1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 C(pfmemalloc); 862 n->destructor = NULL; 863 C(tail); 864 C(end); 865 C(head); 866 C(head_frag); 867 C(data); 868 C(truesize); 869 refcount_set(&n->users, 1); 870 871 atomic_inc(&(skb_shinfo(skb)->dataref)); 872 skb->cloned = 1; 873 874 return n; 875 #undef C 876 } 877 878 /** 879 * skb_morph - morph one skb into another 880 * @dst: the skb to receive the contents 881 * @src: the skb to supply the contents 882 * 883 * This is identical to skb_clone except that the target skb is 884 * supplied by the user. 885 * 886 * The target skb is returned upon exit. 887 */ 888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 889 { 890 skb_release_all(dst); 891 return __skb_clone(dst, src); 892 } 893 EXPORT_SYMBOL_GPL(skb_morph); 894 895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 896 { 897 unsigned long max_pg, num_pg, new_pg, old_pg; 898 struct user_struct *user; 899 900 if (capable(CAP_IPC_LOCK) || !size) 901 return 0; 902 903 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 904 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 905 user = mmp->user ? : current_user(); 906 907 do { 908 old_pg = atomic_long_read(&user->locked_vm); 909 new_pg = old_pg + num_pg; 910 if (new_pg > max_pg) 911 return -ENOBUFS; 912 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 913 old_pg); 914 915 if (!mmp->user) { 916 mmp->user = get_uid(user); 917 mmp->num_pg = num_pg; 918 } else { 919 mmp->num_pg += num_pg; 920 } 921 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 925 926 void mm_unaccount_pinned_pages(struct mmpin *mmp) 927 { 928 if (mmp->user) { 929 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 930 free_uid(mmp->user); 931 } 932 } 933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 if (!sock_flag(sk, SOCK_ZEROCOPY)) 943 return NULL; 944 945 skb = sock_omalloc(sk, 0, GFP_KERNEL); 946 if (!skb) 947 return NULL; 948 949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 950 uarg = (void *)skb->cb; 951 uarg->mmp.user = NULL; 952 953 if (mm_account_pinned_pages(&uarg->mmp, size)) { 954 kfree_skb(skb); 955 return NULL; 956 } 957 958 uarg->callback = sock_zerocopy_callback; 959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 960 uarg->len = 1; 961 uarg->bytelen = size; 962 uarg->zerocopy = 1; 963 refcount_set(&uarg->refcnt, 1); 964 sock_hold(sk); 965 966 return uarg; 967 } 968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 969 970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 971 { 972 return container_of((void *)uarg, struct sk_buff, cb); 973 } 974 975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 976 struct ubuf_info *uarg) 977 { 978 if (uarg) { 979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 980 u32 bytelen, next; 981 982 /* realloc only when socket is locked (TCP, UDP cork), 983 * so uarg->len and sk_zckey access is serialized 984 */ 985 if (!sock_owned_by_user(sk)) { 986 WARN_ON_ONCE(1); 987 return NULL; 988 } 989 990 bytelen = uarg->bytelen + size; 991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 992 /* TCP can create new skb to attach new uarg */ 993 if (sk->sk_type == SOCK_STREAM) 994 goto new_alloc; 995 return NULL; 996 } 997 998 next = (u32)atomic_read(&sk->sk_zckey); 999 if ((u32)(uarg->id + uarg->len) == next) { 1000 if (mm_account_pinned_pages(&uarg->mmp, size)) 1001 return NULL; 1002 uarg->len++; 1003 uarg->bytelen = bytelen; 1004 atomic_set(&sk->sk_zckey, ++next); 1005 sock_zerocopy_get(uarg); 1006 return uarg; 1007 } 1008 } 1009 1010 new_alloc: 1011 return sock_zerocopy_alloc(sk, size); 1012 } 1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1014 1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1016 { 1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1018 u32 old_lo, old_hi; 1019 u64 sum_len; 1020 1021 old_lo = serr->ee.ee_info; 1022 old_hi = serr->ee.ee_data; 1023 sum_len = old_hi - old_lo + 1ULL + len; 1024 1025 if (sum_len >= (1ULL << 32)) 1026 return false; 1027 1028 if (lo != old_hi + 1) 1029 return false; 1030 1031 serr->ee.ee_data += len; 1032 return true; 1033 } 1034 1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1036 { 1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1038 struct sock_exterr_skb *serr; 1039 struct sock *sk = skb->sk; 1040 struct sk_buff_head *q; 1041 unsigned long flags; 1042 u32 lo, hi; 1043 u16 len; 1044 1045 mm_unaccount_pinned_pages(&uarg->mmp); 1046 1047 /* if !len, there was only 1 call, and it was aborted 1048 * so do not queue a completion notification 1049 */ 1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1051 goto release; 1052 1053 len = uarg->len; 1054 lo = uarg->id; 1055 hi = uarg->id + len - 1; 1056 1057 serr = SKB_EXT_ERR(skb); 1058 memset(serr, 0, sizeof(*serr)); 1059 serr->ee.ee_errno = 0; 1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1061 serr->ee.ee_data = hi; 1062 serr->ee.ee_info = lo; 1063 if (!success) 1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1065 1066 q = &sk->sk_error_queue; 1067 spin_lock_irqsave(&q->lock, flags); 1068 tail = skb_peek_tail(q); 1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1070 !skb_zerocopy_notify_extend(tail, lo, len)) { 1071 __skb_queue_tail(q, skb); 1072 skb = NULL; 1073 } 1074 spin_unlock_irqrestore(&q->lock, flags); 1075 1076 sk->sk_error_report(sk); 1077 1078 release: 1079 consume_skb(skb); 1080 sock_put(sk); 1081 } 1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1083 1084 void sock_zerocopy_put(struct ubuf_info *uarg) 1085 { 1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1087 if (uarg->callback) 1088 uarg->callback(uarg, uarg->zerocopy); 1089 else 1090 consume_skb(skb_from_uarg(uarg)); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1094 1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1096 { 1097 if (uarg) { 1098 struct sock *sk = skb_from_uarg(uarg)->sk; 1099 1100 atomic_dec(&sk->sk_zckey); 1101 uarg->len--; 1102 1103 sock_zerocopy_put(uarg); 1104 } 1105 } 1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1107 1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1109 struct iov_iter *from, size_t length); 1110 1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1112 struct msghdr *msg, int len, 1113 struct ubuf_info *uarg) 1114 { 1115 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1116 struct iov_iter orig_iter = msg->msg_iter; 1117 int err, orig_len = skb->len; 1118 1119 /* An skb can only point to one uarg. This edge case happens when 1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1121 */ 1122 if (orig_uarg && uarg != orig_uarg) 1123 return -EEXIST; 1124 1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1127 struct sock *save_sk = skb->sk; 1128 1129 /* Streams do not free skb on error. Reset to prev state. */ 1130 msg->msg_iter = orig_iter; 1131 skb->sk = sk; 1132 ___pskb_trim(skb, orig_len); 1133 skb->sk = save_sk; 1134 return err; 1135 } 1136 1137 skb_zcopy_set(skb, uarg); 1138 return skb->len - orig_len; 1139 } 1140 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1141 1142 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1143 gfp_t gfp_mask) 1144 { 1145 if (skb_zcopy(orig)) { 1146 if (skb_zcopy(nskb)) { 1147 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1148 if (!gfp_mask) { 1149 WARN_ON_ONCE(1); 1150 return -ENOMEM; 1151 } 1152 if (skb_uarg(nskb) == skb_uarg(orig)) 1153 return 0; 1154 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1155 return -EIO; 1156 } 1157 skb_zcopy_set(nskb, skb_uarg(orig)); 1158 } 1159 return 0; 1160 } 1161 1162 /** 1163 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1164 * @skb: the skb to modify 1165 * @gfp_mask: allocation priority 1166 * 1167 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1168 * It will copy all frags into kernel and drop the reference 1169 * to userspace pages. 1170 * 1171 * If this function is called from an interrupt gfp_mask() must be 1172 * %GFP_ATOMIC. 1173 * 1174 * Returns 0 on success or a negative error code on failure 1175 * to allocate kernel memory to copy to. 1176 */ 1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1178 { 1179 int num_frags = skb_shinfo(skb)->nr_frags; 1180 struct page *page, *head = NULL; 1181 int i, new_frags; 1182 u32 d_off; 1183 1184 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1185 return -EINVAL; 1186 1187 if (!num_frags) 1188 goto release; 1189 1190 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1191 for (i = 0; i < new_frags; i++) { 1192 page = alloc_page(gfp_mask); 1193 if (!page) { 1194 while (head) { 1195 struct page *next = (struct page *)page_private(head); 1196 put_page(head); 1197 head = next; 1198 } 1199 return -ENOMEM; 1200 } 1201 set_page_private(page, (unsigned long)head); 1202 head = page; 1203 } 1204 1205 page = head; 1206 d_off = 0; 1207 for (i = 0; i < num_frags; i++) { 1208 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1209 u32 p_off, p_len, copied; 1210 struct page *p; 1211 u8 *vaddr; 1212 1213 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1214 p, p_off, p_len, copied) { 1215 u32 copy, done = 0; 1216 vaddr = kmap_atomic(p); 1217 1218 while (done < p_len) { 1219 if (d_off == PAGE_SIZE) { 1220 d_off = 0; 1221 page = (struct page *)page_private(page); 1222 } 1223 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1224 memcpy(page_address(page) + d_off, 1225 vaddr + p_off + done, copy); 1226 done += copy; 1227 d_off += copy; 1228 } 1229 kunmap_atomic(vaddr); 1230 } 1231 } 1232 1233 /* skb frags release userspace buffers */ 1234 for (i = 0; i < num_frags; i++) 1235 skb_frag_unref(skb, i); 1236 1237 /* skb frags point to kernel buffers */ 1238 for (i = 0; i < new_frags - 1; i++) { 1239 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1240 head = (struct page *)page_private(head); 1241 } 1242 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1243 skb_shinfo(skb)->nr_frags = new_frags; 1244 1245 release: 1246 skb_zcopy_clear(skb, false); 1247 return 0; 1248 } 1249 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1250 1251 /** 1252 * skb_clone - duplicate an sk_buff 1253 * @skb: buffer to clone 1254 * @gfp_mask: allocation priority 1255 * 1256 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1257 * copies share the same packet data but not structure. The new 1258 * buffer has a reference count of 1. If the allocation fails the 1259 * function returns %NULL otherwise the new buffer is returned. 1260 * 1261 * If this function is called from an interrupt gfp_mask() must be 1262 * %GFP_ATOMIC. 1263 */ 1264 1265 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1266 { 1267 struct sk_buff_fclones *fclones = container_of(skb, 1268 struct sk_buff_fclones, 1269 skb1); 1270 struct sk_buff *n; 1271 1272 if (skb_orphan_frags(skb, gfp_mask)) 1273 return NULL; 1274 1275 if (skb->fclone == SKB_FCLONE_ORIG && 1276 refcount_read(&fclones->fclone_ref) == 1) { 1277 n = &fclones->skb2; 1278 refcount_set(&fclones->fclone_ref, 2); 1279 } else { 1280 if (skb_pfmemalloc(skb)) 1281 gfp_mask |= __GFP_MEMALLOC; 1282 1283 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1284 if (!n) 1285 return NULL; 1286 1287 n->fclone = SKB_FCLONE_UNAVAILABLE; 1288 } 1289 1290 return __skb_clone(n, skb); 1291 } 1292 EXPORT_SYMBOL(skb_clone); 1293 1294 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1295 { 1296 /* Only adjust this if it actually is csum_start rather than csum */ 1297 if (skb->ip_summed == CHECKSUM_PARTIAL) 1298 skb->csum_start += off; 1299 /* {transport,network,mac}_header and tail are relative to skb->head */ 1300 skb->transport_header += off; 1301 skb->network_header += off; 1302 if (skb_mac_header_was_set(skb)) 1303 skb->mac_header += off; 1304 skb->inner_transport_header += off; 1305 skb->inner_network_header += off; 1306 skb->inner_mac_header += off; 1307 } 1308 1309 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1310 { 1311 __copy_skb_header(new, old); 1312 1313 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1314 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1315 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1316 } 1317 EXPORT_SYMBOL(skb_copy_header); 1318 1319 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1320 { 1321 if (skb_pfmemalloc(skb)) 1322 return SKB_ALLOC_RX; 1323 return 0; 1324 } 1325 1326 /** 1327 * skb_copy - create private copy of an sk_buff 1328 * @skb: buffer to copy 1329 * @gfp_mask: allocation priority 1330 * 1331 * Make a copy of both an &sk_buff and its data. This is used when the 1332 * caller wishes to modify the data and needs a private copy of the 1333 * data to alter. Returns %NULL on failure or the pointer to the buffer 1334 * on success. The returned buffer has a reference count of 1. 1335 * 1336 * As by-product this function converts non-linear &sk_buff to linear 1337 * one, so that &sk_buff becomes completely private and caller is allowed 1338 * to modify all the data of returned buffer. This means that this 1339 * function is not recommended for use in circumstances when only 1340 * header is going to be modified. Use pskb_copy() instead. 1341 */ 1342 1343 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1344 { 1345 int headerlen = skb_headroom(skb); 1346 unsigned int size = skb_end_offset(skb) + skb->data_len; 1347 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1348 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1349 1350 if (!n) 1351 return NULL; 1352 1353 /* Set the data pointer */ 1354 skb_reserve(n, headerlen); 1355 /* Set the tail pointer and length */ 1356 skb_put(n, skb->len); 1357 1358 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1359 1360 skb_copy_header(n, skb); 1361 return n; 1362 } 1363 EXPORT_SYMBOL(skb_copy); 1364 1365 /** 1366 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1367 * @skb: buffer to copy 1368 * @headroom: headroom of new skb 1369 * @gfp_mask: allocation priority 1370 * @fclone: if true allocate the copy of the skb from the fclone 1371 * cache instead of the head cache; it is recommended to set this 1372 * to true for the cases where the copy will likely be cloned 1373 * 1374 * Make a copy of both an &sk_buff and part of its data, located 1375 * in header. Fragmented data remain shared. This is used when 1376 * the caller wishes to modify only header of &sk_buff and needs 1377 * private copy of the header to alter. Returns %NULL on failure 1378 * or the pointer to the buffer on success. 1379 * The returned buffer has a reference count of 1. 1380 */ 1381 1382 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1383 gfp_t gfp_mask, bool fclone) 1384 { 1385 unsigned int size = skb_headlen(skb) + headroom; 1386 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1387 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1388 1389 if (!n) 1390 goto out; 1391 1392 /* Set the data pointer */ 1393 skb_reserve(n, headroom); 1394 /* Set the tail pointer and length */ 1395 skb_put(n, skb_headlen(skb)); 1396 /* Copy the bytes */ 1397 skb_copy_from_linear_data(skb, n->data, n->len); 1398 1399 n->truesize += skb->data_len; 1400 n->data_len = skb->data_len; 1401 n->len = skb->len; 1402 1403 if (skb_shinfo(skb)->nr_frags) { 1404 int i; 1405 1406 if (skb_orphan_frags(skb, gfp_mask) || 1407 skb_zerocopy_clone(n, skb, gfp_mask)) { 1408 kfree_skb(n); 1409 n = NULL; 1410 goto out; 1411 } 1412 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1413 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1414 skb_frag_ref(skb, i); 1415 } 1416 skb_shinfo(n)->nr_frags = i; 1417 } 1418 1419 if (skb_has_frag_list(skb)) { 1420 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1421 skb_clone_fraglist(n); 1422 } 1423 1424 skb_copy_header(n, skb); 1425 out: 1426 return n; 1427 } 1428 EXPORT_SYMBOL(__pskb_copy_fclone); 1429 1430 /** 1431 * pskb_expand_head - reallocate header of &sk_buff 1432 * @skb: buffer to reallocate 1433 * @nhead: room to add at head 1434 * @ntail: room to add at tail 1435 * @gfp_mask: allocation priority 1436 * 1437 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1438 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1439 * reference count of 1. Returns zero in the case of success or error, 1440 * if expansion failed. In the last case, &sk_buff is not changed. 1441 * 1442 * All the pointers pointing into skb header may change and must be 1443 * reloaded after call to this function. 1444 */ 1445 1446 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1447 gfp_t gfp_mask) 1448 { 1449 int i, osize = skb_end_offset(skb); 1450 int size = osize + nhead + ntail; 1451 long off; 1452 u8 *data; 1453 1454 BUG_ON(nhead < 0); 1455 1456 BUG_ON(skb_shared(skb)); 1457 1458 size = SKB_DATA_ALIGN(size); 1459 1460 if (skb_pfmemalloc(skb)) 1461 gfp_mask |= __GFP_MEMALLOC; 1462 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1463 gfp_mask, NUMA_NO_NODE, NULL); 1464 if (!data) 1465 goto nodata; 1466 size = SKB_WITH_OVERHEAD(ksize(data)); 1467 1468 /* Copy only real data... and, alas, header. This should be 1469 * optimized for the cases when header is void. 1470 */ 1471 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1472 1473 memcpy((struct skb_shared_info *)(data + size), 1474 skb_shinfo(skb), 1475 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1476 1477 /* 1478 * if shinfo is shared we must drop the old head gracefully, but if it 1479 * is not we can just drop the old head and let the existing refcount 1480 * be since all we did is relocate the values 1481 */ 1482 if (skb_cloned(skb)) { 1483 if (skb_orphan_frags(skb, gfp_mask)) 1484 goto nofrags; 1485 if (skb_zcopy(skb)) 1486 refcount_inc(&skb_uarg(skb)->refcnt); 1487 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1488 skb_frag_ref(skb, i); 1489 1490 if (skb_has_frag_list(skb)) 1491 skb_clone_fraglist(skb); 1492 1493 skb_release_data(skb); 1494 } else { 1495 skb_free_head(skb); 1496 } 1497 off = (data + nhead) - skb->head; 1498 1499 skb->head = data; 1500 skb->head_frag = 0; 1501 skb->data += off; 1502 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1503 skb->end = size; 1504 off = nhead; 1505 #else 1506 skb->end = skb->head + size; 1507 #endif 1508 skb->tail += off; 1509 skb_headers_offset_update(skb, nhead); 1510 skb->cloned = 0; 1511 skb->hdr_len = 0; 1512 skb->nohdr = 0; 1513 atomic_set(&skb_shinfo(skb)->dataref, 1); 1514 1515 skb_metadata_clear(skb); 1516 1517 /* It is not generally safe to change skb->truesize. 1518 * For the moment, we really care of rx path, or 1519 * when skb is orphaned (not attached to a socket). 1520 */ 1521 if (!skb->sk || skb->destructor == sock_edemux) 1522 skb->truesize += size - osize; 1523 1524 return 0; 1525 1526 nofrags: 1527 kfree(data); 1528 nodata: 1529 return -ENOMEM; 1530 } 1531 EXPORT_SYMBOL(pskb_expand_head); 1532 1533 /* Make private copy of skb with writable head and some headroom */ 1534 1535 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1536 { 1537 struct sk_buff *skb2; 1538 int delta = headroom - skb_headroom(skb); 1539 1540 if (delta <= 0) 1541 skb2 = pskb_copy(skb, GFP_ATOMIC); 1542 else { 1543 skb2 = skb_clone(skb, GFP_ATOMIC); 1544 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1545 GFP_ATOMIC)) { 1546 kfree_skb(skb2); 1547 skb2 = NULL; 1548 } 1549 } 1550 return skb2; 1551 } 1552 EXPORT_SYMBOL(skb_realloc_headroom); 1553 1554 /** 1555 * skb_copy_expand - copy and expand sk_buff 1556 * @skb: buffer to copy 1557 * @newheadroom: new free bytes at head 1558 * @newtailroom: new free bytes at tail 1559 * @gfp_mask: allocation priority 1560 * 1561 * Make a copy of both an &sk_buff and its data and while doing so 1562 * allocate additional space. 1563 * 1564 * This is used when the caller wishes to modify the data and needs a 1565 * private copy of the data to alter as well as more space for new fields. 1566 * Returns %NULL on failure or the pointer to the buffer 1567 * on success. The returned buffer has a reference count of 1. 1568 * 1569 * You must pass %GFP_ATOMIC as the allocation priority if this function 1570 * is called from an interrupt. 1571 */ 1572 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1573 int newheadroom, int newtailroom, 1574 gfp_t gfp_mask) 1575 { 1576 /* 1577 * Allocate the copy buffer 1578 */ 1579 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1580 gfp_mask, skb_alloc_rx_flag(skb), 1581 NUMA_NO_NODE); 1582 int oldheadroom = skb_headroom(skb); 1583 int head_copy_len, head_copy_off; 1584 1585 if (!n) 1586 return NULL; 1587 1588 skb_reserve(n, newheadroom); 1589 1590 /* Set the tail pointer and length */ 1591 skb_put(n, skb->len); 1592 1593 head_copy_len = oldheadroom; 1594 head_copy_off = 0; 1595 if (newheadroom <= head_copy_len) 1596 head_copy_len = newheadroom; 1597 else 1598 head_copy_off = newheadroom - head_copy_len; 1599 1600 /* Copy the linear header and data. */ 1601 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1602 skb->len + head_copy_len)); 1603 1604 skb_copy_header(n, skb); 1605 1606 skb_headers_offset_update(n, newheadroom - oldheadroom); 1607 1608 return n; 1609 } 1610 EXPORT_SYMBOL(skb_copy_expand); 1611 1612 /** 1613 * __skb_pad - zero pad the tail of an skb 1614 * @skb: buffer to pad 1615 * @pad: space to pad 1616 * @free_on_error: free buffer on error 1617 * 1618 * Ensure that a buffer is followed by a padding area that is zero 1619 * filled. Used by network drivers which may DMA or transfer data 1620 * beyond the buffer end onto the wire. 1621 * 1622 * May return error in out of memory cases. The skb is freed on error 1623 * if @free_on_error is true. 1624 */ 1625 1626 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1627 { 1628 int err; 1629 int ntail; 1630 1631 /* If the skbuff is non linear tailroom is always zero.. */ 1632 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1633 memset(skb->data+skb->len, 0, pad); 1634 return 0; 1635 } 1636 1637 ntail = skb->data_len + pad - (skb->end - skb->tail); 1638 if (likely(skb_cloned(skb) || ntail > 0)) { 1639 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1640 if (unlikely(err)) 1641 goto free_skb; 1642 } 1643 1644 /* FIXME: The use of this function with non-linear skb's really needs 1645 * to be audited. 1646 */ 1647 err = skb_linearize(skb); 1648 if (unlikely(err)) 1649 goto free_skb; 1650 1651 memset(skb->data + skb->len, 0, pad); 1652 return 0; 1653 1654 free_skb: 1655 if (free_on_error) 1656 kfree_skb(skb); 1657 return err; 1658 } 1659 EXPORT_SYMBOL(__skb_pad); 1660 1661 /** 1662 * pskb_put - add data to the tail of a potentially fragmented buffer 1663 * @skb: start of the buffer to use 1664 * @tail: tail fragment of the buffer to use 1665 * @len: amount of data to add 1666 * 1667 * This function extends the used data area of the potentially 1668 * fragmented buffer. @tail must be the last fragment of @skb -- or 1669 * @skb itself. If this would exceed the total buffer size the kernel 1670 * will panic. A pointer to the first byte of the extra data is 1671 * returned. 1672 */ 1673 1674 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1675 { 1676 if (tail != skb) { 1677 skb->data_len += len; 1678 skb->len += len; 1679 } 1680 return skb_put(tail, len); 1681 } 1682 EXPORT_SYMBOL_GPL(pskb_put); 1683 1684 /** 1685 * skb_put - add data to a buffer 1686 * @skb: buffer to use 1687 * @len: amount of data to add 1688 * 1689 * This function extends the used data area of the buffer. If this would 1690 * exceed the total buffer size the kernel will panic. A pointer to the 1691 * first byte of the extra data is returned. 1692 */ 1693 void *skb_put(struct sk_buff *skb, unsigned int len) 1694 { 1695 void *tmp = skb_tail_pointer(skb); 1696 SKB_LINEAR_ASSERT(skb); 1697 skb->tail += len; 1698 skb->len += len; 1699 if (unlikely(skb->tail > skb->end)) 1700 skb_over_panic(skb, len, __builtin_return_address(0)); 1701 return tmp; 1702 } 1703 EXPORT_SYMBOL(skb_put); 1704 1705 /** 1706 * skb_push - add data to the start of a buffer 1707 * @skb: buffer to use 1708 * @len: amount of data to add 1709 * 1710 * This function extends the used data area of the buffer at the buffer 1711 * start. If this would exceed the total buffer headroom the kernel will 1712 * panic. A pointer to the first byte of the extra data is returned. 1713 */ 1714 void *skb_push(struct sk_buff *skb, unsigned int len) 1715 { 1716 skb->data -= len; 1717 skb->len += len; 1718 if (unlikely(skb->data<skb->head)) 1719 skb_under_panic(skb, len, __builtin_return_address(0)); 1720 return skb->data; 1721 } 1722 EXPORT_SYMBOL(skb_push); 1723 1724 /** 1725 * skb_pull - remove data from the start of a buffer 1726 * @skb: buffer to use 1727 * @len: amount of data to remove 1728 * 1729 * This function removes data from the start of a buffer, returning 1730 * the memory to the headroom. A pointer to the next data in the buffer 1731 * is returned. Once the data has been pulled future pushes will overwrite 1732 * the old data. 1733 */ 1734 void *skb_pull(struct sk_buff *skb, unsigned int len) 1735 { 1736 return skb_pull_inline(skb, len); 1737 } 1738 EXPORT_SYMBOL(skb_pull); 1739 1740 /** 1741 * skb_trim - remove end from a buffer 1742 * @skb: buffer to alter 1743 * @len: new length 1744 * 1745 * Cut the length of a buffer down by removing data from the tail. If 1746 * the buffer is already under the length specified it is not modified. 1747 * The skb must be linear. 1748 */ 1749 void skb_trim(struct sk_buff *skb, unsigned int len) 1750 { 1751 if (skb->len > len) 1752 __skb_trim(skb, len); 1753 } 1754 EXPORT_SYMBOL(skb_trim); 1755 1756 /* Trims skb to length len. It can change skb pointers. 1757 */ 1758 1759 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1760 { 1761 struct sk_buff **fragp; 1762 struct sk_buff *frag; 1763 int offset = skb_headlen(skb); 1764 int nfrags = skb_shinfo(skb)->nr_frags; 1765 int i; 1766 int err; 1767 1768 if (skb_cloned(skb) && 1769 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1770 return err; 1771 1772 i = 0; 1773 if (offset >= len) 1774 goto drop_pages; 1775 1776 for (; i < nfrags; i++) { 1777 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1778 1779 if (end < len) { 1780 offset = end; 1781 continue; 1782 } 1783 1784 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1785 1786 drop_pages: 1787 skb_shinfo(skb)->nr_frags = i; 1788 1789 for (; i < nfrags; i++) 1790 skb_frag_unref(skb, i); 1791 1792 if (skb_has_frag_list(skb)) 1793 skb_drop_fraglist(skb); 1794 goto done; 1795 } 1796 1797 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1798 fragp = &frag->next) { 1799 int end = offset + frag->len; 1800 1801 if (skb_shared(frag)) { 1802 struct sk_buff *nfrag; 1803 1804 nfrag = skb_clone(frag, GFP_ATOMIC); 1805 if (unlikely(!nfrag)) 1806 return -ENOMEM; 1807 1808 nfrag->next = frag->next; 1809 consume_skb(frag); 1810 frag = nfrag; 1811 *fragp = frag; 1812 } 1813 1814 if (end < len) { 1815 offset = end; 1816 continue; 1817 } 1818 1819 if (end > len && 1820 unlikely((err = pskb_trim(frag, len - offset)))) 1821 return err; 1822 1823 if (frag->next) 1824 skb_drop_list(&frag->next); 1825 break; 1826 } 1827 1828 done: 1829 if (len > skb_headlen(skb)) { 1830 skb->data_len -= skb->len - len; 1831 skb->len = len; 1832 } else { 1833 skb->len = len; 1834 skb->data_len = 0; 1835 skb_set_tail_pointer(skb, len); 1836 } 1837 1838 if (!skb->sk || skb->destructor == sock_edemux) 1839 skb_condense(skb); 1840 return 0; 1841 } 1842 EXPORT_SYMBOL(___pskb_trim); 1843 1844 /* Note : use pskb_trim_rcsum() instead of calling this directly 1845 */ 1846 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1847 { 1848 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1849 int delta = skb->len - len; 1850 1851 skb->csum = csum_sub(skb->csum, 1852 skb_checksum(skb, len, delta, 0)); 1853 } 1854 return __pskb_trim(skb, len); 1855 } 1856 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1857 1858 /** 1859 * __pskb_pull_tail - advance tail of skb header 1860 * @skb: buffer to reallocate 1861 * @delta: number of bytes to advance tail 1862 * 1863 * The function makes a sense only on a fragmented &sk_buff, 1864 * it expands header moving its tail forward and copying necessary 1865 * data from fragmented part. 1866 * 1867 * &sk_buff MUST have reference count of 1. 1868 * 1869 * Returns %NULL (and &sk_buff does not change) if pull failed 1870 * or value of new tail of skb in the case of success. 1871 * 1872 * All the pointers pointing into skb header may change and must be 1873 * reloaded after call to this function. 1874 */ 1875 1876 /* Moves tail of skb head forward, copying data from fragmented part, 1877 * when it is necessary. 1878 * 1. It may fail due to malloc failure. 1879 * 2. It may change skb pointers. 1880 * 1881 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1882 */ 1883 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1884 { 1885 /* If skb has not enough free space at tail, get new one 1886 * plus 128 bytes for future expansions. If we have enough 1887 * room at tail, reallocate without expansion only if skb is cloned. 1888 */ 1889 int i, k, eat = (skb->tail + delta) - skb->end; 1890 1891 if (eat > 0 || skb_cloned(skb)) { 1892 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1893 GFP_ATOMIC)) 1894 return NULL; 1895 } 1896 1897 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1898 skb_tail_pointer(skb), delta)); 1899 1900 /* Optimization: no fragments, no reasons to preestimate 1901 * size of pulled pages. Superb. 1902 */ 1903 if (!skb_has_frag_list(skb)) 1904 goto pull_pages; 1905 1906 /* Estimate size of pulled pages. */ 1907 eat = delta; 1908 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1909 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1910 1911 if (size >= eat) 1912 goto pull_pages; 1913 eat -= size; 1914 } 1915 1916 /* If we need update frag list, we are in troubles. 1917 * Certainly, it is possible to add an offset to skb data, 1918 * but taking into account that pulling is expected to 1919 * be very rare operation, it is worth to fight against 1920 * further bloating skb head and crucify ourselves here instead. 1921 * Pure masohism, indeed. 8)8) 1922 */ 1923 if (eat) { 1924 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1925 struct sk_buff *clone = NULL; 1926 struct sk_buff *insp = NULL; 1927 1928 do { 1929 BUG_ON(!list); 1930 1931 if (list->len <= eat) { 1932 /* Eaten as whole. */ 1933 eat -= list->len; 1934 list = list->next; 1935 insp = list; 1936 } else { 1937 /* Eaten partially. */ 1938 1939 if (skb_shared(list)) { 1940 /* Sucks! We need to fork list. :-( */ 1941 clone = skb_clone(list, GFP_ATOMIC); 1942 if (!clone) 1943 return NULL; 1944 insp = list->next; 1945 list = clone; 1946 } else { 1947 /* This may be pulled without 1948 * problems. */ 1949 insp = list; 1950 } 1951 if (!pskb_pull(list, eat)) { 1952 kfree_skb(clone); 1953 return NULL; 1954 } 1955 break; 1956 } 1957 } while (eat); 1958 1959 /* Free pulled out fragments. */ 1960 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1961 skb_shinfo(skb)->frag_list = list->next; 1962 kfree_skb(list); 1963 } 1964 /* And insert new clone at head. */ 1965 if (clone) { 1966 clone->next = list; 1967 skb_shinfo(skb)->frag_list = clone; 1968 } 1969 } 1970 /* Success! Now we may commit changes to skb data. */ 1971 1972 pull_pages: 1973 eat = delta; 1974 k = 0; 1975 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1976 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1977 1978 if (size <= eat) { 1979 skb_frag_unref(skb, i); 1980 eat -= size; 1981 } else { 1982 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1983 if (eat) { 1984 skb_shinfo(skb)->frags[k].page_offset += eat; 1985 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1986 if (!i) 1987 goto end; 1988 eat = 0; 1989 } 1990 k++; 1991 } 1992 } 1993 skb_shinfo(skb)->nr_frags = k; 1994 1995 end: 1996 skb->tail += delta; 1997 skb->data_len -= delta; 1998 1999 if (!skb->data_len) 2000 skb_zcopy_clear(skb, false); 2001 2002 return skb_tail_pointer(skb); 2003 } 2004 EXPORT_SYMBOL(__pskb_pull_tail); 2005 2006 /** 2007 * skb_copy_bits - copy bits from skb to kernel buffer 2008 * @skb: source skb 2009 * @offset: offset in source 2010 * @to: destination buffer 2011 * @len: number of bytes to copy 2012 * 2013 * Copy the specified number of bytes from the source skb to the 2014 * destination buffer. 2015 * 2016 * CAUTION ! : 2017 * If its prototype is ever changed, 2018 * check arch/{*}/net/{*}.S files, 2019 * since it is called from BPF assembly code. 2020 */ 2021 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2022 { 2023 int start = skb_headlen(skb); 2024 struct sk_buff *frag_iter; 2025 int i, copy; 2026 2027 if (offset > (int)skb->len - len) 2028 goto fault; 2029 2030 /* Copy header. */ 2031 if ((copy = start - offset) > 0) { 2032 if (copy > len) 2033 copy = len; 2034 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2035 if ((len -= copy) == 0) 2036 return 0; 2037 offset += copy; 2038 to += copy; 2039 } 2040 2041 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2042 int end; 2043 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2044 2045 WARN_ON(start > offset + len); 2046 2047 end = start + skb_frag_size(f); 2048 if ((copy = end - offset) > 0) { 2049 u32 p_off, p_len, copied; 2050 struct page *p; 2051 u8 *vaddr; 2052 2053 if (copy > len) 2054 copy = len; 2055 2056 skb_frag_foreach_page(f, 2057 f->page_offset + offset - start, 2058 copy, p, p_off, p_len, copied) { 2059 vaddr = kmap_atomic(p); 2060 memcpy(to + copied, vaddr + p_off, p_len); 2061 kunmap_atomic(vaddr); 2062 } 2063 2064 if ((len -= copy) == 0) 2065 return 0; 2066 offset += copy; 2067 to += copy; 2068 } 2069 start = end; 2070 } 2071 2072 skb_walk_frags(skb, frag_iter) { 2073 int end; 2074 2075 WARN_ON(start > offset + len); 2076 2077 end = start + frag_iter->len; 2078 if ((copy = end - offset) > 0) { 2079 if (copy > len) 2080 copy = len; 2081 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2082 goto fault; 2083 if ((len -= copy) == 0) 2084 return 0; 2085 offset += copy; 2086 to += copy; 2087 } 2088 start = end; 2089 } 2090 2091 if (!len) 2092 return 0; 2093 2094 fault: 2095 return -EFAULT; 2096 } 2097 EXPORT_SYMBOL(skb_copy_bits); 2098 2099 /* 2100 * Callback from splice_to_pipe(), if we need to release some pages 2101 * at the end of the spd in case we error'ed out in filling the pipe. 2102 */ 2103 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2104 { 2105 put_page(spd->pages[i]); 2106 } 2107 2108 static struct page *linear_to_page(struct page *page, unsigned int *len, 2109 unsigned int *offset, 2110 struct sock *sk) 2111 { 2112 struct page_frag *pfrag = sk_page_frag(sk); 2113 2114 if (!sk_page_frag_refill(sk, pfrag)) 2115 return NULL; 2116 2117 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2118 2119 memcpy(page_address(pfrag->page) + pfrag->offset, 2120 page_address(page) + *offset, *len); 2121 *offset = pfrag->offset; 2122 pfrag->offset += *len; 2123 2124 return pfrag->page; 2125 } 2126 2127 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2128 struct page *page, 2129 unsigned int offset) 2130 { 2131 return spd->nr_pages && 2132 spd->pages[spd->nr_pages - 1] == page && 2133 (spd->partial[spd->nr_pages - 1].offset + 2134 spd->partial[spd->nr_pages - 1].len == offset); 2135 } 2136 2137 /* 2138 * Fill page/offset/length into spd, if it can hold more pages. 2139 */ 2140 static bool spd_fill_page(struct splice_pipe_desc *spd, 2141 struct pipe_inode_info *pipe, struct page *page, 2142 unsigned int *len, unsigned int offset, 2143 bool linear, 2144 struct sock *sk) 2145 { 2146 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2147 return true; 2148 2149 if (linear) { 2150 page = linear_to_page(page, len, &offset, sk); 2151 if (!page) 2152 return true; 2153 } 2154 if (spd_can_coalesce(spd, page, offset)) { 2155 spd->partial[spd->nr_pages - 1].len += *len; 2156 return false; 2157 } 2158 get_page(page); 2159 spd->pages[spd->nr_pages] = page; 2160 spd->partial[spd->nr_pages].len = *len; 2161 spd->partial[spd->nr_pages].offset = offset; 2162 spd->nr_pages++; 2163 2164 return false; 2165 } 2166 2167 static bool __splice_segment(struct page *page, unsigned int poff, 2168 unsigned int plen, unsigned int *off, 2169 unsigned int *len, 2170 struct splice_pipe_desc *spd, bool linear, 2171 struct sock *sk, 2172 struct pipe_inode_info *pipe) 2173 { 2174 if (!*len) 2175 return true; 2176 2177 /* skip this segment if already processed */ 2178 if (*off >= plen) { 2179 *off -= plen; 2180 return false; 2181 } 2182 2183 /* ignore any bits we already processed */ 2184 poff += *off; 2185 plen -= *off; 2186 *off = 0; 2187 2188 do { 2189 unsigned int flen = min(*len, plen); 2190 2191 if (spd_fill_page(spd, pipe, page, &flen, poff, 2192 linear, sk)) 2193 return true; 2194 poff += flen; 2195 plen -= flen; 2196 *len -= flen; 2197 } while (*len && plen); 2198 2199 return false; 2200 } 2201 2202 /* 2203 * Map linear and fragment data from the skb to spd. It reports true if the 2204 * pipe is full or if we already spliced the requested length. 2205 */ 2206 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2207 unsigned int *offset, unsigned int *len, 2208 struct splice_pipe_desc *spd, struct sock *sk) 2209 { 2210 int seg; 2211 struct sk_buff *iter; 2212 2213 /* map the linear part : 2214 * If skb->head_frag is set, this 'linear' part is backed by a 2215 * fragment, and if the head is not shared with any clones then 2216 * we can avoid a copy since we own the head portion of this page. 2217 */ 2218 if (__splice_segment(virt_to_page(skb->data), 2219 (unsigned long) skb->data & (PAGE_SIZE - 1), 2220 skb_headlen(skb), 2221 offset, len, spd, 2222 skb_head_is_locked(skb), 2223 sk, pipe)) 2224 return true; 2225 2226 /* 2227 * then map the fragments 2228 */ 2229 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2230 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2231 2232 if (__splice_segment(skb_frag_page(f), 2233 f->page_offset, skb_frag_size(f), 2234 offset, len, spd, false, sk, pipe)) 2235 return true; 2236 } 2237 2238 skb_walk_frags(skb, iter) { 2239 if (*offset >= iter->len) { 2240 *offset -= iter->len; 2241 continue; 2242 } 2243 /* __skb_splice_bits() only fails if the output has no room 2244 * left, so no point in going over the frag_list for the error 2245 * case. 2246 */ 2247 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2248 return true; 2249 } 2250 2251 return false; 2252 } 2253 2254 /* 2255 * Map data from the skb to a pipe. Should handle both the linear part, 2256 * the fragments, and the frag list. 2257 */ 2258 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2259 struct pipe_inode_info *pipe, unsigned int tlen, 2260 unsigned int flags) 2261 { 2262 struct partial_page partial[MAX_SKB_FRAGS]; 2263 struct page *pages[MAX_SKB_FRAGS]; 2264 struct splice_pipe_desc spd = { 2265 .pages = pages, 2266 .partial = partial, 2267 .nr_pages_max = MAX_SKB_FRAGS, 2268 .ops = &nosteal_pipe_buf_ops, 2269 .spd_release = sock_spd_release, 2270 }; 2271 int ret = 0; 2272 2273 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2274 2275 if (spd.nr_pages) 2276 ret = splice_to_pipe(pipe, &spd); 2277 2278 return ret; 2279 } 2280 EXPORT_SYMBOL_GPL(skb_splice_bits); 2281 2282 /* Send skb data on a socket. Socket must be locked. */ 2283 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2284 int len) 2285 { 2286 unsigned int orig_len = len; 2287 struct sk_buff *head = skb; 2288 unsigned short fragidx; 2289 int slen, ret; 2290 2291 do_frag_list: 2292 2293 /* Deal with head data */ 2294 while (offset < skb_headlen(skb) && len) { 2295 struct kvec kv; 2296 struct msghdr msg; 2297 2298 slen = min_t(int, len, skb_headlen(skb) - offset); 2299 kv.iov_base = skb->data + offset; 2300 kv.iov_len = slen; 2301 memset(&msg, 0, sizeof(msg)); 2302 2303 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2304 if (ret <= 0) 2305 goto error; 2306 2307 offset += ret; 2308 len -= ret; 2309 } 2310 2311 /* All the data was skb head? */ 2312 if (!len) 2313 goto out; 2314 2315 /* Make offset relative to start of frags */ 2316 offset -= skb_headlen(skb); 2317 2318 /* Find where we are in frag list */ 2319 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2320 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2321 2322 if (offset < frag->size) 2323 break; 2324 2325 offset -= frag->size; 2326 } 2327 2328 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2329 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2330 2331 slen = min_t(size_t, len, frag->size - offset); 2332 2333 while (slen) { 2334 ret = kernel_sendpage_locked(sk, frag->page.p, 2335 frag->page_offset + offset, 2336 slen, MSG_DONTWAIT); 2337 if (ret <= 0) 2338 goto error; 2339 2340 len -= ret; 2341 offset += ret; 2342 slen -= ret; 2343 } 2344 2345 offset = 0; 2346 } 2347 2348 if (len) { 2349 /* Process any frag lists */ 2350 2351 if (skb == head) { 2352 if (skb_has_frag_list(skb)) { 2353 skb = skb_shinfo(skb)->frag_list; 2354 goto do_frag_list; 2355 } 2356 } else if (skb->next) { 2357 skb = skb->next; 2358 goto do_frag_list; 2359 } 2360 } 2361 2362 out: 2363 return orig_len - len; 2364 2365 error: 2366 return orig_len == len ? ret : orig_len - len; 2367 } 2368 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2369 2370 /* Send skb data on a socket. */ 2371 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2372 { 2373 int ret = 0; 2374 2375 lock_sock(sk); 2376 ret = skb_send_sock_locked(sk, skb, offset, len); 2377 release_sock(sk); 2378 2379 return ret; 2380 } 2381 EXPORT_SYMBOL_GPL(skb_send_sock); 2382 2383 /** 2384 * skb_store_bits - store bits from kernel buffer to skb 2385 * @skb: destination buffer 2386 * @offset: offset in destination 2387 * @from: source buffer 2388 * @len: number of bytes to copy 2389 * 2390 * Copy the specified number of bytes from the source buffer to the 2391 * destination skb. This function handles all the messy bits of 2392 * traversing fragment lists and such. 2393 */ 2394 2395 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2396 { 2397 int start = skb_headlen(skb); 2398 struct sk_buff *frag_iter; 2399 int i, copy; 2400 2401 if (offset > (int)skb->len - len) 2402 goto fault; 2403 2404 if ((copy = start - offset) > 0) { 2405 if (copy > len) 2406 copy = len; 2407 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2408 if ((len -= copy) == 0) 2409 return 0; 2410 offset += copy; 2411 from += copy; 2412 } 2413 2414 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2415 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2416 int end; 2417 2418 WARN_ON(start > offset + len); 2419 2420 end = start + skb_frag_size(frag); 2421 if ((copy = end - offset) > 0) { 2422 u32 p_off, p_len, copied; 2423 struct page *p; 2424 u8 *vaddr; 2425 2426 if (copy > len) 2427 copy = len; 2428 2429 skb_frag_foreach_page(frag, 2430 frag->page_offset + offset - start, 2431 copy, p, p_off, p_len, copied) { 2432 vaddr = kmap_atomic(p); 2433 memcpy(vaddr + p_off, from + copied, p_len); 2434 kunmap_atomic(vaddr); 2435 } 2436 2437 if ((len -= copy) == 0) 2438 return 0; 2439 offset += copy; 2440 from += copy; 2441 } 2442 start = end; 2443 } 2444 2445 skb_walk_frags(skb, frag_iter) { 2446 int end; 2447 2448 WARN_ON(start > offset + len); 2449 2450 end = start + frag_iter->len; 2451 if ((copy = end - offset) > 0) { 2452 if (copy > len) 2453 copy = len; 2454 if (skb_store_bits(frag_iter, offset - start, 2455 from, copy)) 2456 goto fault; 2457 if ((len -= copy) == 0) 2458 return 0; 2459 offset += copy; 2460 from += copy; 2461 } 2462 start = end; 2463 } 2464 if (!len) 2465 return 0; 2466 2467 fault: 2468 return -EFAULT; 2469 } 2470 EXPORT_SYMBOL(skb_store_bits); 2471 2472 /* Checksum skb data. */ 2473 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2474 __wsum csum, const struct skb_checksum_ops *ops) 2475 { 2476 int start = skb_headlen(skb); 2477 int i, copy = start - offset; 2478 struct sk_buff *frag_iter; 2479 int pos = 0; 2480 2481 /* Checksum header. */ 2482 if (copy > 0) { 2483 if (copy > len) 2484 copy = len; 2485 csum = ops->update(skb->data + offset, copy, csum); 2486 if ((len -= copy) == 0) 2487 return csum; 2488 offset += copy; 2489 pos = copy; 2490 } 2491 2492 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2493 int end; 2494 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2495 2496 WARN_ON(start > offset + len); 2497 2498 end = start + skb_frag_size(frag); 2499 if ((copy = end - offset) > 0) { 2500 u32 p_off, p_len, copied; 2501 struct page *p; 2502 __wsum csum2; 2503 u8 *vaddr; 2504 2505 if (copy > len) 2506 copy = len; 2507 2508 skb_frag_foreach_page(frag, 2509 frag->page_offset + offset - start, 2510 copy, p, p_off, p_len, copied) { 2511 vaddr = kmap_atomic(p); 2512 csum2 = ops->update(vaddr + p_off, p_len, 0); 2513 kunmap_atomic(vaddr); 2514 csum = ops->combine(csum, csum2, pos, p_len); 2515 pos += p_len; 2516 } 2517 2518 if (!(len -= copy)) 2519 return csum; 2520 offset += copy; 2521 } 2522 start = end; 2523 } 2524 2525 skb_walk_frags(skb, frag_iter) { 2526 int end; 2527 2528 WARN_ON(start > offset + len); 2529 2530 end = start + frag_iter->len; 2531 if ((copy = end - offset) > 0) { 2532 __wsum csum2; 2533 if (copy > len) 2534 copy = len; 2535 csum2 = __skb_checksum(frag_iter, offset - start, 2536 copy, 0, ops); 2537 csum = ops->combine(csum, csum2, pos, copy); 2538 if ((len -= copy) == 0) 2539 return csum; 2540 offset += copy; 2541 pos += copy; 2542 } 2543 start = end; 2544 } 2545 BUG_ON(len); 2546 2547 return csum; 2548 } 2549 EXPORT_SYMBOL(__skb_checksum); 2550 2551 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2552 int len, __wsum csum) 2553 { 2554 const struct skb_checksum_ops ops = { 2555 .update = csum_partial_ext, 2556 .combine = csum_block_add_ext, 2557 }; 2558 2559 return __skb_checksum(skb, offset, len, csum, &ops); 2560 } 2561 EXPORT_SYMBOL(skb_checksum); 2562 2563 /* Both of above in one bottle. */ 2564 2565 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2566 u8 *to, int len, __wsum csum) 2567 { 2568 int start = skb_headlen(skb); 2569 int i, copy = start - offset; 2570 struct sk_buff *frag_iter; 2571 int pos = 0; 2572 2573 /* Copy header. */ 2574 if (copy > 0) { 2575 if (copy > len) 2576 copy = len; 2577 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2578 copy, csum); 2579 if ((len -= copy) == 0) 2580 return csum; 2581 offset += copy; 2582 to += copy; 2583 pos = copy; 2584 } 2585 2586 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2587 int end; 2588 2589 WARN_ON(start > offset + len); 2590 2591 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2592 if ((copy = end - offset) > 0) { 2593 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2594 u32 p_off, p_len, copied; 2595 struct page *p; 2596 __wsum csum2; 2597 u8 *vaddr; 2598 2599 if (copy > len) 2600 copy = len; 2601 2602 skb_frag_foreach_page(frag, 2603 frag->page_offset + offset - start, 2604 copy, p, p_off, p_len, copied) { 2605 vaddr = kmap_atomic(p); 2606 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2607 to + copied, 2608 p_len, 0); 2609 kunmap_atomic(vaddr); 2610 csum = csum_block_add(csum, csum2, pos); 2611 pos += p_len; 2612 } 2613 2614 if (!(len -= copy)) 2615 return csum; 2616 offset += copy; 2617 to += copy; 2618 } 2619 start = end; 2620 } 2621 2622 skb_walk_frags(skb, frag_iter) { 2623 __wsum csum2; 2624 int end; 2625 2626 WARN_ON(start > offset + len); 2627 2628 end = start + frag_iter->len; 2629 if ((copy = end - offset) > 0) { 2630 if (copy > len) 2631 copy = len; 2632 csum2 = skb_copy_and_csum_bits(frag_iter, 2633 offset - start, 2634 to, copy, 0); 2635 csum = csum_block_add(csum, csum2, pos); 2636 if ((len -= copy) == 0) 2637 return csum; 2638 offset += copy; 2639 to += copy; 2640 pos += copy; 2641 } 2642 start = end; 2643 } 2644 BUG_ON(len); 2645 return csum; 2646 } 2647 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2648 2649 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2650 { 2651 net_warn_ratelimited( 2652 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2653 __func__); 2654 return 0; 2655 } 2656 2657 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2658 int offset, int len) 2659 { 2660 net_warn_ratelimited( 2661 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2662 __func__); 2663 return 0; 2664 } 2665 2666 static const struct skb_checksum_ops default_crc32c_ops = { 2667 .update = warn_crc32c_csum_update, 2668 .combine = warn_crc32c_csum_combine, 2669 }; 2670 2671 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2672 &default_crc32c_ops; 2673 EXPORT_SYMBOL(crc32c_csum_stub); 2674 2675 /** 2676 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2677 * @from: source buffer 2678 * 2679 * Calculates the amount of linear headroom needed in the 'to' skb passed 2680 * into skb_zerocopy(). 2681 */ 2682 unsigned int 2683 skb_zerocopy_headlen(const struct sk_buff *from) 2684 { 2685 unsigned int hlen = 0; 2686 2687 if (!from->head_frag || 2688 skb_headlen(from) < L1_CACHE_BYTES || 2689 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2690 hlen = skb_headlen(from); 2691 2692 if (skb_has_frag_list(from)) 2693 hlen = from->len; 2694 2695 return hlen; 2696 } 2697 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2698 2699 /** 2700 * skb_zerocopy - Zero copy skb to skb 2701 * @to: destination buffer 2702 * @from: source buffer 2703 * @len: number of bytes to copy from source buffer 2704 * @hlen: size of linear headroom in destination buffer 2705 * 2706 * Copies up to `len` bytes from `from` to `to` by creating references 2707 * to the frags in the source buffer. 2708 * 2709 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2710 * headroom in the `to` buffer. 2711 * 2712 * Return value: 2713 * 0: everything is OK 2714 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2715 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2716 */ 2717 int 2718 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2719 { 2720 int i, j = 0; 2721 int plen = 0; /* length of skb->head fragment */ 2722 int ret; 2723 struct page *page; 2724 unsigned int offset; 2725 2726 BUG_ON(!from->head_frag && !hlen); 2727 2728 /* dont bother with small payloads */ 2729 if (len <= skb_tailroom(to)) 2730 return skb_copy_bits(from, 0, skb_put(to, len), len); 2731 2732 if (hlen) { 2733 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2734 if (unlikely(ret)) 2735 return ret; 2736 len -= hlen; 2737 } else { 2738 plen = min_t(int, skb_headlen(from), len); 2739 if (plen) { 2740 page = virt_to_head_page(from->head); 2741 offset = from->data - (unsigned char *)page_address(page); 2742 __skb_fill_page_desc(to, 0, page, offset, plen); 2743 get_page(page); 2744 j = 1; 2745 len -= plen; 2746 } 2747 } 2748 2749 to->truesize += len + plen; 2750 to->len += len + plen; 2751 to->data_len += len + plen; 2752 2753 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2754 skb_tx_error(from); 2755 return -ENOMEM; 2756 } 2757 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2758 2759 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2760 if (!len) 2761 break; 2762 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2763 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2764 len -= skb_shinfo(to)->frags[j].size; 2765 skb_frag_ref(to, j); 2766 j++; 2767 } 2768 skb_shinfo(to)->nr_frags = j; 2769 2770 return 0; 2771 } 2772 EXPORT_SYMBOL_GPL(skb_zerocopy); 2773 2774 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2775 { 2776 __wsum csum; 2777 long csstart; 2778 2779 if (skb->ip_summed == CHECKSUM_PARTIAL) 2780 csstart = skb_checksum_start_offset(skb); 2781 else 2782 csstart = skb_headlen(skb); 2783 2784 BUG_ON(csstart > skb_headlen(skb)); 2785 2786 skb_copy_from_linear_data(skb, to, csstart); 2787 2788 csum = 0; 2789 if (csstart != skb->len) 2790 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2791 skb->len - csstart, 0); 2792 2793 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2794 long csstuff = csstart + skb->csum_offset; 2795 2796 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2797 } 2798 } 2799 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2800 2801 /** 2802 * skb_dequeue - remove from the head of the queue 2803 * @list: list to dequeue from 2804 * 2805 * Remove the head of the list. The list lock is taken so the function 2806 * may be used safely with other locking list functions. The head item is 2807 * returned or %NULL if the list is empty. 2808 */ 2809 2810 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2811 { 2812 unsigned long flags; 2813 struct sk_buff *result; 2814 2815 spin_lock_irqsave(&list->lock, flags); 2816 result = __skb_dequeue(list); 2817 spin_unlock_irqrestore(&list->lock, flags); 2818 return result; 2819 } 2820 EXPORT_SYMBOL(skb_dequeue); 2821 2822 /** 2823 * skb_dequeue_tail - remove from the tail of the queue 2824 * @list: list to dequeue from 2825 * 2826 * Remove the tail of the list. The list lock is taken so the function 2827 * may be used safely with other locking list functions. The tail item is 2828 * returned or %NULL if the list is empty. 2829 */ 2830 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2831 { 2832 unsigned long flags; 2833 struct sk_buff *result; 2834 2835 spin_lock_irqsave(&list->lock, flags); 2836 result = __skb_dequeue_tail(list); 2837 spin_unlock_irqrestore(&list->lock, flags); 2838 return result; 2839 } 2840 EXPORT_SYMBOL(skb_dequeue_tail); 2841 2842 /** 2843 * skb_queue_purge - empty a list 2844 * @list: list to empty 2845 * 2846 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2847 * the list and one reference dropped. This function takes the list 2848 * lock and is atomic with respect to other list locking functions. 2849 */ 2850 void skb_queue_purge(struct sk_buff_head *list) 2851 { 2852 struct sk_buff *skb; 2853 while ((skb = skb_dequeue(list)) != NULL) 2854 kfree_skb(skb); 2855 } 2856 EXPORT_SYMBOL(skb_queue_purge); 2857 2858 /** 2859 * skb_rbtree_purge - empty a skb rbtree 2860 * @root: root of the rbtree to empty 2861 * 2862 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2863 * the list and one reference dropped. This function does not take 2864 * any lock. Synchronization should be handled by the caller (e.g., TCP 2865 * out-of-order queue is protected by the socket lock). 2866 */ 2867 void skb_rbtree_purge(struct rb_root *root) 2868 { 2869 struct rb_node *p = rb_first(root); 2870 2871 while (p) { 2872 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2873 2874 p = rb_next(p); 2875 rb_erase(&skb->rbnode, root); 2876 kfree_skb(skb); 2877 } 2878 } 2879 2880 /** 2881 * skb_queue_head - queue a buffer at the list head 2882 * @list: list to use 2883 * @newsk: buffer to queue 2884 * 2885 * Queue a buffer at the start of the list. This function takes the 2886 * list lock and can be used safely with other locking &sk_buff functions 2887 * safely. 2888 * 2889 * A buffer cannot be placed on two lists at the same time. 2890 */ 2891 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2892 { 2893 unsigned long flags; 2894 2895 spin_lock_irqsave(&list->lock, flags); 2896 __skb_queue_head(list, newsk); 2897 spin_unlock_irqrestore(&list->lock, flags); 2898 } 2899 EXPORT_SYMBOL(skb_queue_head); 2900 2901 /** 2902 * skb_queue_tail - queue a buffer at the list tail 2903 * @list: list to use 2904 * @newsk: buffer to queue 2905 * 2906 * Queue a buffer at the tail of the list. This function takes the 2907 * list lock and can be used safely with other locking &sk_buff functions 2908 * safely. 2909 * 2910 * A buffer cannot be placed on two lists at the same time. 2911 */ 2912 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2913 { 2914 unsigned long flags; 2915 2916 spin_lock_irqsave(&list->lock, flags); 2917 __skb_queue_tail(list, newsk); 2918 spin_unlock_irqrestore(&list->lock, flags); 2919 } 2920 EXPORT_SYMBOL(skb_queue_tail); 2921 2922 /** 2923 * skb_unlink - remove a buffer from a list 2924 * @skb: buffer to remove 2925 * @list: list to use 2926 * 2927 * Remove a packet from a list. The list locks are taken and this 2928 * function is atomic with respect to other list locked calls 2929 * 2930 * You must know what list the SKB is on. 2931 */ 2932 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2933 { 2934 unsigned long flags; 2935 2936 spin_lock_irqsave(&list->lock, flags); 2937 __skb_unlink(skb, list); 2938 spin_unlock_irqrestore(&list->lock, flags); 2939 } 2940 EXPORT_SYMBOL(skb_unlink); 2941 2942 /** 2943 * skb_append - append a buffer 2944 * @old: buffer to insert after 2945 * @newsk: buffer to insert 2946 * @list: list to use 2947 * 2948 * Place a packet after a given packet in a list. The list locks are taken 2949 * and this function is atomic with respect to other list locked calls. 2950 * A buffer cannot be placed on two lists at the same time. 2951 */ 2952 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2953 { 2954 unsigned long flags; 2955 2956 spin_lock_irqsave(&list->lock, flags); 2957 __skb_queue_after(list, old, newsk); 2958 spin_unlock_irqrestore(&list->lock, flags); 2959 } 2960 EXPORT_SYMBOL(skb_append); 2961 2962 /** 2963 * skb_insert - insert a buffer 2964 * @old: buffer to insert before 2965 * @newsk: buffer to insert 2966 * @list: list to use 2967 * 2968 * Place a packet before a given packet in a list. The list locks are 2969 * taken and this function is atomic with respect to other list locked 2970 * calls. 2971 * 2972 * A buffer cannot be placed on two lists at the same time. 2973 */ 2974 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2975 { 2976 unsigned long flags; 2977 2978 spin_lock_irqsave(&list->lock, flags); 2979 __skb_insert(newsk, old->prev, old, list); 2980 spin_unlock_irqrestore(&list->lock, flags); 2981 } 2982 EXPORT_SYMBOL(skb_insert); 2983 2984 static inline void skb_split_inside_header(struct sk_buff *skb, 2985 struct sk_buff* skb1, 2986 const u32 len, const int pos) 2987 { 2988 int i; 2989 2990 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2991 pos - len); 2992 /* And move data appendix as is. */ 2993 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2994 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2995 2996 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2997 skb_shinfo(skb)->nr_frags = 0; 2998 skb1->data_len = skb->data_len; 2999 skb1->len += skb1->data_len; 3000 skb->data_len = 0; 3001 skb->len = len; 3002 skb_set_tail_pointer(skb, len); 3003 } 3004 3005 static inline void skb_split_no_header(struct sk_buff *skb, 3006 struct sk_buff* skb1, 3007 const u32 len, int pos) 3008 { 3009 int i, k = 0; 3010 const int nfrags = skb_shinfo(skb)->nr_frags; 3011 3012 skb_shinfo(skb)->nr_frags = 0; 3013 skb1->len = skb1->data_len = skb->len - len; 3014 skb->len = len; 3015 skb->data_len = len - pos; 3016 3017 for (i = 0; i < nfrags; i++) { 3018 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3019 3020 if (pos + size > len) { 3021 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3022 3023 if (pos < len) { 3024 /* Split frag. 3025 * We have two variants in this case: 3026 * 1. Move all the frag to the second 3027 * part, if it is possible. F.e. 3028 * this approach is mandatory for TUX, 3029 * where splitting is expensive. 3030 * 2. Split is accurately. We make this. 3031 */ 3032 skb_frag_ref(skb, i); 3033 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3034 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3035 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3036 skb_shinfo(skb)->nr_frags++; 3037 } 3038 k++; 3039 } else 3040 skb_shinfo(skb)->nr_frags++; 3041 pos += size; 3042 } 3043 skb_shinfo(skb1)->nr_frags = k; 3044 } 3045 3046 /** 3047 * skb_split - Split fragmented skb to two parts at length len. 3048 * @skb: the buffer to split 3049 * @skb1: the buffer to receive the second part 3050 * @len: new length for skb 3051 */ 3052 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3053 { 3054 int pos = skb_headlen(skb); 3055 3056 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3057 SKBTX_SHARED_FRAG; 3058 skb_zerocopy_clone(skb1, skb, 0); 3059 if (len < pos) /* Split line is inside header. */ 3060 skb_split_inside_header(skb, skb1, len, pos); 3061 else /* Second chunk has no header, nothing to copy. */ 3062 skb_split_no_header(skb, skb1, len, pos); 3063 } 3064 EXPORT_SYMBOL(skb_split); 3065 3066 /* Shifting from/to a cloned skb is a no-go. 3067 * 3068 * Caller cannot keep skb_shinfo related pointers past calling here! 3069 */ 3070 static int skb_prepare_for_shift(struct sk_buff *skb) 3071 { 3072 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3073 } 3074 3075 /** 3076 * skb_shift - Shifts paged data partially from skb to another 3077 * @tgt: buffer into which tail data gets added 3078 * @skb: buffer from which the paged data comes from 3079 * @shiftlen: shift up to this many bytes 3080 * 3081 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3082 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3083 * It's up to caller to free skb if everything was shifted. 3084 * 3085 * If @tgt runs out of frags, the whole operation is aborted. 3086 * 3087 * Skb cannot include anything else but paged data while tgt is allowed 3088 * to have non-paged data as well. 3089 * 3090 * TODO: full sized shift could be optimized but that would need 3091 * specialized skb free'er to handle frags without up-to-date nr_frags. 3092 */ 3093 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3094 { 3095 int from, to, merge, todo; 3096 struct skb_frag_struct *fragfrom, *fragto; 3097 3098 BUG_ON(shiftlen > skb->len); 3099 3100 if (skb_headlen(skb)) 3101 return 0; 3102 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3103 return 0; 3104 3105 todo = shiftlen; 3106 from = 0; 3107 to = skb_shinfo(tgt)->nr_frags; 3108 fragfrom = &skb_shinfo(skb)->frags[from]; 3109 3110 /* Actual merge is delayed until the point when we know we can 3111 * commit all, so that we don't have to undo partial changes 3112 */ 3113 if (!to || 3114 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3115 fragfrom->page_offset)) { 3116 merge = -1; 3117 } else { 3118 merge = to - 1; 3119 3120 todo -= skb_frag_size(fragfrom); 3121 if (todo < 0) { 3122 if (skb_prepare_for_shift(skb) || 3123 skb_prepare_for_shift(tgt)) 3124 return 0; 3125 3126 /* All previous frag pointers might be stale! */ 3127 fragfrom = &skb_shinfo(skb)->frags[from]; 3128 fragto = &skb_shinfo(tgt)->frags[merge]; 3129 3130 skb_frag_size_add(fragto, shiftlen); 3131 skb_frag_size_sub(fragfrom, shiftlen); 3132 fragfrom->page_offset += shiftlen; 3133 3134 goto onlymerged; 3135 } 3136 3137 from++; 3138 } 3139 3140 /* Skip full, not-fitting skb to avoid expensive operations */ 3141 if ((shiftlen == skb->len) && 3142 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3143 return 0; 3144 3145 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3146 return 0; 3147 3148 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3149 if (to == MAX_SKB_FRAGS) 3150 return 0; 3151 3152 fragfrom = &skb_shinfo(skb)->frags[from]; 3153 fragto = &skb_shinfo(tgt)->frags[to]; 3154 3155 if (todo >= skb_frag_size(fragfrom)) { 3156 *fragto = *fragfrom; 3157 todo -= skb_frag_size(fragfrom); 3158 from++; 3159 to++; 3160 3161 } else { 3162 __skb_frag_ref(fragfrom); 3163 fragto->page = fragfrom->page; 3164 fragto->page_offset = fragfrom->page_offset; 3165 skb_frag_size_set(fragto, todo); 3166 3167 fragfrom->page_offset += todo; 3168 skb_frag_size_sub(fragfrom, todo); 3169 todo = 0; 3170 3171 to++; 3172 break; 3173 } 3174 } 3175 3176 /* Ready to "commit" this state change to tgt */ 3177 skb_shinfo(tgt)->nr_frags = to; 3178 3179 if (merge >= 0) { 3180 fragfrom = &skb_shinfo(skb)->frags[0]; 3181 fragto = &skb_shinfo(tgt)->frags[merge]; 3182 3183 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3184 __skb_frag_unref(fragfrom); 3185 } 3186 3187 /* Reposition in the original skb */ 3188 to = 0; 3189 while (from < skb_shinfo(skb)->nr_frags) 3190 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3191 skb_shinfo(skb)->nr_frags = to; 3192 3193 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3194 3195 onlymerged: 3196 /* Most likely the tgt won't ever need its checksum anymore, skb on 3197 * the other hand might need it if it needs to be resent 3198 */ 3199 tgt->ip_summed = CHECKSUM_PARTIAL; 3200 skb->ip_summed = CHECKSUM_PARTIAL; 3201 3202 /* Yak, is it really working this way? Some helper please? */ 3203 skb->len -= shiftlen; 3204 skb->data_len -= shiftlen; 3205 skb->truesize -= shiftlen; 3206 tgt->len += shiftlen; 3207 tgt->data_len += shiftlen; 3208 tgt->truesize += shiftlen; 3209 3210 return shiftlen; 3211 } 3212 3213 /** 3214 * skb_prepare_seq_read - Prepare a sequential read of skb data 3215 * @skb: the buffer to read 3216 * @from: lower offset of data to be read 3217 * @to: upper offset of data to be read 3218 * @st: state variable 3219 * 3220 * Initializes the specified state variable. Must be called before 3221 * invoking skb_seq_read() for the first time. 3222 */ 3223 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3224 unsigned int to, struct skb_seq_state *st) 3225 { 3226 st->lower_offset = from; 3227 st->upper_offset = to; 3228 st->root_skb = st->cur_skb = skb; 3229 st->frag_idx = st->stepped_offset = 0; 3230 st->frag_data = NULL; 3231 } 3232 EXPORT_SYMBOL(skb_prepare_seq_read); 3233 3234 /** 3235 * skb_seq_read - Sequentially read skb data 3236 * @consumed: number of bytes consumed by the caller so far 3237 * @data: destination pointer for data to be returned 3238 * @st: state variable 3239 * 3240 * Reads a block of skb data at @consumed relative to the 3241 * lower offset specified to skb_prepare_seq_read(). Assigns 3242 * the head of the data block to @data and returns the length 3243 * of the block or 0 if the end of the skb data or the upper 3244 * offset has been reached. 3245 * 3246 * The caller is not required to consume all of the data 3247 * returned, i.e. @consumed is typically set to the number 3248 * of bytes already consumed and the next call to 3249 * skb_seq_read() will return the remaining part of the block. 3250 * 3251 * Note 1: The size of each block of data returned can be arbitrary, 3252 * this limitation is the cost for zerocopy sequential 3253 * reads of potentially non linear data. 3254 * 3255 * Note 2: Fragment lists within fragments are not implemented 3256 * at the moment, state->root_skb could be replaced with 3257 * a stack for this purpose. 3258 */ 3259 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3260 struct skb_seq_state *st) 3261 { 3262 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3263 skb_frag_t *frag; 3264 3265 if (unlikely(abs_offset >= st->upper_offset)) { 3266 if (st->frag_data) { 3267 kunmap_atomic(st->frag_data); 3268 st->frag_data = NULL; 3269 } 3270 return 0; 3271 } 3272 3273 next_skb: 3274 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3275 3276 if (abs_offset < block_limit && !st->frag_data) { 3277 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3278 return block_limit - abs_offset; 3279 } 3280 3281 if (st->frag_idx == 0 && !st->frag_data) 3282 st->stepped_offset += skb_headlen(st->cur_skb); 3283 3284 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3285 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3286 block_limit = skb_frag_size(frag) + st->stepped_offset; 3287 3288 if (abs_offset < block_limit) { 3289 if (!st->frag_data) 3290 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3291 3292 *data = (u8 *) st->frag_data + frag->page_offset + 3293 (abs_offset - st->stepped_offset); 3294 3295 return block_limit - abs_offset; 3296 } 3297 3298 if (st->frag_data) { 3299 kunmap_atomic(st->frag_data); 3300 st->frag_data = NULL; 3301 } 3302 3303 st->frag_idx++; 3304 st->stepped_offset += skb_frag_size(frag); 3305 } 3306 3307 if (st->frag_data) { 3308 kunmap_atomic(st->frag_data); 3309 st->frag_data = NULL; 3310 } 3311 3312 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3313 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3314 st->frag_idx = 0; 3315 goto next_skb; 3316 } else if (st->cur_skb->next) { 3317 st->cur_skb = st->cur_skb->next; 3318 st->frag_idx = 0; 3319 goto next_skb; 3320 } 3321 3322 return 0; 3323 } 3324 EXPORT_SYMBOL(skb_seq_read); 3325 3326 /** 3327 * skb_abort_seq_read - Abort a sequential read of skb data 3328 * @st: state variable 3329 * 3330 * Must be called if skb_seq_read() was not called until it 3331 * returned 0. 3332 */ 3333 void skb_abort_seq_read(struct skb_seq_state *st) 3334 { 3335 if (st->frag_data) 3336 kunmap_atomic(st->frag_data); 3337 } 3338 EXPORT_SYMBOL(skb_abort_seq_read); 3339 3340 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3341 3342 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3343 struct ts_config *conf, 3344 struct ts_state *state) 3345 { 3346 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3347 } 3348 3349 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3350 { 3351 skb_abort_seq_read(TS_SKB_CB(state)); 3352 } 3353 3354 /** 3355 * skb_find_text - Find a text pattern in skb data 3356 * @skb: the buffer to look in 3357 * @from: search offset 3358 * @to: search limit 3359 * @config: textsearch configuration 3360 * 3361 * Finds a pattern in the skb data according to the specified 3362 * textsearch configuration. Use textsearch_next() to retrieve 3363 * subsequent occurrences of the pattern. Returns the offset 3364 * to the first occurrence or UINT_MAX if no match was found. 3365 */ 3366 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3367 unsigned int to, struct ts_config *config) 3368 { 3369 struct ts_state state; 3370 unsigned int ret; 3371 3372 config->get_next_block = skb_ts_get_next_block; 3373 config->finish = skb_ts_finish; 3374 3375 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3376 3377 ret = textsearch_find(config, &state); 3378 return (ret <= to - from ? ret : UINT_MAX); 3379 } 3380 EXPORT_SYMBOL(skb_find_text); 3381 3382 /** 3383 * skb_append_datato_frags - append the user data to a skb 3384 * @sk: sock structure 3385 * @skb: skb structure to be appended with user data. 3386 * @getfrag: call back function to be used for getting the user data 3387 * @from: pointer to user message iov 3388 * @length: length of the iov message 3389 * 3390 * Description: This procedure append the user data in the fragment part 3391 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3392 */ 3393 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3394 int (*getfrag)(void *from, char *to, int offset, 3395 int len, int odd, struct sk_buff *skb), 3396 void *from, int length) 3397 { 3398 int frg_cnt = skb_shinfo(skb)->nr_frags; 3399 int copy; 3400 int offset = 0; 3401 int ret; 3402 struct page_frag *pfrag = ¤t->task_frag; 3403 3404 do { 3405 /* Return error if we don't have space for new frag */ 3406 if (frg_cnt >= MAX_SKB_FRAGS) 3407 return -EMSGSIZE; 3408 3409 if (!sk_page_frag_refill(sk, pfrag)) 3410 return -ENOMEM; 3411 3412 /* copy the user data to page */ 3413 copy = min_t(int, length, pfrag->size - pfrag->offset); 3414 3415 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3416 offset, copy, 0, skb); 3417 if (ret < 0) 3418 return -EFAULT; 3419 3420 /* copy was successful so update the size parameters */ 3421 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3422 copy); 3423 frg_cnt++; 3424 pfrag->offset += copy; 3425 get_page(pfrag->page); 3426 3427 skb->truesize += copy; 3428 refcount_add(copy, &sk->sk_wmem_alloc); 3429 skb->len += copy; 3430 skb->data_len += copy; 3431 offset += copy; 3432 length -= copy; 3433 3434 } while (length > 0); 3435 3436 return 0; 3437 } 3438 EXPORT_SYMBOL(skb_append_datato_frags); 3439 3440 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3441 int offset, size_t size) 3442 { 3443 int i = skb_shinfo(skb)->nr_frags; 3444 3445 if (skb_can_coalesce(skb, i, page, offset)) { 3446 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3447 } else if (i < MAX_SKB_FRAGS) { 3448 get_page(page); 3449 skb_fill_page_desc(skb, i, page, offset, size); 3450 } else { 3451 return -EMSGSIZE; 3452 } 3453 3454 return 0; 3455 } 3456 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3457 3458 /** 3459 * skb_pull_rcsum - pull skb and update receive checksum 3460 * @skb: buffer to update 3461 * @len: length of data pulled 3462 * 3463 * This function performs an skb_pull on the packet and updates 3464 * the CHECKSUM_COMPLETE checksum. It should be used on 3465 * receive path processing instead of skb_pull unless you know 3466 * that the checksum difference is zero (e.g., a valid IP header) 3467 * or you are setting ip_summed to CHECKSUM_NONE. 3468 */ 3469 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3470 { 3471 unsigned char *data = skb->data; 3472 3473 BUG_ON(len > skb->len); 3474 __skb_pull(skb, len); 3475 skb_postpull_rcsum(skb, data, len); 3476 return skb->data; 3477 } 3478 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3479 3480 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3481 { 3482 skb_frag_t head_frag; 3483 struct page *page; 3484 3485 page = virt_to_head_page(frag_skb->head); 3486 head_frag.page.p = page; 3487 head_frag.page_offset = frag_skb->data - 3488 (unsigned char *)page_address(page); 3489 head_frag.size = skb_headlen(frag_skb); 3490 return head_frag; 3491 } 3492 3493 /** 3494 * skb_segment - Perform protocol segmentation on skb. 3495 * @head_skb: buffer to segment 3496 * @features: features for the output path (see dev->features) 3497 * 3498 * This function performs segmentation on the given skb. It returns 3499 * a pointer to the first in a list of new skbs for the segments. 3500 * In case of error it returns ERR_PTR(err). 3501 */ 3502 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3503 netdev_features_t features) 3504 { 3505 struct sk_buff *segs = NULL; 3506 struct sk_buff *tail = NULL; 3507 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3508 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3509 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3510 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3511 struct sk_buff *frag_skb = head_skb; 3512 unsigned int offset = doffset; 3513 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3514 unsigned int partial_segs = 0; 3515 unsigned int headroom; 3516 unsigned int len = head_skb->len; 3517 __be16 proto; 3518 bool csum, sg; 3519 int nfrags = skb_shinfo(head_skb)->nr_frags; 3520 int err = -ENOMEM; 3521 int i = 0; 3522 int pos; 3523 int dummy; 3524 3525 __skb_push(head_skb, doffset); 3526 proto = skb_network_protocol(head_skb, &dummy); 3527 if (unlikely(!proto)) 3528 return ERR_PTR(-EINVAL); 3529 3530 sg = !!(features & NETIF_F_SG); 3531 csum = !!can_checksum_protocol(features, proto); 3532 3533 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3534 if (!(features & NETIF_F_GSO_PARTIAL)) { 3535 struct sk_buff *iter; 3536 unsigned int frag_len; 3537 3538 if (!list_skb || 3539 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3540 goto normal; 3541 3542 /* If we get here then all the required 3543 * GSO features except frag_list are supported. 3544 * Try to split the SKB to multiple GSO SKBs 3545 * with no frag_list. 3546 * Currently we can do that only when the buffers don't 3547 * have a linear part and all the buffers except 3548 * the last are of the same length. 3549 */ 3550 frag_len = list_skb->len; 3551 skb_walk_frags(head_skb, iter) { 3552 if (frag_len != iter->len && iter->next) 3553 goto normal; 3554 if (skb_headlen(iter) && !iter->head_frag) 3555 goto normal; 3556 3557 len -= iter->len; 3558 } 3559 3560 if (len != frag_len) 3561 goto normal; 3562 } 3563 3564 /* GSO partial only requires that we trim off any excess that 3565 * doesn't fit into an MSS sized block, so take care of that 3566 * now. 3567 */ 3568 partial_segs = len / mss; 3569 if (partial_segs > 1) 3570 mss *= partial_segs; 3571 else 3572 partial_segs = 0; 3573 } 3574 3575 normal: 3576 headroom = skb_headroom(head_skb); 3577 pos = skb_headlen(head_skb); 3578 3579 do { 3580 struct sk_buff *nskb; 3581 skb_frag_t *nskb_frag; 3582 int hsize; 3583 int size; 3584 3585 if (unlikely(mss == GSO_BY_FRAGS)) { 3586 len = list_skb->len; 3587 } else { 3588 len = head_skb->len - offset; 3589 if (len > mss) 3590 len = mss; 3591 } 3592 3593 hsize = skb_headlen(head_skb) - offset; 3594 if (hsize < 0) 3595 hsize = 0; 3596 if (hsize > len || !sg) 3597 hsize = len; 3598 3599 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3600 (skb_headlen(list_skb) == len || sg)) { 3601 BUG_ON(skb_headlen(list_skb) > len); 3602 3603 i = 0; 3604 nfrags = skb_shinfo(list_skb)->nr_frags; 3605 frag = skb_shinfo(list_skb)->frags; 3606 frag_skb = list_skb; 3607 pos += skb_headlen(list_skb); 3608 3609 while (pos < offset + len) { 3610 BUG_ON(i >= nfrags); 3611 3612 size = skb_frag_size(frag); 3613 if (pos + size > offset + len) 3614 break; 3615 3616 i++; 3617 pos += size; 3618 frag++; 3619 } 3620 3621 nskb = skb_clone(list_skb, GFP_ATOMIC); 3622 list_skb = list_skb->next; 3623 3624 if (unlikely(!nskb)) 3625 goto err; 3626 3627 if (unlikely(pskb_trim(nskb, len))) { 3628 kfree_skb(nskb); 3629 goto err; 3630 } 3631 3632 hsize = skb_end_offset(nskb); 3633 if (skb_cow_head(nskb, doffset + headroom)) { 3634 kfree_skb(nskb); 3635 goto err; 3636 } 3637 3638 nskb->truesize += skb_end_offset(nskb) - hsize; 3639 skb_release_head_state(nskb); 3640 __skb_push(nskb, doffset); 3641 } else { 3642 nskb = __alloc_skb(hsize + doffset + headroom, 3643 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3644 NUMA_NO_NODE); 3645 3646 if (unlikely(!nskb)) 3647 goto err; 3648 3649 skb_reserve(nskb, headroom); 3650 __skb_put(nskb, doffset); 3651 } 3652 3653 if (segs) 3654 tail->next = nskb; 3655 else 3656 segs = nskb; 3657 tail = nskb; 3658 3659 __copy_skb_header(nskb, head_skb); 3660 3661 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3662 skb_reset_mac_len(nskb); 3663 3664 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3665 nskb->data - tnl_hlen, 3666 doffset + tnl_hlen); 3667 3668 if (nskb->len == len + doffset) 3669 goto perform_csum_check; 3670 3671 if (!sg) { 3672 if (!nskb->remcsum_offload) 3673 nskb->ip_summed = CHECKSUM_NONE; 3674 SKB_GSO_CB(nskb)->csum = 3675 skb_copy_and_csum_bits(head_skb, offset, 3676 skb_put(nskb, len), 3677 len, 0); 3678 SKB_GSO_CB(nskb)->csum_start = 3679 skb_headroom(nskb) + doffset; 3680 continue; 3681 } 3682 3683 nskb_frag = skb_shinfo(nskb)->frags; 3684 3685 skb_copy_from_linear_data_offset(head_skb, offset, 3686 skb_put(nskb, hsize), hsize); 3687 3688 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3689 SKBTX_SHARED_FRAG; 3690 3691 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3692 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3693 goto err; 3694 3695 while (pos < offset + len) { 3696 if (i >= nfrags) { 3697 i = 0; 3698 nfrags = skb_shinfo(list_skb)->nr_frags; 3699 frag = skb_shinfo(list_skb)->frags; 3700 frag_skb = list_skb; 3701 if (!skb_headlen(list_skb)) { 3702 BUG_ON(!nfrags); 3703 } else { 3704 BUG_ON(!list_skb->head_frag); 3705 3706 /* to make room for head_frag. */ 3707 i--; 3708 frag--; 3709 } 3710 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3711 skb_zerocopy_clone(nskb, frag_skb, 3712 GFP_ATOMIC)) 3713 goto err; 3714 3715 list_skb = list_skb->next; 3716 } 3717 3718 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3719 MAX_SKB_FRAGS)) { 3720 net_warn_ratelimited( 3721 "skb_segment: too many frags: %u %u\n", 3722 pos, mss); 3723 err = -EINVAL; 3724 goto err; 3725 } 3726 3727 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3728 __skb_frag_ref(nskb_frag); 3729 size = skb_frag_size(nskb_frag); 3730 3731 if (pos < offset) { 3732 nskb_frag->page_offset += offset - pos; 3733 skb_frag_size_sub(nskb_frag, offset - pos); 3734 } 3735 3736 skb_shinfo(nskb)->nr_frags++; 3737 3738 if (pos + size <= offset + len) { 3739 i++; 3740 frag++; 3741 pos += size; 3742 } else { 3743 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3744 goto skip_fraglist; 3745 } 3746 3747 nskb_frag++; 3748 } 3749 3750 skip_fraglist: 3751 nskb->data_len = len - hsize; 3752 nskb->len += nskb->data_len; 3753 nskb->truesize += nskb->data_len; 3754 3755 perform_csum_check: 3756 if (!csum) { 3757 if (skb_has_shared_frag(nskb) && 3758 __skb_linearize(nskb)) 3759 goto err; 3760 3761 if (!nskb->remcsum_offload) 3762 nskb->ip_summed = CHECKSUM_NONE; 3763 SKB_GSO_CB(nskb)->csum = 3764 skb_checksum(nskb, doffset, 3765 nskb->len - doffset, 0); 3766 SKB_GSO_CB(nskb)->csum_start = 3767 skb_headroom(nskb) + doffset; 3768 } 3769 } while ((offset += len) < head_skb->len); 3770 3771 /* Some callers want to get the end of the list. 3772 * Put it in segs->prev to avoid walking the list. 3773 * (see validate_xmit_skb_list() for example) 3774 */ 3775 segs->prev = tail; 3776 3777 if (partial_segs) { 3778 struct sk_buff *iter; 3779 int type = skb_shinfo(head_skb)->gso_type; 3780 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3781 3782 /* Update type to add partial and then remove dodgy if set */ 3783 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3784 type &= ~SKB_GSO_DODGY; 3785 3786 /* Update GSO info and prepare to start updating headers on 3787 * our way back down the stack of protocols. 3788 */ 3789 for (iter = segs; iter; iter = iter->next) { 3790 skb_shinfo(iter)->gso_size = gso_size; 3791 skb_shinfo(iter)->gso_segs = partial_segs; 3792 skb_shinfo(iter)->gso_type = type; 3793 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3794 } 3795 3796 if (tail->len - doffset <= gso_size) 3797 skb_shinfo(tail)->gso_size = 0; 3798 else if (tail != segs) 3799 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3800 } 3801 3802 /* Following permits correct backpressure, for protocols 3803 * using skb_set_owner_w(). 3804 * Idea is to tranfert ownership from head_skb to last segment. 3805 */ 3806 if (head_skb->destructor == sock_wfree) { 3807 swap(tail->truesize, head_skb->truesize); 3808 swap(tail->destructor, head_skb->destructor); 3809 swap(tail->sk, head_skb->sk); 3810 } 3811 return segs; 3812 3813 err: 3814 kfree_skb_list(segs); 3815 return ERR_PTR(err); 3816 } 3817 EXPORT_SYMBOL_GPL(skb_segment); 3818 3819 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3820 { 3821 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3822 unsigned int offset = skb_gro_offset(skb); 3823 unsigned int headlen = skb_headlen(skb); 3824 unsigned int len = skb_gro_len(skb); 3825 struct sk_buff *lp, *p = *head; 3826 unsigned int delta_truesize; 3827 3828 if (unlikely(p->len + len >= 65536)) 3829 return -E2BIG; 3830 3831 lp = NAPI_GRO_CB(p)->last; 3832 pinfo = skb_shinfo(lp); 3833 3834 if (headlen <= offset) { 3835 skb_frag_t *frag; 3836 skb_frag_t *frag2; 3837 int i = skbinfo->nr_frags; 3838 int nr_frags = pinfo->nr_frags + i; 3839 3840 if (nr_frags > MAX_SKB_FRAGS) 3841 goto merge; 3842 3843 offset -= headlen; 3844 pinfo->nr_frags = nr_frags; 3845 skbinfo->nr_frags = 0; 3846 3847 frag = pinfo->frags + nr_frags; 3848 frag2 = skbinfo->frags + i; 3849 do { 3850 *--frag = *--frag2; 3851 } while (--i); 3852 3853 frag->page_offset += offset; 3854 skb_frag_size_sub(frag, offset); 3855 3856 /* all fragments truesize : remove (head size + sk_buff) */ 3857 delta_truesize = skb->truesize - 3858 SKB_TRUESIZE(skb_end_offset(skb)); 3859 3860 skb->truesize -= skb->data_len; 3861 skb->len -= skb->data_len; 3862 skb->data_len = 0; 3863 3864 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3865 goto done; 3866 } else if (skb->head_frag) { 3867 int nr_frags = pinfo->nr_frags; 3868 skb_frag_t *frag = pinfo->frags + nr_frags; 3869 struct page *page = virt_to_head_page(skb->head); 3870 unsigned int first_size = headlen - offset; 3871 unsigned int first_offset; 3872 3873 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3874 goto merge; 3875 3876 first_offset = skb->data - 3877 (unsigned char *)page_address(page) + 3878 offset; 3879 3880 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3881 3882 frag->page.p = page; 3883 frag->page_offset = first_offset; 3884 skb_frag_size_set(frag, first_size); 3885 3886 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3887 /* We dont need to clear skbinfo->nr_frags here */ 3888 3889 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3890 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3891 goto done; 3892 } 3893 3894 merge: 3895 delta_truesize = skb->truesize; 3896 if (offset > headlen) { 3897 unsigned int eat = offset - headlen; 3898 3899 skbinfo->frags[0].page_offset += eat; 3900 skb_frag_size_sub(&skbinfo->frags[0], eat); 3901 skb->data_len -= eat; 3902 skb->len -= eat; 3903 offset = headlen; 3904 } 3905 3906 __skb_pull(skb, offset); 3907 3908 if (NAPI_GRO_CB(p)->last == p) 3909 skb_shinfo(p)->frag_list = skb; 3910 else 3911 NAPI_GRO_CB(p)->last->next = skb; 3912 NAPI_GRO_CB(p)->last = skb; 3913 __skb_header_release(skb); 3914 lp = p; 3915 3916 done: 3917 NAPI_GRO_CB(p)->count++; 3918 p->data_len += len; 3919 p->truesize += delta_truesize; 3920 p->len += len; 3921 if (lp != p) { 3922 lp->data_len += len; 3923 lp->truesize += delta_truesize; 3924 lp->len += len; 3925 } 3926 NAPI_GRO_CB(skb)->same_flow = 1; 3927 return 0; 3928 } 3929 EXPORT_SYMBOL_GPL(skb_gro_receive); 3930 3931 void __init skb_init(void) 3932 { 3933 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3934 sizeof(struct sk_buff), 3935 0, 3936 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3937 offsetof(struct sk_buff, cb), 3938 sizeof_field(struct sk_buff, cb), 3939 NULL); 3940 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3941 sizeof(struct sk_buff_fclones), 3942 0, 3943 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3944 NULL); 3945 } 3946 3947 static int 3948 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3949 unsigned int recursion_level) 3950 { 3951 int start = skb_headlen(skb); 3952 int i, copy = start - offset; 3953 struct sk_buff *frag_iter; 3954 int elt = 0; 3955 3956 if (unlikely(recursion_level >= 24)) 3957 return -EMSGSIZE; 3958 3959 if (copy > 0) { 3960 if (copy > len) 3961 copy = len; 3962 sg_set_buf(sg, skb->data + offset, copy); 3963 elt++; 3964 if ((len -= copy) == 0) 3965 return elt; 3966 offset += copy; 3967 } 3968 3969 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3970 int end; 3971 3972 WARN_ON(start > offset + len); 3973 3974 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3975 if ((copy = end - offset) > 0) { 3976 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3977 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3978 return -EMSGSIZE; 3979 3980 if (copy > len) 3981 copy = len; 3982 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3983 frag->page_offset+offset-start); 3984 elt++; 3985 if (!(len -= copy)) 3986 return elt; 3987 offset += copy; 3988 } 3989 start = end; 3990 } 3991 3992 skb_walk_frags(skb, frag_iter) { 3993 int end, ret; 3994 3995 WARN_ON(start > offset + len); 3996 3997 end = start + frag_iter->len; 3998 if ((copy = end - offset) > 0) { 3999 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4000 return -EMSGSIZE; 4001 4002 if (copy > len) 4003 copy = len; 4004 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4005 copy, recursion_level + 1); 4006 if (unlikely(ret < 0)) 4007 return ret; 4008 elt += ret; 4009 if ((len -= copy) == 0) 4010 return elt; 4011 offset += copy; 4012 } 4013 start = end; 4014 } 4015 BUG_ON(len); 4016 return elt; 4017 } 4018 4019 /** 4020 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4021 * @skb: Socket buffer containing the buffers to be mapped 4022 * @sg: The scatter-gather list to map into 4023 * @offset: The offset into the buffer's contents to start mapping 4024 * @len: Length of buffer space to be mapped 4025 * 4026 * Fill the specified scatter-gather list with mappings/pointers into a 4027 * region of the buffer space attached to a socket buffer. Returns either 4028 * the number of scatterlist items used, or -EMSGSIZE if the contents 4029 * could not fit. 4030 */ 4031 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4032 { 4033 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4034 4035 if (nsg <= 0) 4036 return nsg; 4037 4038 sg_mark_end(&sg[nsg - 1]); 4039 4040 return nsg; 4041 } 4042 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4043 4044 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4045 * sglist without mark the sg which contain last skb data as the end. 4046 * So the caller can mannipulate sg list as will when padding new data after 4047 * the first call without calling sg_unmark_end to expend sg list. 4048 * 4049 * Scenario to use skb_to_sgvec_nomark: 4050 * 1. sg_init_table 4051 * 2. skb_to_sgvec_nomark(payload1) 4052 * 3. skb_to_sgvec_nomark(payload2) 4053 * 4054 * This is equivalent to: 4055 * 1. sg_init_table 4056 * 2. skb_to_sgvec(payload1) 4057 * 3. sg_unmark_end 4058 * 4. skb_to_sgvec(payload2) 4059 * 4060 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4061 * is more preferable. 4062 */ 4063 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4064 int offset, int len) 4065 { 4066 return __skb_to_sgvec(skb, sg, offset, len, 0); 4067 } 4068 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4069 4070 4071 4072 /** 4073 * skb_cow_data - Check that a socket buffer's data buffers are writable 4074 * @skb: The socket buffer to check. 4075 * @tailbits: Amount of trailing space to be added 4076 * @trailer: Returned pointer to the skb where the @tailbits space begins 4077 * 4078 * Make sure that the data buffers attached to a socket buffer are 4079 * writable. If they are not, private copies are made of the data buffers 4080 * and the socket buffer is set to use these instead. 4081 * 4082 * If @tailbits is given, make sure that there is space to write @tailbits 4083 * bytes of data beyond current end of socket buffer. @trailer will be 4084 * set to point to the skb in which this space begins. 4085 * 4086 * The number of scatterlist elements required to completely map the 4087 * COW'd and extended socket buffer will be returned. 4088 */ 4089 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4090 { 4091 int copyflag; 4092 int elt; 4093 struct sk_buff *skb1, **skb_p; 4094 4095 /* If skb is cloned or its head is paged, reallocate 4096 * head pulling out all the pages (pages are considered not writable 4097 * at the moment even if they are anonymous). 4098 */ 4099 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4100 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4101 return -ENOMEM; 4102 4103 /* Easy case. Most of packets will go this way. */ 4104 if (!skb_has_frag_list(skb)) { 4105 /* A little of trouble, not enough of space for trailer. 4106 * This should not happen, when stack is tuned to generate 4107 * good frames. OK, on miss we reallocate and reserve even more 4108 * space, 128 bytes is fair. */ 4109 4110 if (skb_tailroom(skb) < tailbits && 4111 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4112 return -ENOMEM; 4113 4114 /* Voila! */ 4115 *trailer = skb; 4116 return 1; 4117 } 4118 4119 /* Misery. We are in troubles, going to mincer fragments... */ 4120 4121 elt = 1; 4122 skb_p = &skb_shinfo(skb)->frag_list; 4123 copyflag = 0; 4124 4125 while ((skb1 = *skb_p) != NULL) { 4126 int ntail = 0; 4127 4128 /* The fragment is partially pulled by someone, 4129 * this can happen on input. Copy it and everything 4130 * after it. */ 4131 4132 if (skb_shared(skb1)) 4133 copyflag = 1; 4134 4135 /* If the skb is the last, worry about trailer. */ 4136 4137 if (skb1->next == NULL && tailbits) { 4138 if (skb_shinfo(skb1)->nr_frags || 4139 skb_has_frag_list(skb1) || 4140 skb_tailroom(skb1) < tailbits) 4141 ntail = tailbits + 128; 4142 } 4143 4144 if (copyflag || 4145 skb_cloned(skb1) || 4146 ntail || 4147 skb_shinfo(skb1)->nr_frags || 4148 skb_has_frag_list(skb1)) { 4149 struct sk_buff *skb2; 4150 4151 /* Fuck, we are miserable poor guys... */ 4152 if (ntail == 0) 4153 skb2 = skb_copy(skb1, GFP_ATOMIC); 4154 else 4155 skb2 = skb_copy_expand(skb1, 4156 skb_headroom(skb1), 4157 ntail, 4158 GFP_ATOMIC); 4159 if (unlikely(skb2 == NULL)) 4160 return -ENOMEM; 4161 4162 if (skb1->sk) 4163 skb_set_owner_w(skb2, skb1->sk); 4164 4165 /* Looking around. Are we still alive? 4166 * OK, link new skb, drop old one */ 4167 4168 skb2->next = skb1->next; 4169 *skb_p = skb2; 4170 kfree_skb(skb1); 4171 skb1 = skb2; 4172 } 4173 elt++; 4174 *trailer = skb1; 4175 skb_p = &skb1->next; 4176 } 4177 4178 return elt; 4179 } 4180 EXPORT_SYMBOL_GPL(skb_cow_data); 4181 4182 static void sock_rmem_free(struct sk_buff *skb) 4183 { 4184 struct sock *sk = skb->sk; 4185 4186 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4187 } 4188 4189 static void skb_set_err_queue(struct sk_buff *skb) 4190 { 4191 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4192 * So, it is safe to (mis)use it to mark skbs on the error queue. 4193 */ 4194 skb->pkt_type = PACKET_OUTGOING; 4195 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4196 } 4197 4198 /* 4199 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4200 */ 4201 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4202 { 4203 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4204 (unsigned int)sk->sk_rcvbuf) 4205 return -ENOMEM; 4206 4207 skb_orphan(skb); 4208 skb->sk = sk; 4209 skb->destructor = sock_rmem_free; 4210 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4211 skb_set_err_queue(skb); 4212 4213 /* before exiting rcu section, make sure dst is refcounted */ 4214 skb_dst_force(skb); 4215 4216 skb_queue_tail(&sk->sk_error_queue, skb); 4217 if (!sock_flag(sk, SOCK_DEAD)) 4218 sk->sk_error_report(sk); 4219 return 0; 4220 } 4221 EXPORT_SYMBOL(sock_queue_err_skb); 4222 4223 static bool is_icmp_err_skb(const struct sk_buff *skb) 4224 { 4225 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4226 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4227 } 4228 4229 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4230 { 4231 struct sk_buff_head *q = &sk->sk_error_queue; 4232 struct sk_buff *skb, *skb_next = NULL; 4233 bool icmp_next = false; 4234 unsigned long flags; 4235 4236 spin_lock_irqsave(&q->lock, flags); 4237 skb = __skb_dequeue(q); 4238 if (skb && (skb_next = skb_peek(q))) { 4239 icmp_next = is_icmp_err_skb(skb_next); 4240 if (icmp_next) 4241 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4242 } 4243 spin_unlock_irqrestore(&q->lock, flags); 4244 4245 if (is_icmp_err_skb(skb) && !icmp_next) 4246 sk->sk_err = 0; 4247 4248 if (skb_next) 4249 sk->sk_error_report(sk); 4250 4251 return skb; 4252 } 4253 EXPORT_SYMBOL(sock_dequeue_err_skb); 4254 4255 /** 4256 * skb_clone_sk - create clone of skb, and take reference to socket 4257 * @skb: the skb to clone 4258 * 4259 * This function creates a clone of a buffer that holds a reference on 4260 * sk_refcnt. Buffers created via this function are meant to be 4261 * returned using sock_queue_err_skb, or free via kfree_skb. 4262 * 4263 * When passing buffers allocated with this function to sock_queue_err_skb 4264 * it is necessary to wrap the call with sock_hold/sock_put in order to 4265 * prevent the socket from being released prior to being enqueued on 4266 * the sk_error_queue. 4267 */ 4268 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4269 { 4270 struct sock *sk = skb->sk; 4271 struct sk_buff *clone; 4272 4273 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4274 return NULL; 4275 4276 clone = skb_clone(skb, GFP_ATOMIC); 4277 if (!clone) { 4278 sock_put(sk); 4279 return NULL; 4280 } 4281 4282 clone->sk = sk; 4283 clone->destructor = sock_efree; 4284 4285 return clone; 4286 } 4287 EXPORT_SYMBOL(skb_clone_sk); 4288 4289 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4290 struct sock *sk, 4291 int tstype, 4292 bool opt_stats) 4293 { 4294 struct sock_exterr_skb *serr; 4295 int err; 4296 4297 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4298 4299 serr = SKB_EXT_ERR(skb); 4300 memset(serr, 0, sizeof(*serr)); 4301 serr->ee.ee_errno = ENOMSG; 4302 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4303 serr->ee.ee_info = tstype; 4304 serr->opt_stats = opt_stats; 4305 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4306 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4307 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4308 if (sk->sk_protocol == IPPROTO_TCP && 4309 sk->sk_type == SOCK_STREAM) 4310 serr->ee.ee_data -= sk->sk_tskey; 4311 } 4312 4313 err = sock_queue_err_skb(sk, skb); 4314 4315 if (err) 4316 kfree_skb(skb); 4317 } 4318 4319 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4320 { 4321 bool ret; 4322 4323 if (likely(sysctl_tstamp_allow_data || tsonly)) 4324 return true; 4325 4326 read_lock_bh(&sk->sk_callback_lock); 4327 ret = sk->sk_socket && sk->sk_socket->file && 4328 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4329 read_unlock_bh(&sk->sk_callback_lock); 4330 return ret; 4331 } 4332 4333 void skb_complete_tx_timestamp(struct sk_buff *skb, 4334 struct skb_shared_hwtstamps *hwtstamps) 4335 { 4336 struct sock *sk = skb->sk; 4337 4338 if (!skb_may_tx_timestamp(sk, false)) 4339 goto err; 4340 4341 /* Take a reference to prevent skb_orphan() from freeing the socket, 4342 * but only if the socket refcount is not zero. 4343 */ 4344 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4345 *skb_hwtstamps(skb) = *hwtstamps; 4346 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4347 sock_put(sk); 4348 return; 4349 } 4350 4351 err: 4352 kfree_skb(skb); 4353 } 4354 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4355 4356 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4357 struct skb_shared_hwtstamps *hwtstamps, 4358 struct sock *sk, int tstype) 4359 { 4360 struct sk_buff *skb; 4361 bool tsonly, opt_stats = false; 4362 4363 if (!sk) 4364 return; 4365 4366 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4367 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4368 return; 4369 4370 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4371 if (!skb_may_tx_timestamp(sk, tsonly)) 4372 return; 4373 4374 if (tsonly) { 4375 #ifdef CONFIG_INET 4376 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4377 sk->sk_protocol == IPPROTO_TCP && 4378 sk->sk_type == SOCK_STREAM) { 4379 skb = tcp_get_timestamping_opt_stats(sk); 4380 opt_stats = true; 4381 } else 4382 #endif 4383 skb = alloc_skb(0, GFP_ATOMIC); 4384 } else { 4385 skb = skb_clone(orig_skb, GFP_ATOMIC); 4386 } 4387 if (!skb) 4388 return; 4389 4390 if (tsonly) { 4391 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4392 SKBTX_ANY_TSTAMP; 4393 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4394 } 4395 4396 if (hwtstamps) 4397 *skb_hwtstamps(skb) = *hwtstamps; 4398 else 4399 skb->tstamp = ktime_get_real(); 4400 4401 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4402 } 4403 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4404 4405 void skb_tstamp_tx(struct sk_buff *orig_skb, 4406 struct skb_shared_hwtstamps *hwtstamps) 4407 { 4408 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4409 SCM_TSTAMP_SND); 4410 } 4411 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4412 4413 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4414 { 4415 struct sock *sk = skb->sk; 4416 struct sock_exterr_skb *serr; 4417 int err = 1; 4418 4419 skb->wifi_acked_valid = 1; 4420 skb->wifi_acked = acked; 4421 4422 serr = SKB_EXT_ERR(skb); 4423 memset(serr, 0, sizeof(*serr)); 4424 serr->ee.ee_errno = ENOMSG; 4425 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4426 4427 /* Take a reference to prevent skb_orphan() from freeing the socket, 4428 * but only if the socket refcount is not zero. 4429 */ 4430 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4431 err = sock_queue_err_skb(sk, skb); 4432 sock_put(sk); 4433 } 4434 if (err) 4435 kfree_skb(skb); 4436 } 4437 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4438 4439 /** 4440 * skb_partial_csum_set - set up and verify partial csum values for packet 4441 * @skb: the skb to set 4442 * @start: the number of bytes after skb->data to start checksumming. 4443 * @off: the offset from start to place the checksum. 4444 * 4445 * For untrusted partially-checksummed packets, we need to make sure the values 4446 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4447 * 4448 * This function checks and sets those values and skb->ip_summed: if this 4449 * returns false you should drop the packet. 4450 */ 4451 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4452 { 4453 if (unlikely(start > skb_headlen(skb)) || 4454 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4455 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4456 start, off, skb_headlen(skb)); 4457 return false; 4458 } 4459 skb->ip_summed = CHECKSUM_PARTIAL; 4460 skb->csum_start = skb_headroom(skb) + start; 4461 skb->csum_offset = off; 4462 skb_set_transport_header(skb, start); 4463 return true; 4464 } 4465 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4466 4467 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4468 unsigned int max) 4469 { 4470 if (skb_headlen(skb) >= len) 4471 return 0; 4472 4473 /* If we need to pullup then pullup to the max, so we 4474 * won't need to do it again. 4475 */ 4476 if (max > skb->len) 4477 max = skb->len; 4478 4479 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4480 return -ENOMEM; 4481 4482 if (skb_headlen(skb) < len) 4483 return -EPROTO; 4484 4485 return 0; 4486 } 4487 4488 #define MAX_TCP_HDR_LEN (15 * 4) 4489 4490 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4491 typeof(IPPROTO_IP) proto, 4492 unsigned int off) 4493 { 4494 switch (proto) { 4495 int err; 4496 4497 case IPPROTO_TCP: 4498 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4499 off + MAX_TCP_HDR_LEN); 4500 if (!err && !skb_partial_csum_set(skb, off, 4501 offsetof(struct tcphdr, 4502 check))) 4503 err = -EPROTO; 4504 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4505 4506 case IPPROTO_UDP: 4507 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4508 off + sizeof(struct udphdr)); 4509 if (!err && !skb_partial_csum_set(skb, off, 4510 offsetof(struct udphdr, 4511 check))) 4512 err = -EPROTO; 4513 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4514 } 4515 4516 return ERR_PTR(-EPROTO); 4517 } 4518 4519 /* This value should be large enough to cover a tagged ethernet header plus 4520 * maximally sized IP and TCP or UDP headers. 4521 */ 4522 #define MAX_IP_HDR_LEN 128 4523 4524 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4525 { 4526 unsigned int off; 4527 bool fragment; 4528 __sum16 *csum; 4529 int err; 4530 4531 fragment = false; 4532 4533 err = skb_maybe_pull_tail(skb, 4534 sizeof(struct iphdr), 4535 MAX_IP_HDR_LEN); 4536 if (err < 0) 4537 goto out; 4538 4539 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4540 fragment = true; 4541 4542 off = ip_hdrlen(skb); 4543 4544 err = -EPROTO; 4545 4546 if (fragment) 4547 goto out; 4548 4549 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4550 if (IS_ERR(csum)) 4551 return PTR_ERR(csum); 4552 4553 if (recalculate) 4554 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4555 ip_hdr(skb)->daddr, 4556 skb->len - off, 4557 ip_hdr(skb)->protocol, 0); 4558 err = 0; 4559 4560 out: 4561 return err; 4562 } 4563 4564 /* This value should be large enough to cover a tagged ethernet header plus 4565 * an IPv6 header, all options, and a maximal TCP or UDP header. 4566 */ 4567 #define MAX_IPV6_HDR_LEN 256 4568 4569 #define OPT_HDR(type, skb, off) \ 4570 (type *)(skb_network_header(skb) + (off)) 4571 4572 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4573 { 4574 int err; 4575 u8 nexthdr; 4576 unsigned int off; 4577 unsigned int len; 4578 bool fragment; 4579 bool done; 4580 __sum16 *csum; 4581 4582 fragment = false; 4583 done = false; 4584 4585 off = sizeof(struct ipv6hdr); 4586 4587 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4588 if (err < 0) 4589 goto out; 4590 4591 nexthdr = ipv6_hdr(skb)->nexthdr; 4592 4593 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4594 while (off <= len && !done) { 4595 switch (nexthdr) { 4596 case IPPROTO_DSTOPTS: 4597 case IPPROTO_HOPOPTS: 4598 case IPPROTO_ROUTING: { 4599 struct ipv6_opt_hdr *hp; 4600 4601 err = skb_maybe_pull_tail(skb, 4602 off + 4603 sizeof(struct ipv6_opt_hdr), 4604 MAX_IPV6_HDR_LEN); 4605 if (err < 0) 4606 goto out; 4607 4608 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4609 nexthdr = hp->nexthdr; 4610 off += ipv6_optlen(hp); 4611 break; 4612 } 4613 case IPPROTO_AH: { 4614 struct ip_auth_hdr *hp; 4615 4616 err = skb_maybe_pull_tail(skb, 4617 off + 4618 sizeof(struct ip_auth_hdr), 4619 MAX_IPV6_HDR_LEN); 4620 if (err < 0) 4621 goto out; 4622 4623 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4624 nexthdr = hp->nexthdr; 4625 off += ipv6_authlen(hp); 4626 break; 4627 } 4628 case IPPROTO_FRAGMENT: { 4629 struct frag_hdr *hp; 4630 4631 err = skb_maybe_pull_tail(skb, 4632 off + 4633 sizeof(struct frag_hdr), 4634 MAX_IPV6_HDR_LEN); 4635 if (err < 0) 4636 goto out; 4637 4638 hp = OPT_HDR(struct frag_hdr, skb, off); 4639 4640 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4641 fragment = true; 4642 4643 nexthdr = hp->nexthdr; 4644 off += sizeof(struct frag_hdr); 4645 break; 4646 } 4647 default: 4648 done = true; 4649 break; 4650 } 4651 } 4652 4653 err = -EPROTO; 4654 4655 if (!done || fragment) 4656 goto out; 4657 4658 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4659 if (IS_ERR(csum)) 4660 return PTR_ERR(csum); 4661 4662 if (recalculate) 4663 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4664 &ipv6_hdr(skb)->daddr, 4665 skb->len - off, nexthdr, 0); 4666 err = 0; 4667 4668 out: 4669 return err; 4670 } 4671 4672 /** 4673 * skb_checksum_setup - set up partial checksum offset 4674 * @skb: the skb to set up 4675 * @recalculate: if true the pseudo-header checksum will be recalculated 4676 */ 4677 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4678 { 4679 int err; 4680 4681 switch (skb->protocol) { 4682 case htons(ETH_P_IP): 4683 err = skb_checksum_setup_ipv4(skb, recalculate); 4684 break; 4685 4686 case htons(ETH_P_IPV6): 4687 err = skb_checksum_setup_ipv6(skb, recalculate); 4688 break; 4689 4690 default: 4691 err = -EPROTO; 4692 break; 4693 } 4694 4695 return err; 4696 } 4697 EXPORT_SYMBOL(skb_checksum_setup); 4698 4699 /** 4700 * skb_checksum_maybe_trim - maybe trims the given skb 4701 * @skb: the skb to check 4702 * @transport_len: the data length beyond the network header 4703 * 4704 * Checks whether the given skb has data beyond the given transport length. 4705 * If so, returns a cloned skb trimmed to this transport length. 4706 * Otherwise returns the provided skb. Returns NULL in error cases 4707 * (e.g. transport_len exceeds skb length or out-of-memory). 4708 * 4709 * Caller needs to set the skb transport header and free any returned skb if it 4710 * differs from the provided skb. 4711 */ 4712 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4713 unsigned int transport_len) 4714 { 4715 struct sk_buff *skb_chk; 4716 unsigned int len = skb_transport_offset(skb) + transport_len; 4717 int ret; 4718 4719 if (skb->len < len) 4720 return NULL; 4721 else if (skb->len == len) 4722 return skb; 4723 4724 skb_chk = skb_clone(skb, GFP_ATOMIC); 4725 if (!skb_chk) 4726 return NULL; 4727 4728 ret = pskb_trim_rcsum(skb_chk, len); 4729 if (ret) { 4730 kfree_skb(skb_chk); 4731 return NULL; 4732 } 4733 4734 return skb_chk; 4735 } 4736 4737 /** 4738 * skb_checksum_trimmed - validate checksum of an skb 4739 * @skb: the skb to check 4740 * @transport_len: the data length beyond the network header 4741 * @skb_chkf: checksum function to use 4742 * 4743 * Applies the given checksum function skb_chkf to the provided skb. 4744 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4745 * 4746 * If the skb has data beyond the given transport length, then a 4747 * trimmed & cloned skb is checked and returned. 4748 * 4749 * Caller needs to set the skb transport header and free any returned skb if it 4750 * differs from the provided skb. 4751 */ 4752 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4753 unsigned int transport_len, 4754 __sum16(*skb_chkf)(struct sk_buff *skb)) 4755 { 4756 struct sk_buff *skb_chk; 4757 unsigned int offset = skb_transport_offset(skb); 4758 __sum16 ret; 4759 4760 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4761 if (!skb_chk) 4762 goto err; 4763 4764 if (!pskb_may_pull(skb_chk, offset)) 4765 goto err; 4766 4767 skb_pull_rcsum(skb_chk, offset); 4768 ret = skb_chkf(skb_chk); 4769 skb_push_rcsum(skb_chk, offset); 4770 4771 if (ret) 4772 goto err; 4773 4774 return skb_chk; 4775 4776 err: 4777 if (skb_chk && skb_chk != skb) 4778 kfree_skb(skb_chk); 4779 4780 return NULL; 4781 4782 } 4783 EXPORT_SYMBOL(skb_checksum_trimmed); 4784 4785 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4786 { 4787 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4788 skb->dev->name); 4789 } 4790 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4791 4792 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4793 { 4794 if (head_stolen) { 4795 skb_release_head_state(skb); 4796 kmem_cache_free(skbuff_head_cache, skb); 4797 } else { 4798 __kfree_skb(skb); 4799 } 4800 } 4801 EXPORT_SYMBOL(kfree_skb_partial); 4802 4803 /** 4804 * skb_try_coalesce - try to merge skb to prior one 4805 * @to: prior buffer 4806 * @from: buffer to add 4807 * @fragstolen: pointer to boolean 4808 * @delta_truesize: how much more was allocated than was requested 4809 */ 4810 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4811 bool *fragstolen, int *delta_truesize) 4812 { 4813 struct skb_shared_info *to_shinfo, *from_shinfo; 4814 int i, delta, len = from->len; 4815 4816 *fragstolen = false; 4817 4818 if (skb_cloned(to)) 4819 return false; 4820 4821 if (len <= skb_tailroom(to)) { 4822 if (len) 4823 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4824 *delta_truesize = 0; 4825 return true; 4826 } 4827 4828 to_shinfo = skb_shinfo(to); 4829 from_shinfo = skb_shinfo(from); 4830 if (to_shinfo->frag_list || from_shinfo->frag_list) 4831 return false; 4832 if (skb_zcopy(to) || skb_zcopy(from)) 4833 return false; 4834 4835 if (skb_headlen(from) != 0) { 4836 struct page *page; 4837 unsigned int offset; 4838 4839 if (to_shinfo->nr_frags + 4840 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4841 return false; 4842 4843 if (skb_head_is_locked(from)) 4844 return false; 4845 4846 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4847 4848 page = virt_to_head_page(from->head); 4849 offset = from->data - (unsigned char *)page_address(page); 4850 4851 skb_fill_page_desc(to, to_shinfo->nr_frags, 4852 page, offset, skb_headlen(from)); 4853 *fragstolen = true; 4854 } else { 4855 if (to_shinfo->nr_frags + 4856 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4857 return false; 4858 4859 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4860 } 4861 4862 WARN_ON_ONCE(delta < len); 4863 4864 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4865 from_shinfo->frags, 4866 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4867 to_shinfo->nr_frags += from_shinfo->nr_frags; 4868 4869 if (!skb_cloned(from)) 4870 from_shinfo->nr_frags = 0; 4871 4872 /* if the skb is not cloned this does nothing 4873 * since we set nr_frags to 0. 4874 */ 4875 for (i = 0; i < from_shinfo->nr_frags; i++) 4876 __skb_frag_ref(&from_shinfo->frags[i]); 4877 4878 to->truesize += delta; 4879 to->len += len; 4880 to->data_len += len; 4881 4882 *delta_truesize = delta; 4883 return true; 4884 } 4885 EXPORT_SYMBOL(skb_try_coalesce); 4886 4887 /** 4888 * skb_scrub_packet - scrub an skb 4889 * 4890 * @skb: buffer to clean 4891 * @xnet: packet is crossing netns 4892 * 4893 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4894 * into/from a tunnel. Some information have to be cleared during these 4895 * operations. 4896 * skb_scrub_packet can also be used to clean a skb before injecting it in 4897 * another namespace (@xnet == true). We have to clear all information in the 4898 * skb that could impact namespace isolation. 4899 */ 4900 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4901 { 4902 skb->tstamp = 0; 4903 skb->pkt_type = PACKET_HOST; 4904 skb->skb_iif = 0; 4905 skb->ignore_df = 0; 4906 skb_dst_drop(skb); 4907 secpath_reset(skb); 4908 nf_reset(skb); 4909 nf_reset_trace(skb); 4910 4911 if (!xnet) 4912 return; 4913 4914 ipvs_reset(skb); 4915 skb_orphan(skb); 4916 skb->mark = 0; 4917 } 4918 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4919 4920 /** 4921 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4922 * 4923 * @skb: GSO skb 4924 * 4925 * skb_gso_transport_seglen is used to determine the real size of the 4926 * individual segments, including Layer4 headers (TCP/UDP). 4927 * 4928 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4929 */ 4930 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4931 { 4932 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4933 unsigned int thlen = 0; 4934 4935 if (skb->encapsulation) { 4936 thlen = skb_inner_transport_header(skb) - 4937 skb_transport_header(skb); 4938 4939 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4940 thlen += inner_tcp_hdrlen(skb); 4941 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4942 thlen = tcp_hdrlen(skb); 4943 } else if (unlikely(skb_is_gso_sctp(skb))) { 4944 thlen = sizeof(struct sctphdr); 4945 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4946 thlen = sizeof(struct udphdr); 4947 } 4948 /* UFO sets gso_size to the size of the fragmentation 4949 * payload, i.e. the size of the L4 (UDP) header is already 4950 * accounted for. 4951 */ 4952 return thlen + shinfo->gso_size; 4953 } 4954 4955 /** 4956 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4957 * 4958 * @skb: GSO skb 4959 * 4960 * skb_gso_network_seglen is used to determine the real size of the 4961 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4962 * 4963 * The MAC/L2 header is not accounted for. 4964 */ 4965 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4966 { 4967 unsigned int hdr_len = skb_transport_header(skb) - 4968 skb_network_header(skb); 4969 4970 return hdr_len + skb_gso_transport_seglen(skb); 4971 } 4972 4973 /** 4974 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4975 * 4976 * @skb: GSO skb 4977 * 4978 * skb_gso_mac_seglen is used to determine the real size of the 4979 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4980 * headers (TCP/UDP). 4981 */ 4982 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4983 { 4984 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4985 4986 return hdr_len + skb_gso_transport_seglen(skb); 4987 } 4988 4989 /** 4990 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4991 * 4992 * There are a couple of instances where we have a GSO skb, and we 4993 * want to determine what size it would be after it is segmented. 4994 * 4995 * We might want to check: 4996 * - L3+L4+payload size (e.g. IP forwarding) 4997 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4998 * 4999 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5000 * 5001 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5002 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5003 * 5004 * @max_len: The maximum permissible length. 5005 * 5006 * Returns true if the segmented length <= max length. 5007 */ 5008 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5009 unsigned int seg_len, 5010 unsigned int max_len) { 5011 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5012 const struct sk_buff *iter; 5013 5014 if (shinfo->gso_size != GSO_BY_FRAGS) 5015 return seg_len <= max_len; 5016 5017 /* Undo this so we can re-use header sizes */ 5018 seg_len -= GSO_BY_FRAGS; 5019 5020 skb_walk_frags(skb, iter) { 5021 if (seg_len + skb_headlen(iter) > max_len) 5022 return false; 5023 } 5024 5025 return true; 5026 } 5027 5028 /** 5029 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5030 * 5031 * @skb: GSO skb 5032 * @mtu: MTU to validate against 5033 * 5034 * skb_gso_validate_network_len validates if a given skb will fit a 5035 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5036 * payload. 5037 */ 5038 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5039 { 5040 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5041 } 5042 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5043 5044 /** 5045 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5046 * 5047 * @skb: GSO skb 5048 * @len: length to validate against 5049 * 5050 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5051 * length once split, including L2, L3 and L4 headers and the payload. 5052 */ 5053 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5054 { 5055 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5056 } 5057 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5058 5059 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5060 { 5061 int mac_len; 5062 5063 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5064 kfree_skb(skb); 5065 return NULL; 5066 } 5067 5068 mac_len = skb->data - skb_mac_header(skb); 5069 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5070 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5071 mac_len - VLAN_HLEN - ETH_TLEN); 5072 } 5073 skb->mac_header += VLAN_HLEN; 5074 return skb; 5075 } 5076 5077 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5078 { 5079 struct vlan_hdr *vhdr; 5080 u16 vlan_tci; 5081 5082 if (unlikely(skb_vlan_tag_present(skb))) { 5083 /* vlan_tci is already set-up so leave this for another time */ 5084 return skb; 5085 } 5086 5087 skb = skb_share_check(skb, GFP_ATOMIC); 5088 if (unlikely(!skb)) 5089 goto err_free; 5090 5091 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5092 goto err_free; 5093 5094 vhdr = (struct vlan_hdr *)skb->data; 5095 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5096 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5097 5098 skb_pull_rcsum(skb, VLAN_HLEN); 5099 vlan_set_encap_proto(skb, vhdr); 5100 5101 skb = skb_reorder_vlan_header(skb); 5102 if (unlikely(!skb)) 5103 goto err_free; 5104 5105 skb_reset_network_header(skb); 5106 skb_reset_transport_header(skb); 5107 skb_reset_mac_len(skb); 5108 5109 return skb; 5110 5111 err_free: 5112 kfree_skb(skb); 5113 return NULL; 5114 } 5115 EXPORT_SYMBOL(skb_vlan_untag); 5116 5117 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5118 { 5119 if (!pskb_may_pull(skb, write_len)) 5120 return -ENOMEM; 5121 5122 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5123 return 0; 5124 5125 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5126 } 5127 EXPORT_SYMBOL(skb_ensure_writable); 5128 5129 /* remove VLAN header from packet and update csum accordingly. 5130 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5131 */ 5132 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5133 { 5134 struct vlan_hdr *vhdr; 5135 int offset = skb->data - skb_mac_header(skb); 5136 int err; 5137 5138 if (WARN_ONCE(offset, 5139 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5140 offset)) { 5141 return -EINVAL; 5142 } 5143 5144 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5145 if (unlikely(err)) 5146 return err; 5147 5148 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5149 5150 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5151 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5152 5153 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5154 __skb_pull(skb, VLAN_HLEN); 5155 5156 vlan_set_encap_proto(skb, vhdr); 5157 skb->mac_header += VLAN_HLEN; 5158 5159 if (skb_network_offset(skb) < ETH_HLEN) 5160 skb_set_network_header(skb, ETH_HLEN); 5161 5162 skb_reset_mac_len(skb); 5163 5164 return err; 5165 } 5166 EXPORT_SYMBOL(__skb_vlan_pop); 5167 5168 /* Pop a vlan tag either from hwaccel or from payload. 5169 * Expects skb->data at mac header. 5170 */ 5171 int skb_vlan_pop(struct sk_buff *skb) 5172 { 5173 u16 vlan_tci; 5174 __be16 vlan_proto; 5175 int err; 5176 5177 if (likely(skb_vlan_tag_present(skb))) { 5178 skb->vlan_tci = 0; 5179 } else { 5180 if (unlikely(!eth_type_vlan(skb->protocol))) 5181 return 0; 5182 5183 err = __skb_vlan_pop(skb, &vlan_tci); 5184 if (err) 5185 return err; 5186 } 5187 /* move next vlan tag to hw accel tag */ 5188 if (likely(!eth_type_vlan(skb->protocol))) 5189 return 0; 5190 5191 vlan_proto = skb->protocol; 5192 err = __skb_vlan_pop(skb, &vlan_tci); 5193 if (unlikely(err)) 5194 return err; 5195 5196 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5197 return 0; 5198 } 5199 EXPORT_SYMBOL(skb_vlan_pop); 5200 5201 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5202 * Expects skb->data at mac header. 5203 */ 5204 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5205 { 5206 if (skb_vlan_tag_present(skb)) { 5207 int offset = skb->data - skb_mac_header(skb); 5208 int err; 5209 5210 if (WARN_ONCE(offset, 5211 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5212 offset)) { 5213 return -EINVAL; 5214 } 5215 5216 err = __vlan_insert_tag(skb, skb->vlan_proto, 5217 skb_vlan_tag_get(skb)); 5218 if (err) 5219 return err; 5220 5221 skb->protocol = skb->vlan_proto; 5222 skb->mac_len += VLAN_HLEN; 5223 5224 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5225 } 5226 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5227 return 0; 5228 } 5229 EXPORT_SYMBOL(skb_vlan_push); 5230 5231 /** 5232 * alloc_skb_with_frags - allocate skb with page frags 5233 * 5234 * @header_len: size of linear part 5235 * @data_len: needed length in frags 5236 * @max_page_order: max page order desired. 5237 * @errcode: pointer to error code if any 5238 * @gfp_mask: allocation mask 5239 * 5240 * This can be used to allocate a paged skb, given a maximal order for frags. 5241 */ 5242 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5243 unsigned long data_len, 5244 int max_page_order, 5245 int *errcode, 5246 gfp_t gfp_mask) 5247 { 5248 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5249 unsigned long chunk; 5250 struct sk_buff *skb; 5251 struct page *page; 5252 gfp_t gfp_head; 5253 int i; 5254 5255 *errcode = -EMSGSIZE; 5256 /* Note this test could be relaxed, if we succeed to allocate 5257 * high order pages... 5258 */ 5259 if (npages > MAX_SKB_FRAGS) 5260 return NULL; 5261 5262 gfp_head = gfp_mask; 5263 if (gfp_head & __GFP_DIRECT_RECLAIM) 5264 gfp_head |= __GFP_RETRY_MAYFAIL; 5265 5266 *errcode = -ENOBUFS; 5267 skb = alloc_skb(header_len, gfp_head); 5268 if (!skb) 5269 return NULL; 5270 5271 skb->truesize += npages << PAGE_SHIFT; 5272 5273 for (i = 0; npages > 0; i++) { 5274 int order = max_page_order; 5275 5276 while (order) { 5277 if (npages >= 1 << order) { 5278 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5279 __GFP_COMP | 5280 __GFP_NOWARN, 5281 order); 5282 if (page) 5283 goto fill_page; 5284 /* Do not retry other high order allocations */ 5285 order = 1; 5286 max_page_order = 0; 5287 } 5288 order--; 5289 } 5290 page = alloc_page(gfp_mask); 5291 if (!page) 5292 goto failure; 5293 fill_page: 5294 chunk = min_t(unsigned long, data_len, 5295 PAGE_SIZE << order); 5296 skb_fill_page_desc(skb, i, page, 0, chunk); 5297 data_len -= chunk; 5298 npages -= 1 << order; 5299 } 5300 return skb; 5301 5302 failure: 5303 kfree_skb(skb); 5304 return NULL; 5305 } 5306 EXPORT_SYMBOL(alloc_skb_with_frags); 5307 5308 /* carve out the first off bytes from skb when off < headlen */ 5309 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5310 const int headlen, gfp_t gfp_mask) 5311 { 5312 int i; 5313 int size = skb_end_offset(skb); 5314 int new_hlen = headlen - off; 5315 u8 *data; 5316 5317 size = SKB_DATA_ALIGN(size); 5318 5319 if (skb_pfmemalloc(skb)) 5320 gfp_mask |= __GFP_MEMALLOC; 5321 data = kmalloc_reserve(size + 5322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5323 gfp_mask, NUMA_NO_NODE, NULL); 5324 if (!data) 5325 return -ENOMEM; 5326 5327 size = SKB_WITH_OVERHEAD(ksize(data)); 5328 5329 /* Copy real data, and all frags */ 5330 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5331 skb->len -= off; 5332 5333 memcpy((struct skb_shared_info *)(data + size), 5334 skb_shinfo(skb), 5335 offsetof(struct skb_shared_info, 5336 frags[skb_shinfo(skb)->nr_frags])); 5337 if (skb_cloned(skb)) { 5338 /* drop the old head gracefully */ 5339 if (skb_orphan_frags(skb, gfp_mask)) { 5340 kfree(data); 5341 return -ENOMEM; 5342 } 5343 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5344 skb_frag_ref(skb, i); 5345 if (skb_has_frag_list(skb)) 5346 skb_clone_fraglist(skb); 5347 skb_release_data(skb); 5348 } else { 5349 /* we can reuse existing recount- all we did was 5350 * relocate values 5351 */ 5352 skb_free_head(skb); 5353 } 5354 5355 skb->head = data; 5356 skb->data = data; 5357 skb->head_frag = 0; 5358 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5359 skb->end = size; 5360 #else 5361 skb->end = skb->head + size; 5362 #endif 5363 skb_set_tail_pointer(skb, skb_headlen(skb)); 5364 skb_headers_offset_update(skb, 0); 5365 skb->cloned = 0; 5366 skb->hdr_len = 0; 5367 skb->nohdr = 0; 5368 atomic_set(&skb_shinfo(skb)->dataref, 1); 5369 5370 return 0; 5371 } 5372 5373 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5374 5375 /* carve out the first eat bytes from skb's frag_list. May recurse into 5376 * pskb_carve() 5377 */ 5378 static int pskb_carve_frag_list(struct sk_buff *skb, 5379 struct skb_shared_info *shinfo, int eat, 5380 gfp_t gfp_mask) 5381 { 5382 struct sk_buff *list = shinfo->frag_list; 5383 struct sk_buff *clone = NULL; 5384 struct sk_buff *insp = NULL; 5385 5386 do { 5387 if (!list) { 5388 pr_err("Not enough bytes to eat. Want %d\n", eat); 5389 return -EFAULT; 5390 } 5391 if (list->len <= eat) { 5392 /* Eaten as whole. */ 5393 eat -= list->len; 5394 list = list->next; 5395 insp = list; 5396 } else { 5397 /* Eaten partially. */ 5398 if (skb_shared(list)) { 5399 clone = skb_clone(list, gfp_mask); 5400 if (!clone) 5401 return -ENOMEM; 5402 insp = list->next; 5403 list = clone; 5404 } else { 5405 /* This may be pulled without problems. */ 5406 insp = list; 5407 } 5408 if (pskb_carve(list, eat, gfp_mask) < 0) { 5409 kfree_skb(clone); 5410 return -ENOMEM; 5411 } 5412 break; 5413 } 5414 } while (eat); 5415 5416 /* Free pulled out fragments. */ 5417 while ((list = shinfo->frag_list) != insp) { 5418 shinfo->frag_list = list->next; 5419 kfree_skb(list); 5420 } 5421 /* And insert new clone at head. */ 5422 if (clone) { 5423 clone->next = list; 5424 shinfo->frag_list = clone; 5425 } 5426 return 0; 5427 } 5428 5429 /* carve off first len bytes from skb. Split line (off) is in the 5430 * non-linear part of skb 5431 */ 5432 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5433 int pos, gfp_t gfp_mask) 5434 { 5435 int i, k = 0; 5436 int size = skb_end_offset(skb); 5437 u8 *data; 5438 const int nfrags = skb_shinfo(skb)->nr_frags; 5439 struct skb_shared_info *shinfo; 5440 5441 size = SKB_DATA_ALIGN(size); 5442 5443 if (skb_pfmemalloc(skb)) 5444 gfp_mask |= __GFP_MEMALLOC; 5445 data = kmalloc_reserve(size + 5446 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5447 gfp_mask, NUMA_NO_NODE, NULL); 5448 if (!data) 5449 return -ENOMEM; 5450 5451 size = SKB_WITH_OVERHEAD(ksize(data)); 5452 5453 memcpy((struct skb_shared_info *)(data + size), 5454 skb_shinfo(skb), offsetof(struct skb_shared_info, 5455 frags[skb_shinfo(skb)->nr_frags])); 5456 if (skb_orphan_frags(skb, gfp_mask)) { 5457 kfree(data); 5458 return -ENOMEM; 5459 } 5460 shinfo = (struct skb_shared_info *)(data + size); 5461 for (i = 0; i < nfrags; i++) { 5462 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5463 5464 if (pos + fsize > off) { 5465 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5466 5467 if (pos < off) { 5468 /* Split frag. 5469 * We have two variants in this case: 5470 * 1. Move all the frag to the second 5471 * part, if it is possible. F.e. 5472 * this approach is mandatory for TUX, 5473 * where splitting is expensive. 5474 * 2. Split is accurately. We make this. 5475 */ 5476 shinfo->frags[0].page_offset += off - pos; 5477 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5478 } 5479 skb_frag_ref(skb, i); 5480 k++; 5481 } 5482 pos += fsize; 5483 } 5484 shinfo->nr_frags = k; 5485 if (skb_has_frag_list(skb)) 5486 skb_clone_fraglist(skb); 5487 5488 if (k == 0) { 5489 /* split line is in frag list */ 5490 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5491 } 5492 skb_release_data(skb); 5493 5494 skb->head = data; 5495 skb->head_frag = 0; 5496 skb->data = data; 5497 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5498 skb->end = size; 5499 #else 5500 skb->end = skb->head + size; 5501 #endif 5502 skb_reset_tail_pointer(skb); 5503 skb_headers_offset_update(skb, 0); 5504 skb->cloned = 0; 5505 skb->hdr_len = 0; 5506 skb->nohdr = 0; 5507 skb->len -= off; 5508 skb->data_len = skb->len; 5509 atomic_set(&skb_shinfo(skb)->dataref, 1); 5510 return 0; 5511 } 5512 5513 /* remove len bytes from the beginning of the skb */ 5514 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5515 { 5516 int headlen = skb_headlen(skb); 5517 5518 if (len < headlen) 5519 return pskb_carve_inside_header(skb, len, headlen, gfp); 5520 else 5521 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5522 } 5523 5524 /* Extract to_copy bytes starting at off from skb, and return this in 5525 * a new skb 5526 */ 5527 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5528 int to_copy, gfp_t gfp) 5529 { 5530 struct sk_buff *clone = skb_clone(skb, gfp); 5531 5532 if (!clone) 5533 return NULL; 5534 5535 if (pskb_carve(clone, off, gfp) < 0 || 5536 pskb_trim(clone, to_copy)) { 5537 kfree_skb(clone); 5538 return NULL; 5539 } 5540 return clone; 5541 } 5542 EXPORT_SYMBOL(pskb_extract); 5543 5544 /** 5545 * skb_condense - try to get rid of fragments/frag_list if possible 5546 * @skb: buffer 5547 * 5548 * Can be used to save memory before skb is added to a busy queue. 5549 * If packet has bytes in frags and enough tail room in skb->head, 5550 * pull all of them, so that we can free the frags right now and adjust 5551 * truesize. 5552 * Notes: 5553 * We do not reallocate skb->head thus can not fail. 5554 * Caller must re-evaluate skb->truesize if needed. 5555 */ 5556 void skb_condense(struct sk_buff *skb) 5557 { 5558 if (skb->data_len) { 5559 if (skb->data_len > skb->end - skb->tail || 5560 skb_cloned(skb)) 5561 return; 5562 5563 /* Nice, we can free page frag(s) right now */ 5564 __pskb_pull_tail(skb, skb->data_len); 5565 } 5566 /* At this point, skb->truesize might be over estimated, 5567 * because skb had a fragment, and fragments do not tell 5568 * their truesize. 5569 * When we pulled its content into skb->head, fragment 5570 * was freed, but __pskb_pull_tail() could not possibly 5571 * adjust skb->truesize, not knowing the frag truesize. 5572 */ 5573 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5574 } 5575