xref: /linux/net/core/skbuff.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 
86 /**
87  *	skb_panic - private function for out-of-line support
88  *	@skb:	buffer
89  *	@sz:	size
90  *	@addr:	address
91  *	@msg:	skb_over_panic or skb_under_panic
92  *
93  *	Out-of-line support for skb_put() and skb_push().
94  *	Called via the wrapper skb_over_panic() or skb_under_panic().
95  *	Keep out of line to prevent kernel bloat.
96  *	__builtin_return_address is not used because it is not always reliable.
97  */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 		      const char msg[])
100 {
101 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 		 msg, addr, skb->len, sz, skb->head, skb->data,
103 		 (unsigned long)skb->tail, (unsigned long)skb->end,
104 		 skb->dev ? skb->dev->name : "<NULL>");
105 	BUG();
106 }
107 
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 /*
119  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120  * the caller if emergency pfmemalloc reserves are being used. If it is and
121  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122  * may be used. Otherwise, the packet data may be discarded until enough
123  * memory is free
124  */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 			       unsigned long ip, bool *pfmemalloc)
130 {
131 	void *obj;
132 	bool ret_pfmemalloc = false;
133 
134 	/*
135 	 * Try a regular allocation, when that fails and we're not entitled
136 	 * to the reserves, fail.
137 	 */
138 	obj = kmalloc_node_track_caller(size,
139 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 					node);
141 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 		goto out;
143 
144 	/* Try again but now we are using pfmemalloc reserves */
145 	ret_pfmemalloc = true;
146 	obj = kmalloc_node_track_caller(size, flags, node);
147 
148 out:
149 	if (pfmemalloc)
150 		*pfmemalloc = ret_pfmemalloc;
151 
152 	return obj;
153 }
154 
155 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
156  *	'private' fields and also do memory statistics to find all the
157  *	[BEEP] leaks.
158  *
159  */
160 
161 /**
162  *	__alloc_skb	-	allocate a network buffer
163  *	@size: size to allocate
164  *	@gfp_mask: allocation mask
165  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
166  *		instead of head cache and allocate a cloned (child) skb.
167  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
168  *		allocations in case the data is required for writeback
169  *	@node: numa node to allocate memory on
170  *
171  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
172  *	tail room of at least size bytes. The object has a reference count
173  *	of one. The return is the buffer. On a failure the return is %NULL.
174  *
175  *	Buffers may only be allocated from interrupts using a @gfp_mask of
176  *	%GFP_ATOMIC.
177  */
178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
179 			    int flags, int node)
180 {
181 	struct kmem_cache *cache;
182 	struct skb_shared_info *shinfo;
183 	struct sk_buff *skb;
184 	u8 *data;
185 	bool pfmemalloc;
186 
187 	cache = (flags & SKB_ALLOC_FCLONE)
188 		? skbuff_fclone_cache : skbuff_head_cache;
189 
190 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
191 		gfp_mask |= __GFP_MEMALLOC;
192 
193 	/* Get the HEAD */
194 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
195 	if (!skb)
196 		goto out;
197 	prefetchw(skb);
198 
199 	/* We do our best to align skb_shared_info on a separate cache
200 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
201 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
202 	 * Both skb->head and skb_shared_info are cache line aligned.
203 	 */
204 	size = SKB_DATA_ALIGN(size);
205 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
206 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
207 	if (!data)
208 		goto nodata;
209 	/* kmalloc(size) might give us more room than requested.
210 	 * Put skb_shared_info exactly at the end of allocated zone,
211 	 * to allow max possible filling before reallocation.
212 	 */
213 	size = SKB_WITH_OVERHEAD(ksize(data));
214 	prefetchw(data + size);
215 
216 	/*
217 	 * Only clear those fields we need to clear, not those that we will
218 	 * actually initialise below. Hence, don't put any more fields after
219 	 * the tail pointer in struct sk_buff!
220 	 */
221 	memset(skb, 0, offsetof(struct sk_buff, tail));
222 	/* Account for allocated memory : skb + skb->head */
223 	skb->truesize = SKB_TRUESIZE(size);
224 	skb->pfmemalloc = pfmemalloc;
225 	refcount_set(&skb->users, 1);
226 	skb->head = data;
227 	skb->data = data;
228 	skb_reset_tail_pointer(skb);
229 	skb->end = skb->tail + size;
230 	skb->mac_header = (typeof(skb->mac_header))~0U;
231 	skb->transport_header = (typeof(skb->transport_header))~0U;
232 
233 	/* make sure we initialize shinfo sequentially */
234 	shinfo = skb_shinfo(skb);
235 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
236 	atomic_set(&shinfo->dataref, 1);
237 	kmemcheck_annotate_variable(shinfo->destructor_arg);
238 
239 	if (flags & SKB_ALLOC_FCLONE) {
240 		struct sk_buff_fclones *fclones;
241 
242 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
243 
244 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
245 		skb->fclone = SKB_FCLONE_ORIG;
246 		refcount_set(&fclones->fclone_ref, 1);
247 
248 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 	}
250 out:
251 	return skb;
252 nodata:
253 	kmem_cache_free(cache, skb);
254 	skb = NULL;
255 	goto out;
256 }
257 EXPORT_SYMBOL(__alloc_skb);
258 
259 /**
260  * __build_skb - build a network buffer
261  * @data: data buffer provided by caller
262  * @frag_size: size of data, or 0 if head was kmalloced
263  *
264  * Allocate a new &sk_buff. Caller provides space holding head and
265  * skb_shared_info. @data must have been allocated by kmalloc() only if
266  * @frag_size is 0, otherwise data should come from the page allocator
267  *  or vmalloc()
268  * The return is the new skb buffer.
269  * On a failure the return is %NULL, and @data is not freed.
270  * Notes :
271  *  Before IO, driver allocates only data buffer where NIC put incoming frame
272  *  Driver should add room at head (NET_SKB_PAD) and
273  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
275  *  before giving packet to stack.
276  *  RX rings only contains data buffers, not full skbs.
277  */
278 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279 {
280 	struct skb_shared_info *shinfo;
281 	struct sk_buff *skb;
282 	unsigned int size = frag_size ? : ksize(data);
283 
284 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 	if (!skb)
286 		return NULL;
287 
288 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289 
290 	memset(skb, 0, offsetof(struct sk_buff, tail));
291 	skb->truesize = SKB_TRUESIZE(size);
292 	refcount_set(&skb->users, 1);
293 	skb->head = data;
294 	skb->data = data;
295 	skb_reset_tail_pointer(skb);
296 	skb->end = skb->tail + size;
297 	skb->mac_header = (typeof(skb->mac_header))~0U;
298 	skb->transport_header = (typeof(skb->transport_header))~0U;
299 
300 	/* make sure we initialize shinfo sequentially */
301 	shinfo = skb_shinfo(skb);
302 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 	atomic_set(&shinfo->dataref, 1);
304 	kmemcheck_annotate_variable(shinfo->destructor_arg);
305 
306 	return skb;
307 }
308 
309 /* build_skb() is wrapper over __build_skb(), that specifically
310  * takes care of skb->head and skb->pfmemalloc
311  * This means that if @frag_size is not zero, then @data must be backed
312  * by a page fragment, not kmalloc() or vmalloc()
313  */
314 struct sk_buff *build_skb(void *data, unsigned int frag_size)
315 {
316 	struct sk_buff *skb = __build_skb(data, frag_size);
317 
318 	if (skb && frag_size) {
319 		skb->head_frag = 1;
320 		if (page_is_pfmemalloc(virt_to_head_page(data)))
321 			skb->pfmemalloc = 1;
322 	}
323 	return skb;
324 }
325 EXPORT_SYMBOL(build_skb);
326 
327 #define NAPI_SKB_CACHE_SIZE	64
328 
329 struct napi_alloc_cache {
330 	struct page_frag_cache page;
331 	unsigned int skb_count;
332 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
333 };
334 
335 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
336 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
337 
338 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
339 {
340 	struct page_frag_cache *nc;
341 	unsigned long flags;
342 	void *data;
343 
344 	local_irq_save(flags);
345 	nc = this_cpu_ptr(&netdev_alloc_cache);
346 	data = page_frag_alloc(nc, fragsz, gfp_mask);
347 	local_irq_restore(flags);
348 	return data;
349 }
350 
351 /**
352  * netdev_alloc_frag - allocate a page fragment
353  * @fragsz: fragment size
354  *
355  * Allocates a frag from a page for receive buffer.
356  * Uses GFP_ATOMIC allocations.
357  */
358 void *netdev_alloc_frag(unsigned int fragsz)
359 {
360 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
361 }
362 EXPORT_SYMBOL(netdev_alloc_frag);
363 
364 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
367 
368 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
369 }
370 
371 void *napi_alloc_frag(unsigned int fragsz)
372 {
373 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
374 }
375 EXPORT_SYMBOL(napi_alloc_frag);
376 
377 /**
378  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
379  *	@dev: network device to receive on
380  *	@len: length to allocate
381  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
382  *
383  *	Allocate a new &sk_buff and assign it a usage count of one. The
384  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
385  *	the headroom they think they need without accounting for the
386  *	built in space. The built in space is used for optimisations.
387  *
388  *	%NULL is returned if there is no free memory.
389  */
390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
391 				   gfp_t gfp_mask)
392 {
393 	struct page_frag_cache *nc;
394 	unsigned long flags;
395 	struct sk_buff *skb;
396 	bool pfmemalloc;
397 	void *data;
398 
399 	len += NET_SKB_PAD;
400 
401 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
402 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
403 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
404 		if (!skb)
405 			goto skb_fail;
406 		goto skb_success;
407 	}
408 
409 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 	len = SKB_DATA_ALIGN(len);
411 
412 	if (sk_memalloc_socks())
413 		gfp_mask |= __GFP_MEMALLOC;
414 
415 	local_irq_save(flags);
416 
417 	nc = this_cpu_ptr(&netdev_alloc_cache);
418 	data = page_frag_alloc(nc, len, gfp_mask);
419 	pfmemalloc = nc->pfmemalloc;
420 
421 	local_irq_restore(flags);
422 
423 	if (unlikely(!data))
424 		return NULL;
425 
426 	skb = __build_skb(data, len);
427 	if (unlikely(!skb)) {
428 		skb_free_frag(data);
429 		return NULL;
430 	}
431 
432 	/* use OR instead of assignment to avoid clearing of bits in mask */
433 	if (pfmemalloc)
434 		skb->pfmemalloc = 1;
435 	skb->head_frag = 1;
436 
437 skb_success:
438 	skb_reserve(skb, NET_SKB_PAD);
439 	skb->dev = dev;
440 
441 skb_fail:
442 	return skb;
443 }
444 EXPORT_SYMBOL(__netdev_alloc_skb);
445 
446 /**
447  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
448  *	@napi: napi instance this buffer was allocated for
449  *	@len: length to allocate
450  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
451  *
452  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
453  *	attempt to allocate the head from a special reserved region used
454  *	only for NAPI Rx allocation.  By doing this we can save several
455  *	CPU cycles by avoiding having to disable and re-enable IRQs.
456  *
457  *	%NULL is returned if there is no free memory.
458  */
459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
460 				 gfp_t gfp_mask)
461 {
462 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
463 	struct sk_buff *skb;
464 	void *data;
465 
466 	len += NET_SKB_PAD + NET_IP_ALIGN;
467 
468 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
469 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
470 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
471 		if (!skb)
472 			goto skb_fail;
473 		goto skb_success;
474 	}
475 
476 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
477 	len = SKB_DATA_ALIGN(len);
478 
479 	if (sk_memalloc_socks())
480 		gfp_mask |= __GFP_MEMALLOC;
481 
482 	data = page_frag_alloc(&nc->page, len, gfp_mask);
483 	if (unlikely(!data))
484 		return NULL;
485 
486 	skb = __build_skb(data, len);
487 	if (unlikely(!skb)) {
488 		skb_free_frag(data);
489 		return NULL;
490 	}
491 
492 	/* use OR instead of assignment to avoid clearing of bits in mask */
493 	if (nc->page.pfmemalloc)
494 		skb->pfmemalloc = 1;
495 	skb->head_frag = 1;
496 
497 skb_success:
498 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
499 	skb->dev = napi->dev;
500 
501 skb_fail:
502 	return skb;
503 }
504 EXPORT_SYMBOL(__napi_alloc_skb);
505 
506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
507 		     int size, unsigned int truesize)
508 {
509 	skb_fill_page_desc(skb, i, page, off, size);
510 	skb->len += size;
511 	skb->data_len += size;
512 	skb->truesize += truesize;
513 }
514 EXPORT_SYMBOL(skb_add_rx_frag);
515 
516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
517 			  unsigned int truesize)
518 {
519 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520 
521 	skb_frag_size_add(frag, size);
522 	skb->len += size;
523 	skb->data_len += size;
524 	skb->truesize += truesize;
525 }
526 EXPORT_SYMBOL(skb_coalesce_rx_frag);
527 
528 static void skb_drop_list(struct sk_buff **listp)
529 {
530 	kfree_skb_list(*listp);
531 	*listp = NULL;
532 }
533 
534 static inline void skb_drop_fraglist(struct sk_buff *skb)
535 {
536 	skb_drop_list(&skb_shinfo(skb)->frag_list);
537 }
538 
539 static void skb_clone_fraglist(struct sk_buff *skb)
540 {
541 	struct sk_buff *list;
542 
543 	skb_walk_frags(skb, list)
544 		skb_get(list);
545 }
546 
547 static void skb_free_head(struct sk_buff *skb)
548 {
549 	unsigned char *head = skb->head;
550 
551 	if (skb->head_frag)
552 		skb_free_frag(head);
553 	else
554 		kfree(head);
555 }
556 
557 static void skb_release_data(struct sk_buff *skb)
558 {
559 	struct skb_shared_info *shinfo = skb_shinfo(skb);
560 	int i;
561 
562 	if (skb->cloned &&
563 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
564 			      &shinfo->dataref))
565 		return;
566 
567 	for (i = 0; i < shinfo->nr_frags; i++)
568 		__skb_frag_unref(&shinfo->frags[i]);
569 
570 	if (shinfo->frag_list)
571 		kfree_skb_list(shinfo->frag_list);
572 
573 	skb_zcopy_clear(skb, true);
574 	skb_free_head(skb);
575 }
576 
577 /*
578  *	Free an skbuff by memory without cleaning the state.
579  */
580 static void kfree_skbmem(struct sk_buff *skb)
581 {
582 	struct sk_buff_fclones *fclones;
583 
584 	switch (skb->fclone) {
585 	case SKB_FCLONE_UNAVAILABLE:
586 		kmem_cache_free(skbuff_head_cache, skb);
587 		return;
588 
589 	case SKB_FCLONE_ORIG:
590 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
591 
592 		/* We usually free the clone (TX completion) before original skb
593 		 * This test would have no chance to be true for the clone,
594 		 * while here, branch prediction will be good.
595 		 */
596 		if (refcount_read(&fclones->fclone_ref) == 1)
597 			goto fastpath;
598 		break;
599 
600 	default: /* SKB_FCLONE_CLONE */
601 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
602 		break;
603 	}
604 	if (!refcount_dec_and_test(&fclones->fclone_ref))
605 		return;
606 fastpath:
607 	kmem_cache_free(skbuff_fclone_cache, fclones);
608 }
609 
610 void skb_release_head_state(struct sk_buff *skb)
611 {
612 	skb_dst_drop(skb);
613 	secpath_reset(skb);
614 	if (skb->destructor) {
615 		WARN_ON(in_irq());
616 		skb->destructor(skb);
617 	}
618 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
619 	nf_conntrack_put(skb_nfct(skb));
620 #endif
621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
622 	nf_bridge_put(skb->nf_bridge);
623 #endif
624 }
625 
626 /* Free everything but the sk_buff shell. */
627 static void skb_release_all(struct sk_buff *skb)
628 {
629 	skb_release_head_state(skb);
630 	if (likely(skb->head))
631 		skb_release_data(skb);
632 }
633 
634 /**
635  *	__kfree_skb - private function
636  *	@skb: buffer
637  *
638  *	Free an sk_buff. Release anything attached to the buffer.
639  *	Clean the state. This is an internal helper function. Users should
640  *	always call kfree_skb
641  */
642 
643 void __kfree_skb(struct sk_buff *skb)
644 {
645 	skb_release_all(skb);
646 	kfree_skbmem(skb);
647 }
648 EXPORT_SYMBOL(__kfree_skb);
649 
650 /**
651  *	kfree_skb - free an sk_buff
652  *	@skb: buffer to free
653  *
654  *	Drop a reference to the buffer and free it if the usage count has
655  *	hit zero.
656  */
657 void kfree_skb(struct sk_buff *skb)
658 {
659 	if (!skb_unref(skb))
660 		return;
661 
662 	trace_kfree_skb(skb, __builtin_return_address(0));
663 	__kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(kfree_skb);
666 
667 void kfree_skb_list(struct sk_buff *segs)
668 {
669 	while (segs) {
670 		struct sk_buff *next = segs->next;
671 
672 		kfree_skb(segs);
673 		segs = next;
674 	}
675 }
676 EXPORT_SYMBOL(kfree_skb_list);
677 
678 /**
679  *	skb_tx_error - report an sk_buff xmit error
680  *	@skb: buffer that triggered an error
681  *
682  *	Report xmit error if a device callback is tracking this skb.
683  *	skb must be freed afterwards.
684  */
685 void skb_tx_error(struct sk_buff *skb)
686 {
687 	skb_zcopy_clear(skb, true);
688 }
689 EXPORT_SYMBOL(skb_tx_error);
690 
691 /**
692  *	consume_skb - free an skbuff
693  *	@skb: buffer to free
694  *
695  *	Drop a ref to the buffer and free it if the usage count has hit zero
696  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
697  *	is being dropped after a failure and notes that
698  */
699 void consume_skb(struct sk_buff *skb)
700 {
701 	if (!skb_unref(skb))
702 		return;
703 
704 	trace_consume_skb(skb);
705 	__kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(consume_skb);
708 
709 /**
710  *	consume_stateless_skb - free an skbuff, assuming it is stateless
711  *	@skb: buffer to free
712  *
713  *	Works like consume_skb(), but this variant assumes that all the head
714  *	states have been already dropped.
715  */
716 void consume_stateless_skb(struct sk_buff *skb)
717 {
718 	if (!skb_unref(skb))
719 		return;
720 
721 	trace_consume_skb(skb);
722 	skb_release_data(skb);
723 	kfree_skbmem(skb);
724 }
725 
726 void __kfree_skb_flush(void)
727 {
728 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
729 
730 	/* flush skb_cache if containing objects */
731 	if (nc->skb_count) {
732 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
733 				     nc->skb_cache);
734 		nc->skb_count = 0;
735 	}
736 }
737 
738 static inline void _kfree_skb_defer(struct sk_buff *skb)
739 {
740 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
741 
742 	/* drop skb->head and call any destructors for packet */
743 	skb_release_all(skb);
744 
745 	/* record skb to CPU local list */
746 	nc->skb_cache[nc->skb_count++] = skb;
747 
748 #ifdef CONFIG_SLUB
749 	/* SLUB writes into objects when freeing */
750 	prefetchw(skb);
751 #endif
752 
753 	/* flush skb_cache if it is filled */
754 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
755 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
756 				     nc->skb_cache);
757 		nc->skb_count = 0;
758 	}
759 }
760 void __kfree_skb_defer(struct sk_buff *skb)
761 {
762 	_kfree_skb_defer(skb);
763 }
764 
765 void napi_consume_skb(struct sk_buff *skb, int budget)
766 {
767 	if (unlikely(!skb))
768 		return;
769 
770 	/* Zero budget indicate non-NAPI context called us, like netpoll */
771 	if (unlikely(!budget)) {
772 		dev_consume_skb_any(skb);
773 		return;
774 	}
775 
776 	if (!skb_unref(skb))
777 		return;
778 
779 	/* if reaching here SKB is ready to free */
780 	trace_consume_skb(skb);
781 
782 	/* if SKB is a clone, don't handle this case */
783 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
784 		__kfree_skb(skb);
785 		return;
786 	}
787 
788 	_kfree_skb_defer(skb);
789 }
790 EXPORT_SYMBOL(napi_consume_skb);
791 
792 /* Make sure a field is enclosed inside headers_start/headers_end section */
793 #define CHECK_SKB_FIELD(field) \
794 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
795 		     offsetof(struct sk_buff, headers_start));	\
796 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
797 		     offsetof(struct sk_buff, headers_end));	\
798 
799 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
800 {
801 	new->tstamp		= old->tstamp;
802 	/* We do not copy old->sk */
803 	new->dev		= old->dev;
804 	memcpy(new->cb, old->cb, sizeof(old->cb));
805 	skb_dst_copy(new, old);
806 #ifdef CONFIG_XFRM
807 	new->sp			= secpath_get(old->sp);
808 #endif
809 	__nf_copy(new, old, false);
810 
811 	/* Note : this field could be in headers_start/headers_end section
812 	 * It is not yet because we do not want to have a 16 bit hole
813 	 */
814 	new->queue_mapping = old->queue_mapping;
815 
816 	memcpy(&new->headers_start, &old->headers_start,
817 	       offsetof(struct sk_buff, headers_end) -
818 	       offsetof(struct sk_buff, headers_start));
819 	CHECK_SKB_FIELD(protocol);
820 	CHECK_SKB_FIELD(csum);
821 	CHECK_SKB_FIELD(hash);
822 	CHECK_SKB_FIELD(priority);
823 	CHECK_SKB_FIELD(skb_iif);
824 	CHECK_SKB_FIELD(vlan_proto);
825 	CHECK_SKB_FIELD(vlan_tci);
826 	CHECK_SKB_FIELD(transport_header);
827 	CHECK_SKB_FIELD(network_header);
828 	CHECK_SKB_FIELD(mac_header);
829 	CHECK_SKB_FIELD(inner_protocol);
830 	CHECK_SKB_FIELD(inner_transport_header);
831 	CHECK_SKB_FIELD(inner_network_header);
832 	CHECK_SKB_FIELD(inner_mac_header);
833 	CHECK_SKB_FIELD(mark);
834 #ifdef CONFIG_NETWORK_SECMARK
835 	CHECK_SKB_FIELD(secmark);
836 #endif
837 #ifdef CONFIG_NET_RX_BUSY_POLL
838 	CHECK_SKB_FIELD(napi_id);
839 #endif
840 #ifdef CONFIG_XPS
841 	CHECK_SKB_FIELD(sender_cpu);
842 #endif
843 #ifdef CONFIG_NET_SCHED
844 	CHECK_SKB_FIELD(tc_index);
845 #endif
846 
847 }
848 
849 /*
850  * You should not add any new code to this function.  Add it to
851  * __copy_skb_header above instead.
852  */
853 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
854 {
855 #define C(x) n->x = skb->x
856 
857 	n->next = n->prev = NULL;
858 	n->sk = NULL;
859 	__copy_skb_header(n, skb);
860 
861 	C(len);
862 	C(data_len);
863 	C(mac_len);
864 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
865 	n->cloned = 1;
866 	n->nohdr = 0;
867 	n->destructor = NULL;
868 	C(tail);
869 	C(end);
870 	C(head);
871 	C(head_frag);
872 	C(data);
873 	C(truesize);
874 	refcount_set(&n->users, 1);
875 
876 	atomic_inc(&(skb_shinfo(skb)->dataref));
877 	skb->cloned = 1;
878 
879 	return n;
880 #undef C
881 }
882 
883 /**
884  *	skb_morph	-	morph one skb into another
885  *	@dst: the skb to receive the contents
886  *	@src: the skb to supply the contents
887  *
888  *	This is identical to skb_clone except that the target skb is
889  *	supplied by the user.
890  *
891  *	The target skb is returned upon exit.
892  */
893 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
894 {
895 	skb_release_all(dst);
896 	return __skb_clone(dst, src);
897 }
898 EXPORT_SYMBOL_GPL(skb_morph);
899 
900 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
901 {
902 	unsigned long max_pg, num_pg, new_pg, old_pg;
903 	struct user_struct *user;
904 
905 	if (capable(CAP_IPC_LOCK) || !size)
906 		return 0;
907 
908 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
909 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
910 	user = mmp->user ? : current_user();
911 
912 	do {
913 		old_pg = atomic_long_read(&user->locked_vm);
914 		new_pg = old_pg + num_pg;
915 		if (new_pg > max_pg)
916 			return -ENOBUFS;
917 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
918 		 old_pg);
919 
920 	if (!mmp->user) {
921 		mmp->user = get_uid(user);
922 		mmp->num_pg = num_pg;
923 	} else {
924 		mmp->num_pg += num_pg;
925 	}
926 
927 	return 0;
928 }
929 
930 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
931 {
932 	if (mmp->user) {
933 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
934 		free_uid(mmp->user);
935 	}
936 }
937 
938 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
939 {
940 	struct ubuf_info *uarg;
941 	struct sk_buff *skb;
942 
943 	WARN_ON_ONCE(!in_task());
944 
945 	if (!sock_flag(sk, SOCK_ZEROCOPY))
946 		return NULL;
947 
948 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
949 	if (!skb)
950 		return NULL;
951 
952 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
953 	uarg = (void *)skb->cb;
954 	uarg->mmp.user = NULL;
955 
956 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
957 		kfree_skb(skb);
958 		return NULL;
959 	}
960 
961 	uarg->callback = sock_zerocopy_callback;
962 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
963 	uarg->len = 1;
964 	uarg->bytelen = size;
965 	uarg->zerocopy = 1;
966 	atomic_set(&uarg->refcnt, 0);
967 	sock_hold(sk);
968 
969 	return uarg;
970 }
971 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
972 
973 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
974 {
975 	return container_of((void *)uarg, struct sk_buff, cb);
976 }
977 
978 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
979 					struct ubuf_info *uarg)
980 {
981 	if (uarg) {
982 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
983 		u32 bytelen, next;
984 
985 		/* realloc only when socket is locked (TCP, UDP cork),
986 		 * so uarg->len and sk_zckey access is serialized
987 		 */
988 		if (!sock_owned_by_user(sk)) {
989 			WARN_ON_ONCE(1);
990 			return NULL;
991 		}
992 
993 		bytelen = uarg->bytelen + size;
994 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
995 			/* TCP can create new skb to attach new uarg */
996 			if (sk->sk_type == SOCK_STREAM)
997 				goto new_alloc;
998 			return NULL;
999 		}
1000 
1001 		next = (u32)atomic_read(&sk->sk_zckey);
1002 		if ((u32)(uarg->id + uarg->len) == next) {
1003 			if (mm_account_pinned_pages(&uarg->mmp, size))
1004 				return NULL;
1005 			uarg->len++;
1006 			uarg->bytelen = bytelen;
1007 			atomic_set(&sk->sk_zckey, ++next);
1008 			return uarg;
1009 		}
1010 	}
1011 
1012 new_alloc:
1013 	return sock_zerocopy_alloc(sk, size);
1014 }
1015 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1016 
1017 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1018 {
1019 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1020 	u32 old_lo, old_hi;
1021 	u64 sum_len;
1022 
1023 	old_lo = serr->ee.ee_info;
1024 	old_hi = serr->ee.ee_data;
1025 	sum_len = old_hi - old_lo + 1ULL + len;
1026 
1027 	if (sum_len >= (1ULL << 32))
1028 		return false;
1029 
1030 	if (lo != old_hi + 1)
1031 		return false;
1032 
1033 	serr->ee.ee_data += len;
1034 	return true;
1035 }
1036 
1037 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1038 {
1039 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1040 	struct sock_exterr_skb *serr;
1041 	struct sock *sk = skb->sk;
1042 	struct sk_buff_head *q;
1043 	unsigned long flags;
1044 	u32 lo, hi;
1045 	u16 len;
1046 
1047 	mm_unaccount_pinned_pages(&uarg->mmp);
1048 
1049 	/* if !len, there was only 1 call, and it was aborted
1050 	 * so do not queue a completion notification
1051 	 */
1052 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1053 		goto release;
1054 
1055 	len = uarg->len;
1056 	lo = uarg->id;
1057 	hi = uarg->id + len - 1;
1058 
1059 	serr = SKB_EXT_ERR(skb);
1060 	memset(serr, 0, sizeof(*serr));
1061 	serr->ee.ee_errno = 0;
1062 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1063 	serr->ee.ee_data = hi;
1064 	serr->ee.ee_info = lo;
1065 	if (!success)
1066 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1067 
1068 	q = &sk->sk_error_queue;
1069 	spin_lock_irqsave(&q->lock, flags);
1070 	tail = skb_peek_tail(q);
1071 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1072 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1073 		__skb_queue_tail(q, skb);
1074 		skb = NULL;
1075 	}
1076 	spin_unlock_irqrestore(&q->lock, flags);
1077 
1078 	sk->sk_error_report(sk);
1079 
1080 release:
1081 	consume_skb(skb);
1082 	sock_put(sk);
1083 }
1084 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1085 
1086 void sock_zerocopy_put(struct ubuf_info *uarg)
1087 {
1088 	if (uarg && atomic_dec_and_test(&uarg->refcnt)) {
1089 		if (uarg->callback)
1090 			uarg->callback(uarg, uarg->zerocopy);
1091 		else
1092 			consume_skb(skb_from_uarg(uarg));
1093 	}
1094 }
1095 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1096 
1097 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1098 {
1099 	if (uarg) {
1100 		struct sock *sk = skb_from_uarg(uarg)->sk;
1101 
1102 		atomic_dec(&sk->sk_zckey);
1103 		uarg->len--;
1104 
1105 		/* sock_zerocopy_put expects a ref. Most sockets take one per
1106 		 * skb, which is zero on abort. tcp_sendmsg holds one extra, to
1107 		 * avoid an skb send inside the main loop triggering uarg free.
1108 		 */
1109 		if (sk->sk_type != SOCK_STREAM)
1110 			atomic_inc(&uarg->refcnt);
1111 
1112 		sock_zerocopy_put(uarg);
1113 	}
1114 }
1115 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1116 
1117 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1118 				   struct iov_iter *from, size_t length);
1119 
1120 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1121 			     struct msghdr *msg, int len,
1122 			     struct ubuf_info *uarg)
1123 {
1124 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1125 	struct iov_iter orig_iter = msg->msg_iter;
1126 	int err, orig_len = skb->len;
1127 
1128 	/* An skb can only point to one uarg. This edge case happens when
1129 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1130 	 */
1131 	if (orig_uarg && uarg != orig_uarg)
1132 		return -EEXIST;
1133 
1134 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1135 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1136 		/* Streams do not free skb on error. Reset to prev state. */
1137 		msg->msg_iter = orig_iter;
1138 		___pskb_trim(skb, orig_len);
1139 		return err;
1140 	}
1141 
1142 	skb_zcopy_set(skb, uarg);
1143 	return skb->len - orig_len;
1144 }
1145 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1146 
1147 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1148 			      gfp_t gfp_mask)
1149 {
1150 	if (skb_zcopy(orig)) {
1151 		if (skb_zcopy(nskb)) {
1152 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1153 			if (!gfp_mask) {
1154 				WARN_ON_ONCE(1);
1155 				return -ENOMEM;
1156 			}
1157 			if (skb_uarg(nskb) == skb_uarg(orig))
1158 				return 0;
1159 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1160 				return -EIO;
1161 		}
1162 		skb_zcopy_set(nskb, skb_uarg(orig));
1163 	}
1164 	return 0;
1165 }
1166 
1167 /**
1168  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1169  *	@skb: the skb to modify
1170  *	@gfp_mask: allocation priority
1171  *
1172  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1173  *	It will copy all frags into kernel and drop the reference
1174  *	to userspace pages.
1175  *
1176  *	If this function is called from an interrupt gfp_mask() must be
1177  *	%GFP_ATOMIC.
1178  *
1179  *	Returns 0 on success or a negative error code on failure
1180  *	to allocate kernel memory to copy to.
1181  */
1182 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1183 {
1184 	int num_frags = skb_shinfo(skb)->nr_frags;
1185 	struct page *page, *head = NULL;
1186 	int i, new_frags;
1187 	u32 d_off;
1188 
1189 	if (!num_frags)
1190 		return 0;
1191 
1192 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1193 		return -EINVAL;
1194 
1195 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1196 	for (i = 0; i < new_frags; i++) {
1197 		page = alloc_page(gfp_mask);
1198 		if (!page) {
1199 			while (head) {
1200 				struct page *next = (struct page *)page_private(head);
1201 				put_page(head);
1202 				head = next;
1203 			}
1204 			return -ENOMEM;
1205 		}
1206 		set_page_private(page, (unsigned long)head);
1207 		head = page;
1208 	}
1209 
1210 	page = head;
1211 	d_off = 0;
1212 	for (i = 0; i < num_frags; i++) {
1213 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1214 		u32 p_off, p_len, copied;
1215 		struct page *p;
1216 		u8 *vaddr;
1217 
1218 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1219 				      p, p_off, p_len, copied) {
1220 			u32 copy, done = 0;
1221 			vaddr = kmap_atomic(p);
1222 
1223 			while (done < p_len) {
1224 				if (d_off == PAGE_SIZE) {
1225 					d_off = 0;
1226 					page = (struct page *)page_private(page);
1227 				}
1228 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1229 				memcpy(page_address(page) + d_off,
1230 				       vaddr + p_off + done, copy);
1231 				done += copy;
1232 				d_off += copy;
1233 			}
1234 			kunmap_atomic(vaddr);
1235 		}
1236 	}
1237 
1238 	/* skb frags release userspace buffers */
1239 	for (i = 0; i < num_frags; i++)
1240 		skb_frag_unref(skb, i);
1241 
1242 	/* skb frags point to kernel buffers */
1243 	for (i = 0; i < new_frags - 1; i++) {
1244 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1245 		head = (struct page *)page_private(head);
1246 	}
1247 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1248 	skb_shinfo(skb)->nr_frags = new_frags;
1249 
1250 	skb_zcopy_clear(skb, false);
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1254 
1255 /**
1256  *	skb_clone	-	duplicate an sk_buff
1257  *	@skb: buffer to clone
1258  *	@gfp_mask: allocation priority
1259  *
1260  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1261  *	copies share the same packet data but not structure. The new
1262  *	buffer has a reference count of 1. If the allocation fails the
1263  *	function returns %NULL otherwise the new buffer is returned.
1264  *
1265  *	If this function is called from an interrupt gfp_mask() must be
1266  *	%GFP_ATOMIC.
1267  */
1268 
1269 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1270 {
1271 	struct sk_buff_fclones *fclones = container_of(skb,
1272 						       struct sk_buff_fclones,
1273 						       skb1);
1274 	struct sk_buff *n;
1275 
1276 	if (skb_orphan_frags(skb, gfp_mask))
1277 		return NULL;
1278 
1279 	if (skb->fclone == SKB_FCLONE_ORIG &&
1280 	    refcount_read(&fclones->fclone_ref) == 1) {
1281 		n = &fclones->skb2;
1282 		refcount_set(&fclones->fclone_ref, 2);
1283 	} else {
1284 		if (skb_pfmemalloc(skb))
1285 			gfp_mask |= __GFP_MEMALLOC;
1286 
1287 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1288 		if (!n)
1289 			return NULL;
1290 
1291 		kmemcheck_annotate_bitfield(n, flags1);
1292 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1293 	}
1294 
1295 	return __skb_clone(n, skb);
1296 }
1297 EXPORT_SYMBOL(skb_clone);
1298 
1299 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1300 {
1301 	/* Only adjust this if it actually is csum_start rather than csum */
1302 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1303 		skb->csum_start += off;
1304 	/* {transport,network,mac}_header and tail are relative to skb->head */
1305 	skb->transport_header += off;
1306 	skb->network_header   += off;
1307 	if (skb_mac_header_was_set(skb))
1308 		skb->mac_header += off;
1309 	skb->inner_transport_header += off;
1310 	skb->inner_network_header += off;
1311 	skb->inner_mac_header += off;
1312 }
1313 
1314 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1315 {
1316 	__copy_skb_header(new, old);
1317 
1318 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1319 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1320 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1321 }
1322 
1323 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1324 {
1325 	if (skb_pfmemalloc(skb))
1326 		return SKB_ALLOC_RX;
1327 	return 0;
1328 }
1329 
1330 /**
1331  *	skb_copy	-	create private copy of an sk_buff
1332  *	@skb: buffer to copy
1333  *	@gfp_mask: allocation priority
1334  *
1335  *	Make a copy of both an &sk_buff and its data. This is used when the
1336  *	caller wishes to modify the data and needs a private copy of the
1337  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1338  *	on success. The returned buffer has a reference count of 1.
1339  *
1340  *	As by-product this function converts non-linear &sk_buff to linear
1341  *	one, so that &sk_buff becomes completely private and caller is allowed
1342  *	to modify all the data of returned buffer. This means that this
1343  *	function is not recommended for use in circumstances when only
1344  *	header is going to be modified. Use pskb_copy() instead.
1345  */
1346 
1347 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1348 {
1349 	int headerlen = skb_headroom(skb);
1350 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1351 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1352 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1353 
1354 	if (!n)
1355 		return NULL;
1356 
1357 	/* Set the data pointer */
1358 	skb_reserve(n, headerlen);
1359 	/* Set the tail pointer and length */
1360 	skb_put(n, skb->len);
1361 
1362 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1363 		BUG();
1364 
1365 	copy_skb_header(n, skb);
1366 	return n;
1367 }
1368 EXPORT_SYMBOL(skb_copy);
1369 
1370 /**
1371  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1372  *	@skb: buffer to copy
1373  *	@headroom: headroom of new skb
1374  *	@gfp_mask: allocation priority
1375  *	@fclone: if true allocate the copy of the skb from the fclone
1376  *	cache instead of the head cache; it is recommended to set this
1377  *	to true for the cases where the copy will likely be cloned
1378  *
1379  *	Make a copy of both an &sk_buff and part of its data, located
1380  *	in header. Fragmented data remain shared. This is used when
1381  *	the caller wishes to modify only header of &sk_buff and needs
1382  *	private copy of the header to alter. Returns %NULL on failure
1383  *	or the pointer to the buffer on success.
1384  *	The returned buffer has a reference count of 1.
1385  */
1386 
1387 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1388 				   gfp_t gfp_mask, bool fclone)
1389 {
1390 	unsigned int size = skb_headlen(skb) + headroom;
1391 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1392 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1393 
1394 	if (!n)
1395 		goto out;
1396 
1397 	/* Set the data pointer */
1398 	skb_reserve(n, headroom);
1399 	/* Set the tail pointer and length */
1400 	skb_put(n, skb_headlen(skb));
1401 	/* Copy the bytes */
1402 	skb_copy_from_linear_data(skb, n->data, n->len);
1403 
1404 	n->truesize += skb->data_len;
1405 	n->data_len  = skb->data_len;
1406 	n->len	     = skb->len;
1407 
1408 	if (skb_shinfo(skb)->nr_frags) {
1409 		int i;
1410 
1411 		if (skb_orphan_frags(skb, gfp_mask) ||
1412 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1413 			kfree_skb(n);
1414 			n = NULL;
1415 			goto out;
1416 		}
1417 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1418 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1419 			skb_frag_ref(skb, i);
1420 		}
1421 		skb_shinfo(n)->nr_frags = i;
1422 	}
1423 
1424 	if (skb_has_frag_list(skb)) {
1425 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1426 		skb_clone_fraglist(n);
1427 	}
1428 
1429 	copy_skb_header(n, skb);
1430 out:
1431 	return n;
1432 }
1433 EXPORT_SYMBOL(__pskb_copy_fclone);
1434 
1435 /**
1436  *	pskb_expand_head - reallocate header of &sk_buff
1437  *	@skb: buffer to reallocate
1438  *	@nhead: room to add at head
1439  *	@ntail: room to add at tail
1440  *	@gfp_mask: allocation priority
1441  *
1442  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1443  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1444  *	reference count of 1. Returns zero in the case of success or error,
1445  *	if expansion failed. In the last case, &sk_buff is not changed.
1446  *
1447  *	All the pointers pointing into skb header may change and must be
1448  *	reloaded after call to this function.
1449  */
1450 
1451 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1452 		     gfp_t gfp_mask)
1453 {
1454 	int i, osize = skb_end_offset(skb);
1455 	int size = osize + nhead + ntail;
1456 	long off;
1457 	u8 *data;
1458 
1459 	BUG_ON(nhead < 0);
1460 
1461 	if (skb_shared(skb))
1462 		BUG();
1463 
1464 	size = SKB_DATA_ALIGN(size);
1465 
1466 	if (skb_pfmemalloc(skb))
1467 		gfp_mask |= __GFP_MEMALLOC;
1468 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1469 			       gfp_mask, NUMA_NO_NODE, NULL);
1470 	if (!data)
1471 		goto nodata;
1472 	size = SKB_WITH_OVERHEAD(ksize(data));
1473 
1474 	/* Copy only real data... and, alas, header. This should be
1475 	 * optimized for the cases when header is void.
1476 	 */
1477 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1478 
1479 	memcpy((struct skb_shared_info *)(data + size),
1480 	       skb_shinfo(skb),
1481 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1482 
1483 	/*
1484 	 * if shinfo is shared we must drop the old head gracefully, but if it
1485 	 * is not we can just drop the old head and let the existing refcount
1486 	 * be since all we did is relocate the values
1487 	 */
1488 	if (skb_cloned(skb)) {
1489 		if (skb_orphan_frags(skb, gfp_mask))
1490 			goto nofrags;
1491 		if (skb_zcopy(skb))
1492 			atomic_inc(&skb_uarg(skb)->refcnt);
1493 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1494 			skb_frag_ref(skb, i);
1495 
1496 		if (skb_has_frag_list(skb))
1497 			skb_clone_fraglist(skb);
1498 
1499 		skb_release_data(skb);
1500 	} else {
1501 		skb_free_head(skb);
1502 	}
1503 	off = (data + nhead) - skb->head;
1504 
1505 	skb->head     = data;
1506 	skb->head_frag = 0;
1507 	skb->data    += off;
1508 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1509 	skb->end      = size;
1510 	off           = nhead;
1511 #else
1512 	skb->end      = skb->head + size;
1513 #endif
1514 	skb->tail	      += off;
1515 	skb_headers_offset_update(skb, nhead);
1516 	skb->cloned   = 0;
1517 	skb->hdr_len  = 0;
1518 	skb->nohdr    = 0;
1519 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1520 
1521 	/* It is not generally safe to change skb->truesize.
1522 	 * For the moment, we really care of rx path, or
1523 	 * when skb is orphaned (not attached to a socket).
1524 	 */
1525 	if (!skb->sk || skb->destructor == sock_edemux)
1526 		skb->truesize += size - osize;
1527 
1528 	return 0;
1529 
1530 nofrags:
1531 	kfree(data);
1532 nodata:
1533 	return -ENOMEM;
1534 }
1535 EXPORT_SYMBOL(pskb_expand_head);
1536 
1537 /* Make private copy of skb with writable head and some headroom */
1538 
1539 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1540 {
1541 	struct sk_buff *skb2;
1542 	int delta = headroom - skb_headroom(skb);
1543 
1544 	if (delta <= 0)
1545 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1546 	else {
1547 		skb2 = skb_clone(skb, GFP_ATOMIC);
1548 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1549 					     GFP_ATOMIC)) {
1550 			kfree_skb(skb2);
1551 			skb2 = NULL;
1552 		}
1553 	}
1554 	return skb2;
1555 }
1556 EXPORT_SYMBOL(skb_realloc_headroom);
1557 
1558 /**
1559  *	skb_copy_expand	-	copy and expand sk_buff
1560  *	@skb: buffer to copy
1561  *	@newheadroom: new free bytes at head
1562  *	@newtailroom: new free bytes at tail
1563  *	@gfp_mask: allocation priority
1564  *
1565  *	Make a copy of both an &sk_buff and its data and while doing so
1566  *	allocate additional space.
1567  *
1568  *	This is used when the caller wishes to modify the data and needs a
1569  *	private copy of the data to alter as well as more space for new fields.
1570  *	Returns %NULL on failure or the pointer to the buffer
1571  *	on success. The returned buffer has a reference count of 1.
1572  *
1573  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1574  *	is called from an interrupt.
1575  */
1576 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1577 				int newheadroom, int newtailroom,
1578 				gfp_t gfp_mask)
1579 {
1580 	/*
1581 	 *	Allocate the copy buffer
1582 	 */
1583 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1584 					gfp_mask, skb_alloc_rx_flag(skb),
1585 					NUMA_NO_NODE);
1586 	int oldheadroom = skb_headroom(skb);
1587 	int head_copy_len, head_copy_off;
1588 
1589 	if (!n)
1590 		return NULL;
1591 
1592 	skb_reserve(n, newheadroom);
1593 
1594 	/* Set the tail pointer and length */
1595 	skb_put(n, skb->len);
1596 
1597 	head_copy_len = oldheadroom;
1598 	head_copy_off = 0;
1599 	if (newheadroom <= head_copy_len)
1600 		head_copy_len = newheadroom;
1601 	else
1602 		head_copy_off = newheadroom - head_copy_len;
1603 
1604 	/* Copy the linear header and data. */
1605 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1606 			  skb->len + head_copy_len))
1607 		BUG();
1608 
1609 	copy_skb_header(n, skb);
1610 
1611 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1612 
1613 	return n;
1614 }
1615 EXPORT_SYMBOL(skb_copy_expand);
1616 
1617 /**
1618  *	skb_pad			-	zero pad the tail of an skb
1619  *	@skb: buffer to pad
1620  *	@pad: space to pad
1621  *
1622  *	Ensure that a buffer is followed by a padding area that is zero
1623  *	filled. Used by network drivers which may DMA or transfer data
1624  *	beyond the buffer end onto the wire.
1625  *
1626  *	May return error in out of memory cases. The skb is freed on error.
1627  */
1628 
1629 int skb_pad(struct sk_buff *skb, int pad)
1630 {
1631 	int err;
1632 	int ntail;
1633 
1634 	/* If the skbuff is non linear tailroom is always zero.. */
1635 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1636 		memset(skb->data+skb->len, 0, pad);
1637 		return 0;
1638 	}
1639 
1640 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1641 	if (likely(skb_cloned(skb) || ntail > 0)) {
1642 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1643 		if (unlikely(err))
1644 			goto free_skb;
1645 	}
1646 
1647 	/* FIXME: The use of this function with non-linear skb's really needs
1648 	 * to be audited.
1649 	 */
1650 	err = skb_linearize(skb);
1651 	if (unlikely(err))
1652 		goto free_skb;
1653 
1654 	memset(skb->data + skb->len, 0, pad);
1655 	return 0;
1656 
1657 free_skb:
1658 	kfree_skb(skb);
1659 	return err;
1660 }
1661 EXPORT_SYMBOL(skb_pad);
1662 
1663 /**
1664  *	pskb_put - add data to the tail of a potentially fragmented buffer
1665  *	@skb: start of the buffer to use
1666  *	@tail: tail fragment of the buffer to use
1667  *	@len: amount of data to add
1668  *
1669  *	This function extends the used data area of the potentially
1670  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1671  *	@skb itself. If this would exceed the total buffer size the kernel
1672  *	will panic. A pointer to the first byte of the extra data is
1673  *	returned.
1674  */
1675 
1676 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1677 {
1678 	if (tail != skb) {
1679 		skb->data_len += len;
1680 		skb->len += len;
1681 	}
1682 	return skb_put(tail, len);
1683 }
1684 EXPORT_SYMBOL_GPL(pskb_put);
1685 
1686 /**
1687  *	skb_put - add data to a buffer
1688  *	@skb: buffer to use
1689  *	@len: amount of data to add
1690  *
1691  *	This function extends the used data area of the buffer. If this would
1692  *	exceed the total buffer size the kernel will panic. A pointer to the
1693  *	first byte of the extra data is returned.
1694  */
1695 void *skb_put(struct sk_buff *skb, unsigned int len)
1696 {
1697 	void *tmp = skb_tail_pointer(skb);
1698 	SKB_LINEAR_ASSERT(skb);
1699 	skb->tail += len;
1700 	skb->len  += len;
1701 	if (unlikely(skb->tail > skb->end))
1702 		skb_over_panic(skb, len, __builtin_return_address(0));
1703 	return tmp;
1704 }
1705 EXPORT_SYMBOL(skb_put);
1706 
1707 /**
1708  *	skb_push - add data to the start of a buffer
1709  *	@skb: buffer to use
1710  *	@len: amount of data to add
1711  *
1712  *	This function extends the used data area of the buffer at the buffer
1713  *	start. If this would exceed the total buffer headroom the kernel will
1714  *	panic. A pointer to the first byte of the extra data is returned.
1715  */
1716 void *skb_push(struct sk_buff *skb, unsigned int len)
1717 {
1718 	skb->data -= len;
1719 	skb->len  += len;
1720 	if (unlikely(skb->data<skb->head))
1721 		skb_under_panic(skb, len, __builtin_return_address(0));
1722 	return skb->data;
1723 }
1724 EXPORT_SYMBOL(skb_push);
1725 
1726 /**
1727  *	skb_pull - remove data from the start of a buffer
1728  *	@skb: buffer to use
1729  *	@len: amount of data to remove
1730  *
1731  *	This function removes data from the start of a buffer, returning
1732  *	the memory to the headroom. A pointer to the next data in the buffer
1733  *	is returned. Once the data has been pulled future pushes will overwrite
1734  *	the old data.
1735  */
1736 void *skb_pull(struct sk_buff *skb, unsigned int len)
1737 {
1738 	return skb_pull_inline(skb, len);
1739 }
1740 EXPORT_SYMBOL(skb_pull);
1741 
1742 /**
1743  *	skb_trim - remove end from a buffer
1744  *	@skb: buffer to alter
1745  *	@len: new length
1746  *
1747  *	Cut the length of a buffer down by removing data from the tail. If
1748  *	the buffer is already under the length specified it is not modified.
1749  *	The skb must be linear.
1750  */
1751 void skb_trim(struct sk_buff *skb, unsigned int len)
1752 {
1753 	if (skb->len > len)
1754 		__skb_trim(skb, len);
1755 }
1756 EXPORT_SYMBOL(skb_trim);
1757 
1758 /* Trims skb to length len. It can change skb pointers.
1759  */
1760 
1761 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1762 {
1763 	struct sk_buff **fragp;
1764 	struct sk_buff *frag;
1765 	int offset = skb_headlen(skb);
1766 	int nfrags = skb_shinfo(skb)->nr_frags;
1767 	int i;
1768 	int err;
1769 
1770 	if (skb_cloned(skb) &&
1771 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1772 		return err;
1773 
1774 	i = 0;
1775 	if (offset >= len)
1776 		goto drop_pages;
1777 
1778 	for (; i < nfrags; i++) {
1779 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1780 
1781 		if (end < len) {
1782 			offset = end;
1783 			continue;
1784 		}
1785 
1786 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1787 
1788 drop_pages:
1789 		skb_shinfo(skb)->nr_frags = i;
1790 
1791 		for (; i < nfrags; i++)
1792 			skb_frag_unref(skb, i);
1793 
1794 		if (skb_has_frag_list(skb))
1795 			skb_drop_fraglist(skb);
1796 		goto done;
1797 	}
1798 
1799 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1800 	     fragp = &frag->next) {
1801 		int end = offset + frag->len;
1802 
1803 		if (skb_shared(frag)) {
1804 			struct sk_buff *nfrag;
1805 
1806 			nfrag = skb_clone(frag, GFP_ATOMIC);
1807 			if (unlikely(!nfrag))
1808 				return -ENOMEM;
1809 
1810 			nfrag->next = frag->next;
1811 			consume_skb(frag);
1812 			frag = nfrag;
1813 			*fragp = frag;
1814 		}
1815 
1816 		if (end < len) {
1817 			offset = end;
1818 			continue;
1819 		}
1820 
1821 		if (end > len &&
1822 		    unlikely((err = pskb_trim(frag, len - offset))))
1823 			return err;
1824 
1825 		if (frag->next)
1826 			skb_drop_list(&frag->next);
1827 		break;
1828 	}
1829 
1830 done:
1831 	if (len > skb_headlen(skb)) {
1832 		skb->data_len -= skb->len - len;
1833 		skb->len       = len;
1834 	} else {
1835 		skb->len       = len;
1836 		skb->data_len  = 0;
1837 		skb_set_tail_pointer(skb, len);
1838 	}
1839 
1840 	if (!skb->sk || skb->destructor == sock_edemux)
1841 		skb_condense(skb);
1842 	return 0;
1843 }
1844 EXPORT_SYMBOL(___pskb_trim);
1845 
1846 /**
1847  *	__pskb_pull_tail - advance tail of skb header
1848  *	@skb: buffer to reallocate
1849  *	@delta: number of bytes to advance tail
1850  *
1851  *	The function makes a sense only on a fragmented &sk_buff,
1852  *	it expands header moving its tail forward and copying necessary
1853  *	data from fragmented part.
1854  *
1855  *	&sk_buff MUST have reference count of 1.
1856  *
1857  *	Returns %NULL (and &sk_buff does not change) if pull failed
1858  *	or value of new tail of skb in the case of success.
1859  *
1860  *	All the pointers pointing into skb header may change and must be
1861  *	reloaded after call to this function.
1862  */
1863 
1864 /* Moves tail of skb head forward, copying data from fragmented part,
1865  * when it is necessary.
1866  * 1. It may fail due to malloc failure.
1867  * 2. It may change skb pointers.
1868  *
1869  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1870  */
1871 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1872 {
1873 	/* If skb has not enough free space at tail, get new one
1874 	 * plus 128 bytes for future expansions. If we have enough
1875 	 * room at tail, reallocate without expansion only if skb is cloned.
1876 	 */
1877 	int i, k, eat = (skb->tail + delta) - skb->end;
1878 
1879 	if (eat > 0 || skb_cloned(skb)) {
1880 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1881 				     GFP_ATOMIC))
1882 			return NULL;
1883 	}
1884 
1885 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1886 		BUG();
1887 
1888 	/* Optimization: no fragments, no reasons to preestimate
1889 	 * size of pulled pages. Superb.
1890 	 */
1891 	if (!skb_has_frag_list(skb))
1892 		goto pull_pages;
1893 
1894 	/* Estimate size of pulled pages. */
1895 	eat = delta;
1896 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1897 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1898 
1899 		if (size >= eat)
1900 			goto pull_pages;
1901 		eat -= size;
1902 	}
1903 
1904 	/* If we need update frag list, we are in troubles.
1905 	 * Certainly, it possible to add an offset to skb data,
1906 	 * but taking into account that pulling is expected to
1907 	 * be very rare operation, it is worth to fight against
1908 	 * further bloating skb head and crucify ourselves here instead.
1909 	 * Pure masohism, indeed. 8)8)
1910 	 */
1911 	if (eat) {
1912 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1913 		struct sk_buff *clone = NULL;
1914 		struct sk_buff *insp = NULL;
1915 
1916 		do {
1917 			BUG_ON(!list);
1918 
1919 			if (list->len <= eat) {
1920 				/* Eaten as whole. */
1921 				eat -= list->len;
1922 				list = list->next;
1923 				insp = list;
1924 			} else {
1925 				/* Eaten partially. */
1926 
1927 				if (skb_shared(list)) {
1928 					/* Sucks! We need to fork list. :-( */
1929 					clone = skb_clone(list, GFP_ATOMIC);
1930 					if (!clone)
1931 						return NULL;
1932 					insp = list->next;
1933 					list = clone;
1934 				} else {
1935 					/* This may be pulled without
1936 					 * problems. */
1937 					insp = list;
1938 				}
1939 				if (!pskb_pull(list, eat)) {
1940 					kfree_skb(clone);
1941 					return NULL;
1942 				}
1943 				break;
1944 			}
1945 		} while (eat);
1946 
1947 		/* Free pulled out fragments. */
1948 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1949 			skb_shinfo(skb)->frag_list = list->next;
1950 			kfree_skb(list);
1951 		}
1952 		/* And insert new clone at head. */
1953 		if (clone) {
1954 			clone->next = list;
1955 			skb_shinfo(skb)->frag_list = clone;
1956 		}
1957 	}
1958 	/* Success! Now we may commit changes to skb data. */
1959 
1960 pull_pages:
1961 	eat = delta;
1962 	k = 0;
1963 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1964 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1965 
1966 		if (size <= eat) {
1967 			skb_frag_unref(skb, i);
1968 			eat -= size;
1969 		} else {
1970 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1971 			if (eat) {
1972 				skb_shinfo(skb)->frags[k].page_offset += eat;
1973 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1974 				if (!i)
1975 					goto end;
1976 				eat = 0;
1977 			}
1978 			k++;
1979 		}
1980 	}
1981 	skb_shinfo(skb)->nr_frags = k;
1982 
1983 end:
1984 	skb->tail     += delta;
1985 	skb->data_len -= delta;
1986 
1987 	if (!skb->data_len)
1988 		skb_zcopy_clear(skb, false);
1989 
1990 	return skb_tail_pointer(skb);
1991 }
1992 EXPORT_SYMBOL(__pskb_pull_tail);
1993 
1994 /**
1995  *	skb_copy_bits - copy bits from skb to kernel buffer
1996  *	@skb: source skb
1997  *	@offset: offset in source
1998  *	@to: destination buffer
1999  *	@len: number of bytes to copy
2000  *
2001  *	Copy the specified number of bytes from the source skb to the
2002  *	destination buffer.
2003  *
2004  *	CAUTION ! :
2005  *		If its prototype is ever changed,
2006  *		check arch/{*}/net/{*}.S files,
2007  *		since it is called from BPF assembly code.
2008  */
2009 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2010 {
2011 	int start = skb_headlen(skb);
2012 	struct sk_buff *frag_iter;
2013 	int i, copy;
2014 
2015 	if (offset > (int)skb->len - len)
2016 		goto fault;
2017 
2018 	/* Copy header. */
2019 	if ((copy = start - offset) > 0) {
2020 		if (copy > len)
2021 			copy = len;
2022 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2023 		if ((len -= copy) == 0)
2024 			return 0;
2025 		offset += copy;
2026 		to     += copy;
2027 	}
2028 
2029 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2030 		int end;
2031 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2032 
2033 		WARN_ON(start > offset + len);
2034 
2035 		end = start + skb_frag_size(f);
2036 		if ((copy = end - offset) > 0) {
2037 			u32 p_off, p_len, copied;
2038 			struct page *p;
2039 			u8 *vaddr;
2040 
2041 			if (copy > len)
2042 				copy = len;
2043 
2044 			skb_frag_foreach_page(f,
2045 					      f->page_offset + offset - start,
2046 					      copy, p, p_off, p_len, copied) {
2047 				vaddr = kmap_atomic(p);
2048 				memcpy(to + copied, vaddr + p_off, p_len);
2049 				kunmap_atomic(vaddr);
2050 			}
2051 
2052 			if ((len -= copy) == 0)
2053 				return 0;
2054 			offset += copy;
2055 			to     += copy;
2056 		}
2057 		start = end;
2058 	}
2059 
2060 	skb_walk_frags(skb, frag_iter) {
2061 		int end;
2062 
2063 		WARN_ON(start > offset + len);
2064 
2065 		end = start + frag_iter->len;
2066 		if ((copy = end - offset) > 0) {
2067 			if (copy > len)
2068 				copy = len;
2069 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2070 				goto fault;
2071 			if ((len -= copy) == 0)
2072 				return 0;
2073 			offset += copy;
2074 			to     += copy;
2075 		}
2076 		start = end;
2077 	}
2078 
2079 	if (!len)
2080 		return 0;
2081 
2082 fault:
2083 	return -EFAULT;
2084 }
2085 EXPORT_SYMBOL(skb_copy_bits);
2086 
2087 /*
2088  * Callback from splice_to_pipe(), if we need to release some pages
2089  * at the end of the spd in case we error'ed out in filling the pipe.
2090  */
2091 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2092 {
2093 	put_page(spd->pages[i]);
2094 }
2095 
2096 static struct page *linear_to_page(struct page *page, unsigned int *len,
2097 				   unsigned int *offset,
2098 				   struct sock *sk)
2099 {
2100 	struct page_frag *pfrag = sk_page_frag(sk);
2101 
2102 	if (!sk_page_frag_refill(sk, pfrag))
2103 		return NULL;
2104 
2105 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2106 
2107 	memcpy(page_address(pfrag->page) + pfrag->offset,
2108 	       page_address(page) + *offset, *len);
2109 	*offset = pfrag->offset;
2110 	pfrag->offset += *len;
2111 
2112 	return pfrag->page;
2113 }
2114 
2115 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2116 			     struct page *page,
2117 			     unsigned int offset)
2118 {
2119 	return	spd->nr_pages &&
2120 		spd->pages[spd->nr_pages - 1] == page &&
2121 		(spd->partial[spd->nr_pages - 1].offset +
2122 		 spd->partial[spd->nr_pages - 1].len == offset);
2123 }
2124 
2125 /*
2126  * Fill page/offset/length into spd, if it can hold more pages.
2127  */
2128 static bool spd_fill_page(struct splice_pipe_desc *spd,
2129 			  struct pipe_inode_info *pipe, struct page *page,
2130 			  unsigned int *len, unsigned int offset,
2131 			  bool linear,
2132 			  struct sock *sk)
2133 {
2134 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2135 		return true;
2136 
2137 	if (linear) {
2138 		page = linear_to_page(page, len, &offset, sk);
2139 		if (!page)
2140 			return true;
2141 	}
2142 	if (spd_can_coalesce(spd, page, offset)) {
2143 		spd->partial[spd->nr_pages - 1].len += *len;
2144 		return false;
2145 	}
2146 	get_page(page);
2147 	spd->pages[spd->nr_pages] = page;
2148 	spd->partial[spd->nr_pages].len = *len;
2149 	spd->partial[spd->nr_pages].offset = offset;
2150 	spd->nr_pages++;
2151 
2152 	return false;
2153 }
2154 
2155 static bool __splice_segment(struct page *page, unsigned int poff,
2156 			     unsigned int plen, unsigned int *off,
2157 			     unsigned int *len,
2158 			     struct splice_pipe_desc *spd, bool linear,
2159 			     struct sock *sk,
2160 			     struct pipe_inode_info *pipe)
2161 {
2162 	if (!*len)
2163 		return true;
2164 
2165 	/* skip this segment if already processed */
2166 	if (*off >= plen) {
2167 		*off -= plen;
2168 		return false;
2169 	}
2170 
2171 	/* ignore any bits we already processed */
2172 	poff += *off;
2173 	plen -= *off;
2174 	*off = 0;
2175 
2176 	do {
2177 		unsigned int flen = min(*len, plen);
2178 
2179 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2180 				  linear, sk))
2181 			return true;
2182 		poff += flen;
2183 		plen -= flen;
2184 		*len -= flen;
2185 	} while (*len && plen);
2186 
2187 	return false;
2188 }
2189 
2190 /*
2191  * Map linear and fragment data from the skb to spd. It reports true if the
2192  * pipe is full or if we already spliced the requested length.
2193  */
2194 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2195 			      unsigned int *offset, unsigned int *len,
2196 			      struct splice_pipe_desc *spd, struct sock *sk)
2197 {
2198 	int seg;
2199 	struct sk_buff *iter;
2200 
2201 	/* map the linear part :
2202 	 * If skb->head_frag is set, this 'linear' part is backed by a
2203 	 * fragment, and if the head is not shared with any clones then
2204 	 * we can avoid a copy since we own the head portion of this page.
2205 	 */
2206 	if (__splice_segment(virt_to_page(skb->data),
2207 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2208 			     skb_headlen(skb),
2209 			     offset, len, spd,
2210 			     skb_head_is_locked(skb),
2211 			     sk, pipe))
2212 		return true;
2213 
2214 	/*
2215 	 * then map the fragments
2216 	 */
2217 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2218 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2219 
2220 		if (__splice_segment(skb_frag_page(f),
2221 				     f->page_offset, skb_frag_size(f),
2222 				     offset, len, spd, false, sk, pipe))
2223 			return true;
2224 	}
2225 
2226 	skb_walk_frags(skb, iter) {
2227 		if (*offset >= iter->len) {
2228 			*offset -= iter->len;
2229 			continue;
2230 		}
2231 		/* __skb_splice_bits() only fails if the output has no room
2232 		 * left, so no point in going over the frag_list for the error
2233 		 * case.
2234 		 */
2235 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2236 			return true;
2237 	}
2238 
2239 	return false;
2240 }
2241 
2242 /*
2243  * Map data from the skb to a pipe. Should handle both the linear part,
2244  * the fragments, and the frag list.
2245  */
2246 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2247 		    struct pipe_inode_info *pipe, unsigned int tlen,
2248 		    unsigned int flags)
2249 {
2250 	struct partial_page partial[MAX_SKB_FRAGS];
2251 	struct page *pages[MAX_SKB_FRAGS];
2252 	struct splice_pipe_desc spd = {
2253 		.pages = pages,
2254 		.partial = partial,
2255 		.nr_pages_max = MAX_SKB_FRAGS,
2256 		.ops = &nosteal_pipe_buf_ops,
2257 		.spd_release = sock_spd_release,
2258 	};
2259 	int ret = 0;
2260 
2261 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2262 
2263 	if (spd.nr_pages)
2264 		ret = splice_to_pipe(pipe, &spd);
2265 
2266 	return ret;
2267 }
2268 EXPORT_SYMBOL_GPL(skb_splice_bits);
2269 
2270 /* Send skb data on a socket. Socket must be locked. */
2271 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2272 			 int len)
2273 {
2274 	unsigned int orig_len = len;
2275 	struct sk_buff *head = skb;
2276 	unsigned short fragidx;
2277 	int slen, ret;
2278 
2279 do_frag_list:
2280 
2281 	/* Deal with head data */
2282 	while (offset < skb_headlen(skb) && len) {
2283 		struct kvec kv;
2284 		struct msghdr msg;
2285 
2286 		slen = min_t(int, len, skb_headlen(skb) - offset);
2287 		kv.iov_base = skb->data + offset;
2288 		kv.iov_len = slen;
2289 		memset(&msg, 0, sizeof(msg));
2290 
2291 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2292 		if (ret <= 0)
2293 			goto error;
2294 
2295 		offset += ret;
2296 		len -= ret;
2297 	}
2298 
2299 	/* All the data was skb head? */
2300 	if (!len)
2301 		goto out;
2302 
2303 	/* Make offset relative to start of frags */
2304 	offset -= skb_headlen(skb);
2305 
2306 	/* Find where we are in frag list */
2307 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2308 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2309 
2310 		if (offset < frag->size)
2311 			break;
2312 
2313 		offset -= frag->size;
2314 	}
2315 
2316 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2317 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2318 
2319 		slen = min_t(size_t, len, frag->size - offset);
2320 
2321 		while (slen) {
2322 			ret = kernel_sendpage_locked(sk, frag->page.p,
2323 						     frag->page_offset + offset,
2324 						     slen, MSG_DONTWAIT);
2325 			if (ret <= 0)
2326 				goto error;
2327 
2328 			len -= ret;
2329 			offset += ret;
2330 			slen -= ret;
2331 		}
2332 
2333 		offset = 0;
2334 	}
2335 
2336 	if (len) {
2337 		/* Process any frag lists */
2338 
2339 		if (skb == head) {
2340 			if (skb_has_frag_list(skb)) {
2341 				skb = skb_shinfo(skb)->frag_list;
2342 				goto do_frag_list;
2343 			}
2344 		} else if (skb->next) {
2345 			skb = skb->next;
2346 			goto do_frag_list;
2347 		}
2348 	}
2349 
2350 out:
2351 	return orig_len - len;
2352 
2353 error:
2354 	return orig_len == len ? ret : orig_len - len;
2355 }
2356 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2357 
2358 /* Send skb data on a socket. */
2359 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2360 {
2361 	int ret = 0;
2362 
2363 	lock_sock(sk);
2364 	ret = skb_send_sock_locked(sk, skb, offset, len);
2365 	release_sock(sk);
2366 
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(skb_send_sock);
2370 
2371 /**
2372  *	skb_store_bits - store bits from kernel buffer to skb
2373  *	@skb: destination buffer
2374  *	@offset: offset in destination
2375  *	@from: source buffer
2376  *	@len: number of bytes to copy
2377  *
2378  *	Copy the specified number of bytes from the source buffer to the
2379  *	destination skb.  This function handles all the messy bits of
2380  *	traversing fragment lists and such.
2381  */
2382 
2383 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2384 {
2385 	int start = skb_headlen(skb);
2386 	struct sk_buff *frag_iter;
2387 	int i, copy;
2388 
2389 	if (offset > (int)skb->len - len)
2390 		goto fault;
2391 
2392 	if ((copy = start - offset) > 0) {
2393 		if (copy > len)
2394 			copy = len;
2395 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2396 		if ((len -= copy) == 0)
2397 			return 0;
2398 		offset += copy;
2399 		from += copy;
2400 	}
2401 
2402 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2403 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2404 		int end;
2405 
2406 		WARN_ON(start > offset + len);
2407 
2408 		end = start + skb_frag_size(frag);
2409 		if ((copy = end - offset) > 0) {
2410 			u32 p_off, p_len, copied;
2411 			struct page *p;
2412 			u8 *vaddr;
2413 
2414 			if (copy > len)
2415 				copy = len;
2416 
2417 			skb_frag_foreach_page(frag,
2418 					      frag->page_offset + offset - start,
2419 					      copy, p, p_off, p_len, copied) {
2420 				vaddr = kmap_atomic(p);
2421 				memcpy(vaddr + p_off, from + copied, p_len);
2422 				kunmap_atomic(vaddr);
2423 			}
2424 
2425 			if ((len -= copy) == 0)
2426 				return 0;
2427 			offset += copy;
2428 			from += copy;
2429 		}
2430 		start = end;
2431 	}
2432 
2433 	skb_walk_frags(skb, frag_iter) {
2434 		int end;
2435 
2436 		WARN_ON(start > offset + len);
2437 
2438 		end = start + frag_iter->len;
2439 		if ((copy = end - offset) > 0) {
2440 			if (copy > len)
2441 				copy = len;
2442 			if (skb_store_bits(frag_iter, offset - start,
2443 					   from, copy))
2444 				goto fault;
2445 			if ((len -= copy) == 0)
2446 				return 0;
2447 			offset += copy;
2448 			from += copy;
2449 		}
2450 		start = end;
2451 	}
2452 	if (!len)
2453 		return 0;
2454 
2455 fault:
2456 	return -EFAULT;
2457 }
2458 EXPORT_SYMBOL(skb_store_bits);
2459 
2460 /* Checksum skb data. */
2461 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2462 		      __wsum csum, const struct skb_checksum_ops *ops)
2463 {
2464 	int start = skb_headlen(skb);
2465 	int i, copy = start - offset;
2466 	struct sk_buff *frag_iter;
2467 	int pos = 0;
2468 
2469 	/* Checksum header. */
2470 	if (copy > 0) {
2471 		if (copy > len)
2472 			copy = len;
2473 		csum = ops->update(skb->data + offset, copy, csum);
2474 		if ((len -= copy) == 0)
2475 			return csum;
2476 		offset += copy;
2477 		pos	= copy;
2478 	}
2479 
2480 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2481 		int end;
2482 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2483 
2484 		WARN_ON(start > offset + len);
2485 
2486 		end = start + skb_frag_size(frag);
2487 		if ((copy = end - offset) > 0) {
2488 			u32 p_off, p_len, copied;
2489 			struct page *p;
2490 			__wsum csum2;
2491 			u8 *vaddr;
2492 
2493 			if (copy > len)
2494 				copy = len;
2495 
2496 			skb_frag_foreach_page(frag,
2497 					      frag->page_offset + offset - start,
2498 					      copy, p, p_off, p_len, copied) {
2499 				vaddr = kmap_atomic(p);
2500 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2501 				kunmap_atomic(vaddr);
2502 				csum = ops->combine(csum, csum2, pos, p_len);
2503 				pos += p_len;
2504 			}
2505 
2506 			if (!(len -= copy))
2507 				return csum;
2508 			offset += copy;
2509 		}
2510 		start = end;
2511 	}
2512 
2513 	skb_walk_frags(skb, frag_iter) {
2514 		int end;
2515 
2516 		WARN_ON(start > offset + len);
2517 
2518 		end = start + frag_iter->len;
2519 		if ((copy = end - offset) > 0) {
2520 			__wsum csum2;
2521 			if (copy > len)
2522 				copy = len;
2523 			csum2 = __skb_checksum(frag_iter, offset - start,
2524 					       copy, 0, ops);
2525 			csum = ops->combine(csum, csum2, pos, copy);
2526 			if ((len -= copy) == 0)
2527 				return csum;
2528 			offset += copy;
2529 			pos    += copy;
2530 		}
2531 		start = end;
2532 	}
2533 	BUG_ON(len);
2534 
2535 	return csum;
2536 }
2537 EXPORT_SYMBOL(__skb_checksum);
2538 
2539 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2540 		    int len, __wsum csum)
2541 {
2542 	const struct skb_checksum_ops ops = {
2543 		.update  = csum_partial_ext,
2544 		.combine = csum_block_add_ext,
2545 	};
2546 
2547 	return __skb_checksum(skb, offset, len, csum, &ops);
2548 }
2549 EXPORT_SYMBOL(skb_checksum);
2550 
2551 /* Both of above in one bottle. */
2552 
2553 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2554 				    u8 *to, int len, __wsum csum)
2555 {
2556 	int start = skb_headlen(skb);
2557 	int i, copy = start - offset;
2558 	struct sk_buff *frag_iter;
2559 	int pos = 0;
2560 
2561 	/* Copy header. */
2562 	if (copy > 0) {
2563 		if (copy > len)
2564 			copy = len;
2565 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2566 						 copy, csum);
2567 		if ((len -= copy) == 0)
2568 			return csum;
2569 		offset += copy;
2570 		to     += copy;
2571 		pos	= copy;
2572 	}
2573 
2574 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2575 		int end;
2576 
2577 		WARN_ON(start > offset + len);
2578 
2579 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2580 		if ((copy = end - offset) > 0) {
2581 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582 			u32 p_off, p_len, copied;
2583 			struct page *p;
2584 			__wsum csum2;
2585 			u8 *vaddr;
2586 
2587 			if (copy > len)
2588 				copy = len;
2589 
2590 			skb_frag_foreach_page(frag,
2591 					      frag->page_offset + offset - start,
2592 					      copy, p, p_off, p_len, copied) {
2593 				vaddr = kmap_atomic(p);
2594 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2595 								  to + copied,
2596 								  p_len, 0);
2597 				kunmap_atomic(vaddr);
2598 				csum = csum_block_add(csum, csum2, pos);
2599 				pos += p_len;
2600 			}
2601 
2602 			if (!(len -= copy))
2603 				return csum;
2604 			offset += copy;
2605 			to     += copy;
2606 		}
2607 		start = end;
2608 	}
2609 
2610 	skb_walk_frags(skb, frag_iter) {
2611 		__wsum csum2;
2612 		int end;
2613 
2614 		WARN_ON(start > offset + len);
2615 
2616 		end = start + frag_iter->len;
2617 		if ((copy = end - offset) > 0) {
2618 			if (copy > len)
2619 				copy = len;
2620 			csum2 = skb_copy_and_csum_bits(frag_iter,
2621 						       offset - start,
2622 						       to, copy, 0);
2623 			csum = csum_block_add(csum, csum2, pos);
2624 			if ((len -= copy) == 0)
2625 				return csum;
2626 			offset += copy;
2627 			to     += copy;
2628 			pos    += copy;
2629 		}
2630 		start = end;
2631 	}
2632 	BUG_ON(len);
2633 	return csum;
2634 }
2635 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2636 
2637 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2638 {
2639 	net_warn_ratelimited(
2640 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2641 		__func__);
2642 	return 0;
2643 }
2644 
2645 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2646 				       int offset, int len)
2647 {
2648 	net_warn_ratelimited(
2649 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2650 		__func__);
2651 	return 0;
2652 }
2653 
2654 static const struct skb_checksum_ops default_crc32c_ops = {
2655 	.update  = warn_crc32c_csum_update,
2656 	.combine = warn_crc32c_csum_combine,
2657 };
2658 
2659 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2660 	&default_crc32c_ops;
2661 EXPORT_SYMBOL(crc32c_csum_stub);
2662 
2663  /**
2664  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2665  *	@from: source buffer
2666  *
2667  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2668  *	into skb_zerocopy().
2669  */
2670 unsigned int
2671 skb_zerocopy_headlen(const struct sk_buff *from)
2672 {
2673 	unsigned int hlen = 0;
2674 
2675 	if (!from->head_frag ||
2676 	    skb_headlen(from) < L1_CACHE_BYTES ||
2677 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2678 		hlen = skb_headlen(from);
2679 
2680 	if (skb_has_frag_list(from))
2681 		hlen = from->len;
2682 
2683 	return hlen;
2684 }
2685 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2686 
2687 /**
2688  *	skb_zerocopy - Zero copy skb to skb
2689  *	@to: destination buffer
2690  *	@from: source buffer
2691  *	@len: number of bytes to copy from source buffer
2692  *	@hlen: size of linear headroom in destination buffer
2693  *
2694  *	Copies up to `len` bytes from `from` to `to` by creating references
2695  *	to the frags in the source buffer.
2696  *
2697  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2698  *	headroom in the `to` buffer.
2699  *
2700  *	Return value:
2701  *	0: everything is OK
2702  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2703  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2704  */
2705 int
2706 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2707 {
2708 	int i, j = 0;
2709 	int plen = 0; /* length of skb->head fragment */
2710 	int ret;
2711 	struct page *page;
2712 	unsigned int offset;
2713 
2714 	BUG_ON(!from->head_frag && !hlen);
2715 
2716 	/* dont bother with small payloads */
2717 	if (len <= skb_tailroom(to))
2718 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2719 
2720 	if (hlen) {
2721 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2722 		if (unlikely(ret))
2723 			return ret;
2724 		len -= hlen;
2725 	} else {
2726 		plen = min_t(int, skb_headlen(from), len);
2727 		if (plen) {
2728 			page = virt_to_head_page(from->head);
2729 			offset = from->data - (unsigned char *)page_address(page);
2730 			__skb_fill_page_desc(to, 0, page, offset, plen);
2731 			get_page(page);
2732 			j = 1;
2733 			len -= plen;
2734 		}
2735 	}
2736 
2737 	to->truesize += len + plen;
2738 	to->len += len + plen;
2739 	to->data_len += len + plen;
2740 
2741 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2742 		skb_tx_error(from);
2743 		return -ENOMEM;
2744 	}
2745 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2746 
2747 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2748 		if (!len)
2749 			break;
2750 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2751 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2752 		len -= skb_shinfo(to)->frags[j].size;
2753 		skb_frag_ref(to, j);
2754 		j++;
2755 	}
2756 	skb_shinfo(to)->nr_frags = j;
2757 
2758 	return 0;
2759 }
2760 EXPORT_SYMBOL_GPL(skb_zerocopy);
2761 
2762 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2763 {
2764 	__wsum csum;
2765 	long csstart;
2766 
2767 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2768 		csstart = skb_checksum_start_offset(skb);
2769 	else
2770 		csstart = skb_headlen(skb);
2771 
2772 	BUG_ON(csstart > skb_headlen(skb));
2773 
2774 	skb_copy_from_linear_data(skb, to, csstart);
2775 
2776 	csum = 0;
2777 	if (csstart != skb->len)
2778 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2779 					      skb->len - csstart, 0);
2780 
2781 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2782 		long csstuff = csstart + skb->csum_offset;
2783 
2784 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2785 	}
2786 }
2787 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2788 
2789 /**
2790  *	skb_dequeue - remove from the head of the queue
2791  *	@list: list to dequeue from
2792  *
2793  *	Remove the head of the list. The list lock is taken so the function
2794  *	may be used safely with other locking list functions. The head item is
2795  *	returned or %NULL if the list is empty.
2796  */
2797 
2798 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2799 {
2800 	unsigned long flags;
2801 	struct sk_buff *result;
2802 
2803 	spin_lock_irqsave(&list->lock, flags);
2804 	result = __skb_dequeue(list);
2805 	spin_unlock_irqrestore(&list->lock, flags);
2806 	return result;
2807 }
2808 EXPORT_SYMBOL(skb_dequeue);
2809 
2810 /**
2811  *	skb_dequeue_tail - remove from the tail of the queue
2812  *	@list: list to dequeue from
2813  *
2814  *	Remove the tail of the list. The list lock is taken so the function
2815  *	may be used safely with other locking list functions. The tail item is
2816  *	returned or %NULL if the list is empty.
2817  */
2818 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2819 {
2820 	unsigned long flags;
2821 	struct sk_buff *result;
2822 
2823 	spin_lock_irqsave(&list->lock, flags);
2824 	result = __skb_dequeue_tail(list);
2825 	spin_unlock_irqrestore(&list->lock, flags);
2826 	return result;
2827 }
2828 EXPORT_SYMBOL(skb_dequeue_tail);
2829 
2830 /**
2831  *	skb_queue_purge - empty a list
2832  *	@list: list to empty
2833  *
2834  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2835  *	the list and one reference dropped. This function takes the list
2836  *	lock and is atomic with respect to other list locking functions.
2837  */
2838 void skb_queue_purge(struct sk_buff_head *list)
2839 {
2840 	struct sk_buff *skb;
2841 	while ((skb = skb_dequeue(list)) != NULL)
2842 		kfree_skb(skb);
2843 }
2844 EXPORT_SYMBOL(skb_queue_purge);
2845 
2846 /**
2847  *	skb_rbtree_purge - empty a skb rbtree
2848  *	@root: root of the rbtree to empty
2849  *
2850  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2851  *	the list and one reference dropped. This function does not take
2852  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2853  *	out-of-order queue is protected by the socket lock).
2854  */
2855 void skb_rbtree_purge(struct rb_root *root)
2856 {
2857 	struct sk_buff *skb, *next;
2858 
2859 	rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2860 		kfree_skb(skb);
2861 
2862 	*root = RB_ROOT;
2863 }
2864 
2865 /**
2866  *	skb_queue_head - queue a buffer at the list head
2867  *	@list: list to use
2868  *	@newsk: buffer to queue
2869  *
2870  *	Queue a buffer at the start of the list. This function takes the
2871  *	list lock and can be used safely with other locking &sk_buff functions
2872  *	safely.
2873  *
2874  *	A buffer cannot be placed on two lists at the same time.
2875  */
2876 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2877 {
2878 	unsigned long flags;
2879 
2880 	spin_lock_irqsave(&list->lock, flags);
2881 	__skb_queue_head(list, newsk);
2882 	spin_unlock_irqrestore(&list->lock, flags);
2883 }
2884 EXPORT_SYMBOL(skb_queue_head);
2885 
2886 /**
2887  *	skb_queue_tail - queue a buffer at the list tail
2888  *	@list: list to use
2889  *	@newsk: buffer to queue
2890  *
2891  *	Queue a buffer at the tail of the list. This function takes the
2892  *	list lock and can be used safely with other locking &sk_buff functions
2893  *	safely.
2894  *
2895  *	A buffer cannot be placed on two lists at the same time.
2896  */
2897 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2898 {
2899 	unsigned long flags;
2900 
2901 	spin_lock_irqsave(&list->lock, flags);
2902 	__skb_queue_tail(list, newsk);
2903 	spin_unlock_irqrestore(&list->lock, flags);
2904 }
2905 EXPORT_SYMBOL(skb_queue_tail);
2906 
2907 /**
2908  *	skb_unlink	-	remove a buffer from a list
2909  *	@skb: buffer to remove
2910  *	@list: list to use
2911  *
2912  *	Remove a packet from a list. The list locks are taken and this
2913  *	function is atomic with respect to other list locked calls
2914  *
2915  *	You must know what list the SKB is on.
2916  */
2917 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2918 {
2919 	unsigned long flags;
2920 
2921 	spin_lock_irqsave(&list->lock, flags);
2922 	__skb_unlink(skb, list);
2923 	spin_unlock_irqrestore(&list->lock, flags);
2924 }
2925 EXPORT_SYMBOL(skb_unlink);
2926 
2927 /**
2928  *	skb_append	-	append a buffer
2929  *	@old: buffer to insert after
2930  *	@newsk: buffer to insert
2931  *	@list: list to use
2932  *
2933  *	Place a packet after a given packet in a list. The list locks are taken
2934  *	and this function is atomic with respect to other list locked calls.
2935  *	A buffer cannot be placed on two lists at the same time.
2936  */
2937 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2938 {
2939 	unsigned long flags;
2940 
2941 	spin_lock_irqsave(&list->lock, flags);
2942 	__skb_queue_after(list, old, newsk);
2943 	spin_unlock_irqrestore(&list->lock, flags);
2944 }
2945 EXPORT_SYMBOL(skb_append);
2946 
2947 /**
2948  *	skb_insert	-	insert a buffer
2949  *	@old: buffer to insert before
2950  *	@newsk: buffer to insert
2951  *	@list: list to use
2952  *
2953  *	Place a packet before a given packet in a list. The list locks are
2954  * 	taken and this function is atomic with respect to other list locked
2955  *	calls.
2956  *
2957  *	A buffer cannot be placed on two lists at the same time.
2958  */
2959 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2960 {
2961 	unsigned long flags;
2962 
2963 	spin_lock_irqsave(&list->lock, flags);
2964 	__skb_insert(newsk, old->prev, old, list);
2965 	spin_unlock_irqrestore(&list->lock, flags);
2966 }
2967 EXPORT_SYMBOL(skb_insert);
2968 
2969 static inline void skb_split_inside_header(struct sk_buff *skb,
2970 					   struct sk_buff* skb1,
2971 					   const u32 len, const int pos)
2972 {
2973 	int i;
2974 
2975 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2976 					 pos - len);
2977 	/* And move data appendix as is. */
2978 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2979 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2980 
2981 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2982 	skb_shinfo(skb)->nr_frags  = 0;
2983 	skb1->data_len		   = skb->data_len;
2984 	skb1->len		   += skb1->data_len;
2985 	skb->data_len		   = 0;
2986 	skb->len		   = len;
2987 	skb_set_tail_pointer(skb, len);
2988 }
2989 
2990 static inline void skb_split_no_header(struct sk_buff *skb,
2991 				       struct sk_buff* skb1,
2992 				       const u32 len, int pos)
2993 {
2994 	int i, k = 0;
2995 	const int nfrags = skb_shinfo(skb)->nr_frags;
2996 
2997 	skb_shinfo(skb)->nr_frags = 0;
2998 	skb1->len		  = skb1->data_len = skb->len - len;
2999 	skb->len		  = len;
3000 	skb->data_len		  = len - pos;
3001 
3002 	for (i = 0; i < nfrags; i++) {
3003 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3004 
3005 		if (pos + size > len) {
3006 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3007 
3008 			if (pos < len) {
3009 				/* Split frag.
3010 				 * We have two variants in this case:
3011 				 * 1. Move all the frag to the second
3012 				 *    part, if it is possible. F.e.
3013 				 *    this approach is mandatory for TUX,
3014 				 *    where splitting is expensive.
3015 				 * 2. Split is accurately. We make this.
3016 				 */
3017 				skb_frag_ref(skb, i);
3018 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3019 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3020 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3021 				skb_shinfo(skb)->nr_frags++;
3022 			}
3023 			k++;
3024 		} else
3025 			skb_shinfo(skb)->nr_frags++;
3026 		pos += size;
3027 	}
3028 	skb_shinfo(skb1)->nr_frags = k;
3029 }
3030 
3031 /**
3032  * skb_split - Split fragmented skb to two parts at length len.
3033  * @skb: the buffer to split
3034  * @skb1: the buffer to receive the second part
3035  * @len: new length for skb
3036  */
3037 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3038 {
3039 	int pos = skb_headlen(skb);
3040 
3041 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3042 				      SKBTX_SHARED_FRAG;
3043 	skb_zerocopy_clone(skb1, skb, 0);
3044 	if (len < pos)	/* Split line is inside header. */
3045 		skb_split_inside_header(skb, skb1, len, pos);
3046 	else		/* Second chunk has no header, nothing to copy. */
3047 		skb_split_no_header(skb, skb1, len, pos);
3048 }
3049 EXPORT_SYMBOL(skb_split);
3050 
3051 /* Shifting from/to a cloned skb is a no-go.
3052  *
3053  * Caller cannot keep skb_shinfo related pointers past calling here!
3054  */
3055 static int skb_prepare_for_shift(struct sk_buff *skb)
3056 {
3057 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3058 }
3059 
3060 /**
3061  * skb_shift - Shifts paged data partially from skb to another
3062  * @tgt: buffer into which tail data gets added
3063  * @skb: buffer from which the paged data comes from
3064  * @shiftlen: shift up to this many bytes
3065  *
3066  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3067  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3068  * It's up to caller to free skb if everything was shifted.
3069  *
3070  * If @tgt runs out of frags, the whole operation is aborted.
3071  *
3072  * Skb cannot include anything else but paged data while tgt is allowed
3073  * to have non-paged data as well.
3074  *
3075  * TODO: full sized shift could be optimized but that would need
3076  * specialized skb free'er to handle frags without up-to-date nr_frags.
3077  */
3078 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3079 {
3080 	int from, to, merge, todo;
3081 	struct skb_frag_struct *fragfrom, *fragto;
3082 
3083 	BUG_ON(shiftlen > skb->len);
3084 
3085 	if (skb_headlen(skb))
3086 		return 0;
3087 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3088 		return 0;
3089 
3090 	todo = shiftlen;
3091 	from = 0;
3092 	to = skb_shinfo(tgt)->nr_frags;
3093 	fragfrom = &skb_shinfo(skb)->frags[from];
3094 
3095 	/* Actual merge is delayed until the point when we know we can
3096 	 * commit all, so that we don't have to undo partial changes
3097 	 */
3098 	if (!to ||
3099 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3100 			      fragfrom->page_offset)) {
3101 		merge = -1;
3102 	} else {
3103 		merge = to - 1;
3104 
3105 		todo -= skb_frag_size(fragfrom);
3106 		if (todo < 0) {
3107 			if (skb_prepare_for_shift(skb) ||
3108 			    skb_prepare_for_shift(tgt))
3109 				return 0;
3110 
3111 			/* All previous frag pointers might be stale! */
3112 			fragfrom = &skb_shinfo(skb)->frags[from];
3113 			fragto = &skb_shinfo(tgt)->frags[merge];
3114 
3115 			skb_frag_size_add(fragto, shiftlen);
3116 			skb_frag_size_sub(fragfrom, shiftlen);
3117 			fragfrom->page_offset += shiftlen;
3118 
3119 			goto onlymerged;
3120 		}
3121 
3122 		from++;
3123 	}
3124 
3125 	/* Skip full, not-fitting skb to avoid expensive operations */
3126 	if ((shiftlen == skb->len) &&
3127 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3128 		return 0;
3129 
3130 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3131 		return 0;
3132 
3133 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3134 		if (to == MAX_SKB_FRAGS)
3135 			return 0;
3136 
3137 		fragfrom = &skb_shinfo(skb)->frags[from];
3138 		fragto = &skb_shinfo(tgt)->frags[to];
3139 
3140 		if (todo >= skb_frag_size(fragfrom)) {
3141 			*fragto = *fragfrom;
3142 			todo -= skb_frag_size(fragfrom);
3143 			from++;
3144 			to++;
3145 
3146 		} else {
3147 			__skb_frag_ref(fragfrom);
3148 			fragto->page = fragfrom->page;
3149 			fragto->page_offset = fragfrom->page_offset;
3150 			skb_frag_size_set(fragto, todo);
3151 
3152 			fragfrom->page_offset += todo;
3153 			skb_frag_size_sub(fragfrom, todo);
3154 			todo = 0;
3155 
3156 			to++;
3157 			break;
3158 		}
3159 	}
3160 
3161 	/* Ready to "commit" this state change to tgt */
3162 	skb_shinfo(tgt)->nr_frags = to;
3163 
3164 	if (merge >= 0) {
3165 		fragfrom = &skb_shinfo(skb)->frags[0];
3166 		fragto = &skb_shinfo(tgt)->frags[merge];
3167 
3168 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3169 		__skb_frag_unref(fragfrom);
3170 	}
3171 
3172 	/* Reposition in the original skb */
3173 	to = 0;
3174 	while (from < skb_shinfo(skb)->nr_frags)
3175 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3176 	skb_shinfo(skb)->nr_frags = to;
3177 
3178 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3179 
3180 onlymerged:
3181 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3182 	 * the other hand might need it if it needs to be resent
3183 	 */
3184 	tgt->ip_summed = CHECKSUM_PARTIAL;
3185 	skb->ip_summed = CHECKSUM_PARTIAL;
3186 
3187 	/* Yak, is it really working this way? Some helper please? */
3188 	skb->len -= shiftlen;
3189 	skb->data_len -= shiftlen;
3190 	skb->truesize -= shiftlen;
3191 	tgt->len += shiftlen;
3192 	tgt->data_len += shiftlen;
3193 	tgt->truesize += shiftlen;
3194 
3195 	return shiftlen;
3196 }
3197 
3198 /**
3199  * skb_prepare_seq_read - Prepare a sequential read of skb data
3200  * @skb: the buffer to read
3201  * @from: lower offset of data to be read
3202  * @to: upper offset of data to be read
3203  * @st: state variable
3204  *
3205  * Initializes the specified state variable. Must be called before
3206  * invoking skb_seq_read() for the first time.
3207  */
3208 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3209 			  unsigned int to, struct skb_seq_state *st)
3210 {
3211 	st->lower_offset = from;
3212 	st->upper_offset = to;
3213 	st->root_skb = st->cur_skb = skb;
3214 	st->frag_idx = st->stepped_offset = 0;
3215 	st->frag_data = NULL;
3216 }
3217 EXPORT_SYMBOL(skb_prepare_seq_read);
3218 
3219 /**
3220  * skb_seq_read - Sequentially read skb data
3221  * @consumed: number of bytes consumed by the caller so far
3222  * @data: destination pointer for data to be returned
3223  * @st: state variable
3224  *
3225  * Reads a block of skb data at @consumed relative to the
3226  * lower offset specified to skb_prepare_seq_read(). Assigns
3227  * the head of the data block to @data and returns the length
3228  * of the block or 0 if the end of the skb data or the upper
3229  * offset has been reached.
3230  *
3231  * The caller is not required to consume all of the data
3232  * returned, i.e. @consumed is typically set to the number
3233  * of bytes already consumed and the next call to
3234  * skb_seq_read() will return the remaining part of the block.
3235  *
3236  * Note 1: The size of each block of data returned can be arbitrary,
3237  *       this limitation is the cost for zerocopy sequential
3238  *       reads of potentially non linear data.
3239  *
3240  * Note 2: Fragment lists within fragments are not implemented
3241  *       at the moment, state->root_skb could be replaced with
3242  *       a stack for this purpose.
3243  */
3244 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3245 			  struct skb_seq_state *st)
3246 {
3247 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3248 	skb_frag_t *frag;
3249 
3250 	if (unlikely(abs_offset >= st->upper_offset)) {
3251 		if (st->frag_data) {
3252 			kunmap_atomic(st->frag_data);
3253 			st->frag_data = NULL;
3254 		}
3255 		return 0;
3256 	}
3257 
3258 next_skb:
3259 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3260 
3261 	if (abs_offset < block_limit && !st->frag_data) {
3262 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3263 		return block_limit - abs_offset;
3264 	}
3265 
3266 	if (st->frag_idx == 0 && !st->frag_data)
3267 		st->stepped_offset += skb_headlen(st->cur_skb);
3268 
3269 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3270 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3271 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3272 
3273 		if (abs_offset < block_limit) {
3274 			if (!st->frag_data)
3275 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3276 
3277 			*data = (u8 *) st->frag_data + frag->page_offset +
3278 				(abs_offset - st->stepped_offset);
3279 
3280 			return block_limit - abs_offset;
3281 		}
3282 
3283 		if (st->frag_data) {
3284 			kunmap_atomic(st->frag_data);
3285 			st->frag_data = NULL;
3286 		}
3287 
3288 		st->frag_idx++;
3289 		st->stepped_offset += skb_frag_size(frag);
3290 	}
3291 
3292 	if (st->frag_data) {
3293 		kunmap_atomic(st->frag_data);
3294 		st->frag_data = NULL;
3295 	}
3296 
3297 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3298 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3299 		st->frag_idx = 0;
3300 		goto next_skb;
3301 	} else if (st->cur_skb->next) {
3302 		st->cur_skb = st->cur_skb->next;
3303 		st->frag_idx = 0;
3304 		goto next_skb;
3305 	}
3306 
3307 	return 0;
3308 }
3309 EXPORT_SYMBOL(skb_seq_read);
3310 
3311 /**
3312  * skb_abort_seq_read - Abort a sequential read of skb data
3313  * @st: state variable
3314  *
3315  * Must be called if skb_seq_read() was not called until it
3316  * returned 0.
3317  */
3318 void skb_abort_seq_read(struct skb_seq_state *st)
3319 {
3320 	if (st->frag_data)
3321 		kunmap_atomic(st->frag_data);
3322 }
3323 EXPORT_SYMBOL(skb_abort_seq_read);
3324 
3325 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3326 
3327 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3328 					  struct ts_config *conf,
3329 					  struct ts_state *state)
3330 {
3331 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3332 }
3333 
3334 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3335 {
3336 	skb_abort_seq_read(TS_SKB_CB(state));
3337 }
3338 
3339 /**
3340  * skb_find_text - Find a text pattern in skb data
3341  * @skb: the buffer to look in
3342  * @from: search offset
3343  * @to: search limit
3344  * @config: textsearch configuration
3345  *
3346  * Finds a pattern in the skb data according to the specified
3347  * textsearch configuration. Use textsearch_next() to retrieve
3348  * subsequent occurrences of the pattern. Returns the offset
3349  * to the first occurrence or UINT_MAX if no match was found.
3350  */
3351 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3352 			   unsigned int to, struct ts_config *config)
3353 {
3354 	struct ts_state state;
3355 	unsigned int ret;
3356 
3357 	config->get_next_block = skb_ts_get_next_block;
3358 	config->finish = skb_ts_finish;
3359 
3360 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3361 
3362 	ret = textsearch_find(config, &state);
3363 	return (ret <= to - from ? ret : UINT_MAX);
3364 }
3365 EXPORT_SYMBOL(skb_find_text);
3366 
3367 /**
3368  * skb_append_datato_frags - append the user data to a skb
3369  * @sk: sock  structure
3370  * @skb: skb structure to be appended with user data.
3371  * @getfrag: call back function to be used for getting the user data
3372  * @from: pointer to user message iov
3373  * @length: length of the iov message
3374  *
3375  * Description: This procedure append the user data in the fragment part
3376  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3377  */
3378 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3379 			int (*getfrag)(void *from, char *to, int offset,
3380 					int len, int odd, struct sk_buff *skb),
3381 			void *from, int length)
3382 {
3383 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3384 	int copy;
3385 	int offset = 0;
3386 	int ret;
3387 	struct page_frag *pfrag = &current->task_frag;
3388 
3389 	do {
3390 		/* Return error if we don't have space for new frag */
3391 		if (frg_cnt >= MAX_SKB_FRAGS)
3392 			return -EMSGSIZE;
3393 
3394 		if (!sk_page_frag_refill(sk, pfrag))
3395 			return -ENOMEM;
3396 
3397 		/* copy the user data to page */
3398 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3399 
3400 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3401 			      offset, copy, 0, skb);
3402 		if (ret < 0)
3403 			return -EFAULT;
3404 
3405 		/* copy was successful so update the size parameters */
3406 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3407 				   copy);
3408 		frg_cnt++;
3409 		pfrag->offset += copy;
3410 		get_page(pfrag->page);
3411 
3412 		skb->truesize += copy;
3413 		refcount_add(copy, &sk->sk_wmem_alloc);
3414 		skb->len += copy;
3415 		skb->data_len += copy;
3416 		offset += copy;
3417 		length -= copy;
3418 
3419 	} while (length > 0);
3420 
3421 	return 0;
3422 }
3423 EXPORT_SYMBOL(skb_append_datato_frags);
3424 
3425 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3426 			 int offset, size_t size)
3427 {
3428 	int i = skb_shinfo(skb)->nr_frags;
3429 
3430 	if (skb_can_coalesce(skb, i, page, offset)) {
3431 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3432 	} else if (i < MAX_SKB_FRAGS) {
3433 		get_page(page);
3434 		skb_fill_page_desc(skb, i, page, offset, size);
3435 	} else {
3436 		return -EMSGSIZE;
3437 	}
3438 
3439 	return 0;
3440 }
3441 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3442 
3443 /**
3444  *	skb_pull_rcsum - pull skb and update receive checksum
3445  *	@skb: buffer to update
3446  *	@len: length of data pulled
3447  *
3448  *	This function performs an skb_pull on the packet and updates
3449  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3450  *	receive path processing instead of skb_pull unless you know
3451  *	that the checksum difference is zero (e.g., a valid IP header)
3452  *	or you are setting ip_summed to CHECKSUM_NONE.
3453  */
3454 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3455 {
3456 	unsigned char *data = skb->data;
3457 
3458 	BUG_ON(len > skb->len);
3459 	__skb_pull(skb, len);
3460 	skb_postpull_rcsum(skb, data, len);
3461 	return skb->data;
3462 }
3463 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3464 
3465 /**
3466  *	skb_segment - Perform protocol segmentation on skb.
3467  *	@head_skb: buffer to segment
3468  *	@features: features for the output path (see dev->features)
3469  *
3470  *	This function performs segmentation on the given skb.  It returns
3471  *	a pointer to the first in a list of new skbs for the segments.
3472  *	In case of error it returns ERR_PTR(err).
3473  */
3474 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3475 			    netdev_features_t features)
3476 {
3477 	struct sk_buff *segs = NULL;
3478 	struct sk_buff *tail = NULL;
3479 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3480 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3481 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3482 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3483 	struct sk_buff *frag_skb = head_skb;
3484 	unsigned int offset = doffset;
3485 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3486 	unsigned int partial_segs = 0;
3487 	unsigned int headroom;
3488 	unsigned int len = head_skb->len;
3489 	__be16 proto;
3490 	bool csum, sg;
3491 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3492 	int err = -ENOMEM;
3493 	int i = 0;
3494 	int pos;
3495 	int dummy;
3496 
3497 	__skb_push(head_skb, doffset);
3498 	proto = skb_network_protocol(head_skb, &dummy);
3499 	if (unlikely(!proto))
3500 		return ERR_PTR(-EINVAL);
3501 
3502 	sg = !!(features & NETIF_F_SG);
3503 	csum = !!can_checksum_protocol(features, proto);
3504 
3505 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3506 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3507 			struct sk_buff *iter;
3508 			unsigned int frag_len;
3509 
3510 			if (!list_skb ||
3511 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3512 				goto normal;
3513 
3514 			/* If we get here then all the required
3515 			 * GSO features except frag_list are supported.
3516 			 * Try to split the SKB to multiple GSO SKBs
3517 			 * with no frag_list.
3518 			 * Currently we can do that only when the buffers don't
3519 			 * have a linear part and all the buffers except
3520 			 * the last are of the same length.
3521 			 */
3522 			frag_len = list_skb->len;
3523 			skb_walk_frags(head_skb, iter) {
3524 				if (frag_len != iter->len && iter->next)
3525 					goto normal;
3526 				if (skb_headlen(iter) && !iter->head_frag)
3527 					goto normal;
3528 
3529 				len -= iter->len;
3530 			}
3531 
3532 			if (len != frag_len)
3533 				goto normal;
3534 		}
3535 
3536 		/* GSO partial only requires that we trim off any excess that
3537 		 * doesn't fit into an MSS sized block, so take care of that
3538 		 * now.
3539 		 */
3540 		partial_segs = len / mss;
3541 		if (partial_segs > 1)
3542 			mss *= partial_segs;
3543 		else
3544 			partial_segs = 0;
3545 	}
3546 
3547 normal:
3548 	headroom = skb_headroom(head_skb);
3549 	pos = skb_headlen(head_skb);
3550 
3551 	do {
3552 		struct sk_buff *nskb;
3553 		skb_frag_t *nskb_frag;
3554 		int hsize;
3555 		int size;
3556 
3557 		if (unlikely(mss == GSO_BY_FRAGS)) {
3558 			len = list_skb->len;
3559 		} else {
3560 			len = head_skb->len - offset;
3561 			if (len > mss)
3562 				len = mss;
3563 		}
3564 
3565 		hsize = skb_headlen(head_skb) - offset;
3566 		if (hsize < 0)
3567 			hsize = 0;
3568 		if (hsize > len || !sg)
3569 			hsize = len;
3570 
3571 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3572 		    (skb_headlen(list_skb) == len || sg)) {
3573 			BUG_ON(skb_headlen(list_skb) > len);
3574 
3575 			i = 0;
3576 			nfrags = skb_shinfo(list_skb)->nr_frags;
3577 			frag = skb_shinfo(list_skb)->frags;
3578 			frag_skb = list_skb;
3579 			pos += skb_headlen(list_skb);
3580 
3581 			while (pos < offset + len) {
3582 				BUG_ON(i >= nfrags);
3583 
3584 				size = skb_frag_size(frag);
3585 				if (pos + size > offset + len)
3586 					break;
3587 
3588 				i++;
3589 				pos += size;
3590 				frag++;
3591 			}
3592 
3593 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3594 			list_skb = list_skb->next;
3595 
3596 			if (unlikely(!nskb))
3597 				goto err;
3598 
3599 			if (unlikely(pskb_trim(nskb, len))) {
3600 				kfree_skb(nskb);
3601 				goto err;
3602 			}
3603 
3604 			hsize = skb_end_offset(nskb);
3605 			if (skb_cow_head(nskb, doffset + headroom)) {
3606 				kfree_skb(nskb);
3607 				goto err;
3608 			}
3609 
3610 			nskb->truesize += skb_end_offset(nskb) - hsize;
3611 			skb_release_head_state(nskb);
3612 			__skb_push(nskb, doffset);
3613 		} else {
3614 			nskb = __alloc_skb(hsize + doffset + headroom,
3615 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3616 					   NUMA_NO_NODE);
3617 
3618 			if (unlikely(!nskb))
3619 				goto err;
3620 
3621 			skb_reserve(nskb, headroom);
3622 			__skb_put(nskb, doffset);
3623 		}
3624 
3625 		if (segs)
3626 			tail->next = nskb;
3627 		else
3628 			segs = nskb;
3629 		tail = nskb;
3630 
3631 		__copy_skb_header(nskb, head_skb);
3632 
3633 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3634 		skb_reset_mac_len(nskb);
3635 
3636 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3637 						 nskb->data - tnl_hlen,
3638 						 doffset + tnl_hlen);
3639 
3640 		if (nskb->len == len + doffset)
3641 			goto perform_csum_check;
3642 
3643 		if (!sg) {
3644 			if (!nskb->remcsum_offload)
3645 				nskb->ip_summed = CHECKSUM_NONE;
3646 			SKB_GSO_CB(nskb)->csum =
3647 				skb_copy_and_csum_bits(head_skb, offset,
3648 						       skb_put(nskb, len),
3649 						       len, 0);
3650 			SKB_GSO_CB(nskb)->csum_start =
3651 				skb_headroom(nskb) + doffset;
3652 			continue;
3653 		}
3654 
3655 		nskb_frag = skb_shinfo(nskb)->frags;
3656 
3657 		skb_copy_from_linear_data_offset(head_skb, offset,
3658 						 skb_put(nskb, hsize), hsize);
3659 
3660 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3661 					      SKBTX_SHARED_FRAG;
3662 		if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC))
3663 			goto err;
3664 
3665 		while (pos < offset + len) {
3666 			if (i >= nfrags) {
3667 				BUG_ON(skb_headlen(list_skb));
3668 
3669 				i = 0;
3670 				nfrags = skb_shinfo(list_skb)->nr_frags;
3671 				frag = skb_shinfo(list_skb)->frags;
3672 				frag_skb = list_skb;
3673 
3674 				BUG_ON(!nfrags);
3675 
3676 				list_skb = list_skb->next;
3677 			}
3678 
3679 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3680 				     MAX_SKB_FRAGS)) {
3681 				net_warn_ratelimited(
3682 					"skb_segment: too many frags: %u %u\n",
3683 					pos, mss);
3684 				goto err;
3685 			}
3686 
3687 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3688 				goto err;
3689 
3690 			*nskb_frag = *frag;
3691 			__skb_frag_ref(nskb_frag);
3692 			size = skb_frag_size(nskb_frag);
3693 
3694 			if (pos < offset) {
3695 				nskb_frag->page_offset += offset - pos;
3696 				skb_frag_size_sub(nskb_frag, offset - pos);
3697 			}
3698 
3699 			skb_shinfo(nskb)->nr_frags++;
3700 
3701 			if (pos + size <= offset + len) {
3702 				i++;
3703 				frag++;
3704 				pos += size;
3705 			} else {
3706 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3707 				goto skip_fraglist;
3708 			}
3709 
3710 			nskb_frag++;
3711 		}
3712 
3713 skip_fraglist:
3714 		nskb->data_len = len - hsize;
3715 		nskb->len += nskb->data_len;
3716 		nskb->truesize += nskb->data_len;
3717 
3718 perform_csum_check:
3719 		if (!csum) {
3720 			if (skb_has_shared_frag(nskb)) {
3721 				err = __skb_linearize(nskb);
3722 				if (err)
3723 					goto err;
3724 			}
3725 			if (!nskb->remcsum_offload)
3726 				nskb->ip_summed = CHECKSUM_NONE;
3727 			SKB_GSO_CB(nskb)->csum =
3728 				skb_checksum(nskb, doffset,
3729 					     nskb->len - doffset, 0);
3730 			SKB_GSO_CB(nskb)->csum_start =
3731 				skb_headroom(nskb) + doffset;
3732 		}
3733 	} while ((offset += len) < head_skb->len);
3734 
3735 	/* Some callers want to get the end of the list.
3736 	 * Put it in segs->prev to avoid walking the list.
3737 	 * (see validate_xmit_skb_list() for example)
3738 	 */
3739 	segs->prev = tail;
3740 
3741 	if (partial_segs) {
3742 		struct sk_buff *iter;
3743 		int type = skb_shinfo(head_skb)->gso_type;
3744 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3745 
3746 		/* Update type to add partial and then remove dodgy if set */
3747 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3748 		type &= ~SKB_GSO_DODGY;
3749 
3750 		/* Update GSO info and prepare to start updating headers on
3751 		 * our way back down the stack of protocols.
3752 		 */
3753 		for (iter = segs; iter; iter = iter->next) {
3754 			skb_shinfo(iter)->gso_size = gso_size;
3755 			skb_shinfo(iter)->gso_segs = partial_segs;
3756 			skb_shinfo(iter)->gso_type = type;
3757 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3758 		}
3759 
3760 		if (tail->len - doffset <= gso_size)
3761 			skb_shinfo(tail)->gso_size = 0;
3762 		else if (tail != segs)
3763 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3764 	}
3765 
3766 	/* Following permits correct backpressure, for protocols
3767 	 * using skb_set_owner_w().
3768 	 * Idea is to tranfert ownership from head_skb to last segment.
3769 	 */
3770 	if (head_skb->destructor == sock_wfree) {
3771 		swap(tail->truesize, head_skb->truesize);
3772 		swap(tail->destructor, head_skb->destructor);
3773 		swap(tail->sk, head_skb->sk);
3774 	}
3775 	return segs;
3776 
3777 err:
3778 	kfree_skb_list(segs);
3779 	return ERR_PTR(err);
3780 }
3781 EXPORT_SYMBOL_GPL(skb_segment);
3782 
3783 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3784 {
3785 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3786 	unsigned int offset = skb_gro_offset(skb);
3787 	unsigned int headlen = skb_headlen(skb);
3788 	unsigned int len = skb_gro_len(skb);
3789 	struct sk_buff *lp, *p = *head;
3790 	unsigned int delta_truesize;
3791 
3792 	if (unlikely(p->len + len >= 65536))
3793 		return -E2BIG;
3794 
3795 	lp = NAPI_GRO_CB(p)->last;
3796 	pinfo = skb_shinfo(lp);
3797 
3798 	if (headlen <= offset) {
3799 		skb_frag_t *frag;
3800 		skb_frag_t *frag2;
3801 		int i = skbinfo->nr_frags;
3802 		int nr_frags = pinfo->nr_frags + i;
3803 
3804 		if (nr_frags > MAX_SKB_FRAGS)
3805 			goto merge;
3806 
3807 		offset -= headlen;
3808 		pinfo->nr_frags = nr_frags;
3809 		skbinfo->nr_frags = 0;
3810 
3811 		frag = pinfo->frags + nr_frags;
3812 		frag2 = skbinfo->frags + i;
3813 		do {
3814 			*--frag = *--frag2;
3815 		} while (--i);
3816 
3817 		frag->page_offset += offset;
3818 		skb_frag_size_sub(frag, offset);
3819 
3820 		/* all fragments truesize : remove (head size + sk_buff) */
3821 		delta_truesize = skb->truesize -
3822 				 SKB_TRUESIZE(skb_end_offset(skb));
3823 
3824 		skb->truesize -= skb->data_len;
3825 		skb->len -= skb->data_len;
3826 		skb->data_len = 0;
3827 
3828 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3829 		goto done;
3830 	} else if (skb->head_frag) {
3831 		int nr_frags = pinfo->nr_frags;
3832 		skb_frag_t *frag = pinfo->frags + nr_frags;
3833 		struct page *page = virt_to_head_page(skb->head);
3834 		unsigned int first_size = headlen - offset;
3835 		unsigned int first_offset;
3836 
3837 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3838 			goto merge;
3839 
3840 		first_offset = skb->data -
3841 			       (unsigned char *)page_address(page) +
3842 			       offset;
3843 
3844 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3845 
3846 		frag->page.p	  = page;
3847 		frag->page_offset = first_offset;
3848 		skb_frag_size_set(frag, first_size);
3849 
3850 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3851 		/* We dont need to clear skbinfo->nr_frags here */
3852 
3853 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3854 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3855 		goto done;
3856 	}
3857 
3858 merge:
3859 	delta_truesize = skb->truesize;
3860 	if (offset > headlen) {
3861 		unsigned int eat = offset - headlen;
3862 
3863 		skbinfo->frags[0].page_offset += eat;
3864 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3865 		skb->data_len -= eat;
3866 		skb->len -= eat;
3867 		offset = headlen;
3868 	}
3869 
3870 	__skb_pull(skb, offset);
3871 
3872 	if (NAPI_GRO_CB(p)->last == p)
3873 		skb_shinfo(p)->frag_list = skb;
3874 	else
3875 		NAPI_GRO_CB(p)->last->next = skb;
3876 	NAPI_GRO_CB(p)->last = skb;
3877 	__skb_header_release(skb);
3878 	lp = p;
3879 
3880 done:
3881 	NAPI_GRO_CB(p)->count++;
3882 	p->data_len += len;
3883 	p->truesize += delta_truesize;
3884 	p->len += len;
3885 	if (lp != p) {
3886 		lp->data_len += len;
3887 		lp->truesize += delta_truesize;
3888 		lp->len += len;
3889 	}
3890 	NAPI_GRO_CB(skb)->same_flow = 1;
3891 	return 0;
3892 }
3893 EXPORT_SYMBOL_GPL(skb_gro_receive);
3894 
3895 void __init skb_init(void)
3896 {
3897 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3898 					      sizeof(struct sk_buff),
3899 					      0,
3900 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3901 					      NULL);
3902 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3903 						sizeof(struct sk_buff_fclones),
3904 						0,
3905 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3906 						NULL);
3907 }
3908 
3909 static int
3910 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3911 	       unsigned int recursion_level)
3912 {
3913 	int start = skb_headlen(skb);
3914 	int i, copy = start - offset;
3915 	struct sk_buff *frag_iter;
3916 	int elt = 0;
3917 
3918 	if (unlikely(recursion_level >= 24))
3919 		return -EMSGSIZE;
3920 
3921 	if (copy > 0) {
3922 		if (copy > len)
3923 			copy = len;
3924 		sg_set_buf(sg, skb->data + offset, copy);
3925 		elt++;
3926 		if ((len -= copy) == 0)
3927 			return elt;
3928 		offset += copy;
3929 	}
3930 
3931 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3932 		int end;
3933 
3934 		WARN_ON(start > offset + len);
3935 
3936 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3937 		if ((copy = end - offset) > 0) {
3938 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3939 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3940 				return -EMSGSIZE;
3941 
3942 			if (copy > len)
3943 				copy = len;
3944 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3945 					frag->page_offset+offset-start);
3946 			elt++;
3947 			if (!(len -= copy))
3948 				return elt;
3949 			offset += copy;
3950 		}
3951 		start = end;
3952 	}
3953 
3954 	skb_walk_frags(skb, frag_iter) {
3955 		int end, ret;
3956 
3957 		WARN_ON(start > offset + len);
3958 
3959 		end = start + frag_iter->len;
3960 		if ((copy = end - offset) > 0) {
3961 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3962 				return -EMSGSIZE;
3963 
3964 			if (copy > len)
3965 				copy = len;
3966 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3967 					      copy, recursion_level + 1);
3968 			if (unlikely(ret < 0))
3969 				return ret;
3970 			elt += ret;
3971 			if ((len -= copy) == 0)
3972 				return elt;
3973 			offset += copy;
3974 		}
3975 		start = end;
3976 	}
3977 	BUG_ON(len);
3978 	return elt;
3979 }
3980 
3981 /**
3982  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3983  *	@skb: Socket buffer containing the buffers to be mapped
3984  *	@sg: The scatter-gather list to map into
3985  *	@offset: The offset into the buffer's contents to start mapping
3986  *	@len: Length of buffer space to be mapped
3987  *
3988  *	Fill the specified scatter-gather list with mappings/pointers into a
3989  *	region of the buffer space attached to a socket buffer. Returns either
3990  *	the number of scatterlist items used, or -EMSGSIZE if the contents
3991  *	could not fit.
3992  */
3993 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3994 {
3995 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3996 
3997 	if (nsg <= 0)
3998 		return nsg;
3999 
4000 	sg_mark_end(&sg[nsg - 1]);
4001 
4002 	return nsg;
4003 }
4004 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4005 
4006 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4007  * sglist without mark the sg which contain last skb data as the end.
4008  * So the caller can mannipulate sg list as will when padding new data after
4009  * the first call without calling sg_unmark_end to expend sg list.
4010  *
4011  * Scenario to use skb_to_sgvec_nomark:
4012  * 1. sg_init_table
4013  * 2. skb_to_sgvec_nomark(payload1)
4014  * 3. skb_to_sgvec_nomark(payload2)
4015  *
4016  * This is equivalent to:
4017  * 1. sg_init_table
4018  * 2. skb_to_sgvec(payload1)
4019  * 3. sg_unmark_end
4020  * 4. skb_to_sgvec(payload2)
4021  *
4022  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4023  * is more preferable.
4024  */
4025 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4026 			int offset, int len)
4027 {
4028 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4029 }
4030 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4031 
4032 
4033 
4034 /**
4035  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4036  *	@skb: The socket buffer to check.
4037  *	@tailbits: Amount of trailing space to be added
4038  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4039  *
4040  *	Make sure that the data buffers attached to a socket buffer are
4041  *	writable. If they are not, private copies are made of the data buffers
4042  *	and the socket buffer is set to use these instead.
4043  *
4044  *	If @tailbits is given, make sure that there is space to write @tailbits
4045  *	bytes of data beyond current end of socket buffer.  @trailer will be
4046  *	set to point to the skb in which this space begins.
4047  *
4048  *	The number of scatterlist elements required to completely map the
4049  *	COW'd and extended socket buffer will be returned.
4050  */
4051 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4052 {
4053 	int copyflag;
4054 	int elt;
4055 	struct sk_buff *skb1, **skb_p;
4056 
4057 	/* If skb is cloned or its head is paged, reallocate
4058 	 * head pulling out all the pages (pages are considered not writable
4059 	 * at the moment even if they are anonymous).
4060 	 */
4061 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4062 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4063 		return -ENOMEM;
4064 
4065 	/* Easy case. Most of packets will go this way. */
4066 	if (!skb_has_frag_list(skb)) {
4067 		/* A little of trouble, not enough of space for trailer.
4068 		 * This should not happen, when stack is tuned to generate
4069 		 * good frames. OK, on miss we reallocate and reserve even more
4070 		 * space, 128 bytes is fair. */
4071 
4072 		if (skb_tailroom(skb) < tailbits &&
4073 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4074 			return -ENOMEM;
4075 
4076 		/* Voila! */
4077 		*trailer = skb;
4078 		return 1;
4079 	}
4080 
4081 	/* Misery. We are in troubles, going to mincer fragments... */
4082 
4083 	elt = 1;
4084 	skb_p = &skb_shinfo(skb)->frag_list;
4085 	copyflag = 0;
4086 
4087 	while ((skb1 = *skb_p) != NULL) {
4088 		int ntail = 0;
4089 
4090 		/* The fragment is partially pulled by someone,
4091 		 * this can happen on input. Copy it and everything
4092 		 * after it. */
4093 
4094 		if (skb_shared(skb1))
4095 			copyflag = 1;
4096 
4097 		/* If the skb is the last, worry about trailer. */
4098 
4099 		if (skb1->next == NULL && tailbits) {
4100 			if (skb_shinfo(skb1)->nr_frags ||
4101 			    skb_has_frag_list(skb1) ||
4102 			    skb_tailroom(skb1) < tailbits)
4103 				ntail = tailbits + 128;
4104 		}
4105 
4106 		if (copyflag ||
4107 		    skb_cloned(skb1) ||
4108 		    ntail ||
4109 		    skb_shinfo(skb1)->nr_frags ||
4110 		    skb_has_frag_list(skb1)) {
4111 			struct sk_buff *skb2;
4112 
4113 			/* Fuck, we are miserable poor guys... */
4114 			if (ntail == 0)
4115 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4116 			else
4117 				skb2 = skb_copy_expand(skb1,
4118 						       skb_headroom(skb1),
4119 						       ntail,
4120 						       GFP_ATOMIC);
4121 			if (unlikely(skb2 == NULL))
4122 				return -ENOMEM;
4123 
4124 			if (skb1->sk)
4125 				skb_set_owner_w(skb2, skb1->sk);
4126 
4127 			/* Looking around. Are we still alive?
4128 			 * OK, link new skb, drop old one */
4129 
4130 			skb2->next = skb1->next;
4131 			*skb_p = skb2;
4132 			kfree_skb(skb1);
4133 			skb1 = skb2;
4134 		}
4135 		elt++;
4136 		*trailer = skb1;
4137 		skb_p = &skb1->next;
4138 	}
4139 
4140 	return elt;
4141 }
4142 EXPORT_SYMBOL_GPL(skb_cow_data);
4143 
4144 static void sock_rmem_free(struct sk_buff *skb)
4145 {
4146 	struct sock *sk = skb->sk;
4147 
4148 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4149 }
4150 
4151 static void skb_set_err_queue(struct sk_buff *skb)
4152 {
4153 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4154 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4155 	 */
4156 	skb->pkt_type = PACKET_OUTGOING;
4157 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4158 }
4159 
4160 /*
4161  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4162  */
4163 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4164 {
4165 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4166 	    (unsigned int)sk->sk_rcvbuf)
4167 		return -ENOMEM;
4168 
4169 	skb_orphan(skb);
4170 	skb->sk = sk;
4171 	skb->destructor = sock_rmem_free;
4172 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4173 	skb_set_err_queue(skb);
4174 
4175 	/* before exiting rcu section, make sure dst is refcounted */
4176 	skb_dst_force(skb);
4177 
4178 	skb_queue_tail(&sk->sk_error_queue, skb);
4179 	if (!sock_flag(sk, SOCK_DEAD))
4180 		sk->sk_data_ready(sk);
4181 	return 0;
4182 }
4183 EXPORT_SYMBOL(sock_queue_err_skb);
4184 
4185 static bool is_icmp_err_skb(const struct sk_buff *skb)
4186 {
4187 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4188 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4189 }
4190 
4191 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4192 {
4193 	struct sk_buff_head *q = &sk->sk_error_queue;
4194 	struct sk_buff *skb, *skb_next = NULL;
4195 	bool icmp_next = false;
4196 	unsigned long flags;
4197 
4198 	spin_lock_irqsave(&q->lock, flags);
4199 	skb = __skb_dequeue(q);
4200 	if (skb && (skb_next = skb_peek(q))) {
4201 		icmp_next = is_icmp_err_skb(skb_next);
4202 		if (icmp_next)
4203 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4204 	}
4205 	spin_unlock_irqrestore(&q->lock, flags);
4206 
4207 	if (is_icmp_err_skb(skb) && !icmp_next)
4208 		sk->sk_err = 0;
4209 
4210 	if (skb_next)
4211 		sk->sk_error_report(sk);
4212 
4213 	return skb;
4214 }
4215 EXPORT_SYMBOL(sock_dequeue_err_skb);
4216 
4217 /**
4218  * skb_clone_sk - create clone of skb, and take reference to socket
4219  * @skb: the skb to clone
4220  *
4221  * This function creates a clone of a buffer that holds a reference on
4222  * sk_refcnt.  Buffers created via this function are meant to be
4223  * returned using sock_queue_err_skb, or free via kfree_skb.
4224  *
4225  * When passing buffers allocated with this function to sock_queue_err_skb
4226  * it is necessary to wrap the call with sock_hold/sock_put in order to
4227  * prevent the socket from being released prior to being enqueued on
4228  * the sk_error_queue.
4229  */
4230 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4231 {
4232 	struct sock *sk = skb->sk;
4233 	struct sk_buff *clone;
4234 
4235 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4236 		return NULL;
4237 
4238 	clone = skb_clone(skb, GFP_ATOMIC);
4239 	if (!clone) {
4240 		sock_put(sk);
4241 		return NULL;
4242 	}
4243 
4244 	clone->sk = sk;
4245 	clone->destructor = sock_efree;
4246 
4247 	return clone;
4248 }
4249 EXPORT_SYMBOL(skb_clone_sk);
4250 
4251 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4252 					struct sock *sk,
4253 					int tstype,
4254 					bool opt_stats)
4255 {
4256 	struct sock_exterr_skb *serr;
4257 	int err;
4258 
4259 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4260 
4261 	serr = SKB_EXT_ERR(skb);
4262 	memset(serr, 0, sizeof(*serr));
4263 	serr->ee.ee_errno = ENOMSG;
4264 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4265 	serr->ee.ee_info = tstype;
4266 	serr->opt_stats = opt_stats;
4267 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4268 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4269 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4270 		if (sk->sk_protocol == IPPROTO_TCP &&
4271 		    sk->sk_type == SOCK_STREAM)
4272 			serr->ee.ee_data -= sk->sk_tskey;
4273 	}
4274 
4275 	err = sock_queue_err_skb(sk, skb);
4276 
4277 	if (err)
4278 		kfree_skb(skb);
4279 }
4280 
4281 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4282 {
4283 	bool ret;
4284 
4285 	if (likely(sysctl_tstamp_allow_data || tsonly))
4286 		return true;
4287 
4288 	read_lock_bh(&sk->sk_callback_lock);
4289 	ret = sk->sk_socket && sk->sk_socket->file &&
4290 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4291 	read_unlock_bh(&sk->sk_callback_lock);
4292 	return ret;
4293 }
4294 
4295 void skb_complete_tx_timestamp(struct sk_buff *skb,
4296 			       struct skb_shared_hwtstamps *hwtstamps)
4297 {
4298 	struct sock *sk = skb->sk;
4299 
4300 	if (!skb_may_tx_timestamp(sk, false))
4301 		return;
4302 
4303 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4304 	 * but only if the socket refcount is not zero.
4305 	 */
4306 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4307 		*skb_hwtstamps(skb) = *hwtstamps;
4308 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4309 		sock_put(sk);
4310 	}
4311 }
4312 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4313 
4314 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4315 		     struct skb_shared_hwtstamps *hwtstamps,
4316 		     struct sock *sk, int tstype)
4317 {
4318 	struct sk_buff *skb;
4319 	bool tsonly, opt_stats = false;
4320 
4321 	if (!sk)
4322 		return;
4323 
4324 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4325 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4326 		return;
4327 
4328 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4329 	if (!skb_may_tx_timestamp(sk, tsonly))
4330 		return;
4331 
4332 	if (tsonly) {
4333 #ifdef CONFIG_INET
4334 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4335 		    sk->sk_protocol == IPPROTO_TCP &&
4336 		    sk->sk_type == SOCK_STREAM) {
4337 			skb = tcp_get_timestamping_opt_stats(sk);
4338 			opt_stats = true;
4339 		} else
4340 #endif
4341 			skb = alloc_skb(0, GFP_ATOMIC);
4342 	} else {
4343 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4344 	}
4345 	if (!skb)
4346 		return;
4347 
4348 	if (tsonly) {
4349 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4350 					     SKBTX_ANY_TSTAMP;
4351 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4352 	}
4353 
4354 	if (hwtstamps)
4355 		*skb_hwtstamps(skb) = *hwtstamps;
4356 	else
4357 		skb->tstamp = ktime_get_real();
4358 
4359 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4360 }
4361 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4362 
4363 void skb_tstamp_tx(struct sk_buff *orig_skb,
4364 		   struct skb_shared_hwtstamps *hwtstamps)
4365 {
4366 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4367 			       SCM_TSTAMP_SND);
4368 }
4369 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4370 
4371 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4372 {
4373 	struct sock *sk = skb->sk;
4374 	struct sock_exterr_skb *serr;
4375 	int err = 1;
4376 
4377 	skb->wifi_acked_valid = 1;
4378 	skb->wifi_acked = acked;
4379 
4380 	serr = SKB_EXT_ERR(skb);
4381 	memset(serr, 0, sizeof(*serr));
4382 	serr->ee.ee_errno = ENOMSG;
4383 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4384 
4385 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4386 	 * but only if the socket refcount is not zero.
4387 	 */
4388 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4389 		err = sock_queue_err_skb(sk, skb);
4390 		sock_put(sk);
4391 	}
4392 	if (err)
4393 		kfree_skb(skb);
4394 }
4395 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4396 
4397 /**
4398  * skb_partial_csum_set - set up and verify partial csum values for packet
4399  * @skb: the skb to set
4400  * @start: the number of bytes after skb->data to start checksumming.
4401  * @off: the offset from start to place the checksum.
4402  *
4403  * For untrusted partially-checksummed packets, we need to make sure the values
4404  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4405  *
4406  * This function checks and sets those values and skb->ip_summed: if this
4407  * returns false you should drop the packet.
4408  */
4409 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4410 {
4411 	if (unlikely(start > skb_headlen(skb)) ||
4412 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4413 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4414 				     start, off, skb_headlen(skb));
4415 		return false;
4416 	}
4417 	skb->ip_summed = CHECKSUM_PARTIAL;
4418 	skb->csum_start = skb_headroom(skb) + start;
4419 	skb->csum_offset = off;
4420 	skb_set_transport_header(skb, start);
4421 	return true;
4422 }
4423 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4424 
4425 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4426 			       unsigned int max)
4427 {
4428 	if (skb_headlen(skb) >= len)
4429 		return 0;
4430 
4431 	/* If we need to pullup then pullup to the max, so we
4432 	 * won't need to do it again.
4433 	 */
4434 	if (max > skb->len)
4435 		max = skb->len;
4436 
4437 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4438 		return -ENOMEM;
4439 
4440 	if (skb_headlen(skb) < len)
4441 		return -EPROTO;
4442 
4443 	return 0;
4444 }
4445 
4446 #define MAX_TCP_HDR_LEN (15 * 4)
4447 
4448 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4449 				      typeof(IPPROTO_IP) proto,
4450 				      unsigned int off)
4451 {
4452 	switch (proto) {
4453 		int err;
4454 
4455 	case IPPROTO_TCP:
4456 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4457 					  off + MAX_TCP_HDR_LEN);
4458 		if (!err && !skb_partial_csum_set(skb, off,
4459 						  offsetof(struct tcphdr,
4460 							   check)))
4461 			err = -EPROTO;
4462 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4463 
4464 	case IPPROTO_UDP:
4465 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4466 					  off + sizeof(struct udphdr));
4467 		if (!err && !skb_partial_csum_set(skb, off,
4468 						  offsetof(struct udphdr,
4469 							   check)))
4470 			err = -EPROTO;
4471 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4472 	}
4473 
4474 	return ERR_PTR(-EPROTO);
4475 }
4476 
4477 /* This value should be large enough to cover a tagged ethernet header plus
4478  * maximally sized IP and TCP or UDP headers.
4479  */
4480 #define MAX_IP_HDR_LEN 128
4481 
4482 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4483 {
4484 	unsigned int off;
4485 	bool fragment;
4486 	__sum16 *csum;
4487 	int err;
4488 
4489 	fragment = false;
4490 
4491 	err = skb_maybe_pull_tail(skb,
4492 				  sizeof(struct iphdr),
4493 				  MAX_IP_HDR_LEN);
4494 	if (err < 0)
4495 		goto out;
4496 
4497 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4498 		fragment = true;
4499 
4500 	off = ip_hdrlen(skb);
4501 
4502 	err = -EPROTO;
4503 
4504 	if (fragment)
4505 		goto out;
4506 
4507 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4508 	if (IS_ERR(csum))
4509 		return PTR_ERR(csum);
4510 
4511 	if (recalculate)
4512 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4513 					   ip_hdr(skb)->daddr,
4514 					   skb->len - off,
4515 					   ip_hdr(skb)->protocol, 0);
4516 	err = 0;
4517 
4518 out:
4519 	return err;
4520 }
4521 
4522 /* This value should be large enough to cover a tagged ethernet header plus
4523  * an IPv6 header, all options, and a maximal TCP or UDP header.
4524  */
4525 #define MAX_IPV6_HDR_LEN 256
4526 
4527 #define OPT_HDR(type, skb, off) \
4528 	(type *)(skb_network_header(skb) + (off))
4529 
4530 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4531 {
4532 	int err;
4533 	u8 nexthdr;
4534 	unsigned int off;
4535 	unsigned int len;
4536 	bool fragment;
4537 	bool done;
4538 	__sum16 *csum;
4539 
4540 	fragment = false;
4541 	done = false;
4542 
4543 	off = sizeof(struct ipv6hdr);
4544 
4545 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4546 	if (err < 0)
4547 		goto out;
4548 
4549 	nexthdr = ipv6_hdr(skb)->nexthdr;
4550 
4551 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4552 	while (off <= len && !done) {
4553 		switch (nexthdr) {
4554 		case IPPROTO_DSTOPTS:
4555 		case IPPROTO_HOPOPTS:
4556 		case IPPROTO_ROUTING: {
4557 			struct ipv6_opt_hdr *hp;
4558 
4559 			err = skb_maybe_pull_tail(skb,
4560 						  off +
4561 						  sizeof(struct ipv6_opt_hdr),
4562 						  MAX_IPV6_HDR_LEN);
4563 			if (err < 0)
4564 				goto out;
4565 
4566 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4567 			nexthdr = hp->nexthdr;
4568 			off += ipv6_optlen(hp);
4569 			break;
4570 		}
4571 		case IPPROTO_AH: {
4572 			struct ip_auth_hdr *hp;
4573 
4574 			err = skb_maybe_pull_tail(skb,
4575 						  off +
4576 						  sizeof(struct ip_auth_hdr),
4577 						  MAX_IPV6_HDR_LEN);
4578 			if (err < 0)
4579 				goto out;
4580 
4581 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4582 			nexthdr = hp->nexthdr;
4583 			off += ipv6_authlen(hp);
4584 			break;
4585 		}
4586 		case IPPROTO_FRAGMENT: {
4587 			struct frag_hdr *hp;
4588 
4589 			err = skb_maybe_pull_tail(skb,
4590 						  off +
4591 						  sizeof(struct frag_hdr),
4592 						  MAX_IPV6_HDR_LEN);
4593 			if (err < 0)
4594 				goto out;
4595 
4596 			hp = OPT_HDR(struct frag_hdr, skb, off);
4597 
4598 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4599 				fragment = true;
4600 
4601 			nexthdr = hp->nexthdr;
4602 			off += sizeof(struct frag_hdr);
4603 			break;
4604 		}
4605 		default:
4606 			done = true;
4607 			break;
4608 		}
4609 	}
4610 
4611 	err = -EPROTO;
4612 
4613 	if (!done || fragment)
4614 		goto out;
4615 
4616 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4617 	if (IS_ERR(csum))
4618 		return PTR_ERR(csum);
4619 
4620 	if (recalculate)
4621 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4622 					 &ipv6_hdr(skb)->daddr,
4623 					 skb->len - off, nexthdr, 0);
4624 	err = 0;
4625 
4626 out:
4627 	return err;
4628 }
4629 
4630 /**
4631  * skb_checksum_setup - set up partial checksum offset
4632  * @skb: the skb to set up
4633  * @recalculate: if true the pseudo-header checksum will be recalculated
4634  */
4635 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4636 {
4637 	int err;
4638 
4639 	switch (skb->protocol) {
4640 	case htons(ETH_P_IP):
4641 		err = skb_checksum_setup_ipv4(skb, recalculate);
4642 		break;
4643 
4644 	case htons(ETH_P_IPV6):
4645 		err = skb_checksum_setup_ipv6(skb, recalculate);
4646 		break;
4647 
4648 	default:
4649 		err = -EPROTO;
4650 		break;
4651 	}
4652 
4653 	return err;
4654 }
4655 EXPORT_SYMBOL(skb_checksum_setup);
4656 
4657 /**
4658  * skb_checksum_maybe_trim - maybe trims the given skb
4659  * @skb: the skb to check
4660  * @transport_len: the data length beyond the network header
4661  *
4662  * Checks whether the given skb has data beyond the given transport length.
4663  * If so, returns a cloned skb trimmed to this transport length.
4664  * Otherwise returns the provided skb. Returns NULL in error cases
4665  * (e.g. transport_len exceeds skb length or out-of-memory).
4666  *
4667  * Caller needs to set the skb transport header and free any returned skb if it
4668  * differs from the provided skb.
4669  */
4670 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4671 					       unsigned int transport_len)
4672 {
4673 	struct sk_buff *skb_chk;
4674 	unsigned int len = skb_transport_offset(skb) + transport_len;
4675 	int ret;
4676 
4677 	if (skb->len < len)
4678 		return NULL;
4679 	else if (skb->len == len)
4680 		return skb;
4681 
4682 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4683 	if (!skb_chk)
4684 		return NULL;
4685 
4686 	ret = pskb_trim_rcsum(skb_chk, len);
4687 	if (ret) {
4688 		kfree_skb(skb_chk);
4689 		return NULL;
4690 	}
4691 
4692 	return skb_chk;
4693 }
4694 
4695 /**
4696  * skb_checksum_trimmed - validate checksum of an skb
4697  * @skb: the skb to check
4698  * @transport_len: the data length beyond the network header
4699  * @skb_chkf: checksum function to use
4700  *
4701  * Applies the given checksum function skb_chkf to the provided skb.
4702  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4703  *
4704  * If the skb has data beyond the given transport length, then a
4705  * trimmed & cloned skb is checked and returned.
4706  *
4707  * Caller needs to set the skb transport header and free any returned skb if it
4708  * differs from the provided skb.
4709  */
4710 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4711 				     unsigned int transport_len,
4712 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4713 {
4714 	struct sk_buff *skb_chk;
4715 	unsigned int offset = skb_transport_offset(skb);
4716 	__sum16 ret;
4717 
4718 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4719 	if (!skb_chk)
4720 		goto err;
4721 
4722 	if (!pskb_may_pull(skb_chk, offset))
4723 		goto err;
4724 
4725 	skb_pull_rcsum(skb_chk, offset);
4726 	ret = skb_chkf(skb_chk);
4727 	skb_push_rcsum(skb_chk, offset);
4728 
4729 	if (ret)
4730 		goto err;
4731 
4732 	return skb_chk;
4733 
4734 err:
4735 	if (skb_chk && skb_chk != skb)
4736 		kfree_skb(skb_chk);
4737 
4738 	return NULL;
4739 
4740 }
4741 EXPORT_SYMBOL(skb_checksum_trimmed);
4742 
4743 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4744 {
4745 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4746 			     skb->dev->name);
4747 }
4748 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4749 
4750 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4751 {
4752 	if (head_stolen) {
4753 		skb_release_head_state(skb);
4754 		kmem_cache_free(skbuff_head_cache, skb);
4755 	} else {
4756 		__kfree_skb(skb);
4757 	}
4758 }
4759 EXPORT_SYMBOL(kfree_skb_partial);
4760 
4761 /**
4762  * skb_try_coalesce - try to merge skb to prior one
4763  * @to: prior buffer
4764  * @from: buffer to add
4765  * @fragstolen: pointer to boolean
4766  * @delta_truesize: how much more was allocated than was requested
4767  */
4768 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4769 		      bool *fragstolen, int *delta_truesize)
4770 {
4771 	int i, delta, len = from->len;
4772 
4773 	*fragstolen = false;
4774 
4775 	if (skb_cloned(to))
4776 		return false;
4777 
4778 	if (len <= skb_tailroom(to)) {
4779 		if (len)
4780 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4781 		*delta_truesize = 0;
4782 		return true;
4783 	}
4784 
4785 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4786 		return false;
4787 	if (skb_zcopy(to) || skb_zcopy(from))
4788 		return false;
4789 
4790 	if (skb_headlen(from) != 0) {
4791 		struct page *page;
4792 		unsigned int offset;
4793 
4794 		if (skb_shinfo(to)->nr_frags +
4795 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4796 			return false;
4797 
4798 		if (skb_head_is_locked(from))
4799 			return false;
4800 
4801 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4802 
4803 		page = virt_to_head_page(from->head);
4804 		offset = from->data - (unsigned char *)page_address(page);
4805 
4806 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4807 				   page, offset, skb_headlen(from));
4808 		*fragstolen = true;
4809 	} else {
4810 		if (skb_shinfo(to)->nr_frags +
4811 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4812 			return false;
4813 
4814 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4815 	}
4816 
4817 	WARN_ON_ONCE(delta < len);
4818 
4819 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4820 	       skb_shinfo(from)->frags,
4821 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4822 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4823 
4824 	if (!skb_cloned(from))
4825 		skb_shinfo(from)->nr_frags = 0;
4826 
4827 	/* if the skb is not cloned this does nothing
4828 	 * since we set nr_frags to 0.
4829 	 */
4830 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4831 		skb_frag_ref(from, i);
4832 
4833 	to->truesize += delta;
4834 	to->len += len;
4835 	to->data_len += len;
4836 
4837 	*delta_truesize = delta;
4838 	return true;
4839 }
4840 EXPORT_SYMBOL(skb_try_coalesce);
4841 
4842 /**
4843  * skb_scrub_packet - scrub an skb
4844  *
4845  * @skb: buffer to clean
4846  * @xnet: packet is crossing netns
4847  *
4848  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4849  * into/from a tunnel. Some information have to be cleared during these
4850  * operations.
4851  * skb_scrub_packet can also be used to clean a skb before injecting it in
4852  * another namespace (@xnet == true). We have to clear all information in the
4853  * skb that could impact namespace isolation.
4854  */
4855 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4856 {
4857 	skb->tstamp = 0;
4858 	skb->pkt_type = PACKET_HOST;
4859 	skb->skb_iif = 0;
4860 	skb->ignore_df = 0;
4861 	skb_dst_drop(skb);
4862 	secpath_reset(skb);
4863 	nf_reset(skb);
4864 	nf_reset_trace(skb);
4865 
4866 	if (!xnet)
4867 		return;
4868 
4869 	skb_orphan(skb);
4870 	skb->mark = 0;
4871 }
4872 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4873 
4874 /**
4875  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4876  *
4877  * @skb: GSO skb
4878  *
4879  * skb_gso_transport_seglen is used to determine the real size of the
4880  * individual segments, including Layer4 headers (TCP/UDP).
4881  *
4882  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4883  */
4884 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4885 {
4886 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4887 	unsigned int thlen = 0;
4888 
4889 	if (skb->encapsulation) {
4890 		thlen = skb_inner_transport_header(skb) -
4891 			skb_transport_header(skb);
4892 
4893 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4894 			thlen += inner_tcp_hdrlen(skb);
4895 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4896 		thlen = tcp_hdrlen(skb);
4897 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4898 		thlen = sizeof(struct sctphdr);
4899 	}
4900 	/* UFO sets gso_size to the size of the fragmentation
4901 	 * payload, i.e. the size of the L4 (UDP) header is already
4902 	 * accounted for.
4903 	 */
4904 	return thlen + shinfo->gso_size;
4905 }
4906 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4907 
4908 /**
4909  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4910  *
4911  * @skb: GSO skb
4912  * @mtu: MTU to validate against
4913  *
4914  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4915  * once split.
4916  */
4917 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4918 {
4919 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4920 	const struct sk_buff *iter;
4921 	unsigned int hlen;
4922 
4923 	hlen = skb_gso_network_seglen(skb);
4924 
4925 	if (shinfo->gso_size != GSO_BY_FRAGS)
4926 		return hlen <= mtu;
4927 
4928 	/* Undo this so we can re-use header sizes */
4929 	hlen -= GSO_BY_FRAGS;
4930 
4931 	skb_walk_frags(skb, iter) {
4932 		if (hlen + skb_headlen(iter) > mtu)
4933 			return false;
4934 	}
4935 
4936 	return true;
4937 }
4938 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4939 
4940 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4941 {
4942 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4943 		kfree_skb(skb);
4944 		return NULL;
4945 	}
4946 
4947 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4948 		2 * ETH_ALEN);
4949 	skb->mac_header += VLAN_HLEN;
4950 	return skb;
4951 }
4952 
4953 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4954 {
4955 	struct vlan_hdr *vhdr;
4956 	u16 vlan_tci;
4957 
4958 	if (unlikely(skb_vlan_tag_present(skb))) {
4959 		/* vlan_tci is already set-up so leave this for another time */
4960 		return skb;
4961 	}
4962 
4963 	skb = skb_share_check(skb, GFP_ATOMIC);
4964 	if (unlikely(!skb))
4965 		goto err_free;
4966 
4967 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4968 		goto err_free;
4969 
4970 	vhdr = (struct vlan_hdr *)skb->data;
4971 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4972 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4973 
4974 	skb_pull_rcsum(skb, VLAN_HLEN);
4975 	vlan_set_encap_proto(skb, vhdr);
4976 
4977 	skb = skb_reorder_vlan_header(skb);
4978 	if (unlikely(!skb))
4979 		goto err_free;
4980 
4981 	skb_reset_network_header(skb);
4982 	skb_reset_transport_header(skb);
4983 	skb_reset_mac_len(skb);
4984 
4985 	return skb;
4986 
4987 err_free:
4988 	kfree_skb(skb);
4989 	return NULL;
4990 }
4991 EXPORT_SYMBOL(skb_vlan_untag);
4992 
4993 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4994 {
4995 	if (!pskb_may_pull(skb, write_len))
4996 		return -ENOMEM;
4997 
4998 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4999 		return 0;
5000 
5001 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5002 }
5003 EXPORT_SYMBOL(skb_ensure_writable);
5004 
5005 /* remove VLAN header from packet and update csum accordingly.
5006  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5007  */
5008 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5009 {
5010 	struct vlan_hdr *vhdr;
5011 	int offset = skb->data - skb_mac_header(skb);
5012 	int err;
5013 
5014 	if (WARN_ONCE(offset,
5015 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5016 		      offset)) {
5017 		return -EINVAL;
5018 	}
5019 
5020 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5021 	if (unlikely(err))
5022 		return err;
5023 
5024 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5025 
5026 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5027 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5028 
5029 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5030 	__skb_pull(skb, VLAN_HLEN);
5031 
5032 	vlan_set_encap_proto(skb, vhdr);
5033 	skb->mac_header += VLAN_HLEN;
5034 
5035 	if (skb_network_offset(skb) < ETH_HLEN)
5036 		skb_set_network_header(skb, ETH_HLEN);
5037 
5038 	skb_reset_mac_len(skb);
5039 
5040 	return err;
5041 }
5042 EXPORT_SYMBOL(__skb_vlan_pop);
5043 
5044 /* Pop a vlan tag either from hwaccel or from payload.
5045  * Expects skb->data at mac header.
5046  */
5047 int skb_vlan_pop(struct sk_buff *skb)
5048 {
5049 	u16 vlan_tci;
5050 	__be16 vlan_proto;
5051 	int err;
5052 
5053 	if (likely(skb_vlan_tag_present(skb))) {
5054 		skb->vlan_tci = 0;
5055 	} else {
5056 		if (unlikely(!eth_type_vlan(skb->protocol)))
5057 			return 0;
5058 
5059 		err = __skb_vlan_pop(skb, &vlan_tci);
5060 		if (err)
5061 			return err;
5062 	}
5063 	/* move next vlan tag to hw accel tag */
5064 	if (likely(!eth_type_vlan(skb->protocol)))
5065 		return 0;
5066 
5067 	vlan_proto = skb->protocol;
5068 	err = __skb_vlan_pop(skb, &vlan_tci);
5069 	if (unlikely(err))
5070 		return err;
5071 
5072 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5073 	return 0;
5074 }
5075 EXPORT_SYMBOL(skb_vlan_pop);
5076 
5077 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5078  * Expects skb->data at mac header.
5079  */
5080 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5081 {
5082 	if (skb_vlan_tag_present(skb)) {
5083 		int offset = skb->data - skb_mac_header(skb);
5084 		int err;
5085 
5086 		if (WARN_ONCE(offset,
5087 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5088 			      offset)) {
5089 			return -EINVAL;
5090 		}
5091 
5092 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5093 					skb_vlan_tag_get(skb));
5094 		if (err)
5095 			return err;
5096 
5097 		skb->protocol = skb->vlan_proto;
5098 		skb->mac_len += VLAN_HLEN;
5099 
5100 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5101 	}
5102 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5103 	return 0;
5104 }
5105 EXPORT_SYMBOL(skb_vlan_push);
5106 
5107 /**
5108  * alloc_skb_with_frags - allocate skb with page frags
5109  *
5110  * @header_len: size of linear part
5111  * @data_len: needed length in frags
5112  * @max_page_order: max page order desired.
5113  * @errcode: pointer to error code if any
5114  * @gfp_mask: allocation mask
5115  *
5116  * This can be used to allocate a paged skb, given a maximal order for frags.
5117  */
5118 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5119 				     unsigned long data_len,
5120 				     int max_page_order,
5121 				     int *errcode,
5122 				     gfp_t gfp_mask)
5123 {
5124 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5125 	unsigned long chunk;
5126 	struct sk_buff *skb;
5127 	struct page *page;
5128 	gfp_t gfp_head;
5129 	int i;
5130 
5131 	*errcode = -EMSGSIZE;
5132 	/* Note this test could be relaxed, if we succeed to allocate
5133 	 * high order pages...
5134 	 */
5135 	if (npages > MAX_SKB_FRAGS)
5136 		return NULL;
5137 
5138 	gfp_head = gfp_mask;
5139 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5140 		gfp_head |= __GFP_RETRY_MAYFAIL;
5141 
5142 	*errcode = -ENOBUFS;
5143 	skb = alloc_skb(header_len, gfp_head);
5144 	if (!skb)
5145 		return NULL;
5146 
5147 	skb->truesize += npages << PAGE_SHIFT;
5148 
5149 	for (i = 0; npages > 0; i++) {
5150 		int order = max_page_order;
5151 
5152 		while (order) {
5153 			if (npages >= 1 << order) {
5154 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5155 						   __GFP_COMP |
5156 						   __GFP_NOWARN |
5157 						   __GFP_NORETRY,
5158 						   order);
5159 				if (page)
5160 					goto fill_page;
5161 				/* Do not retry other high order allocations */
5162 				order = 1;
5163 				max_page_order = 0;
5164 			}
5165 			order--;
5166 		}
5167 		page = alloc_page(gfp_mask);
5168 		if (!page)
5169 			goto failure;
5170 fill_page:
5171 		chunk = min_t(unsigned long, data_len,
5172 			      PAGE_SIZE << order);
5173 		skb_fill_page_desc(skb, i, page, 0, chunk);
5174 		data_len -= chunk;
5175 		npages -= 1 << order;
5176 	}
5177 	return skb;
5178 
5179 failure:
5180 	kfree_skb(skb);
5181 	return NULL;
5182 }
5183 EXPORT_SYMBOL(alloc_skb_with_frags);
5184 
5185 /* carve out the first off bytes from skb when off < headlen */
5186 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5187 				    const int headlen, gfp_t gfp_mask)
5188 {
5189 	int i;
5190 	int size = skb_end_offset(skb);
5191 	int new_hlen = headlen - off;
5192 	u8 *data;
5193 
5194 	size = SKB_DATA_ALIGN(size);
5195 
5196 	if (skb_pfmemalloc(skb))
5197 		gfp_mask |= __GFP_MEMALLOC;
5198 	data = kmalloc_reserve(size +
5199 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5200 			       gfp_mask, NUMA_NO_NODE, NULL);
5201 	if (!data)
5202 		return -ENOMEM;
5203 
5204 	size = SKB_WITH_OVERHEAD(ksize(data));
5205 
5206 	/* Copy real data, and all frags */
5207 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5208 	skb->len -= off;
5209 
5210 	memcpy((struct skb_shared_info *)(data + size),
5211 	       skb_shinfo(skb),
5212 	       offsetof(struct skb_shared_info,
5213 			frags[skb_shinfo(skb)->nr_frags]));
5214 	if (skb_cloned(skb)) {
5215 		/* drop the old head gracefully */
5216 		if (skb_orphan_frags(skb, gfp_mask)) {
5217 			kfree(data);
5218 			return -ENOMEM;
5219 		}
5220 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5221 			skb_frag_ref(skb, i);
5222 		if (skb_has_frag_list(skb))
5223 			skb_clone_fraglist(skb);
5224 		skb_release_data(skb);
5225 	} else {
5226 		/* we can reuse existing recount- all we did was
5227 		 * relocate values
5228 		 */
5229 		skb_free_head(skb);
5230 	}
5231 
5232 	skb->head = data;
5233 	skb->data = data;
5234 	skb->head_frag = 0;
5235 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5236 	skb->end = size;
5237 #else
5238 	skb->end = skb->head + size;
5239 #endif
5240 	skb_set_tail_pointer(skb, skb_headlen(skb));
5241 	skb_headers_offset_update(skb, 0);
5242 	skb->cloned = 0;
5243 	skb->hdr_len = 0;
5244 	skb->nohdr = 0;
5245 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5246 
5247 	return 0;
5248 }
5249 
5250 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5251 
5252 /* carve out the first eat bytes from skb's frag_list. May recurse into
5253  * pskb_carve()
5254  */
5255 static int pskb_carve_frag_list(struct sk_buff *skb,
5256 				struct skb_shared_info *shinfo, int eat,
5257 				gfp_t gfp_mask)
5258 {
5259 	struct sk_buff *list = shinfo->frag_list;
5260 	struct sk_buff *clone = NULL;
5261 	struct sk_buff *insp = NULL;
5262 
5263 	do {
5264 		if (!list) {
5265 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5266 			return -EFAULT;
5267 		}
5268 		if (list->len <= eat) {
5269 			/* Eaten as whole. */
5270 			eat -= list->len;
5271 			list = list->next;
5272 			insp = list;
5273 		} else {
5274 			/* Eaten partially. */
5275 			if (skb_shared(list)) {
5276 				clone = skb_clone(list, gfp_mask);
5277 				if (!clone)
5278 					return -ENOMEM;
5279 				insp = list->next;
5280 				list = clone;
5281 			} else {
5282 				/* This may be pulled without problems. */
5283 				insp = list;
5284 			}
5285 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5286 				kfree_skb(clone);
5287 				return -ENOMEM;
5288 			}
5289 			break;
5290 		}
5291 	} while (eat);
5292 
5293 	/* Free pulled out fragments. */
5294 	while ((list = shinfo->frag_list) != insp) {
5295 		shinfo->frag_list = list->next;
5296 		kfree_skb(list);
5297 	}
5298 	/* And insert new clone at head. */
5299 	if (clone) {
5300 		clone->next = list;
5301 		shinfo->frag_list = clone;
5302 	}
5303 	return 0;
5304 }
5305 
5306 /* carve off first len bytes from skb. Split line (off) is in the
5307  * non-linear part of skb
5308  */
5309 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5310 				       int pos, gfp_t gfp_mask)
5311 {
5312 	int i, k = 0;
5313 	int size = skb_end_offset(skb);
5314 	u8 *data;
5315 	const int nfrags = skb_shinfo(skb)->nr_frags;
5316 	struct skb_shared_info *shinfo;
5317 
5318 	size = SKB_DATA_ALIGN(size);
5319 
5320 	if (skb_pfmemalloc(skb))
5321 		gfp_mask |= __GFP_MEMALLOC;
5322 	data = kmalloc_reserve(size +
5323 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5324 			       gfp_mask, NUMA_NO_NODE, NULL);
5325 	if (!data)
5326 		return -ENOMEM;
5327 
5328 	size = SKB_WITH_OVERHEAD(ksize(data));
5329 
5330 	memcpy((struct skb_shared_info *)(data + size),
5331 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5332 					 frags[skb_shinfo(skb)->nr_frags]));
5333 	if (skb_orphan_frags(skb, gfp_mask)) {
5334 		kfree(data);
5335 		return -ENOMEM;
5336 	}
5337 	shinfo = (struct skb_shared_info *)(data + size);
5338 	for (i = 0; i < nfrags; i++) {
5339 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5340 
5341 		if (pos + fsize > off) {
5342 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5343 
5344 			if (pos < off) {
5345 				/* Split frag.
5346 				 * We have two variants in this case:
5347 				 * 1. Move all the frag to the second
5348 				 *    part, if it is possible. F.e.
5349 				 *    this approach is mandatory for TUX,
5350 				 *    where splitting is expensive.
5351 				 * 2. Split is accurately. We make this.
5352 				 */
5353 				shinfo->frags[0].page_offset += off - pos;
5354 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5355 			}
5356 			skb_frag_ref(skb, i);
5357 			k++;
5358 		}
5359 		pos += fsize;
5360 	}
5361 	shinfo->nr_frags = k;
5362 	if (skb_has_frag_list(skb))
5363 		skb_clone_fraglist(skb);
5364 
5365 	if (k == 0) {
5366 		/* split line is in frag list */
5367 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5368 	}
5369 	skb_release_data(skb);
5370 
5371 	skb->head = data;
5372 	skb->head_frag = 0;
5373 	skb->data = data;
5374 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5375 	skb->end = size;
5376 #else
5377 	skb->end = skb->head + size;
5378 #endif
5379 	skb_reset_tail_pointer(skb);
5380 	skb_headers_offset_update(skb, 0);
5381 	skb->cloned   = 0;
5382 	skb->hdr_len  = 0;
5383 	skb->nohdr    = 0;
5384 	skb->len -= off;
5385 	skb->data_len = skb->len;
5386 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5387 	return 0;
5388 }
5389 
5390 /* remove len bytes from the beginning of the skb */
5391 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5392 {
5393 	int headlen = skb_headlen(skb);
5394 
5395 	if (len < headlen)
5396 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5397 	else
5398 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5399 }
5400 
5401 /* Extract to_copy bytes starting at off from skb, and return this in
5402  * a new skb
5403  */
5404 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5405 			     int to_copy, gfp_t gfp)
5406 {
5407 	struct sk_buff  *clone = skb_clone(skb, gfp);
5408 
5409 	if (!clone)
5410 		return NULL;
5411 
5412 	if (pskb_carve(clone, off, gfp) < 0 ||
5413 	    pskb_trim(clone, to_copy)) {
5414 		kfree_skb(clone);
5415 		return NULL;
5416 	}
5417 	return clone;
5418 }
5419 EXPORT_SYMBOL(pskb_extract);
5420 
5421 /**
5422  * skb_condense - try to get rid of fragments/frag_list if possible
5423  * @skb: buffer
5424  *
5425  * Can be used to save memory before skb is added to a busy queue.
5426  * If packet has bytes in frags and enough tail room in skb->head,
5427  * pull all of them, so that we can free the frags right now and adjust
5428  * truesize.
5429  * Notes:
5430  *	We do not reallocate skb->head thus can not fail.
5431  *	Caller must re-evaluate skb->truesize if needed.
5432  */
5433 void skb_condense(struct sk_buff *skb)
5434 {
5435 	if (skb->data_len) {
5436 		if (skb->data_len > skb->end - skb->tail ||
5437 		    skb_cloned(skb))
5438 			return;
5439 
5440 		/* Nice, we can free page frag(s) right now */
5441 		__pskb_pull_tail(skb, skb->data_len);
5442 	}
5443 	/* At this point, skb->truesize might be over estimated,
5444 	 * because skb had a fragment, and fragments do not tell
5445 	 * their truesize.
5446 	 * When we pulled its content into skb->head, fragment
5447 	 * was freed, but __pskb_pull_tail() could not possibly
5448 	 * adjust skb->truesize, not knowing the frag truesize.
5449 	 */
5450 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5451 }
5452