xref: /linux/net/core/skbuff.c (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 #include <net/mpls.h>
75 #include <net/mptcp.h>
76 #include <net/mctp.h>
77 #include <net/page_pool/helpers.h>
78 #include <net/dropreason.h>
79 
80 #include <linux/uaccess.h>
81 #include <trace/events/skb.h>
82 #include <linux/highmem.h>
83 #include <linux/capability.h>
84 #include <linux/user_namespace.h>
85 #include <linux/indirect_call_wrapper.h>
86 #include <linux/textsearch.h>
87 
88 #include "dev.h"
89 #include "sock_destructor.h"
90 
91 struct kmem_cache *skbuff_cache __ro_after_init;
92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 
98 static struct kmem_cache *skb_small_head_cache __ro_after_init;
99 
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101 
102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104  * size, and we can differentiate heads from skb_small_head_cache
105  * vs system slabs by looking at their size (skb_end_offset()).
106  */
107 #define SKB_SMALL_HEAD_CACHE_SIZE					\
108 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
109 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
110 		SKB_SMALL_HEAD_SIZE)
111 
112 #define SKB_SMALL_HEAD_HEADROOM						\
113 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114 
115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116 EXPORT_SYMBOL(sysctl_max_skb_frags);
117 
118 #undef FN
119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120 static const char * const drop_reasons[] = {
121 	[SKB_CONSUMED] = "CONSUMED",
122 	DEFINE_DROP_REASON(FN, FN)
123 };
124 
125 static const struct drop_reason_list drop_reasons_core = {
126 	.reasons = drop_reasons,
127 	.n_reasons = ARRAY_SIZE(drop_reasons),
128 };
129 
130 const struct drop_reason_list __rcu *
131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133 };
134 EXPORT_SYMBOL(drop_reasons_by_subsys);
135 
136 /**
137  * drop_reasons_register_subsys - register another drop reason subsystem
138  * @subsys: the subsystem to register, must not be the core
139  * @list: the list of drop reasons within the subsystem, must point to
140  *	a statically initialized list
141  */
142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 				  const struct drop_reason_list *list)
144 {
145 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 		 "invalid subsystem %d\n", subsys))
148 		return;
149 
150 	/* must point to statically allocated memory, so INIT is OK */
151 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152 }
153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154 
155 /**
156  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157  * @subsys: the subsystem to remove, must not be the core
158  *
159  * Note: This will synchronize_rcu() to ensure no users when it returns.
160  */
161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162 {
163 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 		 "invalid subsystem %d\n", subsys))
166 		return;
167 
168 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169 
170 	synchronize_rcu();
171 }
172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173 
174 /**
175  *	skb_panic - private function for out-of-line support
176  *	@skb:	buffer
177  *	@sz:	size
178  *	@addr:	address
179  *	@msg:	skb_over_panic or skb_under_panic
180  *
181  *	Out-of-line support for skb_put() and skb_push().
182  *	Called via the wrapper skb_over_panic() or skb_under_panic().
183  *	Keep out of line to prevent kernel bloat.
184  *	__builtin_return_address is not used because it is not always reliable.
185  */
186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 		      const char msg[])
188 {
189 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 		 msg, addr, skb->len, sz, skb->head, skb->data,
191 		 (unsigned long)skb->tail, (unsigned long)skb->end,
192 		 skb->dev ? skb->dev->name : "<NULL>");
193 	BUG();
194 }
195 
196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197 {
198 	skb_panic(skb, sz, addr, __func__);
199 }
200 
201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202 {
203 	skb_panic(skb, sz, addr, __func__);
204 }
205 
206 #define NAPI_SKB_CACHE_SIZE	64
207 #define NAPI_SKB_CACHE_BULK	16
208 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
209 
210 #if PAGE_SIZE == SZ_4K
211 
212 #define NAPI_HAS_SMALL_PAGE_FRAG	1
213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
214 
215 /* specialized page frag allocator using a single order 0 page
216  * and slicing it into 1K sized fragment. Constrained to systems
217  * with a very limited amount of 1K fragments fitting a single
218  * page - to avoid excessive truesize underestimation
219  */
220 
221 struct page_frag_1k {
222 	void *va;
223 	u16 offset;
224 	bool pfmemalloc;
225 };
226 
227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228 {
229 	struct page *page;
230 	int offset;
231 
232 	offset = nc->offset - SZ_1K;
233 	if (likely(offset >= 0))
234 		goto use_frag;
235 
236 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 	if (!page)
238 		return NULL;
239 
240 	nc->va = page_address(page);
241 	nc->pfmemalloc = page_is_pfmemalloc(page);
242 	offset = PAGE_SIZE - SZ_1K;
243 	page_ref_add(page, offset / SZ_1K);
244 
245 use_frag:
246 	nc->offset = offset;
247 	return nc->va + offset;
248 }
249 #else
250 
251 /* the small page is actually unused in this build; add dummy helpers
252  * to please the compiler and avoid later preprocessor's conditionals
253  */
254 #define NAPI_HAS_SMALL_PAGE_FRAG	0
255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
256 
257 struct page_frag_1k {
258 };
259 
260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261 {
262 	return NULL;
263 }
264 
265 #endif
266 
267 struct napi_alloc_cache {
268 	struct page_frag_cache page;
269 	struct page_frag_1k page_small;
270 	unsigned int skb_count;
271 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
272 };
273 
274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276 
277 /* Double check that napi_get_frags() allocates skbs with
278  * skb->head being backed by slab, not a page fragment.
279  * This is to make sure bug fixed in 3226b158e67c
280  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281  * does not accidentally come back.
282  */
283 void napi_get_frags_check(struct napi_struct *napi)
284 {
285 	struct sk_buff *skb;
286 
287 	local_bh_disable();
288 	skb = napi_get_frags(napi);
289 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 	napi_free_frags(napi);
291 	local_bh_enable();
292 }
293 
294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295 {
296 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297 
298 	fragsz = SKB_DATA_ALIGN(fragsz);
299 
300 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301 }
302 EXPORT_SYMBOL(__napi_alloc_frag_align);
303 
304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305 {
306 	void *data;
307 
308 	fragsz = SKB_DATA_ALIGN(fragsz);
309 	if (in_hardirq() || irqs_disabled()) {
310 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311 
312 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 	} else {
314 		struct napi_alloc_cache *nc;
315 
316 		local_bh_disable();
317 		nc = this_cpu_ptr(&napi_alloc_cache);
318 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 		local_bh_enable();
320 	}
321 	return data;
322 }
323 EXPORT_SYMBOL(__netdev_alloc_frag_align);
324 
325 static struct sk_buff *napi_skb_cache_get(void)
326 {
327 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 	struct sk_buff *skb;
329 
330 	if (unlikely(!nc->skb_count)) {
331 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 						      GFP_ATOMIC,
333 						      NAPI_SKB_CACHE_BULK,
334 						      nc->skb_cache);
335 		if (unlikely(!nc->skb_count))
336 			return NULL;
337 	}
338 
339 	skb = nc->skb_cache[--nc->skb_count];
340 	kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache));
341 
342 	return skb;
343 }
344 
345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 					 unsigned int size)
347 {
348 	struct skb_shared_info *shinfo;
349 
350 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351 
352 	/* Assumes caller memset cleared SKB */
353 	skb->truesize = SKB_TRUESIZE(size);
354 	refcount_set(&skb->users, 1);
355 	skb->head = data;
356 	skb->data = data;
357 	skb_reset_tail_pointer(skb);
358 	skb_set_end_offset(skb, size);
359 	skb->mac_header = (typeof(skb->mac_header))~0U;
360 	skb->transport_header = (typeof(skb->transport_header))~0U;
361 	skb->alloc_cpu = raw_smp_processor_id();
362 	/* make sure we initialize shinfo sequentially */
363 	shinfo = skb_shinfo(skb);
364 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 	atomic_set(&shinfo->dataref, 1);
366 
367 	skb_set_kcov_handle(skb, kcov_common_handle());
368 }
369 
370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 				     unsigned int *size)
372 {
373 	void *resized;
374 
375 	/* Must find the allocation size (and grow it to match). */
376 	*size = ksize(data);
377 	/* krealloc() will immediately return "data" when
378 	 * "ksize(data)" is requested: it is the existing upper
379 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 	 * that this "new" pointer needs to be passed back to the
381 	 * caller for use so the __alloc_size hinting will be
382 	 * tracked correctly.
383 	 */
384 	resized = krealloc(data, *size, GFP_ATOMIC);
385 	WARN_ON_ONCE(resized != data);
386 	return resized;
387 }
388 
389 /* build_skb() variant which can operate on slab buffers.
390  * Note that this should be used sparingly as slab buffers
391  * cannot be combined efficiently by GRO!
392  */
393 struct sk_buff *slab_build_skb(void *data)
394 {
395 	struct sk_buff *skb;
396 	unsigned int size;
397 
398 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 	if (unlikely(!skb))
400 		return NULL;
401 
402 	memset(skb, 0, offsetof(struct sk_buff, tail));
403 	data = __slab_build_skb(skb, data, &size);
404 	__finalize_skb_around(skb, data, size);
405 
406 	return skb;
407 }
408 EXPORT_SYMBOL(slab_build_skb);
409 
410 /* Caller must provide SKB that is memset cleared */
411 static void __build_skb_around(struct sk_buff *skb, void *data,
412 			       unsigned int frag_size)
413 {
414 	unsigned int size = frag_size;
415 
416 	/* frag_size == 0 is considered deprecated now. Callers
417 	 * using slab buffer should use slab_build_skb() instead.
418 	 */
419 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 		data = __slab_build_skb(skb, data, &size);
421 
422 	__finalize_skb_around(skb, data, size);
423 }
424 
425 /**
426  * __build_skb - build a network buffer
427  * @data: data buffer provided by caller
428  * @frag_size: size of data (must not be 0)
429  *
430  * Allocate a new &sk_buff. Caller provides space holding head and
431  * skb_shared_info. @data must have been allocated from the page
432  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433  * allocation is deprecated, and callers should use slab_build_skb()
434  * instead.)
435  * The return is the new skb buffer.
436  * On a failure the return is %NULL, and @data is not freed.
437  * Notes :
438  *  Before IO, driver allocates only data buffer where NIC put incoming frame
439  *  Driver should add room at head (NET_SKB_PAD) and
440  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
442  *  before giving packet to stack.
443  *  RX rings only contains data buffers, not full skbs.
444  */
445 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446 {
447 	struct sk_buff *skb;
448 
449 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 	if (unlikely(!skb))
451 		return NULL;
452 
453 	memset(skb, 0, offsetof(struct sk_buff, tail));
454 	__build_skb_around(skb, data, frag_size);
455 
456 	return skb;
457 }
458 
459 /* build_skb() is wrapper over __build_skb(), that specifically
460  * takes care of skb->head and skb->pfmemalloc
461  */
462 struct sk_buff *build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb = __build_skb(data, frag_size);
465 
466 	if (likely(skb && frag_size)) {
467 		skb->head_frag = 1;
468 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 	}
470 	return skb;
471 }
472 EXPORT_SYMBOL(build_skb);
473 
474 /**
475  * build_skb_around - build a network buffer around provided skb
476  * @skb: sk_buff provide by caller, must be memset cleared
477  * @data: data buffer provided by caller
478  * @frag_size: size of data
479  */
480 struct sk_buff *build_skb_around(struct sk_buff *skb,
481 				 void *data, unsigned int frag_size)
482 {
483 	if (unlikely(!skb))
484 		return NULL;
485 
486 	__build_skb_around(skb, data, frag_size);
487 
488 	if (frag_size) {
489 		skb->head_frag = 1;
490 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 	}
492 	return skb;
493 }
494 EXPORT_SYMBOL(build_skb_around);
495 
496 /**
497  * __napi_build_skb - build a network buffer
498  * @data: data buffer provided by caller
499  * @frag_size: size of data
500  *
501  * Version of __build_skb() that uses NAPI percpu caches to obtain
502  * skbuff_head instead of inplace allocation.
503  *
504  * Returns a new &sk_buff on success, %NULL on allocation failure.
505  */
506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507 {
508 	struct sk_buff *skb;
509 
510 	skb = napi_skb_cache_get();
511 	if (unlikely(!skb))
512 		return NULL;
513 
514 	memset(skb, 0, offsetof(struct sk_buff, tail));
515 	__build_skb_around(skb, data, frag_size);
516 
517 	return skb;
518 }
519 
520 /**
521  * napi_build_skb - build a network buffer
522  * @data: data buffer provided by caller
523  * @frag_size: size of data
524  *
525  * Version of __napi_build_skb() that takes care of skb->head_frag
526  * and skb->pfmemalloc when the data is a page or page fragment.
527  *
528  * Returns a new &sk_buff on success, %NULL on allocation failure.
529  */
530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531 {
532 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
533 
534 	if (likely(skb) && frag_size) {
535 		skb->head_frag = 1;
536 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 	}
538 
539 	return skb;
540 }
541 EXPORT_SYMBOL(napi_build_skb);
542 
543 /*
544  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545  * the caller if emergency pfmemalloc reserves are being used. If it is and
546  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547  * may be used. Otherwise, the packet data may be discarded until enough
548  * memory is free
549  */
550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 			     bool *pfmemalloc)
552 {
553 	bool ret_pfmemalloc = false;
554 	size_t obj_size;
555 	void *obj;
556 
557 	obj_size = SKB_HEAD_ALIGN(*size);
558 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 		obj = kmem_cache_alloc_node(skb_small_head_cache,
561 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 				node);
563 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
564 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 			goto out;
566 		/* Try again but now we are using pfmemalloc reserves */
567 		ret_pfmemalloc = true;
568 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 		goto out;
570 	}
571 
572 	obj_size = kmalloc_size_roundup(obj_size);
573 	/* The following cast might truncate high-order bits of obj_size, this
574 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 	 */
576 	*size = (unsigned int)obj_size;
577 
578 	/*
579 	 * Try a regular allocation, when that fails and we're not entitled
580 	 * to the reserves, fail.
581 	 */
582 	obj = kmalloc_node_track_caller(obj_size,
583 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 					node);
585 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 		goto out;
587 
588 	/* Try again but now we are using pfmemalloc reserves */
589 	ret_pfmemalloc = true;
590 	obj = kmalloc_node_track_caller(obj_size, flags, node);
591 
592 out:
593 	if (pfmemalloc)
594 		*pfmemalloc = ret_pfmemalloc;
595 
596 	return obj;
597 }
598 
599 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
600  *	'private' fields and also do memory statistics to find all the
601  *	[BEEP] leaks.
602  *
603  */
604 
605 /**
606  *	__alloc_skb	-	allocate a network buffer
607  *	@size: size to allocate
608  *	@gfp_mask: allocation mask
609  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610  *		instead of head cache and allocate a cloned (child) skb.
611  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612  *		allocations in case the data is required for writeback
613  *	@node: numa node to allocate memory on
614  *
615  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
616  *	tail room of at least size bytes. The object has a reference count
617  *	of one. The return is the buffer. On a failure the return is %NULL.
618  *
619  *	Buffers may only be allocated from interrupts using a @gfp_mask of
620  *	%GFP_ATOMIC.
621  */
622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 			    int flags, int node)
624 {
625 	struct kmem_cache *cache;
626 	struct sk_buff *skb;
627 	bool pfmemalloc;
628 	u8 *data;
629 
630 	cache = (flags & SKB_ALLOC_FCLONE)
631 		? skbuff_fclone_cache : skbuff_cache;
632 
633 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 		gfp_mask |= __GFP_MEMALLOC;
635 
636 	/* Get the HEAD */
637 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 		skb = napi_skb_cache_get();
640 	else
641 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 	if (unlikely(!skb))
643 		return NULL;
644 	prefetchw(skb);
645 
646 	/* We do our best to align skb_shared_info on a separate cache
647 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 	 * Both skb->head and skb_shared_info are cache line aligned.
650 	 */
651 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 	if (unlikely(!data))
653 		goto nodata;
654 	/* kmalloc_size_roundup() might give us more room than requested.
655 	 * Put skb_shared_info exactly at the end of allocated zone,
656 	 * to allow max possible filling before reallocation.
657 	 */
658 	prefetchw(data + SKB_WITH_OVERHEAD(size));
659 
660 	/*
661 	 * Only clear those fields we need to clear, not those that we will
662 	 * actually initialise below. Hence, don't put any more fields after
663 	 * the tail pointer in struct sk_buff!
664 	 */
665 	memset(skb, 0, offsetof(struct sk_buff, tail));
666 	__build_skb_around(skb, data, size);
667 	skb->pfmemalloc = pfmemalloc;
668 
669 	if (flags & SKB_ALLOC_FCLONE) {
670 		struct sk_buff_fclones *fclones;
671 
672 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
673 
674 		skb->fclone = SKB_FCLONE_ORIG;
675 		refcount_set(&fclones->fclone_ref, 1);
676 	}
677 
678 	return skb;
679 
680 nodata:
681 	kmem_cache_free(cache, skb);
682 	return NULL;
683 }
684 EXPORT_SYMBOL(__alloc_skb);
685 
686 /**
687  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
688  *	@dev: network device to receive on
689  *	@len: length to allocate
690  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
691  *
692  *	Allocate a new &sk_buff and assign it a usage count of one. The
693  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
694  *	the headroom they think they need without accounting for the
695  *	built in space. The built in space is used for optimisations.
696  *
697  *	%NULL is returned if there is no free memory.
698  */
699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 				   gfp_t gfp_mask)
701 {
702 	struct page_frag_cache *nc;
703 	struct sk_buff *skb;
704 	bool pfmemalloc;
705 	void *data;
706 
707 	len += NET_SKB_PAD;
708 
709 	/* If requested length is either too small or too big,
710 	 * we use kmalloc() for skb->head allocation.
711 	 */
712 	if (len <= SKB_WITH_OVERHEAD(1024) ||
713 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 		if (!skb)
717 			goto skb_fail;
718 		goto skb_success;
719 	}
720 
721 	len = SKB_HEAD_ALIGN(len);
722 
723 	if (sk_memalloc_socks())
724 		gfp_mask |= __GFP_MEMALLOC;
725 
726 	if (in_hardirq() || irqs_disabled()) {
727 		nc = this_cpu_ptr(&netdev_alloc_cache);
728 		data = page_frag_alloc(nc, len, gfp_mask);
729 		pfmemalloc = nc->pfmemalloc;
730 	} else {
731 		local_bh_disable();
732 		nc = this_cpu_ptr(&napi_alloc_cache.page);
733 		data = page_frag_alloc(nc, len, gfp_mask);
734 		pfmemalloc = nc->pfmemalloc;
735 		local_bh_enable();
736 	}
737 
738 	if (unlikely(!data))
739 		return NULL;
740 
741 	skb = __build_skb(data, len);
742 	if (unlikely(!skb)) {
743 		skb_free_frag(data);
744 		return NULL;
745 	}
746 
747 	if (pfmemalloc)
748 		skb->pfmemalloc = 1;
749 	skb->head_frag = 1;
750 
751 skb_success:
752 	skb_reserve(skb, NET_SKB_PAD);
753 	skb->dev = dev;
754 
755 skb_fail:
756 	return skb;
757 }
758 EXPORT_SYMBOL(__netdev_alloc_skb);
759 
760 /**
761  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762  *	@napi: napi instance this buffer was allocated for
763  *	@len: length to allocate
764  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765  *
766  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
767  *	attempt to allocate the head from a special reserved region used
768  *	only for NAPI Rx allocation.  By doing this we can save several
769  *	CPU cycles by avoiding having to disable and re-enable IRQs.
770  *
771  *	%NULL is returned if there is no free memory.
772  */
773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 				 gfp_t gfp_mask)
775 {
776 	struct napi_alloc_cache *nc;
777 	struct sk_buff *skb;
778 	bool pfmemalloc;
779 	void *data;
780 
781 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 	len += NET_SKB_PAD + NET_IP_ALIGN;
783 
784 	/* If requested length is either too small or too big,
785 	 * we use kmalloc() for skb->head allocation.
786 	 * When the small frag allocator is available, prefer it over kmalloc
787 	 * for small fragments
788 	 */
789 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 				  NUMA_NO_NODE);
794 		if (!skb)
795 			goto skb_fail;
796 		goto skb_success;
797 	}
798 
799 	nc = this_cpu_ptr(&napi_alloc_cache);
800 
801 	if (sk_memalloc_socks())
802 		gfp_mask |= __GFP_MEMALLOC;
803 
804 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 		/* we are artificially inflating the allocation size, but
806 		 * that is not as bad as it may look like, as:
807 		 * - 'len' less than GRO_MAX_HEAD makes little sense
808 		 * - On most systems, larger 'len' values lead to fragment
809 		 *   size above 512 bytes
810 		 * - kmalloc would use the kmalloc-1k slab for such values
811 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 		 *   little networking, as that implies no WiFi and no
813 		 *   tunnels support, and 32 bits arches.
814 		 */
815 		len = SZ_1K;
816 
817 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 	} else {
820 		len = SKB_HEAD_ALIGN(len);
821 
822 		data = page_frag_alloc(&nc->page, len, gfp_mask);
823 		pfmemalloc = nc->page.pfmemalloc;
824 	}
825 
826 	if (unlikely(!data))
827 		return NULL;
828 
829 	skb = __napi_build_skb(data, len);
830 	if (unlikely(!skb)) {
831 		skb_free_frag(data);
832 		return NULL;
833 	}
834 
835 	if (pfmemalloc)
836 		skb->pfmemalloc = 1;
837 	skb->head_frag = 1;
838 
839 skb_success:
840 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 	skb->dev = napi->dev;
842 
843 skb_fail:
844 	return skb;
845 }
846 EXPORT_SYMBOL(__napi_alloc_skb);
847 
848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 		     int size, unsigned int truesize)
850 {
851 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
852 
853 	skb_fill_page_desc(skb, i, page, off, size);
854 	skb->len += size;
855 	skb->data_len += size;
856 	skb->truesize += truesize;
857 }
858 EXPORT_SYMBOL(skb_add_rx_frag);
859 
860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 			  unsigned int truesize)
862 {
863 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864 
865 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
866 
867 	skb_frag_size_add(frag, size);
868 	skb->len += size;
869 	skb->data_len += size;
870 	skb->truesize += truesize;
871 }
872 EXPORT_SYMBOL(skb_coalesce_rx_frag);
873 
874 static void skb_drop_list(struct sk_buff **listp)
875 {
876 	kfree_skb_list(*listp);
877 	*listp = NULL;
878 }
879 
880 static inline void skb_drop_fraglist(struct sk_buff *skb)
881 {
882 	skb_drop_list(&skb_shinfo(skb)->frag_list);
883 }
884 
885 static void skb_clone_fraglist(struct sk_buff *skb)
886 {
887 	struct sk_buff *list;
888 
889 	skb_walk_frags(skb, list)
890 		skb_get(list);
891 }
892 
893 static bool is_pp_page(struct page *page)
894 {
895 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
896 }
897 
898 #if IS_ENABLED(CONFIG_PAGE_POOL)
899 bool napi_pp_put_page(struct page *page, bool napi_safe)
900 {
901 	bool allow_direct = false;
902 	struct page_pool *pp;
903 
904 	page = compound_head(page);
905 
906 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
907 	 * in order to preserve any existing bits, such as bit 0 for the
908 	 * head page of compound page and bit 1 for pfmemalloc page, so
909 	 * mask those bits for freeing side when doing below checking,
910 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
911 	 * to avoid recycling the pfmemalloc page.
912 	 */
913 	if (unlikely(!is_pp_page(page)))
914 		return false;
915 
916 	pp = page->pp;
917 
918 	/* Allow direct recycle if we have reasons to believe that we are
919 	 * in the same context as the consumer would run, so there's
920 	 * no possible race.
921 	 * __page_pool_put_page() makes sure we're not in hardirq context
922 	 * and interrupts are enabled prior to accessing the cache.
923 	 */
924 	if (napi_safe || in_softirq()) {
925 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
926 
927 		allow_direct = napi &&
928 			READ_ONCE(napi->list_owner) == smp_processor_id();
929 	}
930 
931 	/* Driver set this to memory recycling info. Reset it on recycle.
932 	 * This will *not* work for NIC using a split-page memory model.
933 	 * The page will be returned to the pool here regardless of the
934 	 * 'flipped' fragment being in use or not.
935 	 */
936 	page_pool_put_full_page(pp, page, allow_direct);
937 
938 	return true;
939 }
940 EXPORT_SYMBOL(napi_pp_put_page);
941 #endif
942 
943 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
944 {
945 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
946 		return false;
947 	return napi_pp_put_page(virt_to_page(data), napi_safe);
948 }
949 
950 /**
951  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
952  * @skb:	page pool aware skb
953  *
954  * Increase the fragment reference count (pp_ref_count) of a skb. This is
955  * intended to gain fragment references only for page pool aware skbs,
956  * i.e. when skb->pp_recycle is true, and not for fragments in a
957  * non-pp-recycling skb. It has a fallback to increase references on normal
958  * pages, as page pool aware skbs may also have normal page fragments.
959  */
960 static int skb_pp_frag_ref(struct sk_buff *skb)
961 {
962 	struct skb_shared_info *shinfo;
963 	struct page *head_page;
964 	int i;
965 
966 	if (!skb->pp_recycle)
967 		return -EINVAL;
968 
969 	shinfo = skb_shinfo(skb);
970 
971 	for (i = 0; i < shinfo->nr_frags; i++) {
972 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
973 		if (likely(is_pp_page(head_page)))
974 			page_pool_ref_page(head_page);
975 		else
976 			page_ref_inc(head_page);
977 	}
978 	return 0;
979 }
980 
981 static void skb_kfree_head(void *head, unsigned int end_offset)
982 {
983 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
984 		kmem_cache_free(skb_small_head_cache, head);
985 	else
986 		kfree(head);
987 }
988 
989 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
990 {
991 	unsigned char *head = skb->head;
992 
993 	if (skb->head_frag) {
994 		if (skb_pp_recycle(skb, head, napi_safe))
995 			return;
996 		skb_free_frag(head);
997 	} else {
998 		skb_kfree_head(head, skb_end_offset(skb));
999 	}
1000 }
1001 
1002 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1003 			     bool napi_safe)
1004 {
1005 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1006 	int i;
1007 
1008 	if (skb->cloned &&
1009 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
1010 			      &shinfo->dataref))
1011 		goto exit;
1012 
1013 	if (skb_zcopy(skb)) {
1014 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1015 
1016 		skb_zcopy_clear(skb, true);
1017 		if (skip_unref)
1018 			goto free_head;
1019 	}
1020 
1021 	for (i = 0; i < shinfo->nr_frags; i++)
1022 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1023 
1024 free_head:
1025 	if (shinfo->frag_list)
1026 		kfree_skb_list_reason(shinfo->frag_list, reason);
1027 
1028 	skb_free_head(skb, napi_safe);
1029 exit:
1030 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1031 	 * bit is only set on the head though, so in order to avoid races
1032 	 * while trying to recycle fragments on __skb_frag_unref() we need
1033 	 * to make one SKB responsible for triggering the recycle path.
1034 	 * So disable the recycling bit if an SKB is cloned and we have
1035 	 * additional references to the fragmented part of the SKB.
1036 	 * Eventually the last SKB will have the recycling bit set and it's
1037 	 * dataref set to 0, which will trigger the recycling
1038 	 */
1039 	skb->pp_recycle = 0;
1040 }
1041 
1042 /*
1043  *	Free an skbuff by memory without cleaning the state.
1044  */
1045 static void kfree_skbmem(struct sk_buff *skb)
1046 {
1047 	struct sk_buff_fclones *fclones;
1048 
1049 	switch (skb->fclone) {
1050 	case SKB_FCLONE_UNAVAILABLE:
1051 		kmem_cache_free(skbuff_cache, skb);
1052 		return;
1053 
1054 	case SKB_FCLONE_ORIG:
1055 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1056 
1057 		/* We usually free the clone (TX completion) before original skb
1058 		 * This test would have no chance to be true for the clone,
1059 		 * while here, branch prediction will be good.
1060 		 */
1061 		if (refcount_read(&fclones->fclone_ref) == 1)
1062 			goto fastpath;
1063 		break;
1064 
1065 	default: /* SKB_FCLONE_CLONE */
1066 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1067 		break;
1068 	}
1069 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1070 		return;
1071 fastpath:
1072 	kmem_cache_free(skbuff_fclone_cache, fclones);
1073 }
1074 
1075 void skb_release_head_state(struct sk_buff *skb)
1076 {
1077 	skb_dst_drop(skb);
1078 	if (skb->destructor) {
1079 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1080 		skb->destructor(skb);
1081 	}
1082 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1083 	nf_conntrack_put(skb_nfct(skb));
1084 #endif
1085 	skb_ext_put(skb);
1086 }
1087 
1088 /* Free everything but the sk_buff shell. */
1089 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1090 			    bool napi_safe)
1091 {
1092 	skb_release_head_state(skb);
1093 	if (likely(skb->head))
1094 		skb_release_data(skb, reason, napi_safe);
1095 }
1096 
1097 /**
1098  *	__kfree_skb - private function
1099  *	@skb: buffer
1100  *
1101  *	Free an sk_buff. Release anything attached to the buffer.
1102  *	Clean the state. This is an internal helper function. Users should
1103  *	always call kfree_skb
1104  */
1105 
1106 void __kfree_skb(struct sk_buff *skb)
1107 {
1108 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1109 	kfree_skbmem(skb);
1110 }
1111 EXPORT_SYMBOL(__kfree_skb);
1112 
1113 static __always_inline
1114 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1115 {
1116 	if (unlikely(!skb_unref(skb)))
1117 		return false;
1118 
1119 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1120 			       u32_get_bits(reason,
1121 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1122 				SKB_DROP_REASON_SUBSYS_NUM);
1123 
1124 	if (reason == SKB_CONSUMED)
1125 		trace_consume_skb(skb, __builtin_return_address(0));
1126 	else
1127 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1128 	return true;
1129 }
1130 
1131 /**
1132  *	kfree_skb_reason - free an sk_buff with special reason
1133  *	@skb: buffer to free
1134  *	@reason: reason why this skb is dropped
1135  *
1136  *	Drop a reference to the buffer and free it if the usage count has
1137  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1138  *	tracepoint.
1139  */
1140 void __fix_address
1141 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1142 {
1143 	if (__kfree_skb_reason(skb, reason))
1144 		__kfree_skb(skb);
1145 }
1146 EXPORT_SYMBOL(kfree_skb_reason);
1147 
1148 #define KFREE_SKB_BULK_SIZE	16
1149 
1150 struct skb_free_array {
1151 	unsigned int skb_count;
1152 	void *skb_array[KFREE_SKB_BULK_SIZE];
1153 };
1154 
1155 static void kfree_skb_add_bulk(struct sk_buff *skb,
1156 			       struct skb_free_array *sa,
1157 			       enum skb_drop_reason reason)
1158 {
1159 	/* if SKB is a clone, don't handle this case */
1160 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1161 		__kfree_skb(skb);
1162 		return;
1163 	}
1164 
1165 	skb_release_all(skb, reason, false);
1166 	sa->skb_array[sa->skb_count++] = skb;
1167 
1168 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1169 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1170 				     sa->skb_array);
1171 		sa->skb_count = 0;
1172 	}
1173 }
1174 
1175 void __fix_address
1176 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1177 {
1178 	struct skb_free_array sa;
1179 
1180 	sa.skb_count = 0;
1181 
1182 	while (segs) {
1183 		struct sk_buff *next = segs->next;
1184 
1185 		if (__kfree_skb_reason(segs, reason)) {
1186 			skb_poison_list(segs);
1187 			kfree_skb_add_bulk(segs, &sa, reason);
1188 		}
1189 
1190 		segs = next;
1191 	}
1192 
1193 	if (sa.skb_count)
1194 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1195 }
1196 EXPORT_SYMBOL(kfree_skb_list_reason);
1197 
1198 /* Dump skb information and contents.
1199  *
1200  * Must only be called from net_ratelimit()-ed paths.
1201  *
1202  * Dumps whole packets if full_pkt, only headers otherwise.
1203  */
1204 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1205 {
1206 	struct skb_shared_info *sh = skb_shinfo(skb);
1207 	struct net_device *dev = skb->dev;
1208 	struct sock *sk = skb->sk;
1209 	struct sk_buff *list_skb;
1210 	bool has_mac, has_trans;
1211 	int headroom, tailroom;
1212 	int i, len, seg_len;
1213 
1214 	if (full_pkt)
1215 		len = skb->len;
1216 	else
1217 		len = min_t(int, skb->len, MAX_HEADER + 128);
1218 
1219 	headroom = skb_headroom(skb);
1220 	tailroom = skb_tailroom(skb);
1221 
1222 	has_mac = skb_mac_header_was_set(skb);
1223 	has_trans = skb_transport_header_was_set(skb);
1224 
1225 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1226 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1227 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1228 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1229 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1230 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1231 	       has_mac ? skb->mac_header : -1,
1232 	       has_mac ? skb_mac_header_len(skb) : -1,
1233 	       skb->network_header,
1234 	       has_trans ? skb_network_header_len(skb) : -1,
1235 	       has_trans ? skb->transport_header : -1,
1236 	       sh->tx_flags, sh->nr_frags,
1237 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1238 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1239 	       skb->csum_valid, skb->csum_level,
1240 	       skb->hash, skb->sw_hash, skb->l4_hash,
1241 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1242 
1243 	if (dev)
1244 		printk("%sdev name=%s feat=%pNF\n",
1245 		       level, dev->name, &dev->features);
1246 	if (sk)
1247 		printk("%ssk family=%hu type=%u proto=%u\n",
1248 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1249 
1250 	if (full_pkt && headroom)
1251 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1252 			       16, 1, skb->head, headroom, false);
1253 
1254 	seg_len = min_t(int, skb_headlen(skb), len);
1255 	if (seg_len)
1256 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1257 			       16, 1, skb->data, seg_len, false);
1258 	len -= seg_len;
1259 
1260 	if (full_pkt && tailroom)
1261 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1262 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1263 
1264 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1265 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1266 		u32 p_off, p_len, copied;
1267 		struct page *p;
1268 		u8 *vaddr;
1269 
1270 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1271 				      skb_frag_size(frag), p, p_off, p_len,
1272 				      copied) {
1273 			seg_len = min_t(int, p_len, len);
1274 			vaddr = kmap_atomic(p);
1275 			print_hex_dump(level, "skb frag:     ",
1276 				       DUMP_PREFIX_OFFSET,
1277 				       16, 1, vaddr + p_off, seg_len, false);
1278 			kunmap_atomic(vaddr);
1279 			len -= seg_len;
1280 			if (!len)
1281 				break;
1282 		}
1283 	}
1284 
1285 	if (full_pkt && skb_has_frag_list(skb)) {
1286 		printk("skb fraglist:\n");
1287 		skb_walk_frags(skb, list_skb)
1288 			skb_dump(level, list_skb, true);
1289 	}
1290 }
1291 EXPORT_SYMBOL(skb_dump);
1292 
1293 /**
1294  *	skb_tx_error - report an sk_buff xmit error
1295  *	@skb: buffer that triggered an error
1296  *
1297  *	Report xmit error if a device callback is tracking this skb.
1298  *	skb must be freed afterwards.
1299  */
1300 void skb_tx_error(struct sk_buff *skb)
1301 {
1302 	if (skb) {
1303 		skb_zcopy_downgrade_managed(skb);
1304 		skb_zcopy_clear(skb, true);
1305 	}
1306 }
1307 EXPORT_SYMBOL(skb_tx_error);
1308 
1309 #ifdef CONFIG_TRACEPOINTS
1310 /**
1311  *	consume_skb - free an skbuff
1312  *	@skb: buffer to free
1313  *
1314  *	Drop a ref to the buffer and free it if the usage count has hit zero
1315  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1316  *	is being dropped after a failure and notes that
1317  */
1318 void consume_skb(struct sk_buff *skb)
1319 {
1320 	if (!skb_unref(skb))
1321 		return;
1322 
1323 	trace_consume_skb(skb, __builtin_return_address(0));
1324 	__kfree_skb(skb);
1325 }
1326 EXPORT_SYMBOL(consume_skb);
1327 #endif
1328 
1329 /**
1330  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1331  *	@skb: buffer to free
1332  *
1333  *	Alike consume_skb(), but this variant assumes that this is the last
1334  *	skb reference and all the head states have been already dropped
1335  */
1336 void __consume_stateless_skb(struct sk_buff *skb)
1337 {
1338 	trace_consume_skb(skb, __builtin_return_address(0));
1339 	skb_release_data(skb, SKB_CONSUMED, false);
1340 	kfree_skbmem(skb);
1341 }
1342 
1343 static void napi_skb_cache_put(struct sk_buff *skb)
1344 {
1345 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1346 	u32 i;
1347 
1348 	if (!kasan_mempool_poison_object(skb))
1349 		return;
1350 
1351 	nc->skb_cache[nc->skb_count++] = skb;
1352 
1353 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1354 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1355 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1356 						kmem_cache_size(skbuff_cache));
1357 
1358 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1359 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1360 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1361 	}
1362 }
1363 
1364 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1365 {
1366 	skb_release_all(skb, reason, true);
1367 	napi_skb_cache_put(skb);
1368 }
1369 
1370 void napi_skb_free_stolen_head(struct sk_buff *skb)
1371 {
1372 	if (unlikely(skb->slow_gro)) {
1373 		nf_reset_ct(skb);
1374 		skb_dst_drop(skb);
1375 		skb_ext_put(skb);
1376 		skb_orphan(skb);
1377 		skb->slow_gro = 0;
1378 	}
1379 	napi_skb_cache_put(skb);
1380 }
1381 
1382 void napi_consume_skb(struct sk_buff *skb, int budget)
1383 {
1384 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1385 	if (unlikely(!budget)) {
1386 		dev_consume_skb_any(skb);
1387 		return;
1388 	}
1389 
1390 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1391 
1392 	if (!skb_unref(skb))
1393 		return;
1394 
1395 	/* if reaching here SKB is ready to free */
1396 	trace_consume_skb(skb, __builtin_return_address(0));
1397 
1398 	/* if SKB is a clone, don't handle this case */
1399 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1400 		__kfree_skb(skb);
1401 		return;
1402 	}
1403 
1404 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1405 	napi_skb_cache_put(skb);
1406 }
1407 EXPORT_SYMBOL(napi_consume_skb);
1408 
1409 /* Make sure a field is contained by headers group */
1410 #define CHECK_SKB_FIELD(field) \
1411 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1412 		     offsetof(struct sk_buff, headers.field));	\
1413 
1414 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1415 {
1416 	new->tstamp		= old->tstamp;
1417 	/* We do not copy old->sk */
1418 	new->dev		= old->dev;
1419 	memcpy(new->cb, old->cb, sizeof(old->cb));
1420 	skb_dst_copy(new, old);
1421 	__skb_ext_copy(new, old);
1422 	__nf_copy(new, old, false);
1423 
1424 	/* Note : this field could be in the headers group.
1425 	 * It is not yet because we do not want to have a 16 bit hole
1426 	 */
1427 	new->queue_mapping = old->queue_mapping;
1428 
1429 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1430 	CHECK_SKB_FIELD(protocol);
1431 	CHECK_SKB_FIELD(csum);
1432 	CHECK_SKB_FIELD(hash);
1433 	CHECK_SKB_FIELD(priority);
1434 	CHECK_SKB_FIELD(skb_iif);
1435 	CHECK_SKB_FIELD(vlan_proto);
1436 	CHECK_SKB_FIELD(vlan_tci);
1437 	CHECK_SKB_FIELD(transport_header);
1438 	CHECK_SKB_FIELD(network_header);
1439 	CHECK_SKB_FIELD(mac_header);
1440 	CHECK_SKB_FIELD(inner_protocol);
1441 	CHECK_SKB_FIELD(inner_transport_header);
1442 	CHECK_SKB_FIELD(inner_network_header);
1443 	CHECK_SKB_FIELD(inner_mac_header);
1444 	CHECK_SKB_FIELD(mark);
1445 #ifdef CONFIG_NETWORK_SECMARK
1446 	CHECK_SKB_FIELD(secmark);
1447 #endif
1448 #ifdef CONFIG_NET_RX_BUSY_POLL
1449 	CHECK_SKB_FIELD(napi_id);
1450 #endif
1451 	CHECK_SKB_FIELD(alloc_cpu);
1452 #ifdef CONFIG_XPS
1453 	CHECK_SKB_FIELD(sender_cpu);
1454 #endif
1455 #ifdef CONFIG_NET_SCHED
1456 	CHECK_SKB_FIELD(tc_index);
1457 #endif
1458 
1459 }
1460 
1461 /*
1462  * You should not add any new code to this function.  Add it to
1463  * __copy_skb_header above instead.
1464  */
1465 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1466 {
1467 #define C(x) n->x = skb->x
1468 
1469 	n->next = n->prev = NULL;
1470 	n->sk = NULL;
1471 	__copy_skb_header(n, skb);
1472 
1473 	C(len);
1474 	C(data_len);
1475 	C(mac_len);
1476 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1477 	n->cloned = 1;
1478 	n->nohdr = 0;
1479 	n->peeked = 0;
1480 	C(pfmemalloc);
1481 	C(pp_recycle);
1482 	n->destructor = NULL;
1483 	C(tail);
1484 	C(end);
1485 	C(head);
1486 	C(head_frag);
1487 	C(data);
1488 	C(truesize);
1489 	refcount_set(&n->users, 1);
1490 
1491 	atomic_inc(&(skb_shinfo(skb)->dataref));
1492 	skb->cloned = 1;
1493 
1494 	return n;
1495 #undef C
1496 }
1497 
1498 /**
1499  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1500  * @first: first sk_buff of the msg
1501  */
1502 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1503 {
1504 	struct sk_buff *n;
1505 
1506 	n = alloc_skb(0, GFP_ATOMIC);
1507 	if (!n)
1508 		return NULL;
1509 
1510 	n->len = first->len;
1511 	n->data_len = first->len;
1512 	n->truesize = first->truesize;
1513 
1514 	skb_shinfo(n)->frag_list = first;
1515 
1516 	__copy_skb_header(n, first);
1517 	n->destructor = NULL;
1518 
1519 	return n;
1520 }
1521 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1522 
1523 /**
1524  *	skb_morph	-	morph one skb into another
1525  *	@dst: the skb to receive the contents
1526  *	@src: the skb to supply the contents
1527  *
1528  *	This is identical to skb_clone except that the target skb is
1529  *	supplied by the user.
1530  *
1531  *	The target skb is returned upon exit.
1532  */
1533 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1534 {
1535 	skb_release_all(dst, SKB_CONSUMED, false);
1536 	return __skb_clone(dst, src);
1537 }
1538 EXPORT_SYMBOL_GPL(skb_morph);
1539 
1540 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1541 {
1542 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1543 	struct user_struct *user;
1544 
1545 	if (capable(CAP_IPC_LOCK) || !size)
1546 		return 0;
1547 
1548 	rlim = rlimit(RLIMIT_MEMLOCK);
1549 	if (rlim == RLIM_INFINITY)
1550 		return 0;
1551 
1552 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1553 	max_pg = rlim >> PAGE_SHIFT;
1554 	user = mmp->user ? : current_user();
1555 
1556 	old_pg = atomic_long_read(&user->locked_vm);
1557 	do {
1558 		new_pg = old_pg + num_pg;
1559 		if (new_pg > max_pg)
1560 			return -ENOBUFS;
1561 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1562 
1563 	if (!mmp->user) {
1564 		mmp->user = get_uid(user);
1565 		mmp->num_pg = num_pg;
1566 	} else {
1567 		mmp->num_pg += num_pg;
1568 	}
1569 
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1573 
1574 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1575 {
1576 	if (mmp->user) {
1577 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1578 		free_uid(mmp->user);
1579 	}
1580 }
1581 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1582 
1583 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1584 {
1585 	struct ubuf_info_msgzc *uarg;
1586 	struct sk_buff *skb;
1587 
1588 	WARN_ON_ONCE(!in_task());
1589 
1590 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1591 	if (!skb)
1592 		return NULL;
1593 
1594 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1595 	uarg = (void *)skb->cb;
1596 	uarg->mmp.user = NULL;
1597 
1598 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1599 		kfree_skb(skb);
1600 		return NULL;
1601 	}
1602 
1603 	uarg->ubuf.callback = msg_zerocopy_callback;
1604 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1605 	uarg->len = 1;
1606 	uarg->bytelen = size;
1607 	uarg->zerocopy = 1;
1608 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1609 	refcount_set(&uarg->ubuf.refcnt, 1);
1610 	sock_hold(sk);
1611 
1612 	return &uarg->ubuf;
1613 }
1614 
1615 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1616 {
1617 	return container_of((void *)uarg, struct sk_buff, cb);
1618 }
1619 
1620 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1621 				       struct ubuf_info *uarg)
1622 {
1623 	if (uarg) {
1624 		struct ubuf_info_msgzc *uarg_zc;
1625 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1626 		u32 bytelen, next;
1627 
1628 		/* there might be non MSG_ZEROCOPY users */
1629 		if (uarg->callback != msg_zerocopy_callback)
1630 			return NULL;
1631 
1632 		/* realloc only when socket is locked (TCP, UDP cork),
1633 		 * so uarg->len and sk_zckey access is serialized
1634 		 */
1635 		if (!sock_owned_by_user(sk)) {
1636 			WARN_ON_ONCE(1);
1637 			return NULL;
1638 		}
1639 
1640 		uarg_zc = uarg_to_msgzc(uarg);
1641 		bytelen = uarg_zc->bytelen + size;
1642 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1643 			/* TCP can create new skb to attach new uarg */
1644 			if (sk->sk_type == SOCK_STREAM)
1645 				goto new_alloc;
1646 			return NULL;
1647 		}
1648 
1649 		next = (u32)atomic_read(&sk->sk_zckey);
1650 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1651 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1652 				return NULL;
1653 			uarg_zc->len++;
1654 			uarg_zc->bytelen = bytelen;
1655 			atomic_set(&sk->sk_zckey, ++next);
1656 
1657 			/* no extra ref when appending to datagram (MSG_MORE) */
1658 			if (sk->sk_type == SOCK_STREAM)
1659 				net_zcopy_get(uarg);
1660 
1661 			return uarg;
1662 		}
1663 	}
1664 
1665 new_alloc:
1666 	return msg_zerocopy_alloc(sk, size);
1667 }
1668 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1669 
1670 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1671 {
1672 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1673 	u32 old_lo, old_hi;
1674 	u64 sum_len;
1675 
1676 	old_lo = serr->ee.ee_info;
1677 	old_hi = serr->ee.ee_data;
1678 	sum_len = old_hi - old_lo + 1ULL + len;
1679 
1680 	if (sum_len >= (1ULL << 32))
1681 		return false;
1682 
1683 	if (lo != old_hi + 1)
1684 		return false;
1685 
1686 	serr->ee.ee_data += len;
1687 	return true;
1688 }
1689 
1690 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1691 {
1692 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1693 	struct sock_exterr_skb *serr;
1694 	struct sock *sk = skb->sk;
1695 	struct sk_buff_head *q;
1696 	unsigned long flags;
1697 	bool is_zerocopy;
1698 	u32 lo, hi;
1699 	u16 len;
1700 
1701 	mm_unaccount_pinned_pages(&uarg->mmp);
1702 
1703 	/* if !len, there was only 1 call, and it was aborted
1704 	 * so do not queue a completion notification
1705 	 */
1706 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1707 		goto release;
1708 
1709 	len = uarg->len;
1710 	lo = uarg->id;
1711 	hi = uarg->id + len - 1;
1712 	is_zerocopy = uarg->zerocopy;
1713 
1714 	serr = SKB_EXT_ERR(skb);
1715 	memset(serr, 0, sizeof(*serr));
1716 	serr->ee.ee_errno = 0;
1717 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1718 	serr->ee.ee_data = hi;
1719 	serr->ee.ee_info = lo;
1720 	if (!is_zerocopy)
1721 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1722 
1723 	q = &sk->sk_error_queue;
1724 	spin_lock_irqsave(&q->lock, flags);
1725 	tail = skb_peek_tail(q);
1726 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1727 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1728 		__skb_queue_tail(q, skb);
1729 		skb = NULL;
1730 	}
1731 	spin_unlock_irqrestore(&q->lock, flags);
1732 
1733 	sk_error_report(sk);
1734 
1735 release:
1736 	consume_skb(skb);
1737 	sock_put(sk);
1738 }
1739 
1740 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1741 			   bool success)
1742 {
1743 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1744 
1745 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1746 
1747 	if (refcount_dec_and_test(&uarg->refcnt))
1748 		__msg_zerocopy_callback(uarg_zc);
1749 }
1750 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1751 
1752 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1753 {
1754 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1755 
1756 	atomic_dec(&sk->sk_zckey);
1757 	uarg_to_msgzc(uarg)->len--;
1758 
1759 	if (have_uref)
1760 		msg_zerocopy_callback(NULL, uarg, true);
1761 }
1762 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1763 
1764 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1765 			     struct msghdr *msg, int len,
1766 			     struct ubuf_info *uarg)
1767 {
1768 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1769 	int err, orig_len = skb->len;
1770 
1771 	/* An skb can only point to one uarg. This edge case happens when
1772 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1773 	 */
1774 	if (orig_uarg && uarg != orig_uarg)
1775 		return -EEXIST;
1776 
1777 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1778 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1779 		struct sock *save_sk = skb->sk;
1780 
1781 		/* Streams do not free skb on error. Reset to prev state. */
1782 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1783 		skb->sk = sk;
1784 		___pskb_trim(skb, orig_len);
1785 		skb->sk = save_sk;
1786 		return err;
1787 	}
1788 
1789 	skb_zcopy_set(skb, uarg, NULL);
1790 	return skb->len - orig_len;
1791 }
1792 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1793 
1794 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1795 {
1796 	int i;
1797 
1798 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1799 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1800 		skb_frag_ref(skb, i);
1801 }
1802 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1803 
1804 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1805 			      gfp_t gfp_mask)
1806 {
1807 	if (skb_zcopy(orig)) {
1808 		if (skb_zcopy(nskb)) {
1809 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1810 			if (!gfp_mask) {
1811 				WARN_ON_ONCE(1);
1812 				return -ENOMEM;
1813 			}
1814 			if (skb_uarg(nskb) == skb_uarg(orig))
1815 				return 0;
1816 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1817 				return -EIO;
1818 		}
1819 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1820 	}
1821 	return 0;
1822 }
1823 
1824 /**
1825  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1826  *	@skb: the skb to modify
1827  *	@gfp_mask: allocation priority
1828  *
1829  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1830  *	It will copy all frags into kernel and drop the reference
1831  *	to userspace pages.
1832  *
1833  *	If this function is called from an interrupt gfp_mask() must be
1834  *	%GFP_ATOMIC.
1835  *
1836  *	Returns 0 on success or a negative error code on failure
1837  *	to allocate kernel memory to copy to.
1838  */
1839 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1840 {
1841 	int num_frags = skb_shinfo(skb)->nr_frags;
1842 	struct page *page, *head = NULL;
1843 	int i, order, psize, new_frags;
1844 	u32 d_off;
1845 
1846 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1847 		return -EINVAL;
1848 
1849 	if (!num_frags)
1850 		goto release;
1851 
1852 	/* We might have to allocate high order pages, so compute what minimum
1853 	 * page order is needed.
1854 	 */
1855 	order = 0;
1856 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1857 		order++;
1858 	psize = (PAGE_SIZE << order);
1859 
1860 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1861 	for (i = 0; i < new_frags; i++) {
1862 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1863 		if (!page) {
1864 			while (head) {
1865 				struct page *next = (struct page *)page_private(head);
1866 				put_page(head);
1867 				head = next;
1868 			}
1869 			return -ENOMEM;
1870 		}
1871 		set_page_private(page, (unsigned long)head);
1872 		head = page;
1873 	}
1874 
1875 	page = head;
1876 	d_off = 0;
1877 	for (i = 0; i < num_frags; i++) {
1878 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1879 		u32 p_off, p_len, copied;
1880 		struct page *p;
1881 		u8 *vaddr;
1882 
1883 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1884 				      p, p_off, p_len, copied) {
1885 			u32 copy, done = 0;
1886 			vaddr = kmap_atomic(p);
1887 
1888 			while (done < p_len) {
1889 				if (d_off == psize) {
1890 					d_off = 0;
1891 					page = (struct page *)page_private(page);
1892 				}
1893 				copy = min_t(u32, psize - d_off, p_len - done);
1894 				memcpy(page_address(page) + d_off,
1895 				       vaddr + p_off + done, copy);
1896 				done += copy;
1897 				d_off += copy;
1898 			}
1899 			kunmap_atomic(vaddr);
1900 		}
1901 	}
1902 
1903 	/* skb frags release userspace buffers */
1904 	for (i = 0; i < num_frags; i++)
1905 		skb_frag_unref(skb, i);
1906 
1907 	/* skb frags point to kernel buffers */
1908 	for (i = 0; i < new_frags - 1; i++) {
1909 		__skb_fill_page_desc(skb, i, head, 0, psize);
1910 		head = (struct page *)page_private(head);
1911 	}
1912 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1913 	skb_shinfo(skb)->nr_frags = new_frags;
1914 
1915 release:
1916 	skb_zcopy_clear(skb, false);
1917 	return 0;
1918 }
1919 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1920 
1921 /**
1922  *	skb_clone	-	duplicate an sk_buff
1923  *	@skb: buffer to clone
1924  *	@gfp_mask: allocation priority
1925  *
1926  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1927  *	copies share the same packet data but not structure. The new
1928  *	buffer has a reference count of 1. If the allocation fails the
1929  *	function returns %NULL otherwise the new buffer is returned.
1930  *
1931  *	If this function is called from an interrupt gfp_mask() must be
1932  *	%GFP_ATOMIC.
1933  */
1934 
1935 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1936 {
1937 	struct sk_buff_fclones *fclones = container_of(skb,
1938 						       struct sk_buff_fclones,
1939 						       skb1);
1940 	struct sk_buff *n;
1941 
1942 	if (skb_orphan_frags(skb, gfp_mask))
1943 		return NULL;
1944 
1945 	if (skb->fclone == SKB_FCLONE_ORIG &&
1946 	    refcount_read(&fclones->fclone_ref) == 1) {
1947 		n = &fclones->skb2;
1948 		refcount_set(&fclones->fclone_ref, 2);
1949 		n->fclone = SKB_FCLONE_CLONE;
1950 	} else {
1951 		if (skb_pfmemalloc(skb))
1952 			gfp_mask |= __GFP_MEMALLOC;
1953 
1954 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1955 		if (!n)
1956 			return NULL;
1957 
1958 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1959 	}
1960 
1961 	return __skb_clone(n, skb);
1962 }
1963 EXPORT_SYMBOL(skb_clone);
1964 
1965 void skb_headers_offset_update(struct sk_buff *skb, int off)
1966 {
1967 	/* Only adjust this if it actually is csum_start rather than csum */
1968 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1969 		skb->csum_start += off;
1970 	/* {transport,network,mac}_header and tail are relative to skb->head */
1971 	skb->transport_header += off;
1972 	skb->network_header   += off;
1973 	if (skb_mac_header_was_set(skb))
1974 		skb->mac_header += off;
1975 	skb->inner_transport_header += off;
1976 	skb->inner_network_header += off;
1977 	skb->inner_mac_header += off;
1978 }
1979 EXPORT_SYMBOL(skb_headers_offset_update);
1980 
1981 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1982 {
1983 	__copy_skb_header(new, old);
1984 
1985 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1986 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1987 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1988 }
1989 EXPORT_SYMBOL(skb_copy_header);
1990 
1991 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1992 {
1993 	if (skb_pfmemalloc(skb))
1994 		return SKB_ALLOC_RX;
1995 	return 0;
1996 }
1997 
1998 /**
1999  *	skb_copy	-	create private copy of an sk_buff
2000  *	@skb: buffer to copy
2001  *	@gfp_mask: allocation priority
2002  *
2003  *	Make a copy of both an &sk_buff and its data. This is used when the
2004  *	caller wishes to modify the data and needs a private copy of the
2005  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2006  *	on success. The returned buffer has a reference count of 1.
2007  *
2008  *	As by-product this function converts non-linear &sk_buff to linear
2009  *	one, so that &sk_buff becomes completely private and caller is allowed
2010  *	to modify all the data of returned buffer. This means that this
2011  *	function is not recommended for use in circumstances when only
2012  *	header is going to be modified. Use pskb_copy() instead.
2013  */
2014 
2015 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2016 {
2017 	int headerlen = skb_headroom(skb);
2018 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2019 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2020 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2021 
2022 	if (!n)
2023 		return NULL;
2024 
2025 	/* Set the data pointer */
2026 	skb_reserve(n, headerlen);
2027 	/* Set the tail pointer and length */
2028 	skb_put(n, skb->len);
2029 
2030 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2031 
2032 	skb_copy_header(n, skb);
2033 	return n;
2034 }
2035 EXPORT_SYMBOL(skb_copy);
2036 
2037 /**
2038  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2039  *	@skb: buffer to copy
2040  *	@headroom: headroom of new skb
2041  *	@gfp_mask: allocation priority
2042  *	@fclone: if true allocate the copy of the skb from the fclone
2043  *	cache instead of the head cache; it is recommended to set this
2044  *	to true for the cases where the copy will likely be cloned
2045  *
2046  *	Make a copy of both an &sk_buff and part of its data, located
2047  *	in header. Fragmented data remain shared. This is used when
2048  *	the caller wishes to modify only header of &sk_buff and needs
2049  *	private copy of the header to alter. Returns %NULL on failure
2050  *	or the pointer to the buffer on success.
2051  *	The returned buffer has a reference count of 1.
2052  */
2053 
2054 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2055 				   gfp_t gfp_mask, bool fclone)
2056 {
2057 	unsigned int size = skb_headlen(skb) + headroom;
2058 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2059 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2060 
2061 	if (!n)
2062 		goto out;
2063 
2064 	/* Set the data pointer */
2065 	skb_reserve(n, headroom);
2066 	/* Set the tail pointer and length */
2067 	skb_put(n, skb_headlen(skb));
2068 	/* Copy the bytes */
2069 	skb_copy_from_linear_data(skb, n->data, n->len);
2070 
2071 	n->truesize += skb->data_len;
2072 	n->data_len  = skb->data_len;
2073 	n->len	     = skb->len;
2074 
2075 	if (skb_shinfo(skb)->nr_frags) {
2076 		int i;
2077 
2078 		if (skb_orphan_frags(skb, gfp_mask) ||
2079 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2080 			kfree_skb(n);
2081 			n = NULL;
2082 			goto out;
2083 		}
2084 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2085 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2086 			skb_frag_ref(skb, i);
2087 		}
2088 		skb_shinfo(n)->nr_frags = i;
2089 	}
2090 
2091 	if (skb_has_frag_list(skb)) {
2092 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2093 		skb_clone_fraglist(n);
2094 	}
2095 
2096 	skb_copy_header(n, skb);
2097 out:
2098 	return n;
2099 }
2100 EXPORT_SYMBOL(__pskb_copy_fclone);
2101 
2102 /**
2103  *	pskb_expand_head - reallocate header of &sk_buff
2104  *	@skb: buffer to reallocate
2105  *	@nhead: room to add at head
2106  *	@ntail: room to add at tail
2107  *	@gfp_mask: allocation priority
2108  *
2109  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2110  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2111  *	reference count of 1. Returns zero in the case of success or error,
2112  *	if expansion failed. In the last case, &sk_buff is not changed.
2113  *
2114  *	All the pointers pointing into skb header may change and must be
2115  *	reloaded after call to this function.
2116  */
2117 
2118 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2119 		     gfp_t gfp_mask)
2120 {
2121 	unsigned int osize = skb_end_offset(skb);
2122 	unsigned int size = osize + nhead + ntail;
2123 	long off;
2124 	u8 *data;
2125 	int i;
2126 
2127 	BUG_ON(nhead < 0);
2128 
2129 	BUG_ON(skb_shared(skb));
2130 
2131 	skb_zcopy_downgrade_managed(skb);
2132 
2133 	if (skb_pfmemalloc(skb))
2134 		gfp_mask |= __GFP_MEMALLOC;
2135 
2136 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2137 	if (!data)
2138 		goto nodata;
2139 	size = SKB_WITH_OVERHEAD(size);
2140 
2141 	/* Copy only real data... and, alas, header. This should be
2142 	 * optimized for the cases when header is void.
2143 	 */
2144 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2145 
2146 	memcpy((struct skb_shared_info *)(data + size),
2147 	       skb_shinfo(skb),
2148 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2149 
2150 	/*
2151 	 * if shinfo is shared we must drop the old head gracefully, but if it
2152 	 * is not we can just drop the old head and let the existing refcount
2153 	 * be since all we did is relocate the values
2154 	 */
2155 	if (skb_cloned(skb)) {
2156 		if (skb_orphan_frags(skb, gfp_mask))
2157 			goto nofrags;
2158 		if (skb_zcopy(skb))
2159 			refcount_inc(&skb_uarg(skb)->refcnt);
2160 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2161 			skb_frag_ref(skb, i);
2162 
2163 		if (skb_has_frag_list(skb))
2164 			skb_clone_fraglist(skb);
2165 
2166 		skb_release_data(skb, SKB_CONSUMED, false);
2167 	} else {
2168 		skb_free_head(skb, false);
2169 	}
2170 	off = (data + nhead) - skb->head;
2171 
2172 	skb->head     = data;
2173 	skb->head_frag = 0;
2174 	skb->data    += off;
2175 
2176 	skb_set_end_offset(skb, size);
2177 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2178 	off           = nhead;
2179 #endif
2180 	skb->tail	      += off;
2181 	skb_headers_offset_update(skb, nhead);
2182 	skb->cloned   = 0;
2183 	skb->hdr_len  = 0;
2184 	skb->nohdr    = 0;
2185 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2186 
2187 	skb_metadata_clear(skb);
2188 
2189 	/* It is not generally safe to change skb->truesize.
2190 	 * For the moment, we really care of rx path, or
2191 	 * when skb is orphaned (not attached to a socket).
2192 	 */
2193 	if (!skb->sk || skb->destructor == sock_edemux)
2194 		skb->truesize += size - osize;
2195 
2196 	return 0;
2197 
2198 nofrags:
2199 	skb_kfree_head(data, size);
2200 nodata:
2201 	return -ENOMEM;
2202 }
2203 EXPORT_SYMBOL(pskb_expand_head);
2204 
2205 /* Make private copy of skb with writable head and some headroom */
2206 
2207 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2208 {
2209 	struct sk_buff *skb2;
2210 	int delta = headroom - skb_headroom(skb);
2211 
2212 	if (delta <= 0)
2213 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2214 	else {
2215 		skb2 = skb_clone(skb, GFP_ATOMIC);
2216 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2217 					     GFP_ATOMIC)) {
2218 			kfree_skb(skb2);
2219 			skb2 = NULL;
2220 		}
2221 	}
2222 	return skb2;
2223 }
2224 EXPORT_SYMBOL(skb_realloc_headroom);
2225 
2226 /* Note: We plan to rework this in linux-6.4 */
2227 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2228 {
2229 	unsigned int saved_end_offset, saved_truesize;
2230 	struct skb_shared_info *shinfo;
2231 	int res;
2232 
2233 	saved_end_offset = skb_end_offset(skb);
2234 	saved_truesize = skb->truesize;
2235 
2236 	res = pskb_expand_head(skb, 0, 0, pri);
2237 	if (res)
2238 		return res;
2239 
2240 	skb->truesize = saved_truesize;
2241 
2242 	if (likely(skb_end_offset(skb) == saved_end_offset))
2243 		return 0;
2244 
2245 	/* We can not change skb->end if the original or new value
2246 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2247 	 */
2248 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2249 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2250 		/* We think this path should not be taken.
2251 		 * Add a temporary trace to warn us just in case.
2252 		 */
2253 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2254 			    saved_end_offset, skb_end_offset(skb));
2255 		WARN_ON_ONCE(1);
2256 		return 0;
2257 	}
2258 
2259 	shinfo = skb_shinfo(skb);
2260 
2261 	/* We are about to change back skb->end,
2262 	 * we need to move skb_shinfo() to its new location.
2263 	 */
2264 	memmove(skb->head + saved_end_offset,
2265 		shinfo,
2266 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2267 
2268 	skb_set_end_offset(skb, saved_end_offset);
2269 
2270 	return 0;
2271 }
2272 
2273 /**
2274  *	skb_expand_head - reallocate header of &sk_buff
2275  *	@skb: buffer to reallocate
2276  *	@headroom: needed headroom
2277  *
2278  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2279  *	if possible; copies skb->sk to new skb as needed
2280  *	and frees original skb in case of failures.
2281  *
2282  *	It expect increased headroom and generates warning otherwise.
2283  */
2284 
2285 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2286 {
2287 	int delta = headroom - skb_headroom(skb);
2288 	int osize = skb_end_offset(skb);
2289 	struct sock *sk = skb->sk;
2290 
2291 	if (WARN_ONCE(delta <= 0,
2292 		      "%s is expecting an increase in the headroom", __func__))
2293 		return skb;
2294 
2295 	delta = SKB_DATA_ALIGN(delta);
2296 	/* pskb_expand_head() might crash, if skb is shared. */
2297 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2298 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2299 
2300 		if (unlikely(!nskb))
2301 			goto fail;
2302 
2303 		if (sk)
2304 			skb_set_owner_w(nskb, sk);
2305 		consume_skb(skb);
2306 		skb = nskb;
2307 	}
2308 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2309 		goto fail;
2310 
2311 	if (sk && is_skb_wmem(skb)) {
2312 		delta = skb_end_offset(skb) - osize;
2313 		refcount_add(delta, &sk->sk_wmem_alloc);
2314 		skb->truesize += delta;
2315 	}
2316 	return skb;
2317 
2318 fail:
2319 	kfree_skb(skb);
2320 	return NULL;
2321 }
2322 EXPORT_SYMBOL(skb_expand_head);
2323 
2324 /**
2325  *	skb_copy_expand	-	copy and expand sk_buff
2326  *	@skb: buffer to copy
2327  *	@newheadroom: new free bytes at head
2328  *	@newtailroom: new free bytes at tail
2329  *	@gfp_mask: allocation priority
2330  *
2331  *	Make a copy of both an &sk_buff and its data and while doing so
2332  *	allocate additional space.
2333  *
2334  *	This is used when the caller wishes to modify the data and needs a
2335  *	private copy of the data to alter as well as more space for new fields.
2336  *	Returns %NULL on failure or the pointer to the buffer
2337  *	on success. The returned buffer has a reference count of 1.
2338  *
2339  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2340  *	is called from an interrupt.
2341  */
2342 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2343 				int newheadroom, int newtailroom,
2344 				gfp_t gfp_mask)
2345 {
2346 	/*
2347 	 *	Allocate the copy buffer
2348 	 */
2349 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2350 					gfp_mask, skb_alloc_rx_flag(skb),
2351 					NUMA_NO_NODE);
2352 	int oldheadroom = skb_headroom(skb);
2353 	int head_copy_len, head_copy_off;
2354 
2355 	if (!n)
2356 		return NULL;
2357 
2358 	skb_reserve(n, newheadroom);
2359 
2360 	/* Set the tail pointer and length */
2361 	skb_put(n, skb->len);
2362 
2363 	head_copy_len = oldheadroom;
2364 	head_copy_off = 0;
2365 	if (newheadroom <= head_copy_len)
2366 		head_copy_len = newheadroom;
2367 	else
2368 		head_copy_off = newheadroom - head_copy_len;
2369 
2370 	/* Copy the linear header and data. */
2371 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2372 			     skb->len + head_copy_len));
2373 
2374 	skb_copy_header(n, skb);
2375 
2376 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2377 
2378 	return n;
2379 }
2380 EXPORT_SYMBOL(skb_copy_expand);
2381 
2382 /**
2383  *	__skb_pad		-	zero pad the tail of an skb
2384  *	@skb: buffer to pad
2385  *	@pad: space to pad
2386  *	@free_on_error: free buffer on error
2387  *
2388  *	Ensure that a buffer is followed by a padding area that is zero
2389  *	filled. Used by network drivers which may DMA or transfer data
2390  *	beyond the buffer end onto the wire.
2391  *
2392  *	May return error in out of memory cases. The skb is freed on error
2393  *	if @free_on_error is true.
2394  */
2395 
2396 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2397 {
2398 	int err;
2399 	int ntail;
2400 
2401 	/* If the skbuff is non linear tailroom is always zero.. */
2402 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2403 		memset(skb->data+skb->len, 0, pad);
2404 		return 0;
2405 	}
2406 
2407 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2408 	if (likely(skb_cloned(skb) || ntail > 0)) {
2409 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2410 		if (unlikely(err))
2411 			goto free_skb;
2412 	}
2413 
2414 	/* FIXME: The use of this function with non-linear skb's really needs
2415 	 * to be audited.
2416 	 */
2417 	err = skb_linearize(skb);
2418 	if (unlikely(err))
2419 		goto free_skb;
2420 
2421 	memset(skb->data + skb->len, 0, pad);
2422 	return 0;
2423 
2424 free_skb:
2425 	if (free_on_error)
2426 		kfree_skb(skb);
2427 	return err;
2428 }
2429 EXPORT_SYMBOL(__skb_pad);
2430 
2431 /**
2432  *	pskb_put - add data to the tail of a potentially fragmented buffer
2433  *	@skb: start of the buffer to use
2434  *	@tail: tail fragment of the buffer to use
2435  *	@len: amount of data to add
2436  *
2437  *	This function extends the used data area of the potentially
2438  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2439  *	@skb itself. If this would exceed the total buffer size the kernel
2440  *	will panic. A pointer to the first byte of the extra data is
2441  *	returned.
2442  */
2443 
2444 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2445 {
2446 	if (tail != skb) {
2447 		skb->data_len += len;
2448 		skb->len += len;
2449 	}
2450 	return skb_put(tail, len);
2451 }
2452 EXPORT_SYMBOL_GPL(pskb_put);
2453 
2454 /**
2455  *	skb_put - add data to a buffer
2456  *	@skb: buffer to use
2457  *	@len: amount of data to add
2458  *
2459  *	This function extends the used data area of the buffer. If this would
2460  *	exceed the total buffer size the kernel will panic. A pointer to the
2461  *	first byte of the extra data is returned.
2462  */
2463 void *skb_put(struct sk_buff *skb, unsigned int len)
2464 {
2465 	void *tmp = skb_tail_pointer(skb);
2466 	SKB_LINEAR_ASSERT(skb);
2467 	skb->tail += len;
2468 	skb->len  += len;
2469 	if (unlikely(skb->tail > skb->end))
2470 		skb_over_panic(skb, len, __builtin_return_address(0));
2471 	return tmp;
2472 }
2473 EXPORT_SYMBOL(skb_put);
2474 
2475 /**
2476  *	skb_push - add data to the start of a buffer
2477  *	@skb: buffer to use
2478  *	@len: amount of data to add
2479  *
2480  *	This function extends the used data area of the buffer at the buffer
2481  *	start. If this would exceed the total buffer headroom the kernel will
2482  *	panic. A pointer to the first byte of the extra data is returned.
2483  */
2484 void *skb_push(struct sk_buff *skb, unsigned int len)
2485 {
2486 	skb->data -= len;
2487 	skb->len  += len;
2488 	if (unlikely(skb->data < skb->head))
2489 		skb_under_panic(skb, len, __builtin_return_address(0));
2490 	return skb->data;
2491 }
2492 EXPORT_SYMBOL(skb_push);
2493 
2494 /**
2495  *	skb_pull - remove data from the start of a buffer
2496  *	@skb: buffer to use
2497  *	@len: amount of data to remove
2498  *
2499  *	This function removes data from the start of a buffer, returning
2500  *	the memory to the headroom. A pointer to the next data in the buffer
2501  *	is returned. Once the data has been pulled future pushes will overwrite
2502  *	the old data.
2503  */
2504 void *skb_pull(struct sk_buff *skb, unsigned int len)
2505 {
2506 	return skb_pull_inline(skb, len);
2507 }
2508 EXPORT_SYMBOL(skb_pull);
2509 
2510 /**
2511  *	skb_pull_data - remove data from the start of a buffer returning its
2512  *	original position.
2513  *	@skb: buffer to use
2514  *	@len: amount of data to remove
2515  *
2516  *	This function removes data from the start of a buffer, returning
2517  *	the memory to the headroom. A pointer to the original data in the buffer
2518  *	is returned after checking if there is enough data to pull. Once the
2519  *	data has been pulled future pushes will overwrite the old data.
2520  */
2521 void *skb_pull_data(struct sk_buff *skb, size_t len)
2522 {
2523 	void *data = skb->data;
2524 
2525 	if (skb->len < len)
2526 		return NULL;
2527 
2528 	skb_pull(skb, len);
2529 
2530 	return data;
2531 }
2532 EXPORT_SYMBOL(skb_pull_data);
2533 
2534 /**
2535  *	skb_trim - remove end from a buffer
2536  *	@skb: buffer to alter
2537  *	@len: new length
2538  *
2539  *	Cut the length of a buffer down by removing data from the tail. If
2540  *	the buffer is already under the length specified it is not modified.
2541  *	The skb must be linear.
2542  */
2543 void skb_trim(struct sk_buff *skb, unsigned int len)
2544 {
2545 	if (skb->len > len)
2546 		__skb_trim(skb, len);
2547 }
2548 EXPORT_SYMBOL(skb_trim);
2549 
2550 /* Trims skb to length len. It can change skb pointers.
2551  */
2552 
2553 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2554 {
2555 	struct sk_buff **fragp;
2556 	struct sk_buff *frag;
2557 	int offset = skb_headlen(skb);
2558 	int nfrags = skb_shinfo(skb)->nr_frags;
2559 	int i;
2560 	int err;
2561 
2562 	if (skb_cloned(skb) &&
2563 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2564 		return err;
2565 
2566 	i = 0;
2567 	if (offset >= len)
2568 		goto drop_pages;
2569 
2570 	for (; i < nfrags; i++) {
2571 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2572 
2573 		if (end < len) {
2574 			offset = end;
2575 			continue;
2576 		}
2577 
2578 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2579 
2580 drop_pages:
2581 		skb_shinfo(skb)->nr_frags = i;
2582 
2583 		for (; i < nfrags; i++)
2584 			skb_frag_unref(skb, i);
2585 
2586 		if (skb_has_frag_list(skb))
2587 			skb_drop_fraglist(skb);
2588 		goto done;
2589 	}
2590 
2591 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2592 	     fragp = &frag->next) {
2593 		int end = offset + frag->len;
2594 
2595 		if (skb_shared(frag)) {
2596 			struct sk_buff *nfrag;
2597 
2598 			nfrag = skb_clone(frag, GFP_ATOMIC);
2599 			if (unlikely(!nfrag))
2600 				return -ENOMEM;
2601 
2602 			nfrag->next = frag->next;
2603 			consume_skb(frag);
2604 			frag = nfrag;
2605 			*fragp = frag;
2606 		}
2607 
2608 		if (end < len) {
2609 			offset = end;
2610 			continue;
2611 		}
2612 
2613 		if (end > len &&
2614 		    unlikely((err = pskb_trim(frag, len - offset))))
2615 			return err;
2616 
2617 		if (frag->next)
2618 			skb_drop_list(&frag->next);
2619 		break;
2620 	}
2621 
2622 done:
2623 	if (len > skb_headlen(skb)) {
2624 		skb->data_len -= skb->len - len;
2625 		skb->len       = len;
2626 	} else {
2627 		skb->len       = len;
2628 		skb->data_len  = 0;
2629 		skb_set_tail_pointer(skb, len);
2630 	}
2631 
2632 	if (!skb->sk || skb->destructor == sock_edemux)
2633 		skb_condense(skb);
2634 	return 0;
2635 }
2636 EXPORT_SYMBOL(___pskb_trim);
2637 
2638 /* Note : use pskb_trim_rcsum() instead of calling this directly
2639  */
2640 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2641 {
2642 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2643 		int delta = skb->len - len;
2644 
2645 		skb->csum = csum_block_sub(skb->csum,
2646 					   skb_checksum(skb, len, delta, 0),
2647 					   len);
2648 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2649 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2650 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2651 
2652 		if (offset + sizeof(__sum16) > hdlen)
2653 			return -EINVAL;
2654 	}
2655 	return __pskb_trim(skb, len);
2656 }
2657 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2658 
2659 /**
2660  *	__pskb_pull_tail - advance tail of skb header
2661  *	@skb: buffer to reallocate
2662  *	@delta: number of bytes to advance tail
2663  *
2664  *	The function makes a sense only on a fragmented &sk_buff,
2665  *	it expands header moving its tail forward and copying necessary
2666  *	data from fragmented part.
2667  *
2668  *	&sk_buff MUST have reference count of 1.
2669  *
2670  *	Returns %NULL (and &sk_buff does not change) if pull failed
2671  *	or value of new tail of skb in the case of success.
2672  *
2673  *	All the pointers pointing into skb header may change and must be
2674  *	reloaded after call to this function.
2675  */
2676 
2677 /* Moves tail of skb head forward, copying data from fragmented part,
2678  * when it is necessary.
2679  * 1. It may fail due to malloc failure.
2680  * 2. It may change skb pointers.
2681  *
2682  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2683  */
2684 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2685 {
2686 	/* If skb has not enough free space at tail, get new one
2687 	 * plus 128 bytes for future expansions. If we have enough
2688 	 * room at tail, reallocate without expansion only if skb is cloned.
2689 	 */
2690 	int i, k, eat = (skb->tail + delta) - skb->end;
2691 
2692 	if (eat > 0 || skb_cloned(skb)) {
2693 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2694 				     GFP_ATOMIC))
2695 			return NULL;
2696 	}
2697 
2698 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2699 			     skb_tail_pointer(skb), delta));
2700 
2701 	/* Optimization: no fragments, no reasons to preestimate
2702 	 * size of pulled pages. Superb.
2703 	 */
2704 	if (!skb_has_frag_list(skb))
2705 		goto pull_pages;
2706 
2707 	/* Estimate size of pulled pages. */
2708 	eat = delta;
2709 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2710 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2711 
2712 		if (size >= eat)
2713 			goto pull_pages;
2714 		eat -= size;
2715 	}
2716 
2717 	/* If we need update frag list, we are in troubles.
2718 	 * Certainly, it is possible to add an offset to skb data,
2719 	 * but taking into account that pulling is expected to
2720 	 * be very rare operation, it is worth to fight against
2721 	 * further bloating skb head and crucify ourselves here instead.
2722 	 * Pure masohism, indeed. 8)8)
2723 	 */
2724 	if (eat) {
2725 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2726 		struct sk_buff *clone = NULL;
2727 		struct sk_buff *insp = NULL;
2728 
2729 		do {
2730 			if (list->len <= eat) {
2731 				/* Eaten as whole. */
2732 				eat -= list->len;
2733 				list = list->next;
2734 				insp = list;
2735 			} else {
2736 				/* Eaten partially. */
2737 				if (skb_is_gso(skb) && !list->head_frag &&
2738 				    skb_headlen(list))
2739 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2740 
2741 				if (skb_shared(list)) {
2742 					/* Sucks! We need to fork list. :-( */
2743 					clone = skb_clone(list, GFP_ATOMIC);
2744 					if (!clone)
2745 						return NULL;
2746 					insp = list->next;
2747 					list = clone;
2748 				} else {
2749 					/* This may be pulled without
2750 					 * problems. */
2751 					insp = list;
2752 				}
2753 				if (!pskb_pull(list, eat)) {
2754 					kfree_skb(clone);
2755 					return NULL;
2756 				}
2757 				break;
2758 			}
2759 		} while (eat);
2760 
2761 		/* Free pulled out fragments. */
2762 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2763 			skb_shinfo(skb)->frag_list = list->next;
2764 			consume_skb(list);
2765 		}
2766 		/* And insert new clone at head. */
2767 		if (clone) {
2768 			clone->next = list;
2769 			skb_shinfo(skb)->frag_list = clone;
2770 		}
2771 	}
2772 	/* Success! Now we may commit changes to skb data. */
2773 
2774 pull_pages:
2775 	eat = delta;
2776 	k = 0;
2777 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2779 
2780 		if (size <= eat) {
2781 			skb_frag_unref(skb, i);
2782 			eat -= size;
2783 		} else {
2784 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2785 
2786 			*frag = skb_shinfo(skb)->frags[i];
2787 			if (eat) {
2788 				skb_frag_off_add(frag, eat);
2789 				skb_frag_size_sub(frag, eat);
2790 				if (!i)
2791 					goto end;
2792 				eat = 0;
2793 			}
2794 			k++;
2795 		}
2796 	}
2797 	skb_shinfo(skb)->nr_frags = k;
2798 
2799 end:
2800 	skb->tail     += delta;
2801 	skb->data_len -= delta;
2802 
2803 	if (!skb->data_len)
2804 		skb_zcopy_clear(skb, false);
2805 
2806 	return skb_tail_pointer(skb);
2807 }
2808 EXPORT_SYMBOL(__pskb_pull_tail);
2809 
2810 /**
2811  *	skb_copy_bits - copy bits from skb to kernel buffer
2812  *	@skb: source skb
2813  *	@offset: offset in source
2814  *	@to: destination buffer
2815  *	@len: number of bytes to copy
2816  *
2817  *	Copy the specified number of bytes from the source skb to the
2818  *	destination buffer.
2819  *
2820  *	CAUTION ! :
2821  *		If its prototype is ever changed,
2822  *		check arch/{*}/net/{*}.S files,
2823  *		since it is called from BPF assembly code.
2824  */
2825 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2826 {
2827 	int start = skb_headlen(skb);
2828 	struct sk_buff *frag_iter;
2829 	int i, copy;
2830 
2831 	if (offset > (int)skb->len - len)
2832 		goto fault;
2833 
2834 	/* Copy header. */
2835 	if ((copy = start - offset) > 0) {
2836 		if (copy > len)
2837 			copy = len;
2838 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2839 		if ((len -= copy) == 0)
2840 			return 0;
2841 		offset += copy;
2842 		to     += copy;
2843 	}
2844 
2845 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2846 		int end;
2847 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2848 
2849 		WARN_ON(start > offset + len);
2850 
2851 		end = start + skb_frag_size(f);
2852 		if ((copy = end - offset) > 0) {
2853 			u32 p_off, p_len, copied;
2854 			struct page *p;
2855 			u8 *vaddr;
2856 
2857 			if (copy > len)
2858 				copy = len;
2859 
2860 			skb_frag_foreach_page(f,
2861 					      skb_frag_off(f) + offset - start,
2862 					      copy, p, p_off, p_len, copied) {
2863 				vaddr = kmap_atomic(p);
2864 				memcpy(to + copied, vaddr + p_off, p_len);
2865 				kunmap_atomic(vaddr);
2866 			}
2867 
2868 			if ((len -= copy) == 0)
2869 				return 0;
2870 			offset += copy;
2871 			to     += copy;
2872 		}
2873 		start = end;
2874 	}
2875 
2876 	skb_walk_frags(skb, frag_iter) {
2877 		int end;
2878 
2879 		WARN_ON(start > offset + len);
2880 
2881 		end = start + frag_iter->len;
2882 		if ((copy = end - offset) > 0) {
2883 			if (copy > len)
2884 				copy = len;
2885 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2886 				goto fault;
2887 			if ((len -= copy) == 0)
2888 				return 0;
2889 			offset += copy;
2890 			to     += copy;
2891 		}
2892 		start = end;
2893 	}
2894 
2895 	if (!len)
2896 		return 0;
2897 
2898 fault:
2899 	return -EFAULT;
2900 }
2901 EXPORT_SYMBOL(skb_copy_bits);
2902 
2903 /*
2904  * Callback from splice_to_pipe(), if we need to release some pages
2905  * at the end of the spd in case we error'ed out in filling the pipe.
2906  */
2907 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2908 {
2909 	put_page(spd->pages[i]);
2910 }
2911 
2912 static struct page *linear_to_page(struct page *page, unsigned int *len,
2913 				   unsigned int *offset,
2914 				   struct sock *sk)
2915 {
2916 	struct page_frag *pfrag = sk_page_frag(sk);
2917 
2918 	if (!sk_page_frag_refill(sk, pfrag))
2919 		return NULL;
2920 
2921 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2922 
2923 	memcpy(page_address(pfrag->page) + pfrag->offset,
2924 	       page_address(page) + *offset, *len);
2925 	*offset = pfrag->offset;
2926 	pfrag->offset += *len;
2927 
2928 	return pfrag->page;
2929 }
2930 
2931 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2932 			     struct page *page,
2933 			     unsigned int offset)
2934 {
2935 	return	spd->nr_pages &&
2936 		spd->pages[spd->nr_pages - 1] == page &&
2937 		(spd->partial[spd->nr_pages - 1].offset +
2938 		 spd->partial[spd->nr_pages - 1].len == offset);
2939 }
2940 
2941 /*
2942  * Fill page/offset/length into spd, if it can hold more pages.
2943  */
2944 static bool spd_fill_page(struct splice_pipe_desc *spd,
2945 			  struct pipe_inode_info *pipe, struct page *page,
2946 			  unsigned int *len, unsigned int offset,
2947 			  bool linear,
2948 			  struct sock *sk)
2949 {
2950 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2951 		return true;
2952 
2953 	if (linear) {
2954 		page = linear_to_page(page, len, &offset, sk);
2955 		if (!page)
2956 			return true;
2957 	}
2958 	if (spd_can_coalesce(spd, page, offset)) {
2959 		spd->partial[spd->nr_pages - 1].len += *len;
2960 		return false;
2961 	}
2962 	get_page(page);
2963 	spd->pages[spd->nr_pages] = page;
2964 	spd->partial[spd->nr_pages].len = *len;
2965 	spd->partial[spd->nr_pages].offset = offset;
2966 	spd->nr_pages++;
2967 
2968 	return false;
2969 }
2970 
2971 static bool __splice_segment(struct page *page, unsigned int poff,
2972 			     unsigned int plen, unsigned int *off,
2973 			     unsigned int *len,
2974 			     struct splice_pipe_desc *spd, bool linear,
2975 			     struct sock *sk,
2976 			     struct pipe_inode_info *pipe)
2977 {
2978 	if (!*len)
2979 		return true;
2980 
2981 	/* skip this segment if already processed */
2982 	if (*off >= plen) {
2983 		*off -= plen;
2984 		return false;
2985 	}
2986 
2987 	/* ignore any bits we already processed */
2988 	poff += *off;
2989 	plen -= *off;
2990 	*off = 0;
2991 
2992 	do {
2993 		unsigned int flen = min(*len, plen);
2994 
2995 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2996 				  linear, sk))
2997 			return true;
2998 		poff += flen;
2999 		plen -= flen;
3000 		*len -= flen;
3001 	} while (*len && plen);
3002 
3003 	return false;
3004 }
3005 
3006 /*
3007  * Map linear and fragment data from the skb to spd. It reports true if the
3008  * pipe is full or if we already spliced the requested length.
3009  */
3010 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3011 			      unsigned int *offset, unsigned int *len,
3012 			      struct splice_pipe_desc *spd, struct sock *sk)
3013 {
3014 	int seg;
3015 	struct sk_buff *iter;
3016 
3017 	/* map the linear part :
3018 	 * If skb->head_frag is set, this 'linear' part is backed by a
3019 	 * fragment, and if the head is not shared with any clones then
3020 	 * we can avoid a copy since we own the head portion of this page.
3021 	 */
3022 	if (__splice_segment(virt_to_page(skb->data),
3023 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3024 			     skb_headlen(skb),
3025 			     offset, len, spd,
3026 			     skb_head_is_locked(skb),
3027 			     sk, pipe))
3028 		return true;
3029 
3030 	/*
3031 	 * then map the fragments
3032 	 */
3033 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3034 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3035 
3036 		if (__splice_segment(skb_frag_page(f),
3037 				     skb_frag_off(f), skb_frag_size(f),
3038 				     offset, len, spd, false, sk, pipe))
3039 			return true;
3040 	}
3041 
3042 	skb_walk_frags(skb, iter) {
3043 		if (*offset >= iter->len) {
3044 			*offset -= iter->len;
3045 			continue;
3046 		}
3047 		/* __skb_splice_bits() only fails if the output has no room
3048 		 * left, so no point in going over the frag_list for the error
3049 		 * case.
3050 		 */
3051 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3052 			return true;
3053 	}
3054 
3055 	return false;
3056 }
3057 
3058 /*
3059  * Map data from the skb to a pipe. Should handle both the linear part,
3060  * the fragments, and the frag list.
3061  */
3062 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3063 		    struct pipe_inode_info *pipe, unsigned int tlen,
3064 		    unsigned int flags)
3065 {
3066 	struct partial_page partial[MAX_SKB_FRAGS];
3067 	struct page *pages[MAX_SKB_FRAGS];
3068 	struct splice_pipe_desc spd = {
3069 		.pages = pages,
3070 		.partial = partial,
3071 		.nr_pages_max = MAX_SKB_FRAGS,
3072 		.ops = &nosteal_pipe_buf_ops,
3073 		.spd_release = sock_spd_release,
3074 	};
3075 	int ret = 0;
3076 
3077 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3078 
3079 	if (spd.nr_pages)
3080 		ret = splice_to_pipe(pipe, &spd);
3081 
3082 	return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(skb_splice_bits);
3085 
3086 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3087 {
3088 	struct socket *sock = sk->sk_socket;
3089 	size_t size = msg_data_left(msg);
3090 
3091 	if (!sock)
3092 		return -EINVAL;
3093 
3094 	if (!sock->ops->sendmsg_locked)
3095 		return sock_no_sendmsg_locked(sk, msg, size);
3096 
3097 	return sock->ops->sendmsg_locked(sk, msg, size);
3098 }
3099 
3100 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3101 {
3102 	struct socket *sock = sk->sk_socket;
3103 
3104 	if (!sock)
3105 		return -EINVAL;
3106 	return sock_sendmsg(sock, msg);
3107 }
3108 
3109 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3110 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3111 			   int len, sendmsg_func sendmsg)
3112 {
3113 	unsigned int orig_len = len;
3114 	struct sk_buff *head = skb;
3115 	unsigned short fragidx;
3116 	int slen, ret;
3117 
3118 do_frag_list:
3119 
3120 	/* Deal with head data */
3121 	while (offset < skb_headlen(skb) && len) {
3122 		struct kvec kv;
3123 		struct msghdr msg;
3124 
3125 		slen = min_t(int, len, skb_headlen(skb) - offset);
3126 		kv.iov_base = skb->data + offset;
3127 		kv.iov_len = slen;
3128 		memset(&msg, 0, sizeof(msg));
3129 		msg.msg_flags = MSG_DONTWAIT;
3130 
3131 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3132 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3133 				      sendmsg_unlocked, sk, &msg);
3134 		if (ret <= 0)
3135 			goto error;
3136 
3137 		offset += ret;
3138 		len -= ret;
3139 	}
3140 
3141 	/* All the data was skb head? */
3142 	if (!len)
3143 		goto out;
3144 
3145 	/* Make offset relative to start of frags */
3146 	offset -= skb_headlen(skb);
3147 
3148 	/* Find where we are in frag list */
3149 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3150 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3151 
3152 		if (offset < skb_frag_size(frag))
3153 			break;
3154 
3155 		offset -= skb_frag_size(frag);
3156 	}
3157 
3158 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3159 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3160 
3161 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3162 
3163 		while (slen) {
3164 			struct bio_vec bvec;
3165 			struct msghdr msg = {
3166 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3167 			};
3168 
3169 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3170 				      skb_frag_off(frag) + offset);
3171 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3172 				      slen);
3173 
3174 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3175 					      sendmsg_unlocked, sk, &msg);
3176 			if (ret <= 0)
3177 				goto error;
3178 
3179 			len -= ret;
3180 			offset += ret;
3181 			slen -= ret;
3182 		}
3183 
3184 		offset = 0;
3185 	}
3186 
3187 	if (len) {
3188 		/* Process any frag lists */
3189 
3190 		if (skb == head) {
3191 			if (skb_has_frag_list(skb)) {
3192 				skb = skb_shinfo(skb)->frag_list;
3193 				goto do_frag_list;
3194 			}
3195 		} else if (skb->next) {
3196 			skb = skb->next;
3197 			goto do_frag_list;
3198 		}
3199 	}
3200 
3201 out:
3202 	return orig_len - len;
3203 
3204 error:
3205 	return orig_len == len ? ret : orig_len - len;
3206 }
3207 
3208 /* Send skb data on a socket. Socket must be locked. */
3209 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3210 			 int len)
3211 {
3212 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3213 }
3214 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3215 
3216 /* Send skb data on a socket. Socket must be unlocked. */
3217 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3218 {
3219 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3220 }
3221 
3222 /**
3223  *	skb_store_bits - store bits from kernel buffer to skb
3224  *	@skb: destination buffer
3225  *	@offset: offset in destination
3226  *	@from: source buffer
3227  *	@len: number of bytes to copy
3228  *
3229  *	Copy the specified number of bytes from the source buffer to the
3230  *	destination skb.  This function handles all the messy bits of
3231  *	traversing fragment lists and such.
3232  */
3233 
3234 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3235 {
3236 	int start = skb_headlen(skb);
3237 	struct sk_buff *frag_iter;
3238 	int i, copy;
3239 
3240 	if (offset > (int)skb->len - len)
3241 		goto fault;
3242 
3243 	if ((copy = start - offset) > 0) {
3244 		if (copy > len)
3245 			copy = len;
3246 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3247 		if ((len -= copy) == 0)
3248 			return 0;
3249 		offset += copy;
3250 		from += copy;
3251 	}
3252 
3253 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3254 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3255 		int end;
3256 
3257 		WARN_ON(start > offset + len);
3258 
3259 		end = start + skb_frag_size(frag);
3260 		if ((copy = end - offset) > 0) {
3261 			u32 p_off, p_len, copied;
3262 			struct page *p;
3263 			u8 *vaddr;
3264 
3265 			if (copy > len)
3266 				copy = len;
3267 
3268 			skb_frag_foreach_page(frag,
3269 					      skb_frag_off(frag) + offset - start,
3270 					      copy, p, p_off, p_len, copied) {
3271 				vaddr = kmap_atomic(p);
3272 				memcpy(vaddr + p_off, from + copied, p_len);
3273 				kunmap_atomic(vaddr);
3274 			}
3275 
3276 			if ((len -= copy) == 0)
3277 				return 0;
3278 			offset += copy;
3279 			from += copy;
3280 		}
3281 		start = end;
3282 	}
3283 
3284 	skb_walk_frags(skb, frag_iter) {
3285 		int end;
3286 
3287 		WARN_ON(start > offset + len);
3288 
3289 		end = start + frag_iter->len;
3290 		if ((copy = end - offset) > 0) {
3291 			if (copy > len)
3292 				copy = len;
3293 			if (skb_store_bits(frag_iter, offset - start,
3294 					   from, copy))
3295 				goto fault;
3296 			if ((len -= copy) == 0)
3297 				return 0;
3298 			offset += copy;
3299 			from += copy;
3300 		}
3301 		start = end;
3302 	}
3303 	if (!len)
3304 		return 0;
3305 
3306 fault:
3307 	return -EFAULT;
3308 }
3309 EXPORT_SYMBOL(skb_store_bits);
3310 
3311 /* Checksum skb data. */
3312 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3313 		      __wsum csum, const struct skb_checksum_ops *ops)
3314 {
3315 	int start = skb_headlen(skb);
3316 	int i, copy = start - offset;
3317 	struct sk_buff *frag_iter;
3318 	int pos = 0;
3319 
3320 	/* Checksum header. */
3321 	if (copy > 0) {
3322 		if (copy > len)
3323 			copy = len;
3324 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3325 				       skb->data + offset, copy, csum);
3326 		if ((len -= copy) == 0)
3327 			return csum;
3328 		offset += copy;
3329 		pos	= copy;
3330 	}
3331 
3332 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3333 		int end;
3334 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3335 
3336 		WARN_ON(start > offset + len);
3337 
3338 		end = start + skb_frag_size(frag);
3339 		if ((copy = end - offset) > 0) {
3340 			u32 p_off, p_len, copied;
3341 			struct page *p;
3342 			__wsum csum2;
3343 			u8 *vaddr;
3344 
3345 			if (copy > len)
3346 				copy = len;
3347 
3348 			skb_frag_foreach_page(frag,
3349 					      skb_frag_off(frag) + offset - start,
3350 					      copy, p, p_off, p_len, copied) {
3351 				vaddr = kmap_atomic(p);
3352 				csum2 = INDIRECT_CALL_1(ops->update,
3353 							csum_partial_ext,
3354 							vaddr + p_off, p_len, 0);
3355 				kunmap_atomic(vaddr);
3356 				csum = INDIRECT_CALL_1(ops->combine,
3357 						       csum_block_add_ext, csum,
3358 						       csum2, pos, p_len);
3359 				pos += p_len;
3360 			}
3361 
3362 			if (!(len -= copy))
3363 				return csum;
3364 			offset += copy;
3365 		}
3366 		start = end;
3367 	}
3368 
3369 	skb_walk_frags(skb, frag_iter) {
3370 		int end;
3371 
3372 		WARN_ON(start > offset + len);
3373 
3374 		end = start + frag_iter->len;
3375 		if ((copy = end - offset) > 0) {
3376 			__wsum csum2;
3377 			if (copy > len)
3378 				copy = len;
3379 			csum2 = __skb_checksum(frag_iter, offset - start,
3380 					       copy, 0, ops);
3381 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3382 					       csum, csum2, pos, copy);
3383 			if ((len -= copy) == 0)
3384 				return csum;
3385 			offset += copy;
3386 			pos    += copy;
3387 		}
3388 		start = end;
3389 	}
3390 	BUG_ON(len);
3391 
3392 	return csum;
3393 }
3394 EXPORT_SYMBOL(__skb_checksum);
3395 
3396 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3397 		    int len, __wsum csum)
3398 {
3399 	const struct skb_checksum_ops ops = {
3400 		.update  = csum_partial_ext,
3401 		.combine = csum_block_add_ext,
3402 	};
3403 
3404 	return __skb_checksum(skb, offset, len, csum, &ops);
3405 }
3406 EXPORT_SYMBOL(skb_checksum);
3407 
3408 /* Both of above in one bottle. */
3409 
3410 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3411 				    u8 *to, int len)
3412 {
3413 	int start = skb_headlen(skb);
3414 	int i, copy = start - offset;
3415 	struct sk_buff *frag_iter;
3416 	int pos = 0;
3417 	__wsum csum = 0;
3418 
3419 	/* Copy header. */
3420 	if (copy > 0) {
3421 		if (copy > len)
3422 			copy = len;
3423 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3424 						 copy);
3425 		if ((len -= copy) == 0)
3426 			return csum;
3427 		offset += copy;
3428 		to     += copy;
3429 		pos	= copy;
3430 	}
3431 
3432 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 		int end;
3434 
3435 		WARN_ON(start > offset + len);
3436 
3437 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3438 		if ((copy = end - offset) > 0) {
3439 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 			u32 p_off, p_len, copied;
3441 			struct page *p;
3442 			__wsum csum2;
3443 			u8 *vaddr;
3444 
3445 			if (copy > len)
3446 				copy = len;
3447 
3448 			skb_frag_foreach_page(frag,
3449 					      skb_frag_off(frag) + offset - start,
3450 					      copy, p, p_off, p_len, copied) {
3451 				vaddr = kmap_atomic(p);
3452 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3453 								  to + copied,
3454 								  p_len);
3455 				kunmap_atomic(vaddr);
3456 				csum = csum_block_add(csum, csum2, pos);
3457 				pos += p_len;
3458 			}
3459 
3460 			if (!(len -= copy))
3461 				return csum;
3462 			offset += copy;
3463 			to     += copy;
3464 		}
3465 		start = end;
3466 	}
3467 
3468 	skb_walk_frags(skb, frag_iter) {
3469 		__wsum csum2;
3470 		int end;
3471 
3472 		WARN_ON(start > offset + len);
3473 
3474 		end = start + frag_iter->len;
3475 		if ((copy = end - offset) > 0) {
3476 			if (copy > len)
3477 				copy = len;
3478 			csum2 = skb_copy_and_csum_bits(frag_iter,
3479 						       offset - start,
3480 						       to, copy);
3481 			csum = csum_block_add(csum, csum2, pos);
3482 			if ((len -= copy) == 0)
3483 				return csum;
3484 			offset += copy;
3485 			to     += copy;
3486 			pos    += copy;
3487 		}
3488 		start = end;
3489 	}
3490 	BUG_ON(len);
3491 	return csum;
3492 }
3493 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3494 
3495 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3496 {
3497 	__sum16 sum;
3498 
3499 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3500 	/* See comments in __skb_checksum_complete(). */
3501 	if (likely(!sum)) {
3502 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3503 		    !skb->csum_complete_sw)
3504 			netdev_rx_csum_fault(skb->dev, skb);
3505 	}
3506 	if (!skb_shared(skb))
3507 		skb->csum_valid = !sum;
3508 	return sum;
3509 }
3510 EXPORT_SYMBOL(__skb_checksum_complete_head);
3511 
3512 /* This function assumes skb->csum already holds pseudo header's checksum,
3513  * which has been changed from the hardware checksum, for example, by
3514  * __skb_checksum_validate_complete(). And, the original skb->csum must
3515  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3516  *
3517  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3518  * zero. The new checksum is stored back into skb->csum unless the skb is
3519  * shared.
3520  */
3521 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3522 {
3523 	__wsum csum;
3524 	__sum16 sum;
3525 
3526 	csum = skb_checksum(skb, 0, skb->len, 0);
3527 
3528 	sum = csum_fold(csum_add(skb->csum, csum));
3529 	/* This check is inverted, because we already knew the hardware
3530 	 * checksum is invalid before calling this function. So, if the
3531 	 * re-computed checksum is valid instead, then we have a mismatch
3532 	 * between the original skb->csum and skb_checksum(). This means either
3533 	 * the original hardware checksum is incorrect or we screw up skb->csum
3534 	 * when moving skb->data around.
3535 	 */
3536 	if (likely(!sum)) {
3537 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3538 		    !skb->csum_complete_sw)
3539 			netdev_rx_csum_fault(skb->dev, skb);
3540 	}
3541 
3542 	if (!skb_shared(skb)) {
3543 		/* Save full packet checksum */
3544 		skb->csum = csum;
3545 		skb->ip_summed = CHECKSUM_COMPLETE;
3546 		skb->csum_complete_sw = 1;
3547 		skb->csum_valid = !sum;
3548 	}
3549 
3550 	return sum;
3551 }
3552 EXPORT_SYMBOL(__skb_checksum_complete);
3553 
3554 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3555 {
3556 	net_warn_ratelimited(
3557 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3558 		__func__);
3559 	return 0;
3560 }
3561 
3562 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3563 				       int offset, int len)
3564 {
3565 	net_warn_ratelimited(
3566 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3567 		__func__);
3568 	return 0;
3569 }
3570 
3571 static const struct skb_checksum_ops default_crc32c_ops = {
3572 	.update  = warn_crc32c_csum_update,
3573 	.combine = warn_crc32c_csum_combine,
3574 };
3575 
3576 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3577 	&default_crc32c_ops;
3578 EXPORT_SYMBOL(crc32c_csum_stub);
3579 
3580  /**
3581  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3582  *	@from: source buffer
3583  *
3584  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3585  *	into skb_zerocopy().
3586  */
3587 unsigned int
3588 skb_zerocopy_headlen(const struct sk_buff *from)
3589 {
3590 	unsigned int hlen = 0;
3591 
3592 	if (!from->head_frag ||
3593 	    skb_headlen(from) < L1_CACHE_BYTES ||
3594 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3595 		hlen = skb_headlen(from);
3596 		if (!hlen)
3597 			hlen = from->len;
3598 	}
3599 
3600 	if (skb_has_frag_list(from))
3601 		hlen = from->len;
3602 
3603 	return hlen;
3604 }
3605 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3606 
3607 /**
3608  *	skb_zerocopy - Zero copy skb to skb
3609  *	@to: destination buffer
3610  *	@from: source buffer
3611  *	@len: number of bytes to copy from source buffer
3612  *	@hlen: size of linear headroom in destination buffer
3613  *
3614  *	Copies up to `len` bytes from `from` to `to` by creating references
3615  *	to the frags in the source buffer.
3616  *
3617  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3618  *	headroom in the `to` buffer.
3619  *
3620  *	Return value:
3621  *	0: everything is OK
3622  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3623  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3624  */
3625 int
3626 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3627 {
3628 	int i, j = 0;
3629 	int plen = 0; /* length of skb->head fragment */
3630 	int ret;
3631 	struct page *page;
3632 	unsigned int offset;
3633 
3634 	BUG_ON(!from->head_frag && !hlen);
3635 
3636 	/* dont bother with small payloads */
3637 	if (len <= skb_tailroom(to))
3638 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3639 
3640 	if (hlen) {
3641 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3642 		if (unlikely(ret))
3643 			return ret;
3644 		len -= hlen;
3645 	} else {
3646 		plen = min_t(int, skb_headlen(from), len);
3647 		if (plen) {
3648 			page = virt_to_head_page(from->head);
3649 			offset = from->data - (unsigned char *)page_address(page);
3650 			__skb_fill_page_desc(to, 0, page, offset, plen);
3651 			get_page(page);
3652 			j = 1;
3653 			len -= plen;
3654 		}
3655 	}
3656 
3657 	skb_len_add(to, len + plen);
3658 
3659 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3660 		skb_tx_error(from);
3661 		return -ENOMEM;
3662 	}
3663 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3664 
3665 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3666 		int size;
3667 
3668 		if (!len)
3669 			break;
3670 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3671 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3672 					len);
3673 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3674 		len -= size;
3675 		skb_frag_ref(to, j);
3676 		j++;
3677 	}
3678 	skb_shinfo(to)->nr_frags = j;
3679 
3680 	return 0;
3681 }
3682 EXPORT_SYMBOL_GPL(skb_zerocopy);
3683 
3684 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3685 {
3686 	__wsum csum;
3687 	long csstart;
3688 
3689 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3690 		csstart = skb_checksum_start_offset(skb);
3691 	else
3692 		csstart = skb_headlen(skb);
3693 
3694 	BUG_ON(csstart > skb_headlen(skb));
3695 
3696 	skb_copy_from_linear_data(skb, to, csstart);
3697 
3698 	csum = 0;
3699 	if (csstart != skb->len)
3700 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3701 					      skb->len - csstart);
3702 
3703 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3704 		long csstuff = csstart + skb->csum_offset;
3705 
3706 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3707 	}
3708 }
3709 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3710 
3711 /**
3712  *	skb_dequeue - remove from the head of the queue
3713  *	@list: list to dequeue from
3714  *
3715  *	Remove the head of the list. The list lock is taken so the function
3716  *	may be used safely with other locking list functions. The head item is
3717  *	returned or %NULL if the list is empty.
3718  */
3719 
3720 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3721 {
3722 	unsigned long flags;
3723 	struct sk_buff *result;
3724 
3725 	spin_lock_irqsave(&list->lock, flags);
3726 	result = __skb_dequeue(list);
3727 	spin_unlock_irqrestore(&list->lock, flags);
3728 	return result;
3729 }
3730 EXPORT_SYMBOL(skb_dequeue);
3731 
3732 /**
3733  *	skb_dequeue_tail - remove from the tail of the queue
3734  *	@list: list to dequeue from
3735  *
3736  *	Remove the tail of the list. The list lock is taken so the function
3737  *	may be used safely with other locking list functions. The tail item is
3738  *	returned or %NULL if the list is empty.
3739  */
3740 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3741 {
3742 	unsigned long flags;
3743 	struct sk_buff *result;
3744 
3745 	spin_lock_irqsave(&list->lock, flags);
3746 	result = __skb_dequeue_tail(list);
3747 	spin_unlock_irqrestore(&list->lock, flags);
3748 	return result;
3749 }
3750 EXPORT_SYMBOL(skb_dequeue_tail);
3751 
3752 /**
3753  *	skb_queue_purge_reason - empty a list
3754  *	@list: list to empty
3755  *	@reason: drop reason
3756  *
3757  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3758  *	the list and one reference dropped. This function takes the list
3759  *	lock and is atomic with respect to other list locking functions.
3760  */
3761 void skb_queue_purge_reason(struct sk_buff_head *list,
3762 			    enum skb_drop_reason reason)
3763 {
3764 	struct sk_buff_head tmp;
3765 	unsigned long flags;
3766 
3767 	if (skb_queue_empty_lockless(list))
3768 		return;
3769 
3770 	__skb_queue_head_init(&tmp);
3771 
3772 	spin_lock_irqsave(&list->lock, flags);
3773 	skb_queue_splice_init(list, &tmp);
3774 	spin_unlock_irqrestore(&list->lock, flags);
3775 
3776 	__skb_queue_purge_reason(&tmp, reason);
3777 }
3778 EXPORT_SYMBOL(skb_queue_purge_reason);
3779 
3780 /**
3781  *	skb_rbtree_purge - empty a skb rbtree
3782  *	@root: root of the rbtree to empty
3783  *	Return value: the sum of truesizes of all purged skbs.
3784  *
3785  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3786  *	the list and one reference dropped. This function does not take
3787  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3788  *	out-of-order queue is protected by the socket lock).
3789  */
3790 unsigned int skb_rbtree_purge(struct rb_root *root)
3791 {
3792 	struct rb_node *p = rb_first(root);
3793 	unsigned int sum = 0;
3794 
3795 	while (p) {
3796 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3797 
3798 		p = rb_next(p);
3799 		rb_erase(&skb->rbnode, root);
3800 		sum += skb->truesize;
3801 		kfree_skb(skb);
3802 	}
3803 	return sum;
3804 }
3805 
3806 void skb_errqueue_purge(struct sk_buff_head *list)
3807 {
3808 	struct sk_buff *skb, *next;
3809 	struct sk_buff_head kill;
3810 	unsigned long flags;
3811 
3812 	__skb_queue_head_init(&kill);
3813 
3814 	spin_lock_irqsave(&list->lock, flags);
3815 	skb_queue_walk_safe(list, skb, next) {
3816 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3817 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3818 			continue;
3819 		__skb_unlink(skb, list);
3820 		__skb_queue_tail(&kill, skb);
3821 	}
3822 	spin_unlock_irqrestore(&list->lock, flags);
3823 	__skb_queue_purge(&kill);
3824 }
3825 EXPORT_SYMBOL(skb_errqueue_purge);
3826 
3827 /**
3828  *	skb_queue_head - queue a buffer at the list head
3829  *	@list: list to use
3830  *	@newsk: buffer to queue
3831  *
3832  *	Queue a buffer at the start of the list. This function takes the
3833  *	list lock and can be used safely with other locking &sk_buff functions
3834  *	safely.
3835  *
3836  *	A buffer cannot be placed on two lists at the same time.
3837  */
3838 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3839 {
3840 	unsigned long flags;
3841 
3842 	spin_lock_irqsave(&list->lock, flags);
3843 	__skb_queue_head(list, newsk);
3844 	spin_unlock_irqrestore(&list->lock, flags);
3845 }
3846 EXPORT_SYMBOL(skb_queue_head);
3847 
3848 /**
3849  *	skb_queue_tail - queue a buffer at the list tail
3850  *	@list: list to use
3851  *	@newsk: buffer to queue
3852  *
3853  *	Queue a buffer at the tail of the list. This function takes the
3854  *	list lock and can be used safely with other locking &sk_buff functions
3855  *	safely.
3856  *
3857  *	A buffer cannot be placed on two lists at the same time.
3858  */
3859 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3860 {
3861 	unsigned long flags;
3862 
3863 	spin_lock_irqsave(&list->lock, flags);
3864 	__skb_queue_tail(list, newsk);
3865 	spin_unlock_irqrestore(&list->lock, flags);
3866 }
3867 EXPORT_SYMBOL(skb_queue_tail);
3868 
3869 /**
3870  *	skb_unlink	-	remove a buffer from a list
3871  *	@skb: buffer to remove
3872  *	@list: list to use
3873  *
3874  *	Remove a packet from a list. The list locks are taken and this
3875  *	function is atomic with respect to other list locked calls
3876  *
3877  *	You must know what list the SKB is on.
3878  */
3879 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3880 {
3881 	unsigned long flags;
3882 
3883 	spin_lock_irqsave(&list->lock, flags);
3884 	__skb_unlink(skb, list);
3885 	spin_unlock_irqrestore(&list->lock, flags);
3886 }
3887 EXPORT_SYMBOL(skb_unlink);
3888 
3889 /**
3890  *	skb_append	-	append a buffer
3891  *	@old: buffer to insert after
3892  *	@newsk: buffer to insert
3893  *	@list: list to use
3894  *
3895  *	Place a packet after a given packet in a list. The list locks are taken
3896  *	and this function is atomic with respect to other list locked calls.
3897  *	A buffer cannot be placed on two lists at the same time.
3898  */
3899 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3900 {
3901 	unsigned long flags;
3902 
3903 	spin_lock_irqsave(&list->lock, flags);
3904 	__skb_queue_after(list, old, newsk);
3905 	spin_unlock_irqrestore(&list->lock, flags);
3906 }
3907 EXPORT_SYMBOL(skb_append);
3908 
3909 static inline void skb_split_inside_header(struct sk_buff *skb,
3910 					   struct sk_buff* skb1,
3911 					   const u32 len, const int pos)
3912 {
3913 	int i;
3914 
3915 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3916 					 pos - len);
3917 	/* And move data appendix as is. */
3918 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3919 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3920 
3921 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3922 	skb_shinfo(skb)->nr_frags  = 0;
3923 	skb1->data_len		   = skb->data_len;
3924 	skb1->len		   += skb1->data_len;
3925 	skb->data_len		   = 0;
3926 	skb->len		   = len;
3927 	skb_set_tail_pointer(skb, len);
3928 }
3929 
3930 static inline void skb_split_no_header(struct sk_buff *skb,
3931 				       struct sk_buff* skb1,
3932 				       const u32 len, int pos)
3933 {
3934 	int i, k = 0;
3935 	const int nfrags = skb_shinfo(skb)->nr_frags;
3936 
3937 	skb_shinfo(skb)->nr_frags = 0;
3938 	skb1->len		  = skb1->data_len = skb->len - len;
3939 	skb->len		  = len;
3940 	skb->data_len		  = len - pos;
3941 
3942 	for (i = 0; i < nfrags; i++) {
3943 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3944 
3945 		if (pos + size > len) {
3946 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3947 
3948 			if (pos < len) {
3949 				/* Split frag.
3950 				 * We have two variants in this case:
3951 				 * 1. Move all the frag to the second
3952 				 *    part, if it is possible. F.e.
3953 				 *    this approach is mandatory for TUX,
3954 				 *    where splitting is expensive.
3955 				 * 2. Split is accurately. We make this.
3956 				 */
3957 				skb_frag_ref(skb, i);
3958 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3959 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3960 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3961 				skb_shinfo(skb)->nr_frags++;
3962 			}
3963 			k++;
3964 		} else
3965 			skb_shinfo(skb)->nr_frags++;
3966 		pos += size;
3967 	}
3968 	skb_shinfo(skb1)->nr_frags = k;
3969 }
3970 
3971 /**
3972  * skb_split - Split fragmented skb to two parts at length len.
3973  * @skb: the buffer to split
3974  * @skb1: the buffer to receive the second part
3975  * @len: new length for skb
3976  */
3977 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3978 {
3979 	int pos = skb_headlen(skb);
3980 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3981 
3982 	skb_zcopy_downgrade_managed(skb);
3983 
3984 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3985 	skb_zerocopy_clone(skb1, skb, 0);
3986 	if (len < pos)	/* Split line is inside header. */
3987 		skb_split_inside_header(skb, skb1, len, pos);
3988 	else		/* Second chunk has no header, nothing to copy. */
3989 		skb_split_no_header(skb, skb1, len, pos);
3990 }
3991 EXPORT_SYMBOL(skb_split);
3992 
3993 /* Shifting from/to a cloned skb is a no-go.
3994  *
3995  * Caller cannot keep skb_shinfo related pointers past calling here!
3996  */
3997 static int skb_prepare_for_shift(struct sk_buff *skb)
3998 {
3999 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4000 }
4001 
4002 /**
4003  * skb_shift - Shifts paged data partially from skb to another
4004  * @tgt: buffer into which tail data gets added
4005  * @skb: buffer from which the paged data comes from
4006  * @shiftlen: shift up to this many bytes
4007  *
4008  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4009  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4010  * It's up to caller to free skb if everything was shifted.
4011  *
4012  * If @tgt runs out of frags, the whole operation is aborted.
4013  *
4014  * Skb cannot include anything else but paged data while tgt is allowed
4015  * to have non-paged data as well.
4016  *
4017  * TODO: full sized shift could be optimized but that would need
4018  * specialized skb free'er to handle frags without up-to-date nr_frags.
4019  */
4020 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4021 {
4022 	int from, to, merge, todo;
4023 	skb_frag_t *fragfrom, *fragto;
4024 
4025 	BUG_ON(shiftlen > skb->len);
4026 
4027 	if (skb_headlen(skb))
4028 		return 0;
4029 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4030 		return 0;
4031 
4032 	todo = shiftlen;
4033 	from = 0;
4034 	to = skb_shinfo(tgt)->nr_frags;
4035 	fragfrom = &skb_shinfo(skb)->frags[from];
4036 
4037 	/* Actual merge is delayed until the point when we know we can
4038 	 * commit all, so that we don't have to undo partial changes
4039 	 */
4040 	if (!to ||
4041 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4042 			      skb_frag_off(fragfrom))) {
4043 		merge = -1;
4044 	} else {
4045 		merge = to - 1;
4046 
4047 		todo -= skb_frag_size(fragfrom);
4048 		if (todo < 0) {
4049 			if (skb_prepare_for_shift(skb) ||
4050 			    skb_prepare_for_shift(tgt))
4051 				return 0;
4052 
4053 			/* All previous frag pointers might be stale! */
4054 			fragfrom = &skb_shinfo(skb)->frags[from];
4055 			fragto = &skb_shinfo(tgt)->frags[merge];
4056 
4057 			skb_frag_size_add(fragto, shiftlen);
4058 			skb_frag_size_sub(fragfrom, shiftlen);
4059 			skb_frag_off_add(fragfrom, shiftlen);
4060 
4061 			goto onlymerged;
4062 		}
4063 
4064 		from++;
4065 	}
4066 
4067 	/* Skip full, not-fitting skb to avoid expensive operations */
4068 	if ((shiftlen == skb->len) &&
4069 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4070 		return 0;
4071 
4072 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4073 		return 0;
4074 
4075 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4076 		if (to == MAX_SKB_FRAGS)
4077 			return 0;
4078 
4079 		fragfrom = &skb_shinfo(skb)->frags[from];
4080 		fragto = &skb_shinfo(tgt)->frags[to];
4081 
4082 		if (todo >= skb_frag_size(fragfrom)) {
4083 			*fragto = *fragfrom;
4084 			todo -= skb_frag_size(fragfrom);
4085 			from++;
4086 			to++;
4087 
4088 		} else {
4089 			__skb_frag_ref(fragfrom);
4090 			skb_frag_page_copy(fragto, fragfrom);
4091 			skb_frag_off_copy(fragto, fragfrom);
4092 			skb_frag_size_set(fragto, todo);
4093 
4094 			skb_frag_off_add(fragfrom, todo);
4095 			skb_frag_size_sub(fragfrom, todo);
4096 			todo = 0;
4097 
4098 			to++;
4099 			break;
4100 		}
4101 	}
4102 
4103 	/* Ready to "commit" this state change to tgt */
4104 	skb_shinfo(tgt)->nr_frags = to;
4105 
4106 	if (merge >= 0) {
4107 		fragfrom = &skb_shinfo(skb)->frags[0];
4108 		fragto = &skb_shinfo(tgt)->frags[merge];
4109 
4110 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4111 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4112 	}
4113 
4114 	/* Reposition in the original skb */
4115 	to = 0;
4116 	while (from < skb_shinfo(skb)->nr_frags)
4117 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4118 	skb_shinfo(skb)->nr_frags = to;
4119 
4120 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4121 
4122 onlymerged:
4123 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4124 	 * the other hand might need it if it needs to be resent
4125 	 */
4126 	tgt->ip_summed = CHECKSUM_PARTIAL;
4127 	skb->ip_summed = CHECKSUM_PARTIAL;
4128 
4129 	skb_len_add(skb, -shiftlen);
4130 	skb_len_add(tgt, shiftlen);
4131 
4132 	return shiftlen;
4133 }
4134 
4135 /**
4136  * skb_prepare_seq_read - Prepare a sequential read of skb data
4137  * @skb: the buffer to read
4138  * @from: lower offset of data to be read
4139  * @to: upper offset of data to be read
4140  * @st: state variable
4141  *
4142  * Initializes the specified state variable. Must be called before
4143  * invoking skb_seq_read() for the first time.
4144  */
4145 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4146 			  unsigned int to, struct skb_seq_state *st)
4147 {
4148 	st->lower_offset = from;
4149 	st->upper_offset = to;
4150 	st->root_skb = st->cur_skb = skb;
4151 	st->frag_idx = st->stepped_offset = 0;
4152 	st->frag_data = NULL;
4153 	st->frag_off = 0;
4154 }
4155 EXPORT_SYMBOL(skb_prepare_seq_read);
4156 
4157 /**
4158  * skb_seq_read - Sequentially read skb data
4159  * @consumed: number of bytes consumed by the caller so far
4160  * @data: destination pointer for data to be returned
4161  * @st: state variable
4162  *
4163  * Reads a block of skb data at @consumed relative to the
4164  * lower offset specified to skb_prepare_seq_read(). Assigns
4165  * the head of the data block to @data and returns the length
4166  * of the block or 0 if the end of the skb data or the upper
4167  * offset has been reached.
4168  *
4169  * The caller is not required to consume all of the data
4170  * returned, i.e. @consumed is typically set to the number
4171  * of bytes already consumed and the next call to
4172  * skb_seq_read() will return the remaining part of the block.
4173  *
4174  * Note 1: The size of each block of data returned can be arbitrary,
4175  *       this limitation is the cost for zerocopy sequential
4176  *       reads of potentially non linear data.
4177  *
4178  * Note 2: Fragment lists within fragments are not implemented
4179  *       at the moment, state->root_skb could be replaced with
4180  *       a stack for this purpose.
4181  */
4182 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4183 			  struct skb_seq_state *st)
4184 {
4185 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4186 	skb_frag_t *frag;
4187 
4188 	if (unlikely(abs_offset >= st->upper_offset)) {
4189 		if (st->frag_data) {
4190 			kunmap_atomic(st->frag_data);
4191 			st->frag_data = NULL;
4192 		}
4193 		return 0;
4194 	}
4195 
4196 next_skb:
4197 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4198 
4199 	if (abs_offset < block_limit && !st->frag_data) {
4200 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4201 		return block_limit - abs_offset;
4202 	}
4203 
4204 	if (st->frag_idx == 0 && !st->frag_data)
4205 		st->stepped_offset += skb_headlen(st->cur_skb);
4206 
4207 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4208 		unsigned int pg_idx, pg_off, pg_sz;
4209 
4210 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4211 
4212 		pg_idx = 0;
4213 		pg_off = skb_frag_off(frag);
4214 		pg_sz = skb_frag_size(frag);
4215 
4216 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4217 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4218 			pg_off = offset_in_page(pg_off + st->frag_off);
4219 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4220 						    PAGE_SIZE - pg_off);
4221 		}
4222 
4223 		block_limit = pg_sz + st->stepped_offset;
4224 		if (abs_offset < block_limit) {
4225 			if (!st->frag_data)
4226 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4227 
4228 			*data = (u8 *)st->frag_data + pg_off +
4229 				(abs_offset - st->stepped_offset);
4230 
4231 			return block_limit - abs_offset;
4232 		}
4233 
4234 		if (st->frag_data) {
4235 			kunmap_atomic(st->frag_data);
4236 			st->frag_data = NULL;
4237 		}
4238 
4239 		st->stepped_offset += pg_sz;
4240 		st->frag_off += pg_sz;
4241 		if (st->frag_off == skb_frag_size(frag)) {
4242 			st->frag_off = 0;
4243 			st->frag_idx++;
4244 		}
4245 	}
4246 
4247 	if (st->frag_data) {
4248 		kunmap_atomic(st->frag_data);
4249 		st->frag_data = NULL;
4250 	}
4251 
4252 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4253 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4254 		st->frag_idx = 0;
4255 		goto next_skb;
4256 	} else if (st->cur_skb->next) {
4257 		st->cur_skb = st->cur_skb->next;
4258 		st->frag_idx = 0;
4259 		goto next_skb;
4260 	}
4261 
4262 	return 0;
4263 }
4264 EXPORT_SYMBOL(skb_seq_read);
4265 
4266 /**
4267  * skb_abort_seq_read - Abort a sequential read of skb data
4268  * @st: state variable
4269  *
4270  * Must be called if skb_seq_read() was not called until it
4271  * returned 0.
4272  */
4273 void skb_abort_seq_read(struct skb_seq_state *st)
4274 {
4275 	if (st->frag_data)
4276 		kunmap_atomic(st->frag_data);
4277 }
4278 EXPORT_SYMBOL(skb_abort_seq_read);
4279 
4280 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4281 
4282 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4283 					  struct ts_config *conf,
4284 					  struct ts_state *state)
4285 {
4286 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4287 }
4288 
4289 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4290 {
4291 	skb_abort_seq_read(TS_SKB_CB(state));
4292 }
4293 
4294 /**
4295  * skb_find_text - Find a text pattern in skb data
4296  * @skb: the buffer to look in
4297  * @from: search offset
4298  * @to: search limit
4299  * @config: textsearch configuration
4300  *
4301  * Finds a pattern in the skb data according to the specified
4302  * textsearch configuration. Use textsearch_next() to retrieve
4303  * subsequent occurrences of the pattern. Returns the offset
4304  * to the first occurrence or UINT_MAX if no match was found.
4305  */
4306 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4307 			   unsigned int to, struct ts_config *config)
4308 {
4309 	unsigned int patlen = config->ops->get_pattern_len(config);
4310 	struct ts_state state;
4311 	unsigned int ret;
4312 
4313 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4314 
4315 	config->get_next_block = skb_ts_get_next_block;
4316 	config->finish = skb_ts_finish;
4317 
4318 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4319 
4320 	ret = textsearch_find(config, &state);
4321 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4322 }
4323 EXPORT_SYMBOL(skb_find_text);
4324 
4325 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4326 			 int offset, size_t size, size_t max_frags)
4327 {
4328 	int i = skb_shinfo(skb)->nr_frags;
4329 
4330 	if (skb_can_coalesce(skb, i, page, offset)) {
4331 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4332 	} else if (i < max_frags) {
4333 		skb_zcopy_downgrade_managed(skb);
4334 		get_page(page);
4335 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4336 	} else {
4337 		return -EMSGSIZE;
4338 	}
4339 
4340 	return 0;
4341 }
4342 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4343 
4344 /**
4345  *	skb_pull_rcsum - pull skb and update receive checksum
4346  *	@skb: buffer to update
4347  *	@len: length of data pulled
4348  *
4349  *	This function performs an skb_pull on the packet and updates
4350  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4351  *	receive path processing instead of skb_pull unless you know
4352  *	that the checksum difference is zero (e.g., a valid IP header)
4353  *	or you are setting ip_summed to CHECKSUM_NONE.
4354  */
4355 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4356 {
4357 	unsigned char *data = skb->data;
4358 
4359 	BUG_ON(len > skb->len);
4360 	__skb_pull(skb, len);
4361 	skb_postpull_rcsum(skb, data, len);
4362 	return skb->data;
4363 }
4364 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4365 
4366 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4367 {
4368 	skb_frag_t head_frag;
4369 	struct page *page;
4370 
4371 	page = virt_to_head_page(frag_skb->head);
4372 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4373 				(unsigned char *)page_address(page),
4374 				skb_headlen(frag_skb));
4375 	return head_frag;
4376 }
4377 
4378 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4379 				 netdev_features_t features,
4380 				 unsigned int offset)
4381 {
4382 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4383 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4384 	unsigned int delta_truesize = 0;
4385 	unsigned int delta_len = 0;
4386 	struct sk_buff *tail = NULL;
4387 	struct sk_buff *nskb, *tmp;
4388 	int len_diff, err;
4389 
4390 	skb_push(skb, -skb_network_offset(skb) + offset);
4391 
4392 	/* Ensure the head is writeable before touching the shared info */
4393 	err = skb_unclone(skb, GFP_ATOMIC);
4394 	if (err)
4395 		goto err_linearize;
4396 
4397 	skb_shinfo(skb)->frag_list = NULL;
4398 
4399 	while (list_skb) {
4400 		nskb = list_skb;
4401 		list_skb = list_skb->next;
4402 
4403 		err = 0;
4404 		delta_truesize += nskb->truesize;
4405 		if (skb_shared(nskb)) {
4406 			tmp = skb_clone(nskb, GFP_ATOMIC);
4407 			if (tmp) {
4408 				consume_skb(nskb);
4409 				nskb = tmp;
4410 				err = skb_unclone(nskb, GFP_ATOMIC);
4411 			} else {
4412 				err = -ENOMEM;
4413 			}
4414 		}
4415 
4416 		if (!tail)
4417 			skb->next = nskb;
4418 		else
4419 			tail->next = nskb;
4420 
4421 		if (unlikely(err)) {
4422 			nskb->next = list_skb;
4423 			goto err_linearize;
4424 		}
4425 
4426 		tail = nskb;
4427 
4428 		delta_len += nskb->len;
4429 
4430 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4431 
4432 		skb_release_head_state(nskb);
4433 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4434 		__copy_skb_header(nskb, skb);
4435 
4436 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4437 		nskb->transport_header += len_diff;
4438 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4439 						 nskb->data - tnl_hlen,
4440 						 offset + tnl_hlen);
4441 
4442 		if (skb_needs_linearize(nskb, features) &&
4443 		    __skb_linearize(nskb))
4444 			goto err_linearize;
4445 	}
4446 
4447 	skb->truesize = skb->truesize - delta_truesize;
4448 	skb->data_len = skb->data_len - delta_len;
4449 	skb->len = skb->len - delta_len;
4450 
4451 	skb_gso_reset(skb);
4452 
4453 	skb->prev = tail;
4454 
4455 	if (skb_needs_linearize(skb, features) &&
4456 	    __skb_linearize(skb))
4457 		goto err_linearize;
4458 
4459 	skb_get(skb);
4460 
4461 	return skb;
4462 
4463 err_linearize:
4464 	kfree_skb_list(skb->next);
4465 	skb->next = NULL;
4466 	return ERR_PTR(-ENOMEM);
4467 }
4468 EXPORT_SYMBOL_GPL(skb_segment_list);
4469 
4470 /**
4471  *	skb_segment - Perform protocol segmentation on skb.
4472  *	@head_skb: buffer to segment
4473  *	@features: features for the output path (see dev->features)
4474  *
4475  *	This function performs segmentation on the given skb.  It returns
4476  *	a pointer to the first in a list of new skbs for the segments.
4477  *	In case of error it returns ERR_PTR(err).
4478  */
4479 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4480 			    netdev_features_t features)
4481 {
4482 	struct sk_buff *segs = NULL;
4483 	struct sk_buff *tail = NULL;
4484 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4485 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4486 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4487 	unsigned int offset = doffset;
4488 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4489 	unsigned int partial_segs = 0;
4490 	unsigned int headroom;
4491 	unsigned int len = head_skb->len;
4492 	struct sk_buff *frag_skb;
4493 	skb_frag_t *frag;
4494 	__be16 proto;
4495 	bool csum, sg;
4496 	int err = -ENOMEM;
4497 	int i = 0;
4498 	int nfrags, pos;
4499 
4500 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4501 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4502 		struct sk_buff *check_skb;
4503 
4504 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4505 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4506 				/* gso_size is untrusted, and we have a frag_list with
4507 				 * a linear non head_frag item.
4508 				 *
4509 				 * If head_skb's headlen does not fit requested gso_size,
4510 				 * it means that the frag_list members do NOT terminate
4511 				 * on exact gso_size boundaries. Hence we cannot perform
4512 				 * skb_frag_t page sharing. Therefore we must fallback to
4513 				 * copying the frag_list skbs; we do so by disabling SG.
4514 				 */
4515 				features &= ~NETIF_F_SG;
4516 				break;
4517 			}
4518 		}
4519 	}
4520 
4521 	__skb_push(head_skb, doffset);
4522 	proto = skb_network_protocol(head_skb, NULL);
4523 	if (unlikely(!proto))
4524 		return ERR_PTR(-EINVAL);
4525 
4526 	sg = !!(features & NETIF_F_SG);
4527 	csum = !!can_checksum_protocol(features, proto);
4528 
4529 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4530 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4531 			struct sk_buff *iter;
4532 			unsigned int frag_len;
4533 
4534 			if (!list_skb ||
4535 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4536 				goto normal;
4537 
4538 			/* If we get here then all the required
4539 			 * GSO features except frag_list are supported.
4540 			 * Try to split the SKB to multiple GSO SKBs
4541 			 * with no frag_list.
4542 			 * Currently we can do that only when the buffers don't
4543 			 * have a linear part and all the buffers except
4544 			 * the last are of the same length.
4545 			 */
4546 			frag_len = list_skb->len;
4547 			skb_walk_frags(head_skb, iter) {
4548 				if (frag_len != iter->len && iter->next)
4549 					goto normal;
4550 				if (skb_headlen(iter) && !iter->head_frag)
4551 					goto normal;
4552 
4553 				len -= iter->len;
4554 			}
4555 
4556 			if (len != frag_len)
4557 				goto normal;
4558 		}
4559 
4560 		/* GSO partial only requires that we trim off any excess that
4561 		 * doesn't fit into an MSS sized block, so take care of that
4562 		 * now.
4563 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4564 		 */
4565 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4566 		if (partial_segs > 1)
4567 			mss *= partial_segs;
4568 		else
4569 			partial_segs = 0;
4570 	}
4571 
4572 normal:
4573 	headroom = skb_headroom(head_skb);
4574 	pos = skb_headlen(head_skb);
4575 
4576 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4577 		return ERR_PTR(-ENOMEM);
4578 
4579 	nfrags = skb_shinfo(head_skb)->nr_frags;
4580 	frag = skb_shinfo(head_skb)->frags;
4581 	frag_skb = head_skb;
4582 
4583 	do {
4584 		struct sk_buff *nskb;
4585 		skb_frag_t *nskb_frag;
4586 		int hsize;
4587 		int size;
4588 
4589 		if (unlikely(mss == GSO_BY_FRAGS)) {
4590 			len = list_skb->len;
4591 		} else {
4592 			len = head_skb->len - offset;
4593 			if (len > mss)
4594 				len = mss;
4595 		}
4596 
4597 		hsize = skb_headlen(head_skb) - offset;
4598 
4599 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4600 		    (skb_headlen(list_skb) == len || sg)) {
4601 			BUG_ON(skb_headlen(list_skb) > len);
4602 
4603 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4604 			if (unlikely(!nskb))
4605 				goto err;
4606 
4607 			i = 0;
4608 			nfrags = skb_shinfo(list_skb)->nr_frags;
4609 			frag = skb_shinfo(list_skb)->frags;
4610 			frag_skb = list_skb;
4611 			pos += skb_headlen(list_skb);
4612 
4613 			while (pos < offset + len) {
4614 				BUG_ON(i >= nfrags);
4615 
4616 				size = skb_frag_size(frag);
4617 				if (pos + size > offset + len)
4618 					break;
4619 
4620 				i++;
4621 				pos += size;
4622 				frag++;
4623 			}
4624 
4625 			list_skb = list_skb->next;
4626 
4627 			if (unlikely(pskb_trim(nskb, len))) {
4628 				kfree_skb(nskb);
4629 				goto err;
4630 			}
4631 
4632 			hsize = skb_end_offset(nskb);
4633 			if (skb_cow_head(nskb, doffset + headroom)) {
4634 				kfree_skb(nskb);
4635 				goto err;
4636 			}
4637 
4638 			nskb->truesize += skb_end_offset(nskb) - hsize;
4639 			skb_release_head_state(nskb);
4640 			__skb_push(nskb, doffset);
4641 		} else {
4642 			if (hsize < 0)
4643 				hsize = 0;
4644 			if (hsize > len || !sg)
4645 				hsize = len;
4646 
4647 			nskb = __alloc_skb(hsize + doffset + headroom,
4648 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4649 					   NUMA_NO_NODE);
4650 
4651 			if (unlikely(!nskb))
4652 				goto err;
4653 
4654 			skb_reserve(nskb, headroom);
4655 			__skb_put(nskb, doffset);
4656 		}
4657 
4658 		if (segs)
4659 			tail->next = nskb;
4660 		else
4661 			segs = nskb;
4662 		tail = nskb;
4663 
4664 		__copy_skb_header(nskb, head_skb);
4665 
4666 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4667 		skb_reset_mac_len(nskb);
4668 
4669 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4670 						 nskb->data - tnl_hlen,
4671 						 doffset + tnl_hlen);
4672 
4673 		if (nskb->len == len + doffset)
4674 			goto perform_csum_check;
4675 
4676 		if (!sg) {
4677 			if (!csum) {
4678 				if (!nskb->remcsum_offload)
4679 					nskb->ip_summed = CHECKSUM_NONE;
4680 				SKB_GSO_CB(nskb)->csum =
4681 					skb_copy_and_csum_bits(head_skb, offset,
4682 							       skb_put(nskb,
4683 								       len),
4684 							       len);
4685 				SKB_GSO_CB(nskb)->csum_start =
4686 					skb_headroom(nskb) + doffset;
4687 			} else {
4688 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4689 					goto err;
4690 			}
4691 			continue;
4692 		}
4693 
4694 		nskb_frag = skb_shinfo(nskb)->frags;
4695 
4696 		skb_copy_from_linear_data_offset(head_skb, offset,
4697 						 skb_put(nskb, hsize), hsize);
4698 
4699 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4700 					   SKBFL_SHARED_FRAG;
4701 
4702 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4703 			goto err;
4704 
4705 		while (pos < offset + len) {
4706 			if (i >= nfrags) {
4707 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4708 				    skb_zerocopy_clone(nskb, list_skb,
4709 						       GFP_ATOMIC))
4710 					goto err;
4711 
4712 				i = 0;
4713 				nfrags = skb_shinfo(list_skb)->nr_frags;
4714 				frag = skb_shinfo(list_skb)->frags;
4715 				frag_skb = list_skb;
4716 				if (!skb_headlen(list_skb)) {
4717 					BUG_ON(!nfrags);
4718 				} else {
4719 					BUG_ON(!list_skb->head_frag);
4720 
4721 					/* to make room for head_frag. */
4722 					i--;
4723 					frag--;
4724 				}
4725 
4726 				list_skb = list_skb->next;
4727 			}
4728 
4729 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4730 				     MAX_SKB_FRAGS)) {
4731 				net_warn_ratelimited(
4732 					"skb_segment: too many frags: %u %u\n",
4733 					pos, mss);
4734 				err = -EINVAL;
4735 				goto err;
4736 			}
4737 
4738 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4739 			__skb_frag_ref(nskb_frag);
4740 			size = skb_frag_size(nskb_frag);
4741 
4742 			if (pos < offset) {
4743 				skb_frag_off_add(nskb_frag, offset - pos);
4744 				skb_frag_size_sub(nskb_frag, offset - pos);
4745 			}
4746 
4747 			skb_shinfo(nskb)->nr_frags++;
4748 
4749 			if (pos + size <= offset + len) {
4750 				i++;
4751 				frag++;
4752 				pos += size;
4753 			} else {
4754 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4755 				goto skip_fraglist;
4756 			}
4757 
4758 			nskb_frag++;
4759 		}
4760 
4761 skip_fraglist:
4762 		nskb->data_len = len - hsize;
4763 		nskb->len += nskb->data_len;
4764 		nskb->truesize += nskb->data_len;
4765 
4766 perform_csum_check:
4767 		if (!csum) {
4768 			if (skb_has_shared_frag(nskb) &&
4769 			    __skb_linearize(nskb))
4770 				goto err;
4771 
4772 			if (!nskb->remcsum_offload)
4773 				nskb->ip_summed = CHECKSUM_NONE;
4774 			SKB_GSO_CB(nskb)->csum =
4775 				skb_checksum(nskb, doffset,
4776 					     nskb->len - doffset, 0);
4777 			SKB_GSO_CB(nskb)->csum_start =
4778 				skb_headroom(nskb) + doffset;
4779 		}
4780 	} while ((offset += len) < head_skb->len);
4781 
4782 	/* Some callers want to get the end of the list.
4783 	 * Put it in segs->prev to avoid walking the list.
4784 	 * (see validate_xmit_skb_list() for example)
4785 	 */
4786 	segs->prev = tail;
4787 
4788 	if (partial_segs) {
4789 		struct sk_buff *iter;
4790 		int type = skb_shinfo(head_skb)->gso_type;
4791 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4792 
4793 		/* Update type to add partial and then remove dodgy if set */
4794 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4795 		type &= ~SKB_GSO_DODGY;
4796 
4797 		/* Update GSO info and prepare to start updating headers on
4798 		 * our way back down the stack of protocols.
4799 		 */
4800 		for (iter = segs; iter; iter = iter->next) {
4801 			skb_shinfo(iter)->gso_size = gso_size;
4802 			skb_shinfo(iter)->gso_segs = partial_segs;
4803 			skb_shinfo(iter)->gso_type = type;
4804 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4805 		}
4806 
4807 		if (tail->len - doffset <= gso_size)
4808 			skb_shinfo(tail)->gso_size = 0;
4809 		else if (tail != segs)
4810 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4811 	}
4812 
4813 	/* Following permits correct backpressure, for protocols
4814 	 * using skb_set_owner_w().
4815 	 * Idea is to tranfert ownership from head_skb to last segment.
4816 	 */
4817 	if (head_skb->destructor == sock_wfree) {
4818 		swap(tail->truesize, head_skb->truesize);
4819 		swap(tail->destructor, head_skb->destructor);
4820 		swap(tail->sk, head_skb->sk);
4821 	}
4822 	return segs;
4823 
4824 err:
4825 	kfree_skb_list(segs);
4826 	return ERR_PTR(err);
4827 }
4828 EXPORT_SYMBOL_GPL(skb_segment);
4829 
4830 #ifdef CONFIG_SKB_EXTENSIONS
4831 #define SKB_EXT_ALIGN_VALUE	8
4832 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4833 
4834 static const u8 skb_ext_type_len[] = {
4835 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4836 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4837 #endif
4838 #ifdef CONFIG_XFRM
4839 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4840 #endif
4841 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4842 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4843 #endif
4844 #if IS_ENABLED(CONFIG_MPTCP)
4845 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4846 #endif
4847 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4848 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4849 #endif
4850 };
4851 
4852 static __always_inline unsigned int skb_ext_total_length(void)
4853 {
4854 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4855 	int i;
4856 
4857 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4858 		l += skb_ext_type_len[i];
4859 
4860 	return l;
4861 }
4862 
4863 static void skb_extensions_init(void)
4864 {
4865 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4866 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4867 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4868 #endif
4869 
4870 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4871 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4872 					     0,
4873 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4874 					     NULL);
4875 }
4876 #else
4877 static void skb_extensions_init(void) {}
4878 #endif
4879 
4880 /* The SKB kmem_cache slab is critical for network performance.  Never
4881  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4882  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4883  */
4884 #ifndef CONFIG_SLUB_TINY
4885 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4886 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4887 #define FLAG_SKB_NO_MERGE	0
4888 #endif
4889 
4890 void __init skb_init(void)
4891 {
4892 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4893 					      sizeof(struct sk_buff),
4894 					      0,
4895 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4896 						FLAG_SKB_NO_MERGE,
4897 					      offsetof(struct sk_buff, cb),
4898 					      sizeof_field(struct sk_buff, cb),
4899 					      NULL);
4900 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4901 						sizeof(struct sk_buff_fclones),
4902 						0,
4903 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4904 						NULL);
4905 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4906 	 * struct skb_shared_info is located at the end of skb->head,
4907 	 * and should not be copied to/from user.
4908 	 */
4909 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4910 						SKB_SMALL_HEAD_CACHE_SIZE,
4911 						0,
4912 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4913 						0,
4914 						SKB_SMALL_HEAD_HEADROOM,
4915 						NULL);
4916 	skb_extensions_init();
4917 }
4918 
4919 static int
4920 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4921 	       unsigned int recursion_level)
4922 {
4923 	int start = skb_headlen(skb);
4924 	int i, copy = start - offset;
4925 	struct sk_buff *frag_iter;
4926 	int elt = 0;
4927 
4928 	if (unlikely(recursion_level >= 24))
4929 		return -EMSGSIZE;
4930 
4931 	if (copy > 0) {
4932 		if (copy > len)
4933 			copy = len;
4934 		sg_set_buf(sg, skb->data + offset, copy);
4935 		elt++;
4936 		if ((len -= copy) == 0)
4937 			return elt;
4938 		offset += copy;
4939 	}
4940 
4941 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4942 		int end;
4943 
4944 		WARN_ON(start > offset + len);
4945 
4946 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4947 		if ((copy = end - offset) > 0) {
4948 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4949 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4950 				return -EMSGSIZE;
4951 
4952 			if (copy > len)
4953 				copy = len;
4954 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4955 				    skb_frag_off(frag) + offset - start);
4956 			elt++;
4957 			if (!(len -= copy))
4958 				return elt;
4959 			offset += copy;
4960 		}
4961 		start = end;
4962 	}
4963 
4964 	skb_walk_frags(skb, frag_iter) {
4965 		int end, ret;
4966 
4967 		WARN_ON(start > offset + len);
4968 
4969 		end = start + frag_iter->len;
4970 		if ((copy = end - offset) > 0) {
4971 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4972 				return -EMSGSIZE;
4973 
4974 			if (copy > len)
4975 				copy = len;
4976 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4977 					      copy, recursion_level + 1);
4978 			if (unlikely(ret < 0))
4979 				return ret;
4980 			elt += ret;
4981 			if ((len -= copy) == 0)
4982 				return elt;
4983 			offset += copy;
4984 		}
4985 		start = end;
4986 	}
4987 	BUG_ON(len);
4988 	return elt;
4989 }
4990 
4991 /**
4992  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4993  *	@skb: Socket buffer containing the buffers to be mapped
4994  *	@sg: The scatter-gather list to map into
4995  *	@offset: The offset into the buffer's contents to start mapping
4996  *	@len: Length of buffer space to be mapped
4997  *
4998  *	Fill the specified scatter-gather list with mappings/pointers into a
4999  *	region of the buffer space attached to a socket buffer. Returns either
5000  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5001  *	could not fit.
5002  */
5003 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5004 {
5005 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5006 
5007 	if (nsg <= 0)
5008 		return nsg;
5009 
5010 	sg_mark_end(&sg[nsg - 1]);
5011 
5012 	return nsg;
5013 }
5014 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5015 
5016 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5017  * sglist without mark the sg which contain last skb data as the end.
5018  * So the caller can mannipulate sg list as will when padding new data after
5019  * the first call without calling sg_unmark_end to expend sg list.
5020  *
5021  * Scenario to use skb_to_sgvec_nomark:
5022  * 1. sg_init_table
5023  * 2. skb_to_sgvec_nomark(payload1)
5024  * 3. skb_to_sgvec_nomark(payload2)
5025  *
5026  * This is equivalent to:
5027  * 1. sg_init_table
5028  * 2. skb_to_sgvec(payload1)
5029  * 3. sg_unmark_end
5030  * 4. skb_to_sgvec(payload2)
5031  *
5032  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5033  * is more preferable.
5034  */
5035 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5036 			int offset, int len)
5037 {
5038 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5039 }
5040 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5041 
5042 
5043 
5044 /**
5045  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5046  *	@skb: The socket buffer to check.
5047  *	@tailbits: Amount of trailing space to be added
5048  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5049  *
5050  *	Make sure that the data buffers attached to a socket buffer are
5051  *	writable. If they are not, private copies are made of the data buffers
5052  *	and the socket buffer is set to use these instead.
5053  *
5054  *	If @tailbits is given, make sure that there is space to write @tailbits
5055  *	bytes of data beyond current end of socket buffer.  @trailer will be
5056  *	set to point to the skb in which this space begins.
5057  *
5058  *	The number of scatterlist elements required to completely map the
5059  *	COW'd and extended socket buffer will be returned.
5060  */
5061 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5062 {
5063 	int copyflag;
5064 	int elt;
5065 	struct sk_buff *skb1, **skb_p;
5066 
5067 	/* If skb is cloned or its head is paged, reallocate
5068 	 * head pulling out all the pages (pages are considered not writable
5069 	 * at the moment even if they are anonymous).
5070 	 */
5071 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5072 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5073 		return -ENOMEM;
5074 
5075 	/* Easy case. Most of packets will go this way. */
5076 	if (!skb_has_frag_list(skb)) {
5077 		/* A little of trouble, not enough of space for trailer.
5078 		 * This should not happen, when stack is tuned to generate
5079 		 * good frames. OK, on miss we reallocate and reserve even more
5080 		 * space, 128 bytes is fair. */
5081 
5082 		if (skb_tailroom(skb) < tailbits &&
5083 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5084 			return -ENOMEM;
5085 
5086 		/* Voila! */
5087 		*trailer = skb;
5088 		return 1;
5089 	}
5090 
5091 	/* Misery. We are in troubles, going to mincer fragments... */
5092 
5093 	elt = 1;
5094 	skb_p = &skb_shinfo(skb)->frag_list;
5095 	copyflag = 0;
5096 
5097 	while ((skb1 = *skb_p) != NULL) {
5098 		int ntail = 0;
5099 
5100 		/* The fragment is partially pulled by someone,
5101 		 * this can happen on input. Copy it and everything
5102 		 * after it. */
5103 
5104 		if (skb_shared(skb1))
5105 			copyflag = 1;
5106 
5107 		/* If the skb is the last, worry about trailer. */
5108 
5109 		if (skb1->next == NULL && tailbits) {
5110 			if (skb_shinfo(skb1)->nr_frags ||
5111 			    skb_has_frag_list(skb1) ||
5112 			    skb_tailroom(skb1) < tailbits)
5113 				ntail = tailbits + 128;
5114 		}
5115 
5116 		if (copyflag ||
5117 		    skb_cloned(skb1) ||
5118 		    ntail ||
5119 		    skb_shinfo(skb1)->nr_frags ||
5120 		    skb_has_frag_list(skb1)) {
5121 			struct sk_buff *skb2;
5122 
5123 			/* Fuck, we are miserable poor guys... */
5124 			if (ntail == 0)
5125 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5126 			else
5127 				skb2 = skb_copy_expand(skb1,
5128 						       skb_headroom(skb1),
5129 						       ntail,
5130 						       GFP_ATOMIC);
5131 			if (unlikely(skb2 == NULL))
5132 				return -ENOMEM;
5133 
5134 			if (skb1->sk)
5135 				skb_set_owner_w(skb2, skb1->sk);
5136 
5137 			/* Looking around. Are we still alive?
5138 			 * OK, link new skb, drop old one */
5139 
5140 			skb2->next = skb1->next;
5141 			*skb_p = skb2;
5142 			kfree_skb(skb1);
5143 			skb1 = skb2;
5144 		}
5145 		elt++;
5146 		*trailer = skb1;
5147 		skb_p = &skb1->next;
5148 	}
5149 
5150 	return elt;
5151 }
5152 EXPORT_SYMBOL_GPL(skb_cow_data);
5153 
5154 static void sock_rmem_free(struct sk_buff *skb)
5155 {
5156 	struct sock *sk = skb->sk;
5157 
5158 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5159 }
5160 
5161 static void skb_set_err_queue(struct sk_buff *skb)
5162 {
5163 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5164 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5165 	 */
5166 	skb->pkt_type = PACKET_OUTGOING;
5167 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5168 }
5169 
5170 /*
5171  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5172  */
5173 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5174 {
5175 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5176 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5177 		return -ENOMEM;
5178 
5179 	skb_orphan(skb);
5180 	skb->sk = sk;
5181 	skb->destructor = sock_rmem_free;
5182 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5183 	skb_set_err_queue(skb);
5184 
5185 	/* before exiting rcu section, make sure dst is refcounted */
5186 	skb_dst_force(skb);
5187 
5188 	skb_queue_tail(&sk->sk_error_queue, skb);
5189 	if (!sock_flag(sk, SOCK_DEAD))
5190 		sk_error_report(sk);
5191 	return 0;
5192 }
5193 EXPORT_SYMBOL(sock_queue_err_skb);
5194 
5195 static bool is_icmp_err_skb(const struct sk_buff *skb)
5196 {
5197 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5198 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5199 }
5200 
5201 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5202 {
5203 	struct sk_buff_head *q = &sk->sk_error_queue;
5204 	struct sk_buff *skb, *skb_next = NULL;
5205 	bool icmp_next = false;
5206 	unsigned long flags;
5207 
5208 	if (skb_queue_empty_lockless(q))
5209 		return NULL;
5210 
5211 	spin_lock_irqsave(&q->lock, flags);
5212 	skb = __skb_dequeue(q);
5213 	if (skb && (skb_next = skb_peek(q))) {
5214 		icmp_next = is_icmp_err_skb(skb_next);
5215 		if (icmp_next)
5216 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5217 	}
5218 	spin_unlock_irqrestore(&q->lock, flags);
5219 
5220 	if (is_icmp_err_skb(skb) && !icmp_next)
5221 		sk->sk_err = 0;
5222 
5223 	if (skb_next)
5224 		sk_error_report(sk);
5225 
5226 	return skb;
5227 }
5228 EXPORT_SYMBOL(sock_dequeue_err_skb);
5229 
5230 /**
5231  * skb_clone_sk - create clone of skb, and take reference to socket
5232  * @skb: the skb to clone
5233  *
5234  * This function creates a clone of a buffer that holds a reference on
5235  * sk_refcnt.  Buffers created via this function are meant to be
5236  * returned using sock_queue_err_skb, or free via kfree_skb.
5237  *
5238  * When passing buffers allocated with this function to sock_queue_err_skb
5239  * it is necessary to wrap the call with sock_hold/sock_put in order to
5240  * prevent the socket from being released prior to being enqueued on
5241  * the sk_error_queue.
5242  */
5243 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5244 {
5245 	struct sock *sk = skb->sk;
5246 	struct sk_buff *clone;
5247 
5248 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5249 		return NULL;
5250 
5251 	clone = skb_clone(skb, GFP_ATOMIC);
5252 	if (!clone) {
5253 		sock_put(sk);
5254 		return NULL;
5255 	}
5256 
5257 	clone->sk = sk;
5258 	clone->destructor = sock_efree;
5259 
5260 	return clone;
5261 }
5262 EXPORT_SYMBOL(skb_clone_sk);
5263 
5264 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5265 					struct sock *sk,
5266 					int tstype,
5267 					bool opt_stats)
5268 {
5269 	struct sock_exterr_skb *serr;
5270 	int err;
5271 
5272 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5273 
5274 	serr = SKB_EXT_ERR(skb);
5275 	memset(serr, 0, sizeof(*serr));
5276 	serr->ee.ee_errno = ENOMSG;
5277 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5278 	serr->ee.ee_info = tstype;
5279 	serr->opt_stats = opt_stats;
5280 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5281 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5282 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5283 		if (sk_is_tcp(sk))
5284 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5285 	}
5286 
5287 	err = sock_queue_err_skb(sk, skb);
5288 
5289 	if (err)
5290 		kfree_skb(skb);
5291 }
5292 
5293 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5294 {
5295 	bool ret;
5296 
5297 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5298 		return true;
5299 
5300 	read_lock_bh(&sk->sk_callback_lock);
5301 	ret = sk->sk_socket && sk->sk_socket->file &&
5302 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5303 	read_unlock_bh(&sk->sk_callback_lock);
5304 	return ret;
5305 }
5306 
5307 void skb_complete_tx_timestamp(struct sk_buff *skb,
5308 			       struct skb_shared_hwtstamps *hwtstamps)
5309 {
5310 	struct sock *sk = skb->sk;
5311 
5312 	if (!skb_may_tx_timestamp(sk, false))
5313 		goto err;
5314 
5315 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5316 	 * but only if the socket refcount is not zero.
5317 	 */
5318 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5319 		*skb_hwtstamps(skb) = *hwtstamps;
5320 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5321 		sock_put(sk);
5322 		return;
5323 	}
5324 
5325 err:
5326 	kfree_skb(skb);
5327 }
5328 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5329 
5330 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5331 		     const struct sk_buff *ack_skb,
5332 		     struct skb_shared_hwtstamps *hwtstamps,
5333 		     struct sock *sk, int tstype)
5334 {
5335 	struct sk_buff *skb;
5336 	bool tsonly, opt_stats = false;
5337 	u32 tsflags;
5338 
5339 	if (!sk)
5340 		return;
5341 
5342 	tsflags = READ_ONCE(sk->sk_tsflags);
5343 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5344 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5345 		return;
5346 
5347 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5348 	if (!skb_may_tx_timestamp(sk, tsonly))
5349 		return;
5350 
5351 	if (tsonly) {
5352 #ifdef CONFIG_INET
5353 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5354 		    sk_is_tcp(sk)) {
5355 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5356 							     ack_skb);
5357 			opt_stats = true;
5358 		} else
5359 #endif
5360 			skb = alloc_skb(0, GFP_ATOMIC);
5361 	} else {
5362 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5363 
5364 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5365 			kfree_skb(skb);
5366 			return;
5367 		}
5368 	}
5369 	if (!skb)
5370 		return;
5371 
5372 	if (tsonly) {
5373 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5374 					     SKBTX_ANY_TSTAMP;
5375 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5376 	}
5377 
5378 	if (hwtstamps)
5379 		*skb_hwtstamps(skb) = *hwtstamps;
5380 	else
5381 		__net_timestamp(skb);
5382 
5383 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5384 }
5385 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5386 
5387 void skb_tstamp_tx(struct sk_buff *orig_skb,
5388 		   struct skb_shared_hwtstamps *hwtstamps)
5389 {
5390 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5391 			       SCM_TSTAMP_SND);
5392 }
5393 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5394 
5395 #ifdef CONFIG_WIRELESS
5396 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5397 {
5398 	struct sock *sk = skb->sk;
5399 	struct sock_exterr_skb *serr;
5400 	int err = 1;
5401 
5402 	skb->wifi_acked_valid = 1;
5403 	skb->wifi_acked = acked;
5404 
5405 	serr = SKB_EXT_ERR(skb);
5406 	memset(serr, 0, sizeof(*serr));
5407 	serr->ee.ee_errno = ENOMSG;
5408 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5409 
5410 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5411 	 * but only if the socket refcount is not zero.
5412 	 */
5413 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5414 		err = sock_queue_err_skb(sk, skb);
5415 		sock_put(sk);
5416 	}
5417 	if (err)
5418 		kfree_skb(skb);
5419 }
5420 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5421 #endif /* CONFIG_WIRELESS */
5422 
5423 /**
5424  * skb_partial_csum_set - set up and verify partial csum values for packet
5425  * @skb: the skb to set
5426  * @start: the number of bytes after skb->data to start checksumming.
5427  * @off: the offset from start to place the checksum.
5428  *
5429  * For untrusted partially-checksummed packets, we need to make sure the values
5430  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5431  *
5432  * This function checks and sets those values and skb->ip_summed: if this
5433  * returns false you should drop the packet.
5434  */
5435 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5436 {
5437 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5438 	u32 csum_start = skb_headroom(skb) + (u32)start;
5439 
5440 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5441 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5442 				     start, off, skb_headroom(skb), skb_headlen(skb));
5443 		return false;
5444 	}
5445 	skb->ip_summed = CHECKSUM_PARTIAL;
5446 	skb->csum_start = csum_start;
5447 	skb->csum_offset = off;
5448 	skb->transport_header = csum_start;
5449 	return true;
5450 }
5451 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5452 
5453 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5454 			       unsigned int max)
5455 {
5456 	if (skb_headlen(skb) >= len)
5457 		return 0;
5458 
5459 	/* If we need to pullup then pullup to the max, so we
5460 	 * won't need to do it again.
5461 	 */
5462 	if (max > skb->len)
5463 		max = skb->len;
5464 
5465 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5466 		return -ENOMEM;
5467 
5468 	if (skb_headlen(skb) < len)
5469 		return -EPROTO;
5470 
5471 	return 0;
5472 }
5473 
5474 #define MAX_TCP_HDR_LEN (15 * 4)
5475 
5476 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5477 				      typeof(IPPROTO_IP) proto,
5478 				      unsigned int off)
5479 {
5480 	int err;
5481 
5482 	switch (proto) {
5483 	case IPPROTO_TCP:
5484 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5485 					  off + MAX_TCP_HDR_LEN);
5486 		if (!err && !skb_partial_csum_set(skb, off,
5487 						  offsetof(struct tcphdr,
5488 							   check)))
5489 			err = -EPROTO;
5490 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5491 
5492 	case IPPROTO_UDP:
5493 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5494 					  off + sizeof(struct udphdr));
5495 		if (!err && !skb_partial_csum_set(skb, off,
5496 						  offsetof(struct udphdr,
5497 							   check)))
5498 			err = -EPROTO;
5499 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5500 	}
5501 
5502 	return ERR_PTR(-EPROTO);
5503 }
5504 
5505 /* This value should be large enough to cover a tagged ethernet header plus
5506  * maximally sized IP and TCP or UDP headers.
5507  */
5508 #define MAX_IP_HDR_LEN 128
5509 
5510 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5511 {
5512 	unsigned int off;
5513 	bool fragment;
5514 	__sum16 *csum;
5515 	int err;
5516 
5517 	fragment = false;
5518 
5519 	err = skb_maybe_pull_tail(skb,
5520 				  sizeof(struct iphdr),
5521 				  MAX_IP_HDR_LEN);
5522 	if (err < 0)
5523 		goto out;
5524 
5525 	if (ip_is_fragment(ip_hdr(skb)))
5526 		fragment = true;
5527 
5528 	off = ip_hdrlen(skb);
5529 
5530 	err = -EPROTO;
5531 
5532 	if (fragment)
5533 		goto out;
5534 
5535 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5536 	if (IS_ERR(csum))
5537 		return PTR_ERR(csum);
5538 
5539 	if (recalculate)
5540 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5541 					   ip_hdr(skb)->daddr,
5542 					   skb->len - off,
5543 					   ip_hdr(skb)->protocol, 0);
5544 	err = 0;
5545 
5546 out:
5547 	return err;
5548 }
5549 
5550 /* This value should be large enough to cover a tagged ethernet header plus
5551  * an IPv6 header, all options, and a maximal TCP or UDP header.
5552  */
5553 #define MAX_IPV6_HDR_LEN 256
5554 
5555 #define OPT_HDR(type, skb, off) \
5556 	(type *)(skb_network_header(skb) + (off))
5557 
5558 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5559 {
5560 	int err;
5561 	u8 nexthdr;
5562 	unsigned int off;
5563 	unsigned int len;
5564 	bool fragment;
5565 	bool done;
5566 	__sum16 *csum;
5567 
5568 	fragment = false;
5569 	done = false;
5570 
5571 	off = sizeof(struct ipv6hdr);
5572 
5573 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5574 	if (err < 0)
5575 		goto out;
5576 
5577 	nexthdr = ipv6_hdr(skb)->nexthdr;
5578 
5579 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5580 	while (off <= len && !done) {
5581 		switch (nexthdr) {
5582 		case IPPROTO_DSTOPTS:
5583 		case IPPROTO_HOPOPTS:
5584 		case IPPROTO_ROUTING: {
5585 			struct ipv6_opt_hdr *hp;
5586 
5587 			err = skb_maybe_pull_tail(skb,
5588 						  off +
5589 						  sizeof(struct ipv6_opt_hdr),
5590 						  MAX_IPV6_HDR_LEN);
5591 			if (err < 0)
5592 				goto out;
5593 
5594 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5595 			nexthdr = hp->nexthdr;
5596 			off += ipv6_optlen(hp);
5597 			break;
5598 		}
5599 		case IPPROTO_AH: {
5600 			struct ip_auth_hdr *hp;
5601 
5602 			err = skb_maybe_pull_tail(skb,
5603 						  off +
5604 						  sizeof(struct ip_auth_hdr),
5605 						  MAX_IPV6_HDR_LEN);
5606 			if (err < 0)
5607 				goto out;
5608 
5609 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5610 			nexthdr = hp->nexthdr;
5611 			off += ipv6_authlen(hp);
5612 			break;
5613 		}
5614 		case IPPROTO_FRAGMENT: {
5615 			struct frag_hdr *hp;
5616 
5617 			err = skb_maybe_pull_tail(skb,
5618 						  off +
5619 						  sizeof(struct frag_hdr),
5620 						  MAX_IPV6_HDR_LEN);
5621 			if (err < 0)
5622 				goto out;
5623 
5624 			hp = OPT_HDR(struct frag_hdr, skb, off);
5625 
5626 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5627 				fragment = true;
5628 
5629 			nexthdr = hp->nexthdr;
5630 			off += sizeof(struct frag_hdr);
5631 			break;
5632 		}
5633 		default:
5634 			done = true;
5635 			break;
5636 		}
5637 	}
5638 
5639 	err = -EPROTO;
5640 
5641 	if (!done || fragment)
5642 		goto out;
5643 
5644 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5645 	if (IS_ERR(csum))
5646 		return PTR_ERR(csum);
5647 
5648 	if (recalculate)
5649 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5650 					 &ipv6_hdr(skb)->daddr,
5651 					 skb->len - off, nexthdr, 0);
5652 	err = 0;
5653 
5654 out:
5655 	return err;
5656 }
5657 
5658 /**
5659  * skb_checksum_setup - set up partial checksum offset
5660  * @skb: the skb to set up
5661  * @recalculate: if true the pseudo-header checksum will be recalculated
5662  */
5663 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5664 {
5665 	int err;
5666 
5667 	switch (skb->protocol) {
5668 	case htons(ETH_P_IP):
5669 		err = skb_checksum_setup_ipv4(skb, recalculate);
5670 		break;
5671 
5672 	case htons(ETH_P_IPV6):
5673 		err = skb_checksum_setup_ipv6(skb, recalculate);
5674 		break;
5675 
5676 	default:
5677 		err = -EPROTO;
5678 		break;
5679 	}
5680 
5681 	return err;
5682 }
5683 EXPORT_SYMBOL(skb_checksum_setup);
5684 
5685 /**
5686  * skb_checksum_maybe_trim - maybe trims the given skb
5687  * @skb: the skb to check
5688  * @transport_len: the data length beyond the network header
5689  *
5690  * Checks whether the given skb has data beyond the given transport length.
5691  * If so, returns a cloned skb trimmed to this transport length.
5692  * Otherwise returns the provided skb. Returns NULL in error cases
5693  * (e.g. transport_len exceeds skb length or out-of-memory).
5694  *
5695  * Caller needs to set the skb transport header and free any returned skb if it
5696  * differs from the provided skb.
5697  */
5698 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5699 					       unsigned int transport_len)
5700 {
5701 	struct sk_buff *skb_chk;
5702 	unsigned int len = skb_transport_offset(skb) + transport_len;
5703 	int ret;
5704 
5705 	if (skb->len < len)
5706 		return NULL;
5707 	else if (skb->len == len)
5708 		return skb;
5709 
5710 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5711 	if (!skb_chk)
5712 		return NULL;
5713 
5714 	ret = pskb_trim_rcsum(skb_chk, len);
5715 	if (ret) {
5716 		kfree_skb(skb_chk);
5717 		return NULL;
5718 	}
5719 
5720 	return skb_chk;
5721 }
5722 
5723 /**
5724  * skb_checksum_trimmed - validate checksum of an skb
5725  * @skb: the skb to check
5726  * @transport_len: the data length beyond the network header
5727  * @skb_chkf: checksum function to use
5728  *
5729  * Applies the given checksum function skb_chkf to the provided skb.
5730  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5731  *
5732  * If the skb has data beyond the given transport length, then a
5733  * trimmed & cloned skb is checked and returned.
5734  *
5735  * Caller needs to set the skb transport header and free any returned skb if it
5736  * differs from the provided skb.
5737  */
5738 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5739 				     unsigned int transport_len,
5740 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5741 {
5742 	struct sk_buff *skb_chk;
5743 	unsigned int offset = skb_transport_offset(skb);
5744 	__sum16 ret;
5745 
5746 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5747 	if (!skb_chk)
5748 		goto err;
5749 
5750 	if (!pskb_may_pull(skb_chk, offset))
5751 		goto err;
5752 
5753 	skb_pull_rcsum(skb_chk, offset);
5754 	ret = skb_chkf(skb_chk);
5755 	skb_push_rcsum(skb_chk, offset);
5756 
5757 	if (ret)
5758 		goto err;
5759 
5760 	return skb_chk;
5761 
5762 err:
5763 	if (skb_chk && skb_chk != skb)
5764 		kfree_skb(skb_chk);
5765 
5766 	return NULL;
5767 
5768 }
5769 EXPORT_SYMBOL(skb_checksum_trimmed);
5770 
5771 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5772 {
5773 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5774 			     skb->dev->name);
5775 }
5776 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5777 
5778 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5779 {
5780 	if (head_stolen) {
5781 		skb_release_head_state(skb);
5782 		kmem_cache_free(skbuff_cache, skb);
5783 	} else {
5784 		__kfree_skb(skb);
5785 	}
5786 }
5787 EXPORT_SYMBOL(kfree_skb_partial);
5788 
5789 /**
5790  * skb_try_coalesce - try to merge skb to prior one
5791  * @to: prior buffer
5792  * @from: buffer to add
5793  * @fragstolen: pointer to boolean
5794  * @delta_truesize: how much more was allocated than was requested
5795  */
5796 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5797 		      bool *fragstolen, int *delta_truesize)
5798 {
5799 	struct skb_shared_info *to_shinfo, *from_shinfo;
5800 	int i, delta, len = from->len;
5801 
5802 	*fragstolen = false;
5803 
5804 	if (skb_cloned(to))
5805 		return false;
5806 
5807 	/* In general, avoid mixing page_pool and non-page_pool allocated
5808 	 * pages within the same SKB. In theory we could take full
5809 	 * references if @from is cloned and !@to->pp_recycle but its
5810 	 * tricky (due to potential race with the clone disappearing) and
5811 	 * rare, so not worth dealing with.
5812 	 */
5813 	if (to->pp_recycle != from->pp_recycle)
5814 		return false;
5815 
5816 	if (len <= skb_tailroom(to)) {
5817 		if (len)
5818 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5819 		*delta_truesize = 0;
5820 		return true;
5821 	}
5822 
5823 	to_shinfo = skb_shinfo(to);
5824 	from_shinfo = skb_shinfo(from);
5825 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5826 		return false;
5827 	if (skb_zcopy(to) || skb_zcopy(from))
5828 		return false;
5829 
5830 	if (skb_headlen(from) != 0) {
5831 		struct page *page;
5832 		unsigned int offset;
5833 
5834 		if (to_shinfo->nr_frags +
5835 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5836 			return false;
5837 
5838 		if (skb_head_is_locked(from))
5839 			return false;
5840 
5841 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5842 
5843 		page = virt_to_head_page(from->head);
5844 		offset = from->data - (unsigned char *)page_address(page);
5845 
5846 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5847 				   page, offset, skb_headlen(from));
5848 		*fragstolen = true;
5849 	} else {
5850 		if (to_shinfo->nr_frags +
5851 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5852 			return false;
5853 
5854 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5855 	}
5856 
5857 	WARN_ON_ONCE(delta < len);
5858 
5859 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5860 	       from_shinfo->frags,
5861 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5862 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5863 
5864 	if (!skb_cloned(from))
5865 		from_shinfo->nr_frags = 0;
5866 
5867 	/* if the skb is not cloned this does nothing
5868 	 * since we set nr_frags to 0.
5869 	 */
5870 	if (skb_pp_frag_ref(from)) {
5871 		for (i = 0; i < from_shinfo->nr_frags; i++)
5872 			__skb_frag_ref(&from_shinfo->frags[i]);
5873 	}
5874 
5875 	to->truesize += delta;
5876 	to->len += len;
5877 	to->data_len += len;
5878 
5879 	*delta_truesize = delta;
5880 	return true;
5881 }
5882 EXPORT_SYMBOL(skb_try_coalesce);
5883 
5884 /**
5885  * skb_scrub_packet - scrub an skb
5886  *
5887  * @skb: buffer to clean
5888  * @xnet: packet is crossing netns
5889  *
5890  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5891  * into/from a tunnel. Some information have to be cleared during these
5892  * operations.
5893  * skb_scrub_packet can also be used to clean a skb before injecting it in
5894  * another namespace (@xnet == true). We have to clear all information in the
5895  * skb that could impact namespace isolation.
5896  */
5897 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5898 {
5899 	skb->pkt_type = PACKET_HOST;
5900 	skb->skb_iif = 0;
5901 	skb->ignore_df = 0;
5902 	skb_dst_drop(skb);
5903 	skb_ext_reset(skb);
5904 	nf_reset_ct(skb);
5905 	nf_reset_trace(skb);
5906 
5907 #ifdef CONFIG_NET_SWITCHDEV
5908 	skb->offload_fwd_mark = 0;
5909 	skb->offload_l3_fwd_mark = 0;
5910 #endif
5911 
5912 	if (!xnet)
5913 		return;
5914 
5915 	ipvs_reset(skb);
5916 	skb->mark = 0;
5917 	skb_clear_tstamp(skb);
5918 }
5919 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5920 
5921 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5922 {
5923 	int mac_len, meta_len;
5924 	void *meta;
5925 
5926 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5927 		kfree_skb(skb);
5928 		return NULL;
5929 	}
5930 
5931 	mac_len = skb->data - skb_mac_header(skb);
5932 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5933 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5934 			mac_len - VLAN_HLEN - ETH_TLEN);
5935 	}
5936 
5937 	meta_len = skb_metadata_len(skb);
5938 	if (meta_len) {
5939 		meta = skb_metadata_end(skb) - meta_len;
5940 		memmove(meta + VLAN_HLEN, meta, meta_len);
5941 	}
5942 
5943 	skb->mac_header += VLAN_HLEN;
5944 	return skb;
5945 }
5946 
5947 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5948 {
5949 	struct vlan_hdr *vhdr;
5950 	u16 vlan_tci;
5951 
5952 	if (unlikely(skb_vlan_tag_present(skb))) {
5953 		/* vlan_tci is already set-up so leave this for another time */
5954 		return skb;
5955 	}
5956 
5957 	skb = skb_share_check(skb, GFP_ATOMIC);
5958 	if (unlikely(!skb))
5959 		goto err_free;
5960 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5961 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5962 		goto err_free;
5963 
5964 	vhdr = (struct vlan_hdr *)skb->data;
5965 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5966 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5967 
5968 	skb_pull_rcsum(skb, VLAN_HLEN);
5969 	vlan_set_encap_proto(skb, vhdr);
5970 
5971 	skb = skb_reorder_vlan_header(skb);
5972 	if (unlikely(!skb))
5973 		goto err_free;
5974 
5975 	skb_reset_network_header(skb);
5976 	if (!skb_transport_header_was_set(skb))
5977 		skb_reset_transport_header(skb);
5978 	skb_reset_mac_len(skb);
5979 
5980 	return skb;
5981 
5982 err_free:
5983 	kfree_skb(skb);
5984 	return NULL;
5985 }
5986 EXPORT_SYMBOL(skb_vlan_untag);
5987 
5988 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5989 {
5990 	if (!pskb_may_pull(skb, write_len))
5991 		return -ENOMEM;
5992 
5993 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5994 		return 0;
5995 
5996 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5997 }
5998 EXPORT_SYMBOL(skb_ensure_writable);
5999 
6000 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6001 {
6002 	int needed_headroom = dev->needed_headroom;
6003 	int needed_tailroom = dev->needed_tailroom;
6004 
6005 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6006 	 * that the tail tag does not fail at its role of being at the end of
6007 	 * the packet, once the conduit interface pads the frame. Account for
6008 	 * that pad length here, and pad later.
6009 	 */
6010 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6011 		needed_tailroom += ETH_ZLEN - skb->len;
6012 	/* skb_headroom() returns unsigned int... */
6013 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6014 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6015 
6016 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6017 		/* No reallocation needed, yay! */
6018 		return 0;
6019 
6020 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6021 				GFP_ATOMIC);
6022 }
6023 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6024 
6025 /* remove VLAN header from packet and update csum accordingly.
6026  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6027  */
6028 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6029 {
6030 	int offset = skb->data - skb_mac_header(skb);
6031 	int err;
6032 
6033 	if (WARN_ONCE(offset,
6034 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6035 		      offset)) {
6036 		return -EINVAL;
6037 	}
6038 
6039 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6040 	if (unlikely(err))
6041 		return err;
6042 
6043 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6044 
6045 	vlan_remove_tag(skb, vlan_tci);
6046 
6047 	skb->mac_header += VLAN_HLEN;
6048 
6049 	if (skb_network_offset(skb) < ETH_HLEN)
6050 		skb_set_network_header(skb, ETH_HLEN);
6051 
6052 	skb_reset_mac_len(skb);
6053 
6054 	return err;
6055 }
6056 EXPORT_SYMBOL(__skb_vlan_pop);
6057 
6058 /* Pop a vlan tag either from hwaccel or from payload.
6059  * Expects skb->data at mac header.
6060  */
6061 int skb_vlan_pop(struct sk_buff *skb)
6062 {
6063 	u16 vlan_tci;
6064 	__be16 vlan_proto;
6065 	int err;
6066 
6067 	if (likely(skb_vlan_tag_present(skb))) {
6068 		__vlan_hwaccel_clear_tag(skb);
6069 	} else {
6070 		if (unlikely(!eth_type_vlan(skb->protocol)))
6071 			return 0;
6072 
6073 		err = __skb_vlan_pop(skb, &vlan_tci);
6074 		if (err)
6075 			return err;
6076 	}
6077 	/* move next vlan tag to hw accel tag */
6078 	if (likely(!eth_type_vlan(skb->protocol)))
6079 		return 0;
6080 
6081 	vlan_proto = skb->protocol;
6082 	err = __skb_vlan_pop(skb, &vlan_tci);
6083 	if (unlikely(err))
6084 		return err;
6085 
6086 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6087 	return 0;
6088 }
6089 EXPORT_SYMBOL(skb_vlan_pop);
6090 
6091 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6092  * Expects skb->data at mac header.
6093  */
6094 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6095 {
6096 	if (skb_vlan_tag_present(skb)) {
6097 		int offset = skb->data - skb_mac_header(skb);
6098 		int err;
6099 
6100 		if (WARN_ONCE(offset,
6101 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6102 			      offset)) {
6103 			return -EINVAL;
6104 		}
6105 
6106 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6107 					skb_vlan_tag_get(skb));
6108 		if (err)
6109 			return err;
6110 
6111 		skb->protocol = skb->vlan_proto;
6112 		skb->mac_len += VLAN_HLEN;
6113 
6114 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6115 	}
6116 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6117 	return 0;
6118 }
6119 EXPORT_SYMBOL(skb_vlan_push);
6120 
6121 /**
6122  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6123  *
6124  * @skb: Socket buffer to modify
6125  *
6126  * Drop the Ethernet header of @skb.
6127  *
6128  * Expects that skb->data points to the mac header and that no VLAN tags are
6129  * present.
6130  *
6131  * Returns 0 on success, -errno otherwise.
6132  */
6133 int skb_eth_pop(struct sk_buff *skb)
6134 {
6135 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6136 	    skb_network_offset(skb) < ETH_HLEN)
6137 		return -EPROTO;
6138 
6139 	skb_pull_rcsum(skb, ETH_HLEN);
6140 	skb_reset_mac_header(skb);
6141 	skb_reset_mac_len(skb);
6142 
6143 	return 0;
6144 }
6145 EXPORT_SYMBOL(skb_eth_pop);
6146 
6147 /**
6148  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6149  *
6150  * @skb: Socket buffer to modify
6151  * @dst: Destination MAC address of the new header
6152  * @src: Source MAC address of the new header
6153  *
6154  * Prepend @skb with a new Ethernet header.
6155  *
6156  * Expects that skb->data points to the mac header, which must be empty.
6157  *
6158  * Returns 0 on success, -errno otherwise.
6159  */
6160 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6161 		 const unsigned char *src)
6162 {
6163 	struct ethhdr *eth;
6164 	int err;
6165 
6166 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6167 		return -EPROTO;
6168 
6169 	err = skb_cow_head(skb, sizeof(*eth));
6170 	if (err < 0)
6171 		return err;
6172 
6173 	skb_push(skb, sizeof(*eth));
6174 	skb_reset_mac_header(skb);
6175 	skb_reset_mac_len(skb);
6176 
6177 	eth = eth_hdr(skb);
6178 	ether_addr_copy(eth->h_dest, dst);
6179 	ether_addr_copy(eth->h_source, src);
6180 	eth->h_proto = skb->protocol;
6181 
6182 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6183 
6184 	return 0;
6185 }
6186 EXPORT_SYMBOL(skb_eth_push);
6187 
6188 /* Update the ethertype of hdr and the skb csum value if required. */
6189 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6190 			     __be16 ethertype)
6191 {
6192 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6193 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6194 
6195 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6196 	}
6197 
6198 	hdr->h_proto = ethertype;
6199 }
6200 
6201 /**
6202  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6203  *                   the packet
6204  *
6205  * @skb: buffer
6206  * @mpls_lse: MPLS label stack entry to push
6207  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6208  * @mac_len: length of the MAC header
6209  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6210  *            ethernet
6211  *
6212  * Expects skb->data at mac header.
6213  *
6214  * Returns 0 on success, -errno otherwise.
6215  */
6216 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6217 		  int mac_len, bool ethernet)
6218 {
6219 	struct mpls_shim_hdr *lse;
6220 	int err;
6221 
6222 	if (unlikely(!eth_p_mpls(mpls_proto)))
6223 		return -EINVAL;
6224 
6225 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6226 	if (skb->encapsulation)
6227 		return -EINVAL;
6228 
6229 	err = skb_cow_head(skb, MPLS_HLEN);
6230 	if (unlikely(err))
6231 		return err;
6232 
6233 	if (!skb->inner_protocol) {
6234 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6235 		skb_set_inner_protocol(skb, skb->protocol);
6236 	}
6237 
6238 	skb_push(skb, MPLS_HLEN);
6239 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6240 		mac_len);
6241 	skb_reset_mac_header(skb);
6242 	skb_set_network_header(skb, mac_len);
6243 	skb_reset_mac_len(skb);
6244 
6245 	lse = mpls_hdr(skb);
6246 	lse->label_stack_entry = mpls_lse;
6247 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6248 
6249 	if (ethernet && mac_len >= ETH_HLEN)
6250 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6251 	skb->protocol = mpls_proto;
6252 
6253 	return 0;
6254 }
6255 EXPORT_SYMBOL_GPL(skb_mpls_push);
6256 
6257 /**
6258  * skb_mpls_pop() - pop the outermost MPLS header
6259  *
6260  * @skb: buffer
6261  * @next_proto: ethertype of header after popped MPLS header
6262  * @mac_len: length of the MAC header
6263  * @ethernet: flag to indicate if the packet is ethernet
6264  *
6265  * Expects skb->data at mac header.
6266  *
6267  * Returns 0 on success, -errno otherwise.
6268  */
6269 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6270 		 bool ethernet)
6271 {
6272 	int err;
6273 
6274 	if (unlikely(!eth_p_mpls(skb->protocol)))
6275 		return 0;
6276 
6277 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6278 	if (unlikely(err))
6279 		return err;
6280 
6281 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6282 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6283 		mac_len);
6284 
6285 	__skb_pull(skb, MPLS_HLEN);
6286 	skb_reset_mac_header(skb);
6287 	skb_set_network_header(skb, mac_len);
6288 
6289 	if (ethernet && mac_len >= ETH_HLEN) {
6290 		struct ethhdr *hdr;
6291 
6292 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6293 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6294 		skb_mod_eth_type(skb, hdr, next_proto);
6295 	}
6296 	skb->protocol = next_proto;
6297 
6298 	return 0;
6299 }
6300 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6301 
6302 /**
6303  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6304  *
6305  * @skb: buffer
6306  * @mpls_lse: new MPLS label stack entry to update to
6307  *
6308  * Expects skb->data at mac header.
6309  *
6310  * Returns 0 on success, -errno otherwise.
6311  */
6312 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6313 {
6314 	int err;
6315 
6316 	if (unlikely(!eth_p_mpls(skb->protocol)))
6317 		return -EINVAL;
6318 
6319 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6320 	if (unlikely(err))
6321 		return err;
6322 
6323 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6324 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6325 
6326 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6327 	}
6328 
6329 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6330 
6331 	return 0;
6332 }
6333 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6334 
6335 /**
6336  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6337  *
6338  * @skb: buffer
6339  *
6340  * Expects skb->data at mac header.
6341  *
6342  * Returns 0 on success, -errno otherwise.
6343  */
6344 int skb_mpls_dec_ttl(struct sk_buff *skb)
6345 {
6346 	u32 lse;
6347 	u8 ttl;
6348 
6349 	if (unlikely(!eth_p_mpls(skb->protocol)))
6350 		return -EINVAL;
6351 
6352 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6353 		return -ENOMEM;
6354 
6355 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6356 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6357 	if (!--ttl)
6358 		return -EINVAL;
6359 
6360 	lse &= ~MPLS_LS_TTL_MASK;
6361 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6362 
6363 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6364 }
6365 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6366 
6367 /**
6368  * alloc_skb_with_frags - allocate skb with page frags
6369  *
6370  * @header_len: size of linear part
6371  * @data_len: needed length in frags
6372  * @order: max page order desired.
6373  * @errcode: pointer to error code if any
6374  * @gfp_mask: allocation mask
6375  *
6376  * This can be used to allocate a paged skb, given a maximal order for frags.
6377  */
6378 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6379 				     unsigned long data_len,
6380 				     int order,
6381 				     int *errcode,
6382 				     gfp_t gfp_mask)
6383 {
6384 	unsigned long chunk;
6385 	struct sk_buff *skb;
6386 	struct page *page;
6387 	int nr_frags = 0;
6388 
6389 	*errcode = -EMSGSIZE;
6390 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6391 		return NULL;
6392 
6393 	*errcode = -ENOBUFS;
6394 	skb = alloc_skb(header_len, gfp_mask);
6395 	if (!skb)
6396 		return NULL;
6397 
6398 	while (data_len) {
6399 		if (nr_frags == MAX_SKB_FRAGS - 1)
6400 			goto failure;
6401 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6402 			order--;
6403 
6404 		if (order) {
6405 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6406 					   __GFP_COMP |
6407 					   __GFP_NOWARN,
6408 					   order);
6409 			if (!page) {
6410 				order--;
6411 				continue;
6412 			}
6413 		} else {
6414 			page = alloc_page(gfp_mask);
6415 			if (!page)
6416 				goto failure;
6417 		}
6418 		chunk = min_t(unsigned long, data_len,
6419 			      PAGE_SIZE << order);
6420 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6421 		nr_frags++;
6422 		skb->truesize += (PAGE_SIZE << order);
6423 		data_len -= chunk;
6424 	}
6425 	return skb;
6426 
6427 failure:
6428 	kfree_skb(skb);
6429 	return NULL;
6430 }
6431 EXPORT_SYMBOL(alloc_skb_with_frags);
6432 
6433 /* carve out the first off bytes from skb when off < headlen */
6434 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6435 				    const int headlen, gfp_t gfp_mask)
6436 {
6437 	int i;
6438 	unsigned int size = skb_end_offset(skb);
6439 	int new_hlen = headlen - off;
6440 	u8 *data;
6441 
6442 	if (skb_pfmemalloc(skb))
6443 		gfp_mask |= __GFP_MEMALLOC;
6444 
6445 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6446 	if (!data)
6447 		return -ENOMEM;
6448 	size = SKB_WITH_OVERHEAD(size);
6449 
6450 	/* Copy real data, and all frags */
6451 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6452 	skb->len -= off;
6453 
6454 	memcpy((struct skb_shared_info *)(data + size),
6455 	       skb_shinfo(skb),
6456 	       offsetof(struct skb_shared_info,
6457 			frags[skb_shinfo(skb)->nr_frags]));
6458 	if (skb_cloned(skb)) {
6459 		/* drop the old head gracefully */
6460 		if (skb_orphan_frags(skb, gfp_mask)) {
6461 			skb_kfree_head(data, size);
6462 			return -ENOMEM;
6463 		}
6464 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6465 			skb_frag_ref(skb, i);
6466 		if (skb_has_frag_list(skb))
6467 			skb_clone_fraglist(skb);
6468 		skb_release_data(skb, SKB_CONSUMED, false);
6469 	} else {
6470 		/* we can reuse existing recount- all we did was
6471 		 * relocate values
6472 		 */
6473 		skb_free_head(skb, false);
6474 	}
6475 
6476 	skb->head = data;
6477 	skb->data = data;
6478 	skb->head_frag = 0;
6479 	skb_set_end_offset(skb, size);
6480 	skb_set_tail_pointer(skb, skb_headlen(skb));
6481 	skb_headers_offset_update(skb, 0);
6482 	skb->cloned = 0;
6483 	skb->hdr_len = 0;
6484 	skb->nohdr = 0;
6485 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6486 
6487 	return 0;
6488 }
6489 
6490 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6491 
6492 /* carve out the first eat bytes from skb's frag_list. May recurse into
6493  * pskb_carve()
6494  */
6495 static int pskb_carve_frag_list(struct sk_buff *skb,
6496 				struct skb_shared_info *shinfo, int eat,
6497 				gfp_t gfp_mask)
6498 {
6499 	struct sk_buff *list = shinfo->frag_list;
6500 	struct sk_buff *clone = NULL;
6501 	struct sk_buff *insp = NULL;
6502 
6503 	do {
6504 		if (!list) {
6505 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6506 			return -EFAULT;
6507 		}
6508 		if (list->len <= eat) {
6509 			/* Eaten as whole. */
6510 			eat -= list->len;
6511 			list = list->next;
6512 			insp = list;
6513 		} else {
6514 			/* Eaten partially. */
6515 			if (skb_shared(list)) {
6516 				clone = skb_clone(list, gfp_mask);
6517 				if (!clone)
6518 					return -ENOMEM;
6519 				insp = list->next;
6520 				list = clone;
6521 			} else {
6522 				/* This may be pulled without problems. */
6523 				insp = list;
6524 			}
6525 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6526 				kfree_skb(clone);
6527 				return -ENOMEM;
6528 			}
6529 			break;
6530 		}
6531 	} while (eat);
6532 
6533 	/* Free pulled out fragments. */
6534 	while ((list = shinfo->frag_list) != insp) {
6535 		shinfo->frag_list = list->next;
6536 		consume_skb(list);
6537 	}
6538 	/* And insert new clone at head. */
6539 	if (clone) {
6540 		clone->next = list;
6541 		shinfo->frag_list = clone;
6542 	}
6543 	return 0;
6544 }
6545 
6546 /* carve off first len bytes from skb. Split line (off) is in the
6547  * non-linear part of skb
6548  */
6549 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6550 				       int pos, gfp_t gfp_mask)
6551 {
6552 	int i, k = 0;
6553 	unsigned int size = skb_end_offset(skb);
6554 	u8 *data;
6555 	const int nfrags = skb_shinfo(skb)->nr_frags;
6556 	struct skb_shared_info *shinfo;
6557 
6558 	if (skb_pfmemalloc(skb))
6559 		gfp_mask |= __GFP_MEMALLOC;
6560 
6561 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6562 	if (!data)
6563 		return -ENOMEM;
6564 	size = SKB_WITH_OVERHEAD(size);
6565 
6566 	memcpy((struct skb_shared_info *)(data + size),
6567 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6568 	if (skb_orphan_frags(skb, gfp_mask)) {
6569 		skb_kfree_head(data, size);
6570 		return -ENOMEM;
6571 	}
6572 	shinfo = (struct skb_shared_info *)(data + size);
6573 	for (i = 0; i < nfrags; i++) {
6574 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6575 
6576 		if (pos + fsize > off) {
6577 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6578 
6579 			if (pos < off) {
6580 				/* Split frag.
6581 				 * We have two variants in this case:
6582 				 * 1. Move all the frag to the second
6583 				 *    part, if it is possible. F.e.
6584 				 *    this approach is mandatory for TUX,
6585 				 *    where splitting is expensive.
6586 				 * 2. Split is accurately. We make this.
6587 				 */
6588 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6589 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6590 			}
6591 			skb_frag_ref(skb, i);
6592 			k++;
6593 		}
6594 		pos += fsize;
6595 	}
6596 	shinfo->nr_frags = k;
6597 	if (skb_has_frag_list(skb))
6598 		skb_clone_fraglist(skb);
6599 
6600 	/* split line is in frag list */
6601 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6602 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6603 		if (skb_has_frag_list(skb))
6604 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6605 		skb_kfree_head(data, size);
6606 		return -ENOMEM;
6607 	}
6608 	skb_release_data(skb, SKB_CONSUMED, false);
6609 
6610 	skb->head = data;
6611 	skb->head_frag = 0;
6612 	skb->data = data;
6613 	skb_set_end_offset(skb, size);
6614 	skb_reset_tail_pointer(skb);
6615 	skb_headers_offset_update(skb, 0);
6616 	skb->cloned   = 0;
6617 	skb->hdr_len  = 0;
6618 	skb->nohdr    = 0;
6619 	skb->len -= off;
6620 	skb->data_len = skb->len;
6621 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6622 	return 0;
6623 }
6624 
6625 /* remove len bytes from the beginning of the skb */
6626 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6627 {
6628 	int headlen = skb_headlen(skb);
6629 
6630 	if (len < headlen)
6631 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6632 	else
6633 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6634 }
6635 
6636 /* Extract to_copy bytes starting at off from skb, and return this in
6637  * a new skb
6638  */
6639 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6640 			     int to_copy, gfp_t gfp)
6641 {
6642 	struct sk_buff  *clone = skb_clone(skb, gfp);
6643 
6644 	if (!clone)
6645 		return NULL;
6646 
6647 	if (pskb_carve(clone, off, gfp) < 0 ||
6648 	    pskb_trim(clone, to_copy)) {
6649 		kfree_skb(clone);
6650 		return NULL;
6651 	}
6652 	return clone;
6653 }
6654 EXPORT_SYMBOL(pskb_extract);
6655 
6656 /**
6657  * skb_condense - try to get rid of fragments/frag_list if possible
6658  * @skb: buffer
6659  *
6660  * Can be used to save memory before skb is added to a busy queue.
6661  * If packet has bytes in frags and enough tail room in skb->head,
6662  * pull all of them, so that we can free the frags right now and adjust
6663  * truesize.
6664  * Notes:
6665  *	We do not reallocate skb->head thus can not fail.
6666  *	Caller must re-evaluate skb->truesize if needed.
6667  */
6668 void skb_condense(struct sk_buff *skb)
6669 {
6670 	if (skb->data_len) {
6671 		if (skb->data_len > skb->end - skb->tail ||
6672 		    skb_cloned(skb))
6673 			return;
6674 
6675 		/* Nice, we can free page frag(s) right now */
6676 		__pskb_pull_tail(skb, skb->data_len);
6677 	}
6678 	/* At this point, skb->truesize might be over estimated,
6679 	 * because skb had a fragment, and fragments do not tell
6680 	 * their truesize.
6681 	 * When we pulled its content into skb->head, fragment
6682 	 * was freed, but __pskb_pull_tail() could not possibly
6683 	 * adjust skb->truesize, not knowing the frag truesize.
6684 	 */
6685 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6686 }
6687 EXPORT_SYMBOL(skb_condense);
6688 
6689 #ifdef CONFIG_SKB_EXTENSIONS
6690 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6691 {
6692 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6693 }
6694 
6695 /**
6696  * __skb_ext_alloc - allocate a new skb extensions storage
6697  *
6698  * @flags: See kmalloc().
6699  *
6700  * Returns the newly allocated pointer. The pointer can later attached to a
6701  * skb via __skb_ext_set().
6702  * Note: caller must handle the skb_ext as an opaque data.
6703  */
6704 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6705 {
6706 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6707 
6708 	if (new) {
6709 		memset(new->offset, 0, sizeof(new->offset));
6710 		refcount_set(&new->refcnt, 1);
6711 	}
6712 
6713 	return new;
6714 }
6715 
6716 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6717 					 unsigned int old_active)
6718 {
6719 	struct skb_ext *new;
6720 
6721 	if (refcount_read(&old->refcnt) == 1)
6722 		return old;
6723 
6724 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6725 	if (!new)
6726 		return NULL;
6727 
6728 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6729 	refcount_set(&new->refcnt, 1);
6730 
6731 #ifdef CONFIG_XFRM
6732 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6733 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6734 		unsigned int i;
6735 
6736 		for (i = 0; i < sp->len; i++)
6737 			xfrm_state_hold(sp->xvec[i]);
6738 	}
6739 #endif
6740 	__skb_ext_put(old);
6741 	return new;
6742 }
6743 
6744 /**
6745  * __skb_ext_set - attach the specified extension storage to this skb
6746  * @skb: buffer
6747  * @id: extension id
6748  * @ext: extension storage previously allocated via __skb_ext_alloc()
6749  *
6750  * Existing extensions, if any, are cleared.
6751  *
6752  * Returns the pointer to the extension.
6753  */
6754 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6755 		    struct skb_ext *ext)
6756 {
6757 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6758 
6759 	skb_ext_put(skb);
6760 	newlen = newoff + skb_ext_type_len[id];
6761 	ext->chunks = newlen;
6762 	ext->offset[id] = newoff;
6763 	skb->extensions = ext;
6764 	skb->active_extensions = 1 << id;
6765 	return skb_ext_get_ptr(ext, id);
6766 }
6767 
6768 /**
6769  * skb_ext_add - allocate space for given extension, COW if needed
6770  * @skb: buffer
6771  * @id: extension to allocate space for
6772  *
6773  * Allocates enough space for the given extension.
6774  * If the extension is already present, a pointer to that extension
6775  * is returned.
6776  *
6777  * If the skb was cloned, COW applies and the returned memory can be
6778  * modified without changing the extension space of clones buffers.
6779  *
6780  * Returns pointer to the extension or NULL on allocation failure.
6781  */
6782 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6783 {
6784 	struct skb_ext *new, *old = NULL;
6785 	unsigned int newlen, newoff;
6786 
6787 	if (skb->active_extensions) {
6788 		old = skb->extensions;
6789 
6790 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6791 		if (!new)
6792 			return NULL;
6793 
6794 		if (__skb_ext_exist(new, id))
6795 			goto set_active;
6796 
6797 		newoff = new->chunks;
6798 	} else {
6799 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6800 
6801 		new = __skb_ext_alloc(GFP_ATOMIC);
6802 		if (!new)
6803 			return NULL;
6804 	}
6805 
6806 	newlen = newoff + skb_ext_type_len[id];
6807 	new->chunks = newlen;
6808 	new->offset[id] = newoff;
6809 set_active:
6810 	skb->slow_gro = 1;
6811 	skb->extensions = new;
6812 	skb->active_extensions |= 1 << id;
6813 	return skb_ext_get_ptr(new, id);
6814 }
6815 EXPORT_SYMBOL(skb_ext_add);
6816 
6817 #ifdef CONFIG_XFRM
6818 static void skb_ext_put_sp(struct sec_path *sp)
6819 {
6820 	unsigned int i;
6821 
6822 	for (i = 0; i < sp->len; i++)
6823 		xfrm_state_put(sp->xvec[i]);
6824 }
6825 #endif
6826 
6827 #ifdef CONFIG_MCTP_FLOWS
6828 static void skb_ext_put_mctp(struct mctp_flow *flow)
6829 {
6830 	if (flow->key)
6831 		mctp_key_unref(flow->key);
6832 }
6833 #endif
6834 
6835 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6836 {
6837 	struct skb_ext *ext = skb->extensions;
6838 
6839 	skb->active_extensions &= ~(1 << id);
6840 	if (skb->active_extensions == 0) {
6841 		skb->extensions = NULL;
6842 		__skb_ext_put(ext);
6843 #ifdef CONFIG_XFRM
6844 	} else if (id == SKB_EXT_SEC_PATH &&
6845 		   refcount_read(&ext->refcnt) == 1) {
6846 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6847 
6848 		skb_ext_put_sp(sp);
6849 		sp->len = 0;
6850 #endif
6851 	}
6852 }
6853 EXPORT_SYMBOL(__skb_ext_del);
6854 
6855 void __skb_ext_put(struct skb_ext *ext)
6856 {
6857 	/* If this is last clone, nothing can increment
6858 	 * it after check passes.  Avoids one atomic op.
6859 	 */
6860 	if (refcount_read(&ext->refcnt) == 1)
6861 		goto free_now;
6862 
6863 	if (!refcount_dec_and_test(&ext->refcnt))
6864 		return;
6865 free_now:
6866 #ifdef CONFIG_XFRM
6867 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6868 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6869 #endif
6870 #ifdef CONFIG_MCTP_FLOWS
6871 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6872 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6873 #endif
6874 
6875 	kmem_cache_free(skbuff_ext_cache, ext);
6876 }
6877 EXPORT_SYMBOL(__skb_ext_put);
6878 #endif /* CONFIG_SKB_EXTENSIONS */
6879 
6880 /**
6881  * skb_attempt_defer_free - queue skb for remote freeing
6882  * @skb: buffer
6883  *
6884  * Put @skb in a per-cpu list, using the cpu which
6885  * allocated the skb/pages to reduce false sharing
6886  * and memory zone spinlock contention.
6887  */
6888 void skb_attempt_defer_free(struct sk_buff *skb)
6889 {
6890 	int cpu = skb->alloc_cpu;
6891 	struct softnet_data *sd;
6892 	unsigned int defer_max;
6893 	bool kick;
6894 
6895 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6896 	    !cpu_online(cpu) ||
6897 	    cpu == raw_smp_processor_id()) {
6898 nodefer:	__kfree_skb(skb);
6899 		return;
6900 	}
6901 
6902 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6903 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6904 
6905 	sd = &per_cpu(softnet_data, cpu);
6906 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6907 	if (READ_ONCE(sd->defer_count) >= defer_max)
6908 		goto nodefer;
6909 
6910 	spin_lock_bh(&sd->defer_lock);
6911 	/* Send an IPI every time queue reaches half capacity. */
6912 	kick = sd->defer_count == (defer_max >> 1);
6913 	/* Paired with the READ_ONCE() few lines above */
6914 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6915 
6916 	skb->next = sd->defer_list;
6917 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6918 	WRITE_ONCE(sd->defer_list, skb);
6919 	spin_unlock_bh(&sd->defer_lock);
6920 
6921 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6922 	 * if we are unlucky enough (this seems very unlikely).
6923 	 */
6924 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6925 		smp_call_function_single_async(cpu, &sd->defer_csd);
6926 }
6927 
6928 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6929 				 size_t offset, size_t len)
6930 {
6931 	const char *kaddr;
6932 	__wsum csum;
6933 
6934 	kaddr = kmap_local_page(page);
6935 	csum = csum_partial(kaddr + offset, len, 0);
6936 	kunmap_local(kaddr);
6937 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
6938 }
6939 
6940 /**
6941  * skb_splice_from_iter - Splice (or copy) pages to skbuff
6942  * @skb: The buffer to add pages to
6943  * @iter: Iterator representing the pages to be added
6944  * @maxsize: Maximum amount of pages to be added
6945  * @gfp: Allocation flags
6946  *
6947  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
6948  * extracts pages from an iterator and adds them to the socket buffer if
6949  * possible, copying them to fragments if not possible (such as if they're slab
6950  * pages).
6951  *
6952  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6953  * insufficient space in the buffer to transfer anything.
6954  */
6955 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6956 			     ssize_t maxsize, gfp_t gfp)
6957 {
6958 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6959 	struct page *pages[8], **ppages = pages;
6960 	ssize_t spliced = 0, ret = 0;
6961 	unsigned int i;
6962 
6963 	while (iter->count > 0) {
6964 		ssize_t space, nr, len;
6965 		size_t off;
6966 
6967 		ret = -EMSGSIZE;
6968 		space = frag_limit - skb_shinfo(skb)->nr_frags;
6969 		if (space < 0)
6970 			break;
6971 
6972 		/* We might be able to coalesce without increasing nr_frags */
6973 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6974 
6975 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6976 		if (len <= 0) {
6977 			ret = len ?: -EIO;
6978 			break;
6979 		}
6980 
6981 		i = 0;
6982 		do {
6983 			struct page *page = pages[i++];
6984 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
6985 
6986 			ret = -EIO;
6987 			if (WARN_ON_ONCE(!sendpage_ok(page)))
6988 				goto out;
6989 
6990 			ret = skb_append_pagefrags(skb, page, off, part,
6991 						   frag_limit);
6992 			if (ret < 0) {
6993 				iov_iter_revert(iter, len);
6994 				goto out;
6995 			}
6996 
6997 			if (skb->ip_summed == CHECKSUM_NONE)
6998 				skb_splice_csum_page(skb, page, off, part);
6999 
7000 			off = 0;
7001 			spliced += part;
7002 			maxsize -= part;
7003 			len -= part;
7004 		} while (len > 0);
7005 
7006 		if (maxsize <= 0)
7007 			break;
7008 	}
7009 
7010 out:
7011 	skb_len_add(skb, spliced);
7012 	return spliced ?: ret;
7013 }
7014 EXPORT_SYMBOL(skb_splice_from_iter);
7015 
7016 static __always_inline
7017 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7018 			     size_t len, void *to, void *priv2)
7019 {
7020 	__wsum *csum = priv2;
7021 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7022 
7023 	*csum = csum_block_add(*csum, next, progress);
7024 	return 0;
7025 }
7026 
7027 static __always_inline
7028 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7029 				size_t len, void *to, void *priv2)
7030 {
7031 	__wsum next, *csum = priv2;
7032 
7033 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7034 	*csum = csum_block_add(*csum, next, progress);
7035 	return next ? 0 : len;
7036 }
7037 
7038 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7039 				  __wsum *csum, struct iov_iter *i)
7040 {
7041 	size_t copied;
7042 
7043 	if (WARN_ON_ONCE(!i->data_source))
7044 		return false;
7045 	copied = iterate_and_advance2(i, bytes, addr, csum,
7046 				      copy_from_user_iter_csum,
7047 				      memcpy_from_iter_csum);
7048 	if (likely(copied == bytes))
7049 		return true;
7050 	iov_iter_revert(i, copied);
7051 	return false;
7052 }
7053 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7054