1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 #include <net/mpls.h> 75 #include <net/mptcp.h> 76 #include <net/mctp.h> 77 #include <net/page_pool/helpers.h> 78 #include <net/dropreason.h> 79 80 #include <linux/uaccess.h> 81 #include <trace/events/skb.h> 82 #include <linux/highmem.h> 83 #include <linux/capability.h> 84 #include <linux/user_namespace.h> 85 #include <linux/indirect_call_wrapper.h> 86 #include <linux/textsearch.h> 87 88 #include "dev.h" 89 #include "sock_destructor.h" 90 91 struct kmem_cache *skbuff_cache __ro_after_init; 92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 98 static struct kmem_cache *skb_small_head_cache __ro_after_init; 99 100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 101 102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 104 * size, and we can differentiate heads from skb_small_head_cache 105 * vs system slabs by looking at their size (skb_end_offset()). 106 */ 107 #define SKB_SMALL_HEAD_CACHE_SIZE \ 108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 110 SKB_SMALL_HEAD_SIZE) 111 112 #define SKB_SMALL_HEAD_HEADROOM \ 113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 114 115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 116 EXPORT_SYMBOL(sysctl_max_skb_frags); 117 118 #undef FN 119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 120 static const char * const drop_reasons[] = { 121 [SKB_CONSUMED] = "CONSUMED", 122 DEFINE_DROP_REASON(FN, FN) 123 }; 124 125 static const struct drop_reason_list drop_reasons_core = { 126 .reasons = drop_reasons, 127 .n_reasons = ARRAY_SIZE(drop_reasons), 128 }; 129 130 const struct drop_reason_list __rcu * 131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 133 }; 134 EXPORT_SYMBOL(drop_reasons_by_subsys); 135 136 /** 137 * drop_reasons_register_subsys - register another drop reason subsystem 138 * @subsys: the subsystem to register, must not be the core 139 * @list: the list of drop reasons within the subsystem, must point to 140 * a statically initialized list 141 */ 142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 143 const struct drop_reason_list *list) 144 { 145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 147 "invalid subsystem %d\n", subsys)) 148 return; 149 150 /* must point to statically allocated memory, so INIT is OK */ 151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 152 } 153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 154 155 /** 156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 157 * @subsys: the subsystem to remove, must not be the core 158 * 159 * Note: This will synchronize_rcu() to ensure no users when it returns. 160 */ 161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 169 170 synchronize_rcu(); 171 } 172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 173 174 /** 175 * skb_panic - private function for out-of-line support 176 * @skb: buffer 177 * @sz: size 178 * @addr: address 179 * @msg: skb_over_panic or skb_under_panic 180 * 181 * Out-of-line support for skb_put() and skb_push(). 182 * Called via the wrapper skb_over_panic() or skb_under_panic(). 183 * Keep out of line to prevent kernel bloat. 184 * __builtin_return_address is not used because it is not always reliable. 185 */ 186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 187 const char msg[]) 188 { 189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 190 msg, addr, skb->len, sz, skb->head, skb->data, 191 (unsigned long)skb->tail, (unsigned long)skb->end, 192 skb->dev ? skb->dev->name : "<NULL>"); 193 BUG(); 194 } 195 196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 197 { 198 skb_panic(skb, sz, addr, __func__); 199 } 200 201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 202 { 203 skb_panic(skb, sz, addr, __func__); 204 } 205 206 #define NAPI_SKB_CACHE_SIZE 64 207 #define NAPI_SKB_CACHE_BULK 16 208 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 209 210 #if PAGE_SIZE == SZ_4K 211 212 #define NAPI_HAS_SMALL_PAGE_FRAG 1 213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 214 215 /* specialized page frag allocator using a single order 0 page 216 * and slicing it into 1K sized fragment. Constrained to systems 217 * with a very limited amount of 1K fragments fitting a single 218 * page - to avoid excessive truesize underestimation 219 */ 220 221 struct page_frag_1k { 222 void *va; 223 u16 offset; 224 bool pfmemalloc; 225 }; 226 227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 228 { 229 struct page *page; 230 int offset; 231 232 offset = nc->offset - SZ_1K; 233 if (likely(offset >= 0)) 234 goto use_frag; 235 236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 237 if (!page) 238 return NULL; 239 240 nc->va = page_address(page); 241 nc->pfmemalloc = page_is_pfmemalloc(page); 242 offset = PAGE_SIZE - SZ_1K; 243 page_ref_add(page, offset / SZ_1K); 244 245 use_frag: 246 nc->offset = offset; 247 return nc->va + offset; 248 } 249 #else 250 251 /* the small page is actually unused in this build; add dummy helpers 252 * to please the compiler and avoid later preprocessor's conditionals 253 */ 254 #define NAPI_HAS_SMALL_PAGE_FRAG 0 255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 256 257 struct page_frag_1k { 258 }; 259 260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 261 { 262 return NULL; 263 } 264 265 #endif 266 267 struct napi_alloc_cache { 268 struct page_frag_cache page; 269 struct page_frag_1k page_small; 270 unsigned int skb_count; 271 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 272 }; 273 274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 276 277 /* Double check that napi_get_frags() allocates skbs with 278 * skb->head being backed by slab, not a page fragment. 279 * This is to make sure bug fixed in 3226b158e67c 280 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 281 * does not accidentally come back. 282 */ 283 void napi_get_frags_check(struct napi_struct *napi) 284 { 285 struct sk_buff *skb; 286 287 local_bh_disable(); 288 skb = napi_get_frags(napi); 289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 290 napi_free_frags(napi); 291 local_bh_enable(); 292 } 293 294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 295 { 296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 297 298 fragsz = SKB_DATA_ALIGN(fragsz); 299 300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 301 } 302 EXPORT_SYMBOL(__napi_alloc_frag_align); 303 304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 305 { 306 void *data; 307 308 fragsz = SKB_DATA_ALIGN(fragsz); 309 if (in_hardirq() || irqs_disabled()) { 310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 311 312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 313 } else { 314 struct napi_alloc_cache *nc; 315 316 local_bh_disable(); 317 nc = this_cpu_ptr(&napi_alloc_cache); 318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 319 local_bh_enable(); 320 } 321 return data; 322 } 323 EXPORT_SYMBOL(__netdev_alloc_frag_align); 324 325 static struct sk_buff *napi_skb_cache_get(void) 326 { 327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 328 struct sk_buff *skb; 329 330 if (unlikely(!nc->skb_count)) { 331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 332 GFP_ATOMIC, 333 NAPI_SKB_CACHE_BULK, 334 nc->skb_cache); 335 if (unlikely(!nc->skb_count)) 336 return NULL; 337 } 338 339 skb = nc->skb_cache[--nc->skb_count]; 340 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache)); 341 342 return skb; 343 } 344 345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 346 unsigned int size) 347 { 348 struct skb_shared_info *shinfo; 349 350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 351 352 /* Assumes caller memset cleared SKB */ 353 skb->truesize = SKB_TRUESIZE(size); 354 refcount_set(&skb->users, 1); 355 skb->head = data; 356 skb->data = data; 357 skb_reset_tail_pointer(skb); 358 skb_set_end_offset(skb, size); 359 skb->mac_header = (typeof(skb->mac_header))~0U; 360 skb->transport_header = (typeof(skb->transport_header))~0U; 361 skb->alloc_cpu = raw_smp_processor_id(); 362 /* make sure we initialize shinfo sequentially */ 363 shinfo = skb_shinfo(skb); 364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 365 atomic_set(&shinfo->dataref, 1); 366 367 skb_set_kcov_handle(skb, kcov_common_handle()); 368 } 369 370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 371 unsigned int *size) 372 { 373 void *resized; 374 375 /* Must find the allocation size (and grow it to match). */ 376 *size = ksize(data); 377 /* krealloc() will immediately return "data" when 378 * "ksize(data)" is requested: it is the existing upper 379 * bounds. As a result, GFP_ATOMIC will be ignored. Note 380 * that this "new" pointer needs to be passed back to the 381 * caller for use so the __alloc_size hinting will be 382 * tracked correctly. 383 */ 384 resized = krealloc(data, *size, GFP_ATOMIC); 385 WARN_ON_ONCE(resized != data); 386 return resized; 387 } 388 389 /* build_skb() variant which can operate on slab buffers. 390 * Note that this should be used sparingly as slab buffers 391 * cannot be combined efficiently by GRO! 392 */ 393 struct sk_buff *slab_build_skb(void *data) 394 { 395 struct sk_buff *skb; 396 unsigned int size; 397 398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 399 if (unlikely(!skb)) 400 return NULL; 401 402 memset(skb, 0, offsetof(struct sk_buff, tail)); 403 data = __slab_build_skb(skb, data, &size); 404 __finalize_skb_around(skb, data, size); 405 406 return skb; 407 } 408 EXPORT_SYMBOL(slab_build_skb); 409 410 /* Caller must provide SKB that is memset cleared */ 411 static void __build_skb_around(struct sk_buff *skb, void *data, 412 unsigned int frag_size) 413 { 414 unsigned int size = frag_size; 415 416 /* frag_size == 0 is considered deprecated now. Callers 417 * using slab buffer should use slab_build_skb() instead. 418 */ 419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 420 data = __slab_build_skb(skb, data, &size); 421 422 __finalize_skb_around(skb, data, size); 423 } 424 425 /** 426 * __build_skb - build a network buffer 427 * @data: data buffer provided by caller 428 * @frag_size: size of data (must not be 0) 429 * 430 * Allocate a new &sk_buff. Caller provides space holding head and 431 * skb_shared_info. @data must have been allocated from the page 432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 433 * allocation is deprecated, and callers should use slab_build_skb() 434 * instead.) 435 * The return is the new skb buffer. 436 * On a failure the return is %NULL, and @data is not freed. 437 * Notes : 438 * Before IO, driver allocates only data buffer where NIC put incoming frame 439 * Driver should add room at head (NET_SKB_PAD) and 440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 442 * before giving packet to stack. 443 * RX rings only contains data buffers, not full skbs. 444 */ 445 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 446 { 447 struct sk_buff *skb; 448 449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 450 if (unlikely(!skb)) 451 return NULL; 452 453 memset(skb, 0, offsetof(struct sk_buff, tail)); 454 __build_skb_around(skb, data, frag_size); 455 456 return skb; 457 } 458 459 /* build_skb() is wrapper over __build_skb(), that specifically 460 * takes care of skb->head and skb->pfmemalloc 461 */ 462 struct sk_buff *build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb = __build_skb(data, frag_size); 465 466 if (likely(skb && frag_size)) { 467 skb->head_frag = 1; 468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 469 } 470 return skb; 471 } 472 EXPORT_SYMBOL(build_skb); 473 474 /** 475 * build_skb_around - build a network buffer around provided skb 476 * @skb: sk_buff provide by caller, must be memset cleared 477 * @data: data buffer provided by caller 478 * @frag_size: size of data 479 */ 480 struct sk_buff *build_skb_around(struct sk_buff *skb, 481 void *data, unsigned int frag_size) 482 { 483 if (unlikely(!skb)) 484 return NULL; 485 486 __build_skb_around(skb, data, frag_size); 487 488 if (frag_size) { 489 skb->head_frag = 1; 490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 491 } 492 return skb; 493 } 494 EXPORT_SYMBOL(build_skb_around); 495 496 /** 497 * __napi_build_skb - build a network buffer 498 * @data: data buffer provided by caller 499 * @frag_size: size of data 500 * 501 * Version of __build_skb() that uses NAPI percpu caches to obtain 502 * skbuff_head instead of inplace allocation. 503 * 504 * Returns a new &sk_buff on success, %NULL on allocation failure. 505 */ 506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 507 { 508 struct sk_buff *skb; 509 510 skb = napi_skb_cache_get(); 511 if (unlikely(!skb)) 512 return NULL; 513 514 memset(skb, 0, offsetof(struct sk_buff, tail)); 515 __build_skb_around(skb, data, frag_size); 516 517 return skb; 518 } 519 520 /** 521 * napi_build_skb - build a network buffer 522 * @data: data buffer provided by caller 523 * @frag_size: size of data 524 * 525 * Version of __napi_build_skb() that takes care of skb->head_frag 526 * and skb->pfmemalloc when the data is a page or page fragment. 527 * 528 * Returns a new &sk_buff on success, %NULL on allocation failure. 529 */ 530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 531 { 532 struct sk_buff *skb = __napi_build_skb(data, frag_size); 533 534 if (likely(skb) && frag_size) { 535 skb->head_frag = 1; 536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 537 } 538 539 return skb; 540 } 541 EXPORT_SYMBOL(napi_build_skb); 542 543 /* 544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 545 * the caller if emergency pfmemalloc reserves are being used. If it is and 546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 547 * may be used. Otherwise, the packet data may be discarded until enough 548 * memory is free 549 */ 550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 551 bool *pfmemalloc) 552 { 553 bool ret_pfmemalloc = false; 554 size_t obj_size; 555 void *obj; 556 557 obj_size = SKB_HEAD_ALIGN(*size); 558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 559 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 560 obj = kmem_cache_alloc_node(skb_small_head_cache, 561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 562 node); 563 *size = SKB_SMALL_HEAD_CACHE_SIZE; 564 if (obj || !(gfp_pfmemalloc_allowed(flags))) 565 goto out; 566 /* Try again but now we are using pfmemalloc reserves */ 567 ret_pfmemalloc = true; 568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 569 goto out; 570 } 571 572 obj_size = kmalloc_size_roundup(obj_size); 573 /* The following cast might truncate high-order bits of obj_size, this 574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 575 */ 576 *size = (unsigned int)obj_size; 577 578 /* 579 * Try a regular allocation, when that fails and we're not entitled 580 * to the reserves, fail. 581 */ 582 obj = kmalloc_node_track_caller(obj_size, 583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 584 node); 585 if (obj || !(gfp_pfmemalloc_allowed(flags))) 586 goto out; 587 588 /* Try again but now we are using pfmemalloc reserves */ 589 ret_pfmemalloc = true; 590 obj = kmalloc_node_track_caller(obj_size, flags, node); 591 592 out: 593 if (pfmemalloc) 594 *pfmemalloc = ret_pfmemalloc; 595 596 return obj; 597 } 598 599 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 600 * 'private' fields and also do memory statistics to find all the 601 * [BEEP] leaks. 602 * 603 */ 604 605 /** 606 * __alloc_skb - allocate a network buffer 607 * @size: size to allocate 608 * @gfp_mask: allocation mask 609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 610 * instead of head cache and allocate a cloned (child) skb. 611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 612 * allocations in case the data is required for writeback 613 * @node: numa node to allocate memory on 614 * 615 * Allocate a new &sk_buff. The returned buffer has no headroom and a 616 * tail room of at least size bytes. The object has a reference count 617 * of one. The return is the buffer. On a failure the return is %NULL. 618 * 619 * Buffers may only be allocated from interrupts using a @gfp_mask of 620 * %GFP_ATOMIC. 621 */ 622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 623 int flags, int node) 624 { 625 struct kmem_cache *cache; 626 struct sk_buff *skb; 627 bool pfmemalloc; 628 u8 *data; 629 630 cache = (flags & SKB_ALLOC_FCLONE) 631 ? skbuff_fclone_cache : skbuff_cache; 632 633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 634 gfp_mask |= __GFP_MEMALLOC; 635 636 /* Get the HEAD */ 637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 638 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 639 skb = napi_skb_cache_get(); 640 else 641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 642 if (unlikely(!skb)) 643 return NULL; 644 prefetchw(skb); 645 646 /* We do our best to align skb_shared_info on a separate cache 647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 648 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 649 * Both skb->head and skb_shared_info are cache line aligned. 650 */ 651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 652 if (unlikely(!data)) 653 goto nodata; 654 /* kmalloc_size_roundup() might give us more room than requested. 655 * Put skb_shared_info exactly at the end of allocated zone, 656 * to allow max possible filling before reallocation. 657 */ 658 prefetchw(data + SKB_WITH_OVERHEAD(size)); 659 660 /* 661 * Only clear those fields we need to clear, not those that we will 662 * actually initialise below. Hence, don't put any more fields after 663 * the tail pointer in struct sk_buff! 664 */ 665 memset(skb, 0, offsetof(struct sk_buff, tail)); 666 __build_skb_around(skb, data, size); 667 skb->pfmemalloc = pfmemalloc; 668 669 if (flags & SKB_ALLOC_FCLONE) { 670 struct sk_buff_fclones *fclones; 671 672 fclones = container_of(skb, struct sk_buff_fclones, skb1); 673 674 skb->fclone = SKB_FCLONE_ORIG; 675 refcount_set(&fclones->fclone_ref, 1); 676 } 677 678 return skb; 679 680 nodata: 681 kmem_cache_free(cache, skb); 682 return NULL; 683 } 684 EXPORT_SYMBOL(__alloc_skb); 685 686 /** 687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 688 * @dev: network device to receive on 689 * @len: length to allocate 690 * @gfp_mask: get_free_pages mask, passed to alloc_skb 691 * 692 * Allocate a new &sk_buff and assign it a usage count of one. The 693 * buffer has NET_SKB_PAD headroom built in. Users should allocate 694 * the headroom they think they need without accounting for the 695 * built in space. The built in space is used for optimisations. 696 * 697 * %NULL is returned if there is no free memory. 698 */ 699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 700 gfp_t gfp_mask) 701 { 702 struct page_frag_cache *nc; 703 struct sk_buff *skb; 704 bool pfmemalloc; 705 void *data; 706 707 len += NET_SKB_PAD; 708 709 /* If requested length is either too small or too big, 710 * we use kmalloc() for skb->head allocation. 711 */ 712 if (len <= SKB_WITH_OVERHEAD(1024) || 713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 716 if (!skb) 717 goto skb_fail; 718 goto skb_success; 719 } 720 721 len = SKB_HEAD_ALIGN(len); 722 723 if (sk_memalloc_socks()) 724 gfp_mask |= __GFP_MEMALLOC; 725 726 if (in_hardirq() || irqs_disabled()) { 727 nc = this_cpu_ptr(&netdev_alloc_cache); 728 data = page_frag_alloc(nc, len, gfp_mask); 729 pfmemalloc = nc->pfmemalloc; 730 } else { 731 local_bh_disable(); 732 nc = this_cpu_ptr(&napi_alloc_cache.page); 733 data = page_frag_alloc(nc, len, gfp_mask); 734 pfmemalloc = nc->pfmemalloc; 735 local_bh_enable(); 736 } 737 738 if (unlikely(!data)) 739 return NULL; 740 741 skb = __build_skb(data, len); 742 if (unlikely(!skb)) { 743 skb_free_frag(data); 744 return NULL; 745 } 746 747 if (pfmemalloc) 748 skb->pfmemalloc = 1; 749 skb->head_frag = 1; 750 751 skb_success: 752 skb_reserve(skb, NET_SKB_PAD); 753 skb->dev = dev; 754 755 skb_fail: 756 return skb; 757 } 758 EXPORT_SYMBOL(__netdev_alloc_skb); 759 760 /** 761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 762 * @napi: napi instance this buffer was allocated for 763 * @len: length to allocate 764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 765 * 766 * Allocate a new sk_buff for use in NAPI receive. This buffer will 767 * attempt to allocate the head from a special reserved region used 768 * only for NAPI Rx allocation. By doing this we can save several 769 * CPU cycles by avoiding having to disable and re-enable IRQs. 770 * 771 * %NULL is returned if there is no free memory. 772 */ 773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 774 gfp_t gfp_mask) 775 { 776 struct napi_alloc_cache *nc; 777 struct sk_buff *skb; 778 bool pfmemalloc; 779 void *data; 780 781 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 782 len += NET_SKB_PAD + NET_IP_ALIGN; 783 784 /* If requested length is either too small or too big, 785 * we use kmalloc() for skb->head allocation. 786 * When the small frag allocator is available, prefer it over kmalloc 787 * for small fragments 788 */ 789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 793 NUMA_NO_NODE); 794 if (!skb) 795 goto skb_fail; 796 goto skb_success; 797 } 798 799 nc = this_cpu_ptr(&napi_alloc_cache); 800 801 if (sk_memalloc_socks()) 802 gfp_mask |= __GFP_MEMALLOC; 803 804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 805 /* we are artificially inflating the allocation size, but 806 * that is not as bad as it may look like, as: 807 * - 'len' less than GRO_MAX_HEAD makes little sense 808 * - On most systems, larger 'len' values lead to fragment 809 * size above 512 bytes 810 * - kmalloc would use the kmalloc-1k slab for such values 811 * - Builds with smaller GRO_MAX_HEAD will very likely do 812 * little networking, as that implies no WiFi and no 813 * tunnels support, and 32 bits arches. 814 */ 815 len = SZ_1K; 816 817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 819 } else { 820 len = SKB_HEAD_ALIGN(len); 821 822 data = page_frag_alloc(&nc->page, len, gfp_mask); 823 pfmemalloc = nc->page.pfmemalloc; 824 } 825 826 if (unlikely(!data)) 827 return NULL; 828 829 skb = __napi_build_skb(data, len); 830 if (unlikely(!skb)) { 831 skb_free_frag(data); 832 return NULL; 833 } 834 835 if (pfmemalloc) 836 skb->pfmemalloc = 1; 837 skb->head_frag = 1; 838 839 skb_success: 840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 841 skb->dev = napi->dev; 842 843 skb_fail: 844 return skb; 845 } 846 EXPORT_SYMBOL(__napi_alloc_skb); 847 848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 849 int size, unsigned int truesize) 850 { 851 DEBUG_NET_WARN_ON_ONCE(size > truesize); 852 853 skb_fill_page_desc(skb, i, page, off, size); 854 skb->len += size; 855 skb->data_len += size; 856 skb->truesize += truesize; 857 } 858 EXPORT_SYMBOL(skb_add_rx_frag); 859 860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 861 unsigned int truesize) 862 { 863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 864 865 DEBUG_NET_WARN_ON_ONCE(size > truesize); 866 867 skb_frag_size_add(frag, size); 868 skb->len += size; 869 skb->data_len += size; 870 skb->truesize += truesize; 871 } 872 EXPORT_SYMBOL(skb_coalesce_rx_frag); 873 874 static void skb_drop_list(struct sk_buff **listp) 875 { 876 kfree_skb_list(*listp); 877 *listp = NULL; 878 } 879 880 static inline void skb_drop_fraglist(struct sk_buff *skb) 881 { 882 skb_drop_list(&skb_shinfo(skb)->frag_list); 883 } 884 885 static void skb_clone_fraglist(struct sk_buff *skb) 886 { 887 struct sk_buff *list; 888 889 skb_walk_frags(skb, list) 890 skb_get(list); 891 } 892 893 #if IS_ENABLED(CONFIG_PAGE_POOL) 894 bool napi_pp_put_page(struct page *page, bool napi_safe) 895 { 896 bool allow_direct = false; 897 struct page_pool *pp; 898 899 page = compound_head(page); 900 901 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 902 * in order to preserve any existing bits, such as bit 0 for the 903 * head page of compound page and bit 1 for pfmemalloc page, so 904 * mask those bits for freeing side when doing below checking, 905 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 906 * to avoid recycling the pfmemalloc page. 907 */ 908 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 909 return false; 910 911 pp = page->pp; 912 913 /* Allow direct recycle if we have reasons to believe that we are 914 * in the same context as the consumer would run, so there's 915 * no possible race. 916 * __page_pool_put_page() makes sure we're not in hardirq context 917 * and interrupts are enabled prior to accessing the cache. 918 */ 919 if (napi_safe || in_softirq()) { 920 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 921 922 allow_direct = napi && 923 READ_ONCE(napi->list_owner) == smp_processor_id(); 924 } 925 926 /* Driver set this to memory recycling info. Reset it on recycle. 927 * This will *not* work for NIC using a split-page memory model. 928 * The page will be returned to the pool here regardless of the 929 * 'flipped' fragment being in use or not. 930 */ 931 page_pool_put_full_page(pp, page, allow_direct); 932 933 return true; 934 } 935 EXPORT_SYMBOL(napi_pp_put_page); 936 #endif 937 938 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 939 { 940 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 941 return false; 942 return napi_pp_put_page(virt_to_page(data), napi_safe); 943 } 944 945 static void skb_kfree_head(void *head, unsigned int end_offset) 946 { 947 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 948 kmem_cache_free(skb_small_head_cache, head); 949 else 950 kfree(head); 951 } 952 953 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 954 { 955 unsigned char *head = skb->head; 956 957 if (skb->head_frag) { 958 if (skb_pp_recycle(skb, head, napi_safe)) 959 return; 960 skb_free_frag(head); 961 } else { 962 skb_kfree_head(head, skb_end_offset(skb)); 963 } 964 } 965 966 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 967 bool napi_safe) 968 { 969 struct skb_shared_info *shinfo = skb_shinfo(skb); 970 int i; 971 972 if (skb->cloned && 973 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 974 &shinfo->dataref)) 975 goto exit; 976 977 if (skb_zcopy(skb)) { 978 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 979 980 skb_zcopy_clear(skb, true); 981 if (skip_unref) 982 goto free_head; 983 } 984 985 for (i = 0; i < shinfo->nr_frags; i++) 986 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 987 988 free_head: 989 if (shinfo->frag_list) 990 kfree_skb_list_reason(shinfo->frag_list, reason); 991 992 skb_free_head(skb, napi_safe); 993 exit: 994 /* When we clone an SKB we copy the reycling bit. The pp_recycle 995 * bit is only set on the head though, so in order to avoid races 996 * while trying to recycle fragments on __skb_frag_unref() we need 997 * to make one SKB responsible for triggering the recycle path. 998 * So disable the recycling bit if an SKB is cloned and we have 999 * additional references to the fragmented part of the SKB. 1000 * Eventually the last SKB will have the recycling bit set and it's 1001 * dataref set to 0, which will trigger the recycling 1002 */ 1003 skb->pp_recycle = 0; 1004 } 1005 1006 /* 1007 * Free an skbuff by memory without cleaning the state. 1008 */ 1009 static void kfree_skbmem(struct sk_buff *skb) 1010 { 1011 struct sk_buff_fclones *fclones; 1012 1013 switch (skb->fclone) { 1014 case SKB_FCLONE_UNAVAILABLE: 1015 kmem_cache_free(skbuff_cache, skb); 1016 return; 1017 1018 case SKB_FCLONE_ORIG: 1019 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1020 1021 /* We usually free the clone (TX completion) before original skb 1022 * This test would have no chance to be true for the clone, 1023 * while here, branch prediction will be good. 1024 */ 1025 if (refcount_read(&fclones->fclone_ref) == 1) 1026 goto fastpath; 1027 break; 1028 1029 default: /* SKB_FCLONE_CLONE */ 1030 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1031 break; 1032 } 1033 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1034 return; 1035 fastpath: 1036 kmem_cache_free(skbuff_fclone_cache, fclones); 1037 } 1038 1039 void skb_release_head_state(struct sk_buff *skb) 1040 { 1041 skb_dst_drop(skb); 1042 if (skb->destructor) { 1043 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1044 skb->destructor(skb); 1045 } 1046 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1047 nf_conntrack_put(skb_nfct(skb)); 1048 #endif 1049 skb_ext_put(skb); 1050 } 1051 1052 /* Free everything but the sk_buff shell. */ 1053 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1054 bool napi_safe) 1055 { 1056 skb_release_head_state(skb); 1057 if (likely(skb->head)) 1058 skb_release_data(skb, reason, napi_safe); 1059 } 1060 1061 /** 1062 * __kfree_skb - private function 1063 * @skb: buffer 1064 * 1065 * Free an sk_buff. Release anything attached to the buffer. 1066 * Clean the state. This is an internal helper function. Users should 1067 * always call kfree_skb 1068 */ 1069 1070 void __kfree_skb(struct sk_buff *skb) 1071 { 1072 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1073 kfree_skbmem(skb); 1074 } 1075 EXPORT_SYMBOL(__kfree_skb); 1076 1077 static __always_inline 1078 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1079 { 1080 if (unlikely(!skb_unref(skb))) 1081 return false; 1082 1083 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1084 u32_get_bits(reason, 1085 SKB_DROP_REASON_SUBSYS_MASK) >= 1086 SKB_DROP_REASON_SUBSYS_NUM); 1087 1088 if (reason == SKB_CONSUMED) 1089 trace_consume_skb(skb, __builtin_return_address(0)); 1090 else 1091 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1092 return true; 1093 } 1094 1095 /** 1096 * kfree_skb_reason - free an sk_buff with special reason 1097 * @skb: buffer to free 1098 * @reason: reason why this skb is dropped 1099 * 1100 * Drop a reference to the buffer and free it if the usage count has 1101 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1102 * tracepoint. 1103 */ 1104 void __fix_address 1105 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1106 { 1107 if (__kfree_skb_reason(skb, reason)) 1108 __kfree_skb(skb); 1109 } 1110 EXPORT_SYMBOL(kfree_skb_reason); 1111 1112 #define KFREE_SKB_BULK_SIZE 16 1113 1114 struct skb_free_array { 1115 unsigned int skb_count; 1116 void *skb_array[KFREE_SKB_BULK_SIZE]; 1117 }; 1118 1119 static void kfree_skb_add_bulk(struct sk_buff *skb, 1120 struct skb_free_array *sa, 1121 enum skb_drop_reason reason) 1122 { 1123 /* if SKB is a clone, don't handle this case */ 1124 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1125 __kfree_skb(skb); 1126 return; 1127 } 1128 1129 skb_release_all(skb, reason, false); 1130 sa->skb_array[sa->skb_count++] = skb; 1131 1132 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1133 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1134 sa->skb_array); 1135 sa->skb_count = 0; 1136 } 1137 } 1138 1139 void __fix_address 1140 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1141 { 1142 struct skb_free_array sa; 1143 1144 sa.skb_count = 0; 1145 1146 while (segs) { 1147 struct sk_buff *next = segs->next; 1148 1149 if (__kfree_skb_reason(segs, reason)) { 1150 skb_poison_list(segs); 1151 kfree_skb_add_bulk(segs, &sa, reason); 1152 } 1153 1154 segs = next; 1155 } 1156 1157 if (sa.skb_count) 1158 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1159 } 1160 EXPORT_SYMBOL(kfree_skb_list_reason); 1161 1162 /* Dump skb information and contents. 1163 * 1164 * Must only be called from net_ratelimit()-ed paths. 1165 * 1166 * Dumps whole packets if full_pkt, only headers otherwise. 1167 */ 1168 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1169 { 1170 struct skb_shared_info *sh = skb_shinfo(skb); 1171 struct net_device *dev = skb->dev; 1172 struct sock *sk = skb->sk; 1173 struct sk_buff *list_skb; 1174 bool has_mac, has_trans; 1175 int headroom, tailroom; 1176 int i, len, seg_len; 1177 1178 if (full_pkt) 1179 len = skb->len; 1180 else 1181 len = min_t(int, skb->len, MAX_HEADER + 128); 1182 1183 headroom = skb_headroom(skb); 1184 tailroom = skb_tailroom(skb); 1185 1186 has_mac = skb_mac_header_was_set(skb); 1187 has_trans = skb_transport_header_was_set(skb); 1188 1189 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1190 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1191 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1192 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1193 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1194 level, skb->len, headroom, skb_headlen(skb), tailroom, 1195 has_mac ? skb->mac_header : -1, 1196 has_mac ? skb_mac_header_len(skb) : -1, 1197 skb->network_header, 1198 has_trans ? skb_network_header_len(skb) : -1, 1199 has_trans ? skb->transport_header : -1, 1200 sh->tx_flags, sh->nr_frags, 1201 sh->gso_size, sh->gso_type, sh->gso_segs, 1202 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1203 skb->csum_valid, skb->csum_level, 1204 skb->hash, skb->sw_hash, skb->l4_hash, 1205 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1206 1207 if (dev) 1208 printk("%sdev name=%s feat=%pNF\n", 1209 level, dev->name, &dev->features); 1210 if (sk) 1211 printk("%ssk family=%hu type=%u proto=%u\n", 1212 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1213 1214 if (full_pkt && headroom) 1215 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1216 16, 1, skb->head, headroom, false); 1217 1218 seg_len = min_t(int, skb_headlen(skb), len); 1219 if (seg_len) 1220 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1221 16, 1, skb->data, seg_len, false); 1222 len -= seg_len; 1223 1224 if (full_pkt && tailroom) 1225 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1226 16, 1, skb_tail_pointer(skb), tailroom, false); 1227 1228 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1229 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1230 u32 p_off, p_len, copied; 1231 struct page *p; 1232 u8 *vaddr; 1233 1234 skb_frag_foreach_page(frag, skb_frag_off(frag), 1235 skb_frag_size(frag), p, p_off, p_len, 1236 copied) { 1237 seg_len = min_t(int, p_len, len); 1238 vaddr = kmap_atomic(p); 1239 print_hex_dump(level, "skb frag: ", 1240 DUMP_PREFIX_OFFSET, 1241 16, 1, vaddr + p_off, seg_len, false); 1242 kunmap_atomic(vaddr); 1243 len -= seg_len; 1244 if (!len) 1245 break; 1246 } 1247 } 1248 1249 if (full_pkt && skb_has_frag_list(skb)) { 1250 printk("skb fraglist:\n"); 1251 skb_walk_frags(skb, list_skb) 1252 skb_dump(level, list_skb, true); 1253 } 1254 } 1255 EXPORT_SYMBOL(skb_dump); 1256 1257 /** 1258 * skb_tx_error - report an sk_buff xmit error 1259 * @skb: buffer that triggered an error 1260 * 1261 * Report xmit error if a device callback is tracking this skb. 1262 * skb must be freed afterwards. 1263 */ 1264 void skb_tx_error(struct sk_buff *skb) 1265 { 1266 if (skb) { 1267 skb_zcopy_downgrade_managed(skb); 1268 skb_zcopy_clear(skb, true); 1269 } 1270 } 1271 EXPORT_SYMBOL(skb_tx_error); 1272 1273 #ifdef CONFIG_TRACEPOINTS 1274 /** 1275 * consume_skb - free an skbuff 1276 * @skb: buffer to free 1277 * 1278 * Drop a ref to the buffer and free it if the usage count has hit zero 1279 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1280 * is being dropped after a failure and notes that 1281 */ 1282 void consume_skb(struct sk_buff *skb) 1283 { 1284 if (!skb_unref(skb)) 1285 return; 1286 1287 trace_consume_skb(skb, __builtin_return_address(0)); 1288 __kfree_skb(skb); 1289 } 1290 EXPORT_SYMBOL(consume_skb); 1291 #endif 1292 1293 /** 1294 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1295 * @skb: buffer to free 1296 * 1297 * Alike consume_skb(), but this variant assumes that this is the last 1298 * skb reference and all the head states have been already dropped 1299 */ 1300 void __consume_stateless_skb(struct sk_buff *skb) 1301 { 1302 trace_consume_skb(skb, __builtin_return_address(0)); 1303 skb_release_data(skb, SKB_CONSUMED, false); 1304 kfree_skbmem(skb); 1305 } 1306 1307 static void napi_skb_cache_put(struct sk_buff *skb) 1308 { 1309 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1310 u32 i; 1311 1312 if (!kasan_mempool_poison_object(skb)) 1313 return; 1314 1315 nc->skb_cache[nc->skb_count++] = skb; 1316 1317 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1318 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1319 kasan_mempool_unpoison_object(nc->skb_cache[i], 1320 kmem_cache_size(skbuff_cache)); 1321 1322 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1323 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1324 nc->skb_count = NAPI_SKB_CACHE_HALF; 1325 } 1326 } 1327 1328 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1329 { 1330 skb_release_all(skb, reason, true); 1331 napi_skb_cache_put(skb); 1332 } 1333 1334 void napi_skb_free_stolen_head(struct sk_buff *skb) 1335 { 1336 if (unlikely(skb->slow_gro)) { 1337 nf_reset_ct(skb); 1338 skb_dst_drop(skb); 1339 skb_ext_put(skb); 1340 skb_orphan(skb); 1341 skb->slow_gro = 0; 1342 } 1343 napi_skb_cache_put(skb); 1344 } 1345 1346 void napi_consume_skb(struct sk_buff *skb, int budget) 1347 { 1348 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1349 if (unlikely(!budget)) { 1350 dev_consume_skb_any(skb); 1351 return; 1352 } 1353 1354 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1355 1356 if (!skb_unref(skb)) 1357 return; 1358 1359 /* if reaching here SKB is ready to free */ 1360 trace_consume_skb(skb, __builtin_return_address(0)); 1361 1362 /* if SKB is a clone, don't handle this case */ 1363 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1364 __kfree_skb(skb); 1365 return; 1366 } 1367 1368 skb_release_all(skb, SKB_CONSUMED, !!budget); 1369 napi_skb_cache_put(skb); 1370 } 1371 EXPORT_SYMBOL(napi_consume_skb); 1372 1373 /* Make sure a field is contained by headers group */ 1374 #define CHECK_SKB_FIELD(field) \ 1375 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1376 offsetof(struct sk_buff, headers.field)); \ 1377 1378 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1379 { 1380 new->tstamp = old->tstamp; 1381 /* We do not copy old->sk */ 1382 new->dev = old->dev; 1383 memcpy(new->cb, old->cb, sizeof(old->cb)); 1384 skb_dst_copy(new, old); 1385 __skb_ext_copy(new, old); 1386 __nf_copy(new, old, false); 1387 1388 /* Note : this field could be in the headers group. 1389 * It is not yet because we do not want to have a 16 bit hole 1390 */ 1391 new->queue_mapping = old->queue_mapping; 1392 1393 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1394 CHECK_SKB_FIELD(protocol); 1395 CHECK_SKB_FIELD(csum); 1396 CHECK_SKB_FIELD(hash); 1397 CHECK_SKB_FIELD(priority); 1398 CHECK_SKB_FIELD(skb_iif); 1399 CHECK_SKB_FIELD(vlan_proto); 1400 CHECK_SKB_FIELD(vlan_tci); 1401 CHECK_SKB_FIELD(transport_header); 1402 CHECK_SKB_FIELD(network_header); 1403 CHECK_SKB_FIELD(mac_header); 1404 CHECK_SKB_FIELD(inner_protocol); 1405 CHECK_SKB_FIELD(inner_transport_header); 1406 CHECK_SKB_FIELD(inner_network_header); 1407 CHECK_SKB_FIELD(inner_mac_header); 1408 CHECK_SKB_FIELD(mark); 1409 #ifdef CONFIG_NETWORK_SECMARK 1410 CHECK_SKB_FIELD(secmark); 1411 #endif 1412 #ifdef CONFIG_NET_RX_BUSY_POLL 1413 CHECK_SKB_FIELD(napi_id); 1414 #endif 1415 CHECK_SKB_FIELD(alloc_cpu); 1416 #ifdef CONFIG_XPS 1417 CHECK_SKB_FIELD(sender_cpu); 1418 #endif 1419 #ifdef CONFIG_NET_SCHED 1420 CHECK_SKB_FIELD(tc_index); 1421 #endif 1422 1423 } 1424 1425 /* 1426 * You should not add any new code to this function. Add it to 1427 * __copy_skb_header above instead. 1428 */ 1429 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1430 { 1431 #define C(x) n->x = skb->x 1432 1433 n->next = n->prev = NULL; 1434 n->sk = NULL; 1435 __copy_skb_header(n, skb); 1436 1437 C(len); 1438 C(data_len); 1439 C(mac_len); 1440 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1441 n->cloned = 1; 1442 n->nohdr = 0; 1443 n->peeked = 0; 1444 C(pfmemalloc); 1445 C(pp_recycle); 1446 n->destructor = NULL; 1447 C(tail); 1448 C(end); 1449 C(head); 1450 C(head_frag); 1451 C(data); 1452 C(truesize); 1453 refcount_set(&n->users, 1); 1454 1455 atomic_inc(&(skb_shinfo(skb)->dataref)); 1456 skb->cloned = 1; 1457 1458 return n; 1459 #undef C 1460 } 1461 1462 /** 1463 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1464 * @first: first sk_buff of the msg 1465 */ 1466 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1467 { 1468 struct sk_buff *n; 1469 1470 n = alloc_skb(0, GFP_ATOMIC); 1471 if (!n) 1472 return NULL; 1473 1474 n->len = first->len; 1475 n->data_len = first->len; 1476 n->truesize = first->truesize; 1477 1478 skb_shinfo(n)->frag_list = first; 1479 1480 __copy_skb_header(n, first); 1481 n->destructor = NULL; 1482 1483 return n; 1484 } 1485 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1486 1487 /** 1488 * skb_morph - morph one skb into another 1489 * @dst: the skb to receive the contents 1490 * @src: the skb to supply the contents 1491 * 1492 * This is identical to skb_clone except that the target skb is 1493 * supplied by the user. 1494 * 1495 * The target skb is returned upon exit. 1496 */ 1497 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1498 { 1499 skb_release_all(dst, SKB_CONSUMED, false); 1500 return __skb_clone(dst, src); 1501 } 1502 EXPORT_SYMBOL_GPL(skb_morph); 1503 1504 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1505 { 1506 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1507 struct user_struct *user; 1508 1509 if (capable(CAP_IPC_LOCK) || !size) 1510 return 0; 1511 1512 rlim = rlimit(RLIMIT_MEMLOCK); 1513 if (rlim == RLIM_INFINITY) 1514 return 0; 1515 1516 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1517 max_pg = rlim >> PAGE_SHIFT; 1518 user = mmp->user ? : current_user(); 1519 1520 old_pg = atomic_long_read(&user->locked_vm); 1521 do { 1522 new_pg = old_pg + num_pg; 1523 if (new_pg > max_pg) 1524 return -ENOBUFS; 1525 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1526 1527 if (!mmp->user) { 1528 mmp->user = get_uid(user); 1529 mmp->num_pg = num_pg; 1530 } else { 1531 mmp->num_pg += num_pg; 1532 } 1533 1534 return 0; 1535 } 1536 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1537 1538 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1539 { 1540 if (mmp->user) { 1541 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1542 free_uid(mmp->user); 1543 } 1544 } 1545 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1546 1547 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1548 { 1549 struct ubuf_info_msgzc *uarg; 1550 struct sk_buff *skb; 1551 1552 WARN_ON_ONCE(!in_task()); 1553 1554 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1555 if (!skb) 1556 return NULL; 1557 1558 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1559 uarg = (void *)skb->cb; 1560 uarg->mmp.user = NULL; 1561 1562 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1563 kfree_skb(skb); 1564 return NULL; 1565 } 1566 1567 uarg->ubuf.callback = msg_zerocopy_callback; 1568 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1569 uarg->len = 1; 1570 uarg->bytelen = size; 1571 uarg->zerocopy = 1; 1572 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1573 refcount_set(&uarg->ubuf.refcnt, 1); 1574 sock_hold(sk); 1575 1576 return &uarg->ubuf; 1577 } 1578 1579 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1580 { 1581 return container_of((void *)uarg, struct sk_buff, cb); 1582 } 1583 1584 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1585 struct ubuf_info *uarg) 1586 { 1587 if (uarg) { 1588 struct ubuf_info_msgzc *uarg_zc; 1589 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1590 u32 bytelen, next; 1591 1592 /* there might be non MSG_ZEROCOPY users */ 1593 if (uarg->callback != msg_zerocopy_callback) 1594 return NULL; 1595 1596 /* realloc only when socket is locked (TCP, UDP cork), 1597 * so uarg->len and sk_zckey access is serialized 1598 */ 1599 if (!sock_owned_by_user(sk)) { 1600 WARN_ON_ONCE(1); 1601 return NULL; 1602 } 1603 1604 uarg_zc = uarg_to_msgzc(uarg); 1605 bytelen = uarg_zc->bytelen + size; 1606 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1607 /* TCP can create new skb to attach new uarg */ 1608 if (sk->sk_type == SOCK_STREAM) 1609 goto new_alloc; 1610 return NULL; 1611 } 1612 1613 next = (u32)atomic_read(&sk->sk_zckey); 1614 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1615 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1616 return NULL; 1617 uarg_zc->len++; 1618 uarg_zc->bytelen = bytelen; 1619 atomic_set(&sk->sk_zckey, ++next); 1620 1621 /* no extra ref when appending to datagram (MSG_MORE) */ 1622 if (sk->sk_type == SOCK_STREAM) 1623 net_zcopy_get(uarg); 1624 1625 return uarg; 1626 } 1627 } 1628 1629 new_alloc: 1630 return msg_zerocopy_alloc(sk, size); 1631 } 1632 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1633 1634 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1635 { 1636 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1637 u32 old_lo, old_hi; 1638 u64 sum_len; 1639 1640 old_lo = serr->ee.ee_info; 1641 old_hi = serr->ee.ee_data; 1642 sum_len = old_hi - old_lo + 1ULL + len; 1643 1644 if (sum_len >= (1ULL << 32)) 1645 return false; 1646 1647 if (lo != old_hi + 1) 1648 return false; 1649 1650 serr->ee.ee_data += len; 1651 return true; 1652 } 1653 1654 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1655 { 1656 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1657 struct sock_exterr_skb *serr; 1658 struct sock *sk = skb->sk; 1659 struct sk_buff_head *q; 1660 unsigned long flags; 1661 bool is_zerocopy; 1662 u32 lo, hi; 1663 u16 len; 1664 1665 mm_unaccount_pinned_pages(&uarg->mmp); 1666 1667 /* if !len, there was only 1 call, and it was aborted 1668 * so do not queue a completion notification 1669 */ 1670 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1671 goto release; 1672 1673 len = uarg->len; 1674 lo = uarg->id; 1675 hi = uarg->id + len - 1; 1676 is_zerocopy = uarg->zerocopy; 1677 1678 serr = SKB_EXT_ERR(skb); 1679 memset(serr, 0, sizeof(*serr)); 1680 serr->ee.ee_errno = 0; 1681 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1682 serr->ee.ee_data = hi; 1683 serr->ee.ee_info = lo; 1684 if (!is_zerocopy) 1685 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1686 1687 q = &sk->sk_error_queue; 1688 spin_lock_irqsave(&q->lock, flags); 1689 tail = skb_peek_tail(q); 1690 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1691 !skb_zerocopy_notify_extend(tail, lo, len)) { 1692 __skb_queue_tail(q, skb); 1693 skb = NULL; 1694 } 1695 spin_unlock_irqrestore(&q->lock, flags); 1696 1697 sk_error_report(sk); 1698 1699 release: 1700 consume_skb(skb); 1701 sock_put(sk); 1702 } 1703 1704 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1705 bool success) 1706 { 1707 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1708 1709 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1710 1711 if (refcount_dec_and_test(&uarg->refcnt)) 1712 __msg_zerocopy_callback(uarg_zc); 1713 } 1714 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1715 1716 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1717 { 1718 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1719 1720 atomic_dec(&sk->sk_zckey); 1721 uarg_to_msgzc(uarg)->len--; 1722 1723 if (have_uref) 1724 msg_zerocopy_callback(NULL, uarg, true); 1725 } 1726 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1727 1728 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1729 struct msghdr *msg, int len, 1730 struct ubuf_info *uarg) 1731 { 1732 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1733 int err, orig_len = skb->len; 1734 1735 /* An skb can only point to one uarg. This edge case happens when 1736 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1737 */ 1738 if (orig_uarg && uarg != orig_uarg) 1739 return -EEXIST; 1740 1741 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1742 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1743 struct sock *save_sk = skb->sk; 1744 1745 /* Streams do not free skb on error. Reset to prev state. */ 1746 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1747 skb->sk = sk; 1748 ___pskb_trim(skb, orig_len); 1749 skb->sk = save_sk; 1750 return err; 1751 } 1752 1753 skb_zcopy_set(skb, uarg, NULL); 1754 return skb->len - orig_len; 1755 } 1756 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1757 1758 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1759 { 1760 int i; 1761 1762 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1764 skb_frag_ref(skb, i); 1765 } 1766 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1767 1768 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1769 gfp_t gfp_mask) 1770 { 1771 if (skb_zcopy(orig)) { 1772 if (skb_zcopy(nskb)) { 1773 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1774 if (!gfp_mask) { 1775 WARN_ON_ONCE(1); 1776 return -ENOMEM; 1777 } 1778 if (skb_uarg(nskb) == skb_uarg(orig)) 1779 return 0; 1780 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1781 return -EIO; 1782 } 1783 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1784 } 1785 return 0; 1786 } 1787 1788 /** 1789 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1790 * @skb: the skb to modify 1791 * @gfp_mask: allocation priority 1792 * 1793 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1794 * It will copy all frags into kernel and drop the reference 1795 * to userspace pages. 1796 * 1797 * If this function is called from an interrupt gfp_mask() must be 1798 * %GFP_ATOMIC. 1799 * 1800 * Returns 0 on success or a negative error code on failure 1801 * to allocate kernel memory to copy to. 1802 */ 1803 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1804 { 1805 int num_frags = skb_shinfo(skb)->nr_frags; 1806 struct page *page, *head = NULL; 1807 int i, order, psize, new_frags; 1808 u32 d_off; 1809 1810 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1811 return -EINVAL; 1812 1813 if (!num_frags) 1814 goto release; 1815 1816 /* We might have to allocate high order pages, so compute what minimum 1817 * page order is needed. 1818 */ 1819 order = 0; 1820 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1821 order++; 1822 psize = (PAGE_SIZE << order); 1823 1824 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1825 for (i = 0; i < new_frags; i++) { 1826 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1827 if (!page) { 1828 while (head) { 1829 struct page *next = (struct page *)page_private(head); 1830 put_page(head); 1831 head = next; 1832 } 1833 return -ENOMEM; 1834 } 1835 set_page_private(page, (unsigned long)head); 1836 head = page; 1837 } 1838 1839 page = head; 1840 d_off = 0; 1841 for (i = 0; i < num_frags; i++) { 1842 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1843 u32 p_off, p_len, copied; 1844 struct page *p; 1845 u8 *vaddr; 1846 1847 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1848 p, p_off, p_len, copied) { 1849 u32 copy, done = 0; 1850 vaddr = kmap_atomic(p); 1851 1852 while (done < p_len) { 1853 if (d_off == psize) { 1854 d_off = 0; 1855 page = (struct page *)page_private(page); 1856 } 1857 copy = min_t(u32, psize - d_off, p_len - done); 1858 memcpy(page_address(page) + d_off, 1859 vaddr + p_off + done, copy); 1860 done += copy; 1861 d_off += copy; 1862 } 1863 kunmap_atomic(vaddr); 1864 } 1865 } 1866 1867 /* skb frags release userspace buffers */ 1868 for (i = 0; i < num_frags; i++) 1869 skb_frag_unref(skb, i); 1870 1871 /* skb frags point to kernel buffers */ 1872 for (i = 0; i < new_frags - 1; i++) { 1873 __skb_fill_page_desc(skb, i, head, 0, psize); 1874 head = (struct page *)page_private(head); 1875 } 1876 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1877 skb_shinfo(skb)->nr_frags = new_frags; 1878 1879 release: 1880 skb_zcopy_clear(skb, false); 1881 return 0; 1882 } 1883 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1884 1885 /** 1886 * skb_clone - duplicate an sk_buff 1887 * @skb: buffer to clone 1888 * @gfp_mask: allocation priority 1889 * 1890 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1891 * copies share the same packet data but not structure. The new 1892 * buffer has a reference count of 1. If the allocation fails the 1893 * function returns %NULL otherwise the new buffer is returned. 1894 * 1895 * If this function is called from an interrupt gfp_mask() must be 1896 * %GFP_ATOMIC. 1897 */ 1898 1899 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1900 { 1901 struct sk_buff_fclones *fclones = container_of(skb, 1902 struct sk_buff_fclones, 1903 skb1); 1904 struct sk_buff *n; 1905 1906 if (skb_orphan_frags(skb, gfp_mask)) 1907 return NULL; 1908 1909 if (skb->fclone == SKB_FCLONE_ORIG && 1910 refcount_read(&fclones->fclone_ref) == 1) { 1911 n = &fclones->skb2; 1912 refcount_set(&fclones->fclone_ref, 2); 1913 n->fclone = SKB_FCLONE_CLONE; 1914 } else { 1915 if (skb_pfmemalloc(skb)) 1916 gfp_mask |= __GFP_MEMALLOC; 1917 1918 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1919 if (!n) 1920 return NULL; 1921 1922 n->fclone = SKB_FCLONE_UNAVAILABLE; 1923 } 1924 1925 return __skb_clone(n, skb); 1926 } 1927 EXPORT_SYMBOL(skb_clone); 1928 1929 void skb_headers_offset_update(struct sk_buff *skb, int off) 1930 { 1931 /* Only adjust this if it actually is csum_start rather than csum */ 1932 if (skb->ip_summed == CHECKSUM_PARTIAL) 1933 skb->csum_start += off; 1934 /* {transport,network,mac}_header and tail are relative to skb->head */ 1935 skb->transport_header += off; 1936 skb->network_header += off; 1937 if (skb_mac_header_was_set(skb)) 1938 skb->mac_header += off; 1939 skb->inner_transport_header += off; 1940 skb->inner_network_header += off; 1941 skb->inner_mac_header += off; 1942 } 1943 EXPORT_SYMBOL(skb_headers_offset_update); 1944 1945 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1946 { 1947 __copy_skb_header(new, old); 1948 1949 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1950 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1951 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1952 } 1953 EXPORT_SYMBOL(skb_copy_header); 1954 1955 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1956 { 1957 if (skb_pfmemalloc(skb)) 1958 return SKB_ALLOC_RX; 1959 return 0; 1960 } 1961 1962 /** 1963 * skb_copy - create private copy of an sk_buff 1964 * @skb: buffer to copy 1965 * @gfp_mask: allocation priority 1966 * 1967 * Make a copy of both an &sk_buff and its data. This is used when the 1968 * caller wishes to modify the data and needs a private copy of the 1969 * data to alter. Returns %NULL on failure or the pointer to the buffer 1970 * on success. The returned buffer has a reference count of 1. 1971 * 1972 * As by-product this function converts non-linear &sk_buff to linear 1973 * one, so that &sk_buff becomes completely private and caller is allowed 1974 * to modify all the data of returned buffer. This means that this 1975 * function is not recommended for use in circumstances when only 1976 * header is going to be modified. Use pskb_copy() instead. 1977 */ 1978 1979 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1980 { 1981 int headerlen = skb_headroom(skb); 1982 unsigned int size = skb_end_offset(skb) + skb->data_len; 1983 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1984 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1985 1986 if (!n) 1987 return NULL; 1988 1989 /* Set the data pointer */ 1990 skb_reserve(n, headerlen); 1991 /* Set the tail pointer and length */ 1992 skb_put(n, skb->len); 1993 1994 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1995 1996 skb_copy_header(n, skb); 1997 return n; 1998 } 1999 EXPORT_SYMBOL(skb_copy); 2000 2001 /** 2002 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2003 * @skb: buffer to copy 2004 * @headroom: headroom of new skb 2005 * @gfp_mask: allocation priority 2006 * @fclone: if true allocate the copy of the skb from the fclone 2007 * cache instead of the head cache; it is recommended to set this 2008 * to true for the cases where the copy will likely be cloned 2009 * 2010 * Make a copy of both an &sk_buff and part of its data, located 2011 * in header. Fragmented data remain shared. This is used when 2012 * the caller wishes to modify only header of &sk_buff and needs 2013 * private copy of the header to alter. Returns %NULL on failure 2014 * or the pointer to the buffer on success. 2015 * The returned buffer has a reference count of 1. 2016 */ 2017 2018 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2019 gfp_t gfp_mask, bool fclone) 2020 { 2021 unsigned int size = skb_headlen(skb) + headroom; 2022 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2023 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2024 2025 if (!n) 2026 goto out; 2027 2028 /* Set the data pointer */ 2029 skb_reserve(n, headroom); 2030 /* Set the tail pointer and length */ 2031 skb_put(n, skb_headlen(skb)); 2032 /* Copy the bytes */ 2033 skb_copy_from_linear_data(skb, n->data, n->len); 2034 2035 n->truesize += skb->data_len; 2036 n->data_len = skb->data_len; 2037 n->len = skb->len; 2038 2039 if (skb_shinfo(skb)->nr_frags) { 2040 int i; 2041 2042 if (skb_orphan_frags(skb, gfp_mask) || 2043 skb_zerocopy_clone(n, skb, gfp_mask)) { 2044 kfree_skb(n); 2045 n = NULL; 2046 goto out; 2047 } 2048 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2049 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2050 skb_frag_ref(skb, i); 2051 } 2052 skb_shinfo(n)->nr_frags = i; 2053 } 2054 2055 if (skb_has_frag_list(skb)) { 2056 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2057 skb_clone_fraglist(n); 2058 } 2059 2060 skb_copy_header(n, skb); 2061 out: 2062 return n; 2063 } 2064 EXPORT_SYMBOL(__pskb_copy_fclone); 2065 2066 /** 2067 * pskb_expand_head - reallocate header of &sk_buff 2068 * @skb: buffer to reallocate 2069 * @nhead: room to add at head 2070 * @ntail: room to add at tail 2071 * @gfp_mask: allocation priority 2072 * 2073 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2074 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2075 * reference count of 1. Returns zero in the case of success or error, 2076 * if expansion failed. In the last case, &sk_buff is not changed. 2077 * 2078 * All the pointers pointing into skb header may change and must be 2079 * reloaded after call to this function. 2080 */ 2081 2082 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2083 gfp_t gfp_mask) 2084 { 2085 unsigned int osize = skb_end_offset(skb); 2086 unsigned int size = osize + nhead + ntail; 2087 long off; 2088 u8 *data; 2089 int i; 2090 2091 BUG_ON(nhead < 0); 2092 2093 BUG_ON(skb_shared(skb)); 2094 2095 skb_zcopy_downgrade_managed(skb); 2096 2097 if (skb_pfmemalloc(skb)) 2098 gfp_mask |= __GFP_MEMALLOC; 2099 2100 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2101 if (!data) 2102 goto nodata; 2103 size = SKB_WITH_OVERHEAD(size); 2104 2105 /* Copy only real data... and, alas, header. This should be 2106 * optimized for the cases when header is void. 2107 */ 2108 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2109 2110 memcpy((struct skb_shared_info *)(data + size), 2111 skb_shinfo(skb), 2112 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2113 2114 /* 2115 * if shinfo is shared we must drop the old head gracefully, but if it 2116 * is not we can just drop the old head and let the existing refcount 2117 * be since all we did is relocate the values 2118 */ 2119 if (skb_cloned(skb)) { 2120 if (skb_orphan_frags(skb, gfp_mask)) 2121 goto nofrags; 2122 if (skb_zcopy(skb)) 2123 refcount_inc(&skb_uarg(skb)->refcnt); 2124 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2125 skb_frag_ref(skb, i); 2126 2127 if (skb_has_frag_list(skb)) 2128 skb_clone_fraglist(skb); 2129 2130 skb_release_data(skb, SKB_CONSUMED, false); 2131 } else { 2132 skb_free_head(skb, false); 2133 } 2134 off = (data + nhead) - skb->head; 2135 2136 skb->head = data; 2137 skb->head_frag = 0; 2138 skb->data += off; 2139 2140 skb_set_end_offset(skb, size); 2141 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2142 off = nhead; 2143 #endif 2144 skb->tail += off; 2145 skb_headers_offset_update(skb, nhead); 2146 skb->cloned = 0; 2147 skb->hdr_len = 0; 2148 skb->nohdr = 0; 2149 atomic_set(&skb_shinfo(skb)->dataref, 1); 2150 2151 skb_metadata_clear(skb); 2152 2153 /* It is not generally safe to change skb->truesize. 2154 * For the moment, we really care of rx path, or 2155 * when skb is orphaned (not attached to a socket). 2156 */ 2157 if (!skb->sk || skb->destructor == sock_edemux) 2158 skb->truesize += size - osize; 2159 2160 return 0; 2161 2162 nofrags: 2163 skb_kfree_head(data, size); 2164 nodata: 2165 return -ENOMEM; 2166 } 2167 EXPORT_SYMBOL(pskb_expand_head); 2168 2169 /* Make private copy of skb with writable head and some headroom */ 2170 2171 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2172 { 2173 struct sk_buff *skb2; 2174 int delta = headroom - skb_headroom(skb); 2175 2176 if (delta <= 0) 2177 skb2 = pskb_copy(skb, GFP_ATOMIC); 2178 else { 2179 skb2 = skb_clone(skb, GFP_ATOMIC); 2180 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2181 GFP_ATOMIC)) { 2182 kfree_skb(skb2); 2183 skb2 = NULL; 2184 } 2185 } 2186 return skb2; 2187 } 2188 EXPORT_SYMBOL(skb_realloc_headroom); 2189 2190 /* Note: We plan to rework this in linux-6.4 */ 2191 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2192 { 2193 unsigned int saved_end_offset, saved_truesize; 2194 struct skb_shared_info *shinfo; 2195 int res; 2196 2197 saved_end_offset = skb_end_offset(skb); 2198 saved_truesize = skb->truesize; 2199 2200 res = pskb_expand_head(skb, 0, 0, pri); 2201 if (res) 2202 return res; 2203 2204 skb->truesize = saved_truesize; 2205 2206 if (likely(skb_end_offset(skb) == saved_end_offset)) 2207 return 0; 2208 2209 /* We can not change skb->end if the original or new value 2210 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2211 */ 2212 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2213 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2214 /* We think this path should not be taken. 2215 * Add a temporary trace to warn us just in case. 2216 */ 2217 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2218 saved_end_offset, skb_end_offset(skb)); 2219 WARN_ON_ONCE(1); 2220 return 0; 2221 } 2222 2223 shinfo = skb_shinfo(skb); 2224 2225 /* We are about to change back skb->end, 2226 * we need to move skb_shinfo() to its new location. 2227 */ 2228 memmove(skb->head + saved_end_offset, 2229 shinfo, 2230 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2231 2232 skb_set_end_offset(skb, saved_end_offset); 2233 2234 return 0; 2235 } 2236 2237 /** 2238 * skb_expand_head - reallocate header of &sk_buff 2239 * @skb: buffer to reallocate 2240 * @headroom: needed headroom 2241 * 2242 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2243 * if possible; copies skb->sk to new skb as needed 2244 * and frees original skb in case of failures. 2245 * 2246 * It expect increased headroom and generates warning otherwise. 2247 */ 2248 2249 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2250 { 2251 int delta = headroom - skb_headroom(skb); 2252 int osize = skb_end_offset(skb); 2253 struct sock *sk = skb->sk; 2254 2255 if (WARN_ONCE(delta <= 0, 2256 "%s is expecting an increase in the headroom", __func__)) 2257 return skb; 2258 2259 delta = SKB_DATA_ALIGN(delta); 2260 /* pskb_expand_head() might crash, if skb is shared. */ 2261 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2262 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2263 2264 if (unlikely(!nskb)) 2265 goto fail; 2266 2267 if (sk) 2268 skb_set_owner_w(nskb, sk); 2269 consume_skb(skb); 2270 skb = nskb; 2271 } 2272 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2273 goto fail; 2274 2275 if (sk && is_skb_wmem(skb)) { 2276 delta = skb_end_offset(skb) - osize; 2277 refcount_add(delta, &sk->sk_wmem_alloc); 2278 skb->truesize += delta; 2279 } 2280 return skb; 2281 2282 fail: 2283 kfree_skb(skb); 2284 return NULL; 2285 } 2286 EXPORT_SYMBOL(skb_expand_head); 2287 2288 /** 2289 * skb_copy_expand - copy and expand sk_buff 2290 * @skb: buffer to copy 2291 * @newheadroom: new free bytes at head 2292 * @newtailroom: new free bytes at tail 2293 * @gfp_mask: allocation priority 2294 * 2295 * Make a copy of both an &sk_buff and its data and while doing so 2296 * allocate additional space. 2297 * 2298 * This is used when the caller wishes to modify the data and needs a 2299 * private copy of the data to alter as well as more space for new fields. 2300 * Returns %NULL on failure or the pointer to the buffer 2301 * on success. The returned buffer has a reference count of 1. 2302 * 2303 * You must pass %GFP_ATOMIC as the allocation priority if this function 2304 * is called from an interrupt. 2305 */ 2306 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2307 int newheadroom, int newtailroom, 2308 gfp_t gfp_mask) 2309 { 2310 /* 2311 * Allocate the copy buffer 2312 */ 2313 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2314 gfp_mask, skb_alloc_rx_flag(skb), 2315 NUMA_NO_NODE); 2316 int oldheadroom = skb_headroom(skb); 2317 int head_copy_len, head_copy_off; 2318 2319 if (!n) 2320 return NULL; 2321 2322 skb_reserve(n, newheadroom); 2323 2324 /* Set the tail pointer and length */ 2325 skb_put(n, skb->len); 2326 2327 head_copy_len = oldheadroom; 2328 head_copy_off = 0; 2329 if (newheadroom <= head_copy_len) 2330 head_copy_len = newheadroom; 2331 else 2332 head_copy_off = newheadroom - head_copy_len; 2333 2334 /* Copy the linear header and data. */ 2335 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2336 skb->len + head_copy_len)); 2337 2338 skb_copy_header(n, skb); 2339 2340 skb_headers_offset_update(n, newheadroom - oldheadroom); 2341 2342 return n; 2343 } 2344 EXPORT_SYMBOL(skb_copy_expand); 2345 2346 /** 2347 * __skb_pad - zero pad the tail of an skb 2348 * @skb: buffer to pad 2349 * @pad: space to pad 2350 * @free_on_error: free buffer on error 2351 * 2352 * Ensure that a buffer is followed by a padding area that is zero 2353 * filled. Used by network drivers which may DMA or transfer data 2354 * beyond the buffer end onto the wire. 2355 * 2356 * May return error in out of memory cases. The skb is freed on error 2357 * if @free_on_error is true. 2358 */ 2359 2360 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2361 { 2362 int err; 2363 int ntail; 2364 2365 /* If the skbuff is non linear tailroom is always zero.. */ 2366 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2367 memset(skb->data+skb->len, 0, pad); 2368 return 0; 2369 } 2370 2371 ntail = skb->data_len + pad - (skb->end - skb->tail); 2372 if (likely(skb_cloned(skb) || ntail > 0)) { 2373 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2374 if (unlikely(err)) 2375 goto free_skb; 2376 } 2377 2378 /* FIXME: The use of this function with non-linear skb's really needs 2379 * to be audited. 2380 */ 2381 err = skb_linearize(skb); 2382 if (unlikely(err)) 2383 goto free_skb; 2384 2385 memset(skb->data + skb->len, 0, pad); 2386 return 0; 2387 2388 free_skb: 2389 if (free_on_error) 2390 kfree_skb(skb); 2391 return err; 2392 } 2393 EXPORT_SYMBOL(__skb_pad); 2394 2395 /** 2396 * pskb_put - add data to the tail of a potentially fragmented buffer 2397 * @skb: start of the buffer to use 2398 * @tail: tail fragment of the buffer to use 2399 * @len: amount of data to add 2400 * 2401 * This function extends the used data area of the potentially 2402 * fragmented buffer. @tail must be the last fragment of @skb -- or 2403 * @skb itself. If this would exceed the total buffer size the kernel 2404 * will panic. A pointer to the first byte of the extra data is 2405 * returned. 2406 */ 2407 2408 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2409 { 2410 if (tail != skb) { 2411 skb->data_len += len; 2412 skb->len += len; 2413 } 2414 return skb_put(tail, len); 2415 } 2416 EXPORT_SYMBOL_GPL(pskb_put); 2417 2418 /** 2419 * skb_put - add data to a buffer 2420 * @skb: buffer to use 2421 * @len: amount of data to add 2422 * 2423 * This function extends the used data area of the buffer. If this would 2424 * exceed the total buffer size the kernel will panic. A pointer to the 2425 * first byte of the extra data is returned. 2426 */ 2427 void *skb_put(struct sk_buff *skb, unsigned int len) 2428 { 2429 void *tmp = skb_tail_pointer(skb); 2430 SKB_LINEAR_ASSERT(skb); 2431 skb->tail += len; 2432 skb->len += len; 2433 if (unlikely(skb->tail > skb->end)) 2434 skb_over_panic(skb, len, __builtin_return_address(0)); 2435 return tmp; 2436 } 2437 EXPORT_SYMBOL(skb_put); 2438 2439 /** 2440 * skb_push - add data to the start of a buffer 2441 * @skb: buffer to use 2442 * @len: amount of data to add 2443 * 2444 * This function extends the used data area of the buffer at the buffer 2445 * start. If this would exceed the total buffer headroom the kernel will 2446 * panic. A pointer to the first byte of the extra data is returned. 2447 */ 2448 void *skb_push(struct sk_buff *skb, unsigned int len) 2449 { 2450 skb->data -= len; 2451 skb->len += len; 2452 if (unlikely(skb->data < skb->head)) 2453 skb_under_panic(skb, len, __builtin_return_address(0)); 2454 return skb->data; 2455 } 2456 EXPORT_SYMBOL(skb_push); 2457 2458 /** 2459 * skb_pull - remove data from the start of a buffer 2460 * @skb: buffer to use 2461 * @len: amount of data to remove 2462 * 2463 * This function removes data from the start of a buffer, returning 2464 * the memory to the headroom. A pointer to the next data in the buffer 2465 * is returned. Once the data has been pulled future pushes will overwrite 2466 * the old data. 2467 */ 2468 void *skb_pull(struct sk_buff *skb, unsigned int len) 2469 { 2470 return skb_pull_inline(skb, len); 2471 } 2472 EXPORT_SYMBOL(skb_pull); 2473 2474 /** 2475 * skb_pull_data - remove data from the start of a buffer returning its 2476 * original position. 2477 * @skb: buffer to use 2478 * @len: amount of data to remove 2479 * 2480 * This function removes data from the start of a buffer, returning 2481 * the memory to the headroom. A pointer to the original data in the buffer 2482 * is returned after checking if there is enough data to pull. Once the 2483 * data has been pulled future pushes will overwrite the old data. 2484 */ 2485 void *skb_pull_data(struct sk_buff *skb, size_t len) 2486 { 2487 void *data = skb->data; 2488 2489 if (skb->len < len) 2490 return NULL; 2491 2492 skb_pull(skb, len); 2493 2494 return data; 2495 } 2496 EXPORT_SYMBOL(skb_pull_data); 2497 2498 /** 2499 * skb_trim - remove end from a buffer 2500 * @skb: buffer to alter 2501 * @len: new length 2502 * 2503 * Cut the length of a buffer down by removing data from the tail. If 2504 * the buffer is already under the length specified it is not modified. 2505 * The skb must be linear. 2506 */ 2507 void skb_trim(struct sk_buff *skb, unsigned int len) 2508 { 2509 if (skb->len > len) 2510 __skb_trim(skb, len); 2511 } 2512 EXPORT_SYMBOL(skb_trim); 2513 2514 /* Trims skb to length len. It can change skb pointers. 2515 */ 2516 2517 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2518 { 2519 struct sk_buff **fragp; 2520 struct sk_buff *frag; 2521 int offset = skb_headlen(skb); 2522 int nfrags = skb_shinfo(skb)->nr_frags; 2523 int i; 2524 int err; 2525 2526 if (skb_cloned(skb) && 2527 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2528 return err; 2529 2530 i = 0; 2531 if (offset >= len) 2532 goto drop_pages; 2533 2534 for (; i < nfrags; i++) { 2535 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2536 2537 if (end < len) { 2538 offset = end; 2539 continue; 2540 } 2541 2542 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2543 2544 drop_pages: 2545 skb_shinfo(skb)->nr_frags = i; 2546 2547 for (; i < nfrags; i++) 2548 skb_frag_unref(skb, i); 2549 2550 if (skb_has_frag_list(skb)) 2551 skb_drop_fraglist(skb); 2552 goto done; 2553 } 2554 2555 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2556 fragp = &frag->next) { 2557 int end = offset + frag->len; 2558 2559 if (skb_shared(frag)) { 2560 struct sk_buff *nfrag; 2561 2562 nfrag = skb_clone(frag, GFP_ATOMIC); 2563 if (unlikely(!nfrag)) 2564 return -ENOMEM; 2565 2566 nfrag->next = frag->next; 2567 consume_skb(frag); 2568 frag = nfrag; 2569 *fragp = frag; 2570 } 2571 2572 if (end < len) { 2573 offset = end; 2574 continue; 2575 } 2576 2577 if (end > len && 2578 unlikely((err = pskb_trim(frag, len - offset)))) 2579 return err; 2580 2581 if (frag->next) 2582 skb_drop_list(&frag->next); 2583 break; 2584 } 2585 2586 done: 2587 if (len > skb_headlen(skb)) { 2588 skb->data_len -= skb->len - len; 2589 skb->len = len; 2590 } else { 2591 skb->len = len; 2592 skb->data_len = 0; 2593 skb_set_tail_pointer(skb, len); 2594 } 2595 2596 if (!skb->sk || skb->destructor == sock_edemux) 2597 skb_condense(skb); 2598 return 0; 2599 } 2600 EXPORT_SYMBOL(___pskb_trim); 2601 2602 /* Note : use pskb_trim_rcsum() instead of calling this directly 2603 */ 2604 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2605 { 2606 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2607 int delta = skb->len - len; 2608 2609 skb->csum = csum_block_sub(skb->csum, 2610 skb_checksum(skb, len, delta, 0), 2611 len); 2612 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2613 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2614 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2615 2616 if (offset + sizeof(__sum16) > hdlen) 2617 return -EINVAL; 2618 } 2619 return __pskb_trim(skb, len); 2620 } 2621 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2622 2623 /** 2624 * __pskb_pull_tail - advance tail of skb header 2625 * @skb: buffer to reallocate 2626 * @delta: number of bytes to advance tail 2627 * 2628 * The function makes a sense only on a fragmented &sk_buff, 2629 * it expands header moving its tail forward and copying necessary 2630 * data from fragmented part. 2631 * 2632 * &sk_buff MUST have reference count of 1. 2633 * 2634 * Returns %NULL (and &sk_buff does not change) if pull failed 2635 * or value of new tail of skb in the case of success. 2636 * 2637 * All the pointers pointing into skb header may change and must be 2638 * reloaded after call to this function. 2639 */ 2640 2641 /* Moves tail of skb head forward, copying data from fragmented part, 2642 * when it is necessary. 2643 * 1. It may fail due to malloc failure. 2644 * 2. It may change skb pointers. 2645 * 2646 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2647 */ 2648 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2649 { 2650 /* If skb has not enough free space at tail, get new one 2651 * plus 128 bytes for future expansions. If we have enough 2652 * room at tail, reallocate without expansion only if skb is cloned. 2653 */ 2654 int i, k, eat = (skb->tail + delta) - skb->end; 2655 2656 if (eat > 0 || skb_cloned(skb)) { 2657 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2658 GFP_ATOMIC)) 2659 return NULL; 2660 } 2661 2662 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2663 skb_tail_pointer(skb), delta)); 2664 2665 /* Optimization: no fragments, no reasons to preestimate 2666 * size of pulled pages. Superb. 2667 */ 2668 if (!skb_has_frag_list(skb)) 2669 goto pull_pages; 2670 2671 /* Estimate size of pulled pages. */ 2672 eat = delta; 2673 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2674 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2675 2676 if (size >= eat) 2677 goto pull_pages; 2678 eat -= size; 2679 } 2680 2681 /* If we need update frag list, we are in troubles. 2682 * Certainly, it is possible to add an offset to skb data, 2683 * but taking into account that pulling is expected to 2684 * be very rare operation, it is worth to fight against 2685 * further bloating skb head and crucify ourselves here instead. 2686 * Pure masohism, indeed. 8)8) 2687 */ 2688 if (eat) { 2689 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2690 struct sk_buff *clone = NULL; 2691 struct sk_buff *insp = NULL; 2692 2693 do { 2694 if (list->len <= eat) { 2695 /* Eaten as whole. */ 2696 eat -= list->len; 2697 list = list->next; 2698 insp = list; 2699 } else { 2700 /* Eaten partially. */ 2701 if (skb_is_gso(skb) && !list->head_frag && 2702 skb_headlen(list)) 2703 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2704 2705 if (skb_shared(list)) { 2706 /* Sucks! We need to fork list. :-( */ 2707 clone = skb_clone(list, GFP_ATOMIC); 2708 if (!clone) 2709 return NULL; 2710 insp = list->next; 2711 list = clone; 2712 } else { 2713 /* This may be pulled without 2714 * problems. */ 2715 insp = list; 2716 } 2717 if (!pskb_pull(list, eat)) { 2718 kfree_skb(clone); 2719 return NULL; 2720 } 2721 break; 2722 } 2723 } while (eat); 2724 2725 /* Free pulled out fragments. */ 2726 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2727 skb_shinfo(skb)->frag_list = list->next; 2728 consume_skb(list); 2729 } 2730 /* And insert new clone at head. */ 2731 if (clone) { 2732 clone->next = list; 2733 skb_shinfo(skb)->frag_list = clone; 2734 } 2735 } 2736 /* Success! Now we may commit changes to skb data. */ 2737 2738 pull_pages: 2739 eat = delta; 2740 k = 0; 2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2742 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2743 2744 if (size <= eat) { 2745 skb_frag_unref(skb, i); 2746 eat -= size; 2747 } else { 2748 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2749 2750 *frag = skb_shinfo(skb)->frags[i]; 2751 if (eat) { 2752 skb_frag_off_add(frag, eat); 2753 skb_frag_size_sub(frag, eat); 2754 if (!i) 2755 goto end; 2756 eat = 0; 2757 } 2758 k++; 2759 } 2760 } 2761 skb_shinfo(skb)->nr_frags = k; 2762 2763 end: 2764 skb->tail += delta; 2765 skb->data_len -= delta; 2766 2767 if (!skb->data_len) 2768 skb_zcopy_clear(skb, false); 2769 2770 return skb_tail_pointer(skb); 2771 } 2772 EXPORT_SYMBOL(__pskb_pull_tail); 2773 2774 /** 2775 * skb_copy_bits - copy bits from skb to kernel buffer 2776 * @skb: source skb 2777 * @offset: offset in source 2778 * @to: destination buffer 2779 * @len: number of bytes to copy 2780 * 2781 * Copy the specified number of bytes from the source skb to the 2782 * destination buffer. 2783 * 2784 * CAUTION ! : 2785 * If its prototype is ever changed, 2786 * check arch/{*}/net/{*}.S files, 2787 * since it is called from BPF assembly code. 2788 */ 2789 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2790 { 2791 int start = skb_headlen(skb); 2792 struct sk_buff *frag_iter; 2793 int i, copy; 2794 2795 if (offset > (int)skb->len - len) 2796 goto fault; 2797 2798 /* Copy header. */ 2799 if ((copy = start - offset) > 0) { 2800 if (copy > len) 2801 copy = len; 2802 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2803 if ((len -= copy) == 0) 2804 return 0; 2805 offset += copy; 2806 to += copy; 2807 } 2808 2809 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2810 int end; 2811 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2812 2813 WARN_ON(start > offset + len); 2814 2815 end = start + skb_frag_size(f); 2816 if ((copy = end - offset) > 0) { 2817 u32 p_off, p_len, copied; 2818 struct page *p; 2819 u8 *vaddr; 2820 2821 if (copy > len) 2822 copy = len; 2823 2824 skb_frag_foreach_page(f, 2825 skb_frag_off(f) + offset - start, 2826 copy, p, p_off, p_len, copied) { 2827 vaddr = kmap_atomic(p); 2828 memcpy(to + copied, vaddr + p_off, p_len); 2829 kunmap_atomic(vaddr); 2830 } 2831 2832 if ((len -= copy) == 0) 2833 return 0; 2834 offset += copy; 2835 to += copy; 2836 } 2837 start = end; 2838 } 2839 2840 skb_walk_frags(skb, frag_iter) { 2841 int end; 2842 2843 WARN_ON(start > offset + len); 2844 2845 end = start + frag_iter->len; 2846 if ((copy = end - offset) > 0) { 2847 if (copy > len) 2848 copy = len; 2849 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2850 goto fault; 2851 if ((len -= copy) == 0) 2852 return 0; 2853 offset += copy; 2854 to += copy; 2855 } 2856 start = end; 2857 } 2858 2859 if (!len) 2860 return 0; 2861 2862 fault: 2863 return -EFAULT; 2864 } 2865 EXPORT_SYMBOL(skb_copy_bits); 2866 2867 /* 2868 * Callback from splice_to_pipe(), if we need to release some pages 2869 * at the end of the spd in case we error'ed out in filling the pipe. 2870 */ 2871 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2872 { 2873 put_page(spd->pages[i]); 2874 } 2875 2876 static struct page *linear_to_page(struct page *page, unsigned int *len, 2877 unsigned int *offset, 2878 struct sock *sk) 2879 { 2880 struct page_frag *pfrag = sk_page_frag(sk); 2881 2882 if (!sk_page_frag_refill(sk, pfrag)) 2883 return NULL; 2884 2885 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2886 2887 memcpy(page_address(pfrag->page) + pfrag->offset, 2888 page_address(page) + *offset, *len); 2889 *offset = pfrag->offset; 2890 pfrag->offset += *len; 2891 2892 return pfrag->page; 2893 } 2894 2895 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2896 struct page *page, 2897 unsigned int offset) 2898 { 2899 return spd->nr_pages && 2900 spd->pages[spd->nr_pages - 1] == page && 2901 (spd->partial[spd->nr_pages - 1].offset + 2902 spd->partial[spd->nr_pages - 1].len == offset); 2903 } 2904 2905 /* 2906 * Fill page/offset/length into spd, if it can hold more pages. 2907 */ 2908 static bool spd_fill_page(struct splice_pipe_desc *spd, 2909 struct pipe_inode_info *pipe, struct page *page, 2910 unsigned int *len, unsigned int offset, 2911 bool linear, 2912 struct sock *sk) 2913 { 2914 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2915 return true; 2916 2917 if (linear) { 2918 page = linear_to_page(page, len, &offset, sk); 2919 if (!page) 2920 return true; 2921 } 2922 if (spd_can_coalesce(spd, page, offset)) { 2923 spd->partial[spd->nr_pages - 1].len += *len; 2924 return false; 2925 } 2926 get_page(page); 2927 spd->pages[spd->nr_pages] = page; 2928 spd->partial[spd->nr_pages].len = *len; 2929 spd->partial[spd->nr_pages].offset = offset; 2930 spd->nr_pages++; 2931 2932 return false; 2933 } 2934 2935 static bool __splice_segment(struct page *page, unsigned int poff, 2936 unsigned int plen, unsigned int *off, 2937 unsigned int *len, 2938 struct splice_pipe_desc *spd, bool linear, 2939 struct sock *sk, 2940 struct pipe_inode_info *pipe) 2941 { 2942 if (!*len) 2943 return true; 2944 2945 /* skip this segment if already processed */ 2946 if (*off >= plen) { 2947 *off -= plen; 2948 return false; 2949 } 2950 2951 /* ignore any bits we already processed */ 2952 poff += *off; 2953 plen -= *off; 2954 *off = 0; 2955 2956 do { 2957 unsigned int flen = min(*len, plen); 2958 2959 if (spd_fill_page(spd, pipe, page, &flen, poff, 2960 linear, sk)) 2961 return true; 2962 poff += flen; 2963 plen -= flen; 2964 *len -= flen; 2965 } while (*len && plen); 2966 2967 return false; 2968 } 2969 2970 /* 2971 * Map linear and fragment data from the skb to spd. It reports true if the 2972 * pipe is full or if we already spliced the requested length. 2973 */ 2974 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2975 unsigned int *offset, unsigned int *len, 2976 struct splice_pipe_desc *spd, struct sock *sk) 2977 { 2978 int seg; 2979 struct sk_buff *iter; 2980 2981 /* map the linear part : 2982 * If skb->head_frag is set, this 'linear' part is backed by a 2983 * fragment, and if the head is not shared with any clones then 2984 * we can avoid a copy since we own the head portion of this page. 2985 */ 2986 if (__splice_segment(virt_to_page(skb->data), 2987 (unsigned long) skb->data & (PAGE_SIZE - 1), 2988 skb_headlen(skb), 2989 offset, len, spd, 2990 skb_head_is_locked(skb), 2991 sk, pipe)) 2992 return true; 2993 2994 /* 2995 * then map the fragments 2996 */ 2997 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2998 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2999 3000 if (__splice_segment(skb_frag_page(f), 3001 skb_frag_off(f), skb_frag_size(f), 3002 offset, len, spd, false, sk, pipe)) 3003 return true; 3004 } 3005 3006 skb_walk_frags(skb, iter) { 3007 if (*offset >= iter->len) { 3008 *offset -= iter->len; 3009 continue; 3010 } 3011 /* __skb_splice_bits() only fails if the output has no room 3012 * left, so no point in going over the frag_list for the error 3013 * case. 3014 */ 3015 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3016 return true; 3017 } 3018 3019 return false; 3020 } 3021 3022 /* 3023 * Map data from the skb to a pipe. Should handle both the linear part, 3024 * the fragments, and the frag list. 3025 */ 3026 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3027 struct pipe_inode_info *pipe, unsigned int tlen, 3028 unsigned int flags) 3029 { 3030 struct partial_page partial[MAX_SKB_FRAGS]; 3031 struct page *pages[MAX_SKB_FRAGS]; 3032 struct splice_pipe_desc spd = { 3033 .pages = pages, 3034 .partial = partial, 3035 .nr_pages_max = MAX_SKB_FRAGS, 3036 .ops = &nosteal_pipe_buf_ops, 3037 .spd_release = sock_spd_release, 3038 }; 3039 int ret = 0; 3040 3041 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3042 3043 if (spd.nr_pages) 3044 ret = splice_to_pipe(pipe, &spd); 3045 3046 return ret; 3047 } 3048 EXPORT_SYMBOL_GPL(skb_splice_bits); 3049 3050 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3051 { 3052 struct socket *sock = sk->sk_socket; 3053 size_t size = msg_data_left(msg); 3054 3055 if (!sock) 3056 return -EINVAL; 3057 3058 if (!sock->ops->sendmsg_locked) 3059 return sock_no_sendmsg_locked(sk, msg, size); 3060 3061 return sock->ops->sendmsg_locked(sk, msg, size); 3062 } 3063 3064 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3065 { 3066 struct socket *sock = sk->sk_socket; 3067 3068 if (!sock) 3069 return -EINVAL; 3070 return sock_sendmsg(sock, msg); 3071 } 3072 3073 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3074 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3075 int len, sendmsg_func sendmsg) 3076 { 3077 unsigned int orig_len = len; 3078 struct sk_buff *head = skb; 3079 unsigned short fragidx; 3080 int slen, ret; 3081 3082 do_frag_list: 3083 3084 /* Deal with head data */ 3085 while (offset < skb_headlen(skb) && len) { 3086 struct kvec kv; 3087 struct msghdr msg; 3088 3089 slen = min_t(int, len, skb_headlen(skb) - offset); 3090 kv.iov_base = skb->data + offset; 3091 kv.iov_len = slen; 3092 memset(&msg, 0, sizeof(msg)); 3093 msg.msg_flags = MSG_DONTWAIT; 3094 3095 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3096 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3097 sendmsg_unlocked, sk, &msg); 3098 if (ret <= 0) 3099 goto error; 3100 3101 offset += ret; 3102 len -= ret; 3103 } 3104 3105 /* All the data was skb head? */ 3106 if (!len) 3107 goto out; 3108 3109 /* Make offset relative to start of frags */ 3110 offset -= skb_headlen(skb); 3111 3112 /* Find where we are in frag list */ 3113 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3114 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3115 3116 if (offset < skb_frag_size(frag)) 3117 break; 3118 3119 offset -= skb_frag_size(frag); 3120 } 3121 3122 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3123 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3124 3125 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3126 3127 while (slen) { 3128 struct bio_vec bvec; 3129 struct msghdr msg = { 3130 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3131 }; 3132 3133 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3134 skb_frag_off(frag) + offset); 3135 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3136 slen); 3137 3138 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3139 sendmsg_unlocked, sk, &msg); 3140 if (ret <= 0) 3141 goto error; 3142 3143 len -= ret; 3144 offset += ret; 3145 slen -= ret; 3146 } 3147 3148 offset = 0; 3149 } 3150 3151 if (len) { 3152 /* Process any frag lists */ 3153 3154 if (skb == head) { 3155 if (skb_has_frag_list(skb)) { 3156 skb = skb_shinfo(skb)->frag_list; 3157 goto do_frag_list; 3158 } 3159 } else if (skb->next) { 3160 skb = skb->next; 3161 goto do_frag_list; 3162 } 3163 } 3164 3165 out: 3166 return orig_len - len; 3167 3168 error: 3169 return orig_len == len ? ret : orig_len - len; 3170 } 3171 3172 /* Send skb data on a socket. Socket must be locked. */ 3173 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3174 int len) 3175 { 3176 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3177 } 3178 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3179 3180 /* Send skb data on a socket. Socket must be unlocked. */ 3181 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3182 { 3183 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3184 } 3185 3186 /** 3187 * skb_store_bits - store bits from kernel buffer to skb 3188 * @skb: destination buffer 3189 * @offset: offset in destination 3190 * @from: source buffer 3191 * @len: number of bytes to copy 3192 * 3193 * Copy the specified number of bytes from the source buffer to the 3194 * destination skb. This function handles all the messy bits of 3195 * traversing fragment lists and such. 3196 */ 3197 3198 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3199 { 3200 int start = skb_headlen(skb); 3201 struct sk_buff *frag_iter; 3202 int i, copy; 3203 3204 if (offset > (int)skb->len - len) 3205 goto fault; 3206 3207 if ((copy = start - offset) > 0) { 3208 if (copy > len) 3209 copy = len; 3210 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3211 if ((len -= copy) == 0) 3212 return 0; 3213 offset += copy; 3214 from += copy; 3215 } 3216 3217 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3219 int end; 3220 3221 WARN_ON(start > offset + len); 3222 3223 end = start + skb_frag_size(frag); 3224 if ((copy = end - offset) > 0) { 3225 u32 p_off, p_len, copied; 3226 struct page *p; 3227 u8 *vaddr; 3228 3229 if (copy > len) 3230 copy = len; 3231 3232 skb_frag_foreach_page(frag, 3233 skb_frag_off(frag) + offset - start, 3234 copy, p, p_off, p_len, copied) { 3235 vaddr = kmap_atomic(p); 3236 memcpy(vaddr + p_off, from + copied, p_len); 3237 kunmap_atomic(vaddr); 3238 } 3239 3240 if ((len -= copy) == 0) 3241 return 0; 3242 offset += copy; 3243 from += copy; 3244 } 3245 start = end; 3246 } 3247 3248 skb_walk_frags(skb, frag_iter) { 3249 int end; 3250 3251 WARN_ON(start > offset + len); 3252 3253 end = start + frag_iter->len; 3254 if ((copy = end - offset) > 0) { 3255 if (copy > len) 3256 copy = len; 3257 if (skb_store_bits(frag_iter, offset - start, 3258 from, copy)) 3259 goto fault; 3260 if ((len -= copy) == 0) 3261 return 0; 3262 offset += copy; 3263 from += copy; 3264 } 3265 start = end; 3266 } 3267 if (!len) 3268 return 0; 3269 3270 fault: 3271 return -EFAULT; 3272 } 3273 EXPORT_SYMBOL(skb_store_bits); 3274 3275 /* Checksum skb data. */ 3276 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3277 __wsum csum, const struct skb_checksum_ops *ops) 3278 { 3279 int start = skb_headlen(skb); 3280 int i, copy = start - offset; 3281 struct sk_buff *frag_iter; 3282 int pos = 0; 3283 3284 /* Checksum header. */ 3285 if (copy > 0) { 3286 if (copy > len) 3287 copy = len; 3288 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3289 skb->data + offset, copy, csum); 3290 if ((len -= copy) == 0) 3291 return csum; 3292 offset += copy; 3293 pos = copy; 3294 } 3295 3296 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3297 int end; 3298 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3299 3300 WARN_ON(start > offset + len); 3301 3302 end = start + skb_frag_size(frag); 3303 if ((copy = end - offset) > 0) { 3304 u32 p_off, p_len, copied; 3305 struct page *p; 3306 __wsum csum2; 3307 u8 *vaddr; 3308 3309 if (copy > len) 3310 copy = len; 3311 3312 skb_frag_foreach_page(frag, 3313 skb_frag_off(frag) + offset - start, 3314 copy, p, p_off, p_len, copied) { 3315 vaddr = kmap_atomic(p); 3316 csum2 = INDIRECT_CALL_1(ops->update, 3317 csum_partial_ext, 3318 vaddr + p_off, p_len, 0); 3319 kunmap_atomic(vaddr); 3320 csum = INDIRECT_CALL_1(ops->combine, 3321 csum_block_add_ext, csum, 3322 csum2, pos, p_len); 3323 pos += p_len; 3324 } 3325 3326 if (!(len -= copy)) 3327 return csum; 3328 offset += copy; 3329 } 3330 start = end; 3331 } 3332 3333 skb_walk_frags(skb, frag_iter) { 3334 int end; 3335 3336 WARN_ON(start > offset + len); 3337 3338 end = start + frag_iter->len; 3339 if ((copy = end - offset) > 0) { 3340 __wsum csum2; 3341 if (copy > len) 3342 copy = len; 3343 csum2 = __skb_checksum(frag_iter, offset - start, 3344 copy, 0, ops); 3345 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3346 csum, csum2, pos, copy); 3347 if ((len -= copy) == 0) 3348 return csum; 3349 offset += copy; 3350 pos += copy; 3351 } 3352 start = end; 3353 } 3354 BUG_ON(len); 3355 3356 return csum; 3357 } 3358 EXPORT_SYMBOL(__skb_checksum); 3359 3360 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3361 int len, __wsum csum) 3362 { 3363 const struct skb_checksum_ops ops = { 3364 .update = csum_partial_ext, 3365 .combine = csum_block_add_ext, 3366 }; 3367 3368 return __skb_checksum(skb, offset, len, csum, &ops); 3369 } 3370 EXPORT_SYMBOL(skb_checksum); 3371 3372 /* Both of above in one bottle. */ 3373 3374 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3375 u8 *to, int len) 3376 { 3377 int start = skb_headlen(skb); 3378 int i, copy = start - offset; 3379 struct sk_buff *frag_iter; 3380 int pos = 0; 3381 __wsum csum = 0; 3382 3383 /* Copy header. */ 3384 if (copy > 0) { 3385 if (copy > len) 3386 copy = len; 3387 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3388 copy); 3389 if ((len -= copy) == 0) 3390 return csum; 3391 offset += copy; 3392 to += copy; 3393 pos = copy; 3394 } 3395 3396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3397 int end; 3398 3399 WARN_ON(start > offset + len); 3400 3401 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3402 if ((copy = end - offset) > 0) { 3403 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3404 u32 p_off, p_len, copied; 3405 struct page *p; 3406 __wsum csum2; 3407 u8 *vaddr; 3408 3409 if (copy > len) 3410 copy = len; 3411 3412 skb_frag_foreach_page(frag, 3413 skb_frag_off(frag) + offset - start, 3414 copy, p, p_off, p_len, copied) { 3415 vaddr = kmap_atomic(p); 3416 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3417 to + copied, 3418 p_len); 3419 kunmap_atomic(vaddr); 3420 csum = csum_block_add(csum, csum2, pos); 3421 pos += p_len; 3422 } 3423 3424 if (!(len -= copy)) 3425 return csum; 3426 offset += copy; 3427 to += copy; 3428 } 3429 start = end; 3430 } 3431 3432 skb_walk_frags(skb, frag_iter) { 3433 __wsum csum2; 3434 int end; 3435 3436 WARN_ON(start > offset + len); 3437 3438 end = start + frag_iter->len; 3439 if ((copy = end - offset) > 0) { 3440 if (copy > len) 3441 copy = len; 3442 csum2 = skb_copy_and_csum_bits(frag_iter, 3443 offset - start, 3444 to, copy); 3445 csum = csum_block_add(csum, csum2, pos); 3446 if ((len -= copy) == 0) 3447 return csum; 3448 offset += copy; 3449 to += copy; 3450 pos += copy; 3451 } 3452 start = end; 3453 } 3454 BUG_ON(len); 3455 return csum; 3456 } 3457 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3458 3459 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3460 { 3461 __sum16 sum; 3462 3463 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3464 /* See comments in __skb_checksum_complete(). */ 3465 if (likely(!sum)) { 3466 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3467 !skb->csum_complete_sw) 3468 netdev_rx_csum_fault(skb->dev, skb); 3469 } 3470 if (!skb_shared(skb)) 3471 skb->csum_valid = !sum; 3472 return sum; 3473 } 3474 EXPORT_SYMBOL(__skb_checksum_complete_head); 3475 3476 /* This function assumes skb->csum already holds pseudo header's checksum, 3477 * which has been changed from the hardware checksum, for example, by 3478 * __skb_checksum_validate_complete(). And, the original skb->csum must 3479 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3480 * 3481 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3482 * zero. The new checksum is stored back into skb->csum unless the skb is 3483 * shared. 3484 */ 3485 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3486 { 3487 __wsum csum; 3488 __sum16 sum; 3489 3490 csum = skb_checksum(skb, 0, skb->len, 0); 3491 3492 sum = csum_fold(csum_add(skb->csum, csum)); 3493 /* This check is inverted, because we already knew the hardware 3494 * checksum is invalid before calling this function. So, if the 3495 * re-computed checksum is valid instead, then we have a mismatch 3496 * between the original skb->csum and skb_checksum(). This means either 3497 * the original hardware checksum is incorrect or we screw up skb->csum 3498 * when moving skb->data around. 3499 */ 3500 if (likely(!sum)) { 3501 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3502 !skb->csum_complete_sw) 3503 netdev_rx_csum_fault(skb->dev, skb); 3504 } 3505 3506 if (!skb_shared(skb)) { 3507 /* Save full packet checksum */ 3508 skb->csum = csum; 3509 skb->ip_summed = CHECKSUM_COMPLETE; 3510 skb->csum_complete_sw = 1; 3511 skb->csum_valid = !sum; 3512 } 3513 3514 return sum; 3515 } 3516 EXPORT_SYMBOL(__skb_checksum_complete); 3517 3518 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3519 { 3520 net_warn_ratelimited( 3521 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3522 __func__); 3523 return 0; 3524 } 3525 3526 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3527 int offset, int len) 3528 { 3529 net_warn_ratelimited( 3530 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3531 __func__); 3532 return 0; 3533 } 3534 3535 static const struct skb_checksum_ops default_crc32c_ops = { 3536 .update = warn_crc32c_csum_update, 3537 .combine = warn_crc32c_csum_combine, 3538 }; 3539 3540 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3541 &default_crc32c_ops; 3542 EXPORT_SYMBOL(crc32c_csum_stub); 3543 3544 /** 3545 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3546 * @from: source buffer 3547 * 3548 * Calculates the amount of linear headroom needed in the 'to' skb passed 3549 * into skb_zerocopy(). 3550 */ 3551 unsigned int 3552 skb_zerocopy_headlen(const struct sk_buff *from) 3553 { 3554 unsigned int hlen = 0; 3555 3556 if (!from->head_frag || 3557 skb_headlen(from) < L1_CACHE_BYTES || 3558 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3559 hlen = skb_headlen(from); 3560 if (!hlen) 3561 hlen = from->len; 3562 } 3563 3564 if (skb_has_frag_list(from)) 3565 hlen = from->len; 3566 3567 return hlen; 3568 } 3569 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3570 3571 /** 3572 * skb_zerocopy - Zero copy skb to skb 3573 * @to: destination buffer 3574 * @from: source buffer 3575 * @len: number of bytes to copy from source buffer 3576 * @hlen: size of linear headroom in destination buffer 3577 * 3578 * Copies up to `len` bytes from `from` to `to` by creating references 3579 * to the frags in the source buffer. 3580 * 3581 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3582 * headroom in the `to` buffer. 3583 * 3584 * Return value: 3585 * 0: everything is OK 3586 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3587 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3588 */ 3589 int 3590 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3591 { 3592 int i, j = 0; 3593 int plen = 0; /* length of skb->head fragment */ 3594 int ret; 3595 struct page *page; 3596 unsigned int offset; 3597 3598 BUG_ON(!from->head_frag && !hlen); 3599 3600 /* dont bother with small payloads */ 3601 if (len <= skb_tailroom(to)) 3602 return skb_copy_bits(from, 0, skb_put(to, len), len); 3603 3604 if (hlen) { 3605 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3606 if (unlikely(ret)) 3607 return ret; 3608 len -= hlen; 3609 } else { 3610 plen = min_t(int, skb_headlen(from), len); 3611 if (plen) { 3612 page = virt_to_head_page(from->head); 3613 offset = from->data - (unsigned char *)page_address(page); 3614 __skb_fill_page_desc(to, 0, page, offset, plen); 3615 get_page(page); 3616 j = 1; 3617 len -= plen; 3618 } 3619 } 3620 3621 skb_len_add(to, len + plen); 3622 3623 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3624 skb_tx_error(from); 3625 return -ENOMEM; 3626 } 3627 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3628 3629 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3630 int size; 3631 3632 if (!len) 3633 break; 3634 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3635 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3636 len); 3637 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3638 len -= size; 3639 skb_frag_ref(to, j); 3640 j++; 3641 } 3642 skb_shinfo(to)->nr_frags = j; 3643 3644 return 0; 3645 } 3646 EXPORT_SYMBOL_GPL(skb_zerocopy); 3647 3648 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3649 { 3650 __wsum csum; 3651 long csstart; 3652 3653 if (skb->ip_summed == CHECKSUM_PARTIAL) 3654 csstart = skb_checksum_start_offset(skb); 3655 else 3656 csstart = skb_headlen(skb); 3657 3658 BUG_ON(csstart > skb_headlen(skb)); 3659 3660 skb_copy_from_linear_data(skb, to, csstart); 3661 3662 csum = 0; 3663 if (csstart != skb->len) 3664 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3665 skb->len - csstart); 3666 3667 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3668 long csstuff = csstart + skb->csum_offset; 3669 3670 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3671 } 3672 } 3673 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3674 3675 /** 3676 * skb_dequeue - remove from the head of the queue 3677 * @list: list to dequeue from 3678 * 3679 * Remove the head of the list. The list lock is taken so the function 3680 * may be used safely with other locking list functions. The head item is 3681 * returned or %NULL if the list is empty. 3682 */ 3683 3684 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3685 { 3686 unsigned long flags; 3687 struct sk_buff *result; 3688 3689 spin_lock_irqsave(&list->lock, flags); 3690 result = __skb_dequeue(list); 3691 spin_unlock_irqrestore(&list->lock, flags); 3692 return result; 3693 } 3694 EXPORT_SYMBOL(skb_dequeue); 3695 3696 /** 3697 * skb_dequeue_tail - remove from the tail of the queue 3698 * @list: list to dequeue from 3699 * 3700 * Remove the tail of the list. The list lock is taken so the function 3701 * may be used safely with other locking list functions. The tail item is 3702 * returned or %NULL if the list is empty. 3703 */ 3704 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3705 { 3706 unsigned long flags; 3707 struct sk_buff *result; 3708 3709 spin_lock_irqsave(&list->lock, flags); 3710 result = __skb_dequeue_tail(list); 3711 spin_unlock_irqrestore(&list->lock, flags); 3712 return result; 3713 } 3714 EXPORT_SYMBOL(skb_dequeue_tail); 3715 3716 /** 3717 * skb_queue_purge_reason - empty a list 3718 * @list: list to empty 3719 * @reason: drop reason 3720 * 3721 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3722 * the list and one reference dropped. This function takes the list 3723 * lock and is atomic with respect to other list locking functions. 3724 */ 3725 void skb_queue_purge_reason(struct sk_buff_head *list, 3726 enum skb_drop_reason reason) 3727 { 3728 struct sk_buff_head tmp; 3729 unsigned long flags; 3730 3731 if (skb_queue_empty_lockless(list)) 3732 return; 3733 3734 __skb_queue_head_init(&tmp); 3735 3736 spin_lock_irqsave(&list->lock, flags); 3737 skb_queue_splice_init(list, &tmp); 3738 spin_unlock_irqrestore(&list->lock, flags); 3739 3740 __skb_queue_purge_reason(&tmp, reason); 3741 } 3742 EXPORT_SYMBOL(skb_queue_purge_reason); 3743 3744 /** 3745 * skb_rbtree_purge - empty a skb rbtree 3746 * @root: root of the rbtree to empty 3747 * Return value: the sum of truesizes of all purged skbs. 3748 * 3749 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3750 * the list and one reference dropped. This function does not take 3751 * any lock. Synchronization should be handled by the caller (e.g., TCP 3752 * out-of-order queue is protected by the socket lock). 3753 */ 3754 unsigned int skb_rbtree_purge(struct rb_root *root) 3755 { 3756 struct rb_node *p = rb_first(root); 3757 unsigned int sum = 0; 3758 3759 while (p) { 3760 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3761 3762 p = rb_next(p); 3763 rb_erase(&skb->rbnode, root); 3764 sum += skb->truesize; 3765 kfree_skb(skb); 3766 } 3767 return sum; 3768 } 3769 3770 void skb_errqueue_purge(struct sk_buff_head *list) 3771 { 3772 struct sk_buff *skb, *next; 3773 struct sk_buff_head kill; 3774 unsigned long flags; 3775 3776 __skb_queue_head_init(&kill); 3777 3778 spin_lock_irqsave(&list->lock, flags); 3779 skb_queue_walk_safe(list, skb, next) { 3780 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3781 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3782 continue; 3783 __skb_unlink(skb, list); 3784 __skb_queue_tail(&kill, skb); 3785 } 3786 spin_unlock_irqrestore(&list->lock, flags); 3787 __skb_queue_purge(&kill); 3788 } 3789 EXPORT_SYMBOL(skb_errqueue_purge); 3790 3791 /** 3792 * skb_queue_head - queue a buffer at the list head 3793 * @list: list to use 3794 * @newsk: buffer to queue 3795 * 3796 * Queue a buffer at the start of the list. This function takes the 3797 * list lock and can be used safely with other locking &sk_buff functions 3798 * safely. 3799 * 3800 * A buffer cannot be placed on two lists at the same time. 3801 */ 3802 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3803 { 3804 unsigned long flags; 3805 3806 spin_lock_irqsave(&list->lock, flags); 3807 __skb_queue_head(list, newsk); 3808 spin_unlock_irqrestore(&list->lock, flags); 3809 } 3810 EXPORT_SYMBOL(skb_queue_head); 3811 3812 /** 3813 * skb_queue_tail - queue a buffer at the list tail 3814 * @list: list to use 3815 * @newsk: buffer to queue 3816 * 3817 * Queue a buffer at the tail of the list. This function takes the 3818 * list lock and can be used safely with other locking &sk_buff functions 3819 * safely. 3820 * 3821 * A buffer cannot be placed on two lists at the same time. 3822 */ 3823 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3824 { 3825 unsigned long flags; 3826 3827 spin_lock_irqsave(&list->lock, flags); 3828 __skb_queue_tail(list, newsk); 3829 spin_unlock_irqrestore(&list->lock, flags); 3830 } 3831 EXPORT_SYMBOL(skb_queue_tail); 3832 3833 /** 3834 * skb_unlink - remove a buffer from a list 3835 * @skb: buffer to remove 3836 * @list: list to use 3837 * 3838 * Remove a packet from a list. The list locks are taken and this 3839 * function is atomic with respect to other list locked calls 3840 * 3841 * You must know what list the SKB is on. 3842 */ 3843 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3844 { 3845 unsigned long flags; 3846 3847 spin_lock_irqsave(&list->lock, flags); 3848 __skb_unlink(skb, list); 3849 spin_unlock_irqrestore(&list->lock, flags); 3850 } 3851 EXPORT_SYMBOL(skb_unlink); 3852 3853 /** 3854 * skb_append - append a buffer 3855 * @old: buffer to insert after 3856 * @newsk: buffer to insert 3857 * @list: list to use 3858 * 3859 * Place a packet after a given packet in a list. The list locks are taken 3860 * and this function is atomic with respect to other list locked calls. 3861 * A buffer cannot be placed on two lists at the same time. 3862 */ 3863 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3864 { 3865 unsigned long flags; 3866 3867 spin_lock_irqsave(&list->lock, flags); 3868 __skb_queue_after(list, old, newsk); 3869 spin_unlock_irqrestore(&list->lock, flags); 3870 } 3871 EXPORT_SYMBOL(skb_append); 3872 3873 static inline void skb_split_inside_header(struct sk_buff *skb, 3874 struct sk_buff* skb1, 3875 const u32 len, const int pos) 3876 { 3877 int i; 3878 3879 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3880 pos - len); 3881 /* And move data appendix as is. */ 3882 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3883 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3884 3885 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3886 skb_shinfo(skb)->nr_frags = 0; 3887 skb1->data_len = skb->data_len; 3888 skb1->len += skb1->data_len; 3889 skb->data_len = 0; 3890 skb->len = len; 3891 skb_set_tail_pointer(skb, len); 3892 } 3893 3894 static inline void skb_split_no_header(struct sk_buff *skb, 3895 struct sk_buff* skb1, 3896 const u32 len, int pos) 3897 { 3898 int i, k = 0; 3899 const int nfrags = skb_shinfo(skb)->nr_frags; 3900 3901 skb_shinfo(skb)->nr_frags = 0; 3902 skb1->len = skb1->data_len = skb->len - len; 3903 skb->len = len; 3904 skb->data_len = len - pos; 3905 3906 for (i = 0; i < nfrags; i++) { 3907 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3908 3909 if (pos + size > len) { 3910 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3911 3912 if (pos < len) { 3913 /* Split frag. 3914 * We have two variants in this case: 3915 * 1. Move all the frag to the second 3916 * part, if it is possible. F.e. 3917 * this approach is mandatory for TUX, 3918 * where splitting is expensive. 3919 * 2. Split is accurately. We make this. 3920 */ 3921 skb_frag_ref(skb, i); 3922 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3923 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3924 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3925 skb_shinfo(skb)->nr_frags++; 3926 } 3927 k++; 3928 } else 3929 skb_shinfo(skb)->nr_frags++; 3930 pos += size; 3931 } 3932 skb_shinfo(skb1)->nr_frags = k; 3933 } 3934 3935 /** 3936 * skb_split - Split fragmented skb to two parts at length len. 3937 * @skb: the buffer to split 3938 * @skb1: the buffer to receive the second part 3939 * @len: new length for skb 3940 */ 3941 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3942 { 3943 int pos = skb_headlen(skb); 3944 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3945 3946 skb_zcopy_downgrade_managed(skb); 3947 3948 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3949 skb_zerocopy_clone(skb1, skb, 0); 3950 if (len < pos) /* Split line is inside header. */ 3951 skb_split_inside_header(skb, skb1, len, pos); 3952 else /* Second chunk has no header, nothing to copy. */ 3953 skb_split_no_header(skb, skb1, len, pos); 3954 } 3955 EXPORT_SYMBOL(skb_split); 3956 3957 /* Shifting from/to a cloned skb is a no-go. 3958 * 3959 * Caller cannot keep skb_shinfo related pointers past calling here! 3960 */ 3961 static int skb_prepare_for_shift(struct sk_buff *skb) 3962 { 3963 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3964 } 3965 3966 /** 3967 * skb_shift - Shifts paged data partially from skb to another 3968 * @tgt: buffer into which tail data gets added 3969 * @skb: buffer from which the paged data comes from 3970 * @shiftlen: shift up to this many bytes 3971 * 3972 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3973 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3974 * It's up to caller to free skb if everything was shifted. 3975 * 3976 * If @tgt runs out of frags, the whole operation is aborted. 3977 * 3978 * Skb cannot include anything else but paged data while tgt is allowed 3979 * to have non-paged data as well. 3980 * 3981 * TODO: full sized shift could be optimized but that would need 3982 * specialized skb free'er to handle frags without up-to-date nr_frags. 3983 */ 3984 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3985 { 3986 int from, to, merge, todo; 3987 skb_frag_t *fragfrom, *fragto; 3988 3989 BUG_ON(shiftlen > skb->len); 3990 3991 if (skb_headlen(skb)) 3992 return 0; 3993 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3994 return 0; 3995 3996 todo = shiftlen; 3997 from = 0; 3998 to = skb_shinfo(tgt)->nr_frags; 3999 fragfrom = &skb_shinfo(skb)->frags[from]; 4000 4001 /* Actual merge is delayed until the point when we know we can 4002 * commit all, so that we don't have to undo partial changes 4003 */ 4004 if (!to || 4005 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4006 skb_frag_off(fragfrom))) { 4007 merge = -1; 4008 } else { 4009 merge = to - 1; 4010 4011 todo -= skb_frag_size(fragfrom); 4012 if (todo < 0) { 4013 if (skb_prepare_for_shift(skb) || 4014 skb_prepare_for_shift(tgt)) 4015 return 0; 4016 4017 /* All previous frag pointers might be stale! */ 4018 fragfrom = &skb_shinfo(skb)->frags[from]; 4019 fragto = &skb_shinfo(tgt)->frags[merge]; 4020 4021 skb_frag_size_add(fragto, shiftlen); 4022 skb_frag_size_sub(fragfrom, shiftlen); 4023 skb_frag_off_add(fragfrom, shiftlen); 4024 4025 goto onlymerged; 4026 } 4027 4028 from++; 4029 } 4030 4031 /* Skip full, not-fitting skb to avoid expensive operations */ 4032 if ((shiftlen == skb->len) && 4033 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4034 return 0; 4035 4036 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4037 return 0; 4038 4039 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4040 if (to == MAX_SKB_FRAGS) 4041 return 0; 4042 4043 fragfrom = &skb_shinfo(skb)->frags[from]; 4044 fragto = &skb_shinfo(tgt)->frags[to]; 4045 4046 if (todo >= skb_frag_size(fragfrom)) { 4047 *fragto = *fragfrom; 4048 todo -= skb_frag_size(fragfrom); 4049 from++; 4050 to++; 4051 4052 } else { 4053 __skb_frag_ref(fragfrom); 4054 skb_frag_page_copy(fragto, fragfrom); 4055 skb_frag_off_copy(fragto, fragfrom); 4056 skb_frag_size_set(fragto, todo); 4057 4058 skb_frag_off_add(fragfrom, todo); 4059 skb_frag_size_sub(fragfrom, todo); 4060 todo = 0; 4061 4062 to++; 4063 break; 4064 } 4065 } 4066 4067 /* Ready to "commit" this state change to tgt */ 4068 skb_shinfo(tgt)->nr_frags = to; 4069 4070 if (merge >= 0) { 4071 fragfrom = &skb_shinfo(skb)->frags[0]; 4072 fragto = &skb_shinfo(tgt)->frags[merge]; 4073 4074 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4075 __skb_frag_unref(fragfrom, skb->pp_recycle); 4076 } 4077 4078 /* Reposition in the original skb */ 4079 to = 0; 4080 while (from < skb_shinfo(skb)->nr_frags) 4081 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4082 skb_shinfo(skb)->nr_frags = to; 4083 4084 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4085 4086 onlymerged: 4087 /* Most likely the tgt won't ever need its checksum anymore, skb on 4088 * the other hand might need it if it needs to be resent 4089 */ 4090 tgt->ip_summed = CHECKSUM_PARTIAL; 4091 skb->ip_summed = CHECKSUM_PARTIAL; 4092 4093 skb_len_add(skb, -shiftlen); 4094 skb_len_add(tgt, shiftlen); 4095 4096 return shiftlen; 4097 } 4098 4099 /** 4100 * skb_prepare_seq_read - Prepare a sequential read of skb data 4101 * @skb: the buffer to read 4102 * @from: lower offset of data to be read 4103 * @to: upper offset of data to be read 4104 * @st: state variable 4105 * 4106 * Initializes the specified state variable. Must be called before 4107 * invoking skb_seq_read() for the first time. 4108 */ 4109 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4110 unsigned int to, struct skb_seq_state *st) 4111 { 4112 st->lower_offset = from; 4113 st->upper_offset = to; 4114 st->root_skb = st->cur_skb = skb; 4115 st->frag_idx = st->stepped_offset = 0; 4116 st->frag_data = NULL; 4117 st->frag_off = 0; 4118 } 4119 EXPORT_SYMBOL(skb_prepare_seq_read); 4120 4121 /** 4122 * skb_seq_read - Sequentially read skb data 4123 * @consumed: number of bytes consumed by the caller so far 4124 * @data: destination pointer for data to be returned 4125 * @st: state variable 4126 * 4127 * Reads a block of skb data at @consumed relative to the 4128 * lower offset specified to skb_prepare_seq_read(). Assigns 4129 * the head of the data block to @data and returns the length 4130 * of the block or 0 if the end of the skb data or the upper 4131 * offset has been reached. 4132 * 4133 * The caller is not required to consume all of the data 4134 * returned, i.e. @consumed is typically set to the number 4135 * of bytes already consumed and the next call to 4136 * skb_seq_read() will return the remaining part of the block. 4137 * 4138 * Note 1: The size of each block of data returned can be arbitrary, 4139 * this limitation is the cost for zerocopy sequential 4140 * reads of potentially non linear data. 4141 * 4142 * Note 2: Fragment lists within fragments are not implemented 4143 * at the moment, state->root_skb could be replaced with 4144 * a stack for this purpose. 4145 */ 4146 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4147 struct skb_seq_state *st) 4148 { 4149 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4150 skb_frag_t *frag; 4151 4152 if (unlikely(abs_offset >= st->upper_offset)) { 4153 if (st->frag_data) { 4154 kunmap_atomic(st->frag_data); 4155 st->frag_data = NULL; 4156 } 4157 return 0; 4158 } 4159 4160 next_skb: 4161 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4162 4163 if (abs_offset < block_limit && !st->frag_data) { 4164 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4165 return block_limit - abs_offset; 4166 } 4167 4168 if (st->frag_idx == 0 && !st->frag_data) 4169 st->stepped_offset += skb_headlen(st->cur_skb); 4170 4171 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4172 unsigned int pg_idx, pg_off, pg_sz; 4173 4174 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4175 4176 pg_idx = 0; 4177 pg_off = skb_frag_off(frag); 4178 pg_sz = skb_frag_size(frag); 4179 4180 if (skb_frag_must_loop(skb_frag_page(frag))) { 4181 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4182 pg_off = offset_in_page(pg_off + st->frag_off); 4183 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4184 PAGE_SIZE - pg_off); 4185 } 4186 4187 block_limit = pg_sz + st->stepped_offset; 4188 if (abs_offset < block_limit) { 4189 if (!st->frag_data) 4190 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4191 4192 *data = (u8 *)st->frag_data + pg_off + 4193 (abs_offset - st->stepped_offset); 4194 4195 return block_limit - abs_offset; 4196 } 4197 4198 if (st->frag_data) { 4199 kunmap_atomic(st->frag_data); 4200 st->frag_data = NULL; 4201 } 4202 4203 st->stepped_offset += pg_sz; 4204 st->frag_off += pg_sz; 4205 if (st->frag_off == skb_frag_size(frag)) { 4206 st->frag_off = 0; 4207 st->frag_idx++; 4208 } 4209 } 4210 4211 if (st->frag_data) { 4212 kunmap_atomic(st->frag_data); 4213 st->frag_data = NULL; 4214 } 4215 4216 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4217 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4218 st->frag_idx = 0; 4219 goto next_skb; 4220 } else if (st->cur_skb->next) { 4221 st->cur_skb = st->cur_skb->next; 4222 st->frag_idx = 0; 4223 goto next_skb; 4224 } 4225 4226 return 0; 4227 } 4228 EXPORT_SYMBOL(skb_seq_read); 4229 4230 /** 4231 * skb_abort_seq_read - Abort a sequential read of skb data 4232 * @st: state variable 4233 * 4234 * Must be called if skb_seq_read() was not called until it 4235 * returned 0. 4236 */ 4237 void skb_abort_seq_read(struct skb_seq_state *st) 4238 { 4239 if (st->frag_data) 4240 kunmap_atomic(st->frag_data); 4241 } 4242 EXPORT_SYMBOL(skb_abort_seq_read); 4243 4244 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4245 4246 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4247 struct ts_config *conf, 4248 struct ts_state *state) 4249 { 4250 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4251 } 4252 4253 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4254 { 4255 skb_abort_seq_read(TS_SKB_CB(state)); 4256 } 4257 4258 /** 4259 * skb_find_text - Find a text pattern in skb data 4260 * @skb: the buffer to look in 4261 * @from: search offset 4262 * @to: search limit 4263 * @config: textsearch configuration 4264 * 4265 * Finds a pattern in the skb data according to the specified 4266 * textsearch configuration. Use textsearch_next() to retrieve 4267 * subsequent occurrences of the pattern. Returns the offset 4268 * to the first occurrence or UINT_MAX if no match was found. 4269 */ 4270 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4271 unsigned int to, struct ts_config *config) 4272 { 4273 unsigned int patlen = config->ops->get_pattern_len(config); 4274 struct ts_state state; 4275 unsigned int ret; 4276 4277 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4278 4279 config->get_next_block = skb_ts_get_next_block; 4280 config->finish = skb_ts_finish; 4281 4282 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4283 4284 ret = textsearch_find(config, &state); 4285 return (ret + patlen <= to - from ? ret : UINT_MAX); 4286 } 4287 EXPORT_SYMBOL(skb_find_text); 4288 4289 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4290 int offset, size_t size, size_t max_frags) 4291 { 4292 int i = skb_shinfo(skb)->nr_frags; 4293 4294 if (skb_can_coalesce(skb, i, page, offset)) { 4295 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4296 } else if (i < max_frags) { 4297 skb_zcopy_downgrade_managed(skb); 4298 get_page(page); 4299 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4300 } else { 4301 return -EMSGSIZE; 4302 } 4303 4304 return 0; 4305 } 4306 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4307 4308 /** 4309 * skb_pull_rcsum - pull skb and update receive checksum 4310 * @skb: buffer to update 4311 * @len: length of data pulled 4312 * 4313 * This function performs an skb_pull on the packet and updates 4314 * the CHECKSUM_COMPLETE checksum. It should be used on 4315 * receive path processing instead of skb_pull unless you know 4316 * that the checksum difference is zero (e.g., a valid IP header) 4317 * or you are setting ip_summed to CHECKSUM_NONE. 4318 */ 4319 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4320 { 4321 unsigned char *data = skb->data; 4322 4323 BUG_ON(len > skb->len); 4324 __skb_pull(skb, len); 4325 skb_postpull_rcsum(skb, data, len); 4326 return skb->data; 4327 } 4328 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4329 4330 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4331 { 4332 skb_frag_t head_frag; 4333 struct page *page; 4334 4335 page = virt_to_head_page(frag_skb->head); 4336 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4337 (unsigned char *)page_address(page), 4338 skb_headlen(frag_skb)); 4339 return head_frag; 4340 } 4341 4342 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4343 netdev_features_t features, 4344 unsigned int offset) 4345 { 4346 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4347 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4348 unsigned int delta_truesize = 0; 4349 unsigned int delta_len = 0; 4350 struct sk_buff *tail = NULL; 4351 struct sk_buff *nskb, *tmp; 4352 int len_diff, err; 4353 4354 skb_push(skb, -skb_network_offset(skb) + offset); 4355 4356 /* Ensure the head is writeable before touching the shared info */ 4357 err = skb_unclone(skb, GFP_ATOMIC); 4358 if (err) 4359 goto err_linearize; 4360 4361 skb_shinfo(skb)->frag_list = NULL; 4362 4363 while (list_skb) { 4364 nskb = list_skb; 4365 list_skb = list_skb->next; 4366 4367 err = 0; 4368 delta_truesize += nskb->truesize; 4369 if (skb_shared(nskb)) { 4370 tmp = skb_clone(nskb, GFP_ATOMIC); 4371 if (tmp) { 4372 consume_skb(nskb); 4373 nskb = tmp; 4374 err = skb_unclone(nskb, GFP_ATOMIC); 4375 } else { 4376 err = -ENOMEM; 4377 } 4378 } 4379 4380 if (!tail) 4381 skb->next = nskb; 4382 else 4383 tail->next = nskb; 4384 4385 if (unlikely(err)) { 4386 nskb->next = list_skb; 4387 goto err_linearize; 4388 } 4389 4390 tail = nskb; 4391 4392 delta_len += nskb->len; 4393 4394 skb_push(nskb, -skb_network_offset(nskb) + offset); 4395 4396 skb_release_head_state(nskb); 4397 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4398 __copy_skb_header(nskb, skb); 4399 4400 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4401 nskb->transport_header += len_diff; 4402 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4403 nskb->data - tnl_hlen, 4404 offset + tnl_hlen); 4405 4406 if (skb_needs_linearize(nskb, features) && 4407 __skb_linearize(nskb)) 4408 goto err_linearize; 4409 } 4410 4411 skb->truesize = skb->truesize - delta_truesize; 4412 skb->data_len = skb->data_len - delta_len; 4413 skb->len = skb->len - delta_len; 4414 4415 skb_gso_reset(skb); 4416 4417 skb->prev = tail; 4418 4419 if (skb_needs_linearize(skb, features) && 4420 __skb_linearize(skb)) 4421 goto err_linearize; 4422 4423 skb_get(skb); 4424 4425 return skb; 4426 4427 err_linearize: 4428 kfree_skb_list(skb->next); 4429 skb->next = NULL; 4430 return ERR_PTR(-ENOMEM); 4431 } 4432 EXPORT_SYMBOL_GPL(skb_segment_list); 4433 4434 /** 4435 * skb_segment - Perform protocol segmentation on skb. 4436 * @head_skb: buffer to segment 4437 * @features: features for the output path (see dev->features) 4438 * 4439 * This function performs segmentation on the given skb. It returns 4440 * a pointer to the first in a list of new skbs for the segments. 4441 * In case of error it returns ERR_PTR(err). 4442 */ 4443 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4444 netdev_features_t features) 4445 { 4446 struct sk_buff *segs = NULL; 4447 struct sk_buff *tail = NULL; 4448 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4449 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4450 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4451 unsigned int offset = doffset; 4452 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4453 unsigned int partial_segs = 0; 4454 unsigned int headroom; 4455 unsigned int len = head_skb->len; 4456 struct sk_buff *frag_skb; 4457 skb_frag_t *frag; 4458 __be16 proto; 4459 bool csum, sg; 4460 int err = -ENOMEM; 4461 int i = 0; 4462 int nfrags, pos; 4463 4464 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4465 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4466 struct sk_buff *check_skb; 4467 4468 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4469 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4470 /* gso_size is untrusted, and we have a frag_list with 4471 * a linear non head_frag item. 4472 * 4473 * If head_skb's headlen does not fit requested gso_size, 4474 * it means that the frag_list members do NOT terminate 4475 * on exact gso_size boundaries. Hence we cannot perform 4476 * skb_frag_t page sharing. Therefore we must fallback to 4477 * copying the frag_list skbs; we do so by disabling SG. 4478 */ 4479 features &= ~NETIF_F_SG; 4480 break; 4481 } 4482 } 4483 } 4484 4485 __skb_push(head_skb, doffset); 4486 proto = skb_network_protocol(head_skb, NULL); 4487 if (unlikely(!proto)) 4488 return ERR_PTR(-EINVAL); 4489 4490 sg = !!(features & NETIF_F_SG); 4491 csum = !!can_checksum_protocol(features, proto); 4492 4493 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4494 if (!(features & NETIF_F_GSO_PARTIAL)) { 4495 struct sk_buff *iter; 4496 unsigned int frag_len; 4497 4498 if (!list_skb || 4499 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4500 goto normal; 4501 4502 /* If we get here then all the required 4503 * GSO features except frag_list are supported. 4504 * Try to split the SKB to multiple GSO SKBs 4505 * with no frag_list. 4506 * Currently we can do that only when the buffers don't 4507 * have a linear part and all the buffers except 4508 * the last are of the same length. 4509 */ 4510 frag_len = list_skb->len; 4511 skb_walk_frags(head_skb, iter) { 4512 if (frag_len != iter->len && iter->next) 4513 goto normal; 4514 if (skb_headlen(iter) && !iter->head_frag) 4515 goto normal; 4516 4517 len -= iter->len; 4518 } 4519 4520 if (len != frag_len) 4521 goto normal; 4522 } 4523 4524 /* GSO partial only requires that we trim off any excess that 4525 * doesn't fit into an MSS sized block, so take care of that 4526 * now. 4527 * Cap len to not accidentally hit GSO_BY_FRAGS. 4528 */ 4529 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4530 if (partial_segs > 1) 4531 mss *= partial_segs; 4532 else 4533 partial_segs = 0; 4534 } 4535 4536 normal: 4537 headroom = skb_headroom(head_skb); 4538 pos = skb_headlen(head_skb); 4539 4540 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4541 return ERR_PTR(-ENOMEM); 4542 4543 nfrags = skb_shinfo(head_skb)->nr_frags; 4544 frag = skb_shinfo(head_skb)->frags; 4545 frag_skb = head_skb; 4546 4547 do { 4548 struct sk_buff *nskb; 4549 skb_frag_t *nskb_frag; 4550 int hsize; 4551 int size; 4552 4553 if (unlikely(mss == GSO_BY_FRAGS)) { 4554 len = list_skb->len; 4555 } else { 4556 len = head_skb->len - offset; 4557 if (len > mss) 4558 len = mss; 4559 } 4560 4561 hsize = skb_headlen(head_skb) - offset; 4562 4563 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4564 (skb_headlen(list_skb) == len || sg)) { 4565 BUG_ON(skb_headlen(list_skb) > len); 4566 4567 nskb = skb_clone(list_skb, GFP_ATOMIC); 4568 if (unlikely(!nskb)) 4569 goto err; 4570 4571 i = 0; 4572 nfrags = skb_shinfo(list_skb)->nr_frags; 4573 frag = skb_shinfo(list_skb)->frags; 4574 frag_skb = list_skb; 4575 pos += skb_headlen(list_skb); 4576 4577 while (pos < offset + len) { 4578 BUG_ON(i >= nfrags); 4579 4580 size = skb_frag_size(frag); 4581 if (pos + size > offset + len) 4582 break; 4583 4584 i++; 4585 pos += size; 4586 frag++; 4587 } 4588 4589 list_skb = list_skb->next; 4590 4591 if (unlikely(pskb_trim(nskb, len))) { 4592 kfree_skb(nskb); 4593 goto err; 4594 } 4595 4596 hsize = skb_end_offset(nskb); 4597 if (skb_cow_head(nskb, doffset + headroom)) { 4598 kfree_skb(nskb); 4599 goto err; 4600 } 4601 4602 nskb->truesize += skb_end_offset(nskb) - hsize; 4603 skb_release_head_state(nskb); 4604 __skb_push(nskb, doffset); 4605 } else { 4606 if (hsize < 0) 4607 hsize = 0; 4608 if (hsize > len || !sg) 4609 hsize = len; 4610 4611 nskb = __alloc_skb(hsize + doffset + headroom, 4612 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4613 NUMA_NO_NODE); 4614 4615 if (unlikely(!nskb)) 4616 goto err; 4617 4618 skb_reserve(nskb, headroom); 4619 __skb_put(nskb, doffset); 4620 } 4621 4622 if (segs) 4623 tail->next = nskb; 4624 else 4625 segs = nskb; 4626 tail = nskb; 4627 4628 __copy_skb_header(nskb, head_skb); 4629 4630 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4631 skb_reset_mac_len(nskb); 4632 4633 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4634 nskb->data - tnl_hlen, 4635 doffset + tnl_hlen); 4636 4637 if (nskb->len == len + doffset) 4638 goto perform_csum_check; 4639 4640 if (!sg) { 4641 if (!csum) { 4642 if (!nskb->remcsum_offload) 4643 nskb->ip_summed = CHECKSUM_NONE; 4644 SKB_GSO_CB(nskb)->csum = 4645 skb_copy_and_csum_bits(head_skb, offset, 4646 skb_put(nskb, 4647 len), 4648 len); 4649 SKB_GSO_CB(nskb)->csum_start = 4650 skb_headroom(nskb) + doffset; 4651 } else { 4652 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4653 goto err; 4654 } 4655 continue; 4656 } 4657 4658 nskb_frag = skb_shinfo(nskb)->frags; 4659 4660 skb_copy_from_linear_data_offset(head_skb, offset, 4661 skb_put(nskb, hsize), hsize); 4662 4663 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4664 SKBFL_SHARED_FRAG; 4665 4666 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4667 goto err; 4668 4669 while (pos < offset + len) { 4670 if (i >= nfrags) { 4671 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4672 skb_zerocopy_clone(nskb, list_skb, 4673 GFP_ATOMIC)) 4674 goto err; 4675 4676 i = 0; 4677 nfrags = skb_shinfo(list_skb)->nr_frags; 4678 frag = skb_shinfo(list_skb)->frags; 4679 frag_skb = list_skb; 4680 if (!skb_headlen(list_skb)) { 4681 BUG_ON(!nfrags); 4682 } else { 4683 BUG_ON(!list_skb->head_frag); 4684 4685 /* to make room for head_frag. */ 4686 i--; 4687 frag--; 4688 } 4689 4690 list_skb = list_skb->next; 4691 } 4692 4693 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4694 MAX_SKB_FRAGS)) { 4695 net_warn_ratelimited( 4696 "skb_segment: too many frags: %u %u\n", 4697 pos, mss); 4698 err = -EINVAL; 4699 goto err; 4700 } 4701 4702 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4703 __skb_frag_ref(nskb_frag); 4704 size = skb_frag_size(nskb_frag); 4705 4706 if (pos < offset) { 4707 skb_frag_off_add(nskb_frag, offset - pos); 4708 skb_frag_size_sub(nskb_frag, offset - pos); 4709 } 4710 4711 skb_shinfo(nskb)->nr_frags++; 4712 4713 if (pos + size <= offset + len) { 4714 i++; 4715 frag++; 4716 pos += size; 4717 } else { 4718 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4719 goto skip_fraglist; 4720 } 4721 4722 nskb_frag++; 4723 } 4724 4725 skip_fraglist: 4726 nskb->data_len = len - hsize; 4727 nskb->len += nskb->data_len; 4728 nskb->truesize += nskb->data_len; 4729 4730 perform_csum_check: 4731 if (!csum) { 4732 if (skb_has_shared_frag(nskb) && 4733 __skb_linearize(nskb)) 4734 goto err; 4735 4736 if (!nskb->remcsum_offload) 4737 nskb->ip_summed = CHECKSUM_NONE; 4738 SKB_GSO_CB(nskb)->csum = 4739 skb_checksum(nskb, doffset, 4740 nskb->len - doffset, 0); 4741 SKB_GSO_CB(nskb)->csum_start = 4742 skb_headroom(nskb) + doffset; 4743 } 4744 } while ((offset += len) < head_skb->len); 4745 4746 /* Some callers want to get the end of the list. 4747 * Put it in segs->prev to avoid walking the list. 4748 * (see validate_xmit_skb_list() for example) 4749 */ 4750 segs->prev = tail; 4751 4752 if (partial_segs) { 4753 struct sk_buff *iter; 4754 int type = skb_shinfo(head_skb)->gso_type; 4755 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4756 4757 /* Update type to add partial and then remove dodgy if set */ 4758 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4759 type &= ~SKB_GSO_DODGY; 4760 4761 /* Update GSO info and prepare to start updating headers on 4762 * our way back down the stack of protocols. 4763 */ 4764 for (iter = segs; iter; iter = iter->next) { 4765 skb_shinfo(iter)->gso_size = gso_size; 4766 skb_shinfo(iter)->gso_segs = partial_segs; 4767 skb_shinfo(iter)->gso_type = type; 4768 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4769 } 4770 4771 if (tail->len - doffset <= gso_size) 4772 skb_shinfo(tail)->gso_size = 0; 4773 else if (tail != segs) 4774 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4775 } 4776 4777 /* Following permits correct backpressure, for protocols 4778 * using skb_set_owner_w(). 4779 * Idea is to tranfert ownership from head_skb to last segment. 4780 */ 4781 if (head_skb->destructor == sock_wfree) { 4782 swap(tail->truesize, head_skb->truesize); 4783 swap(tail->destructor, head_skb->destructor); 4784 swap(tail->sk, head_skb->sk); 4785 } 4786 return segs; 4787 4788 err: 4789 kfree_skb_list(segs); 4790 return ERR_PTR(err); 4791 } 4792 EXPORT_SYMBOL_GPL(skb_segment); 4793 4794 #ifdef CONFIG_SKB_EXTENSIONS 4795 #define SKB_EXT_ALIGN_VALUE 8 4796 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4797 4798 static const u8 skb_ext_type_len[] = { 4799 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4800 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4801 #endif 4802 #ifdef CONFIG_XFRM 4803 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4804 #endif 4805 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4806 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4807 #endif 4808 #if IS_ENABLED(CONFIG_MPTCP) 4809 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4810 #endif 4811 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4812 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4813 #endif 4814 }; 4815 4816 static __always_inline unsigned int skb_ext_total_length(void) 4817 { 4818 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4819 int i; 4820 4821 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4822 l += skb_ext_type_len[i]; 4823 4824 return l; 4825 } 4826 4827 static void skb_extensions_init(void) 4828 { 4829 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4830 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4831 BUILD_BUG_ON(skb_ext_total_length() > 255); 4832 #endif 4833 4834 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4835 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4836 0, 4837 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4838 NULL); 4839 } 4840 #else 4841 static void skb_extensions_init(void) {} 4842 #endif 4843 4844 /* The SKB kmem_cache slab is critical for network performance. Never 4845 * merge/alias the slab with similar sized objects. This avoids fragmentation 4846 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4847 */ 4848 #ifndef CONFIG_SLUB_TINY 4849 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4850 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4851 #define FLAG_SKB_NO_MERGE 0 4852 #endif 4853 4854 void __init skb_init(void) 4855 { 4856 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4857 sizeof(struct sk_buff), 4858 0, 4859 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4860 FLAG_SKB_NO_MERGE, 4861 offsetof(struct sk_buff, cb), 4862 sizeof_field(struct sk_buff, cb), 4863 NULL); 4864 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4865 sizeof(struct sk_buff_fclones), 4866 0, 4867 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4868 NULL); 4869 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4870 * struct skb_shared_info is located at the end of skb->head, 4871 * and should not be copied to/from user. 4872 */ 4873 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4874 SKB_SMALL_HEAD_CACHE_SIZE, 4875 0, 4876 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4877 0, 4878 SKB_SMALL_HEAD_HEADROOM, 4879 NULL); 4880 skb_extensions_init(); 4881 } 4882 4883 static int 4884 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4885 unsigned int recursion_level) 4886 { 4887 int start = skb_headlen(skb); 4888 int i, copy = start - offset; 4889 struct sk_buff *frag_iter; 4890 int elt = 0; 4891 4892 if (unlikely(recursion_level >= 24)) 4893 return -EMSGSIZE; 4894 4895 if (copy > 0) { 4896 if (copy > len) 4897 copy = len; 4898 sg_set_buf(sg, skb->data + offset, copy); 4899 elt++; 4900 if ((len -= copy) == 0) 4901 return elt; 4902 offset += copy; 4903 } 4904 4905 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4906 int end; 4907 4908 WARN_ON(start > offset + len); 4909 4910 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4911 if ((copy = end - offset) > 0) { 4912 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4913 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4914 return -EMSGSIZE; 4915 4916 if (copy > len) 4917 copy = len; 4918 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4919 skb_frag_off(frag) + offset - start); 4920 elt++; 4921 if (!(len -= copy)) 4922 return elt; 4923 offset += copy; 4924 } 4925 start = end; 4926 } 4927 4928 skb_walk_frags(skb, frag_iter) { 4929 int end, ret; 4930 4931 WARN_ON(start > offset + len); 4932 4933 end = start + frag_iter->len; 4934 if ((copy = end - offset) > 0) { 4935 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4936 return -EMSGSIZE; 4937 4938 if (copy > len) 4939 copy = len; 4940 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4941 copy, recursion_level + 1); 4942 if (unlikely(ret < 0)) 4943 return ret; 4944 elt += ret; 4945 if ((len -= copy) == 0) 4946 return elt; 4947 offset += copy; 4948 } 4949 start = end; 4950 } 4951 BUG_ON(len); 4952 return elt; 4953 } 4954 4955 /** 4956 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4957 * @skb: Socket buffer containing the buffers to be mapped 4958 * @sg: The scatter-gather list to map into 4959 * @offset: The offset into the buffer's contents to start mapping 4960 * @len: Length of buffer space to be mapped 4961 * 4962 * Fill the specified scatter-gather list with mappings/pointers into a 4963 * region of the buffer space attached to a socket buffer. Returns either 4964 * the number of scatterlist items used, or -EMSGSIZE if the contents 4965 * could not fit. 4966 */ 4967 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4968 { 4969 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4970 4971 if (nsg <= 0) 4972 return nsg; 4973 4974 sg_mark_end(&sg[nsg - 1]); 4975 4976 return nsg; 4977 } 4978 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4979 4980 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4981 * sglist without mark the sg which contain last skb data as the end. 4982 * So the caller can mannipulate sg list as will when padding new data after 4983 * the first call without calling sg_unmark_end to expend sg list. 4984 * 4985 * Scenario to use skb_to_sgvec_nomark: 4986 * 1. sg_init_table 4987 * 2. skb_to_sgvec_nomark(payload1) 4988 * 3. skb_to_sgvec_nomark(payload2) 4989 * 4990 * This is equivalent to: 4991 * 1. sg_init_table 4992 * 2. skb_to_sgvec(payload1) 4993 * 3. sg_unmark_end 4994 * 4. skb_to_sgvec(payload2) 4995 * 4996 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4997 * is more preferable. 4998 */ 4999 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5000 int offset, int len) 5001 { 5002 return __skb_to_sgvec(skb, sg, offset, len, 0); 5003 } 5004 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5005 5006 5007 5008 /** 5009 * skb_cow_data - Check that a socket buffer's data buffers are writable 5010 * @skb: The socket buffer to check. 5011 * @tailbits: Amount of trailing space to be added 5012 * @trailer: Returned pointer to the skb where the @tailbits space begins 5013 * 5014 * Make sure that the data buffers attached to a socket buffer are 5015 * writable. If they are not, private copies are made of the data buffers 5016 * and the socket buffer is set to use these instead. 5017 * 5018 * If @tailbits is given, make sure that there is space to write @tailbits 5019 * bytes of data beyond current end of socket buffer. @trailer will be 5020 * set to point to the skb in which this space begins. 5021 * 5022 * The number of scatterlist elements required to completely map the 5023 * COW'd and extended socket buffer will be returned. 5024 */ 5025 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5026 { 5027 int copyflag; 5028 int elt; 5029 struct sk_buff *skb1, **skb_p; 5030 5031 /* If skb is cloned or its head is paged, reallocate 5032 * head pulling out all the pages (pages are considered not writable 5033 * at the moment even if they are anonymous). 5034 */ 5035 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5036 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5037 return -ENOMEM; 5038 5039 /* Easy case. Most of packets will go this way. */ 5040 if (!skb_has_frag_list(skb)) { 5041 /* A little of trouble, not enough of space for trailer. 5042 * This should not happen, when stack is tuned to generate 5043 * good frames. OK, on miss we reallocate and reserve even more 5044 * space, 128 bytes is fair. */ 5045 5046 if (skb_tailroom(skb) < tailbits && 5047 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5048 return -ENOMEM; 5049 5050 /* Voila! */ 5051 *trailer = skb; 5052 return 1; 5053 } 5054 5055 /* Misery. We are in troubles, going to mincer fragments... */ 5056 5057 elt = 1; 5058 skb_p = &skb_shinfo(skb)->frag_list; 5059 copyflag = 0; 5060 5061 while ((skb1 = *skb_p) != NULL) { 5062 int ntail = 0; 5063 5064 /* The fragment is partially pulled by someone, 5065 * this can happen on input. Copy it and everything 5066 * after it. */ 5067 5068 if (skb_shared(skb1)) 5069 copyflag = 1; 5070 5071 /* If the skb is the last, worry about trailer. */ 5072 5073 if (skb1->next == NULL && tailbits) { 5074 if (skb_shinfo(skb1)->nr_frags || 5075 skb_has_frag_list(skb1) || 5076 skb_tailroom(skb1) < tailbits) 5077 ntail = tailbits + 128; 5078 } 5079 5080 if (copyflag || 5081 skb_cloned(skb1) || 5082 ntail || 5083 skb_shinfo(skb1)->nr_frags || 5084 skb_has_frag_list(skb1)) { 5085 struct sk_buff *skb2; 5086 5087 /* Fuck, we are miserable poor guys... */ 5088 if (ntail == 0) 5089 skb2 = skb_copy(skb1, GFP_ATOMIC); 5090 else 5091 skb2 = skb_copy_expand(skb1, 5092 skb_headroom(skb1), 5093 ntail, 5094 GFP_ATOMIC); 5095 if (unlikely(skb2 == NULL)) 5096 return -ENOMEM; 5097 5098 if (skb1->sk) 5099 skb_set_owner_w(skb2, skb1->sk); 5100 5101 /* Looking around. Are we still alive? 5102 * OK, link new skb, drop old one */ 5103 5104 skb2->next = skb1->next; 5105 *skb_p = skb2; 5106 kfree_skb(skb1); 5107 skb1 = skb2; 5108 } 5109 elt++; 5110 *trailer = skb1; 5111 skb_p = &skb1->next; 5112 } 5113 5114 return elt; 5115 } 5116 EXPORT_SYMBOL_GPL(skb_cow_data); 5117 5118 static void sock_rmem_free(struct sk_buff *skb) 5119 { 5120 struct sock *sk = skb->sk; 5121 5122 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5123 } 5124 5125 static void skb_set_err_queue(struct sk_buff *skb) 5126 { 5127 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5128 * So, it is safe to (mis)use it to mark skbs on the error queue. 5129 */ 5130 skb->pkt_type = PACKET_OUTGOING; 5131 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5132 } 5133 5134 /* 5135 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5136 */ 5137 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5138 { 5139 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5140 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5141 return -ENOMEM; 5142 5143 skb_orphan(skb); 5144 skb->sk = sk; 5145 skb->destructor = sock_rmem_free; 5146 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5147 skb_set_err_queue(skb); 5148 5149 /* before exiting rcu section, make sure dst is refcounted */ 5150 skb_dst_force(skb); 5151 5152 skb_queue_tail(&sk->sk_error_queue, skb); 5153 if (!sock_flag(sk, SOCK_DEAD)) 5154 sk_error_report(sk); 5155 return 0; 5156 } 5157 EXPORT_SYMBOL(sock_queue_err_skb); 5158 5159 static bool is_icmp_err_skb(const struct sk_buff *skb) 5160 { 5161 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5162 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5163 } 5164 5165 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5166 { 5167 struct sk_buff_head *q = &sk->sk_error_queue; 5168 struct sk_buff *skb, *skb_next = NULL; 5169 bool icmp_next = false; 5170 unsigned long flags; 5171 5172 if (skb_queue_empty_lockless(q)) 5173 return NULL; 5174 5175 spin_lock_irqsave(&q->lock, flags); 5176 skb = __skb_dequeue(q); 5177 if (skb && (skb_next = skb_peek(q))) { 5178 icmp_next = is_icmp_err_skb(skb_next); 5179 if (icmp_next) 5180 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5181 } 5182 spin_unlock_irqrestore(&q->lock, flags); 5183 5184 if (is_icmp_err_skb(skb) && !icmp_next) 5185 sk->sk_err = 0; 5186 5187 if (skb_next) 5188 sk_error_report(sk); 5189 5190 return skb; 5191 } 5192 EXPORT_SYMBOL(sock_dequeue_err_skb); 5193 5194 /** 5195 * skb_clone_sk - create clone of skb, and take reference to socket 5196 * @skb: the skb to clone 5197 * 5198 * This function creates a clone of a buffer that holds a reference on 5199 * sk_refcnt. Buffers created via this function are meant to be 5200 * returned using sock_queue_err_skb, or free via kfree_skb. 5201 * 5202 * When passing buffers allocated with this function to sock_queue_err_skb 5203 * it is necessary to wrap the call with sock_hold/sock_put in order to 5204 * prevent the socket from being released prior to being enqueued on 5205 * the sk_error_queue. 5206 */ 5207 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5208 { 5209 struct sock *sk = skb->sk; 5210 struct sk_buff *clone; 5211 5212 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5213 return NULL; 5214 5215 clone = skb_clone(skb, GFP_ATOMIC); 5216 if (!clone) { 5217 sock_put(sk); 5218 return NULL; 5219 } 5220 5221 clone->sk = sk; 5222 clone->destructor = sock_efree; 5223 5224 return clone; 5225 } 5226 EXPORT_SYMBOL(skb_clone_sk); 5227 5228 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5229 struct sock *sk, 5230 int tstype, 5231 bool opt_stats) 5232 { 5233 struct sock_exterr_skb *serr; 5234 int err; 5235 5236 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5237 5238 serr = SKB_EXT_ERR(skb); 5239 memset(serr, 0, sizeof(*serr)); 5240 serr->ee.ee_errno = ENOMSG; 5241 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5242 serr->ee.ee_info = tstype; 5243 serr->opt_stats = opt_stats; 5244 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5245 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5246 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5247 if (sk_is_tcp(sk)) 5248 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5249 } 5250 5251 err = sock_queue_err_skb(sk, skb); 5252 5253 if (err) 5254 kfree_skb(skb); 5255 } 5256 5257 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5258 { 5259 bool ret; 5260 5261 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5262 return true; 5263 5264 read_lock_bh(&sk->sk_callback_lock); 5265 ret = sk->sk_socket && sk->sk_socket->file && 5266 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5267 read_unlock_bh(&sk->sk_callback_lock); 5268 return ret; 5269 } 5270 5271 void skb_complete_tx_timestamp(struct sk_buff *skb, 5272 struct skb_shared_hwtstamps *hwtstamps) 5273 { 5274 struct sock *sk = skb->sk; 5275 5276 if (!skb_may_tx_timestamp(sk, false)) 5277 goto err; 5278 5279 /* Take a reference to prevent skb_orphan() from freeing the socket, 5280 * but only if the socket refcount is not zero. 5281 */ 5282 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5283 *skb_hwtstamps(skb) = *hwtstamps; 5284 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5285 sock_put(sk); 5286 return; 5287 } 5288 5289 err: 5290 kfree_skb(skb); 5291 } 5292 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5293 5294 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5295 const struct sk_buff *ack_skb, 5296 struct skb_shared_hwtstamps *hwtstamps, 5297 struct sock *sk, int tstype) 5298 { 5299 struct sk_buff *skb; 5300 bool tsonly, opt_stats = false; 5301 u32 tsflags; 5302 5303 if (!sk) 5304 return; 5305 5306 tsflags = READ_ONCE(sk->sk_tsflags); 5307 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5308 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5309 return; 5310 5311 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5312 if (!skb_may_tx_timestamp(sk, tsonly)) 5313 return; 5314 5315 if (tsonly) { 5316 #ifdef CONFIG_INET 5317 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5318 sk_is_tcp(sk)) { 5319 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5320 ack_skb); 5321 opt_stats = true; 5322 } else 5323 #endif 5324 skb = alloc_skb(0, GFP_ATOMIC); 5325 } else { 5326 skb = skb_clone(orig_skb, GFP_ATOMIC); 5327 5328 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5329 kfree_skb(skb); 5330 return; 5331 } 5332 } 5333 if (!skb) 5334 return; 5335 5336 if (tsonly) { 5337 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5338 SKBTX_ANY_TSTAMP; 5339 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5340 } 5341 5342 if (hwtstamps) 5343 *skb_hwtstamps(skb) = *hwtstamps; 5344 else 5345 __net_timestamp(skb); 5346 5347 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5348 } 5349 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5350 5351 void skb_tstamp_tx(struct sk_buff *orig_skb, 5352 struct skb_shared_hwtstamps *hwtstamps) 5353 { 5354 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5355 SCM_TSTAMP_SND); 5356 } 5357 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5358 5359 #ifdef CONFIG_WIRELESS 5360 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5361 { 5362 struct sock *sk = skb->sk; 5363 struct sock_exterr_skb *serr; 5364 int err = 1; 5365 5366 skb->wifi_acked_valid = 1; 5367 skb->wifi_acked = acked; 5368 5369 serr = SKB_EXT_ERR(skb); 5370 memset(serr, 0, sizeof(*serr)); 5371 serr->ee.ee_errno = ENOMSG; 5372 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5373 5374 /* Take a reference to prevent skb_orphan() from freeing the socket, 5375 * but only if the socket refcount is not zero. 5376 */ 5377 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5378 err = sock_queue_err_skb(sk, skb); 5379 sock_put(sk); 5380 } 5381 if (err) 5382 kfree_skb(skb); 5383 } 5384 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5385 #endif /* CONFIG_WIRELESS */ 5386 5387 /** 5388 * skb_partial_csum_set - set up and verify partial csum values for packet 5389 * @skb: the skb to set 5390 * @start: the number of bytes after skb->data to start checksumming. 5391 * @off: the offset from start to place the checksum. 5392 * 5393 * For untrusted partially-checksummed packets, we need to make sure the values 5394 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5395 * 5396 * This function checks and sets those values and skb->ip_summed: if this 5397 * returns false you should drop the packet. 5398 */ 5399 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5400 { 5401 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5402 u32 csum_start = skb_headroom(skb) + (u32)start; 5403 5404 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5405 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5406 start, off, skb_headroom(skb), skb_headlen(skb)); 5407 return false; 5408 } 5409 skb->ip_summed = CHECKSUM_PARTIAL; 5410 skb->csum_start = csum_start; 5411 skb->csum_offset = off; 5412 skb->transport_header = csum_start; 5413 return true; 5414 } 5415 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5416 5417 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5418 unsigned int max) 5419 { 5420 if (skb_headlen(skb) >= len) 5421 return 0; 5422 5423 /* If we need to pullup then pullup to the max, so we 5424 * won't need to do it again. 5425 */ 5426 if (max > skb->len) 5427 max = skb->len; 5428 5429 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5430 return -ENOMEM; 5431 5432 if (skb_headlen(skb) < len) 5433 return -EPROTO; 5434 5435 return 0; 5436 } 5437 5438 #define MAX_TCP_HDR_LEN (15 * 4) 5439 5440 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5441 typeof(IPPROTO_IP) proto, 5442 unsigned int off) 5443 { 5444 int err; 5445 5446 switch (proto) { 5447 case IPPROTO_TCP: 5448 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5449 off + MAX_TCP_HDR_LEN); 5450 if (!err && !skb_partial_csum_set(skb, off, 5451 offsetof(struct tcphdr, 5452 check))) 5453 err = -EPROTO; 5454 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5455 5456 case IPPROTO_UDP: 5457 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5458 off + sizeof(struct udphdr)); 5459 if (!err && !skb_partial_csum_set(skb, off, 5460 offsetof(struct udphdr, 5461 check))) 5462 err = -EPROTO; 5463 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5464 } 5465 5466 return ERR_PTR(-EPROTO); 5467 } 5468 5469 /* This value should be large enough to cover a tagged ethernet header plus 5470 * maximally sized IP and TCP or UDP headers. 5471 */ 5472 #define MAX_IP_HDR_LEN 128 5473 5474 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5475 { 5476 unsigned int off; 5477 bool fragment; 5478 __sum16 *csum; 5479 int err; 5480 5481 fragment = false; 5482 5483 err = skb_maybe_pull_tail(skb, 5484 sizeof(struct iphdr), 5485 MAX_IP_HDR_LEN); 5486 if (err < 0) 5487 goto out; 5488 5489 if (ip_is_fragment(ip_hdr(skb))) 5490 fragment = true; 5491 5492 off = ip_hdrlen(skb); 5493 5494 err = -EPROTO; 5495 5496 if (fragment) 5497 goto out; 5498 5499 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5500 if (IS_ERR(csum)) 5501 return PTR_ERR(csum); 5502 5503 if (recalculate) 5504 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5505 ip_hdr(skb)->daddr, 5506 skb->len - off, 5507 ip_hdr(skb)->protocol, 0); 5508 err = 0; 5509 5510 out: 5511 return err; 5512 } 5513 5514 /* This value should be large enough to cover a tagged ethernet header plus 5515 * an IPv6 header, all options, and a maximal TCP or UDP header. 5516 */ 5517 #define MAX_IPV6_HDR_LEN 256 5518 5519 #define OPT_HDR(type, skb, off) \ 5520 (type *)(skb_network_header(skb) + (off)) 5521 5522 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5523 { 5524 int err; 5525 u8 nexthdr; 5526 unsigned int off; 5527 unsigned int len; 5528 bool fragment; 5529 bool done; 5530 __sum16 *csum; 5531 5532 fragment = false; 5533 done = false; 5534 5535 off = sizeof(struct ipv6hdr); 5536 5537 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5538 if (err < 0) 5539 goto out; 5540 5541 nexthdr = ipv6_hdr(skb)->nexthdr; 5542 5543 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5544 while (off <= len && !done) { 5545 switch (nexthdr) { 5546 case IPPROTO_DSTOPTS: 5547 case IPPROTO_HOPOPTS: 5548 case IPPROTO_ROUTING: { 5549 struct ipv6_opt_hdr *hp; 5550 5551 err = skb_maybe_pull_tail(skb, 5552 off + 5553 sizeof(struct ipv6_opt_hdr), 5554 MAX_IPV6_HDR_LEN); 5555 if (err < 0) 5556 goto out; 5557 5558 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5559 nexthdr = hp->nexthdr; 5560 off += ipv6_optlen(hp); 5561 break; 5562 } 5563 case IPPROTO_AH: { 5564 struct ip_auth_hdr *hp; 5565 5566 err = skb_maybe_pull_tail(skb, 5567 off + 5568 sizeof(struct ip_auth_hdr), 5569 MAX_IPV6_HDR_LEN); 5570 if (err < 0) 5571 goto out; 5572 5573 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5574 nexthdr = hp->nexthdr; 5575 off += ipv6_authlen(hp); 5576 break; 5577 } 5578 case IPPROTO_FRAGMENT: { 5579 struct frag_hdr *hp; 5580 5581 err = skb_maybe_pull_tail(skb, 5582 off + 5583 sizeof(struct frag_hdr), 5584 MAX_IPV6_HDR_LEN); 5585 if (err < 0) 5586 goto out; 5587 5588 hp = OPT_HDR(struct frag_hdr, skb, off); 5589 5590 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5591 fragment = true; 5592 5593 nexthdr = hp->nexthdr; 5594 off += sizeof(struct frag_hdr); 5595 break; 5596 } 5597 default: 5598 done = true; 5599 break; 5600 } 5601 } 5602 5603 err = -EPROTO; 5604 5605 if (!done || fragment) 5606 goto out; 5607 5608 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5609 if (IS_ERR(csum)) 5610 return PTR_ERR(csum); 5611 5612 if (recalculate) 5613 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5614 &ipv6_hdr(skb)->daddr, 5615 skb->len - off, nexthdr, 0); 5616 err = 0; 5617 5618 out: 5619 return err; 5620 } 5621 5622 /** 5623 * skb_checksum_setup - set up partial checksum offset 5624 * @skb: the skb to set up 5625 * @recalculate: if true the pseudo-header checksum will be recalculated 5626 */ 5627 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5628 { 5629 int err; 5630 5631 switch (skb->protocol) { 5632 case htons(ETH_P_IP): 5633 err = skb_checksum_setup_ipv4(skb, recalculate); 5634 break; 5635 5636 case htons(ETH_P_IPV6): 5637 err = skb_checksum_setup_ipv6(skb, recalculate); 5638 break; 5639 5640 default: 5641 err = -EPROTO; 5642 break; 5643 } 5644 5645 return err; 5646 } 5647 EXPORT_SYMBOL(skb_checksum_setup); 5648 5649 /** 5650 * skb_checksum_maybe_trim - maybe trims the given skb 5651 * @skb: the skb to check 5652 * @transport_len: the data length beyond the network header 5653 * 5654 * Checks whether the given skb has data beyond the given transport length. 5655 * If so, returns a cloned skb trimmed to this transport length. 5656 * Otherwise returns the provided skb. Returns NULL in error cases 5657 * (e.g. transport_len exceeds skb length or out-of-memory). 5658 * 5659 * Caller needs to set the skb transport header and free any returned skb if it 5660 * differs from the provided skb. 5661 */ 5662 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5663 unsigned int transport_len) 5664 { 5665 struct sk_buff *skb_chk; 5666 unsigned int len = skb_transport_offset(skb) + transport_len; 5667 int ret; 5668 5669 if (skb->len < len) 5670 return NULL; 5671 else if (skb->len == len) 5672 return skb; 5673 5674 skb_chk = skb_clone(skb, GFP_ATOMIC); 5675 if (!skb_chk) 5676 return NULL; 5677 5678 ret = pskb_trim_rcsum(skb_chk, len); 5679 if (ret) { 5680 kfree_skb(skb_chk); 5681 return NULL; 5682 } 5683 5684 return skb_chk; 5685 } 5686 5687 /** 5688 * skb_checksum_trimmed - validate checksum of an skb 5689 * @skb: the skb to check 5690 * @transport_len: the data length beyond the network header 5691 * @skb_chkf: checksum function to use 5692 * 5693 * Applies the given checksum function skb_chkf to the provided skb. 5694 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5695 * 5696 * If the skb has data beyond the given transport length, then a 5697 * trimmed & cloned skb is checked and returned. 5698 * 5699 * Caller needs to set the skb transport header and free any returned skb if it 5700 * differs from the provided skb. 5701 */ 5702 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5703 unsigned int transport_len, 5704 __sum16(*skb_chkf)(struct sk_buff *skb)) 5705 { 5706 struct sk_buff *skb_chk; 5707 unsigned int offset = skb_transport_offset(skb); 5708 __sum16 ret; 5709 5710 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5711 if (!skb_chk) 5712 goto err; 5713 5714 if (!pskb_may_pull(skb_chk, offset)) 5715 goto err; 5716 5717 skb_pull_rcsum(skb_chk, offset); 5718 ret = skb_chkf(skb_chk); 5719 skb_push_rcsum(skb_chk, offset); 5720 5721 if (ret) 5722 goto err; 5723 5724 return skb_chk; 5725 5726 err: 5727 if (skb_chk && skb_chk != skb) 5728 kfree_skb(skb_chk); 5729 5730 return NULL; 5731 5732 } 5733 EXPORT_SYMBOL(skb_checksum_trimmed); 5734 5735 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5736 { 5737 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5738 skb->dev->name); 5739 } 5740 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5741 5742 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5743 { 5744 if (head_stolen) { 5745 skb_release_head_state(skb); 5746 kmem_cache_free(skbuff_cache, skb); 5747 } else { 5748 __kfree_skb(skb); 5749 } 5750 } 5751 EXPORT_SYMBOL(kfree_skb_partial); 5752 5753 /** 5754 * skb_try_coalesce - try to merge skb to prior one 5755 * @to: prior buffer 5756 * @from: buffer to add 5757 * @fragstolen: pointer to boolean 5758 * @delta_truesize: how much more was allocated than was requested 5759 */ 5760 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5761 bool *fragstolen, int *delta_truesize) 5762 { 5763 struct skb_shared_info *to_shinfo, *from_shinfo; 5764 int i, delta, len = from->len; 5765 5766 *fragstolen = false; 5767 5768 if (skb_cloned(to)) 5769 return false; 5770 5771 /* In general, avoid mixing page_pool and non-page_pool allocated 5772 * pages within the same SKB. Additionally avoid dealing with clones 5773 * with page_pool pages, in case the SKB is using page_pool fragment 5774 * references (page_pool_alloc_frag()). Since we only take full page 5775 * references for cloned SKBs at the moment that would result in 5776 * inconsistent reference counts. 5777 * In theory we could take full references if @from is cloned and 5778 * !@to->pp_recycle but its tricky (due to potential race with 5779 * the clone disappearing) and rare, so not worth dealing with. 5780 */ 5781 if (to->pp_recycle != from->pp_recycle || 5782 (from->pp_recycle && skb_cloned(from))) 5783 return false; 5784 5785 if (len <= skb_tailroom(to)) { 5786 if (len) 5787 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5788 *delta_truesize = 0; 5789 return true; 5790 } 5791 5792 to_shinfo = skb_shinfo(to); 5793 from_shinfo = skb_shinfo(from); 5794 if (to_shinfo->frag_list || from_shinfo->frag_list) 5795 return false; 5796 if (skb_zcopy(to) || skb_zcopy(from)) 5797 return false; 5798 5799 if (skb_headlen(from) != 0) { 5800 struct page *page; 5801 unsigned int offset; 5802 5803 if (to_shinfo->nr_frags + 5804 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5805 return false; 5806 5807 if (skb_head_is_locked(from)) 5808 return false; 5809 5810 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5811 5812 page = virt_to_head_page(from->head); 5813 offset = from->data - (unsigned char *)page_address(page); 5814 5815 skb_fill_page_desc(to, to_shinfo->nr_frags, 5816 page, offset, skb_headlen(from)); 5817 *fragstolen = true; 5818 } else { 5819 if (to_shinfo->nr_frags + 5820 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5821 return false; 5822 5823 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5824 } 5825 5826 WARN_ON_ONCE(delta < len); 5827 5828 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5829 from_shinfo->frags, 5830 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5831 to_shinfo->nr_frags += from_shinfo->nr_frags; 5832 5833 if (!skb_cloned(from)) 5834 from_shinfo->nr_frags = 0; 5835 5836 /* if the skb is not cloned this does nothing 5837 * since we set nr_frags to 0. 5838 */ 5839 for (i = 0; i < from_shinfo->nr_frags; i++) 5840 __skb_frag_ref(&from_shinfo->frags[i]); 5841 5842 to->truesize += delta; 5843 to->len += len; 5844 to->data_len += len; 5845 5846 *delta_truesize = delta; 5847 return true; 5848 } 5849 EXPORT_SYMBOL(skb_try_coalesce); 5850 5851 /** 5852 * skb_scrub_packet - scrub an skb 5853 * 5854 * @skb: buffer to clean 5855 * @xnet: packet is crossing netns 5856 * 5857 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5858 * into/from a tunnel. Some information have to be cleared during these 5859 * operations. 5860 * skb_scrub_packet can also be used to clean a skb before injecting it in 5861 * another namespace (@xnet == true). We have to clear all information in the 5862 * skb that could impact namespace isolation. 5863 */ 5864 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5865 { 5866 skb->pkt_type = PACKET_HOST; 5867 skb->skb_iif = 0; 5868 skb->ignore_df = 0; 5869 skb_dst_drop(skb); 5870 skb_ext_reset(skb); 5871 nf_reset_ct(skb); 5872 nf_reset_trace(skb); 5873 5874 #ifdef CONFIG_NET_SWITCHDEV 5875 skb->offload_fwd_mark = 0; 5876 skb->offload_l3_fwd_mark = 0; 5877 #endif 5878 5879 if (!xnet) 5880 return; 5881 5882 ipvs_reset(skb); 5883 skb->mark = 0; 5884 skb_clear_tstamp(skb); 5885 } 5886 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5887 5888 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5889 { 5890 int mac_len, meta_len; 5891 void *meta; 5892 5893 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5894 kfree_skb(skb); 5895 return NULL; 5896 } 5897 5898 mac_len = skb->data - skb_mac_header(skb); 5899 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5900 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5901 mac_len - VLAN_HLEN - ETH_TLEN); 5902 } 5903 5904 meta_len = skb_metadata_len(skb); 5905 if (meta_len) { 5906 meta = skb_metadata_end(skb) - meta_len; 5907 memmove(meta + VLAN_HLEN, meta, meta_len); 5908 } 5909 5910 skb->mac_header += VLAN_HLEN; 5911 return skb; 5912 } 5913 5914 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5915 { 5916 struct vlan_hdr *vhdr; 5917 u16 vlan_tci; 5918 5919 if (unlikely(skb_vlan_tag_present(skb))) { 5920 /* vlan_tci is already set-up so leave this for another time */ 5921 return skb; 5922 } 5923 5924 skb = skb_share_check(skb, GFP_ATOMIC); 5925 if (unlikely(!skb)) 5926 goto err_free; 5927 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5928 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5929 goto err_free; 5930 5931 vhdr = (struct vlan_hdr *)skb->data; 5932 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5933 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5934 5935 skb_pull_rcsum(skb, VLAN_HLEN); 5936 vlan_set_encap_proto(skb, vhdr); 5937 5938 skb = skb_reorder_vlan_header(skb); 5939 if (unlikely(!skb)) 5940 goto err_free; 5941 5942 skb_reset_network_header(skb); 5943 if (!skb_transport_header_was_set(skb)) 5944 skb_reset_transport_header(skb); 5945 skb_reset_mac_len(skb); 5946 5947 return skb; 5948 5949 err_free: 5950 kfree_skb(skb); 5951 return NULL; 5952 } 5953 EXPORT_SYMBOL(skb_vlan_untag); 5954 5955 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5956 { 5957 if (!pskb_may_pull(skb, write_len)) 5958 return -ENOMEM; 5959 5960 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5961 return 0; 5962 5963 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5964 } 5965 EXPORT_SYMBOL(skb_ensure_writable); 5966 5967 /* remove VLAN header from packet and update csum accordingly. 5968 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5969 */ 5970 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5971 { 5972 int offset = skb->data - skb_mac_header(skb); 5973 int err; 5974 5975 if (WARN_ONCE(offset, 5976 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5977 offset)) { 5978 return -EINVAL; 5979 } 5980 5981 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5982 if (unlikely(err)) 5983 return err; 5984 5985 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5986 5987 vlan_remove_tag(skb, vlan_tci); 5988 5989 skb->mac_header += VLAN_HLEN; 5990 5991 if (skb_network_offset(skb) < ETH_HLEN) 5992 skb_set_network_header(skb, ETH_HLEN); 5993 5994 skb_reset_mac_len(skb); 5995 5996 return err; 5997 } 5998 EXPORT_SYMBOL(__skb_vlan_pop); 5999 6000 /* Pop a vlan tag either from hwaccel or from payload. 6001 * Expects skb->data at mac header. 6002 */ 6003 int skb_vlan_pop(struct sk_buff *skb) 6004 { 6005 u16 vlan_tci; 6006 __be16 vlan_proto; 6007 int err; 6008 6009 if (likely(skb_vlan_tag_present(skb))) { 6010 __vlan_hwaccel_clear_tag(skb); 6011 } else { 6012 if (unlikely(!eth_type_vlan(skb->protocol))) 6013 return 0; 6014 6015 err = __skb_vlan_pop(skb, &vlan_tci); 6016 if (err) 6017 return err; 6018 } 6019 /* move next vlan tag to hw accel tag */ 6020 if (likely(!eth_type_vlan(skb->protocol))) 6021 return 0; 6022 6023 vlan_proto = skb->protocol; 6024 err = __skb_vlan_pop(skb, &vlan_tci); 6025 if (unlikely(err)) 6026 return err; 6027 6028 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6029 return 0; 6030 } 6031 EXPORT_SYMBOL(skb_vlan_pop); 6032 6033 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6034 * Expects skb->data at mac header. 6035 */ 6036 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6037 { 6038 if (skb_vlan_tag_present(skb)) { 6039 int offset = skb->data - skb_mac_header(skb); 6040 int err; 6041 6042 if (WARN_ONCE(offset, 6043 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6044 offset)) { 6045 return -EINVAL; 6046 } 6047 6048 err = __vlan_insert_tag(skb, skb->vlan_proto, 6049 skb_vlan_tag_get(skb)); 6050 if (err) 6051 return err; 6052 6053 skb->protocol = skb->vlan_proto; 6054 skb->mac_len += VLAN_HLEN; 6055 6056 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6057 } 6058 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6059 return 0; 6060 } 6061 EXPORT_SYMBOL(skb_vlan_push); 6062 6063 /** 6064 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6065 * 6066 * @skb: Socket buffer to modify 6067 * 6068 * Drop the Ethernet header of @skb. 6069 * 6070 * Expects that skb->data points to the mac header and that no VLAN tags are 6071 * present. 6072 * 6073 * Returns 0 on success, -errno otherwise. 6074 */ 6075 int skb_eth_pop(struct sk_buff *skb) 6076 { 6077 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6078 skb_network_offset(skb) < ETH_HLEN) 6079 return -EPROTO; 6080 6081 skb_pull_rcsum(skb, ETH_HLEN); 6082 skb_reset_mac_header(skb); 6083 skb_reset_mac_len(skb); 6084 6085 return 0; 6086 } 6087 EXPORT_SYMBOL(skb_eth_pop); 6088 6089 /** 6090 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6091 * 6092 * @skb: Socket buffer to modify 6093 * @dst: Destination MAC address of the new header 6094 * @src: Source MAC address of the new header 6095 * 6096 * Prepend @skb with a new Ethernet header. 6097 * 6098 * Expects that skb->data points to the mac header, which must be empty. 6099 * 6100 * Returns 0 on success, -errno otherwise. 6101 */ 6102 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6103 const unsigned char *src) 6104 { 6105 struct ethhdr *eth; 6106 int err; 6107 6108 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6109 return -EPROTO; 6110 6111 err = skb_cow_head(skb, sizeof(*eth)); 6112 if (err < 0) 6113 return err; 6114 6115 skb_push(skb, sizeof(*eth)); 6116 skb_reset_mac_header(skb); 6117 skb_reset_mac_len(skb); 6118 6119 eth = eth_hdr(skb); 6120 ether_addr_copy(eth->h_dest, dst); 6121 ether_addr_copy(eth->h_source, src); 6122 eth->h_proto = skb->protocol; 6123 6124 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6125 6126 return 0; 6127 } 6128 EXPORT_SYMBOL(skb_eth_push); 6129 6130 /* Update the ethertype of hdr and the skb csum value if required. */ 6131 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6132 __be16 ethertype) 6133 { 6134 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6135 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6136 6137 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6138 } 6139 6140 hdr->h_proto = ethertype; 6141 } 6142 6143 /** 6144 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6145 * the packet 6146 * 6147 * @skb: buffer 6148 * @mpls_lse: MPLS label stack entry to push 6149 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6150 * @mac_len: length of the MAC header 6151 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6152 * ethernet 6153 * 6154 * Expects skb->data at mac header. 6155 * 6156 * Returns 0 on success, -errno otherwise. 6157 */ 6158 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6159 int mac_len, bool ethernet) 6160 { 6161 struct mpls_shim_hdr *lse; 6162 int err; 6163 6164 if (unlikely(!eth_p_mpls(mpls_proto))) 6165 return -EINVAL; 6166 6167 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6168 if (skb->encapsulation) 6169 return -EINVAL; 6170 6171 err = skb_cow_head(skb, MPLS_HLEN); 6172 if (unlikely(err)) 6173 return err; 6174 6175 if (!skb->inner_protocol) { 6176 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6177 skb_set_inner_protocol(skb, skb->protocol); 6178 } 6179 6180 skb_push(skb, MPLS_HLEN); 6181 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6182 mac_len); 6183 skb_reset_mac_header(skb); 6184 skb_set_network_header(skb, mac_len); 6185 skb_reset_mac_len(skb); 6186 6187 lse = mpls_hdr(skb); 6188 lse->label_stack_entry = mpls_lse; 6189 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6190 6191 if (ethernet && mac_len >= ETH_HLEN) 6192 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6193 skb->protocol = mpls_proto; 6194 6195 return 0; 6196 } 6197 EXPORT_SYMBOL_GPL(skb_mpls_push); 6198 6199 /** 6200 * skb_mpls_pop() - pop the outermost MPLS header 6201 * 6202 * @skb: buffer 6203 * @next_proto: ethertype of header after popped MPLS header 6204 * @mac_len: length of the MAC header 6205 * @ethernet: flag to indicate if the packet is ethernet 6206 * 6207 * Expects skb->data at mac header. 6208 * 6209 * Returns 0 on success, -errno otherwise. 6210 */ 6211 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6212 bool ethernet) 6213 { 6214 int err; 6215 6216 if (unlikely(!eth_p_mpls(skb->protocol))) 6217 return 0; 6218 6219 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6220 if (unlikely(err)) 6221 return err; 6222 6223 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6224 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6225 mac_len); 6226 6227 __skb_pull(skb, MPLS_HLEN); 6228 skb_reset_mac_header(skb); 6229 skb_set_network_header(skb, mac_len); 6230 6231 if (ethernet && mac_len >= ETH_HLEN) { 6232 struct ethhdr *hdr; 6233 6234 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6235 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6236 skb_mod_eth_type(skb, hdr, next_proto); 6237 } 6238 skb->protocol = next_proto; 6239 6240 return 0; 6241 } 6242 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6243 6244 /** 6245 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6246 * 6247 * @skb: buffer 6248 * @mpls_lse: new MPLS label stack entry to update to 6249 * 6250 * Expects skb->data at mac header. 6251 * 6252 * Returns 0 on success, -errno otherwise. 6253 */ 6254 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6255 { 6256 int err; 6257 6258 if (unlikely(!eth_p_mpls(skb->protocol))) 6259 return -EINVAL; 6260 6261 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6262 if (unlikely(err)) 6263 return err; 6264 6265 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6266 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6267 6268 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6269 } 6270 6271 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6272 6273 return 0; 6274 } 6275 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6276 6277 /** 6278 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6279 * 6280 * @skb: buffer 6281 * 6282 * Expects skb->data at mac header. 6283 * 6284 * Returns 0 on success, -errno otherwise. 6285 */ 6286 int skb_mpls_dec_ttl(struct sk_buff *skb) 6287 { 6288 u32 lse; 6289 u8 ttl; 6290 6291 if (unlikely(!eth_p_mpls(skb->protocol))) 6292 return -EINVAL; 6293 6294 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6295 return -ENOMEM; 6296 6297 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6298 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6299 if (!--ttl) 6300 return -EINVAL; 6301 6302 lse &= ~MPLS_LS_TTL_MASK; 6303 lse |= ttl << MPLS_LS_TTL_SHIFT; 6304 6305 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6306 } 6307 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6308 6309 /** 6310 * alloc_skb_with_frags - allocate skb with page frags 6311 * 6312 * @header_len: size of linear part 6313 * @data_len: needed length in frags 6314 * @order: max page order desired. 6315 * @errcode: pointer to error code if any 6316 * @gfp_mask: allocation mask 6317 * 6318 * This can be used to allocate a paged skb, given a maximal order for frags. 6319 */ 6320 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6321 unsigned long data_len, 6322 int order, 6323 int *errcode, 6324 gfp_t gfp_mask) 6325 { 6326 unsigned long chunk; 6327 struct sk_buff *skb; 6328 struct page *page; 6329 int nr_frags = 0; 6330 6331 *errcode = -EMSGSIZE; 6332 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6333 return NULL; 6334 6335 *errcode = -ENOBUFS; 6336 skb = alloc_skb(header_len, gfp_mask); 6337 if (!skb) 6338 return NULL; 6339 6340 while (data_len) { 6341 if (nr_frags == MAX_SKB_FRAGS - 1) 6342 goto failure; 6343 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6344 order--; 6345 6346 if (order) { 6347 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6348 __GFP_COMP | 6349 __GFP_NOWARN, 6350 order); 6351 if (!page) { 6352 order--; 6353 continue; 6354 } 6355 } else { 6356 page = alloc_page(gfp_mask); 6357 if (!page) 6358 goto failure; 6359 } 6360 chunk = min_t(unsigned long, data_len, 6361 PAGE_SIZE << order); 6362 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6363 nr_frags++; 6364 skb->truesize += (PAGE_SIZE << order); 6365 data_len -= chunk; 6366 } 6367 return skb; 6368 6369 failure: 6370 kfree_skb(skb); 6371 return NULL; 6372 } 6373 EXPORT_SYMBOL(alloc_skb_with_frags); 6374 6375 /* carve out the first off bytes from skb when off < headlen */ 6376 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6377 const int headlen, gfp_t gfp_mask) 6378 { 6379 int i; 6380 unsigned int size = skb_end_offset(skb); 6381 int new_hlen = headlen - off; 6382 u8 *data; 6383 6384 if (skb_pfmemalloc(skb)) 6385 gfp_mask |= __GFP_MEMALLOC; 6386 6387 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6388 if (!data) 6389 return -ENOMEM; 6390 size = SKB_WITH_OVERHEAD(size); 6391 6392 /* Copy real data, and all frags */ 6393 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6394 skb->len -= off; 6395 6396 memcpy((struct skb_shared_info *)(data + size), 6397 skb_shinfo(skb), 6398 offsetof(struct skb_shared_info, 6399 frags[skb_shinfo(skb)->nr_frags])); 6400 if (skb_cloned(skb)) { 6401 /* drop the old head gracefully */ 6402 if (skb_orphan_frags(skb, gfp_mask)) { 6403 skb_kfree_head(data, size); 6404 return -ENOMEM; 6405 } 6406 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6407 skb_frag_ref(skb, i); 6408 if (skb_has_frag_list(skb)) 6409 skb_clone_fraglist(skb); 6410 skb_release_data(skb, SKB_CONSUMED, false); 6411 } else { 6412 /* we can reuse existing recount- all we did was 6413 * relocate values 6414 */ 6415 skb_free_head(skb, false); 6416 } 6417 6418 skb->head = data; 6419 skb->data = data; 6420 skb->head_frag = 0; 6421 skb_set_end_offset(skb, size); 6422 skb_set_tail_pointer(skb, skb_headlen(skb)); 6423 skb_headers_offset_update(skb, 0); 6424 skb->cloned = 0; 6425 skb->hdr_len = 0; 6426 skb->nohdr = 0; 6427 atomic_set(&skb_shinfo(skb)->dataref, 1); 6428 6429 return 0; 6430 } 6431 6432 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6433 6434 /* carve out the first eat bytes from skb's frag_list. May recurse into 6435 * pskb_carve() 6436 */ 6437 static int pskb_carve_frag_list(struct sk_buff *skb, 6438 struct skb_shared_info *shinfo, int eat, 6439 gfp_t gfp_mask) 6440 { 6441 struct sk_buff *list = shinfo->frag_list; 6442 struct sk_buff *clone = NULL; 6443 struct sk_buff *insp = NULL; 6444 6445 do { 6446 if (!list) { 6447 pr_err("Not enough bytes to eat. Want %d\n", eat); 6448 return -EFAULT; 6449 } 6450 if (list->len <= eat) { 6451 /* Eaten as whole. */ 6452 eat -= list->len; 6453 list = list->next; 6454 insp = list; 6455 } else { 6456 /* Eaten partially. */ 6457 if (skb_shared(list)) { 6458 clone = skb_clone(list, gfp_mask); 6459 if (!clone) 6460 return -ENOMEM; 6461 insp = list->next; 6462 list = clone; 6463 } else { 6464 /* This may be pulled without problems. */ 6465 insp = list; 6466 } 6467 if (pskb_carve(list, eat, gfp_mask) < 0) { 6468 kfree_skb(clone); 6469 return -ENOMEM; 6470 } 6471 break; 6472 } 6473 } while (eat); 6474 6475 /* Free pulled out fragments. */ 6476 while ((list = shinfo->frag_list) != insp) { 6477 shinfo->frag_list = list->next; 6478 consume_skb(list); 6479 } 6480 /* And insert new clone at head. */ 6481 if (clone) { 6482 clone->next = list; 6483 shinfo->frag_list = clone; 6484 } 6485 return 0; 6486 } 6487 6488 /* carve off first len bytes from skb. Split line (off) is in the 6489 * non-linear part of skb 6490 */ 6491 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6492 int pos, gfp_t gfp_mask) 6493 { 6494 int i, k = 0; 6495 unsigned int size = skb_end_offset(skb); 6496 u8 *data; 6497 const int nfrags = skb_shinfo(skb)->nr_frags; 6498 struct skb_shared_info *shinfo; 6499 6500 if (skb_pfmemalloc(skb)) 6501 gfp_mask |= __GFP_MEMALLOC; 6502 6503 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6504 if (!data) 6505 return -ENOMEM; 6506 size = SKB_WITH_OVERHEAD(size); 6507 6508 memcpy((struct skb_shared_info *)(data + size), 6509 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6510 if (skb_orphan_frags(skb, gfp_mask)) { 6511 skb_kfree_head(data, size); 6512 return -ENOMEM; 6513 } 6514 shinfo = (struct skb_shared_info *)(data + size); 6515 for (i = 0; i < nfrags; i++) { 6516 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6517 6518 if (pos + fsize > off) { 6519 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6520 6521 if (pos < off) { 6522 /* Split frag. 6523 * We have two variants in this case: 6524 * 1. Move all the frag to the second 6525 * part, if it is possible. F.e. 6526 * this approach is mandatory for TUX, 6527 * where splitting is expensive. 6528 * 2. Split is accurately. We make this. 6529 */ 6530 skb_frag_off_add(&shinfo->frags[0], off - pos); 6531 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6532 } 6533 skb_frag_ref(skb, i); 6534 k++; 6535 } 6536 pos += fsize; 6537 } 6538 shinfo->nr_frags = k; 6539 if (skb_has_frag_list(skb)) 6540 skb_clone_fraglist(skb); 6541 6542 /* split line is in frag list */ 6543 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6544 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6545 if (skb_has_frag_list(skb)) 6546 kfree_skb_list(skb_shinfo(skb)->frag_list); 6547 skb_kfree_head(data, size); 6548 return -ENOMEM; 6549 } 6550 skb_release_data(skb, SKB_CONSUMED, false); 6551 6552 skb->head = data; 6553 skb->head_frag = 0; 6554 skb->data = data; 6555 skb_set_end_offset(skb, size); 6556 skb_reset_tail_pointer(skb); 6557 skb_headers_offset_update(skb, 0); 6558 skb->cloned = 0; 6559 skb->hdr_len = 0; 6560 skb->nohdr = 0; 6561 skb->len -= off; 6562 skb->data_len = skb->len; 6563 atomic_set(&skb_shinfo(skb)->dataref, 1); 6564 return 0; 6565 } 6566 6567 /* remove len bytes from the beginning of the skb */ 6568 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6569 { 6570 int headlen = skb_headlen(skb); 6571 6572 if (len < headlen) 6573 return pskb_carve_inside_header(skb, len, headlen, gfp); 6574 else 6575 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6576 } 6577 6578 /* Extract to_copy bytes starting at off from skb, and return this in 6579 * a new skb 6580 */ 6581 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6582 int to_copy, gfp_t gfp) 6583 { 6584 struct sk_buff *clone = skb_clone(skb, gfp); 6585 6586 if (!clone) 6587 return NULL; 6588 6589 if (pskb_carve(clone, off, gfp) < 0 || 6590 pskb_trim(clone, to_copy)) { 6591 kfree_skb(clone); 6592 return NULL; 6593 } 6594 return clone; 6595 } 6596 EXPORT_SYMBOL(pskb_extract); 6597 6598 /** 6599 * skb_condense - try to get rid of fragments/frag_list if possible 6600 * @skb: buffer 6601 * 6602 * Can be used to save memory before skb is added to a busy queue. 6603 * If packet has bytes in frags and enough tail room in skb->head, 6604 * pull all of them, so that we can free the frags right now and adjust 6605 * truesize. 6606 * Notes: 6607 * We do not reallocate skb->head thus can not fail. 6608 * Caller must re-evaluate skb->truesize if needed. 6609 */ 6610 void skb_condense(struct sk_buff *skb) 6611 { 6612 if (skb->data_len) { 6613 if (skb->data_len > skb->end - skb->tail || 6614 skb_cloned(skb)) 6615 return; 6616 6617 /* Nice, we can free page frag(s) right now */ 6618 __pskb_pull_tail(skb, skb->data_len); 6619 } 6620 /* At this point, skb->truesize might be over estimated, 6621 * because skb had a fragment, and fragments do not tell 6622 * their truesize. 6623 * When we pulled its content into skb->head, fragment 6624 * was freed, but __pskb_pull_tail() could not possibly 6625 * adjust skb->truesize, not knowing the frag truesize. 6626 */ 6627 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6628 } 6629 EXPORT_SYMBOL(skb_condense); 6630 6631 #ifdef CONFIG_SKB_EXTENSIONS 6632 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6633 { 6634 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6635 } 6636 6637 /** 6638 * __skb_ext_alloc - allocate a new skb extensions storage 6639 * 6640 * @flags: See kmalloc(). 6641 * 6642 * Returns the newly allocated pointer. The pointer can later attached to a 6643 * skb via __skb_ext_set(). 6644 * Note: caller must handle the skb_ext as an opaque data. 6645 */ 6646 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6647 { 6648 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6649 6650 if (new) { 6651 memset(new->offset, 0, sizeof(new->offset)); 6652 refcount_set(&new->refcnt, 1); 6653 } 6654 6655 return new; 6656 } 6657 6658 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6659 unsigned int old_active) 6660 { 6661 struct skb_ext *new; 6662 6663 if (refcount_read(&old->refcnt) == 1) 6664 return old; 6665 6666 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6667 if (!new) 6668 return NULL; 6669 6670 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6671 refcount_set(&new->refcnt, 1); 6672 6673 #ifdef CONFIG_XFRM 6674 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6675 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6676 unsigned int i; 6677 6678 for (i = 0; i < sp->len; i++) 6679 xfrm_state_hold(sp->xvec[i]); 6680 } 6681 #endif 6682 __skb_ext_put(old); 6683 return new; 6684 } 6685 6686 /** 6687 * __skb_ext_set - attach the specified extension storage to this skb 6688 * @skb: buffer 6689 * @id: extension id 6690 * @ext: extension storage previously allocated via __skb_ext_alloc() 6691 * 6692 * Existing extensions, if any, are cleared. 6693 * 6694 * Returns the pointer to the extension. 6695 */ 6696 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6697 struct skb_ext *ext) 6698 { 6699 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6700 6701 skb_ext_put(skb); 6702 newlen = newoff + skb_ext_type_len[id]; 6703 ext->chunks = newlen; 6704 ext->offset[id] = newoff; 6705 skb->extensions = ext; 6706 skb->active_extensions = 1 << id; 6707 return skb_ext_get_ptr(ext, id); 6708 } 6709 6710 /** 6711 * skb_ext_add - allocate space for given extension, COW if needed 6712 * @skb: buffer 6713 * @id: extension to allocate space for 6714 * 6715 * Allocates enough space for the given extension. 6716 * If the extension is already present, a pointer to that extension 6717 * is returned. 6718 * 6719 * If the skb was cloned, COW applies and the returned memory can be 6720 * modified without changing the extension space of clones buffers. 6721 * 6722 * Returns pointer to the extension or NULL on allocation failure. 6723 */ 6724 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6725 { 6726 struct skb_ext *new, *old = NULL; 6727 unsigned int newlen, newoff; 6728 6729 if (skb->active_extensions) { 6730 old = skb->extensions; 6731 6732 new = skb_ext_maybe_cow(old, skb->active_extensions); 6733 if (!new) 6734 return NULL; 6735 6736 if (__skb_ext_exist(new, id)) 6737 goto set_active; 6738 6739 newoff = new->chunks; 6740 } else { 6741 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6742 6743 new = __skb_ext_alloc(GFP_ATOMIC); 6744 if (!new) 6745 return NULL; 6746 } 6747 6748 newlen = newoff + skb_ext_type_len[id]; 6749 new->chunks = newlen; 6750 new->offset[id] = newoff; 6751 set_active: 6752 skb->slow_gro = 1; 6753 skb->extensions = new; 6754 skb->active_extensions |= 1 << id; 6755 return skb_ext_get_ptr(new, id); 6756 } 6757 EXPORT_SYMBOL(skb_ext_add); 6758 6759 #ifdef CONFIG_XFRM 6760 static void skb_ext_put_sp(struct sec_path *sp) 6761 { 6762 unsigned int i; 6763 6764 for (i = 0; i < sp->len; i++) 6765 xfrm_state_put(sp->xvec[i]); 6766 } 6767 #endif 6768 6769 #ifdef CONFIG_MCTP_FLOWS 6770 static void skb_ext_put_mctp(struct mctp_flow *flow) 6771 { 6772 if (flow->key) 6773 mctp_key_unref(flow->key); 6774 } 6775 #endif 6776 6777 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6778 { 6779 struct skb_ext *ext = skb->extensions; 6780 6781 skb->active_extensions &= ~(1 << id); 6782 if (skb->active_extensions == 0) { 6783 skb->extensions = NULL; 6784 __skb_ext_put(ext); 6785 #ifdef CONFIG_XFRM 6786 } else if (id == SKB_EXT_SEC_PATH && 6787 refcount_read(&ext->refcnt) == 1) { 6788 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6789 6790 skb_ext_put_sp(sp); 6791 sp->len = 0; 6792 #endif 6793 } 6794 } 6795 EXPORT_SYMBOL(__skb_ext_del); 6796 6797 void __skb_ext_put(struct skb_ext *ext) 6798 { 6799 /* If this is last clone, nothing can increment 6800 * it after check passes. Avoids one atomic op. 6801 */ 6802 if (refcount_read(&ext->refcnt) == 1) 6803 goto free_now; 6804 6805 if (!refcount_dec_and_test(&ext->refcnt)) 6806 return; 6807 free_now: 6808 #ifdef CONFIG_XFRM 6809 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6810 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6811 #endif 6812 #ifdef CONFIG_MCTP_FLOWS 6813 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6814 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6815 #endif 6816 6817 kmem_cache_free(skbuff_ext_cache, ext); 6818 } 6819 EXPORT_SYMBOL(__skb_ext_put); 6820 #endif /* CONFIG_SKB_EXTENSIONS */ 6821 6822 /** 6823 * skb_attempt_defer_free - queue skb for remote freeing 6824 * @skb: buffer 6825 * 6826 * Put @skb in a per-cpu list, using the cpu which 6827 * allocated the skb/pages to reduce false sharing 6828 * and memory zone spinlock contention. 6829 */ 6830 void skb_attempt_defer_free(struct sk_buff *skb) 6831 { 6832 int cpu = skb->alloc_cpu; 6833 struct softnet_data *sd; 6834 unsigned int defer_max; 6835 bool kick; 6836 6837 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6838 !cpu_online(cpu) || 6839 cpu == raw_smp_processor_id()) { 6840 nodefer: __kfree_skb(skb); 6841 return; 6842 } 6843 6844 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6845 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6846 6847 sd = &per_cpu(softnet_data, cpu); 6848 defer_max = READ_ONCE(sysctl_skb_defer_max); 6849 if (READ_ONCE(sd->defer_count) >= defer_max) 6850 goto nodefer; 6851 6852 spin_lock_bh(&sd->defer_lock); 6853 /* Send an IPI every time queue reaches half capacity. */ 6854 kick = sd->defer_count == (defer_max >> 1); 6855 /* Paired with the READ_ONCE() few lines above */ 6856 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6857 6858 skb->next = sd->defer_list; 6859 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6860 WRITE_ONCE(sd->defer_list, skb); 6861 spin_unlock_bh(&sd->defer_lock); 6862 6863 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6864 * if we are unlucky enough (this seems very unlikely). 6865 */ 6866 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6867 smp_call_function_single_async(cpu, &sd->defer_csd); 6868 } 6869 6870 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6871 size_t offset, size_t len) 6872 { 6873 const char *kaddr; 6874 __wsum csum; 6875 6876 kaddr = kmap_local_page(page); 6877 csum = csum_partial(kaddr + offset, len, 0); 6878 kunmap_local(kaddr); 6879 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6880 } 6881 6882 /** 6883 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6884 * @skb: The buffer to add pages to 6885 * @iter: Iterator representing the pages to be added 6886 * @maxsize: Maximum amount of pages to be added 6887 * @gfp: Allocation flags 6888 * 6889 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6890 * extracts pages from an iterator and adds them to the socket buffer if 6891 * possible, copying them to fragments if not possible (such as if they're slab 6892 * pages). 6893 * 6894 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6895 * insufficient space in the buffer to transfer anything. 6896 */ 6897 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6898 ssize_t maxsize, gfp_t gfp) 6899 { 6900 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6901 struct page *pages[8], **ppages = pages; 6902 ssize_t spliced = 0, ret = 0; 6903 unsigned int i; 6904 6905 while (iter->count > 0) { 6906 ssize_t space, nr, len; 6907 size_t off; 6908 6909 ret = -EMSGSIZE; 6910 space = frag_limit - skb_shinfo(skb)->nr_frags; 6911 if (space < 0) 6912 break; 6913 6914 /* We might be able to coalesce without increasing nr_frags */ 6915 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6916 6917 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6918 if (len <= 0) { 6919 ret = len ?: -EIO; 6920 break; 6921 } 6922 6923 i = 0; 6924 do { 6925 struct page *page = pages[i++]; 6926 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6927 6928 ret = -EIO; 6929 if (WARN_ON_ONCE(!sendpage_ok(page))) 6930 goto out; 6931 6932 ret = skb_append_pagefrags(skb, page, off, part, 6933 frag_limit); 6934 if (ret < 0) { 6935 iov_iter_revert(iter, len); 6936 goto out; 6937 } 6938 6939 if (skb->ip_summed == CHECKSUM_NONE) 6940 skb_splice_csum_page(skb, page, off, part); 6941 6942 off = 0; 6943 spliced += part; 6944 maxsize -= part; 6945 len -= part; 6946 } while (len > 0); 6947 6948 if (maxsize <= 0) 6949 break; 6950 } 6951 6952 out: 6953 skb_len_add(skb, spliced); 6954 return spliced ?: ret; 6955 } 6956 EXPORT_SYMBOL(skb_splice_from_iter); 6957 6958 static __always_inline 6959 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 6960 size_t len, void *to, void *priv2) 6961 { 6962 __wsum *csum = priv2; 6963 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 6964 6965 *csum = csum_block_add(*csum, next, progress); 6966 return 0; 6967 } 6968 6969 static __always_inline 6970 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 6971 size_t len, void *to, void *priv2) 6972 { 6973 __wsum next, *csum = priv2; 6974 6975 next = csum_and_copy_from_user(iter_from, to + progress, len); 6976 *csum = csum_block_add(*csum, next, progress); 6977 return next ? 0 : len; 6978 } 6979 6980 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 6981 __wsum *csum, struct iov_iter *i) 6982 { 6983 size_t copied; 6984 6985 if (WARN_ON_ONCE(!i->data_source)) 6986 return false; 6987 copied = iterate_and_advance2(i, bytes, addr, csum, 6988 copy_from_user_iter_csum, 6989 memcpy_from_iter_csum); 6990 if (likely(copied == bytes)) 6991 return true; 6992 iov_iter_revert(i, copied); 6993 return false; 6994 } 6995 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 6996