1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 if (skb->pfmemalloc) 862 n->pfmemalloc = 1; 863 n->destructor = NULL; 864 C(tail); 865 C(end); 866 C(head); 867 C(head_frag); 868 C(data); 869 C(truesize); 870 refcount_set(&n->users, 1); 871 872 atomic_inc(&(skb_shinfo(skb)->dataref)); 873 skb->cloned = 1; 874 875 return n; 876 #undef C 877 } 878 879 /** 880 * skb_morph - morph one skb into another 881 * @dst: the skb to receive the contents 882 * @src: the skb to supply the contents 883 * 884 * This is identical to skb_clone except that the target skb is 885 * supplied by the user. 886 * 887 * The target skb is returned upon exit. 888 */ 889 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 890 { 891 skb_release_all(dst); 892 return __skb_clone(dst, src); 893 } 894 EXPORT_SYMBOL_GPL(skb_morph); 895 896 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 897 { 898 unsigned long max_pg, num_pg, new_pg, old_pg; 899 struct user_struct *user; 900 901 if (capable(CAP_IPC_LOCK) || !size) 902 return 0; 903 904 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 905 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 906 user = mmp->user ? : current_user(); 907 908 do { 909 old_pg = atomic_long_read(&user->locked_vm); 910 new_pg = old_pg + num_pg; 911 if (new_pg > max_pg) 912 return -ENOBUFS; 913 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 914 old_pg); 915 916 if (!mmp->user) { 917 mmp->user = get_uid(user); 918 mmp->num_pg = num_pg; 919 } else { 920 mmp->num_pg += num_pg; 921 } 922 923 return 0; 924 } 925 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 926 927 void mm_unaccount_pinned_pages(struct mmpin *mmp) 928 { 929 if (mmp->user) { 930 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 931 free_uid(mmp->user); 932 } 933 } 934 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 935 936 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 937 { 938 struct ubuf_info *uarg; 939 struct sk_buff *skb; 940 941 WARN_ON_ONCE(!in_task()); 942 943 if (!sock_flag(sk, SOCK_ZEROCOPY)) 944 return NULL; 945 946 skb = sock_omalloc(sk, 0, GFP_KERNEL); 947 if (!skb) 948 return NULL; 949 950 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 951 uarg = (void *)skb->cb; 952 uarg->mmp.user = NULL; 953 954 if (mm_account_pinned_pages(&uarg->mmp, size)) { 955 kfree_skb(skb); 956 return NULL; 957 } 958 959 uarg->callback = sock_zerocopy_callback; 960 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 961 uarg->len = 1; 962 uarg->bytelen = size; 963 uarg->zerocopy = 1; 964 refcount_set(&uarg->refcnt, 1); 965 sock_hold(sk); 966 967 return uarg; 968 } 969 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 970 971 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 972 { 973 return container_of((void *)uarg, struct sk_buff, cb); 974 } 975 976 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 977 struct ubuf_info *uarg) 978 { 979 if (uarg) { 980 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 981 u32 bytelen, next; 982 983 /* realloc only when socket is locked (TCP, UDP cork), 984 * so uarg->len and sk_zckey access is serialized 985 */ 986 if (!sock_owned_by_user(sk)) { 987 WARN_ON_ONCE(1); 988 return NULL; 989 } 990 991 bytelen = uarg->bytelen + size; 992 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 993 /* TCP can create new skb to attach new uarg */ 994 if (sk->sk_type == SOCK_STREAM) 995 goto new_alloc; 996 return NULL; 997 } 998 999 next = (u32)atomic_read(&sk->sk_zckey); 1000 if ((u32)(uarg->id + uarg->len) == next) { 1001 if (mm_account_pinned_pages(&uarg->mmp, size)) 1002 return NULL; 1003 uarg->len++; 1004 uarg->bytelen = bytelen; 1005 atomic_set(&sk->sk_zckey, ++next); 1006 sock_zerocopy_get(uarg); 1007 return uarg; 1008 } 1009 } 1010 1011 new_alloc: 1012 return sock_zerocopy_alloc(sk, size); 1013 } 1014 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1015 1016 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1017 { 1018 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1019 u32 old_lo, old_hi; 1020 u64 sum_len; 1021 1022 old_lo = serr->ee.ee_info; 1023 old_hi = serr->ee.ee_data; 1024 sum_len = old_hi - old_lo + 1ULL + len; 1025 1026 if (sum_len >= (1ULL << 32)) 1027 return false; 1028 1029 if (lo != old_hi + 1) 1030 return false; 1031 1032 serr->ee.ee_data += len; 1033 return true; 1034 } 1035 1036 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1037 { 1038 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1039 struct sock_exterr_skb *serr; 1040 struct sock *sk = skb->sk; 1041 struct sk_buff_head *q; 1042 unsigned long flags; 1043 u32 lo, hi; 1044 u16 len; 1045 1046 mm_unaccount_pinned_pages(&uarg->mmp); 1047 1048 /* if !len, there was only 1 call, and it was aborted 1049 * so do not queue a completion notification 1050 */ 1051 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1052 goto release; 1053 1054 len = uarg->len; 1055 lo = uarg->id; 1056 hi = uarg->id + len - 1; 1057 1058 serr = SKB_EXT_ERR(skb); 1059 memset(serr, 0, sizeof(*serr)); 1060 serr->ee.ee_errno = 0; 1061 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1062 serr->ee.ee_data = hi; 1063 serr->ee.ee_info = lo; 1064 if (!success) 1065 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1066 1067 q = &sk->sk_error_queue; 1068 spin_lock_irqsave(&q->lock, flags); 1069 tail = skb_peek_tail(q); 1070 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1071 !skb_zerocopy_notify_extend(tail, lo, len)) { 1072 __skb_queue_tail(q, skb); 1073 skb = NULL; 1074 } 1075 spin_unlock_irqrestore(&q->lock, flags); 1076 1077 sk->sk_error_report(sk); 1078 1079 release: 1080 consume_skb(skb); 1081 sock_put(sk); 1082 } 1083 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1084 1085 void sock_zerocopy_put(struct ubuf_info *uarg) 1086 { 1087 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1088 if (uarg->callback) 1089 uarg->callback(uarg, uarg->zerocopy); 1090 else 1091 consume_skb(skb_from_uarg(uarg)); 1092 } 1093 } 1094 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1095 1096 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1097 { 1098 if (uarg) { 1099 struct sock *sk = skb_from_uarg(uarg)->sk; 1100 1101 atomic_dec(&sk->sk_zckey); 1102 uarg->len--; 1103 1104 sock_zerocopy_put(uarg); 1105 } 1106 } 1107 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1108 1109 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1110 struct iov_iter *from, size_t length); 1111 1112 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1113 struct msghdr *msg, int len, 1114 struct ubuf_info *uarg) 1115 { 1116 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1117 struct iov_iter orig_iter = msg->msg_iter; 1118 int err, orig_len = skb->len; 1119 1120 /* An skb can only point to one uarg. This edge case happens when 1121 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1122 */ 1123 if (orig_uarg && uarg != orig_uarg) 1124 return -EEXIST; 1125 1126 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1127 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1128 struct sock *save_sk = skb->sk; 1129 1130 /* Streams do not free skb on error. Reset to prev state. */ 1131 msg->msg_iter = orig_iter; 1132 skb->sk = sk; 1133 ___pskb_trim(skb, orig_len); 1134 skb->sk = save_sk; 1135 return err; 1136 } 1137 1138 skb_zcopy_set(skb, uarg); 1139 return skb->len - orig_len; 1140 } 1141 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1142 1143 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1144 gfp_t gfp_mask) 1145 { 1146 if (skb_zcopy(orig)) { 1147 if (skb_zcopy(nskb)) { 1148 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1149 if (!gfp_mask) { 1150 WARN_ON_ONCE(1); 1151 return -ENOMEM; 1152 } 1153 if (skb_uarg(nskb) == skb_uarg(orig)) 1154 return 0; 1155 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1156 return -EIO; 1157 } 1158 skb_zcopy_set(nskb, skb_uarg(orig)); 1159 } 1160 return 0; 1161 } 1162 1163 /** 1164 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1165 * @skb: the skb to modify 1166 * @gfp_mask: allocation priority 1167 * 1168 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1169 * It will copy all frags into kernel and drop the reference 1170 * to userspace pages. 1171 * 1172 * If this function is called from an interrupt gfp_mask() must be 1173 * %GFP_ATOMIC. 1174 * 1175 * Returns 0 on success or a negative error code on failure 1176 * to allocate kernel memory to copy to. 1177 */ 1178 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1179 { 1180 int num_frags = skb_shinfo(skb)->nr_frags; 1181 struct page *page, *head = NULL; 1182 int i, new_frags; 1183 u32 d_off; 1184 1185 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1186 return -EINVAL; 1187 1188 if (!num_frags) 1189 goto release; 1190 1191 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1192 for (i = 0; i < new_frags; i++) { 1193 page = alloc_page(gfp_mask); 1194 if (!page) { 1195 while (head) { 1196 struct page *next = (struct page *)page_private(head); 1197 put_page(head); 1198 head = next; 1199 } 1200 return -ENOMEM; 1201 } 1202 set_page_private(page, (unsigned long)head); 1203 head = page; 1204 } 1205 1206 page = head; 1207 d_off = 0; 1208 for (i = 0; i < num_frags; i++) { 1209 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1210 u32 p_off, p_len, copied; 1211 struct page *p; 1212 u8 *vaddr; 1213 1214 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1215 p, p_off, p_len, copied) { 1216 u32 copy, done = 0; 1217 vaddr = kmap_atomic(p); 1218 1219 while (done < p_len) { 1220 if (d_off == PAGE_SIZE) { 1221 d_off = 0; 1222 page = (struct page *)page_private(page); 1223 } 1224 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1225 memcpy(page_address(page) + d_off, 1226 vaddr + p_off + done, copy); 1227 done += copy; 1228 d_off += copy; 1229 } 1230 kunmap_atomic(vaddr); 1231 } 1232 } 1233 1234 /* skb frags release userspace buffers */ 1235 for (i = 0; i < num_frags; i++) 1236 skb_frag_unref(skb, i); 1237 1238 /* skb frags point to kernel buffers */ 1239 for (i = 0; i < new_frags - 1; i++) { 1240 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1241 head = (struct page *)page_private(head); 1242 } 1243 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1244 skb_shinfo(skb)->nr_frags = new_frags; 1245 1246 release: 1247 skb_zcopy_clear(skb, false); 1248 return 0; 1249 } 1250 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1251 1252 /** 1253 * skb_clone - duplicate an sk_buff 1254 * @skb: buffer to clone 1255 * @gfp_mask: allocation priority 1256 * 1257 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1258 * copies share the same packet data but not structure. The new 1259 * buffer has a reference count of 1. If the allocation fails the 1260 * function returns %NULL otherwise the new buffer is returned. 1261 * 1262 * If this function is called from an interrupt gfp_mask() must be 1263 * %GFP_ATOMIC. 1264 */ 1265 1266 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1267 { 1268 struct sk_buff_fclones *fclones = container_of(skb, 1269 struct sk_buff_fclones, 1270 skb1); 1271 struct sk_buff *n; 1272 1273 if (skb_orphan_frags(skb, gfp_mask)) 1274 return NULL; 1275 1276 if (skb->fclone == SKB_FCLONE_ORIG && 1277 refcount_read(&fclones->fclone_ref) == 1) { 1278 n = &fclones->skb2; 1279 refcount_set(&fclones->fclone_ref, 2); 1280 } else { 1281 if (skb_pfmemalloc(skb)) 1282 gfp_mask |= __GFP_MEMALLOC; 1283 1284 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1285 if (!n) 1286 return NULL; 1287 1288 n->fclone = SKB_FCLONE_UNAVAILABLE; 1289 } 1290 1291 return __skb_clone(n, skb); 1292 } 1293 EXPORT_SYMBOL(skb_clone); 1294 1295 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1296 { 1297 /* Only adjust this if it actually is csum_start rather than csum */ 1298 if (skb->ip_summed == CHECKSUM_PARTIAL) 1299 skb->csum_start += off; 1300 /* {transport,network,mac}_header and tail are relative to skb->head */ 1301 skb->transport_header += off; 1302 skb->network_header += off; 1303 if (skb_mac_header_was_set(skb)) 1304 skb->mac_header += off; 1305 skb->inner_transport_header += off; 1306 skb->inner_network_header += off; 1307 skb->inner_mac_header += off; 1308 } 1309 1310 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1311 { 1312 __copy_skb_header(new, old); 1313 1314 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1315 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1316 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1317 } 1318 EXPORT_SYMBOL(skb_copy_header); 1319 1320 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1321 { 1322 if (skb_pfmemalloc(skb)) 1323 return SKB_ALLOC_RX; 1324 return 0; 1325 } 1326 1327 /** 1328 * skb_copy - create private copy of an sk_buff 1329 * @skb: buffer to copy 1330 * @gfp_mask: allocation priority 1331 * 1332 * Make a copy of both an &sk_buff and its data. This is used when the 1333 * caller wishes to modify the data and needs a private copy of the 1334 * data to alter. Returns %NULL on failure or the pointer to the buffer 1335 * on success. The returned buffer has a reference count of 1. 1336 * 1337 * As by-product this function converts non-linear &sk_buff to linear 1338 * one, so that &sk_buff becomes completely private and caller is allowed 1339 * to modify all the data of returned buffer. This means that this 1340 * function is not recommended for use in circumstances when only 1341 * header is going to be modified. Use pskb_copy() instead. 1342 */ 1343 1344 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1345 { 1346 int headerlen = skb_headroom(skb); 1347 unsigned int size = skb_end_offset(skb) + skb->data_len; 1348 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1349 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1350 1351 if (!n) 1352 return NULL; 1353 1354 /* Set the data pointer */ 1355 skb_reserve(n, headerlen); 1356 /* Set the tail pointer and length */ 1357 skb_put(n, skb->len); 1358 1359 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1360 1361 skb_copy_header(n, skb); 1362 return n; 1363 } 1364 EXPORT_SYMBOL(skb_copy); 1365 1366 /** 1367 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1368 * @skb: buffer to copy 1369 * @headroom: headroom of new skb 1370 * @gfp_mask: allocation priority 1371 * @fclone: if true allocate the copy of the skb from the fclone 1372 * cache instead of the head cache; it is recommended to set this 1373 * to true for the cases where the copy will likely be cloned 1374 * 1375 * Make a copy of both an &sk_buff and part of its data, located 1376 * in header. Fragmented data remain shared. This is used when 1377 * the caller wishes to modify only header of &sk_buff and needs 1378 * private copy of the header to alter. Returns %NULL on failure 1379 * or the pointer to the buffer on success. 1380 * The returned buffer has a reference count of 1. 1381 */ 1382 1383 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1384 gfp_t gfp_mask, bool fclone) 1385 { 1386 unsigned int size = skb_headlen(skb) + headroom; 1387 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1388 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1389 1390 if (!n) 1391 goto out; 1392 1393 /* Set the data pointer */ 1394 skb_reserve(n, headroom); 1395 /* Set the tail pointer and length */ 1396 skb_put(n, skb_headlen(skb)); 1397 /* Copy the bytes */ 1398 skb_copy_from_linear_data(skb, n->data, n->len); 1399 1400 n->truesize += skb->data_len; 1401 n->data_len = skb->data_len; 1402 n->len = skb->len; 1403 1404 if (skb_shinfo(skb)->nr_frags) { 1405 int i; 1406 1407 if (skb_orphan_frags(skb, gfp_mask) || 1408 skb_zerocopy_clone(n, skb, gfp_mask)) { 1409 kfree_skb(n); 1410 n = NULL; 1411 goto out; 1412 } 1413 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1414 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1415 skb_frag_ref(skb, i); 1416 } 1417 skb_shinfo(n)->nr_frags = i; 1418 } 1419 1420 if (skb_has_frag_list(skb)) { 1421 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1422 skb_clone_fraglist(n); 1423 } 1424 1425 skb_copy_header(n, skb); 1426 out: 1427 return n; 1428 } 1429 EXPORT_SYMBOL(__pskb_copy_fclone); 1430 1431 /** 1432 * pskb_expand_head - reallocate header of &sk_buff 1433 * @skb: buffer to reallocate 1434 * @nhead: room to add at head 1435 * @ntail: room to add at tail 1436 * @gfp_mask: allocation priority 1437 * 1438 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1439 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1440 * reference count of 1. Returns zero in the case of success or error, 1441 * if expansion failed. In the last case, &sk_buff is not changed. 1442 * 1443 * All the pointers pointing into skb header may change and must be 1444 * reloaded after call to this function. 1445 */ 1446 1447 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1448 gfp_t gfp_mask) 1449 { 1450 int i, osize = skb_end_offset(skb); 1451 int size = osize + nhead + ntail; 1452 long off; 1453 u8 *data; 1454 1455 BUG_ON(nhead < 0); 1456 1457 BUG_ON(skb_shared(skb)); 1458 1459 size = SKB_DATA_ALIGN(size); 1460 1461 if (skb_pfmemalloc(skb)) 1462 gfp_mask |= __GFP_MEMALLOC; 1463 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1464 gfp_mask, NUMA_NO_NODE, NULL); 1465 if (!data) 1466 goto nodata; 1467 size = SKB_WITH_OVERHEAD(ksize(data)); 1468 1469 /* Copy only real data... and, alas, header. This should be 1470 * optimized for the cases when header is void. 1471 */ 1472 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1473 1474 memcpy((struct skb_shared_info *)(data + size), 1475 skb_shinfo(skb), 1476 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1477 1478 /* 1479 * if shinfo is shared we must drop the old head gracefully, but if it 1480 * is not we can just drop the old head and let the existing refcount 1481 * be since all we did is relocate the values 1482 */ 1483 if (skb_cloned(skb)) { 1484 if (skb_orphan_frags(skb, gfp_mask)) 1485 goto nofrags; 1486 if (skb_zcopy(skb)) 1487 refcount_inc(&skb_uarg(skb)->refcnt); 1488 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1489 skb_frag_ref(skb, i); 1490 1491 if (skb_has_frag_list(skb)) 1492 skb_clone_fraglist(skb); 1493 1494 skb_release_data(skb); 1495 } else { 1496 skb_free_head(skb); 1497 } 1498 off = (data + nhead) - skb->head; 1499 1500 skb->head = data; 1501 skb->head_frag = 0; 1502 skb->data += off; 1503 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1504 skb->end = size; 1505 off = nhead; 1506 #else 1507 skb->end = skb->head + size; 1508 #endif 1509 skb->tail += off; 1510 skb_headers_offset_update(skb, nhead); 1511 skb->cloned = 0; 1512 skb->hdr_len = 0; 1513 skb->nohdr = 0; 1514 atomic_set(&skb_shinfo(skb)->dataref, 1); 1515 1516 skb_metadata_clear(skb); 1517 1518 /* It is not generally safe to change skb->truesize. 1519 * For the moment, we really care of rx path, or 1520 * when skb is orphaned (not attached to a socket). 1521 */ 1522 if (!skb->sk || skb->destructor == sock_edemux) 1523 skb->truesize += size - osize; 1524 1525 return 0; 1526 1527 nofrags: 1528 kfree(data); 1529 nodata: 1530 return -ENOMEM; 1531 } 1532 EXPORT_SYMBOL(pskb_expand_head); 1533 1534 /* Make private copy of skb with writable head and some headroom */ 1535 1536 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1537 { 1538 struct sk_buff *skb2; 1539 int delta = headroom - skb_headroom(skb); 1540 1541 if (delta <= 0) 1542 skb2 = pskb_copy(skb, GFP_ATOMIC); 1543 else { 1544 skb2 = skb_clone(skb, GFP_ATOMIC); 1545 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1546 GFP_ATOMIC)) { 1547 kfree_skb(skb2); 1548 skb2 = NULL; 1549 } 1550 } 1551 return skb2; 1552 } 1553 EXPORT_SYMBOL(skb_realloc_headroom); 1554 1555 /** 1556 * skb_copy_expand - copy and expand sk_buff 1557 * @skb: buffer to copy 1558 * @newheadroom: new free bytes at head 1559 * @newtailroom: new free bytes at tail 1560 * @gfp_mask: allocation priority 1561 * 1562 * Make a copy of both an &sk_buff and its data and while doing so 1563 * allocate additional space. 1564 * 1565 * This is used when the caller wishes to modify the data and needs a 1566 * private copy of the data to alter as well as more space for new fields. 1567 * Returns %NULL on failure or the pointer to the buffer 1568 * on success. The returned buffer has a reference count of 1. 1569 * 1570 * You must pass %GFP_ATOMIC as the allocation priority if this function 1571 * is called from an interrupt. 1572 */ 1573 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1574 int newheadroom, int newtailroom, 1575 gfp_t gfp_mask) 1576 { 1577 /* 1578 * Allocate the copy buffer 1579 */ 1580 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1581 gfp_mask, skb_alloc_rx_flag(skb), 1582 NUMA_NO_NODE); 1583 int oldheadroom = skb_headroom(skb); 1584 int head_copy_len, head_copy_off; 1585 1586 if (!n) 1587 return NULL; 1588 1589 skb_reserve(n, newheadroom); 1590 1591 /* Set the tail pointer and length */ 1592 skb_put(n, skb->len); 1593 1594 head_copy_len = oldheadroom; 1595 head_copy_off = 0; 1596 if (newheadroom <= head_copy_len) 1597 head_copy_len = newheadroom; 1598 else 1599 head_copy_off = newheadroom - head_copy_len; 1600 1601 /* Copy the linear header and data. */ 1602 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1603 skb->len + head_copy_len)); 1604 1605 skb_copy_header(n, skb); 1606 1607 skb_headers_offset_update(n, newheadroom - oldheadroom); 1608 1609 return n; 1610 } 1611 EXPORT_SYMBOL(skb_copy_expand); 1612 1613 /** 1614 * __skb_pad - zero pad the tail of an skb 1615 * @skb: buffer to pad 1616 * @pad: space to pad 1617 * @free_on_error: free buffer on error 1618 * 1619 * Ensure that a buffer is followed by a padding area that is zero 1620 * filled. Used by network drivers which may DMA or transfer data 1621 * beyond the buffer end onto the wire. 1622 * 1623 * May return error in out of memory cases. The skb is freed on error 1624 * if @free_on_error is true. 1625 */ 1626 1627 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1628 { 1629 int err; 1630 int ntail; 1631 1632 /* If the skbuff is non linear tailroom is always zero.. */ 1633 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1634 memset(skb->data+skb->len, 0, pad); 1635 return 0; 1636 } 1637 1638 ntail = skb->data_len + pad - (skb->end - skb->tail); 1639 if (likely(skb_cloned(skb) || ntail > 0)) { 1640 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1641 if (unlikely(err)) 1642 goto free_skb; 1643 } 1644 1645 /* FIXME: The use of this function with non-linear skb's really needs 1646 * to be audited. 1647 */ 1648 err = skb_linearize(skb); 1649 if (unlikely(err)) 1650 goto free_skb; 1651 1652 memset(skb->data + skb->len, 0, pad); 1653 return 0; 1654 1655 free_skb: 1656 if (free_on_error) 1657 kfree_skb(skb); 1658 return err; 1659 } 1660 EXPORT_SYMBOL(__skb_pad); 1661 1662 /** 1663 * pskb_put - add data to the tail of a potentially fragmented buffer 1664 * @skb: start of the buffer to use 1665 * @tail: tail fragment of the buffer to use 1666 * @len: amount of data to add 1667 * 1668 * This function extends the used data area of the potentially 1669 * fragmented buffer. @tail must be the last fragment of @skb -- or 1670 * @skb itself. If this would exceed the total buffer size the kernel 1671 * will panic. A pointer to the first byte of the extra data is 1672 * returned. 1673 */ 1674 1675 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1676 { 1677 if (tail != skb) { 1678 skb->data_len += len; 1679 skb->len += len; 1680 } 1681 return skb_put(tail, len); 1682 } 1683 EXPORT_SYMBOL_GPL(pskb_put); 1684 1685 /** 1686 * skb_put - add data to a buffer 1687 * @skb: buffer to use 1688 * @len: amount of data to add 1689 * 1690 * This function extends the used data area of the buffer. If this would 1691 * exceed the total buffer size the kernel will panic. A pointer to the 1692 * first byte of the extra data is returned. 1693 */ 1694 void *skb_put(struct sk_buff *skb, unsigned int len) 1695 { 1696 void *tmp = skb_tail_pointer(skb); 1697 SKB_LINEAR_ASSERT(skb); 1698 skb->tail += len; 1699 skb->len += len; 1700 if (unlikely(skb->tail > skb->end)) 1701 skb_over_panic(skb, len, __builtin_return_address(0)); 1702 return tmp; 1703 } 1704 EXPORT_SYMBOL(skb_put); 1705 1706 /** 1707 * skb_push - add data to the start of a buffer 1708 * @skb: buffer to use 1709 * @len: amount of data to add 1710 * 1711 * This function extends the used data area of the buffer at the buffer 1712 * start. If this would exceed the total buffer headroom the kernel will 1713 * panic. A pointer to the first byte of the extra data is returned. 1714 */ 1715 void *skb_push(struct sk_buff *skb, unsigned int len) 1716 { 1717 skb->data -= len; 1718 skb->len += len; 1719 if (unlikely(skb->data<skb->head)) 1720 skb_under_panic(skb, len, __builtin_return_address(0)); 1721 return skb->data; 1722 } 1723 EXPORT_SYMBOL(skb_push); 1724 1725 /** 1726 * skb_pull - remove data from the start of a buffer 1727 * @skb: buffer to use 1728 * @len: amount of data to remove 1729 * 1730 * This function removes data from the start of a buffer, returning 1731 * the memory to the headroom. A pointer to the next data in the buffer 1732 * is returned. Once the data has been pulled future pushes will overwrite 1733 * the old data. 1734 */ 1735 void *skb_pull(struct sk_buff *skb, unsigned int len) 1736 { 1737 return skb_pull_inline(skb, len); 1738 } 1739 EXPORT_SYMBOL(skb_pull); 1740 1741 /** 1742 * skb_trim - remove end from a buffer 1743 * @skb: buffer to alter 1744 * @len: new length 1745 * 1746 * Cut the length of a buffer down by removing data from the tail. If 1747 * the buffer is already under the length specified it is not modified. 1748 * The skb must be linear. 1749 */ 1750 void skb_trim(struct sk_buff *skb, unsigned int len) 1751 { 1752 if (skb->len > len) 1753 __skb_trim(skb, len); 1754 } 1755 EXPORT_SYMBOL(skb_trim); 1756 1757 /* Trims skb to length len. It can change skb pointers. 1758 */ 1759 1760 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1761 { 1762 struct sk_buff **fragp; 1763 struct sk_buff *frag; 1764 int offset = skb_headlen(skb); 1765 int nfrags = skb_shinfo(skb)->nr_frags; 1766 int i; 1767 int err; 1768 1769 if (skb_cloned(skb) && 1770 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1771 return err; 1772 1773 i = 0; 1774 if (offset >= len) 1775 goto drop_pages; 1776 1777 for (; i < nfrags; i++) { 1778 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1779 1780 if (end < len) { 1781 offset = end; 1782 continue; 1783 } 1784 1785 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1786 1787 drop_pages: 1788 skb_shinfo(skb)->nr_frags = i; 1789 1790 for (; i < nfrags; i++) 1791 skb_frag_unref(skb, i); 1792 1793 if (skb_has_frag_list(skb)) 1794 skb_drop_fraglist(skb); 1795 goto done; 1796 } 1797 1798 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1799 fragp = &frag->next) { 1800 int end = offset + frag->len; 1801 1802 if (skb_shared(frag)) { 1803 struct sk_buff *nfrag; 1804 1805 nfrag = skb_clone(frag, GFP_ATOMIC); 1806 if (unlikely(!nfrag)) 1807 return -ENOMEM; 1808 1809 nfrag->next = frag->next; 1810 consume_skb(frag); 1811 frag = nfrag; 1812 *fragp = frag; 1813 } 1814 1815 if (end < len) { 1816 offset = end; 1817 continue; 1818 } 1819 1820 if (end > len && 1821 unlikely((err = pskb_trim(frag, len - offset)))) 1822 return err; 1823 1824 if (frag->next) 1825 skb_drop_list(&frag->next); 1826 break; 1827 } 1828 1829 done: 1830 if (len > skb_headlen(skb)) { 1831 skb->data_len -= skb->len - len; 1832 skb->len = len; 1833 } else { 1834 skb->len = len; 1835 skb->data_len = 0; 1836 skb_set_tail_pointer(skb, len); 1837 } 1838 1839 if (!skb->sk || skb->destructor == sock_edemux) 1840 skb_condense(skb); 1841 return 0; 1842 } 1843 EXPORT_SYMBOL(___pskb_trim); 1844 1845 /* Note : use pskb_trim_rcsum() instead of calling this directly 1846 */ 1847 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1848 { 1849 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1850 int delta = skb->len - len; 1851 1852 skb->csum = csum_sub(skb->csum, 1853 skb_checksum(skb, len, delta, 0)); 1854 } 1855 return __pskb_trim(skb, len); 1856 } 1857 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1858 1859 /** 1860 * __pskb_pull_tail - advance tail of skb header 1861 * @skb: buffer to reallocate 1862 * @delta: number of bytes to advance tail 1863 * 1864 * The function makes a sense only on a fragmented &sk_buff, 1865 * it expands header moving its tail forward and copying necessary 1866 * data from fragmented part. 1867 * 1868 * &sk_buff MUST have reference count of 1. 1869 * 1870 * Returns %NULL (and &sk_buff does not change) if pull failed 1871 * or value of new tail of skb in the case of success. 1872 * 1873 * All the pointers pointing into skb header may change and must be 1874 * reloaded after call to this function. 1875 */ 1876 1877 /* Moves tail of skb head forward, copying data from fragmented part, 1878 * when it is necessary. 1879 * 1. It may fail due to malloc failure. 1880 * 2. It may change skb pointers. 1881 * 1882 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1883 */ 1884 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1885 { 1886 /* If skb has not enough free space at tail, get new one 1887 * plus 128 bytes for future expansions. If we have enough 1888 * room at tail, reallocate without expansion only if skb is cloned. 1889 */ 1890 int i, k, eat = (skb->tail + delta) - skb->end; 1891 1892 if (eat > 0 || skb_cloned(skb)) { 1893 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1894 GFP_ATOMIC)) 1895 return NULL; 1896 } 1897 1898 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1899 skb_tail_pointer(skb), delta)); 1900 1901 /* Optimization: no fragments, no reasons to preestimate 1902 * size of pulled pages. Superb. 1903 */ 1904 if (!skb_has_frag_list(skb)) 1905 goto pull_pages; 1906 1907 /* Estimate size of pulled pages. */ 1908 eat = delta; 1909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1910 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1911 1912 if (size >= eat) 1913 goto pull_pages; 1914 eat -= size; 1915 } 1916 1917 /* If we need update frag list, we are in troubles. 1918 * Certainly, it is possible to add an offset to skb data, 1919 * but taking into account that pulling is expected to 1920 * be very rare operation, it is worth to fight against 1921 * further bloating skb head and crucify ourselves here instead. 1922 * Pure masohism, indeed. 8)8) 1923 */ 1924 if (eat) { 1925 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1926 struct sk_buff *clone = NULL; 1927 struct sk_buff *insp = NULL; 1928 1929 do { 1930 BUG_ON(!list); 1931 1932 if (list->len <= eat) { 1933 /* Eaten as whole. */ 1934 eat -= list->len; 1935 list = list->next; 1936 insp = list; 1937 } else { 1938 /* Eaten partially. */ 1939 1940 if (skb_shared(list)) { 1941 /* Sucks! We need to fork list. :-( */ 1942 clone = skb_clone(list, GFP_ATOMIC); 1943 if (!clone) 1944 return NULL; 1945 insp = list->next; 1946 list = clone; 1947 } else { 1948 /* This may be pulled without 1949 * problems. */ 1950 insp = list; 1951 } 1952 if (!pskb_pull(list, eat)) { 1953 kfree_skb(clone); 1954 return NULL; 1955 } 1956 break; 1957 } 1958 } while (eat); 1959 1960 /* Free pulled out fragments. */ 1961 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1962 skb_shinfo(skb)->frag_list = list->next; 1963 kfree_skb(list); 1964 } 1965 /* And insert new clone at head. */ 1966 if (clone) { 1967 clone->next = list; 1968 skb_shinfo(skb)->frag_list = clone; 1969 } 1970 } 1971 /* Success! Now we may commit changes to skb data. */ 1972 1973 pull_pages: 1974 eat = delta; 1975 k = 0; 1976 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1977 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1978 1979 if (size <= eat) { 1980 skb_frag_unref(skb, i); 1981 eat -= size; 1982 } else { 1983 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1984 if (eat) { 1985 skb_shinfo(skb)->frags[k].page_offset += eat; 1986 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1987 if (!i) 1988 goto end; 1989 eat = 0; 1990 } 1991 k++; 1992 } 1993 } 1994 skb_shinfo(skb)->nr_frags = k; 1995 1996 end: 1997 skb->tail += delta; 1998 skb->data_len -= delta; 1999 2000 if (!skb->data_len) 2001 skb_zcopy_clear(skb, false); 2002 2003 return skb_tail_pointer(skb); 2004 } 2005 EXPORT_SYMBOL(__pskb_pull_tail); 2006 2007 /** 2008 * skb_copy_bits - copy bits from skb to kernel buffer 2009 * @skb: source skb 2010 * @offset: offset in source 2011 * @to: destination buffer 2012 * @len: number of bytes to copy 2013 * 2014 * Copy the specified number of bytes from the source skb to the 2015 * destination buffer. 2016 * 2017 * CAUTION ! : 2018 * If its prototype is ever changed, 2019 * check arch/{*}/net/{*}.S files, 2020 * since it is called from BPF assembly code. 2021 */ 2022 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2023 { 2024 int start = skb_headlen(skb); 2025 struct sk_buff *frag_iter; 2026 int i, copy; 2027 2028 if (offset > (int)skb->len - len) 2029 goto fault; 2030 2031 /* Copy header. */ 2032 if ((copy = start - offset) > 0) { 2033 if (copy > len) 2034 copy = len; 2035 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2036 if ((len -= copy) == 0) 2037 return 0; 2038 offset += copy; 2039 to += copy; 2040 } 2041 2042 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2043 int end; 2044 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2045 2046 WARN_ON(start > offset + len); 2047 2048 end = start + skb_frag_size(f); 2049 if ((copy = end - offset) > 0) { 2050 u32 p_off, p_len, copied; 2051 struct page *p; 2052 u8 *vaddr; 2053 2054 if (copy > len) 2055 copy = len; 2056 2057 skb_frag_foreach_page(f, 2058 f->page_offset + offset - start, 2059 copy, p, p_off, p_len, copied) { 2060 vaddr = kmap_atomic(p); 2061 memcpy(to + copied, vaddr + p_off, p_len); 2062 kunmap_atomic(vaddr); 2063 } 2064 2065 if ((len -= copy) == 0) 2066 return 0; 2067 offset += copy; 2068 to += copy; 2069 } 2070 start = end; 2071 } 2072 2073 skb_walk_frags(skb, frag_iter) { 2074 int end; 2075 2076 WARN_ON(start > offset + len); 2077 2078 end = start + frag_iter->len; 2079 if ((copy = end - offset) > 0) { 2080 if (copy > len) 2081 copy = len; 2082 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2083 goto fault; 2084 if ((len -= copy) == 0) 2085 return 0; 2086 offset += copy; 2087 to += copy; 2088 } 2089 start = end; 2090 } 2091 2092 if (!len) 2093 return 0; 2094 2095 fault: 2096 return -EFAULT; 2097 } 2098 EXPORT_SYMBOL(skb_copy_bits); 2099 2100 /* 2101 * Callback from splice_to_pipe(), if we need to release some pages 2102 * at the end of the spd in case we error'ed out in filling the pipe. 2103 */ 2104 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2105 { 2106 put_page(spd->pages[i]); 2107 } 2108 2109 static struct page *linear_to_page(struct page *page, unsigned int *len, 2110 unsigned int *offset, 2111 struct sock *sk) 2112 { 2113 struct page_frag *pfrag = sk_page_frag(sk); 2114 2115 if (!sk_page_frag_refill(sk, pfrag)) 2116 return NULL; 2117 2118 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2119 2120 memcpy(page_address(pfrag->page) + pfrag->offset, 2121 page_address(page) + *offset, *len); 2122 *offset = pfrag->offset; 2123 pfrag->offset += *len; 2124 2125 return pfrag->page; 2126 } 2127 2128 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2129 struct page *page, 2130 unsigned int offset) 2131 { 2132 return spd->nr_pages && 2133 spd->pages[spd->nr_pages - 1] == page && 2134 (spd->partial[spd->nr_pages - 1].offset + 2135 spd->partial[spd->nr_pages - 1].len == offset); 2136 } 2137 2138 /* 2139 * Fill page/offset/length into spd, if it can hold more pages. 2140 */ 2141 static bool spd_fill_page(struct splice_pipe_desc *spd, 2142 struct pipe_inode_info *pipe, struct page *page, 2143 unsigned int *len, unsigned int offset, 2144 bool linear, 2145 struct sock *sk) 2146 { 2147 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2148 return true; 2149 2150 if (linear) { 2151 page = linear_to_page(page, len, &offset, sk); 2152 if (!page) 2153 return true; 2154 } 2155 if (spd_can_coalesce(spd, page, offset)) { 2156 spd->partial[spd->nr_pages - 1].len += *len; 2157 return false; 2158 } 2159 get_page(page); 2160 spd->pages[spd->nr_pages] = page; 2161 spd->partial[spd->nr_pages].len = *len; 2162 spd->partial[spd->nr_pages].offset = offset; 2163 spd->nr_pages++; 2164 2165 return false; 2166 } 2167 2168 static bool __splice_segment(struct page *page, unsigned int poff, 2169 unsigned int plen, unsigned int *off, 2170 unsigned int *len, 2171 struct splice_pipe_desc *spd, bool linear, 2172 struct sock *sk, 2173 struct pipe_inode_info *pipe) 2174 { 2175 if (!*len) 2176 return true; 2177 2178 /* skip this segment if already processed */ 2179 if (*off >= plen) { 2180 *off -= plen; 2181 return false; 2182 } 2183 2184 /* ignore any bits we already processed */ 2185 poff += *off; 2186 plen -= *off; 2187 *off = 0; 2188 2189 do { 2190 unsigned int flen = min(*len, plen); 2191 2192 if (spd_fill_page(spd, pipe, page, &flen, poff, 2193 linear, sk)) 2194 return true; 2195 poff += flen; 2196 plen -= flen; 2197 *len -= flen; 2198 } while (*len && plen); 2199 2200 return false; 2201 } 2202 2203 /* 2204 * Map linear and fragment data from the skb to spd. It reports true if the 2205 * pipe is full or if we already spliced the requested length. 2206 */ 2207 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2208 unsigned int *offset, unsigned int *len, 2209 struct splice_pipe_desc *spd, struct sock *sk) 2210 { 2211 int seg; 2212 struct sk_buff *iter; 2213 2214 /* map the linear part : 2215 * If skb->head_frag is set, this 'linear' part is backed by a 2216 * fragment, and if the head is not shared with any clones then 2217 * we can avoid a copy since we own the head portion of this page. 2218 */ 2219 if (__splice_segment(virt_to_page(skb->data), 2220 (unsigned long) skb->data & (PAGE_SIZE - 1), 2221 skb_headlen(skb), 2222 offset, len, spd, 2223 skb_head_is_locked(skb), 2224 sk, pipe)) 2225 return true; 2226 2227 /* 2228 * then map the fragments 2229 */ 2230 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2231 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2232 2233 if (__splice_segment(skb_frag_page(f), 2234 f->page_offset, skb_frag_size(f), 2235 offset, len, spd, false, sk, pipe)) 2236 return true; 2237 } 2238 2239 skb_walk_frags(skb, iter) { 2240 if (*offset >= iter->len) { 2241 *offset -= iter->len; 2242 continue; 2243 } 2244 /* __skb_splice_bits() only fails if the output has no room 2245 * left, so no point in going over the frag_list for the error 2246 * case. 2247 */ 2248 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2249 return true; 2250 } 2251 2252 return false; 2253 } 2254 2255 /* 2256 * Map data from the skb to a pipe. Should handle both the linear part, 2257 * the fragments, and the frag list. 2258 */ 2259 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2260 struct pipe_inode_info *pipe, unsigned int tlen, 2261 unsigned int flags) 2262 { 2263 struct partial_page partial[MAX_SKB_FRAGS]; 2264 struct page *pages[MAX_SKB_FRAGS]; 2265 struct splice_pipe_desc spd = { 2266 .pages = pages, 2267 .partial = partial, 2268 .nr_pages_max = MAX_SKB_FRAGS, 2269 .ops = &nosteal_pipe_buf_ops, 2270 .spd_release = sock_spd_release, 2271 }; 2272 int ret = 0; 2273 2274 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2275 2276 if (spd.nr_pages) 2277 ret = splice_to_pipe(pipe, &spd); 2278 2279 return ret; 2280 } 2281 EXPORT_SYMBOL_GPL(skb_splice_bits); 2282 2283 /* Send skb data on a socket. Socket must be locked. */ 2284 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2285 int len) 2286 { 2287 unsigned int orig_len = len; 2288 struct sk_buff *head = skb; 2289 unsigned short fragidx; 2290 int slen, ret; 2291 2292 do_frag_list: 2293 2294 /* Deal with head data */ 2295 while (offset < skb_headlen(skb) && len) { 2296 struct kvec kv; 2297 struct msghdr msg; 2298 2299 slen = min_t(int, len, skb_headlen(skb) - offset); 2300 kv.iov_base = skb->data + offset; 2301 kv.iov_len = slen; 2302 memset(&msg, 0, sizeof(msg)); 2303 2304 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2305 if (ret <= 0) 2306 goto error; 2307 2308 offset += ret; 2309 len -= ret; 2310 } 2311 2312 /* All the data was skb head? */ 2313 if (!len) 2314 goto out; 2315 2316 /* Make offset relative to start of frags */ 2317 offset -= skb_headlen(skb); 2318 2319 /* Find where we are in frag list */ 2320 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2321 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2322 2323 if (offset < frag->size) 2324 break; 2325 2326 offset -= frag->size; 2327 } 2328 2329 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2330 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2331 2332 slen = min_t(size_t, len, frag->size - offset); 2333 2334 while (slen) { 2335 ret = kernel_sendpage_locked(sk, frag->page.p, 2336 frag->page_offset + offset, 2337 slen, MSG_DONTWAIT); 2338 if (ret <= 0) 2339 goto error; 2340 2341 len -= ret; 2342 offset += ret; 2343 slen -= ret; 2344 } 2345 2346 offset = 0; 2347 } 2348 2349 if (len) { 2350 /* Process any frag lists */ 2351 2352 if (skb == head) { 2353 if (skb_has_frag_list(skb)) { 2354 skb = skb_shinfo(skb)->frag_list; 2355 goto do_frag_list; 2356 } 2357 } else if (skb->next) { 2358 skb = skb->next; 2359 goto do_frag_list; 2360 } 2361 } 2362 2363 out: 2364 return orig_len - len; 2365 2366 error: 2367 return orig_len == len ? ret : orig_len - len; 2368 } 2369 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2370 2371 /* Send skb data on a socket. */ 2372 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2373 { 2374 int ret = 0; 2375 2376 lock_sock(sk); 2377 ret = skb_send_sock_locked(sk, skb, offset, len); 2378 release_sock(sk); 2379 2380 return ret; 2381 } 2382 EXPORT_SYMBOL_GPL(skb_send_sock); 2383 2384 /** 2385 * skb_store_bits - store bits from kernel buffer to skb 2386 * @skb: destination buffer 2387 * @offset: offset in destination 2388 * @from: source buffer 2389 * @len: number of bytes to copy 2390 * 2391 * Copy the specified number of bytes from the source buffer to the 2392 * destination skb. This function handles all the messy bits of 2393 * traversing fragment lists and such. 2394 */ 2395 2396 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2397 { 2398 int start = skb_headlen(skb); 2399 struct sk_buff *frag_iter; 2400 int i, copy; 2401 2402 if (offset > (int)skb->len - len) 2403 goto fault; 2404 2405 if ((copy = start - offset) > 0) { 2406 if (copy > len) 2407 copy = len; 2408 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2409 if ((len -= copy) == 0) 2410 return 0; 2411 offset += copy; 2412 from += copy; 2413 } 2414 2415 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2416 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2417 int end; 2418 2419 WARN_ON(start > offset + len); 2420 2421 end = start + skb_frag_size(frag); 2422 if ((copy = end - offset) > 0) { 2423 u32 p_off, p_len, copied; 2424 struct page *p; 2425 u8 *vaddr; 2426 2427 if (copy > len) 2428 copy = len; 2429 2430 skb_frag_foreach_page(frag, 2431 frag->page_offset + offset - start, 2432 copy, p, p_off, p_len, copied) { 2433 vaddr = kmap_atomic(p); 2434 memcpy(vaddr + p_off, from + copied, p_len); 2435 kunmap_atomic(vaddr); 2436 } 2437 2438 if ((len -= copy) == 0) 2439 return 0; 2440 offset += copy; 2441 from += copy; 2442 } 2443 start = end; 2444 } 2445 2446 skb_walk_frags(skb, frag_iter) { 2447 int end; 2448 2449 WARN_ON(start > offset + len); 2450 2451 end = start + frag_iter->len; 2452 if ((copy = end - offset) > 0) { 2453 if (copy > len) 2454 copy = len; 2455 if (skb_store_bits(frag_iter, offset - start, 2456 from, copy)) 2457 goto fault; 2458 if ((len -= copy) == 0) 2459 return 0; 2460 offset += copy; 2461 from += copy; 2462 } 2463 start = end; 2464 } 2465 if (!len) 2466 return 0; 2467 2468 fault: 2469 return -EFAULT; 2470 } 2471 EXPORT_SYMBOL(skb_store_bits); 2472 2473 /* Checksum skb data. */ 2474 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2475 __wsum csum, const struct skb_checksum_ops *ops) 2476 { 2477 int start = skb_headlen(skb); 2478 int i, copy = start - offset; 2479 struct sk_buff *frag_iter; 2480 int pos = 0; 2481 2482 /* Checksum header. */ 2483 if (copy > 0) { 2484 if (copy > len) 2485 copy = len; 2486 csum = ops->update(skb->data + offset, copy, csum); 2487 if ((len -= copy) == 0) 2488 return csum; 2489 offset += copy; 2490 pos = copy; 2491 } 2492 2493 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2494 int end; 2495 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2496 2497 WARN_ON(start > offset + len); 2498 2499 end = start + skb_frag_size(frag); 2500 if ((copy = end - offset) > 0) { 2501 u32 p_off, p_len, copied; 2502 struct page *p; 2503 __wsum csum2; 2504 u8 *vaddr; 2505 2506 if (copy > len) 2507 copy = len; 2508 2509 skb_frag_foreach_page(frag, 2510 frag->page_offset + offset - start, 2511 copy, p, p_off, p_len, copied) { 2512 vaddr = kmap_atomic(p); 2513 csum2 = ops->update(vaddr + p_off, p_len, 0); 2514 kunmap_atomic(vaddr); 2515 csum = ops->combine(csum, csum2, pos, p_len); 2516 pos += p_len; 2517 } 2518 2519 if (!(len -= copy)) 2520 return csum; 2521 offset += copy; 2522 } 2523 start = end; 2524 } 2525 2526 skb_walk_frags(skb, frag_iter) { 2527 int end; 2528 2529 WARN_ON(start > offset + len); 2530 2531 end = start + frag_iter->len; 2532 if ((copy = end - offset) > 0) { 2533 __wsum csum2; 2534 if (copy > len) 2535 copy = len; 2536 csum2 = __skb_checksum(frag_iter, offset - start, 2537 copy, 0, ops); 2538 csum = ops->combine(csum, csum2, pos, copy); 2539 if ((len -= copy) == 0) 2540 return csum; 2541 offset += copy; 2542 pos += copy; 2543 } 2544 start = end; 2545 } 2546 BUG_ON(len); 2547 2548 return csum; 2549 } 2550 EXPORT_SYMBOL(__skb_checksum); 2551 2552 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2553 int len, __wsum csum) 2554 { 2555 const struct skb_checksum_ops ops = { 2556 .update = csum_partial_ext, 2557 .combine = csum_block_add_ext, 2558 }; 2559 2560 return __skb_checksum(skb, offset, len, csum, &ops); 2561 } 2562 EXPORT_SYMBOL(skb_checksum); 2563 2564 /* Both of above in one bottle. */ 2565 2566 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2567 u8 *to, int len, __wsum csum) 2568 { 2569 int start = skb_headlen(skb); 2570 int i, copy = start - offset; 2571 struct sk_buff *frag_iter; 2572 int pos = 0; 2573 2574 /* Copy header. */ 2575 if (copy > 0) { 2576 if (copy > len) 2577 copy = len; 2578 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2579 copy, csum); 2580 if ((len -= copy) == 0) 2581 return csum; 2582 offset += copy; 2583 to += copy; 2584 pos = copy; 2585 } 2586 2587 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2588 int end; 2589 2590 WARN_ON(start > offset + len); 2591 2592 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2593 if ((copy = end - offset) > 0) { 2594 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2595 u32 p_off, p_len, copied; 2596 struct page *p; 2597 __wsum csum2; 2598 u8 *vaddr; 2599 2600 if (copy > len) 2601 copy = len; 2602 2603 skb_frag_foreach_page(frag, 2604 frag->page_offset + offset - start, 2605 copy, p, p_off, p_len, copied) { 2606 vaddr = kmap_atomic(p); 2607 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2608 to + copied, 2609 p_len, 0); 2610 kunmap_atomic(vaddr); 2611 csum = csum_block_add(csum, csum2, pos); 2612 pos += p_len; 2613 } 2614 2615 if (!(len -= copy)) 2616 return csum; 2617 offset += copy; 2618 to += copy; 2619 } 2620 start = end; 2621 } 2622 2623 skb_walk_frags(skb, frag_iter) { 2624 __wsum csum2; 2625 int end; 2626 2627 WARN_ON(start > offset + len); 2628 2629 end = start + frag_iter->len; 2630 if ((copy = end - offset) > 0) { 2631 if (copy > len) 2632 copy = len; 2633 csum2 = skb_copy_and_csum_bits(frag_iter, 2634 offset - start, 2635 to, copy, 0); 2636 csum = csum_block_add(csum, csum2, pos); 2637 if ((len -= copy) == 0) 2638 return csum; 2639 offset += copy; 2640 to += copy; 2641 pos += copy; 2642 } 2643 start = end; 2644 } 2645 BUG_ON(len); 2646 return csum; 2647 } 2648 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2649 2650 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2651 { 2652 net_warn_ratelimited( 2653 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2654 __func__); 2655 return 0; 2656 } 2657 2658 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2659 int offset, int len) 2660 { 2661 net_warn_ratelimited( 2662 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2663 __func__); 2664 return 0; 2665 } 2666 2667 static const struct skb_checksum_ops default_crc32c_ops = { 2668 .update = warn_crc32c_csum_update, 2669 .combine = warn_crc32c_csum_combine, 2670 }; 2671 2672 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2673 &default_crc32c_ops; 2674 EXPORT_SYMBOL(crc32c_csum_stub); 2675 2676 /** 2677 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2678 * @from: source buffer 2679 * 2680 * Calculates the amount of linear headroom needed in the 'to' skb passed 2681 * into skb_zerocopy(). 2682 */ 2683 unsigned int 2684 skb_zerocopy_headlen(const struct sk_buff *from) 2685 { 2686 unsigned int hlen = 0; 2687 2688 if (!from->head_frag || 2689 skb_headlen(from) < L1_CACHE_BYTES || 2690 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2691 hlen = skb_headlen(from); 2692 2693 if (skb_has_frag_list(from)) 2694 hlen = from->len; 2695 2696 return hlen; 2697 } 2698 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2699 2700 /** 2701 * skb_zerocopy - Zero copy skb to skb 2702 * @to: destination buffer 2703 * @from: source buffer 2704 * @len: number of bytes to copy from source buffer 2705 * @hlen: size of linear headroom in destination buffer 2706 * 2707 * Copies up to `len` bytes from `from` to `to` by creating references 2708 * to the frags in the source buffer. 2709 * 2710 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2711 * headroom in the `to` buffer. 2712 * 2713 * Return value: 2714 * 0: everything is OK 2715 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2716 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2717 */ 2718 int 2719 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2720 { 2721 int i, j = 0; 2722 int plen = 0; /* length of skb->head fragment */ 2723 int ret; 2724 struct page *page; 2725 unsigned int offset; 2726 2727 BUG_ON(!from->head_frag && !hlen); 2728 2729 /* dont bother with small payloads */ 2730 if (len <= skb_tailroom(to)) 2731 return skb_copy_bits(from, 0, skb_put(to, len), len); 2732 2733 if (hlen) { 2734 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2735 if (unlikely(ret)) 2736 return ret; 2737 len -= hlen; 2738 } else { 2739 plen = min_t(int, skb_headlen(from), len); 2740 if (plen) { 2741 page = virt_to_head_page(from->head); 2742 offset = from->data - (unsigned char *)page_address(page); 2743 __skb_fill_page_desc(to, 0, page, offset, plen); 2744 get_page(page); 2745 j = 1; 2746 len -= plen; 2747 } 2748 } 2749 2750 to->truesize += len + plen; 2751 to->len += len + plen; 2752 to->data_len += len + plen; 2753 2754 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2755 skb_tx_error(from); 2756 return -ENOMEM; 2757 } 2758 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2759 2760 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2761 if (!len) 2762 break; 2763 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2764 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2765 len -= skb_shinfo(to)->frags[j].size; 2766 skb_frag_ref(to, j); 2767 j++; 2768 } 2769 skb_shinfo(to)->nr_frags = j; 2770 2771 return 0; 2772 } 2773 EXPORT_SYMBOL_GPL(skb_zerocopy); 2774 2775 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2776 { 2777 __wsum csum; 2778 long csstart; 2779 2780 if (skb->ip_summed == CHECKSUM_PARTIAL) 2781 csstart = skb_checksum_start_offset(skb); 2782 else 2783 csstart = skb_headlen(skb); 2784 2785 BUG_ON(csstart > skb_headlen(skb)); 2786 2787 skb_copy_from_linear_data(skb, to, csstart); 2788 2789 csum = 0; 2790 if (csstart != skb->len) 2791 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2792 skb->len - csstart, 0); 2793 2794 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2795 long csstuff = csstart + skb->csum_offset; 2796 2797 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2798 } 2799 } 2800 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2801 2802 /** 2803 * skb_dequeue - remove from the head of the queue 2804 * @list: list to dequeue from 2805 * 2806 * Remove the head of the list. The list lock is taken so the function 2807 * may be used safely with other locking list functions. The head item is 2808 * returned or %NULL if the list is empty. 2809 */ 2810 2811 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2812 { 2813 unsigned long flags; 2814 struct sk_buff *result; 2815 2816 spin_lock_irqsave(&list->lock, flags); 2817 result = __skb_dequeue(list); 2818 spin_unlock_irqrestore(&list->lock, flags); 2819 return result; 2820 } 2821 EXPORT_SYMBOL(skb_dequeue); 2822 2823 /** 2824 * skb_dequeue_tail - remove from the tail of the queue 2825 * @list: list to dequeue from 2826 * 2827 * Remove the tail of the list. The list lock is taken so the function 2828 * may be used safely with other locking list functions. The tail item is 2829 * returned or %NULL if the list is empty. 2830 */ 2831 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2832 { 2833 unsigned long flags; 2834 struct sk_buff *result; 2835 2836 spin_lock_irqsave(&list->lock, flags); 2837 result = __skb_dequeue_tail(list); 2838 spin_unlock_irqrestore(&list->lock, flags); 2839 return result; 2840 } 2841 EXPORT_SYMBOL(skb_dequeue_tail); 2842 2843 /** 2844 * skb_queue_purge - empty a list 2845 * @list: list to empty 2846 * 2847 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2848 * the list and one reference dropped. This function takes the list 2849 * lock and is atomic with respect to other list locking functions. 2850 */ 2851 void skb_queue_purge(struct sk_buff_head *list) 2852 { 2853 struct sk_buff *skb; 2854 while ((skb = skb_dequeue(list)) != NULL) 2855 kfree_skb(skb); 2856 } 2857 EXPORT_SYMBOL(skb_queue_purge); 2858 2859 /** 2860 * skb_rbtree_purge - empty a skb rbtree 2861 * @root: root of the rbtree to empty 2862 * 2863 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2864 * the list and one reference dropped. This function does not take 2865 * any lock. Synchronization should be handled by the caller (e.g., TCP 2866 * out-of-order queue is protected by the socket lock). 2867 */ 2868 void skb_rbtree_purge(struct rb_root *root) 2869 { 2870 struct rb_node *p = rb_first(root); 2871 2872 while (p) { 2873 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2874 2875 p = rb_next(p); 2876 rb_erase(&skb->rbnode, root); 2877 kfree_skb(skb); 2878 } 2879 } 2880 2881 /** 2882 * skb_queue_head - queue a buffer at the list head 2883 * @list: list to use 2884 * @newsk: buffer to queue 2885 * 2886 * Queue a buffer at the start of the list. This function takes the 2887 * list lock and can be used safely with other locking &sk_buff functions 2888 * safely. 2889 * 2890 * A buffer cannot be placed on two lists at the same time. 2891 */ 2892 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2893 { 2894 unsigned long flags; 2895 2896 spin_lock_irqsave(&list->lock, flags); 2897 __skb_queue_head(list, newsk); 2898 spin_unlock_irqrestore(&list->lock, flags); 2899 } 2900 EXPORT_SYMBOL(skb_queue_head); 2901 2902 /** 2903 * skb_queue_tail - queue a buffer at the list tail 2904 * @list: list to use 2905 * @newsk: buffer to queue 2906 * 2907 * Queue a buffer at the tail of the list. This function takes the 2908 * list lock and can be used safely with other locking &sk_buff functions 2909 * safely. 2910 * 2911 * A buffer cannot be placed on two lists at the same time. 2912 */ 2913 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2914 { 2915 unsigned long flags; 2916 2917 spin_lock_irqsave(&list->lock, flags); 2918 __skb_queue_tail(list, newsk); 2919 spin_unlock_irqrestore(&list->lock, flags); 2920 } 2921 EXPORT_SYMBOL(skb_queue_tail); 2922 2923 /** 2924 * skb_unlink - remove a buffer from a list 2925 * @skb: buffer to remove 2926 * @list: list to use 2927 * 2928 * Remove a packet from a list. The list locks are taken and this 2929 * function is atomic with respect to other list locked calls 2930 * 2931 * You must know what list the SKB is on. 2932 */ 2933 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2934 { 2935 unsigned long flags; 2936 2937 spin_lock_irqsave(&list->lock, flags); 2938 __skb_unlink(skb, list); 2939 spin_unlock_irqrestore(&list->lock, flags); 2940 } 2941 EXPORT_SYMBOL(skb_unlink); 2942 2943 /** 2944 * skb_append - append a buffer 2945 * @old: buffer to insert after 2946 * @newsk: buffer to insert 2947 * @list: list to use 2948 * 2949 * Place a packet after a given packet in a list. The list locks are taken 2950 * and this function is atomic with respect to other list locked calls. 2951 * A buffer cannot be placed on two lists at the same time. 2952 */ 2953 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2954 { 2955 unsigned long flags; 2956 2957 spin_lock_irqsave(&list->lock, flags); 2958 __skb_queue_after(list, old, newsk); 2959 spin_unlock_irqrestore(&list->lock, flags); 2960 } 2961 EXPORT_SYMBOL(skb_append); 2962 2963 /** 2964 * skb_insert - insert a buffer 2965 * @old: buffer to insert before 2966 * @newsk: buffer to insert 2967 * @list: list to use 2968 * 2969 * Place a packet before a given packet in a list. The list locks are 2970 * taken and this function is atomic with respect to other list locked 2971 * calls. 2972 * 2973 * A buffer cannot be placed on two lists at the same time. 2974 */ 2975 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2976 { 2977 unsigned long flags; 2978 2979 spin_lock_irqsave(&list->lock, flags); 2980 __skb_insert(newsk, old->prev, old, list); 2981 spin_unlock_irqrestore(&list->lock, flags); 2982 } 2983 EXPORT_SYMBOL(skb_insert); 2984 2985 static inline void skb_split_inside_header(struct sk_buff *skb, 2986 struct sk_buff* skb1, 2987 const u32 len, const int pos) 2988 { 2989 int i; 2990 2991 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2992 pos - len); 2993 /* And move data appendix as is. */ 2994 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2995 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2996 2997 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2998 skb_shinfo(skb)->nr_frags = 0; 2999 skb1->data_len = skb->data_len; 3000 skb1->len += skb1->data_len; 3001 skb->data_len = 0; 3002 skb->len = len; 3003 skb_set_tail_pointer(skb, len); 3004 } 3005 3006 static inline void skb_split_no_header(struct sk_buff *skb, 3007 struct sk_buff* skb1, 3008 const u32 len, int pos) 3009 { 3010 int i, k = 0; 3011 const int nfrags = skb_shinfo(skb)->nr_frags; 3012 3013 skb_shinfo(skb)->nr_frags = 0; 3014 skb1->len = skb1->data_len = skb->len - len; 3015 skb->len = len; 3016 skb->data_len = len - pos; 3017 3018 for (i = 0; i < nfrags; i++) { 3019 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3020 3021 if (pos + size > len) { 3022 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3023 3024 if (pos < len) { 3025 /* Split frag. 3026 * We have two variants in this case: 3027 * 1. Move all the frag to the second 3028 * part, if it is possible. F.e. 3029 * this approach is mandatory for TUX, 3030 * where splitting is expensive. 3031 * 2. Split is accurately. We make this. 3032 */ 3033 skb_frag_ref(skb, i); 3034 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3035 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3036 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3037 skb_shinfo(skb)->nr_frags++; 3038 } 3039 k++; 3040 } else 3041 skb_shinfo(skb)->nr_frags++; 3042 pos += size; 3043 } 3044 skb_shinfo(skb1)->nr_frags = k; 3045 } 3046 3047 /** 3048 * skb_split - Split fragmented skb to two parts at length len. 3049 * @skb: the buffer to split 3050 * @skb1: the buffer to receive the second part 3051 * @len: new length for skb 3052 */ 3053 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3054 { 3055 int pos = skb_headlen(skb); 3056 3057 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3058 SKBTX_SHARED_FRAG; 3059 skb_zerocopy_clone(skb1, skb, 0); 3060 if (len < pos) /* Split line is inside header. */ 3061 skb_split_inside_header(skb, skb1, len, pos); 3062 else /* Second chunk has no header, nothing to copy. */ 3063 skb_split_no_header(skb, skb1, len, pos); 3064 } 3065 EXPORT_SYMBOL(skb_split); 3066 3067 /* Shifting from/to a cloned skb is a no-go. 3068 * 3069 * Caller cannot keep skb_shinfo related pointers past calling here! 3070 */ 3071 static int skb_prepare_for_shift(struct sk_buff *skb) 3072 { 3073 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3074 } 3075 3076 /** 3077 * skb_shift - Shifts paged data partially from skb to another 3078 * @tgt: buffer into which tail data gets added 3079 * @skb: buffer from which the paged data comes from 3080 * @shiftlen: shift up to this many bytes 3081 * 3082 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3083 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3084 * It's up to caller to free skb if everything was shifted. 3085 * 3086 * If @tgt runs out of frags, the whole operation is aborted. 3087 * 3088 * Skb cannot include anything else but paged data while tgt is allowed 3089 * to have non-paged data as well. 3090 * 3091 * TODO: full sized shift could be optimized but that would need 3092 * specialized skb free'er to handle frags without up-to-date nr_frags. 3093 */ 3094 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3095 { 3096 int from, to, merge, todo; 3097 struct skb_frag_struct *fragfrom, *fragto; 3098 3099 BUG_ON(shiftlen > skb->len); 3100 3101 if (skb_headlen(skb)) 3102 return 0; 3103 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3104 return 0; 3105 3106 todo = shiftlen; 3107 from = 0; 3108 to = skb_shinfo(tgt)->nr_frags; 3109 fragfrom = &skb_shinfo(skb)->frags[from]; 3110 3111 /* Actual merge is delayed until the point when we know we can 3112 * commit all, so that we don't have to undo partial changes 3113 */ 3114 if (!to || 3115 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3116 fragfrom->page_offset)) { 3117 merge = -1; 3118 } else { 3119 merge = to - 1; 3120 3121 todo -= skb_frag_size(fragfrom); 3122 if (todo < 0) { 3123 if (skb_prepare_for_shift(skb) || 3124 skb_prepare_for_shift(tgt)) 3125 return 0; 3126 3127 /* All previous frag pointers might be stale! */ 3128 fragfrom = &skb_shinfo(skb)->frags[from]; 3129 fragto = &skb_shinfo(tgt)->frags[merge]; 3130 3131 skb_frag_size_add(fragto, shiftlen); 3132 skb_frag_size_sub(fragfrom, shiftlen); 3133 fragfrom->page_offset += shiftlen; 3134 3135 goto onlymerged; 3136 } 3137 3138 from++; 3139 } 3140 3141 /* Skip full, not-fitting skb to avoid expensive operations */ 3142 if ((shiftlen == skb->len) && 3143 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3144 return 0; 3145 3146 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3147 return 0; 3148 3149 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3150 if (to == MAX_SKB_FRAGS) 3151 return 0; 3152 3153 fragfrom = &skb_shinfo(skb)->frags[from]; 3154 fragto = &skb_shinfo(tgt)->frags[to]; 3155 3156 if (todo >= skb_frag_size(fragfrom)) { 3157 *fragto = *fragfrom; 3158 todo -= skb_frag_size(fragfrom); 3159 from++; 3160 to++; 3161 3162 } else { 3163 __skb_frag_ref(fragfrom); 3164 fragto->page = fragfrom->page; 3165 fragto->page_offset = fragfrom->page_offset; 3166 skb_frag_size_set(fragto, todo); 3167 3168 fragfrom->page_offset += todo; 3169 skb_frag_size_sub(fragfrom, todo); 3170 todo = 0; 3171 3172 to++; 3173 break; 3174 } 3175 } 3176 3177 /* Ready to "commit" this state change to tgt */ 3178 skb_shinfo(tgt)->nr_frags = to; 3179 3180 if (merge >= 0) { 3181 fragfrom = &skb_shinfo(skb)->frags[0]; 3182 fragto = &skb_shinfo(tgt)->frags[merge]; 3183 3184 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3185 __skb_frag_unref(fragfrom); 3186 } 3187 3188 /* Reposition in the original skb */ 3189 to = 0; 3190 while (from < skb_shinfo(skb)->nr_frags) 3191 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3192 skb_shinfo(skb)->nr_frags = to; 3193 3194 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3195 3196 onlymerged: 3197 /* Most likely the tgt won't ever need its checksum anymore, skb on 3198 * the other hand might need it if it needs to be resent 3199 */ 3200 tgt->ip_summed = CHECKSUM_PARTIAL; 3201 skb->ip_summed = CHECKSUM_PARTIAL; 3202 3203 /* Yak, is it really working this way? Some helper please? */ 3204 skb->len -= shiftlen; 3205 skb->data_len -= shiftlen; 3206 skb->truesize -= shiftlen; 3207 tgt->len += shiftlen; 3208 tgt->data_len += shiftlen; 3209 tgt->truesize += shiftlen; 3210 3211 return shiftlen; 3212 } 3213 3214 /** 3215 * skb_prepare_seq_read - Prepare a sequential read of skb data 3216 * @skb: the buffer to read 3217 * @from: lower offset of data to be read 3218 * @to: upper offset of data to be read 3219 * @st: state variable 3220 * 3221 * Initializes the specified state variable. Must be called before 3222 * invoking skb_seq_read() for the first time. 3223 */ 3224 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3225 unsigned int to, struct skb_seq_state *st) 3226 { 3227 st->lower_offset = from; 3228 st->upper_offset = to; 3229 st->root_skb = st->cur_skb = skb; 3230 st->frag_idx = st->stepped_offset = 0; 3231 st->frag_data = NULL; 3232 } 3233 EXPORT_SYMBOL(skb_prepare_seq_read); 3234 3235 /** 3236 * skb_seq_read - Sequentially read skb data 3237 * @consumed: number of bytes consumed by the caller so far 3238 * @data: destination pointer for data to be returned 3239 * @st: state variable 3240 * 3241 * Reads a block of skb data at @consumed relative to the 3242 * lower offset specified to skb_prepare_seq_read(). Assigns 3243 * the head of the data block to @data and returns the length 3244 * of the block or 0 if the end of the skb data or the upper 3245 * offset has been reached. 3246 * 3247 * The caller is not required to consume all of the data 3248 * returned, i.e. @consumed is typically set to the number 3249 * of bytes already consumed and the next call to 3250 * skb_seq_read() will return the remaining part of the block. 3251 * 3252 * Note 1: The size of each block of data returned can be arbitrary, 3253 * this limitation is the cost for zerocopy sequential 3254 * reads of potentially non linear data. 3255 * 3256 * Note 2: Fragment lists within fragments are not implemented 3257 * at the moment, state->root_skb could be replaced with 3258 * a stack for this purpose. 3259 */ 3260 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3261 struct skb_seq_state *st) 3262 { 3263 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3264 skb_frag_t *frag; 3265 3266 if (unlikely(abs_offset >= st->upper_offset)) { 3267 if (st->frag_data) { 3268 kunmap_atomic(st->frag_data); 3269 st->frag_data = NULL; 3270 } 3271 return 0; 3272 } 3273 3274 next_skb: 3275 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3276 3277 if (abs_offset < block_limit && !st->frag_data) { 3278 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3279 return block_limit - abs_offset; 3280 } 3281 3282 if (st->frag_idx == 0 && !st->frag_data) 3283 st->stepped_offset += skb_headlen(st->cur_skb); 3284 3285 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3286 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3287 block_limit = skb_frag_size(frag) + st->stepped_offset; 3288 3289 if (abs_offset < block_limit) { 3290 if (!st->frag_data) 3291 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3292 3293 *data = (u8 *) st->frag_data + frag->page_offset + 3294 (abs_offset - st->stepped_offset); 3295 3296 return block_limit - abs_offset; 3297 } 3298 3299 if (st->frag_data) { 3300 kunmap_atomic(st->frag_data); 3301 st->frag_data = NULL; 3302 } 3303 3304 st->frag_idx++; 3305 st->stepped_offset += skb_frag_size(frag); 3306 } 3307 3308 if (st->frag_data) { 3309 kunmap_atomic(st->frag_data); 3310 st->frag_data = NULL; 3311 } 3312 3313 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3314 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3315 st->frag_idx = 0; 3316 goto next_skb; 3317 } else if (st->cur_skb->next) { 3318 st->cur_skb = st->cur_skb->next; 3319 st->frag_idx = 0; 3320 goto next_skb; 3321 } 3322 3323 return 0; 3324 } 3325 EXPORT_SYMBOL(skb_seq_read); 3326 3327 /** 3328 * skb_abort_seq_read - Abort a sequential read of skb data 3329 * @st: state variable 3330 * 3331 * Must be called if skb_seq_read() was not called until it 3332 * returned 0. 3333 */ 3334 void skb_abort_seq_read(struct skb_seq_state *st) 3335 { 3336 if (st->frag_data) 3337 kunmap_atomic(st->frag_data); 3338 } 3339 EXPORT_SYMBOL(skb_abort_seq_read); 3340 3341 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3342 3343 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3344 struct ts_config *conf, 3345 struct ts_state *state) 3346 { 3347 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3348 } 3349 3350 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3351 { 3352 skb_abort_seq_read(TS_SKB_CB(state)); 3353 } 3354 3355 /** 3356 * skb_find_text - Find a text pattern in skb data 3357 * @skb: the buffer to look in 3358 * @from: search offset 3359 * @to: search limit 3360 * @config: textsearch configuration 3361 * 3362 * Finds a pattern in the skb data according to the specified 3363 * textsearch configuration. Use textsearch_next() to retrieve 3364 * subsequent occurrences of the pattern. Returns the offset 3365 * to the first occurrence or UINT_MAX if no match was found. 3366 */ 3367 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3368 unsigned int to, struct ts_config *config) 3369 { 3370 struct ts_state state; 3371 unsigned int ret; 3372 3373 config->get_next_block = skb_ts_get_next_block; 3374 config->finish = skb_ts_finish; 3375 3376 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3377 3378 ret = textsearch_find(config, &state); 3379 return (ret <= to - from ? ret : UINT_MAX); 3380 } 3381 EXPORT_SYMBOL(skb_find_text); 3382 3383 /** 3384 * skb_append_datato_frags - append the user data to a skb 3385 * @sk: sock structure 3386 * @skb: skb structure to be appended with user data. 3387 * @getfrag: call back function to be used for getting the user data 3388 * @from: pointer to user message iov 3389 * @length: length of the iov message 3390 * 3391 * Description: This procedure append the user data in the fragment part 3392 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3393 */ 3394 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3395 int (*getfrag)(void *from, char *to, int offset, 3396 int len, int odd, struct sk_buff *skb), 3397 void *from, int length) 3398 { 3399 int frg_cnt = skb_shinfo(skb)->nr_frags; 3400 int copy; 3401 int offset = 0; 3402 int ret; 3403 struct page_frag *pfrag = ¤t->task_frag; 3404 3405 do { 3406 /* Return error if we don't have space for new frag */ 3407 if (frg_cnt >= MAX_SKB_FRAGS) 3408 return -EMSGSIZE; 3409 3410 if (!sk_page_frag_refill(sk, pfrag)) 3411 return -ENOMEM; 3412 3413 /* copy the user data to page */ 3414 copy = min_t(int, length, pfrag->size - pfrag->offset); 3415 3416 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3417 offset, copy, 0, skb); 3418 if (ret < 0) 3419 return -EFAULT; 3420 3421 /* copy was successful so update the size parameters */ 3422 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3423 copy); 3424 frg_cnt++; 3425 pfrag->offset += copy; 3426 get_page(pfrag->page); 3427 3428 skb->truesize += copy; 3429 refcount_add(copy, &sk->sk_wmem_alloc); 3430 skb->len += copy; 3431 skb->data_len += copy; 3432 offset += copy; 3433 length -= copy; 3434 3435 } while (length > 0); 3436 3437 return 0; 3438 } 3439 EXPORT_SYMBOL(skb_append_datato_frags); 3440 3441 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3442 int offset, size_t size) 3443 { 3444 int i = skb_shinfo(skb)->nr_frags; 3445 3446 if (skb_can_coalesce(skb, i, page, offset)) { 3447 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3448 } else if (i < MAX_SKB_FRAGS) { 3449 get_page(page); 3450 skb_fill_page_desc(skb, i, page, offset, size); 3451 } else { 3452 return -EMSGSIZE; 3453 } 3454 3455 return 0; 3456 } 3457 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3458 3459 /** 3460 * skb_pull_rcsum - pull skb and update receive checksum 3461 * @skb: buffer to update 3462 * @len: length of data pulled 3463 * 3464 * This function performs an skb_pull on the packet and updates 3465 * the CHECKSUM_COMPLETE checksum. It should be used on 3466 * receive path processing instead of skb_pull unless you know 3467 * that the checksum difference is zero (e.g., a valid IP header) 3468 * or you are setting ip_summed to CHECKSUM_NONE. 3469 */ 3470 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3471 { 3472 unsigned char *data = skb->data; 3473 3474 BUG_ON(len > skb->len); 3475 __skb_pull(skb, len); 3476 skb_postpull_rcsum(skb, data, len); 3477 return skb->data; 3478 } 3479 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3480 3481 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3482 { 3483 skb_frag_t head_frag; 3484 struct page *page; 3485 3486 page = virt_to_head_page(frag_skb->head); 3487 head_frag.page.p = page; 3488 head_frag.page_offset = frag_skb->data - 3489 (unsigned char *)page_address(page); 3490 head_frag.size = skb_headlen(frag_skb); 3491 return head_frag; 3492 } 3493 3494 /** 3495 * skb_segment - Perform protocol segmentation on skb. 3496 * @head_skb: buffer to segment 3497 * @features: features for the output path (see dev->features) 3498 * 3499 * This function performs segmentation on the given skb. It returns 3500 * a pointer to the first in a list of new skbs for the segments. 3501 * In case of error it returns ERR_PTR(err). 3502 */ 3503 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3504 netdev_features_t features) 3505 { 3506 struct sk_buff *segs = NULL; 3507 struct sk_buff *tail = NULL; 3508 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3509 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3510 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3511 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3512 struct sk_buff *frag_skb = head_skb; 3513 unsigned int offset = doffset; 3514 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3515 unsigned int partial_segs = 0; 3516 unsigned int headroom; 3517 unsigned int len = head_skb->len; 3518 __be16 proto; 3519 bool csum, sg; 3520 int nfrags = skb_shinfo(head_skb)->nr_frags; 3521 int err = -ENOMEM; 3522 int i = 0; 3523 int pos; 3524 int dummy; 3525 3526 __skb_push(head_skb, doffset); 3527 proto = skb_network_protocol(head_skb, &dummy); 3528 if (unlikely(!proto)) 3529 return ERR_PTR(-EINVAL); 3530 3531 sg = !!(features & NETIF_F_SG); 3532 csum = !!can_checksum_protocol(features, proto); 3533 3534 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3535 if (!(features & NETIF_F_GSO_PARTIAL)) { 3536 struct sk_buff *iter; 3537 unsigned int frag_len; 3538 3539 if (!list_skb || 3540 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3541 goto normal; 3542 3543 /* If we get here then all the required 3544 * GSO features except frag_list are supported. 3545 * Try to split the SKB to multiple GSO SKBs 3546 * with no frag_list. 3547 * Currently we can do that only when the buffers don't 3548 * have a linear part and all the buffers except 3549 * the last are of the same length. 3550 */ 3551 frag_len = list_skb->len; 3552 skb_walk_frags(head_skb, iter) { 3553 if (frag_len != iter->len && iter->next) 3554 goto normal; 3555 if (skb_headlen(iter) && !iter->head_frag) 3556 goto normal; 3557 3558 len -= iter->len; 3559 } 3560 3561 if (len != frag_len) 3562 goto normal; 3563 } 3564 3565 /* GSO partial only requires that we trim off any excess that 3566 * doesn't fit into an MSS sized block, so take care of that 3567 * now. 3568 */ 3569 partial_segs = len / mss; 3570 if (partial_segs > 1) 3571 mss *= partial_segs; 3572 else 3573 partial_segs = 0; 3574 } 3575 3576 normal: 3577 headroom = skb_headroom(head_skb); 3578 pos = skb_headlen(head_skb); 3579 3580 do { 3581 struct sk_buff *nskb; 3582 skb_frag_t *nskb_frag; 3583 int hsize; 3584 int size; 3585 3586 if (unlikely(mss == GSO_BY_FRAGS)) { 3587 len = list_skb->len; 3588 } else { 3589 len = head_skb->len - offset; 3590 if (len > mss) 3591 len = mss; 3592 } 3593 3594 hsize = skb_headlen(head_skb) - offset; 3595 if (hsize < 0) 3596 hsize = 0; 3597 if (hsize > len || !sg) 3598 hsize = len; 3599 3600 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3601 (skb_headlen(list_skb) == len || sg)) { 3602 BUG_ON(skb_headlen(list_skb) > len); 3603 3604 i = 0; 3605 nfrags = skb_shinfo(list_skb)->nr_frags; 3606 frag = skb_shinfo(list_skb)->frags; 3607 frag_skb = list_skb; 3608 pos += skb_headlen(list_skb); 3609 3610 while (pos < offset + len) { 3611 BUG_ON(i >= nfrags); 3612 3613 size = skb_frag_size(frag); 3614 if (pos + size > offset + len) 3615 break; 3616 3617 i++; 3618 pos += size; 3619 frag++; 3620 } 3621 3622 nskb = skb_clone(list_skb, GFP_ATOMIC); 3623 list_skb = list_skb->next; 3624 3625 if (unlikely(!nskb)) 3626 goto err; 3627 3628 if (unlikely(pskb_trim(nskb, len))) { 3629 kfree_skb(nskb); 3630 goto err; 3631 } 3632 3633 hsize = skb_end_offset(nskb); 3634 if (skb_cow_head(nskb, doffset + headroom)) { 3635 kfree_skb(nskb); 3636 goto err; 3637 } 3638 3639 nskb->truesize += skb_end_offset(nskb) - hsize; 3640 skb_release_head_state(nskb); 3641 __skb_push(nskb, doffset); 3642 } else { 3643 nskb = __alloc_skb(hsize + doffset + headroom, 3644 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3645 NUMA_NO_NODE); 3646 3647 if (unlikely(!nskb)) 3648 goto err; 3649 3650 skb_reserve(nskb, headroom); 3651 __skb_put(nskb, doffset); 3652 } 3653 3654 if (segs) 3655 tail->next = nskb; 3656 else 3657 segs = nskb; 3658 tail = nskb; 3659 3660 __copy_skb_header(nskb, head_skb); 3661 3662 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3663 skb_reset_mac_len(nskb); 3664 3665 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3666 nskb->data - tnl_hlen, 3667 doffset + tnl_hlen); 3668 3669 if (nskb->len == len + doffset) 3670 goto perform_csum_check; 3671 3672 if (!sg) { 3673 if (!nskb->remcsum_offload) 3674 nskb->ip_summed = CHECKSUM_NONE; 3675 SKB_GSO_CB(nskb)->csum = 3676 skb_copy_and_csum_bits(head_skb, offset, 3677 skb_put(nskb, len), 3678 len, 0); 3679 SKB_GSO_CB(nskb)->csum_start = 3680 skb_headroom(nskb) + doffset; 3681 continue; 3682 } 3683 3684 nskb_frag = skb_shinfo(nskb)->frags; 3685 3686 skb_copy_from_linear_data_offset(head_skb, offset, 3687 skb_put(nskb, hsize), hsize); 3688 3689 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3690 SKBTX_SHARED_FRAG; 3691 3692 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3693 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3694 goto err; 3695 3696 while (pos < offset + len) { 3697 if (i >= nfrags) { 3698 i = 0; 3699 nfrags = skb_shinfo(list_skb)->nr_frags; 3700 frag = skb_shinfo(list_skb)->frags; 3701 frag_skb = list_skb; 3702 if (!skb_headlen(list_skb)) { 3703 BUG_ON(!nfrags); 3704 } else { 3705 BUG_ON(!list_skb->head_frag); 3706 3707 /* to make room for head_frag. */ 3708 i--; 3709 frag--; 3710 } 3711 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3712 skb_zerocopy_clone(nskb, frag_skb, 3713 GFP_ATOMIC)) 3714 goto err; 3715 3716 list_skb = list_skb->next; 3717 } 3718 3719 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3720 MAX_SKB_FRAGS)) { 3721 net_warn_ratelimited( 3722 "skb_segment: too many frags: %u %u\n", 3723 pos, mss); 3724 goto err; 3725 } 3726 3727 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3728 __skb_frag_ref(nskb_frag); 3729 size = skb_frag_size(nskb_frag); 3730 3731 if (pos < offset) { 3732 nskb_frag->page_offset += offset - pos; 3733 skb_frag_size_sub(nskb_frag, offset - pos); 3734 } 3735 3736 skb_shinfo(nskb)->nr_frags++; 3737 3738 if (pos + size <= offset + len) { 3739 i++; 3740 frag++; 3741 pos += size; 3742 } else { 3743 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3744 goto skip_fraglist; 3745 } 3746 3747 nskb_frag++; 3748 } 3749 3750 skip_fraglist: 3751 nskb->data_len = len - hsize; 3752 nskb->len += nskb->data_len; 3753 nskb->truesize += nskb->data_len; 3754 3755 perform_csum_check: 3756 if (!csum) { 3757 if (skb_has_shared_frag(nskb)) { 3758 err = __skb_linearize(nskb); 3759 if (err) 3760 goto err; 3761 } 3762 if (!nskb->remcsum_offload) 3763 nskb->ip_summed = CHECKSUM_NONE; 3764 SKB_GSO_CB(nskb)->csum = 3765 skb_checksum(nskb, doffset, 3766 nskb->len - doffset, 0); 3767 SKB_GSO_CB(nskb)->csum_start = 3768 skb_headroom(nskb) + doffset; 3769 } 3770 } while ((offset += len) < head_skb->len); 3771 3772 /* Some callers want to get the end of the list. 3773 * Put it in segs->prev to avoid walking the list. 3774 * (see validate_xmit_skb_list() for example) 3775 */ 3776 segs->prev = tail; 3777 3778 if (partial_segs) { 3779 struct sk_buff *iter; 3780 int type = skb_shinfo(head_skb)->gso_type; 3781 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3782 3783 /* Update type to add partial and then remove dodgy if set */ 3784 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3785 type &= ~SKB_GSO_DODGY; 3786 3787 /* Update GSO info and prepare to start updating headers on 3788 * our way back down the stack of protocols. 3789 */ 3790 for (iter = segs; iter; iter = iter->next) { 3791 skb_shinfo(iter)->gso_size = gso_size; 3792 skb_shinfo(iter)->gso_segs = partial_segs; 3793 skb_shinfo(iter)->gso_type = type; 3794 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3795 } 3796 3797 if (tail->len - doffset <= gso_size) 3798 skb_shinfo(tail)->gso_size = 0; 3799 else if (tail != segs) 3800 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3801 } 3802 3803 /* Following permits correct backpressure, for protocols 3804 * using skb_set_owner_w(). 3805 * Idea is to tranfert ownership from head_skb to last segment. 3806 */ 3807 if (head_skb->destructor == sock_wfree) { 3808 swap(tail->truesize, head_skb->truesize); 3809 swap(tail->destructor, head_skb->destructor); 3810 swap(tail->sk, head_skb->sk); 3811 } 3812 return segs; 3813 3814 err: 3815 kfree_skb_list(segs); 3816 return ERR_PTR(err); 3817 } 3818 EXPORT_SYMBOL_GPL(skb_segment); 3819 3820 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3821 { 3822 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3823 unsigned int offset = skb_gro_offset(skb); 3824 unsigned int headlen = skb_headlen(skb); 3825 unsigned int len = skb_gro_len(skb); 3826 struct sk_buff *lp, *p = *head; 3827 unsigned int delta_truesize; 3828 3829 if (unlikely(p->len + len >= 65536)) 3830 return -E2BIG; 3831 3832 lp = NAPI_GRO_CB(p)->last; 3833 pinfo = skb_shinfo(lp); 3834 3835 if (headlen <= offset) { 3836 skb_frag_t *frag; 3837 skb_frag_t *frag2; 3838 int i = skbinfo->nr_frags; 3839 int nr_frags = pinfo->nr_frags + i; 3840 3841 if (nr_frags > MAX_SKB_FRAGS) 3842 goto merge; 3843 3844 offset -= headlen; 3845 pinfo->nr_frags = nr_frags; 3846 skbinfo->nr_frags = 0; 3847 3848 frag = pinfo->frags + nr_frags; 3849 frag2 = skbinfo->frags + i; 3850 do { 3851 *--frag = *--frag2; 3852 } while (--i); 3853 3854 frag->page_offset += offset; 3855 skb_frag_size_sub(frag, offset); 3856 3857 /* all fragments truesize : remove (head size + sk_buff) */ 3858 delta_truesize = skb->truesize - 3859 SKB_TRUESIZE(skb_end_offset(skb)); 3860 3861 skb->truesize -= skb->data_len; 3862 skb->len -= skb->data_len; 3863 skb->data_len = 0; 3864 3865 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3866 goto done; 3867 } else if (skb->head_frag) { 3868 int nr_frags = pinfo->nr_frags; 3869 skb_frag_t *frag = pinfo->frags + nr_frags; 3870 struct page *page = virt_to_head_page(skb->head); 3871 unsigned int first_size = headlen - offset; 3872 unsigned int first_offset; 3873 3874 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3875 goto merge; 3876 3877 first_offset = skb->data - 3878 (unsigned char *)page_address(page) + 3879 offset; 3880 3881 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3882 3883 frag->page.p = page; 3884 frag->page_offset = first_offset; 3885 skb_frag_size_set(frag, first_size); 3886 3887 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3888 /* We dont need to clear skbinfo->nr_frags here */ 3889 3890 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3891 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3892 goto done; 3893 } 3894 3895 merge: 3896 delta_truesize = skb->truesize; 3897 if (offset > headlen) { 3898 unsigned int eat = offset - headlen; 3899 3900 skbinfo->frags[0].page_offset += eat; 3901 skb_frag_size_sub(&skbinfo->frags[0], eat); 3902 skb->data_len -= eat; 3903 skb->len -= eat; 3904 offset = headlen; 3905 } 3906 3907 __skb_pull(skb, offset); 3908 3909 if (NAPI_GRO_CB(p)->last == p) 3910 skb_shinfo(p)->frag_list = skb; 3911 else 3912 NAPI_GRO_CB(p)->last->next = skb; 3913 NAPI_GRO_CB(p)->last = skb; 3914 __skb_header_release(skb); 3915 lp = p; 3916 3917 done: 3918 NAPI_GRO_CB(p)->count++; 3919 p->data_len += len; 3920 p->truesize += delta_truesize; 3921 p->len += len; 3922 if (lp != p) { 3923 lp->data_len += len; 3924 lp->truesize += delta_truesize; 3925 lp->len += len; 3926 } 3927 NAPI_GRO_CB(skb)->same_flow = 1; 3928 return 0; 3929 } 3930 EXPORT_SYMBOL_GPL(skb_gro_receive); 3931 3932 void __init skb_init(void) 3933 { 3934 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3935 sizeof(struct sk_buff), 3936 0, 3937 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3938 offsetof(struct sk_buff, cb), 3939 sizeof_field(struct sk_buff, cb), 3940 NULL); 3941 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3942 sizeof(struct sk_buff_fclones), 3943 0, 3944 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3945 NULL); 3946 } 3947 3948 static int 3949 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3950 unsigned int recursion_level) 3951 { 3952 int start = skb_headlen(skb); 3953 int i, copy = start - offset; 3954 struct sk_buff *frag_iter; 3955 int elt = 0; 3956 3957 if (unlikely(recursion_level >= 24)) 3958 return -EMSGSIZE; 3959 3960 if (copy > 0) { 3961 if (copy > len) 3962 copy = len; 3963 sg_set_buf(sg, skb->data + offset, copy); 3964 elt++; 3965 if ((len -= copy) == 0) 3966 return elt; 3967 offset += copy; 3968 } 3969 3970 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3971 int end; 3972 3973 WARN_ON(start > offset + len); 3974 3975 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3976 if ((copy = end - offset) > 0) { 3977 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3978 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3979 return -EMSGSIZE; 3980 3981 if (copy > len) 3982 copy = len; 3983 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3984 frag->page_offset+offset-start); 3985 elt++; 3986 if (!(len -= copy)) 3987 return elt; 3988 offset += copy; 3989 } 3990 start = end; 3991 } 3992 3993 skb_walk_frags(skb, frag_iter) { 3994 int end, ret; 3995 3996 WARN_ON(start > offset + len); 3997 3998 end = start + frag_iter->len; 3999 if ((copy = end - offset) > 0) { 4000 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4001 return -EMSGSIZE; 4002 4003 if (copy > len) 4004 copy = len; 4005 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4006 copy, recursion_level + 1); 4007 if (unlikely(ret < 0)) 4008 return ret; 4009 elt += ret; 4010 if ((len -= copy) == 0) 4011 return elt; 4012 offset += copy; 4013 } 4014 start = end; 4015 } 4016 BUG_ON(len); 4017 return elt; 4018 } 4019 4020 /** 4021 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4022 * @skb: Socket buffer containing the buffers to be mapped 4023 * @sg: The scatter-gather list to map into 4024 * @offset: The offset into the buffer's contents to start mapping 4025 * @len: Length of buffer space to be mapped 4026 * 4027 * Fill the specified scatter-gather list with mappings/pointers into a 4028 * region of the buffer space attached to a socket buffer. Returns either 4029 * the number of scatterlist items used, or -EMSGSIZE if the contents 4030 * could not fit. 4031 */ 4032 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4033 { 4034 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4035 4036 if (nsg <= 0) 4037 return nsg; 4038 4039 sg_mark_end(&sg[nsg - 1]); 4040 4041 return nsg; 4042 } 4043 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4044 4045 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4046 * sglist without mark the sg which contain last skb data as the end. 4047 * So the caller can mannipulate sg list as will when padding new data after 4048 * the first call without calling sg_unmark_end to expend sg list. 4049 * 4050 * Scenario to use skb_to_sgvec_nomark: 4051 * 1. sg_init_table 4052 * 2. skb_to_sgvec_nomark(payload1) 4053 * 3. skb_to_sgvec_nomark(payload2) 4054 * 4055 * This is equivalent to: 4056 * 1. sg_init_table 4057 * 2. skb_to_sgvec(payload1) 4058 * 3. sg_unmark_end 4059 * 4. skb_to_sgvec(payload2) 4060 * 4061 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4062 * is more preferable. 4063 */ 4064 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4065 int offset, int len) 4066 { 4067 return __skb_to_sgvec(skb, sg, offset, len, 0); 4068 } 4069 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4070 4071 4072 4073 /** 4074 * skb_cow_data - Check that a socket buffer's data buffers are writable 4075 * @skb: The socket buffer to check. 4076 * @tailbits: Amount of trailing space to be added 4077 * @trailer: Returned pointer to the skb where the @tailbits space begins 4078 * 4079 * Make sure that the data buffers attached to a socket buffer are 4080 * writable. If they are not, private copies are made of the data buffers 4081 * and the socket buffer is set to use these instead. 4082 * 4083 * If @tailbits is given, make sure that there is space to write @tailbits 4084 * bytes of data beyond current end of socket buffer. @trailer will be 4085 * set to point to the skb in which this space begins. 4086 * 4087 * The number of scatterlist elements required to completely map the 4088 * COW'd and extended socket buffer will be returned. 4089 */ 4090 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4091 { 4092 int copyflag; 4093 int elt; 4094 struct sk_buff *skb1, **skb_p; 4095 4096 /* If skb is cloned or its head is paged, reallocate 4097 * head pulling out all the pages (pages are considered not writable 4098 * at the moment even if they are anonymous). 4099 */ 4100 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4101 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4102 return -ENOMEM; 4103 4104 /* Easy case. Most of packets will go this way. */ 4105 if (!skb_has_frag_list(skb)) { 4106 /* A little of trouble, not enough of space for trailer. 4107 * This should not happen, when stack is tuned to generate 4108 * good frames. OK, on miss we reallocate and reserve even more 4109 * space, 128 bytes is fair. */ 4110 4111 if (skb_tailroom(skb) < tailbits && 4112 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4113 return -ENOMEM; 4114 4115 /* Voila! */ 4116 *trailer = skb; 4117 return 1; 4118 } 4119 4120 /* Misery. We are in troubles, going to mincer fragments... */ 4121 4122 elt = 1; 4123 skb_p = &skb_shinfo(skb)->frag_list; 4124 copyflag = 0; 4125 4126 while ((skb1 = *skb_p) != NULL) { 4127 int ntail = 0; 4128 4129 /* The fragment is partially pulled by someone, 4130 * this can happen on input. Copy it and everything 4131 * after it. */ 4132 4133 if (skb_shared(skb1)) 4134 copyflag = 1; 4135 4136 /* If the skb is the last, worry about trailer. */ 4137 4138 if (skb1->next == NULL && tailbits) { 4139 if (skb_shinfo(skb1)->nr_frags || 4140 skb_has_frag_list(skb1) || 4141 skb_tailroom(skb1) < tailbits) 4142 ntail = tailbits + 128; 4143 } 4144 4145 if (copyflag || 4146 skb_cloned(skb1) || 4147 ntail || 4148 skb_shinfo(skb1)->nr_frags || 4149 skb_has_frag_list(skb1)) { 4150 struct sk_buff *skb2; 4151 4152 /* Fuck, we are miserable poor guys... */ 4153 if (ntail == 0) 4154 skb2 = skb_copy(skb1, GFP_ATOMIC); 4155 else 4156 skb2 = skb_copy_expand(skb1, 4157 skb_headroom(skb1), 4158 ntail, 4159 GFP_ATOMIC); 4160 if (unlikely(skb2 == NULL)) 4161 return -ENOMEM; 4162 4163 if (skb1->sk) 4164 skb_set_owner_w(skb2, skb1->sk); 4165 4166 /* Looking around. Are we still alive? 4167 * OK, link new skb, drop old one */ 4168 4169 skb2->next = skb1->next; 4170 *skb_p = skb2; 4171 kfree_skb(skb1); 4172 skb1 = skb2; 4173 } 4174 elt++; 4175 *trailer = skb1; 4176 skb_p = &skb1->next; 4177 } 4178 4179 return elt; 4180 } 4181 EXPORT_SYMBOL_GPL(skb_cow_data); 4182 4183 static void sock_rmem_free(struct sk_buff *skb) 4184 { 4185 struct sock *sk = skb->sk; 4186 4187 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4188 } 4189 4190 static void skb_set_err_queue(struct sk_buff *skb) 4191 { 4192 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4193 * So, it is safe to (mis)use it to mark skbs on the error queue. 4194 */ 4195 skb->pkt_type = PACKET_OUTGOING; 4196 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4197 } 4198 4199 /* 4200 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4201 */ 4202 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4203 { 4204 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4205 (unsigned int)sk->sk_rcvbuf) 4206 return -ENOMEM; 4207 4208 skb_orphan(skb); 4209 skb->sk = sk; 4210 skb->destructor = sock_rmem_free; 4211 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4212 skb_set_err_queue(skb); 4213 4214 /* before exiting rcu section, make sure dst is refcounted */ 4215 skb_dst_force(skb); 4216 4217 skb_queue_tail(&sk->sk_error_queue, skb); 4218 if (!sock_flag(sk, SOCK_DEAD)) 4219 sk->sk_error_report(sk); 4220 return 0; 4221 } 4222 EXPORT_SYMBOL(sock_queue_err_skb); 4223 4224 static bool is_icmp_err_skb(const struct sk_buff *skb) 4225 { 4226 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4227 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4228 } 4229 4230 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4231 { 4232 struct sk_buff_head *q = &sk->sk_error_queue; 4233 struct sk_buff *skb, *skb_next = NULL; 4234 bool icmp_next = false; 4235 unsigned long flags; 4236 4237 spin_lock_irqsave(&q->lock, flags); 4238 skb = __skb_dequeue(q); 4239 if (skb && (skb_next = skb_peek(q))) { 4240 icmp_next = is_icmp_err_skb(skb_next); 4241 if (icmp_next) 4242 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4243 } 4244 spin_unlock_irqrestore(&q->lock, flags); 4245 4246 if (is_icmp_err_skb(skb) && !icmp_next) 4247 sk->sk_err = 0; 4248 4249 if (skb_next) 4250 sk->sk_error_report(sk); 4251 4252 return skb; 4253 } 4254 EXPORT_SYMBOL(sock_dequeue_err_skb); 4255 4256 /** 4257 * skb_clone_sk - create clone of skb, and take reference to socket 4258 * @skb: the skb to clone 4259 * 4260 * This function creates a clone of a buffer that holds a reference on 4261 * sk_refcnt. Buffers created via this function are meant to be 4262 * returned using sock_queue_err_skb, or free via kfree_skb. 4263 * 4264 * When passing buffers allocated with this function to sock_queue_err_skb 4265 * it is necessary to wrap the call with sock_hold/sock_put in order to 4266 * prevent the socket from being released prior to being enqueued on 4267 * the sk_error_queue. 4268 */ 4269 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4270 { 4271 struct sock *sk = skb->sk; 4272 struct sk_buff *clone; 4273 4274 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4275 return NULL; 4276 4277 clone = skb_clone(skb, GFP_ATOMIC); 4278 if (!clone) { 4279 sock_put(sk); 4280 return NULL; 4281 } 4282 4283 clone->sk = sk; 4284 clone->destructor = sock_efree; 4285 4286 return clone; 4287 } 4288 EXPORT_SYMBOL(skb_clone_sk); 4289 4290 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4291 struct sock *sk, 4292 int tstype, 4293 bool opt_stats) 4294 { 4295 struct sock_exterr_skb *serr; 4296 int err; 4297 4298 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4299 4300 serr = SKB_EXT_ERR(skb); 4301 memset(serr, 0, sizeof(*serr)); 4302 serr->ee.ee_errno = ENOMSG; 4303 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4304 serr->ee.ee_info = tstype; 4305 serr->opt_stats = opt_stats; 4306 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4307 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4308 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4309 if (sk->sk_protocol == IPPROTO_TCP && 4310 sk->sk_type == SOCK_STREAM) 4311 serr->ee.ee_data -= sk->sk_tskey; 4312 } 4313 4314 err = sock_queue_err_skb(sk, skb); 4315 4316 if (err) 4317 kfree_skb(skb); 4318 } 4319 4320 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4321 { 4322 bool ret; 4323 4324 if (likely(sysctl_tstamp_allow_data || tsonly)) 4325 return true; 4326 4327 read_lock_bh(&sk->sk_callback_lock); 4328 ret = sk->sk_socket && sk->sk_socket->file && 4329 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4330 read_unlock_bh(&sk->sk_callback_lock); 4331 return ret; 4332 } 4333 4334 void skb_complete_tx_timestamp(struct sk_buff *skb, 4335 struct skb_shared_hwtstamps *hwtstamps) 4336 { 4337 struct sock *sk = skb->sk; 4338 4339 if (!skb_may_tx_timestamp(sk, false)) 4340 goto err; 4341 4342 /* Take a reference to prevent skb_orphan() from freeing the socket, 4343 * but only if the socket refcount is not zero. 4344 */ 4345 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4346 *skb_hwtstamps(skb) = *hwtstamps; 4347 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4348 sock_put(sk); 4349 return; 4350 } 4351 4352 err: 4353 kfree_skb(skb); 4354 } 4355 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4356 4357 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4358 struct skb_shared_hwtstamps *hwtstamps, 4359 struct sock *sk, int tstype) 4360 { 4361 struct sk_buff *skb; 4362 bool tsonly, opt_stats = false; 4363 4364 if (!sk) 4365 return; 4366 4367 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4368 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4369 return; 4370 4371 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4372 if (!skb_may_tx_timestamp(sk, tsonly)) 4373 return; 4374 4375 if (tsonly) { 4376 #ifdef CONFIG_INET 4377 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4378 sk->sk_protocol == IPPROTO_TCP && 4379 sk->sk_type == SOCK_STREAM) { 4380 skb = tcp_get_timestamping_opt_stats(sk); 4381 opt_stats = true; 4382 } else 4383 #endif 4384 skb = alloc_skb(0, GFP_ATOMIC); 4385 } else { 4386 skb = skb_clone(orig_skb, GFP_ATOMIC); 4387 } 4388 if (!skb) 4389 return; 4390 4391 if (tsonly) { 4392 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4393 SKBTX_ANY_TSTAMP; 4394 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4395 } 4396 4397 if (hwtstamps) 4398 *skb_hwtstamps(skb) = *hwtstamps; 4399 else 4400 skb->tstamp = ktime_get_real(); 4401 4402 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4403 } 4404 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4405 4406 void skb_tstamp_tx(struct sk_buff *orig_skb, 4407 struct skb_shared_hwtstamps *hwtstamps) 4408 { 4409 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4410 SCM_TSTAMP_SND); 4411 } 4412 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4413 4414 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4415 { 4416 struct sock *sk = skb->sk; 4417 struct sock_exterr_skb *serr; 4418 int err = 1; 4419 4420 skb->wifi_acked_valid = 1; 4421 skb->wifi_acked = acked; 4422 4423 serr = SKB_EXT_ERR(skb); 4424 memset(serr, 0, sizeof(*serr)); 4425 serr->ee.ee_errno = ENOMSG; 4426 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4427 4428 /* Take a reference to prevent skb_orphan() from freeing the socket, 4429 * but only if the socket refcount is not zero. 4430 */ 4431 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4432 err = sock_queue_err_skb(sk, skb); 4433 sock_put(sk); 4434 } 4435 if (err) 4436 kfree_skb(skb); 4437 } 4438 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4439 4440 /** 4441 * skb_partial_csum_set - set up and verify partial csum values for packet 4442 * @skb: the skb to set 4443 * @start: the number of bytes after skb->data to start checksumming. 4444 * @off: the offset from start to place the checksum. 4445 * 4446 * For untrusted partially-checksummed packets, we need to make sure the values 4447 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4448 * 4449 * This function checks and sets those values and skb->ip_summed: if this 4450 * returns false you should drop the packet. 4451 */ 4452 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4453 { 4454 if (unlikely(start > skb_headlen(skb)) || 4455 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4456 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4457 start, off, skb_headlen(skb)); 4458 return false; 4459 } 4460 skb->ip_summed = CHECKSUM_PARTIAL; 4461 skb->csum_start = skb_headroom(skb) + start; 4462 skb->csum_offset = off; 4463 skb_set_transport_header(skb, start); 4464 return true; 4465 } 4466 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4467 4468 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4469 unsigned int max) 4470 { 4471 if (skb_headlen(skb) >= len) 4472 return 0; 4473 4474 /* If we need to pullup then pullup to the max, so we 4475 * won't need to do it again. 4476 */ 4477 if (max > skb->len) 4478 max = skb->len; 4479 4480 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4481 return -ENOMEM; 4482 4483 if (skb_headlen(skb) < len) 4484 return -EPROTO; 4485 4486 return 0; 4487 } 4488 4489 #define MAX_TCP_HDR_LEN (15 * 4) 4490 4491 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4492 typeof(IPPROTO_IP) proto, 4493 unsigned int off) 4494 { 4495 switch (proto) { 4496 int err; 4497 4498 case IPPROTO_TCP: 4499 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4500 off + MAX_TCP_HDR_LEN); 4501 if (!err && !skb_partial_csum_set(skb, off, 4502 offsetof(struct tcphdr, 4503 check))) 4504 err = -EPROTO; 4505 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4506 4507 case IPPROTO_UDP: 4508 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4509 off + sizeof(struct udphdr)); 4510 if (!err && !skb_partial_csum_set(skb, off, 4511 offsetof(struct udphdr, 4512 check))) 4513 err = -EPROTO; 4514 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4515 } 4516 4517 return ERR_PTR(-EPROTO); 4518 } 4519 4520 /* This value should be large enough to cover a tagged ethernet header plus 4521 * maximally sized IP and TCP or UDP headers. 4522 */ 4523 #define MAX_IP_HDR_LEN 128 4524 4525 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4526 { 4527 unsigned int off; 4528 bool fragment; 4529 __sum16 *csum; 4530 int err; 4531 4532 fragment = false; 4533 4534 err = skb_maybe_pull_tail(skb, 4535 sizeof(struct iphdr), 4536 MAX_IP_HDR_LEN); 4537 if (err < 0) 4538 goto out; 4539 4540 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4541 fragment = true; 4542 4543 off = ip_hdrlen(skb); 4544 4545 err = -EPROTO; 4546 4547 if (fragment) 4548 goto out; 4549 4550 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4551 if (IS_ERR(csum)) 4552 return PTR_ERR(csum); 4553 4554 if (recalculate) 4555 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4556 ip_hdr(skb)->daddr, 4557 skb->len - off, 4558 ip_hdr(skb)->protocol, 0); 4559 err = 0; 4560 4561 out: 4562 return err; 4563 } 4564 4565 /* This value should be large enough to cover a tagged ethernet header plus 4566 * an IPv6 header, all options, and a maximal TCP or UDP header. 4567 */ 4568 #define MAX_IPV6_HDR_LEN 256 4569 4570 #define OPT_HDR(type, skb, off) \ 4571 (type *)(skb_network_header(skb) + (off)) 4572 4573 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4574 { 4575 int err; 4576 u8 nexthdr; 4577 unsigned int off; 4578 unsigned int len; 4579 bool fragment; 4580 bool done; 4581 __sum16 *csum; 4582 4583 fragment = false; 4584 done = false; 4585 4586 off = sizeof(struct ipv6hdr); 4587 4588 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4589 if (err < 0) 4590 goto out; 4591 4592 nexthdr = ipv6_hdr(skb)->nexthdr; 4593 4594 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4595 while (off <= len && !done) { 4596 switch (nexthdr) { 4597 case IPPROTO_DSTOPTS: 4598 case IPPROTO_HOPOPTS: 4599 case IPPROTO_ROUTING: { 4600 struct ipv6_opt_hdr *hp; 4601 4602 err = skb_maybe_pull_tail(skb, 4603 off + 4604 sizeof(struct ipv6_opt_hdr), 4605 MAX_IPV6_HDR_LEN); 4606 if (err < 0) 4607 goto out; 4608 4609 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4610 nexthdr = hp->nexthdr; 4611 off += ipv6_optlen(hp); 4612 break; 4613 } 4614 case IPPROTO_AH: { 4615 struct ip_auth_hdr *hp; 4616 4617 err = skb_maybe_pull_tail(skb, 4618 off + 4619 sizeof(struct ip_auth_hdr), 4620 MAX_IPV6_HDR_LEN); 4621 if (err < 0) 4622 goto out; 4623 4624 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4625 nexthdr = hp->nexthdr; 4626 off += ipv6_authlen(hp); 4627 break; 4628 } 4629 case IPPROTO_FRAGMENT: { 4630 struct frag_hdr *hp; 4631 4632 err = skb_maybe_pull_tail(skb, 4633 off + 4634 sizeof(struct frag_hdr), 4635 MAX_IPV6_HDR_LEN); 4636 if (err < 0) 4637 goto out; 4638 4639 hp = OPT_HDR(struct frag_hdr, skb, off); 4640 4641 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4642 fragment = true; 4643 4644 nexthdr = hp->nexthdr; 4645 off += sizeof(struct frag_hdr); 4646 break; 4647 } 4648 default: 4649 done = true; 4650 break; 4651 } 4652 } 4653 4654 err = -EPROTO; 4655 4656 if (!done || fragment) 4657 goto out; 4658 4659 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4660 if (IS_ERR(csum)) 4661 return PTR_ERR(csum); 4662 4663 if (recalculate) 4664 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4665 &ipv6_hdr(skb)->daddr, 4666 skb->len - off, nexthdr, 0); 4667 err = 0; 4668 4669 out: 4670 return err; 4671 } 4672 4673 /** 4674 * skb_checksum_setup - set up partial checksum offset 4675 * @skb: the skb to set up 4676 * @recalculate: if true the pseudo-header checksum will be recalculated 4677 */ 4678 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4679 { 4680 int err; 4681 4682 switch (skb->protocol) { 4683 case htons(ETH_P_IP): 4684 err = skb_checksum_setup_ipv4(skb, recalculate); 4685 break; 4686 4687 case htons(ETH_P_IPV6): 4688 err = skb_checksum_setup_ipv6(skb, recalculate); 4689 break; 4690 4691 default: 4692 err = -EPROTO; 4693 break; 4694 } 4695 4696 return err; 4697 } 4698 EXPORT_SYMBOL(skb_checksum_setup); 4699 4700 /** 4701 * skb_checksum_maybe_trim - maybe trims the given skb 4702 * @skb: the skb to check 4703 * @transport_len: the data length beyond the network header 4704 * 4705 * Checks whether the given skb has data beyond the given transport length. 4706 * If so, returns a cloned skb trimmed to this transport length. 4707 * Otherwise returns the provided skb. Returns NULL in error cases 4708 * (e.g. transport_len exceeds skb length or out-of-memory). 4709 * 4710 * Caller needs to set the skb transport header and free any returned skb if it 4711 * differs from the provided skb. 4712 */ 4713 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4714 unsigned int transport_len) 4715 { 4716 struct sk_buff *skb_chk; 4717 unsigned int len = skb_transport_offset(skb) + transport_len; 4718 int ret; 4719 4720 if (skb->len < len) 4721 return NULL; 4722 else if (skb->len == len) 4723 return skb; 4724 4725 skb_chk = skb_clone(skb, GFP_ATOMIC); 4726 if (!skb_chk) 4727 return NULL; 4728 4729 ret = pskb_trim_rcsum(skb_chk, len); 4730 if (ret) { 4731 kfree_skb(skb_chk); 4732 return NULL; 4733 } 4734 4735 return skb_chk; 4736 } 4737 4738 /** 4739 * skb_checksum_trimmed - validate checksum of an skb 4740 * @skb: the skb to check 4741 * @transport_len: the data length beyond the network header 4742 * @skb_chkf: checksum function to use 4743 * 4744 * Applies the given checksum function skb_chkf to the provided skb. 4745 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4746 * 4747 * If the skb has data beyond the given transport length, then a 4748 * trimmed & cloned skb is checked and returned. 4749 * 4750 * Caller needs to set the skb transport header and free any returned skb if it 4751 * differs from the provided skb. 4752 */ 4753 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4754 unsigned int transport_len, 4755 __sum16(*skb_chkf)(struct sk_buff *skb)) 4756 { 4757 struct sk_buff *skb_chk; 4758 unsigned int offset = skb_transport_offset(skb); 4759 __sum16 ret; 4760 4761 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4762 if (!skb_chk) 4763 goto err; 4764 4765 if (!pskb_may_pull(skb_chk, offset)) 4766 goto err; 4767 4768 skb_pull_rcsum(skb_chk, offset); 4769 ret = skb_chkf(skb_chk); 4770 skb_push_rcsum(skb_chk, offset); 4771 4772 if (ret) 4773 goto err; 4774 4775 return skb_chk; 4776 4777 err: 4778 if (skb_chk && skb_chk != skb) 4779 kfree_skb(skb_chk); 4780 4781 return NULL; 4782 4783 } 4784 EXPORT_SYMBOL(skb_checksum_trimmed); 4785 4786 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4787 { 4788 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4789 skb->dev->name); 4790 } 4791 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4792 4793 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4794 { 4795 if (head_stolen) { 4796 skb_release_head_state(skb); 4797 kmem_cache_free(skbuff_head_cache, skb); 4798 } else { 4799 __kfree_skb(skb); 4800 } 4801 } 4802 EXPORT_SYMBOL(kfree_skb_partial); 4803 4804 /** 4805 * skb_try_coalesce - try to merge skb to prior one 4806 * @to: prior buffer 4807 * @from: buffer to add 4808 * @fragstolen: pointer to boolean 4809 * @delta_truesize: how much more was allocated than was requested 4810 */ 4811 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4812 bool *fragstolen, int *delta_truesize) 4813 { 4814 struct skb_shared_info *to_shinfo, *from_shinfo; 4815 int i, delta, len = from->len; 4816 4817 *fragstolen = false; 4818 4819 if (skb_cloned(to)) 4820 return false; 4821 4822 if (len <= skb_tailroom(to)) { 4823 if (len) 4824 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4825 *delta_truesize = 0; 4826 return true; 4827 } 4828 4829 to_shinfo = skb_shinfo(to); 4830 from_shinfo = skb_shinfo(from); 4831 if (to_shinfo->frag_list || from_shinfo->frag_list) 4832 return false; 4833 if (skb_zcopy(to) || skb_zcopy(from)) 4834 return false; 4835 4836 if (skb_headlen(from) != 0) { 4837 struct page *page; 4838 unsigned int offset; 4839 4840 if (to_shinfo->nr_frags + 4841 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4842 return false; 4843 4844 if (skb_head_is_locked(from)) 4845 return false; 4846 4847 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4848 4849 page = virt_to_head_page(from->head); 4850 offset = from->data - (unsigned char *)page_address(page); 4851 4852 skb_fill_page_desc(to, to_shinfo->nr_frags, 4853 page, offset, skb_headlen(from)); 4854 *fragstolen = true; 4855 } else { 4856 if (to_shinfo->nr_frags + 4857 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4858 return false; 4859 4860 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4861 } 4862 4863 WARN_ON_ONCE(delta < len); 4864 4865 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4866 from_shinfo->frags, 4867 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4868 to_shinfo->nr_frags += from_shinfo->nr_frags; 4869 4870 if (!skb_cloned(from)) 4871 from_shinfo->nr_frags = 0; 4872 4873 /* if the skb is not cloned this does nothing 4874 * since we set nr_frags to 0. 4875 */ 4876 for (i = 0; i < from_shinfo->nr_frags; i++) 4877 __skb_frag_ref(&from_shinfo->frags[i]); 4878 4879 to->truesize += delta; 4880 to->len += len; 4881 to->data_len += len; 4882 4883 *delta_truesize = delta; 4884 return true; 4885 } 4886 EXPORT_SYMBOL(skb_try_coalesce); 4887 4888 /** 4889 * skb_scrub_packet - scrub an skb 4890 * 4891 * @skb: buffer to clean 4892 * @xnet: packet is crossing netns 4893 * 4894 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4895 * into/from a tunnel. Some information have to be cleared during these 4896 * operations. 4897 * skb_scrub_packet can also be used to clean a skb before injecting it in 4898 * another namespace (@xnet == true). We have to clear all information in the 4899 * skb that could impact namespace isolation. 4900 */ 4901 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4902 { 4903 skb->tstamp = 0; 4904 skb->pkt_type = PACKET_HOST; 4905 skb->skb_iif = 0; 4906 skb->ignore_df = 0; 4907 skb_dst_drop(skb); 4908 secpath_reset(skb); 4909 nf_reset(skb); 4910 nf_reset_trace(skb); 4911 4912 if (!xnet) 4913 return; 4914 4915 ipvs_reset(skb); 4916 skb_orphan(skb); 4917 skb->mark = 0; 4918 } 4919 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4920 4921 /** 4922 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4923 * 4924 * @skb: GSO skb 4925 * 4926 * skb_gso_transport_seglen is used to determine the real size of the 4927 * individual segments, including Layer4 headers (TCP/UDP). 4928 * 4929 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4930 */ 4931 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4932 { 4933 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4934 unsigned int thlen = 0; 4935 4936 if (skb->encapsulation) { 4937 thlen = skb_inner_transport_header(skb) - 4938 skb_transport_header(skb); 4939 4940 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4941 thlen += inner_tcp_hdrlen(skb); 4942 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4943 thlen = tcp_hdrlen(skb); 4944 } else if (unlikely(skb_is_gso_sctp(skb))) { 4945 thlen = sizeof(struct sctphdr); 4946 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4947 thlen = sizeof(struct udphdr); 4948 } 4949 /* UFO sets gso_size to the size of the fragmentation 4950 * payload, i.e. the size of the L4 (UDP) header is already 4951 * accounted for. 4952 */ 4953 return thlen + shinfo->gso_size; 4954 } 4955 4956 /** 4957 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4958 * 4959 * @skb: GSO skb 4960 * 4961 * skb_gso_network_seglen is used to determine the real size of the 4962 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4963 * 4964 * The MAC/L2 header is not accounted for. 4965 */ 4966 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4967 { 4968 unsigned int hdr_len = skb_transport_header(skb) - 4969 skb_network_header(skb); 4970 4971 return hdr_len + skb_gso_transport_seglen(skb); 4972 } 4973 4974 /** 4975 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4976 * 4977 * @skb: GSO skb 4978 * 4979 * skb_gso_mac_seglen is used to determine the real size of the 4980 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4981 * headers (TCP/UDP). 4982 */ 4983 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4984 { 4985 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4986 4987 return hdr_len + skb_gso_transport_seglen(skb); 4988 } 4989 4990 /** 4991 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4992 * 4993 * There are a couple of instances where we have a GSO skb, and we 4994 * want to determine what size it would be after it is segmented. 4995 * 4996 * We might want to check: 4997 * - L3+L4+payload size (e.g. IP forwarding) 4998 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4999 * 5000 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5001 * 5002 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5003 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5004 * 5005 * @max_len: The maximum permissible length. 5006 * 5007 * Returns true if the segmented length <= max length. 5008 */ 5009 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5010 unsigned int seg_len, 5011 unsigned int max_len) { 5012 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5013 const struct sk_buff *iter; 5014 5015 if (shinfo->gso_size != GSO_BY_FRAGS) 5016 return seg_len <= max_len; 5017 5018 /* Undo this so we can re-use header sizes */ 5019 seg_len -= GSO_BY_FRAGS; 5020 5021 skb_walk_frags(skb, iter) { 5022 if (seg_len + skb_headlen(iter) > max_len) 5023 return false; 5024 } 5025 5026 return true; 5027 } 5028 5029 /** 5030 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5031 * 5032 * @skb: GSO skb 5033 * @mtu: MTU to validate against 5034 * 5035 * skb_gso_validate_network_len validates if a given skb will fit a 5036 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5037 * payload. 5038 */ 5039 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5040 { 5041 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5042 } 5043 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5044 5045 /** 5046 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5047 * 5048 * @skb: GSO skb 5049 * @len: length to validate against 5050 * 5051 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5052 * length once split, including L2, L3 and L4 headers and the payload. 5053 */ 5054 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5055 { 5056 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5057 } 5058 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5059 5060 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5061 { 5062 int mac_len; 5063 5064 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5065 kfree_skb(skb); 5066 return NULL; 5067 } 5068 5069 mac_len = skb->data - skb_mac_header(skb); 5070 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5071 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5072 mac_len - VLAN_HLEN - ETH_TLEN); 5073 } 5074 skb->mac_header += VLAN_HLEN; 5075 return skb; 5076 } 5077 5078 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5079 { 5080 struct vlan_hdr *vhdr; 5081 u16 vlan_tci; 5082 5083 if (unlikely(skb_vlan_tag_present(skb))) { 5084 /* vlan_tci is already set-up so leave this for another time */ 5085 return skb; 5086 } 5087 5088 skb = skb_share_check(skb, GFP_ATOMIC); 5089 if (unlikely(!skb)) 5090 goto err_free; 5091 5092 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5093 goto err_free; 5094 5095 vhdr = (struct vlan_hdr *)skb->data; 5096 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5097 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5098 5099 skb_pull_rcsum(skb, VLAN_HLEN); 5100 vlan_set_encap_proto(skb, vhdr); 5101 5102 skb = skb_reorder_vlan_header(skb); 5103 if (unlikely(!skb)) 5104 goto err_free; 5105 5106 skb_reset_network_header(skb); 5107 skb_reset_transport_header(skb); 5108 skb_reset_mac_len(skb); 5109 5110 return skb; 5111 5112 err_free: 5113 kfree_skb(skb); 5114 return NULL; 5115 } 5116 EXPORT_SYMBOL(skb_vlan_untag); 5117 5118 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5119 { 5120 if (!pskb_may_pull(skb, write_len)) 5121 return -ENOMEM; 5122 5123 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5124 return 0; 5125 5126 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5127 } 5128 EXPORT_SYMBOL(skb_ensure_writable); 5129 5130 /* remove VLAN header from packet and update csum accordingly. 5131 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5132 */ 5133 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5134 { 5135 struct vlan_hdr *vhdr; 5136 int offset = skb->data - skb_mac_header(skb); 5137 int err; 5138 5139 if (WARN_ONCE(offset, 5140 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5141 offset)) { 5142 return -EINVAL; 5143 } 5144 5145 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5146 if (unlikely(err)) 5147 return err; 5148 5149 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5150 5151 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5152 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5153 5154 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5155 __skb_pull(skb, VLAN_HLEN); 5156 5157 vlan_set_encap_proto(skb, vhdr); 5158 skb->mac_header += VLAN_HLEN; 5159 5160 if (skb_network_offset(skb) < ETH_HLEN) 5161 skb_set_network_header(skb, ETH_HLEN); 5162 5163 skb_reset_mac_len(skb); 5164 5165 return err; 5166 } 5167 EXPORT_SYMBOL(__skb_vlan_pop); 5168 5169 /* Pop a vlan tag either from hwaccel or from payload. 5170 * Expects skb->data at mac header. 5171 */ 5172 int skb_vlan_pop(struct sk_buff *skb) 5173 { 5174 u16 vlan_tci; 5175 __be16 vlan_proto; 5176 int err; 5177 5178 if (likely(skb_vlan_tag_present(skb))) { 5179 skb->vlan_tci = 0; 5180 } else { 5181 if (unlikely(!eth_type_vlan(skb->protocol))) 5182 return 0; 5183 5184 err = __skb_vlan_pop(skb, &vlan_tci); 5185 if (err) 5186 return err; 5187 } 5188 /* move next vlan tag to hw accel tag */ 5189 if (likely(!eth_type_vlan(skb->protocol))) 5190 return 0; 5191 5192 vlan_proto = skb->protocol; 5193 err = __skb_vlan_pop(skb, &vlan_tci); 5194 if (unlikely(err)) 5195 return err; 5196 5197 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5198 return 0; 5199 } 5200 EXPORT_SYMBOL(skb_vlan_pop); 5201 5202 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5203 * Expects skb->data at mac header. 5204 */ 5205 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5206 { 5207 if (skb_vlan_tag_present(skb)) { 5208 int offset = skb->data - skb_mac_header(skb); 5209 int err; 5210 5211 if (WARN_ONCE(offset, 5212 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5213 offset)) { 5214 return -EINVAL; 5215 } 5216 5217 err = __vlan_insert_tag(skb, skb->vlan_proto, 5218 skb_vlan_tag_get(skb)); 5219 if (err) 5220 return err; 5221 5222 skb->protocol = skb->vlan_proto; 5223 skb->mac_len += VLAN_HLEN; 5224 5225 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5226 } 5227 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5228 return 0; 5229 } 5230 EXPORT_SYMBOL(skb_vlan_push); 5231 5232 /** 5233 * alloc_skb_with_frags - allocate skb with page frags 5234 * 5235 * @header_len: size of linear part 5236 * @data_len: needed length in frags 5237 * @max_page_order: max page order desired. 5238 * @errcode: pointer to error code if any 5239 * @gfp_mask: allocation mask 5240 * 5241 * This can be used to allocate a paged skb, given a maximal order for frags. 5242 */ 5243 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5244 unsigned long data_len, 5245 int max_page_order, 5246 int *errcode, 5247 gfp_t gfp_mask) 5248 { 5249 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5250 unsigned long chunk; 5251 struct sk_buff *skb; 5252 struct page *page; 5253 gfp_t gfp_head; 5254 int i; 5255 5256 *errcode = -EMSGSIZE; 5257 /* Note this test could be relaxed, if we succeed to allocate 5258 * high order pages... 5259 */ 5260 if (npages > MAX_SKB_FRAGS) 5261 return NULL; 5262 5263 gfp_head = gfp_mask; 5264 if (gfp_head & __GFP_DIRECT_RECLAIM) 5265 gfp_head |= __GFP_RETRY_MAYFAIL; 5266 5267 *errcode = -ENOBUFS; 5268 skb = alloc_skb(header_len, gfp_head); 5269 if (!skb) 5270 return NULL; 5271 5272 skb->truesize += npages << PAGE_SHIFT; 5273 5274 for (i = 0; npages > 0; i++) { 5275 int order = max_page_order; 5276 5277 while (order) { 5278 if (npages >= 1 << order) { 5279 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5280 __GFP_COMP | 5281 __GFP_NOWARN, 5282 order); 5283 if (page) 5284 goto fill_page; 5285 /* Do not retry other high order allocations */ 5286 order = 1; 5287 max_page_order = 0; 5288 } 5289 order--; 5290 } 5291 page = alloc_page(gfp_mask); 5292 if (!page) 5293 goto failure; 5294 fill_page: 5295 chunk = min_t(unsigned long, data_len, 5296 PAGE_SIZE << order); 5297 skb_fill_page_desc(skb, i, page, 0, chunk); 5298 data_len -= chunk; 5299 npages -= 1 << order; 5300 } 5301 return skb; 5302 5303 failure: 5304 kfree_skb(skb); 5305 return NULL; 5306 } 5307 EXPORT_SYMBOL(alloc_skb_with_frags); 5308 5309 /* carve out the first off bytes from skb when off < headlen */ 5310 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5311 const int headlen, gfp_t gfp_mask) 5312 { 5313 int i; 5314 int size = skb_end_offset(skb); 5315 int new_hlen = headlen - off; 5316 u8 *data; 5317 5318 size = SKB_DATA_ALIGN(size); 5319 5320 if (skb_pfmemalloc(skb)) 5321 gfp_mask |= __GFP_MEMALLOC; 5322 data = kmalloc_reserve(size + 5323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5324 gfp_mask, NUMA_NO_NODE, NULL); 5325 if (!data) 5326 return -ENOMEM; 5327 5328 size = SKB_WITH_OVERHEAD(ksize(data)); 5329 5330 /* Copy real data, and all frags */ 5331 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5332 skb->len -= off; 5333 5334 memcpy((struct skb_shared_info *)(data + size), 5335 skb_shinfo(skb), 5336 offsetof(struct skb_shared_info, 5337 frags[skb_shinfo(skb)->nr_frags])); 5338 if (skb_cloned(skb)) { 5339 /* drop the old head gracefully */ 5340 if (skb_orphan_frags(skb, gfp_mask)) { 5341 kfree(data); 5342 return -ENOMEM; 5343 } 5344 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5345 skb_frag_ref(skb, i); 5346 if (skb_has_frag_list(skb)) 5347 skb_clone_fraglist(skb); 5348 skb_release_data(skb); 5349 } else { 5350 /* we can reuse existing recount- all we did was 5351 * relocate values 5352 */ 5353 skb_free_head(skb); 5354 } 5355 5356 skb->head = data; 5357 skb->data = data; 5358 skb->head_frag = 0; 5359 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5360 skb->end = size; 5361 #else 5362 skb->end = skb->head + size; 5363 #endif 5364 skb_set_tail_pointer(skb, skb_headlen(skb)); 5365 skb_headers_offset_update(skb, 0); 5366 skb->cloned = 0; 5367 skb->hdr_len = 0; 5368 skb->nohdr = 0; 5369 atomic_set(&skb_shinfo(skb)->dataref, 1); 5370 5371 return 0; 5372 } 5373 5374 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5375 5376 /* carve out the first eat bytes from skb's frag_list. May recurse into 5377 * pskb_carve() 5378 */ 5379 static int pskb_carve_frag_list(struct sk_buff *skb, 5380 struct skb_shared_info *shinfo, int eat, 5381 gfp_t gfp_mask) 5382 { 5383 struct sk_buff *list = shinfo->frag_list; 5384 struct sk_buff *clone = NULL; 5385 struct sk_buff *insp = NULL; 5386 5387 do { 5388 if (!list) { 5389 pr_err("Not enough bytes to eat. Want %d\n", eat); 5390 return -EFAULT; 5391 } 5392 if (list->len <= eat) { 5393 /* Eaten as whole. */ 5394 eat -= list->len; 5395 list = list->next; 5396 insp = list; 5397 } else { 5398 /* Eaten partially. */ 5399 if (skb_shared(list)) { 5400 clone = skb_clone(list, gfp_mask); 5401 if (!clone) 5402 return -ENOMEM; 5403 insp = list->next; 5404 list = clone; 5405 } else { 5406 /* This may be pulled without problems. */ 5407 insp = list; 5408 } 5409 if (pskb_carve(list, eat, gfp_mask) < 0) { 5410 kfree_skb(clone); 5411 return -ENOMEM; 5412 } 5413 break; 5414 } 5415 } while (eat); 5416 5417 /* Free pulled out fragments. */ 5418 while ((list = shinfo->frag_list) != insp) { 5419 shinfo->frag_list = list->next; 5420 kfree_skb(list); 5421 } 5422 /* And insert new clone at head. */ 5423 if (clone) { 5424 clone->next = list; 5425 shinfo->frag_list = clone; 5426 } 5427 return 0; 5428 } 5429 5430 /* carve off first len bytes from skb. Split line (off) is in the 5431 * non-linear part of skb 5432 */ 5433 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5434 int pos, gfp_t gfp_mask) 5435 { 5436 int i, k = 0; 5437 int size = skb_end_offset(skb); 5438 u8 *data; 5439 const int nfrags = skb_shinfo(skb)->nr_frags; 5440 struct skb_shared_info *shinfo; 5441 5442 size = SKB_DATA_ALIGN(size); 5443 5444 if (skb_pfmemalloc(skb)) 5445 gfp_mask |= __GFP_MEMALLOC; 5446 data = kmalloc_reserve(size + 5447 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5448 gfp_mask, NUMA_NO_NODE, NULL); 5449 if (!data) 5450 return -ENOMEM; 5451 5452 size = SKB_WITH_OVERHEAD(ksize(data)); 5453 5454 memcpy((struct skb_shared_info *)(data + size), 5455 skb_shinfo(skb), offsetof(struct skb_shared_info, 5456 frags[skb_shinfo(skb)->nr_frags])); 5457 if (skb_orphan_frags(skb, gfp_mask)) { 5458 kfree(data); 5459 return -ENOMEM; 5460 } 5461 shinfo = (struct skb_shared_info *)(data + size); 5462 for (i = 0; i < nfrags; i++) { 5463 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5464 5465 if (pos + fsize > off) { 5466 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5467 5468 if (pos < off) { 5469 /* Split frag. 5470 * We have two variants in this case: 5471 * 1. Move all the frag to the second 5472 * part, if it is possible. F.e. 5473 * this approach is mandatory for TUX, 5474 * where splitting is expensive. 5475 * 2. Split is accurately. We make this. 5476 */ 5477 shinfo->frags[0].page_offset += off - pos; 5478 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5479 } 5480 skb_frag_ref(skb, i); 5481 k++; 5482 } 5483 pos += fsize; 5484 } 5485 shinfo->nr_frags = k; 5486 if (skb_has_frag_list(skb)) 5487 skb_clone_fraglist(skb); 5488 5489 if (k == 0) { 5490 /* split line is in frag list */ 5491 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5492 } 5493 skb_release_data(skb); 5494 5495 skb->head = data; 5496 skb->head_frag = 0; 5497 skb->data = data; 5498 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5499 skb->end = size; 5500 #else 5501 skb->end = skb->head + size; 5502 #endif 5503 skb_reset_tail_pointer(skb); 5504 skb_headers_offset_update(skb, 0); 5505 skb->cloned = 0; 5506 skb->hdr_len = 0; 5507 skb->nohdr = 0; 5508 skb->len -= off; 5509 skb->data_len = skb->len; 5510 atomic_set(&skb_shinfo(skb)->dataref, 1); 5511 return 0; 5512 } 5513 5514 /* remove len bytes from the beginning of the skb */ 5515 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5516 { 5517 int headlen = skb_headlen(skb); 5518 5519 if (len < headlen) 5520 return pskb_carve_inside_header(skb, len, headlen, gfp); 5521 else 5522 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5523 } 5524 5525 /* Extract to_copy bytes starting at off from skb, and return this in 5526 * a new skb 5527 */ 5528 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5529 int to_copy, gfp_t gfp) 5530 { 5531 struct sk_buff *clone = skb_clone(skb, gfp); 5532 5533 if (!clone) 5534 return NULL; 5535 5536 if (pskb_carve(clone, off, gfp) < 0 || 5537 pskb_trim(clone, to_copy)) { 5538 kfree_skb(clone); 5539 return NULL; 5540 } 5541 return clone; 5542 } 5543 EXPORT_SYMBOL(pskb_extract); 5544 5545 /** 5546 * skb_condense - try to get rid of fragments/frag_list if possible 5547 * @skb: buffer 5548 * 5549 * Can be used to save memory before skb is added to a busy queue. 5550 * If packet has bytes in frags and enough tail room in skb->head, 5551 * pull all of them, so that we can free the frags right now and adjust 5552 * truesize. 5553 * Notes: 5554 * We do not reallocate skb->head thus can not fail. 5555 * Caller must re-evaluate skb->truesize if needed. 5556 */ 5557 void skb_condense(struct sk_buff *skb) 5558 { 5559 if (skb->data_len) { 5560 if (skb->data_len > skb->end - skb->tail || 5561 skb_cloned(skb)) 5562 return; 5563 5564 /* Nice, we can free page frag(s) right now */ 5565 __pskb_pull_tail(skb, skb->data_len); 5566 } 5567 /* At this point, skb->truesize might be over estimated, 5568 * because skb had a fragment, and fragments do not tell 5569 * their truesize. 5570 * When we pulled its content into skb->head, fragment 5571 * was freed, but __pskb_pull_tail() could not possibly 5572 * adjust skb->truesize, not knowing the frag truesize. 5573 */ 5574 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5575 } 5576