1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 #include <net/mpls.h> 75 #include <net/mptcp.h> 76 #include <net/mctp.h> 77 #include <net/page_pool/helpers.h> 78 #include <net/dropreason.h> 79 80 #include <linux/uaccess.h> 81 #include <trace/events/skb.h> 82 #include <linux/highmem.h> 83 #include <linux/capability.h> 84 #include <linux/user_namespace.h> 85 #include <linux/indirect_call_wrapper.h> 86 #include <linux/textsearch.h> 87 88 #include "dev.h" 89 #include "sock_destructor.h" 90 91 struct kmem_cache *skbuff_cache __ro_after_init; 92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 98 static struct kmem_cache *skb_small_head_cache __ro_after_init; 99 100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 101 102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 104 * size, and we can differentiate heads from skb_small_head_cache 105 * vs system slabs by looking at their size (skb_end_offset()). 106 */ 107 #define SKB_SMALL_HEAD_CACHE_SIZE \ 108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 110 SKB_SMALL_HEAD_SIZE) 111 112 #define SKB_SMALL_HEAD_HEADROOM \ 113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 114 115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 116 EXPORT_SYMBOL(sysctl_max_skb_frags); 117 118 #undef FN 119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 120 static const char * const drop_reasons[] = { 121 [SKB_CONSUMED] = "CONSUMED", 122 DEFINE_DROP_REASON(FN, FN) 123 }; 124 125 static const struct drop_reason_list drop_reasons_core = { 126 .reasons = drop_reasons, 127 .n_reasons = ARRAY_SIZE(drop_reasons), 128 }; 129 130 const struct drop_reason_list __rcu * 131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 133 }; 134 EXPORT_SYMBOL(drop_reasons_by_subsys); 135 136 /** 137 * drop_reasons_register_subsys - register another drop reason subsystem 138 * @subsys: the subsystem to register, must not be the core 139 * @list: the list of drop reasons within the subsystem, must point to 140 * a statically initialized list 141 */ 142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 143 const struct drop_reason_list *list) 144 { 145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 147 "invalid subsystem %d\n", subsys)) 148 return; 149 150 /* must point to statically allocated memory, so INIT is OK */ 151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 152 } 153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 154 155 /** 156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 157 * @subsys: the subsystem to remove, must not be the core 158 * 159 * Note: This will synchronize_rcu() to ensure no users when it returns. 160 */ 161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 169 170 synchronize_rcu(); 171 } 172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 173 174 /** 175 * skb_panic - private function for out-of-line support 176 * @skb: buffer 177 * @sz: size 178 * @addr: address 179 * @msg: skb_over_panic or skb_under_panic 180 * 181 * Out-of-line support for skb_put() and skb_push(). 182 * Called via the wrapper skb_over_panic() or skb_under_panic(). 183 * Keep out of line to prevent kernel bloat. 184 * __builtin_return_address is not used because it is not always reliable. 185 */ 186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 187 const char msg[]) 188 { 189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 190 msg, addr, skb->len, sz, skb->head, skb->data, 191 (unsigned long)skb->tail, (unsigned long)skb->end, 192 skb->dev ? skb->dev->name : "<NULL>"); 193 BUG(); 194 } 195 196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 197 { 198 skb_panic(skb, sz, addr, __func__); 199 } 200 201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 202 { 203 skb_panic(skb, sz, addr, __func__); 204 } 205 206 #define NAPI_SKB_CACHE_SIZE 64 207 #define NAPI_SKB_CACHE_BULK 16 208 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 209 210 #if PAGE_SIZE == SZ_4K 211 212 #define NAPI_HAS_SMALL_PAGE_FRAG 1 213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 214 215 /* specialized page frag allocator using a single order 0 page 216 * and slicing it into 1K sized fragment. Constrained to systems 217 * with a very limited amount of 1K fragments fitting a single 218 * page - to avoid excessive truesize underestimation 219 */ 220 221 struct page_frag_1k { 222 void *va; 223 u16 offset; 224 bool pfmemalloc; 225 }; 226 227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 228 { 229 struct page *page; 230 int offset; 231 232 offset = nc->offset - SZ_1K; 233 if (likely(offset >= 0)) 234 goto use_frag; 235 236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 237 if (!page) 238 return NULL; 239 240 nc->va = page_address(page); 241 nc->pfmemalloc = page_is_pfmemalloc(page); 242 offset = PAGE_SIZE - SZ_1K; 243 page_ref_add(page, offset / SZ_1K); 244 245 use_frag: 246 nc->offset = offset; 247 return nc->va + offset; 248 } 249 #else 250 251 /* the small page is actually unused in this build; add dummy helpers 252 * to please the compiler and avoid later preprocessor's conditionals 253 */ 254 #define NAPI_HAS_SMALL_PAGE_FRAG 0 255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 256 257 struct page_frag_1k { 258 }; 259 260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 261 { 262 return NULL; 263 } 264 265 #endif 266 267 struct napi_alloc_cache { 268 struct page_frag_cache page; 269 struct page_frag_1k page_small; 270 unsigned int skb_count; 271 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 272 }; 273 274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 276 277 /* Double check that napi_get_frags() allocates skbs with 278 * skb->head being backed by slab, not a page fragment. 279 * This is to make sure bug fixed in 3226b158e67c 280 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 281 * does not accidentally come back. 282 */ 283 void napi_get_frags_check(struct napi_struct *napi) 284 { 285 struct sk_buff *skb; 286 287 local_bh_disable(); 288 skb = napi_get_frags(napi); 289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 290 napi_free_frags(napi); 291 local_bh_enable(); 292 } 293 294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 295 { 296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 297 298 fragsz = SKB_DATA_ALIGN(fragsz); 299 300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 301 } 302 EXPORT_SYMBOL(__napi_alloc_frag_align); 303 304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 305 { 306 void *data; 307 308 fragsz = SKB_DATA_ALIGN(fragsz); 309 if (in_hardirq() || irqs_disabled()) { 310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 311 312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 313 } else { 314 struct napi_alloc_cache *nc; 315 316 local_bh_disable(); 317 nc = this_cpu_ptr(&napi_alloc_cache); 318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 319 local_bh_enable(); 320 } 321 return data; 322 } 323 EXPORT_SYMBOL(__netdev_alloc_frag_align); 324 325 static struct sk_buff *napi_skb_cache_get(void) 326 { 327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 328 struct sk_buff *skb; 329 330 if (unlikely(!nc->skb_count)) { 331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 332 GFP_ATOMIC, 333 NAPI_SKB_CACHE_BULK, 334 nc->skb_cache); 335 if (unlikely(!nc->skb_count)) 336 return NULL; 337 } 338 339 skb = nc->skb_cache[--nc->skb_count]; 340 kasan_unpoison_object_data(skbuff_cache, skb); 341 342 return skb; 343 } 344 345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 346 unsigned int size) 347 { 348 struct skb_shared_info *shinfo; 349 350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 351 352 /* Assumes caller memset cleared SKB */ 353 skb->truesize = SKB_TRUESIZE(size); 354 refcount_set(&skb->users, 1); 355 skb->head = data; 356 skb->data = data; 357 skb_reset_tail_pointer(skb); 358 skb_set_end_offset(skb, size); 359 skb->mac_header = (typeof(skb->mac_header))~0U; 360 skb->transport_header = (typeof(skb->transport_header))~0U; 361 skb->alloc_cpu = raw_smp_processor_id(); 362 /* make sure we initialize shinfo sequentially */ 363 shinfo = skb_shinfo(skb); 364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 365 atomic_set(&shinfo->dataref, 1); 366 367 skb_set_kcov_handle(skb, kcov_common_handle()); 368 } 369 370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 371 unsigned int *size) 372 { 373 void *resized; 374 375 /* Must find the allocation size (and grow it to match). */ 376 *size = ksize(data); 377 /* krealloc() will immediately return "data" when 378 * "ksize(data)" is requested: it is the existing upper 379 * bounds. As a result, GFP_ATOMIC will be ignored. Note 380 * that this "new" pointer needs to be passed back to the 381 * caller for use so the __alloc_size hinting will be 382 * tracked correctly. 383 */ 384 resized = krealloc(data, *size, GFP_ATOMIC); 385 WARN_ON_ONCE(resized != data); 386 return resized; 387 } 388 389 /* build_skb() variant which can operate on slab buffers. 390 * Note that this should be used sparingly as slab buffers 391 * cannot be combined efficiently by GRO! 392 */ 393 struct sk_buff *slab_build_skb(void *data) 394 { 395 struct sk_buff *skb; 396 unsigned int size; 397 398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 399 if (unlikely(!skb)) 400 return NULL; 401 402 memset(skb, 0, offsetof(struct sk_buff, tail)); 403 data = __slab_build_skb(skb, data, &size); 404 __finalize_skb_around(skb, data, size); 405 406 return skb; 407 } 408 EXPORT_SYMBOL(slab_build_skb); 409 410 /* Caller must provide SKB that is memset cleared */ 411 static void __build_skb_around(struct sk_buff *skb, void *data, 412 unsigned int frag_size) 413 { 414 unsigned int size = frag_size; 415 416 /* frag_size == 0 is considered deprecated now. Callers 417 * using slab buffer should use slab_build_skb() instead. 418 */ 419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 420 data = __slab_build_skb(skb, data, &size); 421 422 __finalize_skb_around(skb, data, size); 423 } 424 425 /** 426 * __build_skb - build a network buffer 427 * @data: data buffer provided by caller 428 * @frag_size: size of data (must not be 0) 429 * 430 * Allocate a new &sk_buff. Caller provides space holding head and 431 * skb_shared_info. @data must have been allocated from the page 432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 433 * allocation is deprecated, and callers should use slab_build_skb() 434 * instead.) 435 * The return is the new skb buffer. 436 * On a failure the return is %NULL, and @data is not freed. 437 * Notes : 438 * Before IO, driver allocates only data buffer where NIC put incoming frame 439 * Driver should add room at head (NET_SKB_PAD) and 440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 442 * before giving packet to stack. 443 * RX rings only contains data buffers, not full skbs. 444 */ 445 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 446 { 447 struct sk_buff *skb; 448 449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 450 if (unlikely(!skb)) 451 return NULL; 452 453 memset(skb, 0, offsetof(struct sk_buff, tail)); 454 __build_skb_around(skb, data, frag_size); 455 456 return skb; 457 } 458 459 /* build_skb() is wrapper over __build_skb(), that specifically 460 * takes care of skb->head and skb->pfmemalloc 461 */ 462 struct sk_buff *build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb = __build_skb(data, frag_size); 465 466 if (likely(skb && frag_size)) { 467 skb->head_frag = 1; 468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 469 } 470 return skb; 471 } 472 EXPORT_SYMBOL(build_skb); 473 474 /** 475 * build_skb_around - build a network buffer around provided skb 476 * @skb: sk_buff provide by caller, must be memset cleared 477 * @data: data buffer provided by caller 478 * @frag_size: size of data 479 */ 480 struct sk_buff *build_skb_around(struct sk_buff *skb, 481 void *data, unsigned int frag_size) 482 { 483 if (unlikely(!skb)) 484 return NULL; 485 486 __build_skb_around(skb, data, frag_size); 487 488 if (frag_size) { 489 skb->head_frag = 1; 490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 491 } 492 return skb; 493 } 494 EXPORT_SYMBOL(build_skb_around); 495 496 /** 497 * __napi_build_skb - build a network buffer 498 * @data: data buffer provided by caller 499 * @frag_size: size of data 500 * 501 * Version of __build_skb() that uses NAPI percpu caches to obtain 502 * skbuff_head instead of inplace allocation. 503 * 504 * Returns a new &sk_buff on success, %NULL on allocation failure. 505 */ 506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 507 { 508 struct sk_buff *skb; 509 510 skb = napi_skb_cache_get(); 511 if (unlikely(!skb)) 512 return NULL; 513 514 memset(skb, 0, offsetof(struct sk_buff, tail)); 515 __build_skb_around(skb, data, frag_size); 516 517 return skb; 518 } 519 520 /** 521 * napi_build_skb - build a network buffer 522 * @data: data buffer provided by caller 523 * @frag_size: size of data 524 * 525 * Version of __napi_build_skb() that takes care of skb->head_frag 526 * and skb->pfmemalloc when the data is a page or page fragment. 527 * 528 * Returns a new &sk_buff on success, %NULL on allocation failure. 529 */ 530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 531 { 532 struct sk_buff *skb = __napi_build_skb(data, frag_size); 533 534 if (likely(skb) && frag_size) { 535 skb->head_frag = 1; 536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 537 } 538 539 return skb; 540 } 541 EXPORT_SYMBOL(napi_build_skb); 542 543 /* 544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 545 * the caller if emergency pfmemalloc reserves are being used. If it is and 546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 547 * may be used. Otherwise, the packet data may be discarded until enough 548 * memory is free 549 */ 550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 551 bool *pfmemalloc) 552 { 553 bool ret_pfmemalloc = false; 554 size_t obj_size; 555 void *obj; 556 557 obj_size = SKB_HEAD_ALIGN(*size); 558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 559 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 560 obj = kmem_cache_alloc_node(skb_small_head_cache, 561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 562 node); 563 *size = SKB_SMALL_HEAD_CACHE_SIZE; 564 if (obj || !(gfp_pfmemalloc_allowed(flags))) 565 goto out; 566 /* Try again but now we are using pfmemalloc reserves */ 567 ret_pfmemalloc = true; 568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 569 goto out; 570 } 571 572 obj_size = kmalloc_size_roundup(obj_size); 573 /* The following cast might truncate high-order bits of obj_size, this 574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 575 */ 576 *size = (unsigned int)obj_size; 577 578 /* 579 * Try a regular allocation, when that fails and we're not entitled 580 * to the reserves, fail. 581 */ 582 obj = kmalloc_node_track_caller(obj_size, 583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 584 node); 585 if (obj || !(gfp_pfmemalloc_allowed(flags))) 586 goto out; 587 588 /* Try again but now we are using pfmemalloc reserves */ 589 ret_pfmemalloc = true; 590 obj = kmalloc_node_track_caller(obj_size, flags, node); 591 592 out: 593 if (pfmemalloc) 594 *pfmemalloc = ret_pfmemalloc; 595 596 return obj; 597 } 598 599 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 600 * 'private' fields and also do memory statistics to find all the 601 * [BEEP] leaks. 602 * 603 */ 604 605 /** 606 * __alloc_skb - allocate a network buffer 607 * @size: size to allocate 608 * @gfp_mask: allocation mask 609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 610 * instead of head cache and allocate a cloned (child) skb. 611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 612 * allocations in case the data is required for writeback 613 * @node: numa node to allocate memory on 614 * 615 * Allocate a new &sk_buff. The returned buffer has no headroom and a 616 * tail room of at least size bytes. The object has a reference count 617 * of one. The return is the buffer. On a failure the return is %NULL. 618 * 619 * Buffers may only be allocated from interrupts using a @gfp_mask of 620 * %GFP_ATOMIC. 621 */ 622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 623 int flags, int node) 624 { 625 struct kmem_cache *cache; 626 struct sk_buff *skb; 627 bool pfmemalloc; 628 u8 *data; 629 630 cache = (flags & SKB_ALLOC_FCLONE) 631 ? skbuff_fclone_cache : skbuff_cache; 632 633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 634 gfp_mask |= __GFP_MEMALLOC; 635 636 /* Get the HEAD */ 637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 638 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 639 skb = napi_skb_cache_get(); 640 else 641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 642 if (unlikely(!skb)) 643 return NULL; 644 prefetchw(skb); 645 646 /* We do our best to align skb_shared_info on a separate cache 647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 648 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 649 * Both skb->head and skb_shared_info are cache line aligned. 650 */ 651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 652 if (unlikely(!data)) 653 goto nodata; 654 /* kmalloc_size_roundup() might give us more room than requested. 655 * Put skb_shared_info exactly at the end of allocated zone, 656 * to allow max possible filling before reallocation. 657 */ 658 prefetchw(data + SKB_WITH_OVERHEAD(size)); 659 660 /* 661 * Only clear those fields we need to clear, not those that we will 662 * actually initialise below. Hence, don't put any more fields after 663 * the tail pointer in struct sk_buff! 664 */ 665 memset(skb, 0, offsetof(struct sk_buff, tail)); 666 __build_skb_around(skb, data, size); 667 skb->pfmemalloc = pfmemalloc; 668 669 if (flags & SKB_ALLOC_FCLONE) { 670 struct sk_buff_fclones *fclones; 671 672 fclones = container_of(skb, struct sk_buff_fclones, skb1); 673 674 skb->fclone = SKB_FCLONE_ORIG; 675 refcount_set(&fclones->fclone_ref, 1); 676 } 677 678 return skb; 679 680 nodata: 681 kmem_cache_free(cache, skb); 682 return NULL; 683 } 684 EXPORT_SYMBOL(__alloc_skb); 685 686 /** 687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 688 * @dev: network device to receive on 689 * @len: length to allocate 690 * @gfp_mask: get_free_pages mask, passed to alloc_skb 691 * 692 * Allocate a new &sk_buff and assign it a usage count of one. The 693 * buffer has NET_SKB_PAD headroom built in. Users should allocate 694 * the headroom they think they need without accounting for the 695 * built in space. The built in space is used for optimisations. 696 * 697 * %NULL is returned if there is no free memory. 698 */ 699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 700 gfp_t gfp_mask) 701 { 702 struct page_frag_cache *nc; 703 struct sk_buff *skb; 704 bool pfmemalloc; 705 void *data; 706 707 len += NET_SKB_PAD; 708 709 /* If requested length is either too small or too big, 710 * we use kmalloc() for skb->head allocation. 711 */ 712 if (len <= SKB_WITH_OVERHEAD(1024) || 713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 716 if (!skb) 717 goto skb_fail; 718 goto skb_success; 719 } 720 721 len = SKB_HEAD_ALIGN(len); 722 723 if (sk_memalloc_socks()) 724 gfp_mask |= __GFP_MEMALLOC; 725 726 if (in_hardirq() || irqs_disabled()) { 727 nc = this_cpu_ptr(&netdev_alloc_cache); 728 data = page_frag_alloc(nc, len, gfp_mask); 729 pfmemalloc = nc->pfmemalloc; 730 } else { 731 local_bh_disable(); 732 nc = this_cpu_ptr(&napi_alloc_cache.page); 733 data = page_frag_alloc(nc, len, gfp_mask); 734 pfmemalloc = nc->pfmemalloc; 735 local_bh_enable(); 736 } 737 738 if (unlikely(!data)) 739 return NULL; 740 741 skb = __build_skb(data, len); 742 if (unlikely(!skb)) { 743 skb_free_frag(data); 744 return NULL; 745 } 746 747 if (pfmemalloc) 748 skb->pfmemalloc = 1; 749 skb->head_frag = 1; 750 751 skb_success: 752 skb_reserve(skb, NET_SKB_PAD); 753 skb->dev = dev; 754 755 skb_fail: 756 return skb; 757 } 758 EXPORT_SYMBOL(__netdev_alloc_skb); 759 760 /** 761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 762 * @napi: napi instance this buffer was allocated for 763 * @len: length to allocate 764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 765 * 766 * Allocate a new sk_buff for use in NAPI receive. This buffer will 767 * attempt to allocate the head from a special reserved region used 768 * only for NAPI Rx allocation. By doing this we can save several 769 * CPU cycles by avoiding having to disable and re-enable IRQs. 770 * 771 * %NULL is returned if there is no free memory. 772 */ 773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 774 gfp_t gfp_mask) 775 { 776 struct napi_alloc_cache *nc; 777 struct sk_buff *skb; 778 bool pfmemalloc; 779 void *data; 780 781 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 782 len += NET_SKB_PAD + NET_IP_ALIGN; 783 784 /* If requested length is either too small or too big, 785 * we use kmalloc() for skb->head allocation. 786 * When the small frag allocator is available, prefer it over kmalloc 787 * for small fragments 788 */ 789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 793 NUMA_NO_NODE); 794 if (!skb) 795 goto skb_fail; 796 goto skb_success; 797 } 798 799 nc = this_cpu_ptr(&napi_alloc_cache); 800 801 if (sk_memalloc_socks()) 802 gfp_mask |= __GFP_MEMALLOC; 803 804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 805 /* we are artificially inflating the allocation size, but 806 * that is not as bad as it may look like, as: 807 * - 'len' less than GRO_MAX_HEAD makes little sense 808 * - On most systems, larger 'len' values lead to fragment 809 * size above 512 bytes 810 * - kmalloc would use the kmalloc-1k slab for such values 811 * - Builds with smaller GRO_MAX_HEAD will very likely do 812 * little networking, as that implies no WiFi and no 813 * tunnels support, and 32 bits arches. 814 */ 815 len = SZ_1K; 816 817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 819 } else { 820 len = SKB_HEAD_ALIGN(len); 821 822 data = page_frag_alloc(&nc->page, len, gfp_mask); 823 pfmemalloc = nc->page.pfmemalloc; 824 } 825 826 if (unlikely(!data)) 827 return NULL; 828 829 skb = __napi_build_skb(data, len); 830 if (unlikely(!skb)) { 831 skb_free_frag(data); 832 return NULL; 833 } 834 835 if (pfmemalloc) 836 skb->pfmemalloc = 1; 837 skb->head_frag = 1; 838 839 skb_success: 840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 841 skb->dev = napi->dev; 842 843 skb_fail: 844 return skb; 845 } 846 EXPORT_SYMBOL(__napi_alloc_skb); 847 848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 849 int size, unsigned int truesize) 850 { 851 DEBUG_NET_WARN_ON_ONCE(size > truesize); 852 853 skb_fill_page_desc(skb, i, page, off, size); 854 skb->len += size; 855 skb->data_len += size; 856 skb->truesize += truesize; 857 } 858 EXPORT_SYMBOL(skb_add_rx_frag); 859 860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 861 unsigned int truesize) 862 { 863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 864 865 DEBUG_NET_WARN_ON_ONCE(size > truesize); 866 867 skb_frag_size_add(frag, size); 868 skb->len += size; 869 skb->data_len += size; 870 skb->truesize += truesize; 871 } 872 EXPORT_SYMBOL(skb_coalesce_rx_frag); 873 874 static void skb_drop_list(struct sk_buff **listp) 875 { 876 kfree_skb_list(*listp); 877 *listp = NULL; 878 } 879 880 static inline void skb_drop_fraglist(struct sk_buff *skb) 881 { 882 skb_drop_list(&skb_shinfo(skb)->frag_list); 883 } 884 885 static void skb_clone_fraglist(struct sk_buff *skb) 886 { 887 struct sk_buff *list; 888 889 skb_walk_frags(skb, list) 890 skb_get(list); 891 } 892 893 #if IS_ENABLED(CONFIG_PAGE_POOL) 894 bool napi_pp_put_page(struct page *page, bool napi_safe) 895 { 896 bool allow_direct = false; 897 struct page_pool *pp; 898 899 page = compound_head(page); 900 901 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 902 * in order to preserve any existing bits, such as bit 0 for the 903 * head page of compound page and bit 1 for pfmemalloc page, so 904 * mask those bits for freeing side when doing below checking, 905 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 906 * to avoid recycling the pfmemalloc page. 907 */ 908 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 909 return false; 910 911 pp = page->pp; 912 913 /* Allow direct recycle if we have reasons to believe that we are 914 * in the same context as the consumer would run, so there's 915 * no possible race. 916 * __page_pool_put_page() makes sure we're not in hardirq context 917 * and interrupts are enabled prior to accessing the cache. 918 */ 919 if (napi_safe || in_softirq()) { 920 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 921 922 allow_direct = napi && 923 READ_ONCE(napi->list_owner) == smp_processor_id(); 924 } 925 926 /* Driver set this to memory recycling info. Reset it on recycle. 927 * This will *not* work for NIC using a split-page memory model. 928 * The page will be returned to the pool here regardless of the 929 * 'flipped' fragment being in use or not. 930 */ 931 page_pool_put_full_page(pp, page, allow_direct); 932 933 return true; 934 } 935 EXPORT_SYMBOL(napi_pp_put_page); 936 #endif 937 938 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 939 { 940 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 941 return false; 942 return napi_pp_put_page(virt_to_page(data), napi_safe); 943 } 944 945 static void skb_kfree_head(void *head, unsigned int end_offset) 946 { 947 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 948 kmem_cache_free(skb_small_head_cache, head); 949 else 950 kfree(head); 951 } 952 953 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 954 { 955 unsigned char *head = skb->head; 956 957 if (skb->head_frag) { 958 if (skb_pp_recycle(skb, head, napi_safe)) 959 return; 960 skb_free_frag(head); 961 } else { 962 skb_kfree_head(head, skb_end_offset(skb)); 963 } 964 } 965 966 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 967 bool napi_safe) 968 { 969 struct skb_shared_info *shinfo = skb_shinfo(skb); 970 int i; 971 972 if (skb->cloned && 973 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 974 &shinfo->dataref)) 975 goto exit; 976 977 if (skb_zcopy(skb)) { 978 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 979 980 skb_zcopy_clear(skb, true); 981 if (skip_unref) 982 goto free_head; 983 } 984 985 for (i = 0; i < shinfo->nr_frags; i++) 986 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 987 988 free_head: 989 if (shinfo->frag_list) 990 kfree_skb_list_reason(shinfo->frag_list, reason); 991 992 skb_free_head(skb, napi_safe); 993 exit: 994 /* When we clone an SKB we copy the reycling bit. The pp_recycle 995 * bit is only set on the head though, so in order to avoid races 996 * while trying to recycle fragments on __skb_frag_unref() we need 997 * to make one SKB responsible for triggering the recycle path. 998 * So disable the recycling bit if an SKB is cloned and we have 999 * additional references to the fragmented part of the SKB. 1000 * Eventually the last SKB will have the recycling bit set and it's 1001 * dataref set to 0, which will trigger the recycling 1002 */ 1003 skb->pp_recycle = 0; 1004 } 1005 1006 /* 1007 * Free an skbuff by memory without cleaning the state. 1008 */ 1009 static void kfree_skbmem(struct sk_buff *skb) 1010 { 1011 struct sk_buff_fclones *fclones; 1012 1013 switch (skb->fclone) { 1014 case SKB_FCLONE_UNAVAILABLE: 1015 kmem_cache_free(skbuff_cache, skb); 1016 return; 1017 1018 case SKB_FCLONE_ORIG: 1019 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1020 1021 /* We usually free the clone (TX completion) before original skb 1022 * This test would have no chance to be true for the clone, 1023 * while here, branch prediction will be good. 1024 */ 1025 if (refcount_read(&fclones->fclone_ref) == 1) 1026 goto fastpath; 1027 break; 1028 1029 default: /* SKB_FCLONE_CLONE */ 1030 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1031 break; 1032 } 1033 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1034 return; 1035 fastpath: 1036 kmem_cache_free(skbuff_fclone_cache, fclones); 1037 } 1038 1039 void skb_release_head_state(struct sk_buff *skb) 1040 { 1041 skb_dst_drop(skb); 1042 if (skb->destructor) { 1043 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1044 skb->destructor(skb); 1045 } 1046 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1047 nf_conntrack_put(skb_nfct(skb)); 1048 #endif 1049 skb_ext_put(skb); 1050 } 1051 1052 /* Free everything but the sk_buff shell. */ 1053 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1054 bool napi_safe) 1055 { 1056 skb_release_head_state(skb); 1057 if (likely(skb->head)) 1058 skb_release_data(skb, reason, napi_safe); 1059 } 1060 1061 /** 1062 * __kfree_skb - private function 1063 * @skb: buffer 1064 * 1065 * Free an sk_buff. Release anything attached to the buffer. 1066 * Clean the state. This is an internal helper function. Users should 1067 * always call kfree_skb 1068 */ 1069 1070 void __kfree_skb(struct sk_buff *skb) 1071 { 1072 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1073 kfree_skbmem(skb); 1074 } 1075 EXPORT_SYMBOL(__kfree_skb); 1076 1077 static __always_inline 1078 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1079 { 1080 if (unlikely(!skb_unref(skb))) 1081 return false; 1082 1083 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1084 u32_get_bits(reason, 1085 SKB_DROP_REASON_SUBSYS_MASK) >= 1086 SKB_DROP_REASON_SUBSYS_NUM); 1087 1088 if (reason == SKB_CONSUMED) 1089 trace_consume_skb(skb, __builtin_return_address(0)); 1090 else 1091 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1092 return true; 1093 } 1094 1095 /** 1096 * kfree_skb_reason - free an sk_buff with special reason 1097 * @skb: buffer to free 1098 * @reason: reason why this skb is dropped 1099 * 1100 * Drop a reference to the buffer and free it if the usage count has 1101 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1102 * tracepoint. 1103 */ 1104 void __fix_address 1105 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1106 { 1107 if (__kfree_skb_reason(skb, reason)) 1108 __kfree_skb(skb); 1109 } 1110 EXPORT_SYMBOL(kfree_skb_reason); 1111 1112 #define KFREE_SKB_BULK_SIZE 16 1113 1114 struct skb_free_array { 1115 unsigned int skb_count; 1116 void *skb_array[KFREE_SKB_BULK_SIZE]; 1117 }; 1118 1119 static void kfree_skb_add_bulk(struct sk_buff *skb, 1120 struct skb_free_array *sa, 1121 enum skb_drop_reason reason) 1122 { 1123 /* if SKB is a clone, don't handle this case */ 1124 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1125 __kfree_skb(skb); 1126 return; 1127 } 1128 1129 skb_release_all(skb, reason, false); 1130 sa->skb_array[sa->skb_count++] = skb; 1131 1132 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1133 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1134 sa->skb_array); 1135 sa->skb_count = 0; 1136 } 1137 } 1138 1139 void __fix_address 1140 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1141 { 1142 struct skb_free_array sa; 1143 1144 sa.skb_count = 0; 1145 1146 while (segs) { 1147 struct sk_buff *next = segs->next; 1148 1149 if (__kfree_skb_reason(segs, reason)) { 1150 skb_poison_list(segs); 1151 kfree_skb_add_bulk(segs, &sa, reason); 1152 } 1153 1154 segs = next; 1155 } 1156 1157 if (sa.skb_count) 1158 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1159 } 1160 EXPORT_SYMBOL(kfree_skb_list_reason); 1161 1162 /* Dump skb information and contents. 1163 * 1164 * Must only be called from net_ratelimit()-ed paths. 1165 * 1166 * Dumps whole packets if full_pkt, only headers otherwise. 1167 */ 1168 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1169 { 1170 struct skb_shared_info *sh = skb_shinfo(skb); 1171 struct net_device *dev = skb->dev; 1172 struct sock *sk = skb->sk; 1173 struct sk_buff *list_skb; 1174 bool has_mac, has_trans; 1175 int headroom, tailroom; 1176 int i, len, seg_len; 1177 1178 if (full_pkt) 1179 len = skb->len; 1180 else 1181 len = min_t(int, skb->len, MAX_HEADER + 128); 1182 1183 headroom = skb_headroom(skb); 1184 tailroom = skb_tailroom(skb); 1185 1186 has_mac = skb_mac_header_was_set(skb); 1187 has_trans = skb_transport_header_was_set(skb); 1188 1189 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1190 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1191 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1192 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1193 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1194 level, skb->len, headroom, skb_headlen(skb), tailroom, 1195 has_mac ? skb->mac_header : -1, 1196 has_mac ? skb_mac_header_len(skb) : -1, 1197 skb->network_header, 1198 has_trans ? skb_network_header_len(skb) : -1, 1199 has_trans ? skb->transport_header : -1, 1200 sh->tx_flags, sh->nr_frags, 1201 sh->gso_size, sh->gso_type, sh->gso_segs, 1202 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1203 skb->csum_valid, skb->csum_level, 1204 skb->hash, skb->sw_hash, skb->l4_hash, 1205 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1206 1207 if (dev) 1208 printk("%sdev name=%s feat=%pNF\n", 1209 level, dev->name, &dev->features); 1210 if (sk) 1211 printk("%ssk family=%hu type=%u proto=%u\n", 1212 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1213 1214 if (full_pkt && headroom) 1215 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1216 16, 1, skb->head, headroom, false); 1217 1218 seg_len = min_t(int, skb_headlen(skb), len); 1219 if (seg_len) 1220 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1221 16, 1, skb->data, seg_len, false); 1222 len -= seg_len; 1223 1224 if (full_pkt && tailroom) 1225 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1226 16, 1, skb_tail_pointer(skb), tailroom, false); 1227 1228 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1229 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1230 u32 p_off, p_len, copied; 1231 struct page *p; 1232 u8 *vaddr; 1233 1234 skb_frag_foreach_page(frag, skb_frag_off(frag), 1235 skb_frag_size(frag), p, p_off, p_len, 1236 copied) { 1237 seg_len = min_t(int, p_len, len); 1238 vaddr = kmap_atomic(p); 1239 print_hex_dump(level, "skb frag: ", 1240 DUMP_PREFIX_OFFSET, 1241 16, 1, vaddr + p_off, seg_len, false); 1242 kunmap_atomic(vaddr); 1243 len -= seg_len; 1244 if (!len) 1245 break; 1246 } 1247 } 1248 1249 if (full_pkt && skb_has_frag_list(skb)) { 1250 printk("skb fraglist:\n"); 1251 skb_walk_frags(skb, list_skb) 1252 skb_dump(level, list_skb, true); 1253 } 1254 } 1255 EXPORT_SYMBOL(skb_dump); 1256 1257 /** 1258 * skb_tx_error - report an sk_buff xmit error 1259 * @skb: buffer that triggered an error 1260 * 1261 * Report xmit error if a device callback is tracking this skb. 1262 * skb must be freed afterwards. 1263 */ 1264 void skb_tx_error(struct sk_buff *skb) 1265 { 1266 if (skb) { 1267 skb_zcopy_downgrade_managed(skb); 1268 skb_zcopy_clear(skb, true); 1269 } 1270 } 1271 EXPORT_SYMBOL(skb_tx_error); 1272 1273 #ifdef CONFIG_TRACEPOINTS 1274 /** 1275 * consume_skb - free an skbuff 1276 * @skb: buffer to free 1277 * 1278 * Drop a ref to the buffer and free it if the usage count has hit zero 1279 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1280 * is being dropped after a failure and notes that 1281 */ 1282 void consume_skb(struct sk_buff *skb) 1283 { 1284 if (!skb_unref(skb)) 1285 return; 1286 1287 trace_consume_skb(skb, __builtin_return_address(0)); 1288 __kfree_skb(skb); 1289 } 1290 EXPORT_SYMBOL(consume_skb); 1291 #endif 1292 1293 /** 1294 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1295 * @skb: buffer to free 1296 * 1297 * Alike consume_skb(), but this variant assumes that this is the last 1298 * skb reference and all the head states have been already dropped 1299 */ 1300 void __consume_stateless_skb(struct sk_buff *skb) 1301 { 1302 trace_consume_skb(skb, __builtin_return_address(0)); 1303 skb_release_data(skb, SKB_CONSUMED, false); 1304 kfree_skbmem(skb); 1305 } 1306 1307 static void napi_skb_cache_put(struct sk_buff *skb) 1308 { 1309 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1310 u32 i; 1311 1312 kasan_poison_object_data(skbuff_cache, skb); 1313 nc->skb_cache[nc->skb_count++] = skb; 1314 1315 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1316 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1317 kasan_unpoison_object_data(skbuff_cache, 1318 nc->skb_cache[i]); 1319 1320 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1321 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1322 nc->skb_count = NAPI_SKB_CACHE_HALF; 1323 } 1324 } 1325 1326 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1327 { 1328 skb_release_all(skb, reason, true); 1329 napi_skb_cache_put(skb); 1330 } 1331 1332 void napi_skb_free_stolen_head(struct sk_buff *skb) 1333 { 1334 if (unlikely(skb->slow_gro)) { 1335 nf_reset_ct(skb); 1336 skb_dst_drop(skb); 1337 skb_ext_put(skb); 1338 skb_orphan(skb); 1339 skb->slow_gro = 0; 1340 } 1341 napi_skb_cache_put(skb); 1342 } 1343 1344 void napi_consume_skb(struct sk_buff *skb, int budget) 1345 { 1346 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1347 if (unlikely(!budget)) { 1348 dev_consume_skb_any(skb); 1349 return; 1350 } 1351 1352 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1353 1354 if (!skb_unref(skb)) 1355 return; 1356 1357 /* if reaching here SKB is ready to free */ 1358 trace_consume_skb(skb, __builtin_return_address(0)); 1359 1360 /* if SKB is a clone, don't handle this case */ 1361 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1362 __kfree_skb(skb); 1363 return; 1364 } 1365 1366 skb_release_all(skb, SKB_CONSUMED, !!budget); 1367 napi_skb_cache_put(skb); 1368 } 1369 EXPORT_SYMBOL(napi_consume_skb); 1370 1371 /* Make sure a field is contained by headers group */ 1372 #define CHECK_SKB_FIELD(field) \ 1373 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1374 offsetof(struct sk_buff, headers.field)); \ 1375 1376 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1377 { 1378 new->tstamp = old->tstamp; 1379 /* We do not copy old->sk */ 1380 new->dev = old->dev; 1381 memcpy(new->cb, old->cb, sizeof(old->cb)); 1382 skb_dst_copy(new, old); 1383 __skb_ext_copy(new, old); 1384 __nf_copy(new, old, false); 1385 1386 /* Note : this field could be in the headers group. 1387 * It is not yet because we do not want to have a 16 bit hole 1388 */ 1389 new->queue_mapping = old->queue_mapping; 1390 1391 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1392 CHECK_SKB_FIELD(protocol); 1393 CHECK_SKB_FIELD(csum); 1394 CHECK_SKB_FIELD(hash); 1395 CHECK_SKB_FIELD(priority); 1396 CHECK_SKB_FIELD(skb_iif); 1397 CHECK_SKB_FIELD(vlan_proto); 1398 CHECK_SKB_FIELD(vlan_tci); 1399 CHECK_SKB_FIELD(transport_header); 1400 CHECK_SKB_FIELD(network_header); 1401 CHECK_SKB_FIELD(mac_header); 1402 CHECK_SKB_FIELD(inner_protocol); 1403 CHECK_SKB_FIELD(inner_transport_header); 1404 CHECK_SKB_FIELD(inner_network_header); 1405 CHECK_SKB_FIELD(inner_mac_header); 1406 CHECK_SKB_FIELD(mark); 1407 #ifdef CONFIG_NETWORK_SECMARK 1408 CHECK_SKB_FIELD(secmark); 1409 #endif 1410 #ifdef CONFIG_NET_RX_BUSY_POLL 1411 CHECK_SKB_FIELD(napi_id); 1412 #endif 1413 CHECK_SKB_FIELD(alloc_cpu); 1414 #ifdef CONFIG_XPS 1415 CHECK_SKB_FIELD(sender_cpu); 1416 #endif 1417 #ifdef CONFIG_NET_SCHED 1418 CHECK_SKB_FIELD(tc_index); 1419 #endif 1420 1421 } 1422 1423 /* 1424 * You should not add any new code to this function. Add it to 1425 * __copy_skb_header above instead. 1426 */ 1427 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1428 { 1429 #define C(x) n->x = skb->x 1430 1431 n->next = n->prev = NULL; 1432 n->sk = NULL; 1433 __copy_skb_header(n, skb); 1434 1435 C(len); 1436 C(data_len); 1437 C(mac_len); 1438 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1439 n->cloned = 1; 1440 n->nohdr = 0; 1441 n->peeked = 0; 1442 C(pfmemalloc); 1443 C(pp_recycle); 1444 n->destructor = NULL; 1445 C(tail); 1446 C(end); 1447 C(head); 1448 C(head_frag); 1449 C(data); 1450 C(truesize); 1451 refcount_set(&n->users, 1); 1452 1453 atomic_inc(&(skb_shinfo(skb)->dataref)); 1454 skb->cloned = 1; 1455 1456 return n; 1457 #undef C 1458 } 1459 1460 /** 1461 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1462 * @first: first sk_buff of the msg 1463 */ 1464 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1465 { 1466 struct sk_buff *n; 1467 1468 n = alloc_skb(0, GFP_ATOMIC); 1469 if (!n) 1470 return NULL; 1471 1472 n->len = first->len; 1473 n->data_len = first->len; 1474 n->truesize = first->truesize; 1475 1476 skb_shinfo(n)->frag_list = first; 1477 1478 __copy_skb_header(n, first); 1479 n->destructor = NULL; 1480 1481 return n; 1482 } 1483 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1484 1485 /** 1486 * skb_morph - morph one skb into another 1487 * @dst: the skb to receive the contents 1488 * @src: the skb to supply the contents 1489 * 1490 * This is identical to skb_clone except that the target skb is 1491 * supplied by the user. 1492 * 1493 * The target skb is returned upon exit. 1494 */ 1495 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1496 { 1497 skb_release_all(dst, SKB_CONSUMED, false); 1498 return __skb_clone(dst, src); 1499 } 1500 EXPORT_SYMBOL_GPL(skb_morph); 1501 1502 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1503 { 1504 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1505 struct user_struct *user; 1506 1507 if (capable(CAP_IPC_LOCK) || !size) 1508 return 0; 1509 1510 rlim = rlimit(RLIMIT_MEMLOCK); 1511 if (rlim == RLIM_INFINITY) 1512 return 0; 1513 1514 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1515 max_pg = rlim >> PAGE_SHIFT; 1516 user = mmp->user ? : current_user(); 1517 1518 old_pg = atomic_long_read(&user->locked_vm); 1519 do { 1520 new_pg = old_pg + num_pg; 1521 if (new_pg > max_pg) 1522 return -ENOBUFS; 1523 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1524 1525 if (!mmp->user) { 1526 mmp->user = get_uid(user); 1527 mmp->num_pg = num_pg; 1528 } else { 1529 mmp->num_pg += num_pg; 1530 } 1531 1532 return 0; 1533 } 1534 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1535 1536 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1537 { 1538 if (mmp->user) { 1539 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1540 free_uid(mmp->user); 1541 } 1542 } 1543 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1544 1545 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1546 { 1547 struct ubuf_info_msgzc *uarg; 1548 struct sk_buff *skb; 1549 1550 WARN_ON_ONCE(!in_task()); 1551 1552 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1553 if (!skb) 1554 return NULL; 1555 1556 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1557 uarg = (void *)skb->cb; 1558 uarg->mmp.user = NULL; 1559 1560 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1561 kfree_skb(skb); 1562 return NULL; 1563 } 1564 1565 uarg->ubuf.callback = msg_zerocopy_callback; 1566 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1567 uarg->len = 1; 1568 uarg->bytelen = size; 1569 uarg->zerocopy = 1; 1570 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1571 refcount_set(&uarg->ubuf.refcnt, 1); 1572 sock_hold(sk); 1573 1574 return &uarg->ubuf; 1575 } 1576 1577 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1578 { 1579 return container_of((void *)uarg, struct sk_buff, cb); 1580 } 1581 1582 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1583 struct ubuf_info *uarg) 1584 { 1585 if (uarg) { 1586 struct ubuf_info_msgzc *uarg_zc; 1587 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1588 u32 bytelen, next; 1589 1590 /* there might be non MSG_ZEROCOPY users */ 1591 if (uarg->callback != msg_zerocopy_callback) 1592 return NULL; 1593 1594 /* realloc only when socket is locked (TCP, UDP cork), 1595 * so uarg->len and sk_zckey access is serialized 1596 */ 1597 if (!sock_owned_by_user(sk)) { 1598 WARN_ON_ONCE(1); 1599 return NULL; 1600 } 1601 1602 uarg_zc = uarg_to_msgzc(uarg); 1603 bytelen = uarg_zc->bytelen + size; 1604 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1605 /* TCP can create new skb to attach new uarg */ 1606 if (sk->sk_type == SOCK_STREAM) 1607 goto new_alloc; 1608 return NULL; 1609 } 1610 1611 next = (u32)atomic_read(&sk->sk_zckey); 1612 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1613 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1614 return NULL; 1615 uarg_zc->len++; 1616 uarg_zc->bytelen = bytelen; 1617 atomic_set(&sk->sk_zckey, ++next); 1618 1619 /* no extra ref when appending to datagram (MSG_MORE) */ 1620 if (sk->sk_type == SOCK_STREAM) 1621 net_zcopy_get(uarg); 1622 1623 return uarg; 1624 } 1625 } 1626 1627 new_alloc: 1628 return msg_zerocopy_alloc(sk, size); 1629 } 1630 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1631 1632 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1633 { 1634 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1635 u32 old_lo, old_hi; 1636 u64 sum_len; 1637 1638 old_lo = serr->ee.ee_info; 1639 old_hi = serr->ee.ee_data; 1640 sum_len = old_hi - old_lo + 1ULL + len; 1641 1642 if (sum_len >= (1ULL << 32)) 1643 return false; 1644 1645 if (lo != old_hi + 1) 1646 return false; 1647 1648 serr->ee.ee_data += len; 1649 return true; 1650 } 1651 1652 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1653 { 1654 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1655 struct sock_exterr_skb *serr; 1656 struct sock *sk = skb->sk; 1657 struct sk_buff_head *q; 1658 unsigned long flags; 1659 bool is_zerocopy; 1660 u32 lo, hi; 1661 u16 len; 1662 1663 mm_unaccount_pinned_pages(&uarg->mmp); 1664 1665 /* if !len, there was only 1 call, and it was aborted 1666 * so do not queue a completion notification 1667 */ 1668 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1669 goto release; 1670 1671 len = uarg->len; 1672 lo = uarg->id; 1673 hi = uarg->id + len - 1; 1674 is_zerocopy = uarg->zerocopy; 1675 1676 serr = SKB_EXT_ERR(skb); 1677 memset(serr, 0, sizeof(*serr)); 1678 serr->ee.ee_errno = 0; 1679 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1680 serr->ee.ee_data = hi; 1681 serr->ee.ee_info = lo; 1682 if (!is_zerocopy) 1683 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1684 1685 q = &sk->sk_error_queue; 1686 spin_lock_irqsave(&q->lock, flags); 1687 tail = skb_peek_tail(q); 1688 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1689 !skb_zerocopy_notify_extend(tail, lo, len)) { 1690 __skb_queue_tail(q, skb); 1691 skb = NULL; 1692 } 1693 spin_unlock_irqrestore(&q->lock, flags); 1694 1695 sk_error_report(sk); 1696 1697 release: 1698 consume_skb(skb); 1699 sock_put(sk); 1700 } 1701 1702 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1703 bool success) 1704 { 1705 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1706 1707 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1708 1709 if (refcount_dec_and_test(&uarg->refcnt)) 1710 __msg_zerocopy_callback(uarg_zc); 1711 } 1712 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1713 1714 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1715 { 1716 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1717 1718 atomic_dec(&sk->sk_zckey); 1719 uarg_to_msgzc(uarg)->len--; 1720 1721 if (have_uref) 1722 msg_zerocopy_callback(NULL, uarg, true); 1723 } 1724 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1725 1726 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1727 struct msghdr *msg, int len, 1728 struct ubuf_info *uarg) 1729 { 1730 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1731 int err, orig_len = skb->len; 1732 1733 /* An skb can only point to one uarg. This edge case happens when 1734 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1735 */ 1736 if (orig_uarg && uarg != orig_uarg) 1737 return -EEXIST; 1738 1739 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1740 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1741 struct sock *save_sk = skb->sk; 1742 1743 /* Streams do not free skb on error. Reset to prev state. */ 1744 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1745 skb->sk = sk; 1746 ___pskb_trim(skb, orig_len); 1747 skb->sk = save_sk; 1748 return err; 1749 } 1750 1751 skb_zcopy_set(skb, uarg, NULL); 1752 return skb->len - orig_len; 1753 } 1754 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1755 1756 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1757 { 1758 int i; 1759 1760 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1762 skb_frag_ref(skb, i); 1763 } 1764 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1765 1766 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1767 gfp_t gfp_mask) 1768 { 1769 if (skb_zcopy(orig)) { 1770 if (skb_zcopy(nskb)) { 1771 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1772 if (!gfp_mask) { 1773 WARN_ON_ONCE(1); 1774 return -ENOMEM; 1775 } 1776 if (skb_uarg(nskb) == skb_uarg(orig)) 1777 return 0; 1778 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1779 return -EIO; 1780 } 1781 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1782 } 1783 return 0; 1784 } 1785 1786 /** 1787 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1788 * @skb: the skb to modify 1789 * @gfp_mask: allocation priority 1790 * 1791 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1792 * It will copy all frags into kernel and drop the reference 1793 * to userspace pages. 1794 * 1795 * If this function is called from an interrupt gfp_mask() must be 1796 * %GFP_ATOMIC. 1797 * 1798 * Returns 0 on success or a negative error code on failure 1799 * to allocate kernel memory to copy to. 1800 */ 1801 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1802 { 1803 int num_frags = skb_shinfo(skb)->nr_frags; 1804 struct page *page, *head = NULL; 1805 int i, order, psize, new_frags; 1806 u32 d_off; 1807 1808 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1809 return -EINVAL; 1810 1811 if (!num_frags) 1812 goto release; 1813 1814 /* We might have to allocate high order pages, so compute what minimum 1815 * page order is needed. 1816 */ 1817 order = 0; 1818 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1819 order++; 1820 psize = (PAGE_SIZE << order); 1821 1822 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1823 for (i = 0; i < new_frags; i++) { 1824 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1825 if (!page) { 1826 while (head) { 1827 struct page *next = (struct page *)page_private(head); 1828 put_page(head); 1829 head = next; 1830 } 1831 return -ENOMEM; 1832 } 1833 set_page_private(page, (unsigned long)head); 1834 head = page; 1835 } 1836 1837 page = head; 1838 d_off = 0; 1839 for (i = 0; i < num_frags; i++) { 1840 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1841 u32 p_off, p_len, copied; 1842 struct page *p; 1843 u8 *vaddr; 1844 1845 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1846 p, p_off, p_len, copied) { 1847 u32 copy, done = 0; 1848 vaddr = kmap_atomic(p); 1849 1850 while (done < p_len) { 1851 if (d_off == psize) { 1852 d_off = 0; 1853 page = (struct page *)page_private(page); 1854 } 1855 copy = min_t(u32, psize - d_off, p_len - done); 1856 memcpy(page_address(page) + d_off, 1857 vaddr + p_off + done, copy); 1858 done += copy; 1859 d_off += copy; 1860 } 1861 kunmap_atomic(vaddr); 1862 } 1863 } 1864 1865 /* skb frags release userspace buffers */ 1866 for (i = 0; i < num_frags; i++) 1867 skb_frag_unref(skb, i); 1868 1869 /* skb frags point to kernel buffers */ 1870 for (i = 0; i < new_frags - 1; i++) { 1871 __skb_fill_page_desc(skb, i, head, 0, psize); 1872 head = (struct page *)page_private(head); 1873 } 1874 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1875 skb_shinfo(skb)->nr_frags = new_frags; 1876 1877 release: 1878 skb_zcopy_clear(skb, false); 1879 return 0; 1880 } 1881 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1882 1883 /** 1884 * skb_clone - duplicate an sk_buff 1885 * @skb: buffer to clone 1886 * @gfp_mask: allocation priority 1887 * 1888 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1889 * copies share the same packet data but not structure. The new 1890 * buffer has a reference count of 1. If the allocation fails the 1891 * function returns %NULL otherwise the new buffer is returned. 1892 * 1893 * If this function is called from an interrupt gfp_mask() must be 1894 * %GFP_ATOMIC. 1895 */ 1896 1897 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1898 { 1899 struct sk_buff_fclones *fclones = container_of(skb, 1900 struct sk_buff_fclones, 1901 skb1); 1902 struct sk_buff *n; 1903 1904 if (skb_orphan_frags(skb, gfp_mask)) 1905 return NULL; 1906 1907 if (skb->fclone == SKB_FCLONE_ORIG && 1908 refcount_read(&fclones->fclone_ref) == 1) { 1909 n = &fclones->skb2; 1910 refcount_set(&fclones->fclone_ref, 2); 1911 n->fclone = SKB_FCLONE_CLONE; 1912 } else { 1913 if (skb_pfmemalloc(skb)) 1914 gfp_mask |= __GFP_MEMALLOC; 1915 1916 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1917 if (!n) 1918 return NULL; 1919 1920 n->fclone = SKB_FCLONE_UNAVAILABLE; 1921 } 1922 1923 return __skb_clone(n, skb); 1924 } 1925 EXPORT_SYMBOL(skb_clone); 1926 1927 void skb_headers_offset_update(struct sk_buff *skb, int off) 1928 { 1929 /* Only adjust this if it actually is csum_start rather than csum */ 1930 if (skb->ip_summed == CHECKSUM_PARTIAL) 1931 skb->csum_start += off; 1932 /* {transport,network,mac}_header and tail are relative to skb->head */ 1933 skb->transport_header += off; 1934 skb->network_header += off; 1935 if (skb_mac_header_was_set(skb)) 1936 skb->mac_header += off; 1937 skb->inner_transport_header += off; 1938 skb->inner_network_header += off; 1939 skb->inner_mac_header += off; 1940 } 1941 EXPORT_SYMBOL(skb_headers_offset_update); 1942 1943 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1944 { 1945 __copy_skb_header(new, old); 1946 1947 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1948 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1949 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1950 } 1951 EXPORT_SYMBOL(skb_copy_header); 1952 1953 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1954 { 1955 if (skb_pfmemalloc(skb)) 1956 return SKB_ALLOC_RX; 1957 return 0; 1958 } 1959 1960 /** 1961 * skb_copy - create private copy of an sk_buff 1962 * @skb: buffer to copy 1963 * @gfp_mask: allocation priority 1964 * 1965 * Make a copy of both an &sk_buff and its data. This is used when the 1966 * caller wishes to modify the data and needs a private copy of the 1967 * data to alter. Returns %NULL on failure or the pointer to the buffer 1968 * on success. The returned buffer has a reference count of 1. 1969 * 1970 * As by-product this function converts non-linear &sk_buff to linear 1971 * one, so that &sk_buff becomes completely private and caller is allowed 1972 * to modify all the data of returned buffer. This means that this 1973 * function is not recommended for use in circumstances when only 1974 * header is going to be modified. Use pskb_copy() instead. 1975 */ 1976 1977 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1978 { 1979 int headerlen = skb_headroom(skb); 1980 unsigned int size = skb_end_offset(skb) + skb->data_len; 1981 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1982 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1983 1984 if (!n) 1985 return NULL; 1986 1987 /* Set the data pointer */ 1988 skb_reserve(n, headerlen); 1989 /* Set the tail pointer and length */ 1990 skb_put(n, skb->len); 1991 1992 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1993 1994 skb_copy_header(n, skb); 1995 return n; 1996 } 1997 EXPORT_SYMBOL(skb_copy); 1998 1999 /** 2000 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2001 * @skb: buffer to copy 2002 * @headroom: headroom of new skb 2003 * @gfp_mask: allocation priority 2004 * @fclone: if true allocate the copy of the skb from the fclone 2005 * cache instead of the head cache; it is recommended to set this 2006 * to true for the cases where the copy will likely be cloned 2007 * 2008 * Make a copy of both an &sk_buff and part of its data, located 2009 * in header. Fragmented data remain shared. This is used when 2010 * the caller wishes to modify only header of &sk_buff and needs 2011 * private copy of the header to alter. Returns %NULL on failure 2012 * or the pointer to the buffer on success. 2013 * The returned buffer has a reference count of 1. 2014 */ 2015 2016 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2017 gfp_t gfp_mask, bool fclone) 2018 { 2019 unsigned int size = skb_headlen(skb) + headroom; 2020 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2021 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2022 2023 if (!n) 2024 goto out; 2025 2026 /* Set the data pointer */ 2027 skb_reserve(n, headroom); 2028 /* Set the tail pointer and length */ 2029 skb_put(n, skb_headlen(skb)); 2030 /* Copy the bytes */ 2031 skb_copy_from_linear_data(skb, n->data, n->len); 2032 2033 n->truesize += skb->data_len; 2034 n->data_len = skb->data_len; 2035 n->len = skb->len; 2036 2037 if (skb_shinfo(skb)->nr_frags) { 2038 int i; 2039 2040 if (skb_orphan_frags(skb, gfp_mask) || 2041 skb_zerocopy_clone(n, skb, gfp_mask)) { 2042 kfree_skb(n); 2043 n = NULL; 2044 goto out; 2045 } 2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2047 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2048 skb_frag_ref(skb, i); 2049 } 2050 skb_shinfo(n)->nr_frags = i; 2051 } 2052 2053 if (skb_has_frag_list(skb)) { 2054 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2055 skb_clone_fraglist(n); 2056 } 2057 2058 skb_copy_header(n, skb); 2059 out: 2060 return n; 2061 } 2062 EXPORT_SYMBOL(__pskb_copy_fclone); 2063 2064 /** 2065 * pskb_expand_head - reallocate header of &sk_buff 2066 * @skb: buffer to reallocate 2067 * @nhead: room to add at head 2068 * @ntail: room to add at tail 2069 * @gfp_mask: allocation priority 2070 * 2071 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2072 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2073 * reference count of 1. Returns zero in the case of success or error, 2074 * if expansion failed. In the last case, &sk_buff is not changed. 2075 * 2076 * All the pointers pointing into skb header may change and must be 2077 * reloaded after call to this function. 2078 */ 2079 2080 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2081 gfp_t gfp_mask) 2082 { 2083 unsigned int osize = skb_end_offset(skb); 2084 unsigned int size = osize + nhead + ntail; 2085 long off; 2086 u8 *data; 2087 int i; 2088 2089 BUG_ON(nhead < 0); 2090 2091 BUG_ON(skb_shared(skb)); 2092 2093 skb_zcopy_downgrade_managed(skb); 2094 2095 if (skb_pfmemalloc(skb)) 2096 gfp_mask |= __GFP_MEMALLOC; 2097 2098 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2099 if (!data) 2100 goto nodata; 2101 size = SKB_WITH_OVERHEAD(size); 2102 2103 /* Copy only real data... and, alas, header. This should be 2104 * optimized for the cases when header is void. 2105 */ 2106 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2107 2108 memcpy((struct skb_shared_info *)(data + size), 2109 skb_shinfo(skb), 2110 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2111 2112 /* 2113 * if shinfo is shared we must drop the old head gracefully, but if it 2114 * is not we can just drop the old head and let the existing refcount 2115 * be since all we did is relocate the values 2116 */ 2117 if (skb_cloned(skb)) { 2118 if (skb_orphan_frags(skb, gfp_mask)) 2119 goto nofrags; 2120 if (skb_zcopy(skb)) 2121 refcount_inc(&skb_uarg(skb)->refcnt); 2122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2123 skb_frag_ref(skb, i); 2124 2125 if (skb_has_frag_list(skb)) 2126 skb_clone_fraglist(skb); 2127 2128 skb_release_data(skb, SKB_CONSUMED, false); 2129 } else { 2130 skb_free_head(skb, false); 2131 } 2132 off = (data + nhead) - skb->head; 2133 2134 skb->head = data; 2135 skb->head_frag = 0; 2136 skb->data += off; 2137 2138 skb_set_end_offset(skb, size); 2139 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2140 off = nhead; 2141 #endif 2142 skb->tail += off; 2143 skb_headers_offset_update(skb, nhead); 2144 skb->cloned = 0; 2145 skb->hdr_len = 0; 2146 skb->nohdr = 0; 2147 atomic_set(&skb_shinfo(skb)->dataref, 1); 2148 2149 skb_metadata_clear(skb); 2150 2151 /* It is not generally safe to change skb->truesize. 2152 * For the moment, we really care of rx path, or 2153 * when skb is orphaned (not attached to a socket). 2154 */ 2155 if (!skb->sk || skb->destructor == sock_edemux) 2156 skb->truesize += size - osize; 2157 2158 return 0; 2159 2160 nofrags: 2161 skb_kfree_head(data, size); 2162 nodata: 2163 return -ENOMEM; 2164 } 2165 EXPORT_SYMBOL(pskb_expand_head); 2166 2167 /* Make private copy of skb with writable head and some headroom */ 2168 2169 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2170 { 2171 struct sk_buff *skb2; 2172 int delta = headroom - skb_headroom(skb); 2173 2174 if (delta <= 0) 2175 skb2 = pskb_copy(skb, GFP_ATOMIC); 2176 else { 2177 skb2 = skb_clone(skb, GFP_ATOMIC); 2178 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2179 GFP_ATOMIC)) { 2180 kfree_skb(skb2); 2181 skb2 = NULL; 2182 } 2183 } 2184 return skb2; 2185 } 2186 EXPORT_SYMBOL(skb_realloc_headroom); 2187 2188 /* Note: We plan to rework this in linux-6.4 */ 2189 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2190 { 2191 unsigned int saved_end_offset, saved_truesize; 2192 struct skb_shared_info *shinfo; 2193 int res; 2194 2195 saved_end_offset = skb_end_offset(skb); 2196 saved_truesize = skb->truesize; 2197 2198 res = pskb_expand_head(skb, 0, 0, pri); 2199 if (res) 2200 return res; 2201 2202 skb->truesize = saved_truesize; 2203 2204 if (likely(skb_end_offset(skb) == saved_end_offset)) 2205 return 0; 2206 2207 /* We can not change skb->end if the original or new value 2208 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2209 */ 2210 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2211 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2212 /* We think this path should not be taken. 2213 * Add a temporary trace to warn us just in case. 2214 */ 2215 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2216 saved_end_offset, skb_end_offset(skb)); 2217 WARN_ON_ONCE(1); 2218 return 0; 2219 } 2220 2221 shinfo = skb_shinfo(skb); 2222 2223 /* We are about to change back skb->end, 2224 * we need to move skb_shinfo() to its new location. 2225 */ 2226 memmove(skb->head + saved_end_offset, 2227 shinfo, 2228 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2229 2230 skb_set_end_offset(skb, saved_end_offset); 2231 2232 return 0; 2233 } 2234 2235 /** 2236 * skb_expand_head - reallocate header of &sk_buff 2237 * @skb: buffer to reallocate 2238 * @headroom: needed headroom 2239 * 2240 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2241 * if possible; copies skb->sk to new skb as needed 2242 * and frees original skb in case of failures. 2243 * 2244 * It expect increased headroom and generates warning otherwise. 2245 */ 2246 2247 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2248 { 2249 int delta = headroom - skb_headroom(skb); 2250 int osize = skb_end_offset(skb); 2251 struct sock *sk = skb->sk; 2252 2253 if (WARN_ONCE(delta <= 0, 2254 "%s is expecting an increase in the headroom", __func__)) 2255 return skb; 2256 2257 delta = SKB_DATA_ALIGN(delta); 2258 /* pskb_expand_head() might crash, if skb is shared. */ 2259 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2260 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2261 2262 if (unlikely(!nskb)) 2263 goto fail; 2264 2265 if (sk) 2266 skb_set_owner_w(nskb, sk); 2267 consume_skb(skb); 2268 skb = nskb; 2269 } 2270 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2271 goto fail; 2272 2273 if (sk && is_skb_wmem(skb)) { 2274 delta = skb_end_offset(skb) - osize; 2275 refcount_add(delta, &sk->sk_wmem_alloc); 2276 skb->truesize += delta; 2277 } 2278 return skb; 2279 2280 fail: 2281 kfree_skb(skb); 2282 return NULL; 2283 } 2284 EXPORT_SYMBOL(skb_expand_head); 2285 2286 /** 2287 * skb_copy_expand - copy and expand sk_buff 2288 * @skb: buffer to copy 2289 * @newheadroom: new free bytes at head 2290 * @newtailroom: new free bytes at tail 2291 * @gfp_mask: allocation priority 2292 * 2293 * Make a copy of both an &sk_buff and its data and while doing so 2294 * allocate additional space. 2295 * 2296 * This is used when the caller wishes to modify the data and needs a 2297 * private copy of the data to alter as well as more space for new fields. 2298 * Returns %NULL on failure or the pointer to the buffer 2299 * on success. The returned buffer has a reference count of 1. 2300 * 2301 * You must pass %GFP_ATOMIC as the allocation priority if this function 2302 * is called from an interrupt. 2303 */ 2304 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2305 int newheadroom, int newtailroom, 2306 gfp_t gfp_mask) 2307 { 2308 /* 2309 * Allocate the copy buffer 2310 */ 2311 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2312 gfp_mask, skb_alloc_rx_flag(skb), 2313 NUMA_NO_NODE); 2314 int oldheadroom = skb_headroom(skb); 2315 int head_copy_len, head_copy_off; 2316 2317 if (!n) 2318 return NULL; 2319 2320 skb_reserve(n, newheadroom); 2321 2322 /* Set the tail pointer and length */ 2323 skb_put(n, skb->len); 2324 2325 head_copy_len = oldheadroom; 2326 head_copy_off = 0; 2327 if (newheadroom <= head_copy_len) 2328 head_copy_len = newheadroom; 2329 else 2330 head_copy_off = newheadroom - head_copy_len; 2331 2332 /* Copy the linear header and data. */ 2333 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2334 skb->len + head_copy_len)); 2335 2336 skb_copy_header(n, skb); 2337 2338 skb_headers_offset_update(n, newheadroom - oldheadroom); 2339 2340 return n; 2341 } 2342 EXPORT_SYMBOL(skb_copy_expand); 2343 2344 /** 2345 * __skb_pad - zero pad the tail of an skb 2346 * @skb: buffer to pad 2347 * @pad: space to pad 2348 * @free_on_error: free buffer on error 2349 * 2350 * Ensure that a buffer is followed by a padding area that is zero 2351 * filled. Used by network drivers which may DMA or transfer data 2352 * beyond the buffer end onto the wire. 2353 * 2354 * May return error in out of memory cases. The skb is freed on error 2355 * if @free_on_error is true. 2356 */ 2357 2358 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2359 { 2360 int err; 2361 int ntail; 2362 2363 /* If the skbuff is non linear tailroom is always zero.. */ 2364 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2365 memset(skb->data+skb->len, 0, pad); 2366 return 0; 2367 } 2368 2369 ntail = skb->data_len + pad - (skb->end - skb->tail); 2370 if (likely(skb_cloned(skb) || ntail > 0)) { 2371 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2372 if (unlikely(err)) 2373 goto free_skb; 2374 } 2375 2376 /* FIXME: The use of this function with non-linear skb's really needs 2377 * to be audited. 2378 */ 2379 err = skb_linearize(skb); 2380 if (unlikely(err)) 2381 goto free_skb; 2382 2383 memset(skb->data + skb->len, 0, pad); 2384 return 0; 2385 2386 free_skb: 2387 if (free_on_error) 2388 kfree_skb(skb); 2389 return err; 2390 } 2391 EXPORT_SYMBOL(__skb_pad); 2392 2393 /** 2394 * pskb_put - add data to the tail of a potentially fragmented buffer 2395 * @skb: start of the buffer to use 2396 * @tail: tail fragment of the buffer to use 2397 * @len: amount of data to add 2398 * 2399 * This function extends the used data area of the potentially 2400 * fragmented buffer. @tail must be the last fragment of @skb -- or 2401 * @skb itself. If this would exceed the total buffer size the kernel 2402 * will panic. A pointer to the first byte of the extra data is 2403 * returned. 2404 */ 2405 2406 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2407 { 2408 if (tail != skb) { 2409 skb->data_len += len; 2410 skb->len += len; 2411 } 2412 return skb_put(tail, len); 2413 } 2414 EXPORT_SYMBOL_GPL(pskb_put); 2415 2416 /** 2417 * skb_put - add data to a buffer 2418 * @skb: buffer to use 2419 * @len: amount of data to add 2420 * 2421 * This function extends the used data area of the buffer. If this would 2422 * exceed the total buffer size the kernel will panic. A pointer to the 2423 * first byte of the extra data is returned. 2424 */ 2425 void *skb_put(struct sk_buff *skb, unsigned int len) 2426 { 2427 void *tmp = skb_tail_pointer(skb); 2428 SKB_LINEAR_ASSERT(skb); 2429 skb->tail += len; 2430 skb->len += len; 2431 if (unlikely(skb->tail > skb->end)) 2432 skb_over_panic(skb, len, __builtin_return_address(0)); 2433 return tmp; 2434 } 2435 EXPORT_SYMBOL(skb_put); 2436 2437 /** 2438 * skb_push - add data to the start of a buffer 2439 * @skb: buffer to use 2440 * @len: amount of data to add 2441 * 2442 * This function extends the used data area of the buffer at the buffer 2443 * start. If this would exceed the total buffer headroom the kernel will 2444 * panic. A pointer to the first byte of the extra data is returned. 2445 */ 2446 void *skb_push(struct sk_buff *skb, unsigned int len) 2447 { 2448 skb->data -= len; 2449 skb->len += len; 2450 if (unlikely(skb->data < skb->head)) 2451 skb_under_panic(skb, len, __builtin_return_address(0)); 2452 return skb->data; 2453 } 2454 EXPORT_SYMBOL(skb_push); 2455 2456 /** 2457 * skb_pull - remove data from the start of a buffer 2458 * @skb: buffer to use 2459 * @len: amount of data to remove 2460 * 2461 * This function removes data from the start of a buffer, returning 2462 * the memory to the headroom. A pointer to the next data in the buffer 2463 * is returned. Once the data has been pulled future pushes will overwrite 2464 * the old data. 2465 */ 2466 void *skb_pull(struct sk_buff *skb, unsigned int len) 2467 { 2468 return skb_pull_inline(skb, len); 2469 } 2470 EXPORT_SYMBOL(skb_pull); 2471 2472 /** 2473 * skb_pull_data - remove data from the start of a buffer returning its 2474 * original position. 2475 * @skb: buffer to use 2476 * @len: amount of data to remove 2477 * 2478 * This function removes data from the start of a buffer, returning 2479 * the memory to the headroom. A pointer to the original data in the buffer 2480 * is returned after checking if there is enough data to pull. Once the 2481 * data has been pulled future pushes will overwrite the old data. 2482 */ 2483 void *skb_pull_data(struct sk_buff *skb, size_t len) 2484 { 2485 void *data = skb->data; 2486 2487 if (skb->len < len) 2488 return NULL; 2489 2490 skb_pull(skb, len); 2491 2492 return data; 2493 } 2494 EXPORT_SYMBOL(skb_pull_data); 2495 2496 /** 2497 * skb_trim - remove end from a buffer 2498 * @skb: buffer to alter 2499 * @len: new length 2500 * 2501 * Cut the length of a buffer down by removing data from the tail. If 2502 * the buffer is already under the length specified it is not modified. 2503 * The skb must be linear. 2504 */ 2505 void skb_trim(struct sk_buff *skb, unsigned int len) 2506 { 2507 if (skb->len > len) 2508 __skb_trim(skb, len); 2509 } 2510 EXPORT_SYMBOL(skb_trim); 2511 2512 /* Trims skb to length len. It can change skb pointers. 2513 */ 2514 2515 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2516 { 2517 struct sk_buff **fragp; 2518 struct sk_buff *frag; 2519 int offset = skb_headlen(skb); 2520 int nfrags = skb_shinfo(skb)->nr_frags; 2521 int i; 2522 int err; 2523 2524 if (skb_cloned(skb) && 2525 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2526 return err; 2527 2528 i = 0; 2529 if (offset >= len) 2530 goto drop_pages; 2531 2532 for (; i < nfrags; i++) { 2533 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2534 2535 if (end < len) { 2536 offset = end; 2537 continue; 2538 } 2539 2540 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2541 2542 drop_pages: 2543 skb_shinfo(skb)->nr_frags = i; 2544 2545 for (; i < nfrags; i++) 2546 skb_frag_unref(skb, i); 2547 2548 if (skb_has_frag_list(skb)) 2549 skb_drop_fraglist(skb); 2550 goto done; 2551 } 2552 2553 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2554 fragp = &frag->next) { 2555 int end = offset + frag->len; 2556 2557 if (skb_shared(frag)) { 2558 struct sk_buff *nfrag; 2559 2560 nfrag = skb_clone(frag, GFP_ATOMIC); 2561 if (unlikely(!nfrag)) 2562 return -ENOMEM; 2563 2564 nfrag->next = frag->next; 2565 consume_skb(frag); 2566 frag = nfrag; 2567 *fragp = frag; 2568 } 2569 2570 if (end < len) { 2571 offset = end; 2572 continue; 2573 } 2574 2575 if (end > len && 2576 unlikely((err = pskb_trim(frag, len - offset)))) 2577 return err; 2578 2579 if (frag->next) 2580 skb_drop_list(&frag->next); 2581 break; 2582 } 2583 2584 done: 2585 if (len > skb_headlen(skb)) { 2586 skb->data_len -= skb->len - len; 2587 skb->len = len; 2588 } else { 2589 skb->len = len; 2590 skb->data_len = 0; 2591 skb_set_tail_pointer(skb, len); 2592 } 2593 2594 if (!skb->sk || skb->destructor == sock_edemux) 2595 skb_condense(skb); 2596 return 0; 2597 } 2598 EXPORT_SYMBOL(___pskb_trim); 2599 2600 /* Note : use pskb_trim_rcsum() instead of calling this directly 2601 */ 2602 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2603 { 2604 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2605 int delta = skb->len - len; 2606 2607 skb->csum = csum_block_sub(skb->csum, 2608 skb_checksum(skb, len, delta, 0), 2609 len); 2610 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2611 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2612 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2613 2614 if (offset + sizeof(__sum16) > hdlen) 2615 return -EINVAL; 2616 } 2617 return __pskb_trim(skb, len); 2618 } 2619 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2620 2621 /** 2622 * __pskb_pull_tail - advance tail of skb header 2623 * @skb: buffer to reallocate 2624 * @delta: number of bytes to advance tail 2625 * 2626 * The function makes a sense only on a fragmented &sk_buff, 2627 * it expands header moving its tail forward and copying necessary 2628 * data from fragmented part. 2629 * 2630 * &sk_buff MUST have reference count of 1. 2631 * 2632 * Returns %NULL (and &sk_buff does not change) if pull failed 2633 * or value of new tail of skb in the case of success. 2634 * 2635 * All the pointers pointing into skb header may change and must be 2636 * reloaded after call to this function. 2637 */ 2638 2639 /* Moves tail of skb head forward, copying data from fragmented part, 2640 * when it is necessary. 2641 * 1. It may fail due to malloc failure. 2642 * 2. It may change skb pointers. 2643 * 2644 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2645 */ 2646 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2647 { 2648 /* If skb has not enough free space at tail, get new one 2649 * plus 128 bytes for future expansions. If we have enough 2650 * room at tail, reallocate without expansion only if skb is cloned. 2651 */ 2652 int i, k, eat = (skb->tail + delta) - skb->end; 2653 2654 if (eat > 0 || skb_cloned(skb)) { 2655 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2656 GFP_ATOMIC)) 2657 return NULL; 2658 } 2659 2660 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2661 skb_tail_pointer(skb), delta)); 2662 2663 /* Optimization: no fragments, no reasons to preestimate 2664 * size of pulled pages. Superb. 2665 */ 2666 if (!skb_has_frag_list(skb)) 2667 goto pull_pages; 2668 2669 /* Estimate size of pulled pages. */ 2670 eat = delta; 2671 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2672 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2673 2674 if (size >= eat) 2675 goto pull_pages; 2676 eat -= size; 2677 } 2678 2679 /* If we need update frag list, we are in troubles. 2680 * Certainly, it is possible to add an offset to skb data, 2681 * but taking into account that pulling is expected to 2682 * be very rare operation, it is worth to fight against 2683 * further bloating skb head and crucify ourselves here instead. 2684 * Pure masohism, indeed. 8)8) 2685 */ 2686 if (eat) { 2687 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2688 struct sk_buff *clone = NULL; 2689 struct sk_buff *insp = NULL; 2690 2691 do { 2692 if (list->len <= eat) { 2693 /* Eaten as whole. */ 2694 eat -= list->len; 2695 list = list->next; 2696 insp = list; 2697 } else { 2698 /* Eaten partially. */ 2699 if (skb_is_gso(skb) && !list->head_frag && 2700 skb_headlen(list)) 2701 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2702 2703 if (skb_shared(list)) { 2704 /* Sucks! We need to fork list. :-( */ 2705 clone = skb_clone(list, GFP_ATOMIC); 2706 if (!clone) 2707 return NULL; 2708 insp = list->next; 2709 list = clone; 2710 } else { 2711 /* This may be pulled without 2712 * problems. */ 2713 insp = list; 2714 } 2715 if (!pskb_pull(list, eat)) { 2716 kfree_skb(clone); 2717 return NULL; 2718 } 2719 break; 2720 } 2721 } while (eat); 2722 2723 /* Free pulled out fragments. */ 2724 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2725 skb_shinfo(skb)->frag_list = list->next; 2726 consume_skb(list); 2727 } 2728 /* And insert new clone at head. */ 2729 if (clone) { 2730 clone->next = list; 2731 skb_shinfo(skb)->frag_list = clone; 2732 } 2733 } 2734 /* Success! Now we may commit changes to skb data. */ 2735 2736 pull_pages: 2737 eat = delta; 2738 k = 0; 2739 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2740 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2741 2742 if (size <= eat) { 2743 skb_frag_unref(skb, i); 2744 eat -= size; 2745 } else { 2746 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2747 2748 *frag = skb_shinfo(skb)->frags[i]; 2749 if (eat) { 2750 skb_frag_off_add(frag, eat); 2751 skb_frag_size_sub(frag, eat); 2752 if (!i) 2753 goto end; 2754 eat = 0; 2755 } 2756 k++; 2757 } 2758 } 2759 skb_shinfo(skb)->nr_frags = k; 2760 2761 end: 2762 skb->tail += delta; 2763 skb->data_len -= delta; 2764 2765 if (!skb->data_len) 2766 skb_zcopy_clear(skb, false); 2767 2768 return skb_tail_pointer(skb); 2769 } 2770 EXPORT_SYMBOL(__pskb_pull_tail); 2771 2772 /** 2773 * skb_copy_bits - copy bits from skb to kernel buffer 2774 * @skb: source skb 2775 * @offset: offset in source 2776 * @to: destination buffer 2777 * @len: number of bytes to copy 2778 * 2779 * Copy the specified number of bytes from the source skb to the 2780 * destination buffer. 2781 * 2782 * CAUTION ! : 2783 * If its prototype is ever changed, 2784 * check arch/{*}/net/{*}.S files, 2785 * since it is called from BPF assembly code. 2786 */ 2787 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2788 { 2789 int start = skb_headlen(skb); 2790 struct sk_buff *frag_iter; 2791 int i, copy; 2792 2793 if (offset > (int)skb->len - len) 2794 goto fault; 2795 2796 /* Copy header. */ 2797 if ((copy = start - offset) > 0) { 2798 if (copy > len) 2799 copy = len; 2800 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2801 if ((len -= copy) == 0) 2802 return 0; 2803 offset += copy; 2804 to += copy; 2805 } 2806 2807 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2808 int end; 2809 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2810 2811 WARN_ON(start > offset + len); 2812 2813 end = start + skb_frag_size(f); 2814 if ((copy = end - offset) > 0) { 2815 u32 p_off, p_len, copied; 2816 struct page *p; 2817 u8 *vaddr; 2818 2819 if (copy > len) 2820 copy = len; 2821 2822 skb_frag_foreach_page(f, 2823 skb_frag_off(f) + offset - start, 2824 copy, p, p_off, p_len, copied) { 2825 vaddr = kmap_atomic(p); 2826 memcpy(to + copied, vaddr + p_off, p_len); 2827 kunmap_atomic(vaddr); 2828 } 2829 2830 if ((len -= copy) == 0) 2831 return 0; 2832 offset += copy; 2833 to += copy; 2834 } 2835 start = end; 2836 } 2837 2838 skb_walk_frags(skb, frag_iter) { 2839 int end; 2840 2841 WARN_ON(start > offset + len); 2842 2843 end = start + frag_iter->len; 2844 if ((copy = end - offset) > 0) { 2845 if (copy > len) 2846 copy = len; 2847 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2848 goto fault; 2849 if ((len -= copy) == 0) 2850 return 0; 2851 offset += copy; 2852 to += copy; 2853 } 2854 start = end; 2855 } 2856 2857 if (!len) 2858 return 0; 2859 2860 fault: 2861 return -EFAULT; 2862 } 2863 EXPORT_SYMBOL(skb_copy_bits); 2864 2865 /* 2866 * Callback from splice_to_pipe(), if we need to release some pages 2867 * at the end of the spd in case we error'ed out in filling the pipe. 2868 */ 2869 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2870 { 2871 put_page(spd->pages[i]); 2872 } 2873 2874 static struct page *linear_to_page(struct page *page, unsigned int *len, 2875 unsigned int *offset, 2876 struct sock *sk) 2877 { 2878 struct page_frag *pfrag = sk_page_frag(sk); 2879 2880 if (!sk_page_frag_refill(sk, pfrag)) 2881 return NULL; 2882 2883 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2884 2885 memcpy(page_address(pfrag->page) + pfrag->offset, 2886 page_address(page) + *offset, *len); 2887 *offset = pfrag->offset; 2888 pfrag->offset += *len; 2889 2890 return pfrag->page; 2891 } 2892 2893 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2894 struct page *page, 2895 unsigned int offset) 2896 { 2897 return spd->nr_pages && 2898 spd->pages[spd->nr_pages - 1] == page && 2899 (spd->partial[spd->nr_pages - 1].offset + 2900 spd->partial[spd->nr_pages - 1].len == offset); 2901 } 2902 2903 /* 2904 * Fill page/offset/length into spd, if it can hold more pages. 2905 */ 2906 static bool spd_fill_page(struct splice_pipe_desc *spd, 2907 struct pipe_inode_info *pipe, struct page *page, 2908 unsigned int *len, unsigned int offset, 2909 bool linear, 2910 struct sock *sk) 2911 { 2912 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2913 return true; 2914 2915 if (linear) { 2916 page = linear_to_page(page, len, &offset, sk); 2917 if (!page) 2918 return true; 2919 } 2920 if (spd_can_coalesce(spd, page, offset)) { 2921 spd->partial[spd->nr_pages - 1].len += *len; 2922 return false; 2923 } 2924 get_page(page); 2925 spd->pages[spd->nr_pages] = page; 2926 spd->partial[spd->nr_pages].len = *len; 2927 spd->partial[spd->nr_pages].offset = offset; 2928 spd->nr_pages++; 2929 2930 return false; 2931 } 2932 2933 static bool __splice_segment(struct page *page, unsigned int poff, 2934 unsigned int plen, unsigned int *off, 2935 unsigned int *len, 2936 struct splice_pipe_desc *spd, bool linear, 2937 struct sock *sk, 2938 struct pipe_inode_info *pipe) 2939 { 2940 if (!*len) 2941 return true; 2942 2943 /* skip this segment if already processed */ 2944 if (*off >= plen) { 2945 *off -= plen; 2946 return false; 2947 } 2948 2949 /* ignore any bits we already processed */ 2950 poff += *off; 2951 plen -= *off; 2952 *off = 0; 2953 2954 do { 2955 unsigned int flen = min(*len, plen); 2956 2957 if (spd_fill_page(spd, pipe, page, &flen, poff, 2958 linear, sk)) 2959 return true; 2960 poff += flen; 2961 plen -= flen; 2962 *len -= flen; 2963 } while (*len && plen); 2964 2965 return false; 2966 } 2967 2968 /* 2969 * Map linear and fragment data from the skb to spd. It reports true if the 2970 * pipe is full or if we already spliced the requested length. 2971 */ 2972 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2973 unsigned int *offset, unsigned int *len, 2974 struct splice_pipe_desc *spd, struct sock *sk) 2975 { 2976 int seg; 2977 struct sk_buff *iter; 2978 2979 /* map the linear part : 2980 * If skb->head_frag is set, this 'linear' part is backed by a 2981 * fragment, and if the head is not shared with any clones then 2982 * we can avoid a copy since we own the head portion of this page. 2983 */ 2984 if (__splice_segment(virt_to_page(skb->data), 2985 (unsigned long) skb->data & (PAGE_SIZE - 1), 2986 skb_headlen(skb), 2987 offset, len, spd, 2988 skb_head_is_locked(skb), 2989 sk, pipe)) 2990 return true; 2991 2992 /* 2993 * then map the fragments 2994 */ 2995 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2996 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2997 2998 if (__splice_segment(skb_frag_page(f), 2999 skb_frag_off(f), skb_frag_size(f), 3000 offset, len, spd, false, sk, pipe)) 3001 return true; 3002 } 3003 3004 skb_walk_frags(skb, iter) { 3005 if (*offset >= iter->len) { 3006 *offset -= iter->len; 3007 continue; 3008 } 3009 /* __skb_splice_bits() only fails if the output has no room 3010 * left, so no point in going over the frag_list for the error 3011 * case. 3012 */ 3013 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3014 return true; 3015 } 3016 3017 return false; 3018 } 3019 3020 /* 3021 * Map data from the skb to a pipe. Should handle both the linear part, 3022 * the fragments, and the frag list. 3023 */ 3024 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3025 struct pipe_inode_info *pipe, unsigned int tlen, 3026 unsigned int flags) 3027 { 3028 struct partial_page partial[MAX_SKB_FRAGS]; 3029 struct page *pages[MAX_SKB_FRAGS]; 3030 struct splice_pipe_desc spd = { 3031 .pages = pages, 3032 .partial = partial, 3033 .nr_pages_max = MAX_SKB_FRAGS, 3034 .ops = &nosteal_pipe_buf_ops, 3035 .spd_release = sock_spd_release, 3036 }; 3037 int ret = 0; 3038 3039 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3040 3041 if (spd.nr_pages) 3042 ret = splice_to_pipe(pipe, &spd); 3043 3044 return ret; 3045 } 3046 EXPORT_SYMBOL_GPL(skb_splice_bits); 3047 3048 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3049 { 3050 struct socket *sock = sk->sk_socket; 3051 size_t size = msg_data_left(msg); 3052 3053 if (!sock) 3054 return -EINVAL; 3055 3056 if (!sock->ops->sendmsg_locked) 3057 return sock_no_sendmsg_locked(sk, msg, size); 3058 3059 return sock->ops->sendmsg_locked(sk, msg, size); 3060 } 3061 3062 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3063 { 3064 struct socket *sock = sk->sk_socket; 3065 3066 if (!sock) 3067 return -EINVAL; 3068 return sock_sendmsg(sock, msg); 3069 } 3070 3071 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3072 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3073 int len, sendmsg_func sendmsg) 3074 { 3075 unsigned int orig_len = len; 3076 struct sk_buff *head = skb; 3077 unsigned short fragidx; 3078 int slen, ret; 3079 3080 do_frag_list: 3081 3082 /* Deal with head data */ 3083 while (offset < skb_headlen(skb) && len) { 3084 struct kvec kv; 3085 struct msghdr msg; 3086 3087 slen = min_t(int, len, skb_headlen(skb) - offset); 3088 kv.iov_base = skb->data + offset; 3089 kv.iov_len = slen; 3090 memset(&msg, 0, sizeof(msg)); 3091 msg.msg_flags = MSG_DONTWAIT; 3092 3093 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3094 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3095 sendmsg_unlocked, sk, &msg); 3096 if (ret <= 0) 3097 goto error; 3098 3099 offset += ret; 3100 len -= ret; 3101 } 3102 3103 /* All the data was skb head? */ 3104 if (!len) 3105 goto out; 3106 3107 /* Make offset relative to start of frags */ 3108 offset -= skb_headlen(skb); 3109 3110 /* Find where we are in frag list */ 3111 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3112 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3113 3114 if (offset < skb_frag_size(frag)) 3115 break; 3116 3117 offset -= skb_frag_size(frag); 3118 } 3119 3120 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3121 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3122 3123 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3124 3125 while (slen) { 3126 struct bio_vec bvec; 3127 struct msghdr msg = { 3128 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3129 }; 3130 3131 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3132 skb_frag_off(frag) + offset); 3133 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3134 slen); 3135 3136 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3137 sendmsg_unlocked, sk, &msg); 3138 if (ret <= 0) 3139 goto error; 3140 3141 len -= ret; 3142 offset += ret; 3143 slen -= ret; 3144 } 3145 3146 offset = 0; 3147 } 3148 3149 if (len) { 3150 /* Process any frag lists */ 3151 3152 if (skb == head) { 3153 if (skb_has_frag_list(skb)) { 3154 skb = skb_shinfo(skb)->frag_list; 3155 goto do_frag_list; 3156 } 3157 } else if (skb->next) { 3158 skb = skb->next; 3159 goto do_frag_list; 3160 } 3161 } 3162 3163 out: 3164 return orig_len - len; 3165 3166 error: 3167 return orig_len == len ? ret : orig_len - len; 3168 } 3169 3170 /* Send skb data on a socket. Socket must be locked. */ 3171 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3172 int len) 3173 { 3174 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3175 } 3176 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3177 3178 /* Send skb data on a socket. Socket must be unlocked. */ 3179 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3180 { 3181 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3182 } 3183 3184 /** 3185 * skb_store_bits - store bits from kernel buffer to skb 3186 * @skb: destination buffer 3187 * @offset: offset in destination 3188 * @from: source buffer 3189 * @len: number of bytes to copy 3190 * 3191 * Copy the specified number of bytes from the source buffer to the 3192 * destination skb. This function handles all the messy bits of 3193 * traversing fragment lists and such. 3194 */ 3195 3196 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3197 { 3198 int start = skb_headlen(skb); 3199 struct sk_buff *frag_iter; 3200 int i, copy; 3201 3202 if (offset > (int)skb->len - len) 3203 goto fault; 3204 3205 if ((copy = start - offset) > 0) { 3206 if (copy > len) 3207 copy = len; 3208 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3209 if ((len -= copy) == 0) 3210 return 0; 3211 offset += copy; 3212 from += copy; 3213 } 3214 3215 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3216 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3217 int end; 3218 3219 WARN_ON(start > offset + len); 3220 3221 end = start + skb_frag_size(frag); 3222 if ((copy = end - offset) > 0) { 3223 u32 p_off, p_len, copied; 3224 struct page *p; 3225 u8 *vaddr; 3226 3227 if (copy > len) 3228 copy = len; 3229 3230 skb_frag_foreach_page(frag, 3231 skb_frag_off(frag) + offset - start, 3232 copy, p, p_off, p_len, copied) { 3233 vaddr = kmap_atomic(p); 3234 memcpy(vaddr + p_off, from + copied, p_len); 3235 kunmap_atomic(vaddr); 3236 } 3237 3238 if ((len -= copy) == 0) 3239 return 0; 3240 offset += copy; 3241 from += copy; 3242 } 3243 start = end; 3244 } 3245 3246 skb_walk_frags(skb, frag_iter) { 3247 int end; 3248 3249 WARN_ON(start > offset + len); 3250 3251 end = start + frag_iter->len; 3252 if ((copy = end - offset) > 0) { 3253 if (copy > len) 3254 copy = len; 3255 if (skb_store_bits(frag_iter, offset - start, 3256 from, copy)) 3257 goto fault; 3258 if ((len -= copy) == 0) 3259 return 0; 3260 offset += copy; 3261 from += copy; 3262 } 3263 start = end; 3264 } 3265 if (!len) 3266 return 0; 3267 3268 fault: 3269 return -EFAULT; 3270 } 3271 EXPORT_SYMBOL(skb_store_bits); 3272 3273 /* Checksum skb data. */ 3274 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3275 __wsum csum, const struct skb_checksum_ops *ops) 3276 { 3277 int start = skb_headlen(skb); 3278 int i, copy = start - offset; 3279 struct sk_buff *frag_iter; 3280 int pos = 0; 3281 3282 /* Checksum header. */ 3283 if (copy > 0) { 3284 if (copy > len) 3285 copy = len; 3286 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3287 skb->data + offset, copy, csum); 3288 if ((len -= copy) == 0) 3289 return csum; 3290 offset += copy; 3291 pos = copy; 3292 } 3293 3294 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3295 int end; 3296 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3297 3298 WARN_ON(start > offset + len); 3299 3300 end = start + skb_frag_size(frag); 3301 if ((copy = end - offset) > 0) { 3302 u32 p_off, p_len, copied; 3303 struct page *p; 3304 __wsum csum2; 3305 u8 *vaddr; 3306 3307 if (copy > len) 3308 copy = len; 3309 3310 skb_frag_foreach_page(frag, 3311 skb_frag_off(frag) + offset - start, 3312 copy, p, p_off, p_len, copied) { 3313 vaddr = kmap_atomic(p); 3314 csum2 = INDIRECT_CALL_1(ops->update, 3315 csum_partial_ext, 3316 vaddr + p_off, p_len, 0); 3317 kunmap_atomic(vaddr); 3318 csum = INDIRECT_CALL_1(ops->combine, 3319 csum_block_add_ext, csum, 3320 csum2, pos, p_len); 3321 pos += p_len; 3322 } 3323 3324 if (!(len -= copy)) 3325 return csum; 3326 offset += copy; 3327 } 3328 start = end; 3329 } 3330 3331 skb_walk_frags(skb, frag_iter) { 3332 int end; 3333 3334 WARN_ON(start > offset + len); 3335 3336 end = start + frag_iter->len; 3337 if ((copy = end - offset) > 0) { 3338 __wsum csum2; 3339 if (copy > len) 3340 copy = len; 3341 csum2 = __skb_checksum(frag_iter, offset - start, 3342 copy, 0, ops); 3343 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3344 csum, csum2, pos, copy); 3345 if ((len -= copy) == 0) 3346 return csum; 3347 offset += copy; 3348 pos += copy; 3349 } 3350 start = end; 3351 } 3352 BUG_ON(len); 3353 3354 return csum; 3355 } 3356 EXPORT_SYMBOL(__skb_checksum); 3357 3358 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3359 int len, __wsum csum) 3360 { 3361 const struct skb_checksum_ops ops = { 3362 .update = csum_partial_ext, 3363 .combine = csum_block_add_ext, 3364 }; 3365 3366 return __skb_checksum(skb, offset, len, csum, &ops); 3367 } 3368 EXPORT_SYMBOL(skb_checksum); 3369 3370 /* Both of above in one bottle. */ 3371 3372 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3373 u8 *to, int len) 3374 { 3375 int start = skb_headlen(skb); 3376 int i, copy = start - offset; 3377 struct sk_buff *frag_iter; 3378 int pos = 0; 3379 __wsum csum = 0; 3380 3381 /* Copy header. */ 3382 if (copy > 0) { 3383 if (copy > len) 3384 copy = len; 3385 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3386 copy); 3387 if ((len -= copy) == 0) 3388 return csum; 3389 offset += copy; 3390 to += copy; 3391 pos = copy; 3392 } 3393 3394 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3395 int end; 3396 3397 WARN_ON(start > offset + len); 3398 3399 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3400 if ((copy = end - offset) > 0) { 3401 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3402 u32 p_off, p_len, copied; 3403 struct page *p; 3404 __wsum csum2; 3405 u8 *vaddr; 3406 3407 if (copy > len) 3408 copy = len; 3409 3410 skb_frag_foreach_page(frag, 3411 skb_frag_off(frag) + offset - start, 3412 copy, p, p_off, p_len, copied) { 3413 vaddr = kmap_atomic(p); 3414 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3415 to + copied, 3416 p_len); 3417 kunmap_atomic(vaddr); 3418 csum = csum_block_add(csum, csum2, pos); 3419 pos += p_len; 3420 } 3421 3422 if (!(len -= copy)) 3423 return csum; 3424 offset += copy; 3425 to += copy; 3426 } 3427 start = end; 3428 } 3429 3430 skb_walk_frags(skb, frag_iter) { 3431 __wsum csum2; 3432 int end; 3433 3434 WARN_ON(start > offset + len); 3435 3436 end = start + frag_iter->len; 3437 if ((copy = end - offset) > 0) { 3438 if (copy > len) 3439 copy = len; 3440 csum2 = skb_copy_and_csum_bits(frag_iter, 3441 offset - start, 3442 to, copy); 3443 csum = csum_block_add(csum, csum2, pos); 3444 if ((len -= copy) == 0) 3445 return csum; 3446 offset += copy; 3447 to += copy; 3448 pos += copy; 3449 } 3450 start = end; 3451 } 3452 BUG_ON(len); 3453 return csum; 3454 } 3455 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3456 3457 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3458 { 3459 __sum16 sum; 3460 3461 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3462 /* See comments in __skb_checksum_complete(). */ 3463 if (likely(!sum)) { 3464 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3465 !skb->csum_complete_sw) 3466 netdev_rx_csum_fault(skb->dev, skb); 3467 } 3468 if (!skb_shared(skb)) 3469 skb->csum_valid = !sum; 3470 return sum; 3471 } 3472 EXPORT_SYMBOL(__skb_checksum_complete_head); 3473 3474 /* This function assumes skb->csum already holds pseudo header's checksum, 3475 * which has been changed from the hardware checksum, for example, by 3476 * __skb_checksum_validate_complete(). And, the original skb->csum must 3477 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3478 * 3479 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3480 * zero. The new checksum is stored back into skb->csum unless the skb is 3481 * shared. 3482 */ 3483 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3484 { 3485 __wsum csum; 3486 __sum16 sum; 3487 3488 csum = skb_checksum(skb, 0, skb->len, 0); 3489 3490 sum = csum_fold(csum_add(skb->csum, csum)); 3491 /* This check is inverted, because we already knew the hardware 3492 * checksum is invalid before calling this function. So, if the 3493 * re-computed checksum is valid instead, then we have a mismatch 3494 * between the original skb->csum and skb_checksum(). This means either 3495 * the original hardware checksum is incorrect or we screw up skb->csum 3496 * when moving skb->data around. 3497 */ 3498 if (likely(!sum)) { 3499 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3500 !skb->csum_complete_sw) 3501 netdev_rx_csum_fault(skb->dev, skb); 3502 } 3503 3504 if (!skb_shared(skb)) { 3505 /* Save full packet checksum */ 3506 skb->csum = csum; 3507 skb->ip_summed = CHECKSUM_COMPLETE; 3508 skb->csum_complete_sw = 1; 3509 skb->csum_valid = !sum; 3510 } 3511 3512 return sum; 3513 } 3514 EXPORT_SYMBOL(__skb_checksum_complete); 3515 3516 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3517 { 3518 net_warn_ratelimited( 3519 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3520 __func__); 3521 return 0; 3522 } 3523 3524 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3525 int offset, int len) 3526 { 3527 net_warn_ratelimited( 3528 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3529 __func__); 3530 return 0; 3531 } 3532 3533 static const struct skb_checksum_ops default_crc32c_ops = { 3534 .update = warn_crc32c_csum_update, 3535 .combine = warn_crc32c_csum_combine, 3536 }; 3537 3538 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3539 &default_crc32c_ops; 3540 EXPORT_SYMBOL(crc32c_csum_stub); 3541 3542 /** 3543 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3544 * @from: source buffer 3545 * 3546 * Calculates the amount of linear headroom needed in the 'to' skb passed 3547 * into skb_zerocopy(). 3548 */ 3549 unsigned int 3550 skb_zerocopy_headlen(const struct sk_buff *from) 3551 { 3552 unsigned int hlen = 0; 3553 3554 if (!from->head_frag || 3555 skb_headlen(from) < L1_CACHE_BYTES || 3556 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3557 hlen = skb_headlen(from); 3558 if (!hlen) 3559 hlen = from->len; 3560 } 3561 3562 if (skb_has_frag_list(from)) 3563 hlen = from->len; 3564 3565 return hlen; 3566 } 3567 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3568 3569 /** 3570 * skb_zerocopy - Zero copy skb to skb 3571 * @to: destination buffer 3572 * @from: source buffer 3573 * @len: number of bytes to copy from source buffer 3574 * @hlen: size of linear headroom in destination buffer 3575 * 3576 * Copies up to `len` bytes from `from` to `to` by creating references 3577 * to the frags in the source buffer. 3578 * 3579 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3580 * headroom in the `to` buffer. 3581 * 3582 * Return value: 3583 * 0: everything is OK 3584 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3585 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3586 */ 3587 int 3588 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3589 { 3590 int i, j = 0; 3591 int plen = 0; /* length of skb->head fragment */ 3592 int ret; 3593 struct page *page; 3594 unsigned int offset; 3595 3596 BUG_ON(!from->head_frag && !hlen); 3597 3598 /* dont bother with small payloads */ 3599 if (len <= skb_tailroom(to)) 3600 return skb_copy_bits(from, 0, skb_put(to, len), len); 3601 3602 if (hlen) { 3603 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3604 if (unlikely(ret)) 3605 return ret; 3606 len -= hlen; 3607 } else { 3608 plen = min_t(int, skb_headlen(from), len); 3609 if (plen) { 3610 page = virt_to_head_page(from->head); 3611 offset = from->data - (unsigned char *)page_address(page); 3612 __skb_fill_page_desc(to, 0, page, offset, plen); 3613 get_page(page); 3614 j = 1; 3615 len -= plen; 3616 } 3617 } 3618 3619 skb_len_add(to, len + plen); 3620 3621 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3622 skb_tx_error(from); 3623 return -ENOMEM; 3624 } 3625 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3626 3627 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3628 int size; 3629 3630 if (!len) 3631 break; 3632 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3633 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3634 len); 3635 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3636 len -= size; 3637 skb_frag_ref(to, j); 3638 j++; 3639 } 3640 skb_shinfo(to)->nr_frags = j; 3641 3642 return 0; 3643 } 3644 EXPORT_SYMBOL_GPL(skb_zerocopy); 3645 3646 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3647 { 3648 __wsum csum; 3649 long csstart; 3650 3651 if (skb->ip_summed == CHECKSUM_PARTIAL) 3652 csstart = skb_checksum_start_offset(skb); 3653 else 3654 csstart = skb_headlen(skb); 3655 3656 BUG_ON(csstart > skb_headlen(skb)); 3657 3658 skb_copy_from_linear_data(skb, to, csstart); 3659 3660 csum = 0; 3661 if (csstart != skb->len) 3662 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3663 skb->len - csstart); 3664 3665 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3666 long csstuff = csstart + skb->csum_offset; 3667 3668 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3669 } 3670 } 3671 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3672 3673 /** 3674 * skb_dequeue - remove from the head of the queue 3675 * @list: list to dequeue from 3676 * 3677 * Remove the head of the list. The list lock is taken so the function 3678 * may be used safely with other locking list functions. The head item is 3679 * returned or %NULL if the list is empty. 3680 */ 3681 3682 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3683 { 3684 unsigned long flags; 3685 struct sk_buff *result; 3686 3687 spin_lock_irqsave(&list->lock, flags); 3688 result = __skb_dequeue(list); 3689 spin_unlock_irqrestore(&list->lock, flags); 3690 return result; 3691 } 3692 EXPORT_SYMBOL(skb_dequeue); 3693 3694 /** 3695 * skb_dequeue_tail - remove from the tail of the queue 3696 * @list: list to dequeue from 3697 * 3698 * Remove the tail of the list. The list lock is taken so the function 3699 * may be used safely with other locking list functions. The tail item is 3700 * returned or %NULL if the list is empty. 3701 */ 3702 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3703 { 3704 unsigned long flags; 3705 struct sk_buff *result; 3706 3707 spin_lock_irqsave(&list->lock, flags); 3708 result = __skb_dequeue_tail(list); 3709 spin_unlock_irqrestore(&list->lock, flags); 3710 return result; 3711 } 3712 EXPORT_SYMBOL(skb_dequeue_tail); 3713 3714 /** 3715 * skb_queue_purge_reason - empty a list 3716 * @list: list to empty 3717 * @reason: drop reason 3718 * 3719 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3720 * the list and one reference dropped. This function takes the list 3721 * lock and is atomic with respect to other list locking functions. 3722 */ 3723 void skb_queue_purge_reason(struct sk_buff_head *list, 3724 enum skb_drop_reason reason) 3725 { 3726 struct sk_buff_head tmp; 3727 unsigned long flags; 3728 3729 if (skb_queue_empty_lockless(list)) 3730 return; 3731 3732 __skb_queue_head_init(&tmp); 3733 3734 spin_lock_irqsave(&list->lock, flags); 3735 skb_queue_splice_init(list, &tmp); 3736 spin_unlock_irqrestore(&list->lock, flags); 3737 3738 __skb_queue_purge_reason(&tmp, reason); 3739 } 3740 EXPORT_SYMBOL(skb_queue_purge_reason); 3741 3742 /** 3743 * skb_rbtree_purge - empty a skb rbtree 3744 * @root: root of the rbtree to empty 3745 * Return value: the sum of truesizes of all purged skbs. 3746 * 3747 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3748 * the list and one reference dropped. This function does not take 3749 * any lock. Synchronization should be handled by the caller (e.g., TCP 3750 * out-of-order queue is protected by the socket lock). 3751 */ 3752 unsigned int skb_rbtree_purge(struct rb_root *root) 3753 { 3754 struct rb_node *p = rb_first(root); 3755 unsigned int sum = 0; 3756 3757 while (p) { 3758 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3759 3760 p = rb_next(p); 3761 rb_erase(&skb->rbnode, root); 3762 sum += skb->truesize; 3763 kfree_skb(skb); 3764 } 3765 return sum; 3766 } 3767 3768 void skb_errqueue_purge(struct sk_buff_head *list) 3769 { 3770 struct sk_buff *skb, *next; 3771 struct sk_buff_head kill; 3772 unsigned long flags; 3773 3774 __skb_queue_head_init(&kill); 3775 3776 spin_lock_irqsave(&list->lock, flags); 3777 skb_queue_walk_safe(list, skb, next) { 3778 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3779 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3780 continue; 3781 __skb_unlink(skb, list); 3782 __skb_queue_tail(&kill, skb); 3783 } 3784 spin_unlock_irqrestore(&list->lock, flags); 3785 __skb_queue_purge(&kill); 3786 } 3787 EXPORT_SYMBOL(skb_errqueue_purge); 3788 3789 /** 3790 * skb_queue_head - queue a buffer at the list head 3791 * @list: list to use 3792 * @newsk: buffer to queue 3793 * 3794 * Queue a buffer at the start of the list. This function takes the 3795 * list lock and can be used safely with other locking &sk_buff functions 3796 * safely. 3797 * 3798 * A buffer cannot be placed on two lists at the same time. 3799 */ 3800 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3801 { 3802 unsigned long flags; 3803 3804 spin_lock_irqsave(&list->lock, flags); 3805 __skb_queue_head(list, newsk); 3806 spin_unlock_irqrestore(&list->lock, flags); 3807 } 3808 EXPORT_SYMBOL(skb_queue_head); 3809 3810 /** 3811 * skb_queue_tail - queue a buffer at the list tail 3812 * @list: list to use 3813 * @newsk: buffer to queue 3814 * 3815 * Queue a buffer at the tail of the list. This function takes the 3816 * list lock and can be used safely with other locking &sk_buff functions 3817 * safely. 3818 * 3819 * A buffer cannot be placed on two lists at the same time. 3820 */ 3821 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3822 { 3823 unsigned long flags; 3824 3825 spin_lock_irqsave(&list->lock, flags); 3826 __skb_queue_tail(list, newsk); 3827 spin_unlock_irqrestore(&list->lock, flags); 3828 } 3829 EXPORT_SYMBOL(skb_queue_tail); 3830 3831 /** 3832 * skb_unlink - remove a buffer from a list 3833 * @skb: buffer to remove 3834 * @list: list to use 3835 * 3836 * Remove a packet from a list. The list locks are taken and this 3837 * function is atomic with respect to other list locked calls 3838 * 3839 * You must know what list the SKB is on. 3840 */ 3841 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3842 { 3843 unsigned long flags; 3844 3845 spin_lock_irqsave(&list->lock, flags); 3846 __skb_unlink(skb, list); 3847 spin_unlock_irqrestore(&list->lock, flags); 3848 } 3849 EXPORT_SYMBOL(skb_unlink); 3850 3851 /** 3852 * skb_append - append a buffer 3853 * @old: buffer to insert after 3854 * @newsk: buffer to insert 3855 * @list: list to use 3856 * 3857 * Place a packet after a given packet in a list. The list locks are taken 3858 * and this function is atomic with respect to other list locked calls. 3859 * A buffer cannot be placed on two lists at the same time. 3860 */ 3861 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3862 { 3863 unsigned long flags; 3864 3865 spin_lock_irqsave(&list->lock, flags); 3866 __skb_queue_after(list, old, newsk); 3867 spin_unlock_irqrestore(&list->lock, flags); 3868 } 3869 EXPORT_SYMBOL(skb_append); 3870 3871 static inline void skb_split_inside_header(struct sk_buff *skb, 3872 struct sk_buff* skb1, 3873 const u32 len, const int pos) 3874 { 3875 int i; 3876 3877 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3878 pos - len); 3879 /* And move data appendix as is. */ 3880 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3881 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3882 3883 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3884 skb_shinfo(skb)->nr_frags = 0; 3885 skb1->data_len = skb->data_len; 3886 skb1->len += skb1->data_len; 3887 skb->data_len = 0; 3888 skb->len = len; 3889 skb_set_tail_pointer(skb, len); 3890 } 3891 3892 static inline void skb_split_no_header(struct sk_buff *skb, 3893 struct sk_buff* skb1, 3894 const u32 len, int pos) 3895 { 3896 int i, k = 0; 3897 const int nfrags = skb_shinfo(skb)->nr_frags; 3898 3899 skb_shinfo(skb)->nr_frags = 0; 3900 skb1->len = skb1->data_len = skb->len - len; 3901 skb->len = len; 3902 skb->data_len = len - pos; 3903 3904 for (i = 0; i < nfrags; i++) { 3905 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3906 3907 if (pos + size > len) { 3908 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3909 3910 if (pos < len) { 3911 /* Split frag. 3912 * We have two variants in this case: 3913 * 1. Move all the frag to the second 3914 * part, if it is possible. F.e. 3915 * this approach is mandatory for TUX, 3916 * where splitting is expensive. 3917 * 2. Split is accurately. We make this. 3918 */ 3919 skb_frag_ref(skb, i); 3920 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3921 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3922 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3923 skb_shinfo(skb)->nr_frags++; 3924 } 3925 k++; 3926 } else 3927 skb_shinfo(skb)->nr_frags++; 3928 pos += size; 3929 } 3930 skb_shinfo(skb1)->nr_frags = k; 3931 } 3932 3933 /** 3934 * skb_split - Split fragmented skb to two parts at length len. 3935 * @skb: the buffer to split 3936 * @skb1: the buffer to receive the second part 3937 * @len: new length for skb 3938 */ 3939 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3940 { 3941 int pos = skb_headlen(skb); 3942 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3943 3944 skb_zcopy_downgrade_managed(skb); 3945 3946 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3947 skb_zerocopy_clone(skb1, skb, 0); 3948 if (len < pos) /* Split line is inside header. */ 3949 skb_split_inside_header(skb, skb1, len, pos); 3950 else /* Second chunk has no header, nothing to copy. */ 3951 skb_split_no_header(skb, skb1, len, pos); 3952 } 3953 EXPORT_SYMBOL(skb_split); 3954 3955 /* Shifting from/to a cloned skb is a no-go. 3956 * 3957 * Caller cannot keep skb_shinfo related pointers past calling here! 3958 */ 3959 static int skb_prepare_for_shift(struct sk_buff *skb) 3960 { 3961 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3962 } 3963 3964 /** 3965 * skb_shift - Shifts paged data partially from skb to another 3966 * @tgt: buffer into which tail data gets added 3967 * @skb: buffer from which the paged data comes from 3968 * @shiftlen: shift up to this many bytes 3969 * 3970 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3971 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3972 * It's up to caller to free skb if everything was shifted. 3973 * 3974 * If @tgt runs out of frags, the whole operation is aborted. 3975 * 3976 * Skb cannot include anything else but paged data while tgt is allowed 3977 * to have non-paged data as well. 3978 * 3979 * TODO: full sized shift could be optimized but that would need 3980 * specialized skb free'er to handle frags without up-to-date nr_frags. 3981 */ 3982 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3983 { 3984 int from, to, merge, todo; 3985 skb_frag_t *fragfrom, *fragto; 3986 3987 BUG_ON(shiftlen > skb->len); 3988 3989 if (skb_headlen(skb)) 3990 return 0; 3991 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3992 return 0; 3993 3994 todo = shiftlen; 3995 from = 0; 3996 to = skb_shinfo(tgt)->nr_frags; 3997 fragfrom = &skb_shinfo(skb)->frags[from]; 3998 3999 /* Actual merge is delayed until the point when we know we can 4000 * commit all, so that we don't have to undo partial changes 4001 */ 4002 if (!to || 4003 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4004 skb_frag_off(fragfrom))) { 4005 merge = -1; 4006 } else { 4007 merge = to - 1; 4008 4009 todo -= skb_frag_size(fragfrom); 4010 if (todo < 0) { 4011 if (skb_prepare_for_shift(skb) || 4012 skb_prepare_for_shift(tgt)) 4013 return 0; 4014 4015 /* All previous frag pointers might be stale! */ 4016 fragfrom = &skb_shinfo(skb)->frags[from]; 4017 fragto = &skb_shinfo(tgt)->frags[merge]; 4018 4019 skb_frag_size_add(fragto, shiftlen); 4020 skb_frag_size_sub(fragfrom, shiftlen); 4021 skb_frag_off_add(fragfrom, shiftlen); 4022 4023 goto onlymerged; 4024 } 4025 4026 from++; 4027 } 4028 4029 /* Skip full, not-fitting skb to avoid expensive operations */ 4030 if ((shiftlen == skb->len) && 4031 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4032 return 0; 4033 4034 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4035 return 0; 4036 4037 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4038 if (to == MAX_SKB_FRAGS) 4039 return 0; 4040 4041 fragfrom = &skb_shinfo(skb)->frags[from]; 4042 fragto = &skb_shinfo(tgt)->frags[to]; 4043 4044 if (todo >= skb_frag_size(fragfrom)) { 4045 *fragto = *fragfrom; 4046 todo -= skb_frag_size(fragfrom); 4047 from++; 4048 to++; 4049 4050 } else { 4051 __skb_frag_ref(fragfrom); 4052 skb_frag_page_copy(fragto, fragfrom); 4053 skb_frag_off_copy(fragto, fragfrom); 4054 skb_frag_size_set(fragto, todo); 4055 4056 skb_frag_off_add(fragfrom, todo); 4057 skb_frag_size_sub(fragfrom, todo); 4058 todo = 0; 4059 4060 to++; 4061 break; 4062 } 4063 } 4064 4065 /* Ready to "commit" this state change to tgt */ 4066 skb_shinfo(tgt)->nr_frags = to; 4067 4068 if (merge >= 0) { 4069 fragfrom = &skb_shinfo(skb)->frags[0]; 4070 fragto = &skb_shinfo(tgt)->frags[merge]; 4071 4072 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4073 __skb_frag_unref(fragfrom, skb->pp_recycle); 4074 } 4075 4076 /* Reposition in the original skb */ 4077 to = 0; 4078 while (from < skb_shinfo(skb)->nr_frags) 4079 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4080 skb_shinfo(skb)->nr_frags = to; 4081 4082 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4083 4084 onlymerged: 4085 /* Most likely the tgt won't ever need its checksum anymore, skb on 4086 * the other hand might need it if it needs to be resent 4087 */ 4088 tgt->ip_summed = CHECKSUM_PARTIAL; 4089 skb->ip_summed = CHECKSUM_PARTIAL; 4090 4091 skb_len_add(skb, -shiftlen); 4092 skb_len_add(tgt, shiftlen); 4093 4094 return shiftlen; 4095 } 4096 4097 /** 4098 * skb_prepare_seq_read - Prepare a sequential read of skb data 4099 * @skb: the buffer to read 4100 * @from: lower offset of data to be read 4101 * @to: upper offset of data to be read 4102 * @st: state variable 4103 * 4104 * Initializes the specified state variable. Must be called before 4105 * invoking skb_seq_read() for the first time. 4106 */ 4107 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4108 unsigned int to, struct skb_seq_state *st) 4109 { 4110 st->lower_offset = from; 4111 st->upper_offset = to; 4112 st->root_skb = st->cur_skb = skb; 4113 st->frag_idx = st->stepped_offset = 0; 4114 st->frag_data = NULL; 4115 st->frag_off = 0; 4116 } 4117 EXPORT_SYMBOL(skb_prepare_seq_read); 4118 4119 /** 4120 * skb_seq_read - Sequentially read skb data 4121 * @consumed: number of bytes consumed by the caller so far 4122 * @data: destination pointer for data to be returned 4123 * @st: state variable 4124 * 4125 * Reads a block of skb data at @consumed relative to the 4126 * lower offset specified to skb_prepare_seq_read(). Assigns 4127 * the head of the data block to @data and returns the length 4128 * of the block or 0 if the end of the skb data or the upper 4129 * offset has been reached. 4130 * 4131 * The caller is not required to consume all of the data 4132 * returned, i.e. @consumed is typically set to the number 4133 * of bytes already consumed and the next call to 4134 * skb_seq_read() will return the remaining part of the block. 4135 * 4136 * Note 1: The size of each block of data returned can be arbitrary, 4137 * this limitation is the cost for zerocopy sequential 4138 * reads of potentially non linear data. 4139 * 4140 * Note 2: Fragment lists within fragments are not implemented 4141 * at the moment, state->root_skb could be replaced with 4142 * a stack for this purpose. 4143 */ 4144 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4145 struct skb_seq_state *st) 4146 { 4147 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4148 skb_frag_t *frag; 4149 4150 if (unlikely(abs_offset >= st->upper_offset)) { 4151 if (st->frag_data) { 4152 kunmap_atomic(st->frag_data); 4153 st->frag_data = NULL; 4154 } 4155 return 0; 4156 } 4157 4158 next_skb: 4159 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4160 4161 if (abs_offset < block_limit && !st->frag_data) { 4162 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4163 return block_limit - abs_offset; 4164 } 4165 4166 if (st->frag_idx == 0 && !st->frag_data) 4167 st->stepped_offset += skb_headlen(st->cur_skb); 4168 4169 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4170 unsigned int pg_idx, pg_off, pg_sz; 4171 4172 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4173 4174 pg_idx = 0; 4175 pg_off = skb_frag_off(frag); 4176 pg_sz = skb_frag_size(frag); 4177 4178 if (skb_frag_must_loop(skb_frag_page(frag))) { 4179 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4180 pg_off = offset_in_page(pg_off + st->frag_off); 4181 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4182 PAGE_SIZE - pg_off); 4183 } 4184 4185 block_limit = pg_sz + st->stepped_offset; 4186 if (abs_offset < block_limit) { 4187 if (!st->frag_data) 4188 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4189 4190 *data = (u8 *)st->frag_data + pg_off + 4191 (abs_offset - st->stepped_offset); 4192 4193 return block_limit - abs_offset; 4194 } 4195 4196 if (st->frag_data) { 4197 kunmap_atomic(st->frag_data); 4198 st->frag_data = NULL; 4199 } 4200 4201 st->stepped_offset += pg_sz; 4202 st->frag_off += pg_sz; 4203 if (st->frag_off == skb_frag_size(frag)) { 4204 st->frag_off = 0; 4205 st->frag_idx++; 4206 } 4207 } 4208 4209 if (st->frag_data) { 4210 kunmap_atomic(st->frag_data); 4211 st->frag_data = NULL; 4212 } 4213 4214 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4215 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4216 st->frag_idx = 0; 4217 goto next_skb; 4218 } else if (st->cur_skb->next) { 4219 st->cur_skb = st->cur_skb->next; 4220 st->frag_idx = 0; 4221 goto next_skb; 4222 } 4223 4224 return 0; 4225 } 4226 EXPORT_SYMBOL(skb_seq_read); 4227 4228 /** 4229 * skb_abort_seq_read - Abort a sequential read of skb data 4230 * @st: state variable 4231 * 4232 * Must be called if skb_seq_read() was not called until it 4233 * returned 0. 4234 */ 4235 void skb_abort_seq_read(struct skb_seq_state *st) 4236 { 4237 if (st->frag_data) 4238 kunmap_atomic(st->frag_data); 4239 } 4240 EXPORT_SYMBOL(skb_abort_seq_read); 4241 4242 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4243 4244 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4245 struct ts_config *conf, 4246 struct ts_state *state) 4247 { 4248 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4249 } 4250 4251 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4252 { 4253 skb_abort_seq_read(TS_SKB_CB(state)); 4254 } 4255 4256 /** 4257 * skb_find_text - Find a text pattern in skb data 4258 * @skb: the buffer to look in 4259 * @from: search offset 4260 * @to: search limit 4261 * @config: textsearch configuration 4262 * 4263 * Finds a pattern in the skb data according to the specified 4264 * textsearch configuration. Use textsearch_next() to retrieve 4265 * subsequent occurrences of the pattern. Returns the offset 4266 * to the first occurrence or UINT_MAX if no match was found. 4267 */ 4268 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4269 unsigned int to, struct ts_config *config) 4270 { 4271 unsigned int patlen = config->ops->get_pattern_len(config); 4272 struct ts_state state; 4273 unsigned int ret; 4274 4275 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4276 4277 config->get_next_block = skb_ts_get_next_block; 4278 config->finish = skb_ts_finish; 4279 4280 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4281 4282 ret = textsearch_find(config, &state); 4283 return (ret + patlen <= to - from ? ret : UINT_MAX); 4284 } 4285 EXPORT_SYMBOL(skb_find_text); 4286 4287 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4288 int offset, size_t size, size_t max_frags) 4289 { 4290 int i = skb_shinfo(skb)->nr_frags; 4291 4292 if (skb_can_coalesce(skb, i, page, offset)) { 4293 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4294 } else if (i < max_frags) { 4295 skb_zcopy_downgrade_managed(skb); 4296 get_page(page); 4297 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4298 } else { 4299 return -EMSGSIZE; 4300 } 4301 4302 return 0; 4303 } 4304 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4305 4306 /** 4307 * skb_pull_rcsum - pull skb and update receive checksum 4308 * @skb: buffer to update 4309 * @len: length of data pulled 4310 * 4311 * This function performs an skb_pull on the packet and updates 4312 * the CHECKSUM_COMPLETE checksum. It should be used on 4313 * receive path processing instead of skb_pull unless you know 4314 * that the checksum difference is zero (e.g., a valid IP header) 4315 * or you are setting ip_summed to CHECKSUM_NONE. 4316 */ 4317 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4318 { 4319 unsigned char *data = skb->data; 4320 4321 BUG_ON(len > skb->len); 4322 __skb_pull(skb, len); 4323 skb_postpull_rcsum(skb, data, len); 4324 return skb->data; 4325 } 4326 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4327 4328 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4329 { 4330 skb_frag_t head_frag; 4331 struct page *page; 4332 4333 page = virt_to_head_page(frag_skb->head); 4334 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4335 (unsigned char *)page_address(page), 4336 skb_headlen(frag_skb)); 4337 return head_frag; 4338 } 4339 4340 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4341 netdev_features_t features, 4342 unsigned int offset) 4343 { 4344 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4345 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4346 unsigned int delta_truesize = 0; 4347 unsigned int delta_len = 0; 4348 struct sk_buff *tail = NULL; 4349 struct sk_buff *nskb, *tmp; 4350 int len_diff, err; 4351 4352 skb_push(skb, -skb_network_offset(skb) + offset); 4353 4354 /* Ensure the head is writeable before touching the shared info */ 4355 err = skb_unclone(skb, GFP_ATOMIC); 4356 if (err) 4357 goto err_linearize; 4358 4359 skb_shinfo(skb)->frag_list = NULL; 4360 4361 while (list_skb) { 4362 nskb = list_skb; 4363 list_skb = list_skb->next; 4364 4365 err = 0; 4366 delta_truesize += nskb->truesize; 4367 if (skb_shared(nskb)) { 4368 tmp = skb_clone(nskb, GFP_ATOMIC); 4369 if (tmp) { 4370 consume_skb(nskb); 4371 nskb = tmp; 4372 err = skb_unclone(nskb, GFP_ATOMIC); 4373 } else { 4374 err = -ENOMEM; 4375 } 4376 } 4377 4378 if (!tail) 4379 skb->next = nskb; 4380 else 4381 tail->next = nskb; 4382 4383 if (unlikely(err)) { 4384 nskb->next = list_skb; 4385 goto err_linearize; 4386 } 4387 4388 tail = nskb; 4389 4390 delta_len += nskb->len; 4391 4392 skb_push(nskb, -skb_network_offset(nskb) + offset); 4393 4394 skb_release_head_state(nskb); 4395 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4396 __copy_skb_header(nskb, skb); 4397 4398 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4399 nskb->transport_header += len_diff; 4400 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4401 nskb->data - tnl_hlen, 4402 offset + tnl_hlen); 4403 4404 if (skb_needs_linearize(nskb, features) && 4405 __skb_linearize(nskb)) 4406 goto err_linearize; 4407 } 4408 4409 skb->truesize = skb->truesize - delta_truesize; 4410 skb->data_len = skb->data_len - delta_len; 4411 skb->len = skb->len - delta_len; 4412 4413 skb_gso_reset(skb); 4414 4415 skb->prev = tail; 4416 4417 if (skb_needs_linearize(skb, features) && 4418 __skb_linearize(skb)) 4419 goto err_linearize; 4420 4421 skb_get(skb); 4422 4423 return skb; 4424 4425 err_linearize: 4426 kfree_skb_list(skb->next); 4427 skb->next = NULL; 4428 return ERR_PTR(-ENOMEM); 4429 } 4430 EXPORT_SYMBOL_GPL(skb_segment_list); 4431 4432 /** 4433 * skb_segment - Perform protocol segmentation on skb. 4434 * @head_skb: buffer to segment 4435 * @features: features for the output path (see dev->features) 4436 * 4437 * This function performs segmentation on the given skb. It returns 4438 * a pointer to the first in a list of new skbs for the segments. 4439 * In case of error it returns ERR_PTR(err). 4440 */ 4441 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4442 netdev_features_t features) 4443 { 4444 struct sk_buff *segs = NULL; 4445 struct sk_buff *tail = NULL; 4446 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4447 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4448 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4449 unsigned int offset = doffset; 4450 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4451 unsigned int partial_segs = 0; 4452 unsigned int headroom; 4453 unsigned int len = head_skb->len; 4454 struct sk_buff *frag_skb; 4455 skb_frag_t *frag; 4456 __be16 proto; 4457 bool csum, sg; 4458 int err = -ENOMEM; 4459 int i = 0; 4460 int nfrags, pos; 4461 4462 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4463 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4464 struct sk_buff *check_skb; 4465 4466 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4467 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4468 /* gso_size is untrusted, and we have a frag_list with 4469 * a linear non head_frag item. 4470 * 4471 * If head_skb's headlen does not fit requested gso_size, 4472 * it means that the frag_list members do NOT terminate 4473 * on exact gso_size boundaries. Hence we cannot perform 4474 * skb_frag_t page sharing. Therefore we must fallback to 4475 * copying the frag_list skbs; we do so by disabling SG. 4476 */ 4477 features &= ~NETIF_F_SG; 4478 break; 4479 } 4480 } 4481 } 4482 4483 __skb_push(head_skb, doffset); 4484 proto = skb_network_protocol(head_skb, NULL); 4485 if (unlikely(!proto)) 4486 return ERR_PTR(-EINVAL); 4487 4488 sg = !!(features & NETIF_F_SG); 4489 csum = !!can_checksum_protocol(features, proto); 4490 4491 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4492 if (!(features & NETIF_F_GSO_PARTIAL)) { 4493 struct sk_buff *iter; 4494 unsigned int frag_len; 4495 4496 if (!list_skb || 4497 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4498 goto normal; 4499 4500 /* If we get here then all the required 4501 * GSO features except frag_list are supported. 4502 * Try to split the SKB to multiple GSO SKBs 4503 * with no frag_list. 4504 * Currently we can do that only when the buffers don't 4505 * have a linear part and all the buffers except 4506 * the last are of the same length. 4507 */ 4508 frag_len = list_skb->len; 4509 skb_walk_frags(head_skb, iter) { 4510 if (frag_len != iter->len && iter->next) 4511 goto normal; 4512 if (skb_headlen(iter) && !iter->head_frag) 4513 goto normal; 4514 4515 len -= iter->len; 4516 } 4517 4518 if (len != frag_len) 4519 goto normal; 4520 } 4521 4522 /* GSO partial only requires that we trim off any excess that 4523 * doesn't fit into an MSS sized block, so take care of that 4524 * now. 4525 */ 4526 partial_segs = len / mss; 4527 if (partial_segs > 1) 4528 mss *= partial_segs; 4529 else 4530 partial_segs = 0; 4531 } 4532 4533 normal: 4534 headroom = skb_headroom(head_skb); 4535 pos = skb_headlen(head_skb); 4536 4537 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4538 return ERR_PTR(-ENOMEM); 4539 4540 nfrags = skb_shinfo(head_skb)->nr_frags; 4541 frag = skb_shinfo(head_skb)->frags; 4542 frag_skb = head_skb; 4543 4544 do { 4545 struct sk_buff *nskb; 4546 skb_frag_t *nskb_frag; 4547 int hsize; 4548 int size; 4549 4550 if (unlikely(mss == GSO_BY_FRAGS)) { 4551 len = list_skb->len; 4552 } else { 4553 len = head_skb->len - offset; 4554 if (len > mss) 4555 len = mss; 4556 } 4557 4558 hsize = skb_headlen(head_skb) - offset; 4559 4560 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4561 (skb_headlen(list_skb) == len || sg)) { 4562 BUG_ON(skb_headlen(list_skb) > len); 4563 4564 nskb = skb_clone(list_skb, GFP_ATOMIC); 4565 if (unlikely(!nskb)) 4566 goto err; 4567 4568 i = 0; 4569 nfrags = skb_shinfo(list_skb)->nr_frags; 4570 frag = skb_shinfo(list_skb)->frags; 4571 frag_skb = list_skb; 4572 pos += skb_headlen(list_skb); 4573 4574 while (pos < offset + len) { 4575 BUG_ON(i >= nfrags); 4576 4577 size = skb_frag_size(frag); 4578 if (pos + size > offset + len) 4579 break; 4580 4581 i++; 4582 pos += size; 4583 frag++; 4584 } 4585 4586 list_skb = list_skb->next; 4587 4588 if (unlikely(pskb_trim(nskb, len))) { 4589 kfree_skb(nskb); 4590 goto err; 4591 } 4592 4593 hsize = skb_end_offset(nskb); 4594 if (skb_cow_head(nskb, doffset + headroom)) { 4595 kfree_skb(nskb); 4596 goto err; 4597 } 4598 4599 nskb->truesize += skb_end_offset(nskb) - hsize; 4600 skb_release_head_state(nskb); 4601 __skb_push(nskb, doffset); 4602 } else { 4603 if (hsize < 0) 4604 hsize = 0; 4605 if (hsize > len || !sg) 4606 hsize = len; 4607 4608 nskb = __alloc_skb(hsize + doffset + headroom, 4609 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4610 NUMA_NO_NODE); 4611 4612 if (unlikely(!nskb)) 4613 goto err; 4614 4615 skb_reserve(nskb, headroom); 4616 __skb_put(nskb, doffset); 4617 } 4618 4619 if (segs) 4620 tail->next = nskb; 4621 else 4622 segs = nskb; 4623 tail = nskb; 4624 4625 __copy_skb_header(nskb, head_skb); 4626 4627 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4628 skb_reset_mac_len(nskb); 4629 4630 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4631 nskb->data - tnl_hlen, 4632 doffset + tnl_hlen); 4633 4634 if (nskb->len == len + doffset) 4635 goto perform_csum_check; 4636 4637 if (!sg) { 4638 if (!csum) { 4639 if (!nskb->remcsum_offload) 4640 nskb->ip_summed = CHECKSUM_NONE; 4641 SKB_GSO_CB(nskb)->csum = 4642 skb_copy_and_csum_bits(head_skb, offset, 4643 skb_put(nskb, 4644 len), 4645 len); 4646 SKB_GSO_CB(nskb)->csum_start = 4647 skb_headroom(nskb) + doffset; 4648 } else { 4649 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4650 goto err; 4651 } 4652 continue; 4653 } 4654 4655 nskb_frag = skb_shinfo(nskb)->frags; 4656 4657 skb_copy_from_linear_data_offset(head_skb, offset, 4658 skb_put(nskb, hsize), hsize); 4659 4660 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4661 SKBFL_SHARED_FRAG; 4662 4663 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4664 goto err; 4665 4666 while (pos < offset + len) { 4667 if (i >= nfrags) { 4668 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4669 skb_zerocopy_clone(nskb, list_skb, 4670 GFP_ATOMIC)) 4671 goto err; 4672 4673 i = 0; 4674 nfrags = skb_shinfo(list_skb)->nr_frags; 4675 frag = skb_shinfo(list_skb)->frags; 4676 frag_skb = list_skb; 4677 if (!skb_headlen(list_skb)) { 4678 BUG_ON(!nfrags); 4679 } else { 4680 BUG_ON(!list_skb->head_frag); 4681 4682 /* to make room for head_frag. */ 4683 i--; 4684 frag--; 4685 } 4686 4687 list_skb = list_skb->next; 4688 } 4689 4690 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4691 MAX_SKB_FRAGS)) { 4692 net_warn_ratelimited( 4693 "skb_segment: too many frags: %u %u\n", 4694 pos, mss); 4695 err = -EINVAL; 4696 goto err; 4697 } 4698 4699 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4700 __skb_frag_ref(nskb_frag); 4701 size = skb_frag_size(nskb_frag); 4702 4703 if (pos < offset) { 4704 skb_frag_off_add(nskb_frag, offset - pos); 4705 skb_frag_size_sub(nskb_frag, offset - pos); 4706 } 4707 4708 skb_shinfo(nskb)->nr_frags++; 4709 4710 if (pos + size <= offset + len) { 4711 i++; 4712 frag++; 4713 pos += size; 4714 } else { 4715 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4716 goto skip_fraglist; 4717 } 4718 4719 nskb_frag++; 4720 } 4721 4722 skip_fraglist: 4723 nskb->data_len = len - hsize; 4724 nskb->len += nskb->data_len; 4725 nskb->truesize += nskb->data_len; 4726 4727 perform_csum_check: 4728 if (!csum) { 4729 if (skb_has_shared_frag(nskb) && 4730 __skb_linearize(nskb)) 4731 goto err; 4732 4733 if (!nskb->remcsum_offload) 4734 nskb->ip_summed = CHECKSUM_NONE; 4735 SKB_GSO_CB(nskb)->csum = 4736 skb_checksum(nskb, doffset, 4737 nskb->len - doffset, 0); 4738 SKB_GSO_CB(nskb)->csum_start = 4739 skb_headroom(nskb) + doffset; 4740 } 4741 } while ((offset += len) < head_skb->len); 4742 4743 /* Some callers want to get the end of the list. 4744 * Put it in segs->prev to avoid walking the list. 4745 * (see validate_xmit_skb_list() for example) 4746 */ 4747 segs->prev = tail; 4748 4749 if (partial_segs) { 4750 struct sk_buff *iter; 4751 int type = skb_shinfo(head_skb)->gso_type; 4752 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4753 4754 /* Update type to add partial and then remove dodgy if set */ 4755 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4756 type &= ~SKB_GSO_DODGY; 4757 4758 /* Update GSO info and prepare to start updating headers on 4759 * our way back down the stack of protocols. 4760 */ 4761 for (iter = segs; iter; iter = iter->next) { 4762 skb_shinfo(iter)->gso_size = gso_size; 4763 skb_shinfo(iter)->gso_segs = partial_segs; 4764 skb_shinfo(iter)->gso_type = type; 4765 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4766 } 4767 4768 if (tail->len - doffset <= gso_size) 4769 skb_shinfo(tail)->gso_size = 0; 4770 else if (tail != segs) 4771 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4772 } 4773 4774 /* Following permits correct backpressure, for protocols 4775 * using skb_set_owner_w(). 4776 * Idea is to tranfert ownership from head_skb to last segment. 4777 */ 4778 if (head_skb->destructor == sock_wfree) { 4779 swap(tail->truesize, head_skb->truesize); 4780 swap(tail->destructor, head_skb->destructor); 4781 swap(tail->sk, head_skb->sk); 4782 } 4783 return segs; 4784 4785 err: 4786 kfree_skb_list(segs); 4787 return ERR_PTR(err); 4788 } 4789 EXPORT_SYMBOL_GPL(skb_segment); 4790 4791 #ifdef CONFIG_SKB_EXTENSIONS 4792 #define SKB_EXT_ALIGN_VALUE 8 4793 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4794 4795 static const u8 skb_ext_type_len[] = { 4796 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4797 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4798 #endif 4799 #ifdef CONFIG_XFRM 4800 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4801 #endif 4802 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4803 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4804 #endif 4805 #if IS_ENABLED(CONFIG_MPTCP) 4806 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4807 #endif 4808 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4809 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4810 #endif 4811 }; 4812 4813 static __always_inline unsigned int skb_ext_total_length(void) 4814 { 4815 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4816 int i; 4817 4818 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4819 l += skb_ext_type_len[i]; 4820 4821 return l; 4822 } 4823 4824 static void skb_extensions_init(void) 4825 { 4826 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4827 BUILD_BUG_ON(skb_ext_total_length() > 255); 4828 4829 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4830 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4831 0, 4832 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4833 NULL); 4834 } 4835 #else 4836 static void skb_extensions_init(void) {} 4837 #endif 4838 4839 /* The SKB kmem_cache slab is critical for network performance. Never 4840 * merge/alias the slab with similar sized objects. This avoids fragmentation 4841 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4842 */ 4843 #ifndef CONFIG_SLUB_TINY 4844 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4845 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4846 #define FLAG_SKB_NO_MERGE 0 4847 #endif 4848 4849 void __init skb_init(void) 4850 { 4851 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4852 sizeof(struct sk_buff), 4853 0, 4854 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4855 FLAG_SKB_NO_MERGE, 4856 offsetof(struct sk_buff, cb), 4857 sizeof_field(struct sk_buff, cb), 4858 NULL); 4859 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4860 sizeof(struct sk_buff_fclones), 4861 0, 4862 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4863 NULL); 4864 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4865 * struct skb_shared_info is located at the end of skb->head, 4866 * and should not be copied to/from user. 4867 */ 4868 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4869 SKB_SMALL_HEAD_CACHE_SIZE, 4870 0, 4871 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4872 0, 4873 SKB_SMALL_HEAD_HEADROOM, 4874 NULL); 4875 skb_extensions_init(); 4876 } 4877 4878 static int 4879 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4880 unsigned int recursion_level) 4881 { 4882 int start = skb_headlen(skb); 4883 int i, copy = start - offset; 4884 struct sk_buff *frag_iter; 4885 int elt = 0; 4886 4887 if (unlikely(recursion_level >= 24)) 4888 return -EMSGSIZE; 4889 4890 if (copy > 0) { 4891 if (copy > len) 4892 copy = len; 4893 sg_set_buf(sg, skb->data + offset, copy); 4894 elt++; 4895 if ((len -= copy) == 0) 4896 return elt; 4897 offset += copy; 4898 } 4899 4900 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4901 int end; 4902 4903 WARN_ON(start > offset + len); 4904 4905 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4906 if ((copy = end - offset) > 0) { 4907 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4908 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4909 return -EMSGSIZE; 4910 4911 if (copy > len) 4912 copy = len; 4913 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4914 skb_frag_off(frag) + offset - start); 4915 elt++; 4916 if (!(len -= copy)) 4917 return elt; 4918 offset += copy; 4919 } 4920 start = end; 4921 } 4922 4923 skb_walk_frags(skb, frag_iter) { 4924 int end, ret; 4925 4926 WARN_ON(start > offset + len); 4927 4928 end = start + frag_iter->len; 4929 if ((copy = end - offset) > 0) { 4930 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4931 return -EMSGSIZE; 4932 4933 if (copy > len) 4934 copy = len; 4935 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4936 copy, recursion_level + 1); 4937 if (unlikely(ret < 0)) 4938 return ret; 4939 elt += ret; 4940 if ((len -= copy) == 0) 4941 return elt; 4942 offset += copy; 4943 } 4944 start = end; 4945 } 4946 BUG_ON(len); 4947 return elt; 4948 } 4949 4950 /** 4951 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4952 * @skb: Socket buffer containing the buffers to be mapped 4953 * @sg: The scatter-gather list to map into 4954 * @offset: The offset into the buffer's contents to start mapping 4955 * @len: Length of buffer space to be mapped 4956 * 4957 * Fill the specified scatter-gather list with mappings/pointers into a 4958 * region of the buffer space attached to a socket buffer. Returns either 4959 * the number of scatterlist items used, or -EMSGSIZE if the contents 4960 * could not fit. 4961 */ 4962 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4963 { 4964 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4965 4966 if (nsg <= 0) 4967 return nsg; 4968 4969 sg_mark_end(&sg[nsg - 1]); 4970 4971 return nsg; 4972 } 4973 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4974 4975 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4976 * sglist without mark the sg which contain last skb data as the end. 4977 * So the caller can mannipulate sg list as will when padding new data after 4978 * the first call without calling sg_unmark_end to expend sg list. 4979 * 4980 * Scenario to use skb_to_sgvec_nomark: 4981 * 1. sg_init_table 4982 * 2. skb_to_sgvec_nomark(payload1) 4983 * 3. skb_to_sgvec_nomark(payload2) 4984 * 4985 * This is equivalent to: 4986 * 1. sg_init_table 4987 * 2. skb_to_sgvec(payload1) 4988 * 3. sg_unmark_end 4989 * 4. skb_to_sgvec(payload2) 4990 * 4991 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4992 * is more preferable. 4993 */ 4994 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4995 int offset, int len) 4996 { 4997 return __skb_to_sgvec(skb, sg, offset, len, 0); 4998 } 4999 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5000 5001 5002 5003 /** 5004 * skb_cow_data - Check that a socket buffer's data buffers are writable 5005 * @skb: The socket buffer to check. 5006 * @tailbits: Amount of trailing space to be added 5007 * @trailer: Returned pointer to the skb where the @tailbits space begins 5008 * 5009 * Make sure that the data buffers attached to a socket buffer are 5010 * writable. If they are not, private copies are made of the data buffers 5011 * and the socket buffer is set to use these instead. 5012 * 5013 * If @tailbits is given, make sure that there is space to write @tailbits 5014 * bytes of data beyond current end of socket buffer. @trailer will be 5015 * set to point to the skb in which this space begins. 5016 * 5017 * The number of scatterlist elements required to completely map the 5018 * COW'd and extended socket buffer will be returned. 5019 */ 5020 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5021 { 5022 int copyflag; 5023 int elt; 5024 struct sk_buff *skb1, **skb_p; 5025 5026 /* If skb is cloned or its head is paged, reallocate 5027 * head pulling out all the pages (pages are considered not writable 5028 * at the moment even if they are anonymous). 5029 */ 5030 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5031 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5032 return -ENOMEM; 5033 5034 /* Easy case. Most of packets will go this way. */ 5035 if (!skb_has_frag_list(skb)) { 5036 /* A little of trouble, not enough of space for trailer. 5037 * This should not happen, when stack is tuned to generate 5038 * good frames. OK, on miss we reallocate and reserve even more 5039 * space, 128 bytes is fair. */ 5040 5041 if (skb_tailroom(skb) < tailbits && 5042 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5043 return -ENOMEM; 5044 5045 /* Voila! */ 5046 *trailer = skb; 5047 return 1; 5048 } 5049 5050 /* Misery. We are in troubles, going to mincer fragments... */ 5051 5052 elt = 1; 5053 skb_p = &skb_shinfo(skb)->frag_list; 5054 copyflag = 0; 5055 5056 while ((skb1 = *skb_p) != NULL) { 5057 int ntail = 0; 5058 5059 /* The fragment is partially pulled by someone, 5060 * this can happen on input. Copy it and everything 5061 * after it. */ 5062 5063 if (skb_shared(skb1)) 5064 copyflag = 1; 5065 5066 /* If the skb is the last, worry about trailer. */ 5067 5068 if (skb1->next == NULL && tailbits) { 5069 if (skb_shinfo(skb1)->nr_frags || 5070 skb_has_frag_list(skb1) || 5071 skb_tailroom(skb1) < tailbits) 5072 ntail = tailbits + 128; 5073 } 5074 5075 if (copyflag || 5076 skb_cloned(skb1) || 5077 ntail || 5078 skb_shinfo(skb1)->nr_frags || 5079 skb_has_frag_list(skb1)) { 5080 struct sk_buff *skb2; 5081 5082 /* Fuck, we are miserable poor guys... */ 5083 if (ntail == 0) 5084 skb2 = skb_copy(skb1, GFP_ATOMIC); 5085 else 5086 skb2 = skb_copy_expand(skb1, 5087 skb_headroom(skb1), 5088 ntail, 5089 GFP_ATOMIC); 5090 if (unlikely(skb2 == NULL)) 5091 return -ENOMEM; 5092 5093 if (skb1->sk) 5094 skb_set_owner_w(skb2, skb1->sk); 5095 5096 /* Looking around. Are we still alive? 5097 * OK, link new skb, drop old one */ 5098 5099 skb2->next = skb1->next; 5100 *skb_p = skb2; 5101 kfree_skb(skb1); 5102 skb1 = skb2; 5103 } 5104 elt++; 5105 *trailer = skb1; 5106 skb_p = &skb1->next; 5107 } 5108 5109 return elt; 5110 } 5111 EXPORT_SYMBOL_GPL(skb_cow_data); 5112 5113 static void sock_rmem_free(struct sk_buff *skb) 5114 { 5115 struct sock *sk = skb->sk; 5116 5117 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5118 } 5119 5120 static void skb_set_err_queue(struct sk_buff *skb) 5121 { 5122 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5123 * So, it is safe to (mis)use it to mark skbs on the error queue. 5124 */ 5125 skb->pkt_type = PACKET_OUTGOING; 5126 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5127 } 5128 5129 /* 5130 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5131 */ 5132 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5133 { 5134 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5135 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5136 return -ENOMEM; 5137 5138 skb_orphan(skb); 5139 skb->sk = sk; 5140 skb->destructor = sock_rmem_free; 5141 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5142 skb_set_err_queue(skb); 5143 5144 /* before exiting rcu section, make sure dst is refcounted */ 5145 skb_dst_force(skb); 5146 5147 skb_queue_tail(&sk->sk_error_queue, skb); 5148 if (!sock_flag(sk, SOCK_DEAD)) 5149 sk_error_report(sk); 5150 return 0; 5151 } 5152 EXPORT_SYMBOL(sock_queue_err_skb); 5153 5154 static bool is_icmp_err_skb(const struct sk_buff *skb) 5155 { 5156 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5157 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5158 } 5159 5160 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5161 { 5162 struct sk_buff_head *q = &sk->sk_error_queue; 5163 struct sk_buff *skb, *skb_next = NULL; 5164 bool icmp_next = false; 5165 unsigned long flags; 5166 5167 if (skb_queue_empty_lockless(q)) 5168 return NULL; 5169 5170 spin_lock_irqsave(&q->lock, flags); 5171 skb = __skb_dequeue(q); 5172 if (skb && (skb_next = skb_peek(q))) { 5173 icmp_next = is_icmp_err_skb(skb_next); 5174 if (icmp_next) 5175 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5176 } 5177 spin_unlock_irqrestore(&q->lock, flags); 5178 5179 if (is_icmp_err_skb(skb) && !icmp_next) 5180 sk->sk_err = 0; 5181 5182 if (skb_next) 5183 sk_error_report(sk); 5184 5185 return skb; 5186 } 5187 EXPORT_SYMBOL(sock_dequeue_err_skb); 5188 5189 /** 5190 * skb_clone_sk - create clone of skb, and take reference to socket 5191 * @skb: the skb to clone 5192 * 5193 * This function creates a clone of a buffer that holds a reference on 5194 * sk_refcnt. Buffers created via this function are meant to be 5195 * returned using sock_queue_err_skb, or free via kfree_skb. 5196 * 5197 * When passing buffers allocated with this function to sock_queue_err_skb 5198 * it is necessary to wrap the call with sock_hold/sock_put in order to 5199 * prevent the socket from being released prior to being enqueued on 5200 * the sk_error_queue. 5201 */ 5202 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5203 { 5204 struct sock *sk = skb->sk; 5205 struct sk_buff *clone; 5206 5207 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5208 return NULL; 5209 5210 clone = skb_clone(skb, GFP_ATOMIC); 5211 if (!clone) { 5212 sock_put(sk); 5213 return NULL; 5214 } 5215 5216 clone->sk = sk; 5217 clone->destructor = sock_efree; 5218 5219 return clone; 5220 } 5221 EXPORT_SYMBOL(skb_clone_sk); 5222 5223 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5224 struct sock *sk, 5225 int tstype, 5226 bool opt_stats) 5227 { 5228 struct sock_exterr_skb *serr; 5229 int err; 5230 5231 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5232 5233 serr = SKB_EXT_ERR(skb); 5234 memset(serr, 0, sizeof(*serr)); 5235 serr->ee.ee_errno = ENOMSG; 5236 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5237 serr->ee.ee_info = tstype; 5238 serr->opt_stats = opt_stats; 5239 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5240 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5241 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5242 if (sk_is_tcp(sk)) 5243 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5244 } 5245 5246 err = sock_queue_err_skb(sk, skb); 5247 5248 if (err) 5249 kfree_skb(skb); 5250 } 5251 5252 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5253 { 5254 bool ret; 5255 5256 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5257 return true; 5258 5259 read_lock_bh(&sk->sk_callback_lock); 5260 ret = sk->sk_socket && sk->sk_socket->file && 5261 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5262 read_unlock_bh(&sk->sk_callback_lock); 5263 return ret; 5264 } 5265 5266 void skb_complete_tx_timestamp(struct sk_buff *skb, 5267 struct skb_shared_hwtstamps *hwtstamps) 5268 { 5269 struct sock *sk = skb->sk; 5270 5271 if (!skb_may_tx_timestamp(sk, false)) 5272 goto err; 5273 5274 /* Take a reference to prevent skb_orphan() from freeing the socket, 5275 * but only if the socket refcount is not zero. 5276 */ 5277 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5278 *skb_hwtstamps(skb) = *hwtstamps; 5279 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5280 sock_put(sk); 5281 return; 5282 } 5283 5284 err: 5285 kfree_skb(skb); 5286 } 5287 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5288 5289 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5290 const struct sk_buff *ack_skb, 5291 struct skb_shared_hwtstamps *hwtstamps, 5292 struct sock *sk, int tstype) 5293 { 5294 struct sk_buff *skb; 5295 bool tsonly, opt_stats = false; 5296 u32 tsflags; 5297 5298 if (!sk) 5299 return; 5300 5301 tsflags = READ_ONCE(sk->sk_tsflags); 5302 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5303 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5304 return; 5305 5306 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5307 if (!skb_may_tx_timestamp(sk, tsonly)) 5308 return; 5309 5310 if (tsonly) { 5311 #ifdef CONFIG_INET 5312 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5313 sk_is_tcp(sk)) { 5314 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5315 ack_skb); 5316 opt_stats = true; 5317 } else 5318 #endif 5319 skb = alloc_skb(0, GFP_ATOMIC); 5320 } else { 5321 skb = skb_clone(orig_skb, GFP_ATOMIC); 5322 5323 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5324 kfree_skb(skb); 5325 return; 5326 } 5327 } 5328 if (!skb) 5329 return; 5330 5331 if (tsonly) { 5332 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5333 SKBTX_ANY_TSTAMP; 5334 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5335 } 5336 5337 if (hwtstamps) 5338 *skb_hwtstamps(skb) = *hwtstamps; 5339 else 5340 __net_timestamp(skb); 5341 5342 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5343 } 5344 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5345 5346 void skb_tstamp_tx(struct sk_buff *orig_skb, 5347 struct skb_shared_hwtstamps *hwtstamps) 5348 { 5349 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5350 SCM_TSTAMP_SND); 5351 } 5352 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5353 5354 #ifdef CONFIG_WIRELESS 5355 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5356 { 5357 struct sock *sk = skb->sk; 5358 struct sock_exterr_skb *serr; 5359 int err = 1; 5360 5361 skb->wifi_acked_valid = 1; 5362 skb->wifi_acked = acked; 5363 5364 serr = SKB_EXT_ERR(skb); 5365 memset(serr, 0, sizeof(*serr)); 5366 serr->ee.ee_errno = ENOMSG; 5367 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5368 5369 /* Take a reference to prevent skb_orphan() from freeing the socket, 5370 * but only if the socket refcount is not zero. 5371 */ 5372 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5373 err = sock_queue_err_skb(sk, skb); 5374 sock_put(sk); 5375 } 5376 if (err) 5377 kfree_skb(skb); 5378 } 5379 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5380 #endif /* CONFIG_WIRELESS */ 5381 5382 /** 5383 * skb_partial_csum_set - set up and verify partial csum values for packet 5384 * @skb: the skb to set 5385 * @start: the number of bytes after skb->data to start checksumming. 5386 * @off: the offset from start to place the checksum. 5387 * 5388 * For untrusted partially-checksummed packets, we need to make sure the values 5389 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5390 * 5391 * This function checks and sets those values and skb->ip_summed: if this 5392 * returns false you should drop the packet. 5393 */ 5394 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5395 { 5396 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5397 u32 csum_start = skb_headroom(skb) + (u32)start; 5398 5399 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5400 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5401 start, off, skb_headroom(skb), skb_headlen(skb)); 5402 return false; 5403 } 5404 skb->ip_summed = CHECKSUM_PARTIAL; 5405 skb->csum_start = csum_start; 5406 skb->csum_offset = off; 5407 skb->transport_header = csum_start; 5408 return true; 5409 } 5410 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5411 5412 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5413 unsigned int max) 5414 { 5415 if (skb_headlen(skb) >= len) 5416 return 0; 5417 5418 /* If we need to pullup then pullup to the max, so we 5419 * won't need to do it again. 5420 */ 5421 if (max > skb->len) 5422 max = skb->len; 5423 5424 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5425 return -ENOMEM; 5426 5427 if (skb_headlen(skb) < len) 5428 return -EPROTO; 5429 5430 return 0; 5431 } 5432 5433 #define MAX_TCP_HDR_LEN (15 * 4) 5434 5435 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5436 typeof(IPPROTO_IP) proto, 5437 unsigned int off) 5438 { 5439 int err; 5440 5441 switch (proto) { 5442 case IPPROTO_TCP: 5443 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5444 off + MAX_TCP_HDR_LEN); 5445 if (!err && !skb_partial_csum_set(skb, off, 5446 offsetof(struct tcphdr, 5447 check))) 5448 err = -EPROTO; 5449 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5450 5451 case IPPROTO_UDP: 5452 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5453 off + sizeof(struct udphdr)); 5454 if (!err && !skb_partial_csum_set(skb, off, 5455 offsetof(struct udphdr, 5456 check))) 5457 err = -EPROTO; 5458 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5459 } 5460 5461 return ERR_PTR(-EPROTO); 5462 } 5463 5464 /* This value should be large enough to cover a tagged ethernet header plus 5465 * maximally sized IP and TCP or UDP headers. 5466 */ 5467 #define MAX_IP_HDR_LEN 128 5468 5469 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5470 { 5471 unsigned int off; 5472 bool fragment; 5473 __sum16 *csum; 5474 int err; 5475 5476 fragment = false; 5477 5478 err = skb_maybe_pull_tail(skb, 5479 sizeof(struct iphdr), 5480 MAX_IP_HDR_LEN); 5481 if (err < 0) 5482 goto out; 5483 5484 if (ip_is_fragment(ip_hdr(skb))) 5485 fragment = true; 5486 5487 off = ip_hdrlen(skb); 5488 5489 err = -EPROTO; 5490 5491 if (fragment) 5492 goto out; 5493 5494 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5495 if (IS_ERR(csum)) 5496 return PTR_ERR(csum); 5497 5498 if (recalculate) 5499 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5500 ip_hdr(skb)->daddr, 5501 skb->len - off, 5502 ip_hdr(skb)->protocol, 0); 5503 err = 0; 5504 5505 out: 5506 return err; 5507 } 5508 5509 /* This value should be large enough to cover a tagged ethernet header plus 5510 * an IPv6 header, all options, and a maximal TCP or UDP header. 5511 */ 5512 #define MAX_IPV6_HDR_LEN 256 5513 5514 #define OPT_HDR(type, skb, off) \ 5515 (type *)(skb_network_header(skb) + (off)) 5516 5517 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5518 { 5519 int err; 5520 u8 nexthdr; 5521 unsigned int off; 5522 unsigned int len; 5523 bool fragment; 5524 bool done; 5525 __sum16 *csum; 5526 5527 fragment = false; 5528 done = false; 5529 5530 off = sizeof(struct ipv6hdr); 5531 5532 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5533 if (err < 0) 5534 goto out; 5535 5536 nexthdr = ipv6_hdr(skb)->nexthdr; 5537 5538 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5539 while (off <= len && !done) { 5540 switch (nexthdr) { 5541 case IPPROTO_DSTOPTS: 5542 case IPPROTO_HOPOPTS: 5543 case IPPROTO_ROUTING: { 5544 struct ipv6_opt_hdr *hp; 5545 5546 err = skb_maybe_pull_tail(skb, 5547 off + 5548 sizeof(struct ipv6_opt_hdr), 5549 MAX_IPV6_HDR_LEN); 5550 if (err < 0) 5551 goto out; 5552 5553 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5554 nexthdr = hp->nexthdr; 5555 off += ipv6_optlen(hp); 5556 break; 5557 } 5558 case IPPROTO_AH: { 5559 struct ip_auth_hdr *hp; 5560 5561 err = skb_maybe_pull_tail(skb, 5562 off + 5563 sizeof(struct ip_auth_hdr), 5564 MAX_IPV6_HDR_LEN); 5565 if (err < 0) 5566 goto out; 5567 5568 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5569 nexthdr = hp->nexthdr; 5570 off += ipv6_authlen(hp); 5571 break; 5572 } 5573 case IPPROTO_FRAGMENT: { 5574 struct frag_hdr *hp; 5575 5576 err = skb_maybe_pull_tail(skb, 5577 off + 5578 sizeof(struct frag_hdr), 5579 MAX_IPV6_HDR_LEN); 5580 if (err < 0) 5581 goto out; 5582 5583 hp = OPT_HDR(struct frag_hdr, skb, off); 5584 5585 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5586 fragment = true; 5587 5588 nexthdr = hp->nexthdr; 5589 off += sizeof(struct frag_hdr); 5590 break; 5591 } 5592 default: 5593 done = true; 5594 break; 5595 } 5596 } 5597 5598 err = -EPROTO; 5599 5600 if (!done || fragment) 5601 goto out; 5602 5603 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5604 if (IS_ERR(csum)) 5605 return PTR_ERR(csum); 5606 5607 if (recalculate) 5608 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5609 &ipv6_hdr(skb)->daddr, 5610 skb->len - off, nexthdr, 0); 5611 err = 0; 5612 5613 out: 5614 return err; 5615 } 5616 5617 /** 5618 * skb_checksum_setup - set up partial checksum offset 5619 * @skb: the skb to set up 5620 * @recalculate: if true the pseudo-header checksum will be recalculated 5621 */ 5622 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5623 { 5624 int err; 5625 5626 switch (skb->protocol) { 5627 case htons(ETH_P_IP): 5628 err = skb_checksum_setup_ipv4(skb, recalculate); 5629 break; 5630 5631 case htons(ETH_P_IPV6): 5632 err = skb_checksum_setup_ipv6(skb, recalculate); 5633 break; 5634 5635 default: 5636 err = -EPROTO; 5637 break; 5638 } 5639 5640 return err; 5641 } 5642 EXPORT_SYMBOL(skb_checksum_setup); 5643 5644 /** 5645 * skb_checksum_maybe_trim - maybe trims the given skb 5646 * @skb: the skb to check 5647 * @transport_len: the data length beyond the network header 5648 * 5649 * Checks whether the given skb has data beyond the given transport length. 5650 * If so, returns a cloned skb trimmed to this transport length. 5651 * Otherwise returns the provided skb. Returns NULL in error cases 5652 * (e.g. transport_len exceeds skb length or out-of-memory). 5653 * 5654 * Caller needs to set the skb transport header and free any returned skb if it 5655 * differs from the provided skb. 5656 */ 5657 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5658 unsigned int transport_len) 5659 { 5660 struct sk_buff *skb_chk; 5661 unsigned int len = skb_transport_offset(skb) + transport_len; 5662 int ret; 5663 5664 if (skb->len < len) 5665 return NULL; 5666 else if (skb->len == len) 5667 return skb; 5668 5669 skb_chk = skb_clone(skb, GFP_ATOMIC); 5670 if (!skb_chk) 5671 return NULL; 5672 5673 ret = pskb_trim_rcsum(skb_chk, len); 5674 if (ret) { 5675 kfree_skb(skb_chk); 5676 return NULL; 5677 } 5678 5679 return skb_chk; 5680 } 5681 5682 /** 5683 * skb_checksum_trimmed - validate checksum of an skb 5684 * @skb: the skb to check 5685 * @transport_len: the data length beyond the network header 5686 * @skb_chkf: checksum function to use 5687 * 5688 * Applies the given checksum function skb_chkf to the provided skb. 5689 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5690 * 5691 * If the skb has data beyond the given transport length, then a 5692 * trimmed & cloned skb is checked and returned. 5693 * 5694 * Caller needs to set the skb transport header and free any returned skb if it 5695 * differs from the provided skb. 5696 */ 5697 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5698 unsigned int transport_len, 5699 __sum16(*skb_chkf)(struct sk_buff *skb)) 5700 { 5701 struct sk_buff *skb_chk; 5702 unsigned int offset = skb_transport_offset(skb); 5703 __sum16 ret; 5704 5705 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5706 if (!skb_chk) 5707 goto err; 5708 5709 if (!pskb_may_pull(skb_chk, offset)) 5710 goto err; 5711 5712 skb_pull_rcsum(skb_chk, offset); 5713 ret = skb_chkf(skb_chk); 5714 skb_push_rcsum(skb_chk, offset); 5715 5716 if (ret) 5717 goto err; 5718 5719 return skb_chk; 5720 5721 err: 5722 if (skb_chk && skb_chk != skb) 5723 kfree_skb(skb_chk); 5724 5725 return NULL; 5726 5727 } 5728 EXPORT_SYMBOL(skb_checksum_trimmed); 5729 5730 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5731 { 5732 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5733 skb->dev->name); 5734 } 5735 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5736 5737 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5738 { 5739 if (head_stolen) { 5740 skb_release_head_state(skb); 5741 kmem_cache_free(skbuff_cache, skb); 5742 } else { 5743 __kfree_skb(skb); 5744 } 5745 } 5746 EXPORT_SYMBOL(kfree_skb_partial); 5747 5748 /** 5749 * skb_try_coalesce - try to merge skb to prior one 5750 * @to: prior buffer 5751 * @from: buffer to add 5752 * @fragstolen: pointer to boolean 5753 * @delta_truesize: how much more was allocated than was requested 5754 */ 5755 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5756 bool *fragstolen, int *delta_truesize) 5757 { 5758 struct skb_shared_info *to_shinfo, *from_shinfo; 5759 int i, delta, len = from->len; 5760 5761 *fragstolen = false; 5762 5763 if (skb_cloned(to)) 5764 return false; 5765 5766 /* In general, avoid mixing page_pool and non-page_pool allocated 5767 * pages within the same SKB. Additionally avoid dealing with clones 5768 * with page_pool pages, in case the SKB is using page_pool fragment 5769 * references (page_pool_alloc_frag()). Since we only take full page 5770 * references for cloned SKBs at the moment that would result in 5771 * inconsistent reference counts. 5772 * In theory we could take full references if @from is cloned and 5773 * !@to->pp_recycle but its tricky (due to potential race with 5774 * the clone disappearing) and rare, so not worth dealing with. 5775 */ 5776 if (to->pp_recycle != from->pp_recycle || 5777 (from->pp_recycle && skb_cloned(from))) 5778 return false; 5779 5780 if (len <= skb_tailroom(to)) { 5781 if (len) 5782 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5783 *delta_truesize = 0; 5784 return true; 5785 } 5786 5787 to_shinfo = skb_shinfo(to); 5788 from_shinfo = skb_shinfo(from); 5789 if (to_shinfo->frag_list || from_shinfo->frag_list) 5790 return false; 5791 if (skb_zcopy(to) || skb_zcopy(from)) 5792 return false; 5793 5794 if (skb_headlen(from) != 0) { 5795 struct page *page; 5796 unsigned int offset; 5797 5798 if (to_shinfo->nr_frags + 5799 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5800 return false; 5801 5802 if (skb_head_is_locked(from)) 5803 return false; 5804 5805 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5806 5807 page = virt_to_head_page(from->head); 5808 offset = from->data - (unsigned char *)page_address(page); 5809 5810 skb_fill_page_desc(to, to_shinfo->nr_frags, 5811 page, offset, skb_headlen(from)); 5812 *fragstolen = true; 5813 } else { 5814 if (to_shinfo->nr_frags + 5815 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5816 return false; 5817 5818 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5819 } 5820 5821 WARN_ON_ONCE(delta < len); 5822 5823 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5824 from_shinfo->frags, 5825 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5826 to_shinfo->nr_frags += from_shinfo->nr_frags; 5827 5828 if (!skb_cloned(from)) 5829 from_shinfo->nr_frags = 0; 5830 5831 /* if the skb is not cloned this does nothing 5832 * since we set nr_frags to 0. 5833 */ 5834 for (i = 0; i < from_shinfo->nr_frags; i++) 5835 __skb_frag_ref(&from_shinfo->frags[i]); 5836 5837 to->truesize += delta; 5838 to->len += len; 5839 to->data_len += len; 5840 5841 *delta_truesize = delta; 5842 return true; 5843 } 5844 EXPORT_SYMBOL(skb_try_coalesce); 5845 5846 /** 5847 * skb_scrub_packet - scrub an skb 5848 * 5849 * @skb: buffer to clean 5850 * @xnet: packet is crossing netns 5851 * 5852 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5853 * into/from a tunnel. Some information have to be cleared during these 5854 * operations. 5855 * skb_scrub_packet can also be used to clean a skb before injecting it in 5856 * another namespace (@xnet == true). We have to clear all information in the 5857 * skb that could impact namespace isolation. 5858 */ 5859 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5860 { 5861 skb->pkt_type = PACKET_HOST; 5862 skb->skb_iif = 0; 5863 skb->ignore_df = 0; 5864 skb_dst_drop(skb); 5865 skb_ext_reset(skb); 5866 nf_reset_ct(skb); 5867 nf_reset_trace(skb); 5868 5869 #ifdef CONFIG_NET_SWITCHDEV 5870 skb->offload_fwd_mark = 0; 5871 skb->offload_l3_fwd_mark = 0; 5872 #endif 5873 5874 if (!xnet) 5875 return; 5876 5877 ipvs_reset(skb); 5878 skb->mark = 0; 5879 skb_clear_tstamp(skb); 5880 } 5881 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5882 5883 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5884 { 5885 int mac_len, meta_len; 5886 void *meta; 5887 5888 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5889 kfree_skb(skb); 5890 return NULL; 5891 } 5892 5893 mac_len = skb->data - skb_mac_header(skb); 5894 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5895 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5896 mac_len - VLAN_HLEN - ETH_TLEN); 5897 } 5898 5899 meta_len = skb_metadata_len(skb); 5900 if (meta_len) { 5901 meta = skb_metadata_end(skb) - meta_len; 5902 memmove(meta + VLAN_HLEN, meta, meta_len); 5903 } 5904 5905 skb->mac_header += VLAN_HLEN; 5906 return skb; 5907 } 5908 5909 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5910 { 5911 struct vlan_hdr *vhdr; 5912 u16 vlan_tci; 5913 5914 if (unlikely(skb_vlan_tag_present(skb))) { 5915 /* vlan_tci is already set-up so leave this for another time */ 5916 return skb; 5917 } 5918 5919 skb = skb_share_check(skb, GFP_ATOMIC); 5920 if (unlikely(!skb)) 5921 goto err_free; 5922 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5923 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5924 goto err_free; 5925 5926 vhdr = (struct vlan_hdr *)skb->data; 5927 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5928 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5929 5930 skb_pull_rcsum(skb, VLAN_HLEN); 5931 vlan_set_encap_proto(skb, vhdr); 5932 5933 skb = skb_reorder_vlan_header(skb); 5934 if (unlikely(!skb)) 5935 goto err_free; 5936 5937 skb_reset_network_header(skb); 5938 if (!skb_transport_header_was_set(skb)) 5939 skb_reset_transport_header(skb); 5940 skb_reset_mac_len(skb); 5941 5942 return skb; 5943 5944 err_free: 5945 kfree_skb(skb); 5946 return NULL; 5947 } 5948 EXPORT_SYMBOL(skb_vlan_untag); 5949 5950 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5951 { 5952 if (!pskb_may_pull(skb, write_len)) 5953 return -ENOMEM; 5954 5955 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5956 return 0; 5957 5958 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5959 } 5960 EXPORT_SYMBOL(skb_ensure_writable); 5961 5962 /* remove VLAN header from packet and update csum accordingly. 5963 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5964 */ 5965 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5966 { 5967 int offset = skb->data - skb_mac_header(skb); 5968 int err; 5969 5970 if (WARN_ONCE(offset, 5971 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5972 offset)) { 5973 return -EINVAL; 5974 } 5975 5976 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5977 if (unlikely(err)) 5978 return err; 5979 5980 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5981 5982 vlan_remove_tag(skb, vlan_tci); 5983 5984 skb->mac_header += VLAN_HLEN; 5985 5986 if (skb_network_offset(skb) < ETH_HLEN) 5987 skb_set_network_header(skb, ETH_HLEN); 5988 5989 skb_reset_mac_len(skb); 5990 5991 return err; 5992 } 5993 EXPORT_SYMBOL(__skb_vlan_pop); 5994 5995 /* Pop a vlan tag either from hwaccel or from payload. 5996 * Expects skb->data at mac header. 5997 */ 5998 int skb_vlan_pop(struct sk_buff *skb) 5999 { 6000 u16 vlan_tci; 6001 __be16 vlan_proto; 6002 int err; 6003 6004 if (likely(skb_vlan_tag_present(skb))) { 6005 __vlan_hwaccel_clear_tag(skb); 6006 } else { 6007 if (unlikely(!eth_type_vlan(skb->protocol))) 6008 return 0; 6009 6010 err = __skb_vlan_pop(skb, &vlan_tci); 6011 if (err) 6012 return err; 6013 } 6014 /* move next vlan tag to hw accel tag */ 6015 if (likely(!eth_type_vlan(skb->protocol))) 6016 return 0; 6017 6018 vlan_proto = skb->protocol; 6019 err = __skb_vlan_pop(skb, &vlan_tci); 6020 if (unlikely(err)) 6021 return err; 6022 6023 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6024 return 0; 6025 } 6026 EXPORT_SYMBOL(skb_vlan_pop); 6027 6028 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6029 * Expects skb->data at mac header. 6030 */ 6031 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6032 { 6033 if (skb_vlan_tag_present(skb)) { 6034 int offset = skb->data - skb_mac_header(skb); 6035 int err; 6036 6037 if (WARN_ONCE(offset, 6038 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6039 offset)) { 6040 return -EINVAL; 6041 } 6042 6043 err = __vlan_insert_tag(skb, skb->vlan_proto, 6044 skb_vlan_tag_get(skb)); 6045 if (err) 6046 return err; 6047 6048 skb->protocol = skb->vlan_proto; 6049 skb->mac_len += VLAN_HLEN; 6050 6051 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6052 } 6053 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6054 return 0; 6055 } 6056 EXPORT_SYMBOL(skb_vlan_push); 6057 6058 /** 6059 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6060 * 6061 * @skb: Socket buffer to modify 6062 * 6063 * Drop the Ethernet header of @skb. 6064 * 6065 * Expects that skb->data points to the mac header and that no VLAN tags are 6066 * present. 6067 * 6068 * Returns 0 on success, -errno otherwise. 6069 */ 6070 int skb_eth_pop(struct sk_buff *skb) 6071 { 6072 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6073 skb_network_offset(skb) < ETH_HLEN) 6074 return -EPROTO; 6075 6076 skb_pull_rcsum(skb, ETH_HLEN); 6077 skb_reset_mac_header(skb); 6078 skb_reset_mac_len(skb); 6079 6080 return 0; 6081 } 6082 EXPORT_SYMBOL(skb_eth_pop); 6083 6084 /** 6085 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6086 * 6087 * @skb: Socket buffer to modify 6088 * @dst: Destination MAC address of the new header 6089 * @src: Source MAC address of the new header 6090 * 6091 * Prepend @skb with a new Ethernet header. 6092 * 6093 * Expects that skb->data points to the mac header, which must be empty. 6094 * 6095 * Returns 0 on success, -errno otherwise. 6096 */ 6097 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6098 const unsigned char *src) 6099 { 6100 struct ethhdr *eth; 6101 int err; 6102 6103 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6104 return -EPROTO; 6105 6106 err = skb_cow_head(skb, sizeof(*eth)); 6107 if (err < 0) 6108 return err; 6109 6110 skb_push(skb, sizeof(*eth)); 6111 skb_reset_mac_header(skb); 6112 skb_reset_mac_len(skb); 6113 6114 eth = eth_hdr(skb); 6115 ether_addr_copy(eth->h_dest, dst); 6116 ether_addr_copy(eth->h_source, src); 6117 eth->h_proto = skb->protocol; 6118 6119 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6120 6121 return 0; 6122 } 6123 EXPORT_SYMBOL(skb_eth_push); 6124 6125 /* Update the ethertype of hdr and the skb csum value if required. */ 6126 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6127 __be16 ethertype) 6128 { 6129 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6130 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6131 6132 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6133 } 6134 6135 hdr->h_proto = ethertype; 6136 } 6137 6138 /** 6139 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6140 * the packet 6141 * 6142 * @skb: buffer 6143 * @mpls_lse: MPLS label stack entry to push 6144 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6145 * @mac_len: length of the MAC header 6146 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6147 * ethernet 6148 * 6149 * Expects skb->data at mac header. 6150 * 6151 * Returns 0 on success, -errno otherwise. 6152 */ 6153 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6154 int mac_len, bool ethernet) 6155 { 6156 struct mpls_shim_hdr *lse; 6157 int err; 6158 6159 if (unlikely(!eth_p_mpls(mpls_proto))) 6160 return -EINVAL; 6161 6162 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6163 if (skb->encapsulation) 6164 return -EINVAL; 6165 6166 err = skb_cow_head(skb, MPLS_HLEN); 6167 if (unlikely(err)) 6168 return err; 6169 6170 if (!skb->inner_protocol) { 6171 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6172 skb_set_inner_protocol(skb, skb->protocol); 6173 } 6174 6175 skb_push(skb, MPLS_HLEN); 6176 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6177 mac_len); 6178 skb_reset_mac_header(skb); 6179 skb_set_network_header(skb, mac_len); 6180 skb_reset_mac_len(skb); 6181 6182 lse = mpls_hdr(skb); 6183 lse->label_stack_entry = mpls_lse; 6184 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6185 6186 if (ethernet && mac_len >= ETH_HLEN) 6187 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6188 skb->protocol = mpls_proto; 6189 6190 return 0; 6191 } 6192 EXPORT_SYMBOL_GPL(skb_mpls_push); 6193 6194 /** 6195 * skb_mpls_pop() - pop the outermost MPLS header 6196 * 6197 * @skb: buffer 6198 * @next_proto: ethertype of header after popped MPLS header 6199 * @mac_len: length of the MAC header 6200 * @ethernet: flag to indicate if the packet is ethernet 6201 * 6202 * Expects skb->data at mac header. 6203 * 6204 * Returns 0 on success, -errno otherwise. 6205 */ 6206 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6207 bool ethernet) 6208 { 6209 int err; 6210 6211 if (unlikely(!eth_p_mpls(skb->protocol))) 6212 return 0; 6213 6214 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6215 if (unlikely(err)) 6216 return err; 6217 6218 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6219 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6220 mac_len); 6221 6222 __skb_pull(skb, MPLS_HLEN); 6223 skb_reset_mac_header(skb); 6224 skb_set_network_header(skb, mac_len); 6225 6226 if (ethernet && mac_len >= ETH_HLEN) { 6227 struct ethhdr *hdr; 6228 6229 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6230 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6231 skb_mod_eth_type(skb, hdr, next_proto); 6232 } 6233 skb->protocol = next_proto; 6234 6235 return 0; 6236 } 6237 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6238 6239 /** 6240 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6241 * 6242 * @skb: buffer 6243 * @mpls_lse: new MPLS label stack entry to update to 6244 * 6245 * Expects skb->data at mac header. 6246 * 6247 * Returns 0 on success, -errno otherwise. 6248 */ 6249 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6250 { 6251 int err; 6252 6253 if (unlikely(!eth_p_mpls(skb->protocol))) 6254 return -EINVAL; 6255 6256 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6257 if (unlikely(err)) 6258 return err; 6259 6260 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6261 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6262 6263 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6264 } 6265 6266 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6267 6268 return 0; 6269 } 6270 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6271 6272 /** 6273 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6274 * 6275 * @skb: buffer 6276 * 6277 * Expects skb->data at mac header. 6278 * 6279 * Returns 0 on success, -errno otherwise. 6280 */ 6281 int skb_mpls_dec_ttl(struct sk_buff *skb) 6282 { 6283 u32 lse; 6284 u8 ttl; 6285 6286 if (unlikely(!eth_p_mpls(skb->protocol))) 6287 return -EINVAL; 6288 6289 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6290 return -ENOMEM; 6291 6292 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6293 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6294 if (!--ttl) 6295 return -EINVAL; 6296 6297 lse &= ~MPLS_LS_TTL_MASK; 6298 lse |= ttl << MPLS_LS_TTL_SHIFT; 6299 6300 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6301 } 6302 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6303 6304 /** 6305 * alloc_skb_with_frags - allocate skb with page frags 6306 * 6307 * @header_len: size of linear part 6308 * @data_len: needed length in frags 6309 * @order: max page order desired. 6310 * @errcode: pointer to error code if any 6311 * @gfp_mask: allocation mask 6312 * 6313 * This can be used to allocate a paged skb, given a maximal order for frags. 6314 */ 6315 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6316 unsigned long data_len, 6317 int order, 6318 int *errcode, 6319 gfp_t gfp_mask) 6320 { 6321 unsigned long chunk; 6322 struct sk_buff *skb; 6323 struct page *page; 6324 int nr_frags = 0; 6325 6326 *errcode = -EMSGSIZE; 6327 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6328 return NULL; 6329 6330 *errcode = -ENOBUFS; 6331 skb = alloc_skb(header_len, gfp_mask); 6332 if (!skb) 6333 return NULL; 6334 6335 while (data_len) { 6336 if (nr_frags == MAX_SKB_FRAGS - 1) 6337 goto failure; 6338 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6339 order--; 6340 6341 if (order) { 6342 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6343 __GFP_COMP | 6344 __GFP_NOWARN, 6345 order); 6346 if (!page) { 6347 order--; 6348 continue; 6349 } 6350 } else { 6351 page = alloc_page(gfp_mask); 6352 if (!page) 6353 goto failure; 6354 } 6355 chunk = min_t(unsigned long, data_len, 6356 PAGE_SIZE << order); 6357 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6358 nr_frags++; 6359 skb->truesize += (PAGE_SIZE << order); 6360 data_len -= chunk; 6361 } 6362 return skb; 6363 6364 failure: 6365 kfree_skb(skb); 6366 return NULL; 6367 } 6368 EXPORT_SYMBOL(alloc_skb_with_frags); 6369 6370 /* carve out the first off bytes from skb when off < headlen */ 6371 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6372 const int headlen, gfp_t gfp_mask) 6373 { 6374 int i; 6375 unsigned int size = skb_end_offset(skb); 6376 int new_hlen = headlen - off; 6377 u8 *data; 6378 6379 if (skb_pfmemalloc(skb)) 6380 gfp_mask |= __GFP_MEMALLOC; 6381 6382 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6383 if (!data) 6384 return -ENOMEM; 6385 size = SKB_WITH_OVERHEAD(size); 6386 6387 /* Copy real data, and all frags */ 6388 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6389 skb->len -= off; 6390 6391 memcpy((struct skb_shared_info *)(data + size), 6392 skb_shinfo(skb), 6393 offsetof(struct skb_shared_info, 6394 frags[skb_shinfo(skb)->nr_frags])); 6395 if (skb_cloned(skb)) { 6396 /* drop the old head gracefully */ 6397 if (skb_orphan_frags(skb, gfp_mask)) { 6398 skb_kfree_head(data, size); 6399 return -ENOMEM; 6400 } 6401 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6402 skb_frag_ref(skb, i); 6403 if (skb_has_frag_list(skb)) 6404 skb_clone_fraglist(skb); 6405 skb_release_data(skb, SKB_CONSUMED, false); 6406 } else { 6407 /* we can reuse existing recount- all we did was 6408 * relocate values 6409 */ 6410 skb_free_head(skb, false); 6411 } 6412 6413 skb->head = data; 6414 skb->data = data; 6415 skb->head_frag = 0; 6416 skb_set_end_offset(skb, size); 6417 skb_set_tail_pointer(skb, skb_headlen(skb)); 6418 skb_headers_offset_update(skb, 0); 6419 skb->cloned = 0; 6420 skb->hdr_len = 0; 6421 skb->nohdr = 0; 6422 atomic_set(&skb_shinfo(skb)->dataref, 1); 6423 6424 return 0; 6425 } 6426 6427 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6428 6429 /* carve out the first eat bytes from skb's frag_list. May recurse into 6430 * pskb_carve() 6431 */ 6432 static int pskb_carve_frag_list(struct sk_buff *skb, 6433 struct skb_shared_info *shinfo, int eat, 6434 gfp_t gfp_mask) 6435 { 6436 struct sk_buff *list = shinfo->frag_list; 6437 struct sk_buff *clone = NULL; 6438 struct sk_buff *insp = NULL; 6439 6440 do { 6441 if (!list) { 6442 pr_err("Not enough bytes to eat. Want %d\n", eat); 6443 return -EFAULT; 6444 } 6445 if (list->len <= eat) { 6446 /* Eaten as whole. */ 6447 eat -= list->len; 6448 list = list->next; 6449 insp = list; 6450 } else { 6451 /* Eaten partially. */ 6452 if (skb_shared(list)) { 6453 clone = skb_clone(list, gfp_mask); 6454 if (!clone) 6455 return -ENOMEM; 6456 insp = list->next; 6457 list = clone; 6458 } else { 6459 /* This may be pulled without problems. */ 6460 insp = list; 6461 } 6462 if (pskb_carve(list, eat, gfp_mask) < 0) { 6463 kfree_skb(clone); 6464 return -ENOMEM; 6465 } 6466 break; 6467 } 6468 } while (eat); 6469 6470 /* Free pulled out fragments. */ 6471 while ((list = shinfo->frag_list) != insp) { 6472 shinfo->frag_list = list->next; 6473 consume_skb(list); 6474 } 6475 /* And insert new clone at head. */ 6476 if (clone) { 6477 clone->next = list; 6478 shinfo->frag_list = clone; 6479 } 6480 return 0; 6481 } 6482 6483 /* carve off first len bytes from skb. Split line (off) is in the 6484 * non-linear part of skb 6485 */ 6486 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6487 int pos, gfp_t gfp_mask) 6488 { 6489 int i, k = 0; 6490 unsigned int size = skb_end_offset(skb); 6491 u8 *data; 6492 const int nfrags = skb_shinfo(skb)->nr_frags; 6493 struct skb_shared_info *shinfo; 6494 6495 if (skb_pfmemalloc(skb)) 6496 gfp_mask |= __GFP_MEMALLOC; 6497 6498 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6499 if (!data) 6500 return -ENOMEM; 6501 size = SKB_WITH_OVERHEAD(size); 6502 6503 memcpy((struct skb_shared_info *)(data + size), 6504 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6505 if (skb_orphan_frags(skb, gfp_mask)) { 6506 skb_kfree_head(data, size); 6507 return -ENOMEM; 6508 } 6509 shinfo = (struct skb_shared_info *)(data + size); 6510 for (i = 0; i < nfrags; i++) { 6511 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6512 6513 if (pos + fsize > off) { 6514 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6515 6516 if (pos < off) { 6517 /* Split frag. 6518 * We have two variants in this case: 6519 * 1. Move all the frag to the second 6520 * part, if it is possible. F.e. 6521 * this approach is mandatory for TUX, 6522 * where splitting is expensive. 6523 * 2. Split is accurately. We make this. 6524 */ 6525 skb_frag_off_add(&shinfo->frags[0], off - pos); 6526 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6527 } 6528 skb_frag_ref(skb, i); 6529 k++; 6530 } 6531 pos += fsize; 6532 } 6533 shinfo->nr_frags = k; 6534 if (skb_has_frag_list(skb)) 6535 skb_clone_fraglist(skb); 6536 6537 /* split line is in frag list */ 6538 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6539 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6540 if (skb_has_frag_list(skb)) 6541 kfree_skb_list(skb_shinfo(skb)->frag_list); 6542 skb_kfree_head(data, size); 6543 return -ENOMEM; 6544 } 6545 skb_release_data(skb, SKB_CONSUMED, false); 6546 6547 skb->head = data; 6548 skb->head_frag = 0; 6549 skb->data = data; 6550 skb_set_end_offset(skb, size); 6551 skb_reset_tail_pointer(skb); 6552 skb_headers_offset_update(skb, 0); 6553 skb->cloned = 0; 6554 skb->hdr_len = 0; 6555 skb->nohdr = 0; 6556 skb->len -= off; 6557 skb->data_len = skb->len; 6558 atomic_set(&skb_shinfo(skb)->dataref, 1); 6559 return 0; 6560 } 6561 6562 /* remove len bytes from the beginning of the skb */ 6563 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6564 { 6565 int headlen = skb_headlen(skb); 6566 6567 if (len < headlen) 6568 return pskb_carve_inside_header(skb, len, headlen, gfp); 6569 else 6570 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6571 } 6572 6573 /* Extract to_copy bytes starting at off from skb, and return this in 6574 * a new skb 6575 */ 6576 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6577 int to_copy, gfp_t gfp) 6578 { 6579 struct sk_buff *clone = skb_clone(skb, gfp); 6580 6581 if (!clone) 6582 return NULL; 6583 6584 if (pskb_carve(clone, off, gfp) < 0 || 6585 pskb_trim(clone, to_copy)) { 6586 kfree_skb(clone); 6587 return NULL; 6588 } 6589 return clone; 6590 } 6591 EXPORT_SYMBOL(pskb_extract); 6592 6593 /** 6594 * skb_condense - try to get rid of fragments/frag_list if possible 6595 * @skb: buffer 6596 * 6597 * Can be used to save memory before skb is added to a busy queue. 6598 * If packet has bytes in frags and enough tail room in skb->head, 6599 * pull all of them, so that we can free the frags right now and adjust 6600 * truesize. 6601 * Notes: 6602 * We do not reallocate skb->head thus can not fail. 6603 * Caller must re-evaluate skb->truesize if needed. 6604 */ 6605 void skb_condense(struct sk_buff *skb) 6606 { 6607 if (skb->data_len) { 6608 if (skb->data_len > skb->end - skb->tail || 6609 skb_cloned(skb)) 6610 return; 6611 6612 /* Nice, we can free page frag(s) right now */ 6613 __pskb_pull_tail(skb, skb->data_len); 6614 } 6615 /* At this point, skb->truesize might be over estimated, 6616 * because skb had a fragment, and fragments do not tell 6617 * their truesize. 6618 * When we pulled its content into skb->head, fragment 6619 * was freed, but __pskb_pull_tail() could not possibly 6620 * adjust skb->truesize, not knowing the frag truesize. 6621 */ 6622 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6623 } 6624 EXPORT_SYMBOL(skb_condense); 6625 6626 #ifdef CONFIG_SKB_EXTENSIONS 6627 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6628 { 6629 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6630 } 6631 6632 /** 6633 * __skb_ext_alloc - allocate a new skb extensions storage 6634 * 6635 * @flags: See kmalloc(). 6636 * 6637 * Returns the newly allocated pointer. The pointer can later attached to a 6638 * skb via __skb_ext_set(). 6639 * Note: caller must handle the skb_ext as an opaque data. 6640 */ 6641 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6642 { 6643 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6644 6645 if (new) { 6646 memset(new->offset, 0, sizeof(new->offset)); 6647 refcount_set(&new->refcnt, 1); 6648 } 6649 6650 return new; 6651 } 6652 6653 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6654 unsigned int old_active) 6655 { 6656 struct skb_ext *new; 6657 6658 if (refcount_read(&old->refcnt) == 1) 6659 return old; 6660 6661 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6662 if (!new) 6663 return NULL; 6664 6665 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6666 refcount_set(&new->refcnt, 1); 6667 6668 #ifdef CONFIG_XFRM 6669 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6670 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6671 unsigned int i; 6672 6673 for (i = 0; i < sp->len; i++) 6674 xfrm_state_hold(sp->xvec[i]); 6675 } 6676 #endif 6677 __skb_ext_put(old); 6678 return new; 6679 } 6680 6681 /** 6682 * __skb_ext_set - attach the specified extension storage to this skb 6683 * @skb: buffer 6684 * @id: extension id 6685 * @ext: extension storage previously allocated via __skb_ext_alloc() 6686 * 6687 * Existing extensions, if any, are cleared. 6688 * 6689 * Returns the pointer to the extension. 6690 */ 6691 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6692 struct skb_ext *ext) 6693 { 6694 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6695 6696 skb_ext_put(skb); 6697 newlen = newoff + skb_ext_type_len[id]; 6698 ext->chunks = newlen; 6699 ext->offset[id] = newoff; 6700 skb->extensions = ext; 6701 skb->active_extensions = 1 << id; 6702 return skb_ext_get_ptr(ext, id); 6703 } 6704 6705 /** 6706 * skb_ext_add - allocate space for given extension, COW if needed 6707 * @skb: buffer 6708 * @id: extension to allocate space for 6709 * 6710 * Allocates enough space for the given extension. 6711 * If the extension is already present, a pointer to that extension 6712 * is returned. 6713 * 6714 * If the skb was cloned, COW applies and the returned memory can be 6715 * modified without changing the extension space of clones buffers. 6716 * 6717 * Returns pointer to the extension or NULL on allocation failure. 6718 */ 6719 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6720 { 6721 struct skb_ext *new, *old = NULL; 6722 unsigned int newlen, newoff; 6723 6724 if (skb->active_extensions) { 6725 old = skb->extensions; 6726 6727 new = skb_ext_maybe_cow(old, skb->active_extensions); 6728 if (!new) 6729 return NULL; 6730 6731 if (__skb_ext_exist(new, id)) 6732 goto set_active; 6733 6734 newoff = new->chunks; 6735 } else { 6736 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6737 6738 new = __skb_ext_alloc(GFP_ATOMIC); 6739 if (!new) 6740 return NULL; 6741 } 6742 6743 newlen = newoff + skb_ext_type_len[id]; 6744 new->chunks = newlen; 6745 new->offset[id] = newoff; 6746 set_active: 6747 skb->slow_gro = 1; 6748 skb->extensions = new; 6749 skb->active_extensions |= 1 << id; 6750 return skb_ext_get_ptr(new, id); 6751 } 6752 EXPORT_SYMBOL(skb_ext_add); 6753 6754 #ifdef CONFIG_XFRM 6755 static void skb_ext_put_sp(struct sec_path *sp) 6756 { 6757 unsigned int i; 6758 6759 for (i = 0; i < sp->len; i++) 6760 xfrm_state_put(sp->xvec[i]); 6761 } 6762 #endif 6763 6764 #ifdef CONFIG_MCTP_FLOWS 6765 static void skb_ext_put_mctp(struct mctp_flow *flow) 6766 { 6767 if (flow->key) 6768 mctp_key_unref(flow->key); 6769 } 6770 #endif 6771 6772 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6773 { 6774 struct skb_ext *ext = skb->extensions; 6775 6776 skb->active_extensions &= ~(1 << id); 6777 if (skb->active_extensions == 0) { 6778 skb->extensions = NULL; 6779 __skb_ext_put(ext); 6780 #ifdef CONFIG_XFRM 6781 } else if (id == SKB_EXT_SEC_PATH && 6782 refcount_read(&ext->refcnt) == 1) { 6783 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6784 6785 skb_ext_put_sp(sp); 6786 sp->len = 0; 6787 #endif 6788 } 6789 } 6790 EXPORT_SYMBOL(__skb_ext_del); 6791 6792 void __skb_ext_put(struct skb_ext *ext) 6793 { 6794 /* If this is last clone, nothing can increment 6795 * it after check passes. Avoids one atomic op. 6796 */ 6797 if (refcount_read(&ext->refcnt) == 1) 6798 goto free_now; 6799 6800 if (!refcount_dec_and_test(&ext->refcnt)) 6801 return; 6802 free_now: 6803 #ifdef CONFIG_XFRM 6804 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6805 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6806 #endif 6807 #ifdef CONFIG_MCTP_FLOWS 6808 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6809 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6810 #endif 6811 6812 kmem_cache_free(skbuff_ext_cache, ext); 6813 } 6814 EXPORT_SYMBOL(__skb_ext_put); 6815 #endif /* CONFIG_SKB_EXTENSIONS */ 6816 6817 /** 6818 * skb_attempt_defer_free - queue skb for remote freeing 6819 * @skb: buffer 6820 * 6821 * Put @skb in a per-cpu list, using the cpu which 6822 * allocated the skb/pages to reduce false sharing 6823 * and memory zone spinlock contention. 6824 */ 6825 void skb_attempt_defer_free(struct sk_buff *skb) 6826 { 6827 int cpu = skb->alloc_cpu; 6828 struct softnet_data *sd; 6829 unsigned int defer_max; 6830 bool kick; 6831 6832 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6833 !cpu_online(cpu) || 6834 cpu == raw_smp_processor_id()) { 6835 nodefer: __kfree_skb(skb); 6836 return; 6837 } 6838 6839 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6840 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6841 6842 sd = &per_cpu(softnet_data, cpu); 6843 defer_max = READ_ONCE(sysctl_skb_defer_max); 6844 if (READ_ONCE(sd->defer_count) >= defer_max) 6845 goto nodefer; 6846 6847 spin_lock_bh(&sd->defer_lock); 6848 /* Send an IPI every time queue reaches half capacity. */ 6849 kick = sd->defer_count == (defer_max >> 1); 6850 /* Paired with the READ_ONCE() few lines above */ 6851 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6852 6853 skb->next = sd->defer_list; 6854 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6855 WRITE_ONCE(sd->defer_list, skb); 6856 spin_unlock_bh(&sd->defer_lock); 6857 6858 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6859 * if we are unlucky enough (this seems very unlikely). 6860 */ 6861 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6862 smp_call_function_single_async(cpu, &sd->defer_csd); 6863 } 6864 6865 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6866 size_t offset, size_t len) 6867 { 6868 const char *kaddr; 6869 __wsum csum; 6870 6871 kaddr = kmap_local_page(page); 6872 csum = csum_partial(kaddr + offset, len, 0); 6873 kunmap_local(kaddr); 6874 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6875 } 6876 6877 /** 6878 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6879 * @skb: The buffer to add pages to 6880 * @iter: Iterator representing the pages to be added 6881 * @maxsize: Maximum amount of pages to be added 6882 * @gfp: Allocation flags 6883 * 6884 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6885 * extracts pages from an iterator and adds them to the socket buffer if 6886 * possible, copying them to fragments if not possible (such as if they're slab 6887 * pages). 6888 * 6889 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6890 * insufficient space in the buffer to transfer anything. 6891 */ 6892 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6893 ssize_t maxsize, gfp_t gfp) 6894 { 6895 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6896 struct page *pages[8], **ppages = pages; 6897 ssize_t spliced = 0, ret = 0; 6898 unsigned int i; 6899 6900 while (iter->count > 0) { 6901 ssize_t space, nr, len; 6902 size_t off; 6903 6904 ret = -EMSGSIZE; 6905 space = frag_limit - skb_shinfo(skb)->nr_frags; 6906 if (space < 0) 6907 break; 6908 6909 /* We might be able to coalesce without increasing nr_frags */ 6910 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6911 6912 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6913 if (len <= 0) { 6914 ret = len ?: -EIO; 6915 break; 6916 } 6917 6918 i = 0; 6919 do { 6920 struct page *page = pages[i++]; 6921 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6922 6923 ret = -EIO; 6924 if (WARN_ON_ONCE(!sendpage_ok(page))) 6925 goto out; 6926 6927 ret = skb_append_pagefrags(skb, page, off, part, 6928 frag_limit); 6929 if (ret < 0) { 6930 iov_iter_revert(iter, len); 6931 goto out; 6932 } 6933 6934 if (skb->ip_summed == CHECKSUM_NONE) 6935 skb_splice_csum_page(skb, page, off, part); 6936 6937 off = 0; 6938 spliced += part; 6939 maxsize -= part; 6940 len -= part; 6941 } while (len > 0); 6942 6943 if (maxsize <= 0) 6944 break; 6945 } 6946 6947 out: 6948 skb_len_add(skb, spliced); 6949 return spliced ?: ret; 6950 } 6951 EXPORT_SYMBOL(skb_splice_from_iter); 6952 6953 static __always_inline 6954 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 6955 size_t len, void *to, void *priv2) 6956 { 6957 __wsum *csum = priv2; 6958 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 6959 6960 *csum = csum_block_add(*csum, next, progress); 6961 return 0; 6962 } 6963 6964 static __always_inline 6965 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 6966 size_t len, void *to, void *priv2) 6967 { 6968 __wsum next, *csum = priv2; 6969 6970 next = csum_and_copy_from_user(iter_from, to + progress, len); 6971 *csum = csum_block_add(*csum, next, progress); 6972 return next ? 0 : len; 6973 } 6974 6975 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 6976 __wsum *csum, struct iov_iter *i) 6977 { 6978 size_t copied; 6979 6980 if (WARN_ON_ONCE(!i->data_source)) 6981 return false; 6982 copied = iterate_and_advance2(i, bytes, addr, csum, 6983 copy_from_user_iter_csum, 6984 memcpy_from_iter_csum); 6985 if (likely(copied == bytes)) 6986 return true; 6987 iov_iter_revert(i, copied); 6988 return false; 6989 } 6990 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 6991