1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 59 #include <net/protocol.h> 60 #include <net/dst.h> 61 #include <net/sock.h> 62 #include <net/checksum.h> 63 #include <net/xfrm.h> 64 65 #include <asm/uaccess.h> 66 #include <asm/system.h> 67 68 #include "kmap_skb.h" 69 70 static struct kmem_cache *skbuff_head_cache __read_mostly; 71 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 72 73 /* 74 * Keep out-of-line to prevent kernel bloat. 75 * __builtin_return_address is not used because it is not always 76 * reliable. 77 */ 78 79 /** 80 * skb_over_panic - private function 81 * @skb: buffer 82 * @sz: size 83 * @here: address 84 * 85 * Out of line support code for skb_put(). Not user callable. 86 */ 87 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 88 { 89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 90 "data:%p tail:%p end:%p dev:%s\n", 91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 92 skb->dev ? skb->dev->name : "<NULL>"); 93 BUG(); 94 } 95 96 /** 97 * skb_under_panic - private function 98 * @skb: buffer 99 * @sz: size 100 * @here: address 101 * 102 * Out of line support code for skb_push(). Not user callable. 103 */ 104 105 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 106 { 107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 108 "data:%p tail:%p end:%p dev:%s\n", 109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 void skb_truesize_bug(struct sk_buff *skb) 115 { 116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 117 "len=%u, sizeof(sk_buff)=%Zd\n", 118 skb->truesize, skb->len, sizeof(struct sk_buff)); 119 } 120 EXPORT_SYMBOL(skb_truesize_bug); 121 122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 123 * 'private' fields and also do memory statistics to find all the 124 * [BEEP] leaks. 125 * 126 */ 127 128 /** 129 * __alloc_skb - allocate a network buffer 130 * @size: size to allocate 131 * @gfp_mask: allocation mask 132 * @fclone: allocate from fclone cache instead of head cache 133 * and allocate a cloned (child) skb 134 * @node: numa node to allocate memory on 135 * 136 * Allocate a new &sk_buff. The returned buffer has no headroom and a 137 * tail room of size bytes. The object has a reference count of one. 138 * The return is the buffer. On a failure the return is %NULL. 139 * 140 * Buffers may only be allocated from interrupts using a @gfp_mask of 141 * %GFP_ATOMIC. 142 */ 143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 144 int fclone, int node) 145 { 146 struct kmem_cache *cache; 147 struct skb_shared_info *shinfo; 148 struct sk_buff *skb; 149 u8 *data; 150 151 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 152 153 /* Get the HEAD */ 154 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 155 if (!skb) 156 goto out; 157 158 /* Get the DATA. Size must match skb_add_mtu(). */ 159 size = SKB_DATA_ALIGN(size); 160 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 161 gfp_mask, node); 162 if (!data) 163 goto nodata; 164 165 memset(skb, 0, offsetof(struct sk_buff, truesize)); 166 skb->truesize = size + sizeof(struct sk_buff); 167 atomic_set(&skb->users, 1); 168 skb->head = data; 169 skb->data = data; 170 skb->tail = data; 171 skb->end = data + size; 172 /* make sure we initialize shinfo sequentially */ 173 shinfo = skb_shinfo(skb); 174 atomic_set(&shinfo->dataref, 1); 175 shinfo->nr_frags = 0; 176 shinfo->gso_size = 0; 177 shinfo->gso_segs = 0; 178 shinfo->gso_type = 0; 179 shinfo->ip6_frag_id = 0; 180 shinfo->frag_list = NULL; 181 182 if (fclone) { 183 struct sk_buff *child = skb + 1; 184 atomic_t *fclone_ref = (atomic_t *) (child + 1); 185 186 skb->fclone = SKB_FCLONE_ORIG; 187 atomic_set(fclone_ref, 1); 188 189 child->fclone = SKB_FCLONE_UNAVAILABLE; 190 } 191 out: 192 return skb; 193 nodata: 194 kmem_cache_free(cache, skb); 195 skb = NULL; 196 goto out; 197 } 198 199 /** 200 * alloc_skb_from_cache - allocate a network buffer 201 * @cp: kmem_cache from which to allocate the data area 202 * (object size must be big enough for @size bytes + skb overheads) 203 * @size: size to allocate 204 * @gfp_mask: allocation mask 205 * 206 * Allocate a new &sk_buff. The returned buffer has no headroom and 207 * tail room of size bytes. The object has a reference count of one. 208 * The return is the buffer. On a failure the return is %NULL. 209 * 210 * Buffers may only be allocated from interrupts using a @gfp_mask of 211 * %GFP_ATOMIC. 212 */ 213 struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp, 214 unsigned int size, 215 gfp_t gfp_mask) 216 { 217 struct sk_buff *skb; 218 u8 *data; 219 220 /* Get the HEAD */ 221 skb = kmem_cache_alloc(skbuff_head_cache, 222 gfp_mask & ~__GFP_DMA); 223 if (!skb) 224 goto out; 225 226 /* Get the DATA. */ 227 size = SKB_DATA_ALIGN(size); 228 data = kmem_cache_alloc(cp, gfp_mask); 229 if (!data) 230 goto nodata; 231 232 memset(skb, 0, offsetof(struct sk_buff, truesize)); 233 skb->truesize = size + sizeof(struct sk_buff); 234 atomic_set(&skb->users, 1); 235 skb->head = data; 236 skb->data = data; 237 skb->tail = data; 238 skb->end = data + size; 239 240 atomic_set(&(skb_shinfo(skb)->dataref), 1); 241 skb_shinfo(skb)->nr_frags = 0; 242 skb_shinfo(skb)->gso_size = 0; 243 skb_shinfo(skb)->gso_segs = 0; 244 skb_shinfo(skb)->gso_type = 0; 245 skb_shinfo(skb)->frag_list = NULL; 246 out: 247 return skb; 248 nodata: 249 kmem_cache_free(skbuff_head_cache, skb); 250 skb = NULL; 251 goto out; 252 } 253 254 /** 255 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 256 * @dev: network device to receive on 257 * @length: length to allocate 258 * @gfp_mask: get_free_pages mask, passed to alloc_skb 259 * 260 * Allocate a new &sk_buff and assign it a usage count of one. The 261 * buffer has unspecified headroom built in. Users should allocate 262 * the headroom they think they need without accounting for the 263 * built in space. The built in space is used for optimisations. 264 * 265 * %NULL is returned if there is no free memory. 266 */ 267 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 268 unsigned int length, gfp_t gfp_mask) 269 { 270 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 271 struct sk_buff *skb; 272 273 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 274 if (likely(skb)) { 275 skb_reserve(skb, NET_SKB_PAD); 276 skb->dev = dev; 277 } 278 return skb; 279 } 280 281 static void skb_drop_list(struct sk_buff **listp) 282 { 283 struct sk_buff *list = *listp; 284 285 *listp = NULL; 286 287 do { 288 struct sk_buff *this = list; 289 list = list->next; 290 kfree_skb(this); 291 } while (list); 292 } 293 294 static inline void skb_drop_fraglist(struct sk_buff *skb) 295 { 296 skb_drop_list(&skb_shinfo(skb)->frag_list); 297 } 298 299 static void skb_clone_fraglist(struct sk_buff *skb) 300 { 301 struct sk_buff *list; 302 303 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 304 skb_get(list); 305 } 306 307 static void skb_release_data(struct sk_buff *skb) 308 { 309 if (!skb->cloned || 310 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 311 &skb_shinfo(skb)->dataref)) { 312 if (skb_shinfo(skb)->nr_frags) { 313 int i; 314 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 315 put_page(skb_shinfo(skb)->frags[i].page); 316 } 317 318 if (skb_shinfo(skb)->frag_list) 319 skb_drop_fraglist(skb); 320 321 kfree(skb->head); 322 } 323 } 324 325 /* 326 * Free an skbuff by memory without cleaning the state. 327 */ 328 void kfree_skbmem(struct sk_buff *skb) 329 { 330 struct sk_buff *other; 331 atomic_t *fclone_ref; 332 333 skb_release_data(skb); 334 switch (skb->fclone) { 335 case SKB_FCLONE_UNAVAILABLE: 336 kmem_cache_free(skbuff_head_cache, skb); 337 break; 338 339 case SKB_FCLONE_ORIG: 340 fclone_ref = (atomic_t *) (skb + 2); 341 if (atomic_dec_and_test(fclone_ref)) 342 kmem_cache_free(skbuff_fclone_cache, skb); 343 break; 344 345 case SKB_FCLONE_CLONE: 346 fclone_ref = (atomic_t *) (skb + 1); 347 other = skb - 1; 348 349 /* The clone portion is available for 350 * fast-cloning again. 351 */ 352 skb->fclone = SKB_FCLONE_UNAVAILABLE; 353 354 if (atomic_dec_and_test(fclone_ref)) 355 kmem_cache_free(skbuff_fclone_cache, other); 356 break; 357 }; 358 } 359 360 /** 361 * __kfree_skb - private function 362 * @skb: buffer 363 * 364 * Free an sk_buff. Release anything attached to the buffer. 365 * Clean the state. This is an internal helper function. Users should 366 * always call kfree_skb 367 */ 368 369 void __kfree_skb(struct sk_buff *skb) 370 { 371 dst_release(skb->dst); 372 #ifdef CONFIG_XFRM 373 secpath_put(skb->sp); 374 #endif 375 if (skb->destructor) { 376 WARN_ON(in_irq()); 377 skb->destructor(skb); 378 } 379 #ifdef CONFIG_NETFILTER 380 nf_conntrack_put(skb->nfct); 381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 382 nf_conntrack_put_reasm(skb->nfct_reasm); 383 #endif 384 #ifdef CONFIG_BRIDGE_NETFILTER 385 nf_bridge_put(skb->nf_bridge); 386 #endif 387 #endif 388 /* XXX: IS this still necessary? - JHS */ 389 #ifdef CONFIG_NET_SCHED 390 skb->tc_index = 0; 391 #ifdef CONFIG_NET_CLS_ACT 392 skb->tc_verd = 0; 393 #endif 394 #endif 395 396 kfree_skbmem(skb); 397 } 398 399 /** 400 * kfree_skb - free an sk_buff 401 * @skb: buffer to free 402 * 403 * Drop a reference to the buffer and free it if the usage count has 404 * hit zero. 405 */ 406 void kfree_skb(struct sk_buff *skb) 407 { 408 if (unlikely(!skb)) 409 return; 410 if (likely(atomic_read(&skb->users) == 1)) 411 smp_rmb(); 412 else if (likely(!atomic_dec_and_test(&skb->users))) 413 return; 414 __kfree_skb(skb); 415 } 416 417 /** 418 * skb_clone - duplicate an sk_buff 419 * @skb: buffer to clone 420 * @gfp_mask: allocation priority 421 * 422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 423 * copies share the same packet data but not structure. The new 424 * buffer has a reference count of 1. If the allocation fails the 425 * function returns %NULL otherwise the new buffer is returned. 426 * 427 * If this function is called from an interrupt gfp_mask() must be 428 * %GFP_ATOMIC. 429 */ 430 431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 432 { 433 struct sk_buff *n; 434 435 n = skb + 1; 436 if (skb->fclone == SKB_FCLONE_ORIG && 437 n->fclone == SKB_FCLONE_UNAVAILABLE) { 438 atomic_t *fclone_ref = (atomic_t *) (n + 1); 439 n->fclone = SKB_FCLONE_CLONE; 440 atomic_inc(fclone_ref); 441 } else { 442 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 443 if (!n) 444 return NULL; 445 n->fclone = SKB_FCLONE_UNAVAILABLE; 446 } 447 448 #define C(x) n->x = skb->x 449 450 n->next = n->prev = NULL; 451 n->sk = NULL; 452 C(tstamp); 453 C(dev); 454 C(h); 455 C(nh); 456 C(mac); 457 C(dst); 458 dst_clone(skb->dst); 459 C(sp); 460 #ifdef CONFIG_INET 461 secpath_get(skb->sp); 462 #endif 463 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 464 C(len); 465 C(data_len); 466 C(csum); 467 C(local_df); 468 n->cloned = 1; 469 n->nohdr = 0; 470 C(pkt_type); 471 C(ip_summed); 472 C(priority); 473 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 474 C(ipvs_property); 475 #endif 476 C(protocol); 477 n->destructor = NULL; 478 C(mark); 479 #ifdef CONFIG_NETFILTER 480 C(nfct); 481 nf_conntrack_get(skb->nfct); 482 C(nfctinfo); 483 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 484 C(nfct_reasm); 485 nf_conntrack_get_reasm(skb->nfct_reasm); 486 #endif 487 #ifdef CONFIG_BRIDGE_NETFILTER 488 C(nf_bridge); 489 nf_bridge_get(skb->nf_bridge); 490 #endif 491 #endif /*CONFIG_NETFILTER*/ 492 #ifdef CONFIG_NET_SCHED 493 C(tc_index); 494 #ifdef CONFIG_NET_CLS_ACT 495 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 496 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 497 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 498 C(input_dev); 499 #endif 500 skb_copy_secmark(n, skb); 501 #endif 502 C(truesize); 503 atomic_set(&n->users, 1); 504 C(head); 505 C(data); 506 C(tail); 507 C(end); 508 509 atomic_inc(&(skb_shinfo(skb)->dataref)); 510 skb->cloned = 1; 511 512 return n; 513 } 514 515 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 516 { 517 /* 518 * Shift between the two data areas in bytes 519 */ 520 unsigned long offset = new->data - old->data; 521 522 new->sk = NULL; 523 new->dev = old->dev; 524 new->priority = old->priority; 525 new->protocol = old->protocol; 526 new->dst = dst_clone(old->dst); 527 #ifdef CONFIG_INET 528 new->sp = secpath_get(old->sp); 529 #endif 530 new->h.raw = old->h.raw + offset; 531 new->nh.raw = old->nh.raw + offset; 532 new->mac.raw = old->mac.raw + offset; 533 memcpy(new->cb, old->cb, sizeof(old->cb)); 534 new->local_df = old->local_df; 535 new->fclone = SKB_FCLONE_UNAVAILABLE; 536 new->pkt_type = old->pkt_type; 537 new->tstamp = old->tstamp; 538 new->destructor = NULL; 539 new->mark = old->mark; 540 #ifdef CONFIG_NETFILTER 541 new->nfct = old->nfct; 542 nf_conntrack_get(old->nfct); 543 new->nfctinfo = old->nfctinfo; 544 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 545 new->nfct_reasm = old->nfct_reasm; 546 nf_conntrack_get_reasm(old->nfct_reasm); 547 #endif 548 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 549 new->ipvs_property = old->ipvs_property; 550 #endif 551 #ifdef CONFIG_BRIDGE_NETFILTER 552 new->nf_bridge = old->nf_bridge; 553 nf_bridge_get(old->nf_bridge); 554 #endif 555 #endif 556 #ifdef CONFIG_NET_SCHED 557 #ifdef CONFIG_NET_CLS_ACT 558 new->tc_verd = old->tc_verd; 559 #endif 560 new->tc_index = old->tc_index; 561 #endif 562 skb_copy_secmark(new, old); 563 atomic_set(&new->users, 1); 564 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 565 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 566 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 567 } 568 569 /** 570 * skb_copy - create private copy of an sk_buff 571 * @skb: buffer to copy 572 * @gfp_mask: allocation priority 573 * 574 * Make a copy of both an &sk_buff and its data. This is used when the 575 * caller wishes to modify the data and needs a private copy of the 576 * data to alter. Returns %NULL on failure or the pointer to the buffer 577 * on success. The returned buffer has a reference count of 1. 578 * 579 * As by-product this function converts non-linear &sk_buff to linear 580 * one, so that &sk_buff becomes completely private and caller is allowed 581 * to modify all the data of returned buffer. This means that this 582 * function is not recommended for use in circumstances when only 583 * header is going to be modified. Use pskb_copy() instead. 584 */ 585 586 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 587 { 588 int headerlen = skb->data - skb->head; 589 /* 590 * Allocate the copy buffer 591 */ 592 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 593 gfp_mask); 594 if (!n) 595 return NULL; 596 597 /* Set the data pointer */ 598 skb_reserve(n, headerlen); 599 /* Set the tail pointer and length */ 600 skb_put(n, skb->len); 601 n->csum = skb->csum; 602 n->ip_summed = skb->ip_summed; 603 604 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 605 BUG(); 606 607 copy_skb_header(n, skb); 608 return n; 609 } 610 611 612 /** 613 * pskb_copy - create copy of an sk_buff with private head. 614 * @skb: buffer to copy 615 * @gfp_mask: allocation priority 616 * 617 * Make a copy of both an &sk_buff and part of its data, located 618 * in header. Fragmented data remain shared. This is used when 619 * the caller wishes to modify only header of &sk_buff and needs 620 * private copy of the header to alter. Returns %NULL on failure 621 * or the pointer to the buffer on success. 622 * The returned buffer has a reference count of 1. 623 */ 624 625 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 626 { 627 /* 628 * Allocate the copy buffer 629 */ 630 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 631 632 if (!n) 633 goto out; 634 635 /* Set the data pointer */ 636 skb_reserve(n, skb->data - skb->head); 637 /* Set the tail pointer and length */ 638 skb_put(n, skb_headlen(skb)); 639 /* Copy the bytes */ 640 memcpy(n->data, skb->data, n->len); 641 n->csum = skb->csum; 642 n->ip_summed = skb->ip_summed; 643 644 n->truesize += skb->data_len; 645 n->data_len = skb->data_len; 646 n->len = skb->len; 647 648 if (skb_shinfo(skb)->nr_frags) { 649 int i; 650 651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 652 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 653 get_page(skb_shinfo(n)->frags[i].page); 654 } 655 skb_shinfo(n)->nr_frags = i; 656 } 657 658 if (skb_shinfo(skb)->frag_list) { 659 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 660 skb_clone_fraglist(n); 661 } 662 663 copy_skb_header(n, skb); 664 out: 665 return n; 666 } 667 668 /** 669 * pskb_expand_head - reallocate header of &sk_buff 670 * @skb: buffer to reallocate 671 * @nhead: room to add at head 672 * @ntail: room to add at tail 673 * @gfp_mask: allocation priority 674 * 675 * Expands (or creates identical copy, if &nhead and &ntail are zero) 676 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 677 * reference count of 1. Returns zero in the case of success or error, 678 * if expansion failed. In the last case, &sk_buff is not changed. 679 * 680 * All the pointers pointing into skb header may change and must be 681 * reloaded after call to this function. 682 */ 683 684 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 685 gfp_t gfp_mask) 686 { 687 int i; 688 u8 *data; 689 int size = nhead + (skb->end - skb->head) + ntail; 690 long off; 691 692 if (skb_shared(skb)) 693 BUG(); 694 695 size = SKB_DATA_ALIGN(size); 696 697 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 698 if (!data) 699 goto nodata; 700 701 /* Copy only real data... and, alas, header. This should be 702 * optimized for the cases when header is void. */ 703 memcpy(data + nhead, skb->head, skb->tail - skb->head); 704 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 705 706 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 707 get_page(skb_shinfo(skb)->frags[i].page); 708 709 if (skb_shinfo(skb)->frag_list) 710 skb_clone_fraglist(skb); 711 712 skb_release_data(skb); 713 714 off = (data + nhead) - skb->head; 715 716 skb->head = data; 717 skb->end = data + size; 718 skb->data += off; 719 skb->tail += off; 720 skb->mac.raw += off; 721 skb->h.raw += off; 722 skb->nh.raw += off; 723 skb->cloned = 0; 724 skb->nohdr = 0; 725 atomic_set(&skb_shinfo(skb)->dataref, 1); 726 return 0; 727 728 nodata: 729 return -ENOMEM; 730 } 731 732 /* Make private copy of skb with writable head and some headroom */ 733 734 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 735 { 736 struct sk_buff *skb2; 737 int delta = headroom - skb_headroom(skb); 738 739 if (delta <= 0) 740 skb2 = pskb_copy(skb, GFP_ATOMIC); 741 else { 742 skb2 = skb_clone(skb, GFP_ATOMIC); 743 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 744 GFP_ATOMIC)) { 745 kfree_skb(skb2); 746 skb2 = NULL; 747 } 748 } 749 return skb2; 750 } 751 752 753 /** 754 * skb_copy_expand - copy and expand sk_buff 755 * @skb: buffer to copy 756 * @newheadroom: new free bytes at head 757 * @newtailroom: new free bytes at tail 758 * @gfp_mask: allocation priority 759 * 760 * Make a copy of both an &sk_buff and its data and while doing so 761 * allocate additional space. 762 * 763 * This is used when the caller wishes to modify the data and needs a 764 * private copy of the data to alter as well as more space for new fields. 765 * Returns %NULL on failure or the pointer to the buffer 766 * on success. The returned buffer has a reference count of 1. 767 * 768 * You must pass %GFP_ATOMIC as the allocation priority if this function 769 * is called from an interrupt. 770 * 771 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 772 * only by netfilter in the cases when checksum is recalculated? --ANK 773 */ 774 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 775 int newheadroom, int newtailroom, 776 gfp_t gfp_mask) 777 { 778 /* 779 * Allocate the copy buffer 780 */ 781 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 782 gfp_mask); 783 int head_copy_len, head_copy_off; 784 785 if (!n) 786 return NULL; 787 788 skb_reserve(n, newheadroom); 789 790 /* Set the tail pointer and length */ 791 skb_put(n, skb->len); 792 793 head_copy_len = skb_headroom(skb); 794 head_copy_off = 0; 795 if (newheadroom <= head_copy_len) 796 head_copy_len = newheadroom; 797 else 798 head_copy_off = newheadroom - head_copy_len; 799 800 /* Copy the linear header and data. */ 801 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 802 skb->len + head_copy_len)) 803 BUG(); 804 805 copy_skb_header(n, skb); 806 807 return n; 808 } 809 810 /** 811 * skb_pad - zero pad the tail of an skb 812 * @skb: buffer to pad 813 * @pad: space to pad 814 * 815 * Ensure that a buffer is followed by a padding area that is zero 816 * filled. Used by network drivers which may DMA or transfer data 817 * beyond the buffer end onto the wire. 818 * 819 * May return error in out of memory cases. The skb is freed on error. 820 */ 821 822 int skb_pad(struct sk_buff *skb, int pad) 823 { 824 int err; 825 int ntail; 826 827 /* If the skbuff is non linear tailroom is always zero.. */ 828 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 829 memset(skb->data+skb->len, 0, pad); 830 return 0; 831 } 832 833 ntail = skb->data_len + pad - (skb->end - skb->tail); 834 if (likely(skb_cloned(skb) || ntail > 0)) { 835 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 836 if (unlikely(err)) 837 goto free_skb; 838 } 839 840 /* FIXME: The use of this function with non-linear skb's really needs 841 * to be audited. 842 */ 843 err = skb_linearize(skb); 844 if (unlikely(err)) 845 goto free_skb; 846 847 memset(skb->data + skb->len, 0, pad); 848 return 0; 849 850 free_skb: 851 kfree_skb(skb); 852 return err; 853 } 854 855 /* Trims skb to length len. It can change skb pointers. 856 */ 857 858 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 859 { 860 struct sk_buff **fragp; 861 struct sk_buff *frag; 862 int offset = skb_headlen(skb); 863 int nfrags = skb_shinfo(skb)->nr_frags; 864 int i; 865 int err; 866 867 if (skb_cloned(skb) && 868 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 869 return err; 870 871 i = 0; 872 if (offset >= len) 873 goto drop_pages; 874 875 for (; i < nfrags; i++) { 876 int end = offset + skb_shinfo(skb)->frags[i].size; 877 878 if (end < len) { 879 offset = end; 880 continue; 881 } 882 883 skb_shinfo(skb)->frags[i++].size = len - offset; 884 885 drop_pages: 886 skb_shinfo(skb)->nr_frags = i; 887 888 for (; i < nfrags; i++) 889 put_page(skb_shinfo(skb)->frags[i].page); 890 891 if (skb_shinfo(skb)->frag_list) 892 skb_drop_fraglist(skb); 893 goto done; 894 } 895 896 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 897 fragp = &frag->next) { 898 int end = offset + frag->len; 899 900 if (skb_shared(frag)) { 901 struct sk_buff *nfrag; 902 903 nfrag = skb_clone(frag, GFP_ATOMIC); 904 if (unlikely(!nfrag)) 905 return -ENOMEM; 906 907 nfrag->next = frag->next; 908 kfree_skb(frag); 909 frag = nfrag; 910 *fragp = frag; 911 } 912 913 if (end < len) { 914 offset = end; 915 continue; 916 } 917 918 if (end > len && 919 unlikely((err = pskb_trim(frag, len - offset)))) 920 return err; 921 922 if (frag->next) 923 skb_drop_list(&frag->next); 924 break; 925 } 926 927 done: 928 if (len > skb_headlen(skb)) { 929 skb->data_len -= skb->len - len; 930 skb->len = len; 931 } else { 932 skb->len = len; 933 skb->data_len = 0; 934 skb->tail = skb->data + len; 935 } 936 937 return 0; 938 } 939 940 /** 941 * __pskb_pull_tail - advance tail of skb header 942 * @skb: buffer to reallocate 943 * @delta: number of bytes to advance tail 944 * 945 * The function makes a sense only on a fragmented &sk_buff, 946 * it expands header moving its tail forward and copying necessary 947 * data from fragmented part. 948 * 949 * &sk_buff MUST have reference count of 1. 950 * 951 * Returns %NULL (and &sk_buff does not change) if pull failed 952 * or value of new tail of skb in the case of success. 953 * 954 * All the pointers pointing into skb header may change and must be 955 * reloaded after call to this function. 956 */ 957 958 /* Moves tail of skb head forward, copying data from fragmented part, 959 * when it is necessary. 960 * 1. It may fail due to malloc failure. 961 * 2. It may change skb pointers. 962 * 963 * It is pretty complicated. Luckily, it is called only in exceptional cases. 964 */ 965 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 966 { 967 /* If skb has not enough free space at tail, get new one 968 * plus 128 bytes for future expansions. If we have enough 969 * room at tail, reallocate without expansion only if skb is cloned. 970 */ 971 int i, k, eat = (skb->tail + delta) - skb->end; 972 973 if (eat > 0 || skb_cloned(skb)) { 974 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 975 GFP_ATOMIC)) 976 return NULL; 977 } 978 979 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 980 BUG(); 981 982 /* Optimization: no fragments, no reasons to preestimate 983 * size of pulled pages. Superb. 984 */ 985 if (!skb_shinfo(skb)->frag_list) 986 goto pull_pages; 987 988 /* Estimate size of pulled pages. */ 989 eat = delta; 990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 991 if (skb_shinfo(skb)->frags[i].size >= eat) 992 goto pull_pages; 993 eat -= skb_shinfo(skb)->frags[i].size; 994 } 995 996 /* If we need update frag list, we are in troubles. 997 * Certainly, it possible to add an offset to skb data, 998 * but taking into account that pulling is expected to 999 * be very rare operation, it is worth to fight against 1000 * further bloating skb head and crucify ourselves here instead. 1001 * Pure masohism, indeed. 8)8) 1002 */ 1003 if (eat) { 1004 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1005 struct sk_buff *clone = NULL; 1006 struct sk_buff *insp = NULL; 1007 1008 do { 1009 BUG_ON(!list); 1010 1011 if (list->len <= eat) { 1012 /* Eaten as whole. */ 1013 eat -= list->len; 1014 list = list->next; 1015 insp = list; 1016 } else { 1017 /* Eaten partially. */ 1018 1019 if (skb_shared(list)) { 1020 /* Sucks! We need to fork list. :-( */ 1021 clone = skb_clone(list, GFP_ATOMIC); 1022 if (!clone) 1023 return NULL; 1024 insp = list->next; 1025 list = clone; 1026 } else { 1027 /* This may be pulled without 1028 * problems. */ 1029 insp = list; 1030 } 1031 if (!pskb_pull(list, eat)) { 1032 if (clone) 1033 kfree_skb(clone); 1034 return NULL; 1035 } 1036 break; 1037 } 1038 } while (eat); 1039 1040 /* Free pulled out fragments. */ 1041 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1042 skb_shinfo(skb)->frag_list = list->next; 1043 kfree_skb(list); 1044 } 1045 /* And insert new clone at head. */ 1046 if (clone) { 1047 clone->next = list; 1048 skb_shinfo(skb)->frag_list = clone; 1049 } 1050 } 1051 /* Success! Now we may commit changes to skb data. */ 1052 1053 pull_pages: 1054 eat = delta; 1055 k = 0; 1056 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1057 if (skb_shinfo(skb)->frags[i].size <= eat) { 1058 put_page(skb_shinfo(skb)->frags[i].page); 1059 eat -= skb_shinfo(skb)->frags[i].size; 1060 } else { 1061 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1062 if (eat) { 1063 skb_shinfo(skb)->frags[k].page_offset += eat; 1064 skb_shinfo(skb)->frags[k].size -= eat; 1065 eat = 0; 1066 } 1067 k++; 1068 } 1069 } 1070 skb_shinfo(skb)->nr_frags = k; 1071 1072 skb->tail += delta; 1073 skb->data_len -= delta; 1074 1075 return skb->tail; 1076 } 1077 1078 /* Copy some data bits from skb to kernel buffer. */ 1079 1080 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1081 { 1082 int i, copy; 1083 int start = skb_headlen(skb); 1084 1085 if (offset > (int)skb->len - len) 1086 goto fault; 1087 1088 /* Copy header. */ 1089 if ((copy = start - offset) > 0) { 1090 if (copy > len) 1091 copy = len; 1092 memcpy(to, skb->data + offset, copy); 1093 if ((len -= copy) == 0) 1094 return 0; 1095 offset += copy; 1096 to += copy; 1097 } 1098 1099 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1100 int end; 1101 1102 BUG_TRAP(start <= offset + len); 1103 1104 end = start + skb_shinfo(skb)->frags[i].size; 1105 if ((copy = end - offset) > 0) { 1106 u8 *vaddr; 1107 1108 if (copy > len) 1109 copy = len; 1110 1111 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1112 memcpy(to, 1113 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1114 offset - start, copy); 1115 kunmap_skb_frag(vaddr); 1116 1117 if ((len -= copy) == 0) 1118 return 0; 1119 offset += copy; 1120 to += copy; 1121 } 1122 start = end; 1123 } 1124 1125 if (skb_shinfo(skb)->frag_list) { 1126 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1127 1128 for (; list; list = list->next) { 1129 int end; 1130 1131 BUG_TRAP(start <= offset + len); 1132 1133 end = start + list->len; 1134 if ((copy = end - offset) > 0) { 1135 if (copy > len) 1136 copy = len; 1137 if (skb_copy_bits(list, offset - start, 1138 to, copy)) 1139 goto fault; 1140 if ((len -= copy) == 0) 1141 return 0; 1142 offset += copy; 1143 to += copy; 1144 } 1145 start = end; 1146 } 1147 } 1148 if (!len) 1149 return 0; 1150 1151 fault: 1152 return -EFAULT; 1153 } 1154 1155 /** 1156 * skb_store_bits - store bits from kernel buffer to skb 1157 * @skb: destination buffer 1158 * @offset: offset in destination 1159 * @from: source buffer 1160 * @len: number of bytes to copy 1161 * 1162 * Copy the specified number of bytes from the source buffer to the 1163 * destination skb. This function handles all the messy bits of 1164 * traversing fragment lists and such. 1165 */ 1166 1167 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1168 { 1169 int i, copy; 1170 int start = skb_headlen(skb); 1171 1172 if (offset > (int)skb->len - len) 1173 goto fault; 1174 1175 if ((copy = start - offset) > 0) { 1176 if (copy > len) 1177 copy = len; 1178 memcpy(skb->data + offset, from, copy); 1179 if ((len -= copy) == 0) 1180 return 0; 1181 offset += copy; 1182 from += copy; 1183 } 1184 1185 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1186 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1187 int end; 1188 1189 BUG_TRAP(start <= offset + len); 1190 1191 end = start + frag->size; 1192 if ((copy = end - offset) > 0) { 1193 u8 *vaddr; 1194 1195 if (copy > len) 1196 copy = len; 1197 1198 vaddr = kmap_skb_frag(frag); 1199 memcpy(vaddr + frag->page_offset + offset - start, 1200 from, copy); 1201 kunmap_skb_frag(vaddr); 1202 1203 if ((len -= copy) == 0) 1204 return 0; 1205 offset += copy; 1206 from += copy; 1207 } 1208 start = end; 1209 } 1210 1211 if (skb_shinfo(skb)->frag_list) { 1212 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1213 1214 for (; list; list = list->next) { 1215 int end; 1216 1217 BUG_TRAP(start <= offset + len); 1218 1219 end = start + list->len; 1220 if ((copy = end - offset) > 0) { 1221 if (copy > len) 1222 copy = len; 1223 if (skb_store_bits(list, offset - start, 1224 from, copy)) 1225 goto fault; 1226 if ((len -= copy) == 0) 1227 return 0; 1228 offset += copy; 1229 from += copy; 1230 } 1231 start = end; 1232 } 1233 } 1234 if (!len) 1235 return 0; 1236 1237 fault: 1238 return -EFAULT; 1239 } 1240 1241 EXPORT_SYMBOL(skb_store_bits); 1242 1243 /* Checksum skb data. */ 1244 1245 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1246 int len, __wsum csum) 1247 { 1248 int start = skb_headlen(skb); 1249 int i, copy = start - offset; 1250 int pos = 0; 1251 1252 /* Checksum header. */ 1253 if (copy > 0) { 1254 if (copy > len) 1255 copy = len; 1256 csum = csum_partial(skb->data + offset, copy, csum); 1257 if ((len -= copy) == 0) 1258 return csum; 1259 offset += copy; 1260 pos = copy; 1261 } 1262 1263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1264 int end; 1265 1266 BUG_TRAP(start <= offset + len); 1267 1268 end = start + skb_shinfo(skb)->frags[i].size; 1269 if ((copy = end - offset) > 0) { 1270 __wsum csum2; 1271 u8 *vaddr; 1272 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1273 1274 if (copy > len) 1275 copy = len; 1276 vaddr = kmap_skb_frag(frag); 1277 csum2 = csum_partial(vaddr + frag->page_offset + 1278 offset - start, copy, 0); 1279 kunmap_skb_frag(vaddr); 1280 csum = csum_block_add(csum, csum2, pos); 1281 if (!(len -= copy)) 1282 return csum; 1283 offset += copy; 1284 pos += copy; 1285 } 1286 start = end; 1287 } 1288 1289 if (skb_shinfo(skb)->frag_list) { 1290 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1291 1292 for (; list; list = list->next) { 1293 int end; 1294 1295 BUG_TRAP(start <= offset + len); 1296 1297 end = start + list->len; 1298 if ((copy = end - offset) > 0) { 1299 __wsum csum2; 1300 if (copy > len) 1301 copy = len; 1302 csum2 = skb_checksum(list, offset - start, 1303 copy, 0); 1304 csum = csum_block_add(csum, csum2, pos); 1305 if ((len -= copy) == 0) 1306 return csum; 1307 offset += copy; 1308 pos += copy; 1309 } 1310 start = end; 1311 } 1312 } 1313 BUG_ON(len); 1314 1315 return csum; 1316 } 1317 1318 /* Both of above in one bottle. */ 1319 1320 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1321 u8 *to, int len, __wsum csum) 1322 { 1323 int start = skb_headlen(skb); 1324 int i, copy = start - offset; 1325 int pos = 0; 1326 1327 /* Copy header. */ 1328 if (copy > 0) { 1329 if (copy > len) 1330 copy = len; 1331 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1332 copy, csum); 1333 if ((len -= copy) == 0) 1334 return csum; 1335 offset += copy; 1336 to += copy; 1337 pos = copy; 1338 } 1339 1340 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1341 int end; 1342 1343 BUG_TRAP(start <= offset + len); 1344 1345 end = start + skb_shinfo(skb)->frags[i].size; 1346 if ((copy = end - offset) > 0) { 1347 __wsum csum2; 1348 u8 *vaddr; 1349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1350 1351 if (copy > len) 1352 copy = len; 1353 vaddr = kmap_skb_frag(frag); 1354 csum2 = csum_partial_copy_nocheck(vaddr + 1355 frag->page_offset + 1356 offset - start, to, 1357 copy, 0); 1358 kunmap_skb_frag(vaddr); 1359 csum = csum_block_add(csum, csum2, pos); 1360 if (!(len -= copy)) 1361 return csum; 1362 offset += copy; 1363 to += copy; 1364 pos += copy; 1365 } 1366 start = end; 1367 } 1368 1369 if (skb_shinfo(skb)->frag_list) { 1370 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1371 1372 for (; list; list = list->next) { 1373 __wsum csum2; 1374 int end; 1375 1376 BUG_TRAP(start <= offset + len); 1377 1378 end = start + list->len; 1379 if ((copy = end - offset) > 0) { 1380 if (copy > len) 1381 copy = len; 1382 csum2 = skb_copy_and_csum_bits(list, 1383 offset - start, 1384 to, copy, 0); 1385 csum = csum_block_add(csum, csum2, pos); 1386 if ((len -= copy) == 0) 1387 return csum; 1388 offset += copy; 1389 to += copy; 1390 pos += copy; 1391 } 1392 start = end; 1393 } 1394 } 1395 BUG_ON(len); 1396 return csum; 1397 } 1398 1399 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1400 { 1401 __wsum csum; 1402 long csstart; 1403 1404 if (skb->ip_summed == CHECKSUM_PARTIAL) 1405 csstart = skb->h.raw - skb->data; 1406 else 1407 csstart = skb_headlen(skb); 1408 1409 BUG_ON(csstart > skb_headlen(skb)); 1410 1411 memcpy(to, skb->data, csstart); 1412 1413 csum = 0; 1414 if (csstart != skb->len) 1415 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1416 skb->len - csstart, 0); 1417 1418 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1419 long csstuff = csstart + skb->csum_offset; 1420 1421 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1422 } 1423 } 1424 1425 /** 1426 * skb_dequeue - remove from the head of the queue 1427 * @list: list to dequeue from 1428 * 1429 * Remove the head of the list. The list lock is taken so the function 1430 * may be used safely with other locking list functions. The head item is 1431 * returned or %NULL if the list is empty. 1432 */ 1433 1434 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1435 { 1436 unsigned long flags; 1437 struct sk_buff *result; 1438 1439 spin_lock_irqsave(&list->lock, flags); 1440 result = __skb_dequeue(list); 1441 spin_unlock_irqrestore(&list->lock, flags); 1442 return result; 1443 } 1444 1445 /** 1446 * skb_dequeue_tail - remove from the tail of the queue 1447 * @list: list to dequeue from 1448 * 1449 * Remove the tail of the list. The list lock is taken so the function 1450 * may be used safely with other locking list functions. The tail item is 1451 * returned or %NULL if the list is empty. 1452 */ 1453 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1454 { 1455 unsigned long flags; 1456 struct sk_buff *result; 1457 1458 spin_lock_irqsave(&list->lock, flags); 1459 result = __skb_dequeue_tail(list); 1460 spin_unlock_irqrestore(&list->lock, flags); 1461 return result; 1462 } 1463 1464 /** 1465 * skb_queue_purge - empty a list 1466 * @list: list to empty 1467 * 1468 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1469 * the list and one reference dropped. This function takes the list 1470 * lock and is atomic with respect to other list locking functions. 1471 */ 1472 void skb_queue_purge(struct sk_buff_head *list) 1473 { 1474 struct sk_buff *skb; 1475 while ((skb = skb_dequeue(list)) != NULL) 1476 kfree_skb(skb); 1477 } 1478 1479 /** 1480 * skb_queue_head - queue a buffer at the list head 1481 * @list: list to use 1482 * @newsk: buffer to queue 1483 * 1484 * Queue a buffer at the start of the list. This function takes the 1485 * list lock and can be used safely with other locking &sk_buff functions 1486 * safely. 1487 * 1488 * A buffer cannot be placed on two lists at the same time. 1489 */ 1490 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1491 { 1492 unsigned long flags; 1493 1494 spin_lock_irqsave(&list->lock, flags); 1495 __skb_queue_head(list, newsk); 1496 spin_unlock_irqrestore(&list->lock, flags); 1497 } 1498 1499 /** 1500 * skb_queue_tail - queue a buffer at the list tail 1501 * @list: list to use 1502 * @newsk: buffer to queue 1503 * 1504 * Queue a buffer at the tail of the list. This function takes the 1505 * list lock and can be used safely with other locking &sk_buff functions 1506 * safely. 1507 * 1508 * A buffer cannot be placed on two lists at the same time. 1509 */ 1510 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1511 { 1512 unsigned long flags; 1513 1514 spin_lock_irqsave(&list->lock, flags); 1515 __skb_queue_tail(list, newsk); 1516 spin_unlock_irqrestore(&list->lock, flags); 1517 } 1518 1519 /** 1520 * skb_unlink - remove a buffer from a list 1521 * @skb: buffer to remove 1522 * @list: list to use 1523 * 1524 * Remove a packet from a list. The list locks are taken and this 1525 * function is atomic with respect to other list locked calls 1526 * 1527 * You must know what list the SKB is on. 1528 */ 1529 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1530 { 1531 unsigned long flags; 1532 1533 spin_lock_irqsave(&list->lock, flags); 1534 __skb_unlink(skb, list); 1535 spin_unlock_irqrestore(&list->lock, flags); 1536 } 1537 1538 /** 1539 * skb_append - append a buffer 1540 * @old: buffer to insert after 1541 * @newsk: buffer to insert 1542 * @list: list to use 1543 * 1544 * Place a packet after a given packet in a list. The list locks are taken 1545 * and this function is atomic with respect to other list locked calls. 1546 * A buffer cannot be placed on two lists at the same time. 1547 */ 1548 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1549 { 1550 unsigned long flags; 1551 1552 spin_lock_irqsave(&list->lock, flags); 1553 __skb_append(old, newsk, list); 1554 spin_unlock_irqrestore(&list->lock, flags); 1555 } 1556 1557 1558 /** 1559 * skb_insert - insert a buffer 1560 * @old: buffer to insert before 1561 * @newsk: buffer to insert 1562 * @list: list to use 1563 * 1564 * Place a packet before a given packet in a list. The list locks are 1565 * taken and this function is atomic with respect to other list locked 1566 * calls. 1567 * 1568 * A buffer cannot be placed on two lists at the same time. 1569 */ 1570 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1571 { 1572 unsigned long flags; 1573 1574 spin_lock_irqsave(&list->lock, flags); 1575 __skb_insert(newsk, old->prev, old, list); 1576 spin_unlock_irqrestore(&list->lock, flags); 1577 } 1578 1579 #if 0 1580 /* 1581 * Tune the memory allocator for a new MTU size. 1582 */ 1583 void skb_add_mtu(int mtu) 1584 { 1585 /* Must match allocation in alloc_skb */ 1586 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1587 1588 kmem_add_cache_size(mtu); 1589 } 1590 #endif 1591 1592 static inline void skb_split_inside_header(struct sk_buff *skb, 1593 struct sk_buff* skb1, 1594 const u32 len, const int pos) 1595 { 1596 int i; 1597 1598 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1599 1600 /* And move data appendix as is. */ 1601 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1602 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1603 1604 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1605 skb_shinfo(skb)->nr_frags = 0; 1606 skb1->data_len = skb->data_len; 1607 skb1->len += skb1->data_len; 1608 skb->data_len = 0; 1609 skb->len = len; 1610 skb->tail = skb->data + len; 1611 } 1612 1613 static inline void skb_split_no_header(struct sk_buff *skb, 1614 struct sk_buff* skb1, 1615 const u32 len, int pos) 1616 { 1617 int i, k = 0; 1618 const int nfrags = skb_shinfo(skb)->nr_frags; 1619 1620 skb_shinfo(skb)->nr_frags = 0; 1621 skb1->len = skb1->data_len = skb->len - len; 1622 skb->len = len; 1623 skb->data_len = len - pos; 1624 1625 for (i = 0; i < nfrags; i++) { 1626 int size = skb_shinfo(skb)->frags[i].size; 1627 1628 if (pos + size > len) { 1629 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1630 1631 if (pos < len) { 1632 /* Split frag. 1633 * We have two variants in this case: 1634 * 1. Move all the frag to the second 1635 * part, if it is possible. F.e. 1636 * this approach is mandatory for TUX, 1637 * where splitting is expensive. 1638 * 2. Split is accurately. We make this. 1639 */ 1640 get_page(skb_shinfo(skb)->frags[i].page); 1641 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1642 skb_shinfo(skb1)->frags[0].size -= len - pos; 1643 skb_shinfo(skb)->frags[i].size = len - pos; 1644 skb_shinfo(skb)->nr_frags++; 1645 } 1646 k++; 1647 } else 1648 skb_shinfo(skb)->nr_frags++; 1649 pos += size; 1650 } 1651 skb_shinfo(skb1)->nr_frags = k; 1652 } 1653 1654 /** 1655 * skb_split - Split fragmented skb to two parts at length len. 1656 * @skb: the buffer to split 1657 * @skb1: the buffer to receive the second part 1658 * @len: new length for skb 1659 */ 1660 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1661 { 1662 int pos = skb_headlen(skb); 1663 1664 if (len < pos) /* Split line is inside header. */ 1665 skb_split_inside_header(skb, skb1, len, pos); 1666 else /* Second chunk has no header, nothing to copy. */ 1667 skb_split_no_header(skb, skb1, len, pos); 1668 } 1669 1670 /** 1671 * skb_prepare_seq_read - Prepare a sequential read of skb data 1672 * @skb: the buffer to read 1673 * @from: lower offset of data to be read 1674 * @to: upper offset of data to be read 1675 * @st: state variable 1676 * 1677 * Initializes the specified state variable. Must be called before 1678 * invoking skb_seq_read() for the first time. 1679 */ 1680 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1681 unsigned int to, struct skb_seq_state *st) 1682 { 1683 st->lower_offset = from; 1684 st->upper_offset = to; 1685 st->root_skb = st->cur_skb = skb; 1686 st->frag_idx = st->stepped_offset = 0; 1687 st->frag_data = NULL; 1688 } 1689 1690 /** 1691 * skb_seq_read - Sequentially read skb data 1692 * @consumed: number of bytes consumed by the caller so far 1693 * @data: destination pointer for data to be returned 1694 * @st: state variable 1695 * 1696 * Reads a block of skb data at &consumed relative to the 1697 * lower offset specified to skb_prepare_seq_read(). Assigns 1698 * the head of the data block to &data and returns the length 1699 * of the block or 0 if the end of the skb data or the upper 1700 * offset has been reached. 1701 * 1702 * The caller is not required to consume all of the data 1703 * returned, i.e. &consumed is typically set to the number 1704 * of bytes already consumed and the next call to 1705 * skb_seq_read() will return the remaining part of the block. 1706 * 1707 * Note: The size of each block of data returned can be arbitary, 1708 * this limitation is the cost for zerocopy seqeuental 1709 * reads of potentially non linear data. 1710 * 1711 * Note: Fragment lists within fragments are not implemented 1712 * at the moment, state->root_skb could be replaced with 1713 * a stack for this purpose. 1714 */ 1715 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1716 struct skb_seq_state *st) 1717 { 1718 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1719 skb_frag_t *frag; 1720 1721 if (unlikely(abs_offset >= st->upper_offset)) 1722 return 0; 1723 1724 next_skb: 1725 block_limit = skb_headlen(st->cur_skb); 1726 1727 if (abs_offset < block_limit) { 1728 *data = st->cur_skb->data + abs_offset; 1729 return block_limit - abs_offset; 1730 } 1731 1732 if (st->frag_idx == 0 && !st->frag_data) 1733 st->stepped_offset += skb_headlen(st->cur_skb); 1734 1735 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1736 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1737 block_limit = frag->size + st->stepped_offset; 1738 1739 if (abs_offset < block_limit) { 1740 if (!st->frag_data) 1741 st->frag_data = kmap_skb_frag(frag); 1742 1743 *data = (u8 *) st->frag_data + frag->page_offset + 1744 (abs_offset - st->stepped_offset); 1745 1746 return block_limit - abs_offset; 1747 } 1748 1749 if (st->frag_data) { 1750 kunmap_skb_frag(st->frag_data); 1751 st->frag_data = NULL; 1752 } 1753 1754 st->frag_idx++; 1755 st->stepped_offset += frag->size; 1756 } 1757 1758 if (st->cur_skb->next) { 1759 st->cur_skb = st->cur_skb->next; 1760 st->frag_idx = 0; 1761 goto next_skb; 1762 } else if (st->root_skb == st->cur_skb && 1763 skb_shinfo(st->root_skb)->frag_list) { 1764 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1765 goto next_skb; 1766 } 1767 1768 return 0; 1769 } 1770 1771 /** 1772 * skb_abort_seq_read - Abort a sequential read of skb data 1773 * @st: state variable 1774 * 1775 * Must be called if skb_seq_read() was not called until it 1776 * returned 0. 1777 */ 1778 void skb_abort_seq_read(struct skb_seq_state *st) 1779 { 1780 if (st->frag_data) 1781 kunmap_skb_frag(st->frag_data); 1782 } 1783 1784 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1785 1786 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1787 struct ts_config *conf, 1788 struct ts_state *state) 1789 { 1790 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1791 } 1792 1793 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1794 { 1795 skb_abort_seq_read(TS_SKB_CB(state)); 1796 } 1797 1798 /** 1799 * skb_find_text - Find a text pattern in skb data 1800 * @skb: the buffer to look in 1801 * @from: search offset 1802 * @to: search limit 1803 * @config: textsearch configuration 1804 * @state: uninitialized textsearch state variable 1805 * 1806 * Finds a pattern in the skb data according to the specified 1807 * textsearch configuration. Use textsearch_next() to retrieve 1808 * subsequent occurrences of the pattern. Returns the offset 1809 * to the first occurrence or UINT_MAX if no match was found. 1810 */ 1811 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1812 unsigned int to, struct ts_config *config, 1813 struct ts_state *state) 1814 { 1815 unsigned int ret; 1816 1817 config->get_next_block = skb_ts_get_next_block; 1818 config->finish = skb_ts_finish; 1819 1820 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1821 1822 ret = textsearch_find(config, state); 1823 return (ret <= to - from ? ret : UINT_MAX); 1824 } 1825 1826 /** 1827 * skb_append_datato_frags: - append the user data to a skb 1828 * @sk: sock structure 1829 * @skb: skb structure to be appened with user data. 1830 * @getfrag: call back function to be used for getting the user data 1831 * @from: pointer to user message iov 1832 * @length: length of the iov message 1833 * 1834 * Description: This procedure append the user data in the fragment part 1835 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1836 */ 1837 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1838 int (*getfrag)(void *from, char *to, int offset, 1839 int len, int odd, struct sk_buff *skb), 1840 void *from, int length) 1841 { 1842 int frg_cnt = 0; 1843 skb_frag_t *frag = NULL; 1844 struct page *page = NULL; 1845 int copy, left; 1846 int offset = 0; 1847 int ret; 1848 1849 do { 1850 /* Return error if we don't have space for new frag */ 1851 frg_cnt = skb_shinfo(skb)->nr_frags; 1852 if (frg_cnt >= MAX_SKB_FRAGS) 1853 return -EFAULT; 1854 1855 /* allocate a new page for next frag */ 1856 page = alloc_pages(sk->sk_allocation, 0); 1857 1858 /* If alloc_page fails just return failure and caller will 1859 * free previous allocated pages by doing kfree_skb() 1860 */ 1861 if (page == NULL) 1862 return -ENOMEM; 1863 1864 /* initialize the next frag */ 1865 sk->sk_sndmsg_page = page; 1866 sk->sk_sndmsg_off = 0; 1867 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1868 skb->truesize += PAGE_SIZE; 1869 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1870 1871 /* get the new initialized frag */ 1872 frg_cnt = skb_shinfo(skb)->nr_frags; 1873 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1874 1875 /* copy the user data to page */ 1876 left = PAGE_SIZE - frag->page_offset; 1877 copy = (length > left)? left : length; 1878 1879 ret = getfrag(from, (page_address(frag->page) + 1880 frag->page_offset + frag->size), 1881 offset, copy, 0, skb); 1882 if (ret < 0) 1883 return -EFAULT; 1884 1885 /* copy was successful so update the size parameters */ 1886 sk->sk_sndmsg_off += copy; 1887 frag->size += copy; 1888 skb->len += copy; 1889 skb->data_len += copy; 1890 offset += copy; 1891 length -= copy; 1892 1893 } while (length > 0); 1894 1895 return 0; 1896 } 1897 1898 /** 1899 * skb_pull_rcsum - pull skb and update receive checksum 1900 * @skb: buffer to update 1901 * @start: start of data before pull 1902 * @len: length of data pulled 1903 * 1904 * This function performs an skb_pull on the packet and updates 1905 * update the CHECKSUM_COMPLETE checksum. It should be used on 1906 * receive path processing instead of skb_pull unless you know 1907 * that the checksum difference is zero (e.g., a valid IP header) 1908 * or you are setting ip_summed to CHECKSUM_NONE. 1909 */ 1910 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1911 { 1912 BUG_ON(len > skb->len); 1913 skb->len -= len; 1914 BUG_ON(skb->len < skb->data_len); 1915 skb_postpull_rcsum(skb, skb->data, len); 1916 return skb->data += len; 1917 } 1918 1919 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1920 1921 /** 1922 * skb_segment - Perform protocol segmentation on skb. 1923 * @skb: buffer to segment 1924 * @features: features for the output path (see dev->features) 1925 * 1926 * This function performs segmentation on the given skb. It returns 1927 * the segment at the given position. It returns NULL if there are 1928 * no more segments to generate, or when an error is encountered. 1929 */ 1930 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1931 { 1932 struct sk_buff *segs = NULL; 1933 struct sk_buff *tail = NULL; 1934 unsigned int mss = skb_shinfo(skb)->gso_size; 1935 unsigned int doffset = skb->data - skb->mac.raw; 1936 unsigned int offset = doffset; 1937 unsigned int headroom; 1938 unsigned int len; 1939 int sg = features & NETIF_F_SG; 1940 int nfrags = skb_shinfo(skb)->nr_frags; 1941 int err = -ENOMEM; 1942 int i = 0; 1943 int pos; 1944 1945 __skb_push(skb, doffset); 1946 headroom = skb_headroom(skb); 1947 pos = skb_headlen(skb); 1948 1949 do { 1950 struct sk_buff *nskb; 1951 skb_frag_t *frag; 1952 int hsize; 1953 int k; 1954 int size; 1955 1956 len = skb->len - offset; 1957 if (len > mss) 1958 len = mss; 1959 1960 hsize = skb_headlen(skb) - offset; 1961 if (hsize < 0) 1962 hsize = 0; 1963 if (hsize > len || !sg) 1964 hsize = len; 1965 1966 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 1967 if (unlikely(!nskb)) 1968 goto err; 1969 1970 if (segs) 1971 tail->next = nskb; 1972 else 1973 segs = nskb; 1974 tail = nskb; 1975 1976 nskb->dev = skb->dev; 1977 nskb->priority = skb->priority; 1978 nskb->protocol = skb->protocol; 1979 nskb->dst = dst_clone(skb->dst); 1980 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1981 nskb->pkt_type = skb->pkt_type; 1982 nskb->mac_len = skb->mac_len; 1983 1984 skb_reserve(nskb, headroom); 1985 nskb->mac.raw = nskb->data; 1986 nskb->nh.raw = nskb->data + skb->mac_len; 1987 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw); 1988 memcpy(skb_put(nskb, doffset), skb->data, doffset); 1989 1990 if (!sg) { 1991 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1992 skb_put(nskb, len), 1993 len, 0); 1994 continue; 1995 } 1996 1997 frag = skb_shinfo(nskb)->frags; 1998 k = 0; 1999 2000 nskb->ip_summed = CHECKSUM_PARTIAL; 2001 nskb->csum = skb->csum; 2002 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize); 2003 2004 while (pos < offset + len) { 2005 BUG_ON(i >= nfrags); 2006 2007 *frag = skb_shinfo(skb)->frags[i]; 2008 get_page(frag->page); 2009 size = frag->size; 2010 2011 if (pos < offset) { 2012 frag->page_offset += offset - pos; 2013 frag->size -= offset - pos; 2014 } 2015 2016 k++; 2017 2018 if (pos + size <= offset + len) { 2019 i++; 2020 pos += size; 2021 } else { 2022 frag->size -= pos + size - (offset + len); 2023 break; 2024 } 2025 2026 frag++; 2027 } 2028 2029 skb_shinfo(nskb)->nr_frags = k; 2030 nskb->data_len = len - hsize; 2031 nskb->len += nskb->data_len; 2032 nskb->truesize += nskb->data_len; 2033 } while ((offset += len) < skb->len); 2034 2035 return segs; 2036 2037 err: 2038 while ((skb = segs)) { 2039 segs = skb->next; 2040 kfree_skb(skb); 2041 } 2042 return ERR_PTR(err); 2043 } 2044 2045 EXPORT_SYMBOL_GPL(skb_segment); 2046 2047 void __init skb_init(void) 2048 { 2049 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2050 sizeof(struct sk_buff), 2051 0, 2052 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2053 NULL, NULL); 2054 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2055 (2*sizeof(struct sk_buff)) + 2056 sizeof(atomic_t), 2057 0, 2058 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2059 NULL, NULL); 2060 } 2061 2062 EXPORT_SYMBOL(___pskb_trim); 2063 EXPORT_SYMBOL(__kfree_skb); 2064 EXPORT_SYMBOL(kfree_skb); 2065 EXPORT_SYMBOL(__pskb_pull_tail); 2066 EXPORT_SYMBOL(__alloc_skb); 2067 EXPORT_SYMBOL(__netdev_alloc_skb); 2068 EXPORT_SYMBOL(pskb_copy); 2069 EXPORT_SYMBOL(pskb_expand_head); 2070 EXPORT_SYMBOL(skb_checksum); 2071 EXPORT_SYMBOL(skb_clone); 2072 EXPORT_SYMBOL(skb_clone_fraglist); 2073 EXPORT_SYMBOL(skb_copy); 2074 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2075 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2076 EXPORT_SYMBOL(skb_copy_bits); 2077 EXPORT_SYMBOL(skb_copy_expand); 2078 EXPORT_SYMBOL(skb_over_panic); 2079 EXPORT_SYMBOL(skb_pad); 2080 EXPORT_SYMBOL(skb_realloc_headroom); 2081 EXPORT_SYMBOL(skb_under_panic); 2082 EXPORT_SYMBOL(skb_dequeue); 2083 EXPORT_SYMBOL(skb_dequeue_tail); 2084 EXPORT_SYMBOL(skb_insert); 2085 EXPORT_SYMBOL(skb_queue_purge); 2086 EXPORT_SYMBOL(skb_queue_head); 2087 EXPORT_SYMBOL(skb_queue_tail); 2088 EXPORT_SYMBOL(skb_unlink); 2089 EXPORT_SYMBOL(skb_append); 2090 EXPORT_SYMBOL(skb_split); 2091 EXPORT_SYMBOL(skb_prepare_seq_read); 2092 EXPORT_SYMBOL(skb_seq_read); 2093 EXPORT_SYMBOL(skb_abort_seq_read); 2094 EXPORT_SYMBOL(skb_find_text); 2095 EXPORT_SYMBOL(skb_append_datato_frags); 2096