xref: /linux/net/core/skbuff.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64 
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67 
68 #include "kmap_skb.h"
69 
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72 
73 /*
74  *	Keep out-of-line to prevent kernel bloat.
75  *	__builtin_return_address is not used because it is not always
76  *	reliable.
77  */
78 
79 /**
80  *	skb_over_panic	- 	private function
81  *	@skb: buffer
82  *	@sz: size
83  *	@here: address
84  *
85  *	Out of line support code for skb_put(). Not user callable.
86  */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 			  "data:%p tail:%p end:%p dev:%s\n",
91 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 	       skb->dev ? skb->dev->name : "<NULL>");
93 	BUG();
94 }
95 
96 /**
97  *	skb_under_panic	- 	private function
98  *	@skb: buffer
99  *	@sz: size
100  *	@here: address
101  *
102  *	Out of line support code for skb_push(). Not user callable.
103  */
104 
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 			  "data:%p tail:%p end:%p dev:%s\n",
109 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 	       skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 void skb_truesize_bug(struct sk_buff *skb)
115 {
116 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 	       "len=%u, sizeof(sk_buff)=%Zd\n",
118 	       skb->truesize, skb->len, sizeof(struct sk_buff));
119 }
120 EXPORT_SYMBOL(skb_truesize_bug);
121 
122 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
123  *	'private' fields and also do memory statistics to find all the
124  *	[BEEP] leaks.
125  *
126  */
127 
128 /**
129  *	__alloc_skb	-	allocate a network buffer
130  *	@size: size to allocate
131  *	@gfp_mask: allocation mask
132  *	@fclone: allocate from fclone cache instead of head cache
133  *		and allocate a cloned (child) skb
134  *	@node: numa node to allocate memory on
135  *
136  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
137  *	tail room of size bytes. The object has a reference count of one.
138  *	The return is the buffer. On a failure the return is %NULL.
139  *
140  *	Buffers may only be allocated from interrupts using a @gfp_mask of
141  *	%GFP_ATOMIC.
142  */
143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
144 			    int fclone, int node)
145 {
146 	struct kmem_cache *cache;
147 	struct skb_shared_info *shinfo;
148 	struct sk_buff *skb;
149 	u8 *data;
150 
151 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
152 
153 	/* Get the HEAD */
154 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
155 	if (!skb)
156 		goto out;
157 
158 	/* Get the DATA. Size must match skb_add_mtu(). */
159 	size = SKB_DATA_ALIGN(size);
160 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
161 			gfp_mask, node);
162 	if (!data)
163 		goto nodata;
164 
165 	memset(skb, 0, offsetof(struct sk_buff, truesize));
166 	skb->truesize = size + sizeof(struct sk_buff);
167 	atomic_set(&skb->users, 1);
168 	skb->head = data;
169 	skb->data = data;
170 	skb->tail = data;
171 	skb->end  = data + size;
172 	/* make sure we initialize shinfo sequentially */
173 	shinfo = skb_shinfo(skb);
174 	atomic_set(&shinfo->dataref, 1);
175 	shinfo->nr_frags  = 0;
176 	shinfo->gso_size = 0;
177 	shinfo->gso_segs = 0;
178 	shinfo->gso_type = 0;
179 	shinfo->ip6_frag_id = 0;
180 	shinfo->frag_list = NULL;
181 
182 	if (fclone) {
183 		struct sk_buff *child = skb + 1;
184 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
185 
186 		skb->fclone = SKB_FCLONE_ORIG;
187 		atomic_set(fclone_ref, 1);
188 
189 		child->fclone = SKB_FCLONE_UNAVAILABLE;
190 	}
191 out:
192 	return skb;
193 nodata:
194 	kmem_cache_free(cache, skb);
195 	skb = NULL;
196 	goto out;
197 }
198 
199 /**
200  *	alloc_skb_from_cache	-	allocate a network buffer
201  *	@cp: kmem_cache from which to allocate the data area
202  *           (object size must be big enough for @size bytes + skb overheads)
203  *	@size: size to allocate
204  *	@gfp_mask: allocation mask
205  *
206  *	Allocate a new &sk_buff. The returned buffer has no headroom and
207  *	tail room of size bytes. The object has a reference count of one.
208  *	The return is the buffer. On a failure the return is %NULL.
209  *
210  *	Buffers may only be allocated from interrupts using a @gfp_mask of
211  *	%GFP_ATOMIC.
212  */
213 struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp,
214 				     unsigned int size,
215 				     gfp_t gfp_mask)
216 {
217 	struct sk_buff *skb;
218 	u8 *data;
219 
220 	/* Get the HEAD */
221 	skb = kmem_cache_alloc(skbuff_head_cache,
222 			       gfp_mask & ~__GFP_DMA);
223 	if (!skb)
224 		goto out;
225 
226 	/* Get the DATA. */
227 	size = SKB_DATA_ALIGN(size);
228 	data = kmem_cache_alloc(cp, gfp_mask);
229 	if (!data)
230 		goto nodata;
231 
232 	memset(skb, 0, offsetof(struct sk_buff, truesize));
233 	skb->truesize = size + sizeof(struct sk_buff);
234 	atomic_set(&skb->users, 1);
235 	skb->head = data;
236 	skb->data = data;
237 	skb->tail = data;
238 	skb->end  = data + size;
239 
240 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
241 	skb_shinfo(skb)->nr_frags  = 0;
242 	skb_shinfo(skb)->gso_size = 0;
243 	skb_shinfo(skb)->gso_segs = 0;
244 	skb_shinfo(skb)->gso_type = 0;
245 	skb_shinfo(skb)->frag_list = NULL;
246 out:
247 	return skb;
248 nodata:
249 	kmem_cache_free(skbuff_head_cache, skb);
250 	skb = NULL;
251 	goto out;
252 }
253 
254 /**
255  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
256  *	@dev: network device to receive on
257  *	@length: length to allocate
258  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
259  *
260  *	Allocate a new &sk_buff and assign it a usage count of one. The
261  *	buffer has unspecified headroom built in. Users should allocate
262  *	the headroom they think they need without accounting for the
263  *	built in space. The built in space is used for optimisations.
264  *
265  *	%NULL is returned if there is no free memory.
266  */
267 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
268 		unsigned int length, gfp_t gfp_mask)
269 {
270 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
271 	struct sk_buff *skb;
272 
273 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
274 	if (likely(skb)) {
275 		skb_reserve(skb, NET_SKB_PAD);
276 		skb->dev = dev;
277 	}
278 	return skb;
279 }
280 
281 static void skb_drop_list(struct sk_buff **listp)
282 {
283 	struct sk_buff *list = *listp;
284 
285 	*listp = NULL;
286 
287 	do {
288 		struct sk_buff *this = list;
289 		list = list->next;
290 		kfree_skb(this);
291 	} while (list);
292 }
293 
294 static inline void skb_drop_fraglist(struct sk_buff *skb)
295 {
296 	skb_drop_list(&skb_shinfo(skb)->frag_list);
297 }
298 
299 static void skb_clone_fraglist(struct sk_buff *skb)
300 {
301 	struct sk_buff *list;
302 
303 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
304 		skb_get(list);
305 }
306 
307 static void skb_release_data(struct sk_buff *skb)
308 {
309 	if (!skb->cloned ||
310 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
311 			       &skb_shinfo(skb)->dataref)) {
312 		if (skb_shinfo(skb)->nr_frags) {
313 			int i;
314 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
315 				put_page(skb_shinfo(skb)->frags[i].page);
316 		}
317 
318 		if (skb_shinfo(skb)->frag_list)
319 			skb_drop_fraglist(skb);
320 
321 		kfree(skb->head);
322 	}
323 }
324 
325 /*
326  *	Free an skbuff by memory without cleaning the state.
327  */
328 void kfree_skbmem(struct sk_buff *skb)
329 {
330 	struct sk_buff *other;
331 	atomic_t *fclone_ref;
332 
333 	skb_release_data(skb);
334 	switch (skb->fclone) {
335 	case SKB_FCLONE_UNAVAILABLE:
336 		kmem_cache_free(skbuff_head_cache, skb);
337 		break;
338 
339 	case SKB_FCLONE_ORIG:
340 		fclone_ref = (atomic_t *) (skb + 2);
341 		if (atomic_dec_and_test(fclone_ref))
342 			kmem_cache_free(skbuff_fclone_cache, skb);
343 		break;
344 
345 	case SKB_FCLONE_CLONE:
346 		fclone_ref = (atomic_t *) (skb + 1);
347 		other = skb - 1;
348 
349 		/* The clone portion is available for
350 		 * fast-cloning again.
351 		 */
352 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
353 
354 		if (atomic_dec_and_test(fclone_ref))
355 			kmem_cache_free(skbuff_fclone_cache, other);
356 		break;
357 	};
358 }
359 
360 /**
361  *	__kfree_skb - private function
362  *	@skb: buffer
363  *
364  *	Free an sk_buff. Release anything attached to the buffer.
365  *	Clean the state. This is an internal helper function. Users should
366  *	always call kfree_skb
367  */
368 
369 void __kfree_skb(struct sk_buff *skb)
370 {
371 	dst_release(skb->dst);
372 #ifdef CONFIG_XFRM
373 	secpath_put(skb->sp);
374 #endif
375 	if (skb->destructor) {
376 		WARN_ON(in_irq());
377 		skb->destructor(skb);
378 	}
379 #ifdef CONFIG_NETFILTER
380 	nf_conntrack_put(skb->nfct);
381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
382 	nf_conntrack_put_reasm(skb->nfct_reasm);
383 #endif
384 #ifdef CONFIG_BRIDGE_NETFILTER
385 	nf_bridge_put(skb->nf_bridge);
386 #endif
387 #endif
388 /* XXX: IS this still necessary? - JHS */
389 #ifdef CONFIG_NET_SCHED
390 	skb->tc_index = 0;
391 #ifdef CONFIG_NET_CLS_ACT
392 	skb->tc_verd = 0;
393 #endif
394 #endif
395 
396 	kfree_skbmem(skb);
397 }
398 
399 /**
400  *	kfree_skb - free an sk_buff
401  *	@skb: buffer to free
402  *
403  *	Drop a reference to the buffer and free it if the usage count has
404  *	hit zero.
405  */
406 void kfree_skb(struct sk_buff *skb)
407 {
408 	if (unlikely(!skb))
409 		return;
410 	if (likely(atomic_read(&skb->users) == 1))
411 		smp_rmb();
412 	else if (likely(!atomic_dec_and_test(&skb->users)))
413 		return;
414 	__kfree_skb(skb);
415 }
416 
417 /**
418  *	skb_clone	-	duplicate an sk_buff
419  *	@skb: buffer to clone
420  *	@gfp_mask: allocation priority
421  *
422  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
423  *	copies share the same packet data but not structure. The new
424  *	buffer has a reference count of 1. If the allocation fails the
425  *	function returns %NULL otherwise the new buffer is returned.
426  *
427  *	If this function is called from an interrupt gfp_mask() must be
428  *	%GFP_ATOMIC.
429  */
430 
431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
432 {
433 	struct sk_buff *n;
434 
435 	n = skb + 1;
436 	if (skb->fclone == SKB_FCLONE_ORIG &&
437 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
438 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
439 		n->fclone = SKB_FCLONE_CLONE;
440 		atomic_inc(fclone_ref);
441 	} else {
442 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
443 		if (!n)
444 			return NULL;
445 		n->fclone = SKB_FCLONE_UNAVAILABLE;
446 	}
447 
448 #define C(x) n->x = skb->x
449 
450 	n->next = n->prev = NULL;
451 	n->sk = NULL;
452 	C(tstamp);
453 	C(dev);
454 	C(h);
455 	C(nh);
456 	C(mac);
457 	C(dst);
458 	dst_clone(skb->dst);
459 	C(sp);
460 #ifdef CONFIG_INET
461 	secpath_get(skb->sp);
462 #endif
463 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
464 	C(len);
465 	C(data_len);
466 	C(csum);
467 	C(local_df);
468 	n->cloned = 1;
469 	n->nohdr = 0;
470 	C(pkt_type);
471 	C(ip_summed);
472 	C(priority);
473 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
474 	C(ipvs_property);
475 #endif
476 	C(protocol);
477 	n->destructor = NULL;
478 	C(mark);
479 #ifdef CONFIG_NETFILTER
480 	C(nfct);
481 	nf_conntrack_get(skb->nfct);
482 	C(nfctinfo);
483 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
484 	C(nfct_reasm);
485 	nf_conntrack_get_reasm(skb->nfct_reasm);
486 #endif
487 #ifdef CONFIG_BRIDGE_NETFILTER
488 	C(nf_bridge);
489 	nf_bridge_get(skb->nf_bridge);
490 #endif
491 #endif /*CONFIG_NETFILTER*/
492 #ifdef CONFIG_NET_SCHED
493 	C(tc_index);
494 #ifdef CONFIG_NET_CLS_ACT
495 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
496 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
497 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
498 	C(input_dev);
499 #endif
500 	skb_copy_secmark(n, skb);
501 #endif
502 	C(truesize);
503 	atomic_set(&n->users, 1);
504 	C(head);
505 	C(data);
506 	C(tail);
507 	C(end);
508 
509 	atomic_inc(&(skb_shinfo(skb)->dataref));
510 	skb->cloned = 1;
511 
512 	return n;
513 }
514 
515 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
516 {
517 	/*
518 	 *	Shift between the two data areas in bytes
519 	 */
520 	unsigned long offset = new->data - old->data;
521 
522 	new->sk		= NULL;
523 	new->dev	= old->dev;
524 	new->priority	= old->priority;
525 	new->protocol	= old->protocol;
526 	new->dst	= dst_clone(old->dst);
527 #ifdef CONFIG_INET
528 	new->sp		= secpath_get(old->sp);
529 #endif
530 	new->h.raw	= old->h.raw + offset;
531 	new->nh.raw	= old->nh.raw + offset;
532 	new->mac.raw	= old->mac.raw + offset;
533 	memcpy(new->cb, old->cb, sizeof(old->cb));
534 	new->local_df	= old->local_df;
535 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
536 	new->pkt_type	= old->pkt_type;
537 	new->tstamp	= old->tstamp;
538 	new->destructor = NULL;
539 	new->mark	= old->mark;
540 #ifdef CONFIG_NETFILTER
541 	new->nfct	= old->nfct;
542 	nf_conntrack_get(old->nfct);
543 	new->nfctinfo	= old->nfctinfo;
544 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
545 	new->nfct_reasm = old->nfct_reasm;
546 	nf_conntrack_get_reasm(old->nfct_reasm);
547 #endif
548 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
549 	new->ipvs_property = old->ipvs_property;
550 #endif
551 #ifdef CONFIG_BRIDGE_NETFILTER
552 	new->nf_bridge	= old->nf_bridge;
553 	nf_bridge_get(old->nf_bridge);
554 #endif
555 #endif
556 #ifdef CONFIG_NET_SCHED
557 #ifdef CONFIG_NET_CLS_ACT
558 	new->tc_verd = old->tc_verd;
559 #endif
560 	new->tc_index	= old->tc_index;
561 #endif
562 	skb_copy_secmark(new, old);
563 	atomic_set(&new->users, 1);
564 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
565 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
566 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
567 }
568 
569 /**
570  *	skb_copy	-	create private copy of an sk_buff
571  *	@skb: buffer to copy
572  *	@gfp_mask: allocation priority
573  *
574  *	Make a copy of both an &sk_buff and its data. This is used when the
575  *	caller wishes to modify the data and needs a private copy of the
576  *	data to alter. Returns %NULL on failure or the pointer to the buffer
577  *	on success. The returned buffer has a reference count of 1.
578  *
579  *	As by-product this function converts non-linear &sk_buff to linear
580  *	one, so that &sk_buff becomes completely private and caller is allowed
581  *	to modify all the data of returned buffer. This means that this
582  *	function is not recommended for use in circumstances when only
583  *	header is going to be modified. Use pskb_copy() instead.
584  */
585 
586 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
587 {
588 	int headerlen = skb->data - skb->head;
589 	/*
590 	 *	Allocate the copy buffer
591 	 */
592 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
593 				      gfp_mask);
594 	if (!n)
595 		return NULL;
596 
597 	/* Set the data pointer */
598 	skb_reserve(n, headerlen);
599 	/* Set the tail pointer and length */
600 	skb_put(n, skb->len);
601 	n->csum	     = skb->csum;
602 	n->ip_summed = skb->ip_summed;
603 
604 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
605 		BUG();
606 
607 	copy_skb_header(n, skb);
608 	return n;
609 }
610 
611 
612 /**
613  *	pskb_copy	-	create copy of an sk_buff with private head.
614  *	@skb: buffer to copy
615  *	@gfp_mask: allocation priority
616  *
617  *	Make a copy of both an &sk_buff and part of its data, located
618  *	in header. Fragmented data remain shared. This is used when
619  *	the caller wishes to modify only header of &sk_buff and needs
620  *	private copy of the header to alter. Returns %NULL on failure
621  *	or the pointer to the buffer on success.
622  *	The returned buffer has a reference count of 1.
623  */
624 
625 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
626 {
627 	/*
628 	 *	Allocate the copy buffer
629 	 */
630 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
631 
632 	if (!n)
633 		goto out;
634 
635 	/* Set the data pointer */
636 	skb_reserve(n, skb->data - skb->head);
637 	/* Set the tail pointer and length */
638 	skb_put(n, skb_headlen(skb));
639 	/* Copy the bytes */
640 	memcpy(n->data, skb->data, n->len);
641 	n->csum	     = skb->csum;
642 	n->ip_summed = skb->ip_summed;
643 
644 	n->truesize += skb->data_len;
645 	n->data_len  = skb->data_len;
646 	n->len	     = skb->len;
647 
648 	if (skb_shinfo(skb)->nr_frags) {
649 		int i;
650 
651 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
652 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
653 			get_page(skb_shinfo(n)->frags[i].page);
654 		}
655 		skb_shinfo(n)->nr_frags = i;
656 	}
657 
658 	if (skb_shinfo(skb)->frag_list) {
659 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
660 		skb_clone_fraglist(n);
661 	}
662 
663 	copy_skb_header(n, skb);
664 out:
665 	return n;
666 }
667 
668 /**
669  *	pskb_expand_head - reallocate header of &sk_buff
670  *	@skb: buffer to reallocate
671  *	@nhead: room to add at head
672  *	@ntail: room to add at tail
673  *	@gfp_mask: allocation priority
674  *
675  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
676  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
677  *	reference count of 1. Returns zero in the case of success or error,
678  *	if expansion failed. In the last case, &sk_buff is not changed.
679  *
680  *	All the pointers pointing into skb header may change and must be
681  *	reloaded after call to this function.
682  */
683 
684 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
685 		     gfp_t gfp_mask)
686 {
687 	int i;
688 	u8 *data;
689 	int size = nhead + (skb->end - skb->head) + ntail;
690 	long off;
691 
692 	if (skb_shared(skb))
693 		BUG();
694 
695 	size = SKB_DATA_ALIGN(size);
696 
697 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
698 	if (!data)
699 		goto nodata;
700 
701 	/* Copy only real data... and, alas, header. This should be
702 	 * optimized for the cases when header is void. */
703 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
704 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
705 
706 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
707 		get_page(skb_shinfo(skb)->frags[i].page);
708 
709 	if (skb_shinfo(skb)->frag_list)
710 		skb_clone_fraglist(skb);
711 
712 	skb_release_data(skb);
713 
714 	off = (data + nhead) - skb->head;
715 
716 	skb->head     = data;
717 	skb->end      = data + size;
718 	skb->data    += off;
719 	skb->tail    += off;
720 	skb->mac.raw += off;
721 	skb->h.raw   += off;
722 	skb->nh.raw  += off;
723 	skb->cloned   = 0;
724 	skb->nohdr    = 0;
725 	atomic_set(&skb_shinfo(skb)->dataref, 1);
726 	return 0;
727 
728 nodata:
729 	return -ENOMEM;
730 }
731 
732 /* Make private copy of skb with writable head and some headroom */
733 
734 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
735 {
736 	struct sk_buff *skb2;
737 	int delta = headroom - skb_headroom(skb);
738 
739 	if (delta <= 0)
740 		skb2 = pskb_copy(skb, GFP_ATOMIC);
741 	else {
742 		skb2 = skb_clone(skb, GFP_ATOMIC);
743 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
744 					     GFP_ATOMIC)) {
745 			kfree_skb(skb2);
746 			skb2 = NULL;
747 		}
748 	}
749 	return skb2;
750 }
751 
752 
753 /**
754  *	skb_copy_expand	-	copy and expand sk_buff
755  *	@skb: buffer to copy
756  *	@newheadroom: new free bytes at head
757  *	@newtailroom: new free bytes at tail
758  *	@gfp_mask: allocation priority
759  *
760  *	Make a copy of both an &sk_buff and its data and while doing so
761  *	allocate additional space.
762  *
763  *	This is used when the caller wishes to modify the data and needs a
764  *	private copy of the data to alter as well as more space for new fields.
765  *	Returns %NULL on failure or the pointer to the buffer
766  *	on success. The returned buffer has a reference count of 1.
767  *
768  *	You must pass %GFP_ATOMIC as the allocation priority if this function
769  *	is called from an interrupt.
770  *
771  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
772  *	only by netfilter in the cases when checksum is recalculated? --ANK
773  */
774 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
775 				int newheadroom, int newtailroom,
776 				gfp_t gfp_mask)
777 {
778 	/*
779 	 *	Allocate the copy buffer
780 	 */
781 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
782 				      gfp_mask);
783 	int head_copy_len, head_copy_off;
784 
785 	if (!n)
786 		return NULL;
787 
788 	skb_reserve(n, newheadroom);
789 
790 	/* Set the tail pointer and length */
791 	skb_put(n, skb->len);
792 
793 	head_copy_len = skb_headroom(skb);
794 	head_copy_off = 0;
795 	if (newheadroom <= head_copy_len)
796 		head_copy_len = newheadroom;
797 	else
798 		head_copy_off = newheadroom - head_copy_len;
799 
800 	/* Copy the linear header and data. */
801 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
802 			  skb->len + head_copy_len))
803 		BUG();
804 
805 	copy_skb_header(n, skb);
806 
807 	return n;
808 }
809 
810 /**
811  *	skb_pad			-	zero pad the tail of an skb
812  *	@skb: buffer to pad
813  *	@pad: space to pad
814  *
815  *	Ensure that a buffer is followed by a padding area that is zero
816  *	filled. Used by network drivers which may DMA or transfer data
817  *	beyond the buffer end onto the wire.
818  *
819  *	May return error in out of memory cases. The skb is freed on error.
820  */
821 
822 int skb_pad(struct sk_buff *skb, int pad)
823 {
824 	int err;
825 	int ntail;
826 
827 	/* If the skbuff is non linear tailroom is always zero.. */
828 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
829 		memset(skb->data+skb->len, 0, pad);
830 		return 0;
831 	}
832 
833 	ntail = skb->data_len + pad - (skb->end - skb->tail);
834 	if (likely(skb_cloned(skb) || ntail > 0)) {
835 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
836 		if (unlikely(err))
837 			goto free_skb;
838 	}
839 
840 	/* FIXME: The use of this function with non-linear skb's really needs
841 	 * to be audited.
842 	 */
843 	err = skb_linearize(skb);
844 	if (unlikely(err))
845 		goto free_skb;
846 
847 	memset(skb->data + skb->len, 0, pad);
848 	return 0;
849 
850 free_skb:
851 	kfree_skb(skb);
852 	return err;
853 }
854 
855 /* Trims skb to length len. It can change skb pointers.
856  */
857 
858 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
859 {
860 	struct sk_buff **fragp;
861 	struct sk_buff *frag;
862 	int offset = skb_headlen(skb);
863 	int nfrags = skb_shinfo(skb)->nr_frags;
864 	int i;
865 	int err;
866 
867 	if (skb_cloned(skb) &&
868 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
869 		return err;
870 
871 	i = 0;
872 	if (offset >= len)
873 		goto drop_pages;
874 
875 	for (; i < nfrags; i++) {
876 		int end = offset + skb_shinfo(skb)->frags[i].size;
877 
878 		if (end < len) {
879 			offset = end;
880 			continue;
881 		}
882 
883 		skb_shinfo(skb)->frags[i++].size = len - offset;
884 
885 drop_pages:
886 		skb_shinfo(skb)->nr_frags = i;
887 
888 		for (; i < nfrags; i++)
889 			put_page(skb_shinfo(skb)->frags[i].page);
890 
891 		if (skb_shinfo(skb)->frag_list)
892 			skb_drop_fraglist(skb);
893 		goto done;
894 	}
895 
896 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
897 	     fragp = &frag->next) {
898 		int end = offset + frag->len;
899 
900 		if (skb_shared(frag)) {
901 			struct sk_buff *nfrag;
902 
903 			nfrag = skb_clone(frag, GFP_ATOMIC);
904 			if (unlikely(!nfrag))
905 				return -ENOMEM;
906 
907 			nfrag->next = frag->next;
908 			kfree_skb(frag);
909 			frag = nfrag;
910 			*fragp = frag;
911 		}
912 
913 		if (end < len) {
914 			offset = end;
915 			continue;
916 		}
917 
918 		if (end > len &&
919 		    unlikely((err = pskb_trim(frag, len - offset))))
920 			return err;
921 
922 		if (frag->next)
923 			skb_drop_list(&frag->next);
924 		break;
925 	}
926 
927 done:
928 	if (len > skb_headlen(skb)) {
929 		skb->data_len -= skb->len - len;
930 		skb->len       = len;
931 	} else {
932 		skb->len       = len;
933 		skb->data_len  = 0;
934 		skb->tail      = skb->data + len;
935 	}
936 
937 	return 0;
938 }
939 
940 /**
941  *	__pskb_pull_tail - advance tail of skb header
942  *	@skb: buffer to reallocate
943  *	@delta: number of bytes to advance tail
944  *
945  *	The function makes a sense only on a fragmented &sk_buff,
946  *	it expands header moving its tail forward and copying necessary
947  *	data from fragmented part.
948  *
949  *	&sk_buff MUST have reference count of 1.
950  *
951  *	Returns %NULL (and &sk_buff does not change) if pull failed
952  *	or value of new tail of skb in the case of success.
953  *
954  *	All the pointers pointing into skb header may change and must be
955  *	reloaded after call to this function.
956  */
957 
958 /* Moves tail of skb head forward, copying data from fragmented part,
959  * when it is necessary.
960  * 1. It may fail due to malloc failure.
961  * 2. It may change skb pointers.
962  *
963  * It is pretty complicated. Luckily, it is called only in exceptional cases.
964  */
965 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
966 {
967 	/* If skb has not enough free space at tail, get new one
968 	 * plus 128 bytes for future expansions. If we have enough
969 	 * room at tail, reallocate without expansion only if skb is cloned.
970 	 */
971 	int i, k, eat = (skb->tail + delta) - skb->end;
972 
973 	if (eat > 0 || skb_cloned(skb)) {
974 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
975 				     GFP_ATOMIC))
976 			return NULL;
977 	}
978 
979 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
980 		BUG();
981 
982 	/* Optimization: no fragments, no reasons to preestimate
983 	 * size of pulled pages. Superb.
984 	 */
985 	if (!skb_shinfo(skb)->frag_list)
986 		goto pull_pages;
987 
988 	/* Estimate size of pulled pages. */
989 	eat = delta;
990 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
991 		if (skb_shinfo(skb)->frags[i].size >= eat)
992 			goto pull_pages;
993 		eat -= skb_shinfo(skb)->frags[i].size;
994 	}
995 
996 	/* If we need update frag list, we are in troubles.
997 	 * Certainly, it possible to add an offset to skb data,
998 	 * but taking into account that pulling is expected to
999 	 * be very rare operation, it is worth to fight against
1000 	 * further bloating skb head and crucify ourselves here instead.
1001 	 * Pure masohism, indeed. 8)8)
1002 	 */
1003 	if (eat) {
1004 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1005 		struct sk_buff *clone = NULL;
1006 		struct sk_buff *insp = NULL;
1007 
1008 		do {
1009 			BUG_ON(!list);
1010 
1011 			if (list->len <= eat) {
1012 				/* Eaten as whole. */
1013 				eat -= list->len;
1014 				list = list->next;
1015 				insp = list;
1016 			} else {
1017 				/* Eaten partially. */
1018 
1019 				if (skb_shared(list)) {
1020 					/* Sucks! We need to fork list. :-( */
1021 					clone = skb_clone(list, GFP_ATOMIC);
1022 					if (!clone)
1023 						return NULL;
1024 					insp = list->next;
1025 					list = clone;
1026 				} else {
1027 					/* This may be pulled without
1028 					 * problems. */
1029 					insp = list;
1030 				}
1031 				if (!pskb_pull(list, eat)) {
1032 					if (clone)
1033 						kfree_skb(clone);
1034 					return NULL;
1035 				}
1036 				break;
1037 			}
1038 		} while (eat);
1039 
1040 		/* Free pulled out fragments. */
1041 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1042 			skb_shinfo(skb)->frag_list = list->next;
1043 			kfree_skb(list);
1044 		}
1045 		/* And insert new clone at head. */
1046 		if (clone) {
1047 			clone->next = list;
1048 			skb_shinfo(skb)->frag_list = clone;
1049 		}
1050 	}
1051 	/* Success! Now we may commit changes to skb data. */
1052 
1053 pull_pages:
1054 	eat = delta;
1055 	k = 0;
1056 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1057 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1058 			put_page(skb_shinfo(skb)->frags[i].page);
1059 			eat -= skb_shinfo(skb)->frags[i].size;
1060 		} else {
1061 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1062 			if (eat) {
1063 				skb_shinfo(skb)->frags[k].page_offset += eat;
1064 				skb_shinfo(skb)->frags[k].size -= eat;
1065 				eat = 0;
1066 			}
1067 			k++;
1068 		}
1069 	}
1070 	skb_shinfo(skb)->nr_frags = k;
1071 
1072 	skb->tail     += delta;
1073 	skb->data_len -= delta;
1074 
1075 	return skb->tail;
1076 }
1077 
1078 /* Copy some data bits from skb to kernel buffer. */
1079 
1080 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1081 {
1082 	int i, copy;
1083 	int start = skb_headlen(skb);
1084 
1085 	if (offset > (int)skb->len - len)
1086 		goto fault;
1087 
1088 	/* Copy header. */
1089 	if ((copy = start - offset) > 0) {
1090 		if (copy > len)
1091 			copy = len;
1092 		memcpy(to, skb->data + offset, copy);
1093 		if ((len -= copy) == 0)
1094 			return 0;
1095 		offset += copy;
1096 		to     += copy;
1097 	}
1098 
1099 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1100 		int end;
1101 
1102 		BUG_TRAP(start <= offset + len);
1103 
1104 		end = start + skb_shinfo(skb)->frags[i].size;
1105 		if ((copy = end - offset) > 0) {
1106 			u8 *vaddr;
1107 
1108 			if (copy > len)
1109 				copy = len;
1110 
1111 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1112 			memcpy(to,
1113 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1114 			       offset - start, copy);
1115 			kunmap_skb_frag(vaddr);
1116 
1117 			if ((len -= copy) == 0)
1118 				return 0;
1119 			offset += copy;
1120 			to     += copy;
1121 		}
1122 		start = end;
1123 	}
1124 
1125 	if (skb_shinfo(skb)->frag_list) {
1126 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1127 
1128 		for (; list; list = list->next) {
1129 			int end;
1130 
1131 			BUG_TRAP(start <= offset + len);
1132 
1133 			end = start + list->len;
1134 			if ((copy = end - offset) > 0) {
1135 				if (copy > len)
1136 					copy = len;
1137 				if (skb_copy_bits(list, offset - start,
1138 						  to, copy))
1139 					goto fault;
1140 				if ((len -= copy) == 0)
1141 					return 0;
1142 				offset += copy;
1143 				to     += copy;
1144 			}
1145 			start = end;
1146 		}
1147 	}
1148 	if (!len)
1149 		return 0;
1150 
1151 fault:
1152 	return -EFAULT;
1153 }
1154 
1155 /**
1156  *	skb_store_bits - store bits from kernel buffer to skb
1157  *	@skb: destination buffer
1158  *	@offset: offset in destination
1159  *	@from: source buffer
1160  *	@len: number of bytes to copy
1161  *
1162  *	Copy the specified number of bytes from the source buffer to the
1163  *	destination skb.  This function handles all the messy bits of
1164  *	traversing fragment lists and such.
1165  */
1166 
1167 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1168 {
1169 	int i, copy;
1170 	int start = skb_headlen(skb);
1171 
1172 	if (offset > (int)skb->len - len)
1173 		goto fault;
1174 
1175 	if ((copy = start - offset) > 0) {
1176 		if (copy > len)
1177 			copy = len;
1178 		memcpy(skb->data + offset, from, copy);
1179 		if ((len -= copy) == 0)
1180 			return 0;
1181 		offset += copy;
1182 		from += copy;
1183 	}
1184 
1185 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1186 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1187 		int end;
1188 
1189 		BUG_TRAP(start <= offset + len);
1190 
1191 		end = start + frag->size;
1192 		if ((copy = end - offset) > 0) {
1193 			u8 *vaddr;
1194 
1195 			if (copy > len)
1196 				copy = len;
1197 
1198 			vaddr = kmap_skb_frag(frag);
1199 			memcpy(vaddr + frag->page_offset + offset - start,
1200 			       from, copy);
1201 			kunmap_skb_frag(vaddr);
1202 
1203 			if ((len -= copy) == 0)
1204 				return 0;
1205 			offset += copy;
1206 			from += copy;
1207 		}
1208 		start = end;
1209 	}
1210 
1211 	if (skb_shinfo(skb)->frag_list) {
1212 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1213 
1214 		for (; list; list = list->next) {
1215 			int end;
1216 
1217 			BUG_TRAP(start <= offset + len);
1218 
1219 			end = start + list->len;
1220 			if ((copy = end - offset) > 0) {
1221 				if (copy > len)
1222 					copy = len;
1223 				if (skb_store_bits(list, offset - start,
1224 						   from, copy))
1225 					goto fault;
1226 				if ((len -= copy) == 0)
1227 					return 0;
1228 				offset += copy;
1229 				from += copy;
1230 			}
1231 			start = end;
1232 		}
1233 	}
1234 	if (!len)
1235 		return 0;
1236 
1237 fault:
1238 	return -EFAULT;
1239 }
1240 
1241 EXPORT_SYMBOL(skb_store_bits);
1242 
1243 /* Checksum skb data. */
1244 
1245 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1246 			  int len, __wsum csum)
1247 {
1248 	int start = skb_headlen(skb);
1249 	int i, copy = start - offset;
1250 	int pos = 0;
1251 
1252 	/* Checksum header. */
1253 	if (copy > 0) {
1254 		if (copy > len)
1255 			copy = len;
1256 		csum = csum_partial(skb->data + offset, copy, csum);
1257 		if ((len -= copy) == 0)
1258 			return csum;
1259 		offset += copy;
1260 		pos	= copy;
1261 	}
1262 
1263 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1264 		int end;
1265 
1266 		BUG_TRAP(start <= offset + len);
1267 
1268 		end = start + skb_shinfo(skb)->frags[i].size;
1269 		if ((copy = end - offset) > 0) {
1270 			__wsum csum2;
1271 			u8 *vaddr;
1272 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1273 
1274 			if (copy > len)
1275 				copy = len;
1276 			vaddr = kmap_skb_frag(frag);
1277 			csum2 = csum_partial(vaddr + frag->page_offset +
1278 					     offset - start, copy, 0);
1279 			kunmap_skb_frag(vaddr);
1280 			csum = csum_block_add(csum, csum2, pos);
1281 			if (!(len -= copy))
1282 				return csum;
1283 			offset += copy;
1284 			pos    += copy;
1285 		}
1286 		start = end;
1287 	}
1288 
1289 	if (skb_shinfo(skb)->frag_list) {
1290 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1291 
1292 		for (; list; list = list->next) {
1293 			int end;
1294 
1295 			BUG_TRAP(start <= offset + len);
1296 
1297 			end = start + list->len;
1298 			if ((copy = end - offset) > 0) {
1299 				__wsum csum2;
1300 				if (copy > len)
1301 					copy = len;
1302 				csum2 = skb_checksum(list, offset - start,
1303 						     copy, 0);
1304 				csum = csum_block_add(csum, csum2, pos);
1305 				if ((len -= copy) == 0)
1306 					return csum;
1307 				offset += copy;
1308 				pos    += copy;
1309 			}
1310 			start = end;
1311 		}
1312 	}
1313 	BUG_ON(len);
1314 
1315 	return csum;
1316 }
1317 
1318 /* Both of above in one bottle. */
1319 
1320 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1321 				    u8 *to, int len, __wsum csum)
1322 {
1323 	int start = skb_headlen(skb);
1324 	int i, copy = start - offset;
1325 	int pos = 0;
1326 
1327 	/* Copy header. */
1328 	if (copy > 0) {
1329 		if (copy > len)
1330 			copy = len;
1331 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1332 						 copy, csum);
1333 		if ((len -= copy) == 0)
1334 			return csum;
1335 		offset += copy;
1336 		to     += copy;
1337 		pos	= copy;
1338 	}
1339 
1340 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1341 		int end;
1342 
1343 		BUG_TRAP(start <= offset + len);
1344 
1345 		end = start + skb_shinfo(skb)->frags[i].size;
1346 		if ((copy = end - offset) > 0) {
1347 			__wsum csum2;
1348 			u8 *vaddr;
1349 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1350 
1351 			if (copy > len)
1352 				copy = len;
1353 			vaddr = kmap_skb_frag(frag);
1354 			csum2 = csum_partial_copy_nocheck(vaddr +
1355 							  frag->page_offset +
1356 							  offset - start, to,
1357 							  copy, 0);
1358 			kunmap_skb_frag(vaddr);
1359 			csum = csum_block_add(csum, csum2, pos);
1360 			if (!(len -= copy))
1361 				return csum;
1362 			offset += copy;
1363 			to     += copy;
1364 			pos    += copy;
1365 		}
1366 		start = end;
1367 	}
1368 
1369 	if (skb_shinfo(skb)->frag_list) {
1370 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1371 
1372 		for (; list; list = list->next) {
1373 			__wsum csum2;
1374 			int end;
1375 
1376 			BUG_TRAP(start <= offset + len);
1377 
1378 			end = start + list->len;
1379 			if ((copy = end - offset) > 0) {
1380 				if (copy > len)
1381 					copy = len;
1382 				csum2 = skb_copy_and_csum_bits(list,
1383 							       offset - start,
1384 							       to, copy, 0);
1385 				csum = csum_block_add(csum, csum2, pos);
1386 				if ((len -= copy) == 0)
1387 					return csum;
1388 				offset += copy;
1389 				to     += copy;
1390 				pos    += copy;
1391 			}
1392 			start = end;
1393 		}
1394 	}
1395 	BUG_ON(len);
1396 	return csum;
1397 }
1398 
1399 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1400 {
1401 	__wsum csum;
1402 	long csstart;
1403 
1404 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1405 		csstart = skb->h.raw - skb->data;
1406 	else
1407 		csstart = skb_headlen(skb);
1408 
1409 	BUG_ON(csstart > skb_headlen(skb));
1410 
1411 	memcpy(to, skb->data, csstart);
1412 
1413 	csum = 0;
1414 	if (csstart != skb->len)
1415 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1416 					      skb->len - csstart, 0);
1417 
1418 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1419 		long csstuff = csstart + skb->csum_offset;
1420 
1421 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1422 	}
1423 }
1424 
1425 /**
1426  *	skb_dequeue - remove from the head of the queue
1427  *	@list: list to dequeue from
1428  *
1429  *	Remove the head of the list. The list lock is taken so the function
1430  *	may be used safely with other locking list functions. The head item is
1431  *	returned or %NULL if the list is empty.
1432  */
1433 
1434 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1435 {
1436 	unsigned long flags;
1437 	struct sk_buff *result;
1438 
1439 	spin_lock_irqsave(&list->lock, flags);
1440 	result = __skb_dequeue(list);
1441 	spin_unlock_irqrestore(&list->lock, flags);
1442 	return result;
1443 }
1444 
1445 /**
1446  *	skb_dequeue_tail - remove from the tail of the queue
1447  *	@list: list to dequeue from
1448  *
1449  *	Remove the tail of the list. The list lock is taken so the function
1450  *	may be used safely with other locking list functions. The tail item is
1451  *	returned or %NULL if the list is empty.
1452  */
1453 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1454 {
1455 	unsigned long flags;
1456 	struct sk_buff *result;
1457 
1458 	spin_lock_irqsave(&list->lock, flags);
1459 	result = __skb_dequeue_tail(list);
1460 	spin_unlock_irqrestore(&list->lock, flags);
1461 	return result;
1462 }
1463 
1464 /**
1465  *	skb_queue_purge - empty a list
1466  *	@list: list to empty
1467  *
1468  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1469  *	the list and one reference dropped. This function takes the list
1470  *	lock and is atomic with respect to other list locking functions.
1471  */
1472 void skb_queue_purge(struct sk_buff_head *list)
1473 {
1474 	struct sk_buff *skb;
1475 	while ((skb = skb_dequeue(list)) != NULL)
1476 		kfree_skb(skb);
1477 }
1478 
1479 /**
1480  *	skb_queue_head - queue a buffer at the list head
1481  *	@list: list to use
1482  *	@newsk: buffer to queue
1483  *
1484  *	Queue a buffer at the start of the list. This function takes the
1485  *	list lock and can be used safely with other locking &sk_buff functions
1486  *	safely.
1487  *
1488  *	A buffer cannot be placed on two lists at the same time.
1489  */
1490 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1491 {
1492 	unsigned long flags;
1493 
1494 	spin_lock_irqsave(&list->lock, flags);
1495 	__skb_queue_head(list, newsk);
1496 	spin_unlock_irqrestore(&list->lock, flags);
1497 }
1498 
1499 /**
1500  *	skb_queue_tail - queue a buffer at the list tail
1501  *	@list: list to use
1502  *	@newsk: buffer to queue
1503  *
1504  *	Queue a buffer at the tail of the list. This function takes the
1505  *	list lock and can be used safely with other locking &sk_buff functions
1506  *	safely.
1507  *
1508  *	A buffer cannot be placed on two lists at the same time.
1509  */
1510 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1511 {
1512 	unsigned long flags;
1513 
1514 	spin_lock_irqsave(&list->lock, flags);
1515 	__skb_queue_tail(list, newsk);
1516 	spin_unlock_irqrestore(&list->lock, flags);
1517 }
1518 
1519 /**
1520  *	skb_unlink	-	remove a buffer from a list
1521  *	@skb: buffer to remove
1522  *	@list: list to use
1523  *
1524  *	Remove a packet from a list. The list locks are taken and this
1525  *	function is atomic with respect to other list locked calls
1526  *
1527  *	You must know what list the SKB is on.
1528  */
1529 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1530 {
1531 	unsigned long flags;
1532 
1533 	spin_lock_irqsave(&list->lock, flags);
1534 	__skb_unlink(skb, list);
1535 	spin_unlock_irqrestore(&list->lock, flags);
1536 }
1537 
1538 /**
1539  *	skb_append	-	append a buffer
1540  *	@old: buffer to insert after
1541  *	@newsk: buffer to insert
1542  *	@list: list to use
1543  *
1544  *	Place a packet after a given packet in a list. The list locks are taken
1545  *	and this function is atomic with respect to other list locked calls.
1546  *	A buffer cannot be placed on two lists at the same time.
1547  */
1548 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1549 {
1550 	unsigned long flags;
1551 
1552 	spin_lock_irqsave(&list->lock, flags);
1553 	__skb_append(old, newsk, list);
1554 	spin_unlock_irqrestore(&list->lock, flags);
1555 }
1556 
1557 
1558 /**
1559  *	skb_insert	-	insert a buffer
1560  *	@old: buffer to insert before
1561  *	@newsk: buffer to insert
1562  *	@list: list to use
1563  *
1564  *	Place a packet before a given packet in a list. The list locks are
1565  * 	taken and this function is atomic with respect to other list locked
1566  *	calls.
1567  *
1568  *	A buffer cannot be placed on two lists at the same time.
1569  */
1570 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1571 {
1572 	unsigned long flags;
1573 
1574 	spin_lock_irqsave(&list->lock, flags);
1575 	__skb_insert(newsk, old->prev, old, list);
1576 	spin_unlock_irqrestore(&list->lock, flags);
1577 }
1578 
1579 #if 0
1580 /*
1581  * 	Tune the memory allocator for a new MTU size.
1582  */
1583 void skb_add_mtu(int mtu)
1584 {
1585 	/* Must match allocation in alloc_skb */
1586 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1587 
1588 	kmem_add_cache_size(mtu);
1589 }
1590 #endif
1591 
1592 static inline void skb_split_inside_header(struct sk_buff *skb,
1593 					   struct sk_buff* skb1,
1594 					   const u32 len, const int pos)
1595 {
1596 	int i;
1597 
1598 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1599 
1600 	/* And move data appendix as is. */
1601 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1602 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1603 
1604 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1605 	skb_shinfo(skb)->nr_frags  = 0;
1606 	skb1->data_len		   = skb->data_len;
1607 	skb1->len		   += skb1->data_len;
1608 	skb->data_len		   = 0;
1609 	skb->len		   = len;
1610 	skb->tail		   = skb->data + len;
1611 }
1612 
1613 static inline void skb_split_no_header(struct sk_buff *skb,
1614 				       struct sk_buff* skb1,
1615 				       const u32 len, int pos)
1616 {
1617 	int i, k = 0;
1618 	const int nfrags = skb_shinfo(skb)->nr_frags;
1619 
1620 	skb_shinfo(skb)->nr_frags = 0;
1621 	skb1->len		  = skb1->data_len = skb->len - len;
1622 	skb->len		  = len;
1623 	skb->data_len		  = len - pos;
1624 
1625 	for (i = 0; i < nfrags; i++) {
1626 		int size = skb_shinfo(skb)->frags[i].size;
1627 
1628 		if (pos + size > len) {
1629 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1630 
1631 			if (pos < len) {
1632 				/* Split frag.
1633 				 * We have two variants in this case:
1634 				 * 1. Move all the frag to the second
1635 				 *    part, if it is possible. F.e.
1636 				 *    this approach is mandatory for TUX,
1637 				 *    where splitting is expensive.
1638 				 * 2. Split is accurately. We make this.
1639 				 */
1640 				get_page(skb_shinfo(skb)->frags[i].page);
1641 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1642 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1643 				skb_shinfo(skb)->frags[i].size	= len - pos;
1644 				skb_shinfo(skb)->nr_frags++;
1645 			}
1646 			k++;
1647 		} else
1648 			skb_shinfo(skb)->nr_frags++;
1649 		pos += size;
1650 	}
1651 	skb_shinfo(skb1)->nr_frags = k;
1652 }
1653 
1654 /**
1655  * skb_split - Split fragmented skb to two parts at length len.
1656  * @skb: the buffer to split
1657  * @skb1: the buffer to receive the second part
1658  * @len: new length for skb
1659  */
1660 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1661 {
1662 	int pos = skb_headlen(skb);
1663 
1664 	if (len < pos)	/* Split line is inside header. */
1665 		skb_split_inside_header(skb, skb1, len, pos);
1666 	else		/* Second chunk has no header, nothing to copy. */
1667 		skb_split_no_header(skb, skb1, len, pos);
1668 }
1669 
1670 /**
1671  * skb_prepare_seq_read - Prepare a sequential read of skb data
1672  * @skb: the buffer to read
1673  * @from: lower offset of data to be read
1674  * @to: upper offset of data to be read
1675  * @st: state variable
1676  *
1677  * Initializes the specified state variable. Must be called before
1678  * invoking skb_seq_read() for the first time.
1679  */
1680 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1681 			  unsigned int to, struct skb_seq_state *st)
1682 {
1683 	st->lower_offset = from;
1684 	st->upper_offset = to;
1685 	st->root_skb = st->cur_skb = skb;
1686 	st->frag_idx = st->stepped_offset = 0;
1687 	st->frag_data = NULL;
1688 }
1689 
1690 /**
1691  * skb_seq_read - Sequentially read skb data
1692  * @consumed: number of bytes consumed by the caller so far
1693  * @data: destination pointer for data to be returned
1694  * @st: state variable
1695  *
1696  * Reads a block of skb data at &consumed relative to the
1697  * lower offset specified to skb_prepare_seq_read(). Assigns
1698  * the head of the data block to &data and returns the length
1699  * of the block or 0 if the end of the skb data or the upper
1700  * offset has been reached.
1701  *
1702  * The caller is not required to consume all of the data
1703  * returned, i.e. &consumed is typically set to the number
1704  * of bytes already consumed and the next call to
1705  * skb_seq_read() will return the remaining part of the block.
1706  *
1707  * Note: The size of each block of data returned can be arbitary,
1708  *       this limitation is the cost for zerocopy seqeuental
1709  *       reads of potentially non linear data.
1710  *
1711  * Note: Fragment lists within fragments are not implemented
1712  *       at the moment, state->root_skb could be replaced with
1713  *       a stack for this purpose.
1714  */
1715 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1716 			  struct skb_seq_state *st)
1717 {
1718 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1719 	skb_frag_t *frag;
1720 
1721 	if (unlikely(abs_offset >= st->upper_offset))
1722 		return 0;
1723 
1724 next_skb:
1725 	block_limit = skb_headlen(st->cur_skb);
1726 
1727 	if (abs_offset < block_limit) {
1728 		*data = st->cur_skb->data + abs_offset;
1729 		return block_limit - abs_offset;
1730 	}
1731 
1732 	if (st->frag_idx == 0 && !st->frag_data)
1733 		st->stepped_offset += skb_headlen(st->cur_skb);
1734 
1735 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1736 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1737 		block_limit = frag->size + st->stepped_offset;
1738 
1739 		if (abs_offset < block_limit) {
1740 			if (!st->frag_data)
1741 				st->frag_data = kmap_skb_frag(frag);
1742 
1743 			*data = (u8 *) st->frag_data + frag->page_offset +
1744 				(abs_offset - st->stepped_offset);
1745 
1746 			return block_limit - abs_offset;
1747 		}
1748 
1749 		if (st->frag_data) {
1750 			kunmap_skb_frag(st->frag_data);
1751 			st->frag_data = NULL;
1752 		}
1753 
1754 		st->frag_idx++;
1755 		st->stepped_offset += frag->size;
1756 	}
1757 
1758 	if (st->cur_skb->next) {
1759 		st->cur_skb = st->cur_skb->next;
1760 		st->frag_idx = 0;
1761 		goto next_skb;
1762 	} else if (st->root_skb == st->cur_skb &&
1763 		   skb_shinfo(st->root_skb)->frag_list) {
1764 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1765 		goto next_skb;
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 /**
1772  * skb_abort_seq_read - Abort a sequential read of skb data
1773  * @st: state variable
1774  *
1775  * Must be called if skb_seq_read() was not called until it
1776  * returned 0.
1777  */
1778 void skb_abort_seq_read(struct skb_seq_state *st)
1779 {
1780 	if (st->frag_data)
1781 		kunmap_skb_frag(st->frag_data);
1782 }
1783 
1784 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1785 
1786 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1787 					  struct ts_config *conf,
1788 					  struct ts_state *state)
1789 {
1790 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1791 }
1792 
1793 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1794 {
1795 	skb_abort_seq_read(TS_SKB_CB(state));
1796 }
1797 
1798 /**
1799  * skb_find_text - Find a text pattern in skb data
1800  * @skb: the buffer to look in
1801  * @from: search offset
1802  * @to: search limit
1803  * @config: textsearch configuration
1804  * @state: uninitialized textsearch state variable
1805  *
1806  * Finds a pattern in the skb data according to the specified
1807  * textsearch configuration. Use textsearch_next() to retrieve
1808  * subsequent occurrences of the pattern. Returns the offset
1809  * to the first occurrence or UINT_MAX if no match was found.
1810  */
1811 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1812 			   unsigned int to, struct ts_config *config,
1813 			   struct ts_state *state)
1814 {
1815 	unsigned int ret;
1816 
1817 	config->get_next_block = skb_ts_get_next_block;
1818 	config->finish = skb_ts_finish;
1819 
1820 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1821 
1822 	ret = textsearch_find(config, state);
1823 	return (ret <= to - from ? ret : UINT_MAX);
1824 }
1825 
1826 /**
1827  * skb_append_datato_frags: - append the user data to a skb
1828  * @sk: sock  structure
1829  * @skb: skb structure to be appened with user data.
1830  * @getfrag: call back function to be used for getting the user data
1831  * @from: pointer to user message iov
1832  * @length: length of the iov message
1833  *
1834  * Description: This procedure append the user data in the fragment part
1835  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1836  */
1837 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1838 			int (*getfrag)(void *from, char *to, int offset,
1839 					int len, int odd, struct sk_buff *skb),
1840 			void *from, int length)
1841 {
1842 	int frg_cnt = 0;
1843 	skb_frag_t *frag = NULL;
1844 	struct page *page = NULL;
1845 	int copy, left;
1846 	int offset = 0;
1847 	int ret;
1848 
1849 	do {
1850 		/* Return error if we don't have space for new frag */
1851 		frg_cnt = skb_shinfo(skb)->nr_frags;
1852 		if (frg_cnt >= MAX_SKB_FRAGS)
1853 			return -EFAULT;
1854 
1855 		/* allocate a new page for next frag */
1856 		page = alloc_pages(sk->sk_allocation, 0);
1857 
1858 		/* If alloc_page fails just return failure and caller will
1859 		 * free previous allocated pages by doing kfree_skb()
1860 		 */
1861 		if (page == NULL)
1862 			return -ENOMEM;
1863 
1864 		/* initialize the next frag */
1865 		sk->sk_sndmsg_page = page;
1866 		sk->sk_sndmsg_off = 0;
1867 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1868 		skb->truesize += PAGE_SIZE;
1869 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1870 
1871 		/* get the new initialized frag */
1872 		frg_cnt = skb_shinfo(skb)->nr_frags;
1873 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1874 
1875 		/* copy the user data to page */
1876 		left = PAGE_SIZE - frag->page_offset;
1877 		copy = (length > left)? left : length;
1878 
1879 		ret = getfrag(from, (page_address(frag->page) +
1880 			    frag->page_offset + frag->size),
1881 			    offset, copy, 0, skb);
1882 		if (ret < 0)
1883 			return -EFAULT;
1884 
1885 		/* copy was successful so update the size parameters */
1886 		sk->sk_sndmsg_off += copy;
1887 		frag->size += copy;
1888 		skb->len += copy;
1889 		skb->data_len += copy;
1890 		offset += copy;
1891 		length -= copy;
1892 
1893 	} while (length > 0);
1894 
1895 	return 0;
1896 }
1897 
1898 /**
1899  *	skb_pull_rcsum - pull skb and update receive checksum
1900  *	@skb: buffer to update
1901  *	@start: start of data before pull
1902  *	@len: length of data pulled
1903  *
1904  *	This function performs an skb_pull on the packet and updates
1905  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
1906  *	receive path processing instead of skb_pull unless you know
1907  *	that the checksum difference is zero (e.g., a valid IP header)
1908  *	or you are setting ip_summed to CHECKSUM_NONE.
1909  */
1910 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1911 {
1912 	BUG_ON(len > skb->len);
1913 	skb->len -= len;
1914 	BUG_ON(skb->len < skb->data_len);
1915 	skb_postpull_rcsum(skb, skb->data, len);
1916 	return skb->data += len;
1917 }
1918 
1919 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1920 
1921 /**
1922  *	skb_segment - Perform protocol segmentation on skb.
1923  *	@skb: buffer to segment
1924  *	@features: features for the output path (see dev->features)
1925  *
1926  *	This function performs segmentation on the given skb.  It returns
1927  *	the segment at the given position.  It returns NULL if there are
1928  *	no more segments to generate, or when an error is encountered.
1929  */
1930 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1931 {
1932 	struct sk_buff *segs = NULL;
1933 	struct sk_buff *tail = NULL;
1934 	unsigned int mss = skb_shinfo(skb)->gso_size;
1935 	unsigned int doffset = skb->data - skb->mac.raw;
1936 	unsigned int offset = doffset;
1937 	unsigned int headroom;
1938 	unsigned int len;
1939 	int sg = features & NETIF_F_SG;
1940 	int nfrags = skb_shinfo(skb)->nr_frags;
1941 	int err = -ENOMEM;
1942 	int i = 0;
1943 	int pos;
1944 
1945 	__skb_push(skb, doffset);
1946 	headroom = skb_headroom(skb);
1947 	pos = skb_headlen(skb);
1948 
1949 	do {
1950 		struct sk_buff *nskb;
1951 		skb_frag_t *frag;
1952 		int hsize;
1953 		int k;
1954 		int size;
1955 
1956 		len = skb->len - offset;
1957 		if (len > mss)
1958 			len = mss;
1959 
1960 		hsize = skb_headlen(skb) - offset;
1961 		if (hsize < 0)
1962 			hsize = 0;
1963 		if (hsize > len || !sg)
1964 			hsize = len;
1965 
1966 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1967 		if (unlikely(!nskb))
1968 			goto err;
1969 
1970 		if (segs)
1971 			tail->next = nskb;
1972 		else
1973 			segs = nskb;
1974 		tail = nskb;
1975 
1976 		nskb->dev = skb->dev;
1977 		nskb->priority = skb->priority;
1978 		nskb->protocol = skb->protocol;
1979 		nskb->dst = dst_clone(skb->dst);
1980 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1981 		nskb->pkt_type = skb->pkt_type;
1982 		nskb->mac_len = skb->mac_len;
1983 
1984 		skb_reserve(nskb, headroom);
1985 		nskb->mac.raw = nskb->data;
1986 		nskb->nh.raw = nskb->data + skb->mac_len;
1987 		nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1988 		memcpy(skb_put(nskb, doffset), skb->data, doffset);
1989 
1990 		if (!sg) {
1991 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1992 							    skb_put(nskb, len),
1993 							    len, 0);
1994 			continue;
1995 		}
1996 
1997 		frag = skb_shinfo(nskb)->frags;
1998 		k = 0;
1999 
2000 		nskb->ip_summed = CHECKSUM_PARTIAL;
2001 		nskb->csum = skb->csum;
2002 		memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
2003 
2004 		while (pos < offset + len) {
2005 			BUG_ON(i >= nfrags);
2006 
2007 			*frag = skb_shinfo(skb)->frags[i];
2008 			get_page(frag->page);
2009 			size = frag->size;
2010 
2011 			if (pos < offset) {
2012 				frag->page_offset += offset - pos;
2013 				frag->size -= offset - pos;
2014 			}
2015 
2016 			k++;
2017 
2018 			if (pos + size <= offset + len) {
2019 				i++;
2020 				pos += size;
2021 			} else {
2022 				frag->size -= pos + size - (offset + len);
2023 				break;
2024 			}
2025 
2026 			frag++;
2027 		}
2028 
2029 		skb_shinfo(nskb)->nr_frags = k;
2030 		nskb->data_len = len - hsize;
2031 		nskb->len += nskb->data_len;
2032 		nskb->truesize += nskb->data_len;
2033 	} while ((offset += len) < skb->len);
2034 
2035 	return segs;
2036 
2037 err:
2038 	while ((skb = segs)) {
2039 		segs = skb->next;
2040 		kfree_skb(skb);
2041 	}
2042 	return ERR_PTR(err);
2043 }
2044 
2045 EXPORT_SYMBOL_GPL(skb_segment);
2046 
2047 void __init skb_init(void)
2048 {
2049 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2050 					      sizeof(struct sk_buff),
2051 					      0,
2052 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2053 					      NULL, NULL);
2054 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2055 						(2*sizeof(struct sk_buff)) +
2056 						sizeof(atomic_t),
2057 						0,
2058 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2059 						NULL, NULL);
2060 }
2061 
2062 EXPORT_SYMBOL(___pskb_trim);
2063 EXPORT_SYMBOL(__kfree_skb);
2064 EXPORT_SYMBOL(kfree_skb);
2065 EXPORT_SYMBOL(__pskb_pull_tail);
2066 EXPORT_SYMBOL(__alloc_skb);
2067 EXPORT_SYMBOL(__netdev_alloc_skb);
2068 EXPORT_SYMBOL(pskb_copy);
2069 EXPORT_SYMBOL(pskb_expand_head);
2070 EXPORT_SYMBOL(skb_checksum);
2071 EXPORT_SYMBOL(skb_clone);
2072 EXPORT_SYMBOL(skb_clone_fraglist);
2073 EXPORT_SYMBOL(skb_copy);
2074 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2075 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2076 EXPORT_SYMBOL(skb_copy_bits);
2077 EXPORT_SYMBOL(skb_copy_expand);
2078 EXPORT_SYMBOL(skb_over_panic);
2079 EXPORT_SYMBOL(skb_pad);
2080 EXPORT_SYMBOL(skb_realloc_headroom);
2081 EXPORT_SYMBOL(skb_under_panic);
2082 EXPORT_SYMBOL(skb_dequeue);
2083 EXPORT_SYMBOL(skb_dequeue_tail);
2084 EXPORT_SYMBOL(skb_insert);
2085 EXPORT_SYMBOL(skb_queue_purge);
2086 EXPORT_SYMBOL(skb_queue_head);
2087 EXPORT_SYMBOL(skb_queue_tail);
2088 EXPORT_SYMBOL(skb_unlink);
2089 EXPORT_SYMBOL(skb_append);
2090 EXPORT_SYMBOL(skb_split);
2091 EXPORT_SYMBOL(skb_prepare_seq_read);
2092 EXPORT_SYMBOL(skb_seq_read);
2093 EXPORT_SYMBOL(skb_abort_seq_read);
2094 EXPORT_SYMBOL(skb_find_text);
2095 EXPORT_SYMBOL(skb_append_datato_frags);
2096