1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 #include <linux/crc32.h> 68 69 #include <net/protocol.h> 70 #include <net/dst.h> 71 #include <net/sock.h> 72 #include <net/checksum.h> 73 #include <net/gro.h> 74 #include <net/gso.h> 75 #include <net/hotdata.h> 76 #include <net/ip6_checksum.h> 77 #include <net/xfrm.h> 78 #include <net/mpls.h> 79 #include <net/mptcp.h> 80 #include <net/mctp.h> 81 #include <net/page_pool/helpers.h> 82 #include <net/dropreason.h> 83 84 #include <linux/uaccess.h> 85 #include <trace/events/skb.h> 86 #include <linux/highmem.h> 87 #include <linux/capability.h> 88 #include <linux/user_namespace.h> 89 #include <linux/indirect_call_wrapper.h> 90 #include <linux/textsearch.h> 91 92 #include "dev.h" 93 #include "devmem.h" 94 #include "netmem_priv.h" 95 #include "sock_destructor.h" 96 97 #ifdef CONFIG_SKB_EXTENSIONS 98 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 99 #endif 100 101 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 102 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 103 GRO_MAX_HEAD_PAD)) 104 105 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 106 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 107 * size, and we can differentiate heads from skb_small_head_cache 108 * vs system slabs by looking at their size (skb_end_offset()). 109 */ 110 #define SKB_SMALL_HEAD_CACHE_SIZE \ 111 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 112 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 113 SKB_SMALL_HEAD_SIZE) 114 115 #define SKB_SMALL_HEAD_HEADROOM \ 116 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 117 118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 119 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 120 * netmem is a page. 121 */ 122 static_assert(offsetof(struct bio_vec, bv_page) == 123 offsetof(skb_frag_t, netmem)); 124 static_assert(sizeof_field(struct bio_vec, bv_page) == 125 sizeof_field(skb_frag_t, netmem)); 126 127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 128 static_assert(sizeof_field(struct bio_vec, bv_len) == 129 sizeof_field(skb_frag_t, len)); 130 131 static_assert(offsetof(struct bio_vec, bv_offset) == 132 offsetof(skb_frag_t, offset)); 133 static_assert(sizeof_field(struct bio_vec, bv_offset) == 134 sizeof_field(skb_frag_t, offset)); 135 136 #undef FN 137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 138 static const char * const drop_reasons[] = { 139 [SKB_CONSUMED] = "CONSUMED", 140 DEFINE_DROP_REASON(FN, FN) 141 }; 142 143 static const struct drop_reason_list drop_reasons_core = { 144 .reasons = drop_reasons, 145 .n_reasons = ARRAY_SIZE(drop_reasons), 146 }; 147 148 const struct drop_reason_list __rcu * 149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 150 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 151 }; 152 EXPORT_SYMBOL(drop_reasons_by_subsys); 153 154 /** 155 * drop_reasons_register_subsys - register another drop reason subsystem 156 * @subsys: the subsystem to register, must not be the core 157 * @list: the list of drop reasons within the subsystem, must point to 158 * a statically initialized list 159 */ 160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 161 const struct drop_reason_list *list) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 /* must point to statically allocated memory, so INIT is OK */ 169 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 172 173 /** 174 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 175 * @subsys: the subsystem to remove, must not be the core 176 * 177 * Note: This will synchronize_rcu() to ensure no users when it returns. 178 */ 179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 180 { 181 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 182 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 183 "invalid subsystem %d\n", subsys)) 184 return; 185 186 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 187 188 synchronize_rcu(); 189 } 190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 191 192 /** 193 * skb_panic - private function for out-of-line support 194 * @skb: buffer 195 * @sz: size 196 * @addr: address 197 * @msg: skb_over_panic or skb_under_panic 198 * 199 * Out-of-line support for skb_put() and skb_push(). 200 * Called via the wrapper skb_over_panic() or skb_under_panic(). 201 * Keep out of line to prevent kernel bloat. 202 * __builtin_return_address is not used because it is not always reliable. 203 */ 204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 205 const char msg[]) 206 { 207 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 208 msg, addr, skb->len, sz, skb->head, skb->data, 209 (unsigned long)skb->tail, (unsigned long)skb->end, 210 skb->dev ? skb->dev->name : "<NULL>"); 211 BUG(); 212 } 213 214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 215 { 216 skb_panic(skb, sz, addr, __func__); 217 } 218 219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 220 { 221 skb_panic(skb, sz, addr, __func__); 222 } 223 224 #define NAPI_SKB_CACHE_SIZE 64 225 #define NAPI_SKB_CACHE_BULK 16 226 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 227 228 struct napi_alloc_cache { 229 local_lock_t bh_lock; 230 struct page_frag_cache page; 231 unsigned int skb_count; 232 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 233 }; 234 235 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 236 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 237 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 238 }; 239 240 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 241 { 242 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 243 void *data; 244 245 fragsz = SKB_DATA_ALIGN(fragsz); 246 247 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 248 data = __page_frag_alloc_align(&nc->page, fragsz, 249 GFP_ATOMIC | __GFP_NOWARN, align_mask); 250 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 251 return data; 252 253 } 254 EXPORT_SYMBOL(__napi_alloc_frag_align); 255 256 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 257 { 258 void *data; 259 260 if (in_hardirq() || irqs_disabled()) { 261 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 262 263 fragsz = SKB_DATA_ALIGN(fragsz); 264 data = __page_frag_alloc_align(nc, fragsz, 265 GFP_ATOMIC | __GFP_NOWARN, 266 align_mask); 267 } else { 268 local_bh_disable(); 269 data = __napi_alloc_frag_align(fragsz, align_mask); 270 local_bh_enable(); 271 } 272 return data; 273 } 274 EXPORT_SYMBOL(__netdev_alloc_frag_align); 275 276 static struct sk_buff *napi_skb_cache_get(void) 277 { 278 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 279 struct sk_buff *skb; 280 281 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 282 if (unlikely(!nc->skb_count)) { 283 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 284 GFP_ATOMIC | __GFP_NOWARN, 285 NAPI_SKB_CACHE_BULK, 286 nc->skb_cache); 287 if (unlikely(!nc->skb_count)) { 288 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 289 return NULL; 290 } 291 } 292 293 skb = nc->skb_cache[--nc->skb_count]; 294 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 295 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 296 297 return skb; 298 } 299 300 /** 301 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 302 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 303 * @n: number of entries to provide 304 * 305 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 306 * the pointers into the provided array @skbs. If there are less entries 307 * available, tries to replenish the cache and bulk-allocates the diff from 308 * the MM layer if needed. 309 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 310 * ready for {,__}build_skb_around() and don't have any data buffers attached. 311 * Must be called *only* from the BH context. 312 * 313 * Return: number of successfully allocated skbs (@n if no actual allocation 314 * needed or kmem_cache_alloc_bulk() didn't fail). 315 */ 316 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 317 { 318 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 319 u32 bulk, total = n; 320 321 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 322 323 if (nc->skb_count >= n) 324 goto get; 325 326 /* No enough cached skbs. Try refilling the cache first */ 327 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 328 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 329 GFP_ATOMIC | __GFP_NOWARN, bulk, 330 &nc->skb_cache[nc->skb_count]); 331 if (likely(nc->skb_count >= n)) 332 goto get; 333 334 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 335 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 336 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 337 n - nc->skb_count, &skbs[nc->skb_count]); 338 if (likely(nc->skb_count >= n)) 339 goto get; 340 341 /* kmem_cache didn't allocate the number we need, limit the output */ 342 total -= n - nc->skb_count; 343 n = nc->skb_count; 344 345 get: 346 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 347 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 348 349 skbs[i] = nc->skb_cache[base + i]; 350 351 kasan_mempool_unpoison_object(skbs[i], cache_size); 352 memset(skbs[i], 0, offsetof(struct sk_buff, tail)); 353 } 354 355 nc->skb_count -= n; 356 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 357 358 return total; 359 } 360 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 361 362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 363 unsigned int size) 364 { 365 struct skb_shared_info *shinfo; 366 367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 368 369 /* Assumes caller memset cleared SKB */ 370 skb->truesize = SKB_TRUESIZE(size); 371 refcount_set(&skb->users, 1); 372 skb->head = data; 373 skb->data = data; 374 skb_reset_tail_pointer(skb); 375 skb_set_end_offset(skb, size); 376 skb->mac_header = (typeof(skb->mac_header))~0U; 377 skb->transport_header = (typeof(skb->transport_header))~0U; 378 skb->alloc_cpu = raw_smp_processor_id(); 379 /* make sure we initialize shinfo sequentially */ 380 shinfo = skb_shinfo(skb); 381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 382 atomic_set(&shinfo->dataref, 1); 383 384 skb_set_kcov_handle(skb, kcov_common_handle()); 385 } 386 387 static inline void *__slab_build_skb(void *data, unsigned int *size) 388 { 389 void *resized; 390 391 /* Must find the allocation size (and grow it to match). */ 392 *size = ksize(data); 393 /* krealloc() will immediately return "data" when 394 * "ksize(data)" is requested: it is the existing upper 395 * bounds. As a result, GFP_ATOMIC will be ignored. Note 396 * that this "new" pointer needs to be passed back to the 397 * caller for use so the __alloc_size hinting will be 398 * tracked correctly. 399 */ 400 resized = krealloc(data, *size, GFP_ATOMIC); 401 WARN_ON_ONCE(resized != data); 402 return resized; 403 } 404 405 /* build_skb() variant which can operate on slab buffers. 406 * Note that this should be used sparingly as slab buffers 407 * cannot be combined efficiently by GRO! 408 */ 409 struct sk_buff *slab_build_skb(void *data) 410 { 411 struct sk_buff *skb; 412 unsigned int size; 413 414 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 415 GFP_ATOMIC | __GFP_NOWARN); 416 if (unlikely(!skb)) 417 return NULL; 418 419 memset(skb, 0, offsetof(struct sk_buff, tail)); 420 data = __slab_build_skb(data, &size); 421 __finalize_skb_around(skb, data, size); 422 423 return skb; 424 } 425 EXPORT_SYMBOL(slab_build_skb); 426 427 /* Caller must provide SKB that is memset cleared */ 428 static void __build_skb_around(struct sk_buff *skb, void *data, 429 unsigned int frag_size) 430 { 431 unsigned int size = frag_size; 432 433 /* frag_size == 0 is considered deprecated now. Callers 434 * using slab buffer should use slab_build_skb() instead. 435 */ 436 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 437 data = __slab_build_skb(data, &size); 438 439 __finalize_skb_around(skb, data, size); 440 } 441 442 /** 443 * __build_skb - build a network buffer 444 * @data: data buffer provided by caller 445 * @frag_size: size of data (must not be 0) 446 * 447 * Allocate a new &sk_buff. Caller provides space holding head and 448 * skb_shared_info. @data must have been allocated from the page 449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 450 * allocation is deprecated, and callers should use slab_build_skb() 451 * instead.) 452 * The return is the new skb buffer. 453 * On a failure the return is %NULL, and @data is not freed. 454 * Notes : 455 * Before IO, driver allocates only data buffer where NIC put incoming frame 456 * Driver should add room at head (NET_SKB_PAD) and 457 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 458 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 459 * before giving packet to stack. 460 * RX rings only contains data buffers, not full skbs. 461 */ 462 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb; 465 466 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 467 GFP_ATOMIC | __GFP_NOWARN); 468 if (unlikely(!skb)) 469 return NULL; 470 471 memset(skb, 0, offsetof(struct sk_buff, tail)); 472 __build_skb_around(skb, data, frag_size); 473 474 return skb; 475 } 476 477 /* build_skb() is wrapper over __build_skb(), that specifically 478 * takes care of skb->head and skb->pfmemalloc 479 */ 480 struct sk_buff *build_skb(void *data, unsigned int frag_size) 481 { 482 struct sk_buff *skb = __build_skb(data, frag_size); 483 484 if (likely(skb && frag_size)) { 485 skb->head_frag = 1; 486 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 487 } 488 return skb; 489 } 490 EXPORT_SYMBOL(build_skb); 491 492 /** 493 * build_skb_around - build a network buffer around provided skb 494 * @skb: sk_buff provide by caller, must be memset cleared 495 * @data: data buffer provided by caller 496 * @frag_size: size of data 497 */ 498 struct sk_buff *build_skb_around(struct sk_buff *skb, 499 void *data, unsigned int frag_size) 500 { 501 if (unlikely(!skb)) 502 return NULL; 503 504 __build_skb_around(skb, data, frag_size); 505 506 if (frag_size) { 507 skb->head_frag = 1; 508 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 509 } 510 return skb; 511 } 512 EXPORT_SYMBOL(build_skb_around); 513 514 /** 515 * __napi_build_skb - build a network buffer 516 * @data: data buffer provided by caller 517 * @frag_size: size of data 518 * 519 * Version of __build_skb() that uses NAPI percpu caches to obtain 520 * skbuff_head instead of inplace allocation. 521 * 522 * Returns a new &sk_buff on success, %NULL on allocation failure. 523 */ 524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 525 { 526 struct sk_buff *skb; 527 528 skb = napi_skb_cache_get(); 529 if (unlikely(!skb)) 530 return NULL; 531 532 memset(skb, 0, offsetof(struct sk_buff, tail)); 533 __build_skb_around(skb, data, frag_size); 534 535 return skb; 536 } 537 538 /** 539 * napi_build_skb - build a network buffer 540 * @data: data buffer provided by caller 541 * @frag_size: size of data 542 * 543 * Version of __napi_build_skb() that takes care of skb->head_frag 544 * and skb->pfmemalloc when the data is a page or page fragment. 545 * 546 * Returns a new &sk_buff on success, %NULL on allocation failure. 547 */ 548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 549 { 550 struct sk_buff *skb = __napi_build_skb(data, frag_size); 551 552 if (likely(skb) && frag_size) { 553 skb->head_frag = 1; 554 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 555 } 556 557 return skb; 558 } 559 EXPORT_SYMBOL(napi_build_skb); 560 561 /* 562 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 563 * the caller if emergency pfmemalloc reserves are being used. If it is and 564 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 565 * may be used. Otherwise, the packet data may be discarded until enough 566 * memory is free 567 */ 568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 569 bool *pfmemalloc) 570 { 571 bool ret_pfmemalloc = false; 572 size_t obj_size; 573 void *obj; 574 575 obj_size = SKB_HEAD_ALIGN(*size); 576 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 577 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 578 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 579 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 580 node); 581 *size = SKB_SMALL_HEAD_CACHE_SIZE; 582 if (obj || !(gfp_pfmemalloc_allowed(flags))) 583 goto out; 584 /* Try again but now we are using pfmemalloc reserves */ 585 ret_pfmemalloc = true; 586 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 587 goto out; 588 } 589 590 obj_size = kmalloc_size_roundup(obj_size); 591 /* The following cast might truncate high-order bits of obj_size, this 592 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 593 */ 594 *size = (unsigned int)obj_size; 595 596 /* 597 * Try a regular allocation, when that fails and we're not entitled 598 * to the reserves, fail. 599 */ 600 obj = kmalloc_node_track_caller(obj_size, 601 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 602 node); 603 if (obj || !(gfp_pfmemalloc_allowed(flags))) 604 goto out; 605 606 /* Try again but now we are using pfmemalloc reserves */ 607 ret_pfmemalloc = true; 608 obj = kmalloc_node_track_caller(obj_size, flags, node); 609 610 out: 611 if (pfmemalloc) 612 *pfmemalloc = ret_pfmemalloc; 613 614 return obj; 615 } 616 617 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 618 * 'private' fields and also do memory statistics to find all the 619 * [BEEP] leaks. 620 * 621 */ 622 623 /** 624 * __alloc_skb - allocate a network buffer 625 * @size: size to allocate 626 * @gfp_mask: allocation mask 627 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 628 * instead of head cache and allocate a cloned (child) skb. 629 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 630 * allocations in case the data is required for writeback 631 * @node: numa node to allocate memory on 632 * 633 * Allocate a new &sk_buff. The returned buffer has no headroom and a 634 * tail room of at least size bytes. The object has a reference count 635 * of one. The return is the buffer. On a failure the return is %NULL. 636 * 637 * Buffers may only be allocated from interrupts using a @gfp_mask of 638 * %GFP_ATOMIC. 639 */ 640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 641 int flags, int node) 642 { 643 struct kmem_cache *cache; 644 struct sk_buff *skb; 645 bool pfmemalloc; 646 u8 *data; 647 648 cache = (flags & SKB_ALLOC_FCLONE) 649 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 650 651 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 652 gfp_mask |= __GFP_MEMALLOC; 653 654 /* Get the HEAD */ 655 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 656 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 657 skb = napi_skb_cache_get(); 658 else 659 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 660 if (unlikely(!skb)) 661 return NULL; 662 prefetchw(skb); 663 664 /* We do our best to align skb_shared_info on a separate cache 665 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 666 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 667 * Both skb->head and skb_shared_info are cache line aligned. 668 */ 669 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 670 if (unlikely(!data)) 671 goto nodata; 672 /* kmalloc_size_roundup() might give us more room than requested. 673 * Put skb_shared_info exactly at the end of allocated zone, 674 * to allow max possible filling before reallocation. 675 */ 676 prefetchw(data + SKB_WITH_OVERHEAD(size)); 677 678 /* 679 * Only clear those fields we need to clear, not those that we will 680 * actually initialise below. Hence, don't put any more fields after 681 * the tail pointer in struct sk_buff! 682 */ 683 memset(skb, 0, offsetof(struct sk_buff, tail)); 684 __build_skb_around(skb, data, size); 685 skb->pfmemalloc = pfmemalloc; 686 687 if (flags & SKB_ALLOC_FCLONE) { 688 struct sk_buff_fclones *fclones; 689 690 fclones = container_of(skb, struct sk_buff_fclones, skb1); 691 692 skb->fclone = SKB_FCLONE_ORIG; 693 refcount_set(&fclones->fclone_ref, 1); 694 } 695 696 return skb; 697 698 nodata: 699 kmem_cache_free(cache, skb); 700 return NULL; 701 } 702 EXPORT_SYMBOL(__alloc_skb); 703 704 /** 705 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 706 * @dev: network device to receive on 707 * @len: length to allocate 708 * @gfp_mask: get_free_pages mask, passed to alloc_skb 709 * 710 * Allocate a new &sk_buff and assign it a usage count of one. The 711 * buffer has NET_SKB_PAD headroom built in. Users should allocate 712 * the headroom they think they need without accounting for the 713 * built in space. The built in space is used for optimisations. 714 * 715 * %NULL is returned if there is no free memory. 716 */ 717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 718 gfp_t gfp_mask) 719 { 720 struct page_frag_cache *nc; 721 struct sk_buff *skb; 722 bool pfmemalloc; 723 void *data; 724 725 len += NET_SKB_PAD; 726 727 /* If requested length is either too small or too big, 728 * we use kmalloc() for skb->head allocation. 729 */ 730 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 731 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 732 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 733 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 734 if (!skb) 735 goto skb_fail; 736 goto skb_success; 737 } 738 739 len = SKB_HEAD_ALIGN(len); 740 741 if (sk_memalloc_socks()) 742 gfp_mask |= __GFP_MEMALLOC; 743 744 if (in_hardirq() || irqs_disabled()) { 745 nc = this_cpu_ptr(&netdev_alloc_cache); 746 data = page_frag_alloc(nc, len, gfp_mask); 747 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 748 } else { 749 local_bh_disable(); 750 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 751 752 nc = this_cpu_ptr(&napi_alloc_cache.page); 753 data = page_frag_alloc(nc, len, gfp_mask); 754 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 755 756 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 757 local_bh_enable(); 758 } 759 760 if (unlikely(!data)) 761 return NULL; 762 763 skb = __build_skb(data, len); 764 if (unlikely(!skb)) { 765 skb_free_frag(data); 766 return NULL; 767 } 768 769 if (pfmemalloc) 770 skb->pfmemalloc = 1; 771 skb->head_frag = 1; 772 773 skb_success: 774 skb_reserve(skb, NET_SKB_PAD); 775 skb->dev = dev; 776 777 skb_fail: 778 return skb; 779 } 780 EXPORT_SYMBOL(__netdev_alloc_skb); 781 782 /** 783 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 784 * @napi: napi instance this buffer was allocated for 785 * @len: length to allocate 786 * 787 * Allocate a new sk_buff for use in NAPI receive. This buffer will 788 * attempt to allocate the head from a special reserved region used 789 * only for NAPI Rx allocation. By doing this we can save several 790 * CPU cycles by avoiding having to disable and re-enable IRQs. 791 * 792 * %NULL is returned if there is no free memory. 793 */ 794 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 795 { 796 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 797 struct napi_alloc_cache *nc; 798 struct sk_buff *skb; 799 bool pfmemalloc; 800 void *data; 801 802 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 803 len += NET_SKB_PAD + NET_IP_ALIGN; 804 805 /* If requested length is either too small or too big, 806 * we use kmalloc() for skb->head allocation. 807 */ 808 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 809 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 810 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 811 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 812 NUMA_NO_NODE); 813 if (!skb) 814 goto skb_fail; 815 goto skb_success; 816 } 817 818 len = SKB_HEAD_ALIGN(len); 819 820 if (sk_memalloc_socks()) 821 gfp_mask |= __GFP_MEMALLOC; 822 823 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 824 nc = this_cpu_ptr(&napi_alloc_cache); 825 826 data = page_frag_alloc(&nc->page, len, gfp_mask); 827 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 828 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 829 830 if (unlikely(!data)) 831 return NULL; 832 833 skb = __napi_build_skb(data, len); 834 if (unlikely(!skb)) { 835 skb_free_frag(data); 836 return NULL; 837 } 838 839 if (pfmemalloc) 840 skb->pfmemalloc = 1; 841 skb->head_frag = 1; 842 843 skb_success: 844 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 845 skb->dev = napi->dev; 846 847 skb_fail: 848 return skb; 849 } 850 EXPORT_SYMBOL(napi_alloc_skb); 851 852 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 853 int off, int size, unsigned int truesize) 854 { 855 DEBUG_NET_WARN_ON_ONCE(size > truesize); 856 857 skb_fill_netmem_desc(skb, i, netmem, off, size); 858 skb->len += size; 859 skb->data_len += size; 860 skb->truesize += truesize; 861 } 862 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 863 864 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 865 unsigned int truesize) 866 { 867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 868 869 DEBUG_NET_WARN_ON_ONCE(size > truesize); 870 871 skb_frag_size_add(frag, size); 872 skb->len += size; 873 skb->data_len += size; 874 skb->truesize += truesize; 875 } 876 EXPORT_SYMBOL(skb_coalesce_rx_frag); 877 878 static void skb_drop_list(struct sk_buff **listp) 879 { 880 kfree_skb_list(*listp); 881 *listp = NULL; 882 } 883 884 static inline void skb_drop_fraglist(struct sk_buff *skb) 885 { 886 skb_drop_list(&skb_shinfo(skb)->frag_list); 887 } 888 889 static void skb_clone_fraglist(struct sk_buff *skb) 890 { 891 struct sk_buff *list; 892 893 skb_walk_frags(skb, list) 894 skb_get(list); 895 } 896 897 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 898 unsigned int headroom) 899 { 900 #if IS_ENABLED(CONFIG_PAGE_POOL) 901 u32 size, truesize, len, max_head_size, off; 902 struct sk_buff *skb = *pskb, *nskb; 903 int err, i, head_off; 904 void *data; 905 906 /* XDP does not support fraglist so we need to linearize 907 * the skb. 908 */ 909 if (skb_has_frag_list(skb)) 910 return -EOPNOTSUPP; 911 912 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 913 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 914 return -ENOMEM; 915 916 size = min_t(u32, skb->len, max_head_size); 917 truesize = SKB_HEAD_ALIGN(size) + headroom; 918 data = page_pool_dev_alloc_va(pool, &truesize); 919 if (!data) 920 return -ENOMEM; 921 922 nskb = napi_build_skb(data, truesize); 923 if (!nskb) { 924 page_pool_free_va(pool, data, true); 925 return -ENOMEM; 926 } 927 928 skb_reserve(nskb, headroom); 929 skb_copy_header(nskb, skb); 930 skb_mark_for_recycle(nskb); 931 932 err = skb_copy_bits(skb, 0, nskb->data, size); 933 if (err) { 934 consume_skb(nskb); 935 return err; 936 } 937 skb_put(nskb, size); 938 939 head_off = skb_headroom(nskb) - skb_headroom(skb); 940 skb_headers_offset_update(nskb, head_off); 941 942 off = size; 943 len = skb->len - off; 944 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 945 struct page *page; 946 u32 page_off; 947 948 size = min_t(u32, len, PAGE_SIZE); 949 truesize = size; 950 951 page = page_pool_dev_alloc(pool, &page_off, &truesize); 952 if (!page) { 953 consume_skb(nskb); 954 return -ENOMEM; 955 } 956 957 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 958 err = skb_copy_bits(skb, off, page_address(page) + page_off, 959 size); 960 if (err) { 961 consume_skb(nskb); 962 return err; 963 } 964 965 len -= size; 966 off += size; 967 } 968 969 consume_skb(skb); 970 *pskb = nskb; 971 972 return 0; 973 #else 974 return -EOPNOTSUPP; 975 #endif 976 } 977 EXPORT_SYMBOL(skb_pp_cow_data); 978 979 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 980 const struct bpf_prog *prog) 981 { 982 if (!prog->aux->xdp_has_frags) 983 return -EINVAL; 984 985 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 986 } 987 EXPORT_SYMBOL(skb_cow_data_for_xdp); 988 989 #if IS_ENABLED(CONFIG_PAGE_POOL) 990 bool napi_pp_put_page(netmem_ref netmem) 991 { 992 netmem = netmem_compound_head(netmem); 993 994 if (unlikely(!netmem_is_pp(netmem))) 995 return false; 996 997 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 998 999 return true; 1000 } 1001 EXPORT_SYMBOL(napi_pp_put_page); 1002 #endif 1003 1004 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1005 { 1006 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1007 return false; 1008 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1009 } 1010 1011 /** 1012 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1013 * @skb: page pool aware skb 1014 * 1015 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1016 * intended to gain fragment references only for page pool aware skbs, 1017 * i.e. when skb->pp_recycle is true, and not for fragments in a 1018 * non-pp-recycling skb. It has a fallback to increase references on normal 1019 * pages, as page pool aware skbs may also have normal page fragments. 1020 */ 1021 static int skb_pp_frag_ref(struct sk_buff *skb) 1022 { 1023 struct skb_shared_info *shinfo; 1024 netmem_ref head_netmem; 1025 int i; 1026 1027 if (!skb->pp_recycle) 1028 return -EINVAL; 1029 1030 shinfo = skb_shinfo(skb); 1031 1032 for (i = 0; i < shinfo->nr_frags; i++) { 1033 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1034 if (likely(netmem_is_pp(head_netmem))) 1035 page_pool_ref_netmem(head_netmem); 1036 else 1037 page_ref_inc(netmem_to_page(head_netmem)); 1038 } 1039 return 0; 1040 } 1041 1042 static void skb_kfree_head(void *head, unsigned int end_offset) 1043 { 1044 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1045 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1046 else 1047 kfree(head); 1048 } 1049 1050 static void skb_free_head(struct sk_buff *skb) 1051 { 1052 unsigned char *head = skb->head; 1053 1054 if (skb->head_frag) { 1055 if (skb_pp_recycle(skb, head)) 1056 return; 1057 skb_free_frag(head); 1058 } else { 1059 skb_kfree_head(head, skb_end_offset(skb)); 1060 } 1061 } 1062 1063 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1064 { 1065 struct skb_shared_info *shinfo = skb_shinfo(skb); 1066 int i; 1067 1068 if (!skb_data_unref(skb, shinfo)) 1069 goto exit; 1070 1071 if (skb_zcopy(skb)) { 1072 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1073 1074 skb_zcopy_clear(skb, true); 1075 if (skip_unref) 1076 goto free_head; 1077 } 1078 1079 for (i = 0; i < shinfo->nr_frags; i++) 1080 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1081 1082 free_head: 1083 if (shinfo->frag_list) 1084 kfree_skb_list_reason(shinfo->frag_list, reason); 1085 1086 skb_free_head(skb); 1087 exit: 1088 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1089 * bit is only set on the head though, so in order to avoid races 1090 * while trying to recycle fragments on __skb_frag_unref() we need 1091 * to make one SKB responsible for triggering the recycle path. 1092 * So disable the recycling bit if an SKB is cloned and we have 1093 * additional references to the fragmented part of the SKB. 1094 * Eventually the last SKB will have the recycling bit set and it's 1095 * dataref set to 0, which will trigger the recycling 1096 */ 1097 skb->pp_recycle = 0; 1098 } 1099 1100 /* 1101 * Free an skbuff by memory without cleaning the state. 1102 */ 1103 static void kfree_skbmem(struct sk_buff *skb) 1104 { 1105 struct sk_buff_fclones *fclones; 1106 1107 switch (skb->fclone) { 1108 case SKB_FCLONE_UNAVAILABLE: 1109 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1110 return; 1111 1112 case SKB_FCLONE_ORIG: 1113 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1114 1115 /* We usually free the clone (TX completion) before original skb 1116 * This test would have no chance to be true for the clone, 1117 * while here, branch prediction will be good. 1118 */ 1119 if (refcount_read(&fclones->fclone_ref) == 1) 1120 goto fastpath; 1121 break; 1122 1123 default: /* SKB_FCLONE_CLONE */ 1124 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1125 break; 1126 } 1127 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1128 return; 1129 fastpath: 1130 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1131 } 1132 1133 void skb_release_head_state(struct sk_buff *skb) 1134 { 1135 skb_dst_drop(skb); 1136 if (skb->destructor) { 1137 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1138 skb->destructor(skb); 1139 } 1140 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1141 nf_conntrack_put(skb_nfct(skb)); 1142 #endif 1143 skb_ext_put(skb); 1144 } 1145 1146 /* Free everything but the sk_buff shell. */ 1147 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1148 { 1149 skb_release_head_state(skb); 1150 if (likely(skb->head)) 1151 skb_release_data(skb, reason); 1152 } 1153 1154 /** 1155 * __kfree_skb - private function 1156 * @skb: buffer 1157 * 1158 * Free an sk_buff. Release anything attached to the buffer. 1159 * Clean the state. This is an internal helper function. Users should 1160 * always call kfree_skb 1161 */ 1162 1163 void __kfree_skb(struct sk_buff *skb) 1164 { 1165 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1166 kfree_skbmem(skb); 1167 } 1168 EXPORT_SYMBOL(__kfree_skb); 1169 1170 static __always_inline 1171 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1172 enum skb_drop_reason reason) 1173 { 1174 if (unlikely(!skb_unref(skb))) 1175 return false; 1176 1177 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1178 u32_get_bits(reason, 1179 SKB_DROP_REASON_SUBSYS_MASK) >= 1180 SKB_DROP_REASON_SUBSYS_NUM); 1181 1182 if (reason == SKB_CONSUMED) 1183 trace_consume_skb(skb, __builtin_return_address(0)); 1184 else 1185 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1186 return true; 1187 } 1188 1189 /** 1190 * sk_skb_reason_drop - free an sk_buff with special reason 1191 * @sk: the socket to receive @skb, or NULL if not applicable 1192 * @skb: buffer to free 1193 * @reason: reason why this skb is dropped 1194 * 1195 * Drop a reference to the buffer and free it if the usage count has hit 1196 * zero. Meanwhile, pass the receiving socket and drop reason to 1197 * 'kfree_skb' tracepoint. 1198 */ 1199 void __fix_address 1200 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1201 { 1202 if (__sk_skb_reason_drop(sk, skb, reason)) 1203 __kfree_skb(skb); 1204 } 1205 EXPORT_SYMBOL(sk_skb_reason_drop); 1206 1207 #define KFREE_SKB_BULK_SIZE 16 1208 1209 struct skb_free_array { 1210 unsigned int skb_count; 1211 void *skb_array[KFREE_SKB_BULK_SIZE]; 1212 }; 1213 1214 static void kfree_skb_add_bulk(struct sk_buff *skb, 1215 struct skb_free_array *sa, 1216 enum skb_drop_reason reason) 1217 { 1218 /* if SKB is a clone, don't handle this case */ 1219 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1220 __kfree_skb(skb); 1221 return; 1222 } 1223 1224 skb_release_all(skb, reason); 1225 sa->skb_array[sa->skb_count++] = skb; 1226 1227 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1228 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1229 sa->skb_array); 1230 sa->skb_count = 0; 1231 } 1232 } 1233 1234 void __fix_address 1235 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1236 { 1237 struct skb_free_array sa; 1238 1239 sa.skb_count = 0; 1240 1241 while (segs) { 1242 struct sk_buff *next = segs->next; 1243 1244 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1245 skb_poison_list(segs); 1246 kfree_skb_add_bulk(segs, &sa, reason); 1247 } 1248 1249 segs = next; 1250 } 1251 1252 if (sa.skb_count) 1253 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1254 } 1255 EXPORT_SYMBOL(kfree_skb_list_reason); 1256 1257 /* Dump skb information and contents. 1258 * 1259 * Must only be called from net_ratelimit()-ed paths. 1260 * 1261 * Dumps whole packets if full_pkt, only headers otherwise. 1262 */ 1263 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1264 { 1265 struct skb_shared_info *sh = skb_shinfo(skb); 1266 struct net_device *dev = skb->dev; 1267 struct sock *sk = skb->sk; 1268 struct sk_buff *list_skb; 1269 bool has_mac, has_trans; 1270 int headroom, tailroom; 1271 int i, len, seg_len; 1272 1273 if (full_pkt) 1274 len = skb->len; 1275 else 1276 len = min_t(int, skb->len, MAX_HEADER + 128); 1277 1278 headroom = skb_headroom(skb); 1279 tailroom = skb_tailroom(skb); 1280 1281 has_mac = skb_mac_header_was_set(skb); 1282 has_trans = skb_transport_header_was_set(skb); 1283 1284 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1285 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1286 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1287 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1288 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1289 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1290 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1291 level, skb->len, headroom, skb_headlen(skb), tailroom, 1292 has_mac ? skb->mac_header : -1, 1293 has_mac ? skb_mac_header_len(skb) : -1, 1294 skb->mac_len, 1295 skb->network_header, 1296 has_trans ? skb_network_header_len(skb) : -1, 1297 has_trans ? skb->transport_header : -1, 1298 sh->tx_flags, sh->nr_frags, 1299 sh->gso_size, sh->gso_type, sh->gso_segs, 1300 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1301 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1302 skb->hash, skb->sw_hash, skb->l4_hash, 1303 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1304 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1305 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1306 skb->inner_network_header, skb->inner_transport_header); 1307 1308 if (dev) 1309 printk("%sdev name=%s feat=%pNF\n", 1310 level, dev->name, &dev->features); 1311 if (sk) 1312 printk("%ssk family=%hu type=%u proto=%u\n", 1313 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1314 1315 if (full_pkt && headroom) 1316 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1317 16, 1, skb->head, headroom, false); 1318 1319 seg_len = min_t(int, skb_headlen(skb), len); 1320 if (seg_len) 1321 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1322 16, 1, skb->data, seg_len, false); 1323 len -= seg_len; 1324 1325 if (full_pkt && tailroom) 1326 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1327 16, 1, skb_tail_pointer(skb), tailroom, false); 1328 1329 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1330 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1331 u32 p_off, p_len, copied; 1332 struct page *p; 1333 u8 *vaddr; 1334 1335 if (skb_frag_is_net_iov(frag)) { 1336 printk("%sskb frag %d: not readable\n", level, i); 1337 len -= skb_frag_size(frag); 1338 if (!len) 1339 break; 1340 continue; 1341 } 1342 1343 skb_frag_foreach_page(frag, skb_frag_off(frag), 1344 skb_frag_size(frag), p, p_off, p_len, 1345 copied) { 1346 seg_len = min_t(int, p_len, len); 1347 vaddr = kmap_atomic(p); 1348 print_hex_dump(level, "skb frag: ", 1349 DUMP_PREFIX_OFFSET, 1350 16, 1, vaddr + p_off, seg_len, false); 1351 kunmap_atomic(vaddr); 1352 len -= seg_len; 1353 if (!len) 1354 break; 1355 } 1356 } 1357 1358 if (full_pkt && skb_has_frag_list(skb)) { 1359 printk("skb fraglist:\n"); 1360 skb_walk_frags(skb, list_skb) 1361 skb_dump(level, list_skb, true); 1362 } 1363 } 1364 EXPORT_SYMBOL(skb_dump); 1365 1366 /** 1367 * skb_tx_error - report an sk_buff xmit error 1368 * @skb: buffer that triggered an error 1369 * 1370 * Report xmit error if a device callback is tracking this skb. 1371 * skb must be freed afterwards. 1372 */ 1373 void skb_tx_error(struct sk_buff *skb) 1374 { 1375 if (skb) { 1376 skb_zcopy_downgrade_managed(skb); 1377 skb_zcopy_clear(skb, true); 1378 } 1379 } 1380 EXPORT_SYMBOL(skb_tx_error); 1381 1382 #ifdef CONFIG_TRACEPOINTS 1383 /** 1384 * consume_skb - free an skbuff 1385 * @skb: buffer to free 1386 * 1387 * Drop a ref to the buffer and free it if the usage count has hit zero 1388 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1389 * is being dropped after a failure and notes that 1390 */ 1391 void consume_skb(struct sk_buff *skb) 1392 { 1393 if (!skb_unref(skb)) 1394 return; 1395 1396 trace_consume_skb(skb, __builtin_return_address(0)); 1397 __kfree_skb(skb); 1398 } 1399 EXPORT_SYMBOL(consume_skb); 1400 #endif 1401 1402 /** 1403 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1404 * @skb: buffer to free 1405 * 1406 * Alike consume_skb(), but this variant assumes that this is the last 1407 * skb reference and all the head states have been already dropped 1408 */ 1409 void __consume_stateless_skb(struct sk_buff *skb) 1410 { 1411 trace_consume_skb(skb, __builtin_return_address(0)); 1412 skb_release_data(skb, SKB_CONSUMED); 1413 kfree_skbmem(skb); 1414 } 1415 1416 static void napi_skb_cache_put(struct sk_buff *skb) 1417 { 1418 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1419 u32 i; 1420 1421 if (!kasan_mempool_poison_object(skb)) 1422 return; 1423 1424 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1425 nc->skb_cache[nc->skb_count++] = skb; 1426 1427 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1428 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1429 kasan_mempool_unpoison_object(nc->skb_cache[i], 1430 kmem_cache_size(net_hotdata.skbuff_cache)); 1431 1432 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1433 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1434 nc->skb_count = NAPI_SKB_CACHE_HALF; 1435 } 1436 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1437 } 1438 1439 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1440 { 1441 skb_release_all(skb, reason); 1442 napi_skb_cache_put(skb); 1443 } 1444 1445 void napi_skb_free_stolen_head(struct sk_buff *skb) 1446 { 1447 if (unlikely(skb->slow_gro)) { 1448 nf_reset_ct(skb); 1449 skb_dst_drop(skb); 1450 skb_ext_put(skb); 1451 skb_orphan(skb); 1452 skb->slow_gro = 0; 1453 } 1454 napi_skb_cache_put(skb); 1455 } 1456 1457 void napi_consume_skb(struct sk_buff *skb, int budget) 1458 { 1459 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1460 if (unlikely(!budget)) { 1461 dev_consume_skb_any(skb); 1462 return; 1463 } 1464 1465 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1466 1467 if (!skb_unref(skb)) 1468 return; 1469 1470 /* if reaching here SKB is ready to free */ 1471 trace_consume_skb(skb, __builtin_return_address(0)); 1472 1473 /* if SKB is a clone, don't handle this case */ 1474 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1475 __kfree_skb(skb); 1476 return; 1477 } 1478 1479 skb_release_all(skb, SKB_CONSUMED); 1480 napi_skb_cache_put(skb); 1481 } 1482 EXPORT_SYMBOL(napi_consume_skb); 1483 1484 /* Make sure a field is contained by headers group */ 1485 #define CHECK_SKB_FIELD(field) \ 1486 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1487 offsetof(struct sk_buff, headers.field)); \ 1488 1489 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1490 { 1491 new->tstamp = old->tstamp; 1492 /* We do not copy old->sk */ 1493 new->dev = old->dev; 1494 memcpy(new->cb, old->cb, sizeof(old->cb)); 1495 skb_dst_copy(new, old); 1496 __skb_ext_copy(new, old); 1497 __nf_copy(new, old, false); 1498 1499 /* Note : this field could be in the headers group. 1500 * It is not yet because we do not want to have a 16 bit hole 1501 */ 1502 new->queue_mapping = old->queue_mapping; 1503 1504 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1505 CHECK_SKB_FIELD(protocol); 1506 CHECK_SKB_FIELD(csum); 1507 CHECK_SKB_FIELD(hash); 1508 CHECK_SKB_FIELD(priority); 1509 CHECK_SKB_FIELD(skb_iif); 1510 CHECK_SKB_FIELD(vlan_proto); 1511 CHECK_SKB_FIELD(vlan_tci); 1512 CHECK_SKB_FIELD(transport_header); 1513 CHECK_SKB_FIELD(network_header); 1514 CHECK_SKB_FIELD(mac_header); 1515 CHECK_SKB_FIELD(inner_protocol); 1516 CHECK_SKB_FIELD(inner_transport_header); 1517 CHECK_SKB_FIELD(inner_network_header); 1518 CHECK_SKB_FIELD(inner_mac_header); 1519 CHECK_SKB_FIELD(mark); 1520 #ifdef CONFIG_NETWORK_SECMARK 1521 CHECK_SKB_FIELD(secmark); 1522 #endif 1523 #ifdef CONFIG_NET_RX_BUSY_POLL 1524 CHECK_SKB_FIELD(napi_id); 1525 #endif 1526 CHECK_SKB_FIELD(alloc_cpu); 1527 #ifdef CONFIG_XPS 1528 CHECK_SKB_FIELD(sender_cpu); 1529 #endif 1530 #ifdef CONFIG_NET_SCHED 1531 CHECK_SKB_FIELD(tc_index); 1532 #endif 1533 1534 } 1535 1536 /* 1537 * You should not add any new code to this function. Add it to 1538 * __copy_skb_header above instead. 1539 */ 1540 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1541 { 1542 #define C(x) n->x = skb->x 1543 1544 n->next = n->prev = NULL; 1545 n->sk = NULL; 1546 __copy_skb_header(n, skb); 1547 1548 C(len); 1549 C(data_len); 1550 C(mac_len); 1551 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1552 n->cloned = 1; 1553 n->nohdr = 0; 1554 n->peeked = 0; 1555 C(pfmemalloc); 1556 C(pp_recycle); 1557 n->destructor = NULL; 1558 C(tail); 1559 C(end); 1560 C(head); 1561 C(head_frag); 1562 C(data); 1563 C(truesize); 1564 refcount_set(&n->users, 1); 1565 1566 atomic_inc(&(skb_shinfo(skb)->dataref)); 1567 skb->cloned = 1; 1568 1569 return n; 1570 #undef C 1571 } 1572 1573 /** 1574 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1575 * @first: first sk_buff of the msg 1576 */ 1577 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1578 { 1579 struct sk_buff *n; 1580 1581 n = alloc_skb(0, GFP_ATOMIC); 1582 if (!n) 1583 return NULL; 1584 1585 n->len = first->len; 1586 n->data_len = first->len; 1587 n->truesize = first->truesize; 1588 1589 skb_shinfo(n)->frag_list = first; 1590 1591 __copy_skb_header(n, first); 1592 n->destructor = NULL; 1593 1594 return n; 1595 } 1596 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1597 1598 /** 1599 * skb_morph - morph one skb into another 1600 * @dst: the skb to receive the contents 1601 * @src: the skb to supply the contents 1602 * 1603 * This is identical to skb_clone except that the target skb is 1604 * supplied by the user. 1605 * 1606 * The target skb is returned upon exit. 1607 */ 1608 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1609 { 1610 skb_release_all(dst, SKB_CONSUMED); 1611 return __skb_clone(dst, src); 1612 } 1613 EXPORT_SYMBOL_GPL(skb_morph); 1614 1615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1616 { 1617 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1618 struct user_struct *user; 1619 1620 if (capable(CAP_IPC_LOCK) || !size) 1621 return 0; 1622 1623 rlim = rlimit(RLIMIT_MEMLOCK); 1624 if (rlim == RLIM_INFINITY) 1625 return 0; 1626 1627 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1628 max_pg = rlim >> PAGE_SHIFT; 1629 user = mmp->user ? : current_user(); 1630 1631 old_pg = atomic_long_read(&user->locked_vm); 1632 do { 1633 new_pg = old_pg + num_pg; 1634 if (new_pg > max_pg) 1635 return -ENOBUFS; 1636 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1637 1638 if (!mmp->user) { 1639 mmp->user = get_uid(user); 1640 mmp->num_pg = num_pg; 1641 } else { 1642 mmp->num_pg += num_pg; 1643 } 1644 1645 return 0; 1646 } 1647 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1648 1649 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1650 { 1651 if (mmp->user) { 1652 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1653 free_uid(mmp->user); 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1657 1658 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1659 bool devmem) 1660 { 1661 struct ubuf_info_msgzc *uarg; 1662 struct sk_buff *skb; 1663 1664 WARN_ON_ONCE(!in_task()); 1665 1666 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1667 if (!skb) 1668 return NULL; 1669 1670 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1671 uarg = (void *)skb->cb; 1672 uarg->mmp.user = NULL; 1673 1674 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1675 kfree_skb(skb); 1676 return NULL; 1677 } 1678 1679 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1680 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1681 uarg->len = 1; 1682 uarg->bytelen = size; 1683 uarg->zerocopy = 1; 1684 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1685 refcount_set(&uarg->ubuf.refcnt, 1); 1686 sock_hold(sk); 1687 1688 return &uarg->ubuf; 1689 } 1690 1691 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1692 { 1693 return container_of((void *)uarg, struct sk_buff, cb); 1694 } 1695 1696 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1697 struct ubuf_info *uarg, bool devmem) 1698 { 1699 if (uarg) { 1700 struct ubuf_info_msgzc *uarg_zc; 1701 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1702 u32 bytelen, next; 1703 1704 /* there might be non MSG_ZEROCOPY users */ 1705 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1706 return NULL; 1707 1708 /* realloc only when socket is locked (TCP, UDP cork), 1709 * so uarg->len and sk_zckey access is serialized 1710 */ 1711 if (!sock_owned_by_user(sk)) { 1712 WARN_ON_ONCE(1); 1713 return NULL; 1714 } 1715 1716 uarg_zc = uarg_to_msgzc(uarg); 1717 bytelen = uarg_zc->bytelen + size; 1718 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1719 /* TCP can create new skb to attach new uarg */ 1720 if (sk->sk_type == SOCK_STREAM) 1721 goto new_alloc; 1722 return NULL; 1723 } 1724 1725 next = (u32)atomic_read(&sk->sk_zckey); 1726 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1727 if (likely(!devmem) && 1728 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1729 return NULL; 1730 uarg_zc->len++; 1731 uarg_zc->bytelen = bytelen; 1732 atomic_set(&sk->sk_zckey, ++next); 1733 1734 /* no extra ref when appending to datagram (MSG_MORE) */ 1735 if (sk->sk_type == SOCK_STREAM) 1736 net_zcopy_get(uarg); 1737 1738 return uarg; 1739 } 1740 } 1741 1742 new_alloc: 1743 return msg_zerocopy_alloc(sk, size, devmem); 1744 } 1745 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1746 1747 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1748 { 1749 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1750 u32 old_lo, old_hi; 1751 u64 sum_len; 1752 1753 old_lo = serr->ee.ee_info; 1754 old_hi = serr->ee.ee_data; 1755 sum_len = old_hi - old_lo + 1ULL + len; 1756 1757 if (sum_len >= (1ULL << 32)) 1758 return false; 1759 1760 if (lo != old_hi + 1) 1761 return false; 1762 1763 serr->ee.ee_data += len; 1764 return true; 1765 } 1766 1767 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1768 { 1769 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1770 struct sock_exterr_skb *serr; 1771 struct sock *sk = skb->sk; 1772 struct sk_buff_head *q; 1773 unsigned long flags; 1774 bool is_zerocopy; 1775 u32 lo, hi; 1776 u16 len; 1777 1778 mm_unaccount_pinned_pages(&uarg->mmp); 1779 1780 /* if !len, there was only 1 call, and it was aborted 1781 * so do not queue a completion notification 1782 */ 1783 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1784 goto release; 1785 1786 len = uarg->len; 1787 lo = uarg->id; 1788 hi = uarg->id + len - 1; 1789 is_zerocopy = uarg->zerocopy; 1790 1791 serr = SKB_EXT_ERR(skb); 1792 memset(serr, 0, sizeof(*serr)); 1793 serr->ee.ee_errno = 0; 1794 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1795 serr->ee.ee_data = hi; 1796 serr->ee.ee_info = lo; 1797 if (!is_zerocopy) 1798 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1799 1800 q = &sk->sk_error_queue; 1801 spin_lock_irqsave(&q->lock, flags); 1802 tail = skb_peek_tail(q); 1803 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1804 !skb_zerocopy_notify_extend(tail, lo, len)) { 1805 __skb_queue_tail(q, skb); 1806 skb = NULL; 1807 } 1808 spin_unlock_irqrestore(&q->lock, flags); 1809 1810 sk_error_report(sk); 1811 1812 release: 1813 consume_skb(skb); 1814 sock_put(sk); 1815 } 1816 1817 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1818 bool success) 1819 { 1820 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1821 1822 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1823 1824 if (refcount_dec_and_test(&uarg->refcnt)) 1825 __msg_zerocopy_callback(uarg_zc); 1826 } 1827 1828 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1829 { 1830 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1831 1832 atomic_dec(&sk->sk_zckey); 1833 uarg_to_msgzc(uarg)->len--; 1834 1835 if (have_uref) 1836 msg_zerocopy_complete(NULL, uarg, true); 1837 } 1838 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1839 1840 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1841 .complete = msg_zerocopy_complete, 1842 }; 1843 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1844 1845 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1846 struct msghdr *msg, int len, 1847 struct ubuf_info *uarg, 1848 struct net_devmem_dmabuf_binding *binding) 1849 { 1850 int err, orig_len = skb->len; 1851 1852 if (uarg->ops->link_skb) { 1853 err = uarg->ops->link_skb(skb, uarg); 1854 if (err) 1855 return err; 1856 } else { 1857 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1858 1859 /* An skb can only point to one uarg. This edge case happens 1860 * when TCP appends to an skb, but zerocopy_realloc triggered 1861 * a new alloc. 1862 */ 1863 if (orig_uarg && uarg != orig_uarg) 1864 return -EEXIST; 1865 } 1866 1867 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1868 binding); 1869 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1870 struct sock *save_sk = skb->sk; 1871 1872 /* Streams do not free skb on error. Reset to prev state. */ 1873 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1874 skb->sk = sk; 1875 ___pskb_trim(skb, orig_len); 1876 skb->sk = save_sk; 1877 return err; 1878 } 1879 1880 skb_zcopy_set(skb, uarg, NULL); 1881 return skb->len - orig_len; 1882 } 1883 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1884 1885 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1886 { 1887 int i; 1888 1889 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1891 skb_frag_ref(skb, i); 1892 } 1893 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1894 1895 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1896 gfp_t gfp_mask) 1897 { 1898 if (skb_zcopy(orig)) { 1899 if (skb_zcopy(nskb)) { 1900 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1901 if (!gfp_mask) { 1902 WARN_ON_ONCE(1); 1903 return -ENOMEM; 1904 } 1905 if (skb_uarg(nskb) == skb_uarg(orig)) 1906 return 0; 1907 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1908 return -EIO; 1909 } 1910 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1911 } 1912 return 0; 1913 } 1914 1915 /** 1916 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1917 * @skb: the skb to modify 1918 * @gfp_mask: allocation priority 1919 * 1920 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1921 * It will copy all frags into kernel and drop the reference 1922 * to userspace pages. 1923 * 1924 * If this function is called from an interrupt gfp_mask() must be 1925 * %GFP_ATOMIC. 1926 * 1927 * Returns 0 on success or a negative error code on failure 1928 * to allocate kernel memory to copy to. 1929 */ 1930 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1931 { 1932 int num_frags = skb_shinfo(skb)->nr_frags; 1933 struct page *page, *head = NULL; 1934 int i, order, psize, new_frags; 1935 u32 d_off; 1936 1937 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1938 return -EINVAL; 1939 1940 if (!skb_frags_readable(skb)) 1941 return -EFAULT; 1942 1943 if (!num_frags) 1944 goto release; 1945 1946 /* We might have to allocate high order pages, so compute what minimum 1947 * page order is needed. 1948 */ 1949 order = 0; 1950 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1951 order++; 1952 psize = (PAGE_SIZE << order); 1953 1954 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1955 for (i = 0; i < new_frags; i++) { 1956 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1957 if (!page) { 1958 while (head) { 1959 struct page *next = (struct page *)page_private(head); 1960 put_page(head); 1961 head = next; 1962 } 1963 return -ENOMEM; 1964 } 1965 set_page_private(page, (unsigned long)head); 1966 head = page; 1967 } 1968 1969 page = head; 1970 d_off = 0; 1971 for (i = 0; i < num_frags; i++) { 1972 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1973 u32 p_off, p_len, copied; 1974 struct page *p; 1975 u8 *vaddr; 1976 1977 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1978 p, p_off, p_len, copied) { 1979 u32 copy, done = 0; 1980 vaddr = kmap_atomic(p); 1981 1982 while (done < p_len) { 1983 if (d_off == psize) { 1984 d_off = 0; 1985 page = (struct page *)page_private(page); 1986 } 1987 copy = min_t(u32, psize - d_off, p_len - done); 1988 memcpy(page_address(page) + d_off, 1989 vaddr + p_off + done, copy); 1990 done += copy; 1991 d_off += copy; 1992 } 1993 kunmap_atomic(vaddr); 1994 } 1995 } 1996 1997 /* skb frags release userspace buffers */ 1998 for (i = 0; i < num_frags; i++) 1999 skb_frag_unref(skb, i); 2000 2001 /* skb frags point to kernel buffers */ 2002 for (i = 0; i < new_frags - 1; i++) { 2003 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2004 head = (struct page *)page_private(head); 2005 } 2006 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2007 d_off); 2008 skb_shinfo(skb)->nr_frags = new_frags; 2009 2010 release: 2011 skb_zcopy_clear(skb, false); 2012 return 0; 2013 } 2014 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2015 2016 /** 2017 * skb_clone - duplicate an sk_buff 2018 * @skb: buffer to clone 2019 * @gfp_mask: allocation priority 2020 * 2021 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2022 * copies share the same packet data but not structure. The new 2023 * buffer has a reference count of 1. If the allocation fails the 2024 * function returns %NULL otherwise the new buffer is returned. 2025 * 2026 * If this function is called from an interrupt gfp_mask() must be 2027 * %GFP_ATOMIC. 2028 */ 2029 2030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2031 { 2032 struct sk_buff_fclones *fclones = container_of(skb, 2033 struct sk_buff_fclones, 2034 skb1); 2035 struct sk_buff *n; 2036 2037 if (skb_orphan_frags(skb, gfp_mask)) 2038 return NULL; 2039 2040 if (skb->fclone == SKB_FCLONE_ORIG && 2041 refcount_read(&fclones->fclone_ref) == 1) { 2042 n = &fclones->skb2; 2043 refcount_set(&fclones->fclone_ref, 2); 2044 n->fclone = SKB_FCLONE_CLONE; 2045 } else { 2046 if (skb_pfmemalloc(skb)) 2047 gfp_mask |= __GFP_MEMALLOC; 2048 2049 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2050 if (!n) 2051 return NULL; 2052 2053 n->fclone = SKB_FCLONE_UNAVAILABLE; 2054 } 2055 2056 return __skb_clone(n, skb); 2057 } 2058 EXPORT_SYMBOL(skb_clone); 2059 2060 void skb_headers_offset_update(struct sk_buff *skb, int off) 2061 { 2062 /* Only adjust this if it actually is csum_start rather than csum */ 2063 if (skb->ip_summed == CHECKSUM_PARTIAL) 2064 skb->csum_start += off; 2065 /* {transport,network,mac}_header and tail are relative to skb->head */ 2066 skb->transport_header += off; 2067 skb->network_header += off; 2068 if (skb_mac_header_was_set(skb)) 2069 skb->mac_header += off; 2070 skb->inner_transport_header += off; 2071 skb->inner_network_header += off; 2072 skb->inner_mac_header += off; 2073 } 2074 EXPORT_SYMBOL(skb_headers_offset_update); 2075 2076 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2077 { 2078 __copy_skb_header(new, old); 2079 2080 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2081 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2082 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2083 } 2084 EXPORT_SYMBOL(skb_copy_header); 2085 2086 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2087 { 2088 if (skb_pfmemalloc(skb)) 2089 return SKB_ALLOC_RX; 2090 return 0; 2091 } 2092 2093 /** 2094 * skb_copy - create private copy of an sk_buff 2095 * @skb: buffer to copy 2096 * @gfp_mask: allocation priority 2097 * 2098 * Make a copy of both an &sk_buff and its data. This is used when the 2099 * caller wishes to modify the data and needs a private copy of the 2100 * data to alter. Returns %NULL on failure or the pointer to the buffer 2101 * on success. The returned buffer has a reference count of 1. 2102 * 2103 * As by-product this function converts non-linear &sk_buff to linear 2104 * one, so that &sk_buff becomes completely private and caller is allowed 2105 * to modify all the data of returned buffer. This means that this 2106 * function is not recommended for use in circumstances when only 2107 * header is going to be modified. Use pskb_copy() instead. 2108 */ 2109 2110 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2111 { 2112 struct sk_buff *n; 2113 unsigned int size; 2114 int headerlen; 2115 2116 if (!skb_frags_readable(skb)) 2117 return NULL; 2118 2119 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2120 return NULL; 2121 2122 headerlen = skb_headroom(skb); 2123 size = skb_end_offset(skb) + skb->data_len; 2124 n = __alloc_skb(size, gfp_mask, 2125 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2126 if (!n) 2127 return NULL; 2128 2129 /* Set the data pointer */ 2130 skb_reserve(n, headerlen); 2131 /* Set the tail pointer and length */ 2132 skb_put(n, skb->len); 2133 2134 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2135 2136 skb_copy_header(n, skb); 2137 return n; 2138 } 2139 EXPORT_SYMBOL(skb_copy); 2140 2141 /** 2142 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2143 * @skb: buffer to copy 2144 * @headroom: headroom of new skb 2145 * @gfp_mask: allocation priority 2146 * @fclone: if true allocate the copy of the skb from the fclone 2147 * cache instead of the head cache; it is recommended to set this 2148 * to true for the cases where the copy will likely be cloned 2149 * 2150 * Make a copy of both an &sk_buff and part of its data, located 2151 * in header. Fragmented data remain shared. This is used when 2152 * the caller wishes to modify only header of &sk_buff and needs 2153 * private copy of the header to alter. Returns %NULL on failure 2154 * or the pointer to the buffer on success. 2155 * The returned buffer has a reference count of 1. 2156 */ 2157 2158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2159 gfp_t gfp_mask, bool fclone) 2160 { 2161 unsigned int size = skb_headlen(skb) + headroom; 2162 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2163 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2164 2165 if (!n) 2166 goto out; 2167 2168 /* Set the data pointer */ 2169 skb_reserve(n, headroom); 2170 /* Set the tail pointer and length */ 2171 skb_put(n, skb_headlen(skb)); 2172 /* Copy the bytes */ 2173 skb_copy_from_linear_data(skb, n->data, n->len); 2174 2175 n->truesize += skb->data_len; 2176 n->data_len = skb->data_len; 2177 n->len = skb->len; 2178 2179 if (skb_shinfo(skb)->nr_frags) { 2180 int i; 2181 2182 if (skb_orphan_frags(skb, gfp_mask) || 2183 skb_zerocopy_clone(n, skb, gfp_mask)) { 2184 kfree_skb(n); 2185 n = NULL; 2186 goto out; 2187 } 2188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2189 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2190 skb_frag_ref(skb, i); 2191 } 2192 skb_shinfo(n)->nr_frags = i; 2193 } 2194 2195 if (skb_has_frag_list(skb)) { 2196 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2197 skb_clone_fraglist(n); 2198 } 2199 2200 skb_copy_header(n, skb); 2201 out: 2202 return n; 2203 } 2204 EXPORT_SYMBOL(__pskb_copy_fclone); 2205 2206 /** 2207 * pskb_expand_head - reallocate header of &sk_buff 2208 * @skb: buffer to reallocate 2209 * @nhead: room to add at head 2210 * @ntail: room to add at tail 2211 * @gfp_mask: allocation priority 2212 * 2213 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2214 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2215 * reference count of 1. Returns zero in the case of success or error, 2216 * if expansion failed. In the last case, &sk_buff is not changed. 2217 * 2218 * All the pointers pointing into skb header may change and must be 2219 * reloaded after call to this function. 2220 */ 2221 2222 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2223 gfp_t gfp_mask) 2224 { 2225 unsigned int osize = skb_end_offset(skb); 2226 unsigned int size = osize + nhead + ntail; 2227 long off; 2228 u8 *data; 2229 int i; 2230 2231 BUG_ON(nhead < 0); 2232 2233 BUG_ON(skb_shared(skb)); 2234 2235 skb_zcopy_downgrade_managed(skb); 2236 2237 if (skb_pfmemalloc(skb)) 2238 gfp_mask |= __GFP_MEMALLOC; 2239 2240 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2241 if (!data) 2242 goto nodata; 2243 size = SKB_WITH_OVERHEAD(size); 2244 2245 /* Copy only real data... and, alas, header. This should be 2246 * optimized for the cases when header is void. 2247 */ 2248 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2249 2250 memcpy((struct skb_shared_info *)(data + size), 2251 skb_shinfo(skb), 2252 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2253 2254 /* 2255 * if shinfo is shared we must drop the old head gracefully, but if it 2256 * is not we can just drop the old head and let the existing refcount 2257 * be since all we did is relocate the values 2258 */ 2259 if (skb_cloned(skb)) { 2260 if (skb_orphan_frags(skb, gfp_mask)) 2261 goto nofrags; 2262 if (skb_zcopy(skb)) 2263 refcount_inc(&skb_uarg(skb)->refcnt); 2264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2265 skb_frag_ref(skb, i); 2266 2267 if (skb_has_frag_list(skb)) 2268 skb_clone_fraglist(skb); 2269 2270 skb_release_data(skb, SKB_CONSUMED); 2271 } else { 2272 skb_free_head(skb); 2273 } 2274 off = (data + nhead) - skb->head; 2275 2276 skb->head = data; 2277 skb->head_frag = 0; 2278 skb->data += off; 2279 2280 skb_set_end_offset(skb, size); 2281 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2282 off = nhead; 2283 #endif 2284 skb->tail += off; 2285 skb_headers_offset_update(skb, nhead); 2286 skb->cloned = 0; 2287 skb->hdr_len = 0; 2288 skb->nohdr = 0; 2289 atomic_set(&skb_shinfo(skb)->dataref, 1); 2290 2291 skb_metadata_clear(skb); 2292 2293 /* It is not generally safe to change skb->truesize. 2294 * For the moment, we really care of rx path, or 2295 * when skb is orphaned (not attached to a socket). 2296 */ 2297 if (!skb->sk || skb->destructor == sock_edemux) 2298 skb->truesize += size - osize; 2299 2300 return 0; 2301 2302 nofrags: 2303 skb_kfree_head(data, size); 2304 nodata: 2305 return -ENOMEM; 2306 } 2307 EXPORT_SYMBOL(pskb_expand_head); 2308 2309 /* Make private copy of skb with writable head and some headroom */ 2310 2311 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2312 { 2313 struct sk_buff *skb2; 2314 int delta = headroom - skb_headroom(skb); 2315 2316 if (delta <= 0) 2317 skb2 = pskb_copy(skb, GFP_ATOMIC); 2318 else { 2319 skb2 = skb_clone(skb, GFP_ATOMIC); 2320 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2321 GFP_ATOMIC)) { 2322 kfree_skb(skb2); 2323 skb2 = NULL; 2324 } 2325 } 2326 return skb2; 2327 } 2328 EXPORT_SYMBOL(skb_realloc_headroom); 2329 2330 /* Note: We plan to rework this in linux-6.4 */ 2331 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2332 { 2333 unsigned int saved_end_offset, saved_truesize; 2334 struct skb_shared_info *shinfo; 2335 int res; 2336 2337 saved_end_offset = skb_end_offset(skb); 2338 saved_truesize = skb->truesize; 2339 2340 res = pskb_expand_head(skb, 0, 0, pri); 2341 if (res) 2342 return res; 2343 2344 skb->truesize = saved_truesize; 2345 2346 if (likely(skb_end_offset(skb) == saved_end_offset)) 2347 return 0; 2348 2349 /* We can not change skb->end if the original or new value 2350 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2351 */ 2352 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2353 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2354 /* We think this path should not be taken. 2355 * Add a temporary trace to warn us just in case. 2356 */ 2357 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2358 saved_end_offset, skb_end_offset(skb)); 2359 WARN_ON_ONCE(1); 2360 return 0; 2361 } 2362 2363 shinfo = skb_shinfo(skb); 2364 2365 /* We are about to change back skb->end, 2366 * we need to move skb_shinfo() to its new location. 2367 */ 2368 memmove(skb->head + saved_end_offset, 2369 shinfo, 2370 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2371 2372 skb_set_end_offset(skb, saved_end_offset); 2373 2374 return 0; 2375 } 2376 2377 /** 2378 * skb_expand_head - reallocate header of &sk_buff 2379 * @skb: buffer to reallocate 2380 * @headroom: needed headroom 2381 * 2382 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2383 * if possible; copies skb->sk to new skb as needed 2384 * and frees original skb in case of failures. 2385 * 2386 * It expect increased headroom and generates warning otherwise. 2387 */ 2388 2389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2390 { 2391 int delta = headroom - skb_headroom(skb); 2392 int osize = skb_end_offset(skb); 2393 struct sock *sk = skb->sk; 2394 2395 if (WARN_ONCE(delta <= 0, 2396 "%s is expecting an increase in the headroom", __func__)) 2397 return skb; 2398 2399 delta = SKB_DATA_ALIGN(delta); 2400 /* pskb_expand_head() might crash, if skb is shared. */ 2401 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2402 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2403 2404 if (unlikely(!nskb)) 2405 goto fail; 2406 2407 if (sk) 2408 skb_set_owner_w(nskb, sk); 2409 consume_skb(skb); 2410 skb = nskb; 2411 } 2412 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2413 goto fail; 2414 2415 if (sk && is_skb_wmem(skb)) { 2416 delta = skb_end_offset(skb) - osize; 2417 refcount_add(delta, &sk->sk_wmem_alloc); 2418 skb->truesize += delta; 2419 } 2420 return skb; 2421 2422 fail: 2423 kfree_skb(skb); 2424 return NULL; 2425 } 2426 EXPORT_SYMBOL(skb_expand_head); 2427 2428 /** 2429 * skb_copy_expand - copy and expand sk_buff 2430 * @skb: buffer to copy 2431 * @newheadroom: new free bytes at head 2432 * @newtailroom: new free bytes at tail 2433 * @gfp_mask: allocation priority 2434 * 2435 * Make a copy of both an &sk_buff and its data and while doing so 2436 * allocate additional space. 2437 * 2438 * This is used when the caller wishes to modify the data and needs a 2439 * private copy of the data to alter as well as more space for new fields. 2440 * Returns %NULL on failure or the pointer to the buffer 2441 * on success. The returned buffer has a reference count of 1. 2442 * 2443 * You must pass %GFP_ATOMIC as the allocation priority if this function 2444 * is called from an interrupt. 2445 */ 2446 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2447 int newheadroom, int newtailroom, 2448 gfp_t gfp_mask) 2449 { 2450 /* 2451 * Allocate the copy buffer 2452 */ 2453 int head_copy_len, head_copy_off; 2454 struct sk_buff *n; 2455 int oldheadroom; 2456 2457 if (!skb_frags_readable(skb)) 2458 return NULL; 2459 2460 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2461 return NULL; 2462 2463 oldheadroom = skb_headroom(skb); 2464 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2465 gfp_mask, skb_alloc_rx_flag(skb), 2466 NUMA_NO_NODE); 2467 if (!n) 2468 return NULL; 2469 2470 skb_reserve(n, newheadroom); 2471 2472 /* Set the tail pointer and length */ 2473 skb_put(n, skb->len); 2474 2475 head_copy_len = oldheadroom; 2476 head_copy_off = 0; 2477 if (newheadroom <= head_copy_len) 2478 head_copy_len = newheadroom; 2479 else 2480 head_copy_off = newheadroom - head_copy_len; 2481 2482 /* Copy the linear header and data. */ 2483 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2484 skb->len + head_copy_len)); 2485 2486 skb_copy_header(n, skb); 2487 2488 skb_headers_offset_update(n, newheadroom - oldheadroom); 2489 2490 return n; 2491 } 2492 EXPORT_SYMBOL(skb_copy_expand); 2493 2494 /** 2495 * __skb_pad - zero pad the tail of an skb 2496 * @skb: buffer to pad 2497 * @pad: space to pad 2498 * @free_on_error: free buffer on error 2499 * 2500 * Ensure that a buffer is followed by a padding area that is zero 2501 * filled. Used by network drivers which may DMA or transfer data 2502 * beyond the buffer end onto the wire. 2503 * 2504 * May return error in out of memory cases. The skb is freed on error 2505 * if @free_on_error is true. 2506 */ 2507 2508 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2509 { 2510 int err; 2511 int ntail; 2512 2513 /* If the skbuff is non linear tailroom is always zero.. */ 2514 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2515 memset(skb->data+skb->len, 0, pad); 2516 return 0; 2517 } 2518 2519 ntail = skb->data_len + pad - (skb->end - skb->tail); 2520 if (likely(skb_cloned(skb) || ntail > 0)) { 2521 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2522 if (unlikely(err)) 2523 goto free_skb; 2524 } 2525 2526 /* FIXME: The use of this function with non-linear skb's really needs 2527 * to be audited. 2528 */ 2529 err = skb_linearize(skb); 2530 if (unlikely(err)) 2531 goto free_skb; 2532 2533 memset(skb->data + skb->len, 0, pad); 2534 return 0; 2535 2536 free_skb: 2537 if (free_on_error) 2538 kfree_skb(skb); 2539 return err; 2540 } 2541 EXPORT_SYMBOL(__skb_pad); 2542 2543 /** 2544 * pskb_put - add data to the tail of a potentially fragmented buffer 2545 * @skb: start of the buffer to use 2546 * @tail: tail fragment of the buffer to use 2547 * @len: amount of data to add 2548 * 2549 * This function extends the used data area of the potentially 2550 * fragmented buffer. @tail must be the last fragment of @skb -- or 2551 * @skb itself. If this would exceed the total buffer size the kernel 2552 * will panic. A pointer to the first byte of the extra data is 2553 * returned. 2554 */ 2555 2556 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2557 { 2558 if (tail != skb) { 2559 skb->data_len += len; 2560 skb->len += len; 2561 } 2562 return skb_put(tail, len); 2563 } 2564 EXPORT_SYMBOL_GPL(pskb_put); 2565 2566 /** 2567 * skb_put - add data to a buffer 2568 * @skb: buffer to use 2569 * @len: amount of data to add 2570 * 2571 * This function extends the used data area of the buffer. If this would 2572 * exceed the total buffer size the kernel will panic. A pointer to the 2573 * first byte of the extra data is returned. 2574 */ 2575 void *skb_put(struct sk_buff *skb, unsigned int len) 2576 { 2577 void *tmp = skb_tail_pointer(skb); 2578 SKB_LINEAR_ASSERT(skb); 2579 skb->tail += len; 2580 skb->len += len; 2581 if (unlikely(skb->tail > skb->end)) 2582 skb_over_panic(skb, len, __builtin_return_address(0)); 2583 return tmp; 2584 } 2585 EXPORT_SYMBOL(skb_put); 2586 2587 /** 2588 * skb_push - add data to the start of a buffer 2589 * @skb: buffer to use 2590 * @len: amount of data to add 2591 * 2592 * This function extends the used data area of the buffer at the buffer 2593 * start. If this would exceed the total buffer headroom the kernel will 2594 * panic. A pointer to the first byte of the extra data is returned. 2595 */ 2596 void *skb_push(struct sk_buff *skb, unsigned int len) 2597 { 2598 skb->data -= len; 2599 skb->len += len; 2600 if (unlikely(skb->data < skb->head)) 2601 skb_under_panic(skb, len, __builtin_return_address(0)); 2602 return skb->data; 2603 } 2604 EXPORT_SYMBOL(skb_push); 2605 2606 /** 2607 * skb_pull - remove data from the start of a buffer 2608 * @skb: buffer to use 2609 * @len: amount of data to remove 2610 * 2611 * This function removes data from the start of a buffer, returning 2612 * the memory to the headroom. A pointer to the next data in the buffer 2613 * is returned. Once the data has been pulled future pushes will overwrite 2614 * the old data. 2615 */ 2616 void *skb_pull(struct sk_buff *skb, unsigned int len) 2617 { 2618 return skb_pull_inline(skb, len); 2619 } 2620 EXPORT_SYMBOL(skb_pull); 2621 2622 /** 2623 * skb_pull_data - remove data from the start of a buffer returning its 2624 * original position. 2625 * @skb: buffer to use 2626 * @len: amount of data to remove 2627 * 2628 * This function removes data from the start of a buffer, returning 2629 * the memory to the headroom. A pointer to the original data in the buffer 2630 * is returned after checking if there is enough data to pull. Once the 2631 * data has been pulled future pushes will overwrite the old data. 2632 */ 2633 void *skb_pull_data(struct sk_buff *skb, size_t len) 2634 { 2635 void *data = skb->data; 2636 2637 if (skb->len < len) 2638 return NULL; 2639 2640 skb_pull(skb, len); 2641 2642 return data; 2643 } 2644 EXPORT_SYMBOL(skb_pull_data); 2645 2646 /** 2647 * skb_trim - remove end from a buffer 2648 * @skb: buffer to alter 2649 * @len: new length 2650 * 2651 * Cut the length of a buffer down by removing data from the tail. If 2652 * the buffer is already under the length specified it is not modified. 2653 * The skb must be linear. 2654 */ 2655 void skb_trim(struct sk_buff *skb, unsigned int len) 2656 { 2657 if (skb->len > len) 2658 __skb_trim(skb, len); 2659 } 2660 EXPORT_SYMBOL(skb_trim); 2661 2662 /* Trims skb to length len. It can change skb pointers. 2663 */ 2664 2665 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2666 { 2667 struct sk_buff **fragp; 2668 struct sk_buff *frag; 2669 int offset = skb_headlen(skb); 2670 int nfrags = skb_shinfo(skb)->nr_frags; 2671 int i; 2672 int err; 2673 2674 if (skb_cloned(skb) && 2675 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2676 return err; 2677 2678 i = 0; 2679 if (offset >= len) 2680 goto drop_pages; 2681 2682 for (; i < nfrags; i++) { 2683 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2684 2685 if (end < len) { 2686 offset = end; 2687 continue; 2688 } 2689 2690 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2691 2692 drop_pages: 2693 skb_shinfo(skb)->nr_frags = i; 2694 2695 for (; i < nfrags; i++) 2696 skb_frag_unref(skb, i); 2697 2698 if (skb_has_frag_list(skb)) 2699 skb_drop_fraglist(skb); 2700 goto done; 2701 } 2702 2703 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2704 fragp = &frag->next) { 2705 int end = offset + frag->len; 2706 2707 if (skb_shared(frag)) { 2708 struct sk_buff *nfrag; 2709 2710 nfrag = skb_clone(frag, GFP_ATOMIC); 2711 if (unlikely(!nfrag)) 2712 return -ENOMEM; 2713 2714 nfrag->next = frag->next; 2715 consume_skb(frag); 2716 frag = nfrag; 2717 *fragp = frag; 2718 } 2719 2720 if (end < len) { 2721 offset = end; 2722 continue; 2723 } 2724 2725 if (end > len && 2726 unlikely((err = pskb_trim(frag, len - offset)))) 2727 return err; 2728 2729 if (frag->next) 2730 skb_drop_list(&frag->next); 2731 break; 2732 } 2733 2734 done: 2735 if (len > skb_headlen(skb)) { 2736 skb->data_len -= skb->len - len; 2737 skb->len = len; 2738 } else { 2739 skb->len = len; 2740 skb->data_len = 0; 2741 skb_set_tail_pointer(skb, len); 2742 } 2743 2744 if (!skb->sk || skb->destructor == sock_edemux) 2745 skb_condense(skb); 2746 return 0; 2747 } 2748 EXPORT_SYMBOL(___pskb_trim); 2749 2750 /* Note : use pskb_trim_rcsum() instead of calling this directly 2751 */ 2752 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2753 { 2754 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2755 int delta = skb->len - len; 2756 2757 skb->csum = csum_block_sub(skb->csum, 2758 skb_checksum(skb, len, delta, 0), 2759 len); 2760 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2761 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2762 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2763 2764 if (offset + sizeof(__sum16) > hdlen) 2765 return -EINVAL; 2766 } 2767 return __pskb_trim(skb, len); 2768 } 2769 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2770 2771 /** 2772 * __pskb_pull_tail - advance tail of skb header 2773 * @skb: buffer to reallocate 2774 * @delta: number of bytes to advance tail 2775 * 2776 * The function makes a sense only on a fragmented &sk_buff, 2777 * it expands header moving its tail forward and copying necessary 2778 * data from fragmented part. 2779 * 2780 * &sk_buff MUST have reference count of 1. 2781 * 2782 * Returns %NULL (and &sk_buff does not change) if pull failed 2783 * or value of new tail of skb in the case of success. 2784 * 2785 * All the pointers pointing into skb header may change and must be 2786 * reloaded after call to this function. 2787 */ 2788 2789 /* Moves tail of skb head forward, copying data from fragmented part, 2790 * when it is necessary. 2791 * 1. It may fail due to malloc failure. 2792 * 2. It may change skb pointers. 2793 * 2794 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2795 */ 2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2797 { 2798 /* If skb has not enough free space at tail, get new one 2799 * plus 128 bytes for future expansions. If we have enough 2800 * room at tail, reallocate without expansion only if skb is cloned. 2801 */ 2802 int i, k, eat = (skb->tail + delta) - skb->end; 2803 2804 if (!skb_frags_readable(skb)) 2805 return NULL; 2806 2807 if (eat > 0 || skb_cloned(skb)) { 2808 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2809 GFP_ATOMIC)) 2810 return NULL; 2811 } 2812 2813 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2814 skb_tail_pointer(skb), delta)); 2815 2816 /* Optimization: no fragments, no reasons to preestimate 2817 * size of pulled pages. Superb. 2818 */ 2819 if (!skb_has_frag_list(skb)) 2820 goto pull_pages; 2821 2822 /* Estimate size of pulled pages. */ 2823 eat = delta; 2824 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2825 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2826 2827 if (size >= eat) 2828 goto pull_pages; 2829 eat -= size; 2830 } 2831 2832 /* If we need update frag list, we are in troubles. 2833 * Certainly, it is possible to add an offset to skb data, 2834 * but taking into account that pulling is expected to 2835 * be very rare operation, it is worth to fight against 2836 * further bloating skb head and crucify ourselves here instead. 2837 * Pure masohism, indeed. 8)8) 2838 */ 2839 if (eat) { 2840 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2841 struct sk_buff *clone = NULL; 2842 struct sk_buff *insp = NULL; 2843 2844 do { 2845 if (list->len <= eat) { 2846 /* Eaten as whole. */ 2847 eat -= list->len; 2848 list = list->next; 2849 insp = list; 2850 } else { 2851 /* Eaten partially. */ 2852 if (skb_is_gso(skb) && !list->head_frag && 2853 skb_headlen(list)) 2854 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2855 2856 if (skb_shared(list)) { 2857 /* Sucks! We need to fork list. :-( */ 2858 clone = skb_clone(list, GFP_ATOMIC); 2859 if (!clone) 2860 return NULL; 2861 insp = list->next; 2862 list = clone; 2863 } else { 2864 /* This may be pulled without 2865 * problems. */ 2866 insp = list; 2867 } 2868 if (!pskb_pull(list, eat)) { 2869 kfree_skb(clone); 2870 return NULL; 2871 } 2872 break; 2873 } 2874 } while (eat); 2875 2876 /* Free pulled out fragments. */ 2877 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2878 skb_shinfo(skb)->frag_list = list->next; 2879 consume_skb(list); 2880 } 2881 /* And insert new clone at head. */ 2882 if (clone) { 2883 clone->next = list; 2884 skb_shinfo(skb)->frag_list = clone; 2885 } 2886 } 2887 /* Success! Now we may commit changes to skb data. */ 2888 2889 pull_pages: 2890 eat = delta; 2891 k = 0; 2892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2893 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2894 2895 if (size <= eat) { 2896 skb_frag_unref(skb, i); 2897 eat -= size; 2898 } else { 2899 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2900 2901 *frag = skb_shinfo(skb)->frags[i]; 2902 if (eat) { 2903 skb_frag_off_add(frag, eat); 2904 skb_frag_size_sub(frag, eat); 2905 if (!i) 2906 goto end; 2907 eat = 0; 2908 } 2909 k++; 2910 } 2911 } 2912 skb_shinfo(skb)->nr_frags = k; 2913 2914 end: 2915 skb->tail += delta; 2916 skb->data_len -= delta; 2917 2918 if (!skb->data_len) 2919 skb_zcopy_clear(skb, false); 2920 2921 return skb_tail_pointer(skb); 2922 } 2923 EXPORT_SYMBOL(__pskb_pull_tail); 2924 2925 /** 2926 * skb_copy_bits - copy bits from skb to kernel buffer 2927 * @skb: source skb 2928 * @offset: offset in source 2929 * @to: destination buffer 2930 * @len: number of bytes to copy 2931 * 2932 * Copy the specified number of bytes from the source skb to the 2933 * destination buffer. 2934 * 2935 * CAUTION ! : 2936 * If its prototype is ever changed, 2937 * check arch/{*}/net/{*}.S files, 2938 * since it is called from BPF assembly code. 2939 */ 2940 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2941 { 2942 int start = skb_headlen(skb); 2943 struct sk_buff *frag_iter; 2944 int i, copy; 2945 2946 if (offset > (int)skb->len - len) 2947 goto fault; 2948 2949 /* Copy header. */ 2950 if ((copy = start - offset) > 0) { 2951 if (copy > len) 2952 copy = len; 2953 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2954 if ((len -= copy) == 0) 2955 return 0; 2956 offset += copy; 2957 to += copy; 2958 } 2959 2960 if (!skb_frags_readable(skb)) 2961 goto fault; 2962 2963 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2964 int end; 2965 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2966 2967 WARN_ON(start > offset + len); 2968 2969 end = start + skb_frag_size(f); 2970 if ((copy = end - offset) > 0) { 2971 u32 p_off, p_len, copied; 2972 struct page *p; 2973 u8 *vaddr; 2974 2975 if (copy > len) 2976 copy = len; 2977 2978 skb_frag_foreach_page(f, 2979 skb_frag_off(f) + offset - start, 2980 copy, p, p_off, p_len, copied) { 2981 vaddr = kmap_atomic(p); 2982 memcpy(to + copied, vaddr + p_off, p_len); 2983 kunmap_atomic(vaddr); 2984 } 2985 2986 if ((len -= copy) == 0) 2987 return 0; 2988 offset += copy; 2989 to += copy; 2990 } 2991 start = end; 2992 } 2993 2994 skb_walk_frags(skb, frag_iter) { 2995 int end; 2996 2997 WARN_ON(start > offset + len); 2998 2999 end = start + frag_iter->len; 3000 if ((copy = end - offset) > 0) { 3001 if (copy > len) 3002 copy = len; 3003 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3004 goto fault; 3005 if ((len -= copy) == 0) 3006 return 0; 3007 offset += copy; 3008 to += copy; 3009 } 3010 start = end; 3011 } 3012 3013 if (!len) 3014 return 0; 3015 3016 fault: 3017 return -EFAULT; 3018 } 3019 EXPORT_SYMBOL(skb_copy_bits); 3020 3021 /* 3022 * Callback from splice_to_pipe(), if we need to release some pages 3023 * at the end of the spd in case we error'ed out in filling the pipe. 3024 */ 3025 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3026 { 3027 put_page(spd->pages[i]); 3028 } 3029 3030 static struct page *linear_to_page(struct page *page, unsigned int *len, 3031 unsigned int *offset, 3032 struct sock *sk) 3033 { 3034 struct page_frag *pfrag = sk_page_frag(sk); 3035 3036 if (!sk_page_frag_refill(sk, pfrag)) 3037 return NULL; 3038 3039 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3040 3041 memcpy(page_address(pfrag->page) + pfrag->offset, 3042 page_address(page) + *offset, *len); 3043 *offset = pfrag->offset; 3044 pfrag->offset += *len; 3045 3046 return pfrag->page; 3047 } 3048 3049 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3050 struct page *page, 3051 unsigned int offset) 3052 { 3053 return spd->nr_pages && 3054 spd->pages[spd->nr_pages - 1] == page && 3055 (spd->partial[spd->nr_pages - 1].offset + 3056 spd->partial[spd->nr_pages - 1].len == offset); 3057 } 3058 3059 /* 3060 * Fill page/offset/length into spd, if it can hold more pages. 3061 */ 3062 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3063 unsigned int *len, unsigned int offset, bool linear, 3064 struct sock *sk) 3065 { 3066 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3067 return true; 3068 3069 if (linear) { 3070 page = linear_to_page(page, len, &offset, sk); 3071 if (!page) 3072 return true; 3073 } 3074 if (spd_can_coalesce(spd, page, offset)) { 3075 spd->partial[spd->nr_pages - 1].len += *len; 3076 return false; 3077 } 3078 get_page(page); 3079 spd->pages[spd->nr_pages] = page; 3080 spd->partial[spd->nr_pages].len = *len; 3081 spd->partial[spd->nr_pages].offset = offset; 3082 spd->nr_pages++; 3083 3084 return false; 3085 } 3086 3087 static bool __splice_segment(struct page *page, unsigned int poff, 3088 unsigned int plen, unsigned int *off, 3089 unsigned int *len, 3090 struct splice_pipe_desc *spd, bool linear, 3091 struct sock *sk) 3092 { 3093 if (!*len) 3094 return true; 3095 3096 /* skip this segment if already processed */ 3097 if (*off >= plen) { 3098 *off -= plen; 3099 return false; 3100 } 3101 3102 /* ignore any bits we already processed */ 3103 poff += *off; 3104 plen -= *off; 3105 *off = 0; 3106 3107 do { 3108 unsigned int flen = min(*len, plen); 3109 3110 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3111 return true; 3112 poff += flen; 3113 plen -= flen; 3114 *len -= flen; 3115 } while (*len && plen); 3116 3117 return false; 3118 } 3119 3120 /* 3121 * Map linear and fragment data from the skb to spd. It reports true if the 3122 * pipe is full or if we already spliced the requested length. 3123 */ 3124 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3125 unsigned int *offset, unsigned int *len, 3126 struct splice_pipe_desc *spd, struct sock *sk) 3127 { 3128 struct sk_buff *iter; 3129 int seg; 3130 3131 /* map the linear part : 3132 * If skb->head_frag is set, this 'linear' part is backed by a 3133 * fragment, and if the head is not shared with any clones then 3134 * we can avoid a copy since we own the head portion of this page. 3135 */ 3136 if (__splice_segment(virt_to_page(skb->data), 3137 (unsigned long) skb->data & (PAGE_SIZE - 1), 3138 skb_headlen(skb), 3139 offset, len, spd, 3140 skb_head_is_locked(skb), 3141 sk)) 3142 return true; 3143 3144 /* 3145 * then map the fragments 3146 */ 3147 if (!skb_frags_readable(skb)) 3148 return false; 3149 3150 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3151 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3152 3153 if (WARN_ON_ONCE(!skb_frag_page(f))) 3154 return false; 3155 3156 if (__splice_segment(skb_frag_page(f), 3157 skb_frag_off(f), skb_frag_size(f), 3158 offset, len, spd, false, sk)) 3159 return true; 3160 } 3161 3162 skb_walk_frags(skb, iter) { 3163 if (*offset >= iter->len) { 3164 *offset -= iter->len; 3165 continue; 3166 } 3167 /* __skb_splice_bits() only fails if the output has no room 3168 * left, so no point in going over the frag_list for the error 3169 * case. 3170 */ 3171 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3172 return true; 3173 } 3174 3175 return false; 3176 } 3177 3178 /* 3179 * Map data from the skb to a pipe. Should handle both the linear part, 3180 * the fragments, and the frag list. 3181 */ 3182 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3183 struct pipe_inode_info *pipe, unsigned int tlen, 3184 unsigned int flags) 3185 { 3186 struct partial_page partial[MAX_SKB_FRAGS]; 3187 struct page *pages[MAX_SKB_FRAGS]; 3188 struct splice_pipe_desc spd = { 3189 .pages = pages, 3190 .partial = partial, 3191 .nr_pages_max = MAX_SKB_FRAGS, 3192 .ops = &nosteal_pipe_buf_ops, 3193 .spd_release = sock_spd_release, 3194 }; 3195 int ret = 0; 3196 3197 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3198 3199 if (spd.nr_pages) 3200 ret = splice_to_pipe(pipe, &spd); 3201 3202 return ret; 3203 } 3204 EXPORT_SYMBOL_GPL(skb_splice_bits); 3205 3206 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3207 { 3208 struct socket *sock = sk->sk_socket; 3209 size_t size = msg_data_left(msg); 3210 3211 if (!sock) 3212 return -EINVAL; 3213 3214 if (!sock->ops->sendmsg_locked) 3215 return sock_no_sendmsg_locked(sk, msg, size); 3216 3217 return sock->ops->sendmsg_locked(sk, msg, size); 3218 } 3219 3220 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3221 { 3222 struct socket *sock = sk->sk_socket; 3223 3224 if (!sock) 3225 return -EINVAL; 3226 return sock_sendmsg(sock, msg); 3227 } 3228 3229 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3230 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3231 int len, sendmsg_func sendmsg, int flags) 3232 { 3233 unsigned int orig_len = len; 3234 struct sk_buff *head = skb; 3235 unsigned short fragidx; 3236 int slen, ret; 3237 3238 do_frag_list: 3239 3240 /* Deal with head data */ 3241 while (offset < skb_headlen(skb) && len) { 3242 struct kvec kv; 3243 struct msghdr msg; 3244 3245 slen = min_t(int, len, skb_headlen(skb) - offset); 3246 kv.iov_base = skb->data + offset; 3247 kv.iov_len = slen; 3248 memset(&msg, 0, sizeof(msg)); 3249 msg.msg_flags = MSG_DONTWAIT | flags; 3250 3251 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3252 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3253 sendmsg_unlocked, sk, &msg); 3254 if (ret <= 0) 3255 goto error; 3256 3257 offset += ret; 3258 len -= ret; 3259 } 3260 3261 /* All the data was skb head? */ 3262 if (!len) 3263 goto out; 3264 3265 /* Make offset relative to start of frags */ 3266 offset -= skb_headlen(skb); 3267 3268 /* Find where we are in frag list */ 3269 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3270 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3271 3272 if (offset < skb_frag_size(frag)) 3273 break; 3274 3275 offset -= skb_frag_size(frag); 3276 } 3277 3278 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3279 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3280 3281 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3282 3283 while (slen) { 3284 struct bio_vec bvec; 3285 struct msghdr msg = { 3286 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3287 flags, 3288 }; 3289 3290 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3291 skb_frag_off(frag) + offset); 3292 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3293 slen); 3294 3295 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3296 sendmsg_unlocked, sk, &msg); 3297 if (ret <= 0) 3298 goto error; 3299 3300 len -= ret; 3301 offset += ret; 3302 slen -= ret; 3303 } 3304 3305 offset = 0; 3306 } 3307 3308 if (len) { 3309 /* Process any frag lists */ 3310 3311 if (skb == head) { 3312 if (skb_has_frag_list(skb)) { 3313 skb = skb_shinfo(skb)->frag_list; 3314 goto do_frag_list; 3315 } 3316 } else if (skb->next) { 3317 skb = skb->next; 3318 goto do_frag_list; 3319 } 3320 } 3321 3322 out: 3323 return orig_len - len; 3324 3325 error: 3326 return orig_len == len ? ret : orig_len - len; 3327 } 3328 3329 /* Send skb data on a socket. Socket must be locked. */ 3330 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3331 int len) 3332 { 3333 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3334 } 3335 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3336 3337 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3338 int offset, int len, int flags) 3339 { 3340 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3341 } 3342 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3343 3344 /* Send skb data on a socket. Socket must be unlocked. */ 3345 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3346 { 3347 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3348 } 3349 3350 /** 3351 * skb_store_bits - store bits from kernel buffer to skb 3352 * @skb: destination buffer 3353 * @offset: offset in destination 3354 * @from: source buffer 3355 * @len: number of bytes to copy 3356 * 3357 * Copy the specified number of bytes from the source buffer to the 3358 * destination skb. This function handles all the messy bits of 3359 * traversing fragment lists and such. 3360 */ 3361 3362 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3363 { 3364 int start = skb_headlen(skb); 3365 struct sk_buff *frag_iter; 3366 int i, copy; 3367 3368 if (offset > (int)skb->len - len) 3369 goto fault; 3370 3371 if ((copy = start - offset) > 0) { 3372 if (copy > len) 3373 copy = len; 3374 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3375 if ((len -= copy) == 0) 3376 return 0; 3377 offset += copy; 3378 from += copy; 3379 } 3380 3381 if (!skb_frags_readable(skb)) 3382 goto fault; 3383 3384 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3385 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3386 int end; 3387 3388 WARN_ON(start > offset + len); 3389 3390 end = start + skb_frag_size(frag); 3391 if ((copy = end - offset) > 0) { 3392 u32 p_off, p_len, copied; 3393 struct page *p; 3394 u8 *vaddr; 3395 3396 if (copy > len) 3397 copy = len; 3398 3399 skb_frag_foreach_page(frag, 3400 skb_frag_off(frag) + offset - start, 3401 copy, p, p_off, p_len, copied) { 3402 vaddr = kmap_atomic(p); 3403 memcpy(vaddr + p_off, from + copied, p_len); 3404 kunmap_atomic(vaddr); 3405 } 3406 3407 if ((len -= copy) == 0) 3408 return 0; 3409 offset += copy; 3410 from += copy; 3411 } 3412 start = end; 3413 } 3414 3415 skb_walk_frags(skb, frag_iter) { 3416 int end; 3417 3418 WARN_ON(start > offset + len); 3419 3420 end = start + frag_iter->len; 3421 if ((copy = end - offset) > 0) { 3422 if (copy > len) 3423 copy = len; 3424 if (skb_store_bits(frag_iter, offset - start, 3425 from, copy)) 3426 goto fault; 3427 if ((len -= copy) == 0) 3428 return 0; 3429 offset += copy; 3430 from += copy; 3431 } 3432 start = end; 3433 } 3434 if (!len) 3435 return 0; 3436 3437 fault: 3438 return -EFAULT; 3439 } 3440 EXPORT_SYMBOL(skb_store_bits); 3441 3442 /* Checksum skb data. */ 3443 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3444 { 3445 int start = skb_headlen(skb); 3446 int i, copy = start - offset; 3447 struct sk_buff *frag_iter; 3448 int pos = 0; 3449 3450 /* Checksum header. */ 3451 if (copy > 0) { 3452 if (copy > len) 3453 copy = len; 3454 csum = csum_partial(skb->data + offset, copy, csum); 3455 if ((len -= copy) == 0) 3456 return csum; 3457 offset += copy; 3458 pos = copy; 3459 } 3460 3461 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3462 return 0; 3463 3464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3465 int end; 3466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3467 3468 WARN_ON(start > offset + len); 3469 3470 end = start + skb_frag_size(frag); 3471 if ((copy = end - offset) > 0) { 3472 u32 p_off, p_len, copied; 3473 struct page *p; 3474 __wsum csum2; 3475 u8 *vaddr; 3476 3477 if (copy > len) 3478 copy = len; 3479 3480 skb_frag_foreach_page(frag, 3481 skb_frag_off(frag) + offset - start, 3482 copy, p, p_off, p_len, copied) { 3483 vaddr = kmap_atomic(p); 3484 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3485 kunmap_atomic(vaddr); 3486 csum = csum_block_add(csum, csum2, pos); 3487 pos += p_len; 3488 } 3489 3490 if (!(len -= copy)) 3491 return csum; 3492 offset += copy; 3493 } 3494 start = end; 3495 } 3496 3497 skb_walk_frags(skb, frag_iter) { 3498 int end; 3499 3500 WARN_ON(start > offset + len); 3501 3502 end = start + frag_iter->len; 3503 if ((copy = end - offset) > 0) { 3504 __wsum csum2; 3505 if (copy > len) 3506 copy = len; 3507 csum2 = skb_checksum(frag_iter, offset - start, copy, 3508 0); 3509 csum = csum_block_add(csum, csum2, pos); 3510 if ((len -= copy) == 0) 3511 return csum; 3512 offset += copy; 3513 pos += copy; 3514 } 3515 start = end; 3516 } 3517 BUG_ON(len); 3518 3519 return csum; 3520 } 3521 EXPORT_SYMBOL(skb_checksum); 3522 3523 /* Both of above in one bottle. */ 3524 3525 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3526 u8 *to, int len) 3527 { 3528 int start = skb_headlen(skb); 3529 int i, copy = start - offset; 3530 struct sk_buff *frag_iter; 3531 int pos = 0; 3532 __wsum csum = 0; 3533 3534 /* Copy header. */ 3535 if (copy > 0) { 3536 if (copy > len) 3537 copy = len; 3538 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3539 copy); 3540 if ((len -= copy) == 0) 3541 return csum; 3542 offset += copy; 3543 to += copy; 3544 pos = copy; 3545 } 3546 3547 if (!skb_frags_readable(skb)) 3548 return 0; 3549 3550 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3551 int end; 3552 3553 WARN_ON(start > offset + len); 3554 3555 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3556 if ((copy = end - offset) > 0) { 3557 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3558 u32 p_off, p_len, copied; 3559 struct page *p; 3560 __wsum csum2; 3561 u8 *vaddr; 3562 3563 if (copy > len) 3564 copy = len; 3565 3566 skb_frag_foreach_page(frag, 3567 skb_frag_off(frag) + offset - start, 3568 copy, p, p_off, p_len, copied) { 3569 vaddr = kmap_atomic(p); 3570 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3571 to + copied, 3572 p_len); 3573 kunmap_atomic(vaddr); 3574 csum = csum_block_add(csum, csum2, pos); 3575 pos += p_len; 3576 } 3577 3578 if (!(len -= copy)) 3579 return csum; 3580 offset += copy; 3581 to += copy; 3582 } 3583 start = end; 3584 } 3585 3586 skb_walk_frags(skb, frag_iter) { 3587 __wsum csum2; 3588 int end; 3589 3590 WARN_ON(start > offset + len); 3591 3592 end = start + frag_iter->len; 3593 if ((copy = end - offset) > 0) { 3594 if (copy > len) 3595 copy = len; 3596 csum2 = skb_copy_and_csum_bits(frag_iter, 3597 offset - start, 3598 to, copy); 3599 csum = csum_block_add(csum, csum2, pos); 3600 if ((len -= copy) == 0) 3601 return csum; 3602 offset += copy; 3603 to += copy; 3604 pos += copy; 3605 } 3606 start = end; 3607 } 3608 BUG_ON(len); 3609 return csum; 3610 } 3611 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3612 3613 #ifdef CONFIG_NET_CRC32C 3614 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3615 { 3616 int start = skb_headlen(skb); 3617 int i, copy = start - offset; 3618 struct sk_buff *frag_iter; 3619 3620 if (copy > 0) { 3621 copy = min(copy, len); 3622 crc = crc32c(crc, skb->data + offset, copy); 3623 len -= copy; 3624 if (len == 0) 3625 return crc; 3626 offset += copy; 3627 } 3628 3629 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3630 return 0; 3631 3632 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3633 int end; 3634 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3635 3636 WARN_ON(start > offset + len); 3637 3638 end = start + skb_frag_size(frag); 3639 copy = end - offset; 3640 if (copy > 0) { 3641 u32 p_off, p_len, copied; 3642 struct page *p; 3643 u8 *vaddr; 3644 3645 copy = min(copy, len); 3646 skb_frag_foreach_page(frag, 3647 skb_frag_off(frag) + offset - start, 3648 copy, p, p_off, p_len, copied) { 3649 vaddr = kmap_atomic(p); 3650 crc = crc32c(crc, vaddr + p_off, p_len); 3651 kunmap_atomic(vaddr); 3652 } 3653 len -= copy; 3654 if (len == 0) 3655 return crc; 3656 offset += copy; 3657 } 3658 start = end; 3659 } 3660 3661 skb_walk_frags(skb, frag_iter) { 3662 int end; 3663 3664 WARN_ON(start > offset + len); 3665 3666 end = start + frag_iter->len; 3667 copy = end - offset; 3668 if (copy > 0) { 3669 copy = min(copy, len); 3670 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3671 len -= copy; 3672 if (len == 0) 3673 return crc; 3674 offset += copy; 3675 } 3676 start = end; 3677 } 3678 BUG_ON(len); 3679 3680 return crc; 3681 } 3682 EXPORT_SYMBOL(skb_crc32c); 3683 #endif /* CONFIG_NET_CRC32C */ 3684 3685 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3686 { 3687 __sum16 sum; 3688 3689 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3690 /* See comments in __skb_checksum_complete(). */ 3691 if (likely(!sum)) { 3692 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3693 !skb->csum_complete_sw) 3694 netdev_rx_csum_fault(skb->dev, skb); 3695 } 3696 if (!skb_shared(skb)) 3697 skb->csum_valid = !sum; 3698 return sum; 3699 } 3700 EXPORT_SYMBOL(__skb_checksum_complete_head); 3701 3702 /* This function assumes skb->csum already holds pseudo header's checksum, 3703 * which has been changed from the hardware checksum, for example, by 3704 * __skb_checksum_validate_complete(). And, the original skb->csum must 3705 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3706 * 3707 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3708 * zero. The new checksum is stored back into skb->csum unless the skb is 3709 * shared. 3710 */ 3711 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3712 { 3713 __wsum csum; 3714 __sum16 sum; 3715 3716 csum = skb_checksum(skb, 0, skb->len, 0); 3717 3718 sum = csum_fold(csum_add(skb->csum, csum)); 3719 /* This check is inverted, because we already knew the hardware 3720 * checksum is invalid before calling this function. So, if the 3721 * re-computed checksum is valid instead, then we have a mismatch 3722 * between the original skb->csum and skb_checksum(). This means either 3723 * the original hardware checksum is incorrect or we screw up skb->csum 3724 * when moving skb->data around. 3725 */ 3726 if (likely(!sum)) { 3727 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3728 !skb->csum_complete_sw) 3729 netdev_rx_csum_fault(skb->dev, skb); 3730 } 3731 3732 if (!skb_shared(skb)) { 3733 /* Save full packet checksum */ 3734 skb->csum = csum; 3735 skb->ip_summed = CHECKSUM_COMPLETE; 3736 skb->csum_complete_sw = 1; 3737 skb->csum_valid = !sum; 3738 } 3739 3740 return sum; 3741 } 3742 EXPORT_SYMBOL(__skb_checksum_complete); 3743 3744 /** 3745 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3746 * @from: source buffer 3747 * 3748 * Calculates the amount of linear headroom needed in the 'to' skb passed 3749 * into skb_zerocopy(). 3750 */ 3751 unsigned int 3752 skb_zerocopy_headlen(const struct sk_buff *from) 3753 { 3754 unsigned int hlen = 0; 3755 3756 if (!from->head_frag || 3757 skb_headlen(from) < L1_CACHE_BYTES || 3758 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3759 hlen = skb_headlen(from); 3760 if (!hlen) 3761 hlen = from->len; 3762 } 3763 3764 if (skb_has_frag_list(from)) 3765 hlen = from->len; 3766 3767 return hlen; 3768 } 3769 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3770 3771 /** 3772 * skb_zerocopy - Zero copy skb to skb 3773 * @to: destination buffer 3774 * @from: source buffer 3775 * @len: number of bytes to copy from source buffer 3776 * @hlen: size of linear headroom in destination buffer 3777 * 3778 * Copies up to `len` bytes from `from` to `to` by creating references 3779 * to the frags in the source buffer. 3780 * 3781 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3782 * headroom in the `to` buffer. 3783 * 3784 * Return value: 3785 * 0: everything is OK 3786 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3787 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3788 */ 3789 int 3790 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3791 { 3792 int i, j = 0; 3793 int plen = 0; /* length of skb->head fragment */ 3794 int ret; 3795 struct page *page; 3796 unsigned int offset; 3797 3798 BUG_ON(!from->head_frag && !hlen); 3799 3800 /* dont bother with small payloads */ 3801 if (len <= skb_tailroom(to)) 3802 return skb_copy_bits(from, 0, skb_put(to, len), len); 3803 3804 if (hlen) { 3805 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3806 if (unlikely(ret)) 3807 return ret; 3808 len -= hlen; 3809 } else { 3810 plen = min_t(int, skb_headlen(from), len); 3811 if (plen) { 3812 page = virt_to_head_page(from->head); 3813 offset = from->data - (unsigned char *)page_address(page); 3814 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3815 offset, plen); 3816 get_page(page); 3817 j = 1; 3818 len -= plen; 3819 } 3820 } 3821 3822 skb_len_add(to, len + plen); 3823 3824 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3825 skb_tx_error(from); 3826 return -ENOMEM; 3827 } 3828 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3829 3830 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3831 int size; 3832 3833 if (!len) 3834 break; 3835 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3836 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3837 len); 3838 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3839 len -= size; 3840 skb_frag_ref(to, j); 3841 j++; 3842 } 3843 skb_shinfo(to)->nr_frags = j; 3844 3845 return 0; 3846 } 3847 EXPORT_SYMBOL_GPL(skb_zerocopy); 3848 3849 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3850 { 3851 __wsum csum; 3852 long csstart; 3853 3854 if (skb->ip_summed == CHECKSUM_PARTIAL) 3855 csstart = skb_checksum_start_offset(skb); 3856 else 3857 csstart = skb_headlen(skb); 3858 3859 BUG_ON(csstart > skb_headlen(skb)); 3860 3861 skb_copy_from_linear_data(skb, to, csstart); 3862 3863 csum = 0; 3864 if (csstart != skb->len) 3865 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3866 skb->len - csstart); 3867 3868 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3869 long csstuff = csstart + skb->csum_offset; 3870 3871 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3872 } 3873 } 3874 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3875 3876 /** 3877 * skb_dequeue - remove from the head of the queue 3878 * @list: list to dequeue from 3879 * 3880 * Remove the head of the list. The list lock is taken so the function 3881 * may be used safely with other locking list functions. The head item is 3882 * returned or %NULL if the list is empty. 3883 */ 3884 3885 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3886 { 3887 unsigned long flags; 3888 struct sk_buff *result; 3889 3890 spin_lock_irqsave(&list->lock, flags); 3891 result = __skb_dequeue(list); 3892 spin_unlock_irqrestore(&list->lock, flags); 3893 return result; 3894 } 3895 EXPORT_SYMBOL(skb_dequeue); 3896 3897 /** 3898 * skb_dequeue_tail - remove from the tail of the queue 3899 * @list: list to dequeue from 3900 * 3901 * Remove the tail of the list. The list lock is taken so the function 3902 * may be used safely with other locking list functions. The tail item is 3903 * returned or %NULL if the list is empty. 3904 */ 3905 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3906 { 3907 unsigned long flags; 3908 struct sk_buff *result; 3909 3910 spin_lock_irqsave(&list->lock, flags); 3911 result = __skb_dequeue_tail(list); 3912 spin_unlock_irqrestore(&list->lock, flags); 3913 return result; 3914 } 3915 EXPORT_SYMBOL(skb_dequeue_tail); 3916 3917 /** 3918 * skb_queue_purge_reason - empty a list 3919 * @list: list to empty 3920 * @reason: drop reason 3921 * 3922 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3923 * the list and one reference dropped. This function takes the list 3924 * lock and is atomic with respect to other list locking functions. 3925 */ 3926 void skb_queue_purge_reason(struct sk_buff_head *list, 3927 enum skb_drop_reason reason) 3928 { 3929 struct sk_buff_head tmp; 3930 unsigned long flags; 3931 3932 if (skb_queue_empty_lockless(list)) 3933 return; 3934 3935 __skb_queue_head_init(&tmp); 3936 3937 spin_lock_irqsave(&list->lock, flags); 3938 skb_queue_splice_init(list, &tmp); 3939 spin_unlock_irqrestore(&list->lock, flags); 3940 3941 __skb_queue_purge_reason(&tmp, reason); 3942 } 3943 EXPORT_SYMBOL(skb_queue_purge_reason); 3944 3945 /** 3946 * skb_rbtree_purge - empty a skb rbtree 3947 * @root: root of the rbtree to empty 3948 * Return value: the sum of truesizes of all purged skbs. 3949 * 3950 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3951 * the list and one reference dropped. This function does not take 3952 * any lock. Synchronization should be handled by the caller (e.g., TCP 3953 * out-of-order queue is protected by the socket lock). 3954 */ 3955 unsigned int skb_rbtree_purge(struct rb_root *root) 3956 { 3957 struct rb_node *p = rb_first(root); 3958 unsigned int sum = 0; 3959 3960 while (p) { 3961 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3962 3963 p = rb_next(p); 3964 rb_erase(&skb->rbnode, root); 3965 sum += skb->truesize; 3966 kfree_skb(skb); 3967 } 3968 return sum; 3969 } 3970 3971 void skb_errqueue_purge(struct sk_buff_head *list) 3972 { 3973 struct sk_buff *skb, *next; 3974 struct sk_buff_head kill; 3975 unsigned long flags; 3976 3977 __skb_queue_head_init(&kill); 3978 3979 spin_lock_irqsave(&list->lock, flags); 3980 skb_queue_walk_safe(list, skb, next) { 3981 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3982 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3983 continue; 3984 __skb_unlink(skb, list); 3985 __skb_queue_tail(&kill, skb); 3986 } 3987 spin_unlock_irqrestore(&list->lock, flags); 3988 __skb_queue_purge(&kill); 3989 } 3990 EXPORT_SYMBOL(skb_errqueue_purge); 3991 3992 /** 3993 * skb_queue_head - queue a buffer at the list head 3994 * @list: list to use 3995 * @newsk: buffer to queue 3996 * 3997 * Queue a buffer at the start of the list. This function takes the 3998 * list lock and can be used safely with other locking &sk_buff functions 3999 * safely. 4000 * 4001 * A buffer cannot be placed on two lists at the same time. 4002 */ 4003 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4004 { 4005 unsigned long flags; 4006 4007 spin_lock_irqsave(&list->lock, flags); 4008 __skb_queue_head(list, newsk); 4009 spin_unlock_irqrestore(&list->lock, flags); 4010 } 4011 EXPORT_SYMBOL(skb_queue_head); 4012 4013 /** 4014 * skb_queue_tail - queue a buffer at the list tail 4015 * @list: list to use 4016 * @newsk: buffer to queue 4017 * 4018 * Queue a buffer at the tail of the list. This function takes the 4019 * list lock and can be used safely with other locking &sk_buff functions 4020 * safely. 4021 * 4022 * A buffer cannot be placed on two lists at the same time. 4023 */ 4024 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4025 { 4026 unsigned long flags; 4027 4028 spin_lock_irqsave(&list->lock, flags); 4029 __skb_queue_tail(list, newsk); 4030 spin_unlock_irqrestore(&list->lock, flags); 4031 } 4032 EXPORT_SYMBOL(skb_queue_tail); 4033 4034 /** 4035 * skb_unlink - remove a buffer from a list 4036 * @skb: buffer to remove 4037 * @list: list to use 4038 * 4039 * Remove a packet from a list. The list locks are taken and this 4040 * function is atomic with respect to other list locked calls 4041 * 4042 * You must know what list the SKB is on. 4043 */ 4044 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4045 { 4046 unsigned long flags; 4047 4048 spin_lock_irqsave(&list->lock, flags); 4049 __skb_unlink(skb, list); 4050 spin_unlock_irqrestore(&list->lock, flags); 4051 } 4052 EXPORT_SYMBOL(skb_unlink); 4053 4054 /** 4055 * skb_append - append a buffer 4056 * @old: buffer to insert after 4057 * @newsk: buffer to insert 4058 * @list: list to use 4059 * 4060 * Place a packet after a given packet in a list. The list locks are taken 4061 * and this function is atomic with respect to other list locked calls. 4062 * A buffer cannot be placed on two lists at the same time. 4063 */ 4064 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4065 { 4066 unsigned long flags; 4067 4068 spin_lock_irqsave(&list->lock, flags); 4069 __skb_queue_after(list, old, newsk); 4070 spin_unlock_irqrestore(&list->lock, flags); 4071 } 4072 EXPORT_SYMBOL(skb_append); 4073 4074 static inline void skb_split_inside_header(struct sk_buff *skb, 4075 struct sk_buff* skb1, 4076 const u32 len, const int pos) 4077 { 4078 int i; 4079 4080 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4081 pos - len); 4082 /* And move data appendix as is. */ 4083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4084 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4085 4086 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4087 skb1->unreadable = skb->unreadable; 4088 skb_shinfo(skb)->nr_frags = 0; 4089 skb1->data_len = skb->data_len; 4090 skb1->len += skb1->data_len; 4091 skb->data_len = 0; 4092 skb->len = len; 4093 skb_set_tail_pointer(skb, len); 4094 } 4095 4096 static inline void skb_split_no_header(struct sk_buff *skb, 4097 struct sk_buff* skb1, 4098 const u32 len, int pos) 4099 { 4100 int i, k = 0; 4101 const int nfrags = skb_shinfo(skb)->nr_frags; 4102 4103 skb_shinfo(skb)->nr_frags = 0; 4104 skb1->len = skb1->data_len = skb->len - len; 4105 skb->len = len; 4106 skb->data_len = len - pos; 4107 4108 for (i = 0; i < nfrags; i++) { 4109 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4110 4111 if (pos + size > len) { 4112 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4113 4114 if (pos < len) { 4115 /* Split frag. 4116 * We have two variants in this case: 4117 * 1. Move all the frag to the second 4118 * part, if it is possible. F.e. 4119 * this approach is mandatory for TUX, 4120 * where splitting is expensive. 4121 * 2. Split is accurately. We make this. 4122 */ 4123 skb_frag_ref(skb, i); 4124 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4125 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4126 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4127 skb_shinfo(skb)->nr_frags++; 4128 } 4129 k++; 4130 } else 4131 skb_shinfo(skb)->nr_frags++; 4132 pos += size; 4133 } 4134 skb_shinfo(skb1)->nr_frags = k; 4135 4136 skb1->unreadable = skb->unreadable; 4137 } 4138 4139 /** 4140 * skb_split - Split fragmented skb to two parts at length len. 4141 * @skb: the buffer to split 4142 * @skb1: the buffer to receive the second part 4143 * @len: new length for skb 4144 */ 4145 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4146 { 4147 int pos = skb_headlen(skb); 4148 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4149 4150 skb_zcopy_downgrade_managed(skb); 4151 4152 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4153 skb_zerocopy_clone(skb1, skb, 0); 4154 if (len < pos) /* Split line is inside header. */ 4155 skb_split_inside_header(skb, skb1, len, pos); 4156 else /* Second chunk has no header, nothing to copy. */ 4157 skb_split_no_header(skb, skb1, len, pos); 4158 } 4159 EXPORT_SYMBOL(skb_split); 4160 4161 /* Shifting from/to a cloned skb is a no-go. 4162 * 4163 * Caller cannot keep skb_shinfo related pointers past calling here! 4164 */ 4165 static int skb_prepare_for_shift(struct sk_buff *skb) 4166 { 4167 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4168 } 4169 4170 /** 4171 * skb_shift - Shifts paged data partially from skb to another 4172 * @tgt: buffer into which tail data gets added 4173 * @skb: buffer from which the paged data comes from 4174 * @shiftlen: shift up to this many bytes 4175 * 4176 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4177 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4178 * It's up to caller to free skb if everything was shifted. 4179 * 4180 * If @tgt runs out of frags, the whole operation is aborted. 4181 * 4182 * Skb cannot include anything else but paged data while tgt is allowed 4183 * to have non-paged data as well. 4184 * 4185 * TODO: full sized shift could be optimized but that would need 4186 * specialized skb free'er to handle frags without up-to-date nr_frags. 4187 */ 4188 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4189 { 4190 int from, to, merge, todo; 4191 skb_frag_t *fragfrom, *fragto; 4192 4193 BUG_ON(shiftlen > skb->len); 4194 4195 if (skb_headlen(skb)) 4196 return 0; 4197 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4198 return 0; 4199 4200 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4201 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4202 4203 todo = shiftlen; 4204 from = 0; 4205 to = skb_shinfo(tgt)->nr_frags; 4206 fragfrom = &skb_shinfo(skb)->frags[from]; 4207 4208 /* Actual merge is delayed until the point when we know we can 4209 * commit all, so that we don't have to undo partial changes 4210 */ 4211 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4212 skb_frag_off(fragfrom))) { 4213 merge = -1; 4214 } else { 4215 merge = to - 1; 4216 4217 todo -= skb_frag_size(fragfrom); 4218 if (todo < 0) { 4219 if (skb_prepare_for_shift(skb) || 4220 skb_prepare_for_shift(tgt)) 4221 return 0; 4222 4223 /* All previous frag pointers might be stale! */ 4224 fragfrom = &skb_shinfo(skb)->frags[from]; 4225 fragto = &skb_shinfo(tgt)->frags[merge]; 4226 4227 skb_frag_size_add(fragto, shiftlen); 4228 skb_frag_size_sub(fragfrom, shiftlen); 4229 skb_frag_off_add(fragfrom, shiftlen); 4230 4231 goto onlymerged; 4232 } 4233 4234 from++; 4235 } 4236 4237 /* Skip full, not-fitting skb to avoid expensive operations */ 4238 if ((shiftlen == skb->len) && 4239 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4240 return 0; 4241 4242 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4243 return 0; 4244 4245 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4246 if (to == MAX_SKB_FRAGS) 4247 return 0; 4248 4249 fragfrom = &skb_shinfo(skb)->frags[from]; 4250 fragto = &skb_shinfo(tgt)->frags[to]; 4251 4252 if (todo >= skb_frag_size(fragfrom)) { 4253 *fragto = *fragfrom; 4254 todo -= skb_frag_size(fragfrom); 4255 from++; 4256 to++; 4257 4258 } else { 4259 __skb_frag_ref(fragfrom); 4260 skb_frag_page_copy(fragto, fragfrom); 4261 skb_frag_off_copy(fragto, fragfrom); 4262 skb_frag_size_set(fragto, todo); 4263 4264 skb_frag_off_add(fragfrom, todo); 4265 skb_frag_size_sub(fragfrom, todo); 4266 todo = 0; 4267 4268 to++; 4269 break; 4270 } 4271 } 4272 4273 /* Ready to "commit" this state change to tgt */ 4274 skb_shinfo(tgt)->nr_frags = to; 4275 4276 if (merge >= 0) { 4277 fragfrom = &skb_shinfo(skb)->frags[0]; 4278 fragto = &skb_shinfo(tgt)->frags[merge]; 4279 4280 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4281 __skb_frag_unref(fragfrom, skb->pp_recycle); 4282 } 4283 4284 /* Reposition in the original skb */ 4285 to = 0; 4286 while (from < skb_shinfo(skb)->nr_frags) 4287 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4288 skb_shinfo(skb)->nr_frags = to; 4289 4290 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4291 4292 onlymerged: 4293 /* Most likely the tgt won't ever need its checksum anymore, skb on 4294 * the other hand might need it if it needs to be resent 4295 */ 4296 tgt->ip_summed = CHECKSUM_PARTIAL; 4297 skb->ip_summed = CHECKSUM_PARTIAL; 4298 4299 skb_len_add(skb, -shiftlen); 4300 skb_len_add(tgt, shiftlen); 4301 4302 return shiftlen; 4303 } 4304 4305 /** 4306 * skb_prepare_seq_read - Prepare a sequential read of skb data 4307 * @skb: the buffer to read 4308 * @from: lower offset of data to be read 4309 * @to: upper offset of data to be read 4310 * @st: state variable 4311 * 4312 * Initializes the specified state variable. Must be called before 4313 * invoking skb_seq_read() for the first time. 4314 */ 4315 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4316 unsigned int to, struct skb_seq_state *st) 4317 { 4318 st->lower_offset = from; 4319 st->upper_offset = to; 4320 st->root_skb = st->cur_skb = skb; 4321 st->frag_idx = st->stepped_offset = 0; 4322 st->frag_data = NULL; 4323 st->frag_off = 0; 4324 } 4325 EXPORT_SYMBOL(skb_prepare_seq_read); 4326 4327 /** 4328 * skb_seq_read - Sequentially read skb data 4329 * @consumed: number of bytes consumed by the caller so far 4330 * @data: destination pointer for data to be returned 4331 * @st: state variable 4332 * 4333 * Reads a block of skb data at @consumed relative to the 4334 * lower offset specified to skb_prepare_seq_read(). Assigns 4335 * the head of the data block to @data and returns the length 4336 * of the block or 0 if the end of the skb data or the upper 4337 * offset has been reached. 4338 * 4339 * The caller is not required to consume all of the data 4340 * returned, i.e. @consumed is typically set to the number 4341 * of bytes already consumed and the next call to 4342 * skb_seq_read() will return the remaining part of the block. 4343 * 4344 * Note 1: The size of each block of data returned can be arbitrary, 4345 * this limitation is the cost for zerocopy sequential 4346 * reads of potentially non linear data. 4347 * 4348 * Note 2: Fragment lists within fragments are not implemented 4349 * at the moment, state->root_skb could be replaced with 4350 * a stack for this purpose. 4351 */ 4352 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4353 struct skb_seq_state *st) 4354 { 4355 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4356 skb_frag_t *frag; 4357 4358 if (unlikely(abs_offset >= st->upper_offset)) { 4359 if (st->frag_data) { 4360 kunmap_atomic(st->frag_data); 4361 st->frag_data = NULL; 4362 } 4363 return 0; 4364 } 4365 4366 next_skb: 4367 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4368 4369 if (abs_offset < block_limit && !st->frag_data) { 4370 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4371 return block_limit - abs_offset; 4372 } 4373 4374 if (!skb_frags_readable(st->cur_skb)) 4375 return 0; 4376 4377 if (st->frag_idx == 0 && !st->frag_data) 4378 st->stepped_offset += skb_headlen(st->cur_skb); 4379 4380 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4381 unsigned int pg_idx, pg_off, pg_sz; 4382 4383 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4384 4385 pg_idx = 0; 4386 pg_off = skb_frag_off(frag); 4387 pg_sz = skb_frag_size(frag); 4388 4389 if (skb_frag_must_loop(skb_frag_page(frag))) { 4390 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4391 pg_off = offset_in_page(pg_off + st->frag_off); 4392 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4393 PAGE_SIZE - pg_off); 4394 } 4395 4396 block_limit = pg_sz + st->stepped_offset; 4397 if (abs_offset < block_limit) { 4398 if (!st->frag_data) 4399 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4400 4401 *data = (u8 *)st->frag_data + pg_off + 4402 (abs_offset - st->stepped_offset); 4403 4404 return block_limit - abs_offset; 4405 } 4406 4407 if (st->frag_data) { 4408 kunmap_atomic(st->frag_data); 4409 st->frag_data = NULL; 4410 } 4411 4412 st->stepped_offset += pg_sz; 4413 st->frag_off += pg_sz; 4414 if (st->frag_off == skb_frag_size(frag)) { 4415 st->frag_off = 0; 4416 st->frag_idx++; 4417 } 4418 } 4419 4420 if (st->frag_data) { 4421 kunmap_atomic(st->frag_data); 4422 st->frag_data = NULL; 4423 } 4424 4425 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4426 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4427 st->frag_idx = 0; 4428 goto next_skb; 4429 } else if (st->cur_skb->next) { 4430 st->cur_skb = st->cur_skb->next; 4431 st->frag_idx = 0; 4432 goto next_skb; 4433 } 4434 4435 return 0; 4436 } 4437 EXPORT_SYMBOL(skb_seq_read); 4438 4439 /** 4440 * skb_abort_seq_read - Abort a sequential read of skb data 4441 * @st: state variable 4442 * 4443 * Must be called if skb_seq_read() was not called until it 4444 * returned 0. 4445 */ 4446 void skb_abort_seq_read(struct skb_seq_state *st) 4447 { 4448 if (st->frag_data) 4449 kunmap_atomic(st->frag_data); 4450 } 4451 EXPORT_SYMBOL(skb_abort_seq_read); 4452 4453 /** 4454 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4455 * @st: source skb_seq_state 4456 * @offset: offset in source 4457 * @to: destination buffer 4458 * @len: number of bytes to copy 4459 * 4460 * Copy @len bytes from @offset bytes into the source @st to the destination 4461 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4462 * call to this function. If offset needs to decrease from the previous use `st` 4463 * should be reset first. 4464 * 4465 * Return: 0 on success or -EINVAL if the copy ended early 4466 */ 4467 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4468 { 4469 const u8 *data; 4470 u32 sqlen; 4471 4472 for (;;) { 4473 sqlen = skb_seq_read(offset, &data, st); 4474 if (sqlen == 0) 4475 return -EINVAL; 4476 if (sqlen >= len) { 4477 memcpy(to, data, len); 4478 return 0; 4479 } 4480 memcpy(to, data, sqlen); 4481 to += sqlen; 4482 offset += sqlen; 4483 len -= sqlen; 4484 } 4485 } 4486 EXPORT_SYMBOL(skb_copy_seq_read); 4487 4488 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4489 4490 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4491 struct ts_config *conf, 4492 struct ts_state *state) 4493 { 4494 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4495 } 4496 4497 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4498 { 4499 skb_abort_seq_read(TS_SKB_CB(state)); 4500 } 4501 4502 /** 4503 * skb_find_text - Find a text pattern in skb data 4504 * @skb: the buffer to look in 4505 * @from: search offset 4506 * @to: search limit 4507 * @config: textsearch configuration 4508 * 4509 * Finds a pattern in the skb data according to the specified 4510 * textsearch configuration. Use textsearch_next() to retrieve 4511 * subsequent occurrences of the pattern. Returns the offset 4512 * to the first occurrence or UINT_MAX if no match was found. 4513 */ 4514 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4515 unsigned int to, struct ts_config *config) 4516 { 4517 unsigned int patlen = config->ops->get_pattern_len(config); 4518 struct ts_state state; 4519 unsigned int ret; 4520 4521 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4522 4523 config->get_next_block = skb_ts_get_next_block; 4524 config->finish = skb_ts_finish; 4525 4526 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4527 4528 ret = textsearch_find(config, &state); 4529 return (ret + patlen <= to - from ? ret : UINT_MAX); 4530 } 4531 EXPORT_SYMBOL(skb_find_text); 4532 4533 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4534 int offset, size_t size, size_t max_frags) 4535 { 4536 int i = skb_shinfo(skb)->nr_frags; 4537 4538 if (skb_can_coalesce(skb, i, page, offset)) { 4539 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4540 } else if (i < max_frags) { 4541 skb_zcopy_downgrade_managed(skb); 4542 get_page(page); 4543 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4544 } else { 4545 return -EMSGSIZE; 4546 } 4547 4548 return 0; 4549 } 4550 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4551 4552 /** 4553 * skb_pull_rcsum - pull skb and update receive checksum 4554 * @skb: buffer to update 4555 * @len: length of data pulled 4556 * 4557 * This function performs an skb_pull on the packet and updates 4558 * the CHECKSUM_COMPLETE checksum. It should be used on 4559 * receive path processing instead of skb_pull unless you know 4560 * that the checksum difference is zero (e.g., a valid IP header) 4561 * or you are setting ip_summed to CHECKSUM_NONE. 4562 */ 4563 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4564 { 4565 unsigned char *data = skb->data; 4566 4567 BUG_ON(len > skb->len); 4568 __skb_pull(skb, len); 4569 skb_postpull_rcsum(skb, data, len); 4570 return skb->data; 4571 } 4572 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4573 4574 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4575 { 4576 skb_frag_t head_frag; 4577 struct page *page; 4578 4579 page = virt_to_head_page(frag_skb->head); 4580 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4581 (unsigned char *)page_address(page), 4582 skb_headlen(frag_skb)); 4583 return head_frag; 4584 } 4585 4586 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4587 netdev_features_t features, 4588 unsigned int offset) 4589 { 4590 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4591 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4592 unsigned int delta_truesize = 0; 4593 unsigned int delta_len = 0; 4594 struct sk_buff *tail = NULL; 4595 struct sk_buff *nskb, *tmp; 4596 int len_diff, err; 4597 4598 skb_push(skb, -skb_network_offset(skb) + offset); 4599 4600 /* Ensure the head is writeable before touching the shared info */ 4601 err = skb_unclone(skb, GFP_ATOMIC); 4602 if (err) 4603 goto err_linearize; 4604 4605 skb_shinfo(skb)->frag_list = NULL; 4606 4607 while (list_skb) { 4608 nskb = list_skb; 4609 list_skb = list_skb->next; 4610 4611 err = 0; 4612 delta_truesize += nskb->truesize; 4613 if (skb_shared(nskb)) { 4614 tmp = skb_clone(nskb, GFP_ATOMIC); 4615 if (tmp) { 4616 consume_skb(nskb); 4617 nskb = tmp; 4618 err = skb_unclone(nskb, GFP_ATOMIC); 4619 } else { 4620 err = -ENOMEM; 4621 } 4622 } 4623 4624 if (!tail) 4625 skb->next = nskb; 4626 else 4627 tail->next = nskb; 4628 4629 if (unlikely(err)) { 4630 nskb->next = list_skb; 4631 goto err_linearize; 4632 } 4633 4634 tail = nskb; 4635 4636 delta_len += nskb->len; 4637 4638 skb_push(nskb, -skb_network_offset(nskb) + offset); 4639 4640 skb_release_head_state(nskb); 4641 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4642 __copy_skb_header(nskb, skb); 4643 4644 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4645 nskb->transport_header += len_diff; 4646 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4647 nskb->data - tnl_hlen, 4648 offset + tnl_hlen); 4649 4650 if (skb_needs_linearize(nskb, features) && 4651 __skb_linearize(nskb)) 4652 goto err_linearize; 4653 } 4654 4655 skb->truesize = skb->truesize - delta_truesize; 4656 skb->data_len = skb->data_len - delta_len; 4657 skb->len = skb->len - delta_len; 4658 4659 skb_gso_reset(skb); 4660 4661 skb->prev = tail; 4662 4663 if (skb_needs_linearize(skb, features) && 4664 __skb_linearize(skb)) 4665 goto err_linearize; 4666 4667 skb_get(skb); 4668 4669 return skb; 4670 4671 err_linearize: 4672 kfree_skb_list(skb->next); 4673 skb->next = NULL; 4674 return ERR_PTR(-ENOMEM); 4675 } 4676 EXPORT_SYMBOL_GPL(skb_segment_list); 4677 4678 /** 4679 * skb_segment - Perform protocol segmentation on skb. 4680 * @head_skb: buffer to segment 4681 * @features: features for the output path (see dev->features) 4682 * 4683 * This function performs segmentation on the given skb. It returns 4684 * a pointer to the first in a list of new skbs for the segments. 4685 * In case of error it returns ERR_PTR(err). 4686 */ 4687 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4688 netdev_features_t features) 4689 { 4690 struct sk_buff *segs = NULL; 4691 struct sk_buff *tail = NULL; 4692 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4693 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4694 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4695 unsigned int offset = doffset; 4696 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4697 unsigned int partial_segs = 0; 4698 unsigned int headroom; 4699 unsigned int len = head_skb->len; 4700 struct sk_buff *frag_skb; 4701 skb_frag_t *frag; 4702 __be16 proto; 4703 bool csum, sg; 4704 int err = -ENOMEM; 4705 int i = 0; 4706 int nfrags, pos; 4707 4708 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4709 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4710 struct sk_buff *check_skb; 4711 4712 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4713 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4714 /* gso_size is untrusted, and we have a frag_list with 4715 * a linear non head_frag item. 4716 * 4717 * If head_skb's headlen does not fit requested gso_size, 4718 * it means that the frag_list members do NOT terminate 4719 * on exact gso_size boundaries. Hence we cannot perform 4720 * skb_frag_t page sharing. Therefore we must fallback to 4721 * copying the frag_list skbs; we do so by disabling SG. 4722 */ 4723 features &= ~NETIF_F_SG; 4724 break; 4725 } 4726 } 4727 } 4728 4729 __skb_push(head_skb, doffset); 4730 proto = skb_network_protocol(head_skb, NULL); 4731 if (unlikely(!proto)) 4732 return ERR_PTR(-EINVAL); 4733 4734 sg = !!(features & NETIF_F_SG); 4735 csum = !!can_checksum_protocol(features, proto); 4736 4737 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4738 if (!(features & NETIF_F_GSO_PARTIAL)) { 4739 struct sk_buff *iter; 4740 unsigned int frag_len; 4741 4742 if (!list_skb || 4743 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4744 goto normal; 4745 4746 /* If we get here then all the required 4747 * GSO features except frag_list are supported. 4748 * Try to split the SKB to multiple GSO SKBs 4749 * with no frag_list. 4750 * Currently we can do that only when the buffers don't 4751 * have a linear part and all the buffers except 4752 * the last are of the same length. 4753 */ 4754 frag_len = list_skb->len; 4755 skb_walk_frags(head_skb, iter) { 4756 if (frag_len != iter->len && iter->next) 4757 goto normal; 4758 if (skb_headlen(iter) && !iter->head_frag) 4759 goto normal; 4760 4761 len -= iter->len; 4762 } 4763 4764 if (len != frag_len) 4765 goto normal; 4766 } 4767 4768 /* GSO partial only requires that we trim off any excess that 4769 * doesn't fit into an MSS sized block, so take care of that 4770 * now. 4771 * Cap len to not accidentally hit GSO_BY_FRAGS. 4772 */ 4773 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4774 if (partial_segs > 1) 4775 mss *= partial_segs; 4776 else 4777 partial_segs = 0; 4778 } 4779 4780 normal: 4781 headroom = skb_headroom(head_skb); 4782 pos = skb_headlen(head_skb); 4783 4784 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4785 return ERR_PTR(-ENOMEM); 4786 4787 nfrags = skb_shinfo(head_skb)->nr_frags; 4788 frag = skb_shinfo(head_skb)->frags; 4789 frag_skb = head_skb; 4790 4791 do { 4792 struct sk_buff *nskb; 4793 skb_frag_t *nskb_frag; 4794 int hsize; 4795 int size; 4796 4797 if (unlikely(mss == GSO_BY_FRAGS)) { 4798 len = list_skb->len; 4799 } else { 4800 len = head_skb->len - offset; 4801 if (len > mss) 4802 len = mss; 4803 } 4804 4805 hsize = skb_headlen(head_skb) - offset; 4806 4807 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4808 (skb_headlen(list_skb) == len || sg)) { 4809 BUG_ON(skb_headlen(list_skb) > len); 4810 4811 nskb = skb_clone(list_skb, GFP_ATOMIC); 4812 if (unlikely(!nskb)) 4813 goto err; 4814 4815 i = 0; 4816 nfrags = skb_shinfo(list_skb)->nr_frags; 4817 frag = skb_shinfo(list_skb)->frags; 4818 frag_skb = list_skb; 4819 pos += skb_headlen(list_skb); 4820 4821 while (pos < offset + len) { 4822 BUG_ON(i >= nfrags); 4823 4824 size = skb_frag_size(frag); 4825 if (pos + size > offset + len) 4826 break; 4827 4828 i++; 4829 pos += size; 4830 frag++; 4831 } 4832 4833 list_skb = list_skb->next; 4834 4835 if (unlikely(pskb_trim(nskb, len))) { 4836 kfree_skb(nskb); 4837 goto err; 4838 } 4839 4840 hsize = skb_end_offset(nskb); 4841 if (skb_cow_head(nskb, doffset + headroom)) { 4842 kfree_skb(nskb); 4843 goto err; 4844 } 4845 4846 nskb->truesize += skb_end_offset(nskb) - hsize; 4847 skb_release_head_state(nskb); 4848 __skb_push(nskb, doffset); 4849 } else { 4850 if (hsize < 0) 4851 hsize = 0; 4852 if (hsize > len || !sg) 4853 hsize = len; 4854 4855 nskb = __alloc_skb(hsize + doffset + headroom, 4856 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4857 NUMA_NO_NODE); 4858 4859 if (unlikely(!nskb)) 4860 goto err; 4861 4862 skb_reserve(nskb, headroom); 4863 __skb_put(nskb, doffset); 4864 } 4865 4866 if (segs) 4867 tail->next = nskb; 4868 else 4869 segs = nskb; 4870 tail = nskb; 4871 4872 __copy_skb_header(nskb, head_skb); 4873 4874 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4875 skb_reset_mac_len(nskb); 4876 4877 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4878 nskb->data - tnl_hlen, 4879 doffset + tnl_hlen); 4880 4881 if (nskb->len == len + doffset) 4882 goto perform_csum_check; 4883 4884 if (!sg) { 4885 if (!csum) { 4886 if (!nskb->remcsum_offload) 4887 nskb->ip_summed = CHECKSUM_NONE; 4888 SKB_GSO_CB(nskb)->csum = 4889 skb_copy_and_csum_bits(head_skb, offset, 4890 skb_put(nskb, 4891 len), 4892 len); 4893 SKB_GSO_CB(nskb)->csum_start = 4894 skb_headroom(nskb) + doffset; 4895 } else { 4896 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4897 goto err; 4898 } 4899 continue; 4900 } 4901 4902 nskb_frag = skb_shinfo(nskb)->frags; 4903 4904 skb_copy_from_linear_data_offset(head_skb, offset, 4905 skb_put(nskb, hsize), hsize); 4906 4907 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4908 SKBFL_SHARED_FRAG; 4909 4910 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4911 goto err; 4912 4913 while (pos < offset + len) { 4914 if (i >= nfrags) { 4915 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4916 skb_zerocopy_clone(nskb, list_skb, 4917 GFP_ATOMIC)) 4918 goto err; 4919 4920 i = 0; 4921 nfrags = skb_shinfo(list_skb)->nr_frags; 4922 frag = skb_shinfo(list_skb)->frags; 4923 frag_skb = list_skb; 4924 if (!skb_headlen(list_skb)) { 4925 BUG_ON(!nfrags); 4926 } else { 4927 BUG_ON(!list_skb->head_frag); 4928 4929 /* to make room for head_frag. */ 4930 i--; 4931 frag--; 4932 } 4933 4934 list_skb = list_skb->next; 4935 } 4936 4937 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4938 MAX_SKB_FRAGS)) { 4939 net_warn_ratelimited( 4940 "skb_segment: too many frags: %u %u\n", 4941 pos, mss); 4942 err = -EINVAL; 4943 goto err; 4944 } 4945 4946 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4947 __skb_frag_ref(nskb_frag); 4948 size = skb_frag_size(nskb_frag); 4949 4950 if (pos < offset) { 4951 skb_frag_off_add(nskb_frag, offset - pos); 4952 skb_frag_size_sub(nskb_frag, offset - pos); 4953 } 4954 4955 skb_shinfo(nskb)->nr_frags++; 4956 4957 if (pos + size <= offset + len) { 4958 i++; 4959 frag++; 4960 pos += size; 4961 } else { 4962 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4963 goto skip_fraglist; 4964 } 4965 4966 nskb_frag++; 4967 } 4968 4969 skip_fraglist: 4970 nskb->data_len = len - hsize; 4971 nskb->len += nskb->data_len; 4972 nskb->truesize += nskb->data_len; 4973 4974 perform_csum_check: 4975 if (!csum) { 4976 if (skb_has_shared_frag(nskb) && 4977 __skb_linearize(nskb)) 4978 goto err; 4979 4980 if (!nskb->remcsum_offload) 4981 nskb->ip_summed = CHECKSUM_NONE; 4982 SKB_GSO_CB(nskb)->csum = 4983 skb_checksum(nskb, doffset, 4984 nskb->len - doffset, 0); 4985 SKB_GSO_CB(nskb)->csum_start = 4986 skb_headroom(nskb) + doffset; 4987 } 4988 } while ((offset += len) < head_skb->len); 4989 4990 /* Some callers want to get the end of the list. 4991 * Put it in segs->prev to avoid walking the list. 4992 * (see validate_xmit_skb_list() for example) 4993 */ 4994 segs->prev = tail; 4995 4996 if (partial_segs) { 4997 struct sk_buff *iter; 4998 int type = skb_shinfo(head_skb)->gso_type; 4999 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5000 5001 /* Update type to add partial and then remove dodgy if set */ 5002 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5003 type &= ~SKB_GSO_DODGY; 5004 5005 /* Update GSO info and prepare to start updating headers on 5006 * our way back down the stack of protocols. 5007 */ 5008 for (iter = segs; iter; iter = iter->next) { 5009 skb_shinfo(iter)->gso_size = gso_size; 5010 skb_shinfo(iter)->gso_segs = partial_segs; 5011 skb_shinfo(iter)->gso_type = type; 5012 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5013 } 5014 5015 if (tail->len - doffset <= gso_size) 5016 skb_shinfo(tail)->gso_size = 0; 5017 else if (tail != segs) 5018 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5019 } 5020 5021 /* Following permits correct backpressure, for protocols 5022 * using skb_set_owner_w(). 5023 * Idea is to tranfert ownership from head_skb to last segment. 5024 */ 5025 if (head_skb->destructor == sock_wfree) { 5026 swap(tail->truesize, head_skb->truesize); 5027 swap(tail->destructor, head_skb->destructor); 5028 swap(tail->sk, head_skb->sk); 5029 } 5030 return segs; 5031 5032 err: 5033 kfree_skb_list(segs); 5034 return ERR_PTR(err); 5035 } 5036 EXPORT_SYMBOL_GPL(skb_segment); 5037 5038 #ifdef CONFIG_SKB_EXTENSIONS 5039 #define SKB_EXT_ALIGN_VALUE 8 5040 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5041 5042 static const u8 skb_ext_type_len[] = { 5043 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5044 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5045 #endif 5046 #ifdef CONFIG_XFRM 5047 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5048 #endif 5049 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5050 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5051 #endif 5052 #if IS_ENABLED(CONFIG_MPTCP) 5053 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5054 #endif 5055 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5056 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5057 #endif 5058 }; 5059 5060 static __always_inline unsigned int skb_ext_total_length(void) 5061 { 5062 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5063 int i; 5064 5065 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5066 l += skb_ext_type_len[i]; 5067 5068 return l; 5069 } 5070 5071 static void skb_extensions_init(void) 5072 { 5073 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5074 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5075 BUILD_BUG_ON(skb_ext_total_length() > 255); 5076 #endif 5077 5078 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5079 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5080 0, 5081 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5082 NULL); 5083 } 5084 #else 5085 static void skb_extensions_init(void) {} 5086 #endif 5087 5088 /* The SKB kmem_cache slab is critical for network performance. Never 5089 * merge/alias the slab with similar sized objects. This avoids fragmentation 5090 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5091 */ 5092 #ifndef CONFIG_SLUB_TINY 5093 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5094 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5095 #define FLAG_SKB_NO_MERGE 0 5096 #endif 5097 5098 void __init skb_init(void) 5099 { 5100 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5101 sizeof(struct sk_buff), 5102 0, 5103 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5104 FLAG_SKB_NO_MERGE, 5105 offsetof(struct sk_buff, cb), 5106 sizeof_field(struct sk_buff, cb), 5107 NULL); 5108 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5109 sizeof(struct sk_buff_fclones), 5110 0, 5111 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5112 NULL); 5113 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5114 * struct skb_shared_info is located at the end of skb->head, 5115 * and should not be copied to/from user. 5116 */ 5117 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5118 SKB_SMALL_HEAD_CACHE_SIZE, 5119 0, 5120 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5121 0, 5122 SKB_SMALL_HEAD_HEADROOM, 5123 NULL); 5124 skb_extensions_init(); 5125 } 5126 5127 static int 5128 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5129 unsigned int recursion_level) 5130 { 5131 int start = skb_headlen(skb); 5132 int i, copy = start - offset; 5133 struct sk_buff *frag_iter; 5134 int elt = 0; 5135 5136 if (unlikely(recursion_level >= 24)) 5137 return -EMSGSIZE; 5138 5139 if (copy > 0) { 5140 if (copy > len) 5141 copy = len; 5142 sg_set_buf(sg, skb->data + offset, copy); 5143 elt++; 5144 if ((len -= copy) == 0) 5145 return elt; 5146 offset += copy; 5147 } 5148 5149 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5150 int end; 5151 5152 WARN_ON(start > offset + len); 5153 5154 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5155 if ((copy = end - offset) > 0) { 5156 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5157 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5158 return -EMSGSIZE; 5159 5160 if (copy > len) 5161 copy = len; 5162 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5163 skb_frag_off(frag) + offset - start); 5164 elt++; 5165 if (!(len -= copy)) 5166 return elt; 5167 offset += copy; 5168 } 5169 start = end; 5170 } 5171 5172 skb_walk_frags(skb, frag_iter) { 5173 int end, ret; 5174 5175 WARN_ON(start > offset + len); 5176 5177 end = start + frag_iter->len; 5178 if ((copy = end - offset) > 0) { 5179 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5180 return -EMSGSIZE; 5181 5182 if (copy > len) 5183 copy = len; 5184 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5185 copy, recursion_level + 1); 5186 if (unlikely(ret < 0)) 5187 return ret; 5188 elt += ret; 5189 if ((len -= copy) == 0) 5190 return elt; 5191 offset += copy; 5192 } 5193 start = end; 5194 } 5195 BUG_ON(len); 5196 return elt; 5197 } 5198 5199 /** 5200 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5201 * @skb: Socket buffer containing the buffers to be mapped 5202 * @sg: The scatter-gather list to map into 5203 * @offset: The offset into the buffer's contents to start mapping 5204 * @len: Length of buffer space to be mapped 5205 * 5206 * Fill the specified scatter-gather list with mappings/pointers into a 5207 * region of the buffer space attached to a socket buffer. Returns either 5208 * the number of scatterlist items used, or -EMSGSIZE if the contents 5209 * could not fit. 5210 */ 5211 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5212 { 5213 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5214 5215 if (nsg <= 0) 5216 return nsg; 5217 5218 sg_mark_end(&sg[nsg - 1]); 5219 5220 return nsg; 5221 } 5222 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5223 5224 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5225 * sglist without mark the sg which contain last skb data as the end. 5226 * So the caller can mannipulate sg list as will when padding new data after 5227 * the first call without calling sg_unmark_end to expend sg list. 5228 * 5229 * Scenario to use skb_to_sgvec_nomark: 5230 * 1. sg_init_table 5231 * 2. skb_to_sgvec_nomark(payload1) 5232 * 3. skb_to_sgvec_nomark(payload2) 5233 * 5234 * This is equivalent to: 5235 * 1. sg_init_table 5236 * 2. skb_to_sgvec(payload1) 5237 * 3. sg_unmark_end 5238 * 4. skb_to_sgvec(payload2) 5239 * 5240 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5241 * is more preferable. 5242 */ 5243 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5244 int offset, int len) 5245 { 5246 return __skb_to_sgvec(skb, sg, offset, len, 0); 5247 } 5248 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5249 5250 5251 5252 /** 5253 * skb_cow_data - Check that a socket buffer's data buffers are writable 5254 * @skb: The socket buffer to check. 5255 * @tailbits: Amount of trailing space to be added 5256 * @trailer: Returned pointer to the skb where the @tailbits space begins 5257 * 5258 * Make sure that the data buffers attached to a socket buffer are 5259 * writable. If they are not, private copies are made of the data buffers 5260 * and the socket buffer is set to use these instead. 5261 * 5262 * If @tailbits is given, make sure that there is space to write @tailbits 5263 * bytes of data beyond current end of socket buffer. @trailer will be 5264 * set to point to the skb in which this space begins. 5265 * 5266 * The number of scatterlist elements required to completely map the 5267 * COW'd and extended socket buffer will be returned. 5268 */ 5269 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5270 { 5271 int copyflag; 5272 int elt; 5273 struct sk_buff *skb1, **skb_p; 5274 5275 /* If skb is cloned or its head is paged, reallocate 5276 * head pulling out all the pages (pages are considered not writable 5277 * at the moment even if they are anonymous). 5278 */ 5279 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5280 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5281 return -ENOMEM; 5282 5283 /* Easy case. Most of packets will go this way. */ 5284 if (!skb_has_frag_list(skb)) { 5285 /* A little of trouble, not enough of space for trailer. 5286 * This should not happen, when stack is tuned to generate 5287 * good frames. OK, on miss we reallocate and reserve even more 5288 * space, 128 bytes is fair. */ 5289 5290 if (skb_tailroom(skb) < tailbits && 5291 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5292 return -ENOMEM; 5293 5294 /* Voila! */ 5295 *trailer = skb; 5296 return 1; 5297 } 5298 5299 /* Misery. We are in troubles, going to mincer fragments... */ 5300 5301 elt = 1; 5302 skb_p = &skb_shinfo(skb)->frag_list; 5303 copyflag = 0; 5304 5305 while ((skb1 = *skb_p) != NULL) { 5306 int ntail = 0; 5307 5308 /* The fragment is partially pulled by someone, 5309 * this can happen on input. Copy it and everything 5310 * after it. */ 5311 5312 if (skb_shared(skb1)) 5313 copyflag = 1; 5314 5315 /* If the skb is the last, worry about trailer. */ 5316 5317 if (skb1->next == NULL && tailbits) { 5318 if (skb_shinfo(skb1)->nr_frags || 5319 skb_has_frag_list(skb1) || 5320 skb_tailroom(skb1) < tailbits) 5321 ntail = tailbits + 128; 5322 } 5323 5324 if (copyflag || 5325 skb_cloned(skb1) || 5326 ntail || 5327 skb_shinfo(skb1)->nr_frags || 5328 skb_has_frag_list(skb1)) { 5329 struct sk_buff *skb2; 5330 5331 /* Fuck, we are miserable poor guys... */ 5332 if (ntail == 0) 5333 skb2 = skb_copy(skb1, GFP_ATOMIC); 5334 else 5335 skb2 = skb_copy_expand(skb1, 5336 skb_headroom(skb1), 5337 ntail, 5338 GFP_ATOMIC); 5339 if (unlikely(skb2 == NULL)) 5340 return -ENOMEM; 5341 5342 if (skb1->sk) 5343 skb_set_owner_w(skb2, skb1->sk); 5344 5345 /* Looking around. Are we still alive? 5346 * OK, link new skb, drop old one */ 5347 5348 skb2->next = skb1->next; 5349 *skb_p = skb2; 5350 kfree_skb(skb1); 5351 skb1 = skb2; 5352 } 5353 elt++; 5354 *trailer = skb1; 5355 skb_p = &skb1->next; 5356 } 5357 5358 return elt; 5359 } 5360 EXPORT_SYMBOL_GPL(skb_cow_data); 5361 5362 static void sock_rmem_free(struct sk_buff *skb) 5363 { 5364 struct sock *sk = skb->sk; 5365 5366 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5367 } 5368 5369 static void skb_set_err_queue(struct sk_buff *skb) 5370 { 5371 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5372 * So, it is safe to (mis)use it to mark skbs on the error queue. 5373 */ 5374 skb->pkt_type = PACKET_OUTGOING; 5375 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5376 } 5377 5378 /* 5379 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5380 */ 5381 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5382 { 5383 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5384 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5385 return -ENOMEM; 5386 5387 skb_orphan(skb); 5388 skb->sk = sk; 5389 skb->destructor = sock_rmem_free; 5390 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5391 skb_set_err_queue(skb); 5392 5393 /* before exiting rcu section, make sure dst is refcounted */ 5394 skb_dst_force(skb); 5395 5396 skb_queue_tail(&sk->sk_error_queue, skb); 5397 if (!sock_flag(sk, SOCK_DEAD)) 5398 sk_error_report(sk); 5399 return 0; 5400 } 5401 EXPORT_SYMBOL(sock_queue_err_skb); 5402 5403 static bool is_icmp_err_skb(const struct sk_buff *skb) 5404 { 5405 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5406 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5407 } 5408 5409 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5410 { 5411 struct sk_buff_head *q = &sk->sk_error_queue; 5412 struct sk_buff *skb, *skb_next = NULL; 5413 bool icmp_next = false; 5414 unsigned long flags; 5415 5416 if (skb_queue_empty_lockless(q)) 5417 return NULL; 5418 5419 spin_lock_irqsave(&q->lock, flags); 5420 skb = __skb_dequeue(q); 5421 if (skb && (skb_next = skb_peek(q))) { 5422 icmp_next = is_icmp_err_skb(skb_next); 5423 if (icmp_next) 5424 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5425 } 5426 spin_unlock_irqrestore(&q->lock, flags); 5427 5428 if (is_icmp_err_skb(skb) && !icmp_next) 5429 sk->sk_err = 0; 5430 5431 if (skb_next) 5432 sk_error_report(sk); 5433 5434 return skb; 5435 } 5436 EXPORT_SYMBOL(sock_dequeue_err_skb); 5437 5438 /** 5439 * skb_clone_sk - create clone of skb, and take reference to socket 5440 * @skb: the skb to clone 5441 * 5442 * This function creates a clone of a buffer that holds a reference on 5443 * sk_refcnt. Buffers created via this function are meant to be 5444 * returned using sock_queue_err_skb, or free via kfree_skb. 5445 * 5446 * When passing buffers allocated with this function to sock_queue_err_skb 5447 * it is necessary to wrap the call with sock_hold/sock_put in order to 5448 * prevent the socket from being released prior to being enqueued on 5449 * the sk_error_queue. 5450 */ 5451 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5452 { 5453 struct sock *sk = skb->sk; 5454 struct sk_buff *clone; 5455 5456 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5457 return NULL; 5458 5459 clone = skb_clone(skb, GFP_ATOMIC); 5460 if (!clone) { 5461 sock_put(sk); 5462 return NULL; 5463 } 5464 5465 clone->sk = sk; 5466 clone->destructor = sock_efree; 5467 5468 return clone; 5469 } 5470 EXPORT_SYMBOL(skb_clone_sk); 5471 5472 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5473 struct sock *sk, 5474 int tstype, 5475 bool opt_stats) 5476 { 5477 struct sock_exterr_skb *serr; 5478 int err; 5479 5480 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5481 5482 serr = SKB_EXT_ERR(skb); 5483 memset(serr, 0, sizeof(*serr)); 5484 serr->ee.ee_errno = ENOMSG; 5485 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5486 serr->ee.ee_info = tstype; 5487 serr->opt_stats = opt_stats; 5488 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5489 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5490 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5491 if (sk_is_tcp(sk)) 5492 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5493 } 5494 5495 err = sock_queue_err_skb(sk, skb); 5496 5497 if (err) 5498 kfree_skb(skb); 5499 } 5500 5501 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5502 { 5503 bool ret; 5504 5505 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5506 return true; 5507 5508 read_lock_bh(&sk->sk_callback_lock); 5509 ret = sk->sk_socket && sk->sk_socket->file && 5510 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5511 read_unlock_bh(&sk->sk_callback_lock); 5512 return ret; 5513 } 5514 5515 void skb_complete_tx_timestamp(struct sk_buff *skb, 5516 struct skb_shared_hwtstamps *hwtstamps) 5517 { 5518 struct sock *sk = skb->sk; 5519 5520 if (!skb_may_tx_timestamp(sk, false)) 5521 goto err; 5522 5523 /* Take a reference to prevent skb_orphan() from freeing the socket, 5524 * but only if the socket refcount is not zero. 5525 */ 5526 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5527 *skb_hwtstamps(skb) = *hwtstamps; 5528 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5529 sock_put(sk); 5530 return; 5531 } 5532 5533 err: 5534 kfree_skb(skb); 5535 } 5536 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5537 5538 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5539 struct skb_shared_hwtstamps *hwtstamps, 5540 int tstype) 5541 { 5542 switch (tstype) { 5543 case SCM_TSTAMP_SCHED: 5544 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5545 case SCM_TSTAMP_SND: 5546 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5547 SKBTX_SW_TSTAMP); 5548 case SCM_TSTAMP_ACK: 5549 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5550 case SCM_TSTAMP_COMPLETION: 5551 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5552 } 5553 5554 return false; 5555 } 5556 5557 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5558 struct skb_shared_hwtstamps *hwtstamps, 5559 struct sock *sk, 5560 int tstype) 5561 { 5562 int op; 5563 5564 switch (tstype) { 5565 case SCM_TSTAMP_SCHED: 5566 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5567 break; 5568 case SCM_TSTAMP_SND: 5569 if (hwtstamps) { 5570 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5571 *skb_hwtstamps(skb) = *hwtstamps; 5572 } else { 5573 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5574 } 5575 break; 5576 case SCM_TSTAMP_ACK: 5577 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5578 break; 5579 default: 5580 return; 5581 } 5582 5583 bpf_skops_tx_timestamping(sk, skb, op); 5584 } 5585 5586 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5587 const struct sk_buff *ack_skb, 5588 struct skb_shared_hwtstamps *hwtstamps, 5589 struct sock *sk, int tstype) 5590 { 5591 struct sk_buff *skb; 5592 bool tsonly, opt_stats = false; 5593 u32 tsflags; 5594 5595 if (!sk) 5596 return; 5597 5598 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5599 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5600 sk, tstype); 5601 5602 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5603 return; 5604 5605 tsflags = READ_ONCE(sk->sk_tsflags); 5606 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5607 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5608 return; 5609 5610 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5611 if (!skb_may_tx_timestamp(sk, tsonly)) 5612 return; 5613 5614 if (tsonly) { 5615 #ifdef CONFIG_INET 5616 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5617 sk_is_tcp(sk)) { 5618 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5619 ack_skb); 5620 opt_stats = true; 5621 } else 5622 #endif 5623 skb = alloc_skb(0, GFP_ATOMIC); 5624 } else { 5625 skb = skb_clone(orig_skb, GFP_ATOMIC); 5626 5627 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5628 kfree_skb(skb); 5629 return; 5630 } 5631 } 5632 if (!skb) 5633 return; 5634 5635 if (tsonly) { 5636 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5637 SKBTX_ANY_TSTAMP; 5638 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5639 } 5640 5641 if (hwtstamps) 5642 *skb_hwtstamps(skb) = *hwtstamps; 5643 else 5644 __net_timestamp(skb); 5645 5646 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5647 } 5648 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5649 5650 void skb_tstamp_tx(struct sk_buff *orig_skb, 5651 struct skb_shared_hwtstamps *hwtstamps) 5652 { 5653 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5654 SCM_TSTAMP_SND); 5655 } 5656 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5657 5658 #ifdef CONFIG_WIRELESS 5659 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5660 { 5661 struct sock *sk = skb->sk; 5662 struct sock_exterr_skb *serr; 5663 int err = 1; 5664 5665 skb->wifi_acked_valid = 1; 5666 skb->wifi_acked = acked; 5667 5668 serr = SKB_EXT_ERR(skb); 5669 memset(serr, 0, sizeof(*serr)); 5670 serr->ee.ee_errno = ENOMSG; 5671 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5672 5673 /* Take a reference to prevent skb_orphan() from freeing the socket, 5674 * but only if the socket refcount is not zero. 5675 */ 5676 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5677 err = sock_queue_err_skb(sk, skb); 5678 sock_put(sk); 5679 } 5680 if (err) 5681 kfree_skb(skb); 5682 } 5683 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5684 #endif /* CONFIG_WIRELESS */ 5685 5686 /** 5687 * skb_partial_csum_set - set up and verify partial csum values for packet 5688 * @skb: the skb to set 5689 * @start: the number of bytes after skb->data to start checksumming. 5690 * @off: the offset from start to place the checksum. 5691 * 5692 * For untrusted partially-checksummed packets, we need to make sure the values 5693 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5694 * 5695 * This function checks and sets those values and skb->ip_summed: if this 5696 * returns false you should drop the packet. 5697 */ 5698 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5699 { 5700 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5701 u32 csum_start = skb_headroom(skb) + (u32)start; 5702 5703 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5704 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5705 start, off, skb_headroom(skb), skb_headlen(skb)); 5706 return false; 5707 } 5708 skb->ip_summed = CHECKSUM_PARTIAL; 5709 skb->csum_start = csum_start; 5710 skb->csum_offset = off; 5711 skb->transport_header = csum_start; 5712 return true; 5713 } 5714 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5715 5716 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5717 unsigned int max) 5718 { 5719 if (skb_headlen(skb) >= len) 5720 return 0; 5721 5722 /* If we need to pullup then pullup to the max, so we 5723 * won't need to do it again. 5724 */ 5725 if (max > skb->len) 5726 max = skb->len; 5727 5728 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5729 return -ENOMEM; 5730 5731 if (skb_headlen(skb) < len) 5732 return -EPROTO; 5733 5734 return 0; 5735 } 5736 5737 #define MAX_TCP_HDR_LEN (15 * 4) 5738 5739 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5740 typeof(IPPROTO_IP) proto, 5741 unsigned int off) 5742 { 5743 int err; 5744 5745 switch (proto) { 5746 case IPPROTO_TCP: 5747 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5748 off + MAX_TCP_HDR_LEN); 5749 if (!err && !skb_partial_csum_set(skb, off, 5750 offsetof(struct tcphdr, 5751 check))) 5752 err = -EPROTO; 5753 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5754 5755 case IPPROTO_UDP: 5756 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5757 off + sizeof(struct udphdr)); 5758 if (!err && !skb_partial_csum_set(skb, off, 5759 offsetof(struct udphdr, 5760 check))) 5761 err = -EPROTO; 5762 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5763 } 5764 5765 return ERR_PTR(-EPROTO); 5766 } 5767 5768 /* This value should be large enough to cover a tagged ethernet header plus 5769 * maximally sized IP and TCP or UDP headers. 5770 */ 5771 #define MAX_IP_HDR_LEN 128 5772 5773 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5774 { 5775 unsigned int off; 5776 bool fragment; 5777 __sum16 *csum; 5778 int err; 5779 5780 fragment = false; 5781 5782 err = skb_maybe_pull_tail(skb, 5783 sizeof(struct iphdr), 5784 MAX_IP_HDR_LEN); 5785 if (err < 0) 5786 goto out; 5787 5788 if (ip_is_fragment(ip_hdr(skb))) 5789 fragment = true; 5790 5791 off = ip_hdrlen(skb); 5792 5793 err = -EPROTO; 5794 5795 if (fragment) 5796 goto out; 5797 5798 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5799 if (IS_ERR(csum)) 5800 return PTR_ERR(csum); 5801 5802 if (recalculate) 5803 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5804 ip_hdr(skb)->daddr, 5805 skb->len - off, 5806 ip_hdr(skb)->protocol, 0); 5807 err = 0; 5808 5809 out: 5810 return err; 5811 } 5812 5813 /* This value should be large enough to cover a tagged ethernet header plus 5814 * an IPv6 header, all options, and a maximal TCP or UDP header. 5815 */ 5816 #define MAX_IPV6_HDR_LEN 256 5817 5818 #define OPT_HDR(type, skb, off) \ 5819 (type *)(skb_network_header(skb) + (off)) 5820 5821 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5822 { 5823 int err; 5824 u8 nexthdr; 5825 unsigned int off; 5826 unsigned int len; 5827 bool fragment; 5828 bool done; 5829 __sum16 *csum; 5830 5831 fragment = false; 5832 done = false; 5833 5834 off = sizeof(struct ipv6hdr); 5835 5836 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5837 if (err < 0) 5838 goto out; 5839 5840 nexthdr = ipv6_hdr(skb)->nexthdr; 5841 5842 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5843 while (off <= len && !done) { 5844 switch (nexthdr) { 5845 case IPPROTO_DSTOPTS: 5846 case IPPROTO_HOPOPTS: 5847 case IPPROTO_ROUTING: { 5848 struct ipv6_opt_hdr *hp; 5849 5850 err = skb_maybe_pull_tail(skb, 5851 off + 5852 sizeof(struct ipv6_opt_hdr), 5853 MAX_IPV6_HDR_LEN); 5854 if (err < 0) 5855 goto out; 5856 5857 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5858 nexthdr = hp->nexthdr; 5859 off += ipv6_optlen(hp); 5860 break; 5861 } 5862 case IPPROTO_AH: { 5863 struct ip_auth_hdr *hp; 5864 5865 err = skb_maybe_pull_tail(skb, 5866 off + 5867 sizeof(struct ip_auth_hdr), 5868 MAX_IPV6_HDR_LEN); 5869 if (err < 0) 5870 goto out; 5871 5872 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5873 nexthdr = hp->nexthdr; 5874 off += ipv6_authlen(hp); 5875 break; 5876 } 5877 case IPPROTO_FRAGMENT: { 5878 struct frag_hdr *hp; 5879 5880 err = skb_maybe_pull_tail(skb, 5881 off + 5882 sizeof(struct frag_hdr), 5883 MAX_IPV6_HDR_LEN); 5884 if (err < 0) 5885 goto out; 5886 5887 hp = OPT_HDR(struct frag_hdr, skb, off); 5888 5889 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5890 fragment = true; 5891 5892 nexthdr = hp->nexthdr; 5893 off += sizeof(struct frag_hdr); 5894 break; 5895 } 5896 default: 5897 done = true; 5898 break; 5899 } 5900 } 5901 5902 err = -EPROTO; 5903 5904 if (!done || fragment) 5905 goto out; 5906 5907 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5908 if (IS_ERR(csum)) 5909 return PTR_ERR(csum); 5910 5911 if (recalculate) 5912 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5913 &ipv6_hdr(skb)->daddr, 5914 skb->len - off, nexthdr, 0); 5915 err = 0; 5916 5917 out: 5918 return err; 5919 } 5920 5921 /** 5922 * skb_checksum_setup - set up partial checksum offset 5923 * @skb: the skb to set up 5924 * @recalculate: if true the pseudo-header checksum will be recalculated 5925 */ 5926 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5927 { 5928 int err; 5929 5930 switch (skb->protocol) { 5931 case htons(ETH_P_IP): 5932 err = skb_checksum_setup_ipv4(skb, recalculate); 5933 break; 5934 5935 case htons(ETH_P_IPV6): 5936 err = skb_checksum_setup_ipv6(skb, recalculate); 5937 break; 5938 5939 default: 5940 err = -EPROTO; 5941 break; 5942 } 5943 5944 return err; 5945 } 5946 EXPORT_SYMBOL(skb_checksum_setup); 5947 5948 /** 5949 * skb_checksum_maybe_trim - maybe trims the given skb 5950 * @skb: the skb to check 5951 * @transport_len: the data length beyond the network header 5952 * 5953 * Checks whether the given skb has data beyond the given transport length. 5954 * If so, returns a cloned skb trimmed to this transport length. 5955 * Otherwise returns the provided skb. Returns NULL in error cases 5956 * (e.g. transport_len exceeds skb length or out-of-memory). 5957 * 5958 * Caller needs to set the skb transport header and free any returned skb if it 5959 * differs from the provided skb. 5960 */ 5961 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5962 unsigned int transport_len) 5963 { 5964 struct sk_buff *skb_chk; 5965 unsigned int len = skb_transport_offset(skb) + transport_len; 5966 int ret; 5967 5968 if (skb->len < len) 5969 return NULL; 5970 else if (skb->len == len) 5971 return skb; 5972 5973 skb_chk = skb_clone(skb, GFP_ATOMIC); 5974 if (!skb_chk) 5975 return NULL; 5976 5977 ret = pskb_trim_rcsum(skb_chk, len); 5978 if (ret) { 5979 kfree_skb(skb_chk); 5980 return NULL; 5981 } 5982 5983 return skb_chk; 5984 } 5985 5986 /** 5987 * skb_checksum_trimmed - validate checksum of an skb 5988 * @skb: the skb to check 5989 * @transport_len: the data length beyond the network header 5990 * @skb_chkf: checksum function to use 5991 * 5992 * Applies the given checksum function skb_chkf to the provided skb. 5993 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5994 * 5995 * If the skb has data beyond the given transport length, then a 5996 * trimmed & cloned skb is checked and returned. 5997 * 5998 * Caller needs to set the skb transport header and free any returned skb if it 5999 * differs from the provided skb. 6000 */ 6001 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6002 unsigned int transport_len, 6003 __sum16(*skb_chkf)(struct sk_buff *skb)) 6004 { 6005 struct sk_buff *skb_chk; 6006 unsigned int offset = skb_transport_offset(skb); 6007 __sum16 ret; 6008 6009 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6010 if (!skb_chk) 6011 goto err; 6012 6013 if (!pskb_may_pull(skb_chk, offset)) 6014 goto err; 6015 6016 skb_pull_rcsum(skb_chk, offset); 6017 ret = skb_chkf(skb_chk); 6018 skb_push_rcsum(skb_chk, offset); 6019 6020 if (ret) 6021 goto err; 6022 6023 return skb_chk; 6024 6025 err: 6026 if (skb_chk && skb_chk != skb) 6027 kfree_skb(skb_chk); 6028 6029 return NULL; 6030 6031 } 6032 EXPORT_SYMBOL(skb_checksum_trimmed); 6033 6034 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6035 { 6036 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6037 skb->dev->name); 6038 } 6039 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6040 6041 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6042 { 6043 if (head_stolen) { 6044 skb_release_head_state(skb); 6045 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6046 } else { 6047 __kfree_skb(skb); 6048 } 6049 } 6050 EXPORT_SYMBOL(kfree_skb_partial); 6051 6052 /** 6053 * skb_try_coalesce - try to merge skb to prior one 6054 * @to: prior buffer 6055 * @from: buffer to add 6056 * @fragstolen: pointer to boolean 6057 * @delta_truesize: how much more was allocated than was requested 6058 */ 6059 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6060 bool *fragstolen, int *delta_truesize) 6061 { 6062 struct skb_shared_info *to_shinfo, *from_shinfo; 6063 int i, delta, len = from->len; 6064 6065 *fragstolen = false; 6066 6067 if (skb_cloned(to)) 6068 return false; 6069 6070 /* In general, avoid mixing page_pool and non-page_pool allocated 6071 * pages within the same SKB. In theory we could take full 6072 * references if @from is cloned and !@to->pp_recycle but its 6073 * tricky (due to potential race with the clone disappearing) and 6074 * rare, so not worth dealing with. 6075 */ 6076 if (to->pp_recycle != from->pp_recycle) 6077 return false; 6078 6079 if (skb_frags_readable(from) != skb_frags_readable(to)) 6080 return false; 6081 6082 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6083 if (len) 6084 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6085 *delta_truesize = 0; 6086 return true; 6087 } 6088 6089 to_shinfo = skb_shinfo(to); 6090 from_shinfo = skb_shinfo(from); 6091 if (to_shinfo->frag_list || from_shinfo->frag_list) 6092 return false; 6093 if (skb_zcopy(to) || skb_zcopy(from)) 6094 return false; 6095 6096 if (skb_headlen(from) != 0) { 6097 struct page *page; 6098 unsigned int offset; 6099 6100 if (to_shinfo->nr_frags + 6101 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6102 return false; 6103 6104 if (skb_head_is_locked(from)) 6105 return false; 6106 6107 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6108 6109 page = virt_to_head_page(from->head); 6110 offset = from->data - (unsigned char *)page_address(page); 6111 6112 skb_fill_page_desc(to, to_shinfo->nr_frags, 6113 page, offset, skb_headlen(from)); 6114 *fragstolen = true; 6115 } else { 6116 if (to_shinfo->nr_frags + 6117 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6118 return false; 6119 6120 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6121 } 6122 6123 WARN_ON_ONCE(delta < len); 6124 6125 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6126 from_shinfo->frags, 6127 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6128 to_shinfo->nr_frags += from_shinfo->nr_frags; 6129 6130 if (!skb_cloned(from)) 6131 from_shinfo->nr_frags = 0; 6132 6133 /* if the skb is not cloned this does nothing 6134 * since we set nr_frags to 0. 6135 */ 6136 if (skb_pp_frag_ref(from)) { 6137 for (i = 0; i < from_shinfo->nr_frags; i++) 6138 __skb_frag_ref(&from_shinfo->frags[i]); 6139 } 6140 6141 to->truesize += delta; 6142 to->len += len; 6143 to->data_len += len; 6144 6145 *delta_truesize = delta; 6146 return true; 6147 } 6148 EXPORT_SYMBOL(skb_try_coalesce); 6149 6150 /** 6151 * skb_scrub_packet - scrub an skb 6152 * 6153 * @skb: buffer to clean 6154 * @xnet: packet is crossing netns 6155 * 6156 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6157 * into/from a tunnel. Some information have to be cleared during these 6158 * operations. 6159 * skb_scrub_packet can also be used to clean a skb before injecting it in 6160 * another namespace (@xnet == true). We have to clear all information in the 6161 * skb that could impact namespace isolation. 6162 */ 6163 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6164 { 6165 skb->pkt_type = PACKET_HOST; 6166 skb->skb_iif = 0; 6167 skb->ignore_df = 0; 6168 skb_dst_drop(skb); 6169 skb_ext_reset(skb); 6170 nf_reset_ct(skb); 6171 nf_reset_trace(skb); 6172 6173 #ifdef CONFIG_NET_SWITCHDEV 6174 skb->offload_fwd_mark = 0; 6175 skb->offload_l3_fwd_mark = 0; 6176 #endif 6177 ipvs_reset(skb); 6178 6179 if (!xnet) 6180 return; 6181 6182 skb->mark = 0; 6183 skb_clear_tstamp(skb); 6184 } 6185 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6186 6187 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6188 { 6189 int mac_len, meta_len; 6190 void *meta; 6191 6192 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6193 kfree_skb(skb); 6194 return NULL; 6195 } 6196 6197 mac_len = skb->data - skb_mac_header(skb); 6198 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6199 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6200 mac_len - VLAN_HLEN - ETH_TLEN); 6201 } 6202 6203 meta_len = skb_metadata_len(skb); 6204 if (meta_len) { 6205 meta = skb_metadata_end(skb) - meta_len; 6206 memmove(meta + VLAN_HLEN, meta, meta_len); 6207 } 6208 6209 skb->mac_header += VLAN_HLEN; 6210 return skb; 6211 } 6212 6213 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6214 { 6215 struct vlan_hdr *vhdr; 6216 u16 vlan_tci; 6217 6218 if (unlikely(skb_vlan_tag_present(skb))) { 6219 /* vlan_tci is already set-up so leave this for another time */ 6220 return skb; 6221 } 6222 6223 skb = skb_share_check(skb, GFP_ATOMIC); 6224 if (unlikely(!skb)) 6225 goto err_free; 6226 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6227 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6228 goto err_free; 6229 6230 vhdr = (struct vlan_hdr *)skb->data; 6231 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6232 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6233 6234 skb_pull_rcsum(skb, VLAN_HLEN); 6235 vlan_set_encap_proto(skb, vhdr); 6236 6237 skb = skb_reorder_vlan_header(skb); 6238 if (unlikely(!skb)) 6239 goto err_free; 6240 6241 skb_reset_network_header(skb); 6242 if (!skb_transport_header_was_set(skb)) 6243 skb_reset_transport_header(skb); 6244 skb_reset_mac_len(skb); 6245 6246 return skb; 6247 6248 err_free: 6249 kfree_skb(skb); 6250 return NULL; 6251 } 6252 EXPORT_SYMBOL(skb_vlan_untag); 6253 6254 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6255 { 6256 if (!pskb_may_pull(skb, write_len)) 6257 return -ENOMEM; 6258 6259 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6260 return 0; 6261 6262 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6263 } 6264 EXPORT_SYMBOL(skb_ensure_writable); 6265 6266 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6267 { 6268 int needed_headroom = dev->needed_headroom; 6269 int needed_tailroom = dev->needed_tailroom; 6270 6271 /* For tail taggers, we need to pad short frames ourselves, to ensure 6272 * that the tail tag does not fail at its role of being at the end of 6273 * the packet, once the conduit interface pads the frame. Account for 6274 * that pad length here, and pad later. 6275 */ 6276 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6277 needed_tailroom += ETH_ZLEN - skb->len; 6278 /* skb_headroom() returns unsigned int... */ 6279 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6280 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6281 6282 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6283 /* No reallocation needed, yay! */ 6284 return 0; 6285 6286 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6287 GFP_ATOMIC); 6288 } 6289 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6290 6291 /* remove VLAN header from packet and update csum accordingly. 6292 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6293 */ 6294 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6295 { 6296 int offset = skb->data - skb_mac_header(skb); 6297 int err; 6298 6299 if (WARN_ONCE(offset, 6300 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6301 offset)) { 6302 return -EINVAL; 6303 } 6304 6305 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6306 if (unlikely(err)) 6307 return err; 6308 6309 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6310 6311 vlan_remove_tag(skb, vlan_tci); 6312 6313 skb->mac_header += VLAN_HLEN; 6314 6315 if (skb_network_offset(skb) < ETH_HLEN) 6316 skb_set_network_header(skb, ETH_HLEN); 6317 6318 skb_reset_mac_len(skb); 6319 6320 return err; 6321 } 6322 EXPORT_SYMBOL(__skb_vlan_pop); 6323 6324 /* Pop a vlan tag either from hwaccel or from payload. 6325 * Expects skb->data at mac header. 6326 */ 6327 int skb_vlan_pop(struct sk_buff *skb) 6328 { 6329 u16 vlan_tci; 6330 __be16 vlan_proto; 6331 int err; 6332 6333 if (likely(skb_vlan_tag_present(skb))) { 6334 __vlan_hwaccel_clear_tag(skb); 6335 } else { 6336 if (unlikely(!eth_type_vlan(skb->protocol))) 6337 return 0; 6338 6339 err = __skb_vlan_pop(skb, &vlan_tci); 6340 if (err) 6341 return err; 6342 } 6343 /* move next vlan tag to hw accel tag */ 6344 if (likely(!eth_type_vlan(skb->protocol))) 6345 return 0; 6346 6347 vlan_proto = skb->protocol; 6348 err = __skb_vlan_pop(skb, &vlan_tci); 6349 if (unlikely(err)) 6350 return err; 6351 6352 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6353 return 0; 6354 } 6355 EXPORT_SYMBOL(skb_vlan_pop); 6356 6357 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6358 * Expects skb->data at mac header. 6359 */ 6360 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6361 { 6362 if (skb_vlan_tag_present(skb)) { 6363 int offset = skb->data - skb_mac_header(skb); 6364 int err; 6365 6366 if (WARN_ONCE(offset, 6367 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6368 offset)) { 6369 return -EINVAL; 6370 } 6371 6372 err = __vlan_insert_tag(skb, skb->vlan_proto, 6373 skb_vlan_tag_get(skb)); 6374 if (err) 6375 return err; 6376 6377 skb->protocol = skb->vlan_proto; 6378 skb->network_header -= VLAN_HLEN; 6379 6380 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6381 } 6382 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6383 return 0; 6384 } 6385 EXPORT_SYMBOL(skb_vlan_push); 6386 6387 /** 6388 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6389 * 6390 * @skb: Socket buffer to modify 6391 * 6392 * Drop the Ethernet header of @skb. 6393 * 6394 * Expects that skb->data points to the mac header and that no VLAN tags are 6395 * present. 6396 * 6397 * Returns 0 on success, -errno otherwise. 6398 */ 6399 int skb_eth_pop(struct sk_buff *skb) 6400 { 6401 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6402 skb_network_offset(skb) < ETH_HLEN) 6403 return -EPROTO; 6404 6405 skb_pull_rcsum(skb, ETH_HLEN); 6406 skb_reset_mac_header(skb); 6407 skb_reset_mac_len(skb); 6408 6409 return 0; 6410 } 6411 EXPORT_SYMBOL(skb_eth_pop); 6412 6413 /** 6414 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6415 * 6416 * @skb: Socket buffer to modify 6417 * @dst: Destination MAC address of the new header 6418 * @src: Source MAC address of the new header 6419 * 6420 * Prepend @skb with a new Ethernet header. 6421 * 6422 * Expects that skb->data points to the mac header, which must be empty. 6423 * 6424 * Returns 0 on success, -errno otherwise. 6425 */ 6426 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6427 const unsigned char *src) 6428 { 6429 struct ethhdr *eth; 6430 int err; 6431 6432 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6433 return -EPROTO; 6434 6435 err = skb_cow_head(skb, sizeof(*eth)); 6436 if (err < 0) 6437 return err; 6438 6439 skb_push(skb, sizeof(*eth)); 6440 skb_reset_mac_header(skb); 6441 skb_reset_mac_len(skb); 6442 6443 eth = eth_hdr(skb); 6444 ether_addr_copy(eth->h_dest, dst); 6445 ether_addr_copy(eth->h_source, src); 6446 eth->h_proto = skb->protocol; 6447 6448 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6449 6450 return 0; 6451 } 6452 EXPORT_SYMBOL(skb_eth_push); 6453 6454 /* Update the ethertype of hdr and the skb csum value if required. */ 6455 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6456 __be16 ethertype) 6457 { 6458 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6459 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6460 6461 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6462 } 6463 6464 hdr->h_proto = ethertype; 6465 } 6466 6467 /** 6468 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6469 * the packet 6470 * 6471 * @skb: buffer 6472 * @mpls_lse: MPLS label stack entry to push 6473 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6474 * @mac_len: length of the MAC header 6475 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6476 * ethernet 6477 * 6478 * Expects skb->data at mac header. 6479 * 6480 * Returns 0 on success, -errno otherwise. 6481 */ 6482 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6483 int mac_len, bool ethernet) 6484 { 6485 struct mpls_shim_hdr *lse; 6486 int err; 6487 6488 if (unlikely(!eth_p_mpls(mpls_proto))) 6489 return -EINVAL; 6490 6491 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6492 if (skb->encapsulation) 6493 return -EINVAL; 6494 6495 err = skb_cow_head(skb, MPLS_HLEN); 6496 if (unlikely(err)) 6497 return err; 6498 6499 if (!skb->inner_protocol) { 6500 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6501 skb_set_inner_protocol(skb, skb->protocol); 6502 } 6503 6504 skb_push(skb, MPLS_HLEN); 6505 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6506 mac_len); 6507 skb_reset_mac_header(skb); 6508 skb_set_network_header(skb, mac_len); 6509 skb_reset_mac_len(skb); 6510 6511 lse = mpls_hdr(skb); 6512 lse->label_stack_entry = mpls_lse; 6513 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6514 6515 if (ethernet && mac_len >= ETH_HLEN) 6516 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6517 skb->protocol = mpls_proto; 6518 6519 return 0; 6520 } 6521 EXPORT_SYMBOL_GPL(skb_mpls_push); 6522 6523 /** 6524 * skb_mpls_pop() - pop the outermost MPLS header 6525 * 6526 * @skb: buffer 6527 * @next_proto: ethertype of header after popped MPLS header 6528 * @mac_len: length of the MAC header 6529 * @ethernet: flag to indicate if the packet is ethernet 6530 * 6531 * Expects skb->data at mac header. 6532 * 6533 * Returns 0 on success, -errno otherwise. 6534 */ 6535 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6536 bool ethernet) 6537 { 6538 int err; 6539 6540 if (unlikely(!eth_p_mpls(skb->protocol))) 6541 return 0; 6542 6543 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6544 if (unlikely(err)) 6545 return err; 6546 6547 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6548 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6549 mac_len); 6550 6551 __skb_pull(skb, MPLS_HLEN); 6552 skb_reset_mac_header(skb); 6553 skb_set_network_header(skb, mac_len); 6554 6555 if (ethernet && mac_len >= ETH_HLEN) { 6556 struct ethhdr *hdr; 6557 6558 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6559 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6560 skb_mod_eth_type(skb, hdr, next_proto); 6561 } 6562 skb->protocol = next_proto; 6563 6564 return 0; 6565 } 6566 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6567 6568 /** 6569 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6570 * 6571 * @skb: buffer 6572 * @mpls_lse: new MPLS label stack entry to update to 6573 * 6574 * Expects skb->data at mac header. 6575 * 6576 * Returns 0 on success, -errno otherwise. 6577 */ 6578 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6579 { 6580 int err; 6581 6582 if (unlikely(!eth_p_mpls(skb->protocol))) 6583 return -EINVAL; 6584 6585 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6586 if (unlikely(err)) 6587 return err; 6588 6589 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6590 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6591 6592 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6593 } 6594 6595 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6596 6597 return 0; 6598 } 6599 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6600 6601 /** 6602 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6603 * 6604 * @skb: buffer 6605 * 6606 * Expects skb->data at mac header. 6607 * 6608 * Returns 0 on success, -errno otherwise. 6609 */ 6610 int skb_mpls_dec_ttl(struct sk_buff *skb) 6611 { 6612 u32 lse; 6613 u8 ttl; 6614 6615 if (unlikely(!eth_p_mpls(skb->protocol))) 6616 return -EINVAL; 6617 6618 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6619 return -ENOMEM; 6620 6621 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6622 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6623 if (!--ttl) 6624 return -EINVAL; 6625 6626 lse &= ~MPLS_LS_TTL_MASK; 6627 lse |= ttl << MPLS_LS_TTL_SHIFT; 6628 6629 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6630 } 6631 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6632 6633 /** 6634 * alloc_skb_with_frags - allocate skb with page frags 6635 * 6636 * @header_len: size of linear part 6637 * @data_len: needed length in frags 6638 * @order: max page order desired. 6639 * @errcode: pointer to error code if any 6640 * @gfp_mask: allocation mask 6641 * 6642 * This can be used to allocate a paged skb, given a maximal order for frags. 6643 */ 6644 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6645 unsigned long data_len, 6646 int order, 6647 int *errcode, 6648 gfp_t gfp_mask) 6649 { 6650 unsigned long chunk; 6651 struct sk_buff *skb; 6652 struct page *page; 6653 int nr_frags = 0; 6654 6655 *errcode = -EMSGSIZE; 6656 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6657 return NULL; 6658 6659 *errcode = -ENOBUFS; 6660 skb = alloc_skb(header_len, gfp_mask); 6661 if (!skb) 6662 return NULL; 6663 6664 while (data_len) { 6665 if (nr_frags == MAX_SKB_FRAGS - 1) 6666 goto failure; 6667 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6668 order--; 6669 6670 if (order) { 6671 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6672 __GFP_COMP | 6673 __GFP_NOWARN, 6674 order); 6675 if (!page) { 6676 order--; 6677 continue; 6678 } 6679 } else { 6680 page = alloc_page(gfp_mask); 6681 if (!page) 6682 goto failure; 6683 } 6684 chunk = min_t(unsigned long, data_len, 6685 PAGE_SIZE << order); 6686 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6687 nr_frags++; 6688 skb->truesize += (PAGE_SIZE << order); 6689 data_len -= chunk; 6690 } 6691 return skb; 6692 6693 failure: 6694 kfree_skb(skb); 6695 return NULL; 6696 } 6697 EXPORT_SYMBOL(alloc_skb_with_frags); 6698 6699 /* carve out the first off bytes from skb when off < headlen */ 6700 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6701 const int headlen, gfp_t gfp_mask) 6702 { 6703 int i; 6704 unsigned int size = skb_end_offset(skb); 6705 int new_hlen = headlen - off; 6706 u8 *data; 6707 6708 if (skb_pfmemalloc(skb)) 6709 gfp_mask |= __GFP_MEMALLOC; 6710 6711 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6712 if (!data) 6713 return -ENOMEM; 6714 size = SKB_WITH_OVERHEAD(size); 6715 6716 /* Copy real data, and all frags */ 6717 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6718 skb->len -= off; 6719 6720 memcpy((struct skb_shared_info *)(data + size), 6721 skb_shinfo(skb), 6722 offsetof(struct skb_shared_info, 6723 frags[skb_shinfo(skb)->nr_frags])); 6724 if (skb_cloned(skb)) { 6725 /* drop the old head gracefully */ 6726 if (skb_orphan_frags(skb, gfp_mask)) { 6727 skb_kfree_head(data, size); 6728 return -ENOMEM; 6729 } 6730 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6731 skb_frag_ref(skb, i); 6732 if (skb_has_frag_list(skb)) 6733 skb_clone_fraglist(skb); 6734 skb_release_data(skb, SKB_CONSUMED); 6735 } else { 6736 /* we can reuse existing recount- all we did was 6737 * relocate values 6738 */ 6739 skb_free_head(skb); 6740 } 6741 6742 skb->head = data; 6743 skb->data = data; 6744 skb->head_frag = 0; 6745 skb_set_end_offset(skb, size); 6746 skb_set_tail_pointer(skb, skb_headlen(skb)); 6747 skb_headers_offset_update(skb, 0); 6748 skb->cloned = 0; 6749 skb->hdr_len = 0; 6750 skb->nohdr = 0; 6751 atomic_set(&skb_shinfo(skb)->dataref, 1); 6752 6753 return 0; 6754 } 6755 6756 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6757 6758 /* carve out the first eat bytes from skb's frag_list. May recurse into 6759 * pskb_carve() 6760 */ 6761 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6762 gfp_t gfp_mask) 6763 { 6764 struct sk_buff *list = shinfo->frag_list; 6765 struct sk_buff *clone = NULL; 6766 struct sk_buff *insp = NULL; 6767 6768 do { 6769 if (!list) { 6770 pr_err("Not enough bytes to eat. Want %d\n", eat); 6771 return -EFAULT; 6772 } 6773 if (list->len <= eat) { 6774 /* Eaten as whole. */ 6775 eat -= list->len; 6776 list = list->next; 6777 insp = list; 6778 } else { 6779 /* Eaten partially. */ 6780 if (skb_shared(list)) { 6781 clone = skb_clone(list, gfp_mask); 6782 if (!clone) 6783 return -ENOMEM; 6784 insp = list->next; 6785 list = clone; 6786 } else { 6787 /* This may be pulled without problems. */ 6788 insp = list; 6789 } 6790 if (pskb_carve(list, eat, gfp_mask) < 0) { 6791 kfree_skb(clone); 6792 return -ENOMEM; 6793 } 6794 break; 6795 } 6796 } while (eat); 6797 6798 /* Free pulled out fragments. */ 6799 while ((list = shinfo->frag_list) != insp) { 6800 shinfo->frag_list = list->next; 6801 consume_skb(list); 6802 } 6803 /* And insert new clone at head. */ 6804 if (clone) { 6805 clone->next = list; 6806 shinfo->frag_list = clone; 6807 } 6808 return 0; 6809 } 6810 6811 /* carve off first len bytes from skb. Split line (off) is in the 6812 * non-linear part of skb 6813 */ 6814 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6815 int pos, gfp_t gfp_mask) 6816 { 6817 int i, k = 0; 6818 unsigned int size = skb_end_offset(skb); 6819 u8 *data; 6820 const int nfrags = skb_shinfo(skb)->nr_frags; 6821 struct skb_shared_info *shinfo; 6822 6823 if (skb_pfmemalloc(skb)) 6824 gfp_mask |= __GFP_MEMALLOC; 6825 6826 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6827 if (!data) 6828 return -ENOMEM; 6829 size = SKB_WITH_OVERHEAD(size); 6830 6831 memcpy((struct skb_shared_info *)(data + size), 6832 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6833 if (skb_orphan_frags(skb, gfp_mask)) { 6834 skb_kfree_head(data, size); 6835 return -ENOMEM; 6836 } 6837 shinfo = (struct skb_shared_info *)(data + size); 6838 for (i = 0; i < nfrags; i++) { 6839 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6840 6841 if (pos + fsize > off) { 6842 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6843 6844 if (pos < off) { 6845 /* Split frag. 6846 * We have two variants in this case: 6847 * 1. Move all the frag to the second 6848 * part, if it is possible. F.e. 6849 * this approach is mandatory for TUX, 6850 * where splitting is expensive. 6851 * 2. Split is accurately. We make this. 6852 */ 6853 skb_frag_off_add(&shinfo->frags[0], off - pos); 6854 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6855 } 6856 skb_frag_ref(skb, i); 6857 k++; 6858 } 6859 pos += fsize; 6860 } 6861 shinfo->nr_frags = k; 6862 if (skb_has_frag_list(skb)) 6863 skb_clone_fraglist(skb); 6864 6865 /* split line is in frag list */ 6866 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6867 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6868 if (skb_has_frag_list(skb)) 6869 kfree_skb_list(skb_shinfo(skb)->frag_list); 6870 skb_kfree_head(data, size); 6871 return -ENOMEM; 6872 } 6873 skb_release_data(skb, SKB_CONSUMED); 6874 6875 skb->head = data; 6876 skb->head_frag = 0; 6877 skb->data = data; 6878 skb_set_end_offset(skb, size); 6879 skb_reset_tail_pointer(skb); 6880 skb_headers_offset_update(skb, 0); 6881 skb->cloned = 0; 6882 skb->hdr_len = 0; 6883 skb->nohdr = 0; 6884 skb->len -= off; 6885 skb->data_len = skb->len; 6886 atomic_set(&skb_shinfo(skb)->dataref, 1); 6887 return 0; 6888 } 6889 6890 /* remove len bytes from the beginning of the skb */ 6891 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6892 { 6893 int headlen = skb_headlen(skb); 6894 6895 if (len < headlen) 6896 return pskb_carve_inside_header(skb, len, headlen, gfp); 6897 else 6898 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6899 } 6900 6901 /* Extract to_copy bytes starting at off from skb, and return this in 6902 * a new skb 6903 */ 6904 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6905 int to_copy, gfp_t gfp) 6906 { 6907 struct sk_buff *clone = skb_clone(skb, gfp); 6908 6909 if (!clone) 6910 return NULL; 6911 6912 if (pskb_carve(clone, off, gfp) < 0 || 6913 pskb_trim(clone, to_copy)) { 6914 kfree_skb(clone); 6915 return NULL; 6916 } 6917 return clone; 6918 } 6919 EXPORT_SYMBOL(pskb_extract); 6920 6921 /** 6922 * skb_condense - try to get rid of fragments/frag_list if possible 6923 * @skb: buffer 6924 * 6925 * Can be used to save memory before skb is added to a busy queue. 6926 * If packet has bytes in frags and enough tail room in skb->head, 6927 * pull all of them, so that we can free the frags right now and adjust 6928 * truesize. 6929 * Notes: 6930 * We do not reallocate skb->head thus can not fail. 6931 * Caller must re-evaluate skb->truesize if needed. 6932 */ 6933 void skb_condense(struct sk_buff *skb) 6934 { 6935 if (skb->data_len) { 6936 if (skb->data_len > skb->end - skb->tail || 6937 skb_cloned(skb) || !skb_frags_readable(skb)) 6938 return; 6939 6940 /* Nice, we can free page frag(s) right now */ 6941 __pskb_pull_tail(skb, skb->data_len); 6942 } 6943 /* At this point, skb->truesize might be over estimated, 6944 * because skb had a fragment, and fragments do not tell 6945 * their truesize. 6946 * When we pulled its content into skb->head, fragment 6947 * was freed, but __pskb_pull_tail() could not possibly 6948 * adjust skb->truesize, not knowing the frag truesize. 6949 */ 6950 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6951 } 6952 EXPORT_SYMBOL(skb_condense); 6953 6954 #ifdef CONFIG_SKB_EXTENSIONS 6955 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6956 { 6957 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6958 } 6959 6960 /** 6961 * __skb_ext_alloc - allocate a new skb extensions storage 6962 * 6963 * @flags: See kmalloc(). 6964 * 6965 * Returns the newly allocated pointer. The pointer can later attached to a 6966 * skb via __skb_ext_set(). 6967 * Note: caller must handle the skb_ext as an opaque data. 6968 */ 6969 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6970 { 6971 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6972 6973 if (new) { 6974 memset(new->offset, 0, sizeof(new->offset)); 6975 refcount_set(&new->refcnt, 1); 6976 } 6977 6978 return new; 6979 } 6980 6981 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6982 unsigned int old_active) 6983 { 6984 struct skb_ext *new; 6985 6986 if (refcount_read(&old->refcnt) == 1) 6987 return old; 6988 6989 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6990 if (!new) 6991 return NULL; 6992 6993 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6994 refcount_set(&new->refcnt, 1); 6995 6996 #ifdef CONFIG_XFRM 6997 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6998 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6999 unsigned int i; 7000 7001 for (i = 0; i < sp->len; i++) 7002 xfrm_state_hold(sp->xvec[i]); 7003 } 7004 #endif 7005 #ifdef CONFIG_MCTP_FLOWS 7006 if (old_active & (1 << SKB_EXT_MCTP)) { 7007 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7008 7009 if (flow->key) 7010 refcount_inc(&flow->key->refs); 7011 } 7012 #endif 7013 __skb_ext_put(old); 7014 return new; 7015 } 7016 7017 /** 7018 * __skb_ext_set - attach the specified extension storage to this skb 7019 * @skb: buffer 7020 * @id: extension id 7021 * @ext: extension storage previously allocated via __skb_ext_alloc() 7022 * 7023 * Existing extensions, if any, are cleared. 7024 * 7025 * Returns the pointer to the extension. 7026 */ 7027 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7028 struct skb_ext *ext) 7029 { 7030 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7031 7032 skb_ext_put(skb); 7033 newlen = newoff + skb_ext_type_len[id]; 7034 ext->chunks = newlen; 7035 ext->offset[id] = newoff; 7036 skb->extensions = ext; 7037 skb->active_extensions = 1 << id; 7038 return skb_ext_get_ptr(ext, id); 7039 } 7040 7041 /** 7042 * skb_ext_add - allocate space for given extension, COW if needed 7043 * @skb: buffer 7044 * @id: extension to allocate space for 7045 * 7046 * Allocates enough space for the given extension. 7047 * If the extension is already present, a pointer to that extension 7048 * is returned. 7049 * 7050 * If the skb was cloned, COW applies and the returned memory can be 7051 * modified without changing the extension space of clones buffers. 7052 * 7053 * Returns pointer to the extension or NULL on allocation failure. 7054 */ 7055 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7056 { 7057 struct skb_ext *new, *old = NULL; 7058 unsigned int newlen, newoff; 7059 7060 if (skb->active_extensions) { 7061 old = skb->extensions; 7062 7063 new = skb_ext_maybe_cow(old, skb->active_extensions); 7064 if (!new) 7065 return NULL; 7066 7067 if (__skb_ext_exist(new, id)) 7068 goto set_active; 7069 7070 newoff = new->chunks; 7071 } else { 7072 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7073 7074 new = __skb_ext_alloc(GFP_ATOMIC); 7075 if (!new) 7076 return NULL; 7077 } 7078 7079 newlen = newoff + skb_ext_type_len[id]; 7080 new->chunks = newlen; 7081 new->offset[id] = newoff; 7082 set_active: 7083 skb->slow_gro = 1; 7084 skb->extensions = new; 7085 skb->active_extensions |= 1 << id; 7086 return skb_ext_get_ptr(new, id); 7087 } 7088 EXPORT_SYMBOL(skb_ext_add); 7089 7090 #ifdef CONFIG_XFRM 7091 static void skb_ext_put_sp(struct sec_path *sp) 7092 { 7093 unsigned int i; 7094 7095 for (i = 0; i < sp->len; i++) 7096 xfrm_state_put(sp->xvec[i]); 7097 } 7098 #endif 7099 7100 #ifdef CONFIG_MCTP_FLOWS 7101 static void skb_ext_put_mctp(struct mctp_flow *flow) 7102 { 7103 if (flow->key) 7104 mctp_key_unref(flow->key); 7105 } 7106 #endif 7107 7108 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7109 { 7110 struct skb_ext *ext = skb->extensions; 7111 7112 skb->active_extensions &= ~(1 << id); 7113 if (skb->active_extensions == 0) { 7114 skb->extensions = NULL; 7115 __skb_ext_put(ext); 7116 #ifdef CONFIG_XFRM 7117 } else if (id == SKB_EXT_SEC_PATH && 7118 refcount_read(&ext->refcnt) == 1) { 7119 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7120 7121 skb_ext_put_sp(sp); 7122 sp->len = 0; 7123 #endif 7124 } 7125 } 7126 EXPORT_SYMBOL(__skb_ext_del); 7127 7128 void __skb_ext_put(struct skb_ext *ext) 7129 { 7130 /* If this is last clone, nothing can increment 7131 * it after check passes. Avoids one atomic op. 7132 */ 7133 if (refcount_read(&ext->refcnt) == 1) 7134 goto free_now; 7135 7136 if (!refcount_dec_and_test(&ext->refcnt)) 7137 return; 7138 free_now: 7139 #ifdef CONFIG_XFRM 7140 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7141 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7142 #endif 7143 #ifdef CONFIG_MCTP_FLOWS 7144 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7145 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7146 #endif 7147 7148 kmem_cache_free(skbuff_ext_cache, ext); 7149 } 7150 EXPORT_SYMBOL(__skb_ext_put); 7151 #endif /* CONFIG_SKB_EXTENSIONS */ 7152 7153 static void kfree_skb_napi_cache(struct sk_buff *skb) 7154 { 7155 /* if SKB is a clone, don't handle this case */ 7156 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7157 __kfree_skb(skb); 7158 return; 7159 } 7160 7161 local_bh_disable(); 7162 __napi_kfree_skb(skb, SKB_CONSUMED); 7163 local_bh_enable(); 7164 } 7165 7166 /** 7167 * skb_attempt_defer_free - queue skb for remote freeing 7168 * @skb: buffer 7169 * 7170 * Put @skb in a per-cpu list, using the cpu which 7171 * allocated the skb/pages to reduce false sharing 7172 * and memory zone spinlock contention. 7173 */ 7174 void skb_attempt_defer_free(struct sk_buff *skb) 7175 { 7176 int cpu = skb->alloc_cpu; 7177 struct softnet_data *sd; 7178 unsigned int defer_max; 7179 bool kick; 7180 7181 if (cpu == raw_smp_processor_id() || 7182 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7183 !cpu_online(cpu)) { 7184 nodefer: kfree_skb_napi_cache(skb); 7185 return; 7186 } 7187 7188 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7189 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7190 7191 sd = &per_cpu(softnet_data, cpu); 7192 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7193 if (READ_ONCE(sd->defer_count) >= defer_max) 7194 goto nodefer; 7195 7196 spin_lock_bh(&sd->defer_lock); 7197 /* Send an IPI every time queue reaches half capacity. */ 7198 kick = sd->defer_count == (defer_max >> 1); 7199 /* Paired with the READ_ONCE() few lines above */ 7200 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7201 7202 skb->next = sd->defer_list; 7203 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7204 WRITE_ONCE(sd->defer_list, skb); 7205 spin_unlock_bh(&sd->defer_lock); 7206 7207 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7208 * if we are unlucky enough (this seems very unlikely). 7209 */ 7210 if (unlikely(kick)) 7211 kick_defer_list_purge(sd, cpu); 7212 } 7213 7214 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7215 size_t offset, size_t len) 7216 { 7217 const char *kaddr; 7218 __wsum csum; 7219 7220 kaddr = kmap_local_page(page); 7221 csum = csum_partial(kaddr + offset, len, 0); 7222 kunmap_local(kaddr); 7223 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7224 } 7225 7226 /** 7227 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7228 * @skb: The buffer to add pages to 7229 * @iter: Iterator representing the pages to be added 7230 * @maxsize: Maximum amount of pages to be added 7231 * 7232 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7233 * extracts pages from an iterator and adds them to the socket buffer if 7234 * possible, copying them to fragments if not possible (such as if they're slab 7235 * pages). 7236 * 7237 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7238 * insufficient space in the buffer to transfer anything. 7239 */ 7240 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7241 ssize_t maxsize) 7242 { 7243 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7244 struct page *pages[8], **ppages = pages; 7245 ssize_t spliced = 0, ret = 0; 7246 unsigned int i; 7247 7248 while (iter->count > 0) { 7249 ssize_t space, nr, len; 7250 size_t off; 7251 7252 ret = -EMSGSIZE; 7253 space = frag_limit - skb_shinfo(skb)->nr_frags; 7254 if (space < 0) 7255 break; 7256 7257 /* We might be able to coalesce without increasing nr_frags */ 7258 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7259 7260 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7261 if (len <= 0) { 7262 ret = len ?: -EIO; 7263 break; 7264 } 7265 7266 i = 0; 7267 do { 7268 struct page *page = pages[i++]; 7269 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7270 7271 ret = -EIO; 7272 if (WARN_ON_ONCE(!sendpage_ok(page))) 7273 goto out; 7274 7275 ret = skb_append_pagefrags(skb, page, off, part, 7276 frag_limit); 7277 if (ret < 0) { 7278 iov_iter_revert(iter, len); 7279 goto out; 7280 } 7281 7282 if (skb->ip_summed == CHECKSUM_NONE) 7283 skb_splice_csum_page(skb, page, off, part); 7284 7285 off = 0; 7286 spliced += part; 7287 maxsize -= part; 7288 len -= part; 7289 } while (len > 0); 7290 7291 if (maxsize <= 0) 7292 break; 7293 } 7294 7295 out: 7296 skb_len_add(skb, spliced); 7297 return spliced ?: ret; 7298 } 7299 EXPORT_SYMBOL(skb_splice_from_iter); 7300 7301 static __always_inline 7302 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7303 size_t len, void *to, void *priv2) 7304 { 7305 __wsum *csum = priv2; 7306 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7307 7308 *csum = csum_block_add(*csum, next, progress); 7309 return 0; 7310 } 7311 7312 static __always_inline 7313 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7314 size_t len, void *to, void *priv2) 7315 { 7316 __wsum next, *csum = priv2; 7317 7318 next = csum_and_copy_from_user(iter_from, to + progress, len); 7319 *csum = csum_block_add(*csum, next, progress); 7320 return next ? 0 : len; 7321 } 7322 7323 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7324 __wsum *csum, struct iov_iter *i) 7325 { 7326 size_t copied; 7327 7328 if (WARN_ON_ONCE(!i->data_source)) 7329 return false; 7330 copied = iterate_and_advance2(i, bytes, addr, csum, 7331 copy_from_user_iter_csum, 7332 memcpy_from_iter_csum); 7333 if (likely(copied == bytes)) 7334 return true; 7335 iov_iter_revert(i, copied); 7336 return false; 7337 } 7338 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7339 7340 void get_netmem(netmem_ref netmem) 7341 { 7342 struct net_iov *niov; 7343 7344 if (netmem_is_net_iov(netmem)) { 7345 niov = netmem_to_net_iov(netmem); 7346 if (net_is_devmem_iov(niov)) 7347 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7348 return; 7349 } 7350 get_page(netmem_to_page(netmem)); 7351 } 7352 EXPORT_SYMBOL(get_netmem); 7353 7354 void put_netmem(netmem_ref netmem) 7355 { 7356 struct net_iov *niov; 7357 7358 if (netmem_is_net_iov(netmem)) { 7359 niov = netmem_to_net_iov(netmem); 7360 if (net_is_devmem_iov(niov)) 7361 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7362 return; 7363 } 7364 7365 put_page(netmem_to_page(netmem)); 7366 } 7367 EXPORT_SYMBOL(put_netmem); 7368