int end;
2811 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2812 
2813 		WARN_ON(start > offset + len);
2814 
2815 		end = start + skb_frag_size(f);
2816 		if ((copy = end - offset) > 0) {
2817 			u32 p_off, p_len, copied;
2818 			struct page *p;
2819 			u8 *vaddr;
2820 
2821 			if (copy > len)
2822 				copy = len;
2823 
2824 			skb_frag_foreach_page(f,
2825 					      skb_frag_off(f) + offset - start,
2826 					      copy, p, p_off, p_len, copied) {
2827 				vaddr = kmap_atomic(p);
2828 				memcpy(to + copied, vaddr + p_off, p_len);
2829 				kunmap_atomic(vaddr);
2830 			}
2831 
2832 			if ((len -= copy) == 0)
2833 				return 0;
2834 			offset += copy;
2835 			to     += copy;
2836 		}
2837 		start = end;
2838 	}
2839 
2840 	skb_walk_frags(skb, frag_iter) {
2841 		int end;
2842 
2843 		WARN_ON(start > offset + len);
2844 
2845 		end = start + frag_iter->len;
2846 		if ((copy = end - offset) > 0) {
2847 			if (copy > len)
2848 				copy = len;
2849 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2850 				goto fault;
2851 			if ((len -= copy) == 0)
2852 				return 0;
2853 			offset += copy;
2854 			to     += copy;
2855 		}
2856 		start = end;
2857 	}
2858 
2859 	if (!len)
2860 		return 0;
2861 
2862 fault:
2863 	return -EFAULT;
2864 }
2865 EXPORT_SYMBOL(skb_copy_bits);
2866 
2867 /*
2868  * Callback from splice_to_pipe(), if we need to release some pages
2869  * at the end of the spd in case we error'ed out in filling the pipe.
2870  */
2871 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2872 {
2873 	put_page(spd->pages[i]);
2874 }
2875 
2876 static struct page *linear_to_page(struct page *page, unsigned int *len,
2877 				   unsigned int *offset,
2878 				   struct sock *sk)
2879 {
2880 	struct page_frag *pfrag = sk_page_frag(sk);
2881 
2882 	if (!sk_page_frag_refill(sk, pfrag))
2883 		return NULL;
2884 
2885 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2886 
2887 	memcpy(page_address(pfrag->page) + pfrag->offset,
2888 	       page_address(page) + *offset, *len);
2889 	*offset = pfrag->offset;
2890 	pfrag->offset += *len;
2891 
2892 	return pfrag->page;
2893 }
2894 
2895 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2896 			     struct page *page,
2897 			     unsigned int offset)
2898 {
2899 	return	spd->nr_pages &&
2900 		spd->pages[spd->nr_pages - 1] == page &&
2901 		(spd->partial[spd->nr_pages - 1].offset +
2902 		 spd->partial[spd->nr_pages - 1].len == offset);
2903 }
2904 
2905 /*
2906  * Fill page/offset/length into spd, if it can hold more pages.
2907  */
2908 static bool spd_fill_page(struct splice_pipe_desc *spd,
2909 			  struct pipe_inode_info *pipe, struct page *page,
2910 			  unsigned int *len, unsigned int offset,
2911 			  bool linear,
2912 			  struct sock *sk)
2913 {
2914 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2915 		return true;
2916 
2917 	if (linear) {
2918 		page = linear_to_page(page, len, &offset, sk);
2919 		if (!page)
2920 			return true;
2921 	}
2922 	if (spd_can_coalesce(spd, page, offset)) {
2923 		spd->partial[spd->nr_pages - 1].len += *len;
2924 		return false;
2925 	}
2926 	get_page(page);
2927 	spd->pages[spd->nr_pages] = page;
2928 	spd->partial[spd->nr_pages].len = *len;
2929 	spd->partial[spd->nr_pages].offset = offset;
2930 	spd->nr_pages++;
2931 
2932 	return false;
2933 }
2934 
2935 static bool __splice_segment(struct page *page, unsigned int poff,
2936 			     unsigned int plen, unsigned int *off,
2937 			     unsigned int *len,
2938 			     struct splice_pipe_desc *spd, bool linear,
2939 			     struct sock *sk,
2940 			     struct pipe_inode_info *pipe)
2941 {
2942 	if (!*len)
2943 		return true;
2944 
2945 	/* skip this segment if already processed */
2946 	if (*off >= plen) {
2947 		*off -= plen;
2948 		return false;
2949 	}
2950 
2951 	/* ignore any bits we already processed */
2952 	poff += *off;
2953 	plen -= *off;
2954 	*off = 0;
2955 
2956 	do {
2957 		unsigned int flen = min(*len, plen);
2958 
2959 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2960 				  linear, sk))
2961 			return true;
2962 		poff += flen;
2963 		plen -= flen;
2964 		*len -= flen;
2965 	} while (*len && plen);
2966 
2967 	return false;
2968 }
2969 
2970 /*
2971  * Map linear and fragment data from the skb to spd. It reports true if the
2972  * pipe is full or if we already spliced the requested length.
2973  */
2974 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2975 			      unsigned int *offset, unsigned int *len,
2976 			      struct splice_pipe_desc *spd, struct sock *sk)
2977 {
2978 	int seg;
2979 	struct sk_buff *iter;
2980 
2981 	/* map the linear part :
2982 	 * If skb->head_frag is set, this 'linear' part is backed by a
2983 	 * fragment, and if the head is not shared with any clones then
2984 	 * we can avoid a copy since we own the head portion of this page.
2985 	 */
2986 	if (__splice_segment(virt_to_page(skb->data),
2987 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2988 			     skb_headlen(skb),
2989 			     offset, len, spd,
2990 			     skb_head_is_locked(skb),
2991 			     sk, pipe))
2992 		return true;
2993 
2994 	/*
2995 	 * then map the fragments
2996 	 */
2997 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2998 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2999 
3000 		if (__splice_segment(skb_frag_page(f),
3001 				     skb_frag_off(f), skb_frag_size(f),
3002 				     offset, len, spd, false, sk, pipe))
3003 			return true;
3004 	}
3005 
3006 	skb_walk_frags(skb, iter) {
3007 		if (*offset >= iter->len) {
3008 			*offset -= iter->len;
3009 			continue;
3010 		}
3011 		/* __skb_splice_bits() only fails if the output has no room
3012 		 * left, so no point in going over the frag_list for the error
3013 		 * case.
3014 		 */
3015 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3016 			return true;
3017 	}
3018 
3019 	return false;
3020 }
3021 
3022 /*
3023  * Map data from the skb to a pipe. Should handle both the linear part,
3024  * the fragments, and the frag list.
3025  */
3026 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3027 		    struct pipe_inode_info *pipe, unsigned int tlen,
3028 		    unsigned int flags)
3029 {
3030 	struct partial_page partial[MAX_SKB_FRAGS];
3031 	struct page *pages[MAX_SKB_FRAGS];
3032 	struct splice_pipe_desc spd = {
3033 		.pages = pages,
3034 		.partial = partial,
3035 		.nr_pages_max = MAX_SKB_FRAGS,
3036 		.ops = &nosteal_pipe_buf_ops,
3037 		.spd_release = sock_spd_release,
3038 	};
3039 	int ret = 0;
3040 
3041 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3042 
3043 	if (spd.nr_pages)
3044 		ret = splice_to_pipe(pipe, &spd);
3045 
3046 	return ret;
3047 }
3048 EXPORT_SYMBOL_GPL(skb_splice_bits);
3049 
3050 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3051 {
3052 	struct socket *sock = sk->sk_socket;
3053 	size_t size = msg_data_left(msg);
3054 
3055 	if (!sock)
3056 		return -EINVAL;
3057 
3058 	if (!sock->ops->sendmsg_locked)
3059 		return sock_no_sendmsg_locked(sk, msg, size);
3060 
3061 	return sock->ops->sendmsg_locked(sk, msg, size);
3062 }
3063 
3064 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3065 {
3066 	struct socket *sock = sk->sk_socket;
3067 
3068 	if (!sock)
3069 		return -EINVAL;
3070 	return sock_sendmsg(sock, msg);
3071 }
3072 
3073 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3074 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3075 			   int len, sendmsg_func sendmsg)
3076 {
3077 	unsigned int orig_len = len;
3078 	struct sk_buff *head = skb;
3079 	unsigned short fragidx;
3080 	int slen, ret;
3081 
3082 do_frag_list:
3083 
3084 	/* Deal with head data */
3085 	while (offset < skb_headlen(skb) && len) {
3086 		struct kvec kv;
3087 		struct msghdr msg;
3088 
3089 		slen = min_t(int, len, skb_headlen(skb) - offset);
3090 		kv.iov_base = skb->data + offset;
3091 		kv.iov_len = slen;
3092 		memset(&msg, 0, sizeof(msg));
3093 		msg.msg_flags = MSG_DONTWAIT;
3094 
3095 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3096 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3097 				      sendmsg_unlocked, sk, &msg);
3098 		if (ret <= 0)
3099 			goto error;
3100 
3101 		offset += ret;
3102 		len -= ret;
3103 	}
3104 
3105 	/* All the data was skb head? */
3106 	if (!len)
3107 		goto out;
3108 
3109 	/* Make offset relative to start of frags */
3110 	offset -= skb_headlen(skb);
3111 
3112 	/* Find where we are in frag list */
3113 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3114 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3115 
3116 		if (offset < skb_frag_size(frag))
3117 			break;
3118 
3119 		offset -= skb_frag_size(frag);
3120 	}
3121 
3122 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3123 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3124 
3125 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3126 
3127 		while (slen) {
3128 			struct bio_vec bvec;
3129 			struct msghdr msg = {
3130 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3131 			};
3132 
3133 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3134 				      skb_frag_off(frag) + offset);
3135 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3136 				      slen);
3137 
3138 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3139 					      sendmsg_unlocked, sk, &msg);
3140 			if (ret <= 0)
3141 				goto error;
3142 
3143 			len -= ret;
3144 			offset += ret;
3145 			slen -= ret;
3146 		}
3147 
3148 		offset = 0;
3149 	}
3150 
3151 	if (len) {
3152 		/* Process any frag lists */
3153 
3154 		if (skb == head) {
3155 			if (skb_has_frag_list(skb)) {
3156 				skb = skb_shinfo(skb)->frag_list;
3157 				goto do_frag_list;
3158 			}
3159 		} else if (skb->next) {
3160 			skb = skb->next;
3161 			goto do_frag_list;
3162 		}
3163 	}
3164 
3165 out:
3166 	return orig_len - len;
3167 
3168 error:
3169 	return orig_len == len ? ret : orig_len - len;
3170 }
3171 
3172 /* Send skb data on a socket. Socket must be locked. */
3173 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3174 			 int len)
3175 {
3176 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3177 }
3178 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3179 
3180 /* Send skb data on a socket. Socket must be unlocked. */
3181 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3182 {
3183 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3184 }
3185 
3186 /**
3187  *	skb_store_bits - store bits from kernel buffer to skb
3188  *	@skb: destination buffer
3189  *	@offset: offset in destination
3190  *	@from: source buffer
3191  *	@len: number of bytes to copy
3192  *
3193  *	Copy the specified number of bytes from the source buffer to the
3194  *	destination skb.  This function handles all the messy bits of
3195  *	traversing fragment lists and such.
3196  */
3197 
3198 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3199 {
3200 	int start = skb_headlen(skb);
3201 	struct sk_buff *frag_iter;
3202 	int i, copy;
3203 
3204 	if (offset > (int)skb->len - len)
3205 		goto fault;
3206 
3207 	if ((copy = start - offset) > 0) {
3208 		if (copy > len)
3209 			copy = len;
3210 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3211 		if ((len -= copy) == 0)
3212 			return 0;
3213 		offset += copy;
3214 		from += copy;
3215 	}
3216 
3217 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3218 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3219 		int end;
3220 
3221 		WARN_ON(start > offset + len);
3222 
3223 		end = start + skb_frag_size(frag);
3224 		if ((copy = end - offset) > 0) {
3225 			u32 p_off, p_len, copied;
3226 			struct page *p;
3227 			u8 *vaddr;
3228 
3229 			if (copy > len)
3230 				copy = len;
3231 
3232 			skb_frag_foreach_page(frag,
3233 					      skb_frag_off(frag) + offset - start,
3234 					      copy, p, p_off, p_len, copied) {
3235 				vaddr = kmap_atomic(p);
3236 				memcpy(vaddr + p_off, from + copied, p_len);
3237 				kunmap_atomic(vaddr);
3238 			}
3239 
3240 			if ((len -= copy) == 0)
3241 				return 0;
3242 			offset += copy;
3243 			from += copy;
3244 		}
3245 		start = end;
3246 	}
3247 
3248 	skb_walk_frags(skb, frag_iter) {
3249 		int end;
3250 
3251 		WARN_ON(start > offset + len);
3252 
3253 		end = start + frag_iter->len;
3254 		if ((copy = end - offset) > 0) {
3255 			if (copy > len)
3256 				copy = len;
3257 			if (skb_store_bits(frag_iter, offset - start,
3258 					   from, copy))
3259 				goto fault;
3260 			if ((len -= copy) == 0)
3261 				return 0;
3262 			offset += copy;
3263 			from += copy;
3264 		}
3265 		start = end;
3266 	}
3267 	if (!len)
3268 		return 0;
3269 
3270 fault:
3271 	return -EFAULT;
3272 }
3273 EXPORT_SYMBOL(skb_store_bits);
3274 
3275 /* Checksum skb data. */
3276 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3277 		      __wsum csum, const struct skb_checksum_ops *ops)
3278 {
3279 	int start = skb_headlen(skb);
3280 	int i, copy = start - offset;
3281 	struct sk_buff *frag_iter;
3282 	int pos = 0;
3283 
3284 	/* Checksum header. */
3285 	if (copy > 0) {
3286 		if (copy > len)
3287 			copy = len;
3288 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3289 				       skb->data + offset, copy, csum);
3290 		if ((len -= copy) == 0)
3291 			return csum;
3292 		offset += copy;
3293 		pos	= copy;
3294 	}
3295 
3296 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3297 		int end;
3298 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3299 
3300 		WARN_ON(start > offset + len);
3301 
3302 		end = start + skb_frag_size(frag);
3303 		if ((copy = end - offset) > 0) {
3304 			u32 p_off, p_len, copied;
3305 			struct page *p;
3306 			__wsum csum2;
3307 			u8 *vaddr;
3308 
3309 			if (copy > len)
3310 				copy = len;
3311 
3312 			skb_frag_foreach_page(frag,
3313 					      skb_frag_off(frag) + offset - start,
3314 					      copy, p, p_off, p_len, copied) {
3315 				vaddr = kmap_atomic(p);
3316 				csum2 = INDIRECT_CALL_1(ops->update,
3317 							csum_partial_ext,
3318 							vaddr + p_off, p_len, 0);
3319 				kunmap_atomic(vaddr);
3320 				csum = INDIRECT_CALL_1(ops->combine,
3321 						       csum_block_add_ext, csum,
3322 						       csum2, pos, p_len);
3323 				pos += p_len;
3324 			}
3325 
3326 			if (!(len -= copy))
3327 				return csum;
3328 			offset += copy;
3329 		}
3330 		start = end;
3331 	}
3332 
3333 	skb_walk_frags(skb, frag_iter) {
3334 		int end;
3335 
3336 		WARN_ON(start > offset + len);
3337 
3338 		end = start + frag_iter->len;
3339 		if ((copy = end - offset) > 0) {
3340 			__wsum csum2;
3341 			if (copy > len)
3342 				copy = len;
3343 			csum2 = __skb_checksum(frag_iter, offset - start,
3344 					       copy, 0, ops);
3345 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3346 					       csum, csum2, pos, copy);
3347 			if ((len -= copy) == 0)
3348 				return csum;
3349 			offset += copy;
3350 			pos    += copy;
3351 		}
3352 		start = end;
3353 	}
3354 	BUG_ON(len);
3355 
3356 	return csum;
3357 }
3358 EXPORT_SYMBOL(__skb_checksum);
3359 
3360 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3361 		    int len, __wsum csum)
3362 {
3363 	const struct skb_checksum_ops ops = {
3364 		.update  = csum_partial_ext,
3365 		.combine = csum_block_add_ext,
3366 	};
3367 
3368 	return __skb_checksum(skb, offset, len, csum, &ops);
3369 }
3370 EXPORT_SYMBOL(skb_checksum);
3371 
3372 /* Both of above in one bottle. */
3373 
3374 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3375 				    u8 *to, int len)
3376 {
3377 	int start = skb_headlen(skb);
3378 	int i, copy = start - offset;
3379 	struct sk_buff *frag_iter;
3380 	int pos = 0;
3381 	__wsum csum = 0;
3382 
3383 	/* Copy header. */
3384 	if (copy > 0) {
3385 		if (copy > len)
3386 			copy = len;
3387 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3388 						 copy);
3389 		if ((len -= copy) == 0)
3390 			return csum;
3391 		offset += copy;
3392 		to     += copy;
3393 		pos	= copy;
3394 	}
3395 
3396 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3397 		int end;
3398 
3399 		WARN_ON(start > offset + len);
3400 
3401 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3402 		if ((copy = end - offset) > 0) {
3403 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3404 			u32 p_off, p_len, copied;
3405 			struct page *p;
3406 			__wsum csum2;
3407 			u8 *vaddr;
3408 
3409 			if (copy > len)
3410 				copy = len;
3411 
3412 			skb_frag_foreach_page(frag,
3413 					      skb_frag_off(frag) + offset - start,
3414 					      copy, p, p_off, p_len, copied) {
3415 				vaddr = kmap_atomic(p);
3416 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3417 								  to + copied,
3418 								  p_len);
3419 				kunmap_atomic(vaddr);
3420 				csum = csum_block_add(csum, csum2, pos);
3421 				pos += p_len;
3422 			}
3423 
3424 			if (!(len -= copy))
3425 				return csum;
3426 			offset += copy;
3427 			to     += copy;
3428 		}
3429 		start = end;
3430 	}
3431 
3432 	skb_walk_frags(skb, frag_iter) {
3433 		__wsum csum2;
3434 		int end;
3435 
3436 		WARN_ON(start > offset + len);
3437 
3438 		end = start + frag_iter->len;
3439 		if ((copy = end - offset) > 0) {
3440 			if (copy > len)
3441 				copy = len;
3442 			csum2 = skb_copy_and_csum_bits(frag_iter,
3443 						       offset - start,
3444 						       to, copy);
3445 			csum = csum_block_add(csum, csum2, pos);
3446 			if ((len -= copy) == 0)
3447 				return csum;
3448 			offset += copy;
3449 			to     += copy;
3450 			pos    += copy;
3451 		}
3452 		start = end;
3453 	}
3454 	BUG_ON(len);
3455 	return csum;
3456 }
3457 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3458 
3459 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3460 {
3461 	__sum16 sum;
3462 
3463 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3464 	/* See comments in __skb_checksum_complete(). */
3465 	if (likely(!sum)) {
3466 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3467 		    !skb->csum_complete_sw)
3468 			netdev_rx_csum_fault(skb->dev, skb);
3469 	}
3470 	if (!skb_shared(skb))
3471 		skb->csum_valid = !sum;
3472 	return sum;
3473 }
3474 EXPORT_SYMBOL(__skb_checksum_complete_head);
3475 
3476 /* This function assumes skb->csum already holds pseudo header's checksum,
3477  * which has been changed from the hardware checksum, for example, by
3478  * __skb_checksum_validate_complete(). And, the original skb->csum must
3479  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3480  *
3481  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3482  * zero. The new checksum is stored back into skb->csum unless the skb is
3483  * shared.
3484  */
3485 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3486 {
3487 	__wsum csum;
3488 	__sum16 sum;
3489 
3490 	csum = skb_checksum(skb, 0, skb->len, 0);
3491 
3492 	sum = csum_fold(csum_add(skb->csum, csum));
3493 	/* This check is inverted, because we already knew the hardware
3494 	 * checksum is invalid before calling this function. So, if the
3495 	 * re-computed checksum is valid instead, then we have a mismatch
3496 	 * between the original skb->csum and skb_checksum(). This means either
3497 	 * the original hardware checksum is incorrect or we screw up skb->csum
3498 	 * when moving skb->data around.
3499 	 */
3500 	if (likely(!sum)) {
3501 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3502 		    !skb->csum_complete_sw)
3503 			netdev_rx_csum_fault(skb->dev, skb);
3504 	}
3505 
3506 	if (!skb_shared(skb)) {
3507 		/* Save full packet checksum */
3508 		skb->csum = csum;
3509 		skb->ip_summed = CHECKSUM_COMPLETE;
3510 		skb->csum_complete_sw = 1;
3511 		skb->csum_valid = !sum;
3512 	}
3513 
3514 	return sum;
3515 }
3516 EXPORT_SYMBOL(__skb_checksum_complete);
3517 
3518 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3519 {
3520 	net_warn_ratelimited(
3521 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3522 		__func__);
3523 	return 0;
3524 }
3525 
3526 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3527 				       int offset, int len)
3528 {
3529 	net_warn_ratelimited(
3530 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3531 		__func__);
3532 	return 0;
3533 }
3534 
3535 static const struct skb_checksum_ops default_crc32c_ops = {
3536 	.update  = warn_crc32c_csum_update,
3537 	.combine = warn_crc32c_csum_combine,
3538 };
3539 
3540 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3541 	&default_crc32c_ops;
3542 EXPORT_SYMBOL(crc32c_csum_stub);
3543 
3544  /**
3545  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3546  *	@from: source buffer
3547  *
3548  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3549  *	into skb_zerocopy().
3550  */
3551 unsigned int
3552 skb_zerocopy_headlen(const struct sk_buff *from)
3553 {
3554 	unsigned int hlen = 0;
3555 
3556 	if (!from->head_frag ||
3557 	    skb_headlen(from) < L1_CACHE_BYTES ||
3558 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3559 		hlen = skb_headlen(from);
3560 		if (!hlen)
3561 			hlen = from->len;
3562 	}
3563 
3564 	if (skb_has_frag_list(from))
3565 		hlen = from->len;
3566 
3567 	return hlen;
3568 }
3569 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3570 
3571 /**
3572  *	skb_zerocopy - Zero copy skb to skb
3573  *	@to: destination buffer
3574  *	@from: source buffer
3575  *	@len: number of bytes to copy from source buffer
3576  *	@hlen: size of linear headroom in destination buffer
3577  *
3578  *	Copies up to `len` bytes from `from` to `to` by creating references
3579  *	to the frags in the source buffer.
3580  *
3581  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3582  *	headroom in the `to` buffer.
3583  *
3584  *	Return value:
3585  *	0: everything is OK
3586  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3587  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3588  */
3589 int
3590 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3591 {
3592 	int i, j = 0;
3593 	int plen = 0; /* length of skb->head fragment */
3594 	int ret;
3595 	struct page *page;
3596 	unsigned int offset;
3597 
3598 	BUG_ON(!from->head_frag && !hlen);
3599 
3600 	/* dont bother with small payloads */
3601 	if (len <= skb_tailroom(to))
3602 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3603 
3604 	if (hlen) {
3605 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3606 		if (unlikely(ret))
3607 			return ret;
3608 		len -= hlen;
3609 	} else {
3610 		plen = min_t(int, skb_headlen(from), len);
3611 		if (plen) {
3612 			page = virt_to_head_page(from->head);
3613 			offset = from->data - (unsigned char *)page_address(page);
3614 			__skb_fill_page_desc(to, 0, page, offset, plen);
3615 			get_page(page);
3616 			j = 1;
3617 			len -= plen;
3618 		}
3619 	}
3620 
3621 	skb_len_add(to, len + plen);
3622 
3623 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3624 		skb_tx_error(from);
3625 		return -ENOMEM;
3626 	}
3627 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3628 
3629 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3630 		int size;
3631 
3632 		if (!len)
3633 			break;
3634 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3635 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3636 					len);
3637 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3638 		len -= size;
3639 		skb_frag_ref(to, j);
3640 		j++;
3641 	}
3642 	skb_shinfo(to)->nr_frags = j;
3643 
3644 	return 0;
3645 }
3646 EXPORT_SYMBOL_GPL(skb_zerocopy);
3647 
3648 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3649 {
3650 	__wsum csum;
3651 	long csstart;
3652 
3653 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3654 		csstart = skb_checksum_start_offset(skb);
3655 	else
3656 		csstart = skb_headlen(skb);
3657 
3658 	BUG_ON(csstart > skb_headlen(skb));
3659 
3660 	skb_copy_from_linear_data(skb, to, csstart);
3661 
3662 	csum = 0;
3663 	if (csstart != skb->len)
3664 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3665 					      skb->len - csstart);
3666 
3667 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3668 		long csstuff = csstart + skb->csum_offset;
3669 
3670 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3671 	}
3672 }
3673 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3674 
3675 /**
3676  *	skb_dequeue - remove from the head of the queue
3677  *	@list: list to dequeue from
3678  *
3679  *	Remove the head of the list. The list lock is taken so the function
3680  *	may be used safely with other locking list functions. The head item is
3681  *	returned or %NULL if the list is empty.
3682  */
3683 
3684 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3685 {
3686 	unsigned long flags;
3687 	struct sk_buff *result;
3688 
3689 	spin_lock_irqsave(&list->lock, flags);
3690 	result = __skb_dequeue(list);
3691 	spin_unlock_irqrestore(&list->lock, flags);
3692 	return result;
3693 }
3694 EXPORT_SYMBOL(skb_dequeue);
3695 
3696 /**
3697  *	skb_dequeue_tail - remove from the tail of the queue
3698  *	@list: list to dequeue from
3699  *
3700  *	Remove the tail of the list. The list lock is taken so the function
3701  *	may be used safely with other locking list functions. The tail item is
3702  *	returned or %NULL if the list is empty.
3703  */
3704 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3705 {
3706 	unsigned long flags;
3707 	struct sk_buff *result;
3708 
3709 	spin_lock_irqsave(&list->lock, flags);
3710 	result = __skb_dequeue_tail(list);
3711 	spin_unlock_irqrestore(&list->lock, flags);
3712 	return result;
3713 }
3714 EXPORT_SYMBOL(skb_dequeue_tail);
3715 
3716 /**
3717  *	skb_queue_purge_reason - empty a list
3718  *	@list: list to empty
3719  *	@reason: drop reason
3720  *
3721  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3722  *	the list and one reference dropped. This function takes the list
3723  *	lock and is atomic with respect to other list locking functions.
3724  */
3725 void skb_queue_purge_reason(struct sk_buff_head *list,
3726 			    enum skb_drop_reason reason)
3727 {
3728 	struct sk_buff_head tmp;
3729 	unsigned long flags;
3730 
3731 	if (skb_queue_empty_lockless(list))
3732 		return;
3733 
3734 	__skb_queue_head_init(&tmp);
3735 
3736 	spin_lock_irqsave(&list->lock, flags);
3737 	skb_queue_splice_init(list, &tmp);
3738 	spin_unlock_irqrestore(&list->lock, flags);
3739 
3740 	__skb_queue_purge_reason(&tmp, reason);
3741 }
3742 EXPORT_SYMBOL(skb_queue_purge_reason);
3743 
3744 /**
3745  *	skb_rbtree_purge - empty a skb rbtree
3746  *	@root: root of the rbtree to empty
3747  *	Return value: the sum of truesizes of all purged skbs.
3748  *
3749  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3750  *	the list and one reference dropped. This function does not take
3751  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3752  *	out-of-order queue is protected by the socket lock).
3753  */
3754 unsigned int skb_rbtree_purge(struct rb_root *root)
3755 {
3756 	struct rb_node *p = rb_first(root);
3757 	unsigned int sum = 0;
3758 
3759 	while (p) {
3760 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3761 
3762 		p = rb_next(p);
3763 		rb_erase(&skb->rbnode, root);
3764 		sum += skb->truesize;
3765 		kfree_skb(skb);
3766 	}
3767 	return sum;
3768 }
3769 
3770 void skb_errqueue_purge(struct sk_buff_head *list)
3771 {
3772 	struct sk_buff *skb, *next;
3773 	struct sk_buff_head kill;
3774 	unsigned long flags;
3775 
3776 	__skb_queue_head_init(&kill);
3777 
3778 	spin_lock_irqsave(&list->lock, flags);
3779 	skb_queue_walk_safe(list, skb, next) {
3780 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3781 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3782 			continue;
3783 		__skb_unlink(skb, list);
3784 		__skb_queue_tail(&kill, skb);
3785 	}
3786 	spin_unlock_irqrestore(&list->lock, flags);
3787 	__skb_queue_purge(&kill);
3788 }
3789 EXPORT_SYMBOL(skb_errqueue_purge);
3790 
3791 /**
3792  *	skb_queue_head - queue a buffer at the list head
3793  *	@list: list to use
3794  *	@newsk: buffer to queue
3795  *
3796  *	Queue a buffer at the start of the list. This function takes the
3797  *	list lock and can be used safely with other locking &sk_buff functions
3798  *	safely.
3799  *
3800  *	A buffer cannot be placed on two lists at the same time.
3801  */
3802 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3803 {
3804 	unsigned long flags;
3805 
3806 	spin_lock_irqsave(&list->lock, flags);
3807 	__skb_queue_head(list, newsk);
3808 	spin_unlock_irqrestore(&list->lock, flags);
3809 }
3810 EXPORT_SYMBOL(skb_queue_head);
3811 
3812 /**
3813  *	skb_queue_tail - queue a buffer at the list tail
3814  *	@list: list to use
3815  *	@newsk: buffer to queue
3816  *
3817  *	Queue a buffer at the tail of the list. This function takes the
3818  *	list lock and can be used safely with other locking &sk_buff functions
3819  *	safely.
3820  *
3821  *	A buffer cannot be placed on two lists at the same time.
3822  */
3823 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3824 {
3825 	unsigned long flags;
3826 
3827 	spin_lock_irqsave(&list->lock, flags);
3828 	__skb_queue_tail(list, newsk);
3829 	spin_unlock_irqrestore(&list->lock, flags);
3830 }
3831 EXPORT_SYMBOL(skb_queue_tail);
3832 
3833 /**
3834  *	skb_unlink	-	remove a buffer from a list
3835  *	@skb: buffer to remove
3836  *	@list: list to use
3837  *
3838  *	Remove a packet from a list. The list locks are taken and this
3839  *	function is atomic with respect to other list locked calls
3840  *
3841  *	You must know what list the SKB is on.
3842  */
3843 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3844 {
3845 	unsigned long flags;
3846 
3847 	spin_lock_irqsave(&list->lock, flags);
3848 	__skb_unlink(skb, list);
3849 	spin_unlock_irqrestore(&list->lock, flags);
3850 }
3851 EXPORT_SYMBOL(skb_unlink);
3852 
3853 /**
3854  *	skb_append	-	append a buffer
3855  *	@old: buffer to insert after
3856  *	@newsk: buffer to insert
3857  *	@list: list to use
3858  *
3859  *	Place a packet after a given packet in a list. The list locks are taken
3860  *	and this function is atomic with respect to other list locked calls.
3861  *	A buffer cannot be placed on two lists at the same time.
3862  */
3863 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3864 {
3865 	unsigned long flags;
3866 
3867 	spin_lock_irqsave(&list->lock, flags);
3868 	__skb_queue_after(list, old, newsk);
3869 	spin_unlock_irqrestore(&list->lock, flags);
3870 }
3871 EXPORT_SYMBOL(skb_append);
3872 
3873 static inline void skb_split_inside_header(struct sk_buff *skb,
3874 					   struct sk_buff* skb1,
3875 					   const u32 len, const int pos)
3876 {
3877 	int i;
3878 
3879 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3880 					 pos - len);
3881 	/* And move data appendix as is. */
3882 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3883 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3884 
3885 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3886 	skb_shinfo(skb)->nr_frags  = 0;
3887 	skb1->data_len		   = skb->data_len;
3888 	skb1->len		   += skb1->data_len;
3889 	skb->data_len		   = 0;
3890 	skb->len		   = len;
3891 	skb_set_tail_pointer(skb, len);
3892 }
3893 
3894 static inline void skb_split_no_header(struct sk_buff *skb,
3895 				       struct sk_buff* skb1,
3896 				       const u32 len, int pos)
3897 {
3898 	int i, k = 0;
3899 	const int nfrags = skb_shinfo(skb)->nr_frags;
3900 
3901 	skb_shinfo(skb)->nr_frags = 0;
3902 	skb1->len		  = skb1->data_len = skb->len - len;
3903 	skb->len		  = len;
3904 	skb->data_len		  = len - pos;
3905 
3906 	for (i = 0; i < nfrags; i++) {
3907 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3908 
3909 		if (pos + size > len) {
3910 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3911 
3912 			if (pos < len) {
3913 				/* Split frag.
3914 				 * We have two variants in this case:
3915 				 * 1. Move all the frag to the second
3916 				 *    part, if it is possible. F.e.
3917 				 *    this approach is mandatory for TUX,
3918 				 *    where splitting is expensive.
3919 				 * 2. Split is accurately. We make this.
3920 				 */
3921 				skb_frag_ref(skb, i);
3922 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3923 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3924 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3925 				skb_shinfo(skb)->nr_frags++;
3926 			}
3927 			k++;
3928 		} else
3929 			skb_shinfo(skb)->nr_frags++;
3930 		pos += size;
3931 	}
3932 	skb_shinfo(skb1)->nr_frags = k;
3933 }
3934 
3935 /**
3936  * skb_split - Split fragmented skb to two parts at length len.
3937  * @skb: the buffer to split
3938  * @skb1: the buffer to receive the second part
3939  * @len: new length for skb
3940  */
3941 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3942 {
3943 	int pos = skb_headlen(skb);
3944 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3945 
3946 	skb_zcopy_downgrade_managed(skb);
3947 
3948 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3949 	skb_zerocopy_clone(skb1, skb, 0);
3950 	if (len < pos)	/* Split line is inside header. */
3951 		skb_split_inside_header(skb, skb1, len, pos);
3952 	else		/* Second chunk has no header, nothing to copy. */
3953 		skb_split_no_header(skb, skb1, len, pos);
3954 }
3955 EXPORT_SYMBOL(skb_split);
3956 
3957 /* Shifting from/to a cloned skb is a no-go.
3958  *
3959  * Caller cannot keep skb_shinfo related pointers past calling here!
3960  */
3961 static int skb_prepare_for_shift(struct sk_buff *skb)
3962 {
3963 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3964 }
3965 
3966 /**
3967  * skb_shift - Shifts paged data partially from skb to another
3968  * @tgt: buffer into which tail data gets added
3969  * @skb: buffer from which the paged data comes from
3970  * @shiftlen: shift up to this many bytes
3971  *
3972  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3973  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3974  * It's up to caller to free skb if everything was shifted.
3975  *
3976  * If @tgt runs out of frags, the whole operation is aborted.
3977  *
3978  * Skb cannot include anything else but paged data while tgt is allowed
3979  * to have non-paged data as well.
3980  *
3981  * TODO: full sized shift could be optimized but that would need
3982  * specialized skb free'er to handle frags without up-to-date nr_frags.
3983  */
3984 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3985 {
3986 	int from, to, merge, todo;
3987 	skb_frag_t *fragfrom, *fragto;
3988 
3989 	BUG_ON(shiftlen > skb->len);
3990 
3991 	if (skb_headlen(skb))
3992 		return 0;
3993 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3994 		return 0;
3995 
3996 	todo = shiftlen;
3997 	from = 0;
3998 	to = skb_shinfo(tgt)->nr_frags;
3999 	fragfrom = &skb_shinfo(skb)->frags[from];
4000 
4001 	/* Actual merge is delayed until the point when we know we can
4002 	 * commit all, so that we don't have to undo partial changes
4003 	 */
4004 	if (!to ||
4005 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4006 			      skb_frag_off(fragfrom))) {
4007 		merge = -1;
4008 	} else {
4009 		merge = to - 1;
4010 
4011 		todo -= skb_frag_size(fragfrom);
4012 		if (todo < 0) {
4013 			if (skb_prepare_for_shift(skb) ||
4014 			    skb_prepare_for_shift(tgt))
4015 				return 0;
4016 
4017 			/* All previous frag pointers might be stale! */
4018 			fragfrom = &skb_shinfo(skb)->frags[from];
4019 			fragto = &skb_shinfo(tgt)->frags[merge];
4020 
4021 			skb_frag_size_add(fragto, shiftlen);
4022 			skb_frag_size_sub(fragfrom, shiftlen);
4023 			skb_frag_off_add(fragfrom, shiftlen);
4024 
4025 			goto onlymerged;
4026 		}
4027 
4028 		from++;
4029 	}
4030 
4031 	/* Skip full, not-fitting skb to avoid expensive operations */
4032 	if ((shiftlen == skb->len) &&
4033 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4034 		return 0;
4035 
4036 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4037 		return 0;
4038 
4039 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4040 		if (to == MAX_SKB_FRAGS)
4041 			return 0;
4042 
4043 		fragfrom = &skb_shinfo(skb)->frags[from];
4044 		fragto = &skb_shinfo(tgt)->frags[to];
4045 
4046 		if (todo >= skb_frag_size(fragfrom)) {
4047 			*fragto = *fragfrom;
4048 			todo -= skb_frag_size(fragfrom);
4049 			from++;
4050 			to++;
4051 
4052 		} else {
4053 			__skb_frag_ref(fragfrom);
4054 			skb_frag_page_copy(fragto, fragfrom);
4055 			skb_frag_off_copy(fragto, fragfrom);
4056 			skb_frag_size_set(fragto, todo);
4057 
4058 			skb_frag_off_add(fragfrom, todo);
4059 			skb_frag_size_sub(fragfrom, todo);
4060 			todo = 0;
4061 
4062 			to++;
4063 			break;
4064 		}
4065 	}
4066 
4067 	/* Ready to "commit" this state change to tgt */
4068 	skb_shinfo(tgt)->nr_frags = to;
4069 
4070 	if (merge >= 0) {
4071 		fragfrom = &skb_shinfo(skb)->frags[0];
4072 		fragto = &skb_shinfo(tgt)->frags[merge];
4073 
4074 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4075 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4076 	}
4077 
4078 	/* Reposition in the original skb */
4079 	to = 0;
4080 	while (from < skb_shinfo(skb)->nr_frags)
4081 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4082 	skb_shinfo(skb)->nr_frags = to;
4083 
4084 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4085 
4086 onlymerged:
4087 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4088 	 * the other hand might need it if it needs to be resent
4089 	 */
4090 	tgt->ip_summed = CHECKSUM_PARTIAL;
4091 	skb->ip_summed = CHECKSUM_PARTIAL;
4092 
4093 	skb_len_add(skb, -shiftlen);
4094 	skb_len_add(tgt, shiftlen);
4095 
4096 	return shiftlen;
4097 }
4098 
4099 /**
4100  * skb_prepare_seq_read - Prepare a sequential read of skb data
4101  * @skb: the buffer to read
4102  * @from: lower offset of data to be read
4103  * @to: upper offset of data to be read
4104  * @st: state variable
4105  *
4106  * Initializes the specified state variable. Must be called before
4107  * invoking skb_seq_read() for the first time.
4108  */
4109 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4110 			  unsigned int to, struct skb_seq_state *st)
4111 {
4112 	st->lower_offset = from;
4113 	st->upper_offset = to;
4114 	st->root_skb = st->cur_skb = skb;
4115 	st->frag_idx = st->stepped_offset = 0;
4116 	st->frag_data = NULL;
4117 	st->frag_off = 0;
4118 }
4119 EXPORT_SYMBOL(skb_prepare_seq_read);
4120 
4121 /**
4122  * skb_seq_read - Sequentially read skb data
4123  * @consumed: number of bytes consumed by the caller so far
4124  * @data: destination pointer for data to be returned
4125  * @st: state variable
4126  *
4127  * Reads a block of skb data at @consumed relative to the
4128  * lower offset specified to skb_prepare_seq_read(). Assigns
4129  * the head of the data block to @data and returns the length
4130  * of the block or 0 if the end of the skb data or the upper
4131  * offset has been reached.
4132  *
4133  * The caller is not required to consume all of the data
4134  * returned, i.e. @consumed is typically set to the number
4135  * of bytes already consumed and the next call to
4136  * skb_seq_read() will return the remaining part of the block.
4137  *
4138  * Note 1: The size of each block of data returned can be arbitrary,
4139  *       this limitation is the cost for zerocopy sequential
4140  *       reads of potentially non linear data.
4141  *
4142  * Note 2: Fragment lists within fragments are not implemented
4143  *       at the moment, state->root_skb could be replaced with
4144  *       a stack for this purpose.
4145  */
4146 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4147 			  struct skb_seq_state *st)
4148 {
4149 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4150 	skb_frag_t *frag;
4151 
4152 	if (unlikely(abs_offset >= st->upper_offset)) {
4153 		if (st->frag_data) {
4154 			kunmap_atomic(st->frag_data);
4155 			st->frag_data = NULL;
4156 		}
4157 		return 0;
4158 	}
4159 
4160 next_skb:
4161 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4162 
4163 	if (abs_offset < block_limit && !st->frag_data) {
4164 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4165 		return block_limit - abs_offset;
4166 	}
4167 
4168 	if (st->frag_idx == 0 && !st->frag_data)
4169 		st->stepped_offset += skb_headlen(st->cur_skb);
4170 
4171 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4172 		unsigned int pg_idx, pg_off, pg_sz;
4173 
4174 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4175 
4176 		pg_idx = 0;
4177 		pg_off = skb_frag_off(frag);
4178 		pg_sz = skb_frag_size(frag);
4179 
4180 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4181 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4182 			pg_off = offset_in_page(pg_off + st->frag_off);
4183 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4184 						    PAGE_SIZE - pg_off);
4185 		}
4186 
4187 		block_limit = pg_sz + st->stepped_offset;
4188 		if (abs_offset < block_limit) {
4189 			if (!st->frag_data)
4190 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4191 
4192 			*data = (u8 *)st->frag_data + pg_off +
4193 				(abs_offset - st->stepped_offset);
4194 
4195 			return block_limit - abs_offset;
4196 		}
4197 
4198 		if (st->frag_data) {
4199 			kunmap_atomic(st->frag_data);
4200 			st->frag_data = NULL;
4201 		}
4202 
4203 		st->stepped_offset += pg_sz;
4204 		st->frag_off += pg_sz;
4205 		if (st->frag_off == skb_frag_size(frag)) {
4206 			st->frag_off = 0;
4207 			st->frag_idx++;
4208 		}
4209 	}
4210 
4211 	if (st->frag_data) {
4212 		kunmap_atomic(st->frag_data);
4213 		st->frag_data = NULL;
4214 	}
4215 
4216 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4217 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4218 		st->frag_idx = 0;
4219 		goto next_skb;
4220 	} else if (st->cur_skb->next) {
4221 		st->cur_skb = st->cur_skb->next;
4222 		st->frag_idx = 0;
4223 		goto next_skb;
4224 	}
4225 
4226 	return 0;
4227 }
4228 EXPORT_SYMBOL(skb_seq_read);
4229 
4230 /**
4231  * skb_abort_seq_read - Abort a sequential read of skb data
4232  * @st: state variable
4233  *
4234  * Must be called if skb_seq_read() was not called until it
4235  * returned 0.
4236  */
4237 void skb_abort_seq_read(struct skb_seq_state *st)
4238 {
4239 	if (st->frag_data)
4240 		kunmap_atomic(st->frag_data);
4241 }
4242 EXPORT_SYMBOL(skb_abort_seq_read);
4243 
4244 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4245 
4246 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4247 					  struct ts_config *conf,
4248 					  struct ts_state *state)
4249 {
4250 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4251 }
4252 
4253 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4254 {
4255 	skb_abort_seq_read(TS_SKB_CB(state));
4256 }
4257 
4258 /**
4259  * skb_find_text - Find a text pattern in skb data
4260  * @skb: the buffer to look in
4261  * @from: search offset
4262  * @to: search limit
4263  * @config: textsearch configuration
4264  *
4265  * Finds a pattern in the skb data according to the specified
4266  * textsearch configuration. Use textsearch_next() to retrieve
4267  * subsequent occurrences of the pattern. Returns the offset
4268  * to the first occurrence or UINT_MAX if no match was found.
4269  */
4270 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4271 			   unsigned int to, struct ts_config *config)
4272 {
4273 	unsigned int patlen = config->ops->get_pattern_len(config);
4274 	struct ts_state state;
4275 	unsigned int ret;
4276 
4277 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4278 
4279 	config->get_next_block = skb_ts_get_next_block;
4280 	config->finish = skb_ts_finish;
4281 
4282 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4283 
4284 	ret = textsearch_find(config, &state);
4285 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4286 }
4287 EXPORT_SYMBOL(skb_find_text);
4288 
4289 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4290 			 int offset, size_t size, size_t max_frags)
4291 {
4292 	int i = skb_shinfo(skb)->nr_frags;
4293 
4294 	if (skb_can_coalesce(skb, i, page, offset)) {
4295 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4296 	} else if (i < max_frags) {
4297 		skb_zcopy_downgrade_managed(skb);
4298 		get_page(page);
4299 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4300 	} else {
4301 		return -EMSGSIZE;
4302 	}
4303 
4304 	return 0;
4305 }
4306 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4307 
4308 /**
4309  *	skb_pull_rcsum - pull skb and update receive checksum
4310  *	@skb: buffer to update
4311  *	@len: length of data pulled
4312  *
4313  *	This function performs an skb_pull on the packet and updates
4314  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4315  *	receive path processing instead of skb_pull unless you know
4316  *	that the checksum difference is zero (e.g., a valid IP header)
4317  *	or you are setting ip_summed to CHECKSUM_NONE.
4318  */
4319 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4320 {
4321 	unsigned char *data = skb->data;
4322 
4323 	BUG_ON(len > skb->len);
4324 	__skb_pull(skb, len);
4325 	skb_postpull_rcsum(skb, data, len);
4326 	return skb->data;
4327 }
4328 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4329 
4330 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4331 {
4332 	skb_frag_t head_frag;
4333 	struct page *page;
4334 
4335 	page = virt_to_head_page(frag_skb->head);
4336 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4337 				(unsigned char *)page_address(page),
4338 				skb_headlen(frag_skb));
4339 	return head_frag;
4340 }
4341 
4342 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4343 				 netdev_features_t features,
4344 				 unsigned int offset)
4345 {
4346 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4347 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4348 	unsigned int delta_truesize = 0;
4349 	unsigned int delta_len = 0;
4350 	struct sk_buff *tail = NULL;
4351 	struct sk_buff *nskb, *tmp;
4352 	int len_diff, err;
4353 
4354 	skb_push(skb, -skb_network_offset(skb) + offset);
4355 
4356 	/* Ensure the head is writeable before touching the shared info */
4357 	err = skb_unclone(skb, GFP_ATOMIC);
4358 	if (err)
4359 		goto err_linearize;
4360 
4361 	skb_shinfo(skb)->frag_list = NULL;
4362 
4363 	while (list_skb) {
4364 		nskb = list_skb;
4365 		list_skb = list_skb->next;
4366 
4367 		err = 0;
4368 		delta_truesize += nskb->truesize;
4369 		if (skb_shared(nskb)) {
4370 			tmp = skb_clone(nskb, GFP_ATOMIC);
4371 			if (tmp) {
4372 				consume_skb(nskb);
4373 				nskb = tmp;
4374 				err = skb_unclone(nskb, GFP_ATOMIC);
4375 			} else {
4376 				err = -ENOMEM;
4377 			}
4378 		}
4379 
4380 		if (!tail)
4381 			skb->next = nskb;
4382 		else
4383 			tail->next = nskb;
4384 
4385 		if (unlikely(err)) {
4386 			nskb->next = list_skb;
4387 			goto err_linearize;
4388 		}
4389 
4390 		tail = nskb;
4391 
4392 		delta_len += nskb->len;
4393 
4394 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4395 
4396 		skb_release_head_state(nskb);
4397 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4398 		__copy_skb_header(nskb, skb);
4399 
4400 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4401 		nskb->transport_header += len_diff;
4402 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4403 						 nskb->data - tnl_hlen,
4404 						 offset + tnl_hlen);
4405 
4406 		if (skb_needs_linearize(nskb, features) &&
4407 		    __skb_linearize(nskb))
4408 			goto err_linearize;
4409 	}
4410 
4411 	skb->truesize = skb->truesize - delta_truesize;
4412 	skb->data_len = skb->data_len - delta_len;
4413 	skb->len = skb->len - delta_len;
4414 
4415 	skb_gso_reset(skb);
4416 
4417 	skb->prev = tail;
4418 
4419 	if (skb_needs_linearize(skb, features) &&
4420 	    __skb_linearize(skb))
4421 		goto err_linearize;
4422 
4423 	skb_get(skb);
4424 
4425 	return skb;
4426 
4427 err_linearize:
4428 	kfree_skb_list(skb->next);
4429 	skb->next = NULL;
4430 	return ERR_PTR(-ENOMEM);
4431 }
4432 EXPORT_SYMBOL_GPL(skb_segment_list);
4433 
4434 /**
4435  *	skb_segment - Perform protocol segmentation on skb.
4436  *	@head_skb: buffer to segment
4437  *	@features: features for the output path (see dev->features)
4438  *
4439  *	This function performs segmentation on the given skb.  It returns
4440  *	a pointer to the first in a list of new skbs for the segments.
4441  *	In case of error it returns ERR_PTR(err).
4442  */
4443 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4444 			    netdev_features_t features)
4445 {
4446 	struct sk_buff *segs = NULL;
4447 	struct sk_buff *tail = NULL;
4448 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4449 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4450 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4451 	unsigned int offset = doffset;
4452 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4453 	unsigned int partial_segs = 0;
4454 	unsigned int headroom;
4455 	unsigned int len = head_skb->len;
4456 	struct sk_buff *frag_skb;
4457 	skb_frag_t *frag;
4458 	__be16 proto;
4459 	bool csum, sg;
4460 	int err = -ENOMEM;
4461 	int i = 0;
4462 	int nfrags, pos;
4463 
4464 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4465 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4466 		struct sk_buff *check_skb;
4467 
4468 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4469 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4470 				/* gso_size is untrusted, and we have a frag_list with
4471 				 * a linear non head_frag item.
4472 				 *
4473 				 * If head_skb's headlen does not fit requested gso_size,
4474 				 * it means that the frag_list members do NOT terminate
4475 				 * on exact gso_size boundaries. Hence we cannot perform
4476 				 * skb_frag_t page sharing. Therefore we must fallback to
4477 				 * copying the frag_list skbs; we do so by disabling SG.
4478 				 */
4479 				features &= ~NETIF_F_SG;
4480 				break;
4481 			}
4482 		}
4483 	}
4484 
4485 	__skb_push(head_skb, doffset);
4486 	proto = skb_network_protocol(head_skb, NULL);
4487 	if (unlikely(!proto))
4488 		return ERR_PTR(-EINVAL);
4489 
4490 	sg = !!(features & NETIF_F_SG);
4491 	csum = !!can_checksum_protocol(features, proto);
4492 
4493 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4494 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4495 			struct sk_buff *iter;
4496 			unsigned int frag_len;
4497 
4498 			if (!list_skb ||
4499 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4500 				goto normal;
4501 
4502 			/* If we get here then all the required
4503 			 * GSO features except frag_list are supported.
4504 			 * Try to split the SKB to multiple GSO SKBs
4505 			 * with no frag_list.
4506 			 * Currently we can do that only when the buffers don't
4507 			 * have a linear part and all the buffers except
4508 			 * the last are of the same length.
4509 			 */
4510 			frag_len = list_skb->len;
4511 			skb_walk_frags(head_skb, iter) {
4512 				if (frag_len != iter->len && iter->next)
4513 					goto normal;
4514 				if (skb_headlen(iter) && !iter->head_frag)
4515 					goto normal;
4516 
4517 				len -= iter->len;
4518 			}
4519 
4520 			if (len != frag_len)
4521 				goto normal;
4522 		}
4523 
4524 		/* GSO partial only requires that we trim off any excess that
4525 		 * doesn't fit into an MSS sized block, so take care of that
4526 		 * now.
4527 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4528 		 */
4529 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4530 		if (partial_segs > 1)
4531 			mss *= partial_segs;
4532 		else
4533 			partial_segs = 0;
4534 	}
4535 
4536 normal:
4537 	headroom = skb_headroom(head_skb);
4538 	pos = skb_headlen(head_skb);
4539 
4540 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4541 		return ERR_PTR(-ENOMEM);
4542 
4543 	nfrags = skb_shinfo(head_skb)->nr_frags;
4544 	frag = skb_shinfo(head_skb)->frags;
4545 	frag_skb = head_skb;
4546 
4547 	do {
4548 		struct sk_buff *nskb;
4549 		skb_frag_t *nskb_frag;
4550 		int hsize;
4551 		int size;
4552 
4553 		if (unlikely(mss == GSO_BY_FRAGS)) {
4554 			len = list_skb->len;
4555 		} else {
4556 			len = head_skb->len - offset;
4557 			if (len > mss)
4558 				len = mss;
4559 		}
4560 
4561 		hsize = skb_headlen(head_skb) - offset;
4562 
4563 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4564 		    (skb_headlen(list_skb) == len || sg)) {
4565 			BUG_ON(skb_headlen(list_skb) > len);
4566 
4567 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4568 			if (unlikely(!nskb))
4569 				goto err;
4570 
4571 			i = 0;
4572 			nfrags = skb_shinfo(list_skb)->nr_frags;
4573 			frag = skb_shinfo(list_skb)->frags;
4574 			frag_skb = list_skb;
4575 			pos += skb_headlen(list_skb);
4576 
4577 			while (pos < offset + len) {
4578 				BUG_ON(i >= nfrags);
4579 
4580 				size = skb_frag_size(frag);
4581 				if (pos + size > offset + len)
4582 					break;
4583 
4584 				i++;
4585 				pos += size;
4586 				frag++;
4587 			}
4588 
4589 			list_skb = list_skb->next;
4590 
4591 			if (unlikely(pskb_trim(nskb, len))) {
4592 				kfree_skb(nskb);
4593 				goto err;
4594 			}
4595 
4596 			hsize = skb_end_offset(nskb);
4597 			if (skb_cow_head(nskb, doffset + headroom)) {
4598 				kfree_skb(nskb);
4599 				goto err;
4600 			}
4601 
4602 			nskb->truesize += skb_end_offset(nskb) - hsize;
4603 			skb_release_head_state(nskb);
4604 			__skb_push(nskb, doffset);
4605 		} else {
4606 			if (hsize < 0)
4607 				hsize = 0;
4608 			if (hsize > len || !sg)
4609 				hsize = len;
4610 
4611 			nskb = __alloc_skb(hsize + doffset + headroom,
4612 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4613 					   NUMA_NO_NODE);
4614 
4615 			if (unlikely(!nskb))
4616 				goto err;
4617 
4618 			skb_reserve(nskb, headroom);
4619 			__skb_put(nskb, doffset);
4620 		}
4621 
4622 		if (segs)
4623 			tail->next = nskb;
4624 		else
4625 			segs = nskb;
4626 		tail = nskb;
4627 
4628 		__copy_skb_header(nskb, head_skb);
4629 
4630 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4631 		skb_reset_mac_len(nskb);
4632 
4633 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4634 						 nskb->data - tnl_hlen,
4635 						 doffset + tnl_hlen);
4636 
4637 		if (nskb->len == len + doffset)
4638 			goto perform_csum_check;
4639 
4640 		if (!sg) {
4641 			if (!csum) {
4642 				if (!nskb->remcsum_offload)
4643 					nskb->ip_summed = CHECKSUM_NONE;
4644 				SKB_GSO_CB(nskb)->csum =
4645 					skb_copy_and_csum_bits(head_skb, offset,
4646 							       skb_put(nskb,
4647 								       len),
4648 							       len);
4649 				SKB_GSO_CB(nskb)->csum_start =
4650 					skb_headroom(nskb) + doffset;
4651 			} else {
4652 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4653 					goto err;
4654 			}
4655 			continue;
4656 		}
4657 
4658 		nskb_frag = skb_shinfo(nskb)->frags;
4659 
4660 		skb_copy_from_linear_data_offset(head_skb, offset,
4661 						 skb_put(nskb, hsize), hsize);
4662 
4663 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4664 					   SKBFL_SHARED_FRAG;
4665 
4666 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4667 			goto err;
4668 
4669 		while (pos < offset + len) {
4670 			if (i >= nfrags) {
4671 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4672 				    skb_zerocopy_clone(nskb, list_skb,
4673 						       GFP_ATOMIC))
4674 					goto err;
4675 
4676 				i = 0;
4677 				nfrags = skb_shinfo(list_skb)->nr_frags;
4678 				frag = skb_shinfo(list_skb)->frags;
4679 				frag_skb = list_skb;
4680 				if (!skb_headlen(list_skb)) {
4681 					BUG_ON(!nfrags);
4682 				} else {
4683 					BUG_ON(!list_skb->head_frag);
4684 
4685 					/* to make room for head_frag. */
4686 					i--;
4687 					frag--;
4688 				}
4689 
4690 				list_skb = list_skb->next;
4691 			}
4692 
4693 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4694 				     MAX_SKB_FRAGS)) {
4695 				net_warn_ratelimited(
4696 					"skb_segment: too many frags: %u %u\n",
4697 					pos, mss);
4698 				err = -EINVAL;
4699 				goto err;
4700 			}
4701 
4702 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4703 			__skb_frag_ref(nskb_frag);
4704 			size = skb_frag_size(nskb_frag);
4705 
4706 			if (pos < offset) {
4707 				skb_frag_off_add(nskb_frag, offset - pos);
4708 				skb_frag_size_sub(nskb_frag, offset - pos);
4709 			}
4710 
4711 			skb_shinfo(nskb)->nr_frags++;
4712 
4713 			if (pos + size <= offset + len) {
4714 				i++;
4715 				frag++;
4716 				pos += size;
4717 			} else {
4718 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4719 				goto skip_fraglist;
4720 			}
4721 
4722 			nskb_frag++;
4723 		}
4724 
4725 skip_fraglist:
4726 		nskb->data_len = len - hsize;
4727 		nskb->len += nskb->data_len;
4728 		nskb->truesize += nskb->data_len;
4729 
4730 perform_csum_check:
4731 		if (!csum) {
4732 			if (skb_has_shared_frag(nskb) &&
4733 			    __skb_linearize(nskb))
4734 				goto err;
4735 
4736 			if (!nskb->remcsum_offload)
4737 				nskb->ip_summed = CHECKSUM_NONE;
4738 			SKB_GSO_CB(nskb)->csum =
4739 				skb_checksum(nskb, doffset,
4740 					     nskb->len - doffset, 0);
4741 			SKB_GSO_CB(nskb)->csum_start =
4742 				skb_headroom(nskb) + doffset;
4743 		}
4744 	} while ((offset += len) < head_skb->len);
4745 
4746 	/* Some callers want to get the end of the list.
4747 	 * Put it in segs->prev to avoid walking the list.
4748 	 * (see validate_xmit_skb_list() for example)
4749 	 */
4750 	segs->prev = tail;
4751 
4752 	if (partial_segs) {
4753 		struct sk_buff *iter;
4754 		int type = skb_shinfo(head_skb)->gso_type;
4755 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4756 
4757 		/* Update type to add partial and then remove dodgy if set */
4758 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4759 		type &= ~SKB_GSO_DODGY;
4760 
4761 		/* Update GSO info and prepare to start updating headers on
4762 		 * our way back down the stack of protocols.
4763 		 */
4764 		for (iter = segs; iter; iter = iter->next) {
4765 			skb_shinfo(iter)->gso_size = gso_size;
4766 			skb_shinfo(iter)->gso_segs = partial_segs;
4767 			skb_shinfo(iter)->gso_type = type;
4768 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4769 		}
4770 
4771 		if (tail->len - doffset <= gso_size)
4772 			skb_shinfo(tail)->gso_size = 0;
4773 		else if (tail != segs)
4774 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4775 	}
4776 
4777 	/* Following permits correct backpressure, for protocols
4778 	 * using skb_set_owner_w().
4779 	 * Idea is to tranfert ownership from head_skb to last segment.
4780 	 */
4781 	if (head_skb->destructor == sock_wfree) {
4782 		swap(tail->truesize, head_skb->truesize);
4783 		swap(tail->destructor, head_skb->destructor);
4784 		swap(tail->sk, head_skb->sk);
4785 	}
4786 	return segs;
4787 
4788 err:
4789 	kfree_skb_list(segs);
4790 	return ERR_PTR(err);
4791 }
4792 EXPORT_SYMBOL_GPL(skb_segment);
4793 
4794 #ifdef CONFIG_SKB_EXTENSIONS
4795 #define SKB_EXT_ALIGN_VALUE	8
4796 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4797 
4798 static const u8 skb_ext_type_len[] = {
4799 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4800 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4801 #endif
4802 #ifdef CONFIG_XFRM
4803 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4804 #endif
4805 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4806 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4807 #endif
4808 #if IS_ENABLED(CONFIG_MPTCP)
4809 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4810 #endif
4811 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4812 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4813 #endif
4814 };
4815 
4816 static __always_inline unsigned int skb_ext_total_length(void)
4817 {
4818 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4819 	int i;
4820 
4821 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4822 		l += skb_ext_type_len[i];
4823 
4824 	return l;
4825 }
4826 
4827 static void skb_extensions_init(void)
4828 {
4829 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4830 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4831 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4832 #endif
4833 
4834 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4835 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4836 					     0,
4837 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4838 					     NULL);
4839 }
4840 #else
4841 static void skb_extensions_init(void) {}
4842 #endif
4843 
4844 /* The SKB kmem_cache slab is critical for network performance.  Never
4845  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4846  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4847  */
4848 #ifndef CONFIG_SLUB_TINY
4849 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4850 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4851 #define FLAG_SKB_NO_MERGE	0
4852 #endif
4853 
4854 void __init skb_init(void)
4855 {
4856 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4857 					      sizeof(struct sk_buff),
4858 					      0,
4859 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4860 						FLAG_SKB_NO_MERGE,
4861 					      offsetof(struct sk_buff, cb),
4862 					      sizeof_field(struct sk_buff, cb),
4863 					      NULL);
4864 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4865 						sizeof(struct sk_buff_fclones),
4866 						0,
4867 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4868 						NULL);
4869 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4870 	 * struct skb_shared_info is located at the end of skb->head,
4871 	 * and should not be copied to/from user.
4872 	 */
4873 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4874 						SKB_SMALL_HEAD_CACHE_SIZE,
4875 						0,
4876 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4877 						0,
4878 						SKB_SMALL_HEAD_HEADROOM,
4879 						NULL);
4880 	skb_extensions_init();
4881 }
4882 
4883 static int
4884 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4885 	       unsigned int recursion_level)
4886 {
4887 	int start = skb_headlen(skb);
4888 	int i, copy = start - offset;
4889 	struct sk_buff *frag_iter;
4890 	int elt = 0;
4891 
4892 	if (unlikely(recursion_level >= 24))
4893 		return -EMSGSIZE;
4894 
4895 	if (copy > 0) {
4896 		if (copy > len)
4897 			copy = len;
4898 		sg_set_buf(sg, skb->data + offset, copy);
4899 		elt++;
4900 		if ((len -= copy) == 0)
4901 			return elt;
4902 		offset += copy;
4903 	}
4904 
4905 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4906 		int end;
4907 
4908 		WARN_ON(start > offset + len);
4909 
4910 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4911 		if ((copy = end - offset) > 0) {
4912 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4913 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4914 				return -EMSGSIZE;
4915 
4916 			if (copy > len)
4917 				copy = len;
4918 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4919 				    skb_frag_off(frag) + offset - start);
4920 			elt++;
4921 			if (!(len -= copy))
4922 				return elt;
4923 			offset += copy;
4924 		}
4925 		start = end;
4926 	}
4927 
4928 	skb_walk_frags(skb, frag_iter) {
4929 		int end, ret;
4930 
4931 		WARN_ON(start > offset + len);
4932 
4933 		end = start + frag_iter->len;
4934 		if ((copy = end - offset) > 0) {
4935 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4936 				return -EMSGSIZE;
4937 
4938 			if (copy > len)
4939 				copy = len;
4940 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4941 					      copy, recursion_level + 1);
4942 			if (unlikely(ret < 0))
4943 				return ret;
4944 			elt += ret;
4945 			if ((len -= copy) == 0)
4946 				return elt;
4947 			offset += copy;
4948 		}
4949 		start = end;
4950 	}
4951 	BUG_ON(len);
4952 	return elt;
4953 }
4954 
4955 /**
4956  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4957  *	@skb: Socket buffer containing the buffers to be mapped
4958  *	@sg: The scatter-gather list to map into
4959  *	@offset: The offset into the buffer's contents to start mapping
4960  *	@len: Length of buffer space to be mapped
4961  *
4962  *	Fill the specified scatter-gather list with mappings/pointers into a
4963  *	region of the buffer space attached to a socket buffer. Returns either
4964  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4965  *	could not fit.
4966  */
4967 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4968 {
4969 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4970 
4971 	if (nsg <= 0)
4972 		return nsg;
4973 
4974 	sg_mark_end(&sg[nsg - 1]);
4975 
4976 	return nsg;
4977 }
4978 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4979 
4980 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4981  * sglist without mark the sg which contain last skb data as the end.
4982  * So the caller can mannipulate sg list as will when padding new data after
4983  * the first call without calling sg_unmark_end to expend sg list.
4984  *
4985  * Scenario to use skb_to_sgvec_nomark:
4986  * 1. sg_init_table
4987  * 2. skb_to_sgvec_nomark(payload1)
4988  * 3. skb_to_sgvec_nomark(payload2)
4989  *
4990  * This is equivalent to:
4991  * 1. sg_init_table
4992  * 2. skb_to_sgvec(payload1)
4993  * 3. sg_unmark_end
4994  * 4. skb_to_sgvec(payload2)
4995  *
4996  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4997  * is more preferable.
4998  */
4999 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5000 			int offset, int len)
5001 {
5002 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5003 }
5004 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5005 
5006 
5007 
5008 /**
5009  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5010  *	@skb: The socket buffer to check.
5011  *	@tailbits: Amount of trailing space to be added
5012  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5013  *
5014  *	Make sure that the data buffers attached to a socket buffer are
5015  *	writable. If they are not, private copies are made of the data buffers
5016  *	and the socket buffer is set to use these instead.
5017  *
5018  *	If @tailbits is given, make sure that there is space to write @tailbits
5019  *	bytes of data beyond current end of socket buffer.  @trailer will be
5020  *	set to point to the skb in which this space begins.
5021  *
5022  *	The number of scatterlist elements required to completely map the
5023  *	COW'd and extended socket buffer will be returned.
5024  */
5025 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5026 {
5027 	int copyflag;
5028 	int elt;
5029 	struct sk_buff *skb1, **skb_p;
5030 
5031 	/* If skb is cloned or its head is paged, reallocate
5032 	 * head pulling out all the pages (pages are considered not writable
5033 	 * at the moment even if they are anonymous).
5034 	 */
5035 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5036 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5037 		return -ENOMEM;
5038 
5039 	/* Easy case. Most of packets will go this way. */
5040 	if (!skb_has_frag_list(skb)) {
5041 		/* A little of trouble, not enough of space for trailer.
5042 		 * This should not happen, when stack is tuned to generate
5043 		 * good frames. OK, on miss we reallocate and reserve even more
5044 		 * space, 128 bytes is fair. */
5045 
5046 		if (skb_tailroom(skb) < tailbits &&
5047 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5048 			return -ENOMEM;
5049 
5050 		/* Voila! */
5051 		*trailer = skb;
5052 		return 1;
5053 	}
5054 
5055 	/* Misery. We are in troubles, going to mincer fragments... */
5056 
5057 	elt = 1;
5058 	skb_p = &skb_shinfo(skb)->frag_list;
5059 	copyflag = 0;
5060 
5061 	while ((skb1 = *skb_p) != NULL) {
5062 		int ntail = 0;
5063 
5064 		/* The fragment is partially pulled by someone,
5065 		 * this can happen on input. Copy it and everything
5066 		 * after it. */
5067 
5068 		if (skb_shared(skb1))
5069 			copyflag = 1;
5070 
5071 		/* If the skb is the last, worry about trailer. */
5072 
5073 		if (skb1->next == NULL && tailbits) {
5074 			if (skb_shinfo(skb1)->nr_frags ||
5075 			    skb_has_frag_list(skb1) ||
5076 			    skb_tailroom(skb1) < tailbits)
5077 				ntail = tailbits + 128;
5078 		}
5079 
5080 		if (copyflag ||
5081 		    skb_cloned(skb1) ||
5082 		    ntail ||
5083 		    skb_shinfo(skb1)->nr_frags ||
5084 		    skb_has_frag_list(skb1)) {
5085 			struct sk_buff *skb2;
5086 
5087 			/* Fuck, we are miserable poor guys... */
5088 			if (ntail == 0)
5089 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5090 			else
5091 				skb2 = skb_copy_expand(skb1,
5092 						       skb_headroom(skb1),
5093 						       ntail,
5094 						       GFP_ATOMIC);
5095 			if (unlikely(skb2 == NULL))
5096 				return -ENOMEM;
5097 
5098 			if (skb1->sk)
5099 				skb_set_owner_w(skb2, skb1->sk);
5100 
5101 			/* Looking around. Are we still alive?
5102 			 * OK, link new skb, drop old one */
5103 
5104 			skb2->next = skb1->next;
5105 			*skb_p = skb2;
5106 			kfree_skb(skb1);
5107 			skb1 = skb2;
5108 		}
5109 		elt++;
5110 		*trailer = skb1;
5111 		skb_p = &skb1->next;
5112 	}
5113 
5114 	return elt;
5115 }
5116 EXPORT_SYMBOL_GPL(skb_cow_data);
5117 
5118 static void sock_rmem_free(struct sk_buff *skb)
5119 {
5120 	struct sock *sk = skb->sk;
5121 
5122 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5123 }
5124 
5125 static void skb_set_err_queue(struct sk_buff *skb)
5126 {
5127 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5128 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5129 	 */
5130 	skb->pkt_type = PACKET_OUTGOING;
5131 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5132 }
5133 
5134 /*
5135  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5136  */
5137 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5138 {
5139 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5140 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5141 		return -ENOMEM;
5142 
5143 	skb_orphan(skb);
5144 	skb->sk = sk;
5145 	skb->destructor = sock_rmem_free;
5146 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5147 	skb_set_err_queue(skb);
5148 
5149 	/* before exiting rcu section, make sure dst is refcounted */
5150 	skb_dst_force(skb);
5151 
5152 	skb_queue_tail(&sk->sk_error_queue, skb);
5153 	if (!sock_flag(sk, SOCK_DEAD))
5154 		sk_error_report(sk);
5155 	return 0;
5156 }
5157 EXPORT_SYMBOL(sock_queue_err_skb);
5158 
5159 static bool is_icmp_err_skb(const struct sk_buff *skb)
5160 {
5161 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5162 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5163 }
5164 
5165 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5166 {
5167 	struct sk_buff_head *q = &sk->sk_error_queue;
5168 	struct sk_buff *skb, *skb_next = NULL;
5169 	bool icmp_next = false;
5170 	unsigned long flags;
5171 
5172 	if (skb_queue_empty_lockless(q))
5173 		return NULL;
5174 
5175 	spin_lock_irqsave(&q->lock, flags);
5176 	skb = __skb_dequeue(q);
5177 	if (skb && (skb_next = skb_peek(q))) {
5178 		icmp_next = is_icmp_err_skb(skb_next);
5179 		if (icmp_next)
5180 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5181 	}
5182 	spin_unlock_irqrestore(&q->lock, flags);
5183 
5184 	if (is_icmp_err_skb(skb) && !icmp_next)
5185 		sk->sk_err = 0;
5186 
5187 	if (skb_next)
5188 		sk_error_report(sk);
5189 
5190 	return skb;
5191 }
5192 EXPORT_SYMBOL(sock_dequeue_err_skb);
5193 
5194 /**
5195  * skb_clone_sk - create clone of skb, and take reference to socket
5196  * @skb: the skb to clone
5197  *
5198  * This function creates a clone of a buffer that holds a reference on
5199  * sk_refcnt.  Buffers created via this function are meant to be
5200  * returned using sock_queue_err_skb, or free via kfree_skb.
5201  *
5202  * When passing buffers allocated with this function to sock_queue_err_skb
5203  * it is necessary to wrap the call with sock_hold/sock_put in order to
5204  * prevent the socket from being released prior to being enqueued on
5205  * the sk_error_queue.
5206  */
5207 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5208 {
5209 	struct sock *sk = skb->sk;
5210 	struct sk_buff *clone;
5211 
5212 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5213 		return NULL;
5214 
5215 	clone = skb_clone(skb, GFP_ATOMIC);
5216 	if (!clone) {
5217 		sock_put(sk);
5218 		return NULL;
5219 	}
5220 
5221 	clone->sk = sk;
5222 	clone->destructor = sock_efree;
5223 
5224 	return clone;
5225 }
5226 EXPORT_SYMBOL(skb_clone_sk);
5227 
5228 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5229 					struct sock *sk,
5230 					int tstype,
5231 					bool opt_stats)
5232 {
5233 	struct sock_exterr_skb *serr;
5234 	int err;
5235 
5236 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5237 
5238 	serr = SKB_EXT_ERR(skb);
5239 	memset(serr, 0, sizeof(*serr));
5240 	serr->ee.ee_errno = ENOMSG;
5241 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5242 	serr->ee.ee_info = tstype;
5243 	serr->opt_stats = opt_stats;
5244 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5245 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5246 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5247 		if (sk_is_tcp(sk))
5248 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5249 	}
5250 
5251 	err = sock_queue_err_skb(sk, skb);
5252 
5253 	if (err)
5254 		kfree_skb(skb);
5255 }
5256 
5257 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5258 {
5259 	bool ret;
5260 
5261 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5262 		return true;
5263 
5264 	read_lock_bh(&sk->sk_callback_lock);
5265 	ret = sk->sk_socket && sk->sk_socket->file &&
5266 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5267 	read_unlock_bh(&sk->sk_callback_lock);
5268 	return ret;
5269 }
5270 
5271 void skb_complete_tx_timestamp(struct sk_buff *skb,
5272 			       struct skb_shared_hwtstamps *hwtstamps)
5273 {
5274 	struct sock *sk = skb->sk;
5275 
5276 	if (!skb_may_tx_timestamp(sk, false))
5277 		goto err;
5278 
5279 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5280 	 * but only if the socket refcount is not zero.
5281 	 */
5282 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5283 		*skb_hwtstamps(skb) = *hwtstamps;
5284 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5285 		sock_put(sk);
5286 		return;
5287 	}
5288 
5289 err:
5290 	kfree_skb(skb);
5291 }
5292 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5293 
5294 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5295 		     const struct sk_buff *ack_skb,
5296 		     struct skb_shared_hwtstamps *hwtstamps,
5297 		     struct sock *sk, int tstype)
5298 {
5299 	struct sk_buff *skb;
5300 	bool tsonly, opt_stats = false;
5301 	u32 tsflags;
5302 
5303 	if (!sk)
5304 		return;
5305 
5306 	tsflags = READ_ONCE(sk->sk_tsflags);
5307 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5308 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5309 		return;
5310 
5311 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5312 	if (!skb_may_tx_timestamp(sk, tsonly))
5313 		return;
5314 
5315 	if (tsonly) {
5316 #ifdef CONFIG_INET
5317 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5318 		    sk_is_tcp(sk)) {
5319 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5320 							     ack_skb);
5321 			opt_stats = true;
5322 		} else
5323 #endif
5324 			skb = alloc_skb(0, GFP_ATOMIC);
5325 	} else {
5326 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5327 
5328 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5329 			kfree_skb(skb);
5330 			return;
5331 		}
5332 	}
5333 	if (!skb)
5334 		return;
5335 
5336 	if (tsonly) {
5337 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5338 					     SKBTX_ANY_TSTAMP;
5339 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5340 	}
5341 
5342 	if (hwtstamps)
5343 		*skb_hwtstamps(skb) = *hwtstamps;
5344 	else
5345 		__net_timestamp(skb);
5346 
5347 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5348 }
5349 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5350 
5351 void skb_tstamp_tx(struct sk_buff *orig_skb,
5352 		   struct skb_shared_hwtstamps *hwtstamps)
5353 {
5354 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5355 			       SCM_TSTAMP_SND);
5356 }
5357 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5358 
5359 #ifdef CONFIG_WIRELESS
5360 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5361 {
5362 	struct sock *sk = skb->sk;
5363 	struct sock_exterr_skb *serr;
5364 	int err = 1;
5365 
5366 	skb->wifi_acked_valid = 1;
5367 	skb->wifi_acked = acked;
5368 
5369 	serr = SKB_EXT_ERR(skb);
5370 	memset(serr, 0, sizeof(*serr));
5371 	serr->ee.ee_errno = ENOMSG;
5372 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5373 
5374 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5375 	 * but only if the socket refcount is not zero.
5376 	 */
5377 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5378 		err = sock_queue_err_skb(sk, skb);
5379 		sock_put(sk);
5380 	}
5381 	if (err)
5382 		kfree_skb(skb);
5383 }
5384 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5385 #endif /* CONFIG_WIRELESS */
5386 
5387 /**
5388  * skb_partial_csum_set - set up and verify partial csum values for packet
5389  * @skb: the skb to set
5390  * @start: the number of bytes after skb->data to start checksumming.
5391  * @off: the offset from start to place the checksum.
5392  *
5393  * For untrusted partially-checksummed packets, we need to make sure the values
5394  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5395  *
5396  * This function checks and sets those values and skb->ip_summed: if this
5397  * returns false you should drop the packet.
5398  */
5399 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5400 {
5401 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5402 	u32 csum_start = skb_headroom(skb) + (u32)start;
5403 
5404 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5405 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5406 				     start, off, skb_headroom(skb), skb_headlen(skb));
5407 		return false;
5408 	}
5409 	skb->ip_summed = CHECKSUM_PARTIAL;
5410 	skb->csum_start = csum_start;
5411 	skb->csum_offset = off;
5412 	skb->transport_header = csum_start;
5413 	return true;
5414 }
5415 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5416 
5417 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5418 			       unsigned int max)
5419 {
5420 	if (skb_headlen(skb) >= len)
5421 		return 0;
5422 
5423 	/* If we need to pullup then pullup to the max, so we
5424 	 * won't need to do it again.
5425 	 */
5426 	if (max > skb->len)
5427 		max = skb->len;
5428 
5429 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5430 		return -ENOMEM;
5431 
5432 	if (skb_headlen(skb) < len)
5433 		return -EPROTO;
5434 
5435 	return 0;
5436 }
5437 
5438 #define MAX_TCP_HDR_LEN (15 * 4)
5439 
5440 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5441 				      typeof(IPPROTO_IP) proto,
5442 				      unsigned int off)
5443 {
5444 	int err;
5445 
5446 	switch (proto) {
5447 	case IPPROTO_TCP:
5448 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5449 					  off + MAX_TCP_HDR_LEN);
5450 		if (!err && !skb_partial_csum_set(skb, off,
5451 						  offsetof(struct tcphdr,
5452 							   check)))
5453 			err = -EPROTO;
5454 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5455 
5456 	case IPPROTO_UDP:
5457 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5458 					  off + sizeof(struct udphdr));
5459 		if (!err && !skb_partial_csum_set(skb, off,
5460 						  offsetof(struct udphdr,
5461 							   check)))
5462 			err = -EPROTO;
5463 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5464 	}
5465 
5466 	return ERR_PTR(-EPROTO);
5467 }
5468 
5469 /* This value should be large enough to cover a tagged ethernet header plus
5470  * maximally sized IP and TCP or UDP headers.
5471  */
5472 #define MAX_IP_HDR_LEN 128
5473 
5474 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5475 {
5476 	unsigned int off;
5477 	bool fragment;
5478 	__sum16 *csum;
5479 	int err;
5480 
5481 	fragment = false;
5482 
5483 	err = skb_maybe_pull_tail(skb,
5484 				  sizeof(struct iphdr),
5485 				  MAX_IP_HDR_LEN);
5486 	if (err < 0)
5487 		goto out;
5488 
5489 	if (ip_is_fragment(ip_hdr(skb)))
5490 		fragment = true;
5491 
5492 	off = ip_hdrlen(skb);
5493 
5494 	err = -EPROTO;
5495 
5496 	if (fragment)
5497 		goto out;
5498 
5499 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5500 	if (IS_ERR(csum))
5501 		return PTR_ERR(csum);
5502 
5503 	if (recalculate)
5504 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5505 					   ip_hdr(skb)->daddr,
5506 					   skb->len - off,
5507 					   ip_hdr(skb)->protocol, 0);
5508 	err = 0;
5509 
5510 out:
5511 	return err;
5512 }
5513 
5514 /* This value should be large enough to cover a tagged ethernet header plus
5515  * an IPv6 header, all options, and a maximal TCP or UDP header.
5516  */
5517 #define MAX_IPV6_HDR_LEN 256
5518 
5519 #define OPT_HDR(type, skb, off) \
5520 	(type *)(skb_network_header(skb) + (off))
5521 
5522 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5523 {
5524 	int err;
5525 	u8 nexthdr;
5526 	unsigned int off;
5527 	unsigned int len;
5528 	bool fragment;
5529 	bool done;
5530 	__sum16 *csum;
5531 
5532 	fragment = false;
5533 	done = false;
5534 
5535 	off = sizeof(struct ipv6hdr);
5536 
5537 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5538 	if (err < 0)
5539 		goto out;
5540 
5541 	nexthdr = ipv6_hdr(skb)->nexthdr;
5542 
5543 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5544 	while (off <= len && !done) {
5545 		switch (nexthdr) {
5546 		case IPPROTO_DSTOPTS:
5547 		case IPPROTO_HOPOPTS:
5548 		case IPPROTO_ROUTING: {
5549 			struct ipv6_opt_hdr *hp;
5550 
5551 			err = skb_maybe_pull_tail(skb,
5552 						  off +
5553 						  sizeof(struct ipv6_opt_hdr),
5554 						  MAX_IPV6_HDR_LEN);
5555 			if (err < 0)
5556 				goto out;
5557 
5558 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5559 			nexthdr = hp->nexthdr;
5560 			off += ipv6_optlen(hp);
5561 			break;
5562 		}
5563 		case IPPROTO_AH: {
5564 			struct ip_auth_hdr *hp;
5565 
5566 			err = skb_maybe_pull_tail(skb,
5567 						  off +
5568 						  sizeof(struct ip_auth_hdr),
5569 						  MAX_IPV6_HDR_LEN);
5570 			if (err < 0)
5571 				goto out;
5572 
5573 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5574 			nexthdr = hp->nexthdr;
5575 			off += ipv6_authlen(hp);
5576 			break;
5577 		}
5578 		case IPPROTO_FRAGMENT: {
5579 			struct frag_hdr *hp;
5580 
5581 			err = skb_maybe_pull_tail(skb,
5582 						  off +
5583 						  sizeof(struct frag_hdr),
5584 						  MAX_IPV6_HDR_LEN);
5585 			if (err < 0)
5586 				goto out;
5587 
5588 			hp = OPT_HDR(struct frag_hdr, skb, off);
5589 
5590 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5591 				fragment = true;
5592 
5593 			nexthdr = hp->nexthdr;
5594 			off += sizeof(struct frag_hdr);
5595 			break;
5596 		}
5597 		default:
5598 			done = true;
5599 			break;
5600 		}
5601 	}
5602 
5603 	err = -EPROTO;
5604 
5605 	if (!done || fragment)
5606 		goto out;
5607 
5608 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5609 	if (IS_ERR(csum))
5610 		return PTR_ERR(csum);
5611 
5612 	if (recalculate)
5613 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5614 					 &ipv6_hdr(skb)->daddr,
5615 					 skb->len - off, nexthdr, 0);
5616 	err = 0;
5617 
5618 out:
5619 	return err;
5620 }
5621 
5622 /**
5623  * skb_checksum_setup - set up partial checksum offset
5624  * @skb: the skb to set up
5625  * @recalculate: if true the pseudo-header checksum will be recalculated
5626  */
5627 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5628 {
5629 	int err;
5630 
5631 	switch (skb->protocol) {
5632 	case htons(ETH_P_IP):
5633 		err = skb_checksum_setup_ipv4(skb, recalculate);
5634 		break;
5635 
5636 	case htons(ETH_P_IPV6):
5637 		err = skb_checksum_setup_ipv6(skb, recalculate);
5638 		break;
5639 
5640 	default:
5641 		err = -EPROTO;
5642 		break;
5643 	}
5644 
5645 	return err;
5646 }
5647 EXPORT_SYMBOL(skb_checksum_setup);
5648 
5649 /**
5650  * skb_checksum_maybe_trim - maybe trims the given skb
5651  * @skb: the skb to check
5652  * @transport_len: the data length beyond the network header
5653  *
5654  * Checks whether the given skb has data beyond the given transport length.
5655  * If so, returns a cloned skb trimmed to this transport length.
5656  * Otherwise returns the provided skb. Returns NULL in error cases
5657  * (e.g. transport_len exceeds skb length or out-of-memory).
5658  *
5659  * Caller needs to set the skb transport header and free any returned skb if it
5660  * differs from the provided skb.
5661  */
5662 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5663 					       unsigned int transport_len)
5664 {
5665 	struct sk_buff *skb_chk;
5666 	unsigned int len = skb_transport_offset(skb) + transport_len;
5667 	int ret;
5668 
5669 	if (skb->len < len)
5670 		return NULL;
5671 	else if (skb->len == len)
5672 		return skb;
5673 
5674 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5675 	if (!skb_chk)
5676 		return NULL;
5677 
5678 	ret = pskb_trim_rcsum(skb_chk, len);
5679 	if (ret) {
5680 		kfree_skb(skb_chk);
5681 		return NULL;
5682 	}
5683 
5684 	return skb_chk;
5685 }
5686 
5687 /**
5688  * skb_checksum_trimmed - validate checksum of an skb
5689  * @skb: the skb to check
5690  * @transport_len: the data length beyond the network header
5691  * @skb_chkf: checksum function to use
5692  *
5693  * Applies the given checksum function skb_chkf to the provided skb.
5694  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5695  *
5696  * If the skb has data beyond the given transport length, then a
5697  * trimmed & cloned skb is checked and returned.
5698  *
5699  * Caller needs to set the skb transport header and free any returned skb if it
5700  * differs from the provided skb.
5701  */
5702 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5703 				     unsigned int transport_len,
5704 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5705 {
5706 	struct sk_buff *skb_chk;
5707 	unsigned int offset = skb_transport_offset(skb);
5708 	__sum16 ret;
5709 
5710 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5711 	if (!skb_chk)
5712 		goto err;
5713 
5714 	if (!pskb_may_pull(skb_chk, offset))
5715 		goto err;
5716 
5717 	skb_pull_rcsum(skb_chk, offset);
5718 	ret = skb_chkf(skb_chk);
5719 	skb_push_rcsum(skb_chk, offset);
5720 
5721 	if (ret)
5722 		goto err;
5723 
5724 	return skb_chk;
5725 
5726 err:
5727 	if (skb_chk && skb_chk != skb)
5728 		kfree_skb(skb_chk);
5729 
5730 	return NULL;
5731 
5732 }
5733 EXPORT_SYMBOL(skb_checksum_trimmed);
5734 
5735 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5736 {
5737 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5738 			     skb->dev->name);
5739 }
5740 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5741 
5742 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5743 {
5744 	if (head_stolen) {
5745 		skb_release_head_state(skb);
5746 		kmem_cache_free(skbuff_cache, skb);
5747 	} else {
5748 		__kfree_skb(skb);
5749 	}
5750 }
5751 EXPORT_SYMBOL(kfree_skb_partial);
5752 
5753 /**
5754  * skb_try_coalesce - try to merge skb to prior one
5755  * @to: prior buffer
5756  * @from: buffer to add
5757  * @fragstolen: pointer to boolean
5758  * @delta_truesize: how much more was allocated than was requested
5759  */
5760 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5761 		      bool *fragstolen, int *delta_truesize)
5762 {
5763 	struct skb_shared_info *to_shinfo, *from_shinfo;
5764 	int i, delta, len = from->len;
5765 
5766 	*fragstolen = false;
5767 
5768 	if (skb_cloned(to))
5769 		return false;
5770 
5771 	/* In general, avoid mixing page_pool and non-page_pool allocated
5772 	 * pages within the same SKB. Additionally avoid dealing with clones
5773 	 * with page_pool pages, in case the SKB is using page_pool fragment
5774 	 * references (page_pool_alloc_frag()). Since we only take full page
5775 	 * references for cloned SKBs at the moment that would result in
5776 	 * inconsistent reference counts.
5777 	 * In theory we could take full references if @from is cloned and
5778 	 * !@to->pp_recycle but its tricky (due to potential race with
5779 	 * the clone disappearing) and rare, so not worth dealing with.
5780 	 */
5781 	if (to->pp_recycle != from->pp_recycle ||
5782 	    (from->pp_recycle && skb_cloned(from)))
5783 		return false;
5784 
5785 	if (len <= skb_tailroom(to)) {
5786 		if (len)
5787 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5788 		*delta_truesize = 0;
5789 		return true;
5790 	}
5791 
5792 	to_shinfo = skb_shinfo(to);
5793 	from_shinfo = skb_shinfo(from);
5794 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5795 		return false;
5796 	if (skb_zcopy(to) || skb_zcopy(from))
5797 		return false;
5798 
5799 	if (skb_headlen(from) != 0) {
5800 		struct page *page;
5801 		unsigned int offset;
5802 
5803 		if (to_shinfo->nr_frags +
5804 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5805 			return false;
5806 
5807 		if (skb_head_is_locked(from))
5808 			return false;
5809 
5810 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5811 
5812 		page = virt_to_head_page(from->head);
5813 		offset = from->data - (unsigned char *)page_address(page);
5814 
5815 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5816 				   page, offset, skb_headlen(from));
5817 		*fragstolen = true;
5818 	} else {
5819 		if (to_shinfo->nr_frags +
5820 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5821 			return false;
5822 
5823 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5824 	}
5825 
5826 	WARN_ON_ONCE(delta < len);
5827 
5828 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5829 	       from_shinfo->frags,
5830 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5831 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5832 
5833 	if (!skb_cloned(from))
5834 		from_shinfo->nr_frags = 0;
5835 
5836 	/* if the skb is not cloned this does nothing
5837 	 * since we set nr_frags to 0.
5838 	 */
5839 	for (i = 0; i < from_shinfo->nr_frags; i++)
5840 		__skb_frag_ref(&from_shinfo->frags[i]);
5841 
5842 	to->truesize += delta;
5843 	to->len += len;
5844 	to->data_len += len;
5845 
5846 	*delta_truesize = delta;
5847 	return true;
5848 }
5849 EXPORT_SYMBOL(skb_try_coalesce);
5850 
5851 /**
5852  * skb_scrub_packet - scrub an skb
5853  *
5854  * @skb: buffer to clean
5855  * @xnet: packet is crossing netns
5856  *
5857  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5858  * into/from a tunnel. Some information have to be cleared during these
5859  * operations.
5860  * skb_scrub_packet can also be used to clean a skb before injecting it in
5861  * another namespace (@xnet == true). We have to clear all information in the
5862  * skb that could impact namespace isolation.
5863  */
5864 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5865 {
5866 	skb->pkt_type = PACKET_HOST;
5867 	skb->skb_iif = 0;
5868 	skb->ignore_df = 0;
5869 	skb_dst_drop(skb);
5870 	skb_ext_reset(skb);
5871 	nf_reset_ct(skb);
5872 	nf_reset_trace(skb);
5873 
5874 #ifdef CONFIG_NET_SWITCHDEV
5875 	skb->offload_fwd_mark = 0;
5876 	skb->offload_l3_fwd_mark = 0;
5877 #endif
5878 
5879 	if (!xnet)
5880 		return;
5881 
5882 	ipvs_reset(skb);
5883 	skb->mark = 0;
5884 	skb_clear_tstamp(skb);
5885 }
5886 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5887 
5888 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5889 {
5890 	int mac_len, meta_len;
5891 	void *meta;
5892 
5893 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5894 		kfree_skb(skb);
5895 		return NULL;
5896 	}
5897 
5898 	mac_len = skb->data - skb_mac_header(skb);
5899 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5900 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5901 			mac_len - VLAN_HLEN - ETH_TLEN);
5902 	}
5903 
5904 	meta_len = skb_metadata_len(skb);
5905 	if (meta_len) {
5906 		meta = skb_metadata_end(skb) - meta_len;
5907 		memmove(meta + VLAN_HLEN, meta, meta_len);
5908 	}
5909 
5910 	skb->mac_header += VLAN_HLEN;
5911 	return skb;
5912 }
5913 
5914 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5915 {
5916 	struct vlan_hdr *vhdr;
5917 	u16 vlan_tci;
5918 
5919 	if (unlikely(skb_vlan_tag_present(skb))) {
5920 		/* vlan_tci is already set-up so leave this for another time */
5921 		return skb;
5922 	}
5923 
5924 	skb = skb_share_check(skb, GFP_ATOMIC);
5925 	if (unlikely(!skb))
5926 		goto err_free;
5927 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5928 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5929 		goto err_free;
5930 
5931 	vhdr = (struct vlan_hdr *)skb->data;
5932 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5933 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5934 
5935 	skb_pull_rcsum(skb, VLAN_HLEN);
5936 	vlan_set_encap_proto(skb, vhdr);
5937 
5938 	skb = skb_reorder_vlan_header(skb);
5939 	if (unlikely(!skb))
5940 		goto err_free;
5941 
5942 	skb_reset_network_header(skb);
5943 	if (!skb_transport_header_was_set(skb))
5944 		skb_reset_transport_header(skb);
5945 	skb_reset_mac_len(skb);
5946 
5947 	return skb;
5948 
5949 err_free:
5950 	kfree_skb(skb);
5951 	return NULL;
5952 }
5953 EXPORT_SYMBOL(skb_vlan_untag);
5954 
5955 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5956 {
5957 	if (!pskb_may_pull(skb, write_len))
5958 		return -ENOMEM;
5959 
5960 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5961 		return 0;
5962 
5963 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5964 }
5965 EXPORT_SYMBOL(skb_ensure_writable);
5966 
5967 /* remove VLAN header from packet and update csum accordingly.
5968  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5969  */
5970 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5971 {
5972 	int offset = skb->data - skb_mac_header(skb);
5973 	int err;
5974 
5975 	if (WARN_ONCE(offset,
5976 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5977 		      offset)) {
5978 		return -EINVAL;
5979 	}
5980 
5981 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5982 	if (unlikely(err))
5983 		return err;
5984 
5985 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5986 
5987 	vlan_remove_tag(skb, vlan_tci);
5988 
5989 	skb->mac_header += VLAN_HLEN;
5990 
5991 	if (skb_network_offset(skb) < ETH_HLEN)
5992 		skb_set_network_header(skb, ETH_HLEN);
5993 
5994 	skb_reset_mac_len(skb);
5995 
5996 	return err;
5997 }
5998 EXPORT_SYMBOL(__skb_vlan_pop);
5999 
6000 /* Pop a vlan tag either from hwaccel or from payload.
6001  * Expects skb->data at mac header.
6002  */
6003 int skb_vlan_pop(struct sk_buff *skb)
6004 {
6005 	u16 vlan_tci;
6006 	__be16 vlan_proto;
6007 	int err;
6008 
6009 	if (likely(skb_vlan_tag_present(skb))) {
6010 		__vlan_hwaccel_clear_tag(skb);
6011 	} else {
6012 		if (unlikely(!eth_type_vlan(skb->protocol)))
6013 			return 0;
6014 
6015 		err = __skb_vlan_pop(skb, &vlan_tci);
6016 		if (err)
6017 			return err;
6018 	}
6019 	/* move next vlan tag to hw accel tag */
6020 	if (likely(!eth_type_vlan(skb->protocol)))
6021 		return 0;
6022 
6023 	vlan_proto = skb->protocol;
6024 	err = __skb_vlan_pop(skb, &vlan_tci);
6025 	if (unlikely(err))
6026 		return err;
6027 
6028 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6029 	return 0;
6030 }
6031 EXPORT_SYMBOL(skb_vlan_pop);
6032 
6033 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6034  * Expects skb->data at mac header.
6035  */
6036 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6037 {
6038 	if (skb_vlan_tag_present(skb)) {
6039 		int offset = skb->data - skb_mac_header(skb);
6040 		int err;
6041 
6042 		if (WARN_ONCE(offset,
6043 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6044 			      offset)) {
6045 			return -EINVAL;
6046 		}
6047 
6048 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6049 					skb_vlan_tag_get(skb));
6050 		if (err)
6051 			return err;
6052 
6053 		skb->protocol = skb->vlan_proto;
6054 		skb->mac_len += VLAN_HLEN;
6055 
6056 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6057 	}
6058 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6059 	return 0;
6060 }
6061 EXPORT_SYMBOL(skb_vlan_push);
6062 
6063 /**
6064  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6065  *
6066  * @skb: Socket buffer to modify
6067  *
6068  * Drop the Ethernet header of @skb.
6069  *
6070  * Expects that skb->data points to the mac header and that no VLAN tags are
6071  * present.
6072  *
6073  * Returns 0 on success, -errno otherwise.
6074  */
6075 int skb_eth_pop(struct sk_buff *skb)
6076 {
6077 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6078 	    skb_network_offset(skb) < ETH_HLEN)
6079 		return -EPROTO;
6080 
6081 	skb_pull_rcsum(skb, ETH_HLEN);
6082 	skb_reset_mac_header(skb);
6083 	skb_reset_mac_len(skb);
6084 
6085 	return 0;
6086 }
6087 EXPORT_SYMBOL(skb_eth_pop);
6088 
6089 /**
6090  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6091  *
6092  * @skb: Socket buffer to modify
6093  * @dst: Destination MAC address of the new header
6094  * @src: Source MAC address of the new header
6095  *
6096  * Prepend @skb with a new Ethernet header.
6097  *
6098  * Expects that skb->data points to the mac header, which must be empty.
6099  *
6100  * Returns 0 on success, -errno otherwise.
6101  */
6102 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6103 		 const unsigned char *src)
6104 {
6105 	struct ethhdr *eth;
6106 	int err;
6107 
6108 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6109 		return -EPROTO;
6110 
6111 	err = skb_cow_head(skb, sizeof(*eth));
6112 	if (err < 0)
6113 		return err;
6114 
6115 	skb_push(skb, sizeof(*eth));
6116 	skb_reset_mac_header(skb);
6117 	skb_reset_mac_len(skb);
6118 
6119 	eth = eth_hdr(skb);
6120 	ether_addr_copy(eth->h_dest, dst);
6121 	ether_addr_copy(eth->h_source, src);
6122 	eth->h_proto = skb->protocol;
6123 
6124 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6125 
6126 	return 0;
6127 }
6128 EXPORT_SYMBOL(skb_eth_push);
6129 
6130 /* Update the ethertype of hdr and the skb csum value if required. */
6131 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6132 			     __be16 ethertype)
6133 {
6134 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6135 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6136 
6137 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6138 	}
6139 
6140 	hdr->h_proto = ethertype;
6141 }
6142 
6143 /**
6144  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6145  *                   the packet
6146  *
6147  * @skb: buffer
6148  * @mpls_lse: MPLS label stack entry to push
6149  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6150  * @mac_len: length of the MAC header
6151  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6152  *            ethernet
6153  *
6154  * Expects skb->data at mac header.
6155  *
6156  * Returns 0 on success, -errno otherwise.
6157  */
6158 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6159 		  int mac_len, bool ethernet)
6160 {
6161 	struct mpls_shim_hdr *lse;
6162 	int err;
6163 
6164 	if (unlikely(!eth_p_mpls(mpls_proto)))
6165 		return -EINVAL;
6166 
6167 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6168 	if (skb->encapsulation)
6169 		return -EINVAL;
6170 
6171 	err = skb_cow_head(skb, MPLS_HLEN);
6172 	if (unlikely(err))
6173 		return err;
6174 
6175 	if (!skb->inner_protocol) {
6176 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6177 		skb_set_inner_protocol(skb, skb->protocol);
6178 	}
6179 
6180 	skb_push(skb, MPLS_HLEN);
6181 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6182 		mac_len);
6183 	skb_reset_mac_header(skb);
6184 	skb_set_network_header(skb, mac_len);
6185 	skb_reset_mac_len(skb);
6186 
6187 	lse = mpls_hdr(skb);
6188 	lse->label_stack_entry = mpls_lse;
6189 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6190 
6191 	if (ethernet && mac_len >= ETH_HLEN)
6192 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6193 	skb->protocol = mpls_proto;
6194 
6195 	return 0;
6196 }
6197 EXPORT_SYMBOL_GPL(skb_mpls_push);
6198 
6199 /**
6200  * skb_mpls_pop() - pop the outermost MPLS header
6201  *
6202  * @skb: buffer
6203  * @next_proto: ethertype of header after popped MPLS header
6204  * @mac_len: length of the MAC header
6205  * @ethernet: flag to indicate if the packet is ethernet
6206  *
6207  * Expects skb->data at mac header.
6208  *
6209  * Returns 0 on success, -errno otherwise.
6210  */
6211 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6212 		 bool ethernet)
6213 {
6214 	int err;
6215 
6216 	if (unlikely(!eth_p_mpls(skb->protocol)))
6217 		return 0;
6218 
6219 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6220 	if (unlikely(err))
6221 		return err;
6222 
6223 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6224 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6225 		mac_len);
6226 
6227 	__skb_pull(skb, MPLS_HLEN);
6228 	skb_reset_mac_header(skb);
6229 	skb_set_network_header(skb, mac_len);
6230 
6231 	if (ethernet && mac_len >= ETH_HLEN) {
6232 		struct ethhdr *hdr;
6233 
6234 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6235 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6236 		skb_mod_eth_type(skb, hdr, next_proto);
6237 	}
6238 	skb->protocol = next_proto;
6239 
6240 	return 0;
6241 }
6242 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6243 
6244 /**
6245  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6246  *
6247  * @skb: buffer
6248  * @mpls_lse: new MPLS label stack entry to update to
6249  *
6250  * Expects skb->data at mac header.
6251  *
6252  * Returns 0 on success, -errno otherwise.
6253  */
6254 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6255 {
6256 	int err;
6257 
6258 	if (unlikely(!eth_p_mpls(skb->protocol)))
6259 		return -EINVAL;
6260 
6261 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6262 	if (unlikely(err))
6263 		return err;
6264 
6265 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6266 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6267 
6268 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6269 	}
6270 
6271 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6272 
6273 	return 0;
6274 }
6275 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6276 
6277 /**
6278  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6279  *
6280  * @skb: buffer
6281  *
6282  * Expects skb->data at mac header.
6283  *
6284  * Returns 0 on success, -errno otherwise.
6285  */
6286 int skb_mpls_dec_ttl(struct sk_buff *skb)
6287 {
6288 	u32 lse;
6289 	u8 ttl;
6290 
6291 	if (unlikely(!eth_p_mpls(skb->protocol)))
6292 		return -EINVAL;
6293 
6294 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6295 		return -ENOMEM;
6296 
6297 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6298 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6299 	if (!--ttl)
6300 		return -EINVAL;
6301 
6302 	lse &= ~MPLS_LS_TTL_MASK;
6303 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6304 
6305 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6306 }
6307 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6308 
6309 /**
6310  * alloc_skb_with_frags - allocate skb with page frags
6311  *
6312  * @header_len: size of linear part
6313  * @data_len: needed length in frags
6314  * @order: max page order desired.
6315  * @errcode: pointer to error code if any
6316  * @gfp_mask: allocation mask
6317  *
6318  * This can be used to allocate a paged skb, given a maximal order for frags.
6319  */
6320 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6321 				     unsigned long data_len,
6322 				     int order,
6323 				     int *errcode,
6324 				     gfp_t gfp_mask)
6325 {
6326 	unsigned long chunk;
6327 	struct sk_buff *skb;
6328 	struct page *page;
6329 	int nr_frags = 0;
6330 
6331 	*errcode = -EMSGSIZE;
6332 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6333 		return NULL;
6334 
6335 	*errcode = -ENOBUFS;
6336 	skb = alloc_skb(header_len, gfp_mask);
6337 	if (!skb)
6338 		return NULL;
6339 
6340 	while (data_len) {
6341 		if (nr_frags == MAX_SKB_FRAGS - 1)
6342 			goto failure;
6343 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6344 			order--;
6345 
6346 		if (order) {
6347 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6348 					   __GFP_COMP |
6349 					   __GFP_NOWARN,
6350 					   order);
6351 			if (!page) {
6352 				order--;
6353 				continue;
6354 			}
6355 		} else {
6356 			page = alloc_page(gfp_mask);
6357 			if (!page)
6358 				goto failure;
6359 		}
6360 		chunk = min_t(unsigned long, data_len,
6361 			      PAGE_SIZE << order);
6362 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6363 		nr_frags++;
6364 		skb->truesize += (PAGE_SIZE << order);
6365 		data_len -= chunk;
6366 	}
6367 	return skb;
6368 
6369 failure:
6370 	kfree_skb(skb);
6371 	return NULL;
6372 }
6373 EXPORT_SYMBOL(alloc_skb_with_frags);
6374 
6375 /* carve out the first off bytes from skb when off < headlen */
6376 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6377 				    const int headlen, gfp_t gfp_mask)
6378 {
6379 	int i;
6380 	unsigned int size = skb_end_offset(skb);
6381 	int new_hlen = headlen - off;
6382 	u8 *data;
6383 
6384 	if (skb_pfmemalloc(skb))
6385 		gfp_mask |= __GFP_MEMALLOC;
6386 
6387 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6388 	if (!data)
6389 		return -ENOMEM;
6390 	size = SKB_WITH_OVERHEAD(size);
6391 
6392 	/* Copy real data, and all frags */
6393 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6394 	skb->len -= off;
6395 
6396 	memcpy((struct skb_shared_info *)(data + size),
6397 	       skb_shinfo(skb),
6398 	       offsetof(struct skb_shared_info,
6399 			frags[skb_shinfo(skb)->nr_frags]));
6400 	if (skb_cloned(skb)) {
6401 		/* drop the old head gracefully */
6402 		if (skb_orphan_frags(skb, gfp_mask)) {
6403 			skb_kfree_head(data, size);
6404 			return -ENOMEM;
6405 		}
6406 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6407 			skb_frag_ref(skb, i);
6408 		if (skb_has_frag_list(skb))
6409 			skb_clone_fraglist(skb);
6410 		skb_release_data(skb, SKB_CONSUMED, false);
6411 	} else {
6412 		/* we can reuse existing recount- all we did was
6413 		 * relocate values
6414 		 */
6415 		skb_free_head(skb, false);
6416 	}
6417 
6418 	skb->head = data;
6419 	skb->data = data;
6420 	skb->head_frag = 0;
6421 	skb_set_end_offset(skb, size);
6422 	skb_set_tail_pointer(skb, skb_headlen(skb));
6423 	skb_headers_offset_update(skb, 0);
6424 	skb->cloned = 0;
6425 	skb->hdr_len = 0;
6426 	skb->nohdr = 0;
6427 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6428 
6429 	return 0;
6430 }
6431 
6432 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6433 
6434 /* carve out the first eat bytes from skb's frag_list. May recurse into
6435  * pskb_carve()
6436  */
6437 static int pskb_carve_frag_list(struct sk_buff *skb,
6438 				struct skb_shared_info *shinfo, int eat,
6439 				gfp_t gfp_mask)
6440 {
6441 	struct sk_buff *list = shinfo->frag_list;
6442 	struct sk_buff *clone = NULL;
6443 	struct sk_buff *insp = NULL;
6444 
6445 	do {
6446 		if (!list) {
6447 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6448 			return -EFAULT;
6449 		}
6450 		if (list->len <= eat) {
6451 			/* Eaten as whole. */
6452 			eat -= list->len;
6453 			list = list->next;
6454 			insp = list;
6455 		} else {
6456 			/* Eaten partially. */
6457 			if (skb_shared(list)) {
6458 				clone = skb_clone(list, gfp_mask);
6459 				if (!clone)
6460 					return -ENOMEM;
6461 				insp = list->next;
6462 				list = clone;
6463 			} else {
6464 				/* This may be pulled without problems. */
6465 				insp = list;
6466 			}
6467 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6468 				kfree_skb(clone);
6469 				return -ENOMEM;
6470 			}
6471 			break;
6472 		}
6473 	} while (eat);
6474 
6475 	/* Free pulled out fragments. */
6476 	while ((list = shinfo->frag_list) != insp) {
6477 		shinfo->frag_list = list->next;
6478 		consume_skb(list);
6479 	}
6480 	/* And insert new clone at head. */
6481 	if (clone) {
6482 		clone->next = list;
6483 		shinfo->frag_list = clone;
6484 	}
6485 	return 0;
6486 }
6487 
6488 /* carve off first len bytes from skb. Split line (off) is in the
6489  * non-linear part of skb
6490  */
6491 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6492 				       int pos, gfp_t gfp_mask)
6493 {
6494 	int i, k = 0;
6495 	unsigned int size = skb_end_offset(skb);
6496 	u8 *data;
6497 	const int nfrags = skb_shinfo(skb)->nr_frags;
6498 	struct skb_shared_info *shinfo;
6499 
6500 	if (skb_pfmemalloc(skb))
6501 		gfp_mask |= __GFP_MEMALLOC;
6502 
6503 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6504 	if (!data)
6505 		return -ENOMEM;
6506 	size = SKB_WITH_OVERHEAD(size);
6507 
6508 	memcpy((struct skb_shared_info *)(data + size),
6509 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6510 	if (skb_orphan_frags(skb, gfp_mask)) {
6511 		skb_kfree_head(data, size);
6512 		return -ENOMEM;
6513 	}
6514 	shinfo = (struct skb_shared_info *)(data + size);
6515 	for (i = 0; i < nfrags; i++) {
6516 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6517 
6518 		if (pos + fsize > off) {
6519 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6520 
6521 			if (pos < off) {
6522 				/* Split frag.
6523 				 * We have two variants in this case:
6524 				 * 1. Move all the frag to the second
6525 				 *    part, if it is possible. F.e.
6526 				 *    this approach is mandatory for TUX,
6527 				 *    where splitting is expensive.
6528 				 * 2. Split is accurately. We make this.
6529 				 */
6530 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6531 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6532 			}
6533 			skb_frag_ref(skb, i);
6534 			k++;
6535 		}
6536 		pos += fsize;
6537 	}
6538 	shinfo->nr_frags = k;
6539 	if (skb_has_frag_list(skb))
6540 		skb_clone_fraglist(skb);
6541 
6542 	/* split line is in frag list */
6543 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6544 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6545 		if (skb_has_frag_list(skb))
6546 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6547 		skb_kfree_head(data, size);
6548 		return -ENOMEM;
6549 	}
6550 	skb_release_data(skb, SKB_CONSUMED, false);
6551 
6552 	skb->head = data;
6553 	skb->head_frag = 0;
6554 	skb->data = data;
6555 	skb_set_end_offset(skb, size);
6556 	skb_reset_tail_pointer(skb);
6557 	skb_headers_offset_update(skb, 0);
6558 	skb->cloned   = 0;
6559 	skb->hdr_len  = 0;
6560 	skb->nohdr    = 0;
6561 	skb->len -= off;
6562 	skb->data_len = skb->len;
6563 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6564 	return 0;
6565 }
6566 
6567 /* remove len bytes from the beginning of the skb */
6568 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6569 {
6570 	int headlen = skb_headlen(skb);
6571 
6572 	if (len < headlen)
6573 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6574 	else
6575 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6576 }
6577 
6578 /* Extract to_copy bytes starting at off from skb, and return this in
6579  * a new skb
6580  */
6581 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6582 			     int to_copy, gfp_t gfp)
6583 {
6584 	struct sk_buff  *clone = skb_clone(skb, gfp);
6585 
6586 	if (!clone)
6587 		return NULL;
6588 
6589 	if (pskb_carve(clone, off, gfp) < 0 ||
6590 	    pskb_trim(clone, to_copy)) {
6591 		kfree_skb(clone);
6592 		return NULL;
6593 	}
6594 	return clone;
6595 }
6596 EXPORT_SYMBOL(pskb_extract);
6597 
6598 /**
6599  * skb_condense - try to get rid of fragments/frag_list if possible
6600  * @skb: buffer
6601  *
6602  * Can be used to save memory before skb is added to a busy queue.
6603  * If packet has bytes in frags and enough tail room in skb->head,
6604  * pull all of them, so that we can free the frags right now and adjust
6605  * truesize.
6606  * Notes:
6607  *	We do not reallocate skb->head thus can not fail.
6608  *	Caller must re-evaluate skb->truesize if needed.
6609  */
6610 void skb_condense(struct sk_buff *skb)
6611 {
6612 	if (skb->data_len) {
6613 		if (skb->data_len > skb->end - skb->tail ||
6614 		    skb_cloned(skb))
6615 			return;
6616 
6617 		/* Nice, we can free page frag(s) right now */
6618 		__pskb_pull_tail(skb, skb->data_len);
6619 	}
6620 	/* At this point, skb->truesize might be over estimated,
6621 	 * because skb had a fragment, and fragments do not tell
6622 	 * their truesize.
6623 	 * When we pulled its content into skb->head, fragment
6624 	 * was freed, but __pskb_pull_tail() could not possibly
6625 	 * adjust skb->truesize, not knowing the frag truesize.
6626 	 */
6627 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6628 }
6629 EXPORT_SYMBOL(skb_condense);
6630 
6631 #ifdef CONFIG_SKB_EXTENSIONS
6632 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6633 {
6634 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6635 }
6636 
6637 /**
6638  * __skb_ext_alloc - allocate a new skb extensions storage
6639  *
6640  * @flags: See kmalloc().
6641  *
6642  * Returns the newly allocated pointer. The pointer can later attached to a
6643  * skb via __skb_ext_set().
6644  * Note: caller must handle the skb_ext as an opaque data.
6645  */
6646 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6647 {
6648 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6649 
6650 	if (new) {
6651 		memset(new->offset, 0, sizeof(new->offset));
6652 		refcount_set(&new->refcnt, 1);
6653 	}
6654 
6655 	return new;
6656 }
6657 
6658 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6659 					 unsigned int old_active)
6660 {
6661 	struct skb_ext *new;
6662 
6663 	if (refcount_read(&old->refcnt) == 1)
6664 		return old;
6665 
6666 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6667 	if (!new)
6668 		return NULL;
6669 
6670 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6671 	refcount_set(&new->refcnt, 1);
6672 
6673 #ifdef CONFIG_XFRM
6674 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6675 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6676 		unsigned int i;
6677 
6678 		for (i = 0; i < sp->len; i++)
6679 			xfrm_state_hold(sp->xvec[i]);
6680 	}
6681 #endif
6682 	__skb_ext_put(old);
6683 	return new;
6684 }
6685 
6686 /**
6687  * __skb_ext_set - attach the specified extension storage to this skb
6688  * @skb: buffer
6689  * @id: extension id
6690  * @ext: extension storage previously allocated via __skb_ext_alloc()
6691  *
6692  * Existing extensions, if any, are cleared.
6693  *
6694  * Returns the pointer to the extension.
6695  */
6696 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6697 		    struct skb_ext *ext)
6698 {
6699 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6700 
6701 	skb_ext_put(skb);
6702 	newlen = newoff + skb_ext_type_len[id];
6703 	ext->chunks = newlen;
6704 	ext->offset[id] = newoff;
6705 	skb->extensions = ext;
6706 	skb->active_extensions = 1 << id;
6707 	return skb_ext_get_ptr(ext, id);
6708 }
6709 
6710 /**
6711  * skb_ext_add - allocate space for given extension, COW if needed
6712  * @skb: buffer
6713  * @id: extension to allocate space for
6714  *
6715  * Allocates enough space for the given extension.
6716  * If the extension is already present, a pointer to that extension
6717  * is returned.
6718  *
6719  * If the skb was cloned, COW applies and the returned memory can be
6720  * modified without changing the extension space of clones buffers.
6721  *
6722  * Returns pointer to the extension or NULL on allocation failure.
6723  */
6724 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6725 {
6726 	struct skb_ext *new, *old = NULL;
6727 	unsigned int newlen, newoff;
6728 
6729 	if (skb->active_extensions) {
6730 		old = skb->extensions;
6731 
6732 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6733 		if (!new)
6734 			return NULL;
6735 
6736 		if (__skb_ext_exist(new, id))
6737 			goto set_active;
6738 
6739 		newoff = new->chunks;
6740 	} else {
6741 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6742 
6743 		new = __skb_ext_alloc(GFP_ATOMIC);
6744 		if (!new)
6745 			return NULL;
6746 	}
6747 
6748 	newlen = newoff + skb_ext_type_len[id];
6749 	new->chunks = newlen;
6750 	new->offset[id] = newoff;
6751 set_active:
6752 	skb->slow_gro = 1;
6753 	skb->extensions = new;
6754 	skb->active_extensions |= 1 << id;
6755 	return skb_ext_get_ptr(new, id);
6756 }
6757 EXPORT_SYMBOL(skb_ext_add);
6758 
6759 #ifdef CONFIG_XFRM
6760 static void skb_ext_put_sp(struct sec_path *sp)
6761 {
6762 	unsigned int i;
6763 
6764 	for (i = 0; i < sp->len; i++)
6765 		xfrm_state_put(sp->xvec[i]);
6766 }
6767 #endif
6768 
6769 #ifdef CONFIG_MCTP_FLOWS
6770 static void skb_ext_put_mctp(struct mctp_flow *flow)
6771 {
6772 	if (flow->key)
6773 		mctp_key_unref(flow->key);
6774 }
6775 #endif
6776 
6777 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6778 {
6779 	struct skb_ext *ext = skb->extensions;
6780 
6781 	skb->active_extensions &= ~(1 << id);
6782 	if (skb->active_extensions == 0) {
6783 		skb->extensions = NULL;
6784 		__skb_ext_put(ext);
6785 #ifdef CONFIG_XFRM
6786 	} else if (id == SKB_EXT_SEC_PATH &&
6787 		   refcount_read(&ext->refcnt) == 1) {
6788 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6789 
6790 		skb_ext_put_sp(sp);
6791 		sp->len = 0;
6792 #endif
6793 	}
6794 }
6795 EXPORT_SYMBOL(__skb_ext_del);
6796 
6797 void __skb_ext_put(struct skb_ext *ext)
6798 {
6799 	/* If this is last clone, nothing can increment
6800 	 * it after check passes.  Avoids one atomic op.
6801 	 */
6802 	if (refcount_read(&ext->refcnt) == 1)
6803 		goto free_now;
6804 
6805 	if (!refcount_dec_and_test(&ext->refcnt))
6806 		return;
6807 free_now:
6808 #ifdef CONFIG_XFRM
6809 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6810 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6811 #endif
6812 #ifdef CONFIG_MCTP_FLOWS
6813 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6814 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6815 #endif
6816 
6817 	kmem_cache_free(skbuff_ext_cache, ext);
6818 }
6819 EXPORT_SYMBOL(__skb_ext_put);
6820 #endif /* CONFIG_SKB_EXTENSIONS */
6821 
6822 /**
6823  * skb_attempt_defer_free - queue skb for remote freeing
6824  * @skb: buffer
6825  *
6826  * Put @skb in a per-cpu list, using the cpu which
6827  * allocated the skb/pages to reduce false sharing
6828  * and memory zone spinlock contention.
6829  */
6830 void skb_attempt_defer_free(struct sk_buff *skb)
6831 {
6832 	int cpu = skb->alloc_cpu;
6833 	struct softnet_data *sd;
6834 	unsigned int defer_max;
6835 	bool kick;
6836 
6837 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6838 	    !cpu_online(cpu) ||
6839 	    cpu == raw_smp_processor_id()) {
6840 nodefer:	__kfree_skb(skb);
6841 		return;
6842 	}
6843 
6844 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6845 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6846 
6847 	sd = &per_cpu(softnet_data, cpu);
6848 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6849 	if (READ_ONCE(sd->defer_count) >= defer_max)
6850 		goto nodefer;
6851 
6852 	spin_lock_bh(&sd->defer_lock);
6853 	/* Send an IPI every time queue reaches half capacity. */
6854 	kick = sd->defer_count == (defer_max >> 1);
6855 	/* Paired with the READ_ONCE() few lines above */
6856 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6857 
6858 	skb->next = sd->defer_list;
6859 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6860 	WRITE_ONCE(sd->defer_list, skb);
6861 	spin_unlock_bh(&sd->defer_lock);
6862 
6863 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6864 	 * if we are unlucky enough (this seems very unlikely).
6865 	 */
6866 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6867 		smp_call_function_single_async(cpu, &sd->defer_csd);
6868 }
6869 
6870 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6871 				 size_t offset, size_t len)
6872 {
6873 	const char *kaddr;
6874 	__wsum csum;
6875 
6876 	kaddr = kmap_local_page(page);
6877 	csum = csum_partial(kaddr + offset, len, 0);
6878 	kunmap_local(kaddr);
6879 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
6880 }
6881 
6882 /**
6883  * skb_splice_from_iter - Splice (or copy) pages to skbuff
6884  * @skb: The buffer to add pages to
6885  * @iter: Iterator representing the pages to be added
6886  * @maxsize: Maximum amount of pages to be added
6887  * @gfp: Allocation flags
6888  *
6889  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
6890  * extracts pages from an iterator and adds them to the socket buffer if
6891  * possible, copying them to fragments if not possible (such as if they're slab
6892  * pages).
6893  *
6894  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6895  * insufficient space in the buffer to transfer anything.
6896  */
6897 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6898 			     ssize_t maxsize, gfp_t gfp)
6899 {
6900 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6901 	struct page *pages[8], **ppages = pages;
6902 	ssize_t spliced = 0, ret = 0;
6903 	unsigned int i;
6904 
6905 	while (iter->count > 0) {
6906 		ssize_t space, nr, len;
6907 		size_t off;
6908 
6909 		ret = -EMSGSIZE;
6910 		space = frag_limit - skb_shinfo(skb)->nr_frags;
6911 		if (space < 0)
6912 			break;
6913 
6914 		/* We might be able to coalesce without increasing nr_frags */
6915 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6916 
6917 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6918 		if (len <= 0) {
6919 			ret = len ?: -EIO;
6920 			break;
6921 		}
6922 
6923 		i = 0;
6924 		do {
6925 			struct page *page = pages[i++];
6926 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
6927 
6928 			ret = -EIO;
6929 			if (WARN_ON_ONCE(!sendpage_ok(page)))
6930 				goto out;
6931 
6932 			ret = skb_append_pagefrags(skb, page, off, part,
6933 						   frag_limit);
6934 			if (ret < 0) {
6935 				iov_iter_revert(iter, len);
6936 				goto out;
6937 			}
6938 
6939 			if (skb->ip_summed == CHECKSUM_NONE)
6940 				skb_splice_csum_page(skb, page, off, part);
6941 
6942 			off = 0;
6943 			spliced += part;
6944 			maxsize -= part;
6945 			len -= part;
6946 		} while (len > 0);
6947 
6948 		if (maxsize <= 0)
6949 			break;
6950 	}
6951 
6952 out:
6953 	skb_len_add(skb, spliced);
6954 	return spliced ?: ret;
6955 }
6956 EXPORT_SYMBOL(skb_splice_from_iter);
6957 
6958 static __always_inline
6959 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
6960 			     size_t len, void *to, void *priv2)
6961 {
6962 	__wsum *csum = priv2;
6963 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
6964 
6965 	*csum = csum_block_add(*csum, next, progress);
6966 	return 0;
6967 }
6968 
6969 static __always_inline
6970 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
6971 				size_t len, void *to, void *priv2)
6972 {
6973 	__wsum next, *csum = priv2;
6974 
6975 	next = csum_and_copy_from_user(iter_from, to + progress, len);
6976 	*csum = csum_block_add(*csum, next, progress);
6977 	return next ? 0 : len;
6978 }
6979 
6980 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
6981 				  __wsum *csum, struct iov_iter *i)
6982 {
6983 	size_t copied;
6984 
6985 	if (WARN_ON_ONCE(!i->data_source))
6986 		return false;
6987 	copied = iterate_and_advance2(i, bytes, addr, csum,
6988 				      copy_from_user_iter_csum,
6989 				      memcpy_from_iter_csum);
6990 	if (likely(copied == bytes))
6991 		return true;
6992 	iov_iter_revert(i, copied);
6993 	return false;
6994 }
6995 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
6996