xref: /linux/net/core/skbuff.c (revision bab2c80e5a6c855657482eac9e97f5f3eedb509a)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	if (skb->pfmemalloc)
862 		n->pfmemalloc = 1;
863 	n->destructor = NULL;
864 	C(tail);
865 	C(end);
866 	C(head);
867 	C(head_frag);
868 	C(data);
869 	C(truesize);
870 	refcount_set(&n->users, 1);
871 
872 	atomic_inc(&(skb_shinfo(skb)->dataref));
873 	skb->cloned = 1;
874 
875 	return n;
876 #undef C
877 }
878 
879 /**
880  *	skb_morph	-	morph one skb into another
881  *	@dst: the skb to receive the contents
882  *	@src: the skb to supply the contents
883  *
884  *	This is identical to skb_clone except that the target skb is
885  *	supplied by the user.
886  *
887  *	The target skb is returned upon exit.
888  */
889 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
890 {
891 	skb_release_all(dst);
892 	return __skb_clone(dst, src);
893 }
894 EXPORT_SYMBOL_GPL(skb_morph);
895 
896 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
897 {
898 	unsigned long max_pg, num_pg, new_pg, old_pg;
899 	struct user_struct *user;
900 
901 	if (capable(CAP_IPC_LOCK) || !size)
902 		return 0;
903 
904 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
905 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
906 	user = mmp->user ? : current_user();
907 
908 	do {
909 		old_pg = atomic_long_read(&user->locked_vm);
910 		new_pg = old_pg + num_pg;
911 		if (new_pg > max_pg)
912 			return -ENOBUFS;
913 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
914 		 old_pg);
915 
916 	if (!mmp->user) {
917 		mmp->user = get_uid(user);
918 		mmp->num_pg = num_pg;
919 	} else {
920 		mmp->num_pg += num_pg;
921 	}
922 
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
926 
927 void mm_unaccount_pinned_pages(struct mmpin *mmp)
928 {
929 	if (mmp->user) {
930 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
931 		free_uid(mmp->user);
932 	}
933 }
934 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
935 
936 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
937 {
938 	struct ubuf_info *uarg;
939 	struct sk_buff *skb;
940 
941 	WARN_ON_ONCE(!in_task());
942 
943 	if (!sock_flag(sk, SOCK_ZEROCOPY))
944 		return NULL;
945 
946 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
947 	if (!skb)
948 		return NULL;
949 
950 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
951 	uarg = (void *)skb->cb;
952 	uarg->mmp.user = NULL;
953 
954 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
955 		kfree_skb(skb);
956 		return NULL;
957 	}
958 
959 	uarg->callback = sock_zerocopy_callback;
960 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
961 	uarg->len = 1;
962 	uarg->bytelen = size;
963 	uarg->zerocopy = 1;
964 	refcount_set(&uarg->refcnt, 1);
965 	sock_hold(sk);
966 
967 	return uarg;
968 }
969 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
970 
971 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
972 {
973 	return container_of((void *)uarg, struct sk_buff, cb);
974 }
975 
976 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
977 					struct ubuf_info *uarg)
978 {
979 	if (uarg) {
980 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
981 		u32 bytelen, next;
982 
983 		/* realloc only when socket is locked (TCP, UDP cork),
984 		 * so uarg->len and sk_zckey access is serialized
985 		 */
986 		if (!sock_owned_by_user(sk)) {
987 			WARN_ON_ONCE(1);
988 			return NULL;
989 		}
990 
991 		bytelen = uarg->bytelen + size;
992 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
993 			/* TCP can create new skb to attach new uarg */
994 			if (sk->sk_type == SOCK_STREAM)
995 				goto new_alloc;
996 			return NULL;
997 		}
998 
999 		next = (u32)atomic_read(&sk->sk_zckey);
1000 		if ((u32)(uarg->id + uarg->len) == next) {
1001 			if (mm_account_pinned_pages(&uarg->mmp, size))
1002 				return NULL;
1003 			uarg->len++;
1004 			uarg->bytelen = bytelen;
1005 			atomic_set(&sk->sk_zckey, ++next);
1006 			sock_zerocopy_get(uarg);
1007 			return uarg;
1008 		}
1009 	}
1010 
1011 new_alloc:
1012 	return sock_zerocopy_alloc(sk, size);
1013 }
1014 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1015 
1016 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1017 {
1018 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1019 	u32 old_lo, old_hi;
1020 	u64 sum_len;
1021 
1022 	old_lo = serr->ee.ee_info;
1023 	old_hi = serr->ee.ee_data;
1024 	sum_len = old_hi - old_lo + 1ULL + len;
1025 
1026 	if (sum_len >= (1ULL << 32))
1027 		return false;
1028 
1029 	if (lo != old_hi + 1)
1030 		return false;
1031 
1032 	serr->ee.ee_data += len;
1033 	return true;
1034 }
1035 
1036 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1037 {
1038 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1039 	struct sock_exterr_skb *serr;
1040 	struct sock *sk = skb->sk;
1041 	struct sk_buff_head *q;
1042 	unsigned long flags;
1043 	u32 lo, hi;
1044 	u16 len;
1045 
1046 	mm_unaccount_pinned_pages(&uarg->mmp);
1047 
1048 	/* if !len, there was only 1 call, and it was aborted
1049 	 * so do not queue a completion notification
1050 	 */
1051 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1052 		goto release;
1053 
1054 	len = uarg->len;
1055 	lo = uarg->id;
1056 	hi = uarg->id + len - 1;
1057 
1058 	serr = SKB_EXT_ERR(skb);
1059 	memset(serr, 0, sizeof(*serr));
1060 	serr->ee.ee_errno = 0;
1061 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1062 	serr->ee.ee_data = hi;
1063 	serr->ee.ee_info = lo;
1064 	if (!success)
1065 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1066 
1067 	q = &sk->sk_error_queue;
1068 	spin_lock_irqsave(&q->lock, flags);
1069 	tail = skb_peek_tail(q);
1070 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1071 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1072 		__skb_queue_tail(q, skb);
1073 		skb = NULL;
1074 	}
1075 	spin_unlock_irqrestore(&q->lock, flags);
1076 
1077 	sk->sk_error_report(sk);
1078 
1079 release:
1080 	consume_skb(skb);
1081 	sock_put(sk);
1082 }
1083 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1084 
1085 void sock_zerocopy_put(struct ubuf_info *uarg)
1086 {
1087 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1088 		if (uarg->callback)
1089 			uarg->callback(uarg, uarg->zerocopy);
1090 		else
1091 			consume_skb(skb_from_uarg(uarg));
1092 	}
1093 }
1094 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1095 
1096 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1097 {
1098 	if (uarg) {
1099 		struct sock *sk = skb_from_uarg(uarg)->sk;
1100 
1101 		atomic_dec(&sk->sk_zckey);
1102 		uarg->len--;
1103 
1104 		sock_zerocopy_put(uarg);
1105 	}
1106 }
1107 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1108 
1109 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1110 				   struct iov_iter *from, size_t length);
1111 
1112 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1113 			     struct msghdr *msg, int len,
1114 			     struct ubuf_info *uarg)
1115 {
1116 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1117 	struct iov_iter orig_iter = msg->msg_iter;
1118 	int err, orig_len = skb->len;
1119 
1120 	/* An skb can only point to one uarg. This edge case happens when
1121 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1122 	 */
1123 	if (orig_uarg && uarg != orig_uarg)
1124 		return -EEXIST;
1125 
1126 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1127 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1128 		struct sock *save_sk = skb->sk;
1129 
1130 		/* Streams do not free skb on error. Reset to prev state. */
1131 		msg->msg_iter = orig_iter;
1132 		skb->sk = sk;
1133 		___pskb_trim(skb, orig_len);
1134 		skb->sk = save_sk;
1135 		return err;
1136 	}
1137 
1138 	skb_zcopy_set(skb, uarg);
1139 	return skb->len - orig_len;
1140 }
1141 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1142 
1143 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1144 			      gfp_t gfp_mask)
1145 {
1146 	if (skb_zcopy(orig)) {
1147 		if (skb_zcopy(nskb)) {
1148 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1149 			if (!gfp_mask) {
1150 				WARN_ON_ONCE(1);
1151 				return -ENOMEM;
1152 			}
1153 			if (skb_uarg(nskb) == skb_uarg(orig))
1154 				return 0;
1155 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1156 				return -EIO;
1157 		}
1158 		skb_zcopy_set(nskb, skb_uarg(orig));
1159 	}
1160 	return 0;
1161 }
1162 
1163 /**
1164  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1165  *	@skb: the skb to modify
1166  *	@gfp_mask: allocation priority
1167  *
1168  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1169  *	It will copy all frags into kernel and drop the reference
1170  *	to userspace pages.
1171  *
1172  *	If this function is called from an interrupt gfp_mask() must be
1173  *	%GFP_ATOMIC.
1174  *
1175  *	Returns 0 on success or a negative error code on failure
1176  *	to allocate kernel memory to copy to.
1177  */
1178 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1179 {
1180 	int num_frags = skb_shinfo(skb)->nr_frags;
1181 	struct page *page, *head = NULL;
1182 	int i, new_frags;
1183 	u32 d_off;
1184 
1185 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1186 		return -EINVAL;
1187 
1188 	if (!num_frags)
1189 		goto release;
1190 
1191 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192 	for (i = 0; i < new_frags; i++) {
1193 		page = alloc_page(gfp_mask);
1194 		if (!page) {
1195 			while (head) {
1196 				struct page *next = (struct page *)page_private(head);
1197 				put_page(head);
1198 				head = next;
1199 			}
1200 			return -ENOMEM;
1201 		}
1202 		set_page_private(page, (unsigned long)head);
1203 		head = page;
1204 	}
1205 
1206 	page = head;
1207 	d_off = 0;
1208 	for (i = 0; i < num_frags; i++) {
1209 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1210 		u32 p_off, p_len, copied;
1211 		struct page *p;
1212 		u8 *vaddr;
1213 
1214 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1215 				      p, p_off, p_len, copied) {
1216 			u32 copy, done = 0;
1217 			vaddr = kmap_atomic(p);
1218 
1219 			while (done < p_len) {
1220 				if (d_off == PAGE_SIZE) {
1221 					d_off = 0;
1222 					page = (struct page *)page_private(page);
1223 				}
1224 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1225 				memcpy(page_address(page) + d_off,
1226 				       vaddr + p_off + done, copy);
1227 				done += copy;
1228 				d_off += copy;
1229 			}
1230 			kunmap_atomic(vaddr);
1231 		}
1232 	}
1233 
1234 	/* skb frags release userspace buffers */
1235 	for (i = 0; i < num_frags; i++)
1236 		skb_frag_unref(skb, i);
1237 
1238 	/* skb frags point to kernel buffers */
1239 	for (i = 0; i < new_frags - 1; i++) {
1240 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1241 		head = (struct page *)page_private(head);
1242 	}
1243 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1244 	skb_shinfo(skb)->nr_frags = new_frags;
1245 
1246 release:
1247 	skb_zcopy_clear(skb, false);
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1251 
1252 /**
1253  *	skb_clone	-	duplicate an sk_buff
1254  *	@skb: buffer to clone
1255  *	@gfp_mask: allocation priority
1256  *
1257  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1258  *	copies share the same packet data but not structure. The new
1259  *	buffer has a reference count of 1. If the allocation fails the
1260  *	function returns %NULL otherwise the new buffer is returned.
1261  *
1262  *	If this function is called from an interrupt gfp_mask() must be
1263  *	%GFP_ATOMIC.
1264  */
1265 
1266 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1267 {
1268 	struct sk_buff_fclones *fclones = container_of(skb,
1269 						       struct sk_buff_fclones,
1270 						       skb1);
1271 	struct sk_buff *n;
1272 
1273 	if (skb_orphan_frags(skb, gfp_mask))
1274 		return NULL;
1275 
1276 	if (skb->fclone == SKB_FCLONE_ORIG &&
1277 	    refcount_read(&fclones->fclone_ref) == 1) {
1278 		n = &fclones->skb2;
1279 		refcount_set(&fclones->fclone_ref, 2);
1280 	} else {
1281 		if (skb_pfmemalloc(skb))
1282 			gfp_mask |= __GFP_MEMALLOC;
1283 
1284 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1285 		if (!n)
1286 			return NULL;
1287 
1288 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1289 	}
1290 
1291 	return __skb_clone(n, skb);
1292 }
1293 EXPORT_SYMBOL(skb_clone);
1294 
1295 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1296 {
1297 	/* Only adjust this if it actually is csum_start rather than csum */
1298 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1299 		skb->csum_start += off;
1300 	/* {transport,network,mac}_header and tail are relative to skb->head */
1301 	skb->transport_header += off;
1302 	skb->network_header   += off;
1303 	if (skb_mac_header_was_set(skb))
1304 		skb->mac_header += off;
1305 	skb->inner_transport_header += off;
1306 	skb->inner_network_header += off;
1307 	skb->inner_mac_header += off;
1308 }
1309 
1310 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1311 {
1312 	__copy_skb_header(new, old);
1313 
1314 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1315 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1316 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1317 }
1318 EXPORT_SYMBOL(skb_copy_header);
1319 
1320 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1321 {
1322 	if (skb_pfmemalloc(skb))
1323 		return SKB_ALLOC_RX;
1324 	return 0;
1325 }
1326 
1327 /**
1328  *	skb_copy	-	create private copy of an sk_buff
1329  *	@skb: buffer to copy
1330  *	@gfp_mask: allocation priority
1331  *
1332  *	Make a copy of both an &sk_buff and its data. This is used when the
1333  *	caller wishes to modify the data and needs a private copy of the
1334  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1335  *	on success. The returned buffer has a reference count of 1.
1336  *
1337  *	As by-product this function converts non-linear &sk_buff to linear
1338  *	one, so that &sk_buff becomes completely private and caller is allowed
1339  *	to modify all the data of returned buffer. This means that this
1340  *	function is not recommended for use in circumstances when only
1341  *	header is going to be modified. Use pskb_copy() instead.
1342  */
1343 
1344 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1345 {
1346 	int headerlen = skb_headroom(skb);
1347 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1348 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1349 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1350 
1351 	if (!n)
1352 		return NULL;
1353 
1354 	/* Set the data pointer */
1355 	skb_reserve(n, headerlen);
1356 	/* Set the tail pointer and length */
1357 	skb_put(n, skb->len);
1358 
1359 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1360 
1361 	skb_copy_header(n, skb);
1362 	return n;
1363 }
1364 EXPORT_SYMBOL(skb_copy);
1365 
1366 /**
1367  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1368  *	@skb: buffer to copy
1369  *	@headroom: headroom of new skb
1370  *	@gfp_mask: allocation priority
1371  *	@fclone: if true allocate the copy of the skb from the fclone
1372  *	cache instead of the head cache; it is recommended to set this
1373  *	to true for the cases where the copy will likely be cloned
1374  *
1375  *	Make a copy of both an &sk_buff and part of its data, located
1376  *	in header. Fragmented data remain shared. This is used when
1377  *	the caller wishes to modify only header of &sk_buff and needs
1378  *	private copy of the header to alter. Returns %NULL on failure
1379  *	or the pointer to the buffer on success.
1380  *	The returned buffer has a reference count of 1.
1381  */
1382 
1383 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1384 				   gfp_t gfp_mask, bool fclone)
1385 {
1386 	unsigned int size = skb_headlen(skb) + headroom;
1387 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1388 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1389 
1390 	if (!n)
1391 		goto out;
1392 
1393 	/* Set the data pointer */
1394 	skb_reserve(n, headroom);
1395 	/* Set the tail pointer and length */
1396 	skb_put(n, skb_headlen(skb));
1397 	/* Copy the bytes */
1398 	skb_copy_from_linear_data(skb, n->data, n->len);
1399 
1400 	n->truesize += skb->data_len;
1401 	n->data_len  = skb->data_len;
1402 	n->len	     = skb->len;
1403 
1404 	if (skb_shinfo(skb)->nr_frags) {
1405 		int i;
1406 
1407 		if (skb_orphan_frags(skb, gfp_mask) ||
1408 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1409 			kfree_skb(n);
1410 			n = NULL;
1411 			goto out;
1412 		}
1413 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1414 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1415 			skb_frag_ref(skb, i);
1416 		}
1417 		skb_shinfo(n)->nr_frags = i;
1418 	}
1419 
1420 	if (skb_has_frag_list(skb)) {
1421 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1422 		skb_clone_fraglist(n);
1423 	}
1424 
1425 	skb_copy_header(n, skb);
1426 out:
1427 	return n;
1428 }
1429 EXPORT_SYMBOL(__pskb_copy_fclone);
1430 
1431 /**
1432  *	pskb_expand_head - reallocate header of &sk_buff
1433  *	@skb: buffer to reallocate
1434  *	@nhead: room to add at head
1435  *	@ntail: room to add at tail
1436  *	@gfp_mask: allocation priority
1437  *
1438  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1439  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1440  *	reference count of 1. Returns zero in the case of success or error,
1441  *	if expansion failed. In the last case, &sk_buff is not changed.
1442  *
1443  *	All the pointers pointing into skb header may change and must be
1444  *	reloaded after call to this function.
1445  */
1446 
1447 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1448 		     gfp_t gfp_mask)
1449 {
1450 	int i, osize = skb_end_offset(skb);
1451 	int size = osize + nhead + ntail;
1452 	long off;
1453 	u8 *data;
1454 
1455 	BUG_ON(nhead < 0);
1456 
1457 	BUG_ON(skb_shared(skb));
1458 
1459 	size = SKB_DATA_ALIGN(size);
1460 
1461 	if (skb_pfmemalloc(skb))
1462 		gfp_mask |= __GFP_MEMALLOC;
1463 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1464 			       gfp_mask, NUMA_NO_NODE, NULL);
1465 	if (!data)
1466 		goto nodata;
1467 	size = SKB_WITH_OVERHEAD(ksize(data));
1468 
1469 	/* Copy only real data... and, alas, header. This should be
1470 	 * optimized for the cases when header is void.
1471 	 */
1472 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1473 
1474 	memcpy((struct skb_shared_info *)(data + size),
1475 	       skb_shinfo(skb),
1476 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1477 
1478 	/*
1479 	 * if shinfo is shared we must drop the old head gracefully, but if it
1480 	 * is not we can just drop the old head and let the existing refcount
1481 	 * be since all we did is relocate the values
1482 	 */
1483 	if (skb_cloned(skb)) {
1484 		if (skb_orphan_frags(skb, gfp_mask))
1485 			goto nofrags;
1486 		if (skb_zcopy(skb))
1487 			refcount_inc(&skb_uarg(skb)->refcnt);
1488 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1489 			skb_frag_ref(skb, i);
1490 
1491 		if (skb_has_frag_list(skb))
1492 			skb_clone_fraglist(skb);
1493 
1494 		skb_release_data(skb);
1495 	} else {
1496 		skb_free_head(skb);
1497 	}
1498 	off = (data + nhead) - skb->head;
1499 
1500 	skb->head     = data;
1501 	skb->head_frag = 0;
1502 	skb->data    += off;
1503 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1504 	skb->end      = size;
1505 	off           = nhead;
1506 #else
1507 	skb->end      = skb->head + size;
1508 #endif
1509 	skb->tail	      += off;
1510 	skb_headers_offset_update(skb, nhead);
1511 	skb->cloned   = 0;
1512 	skb->hdr_len  = 0;
1513 	skb->nohdr    = 0;
1514 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1515 
1516 	skb_metadata_clear(skb);
1517 
1518 	/* It is not generally safe to change skb->truesize.
1519 	 * For the moment, we really care of rx path, or
1520 	 * when skb is orphaned (not attached to a socket).
1521 	 */
1522 	if (!skb->sk || skb->destructor == sock_edemux)
1523 		skb->truesize += size - osize;
1524 
1525 	return 0;
1526 
1527 nofrags:
1528 	kfree(data);
1529 nodata:
1530 	return -ENOMEM;
1531 }
1532 EXPORT_SYMBOL(pskb_expand_head);
1533 
1534 /* Make private copy of skb with writable head and some headroom */
1535 
1536 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1537 {
1538 	struct sk_buff *skb2;
1539 	int delta = headroom - skb_headroom(skb);
1540 
1541 	if (delta <= 0)
1542 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1543 	else {
1544 		skb2 = skb_clone(skb, GFP_ATOMIC);
1545 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1546 					     GFP_ATOMIC)) {
1547 			kfree_skb(skb2);
1548 			skb2 = NULL;
1549 		}
1550 	}
1551 	return skb2;
1552 }
1553 EXPORT_SYMBOL(skb_realloc_headroom);
1554 
1555 /**
1556  *	skb_copy_expand	-	copy and expand sk_buff
1557  *	@skb: buffer to copy
1558  *	@newheadroom: new free bytes at head
1559  *	@newtailroom: new free bytes at tail
1560  *	@gfp_mask: allocation priority
1561  *
1562  *	Make a copy of both an &sk_buff and its data and while doing so
1563  *	allocate additional space.
1564  *
1565  *	This is used when the caller wishes to modify the data and needs a
1566  *	private copy of the data to alter as well as more space for new fields.
1567  *	Returns %NULL on failure or the pointer to the buffer
1568  *	on success. The returned buffer has a reference count of 1.
1569  *
1570  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1571  *	is called from an interrupt.
1572  */
1573 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1574 				int newheadroom, int newtailroom,
1575 				gfp_t gfp_mask)
1576 {
1577 	/*
1578 	 *	Allocate the copy buffer
1579 	 */
1580 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1581 					gfp_mask, skb_alloc_rx_flag(skb),
1582 					NUMA_NO_NODE);
1583 	int oldheadroom = skb_headroom(skb);
1584 	int head_copy_len, head_copy_off;
1585 
1586 	if (!n)
1587 		return NULL;
1588 
1589 	skb_reserve(n, newheadroom);
1590 
1591 	/* Set the tail pointer and length */
1592 	skb_put(n, skb->len);
1593 
1594 	head_copy_len = oldheadroom;
1595 	head_copy_off = 0;
1596 	if (newheadroom <= head_copy_len)
1597 		head_copy_len = newheadroom;
1598 	else
1599 		head_copy_off = newheadroom - head_copy_len;
1600 
1601 	/* Copy the linear header and data. */
1602 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1603 			     skb->len + head_copy_len));
1604 
1605 	skb_copy_header(n, skb);
1606 
1607 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1608 
1609 	return n;
1610 }
1611 EXPORT_SYMBOL(skb_copy_expand);
1612 
1613 /**
1614  *	__skb_pad		-	zero pad the tail of an skb
1615  *	@skb: buffer to pad
1616  *	@pad: space to pad
1617  *	@free_on_error: free buffer on error
1618  *
1619  *	Ensure that a buffer is followed by a padding area that is zero
1620  *	filled. Used by network drivers which may DMA or transfer data
1621  *	beyond the buffer end onto the wire.
1622  *
1623  *	May return error in out of memory cases. The skb is freed on error
1624  *	if @free_on_error is true.
1625  */
1626 
1627 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1628 {
1629 	int err;
1630 	int ntail;
1631 
1632 	/* If the skbuff is non linear tailroom is always zero.. */
1633 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1634 		memset(skb->data+skb->len, 0, pad);
1635 		return 0;
1636 	}
1637 
1638 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1639 	if (likely(skb_cloned(skb) || ntail > 0)) {
1640 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1641 		if (unlikely(err))
1642 			goto free_skb;
1643 	}
1644 
1645 	/* FIXME: The use of this function with non-linear skb's really needs
1646 	 * to be audited.
1647 	 */
1648 	err = skb_linearize(skb);
1649 	if (unlikely(err))
1650 		goto free_skb;
1651 
1652 	memset(skb->data + skb->len, 0, pad);
1653 	return 0;
1654 
1655 free_skb:
1656 	if (free_on_error)
1657 		kfree_skb(skb);
1658 	return err;
1659 }
1660 EXPORT_SYMBOL(__skb_pad);
1661 
1662 /**
1663  *	pskb_put - add data to the tail of a potentially fragmented buffer
1664  *	@skb: start of the buffer to use
1665  *	@tail: tail fragment of the buffer to use
1666  *	@len: amount of data to add
1667  *
1668  *	This function extends the used data area of the potentially
1669  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1670  *	@skb itself. If this would exceed the total buffer size the kernel
1671  *	will panic. A pointer to the first byte of the extra data is
1672  *	returned.
1673  */
1674 
1675 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1676 {
1677 	if (tail != skb) {
1678 		skb->data_len += len;
1679 		skb->len += len;
1680 	}
1681 	return skb_put(tail, len);
1682 }
1683 EXPORT_SYMBOL_GPL(pskb_put);
1684 
1685 /**
1686  *	skb_put - add data to a buffer
1687  *	@skb: buffer to use
1688  *	@len: amount of data to add
1689  *
1690  *	This function extends the used data area of the buffer. If this would
1691  *	exceed the total buffer size the kernel will panic. A pointer to the
1692  *	first byte of the extra data is returned.
1693  */
1694 void *skb_put(struct sk_buff *skb, unsigned int len)
1695 {
1696 	void *tmp = skb_tail_pointer(skb);
1697 	SKB_LINEAR_ASSERT(skb);
1698 	skb->tail += len;
1699 	skb->len  += len;
1700 	if (unlikely(skb->tail > skb->end))
1701 		skb_over_panic(skb, len, __builtin_return_address(0));
1702 	return tmp;
1703 }
1704 EXPORT_SYMBOL(skb_put);
1705 
1706 /**
1707  *	skb_push - add data to the start of a buffer
1708  *	@skb: buffer to use
1709  *	@len: amount of data to add
1710  *
1711  *	This function extends the used data area of the buffer at the buffer
1712  *	start. If this would exceed the total buffer headroom the kernel will
1713  *	panic. A pointer to the first byte of the extra data is returned.
1714  */
1715 void *skb_push(struct sk_buff *skb, unsigned int len)
1716 {
1717 	skb->data -= len;
1718 	skb->len  += len;
1719 	if (unlikely(skb->data<skb->head))
1720 		skb_under_panic(skb, len, __builtin_return_address(0));
1721 	return skb->data;
1722 }
1723 EXPORT_SYMBOL(skb_push);
1724 
1725 /**
1726  *	skb_pull - remove data from the start of a buffer
1727  *	@skb: buffer to use
1728  *	@len: amount of data to remove
1729  *
1730  *	This function removes data from the start of a buffer, returning
1731  *	the memory to the headroom. A pointer to the next data in the buffer
1732  *	is returned. Once the data has been pulled future pushes will overwrite
1733  *	the old data.
1734  */
1735 void *skb_pull(struct sk_buff *skb, unsigned int len)
1736 {
1737 	return skb_pull_inline(skb, len);
1738 }
1739 EXPORT_SYMBOL(skb_pull);
1740 
1741 /**
1742  *	skb_trim - remove end from a buffer
1743  *	@skb: buffer to alter
1744  *	@len: new length
1745  *
1746  *	Cut the length of a buffer down by removing data from the tail. If
1747  *	the buffer is already under the length specified it is not modified.
1748  *	The skb must be linear.
1749  */
1750 void skb_trim(struct sk_buff *skb, unsigned int len)
1751 {
1752 	if (skb->len > len)
1753 		__skb_trim(skb, len);
1754 }
1755 EXPORT_SYMBOL(skb_trim);
1756 
1757 /* Trims skb to length len. It can change skb pointers.
1758  */
1759 
1760 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1761 {
1762 	struct sk_buff **fragp;
1763 	struct sk_buff *frag;
1764 	int offset = skb_headlen(skb);
1765 	int nfrags = skb_shinfo(skb)->nr_frags;
1766 	int i;
1767 	int err;
1768 
1769 	if (skb_cloned(skb) &&
1770 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1771 		return err;
1772 
1773 	i = 0;
1774 	if (offset >= len)
1775 		goto drop_pages;
1776 
1777 	for (; i < nfrags; i++) {
1778 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1779 
1780 		if (end < len) {
1781 			offset = end;
1782 			continue;
1783 		}
1784 
1785 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1786 
1787 drop_pages:
1788 		skb_shinfo(skb)->nr_frags = i;
1789 
1790 		for (; i < nfrags; i++)
1791 			skb_frag_unref(skb, i);
1792 
1793 		if (skb_has_frag_list(skb))
1794 			skb_drop_fraglist(skb);
1795 		goto done;
1796 	}
1797 
1798 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1799 	     fragp = &frag->next) {
1800 		int end = offset + frag->len;
1801 
1802 		if (skb_shared(frag)) {
1803 			struct sk_buff *nfrag;
1804 
1805 			nfrag = skb_clone(frag, GFP_ATOMIC);
1806 			if (unlikely(!nfrag))
1807 				return -ENOMEM;
1808 
1809 			nfrag->next = frag->next;
1810 			consume_skb(frag);
1811 			frag = nfrag;
1812 			*fragp = frag;
1813 		}
1814 
1815 		if (end < len) {
1816 			offset = end;
1817 			continue;
1818 		}
1819 
1820 		if (end > len &&
1821 		    unlikely((err = pskb_trim(frag, len - offset))))
1822 			return err;
1823 
1824 		if (frag->next)
1825 			skb_drop_list(&frag->next);
1826 		break;
1827 	}
1828 
1829 done:
1830 	if (len > skb_headlen(skb)) {
1831 		skb->data_len -= skb->len - len;
1832 		skb->len       = len;
1833 	} else {
1834 		skb->len       = len;
1835 		skb->data_len  = 0;
1836 		skb_set_tail_pointer(skb, len);
1837 	}
1838 
1839 	if (!skb->sk || skb->destructor == sock_edemux)
1840 		skb_condense(skb);
1841 	return 0;
1842 }
1843 EXPORT_SYMBOL(___pskb_trim);
1844 
1845 /* Note : use pskb_trim_rcsum() instead of calling this directly
1846  */
1847 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1848 {
1849 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1850 		int delta = skb->len - len;
1851 
1852 		skb->csum = csum_sub(skb->csum,
1853 				     skb_checksum(skb, len, delta, 0));
1854 	}
1855 	return __pskb_trim(skb, len);
1856 }
1857 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1858 
1859 /**
1860  *	__pskb_pull_tail - advance tail of skb header
1861  *	@skb: buffer to reallocate
1862  *	@delta: number of bytes to advance tail
1863  *
1864  *	The function makes a sense only on a fragmented &sk_buff,
1865  *	it expands header moving its tail forward and copying necessary
1866  *	data from fragmented part.
1867  *
1868  *	&sk_buff MUST have reference count of 1.
1869  *
1870  *	Returns %NULL (and &sk_buff does not change) if pull failed
1871  *	or value of new tail of skb in the case of success.
1872  *
1873  *	All the pointers pointing into skb header may change and must be
1874  *	reloaded after call to this function.
1875  */
1876 
1877 /* Moves tail of skb head forward, copying data from fragmented part,
1878  * when it is necessary.
1879  * 1. It may fail due to malloc failure.
1880  * 2. It may change skb pointers.
1881  *
1882  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1883  */
1884 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1885 {
1886 	/* If skb has not enough free space at tail, get new one
1887 	 * plus 128 bytes for future expansions. If we have enough
1888 	 * room at tail, reallocate without expansion only if skb is cloned.
1889 	 */
1890 	int i, k, eat = (skb->tail + delta) - skb->end;
1891 
1892 	if (eat > 0 || skb_cloned(skb)) {
1893 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1894 				     GFP_ATOMIC))
1895 			return NULL;
1896 	}
1897 
1898 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1899 			     skb_tail_pointer(skb), delta));
1900 
1901 	/* Optimization: no fragments, no reasons to preestimate
1902 	 * size of pulled pages. Superb.
1903 	 */
1904 	if (!skb_has_frag_list(skb))
1905 		goto pull_pages;
1906 
1907 	/* Estimate size of pulled pages. */
1908 	eat = delta;
1909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1910 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1911 
1912 		if (size >= eat)
1913 			goto pull_pages;
1914 		eat -= size;
1915 	}
1916 
1917 	/* If we need update frag list, we are in troubles.
1918 	 * Certainly, it is possible to add an offset to skb data,
1919 	 * but taking into account that pulling is expected to
1920 	 * be very rare operation, it is worth to fight against
1921 	 * further bloating skb head and crucify ourselves here instead.
1922 	 * Pure masohism, indeed. 8)8)
1923 	 */
1924 	if (eat) {
1925 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1926 		struct sk_buff *clone = NULL;
1927 		struct sk_buff *insp = NULL;
1928 
1929 		do {
1930 			BUG_ON(!list);
1931 
1932 			if (list->len <= eat) {
1933 				/* Eaten as whole. */
1934 				eat -= list->len;
1935 				list = list->next;
1936 				insp = list;
1937 			} else {
1938 				/* Eaten partially. */
1939 
1940 				if (skb_shared(list)) {
1941 					/* Sucks! We need to fork list. :-( */
1942 					clone = skb_clone(list, GFP_ATOMIC);
1943 					if (!clone)
1944 						return NULL;
1945 					insp = list->next;
1946 					list = clone;
1947 				} else {
1948 					/* This may be pulled without
1949 					 * problems. */
1950 					insp = list;
1951 				}
1952 				if (!pskb_pull(list, eat)) {
1953 					kfree_skb(clone);
1954 					return NULL;
1955 				}
1956 				break;
1957 			}
1958 		} while (eat);
1959 
1960 		/* Free pulled out fragments. */
1961 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1962 			skb_shinfo(skb)->frag_list = list->next;
1963 			kfree_skb(list);
1964 		}
1965 		/* And insert new clone at head. */
1966 		if (clone) {
1967 			clone->next = list;
1968 			skb_shinfo(skb)->frag_list = clone;
1969 		}
1970 	}
1971 	/* Success! Now we may commit changes to skb data. */
1972 
1973 pull_pages:
1974 	eat = delta;
1975 	k = 0;
1976 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1977 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1978 
1979 		if (size <= eat) {
1980 			skb_frag_unref(skb, i);
1981 			eat -= size;
1982 		} else {
1983 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1984 			if (eat) {
1985 				skb_shinfo(skb)->frags[k].page_offset += eat;
1986 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1987 				if (!i)
1988 					goto end;
1989 				eat = 0;
1990 			}
1991 			k++;
1992 		}
1993 	}
1994 	skb_shinfo(skb)->nr_frags = k;
1995 
1996 end:
1997 	skb->tail     += delta;
1998 	skb->data_len -= delta;
1999 
2000 	if (!skb->data_len)
2001 		skb_zcopy_clear(skb, false);
2002 
2003 	return skb_tail_pointer(skb);
2004 }
2005 EXPORT_SYMBOL(__pskb_pull_tail);
2006 
2007 /**
2008  *	skb_copy_bits - copy bits from skb to kernel buffer
2009  *	@skb: source skb
2010  *	@offset: offset in source
2011  *	@to: destination buffer
2012  *	@len: number of bytes to copy
2013  *
2014  *	Copy the specified number of bytes from the source skb to the
2015  *	destination buffer.
2016  *
2017  *	CAUTION ! :
2018  *		If its prototype is ever changed,
2019  *		check arch/{*}/net/{*}.S files,
2020  *		since it is called from BPF assembly code.
2021  */
2022 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2023 {
2024 	int start = skb_headlen(skb);
2025 	struct sk_buff *frag_iter;
2026 	int i, copy;
2027 
2028 	if (offset > (int)skb->len - len)
2029 		goto fault;
2030 
2031 	/* Copy header. */
2032 	if ((copy = start - offset) > 0) {
2033 		if (copy > len)
2034 			copy = len;
2035 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2036 		if ((len -= copy) == 0)
2037 			return 0;
2038 		offset += copy;
2039 		to     += copy;
2040 	}
2041 
2042 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 		int end;
2044 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2045 
2046 		WARN_ON(start > offset + len);
2047 
2048 		end = start + skb_frag_size(f);
2049 		if ((copy = end - offset) > 0) {
2050 			u32 p_off, p_len, copied;
2051 			struct page *p;
2052 			u8 *vaddr;
2053 
2054 			if (copy > len)
2055 				copy = len;
2056 
2057 			skb_frag_foreach_page(f,
2058 					      f->page_offset + offset - start,
2059 					      copy, p, p_off, p_len, copied) {
2060 				vaddr = kmap_atomic(p);
2061 				memcpy(to + copied, vaddr + p_off, p_len);
2062 				kunmap_atomic(vaddr);
2063 			}
2064 
2065 			if ((len -= copy) == 0)
2066 				return 0;
2067 			offset += copy;
2068 			to     += copy;
2069 		}
2070 		start = end;
2071 	}
2072 
2073 	skb_walk_frags(skb, frag_iter) {
2074 		int end;
2075 
2076 		WARN_ON(start > offset + len);
2077 
2078 		end = start + frag_iter->len;
2079 		if ((copy = end - offset) > 0) {
2080 			if (copy > len)
2081 				copy = len;
2082 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2083 				goto fault;
2084 			if ((len -= copy) == 0)
2085 				return 0;
2086 			offset += copy;
2087 			to     += copy;
2088 		}
2089 		start = end;
2090 	}
2091 
2092 	if (!len)
2093 		return 0;
2094 
2095 fault:
2096 	return -EFAULT;
2097 }
2098 EXPORT_SYMBOL(skb_copy_bits);
2099 
2100 /*
2101  * Callback from splice_to_pipe(), if we need to release some pages
2102  * at the end of the spd in case we error'ed out in filling the pipe.
2103  */
2104 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2105 {
2106 	put_page(spd->pages[i]);
2107 }
2108 
2109 static struct page *linear_to_page(struct page *page, unsigned int *len,
2110 				   unsigned int *offset,
2111 				   struct sock *sk)
2112 {
2113 	struct page_frag *pfrag = sk_page_frag(sk);
2114 
2115 	if (!sk_page_frag_refill(sk, pfrag))
2116 		return NULL;
2117 
2118 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2119 
2120 	memcpy(page_address(pfrag->page) + pfrag->offset,
2121 	       page_address(page) + *offset, *len);
2122 	*offset = pfrag->offset;
2123 	pfrag->offset += *len;
2124 
2125 	return pfrag->page;
2126 }
2127 
2128 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2129 			     struct page *page,
2130 			     unsigned int offset)
2131 {
2132 	return	spd->nr_pages &&
2133 		spd->pages[spd->nr_pages - 1] == page &&
2134 		(spd->partial[spd->nr_pages - 1].offset +
2135 		 spd->partial[spd->nr_pages - 1].len == offset);
2136 }
2137 
2138 /*
2139  * Fill page/offset/length into spd, if it can hold more pages.
2140  */
2141 static bool spd_fill_page(struct splice_pipe_desc *spd,
2142 			  struct pipe_inode_info *pipe, struct page *page,
2143 			  unsigned int *len, unsigned int offset,
2144 			  bool linear,
2145 			  struct sock *sk)
2146 {
2147 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2148 		return true;
2149 
2150 	if (linear) {
2151 		page = linear_to_page(page, len, &offset, sk);
2152 		if (!page)
2153 			return true;
2154 	}
2155 	if (spd_can_coalesce(spd, page, offset)) {
2156 		spd->partial[spd->nr_pages - 1].len += *len;
2157 		return false;
2158 	}
2159 	get_page(page);
2160 	spd->pages[spd->nr_pages] = page;
2161 	spd->partial[spd->nr_pages].len = *len;
2162 	spd->partial[spd->nr_pages].offset = offset;
2163 	spd->nr_pages++;
2164 
2165 	return false;
2166 }
2167 
2168 static bool __splice_segment(struct page *page, unsigned int poff,
2169 			     unsigned int plen, unsigned int *off,
2170 			     unsigned int *len,
2171 			     struct splice_pipe_desc *spd, bool linear,
2172 			     struct sock *sk,
2173 			     struct pipe_inode_info *pipe)
2174 {
2175 	if (!*len)
2176 		return true;
2177 
2178 	/* skip this segment if already processed */
2179 	if (*off >= plen) {
2180 		*off -= plen;
2181 		return false;
2182 	}
2183 
2184 	/* ignore any bits we already processed */
2185 	poff += *off;
2186 	plen -= *off;
2187 	*off = 0;
2188 
2189 	do {
2190 		unsigned int flen = min(*len, plen);
2191 
2192 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2193 				  linear, sk))
2194 			return true;
2195 		poff += flen;
2196 		plen -= flen;
2197 		*len -= flen;
2198 	} while (*len && plen);
2199 
2200 	return false;
2201 }
2202 
2203 /*
2204  * Map linear and fragment data from the skb to spd. It reports true if the
2205  * pipe is full or if we already spliced the requested length.
2206  */
2207 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2208 			      unsigned int *offset, unsigned int *len,
2209 			      struct splice_pipe_desc *spd, struct sock *sk)
2210 {
2211 	int seg;
2212 	struct sk_buff *iter;
2213 
2214 	/* map the linear part :
2215 	 * If skb->head_frag is set, this 'linear' part is backed by a
2216 	 * fragment, and if the head is not shared with any clones then
2217 	 * we can avoid a copy since we own the head portion of this page.
2218 	 */
2219 	if (__splice_segment(virt_to_page(skb->data),
2220 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2221 			     skb_headlen(skb),
2222 			     offset, len, spd,
2223 			     skb_head_is_locked(skb),
2224 			     sk, pipe))
2225 		return true;
2226 
2227 	/*
2228 	 * then map the fragments
2229 	 */
2230 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2231 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2232 
2233 		if (__splice_segment(skb_frag_page(f),
2234 				     f->page_offset, skb_frag_size(f),
2235 				     offset, len, spd, false, sk, pipe))
2236 			return true;
2237 	}
2238 
2239 	skb_walk_frags(skb, iter) {
2240 		if (*offset >= iter->len) {
2241 			*offset -= iter->len;
2242 			continue;
2243 		}
2244 		/* __skb_splice_bits() only fails if the output has no room
2245 		 * left, so no point in going over the frag_list for the error
2246 		 * case.
2247 		 */
2248 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2249 			return true;
2250 	}
2251 
2252 	return false;
2253 }
2254 
2255 /*
2256  * Map data from the skb to a pipe. Should handle both the linear part,
2257  * the fragments, and the frag list.
2258  */
2259 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2260 		    struct pipe_inode_info *pipe, unsigned int tlen,
2261 		    unsigned int flags)
2262 {
2263 	struct partial_page partial[MAX_SKB_FRAGS];
2264 	struct page *pages[MAX_SKB_FRAGS];
2265 	struct splice_pipe_desc spd = {
2266 		.pages = pages,
2267 		.partial = partial,
2268 		.nr_pages_max = MAX_SKB_FRAGS,
2269 		.ops = &nosteal_pipe_buf_ops,
2270 		.spd_release = sock_spd_release,
2271 	};
2272 	int ret = 0;
2273 
2274 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2275 
2276 	if (spd.nr_pages)
2277 		ret = splice_to_pipe(pipe, &spd);
2278 
2279 	return ret;
2280 }
2281 EXPORT_SYMBOL_GPL(skb_splice_bits);
2282 
2283 /* Send skb data on a socket. Socket must be locked. */
2284 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2285 			 int len)
2286 {
2287 	unsigned int orig_len = len;
2288 	struct sk_buff *head = skb;
2289 	unsigned short fragidx;
2290 	int slen, ret;
2291 
2292 do_frag_list:
2293 
2294 	/* Deal with head data */
2295 	while (offset < skb_headlen(skb) && len) {
2296 		struct kvec kv;
2297 		struct msghdr msg;
2298 
2299 		slen = min_t(int, len, skb_headlen(skb) - offset);
2300 		kv.iov_base = skb->data + offset;
2301 		kv.iov_len = slen;
2302 		memset(&msg, 0, sizeof(msg));
2303 
2304 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2305 		if (ret <= 0)
2306 			goto error;
2307 
2308 		offset += ret;
2309 		len -= ret;
2310 	}
2311 
2312 	/* All the data was skb head? */
2313 	if (!len)
2314 		goto out;
2315 
2316 	/* Make offset relative to start of frags */
2317 	offset -= skb_headlen(skb);
2318 
2319 	/* Find where we are in frag list */
2320 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2321 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2322 
2323 		if (offset < frag->size)
2324 			break;
2325 
2326 		offset -= frag->size;
2327 	}
2328 
2329 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2330 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2331 
2332 		slen = min_t(size_t, len, frag->size - offset);
2333 
2334 		while (slen) {
2335 			ret = kernel_sendpage_locked(sk, frag->page.p,
2336 						     frag->page_offset + offset,
2337 						     slen, MSG_DONTWAIT);
2338 			if (ret <= 0)
2339 				goto error;
2340 
2341 			len -= ret;
2342 			offset += ret;
2343 			slen -= ret;
2344 		}
2345 
2346 		offset = 0;
2347 	}
2348 
2349 	if (len) {
2350 		/* Process any frag lists */
2351 
2352 		if (skb == head) {
2353 			if (skb_has_frag_list(skb)) {
2354 				skb = skb_shinfo(skb)->frag_list;
2355 				goto do_frag_list;
2356 			}
2357 		} else if (skb->next) {
2358 			skb = skb->next;
2359 			goto do_frag_list;
2360 		}
2361 	}
2362 
2363 out:
2364 	return orig_len - len;
2365 
2366 error:
2367 	return orig_len == len ? ret : orig_len - len;
2368 }
2369 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2370 
2371 /* Send skb data on a socket. */
2372 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2373 {
2374 	int ret = 0;
2375 
2376 	lock_sock(sk);
2377 	ret = skb_send_sock_locked(sk, skb, offset, len);
2378 	release_sock(sk);
2379 
2380 	return ret;
2381 }
2382 EXPORT_SYMBOL_GPL(skb_send_sock);
2383 
2384 /**
2385  *	skb_store_bits - store bits from kernel buffer to skb
2386  *	@skb: destination buffer
2387  *	@offset: offset in destination
2388  *	@from: source buffer
2389  *	@len: number of bytes to copy
2390  *
2391  *	Copy the specified number of bytes from the source buffer to the
2392  *	destination skb.  This function handles all the messy bits of
2393  *	traversing fragment lists and such.
2394  */
2395 
2396 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2397 {
2398 	int start = skb_headlen(skb);
2399 	struct sk_buff *frag_iter;
2400 	int i, copy;
2401 
2402 	if (offset > (int)skb->len - len)
2403 		goto fault;
2404 
2405 	if ((copy = start - offset) > 0) {
2406 		if (copy > len)
2407 			copy = len;
2408 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2409 		if ((len -= copy) == 0)
2410 			return 0;
2411 		offset += copy;
2412 		from += copy;
2413 	}
2414 
2415 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2416 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2417 		int end;
2418 
2419 		WARN_ON(start > offset + len);
2420 
2421 		end = start + skb_frag_size(frag);
2422 		if ((copy = end - offset) > 0) {
2423 			u32 p_off, p_len, copied;
2424 			struct page *p;
2425 			u8 *vaddr;
2426 
2427 			if (copy > len)
2428 				copy = len;
2429 
2430 			skb_frag_foreach_page(frag,
2431 					      frag->page_offset + offset - start,
2432 					      copy, p, p_off, p_len, copied) {
2433 				vaddr = kmap_atomic(p);
2434 				memcpy(vaddr + p_off, from + copied, p_len);
2435 				kunmap_atomic(vaddr);
2436 			}
2437 
2438 			if ((len -= copy) == 0)
2439 				return 0;
2440 			offset += copy;
2441 			from += copy;
2442 		}
2443 		start = end;
2444 	}
2445 
2446 	skb_walk_frags(skb, frag_iter) {
2447 		int end;
2448 
2449 		WARN_ON(start > offset + len);
2450 
2451 		end = start + frag_iter->len;
2452 		if ((copy = end - offset) > 0) {
2453 			if (copy > len)
2454 				copy = len;
2455 			if (skb_store_bits(frag_iter, offset - start,
2456 					   from, copy))
2457 				goto fault;
2458 			if ((len -= copy) == 0)
2459 				return 0;
2460 			offset += copy;
2461 			from += copy;
2462 		}
2463 		start = end;
2464 	}
2465 	if (!len)
2466 		return 0;
2467 
2468 fault:
2469 	return -EFAULT;
2470 }
2471 EXPORT_SYMBOL(skb_store_bits);
2472 
2473 /* Checksum skb data. */
2474 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2475 		      __wsum csum, const struct skb_checksum_ops *ops)
2476 {
2477 	int start = skb_headlen(skb);
2478 	int i, copy = start - offset;
2479 	struct sk_buff *frag_iter;
2480 	int pos = 0;
2481 
2482 	/* Checksum header. */
2483 	if (copy > 0) {
2484 		if (copy > len)
2485 			copy = len;
2486 		csum = ops->update(skb->data + offset, copy, csum);
2487 		if ((len -= copy) == 0)
2488 			return csum;
2489 		offset += copy;
2490 		pos	= copy;
2491 	}
2492 
2493 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2494 		int end;
2495 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2496 
2497 		WARN_ON(start > offset + len);
2498 
2499 		end = start + skb_frag_size(frag);
2500 		if ((copy = end - offset) > 0) {
2501 			u32 p_off, p_len, copied;
2502 			struct page *p;
2503 			__wsum csum2;
2504 			u8 *vaddr;
2505 
2506 			if (copy > len)
2507 				copy = len;
2508 
2509 			skb_frag_foreach_page(frag,
2510 					      frag->page_offset + offset - start,
2511 					      copy, p, p_off, p_len, copied) {
2512 				vaddr = kmap_atomic(p);
2513 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2514 				kunmap_atomic(vaddr);
2515 				csum = ops->combine(csum, csum2, pos, p_len);
2516 				pos += p_len;
2517 			}
2518 
2519 			if (!(len -= copy))
2520 				return csum;
2521 			offset += copy;
2522 		}
2523 		start = end;
2524 	}
2525 
2526 	skb_walk_frags(skb, frag_iter) {
2527 		int end;
2528 
2529 		WARN_ON(start > offset + len);
2530 
2531 		end = start + frag_iter->len;
2532 		if ((copy = end - offset) > 0) {
2533 			__wsum csum2;
2534 			if (copy > len)
2535 				copy = len;
2536 			csum2 = __skb_checksum(frag_iter, offset - start,
2537 					       copy, 0, ops);
2538 			csum = ops->combine(csum, csum2, pos, copy);
2539 			if ((len -= copy) == 0)
2540 				return csum;
2541 			offset += copy;
2542 			pos    += copy;
2543 		}
2544 		start = end;
2545 	}
2546 	BUG_ON(len);
2547 
2548 	return csum;
2549 }
2550 EXPORT_SYMBOL(__skb_checksum);
2551 
2552 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2553 		    int len, __wsum csum)
2554 {
2555 	const struct skb_checksum_ops ops = {
2556 		.update  = csum_partial_ext,
2557 		.combine = csum_block_add_ext,
2558 	};
2559 
2560 	return __skb_checksum(skb, offset, len, csum, &ops);
2561 }
2562 EXPORT_SYMBOL(skb_checksum);
2563 
2564 /* Both of above in one bottle. */
2565 
2566 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2567 				    u8 *to, int len, __wsum csum)
2568 {
2569 	int start = skb_headlen(skb);
2570 	int i, copy = start - offset;
2571 	struct sk_buff *frag_iter;
2572 	int pos = 0;
2573 
2574 	/* Copy header. */
2575 	if (copy > 0) {
2576 		if (copy > len)
2577 			copy = len;
2578 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2579 						 copy, csum);
2580 		if ((len -= copy) == 0)
2581 			return csum;
2582 		offset += copy;
2583 		to     += copy;
2584 		pos	= copy;
2585 	}
2586 
2587 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2588 		int end;
2589 
2590 		WARN_ON(start > offset + len);
2591 
2592 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2593 		if ((copy = end - offset) > 0) {
2594 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2595 			u32 p_off, p_len, copied;
2596 			struct page *p;
2597 			__wsum csum2;
2598 			u8 *vaddr;
2599 
2600 			if (copy > len)
2601 				copy = len;
2602 
2603 			skb_frag_foreach_page(frag,
2604 					      frag->page_offset + offset - start,
2605 					      copy, p, p_off, p_len, copied) {
2606 				vaddr = kmap_atomic(p);
2607 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2608 								  to + copied,
2609 								  p_len, 0);
2610 				kunmap_atomic(vaddr);
2611 				csum = csum_block_add(csum, csum2, pos);
2612 				pos += p_len;
2613 			}
2614 
2615 			if (!(len -= copy))
2616 				return csum;
2617 			offset += copy;
2618 			to     += copy;
2619 		}
2620 		start = end;
2621 	}
2622 
2623 	skb_walk_frags(skb, frag_iter) {
2624 		__wsum csum2;
2625 		int end;
2626 
2627 		WARN_ON(start > offset + len);
2628 
2629 		end = start + frag_iter->len;
2630 		if ((copy = end - offset) > 0) {
2631 			if (copy > len)
2632 				copy = len;
2633 			csum2 = skb_copy_and_csum_bits(frag_iter,
2634 						       offset - start,
2635 						       to, copy, 0);
2636 			csum = csum_block_add(csum, csum2, pos);
2637 			if ((len -= copy) == 0)
2638 				return csum;
2639 			offset += copy;
2640 			to     += copy;
2641 			pos    += copy;
2642 		}
2643 		start = end;
2644 	}
2645 	BUG_ON(len);
2646 	return csum;
2647 }
2648 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2649 
2650 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2651 {
2652 	net_warn_ratelimited(
2653 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2654 		__func__);
2655 	return 0;
2656 }
2657 
2658 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2659 				       int offset, int len)
2660 {
2661 	net_warn_ratelimited(
2662 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2663 		__func__);
2664 	return 0;
2665 }
2666 
2667 static const struct skb_checksum_ops default_crc32c_ops = {
2668 	.update  = warn_crc32c_csum_update,
2669 	.combine = warn_crc32c_csum_combine,
2670 };
2671 
2672 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2673 	&default_crc32c_ops;
2674 EXPORT_SYMBOL(crc32c_csum_stub);
2675 
2676  /**
2677  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2678  *	@from: source buffer
2679  *
2680  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2681  *	into skb_zerocopy().
2682  */
2683 unsigned int
2684 skb_zerocopy_headlen(const struct sk_buff *from)
2685 {
2686 	unsigned int hlen = 0;
2687 
2688 	if (!from->head_frag ||
2689 	    skb_headlen(from) < L1_CACHE_BYTES ||
2690 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2691 		hlen = skb_headlen(from);
2692 
2693 	if (skb_has_frag_list(from))
2694 		hlen = from->len;
2695 
2696 	return hlen;
2697 }
2698 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2699 
2700 /**
2701  *	skb_zerocopy - Zero copy skb to skb
2702  *	@to: destination buffer
2703  *	@from: source buffer
2704  *	@len: number of bytes to copy from source buffer
2705  *	@hlen: size of linear headroom in destination buffer
2706  *
2707  *	Copies up to `len` bytes from `from` to `to` by creating references
2708  *	to the frags in the source buffer.
2709  *
2710  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2711  *	headroom in the `to` buffer.
2712  *
2713  *	Return value:
2714  *	0: everything is OK
2715  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2716  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2717  */
2718 int
2719 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2720 {
2721 	int i, j = 0;
2722 	int plen = 0; /* length of skb->head fragment */
2723 	int ret;
2724 	struct page *page;
2725 	unsigned int offset;
2726 
2727 	BUG_ON(!from->head_frag && !hlen);
2728 
2729 	/* dont bother with small payloads */
2730 	if (len <= skb_tailroom(to))
2731 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2732 
2733 	if (hlen) {
2734 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2735 		if (unlikely(ret))
2736 			return ret;
2737 		len -= hlen;
2738 	} else {
2739 		plen = min_t(int, skb_headlen(from), len);
2740 		if (plen) {
2741 			page = virt_to_head_page(from->head);
2742 			offset = from->data - (unsigned char *)page_address(page);
2743 			__skb_fill_page_desc(to, 0, page, offset, plen);
2744 			get_page(page);
2745 			j = 1;
2746 			len -= plen;
2747 		}
2748 	}
2749 
2750 	to->truesize += len + plen;
2751 	to->len += len + plen;
2752 	to->data_len += len + plen;
2753 
2754 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2755 		skb_tx_error(from);
2756 		return -ENOMEM;
2757 	}
2758 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2759 
2760 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2761 		if (!len)
2762 			break;
2763 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2764 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2765 		len -= skb_shinfo(to)->frags[j].size;
2766 		skb_frag_ref(to, j);
2767 		j++;
2768 	}
2769 	skb_shinfo(to)->nr_frags = j;
2770 
2771 	return 0;
2772 }
2773 EXPORT_SYMBOL_GPL(skb_zerocopy);
2774 
2775 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2776 {
2777 	__wsum csum;
2778 	long csstart;
2779 
2780 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2781 		csstart = skb_checksum_start_offset(skb);
2782 	else
2783 		csstart = skb_headlen(skb);
2784 
2785 	BUG_ON(csstart > skb_headlen(skb));
2786 
2787 	skb_copy_from_linear_data(skb, to, csstart);
2788 
2789 	csum = 0;
2790 	if (csstart != skb->len)
2791 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2792 					      skb->len - csstart, 0);
2793 
2794 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2795 		long csstuff = csstart + skb->csum_offset;
2796 
2797 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2798 	}
2799 }
2800 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2801 
2802 /**
2803  *	skb_dequeue - remove from the head of the queue
2804  *	@list: list to dequeue from
2805  *
2806  *	Remove the head of the list. The list lock is taken so the function
2807  *	may be used safely with other locking list functions. The head item is
2808  *	returned or %NULL if the list is empty.
2809  */
2810 
2811 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2812 {
2813 	unsigned long flags;
2814 	struct sk_buff *result;
2815 
2816 	spin_lock_irqsave(&list->lock, flags);
2817 	result = __skb_dequeue(list);
2818 	spin_unlock_irqrestore(&list->lock, flags);
2819 	return result;
2820 }
2821 EXPORT_SYMBOL(skb_dequeue);
2822 
2823 /**
2824  *	skb_dequeue_tail - remove from the tail of the queue
2825  *	@list: list to dequeue from
2826  *
2827  *	Remove the tail of the list. The list lock is taken so the function
2828  *	may be used safely with other locking list functions. The tail item is
2829  *	returned or %NULL if the list is empty.
2830  */
2831 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2832 {
2833 	unsigned long flags;
2834 	struct sk_buff *result;
2835 
2836 	spin_lock_irqsave(&list->lock, flags);
2837 	result = __skb_dequeue_tail(list);
2838 	spin_unlock_irqrestore(&list->lock, flags);
2839 	return result;
2840 }
2841 EXPORT_SYMBOL(skb_dequeue_tail);
2842 
2843 /**
2844  *	skb_queue_purge - empty a list
2845  *	@list: list to empty
2846  *
2847  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2848  *	the list and one reference dropped. This function takes the list
2849  *	lock and is atomic with respect to other list locking functions.
2850  */
2851 void skb_queue_purge(struct sk_buff_head *list)
2852 {
2853 	struct sk_buff *skb;
2854 	while ((skb = skb_dequeue(list)) != NULL)
2855 		kfree_skb(skb);
2856 }
2857 EXPORT_SYMBOL(skb_queue_purge);
2858 
2859 /**
2860  *	skb_rbtree_purge - empty a skb rbtree
2861  *	@root: root of the rbtree to empty
2862  *
2863  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2864  *	the list and one reference dropped. This function does not take
2865  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2866  *	out-of-order queue is protected by the socket lock).
2867  */
2868 void skb_rbtree_purge(struct rb_root *root)
2869 {
2870 	struct rb_node *p = rb_first(root);
2871 
2872 	while (p) {
2873 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2874 
2875 		p = rb_next(p);
2876 		rb_erase(&skb->rbnode, root);
2877 		kfree_skb(skb);
2878 	}
2879 }
2880 
2881 /**
2882  *	skb_queue_head - queue a buffer at the list head
2883  *	@list: list to use
2884  *	@newsk: buffer to queue
2885  *
2886  *	Queue a buffer at the start of the list. This function takes the
2887  *	list lock and can be used safely with other locking &sk_buff functions
2888  *	safely.
2889  *
2890  *	A buffer cannot be placed on two lists at the same time.
2891  */
2892 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2893 {
2894 	unsigned long flags;
2895 
2896 	spin_lock_irqsave(&list->lock, flags);
2897 	__skb_queue_head(list, newsk);
2898 	spin_unlock_irqrestore(&list->lock, flags);
2899 }
2900 EXPORT_SYMBOL(skb_queue_head);
2901 
2902 /**
2903  *	skb_queue_tail - queue a buffer at the list tail
2904  *	@list: list to use
2905  *	@newsk: buffer to queue
2906  *
2907  *	Queue a buffer at the tail of the list. This function takes the
2908  *	list lock and can be used safely with other locking &sk_buff functions
2909  *	safely.
2910  *
2911  *	A buffer cannot be placed on two lists at the same time.
2912  */
2913 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2914 {
2915 	unsigned long flags;
2916 
2917 	spin_lock_irqsave(&list->lock, flags);
2918 	__skb_queue_tail(list, newsk);
2919 	spin_unlock_irqrestore(&list->lock, flags);
2920 }
2921 EXPORT_SYMBOL(skb_queue_tail);
2922 
2923 /**
2924  *	skb_unlink	-	remove a buffer from a list
2925  *	@skb: buffer to remove
2926  *	@list: list to use
2927  *
2928  *	Remove a packet from a list. The list locks are taken and this
2929  *	function is atomic with respect to other list locked calls
2930  *
2931  *	You must know what list the SKB is on.
2932  */
2933 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2934 {
2935 	unsigned long flags;
2936 
2937 	spin_lock_irqsave(&list->lock, flags);
2938 	__skb_unlink(skb, list);
2939 	spin_unlock_irqrestore(&list->lock, flags);
2940 }
2941 EXPORT_SYMBOL(skb_unlink);
2942 
2943 /**
2944  *	skb_append	-	append a buffer
2945  *	@old: buffer to insert after
2946  *	@newsk: buffer to insert
2947  *	@list: list to use
2948  *
2949  *	Place a packet after a given packet in a list. The list locks are taken
2950  *	and this function is atomic with respect to other list locked calls.
2951  *	A buffer cannot be placed on two lists at the same time.
2952  */
2953 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2954 {
2955 	unsigned long flags;
2956 
2957 	spin_lock_irqsave(&list->lock, flags);
2958 	__skb_queue_after(list, old, newsk);
2959 	spin_unlock_irqrestore(&list->lock, flags);
2960 }
2961 EXPORT_SYMBOL(skb_append);
2962 
2963 /**
2964  *	skb_insert	-	insert a buffer
2965  *	@old: buffer to insert before
2966  *	@newsk: buffer to insert
2967  *	@list: list to use
2968  *
2969  *	Place a packet before a given packet in a list. The list locks are
2970  * 	taken and this function is atomic with respect to other list locked
2971  *	calls.
2972  *
2973  *	A buffer cannot be placed on two lists at the same time.
2974  */
2975 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2976 {
2977 	unsigned long flags;
2978 
2979 	spin_lock_irqsave(&list->lock, flags);
2980 	__skb_insert(newsk, old->prev, old, list);
2981 	spin_unlock_irqrestore(&list->lock, flags);
2982 }
2983 EXPORT_SYMBOL(skb_insert);
2984 
2985 static inline void skb_split_inside_header(struct sk_buff *skb,
2986 					   struct sk_buff* skb1,
2987 					   const u32 len, const int pos)
2988 {
2989 	int i;
2990 
2991 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2992 					 pos - len);
2993 	/* And move data appendix as is. */
2994 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2995 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2996 
2997 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2998 	skb_shinfo(skb)->nr_frags  = 0;
2999 	skb1->data_len		   = skb->data_len;
3000 	skb1->len		   += skb1->data_len;
3001 	skb->data_len		   = 0;
3002 	skb->len		   = len;
3003 	skb_set_tail_pointer(skb, len);
3004 }
3005 
3006 static inline void skb_split_no_header(struct sk_buff *skb,
3007 				       struct sk_buff* skb1,
3008 				       const u32 len, int pos)
3009 {
3010 	int i, k = 0;
3011 	const int nfrags = skb_shinfo(skb)->nr_frags;
3012 
3013 	skb_shinfo(skb)->nr_frags = 0;
3014 	skb1->len		  = skb1->data_len = skb->len - len;
3015 	skb->len		  = len;
3016 	skb->data_len		  = len - pos;
3017 
3018 	for (i = 0; i < nfrags; i++) {
3019 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3020 
3021 		if (pos + size > len) {
3022 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3023 
3024 			if (pos < len) {
3025 				/* Split frag.
3026 				 * We have two variants in this case:
3027 				 * 1. Move all the frag to the second
3028 				 *    part, if it is possible. F.e.
3029 				 *    this approach is mandatory for TUX,
3030 				 *    where splitting is expensive.
3031 				 * 2. Split is accurately. We make this.
3032 				 */
3033 				skb_frag_ref(skb, i);
3034 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3035 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3036 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3037 				skb_shinfo(skb)->nr_frags++;
3038 			}
3039 			k++;
3040 		} else
3041 			skb_shinfo(skb)->nr_frags++;
3042 		pos += size;
3043 	}
3044 	skb_shinfo(skb1)->nr_frags = k;
3045 }
3046 
3047 /**
3048  * skb_split - Split fragmented skb to two parts at length len.
3049  * @skb: the buffer to split
3050  * @skb1: the buffer to receive the second part
3051  * @len: new length for skb
3052  */
3053 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3054 {
3055 	int pos = skb_headlen(skb);
3056 
3057 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3058 				      SKBTX_SHARED_FRAG;
3059 	skb_zerocopy_clone(skb1, skb, 0);
3060 	if (len < pos)	/* Split line is inside header. */
3061 		skb_split_inside_header(skb, skb1, len, pos);
3062 	else		/* Second chunk has no header, nothing to copy. */
3063 		skb_split_no_header(skb, skb1, len, pos);
3064 }
3065 EXPORT_SYMBOL(skb_split);
3066 
3067 /* Shifting from/to a cloned skb is a no-go.
3068  *
3069  * Caller cannot keep skb_shinfo related pointers past calling here!
3070  */
3071 static int skb_prepare_for_shift(struct sk_buff *skb)
3072 {
3073 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3074 }
3075 
3076 /**
3077  * skb_shift - Shifts paged data partially from skb to another
3078  * @tgt: buffer into which tail data gets added
3079  * @skb: buffer from which the paged data comes from
3080  * @shiftlen: shift up to this many bytes
3081  *
3082  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3083  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3084  * It's up to caller to free skb if everything was shifted.
3085  *
3086  * If @tgt runs out of frags, the whole operation is aborted.
3087  *
3088  * Skb cannot include anything else but paged data while tgt is allowed
3089  * to have non-paged data as well.
3090  *
3091  * TODO: full sized shift could be optimized but that would need
3092  * specialized skb free'er to handle frags without up-to-date nr_frags.
3093  */
3094 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3095 {
3096 	int from, to, merge, todo;
3097 	struct skb_frag_struct *fragfrom, *fragto;
3098 
3099 	BUG_ON(shiftlen > skb->len);
3100 
3101 	if (skb_headlen(skb))
3102 		return 0;
3103 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3104 		return 0;
3105 
3106 	todo = shiftlen;
3107 	from = 0;
3108 	to = skb_shinfo(tgt)->nr_frags;
3109 	fragfrom = &skb_shinfo(skb)->frags[from];
3110 
3111 	/* Actual merge is delayed until the point when we know we can
3112 	 * commit all, so that we don't have to undo partial changes
3113 	 */
3114 	if (!to ||
3115 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3116 			      fragfrom->page_offset)) {
3117 		merge = -1;
3118 	} else {
3119 		merge = to - 1;
3120 
3121 		todo -= skb_frag_size(fragfrom);
3122 		if (todo < 0) {
3123 			if (skb_prepare_for_shift(skb) ||
3124 			    skb_prepare_for_shift(tgt))
3125 				return 0;
3126 
3127 			/* All previous frag pointers might be stale! */
3128 			fragfrom = &skb_shinfo(skb)->frags[from];
3129 			fragto = &skb_shinfo(tgt)->frags[merge];
3130 
3131 			skb_frag_size_add(fragto, shiftlen);
3132 			skb_frag_size_sub(fragfrom, shiftlen);
3133 			fragfrom->page_offset += shiftlen;
3134 
3135 			goto onlymerged;
3136 		}
3137 
3138 		from++;
3139 	}
3140 
3141 	/* Skip full, not-fitting skb to avoid expensive operations */
3142 	if ((shiftlen == skb->len) &&
3143 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3144 		return 0;
3145 
3146 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3147 		return 0;
3148 
3149 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3150 		if (to == MAX_SKB_FRAGS)
3151 			return 0;
3152 
3153 		fragfrom = &skb_shinfo(skb)->frags[from];
3154 		fragto = &skb_shinfo(tgt)->frags[to];
3155 
3156 		if (todo >= skb_frag_size(fragfrom)) {
3157 			*fragto = *fragfrom;
3158 			todo -= skb_frag_size(fragfrom);
3159 			from++;
3160 			to++;
3161 
3162 		} else {
3163 			__skb_frag_ref(fragfrom);
3164 			fragto->page = fragfrom->page;
3165 			fragto->page_offset = fragfrom->page_offset;
3166 			skb_frag_size_set(fragto, todo);
3167 
3168 			fragfrom->page_offset += todo;
3169 			skb_frag_size_sub(fragfrom, todo);
3170 			todo = 0;
3171 
3172 			to++;
3173 			break;
3174 		}
3175 	}
3176 
3177 	/* Ready to "commit" this state change to tgt */
3178 	skb_shinfo(tgt)->nr_frags = to;
3179 
3180 	if (merge >= 0) {
3181 		fragfrom = &skb_shinfo(skb)->frags[0];
3182 		fragto = &skb_shinfo(tgt)->frags[merge];
3183 
3184 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3185 		__skb_frag_unref(fragfrom);
3186 	}
3187 
3188 	/* Reposition in the original skb */
3189 	to = 0;
3190 	while (from < skb_shinfo(skb)->nr_frags)
3191 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3192 	skb_shinfo(skb)->nr_frags = to;
3193 
3194 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3195 
3196 onlymerged:
3197 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3198 	 * the other hand might need it if it needs to be resent
3199 	 */
3200 	tgt->ip_summed = CHECKSUM_PARTIAL;
3201 	skb->ip_summed = CHECKSUM_PARTIAL;
3202 
3203 	/* Yak, is it really working this way? Some helper please? */
3204 	skb->len -= shiftlen;
3205 	skb->data_len -= shiftlen;
3206 	skb->truesize -= shiftlen;
3207 	tgt->len += shiftlen;
3208 	tgt->data_len += shiftlen;
3209 	tgt->truesize += shiftlen;
3210 
3211 	return shiftlen;
3212 }
3213 
3214 /**
3215  * skb_prepare_seq_read - Prepare a sequential read of skb data
3216  * @skb: the buffer to read
3217  * @from: lower offset of data to be read
3218  * @to: upper offset of data to be read
3219  * @st: state variable
3220  *
3221  * Initializes the specified state variable. Must be called before
3222  * invoking skb_seq_read() for the first time.
3223  */
3224 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3225 			  unsigned int to, struct skb_seq_state *st)
3226 {
3227 	st->lower_offset = from;
3228 	st->upper_offset = to;
3229 	st->root_skb = st->cur_skb = skb;
3230 	st->frag_idx = st->stepped_offset = 0;
3231 	st->frag_data = NULL;
3232 }
3233 EXPORT_SYMBOL(skb_prepare_seq_read);
3234 
3235 /**
3236  * skb_seq_read - Sequentially read skb data
3237  * @consumed: number of bytes consumed by the caller so far
3238  * @data: destination pointer for data to be returned
3239  * @st: state variable
3240  *
3241  * Reads a block of skb data at @consumed relative to the
3242  * lower offset specified to skb_prepare_seq_read(). Assigns
3243  * the head of the data block to @data and returns the length
3244  * of the block or 0 if the end of the skb data or the upper
3245  * offset has been reached.
3246  *
3247  * The caller is not required to consume all of the data
3248  * returned, i.e. @consumed is typically set to the number
3249  * of bytes already consumed and the next call to
3250  * skb_seq_read() will return the remaining part of the block.
3251  *
3252  * Note 1: The size of each block of data returned can be arbitrary,
3253  *       this limitation is the cost for zerocopy sequential
3254  *       reads of potentially non linear data.
3255  *
3256  * Note 2: Fragment lists within fragments are not implemented
3257  *       at the moment, state->root_skb could be replaced with
3258  *       a stack for this purpose.
3259  */
3260 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3261 			  struct skb_seq_state *st)
3262 {
3263 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3264 	skb_frag_t *frag;
3265 
3266 	if (unlikely(abs_offset >= st->upper_offset)) {
3267 		if (st->frag_data) {
3268 			kunmap_atomic(st->frag_data);
3269 			st->frag_data = NULL;
3270 		}
3271 		return 0;
3272 	}
3273 
3274 next_skb:
3275 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3276 
3277 	if (abs_offset < block_limit && !st->frag_data) {
3278 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3279 		return block_limit - abs_offset;
3280 	}
3281 
3282 	if (st->frag_idx == 0 && !st->frag_data)
3283 		st->stepped_offset += skb_headlen(st->cur_skb);
3284 
3285 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3286 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3287 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3288 
3289 		if (abs_offset < block_limit) {
3290 			if (!st->frag_data)
3291 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3292 
3293 			*data = (u8 *) st->frag_data + frag->page_offset +
3294 				(abs_offset - st->stepped_offset);
3295 
3296 			return block_limit - abs_offset;
3297 		}
3298 
3299 		if (st->frag_data) {
3300 			kunmap_atomic(st->frag_data);
3301 			st->frag_data = NULL;
3302 		}
3303 
3304 		st->frag_idx++;
3305 		st->stepped_offset += skb_frag_size(frag);
3306 	}
3307 
3308 	if (st->frag_data) {
3309 		kunmap_atomic(st->frag_data);
3310 		st->frag_data = NULL;
3311 	}
3312 
3313 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3314 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3315 		st->frag_idx = 0;
3316 		goto next_skb;
3317 	} else if (st->cur_skb->next) {
3318 		st->cur_skb = st->cur_skb->next;
3319 		st->frag_idx = 0;
3320 		goto next_skb;
3321 	}
3322 
3323 	return 0;
3324 }
3325 EXPORT_SYMBOL(skb_seq_read);
3326 
3327 /**
3328  * skb_abort_seq_read - Abort a sequential read of skb data
3329  * @st: state variable
3330  *
3331  * Must be called if skb_seq_read() was not called until it
3332  * returned 0.
3333  */
3334 void skb_abort_seq_read(struct skb_seq_state *st)
3335 {
3336 	if (st->frag_data)
3337 		kunmap_atomic(st->frag_data);
3338 }
3339 EXPORT_SYMBOL(skb_abort_seq_read);
3340 
3341 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3342 
3343 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3344 					  struct ts_config *conf,
3345 					  struct ts_state *state)
3346 {
3347 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3348 }
3349 
3350 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3351 {
3352 	skb_abort_seq_read(TS_SKB_CB(state));
3353 }
3354 
3355 /**
3356  * skb_find_text - Find a text pattern in skb data
3357  * @skb: the buffer to look in
3358  * @from: search offset
3359  * @to: search limit
3360  * @config: textsearch configuration
3361  *
3362  * Finds a pattern in the skb data according to the specified
3363  * textsearch configuration. Use textsearch_next() to retrieve
3364  * subsequent occurrences of the pattern. Returns the offset
3365  * to the first occurrence or UINT_MAX if no match was found.
3366  */
3367 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3368 			   unsigned int to, struct ts_config *config)
3369 {
3370 	struct ts_state state;
3371 	unsigned int ret;
3372 
3373 	config->get_next_block = skb_ts_get_next_block;
3374 	config->finish = skb_ts_finish;
3375 
3376 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3377 
3378 	ret = textsearch_find(config, &state);
3379 	return (ret <= to - from ? ret : UINT_MAX);
3380 }
3381 EXPORT_SYMBOL(skb_find_text);
3382 
3383 /**
3384  * skb_append_datato_frags - append the user data to a skb
3385  * @sk: sock  structure
3386  * @skb: skb structure to be appended with user data.
3387  * @getfrag: call back function to be used for getting the user data
3388  * @from: pointer to user message iov
3389  * @length: length of the iov message
3390  *
3391  * Description: This procedure append the user data in the fragment part
3392  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3393  */
3394 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3395 			int (*getfrag)(void *from, char *to, int offset,
3396 					int len, int odd, struct sk_buff *skb),
3397 			void *from, int length)
3398 {
3399 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3400 	int copy;
3401 	int offset = 0;
3402 	int ret;
3403 	struct page_frag *pfrag = &current->task_frag;
3404 
3405 	do {
3406 		/* Return error if we don't have space for new frag */
3407 		if (frg_cnt >= MAX_SKB_FRAGS)
3408 			return -EMSGSIZE;
3409 
3410 		if (!sk_page_frag_refill(sk, pfrag))
3411 			return -ENOMEM;
3412 
3413 		/* copy the user data to page */
3414 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3415 
3416 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3417 			      offset, copy, 0, skb);
3418 		if (ret < 0)
3419 			return -EFAULT;
3420 
3421 		/* copy was successful so update the size parameters */
3422 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3423 				   copy);
3424 		frg_cnt++;
3425 		pfrag->offset += copy;
3426 		get_page(pfrag->page);
3427 
3428 		skb->truesize += copy;
3429 		refcount_add(copy, &sk->sk_wmem_alloc);
3430 		skb->len += copy;
3431 		skb->data_len += copy;
3432 		offset += copy;
3433 		length -= copy;
3434 
3435 	} while (length > 0);
3436 
3437 	return 0;
3438 }
3439 EXPORT_SYMBOL(skb_append_datato_frags);
3440 
3441 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3442 			 int offset, size_t size)
3443 {
3444 	int i = skb_shinfo(skb)->nr_frags;
3445 
3446 	if (skb_can_coalesce(skb, i, page, offset)) {
3447 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3448 	} else if (i < MAX_SKB_FRAGS) {
3449 		get_page(page);
3450 		skb_fill_page_desc(skb, i, page, offset, size);
3451 	} else {
3452 		return -EMSGSIZE;
3453 	}
3454 
3455 	return 0;
3456 }
3457 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3458 
3459 /**
3460  *	skb_pull_rcsum - pull skb and update receive checksum
3461  *	@skb: buffer to update
3462  *	@len: length of data pulled
3463  *
3464  *	This function performs an skb_pull on the packet and updates
3465  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3466  *	receive path processing instead of skb_pull unless you know
3467  *	that the checksum difference is zero (e.g., a valid IP header)
3468  *	or you are setting ip_summed to CHECKSUM_NONE.
3469  */
3470 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3471 {
3472 	unsigned char *data = skb->data;
3473 
3474 	BUG_ON(len > skb->len);
3475 	__skb_pull(skb, len);
3476 	skb_postpull_rcsum(skb, data, len);
3477 	return skb->data;
3478 }
3479 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3480 
3481 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3482 {
3483 	skb_frag_t head_frag;
3484 	struct page *page;
3485 
3486 	page = virt_to_head_page(frag_skb->head);
3487 	head_frag.page.p = page;
3488 	head_frag.page_offset = frag_skb->data -
3489 		(unsigned char *)page_address(page);
3490 	head_frag.size = skb_headlen(frag_skb);
3491 	return head_frag;
3492 }
3493 
3494 /**
3495  *	skb_segment - Perform protocol segmentation on skb.
3496  *	@head_skb: buffer to segment
3497  *	@features: features for the output path (see dev->features)
3498  *
3499  *	This function performs segmentation on the given skb.  It returns
3500  *	a pointer to the first in a list of new skbs for the segments.
3501  *	In case of error it returns ERR_PTR(err).
3502  */
3503 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3504 			    netdev_features_t features)
3505 {
3506 	struct sk_buff *segs = NULL;
3507 	struct sk_buff *tail = NULL;
3508 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3509 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3510 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3511 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3512 	struct sk_buff *frag_skb = head_skb;
3513 	unsigned int offset = doffset;
3514 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3515 	unsigned int partial_segs = 0;
3516 	unsigned int headroom;
3517 	unsigned int len = head_skb->len;
3518 	__be16 proto;
3519 	bool csum, sg;
3520 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3521 	int err = -ENOMEM;
3522 	int i = 0;
3523 	int pos;
3524 	int dummy;
3525 
3526 	__skb_push(head_skb, doffset);
3527 	proto = skb_network_protocol(head_skb, &dummy);
3528 	if (unlikely(!proto))
3529 		return ERR_PTR(-EINVAL);
3530 
3531 	sg = !!(features & NETIF_F_SG);
3532 	csum = !!can_checksum_protocol(features, proto);
3533 
3534 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3535 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3536 			struct sk_buff *iter;
3537 			unsigned int frag_len;
3538 
3539 			if (!list_skb ||
3540 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3541 				goto normal;
3542 
3543 			/* If we get here then all the required
3544 			 * GSO features except frag_list are supported.
3545 			 * Try to split the SKB to multiple GSO SKBs
3546 			 * with no frag_list.
3547 			 * Currently we can do that only when the buffers don't
3548 			 * have a linear part and all the buffers except
3549 			 * the last are of the same length.
3550 			 */
3551 			frag_len = list_skb->len;
3552 			skb_walk_frags(head_skb, iter) {
3553 				if (frag_len != iter->len && iter->next)
3554 					goto normal;
3555 				if (skb_headlen(iter) && !iter->head_frag)
3556 					goto normal;
3557 
3558 				len -= iter->len;
3559 			}
3560 
3561 			if (len != frag_len)
3562 				goto normal;
3563 		}
3564 
3565 		/* GSO partial only requires that we trim off any excess that
3566 		 * doesn't fit into an MSS sized block, so take care of that
3567 		 * now.
3568 		 */
3569 		partial_segs = len / mss;
3570 		if (partial_segs > 1)
3571 			mss *= partial_segs;
3572 		else
3573 			partial_segs = 0;
3574 	}
3575 
3576 normal:
3577 	headroom = skb_headroom(head_skb);
3578 	pos = skb_headlen(head_skb);
3579 
3580 	do {
3581 		struct sk_buff *nskb;
3582 		skb_frag_t *nskb_frag;
3583 		int hsize;
3584 		int size;
3585 
3586 		if (unlikely(mss == GSO_BY_FRAGS)) {
3587 			len = list_skb->len;
3588 		} else {
3589 			len = head_skb->len - offset;
3590 			if (len > mss)
3591 				len = mss;
3592 		}
3593 
3594 		hsize = skb_headlen(head_skb) - offset;
3595 		if (hsize < 0)
3596 			hsize = 0;
3597 		if (hsize > len || !sg)
3598 			hsize = len;
3599 
3600 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3601 		    (skb_headlen(list_skb) == len || sg)) {
3602 			BUG_ON(skb_headlen(list_skb) > len);
3603 
3604 			i = 0;
3605 			nfrags = skb_shinfo(list_skb)->nr_frags;
3606 			frag = skb_shinfo(list_skb)->frags;
3607 			frag_skb = list_skb;
3608 			pos += skb_headlen(list_skb);
3609 
3610 			while (pos < offset + len) {
3611 				BUG_ON(i >= nfrags);
3612 
3613 				size = skb_frag_size(frag);
3614 				if (pos + size > offset + len)
3615 					break;
3616 
3617 				i++;
3618 				pos += size;
3619 				frag++;
3620 			}
3621 
3622 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3623 			list_skb = list_skb->next;
3624 
3625 			if (unlikely(!nskb))
3626 				goto err;
3627 
3628 			if (unlikely(pskb_trim(nskb, len))) {
3629 				kfree_skb(nskb);
3630 				goto err;
3631 			}
3632 
3633 			hsize = skb_end_offset(nskb);
3634 			if (skb_cow_head(nskb, doffset + headroom)) {
3635 				kfree_skb(nskb);
3636 				goto err;
3637 			}
3638 
3639 			nskb->truesize += skb_end_offset(nskb) - hsize;
3640 			skb_release_head_state(nskb);
3641 			__skb_push(nskb, doffset);
3642 		} else {
3643 			nskb = __alloc_skb(hsize + doffset + headroom,
3644 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3645 					   NUMA_NO_NODE);
3646 
3647 			if (unlikely(!nskb))
3648 				goto err;
3649 
3650 			skb_reserve(nskb, headroom);
3651 			__skb_put(nskb, doffset);
3652 		}
3653 
3654 		if (segs)
3655 			tail->next = nskb;
3656 		else
3657 			segs = nskb;
3658 		tail = nskb;
3659 
3660 		__copy_skb_header(nskb, head_skb);
3661 
3662 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3663 		skb_reset_mac_len(nskb);
3664 
3665 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3666 						 nskb->data - tnl_hlen,
3667 						 doffset + tnl_hlen);
3668 
3669 		if (nskb->len == len + doffset)
3670 			goto perform_csum_check;
3671 
3672 		if (!sg) {
3673 			if (!nskb->remcsum_offload)
3674 				nskb->ip_summed = CHECKSUM_NONE;
3675 			SKB_GSO_CB(nskb)->csum =
3676 				skb_copy_and_csum_bits(head_skb, offset,
3677 						       skb_put(nskb, len),
3678 						       len, 0);
3679 			SKB_GSO_CB(nskb)->csum_start =
3680 				skb_headroom(nskb) + doffset;
3681 			continue;
3682 		}
3683 
3684 		nskb_frag = skb_shinfo(nskb)->frags;
3685 
3686 		skb_copy_from_linear_data_offset(head_skb, offset,
3687 						 skb_put(nskb, hsize), hsize);
3688 
3689 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3690 					      SKBTX_SHARED_FRAG;
3691 
3692 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3693 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3694 			goto err;
3695 
3696 		while (pos < offset + len) {
3697 			if (i >= nfrags) {
3698 				i = 0;
3699 				nfrags = skb_shinfo(list_skb)->nr_frags;
3700 				frag = skb_shinfo(list_skb)->frags;
3701 				frag_skb = list_skb;
3702 				if (!skb_headlen(list_skb)) {
3703 					BUG_ON(!nfrags);
3704 				} else {
3705 					BUG_ON(!list_skb->head_frag);
3706 
3707 					/* to make room for head_frag. */
3708 					i--;
3709 					frag--;
3710 				}
3711 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3712 				    skb_zerocopy_clone(nskb, frag_skb,
3713 						       GFP_ATOMIC))
3714 					goto err;
3715 
3716 				list_skb = list_skb->next;
3717 			}
3718 
3719 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3720 				     MAX_SKB_FRAGS)) {
3721 				net_warn_ratelimited(
3722 					"skb_segment: too many frags: %u %u\n",
3723 					pos, mss);
3724 				goto err;
3725 			}
3726 
3727 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3728 			__skb_frag_ref(nskb_frag);
3729 			size = skb_frag_size(nskb_frag);
3730 
3731 			if (pos < offset) {
3732 				nskb_frag->page_offset += offset - pos;
3733 				skb_frag_size_sub(nskb_frag, offset - pos);
3734 			}
3735 
3736 			skb_shinfo(nskb)->nr_frags++;
3737 
3738 			if (pos + size <= offset + len) {
3739 				i++;
3740 				frag++;
3741 				pos += size;
3742 			} else {
3743 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3744 				goto skip_fraglist;
3745 			}
3746 
3747 			nskb_frag++;
3748 		}
3749 
3750 skip_fraglist:
3751 		nskb->data_len = len - hsize;
3752 		nskb->len += nskb->data_len;
3753 		nskb->truesize += nskb->data_len;
3754 
3755 perform_csum_check:
3756 		if (!csum) {
3757 			if (skb_has_shared_frag(nskb)) {
3758 				err = __skb_linearize(nskb);
3759 				if (err)
3760 					goto err;
3761 			}
3762 			if (!nskb->remcsum_offload)
3763 				nskb->ip_summed = CHECKSUM_NONE;
3764 			SKB_GSO_CB(nskb)->csum =
3765 				skb_checksum(nskb, doffset,
3766 					     nskb->len - doffset, 0);
3767 			SKB_GSO_CB(nskb)->csum_start =
3768 				skb_headroom(nskb) + doffset;
3769 		}
3770 	} while ((offset += len) < head_skb->len);
3771 
3772 	/* Some callers want to get the end of the list.
3773 	 * Put it in segs->prev to avoid walking the list.
3774 	 * (see validate_xmit_skb_list() for example)
3775 	 */
3776 	segs->prev = tail;
3777 
3778 	if (partial_segs) {
3779 		struct sk_buff *iter;
3780 		int type = skb_shinfo(head_skb)->gso_type;
3781 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3782 
3783 		/* Update type to add partial and then remove dodgy if set */
3784 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3785 		type &= ~SKB_GSO_DODGY;
3786 
3787 		/* Update GSO info and prepare to start updating headers on
3788 		 * our way back down the stack of protocols.
3789 		 */
3790 		for (iter = segs; iter; iter = iter->next) {
3791 			skb_shinfo(iter)->gso_size = gso_size;
3792 			skb_shinfo(iter)->gso_segs = partial_segs;
3793 			skb_shinfo(iter)->gso_type = type;
3794 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3795 		}
3796 
3797 		if (tail->len - doffset <= gso_size)
3798 			skb_shinfo(tail)->gso_size = 0;
3799 		else if (tail != segs)
3800 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3801 	}
3802 
3803 	/* Following permits correct backpressure, for protocols
3804 	 * using skb_set_owner_w().
3805 	 * Idea is to tranfert ownership from head_skb to last segment.
3806 	 */
3807 	if (head_skb->destructor == sock_wfree) {
3808 		swap(tail->truesize, head_skb->truesize);
3809 		swap(tail->destructor, head_skb->destructor);
3810 		swap(tail->sk, head_skb->sk);
3811 	}
3812 	return segs;
3813 
3814 err:
3815 	kfree_skb_list(segs);
3816 	return ERR_PTR(err);
3817 }
3818 EXPORT_SYMBOL_GPL(skb_segment);
3819 
3820 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3821 {
3822 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3823 	unsigned int offset = skb_gro_offset(skb);
3824 	unsigned int headlen = skb_headlen(skb);
3825 	unsigned int len = skb_gro_len(skb);
3826 	struct sk_buff *lp, *p = *head;
3827 	unsigned int delta_truesize;
3828 
3829 	if (unlikely(p->len + len >= 65536))
3830 		return -E2BIG;
3831 
3832 	lp = NAPI_GRO_CB(p)->last;
3833 	pinfo = skb_shinfo(lp);
3834 
3835 	if (headlen <= offset) {
3836 		skb_frag_t *frag;
3837 		skb_frag_t *frag2;
3838 		int i = skbinfo->nr_frags;
3839 		int nr_frags = pinfo->nr_frags + i;
3840 
3841 		if (nr_frags > MAX_SKB_FRAGS)
3842 			goto merge;
3843 
3844 		offset -= headlen;
3845 		pinfo->nr_frags = nr_frags;
3846 		skbinfo->nr_frags = 0;
3847 
3848 		frag = pinfo->frags + nr_frags;
3849 		frag2 = skbinfo->frags + i;
3850 		do {
3851 			*--frag = *--frag2;
3852 		} while (--i);
3853 
3854 		frag->page_offset += offset;
3855 		skb_frag_size_sub(frag, offset);
3856 
3857 		/* all fragments truesize : remove (head size + sk_buff) */
3858 		delta_truesize = skb->truesize -
3859 				 SKB_TRUESIZE(skb_end_offset(skb));
3860 
3861 		skb->truesize -= skb->data_len;
3862 		skb->len -= skb->data_len;
3863 		skb->data_len = 0;
3864 
3865 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3866 		goto done;
3867 	} else if (skb->head_frag) {
3868 		int nr_frags = pinfo->nr_frags;
3869 		skb_frag_t *frag = pinfo->frags + nr_frags;
3870 		struct page *page = virt_to_head_page(skb->head);
3871 		unsigned int first_size = headlen - offset;
3872 		unsigned int first_offset;
3873 
3874 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3875 			goto merge;
3876 
3877 		first_offset = skb->data -
3878 			       (unsigned char *)page_address(page) +
3879 			       offset;
3880 
3881 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3882 
3883 		frag->page.p	  = page;
3884 		frag->page_offset = first_offset;
3885 		skb_frag_size_set(frag, first_size);
3886 
3887 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3888 		/* We dont need to clear skbinfo->nr_frags here */
3889 
3890 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3891 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3892 		goto done;
3893 	}
3894 
3895 merge:
3896 	delta_truesize = skb->truesize;
3897 	if (offset > headlen) {
3898 		unsigned int eat = offset - headlen;
3899 
3900 		skbinfo->frags[0].page_offset += eat;
3901 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3902 		skb->data_len -= eat;
3903 		skb->len -= eat;
3904 		offset = headlen;
3905 	}
3906 
3907 	__skb_pull(skb, offset);
3908 
3909 	if (NAPI_GRO_CB(p)->last == p)
3910 		skb_shinfo(p)->frag_list = skb;
3911 	else
3912 		NAPI_GRO_CB(p)->last->next = skb;
3913 	NAPI_GRO_CB(p)->last = skb;
3914 	__skb_header_release(skb);
3915 	lp = p;
3916 
3917 done:
3918 	NAPI_GRO_CB(p)->count++;
3919 	p->data_len += len;
3920 	p->truesize += delta_truesize;
3921 	p->len += len;
3922 	if (lp != p) {
3923 		lp->data_len += len;
3924 		lp->truesize += delta_truesize;
3925 		lp->len += len;
3926 	}
3927 	NAPI_GRO_CB(skb)->same_flow = 1;
3928 	return 0;
3929 }
3930 EXPORT_SYMBOL_GPL(skb_gro_receive);
3931 
3932 void __init skb_init(void)
3933 {
3934 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3935 					      sizeof(struct sk_buff),
3936 					      0,
3937 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3938 					      offsetof(struct sk_buff, cb),
3939 					      sizeof_field(struct sk_buff, cb),
3940 					      NULL);
3941 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3942 						sizeof(struct sk_buff_fclones),
3943 						0,
3944 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3945 						NULL);
3946 }
3947 
3948 static int
3949 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3950 	       unsigned int recursion_level)
3951 {
3952 	int start = skb_headlen(skb);
3953 	int i, copy = start - offset;
3954 	struct sk_buff *frag_iter;
3955 	int elt = 0;
3956 
3957 	if (unlikely(recursion_level >= 24))
3958 		return -EMSGSIZE;
3959 
3960 	if (copy > 0) {
3961 		if (copy > len)
3962 			copy = len;
3963 		sg_set_buf(sg, skb->data + offset, copy);
3964 		elt++;
3965 		if ((len -= copy) == 0)
3966 			return elt;
3967 		offset += copy;
3968 	}
3969 
3970 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3971 		int end;
3972 
3973 		WARN_ON(start > offset + len);
3974 
3975 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3976 		if ((copy = end - offset) > 0) {
3977 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3978 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3979 				return -EMSGSIZE;
3980 
3981 			if (copy > len)
3982 				copy = len;
3983 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3984 					frag->page_offset+offset-start);
3985 			elt++;
3986 			if (!(len -= copy))
3987 				return elt;
3988 			offset += copy;
3989 		}
3990 		start = end;
3991 	}
3992 
3993 	skb_walk_frags(skb, frag_iter) {
3994 		int end, ret;
3995 
3996 		WARN_ON(start > offset + len);
3997 
3998 		end = start + frag_iter->len;
3999 		if ((copy = end - offset) > 0) {
4000 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4001 				return -EMSGSIZE;
4002 
4003 			if (copy > len)
4004 				copy = len;
4005 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4006 					      copy, recursion_level + 1);
4007 			if (unlikely(ret < 0))
4008 				return ret;
4009 			elt += ret;
4010 			if ((len -= copy) == 0)
4011 				return elt;
4012 			offset += copy;
4013 		}
4014 		start = end;
4015 	}
4016 	BUG_ON(len);
4017 	return elt;
4018 }
4019 
4020 /**
4021  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4022  *	@skb: Socket buffer containing the buffers to be mapped
4023  *	@sg: The scatter-gather list to map into
4024  *	@offset: The offset into the buffer's contents to start mapping
4025  *	@len: Length of buffer space to be mapped
4026  *
4027  *	Fill the specified scatter-gather list with mappings/pointers into a
4028  *	region of the buffer space attached to a socket buffer. Returns either
4029  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4030  *	could not fit.
4031  */
4032 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4033 {
4034 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4035 
4036 	if (nsg <= 0)
4037 		return nsg;
4038 
4039 	sg_mark_end(&sg[nsg - 1]);
4040 
4041 	return nsg;
4042 }
4043 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4044 
4045 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4046  * sglist without mark the sg which contain last skb data as the end.
4047  * So the caller can mannipulate sg list as will when padding new data after
4048  * the first call without calling sg_unmark_end to expend sg list.
4049  *
4050  * Scenario to use skb_to_sgvec_nomark:
4051  * 1. sg_init_table
4052  * 2. skb_to_sgvec_nomark(payload1)
4053  * 3. skb_to_sgvec_nomark(payload2)
4054  *
4055  * This is equivalent to:
4056  * 1. sg_init_table
4057  * 2. skb_to_sgvec(payload1)
4058  * 3. sg_unmark_end
4059  * 4. skb_to_sgvec(payload2)
4060  *
4061  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4062  * is more preferable.
4063  */
4064 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4065 			int offset, int len)
4066 {
4067 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4068 }
4069 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4070 
4071 
4072 
4073 /**
4074  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4075  *	@skb: The socket buffer to check.
4076  *	@tailbits: Amount of trailing space to be added
4077  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4078  *
4079  *	Make sure that the data buffers attached to a socket buffer are
4080  *	writable. If they are not, private copies are made of the data buffers
4081  *	and the socket buffer is set to use these instead.
4082  *
4083  *	If @tailbits is given, make sure that there is space to write @tailbits
4084  *	bytes of data beyond current end of socket buffer.  @trailer will be
4085  *	set to point to the skb in which this space begins.
4086  *
4087  *	The number of scatterlist elements required to completely map the
4088  *	COW'd and extended socket buffer will be returned.
4089  */
4090 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4091 {
4092 	int copyflag;
4093 	int elt;
4094 	struct sk_buff *skb1, **skb_p;
4095 
4096 	/* If skb is cloned or its head is paged, reallocate
4097 	 * head pulling out all the pages (pages are considered not writable
4098 	 * at the moment even if they are anonymous).
4099 	 */
4100 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4101 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4102 		return -ENOMEM;
4103 
4104 	/* Easy case. Most of packets will go this way. */
4105 	if (!skb_has_frag_list(skb)) {
4106 		/* A little of trouble, not enough of space for trailer.
4107 		 * This should not happen, when stack is tuned to generate
4108 		 * good frames. OK, on miss we reallocate and reserve even more
4109 		 * space, 128 bytes is fair. */
4110 
4111 		if (skb_tailroom(skb) < tailbits &&
4112 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4113 			return -ENOMEM;
4114 
4115 		/* Voila! */
4116 		*trailer = skb;
4117 		return 1;
4118 	}
4119 
4120 	/* Misery. We are in troubles, going to mincer fragments... */
4121 
4122 	elt = 1;
4123 	skb_p = &skb_shinfo(skb)->frag_list;
4124 	copyflag = 0;
4125 
4126 	while ((skb1 = *skb_p) != NULL) {
4127 		int ntail = 0;
4128 
4129 		/* The fragment is partially pulled by someone,
4130 		 * this can happen on input. Copy it and everything
4131 		 * after it. */
4132 
4133 		if (skb_shared(skb1))
4134 			copyflag = 1;
4135 
4136 		/* If the skb is the last, worry about trailer. */
4137 
4138 		if (skb1->next == NULL && tailbits) {
4139 			if (skb_shinfo(skb1)->nr_frags ||
4140 			    skb_has_frag_list(skb1) ||
4141 			    skb_tailroom(skb1) < tailbits)
4142 				ntail = tailbits + 128;
4143 		}
4144 
4145 		if (copyflag ||
4146 		    skb_cloned(skb1) ||
4147 		    ntail ||
4148 		    skb_shinfo(skb1)->nr_frags ||
4149 		    skb_has_frag_list(skb1)) {
4150 			struct sk_buff *skb2;
4151 
4152 			/* Fuck, we are miserable poor guys... */
4153 			if (ntail == 0)
4154 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4155 			else
4156 				skb2 = skb_copy_expand(skb1,
4157 						       skb_headroom(skb1),
4158 						       ntail,
4159 						       GFP_ATOMIC);
4160 			if (unlikely(skb2 == NULL))
4161 				return -ENOMEM;
4162 
4163 			if (skb1->sk)
4164 				skb_set_owner_w(skb2, skb1->sk);
4165 
4166 			/* Looking around. Are we still alive?
4167 			 * OK, link new skb, drop old one */
4168 
4169 			skb2->next = skb1->next;
4170 			*skb_p = skb2;
4171 			kfree_skb(skb1);
4172 			skb1 = skb2;
4173 		}
4174 		elt++;
4175 		*trailer = skb1;
4176 		skb_p = &skb1->next;
4177 	}
4178 
4179 	return elt;
4180 }
4181 EXPORT_SYMBOL_GPL(skb_cow_data);
4182 
4183 static void sock_rmem_free(struct sk_buff *skb)
4184 {
4185 	struct sock *sk = skb->sk;
4186 
4187 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4188 }
4189 
4190 static void skb_set_err_queue(struct sk_buff *skb)
4191 {
4192 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4193 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4194 	 */
4195 	skb->pkt_type = PACKET_OUTGOING;
4196 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4197 }
4198 
4199 /*
4200  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4201  */
4202 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4203 {
4204 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4205 	    (unsigned int)sk->sk_rcvbuf)
4206 		return -ENOMEM;
4207 
4208 	skb_orphan(skb);
4209 	skb->sk = sk;
4210 	skb->destructor = sock_rmem_free;
4211 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4212 	skb_set_err_queue(skb);
4213 
4214 	/* before exiting rcu section, make sure dst is refcounted */
4215 	skb_dst_force(skb);
4216 
4217 	skb_queue_tail(&sk->sk_error_queue, skb);
4218 	if (!sock_flag(sk, SOCK_DEAD))
4219 		sk->sk_error_report(sk);
4220 	return 0;
4221 }
4222 EXPORT_SYMBOL(sock_queue_err_skb);
4223 
4224 static bool is_icmp_err_skb(const struct sk_buff *skb)
4225 {
4226 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4227 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4228 }
4229 
4230 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4231 {
4232 	struct sk_buff_head *q = &sk->sk_error_queue;
4233 	struct sk_buff *skb, *skb_next = NULL;
4234 	bool icmp_next = false;
4235 	unsigned long flags;
4236 
4237 	spin_lock_irqsave(&q->lock, flags);
4238 	skb = __skb_dequeue(q);
4239 	if (skb && (skb_next = skb_peek(q))) {
4240 		icmp_next = is_icmp_err_skb(skb_next);
4241 		if (icmp_next)
4242 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4243 	}
4244 	spin_unlock_irqrestore(&q->lock, flags);
4245 
4246 	if (is_icmp_err_skb(skb) && !icmp_next)
4247 		sk->sk_err = 0;
4248 
4249 	if (skb_next)
4250 		sk->sk_error_report(sk);
4251 
4252 	return skb;
4253 }
4254 EXPORT_SYMBOL(sock_dequeue_err_skb);
4255 
4256 /**
4257  * skb_clone_sk - create clone of skb, and take reference to socket
4258  * @skb: the skb to clone
4259  *
4260  * This function creates a clone of a buffer that holds a reference on
4261  * sk_refcnt.  Buffers created via this function are meant to be
4262  * returned using sock_queue_err_skb, or free via kfree_skb.
4263  *
4264  * When passing buffers allocated with this function to sock_queue_err_skb
4265  * it is necessary to wrap the call with sock_hold/sock_put in order to
4266  * prevent the socket from being released prior to being enqueued on
4267  * the sk_error_queue.
4268  */
4269 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4270 {
4271 	struct sock *sk = skb->sk;
4272 	struct sk_buff *clone;
4273 
4274 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4275 		return NULL;
4276 
4277 	clone = skb_clone(skb, GFP_ATOMIC);
4278 	if (!clone) {
4279 		sock_put(sk);
4280 		return NULL;
4281 	}
4282 
4283 	clone->sk = sk;
4284 	clone->destructor = sock_efree;
4285 
4286 	return clone;
4287 }
4288 EXPORT_SYMBOL(skb_clone_sk);
4289 
4290 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4291 					struct sock *sk,
4292 					int tstype,
4293 					bool opt_stats)
4294 {
4295 	struct sock_exterr_skb *serr;
4296 	int err;
4297 
4298 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4299 
4300 	serr = SKB_EXT_ERR(skb);
4301 	memset(serr, 0, sizeof(*serr));
4302 	serr->ee.ee_errno = ENOMSG;
4303 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4304 	serr->ee.ee_info = tstype;
4305 	serr->opt_stats = opt_stats;
4306 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4307 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4308 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4309 		if (sk->sk_protocol == IPPROTO_TCP &&
4310 		    sk->sk_type == SOCK_STREAM)
4311 			serr->ee.ee_data -= sk->sk_tskey;
4312 	}
4313 
4314 	err = sock_queue_err_skb(sk, skb);
4315 
4316 	if (err)
4317 		kfree_skb(skb);
4318 }
4319 
4320 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4321 {
4322 	bool ret;
4323 
4324 	if (likely(sysctl_tstamp_allow_data || tsonly))
4325 		return true;
4326 
4327 	read_lock_bh(&sk->sk_callback_lock);
4328 	ret = sk->sk_socket && sk->sk_socket->file &&
4329 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4330 	read_unlock_bh(&sk->sk_callback_lock);
4331 	return ret;
4332 }
4333 
4334 void skb_complete_tx_timestamp(struct sk_buff *skb,
4335 			       struct skb_shared_hwtstamps *hwtstamps)
4336 {
4337 	struct sock *sk = skb->sk;
4338 
4339 	if (!skb_may_tx_timestamp(sk, false))
4340 		goto err;
4341 
4342 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4343 	 * but only if the socket refcount is not zero.
4344 	 */
4345 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4346 		*skb_hwtstamps(skb) = *hwtstamps;
4347 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4348 		sock_put(sk);
4349 		return;
4350 	}
4351 
4352 err:
4353 	kfree_skb(skb);
4354 }
4355 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4356 
4357 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4358 		     struct skb_shared_hwtstamps *hwtstamps,
4359 		     struct sock *sk, int tstype)
4360 {
4361 	struct sk_buff *skb;
4362 	bool tsonly, opt_stats = false;
4363 
4364 	if (!sk)
4365 		return;
4366 
4367 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4368 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4369 		return;
4370 
4371 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4372 	if (!skb_may_tx_timestamp(sk, tsonly))
4373 		return;
4374 
4375 	if (tsonly) {
4376 #ifdef CONFIG_INET
4377 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4378 		    sk->sk_protocol == IPPROTO_TCP &&
4379 		    sk->sk_type == SOCK_STREAM) {
4380 			skb = tcp_get_timestamping_opt_stats(sk);
4381 			opt_stats = true;
4382 		} else
4383 #endif
4384 			skb = alloc_skb(0, GFP_ATOMIC);
4385 	} else {
4386 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4387 	}
4388 	if (!skb)
4389 		return;
4390 
4391 	if (tsonly) {
4392 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4393 					     SKBTX_ANY_TSTAMP;
4394 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4395 	}
4396 
4397 	if (hwtstamps)
4398 		*skb_hwtstamps(skb) = *hwtstamps;
4399 	else
4400 		skb->tstamp = ktime_get_real();
4401 
4402 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4403 }
4404 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4405 
4406 void skb_tstamp_tx(struct sk_buff *orig_skb,
4407 		   struct skb_shared_hwtstamps *hwtstamps)
4408 {
4409 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4410 			       SCM_TSTAMP_SND);
4411 }
4412 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4413 
4414 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4415 {
4416 	struct sock *sk = skb->sk;
4417 	struct sock_exterr_skb *serr;
4418 	int err = 1;
4419 
4420 	skb->wifi_acked_valid = 1;
4421 	skb->wifi_acked = acked;
4422 
4423 	serr = SKB_EXT_ERR(skb);
4424 	memset(serr, 0, sizeof(*serr));
4425 	serr->ee.ee_errno = ENOMSG;
4426 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4427 
4428 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4429 	 * but only if the socket refcount is not zero.
4430 	 */
4431 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4432 		err = sock_queue_err_skb(sk, skb);
4433 		sock_put(sk);
4434 	}
4435 	if (err)
4436 		kfree_skb(skb);
4437 }
4438 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4439 
4440 /**
4441  * skb_partial_csum_set - set up and verify partial csum values for packet
4442  * @skb: the skb to set
4443  * @start: the number of bytes after skb->data to start checksumming.
4444  * @off: the offset from start to place the checksum.
4445  *
4446  * For untrusted partially-checksummed packets, we need to make sure the values
4447  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4448  *
4449  * This function checks and sets those values and skb->ip_summed: if this
4450  * returns false you should drop the packet.
4451  */
4452 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4453 {
4454 	if (unlikely(start > skb_headlen(skb)) ||
4455 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4456 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4457 				     start, off, skb_headlen(skb));
4458 		return false;
4459 	}
4460 	skb->ip_summed = CHECKSUM_PARTIAL;
4461 	skb->csum_start = skb_headroom(skb) + start;
4462 	skb->csum_offset = off;
4463 	skb_set_transport_header(skb, start);
4464 	return true;
4465 }
4466 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4467 
4468 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4469 			       unsigned int max)
4470 {
4471 	if (skb_headlen(skb) >= len)
4472 		return 0;
4473 
4474 	/* If we need to pullup then pullup to the max, so we
4475 	 * won't need to do it again.
4476 	 */
4477 	if (max > skb->len)
4478 		max = skb->len;
4479 
4480 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4481 		return -ENOMEM;
4482 
4483 	if (skb_headlen(skb) < len)
4484 		return -EPROTO;
4485 
4486 	return 0;
4487 }
4488 
4489 #define MAX_TCP_HDR_LEN (15 * 4)
4490 
4491 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4492 				      typeof(IPPROTO_IP) proto,
4493 				      unsigned int off)
4494 {
4495 	switch (proto) {
4496 		int err;
4497 
4498 	case IPPROTO_TCP:
4499 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4500 					  off + MAX_TCP_HDR_LEN);
4501 		if (!err && !skb_partial_csum_set(skb, off,
4502 						  offsetof(struct tcphdr,
4503 							   check)))
4504 			err = -EPROTO;
4505 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4506 
4507 	case IPPROTO_UDP:
4508 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4509 					  off + sizeof(struct udphdr));
4510 		if (!err && !skb_partial_csum_set(skb, off,
4511 						  offsetof(struct udphdr,
4512 							   check)))
4513 			err = -EPROTO;
4514 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4515 	}
4516 
4517 	return ERR_PTR(-EPROTO);
4518 }
4519 
4520 /* This value should be large enough to cover a tagged ethernet header plus
4521  * maximally sized IP and TCP or UDP headers.
4522  */
4523 #define MAX_IP_HDR_LEN 128
4524 
4525 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4526 {
4527 	unsigned int off;
4528 	bool fragment;
4529 	__sum16 *csum;
4530 	int err;
4531 
4532 	fragment = false;
4533 
4534 	err = skb_maybe_pull_tail(skb,
4535 				  sizeof(struct iphdr),
4536 				  MAX_IP_HDR_LEN);
4537 	if (err < 0)
4538 		goto out;
4539 
4540 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4541 		fragment = true;
4542 
4543 	off = ip_hdrlen(skb);
4544 
4545 	err = -EPROTO;
4546 
4547 	if (fragment)
4548 		goto out;
4549 
4550 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4551 	if (IS_ERR(csum))
4552 		return PTR_ERR(csum);
4553 
4554 	if (recalculate)
4555 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4556 					   ip_hdr(skb)->daddr,
4557 					   skb->len - off,
4558 					   ip_hdr(skb)->protocol, 0);
4559 	err = 0;
4560 
4561 out:
4562 	return err;
4563 }
4564 
4565 /* This value should be large enough to cover a tagged ethernet header plus
4566  * an IPv6 header, all options, and a maximal TCP or UDP header.
4567  */
4568 #define MAX_IPV6_HDR_LEN 256
4569 
4570 #define OPT_HDR(type, skb, off) \
4571 	(type *)(skb_network_header(skb) + (off))
4572 
4573 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4574 {
4575 	int err;
4576 	u8 nexthdr;
4577 	unsigned int off;
4578 	unsigned int len;
4579 	bool fragment;
4580 	bool done;
4581 	__sum16 *csum;
4582 
4583 	fragment = false;
4584 	done = false;
4585 
4586 	off = sizeof(struct ipv6hdr);
4587 
4588 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4589 	if (err < 0)
4590 		goto out;
4591 
4592 	nexthdr = ipv6_hdr(skb)->nexthdr;
4593 
4594 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4595 	while (off <= len && !done) {
4596 		switch (nexthdr) {
4597 		case IPPROTO_DSTOPTS:
4598 		case IPPROTO_HOPOPTS:
4599 		case IPPROTO_ROUTING: {
4600 			struct ipv6_opt_hdr *hp;
4601 
4602 			err = skb_maybe_pull_tail(skb,
4603 						  off +
4604 						  sizeof(struct ipv6_opt_hdr),
4605 						  MAX_IPV6_HDR_LEN);
4606 			if (err < 0)
4607 				goto out;
4608 
4609 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4610 			nexthdr = hp->nexthdr;
4611 			off += ipv6_optlen(hp);
4612 			break;
4613 		}
4614 		case IPPROTO_AH: {
4615 			struct ip_auth_hdr *hp;
4616 
4617 			err = skb_maybe_pull_tail(skb,
4618 						  off +
4619 						  sizeof(struct ip_auth_hdr),
4620 						  MAX_IPV6_HDR_LEN);
4621 			if (err < 0)
4622 				goto out;
4623 
4624 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4625 			nexthdr = hp->nexthdr;
4626 			off += ipv6_authlen(hp);
4627 			break;
4628 		}
4629 		case IPPROTO_FRAGMENT: {
4630 			struct frag_hdr *hp;
4631 
4632 			err = skb_maybe_pull_tail(skb,
4633 						  off +
4634 						  sizeof(struct frag_hdr),
4635 						  MAX_IPV6_HDR_LEN);
4636 			if (err < 0)
4637 				goto out;
4638 
4639 			hp = OPT_HDR(struct frag_hdr, skb, off);
4640 
4641 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4642 				fragment = true;
4643 
4644 			nexthdr = hp->nexthdr;
4645 			off += sizeof(struct frag_hdr);
4646 			break;
4647 		}
4648 		default:
4649 			done = true;
4650 			break;
4651 		}
4652 	}
4653 
4654 	err = -EPROTO;
4655 
4656 	if (!done || fragment)
4657 		goto out;
4658 
4659 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4660 	if (IS_ERR(csum))
4661 		return PTR_ERR(csum);
4662 
4663 	if (recalculate)
4664 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4665 					 &ipv6_hdr(skb)->daddr,
4666 					 skb->len - off, nexthdr, 0);
4667 	err = 0;
4668 
4669 out:
4670 	return err;
4671 }
4672 
4673 /**
4674  * skb_checksum_setup - set up partial checksum offset
4675  * @skb: the skb to set up
4676  * @recalculate: if true the pseudo-header checksum will be recalculated
4677  */
4678 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4679 {
4680 	int err;
4681 
4682 	switch (skb->protocol) {
4683 	case htons(ETH_P_IP):
4684 		err = skb_checksum_setup_ipv4(skb, recalculate);
4685 		break;
4686 
4687 	case htons(ETH_P_IPV6):
4688 		err = skb_checksum_setup_ipv6(skb, recalculate);
4689 		break;
4690 
4691 	default:
4692 		err = -EPROTO;
4693 		break;
4694 	}
4695 
4696 	return err;
4697 }
4698 EXPORT_SYMBOL(skb_checksum_setup);
4699 
4700 /**
4701  * skb_checksum_maybe_trim - maybe trims the given skb
4702  * @skb: the skb to check
4703  * @transport_len: the data length beyond the network header
4704  *
4705  * Checks whether the given skb has data beyond the given transport length.
4706  * If so, returns a cloned skb trimmed to this transport length.
4707  * Otherwise returns the provided skb. Returns NULL in error cases
4708  * (e.g. transport_len exceeds skb length or out-of-memory).
4709  *
4710  * Caller needs to set the skb transport header and free any returned skb if it
4711  * differs from the provided skb.
4712  */
4713 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4714 					       unsigned int transport_len)
4715 {
4716 	struct sk_buff *skb_chk;
4717 	unsigned int len = skb_transport_offset(skb) + transport_len;
4718 	int ret;
4719 
4720 	if (skb->len < len)
4721 		return NULL;
4722 	else if (skb->len == len)
4723 		return skb;
4724 
4725 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4726 	if (!skb_chk)
4727 		return NULL;
4728 
4729 	ret = pskb_trim_rcsum(skb_chk, len);
4730 	if (ret) {
4731 		kfree_skb(skb_chk);
4732 		return NULL;
4733 	}
4734 
4735 	return skb_chk;
4736 }
4737 
4738 /**
4739  * skb_checksum_trimmed - validate checksum of an skb
4740  * @skb: the skb to check
4741  * @transport_len: the data length beyond the network header
4742  * @skb_chkf: checksum function to use
4743  *
4744  * Applies the given checksum function skb_chkf to the provided skb.
4745  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4746  *
4747  * If the skb has data beyond the given transport length, then a
4748  * trimmed & cloned skb is checked and returned.
4749  *
4750  * Caller needs to set the skb transport header and free any returned skb if it
4751  * differs from the provided skb.
4752  */
4753 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4754 				     unsigned int transport_len,
4755 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4756 {
4757 	struct sk_buff *skb_chk;
4758 	unsigned int offset = skb_transport_offset(skb);
4759 	__sum16 ret;
4760 
4761 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4762 	if (!skb_chk)
4763 		goto err;
4764 
4765 	if (!pskb_may_pull(skb_chk, offset))
4766 		goto err;
4767 
4768 	skb_pull_rcsum(skb_chk, offset);
4769 	ret = skb_chkf(skb_chk);
4770 	skb_push_rcsum(skb_chk, offset);
4771 
4772 	if (ret)
4773 		goto err;
4774 
4775 	return skb_chk;
4776 
4777 err:
4778 	if (skb_chk && skb_chk != skb)
4779 		kfree_skb(skb_chk);
4780 
4781 	return NULL;
4782 
4783 }
4784 EXPORT_SYMBOL(skb_checksum_trimmed);
4785 
4786 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4787 {
4788 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4789 			     skb->dev->name);
4790 }
4791 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4792 
4793 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4794 {
4795 	if (head_stolen) {
4796 		skb_release_head_state(skb);
4797 		kmem_cache_free(skbuff_head_cache, skb);
4798 	} else {
4799 		__kfree_skb(skb);
4800 	}
4801 }
4802 EXPORT_SYMBOL(kfree_skb_partial);
4803 
4804 /**
4805  * skb_try_coalesce - try to merge skb to prior one
4806  * @to: prior buffer
4807  * @from: buffer to add
4808  * @fragstolen: pointer to boolean
4809  * @delta_truesize: how much more was allocated than was requested
4810  */
4811 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4812 		      bool *fragstolen, int *delta_truesize)
4813 {
4814 	struct skb_shared_info *to_shinfo, *from_shinfo;
4815 	int i, delta, len = from->len;
4816 
4817 	*fragstolen = false;
4818 
4819 	if (skb_cloned(to))
4820 		return false;
4821 
4822 	if (len <= skb_tailroom(to)) {
4823 		if (len)
4824 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4825 		*delta_truesize = 0;
4826 		return true;
4827 	}
4828 
4829 	to_shinfo = skb_shinfo(to);
4830 	from_shinfo = skb_shinfo(from);
4831 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4832 		return false;
4833 	if (skb_zcopy(to) || skb_zcopy(from))
4834 		return false;
4835 
4836 	if (skb_headlen(from) != 0) {
4837 		struct page *page;
4838 		unsigned int offset;
4839 
4840 		if (to_shinfo->nr_frags +
4841 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4842 			return false;
4843 
4844 		if (skb_head_is_locked(from))
4845 			return false;
4846 
4847 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4848 
4849 		page = virt_to_head_page(from->head);
4850 		offset = from->data - (unsigned char *)page_address(page);
4851 
4852 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4853 				   page, offset, skb_headlen(from));
4854 		*fragstolen = true;
4855 	} else {
4856 		if (to_shinfo->nr_frags +
4857 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4858 			return false;
4859 
4860 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4861 	}
4862 
4863 	WARN_ON_ONCE(delta < len);
4864 
4865 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4866 	       from_shinfo->frags,
4867 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4868 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4869 
4870 	if (!skb_cloned(from))
4871 		from_shinfo->nr_frags = 0;
4872 
4873 	/* if the skb is not cloned this does nothing
4874 	 * since we set nr_frags to 0.
4875 	 */
4876 	for (i = 0; i < from_shinfo->nr_frags; i++)
4877 		__skb_frag_ref(&from_shinfo->frags[i]);
4878 
4879 	to->truesize += delta;
4880 	to->len += len;
4881 	to->data_len += len;
4882 
4883 	*delta_truesize = delta;
4884 	return true;
4885 }
4886 EXPORT_SYMBOL(skb_try_coalesce);
4887 
4888 /**
4889  * skb_scrub_packet - scrub an skb
4890  *
4891  * @skb: buffer to clean
4892  * @xnet: packet is crossing netns
4893  *
4894  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4895  * into/from a tunnel. Some information have to be cleared during these
4896  * operations.
4897  * skb_scrub_packet can also be used to clean a skb before injecting it in
4898  * another namespace (@xnet == true). We have to clear all information in the
4899  * skb that could impact namespace isolation.
4900  */
4901 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4902 {
4903 	skb->tstamp = 0;
4904 	skb->pkt_type = PACKET_HOST;
4905 	skb->skb_iif = 0;
4906 	skb->ignore_df = 0;
4907 	skb_dst_drop(skb);
4908 	secpath_reset(skb);
4909 	nf_reset(skb);
4910 	nf_reset_trace(skb);
4911 
4912 	if (!xnet)
4913 		return;
4914 
4915 	ipvs_reset(skb);
4916 	skb_orphan(skb);
4917 	skb->mark = 0;
4918 }
4919 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4920 
4921 /**
4922  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4923  *
4924  * @skb: GSO skb
4925  *
4926  * skb_gso_transport_seglen is used to determine the real size of the
4927  * individual segments, including Layer4 headers (TCP/UDP).
4928  *
4929  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4930  */
4931 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4932 {
4933 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4934 	unsigned int thlen = 0;
4935 
4936 	if (skb->encapsulation) {
4937 		thlen = skb_inner_transport_header(skb) -
4938 			skb_transport_header(skb);
4939 
4940 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4941 			thlen += inner_tcp_hdrlen(skb);
4942 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4943 		thlen = tcp_hdrlen(skb);
4944 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4945 		thlen = sizeof(struct sctphdr);
4946 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4947 		thlen = sizeof(struct udphdr);
4948 	}
4949 	/* UFO sets gso_size to the size of the fragmentation
4950 	 * payload, i.e. the size of the L4 (UDP) header is already
4951 	 * accounted for.
4952 	 */
4953 	return thlen + shinfo->gso_size;
4954 }
4955 
4956 /**
4957  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4958  *
4959  * @skb: GSO skb
4960  *
4961  * skb_gso_network_seglen is used to determine the real size of the
4962  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4963  *
4964  * The MAC/L2 header is not accounted for.
4965  */
4966 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4967 {
4968 	unsigned int hdr_len = skb_transport_header(skb) -
4969 			       skb_network_header(skb);
4970 
4971 	return hdr_len + skb_gso_transport_seglen(skb);
4972 }
4973 
4974 /**
4975  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4976  *
4977  * @skb: GSO skb
4978  *
4979  * skb_gso_mac_seglen is used to determine the real size of the
4980  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4981  * headers (TCP/UDP).
4982  */
4983 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4984 {
4985 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4986 
4987 	return hdr_len + skb_gso_transport_seglen(skb);
4988 }
4989 
4990 /**
4991  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4992  *
4993  * There are a couple of instances where we have a GSO skb, and we
4994  * want to determine what size it would be after it is segmented.
4995  *
4996  * We might want to check:
4997  * -    L3+L4+payload size (e.g. IP forwarding)
4998  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4999  *
5000  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5001  *
5002  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5003  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5004  *
5005  * @max_len: The maximum permissible length.
5006  *
5007  * Returns true if the segmented length <= max length.
5008  */
5009 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5010 				      unsigned int seg_len,
5011 				      unsigned int max_len) {
5012 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5013 	const struct sk_buff *iter;
5014 
5015 	if (shinfo->gso_size != GSO_BY_FRAGS)
5016 		return seg_len <= max_len;
5017 
5018 	/* Undo this so we can re-use header sizes */
5019 	seg_len -= GSO_BY_FRAGS;
5020 
5021 	skb_walk_frags(skb, iter) {
5022 		if (seg_len + skb_headlen(iter) > max_len)
5023 			return false;
5024 	}
5025 
5026 	return true;
5027 }
5028 
5029 /**
5030  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5031  *
5032  * @skb: GSO skb
5033  * @mtu: MTU to validate against
5034  *
5035  * skb_gso_validate_network_len validates if a given skb will fit a
5036  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5037  * payload.
5038  */
5039 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5040 {
5041 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5042 }
5043 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5044 
5045 /**
5046  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5047  *
5048  * @skb: GSO skb
5049  * @len: length to validate against
5050  *
5051  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5052  * length once split, including L2, L3 and L4 headers and the payload.
5053  */
5054 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5055 {
5056 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5057 }
5058 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5059 
5060 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5061 {
5062 	int mac_len;
5063 
5064 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5065 		kfree_skb(skb);
5066 		return NULL;
5067 	}
5068 
5069 	mac_len = skb->data - skb_mac_header(skb);
5070 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5071 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5072 			mac_len - VLAN_HLEN - ETH_TLEN);
5073 	}
5074 	skb->mac_header += VLAN_HLEN;
5075 	return skb;
5076 }
5077 
5078 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5079 {
5080 	struct vlan_hdr *vhdr;
5081 	u16 vlan_tci;
5082 
5083 	if (unlikely(skb_vlan_tag_present(skb))) {
5084 		/* vlan_tci is already set-up so leave this for another time */
5085 		return skb;
5086 	}
5087 
5088 	skb = skb_share_check(skb, GFP_ATOMIC);
5089 	if (unlikely(!skb))
5090 		goto err_free;
5091 
5092 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5093 		goto err_free;
5094 
5095 	vhdr = (struct vlan_hdr *)skb->data;
5096 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5097 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5098 
5099 	skb_pull_rcsum(skb, VLAN_HLEN);
5100 	vlan_set_encap_proto(skb, vhdr);
5101 
5102 	skb = skb_reorder_vlan_header(skb);
5103 	if (unlikely(!skb))
5104 		goto err_free;
5105 
5106 	skb_reset_network_header(skb);
5107 	skb_reset_transport_header(skb);
5108 	skb_reset_mac_len(skb);
5109 
5110 	return skb;
5111 
5112 err_free:
5113 	kfree_skb(skb);
5114 	return NULL;
5115 }
5116 EXPORT_SYMBOL(skb_vlan_untag);
5117 
5118 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5119 {
5120 	if (!pskb_may_pull(skb, write_len))
5121 		return -ENOMEM;
5122 
5123 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5124 		return 0;
5125 
5126 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5127 }
5128 EXPORT_SYMBOL(skb_ensure_writable);
5129 
5130 /* remove VLAN header from packet and update csum accordingly.
5131  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5132  */
5133 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5134 {
5135 	struct vlan_hdr *vhdr;
5136 	int offset = skb->data - skb_mac_header(skb);
5137 	int err;
5138 
5139 	if (WARN_ONCE(offset,
5140 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5141 		      offset)) {
5142 		return -EINVAL;
5143 	}
5144 
5145 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5146 	if (unlikely(err))
5147 		return err;
5148 
5149 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5150 
5151 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5152 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5153 
5154 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5155 	__skb_pull(skb, VLAN_HLEN);
5156 
5157 	vlan_set_encap_proto(skb, vhdr);
5158 	skb->mac_header += VLAN_HLEN;
5159 
5160 	if (skb_network_offset(skb) < ETH_HLEN)
5161 		skb_set_network_header(skb, ETH_HLEN);
5162 
5163 	skb_reset_mac_len(skb);
5164 
5165 	return err;
5166 }
5167 EXPORT_SYMBOL(__skb_vlan_pop);
5168 
5169 /* Pop a vlan tag either from hwaccel or from payload.
5170  * Expects skb->data at mac header.
5171  */
5172 int skb_vlan_pop(struct sk_buff *skb)
5173 {
5174 	u16 vlan_tci;
5175 	__be16 vlan_proto;
5176 	int err;
5177 
5178 	if (likely(skb_vlan_tag_present(skb))) {
5179 		skb->vlan_tci = 0;
5180 	} else {
5181 		if (unlikely(!eth_type_vlan(skb->protocol)))
5182 			return 0;
5183 
5184 		err = __skb_vlan_pop(skb, &vlan_tci);
5185 		if (err)
5186 			return err;
5187 	}
5188 	/* move next vlan tag to hw accel tag */
5189 	if (likely(!eth_type_vlan(skb->protocol)))
5190 		return 0;
5191 
5192 	vlan_proto = skb->protocol;
5193 	err = __skb_vlan_pop(skb, &vlan_tci);
5194 	if (unlikely(err))
5195 		return err;
5196 
5197 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5198 	return 0;
5199 }
5200 EXPORT_SYMBOL(skb_vlan_pop);
5201 
5202 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5203  * Expects skb->data at mac header.
5204  */
5205 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5206 {
5207 	if (skb_vlan_tag_present(skb)) {
5208 		int offset = skb->data - skb_mac_header(skb);
5209 		int err;
5210 
5211 		if (WARN_ONCE(offset,
5212 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5213 			      offset)) {
5214 			return -EINVAL;
5215 		}
5216 
5217 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5218 					skb_vlan_tag_get(skb));
5219 		if (err)
5220 			return err;
5221 
5222 		skb->protocol = skb->vlan_proto;
5223 		skb->mac_len += VLAN_HLEN;
5224 
5225 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5226 	}
5227 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5228 	return 0;
5229 }
5230 EXPORT_SYMBOL(skb_vlan_push);
5231 
5232 /**
5233  * alloc_skb_with_frags - allocate skb with page frags
5234  *
5235  * @header_len: size of linear part
5236  * @data_len: needed length in frags
5237  * @max_page_order: max page order desired.
5238  * @errcode: pointer to error code if any
5239  * @gfp_mask: allocation mask
5240  *
5241  * This can be used to allocate a paged skb, given a maximal order for frags.
5242  */
5243 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5244 				     unsigned long data_len,
5245 				     int max_page_order,
5246 				     int *errcode,
5247 				     gfp_t gfp_mask)
5248 {
5249 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5250 	unsigned long chunk;
5251 	struct sk_buff *skb;
5252 	struct page *page;
5253 	gfp_t gfp_head;
5254 	int i;
5255 
5256 	*errcode = -EMSGSIZE;
5257 	/* Note this test could be relaxed, if we succeed to allocate
5258 	 * high order pages...
5259 	 */
5260 	if (npages > MAX_SKB_FRAGS)
5261 		return NULL;
5262 
5263 	gfp_head = gfp_mask;
5264 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5265 		gfp_head |= __GFP_RETRY_MAYFAIL;
5266 
5267 	*errcode = -ENOBUFS;
5268 	skb = alloc_skb(header_len, gfp_head);
5269 	if (!skb)
5270 		return NULL;
5271 
5272 	skb->truesize += npages << PAGE_SHIFT;
5273 
5274 	for (i = 0; npages > 0; i++) {
5275 		int order = max_page_order;
5276 
5277 		while (order) {
5278 			if (npages >= 1 << order) {
5279 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5280 						   __GFP_COMP |
5281 						   __GFP_NOWARN,
5282 						   order);
5283 				if (page)
5284 					goto fill_page;
5285 				/* Do not retry other high order allocations */
5286 				order = 1;
5287 				max_page_order = 0;
5288 			}
5289 			order--;
5290 		}
5291 		page = alloc_page(gfp_mask);
5292 		if (!page)
5293 			goto failure;
5294 fill_page:
5295 		chunk = min_t(unsigned long, data_len,
5296 			      PAGE_SIZE << order);
5297 		skb_fill_page_desc(skb, i, page, 0, chunk);
5298 		data_len -= chunk;
5299 		npages -= 1 << order;
5300 	}
5301 	return skb;
5302 
5303 failure:
5304 	kfree_skb(skb);
5305 	return NULL;
5306 }
5307 EXPORT_SYMBOL(alloc_skb_with_frags);
5308 
5309 /* carve out the first off bytes from skb when off < headlen */
5310 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5311 				    const int headlen, gfp_t gfp_mask)
5312 {
5313 	int i;
5314 	int size = skb_end_offset(skb);
5315 	int new_hlen = headlen - off;
5316 	u8 *data;
5317 
5318 	size = SKB_DATA_ALIGN(size);
5319 
5320 	if (skb_pfmemalloc(skb))
5321 		gfp_mask |= __GFP_MEMALLOC;
5322 	data = kmalloc_reserve(size +
5323 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5324 			       gfp_mask, NUMA_NO_NODE, NULL);
5325 	if (!data)
5326 		return -ENOMEM;
5327 
5328 	size = SKB_WITH_OVERHEAD(ksize(data));
5329 
5330 	/* Copy real data, and all frags */
5331 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5332 	skb->len -= off;
5333 
5334 	memcpy((struct skb_shared_info *)(data + size),
5335 	       skb_shinfo(skb),
5336 	       offsetof(struct skb_shared_info,
5337 			frags[skb_shinfo(skb)->nr_frags]));
5338 	if (skb_cloned(skb)) {
5339 		/* drop the old head gracefully */
5340 		if (skb_orphan_frags(skb, gfp_mask)) {
5341 			kfree(data);
5342 			return -ENOMEM;
5343 		}
5344 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5345 			skb_frag_ref(skb, i);
5346 		if (skb_has_frag_list(skb))
5347 			skb_clone_fraglist(skb);
5348 		skb_release_data(skb);
5349 	} else {
5350 		/* we can reuse existing recount- all we did was
5351 		 * relocate values
5352 		 */
5353 		skb_free_head(skb);
5354 	}
5355 
5356 	skb->head = data;
5357 	skb->data = data;
5358 	skb->head_frag = 0;
5359 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5360 	skb->end = size;
5361 #else
5362 	skb->end = skb->head + size;
5363 #endif
5364 	skb_set_tail_pointer(skb, skb_headlen(skb));
5365 	skb_headers_offset_update(skb, 0);
5366 	skb->cloned = 0;
5367 	skb->hdr_len = 0;
5368 	skb->nohdr = 0;
5369 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5370 
5371 	return 0;
5372 }
5373 
5374 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5375 
5376 /* carve out the first eat bytes from skb's frag_list. May recurse into
5377  * pskb_carve()
5378  */
5379 static int pskb_carve_frag_list(struct sk_buff *skb,
5380 				struct skb_shared_info *shinfo, int eat,
5381 				gfp_t gfp_mask)
5382 {
5383 	struct sk_buff *list = shinfo->frag_list;
5384 	struct sk_buff *clone = NULL;
5385 	struct sk_buff *insp = NULL;
5386 
5387 	do {
5388 		if (!list) {
5389 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5390 			return -EFAULT;
5391 		}
5392 		if (list->len <= eat) {
5393 			/* Eaten as whole. */
5394 			eat -= list->len;
5395 			list = list->next;
5396 			insp = list;
5397 		} else {
5398 			/* Eaten partially. */
5399 			if (skb_shared(list)) {
5400 				clone = skb_clone(list, gfp_mask);
5401 				if (!clone)
5402 					return -ENOMEM;
5403 				insp = list->next;
5404 				list = clone;
5405 			} else {
5406 				/* This may be pulled without problems. */
5407 				insp = list;
5408 			}
5409 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5410 				kfree_skb(clone);
5411 				return -ENOMEM;
5412 			}
5413 			break;
5414 		}
5415 	} while (eat);
5416 
5417 	/* Free pulled out fragments. */
5418 	while ((list = shinfo->frag_list) != insp) {
5419 		shinfo->frag_list = list->next;
5420 		kfree_skb(list);
5421 	}
5422 	/* And insert new clone at head. */
5423 	if (clone) {
5424 		clone->next = list;
5425 		shinfo->frag_list = clone;
5426 	}
5427 	return 0;
5428 }
5429 
5430 /* carve off first len bytes from skb. Split line (off) is in the
5431  * non-linear part of skb
5432  */
5433 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5434 				       int pos, gfp_t gfp_mask)
5435 {
5436 	int i, k = 0;
5437 	int size = skb_end_offset(skb);
5438 	u8 *data;
5439 	const int nfrags = skb_shinfo(skb)->nr_frags;
5440 	struct skb_shared_info *shinfo;
5441 
5442 	size = SKB_DATA_ALIGN(size);
5443 
5444 	if (skb_pfmemalloc(skb))
5445 		gfp_mask |= __GFP_MEMALLOC;
5446 	data = kmalloc_reserve(size +
5447 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5448 			       gfp_mask, NUMA_NO_NODE, NULL);
5449 	if (!data)
5450 		return -ENOMEM;
5451 
5452 	size = SKB_WITH_OVERHEAD(ksize(data));
5453 
5454 	memcpy((struct skb_shared_info *)(data + size),
5455 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5456 					 frags[skb_shinfo(skb)->nr_frags]));
5457 	if (skb_orphan_frags(skb, gfp_mask)) {
5458 		kfree(data);
5459 		return -ENOMEM;
5460 	}
5461 	shinfo = (struct skb_shared_info *)(data + size);
5462 	for (i = 0; i < nfrags; i++) {
5463 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5464 
5465 		if (pos + fsize > off) {
5466 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5467 
5468 			if (pos < off) {
5469 				/* Split frag.
5470 				 * We have two variants in this case:
5471 				 * 1. Move all the frag to the second
5472 				 *    part, if it is possible. F.e.
5473 				 *    this approach is mandatory for TUX,
5474 				 *    where splitting is expensive.
5475 				 * 2. Split is accurately. We make this.
5476 				 */
5477 				shinfo->frags[0].page_offset += off - pos;
5478 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5479 			}
5480 			skb_frag_ref(skb, i);
5481 			k++;
5482 		}
5483 		pos += fsize;
5484 	}
5485 	shinfo->nr_frags = k;
5486 	if (skb_has_frag_list(skb))
5487 		skb_clone_fraglist(skb);
5488 
5489 	if (k == 0) {
5490 		/* split line is in frag list */
5491 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5492 	}
5493 	skb_release_data(skb);
5494 
5495 	skb->head = data;
5496 	skb->head_frag = 0;
5497 	skb->data = data;
5498 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5499 	skb->end = size;
5500 #else
5501 	skb->end = skb->head + size;
5502 #endif
5503 	skb_reset_tail_pointer(skb);
5504 	skb_headers_offset_update(skb, 0);
5505 	skb->cloned   = 0;
5506 	skb->hdr_len  = 0;
5507 	skb->nohdr    = 0;
5508 	skb->len -= off;
5509 	skb->data_len = skb->len;
5510 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5511 	return 0;
5512 }
5513 
5514 /* remove len bytes from the beginning of the skb */
5515 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5516 {
5517 	int headlen = skb_headlen(skb);
5518 
5519 	if (len < headlen)
5520 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5521 	else
5522 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5523 }
5524 
5525 /* Extract to_copy bytes starting at off from skb, and return this in
5526  * a new skb
5527  */
5528 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5529 			     int to_copy, gfp_t gfp)
5530 {
5531 	struct sk_buff  *clone = skb_clone(skb, gfp);
5532 
5533 	if (!clone)
5534 		return NULL;
5535 
5536 	if (pskb_carve(clone, off, gfp) < 0 ||
5537 	    pskb_trim(clone, to_copy)) {
5538 		kfree_skb(clone);
5539 		return NULL;
5540 	}
5541 	return clone;
5542 }
5543 EXPORT_SYMBOL(pskb_extract);
5544 
5545 /**
5546  * skb_condense - try to get rid of fragments/frag_list if possible
5547  * @skb: buffer
5548  *
5549  * Can be used to save memory before skb is added to a busy queue.
5550  * If packet has bytes in frags and enough tail room in skb->head,
5551  * pull all of them, so that we can free the frags right now and adjust
5552  * truesize.
5553  * Notes:
5554  *	We do not reallocate skb->head thus can not fail.
5555  *	Caller must re-evaluate skb->truesize if needed.
5556  */
5557 void skb_condense(struct sk_buff *skb)
5558 {
5559 	if (skb->data_len) {
5560 		if (skb->data_len > skb->end - skb->tail ||
5561 		    skb_cloned(skb))
5562 			return;
5563 
5564 		/* Nice, we can free page frag(s) right now */
5565 		__pskb_pull_tail(skb, skb->data_len);
5566 	}
5567 	/* At this point, skb->truesize might be over estimated,
5568 	 * because skb had a fragment, and fragments do not tell
5569 	 * their truesize.
5570 	 * When we pulled its content into skb->head, fragment
5571 	 * was freed, but __pskb_pull_tail() could not possibly
5572 	 * adjust skb->truesize, not knowing the frag truesize.
5573 	 */
5574 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5575 }
5576