1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 #include <net/mpls.h> 75 #include <net/mptcp.h> 76 #include <net/mctp.h> 77 #include <net/page_pool/helpers.h> 78 #include <net/dropreason.h> 79 80 #include <linux/uaccess.h> 81 #include <trace/events/skb.h> 82 #include <linux/highmem.h> 83 #include <linux/capability.h> 84 #include <linux/user_namespace.h> 85 #include <linux/indirect_call_wrapper.h> 86 #include <linux/textsearch.h> 87 88 #include "dev.h" 89 #include "sock_destructor.h" 90 91 struct kmem_cache *skbuff_cache __ro_after_init; 92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 98 static struct kmem_cache *skb_small_head_cache __ro_after_init; 99 100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 101 102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 104 * size, and we can differentiate heads from skb_small_head_cache 105 * vs system slabs by looking at their size (skb_end_offset()). 106 */ 107 #define SKB_SMALL_HEAD_CACHE_SIZE \ 108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 110 SKB_SMALL_HEAD_SIZE) 111 112 #define SKB_SMALL_HEAD_HEADROOM \ 113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 114 115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 116 EXPORT_SYMBOL(sysctl_max_skb_frags); 117 118 #undef FN 119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 120 static const char * const drop_reasons[] = { 121 [SKB_CONSUMED] = "CONSUMED", 122 DEFINE_DROP_REASON(FN, FN) 123 }; 124 125 static const struct drop_reason_list drop_reasons_core = { 126 .reasons = drop_reasons, 127 .n_reasons = ARRAY_SIZE(drop_reasons), 128 }; 129 130 const struct drop_reason_list __rcu * 131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 133 }; 134 EXPORT_SYMBOL(drop_reasons_by_subsys); 135 136 /** 137 * drop_reasons_register_subsys - register another drop reason subsystem 138 * @subsys: the subsystem to register, must not be the core 139 * @list: the list of drop reasons within the subsystem, must point to 140 * a statically initialized list 141 */ 142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 143 const struct drop_reason_list *list) 144 { 145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 147 "invalid subsystem %d\n", subsys)) 148 return; 149 150 /* must point to statically allocated memory, so INIT is OK */ 151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 152 } 153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 154 155 /** 156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 157 * @subsys: the subsystem to remove, must not be the core 158 * 159 * Note: This will synchronize_rcu() to ensure no users when it returns. 160 */ 161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 169 170 synchronize_rcu(); 171 } 172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 173 174 /** 175 * skb_panic - private function for out-of-line support 176 * @skb: buffer 177 * @sz: size 178 * @addr: address 179 * @msg: skb_over_panic or skb_under_panic 180 * 181 * Out-of-line support for skb_put() and skb_push(). 182 * Called via the wrapper skb_over_panic() or skb_under_panic(). 183 * Keep out of line to prevent kernel bloat. 184 * __builtin_return_address is not used because it is not always reliable. 185 */ 186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 187 const char msg[]) 188 { 189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 190 msg, addr, skb->len, sz, skb->head, skb->data, 191 (unsigned long)skb->tail, (unsigned long)skb->end, 192 skb->dev ? skb->dev->name : "<NULL>"); 193 BUG(); 194 } 195 196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 197 { 198 skb_panic(skb, sz, addr, __func__); 199 } 200 201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 202 { 203 skb_panic(skb, sz, addr, __func__); 204 } 205 206 #define NAPI_SKB_CACHE_SIZE 64 207 #define NAPI_SKB_CACHE_BULK 16 208 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 209 210 #if PAGE_SIZE == SZ_4K 211 212 #define NAPI_HAS_SMALL_PAGE_FRAG 1 213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 214 215 /* specialized page frag allocator using a single order 0 page 216 * and slicing it into 1K sized fragment. Constrained to systems 217 * with a very limited amount of 1K fragments fitting a single 218 * page - to avoid excessive truesize underestimation 219 */ 220 221 struct page_frag_1k { 222 void *va; 223 u16 offset; 224 bool pfmemalloc; 225 }; 226 227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 228 { 229 struct page *page; 230 int offset; 231 232 offset = nc->offset - SZ_1K; 233 if (likely(offset >= 0)) 234 goto use_frag; 235 236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 237 if (!page) 238 return NULL; 239 240 nc->va = page_address(page); 241 nc->pfmemalloc = page_is_pfmemalloc(page); 242 offset = PAGE_SIZE - SZ_1K; 243 page_ref_add(page, offset / SZ_1K); 244 245 use_frag: 246 nc->offset = offset; 247 return nc->va + offset; 248 } 249 #else 250 251 /* the small page is actually unused in this build; add dummy helpers 252 * to please the compiler and avoid later preprocessor's conditionals 253 */ 254 #define NAPI_HAS_SMALL_PAGE_FRAG 0 255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 256 257 struct page_frag_1k { 258 }; 259 260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 261 { 262 return NULL; 263 } 264 265 #endif 266 267 struct napi_alloc_cache { 268 struct page_frag_cache page; 269 struct page_frag_1k page_small; 270 unsigned int skb_count; 271 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 272 }; 273 274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 276 277 /* Double check that napi_get_frags() allocates skbs with 278 * skb->head being backed by slab, not a page fragment. 279 * This is to make sure bug fixed in 3226b158e67c 280 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 281 * does not accidentally come back. 282 */ 283 void napi_get_frags_check(struct napi_struct *napi) 284 { 285 struct sk_buff *skb; 286 287 local_bh_disable(); 288 skb = napi_get_frags(napi); 289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 290 napi_free_frags(napi); 291 local_bh_enable(); 292 } 293 294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 295 { 296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 297 298 fragsz = SKB_DATA_ALIGN(fragsz); 299 300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 301 } 302 EXPORT_SYMBOL(__napi_alloc_frag_align); 303 304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 305 { 306 void *data; 307 308 fragsz = SKB_DATA_ALIGN(fragsz); 309 if (in_hardirq() || irqs_disabled()) { 310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 311 312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 313 } else { 314 struct napi_alloc_cache *nc; 315 316 local_bh_disable(); 317 nc = this_cpu_ptr(&napi_alloc_cache); 318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 319 local_bh_enable(); 320 } 321 return data; 322 } 323 EXPORT_SYMBOL(__netdev_alloc_frag_align); 324 325 static struct sk_buff *napi_skb_cache_get(void) 326 { 327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 328 struct sk_buff *skb; 329 330 if (unlikely(!nc->skb_count)) { 331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 332 GFP_ATOMIC, 333 NAPI_SKB_CACHE_BULK, 334 nc->skb_cache); 335 if (unlikely(!nc->skb_count)) 336 return NULL; 337 } 338 339 skb = nc->skb_cache[--nc->skb_count]; 340 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache)); 341 342 return skb; 343 } 344 345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 346 unsigned int size) 347 { 348 struct skb_shared_info *shinfo; 349 350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 351 352 /* Assumes caller memset cleared SKB */ 353 skb->truesize = SKB_TRUESIZE(size); 354 refcount_set(&skb->users, 1); 355 skb->head = data; 356 skb->data = data; 357 skb_reset_tail_pointer(skb); 358 skb_set_end_offset(skb, size); 359 skb->mac_header = (typeof(skb->mac_header))~0U; 360 skb->transport_header = (typeof(skb->transport_header))~0U; 361 skb->alloc_cpu = raw_smp_processor_id(); 362 /* make sure we initialize shinfo sequentially */ 363 shinfo = skb_shinfo(skb); 364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 365 atomic_set(&shinfo->dataref, 1); 366 367 skb_set_kcov_handle(skb, kcov_common_handle()); 368 } 369 370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 371 unsigned int *size) 372 { 373 void *resized; 374 375 /* Must find the allocation size (and grow it to match). */ 376 *size = ksize(data); 377 /* krealloc() will immediately return "data" when 378 * "ksize(data)" is requested: it is the existing upper 379 * bounds. As a result, GFP_ATOMIC will be ignored. Note 380 * that this "new" pointer needs to be passed back to the 381 * caller for use so the __alloc_size hinting will be 382 * tracked correctly. 383 */ 384 resized = krealloc(data, *size, GFP_ATOMIC); 385 WARN_ON_ONCE(resized != data); 386 return resized; 387 } 388 389 /* build_skb() variant which can operate on slab buffers. 390 * Note that this should be used sparingly as slab buffers 391 * cannot be combined efficiently by GRO! 392 */ 393 struct sk_buff *slab_build_skb(void *data) 394 { 395 struct sk_buff *skb; 396 unsigned int size; 397 398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 399 if (unlikely(!skb)) 400 return NULL; 401 402 memset(skb, 0, offsetof(struct sk_buff, tail)); 403 data = __slab_build_skb(skb, data, &size); 404 __finalize_skb_around(skb, data, size); 405 406 return skb; 407 } 408 EXPORT_SYMBOL(slab_build_skb); 409 410 /* Caller must provide SKB that is memset cleared */ 411 static void __build_skb_around(struct sk_buff *skb, void *data, 412 unsigned int frag_size) 413 { 414 unsigned int size = frag_size; 415 416 /* frag_size == 0 is considered deprecated now. Callers 417 * using slab buffer should use slab_build_skb() instead. 418 */ 419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 420 data = __slab_build_skb(skb, data, &size); 421 422 __finalize_skb_around(skb, data, size); 423 } 424 425 /** 426 * __build_skb - build a network buffer 427 * @data: data buffer provided by caller 428 * @frag_size: size of data (must not be 0) 429 * 430 * Allocate a new &sk_buff. Caller provides space holding head and 431 * skb_shared_info. @data must have been allocated from the page 432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 433 * allocation is deprecated, and callers should use slab_build_skb() 434 * instead.) 435 * The return is the new skb buffer. 436 * On a failure the return is %NULL, and @data is not freed. 437 * Notes : 438 * Before IO, driver allocates only data buffer where NIC put incoming frame 439 * Driver should add room at head (NET_SKB_PAD) and 440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 442 * before giving packet to stack. 443 * RX rings only contains data buffers, not full skbs. 444 */ 445 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 446 { 447 struct sk_buff *skb; 448 449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 450 if (unlikely(!skb)) 451 return NULL; 452 453 memset(skb, 0, offsetof(struct sk_buff, tail)); 454 __build_skb_around(skb, data, frag_size); 455 456 return skb; 457 } 458 459 /* build_skb() is wrapper over __build_skb(), that specifically 460 * takes care of skb->head and skb->pfmemalloc 461 */ 462 struct sk_buff *build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb = __build_skb(data, frag_size); 465 466 if (likely(skb && frag_size)) { 467 skb->head_frag = 1; 468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 469 } 470 return skb; 471 } 472 EXPORT_SYMBOL(build_skb); 473 474 /** 475 * build_skb_around - build a network buffer around provided skb 476 * @skb: sk_buff provide by caller, must be memset cleared 477 * @data: data buffer provided by caller 478 * @frag_size: size of data 479 */ 480 struct sk_buff *build_skb_around(struct sk_buff *skb, 481 void *data, unsigned int frag_size) 482 { 483 if (unlikely(!skb)) 484 return NULL; 485 486 __build_skb_around(skb, data, frag_size); 487 488 if (frag_size) { 489 skb->head_frag = 1; 490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 491 } 492 return skb; 493 } 494 EXPORT_SYMBOL(build_skb_around); 495 496 /** 497 * __napi_build_skb - build a network buffer 498 * @data: data buffer provided by caller 499 * @frag_size: size of data 500 * 501 * Version of __build_skb() that uses NAPI percpu caches to obtain 502 * skbuff_head instead of inplace allocation. 503 * 504 * Returns a new &sk_buff on success, %NULL on allocation failure. 505 */ 506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 507 { 508 struct sk_buff *skb; 509 510 skb = napi_skb_cache_get(); 511 if (unlikely(!skb)) 512 return NULL; 513 514 memset(skb, 0, offsetof(struct sk_buff, tail)); 515 __build_skb_around(skb, data, frag_size); 516 517 return skb; 518 } 519 520 /** 521 * napi_build_skb - build a network buffer 522 * @data: data buffer provided by caller 523 * @frag_size: size of data 524 * 525 * Version of __napi_build_skb() that takes care of skb->head_frag 526 * and skb->pfmemalloc when the data is a page or page fragment. 527 * 528 * Returns a new &sk_buff on success, %NULL on allocation failure. 529 */ 530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 531 { 532 struct sk_buff *skb = __napi_build_skb(data, frag_size); 533 534 if (likely(skb) && frag_size) { 535 skb->head_frag = 1; 536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 537 } 538 539 return skb; 540 } 541 EXPORT_SYMBOL(napi_build_skb); 542 543 /* 544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 545 * the caller if emergency pfmemalloc reserves are being used. If it is and 546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 547 * may be used. Otherwise, the packet data may be discarded until enough 548 * memory is free 549 */ 550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 551 bool *pfmemalloc) 552 { 553 bool ret_pfmemalloc = false; 554 size_t obj_size; 555 void *obj; 556 557 obj_size = SKB_HEAD_ALIGN(*size); 558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 559 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 560 obj = kmem_cache_alloc_node(skb_small_head_cache, 561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 562 node); 563 *size = SKB_SMALL_HEAD_CACHE_SIZE; 564 if (obj || !(gfp_pfmemalloc_allowed(flags))) 565 goto out; 566 /* Try again but now we are using pfmemalloc reserves */ 567 ret_pfmemalloc = true; 568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 569 goto out; 570 } 571 572 obj_size = kmalloc_size_roundup(obj_size); 573 /* The following cast might truncate high-order bits of obj_size, this 574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 575 */ 576 *size = (unsigned int)obj_size; 577 578 /* 579 * Try a regular allocation, when that fails and we're not entitled 580 * to the reserves, fail. 581 */ 582 obj = kmalloc_node_track_caller(obj_size, 583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 584 node); 585 if (obj || !(gfp_pfmemalloc_allowed(flags))) 586 goto out; 587 588 /* Try again but now we are using pfmemalloc reserves */ 589 ret_pfmemalloc = true; 590 obj = kmalloc_node_track_caller(obj_size, flags, node); 591 592 out: 593 if (pfmemalloc) 594 *pfmemalloc = ret_pfmemalloc; 595 596 return obj; 597 } 598 599 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 600 * 'private' fields and also do memory statistics to find all the 601 * [BEEP] leaks. 602 * 603 */ 604 605 /** 606 * __alloc_skb - allocate a network buffer 607 * @size: size to allocate 608 * @gfp_mask: allocation mask 609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 610 * instead of head cache and allocate a cloned (child) skb. 611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 612 * allocations in case the data is required for writeback 613 * @node: numa node to allocate memory on 614 * 615 * Allocate a new &sk_buff. The returned buffer has no headroom and a 616 * tail room of at least size bytes. The object has a reference count 617 * of one. The return is the buffer. On a failure the return is %NULL. 618 * 619 * Buffers may only be allocated from interrupts using a @gfp_mask of 620 * %GFP_ATOMIC. 621 */ 622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 623 int flags, int node) 624 { 625 struct kmem_cache *cache; 626 struct sk_buff *skb; 627 bool pfmemalloc; 628 u8 *data; 629 630 cache = (flags & SKB_ALLOC_FCLONE) 631 ? skbuff_fclone_cache : skbuff_cache; 632 633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 634 gfp_mask |= __GFP_MEMALLOC; 635 636 /* Get the HEAD */ 637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 638 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 639 skb = napi_skb_cache_get(); 640 else 641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 642 if (unlikely(!skb)) 643 return NULL; 644 prefetchw(skb); 645 646 /* We do our best to align skb_shared_info on a separate cache 647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 648 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 649 * Both skb->head and skb_shared_info are cache line aligned. 650 */ 651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 652 if (unlikely(!data)) 653 goto nodata; 654 /* kmalloc_size_roundup() might give us more room than requested. 655 * Put skb_shared_info exactly at the end of allocated zone, 656 * to allow max possible filling before reallocation. 657 */ 658 prefetchw(data + SKB_WITH_OVERHEAD(size)); 659 660 /* 661 * Only clear those fields we need to clear, not those that we will 662 * actually initialise below. Hence, don't put any more fields after 663 * the tail pointer in struct sk_buff! 664 */ 665 memset(skb, 0, offsetof(struct sk_buff, tail)); 666 __build_skb_around(skb, data, size); 667 skb->pfmemalloc = pfmemalloc; 668 669 if (flags & SKB_ALLOC_FCLONE) { 670 struct sk_buff_fclones *fclones; 671 672 fclones = container_of(skb, struct sk_buff_fclones, skb1); 673 674 skb->fclone = SKB_FCLONE_ORIG; 675 refcount_set(&fclones->fclone_ref, 1); 676 } 677 678 return skb; 679 680 nodata: 681 kmem_cache_free(cache, skb); 682 return NULL; 683 } 684 EXPORT_SYMBOL(__alloc_skb); 685 686 /** 687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 688 * @dev: network device to receive on 689 * @len: length to allocate 690 * @gfp_mask: get_free_pages mask, passed to alloc_skb 691 * 692 * Allocate a new &sk_buff and assign it a usage count of one. The 693 * buffer has NET_SKB_PAD headroom built in. Users should allocate 694 * the headroom they think they need without accounting for the 695 * built in space. The built in space is used for optimisations. 696 * 697 * %NULL is returned if there is no free memory. 698 */ 699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 700 gfp_t gfp_mask) 701 { 702 struct page_frag_cache *nc; 703 struct sk_buff *skb; 704 bool pfmemalloc; 705 void *data; 706 707 len += NET_SKB_PAD; 708 709 /* If requested length is either too small or too big, 710 * we use kmalloc() for skb->head allocation. 711 */ 712 if (len <= SKB_WITH_OVERHEAD(1024) || 713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 716 if (!skb) 717 goto skb_fail; 718 goto skb_success; 719 } 720 721 len = SKB_HEAD_ALIGN(len); 722 723 if (sk_memalloc_socks()) 724 gfp_mask |= __GFP_MEMALLOC; 725 726 if (in_hardirq() || irqs_disabled()) { 727 nc = this_cpu_ptr(&netdev_alloc_cache); 728 data = page_frag_alloc(nc, len, gfp_mask); 729 pfmemalloc = nc->pfmemalloc; 730 } else { 731 local_bh_disable(); 732 nc = this_cpu_ptr(&napi_alloc_cache.page); 733 data = page_frag_alloc(nc, len, gfp_mask); 734 pfmemalloc = nc->pfmemalloc; 735 local_bh_enable(); 736 } 737 738 if (unlikely(!data)) 739 return NULL; 740 741 skb = __build_skb(data, len); 742 if (unlikely(!skb)) { 743 skb_free_frag(data); 744 return NULL; 745 } 746 747 if (pfmemalloc) 748 skb->pfmemalloc = 1; 749 skb->head_frag = 1; 750 751 skb_success: 752 skb_reserve(skb, NET_SKB_PAD); 753 skb->dev = dev; 754 755 skb_fail: 756 return skb; 757 } 758 EXPORT_SYMBOL(__netdev_alloc_skb); 759 760 /** 761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 762 * @napi: napi instance this buffer was allocated for 763 * @len: length to allocate 764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 765 * 766 * Allocate a new sk_buff for use in NAPI receive. This buffer will 767 * attempt to allocate the head from a special reserved region used 768 * only for NAPI Rx allocation. By doing this we can save several 769 * CPU cycles by avoiding having to disable and re-enable IRQs. 770 * 771 * %NULL is returned if there is no free memory. 772 */ 773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 774 gfp_t gfp_mask) 775 { 776 struct napi_alloc_cache *nc; 777 struct sk_buff *skb; 778 bool pfmemalloc; 779 void *data; 780 781 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 782 len += NET_SKB_PAD + NET_IP_ALIGN; 783 784 /* If requested length is either too small or too big, 785 * we use kmalloc() for skb->head allocation. 786 * When the small frag allocator is available, prefer it over kmalloc 787 * for small fragments 788 */ 789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 793 NUMA_NO_NODE); 794 if (!skb) 795 goto skb_fail; 796 goto skb_success; 797 } 798 799 nc = this_cpu_ptr(&napi_alloc_cache); 800 801 if (sk_memalloc_socks()) 802 gfp_mask |= __GFP_MEMALLOC; 803 804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 805 /* we are artificially inflating the allocation size, but 806 * that is not as bad as it may look like, as: 807 * - 'len' less than GRO_MAX_HEAD makes little sense 808 * - On most systems, larger 'len' values lead to fragment 809 * size above 512 bytes 810 * - kmalloc would use the kmalloc-1k slab for such values 811 * - Builds with smaller GRO_MAX_HEAD will very likely do 812 * little networking, as that implies no WiFi and no 813 * tunnels support, and 32 bits arches. 814 */ 815 len = SZ_1K; 816 817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 819 } else { 820 len = SKB_HEAD_ALIGN(len); 821 822 data = page_frag_alloc(&nc->page, len, gfp_mask); 823 pfmemalloc = nc->page.pfmemalloc; 824 } 825 826 if (unlikely(!data)) 827 return NULL; 828 829 skb = __napi_build_skb(data, len); 830 if (unlikely(!skb)) { 831 skb_free_frag(data); 832 return NULL; 833 } 834 835 if (pfmemalloc) 836 skb->pfmemalloc = 1; 837 skb->head_frag = 1; 838 839 skb_success: 840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 841 skb->dev = napi->dev; 842 843 skb_fail: 844 return skb; 845 } 846 EXPORT_SYMBOL(__napi_alloc_skb); 847 848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 849 int size, unsigned int truesize) 850 { 851 DEBUG_NET_WARN_ON_ONCE(size > truesize); 852 853 skb_fill_page_desc(skb, i, page, off, size); 854 skb->len += size; 855 skb->data_len += size; 856 skb->truesize += truesize; 857 } 858 EXPORT_SYMBOL(skb_add_rx_frag); 859 860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 861 unsigned int truesize) 862 { 863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 864 865 DEBUG_NET_WARN_ON_ONCE(size > truesize); 866 867 skb_frag_size_add(frag, size); 868 skb->len += size; 869 skb->data_len += size; 870 skb->truesize += truesize; 871 } 872 EXPORT_SYMBOL(skb_coalesce_rx_frag); 873 874 static void skb_drop_list(struct sk_buff **listp) 875 { 876 kfree_skb_list(*listp); 877 *listp = NULL; 878 } 879 880 static inline void skb_drop_fraglist(struct sk_buff *skb) 881 { 882 skb_drop_list(&skb_shinfo(skb)->frag_list); 883 } 884 885 static void skb_clone_fraglist(struct sk_buff *skb) 886 { 887 struct sk_buff *list; 888 889 skb_walk_frags(skb, list) 890 skb_get(list); 891 } 892 893 static bool is_pp_page(struct page *page) 894 { 895 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 896 } 897 898 #if IS_ENABLED(CONFIG_PAGE_POOL) 899 bool napi_pp_put_page(struct page *page, bool napi_safe) 900 { 901 bool allow_direct = false; 902 struct page_pool *pp; 903 904 page = compound_head(page); 905 906 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 907 * in order to preserve any existing bits, such as bit 0 for the 908 * head page of compound page and bit 1 for pfmemalloc page, so 909 * mask those bits for freeing side when doing below checking, 910 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 911 * to avoid recycling the pfmemalloc page. 912 */ 913 if (unlikely(!is_pp_page(page))) 914 return false; 915 916 pp = page->pp; 917 918 /* Allow direct recycle if we have reasons to believe that we are 919 * in the same context as the consumer would run, so there's 920 * no possible race. 921 * __page_pool_put_page() makes sure we're not in hardirq context 922 * and interrupts are enabled prior to accessing the cache. 923 */ 924 if (napi_safe || in_softirq()) { 925 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 926 927 allow_direct = napi && 928 READ_ONCE(napi->list_owner) == smp_processor_id(); 929 } 930 931 /* Driver set this to memory recycling info. Reset it on recycle. 932 * This will *not* work for NIC using a split-page memory model. 933 * The page will be returned to the pool here regardless of the 934 * 'flipped' fragment being in use or not. 935 */ 936 page_pool_put_full_page(pp, page, allow_direct); 937 938 return true; 939 } 940 EXPORT_SYMBOL(napi_pp_put_page); 941 #endif 942 943 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 944 { 945 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 946 return false; 947 return napi_pp_put_page(virt_to_page(data), napi_safe); 948 } 949 950 /** 951 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 952 * @skb: page pool aware skb 953 * 954 * Increase the fragment reference count (pp_ref_count) of a skb. This is 955 * intended to gain fragment references only for page pool aware skbs, 956 * i.e. when skb->pp_recycle is true, and not for fragments in a 957 * non-pp-recycling skb. It has a fallback to increase references on normal 958 * pages, as page pool aware skbs may also have normal page fragments. 959 */ 960 static int skb_pp_frag_ref(struct sk_buff *skb) 961 { 962 struct skb_shared_info *shinfo; 963 struct page *head_page; 964 int i; 965 966 if (!skb->pp_recycle) 967 return -EINVAL; 968 969 shinfo = skb_shinfo(skb); 970 971 for (i = 0; i < shinfo->nr_frags; i++) { 972 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 973 if (likely(is_pp_page(head_page))) 974 page_pool_ref_page(head_page); 975 else 976 page_ref_inc(head_page); 977 } 978 return 0; 979 } 980 981 static void skb_kfree_head(void *head, unsigned int end_offset) 982 { 983 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 984 kmem_cache_free(skb_small_head_cache, head); 985 else 986 kfree(head); 987 } 988 989 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 990 { 991 unsigned char *head = skb->head; 992 993 if (skb->head_frag) { 994 if (skb_pp_recycle(skb, head, napi_safe)) 995 return; 996 skb_free_frag(head); 997 } else { 998 skb_kfree_head(head, skb_end_offset(skb)); 999 } 1000 } 1001 1002 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 1003 bool napi_safe) 1004 { 1005 struct skb_shared_info *shinfo = skb_shinfo(skb); 1006 int i; 1007 1008 if (skb->cloned && 1009 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 1010 &shinfo->dataref)) 1011 goto exit; 1012 1013 if (skb_zcopy(skb)) { 1014 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1015 1016 skb_zcopy_clear(skb, true); 1017 if (skip_unref) 1018 goto free_head; 1019 } 1020 1021 for (i = 0; i < shinfo->nr_frags; i++) 1022 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 1023 1024 free_head: 1025 if (shinfo->frag_list) 1026 kfree_skb_list_reason(shinfo->frag_list, reason); 1027 1028 skb_free_head(skb, napi_safe); 1029 exit: 1030 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1031 * bit is only set on the head though, so in order to avoid races 1032 * while trying to recycle fragments on __skb_frag_unref() we need 1033 * to make one SKB responsible for triggering the recycle path. 1034 * So disable the recycling bit if an SKB is cloned and we have 1035 * additional references to the fragmented part of the SKB. 1036 * Eventually the last SKB will have the recycling bit set and it's 1037 * dataref set to 0, which will trigger the recycling 1038 */ 1039 skb->pp_recycle = 0; 1040 } 1041 1042 /* 1043 * Free an skbuff by memory without cleaning the state. 1044 */ 1045 static void kfree_skbmem(struct sk_buff *skb) 1046 { 1047 struct sk_buff_fclones *fclones; 1048 1049 switch (skb->fclone) { 1050 case SKB_FCLONE_UNAVAILABLE: 1051 kmem_cache_free(skbuff_cache, skb); 1052 return; 1053 1054 case SKB_FCLONE_ORIG: 1055 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1056 1057 /* We usually free the clone (TX completion) before original skb 1058 * This test would have no chance to be true for the clone, 1059 * while here, branch prediction will be good. 1060 */ 1061 if (refcount_read(&fclones->fclone_ref) == 1) 1062 goto fastpath; 1063 break; 1064 1065 default: /* SKB_FCLONE_CLONE */ 1066 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1067 break; 1068 } 1069 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1070 return; 1071 fastpath: 1072 kmem_cache_free(skbuff_fclone_cache, fclones); 1073 } 1074 1075 void skb_release_head_state(struct sk_buff *skb) 1076 { 1077 skb_dst_drop(skb); 1078 if (skb->destructor) { 1079 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1080 skb->destructor(skb); 1081 } 1082 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1083 nf_conntrack_put(skb_nfct(skb)); 1084 #endif 1085 skb_ext_put(skb); 1086 } 1087 1088 /* Free everything but the sk_buff shell. */ 1089 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1090 bool napi_safe) 1091 { 1092 skb_release_head_state(skb); 1093 if (likely(skb->head)) 1094 skb_release_data(skb, reason, napi_safe); 1095 } 1096 1097 /** 1098 * __kfree_skb - private function 1099 * @skb: buffer 1100 * 1101 * Free an sk_buff. Release anything attached to the buffer. 1102 * Clean the state. This is an internal helper function. Users should 1103 * always call kfree_skb 1104 */ 1105 1106 void __kfree_skb(struct sk_buff *skb) 1107 { 1108 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1109 kfree_skbmem(skb); 1110 } 1111 EXPORT_SYMBOL(__kfree_skb); 1112 1113 static __always_inline 1114 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1115 { 1116 if (unlikely(!skb_unref(skb))) 1117 return false; 1118 1119 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1120 u32_get_bits(reason, 1121 SKB_DROP_REASON_SUBSYS_MASK) >= 1122 SKB_DROP_REASON_SUBSYS_NUM); 1123 1124 if (reason == SKB_CONSUMED) 1125 trace_consume_skb(skb, __builtin_return_address(0)); 1126 else 1127 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1128 return true; 1129 } 1130 1131 /** 1132 * kfree_skb_reason - free an sk_buff with special reason 1133 * @skb: buffer to free 1134 * @reason: reason why this skb is dropped 1135 * 1136 * Drop a reference to the buffer and free it if the usage count has 1137 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1138 * tracepoint. 1139 */ 1140 void __fix_address 1141 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1142 { 1143 if (__kfree_skb_reason(skb, reason)) 1144 __kfree_skb(skb); 1145 } 1146 EXPORT_SYMBOL(kfree_skb_reason); 1147 1148 #define KFREE_SKB_BULK_SIZE 16 1149 1150 struct skb_free_array { 1151 unsigned int skb_count; 1152 void *skb_array[KFREE_SKB_BULK_SIZE]; 1153 }; 1154 1155 static void kfree_skb_add_bulk(struct sk_buff *skb, 1156 struct skb_free_array *sa, 1157 enum skb_drop_reason reason) 1158 { 1159 /* if SKB is a clone, don't handle this case */ 1160 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1161 __kfree_skb(skb); 1162 return; 1163 } 1164 1165 skb_release_all(skb, reason, false); 1166 sa->skb_array[sa->skb_count++] = skb; 1167 1168 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1169 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1170 sa->skb_array); 1171 sa->skb_count = 0; 1172 } 1173 } 1174 1175 void __fix_address 1176 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1177 { 1178 struct skb_free_array sa; 1179 1180 sa.skb_count = 0; 1181 1182 while (segs) { 1183 struct sk_buff *next = segs->next; 1184 1185 if (__kfree_skb_reason(segs, reason)) { 1186 skb_poison_list(segs); 1187 kfree_skb_add_bulk(segs, &sa, reason); 1188 } 1189 1190 segs = next; 1191 } 1192 1193 if (sa.skb_count) 1194 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1195 } 1196 EXPORT_SYMBOL(kfree_skb_list_reason); 1197 1198 /* Dump skb information and contents. 1199 * 1200 * Must only be called from net_ratelimit()-ed paths. 1201 * 1202 * Dumps whole packets if full_pkt, only headers otherwise. 1203 */ 1204 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1205 { 1206 struct skb_shared_info *sh = skb_shinfo(skb); 1207 struct net_device *dev = skb->dev; 1208 struct sock *sk = skb->sk; 1209 struct sk_buff *list_skb; 1210 bool has_mac, has_trans; 1211 int headroom, tailroom; 1212 int i, len, seg_len; 1213 1214 if (full_pkt) 1215 len = skb->len; 1216 else 1217 len = min_t(int, skb->len, MAX_HEADER + 128); 1218 1219 headroom = skb_headroom(skb); 1220 tailroom = skb_tailroom(skb); 1221 1222 has_mac = skb_mac_header_was_set(skb); 1223 has_trans = skb_transport_header_was_set(skb); 1224 1225 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1226 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1227 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1228 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1229 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1230 level, skb->len, headroom, skb_headlen(skb), tailroom, 1231 has_mac ? skb->mac_header : -1, 1232 has_mac ? skb_mac_header_len(skb) : -1, 1233 skb->network_header, 1234 has_trans ? skb_network_header_len(skb) : -1, 1235 has_trans ? skb->transport_header : -1, 1236 sh->tx_flags, sh->nr_frags, 1237 sh->gso_size, sh->gso_type, sh->gso_segs, 1238 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1239 skb->csum_valid, skb->csum_level, 1240 skb->hash, skb->sw_hash, skb->l4_hash, 1241 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1242 1243 if (dev) 1244 printk("%sdev name=%s feat=%pNF\n", 1245 level, dev->name, &dev->features); 1246 if (sk) 1247 printk("%ssk family=%hu type=%u proto=%u\n", 1248 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1249 1250 if (full_pkt && headroom) 1251 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1252 16, 1, skb->head, headroom, false); 1253 1254 seg_len = min_t(int, skb_headlen(skb), len); 1255 if (seg_len) 1256 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1257 16, 1, skb->data, seg_len, false); 1258 len -= seg_len; 1259 1260 if (full_pkt && tailroom) 1261 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1262 16, 1, skb_tail_pointer(skb), tailroom, false); 1263 1264 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1265 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1266 u32 p_off, p_len, copied; 1267 struct page *p; 1268 u8 *vaddr; 1269 1270 skb_frag_foreach_page(frag, skb_frag_off(frag), 1271 skb_frag_size(frag), p, p_off, p_len, 1272 copied) { 1273 seg_len = min_t(int, p_len, len); 1274 vaddr = kmap_atomic(p); 1275 print_hex_dump(level, "skb frag: ", 1276 DUMP_PREFIX_OFFSET, 1277 16, 1, vaddr + p_off, seg_len, false); 1278 kunmap_atomic(vaddr); 1279 len -= seg_len; 1280 if (!len) 1281 break; 1282 } 1283 } 1284 1285 if (full_pkt && skb_has_frag_list(skb)) { 1286 printk("skb fraglist:\n"); 1287 skb_walk_frags(skb, list_skb) 1288 skb_dump(level, list_skb, true); 1289 } 1290 } 1291 EXPORT_SYMBOL(skb_dump); 1292 1293 /** 1294 * skb_tx_error - report an sk_buff xmit error 1295 * @skb: buffer that triggered an error 1296 * 1297 * Report xmit error if a device callback is tracking this skb. 1298 * skb must be freed afterwards. 1299 */ 1300 void skb_tx_error(struct sk_buff *skb) 1301 { 1302 if (skb) { 1303 skb_zcopy_downgrade_managed(skb); 1304 skb_zcopy_clear(skb, true); 1305 } 1306 } 1307 EXPORT_SYMBOL(skb_tx_error); 1308 1309 #ifdef CONFIG_TRACEPOINTS 1310 /** 1311 * consume_skb - free an skbuff 1312 * @skb: buffer to free 1313 * 1314 * Drop a ref to the buffer and free it if the usage count has hit zero 1315 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1316 * is being dropped after a failure and notes that 1317 */ 1318 void consume_skb(struct sk_buff *skb) 1319 { 1320 if (!skb_unref(skb)) 1321 return; 1322 1323 trace_consume_skb(skb, __builtin_return_address(0)); 1324 __kfree_skb(skb); 1325 } 1326 EXPORT_SYMBOL(consume_skb); 1327 #endif 1328 1329 /** 1330 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1331 * @skb: buffer to free 1332 * 1333 * Alike consume_skb(), but this variant assumes that this is the last 1334 * skb reference and all the head states have been already dropped 1335 */ 1336 void __consume_stateless_skb(struct sk_buff *skb) 1337 { 1338 trace_consume_skb(skb, __builtin_return_address(0)); 1339 skb_release_data(skb, SKB_CONSUMED, false); 1340 kfree_skbmem(skb); 1341 } 1342 1343 static void napi_skb_cache_put(struct sk_buff *skb) 1344 { 1345 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1346 u32 i; 1347 1348 if (!kasan_mempool_poison_object(skb)) 1349 return; 1350 1351 nc->skb_cache[nc->skb_count++] = skb; 1352 1353 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1354 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1355 kasan_mempool_unpoison_object(nc->skb_cache[i], 1356 kmem_cache_size(skbuff_cache)); 1357 1358 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1359 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1360 nc->skb_count = NAPI_SKB_CACHE_HALF; 1361 } 1362 } 1363 1364 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1365 { 1366 skb_release_all(skb, reason, true); 1367 napi_skb_cache_put(skb); 1368 } 1369 1370 void napi_skb_free_stolen_head(struct sk_buff *skb) 1371 { 1372 if (unlikely(skb->slow_gro)) { 1373 nf_reset_ct(skb); 1374 skb_dst_drop(skb); 1375 skb_ext_put(skb); 1376 skb_orphan(skb); 1377 skb->slow_gro = 0; 1378 } 1379 napi_skb_cache_put(skb); 1380 } 1381 1382 void napi_consume_skb(struct sk_buff *skb, int budget) 1383 { 1384 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1385 if (unlikely(!budget)) { 1386 dev_consume_skb_any(skb); 1387 return; 1388 } 1389 1390 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1391 1392 if (!skb_unref(skb)) 1393 return; 1394 1395 /* if reaching here SKB is ready to free */ 1396 trace_consume_skb(skb, __builtin_return_address(0)); 1397 1398 /* if SKB is a clone, don't handle this case */ 1399 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1400 __kfree_skb(skb); 1401 return; 1402 } 1403 1404 skb_release_all(skb, SKB_CONSUMED, !!budget); 1405 napi_skb_cache_put(skb); 1406 } 1407 EXPORT_SYMBOL(napi_consume_skb); 1408 1409 /* Make sure a field is contained by headers group */ 1410 #define CHECK_SKB_FIELD(field) \ 1411 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1412 offsetof(struct sk_buff, headers.field)); \ 1413 1414 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1415 { 1416 new->tstamp = old->tstamp; 1417 /* We do not copy old->sk */ 1418 new->dev = old->dev; 1419 memcpy(new->cb, old->cb, sizeof(old->cb)); 1420 skb_dst_copy(new, old); 1421 __skb_ext_copy(new, old); 1422 __nf_copy(new, old, false); 1423 1424 /* Note : this field could be in the headers group. 1425 * It is not yet because we do not want to have a 16 bit hole 1426 */ 1427 new->queue_mapping = old->queue_mapping; 1428 1429 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1430 CHECK_SKB_FIELD(protocol); 1431 CHECK_SKB_FIELD(csum); 1432 CHECK_SKB_FIELD(hash); 1433 CHECK_SKB_FIELD(priority); 1434 CHECK_SKB_FIELD(skb_iif); 1435 CHECK_SKB_FIELD(vlan_proto); 1436 CHECK_SKB_FIELD(vlan_tci); 1437 CHECK_SKB_FIELD(transport_header); 1438 CHECK_SKB_FIELD(network_header); 1439 CHECK_SKB_FIELD(mac_header); 1440 CHECK_SKB_FIELD(inner_protocol); 1441 CHECK_SKB_FIELD(inner_transport_header); 1442 CHECK_SKB_FIELD(inner_network_header); 1443 CHECK_SKB_FIELD(inner_mac_header); 1444 CHECK_SKB_FIELD(mark); 1445 #ifdef CONFIG_NETWORK_SECMARK 1446 CHECK_SKB_FIELD(secmark); 1447 #endif 1448 #ifdef CONFIG_NET_RX_BUSY_POLL 1449 CHECK_SKB_FIELD(napi_id); 1450 #endif 1451 CHECK_SKB_FIELD(alloc_cpu); 1452 #ifdef CONFIG_XPS 1453 CHECK_SKB_FIELD(sender_cpu); 1454 #endif 1455 #ifdef CONFIG_NET_SCHED 1456 CHECK_SKB_FIELD(tc_index); 1457 #endif 1458 1459 } 1460 1461 /* 1462 * You should not add any new code to this function. Add it to 1463 * __copy_skb_header above instead. 1464 */ 1465 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1466 { 1467 #define C(x) n->x = skb->x 1468 1469 n->next = n->prev = NULL; 1470 n->sk = NULL; 1471 __copy_skb_header(n, skb); 1472 1473 C(len); 1474 C(data_len); 1475 C(mac_len); 1476 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1477 n->cloned = 1; 1478 n->nohdr = 0; 1479 n->peeked = 0; 1480 C(pfmemalloc); 1481 C(pp_recycle); 1482 n->destructor = NULL; 1483 C(tail); 1484 C(end); 1485 C(head); 1486 C(head_frag); 1487 C(data); 1488 C(truesize); 1489 refcount_set(&n->users, 1); 1490 1491 atomic_inc(&(skb_shinfo(skb)->dataref)); 1492 skb->cloned = 1; 1493 1494 return n; 1495 #undef C 1496 } 1497 1498 /** 1499 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1500 * @first: first sk_buff of the msg 1501 */ 1502 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1503 { 1504 struct sk_buff *n; 1505 1506 n = alloc_skb(0, GFP_ATOMIC); 1507 if (!n) 1508 return NULL; 1509 1510 n->len = first->len; 1511 n->data_len = first->len; 1512 n->truesize = first->truesize; 1513 1514 skb_shinfo(n)->frag_list = first; 1515 1516 __copy_skb_header(n, first); 1517 n->destructor = NULL; 1518 1519 return n; 1520 } 1521 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1522 1523 /** 1524 * skb_morph - morph one skb into another 1525 * @dst: the skb to receive the contents 1526 * @src: the skb to supply the contents 1527 * 1528 * This is identical to skb_clone except that the target skb is 1529 * supplied by the user. 1530 * 1531 * The target skb is returned upon exit. 1532 */ 1533 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1534 { 1535 skb_release_all(dst, SKB_CONSUMED, false); 1536 return __skb_clone(dst, src); 1537 } 1538 EXPORT_SYMBOL_GPL(skb_morph); 1539 1540 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1541 { 1542 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1543 struct user_struct *user; 1544 1545 if (capable(CAP_IPC_LOCK) || !size) 1546 return 0; 1547 1548 rlim = rlimit(RLIMIT_MEMLOCK); 1549 if (rlim == RLIM_INFINITY) 1550 return 0; 1551 1552 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1553 max_pg = rlim >> PAGE_SHIFT; 1554 user = mmp->user ? : current_user(); 1555 1556 old_pg = atomic_long_read(&user->locked_vm); 1557 do { 1558 new_pg = old_pg + num_pg; 1559 if (new_pg > max_pg) 1560 return -ENOBUFS; 1561 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1562 1563 if (!mmp->user) { 1564 mmp->user = get_uid(user); 1565 mmp->num_pg = num_pg; 1566 } else { 1567 mmp->num_pg += num_pg; 1568 } 1569 1570 return 0; 1571 } 1572 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1573 1574 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1575 { 1576 if (mmp->user) { 1577 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1578 free_uid(mmp->user); 1579 } 1580 } 1581 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1582 1583 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1584 { 1585 struct ubuf_info_msgzc *uarg; 1586 struct sk_buff *skb; 1587 1588 WARN_ON_ONCE(!in_task()); 1589 1590 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1591 if (!skb) 1592 return NULL; 1593 1594 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1595 uarg = (void *)skb->cb; 1596 uarg->mmp.user = NULL; 1597 1598 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1599 kfree_skb(skb); 1600 return NULL; 1601 } 1602 1603 uarg->ubuf.callback = msg_zerocopy_callback; 1604 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1605 uarg->len = 1; 1606 uarg->bytelen = size; 1607 uarg->zerocopy = 1; 1608 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1609 refcount_set(&uarg->ubuf.refcnt, 1); 1610 sock_hold(sk); 1611 1612 return &uarg->ubuf; 1613 } 1614 1615 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1616 { 1617 return container_of((void *)uarg, struct sk_buff, cb); 1618 } 1619 1620 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1621 struct ubuf_info *uarg) 1622 { 1623 if (uarg) { 1624 struct ubuf_info_msgzc *uarg_zc; 1625 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1626 u32 bytelen, next; 1627 1628 /* there might be non MSG_ZEROCOPY users */ 1629 if (uarg->callback != msg_zerocopy_callback) 1630 return NULL; 1631 1632 /* realloc only when socket is locked (TCP, UDP cork), 1633 * so uarg->len and sk_zckey access is serialized 1634 */ 1635 if (!sock_owned_by_user(sk)) { 1636 WARN_ON_ONCE(1); 1637 return NULL; 1638 } 1639 1640 uarg_zc = uarg_to_msgzc(uarg); 1641 bytelen = uarg_zc->bytelen + size; 1642 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1643 /* TCP can create new skb to attach new uarg */ 1644 if (sk->sk_type == SOCK_STREAM) 1645 goto new_alloc; 1646 return NULL; 1647 } 1648 1649 next = (u32)atomic_read(&sk->sk_zckey); 1650 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1651 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1652 return NULL; 1653 uarg_zc->len++; 1654 uarg_zc->bytelen = bytelen; 1655 atomic_set(&sk->sk_zckey, ++next); 1656 1657 /* no extra ref when appending to datagram (MSG_MORE) */ 1658 if (sk->sk_type == SOCK_STREAM) 1659 net_zcopy_get(uarg); 1660 1661 return uarg; 1662 } 1663 } 1664 1665 new_alloc: 1666 return msg_zerocopy_alloc(sk, size); 1667 } 1668 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1669 1670 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1671 { 1672 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1673 u32 old_lo, old_hi; 1674 u64 sum_len; 1675 1676 old_lo = serr->ee.ee_info; 1677 old_hi = serr->ee.ee_data; 1678 sum_len = old_hi - old_lo + 1ULL + len; 1679 1680 if (sum_len >= (1ULL << 32)) 1681 return false; 1682 1683 if (lo != old_hi + 1) 1684 return false; 1685 1686 serr->ee.ee_data += len; 1687 return true; 1688 } 1689 1690 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1691 { 1692 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1693 struct sock_exterr_skb *serr; 1694 struct sock *sk = skb->sk; 1695 struct sk_buff_head *q; 1696 unsigned long flags; 1697 bool is_zerocopy; 1698 u32 lo, hi; 1699 u16 len; 1700 1701 mm_unaccount_pinned_pages(&uarg->mmp); 1702 1703 /* if !len, there was only 1 call, and it was aborted 1704 * so do not queue a completion notification 1705 */ 1706 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1707 goto release; 1708 1709 len = uarg->len; 1710 lo = uarg->id; 1711 hi = uarg->id + len - 1; 1712 is_zerocopy = uarg->zerocopy; 1713 1714 serr = SKB_EXT_ERR(skb); 1715 memset(serr, 0, sizeof(*serr)); 1716 serr->ee.ee_errno = 0; 1717 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1718 serr->ee.ee_data = hi; 1719 serr->ee.ee_info = lo; 1720 if (!is_zerocopy) 1721 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1722 1723 q = &sk->sk_error_queue; 1724 spin_lock_irqsave(&q->lock, flags); 1725 tail = skb_peek_tail(q); 1726 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1727 !skb_zerocopy_notify_extend(tail, lo, len)) { 1728 __skb_queue_tail(q, skb); 1729 skb = NULL; 1730 } 1731 spin_unlock_irqrestore(&q->lock, flags); 1732 1733 sk_error_report(sk); 1734 1735 release: 1736 consume_skb(skb); 1737 sock_put(sk); 1738 } 1739 1740 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1741 bool success) 1742 { 1743 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1744 1745 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1746 1747 if (refcount_dec_and_test(&uarg->refcnt)) 1748 __msg_zerocopy_callback(uarg_zc); 1749 } 1750 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1751 1752 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1753 { 1754 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1755 1756 atomic_dec(&sk->sk_zckey); 1757 uarg_to_msgzc(uarg)->len--; 1758 1759 if (have_uref) 1760 msg_zerocopy_callback(NULL, uarg, true); 1761 } 1762 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1763 1764 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1765 struct msghdr *msg, int len, 1766 struct ubuf_info *uarg) 1767 { 1768 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1769 int err, orig_len = skb->len; 1770 1771 /* An skb can only point to one uarg. This edge case happens when 1772 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1773 */ 1774 if (orig_uarg && uarg != orig_uarg) 1775 return -EEXIST; 1776 1777 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1778 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1779 struct sock *save_sk = skb->sk; 1780 1781 /* Streams do not free skb on error. Reset to prev state. */ 1782 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1783 skb->sk = sk; 1784 ___pskb_trim(skb, orig_len); 1785 skb->sk = save_sk; 1786 return err; 1787 } 1788 1789 skb_zcopy_set(skb, uarg, NULL); 1790 return skb->len - orig_len; 1791 } 1792 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1793 1794 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1795 { 1796 int i; 1797 1798 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1799 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1800 skb_frag_ref(skb, i); 1801 } 1802 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1803 1804 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1805 gfp_t gfp_mask) 1806 { 1807 if (skb_zcopy(orig)) { 1808 if (skb_zcopy(nskb)) { 1809 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1810 if (!gfp_mask) { 1811 WARN_ON_ONCE(1); 1812 return -ENOMEM; 1813 } 1814 if (skb_uarg(nskb) == skb_uarg(orig)) 1815 return 0; 1816 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1817 return -EIO; 1818 } 1819 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1820 } 1821 return 0; 1822 } 1823 1824 /** 1825 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1826 * @skb: the skb to modify 1827 * @gfp_mask: allocation priority 1828 * 1829 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1830 * It will copy all frags into kernel and drop the reference 1831 * to userspace pages. 1832 * 1833 * If this function is called from an interrupt gfp_mask() must be 1834 * %GFP_ATOMIC. 1835 * 1836 * Returns 0 on success or a negative error code on failure 1837 * to allocate kernel memory to copy to. 1838 */ 1839 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1840 { 1841 int num_frags = skb_shinfo(skb)->nr_frags; 1842 struct page *page, *head = NULL; 1843 int i, order, psize, new_frags; 1844 u32 d_off; 1845 1846 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1847 return -EINVAL; 1848 1849 if (!num_frags) 1850 goto release; 1851 1852 /* We might have to allocate high order pages, so compute what minimum 1853 * page order is needed. 1854 */ 1855 order = 0; 1856 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1857 order++; 1858 psize = (PAGE_SIZE << order); 1859 1860 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1861 for (i = 0; i < new_frags; i++) { 1862 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1863 if (!page) { 1864 while (head) { 1865 struct page *next = (struct page *)page_private(head); 1866 put_page(head); 1867 head = next; 1868 } 1869 return -ENOMEM; 1870 } 1871 set_page_private(page, (unsigned long)head); 1872 head = page; 1873 } 1874 1875 page = head; 1876 d_off = 0; 1877 for (i = 0; i < num_frags; i++) { 1878 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1879 u32 p_off, p_len, copied; 1880 struct page *p; 1881 u8 *vaddr; 1882 1883 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1884 p, p_off, p_len, copied) { 1885 u32 copy, done = 0; 1886 vaddr = kmap_atomic(p); 1887 1888 while (done < p_len) { 1889 if (d_off == psize) { 1890 d_off = 0; 1891 page = (struct page *)page_private(page); 1892 } 1893 copy = min_t(u32, psize - d_off, p_len - done); 1894 memcpy(page_address(page) + d_off, 1895 vaddr + p_off + done, copy); 1896 done += copy; 1897 d_off += copy; 1898 } 1899 kunmap_atomic(vaddr); 1900 } 1901 } 1902 1903 /* skb frags release userspace buffers */ 1904 for (i = 0; i < num_frags; i++) 1905 skb_frag_unref(skb, i); 1906 1907 /* skb frags point to kernel buffers */ 1908 for (i = 0; i < new_frags - 1; i++) { 1909 __skb_fill_page_desc(skb, i, head, 0, psize); 1910 head = (struct page *)page_private(head); 1911 } 1912 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1913 skb_shinfo(skb)->nr_frags = new_frags; 1914 1915 release: 1916 skb_zcopy_clear(skb, false); 1917 return 0; 1918 } 1919 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1920 1921 /** 1922 * skb_clone - duplicate an sk_buff 1923 * @skb: buffer to clone 1924 * @gfp_mask: allocation priority 1925 * 1926 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1927 * copies share the same packet data but not structure. The new 1928 * buffer has a reference count of 1. If the allocation fails the 1929 * function returns %NULL otherwise the new buffer is returned. 1930 * 1931 * If this function is called from an interrupt gfp_mask() must be 1932 * %GFP_ATOMIC. 1933 */ 1934 1935 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1936 { 1937 struct sk_buff_fclones *fclones = container_of(skb, 1938 struct sk_buff_fclones, 1939 skb1); 1940 struct sk_buff *n; 1941 1942 if (skb_orphan_frags(skb, gfp_mask)) 1943 return NULL; 1944 1945 if (skb->fclone == SKB_FCLONE_ORIG && 1946 refcount_read(&fclones->fclone_ref) == 1) { 1947 n = &fclones->skb2; 1948 refcount_set(&fclones->fclone_ref, 2); 1949 n->fclone = SKB_FCLONE_CLONE; 1950 } else { 1951 if (skb_pfmemalloc(skb)) 1952 gfp_mask |= __GFP_MEMALLOC; 1953 1954 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1955 if (!n) 1956 return NULL; 1957 1958 n->fclone = SKB_FCLONE_UNAVAILABLE; 1959 } 1960 1961 return __skb_clone(n, skb); 1962 } 1963 EXPORT_SYMBOL(skb_clone); 1964 1965 void skb_headers_offset_update(struct sk_buff *skb, int off) 1966 { 1967 /* Only adjust this if it actually is csum_start rather than csum */ 1968 if (skb->ip_summed == CHECKSUM_PARTIAL) 1969 skb->csum_start += off; 1970 /* {transport,network,mac}_header and tail are relative to skb->head */ 1971 skb->transport_header += off; 1972 skb->network_header += off; 1973 if (skb_mac_header_was_set(skb)) 1974 skb->mac_header += off; 1975 skb->inner_transport_header += off; 1976 skb->inner_network_header += off; 1977 skb->inner_mac_header += off; 1978 } 1979 EXPORT_SYMBOL(skb_headers_offset_update); 1980 1981 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1982 { 1983 __copy_skb_header(new, old); 1984 1985 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1986 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1987 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1988 } 1989 EXPORT_SYMBOL(skb_copy_header); 1990 1991 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1992 { 1993 if (skb_pfmemalloc(skb)) 1994 return SKB_ALLOC_RX; 1995 return 0; 1996 } 1997 1998 /** 1999 * skb_copy - create private copy of an sk_buff 2000 * @skb: buffer to copy 2001 * @gfp_mask: allocation priority 2002 * 2003 * Make a copy of both an &sk_buff and its data. This is used when the 2004 * caller wishes to modify the data and needs a private copy of the 2005 * data to alter. Returns %NULL on failure or the pointer to the buffer 2006 * on success. The returned buffer has a reference count of 1. 2007 * 2008 * As by-product this function converts non-linear &sk_buff to linear 2009 * one, so that &sk_buff becomes completely private and caller is allowed 2010 * to modify all the data of returned buffer. This means that this 2011 * function is not recommended for use in circumstances when only 2012 * header is going to be modified. Use pskb_copy() instead. 2013 */ 2014 2015 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2016 { 2017 int headerlen = skb_headroom(skb); 2018 unsigned int size = skb_end_offset(skb) + skb->data_len; 2019 struct sk_buff *n = __alloc_skb(size, gfp_mask, 2020 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2021 2022 if (!n) 2023 return NULL; 2024 2025 /* Set the data pointer */ 2026 skb_reserve(n, headerlen); 2027 /* Set the tail pointer and length */ 2028 skb_put(n, skb->len); 2029 2030 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2031 2032 skb_copy_header(n, skb); 2033 return n; 2034 } 2035 EXPORT_SYMBOL(skb_copy); 2036 2037 /** 2038 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2039 * @skb: buffer to copy 2040 * @headroom: headroom of new skb 2041 * @gfp_mask: allocation priority 2042 * @fclone: if true allocate the copy of the skb from the fclone 2043 * cache instead of the head cache; it is recommended to set this 2044 * to true for the cases where the copy will likely be cloned 2045 * 2046 * Make a copy of both an &sk_buff and part of its data, located 2047 * in header. Fragmented data remain shared. This is used when 2048 * the caller wishes to modify only header of &sk_buff and needs 2049 * private copy of the header to alter. Returns %NULL on failure 2050 * or the pointer to the buffer on success. 2051 * The returned buffer has a reference count of 1. 2052 */ 2053 2054 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2055 gfp_t gfp_mask, bool fclone) 2056 { 2057 unsigned int size = skb_headlen(skb) + headroom; 2058 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2059 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2060 2061 if (!n) 2062 goto out; 2063 2064 /* Set the data pointer */ 2065 skb_reserve(n, headroom); 2066 /* Set the tail pointer and length */ 2067 skb_put(n, skb_headlen(skb)); 2068 /* Copy the bytes */ 2069 skb_copy_from_linear_data(skb, n->data, n->len); 2070 2071 n->truesize += skb->data_len; 2072 n->data_len = skb->data_len; 2073 n->len = skb->len; 2074 2075 if (skb_shinfo(skb)->nr_frags) { 2076 int i; 2077 2078 if (skb_orphan_frags(skb, gfp_mask) || 2079 skb_zerocopy_clone(n, skb, gfp_mask)) { 2080 kfree_skb(n); 2081 n = NULL; 2082 goto out; 2083 } 2084 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2085 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2086 skb_frag_ref(skb, i); 2087 } 2088 skb_shinfo(n)->nr_frags = i; 2089 } 2090 2091 if (skb_has_frag_list(skb)) { 2092 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2093 skb_clone_fraglist(n); 2094 } 2095 2096 skb_copy_header(n, skb); 2097 out: 2098 return n; 2099 } 2100 EXPORT_SYMBOL(__pskb_copy_fclone); 2101 2102 /** 2103 * pskb_expand_head - reallocate header of &sk_buff 2104 * @skb: buffer to reallocate 2105 * @nhead: room to add at head 2106 * @ntail: room to add at tail 2107 * @gfp_mask: allocation priority 2108 * 2109 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2110 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2111 * reference count of 1. Returns zero in the case of success or error, 2112 * if expansion failed. In the last case, &sk_buff is not changed. 2113 * 2114 * All the pointers pointing into skb header may change and must be 2115 * reloaded after call to this function. 2116 */ 2117 2118 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2119 gfp_t gfp_mask) 2120 { 2121 unsigned int osize = skb_end_offset(skb); 2122 unsigned int size = osize + nhead + ntail; 2123 long off; 2124 u8 *data; 2125 int i; 2126 2127 BUG_ON(nhead < 0); 2128 2129 BUG_ON(skb_shared(skb)); 2130 2131 skb_zcopy_downgrade_managed(skb); 2132 2133 if (skb_pfmemalloc(skb)) 2134 gfp_mask |= __GFP_MEMALLOC; 2135 2136 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2137 if (!data) 2138 goto nodata; 2139 size = SKB_WITH_OVERHEAD(size); 2140 2141 /* Copy only real data... and, alas, header. This should be 2142 * optimized for the cases when header is void. 2143 */ 2144 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2145 2146 memcpy((struct skb_shared_info *)(data + size), 2147 skb_shinfo(skb), 2148 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2149 2150 /* 2151 * if shinfo is shared we must drop the old head gracefully, but if it 2152 * is not we can just drop the old head and let the existing refcount 2153 * be since all we did is relocate the values 2154 */ 2155 if (skb_cloned(skb)) { 2156 if (skb_orphan_frags(skb, gfp_mask)) 2157 goto nofrags; 2158 if (skb_zcopy(skb)) 2159 refcount_inc(&skb_uarg(skb)->refcnt); 2160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2161 skb_frag_ref(skb, i); 2162 2163 if (skb_has_frag_list(skb)) 2164 skb_clone_fraglist(skb); 2165 2166 skb_release_data(skb, SKB_CONSUMED, false); 2167 } else { 2168 skb_free_head(skb, false); 2169 } 2170 off = (data + nhead) - skb->head; 2171 2172 skb->head = data; 2173 skb->head_frag = 0; 2174 skb->data += off; 2175 2176 skb_set_end_offset(skb, size); 2177 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2178 off = nhead; 2179 #endif 2180 skb->tail += off; 2181 skb_headers_offset_update(skb, nhead); 2182 skb->cloned = 0; 2183 skb->hdr_len = 0; 2184 skb->nohdr = 0; 2185 atomic_set(&skb_shinfo(skb)->dataref, 1); 2186 2187 skb_metadata_clear(skb); 2188 2189 /* It is not generally safe to change skb->truesize. 2190 * For the moment, we really care of rx path, or 2191 * when skb is orphaned (not attached to a socket). 2192 */ 2193 if (!skb->sk || skb->destructor == sock_edemux) 2194 skb->truesize += size - osize; 2195 2196 return 0; 2197 2198 nofrags: 2199 skb_kfree_head(data, size); 2200 nodata: 2201 return -ENOMEM; 2202 } 2203 EXPORT_SYMBOL(pskb_expand_head); 2204 2205 /* Make private copy of skb with writable head and some headroom */ 2206 2207 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2208 { 2209 struct sk_buff *skb2; 2210 int delta = headroom - skb_headroom(skb); 2211 2212 if (delta <= 0) 2213 skb2 = pskb_copy(skb, GFP_ATOMIC); 2214 else { 2215 skb2 = skb_clone(skb, GFP_ATOMIC); 2216 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2217 GFP_ATOMIC)) { 2218 kfree_skb(skb2); 2219 skb2 = NULL; 2220 } 2221 } 2222 return skb2; 2223 } 2224 EXPORT_SYMBOL(skb_realloc_headroom); 2225 2226 /* Note: We plan to rework this in linux-6.4 */ 2227 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2228 { 2229 unsigned int saved_end_offset, saved_truesize; 2230 struct skb_shared_info *shinfo; 2231 int res; 2232 2233 saved_end_offset = skb_end_offset(skb); 2234 saved_truesize = skb->truesize; 2235 2236 res = pskb_expand_head(skb, 0, 0, pri); 2237 if (res) 2238 return res; 2239 2240 skb->truesize = saved_truesize; 2241 2242 if (likely(skb_end_offset(skb) == saved_end_offset)) 2243 return 0; 2244 2245 /* We can not change skb->end if the original or new value 2246 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2247 */ 2248 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2249 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2250 /* We think this path should not be taken. 2251 * Add a temporary trace to warn us just in case. 2252 */ 2253 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2254 saved_end_offset, skb_end_offset(skb)); 2255 WARN_ON_ONCE(1); 2256 return 0; 2257 } 2258 2259 shinfo = skb_shinfo(skb); 2260 2261 /* We are about to change back skb->end, 2262 * we need to move skb_shinfo() to its new location. 2263 */ 2264 memmove(skb->head + saved_end_offset, 2265 shinfo, 2266 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2267 2268 skb_set_end_offset(skb, saved_end_offset); 2269 2270 return 0; 2271 } 2272 2273 /** 2274 * skb_expand_head - reallocate header of &sk_buff 2275 * @skb: buffer to reallocate 2276 * @headroom: needed headroom 2277 * 2278 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2279 * if possible; copies skb->sk to new skb as needed 2280 * and frees original skb in case of failures. 2281 * 2282 * It expect increased headroom and generates warning otherwise. 2283 */ 2284 2285 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2286 { 2287 int delta = headroom - skb_headroom(skb); 2288 int osize = skb_end_offset(skb); 2289 struct sock *sk = skb->sk; 2290 2291 if (WARN_ONCE(delta <= 0, 2292 "%s is expecting an increase in the headroom", __func__)) 2293 return skb; 2294 2295 delta = SKB_DATA_ALIGN(delta); 2296 /* pskb_expand_head() might crash, if skb is shared. */ 2297 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2298 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2299 2300 if (unlikely(!nskb)) 2301 goto fail; 2302 2303 if (sk) 2304 skb_set_owner_w(nskb, sk); 2305 consume_skb(skb); 2306 skb = nskb; 2307 } 2308 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2309 goto fail; 2310 2311 if (sk && is_skb_wmem(skb)) { 2312 delta = skb_end_offset(skb) - osize; 2313 refcount_add(delta, &sk->sk_wmem_alloc); 2314 skb->truesize += delta; 2315 } 2316 return skb; 2317 2318 fail: 2319 kfree_skb(skb); 2320 return NULL; 2321 } 2322 EXPORT_SYMBOL(skb_expand_head); 2323 2324 /** 2325 * skb_copy_expand - copy and expand sk_buff 2326 * @skb: buffer to copy 2327 * @newheadroom: new free bytes at head 2328 * @newtailroom: new free bytes at tail 2329 * @gfp_mask: allocation priority 2330 * 2331 * Make a copy of both an &sk_buff and its data and while doing so 2332 * allocate additional space. 2333 * 2334 * This is used when the caller wishes to modify the data and needs a 2335 * private copy of the data to alter as well as more space for new fields. 2336 * Returns %NULL on failure or the pointer to the buffer 2337 * on success. The returned buffer has a reference count of 1. 2338 * 2339 * You must pass %GFP_ATOMIC as the allocation priority if this function 2340 * is called from an interrupt. 2341 */ 2342 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2343 int newheadroom, int newtailroom, 2344 gfp_t gfp_mask) 2345 { 2346 /* 2347 * Allocate the copy buffer 2348 */ 2349 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2350 gfp_mask, skb_alloc_rx_flag(skb), 2351 NUMA_NO_NODE); 2352 int oldheadroom = skb_headroom(skb); 2353 int head_copy_len, head_copy_off; 2354 2355 if (!n) 2356 return NULL; 2357 2358 skb_reserve(n, newheadroom); 2359 2360 /* Set the tail pointer and length */ 2361 skb_put(n, skb->len); 2362 2363 head_copy_len = oldheadroom; 2364 head_copy_off = 0; 2365 if (newheadroom <= head_copy_len) 2366 head_copy_len = newheadroom; 2367 else 2368 head_copy_off = newheadroom - head_copy_len; 2369 2370 /* Copy the linear header and data. */ 2371 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2372 skb->len + head_copy_len)); 2373 2374 skb_copy_header(n, skb); 2375 2376 skb_headers_offset_update(n, newheadroom - oldheadroom); 2377 2378 return n; 2379 } 2380 EXPORT_SYMBOL(skb_copy_expand); 2381 2382 /** 2383 * __skb_pad - zero pad the tail of an skb 2384 * @skb: buffer to pad 2385 * @pad: space to pad 2386 * @free_on_error: free buffer on error 2387 * 2388 * Ensure that a buffer is followed by a padding area that is zero 2389 * filled. Used by network drivers which may DMA or transfer data 2390 * beyond the buffer end onto the wire. 2391 * 2392 * May return error in out of memory cases. The skb is freed on error 2393 * if @free_on_error is true. 2394 */ 2395 2396 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2397 { 2398 int err; 2399 int ntail; 2400 2401 /* If the skbuff is non linear tailroom is always zero.. */ 2402 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2403 memset(skb->data+skb->len, 0, pad); 2404 return 0; 2405 } 2406 2407 ntail = skb->data_len + pad - (skb->end - skb->tail); 2408 if (likely(skb_cloned(skb) || ntail > 0)) { 2409 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2410 if (unlikely(err)) 2411 goto free_skb; 2412 } 2413 2414 /* FIXME: The use of this function with non-linear skb's really needs 2415 * to be audited. 2416 */ 2417 err = skb_linearize(skb); 2418 if (unlikely(err)) 2419 goto free_skb; 2420 2421 memset(skb->data + skb->len, 0, pad); 2422 return 0; 2423 2424 free_skb: 2425 if (free_on_error) 2426 kfree_skb(skb); 2427 return err; 2428 } 2429 EXPORT_SYMBOL(__skb_pad); 2430 2431 /** 2432 * pskb_put - add data to the tail of a potentially fragmented buffer 2433 * @skb: start of the buffer to use 2434 * @tail: tail fragment of the buffer to use 2435 * @len: amount of data to add 2436 * 2437 * This function extends the used data area of the potentially 2438 * fragmented buffer. @tail must be the last fragment of @skb -- or 2439 * @skb itself. If this would exceed the total buffer size the kernel 2440 * will panic. A pointer to the first byte of the extra data is 2441 * returned. 2442 */ 2443 2444 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2445 { 2446 if (tail != skb) { 2447 skb->data_len += len; 2448 skb->len += len; 2449 } 2450 return skb_put(tail, len); 2451 } 2452 EXPORT_SYMBOL_GPL(pskb_put); 2453 2454 /** 2455 * skb_put - add data to a buffer 2456 * @skb: buffer to use 2457 * @len: amount of data to add 2458 * 2459 * This function extends the used data area of the buffer. If this would 2460 * exceed the total buffer size the kernel will panic. A pointer to the 2461 * first byte of the extra data is returned. 2462 */ 2463 void *skb_put(struct sk_buff *skb, unsigned int len) 2464 { 2465 void *tmp = skb_tail_pointer(skb); 2466 SKB_LINEAR_ASSERT(skb); 2467 skb->tail += len; 2468 skb->len += len; 2469 if (unlikely(skb->tail > skb->end)) 2470 skb_over_panic(skb, len, __builtin_return_address(0)); 2471 return tmp; 2472 } 2473 EXPORT_SYMBOL(skb_put); 2474 2475 /** 2476 * skb_push - add data to the start of a buffer 2477 * @skb: buffer to use 2478 * @len: amount of data to add 2479 * 2480 * This function extends the used data area of the buffer at the buffer 2481 * start. If this would exceed the total buffer headroom the kernel will 2482 * panic. A pointer to the first byte of the extra data is returned. 2483 */ 2484 void *skb_push(struct sk_buff *skb, unsigned int len) 2485 { 2486 skb->data -= len; 2487 skb->len += len; 2488 if (unlikely(skb->data < skb->head)) 2489 skb_under_panic(skb, len, __builtin_return_address(0)); 2490 return skb->data; 2491 } 2492 EXPORT_SYMBOL(skb_push); 2493 2494 /** 2495 * skb_pull - remove data from the start of a buffer 2496 * @skb: buffer to use 2497 * @len: amount of data to remove 2498 * 2499 * This function removes data from the start of a buffer, returning 2500 * the memory to the headroom. A pointer to the next data in the buffer 2501 * is returned. Once the data has been pulled future pushes will overwrite 2502 * the old data. 2503 */ 2504 void *skb_pull(struct sk_buff *skb, unsigned int len) 2505 { 2506 return skb_pull_inline(skb, len); 2507 } 2508 EXPORT_SYMBOL(skb_pull); 2509 2510 /** 2511 * skb_pull_data - remove data from the start of a buffer returning its 2512 * original position. 2513 * @skb: buffer to use 2514 * @len: amount of data to remove 2515 * 2516 * This function removes data from the start of a buffer, returning 2517 * the memory to the headroom. A pointer to the original data in the buffer 2518 * is returned after checking if there is enough data to pull. Once the 2519 * data has been pulled future pushes will overwrite the old data. 2520 */ 2521 void *skb_pull_data(struct sk_buff *skb, size_t len) 2522 { 2523 void *data = skb->data; 2524 2525 if (skb->len < len) 2526 return NULL; 2527 2528 skb_pull(skb, len); 2529 2530 return data; 2531 } 2532 EXPORT_SYMBOL(skb_pull_data); 2533 2534 /** 2535 * skb_trim - remove end from a buffer 2536 * @skb: buffer to alter 2537 * @len: new length 2538 * 2539 * Cut the length of a buffer down by removing data from the tail. If 2540 * the buffer is already under the length specified it is not modified. 2541 * The skb must be linear. 2542 */ 2543 void skb_trim(struct sk_buff *skb, unsigned int len) 2544 { 2545 if (skb->len > len) 2546 __skb_trim(skb, len); 2547 } 2548 EXPORT_SYMBOL(skb_trim); 2549 2550 /* Trims skb to length len. It can change skb pointers. 2551 */ 2552 2553 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2554 { 2555 struct sk_buff **fragp; 2556 struct sk_buff *frag; 2557 int offset = skb_headlen(skb); 2558 int nfrags = skb_shinfo(skb)->nr_frags; 2559 int i; 2560 int err; 2561 2562 if (skb_cloned(skb) && 2563 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2564 return err; 2565 2566 i = 0; 2567 if (offset >= len) 2568 goto drop_pages; 2569 2570 for (; i < nfrags; i++) { 2571 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2572 2573 if (end < len) { 2574 offset = end; 2575 continue; 2576 } 2577 2578 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2579 2580 drop_pages: 2581 skb_shinfo(skb)->nr_frags = i; 2582 2583 for (; i < nfrags; i++) 2584 skb_frag_unref(skb, i); 2585 2586 if (skb_has_frag_list(skb)) 2587 skb_drop_fraglist(skb); 2588 goto done; 2589 } 2590 2591 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2592 fragp = &frag->next) { 2593 int end = offset + frag->len; 2594 2595 if (skb_shared(frag)) { 2596 struct sk_buff *nfrag; 2597 2598 nfrag = skb_clone(frag, GFP_ATOMIC); 2599 if (unlikely(!nfrag)) 2600 return -ENOMEM; 2601 2602 nfrag->next = frag->next; 2603 consume_skb(frag); 2604 frag = nfrag; 2605 *fragp = frag; 2606 } 2607 2608 if (end < len) { 2609 offset = end; 2610 continue; 2611 } 2612 2613 if (end > len && 2614 unlikely((err = pskb_trim(frag, len - offset)))) 2615 return err; 2616 2617 if (frag->next) 2618 skb_drop_list(&frag->next); 2619 break; 2620 } 2621 2622 done: 2623 if (len > skb_headlen(skb)) { 2624 skb->data_len -= skb->len - len; 2625 skb->len = len; 2626 } else { 2627 skb->len = len; 2628 skb->data_len = 0; 2629 skb_set_tail_pointer(skb, len); 2630 } 2631 2632 if (!skb->sk || skb->destructor == sock_edemux) 2633 skb_condense(skb); 2634 return 0; 2635 } 2636 EXPORT_SYMBOL(___pskb_trim); 2637 2638 /* Note : use pskb_trim_rcsum() instead of calling this directly 2639 */ 2640 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2641 { 2642 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2643 int delta = skb->len - len; 2644 2645 skb->csum = csum_block_sub(skb->csum, 2646 skb_checksum(skb, len, delta, 0), 2647 len); 2648 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2649 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2650 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2651 2652 if (offset + sizeof(__sum16) > hdlen) 2653 return -EINVAL; 2654 } 2655 return __pskb_trim(skb, len); 2656 } 2657 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2658 2659 /** 2660 * __pskb_pull_tail - advance tail of skb header 2661 * @skb: buffer to reallocate 2662 * @delta: number of bytes to advance tail 2663 * 2664 * The function makes a sense only on a fragmented &sk_buff, 2665 * it expands header moving its tail forward and copying necessary 2666 * data from fragmented part. 2667 * 2668 * &sk_buff MUST have reference count of 1. 2669 * 2670 * Returns %NULL (and &sk_buff does not change) if pull failed 2671 * or value of new tail of skb in the case of success. 2672 * 2673 * All the pointers pointing into skb header may change and must be 2674 * reloaded after call to this function. 2675 */ 2676 2677 /* Moves tail of skb head forward, copying data from fragmented part, 2678 * when it is necessary. 2679 * 1. It may fail due to malloc failure. 2680 * 2. It may change skb pointers. 2681 * 2682 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2683 */ 2684 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2685 { 2686 /* If skb has not enough free space at tail, get new one 2687 * plus 128 bytes for future expansions. If we have enough 2688 * room at tail, reallocate without expansion only if skb is cloned. 2689 */ 2690 int i, k, eat = (skb->tail + delta) - skb->end; 2691 2692 if (eat > 0 || skb_cloned(skb)) { 2693 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2694 GFP_ATOMIC)) 2695 return NULL; 2696 } 2697 2698 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2699 skb_tail_pointer(skb), delta)); 2700 2701 /* Optimization: no fragments, no reasons to preestimate 2702 * size of pulled pages. Superb. 2703 */ 2704 if (!skb_has_frag_list(skb)) 2705 goto pull_pages; 2706 2707 /* Estimate size of pulled pages. */ 2708 eat = delta; 2709 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2710 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2711 2712 if (size >= eat) 2713 goto pull_pages; 2714 eat -= size; 2715 } 2716 2717 /* If we need update frag list, we are in troubles. 2718 * Certainly, it is possible to add an offset to skb data, 2719 * but taking into account that pulling is expected to 2720 * be very rare operation, it is worth to fight against 2721 * further bloating skb head and crucify ourselves here instead. 2722 * Pure masohism, indeed. 8)8) 2723 */ 2724 if (eat) { 2725 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2726 struct sk_buff *clone = NULL; 2727 struct sk_buff *insp = NULL; 2728 2729 do { 2730 if (list->len <= eat) { 2731 /* Eaten as whole. */ 2732 eat -= list->len; 2733 list = list->next; 2734 insp = list; 2735 } else { 2736 /* Eaten partially. */ 2737 if (skb_is_gso(skb) && !list->head_frag && 2738 skb_headlen(list)) 2739 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2740 2741 if (skb_shared(list)) { 2742 /* Sucks! We need to fork list. :-( */ 2743 clone = skb_clone(list, GFP_ATOMIC); 2744 if (!clone) 2745 return NULL; 2746 insp = list->next; 2747 list = clone; 2748 } else { 2749 /* This may be pulled without 2750 * problems. */ 2751 insp = list; 2752 } 2753 if (!pskb_pull(list, eat)) { 2754 kfree_skb(clone); 2755 return NULL; 2756 } 2757 break; 2758 } 2759 } while (eat); 2760 2761 /* Free pulled out fragments. */ 2762 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2763 skb_shinfo(skb)->frag_list = list->next; 2764 consume_skb(list); 2765 } 2766 /* And insert new clone at head. */ 2767 if (clone) { 2768 clone->next = list; 2769 skb_shinfo(skb)->frag_list = clone; 2770 } 2771 } 2772 /* Success! Now we may commit changes to skb data. */ 2773 2774 pull_pages: 2775 eat = delta; 2776 k = 0; 2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2778 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2779 2780 if (size <= eat) { 2781 skb_frag_unref(skb, i); 2782 eat -= size; 2783 } else { 2784 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2785 2786 *frag = skb_shinfo(skb)->frags[i]; 2787 if (eat) { 2788 skb_frag_off_add(frag, eat); 2789 skb_frag_size_sub(frag, eat); 2790 if (!i) 2791 goto end; 2792 eat = 0; 2793 } 2794 k++; 2795 } 2796 } 2797 skb_shinfo(skb)->nr_frags = k; 2798 2799 end: 2800 skb->tail += delta; 2801 skb->data_len -= delta; 2802 2803 if (!skb->data_len) 2804 skb_zcopy_clear(skb, false); 2805 2806 return skb_tail_pointer(skb); 2807 } 2808 EXPORT_SYMBOL(__pskb_pull_tail); 2809 2810 /** 2811 * skb_copy_bits - copy bits from skb to kernel buffer 2812 * @skb: source skb 2813 * @offset: offset in source 2814 * @to: destination buffer 2815 * @len: number of bytes to copy 2816 * 2817 * Copy the specified number of bytes from the source skb to the 2818 * destination buffer. 2819 * 2820 * CAUTION ! : 2821 * If its prototype is ever changed, 2822 * check arch/{*}/net/{*}.S files, 2823 * since it is called from BPF assembly code. 2824 */ 2825 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2826 { 2827 int start = skb_headlen(skb); 2828 struct sk_buff *frag_iter; 2829 int i, copy; 2830 2831 if (offset > (int)skb->len - len) 2832 goto fault; 2833 2834 /* Copy header. */ 2835 if ((copy = start - offset) > 0) { 2836 if (copy > len) 2837 copy = len; 2838 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2839 if ((len -= copy) == 0) 2840 return 0; 2841 offset += copy; 2842 to += copy; 2843 } 2844 2845 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2846 int end; 2847 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2848 2849 WARN_ON(start > offset + len); 2850 2851 end = start + skb_frag_size(f); 2852 if ((copy = end - offset) > 0) { 2853 u32 p_off, p_len, copied; 2854 struct page *p; 2855 u8 *vaddr; 2856 2857 if (copy > len) 2858 copy = len; 2859 2860 skb_frag_foreach_page(f, 2861 skb_frag_off(f) + offset - start, 2862 copy, p, p_off, p_len, copied) { 2863 vaddr = kmap_atomic(p); 2864 memcpy(to + copied, vaddr + p_off, p_len); 2865 kunmap_atomic(vaddr); 2866 } 2867 2868 if ((len -= copy) == 0) 2869 return 0; 2870 offset += copy; 2871 to += copy; 2872 } 2873 start = end; 2874 } 2875 2876 skb_walk_frags(skb, frag_iter) { 2877 int end; 2878 2879 WARN_ON(start > offset + len); 2880 2881 end = start + frag_iter->len; 2882 if ((copy = end - offset) > 0) { 2883 if (copy > len) 2884 copy = len; 2885 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2886 goto fault; 2887 if ((len -= copy) == 0) 2888 return 0; 2889 offset += copy; 2890 to += copy; 2891 } 2892 start = end; 2893 } 2894 2895 if (!len) 2896 return 0; 2897 2898 fault: 2899 return -EFAULT; 2900 } 2901 EXPORT_SYMBOL(skb_copy_bits); 2902 2903 /* 2904 * Callback from splice_to_pipe(), if we need to release some pages 2905 * at the end of the spd in case we error'ed out in filling the pipe. 2906 */ 2907 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2908 { 2909 put_page(spd->pages[i]); 2910 } 2911 2912 static struct page *linear_to_page(struct page *page, unsigned int *len, 2913 unsigned int *offset, 2914 struct sock *sk) 2915 { 2916 struct page_frag *pfrag = sk_page_frag(sk); 2917 2918 if (!sk_page_frag_refill(sk, pfrag)) 2919 return NULL; 2920 2921 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2922 2923 memcpy(page_address(pfrag->page) + pfrag->offset, 2924 page_address(page) + *offset, *len); 2925 *offset = pfrag->offset; 2926 pfrag->offset += *len; 2927 2928 return pfrag->page; 2929 } 2930 2931 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2932 struct page *page, 2933 unsigned int offset) 2934 { 2935 return spd->nr_pages && 2936 spd->pages[spd->nr_pages - 1] == page && 2937 (spd->partial[spd->nr_pages - 1].offset + 2938 spd->partial[spd->nr_pages - 1].len == offset); 2939 } 2940 2941 /* 2942 * Fill page/offset/length into spd, if it can hold more pages. 2943 */ 2944 static bool spd_fill_page(struct splice_pipe_desc *spd, 2945 struct pipe_inode_info *pipe, struct page *page, 2946 unsigned int *len, unsigned int offset, 2947 bool linear, 2948 struct sock *sk) 2949 { 2950 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2951 return true; 2952 2953 if (linear) { 2954 page = linear_to_page(page, len, &offset, sk); 2955 if (!page) 2956 return true; 2957 } 2958 if (spd_can_coalesce(spd, page, offset)) { 2959 spd->partial[spd->nr_pages - 1].len += *len; 2960 return false; 2961 } 2962 get_page(page); 2963 spd->pages[spd->nr_pages] = page; 2964 spd->partial[spd->nr_pages].len = *len; 2965 spd->partial[spd->nr_pages].offset = offset; 2966 spd->nr_pages++; 2967 2968 return false; 2969 } 2970 2971 static bool __splice_segment(struct page *page, unsigned int poff, 2972 unsigned int plen, unsigned int *off, 2973 unsigned int *len, 2974 struct splice_pipe_desc *spd, bool linear, 2975 struct sock *sk, 2976 struct pipe_inode_info *pipe) 2977 { 2978 if (!*len) 2979 return true; 2980 2981 /* skip this segment if already processed */ 2982 if (*off >= plen) { 2983 *off -= plen; 2984 return false; 2985 } 2986 2987 /* ignore any bits we already processed */ 2988 poff += *off; 2989 plen -= *off; 2990 *off = 0; 2991 2992 do { 2993 unsigned int flen = min(*len, plen); 2994 2995 if (spd_fill_page(spd, pipe, page, &flen, poff, 2996 linear, sk)) 2997 return true; 2998 poff += flen; 2999 plen -= flen; 3000 *len -= flen; 3001 } while (*len && plen); 3002 3003 return false; 3004 } 3005 3006 /* 3007 * Map linear and fragment data from the skb to spd. It reports true if the 3008 * pipe is full or if we already spliced the requested length. 3009 */ 3010 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3011 unsigned int *offset, unsigned int *len, 3012 struct splice_pipe_desc *spd, struct sock *sk) 3013 { 3014 int seg; 3015 struct sk_buff *iter; 3016 3017 /* map the linear part : 3018 * If skb->head_frag is set, this 'linear' part is backed by a 3019 * fragment, and if the head is not shared with any clones then 3020 * we can avoid a copy since we own the head portion of this page. 3021 */ 3022 if (__splice_segment(virt_to_page(skb->data), 3023 (unsigned long) skb->data & (PAGE_SIZE - 1), 3024 skb_headlen(skb), 3025 offset, len, spd, 3026 skb_head_is_locked(skb), 3027 sk, pipe)) 3028 return true; 3029 3030 /* 3031 * then map the fragments 3032 */ 3033 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3034 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3035 3036 if (__splice_segment(skb_frag_page(f), 3037 skb_frag_off(f), skb_frag_size(f), 3038 offset, len, spd, false, sk, pipe)) 3039 return true; 3040 } 3041 3042 skb_walk_frags(skb, iter) { 3043 if (*offset >= iter->len) { 3044 *offset -= iter->len; 3045 continue; 3046 } 3047 /* __skb_splice_bits() only fails if the output has no room 3048 * left, so no point in going over the frag_list for the error 3049 * case. 3050 */ 3051 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3052 return true; 3053 } 3054 3055 return false; 3056 } 3057 3058 /* 3059 * Map data from the skb to a pipe. Should handle both the linear part, 3060 * the fragments, and the frag list. 3061 */ 3062 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3063 struct pipe_inode_info *pipe, unsigned int tlen, 3064 unsigned int flags) 3065 { 3066 struct partial_page partial[MAX_SKB_FRAGS]; 3067 struct page *pages[MAX_SKB_FRAGS]; 3068 struct splice_pipe_desc spd = { 3069 .pages = pages, 3070 .partial = partial, 3071 .nr_pages_max = MAX_SKB_FRAGS, 3072 .ops = &nosteal_pipe_buf_ops, 3073 .spd_release = sock_spd_release, 3074 }; 3075 int ret = 0; 3076 3077 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3078 3079 if (spd.nr_pages) 3080 ret = splice_to_pipe(pipe, &spd); 3081 3082 return ret; 3083 } 3084 EXPORT_SYMBOL_GPL(skb_splice_bits); 3085 3086 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3087 { 3088 struct socket *sock = sk->sk_socket; 3089 size_t size = msg_data_left(msg); 3090 3091 if (!sock) 3092 return -EINVAL; 3093 3094 if (!sock->ops->sendmsg_locked) 3095 return sock_no_sendmsg_locked(sk, msg, size); 3096 3097 return sock->ops->sendmsg_locked(sk, msg, size); 3098 } 3099 3100 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3101 { 3102 struct socket *sock = sk->sk_socket; 3103 3104 if (!sock) 3105 return -EINVAL; 3106 return sock_sendmsg(sock, msg); 3107 } 3108 3109 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3110 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3111 int len, sendmsg_func sendmsg) 3112 { 3113 unsigned int orig_len = len; 3114 struct sk_buff *head = skb; 3115 unsigned short fragidx; 3116 int slen, ret; 3117 3118 do_frag_list: 3119 3120 /* Deal with head data */ 3121 while (offset < skb_headlen(skb) && len) { 3122 struct kvec kv; 3123 struct msghdr msg; 3124 3125 slen = min_t(int, len, skb_headlen(skb) - offset); 3126 kv.iov_base = skb->data + offset; 3127 kv.iov_len = slen; 3128 memset(&msg, 0, sizeof(msg)); 3129 msg.msg_flags = MSG_DONTWAIT; 3130 3131 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3132 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3133 sendmsg_unlocked, sk, &msg); 3134 if (ret <= 0) 3135 goto error; 3136 3137 offset += ret; 3138 len -= ret; 3139 } 3140 3141 /* All the data was skb head? */ 3142 if (!len) 3143 goto out; 3144 3145 /* Make offset relative to start of frags */ 3146 offset -= skb_headlen(skb); 3147 3148 /* Find where we are in frag list */ 3149 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3150 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3151 3152 if (offset < skb_frag_size(frag)) 3153 break; 3154 3155 offset -= skb_frag_size(frag); 3156 } 3157 3158 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3159 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3160 3161 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3162 3163 while (slen) { 3164 struct bio_vec bvec; 3165 struct msghdr msg = { 3166 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3167 }; 3168 3169 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3170 skb_frag_off(frag) + offset); 3171 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3172 slen); 3173 3174 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3175 sendmsg_unlocked, sk, &msg); 3176 if (ret <= 0) 3177 goto error; 3178 3179 len -= ret; 3180 offset += ret; 3181 slen -= ret; 3182 } 3183 3184 offset = 0; 3185 } 3186 3187 if (len) { 3188 /* Process any frag lists */ 3189 3190 if (skb == head) { 3191 if (skb_has_frag_list(skb)) { 3192 skb = skb_shinfo(skb)->frag_list; 3193 goto do_frag_list; 3194 } 3195 } else if (skb->next) { 3196 skb = skb->next; 3197 goto do_frag_list; 3198 } 3199 } 3200 3201 out: 3202 return orig_len - len; 3203 3204 error: 3205 return orig_len == len ? ret : orig_len - len; 3206 } 3207 3208 /* Send skb data on a socket. Socket must be locked. */ 3209 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3210 int len) 3211 { 3212 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3213 } 3214 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3215 3216 /* Send skb data on a socket. Socket must be unlocked. */ 3217 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3218 { 3219 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3220 } 3221 3222 /** 3223 * skb_store_bits - store bits from kernel buffer to skb 3224 * @skb: destination buffer 3225 * @offset: offset in destination 3226 * @from: source buffer 3227 * @len: number of bytes to copy 3228 * 3229 * Copy the specified number of bytes from the source buffer to the 3230 * destination skb. This function handles all the messy bits of 3231 * traversing fragment lists and such. 3232 */ 3233 3234 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3235 { 3236 int start = skb_headlen(skb); 3237 struct sk_buff *frag_iter; 3238 int i, copy; 3239 3240 if (offset > (int)skb->len - len) 3241 goto fault; 3242 3243 if ((copy = start - offset) > 0) { 3244 if (copy > len) 3245 copy = len; 3246 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3247 if ((len -= copy) == 0) 3248 return 0; 3249 offset += copy; 3250 from += copy; 3251 } 3252 3253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3254 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3255 int end; 3256 3257 WARN_ON(start > offset + len); 3258 3259 end = start + skb_frag_size(frag); 3260 if ((copy = end - offset) > 0) { 3261 u32 p_off, p_len, copied; 3262 struct page *p; 3263 u8 *vaddr; 3264 3265 if (copy > len) 3266 copy = len; 3267 3268 skb_frag_foreach_page(frag, 3269 skb_frag_off(frag) + offset - start, 3270 copy, p, p_off, p_len, copied) { 3271 vaddr = kmap_atomic(p); 3272 memcpy(vaddr + p_off, from + copied, p_len); 3273 kunmap_atomic(vaddr); 3274 } 3275 3276 if ((len -= copy) == 0) 3277 return 0; 3278 offset += copy; 3279 from += copy; 3280 } 3281 start = end; 3282 } 3283 3284 skb_walk_frags(skb, frag_iter) { 3285 int end; 3286 3287 WARN_ON(start > offset + len); 3288 3289 end = start + frag_iter->len; 3290 if ((copy = end - offset) > 0) { 3291 if (copy > len) 3292 copy = len; 3293 if (skb_store_bits(frag_iter, offset - start, 3294 from, copy)) 3295 goto fault; 3296 if ((len -= copy) == 0) 3297 return 0; 3298 offset += copy; 3299 from += copy; 3300 } 3301 start = end; 3302 } 3303 if (!len) 3304 return 0; 3305 3306 fault: 3307 return -EFAULT; 3308 } 3309 EXPORT_SYMBOL(skb_store_bits); 3310 3311 /* Checksum skb data. */ 3312 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3313 __wsum csum, const struct skb_checksum_ops *ops) 3314 { 3315 int start = skb_headlen(skb); 3316 int i, copy = start - offset; 3317 struct sk_buff *frag_iter; 3318 int pos = 0; 3319 3320 /* Checksum header. */ 3321 if (copy > 0) { 3322 if (copy > len) 3323 copy = len; 3324 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3325 skb->data + offset, copy, csum); 3326 if ((len -= copy) == 0) 3327 return csum; 3328 offset += copy; 3329 pos = copy; 3330 } 3331 3332 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3333 int end; 3334 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3335 3336 WARN_ON(start > offset + len); 3337 3338 end = start + skb_frag_size(frag); 3339 if ((copy = end - offset) > 0) { 3340 u32 p_off, p_len, copied; 3341 struct page *p; 3342 __wsum csum2; 3343 u8 *vaddr; 3344 3345 if (copy > len) 3346 copy = len; 3347 3348 skb_frag_foreach_page(frag, 3349 skb_frag_off(frag) + offset - start, 3350 copy, p, p_off, p_len, copied) { 3351 vaddr = kmap_atomic(p); 3352 csum2 = INDIRECT_CALL_1(ops->update, 3353 csum_partial_ext, 3354 vaddr + p_off, p_len, 0); 3355 kunmap_atomic(vaddr); 3356 csum = INDIRECT_CALL_1(ops->combine, 3357 csum_block_add_ext, csum, 3358 csum2, pos, p_len); 3359 pos += p_len; 3360 } 3361 3362 if (!(len -= copy)) 3363 return csum; 3364 offset += copy; 3365 } 3366 start = end; 3367 } 3368 3369 skb_walk_frags(skb, frag_iter) { 3370 int end; 3371 3372 WARN_ON(start > offset + len); 3373 3374 end = start + frag_iter->len; 3375 if ((copy = end - offset) > 0) { 3376 __wsum csum2; 3377 if (copy > len) 3378 copy = len; 3379 csum2 = __skb_checksum(frag_iter, offset - start, 3380 copy, 0, ops); 3381 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3382 csum, csum2, pos, copy); 3383 if ((len -= copy) == 0) 3384 return csum; 3385 offset += copy; 3386 pos += copy; 3387 } 3388 start = end; 3389 } 3390 BUG_ON(len); 3391 3392 return csum; 3393 } 3394 EXPORT_SYMBOL(__skb_checksum); 3395 3396 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3397 int len, __wsum csum) 3398 { 3399 const struct skb_checksum_ops ops = { 3400 .update = csum_partial_ext, 3401 .combine = csum_block_add_ext, 3402 }; 3403 3404 return __skb_checksum(skb, offset, len, csum, &ops); 3405 } 3406 EXPORT_SYMBOL(skb_checksum); 3407 3408 /* Both of above in one bottle. */ 3409 3410 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3411 u8 *to, int len) 3412 { 3413 int start = skb_headlen(skb); 3414 int i, copy = start - offset; 3415 struct sk_buff *frag_iter; 3416 int pos = 0; 3417 __wsum csum = 0; 3418 3419 /* Copy header. */ 3420 if (copy > 0) { 3421 if (copy > len) 3422 copy = len; 3423 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3424 copy); 3425 if ((len -= copy) == 0) 3426 return csum; 3427 offset += copy; 3428 to += copy; 3429 pos = copy; 3430 } 3431 3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3433 int end; 3434 3435 WARN_ON(start > offset + len); 3436 3437 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3438 if ((copy = end - offset) > 0) { 3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3440 u32 p_off, p_len, copied; 3441 struct page *p; 3442 __wsum csum2; 3443 u8 *vaddr; 3444 3445 if (copy > len) 3446 copy = len; 3447 3448 skb_frag_foreach_page(frag, 3449 skb_frag_off(frag) + offset - start, 3450 copy, p, p_off, p_len, copied) { 3451 vaddr = kmap_atomic(p); 3452 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3453 to + copied, 3454 p_len); 3455 kunmap_atomic(vaddr); 3456 csum = csum_block_add(csum, csum2, pos); 3457 pos += p_len; 3458 } 3459 3460 if (!(len -= copy)) 3461 return csum; 3462 offset += copy; 3463 to += copy; 3464 } 3465 start = end; 3466 } 3467 3468 skb_walk_frags(skb, frag_iter) { 3469 __wsum csum2; 3470 int end; 3471 3472 WARN_ON(start > offset + len); 3473 3474 end = start + frag_iter->len; 3475 if ((copy = end - offset) > 0) { 3476 if (copy > len) 3477 copy = len; 3478 csum2 = skb_copy_and_csum_bits(frag_iter, 3479 offset - start, 3480 to, copy); 3481 csum = csum_block_add(csum, csum2, pos); 3482 if ((len -= copy) == 0) 3483 return csum; 3484 offset += copy; 3485 to += copy; 3486 pos += copy; 3487 } 3488 start = end; 3489 } 3490 BUG_ON(len); 3491 return csum; 3492 } 3493 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3494 3495 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3496 { 3497 __sum16 sum; 3498 3499 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3500 /* See comments in __skb_checksum_complete(). */ 3501 if (likely(!sum)) { 3502 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3503 !skb->csum_complete_sw) 3504 netdev_rx_csum_fault(skb->dev, skb); 3505 } 3506 if (!skb_shared(skb)) 3507 skb->csum_valid = !sum; 3508 return sum; 3509 } 3510 EXPORT_SYMBOL(__skb_checksum_complete_head); 3511 3512 /* This function assumes skb->csum already holds pseudo header's checksum, 3513 * which has been changed from the hardware checksum, for example, by 3514 * __skb_checksum_validate_complete(). And, the original skb->csum must 3515 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3516 * 3517 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3518 * zero. The new checksum is stored back into skb->csum unless the skb is 3519 * shared. 3520 */ 3521 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3522 { 3523 __wsum csum; 3524 __sum16 sum; 3525 3526 csum = skb_checksum(skb, 0, skb->len, 0); 3527 3528 sum = csum_fold(csum_add(skb->csum, csum)); 3529 /* This check is inverted, because we already knew the hardware 3530 * checksum is invalid before calling this function. So, if the 3531 * re-computed checksum is valid instead, then we have a mismatch 3532 * between the original skb->csum and skb_checksum(). This means either 3533 * the original hardware checksum is incorrect or we screw up skb->csum 3534 * when moving skb->data around. 3535 */ 3536 if (likely(!sum)) { 3537 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3538 !skb->csum_complete_sw) 3539 netdev_rx_csum_fault(skb->dev, skb); 3540 } 3541 3542 if (!skb_shared(skb)) { 3543 /* Save full packet checksum */ 3544 skb->csum = csum; 3545 skb->ip_summed = CHECKSUM_COMPLETE; 3546 skb->csum_complete_sw = 1; 3547 skb->csum_valid = !sum; 3548 } 3549 3550 return sum; 3551 } 3552 EXPORT_SYMBOL(__skb_checksum_complete); 3553 3554 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3555 { 3556 net_warn_ratelimited( 3557 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3558 __func__); 3559 return 0; 3560 } 3561 3562 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3563 int offset, int len) 3564 { 3565 net_warn_ratelimited( 3566 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3567 __func__); 3568 return 0; 3569 } 3570 3571 static const struct skb_checksum_ops default_crc32c_ops = { 3572 .update = warn_crc32c_csum_update, 3573 .combine = warn_crc32c_csum_combine, 3574 }; 3575 3576 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3577 &default_crc32c_ops; 3578 EXPORT_SYMBOL(crc32c_csum_stub); 3579 3580 /** 3581 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3582 * @from: source buffer 3583 * 3584 * Calculates the amount of linear headroom needed in the 'to' skb passed 3585 * into skb_zerocopy(). 3586 */ 3587 unsigned int 3588 skb_zerocopy_headlen(const struct sk_buff *from) 3589 { 3590 unsigned int hlen = 0; 3591 3592 if (!from->head_frag || 3593 skb_headlen(from) < L1_CACHE_BYTES || 3594 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3595 hlen = skb_headlen(from); 3596 if (!hlen) 3597 hlen = from->len; 3598 } 3599 3600 if (skb_has_frag_list(from)) 3601 hlen = from->len; 3602 3603 return hlen; 3604 } 3605 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3606 3607 /** 3608 * skb_zerocopy - Zero copy skb to skb 3609 * @to: destination buffer 3610 * @from: source buffer 3611 * @len: number of bytes to copy from source buffer 3612 * @hlen: size of linear headroom in destination buffer 3613 * 3614 * Copies up to `len` bytes from `from` to `to` by creating references 3615 * to the frags in the source buffer. 3616 * 3617 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3618 * headroom in the `to` buffer. 3619 * 3620 * Return value: 3621 * 0: everything is OK 3622 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3623 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3624 */ 3625 int 3626 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3627 { 3628 int i, j = 0; 3629 int plen = 0; /* length of skb->head fragment */ 3630 int ret; 3631 struct page *page; 3632 unsigned int offset; 3633 3634 BUG_ON(!from->head_frag && !hlen); 3635 3636 /* dont bother with small payloads */ 3637 if (len <= skb_tailroom(to)) 3638 return skb_copy_bits(from, 0, skb_put(to, len), len); 3639 3640 if (hlen) { 3641 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3642 if (unlikely(ret)) 3643 return ret; 3644 len -= hlen; 3645 } else { 3646 plen = min_t(int, skb_headlen(from), len); 3647 if (plen) { 3648 page = virt_to_head_page(from->head); 3649 offset = from->data - (unsigned char *)page_address(page); 3650 __skb_fill_page_desc(to, 0, page, offset, plen); 3651 get_page(page); 3652 j = 1; 3653 len -= plen; 3654 } 3655 } 3656 3657 skb_len_add(to, len + plen); 3658 3659 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3660 skb_tx_error(from); 3661 return -ENOMEM; 3662 } 3663 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3664 3665 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3666 int size; 3667 3668 if (!len) 3669 break; 3670 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3671 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3672 len); 3673 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3674 len -= size; 3675 skb_frag_ref(to, j); 3676 j++; 3677 } 3678 skb_shinfo(to)->nr_frags = j; 3679 3680 return 0; 3681 } 3682 EXPORT_SYMBOL_GPL(skb_zerocopy); 3683 3684 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3685 { 3686 __wsum csum; 3687 long csstart; 3688 3689 if (skb->ip_summed == CHECKSUM_PARTIAL) 3690 csstart = skb_checksum_start_offset(skb); 3691 else 3692 csstart = skb_headlen(skb); 3693 3694 BUG_ON(csstart > skb_headlen(skb)); 3695 3696 skb_copy_from_linear_data(skb, to, csstart); 3697 3698 csum = 0; 3699 if (csstart != skb->len) 3700 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3701 skb->len - csstart); 3702 3703 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3704 long csstuff = csstart + skb->csum_offset; 3705 3706 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3707 } 3708 } 3709 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3710 3711 /** 3712 * skb_dequeue - remove from the head of the queue 3713 * @list: list to dequeue from 3714 * 3715 * Remove the head of the list. The list lock is taken so the function 3716 * may be used safely with other locking list functions. The head item is 3717 * returned or %NULL if the list is empty. 3718 */ 3719 3720 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3721 { 3722 unsigned long flags; 3723 struct sk_buff *result; 3724 3725 spin_lock_irqsave(&list->lock, flags); 3726 result = __skb_dequeue(list); 3727 spin_unlock_irqrestore(&list->lock, flags); 3728 return result; 3729 } 3730 EXPORT_SYMBOL(skb_dequeue); 3731 3732 /** 3733 * skb_dequeue_tail - remove from the tail of the queue 3734 * @list: list to dequeue from 3735 * 3736 * Remove the tail of the list. The list lock is taken so the function 3737 * may be used safely with other locking list functions. The tail item is 3738 * returned or %NULL if the list is empty. 3739 */ 3740 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3741 { 3742 unsigned long flags; 3743 struct sk_buff *result; 3744 3745 spin_lock_irqsave(&list->lock, flags); 3746 result = __skb_dequeue_tail(list); 3747 spin_unlock_irqrestore(&list->lock, flags); 3748 return result; 3749 } 3750 EXPORT_SYMBOL(skb_dequeue_tail); 3751 3752 /** 3753 * skb_queue_purge_reason - empty a list 3754 * @list: list to empty 3755 * @reason: drop reason 3756 * 3757 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3758 * the list and one reference dropped. This function takes the list 3759 * lock and is atomic with respect to other list locking functions. 3760 */ 3761 void skb_queue_purge_reason(struct sk_buff_head *list, 3762 enum skb_drop_reason reason) 3763 { 3764 struct sk_buff_head tmp; 3765 unsigned long flags; 3766 3767 if (skb_queue_empty_lockless(list)) 3768 return; 3769 3770 __skb_queue_head_init(&tmp); 3771 3772 spin_lock_irqsave(&list->lock, flags); 3773 skb_queue_splice_init(list, &tmp); 3774 spin_unlock_irqrestore(&list->lock, flags); 3775 3776 __skb_queue_purge_reason(&tmp, reason); 3777 } 3778 EXPORT_SYMBOL(skb_queue_purge_reason); 3779 3780 /** 3781 * skb_rbtree_purge - empty a skb rbtree 3782 * @root: root of the rbtree to empty 3783 * Return value: the sum of truesizes of all purged skbs. 3784 * 3785 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3786 * the list and one reference dropped. This function does not take 3787 * any lock. Synchronization should be handled by the caller (e.g., TCP 3788 * out-of-order queue is protected by the socket lock). 3789 */ 3790 unsigned int skb_rbtree_purge(struct rb_root *root) 3791 { 3792 struct rb_node *p = rb_first(root); 3793 unsigned int sum = 0; 3794 3795 while (p) { 3796 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3797 3798 p = rb_next(p); 3799 rb_erase(&skb->rbnode, root); 3800 sum += skb->truesize; 3801 kfree_skb(skb); 3802 } 3803 return sum; 3804 } 3805 3806 void skb_errqueue_purge(struct sk_buff_head *list) 3807 { 3808 struct sk_buff *skb, *next; 3809 struct sk_buff_head kill; 3810 unsigned long flags; 3811 3812 __skb_queue_head_init(&kill); 3813 3814 spin_lock_irqsave(&list->lock, flags); 3815 skb_queue_walk_safe(list, skb, next) { 3816 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3817 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3818 continue; 3819 __skb_unlink(skb, list); 3820 __skb_queue_tail(&kill, skb); 3821 } 3822 spin_unlock_irqrestore(&list->lock, flags); 3823 __skb_queue_purge(&kill); 3824 } 3825 EXPORT_SYMBOL(skb_errqueue_purge); 3826 3827 /** 3828 * skb_queue_head - queue a buffer at the list head 3829 * @list: list to use 3830 * @newsk: buffer to queue 3831 * 3832 * Queue a buffer at the start of the list. This function takes the 3833 * list lock and can be used safely with other locking &sk_buff functions 3834 * safely. 3835 * 3836 * A buffer cannot be placed on two lists at the same time. 3837 */ 3838 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3839 { 3840 unsigned long flags; 3841 3842 spin_lock_irqsave(&list->lock, flags); 3843 __skb_queue_head(list, newsk); 3844 spin_unlock_irqrestore(&list->lock, flags); 3845 } 3846 EXPORT_SYMBOL(skb_queue_head); 3847 3848 /** 3849 * skb_queue_tail - queue a buffer at the list tail 3850 * @list: list to use 3851 * @newsk: buffer to queue 3852 * 3853 * Queue a buffer at the tail of the list. This function takes the 3854 * list lock and can be used safely with other locking &sk_buff functions 3855 * safely. 3856 * 3857 * A buffer cannot be placed on two lists at the same time. 3858 */ 3859 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3860 { 3861 unsigned long flags; 3862 3863 spin_lock_irqsave(&list->lock, flags); 3864 __skb_queue_tail(list, newsk); 3865 spin_unlock_irqrestore(&list->lock, flags); 3866 } 3867 EXPORT_SYMBOL(skb_queue_tail); 3868 3869 /** 3870 * skb_unlink - remove a buffer from a list 3871 * @skb: buffer to remove 3872 * @list: list to use 3873 * 3874 * Remove a packet from a list. The list locks are taken and this 3875 * function is atomic with respect to other list locked calls 3876 * 3877 * You must know what list the SKB is on. 3878 */ 3879 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3880 { 3881 unsigned long flags; 3882 3883 spin_lock_irqsave(&list->lock, flags); 3884 __skb_unlink(skb, list); 3885 spin_unlock_irqrestore(&list->lock, flags); 3886 } 3887 EXPORT_SYMBOL(skb_unlink); 3888 3889 /** 3890 * skb_append - append a buffer 3891 * @old: buffer to insert after 3892 * @newsk: buffer to insert 3893 * @list: list to use 3894 * 3895 * Place a packet after a given packet in a list. The list locks are taken 3896 * and this function is atomic with respect to other list locked calls. 3897 * A buffer cannot be placed on two lists at the same time. 3898 */ 3899 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3900 { 3901 unsigned long flags; 3902 3903 spin_lock_irqsave(&list->lock, flags); 3904 __skb_queue_after(list, old, newsk); 3905 spin_unlock_irqrestore(&list->lock, flags); 3906 } 3907 EXPORT_SYMBOL(skb_append); 3908 3909 static inline void skb_split_inside_header(struct sk_buff *skb, 3910 struct sk_buff* skb1, 3911 const u32 len, const int pos) 3912 { 3913 int i; 3914 3915 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3916 pos - len); 3917 /* And move data appendix as is. */ 3918 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3919 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3920 3921 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3922 skb_shinfo(skb)->nr_frags = 0; 3923 skb1->data_len = skb->data_len; 3924 skb1->len += skb1->data_len; 3925 skb->data_len = 0; 3926 skb->len = len; 3927 skb_set_tail_pointer(skb, len); 3928 } 3929 3930 static inline void skb_split_no_header(struct sk_buff *skb, 3931 struct sk_buff* skb1, 3932 const u32 len, int pos) 3933 { 3934 int i, k = 0; 3935 const int nfrags = skb_shinfo(skb)->nr_frags; 3936 3937 skb_shinfo(skb)->nr_frags = 0; 3938 skb1->len = skb1->data_len = skb->len - len; 3939 skb->len = len; 3940 skb->data_len = len - pos; 3941 3942 for (i = 0; i < nfrags; i++) { 3943 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3944 3945 if (pos + size > len) { 3946 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3947 3948 if (pos < len) { 3949 /* Split frag. 3950 * We have two variants in this case: 3951 * 1. Move all the frag to the second 3952 * part, if it is possible. F.e. 3953 * this approach is mandatory for TUX, 3954 * where splitting is expensive. 3955 * 2. Split is accurately. We make this. 3956 */ 3957 skb_frag_ref(skb, i); 3958 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3959 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3960 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3961 skb_shinfo(skb)->nr_frags++; 3962 } 3963 k++; 3964 } else 3965 skb_shinfo(skb)->nr_frags++; 3966 pos += size; 3967 } 3968 skb_shinfo(skb1)->nr_frags = k; 3969 } 3970 3971 /** 3972 * skb_split - Split fragmented skb to two parts at length len. 3973 * @skb: the buffer to split 3974 * @skb1: the buffer to receive the second part 3975 * @len: new length for skb 3976 */ 3977 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3978 { 3979 int pos = skb_headlen(skb); 3980 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3981 3982 skb_zcopy_downgrade_managed(skb); 3983 3984 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3985 skb_zerocopy_clone(skb1, skb, 0); 3986 if (len < pos) /* Split line is inside header. */ 3987 skb_split_inside_header(skb, skb1, len, pos); 3988 else /* Second chunk has no header, nothing to copy. */ 3989 skb_split_no_header(skb, skb1, len, pos); 3990 } 3991 EXPORT_SYMBOL(skb_split); 3992 3993 /* Shifting from/to a cloned skb is a no-go. 3994 * 3995 * Caller cannot keep skb_shinfo related pointers past calling here! 3996 */ 3997 static int skb_prepare_for_shift(struct sk_buff *skb) 3998 { 3999 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4000 } 4001 4002 /** 4003 * skb_shift - Shifts paged data partially from skb to another 4004 * @tgt: buffer into which tail data gets added 4005 * @skb: buffer from which the paged data comes from 4006 * @shiftlen: shift up to this many bytes 4007 * 4008 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4009 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4010 * It's up to caller to free skb if everything was shifted. 4011 * 4012 * If @tgt runs out of frags, the whole operation is aborted. 4013 * 4014 * Skb cannot include anything else but paged data while tgt is allowed 4015 * to have non-paged data as well. 4016 * 4017 * TODO: full sized shift could be optimized but that would need 4018 * specialized skb free'er to handle frags without up-to-date nr_frags. 4019 */ 4020 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4021 { 4022 int from, to, merge, todo; 4023 skb_frag_t *fragfrom, *fragto; 4024 4025 BUG_ON(shiftlen > skb->len); 4026 4027 if (skb_headlen(skb)) 4028 return 0; 4029 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4030 return 0; 4031 4032 todo = shiftlen; 4033 from = 0; 4034 to = skb_shinfo(tgt)->nr_frags; 4035 fragfrom = &skb_shinfo(skb)->frags[from]; 4036 4037 /* Actual merge is delayed until the point when we know we can 4038 * commit all, so that we don't have to undo partial changes 4039 */ 4040 if (!to || 4041 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4042 skb_frag_off(fragfrom))) { 4043 merge = -1; 4044 } else { 4045 merge = to - 1; 4046 4047 todo -= skb_frag_size(fragfrom); 4048 if (todo < 0) { 4049 if (skb_prepare_for_shift(skb) || 4050 skb_prepare_for_shift(tgt)) 4051 return 0; 4052 4053 /* All previous frag pointers might be stale! */ 4054 fragfrom = &skb_shinfo(skb)->frags[from]; 4055 fragto = &skb_shinfo(tgt)->frags[merge]; 4056 4057 skb_frag_size_add(fragto, shiftlen); 4058 skb_frag_size_sub(fragfrom, shiftlen); 4059 skb_frag_off_add(fragfrom, shiftlen); 4060 4061 goto onlymerged; 4062 } 4063 4064 from++; 4065 } 4066 4067 /* Skip full, not-fitting skb to avoid expensive operations */ 4068 if ((shiftlen == skb->len) && 4069 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4070 return 0; 4071 4072 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4073 return 0; 4074 4075 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4076 if (to == MAX_SKB_FRAGS) 4077 return 0; 4078 4079 fragfrom = &skb_shinfo(skb)->frags[from]; 4080 fragto = &skb_shinfo(tgt)->frags[to]; 4081 4082 if (todo >= skb_frag_size(fragfrom)) { 4083 *fragto = *fragfrom; 4084 todo -= skb_frag_size(fragfrom); 4085 from++; 4086 to++; 4087 4088 } else { 4089 __skb_frag_ref(fragfrom); 4090 skb_frag_page_copy(fragto, fragfrom); 4091 skb_frag_off_copy(fragto, fragfrom); 4092 skb_frag_size_set(fragto, todo); 4093 4094 skb_frag_off_add(fragfrom, todo); 4095 skb_frag_size_sub(fragfrom, todo); 4096 todo = 0; 4097 4098 to++; 4099 break; 4100 } 4101 } 4102 4103 /* Ready to "commit" this state change to tgt */ 4104 skb_shinfo(tgt)->nr_frags = to; 4105 4106 if (merge >= 0) { 4107 fragfrom = &skb_shinfo(skb)->frags[0]; 4108 fragto = &skb_shinfo(tgt)->frags[merge]; 4109 4110 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4111 __skb_frag_unref(fragfrom, skb->pp_recycle); 4112 } 4113 4114 /* Reposition in the original skb */ 4115 to = 0; 4116 while (from < skb_shinfo(skb)->nr_frags) 4117 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4118 skb_shinfo(skb)->nr_frags = to; 4119 4120 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4121 4122 onlymerged: 4123 /* Most likely the tgt won't ever need its checksum anymore, skb on 4124 * the other hand might need it if it needs to be resent 4125 */ 4126 tgt->ip_summed = CHECKSUM_PARTIAL; 4127 skb->ip_summed = CHECKSUM_PARTIAL; 4128 4129 skb_len_add(skb, -shiftlen); 4130 skb_len_add(tgt, shiftlen); 4131 4132 return shiftlen; 4133 } 4134 4135 /** 4136 * skb_prepare_seq_read - Prepare a sequential read of skb data 4137 * @skb: the buffer to read 4138 * @from: lower offset of data to be read 4139 * @to: upper offset of data to be read 4140 * @st: state variable 4141 * 4142 * Initializes the specified state variable. Must be called before 4143 * invoking skb_seq_read() for the first time. 4144 */ 4145 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4146 unsigned int to, struct skb_seq_state *st) 4147 { 4148 st->lower_offset = from; 4149 st->upper_offset = to; 4150 st->root_skb = st->cur_skb = skb; 4151 st->frag_idx = st->stepped_offset = 0; 4152 st->frag_data = NULL; 4153 st->frag_off = 0; 4154 } 4155 EXPORT_SYMBOL(skb_prepare_seq_read); 4156 4157 /** 4158 * skb_seq_read - Sequentially read skb data 4159 * @consumed: number of bytes consumed by the caller so far 4160 * @data: destination pointer for data to be returned 4161 * @st: state variable 4162 * 4163 * Reads a block of skb data at @consumed relative to the 4164 * lower offset specified to skb_prepare_seq_read(). Assigns 4165 * the head of the data block to @data and returns the length 4166 * of the block or 0 if the end of the skb data or the upper 4167 * offset has been reached. 4168 * 4169 * The caller is not required to consume all of the data 4170 * returned, i.e. @consumed is typically set to the number 4171 * of bytes already consumed and the next call to 4172 * skb_seq_read() will return the remaining part of the block. 4173 * 4174 * Note 1: The size of each block of data returned can be arbitrary, 4175 * this limitation is the cost for zerocopy sequential 4176 * reads of potentially non linear data. 4177 * 4178 * Note 2: Fragment lists within fragments are not implemented 4179 * at the moment, state->root_skb could be replaced with 4180 * a stack for this purpose. 4181 */ 4182 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4183 struct skb_seq_state *st) 4184 { 4185 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4186 skb_frag_t *frag; 4187 4188 if (unlikely(abs_offset >= st->upper_offset)) { 4189 if (st->frag_data) { 4190 kunmap_atomic(st->frag_data); 4191 st->frag_data = NULL; 4192 } 4193 return 0; 4194 } 4195 4196 next_skb: 4197 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4198 4199 if (abs_offset < block_limit && !st->frag_data) { 4200 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4201 return block_limit - abs_offset; 4202 } 4203 4204 if (st->frag_idx == 0 && !st->frag_data) 4205 st->stepped_offset += skb_headlen(st->cur_skb); 4206 4207 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4208 unsigned int pg_idx, pg_off, pg_sz; 4209 4210 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4211 4212 pg_idx = 0; 4213 pg_off = skb_frag_off(frag); 4214 pg_sz = skb_frag_size(frag); 4215 4216 if (skb_frag_must_loop(skb_frag_page(frag))) { 4217 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4218 pg_off = offset_in_page(pg_off + st->frag_off); 4219 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4220 PAGE_SIZE - pg_off); 4221 } 4222 4223 block_limit = pg_sz + st->stepped_offset; 4224 if (abs_offset < block_limit) { 4225 if (!st->frag_data) 4226 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4227 4228 *data = (u8 *)st->frag_data + pg_off + 4229 (abs_offset - st->stepped_offset); 4230 4231 return block_limit - abs_offset; 4232 } 4233 4234 if (st->frag_data) { 4235 kunmap_atomic(st->frag_data); 4236 st->frag_data = NULL; 4237 } 4238 4239 st->stepped_offset += pg_sz; 4240 st->frag_off += pg_sz; 4241 if (st->frag_off == skb_frag_size(frag)) { 4242 st->frag_off = 0; 4243 st->frag_idx++; 4244 } 4245 } 4246 4247 if (st->frag_data) { 4248 kunmap_atomic(st->frag_data); 4249 st->frag_data = NULL; 4250 } 4251 4252 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4253 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4254 st->frag_idx = 0; 4255 goto next_skb; 4256 } else if (st->cur_skb->next) { 4257 st->cur_skb = st->cur_skb->next; 4258 st->frag_idx = 0; 4259 goto next_skb; 4260 } 4261 4262 return 0; 4263 } 4264 EXPORT_SYMBOL(skb_seq_read); 4265 4266 /** 4267 * skb_abort_seq_read - Abort a sequential read of skb data 4268 * @st: state variable 4269 * 4270 * Must be called if skb_seq_read() was not called until it 4271 * returned 0. 4272 */ 4273 void skb_abort_seq_read(struct skb_seq_state *st) 4274 { 4275 if (st->frag_data) 4276 kunmap_atomic(st->frag_data); 4277 } 4278 EXPORT_SYMBOL(skb_abort_seq_read); 4279 4280 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4281 4282 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4283 struct ts_config *conf, 4284 struct ts_state *state) 4285 { 4286 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4287 } 4288 4289 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4290 { 4291 skb_abort_seq_read(TS_SKB_CB(state)); 4292 } 4293 4294 /** 4295 * skb_find_text - Find a text pattern in skb data 4296 * @skb: the buffer to look in 4297 * @from: search offset 4298 * @to: search limit 4299 * @config: textsearch configuration 4300 * 4301 * Finds a pattern in the skb data according to the specified 4302 * textsearch configuration. Use textsearch_next() to retrieve 4303 * subsequent occurrences of the pattern. Returns the offset 4304 * to the first occurrence or UINT_MAX if no match was found. 4305 */ 4306 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4307 unsigned int to, struct ts_config *config) 4308 { 4309 unsigned int patlen = config->ops->get_pattern_len(config); 4310 struct ts_state state; 4311 unsigned int ret; 4312 4313 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4314 4315 config->get_next_block = skb_ts_get_next_block; 4316 config->finish = skb_ts_finish; 4317 4318 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4319 4320 ret = textsearch_find(config, &state); 4321 return (ret + patlen <= to - from ? ret : UINT_MAX); 4322 } 4323 EXPORT_SYMBOL(skb_find_text); 4324 4325 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4326 int offset, size_t size, size_t max_frags) 4327 { 4328 int i = skb_shinfo(skb)->nr_frags; 4329 4330 if (skb_can_coalesce(skb, i, page, offset)) { 4331 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4332 } else if (i < max_frags) { 4333 skb_zcopy_downgrade_managed(skb); 4334 get_page(page); 4335 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4336 } else { 4337 return -EMSGSIZE; 4338 } 4339 4340 return 0; 4341 } 4342 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4343 4344 /** 4345 * skb_pull_rcsum - pull skb and update receive checksum 4346 * @skb: buffer to update 4347 * @len: length of data pulled 4348 * 4349 * This function performs an skb_pull on the packet and updates 4350 * the CHECKSUM_COMPLETE checksum. It should be used on 4351 * receive path processing instead of skb_pull unless you know 4352 * that the checksum difference is zero (e.g., a valid IP header) 4353 * or you are setting ip_summed to CHECKSUM_NONE. 4354 */ 4355 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4356 { 4357 unsigned char *data = skb->data; 4358 4359 BUG_ON(len > skb->len); 4360 __skb_pull(skb, len); 4361 skb_postpull_rcsum(skb, data, len); 4362 return skb->data; 4363 } 4364 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4365 4366 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4367 { 4368 skb_frag_t head_frag; 4369 struct page *page; 4370 4371 page = virt_to_head_page(frag_skb->head); 4372 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4373 (unsigned char *)page_address(page), 4374 skb_headlen(frag_skb)); 4375 return head_frag; 4376 } 4377 4378 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4379 netdev_features_t features, 4380 unsigned int offset) 4381 { 4382 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4383 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4384 unsigned int delta_truesize = 0; 4385 unsigned int delta_len = 0; 4386 struct sk_buff *tail = NULL; 4387 struct sk_buff *nskb, *tmp; 4388 int len_diff, err; 4389 4390 skb_push(skb, -skb_network_offset(skb) + offset); 4391 4392 /* Ensure the head is writeable before touching the shared info */ 4393 err = skb_unclone(skb, GFP_ATOMIC); 4394 if (err) 4395 goto err_linearize; 4396 4397 skb_shinfo(skb)->frag_list = NULL; 4398 4399 while (list_skb) { 4400 nskb = list_skb; 4401 list_skb = list_skb->next; 4402 4403 err = 0; 4404 delta_truesize += nskb->truesize; 4405 if (skb_shared(nskb)) { 4406 tmp = skb_clone(nskb, GFP_ATOMIC); 4407 if (tmp) { 4408 consume_skb(nskb); 4409 nskb = tmp; 4410 err = skb_unclone(nskb, GFP_ATOMIC); 4411 } else { 4412 err = -ENOMEM; 4413 } 4414 } 4415 4416 if (!tail) 4417 skb->next = nskb; 4418 else 4419 tail->next = nskb; 4420 4421 if (unlikely(err)) { 4422 nskb->next = list_skb; 4423 goto err_linearize; 4424 } 4425 4426 tail = nskb; 4427 4428 delta_len += nskb->len; 4429 4430 skb_push(nskb, -skb_network_offset(nskb) + offset); 4431 4432 skb_release_head_state(nskb); 4433 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4434 __copy_skb_header(nskb, skb); 4435 4436 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4437 nskb->transport_header += len_diff; 4438 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4439 nskb->data - tnl_hlen, 4440 offset + tnl_hlen); 4441 4442 if (skb_needs_linearize(nskb, features) && 4443 __skb_linearize(nskb)) 4444 goto err_linearize; 4445 } 4446 4447 skb->truesize = skb->truesize - delta_truesize; 4448 skb->data_len = skb->data_len - delta_len; 4449 skb->len = skb->len - delta_len; 4450 4451 skb_gso_reset(skb); 4452 4453 skb->prev = tail; 4454 4455 if (skb_needs_linearize(skb, features) && 4456 __skb_linearize(skb)) 4457 goto err_linearize; 4458 4459 skb_get(skb); 4460 4461 return skb; 4462 4463 err_linearize: 4464 kfree_skb_list(skb->next); 4465 skb->next = NULL; 4466 return ERR_PTR(-ENOMEM); 4467 } 4468 EXPORT_SYMBOL_GPL(skb_segment_list); 4469 4470 /** 4471 * skb_segment - Perform protocol segmentation on skb. 4472 * @head_skb: buffer to segment 4473 * @features: features for the output path (see dev->features) 4474 * 4475 * This function performs segmentation on the given skb. It returns 4476 * a pointer to the first in a list of new skbs for the segments. 4477 * In case of error it returns ERR_PTR(err). 4478 */ 4479 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4480 netdev_features_t features) 4481 { 4482 struct sk_buff *segs = NULL; 4483 struct sk_buff *tail = NULL; 4484 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4485 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4486 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4487 unsigned int offset = doffset; 4488 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4489 unsigned int partial_segs = 0; 4490 unsigned int headroom; 4491 unsigned int len = head_skb->len; 4492 struct sk_buff *frag_skb; 4493 skb_frag_t *frag; 4494 __be16 proto; 4495 bool csum, sg; 4496 int err = -ENOMEM; 4497 int i = 0; 4498 int nfrags, pos; 4499 4500 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4501 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4502 struct sk_buff *check_skb; 4503 4504 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4505 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4506 /* gso_size is untrusted, and we have a frag_list with 4507 * a linear non head_frag item. 4508 * 4509 * If head_skb's headlen does not fit requested gso_size, 4510 * it means that the frag_list members do NOT terminate 4511 * on exact gso_size boundaries. Hence we cannot perform 4512 * skb_frag_t page sharing. Therefore we must fallback to 4513 * copying the frag_list skbs; we do so by disabling SG. 4514 */ 4515 features &= ~NETIF_F_SG; 4516 break; 4517 } 4518 } 4519 } 4520 4521 __skb_push(head_skb, doffset); 4522 proto = skb_network_protocol(head_skb, NULL); 4523 if (unlikely(!proto)) 4524 return ERR_PTR(-EINVAL); 4525 4526 sg = !!(features & NETIF_F_SG); 4527 csum = !!can_checksum_protocol(features, proto); 4528 4529 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4530 if (!(features & NETIF_F_GSO_PARTIAL)) { 4531 struct sk_buff *iter; 4532 unsigned int frag_len; 4533 4534 if (!list_skb || 4535 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4536 goto normal; 4537 4538 /* If we get here then all the required 4539 * GSO features except frag_list are supported. 4540 * Try to split the SKB to multiple GSO SKBs 4541 * with no frag_list. 4542 * Currently we can do that only when the buffers don't 4543 * have a linear part and all the buffers except 4544 * the last are of the same length. 4545 */ 4546 frag_len = list_skb->len; 4547 skb_walk_frags(head_skb, iter) { 4548 if (frag_len != iter->len && iter->next) 4549 goto normal; 4550 if (skb_headlen(iter) && !iter->head_frag) 4551 goto normal; 4552 4553 len -= iter->len; 4554 } 4555 4556 if (len != frag_len) 4557 goto normal; 4558 } 4559 4560 /* GSO partial only requires that we trim off any excess that 4561 * doesn't fit into an MSS sized block, so take care of that 4562 * now. 4563 * Cap len to not accidentally hit GSO_BY_FRAGS. 4564 */ 4565 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4566 if (partial_segs > 1) 4567 mss *= partial_segs; 4568 else 4569 partial_segs = 0; 4570 } 4571 4572 normal: 4573 headroom = skb_headroom(head_skb); 4574 pos = skb_headlen(head_skb); 4575 4576 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4577 return ERR_PTR(-ENOMEM); 4578 4579 nfrags = skb_shinfo(head_skb)->nr_frags; 4580 frag = skb_shinfo(head_skb)->frags; 4581 frag_skb = head_skb; 4582 4583 do { 4584 struct sk_buff *nskb; 4585 skb_frag_t *nskb_frag; 4586 int hsize; 4587 int size; 4588 4589 if (unlikely(mss == GSO_BY_FRAGS)) { 4590 len = list_skb->len; 4591 } else { 4592 len = head_skb->len - offset; 4593 if (len > mss) 4594 len = mss; 4595 } 4596 4597 hsize = skb_headlen(head_skb) - offset; 4598 4599 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4600 (skb_headlen(list_skb) == len || sg)) { 4601 BUG_ON(skb_headlen(list_skb) > len); 4602 4603 nskb = skb_clone(list_skb, GFP_ATOMIC); 4604 if (unlikely(!nskb)) 4605 goto err; 4606 4607 i = 0; 4608 nfrags = skb_shinfo(list_skb)->nr_frags; 4609 frag = skb_shinfo(list_skb)->frags; 4610 frag_skb = list_skb; 4611 pos += skb_headlen(list_skb); 4612 4613 while (pos < offset + len) { 4614 BUG_ON(i >= nfrags); 4615 4616 size = skb_frag_size(frag); 4617 if (pos + size > offset + len) 4618 break; 4619 4620 i++; 4621 pos += size; 4622 frag++; 4623 } 4624 4625 list_skb = list_skb->next; 4626 4627 if (unlikely(pskb_trim(nskb, len))) { 4628 kfree_skb(nskb); 4629 goto err; 4630 } 4631 4632 hsize = skb_end_offset(nskb); 4633 if (skb_cow_head(nskb, doffset + headroom)) { 4634 kfree_skb(nskb); 4635 goto err; 4636 } 4637 4638 nskb->truesize += skb_end_offset(nskb) - hsize; 4639 skb_release_head_state(nskb); 4640 __skb_push(nskb, doffset); 4641 } else { 4642 if (hsize < 0) 4643 hsize = 0; 4644 if (hsize > len || !sg) 4645 hsize = len; 4646 4647 nskb = __alloc_skb(hsize + doffset + headroom, 4648 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4649 NUMA_NO_NODE); 4650 4651 if (unlikely(!nskb)) 4652 goto err; 4653 4654 skb_reserve(nskb, headroom); 4655 __skb_put(nskb, doffset); 4656 } 4657 4658 if (segs) 4659 tail->next = nskb; 4660 else 4661 segs = nskb; 4662 tail = nskb; 4663 4664 __copy_skb_header(nskb, head_skb); 4665 4666 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4667 skb_reset_mac_len(nskb); 4668 4669 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4670 nskb->data - tnl_hlen, 4671 doffset + tnl_hlen); 4672 4673 if (nskb->len == len + doffset) 4674 goto perform_csum_check; 4675 4676 if (!sg) { 4677 if (!csum) { 4678 if (!nskb->remcsum_offload) 4679 nskb->ip_summed = CHECKSUM_NONE; 4680 SKB_GSO_CB(nskb)->csum = 4681 skb_copy_and_csum_bits(head_skb, offset, 4682 skb_put(nskb, 4683 len), 4684 len); 4685 SKB_GSO_CB(nskb)->csum_start = 4686 skb_headroom(nskb) + doffset; 4687 } else { 4688 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4689 goto err; 4690 } 4691 continue; 4692 } 4693 4694 nskb_frag = skb_shinfo(nskb)->frags; 4695 4696 skb_copy_from_linear_data_offset(head_skb, offset, 4697 skb_put(nskb, hsize), hsize); 4698 4699 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4700 SKBFL_SHARED_FRAG; 4701 4702 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4703 goto err; 4704 4705 while (pos < offset + len) { 4706 if (i >= nfrags) { 4707 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4708 skb_zerocopy_clone(nskb, list_skb, 4709 GFP_ATOMIC)) 4710 goto err; 4711 4712 i = 0; 4713 nfrags = skb_shinfo(list_skb)->nr_frags; 4714 frag = skb_shinfo(list_skb)->frags; 4715 frag_skb = list_skb; 4716 if (!skb_headlen(list_skb)) { 4717 BUG_ON(!nfrags); 4718 } else { 4719 BUG_ON(!list_skb->head_frag); 4720 4721 /* to make room for head_frag. */ 4722 i--; 4723 frag--; 4724 } 4725 4726 list_skb = list_skb->next; 4727 } 4728 4729 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4730 MAX_SKB_FRAGS)) { 4731 net_warn_ratelimited( 4732 "skb_segment: too many frags: %u %u\n", 4733 pos, mss); 4734 err = -EINVAL; 4735 goto err; 4736 } 4737 4738 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4739 __skb_frag_ref(nskb_frag); 4740 size = skb_frag_size(nskb_frag); 4741 4742 if (pos < offset) { 4743 skb_frag_off_add(nskb_frag, offset - pos); 4744 skb_frag_size_sub(nskb_frag, offset - pos); 4745 } 4746 4747 skb_shinfo(nskb)->nr_frags++; 4748 4749 if (pos + size <= offset + len) { 4750 i++; 4751 frag++; 4752 pos += size; 4753 } else { 4754 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4755 goto skip_fraglist; 4756 } 4757 4758 nskb_frag++; 4759 } 4760 4761 skip_fraglist: 4762 nskb->data_len = len - hsize; 4763 nskb->len += nskb->data_len; 4764 nskb->truesize += nskb->data_len; 4765 4766 perform_csum_check: 4767 if (!csum) { 4768 if (skb_has_shared_frag(nskb) && 4769 __skb_linearize(nskb)) 4770 goto err; 4771 4772 if (!nskb->remcsum_offload) 4773 nskb->ip_summed = CHECKSUM_NONE; 4774 SKB_GSO_CB(nskb)->csum = 4775 skb_checksum(nskb, doffset, 4776 nskb->len - doffset, 0); 4777 SKB_GSO_CB(nskb)->csum_start = 4778 skb_headroom(nskb) + doffset; 4779 } 4780 } while ((offset += len) < head_skb->len); 4781 4782 /* Some callers want to get the end of the list. 4783 * Put it in segs->prev to avoid walking the list. 4784 * (see validate_xmit_skb_list() for example) 4785 */ 4786 segs->prev = tail; 4787 4788 if (partial_segs) { 4789 struct sk_buff *iter; 4790 int type = skb_shinfo(head_skb)->gso_type; 4791 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4792 4793 /* Update type to add partial and then remove dodgy if set */ 4794 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4795 type &= ~SKB_GSO_DODGY; 4796 4797 /* Update GSO info and prepare to start updating headers on 4798 * our way back down the stack of protocols. 4799 */ 4800 for (iter = segs; iter; iter = iter->next) { 4801 skb_shinfo(iter)->gso_size = gso_size; 4802 skb_shinfo(iter)->gso_segs = partial_segs; 4803 skb_shinfo(iter)->gso_type = type; 4804 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4805 } 4806 4807 if (tail->len - doffset <= gso_size) 4808 skb_shinfo(tail)->gso_size = 0; 4809 else if (tail != segs) 4810 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4811 } 4812 4813 /* Following permits correct backpressure, for protocols 4814 * using skb_set_owner_w(). 4815 * Idea is to tranfert ownership from head_skb to last segment. 4816 */ 4817 if (head_skb->destructor == sock_wfree) { 4818 swap(tail->truesize, head_skb->truesize); 4819 swap(tail->destructor, head_skb->destructor); 4820 swap(tail->sk, head_skb->sk); 4821 } 4822 return segs; 4823 4824 err: 4825 kfree_skb_list(segs); 4826 return ERR_PTR(err); 4827 } 4828 EXPORT_SYMBOL_GPL(skb_segment); 4829 4830 #ifdef CONFIG_SKB_EXTENSIONS 4831 #define SKB_EXT_ALIGN_VALUE 8 4832 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4833 4834 static const u8 skb_ext_type_len[] = { 4835 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4836 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4837 #endif 4838 #ifdef CONFIG_XFRM 4839 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4840 #endif 4841 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4842 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4843 #endif 4844 #if IS_ENABLED(CONFIG_MPTCP) 4845 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4846 #endif 4847 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4848 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4849 #endif 4850 }; 4851 4852 static __always_inline unsigned int skb_ext_total_length(void) 4853 { 4854 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4855 int i; 4856 4857 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4858 l += skb_ext_type_len[i]; 4859 4860 return l; 4861 } 4862 4863 static void skb_extensions_init(void) 4864 { 4865 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4866 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4867 BUILD_BUG_ON(skb_ext_total_length() > 255); 4868 #endif 4869 4870 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4871 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4872 0, 4873 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4874 NULL); 4875 } 4876 #else 4877 static void skb_extensions_init(void) {} 4878 #endif 4879 4880 /* The SKB kmem_cache slab is critical for network performance. Never 4881 * merge/alias the slab with similar sized objects. This avoids fragmentation 4882 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4883 */ 4884 #ifndef CONFIG_SLUB_TINY 4885 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4886 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4887 #define FLAG_SKB_NO_MERGE 0 4888 #endif 4889 4890 void __init skb_init(void) 4891 { 4892 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4893 sizeof(struct sk_buff), 4894 0, 4895 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4896 FLAG_SKB_NO_MERGE, 4897 offsetof(struct sk_buff, cb), 4898 sizeof_field(struct sk_buff, cb), 4899 NULL); 4900 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4901 sizeof(struct sk_buff_fclones), 4902 0, 4903 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4904 NULL); 4905 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4906 * struct skb_shared_info is located at the end of skb->head, 4907 * and should not be copied to/from user. 4908 */ 4909 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4910 SKB_SMALL_HEAD_CACHE_SIZE, 4911 0, 4912 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4913 0, 4914 SKB_SMALL_HEAD_HEADROOM, 4915 NULL); 4916 skb_extensions_init(); 4917 } 4918 4919 static int 4920 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4921 unsigned int recursion_level) 4922 { 4923 int start = skb_headlen(skb); 4924 int i, copy = start - offset; 4925 struct sk_buff *frag_iter; 4926 int elt = 0; 4927 4928 if (unlikely(recursion_level >= 24)) 4929 return -EMSGSIZE; 4930 4931 if (copy > 0) { 4932 if (copy > len) 4933 copy = len; 4934 sg_set_buf(sg, skb->data + offset, copy); 4935 elt++; 4936 if ((len -= copy) == 0) 4937 return elt; 4938 offset += copy; 4939 } 4940 4941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4942 int end; 4943 4944 WARN_ON(start > offset + len); 4945 4946 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4947 if ((copy = end - offset) > 0) { 4948 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4949 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4950 return -EMSGSIZE; 4951 4952 if (copy > len) 4953 copy = len; 4954 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4955 skb_frag_off(frag) + offset - start); 4956 elt++; 4957 if (!(len -= copy)) 4958 return elt; 4959 offset += copy; 4960 } 4961 start = end; 4962 } 4963 4964 skb_walk_frags(skb, frag_iter) { 4965 int end, ret; 4966 4967 WARN_ON(start > offset + len); 4968 4969 end = start + frag_iter->len; 4970 if ((copy = end - offset) > 0) { 4971 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4972 return -EMSGSIZE; 4973 4974 if (copy > len) 4975 copy = len; 4976 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4977 copy, recursion_level + 1); 4978 if (unlikely(ret < 0)) 4979 return ret; 4980 elt += ret; 4981 if ((len -= copy) == 0) 4982 return elt; 4983 offset += copy; 4984 } 4985 start = end; 4986 } 4987 BUG_ON(len); 4988 return elt; 4989 } 4990 4991 /** 4992 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4993 * @skb: Socket buffer containing the buffers to be mapped 4994 * @sg: The scatter-gather list to map into 4995 * @offset: The offset into the buffer's contents to start mapping 4996 * @len: Length of buffer space to be mapped 4997 * 4998 * Fill the specified scatter-gather list with mappings/pointers into a 4999 * region of the buffer space attached to a socket buffer. Returns either 5000 * the number of scatterlist items used, or -EMSGSIZE if the contents 5001 * could not fit. 5002 */ 5003 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5004 { 5005 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5006 5007 if (nsg <= 0) 5008 return nsg; 5009 5010 sg_mark_end(&sg[nsg - 1]); 5011 5012 return nsg; 5013 } 5014 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5015 5016 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5017 * sglist without mark the sg which contain last skb data as the end. 5018 * So the caller can mannipulate sg list as will when padding new data after 5019 * the first call without calling sg_unmark_end to expend sg list. 5020 * 5021 * Scenario to use skb_to_sgvec_nomark: 5022 * 1. sg_init_table 5023 * 2. skb_to_sgvec_nomark(payload1) 5024 * 3. skb_to_sgvec_nomark(payload2) 5025 * 5026 * This is equivalent to: 5027 * 1. sg_init_table 5028 * 2. skb_to_sgvec(payload1) 5029 * 3. sg_unmark_end 5030 * 4. skb_to_sgvec(payload2) 5031 * 5032 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5033 * is more preferable. 5034 */ 5035 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5036 int offset, int len) 5037 { 5038 return __skb_to_sgvec(skb, sg, offset, len, 0); 5039 } 5040 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5041 5042 5043 5044 /** 5045 * skb_cow_data - Check that a socket buffer's data buffers are writable 5046 * @skb: The socket buffer to check. 5047 * @tailbits: Amount of trailing space to be added 5048 * @trailer: Returned pointer to the skb where the @tailbits space begins 5049 * 5050 * Make sure that the data buffers attached to a socket buffer are 5051 * writable. If they are not, private copies are made of the data buffers 5052 * and the socket buffer is set to use these instead. 5053 * 5054 * If @tailbits is given, make sure that there is space to write @tailbits 5055 * bytes of data beyond current end of socket buffer. @trailer will be 5056 * set to point to the skb in which this space begins. 5057 * 5058 * The number of scatterlist elements required to completely map the 5059 * COW'd and extended socket buffer will be returned. 5060 */ 5061 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5062 { 5063 int copyflag; 5064 int elt; 5065 struct sk_buff *skb1, **skb_p; 5066 5067 /* If skb is cloned or its head is paged, reallocate 5068 * head pulling out all the pages (pages are considered not writable 5069 * at the moment even if they are anonymous). 5070 */ 5071 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5072 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5073 return -ENOMEM; 5074 5075 /* Easy case. Most of packets will go this way. */ 5076 if (!skb_has_frag_list(skb)) { 5077 /* A little of trouble, not enough of space for trailer. 5078 * This should not happen, when stack is tuned to generate 5079 * good frames. OK, on miss we reallocate and reserve even more 5080 * space, 128 bytes is fair. */ 5081 5082 if (skb_tailroom(skb) < tailbits && 5083 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5084 return -ENOMEM; 5085 5086 /* Voila! */ 5087 *trailer = skb; 5088 return 1; 5089 } 5090 5091 /* Misery. We are in troubles, going to mincer fragments... */ 5092 5093 elt = 1; 5094 skb_p = &skb_shinfo(skb)->frag_list; 5095 copyflag = 0; 5096 5097 while ((skb1 = *skb_p) != NULL) { 5098 int ntail = 0; 5099 5100 /* The fragment is partially pulled by someone, 5101 * this can happen on input. Copy it and everything 5102 * after it. */ 5103 5104 if (skb_shared(skb1)) 5105 copyflag = 1; 5106 5107 /* If the skb is the last, worry about trailer. */ 5108 5109 if (skb1->next == NULL && tailbits) { 5110 if (skb_shinfo(skb1)->nr_frags || 5111 skb_has_frag_list(skb1) || 5112 skb_tailroom(skb1) < tailbits) 5113 ntail = tailbits + 128; 5114 } 5115 5116 if (copyflag || 5117 skb_cloned(skb1) || 5118 ntail || 5119 skb_shinfo(skb1)->nr_frags || 5120 skb_has_frag_list(skb1)) { 5121 struct sk_buff *skb2; 5122 5123 /* Fuck, we are miserable poor guys... */ 5124 if (ntail == 0) 5125 skb2 = skb_copy(skb1, GFP_ATOMIC); 5126 else 5127 skb2 = skb_copy_expand(skb1, 5128 skb_headroom(skb1), 5129 ntail, 5130 GFP_ATOMIC); 5131 if (unlikely(skb2 == NULL)) 5132 return -ENOMEM; 5133 5134 if (skb1->sk) 5135 skb_set_owner_w(skb2, skb1->sk); 5136 5137 /* Looking around. Are we still alive? 5138 * OK, link new skb, drop old one */ 5139 5140 skb2->next = skb1->next; 5141 *skb_p = skb2; 5142 kfree_skb(skb1); 5143 skb1 = skb2; 5144 } 5145 elt++; 5146 *trailer = skb1; 5147 skb_p = &skb1->next; 5148 } 5149 5150 return elt; 5151 } 5152 EXPORT_SYMBOL_GPL(skb_cow_data); 5153 5154 static void sock_rmem_free(struct sk_buff *skb) 5155 { 5156 struct sock *sk = skb->sk; 5157 5158 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5159 } 5160 5161 static void skb_set_err_queue(struct sk_buff *skb) 5162 { 5163 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5164 * So, it is safe to (mis)use it to mark skbs on the error queue. 5165 */ 5166 skb->pkt_type = PACKET_OUTGOING; 5167 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5168 } 5169 5170 /* 5171 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5172 */ 5173 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5174 { 5175 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5176 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5177 return -ENOMEM; 5178 5179 skb_orphan(skb); 5180 skb->sk = sk; 5181 skb->destructor = sock_rmem_free; 5182 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5183 skb_set_err_queue(skb); 5184 5185 /* before exiting rcu section, make sure dst is refcounted */ 5186 skb_dst_force(skb); 5187 5188 skb_queue_tail(&sk->sk_error_queue, skb); 5189 if (!sock_flag(sk, SOCK_DEAD)) 5190 sk_error_report(sk); 5191 return 0; 5192 } 5193 EXPORT_SYMBOL(sock_queue_err_skb); 5194 5195 static bool is_icmp_err_skb(const struct sk_buff *skb) 5196 { 5197 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5198 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5199 } 5200 5201 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5202 { 5203 struct sk_buff_head *q = &sk->sk_error_queue; 5204 struct sk_buff *skb, *skb_next = NULL; 5205 bool icmp_next = false; 5206 unsigned long flags; 5207 5208 if (skb_queue_empty_lockless(q)) 5209 return NULL; 5210 5211 spin_lock_irqsave(&q->lock, flags); 5212 skb = __skb_dequeue(q); 5213 if (skb && (skb_next = skb_peek(q))) { 5214 icmp_next = is_icmp_err_skb(skb_next); 5215 if (icmp_next) 5216 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5217 } 5218 spin_unlock_irqrestore(&q->lock, flags); 5219 5220 if (is_icmp_err_skb(skb) && !icmp_next) 5221 sk->sk_err = 0; 5222 5223 if (skb_next) 5224 sk_error_report(sk); 5225 5226 return skb; 5227 } 5228 EXPORT_SYMBOL(sock_dequeue_err_skb); 5229 5230 /** 5231 * skb_clone_sk - create clone of skb, and take reference to socket 5232 * @skb: the skb to clone 5233 * 5234 * This function creates a clone of a buffer that holds a reference on 5235 * sk_refcnt. Buffers created via this function are meant to be 5236 * returned using sock_queue_err_skb, or free via kfree_skb. 5237 * 5238 * When passing buffers allocated with this function to sock_queue_err_skb 5239 * it is necessary to wrap the call with sock_hold/sock_put in order to 5240 * prevent the socket from being released prior to being enqueued on 5241 * the sk_error_queue. 5242 */ 5243 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5244 { 5245 struct sock *sk = skb->sk; 5246 struct sk_buff *clone; 5247 5248 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5249 return NULL; 5250 5251 clone = skb_clone(skb, GFP_ATOMIC); 5252 if (!clone) { 5253 sock_put(sk); 5254 return NULL; 5255 } 5256 5257 clone->sk = sk; 5258 clone->destructor = sock_efree; 5259 5260 return clone; 5261 } 5262 EXPORT_SYMBOL(skb_clone_sk); 5263 5264 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5265 struct sock *sk, 5266 int tstype, 5267 bool opt_stats) 5268 { 5269 struct sock_exterr_skb *serr; 5270 int err; 5271 5272 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5273 5274 serr = SKB_EXT_ERR(skb); 5275 memset(serr, 0, sizeof(*serr)); 5276 serr->ee.ee_errno = ENOMSG; 5277 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5278 serr->ee.ee_info = tstype; 5279 serr->opt_stats = opt_stats; 5280 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5281 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5282 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5283 if (sk_is_tcp(sk)) 5284 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5285 } 5286 5287 err = sock_queue_err_skb(sk, skb); 5288 5289 if (err) 5290 kfree_skb(skb); 5291 } 5292 5293 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5294 { 5295 bool ret; 5296 5297 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5298 return true; 5299 5300 read_lock_bh(&sk->sk_callback_lock); 5301 ret = sk->sk_socket && sk->sk_socket->file && 5302 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5303 read_unlock_bh(&sk->sk_callback_lock); 5304 return ret; 5305 } 5306 5307 void skb_complete_tx_timestamp(struct sk_buff *skb, 5308 struct skb_shared_hwtstamps *hwtstamps) 5309 { 5310 struct sock *sk = skb->sk; 5311 5312 if (!skb_may_tx_timestamp(sk, false)) 5313 goto err; 5314 5315 /* Take a reference to prevent skb_orphan() from freeing the socket, 5316 * but only if the socket refcount is not zero. 5317 */ 5318 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5319 *skb_hwtstamps(skb) = *hwtstamps; 5320 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5321 sock_put(sk); 5322 return; 5323 } 5324 5325 err: 5326 kfree_skb(skb); 5327 } 5328 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5329 5330 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5331 const struct sk_buff *ack_skb, 5332 struct skb_shared_hwtstamps *hwtstamps, 5333 struct sock *sk, int tstype) 5334 { 5335 struct sk_buff *skb; 5336 bool tsonly, opt_stats = false; 5337 u32 tsflags; 5338 5339 if (!sk) 5340 return; 5341 5342 tsflags = READ_ONCE(sk->sk_tsflags); 5343 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5344 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5345 return; 5346 5347 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5348 if (!skb_may_tx_timestamp(sk, tsonly)) 5349 return; 5350 5351 if (tsonly) { 5352 #ifdef CONFIG_INET 5353 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5354 sk_is_tcp(sk)) { 5355 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5356 ack_skb); 5357 opt_stats = true; 5358 } else 5359 #endif 5360 skb = alloc_skb(0, GFP_ATOMIC); 5361 } else { 5362 skb = skb_clone(orig_skb, GFP_ATOMIC); 5363 5364 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5365 kfree_skb(skb); 5366 return; 5367 } 5368 } 5369 if (!skb) 5370 return; 5371 5372 if (tsonly) { 5373 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5374 SKBTX_ANY_TSTAMP; 5375 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5376 } 5377 5378 if (hwtstamps) 5379 *skb_hwtstamps(skb) = *hwtstamps; 5380 else 5381 __net_timestamp(skb); 5382 5383 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5384 } 5385 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5386 5387 void skb_tstamp_tx(struct sk_buff *orig_skb, 5388 struct skb_shared_hwtstamps *hwtstamps) 5389 { 5390 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5391 SCM_TSTAMP_SND); 5392 } 5393 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5394 5395 #ifdef CONFIG_WIRELESS 5396 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5397 { 5398 struct sock *sk = skb->sk; 5399 struct sock_exterr_skb *serr; 5400 int err = 1; 5401 5402 skb->wifi_acked_valid = 1; 5403 skb->wifi_acked = acked; 5404 5405 serr = SKB_EXT_ERR(skb); 5406 memset(serr, 0, sizeof(*serr)); 5407 serr->ee.ee_errno = ENOMSG; 5408 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5409 5410 /* Take a reference to prevent skb_orphan() from freeing the socket, 5411 * but only if the socket refcount is not zero. 5412 */ 5413 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5414 err = sock_queue_err_skb(sk, skb); 5415 sock_put(sk); 5416 } 5417 if (err) 5418 kfree_skb(skb); 5419 } 5420 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5421 #endif /* CONFIG_WIRELESS */ 5422 5423 /** 5424 * skb_partial_csum_set - set up and verify partial csum values for packet 5425 * @skb: the skb to set 5426 * @start: the number of bytes after skb->data to start checksumming. 5427 * @off: the offset from start to place the checksum. 5428 * 5429 * For untrusted partially-checksummed packets, we need to make sure the values 5430 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5431 * 5432 * This function checks and sets those values and skb->ip_summed: if this 5433 * returns false you should drop the packet. 5434 */ 5435 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5436 { 5437 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5438 u32 csum_start = skb_headroom(skb) + (u32)start; 5439 5440 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5441 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5442 start, off, skb_headroom(skb), skb_headlen(skb)); 5443 return false; 5444 } 5445 skb->ip_summed = CHECKSUM_PARTIAL; 5446 skb->csum_start = csum_start; 5447 skb->csum_offset = off; 5448 skb->transport_header = csum_start; 5449 return true; 5450 } 5451 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5452 5453 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5454 unsigned int max) 5455 { 5456 if (skb_headlen(skb) >= len) 5457 return 0; 5458 5459 /* If we need to pullup then pullup to the max, so we 5460 * won't need to do it again. 5461 */ 5462 if (max > skb->len) 5463 max = skb->len; 5464 5465 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5466 return -ENOMEM; 5467 5468 if (skb_headlen(skb) < len) 5469 return -EPROTO; 5470 5471 return 0; 5472 } 5473 5474 #define MAX_TCP_HDR_LEN (15 * 4) 5475 5476 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5477 typeof(IPPROTO_IP) proto, 5478 unsigned int off) 5479 { 5480 int err; 5481 5482 switch (proto) { 5483 case IPPROTO_TCP: 5484 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5485 off + MAX_TCP_HDR_LEN); 5486 if (!err && !skb_partial_csum_set(skb, off, 5487 offsetof(struct tcphdr, 5488 check))) 5489 err = -EPROTO; 5490 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5491 5492 case IPPROTO_UDP: 5493 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5494 off + sizeof(struct udphdr)); 5495 if (!err && !skb_partial_csum_set(skb, off, 5496 offsetof(struct udphdr, 5497 check))) 5498 err = -EPROTO; 5499 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5500 } 5501 5502 return ERR_PTR(-EPROTO); 5503 } 5504 5505 /* This value should be large enough to cover a tagged ethernet header plus 5506 * maximally sized IP and TCP or UDP headers. 5507 */ 5508 #define MAX_IP_HDR_LEN 128 5509 5510 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5511 { 5512 unsigned int off; 5513 bool fragment; 5514 __sum16 *csum; 5515 int err; 5516 5517 fragment = false; 5518 5519 err = skb_maybe_pull_tail(skb, 5520 sizeof(struct iphdr), 5521 MAX_IP_HDR_LEN); 5522 if (err < 0) 5523 goto out; 5524 5525 if (ip_is_fragment(ip_hdr(skb))) 5526 fragment = true; 5527 5528 off = ip_hdrlen(skb); 5529 5530 err = -EPROTO; 5531 5532 if (fragment) 5533 goto out; 5534 5535 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5536 if (IS_ERR(csum)) 5537 return PTR_ERR(csum); 5538 5539 if (recalculate) 5540 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5541 ip_hdr(skb)->daddr, 5542 skb->len - off, 5543 ip_hdr(skb)->protocol, 0); 5544 err = 0; 5545 5546 out: 5547 return err; 5548 } 5549 5550 /* This value should be large enough to cover a tagged ethernet header plus 5551 * an IPv6 header, all options, and a maximal TCP or UDP header. 5552 */ 5553 #define MAX_IPV6_HDR_LEN 256 5554 5555 #define OPT_HDR(type, skb, off) \ 5556 (type *)(skb_network_header(skb) + (off)) 5557 5558 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5559 { 5560 int err; 5561 u8 nexthdr; 5562 unsigned int off; 5563 unsigned int len; 5564 bool fragment; 5565 bool done; 5566 __sum16 *csum; 5567 5568 fragment = false; 5569 done = false; 5570 5571 off = sizeof(struct ipv6hdr); 5572 5573 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5574 if (err < 0) 5575 goto out; 5576 5577 nexthdr = ipv6_hdr(skb)->nexthdr; 5578 5579 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5580 while (off <= len && !done) { 5581 switch (nexthdr) { 5582 case IPPROTO_DSTOPTS: 5583 case IPPROTO_HOPOPTS: 5584 case IPPROTO_ROUTING: { 5585 struct ipv6_opt_hdr *hp; 5586 5587 err = skb_maybe_pull_tail(skb, 5588 off + 5589 sizeof(struct ipv6_opt_hdr), 5590 MAX_IPV6_HDR_LEN); 5591 if (err < 0) 5592 goto out; 5593 5594 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5595 nexthdr = hp->nexthdr; 5596 off += ipv6_optlen(hp); 5597 break; 5598 } 5599 case IPPROTO_AH: { 5600 struct ip_auth_hdr *hp; 5601 5602 err = skb_maybe_pull_tail(skb, 5603 off + 5604 sizeof(struct ip_auth_hdr), 5605 MAX_IPV6_HDR_LEN); 5606 if (err < 0) 5607 goto out; 5608 5609 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5610 nexthdr = hp->nexthdr; 5611 off += ipv6_authlen(hp); 5612 break; 5613 } 5614 case IPPROTO_FRAGMENT: { 5615 struct frag_hdr *hp; 5616 5617 err = skb_maybe_pull_tail(skb, 5618 off + 5619 sizeof(struct frag_hdr), 5620 MAX_IPV6_HDR_LEN); 5621 if (err < 0) 5622 goto out; 5623 5624 hp = OPT_HDR(struct frag_hdr, skb, off); 5625 5626 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5627 fragment = true; 5628 5629 nexthdr = hp->nexthdr; 5630 off += sizeof(struct frag_hdr); 5631 break; 5632 } 5633 default: 5634 done = true; 5635 break; 5636 } 5637 } 5638 5639 err = -EPROTO; 5640 5641 if (!done || fragment) 5642 goto out; 5643 5644 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5645 if (IS_ERR(csum)) 5646 return PTR_ERR(csum); 5647 5648 if (recalculate) 5649 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5650 &ipv6_hdr(skb)->daddr, 5651 skb->len - off, nexthdr, 0); 5652 err = 0; 5653 5654 out: 5655 return err; 5656 } 5657 5658 /** 5659 * skb_checksum_setup - set up partial checksum offset 5660 * @skb: the skb to set up 5661 * @recalculate: if true the pseudo-header checksum will be recalculated 5662 */ 5663 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5664 { 5665 int err; 5666 5667 switch (skb->protocol) { 5668 case htons(ETH_P_IP): 5669 err = skb_checksum_setup_ipv4(skb, recalculate); 5670 break; 5671 5672 case htons(ETH_P_IPV6): 5673 err = skb_checksum_setup_ipv6(skb, recalculate); 5674 break; 5675 5676 default: 5677 err = -EPROTO; 5678 break; 5679 } 5680 5681 return err; 5682 } 5683 EXPORT_SYMBOL(skb_checksum_setup); 5684 5685 /** 5686 * skb_checksum_maybe_trim - maybe trims the given skb 5687 * @skb: the skb to check 5688 * @transport_len: the data length beyond the network header 5689 * 5690 * Checks whether the given skb has data beyond the given transport length. 5691 * If so, returns a cloned skb trimmed to this transport length. 5692 * Otherwise returns the provided skb. Returns NULL in error cases 5693 * (e.g. transport_len exceeds skb length or out-of-memory). 5694 * 5695 * Caller needs to set the skb transport header and free any returned skb if it 5696 * differs from the provided skb. 5697 */ 5698 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5699 unsigned int transport_len) 5700 { 5701 struct sk_buff *skb_chk; 5702 unsigned int len = skb_transport_offset(skb) + transport_len; 5703 int ret; 5704 5705 if (skb->len < len) 5706 return NULL; 5707 else if (skb->len == len) 5708 return skb; 5709 5710 skb_chk = skb_clone(skb, GFP_ATOMIC); 5711 if (!skb_chk) 5712 return NULL; 5713 5714 ret = pskb_trim_rcsum(skb_chk, len); 5715 if (ret) { 5716 kfree_skb(skb_chk); 5717 return NULL; 5718 } 5719 5720 return skb_chk; 5721 } 5722 5723 /** 5724 * skb_checksum_trimmed - validate checksum of an skb 5725 * @skb: the skb to check 5726 * @transport_len: the data length beyond the network header 5727 * @skb_chkf: checksum function to use 5728 * 5729 * Applies the given checksum function skb_chkf to the provided skb. 5730 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5731 * 5732 * If the skb has data beyond the given transport length, then a 5733 * trimmed & cloned skb is checked and returned. 5734 * 5735 * Caller needs to set the skb transport header and free any returned skb if it 5736 * differs from the provided skb. 5737 */ 5738 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5739 unsigned int transport_len, 5740 __sum16(*skb_chkf)(struct sk_buff *skb)) 5741 { 5742 struct sk_buff *skb_chk; 5743 unsigned int offset = skb_transport_offset(skb); 5744 __sum16 ret; 5745 5746 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5747 if (!skb_chk) 5748 goto err; 5749 5750 if (!pskb_may_pull(skb_chk, offset)) 5751 goto err; 5752 5753 skb_pull_rcsum(skb_chk, offset); 5754 ret = skb_chkf(skb_chk); 5755 skb_push_rcsum(skb_chk, offset); 5756 5757 if (ret) 5758 goto err; 5759 5760 return skb_chk; 5761 5762 err: 5763 if (skb_chk && skb_chk != skb) 5764 kfree_skb(skb_chk); 5765 5766 return NULL; 5767 5768 } 5769 EXPORT_SYMBOL(skb_checksum_trimmed); 5770 5771 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5772 { 5773 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5774 skb->dev->name); 5775 } 5776 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5777 5778 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5779 { 5780 if (head_stolen) { 5781 skb_release_head_state(skb); 5782 kmem_cache_free(skbuff_cache, skb); 5783 } else { 5784 __kfree_skb(skb); 5785 } 5786 } 5787 EXPORT_SYMBOL(kfree_skb_partial); 5788 5789 /** 5790 * skb_try_coalesce - try to merge skb to prior one 5791 * @to: prior buffer 5792 * @from: buffer to add 5793 * @fragstolen: pointer to boolean 5794 * @delta_truesize: how much more was allocated than was requested 5795 */ 5796 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5797 bool *fragstolen, int *delta_truesize) 5798 { 5799 struct skb_shared_info *to_shinfo, *from_shinfo; 5800 int i, delta, len = from->len; 5801 5802 *fragstolen = false; 5803 5804 if (skb_cloned(to)) 5805 return false; 5806 5807 /* In general, avoid mixing page_pool and non-page_pool allocated 5808 * pages within the same SKB. In theory we could take full 5809 * references if @from is cloned and !@to->pp_recycle but its 5810 * tricky (due to potential race with the clone disappearing) and 5811 * rare, so not worth dealing with. 5812 */ 5813 if (to->pp_recycle != from->pp_recycle) 5814 return false; 5815 5816 if (len <= skb_tailroom(to)) { 5817 if (len) 5818 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5819 *delta_truesize = 0; 5820 return true; 5821 } 5822 5823 to_shinfo = skb_shinfo(to); 5824 from_shinfo = skb_shinfo(from); 5825 if (to_shinfo->frag_list || from_shinfo->frag_list) 5826 return false; 5827 if (skb_zcopy(to) || skb_zcopy(from)) 5828 return false; 5829 5830 if (skb_headlen(from) != 0) { 5831 struct page *page; 5832 unsigned int offset; 5833 5834 if (to_shinfo->nr_frags + 5835 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5836 return false; 5837 5838 if (skb_head_is_locked(from)) 5839 return false; 5840 5841 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5842 5843 page = virt_to_head_page(from->head); 5844 offset = from->data - (unsigned char *)page_address(page); 5845 5846 skb_fill_page_desc(to, to_shinfo->nr_frags, 5847 page, offset, skb_headlen(from)); 5848 *fragstolen = true; 5849 } else { 5850 if (to_shinfo->nr_frags + 5851 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5852 return false; 5853 5854 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5855 } 5856 5857 WARN_ON_ONCE(delta < len); 5858 5859 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5860 from_shinfo->frags, 5861 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5862 to_shinfo->nr_frags += from_shinfo->nr_frags; 5863 5864 if (!skb_cloned(from)) 5865 from_shinfo->nr_frags = 0; 5866 5867 /* if the skb is not cloned this does nothing 5868 * since we set nr_frags to 0. 5869 */ 5870 if (skb_pp_frag_ref(from)) { 5871 for (i = 0; i < from_shinfo->nr_frags; i++) 5872 __skb_frag_ref(&from_shinfo->frags[i]); 5873 } 5874 5875 to->truesize += delta; 5876 to->len += len; 5877 to->data_len += len; 5878 5879 *delta_truesize = delta; 5880 return true; 5881 } 5882 EXPORT_SYMBOL(skb_try_coalesce); 5883 5884 /** 5885 * skb_scrub_packet - scrub an skb 5886 * 5887 * @skb: buffer to clean 5888 * @xnet: packet is crossing netns 5889 * 5890 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5891 * into/from a tunnel. Some information have to be cleared during these 5892 * operations. 5893 * skb_scrub_packet can also be used to clean a skb before injecting it in 5894 * another namespace (@xnet == true). We have to clear all information in the 5895 * skb that could impact namespace isolation. 5896 */ 5897 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5898 { 5899 skb->pkt_type = PACKET_HOST; 5900 skb->skb_iif = 0; 5901 skb->ignore_df = 0; 5902 skb_dst_drop(skb); 5903 skb_ext_reset(skb); 5904 nf_reset_ct(skb); 5905 nf_reset_trace(skb); 5906 5907 #ifdef CONFIG_NET_SWITCHDEV 5908 skb->offload_fwd_mark = 0; 5909 skb->offload_l3_fwd_mark = 0; 5910 #endif 5911 5912 if (!xnet) 5913 return; 5914 5915 ipvs_reset(skb); 5916 skb->mark = 0; 5917 skb_clear_tstamp(skb); 5918 } 5919 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5920 5921 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5922 { 5923 int mac_len, meta_len; 5924 void *meta; 5925 5926 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5927 kfree_skb(skb); 5928 return NULL; 5929 } 5930 5931 mac_len = skb->data - skb_mac_header(skb); 5932 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5933 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5934 mac_len - VLAN_HLEN - ETH_TLEN); 5935 } 5936 5937 meta_len = skb_metadata_len(skb); 5938 if (meta_len) { 5939 meta = skb_metadata_end(skb) - meta_len; 5940 memmove(meta + VLAN_HLEN, meta, meta_len); 5941 } 5942 5943 skb->mac_header += VLAN_HLEN; 5944 return skb; 5945 } 5946 5947 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5948 { 5949 struct vlan_hdr *vhdr; 5950 u16 vlan_tci; 5951 5952 if (unlikely(skb_vlan_tag_present(skb))) { 5953 /* vlan_tci is already set-up so leave this for another time */ 5954 return skb; 5955 } 5956 5957 skb = skb_share_check(skb, GFP_ATOMIC); 5958 if (unlikely(!skb)) 5959 goto err_free; 5960 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5961 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5962 goto err_free; 5963 5964 vhdr = (struct vlan_hdr *)skb->data; 5965 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5966 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5967 5968 skb_pull_rcsum(skb, VLAN_HLEN); 5969 vlan_set_encap_proto(skb, vhdr); 5970 5971 skb = skb_reorder_vlan_header(skb); 5972 if (unlikely(!skb)) 5973 goto err_free; 5974 5975 skb_reset_network_header(skb); 5976 if (!skb_transport_header_was_set(skb)) 5977 skb_reset_transport_header(skb); 5978 skb_reset_mac_len(skb); 5979 5980 return skb; 5981 5982 err_free: 5983 kfree_skb(skb); 5984 return NULL; 5985 } 5986 EXPORT_SYMBOL(skb_vlan_untag); 5987 5988 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5989 { 5990 if (!pskb_may_pull(skb, write_len)) 5991 return -ENOMEM; 5992 5993 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5994 return 0; 5995 5996 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5997 } 5998 EXPORT_SYMBOL(skb_ensure_writable); 5999 6000 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6001 { 6002 int needed_headroom = dev->needed_headroom; 6003 int needed_tailroom = dev->needed_tailroom; 6004 6005 /* For tail taggers, we need to pad short frames ourselves, to ensure 6006 * that the tail tag does not fail at its role of being at the end of 6007 * the packet, once the conduit interface pads the frame. Account for 6008 * that pad length here, and pad later. 6009 */ 6010 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6011 needed_tailroom += ETH_ZLEN - skb->len; 6012 /* skb_headroom() returns unsigned int... */ 6013 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6014 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6015 6016 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6017 /* No reallocation needed, yay! */ 6018 return 0; 6019 6020 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6021 GFP_ATOMIC); 6022 } 6023 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6024 6025 /* remove VLAN header from packet and update csum accordingly. 6026 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6027 */ 6028 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6029 { 6030 int offset = skb->data - skb_mac_header(skb); 6031 int err; 6032 6033 if (WARN_ONCE(offset, 6034 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6035 offset)) { 6036 return -EINVAL; 6037 } 6038 6039 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6040 if (unlikely(err)) 6041 return err; 6042 6043 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6044 6045 vlan_remove_tag(skb, vlan_tci); 6046 6047 skb->mac_header += VLAN_HLEN; 6048 6049 if (skb_network_offset(skb) < ETH_HLEN) 6050 skb_set_network_header(skb, ETH_HLEN); 6051 6052 skb_reset_mac_len(skb); 6053 6054 return err; 6055 } 6056 EXPORT_SYMBOL(__skb_vlan_pop); 6057 6058 /* Pop a vlan tag either from hwaccel or from payload. 6059 * Expects skb->data at mac header. 6060 */ 6061 int skb_vlan_pop(struct sk_buff *skb) 6062 { 6063 u16 vlan_tci; 6064 __be16 vlan_proto; 6065 int err; 6066 6067 if (likely(skb_vlan_tag_present(skb))) { 6068 __vlan_hwaccel_clear_tag(skb); 6069 } else { 6070 if (unlikely(!eth_type_vlan(skb->protocol))) 6071 return 0; 6072 6073 err = __skb_vlan_pop(skb, &vlan_tci); 6074 if (err) 6075 return err; 6076 } 6077 /* move next vlan tag to hw accel tag */ 6078 if (likely(!eth_type_vlan(skb->protocol))) 6079 return 0; 6080 6081 vlan_proto = skb->protocol; 6082 err = __skb_vlan_pop(skb, &vlan_tci); 6083 if (unlikely(err)) 6084 return err; 6085 6086 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6087 return 0; 6088 } 6089 EXPORT_SYMBOL(skb_vlan_pop); 6090 6091 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6092 * Expects skb->data at mac header. 6093 */ 6094 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6095 { 6096 if (skb_vlan_tag_present(skb)) { 6097 int offset = skb->data - skb_mac_header(skb); 6098 int err; 6099 6100 if (WARN_ONCE(offset, 6101 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6102 offset)) { 6103 return -EINVAL; 6104 } 6105 6106 err = __vlan_insert_tag(skb, skb->vlan_proto, 6107 skb_vlan_tag_get(skb)); 6108 if (err) 6109 return err; 6110 6111 skb->protocol = skb->vlan_proto; 6112 skb->mac_len += VLAN_HLEN; 6113 6114 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6115 } 6116 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6117 return 0; 6118 } 6119 EXPORT_SYMBOL(skb_vlan_push); 6120 6121 /** 6122 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6123 * 6124 * @skb: Socket buffer to modify 6125 * 6126 * Drop the Ethernet header of @skb. 6127 * 6128 * Expects that skb->data points to the mac header and that no VLAN tags are 6129 * present. 6130 * 6131 * Returns 0 on success, -errno otherwise. 6132 */ 6133 int skb_eth_pop(struct sk_buff *skb) 6134 { 6135 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6136 skb_network_offset(skb) < ETH_HLEN) 6137 return -EPROTO; 6138 6139 skb_pull_rcsum(skb, ETH_HLEN); 6140 skb_reset_mac_header(skb); 6141 skb_reset_mac_len(skb); 6142 6143 return 0; 6144 } 6145 EXPORT_SYMBOL(skb_eth_pop); 6146 6147 /** 6148 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6149 * 6150 * @skb: Socket buffer to modify 6151 * @dst: Destination MAC address of the new header 6152 * @src: Source MAC address of the new header 6153 * 6154 * Prepend @skb with a new Ethernet header. 6155 * 6156 * Expects that skb->data points to the mac header, which must be empty. 6157 * 6158 * Returns 0 on success, -errno otherwise. 6159 */ 6160 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6161 const unsigned char *src) 6162 { 6163 struct ethhdr *eth; 6164 int err; 6165 6166 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6167 return -EPROTO; 6168 6169 err = skb_cow_head(skb, sizeof(*eth)); 6170 if (err < 0) 6171 return err; 6172 6173 skb_push(skb, sizeof(*eth)); 6174 skb_reset_mac_header(skb); 6175 skb_reset_mac_len(skb); 6176 6177 eth = eth_hdr(skb); 6178 ether_addr_copy(eth->h_dest, dst); 6179 ether_addr_copy(eth->h_source, src); 6180 eth->h_proto = skb->protocol; 6181 6182 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6183 6184 return 0; 6185 } 6186 EXPORT_SYMBOL(skb_eth_push); 6187 6188 /* Update the ethertype of hdr and the skb csum value if required. */ 6189 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6190 __be16 ethertype) 6191 { 6192 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6193 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6194 6195 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6196 } 6197 6198 hdr->h_proto = ethertype; 6199 } 6200 6201 /** 6202 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6203 * the packet 6204 * 6205 * @skb: buffer 6206 * @mpls_lse: MPLS label stack entry to push 6207 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6208 * @mac_len: length of the MAC header 6209 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6210 * ethernet 6211 * 6212 * Expects skb->data at mac header. 6213 * 6214 * Returns 0 on success, -errno otherwise. 6215 */ 6216 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6217 int mac_len, bool ethernet) 6218 { 6219 struct mpls_shim_hdr *lse; 6220 int err; 6221 6222 if (unlikely(!eth_p_mpls(mpls_proto))) 6223 return -EINVAL; 6224 6225 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6226 if (skb->encapsulation) 6227 return -EINVAL; 6228 6229 err = skb_cow_head(skb, MPLS_HLEN); 6230 if (unlikely(err)) 6231 return err; 6232 6233 if (!skb->inner_protocol) { 6234 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6235 skb_set_inner_protocol(skb, skb->protocol); 6236 } 6237 6238 skb_push(skb, MPLS_HLEN); 6239 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6240 mac_len); 6241 skb_reset_mac_header(skb); 6242 skb_set_network_header(skb, mac_len); 6243 skb_reset_mac_len(skb); 6244 6245 lse = mpls_hdr(skb); 6246 lse->label_stack_entry = mpls_lse; 6247 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6248 6249 if (ethernet && mac_len >= ETH_HLEN) 6250 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6251 skb->protocol = mpls_proto; 6252 6253 return 0; 6254 } 6255 EXPORT_SYMBOL_GPL(skb_mpls_push); 6256 6257 /** 6258 * skb_mpls_pop() - pop the outermost MPLS header 6259 * 6260 * @skb: buffer 6261 * @next_proto: ethertype of header after popped MPLS header 6262 * @mac_len: length of the MAC header 6263 * @ethernet: flag to indicate if the packet is ethernet 6264 * 6265 * Expects skb->data at mac header. 6266 * 6267 * Returns 0 on success, -errno otherwise. 6268 */ 6269 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6270 bool ethernet) 6271 { 6272 int err; 6273 6274 if (unlikely(!eth_p_mpls(skb->protocol))) 6275 return 0; 6276 6277 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6278 if (unlikely(err)) 6279 return err; 6280 6281 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6282 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6283 mac_len); 6284 6285 __skb_pull(skb, MPLS_HLEN); 6286 skb_reset_mac_header(skb); 6287 skb_set_network_header(skb, mac_len); 6288 6289 if (ethernet && mac_len >= ETH_HLEN) { 6290 struct ethhdr *hdr; 6291 6292 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6293 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6294 skb_mod_eth_type(skb, hdr, next_proto); 6295 } 6296 skb->protocol = next_proto; 6297 6298 return 0; 6299 } 6300 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6301 6302 /** 6303 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6304 * 6305 * @skb: buffer 6306 * @mpls_lse: new MPLS label stack entry to update to 6307 * 6308 * Expects skb->data at mac header. 6309 * 6310 * Returns 0 on success, -errno otherwise. 6311 */ 6312 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6313 { 6314 int err; 6315 6316 if (unlikely(!eth_p_mpls(skb->protocol))) 6317 return -EINVAL; 6318 6319 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6320 if (unlikely(err)) 6321 return err; 6322 6323 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6324 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6325 6326 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6327 } 6328 6329 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6330 6331 return 0; 6332 } 6333 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6334 6335 /** 6336 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6337 * 6338 * @skb: buffer 6339 * 6340 * Expects skb->data at mac header. 6341 * 6342 * Returns 0 on success, -errno otherwise. 6343 */ 6344 int skb_mpls_dec_ttl(struct sk_buff *skb) 6345 { 6346 u32 lse; 6347 u8 ttl; 6348 6349 if (unlikely(!eth_p_mpls(skb->protocol))) 6350 return -EINVAL; 6351 6352 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6353 return -ENOMEM; 6354 6355 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6356 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6357 if (!--ttl) 6358 return -EINVAL; 6359 6360 lse &= ~MPLS_LS_TTL_MASK; 6361 lse |= ttl << MPLS_LS_TTL_SHIFT; 6362 6363 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6364 } 6365 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6366 6367 /** 6368 * alloc_skb_with_frags - allocate skb with page frags 6369 * 6370 * @header_len: size of linear part 6371 * @data_len: needed length in frags 6372 * @order: max page order desired. 6373 * @errcode: pointer to error code if any 6374 * @gfp_mask: allocation mask 6375 * 6376 * This can be used to allocate a paged skb, given a maximal order for frags. 6377 */ 6378 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6379 unsigned long data_len, 6380 int order, 6381 int *errcode, 6382 gfp_t gfp_mask) 6383 { 6384 unsigned long chunk; 6385 struct sk_buff *skb; 6386 struct page *page; 6387 int nr_frags = 0; 6388 6389 *errcode = -EMSGSIZE; 6390 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6391 return NULL; 6392 6393 *errcode = -ENOBUFS; 6394 skb = alloc_skb(header_len, gfp_mask); 6395 if (!skb) 6396 return NULL; 6397 6398 while (data_len) { 6399 if (nr_frags == MAX_SKB_FRAGS - 1) 6400 goto failure; 6401 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6402 order--; 6403 6404 if (order) { 6405 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6406 __GFP_COMP | 6407 __GFP_NOWARN, 6408 order); 6409 if (!page) { 6410 order--; 6411 continue; 6412 } 6413 } else { 6414 page = alloc_page(gfp_mask); 6415 if (!page) 6416 goto failure; 6417 } 6418 chunk = min_t(unsigned long, data_len, 6419 PAGE_SIZE << order); 6420 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6421 nr_frags++; 6422 skb->truesize += (PAGE_SIZE << order); 6423 data_len -= chunk; 6424 } 6425 return skb; 6426 6427 failure: 6428 kfree_skb(skb); 6429 return NULL; 6430 } 6431 EXPORT_SYMBOL(alloc_skb_with_frags); 6432 6433 /* carve out the first off bytes from skb when off < headlen */ 6434 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6435 const int headlen, gfp_t gfp_mask) 6436 { 6437 int i; 6438 unsigned int size = skb_end_offset(skb); 6439 int new_hlen = headlen - off; 6440 u8 *data; 6441 6442 if (skb_pfmemalloc(skb)) 6443 gfp_mask |= __GFP_MEMALLOC; 6444 6445 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6446 if (!data) 6447 return -ENOMEM; 6448 size = SKB_WITH_OVERHEAD(size); 6449 6450 /* Copy real data, and all frags */ 6451 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6452 skb->len -= off; 6453 6454 memcpy((struct skb_shared_info *)(data + size), 6455 skb_shinfo(skb), 6456 offsetof(struct skb_shared_info, 6457 frags[skb_shinfo(skb)->nr_frags])); 6458 if (skb_cloned(skb)) { 6459 /* drop the old head gracefully */ 6460 if (skb_orphan_frags(skb, gfp_mask)) { 6461 skb_kfree_head(data, size); 6462 return -ENOMEM; 6463 } 6464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6465 skb_frag_ref(skb, i); 6466 if (skb_has_frag_list(skb)) 6467 skb_clone_fraglist(skb); 6468 skb_release_data(skb, SKB_CONSUMED, false); 6469 } else { 6470 /* we can reuse existing recount- all we did was 6471 * relocate values 6472 */ 6473 skb_free_head(skb, false); 6474 } 6475 6476 skb->head = data; 6477 skb->data = data; 6478 skb->head_frag = 0; 6479 skb_set_end_offset(skb, size); 6480 skb_set_tail_pointer(skb, skb_headlen(skb)); 6481 skb_headers_offset_update(skb, 0); 6482 skb->cloned = 0; 6483 skb->hdr_len = 0; 6484 skb->nohdr = 0; 6485 atomic_set(&skb_shinfo(skb)->dataref, 1); 6486 6487 return 0; 6488 } 6489 6490 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6491 6492 /* carve out the first eat bytes from skb's frag_list. May recurse into 6493 * pskb_carve() 6494 */ 6495 static int pskb_carve_frag_list(struct sk_buff *skb, 6496 struct skb_shared_info *shinfo, int eat, 6497 gfp_t gfp_mask) 6498 { 6499 struct sk_buff *list = shinfo->frag_list; 6500 struct sk_buff *clone = NULL; 6501 struct sk_buff *insp = NULL; 6502 6503 do { 6504 if (!list) { 6505 pr_err("Not enough bytes to eat. Want %d\n", eat); 6506 return -EFAULT; 6507 } 6508 if (list->len <= eat) { 6509 /* Eaten as whole. */ 6510 eat -= list->len; 6511 list = list->next; 6512 insp = list; 6513 } else { 6514 /* Eaten partially. */ 6515 if (skb_shared(list)) { 6516 clone = skb_clone(list, gfp_mask); 6517 if (!clone) 6518 return -ENOMEM; 6519 insp = list->next; 6520 list = clone; 6521 } else { 6522 /* This may be pulled without problems. */ 6523 insp = list; 6524 } 6525 if (pskb_carve(list, eat, gfp_mask) < 0) { 6526 kfree_skb(clone); 6527 return -ENOMEM; 6528 } 6529 break; 6530 } 6531 } while (eat); 6532 6533 /* Free pulled out fragments. */ 6534 while ((list = shinfo->frag_list) != insp) { 6535 shinfo->frag_list = list->next; 6536 consume_skb(list); 6537 } 6538 /* And insert new clone at head. */ 6539 if (clone) { 6540 clone->next = list; 6541 shinfo->frag_list = clone; 6542 } 6543 return 0; 6544 } 6545 6546 /* carve off first len bytes from skb. Split line (off) is in the 6547 * non-linear part of skb 6548 */ 6549 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6550 int pos, gfp_t gfp_mask) 6551 { 6552 int i, k = 0; 6553 unsigned int size = skb_end_offset(skb); 6554 u8 *data; 6555 const int nfrags = skb_shinfo(skb)->nr_frags; 6556 struct skb_shared_info *shinfo; 6557 6558 if (skb_pfmemalloc(skb)) 6559 gfp_mask |= __GFP_MEMALLOC; 6560 6561 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6562 if (!data) 6563 return -ENOMEM; 6564 size = SKB_WITH_OVERHEAD(size); 6565 6566 memcpy((struct skb_shared_info *)(data + size), 6567 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6568 if (skb_orphan_frags(skb, gfp_mask)) { 6569 skb_kfree_head(data, size); 6570 return -ENOMEM; 6571 } 6572 shinfo = (struct skb_shared_info *)(data + size); 6573 for (i = 0; i < nfrags; i++) { 6574 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6575 6576 if (pos + fsize > off) { 6577 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6578 6579 if (pos < off) { 6580 /* Split frag. 6581 * We have two variants in this case: 6582 * 1. Move all the frag to the second 6583 * part, if it is possible. F.e. 6584 * this approach is mandatory for TUX, 6585 * where splitting is expensive. 6586 * 2. Split is accurately. We make this. 6587 */ 6588 skb_frag_off_add(&shinfo->frags[0], off - pos); 6589 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6590 } 6591 skb_frag_ref(skb, i); 6592 k++; 6593 } 6594 pos += fsize; 6595 } 6596 shinfo->nr_frags = k; 6597 if (skb_has_frag_list(skb)) 6598 skb_clone_fraglist(skb); 6599 6600 /* split line is in frag list */ 6601 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6602 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6603 if (skb_has_frag_list(skb)) 6604 kfree_skb_list(skb_shinfo(skb)->frag_list); 6605 skb_kfree_head(data, size); 6606 return -ENOMEM; 6607 } 6608 skb_release_data(skb, SKB_CONSUMED, false); 6609 6610 skb->head = data; 6611 skb->head_frag = 0; 6612 skb->data = data; 6613 skb_set_end_offset(skb, size); 6614 skb_reset_tail_pointer(skb); 6615 skb_headers_offset_update(skb, 0); 6616 skb->cloned = 0; 6617 skb->hdr_len = 0; 6618 skb->nohdr = 0; 6619 skb->len -= off; 6620 skb->data_len = skb->len; 6621 atomic_set(&skb_shinfo(skb)->dataref, 1); 6622 return 0; 6623 } 6624 6625 /* remove len bytes from the beginning of the skb */ 6626 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6627 { 6628 int headlen = skb_headlen(skb); 6629 6630 if (len < headlen) 6631 return pskb_carve_inside_header(skb, len, headlen, gfp); 6632 else 6633 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6634 } 6635 6636 /* Extract to_copy bytes starting at off from skb, and return this in 6637 * a new skb 6638 */ 6639 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6640 int to_copy, gfp_t gfp) 6641 { 6642 struct sk_buff *clone = skb_clone(skb, gfp); 6643 6644 if (!clone) 6645 return NULL; 6646 6647 if (pskb_carve(clone, off, gfp) < 0 || 6648 pskb_trim(clone, to_copy)) { 6649 kfree_skb(clone); 6650 return NULL; 6651 } 6652 return clone; 6653 } 6654 EXPORT_SYMBOL(pskb_extract); 6655 6656 /** 6657 * skb_condense - try to get rid of fragments/frag_list if possible 6658 * @skb: buffer 6659 * 6660 * Can be used to save memory before skb is added to a busy queue. 6661 * If packet has bytes in frags and enough tail room in skb->head, 6662 * pull all of them, so that we can free the frags right now and adjust 6663 * truesize. 6664 * Notes: 6665 * We do not reallocate skb->head thus can not fail. 6666 * Caller must re-evaluate skb->truesize if needed. 6667 */ 6668 void skb_condense(struct sk_buff *skb) 6669 { 6670 if (skb->data_len) { 6671 if (skb->data_len > skb->end - skb->tail || 6672 skb_cloned(skb)) 6673 return; 6674 6675 /* Nice, we can free page frag(s) right now */ 6676 __pskb_pull_tail(skb, skb->data_len); 6677 } 6678 /* At this point, skb->truesize might be over estimated, 6679 * because skb had a fragment, and fragments do not tell 6680 * their truesize. 6681 * When we pulled its content into skb->head, fragment 6682 * was freed, but __pskb_pull_tail() could not possibly 6683 * adjust skb->truesize, not knowing the frag truesize. 6684 */ 6685 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6686 } 6687 EXPORT_SYMBOL(skb_condense); 6688 6689 #ifdef CONFIG_SKB_EXTENSIONS 6690 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6691 { 6692 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6693 } 6694 6695 /** 6696 * __skb_ext_alloc - allocate a new skb extensions storage 6697 * 6698 * @flags: See kmalloc(). 6699 * 6700 * Returns the newly allocated pointer. The pointer can later attached to a 6701 * skb via __skb_ext_set(). 6702 * Note: caller must handle the skb_ext as an opaque data. 6703 */ 6704 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6705 { 6706 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6707 6708 if (new) { 6709 memset(new->offset, 0, sizeof(new->offset)); 6710 refcount_set(&new->refcnt, 1); 6711 } 6712 6713 return new; 6714 } 6715 6716 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6717 unsigned int old_active) 6718 { 6719 struct skb_ext *new; 6720 6721 if (refcount_read(&old->refcnt) == 1) 6722 return old; 6723 6724 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6725 if (!new) 6726 return NULL; 6727 6728 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6729 refcount_set(&new->refcnt, 1); 6730 6731 #ifdef CONFIG_XFRM 6732 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6733 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6734 unsigned int i; 6735 6736 for (i = 0; i < sp->len; i++) 6737 xfrm_state_hold(sp->xvec[i]); 6738 } 6739 #endif 6740 __skb_ext_put(old); 6741 return new; 6742 } 6743 6744 /** 6745 * __skb_ext_set - attach the specified extension storage to this skb 6746 * @skb: buffer 6747 * @id: extension id 6748 * @ext: extension storage previously allocated via __skb_ext_alloc() 6749 * 6750 * Existing extensions, if any, are cleared. 6751 * 6752 * Returns the pointer to the extension. 6753 */ 6754 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6755 struct skb_ext *ext) 6756 { 6757 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6758 6759 skb_ext_put(skb); 6760 newlen = newoff + skb_ext_type_len[id]; 6761 ext->chunks = newlen; 6762 ext->offset[id] = newoff; 6763 skb->extensions = ext; 6764 skb->active_extensions = 1 << id; 6765 return skb_ext_get_ptr(ext, id); 6766 } 6767 6768 /** 6769 * skb_ext_add - allocate space for given extension, COW if needed 6770 * @skb: buffer 6771 * @id: extension to allocate space for 6772 * 6773 * Allocates enough space for the given extension. 6774 * If the extension is already present, a pointer to that extension 6775 * is returned. 6776 * 6777 * If the skb was cloned, COW applies and the returned memory can be 6778 * modified without changing the extension space of clones buffers. 6779 * 6780 * Returns pointer to the extension or NULL on allocation failure. 6781 */ 6782 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6783 { 6784 struct skb_ext *new, *old = NULL; 6785 unsigned int newlen, newoff; 6786 6787 if (skb->active_extensions) { 6788 old = skb->extensions; 6789 6790 new = skb_ext_maybe_cow(old, skb->active_extensions); 6791 if (!new) 6792 return NULL; 6793 6794 if (__skb_ext_exist(new, id)) 6795 goto set_active; 6796 6797 newoff = new->chunks; 6798 } else { 6799 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6800 6801 new = __skb_ext_alloc(GFP_ATOMIC); 6802 if (!new) 6803 return NULL; 6804 } 6805 6806 newlen = newoff + skb_ext_type_len[id]; 6807 new->chunks = newlen; 6808 new->offset[id] = newoff; 6809 set_active: 6810 skb->slow_gro = 1; 6811 skb->extensions = new; 6812 skb->active_extensions |= 1 << id; 6813 return skb_ext_get_ptr(new, id); 6814 } 6815 EXPORT_SYMBOL(skb_ext_add); 6816 6817 #ifdef CONFIG_XFRM 6818 static void skb_ext_put_sp(struct sec_path *sp) 6819 { 6820 unsigned int i; 6821 6822 for (i = 0; i < sp->len; i++) 6823 xfrm_state_put(sp->xvec[i]); 6824 } 6825 #endif 6826 6827 #ifdef CONFIG_MCTP_FLOWS 6828 static void skb_ext_put_mctp(struct mctp_flow *flow) 6829 { 6830 if (flow->key) 6831 mctp_key_unref(flow->key); 6832 } 6833 #endif 6834 6835 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6836 { 6837 struct skb_ext *ext = skb->extensions; 6838 6839 skb->active_extensions &= ~(1 << id); 6840 if (skb->active_extensions == 0) { 6841 skb->extensions = NULL; 6842 __skb_ext_put(ext); 6843 #ifdef CONFIG_XFRM 6844 } else if (id == SKB_EXT_SEC_PATH && 6845 refcount_read(&ext->refcnt) == 1) { 6846 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6847 6848 skb_ext_put_sp(sp); 6849 sp->len = 0; 6850 #endif 6851 } 6852 } 6853 EXPORT_SYMBOL(__skb_ext_del); 6854 6855 void __skb_ext_put(struct skb_ext *ext) 6856 { 6857 /* If this is last clone, nothing can increment 6858 * it after check passes. Avoids one atomic op. 6859 */ 6860 if (refcount_read(&ext->refcnt) == 1) 6861 goto free_now; 6862 6863 if (!refcount_dec_and_test(&ext->refcnt)) 6864 return; 6865 free_now: 6866 #ifdef CONFIG_XFRM 6867 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6868 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6869 #endif 6870 #ifdef CONFIG_MCTP_FLOWS 6871 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6872 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6873 #endif 6874 6875 kmem_cache_free(skbuff_ext_cache, ext); 6876 } 6877 EXPORT_SYMBOL(__skb_ext_put); 6878 #endif /* CONFIG_SKB_EXTENSIONS */ 6879 6880 /** 6881 * skb_attempt_defer_free - queue skb for remote freeing 6882 * @skb: buffer 6883 * 6884 * Put @skb in a per-cpu list, using the cpu which 6885 * allocated the skb/pages to reduce false sharing 6886 * and memory zone spinlock contention. 6887 */ 6888 void skb_attempt_defer_free(struct sk_buff *skb) 6889 { 6890 int cpu = skb->alloc_cpu; 6891 struct softnet_data *sd; 6892 unsigned int defer_max; 6893 bool kick; 6894 6895 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6896 !cpu_online(cpu) || 6897 cpu == raw_smp_processor_id()) { 6898 nodefer: __kfree_skb(skb); 6899 return; 6900 } 6901 6902 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6903 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6904 6905 sd = &per_cpu(softnet_data, cpu); 6906 defer_max = READ_ONCE(sysctl_skb_defer_max); 6907 if (READ_ONCE(sd->defer_count) >= defer_max) 6908 goto nodefer; 6909 6910 spin_lock_bh(&sd->defer_lock); 6911 /* Send an IPI every time queue reaches half capacity. */ 6912 kick = sd->defer_count == (defer_max >> 1); 6913 /* Paired with the READ_ONCE() few lines above */ 6914 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6915 6916 skb->next = sd->defer_list; 6917 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6918 WRITE_ONCE(sd->defer_list, skb); 6919 spin_unlock_bh(&sd->defer_lock); 6920 6921 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6922 * if we are unlucky enough (this seems very unlikely). 6923 */ 6924 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6925 smp_call_function_single_async(cpu, &sd->defer_csd); 6926 } 6927 6928 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6929 size_t offset, size_t len) 6930 { 6931 const char *kaddr; 6932 __wsum csum; 6933 6934 kaddr = kmap_local_page(page); 6935 csum = csum_partial(kaddr + offset, len, 0); 6936 kunmap_local(kaddr); 6937 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6938 } 6939 6940 /** 6941 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6942 * @skb: The buffer to add pages to 6943 * @iter: Iterator representing the pages to be added 6944 * @maxsize: Maximum amount of pages to be added 6945 * @gfp: Allocation flags 6946 * 6947 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6948 * extracts pages from an iterator and adds them to the socket buffer if 6949 * possible, copying them to fragments if not possible (such as if they're slab 6950 * pages). 6951 * 6952 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6953 * insufficient space in the buffer to transfer anything. 6954 */ 6955 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6956 ssize_t maxsize, gfp_t gfp) 6957 { 6958 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6959 struct page *pages[8], **ppages = pages; 6960 ssize_t spliced = 0, ret = 0; 6961 unsigned int i; 6962 6963 while (iter->count > 0) { 6964 ssize_t space, nr, len; 6965 size_t off; 6966 6967 ret = -EMSGSIZE; 6968 space = frag_limit - skb_shinfo(skb)->nr_frags; 6969 if (space < 0) 6970 break; 6971 6972 /* We might be able to coalesce without increasing nr_frags */ 6973 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6974 6975 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6976 if (len <= 0) { 6977 ret = len ?: -EIO; 6978 break; 6979 } 6980 6981 i = 0; 6982 do { 6983 struct page *page = pages[i++]; 6984 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6985 6986 ret = -EIO; 6987 if (WARN_ON_ONCE(!sendpage_ok(page))) 6988 goto out; 6989 6990 ret = skb_append_pagefrags(skb, page, off, part, 6991 frag_limit); 6992 if (ret < 0) { 6993 iov_iter_revert(iter, len); 6994 goto out; 6995 } 6996 6997 if (skb->ip_summed == CHECKSUM_NONE) 6998 skb_splice_csum_page(skb, page, off, part); 6999 7000 off = 0; 7001 spliced += part; 7002 maxsize -= part; 7003 len -= part; 7004 } while (len > 0); 7005 7006 if (maxsize <= 0) 7007 break; 7008 } 7009 7010 out: 7011 skb_len_add(skb, spliced); 7012 return spliced ?: ret; 7013 } 7014 EXPORT_SYMBOL(skb_splice_from_iter); 7015 7016 static __always_inline 7017 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7018 size_t len, void *to, void *priv2) 7019 { 7020 __wsum *csum = priv2; 7021 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7022 7023 *csum = csum_block_add(*csum, next, progress); 7024 return 0; 7025 } 7026 7027 static __always_inline 7028 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7029 size_t len, void *to, void *priv2) 7030 { 7031 __wsum next, *csum = priv2; 7032 7033 next = csum_and_copy_from_user(iter_from, to + progress, len); 7034 *csum = csum_block_add(*csum, next, progress); 7035 return next ? 0 : len; 7036 } 7037 7038 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7039 __wsum *csum, struct iov_iter *i) 7040 { 7041 size_t copied; 7042 7043 if (WARN_ON_ONCE(!i->data_source)) 7044 return false; 7045 copied = iterate_and_advance2(i, bytes, addr, csum, 7046 copy_from_user_iter_csum, 7047 memcpy_from_iter_csum); 7048 if (likely(copied == bytes)) 7049 return true; 7050 iov_iter_revert(i, copied); 7051 return false; 7052 } 7053 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7054