xref: /linux/net/core/skbuff.c (revision c0ef1446959101d23fdf1b1bdefc6613a83dba03)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68 
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/dropreason.h>
83 
84 #include <linux/uaccess.h>
85 #include <trace/events/skb.h>
86 #include <linux/highmem.h>
87 #include <linux/capability.h>
88 #include <linux/user_namespace.h>
89 #include <linux/indirect_call_wrapper.h>
90 #include <linux/textsearch.h>
91 
92 #include "dev.h"
93 #include "devmem.h"
94 #include "netmem_priv.h"
95 #include "sock_destructor.h"
96 
97 #ifdef CONFIG_SKB_EXTENSIONS
98 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
99 #endif
100 
101 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
102 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
103 					       GRO_MAX_HEAD_PAD))
104 
105 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
106  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
107  * size, and we can differentiate heads from skb_small_head_cache
108  * vs system slabs by looking at their size (skb_end_offset()).
109  */
110 #define SKB_SMALL_HEAD_CACHE_SIZE					\
111 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
112 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
113 		SKB_SMALL_HEAD_SIZE)
114 
115 #define SKB_SMALL_HEAD_HEADROOM						\
116 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
117 
118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
119  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
120  * netmem is a page.
121  */
122 static_assert(offsetof(struct bio_vec, bv_page) ==
123 	      offsetof(skb_frag_t, netmem));
124 static_assert(sizeof_field(struct bio_vec, bv_page) ==
125 	      sizeof_field(skb_frag_t, netmem));
126 
127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
128 static_assert(sizeof_field(struct bio_vec, bv_len) ==
129 	      sizeof_field(skb_frag_t, len));
130 
131 static_assert(offsetof(struct bio_vec, bv_offset) ==
132 	      offsetof(skb_frag_t, offset));
133 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
134 	      sizeof_field(skb_frag_t, offset));
135 
136 #undef FN
137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
138 static const char * const drop_reasons[] = {
139 	[SKB_CONSUMED] = "CONSUMED",
140 	DEFINE_DROP_REASON(FN, FN)
141 };
142 
143 static const struct drop_reason_list drop_reasons_core = {
144 	.reasons = drop_reasons,
145 	.n_reasons = ARRAY_SIZE(drop_reasons),
146 };
147 
148 const struct drop_reason_list __rcu *
149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
150 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
151 };
152 EXPORT_SYMBOL(drop_reasons_by_subsys);
153 
154 /**
155  * drop_reasons_register_subsys - register another drop reason subsystem
156  * @subsys: the subsystem to register, must not be the core
157  * @list: the list of drop reasons within the subsystem, must point to
158  *	a statically initialized list
159  */
160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
161 				  const struct drop_reason_list *list)
162 {
163 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 		 "invalid subsystem %d\n", subsys))
166 		return;
167 
168 	/* must point to statically allocated memory, so INIT is OK */
169 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
170 }
171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
172 
173 /**
174  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
175  * @subsys: the subsystem to remove, must not be the core
176  *
177  * Note: This will synchronize_rcu() to ensure no users when it returns.
178  */
179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
180 {
181 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
182 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
183 		 "invalid subsystem %d\n", subsys))
184 		return;
185 
186 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
187 
188 	synchronize_rcu();
189 }
190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
191 
192 /**
193  *	skb_panic - private function for out-of-line support
194  *	@skb:	buffer
195  *	@sz:	size
196  *	@addr:	address
197  *	@msg:	skb_over_panic or skb_under_panic
198  *
199  *	Out-of-line support for skb_put() and skb_push().
200  *	Called via the wrapper skb_over_panic() or skb_under_panic().
201  *	Keep out of line to prevent kernel bloat.
202  *	__builtin_return_address is not used because it is not always reliable.
203  */
204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
205 		      const char msg[])
206 {
207 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
208 		 msg, addr, skb->len, sz, skb->head, skb->data,
209 		 (unsigned long)skb->tail, (unsigned long)skb->end,
210 		 skb->dev ? skb->dev->name : "<NULL>");
211 	BUG();
212 }
213 
214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
215 {
216 	skb_panic(skb, sz, addr, __func__);
217 }
218 
219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
220 {
221 	skb_panic(skb, sz, addr, __func__);
222 }
223 
224 #define NAPI_SKB_CACHE_SIZE	64
225 #define NAPI_SKB_CACHE_BULK	16
226 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
227 
228 struct napi_alloc_cache {
229 	local_lock_t bh_lock;
230 	struct page_frag_cache page;
231 	unsigned int skb_count;
232 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
233 };
234 
235 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
236 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
237 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
238 };
239 
240 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
241 {
242 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
243 	void *data;
244 
245 	fragsz = SKB_DATA_ALIGN(fragsz);
246 
247 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
248 	data = __page_frag_alloc_align(&nc->page, fragsz,
249 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
250 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
251 	return data;
252 
253 }
254 EXPORT_SYMBOL(__napi_alloc_frag_align);
255 
256 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
257 {
258 	void *data;
259 
260 	if (in_hardirq() || irqs_disabled()) {
261 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
262 
263 		fragsz = SKB_DATA_ALIGN(fragsz);
264 		data = __page_frag_alloc_align(nc, fragsz,
265 					       GFP_ATOMIC | __GFP_NOWARN,
266 					       align_mask);
267 	} else {
268 		local_bh_disable();
269 		data = __napi_alloc_frag_align(fragsz, align_mask);
270 		local_bh_enable();
271 	}
272 	return data;
273 }
274 EXPORT_SYMBOL(__netdev_alloc_frag_align);
275 
276 static struct sk_buff *napi_skb_cache_get(void)
277 {
278 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
279 	struct sk_buff *skb;
280 
281 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
282 	if (unlikely(!nc->skb_count)) {
283 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
284 						      GFP_ATOMIC | __GFP_NOWARN,
285 						      NAPI_SKB_CACHE_BULK,
286 						      nc->skb_cache);
287 		if (unlikely(!nc->skb_count)) {
288 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
289 			return NULL;
290 		}
291 	}
292 
293 	skb = nc->skb_cache[--nc->skb_count];
294 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
295 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
296 
297 	return skb;
298 }
299 
300 /**
301  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
302  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
303  * @n: number of entries to provide
304  *
305  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
306  * the pointers into the provided array @skbs. If there are less entries
307  * available, tries to replenish the cache and bulk-allocates the diff from
308  * the MM layer if needed.
309  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
310  * ready for {,__}build_skb_around() and don't have any data buffers attached.
311  * Must be called *only* from the BH context.
312  *
313  * Return: number of successfully allocated skbs (@n if no actual allocation
314  *	   needed or kmem_cache_alloc_bulk() didn't fail).
315  */
316 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
317 {
318 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
319 	u32 bulk, total = n;
320 
321 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
322 
323 	if (nc->skb_count >= n)
324 		goto get;
325 
326 	/* No enough cached skbs. Try refilling the cache first */
327 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
328 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
329 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
330 					       &nc->skb_cache[nc->skb_count]);
331 	if (likely(nc->skb_count >= n))
332 		goto get;
333 
334 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
335 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
336 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
337 				   n - nc->skb_count, &skbs[nc->skb_count]);
338 	if (likely(nc->skb_count >= n))
339 		goto get;
340 
341 	/* kmem_cache didn't allocate the number we need, limit the output */
342 	total -= n - nc->skb_count;
343 	n = nc->skb_count;
344 
345 get:
346 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
347 		u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
348 
349 		skbs[i] = nc->skb_cache[base + i];
350 
351 		kasan_mempool_unpoison_object(skbs[i], cache_size);
352 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
353 	}
354 
355 	nc->skb_count -= n;
356 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
357 
358 	return total;
359 }
360 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
361 
362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
387 static inline void *__slab_build_skb(void *data, unsigned int *size)
388 {
389 	void *resized;
390 
391 	/* Must find the allocation size (and grow it to match). */
392 	*size = ksize(data);
393 	/* krealloc() will immediately return "data" when
394 	 * "ksize(data)" is requested: it is the existing upper
395 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
396 	 * that this "new" pointer needs to be passed back to the
397 	 * caller for use so the __alloc_size hinting will be
398 	 * tracked correctly.
399 	 */
400 	resized = krealloc(data, *size, GFP_ATOMIC);
401 	WARN_ON_ONCE(resized != data);
402 	return resized;
403 }
404 
405 /* build_skb() variant which can operate on slab buffers.
406  * Note that this should be used sparingly as slab buffers
407  * cannot be combined efficiently by GRO!
408  */
409 struct sk_buff *slab_build_skb(void *data)
410 {
411 	struct sk_buff *skb;
412 	unsigned int size;
413 
414 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
415 			       GFP_ATOMIC | __GFP_NOWARN);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
467 			       GFP_ATOMIC | __GFP_NOWARN);
468 	if (unlikely(!skb))
469 		return NULL;
470 
471 	memset(skb, 0, offsetof(struct sk_buff, tail));
472 	__build_skb_around(skb, data, frag_size);
473 
474 	return skb;
475 }
476 
477 /* build_skb() is wrapper over __build_skb(), that specifically
478  * takes care of skb->head and skb->pfmemalloc
479  */
480 struct sk_buff *build_skb(void *data, unsigned int frag_size)
481 {
482 	struct sk_buff *skb = __build_skb(data, frag_size);
483 
484 	if (likely(skb && frag_size)) {
485 		skb->head_frag = 1;
486 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
487 	}
488 	return skb;
489 }
490 EXPORT_SYMBOL(build_skb);
491 
492 /**
493  * build_skb_around - build a network buffer around provided skb
494  * @skb: sk_buff provide by caller, must be memset cleared
495  * @data: data buffer provided by caller
496  * @frag_size: size of data
497  */
498 struct sk_buff *build_skb_around(struct sk_buff *skb,
499 				 void *data, unsigned int frag_size)
500 {
501 	if (unlikely(!skb))
502 		return NULL;
503 
504 	__build_skb_around(skb, data, frag_size);
505 
506 	if (frag_size) {
507 		skb->head_frag = 1;
508 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
509 	}
510 	return skb;
511 }
512 EXPORT_SYMBOL(build_skb_around);
513 
514 /**
515  * __napi_build_skb - build a network buffer
516  * @data: data buffer provided by caller
517  * @frag_size: size of data
518  *
519  * Version of __build_skb() that uses NAPI percpu caches to obtain
520  * skbuff_head instead of inplace allocation.
521  *
522  * Returns a new &sk_buff on success, %NULL on allocation failure.
523  */
524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
525 {
526 	struct sk_buff *skb;
527 
528 	skb = napi_skb_cache_get();
529 	if (unlikely(!skb))
530 		return NULL;
531 
532 	memset(skb, 0, offsetof(struct sk_buff, tail));
533 	__build_skb_around(skb, data, frag_size);
534 
535 	return skb;
536 }
537 
538 /**
539  * napi_build_skb - build a network buffer
540  * @data: data buffer provided by caller
541  * @frag_size: size of data
542  *
543  * Version of __napi_build_skb() that takes care of skb->head_frag
544  * and skb->pfmemalloc when the data is a page or page fragment.
545  *
546  * Returns a new &sk_buff on success, %NULL on allocation failure.
547  */
548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
549 {
550 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
551 
552 	if (likely(skb) && frag_size) {
553 		skb->head_frag = 1;
554 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
555 	}
556 
557 	return skb;
558 }
559 EXPORT_SYMBOL(napi_build_skb);
560 
561 /*
562  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
563  * the caller if emergency pfmemalloc reserves are being used. If it is and
564  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
565  * may be used. Otherwise, the packet data may be discarded until enough
566  * memory is free
567  */
568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
569 			     bool *pfmemalloc)
570 {
571 	bool ret_pfmemalloc = false;
572 	size_t obj_size;
573 	void *obj;
574 
575 	obj_size = SKB_HEAD_ALIGN(*size);
576 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
577 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
578 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
579 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
580 				node);
581 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
582 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
583 			goto out;
584 		/* Try again but now we are using pfmemalloc reserves */
585 		ret_pfmemalloc = true;
586 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
587 		goto out;
588 	}
589 
590 	obj_size = kmalloc_size_roundup(obj_size);
591 	/* The following cast might truncate high-order bits of obj_size, this
592 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
593 	 */
594 	*size = (unsigned int)obj_size;
595 
596 	/*
597 	 * Try a regular allocation, when that fails and we're not entitled
598 	 * to the reserves, fail.
599 	 */
600 	obj = kmalloc_node_track_caller(obj_size,
601 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
602 					node);
603 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
604 		goto out;
605 
606 	/* Try again but now we are using pfmemalloc reserves */
607 	ret_pfmemalloc = true;
608 	obj = kmalloc_node_track_caller(obj_size, flags, node);
609 
610 out:
611 	if (pfmemalloc)
612 		*pfmemalloc = ret_pfmemalloc;
613 
614 	return obj;
615 }
616 
617 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
618  *	'private' fields and also do memory statistics to find all the
619  *	[BEEP] leaks.
620  *
621  */
622 
623 /**
624  *	__alloc_skb	-	allocate a network buffer
625  *	@size: size to allocate
626  *	@gfp_mask: allocation mask
627  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
628  *		instead of head cache and allocate a cloned (child) skb.
629  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
630  *		allocations in case the data is required for writeback
631  *	@node: numa node to allocate memory on
632  *
633  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
634  *	tail room of at least size bytes. The object has a reference count
635  *	of one. The return is the buffer. On a failure the return is %NULL.
636  *
637  *	Buffers may only be allocated from interrupts using a @gfp_mask of
638  *	%GFP_ATOMIC.
639  */
640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
641 			    int flags, int node)
642 {
643 	struct kmem_cache *cache;
644 	struct sk_buff *skb;
645 	bool pfmemalloc;
646 	u8 *data;
647 
648 	cache = (flags & SKB_ALLOC_FCLONE)
649 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
650 
651 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
652 		gfp_mask |= __GFP_MEMALLOC;
653 
654 	/* Get the HEAD */
655 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
656 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
657 		skb = napi_skb_cache_get();
658 	else
659 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
660 	if (unlikely(!skb))
661 		return NULL;
662 	prefetchw(skb);
663 
664 	/* We do our best to align skb_shared_info on a separate cache
665 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
666 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
667 	 * Both skb->head and skb_shared_info are cache line aligned.
668 	 */
669 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
670 	if (unlikely(!data))
671 		goto nodata;
672 	/* kmalloc_size_roundup() might give us more room than requested.
673 	 * Put skb_shared_info exactly at the end of allocated zone,
674 	 * to allow max possible filling before reallocation.
675 	 */
676 	prefetchw(data + SKB_WITH_OVERHEAD(size));
677 
678 	/*
679 	 * Only clear those fields we need to clear, not those that we will
680 	 * actually initialise below. Hence, don't put any more fields after
681 	 * the tail pointer in struct sk_buff!
682 	 */
683 	memset(skb, 0, offsetof(struct sk_buff, tail));
684 	__build_skb_around(skb, data, size);
685 	skb->pfmemalloc = pfmemalloc;
686 
687 	if (flags & SKB_ALLOC_FCLONE) {
688 		struct sk_buff_fclones *fclones;
689 
690 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
691 
692 		skb->fclone = SKB_FCLONE_ORIG;
693 		refcount_set(&fclones->fclone_ref, 1);
694 	}
695 
696 	return skb;
697 
698 nodata:
699 	kmem_cache_free(cache, skb);
700 	return NULL;
701 }
702 EXPORT_SYMBOL(__alloc_skb);
703 
704 /**
705  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
706  *	@dev: network device to receive on
707  *	@len: length to allocate
708  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
709  *
710  *	Allocate a new &sk_buff and assign it a usage count of one. The
711  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
712  *	the headroom they think they need without accounting for the
713  *	built in space. The built in space is used for optimisations.
714  *
715  *	%NULL is returned if there is no free memory.
716  */
717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
718 				   gfp_t gfp_mask)
719 {
720 	struct page_frag_cache *nc;
721 	struct sk_buff *skb;
722 	bool pfmemalloc;
723 	void *data;
724 
725 	len += NET_SKB_PAD;
726 
727 	/* If requested length is either too small or too big,
728 	 * we use kmalloc() for skb->head allocation.
729 	 */
730 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
731 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
732 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
733 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
734 		if (!skb)
735 			goto skb_fail;
736 		goto skb_success;
737 	}
738 
739 	len = SKB_HEAD_ALIGN(len);
740 
741 	if (sk_memalloc_socks())
742 		gfp_mask |= __GFP_MEMALLOC;
743 
744 	if (in_hardirq() || irqs_disabled()) {
745 		nc = this_cpu_ptr(&netdev_alloc_cache);
746 		data = page_frag_alloc(nc, len, gfp_mask);
747 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
748 	} else {
749 		local_bh_disable();
750 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
751 
752 		nc = this_cpu_ptr(&napi_alloc_cache.page);
753 		data = page_frag_alloc(nc, len, gfp_mask);
754 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
755 
756 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
757 		local_bh_enable();
758 	}
759 
760 	if (unlikely(!data))
761 		return NULL;
762 
763 	skb = __build_skb(data, len);
764 	if (unlikely(!skb)) {
765 		skb_free_frag(data);
766 		return NULL;
767 	}
768 
769 	if (pfmemalloc)
770 		skb->pfmemalloc = 1;
771 	skb->head_frag = 1;
772 
773 skb_success:
774 	skb_reserve(skb, NET_SKB_PAD);
775 	skb->dev = dev;
776 
777 skb_fail:
778 	return skb;
779 }
780 EXPORT_SYMBOL(__netdev_alloc_skb);
781 
782 /**
783  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
784  *	@napi: napi instance this buffer was allocated for
785  *	@len: length to allocate
786  *
787  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
788  *	attempt to allocate the head from a special reserved region used
789  *	only for NAPI Rx allocation.  By doing this we can save several
790  *	CPU cycles by avoiding having to disable and re-enable IRQs.
791  *
792  *	%NULL is returned if there is no free memory.
793  */
794 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
795 {
796 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
797 	struct napi_alloc_cache *nc;
798 	struct sk_buff *skb;
799 	bool pfmemalloc;
800 	void *data;
801 
802 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
803 	len += NET_SKB_PAD + NET_IP_ALIGN;
804 
805 	/* If requested length is either too small or too big,
806 	 * we use kmalloc() for skb->head allocation.
807 	 */
808 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
809 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
810 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
811 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
812 				  NUMA_NO_NODE);
813 		if (!skb)
814 			goto skb_fail;
815 		goto skb_success;
816 	}
817 
818 	len = SKB_HEAD_ALIGN(len);
819 
820 	if (sk_memalloc_socks())
821 		gfp_mask |= __GFP_MEMALLOC;
822 
823 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
824 	nc = this_cpu_ptr(&napi_alloc_cache);
825 
826 	data = page_frag_alloc(&nc->page, len, gfp_mask);
827 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
828 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
829 
830 	if (unlikely(!data))
831 		return NULL;
832 
833 	skb = __napi_build_skb(data, len);
834 	if (unlikely(!skb)) {
835 		skb_free_frag(data);
836 		return NULL;
837 	}
838 
839 	if (pfmemalloc)
840 		skb->pfmemalloc = 1;
841 	skb->head_frag = 1;
842 
843 skb_success:
844 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
845 	skb->dev = napi->dev;
846 
847 skb_fail:
848 	return skb;
849 }
850 EXPORT_SYMBOL(napi_alloc_skb);
851 
852 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
853 			    int off, int size, unsigned int truesize)
854 {
855 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
856 
857 	skb_fill_netmem_desc(skb, i, netmem, off, size);
858 	skb->len += size;
859 	skb->data_len += size;
860 	skb->truesize += truesize;
861 }
862 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
863 
864 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
865 			  unsigned int truesize)
866 {
867 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
868 
869 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
870 
871 	skb_frag_size_add(frag, size);
872 	skb->len += size;
873 	skb->data_len += size;
874 	skb->truesize += truesize;
875 }
876 EXPORT_SYMBOL(skb_coalesce_rx_frag);
877 
878 static void skb_drop_list(struct sk_buff **listp)
879 {
880 	kfree_skb_list(*listp);
881 	*listp = NULL;
882 }
883 
884 static inline void skb_drop_fraglist(struct sk_buff *skb)
885 {
886 	skb_drop_list(&skb_shinfo(skb)->frag_list);
887 }
888 
889 static void skb_clone_fraglist(struct sk_buff *skb)
890 {
891 	struct sk_buff *list;
892 
893 	skb_walk_frags(skb, list)
894 		skb_get(list);
895 }
896 
897 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
898 		    unsigned int headroom)
899 {
900 #if IS_ENABLED(CONFIG_PAGE_POOL)
901 	u32 size, truesize, len, max_head_size, off;
902 	struct sk_buff *skb = *pskb, *nskb;
903 	int err, i, head_off;
904 	void *data;
905 
906 	/* XDP does not support fraglist so we need to linearize
907 	 * the skb.
908 	 */
909 	if (skb_has_frag_list(skb))
910 		return -EOPNOTSUPP;
911 
912 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
913 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
914 		return -ENOMEM;
915 
916 	size = min_t(u32, skb->len, max_head_size);
917 	truesize = SKB_HEAD_ALIGN(size) + headroom;
918 	data = page_pool_dev_alloc_va(pool, &truesize);
919 	if (!data)
920 		return -ENOMEM;
921 
922 	nskb = napi_build_skb(data, truesize);
923 	if (!nskb) {
924 		page_pool_free_va(pool, data, true);
925 		return -ENOMEM;
926 	}
927 
928 	skb_reserve(nskb, headroom);
929 	skb_copy_header(nskb, skb);
930 	skb_mark_for_recycle(nskb);
931 
932 	err = skb_copy_bits(skb, 0, nskb->data, size);
933 	if (err) {
934 		consume_skb(nskb);
935 		return err;
936 	}
937 	skb_put(nskb, size);
938 
939 	head_off = skb_headroom(nskb) - skb_headroom(skb);
940 	skb_headers_offset_update(nskb, head_off);
941 
942 	off = size;
943 	len = skb->len - off;
944 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
945 		struct page *page;
946 		u32 page_off;
947 
948 		size = min_t(u32, len, PAGE_SIZE);
949 		truesize = size;
950 
951 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
952 		if (!page) {
953 			consume_skb(nskb);
954 			return -ENOMEM;
955 		}
956 
957 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
958 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
959 				    size);
960 		if (err) {
961 			consume_skb(nskb);
962 			return err;
963 		}
964 
965 		len -= size;
966 		off += size;
967 	}
968 
969 	consume_skb(skb);
970 	*pskb = nskb;
971 
972 	return 0;
973 #else
974 	return -EOPNOTSUPP;
975 #endif
976 }
977 EXPORT_SYMBOL(skb_pp_cow_data);
978 
979 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
980 			 const struct bpf_prog *prog)
981 {
982 	if (!prog->aux->xdp_has_frags)
983 		return -EINVAL;
984 
985 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
986 }
987 EXPORT_SYMBOL(skb_cow_data_for_xdp);
988 
989 #if IS_ENABLED(CONFIG_PAGE_POOL)
990 bool napi_pp_put_page(netmem_ref netmem)
991 {
992 	netmem = netmem_compound_head(netmem);
993 
994 	if (unlikely(!netmem_is_pp(netmem)))
995 		return false;
996 
997 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
998 
999 	return true;
1000 }
1001 EXPORT_SYMBOL(napi_pp_put_page);
1002 #endif
1003 
1004 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1005 {
1006 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1007 		return false;
1008 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1009 }
1010 
1011 /**
1012  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1013  * @skb:	page pool aware skb
1014  *
1015  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1016  * intended to gain fragment references only for page pool aware skbs,
1017  * i.e. when skb->pp_recycle is true, and not for fragments in a
1018  * non-pp-recycling skb. It has a fallback to increase references on normal
1019  * pages, as page pool aware skbs may also have normal page fragments.
1020  */
1021 static int skb_pp_frag_ref(struct sk_buff *skb)
1022 {
1023 	struct skb_shared_info *shinfo;
1024 	netmem_ref head_netmem;
1025 	int i;
1026 
1027 	if (!skb->pp_recycle)
1028 		return -EINVAL;
1029 
1030 	shinfo = skb_shinfo(skb);
1031 
1032 	for (i = 0; i < shinfo->nr_frags; i++) {
1033 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1034 		if (likely(netmem_is_pp(head_netmem)))
1035 			page_pool_ref_netmem(head_netmem);
1036 		else
1037 			page_ref_inc(netmem_to_page(head_netmem));
1038 	}
1039 	return 0;
1040 }
1041 
1042 static void skb_kfree_head(void *head, unsigned int end_offset)
1043 {
1044 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1045 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1046 	else
1047 		kfree(head);
1048 }
1049 
1050 static void skb_free_head(struct sk_buff *skb)
1051 {
1052 	unsigned char *head = skb->head;
1053 
1054 	if (skb->head_frag) {
1055 		if (skb_pp_recycle(skb, head))
1056 			return;
1057 		skb_free_frag(head);
1058 	} else {
1059 		skb_kfree_head(head, skb_end_offset(skb));
1060 	}
1061 }
1062 
1063 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1064 {
1065 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1066 	int i;
1067 
1068 	if (!skb_data_unref(skb, shinfo))
1069 		goto exit;
1070 
1071 	if (skb_zcopy(skb)) {
1072 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1073 
1074 		skb_zcopy_clear(skb, true);
1075 		if (skip_unref)
1076 			goto free_head;
1077 	}
1078 
1079 	for (i = 0; i < shinfo->nr_frags; i++)
1080 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1081 
1082 free_head:
1083 	if (shinfo->frag_list)
1084 		kfree_skb_list_reason(shinfo->frag_list, reason);
1085 
1086 	skb_free_head(skb);
1087 exit:
1088 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1089 	 * bit is only set on the head though, so in order to avoid races
1090 	 * while trying to recycle fragments on __skb_frag_unref() we need
1091 	 * to make one SKB responsible for triggering the recycle path.
1092 	 * So disable the recycling bit if an SKB is cloned and we have
1093 	 * additional references to the fragmented part of the SKB.
1094 	 * Eventually the last SKB will have the recycling bit set and it's
1095 	 * dataref set to 0, which will trigger the recycling
1096 	 */
1097 	skb->pp_recycle = 0;
1098 }
1099 
1100 /*
1101  *	Free an skbuff by memory without cleaning the state.
1102  */
1103 static void kfree_skbmem(struct sk_buff *skb)
1104 {
1105 	struct sk_buff_fclones *fclones;
1106 
1107 	switch (skb->fclone) {
1108 	case SKB_FCLONE_UNAVAILABLE:
1109 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1110 		return;
1111 
1112 	case SKB_FCLONE_ORIG:
1113 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1114 
1115 		/* We usually free the clone (TX completion) before original skb
1116 		 * This test would have no chance to be true for the clone,
1117 		 * while here, branch prediction will be good.
1118 		 */
1119 		if (refcount_read(&fclones->fclone_ref) == 1)
1120 			goto fastpath;
1121 		break;
1122 
1123 	default: /* SKB_FCLONE_CLONE */
1124 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1125 		break;
1126 	}
1127 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1128 		return;
1129 fastpath:
1130 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1131 }
1132 
1133 void skb_release_head_state(struct sk_buff *skb)
1134 {
1135 	skb_dst_drop(skb);
1136 	if (skb->destructor) {
1137 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1138 		skb->destructor(skb);
1139 	}
1140 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1141 	nf_conntrack_put(skb_nfct(skb));
1142 #endif
1143 	skb_ext_put(skb);
1144 }
1145 
1146 /* Free everything but the sk_buff shell. */
1147 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1148 {
1149 	skb_release_head_state(skb);
1150 	if (likely(skb->head))
1151 		skb_release_data(skb, reason);
1152 }
1153 
1154 /**
1155  *	__kfree_skb - private function
1156  *	@skb: buffer
1157  *
1158  *	Free an sk_buff. Release anything attached to the buffer.
1159  *	Clean the state. This is an internal helper function. Users should
1160  *	always call kfree_skb
1161  */
1162 
1163 void __kfree_skb(struct sk_buff *skb)
1164 {
1165 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1166 	kfree_skbmem(skb);
1167 }
1168 EXPORT_SYMBOL(__kfree_skb);
1169 
1170 static __always_inline
1171 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1172 			  enum skb_drop_reason reason)
1173 {
1174 	if (unlikely(!skb_unref(skb)))
1175 		return false;
1176 
1177 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1178 			       u32_get_bits(reason,
1179 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1180 				SKB_DROP_REASON_SUBSYS_NUM);
1181 
1182 	if (reason == SKB_CONSUMED)
1183 		trace_consume_skb(skb, __builtin_return_address(0));
1184 	else
1185 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1186 	return true;
1187 }
1188 
1189 /**
1190  *	sk_skb_reason_drop - free an sk_buff with special reason
1191  *	@sk: the socket to receive @skb, or NULL if not applicable
1192  *	@skb: buffer to free
1193  *	@reason: reason why this skb is dropped
1194  *
1195  *	Drop a reference to the buffer and free it if the usage count has hit
1196  *	zero. Meanwhile, pass the receiving socket and drop reason to
1197  *	'kfree_skb' tracepoint.
1198  */
1199 void __fix_address
1200 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1201 {
1202 	if (__sk_skb_reason_drop(sk, skb, reason))
1203 		__kfree_skb(skb);
1204 }
1205 EXPORT_SYMBOL(sk_skb_reason_drop);
1206 
1207 #define KFREE_SKB_BULK_SIZE	16
1208 
1209 struct skb_free_array {
1210 	unsigned int skb_count;
1211 	void *skb_array[KFREE_SKB_BULK_SIZE];
1212 };
1213 
1214 static void kfree_skb_add_bulk(struct sk_buff *skb,
1215 			       struct skb_free_array *sa,
1216 			       enum skb_drop_reason reason)
1217 {
1218 	/* if SKB is a clone, don't handle this case */
1219 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1220 		__kfree_skb(skb);
1221 		return;
1222 	}
1223 
1224 	skb_release_all(skb, reason);
1225 	sa->skb_array[sa->skb_count++] = skb;
1226 
1227 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1228 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1229 				     sa->skb_array);
1230 		sa->skb_count = 0;
1231 	}
1232 }
1233 
1234 void __fix_address
1235 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1236 {
1237 	struct skb_free_array sa;
1238 
1239 	sa.skb_count = 0;
1240 
1241 	while (segs) {
1242 		struct sk_buff *next = segs->next;
1243 
1244 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1245 			skb_poison_list(segs);
1246 			kfree_skb_add_bulk(segs, &sa, reason);
1247 		}
1248 
1249 		segs = next;
1250 	}
1251 
1252 	if (sa.skb_count)
1253 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1254 }
1255 EXPORT_SYMBOL(kfree_skb_list_reason);
1256 
1257 /* Dump skb information and contents.
1258  *
1259  * Must only be called from net_ratelimit()-ed paths.
1260  *
1261  * Dumps whole packets if full_pkt, only headers otherwise.
1262  */
1263 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1264 {
1265 	struct skb_shared_info *sh = skb_shinfo(skb);
1266 	struct net_device *dev = skb->dev;
1267 	struct sock *sk = skb->sk;
1268 	struct sk_buff *list_skb;
1269 	bool has_mac, has_trans;
1270 	int headroom, tailroom;
1271 	int i, len, seg_len;
1272 
1273 	if (full_pkt)
1274 		len = skb->len;
1275 	else
1276 		len = min_t(int, skb->len, MAX_HEADER + 128);
1277 
1278 	headroom = skb_headroom(skb);
1279 	tailroom = skb_tailroom(skb);
1280 
1281 	has_mac = skb_mac_header_was_set(skb);
1282 	has_trans = skb_transport_header_was_set(skb);
1283 
1284 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1285 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1286 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1287 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1288 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1289 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1290 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1291 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1292 	       has_mac ? skb->mac_header : -1,
1293 	       has_mac ? skb_mac_header_len(skb) : -1,
1294 	       skb->mac_len,
1295 	       skb->network_header,
1296 	       has_trans ? skb_network_header_len(skb) : -1,
1297 	       has_trans ? skb->transport_header : -1,
1298 	       sh->tx_flags, sh->nr_frags,
1299 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1300 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1301 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1302 	       skb->hash, skb->sw_hash, skb->l4_hash,
1303 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1304 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1305 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1306 	       skb->inner_network_header, skb->inner_transport_header);
1307 
1308 	if (dev)
1309 		printk("%sdev name=%s feat=%pNF\n",
1310 		       level, dev->name, &dev->features);
1311 	if (sk)
1312 		printk("%ssk family=%hu type=%u proto=%u\n",
1313 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1314 
1315 	if (full_pkt && headroom)
1316 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1317 			       16, 1, skb->head, headroom, false);
1318 
1319 	seg_len = min_t(int, skb_headlen(skb), len);
1320 	if (seg_len)
1321 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1322 			       16, 1, skb->data, seg_len, false);
1323 	len -= seg_len;
1324 
1325 	if (full_pkt && tailroom)
1326 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1327 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1328 
1329 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1330 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1331 		u32 p_off, p_len, copied;
1332 		struct page *p;
1333 		u8 *vaddr;
1334 
1335 		if (skb_frag_is_net_iov(frag)) {
1336 			printk("%sskb frag %d: not readable\n", level, i);
1337 			len -= skb_frag_size(frag);
1338 			if (!len)
1339 				break;
1340 			continue;
1341 		}
1342 
1343 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1344 				      skb_frag_size(frag), p, p_off, p_len,
1345 				      copied) {
1346 			seg_len = min_t(int, p_len, len);
1347 			vaddr = kmap_atomic(p);
1348 			print_hex_dump(level, "skb frag:     ",
1349 				       DUMP_PREFIX_OFFSET,
1350 				       16, 1, vaddr + p_off, seg_len, false);
1351 			kunmap_atomic(vaddr);
1352 			len -= seg_len;
1353 			if (!len)
1354 				break;
1355 		}
1356 	}
1357 
1358 	if (full_pkt && skb_has_frag_list(skb)) {
1359 		printk("skb fraglist:\n");
1360 		skb_walk_frags(skb, list_skb)
1361 			skb_dump(level, list_skb, true);
1362 	}
1363 }
1364 EXPORT_SYMBOL(skb_dump);
1365 
1366 /**
1367  *	skb_tx_error - report an sk_buff xmit error
1368  *	@skb: buffer that triggered an error
1369  *
1370  *	Report xmit error if a device callback is tracking this skb.
1371  *	skb must be freed afterwards.
1372  */
1373 void skb_tx_error(struct sk_buff *skb)
1374 {
1375 	if (skb) {
1376 		skb_zcopy_downgrade_managed(skb);
1377 		skb_zcopy_clear(skb, true);
1378 	}
1379 }
1380 EXPORT_SYMBOL(skb_tx_error);
1381 
1382 #ifdef CONFIG_TRACEPOINTS
1383 /**
1384  *	consume_skb - free an skbuff
1385  *	@skb: buffer to free
1386  *
1387  *	Drop a ref to the buffer and free it if the usage count has hit zero
1388  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1389  *	is being dropped after a failure and notes that
1390  */
1391 void consume_skb(struct sk_buff *skb)
1392 {
1393 	if (!skb_unref(skb))
1394 		return;
1395 
1396 	trace_consume_skb(skb, __builtin_return_address(0));
1397 	__kfree_skb(skb);
1398 }
1399 EXPORT_SYMBOL(consume_skb);
1400 #endif
1401 
1402 /**
1403  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1404  *	@skb: buffer to free
1405  *
1406  *	Alike consume_skb(), but this variant assumes that this is the last
1407  *	skb reference and all the head states have been already dropped
1408  */
1409 void __consume_stateless_skb(struct sk_buff *skb)
1410 {
1411 	trace_consume_skb(skb, __builtin_return_address(0));
1412 	skb_release_data(skb, SKB_CONSUMED);
1413 	kfree_skbmem(skb);
1414 }
1415 
1416 static void napi_skb_cache_put(struct sk_buff *skb)
1417 {
1418 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1419 	u32 i;
1420 
1421 	if (!kasan_mempool_poison_object(skb))
1422 		return;
1423 
1424 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1425 	nc->skb_cache[nc->skb_count++] = skb;
1426 
1427 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1428 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1429 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1430 						kmem_cache_size(net_hotdata.skbuff_cache));
1431 
1432 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1433 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1434 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1435 	}
1436 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1437 }
1438 
1439 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1440 {
1441 	skb_release_all(skb, reason);
1442 	napi_skb_cache_put(skb);
1443 }
1444 
1445 void napi_skb_free_stolen_head(struct sk_buff *skb)
1446 {
1447 	if (unlikely(skb->slow_gro)) {
1448 		nf_reset_ct(skb);
1449 		skb_dst_drop(skb);
1450 		skb_ext_put(skb);
1451 		skb_orphan(skb);
1452 		skb->slow_gro = 0;
1453 	}
1454 	napi_skb_cache_put(skb);
1455 }
1456 
1457 void napi_consume_skb(struct sk_buff *skb, int budget)
1458 {
1459 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1460 	if (unlikely(!budget)) {
1461 		dev_consume_skb_any(skb);
1462 		return;
1463 	}
1464 
1465 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1466 
1467 	if (!skb_unref(skb))
1468 		return;
1469 
1470 	/* if reaching here SKB is ready to free */
1471 	trace_consume_skb(skb, __builtin_return_address(0));
1472 
1473 	/* if SKB is a clone, don't handle this case */
1474 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1475 		__kfree_skb(skb);
1476 		return;
1477 	}
1478 
1479 	skb_release_all(skb, SKB_CONSUMED);
1480 	napi_skb_cache_put(skb);
1481 }
1482 EXPORT_SYMBOL(napi_consume_skb);
1483 
1484 /* Make sure a field is contained by headers group */
1485 #define CHECK_SKB_FIELD(field) \
1486 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1487 		     offsetof(struct sk_buff, headers.field));	\
1488 
1489 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1490 {
1491 	new->tstamp		= old->tstamp;
1492 	/* We do not copy old->sk */
1493 	new->dev		= old->dev;
1494 	memcpy(new->cb, old->cb, sizeof(old->cb));
1495 	skb_dst_copy(new, old);
1496 	__skb_ext_copy(new, old);
1497 	__nf_copy(new, old, false);
1498 
1499 	/* Note : this field could be in the headers group.
1500 	 * It is not yet because we do not want to have a 16 bit hole
1501 	 */
1502 	new->queue_mapping = old->queue_mapping;
1503 
1504 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1505 	CHECK_SKB_FIELD(protocol);
1506 	CHECK_SKB_FIELD(csum);
1507 	CHECK_SKB_FIELD(hash);
1508 	CHECK_SKB_FIELD(priority);
1509 	CHECK_SKB_FIELD(skb_iif);
1510 	CHECK_SKB_FIELD(vlan_proto);
1511 	CHECK_SKB_FIELD(vlan_tci);
1512 	CHECK_SKB_FIELD(transport_header);
1513 	CHECK_SKB_FIELD(network_header);
1514 	CHECK_SKB_FIELD(mac_header);
1515 	CHECK_SKB_FIELD(inner_protocol);
1516 	CHECK_SKB_FIELD(inner_transport_header);
1517 	CHECK_SKB_FIELD(inner_network_header);
1518 	CHECK_SKB_FIELD(inner_mac_header);
1519 	CHECK_SKB_FIELD(mark);
1520 #ifdef CONFIG_NETWORK_SECMARK
1521 	CHECK_SKB_FIELD(secmark);
1522 #endif
1523 #ifdef CONFIG_NET_RX_BUSY_POLL
1524 	CHECK_SKB_FIELD(napi_id);
1525 #endif
1526 	CHECK_SKB_FIELD(alloc_cpu);
1527 #ifdef CONFIG_XPS
1528 	CHECK_SKB_FIELD(sender_cpu);
1529 #endif
1530 #ifdef CONFIG_NET_SCHED
1531 	CHECK_SKB_FIELD(tc_index);
1532 #endif
1533 
1534 }
1535 
1536 /*
1537  * You should not add any new code to this function.  Add it to
1538  * __copy_skb_header above instead.
1539  */
1540 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1541 {
1542 #define C(x) n->x = skb->x
1543 
1544 	n->next = n->prev = NULL;
1545 	n->sk = NULL;
1546 	__copy_skb_header(n, skb);
1547 
1548 	C(len);
1549 	C(data_len);
1550 	C(mac_len);
1551 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1552 	n->cloned = 1;
1553 	n->nohdr = 0;
1554 	n->peeked = 0;
1555 	C(pfmemalloc);
1556 	C(pp_recycle);
1557 	n->destructor = NULL;
1558 	C(tail);
1559 	C(end);
1560 	C(head);
1561 	C(head_frag);
1562 	C(data);
1563 	C(truesize);
1564 	refcount_set(&n->users, 1);
1565 
1566 	atomic_inc(&(skb_shinfo(skb)->dataref));
1567 	skb->cloned = 1;
1568 
1569 	return n;
1570 #undef C
1571 }
1572 
1573 /**
1574  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1575  * @first: first sk_buff of the msg
1576  */
1577 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1578 {
1579 	struct sk_buff *n;
1580 
1581 	n = alloc_skb(0, GFP_ATOMIC);
1582 	if (!n)
1583 		return NULL;
1584 
1585 	n->len = first->len;
1586 	n->data_len = first->len;
1587 	n->truesize = first->truesize;
1588 
1589 	skb_shinfo(n)->frag_list = first;
1590 
1591 	__copy_skb_header(n, first);
1592 	n->destructor = NULL;
1593 
1594 	return n;
1595 }
1596 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1597 
1598 /**
1599  *	skb_morph	-	morph one skb into another
1600  *	@dst: the skb to receive the contents
1601  *	@src: the skb to supply the contents
1602  *
1603  *	This is identical to skb_clone except that the target skb is
1604  *	supplied by the user.
1605  *
1606  *	The target skb is returned upon exit.
1607  */
1608 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1609 {
1610 	skb_release_all(dst, SKB_CONSUMED);
1611 	return __skb_clone(dst, src);
1612 }
1613 EXPORT_SYMBOL_GPL(skb_morph);
1614 
1615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1616 {
1617 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1618 	struct user_struct *user;
1619 
1620 	if (capable(CAP_IPC_LOCK) || !size)
1621 		return 0;
1622 
1623 	rlim = rlimit(RLIMIT_MEMLOCK);
1624 	if (rlim == RLIM_INFINITY)
1625 		return 0;
1626 
1627 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1628 	max_pg = rlim >> PAGE_SHIFT;
1629 	user = mmp->user ? : current_user();
1630 
1631 	old_pg = atomic_long_read(&user->locked_vm);
1632 	do {
1633 		new_pg = old_pg + num_pg;
1634 		if (new_pg > max_pg)
1635 			return -ENOBUFS;
1636 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1637 
1638 	if (!mmp->user) {
1639 		mmp->user = get_uid(user);
1640 		mmp->num_pg = num_pg;
1641 	} else {
1642 		mmp->num_pg += num_pg;
1643 	}
1644 
1645 	return 0;
1646 }
1647 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1648 
1649 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1650 {
1651 	if (mmp->user) {
1652 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1653 		free_uid(mmp->user);
1654 	}
1655 }
1656 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1657 
1658 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1659 					    bool devmem)
1660 {
1661 	struct ubuf_info_msgzc *uarg;
1662 	struct sk_buff *skb;
1663 
1664 	WARN_ON_ONCE(!in_task());
1665 
1666 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1667 	if (!skb)
1668 		return NULL;
1669 
1670 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1671 	uarg = (void *)skb->cb;
1672 	uarg->mmp.user = NULL;
1673 
1674 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1675 		kfree_skb(skb);
1676 		return NULL;
1677 	}
1678 
1679 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1680 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1681 	uarg->len = 1;
1682 	uarg->bytelen = size;
1683 	uarg->zerocopy = 1;
1684 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1685 	refcount_set(&uarg->ubuf.refcnt, 1);
1686 	sock_hold(sk);
1687 
1688 	return &uarg->ubuf;
1689 }
1690 
1691 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1692 {
1693 	return container_of((void *)uarg, struct sk_buff, cb);
1694 }
1695 
1696 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1697 				       struct ubuf_info *uarg, bool devmem)
1698 {
1699 	if (uarg) {
1700 		struct ubuf_info_msgzc *uarg_zc;
1701 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1702 		u32 bytelen, next;
1703 
1704 		/* there might be non MSG_ZEROCOPY users */
1705 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1706 			return NULL;
1707 
1708 		/* realloc only when socket is locked (TCP, UDP cork),
1709 		 * so uarg->len and sk_zckey access is serialized
1710 		 */
1711 		if (!sock_owned_by_user(sk)) {
1712 			WARN_ON_ONCE(1);
1713 			return NULL;
1714 		}
1715 
1716 		uarg_zc = uarg_to_msgzc(uarg);
1717 		bytelen = uarg_zc->bytelen + size;
1718 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1719 			/* TCP can create new skb to attach new uarg */
1720 			if (sk->sk_type == SOCK_STREAM)
1721 				goto new_alloc;
1722 			return NULL;
1723 		}
1724 
1725 		next = (u32)atomic_read(&sk->sk_zckey);
1726 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1727 			if (likely(!devmem) &&
1728 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1729 				return NULL;
1730 			uarg_zc->len++;
1731 			uarg_zc->bytelen = bytelen;
1732 			atomic_set(&sk->sk_zckey, ++next);
1733 
1734 			/* no extra ref when appending to datagram (MSG_MORE) */
1735 			if (sk->sk_type == SOCK_STREAM)
1736 				net_zcopy_get(uarg);
1737 
1738 			return uarg;
1739 		}
1740 	}
1741 
1742 new_alloc:
1743 	return msg_zerocopy_alloc(sk, size, devmem);
1744 }
1745 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1746 
1747 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1748 {
1749 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1750 	u32 old_lo, old_hi;
1751 	u64 sum_len;
1752 
1753 	old_lo = serr->ee.ee_info;
1754 	old_hi = serr->ee.ee_data;
1755 	sum_len = old_hi - old_lo + 1ULL + len;
1756 
1757 	if (sum_len >= (1ULL << 32))
1758 		return false;
1759 
1760 	if (lo != old_hi + 1)
1761 		return false;
1762 
1763 	serr->ee.ee_data += len;
1764 	return true;
1765 }
1766 
1767 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1768 {
1769 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1770 	struct sock_exterr_skb *serr;
1771 	struct sock *sk = skb->sk;
1772 	struct sk_buff_head *q;
1773 	unsigned long flags;
1774 	bool is_zerocopy;
1775 	u32 lo, hi;
1776 	u16 len;
1777 
1778 	mm_unaccount_pinned_pages(&uarg->mmp);
1779 
1780 	/* if !len, there was only 1 call, and it was aborted
1781 	 * so do not queue a completion notification
1782 	 */
1783 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1784 		goto release;
1785 
1786 	len = uarg->len;
1787 	lo = uarg->id;
1788 	hi = uarg->id + len - 1;
1789 	is_zerocopy = uarg->zerocopy;
1790 
1791 	serr = SKB_EXT_ERR(skb);
1792 	memset(serr, 0, sizeof(*serr));
1793 	serr->ee.ee_errno = 0;
1794 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1795 	serr->ee.ee_data = hi;
1796 	serr->ee.ee_info = lo;
1797 	if (!is_zerocopy)
1798 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1799 
1800 	q = &sk->sk_error_queue;
1801 	spin_lock_irqsave(&q->lock, flags);
1802 	tail = skb_peek_tail(q);
1803 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1804 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1805 		__skb_queue_tail(q, skb);
1806 		skb = NULL;
1807 	}
1808 	spin_unlock_irqrestore(&q->lock, flags);
1809 
1810 	sk_error_report(sk);
1811 
1812 release:
1813 	consume_skb(skb);
1814 	sock_put(sk);
1815 }
1816 
1817 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1818 				  bool success)
1819 {
1820 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1821 
1822 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1823 
1824 	if (refcount_dec_and_test(&uarg->refcnt))
1825 		__msg_zerocopy_callback(uarg_zc);
1826 }
1827 
1828 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1829 {
1830 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1831 
1832 	atomic_dec(&sk->sk_zckey);
1833 	uarg_to_msgzc(uarg)->len--;
1834 
1835 	if (have_uref)
1836 		msg_zerocopy_complete(NULL, uarg, true);
1837 }
1838 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1839 
1840 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1841 	.complete = msg_zerocopy_complete,
1842 };
1843 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1844 
1845 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1846 			     struct msghdr *msg, int len,
1847 			     struct ubuf_info *uarg,
1848 			     struct net_devmem_dmabuf_binding *binding)
1849 {
1850 	int err, orig_len = skb->len;
1851 
1852 	if (uarg->ops->link_skb) {
1853 		err = uarg->ops->link_skb(skb, uarg);
1854 		if (err)
1855 			return err;
1856 	} else {
1857 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1858 
1859 		/* An skb can only point to one uarg. This edge case happens
1860 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1861 		 * a new alloc.
1862 		 */
1863 		if (orig_uarg && uarg != orig_uarg)
1864 			return -EEXIST;
1865 	}
1866 
1867 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1868 				      binding);
1869 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1870 		struct sock *save_sk = skb->sk;
1871 
1872 		/* Streams do not free skb on error. Reset to prev state. */
1873 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1874 		skb->sk = sk;
1875 		___pskb_trim(skb, orig_len);
1876 		skb->sk = save_sk;
1877 		return err;
1878 	}
1879 
1880 	skb_zcopy_set(skb, uarg, NULL);
1881 	return skb->len - orig_len;
1882 }
1883 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1884 
1885 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1886 {
1887 	int i;
1888 
1889 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1890 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1891 		skb_frag_ref(skb, i);
1892 }
1893 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1894 
1895 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1896 			      gfp_t gfp_mask)
1897 {
1898 	if (skb_zcopy(orig)) {
1899 		if (skb_zcopy(nskb)) {
1900 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1901 			if (!gfp_mask) {
1902 				WARN_ON_ONCE(1);
1903 				return -ENOMEM;
1904 			}
1905 			if (skb_uarg(nskb) == skb_uarg(orig))
1906 				return 0;
1907 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1908 				return -EIO;
1909 		}
1910 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1911 	}
1912 	return 0;
1913 }
1914 
1915 /**
1916  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1917  *	@skb: the skb to modify
1918  *	@gfp_mask: allocation priority
1919  *
1920  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1921  *	It will copy all frags into kernel and drop the reference
1922  *	to userspace pages.
1923  *
1924  *	If this function is called from an interrupt gfp_mask() must be
1925  *	%GFP_ATOMIC.
1926  *
1927  *	Returns 0 on success or a negative error code on failure
1928  *	to allocate kernel memory to copy to.
1929  */
1930 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1931 {
1932 	int num_frags = skb_shinfo(skb)->nr_frags;
1933 	struct page *page, *head = NULL;
1934 	int i, order, psize, new_frags;
1935 	u32 d_off;
1936 
1937 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1938 		return -EINVAL;
1939 
1940 	if (!skb_frags_readable(skb))
1941 		return -EFAULT;
1942 
1943 	if (!num_frags)
1944 		goto release;
1945 
1946 	/* We might have to allocate high order pages, so compute what minimum
1947 	 * page order is needed.
1948 	 */
1949 	order = 0;
1950 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1951 		order++;
1952 	psize = (PAGE_SIZE << order);
1953 
1954 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1955 	for (i = 0; i < new_frags; i++) {
1956 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1957 		if (!page) {
1958 			while (head) {
1959 				struct page *next = (struct page *)page_private(head);
1960 				put_page(head);
1961 				head = next;
1962 			}
1963 			return -ENOMEM;
1964 		}
1965 		set_page_private(page, (unsigned long)head);
1966 		head = page;
1967 	}
1968 
1969 	page = head;
1970 	d_off = 0;
1971 	for (i = 0; i < num_frags; i++) {
1972 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1973 		u32 p_off, p_len, copied;
1974 		struct page *p;
1975 		u8 *vaddr;
1976 
1977 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1978 				      p, p_off, p_len, copied) {
1979 			u32 copy, done = 0;
1980 			vaddr = kmap_atomic(p);
1981 
1982 			while (done < p_len) {
1983 				if (d_off == psize) {
1984 					d_off = 0;
1985 					page = (struct page *)page_private(page);
1986 				}
1987 				copy = min_t(u32, psize - d_off, p_len - done);
1988 				memcpy(page_address(page) + d_off,
1989 				       vaddr + p_off + done, copy);
1990 				done += copy;
1991 				d_off += copy;
1992 			}
1993 			kunmap_atomic(vaddr);
1994 		}
1995 	}
1996 
1997 	/* skb frags release userspace buffers */
1998 	for (i = 0; i < num_frags; i++)
1999 		skb_frag_unref(skb, i);
2000 
2001 	/* skb frags point to kernel buffers */
2002 	for (i = 0; i < new_frags - 1; i++) {
2003 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2004 		head = (struct page *)page_private(head);
2005 	}
2006 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2007 			       d_off);
2008 	skb_shinfo(skb)->nr_frags = new_frags;
2009 
2010 release:
2011 	skb_zcopy_clear(skb, false);
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2015 
2016 /**
2017  *	skb_clone	-	duplicate an sk_buff
2018  *	@skb: buffer to clone
2019  *	@gfp_mask: allocation priority
2020  *
2021  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2022  *	copies share the same packet data but not structure. The new
2023  *	buffer has a reference count of 1. If the allocation fails the
2024  *	function returns %NULL otherwise the new buffer is returned.
2025  *
2026  *	If this function is called from an interrupt gfp_mask() must be
2027  *	%GFP_ATOMIC.
2028  */
2029 
2030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2031 {
2032 	struct sk_buff_fclones *fclones = container_of(skb,
2033 						       struct sk_buff_fclones,
2034 						       skb1);
2035 	struct sk_buff *n;
2036 
2037 	if (skb_orphan_frags(skb, gfp_mask))
2038 		return NULL;
2039 
2040 	if (skb->fclone == SKB_FCLONE_ORIG &&
2041 	    refcount_read(&fclones->fclone_ref) == 1) {
2042 		n = &fclones->skb2;
2043 		refcount_set(&fclones->fclone_ref, 2);
2044 		n->fclone = SKB_FCLONE_CLONE;
2045 	} else {
2046 		if (skb_pfmemalloc(skb))
2047 			gfp_mask |= __GFP_MEMALLOC;
2048 
2049 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2050 		if (!n)
2051 			return NULL;
2052 
2053 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2054 	}
2055 
2056 	return __skb_clone(n, skb);
2057 }
2058 EXPORT_SYMBOL(skb_clone);
2059 
2060 void skb_headers_offset_update(struct sk_buff *skb, int off)
2061 {
2062 	/* Only adjust this if it actually is csum_start rather than csum */
2063 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2064 		skb->csum_start += off;
2065 	/* {transport,network,mac}_header and tail are relative to skb->head */
2066 	skb->transport_header += off;
2067 	skb->network_header   += off;
2068 	if (skb_mac_header_was_set(skb))
2069 		skb->mac_header += off;
2070 	skb->inner_transport_header += off;
2071 	skb->inner_network_header += off;
2072 	skb->inner_mac_header += off;
2073 }
2074 EXPORT_SYMBOL(skb_headers_offset_update);
2075 
2076 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2077 {
2078 	__copy_skb_header(new, old);
2079 
2080 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2081 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2082 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2083 }
2084 EXPORT_SYMBOL(skb_copy_header);
2085 
2086 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2087 {
2088 	if (skb_pfmemalloc(skb))
2089 		return SKB_ALLOC_RX;
2090 	return 0;
2091 }
2092 
2093 /**
2094  *	skb_copy	-	create private copy of an sk_buff
2095  *	@skb: buffer to copy
2096  *	@gfp_mask: allocation priority
2097  *
2098  *	Make a copy of both an &sk_buff and its data. This is used when the
2099  *	caller wishes to modify the data and needs a private copy of the
2100  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2101  *	on success. The returned buffer has a reference count of 1.
2102  *
2103  *	As by-product this function converts non-linear &sk_buff to linear
2104  *	one, so that &sk_buff becomes completely private and caller is allowed
2105  *	to modify all the data of returned buffer. This means that this
2106  *	function is not recommended for use in circumstances when only
2107  *	header is going to be modified. Use pskb_copy() instead.
2108  */
2109 
2110 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2111 {
2112 	struct sk_buff *n;
2113 	unsigned int size;
2114 	int headerlen;
2115 
2116 	if (!skb_frags_readable(skb))
2117 		return NULL;
2118 
2119 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2120 		return NULL;
2121 
2122 	headerlen = skb_headroom(skb);
2123 	size = skb_end_offset(skb) + skb->data_len;
2124 	n = __alloc_skb(size, gfp_mask,
2125 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2126 	if (!n)
2127 		return NULL;
2128 
2129 	/* Set the data pointer */
2130 	skb_reserve(n, headerlen);
2131 	/* Set the tail pointer and length */
2132 	skb_put(n, skb->len);
2133 
2134 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2135 
2136 	skb_copy_header(n, skb);
2137 	return n;
2138 }
2139 EXPORT_SYMBOL(skb_copy);
2140 
2141 /**
2142  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2143  *	@skb: buffer to copy
2144  *	@headroom: headroom of new skb
2145  *	@gfp_mask: allocation priority
2146  *	@fclone: if true allocate the copy of the skb from the fclone
2147  *	cache instead of the head cache; it is recommended to set this
2148  *	to true for the cases where the copy will likely be cloned
2149  *
2150  *	Make a copy of both an &sk_buff and part of its data, located
2151  *	in header. Fragmented data remain shared. This is used when
2152  *	the caller wishes to modify only header of &sk_buff and needs
2153  *	private copy of the header to alter. Returns %NULL on failure
2154  *	or the pointer to the buffer on success.
2155  *	The returned buffer has a reference count of 1.
2156  */
2157 
2158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2159 				   gfp_t gfp_mask, bool fclone)
2160 {
2161 	unsigned int size = skb_headlen(skb) + headroom;
2162 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2163 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2164 
2165 	if (!n)
2166 		goto out;
2167 
2168 	/* Set the data pointer */
2169 	skb_reserve(n, headroom);
2170 	/* Set the tail pointer and length */
2171 	skb_put(n, skb_headlen(skb));
2172 	/* Copy the bytes */
2173 	skb_copy_from_linear_data(skb, n->data, n->len);
2174 
2175 	n->truesize += skb->data_len;
2176 	n->data_len  = skb->data_len;
2177 	n->len	     = skb->len;
2178 
2179 	if (skb_shinfo(skb)->nr_frags) {
2180 		int i;
2181 
2182 		if (skb_orphan_frags(skb, gfp_mask) ||
2183 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2184 			kfree_skb(n);
2185 			n = NULL;
2186 			goto out;
2187 		}
2188 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2189 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2190 			skb_frag_ref(skb, i);
2191 		}
2192 		skb_shinfo(n)->nr_frags = i;
2193 	}
2194 
2195 	if (skb_has_frag_list(skb)) {
2196 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2197 		skb_clone_fraglist(n);
2198 	}
2199 
2200 	skb_copy_header(n, skb);
2201 out:
2202 	return n;
2203 }
2204 EXPORT_SYMBOL(__pskb_copy_fclone);
2205 
2206 /**
2207  *	pskb_expand_head - reallocate header of &sk_buff
2208  *	@skb: buffer to reallocate
2209  *	@nhead: room to add at head
2210  *	@ntail: room to add at tail
2211  *	@gfp_mask: allocation priority
2212  *
2213  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2214  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2215  *	reference count of 1. Returns zero in the case of success or error,
2216  *	if expansion failed. In the last case, &sk_buff is not changed.
2217  *
2218  *	All the pointers pointing into skb header may change and must be
2219  *	reloaded after call to this function.
2220  */
2221 
2222 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2223 		     gfp_t gfp_mask)
2224 {
2225 	unsigned int osize = skb_end_offset(skb);
2226 	unsigned int size = osize + nhead + ntail;
2227 	long off;
2228 	u8 *data;
2229 	int i;
2230 
2231 	BUG_ON(nhead < 0);
2232 
2233 	BUG_ON(skb_shared(skb));
2234 
2235 	skb_zcopy_downgrade_managed(skb);
2236 
2237 	if (skb_pfmemalloc(skb))
2238 		gfp_mask |= __GFP_MEMALLOC;
2239 
2240 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2241 	if (!data)
2242 		goto nodata;
2243 	size = SKB_WITH_OVERHEAD(size);
2244 
2245 	/* Copy only real data... and, alas, header. This should be
2246 	 * optimized for the cases when header is void.
2247 	 */
2248 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2249 
2250 	memcpy((struct skb_shared_info *)(data + size),
2251 	       skb_shinfo(skb),
2252 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2253 
2254 	/*
2255 	 * if shinfo is shared we must drop the old head gracefully, but if it
2256 	 * is not we can just drop the old head and let the existing refcount
2257 	 * be since all we did is relocate the values
2258 	 */
2259 	if (skb_cloned(skb)) {
2260 		if (skb_orphan_frags(skb, gfp_mask))
2261 			goto nofrags;
2262 		if (skb_zcopy(skb))
2263 			refcount_inc(&skb_uarg(skb)->refcnt);
2264 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2265 			skb_frag_ref(skb, i);
2266 
2267 		if (skb_has_frag_list(skb))
2268 			skb_clone_fraglist(skb);
2269 
2270 		skb_release_data(skb, SKB_CONSUMED);
2271 	} else {
2272 		skb_free_head(skb);
2273 	}
2274 	off = (data + nhead) - skb->head;
2275 
2276 	skb->head     = data;
2277 	skb->head_frag = 0;
2278 	skb->data    += off;
2279 
2280 	skb_set_end_offset(skb, size);
2281 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2282 	off           = nhead;
2283 #endif
2284 	skb->tail	      += off;
2285 	skb_headers_offset_update(skb, nhead);
2286 	skb->cloned   = 0;
2287 	skb->hdr_len  = 0;
2288 	skb->nohdr    = 0;
2289 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2290 
2291 	skb_metadata_clear(skb);
2292 
2293 	/* It is not generally safe to change skb->truesize.
2294 	 * For the moment, we really care of rx path, or
2295 	 * when skb is orphaned (not attached to a socket).
2296 	 */
2297 	if (!skb->sk || skb->destructor == sock_edemux)
2298 		skb->truesize += size - osize;
2299 
2300 	return 0;
2301 
2302 nofrags:
2303 	skb_kfree_head(data, size);
2304 nodata:
2305 	return -ENOMEM;
2306 }
2307 EXPORT_SYMBOL(pskb_expand_head);
2308 
2309 /* Make private copy of skb with writable head and some headroom */
2310 
2311 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2312 {
2313 	struct sk_buff *skb2;
2314 	int delta = headroom - skb_headroom(skb);
2315 
2316 	if (delta <= 0)
2317 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2318 	else {
2319 		skb2 = skb_clone(skb, GFP_ATOMIC);
2320 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2321 					     GFP_ATOMIC)) {
2322 			kfree_skb(skb2);
2323 			skb2 = NULL;
2324 		}
2325 	}
2326 	return skb2;
2327 }
2328 EXPORT_SYMBOL(skb_realloc_headroom);
2329 
2330 /* Note: We plan to rework this in linux-6.4 */
2331 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2332 {
2333 	unsigned int saved_end_offset, saved_truesize;
2334 	struct skb_shared_info *shinfo;
2335 	int res;
2336 
2337 	saved_end_offset = skb_end_offset(skb);
2338 	saved_truesize = skb->truesize;
2339 
2340 	res = pskb_expand_head(skb, 0, 0, pri);
2341 	if (res)
2342 		return res;
2343 
2344 	skb->truesize = saved_truesize;
2345 
2346 	if (likely(skb_end_offset(skb) == saved_end_offset))
2347 		return 0;
2348 
2349 	/* We can not change skb->end if the original or new value
2350 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2351 	 */
2352 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2353 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2354 		/* We think this path should not be taken.
2355 		 * Add a temporary trace to warn us just in case.
2356 		 */
2357 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2358 			    saved_end_offset, skb_end_offset(skb));
2359 		WARN_ON_ONCE(1);
2360 		return 0;
2361 	}
2362 
2363 	shinfo = skb_shinfo(skb);
2364 
2365 	/* We are about to change back skb->end,
2366 	 * we need to move skb_shinfo() to its new location.
2367 	 */
2368 	memmove(skb->head + saved_end_offset,
2369 		shinfo,
2370 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2371 
2372 	skb_set_end_offset(skb, saved_end_offset);
2373 
2374 	return 0;
2375 }
2376 
2377 /**
2378  *	skb_expand_head - reallocate header of &sk_buff
2379  *	@skb: buffer to reallocate
2380  *	@headroom: needed headroom
2381  *
2382  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2383  *	if possible; copies skb->sk to new skb as needed
2384  *	and frees original skb in case of failures.
2385  *
2386  *	It expect increased headroom and generates warning otherwise.
2387  */
2388 
2389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2390 {
2391 	int delta = headroom - skb_headroom(skb);
2392 	int osize = skb_end_offset(skb);
2393 	struct sock *sk = skb->sk;
2394 
2395 	if (WARN_ONCE(delta <= 0,
2396 		      "%s is expecting an increase in the headroom", __func__))
2397 		return skb;
2398 
2399 	delta = SKB_DATA_ALIGN(delta);
2400 	/* pskb_expand_head() might crash, if skb is shared. */
2401 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2402 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2403 
2404 		if (unlikely(!nskb))
2405 			goto fail;
2406 
2407 		if (sk)
2408 			skb_set_owner_w(nskb, sk);
2409 		consume_skb(skb);
2410 		skb = nskb;
2411 	}
2412 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2413 		goto fail;
2414 
2415 	if (sk && is_skb_wmem(skb)) {
2416 		delta = skb_end_offset(skb) - osize;
2417 		refcount_add(delta, &sk->sk_wmem_alloc);
2418 		skb->truesize += delta;
2419 	}
2420 	return skb;
2421 
2422 fail:
2423 	kfree_skb(skb);
2424 	return NULL;
2425 }
2426 EXPORT_SYMBOL(skb_expand_head);
2427 
2428 /**
2429  *	skb_copy_expand	-	copy and expand sk_buff
2430  *	@skb: buffer to copy
2431  *	@newheadroom: new free bytes at head
2432  *	@newtailroom: new free bytes at tail
2433  *	@gfp_mask: allocation priority
2434  *
2435  *	Make a copy of both an &sk_buff and its data and while doing so
2436  *	allocate additional space.
2437  *
2438  *	This is used when the caller wishes to modify the data and needs a
2439  *	private copy of the data to alter as well as more space for new fields.
2440  *	Returns %NULL on failure or the pointer to the buffer
2441  *	on success. The returned buffer has a reference count of 1.
2442  *
2443  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2444  *	is called from an interrupt.
2445  */
2446 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2447 				int newheadroom, int newtailroom,
2448 				gfp_t gfp_mask)
2449 {
2450 	/*
2451 	 *	Allocate the copy buffer
2452 	 */
2453 	int head_copy_len, head_copy_off;
2454 	struct sk_buff *n;
2455 	int oldheadroom;
2456 
2457 	if (!skb_frags_readable(skb))
2458 		return NULL;
2459 
2460 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2461 		return NULL;
2462 
2463 	oldheadroom = skb_headroom(skb);
2464 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2465 			gfp_mask, skb_alloc_rx_flag(skb),
2466 			NUMA_NO_NODE);
2467 	if (!n)
2468 		return NULL;
2469 
2470 	skb_reserve(n, newheadroom);
2471 
2472 	/* Set the tail pointer and length */
2473 	skb_put(n, skb->len);
2474 
2475 	head_copy_len = oldheadroom;
2476 	head_copy_off = 0;
2477 	if (newheadroom <= head_copy_len)
2478 		head_copy_len = newheadroom;
2479 	else
2480 		head_copy_off = newheadroom - head_copy_len;
2481 
2482 	/* Copy the linear header and data. */
2483 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2484 			     skb->len + head_copy_len));
2485 
2486 	skb_copy_header(n, skb);
2487 
2488 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2489 
2490 	return n;
2491 }
2492 EXPORT_SYMBOL(skb_copy_expand);
2493 
2494 /**
2495  *	__skb_pad		-	zero pad the tail of an skb
2496  *	@skb: buffer to pad
2497  *	@pad: space to pad
2498  *	@free_on_error: free buffer on error
2499  *
2500  *	Ensure that a buffer is followed by a padding area that is zero
2501  *	filled. Used by network drivers which may DMA or transfer data
2502  *	beyond the buffer end onto the wire.
2503  *
2504  *	May return error in out of memory cases. The skb is freed on error
2505  *	if @free_on_error is true.
2506  */
2507 
2508 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2509 {
2510 	int err;
2511 	int ntail;
2512 
2513 	/* If the skbuff is non linear tailroom is always zero.. */
2514 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2515 		memset(skb->data+skb->len, 0, pad);
2516 		return 0;
2517 	}
2518 
2519 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2520 	if (likely(skb_cloned(skb) || ntail > 0)) {
2521 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2522 		if (unlikely(err))
2523 			goto free_skb;
2524 	}
2525 
2526 	/* FIXME: The use of this function with non-linear skb's really needs
2527 	 * to be audited.
2528 	 */
2529 	err = skb_linearize(skb);
2530 	if (unlikely(err))
2531 		goto free_skb;
2532 
2533 	memset(skb->data + skb->len, 0, pad);
2534 	return 0;
2535 
2536 free_skb:
2537 	if (free_on_error)
2538 		kfree_skb(skb);
2539 	return err;
2540 }
2541 EXPORT_SYMBOL(__skb_pad);
2542 
2543 /**
2544  *	pskb_put - add data to the tail of a potentially fragmented buffer
2545  *	@skb: start of the buffer to use
2546  *	@tail: tail fragment of the buffer to use
2547  *	@len: amount of data to add
2548  *
2549  *	This function extends the used data area of the potentially
2550  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2551  *	@skb itself. If this would exceed the total buffer size the kernel
2552  *	will panic. A pointer to the first byte of the extra data is
2553  *	returned.
2554  */
2555 
2556 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2557 {
2558 	if (tail != skb) {
2559 		skb->data_len += len;
2560 		skb->len += len;
2561 	}
2562 	return skb_put(tail, len);
2563 }
2564 EXPORT_SYMBOL_GPL(pskb_put);
2565 
2566 /**
2567  *	skb_put - add data to a buffer
2568  *	@skb: buffer to use
2569  *	@len: amount of data to add
2570  *
2571  *	This function extends the used data area of the buffer. If this would
2572  *	exceed the total buffer size the kernel will panic. A pointer to the
2573  *	first byte of the extra data is returned.
2574  */
2575 void *skb_put(struct sk_buff *skb, unsigned int len)
2576 {
2577 	void *tmp = skb_tail_pointer(skb);
2578 	SKB_LINEAR_ASSERT(skb);
2579 	skb->tail += len;
2580 	skb->len  += len;
2581 	if (unlikely(skb->tail > skb->end))
2582 		skb_over_panic(skb, len, __builtin_return_address(0));
2583 	return tmp;
2584 }
2585 EXPORT_SYMBOL(skb_put);
2586 
2587 /**
2588  *	skb_push - add data to the start of a buffer
2589  *	@skb: buffer to use
2590  *	@len: amount of data to add
2591  *
2592  *	This function extends the used data area of the buffer at the buffer
2593  *	start. If this would exceed the total buffer headroom the kernel will
2594  *	panic. A pointer to the first byte of the extra data is returned.
2595  */
2596 void *skb_push(struct sk_buff *skb, unsigned int len)
2597 {
2598 	skb->data -= len;
2599 	skb->len  += len;
2600 	if (unlikely(skb->data < skb->head))
2601 		skb_under_panic(skb, len, __builtin_return_address(0));
2602 	return skb->data;
2603 }
2604 EXPORT_SYMBOL(skb_push);
2605 
2606 /**
2607  *	skb_pull - remove data from the start of a buffer
2608  *	@skb: buffer to use
2609  *	@len: amount of data to remove
2610  *
2611  *	This function removes data from the start of a buffer, returning
2612  *	the memory to the headroom. A pointer to the next data in the buffer
2613  *	is returned. Once the data has been pulled future pushes will overwrite
2614  *	the old data.
2615  */
2616 void *skb_pull(struct sk_buff *skb, unsigned int len)
2617 {
2618 	return skb_pull_inline(skb, len);
2619 }
2620 EXPORT_SYMBOL(skb_pull);
2621 
2622 /**
2623  *	skb_pull_data - remove data from the start of a buffer returning its
2624  *	original position.
2625  *	@skb: buffer to use
2626  *	@len: amount of data to remove
2627  *
2628  *	This function removes data from the start of a buffer, returning
2629  *	the memory to the headroom. A pointer to the original data in the buffer
2630  *	is returned after checking if there is enough data to pull. Once the
2631  *	data has been pulled future pushes will overwrite the old data.
2632  */
2633 void *skb_pull_data(struct sk_buff *skb, size_t len)
2634 {
2635 	void *data = skb->data;
2636 
2637 	if (skb->len < len)
2638 		return NULL;
2639 
2640 	skb_pull(skb, len);
2641 
2642 	return data;
2643 }
2644 EXPORT_SYMBOL(skb_pull_data);
2645 
2646 /**
2647  *	skb_trim - remove end from a buffer
2648  *	@skb: buffer to alter
2649  *	@len: new length
2650  *
2651  *	Cut the length of a buffer down by removing data from the tail. If
2652  *	the buffer is already under the length specified it is not modified.
2653  *	The skb must be linear.
2654  */
2655 void skb_trim(struct sk_buff *skb, unsigned int len)
2656 {
2657 	if (skb->len > len)
2658 		__skb_trim(skb, len);
2659 }
2660 EXPORT_SYMBOL(skb_trim);
2661 
2662 /* Trims skb to length len. It can change skb pointers.
2663  */
2664 
2665 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2666 {
2667 	struct sk_buff **fragp;
2668 	struct sk_buff *frag;
2669 	int offset = skb_headlen(skb);
2670 	int nfrags = skb_shinfo(skb)->nr_frags;
2671 	int i;
2672 	int err;
2673 
2674 	if (skb_cloned(skb) &&
2675 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2676 		return err;
2677 
2678 	i = 0;
2679 	if (offset >= len)
2680 		goto drop_pages;
2681 
2682 	for (; i < nfrags; i++) {
2683 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2684 
2685 		if (end < len) {
2686 			offset = end;
2687 			continue;
2688 		}
2689 
2690 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2691 
2692 drop_pages:
2693 		skb_shinfo(skb)->nr_frags = i;
2694 
2695 		for (; i < nfrags; i++)
2696 			skb_frag_unref(skb, i);
2697 
2698 		if (skb_has_frag_list(skb))
2699 			skb_drop_fraglist(skb);
2700 		goto done;
2701 	}
2702 
2703 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2704 	     fragp = &frag->next) {
2705 		int end = offset + frag->len;
2706 
2707 		if (skb_shared(frag)) {
2708 			struct sk_buff *nfrag;
2709 
2710 			nfrag = skb_clone(frag, GFP_ATOMIC);
2711 			if (unlikely(!nfrag))
2712 				return -ENOMEM;
2713 
2714 			nfrag->next = frag->next;
2715 			consume_skb(frag);
2716 			frag = nfrag;
2717 			*fragp = frag;
2718 		}
2719 
2720 		if (end < len) {
2721 			offset = end;
2722 			continue;
2723 		}
2724 
2725 		if (end > len &&
2726 		    unlikely((err = pskb_trim(frag, len - offset))))
2727 			return err;
2728 
2729 		if (frag->next)
2730 			skb_drop_list(&frag->next);
2731 		break;
2732 	}
2733 
2734 done:
2735 	if (len > skb_headlen(skb)) {
2736 		skb->data_len -= skb->len - len;
2737 		skb->len       = len;
2738 	} else {
2739 		skb->len       = len;
2740 		skb->data_len  = 0;
2741 		skb_set_tail_pointer(skb, len);
2742 	}
2743 
2744 	if (!skb->sk || skb->destructor == sock_edemux)
2745 		skb_condense(skb);
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL(___pskb_trim);
2749 
2750 /* Note : use pskb_trim_rcsum() instead of calling this directly
2751  */
2752 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2753 {
2754 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2755 		int delta = skb->len - len;
2756 
2757 		skb->csum = csum_block_sub(skb->csum,
2758 					   skb_checksum(skb, len, delta, 0),
2759 					   len);
2760 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2761 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2762 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2763 
2764 		if (offset + sizeof(__sum16) > hdlen)
2765 			return -EINVAL;
2766 	}
2767 	return __pskb_trim(skb, len);
2768 }
2769 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2770 
2771 /**
2772  *	__pskb_pull_tail - advance tail of skb header
2773  *	@skb: buffer to reallocate
2774  *	@delta: number of bytes to advance tail
2775  *
2776  *	The function makes a sense only on a fragmented &sk_buff,
2777  *	it expands header moving its tail forward and copying necessary
2778  *	data from fragmented part.
2779  *
2780  *	&sk_buff MUST have reference count of 1.
2781  *
2782  *	Returns %NULL (and &sk_buff does not change) if pull failed
2783  *	or value of new tail of skb in the case of success.
2784  *
2785  *	All the pointers pointing into skb header may change and must be
2786  *	reloaded after call to this function.
2787  */
2788 
2789 /* Moves tail of skb head forward, copying data from fragmented part,
2790  * when it is necessary.
2791  * 1. It may fail due to malloc failure.
2792  * 2. It may change skb pointers.
2793  *
2794  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2795  */
2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2797 {
2798 	/* If skb has not enough free space at tail, get new one
2799 	 * plus 128 bytes for future expansions. If we have enough
2800 	 * room at tail, reallocate without expansion only if skb is cloned.
2801 	 */
2802 	int i, k, eat = (skb->tail + delta) - skb->end;
2803 
2804 	if (!skb_frags_readable(skb))
2805 		return NULL;
2806 
2807 	if (eat > 0 || skb_cloned(skb)) {
2808 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2809 				     GFP_ATOMIC))
2810 			return NULL;
2811 	}
2812 
2813 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2814 			     skb_tail_pointer(skb), delta));
2815 
2816 	/* Optimization: no fragments, no reasons to preestimate
2817 	 * size of pulled pages. Superb.
2818 	 */
2819 	if (!skb_has_frag_list(skb))
2820 		goto pull_pages;
2821 
2822 	/* Estimate size of pulled pages. */
2823 	eat = delta;
2824 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2825 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2826 
2827 		if (size >= eat)
2828 			goto pull_pages;
2829 		eat -= size;
2830 	}
2831 
2832 	/* If we need update frag list, we are in troubles.
2833 	 * Certainly, it is possible to add an offset to skb data,
2834 	 * but taking into account that pulling is expected to
2835 	 * be very rare operation, it is worth to fight against
2836 	 * further bloating skb head and crucify ourselves here instead.
2837 	 * Pure masohism, indeed. 8)8)
2838 	 */
2839 	if (eat) {
2840 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2841 		struct sk_buff *clone = NULL;
2842 		struct sk_buff *insp = NULL;
2843 
2844 		do {
2845 			if (list->len <= eat) {
2846 				/* Eaten as whole. */
2847 				eat -= list->len;
2848 				list = list->next;
2849 				insp = list;
2850 			} else {
2851 				/* Eaten partially. */
2852 				if (skb_is_gso(skb) && !list->head_frag &&
2853 				    skb_headlen(list))
2854 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2855 
2856 				if (skb_shared(list)) {
2857 					/* Sucks! We need to fork list. :-( */
2858 					clone = skb_clone(list, GFP_ATOMIC);
2859 					if (!clone)
2860 						return NULL;
2861 					insp = list->next;
2862 					list = clone;
2863 				} else {
2864 					/* This may be pulled without
2865 					 * problems. */
2866 					insp = list;
2867 				}
2868 				if (!pskb_pull(list, eat)) {
2869 					kfree_skb(clone);
2870 					return NULL;
2871 				}
2872 				break;
2873 			}
2874 		} while (eat);
2875 
2876 		/* Free pulled out fragments. */
2877 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2878 			skb_shinfo(skb)->frag_list = list->next;
2879 			consume_skb(list);
2880 		}
2881 		/* And insert new clone at head. */
2882 		if (clone) {
2883 			clone->next = list;
2884 			skb_shinfo(skb)->frag_list = clone;
2885 		}
2886 	}
2887 	/* Success! Now we may commit changes to skb data. */
2888 
2889 pull_pages:
2890 	eat = delta;
2891 	k = 0;
2892 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2893 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2894 
2895 		if (size <= eat) {
2896 			skb_frag_unref(skb, i);
2897 			eat -= size;
2898 		} else {
2899 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2900 
2901 			*frag = skb_shinfo(skb)->frags[i];
2902 			if (eat) {
2903 				skb_frag_off_add(frag, eat);
2904 				skb_frag_size_sub(frag, eat);
2905 				if (!i)
2906 					goto end;
2907 				eat = 0;
2908 			}
2909 			k++;
2910 		}
2911 	}
2912 	skb_shinfo(skb)->nr_frags = k;
2913 
2914 end:
2915 	skb->tail     += delta;
2916 	skb->data_len -= delta;
2917 
2918 	if (!skb->data_len)
2919 		skb_zcopy_clear(skb, false);
2920 
2921 	return skb_tail_pointer(skb);
2922 }
2923 EXPORT_SYMBOL(__pskb_pull_tail);
2924 
2925 /**
2926  *	skb_copy_bits - copy bits from skb to kernel buffer
2927  *	@skb: source skb
2928  *	@offset: offset in source
2929  *	@to: destination buffer
2930  *	@len: number of bytes to copy
2931  *
2932  *	Copy the specified number of bytes from the source skb to the
2933  *	destination buffer.
2934  *
2935  *	CAUTION ! :
2936  *		If its prototype is ever changed,
2937  *		check arch/{*}/net/{*}.S files,
2938  *		since it is called from BPF assembly code.
2939  */
2940 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2941 {
2942 	int start = skb_headlen(skb);
2943 	struct sk_buff *frag_iter;
2944 	int i, copy;
2945 
2946 	if (offset > (int)skb->len - len)
2947 		goto fault;
2948 
2949 	/* Copy header. */
2950 	if ((copy = start - offset) > 0) {
2951 		if (copy > len)
2952 			copy = len;
2953 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2954 		if ((len -= copy) == 0)
2955 			return 0;
2956 		offset += copy;
2957 		to     += copy;
2958 	}
2959 
2960 	if (!skb_frags_readable(skb))
2961 		goto fault;
2962 
2963 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2964 		int end;
2965 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2966 
2967 		WARN_ON(start > offset + len);
2968 
2969 		end = start + skb_frag_size(f);
2970 		if ((copy = end - offset) > 0) {
2971 			u32 p_off, p_len, copied;
2972 			struct page *p;
2973 			u8 *vaddr;
2974 
2975 			if (copy > len)
2976 				copy = len;
2977 
2978 			skb_frag_foreach_page(f,
2979 					      skb_frag_off(f) + offset - start,
2980 					      copy, p, p_off, p_len, copied) {
2981 				vaddr = kmap_atomic(p);
2982 				memcpy(to + copied, vaddr + p_off, p_len);
2983 				kunmap_atomic(vaddr);
2984 			}
2985 
2986 			if ((len -= copy) == 0)
2987 				return 0;
2988 			offset += copy;
2989 			to     += copy;
2990 		}
2991 		start = end;
2992 	}
2993 
2994 	skb_walk_frags(skb, frag_iter) {
2995 		int end;
2996 
2997 		WARN_ON(start > offset + len);
2998 
2999 		end = start + frag_iter->len;
3000 		if ((copy = end - offset) > 0) {
3001 			if (copy > len)
3002 				copy = len;
3003 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3004 				goto fault;
3005 			if ((len -= copy) == 0)
3006 				return 0;
3007 			offset += copy;
3008 			to     += copy;
3009 		}
3010 		start = end;
3011 	}
3012 
3013 	if (!len)
3014 		return 0;
3015 
3016 fault:
3017 	return -EFAULT;
3018 }
3019 EXPORT_SYMBOL(skb_copy_bits);
3020 
3021 /*
3022  * Callback from splice_to_pipe(), if we need to release some pages
3023  * at the end of the spd in case we error'ed out in filling the pipe.
3024  */
3025 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3026 {
3027 	put_page(spd->pages[i]);
3028 }
3029 
3030 static struct page *linear_to_page(struct page *page, unsigned int *len,
3031 				   unsigned int *offset,
3032 				   struct sock *sk)
3033 {
3034 	struct page_frag *pfrag = sk_page_frag(sk);
3035 
3036 	if (!sk_page_frag_refill(sk, pfrag))
3037 		return NULL;
3038 
3039 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3040 
3041 	memcpy(page_address(pfrag->page) + pfrag->offset,
3042 	       page_address(page) + *offset, *len);
3043 	*offset = pfrag->offset;
3044 	pfrag->offset += *len;
3045 
3046 	return pfrag->page;
3047 }
3048 
3049 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3050 			     struct page *page,
3051 			     unsigned int offset)
3052 {
3053 	return	spd->nr_pages &&
3054 		spd->pages[spd->nr_pages - 1] == page &&
3055 		(spd->partial[spd->nr_pages - 1].offset +
3056 		 spd->partial[spd->nr_pages - 1].len == offset);
3057 }
3058 
3059 /*
3060  * Fill page/offset/length into spd, if it can hold more pages.
3061  */
3062 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3063 			  unsigned int *len, unsigned int offset, bool linear,
3064 			  struct sock *sk)
3065 {
3066 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3067 		return true;
3068 
3069 	if (linear) {
3070 		page = linear_to_page(page, len, &offset, sk);
3071 		if (!page)
3072 			return true;
3073 	}
3074 	if (spd_can_coalesce(spd, page, offset)) {
3075 		spd->partial[spd->nr_pages - 1].len += *len;
3076 		return false;
3077 	}
3078 	get_page(page);
3079 	spd->pages[spd->nr_pages] = page;
3080 	spd->partial[spd->nr_pages].len = *len;
3081 	spd->partial[spd->nr_pages].offset = offset;
3082 	spd->nr_pages++;
3083 
3084 	return false;
3085 }
3086 
3087 static bool __splice_segment(struct page *page, unsigned int poff,
3088 			     unsigned int plen, unsigned int *off,
3089 			     unsigned int *len,
3090 			     struct splice_pipe_desc *spd, bool linear,
3091 			     struct sock *sk)
3092 {
3093 	if (!*len)
3094 		return true;
3095 
3096 	/* skip this segment if already processed */
3097 	if (*off >= plen) {
3098 		*off -= plen;
3099 		return false;
3100 	}
3101 
3102 	/* ignore any bits we already processed */
3103 	poff += *off;
3104 	plen -= *off;
3105 	*off = 0;
3106 
3107 	do {
3108 		unsigned int flen = min(*len, plen);
3109 
3110 		if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3111 			return true;
3112 		poff += flen;
3113 		plen -= flen;
3114 		*len -= flen;
3115 	} while (*len && plen);
3116 
3117 	return false;
3118 }
3119 
3120 /*
3121  * Map linear and fragment data from the skb to spd. It reports true if the
3122  * pipe is full or if we already spliced the requested length.
3123  */
3124 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3125 			      unsigned int *offset, unsigned int *len,
3126 			      struct splice_pipe_desc *spd, struct sock *sk)
3127 {
3128 	struct sk_buff *iter;
3129 	int seg;
3130 
3131 	/* map the linear part :
3132 	 * If skb->head_frag is set, this 'linear' part is backed by a
3133 	 * fragment, and if the head is not shared with any clones then
3134 	 * we can avoid a copy since we own the head portion of this page.
3135 	 */
3136 	if (__splice_segment(virt_to_page(skb->data),
3137 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3138 			     skb_headlen(skb),
3139 			     offset, len, spd,
3140 			     skb_head_is_locked(skb),
3141 			     sk))
3142 		return true;
3143 
3144 	/*
3145 	 * then map the fragments
3146 	 */
3147 	if (!skb_frags_readable(skb))
3148 		return false;
3149 
3150 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3151 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3152 
3153 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3154 			return false;
3155 
3156 		if (__splice_segment(skb_frag_page(f),
3157 				     skb_frag_off(f), skb_frag_size(f),
3158 				     offset, len, spd, false, sk))
3159 			return true;
3160 	}
3161 
3162 	skb_walk_frags(skb, iter) {
3163 		if (*offset >= iter->len) {
3164 			*offset -= iter->len;
3165 			continue;
3166 		}
3167 		/* __skb_splice_bits() only fails if the output has no room
3168 		 * left, so no point in going over the frag_list for the error
3169 		 * case.
3170 		 */
3171 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3172 			return true;
3173 	}
3174 
3175 	return false;
3176 }
3177 
3178 /*
3179  * Map data from the skb to a pipe. Should handle both the linear part,
3180  * the fragments, and the frag list.
3181  */
3182 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3183 		    struct pipe_inode_info *pipe, unsigned int tlen,
3184 		    unsigned int flags)
3185 {
3186 	struct partial_page partial[MAX_SKB_FRAGS];
3187 	struct page *pages[MAX_SKB_FRAGS];
3188 	struct splice_pipe_desc spd = {
3189 		.pages = pages,
3190 		.partial = partial,
3191 		.nr_pages_max = MAX_SKB_FRAGS,
3192 		.ops = &nosteal_pipe_buf_ops,
3193 		.spd_release = sock_spd_release,
3194 	};
3195 	int ret = 0;
3196 
3197 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3198 
3199 	if (spd.nr_pages)
3200 		ret = splice_to_pipe(pipe, &spd);
3201 
3202 	return ret;
3203 }
3204 EXPORT_SYMBOL_GPL(skb_splice_bits);
3205 
3206 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3207 {
3208 	struct socket *sock = sk->sk_socket;
3209 	size_t size = msg_data_left(msg);
3210 
3211 	if (!sock)
3212 		return -EINVAL;
3213 
3214 	if (!sock->ops->sendmsg_locked)
3215 		return sock_no_sendmsg_locked(sk, msg, size);
3216 
3217 	return sock->ops->sendmsg_locked(sk, msg, size);
3218 }
3219 
3220 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3221 {
3222 	struct socket *sock = sk->sk_socket;
3223 
3224 	if (!sock)
3225 		return -EINVAL;
3226 	return sock_sendmsg(sock, msg);
3227 }
3228 
3229 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3230 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3231 			   int len, sendmsg_func sendmsg, int flags)
3232 {
3233 	unsigned int orig_len = len;
3234 	struct sk_buff *head = skb;
3235 	unsigned short fragidx;
3236 	int slen, ret;
3237 
3238 do_frag_list:
3239 
3240 	/* Deal with head data */
3241 	while (offset < skb_headlen(skb) && len) {
3242 		struct kvec kv;
3243 		struct msghdr msg;
3244 
3245 		slen = min_t(int, len, skb_headlen(skb) - offset);
3246 		kv.iov_base = skb->data + offset;
3247 		kv.iov_len = slen;
3248 		memset(&msg, 0, sizeof(msg));
3249 		msg.msg_flags = MSG_DONTWAIT | flags;
3250 
3251 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3252 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3253 				      sendmsg_unlocked, sk, &msg);
3254 		if (ret <= 0)
3255 			goto error;
3256 
3257 		offset += ret;
3258 		len -= ret;
3259 	}
3260 
3261 	/* All the data was skb head? */
3262 	if (!len)
3263 		goto out;
3264 
3265 	/* Make offset relative to start of frags */
3266 	offset -= skb_headlen(skb);
3267 
3268 	/* Find where we are in frag list */
3269 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3270 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3271 
3272 		if (offset < skb_frag_size(frag))
3273 			break;
3274 
3275 		offset -= skb_frag_size(frag);
3276 	}
3277 
3278 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3279 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3280 
3281 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3282 
3283 		while (slen) {
3284 			struct bio_vec bvec;
3285 			struct msghdr msg = {
3286 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3287 					     flags,
3288 			};
3289 
3290 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3291 				      skb_frag_off(frag) + offset);
3292 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3293 				      slen);
3294 
3295 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3296 					      sendmsg_unlocked, sk, &msg);
3297 			if (ret <= 0)
3298 				goto error;
3299 
3300 			len -= ret;
3301 			offset += ret;
3302 			slen -= ret;
3303 		}
3304 
3305 		offset = 0;
3306 	}
3307 
3308 	if (len) {
3309 		/* Process any frag lists */
3310 
3311 		if (skb == head) {
3312 			if (skb_has_frag_list(skb)) {
3313 				skb = skb_shinfo(skb)->frag_list;
3314 				goto do_frag_list;
3315 			}
3316 		} else if (skb->next) {
3317 			skb = skb->next;
3318 			goto do_frag_list;
3319 		}
3320 	}
3321 
3322 out:
3323 	return orig_len - len;
3324 
3325 error:
3326 	return orig_len == len ? ret : orig_len - len;
3327 }
3328 
3329 /* Send skb data on a socket. Socket must be locked. */
3330 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3331 			 int len)
3332 {
3333 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3334 }
3335 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3336 
3337 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3338 				    int offset, int len, int flags)
3339 {
3340 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3341 }
3342 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3343 
3344 /* Send skb data on a socket. Socket must be unlocked. */
3345 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3346 {
3347 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3348 }
3349 
3350 /**
3351  *	skb_store_bits - store bits from kernel buffer to skb
3352  *	@skb: destination buffer
3353  *	@offset: offset in destination
3354  *	@from: source buffer
3355  *	@len: number of bytes to copy
3356  *
3357  *	Copy the specified number of bytes from the source buffer to the
3358  *	destination skb.  This function handles all the messy bits of
3359  *	traversing fragment lists and such.
3360  */
3361 
3362 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3363 {
3364 	int start = skb_headlen(skb);
3365 	struct sk_buff *frag_iter;
3366 	int i, copy;
3367 
3368 	if (offset > (int)skb->len - len)
3369 		goto fault;
3370 
3371 	if ((copy = start - offset) > 0) {
3372 		if (copy > len)
3373 			copy = len;
3374 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3375 		if ((len -= copy) == 0)
3376 			return 0;
3377 		offset += copy;
3378 		from += copy;
3379 	}
3380 
3381 	if (!skb_frags_readable(skb))
3382 		goto fault;
3383 
3384 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3385 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3386 		int end;
3387 
3388 		WARN_ON(start > offset + len);
3389 
3390 		end = start + skb_frag_size(frag);
3391 		if ((copy = end - offset) > 0) {
3392 			u32 p_off, p_len, copied;
3393 			struct page *p;
3394 			u8 *vaddr;
3395 
3396 			if (copy > len)
3397 				copy = len;
3398 
3399 			skb_frag_foreach_page(frag,
3400 					      skb_frag_off(frag) + offset - start,
3401 					      copy, p, p_off, p_len, copied) {
3402 				vaddr = kmap_atomic(p);
3403 				memcpy(vaddr + p_off, from + copied, p_len);
3404 				kunmap_atomic(vaddr);
3405 			}
3406 
3407 			if ((len -= copy) == 0)
3408 				return 0;
3409 			offset += copy;
3410 			from += copy;
3411 		}
3412 		start = end;
3413 	}
3414 
3415 	skb_walk_frags(skb, frag_iter) {
3416 		int end;
3417 
3418 		WARN_ON(start > offset + len);
3419 
3420 		end = start + frag_iter->len;
3421 		if ((copy = end - offset) > 0) {
3422 			if (copy > len)
3423 				copy = len;
3424 			if (skb_store_bits(frag_iter, offset - start,
3425 					   from, copy))
3426 				goto fault;
3427 			if ((len -= copy) == 0)
3428 				return 0;
3429 			offset += copy;
3430 			from += copy;
3431 		}
3432 		start = end;
3433 	}
3434 	if (!len)
3435 		return 0;
3436 
3437 fault:
3438 	return -EFAULT;
3439 }
3440 EXPORT_SYMBOL(skb_store_bits);
3441 
3442 /* Checksum skb data. */
3443 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3444 {
3445 	int start = skb_headlen(skb);
3446 	int i, copy = start - offset;
3447 	struct sk_buff *frag_iter;
3448 	int pos = 0;
3449 
3450 	/* Checksum header. */
3451 	if (copy > 0) {
3452 		if (copy > len)
3453 			copy = len;
3454 		csum = csum_partial(skb->data + offset, copy, csum);
3455 		if ((len -= copy) == 0)
3456 			return csum;
3457 		offset += copy;
3458 		pos	= copy;
3459 	}
3460 
3461 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3462 		return 0;
3463 
3464 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3465 		int end;
3466 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3467 
3468 		WARN_ON(start > offset + len);
3469 
3470 		end = start + skb_frag_size(frag);
3471 		if ((copy = end - offset) > 0) {
3472 			u32 p_off, p_len, copied;
3473 			struct page *p;
3474 			__wsum csum2;
3475 			u8 *vaddr;
3476 
3477 			if (copy > len)
3478 				copy = len;
3479 
3480 			skb_frag_foreach_page(frag,
3481 					      skb_frag_off(frag) + offset - start,
3482 					      copy, p, p_off, p_len, copied) {
3483 				vaddr = kmap_atomic(p);
3484 				csum2 = csum_partial(vaddr + p_off, p_len, 0);
3485 				kunmap_atomic(vaddr);
3486 				csum = csum_block_add(csum, csum2, pos);
3487 				pos += p_len;
3488 			}
3489 
3490 			if (!(len -= copy))
3491 				return csum;
3492 			offset += copy;
3493 		}
3494 		start = end;
3495 	}
3496 
3497 	skb_walk_frags(skb, frag_iter) {
3498 		int end;
3499 
3500 		WARN_ON(start > offset + len);
3501 
3502 		end = start + frag_iter->len;
3503 		if ((copy = end - offset) > 0) {
3504 			__wsum csum2;
3505 			if (copy > len)
3506 				copy = len;
3507 			csum2 = skb_checksum(frag_iter, offset - start, copy,
3508 					     0);
3509 			csum = csum_block_add(csum, csum2, pos);
3510 			if ((len -= copy) == 0)
3511 				return csum;
3512 			offset += copy;
3513 			pos    += copy;
3514 		}
3515 		start = end;
3516 	}
3517 	BUG_ON(len);
3518 
3519 	return csum;
3520 }
3521 EXPORT_SYMBOL(skb_checksum);
3522 
3523 /* Both of above in one bottle. */
3524 
3525 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3526 				    u8 *to, int len)
3527 {
3528 	int start = skb_headlen(skb);
3529 	int i, copy = start - offset;
3530 	struct sk_buff *frag_iter;
3531 	int pos = 0;
3532 	__wsum csum = 0;
3533 
3534 	/* Copy header. */
3535 	if (copy > 0) {
3536 		if (copy > len)
3537 			copy = len;
3538 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3539 						 copy);
3540 		if ((len -= copy) == 0)
3541 			return csum;
3542 		offset += copy;
3543 		to     += copy;
3544 		pos	= copy;
3545 	}
3546 
3547 	if (!skb_frags_readable(skb))
3548 		return 0;
3549 
3550 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3551 		int end;
3552 
3553 		WARN_ON(start > offset + len);
3554 
3555 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3556 		if ((copy = end - offset) > 0) {
3557 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3558 			u32 p_off, p_len, copied;
3559 			struct page *p;
3560 			__wsum csum2;
3561 			u8 *vaddr;
3562 
3563 			if (copy > len)
3564 				copy = len;
3565 
3566 			skb_frag_foreach_page(frag,
3567 					      skb_frag_off(frag) + offset - start,
3568 					      copy, p, p_off, p_len, copied) {
3569 				vaddr = kmap_atomic(p);
3570 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3571 								  to + copied,
3572 								  p_len);
3573 				kunmap_atomic(vaddr);
3574 				csum = csum_block_add(csum, csum2, pos);
3575 				pos += p_len;
3576 			}
3577 
3578 			if (!(len -= copy))
3579 				return csum;
3580 			offset += copy;
3581 			to     += copy;
3582 		}
3583 		start = end;
3584 	}
3585 
3586 	skb_walk_frags(skb, frag_iter) {
3587 		__wsum csum2;
3588 		int end;
3589 
3590 		WARN_ON(start > offset + len);
3591 
3592 		end = start + frag_iter->len;
3593 		if ((copy = end - offset) > 0) {
3594 			if (copy > len)
3595 				copy = len;
3596 			csum2 = skb_copy_and_csum_bits(frag_iter,
3597 						       offset - start,
3598 						       to, copy);
3599 			csum = csum_block_add(csum, csum2, pos);
3600 			if ((len -= copy) == 0)
3601 				return csum;
3602 			offset += copy;
3603 			to     += copy;
3604 			pos    += copy;
3605 		}
3606 		start = end;
3607 	}
3608 	BUG_ON(len);
3609 	return csum;
3610 }
3611 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3612 
3613 #ifdef CONFIG_NET_CRC32C
3614 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3615 {
3616 	int start = skb_headlen(skb);
3617 	int i, copy = start - offset;
3618 	struct sk_buff *frag_iter;
3619 
3620 	if (copy > 0) {
3621 		copy = min(copy, len);
3622 		crc = crc32c(crc, skb->data + offset, copy);
3623 		len -= copy;
3624 		if (len == 0)
3625 			return crc;
3626 		offset += copy;
3627 	}
3628 
3629 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3630 		return 0;
3631 
3632 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3633 		int end;
3634 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3635 
3636 		WARN_ON(start > offset + len);
3637 
3638 		end = start + skb_frag_size(frag);
3639 		copy = end - offset;
3640 		if (copy > 0) {
3641 			u32 p_off, p_len, copied;
3642 			struct page *p;
3643 			u8 *vaddr;
3644 
3645 			copy = min(copy, len);
3646 			skb_frag_foreach_page(frag,
3647 					      skb_frag_off(frag) + offset - start,
3648 					      copy, p, p_off, p_len, copied) {
3649 				vaddr = kmap_atomic(p);
3650 				crc = crc32c(crc, vaddr + p_off, p_len);
3651 				kunmap_atomic(vaddr);
3652 			}
3653 			len -= copy;
3654 			if (len == 0)
3655 				return crc;
3656 			offset += copy;
3657 		}
3658 		start = end;
3659 	}
3660 
3661 	skb_walk_frags(skb, frag_iter) {
3662 		int end;
3663 
3664 		WARN_ON(start > offset + len);
3665 
3666 		end = start + frag_iter->len;
3667 		copy = end - offset;
3668 		if (copy > 0) {
3669 			copy = min(copy, len);
3670 			crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3671 			len -= copy;
3672 			if (len == 0)
3673 				return crc;
3674 			offset += copy;
3675 		}
3676 		start = end;
3677 	}
3678 	BUG_ON(len);
3679 
3680 	return crc;
3681 }
3682 EXPORT_SYMBOL(skb_crc32c);
3683 #endif /* CONFIG_NET_CRC32C */
3684 
3685 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3686 {
3687 	__sum16 sum;
3688 
3689 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3690 	/* See comments in __skb_checksum_complete(). */
3691 	if (likely(!sum)) {
3692 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3693 		    !skb->csum_complete_sw)
3694 			netdev_rx_csum_fault(skb->dev, skb);
3695 	}
3696 	if (!skb_shared(skb))
3697 		skb->csum_valid = !sum;
3698 	return sum;
3699 }
3700 EXPORT_SYMBOL(__skb_checksum_complete_head);
3701 
3702 /* This function assumes skb->csum already holds pseudo header's checksum,
3703  * which has been changed from the hardware checksum, for example, by
3704  * __skb_checksum_validate_complete(). And, the original skb->csum must
3705  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3706  *
3707  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3708  * zero. The new checksum is stored back into skb->csum unless the skb is
3709  * shared.
3710  */
3711 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3712 {
3713 	__wsum csum;
3714 	__sum16 sum;
3715 
3716 	csum = skb_checksum(skb, 0, skb->len, 0);
3717 
3718 	sum = csum_fold(csum_add(skb->csum, csum));
3719 	/* This check is inverted, because we already knew the hardware
3720 	 * checksum is invalid before calling this function. So, if the
3721 	 * re-computed checksum is valid instead, then we have a mismatch
3722 	 * between the original skb->csum and skb_checksum(). This means either
3723 	 * the original hardware checksum is incorrect or we screw up skb->csum
3724 	 * when moving skb->data around.
3725 	 */
3726 	if (likely(!sum)) {
3727 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3728 		    !skb->csum_complete_sw)
3729 			netdev_rx_csum_fault(skb->dev, skb);
3730 	}
3731 
3732 	if (!skb_shared(skb)) {
3733 		/* Save full packet checksum */
3734 		skb->csum = csum;
3735 		skb->ip_summed = CHECKSUM_COMPLETE;
3736 		skb->csum_complete_sw = 1;
3737 		skb->csum_valid = !sum;
3738 	}
3739 
3740 	return sum;
3741 }
3742 EXPORT_SYMBOL(__skb_checksum_complete);
3743 
3744  /**
3745  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3746  *	@from: source buffer
3747  *
3748  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3749  *	into skb_zerocopy().
3750  */
3751 unsigned int
3752 skb_zerocopy_headlen(const struct sk_buff *from)
3753 {
3754 	unsigned int hlen = 0;
3755 
3756 	if (!from->head_frag ||
3757 	    skb_headlen(from) < L1_CACHE_BYTES ||
3758 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3759 		hlen = skb_headlen(from);
3760 		if (!hlen)
3761 			hlen = from->len;
3762 	}
3763 
3764 	if (skb_has_frag_list(from))
3765 		hlen = from->len;
3766 
3767 	return hlen;
3768 }
3769 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3770 
3771 /**
3772  *	skb_zerocopy - Zero copy skb to skb
3773  *	@to: destination buffer
3774  *	@from: source buffer
3775  *	@len: number of bytes to copy from source buffer
3776  *	@hlen: size of linear headroom in destination buffer
3777  *
3778  *	Copies up to `len` bytes from `from` to `to` by creating references
3779  *	to the frags in the source buffer.
3780  *
3781  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3782  *	headroom in the `to` buffer.
3783  *
3784  *	Return value:
3785  *	0: everything is OK
3786  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3787  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3788  */
3789 int
3790 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3791 {
3792 	int i, j = 0;
3793 	int plen = 0; /* length of skb->head fragment */
3794 	int ret;
3795 	struct page *page;
3796 	unsigned int offset;
3797 
3798 	BUG_ON(!from->head_frag && !hlen);
3799 
3800 	/* dont bother with small payloads */
3801 	if (len <= skb_tailroom(to))
3802 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3803 
3804 	if (hlen) {
3805 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3806 		if (unlikely(ret))
3807 			return ret;
3808 		len -= hlen;
3809 	} else {
3810 		plen = min_t(int, skb_headlen(from), len);
3811 		if (plen) {
3812 			page = virt_to_head_page(from->head);
3813 			offset = from->data - (unsigned char *)page_address(page);
3814 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3815 					       offset, plen);
3816 			get_page(page);
3817 			j = 1;
3818 			len -= plen;
3819 		}
3820 	}
3821 
3822 	skb_len_add(to, len + plen);
3823 
3824 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3825 		skb_tx_error(from);
3826 		return -ENOMEM;
3827 	}
3828 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3829 
3830 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3831 		int size;
3832 
3833 		if (!len)
3834 			break;
3835 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3836 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3837 					len);
3838 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3839 		len -= size;
3840 		skb_frag_ref(to, j);
3841 		j++;
3842 	}
3843 	skb_shinfo(to)->nr_frags = j;
3844 
3845 	return 0;
3846 }
3847 EXPORT_SYMBOL_GPL(skb_zerocopy);
3848 
3849 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3850 {
3851 	__wsum csum;
3852 	long csstart;
3853 
3854 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3855 		csstart = skb_checksum_start_offset(skb);
3856 	else
3857 		csstart = skb_headlen(skb);
3858 
3859 	BUG_ON(csstart > skb_headlen(skb));
3860 
3861 	skb_copy_from_linear_data(skb, to, csstart);
3862 
3863 	csum = 0;
3864 	if (csstart != skb->len)
3865 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3866 					      skb->len - csstart);
3867 
3868 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3869 		long csstuff = csstart + skb->csum_offset;
3870 
3871 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3872 	}
3873 }
3874 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3875 
3876 /**
3877  *	skb_dequeue - remove from the head of the queue
3878  *	@list: list to dequeue from
3879  *
3880  *	Remove the head of the list. The list lock is taken so the function
3881  *	may be used safely with other locking list functions. The head item is
3882  *	returned or %NULL if the list is empty.
3883  */
3884 
3885 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3886 {
3887 	unsigned long flags;
3888 	struct sk_buff *result;
3889 
3890 	spin_lock_irqsave(&list->lock, flags);
3891 	result = __skb_dequeue(list);
3892 	spin_unlock_irqrestore(&list->lock, flags);
3893 	return result;
3894 }
3895 EXPORT_SYMBOL(skb_dequeue);
3896 
3897 /**
3898  *	skb_dequeue_tail - remove from the tail of the queue
3899  *	@list: list to dequeue from
3900  *
3901  *	Remove the tail of the list. The list lock is taken so the function
3902  *	may be used safely with other locking list functions. The tail item is
3903  *	returned or %NULL if the list is empty.
3904  */
3905 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3906 {
3907 	unsigned long flags;
3908 	struct sk_buff *result;
3909 
3910 	spin_lock_irqsave(&list->lock, flags);
3911 	result = __skb_dequeue_tail(list);
3912 	spin_unlock_irqrestore(&list->lock, flags);
3913 	return result;
3914 }
3915 EXPORT_SYMBOL(skb_dequeue_tail);
3916 
3917 /**
3918  *	skb_queue_purge_reason - empty a list
3919  *	@list: list to empty
3920  *	@reason: drop reason
3921  *
3922  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3923  *	the list and one reference dropped. This function takes the list
3924  *	lock and is atomic with respect to other list locking functions.
3925  */
3926 void skb_queue_purge_reason(struct sk_buff_head *list,
3927 			    enum skb_drop_reason reason)
3928 {
3929 	struct sk_buff_head tmp;
3930 	unsigned long flags;
3931 
3932 	if (skb_queue_empty_lockless(list))
3933 		return;
3934 
3935 	__skb_queue_head_init(&tmp);
3936 
3937 	spin_lock_irqsave(&list->lock, flags);
3938 	skb_queue_splice_init(list, &tmp);
3939 	spin_unlock_irqrestore(&list->lock, flags);
3940 
3941 	__skb_queue_purge_reason(&tmp, reason);
3942 }
3943 EXPORT_SYMBOL(skb_queue_purge_reason);
3944 
3945 /**
3946  *	skb_rbtree_purge - empty a skb rbtree
3947  *	@root: root of the rbtree to empty
3948  *	Return value: the sum of truesizes of all purged skbs.
3949  *
3950  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3951  *	the list and one reference dropped. This function does not take
3952  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3953  *	out-of-order queue is protected by the socket lock).
3954  */
3955 unsigned int skb_rbtree_purge(struct rb_root *root)
3956 {
3957 	struct rb_node *p = rb_first(root);
3958 	unsigned int sum = 0;
3959 
3960 	while (p) {
3961 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3962 
3963 		p = rb_next(p);
3964 		rb_erase(&skb->rbnode, root);
3965 		sum += skb->truesize;
3966 		kfree_skb(skb);
3967 	}
3968 	return sum;
3969 }
3970 
3971 void skb_errqueue_purge(struct sk_buff_head *list)
3972 {
3973 	struct sk_buff *skb, *next;
3974 	struct sk_buff_head kill;
3975 	unsigned long flags;
3976 
3977 	__skb_queue_head_init(&kill);
3978 
3979 	spin_lock_irqsave(&list->lock, flags);
3980 	skb_queue_walk_safe(list, skb, next) {
3981 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3982 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3983 			continue;
3984 		__skb_unlink(skb, list);
3985 		__skb_queue_tail(&kill, skb);
3986 	}
3987 	spin_unlock_irqrestore(&list->lock, flags);
3988 	__skb_queue_purge(&kill);
3989 }
3990 EXPORT_SYMBOL(skb_errqueue_purge);
3991 
3992 /**
3993  *	skb_queue_head - queue a buffer at the list head
3994  *	@list: list to use
3995  *	@newsk: buffer to queue
3996  *
3997  *	Queue a buffer at the start of the list. This function takes the
3998  *	list lock and can be used safely with other locking &sk_buff functions
3999  *	safely.
4000  *
4001  *	A buffer cannot be placed on two lists at the same time.
4002  */
4003 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4004 {
4005 	unsigned long flags;
4006 
4007 	spin_lock_irqsave(&list->lock, flags);
4008 	__skb_queue_head(list, newsk);
4009 	spin_unlock_irqrestore(&list->lock, flags);
4010 }
4011 EXPORT_SYMBOL(skb_queue_head);
4012 
4013 /**
4014  *	skb_queue_tail - queue a buffer at the list tail
4015  *	@list: list to use
4016  *	@newsk: buffer to queue
4017  *
4018  *	Queue a buffer at the tail of the list. This function takes the
4019  *	list lock and can be used safely with other locking &sk_buff functions
4020  *	safely.
4021  *
4022  *	A buffer cannot be placed on two lists at the same time.
4023  */
4024 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4025 {
4026 	unsigned long flags;
4027 
4028 	spin_lock_irqsave(&list->lock, flags);
4029 	__skb_queue_tail(list, newsk);
4030 	spin_unlock_irqrestore(&list->lock, flags);
4031 }
4032 EXPORT_SYMBOL(skb_queue_tail);
4033 
4034 /**
4035  *	skb_unlink	-	remove a buffer from a list
4036  *	@skb: buffer to remove
4037  *	@list: list to use
4038  *
4039  *	Remove a packet from a list. The list locks are taken and this
4040  *	function is atomic with respect to other list locked calls
4041  *
4042  *	You must know what list the SKB is on.
4043  */
4044 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4045 {
4046 	unsigned long flags;
4047 
4048 	spin_lock_irqsave(&list->lock, flags);
4049 	__skb_unlink(skb, list);
4050 	spin_unlock_irqrestore(&list->lock, flags);
4051 }
4052 EXPORT_SYMBOL(skb_unlink);
4053 
4054 /**
4055  *	skb_append	-	append a buffer
4056  *	@old: buffer to insert after
4057  *	@newsk: buffer to insert
4058  *	@list: list to use
4059  *
4060  *	Place a packet after a given packet in a list. The list locks are taken
4061  *	and this function is atomic with respect to other list locked calls.
4062  *	A buffer cannot be placed on two lists at the same time.
4063  */
4064 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4065 {
4066 	unsigned long flags;
4067 
4068 	spin_lock_irqsave(&list->lock, flags);
4069 	__skb_queue_after(list, old, newsk);
4070 	spin_unlock_irqrestore(&list->lock, flags);
4071 }
4072 EXPORT_SYMBOL(skb_append);
4073 
4074 static inline void skb_split_inside_header(struct sk_buff *skb,
4075 					   struct sk_buff* skb1,
4076 					   const u32 len, const int pos)
4077 {
4078 	int i;
4079 
4080 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4081 					 pos - len);
4082 	/* And move data appendix as is. */
4083 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4084 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4085 
4086 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4087 	skb1->unreadable	   = skb->unreadable;
4088 	skb_shinfo(skb)->nr_frags  = 0;
4089 	skb1->data_len		   = skb->data_len;
4090 	skb1->len		   += skb1->data_len;
4091 	skb->data_len		   = 0;
4092 	skb->len		   = len;
4093 	skb_set_tail_pointer(skb, len);
4094 }
4095 
4096 static inline void skb_split_no_header(struct sk_buff *skb,
4097 				       struct sk_buff* skb1,
4098 				       const u32 len, int pos)
4099 {
4100 	int i, k = 0;
4101 	const int nfrags = skb_shinfo(skb)->nr_frags;
4102 
4103 	skb_shinfo(skb)->nr_frags = 0;
4104 	skb1->len		  = skb1->data_len = skb->len - len;
4105 	skb->len		  = len;
4106 	skb->data_len		  = len - pos;
4107 
4108 	for (i = 0; i < nfrags; i++) {
4109 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4110 
4111 		if (pos + size > len) {
4112 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4113 
4114 			if (pos < len) {
4115 				/* Split frag.
4116 				 * We have two variants in this case:
4117 				 * 1. Move all the frag to the second
4118 				 *    part, if it is possible. F.e.
4119 				 *    this approach is mandatory for TUX,
4120 				 *    where splitting is expensive.
4121 				 * 2. Split is accurately. We make this.
4122 				 */
4123 				skb_frag_ref(skb, i);
4124 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4125 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4126 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4127 				skb_shinfo(skb)->nr_frags++;
4128 			}
4129 			k++;
4130 		} else
4131 			skb_shinfo(skb)->nr_frags++;
4132 		pos += size;
4133 	}
4134 	skb_shinfo(skb1)->nr_frags = k;
4135 
4136 	skb1->unreadable = skb->unreadable;
4137 }
4138 
4139 /**
4140  * skb_split - Split fragmented skb to two parts at length len.
4141  * @skb: the buffer to split
4142  * @skb1: the buffer to receive the second part
4143  * @len: new length for skb
4144  */
4145 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4146 {
4147 	int pos = skb_headlen(skb);
4148 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4149 
4150 	skb_zcopy_downgrade_managed(skb);
4151 
4152 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4153 	skb_zerocopy_clone(skb1, skb, 0);
4154 	if (len < pos)	/* Split line is inside header. */
4155 		skb_split_inside_header(skb, skb1, len, pos);
4156 	else		/* Second chunk has no header, nothing to copy. */
4157 		skb_split_no_header(skb, skb1, len, pos);
4158 }
4159 EXPORT_SYMBOL(skb_split);
4160 
4161 /* Shifting from/to a cloned skb is a no-go.
4162  *
4163  * Caller cannot keep skb_shinfo related pointers past calling here!
4164  */
4165 static int skb_prepare_for_shift(struct sk_buff *skb)
4166 {
4167 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4168 }
4169 
4170 /**
4171  * skb_shift - Shifts paged data partially from skb to another
4172  * @tgt: buffer into which tail data gets added
4173  * @skb: buffer from which the paged data comes from
4174  * @shiftlen: shift up to this many bytes
4175  *
4176  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4177  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4178  * It's up to caller to free skb if everything was shifted.
4179  *
4180  * If @tgt runs out of frags, the whole operation is aborted.
4181  *
4182  * Skb cannot include anything else but paged data while tgt is allowed
4183  * to have non-paged data as well.
4184  *
4185  * TODO: full sized shift could be optimized but that would need
4186  * specialized skb free'er to handle frags without up-to-date nr_frags.
4187  */
4188 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4189 {
4190 	int from, to, merge, todo;
4191 	skb_frag_t *fragfrom, *fragto;
4192 
4193 	BUG_ON(shiftlen > skb->len);
4194 
4195 	if (skb_headlen(skb))
4196 		return 0;
4197 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4198 		return 0;
4199 
4200 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4201 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4202 
4203 	todo = shiftlen;
4204 	from = 0;
4205 	to = skb_shinfo(tgt)->nr_frags;
4206 	fragfrom = &skb_shinfo(skb)->frags[from];
4207 
4208 	/* Actual merge is delayed until the point when we know we can
4209 	 * commit all, so that we don't have to undo partial changes
4210 	 */
4211 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4212 			      skb_frag_off(fragfrom))) {
4213 		merge = -1;
4214 	} else {
4215 		merge = to - 1;
4216 
4217 		todo -= skb_frag_size(fragfrom);
4218 		if (todo < 0) {
4219 			if (skb_prepare_for_shift(skb) ||
4220 			    skb_prepare_for_shift(tgt))
4221 				return 0;
4222 
4223 			/* All previous frag pointers might be stale! */
4224 			fragfrom = &skb_shinfo(skb)->frags[from];
4225 			fragto = &skb_shinfo(tgt)->frags[merge];
4226 
4227 			skb_frag_size_add(fragto, shiftlen);
4228 			skb_frag_size_sub(fragfrom, shiftlen);
4229 			skb_frag_off_add(fragfrom, shiftlen);
4230 
4231 			goto onlymerged;
4232 		}
4233 
4234 		from++;
4235 	}
4236 
4237 	/* Skip full, not-fitting skb to avoid expensive operations */
4238 	if ((shiftlen == skb->len) &&
4239 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4240 		return 0;
4241 
4242 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4243 		return 0;
4244 
4245 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4246 		if (to == MAX_SKB_FRAGS)
4247 			return 0;
4248 
4249 		fragfrom = &skb_shinfo(skb)->frags[from];
4250 		fragto = &skb_shinfo(tgt)->frags[to];
4251 
4252 		if (todo >= skb_frag_size(fragfrom)) {
4253 			*fragto = *fragfrom;
4254 			todo -= skb_frag_size(fragfrom);
4255 			from++;
4256 			to++;
4257 
4258 		} else {
4259 			__skb_frag_ref(fragfrom);
4260 			skb_frag_page_copy(fragto, fragfrom);
4261 			skb_frag_off_copy(fragto, fragfrom);
4262 			skb_frag_size_set(fragto, todo);
4263 
4264 			skb_frag_off_add(fragfrom, todo);
4265 			skb_frag_size_sub(fragfrom, todo);
4266 			todo = 0;
4267 
4268 			to++;
4269 			break;
4270 		}
4271 	}
4272 
4273 	/* Ready to "commit" this state change to tgt */
4274 	skb_shinfo(tgt)->nr_frags = to;
4275 
4276 	if (merge >= 0) {
4277 		fragfrom = &skb_shinfo(skb)->frags[0];
4278 		fragto = &skb_shinfo(tgt)->frags[merge];
4279 
4280 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4281 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4282 	}
4283 
4284 	/* Reposition in the original skb */
4285 	to = 0;
4286 	while (from < skb_shinfo(skb)->nr_frags)
4287 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4288 	skb_shinfo(skb)->nr_frags = to;
4289 
4290 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4291 
4292 onlymerged:
4293 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4294 	 * the other hand might need it if it needs to be resent
4295 	 */
4296 	tgt->ip_summed = CHECKSUM_PARTIAL;
4297 	skb->ip_summed = CHECKSUM_PARTIAL;
4298 
4299 	skb_len_add(skb, -shiftlen);
4300 	skb_len_add(tgt, shiftlen);
4301 
4302 	return shiftlen;
4303 }
4304 
4305 /**
4306  * skb_prepare_seq_read - Prepare a sequential read of skb data
4307  * @skb: the buffer to read
4308  * @from: lower offset of data to be read
4309  * @to: upper offset of data to be read
4310  * @st: state variable
4311  *
4312  * Initializes the specified state variable. Must be called before
4313  * invoking skb_seq_read() for the first time.
4314  */
4315 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4316 			  unsigned int to, struct skb_seq_state *st)
4317 {
4318 	st->lower_offset = from;
4319 	st->upper_offset = to;
4320 	st->root_skb = st->cur_skb = skb;
4321 	st->frag_idx = st->stepped_offset = 0;
4322 	st->frag_data = NULL;
4323 	st->frag_off = 0;
4324 }
4325 EXPORT_SYMBOL(skb_prepare_seq_read);
4326 
4327 /**
4328  * skb_seq_read - Sequentially read skb data
4329  * @consumed: number of bytes consumed by the caller so far
4330  * @data: destination pointer for data to be returned
4331  * @st: state variable
4332  *
4333  * Reads a block of skb data at @consumed relative to the
4334  * lower offset specified to skb_prepare_seq_read(). Assigns
4335  * the head of the data block to @data and returns the length
4336  * of the block or 0 if the end of the skb data or the upper
4337  * offset has been reached.
4338  *
4339  * The caller is not required to consume all of the data
4340  * returned, i.e. @consumed is typically set to the number
4341  * of bytes already consumed and the next call to
4342  * skb_seq_read() will return the remaining part of the block.
4343  *
4344  * Note 1: The size of each block of data returned can be arbitrary,
4345  *       this limitation is the cost for zerocopy sequential
4346  *       reads of potentially non linear data.
4347  *
4348  * Note 2: Fragment lists within fragments are not implemented
4349  *       at the moment, state->root_skb could be replaced with
4350  *       a stack for this purpose.
4351  */
4352 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4353 			  struct skb_seq_state *st)
4354 {
4355 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4356 	skb_frag_t *frag;
4357 
4358 	if (unlikely(abs_offset >= st->upper_offset)) {
4359 		if (st->frag_data) {
4360 			kunmap_atomic(st->frag_data);
4361 			st->frag_data = NULL;
4362 		}
4363 		return 0;
4364 	}
4365 
4366 next_skb:
4367 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4368 
4369 	if (abs_offset < block_limit && !st->frag_data) {
4370 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4371 		return block_limit - abs_offset;
4372 	}
4373 
4374 	if (!skb_frags_readable(st->cur_skb))
4375 		return 0;
4376 
4377 	if (st->frag_idx == 0 && !st->frag_data)
4378 		st->stepped_offset += skb_headlen(st->cur_skb);
4379 
4380 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4381 		unsigned int pg_idx, pg_off, pg_sz;
4382 
4383 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4384 
4385 		pg_idx = 0;
4386 		pg_off = skb_frag_off(frag);
4387 		pg_sz = skb_frag_size(frag);
4388 
4389 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4390 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4391 			pg_off = offset_in_page(pg_off + st->frag_off);
4392 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4393 						    PAGE_SIZE - pg_off);
4394 		}
4395 
4396 		block_limit = pg_sz + st->stepped_offset;
4397 		if (abs_offset < block_limit) {
4398 			if (!st->frag_data)
4399 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4400 
4401 			*data = (u8 *)st->frag_data + pg_off +
4402 				(abs_offset - st->stepped_offset);
4403 
4404 			return block_limit - abs_offset;
4405 		}
4406 
4407 		if (st->frag_data) {
4408 			kunmap_atomic(st->frag_data);
4409 			st->frag_data = NULL;
4410 		}
4411 
4412 		st->stepped_offset += pg_sz;
4413 		st->frag_off += pg_sz;
4414 		if (st->frag_off == skb_frag_size(frag)) {
4415 			st->frag_off = 0;
4416 			st->frag_idx++;
4417 		}
4418 	}
4419 
4420 	if (st->frag_data) {
4421 		kunmap_atomic(st->frag_data);
4422 		st->frag_data = NULL;
4423 	}
4424 
4425 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4426 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4427 		st->frag_idx = 0;
4428 		goto next_skb;
4429 	} else if (st->cur_skb->next) {
4430 		st->cur_skb = st->cur_skb->next;
4431 		st->frag_idx = 0;
4432 		goto next_skb;
4433 	}
4434 
4435 	return 0;
4436 }
4437 EXPORT_SYMBOL(skb_seq_read);
4438 
4439 /**
4440  * skb_abort_seq_read - Abort a sequential read of skb data
4441  * @st: state variable
4442  *
4443  * Must be called if skb_seq_read() was not called until it
4444  * returned 0.
4445  */
4446 void skb_abort_seq_read(struct skb_seq_state *st)
4447 {
4448 	if (st->frag_data)
4449 		kunmap_atomic(st->frag_data);
4450 }
4451 EXPORT_SYMBOL(skb_abort_seq_read);
4452 
4453 /**
4454  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4455  * @st: source skb_seq_state
4456  * @offset: offset in source
4457  * @to: destination buffer
4458  * @len: number of bytes to copy
4459  *
4460  * Copy @len bytes from @offset bytes into the source @st to the destination
4461  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4462  * call to this function. If offset needs to decrease from the previous use `st`
4463  * should be reset first.
4464  *
4465  * Return: 0 on success or -EINVAL if the copy ended early
4466  */
4467 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4468 {
4469 	const u8 *data;
4470 	u32 sqlen;
4471 
4472 	for (;;) {
4473 		sqlen = skb_seq_read(offset, &data, st);
4474 		if (sqlen == 0)
4475 			return -EINVAL;
4476 		if (sqlen >= len) {
4477 			memcpy(to, data, len);
4478 			return 0;
4479 		}
4480 		memcpy(to, data, sqlen);
4481 		to += sqlen;
4482 		offset += sqlen;
4483 		len -= sqlen;
4484 	}
4485 }
4486 EXPORT_SYMBOL(skb_copy_seq_read);
4487 
4488 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4489 
4490 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4491 					  struct ts_config *conf,
4492 					  struct ts_state *state)
4493 {
4494 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4495 }
4496 
4497 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4498 {
4499 	skb_abort_seq_read(TS_SKB_CB(state));
4500 }
4501 
4502 /**
4503  * skb_find_text - Find a text pattern in skb data
4504  * @skb: the buffer to look in
4505  * @from: search offset
4506  * @to: search limit
4507  * @config: textsearch configuration
4508  *
4509  * Finds a pattern in the skb data according to the specified
4510  * textsearch configuration. Use textsearch_next() to retrieve
4511  * subsequent occurrences of the pattern. Returns the offset
4512  * to the first occurrence or UINT_MAX if no match was found.
4513  */
4514 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4515 			   unsigned int to, struct ts_config *config)
4516 {
4517 	unsigned int patlen = config->ops->get_pattern_len(config);
4518 	struct ts_state state;
4519 	unsigned int ret;
4520 
4521 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4522 
4523 	config->get_next_block = skb_ts_get_next_block;
4524 	config->finish = skb_ts_finish;
4525 
4526 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4527 
4528 	ret = textsearch_find(config, &state);
4529 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4530 }
4531 EXPORT_SYMBOL(skb_find_text);
4532 
4533 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4534 			 int offset, size_t size, size_t max_frags)
4535 {
4536 	int i = skb_shinfo(skb)->nr_frags;
4537 
4538 	if (skb_can_coalesce(skb, i, page, offset)) {
4539 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4540 	} else if (i < max_frags) {
4541 		skb_zcopy_downgrade_managed(skb);
4542 		get_page(page);
4543 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4544 	} else {
4545 		return -EMSGSIZE;
4546 	}
4547 
4548 	return 0;
4549 }
4550 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4551 
4552 /**
4553  *	skb_pull_rcsum - pull skb and update receive checksum
4554  *	@skb: buffer to update
4555  *	@len: length of data pulled
4556  *
4557  *	This function performs an skb_pull on the packet and updates
4558  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4559  *	receive path processing instead of skb_pull unless you know
4560  *	that the checksum difference is zero (e.g., a valid IP header)
4561  *	or you are setting ip_summed to CHECKSUM_NONE.
4562  */
4563 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4564 {
4565 	unsigned char *data = skb->data;
4566 
4567 	BUG_ON(len > skb->len);
4568 	__skb_pull(skb, len);
4569 	skb_postpull_rcsum(skb, data, len);
4570 	return skb->data;
4571 }
4572 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4573 
4574 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4575 {
4576 	skb_frag_t head_frag;
4577 	struct page *page;
4578 
4579 	page = virt_to_head_page(frag_skb->head);
4580 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4581 				(unsigned char *)page_address(page),
4582 				skb_headlen(frag_skb));
4583 	return head_frag;
4584 }
4585 
4586 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4587 				 netdev_features_t features,
4588 				 unsigned int offset)
4589 {
4590 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4591 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4592 	unsigned int delta_truesize = 0;
4593 	unsigned int delta_len = 0;
4594 	struct sk_buff *tail = NULL;
4595 	struct sk_buff *nskb, *tmp;
4596 	int len_diff, err;
4597 
4598 	skb_push(skb, -skb_network_offset(skb) + offset);
4599 
4600 	/* Ensure the head is writeable before touching the shared info */
4601 	err = skb_unclone(skb, GFP_ATOMIC);
4602 	if (err)
4603 		goto err_linearize;
4604 
4605 	skb_shinfo(skb)->frag_list = NULL;
4606 
4607 	while (list_skb) {
4608 		nskb = list_skb;
4609 		list_skb = list_skb->next;
4610 
4611 		err = 0;
4612 		delta_truesize += nskb->truesize;
4613 		if (skb_shared(nskb)) {
4614 			tmp = skb_clone(nskb, GFP_ATOMIC);
4615 			if (tmp) {
4616 				consume_skb(nskb);
4617 				nskb = tmp;
4618 				err = skb_unclone(nskb, GFP_ATOMIC);
4619 			} else {
4620 				err = -ENOMEM;
4621 			}
4622 		}
4623 
4624 		if (!tail)
4625 			skb->next = nskb;
4626 		else
4627 			tail->next = nskb;
4628 
4629 		if (unlikely(err)) {
4630 			nskb->next = list_skb;
4631 			goto err_linearize;
4632 		}
4633 
4634 		tail = nskb;
4635 
4636 		delta_len += nskb->len;
4637 
4638 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4639 
4640 		skb_release_head_state(nskb);
4641 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4642 		__copy_skb_header(nskb, skb);
4643 
4644 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4645 		nskb->transport_header += len_diff;
4646 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4647 						 nskb->data - tnl_hlen,
4648 						 offset + tnl_hlen);
4649 
4650 		if (skb_needs_linearize(nskb, features) &&
4651 		    __skb_linearize(nskb))
4652 			goto err_linearize;
4653 	}
4654 
4655 	skb->truesize = skb->truesize - delta_truesize;
4656 	skb->data_len = skb->data_len - delta_len;
4657 	skb->len = skb->len - delta_len;
4658 
4659 	skb_gso_reset(skb);
4660 
4661 	skb->prev = tail;
4662 
4663 	if (skb_needs_linearize(skb, features) &&
4664 	    __skb_linearize(skb))
4665 		goto err_linearize;
4666 
4667 	skb_get(skb);
4668 
4669 	return skb;
4670 
4671 err_linearize:
4672 	kfree_skb_list(skb->next);
4673 	skb->next = NULL;
4674 	return ERR_PTR(-ENOMEM);
4675 }
4676 EXPORT_SYMBOL_GPL(skb_segment_list);
4677 
4678 /**
4679  *	skb_segment - Perform protocol segmentation on skb.
4680  *	@head_skb: buffer to segment
4681  *	@features: features for the output path (see dev->features)
4682  *
4683  *	This function performs segmentation on the given skb.  It returns
4684  *	a pointer to the first in a list of new skbs for the segments.
4685  *	In case of error it returns ERR_PTR(err).
4686  */
4687 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4688 			    netdev_features_t features)
4689 {
4690 	struct sk_buff *segs = NULL;
4691 	struct sk_buff *tail = NULL;
4692 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4693 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4694 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4695 	unsigned int offset = doffset;
4696 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4697 	unsigned int partial_segs = 0;
4698 	unsigned int headroom;
4699 	unsigned int len = head_skb->len;
4700 	struct sk_buff *frag_skb;
4701 	skb_frag_t *frag;
4702 	__be16 proto;
4703 	bool csum, sg;
4704 	int err = -ENOMEM;
4705 	int i = 0;
4706 	int nfrags, pos;
4707 
4708 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4709 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4710 		struct sk_buff *check_skb;
4711 
4712 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4713 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4714 				/* gso_size is untrusted, and we have a frag_list with
4715 				 * a linear non head_frag item.
4716 				 *
4717 				 * If head_skb's headlen does not fit requested gso_size,
4718 				 * it means that the frag_list members do NOT terminate
4719 				 * on exact gso_size boundaries. Hence we cannot perform
4720 				 * skb_frag_t page sharing. Therefore we must fallback to
4721 				 * copying the frag_list skbs; we do so by disabling SG.
4722 				 */
4723 				features &= ~NETIF_F_SG;
4724 				break;
4725 			}
4726 		}
4727 	}
4728 
4729 	__skb_push(head_skb, doffset);
4730 	proto = skb_network_protocol(head_skb, NULL);
4731 	if (unlikely(!proto))
4732 		return ERR_PTR(-EINVAL);
4733 
4734 	sg = !!(features & NETIF_F_SG);
4735 	csum = !!can_checksum_protocol(features, proto);
4736 
4737 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4738 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4739 			struct sk_buff *iter;
4740 			unsigned int frag_len;
4741 
4742 			if (!list_skb ||
4743 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4744 				goto normal;
4745 
4746 			/* If we get here then all the required
4747 			 * GSO features except frag_list are supported.
4748 			 * Try to split the SKB to multiple GSO SKBs
4749 			 * with no frag_list.
4750 			 * Currently we can do that only when the buffers don't
4751 			 * have a linear part and all the buffers except
4752 			 * the last are of the same length.
4753 			 */
4754 			frag_len = list_skb->len;
4755 			skb_walk_frags(head_skb, iter) {
4756 				if (frag_len != iter->len && iter->next)
4757 					goto normal;
4758 				if (skb_headlen(iter) && !iter->head_frag)
4759 					goto normal;
4760 
4761 				len -= iter->len;
4762 			}
4763 
4764 			if (len != frag_len)
4765 				goto normal;
4766 		}
4767 
4768 		/* GSO partial only requires that we trim off any excess that
4769 		 * doesn't fit into an MSS sized block, so take care of that
4770 		 * now.
4771 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4772 		 */
4773 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4774 		if (partial_segs > 1)
4775 			mss *= partial_segs;
4776 		else
4777 			partial_segs = 0;
4778 	}
4779 
4780 normal:
4781 	headroom = skb_headroom(head_skb);
4782 	pos = skb_headlen(head_skb);
4783 
4784 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4785 		return ERR_PTR(-ENOMEM);
4786 
4787 	nfrags = skb_shinfo(head_skb)->nr_frags;
4788 	frag = skb_shinfo(head_skb)->frags;
4789 	frag_skb = head_skb;
4790 
4791 	do {
4792 		struct sk_buff *nskb;
4793 		skb_frag_t *nskb_frag;
4794 		int hsize;
4795 		int size;
4796 
4797 		if (unlikely(mss == GSO_BY_FRAGS)) {
4798 			len = list_skb->len;
4799 		} else {
4800 			len = head_skb->len - offset;
4801 			if (len > mss)
4802 				len = mss;
4803 		}
4804 
4805 		hsize = skb_headlen(head_skb) - offset;
4806 
4807 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4808 		    (skb_headlen(list_skb) == len || sg)) {
4809 			BUG_ON(skb_headlen(list_skb) > len);
4810 
4811 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4812 			if (unlikely(!nskb))
4813 				goto err;
4814 
4815 			i = 0;
4816 			nfrags = skb_shinfo(list_skb)->nr_frags;
4817 			frag = skb_shinfo(list_skb)->frags;
4818 			frag_skb = list_skb;
4819 			pos += skb_headlen(list_skb);
4820 
4821 			while (pos < offset + len) {
4822 				BUG_ON(i >= nfrags);
4823 
4824 				size = skb_frag_size(frag);
4825 				if (pos + size > offset + len)
4826 					break;
4827 
4828 				i++;
4829 				pos += size;
4830 				frag++;
4831 			}
4832 
4833 			list_skb = list_skb->next;
4834 
4835 			if (unlikely(pskb_trim(nskb, len))) {
4836 				kfree_skb(nskb);
4837 				goto err;
4838 			}
4839 
4840 			hsize = skb_end_offset(nskb);
4841 			if (skb_cow_head(nskb, doffset + headroom)) {
4842 				kfree_skb(nskb);
4843 				goto err;
4844 			}
4845 
4846 			nskb->truesize += skb_end_offset(nskb) - hsize;
4847 			skb_release_head_state(nskb);
4848 			__skb_push(nskb, doffset);
4849 		} else {
4850 			if (hsize < 0)
4851 				hsize = 0;
4852 			if (hsize > len || !sg)
4853 				hsize = len;
4854 
4855 			nskb = __alloc_skb(hsize + doffset + headroom,
4856 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4857 					   NUMA_NO_NODE);
4858 
4859 			if (unlikely(!nskb))
4860 				goto err;
4861 
4862 			skb_reserve(nskb, headroom);
4863 			__skb_put(nskb, doffset);
4864 		}
4865 
4866 		if (segs)
4867 			tail->next = nskb;
4868 		else
4869 			segs = nskb;
4870 		tail = nskb;
4871 
4872 		__copy_skb_header(nskb, head_skb);
4873 
4874 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4875 		skb_reset_mac_len(nskb);
4876 
4877 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4878 						 nskb->data - tnl_hlen,
4879 						 doffset + tnl_hlen);
4880 
4881 		if (nskb->len == len + doffset)
4882 			goto perform_csum_check;
4883 
4884 		if (!sg) {
4885 			if (!csum) {
4886 				if (!nskb->remcsum_offload)
4887 					nskb->ip_summed = CHECKSUM_NONE;
4888 				SKB_GSO_CB(nskb)->csum =
4889 					skb_copy_and_csum_bits(head_skb, offset,
4890 							       skb_put(nskb,
4891 								       len),
4892 							       len);
4893 				SKB_GSO_CB(nskb)->csum_start =
4894 					skb_headroom(nskb) + doffset;
4895 			} else {
4896 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4897 					goto err;
4898 			}
4899 			continue;
4900 		}
4901 
4902 		nskb_frag = skb_shinfo(nskb)->frags;
4903 
4904 		skb_copy_from_linear_data_offset(head_skb, offset,
4905 						 skb_put(nskb, hsize), hsize);
4906 
4907 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4908 					   SKBFL_SHARED_FRAG;
4909 
4910 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4911 			goto err;
4912 
4913 		while (pos < offset + len) {
4914 			if (i >= nfrags) {
4915 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4916 				    skb_zerocopy_clone(nskb, list_skb,
4917 						       GFP_ATOMIC))
4918 					goto err;
4919 
4920 				i = 0;
4921 				nfrags = skb_shinfo(list_skb)->nr_frags;
4922 				frag = skb_shinfo(list_skb)->frags;
4923 				frag_skb = list_skb;
4924 				if (!skb_headlen(list_skb)) {
4925 					BUG_ON(!nfrags);
4926 				} else {
4927 					BUG_ON(!list_skb->head_frag);
4928 
4929 					/* to make room for head_frag. */
4930 					i--;
4931 					frag--;
4932 				}
4933 
4934 				list_skb = list_skb->next;
4935 			}
4936 
4937 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4938 				     MAX_SKB_FRAGS)) {
4939 				net_warn_ratelimited(
4940 					"skb_segment: too many frags: %u %u\n",
4941 					pos, mss);
4942 				err = -EINVAL;
4943 				goto err;
4944 			}
4945 
4946 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4947 			__skb_frag_ref(nskb_frag);
4948 			size = skb_frag_size(nskb_frag);
4949 
4950 			if (pos < offset) {
4951 				skb_frag_off_add(nskb_frag, offset - pos);
4952 				skb_frag_size_sub(nskb_frag, offset - pos);
4953 			}
4954 
4955 			skb_shinfo(nskb)->nr_frags++;
4956 
4957 			if (pos + size <= offset + len) {
4958 				i++;
4959 				frag++;
4960 				pos += size;
4961 			} else {
4962 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4963 				goto skip_fraglist;
4964 			}
4965 
4966 			nskb_frag++;
4967 		}
4968 
4969 skip_fraglist:
4970 		nskb->data_len = len - hsize;
4971 		nskb->len += nskb->data_len;
4972 		nskb->truesize += nskb->data_len;
4973 
4974 perform_csum_check:
4975 		if (!csum) {
4976 			if (skb_has_shared_frag(nskb) &&
4977 			    __skb_linearize(nskb))
4978 				goto err;
4979 
4980 			if (!nskb->remcsum_offload)
4981 				nskb->ip_summed = CHECKSUM_NONE;
4982 			SKB_GSO_CB(nskb)->csum =
4983 				skb_checksum(nskb, doffset,
4984 					     nskb->len - doffset, 0);
4985 			SKB_GSO_CB(nskb)->csum_start =
4986 				skb_headroom(nskb) + doffset;
4987 		}
4988 	} while ((offset += len) < head_skb->len);
4989 
4990 	/* Some callers want to get the end of the list.
4991 	 * Put it in segs->prev to avoid walking the list.
4992 	 * (see validate_xmit_skb_list() for example)
4993 	 */
4994 	segs->prev = tail;
4995 
4996 	if (partial_segs) {
4997 		struct sk_buff *iter;
4998 		int type = skb_shinfo(head_skb)->gso_type;
4999 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5000 
5001 		/* Update type to add partial and then remove dodgy if set */
5002 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5003 		type &= ~SKB_GSO_DODGY;
5004 
5005 		/* Update GSO info and prepare to start updating headers on
5006 		 * our way back down the stack of protocols.
5007 		 */
5008 		for (iter = segs; iter; iter = iter->next) {
5009 			skb_shinfo(iter)->gso_size = gso_size;
5010 			skb_shinfo(iter)->gso_segs = partial_segs;
5011 			skb_shinfo(iter)->gso_type = type;
5012 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5013 		}
5014 
5015 		if (tail->len - doffset <= gso_size)
5016 			skb_shinfo(tail)->gso_size = 0;
5017 		else if (tail != segs)
5018 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5019 	}
5020 
5021 	/* Following permits correct backpressure, for protocols
5022 	 * using skb_set_owner_w().
5023 	 * Idea is to tranfert ownership from head_skb to last segment.
5024 	 */
5025 	if (head_skb->destructor == sock_wfree) {
5026 		swap(tail->truesize, head_skb->truesize);
5027 		swap(tail->destructor, head_skb->destructor);
5028 		swap(tail->sk, head_skb->sk);
5029 	}
5030 	return segs;
5031 
5032 err:
5033 	kfree_skb_list(segs);
5034 	return ERR_PTR(err);
5035 }
5036 EXPORT_SYMBOL_GPL(skb_segment);
5037 
5038 #ifdef CONFIG_SKB_EXTENSIONS
5039 #define SKB_EXT_ALIGN_VALUE	8
5040 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5041 
5042 static const u8 skb_ext_type_len[] = {
5043 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5044 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5045 #endif
5046 #ifdef CONFIG_XFRM
5047 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5048 #endif
5049 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5050 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5051 #endif
5052 #if IS_ENABLED(CONFIG_MPTCP)
5053 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5054 #endif
5055 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5056 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5057 #endif
5058 };
5059 
5060 static __always_inline unsigned int skb_ext_total_length(void)
5061 {
5062 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5063 	int i;
5064 
5065 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5066 		l += skb_ext_type_len[i];
5067 
5068 	return l;
5069 }
5070 
5071 static void skb_extensions_init(void)
5072 {
5073 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5074 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5075 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5076 #endif
5077 
5078 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5079 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5080 					     0,
5081 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5082 					     NULL);
5083 }
5084 #else
5085 static void skb_extensions_init(void) {}
5086 #endif
5087 
5088 /* The SKB kmem_cache slab is critical for network performance.  Never
5089  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5090  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5091  */
5092 #ifndef CONFIG_SLUB_TINY
5093 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5094 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5095 #define FLAG_SKB_NO_MERGE	0
5096 #endif
5097 
5098 void __init skb_init(void)
5099 {
5100 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5101 					      sizeof(struct sk_buff),
5102 					      0,
5103 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5104 						FLAG_SKB_NO_MERGE,
5105 					      offsetof(struct sk_buff, cb),
5106 					      sizeof_field(struct sk_buff, cb),
5107 					      NULL);
5108 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5109 						sizeof(struct sk_buff_fclones),
5110 						0,
5111 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5112 						NULL);
5113 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5114 	 * struct skb_shared_info is located at the end of skb->head,
5115 	 * and should not be copied to/from user.
5116 	 */
5117 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5118 						SKB_SMALL_HEAD_CACHE_SIZE,
5119 						0,
5120 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5121 						0,
5122 						SKB_SMALL_HEAD_HEADROOM,
5123 						NULL);
5124 	skb_extensions_init();
5125 }
5126 
5127 static int
5128 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5129 	       unsigned int recursion_level)
5130 {
5131 	int start = skb_headlen(skb);
5132 	int i, copy = start - offset;
5133 	struct sk_buff *frag_iter;
5134 	int elt = 0;
5135 
5136 	if (unlikely(recursion_level >= 24))
5137 		return -EMSGSIZE;
5138 
5139 	if (copy > 0) {
5140 		if (copy > len)
5141 			copy = len;
5142 		sg_set_buf(sg, skb->data + offset, copy);
5143 		elt++;
5144 		if ((len -= copy) == 0)
5145 			return elt;
5146 		offset += copy;
5147 	}
5148 
5149 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5150 		int end;
5151 
5152 		WARN_ON(start > offset + len);
5153 
5154 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5155 		if ((copy = end - offset) > 0) {
5156 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5157 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5158 				return -EMSGSIZE;
5159 
5160 			if (copy > len)
5161 				copy = len;
5162 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5163 				    skb_frag_off(frag) + offset - start);
5164 			elt++;
5165 			if (!(len -= copy))
5166 				return elt;
5167 			offset += copy;
5168 		}
5169 		start = end;
5170 	}
5171 
5172 	skb_walk_frags(skb, frag_iter) {
5173 		int end, ret;
5174 
5175 		WARN_ON(start > offset + len);
5176 
5177 		end = start + frag_iter->len;
5178 		if ((copy = end - offset) > 0) {
5179 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5180 				return -EMSGSIZE;
5181 
5182 			if (copy > len)
5183 				copy = len;
5184 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5185 					      copy, recursion_level + 1);
5186 			if (unlikely(ret < 0))
5187 				return ret;
5188 			elt += ret;
5189 			if ((len -= copy) == 0)
5190 				return elt;
5191 			offset += copy;
5192 		}
5193 		start = end;
5194 	}
5195 	BUG_ON(len);
5196 	return elt;
5197 }
5198 
5199 /**
5200  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5201  *	@skb: Socket buffer containing the buffers to be mapped
5202  *	@sg: The scatter-gather list to map into
5203  *	@offset: The offset into the buffer's contents to start mapping
5204  *	@len: Length of buffer space to be mapped
5205  *
5206  *	Fill the specified scatter-gather list with mappings/pointers into a
5207  *	region of the buffer space attached to a socket buffer. Returns either
5208  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5209  *	could not fit.
5210  */
5211 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5212 {
5213 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5214 
5215 	if (nsg <= 0)
5216 		return nsg;
5217 
5218 	sg_mark_end(&sg[nsg - 1]);
5219 
5220 	return nsg;
5221 }
5222 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5223 
5224 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5225  * sglist without mark the sg which contain last skb data as the end.
5226  * So the caller can mannipulate sg list as will when padding new data after
5227  * the first call without calling sg_unmark_end to expend sg list.
5228  *
5229  * Scenario to use skb_to_sgvec_nomark:
5230  * 1. sg_init_table
5231  * 2. skb_to_sgvec_nomark(payload1)
5232  * 3. skb_to_sgvec_nomark(payload2)
5233  *
5234  * This is equivalent to:
5235  * 1. sg_init_table
5236  * 2. skb_to_sgvec(payload1)
5237  * 3. sg_unmark_end
5238  * 4. skb_to_sgvec(payload2)
5239  *
5240  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5241  * is more preferable.
5242  */
5243 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5244 			int offset, int len)
5245 {
5246 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5247 }
5248 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5249 
5250 
5251 
5252 /**
5253  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5254  *	@skb: The socket buffer to check.
5255  *	@tailbits: Amount of trailing space to be added
5256  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5257  *
5258  *	Make sure that the data buffers attached to a socket buffer are
5259  *	writable. If they are not, private copies are made of the data buffers
5260  *	and the socket buffer is set to use these instead.
5261  *
5262  *	If @tailbits is given, make sure that there is space to write @tailbits
5263  *	bytes of data beyond current end of socket buffer.  @trailer will be
5264  *	set to point to the skb in which this space begins.
5265  *
5266  *	The number of scatterlist elements required to completely map the
5267  *	COW'd and extended socket buffer will be returned.
5268  */
5269 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5270 {
5271 	int copyflag;
5272 	int elt;
5273 	struct sk_buff *skb1, **skb_p;
5274 
5275 	/* If skb is cloned or its head is paged, reallocate
5276 	 * head pulling out all the pages (pages are considered not writable
5277 	 * at the moment even if they are anonymous).
5278 	 */
5279 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5280 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5281 		return -ENOMEM;
5282 
5283 	/* Easy case. Most of packets will go this way. */
5284 	if (!skb_has_frag_list(skb)) {
5285 		/* A little of trouble, not enough of space for trailer.
5286 		 * This should not happen, when stack is tuned to generate
5287 		 * good frames. OK, on miss we reallocate and reserve even more
5288 		 * space, 128 bytes is fair. */
5289 
5290 		if (skb_tailroom(skb) < tailbits &&
5291 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5292 			return -ENOMEM;
5293 
5294 		/* Voila! */
5295 		*trailer = skb;
5296 		return 1;
5297 	}
5298 
5299 	/* Misery. We are in troubles, going to mincer fragments... */
5300 
5301 	elt = 1;
5302 	skb_p = &skb_shinfo(skb)->frag_list;
5303 	copyflag = 0;
5304 
5305 	while ((skb1 = *skb_p) != NULL) {
5306 		int ntail = 0;
5307 
5308 		/* The fragment is partially pulled by someone,
5309 		 * this can happen on input. Copy it and everything
5310 		 * after it. */
5311 
5312 		if (skb_shared(skb1))
5313 			copyflag = 1;
5314 
5315 		/* If the skb is the last, worry about trailer. */
5316 
5317 		if (skb1->next == NULL && tailbits) {
5318 			if (skb_shinfo(skb1)->nr_frags ||
5319 			    skb_has_frag_list(skb1) ||
5320 			    skb_tailroom(skb1) < tailbits)
5321 				ntail = tailbits + 128;
5322 		}
5323 
5324 		if (copyflag ||
5325 		    skb_cloned(skb1) ||
5326 		    ntail ||
5327 		    skb_shinfo(skb1)->nr_frags ||
5328 		    skb_has_frag_list(skb1)) {
5329 			struct sk_buff *skb2;
5330 
5331 			/* Fuck, we are miserable poor guys... */
5332 			if (ntail == 0)
5333 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5334 			else
5335 				skb2 = skb_copy_expand(skb1,
5336 						       skb_headroom(skb1),
5337 						       ntail,
5338 						       GFP_ATOMIC);
5339 			if (unlikely(skb2 == NULL))
5340 				return -ENOMEM;
5341 
5342 			if (skb1->sk)
5343 				skb_set_owner_w(skb2, skb1->sk);
5344 
5345 			/* Looking around. Are we still alive?
5346 			 * OK, link new skb, drop old one */
5347 
5348 			skb2->next = skb1->next;
5349 			*skb_p = skb2;
5350 			kfree_skb(skb1);
5351 			skb1 = skb2;
5352 		}
5353 		elt++;
5354 		*trailer = skb1;
5355 		skb_p = &skb1->next;
5356 	}
5357 
5358 	return elt;
5359 }
5360 EXPORT_SYMBOL_GPL(skb_cow_data);
5361 
5362 static void sock_rmem_free(struct sk_buff *skb)
5363 {
5364 	struct sock *sk = skb->sk;
5365 
5366 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5367 }
5368 
5369 static void skb_set_err_queue(struct sk_buff *skb)
5370 {
5371 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5372 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5373 	 */
5374 	skb->pkt_type = PACKET_OUTGOING;
5375 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5376 }
5377 
5378 /*
5379  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5380  */
5381 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5382 {
5383 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5384 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5385 		return -ENOMEM;
5386 
5387 	skb_orphan(skb);
5388 	skb->sk = sk;
5389 	skb->destructor = sock_rmem_free;
5390 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5391 	skb_set_err_queue(skb);
5392 
5393 	/* before exiting rcu section, make sure dst is refcounted */
5394 	skb_dst_force(skb);
5395 
5396 	skb_queue_tail(&sk->sk_error_queue, skb);
5397 	if (!sock_flag(sk, SOCK_DEAD))
5398 		sk_error_report(sk);
5399 	return 0;
5400 }
5401 EXPORT_SYMBOL(sock_queue_err_skb);
5402 
5403 static bool is_icmp_err_skb(const struct sk_buff *skb)
5404 {
5405 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5406 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5407 }
5408 
5409 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5410 {
5411 	struct sk_buff_head *q = &sk->sk_error_queue;
5412 	struct sk_buff *skb, *skb_next = NULL;
5413 	bool icmp_next = false;
5414 	unsigned long flags;
5415 
5416 	if (skb_queue_empty_lockless(q))
5417 		return NULL;
5418 
5419 	spin_lock_irqsave(&q->lock, flags);
5420 	skb = __skb_dequeue(q);
5421 	if (skb && (skb_next = skb_peek(q))) {
5422 		icmp_next = is_icmp_err_skb(skb_next);
5423 		if (icmp_next)
5424 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5425 	}
5426 	spin_unlock_irqrestore(&q->lock, flags);
5427 
5428 	if (is_icmp_err_skb(skb) && !icmp_next)
5429 		sk->sk_err = 0;
5430 
5431 	if (skb_next)
5432 		sk_error_report(sk);
5433 
5434 	return skb;
5435 }
5436 EXPORT_SYMBOL(sock_dequeue_err_skb);
5437 
5438 /**
5439  * skb_clone_sk - create clone of skb, and take reference to socket
5440  * @skb: the skb to clone
5441  *
5442  * This function creates a clone of a buffer that holds a reference on
5443  * sk_refcnt.  Buffers created via this function are meant to be
5444  * returned using sock_queue_err_skb, or free via kfree_skb.
5445  *
5446  * When passing buffers allocated with this function to sock_queue_err_skb
5447  * it is necessary to wrap the call with sock_hold/sock_put in order to
5448  * prevent the socket from being released prior to being enqueued on
5449  * the sk_error_queue.
5450  */
5451 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5452 {
5453 	struct sock *sk = skb->sk;
5454 	struct sk_buff *clone;
5455 
5456 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5457 		return NULL;
5458 
5459 	clone = skb_clone(skb, GFP_ATOMIC);
5460 	if (!clone) {
5461 		sock_put(sk);
5462 		return NULL;
5463 	}
5464 
5465 	clone->sk = sk;
5466 	clone->destructor = sock_efree;
5467 
5468 	return clone;
5469 }
5470 EXPORT_SYMBOL(skb_clone_sk);
5471 
5472 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5473 					struct sock *sk,
5474 					int tstype,
5475 					bool opt_stats)
5476 {
5477 	struct sock_exterr_skb *serr;
5478 	int err;
5479 
5480 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5481 
5482 	serr = SKB_EXT_ERR(skb);
5483 	memset(serr, 0, sizeof(*serr));
5484 	serr->ee.ee_errno = ENOMSG;
5485 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5486 	serr->ee.ee_info = tstype;
5487 	serr->opt_stats = opt_stats;
5488 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5489 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5490 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5491 		if (sk_is_tcp(sk))
5492 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5493 	}
5494 
5495 	err = sock_queue_err_skb(sk, skb);
5496 
5497 	if (err)
5498 		kfree_skb(skb);
5499 }
5500 
5501 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5502 {
5503 	bool ret;
5504 
5505 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5506 		return true;
5507 
5508 	read_lock_bh(&sk->sk_callback_lock);
5509 	ret = sk->sk_socket && sk->sk_socket->file &&
5510 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5511 	read_unlock_bh(&sk->sk_callback_lock);
5512 	return ret;
5513 }
5514 
5515 void skb_complete_tx_timestamp(struct sk_buff *skb,
5516 			       struct skb_shared_hwtstamps *hwtstamps)
5517 {
5518 	struct sock *sk = skb->sk;
5519 
5520 	if (!skb_may_tx_timestamp(sk, false))
5521 		goto err;
5522 
5523 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5524 	 * but only if the socket refcount is not zero.
5525 	 */
5526 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5527 		*skb_hwtstamps(skb) = *hwtstamps;
5528 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5529 		sock_put(sk);
5530 		return;
5531 	}
5532 
5533 err:
5534 	kfree_skb(skb);
5535 }
5536 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5537 
5538 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5539 						 struct skb_shared_hwtstamps *hwtstamps,
5540 						 int tstype)
5541 {
5542 	switch (tstype) {
5543 	case SCM_TSTAMP_SCHED:
5544 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5545 	case SCM_TSTAMP_SND:
5546 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5547 						    SKBTX_SW_TSTAMP);
5548 	case SCM_TSTAMP_ACK:
5549 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5550 	case SCM_TSTAMP_COMPLETION:
5551 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5552 	}
5553 
5554 	return false;
5555 }
5556 
5557 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5558 						  struct skb_shared_hwtstamps *hwtstamps,
5559 						  struct sock *sk,
5560 						  int tstype)
5561 {
5562 	int op;
5563 
5564 	switch (tstype) {
5565 	case SCM_TSTAMP_SCHED:
5566 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5567 		break;
5568 	case SCM_TSTAMP_SND:
5569 		if (hwtstamps) {
5570 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5571 			*skb_hwtstamps(skb) = *hwtstamps;
5572 		} else {
5573 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5574 		}
5575 		break;
5576 	case SCM_TSTAMP_ACK:
5577 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5578 		break;
5579 	default:
5580 		return;
5581 	}
5582 
5583 	bpf_skops_tx_timestamping(sk, skb, op);
5584 }
5585 
5586 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5587 		     const struct sk_buff *ack_skb,
5588 		     struct skb_shared_hwtstamps *hwtstamps,
5589 		     struct sock *sk, int tstype)
5590 {
5591 	struct sk_buff *skb;
5592 	bool tsonly, opt_stats = false;
5593 	u32 tsflags;
5594 
5595 	if (!sk)
5596 		return;
5597 
5598 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5599 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5600 						      sk, tstype);
5601 
5602 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5603 		return;
5604 
5605 	tsflags = READ_ONCE(sk->sk_tsflags);
5606 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5607 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5608 		return;
5609 
5610 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5611 	if (!skb_may_tx_timestamp(sk, tsonly))
5612 		return;
5613 
5614 	if (tsonly) {
5615 #ifdef CONFIG_INET
5616 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5617 		    sk_is_tcp(sk)) {
5618 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5619 							     ack_skb);
5620 			opt_stats = true;
5621 		} else
5622 #endif
5623 			skb = alloc_skb(0, GFP_ATOMIC);
5624 	} else {
5625 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5626 
5627 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5628 			kfree_skb(skb);
5629 			return;
5630 		}
5631 	}
5632 	if (!skb)
5633 		return;
5634 
5635 	if (tsonly) {
5636 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5637 					     SKBTX_ANY_TSTAMP;
5638 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5639 	}
5640 
5641 	if (hwtstamps)
5642 		*skb_hwtstamps(skb) = *hwtstamps;
5643 	else
5644 		__net_timestamp(skb);
5645 
5646 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5647 }
5648 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5649 
5650 void skb_tstamp_tx(struct sk_buff *orig_skb,
5651 		   struct skb_shared_hwtstamps *hwtstamps)
5652 {
5653 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5654 			       SCM_TSTAMP_SND);
5655 }
5656 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5657 
5658 #ifdef CONFIG_WIRELESS
5659 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5660 {
5661 	struct sock *sk = skb->sk;
5662 	struct sock_exterr_skb *serr;
5663 	int err = 1;
5664 
5665 	skb->wifi_acked_valid = 1;
5666 	skb->wifi_acked = acked;
5667 
5668 	serr = SKB_EXT_ERR(skb);
5669 	memset(serr, 0, sizeof(*serr));
5670 	serr->ee.ee_errno = ENOMSG;
5671 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5672 
5673 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5674 	 * but only if the socket refcount is not zero.
5675 	 */
5676 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5677 		err = sock_queue_err_skb(sk, skb);
5678 		sock_put(sk);
5679 	}
5680 	if (err)
5681 		kfree_skb(skb);
5682 }
5683 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5684 #endif /* CONFIG_WIRELESS */
5685 
5686 /**
5687  * skb_partial_csum_set - set up and verify partial csum values for packet
5688  * @skb: the skb to set
5689  * @start: the number of bytes after skb->data to start checksumming.
5690  * @off: the offset from start to place the checksum.
5691  *
5692  * For untrusted partially-checksummed packets, we need to make sure the values
5693  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5694  *
5695  * This function checks and sets those values and skb->ip_summed: if this
5696  * returns false you should drop the packet.
5697  */
5698 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5699 {
5700 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5701 	u32 csum_start = skb_headroom(skb) + (u32)start;
5702 
5703 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5704 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5705 				     start, off, skb_headroom(skb), skb_headlen(skb));
5706 		return false;
5707 	}
5708 	skb->ip_summed = CHECKSUM_PARTIAL;
5709 	skb->csum_start = csum_start;
5710 	skb->csum_offset = off;
5711 	skb->transport_header = csum_start;
5712 	return true;
5713 }
5714 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5715 
5716 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5717 			       unsigned int max)
5718 {
5719 	if (skb_headlen(skb) >= len)
5720 		return 0;
5721 
5722 	/* If we need to pullup then pullup to the max, so we
5723 	 * won't need to do it again.
5724 	 */
5725 	if (max > skb->len)
5726 		max = skb->len;
5727 
5728 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5729 		return -ENOMEM;
5730 
5731 	if (skb_headlen(skb) < len)
5732 		return -EPROTO;
5733 
5734 	return 0;
5735 }
5736 
5737 #define MAX_TCP_HDR_LEN (15 * 4)
5738 
5739 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5740 				      typeof(IPPROTO_IP) proto,
5741 				      unsigned int off)
5742 {
5743 	int err;
5744 
5745 	switch (proto) {
5746 	case IPPROTO_TCP:
5747 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5748 					  off + MAX_TCP_HDR_LEN);
5749 		if (!err && !skb_partial_csum_set(skb, off,
5750 						  offsetof(struct tcphdr,
5751 							   check)))
5752 			err = -EPROTO;
5753 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5754 
5755 	case IPPROTO_UDP:
5756 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5757 					  off + sizeof(struct udphdr));
5758 		if (!err && !skb_partial_csum_set(skb, off,
5759 						  offsetof(struct udphdr,
5760 							   check)))
5761 			err = -EPROTO;
5762 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5763 	}
5764 
5765 	return ERR_PTR(-EPROTO);
5766 }
5767 
5768 /* This value should be large enough to cover a tagged ethernet header plus
5769  * maximally sized IP and TCP or UDP headers.
5770  */
5771 #define MAX_IP_HDR_LEN 128
5772 
5773 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5774 {
5775 	unsigned int off;
5776 	bool fragment;
5777 	__sum16 *csum;
5778 	int err;
5779 
5780 	fragment = false;
5781 
5782 	err = skb_maybe_pull_tail(skb,
5783 				  sizeof(struct iphdr),
5784 				  MAX_IP_HDR_LEN);
5785 	if (err < 0)
5786 		goto out;
5787 
5788 	if (ip_is_fragment(ip_hdr(skb)))
5789 		fragment = true;
5790 
5791 	off = ip_hdrlen(skb);
5792 
5793 	err = -EPROTO;
5794 
5795 	if (fragment)
5796 		goto out;
5797 
5798 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5799 	if (IS_ERR(csum))
5800 		return PTR_ERR(csum);
5801 
5802 	if (recalculate)
5803 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5804 					   ip_hdr(skb)->daddr,
5805 					   skb->len - off,
5806 					   ip_hdr(skb)->protocol, 0);
5807 	err = 0;
5808 
5809 out:
5810 	return err;
5811 }
5812 
5813 /* This value should be large enough to cover a tagged ethernet header plus
5814  * an IPv6 header, all options, and a maximal TCP or UDP header.
5815  */
5816 #define MAX_IPV6_HDR_LEN 256
5817 
5818 #define OPT_HDR(type, skb, off) \
5819 	(type *)(skb_network_header(skb) + (off))
5820 
5821 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5822 {
5823 	int err;
5824 	u8 nexthdr;
5825 	unsigned int off;
5826 	unsigned int len;
5827 	bool fragment;
5828 	bool done;
5829 	__sum16 *csum;
5830 
5831 	fragment = false;
5832 	done = false;
5833 
5834 	off = sizeof(struct ipv6hdr);
5835 
5836 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5837 	if (err < 0)
5838 		goto out;
5839 
5840 	nexthdr = ipv6_hdr(skb)->nexthdr;
5841 
5842 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5843 	while (off <= len && !done) {
5844 		switch (nexthdr) {
5845 		case IPPROTO_DSTOPTS:
5846 		case IPPROTO_HOPOPTS:
5847 		case IPPROTO_ROUTING: {
5848 			struct ipv6_opt_hdr *hp;
5849 
5850 			err = skb_maybe_pull_tail(skb,
5851 						  off +
5852 						  sizeof(struct ipv6_opt_hdr),
5853 						  MAX_IPV6_HDR_LEN);
5854 			if (err < 0)
5855 				goto out;
5856 
5857 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5858 			nexthdr = hp->nexthdr;
5859 			off += ipv6_optlen(hp);
5860 			break;
5861 		}
5862 		case IPPROTO_AH: {
5863 			struct ip_auth_hdr *hp;
5864 
5865 			err = skb_maybe_pull_tail(skb,
5866 						  off +
5867 						  sizeof(struct ip_auth_hdr),
5868 						  MAX_IPV6_HDR_LEN);
5869 			if (err < 0)
5870 				goto out;
5871 
5872 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5873 			nexthdr = hp->nexthdr;
5874 			off += ipv6_authlen(hp);
5875 			break;
5876 		}
5877 		case IPPROTO_FRAGMENT: {
5878 			struct frag_hdr *hp;
5879 
5880 			err = skb_maybe_pull_tail(skb,
5881 						  off +
5882 						  sizeof(struct frag_hdr),
5883 						  MAX_IPV6_HDR_LEN);
5884 			if (err < 0)
5885 				goto out;
5886 
5887 			hp = OPT_HDR(struct frag_hdr, skb, off);
5888 
5889 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5890 				fragment = true;
5891 
5892 			nexthdr = hp->nexthdr;
5893 			off += sizeof(struct frag_hdr);
5894 			break;
5895 		}
5896 		default:
5897 			done = true;
5898 			break;
5899 		}
5900 	}
5901 
5902 	err = -EPROTO;
5903 
5904 	if (!done || fragment)
5905 		goto out;
5906 
5907 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5908 	if (IS_ERR(csum))
5909 		return PTR_ERR(csum);
5910 
5911 	if (recalculate)
5912 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5913 					 &ipv6_hdr(skb)->daddr,
5914 					 skb->len - off, nexthdr, 0);
5915 	err = 0;
5916 
5917 out:
5918 	return err;
5919 }
5920 
5921 /**
5922  * skb_checksum_setup - set up partial checksum offset
5923  * @skb: the skb to set up
5924  * @recalculate: if true the pseudo-header checksum will be recalculated
5925  */
5926 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5927 {
5928 	int err;
5929 
5930 	switch (skb->protocol) {
5931 	case htons(ETH_P_IP):
5932 		err = skb_checksum_setup_ipv4(skb, recalculate);
5933 		break;
5934 
5935 	case htons(ETH_P_IPV6):
5936 		err = skb_checksum_setup_ipv6(skb, recalculate);
5937 		break;
5938 
5939 	default:
5940 		err = -EPROTO;
5941 		break;
5942 	}
5943 
5944 	return err;
5945 }
5946 EXPORT_SYMBOL(skb_checksum_setup);
5947 
5948 /**
5949  * skb_checksum_maybe_trim - maybe trims the given skb
5950  * @skb: the skb to check
5951  * @transport_len: the data length beyond the network header
5952  *
5953  * Checks whether the given skb has data beyond the given transport length.
5954  * If so, returns a cloned skb trimmed to this transport length.
5955  * Otherwise returns the provided skb. Returns NULL in error cases
5956  * (e.g. transport_len exceeds skb length or out-of-memory).
5957  *
5958  * Caller needs to set the skb transport header and free any returned skb if it
5959  * differs from the provided skb.
5960  */
5961 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5962 					       unsigned int transport_len)
5963 {
5964 	struct sk_buff *skb_chk;
5965 	unsigned int len = skb_transport_offset(skb) + transport_len;
5966 	int ret;
5967 
5968 	if (skb->len < len)
5969 		return NULL;
5970 	else if (skb->len == len)
5971 		return skb;
5972 
5973 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5974 	if (!skb_chk)
5975 		return NULL;
5976 
5977 	ret = pskb_trim_rcsum(skb_chk, len);
5978 	if (ret) {
5979 		kfree_skb(skb_chk);
5980 		return NULL;
5981 	}
5982 
5983 	return skb_chk;
5984 }
5985 
5986 /**
5987  * skb_checksum_trimmed - validate checksum of an skb
5988  * @skb: the skb to check
5989  * @transport_len: the data length beyond the network header
5990  * @skb_chkf: checksum function to use
5991  *
5992  * Applies the given checksum function skb_chkf to the provided skb.
5993  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5994  *
5995  * If the skb has data beyond the given transport length, then a
5996  * trimmed & cloned skb is checked and returned.
5997  *
5998  * Caller needs to set the skb transport header and free any returned skb if it
5999  * differs from the provided skb.
6000  */
6001 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6002 				     unsigned int transport_len,
6003 				     __sum16(*skb_chkf)(struct sk_buff *skb))
6004 {
6005 	struct sk_buff *skb_chk;
6006 	unsigned int offset = skb_transport_offset(skb);
6007 	__sum16 ret;
6008 
6009 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6010 	if (!skb_chk)
6011 		goto err;
6012 
6013 	if (!pskb_may_pull(skb_chk, offset))
6014 		goto err;
6015 
6016 	skb_pull_rcsum(skb_chk, offset);
6017 	ret = skb_chkf(skb_chk);
6018 	skb_push_rcsum(skb_chk, offset);
6019 
6020 	if (ret)
6021 		goto err;
6022 
6023 	return skb_chk;
6024 
6025 err:
6026 	if (skb_chk && skb_chk != skb)
6027 		kfree_skb(skb_chk);
6028 
6029 	return NULL;
6030 
6031 }
6032 EXPORT_SYMBOL(skb_checksum_trimmed);
6033 
6034 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6035 {
6036 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6037 			     skb->dev->name);
6038 }
6039 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6040 
6041 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6042 {
6043 	if (head_stolen) {
6044 		skb_release_head_state(skb);
6045 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6046 	} else {
6047 		__kfree_skb(skb);
6048 	}
6049 }
6050 EXPORT_SYMBOL(kfree_skb_partial);
6051 
6052 /**
6053  * skb_try_coalesce - try to merge skb to prior one
6054  * @to: prior buffer
6055  * @from: buffer to add
6056  * @fragstolen: pointer to boolean
6057  * @delta_truesize: how much more was allocated than was requested
6058  */
6059 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6060 		      bool *fragstolen, int *delta_truesize)
6061 {
6062 	struct skb_shared_info *to_shinfo, *from_shinfo;
6063 	int i, delta, len = from->len;
6064 
6065 	*fragstolen = false;
6066 
6067 	if (skb_cloned(to))
6068 		return false;
6069 
6070 	/* In general, avoid mixing page_pool and non-page_pool allocated
6071 	 * pages within the same SKB. In theory we could take full
6072 	 * references if @from is cloned and !@to->pp_recycle but its
6073 	 * tricky (due to potential race with the clone disappearing) and
6074 	 * rare, so not worth dealing with.
6075 	 */
6076 	if (to->pp_recycle != from->pp_recycle)
6077 		return false;
6078 
6079 	if (skb_frags_readable(from) != skb_frags_readable(to))
6080 		return false;
6081 
6082 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6083 		if (len)
6084 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6085 		*delta_truesize = 0;
6086 		return true;
6087 	}
6088 
6089 	to_shinfo = skb_shinfo(to);
6090 	from_shinfo = skb_shinfo(from);
6091 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6092 		return false;
6093 	if (skb_zcopy(to) || skb_zcopy(from))
6094 		return false;
6095 
6096 	if (skb_headlen(from) != 0) {
6097 		struct page *page;
6098 		unsigned int offset;
6099 
6100 		if (to_shinfo->nr_frags +
6101 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6102 			return false;
6103 
6104 		if (skb_head_is_locked(from))
6105 			return false;
6106 
6107 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6108 
6109 		page = virt_to_head_page(from->head);
6110 		offset = from->data - (unsigned char *)page_address(page);
6111 
6112 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6113 				   page, offset, skb_headlen(from));
6114 		*fragstolen = true;
6115 	} else {
6116 		if (to_shinfo->nr_frags +
6117 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6118 			return false;
6119 
6120 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6121 	}
6122 
6123 	WARN_ON_ONCE(delta < len);
6124 
6125 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6126 	       from_shinfo->frags,
6127 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6128 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6129 
6130 	if (!skb_cloned(from))
6131 		from_shinfo->nr_frags = 0;
6132 
6133 	/* if the skb is not cloned this does nothing
6134 	 * since we set nr_frags to 0.
6135 	 */
6136 	if (skb_pp_frag_ref(from)) {
6137 		for (i = 0; i < from_shinfo->nr_frags; i++)
6138 			__skb_frag_ref(&from_shinfo->frags[i]);
6139 	}
6140 
6141 	to->truesize += delta;
6142 	to->len += len;
6143 	to->data_len += len;
6144 
6145 	*delta_truesize = delta;
6146 	return true;
6147 }
6148 EXPORT_SYMBOL(skb_try_coalesce);
6149 
6150 /**
6151  * skb_scrub_packet - scrub an skb
6152  *
6153  * @skb: buffer to clean
6154  * @xnet: packet is crossing netns
6155  *
6156  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6157  * into/from a tunnel. Some information have to be cleared during these
6158  * operations.
6159  * skb_scrub_packet can also be used to clean a skb before injecting it in
6160  * another namespace (@xnet == true). We have to clear all information in the
6161  * skb that could impact namespace isolation.
6162  */
6163 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6164 {
6165 	skb->pkt_type = PACKET_HOST;
6166 	skb->skb_iif = 0;
6167 	skb->ignore_df = 0;
6168 	skb_dst_drop(skb);
6169 	skb_ext_reset(skb);
6170 	nf_reset_ct(skb);
6171 	nf_reset_trace(skb);
6172 
6173 #ifdef CONFIG_NET_SWITCHDEV
6174 	skb->offload_fwd_mark = 0;
6175 	skb->offload_l3_fwd_mark = 0;
6176 #endif
6177 	ipvs_reset(skb);
6178 
6179 	if (!xnet)
6180 		return;
6181 
6182 	skb->mark = 0;
6183 	skb_clear_tstamp(skb);
6184 }
6185 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6186 
6187 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6188 {
6189 	int mac_len, meta_len;
6190 	void *meta;
6191 
6192 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6193 		kfree_skb(skb);
6194 		return NULL;
6195 	}
6196 
6197 	mac_len = skb->data - skb_mac_header(skb);
6198 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6199 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6200 			mac_len - VLAN_HLEN - ETH_TLEN);
6201 	}
6202 
6203 	meta_len = skb_metadata_len(skb);
6204 	if (meta_len) {
6205 		meta = skb_metadata_end(skb) - meta_len;
6206 		memmove(meta + VLAN_HLEN, meta, meta_len);
6207 	}
6208 
6209 	skb->mac_header += VLAN_HLEN;
6210 	return skb;
6211 }
6212 
6213 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6214 {
6215 	struct vlan_hdr *vhdr;
6216 	u16 vlan_tci;
6217 
6218 	if (unlikely(skb_vlan_tag_present(skb))) {
6219 		/* vlan_tci is already set-up so leave this for another time */
6220 		return skb;
6221 	}
6222 
6223 	skb = skb_share_check(skb, GFP_ATOMIC);
6224 	if (unlikely(!skb))
6225 		goto err_free;
6226 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6227 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6228 		goto err_free;
6229 
6230 	vhdr = (struct vlan_hdr *)skb->data;
6231 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6232 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6233 
6234 	skb_pull_rcsum(skb, VLAN_HLEN);
6235 	vlan_set_encap_proto(skb, vhdr);
6236 
6237 	skb = skb_reorder_vlan_header(skb);
6238 	if (unlikely(!skb))
6239 		goto err_free;
6240 
6241 	skb_reset_network_header(skb);
6242 	if (!skb_transport_header_was_set(skb))
6243 		skb_reset_transport_header(skb);
6244 	skb_reset_mac_len(skb);
6245 
6246 	return skb;
6247 
6248 err_free:
6249 	kfree_skb(skb);
6250 	return NULL;
6251 }
6252 EXPORT_SYMBOL(skb_vlan_untag);
6253 
6254 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6255 {
6256 	if (!pskb_may_pull(skb, write_len))
6257 		return -ENOMEM;
6258 
6259 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6260 		return 0;
6261 
6262 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6263 }
6264 EXPORT_SYMBOL(skb_ensure_writable);
6265 
6266 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6267 {
6268 	int needed_headroom = dev->needed_headroom;
6269 	int needed_tailroom = dev->needed_tailroom;
6270 
6271 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6272 	 * that the tail tag does not fail at its role of being at the end of
6273 	 * the packet, once the conduit interface pads the frame. Account for
6274 	 * that pad length here, and pad later.
6275 	 */
6276 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6277 		needed_tailroom += ETH_ZLEN - skb->len;
6278 	/* skb_headroom() returns unsigned int... */
6279 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6280 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6281 
6282 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6283 		/* No reallocation needed, yay! */
6284 		return 0;
6285 
6286 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6287 				GFP_ATOMIC);
6288 }
6289 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6290 
6291 /* remove VLAN header from packet and update csum accordingly.
6292  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6293  */
6294 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6295 {
6296 	int offset = skb->data - skb_mac_header(skb);
6297 	int err;
6298 
6299 	if (WARN_ONCE(offset,
6300 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6301 		      offset)) {
6302 		return -EINVAL;
6303 	}
6304 
6305 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6306 	if (unlikely(err))
6307 		return err;
6308 
6309 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6310 
6311 	vlan_remove_tag(skb, vlan_tci);
6312 
6313 	skb->mac_header += VLAN_HLEN;
6314 
6315 	if (skb_network_offset(skb) < ETH_HLEN)
6316 		skb_set_network_header(skb, ETH_HLEN);
6317 
6318 	skb_reset_mac_len(skb);
6319 
6320 	return err;
6321 }
6322 EXPORT_SYMBOL(__skb_vlan_pop);
6323 
6324 /* Pop a vlan tag either from hwaccel or from payload.
6325  * Expects skb->data at mac header.
6326  */
6327 int skb_vlan_pop(struct sk_buff *skb)
6328 {
6329 	u16 vlan_tci;
6330 	__be16 vlan_proto;
6331 	int err;
6332 
6333 	if (likely(skb_vlan_tag_present(skb))) {
6334 		__vlan_hwaccel_clear_tag(skb);
6335 	} else {
6336 		if (unlikely(!eth_type_vlan(skb->protocol)))
6337 			return 0;
6338 
6339 		err = __skb_vlan_pop(skb, &vlan_tci);
6340 		if (err)
6341 			return err;
6342 	}
6343 	/* move next vlan tag to hw accel tag */
6344 	if (likely(!eth_type_vlan(skb->protocol)))
6345 		return 0;
6346 
6347 	vlan_proto = skb->protocol;
6348 	err = __skb_vlan_pop(skb, &vlan_tci);
6349 	if (unlikely(err))
6350 		return err;
6351 
6352 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6353 	return 0;
6354 }
6355 EXPORT_SYMBOL(skb_vlan_pop);
6356 
6357 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6358  * Expects skb->data at mac header.
6359  */
6360 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6361 {
6362 	if (skb_vlan_tag_present(skb)) {
6363 		int offset = skb->data - skb_mac_header(skb);
6364 		int err;
6365 
6366 		if (WARN_ONCE(offset,
6367 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6368 			      offset)) {
6369 			return -EINVAL;
6370 		}
6371 
6372 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6373 					skb_vlan_tag_get(skb));
6374 		if (err)
6375 			return err;
6376 
6377 		skb->protocol = skb->vlan_proto;
6378 		skb->network_header -= VLAN_HLEN;
6379 
6380 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6381 	}
6382 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6383 	return 0;
6384 }
6385 EXPORT_SYMBOL(skb_vlan_push);
6386 
6387 /**
6388  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6389  *
6390  * @skb: Socket buffer to modify
6391  *
6392  * Drop the Ethernet header of @skb.
6393  *
6394  * Expects that skb->data points to the mac header and that no VLAN tags are
6395  * present.
6396  *
6397  * Returns 0 on success, -errno otherwise.
6398  */
6399 int skb_eth_pop(struct sk_buff *skb)
6400 {
6401 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6402 	    skb_network_offset(skb) < ETH_HLEN)
6403 		return -EPROTO;
6404 
6405 	skb_pull_rcsum(skb, ETH_HLEN);
6406 	skb_reset_mac_header(skb);
6407 	skb_reset_mac_len(skb);
6408 
6409 	return 0;
6410 }
6411 EXPORT_SYMBOL(skb_eth_pop);
6412 
6413 /**
6414  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6415  *
6416  * @skb: Socket buffer to modify
6417  * @dst: Destination MAC address of the new header
6418  * @src: Source MAC address of the new header
6419  *
6420  * Prepend @skb with a new Ethernet header.
6421  *
6422  * Expects that skb->data points to the mac header, which must be empty.
6423  *
6424  * Returns 0 on success, -errno otherwise.
6425  */
6426 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6427 		 const unsigned char *src)
6428 {
6429 	struct ethhdr *eth;
6430 	int err;
6431 
6432 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6433 		return -EPROTO;
6434 
6435 	err = skb_cow_head(skb, sizeof(*eth));
6436 	if (err < 0)
6437 		return err;
6438 
6439 	skb_push(skb, sizeof(*eth));
6440 	skb_reset_mac_header(skb);
6441 	skb_reset_mac_len(skb);
6442 
6443 	eth = eth_hdr(skb);
6444 	ether_addr_copy(eth->h_dest, dst);
6445 	ether_addr_copy(eth->h_source, src);
6446 	eth->h_proto = skb->protocol;
6447 
6448 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6449 
6450 	return 0;
6451 }
6452 EXPORT_SYMBOL(skb_eth_push);
6453 
6454 /* Update the ethertype of hdr and the skb csum value if required. */
6455 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6456 			     __be16 ethertype)
6457 {
6458 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6459 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6460 
6461 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6462 	}
6463 
6464 	hdr->h_proto = ethertype;
6465 }
6466 
6467 /**
6468  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6469  *                   the packet
6470  *
6471  * @skb: buffer
6472  * @mpls_lse: MPLS label stack entry to push
6473  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6474  * @mac_len: length of the MAC header
6475  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6476  *            ethernet
6477  *
6478  * Expects skb->data at mac header.
6479  *
6480  * Returns 0 on success, -errno otherwise.
6481  */
6482 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6483 		  int mac_len, bool ethernet)
6484 {
6485 	struct mpls_shim_hdr *lse;
6486 	int err;
6487 
6488 	if (unlikely(!eth_p_mpls(mpls_proto)))
6489 		return -EINVAL;
6490 
6491 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6492 	if (skb->encapsulation)
6493 		return -EINVAL;
6494 
6495 	err = skb_cow_head(skb, MPLS_HLEN);
6496 	if (unlikely(err))
6497 		return err;
6498 
6499 	if (!skb->inner_protocol) {
6500 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6501 		skb_set_inner_protocol(skb, skb->protocol);
6502 	}
6503 
6504 	skb_push(skb, MPLS_HLEN);
6505 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6506 		mac_len);
6507 	skb_reset_mac_header(skb);
6508 	skb_set_network_header(skb, mac_len);
6509 	skb_reset_mac_len(skb);
6510 
6511 	lse = mpls_hdr(skb);
6512 	lse->label_stack_entry = mpls_lse;
6513 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6514 
6515 	if (ethernet && mac_len >= ETH_HLEN)
6516 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6517 	skb->protocol = mpls_proto;
6518 
6519 	return 0;
6520 }
6521 EXPORT_SYMBOL_GPL(skb_mpls_push);
6522 
6523 /**
6524  * skb_mpls_pop() - pop the outermost MPLS header
6525  *
6526  * @skb: buffer
6527  * @next_proto: ethertype of header after popped MPLS header
6528  * @mac_len: length of the MAC header
6529  * @ethernet: flag to indicate if the packet is ethernet
6530  *
6531  * Expects skb->data at mac header.
6532  *
6533  * Returns 0 on success, -errno otherwise.
6534  */
6535 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6536 		 bool ethernet)
6537 {
6538 	int err;
6539 
6540 	if (unlikely(!eth_p_mpls(skb->protocol)))
6541 		return 0;
6542 
6543 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6544 	if (unlikely(err))
6545 		return err;
6546 
6547 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6548 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6549 		mac_len);
6550 
6551 	__skb_pull(skb, MPLS_HLEN);
6552 	skb_reset_mac_header(skb);
6553 	skb_set_network_header(skb, mac_len);
6554 
6555 	if (ethernet && mac_len >= ETH_HLEN) {
6556 		struct ethhdr *hdr;
6557 
6558 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6559 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6560 		skb_mod_eth_type(skb, hdr, next_proto);
6561 	}
6562 	skb->protocol = next_proto;
6563 
6564 	return 0;
6565 }
6566 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6567 
6568 /**
6569  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6570  *
6571  * @skb: buffer
6572  * @mpls_lse: new MPLS label stack entry to update to
6573  *
6574  * Expects skb->data at mac header.
6575  *
6576  * Returns 0 on success, -errno otherwise.
6577  */
6578 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6579 {
6580 	int err;
6581 
6582 	if (unlikely(!eth_p_mpls(skb->protocol)))
6583 		return -EINVAL;
6584 
6585 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6586 	if (unlikely(err))
6587 		return err;
6588 
6589 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6590 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6591 
6592 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6593 	}
6594 
6595 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6596 
6597 	return 0;
6598 }
6599 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6600 
6601 /**
6602  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6603  *
6604  * @skb: buffer
6605  *
6606  * Expects skb->data at mac header.
6607  *
6608  * Returns 0 on success, -errno otherwise.
6609  */
6610 int skb_mpls_dec_ttl(struct sk_buff *skb)
6611 {
6612 	u32 lse;
6613 	u8 ttl;
6614 
6615 	if (unlikely(!eth_p_mpls(skb->protocol)))
6616 		return -EINVAL;
6617 
6618 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6619 		return -ENOMEM;
6620 
6621 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6622 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6623 	if (!--ttl)
6624 		return -EINVAL;
6625 
6626 	lse &= ~MPLS_LS_TTL_MASK;
6627 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6628 
6629 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6630 }
6631 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6632 
6633 /**
6634  * alloc_skb_with_frags - allocate skb with page frags
6635  *
6636  * @header_len: size of linear part
6637  * @data_len: needed length in frags
6638  * @order: max page order desired.
6639  * @errcode: pointer to error code if any
6640  * @gfp_mask: allocation mask
6641  *
6642  * This can be used to allocate a paged skb, given a maximal order for frags.
6643  */
6644 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6645 				     unsigned long data_len,
6646 				     int order,
6647 				     int *errcode,
6648 				     gfp_t gfp_mask)
6649 {
6650 	unsigned long chunk;
6651 	struct sk_buff *skb;
6652 	struct page *page;
6653 	int nr_frags = 0;
6654 
6655 	*errcode = -EMSGSIZE;
6656 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6657 		return NULL;
6658 
6659 	*errcode = -ENOBUFS;
6660 	skb = alloc_skb(header_len, gfp_mask);
6661 	if (!skb)
6662 		return NULL;
6663 
6664 	while (data_len) {
6665 		if (nr_frags == MAX_SKB_FRAGS - 1)
6666 			goto failure;
6667 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6668 			order--;
6669 
6670 		if (order) {
6671 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6672 					   __GFP_COMP |
6673 					   __GFP_NOWARN,
6674 					   order);
6675 			if (!page) {
6676 				order--;
6677 				continue;
6678 			}
6679 		} else {
6680 			page = alloc_page(gfp_mask);
6681 			if (!page)
6682 				goto failure;
6683 		}
6684 		chunk = min_t(unsigned long, data_len,
6685 			      PAGE_SIZE << order);
6686 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6687 		nr_frags++;
6688 		skb->truesize += (PAGE_SIZE << order);
6689 		data_len -= chunk;
6690 	}
6691 	return skb;
6692 
6693 failure:
6694 	kfree_skb(skb);
6695 	return NULL;
6696 }
6697 EXPORT_SYMBOL(alloc_skb_with_frags);
6698 
6699 /* carve out the first off bytes from skb when off < headlen */
6700 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6701 				    const int headlen, gfp_t gfp_mask)
6702 {
6703 	int i;
6704 	unsigned int size = skb_end_offset(skb);
6705 	int new_hlen = headlen - off;
6706 	u8 *data;
6707 
6708 	if (skb_pfmemalloc(skb))
6709 		gfp_mask |= __GFP_MEMALLOC;
6710 
6711 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6712 	if (!data)
6713 		return -ENOMEM;
6714 	size = SKB_WITH_OVERHEAD(size);
6715 
6716 	/* Copy real data, and all frags */
6717 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6718 	skb->len -= off;
6719 
6720 	memcpy((struct skb_shared_info *)(data + size),
6721 	       skb_shinfo(skb),
6722 	       offsetof(struct skb_shared_info,
6723 			frags[skb_shinfo(skb)->nr_frags]));
6724 	if (skb_cloned(skb)) {
6725 		/* drop the old head gracefully */
6726 		if (skb_orphan_frags(skb, gfp_mask)) {
6727 			skb_kfree_head(data, size);
6728 			return -ENOMEM;
6729 		}
6730 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6731 			skb_frag_ref(skb, i);
6732 		if (skb_has_frag_list(skb))
6733 			skb_clone_fraglist(skb);
6734 		skb_release_data(skb, SKB_CONSUMED);
6735 	} else {
6736 		/* we can reuse existing recount- all we did was
6737 		 * relocate values
6738 		 */
6739 		skb_free_head(skb);
6740 	}
6741 
6742 	skb->head = data;
6743 	skb->data = data;
6744 	skb->head_frag = 0;
6745 	skb_set_end_offset(skb, size);
6746 	skb_set_tail_pointer(skb, skb_headlen(skb));
6747 	skb_headers_offset_update(skb, 0);
6748 	skb->cloned = 0;
6749 	skb->hdr_len = 0;
6750 	skb->nohdr = 0;
6751 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6752 
6753 	return 0;
6754 }
6755 
6756 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6757 
6758 /* carve out the first eat bytes from skb's frag_list. May recurse into
6759  * pskb_carve()
6760  */
6761 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6762 				gfp_t gfp_mask)
6763 {
6764 	struct sk_buff *list = shinfo->frag_list;
6765 	struct sk_buff *clone = NULL;
6766 	struct sk_buff *insp = NULL;
6767 
6768 	do {
6769 		if (!list) {
6770 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6771 			return -EFAULT;
6772 		}
6773 		if (list->len <= eat) {
6774 			/* Eaten as whole. */
6775 			eat -= list->len;
6776 			list = list->next;
6777 			insp = list;
6778 		} else {
6779 			/* Eaten partially. */
6780 			if (skb_shared(list)) {
6781 				clone = skb_clone(list, gfp_mask);
6782 				if (!clone)
6783 					return -ENOMEM;
6784 				insp = list->next;
6785 				list = clone;
6786 			} else {
6787 				/* This may be pulled without problems. */
6788 				insp = list;
6789 			}
6790 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6791 				kfree_skb(clone);
6792 				return -ENOMEM;
6793 			}
6794 			break;
6795 		}
6796 	} while (eat);
6797 
6798 	/* Free pulled out fragments. */
6799 	while ((list = shinfo->frag_list) != insp) {
6800 		shinfo->frag_list = list->next;
6801 		consume_skb(list);
6802 	}
6803 	/* And insert new clone at head. */
6804 	if (clone) {
6805 		clone->next = list;
6806 		shinfo->frag_list = clone;
6807 	}
6808 	return 0;
6809 }
6810 
6811 /* carve off first len bytes from skb. Split line (off) is in the
6812  * non-linear part of skb
6813  */
6814 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6815 				       int pos, gfp_t gfp_mask)
6816 {
6817 	int i, k = 0;
6818 	unsigned int size = skb_end_offset(skb);
6819 	u8 *data;
6820 	const int nfrags = skb_shinfo(skb)->nr_frags;
6821 	struct skb_shared_info *shinfo;
6822 
6823 	if (skb_pfmemalloc(skb))
6824 		gfp_mask |= __GFP_MEMALLOC;
6825 
6826 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6827 	if (!data)
6828 		return -ENOMEM;
6829 	size = SKB_WITH_OVERHEAD(size);
6830 
6831 	memcpy((struct skb_shared_info *)(data + size),
6832 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6833 	if (skb_orphan_frags(skb, gfp_mask)) {
6834 		skb_kfree_head(data, size);
6835 		return -ENOMEM;
6836 	}
6837 	shinfo = (struct skb_shared_info *)(data + size);
6838 	for (i = 0; i < nfrags; i++) {
6839 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6840 
6841 		if (pos + fsize > off) {
6842 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6843 
6844 			if (pos < off) {
6845 				/* Split frag.
6846 				 * We have two variants in this case:
6847 				 * 1. Move all the frag to the second
6848 				 *    part, if it is possible. F.e.
6849 				 *    this approach is mandatory for TUX,
6850 				 *    where splitting is expensive.
6851 				 * 2. Split is accurately. We make this.
6852 				 */
6853 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6854 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6855 			}
6856 			skb_frag_ref(skb, i);
6857 			k++;
6858 		}
6859 		pos += fsize;
6860 	}
6861 	shinfo->nr_frags = k;
6862 	if (skb_has_frag_list(skb))
6863 		skb_clone_fraglist(skb);
6864 
6865 	/* split line is in frag list */
6866 	if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6867 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6868 		if (skb_has_frag_list(skb))
6869 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6870 		skb_kfree_head(data, size);
6871 		return -ENOMEM;
6872 	}
6873 	skb_release_data(skb, SKB_CONSUMED);
6874 
6875 	skb->head = data;
6876 	skb->head_frag = 0;
6877 	skb->data = data;
6878 	skb_set_end_offset(skb, size);
6879 	skb_reset_tail_pointer(skb);
6880 	skb_headers_offset_update(skb, 0);
6881 	skb->cloned   = 0;
6882 	skb->hdr_len  = 0;
6883 	skb->nohdr    = 0;
6884 	skb->len -= off;
6885 	skb->data_len = skb->len;
6886 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6887 	return 0;
6888 }
6889 
6890 /* remove len bytes from the beginning of the skb */
6891 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6892 {
6893 	int headlen = skb_headlen(skb);
6894 
6895 	if (len < headlen)
6896 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6897 	else
6898 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6899 }
6900 
6901 /* Extract to_copy bytes starting at off from skb, and return this in
6902  * a new skb
6903  */
6904 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6905 			     int to_copy, gfp_t gfp)
6906 {
6907 	struct sk_buff  *clone = skb_clone(skb, gfp);
6908 
6909 	if (!clone)
6910 		return NULL;
6911 
6912 	if (pskb_carve(clone, off, gfp) < 0 ||
6913 	    pskb_trim(clone, to_copy)) {
6914 		kfree_skb(clone);
6915 		return NULL;
6916 	}
6917 	return clone;
6918 }
6919 EXPORT_SYMBOL(pskb_extract);
6920 
6921 /**
6922  * skb_condense - try to get rid of fragments/frag_list if possible
6923  * @skb: buffer
6924  *
6925  * Can be used to save memory before skb is added to a busy queue.
6926  * If packet has bytes in frags and enough tail room in skb->head,
6927  * pull all of them, so that we can free the frags right now and adjust
6928  * truesize.
6929  * Notes:
6930  *	We do not reallocate skb->head thus can not fail.
6931  *	Caller must re-evaluate skb->truesize if needed.
6932  */
6933 void skb_condense(struct sk_buff *skb)
6934 {
6935 	if (skb->data_len) {
6936 		if (skb->data_len > skb->end - skb->tail ||
6937 		    skb_cloned(skb) || !skb_frags_readable(skb))
6938 			return;
6939 
6940 		/* Nice, we can free page frag(s) right now */
6941 		__pskb_pull_tail(skb, skb->data_len);
6942 	}
6943 	/* At this point, skb->truesize might be over estimated,
6944 	 * because skb had a fragment, and fragments do not tell
6945 	 * their truesize.
6946 	 * When we pulled its content into skb->head, fragment
6947 	 * was freed, but __pskb_pull_tail() could not possibly
6948 	 * adjust skb->truesize, not knowing the frag truesize.
6949 	 */
6950 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6951 }
6952 EXPORT_SYMBOL(skb_condense);
6953 
6954 #ifdef CONFIG_SKB_EXTENSIONS
6955 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6956 {
6957 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6958 }
6959 
6960 /**
6961  * __skb_ext_alloc - allocate a new skb extensions storage
6962  *
6963  * @flags: See kmalloc().
6964  *
6965  * Returns the newly allocated pointer. The pointer can later attached to a
6966  * skb via __skb_ext_set().
6967  * Note: caller must handle the skb_ext as an opaque data.
6968  */
6969 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6970 {
6971 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6972 
6973 	if (new) {
6974 		memset(new->offset, 0, sizeof(new->offset));
6975 		refcount_set(&new->refcnt, 1);
6976 	}
6977 
6978 	return new;
6979 }
6980 
6981 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6982 					 unsigned int old_active)
6983 {
6984 	struct skb_ext *new;
6985 
6986 	if (refcount_read(&old->refcnt) == 1)
6987 		return old;
6988 
6989 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6990 	if (!new)
6991 		return NULL;
6992 
6993 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6994 	refcount_set(&new->refcnt, 1);
6995 
6996 #ifdef CONFIG_XFRM
6997 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6998 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6999 		unsigned int i;
7000 
7001 		for (i = 0; i < sp->len; i++)
7002 			xfrm_state_hold(sp->xvec[i]);
7003 	}
7004 #endif
7005 #ifdef CONFIG_MCTP_FLOWS
7006 	if (old_active & (1 << SKB_EXT_MCTP)) {
7007 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7008 
7009 		if (flow->key)
7010 			refcount_inc(&flow->key->refs);
7011 	}
7012 #endif
7013 	__skb_ext_put(old);
7014 	return new;
7015 }
7016 
7017 /**
7018  * __skb_ext_set - attach the specified extension storage to this skb
7019  * @skb: buffer
7020  * @id: extension id
7021  * @ext: extension storage previously allocated via __skb_ext_alloc()
7022  *
7023  * Existing extensions, if any, are cleared.
7024  *
7025  * Returns the pointer to the extension.
7026  */
7027 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7028 		    struct skb_ext *ext)
7029 {
7030 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7031 
7032 	skb_ext_put(skb);
7033 	newlen = newoff + skb_ext_type_len[id];
7034 	ext->chunks = newlen;
7035 	ext->offset[id] = newoff;
7036 	skb->extensions = ext;
7037 	skb->active_extensions = 1 << id;
7038 	return skb_ext_get_ptr(ext, id);
7039 }
7040 
7041 /**
7042  * skb_ext_add - allocate space for given extension, COW if needed
7043  * @skb: buffer
7044  * @id: extension to allocate space for
7045  *
7046  * Allocates enough space for the given extension.
7047  * If the extension is already present, a pointer to that extension
7048  * is returned.
7049  *
7050  * If the skb was cloned, COW applies and the returned memory can be
7051  * modified without changing the extension space of clones buffers.
7052  *
7053  * Returns pointer to the extension or NULL on allocation failure.
7054  */
7055 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7056 {
7057 	struct skb_ext *new, *old = NULL;
7058 	unsigned int newlen, newoff;
7059 
7060 	if (skb->active_extensions) {
7061 		old = skb->extensions;
7062 
7063 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7064 		if (!new)
7065 			return NULL;
7066 
7067 		if (__skb_ext_exist(new, id))
7068 			goto set_active;
7069 
7070 		newoff = new->chunks;
7071 	} else {
7072 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7073 
7074 		new = __skb_ext_alloc(GFP_ATOMIC);
7075 		if (!new)
7076 			return NULL;
7077 	}
7078 
7079 	newlen = newoff + skb_ext_type_len[id];
7080 	new->chunks = newlen;
7081 	new->offset[id] = newoff;
7082 set_active:
7083 	skb->slow_gro = 1;
7084 	skb->extensions = new;
7085 	skb->active_extensions |= 1 << id;
7086 	return skb_ext_get_ptr(new, id);
7087 }
7088 EXPORT_SYMBOL(skb_ext_add);
7089 
7090 #ifdef CONFIG_XFRM
7091 static void skb_ext_put_sp(struct sec_path *sp)
7092 {
7093 	unsigned int i;
7094 
7095 	for (i = 0; i < sp->len; i++)
7096 		xfrm_state_put(sp->xvec[i]);
7097 }
7098 #endif
7099 
7100 #ifdef CONFIG_MCTP_FLOWS
7101 static void skb_ext_put_mctp(struct mctp_flow *flow)
7102 {
7103 	if (flow->key)
7104 		mctp_key_unref(flow->key);
7105 }
7106 #endif
7107 
7108 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7109 {
7110 	struct skb_ext *ext = skb->extensions;
7111 
7112 	skb->active_extensions &= ~(1 << id);
7113 	if (skb->active_extensions == 0) {
7114 		skb->extensions = NULL;
7115 		__skb_ext_put(ext);
7116 #ifdef CONFIG_XFRM
7117 	} else if (id == SKB_EXT_SEC_PATH &&
7118 		   refcount_read(&ext->refcnt) == 1) {
7119 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7120 
7121 		skb_ext_put_sp(sp);
7122 		sp->len = 0;
7123 #endif
7124 	}
7125 }
7126 EXPORT_SYMBOL(__skb_ext_del);
7127 
7128 void __skb_ext_put(struct skb_ext *ext)
7129 {
7130 	/* If this is last clone, nothing can increment
7131 	 * it after check passes.  Avoids one atomic op.
7132 	 */
7133 	if (refcount_read(&ext->refcnt) == 1)
7134 		goto free_now;
7135 
7136 	if (!refcount_dec_and_test(&ext->refcnt))
7137 		return;
7138 free_now:
7139 #ifdef CONFIG_XFRM
7140 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7141 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7142 #endif
7143 #ifdef CONFIG_MCTP_FLOWS
7144 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7145 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7146 #endif
7147 
7148 	kmem_cache_free(skbuff_ext_cache, ext);
7149 }
7150 EXPORT_SYMBOL(__skb_ext_put);
7151 #endif /* CONFIG_SKB_EXTENSIONS */
7152 
7153 static void kfree_skb_napi_cache(struct sk_buff *skb)
7154 {
7155 	/* if SKB is a clone, don't handle this case */
7156 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7157 		__kfree_skb(skb);
7158 		return;
7159 	}
7160 
7161 	local_bh_disable();
7162 	__napi_kfree_skb(skb, SKB_CONSUMED);
7163 	local_bh_enable();
7164 }
7165 
7166 /**
7167  * skb_attempt_defer_free - queue skb for remote freeing
7168  * @skb: buffer
7169  *
7170  * Put @skb in a per-cpu list, using the cpu which
7171  * allocated the skb/pages to reduce false sharing
7172  * and memory zone spinlock contention.
7173  */
7174 void skb_attempt_defer_free(struct sk_buff *skb)
7175 {
7176 	int cpu = skb->alloc_cpu;
7177 	struct softnet_data *sd;
7178 	unsigned int defer_max;
7179 	bool kick;
7180 
7181 	if (cpu == raw_smp_processor_id() ||
7182 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7183 	    !cpu_online(cpu)) {
7184 nodefer:	kfree_skb_napi_cache(skb);
7185 		return;
7186 	}
7187 
7188 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7189 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7190 
7191 	sd = &per_cpu(softnet_data, cpu);
7192 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7193 	if (READ_ONCE(sd->defer_count) >= defer_max)
7194 		goto nodefer;
7195 
7196 	spin_lock_bh(&sd->defer_lock);
7197 	/* Send an IPI every time queue reaches half capacity. */
7198 	kick = sd->defer_count == (defer_max >> 1);
7199 	/* Paired with the READ_ONCE() few lines above */
7200 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7201 
7202 	skb->next = sd->defer_list;
7203 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7204 	WRITE_ONCE(sd->defer_list, skb);
7205 	spin_unlock_bh(&sd->defer_lock);
7206 
7207 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7208 	 * if we are unlucky enough (this seems very unlikely).
7209 	 */
7210 	if (unlikely(kick))
7211 		kick_defer_list_purge(sd, cpu);
7212 }
7213 
7214 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7215 				 size_t offset, size_t len)
7216 {
7217 	const char *kaddr;
7218 	__wsum csum;
7219 
7220 	kaddr = kmap_local_page(page);
7221 	csum = csum_partial(kaddr + offset, len, 0);
7222 	kunmap_local(kaddr);
7223 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7224 }
7225 
7226 /**
7227  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7228  * @skb: The buffer to add pages to
7229  * @iter: Iterator representing the pages to be added
7230  * @maxsize: Maximum amount of pages to be added
7231  *
7232  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7233  * extracts pages from an iterator and adds them to the socket buffer if
7234  * possible, copying them to fragments if not possible (such as if they're slab
7235  * pages).
7236  *
7237  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7238  * insufficient space in the buffer to transfer anything.
7239  */
7240 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7241 			     ssize_t maxsize)
7242 {
7243 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7244 	struct page *pages[8], **ppages = pages;
7245 	ssize_t spliced = 0, ret = 0;
7246 	unsigned int i;
7247 
7248 	while (iter->count > 0) {
7249 		ssize_t space, nr, len;
7250 		size_t off;
7251 
7252 		ret = -EMSGSIZE;
7253 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7254 		if (space < 0)
7255 			break;
7256 
7257 		/* We might be able to coalesce without increasing nr_frags */
7258 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7259 
7260 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7261 		if (len <= 0) {
7262 			ret = len ?: -EIO;
7263 			break;
7264 		}
7265 
7266 		i = 0;
7267 		do {
7268 			struct page *page = pages[i++];
7269 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7270 
7271 			ret = -EIO;
7272 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7273 				goto out;
7274 
7275 			ret = skb_append_pagefrags(skb, page, off, part,
7276 						   frag_limit);
7277 			if (ret < 0) {
7278 				iov_iter_revert(iter, len);
7279 				goto out;
7280 			}
7281 
7282 			if (skb->ip_summed == CHECKSUM_NONE)
7283 				skb_splice_csum_page(skb, page, off, part);
7284 
7285 			off = 0;
7286 			spliced += part;
7287 			maxsize -= part;
7288 			len -= part;
7289 		} while (len > 0);
7290 
7291 		if (maxsize <= 0)
7292 			break;
7293 	}
7294 
7295 out:
7296 	skb_len_add(skb, spliced);
7297 	return spliced ?: ret;
7298 }
7299 EXPORT_SYMBOL(skb_splice_from_iter);
7300 
7301 static __always_inline
7302 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7303 			     size_t len, void *to, void *priv2)
7304 {
7305 	__wsum *csum = priv2;
7306 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7307 
7308 	*csum = csum_block_add(*csum, next, progress);
7309 	return 0;
7310 }
7311 
7312 static __always_inline
7313 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7314 				size_t len, void *to, void *priv2)
7315 {
7316 	__wsum next, *csum = priv2;
7317 
7318 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7319 	*csum = csum_block_add(*csum, next, progress);
7320 	return next ? 0 : len;
7321 }
7322 
7323 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7324 				  __wsum *csum, struct iov_iter *i)
7325 {
7326 	size_t copied;
7327 
7328 	if (WARN_ON_ONCE(!i->data_source))
7329 		return false;
7330 	copied = iterate_and_advance2(i, bytes, addr, csum,
7331 				      copy_from_user_iter_csum,
7332 				      memcpy_from_iter_csum);
7333 	if (likely(copied == bytes))
7334 		return true;
7335 	iov_iter_revert(i, copied);
7336 	return false;
7337 }
7338 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7339 
7340 void get_netmem(netmem_ref netmem)
7341 {
7342 	struct net_iov *niov;
7343 
7344 	if (netmem_is_net_iov(netmem)) {
7345 		niov = netmem_to_net_iov(netmem);
7346 		if (net_is_devmem_iov(niov))
7347 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7348 		return;
7349 	}
7350 	get_page(netmem_to_page(netmem));
7351 }
7352 EXPORT_SYMBOL(get_netmem);
7353 
7354 void put_netmem(netmem_ref netmem)
7355 {
7356 	struct net_iov *niov;
7357 
7358 	if (netmem_is_net_iov(netmem)) {
7359 		niov = netmem_to_net_iov(netmem);
7360 		if (net_is_devmem_iov(niov))
7361 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7362 		return;
7363 	}
7364 
7365 	put_page(netmem_to_page(netmem));
7366 }
7367 EXPORT_SYMBOL(put_netmem);
7368