1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 #include <linux/crc32.h> 68 69 #include <net/protocol.h> 70 #include <net/dst.h> 71 #include <net/sock.h> 72 #include <net/checksum.h> 73 #include <net/gro.h> 74 #include <net/gso.h> 75 #include <net/hotdata.h> 76 #include <net/ip6_checksum.h> 77 #include <net/xfrm.h> 78 #include <net/mpls.h> 79 #include <net/mptcp.h> 80 #include <net/mctp.h> 81 #include <net/page_pool/helpers.h> 82 #include <net/psp/types.h> 83 #include <net/dropreason.h> 84 #include <net/xdp_sock.h> 85 86 #include <linux/uaccess.h> 87 #include <trace/events/skb.h> 88 #include <linux/highmem.h> 89 #include <linux/capability.h> 90 #include <linux/user_namespace.h> 91 #include <linux/indirect_call_wrapper.h> 92 #include <linux/textsearch.h> 93 94 #include "dev.h" 95 #include "devmem.h" 96 #include "netmem_priv.h" 97 #include "sock_destructor.h" 98 99 #ifdef CONFIG_SKB_EXTENSIONS 100 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 101 #endif 102 103 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 105 GRO_MAX_HEAD_PAD)) 106 107 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 108 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 109 * size, and we can differentiate heads from skb_small_head_cache 110 * vs system slabs by looking at their size (skb_end_offset()). 111 */ 112 #define SKB_SMALL_HEAD_CACHE_SIZE \ 113 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 114 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 115 SKB_SMALL_HEAD_SIZE) 116 117 #define SKB_SMALL_HEAD_HEADROOM \ 118 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 119 120 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 121 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 122 * netmem is a page. 123 */ 124 static_assert(offsetof(struct bio_vec, bv_page) == 125 offsetof(skb_frag_t, netmem)); 126 static_assert(sizeof_field(struct bio_vec, bv_page) == 127 sizeof_field(skb_frag_t, netmem)); 128 129 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 130 static_assert(sizeof_field(struct bio_vec, bv_len) == 131 sizeof_field(skb_frag_t, len)); 132 133 static_assert(offsetof(struct bio_vec, bv_offset) == 134 offsetof(skb_frag_t, offset)); 135 static_assert(sizeof_field(struct bio_vec, bv_offset) == 136 sizeof_field(skb_frag_t, offset)); 137 138 #undef FN 139 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 140 static const char * const drop_reasons[] = { 141 [SKB_CONSUMED] = "CONSUMED", 142 DEFINE_DROP_REASON(FN, FN) 143 }; 144 145 static const struct drop_reason_list drop_reasons_core = { 146 .reasons = drop_reasons, 147 .n_reasons = ARRAY_SIZE(drop_reasons), 148 }; 149 150 const struct drop_reason_list __rcu * 151 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 152 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 153 }; 154 EXPORT_SYMBOL(drop_reasons_by_subsys); 155 156 /** 157 * drop_reasons_register_subsys - register another drop reason subsystem 158 * @subsys: the subsystem to register, must not be the core 159 * @list: the list of drop reasons within the subsystem, must point to 160 * a statically initialized list 161 */ 162 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 163 const struct drop_reason_list *list) 164 { 165 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 166 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 167 "invalid subsystem %d\n", subsys)) 168 return; 169 170 /* must point to statically allocated memory, so INIT is OK */ 171 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 172 } 173 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 174 175 /** 176 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 177 * @subsys: the subsystem to remove, must not be the core 178 * 179 * Note: This will synchronize_rcu() to ensure no users when it returns. 180 */ 181 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 182 { 183 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 184 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 185 "invalid subsystem %d\n", subsys)) 186 return; 187 188 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 189 190 synchronize_rcu(); 191 } 192 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 193 194 /** 195 * skb_panic - private function for out-of-line support 196 * @skb: buffer 197 * @sz: size 198 * @addr: address 199 * @msg: skb_over_panic or skb_under_panic 200 * 201 * Out-of-line support for skb_put() and skb_push(). 202 * Called via the wrapper skb_over_panic() or skb_under_panic(). 203 * Keep out of line to prevent kernel bloat. 204 * __builtin_return_address is not used because it is not always reliable. 205 */ 206 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 207 const char msg[]) 208 { 209 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 210 msg, addr, skb->len, sz, skb->head, skb->data, 211 (unsigned long)skb->tail, (unsigned long)skb->end, 212 skb->dev ? skb->dev->name : "<NULL>"); 213 BUG(); 214 } 215 216 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 217 { 218 skb_panic(skb, sz, addr, __func__); 219 } 220 221 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 222 { 223 skb_panic(skb, sz, addr, __func__); 224 } 225 226 #define NAPI_SKB_CACHE_SIZE 128 227 #define NAPI_SKB_CACHE_BULK 32 228 #define NAPI_SKB_CACHE_FREE 32 229 230 struct napi_alloc_cache { 231 local_lock_t bh_lock; 232 struct page_frag_cache page; 233 unsigned int skb_count; 234 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 235 }; 236 237 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 238 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 239 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 240 }; 241 242 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 243 { 244 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 245 void *data; 246 247 fragsz = SKB_DATA_ALIGN(fragsz); 248 249 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 250 data = __page_frag_alloc_align(&nc->page, fragsz, 251 GFP_ATOMIC | __GFP_NOWARN, align_mask); 252 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 253 return data; 254 255 } 256 EXPORT_SYMBOL(__napi_alloc_frag_align); 257 258 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 259 { 260 void *data; 261 262 if (in_hardirq() || irqs_disabled()) { 263 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 264 265 fragsz = SKB_DATA_ALIGN(fragsz); 266 data = __page_frag_alloc_align(nc, fragsz, 267 GFP_ATOMIC | __GFP_NOWARN, 268 align_mask); 269 } else { 270 local_bh_disable(); 271 data = __napi_alloc_frag_align(fragsz, align_mask); 272 local_bh_enable(); 273 } 274 return data; 275 } 276 EXPORT_SYMBOL(__netdev_alloc_frag_align); 277 278 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler 279 * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset. 280 */ 281 static u32 skbuff_cache_size __read_mostly; 282 283 static inline struct sk_buff *napi_skb_cache_get(bool alloc) 284 { 285 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 286 struct sk_buff *skb; 287 288 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 289 if (unlikely(!nc->skb_count)) { 290 if (alloc) 291 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 292 GFP_ATOMIC | __GFP_NOWARN, 293 NAPI_SKB_CACHE_BULK, 294 nc->skb_cache); 295 if (unlikely(!nc->skb_count)) { 296 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 297 return NULL; 298 } 299 } 300 301 skb = nc->skb_cache[--nc->skb_count]; 302 if (nc->skb_count) 303 prefetch(nc->skb_cache[nc->skb_count - 1]); 304 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 305 kasan_mempool_unpoison_object(skb, skbuff_cache_size); 306 307 return skb; 308 } 309 310 /* 311 * Only clear those fields we need to clear, not those that we will 312 * actually initialise later. Hence, don't put any more fields after 313 * the tail pointer in struct sk_buff! 314 */ 315 static inline void skbuff_clear(struct sk_buff *skb) 316 { 317 /* Replace memset(skb, 0, offsetof(struct sk_buff, tail)) 318 * with two smaller memset(), with a barrier() between them. 319 * This forces the compiler to inline both calls. 320 */ 321 BUILD_BUG_ON(offsetof(struct sk_buff, tail) <= 128); 322 memset(skb, 0, 128); 323 barrier(); 324 memset((void *)skb + 128, 0, offsetof(struct sk_buff, tail) - 128); 325 } 326 327 /** 328 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 329 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 330 * @n: number of entries to provide 331 * 332 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 333 * the pointers into the provided array @skbs. If there are less entries 334 * available, tries to replenish the cache and bulk-allocates the diff from 335 * the MM layer if needed. 336 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 337 * ready for {,__}build_skb_around() and don't have any data buffers attached. 338 * Must be called *only* from the BH context. 339 * 340 * Return: number of successfully allocated skbs (@n if no actual allocation 341 * needed or kmem_cache_alloc_bulk() didn't fail). 342 */ 343 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 344 { 345 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 346 u32 bulk, total = n; 347 348 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 349 350 if (nc->skb_count >= n) 351 goto get; 352 353 /* No enough cached skbs. Try refilling the cache first */ 354 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 355 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 356 GFP_ATOMIC | __GFP_NOWARN, bulk, 357 &nc->skb_cache[nc->skb_count]); 358 if (likely(nc->skb_count >= n)) 359 goto get; 360 361 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 362 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 363 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 364 n - nc->skb_count, &skbs[nc->skb_count]); 365 if (likely(nc->skb_count >= n)) 366 goto get; 367 368 /* kmem_cache didn't allocate the number we need, limit the output */ 369 total -= n - nc->skb_count; 370 n = nc->skb_count; 371 372 get: 373 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 374 skbs[i] = nc->skb_cache[base + i]; 375 376 kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size); 377 skbuff_clear(skbs[i]); 378 } 379 380 nc->skb_count -= n; 381 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 382 383 return total; 384 } 385 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 386 387 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 388 unsigned int size) 389 { 390 struct skb_shared_info *shinfo; 391 392 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 393 394 /* Assumes caller memset cleared SKB */ 395 skb->truesize = SKB_TRUESIZE(size); 396 refcount_set(&skb->users, 1); 397 skb->head = data; 398 skb->data = data; 399 skb_reset_tail_pointer(skb); 400 skb_set_end_offset(skb, size); 401 skb->mac_header = (typeof(skb->mac_header))~0U; 402 skb->transport_header = (typeof(skb->transport_header))~0U; 403 skb->alloc_cpu = raw_smp_processor_id(); 404 /* make sure we initialize shinfo sequentially */ 405 shinfo = skb_shinfo(skb); 406 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 407 atomic_set(&shinfo->dataref, 1); 408 409 skb_set_kcov_handle(skb, kcov_common_handle()); 410 } 411 412 static inline void *__slab_build_skb(void *data, unsigned int *size) 413 { 414 void *resized; 415 416 /* Must find the allocation size (and grow it to match). */ 417 *size = ksize(data); 418 /* krealloc() will immediately return "data" when 419 * "ksize(data)" is requested: it is the existing upper 420 * bounds. As a result, GFP_ATOMIC will be ignored. Note 421 * that this "new" pointer needs to be passed back to the 422 * caller for use so the __alloc_size hinting will be 423 * tracked correctly. 424 */ 425 resized = krealloc(data, *size, GFP_ATOMIC); 426 WARN_ON_ONCE(resized != data); 427 return resized; 428 } 429 430 /* build_skb() variant which can operate on slab buffers. 431 * Note that this should be used sparingly as slab buffers 432 * cannot be combined efficiently by GRO! 433 */ 434 struct sk_buff *slab_build_skb(void *data) 435 { 436 struct sk_buff *skb; 437 unsigned int size; 438 439 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 440 GFP_ATOMIC | __GFP_NOWARN); 441 if (unlikely(!skb)) 442 return NULL; 443 444 skbuff_clear(skb); 445 data = __slab_build_skb(data, &size); 446 __finalize_skb_around(skb, data, size); 447 448 return skb; 449 } 450 EXPORT_SYMBOL(slab_build_skb); 451 452 /* Caller must provide SKB that is memset cleared */ 453 static void __build_skb_around(struct sk_buff *skb, void *data, 454 unsigned int frag_size) 455 { 456 unsigned int size = frag_size; 457 458 /* frag_size == 0 is considered deprecated now. Callers 459 * using slab buffer should use slab_build_skb() instead. 460 */ 461 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 462 data = __slab_build_skb(data, &size); 463 464 __finalize_skb_around(skb, data, size); 465 } 466 467 /** 468 * __build_skb - build a network buffer 469 * @data: data buffer provided by caller 470 * @frag_size: size of data (must not be 0) 471 * 472 * Allocate a new &sk_buff. Caller provides space holding head and 473 * skb_shared_info. @data must have been allocated from the page 474 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 475 * allocation is deprecated, and callers should use slab_build_skb() 476 * instead.) 477 * The return is the new skb buffer. 478 * On a failure the return is %NULL, and @data is not freed. 479 * Notes : 480 * Before IO, driver allocates only data buffer where NIC put incoming frame 481 * Driver should add room at head (NET_SKB_PAD) and 482 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 483 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 484 * before giving packet to stack. 485 * RX rings only contains data buffers, not full skbs. 486 */ 487 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 488 { 489 struct sk_buff *skb; 490 491 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 492 GFP_ATOMIC | __GFP_NOWARN); 493 if (unlikely(!skb)) 494 return NULL; 495 496 skbuff_clear(skb); 497 __build_skb_around(skb, data, frag_size); 498 499 return skb; 500 } 501 502 /* build_skb() is wrapper over __build_skb(), that specifically 503 * takes care of skb->head and skb->pfmemalloc 504 */ 505 struct sk_buff *build_skb(void *data, unsigned int frag_size) 506 { 507 struct sk_buff *skb = __build_skb(data, frag_size); 508 509 if (likely(skb && frag_size)) { 510 skb->head_frag = 1; 511 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 512 } 513 return skb; 514 } 515 EXPORT_SYMBOL(build_skb); 516 517 /** 518 * build_skb_around - build a network buffer around provided skb 519 * @skb: sk_buff provide by caller, must be memset cleared 520 * @data: data buffer provided by caller 521 * @frag_size: size of data 522 */ 523 struct sk_buff *build_skb_around(struct sk_buff *skb, 524 void *data, unsigned int frag_size) 525 { 526 if (unlikely(!skb)) 527 return NULL; 528 529 __build_skb_around(skb, data, frag_size); 530 531 if (frag_size) { 532 skb->head_frag = 1; 533 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 534 } 535 return skb; 536 } 537 EXPORT_SYMBOL(build_skb_around); 538 539 /** 540 * __napi_build_skb - build a network buffer 541 * @data: data buffer provided by caller 542 * @frag_size: size of data 543 * 544 * Version of __build_skb() that uses NAPI percpu caches to obtain 545 * skbuff_head instead of inplace allocation. 546 * 547 * Returns a new &sk_buff on success, %NULL on allocation failure. 548 */ 549 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 550 { 551 struct sk_buff *skb; 552 553 skb = napi_skb_cache_get(true); 554 if (unlikely(!skb)) 555 return NULL; 556 557 skbuff_clear(skb); 558 __build_skb_around(skb, data, frag_size); 559 560 return skb; 561 } 562 563 /** 564 * napi_build_skb - build a network buffer 565 * @data: data buffer provided by caller 566 * @frag_size: size of data 567 * 568 * Version of __napi_build_skb() that takes care of skb->head_frag 569 * and skb->pfmemalloc when the data is a page or page fragment. 570 * 571 * Returns a new &sk_buff on success, %NULL on allocation failure. 572 */ 573 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 574 { 575 struct sk_buff *skb = __napi_build_skb(data, frag_size); 576 577 if (likely(skb) && frag_size) { 578 skb->head_frag = 1; 579 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 580 } 581 582 return skb; 583 } 584 EXPORT_SYMBOL(napi_build_skb); 585 586 static void *kmalloc_pfmemalloc(size_t obj_size, gfp_t flags, int node) 587 { 588 if (!gfp_pfmemalloc_allowed(flags)) 589 return NULL; 590 if (!obj_size) 591 return kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 592 flags, node); 593 return kmalloc_node_track_caller(obj_size, flags, node); 594 } 595 596 /* 597 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 598 * the caller if emergency pfmemalloc reserves are being used. If it is and 599 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 600 * may be used. Otherwise, the packet data may be discarded until enough 601 * memory is free 602 */ 603 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 604 struct sk_buff *skb) 605 { 606 size_t obj_size; 607 void *obj; 608 609 obj_size = SKB_HEAD_ALIGN(*size); 610 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 611 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 612 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 613 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 614 node); 615 *size = SKB_SMALL_HEAD_CACHE_SIZE; 616 if (likely(obj)) 617 goto out; 618 /* Try again but now we are using pfmemalloc reserves */ 619 if (skb) 620 skb->pfmemalloc = true; 621 return kmalloc_pfmemalloc(0, flags, node); 622 } 623 624 obj_size = kmalloc_size_roundup(obj_size); 625 /* The following cast might truncate high-order bits of obj_size, this 626 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 627 */ 628 *size = (unsigned int)obj_size; 629 630 /* 631 * Try a regular allocation, when that fails and we're not entitled 632 * to the reserves, fail. 633 */ 634 obj = kmalloc_node_track_caller(obj_size, 635 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 636 node); 637 if (likely(obj)) 638 goto out; 639 640 /* Try again but now we are using pfmemalloc reserves */ 641 if (skb) 642 skb->pfmemalloc = true; 643 obj = kmalloc_pfmemalloc(obj_size, flags, node); 644 out: 645 return obj; 646 } 647 648 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 649 * 'private' fields and also do memory statistics to find all the 650 * [BEEP] leaks. 651 * 652 */ 653 654 /** 655 * __alloc_skb - allocate a network buffer 656 * @size: size to allocate 657 * @gfp_mask: allocation mask 658 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 659 * instead of head cache and allocate a cloned (child) skb. 660 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 661 * allocations in case the data is required for writeback 662 * @node: numa node to allocate memory on 663 * 664 * Allocate a new &sk_buff. The returned buffer has no headroom and a 665 * tail room of at least size bytes. The object has a reference count 666 * of one. The return is the buffer. On a failure the return is %NULL. 667 * 668 * Buffers may only be allocated from interrupts using a @gfp_mask of 669 * %GFP_ATOMIC. 670 */ 671 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 672 int flags, int node) 673 { 674 struct sk_buff *skb = NULL; 675 struct kmem_cache *cache; 676 u8 *data; 677 678 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 679 gfp_mask |= __GFP_MEMALLOC; 680 681 if (flags & SKB_ALLOC_FCLONE) { 682 cache = net_hotdata.skbuff_fclone_cache; 683 goto fallback; 684 } 685 cache = net_hotdata.skbuff_cache; 686 if (unlikely(node != NUMA_NO_NODE && node != numa_mem_id())) 687 goto fallback; 688 689 if (flags & SKB_ALLOC_NAPI) { 690 skb = napi_skb_cache_get(true); 691 if (unlikely(!skb)) 692 return NULL; 693 } else if (!in_hardirq() && !irqs_disabled()) { 694 local_bh_disable(); 695 skb = napi_skb_cache_get(false); 696 local_bh_enable(); 697 } 698 699 if (!skb) { 700 fallback: 701 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 702 if (unlikely(!skb)) 703 return NULL; 704 } 705 skbuff_clear(skb); 706 707 /* We do our best to align skb_shared_info on a separate cache 708 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 709 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 710 * Both skb->head and skb_shared_info are cache line aligned. 711 */ 712 data = kmalloc_reserve(&size, gfp_mask, node, skb); 713 if (unlikely(!data)) 714 goto nodata; 715 /* kmalloc_size_roundup() might give us more room than requested. 716 * Put skb_shared_info exactly at the end of allocated zone, 717 * to allow max possible filling before reallocation. 718 */ 719 __finalize_skb_around(skb, data, size); 720 721 if (flags & SKB_ALLOC_FCLONE) { 722 struct sk_buff_fclones *fclones; 723 724 fclones = container_of(skb, struct sk_buff_fclones, skb1); 725 726 /* skb->fclone is a 2bits field. 727 * Replace expensive RMW (skb->fclone = SKB_FCLONE_ORIG) 728 * with a single OR. 729 */ 730 BUILD_BUG_ON(SKB_FCLONE_UNAVAILABLE != 0); 731 DEBUG_NET_WARN_ON_ONCE(skb->fclone != SKB_FCLONE_UNAVAILABLE); 732 skb->fclone |= SKB_FCLONE_ORIG; 733 734 refcount_set(&fclones->fclone_ref, 1); 735 } 736 737 return skb; 738 739 nodata: 740 kmem_cache_free(cache, skb); 741 return NULL; 742 } 743 EXPORT_SYMBOL(__alloc_skb); 744 745 /** 746 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 747 * @dev: network device to receive on 748 * @len: length to allocate 749 * @gfp_mask: get_free_pages mask, passed to alloc_skb 750 * 751 * Allocate a new &sk_buff and assign it a usage count of one. The 752 * buffer has NET_SKB_PAD headroom built in. Users should allocate 753 * the headroom they think they need without accounting for the 754 * built in space. The built in space is used for optimisations. 755 * 756 * %NULL is returned if there is no free memory. 757 */ 758 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 759 gfp_t gfp_mask) 760 { 761 struct page_frag_cache *nc; 762 struct sk_buff *skb; 763 bool pfmemalloc; 764 void *data; 765 766 len += NET_SKB_PAD; 767 768 /* If requested length is either too small or too big, 769 * we use kmalloc() for skb->head allocation. 770 */ 771 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 772 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 773 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 774 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 775 if (!skb) 776 goto skb_fail; 777 goto skb_success; 778 } 779 780 len = SKB_HEAD_ALIGN(len); 781 782 if (sk_memalloc_socks()) 783 gfp_mask |= __GFP_MEMALLOC; 784 785 if (in_hardirq() || irqs_disabled()) { 786 nc = this_cpu_ptr(&netdev_alloc_cache); 787 data = page_frag_alloc(nc, len, gfp_mask); 788 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 789 } else { 790 local_bh_disable(); 791 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 792 793 nc = this_cpu_ptr(&napi_alloc_cache.page); 794 data = page_frag_alloc(nc, len, gfp_mask); 795 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 796 797 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 798 local_bh_enable(); 799 } 800 801 if (unlikely(!data)) 802 return NULL; 803 804 skb = __build_skb(data, len); 805 if (unlikely(!skb)) { 806 skb_free_frag(data); 807 return NULL; 808 } 809 810 if (pfmemalloc) 811 skb->pfmemalloc = 1; 812 skb->head_frag = 1; 813 814 skb_success: 815 skb_reserve(skb, NET_SKB_PAD); 816 skb->dev = dev; 817 818 skb_fail: 819 return skb; 820 } 821 EXPORT_SYMBOL(__netdev_alloc_skb); 822 823 /** 824 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 825 * @napi: napi instance this buffer was allocated for 826 * @len: length to allocate 827 * 828 * Allocate a new sk_buff for use in NAPI receive. This buffer will 829 * attempt to allocate the head from a special reserved region used 830 * only for NAPI Rx allocation. By doing this we can save several 831 * CPU cycles by avoiding having to disable and re-enable IRQs. 832 * 833 * %NULL is returned if there is no free memory. 834 */ 835 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 836 { 837 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 838 struct napi_alloc_cache *nc; 839 struct sk_buff *skb; 840 bool pfmemalloc; 841 void *data; 842 843 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 844 len += NET_SKB_PAD + NET_IP_ALIGN; 845 846 /* If requested length is either too small or too big, 847 * we use kmalloc() for skb->head allocation. 848 */ 849 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 850 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 851 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 852 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 853 NUMA_NO_NODE); 854 if (!skb) 855 goto skb_fail; 856 goto skb_success; 857 } 858 859 len = SKB_HEAD_ALIGN(len); 860 861 if (sk_memalloc_socks()) 862 gfp_mask |= __GFP_MEMALLOC; 863 864 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 865 nc = this_cpu_ptr(&napi_alloc_cache); 866 867 data = page_frag_alloc(&nc->page, len, gfp_mask); 868 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 869 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 870 871 if (unlikely(!data)) 872 return NULL; 873 874 skb = __napi_build_skb(data, len); 875 if (unlikely(!skb)) { 876 skb_free_frag(data); 877 return NULL; 878 } 879 880 if (pfmemalloc) 881 skb->pfmemalloc = 1; 882 skb->head_frag = 1; 883 884 skb_success: 885 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 886 skb->dev = napi->dev; 887 888 skb_fail: 889 return skb; 890 } 891 EXPORT_SYMBOL(napi_alloc_skb); 892 893 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 894 int off, int size, unsigned int truesize) 895 { 896 DEBUG_NET_WARN_ON_ONCE(size > truesize); 897 898 skb_fill_netmem_desc(skb, i, netmem, off, size); 899 skb->len += size; 900 skb->data_len += size; 901 skb->truesize += truesize; 902 } 903 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 904 905 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 906 unsigned int truesize) 907 { 908 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 909 910 DEBUG_NET_WARN_ON_ONCE(size > truesize); 911 912 skb_frag_size_add(frag, size); 913 skb->len += size; 914 skb->data_len += size; 915 skb->truesize += truesize; 916 } 917 EXPORT_SYMBOL(skb_coalesce_rx_frag); 918 919 static void skb_drop_list(struct sk_buff **listp) 920 { 921 kfree_skb_list(*listp); 922 *listp = NULL; 923 } 924 925 static inline void skb_drop_fraglist(struct sk_buff *skb) 926 { 927 skb_drop_list(&skb_shinfo(skb)->frag_list); 928 } 929 930 static void skb_clone_fraglist(struct sk_buff *skb) 931 { 932 struct sk_buff *list; 933 934 skb_walk_frags(skb, list) 935 skb_get(list); 936 } 937 938 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 939 unsigned int headroom) 940 { 941 #if IS_ENABLED(CONFIG_PAGE_POOL) 942 u32 size, truesize, len, max_head_size, off; 943 struct sk_buff *skb = *pskb, *nskb; 944 int err, i, head_off; 945 void *data; 946 947 /* XDP does not support fraglist so we need to linearize 948 * the skb. 949 */ 950 if (skb_has_frag_list(skb)) 951 return -EOPNOTSUPP; 952 953 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 954 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 955 return -ENOMEM; 956 957 size = min_t(u32, skb->len, max_head_size); 958 truesize = SKB_HEAD_ALIGN(size) + headroom; 959 data = page_pool_dev_alloc_va(pool, &truesize); 960 if (!data) 961 return -ENOMEM; 962 963 nskb = napi_build_skb(data, truesize); 964 if (!nskb) { 965 page_pool_free_va(pool, data, true); 966 return -ENOMEM; 967 } 968 969 skb_reserve(nskb, headroom); 970 skb_copy_header(nskb, skb); 971 skb_mark_for_recycle(nskb); 972 973 err = skb_copy_bits(skb, 0, nskb->data, size); 974 if (err) { 975 consume_skb(nskb); 976 return err; 977 } 978 skb_put(nskb, size); 979 980 head_off = skb_headroom(nskb) - skb_headroom(skb); 981 skb_headers_offset_update(nskb, head_off); 982 983 off = size; 984 len = skb->len - off; 985 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 986 struct page *page; 987 u32 page_off; 988 989 size = min_t(u32, len, PAGE_SIZE); 990 truesize = size; 991 992 page = page_pool_dev_alloc(pool, &page_off, &truesize); 993 if (!page) { 994 consume_skb(nskb); 995 return -ENOMEM; 996 } 997 998 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 999 err = skb_copy_bits(skb, off, page_address(page) + page_off, 1000 size); 1001 if (err) { 1002 consume_skb(nskb); 1003 return err; 1004 } 1005 1006 len -= size; 1007 off += size; 1008 } 1009 1010 consume_skb(skb); 1011 *pskb = nskb; 1012 1013 return 0; 1014 #else 1015 return -EOPNOTSUPP; 1016 #endif 1017 } 1018 EXPORT_SYMBOL(skb_pp_cow_data); 1019 1020 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 1021 const struct bpf_prog *prog) 1022 { 1023 if (!prog->aux->xdp_has_frags) 1024 return -EINVAL; 1025 1026 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1027 } 1028 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1029 1030 #if IS_ENABLED(CONFIG_PAGE_POOL) 1031 bool napi_pp_put_page(netmem_ref netmem) 1032 { 1033 netmem = netmem_compound_head(netmem); 1034 1035 if (unlikely(!netmem_is_pp(netmem))) 1036 return false; 1037 1038 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 1039 1040 return true; 1041 } 1042 EXPORT_SYMBOL(napi_pp_put_page); 1043 #endif 1044 1045 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1046 { 1047 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1048 return false; 1049 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1050 } 1051 1052 /** 1053 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1054 * @skb: page pool aware skb 1055 * 1056 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1057 * intended to gain fragment references only for page pool aware skbs, 1058 * i.e. when skb->pp_recycle is true, and not for fragments in a 1059 * non-pp-recycling skb. It has a fallback to increase references on normal 1060 * pages, as page pool aware skbs may also have normal page fragments. 1061 */ 1062 static int skb_pp_frag_ref(struct sk_buff *skb) 1063 { 1064 struct skb_shared_info *shinfo; 1065 netmem_ref head_netmem; 1066 int i; 1067 1068 if (!skb->pp_recycle) 1069 return -EINVAL; 1070 1071 shinfo = skb_shinfo(skb); 1072 1073 for (i = 0; i < shinfo->nr_frags; i++) { 1074 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1075 if (likely(netmem_is_pp(head_netmem))) 1076 page_pool_ref_netmem(head_netmem); 1077 else 1078 page_ref_inc(netmem_to_page(head_netmem)); 1079 } 1080 return 0; 1081 } 1082 1083 static void skb_kfree_head(void *head, unsigned int end_offset) 1084 { 1085 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1086 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1087 else 1088 kfree(head); 1089 } 1090 1091 static void skb_free_head(struct sk_buff *skb) 1092 { 1093 unsigned char *head = skb->head; 1094 1095 if (skb->head_frag) { 1096 if (skb_pp_recycle(skb, head)) 1097 return; 1098 skb_free_frag(head); 1099 } else { 1100 skb_kfree_head(head, skb_end_offset(skb)); 1101 } 1102 } 1103 1104 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1105 { 1106 struct skb_shared_info *shinfo = skb_shinfo(skb); 1107 int i; 1108 1109 if (!skb_data_unref(skb, shinfo)) 1110 goto exit; 1111 1112 if (skb_zcopy(skb)) { 1113 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1114 1115 skb_zcopy_clear(skb, true); 1116 if (skip_unref) 1117 goto free_head; 1118 } 1119 1120 for (i = 0; i < shinfo->nr_frags; i++) 1121 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1122 1123 free_head: 1124 if (shinfo->frag_list) 1125 kfree_skb_list_reason(shinfo->frag_list, reason); 1126 1127 skb_free_head(skb); 1128 exit: 1129 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1130 * bit is only set on the head though, so in order to avoid races 1131 * while trying to recycle fragments on __skb_frag_unref() we need 1132 * to make one SKB responsible for triggering the recycle path. 1133 * So disable the recycling bit if an SKB is cloned and we have 1134 * additional references to the fragmented part of the SKB. 1135 * Eventually the last SKB will have the recycling bit set and it's 1136 * dataref set to 0, which will trigger the recycling 1137 */ 1138 skb->pp_recycle = 0; 1139 } 1140 1141 /* 1142 * Free an skbuff by memory without cleaning the state. 1143 */ 1144 static void kfree_skbmem(struct sk_buff *skb) 1145 { 1146 struct sk_buff_fclones *fclones; 1147 1148 switch (skb->fclone) { 1149 case SKB_FCLONE_UNAVAILABLE: 1150 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1151 return; 1152 1153 case SKB_FCLONE_ORIG: 1154 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1155 1156 /* We usually free the clone (TX completion) before original skb 1157 * This test would have no chance to be true for the clone, 1158 * while here, branch prediction will be good. 1159 */ 1160 if (refcount_read(&fclones->fclone_ref) == 1) 1161 goto fastpath; 1162 break; 1163 1164 default: /* SKB_FCLONE_CLONE */ 1165 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1166 break; 1167 } 1168 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1169 return; 1170 fastpath: 1171 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1172 } 1173 1174 void skb_release_head_state(struct sk_buff *skb) 1175 { 1176 skb_dst_drop(skb); 1177 if (skb->destructor) { 1178 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1179 #ifdef CONFIG_INET 1180 INDIRECT_CALL_4(skb->destructor, 1181 tcp_wfree, __sock_wfree, sock_wfree, 1182 xsk_destruct_skb, 1183 skb); 1184 #else 1185 INDIRECT_CALL_2(skb->destructor, 1186 sock_wfree, xsk_destruct_skb, 1187 skb); 1188 1189 #endif 1190 skb->destructor = NULL; 1191 skb->sk = NULL; 1192 } 1193 nf_reset_ct(skb); 1194 skb_ext_reset(skb); 1195 } 1196 1197 /* Free everything but the sk_buff shell. */ 1198 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1199 { 1200 skb_release_head_state(skb); 1201 if (likely(skb->head)) 1202 skb_release_data(skb, reason); 1203 } 1204 1205 /** 1206 * __kfree_skb - private function 1207 * @skb: buffer 1208 * 1209 * Free an sk_buff. Release anything attached to the buffer. 1210 * Clean the state. This is an internal helper function. Users should 1211 * always call kfree_skb 1212 */ 1213 1214 void __kfree_skb(struct sk_buff *skb) 1215 { 1216 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1217 kfree_skbmem(skb); 1218 } 1219 EXPORT_SYMBOL(__kfree_skb); 1220 1221 static __always_inline 1222 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1223 enum skb_drop_reason reason) 1224 { 1225 if (unlikely(!skb_unref(skb))) 1226 return false; 1227 1228 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1229 u32_get_bits(reason, 1230 SKB_DROP_REASON_SUBSYS_MASK) >= 1231 SKB_DROP_REASON_SUBSYS_NUM); 1232 1233 if (reason == SKB_CONSUMED) 1234 trace_consume_skb(skb, __builtin_return_address(0)); 1235 else 1236 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1237 return true; 1238 } 1239 1240 /** 1241 * sk_skb_reason_drop - free an sk_buff with special reason 1242 * @sk: the socket to receive @skb, or NULL if not applicable 1243 * @skb: buffer to free 1244 * @reason: reason why this skb is dropped 1245 * 1246 * Drop a reference to the buffer and free it if the usage count has hit 1247 * zero. Meanwhile, pass the receiving socket and drop reason to 1248 * 'kfree_skb' tracepoint. 1249 */ 1250 void __fix_address 1251 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1252 { 1253 if (__sk_skb_reason_drop(sk, skb, reason)) 1254 __kfree_skb(skb); 1255 } 1256 EXPORT_SYMBOL(sk_skb_reason_drop); 1257 1258 #define KFREE_SKB_BULK_SIZE 16 1259 1260 struct skb_free_array { 1261 unsigned int skb_count; 1262 void *skb_array[KFREE_SKB_BULK_SIZE]; 1263 }; 1264 1265 static void kfree_skb_add_bulk(struct sk_buff *skb, 1266 struct skb_free_array *sa, 1267 enum skb_drop_reason reason) 1268 { 1269 /* if SKB is a clone, don't handle this case */ 1270 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1271 __kfree_skb(skb); 1272 return; 1273 } 1274 1275 skb_release_all(skb, reason); 1276 sa->skb_array[sa->skb_count++] = skb; 1277 1278 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1279 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1280 sa->skb_array); 1281 sa->skb_count = 0; 1282 } 1283 } 1284 1285 void __fix_address 1286 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1287 { 1288 struct skb_free_array sa; 1289 1290 sa.skb_count = 0; 1291 1292 while (segs) { 1293 struct sk_buff *next = segs->next; 1294 1295 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1296 skb_poison_list(segs); 1297 kfree_skb_add_bulk(segs, &sa, reason); 1298 } 1299 1300 segs = next; 1301 } 1302 1303 if (sa.skb_count) 1304 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1305 } 1306 EXPORT_SYMBOL(kfree_skb_list_reason); 1307 1308 /* Dump skb information and contents. 1309 * 1310 * Must only be called from net_ratelimit()-ed paths. 1311 * 1312 * Dumps whole packets if full_pkt, only headers otherwise. 1313 */ 1314 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1315 { 1316 struct skb_shared_info *sh = skb_shinfo(skb); 1317 struct net_device *dev = skb->dev; 1318 struct sock *sk = skb->sk; 1319 struct sk_buff *list_skb; 1320 bool has_mac, has_trans; 1321 int headroom, tailroom; 1322 int i, len, seg_len; 1323 1324 if (full_pkt) 1325 len = skb->len; 1326 else 1327 len = min_t(int, skb->len, MAX_HEADER + 128); 1328 1329 headroom = skb_headroom(skb); 1330 tailroom = skb_tailroom(skb); 1331 1332 has_mac = skb_mac_header_was_set(skb); 1333 has_trans = skb_transport_header_was_set(skb); 1334 1335 printk("%sskb len=%u data_len=%u headroom=%u headlen=%u tailroom=%u\n" 1336 "end-tail=%u mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1337 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1338 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1339 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1340 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1341 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1342 level, skb->len, skb->data_len, headroom, skb_headlen(skb), 1343 tailroom, skb->end - skb->tail, 1344 has_mac ? skb->mac_header : -1, 1345 has_mac ? skb_mac_header_len(skb) : -1, 1346 skb->mac_len, 1347 skb->network_header, 1348 has_trans ? skb_network_header_len(skb) : -1, 1349 has_trans ? skb->transport_header : -1, 1350 sh->tx_flags, sh->nr_frags, 1351 sh->gso_size, sh->gso_type, sh->gso_segs, 1352 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1353 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1354 skb->hash, skb->sw_hash, skb->l4_hash, 1355 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1356 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1357 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1358 skb->inner_network_header, skb->inner_transport_header); 1359 1360 if (dev) 1361 printk("%sdev name=%s feat=%pNF\n", 1362 level, dev->name, &dev->features); 1363 if (sk) 1364 printk("%ssk family=%hu type=%u proto=%u\n", 1365 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1366 1367 if (full_pkt && headroom) 1368 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1369 16, 1, skb->head, headroom, false); 1370 1371 seg_len = min_t(int, skb_headlen(skb), len); 1372 if (seg_len) 1373 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1374 16, 1, skb->data, seg_len, false); 1375 len -= seg_len; 1376 1377 if (full_pkt && tailroom) 1378 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1379 16, 1, skb_tail_pointer(skb), tailroom, false); 1380 1381 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1382 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1383 u32 p_off, p_len, copied; 1384 struct page *p; 1385 u8 *vaddr; 1386 1387 if (skb_frag_is_net_iov(frag)) { 1388 printk("%sskb frag %d: not readable\n", level, i); 1389 len -= skb_frag_size(frag); 1390 if (!len) 1391 break; 1392 continue; 1393 } 1394 1395 skb_frag_foreach_page(frag, skb_frag_off(frag), 1396 skb_frag_size(frag), p, p_off, p_len, 1397 copied) { 1398 seg_len = min_t(int, p_len, len); 1399 vaddr = kmap_atomic(p); 1400 print_hex_dump(level, "skb frag: ", 1401 DUMP_PREFIX_OFFSET, 1402 16, 1, vaddr + p_off, seg_len, false); 1403 kunmap_atomic(vaddr); 1404 len -= seg_len; 1405 if (!len) 1406 break; 1407 } 1408 } 1409 1410 if (full_pkt && skb_has_frag_list(skb)) { 1411 printk("skb fraglist:\n"); 1412 skb_walk_frags(skb, list_skb) 1413 skb_dump(level, list_skb, true); 1414 } 1415 } 1416 EXPORT_SYMBOL(skb_dump); 1417 1418 /** 1419 * skb_tx_error - report an sk_buff xmit error 1420 * @skb: buffer that triggered an error 1421 * 1422 * Report xmit error if a device callback is tracking this skb. 1423 * skb must be freed afterwards. 1424 */ 1425 void skb_tx_error(struct sk_buff *skb) 1426 { 1427 if (skb) { 1428 skb_zcopy_downgrade_managed(skb); 1429 skb_zcopy_clear(skb, true); 1430 } 1431 } 1432 EXPORT_SYMBOL(skb_tx_error); 1433 1434 #ifdef CONFIG_TRACEPOINTS 1435 /** 1436 * consume_skb - free an skbuff 1437 * @skb: buffer to free 1438 * 1439 * Drop a ref to the buffer and free it if the usage count has hit zero 1440 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1441 * is being dropped after a failure and notes that 1442 */ 1443 void consume_skb(struct sk_buff *skb) 1444 { 1445 if (!skb_unref(skb)) 1446 return; 1447 1448 trace_consume_skb(skb, __builtin_return_address(0)); 1449 __kfree_skb(skb); 1450 } 1451 EXPORT_SYMBOL(consume_skb); 1452 #endif 1453 1454 /** 1455 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1456 * @skb: buffer to free 1457 * 1458 * Alike consume_skb(), but this variant assumes that this is the last 1459 * skb reference and all the head states have been already dropped 1460 */ 1461 void __consume_stateless_skb(struct sk_buff *skb) 1462 { 1463 trace_consume_skb(skb, __builtin_return_address(0)); 1464 skb_release_data(skb, SKB_CONSUMED); 1465 kfree_skbmem(skb); 1466 } 1467 1468 static void napi_skb_cache_put(struct sk_buff *skb) 1469 { 1470 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1471 1472 if (!kasan_mempool_poison_object(skb)) 1473 return; 1474 1475 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1476 nc->skb_cache[nc->skb_count++] = skb; 1477 1478 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1479 u32 i, remaining = NAPI_SKB_CACHE_SIZE - NAPI_SKB_CACHE_FREE; 1480 1481 for (i = remaining; i < NAPI_SKB_CACHE_SIZE; i++) 1482 kasan_mempool_unpoison_object(nc->skb_cache[i], 1483 skbuff_cache_size); 1484 1485 kmem_cache_free_bulk(net_hotdata.skbuff_cache, 1486 NAPI_SKB_CACHE_FREE, 1487 nc->skb_cache + remaining); 1488 nc->skb_count = remaining; 1489 } 1490 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1491 } 1492 1493 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1494 { 1495 skb_release_all(skb, reason); 1496 napi_skb_cache_put(skb); 1497 } 1498 1499 void napi_skb_free_stolen_head(struct sk_buff *skb) 1500 { 1501 if (unlikely(skb->slow_gro)) { 1502 nf_reset_ct(skb); 1503 skb_dst_drop(skb); 1504 skb_ext_put(skb); 1505 skb_orphan(skb); 1506 skb->slow_gro = 0; 1507 } 1508 napi_skb_cache_put(skb); 1509 } 1510 1511 /** 1512 * napi_consume_skb() - consume skb in NAPI context, try to feed skb cache 1513 * @skb: buffer to free 1514 * @budget: NAPI budget 1515 * 1516 * Non-zero @budget must come from the @budget argument passed by the core 1517 * to a NAPI poll function. Note that core may pass budget of 0 to NAPI poll 1518 * for example when polling for netpoll / netconsole. 1519 * 1520 * Passing @budget of 0 is safe from any context, it turns this function 1521 * into dev_consume_skb_any(). 1522 */ 1523 void napi_consume_skb(struct sk_buff *skb, int budget) 1524 { 1525 if (unlikely(!budget || !skb)) { 1526 dev_consume_skb_any(skb); 1527 return; 1528 } 1529 1530 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1531 1532 if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) { 1533 skb_release_head_state(skb); 1534 return skb_attempt_defer_free(skb); 1535 } 1536 1537 if (!skb_unref(skb)) 1538 return; 1539 1540 /* if reaching here SKB is ready to free */ 1541 trace_consume_skb(skb, __builtin_return_address(0)); 1542 1543 /* if SKB is a clone, don't handle this case */ 1544 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1545 __kfree_skb(skb); 1546 return; 1547 } 1548 1549 skb_release_all(skb, SKB_CONSUMED); 1550 napi_skb_cache_put(skb); 1551 } 1552 EXPORT_SYMBOL(napi_consume_skb); 1553 1554 /* Make sure a field is contained by headers group */ 1555 #define CHECK_SKB_FIELD(field) \ 1556 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1557 offsetof(struct sk_buff, headers.field)); \ 1558 1559 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1560 { 1561 new->tstamp = old->tstamp; 1562 /* We do not copy old->sk */ 1563 new->dev = old->dev; 1564 memcpy(new->cb, old->cb, sizeof(old->cb)); 1565 skb_dst_copy(new, old); 1566 __skb_ext_copy(new, old); 1567 __nf_copy(new, old, false); 1568 1569 /* Note : this field could be in the headers group. 1570 * It is not yet because we do not want to have a 16 bit hole 1571 */ 1572 new->queue_mapping = old->queue_mapping; 1573 1574 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1575 CHECK_SKB_FIELD(protocol); 1576 CHECK_SKB_FIELD(csum); 1577 CHECK_SKB_FIELD(hash); 1578 CHECK_SKB_FIELD(priority); 1579 CHECK_SKB_FIELD(skb_iif); 1580 CHECK_SKB_FIELD(vlan_proto); 1581 CHECK_SKB_FIELD(vlan_tci); 1582 CHECK_SKB_FIELD(transport_header); 1583 CHECK_SKB_FIELD(network_header); 1584 CHECK_SKB_FIELD(mac_header); 1585 CHECK_SKB_FIELD(inner_protocol); 1586 CHECK_SKB_FIELD(inner_transport_header); 1587 CHECK_SKB_FIELD(inner_network_header); 1588 CHECK_SKB_FIELD(inner_mac_header); 1589 CHECK_SKB_FIELD(mark); 1590 #ifdef CONFIG_NETWORK_SECMARK 1591 CHECK_SKB_FIELD(secmark); 1592 #endif 1593 #ifdef CONFIG_NET_RX_BUSY_POLL 1594 CHECK_SKB_FIELD(napi_id); 1595 #endif 1596 CHECK_SKB_FIELD(alloc_cpu); 1597 #ifdef CONFIG_XPS 1598 CHECK_SKB_FIELD(sender_cpu); 1599 #endif 1600 #ifdef CONFIG_NET_SCHED 1601 CHECK_SKB_FIELD(tc_index); 1602 #endif 1603 1604 } 1605 1606 /* 1607 * You should not add any new code to this function. Add it to 1608 * __copy_skb_header above instead. 1609 */ 1610 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1611 { 1612 #define C(x) n->x = skb->x 1613 1614 n->next = n->prev = NULL; 1615 n->sk = NULL; 1616 __copy_skb_header(n, skb); 1617 1618 C(len); 1619 C(data_len); 1620 C(mac_len); 1621 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1622 n->cloned = 1; 1623 n->nohdr = 0; 1624 n->peeked = 0; 1625 C(pfmemalloc); 1626 C(pp_recycle); 1627 n->destructor = NULL; 1628 C(tail); 1629 C(end); 1630 C(head); 1631 C(head_frag); 1632 C(data); 1633 C(truesize); 1634 refcount_set(&n->users, 1); 1635 1636 atomic_inc(&(skb_shinfo(skb)->dataref)); 1637 skb->cloned = 1; 1638 1639 return n; 1640 #undef C 1641 } 1642 1643 /** 1644 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1645 * @first: first sk_buff of the msg 1646 */ 1647 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1648 { 1649 struct sk_buff *n; 1650 1651 n = alloc_skb(0, GFP_ATOMIC); 1652 if (!n) 1653 return NULL; 1654 1655 n->len = first->len; 1656 n->data_len = first->len; 1657 n->truesize = first->truesize; 1658 1659 skb_shinfo(n)->frag_list = first; 1660 1661 __copy_skb_header(n, first); 1662 n->destructor = NULL; 1663 1664 return n; 1665 } 1666 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1667 1668 /** 1669 * skb_morph - morph one skb into another 1670 * @dst: the skb to receive the contents 1671 * @src: the skb to supply the contents 1672 * 1673 * This is identical to skb_clone except that the target skb is 1674 * supplied by the user. 1675 * 1676 * The target skb is returned upon exit. 1677 */ 1678 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1679 { 1680 skb_release_all(dst, SKB_CONSUMED); 1681 return __skb_clone(dst, src); 1682 } 1683 EXPORT_SYMBOL_GPL(skb_morph); 1684 1685 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1686 { 1687 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1688 struct user_struct *user; 1689 1690 if (capable(CAP_IPC_LOCK) || !size) 1691 return 0; 1692 1693 rlim = rlimit(RLIMIT_MEMLOCK); 1694 if (rlim == RLIM_INFINITY) 1695 return 0; 1696 1697 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1698 max_pg = rlim >> PAGE_SHIFT; 1699 user = mmp->user ? : current_user(); 1700 1701 old_pg = atomic_long_read(&user->locked_vm); 1702 do { 1703 new_pg = old_pg + num_pg; 1704 if (new_pg > max_pg) 1705 return -ENOBUFS; 1706 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1707 1708 if (!mmp->user) { 1709 mmp->user = get_uid(user); 1710 mmp->num_pg = num_pg; 1711 } else { 1712 mmp->num_pg += num_pg; 1713 } 1714 1715 return 0; 1716 } 1717 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1718 1719 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1720 { 1721 if (mmp->user) { 1722 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1723 free_uid(mmp->user); 1724 } 1725 } 1726 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1727 1728 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1729 bool devmem) 1730 { 1731 struct ubuf_info_msgzc *uarg; 1732 struct sk_buff *skb; 1733 1734 WARN_ON_ONCE(!in_task()); 1735 1736 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1737 if (!skb) 1738 return NULL; 1739 1740 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1741 uarg = (void *)skb->cb; 1742 uarg->mmp.user = NULL; 1743 1744 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1745 kfree_skb(skb); 1746 return NULL; 1747 } 1748 1749 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1750 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1751 uarg->len = 1; 1752 uarg->bytelen = size; 1753 uarg->zerocopy = 1; 1754 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1755 refcount_set(&uarg->ubuf.refcnt, 1); 1756 sock_hold(sk); 1757 1758 return &uarg->ubuf; 1759 } 1760 1761 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1762 { 1763 return container_of((void *)uarg, struct sk_buff, cb); 1764 } 1765 1766 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1767 struct ubuf_info *uarg, bool devmem) 1768 { 1769 if (uarg) { 1770 struct ubuf_info_msgzc *uarg_zc; 1771 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1772 u32 bytelen, next; 1773 1774 /* there might be non MSG_ZEROCOPY users */ 1775 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1776 return NULL; 1777 1778 /* realloc only when socket is locked (TCP, UDP cork), 1779 * so uarg->len and sk_zckey access is serialized 1780 */ 1781 if (!sock_owned_by_user(sk)) { 1782 WARN_ON_ONCE(1); 1783 return NULL; 1784 } 1785 1786 uarg_zc = uarg_to_msgzc(uarg); 1787 bytelen = uarg_zc->bytelen + size; 1788 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1789 /* TCP can create new skb to attach new uarg */ 1790 if (sk->sk_type == SOCK_STREAM) 1791 goto new_alloc; 1792 return NULL; 1793 } 1794 1795 next = (u32)atomic_read(&sk->sk_zckey); 1796 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1797 if (likely(!devmem) && 1798 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1799 return NULL; 1800 uarg_zc->len++; 1801 uarg_zc->bytelen = bytelen; 1802 atomic_set(&sk->sk_zckey, ++next); 1803 1804 /* no extra ref when appending to datagram (MSG_MORE) */ 1805 if (sk->sk_type == SOCK_STREAM) 1806 net_zcopy_get(uarg); 1807 1808 return uarg; 1809 } 1810 } 1811 1812 new_alloc: 1813 return msg_zerocopy_alloc(sk, size, devmem); 1814 } 1815 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1816 1817 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1818 { 1819 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1820 u32 old_lo, old_hi; 1821 u64 sum_len; 1822 1823 old_lo = serr->ee.ee_info; 1824 old_hi = serr->ee.ee_data; 1825 sum_len = old_hi - old_lo + 1ULL + len; 1826 1827 if (sum_len >= (1ULL << 32)) 1828 return false; 1829 1830 if (lo != old_hi + 1) 1831 return false; 1832 1833 serr->ee.ee_data += len; 1834 return true; 1835 } 1836 1837 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1838 { 1839 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1840 struct sock_exterr_skb *serr; 1841 struct sock *sk = skb->sk; 1842 struct sk_buff_head *q; 1843 unsigned long flags; 1844 bool is_zerocopy; 1845 u32 lo, hi; 1846 u16 len; 1847 1848 mm_unaccount_pinned_pages(&uarg->mmp); 1849 1850 /* if !len, there was only 1 call, and it was aborted 1851 * so do not queue a completion notification 1852 */ 1853 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1854 goto release; 1855 1856 len = uarg->len; 1857 lo = uarg->id; 1858 hi = uarg->id + len - 1; 1859 is_zerocopy = uarg->zerocopy; 1860 1861 serr = SKB_EXT_ERR(skb); 1862 memset(serr, 0, sizeof(*serr)); 1863 serr->ee.ee_errno = 0; 1864 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1865 serr->ee.ee_data = hi; 1866 serr->ee.ee_info = lo; 1867 if (!is_zerocopy) 1868 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1869 1870 q = &sk->sk_error_queue; 1871 spin_lock_irqsave(&q->lock, flags); 1872 tail = skb_peek_tail(q); 1873 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1874 !skb_zerocopy_notify_extend(tail, lo, len)) { 1875 __skb_queue_tail(q, skb); 1876 skb = NULL; 1877 } 1878 spin_unlock_irqrestore(&q->lock, flags); 1879 1880 sk_error_report(sk); 1881 1882 release: 1883 consume_skb(skb); 1884 sock_put(sk); 1885 } 1886 1887 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1888 bool success) 1889 { 1890 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1891 1892 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1893 1894 if (refcount_dec_and_test(&uarg->refcnt)) 1895 __msg_zerocopy_callback(uarg_zc); 1896 } 1897 1898 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1899 { 1900 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1901 1902 atomic_dec(&sk->sk_zckey); 1903 uarg_to_msgzc(uarg)->len--; 1904 1905 if (have_uref) 1906 msg_zerocopy_complete(NULL, uarg, true); 1907 } 1908 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1909 1910 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1911 .complete = msg_zerocopy_complete, 1912 }; 1913 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1914 1915 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1916 struct msghdr *msg, int len, 1917 struct ubuf_info *uarg, 1918 struct net_devmem_dmabuf_binding *binding) 1919 { 1920 int err, orig_len = skb->len; 1921 1922 if (uarg->ops->link_skb) { 1923 err = uarg->ops->link_skb(skb, uarg); 1924 if (err) 1925 return err; 1926 } else { 1927 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1928 1929 /* An skb can only point to one uarg. This edge case happens 1930 * when TCP appends to an skb, but zerocopy_realloc triggered 1931 * a new alloc. 1932 */ 1933 if (orig_uarg && uarg != orig_uarg) 1934 return -EEXIST; 1935 } 1936 1937 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1938 binding); 1939 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1940 struct sock *save_sk = skb->sk; 1941 1942 /* Streams do not free skb on error. Reset to prev state. */ 1943 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1944 skb->sk = sk; 1945 ___pskb_trim(skb, orig_len); 1946 skb->sk = save_sk; 1947 return err; 1948 } 1949 1950 skb_zcopy_set(skb, uarg, NULL); 1951 return skb->len - orig_len; 1952 } 1953 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1954 1955 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1956 { 1957 int i; 1958 1959 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1960 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1961 skb_frag_ref(skb, i); 1962 } 1963 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1964 1965 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1966 gfp_t gfp_mask) 1967 { 1968 if (skb_zcopy(orig)) { 1969 if (skb_zcopy(nskb)) { 1970 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1971 if (!gfp_mask) { 1972 WARN_ON_ONCE(1); 1973 return -ENOMEM; 1974 } 1975 if (skb_uarg(nskb) == skb_uarg(orig)) 1976 return 0; 1977 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1978 return -EIO; 1979 } 1980 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1981 } 1982 return 0; 1983 } 1984 1985 /** 1986 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1987 * @skb: the skb to modify 1988 * @gfp_mask: allocation priority 1989 * 1990 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1991 * It will copy all frags into kernel and drop the reference 1992 * to userspace pages. 1993 * 1994 * If this function is called from an interrupt gfp_mask() must be 1995 * %GFP_ATOMIC. 1996 * 1997 * Returns 0 on success or a negative error code on failure 1998 * to allocate kernel memory to copy to. 1999 */ 2000 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 2001 { 2002 int num_frags = skb_shinfo(skb)->nr_frags; 2003 struct page *page, *head = NULL; 2004 int i, order, psize, new_frags; 2005 u32 d_off; 2006 2007 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 2008 return -EINVAL; 2009 2010 if (!skb_frags_readable(skb)) 2011 return -EFAULT; 2012 2013 if (!num_frags) 2014 goto release; 2015 2016 /* We might have to allocate high order pages, so compute what minimum 2017 * page order is needed. 2018 */ 2019 order = 0; 2020 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 2021 order++; 2022 psize = (PAGE_SIZE << order); 2023 2024 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 2025 for (i = 0; i < new_frags; i++) { 2026 page = alloc_pages(gfp_mask | __GFP_COMP, order); 2027 if (!page) { 2028 while (head) { 2029 struct page *next = (struct page *)page_private(head); 2030 put_page(head); 2031 head = next; 2032 } 2033 return -ENOMEM; 2034 } 2035 set_page_private(page, (unsigned long)head); 2036 head = page; 2037 } 2038 2039 page = head; 2040 d_off = 0; 2041 for (i = 0; i < num_frags; i++) { 2042 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2043 u32 p_off, p_len, copied; 2044 struct page *p; 2045 u8 *vaddr; 2046 2047 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 2048 p, p_off, p_len, copied) { 2049 u32 copy, done = 0; 2050 vaddr = kmap_atomic(p); 2051 2052 while (done < p_len) { 2053 if (d_off == psize) { 2054 d_off = 0; 2055 page = (struct page *)page_private(page); 2056 } 2057 copy = min_t(u32, psize - d_off, p_len - done); 2058 memcpy(page_address(page) + d_off, 2059 vaddr + p_off + done, copy); 2060 done += copy; 2061 d_off += copy; 2062 } 2063 kunmap_atomic(vaddr); 2064 } 2065 } 2066 2067 /* skb frags release userspace buffers */ 2068 for (i = 0; i < num_frags; i++) 2069 skb_frag_unref(skb, i); 2070 2071 /* skb frags point to kernel buffers */ 2072 for (i = 0; i < new_frags - 1; i++) { 2073 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2074 head = (struct page *)page_private(head); 2075 } 2076 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2077 d_off); 2078 skb_shinfo(skb)->nr_frags = new_frags; 2079 2080 release: 2081 skb_zcopy_clear(skb, false); 2082 return 0; 2083 } 2084 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2085 2086 /** 2087 * skb_clone - duplicate an sk_buff 2088 * @skb: buffer to clone 2089 * @gfp_mask: allocation priority 2090 * 2091 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2092 * copies share the same packet data but not structure. The new 2093 * buffer has a reference count of 1. If the allocation fails the 2094 * function returns %NULL otherwise the new buffer is returned. 2095 * 2096 * If this function is called from an interrupt gfp_mask() must be 2097 * %GFP_ATOMIC. 2098 */ 2099 2100 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2101 { 2102 struct sk_buff_fclones *fclones = container_of(skb, 2103 struct sk_buff_fclones, 2104 skb1); 2105 struct sk_buff *n; 2106 2107 if (skb_orphan_frags(skb, gfp_mask)) 2108 return NULL; 2109 2110 if (skb->fclone == SKB_FCLONE_ORIG && 2111 refcount_read(&fclones->fclone_ref) == 1) { 2112 n = &fclones->skb2; 2113 refcount_set(&fclones->fclone_ref, 2); 2114 n->fclone = SKB_FCLONE_CLONE; 2115 } else { 2116 if (skb_pfmemalloc(skb)) 2117 gfp_mask |= __GFP_MEMALLOC; 2118 2119 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2120 if (!n) 2121 return NULL; 2122 2123 n->fclone = SKB_FCLONE_UNAVAILABLE; 2124 } 2125 2126 return __skb_clone(n, skb); 2127 } 2128 EXPORT_SYMBOL(skb_clone); 2129 2130 void skb_headers_offset_update(struct sk_buff *skb, int off) 2131 { 2132 /* Only adjust this if it actually is csum_start rather than csum */ 2133 if (skb->ip_summed == CHECKSUM_PARTIAL) 2134 skb->csum_start += off; 2135 /* {transport,network,mac}_header and tail are relative to skb->head */ 2136 skb->transport_header += off; 2137 skb->network_header += off; 2138 if (skb_mac_header_was_set(skb)) 2139 skb->mac_header += off; 2140 skb->inner_transport_header += off; 2141 skb->inner_network_header += off; 2142 skb->inner_mac_header += off; 2143 } 2144 EXPORT_SYMBOL(skb_headers_offset_update); 2145 2146 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2147 { 2148 __copy_skb_header(new, old); 2149 2150 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2151 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2152 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2153 } 2154 EXPORT_SYMBOL(skb_copy_header); 2155 2156 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2157 { 2158 if (skb_pfmemalloc(skb)) 2159 return SKB_ALLOC_RX; 2160 return 0; 2161 } 2162 2163 /** 2164 * skb_copy - create private copy of an sk_buff 2165 * @skb: buffer to copy 2166 * @gfp_mask: allocation priority 2167 * 2168 * Make a copy of both an &sk_buff and its data. This is used when the 2169 * caller wishes to modify the data and needs a private copy of the 2170 * data to alter. Returns %NULL on failure or the pointer to the buffer 2171 * on success. The returned buffer has a reference count of 1. 2172 * 2173 * As by-product this function converts non-linear &sk_buff to linear 2174 * one, so that &sk_buff becomes completely private and caller is allowed 2175 * to modify all the data of returned buffer. This means that this 2176 * function is not recommended for use in circumstances when only 2177 * header is going to be modified. Use pskb_copy() instead. 2178 */ 2179 2180 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2181 { 2182 struct sk_buff *n; 2183 unsigned int size; 2184 int headerlen; 2185 2186 if (!skb_frags_readable(skb)) 2187 return NULL; 2188 2189 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2190 return NULL; 2191 2192 headerlen = skb_headroom(skb); 2193 size = skb_end_offset(skb) + skb->data_len; 2194 n = __alloc_skb(size, gfp_mask, 2195 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2196 if (!n) 2197 return NULL; 2198 2199 /* Set the data pointer */ 2200 skb_reserve(n, headerlen); 2201 /* Set the tail pointer and length */ 2202 skb_put(n, skb->len); 2203 2204 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2205 2206 skb_copy_header(n, skb); 2207 return n; 2208 } 2209 EXPORT_SYMBOL(skb_copy); 2210 2211 /** 2212 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2213 * @skb: buffer to copy 2214 * @headroom: headroom of new skb 2215 * @gfp_mask: allocation priority 2216 * @fclone: if true allocate the copy of the skb from the fclone 2217 * cache instead of the head cache; it is recommended to set this 2218 * to true for the cases where the copy will likely be cloned 2219 * 2220 * Make a copy of both an &sk_buff and part of its data, located 2221 * in header. Fragmented data remain shared. This is used when 2222 * the caller wishes to modify only header of &sk_buff and needs 2223 * private copy of the header to alter. Returns %NULL on failure 2224 * or the pointer to the buffer on success. 2225 * The returned buffer has a reference count of 1. 2226 */ 2227 2228 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2229 gfp_t gfp_mask, bool fclone) 2230 { 2231 unsigned int size = skb_headlen(skb) + headroom; 2232 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2233 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2234 2235 if (!n) 2236 goto out; 2237 2238 /* Set the data pointer */ 2239 skb_reserve(n, headroom); 2240 /* Set the tail pointer and length */ 2241 skb_put(n, skb_headlen(skb)); 2242 /* Copy the bytes */ 2243 skb_copy_from_linear_data(skb, n->data, n->len); 2244 2245 n->truesize += skb->data_len; 2246 n->data_len = skb->data_len; 2247 n->len = skb->len; 2248 2249 if (skb_shinfo(skb)->nr_frags) { 2250 int i; 2251 2252 if (skb_orphan_frags(skb, gfp_mask) || 2253 skb_zerocopy_clone(n, skb, gfp_mask)) { 2254 kfree_skb(n); 2255 n = NULL; 2256 goto out; 2257 } 2258 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2259 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2260 skb_frag_ref(skb, i); 2261 } 2262 skb_shinfo(n)->nr_frags = i; 2263 } 2264 2265 if (skb_has_frag_list(skb)) { 2266 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2267 skb_clone_fraglist(n); 2268 } 2269 2270 skb_copy_header(n, skb); 2271 out: 2272 return n; 2273 } 2274 EXPORT_SYMBOL(__pskb_copy_fclone); 2275 2276 /** 2277 * pskb_expand_head - reallocate header of &sk_buff 2278 * @skb: buffer to reallocate 2279 * @nhead: room to add at head 2280 * @ntail: room to add at tail 2281 * @gfp_mask: allocation priority 2282 * 2283 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2284 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2285 * reference count of 1. Returns zero in the case of success or error, 2286 * if expansion failed. In the last case, &sk_buff is not changed. 2287 * 2288 * All the pointers pointing into skb header may change and must be 2289 * reloaded after call to this function. 2290 * 2291 * Note: If you skb_push() the start of the buffer after reallocating the 2292 * header, call skb_postpush_data_move() first to move the metadata out of 2293 * the way before writing to &sk_buff->data. 2294 */ 2295 2296 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2297 gfp_t gfp_mask) 2298 { 2299 unsigned int osize = skb_end_offset(skb); 2300 unsigned int size = osize + nhead + ntail; 2301 long off; 2302 u8 *data; 2303 int i; 2304 2305 BUG_ON(nhead < 0); 2306 2307 BUG_ON(skb_shared(skb)); 2308 2309 skb_zcopy_downgrade_managed(skb); 2310 2311 if (skb_pfmemalloc(skb)) 2312 gfp_mask |= __GFP_MEMALLOC; 2313 2314 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2315 if (!data) 2316 goto nodata; 2317 size = SKB_WITH_OVERHEAD(size); 2318 2319 /* Copy only real data... and, alas, header. This should be 2320 * optimized for the cases when header is void. 2321 */ 2322 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2323 2324 memcpy((struct skb_shared_info *)(data + size), 2325 skb_shinfo(skb), 2326 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2327 2328 /* 2329 * if shinfo is shared we must drop the old head gracefully, but if it 2330 * is not we can just drop the old head and let the existing refcount 2331 * be since all we did is relocate the values 2332 */ 2333 if (skb_cloned(skb)) { 2334 if (skb_orphan_frags(skb, gfp_mask)) 2335 goto nofrags; 2336 if (skb_zcopy(skb)) 2337 refcount_inc(&skb_uarg(skb)->refcnt); 2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2339 skb_frag_ref(skb, i); 2340 2341 if (skb_has_frag_list(skb)) 2342 skb_clone_fraglist(skb); 2343 2344 skb_release_data(skb, SKB_CONSUMED); 2345 } else { 2346 skb_free_head(skb); 2347 } 2348 off = (data + nhead) - skb->head; 2349 2350 skb->head = data; 2351 skb->head_frag = 0; 2352 skb->data += off; 2353 2354 skb_set_end_offset(skb, size); 2355 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2356 off = nhead; 2357 #endif 2358 skb->tail += off; 2359 skb_headers_offset_update(skb, nhead); 2360 skb->cloned = 0; 2361 skb->hdr_len = 0; 2362 skb->nohdr = 0; 2363 atomic_set(&skb_shinfo(skb)->dataref, 1); 2364 2365 /* It is not generally safe to change skb->truesize. 2366 * For the moment, we really care of rx path, or 2367 * when skb is orphaned (not attached to a socket). 2368 */ 2369 if (!skb->sk || skb->destructor == sock_edemux) 2370 skb->truesize += size - osize; 2371 2372 return 0; 2373 2374 nofrags: 2375 skb_kfree_head(data, size); 2376 nodata: 2377 return -ENOMEM; 2378 } 2379 EXPORT_SYMBOL(pskb_expand_head); 2380 2381 /* Make private copy of skb with writable head and some headroom */ 2382 2383 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2384 { 2385 struct sk_buff *skb2; 2386 int delta = headroom - skb_headroom(skb); 2387 2388 if (delta <= 0) 2389 skb2 = pskb_copy(skb, GFP_ATOMIC); 2390 else { 2391 skb2 = skb_clone(skb, GFP_ATOMIC); 2392 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2393 GFP_ATOMIC)) { 2394 kfree_skb(skb2); 2395 skb2 = NULL; 2396 } 2397 } 2398 return skb2; 2399 } 2400 EXPORT_SYMBOL(skb_realloc_headroom); 2401 2402 /* Note: We plan to rework this in linux-6.4 */ 2403 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2404 { 2405 unsigned int saved_end_offset, saved_truesize; 2406 struct skb_shared_info *shinfo; 2407 int res; 2408 2409 saved_end_offset = skb_end_offset(skb); 2410 saved_truesize = skb->truesize; 2411 2412 res = pskb_expand_head(skb, 0, 0, pri); 2413 if (res) 2414 return res; 2415 2416 skb->truesize = saved_truesize; 2417 2418 if (likely(skb_end_offset(skb) == saved_end_offset)) 2419 return 0; 2420 2421 /* We can not change skb->end if the original or new value 2422 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2423 */ 2424 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2425 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2426 /* We think this path should not be taken. 2427 * Add a temporary trace to warn us just in case. 2428 */ 2429 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2430 saved_end_offset, skb_end_offset(skb)); 2431 WARN_ON_ONCE(1); 2432 return 0; 2433 } 2434 2435 shinfo = skb_shinfo(skb); 2436 2437 /* We are about to change back skb->end, 2438 * we need to move skb_shinfo() to its new location. 2439 */ 2440 memmove(skb->head + saved_end_offset, 2441 shinfo, 2442 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2443 2444 skb_set_end_offset(skb, saved_end_offset); 2445 2446 return 0; 2447 } 2448 2449 /** 2450 * skb_expand_head - reallocate header of &sk_buff 2451 * @skb: buffer to reallocate 2452 * @headroom: needed headroom 2453 * 2454 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2455 * if possible; copies skb->sk to new skb as needed 2456 * and frees original skb in case of failures. 2457 * 2458 * It expect increased headroom and generates warning otherwise. 2459 */ 2460 2461 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2462 { 2463 int delta = headroom - skb_headroom(skb); 2464 int osize = skb_end_offset(skb); 2465 struct sock *sk = skb->sk; 2466 2467 if (WARN_ONCE(delta <= 0, 2468 "%s is expecting an increase in the headroom", __func__)) 2469 return skb; 2470 2471 delta = SKB_DATA_ALIGN(delta); 2472 /* pskb_expand_head() might crash, if skb is shared. */ 2473 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2474 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2475 2476 if (unlikely(!nskb)) 2477 goto fail; 2478 2479 if (sk) 2480 skb_set_owner_w(nskb, sk); 2481 consume_skb(skb); 2482 skb = nskb; 2483 } 2484 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2485 goto fail; 2486 2487 if (sk && is_skb_wmem(skb)) { 2488 delta = skb_end_offset(skb) - osize; 2489 refcount_add(delta, &sk->sk_wmem_alloc); 2490 skb->truesize += delta; 2491 } 2492 return skb; 2493 2494 fail: 2495 kfree_skb(skb); 2496 return NULL; 2497 } 2498 EXPORT_SYMBOL(skb_expand_head); 2499 2500 /** 2501 * skb_copy_expand - copy and expand sk_buff 2502 * @skb: buffer to copy 2503 * @newheadroom: new free bytes at head 2504 * @newtailroom: new free bytes at tail 2505 * @gfp_mask: allocation priority 2506 * 2507 * Make a copy of both an &sk_buff and its data and while doing so 2508 * allocate additional space. 2509 * 2510 * This is used when the caller wishes to modify the data and needs a 2511 * private copy of the data to alter as well as more space for new fields. 2512 * Returns %NULL on failure or the pointer to the buffer 2513 * on success. The returned buffer has a reference count of 1. 2514 * 2515 * You must pass %GFP_ATOMIC as the allocation priority if this function 2516 * is called from an interrupt. 2517 */ 2518 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2519 int newheadroom, int newtailroom, 2520 gfp_t gfp_mask) 2521 { 2522 /* 2523 * Allocate the copy buffer 2524 */ 2525 int head_copy_len, head_copy_off; 2526 struct sk_buff *n; 2527 int oldheadroom; 2528 2529 if (!skb_frags_readable(skb)) 2530 return NULL; 2531 2532 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2533 return NULL; 2534 2535 oldheadroom = skb_headroom(skb); 2536 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2537 gfp_mask, skb_alloc_rx_flag(skb), 2538 NUMA_NO_NODE); 2539 if (!n) 2540 return NULL; 2541 2542 skb_reserve(n, newheadroom); 2543 2544 /* Set the tail pointer and length */ 2545 skb_put(n, skb->len); 2546 2547 head_copy_len = oldheadroom; 2548 head_copy_off = 0; 2549 if (newheadroom <= head_copy_len) 2550 head_copy_len = newheadroom; 2551 else 2552 head_copy_off = newheadroom - head_copy_len; 2553 2554 /* Copy the linear header and data. */ 2555 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2556 skb->len + head_copy_len)); 2557 2558 skb_copy_header(n, skb); 2559 2560 skb_headers_offset_update(n, newheadroom - oldheadroom); 2561 2562 return n; 2563 } 2564 EXPORT_SYMBOL(skb_copy_expand); 2565 2566 /** 2567 * __skb_pad - zero pad the tail of an skb 2568 * @skb: buffer to pad 2569 * @pad: space to pad 2570 * @free_on_error: free buffer on error 2571 * 2572 * Ensure that a buffer is followed by a padding area that is zero 2573 * filled. Used by network drivers which may DMA or transfer data 2574 * beyond the buffer end onto the wire. 2575 * 2576 * May return error in out of memory cases. The skb is freed on error 2577 * if @free_on_error is true. 2578 */ 2579 2580 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2581 { 2582 int err; 2583 int ntail; 2584 2585 /* If the skbuff is non linear tailroom is always zero.. */ 2586 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2587 memset(skb->data+skb->len, 0, pad); 2588 return 0; 2589 } 2590 2591 ntail = skb->data_len + pad - (skb->end - skb->tail); 2592 if (likely(skb_cloned(skb) || ntail > 0)) { 2593 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2594 if (unlikely(err)) 2595 goto free_skb; 2596 } 2597 2598 /* FIXME: The use of this function with non-linear skb's really needs 2599 * to be audited. 2600 */ 2601 err = skb_linearize(skb); 2602 if (unlikely(err)) 2603 goto free_skb; 2604 2605 memset(skb->data + skb->len, 0, pad); 2606 return 0; 2607 2608 free_skb: 2609 if (free_on_error) 2610 kfree_skb(skb); 2611 return err; 2612 } 2613 EXPORT_SYMBOL(__skb_pad); 2614 2615 /** 2616 * pskb_put - add data to the tail of a potentially fragmented buffer 2617 * @skb: start of the buffer to use 2618 * @tail: tail fragment of the buffer to use 2619 * @len: amount of data to add 2620 * 2621 * This function extends the used data area of the potentially 2622 * fragmented buffer. @tail must be the last fragment of @skb -- or 2623 * @skb itself. If this would exceed the total buffer size the kernel 2624 * will panic. A pointer to the first byte of the extra data is 2625 * returned. 2626 */ 2627 2628 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2629 { 2630 if (tail != skb) { 2631 skb->data_len += len; 2632 skb->len += len; 2633 } 2634 return skb_put(tail, len); 2635 } 2636 EXPORT_SYMBOL_GPL(pskb_put); 2637 2638 /** 2639 * skb_put - add data to a buffer 2640 * @skb: buffer to use 2641 * @len: amount of data to add 2642 * 2643 * This function extends the used data area of the buffer. If this would 2644 * exceed the total buffer size the kernel will panic. A pointer to the 2645 * first byte of the extra data is returned. 2646 */ 2647 void *skb_put(struct sk_buff *skb, unsigned int len) 2648 { 2649 void *tmp = skb_tail_pointer(skb); 2650 SKB_LINEAR_ASSERT(skb); 2651 skb->tail += len; 2652 skb->len += len; 2653 if (unlikely(skb->tail > skb->end)) 2654 skb_over_panic(skb, len, __builtin_return_address(0)); 2655 return tmp; 2656 } 2657 EXPORT_SYMBOL(skb_put); 2658 2659 /** 2660 * skb_push - add data to the start of a buffer 2661 * @skb: buffer to use 2662 * @len: amount of data to add 2663 * 2664 * This function extends the used data area of the buffer at the buffer 2665 * start. If this would exceed the total buffer headroom the kernel will 2666 * panic. A pointer to the first byte of the extra data is returned. 2667 */ 2668 void *skb_push(struct sk_buff *skb, unsigned int len) 2669 { 2670 skb->data -= len; 2671 skb->len += len; 2672 if (unlikely(skb->data < skb->head)) 2673 skb_under_panic(skb, len, __builtin_return_address(0)); 2674 return skb->data; 2675 } 2676 EXPORT_SYMBOL(skb_push); 2677 2678 /** 2679 * skb_pull - remove data from the start of a buffer 2680 * @skb: buffer to use 2681 * @len: amount of data to remove 2682 * 2683 * This function removes data from the start of a buffer, returning 2684 * the memory to the headroom. A pointer to the next data in the buffer 2685 * is returned. Once the data has been pulled future pushes will overwrite 2686 * the old data. 2687 */ 2688 void *skb_pull(struct sk_buff *skb, unsigned int len) 2689 { 2690 return skb_pull_inline(skb, len); 2691 } 2692 EXPORT_SYMBOL(skb_pull); 2693 2694 /** 2695 * skb_pull_data - remove data from the start of a buffer returning its 2696 * original position. 2697 * @skb: buffer to use 2698 * @len: amount of data to remove 2699 * 2700 * This function removes data from the start of a buffer, returning 2701 * the memory to the headroom. A pointer to the original data in the buffer 2702 * is returned after checking if there is enough data to pull. Once the 2703 * data has been pulled future pushes will overwrite the old data. 2704 */ 2705 void *skb_pull_data(struct sk_buff *skb, size_t len) 2706 { 2707 void *data = skb->data; 2708 2709 if (skb->len < len) 2710 return NULL; 2711 2712 skb_pull(skb, len); 2713 2714 return data; 2715 } 2716 EXPORT_SYMBOL(skb_pull_data); 2717 2718 /** 2719 * skb_trim - remove end from a buffer 2720 * @skb: buffer to alter 2721 * @len: new length 2722 * 2723 * Cut the length of a buffer down by removing data from the tail. If 2724 * the buffer is already under the length specified it is not modified. 2725 * The skb must be linear. 2726 */ 2727 void skb_trim(struct sk_buff *skb, unsigned int len) 2728 { 2729 if (skb->len > len) 2730 __skb_trim(skb, len); 2731 } 2732 EXPORT_SYMBOL(skb_trim); 2733 2734 /* Trims skb to length len. It can change skb pointers. 2735 */ 2736 2737 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2738 { 2739 struct sk_buff **fragp; 2740 struct sk_buff *frag; 2741 int offset = skb_headlen(skb); 2742 int nfrags = skb_shinfo(skb)->nr_frags; 2743 int i; 2744 int err; 2745 2746 if (skb_cloned(skb) && 2747 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2748 return err; 2749 2750 i = 0; 2751 if (offset >= len) 2752 goto drop_pages; 2753 2754 for (; i < nfrags; i++) { 2755 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2756 2757 if (end < len) { 2758 offset = end; 2759 continue; 2760 } 2761 2762 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2763 2764 drop_pages: 2765 skb_shinfo(skb)->nr_frags = i; 2766 2767 for (; i < nfrags; i++) 2768 skb_frag_unref(skb, i); 2769 2770 if (skb_has_frag_list(skb)) 2771 skb_drop_fraglist(skb); 2772 goto done; 2773 } 2774 2775 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2776 fragp = &frag->next) { 2777 int end = offset + frag->len; 2778 2779 if (skb_shared(frag)) { 2780 struct sk_buff *nfrag; 2781 2782 nfrag = skb_clone(frag, GFP_ATOMIC); 2783 if (unlikely(!nfrag)) 2784 return -ENOMEM; 2785 2786 nfrag->next = frag->next; 2787 consume_skb(frag); 2788 frag = nfrag; 2789 *fragp = frag; 2790 } 2791 2792 if (end < len) { 2793 offset = end; 2794 continue; 2795 } 2796 2797 if (end > len && 2798 unlikely((err = pskb_trim(frag, len - offset)))) 2799 return err; 2800 2801 if (frag->next) 2802 skb_drop_list(&frag->next); 2803 break; 2804 } 2805 2806 done: 2807 if (len > skb_headlen(skb)) { 2808 skb->data_len -= skb->len - len; 2809 skb->len = len; 2810 } else { 2811 skb->len = len; 2812 skb->data_len = 0; 2813 skb_set_tail_pointer(skb, len); 2814 } 2815 2816 if (!skb->sk || skb->destructor == sock_edemux) 2817 skb_condense(skb); 2818 return 0; 2819 } 2820 EXPORT_SYMBOL(___pskb_trim); 2821 2822 /* Note : use pskb_trim_rcsum() instead of calling this directly 2823 */ 2824 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2825 { 2826 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2827 int delta = skb->len - len; 2828 2829 skb->csum = csum_block_sub(skb->csum, 2830 skb_checksum(skb, len, delta, 0), 2831 len); 2832 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2833 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2834 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2835 2836 if (offset + sizeof(__sum16) > hdlen) 2837 return -EINVAL; 2838 } 2839 return __pskb_trim(skb, len); 2840 } 2841 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2842 2843 /** 2844 * __pskb_pull_tail - advance tail of skb header 2845 * @skb: buffer to reallocate 2846 * @delta: number of bytes to advance tail 2847 * 2848 * The function makes a sense only on a fragmented &sk_buff, 2849 * it expands header moving its tail forward and copying necessary 2850 * data from fragmented part. 2851 * 2852 * &sk_buff MUST have reference count of 1. 2853 * 2854 * Returns %NULL (and &sk_buff does not change) if pull failed 2855 * or value of new tail of skb in the case of success. 2856 * 2857 * All the pointers pointing into skb header may change and must be 2858 * reloaded after call to this function. 2859 */ 2860 2861 /* Moves tail of skb head forward, copying data from fragmented part, 2862 * when it is necessary. 2863 * 1. It may fail due to malloc failure. 2864 * 2. It may change skb pointers. 2865 * 2866 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2867 */ 2868 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2869 { 2870 /* If skb has not enough free space at tail, get new one 2871 * plus 128 bytes for future expansions. If we have enough 2872 * room at tail, reallocate without expansion only if skb is cloned. 2873 */ 2874 int i, k, eat = (skb->tail + delta) - skb->end; 2875 2876 if (!skb_frags_readable(skb)) 2877 return NULL; 2878 2879 if (eat > 0 || skb_cloned(skb)) { 2880 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2881 GFP_ATOMIC)) 2882 return NULL; 2883 } 2884 2885 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2886 skb_tail_pointer(skb), delta)); 2887 2888 /* Optimization: no fragments, no reasons to preestimate 2889 * size of pulled pages. Superb. 2890 */ 2891 if (!skb_has_frag_list(skb)) 2892 goto pull_pages; 2893 2894 /* Estimate size of pulled pages. */ 2895 eat = delta; 2896 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2897 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2898 2899 if (size >= eat) 2900 goto pull_pages; 2901 eat -= size; 2902 } 2903 2904 /* If we need update frag list, we are in troubles. 2905 * Certainly, it is possible to add an offset to skb data, 2906 * but taking into account that pulling is expected to 2907 * be very rare operation, it is worth to fight against 2908 * further bloating skb head and crucify ourselves here instead. 2909 * Pure masohism, indeed. 8)8) 2910 */ 2911 if (eat) { 2912 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2913 struct sk_buff *clone = NULL; 2914 struct sk_buff *insp = NULL; 2915 2916 do { 2917 if (list->len <= eat) { 2918 /* Eaten as whole. */ 2919 eat -= list->len; 2920 list = list->next; 2921 insp = list; 2922 } else { 2923 /* Eaten partially. */ 2924 if (skb_is_gso(skb) && !list->head_frag && 2925 skb_headlen(list)) 2926 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2927 2928 if (skb_shared(list)) { 2929 /* Sucks! We need to fork list. :-( */ 2930 clone = skb_clone(list, GFP_ATOMIC); 2931 if (!clone) 2932 return NULL; 2933 insp = list->next; 2934 list = clone; 2935 } else { 2936 /* This may be pulled without 2937 * problems. */ 2938 insp = list; 2939 } 2940 if (!pskb_pull(list, eat)) { 2941 kfree_skb(clone); 2942 return NULL; 2943 } 2944 break; 2945 } 2946 } while (eat); 2947 2948 /* Free pulled out fragments. */ 2949 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2950 skb_shinfo(skb)->frag_list = list->next; 2951 consume_skb(list); 2952 } 2953 /* And insert new clone at head. */ 2954 if (clone) { 2955 clone->next = list; 2956 skb_shinfo(skb)->frag_list = clone; 2957 } 2958 } 2959 /* Success! Now we may commit changes to skb data. */ 2960 2961 pull_pages: 2962 eat = delta; 2963 k = 0; 2964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2965 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2966 2967 if (size <= eat) { 2968 skb_frag_unref(skb, i); 2969 eat -= size; 2970 } else { 2971 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2972 2973 *frag = skb_shinfo(skb)->frags[i]; 2974 if (eat) { 2975 skb_frag_off_add(frag, eat); 2976 skb_frag_size_sub(frag, eat); 2977 if (!i) 2978 goto end; 2979 eat = 0; 2980 } 2981 k++; 2982 } 2983 } 2984 skb_shinfo(skb)->nr_frags = k; 2985 2986 end: 2987 skb->tail += delta; 2988 skb->data_len -= delta; 2989 2990 if (!skb->data_len) 2991 skb_zcopy_clear(skb, false); 2992 2993 return skb_tail_pointer(skb); 2994 } 2995 EXPORT_SYMBOL(__pskb_pull_tail); 2996 2997 /** 2998 * skb_copy_bits - copy bits from skb to kernel buffer 2999 * @skb: source skb 3000 * @offset: offset in source 3001 * @to: destination buffer 3002 * @len: number of bytes to copy 3003 * 3004 * Copy the specified number of bytes from the source skb to the 3005 * destination buffer. 3006 * 3007 * CAUTION ! : 3008 * If its prototype is ever changed, 3009 * check arch/{*}/net/{*}.S files, 3010 * since it is called from BPF assembly code. 3011 */ 3012 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 3013 { 3014 int start = skb_headlen(skb); 3015 struct sk_buff *frag_iter; 3016 int i, copy; 3017 3018 if (offset > (int)skb->len - len) 3019 goto fault; 3020 3021 /* Copy header. */ 3022 if ((copy = start - offset) > 0) { 3023 if (copy > len) 3024 copy = len; 3025 skb_copy_from_linear_data_offset(skb, offset, to, copy); 3026 if ((len -= copy) == 0) 3027 return 0; 3028 offset += copy; 3029 to += copy; 3030 } 3031 3032 if (!skb_frags_readable(skb)) 3033 goto fault; 3034 3035 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3036 int end; 3037 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 3038 3039 WARN_ON(start > offset + len); 3040 3041 end = start + skb_frag_size(f); 3042 if ((copy = end - offset) > 0) { 3043 u32 p_off, p_len, copied; 3044 struct page *p; 3045 u8 *vaddr; 3046 3047 if (copy > len) 3048 copy = len; 3049 3050 skb_frag_foreach_page(f, 3051 skb_frag_off(f) + offset - start, 3052 copy, p, p_off, p_len, copied) { 3053 vaddr = kmap_atomic(p); 3054 memcpy(to + copied, vaddr + p_off, p_len); 3055 kunmap_atomic(vaddr); 3056 } 3057 3058 if ((len -= copy) == 0) 3059 return 0; 3060 offset += copy; 3061 to += copy; 3062 } 3063 start = end; 3064 } 3065 3066 skb_walk_frags(skb, frag_iter) { 3067 int end; 3068 3069 WARN_ON(start > offset + len); 3070 3071 end = start + frag_iter->len; 3072 if ((copy = end - offset) > 0) { 3073 if (copy > len) 3074 copy = len; 3075 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3076 goto fault; 3077 if ((len -= copy) == 0) 3078 return 0; 3079 offset += copy; 3080 to += copy; 3081 } 3082 start = end; 3083 } 3084 3085 if (!len) 3086 return 0; 3087 3088 fault: 3089 return -EFAULT; 3090 } 3091 EXPORT_SYMBOL(skb_copy_bits); 3092 3093 /* 3094 * Callback from splice_to_pipe(), if we need to release some pages 3095 * at the end of the spd in case we error'ed out in filling the pipe. 3096 */ 3097 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3098 { 3099 put_page(spd->pages[i]); 3100 } 3101 3102 static struct page *linear_to_page(struct page *page, unsigned int *len, 3103 unsigned int *offset, 3104 struct sock *sk) 3105 { 3106 struct page_frag *pfrag = sk_page_frag(sk); 3107 3108 if (!sk_page_frag_refill(sk, pfrag)) 3109 return NULL; 3110 3111 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3112 3113 memcpy(page_address(pfrag->page) + pfrag->offset, 3114 page_address(page) + *offset, *len); 3115 *offset = pfrag->offset; 3116 pfrag->offset += *len; 3117 3118 return pfrag->page; 3119 } 3120 3121 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3122 struct page *page, 3123 unsigned int offset) 3124 { 3125 return spd->nr_pages && 3126 spd->pages[spd->nr_pages - 1] == page && 3127 (spd->partial[spd->nr_pages - 1].offset + 3128 spd->partial[spd->nr_pages - 1].len == offset); 3129 } 3130 3131 /* 3132 * Fill page/offset/length into spd, if it can hold more pages. 3133 */ 3134 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3135 unsigned int *len, unsigned int offset, bool linear, 3136 struct sock *sk) 3137 { 3138 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3139 return true; 3140 3141 if (linear) { 3142 page = linear_to_page(page, len, &offset, sk); 3143 if (!page) 3144 return true; 3145 } 3146 if (spd_can_coalesce(spd, page, offset)) { 3147 spd->partial[spd->nr_pages - 1].len += *len; 3148 return false; 3149 } 3150 get_page(page); 3151 spd->pages[spd->nr_pages] = page; 3152 spd->partial[spd->nr_pages].len = *len; 3153 spd->partial[spd->nr_pages].offset = offset; 3154 spd->nr_pages++; 3155 3156 return false; 3157 } 3158 3159 static bool __splice_segment(struct page *page, unsigned int poff, 3160 unsigned int plen, unsigned int *off, 3161 unsigned int *len, 3162 struct splice_pipe_desc *spd, bool linear, 3163 struct sock *sk) 3164 { 3165 if (!*len) 3166 return true; 3167 3168 /* skip this segment if already processed */ 3169 if (*off >= plen) { 3170 *off -= plen; 3171 return false; 3172 } 3173 3174 /* ignore any bits we already processed */ 3175 poff += *off; 3176 plen -= *off; 3177 *off = 0; 3178 3179 do { 3180 unsigned int flen = min(*len, plen); 3181 3182 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3183 return true; 3184 poff += flen; 3185 plen -= flen; 3186 *len -= flen; 3187 if (!*len) 3188 return true; 3189 } while (plen); 3190 3191 return false; 3192 } 3193 3194 /* 3195 * Map linear and fragment data from the skb to spd. It reports true if the 3196 * pipe is full or if we already spliced the requested length. 3197 */ 3198 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3199 unsigned int *offset, unsigned int *len, 3200 struct splice_pipe_desc *spd, struct sock *sk) 3201 { 3202 struct sk_buff *iter; 3203 int seg; 3204 3205 /* map the linear part : 3206 * If skb->head_frag is set, this 'linear' part is backed by a 3207 * fragment, and if the head is not shared with any clones then 3208 * we can avoid a copy since we own the head portion of this page. 3209 */ 3210 if (__splice_segment(virt_to_page(skb->data), 3211 (unsigned long) skb->data & (PAGE_SIZE - 1), 3212 skb_headlen(skb), 3213 offset, len, spd, 3214 skb_head_is_locked(skb), 3215 sk)) 3216 return true; 3217 3218 /* 3219 * then map the fragments 3220 */ 3221 if (!skb_frags_readable(skb)) 3222 return false; 3223 3224 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3225 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3226 3227 if (WARN_ON_ONCE(!skb_frag_page(f))) 3228 return false; 3229 3230 if (__splice_segment(skb_frag_page(f), 3231 skb_frag_off(f), skb_frag_size(f), 3232 offset, len, spd, false, sk)) 3233 return true; 3234 } 3235 3236 skb_walk_frags(skb, iter) { 3237 if (*offset >= iter->len) { 3238 *offset -= iter->len; 3239 continue; 3240 } 3241 /* __skb_splice_bits() only fails if the output has no room 3242 * left, so no point in going over the frag_list for the error 3243 * case. 3244 */ 3245 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3246 return true; 3247 } 3248 3249 return false; 3250 } 3251 3252 /* 3253 * Map data from the skb to a pipe. Should handle both the linear part, 3254 * the fragments, and the frag list. 3255 */ 3256 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3257 struct pipe_inode_info *pipe, unsigned int tlen, 3258 unsigned int flags) 3259 { 3260 struct partial_page partial[MAX_SKB_FRAGS]; 3261 struct page *pages[MAX_SKB_FRAGS]; 3262 struct splice_pipe_desc spd = { 3263 .pages = pages, 3264 .partial = partial, 3265 .nr_pages_max = MAX_SKB_FRAGS, 3266 .ops = &nosteal_pipe_buf_ops, 3267 .spd_release = sock_spd_release, 3268 }; 3269 int ret = 0; 3270 3271 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3272 3273 if (spd.nr_pages) 3274 ret = splice_to_pipe(pipe, &spd); 3275 3276 return ret; 3277 } 3278 EXPORT_SYMBOL_GPL(skb_splice_bits); 3279 3280 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3281 { 3282 struct socket *sock = sk->sk_socket; 3283 size_t size = msg_data_left(msg); 3284 3285 if (!sock) 3286 return -EINVAL; 3287 3288 if (!sock->ops->sendmsg_locked) 3289 return sock_no_sendmsg_locked(sk, msg, size); 3290 3291 return sock->ops->sendmsg_locked(sk, msg, size); 3292 } 3293 3294 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3295 { 3296 struct socket *sock = sk->sk_socket; 3297 3298 if (!sock) 3299 return -EINVAL; 3300 return sock_sendmsg(sock, msg); 3301 } 3302 3303 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3304 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3305 int len, sendmsg_func sendmsg, int flags) 3306 { 3307 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0; 3308 unsigned int orig_len = len; 3309 struct sk_buff *head = skb; 3310 unsigned short fragidx; 3311 int slen, ret; 3312 3313 do_frag_list: 3314 3315 /* Deal with head data */ 3316 while (offset < skb_headlen(skb) && len) { 3317 struct kvec kv; 3318 struct msghdr msg; 3319 3320 slen = min_t(int, len, skb_headlen(skb) - offset); 3321 kv.iov_base = skb->data + offset; 3322 kv.iov_len = slen; 3323 memset(&msg, 0, sizeof(msg)); 3324 msg.msg_flags = MSG_DONTWAIT | flags; 3325 if (slen < len) 3326 msg.msg_flags |= more_hint; 3327 3328 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3329 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3330 sendmsg_unlocked, sk, &msg); 3331 if (ret <= 0) 3332 goto error; 3333 3334 offset += ret; 3335 len -= ret; 3336 } 3337 3338 /* All the data was skb head? */ 3339 if (!len) 3340 goto out; 3341 3342 /* Make offset relative to start of frags */ 3343 offset -= skb_headlen(skb); 3344 3345 /* Find where we are in frag list */ 3346 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3347 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3348 3349 if (offset < skb_frag_size(frag)) 3350 break; 3351 3352 offset -= skb_frag_size(frag); 3353 } 3354 3355 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3356 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3357 3358 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3359 3360 while (slen) { 3361 struct bio_vec bvec; 3362 struct msghdr msg = { 3363 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3364 flags, 3365 }; 3366 3367 if (slen < len) 3368 msg.msg_flags |= more_hint; 3369 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3370 skb_frag_off(frag) + offset); 3371 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3372 slen); 3373 3374 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3375 sendmsg_unlocked, sk, &msg); 3376 if (ret <= 0) 3377 goto error; 3378 3379 len -= ret; 3380 offset += ret; 3381 slen -= ret; 3382 } 3383 3384 offset = 0; 3385 } 3386 3387 if (len) { 3388 /* Process any frag lists */ 3389 3390 if (skb == head) { 3391 if (skb_has_frag_list(skb)) { 3392 skb = skb_shinfo(skb)->frag_list; 3393 goto do_frag_list; 3394 } 3395 } else if (skb->next) { 3396 skb = skb->next; 3397 goto do_frag_list; 3398 } 3399 } 3400 3401 out: 3402 return orig_len - len; 3403 3404 error: 3405 return orig_len == len ? ret : orig_len - len; 3406 } 3407 3408 /* Send skb data on a socket. Socket must be locked. */ 3409 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3410 int len) 3411 { 3412 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3413 } 3414 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3415 3416 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3417 int offset, int len, int flags) 3418 { 3419 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3420 } 3421 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3422 3423 /* Send skb data on a socket. Socket must be unlocked. */ 3424 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3425 { 3426 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3427 } 3428 3429 /** 3430 * skb_store_bits - store bits from kernel buffer to skb 3431 * @skb: destination buffer 3432 * @offset: offset in destination 3433 * @from: source buffer 3434 * @len: number of bytes to copy 3435 * 3436 * Copy the specified number of bytes from the source buffer to the 3437 * destination skb. This function handles all the messy bits of 3438 * traversing fragment lists and such. 3439 */ 3440 3441 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3442 { 3443 int start = skb_headlen(skb); 3444 struct sk_buff *frag_iter; 3445 int i, copy; 3446 3447 if (offset > (int)skb->len - len) 3448 goto fault; 3449 3450 if ((copy = start - offset) > 0) { 3451 if (copy > len) 3452 copy = len; 3453 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3454 if ((len -= copy) == 0) 3455 return 0; 3456 offset += copy; 3457 from += copy; 3458 } 3459 3460 if (!skb_frags_readable(skb)) 3461 goto fault; 3462 3463 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3464 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3465 int end; 3466 3467 WARN_ON(start > offset + len); 3468 3469 end = start + skb_frag_size(frag); 3470 if ((copy = end - offset) > 0) { 3471 u32 p_off, p_len, copied; 3472 struct page *p; 3473 u8 *vaddr; 3474 3475 if (copy > len) 3476 copy = len; 3477 3478 skb_frag_foreach_page(frag, 3479 skb_frag_off(frag) + offset - start, 3480 copy, p, p_off, p_len, copied) { 3481 vaddr = kmap_atomic(p); 3482 memcpy(vaddr + p_off, from + copied, p_len); 3483 kunmap_atomic(vaddr); 3484 } 3485 3486 if ((len -= copy) == 0) 3487 return 0; 3488 offset += copy; 3489 from += copy; 3490 } 3491 start = end; 3492 } 3493 3494 skb_walk_frags(skb, frag_iter) { 3495 int end; 3496 3497 WARN_ON(start > offset + len); 3498 3499 end = start + frag_iter->len; 3500 if ((copy = end - offset) > 0) { 3501 if (copy > len) 3502 copy = len; 3503 if (skb_store_bits(frag_iter, offset - start, 3504 from, copy)) 3505 goto fault; 3506 if ((len -= copy) == 0) 3507 return 0; 3508 offset += copy; 3509 from += copy; 3510 } 3511 start = end; 3512 } 3513 if (!len) 3514 return 0; 3515 3516 fault: 3517 return -EFAULT; 3518 } 3519 EXPORT_SYMBOL(skb_store_bits); 3520 3521 /* Checksum skb data. */ 3522 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3523 { 3524 int start = skb_headlen(skb); 3525 int i, copy = start - offset; 3526 struct sk_buff *frag_iter; 3527 int pos = 0; 3528 3529 /* Checksum header. */ 3530 if (copy > 0) { 3531 if (copy > len) 3532 copy = len; 3533 csum = csum_partial(skb->data + offset, copy, csum); 3534 if ((len -= copy) == 0) 3535 return csum; 3536 offset += copy; 3537 pos = copy; 3538 } 3539 3540 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3541 return 0; 3542 3543 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3544 int end; 3545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3546 3547 WARN_ON(start > offset + len); 3548 3549 end = start + skb_frag_size(frag); 3550 if ((copy = end - offset) > 0) { 3551 u32 p_off, p_len, copied; 3552 struct page *p; 3553 __wsum csum2; 3554 u8 *vaddr; 3555 3556 if (copy > len) 3557 copy = len; 3558 3559 skb_frag_foreach_page(frag, 3560 skb_frag_off(frag) + offset - start, 3561 copy, p, p_off, p_len, copied) { 3562 vaddr = kmap_atomic(p); 3563 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3564 kunmap_atomic(vaddr); 3565 csum = csum_block_add(csum, csum2, pos); 3566 pos += p_len; 3567 } 3568 3569 if (!(len -= copy)) 3570 return csum; 3571 offset += copy; 3572 } 3573 start = end; 3574 } 3575 3576 skb_walk_frags(skb, frag_iter) { 3577 int end; 3578 3579 WARN_ON(start > offset + len); 3580 3581 end = start + frag_iter->len; 3582 if ((copy = end - offset) > 0) { 3583 __wsum csum2; 3584 if (copy > len) 3585 copy = len; 3586 csum2 = skb_checksum(frag_iter, offset - start, copy, 3587 0); 3588 csum = csum_block_add(csum, csum2, pos); 3589 if ((len -= copy) == 0) 3590 return csum; 3591 offset += copy; 3592 pos += copy; 3593 } 3594 start = end; 3595 } 3596 BUG_ON(len); 3597 3598 return csum; 3599 } 3600 EXPORT_SYMBOL(skb_checksum); 3601 3602 /* Both of above in one bottle. */ 3603 3604 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3605 u8 *to, int len) 3606 { 3607 int start = skb_headlen(skb); 3608 int i, copy = start - offset; 3609 struct sk_buff *frag_iter; 3610 int pos = 0; 3611 __wsum csum = 0; 3612 3613 /* Copy header. */ 3614 if (copy > 0) { 3615 if (copy > len) 3616 copy = len; 3617 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3618 copy); 3619 if ((len -= copy) == 0) 3620 return csum; 3621 offset += copy; 3622 to += copy; 3623 pos = copy; 3624 } 3625 3626 if (!skb_frags_readable(skb)) 3627 return 0; 3628 3629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3630 int end; 3631 3632 WARN_ON(start > offset + len); 3633 3634 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3635 if ((copy = end - offset) > 0) { 3636 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3637 u32 p_off, p_len, copied; 3638 struct page *p; 3639 __wsum csum2; 3640 u8 *vaddr; 3641 3642 if (copy > len) 3643 copy = len; 3644 3645 skb_frag_foreach_page(frag, 3646 skb_frag_off(frag) + offset - start, 3647 copy, p, p_off, p_len, copied) { 3648 vaddr = kmap_atomic(p); 3649 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3650 to + copied, 3651 p_len); 3652 kunmap_atomic(vaddr); 3653 csum = csum_block_add(csum, csum2, pos); 3654 pos += p_len; 3655 } 3656 3657 if (!(len -= copy)) 3658 return csum; 3659 offset += copy; 3660 to += copy; 3661 } 3662 start = end; 3663 } 3664 3665 skb_walk_frags(skb, frag_iter) { 3666 __wsum csum2; 3667 int end; 3668 3669 WARN_ON(start > offset + len); 3670 3671 end = start + frag_iter->len; 3672 if ((copy = end - offset) > 0) { 3673 if (copy > len) 3674 copy = len; 3675 csum2 = skb_copy_and_csum_bits(frag_iter, 3676 offset - start, 3677 to, copy); 3678 csum = csum_block_add(csum, csum2, pos); 3679 if ((len -= copy) == 0) 3680 return csum; 3681 offset += copy; 3682 to += copy; 3683 pos += copy; 3684 } 3685 start = end; 3686 } 3687 BUG_ON(len); 3688 return csum; 3689 } 3690 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3691 3692 #ifdef CONFIG_NET_CRC32C 3693 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3694 { 3695 int start = skb_headlen(skb); 3696 int i, copy = start - offset; 3697 struct sk_buff *frag_iter; 3698 3699 if (copy > 0) { 3700 copy = min(copy, len); 3701 crc = crc32c(crc, skb->data + offset, copy); 3702 len -= copy; 3703 if (len == 0) 3704 return crc; 3705 offset += copy; 3706 } 3707 3708 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3709 return 0; 3710 3711 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3712 int end; 3713 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3714 3715 WARN_ON(start > offset + len); 3716 3717 end = start + skb_frag_size(frag); 3718 copy = end - offset; 3719 if (copy > 0) { 3720 u32 p_off, p_len, copied; 3721 struct page *p; 3722 u8 *vaddr; 3723 3724 copy = min(copy, len); 3725 skb_frag_foreach_page(frag, 3726 skb_frag_off(frag) + offset - start, 3727 copy, p, p_off, p_len, copied) { 3728 vaddr = kmap_atomic(p); 3729 crc = crc32c(crc, vaddr + p_off, p_len); 3730 kunmap_atomic(vaddr); 3731 } 3732 len -= copy; 3733 if (len == 0) 3734 return crc; 3735 offset += copy; 3736 } 3737 start = end; 3738 } 3739 3740 skb_walk_frags(skb, frag_iter) { 3741 int end; 3742 3743 WARN_ON(start > offset + len); 3744 3745 end = start + frag_iter->len; 3746 copy = end - offset; 3747 if (copy > 0) { 3748 copy = min(copy, len); 3749 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3750 len -= copy; 3751 if (len == 0) 3752 return crc; 3753 offset += copy; 3754 } 3755 start = end; 3756 } 3757 BUG_ON(len); 3758 3759 return crc; 3760 } 3761 EXPORT_SYMBOL(skb_crc32c); 3762 #endif /* CONFIG_NET_CRC32C */ 3763 3764 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3765 { 3766 __sum16 sum; 3767 3768 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3769 /* See comments in __skb_checksum_complete(). */ 3770 if (likely(!sum)) { 3771 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3772 !skb->csum_complete_sw) 3773 netdev_rx_csum_fault(skb->dev, skb); 3774 } 3775 if (!skb_shared(skb)) 3776 skb->csum_valid = !sum; 3777 return sum; 3778 } 3779 EXPORT_SYMBOL(__skb_checksum_complete_head); 3780 3781 /* This function assumes skb->csum already holds pseudo header's checksum, 3782 * which has been changed from the hardware checksum, for example, by 3783 * __skb_checksum_validate_complete(). And, the original skb->csum must 3784 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3785 * 3786 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3787 * zero. The new checksum is stored back into skb->csum unless the skb is 3788 * shared. 3789 */ 3790 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3791 { 3792 __wsum csum; 3793 __sum16 sum; 3794 3795 csum = skb_checksum(skb, 0, skb->len, 0); 3796 3797 sum = csum_fold(csum_add(skb->csum, csum)); 3798 /* This check is inverted, because we already knew the hardware 3799 * checksum is invalid before calling this function. So, if the 3800 * re-computed checksum is valid instead, then we have a mismatch 3801 * between the original skb->csum and skb_checksum(). This means either 3802 * the original hardware checksum is incorrect or we screw up skb->csum 3803 * when moving skb->data around. 3804 */ 3805 if (likely(!sum)) { 3806 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3807 !skb->csum_complete_sw) 3808 netdev_rx_csum_fault(skb->dev, skb); 3809 } 3810 3811 if (!skb_shared(skb)) { 3812 /* Save full packet checksum */ 3813 skb->csum = csum; 3814 skb->ip_summed = CHECKSUM_COMPLETE; 3815 skb->csum_complete_sw = 1; 3816 skb->csum_valid = !sum; 3817 } 3818 3819 return sum; 3820 } 3821 EXPORT_SYMBOL(__skb_checksum_complete); 3822 3823 /** 3824 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3825 * @from: source buffer 3826 * 3827 * Calculates the amount of linear headroom needed in the 'to' skb passed 3828 * into skb_zerocopy(). 3829 */ 3830 unsigned int 3831 skb_zerocopy_headlen(const struct sk_buff *from) 3832 { 3833 unsigned int hlen = 0; 3834 3835 if (!from->head_frag || 3836 skb_headlen(from) < L1_CACHE_BYTES || 3837 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3838 hlen = skb_headlen(from); 3839 if (!hlen) 3840 hlen = from->len; 3841 } 3842 3843 if (skb_has_frag_list(from)) 3844 hlen = from->len; 3845 3846 return hlen; 3847 } 3848 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3849 3850 /** 3851 * skb_zerocopy - Zero copy skb to skb 3852 * @to: destination buffer 3853 * @from: source buffer 3854 * @len: number of bytes to copy from source buffer 3855 * @hlen: size of linear headroom in destination buffer 3856 * 3857 * Copies up to `len` bytes from `from` to `to` by creating references 3858 * to the frags in the source buffer. 3859 * 3860 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3861 * headroom in the `to` buffer. 3862 * 3863 * Return value: 3864 * 0: everything is OK 3865 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3866 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3867 */ 3868 int 3869 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3870 { 3871 int i, j = 0; 3872 int plen = 0; /* length of skb->head fragment */ 3873 int ret; 3874 struct page *page; 3875 unsigned int offset; 3876 3877 BUG_ON(!from->head_frag && !hlen); 3878 3879 /* dont bother with small payloads */ 3880 if (len <= skb_tailroom(to)) 3881 return skb_copy_bits(from, 0, skb_put(to, len), len); 3882 3883 if (hlen) { 3884 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3885 if (unlikely(ret)) 3886 return ret; 3887 len -= hlen; 3888 } else { 3889 plen = min_t(int, skb_headlen(from), len); 3890 if (plen) { 3891 page = virt_to_head_page(from->head); 3892 offset = from->data - (unsigned char *)page_address(page); 3893 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3894 offset, plen); 3895 get_page(page); 3896 j = 1; 3897 len -= plen; 3898 } 3899 } 3900 3901 skb_len_add(to, len + plen); 3902 3903 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3904 skb_tx_error(from); 3905 return -ENOMEM; 3906 } 3907 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3908 3909 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3910 int size; 3911 3912 if (!len) 3913 break; 3914 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3915 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3916 len); 3917 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3918 len -= size; 3919 skb_frag_ref(to, j); 3920 j++; 3921 } 3922 skb_shinfo(to)->nr_frags = j; 3923 3924 return 0; 3925 } 3926 EXPORT_SYMBOL_GPL(skb_zerocopy); 3927 3928 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3929 { 3930 __wsum csum; 3931 long csstart; 3932 3933 if (skb->ip_summed == CHECKSUM_PARTIAL) 3934 csstart = skb_checksum_start_offset(skb); 3935 else 3936 csstart = skb_headlen(skb); 3937 3938 BUG_ON(csstart > skb_headlen(skb)); 3939 3940 skb_copy_from_linear_data(skb, to, csstart); 3941 3942 csum = 0; 3943 if (csstart != skb->len) 3944 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3945 skb->len - csstart); 3946 3947 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3948 long csstuff = csstart + skb->csum_offset; 3949 3950 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3951 } 3952 } 3953 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3954 3955 /** 3956 * skb_dequeue - remove from the head of the queue 3957 * @list: list to dequeue from 3958 * 3959 * Remove the head of the list. The list lock is taken so the function 3960 * may be used safely with other locking list functions. The head item is 3961 * returned or %NULL if the list is empty. 3962 */ 3963 3964 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3965 { 3966 unsigned long flags; 3967 struct sk_buff *result; 3968 3969 spin_lock_irqsave(&list->lock, flags); 3970 result = __skb_dequeue(list); 3971 spin_unlock_irqrestore(&list->lock, flags); 3972 return result; 3973 } 3974 EXPORT_SYMBOL(skb_dequeue); 3975 3976 /** 3977 * skb_dequeue_tail - remove from the tail of the queue 3978 * @list: list to dequeue from 3979 * 3980 * Remove the tail of the list. The list lock is taken so the function 3981 * may be used safely with other locking list functions. The tail item is 3982 * returned or %NULL if the list is empty. 3983 */ 3984 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3985 { 3986 unsigned long flags; 3987 struct sk_buff *result; 3988 3989 spin_lock_irqsave(&list->lock, flags); 3990 result = __skb_dequeue_tail(list); 3991 spin_unlock_irqrestore(&list->lock, flags); 3992 return result; 3993 } 3994 EXPORT_SYMBOL(skb_dequeue_tail); 3995 3996 /** 3997 * skb_queue_purge_reason - empty a list 3998 * @list: list to empty 3999 * @reason: drop reason 4000 * 4001 * Delete all buffers on an &sk_buff list. Each buffer is removed from 4002 * the list and one reference dropped. This function takes the list 4003 * lock and is atomic with respect to other list locking functions. 4004 */ 4005 void skb_queue_purge_reason(struct sk_buff_head *list, 4006 enum skb_drop_reason reason) 4007 { 4008 struct sk_buff_head tmp; 4009 unsigned long flags; 4010 4011 if (skb_queue_empty_lockless(list)) 4012 return; 4013 4014 __skb_queue_head_init(&tmp); 4015 4016 spin_lock_irqsave(&list->lock, flags); 4017 skb_queue_splice_init(list, &tmp); 4018 spin_unlock_irqrestore(&list->lock, flags); 4019 4020 __skb_queue_purge_reason(&tmp, reason); 4021 } 4022 EXPORT_SYMBOL(skb_queue_purge_reason); 4023 4024 /** 4025 * skb_rbtree_purge - empty a skb rbtree 4026 * @root: root of the rbtree to empty 4027 * Return value: the sum of truesizes of all purged skbs. 4028 * 4029 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 4030 * the list and one reference dropped. This function does not take 4031 * any lock. Synchronization should be handled by the caller (e.g., TCP 4032 * out-of-order queue is protected by the socket lock). 4033 */ 4034 unsigned int skb_rbtree_purge(struct rb_root *root) 4035 { 4036 struct rb_node *p = rb_first(root); 4037 unsigned int sum = 0; 4038 4039 while (p) { 4040 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 4041 4042 p = rb_next(p); 4043 rb_erase(&skb->rbnode, root); 4044 sum += skb->truesize; 4045 kfree_skb(skb); 4046 } 4047 return sum; 4048 } 4049 4050 void skb_errqueue_purge(struct sk_buff_head *list) 4051 { 4052 struct sk_buff *skb, *next; 4053 struct sk_buff_head kill; 4054 unsigned long flags; 4055 4056 __skb_queue_head_init(&kill); 4057 4058 spin_lock_irqsave(&list->lock, flags); 4059 skb_queue_walk_safe(list, skb, next) { 4060 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 4061 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 4062 continue; 4063 __skb_unlink(skb, list); 4064 __skb_queue_tail(&kill, skb); 4065 } 4066 spin_unlock_irqrestore(&list->lock, flags); 4067 __skb_queue_purge(&kill); 4068 } 4069 EXPORT_SYMBOL(skb_errqueue_purge); 4070 4071 /** 4072 * skb_queue_head - queue a buffer at the list head 4073 * @list: list to use 4074 * @newsk: buffer to queue 4075 * 4076 * Queue a buffer at the start of the list. This function takes the 4077 * list lock and can be used safely with other locking &sk_buff functions 4078 * safely. 4079 * 4080 * A buffer cannot be placed on two lists at the same time. 4081 */ 4082 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4083 { 4084 unsigned long flags; 4085 4086 spin_lock_irqsave(&list->lock, flags); 4087 __skb_queue_head(list, newsk); 4088 spin_unlock_irqrestore(&list->lock, flags); 4089 } 4090 EXPORT_SYMBOL(skb_queue_head); 4091 4092 /** 4093 * skb_queue_tail - queue a buffer at the list tail 4094 * @list: list to use 4095 * @newsk: buffer to queue 4096 * 4097 * Queue a buffer at the tail of the list. This function takes the 4098 * list lock and can be used safely with other locking &sk_buff functions 4099 * safely. 4100 * 4101 * A buffer cannot be placed on two lists at the same time. 4102 */ 4103 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4104 { 4105 unsigned long flags; 4106 4107 spin_lock_irqsave(&list->lock, flags); 4108 __skb_queue_tail(list, newsk); 4109 spin_unlock_irqrestore(&list->lock, flags); 4110 } 4111 EXPORT_SYMBOL(skb_queue_tail); 4112 4113 /** 4114 * skb_unlink - remove a buffer from a list 4115 * @skb: buffer to remove 4116 * @list: list to use 4117 * 4118 * Remove a packet from a list. The list locks are taken and this 4119 * function is atomic with respect to other list locked calls 4120 * 4121 * You must know what list the SKB is on. 4122 */ 4123 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4124 { 4125 unsigned long flags; 4126 4127 spin_lock_irqsave(&list->lock, flags); 4128 __skb_unlink(skb, list); 4129 spin_unlock_irqrestore(&list->lock, flags); 4130 } 4131 EXPORT_SYMBOL(skb_unlink); 4132 4133 /** 4134 * skb_append - append a buffer 4135 * @old: buffer to insert after 4136 * @newsk: buffer to insert 4137 * @list: list to use 4138 * 4139 * Place a packet after a given packet in a list. The list locks are taken 4140 * and this function is atomic with respect to other list locked calls. 4141 * A buffer cannot be placed on two lists at the same time. 4142 */ 4143 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4144 { 4145 unsigned long flags; 4146 4147 spin_lock_irqsave(&list->lock, flags); 4148 __skb_queue_after(list, old, newsk); 4149 spin_unlock_irqrestore(&list->lock, flags); 4150 } 4151 EXPORT_SYMBOL(skb_append); 4152 4153 static inline void skb_split_inside_header(struct sk_buff *skb, 4154 struct sk_buff* skb1, 4155 const u32 len, const int pos) 4156 { 4157 int i; 4158 4159 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4160 pos - len); 4161 /* And move data appendix as is. */ 4162 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4163 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4164 4165 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4166 skb1->unreadable = skb->unreadable; 4167 skb_shinfo(skb)->nr_frags = 0; 4168 skb1->data_len = skb->data_len; 4169 skb1->len += skb1->data_len; 4170 skb->data_len = 0; 4171 skb->len = len; 4172 skb_set_tail_pointer(skb, len); 4173 } 4174 4175 static inline void skb_split_no_header(struct sk_buff *skb, 4176 struct sk_buff* skb1, 4177 const u32 len, int pos) 4178 { 4179 int i, k = 0; 4180 const int nfrags = skb_shinfo(skb)->nr_frags; 4181 4182 skb_shinfo(skb)->nr_frags = 0; 4183 skb1->len = skb1->data_len = skb->len - len; 4184 skb->len = len; 4185 skb->data_len = len - pos; 4186 4187 for (i = 0; i < nfrags; i++) { 4188 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4189 4190 if (pos + size > len) { 4191 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4192 4193 if (pos < len) { 4194 /* Split frag. 4195 * We have two variants in this case: 4196 * 1. Move all the frag to the second 4197 * part, if it is possible. F.e. 4198 * this approach is mandatory for TUX, 4199 * where splitting is expensive. 4200 * 2. Split is accurately. We make this. 4201 */ 4202 skb_frag_ref(skb, i); 4203 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4204 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4205 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4206 skb_shinfo(skb)->nr_frags++; 4207 } 4208 k++; 4209 } else 4210 skb_shinfo(skb)->nr_frags++; 4211 pos += size; 4212 } 4213 skb_shinfo(skb1)->nr_frags = k; 4214 4215 skb1->unreadable = skb->unreadable; 4216 } 4217 4218 /** 4219 * skb_split - Split fragmented skb to two parts at length len. 4220 * @skb: the buffer to split 4221 * @skb1: the buffer to receive the second part 4222 * @len: new length for skb 4223 */ 4224 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4225 { 4226 int pos = skb_headlen(skb); 4227 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4228 4229 skb_zcopy_downgrade_managed(skb); 4230 4231 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4232 skb_zerocopy_clone(skb1, skb, 0); 4233 if (len < pos) /* Split line is inside header. */ 4234 skb_split_inside_header(skb, skb1, len, pos); 4235 else /* Second chunk has no header, nothing to copy. */ 4236 skb_split_no_header(skb, skb1, len, pos); 4237 } 4238 EXPORT_SYMBOL(skb_split); 4239 4240 /* Shifting from/to a cloned skb is a no-go. 4241 * 4242 * Caller cannot keep skb_shinfo related pointers past calling here! 4243 */ 4244 static int skb_prepare_for_shift(struct sk_buff *skb) 4245 { 4246 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4247 } 4248 4249 /** 4250 * skb_shift - Shifts paged data partially from skb to another 4251 * @tgt: buffer into which tail data gets added 4252 * @skb: buffer from which the paged data comes from 4253 * @shiftlen: shift up to this many bytes 4254 * 4255 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4256 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4257 * It's up to caller to free skb if everything was shifted. 4258 * 4259 * If @tgt runs out of frags, the whole operation is aborted. 4260 * 4261 * Skb cannot include anything else but paged data while tgt is allowed 4262 * to have non-paged data as well. 4263 * 4264 * TODO: full sized shift could be optimized but that would need 4265 * specialized skb free'er to handle frags without up-to-date nr_frags. 4266 */ 4267 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4268 { 4269 int from, to, merge, todo; 4270 skb_frag_t *fragfrom, *fragto; 4271 4272 BUG_ON(shiftlen > skb->len); 4273 4274 if (skb_headlen(skb)) 4275 return 0; 4276 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4277 return 0; 4278 4279 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4280 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4281 4282 todo = shiftlen; 4283 from = 0; 4284 to = skb_shinfo(tgt)->nr_frags; 4285 fragfrom = &skb_shinfo(skb)->frags[from]; 4286 4287 /* Actual merge is delayed until the point when we know we can 4288 * commit all, so that we don't have to undo partial changes 4289 */ 4290 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4291 skb_frag_off(fragfrom))) { 4292 merge = -1; 4293 } else { 4294 merge = to - 1; 4295 4296 todo -= skb_frag_size(fragfrom); 4297 if (todo < 0) { 4298 if (skb_prepare_for_shift(skb) || 4299 skb_prepare_for_shift(tgt)) 4300 return 0; 4301 4302 /* All previous frag pointers might be stale! */ 4303 fragfrom = &skb_shinfo(skb)->frags[from]; 4304 fragto = &skb_shinfo(tgt)->frags[merge]; 4305 4306 skb_frag_size_add(fragto, shiftlen); 4307 skb_frag_size_sub(fragfrom, shiftlen); 4308 skb_frag_off_add(fragfrom, shiftlen); 4309 4310 goto onlymerged; 4311 } 4312 4313 from++; 4314 } 4315 4316 /* Skip full, not-fitting skb to avoid expensive operations */ 4317 if ((shiftlen == skb->len) && 4318 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4319 return 0; 4320 4321 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4322 return 0; 4323 4324 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4325 if (to == MAX_SKB_FRAGS) 4326 return 0; 4327 4328 fragfrom = &skb_shinfo(skb)->frags[from]; 4329 fragto = &skb_shinfo(tgt)->frags[to]; 4330 4331 if (todo >= skb_frag_size(fragfrom)) { 4332 *fragto = *fragfrom; 4333 todo -= skb_frag_size(fragfrom); 4334 from++; 4335 to++; 4336 4337 } else { 4338 __skb_frag_ref(fragfrom); 4339 skb_frag_page_copy(fragto, fragfrom); 4340 skb_frag_off_copy(fragto, fragfrom); 4341 skb_frag_size_set(fragto, todo); 4342 4343 skb_frag_off_add(fragfrom, todo); 4344 skb_frag_size_sub(fragfrom, todo); 4345 todo = 0; 4346 4347 to++; 4348 break; 4349 } 4350 } 4351 4352 /* Ready to "commit" this state change to tgt */ 4353 skb_shinfo(tgt)->nr_frags = to; 4354 4355 if (merge >= 0) { 4356 fragfrom = &skb_shinfo(skb)->frags[0]; 4357 fragto = &skb_shinfo(tgt)->frags[merge]; 4358 4359 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4360 __skb_frag_unref(fragfrom, skb->pp_recycle); 4361 } 4362 4363 /* Reposition in the original skb */ 4364 to = 0; 4365 while (from < skb_shinfo(skb)->nr_frags) 4366 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4367 skb_shinfo(skb)->nr_frags = to; 4368 4369 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4370 4371 onlymerged: 4372 /* Most likely the tgt won't ever need its checksum anymore, skb on 4373 * the other hand might need it if it needs to be resent 4374 */ 4375 tgt->ip_summed = CHECKSUM_PARTIAL; 4376 skb->ip_summed = CHECKSUM_PARTIAL; 4377 4378 skb_len_add(skb, -shiftlen); 4379 skb_len_add(tgt, shiftlen); 4380 4381 return shiftlen; 4382 } 4383 4384 /** 4385 * skb_prepare_seq_read - Prepare a sequential read of skb data 4386 * @skb: the buffer to read 4387 * @from: lower offset of data to be read 4388 * @to: upper offset of data to be read 4389 * @st: state variable 4390 * 4391 * Initializes the specified state variable. Must be called before 4392 * invoking skb_seq_read() for the first time. 4393 */ 4394 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4395 unsigned int to, struct skb_seq_state *st) 4396 { 4397 st->lower_offset = from; 4398 st->upper_offset = to; 4399 st->root_skb = st->cur_skb = skb; 4400 st->frag_idx = st->stepped_offset = 0; 4401 st->frag_data = NULL; 4402 st->frag_off = 0; 4403 } 4404 EXPORT_SYMBOL(skb_prepare_seq_read); 4405 4406 /** 4407 * skb_seq_read - Sequentially read skb data 4408 * @consumed: number of bytes consumed by the caller so far 4409 * @data: destination pointer for data to be returned 4410 * @st: state variable 4411 * 4412 * Reads a block of skb data at @consumed relative to the 4413 * lower offset specified to skb_prepare_seq_read(). Assigns 4414 * the head of the data block to @data and returns the length 4415 * of the block or 0 if the end of the skb data or the upper 4416 * offset has been reached. 4417 * 4418 * The caller is not required to consume all of the data 4419 * returned, i.e. @consumed is typically set to the number 4420 * of bytes already consumed and the next call to 4421 * skb_seq_read() will return the remaining part of the block. 4422 * 4423 * Note 1: The size of each block of data returned can be arbitrary, 4424 * this limitation is the cost for zerocopy sequential 4425 * reads of potentially non linear data. 4426 * 4427 * Note 2: Fragment lists within fragments are not implemented 4428 * at the moment, state->root_skb could be replaced with 4429 * a stack for this purpose. 4430 */ 4431 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4432 struct skb_seq_state *st) 4433 { 4434 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4435 skb_frag_t *frag; 4436 4437 if (unlikely(abs_offset >= st->upper_offset)) { 4438 if (st->frag_data) { 4439 kunmap_atomic(st->frag_data); 4440 st->frag_data = NULL; 4441 } 4442 return 0; 4443 } 4444 4445 next_skb: 4446 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4447 4448 if (abs_offset < block_limit && !st->frag_data) { 4449 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4450 return block_limit - abs_offset; 4451 } 4452 4453 if (!skb_frags_readable(st->cur_skb)) 4454 return 0; 4455 4456 if (st->frag_idx == 0 && !st->frag_data) 4457 st->stepped_offset += skb_headlen(st->cur_skb); 4458 4459 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4460 unsigned int pg_idx, pg_off, pg_sz; 4461 4462 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4463 4464 pg_idx = 0; 4465 pg_off = skb_frag_off(frag); 4466 pg_sz = skb_frag_size(frag); 4467 4468 if (skb_frag_must_loop(skb_frag_page(frag))) { 4469 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4470 pg_off = offset_in_page(pg_off + st->frag_off); 4471 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4472 PAGE_SIZE - pg_off); 4473 } 4474 4475 block_limit = pg_sz + st->stepped_offset; 4476 if (abs_offset < block_limit) { 4477 if (!st->frag_data) 4478 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4479 4480 *data = (u8 *)st->frag_data + pg_off + 4481 (abs_offset - st->stepped_offset); 4482 4483 return block_limit - abs_offset; 4484 } 4485 4486 if (st->frag_data) { 4487 kunmap_atomic(st->frag_data); 4488 st->frag_data = NULL; 4489 } 4490 4491 st->stepped_offset += pg_sz; 4492 st->frag_off += pg_sz; 4493 if (st->frag_off == skb_frag_size(frag)) { 4494 st->frag_off = 0; 4495 st->frag_idx++; 4496 } 4497 } 4498 4499 if (st->frag_data) { 4500 kunmap_atomic(st->frag_data); 4501 st->frag_data = NULL; 4502 } 4503 4504 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4505 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4506 st->frag_idx = 0; 4507 goto next_skb; 4508 } else if (st->cur_skb->next) { 4509 st->cur_skb = st->cur_skb->next; 4510 st->frag_idx = 0; 4511 goto next_skb; 4512 } 4513 4514 return 0; 4515 } 4516 EXPORT_SYMBOL(skb_seq_read); 4517 4518 /** 4519 * skb_abort_seq_read - Abort a sequential read of skb data 4520 * @st: state variable 4521 * 4522 * Must be called if skb_seq_read() was not called until it 4523 * returned 0. 4524 */ 4525 void skb_abort_seq_read(struct skb_seq_state *st) 4526 { 4527 if (st->frag_data) 4528 kunmap_atomic(st->frag_data); 4529 } 4530 EXPORT_SYMBOL(skb_abort_seq_read); 4531 4532 /** 4533 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4534 * @st: source skb_seq_state 4535 * @offset: offset in source 4536 * @to: destination buffer 4537 * @len: number of bytes to copy 4538 * 4539 * Copy @len bytes from @offset bytes into the source @st to the destination 4540 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4541 * call to this function. If offset needs to decrease from the previous use `st` 4542 * should be reset first. 4543 * 4544 * Return: 0 on success or -EINVAL if the copy ended early 4545 */ 4546 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4547 { 4548 const u8 *data; 4549 u32 sqlen; 4550 4551 for (;;) { 4552 sqlen = skb_seq_read(offset, &data, st); 4553 if (sqlen == 0) 4554 return -EINVAL; 4555 if (sqlen >= len) { 4556 memcpy(to, data, len); 4557 return 0; 4558 } 4559 memcpy(to, data, sqlen); 4560 to += sqlen; 4561 offset += sqlen; 4562 len -= sqlen; 4563 } 4564 } 4565 EXPORT_SYMBOL(skb_copy_seq_read); 4566 4567 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4568 4569 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4570 struct ts_config *conf, 4571 struct ts_state *state) 4572 { 4573 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4574 } 4575 4576 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4577 { 4578 skb_abort_seq_read(TS_SKB_CB(state)); 4579 } 4580 4581 /** 4582 * skb_find_text - Find a text pattern in skb data 4583 * @skb: the buffer to look in 4584 * @from: search offset 4585 * @to: search limit 4586 * @config: textsearch configuration 4587 * 4588 * Finds a pattern in the skb data according to the specified 4589 * textsearch configuration. Use textsearch_next() to retrieve 4590 * subsequent occurrences of the pattern. Returns the offset 4591 * to the first occurrence or UINT_MAX if no match was found. 4592 */ 4593 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4594 unsigned int to, struct ts_config *config) 4595 { 4596 unsigned int patlen = config->ops->get_pattern_len(config); 4597 struct ts_state state; 4598 unsigned int ret; 4599 4600 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4601 4602 config->get_next_block = skb_ts_get_next_block; 4603 config->finish = skb_ts_finish; 4604 4605 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4606 4607 ret = textsearch_find(config, &state); 4608 return (ret + patlen <= to - from ? ret : UINT_MAX); 4609 } 4610 EXPORT_SYMBOL(skb_find_text); 4611 4612 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4613 int offset, size_t size, size_t max_frags) 4614 { 4615 int i = skb_shinfo(skb)->nr_frags; 4616 4617 if (skb_can_coalesce(skb, i, page, offset)) { 4618 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4619 } else if (i < max_frags) { 4620 skb_zcopy_downgrade_managed(skb); 4621 get_page(page); 4622 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4623 } else { 4624 return -EMSGSIZE; 4625 } 4626 4627 return 0; 4628 } 4629 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4630 4631 /** 4632 * skb_pull_rcsum - pull skb and update receive checksum 4633 * @skb: buffer to update 4634 * @len: length of data pulled 4635 * 4636 * This function performs an skb_pull on the packet and updates 4637 * the CHECKSUM_COMPLETE checksum. It should be used on 4638 * receive path processing instead of skb_pull unless you know 4639 * that the checksum difference is zero (e.g., a valid IP header) 4640 * or you are setting ip_summed to CHECKSUM_NONE. 4641 */ 4642 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4643 { 4644 unsigned char *data = skb->data; 4645 4646 BUG_ON(len > skb->len); 4647 __skb_pull(skb, len); 4648 skb_postpull_rcsum(skb, data, len); 4649 return skb->data; 4650 } 4651 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4652 4653 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4654 { 4655 skb_frag_t head_frag; 4656 struct page *page; 4657 4658 page = virt_to_head_page(frag_skb->head); 4659 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4660 (unsigned char *)page_address(page), 4661 skb_headlen(frag_skb)); 4662 return head_frag; 4663 } 4664 4665 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4666 netdev_features_t features, 4667 unsigned int offset) 4668 { 4669 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4670 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4671 unsigned int delta_len = 0; 4672 struct sk_buff *tail = NULL; 4673 struct sk_buff *nskb, *tmp; 4674 int len_diff, err; 4675 4676 /* Only skb_gro_receive_list generated skbs arrive here */ 4677 DEBUG_NET_WARN_ON_ONCE(!(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)); 4678 4679 skb_push(skb, -skb_network_offset(skb) + offset); 4680 4681 /* Ensure the head is writeable before touching the shared info */ 4682 err = skb_unclone(skb, GFP_ATOMIC); 4683 if (err) 4684 goto err_linearize; 4685 4686 skb_shinfo(skb)->frag_list = NULL; 4687 4688 while (list_skb) { 4689 nskb = list_skb; 4690 list_skb = list_skb->next; 4691 4692 DEBUG_NET_WARN_ON_ONCE(nskb->sk); 4693 4694 err = 0; 4695 if (skb_shared(nskb)) { 4696 tmp = skb_clone(nskb, GFP_ATOMIC); 4697 if (tmp) { 4698 consume_skb(nskb); 4699 nskb = tmp; 4700 err = skb_unclone(nskb, GFP_ATOMIC); 4701 } else { 4702 err = -ENOMEM; 4703 } 4704 } 4705 4706 if (!tail) 4707 skb->next = nskb; 4708 else 4709 tail->next = nskb; 4710 4711 if (unlikely(err)) { 4712 nskb->next = list_skb; 4713 goto err_linearize; 4714 } 4715 4716 tail = nskb; 4717 4718 delta_len += nskb->len; 4719 4720 skb_push(nskb, -skb_network_offset(nskb) + offset); 4721 4722 skb_release_head_state(nskb); 4723 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4724 __copy_skb_header(nskb, skb); 4725 4726 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4727 nskb->transport_header += len_diff; 4728 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4729 nskb->data - tnl_hlen, 4730 offset + tnl_hlen); 4731 4732 if (skb_needs_linearize(nskb, features) && 4733 __skb_linearize(nskb)) 4734 goto err_linearize; 4735 } 4736 4737 skb->data_len = skb->data_len - delta_len; 4738 skb->len = skb->len - delta_len; 4739 4740 skb_gso_reset(skb); 4741 4742 skb->prev = tail; 4743 4744 if (skb_needs_linearize(skb, features) && 4745 __skb_linearize(skb)) 4746 goto err_linearize; 4747 4748 skb_get(skb); 4749 4750 return skb; 4751 4752 err_linearize: 4753 kfree_skb_list(skb->next); 4754 skb->next = NULL; 4755 return ERR_PTR(-ENOMEM); 4756 } 4757 EXPORT_SYMBOL_GPL(skb_segment_list); 4758 4759 /** 4760 * skb_segment - Perform protocol segmentation on skb. 4761 * @head_skb: buffer to segment 4762 * @features: features for the output path (see dev->features) 4763 * 4764 * This function performs segmentation on the given skb. It returns 4765 * a pointer to the first in a list of new skbs for the segments. 4766 * In case of error it returns ERR_PTR(err). 4767 */ 4768 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4769 netdev_features_t features) 4770 { 4771 struct sk_buff *segs = NULL; 4772 struct sk_buff *tail = NULL; 4773 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4774 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4775 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4776 unsigned int offset = doffset; 4777 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4778 unsigned int partial_segs = 0; 4779 unsigned int headroom; 4780 unsigned int len = head_skb->len; 4781 struct sk_buff *frag_skb; 4782 skb_frag_t *frag; 4783 __be16 proto; 4784 bool csum, sg; 4785 int err = -ENOMEM; 4786 int i = 0; 4787 int nfrags, pos; 4788 4789 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4790 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4791 struct sk_buff *check_skb; 4792 4793 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4794 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4795 /* gso_size is untrusted, and we have a frag_list with 4796 * a linear non head_frag item. 4797 * 4798 * If head_skb's headlen does not fit requested gso_size, 4799 * it means that the frag_list members do NOT terminate 4800 * on exact gso_size boundaries. Hence we cannot perform 4801 * skb_frag_t page sharing. Therefore we must fallback to 4802 * copying the frag_list skbs; we do so by disabling SG. 4803 */ 4804 features &= ~NETIF_F_SG; 4805 break; 4806 } 4807 } 4808 } 4809 4810 __skb_push(head_skb, doffset); 4811 proto = skb_network_protocol(head_skb, NULL); 4812 if (unlikely(!proto)) 4813 return ERR_PTR(-EINVAL); 4814 4815 sg = !!(features & NETIF_F_SG); 4816 csum = !!can_checksum_protocol(features, proto); 4817 4818 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4819 if (!(features & NETIF_F_GSO_PARTIAL)) { 4820 struct sk_buff *iter; 4821 unsigned int frag_len; 4822 4823 if (!list_skb || 4824 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4825 goto normal; 4826 4827 /* If we get here then all the required 4828 * GSO features except frag_list are supported. 4829 * Try to split the SKB to multiple GSO SKBs 4830 * with no frag_list. 4831 * Currently we can do that only when the buffers don't 4832 * have a linear part and all the buffers except 4833 * the last are of the same length. 4834 */ 4835 frag_len = list_skb->len; 4836 skb_walk_frags(head_skb, iter) { 4837 if (frag_len != iter->len && iter->next) 4838 goto normal; 4839 if (skb_headlen(iter) && !iter->head_frag) 4840 goto normal; 4841 4842 len -= iter->len; 4843 } 4844 4845 if (len != frag_len) 4846 goto normal; 4847 } 4848 4849 /* GSO partial only requires that we trim off any excess that 4850 * doesn't fit into an MSS sized block, so take care of that 4851 * now. 4852 * Cap len to not accidentally hit GSO_BY_FRAGS. 4853 */ 4854 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4855 if (partial_segs > 1) 4856 mss *= partial_segs; 4857 else 4858 partial_segs = 0; 4859 } 4860 4861 normal: 4862 headroom = skb_headroom(head_skb); 4863 pos = skb_headlen(head_skb); 4864 4865 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4866 return ERR_PTR(-ENOMEM); 4867 4868 nfrags = skb_shinfo(head_skb)->nr_frags; 4869 frag = skb_shinfo(head_skb)->frags; 4870 frag_skb = head_skb; 4871 4872 do { 4873 struct sk_buff *nskb; 4874 skb_frag_t *nskb_frag; 4875 int hsize; 4876 int size; 4877 4878 if (unlikely(mss == GSO_BY_FRAGS)) { 4879 len = list_skb->len; 4880 } else { 4881 len = head_skb->len - offset; 4882 if (len > mss) 4883 len = mss; 4884 } 4885 4886 hsize = skb_headlen(head_skb) - offset; 4887 4888 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4889 (skb_headlen(list_skb) == len || sg)) { 4890 BUG_ON(skb_headlen(list_skb) > len); 4891 4892 nskb = skb_clone(list_skb, GFP_ATOMIC); 4893 if (unlikely(!nskb)) 4894 goto err; 4895 4896 i = 0; 4897 nfrags = skb_shinfo(list_skb)->nr_frags; 4898 frag = skb_shinfo(list_skb)->frags; 4899 frag_skb = list_skb; 4900 pos += skb_headlen(list_skb); 4901 4902 while (pos < offset + len) { 4903 BUG_ON(i >= nfrags); 4904 4905 size = skb_frag_size(frag); 4906 if (pos + size > offset + len) 4907 break; 4908 4909 i++; 4910 pos += size; 4911 frag++; 4912 } 4913 4914 list_skb = list_skb->next; 4915 4916 if (unlikely(pskb_trim(nskb, len))) { 4917 kfree_skb(nskb); 4918 goto err; 4919 } 4920 4921 hsize = skb_end_offset(nskb); 4922 if (skb_cow_head(nskb, doffset + headroom)) { 4923 kfree_skb(nskb); 4924 goto err; 4925 } 4926 4927 nskb->truesize += skb_end_offset(nskb) - hsize; 4928 skb_release_head_state(nskb); 4929 __skb_push(nskb, doffset); 4930 } else { 4931 if (hsize < 0) 4932 hsize = 0; 4933 if (hsize > len || !sg) 4934 hsize = len; 4935 4936 nskb = __alloc_skb(hsize + doffset + headroom, 4937 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4938 NUMA_NO_NODE); 4939 4940 if (unlikely(!nskb)) 4941 goto err; 4942 4943 skb_reserve(nskb, headroom); 4944 __skb_put(nskb, doffset); 4945 } 4946 4947 if (segs) 4948 tail->next = nskb; 4949 else 4950 segs = nskb; 4951 tail = nskb; 4952 4953 __copy_skb_header(nskb, head_skb); 4954 4955 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4956 skb_reset_mac_len(nskb); 4957 4958 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4959 nskb->data - tnl_hlen, 4960 doffset + tnl_hlen); 4961 4962 if (nskb->len == len + doffset) 4963 goto perform_csum_check; 4964 4965 if (!sg) { 4966 if (!csum) { 4967 if (!nskb->remcsum_offload) 4968 nskb->ip_summed = CHECKSUM_NONE; 4969 SKB_GSO_CB(nskb)->csum = 4970 skb_copy_and_csum_bits(head_skb, offset, 4971 skb_put(nskb, 4972 len), 4973 len); 4974 SKB_GSO_CB(nskb)->csum_start = 4975 skb_headroom(nskb) + doffset; 4976 } else { 4977 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4978 goto err; 4979 } 4980 continue; 4981 } 4982 4983 nskb_frag = skb_shinfo(nskb)->frags; 4984 4985 skb_copy_from_linear_data_offset(head_skb, offset, 4986 skb_put(nskb, hsize), hsize); 4987 4988 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4989 SKBFL_SHARED_FRAG; 4990 4991 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4992 goto err; 4993 4994 while (pos < offset + len) { 4995 if (i >= nfrags) { 4996 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4997 skb_zerocopy_clone(nskb, list_skb, 4998 GFP_ATOMIC)) 4999 goto err; 5000 5001 i = 0; 5002 nfrags = skb_shinfo(list_skb)->nr_frags; 5003 frag = skb_shinfo(list_skb)->frags; 5004 frag_skb = list_skb; 5005 if (!skb_headlen(list_skb)) { 5006 BUG_ON(!nfrags); 5007 } else { 5008 BUG_ON(!list_skb->head_frag); 5009 5010 /* to make room for head_frag. */ 5011 i--; 5012 frag--; 5013 } 5014 5015 list_skb = list_skb->next; 5016 } 5017 5018 if (unlikely(skb_shinfo(nskb)->nr_frags >= 5019 MAX_SKB_FRAGS)) { 5020 net_warn_ratelimited( 5021 "skb_segment: too many frags: %u %u\n", 5022 pos, mss); 5023 err = -EINVAL; 5024 goto err; 5025 } 5026 5027 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 5028 __skb_frag_ref(nskb_frag); 5029 size = skb_frag_size(nskb_frag); 5030 5031 if (pos < offset) { 5032 skb_frag_off_add(nskb_frag, offset - pos); 5033 skb_frag_size_sub(nskb_frag, offset - pos); 5034 } 5035 5036 skb_shinfo(nskb)->nr_frags++; 5037 5038 if (pos + size <= offset + len) { 5039 i++; 5040 frag++; 5041 pos += size; 5042 } else { 5043 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 5044 goto skip_fraglist; 5045 } 5046 5047 nskb_frag++; 5048 } 5049 5050 skip_fraglist: 5051 nskb->data_len = len - hsize; 5052 nskb->len += nskb->data_len; 5053 nskb->truesize += nskb->data_len; 5054 5055 perform_csum_check: 5056 if (!csum) { 5057 if (skb_has_shared_frag(nskb) && 5058 __skb_linearize(nskb)) 5059 goto err; 5060 5061 if (!nskb->remcsum_offload) 5062 nskb->ip_summed = CHECKSUM_NONE; 5063 SKB_GSO_CB(nskb)->csum = 5064 skb_checksum(nskb, doffset, 5065 nskb->len - doffset, 0); 5066 SKB_GSO_CB(nskb)->csum_start = 5067 skb_headroom(nskb) + doffset; 5068 } 5069 } while ((offset += len) < head_skb->len); 5070 5071 /* Some callers want to get the end of the list. 5072 * Put it in segs->prev to avoid walking the list. 5073 * (see validate_xmit_skb_list() for example) 5074 */ 5075 segs->prev = tail; 5076 5077 if (partial_segs) { 5078 struct sk_buff *iter; 5079 int type = skb_shinfo(head_skb)->gso_type; 5080 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5081 5082 /* Update type to add partial and then remove dodgy if set */ 5083 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5084 type &= ~SKB_GSO_DODGY; 5085 5086 /* Update GSO info and prepare to start updating headers on 5087 * our way back down the stack of protocols. 5088 */ 5089 for (iter = segs; iter; iter = iter->next) { 5090 skb_shinfo(iter)->gso_size = gso_size; 5091 skb_shinfo(iter)->gso_segs = partial_segs; 5092 skb_shinfo(iter)->gso_type = type; 5093 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5094 } 5095 5096 if (tail->len - doffset <= gso_size) 5097 skb_shinfo(tail)->gso_size = 0; 5098 else if (tail != segs) 5099 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5100 } 5101 5102 /* Following permits correct backpressure, for protocols 5103 * using skb_set_owner_w(). 5104 * Idea is to tranfert ownership from head_skb to last segment. 5105 */ 5106 if (head_skb->destructor == sock_wfree) { 5107 swap(tail->truesize, head_skb->truesize); 5108 swap(tail->destructor, head_skb->destructor); 5109 swap(tail->sk, head_skb->sk); 5110 } 5111 return segs; 5112 5113 err: 5114 kfree_skb_list(segs); 5115 return ERR_PTR(err); 5116 } 5117 EXPORT_SYMBOL_GPL(skb_segment); 5118 5119 #ifdef CONFIG_SKB_EXTENSIONS 5120 #define SKB_EXT_ALIGN_VALUE 8 5121 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5122 5123 static const u8 skb_ext_type_len[] = { 5124 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5125 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5126 #endif 5127 #ifdef CONFIG_XFRM 5128 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5129 #endif 5130 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5131 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5132 #endif 5133 #if IS_ENABLED(CONFIG_MPTCP) 5134 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5135 #endif 5136 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5137 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5138 #endif 5139 #if IS_ENABLED(CONFIG_INET_PSP) 5140 [SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext), 5141 #endif 5142 }; 5143 5144 static __always_inline unsigned int skb_ext_total_length(void) 5145 { 5146 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5147 int i; 5148 5149 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5150 l += skb_ext_type_len[i]; 5151 5152 return l; 5153 } 5154 5155 static void skb_extensions_init(void) 5156 { 5157 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5158 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5159 BUILD_BUG_ON(skb_ext_total_length() > 255); 5160 #endif 5161 5162 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5163 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5164 0, 5165 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5166 NULL); 5167 } 5168 #else 5169 static void skb_extensions_init(void) {} 5170 #endif 5171 5172 /* The SKB kmem_cache slab is critical for network performance. Never 5173 * merge/alias the slab with similar sized objects. This avoids fragmentation 5174 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5175 */ 5176 #ifndef CONFIG_SLUB_TINY 5177 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5178 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5179 #define FLAG_SKB_NO_MERGE 0 5180 #endif 5181 5182 void __init skb_init(void) 5183 { 5184 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5185 sizeof(struct sk_buff), 5186 0, 5187 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5188 FLAG_SKB_NO_MERGE, 5189 offsetof(struct sk_buff, cb), 5190 sizeof_field(struct sk_buff, cb), 5191 NULL); 5192 skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 5193 5194 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5195 sizeof(struct sk_buff_fclones), 5196 0, 5197 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5198 NULL); 5199 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5200 * struct skb_shared_info is located at the end of skb->head, 5201 * and should not be copied to/from user. 5202 */ 5203 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5204 SKB_SMALL_HEAD_CACHE_SIZE, 5205 0, 5206 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5207 0, 5208 SKB_SMALL_HEAD_HEADROOM, 5209 NULL); 5210 skb_extensions_init(); 5211 } 5212 5213 static int 5214 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5215 unsigned int recursion_level) 5216 { 5217 int start = skb_headlen(skb); 5218 int i, copy = start - offset; 5219 struct sk_buff *frag_iter; 5220 int elt = 0; 5221 5222 if (unlikely(recursion_level >= 24)) 5223 return -EMSGSIZE; 5224 5225 if (copy > 0) { 5226 if (copy > len) 5227 copy = len; 5228 sg_set_buf(sg, skb->data + offset, copy); 5229 elt++; 5230 if ((len -= copy) == 0) 5231 return elt; 5232 offset += copy; 5233 } 5234 5235 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5236 int end; 5237 5238 WARN_ON(start > offset + len); 5239 5240 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5241 if ((copy = end - offset) > 0) { 5242 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5243 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5244 return -EMSGSIZE; 5245 5246 if (copy > len) 5247 copy = len; 5248 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5249 skb_frag_off(frag) + offset - start); 5250 elt++; 5251 if (!(len -= copy)) 5252 return elt; 5253 offset += copy; 5254 } 5255 start = end; 5256 } 5257 5258 skb_walk_frags(skb, frag_iter) { 5259 int end, ret; 5260 5261 WARN_ON(start > offset + len); 5262 5263 end = start + frag_iter->len; 5264 if ((copy = end - offset) > 0) { 5265 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5266 return -EMSGSIZE; 5267 5268 if (copy > len) 5269 copy = len; 5270 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5271 copy, recursion_level + 1); 5272 if (unlikely(ret < 0)) 5273 return ret; 5274 elt += ret; 5275 if ((len -= copy) == 0) 5276 return elt; 5277 offset += copy; 5278 } 5279 start = end; 5280 } 5281 BUG_ON(len); 5282 return elt; 5283 } 5284 5285 /** 5286 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5287 * @skb: Socket buffer containing the buffers to be mapped 5288 * @sg: The scatter-gather list to map into 5289 * @offset: The offset into the buffer's contents to start mapping 5290 * @len: Length of buffer space to be mapped 5291 * 5292 * Fill the specified scatter-gather list with mappings/pointers into a 5293 * region of the buffer space attached to a socket buffer. Returns either 5294 * the number of scatterlist items used, or -EMSGSIZE if the contents 5295 * could not fit. 5296 */ 5297 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5298 { 5299 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5300 5301 if (nsg <= 0) 5302 return nsg; 5303 5304 sg_mark_end(&sg[nsg - 1]); 5305 5306 return nsg; 5307 } 5308 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5309 5310 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5311 * sglist without mark the sg which contain last skb data as the end. 5312 * So the caller can mannipulate sg list as will when padding new data after 5313 * the first call without calling sg_unmark_end to expend sg list. 5314 * 5315 * Scenario to use skb_to_sgvec_nomark: 5316 * 1. sg_init_table 5317 * 2. skb_to_sgvec_nomark(payload1) 5318 * 3. skb_to_sgvec_nomark(payload2) 5319 * 5320 * This is equivalent to: 5321 * 1. sg_init_table 5322 * 2. skb_to_sgvec(payload1) 5323 * 3. sg_unmark_end 5324 * 4. skb_to_sgvec(payload2) 5325 * 5326 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5327 * is more preferable. 5328 */ 5329 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5330 int offset, int len) 5331 { 5332 return __skb_to_sgvec(skb, sg, offset, len, 0); 5333 } 5334 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5335 5336 5337 5338 /** 5339 * skb_cow_data - Check that a socket buffer's data buffers are writable 5340 * @skb: The socket buffer to check. 5341 * @tailbits: Amount of trailing space to be added 5342 * @trailer: Returned pointer to the skb where the @tailbits space begins 5343 * 5344 * Make sure that the data buffers attached to a socket buffer are 5345 * writable. If they are not, private copies are made of the data buffers 5346 * and the socket buffer is set to use these instead. 5347 * 5348 * If @tailbits is given, make sure that there is space to write @tailbits 5349 * bytes of data beyond current end of socket buffer. @trailer will be 5350 * set to point to the skb in which this space begins. 5351 * 5352 * The number of scatterlist elements required to completely map the 5353 * COW'd and extended socket buffer will be returned. 5354 */ 5355 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5356 { 5357 int copyflag; 5358 int elt; 5359 struct sk_buff *skb1, **skb_p; 5360 5361 /* If skb is cloned or its head is paged, reallocate 5362 * head pulling out all the pages (pages are considered not writable 5363 * at the moment even if they are anonymous). 5364 */ 5365 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5366 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5367 return -ENOMEM; 5368 5369 /* Easy case. Most of packets will go this way. */ 5370 if (!skb_has_frag_list(skb)) { 5371 /* A little of trouble, not enough of space for trailer. 5372 * This should not happen, when stack is tuned to generate 5373 * good frames. OK, on miss we reallocate and reserve even more 5374 * space, 128 bytes is fair. */ 5375 5376 if (skb_tailroom(skb) < tailbits && 5377 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5378 return -ENOMEM; 5379 5380 /* Voila! */ 5381 *trailer = skb; 5382 return 1; 5383 } 5384 5385 /* Misery. We are in troubles, going to mincer fragments... */ 5386 5387 elt = 1; 5388 skb_p = &skb_shinfo(skb)->frag_list; 5389 copyflag = 0; 5390 5391 while ((skb1 = *skb_p) != NULL) { 5392 int ntail = 0; 5393 5394 /* The fragment is partially pulled by someone, 5395 * this can happen on input. Copy it and everything 5396 * after it. */ 5397 5398 if (skb_shared(skb1)) 5399 copyflag = 1; 5400 5401 /* If the skb is the last, worry about trailer. */ 5402 5403 if (skb1->next == NULL && tailbits) { 5404 if (skb_shinfo(skb1)->nr_frags || 5405 skb_has_frag_list(skb1) || 5406 skb_tailroom(skb1) < tailbits) 5407 ntail = tailbits + 128; 5408 } 5409 5410 if (copyflag || 5411 skb_cloned(skb1) || 5412 ntail || 5413 skb_shinfo(skb1)->nr_frags || 5414 skb_has_frag_list(skb1)) { 5415 struct sk_buff *skb2; 5416 5417 /* Fuck, we are miserable poor guys... */ 5418 if (ntail == 0) 5419 skb2 = skb_copy(skb1, GFP_ATOMIC); 5420 else 5421 skb2 = skb_copy_expand(skb1, 5422 skb_headroom(skb1), 5423 ntail, 5424 GFP_ATOMIC); 5425 if (unlikely(skb2 == NULL)) 5426 return -ENOMEM; 5427 5428 if (skb1->sk) 5429 skb_set_owner_w(skb2, skb1->sk); 5430 5431 /* Looking around. Are we still alive? 5432 * OK, link new skb, drop old one */ 5433 5434 skb2->next = skb1->next; 5435 *skb_p = skb2; 5436 kfree_skb(skb1); 5437 skb1 = skb2; 5438 } 5439 elt++; 5440 *trailer = skb1; 5441 skb_p = &skb1->next; 5442 } 5443 5444 return elt; 5445 } 5446 EXPORT_SYMBOL_GPL(skb_cow_data); 5447 5448 static void sock_rmem_free(struct sk_buff *skb) 5449 { 5450 struct sock *sk = skb->sk; 5451 5452 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5453 } 5454 5455 static void skb_set_err_queue(struct sk_buff *skb) 5456 { 5457 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5458 * So, it is safe to (mis)use it to mark skbs on the error queue. 5459 */ 5460 skb->pkt_type = PACKET_OUTGOING; 5461 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5462 } 5463 5464 /* 5465 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5466 */ 5467 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5468 { 5469 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5470 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5471 return -ENOMEM; 5472 5473 skb_orphan(skb); 5474 skb->sk = sk; 5475 skb->destructor = sock_rmem_free; 5476 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5477 skb_set_err_queue(skb); 5478 5479 /* before exiting rcu section, make sure dst is refcounted */ 5480 skb_dst_force(skb); 5481 5482 skb_queue_tail(&sk->sk_error_queue, skb); 5483 if (!sock_flag(sk, SOCK_DEAD)) 5484 sk_error_report(sk); 5485 return 0; 5486 } 5487 EXPORT_SYMBOL(sock_queue_err_skb); 5488 5489 static bool is_icmp_err_skb(const struct sk_buff *skb) 5490 { 5491 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5492 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5493 } 5494 5495 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5496 { 5497 struct sk_buff_head *q = &sk->sk_error_queue; 5498 struct sk_buff *skb, *skb_next = NULL; 5499 bool icmp_next = false; 5500 unsigned long flags; 5501 5502 if (skb_queue_empty_lockless(q)) 5503 return NULL; 5504 5505 spin_lock_irqsave(&q->lock, flags); 5506 skb = __skb_dequeue(q); 5507 if (skb && (skb_next = skb_peek(q))) { 5508 icmp_next = is_icmp_err_skb(skb_next); 5509 if (icmp_next) 5510 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5511 } 5512 spin_unlock_irqrestore(&q->lock, flags); 5513 5514 if (is_icmp_err_skb(skb) && !icmp_next) 5515 sk->sk_err = 0; 5516 5517 if (skb_next) 5518 sk_error_report(sk); 5519 5520 return skb; 5521 } 5522 EXPORT_SYMBOL(sock_dequeue_err_skb); 5523 5524 /** 5525 * skb_clone_sk - create clone of skb, and take reference to socket 5526 * @skb: the skb to clone 5527 * 5528 * This function creates a clone of a buffer that holds a reference on 5529 * sk_refcnt. Buffers created via this function are meant to be 5530 * returned using sock_queue_err_skb, or free via kfree_skb. 5531 * 5532 * When passing buffers allocated with this function to sock_queue_err_skb 5533 * it is necessary to wrap the call with sock_hold/sock_put in order to 5534 * prevent the socket from being released prior to being enqueued on 5535 * the sk_error_queue. 5536 */ 5537 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5538 { 5539 struct sock *sk = skb->sk; 5540 struct sk_buff *clone; 5541 5542 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5543 return NULL; 5544 5545 clone = skb_clone(skb, GFP_ATOMIC); 5546 if (!clone) { 5547 sock_put(sk); 5548 return NULL; 5549 } 5550 5551 clone->sk = sk; 5552 clone->destructor = sock_efree; 5553 5554 return clone; 5555 } 5556 EXPORT_SYMBOL(skb_clone_sk); 5557 5558 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5559 struct sock *sk, 5560 int tstype, 5561 bool opt_stats) 5562 { 5563 struct sock_exterr_skb *serr; 5564 int err; 5565 5566 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5567 5568 serr = SKB_EXT_ERR(skb); 5569 memset(serr, 0, sizeof(*serr)); 5570 serr->ee.ee_errno = ENOMSG; 5571 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5572 serr->ee.ee_info = tstype; 5573 serr->opt_stats = opt_stats; 5574 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5575 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5576 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5577 if (sk_is_tcp(sk)) 5578 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5579 } 5580 5581 err = sock_queue_err_skb(sk, skb); 5582 5583 if (err) 5584 kfree_skb(skb); 5585 } 5586 5587 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5588 { 5589 bool ret; 5590 5591 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5592 return true; 5593 5594 read_lock_bh(&sk->sk_callback_lock); 5595 ret = sk->sk_socket && sk->sk_socket->file && 5596 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5597 read_unlock_bh(&sk->sk_callback_lock); 5598 return ret; 5599 } 5600 5601 void skb_complete_tx_timestamp(struct sk_buff *skb, 5602 struct skb_shared_hwtstamps *hwtstamps) 5603 { 5604 struct sock *sk = skb->sk; 5605 5606 if (!skb_may_tx_timestamp(sk, false)) 5607 goto err; 5608 5609 /* Take a reference to prevent skb_orphan() from freeing the socket, 5610 * but only if the socket refcount is not zero. 5611 */ 5612 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5613 *skb_hwtstamps(skb) = *hwtstamps; 5614 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5615 sock_put(sk); 5616 return; 5617 } 5618 5619 err: 5620 kfree_skb(skb); 5621 } 5622 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5623 5624 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5625 struct skb_shared_hwtstamps *hwtstamps, 5626 int tstype) 5627 { 5628 switch (tstype) { 5629 case SCM_TSTAMP_SCHED: 5630 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5631 case SCM_TSTAMP_SND: 5632 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5633 SKBTX_SW_TSTAMP); 5634 case SCM_TSTAMP_ACK: 5635 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5636 case SCM_TSTAMP_COMPLETION: 5637 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5638 } 5639 5640 return false; 5641 } 5642 5643 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5644 struct skb_shared_hwtstamps *hwtstamps, 5645 struct sock *sk, 5646 int tstype) 5647 { 5648 int op; 5649 5650 switch (tstype) { 5651 case SCM_TSTAMP_SCHED: 5652 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5653 break; 5654 case SCM_TSTAMP_SND: 5655 if (hwtstamps) { 5656 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5657 *skb_hwtstamps(skb) = *hwtstamps; 5658 } else { 5659 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5660 } 5661 break; 5662 case SCM_TSTAMP_ACK: 5663 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5664 break; 5665 default: 5666 return; 5667 } 5668 5669 bpf_skops_tx_timestamping(sk, skb, op); 5670 } 5671 5672 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5673 const struct sk_buff *ack_skb, 5674 struct skb_shared_hwtstamps *hwtstamps, 5675 struct sock *sk, int tstype) 5676 { 5677 struct sk_buff *skb; 5678 bool tsonly, opt_stats = false; 5679 u32 tsflags; 5680 5681 if (!sk) 5682 return; 5683 5684 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5685 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5686 sk, tstype); 5687 5688 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5689 return; 5690 5691 tsflags = READ_ONCE(sk->sk_tsflags); 5692 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5693 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5694 return; 5695 5696 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5697 if (!skb_may_tx_timestamp(sk, tsonly)) 5698 return; 5699 5700 if (tsonly) { 5701 #ifdef CONFIG_INET 5702 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5703 sk_is_tcp(sk)) { 5704 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5705 ack_skb); 5706 opt_stats = true; 5707 } else 5708 #endif 5709 skb = alloc_skb(0, GFP_ATOMIC); 5710 } else { 5711 skb = skb_clone(orig_skb, GFP_ATOMIC); 5712 5713 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5714 kfree_skb(skb); 5715 return; 5716 } 5717 } 5718 if (!skb) 5719 return; 5720 5721 if (tsonly) { 5722 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5723 SKBTX_ANY_TSTAMP; 5724 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5725 } 5726 5727 if (hwtstamps) 5728 *skb_hwtstamps(skb) = *hwtstamps; 5729 else 5730 __net_timestamp(skb); 5731 5732 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5733 } 5734 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5735 5736 void skb_tstamp_tx(struct sk_buff *orig_skb, 5737 struct skb_shared_hwtstamps *hwtstamps) 5738 { 5739 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5740 SCM_TSTAMP_SND); 5741 } 5742 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5743 5744 #ifdef CONFIG_WIRELESS 5745 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5746 { 5747 struct sock *sk = skb->sk; 5748 struct sock_exterr_skb *serr; 5749 int err = 1; 5750 5751 skb->wifi_acked_valid = 1; 5752 skb->wifi_acked = acked; 5753 5754 serr = SKB_EXT_ERR(skb); 5755 memset(serr, 0, sizeof(*serr)); 5756 serr->ee.ee_errno = ENOMSG; 5757 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5758 5759 /* Take a reference to prevent skb_orphan() from freeing the socket, 5760 * but only if the socket refcount is not zero. 5761 */ 5762 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5763 err = sock_queue_err_skb(sk, skb); 5764 sock_put(sk); 5765 } 5766 if (err) 5767 kfree_skb(skb); 5768 } 5769 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5770 #endif /* CONFIG_WIRELESS */ 5771 5772 /** 5773 * skb_partial_csum_set - set up and verify partial csum values for packet 5774 * @skb: the skb to set 5775 * @start: the number of bytes after skb->data to start checksumming. 5776 * @off: the offset from start to place the checksum. 5777 * 5778 * For untrusted partially-checksummed packets, we need to make sure the values 5779 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5780 * 5781 * This function checks and sets those values and skb->ip_summed: if this 5782 * returns false you should drop the packet. 5783 */ 5784 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5785 { 5786 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5787 u32 csum_start = skb_headroom(skb) + (u32)start; 5788 5789 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5790 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5791 start, off, skb_headroom(skb), skb_headlen(skb)); 5792 return false; 5793 } 5794 skb->ip_summed = CHECKSUM_PARTIAL; 5795 skb->csum_start = csum_start; 5796 skb->csum_offset = off; 5797 skb->transport_header = csum_start; 5798 return true; 5799 } 5800 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5801 5802 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5803 unsigned int max) 5804 { 5805 if (skb_headlen(skb) >= len) 5806 return 0; 5807 5808 /* If we need to pullup then pullup to the max, so we 5809 * won't need to do it again. 5810 */ 5811 if (max > skb->len) 5812 max = skb->len; 5813 5814 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5815 return -ENOMEM; 5816 5817 if (skb_headlen(skb) < len) 5818 return -EPROTO; 5819 5820 return 0; 5821 } 5822 5823 #define MAX_TCP_HDR_LEN (15 * 4) 5824 5825 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5826 typeof(IPPROTO_IP) proto, 5827 unsigned int off) 5828 { 5829 int err; 5830 5831 switch (proto) { 5832 case IPPROTO_TCP: 5833 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5834 off + MAX_TCP_HDR_LEN); 5835 if (!err && !skb_partial_csum_set(skb, off, 5836 offsetof(struct tcphdr, 5837 check))) 5838 err = -EPROTO; 5839 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5840 5841 case IPPROTO_UDP: 5842 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5843 off + sizeof(struct udphdr)); 5844 if (!err && !skb_partial_csum_set(skb, off, 5845 offsetof(struct udphdr, 5846 check))) 5847 err = -EPROTO; 5848 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5849 } 5850 5851 return ERR_PTR(-EPROTO); 5852 } 5853 5854 /* This value should be large enough to cover a tagged ethernet header plus 5855 * maximally sized IP and TCP or UDP headers. 5856 */ 5857 #define MAX_IP_HDR_LEN 128 5858 5859 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5860 { 5861 unsigned int off; 5862 bool fragment; 5863 __sum16 *csum; 5864 int err; 5865 5866 fragment = false; 5867 5868 err = skb_maybe_pull_tail(skb, 5869 sizeof(struct iphdr), 5870 MAX_IP_HDR_LEN); 5871 if (err < 0) 5872 goto out; 5873 5874 if (ip_is_fragment(ip_hdr(skb))) 5875 fragment = true; 5876 5877 off = ip_hdrlen(skb); 5878 5879 err = -EPROTO; 5880 5881 if (fragment) 5882 goto out; 5883 5884 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5885 if (IS_ERR(csum)) 5886 return PTR_ERR(csum); 5887 5888 if (recalculate) 5889 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5890 ip_hdr(skb)->daddr, 5891 skb->len - off, 5892 ip_hdr(skb)->protocol, 0); 5893 err = 0; 5894 5895 out: 5896 return err; 5897 } 5898 5899 /* This value should be large enough to cover a tagged ethernet header plus 5900 * an IPv6 header, all options, and a maximal TCP or UDP header. 5901 */ 5902 #define MAX_IPV6_HDR_LEN 256 5903 5904 #define OPT_HDR(type, skb, off) \ 5905 (type *)(skb_network_header(skb) + (off)) 5906 5907 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5908 { 5909 int err; 5910 u8 nexthdr; 5911 unsigned int off; 5912 unsigned int len; 5913 bool fragment; 5914 bool done; 5915 __sum16 *csum; 5916 5917 fragment = false; 5918 done = false; 5919 5920 off = sizeof(struct ipv6hdr); 5921 5922 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5923 if (err < 0) 5924 goto out; 5925 5926 nexthdr = ipv6_hdr(skb)->nexthdr; 5927 5928 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5929 while (off <= len && !done) { 5930 switch (nexthdr) { 5931 case IPPROTO_DSTOPTS: 5932 case IPPROTO_HOPOPTS: 5933 case IPPROTO_ROUTING: { 5934 struct ipv6_opt_hdr *hp; 5935 5936 err = skb_maybe_pull_tail(skb, 5937 off + 5938 sizeof(struct ipv6_opt_hdr), 5939 MAX_IPV6_HDR_LEN); 5940 if (err < 0) 5941 goto out; 5942 5943 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5944 nexthdr = hp->nexthdr; 5945 off += ipv6_optlen(hp); 5946 break; 5947 } 5948 case IPPROTO_AH: { 5949 struct ip_auth_hdr *hp; 5950 5951 err = skb_maybe_pull_tail(skb, 5952 off + 5953 sizeof(struct ip_auth_hdr), 5954 MAX_IPV6_HDR_LEN); 5955 if (err < 0) 5956 goto out; 5957 5958 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5959 nexthdr = hp->nexthdr; 5960 off += ipv6_authlen(hp); 5961 break; 5962 } 5963 case IPPROTO_FRAGMENT: { 5964 struct frag_hdr *hp; 5965 5966 err = skb_maybe_pull_tail(skb, 5967 off + 5968 sizeof(struct frag_hdr), 5969 MAX_IPV6_HDR_LEN); 5970 if (err < 0) 5971 goto out; 5972 5973 hp = OPT_HDR(struct frag_hdr, skb, off); 5974 5975 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5976 fragment = true; 5977 5978 nexthdr = hp->nexthdr; 5979 off += sizeof(struct frag_hdr); 5980 break; 5981 } 5982 default: 5983 done = true; 5984 break; 5985 } 5986 } 5987 5988 err = -EPROTO; 5989 5990 if (!done || fragment) 5991 goto out; 5992 5993 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5994 if (IS_ERR(csum)) 5995 return PTR_ERR(csum); 5996 5997 if (recalculate) 5998 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5999 &ipv6_hdr(skb)->daddr, 6000 skb->len - off, nexthdr, 0); 6001 err = 0; 6002 6003 out: 6004 return err; 6005 } 6006 6007 /** 6008 * skb_checksum_setup - set up partial checksum offset 6009 * @skb: the skb to set up 6010 * @recalculate: if true the pseudo-header checksum will be recalculated 6011 */ 6012 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 6013 { 6014 int err; 6015 6016 switch (skb->protocol) { 6017 case htons(ETH_P_IP): 6018 err = skb_checksum_setup_ipv4(skb, recalculate); 6019 break; 6020 6021 case htons(ETH_P_IPV6): 6022 err = skb_checksum_setup_ipv6(skb, recalculate); 6023 break; 6024 6025 default: 6026 err = -EPROTO; 6027 break; 6028 } 6029 6030 return err; 6031 } 6032 EXPORT_SYMBOL(skb_checksum_setup); 6033 6034 /** 6035 * skb_checksum_maybe_trim - maybe trims the given skb 6036 * @skb: the skb to check 6037 * @transport_len: the data length beyond the network header 6038 * 6039 * Checks whether the given skb has data beyond the given transport length. 6040 * If so, returns a cloned skb trimmed to this transport length. 6041 * Otherwise returns the provided skb. Returns NULL in error cases 6042 * (e.g. transport_len exceeds skb length or out-of-memory). 6043 * 6044 * Caller needs to set the skb transport header and free any returned skb if it 6045 * differs from the provided skb. 6046 */ 6047 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 6048 unsigned int transport_len) 6049 { 6050 struct sk_buff *skb_chk; 6051 unsigned int len = skb_transport_offset(skb) + transport_len; 6052 int ret; 6053 6054 if (skb->len < len) 6055 return NULL; 6056 else if (skb->len == len) 6057 return skb; 6058 6059 skb_chk = skb_clone(skb, GFP_ATOMIC); 6060 if (!skb_chk) 6061 return NULL; 6062 6063 ret = pskb_trim_rcsum(skb_chk, len); 6064 if (ret) { 6065 kfree_skb(skb_chk); 6066 return NULL; 6067 } 6068 6069 return skb_chk; 6070 } 6071 6072 /** 6073 * skb_checksum_trimmed - validate checksum of an skb 6074 * @skb: the skb to check 6075 * @transport_len: the data length beyond the network header 6076 * @skb_chkf: checksum function to use 6077 * 6078 * Applies the given checksum function skb_chkf to the provided skb. 6079 * Returns a checked and maybe trimmed skb. Returns NULL on error. 6080 * 6081 * If the skb has data beyond the given transport length, then a 6082 * trimmed & cloned skb is checked and returned. 6083 * 6084 * Caller needs to set the skb transport header and free any returned skb if it 6085 * differs from the provided skb. 6086 */ 6087 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6088 unsigned int transport_len, 6089 __sum16(*skb_chkf)(struct sk_buff *skb)) 6090 { 6091 struct sk_buff *skb_chk; 6092 unsigned int offset = skb_transport_offset(skb); 6093 __sum16 ret; 6094 6095 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6096 if (!skb_chk) 6097 goto err; 6098 6099 if (!pskb_may_pull(skb_chk, offset)) 6100 goto err; 6101 6102 skb_pull_rcsum(skb_chk, offset); 6103 ret = skb_chkf(skb_chk); 6104 skb_push_rcsum(skb_chk, offset); 6105 6106 if (ret) 6107 goto err; 6108 6109 return skb_chk; 6110 6111 err: 6112 if (skb_chk && skb_chk != skb) 6113 kfree_skb(skb_chk); 6114 6115 return NULL; 6116 6117 } 6118 EXPORT_SYMBOL(skb_checksum_trimmed); 6119 6120 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6121 { 6122 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6123 skb->dev->name); 6124 } 6125 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6126 6127 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6128 { 6129 if (head_stolen) { 6130 skb_release_head_state(skb); 6131 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6132 } else { 6133 __kfree_skb(skb); 6134 } 6135 } 6136 EXPORT_SYMBOL(kfree_skb_partial); 6137 6138 /** 6139 * skb_try_coalesce - try to merge skb to prior one 6140 * @to: prior buffer 6141 * @from: buffer to add 6142 * @fragstolen: pointer to boolean 6143 * @delta_truesize: how much more was allocated than was requested 6144 */ 6145 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6146 bool *fragstolen, int *delta_truesize) 6147 { 6148 struct skb_shared_info *to_shinfo, *from_shinfo; 6149 int i, delta, len = from->len; 6150 6151 *fragstolen = false; 6152 6153 if (skb_cloned(to)) 6154 return false; 6155 6156 /* In general, avoid mixing page_pool and non-page_pool allocated 6157 * pages within the same SKB. In theory we could take full 6158 * references if @from is cloned and !@to->pp_recycle but its 6159 * tricky (due to potential race with the clone disappearing) and 6160 * rare, so not worth dealing with. 6161 */ 6162 if (to->pp_recycle != from->pp_recycle) 6163 return false; 6164 6165 if (skb_frags_readable(from) != skb_frags_readable(to)) 6166 return false; 6167 6168 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6169 if (len) 6170 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6171 *delta_truesize = 0; 6172 return true; 6173 } 6174 6175 to_shinfo = skb_shinfo(to); 6176 from_shinfo = skb_shinfo(from); 6177 if (to_shinfo->frag_list || from_shinfo->frag_list) 6178 return false; 6179 if (skb_zcopy(to) || skb_zcopy(from)) 6180 return false; 6181 6182 if (skb_headlen(from) != 0) { 6183 struct page *page; 6184 unsigned int offset; 6185 6186 if (to_shinfo->nr_frags + 6187 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6188 return false; 6189 6190 if (skb_head_is_locked(from)) 6191 return false; 6192 6193 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6194 6195 page = virt_to_head_page(from->head); 6196 offset = from->data - (unsigned char *)page_address(page); 6197 6198 skb_fill_page_desc(to, to_shinfo->nr_frags, 6199 page, offset, skb_headlen(from)); 6200 *fragstolen = true; 6201 } else { 6202 if (to_shinfo->nr_frags + 6203 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6204 return false; 6205 6206 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6207 } 6208 6209 WARN_ON_ONCE(delta < len); 6210 6211 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6212 from_shinfo->frags, 6213 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6214 to_shinfo->nr_frags += from_shinfo->nr_frags; 6215 6216 if (!skb_cloned(from)) 6217 from_shinfo->nr_frags = 0; 6218 6219 /* if the skb is not cloned this does nothing 6220 * since we set nr_frags to 0. 6221 */ 6222 if (skb_pp_frag_ref(from)) { 6223 for (i = 0; i < from_shinfo->nr_frags; i++) 6224 __skb_frag_ref(&from_shinfo->frags[i]); 6225 } 6226 6227 to->truesize += delta; 6228 to->len += len; 6229 to->data_len += len; 6230 6231 *delta_truesize = delta; 6232 return true; 6233 } 6234 EXPORT_SYMBOL(skb_try_coalesce); 6235 6236 /** 6237 * skb_scrub_packet - scrub an skb 6238 * 6239 * @skb: buffer to clean 6240 * @xnet: packet is crossing netns 6241 * 6242 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6243 * into/from a tunnel. Some information have to be cleared during these 6244 * operations. 6245 * skb_scrub_packet can also be used to clean a skb before injecting it in 6246 * another namespace (@xnet == true). We have to clear all information in the 6247 * skb that could impact namespace isolation. 6248 */ 6249 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6250 { 6251 skb->pkt_type = PACKET_HOST; 6252 skb->skb_iif = 0; 6253 skb->ignore_df = 0; 6254 skb_dst_drop(skb); 6255 skb_ext_reset(skb); 6256 nf_reset_ct(skb); 6257 nf_reset_trace(skb); 6258 6259 #ifdef CONFIG_NET_SWITCHDEV 6260 skb->offload_fwd_mark = 0; 6261 skb->offload_l3_fwd_mark = 0; 6262 #endif 6263 ipvs_reset(skb); 6264 6265 if (!xnet) 6266 return; 6267 6268 skb->mark = 0; 6269 skb_clear_tstamp(skb); 6270 } 6271 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6272 6273 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6274 { 6275 int mac_len, meta_len; 6276 void *meta; 6277 6278 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6279 kfree_skb(skb); 6280 return NULL; 6281 } 6282 6283 mac_len = skb->data - skb_mac_header(skb); 6284 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6285 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6286 mac_len - VLAN_HLEN - ETH_TLEN); 6287 } 6288 6289 meta_len = skb_metadata_len(skb); 6290 if (meta_len) { 6291 meta = skb_metadata_end(skb) - meta_len; 6292 memmove(meta + VLAN_HLEN, meta, meta_len); 6293 } 6294 6295 skb->mac_header += VLAN_HLEN; 6296 return skb; 6297 } 6298 6299 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6300 { 6301 struct vlan_hdr *vhdr; 6302 u16 vlan_tci; 6303 6304 if (unlikely(skb_vlan_tag_present(skb))) { 6305 /* vlan_tci is already set-up so leave this for another time */ 6306 return skb; 6307 } 6308 6309 skb = skb_share_check(skb, GFP_ATOMIC); 6310 if (unlikely(!skb)) 6311 goto err_free; 6312 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6313 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6314 goto err_free; 6315 6316 vhdr = (struct vlan_hdr *)skb->data; 6317 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6318 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6319 6320 skb_pull_rcsum(skb, VLAN_HLEN); 6321 vlan_set_encap_proto(skb, vhdr); 6322 6323 skb = skb_reorder_vlan_header(skb); 6324 if (unlikely(!skb)) 6325 goto err_free; 6326 6327 skb_reset_network_header(skb); 6328 if (!skb_transport_header_was_set(skb)) 6329 skb_reset_transport_header(skb); 6330 skb_reset_mac_len(skb); 6331 6332 return skb; 6333 6334 err_free: 6335 kfree_skb(skb); 6336 return NULL; 6337 } 6338 EXPORT_SYMBOL(skb_vlan_untag); 6339 6340 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6341 { 6342 if (!pskb_may_pull(skb, write_len)) 6343 return -ENOMEM; 6344 6345 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6346 return 0; 6347 6348 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6349 } 6350 EXPORT_SYMBOL(skb_ensure_writable); 6351 6352 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6353 { 6354 int needed_headroom = dev->needed_headroom; 6355 int needed_tailroom = dev->needed_tailroom; 6356 6357 /* For tail taggers, we need to pad short frames ourselves, to ensure 6358 * that the tail tag does not fail at its role of being at the end of 6359 * the packet, once the conduit interface pads the frame. Account for 6360 * that pad length here, and pad later. 6361 */ 6362 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6363 needed_tailroom += ETH_ZLEN - skb->len; 6364 /* skb_headroom() returns unsigned int... */ 6365 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6366 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6367 6368 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6369 /* No reallocation needed, yay! */ 6370 return 0; 6371 6372 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6373 GFP_ATOMIC); 6374 } 6375 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6376 6377 /* remove VLAN header from packet and update csum accordingly. 6378 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6379 */ 6380 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6381 { 6382 int offset = skb->data - skb_mac_header(skb); 6383 int err; 6384 6385 if (WARN_ONCE(offset, 6386 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6387 offset)) { 6388 return -EINVAL; 6389 } 6390 6391 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6392 if (unlikely(err)) 6393 return err; 6394 6395 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6396 6397 vlan_remove_tag(skb, vlan_tci); 6398 6399 skb->mac_header += VLAN_HLEN; 6400 6401 if (skb_network_offset(skb) < ETH_HLEN) 6402 skb_set_network_header(skb, ETH_HLEN); 6403 6404 skb_reset_mac_len(skb); 6405 6406 return err; 6407 } 6408 EXPORT_SYMBOL(__skb_vlan_pop); 6409 6410 /* Pop a vlan tag either from hwaccel or from payload. 6411 * Expects skb->data at mac header. 6412 */ 6413 int skb_vlan_pop(struct sk_buff *skb) 6414 { 6415 u16 vlan_tci; 6416 __be16 vlan_proto; 6417 int err; 6418 6419 if (likely(skb_vlan_tag_present(skb))) { 6420 __vlan_hwaccel_clear_tag(skb); 6421 } else { 6422 if (unlikely(!eth_type_vlan(skb->protocol))) 6423 return 0; 6424 6425 err = __skb_vlan_pop(skb, &vlan_tci); 6426 if (err) 6427 return err; 6428 } 6429 /* move next vlan tag to hw accel tag */ 6430 if (likely(!eth_type_vlan(skb->protocol))) 6431 return 0; 6432 6433 vlan_proto = skb->protocol; 6434 err = __skb_vlan_pop(skb, &vlan_tci); 6435 if (unlikely(err)) 6436 return err; 6437 6438 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6439 return 0; 6440 } 6441 EXPORT_SYMBOL(skb_vlan_pop); 6442 6443 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6444 * Expects skb->data at mac header. 6445 */ 6446 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6447 { 6448 if (skb_vlan_tag_present(skb)) { 6449 int offset = skb->data - skb_mac_header(skb); 6450 int err; 6451 6452 if (WARN_ONCE(offset, 6453 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6454 offset)) { 6455 return -EINVAL; 6456 } 6457 6458 err = __vlan_insert_tag(skb, skb->vlan_proto, 6459 skb_vlan_tag_get(skb)); 6460 if (err) 6461 return err; 6462 6463 skb->protocol = skb->vlan_proto; 6464 skb->network_header -= VLAN_HLEN; 6465 6466 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6467 } 6468 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6469 return 0; 6470 } 6471 EXPORT_SYMBOL(skb_vlan_push); 6472 6473 /** 6474 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6475 * 6476 * @skb: Socket buffer to modify 6477 * 6478 * Drop the Ethernet header of @skb. 6479 * 6480 * Expects that skb->data points to the mac header and that no VLAN tags are 6481 * present. 6482 * 6483 * Returns 0 on success, -errno otherwise. 6484 */ 6485 int skb_eth_pop(struct sk_buff *skb) 6486 { 6487 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6488 skb_network_offset(skb) < ETH_HLEN) 6489 return -EPROTO; 6490 6491 skb_pull_rcsum(skb, ETH_HLEN); 6492 skb_reset_mac_header(skb); 6493 skb_reset_mac_len(skb); 6494 6495 return 0; 6496 } 6497 EXPORT_SYMBOL(skb_eth_pop); 6498 6499 /** 6500 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6501 * 6502 * @skb: Socket buffer to modify 6503 * @dst: Destination MAC address of the new header 6504 * @src: Source MAC address of the new header 6505 * 6506 * Prepend @skb with a new Ethernet header. 6507 * 6508 * Expects that skb->data points to the mac header, which must be empty. 6509 * 6510 * Returns 0 on success, -errno otherwise. 6511 */ 6512 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6513 const unsigned char *src) 6514 { 6515 struct ethhdr *eth; 6516 int err; 6517 6518 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6519 return -EPROTO; 6520 6521 err = skb_cow_head(skb, sizeof(*eth)); 6522 if (err < 0) 6523 return err; 6524 6525 skb_push(skb, sizeof(*eth)); 6526 skb_reset_mac_header(skb); 6527 skb_reset_mac_len(skb); 6528 6529 eth = eth_hdr(skb); 6530 ether_addr_copy(eth->h_dest, dst); 6531 ether_addr_copy(eth->h_source, src); 6532 eth->h_proto = skb->protocol; 6533 6534 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6535 6536 return 0; 6537 } 6538 EXPORT_SYMBOL(skb_eth_push); 6539 6540 /* Update the ethertype of hdr and the skb csum value if required. */ 6541 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6542 __be16 ethertype) 6543 { 6544 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6545 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6546 6547 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6548 } 6549 6550 hdr->h_proto = ethertype; 6551 } 6552 6553 /** 6554 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6555 * the packet 6556 * 6557 * @skb: buffer 6558 * @mpls_lse: MPLS label stack entry to push 6559 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6560 * @mac_len: length of the MAC header 6561 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6562 * ethernet 6563 * 6564 * Expects skb->data at mac header. 6565 * 6566 * Returns 0 on success, -errno otherwise. 6567 */ 6568 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6569 int mac_len, bool ethernet) 6570 { 6571 struct mpls_shim_hdr *lse; 6572 int err; 6573 6574 if (unlikely(!eth_p_mpls(mpls_proto))) 6575 return -EINVAL; 6576 6577 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6578 if (skb->encapsulation) 6579 return -EINVAL; 6580 6581 err = skb_cow_head(skb, MPLS_HLEN); 6582 if (unlikely(err)) 6583 return err; 6584 6585 if (!skb->inner_protocol) { 6586 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6587 skb_set_inner_protocol(skb, skb->protocol); 6588 } 6589 6590 skb_push(skb, MPLS_HLEN); 6591 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6592 mac_len); 6593 skb_reset_mac_header(skb); 6594 skb_set_network_header(skb, mac_len); 6595 skb_reset_mac_len(skb); 6596 6597 lse = mpls_hdr(skb); 6598 lse->label_stack_entry = mpls_lse; 6599 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6600 6601 if (ethernet && mac_len >= ETH_HLEN) 6602 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6603 skb->protocol = mpls_proto; 6604 6605 return 0; 6606 } 6607 EXPORT_SYMBOL_GPL(skb_mpls_push); 6608 6609 /** 6610 * skb_mpls_pop() - pop the outermost MPLS header 6611 * 6612 * @skb: buffer 6613 * @next_proto: ethertype of header after popped MPLS header 6614 * @mac_len: length of the MAC header 6615 * @ethernet: flag to indicate if the packet is ethernet 6616 * 6617 * Expects skb->data at mac header. 6618 * 6619 * Returns 0 on success, -errno otherwise. 6620 */ 6621 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6622 bool ethernet) 6623 { 6624 int err; 6625 6626 if (unlikely(!eth_p_mpls(skb->protocol))) 6627 return 0; 6628 6629 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6630 if (unlikely(err)) 6631 return err; 6632 6633 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6634 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6635 mac_len); 6636 6637 __skb_pull(skb, MPLS_HLEN); 6638 skb_reset_mac_header(skb); 6639 skb_set_network_header(skb, mac_len); 6640 6641 if (ethernet && mac_len >= ETH_HLEN) { 6642 struct ethhdr *hdr; 6643 6644 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6645 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6646 skb_mod_eth_type(skb, hdr, next_proto); 6647 } 6648 skb->protocol = next_proto; 6649 6650 return 0; 6651 } 6652 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6653 6654 /** 6655 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6656 * 6657 * @skb: buffer 6658 * @mpls_lse: new MPLS label stack entry to update to 6659 * 6660 * Expects skb->data at mac header. 6661 * 6662 * Returns 0 on success, -errno otherwise. 6663 */ 6664 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6665 { 6666 int err; 6667 6668 if (unlikely(!eth_p_mpls(skb->protocol))) 6669 return -EINVAL; 6670 6671 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6672 if (unlikely(err)) 6673 return err; 6674 6675 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6676 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6677 6678 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6679 } 6680 6681 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6682 6683 return 0; 6684 } 6685 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6686 6687 /** 6688 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6689 * 6690 * @skb: buffer 6691 * 6692 * Expects skb->data at mac header. 6693 * 6694 * Returns 0 on success, -errno otherwise. 6695 */ 6696 int skb_mpls_dec_ttl(struct sk_buff *skb) 6697 { 6698 u32 lse; 6699 u8 ttl; 6700 6701 if (unlikely(!eth_p_mpls(skb->protocol))) 6702 return -EINVAL; 6703 6704 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6705 return -ENOMEM; 6706 6707 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6708 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6709 if (!--ttl) 6710 return -EINVAL; 6711 6712 lse &= ~MPLS_LS_TTL_MASK; 6713 lse |= ttl << MPLS_LS_TTL_SHIFT; 6714 6715 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6716 } 6717 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6718 6719 /** 6720 * alloc_skb_with_frags - allocate skb with page frags 6721 * 6722 * @header_len: size of linear part 6723 * @data_len: needed length in frags 6724 * @order: max page order desired. 6725 * @errcode: pointer to error code if any 6726 * @gfp_mask: allocation mask 6727 * 6728 * This can be used to allocate a paged skb, given a maximal order for frags. 6729 */ 6730 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6731 unsigned long data_len, 6732 int order, 6733 int *errcode, 6734 gfp_t gfp_mask) 6735 { 6736 unsigned long chunk; 6737 struct sk_buff *skb; 6738 struct page *page; 6739 int nr_frags = 0; 6740 6741 *errcode = -EMSGSIZE; 6742 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6743 return NULL; 6744 6745 *errcode = -ENOBUFS; 6746 skb = alloc_skb(header_len, gfp_mask); 6747 if (!skb) 6748 return NULL; 6749 6750 while (data_len) { 6751 if (nr_frags == MAX_SKB_FRAGS) 6752 goto failure; 6753 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6754 order--; 6755 6756 if (order) { 6757 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6758 __GFP_COMP | 6759 __GFP_NOWARN, 6760 order); 6761 if (!page) { 6762 order--; 6763 continue; 6764 } 6765 } else { 6766 page = alloc_page(gfp_mask); 6767 if (!page) 6768 goto failure; 6769 } 6770 chunk = min_t(unsigned long, data_len, 6771 PAGE_SIZE << order); 6772 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6773 nr_frags++; 6774 skb->truesize += (PAGE_SIZE << order); 6775 data_len -= chunk; 6776 } 6777 return skb; 6778 6779 failure: 6780 kfree_skb(skb); 6781 return NULL; 6782 } 6783 EXPORT_SYMBOL(alloc_skb_with_frags); 6784 6785 /* carve out the first off bytes from skb when off < headlen */ 6786 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6787 const int headlen, gfp_t gfp_mask) 6788 { 6789 int i; 6790 unsigned int size = skb_end_offset(skb); 6791 int new_hlen = headlen - off; 6792 u8 *data; 6793 6794 if (skb_pfmemalloc(skb)) 6795 gfp_mask |= __GFP_MEMALLOC; 6796 6797 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6798 if (!data) 6799 return -ENOMEM; 6800 size = SKB_WITH_OVERHEAD(size); 6801 6802 /* Copy real data, and all frags */ 6803 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6804 skb->len -= off; 6805 6806 memcpy((struct skb_shared_info *)(data + size), 6807 skb_shinfo(skb), 6808 offsetof(struct skb_shared_info, 6809 frags[skb_shinfo(skb)->nr_frags])); 6810 if (skb_cloned(skb)) { 6811 /* drop the old head gracefully */ 6812 if (skb_orphan_frags(skb, gfp_mask)) { 6813 skb_kfree_head(data, size); 6814 return -ENOMEM; 6815 } 6816 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6817 skb_frag_ref(skb, i); 6818 if (skb_has_frag_list(skb)) 6819 skb_clone_fraglist(skb); 6820 skb_release_data(skb, SKB_CONSUMED); 6821 } else { 6822 /* we can reuse existing recount- all we did was 6823 * relocate values 6824 */ 6825 skb_free_head(skb); 6826 } 6827 6828 skb->head = data; 6829 skb->data = data; 6830 skb->head_frag = 0; 6831 skb_set_end_offset(skb, size); 6832 skb_set_tail_pointer(skb, skb_headlen(skb)); 6833 skb_headers_offset_update(skb, 0); 6834 skb->cloned = 0; 6835 skb->hdr_len = 0; 6836 skb->nohdr = 0; 6837 atomic_set(&skb_shinfo(skb)->dataref, 1); 6838 6839 return 0; 6840 } 6841 6842 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6843 6844 /* carve out the first eat bytes from skb's frag_list. May recurse into 6845 * pskb_carve() 6846 */ 6847 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6848 gfp_t gfp_mask) 6849 { 6850 struct sk_buff *list = shinfo->frag_list; 6851 struct sk_buff *clone = NULL; 6852 struct sk_buff *insp = NULL; 6853 6854 do { 6855 if (!list) { 6856 pr_err("Not enough bytes to eat. Want %d\n", eat); 6857 return -EFAULT; 6858 } 6859 if (list->len <= eat) { 6860 /* Eaten as whole. */ 6861 eat -= list->len; 6862 list = list->next; 6863 insp = list; 6864 } else { 6865 /* Eaten partially. */ 6866 if (skb_shared(list)) { 6867 clone = skb_clone(list, gfp_mask); 6868 if (!clone) 6869 return -ENOMEM; 6870 insp = list->next; 6871 list = clone; 6872 } else { 6873 /* This may be pulled without problems. */ 6874 insp = list; 6875 } 6876 if (pskb_carve(list, eat, gfp_mask) < 0) { 6877 kfree_skb(clone); 6878 return -ENOMEM; 6879 } 6880 break; 6881 } 6882 } while (eat); 6883 6884 /* Free pulled out fragments. */ 6885 while ((list = shinfo->frag_list) != insp) { 6886 shinfo->frag_list = list->next; 6887 consume_skb(list); 6888 } 6889 /* And insert new clone at head. */ 6890 if (clone) { 6891 clone->next = list; 6892 shinfo->frag_list = clone; 6893 } 6894 return 0; 6895 } 6896 6897 /* carve off first len bytes from skb. Split line (off) is in the 6898 * non-linear part of skb 6899 */ 6900 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6901 int pos, gfp_t gfp_mask) 6902 { 6903 int i, k = 0; 6904 unsigned int size = skb_end_offset(skb); 6905 u8 *data; 6906 const int nfrags = skb_shinfo(skb)->nr_frags; 6907 struct skb_shared_info *shinfo; 6908 6909 if (skb_pfmemalloc(skb)) 6910 gfp_mask |= __GFP_MEMALLOC; 6911 6912 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6913 if (!data) 6914 return -ENOMEM; 6915 size = SKB_WITH_OVERHEAD(size); 6916 6917 memcpy((struct skb_shared_info *)(data + size), 6918 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6919 if (skb_orphan_frags(skb, gfp_mask)) { 6920 skb_kfree_head(data, size); 6921 return -ENOMEM; 6922 } 6923 shinfo = (struct skb_shared_info *)(data + size); 6924 for (i = 0; i < nfrags; i++) { 6925 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6926 6927 if (pos + fsize > off) { 6928 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6929 6930 if (pos < off) { 6931 /* Split frag. 6932 * We have two variants in this case: 6933 * 1. Move all the frag to the second 6934 * part, if it is possible. F.e. 6935 * this approach is mandatory for TUX, 6936 * where splitting is expensive. 6937 * 2. Split is accurately. We make this. 6938 */ 6939 skb_frag_off_add(&shinfo->frags[0], off - pos); 6940 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6941 } 6942 skb_frag_ref(skb, i); 6943 k++; 6944 } 6945 pos += fsize; 6946 } 6947 shinfo->nr_frags = k; 6948 if (skb_has_frag_list(skb)) 6949 skb_clone_fraglist(skb); 6950 6951 /* split line is in frag list */ 6952 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6953 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6954 if (skb_has_frag_list(skb)) 6955 kfree_skb_list(skb_shinfo(skb)->frag_list); 6956 skb_kfree_head(data, size); 6957 return -ENOMEM; 6958 } 6959 skb_release_data(skb, SKB_CONSUMED); 6960 6961 skb->head = data; 6962 skb->head_frag = 0; 6963 skb->data = data; 6964 skb_set_end_offset(skb, size); 6965 skb_reset_tail_pointer(skb); 6966 skb_headers_offset_update(skb, 0); 6967 skb->cloned = 0; 6968 skb->hdr_len = 0; 6969 skb->nohdr = 0; 6970 skb->len -= off; 6971 skb->data_len = skb->len; 6972 atomic_set(&skb_shinfo(skb)->dataref, 1); 6973 return 0; 6974 } 6975 6976 /* remove len bytes from the beginning of the skb */ 6977 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6978 { 6979 int headlen = skb_headlen(skb); 6980 6981 if (len < headlen) 6982 return pskb_carve_inside_header(skb, len, headlen, gfp); 6983 else 6984 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6985 } 6986 6987 /* Extract to_copy bytes starting at off from skb, and return this in 6988 * a new skb 6989 */ 6990 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6991 int to_copy, gfp_t gfp) 6992 { 6993 struct sk_buff *clone = skb_clone(skb, gfp); 6994 6995 if (!clone) 6996 return NULL; 6997 6998 if (pskb_carve(clone, off, gfp) < 0 || 6999 pskb_trim(clone, to_copy)) { 7000 kfree_skb(clone); 7001 return NULL; 7002 } 7003 return clone; 7004 } 7005 EXPORT_SYMBOL(pskb_extract); 7006 7007 /** 7008 * skb_condense - try to get rid of fragments/frag_list if possible 7009 * @skb: buffer 7010 * 7011 * Can be used to save memory before skb is added to a busy queue. 7012 * If packet has bytes in frags and enough tail room in skb->head, 7013 * pull all of them, so that we can free the frags right now and adjust 7014 * truesize. 7015 * Notes: 7016 * We do not reallocate skb->head thus can not fail. 7017 * Caller must re-evaluate skb->truesize if needed. 7018 */ 7019 void skb_condense(struct sk_buff *skb) 7020 { 7021 if (skb->data_len) { 7022 if (skb->data_len > skb->end - skb->tail || 7023 skb_cloned(skb) || !skb_frags_readable(skb)) 7024 return; 7025 7026 /* Nice, we can free page frag(s) right now */ 7027 __pskb_pull_tail(skb, skb->data_len); 7028 } 7029 /* At this point, skb->truesize might be over estimated, 7030 * because skb had a fragment, and fragments do not tell 7031 * their truesize. 7032 * When we pulled its content into skb->head, fragment 7033 * was freed, but __pskb_pull_tail() could not possibly 7034 * adjust skb->truesize, not knowing the frag truesize. 7035 */ 7036 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 7037 } 7038 EXPORT_SYMBOL(skb_condense); 7039 7040 #ifdef CONFIG_SKB_EXTENSIONS 7041 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 7042 { 7043 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 7044 } 7045 7046 /** 7047 * __skb_ext_alloc - allocate a new skb extensions storage 7048 * 7049 * @flags: See kmalloc(). 7050 * 7051 * Returns the newly allocated pointer. The pointer can later attached to a 7052 * skb via __skb_ext_set(). 7053 * Note: caller must handle the skb_ext as an opaque data. 7054 */ 7055 struct skb_ext *__skb_ext_alloc(gfp_t flags) 7056 { 7057 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 7058 7059 if (new) { 7060 memset(new->offset, 0, sizeof(new->offset)); 7061 refcount_set(&new->refcnt, 1); 7062 } 7063 7064 return new; 7065 } 7066 7067 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 7068 unsigned int old_active) 7069 { 7070 struct skb_ext *new; 7071 7072 if (refcount_read(&old->refcnt) == 1) 7073 return old; 7074 7075 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 7076 if (!new) 7077 return NULL; 7078 7079 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 7080 refcount_set(&new->refcnt, 1); 7081 7082 #ifdef CONFIG_XFRM 7083 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 7084 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 7085 unsigned int i; 7086 7087 for (i = 0; i < sp->len; i++) 7088 xfrm_state_hold(sp->xvec[i]); 7089 } 7090 #endif 7091 #ifdef CONFIG_MCTP_FLOWS 7092 if (old_active & (1 << SKB_EXT_MCTP)) { 7093 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7094 7095 if (flow->key) 7096 refcount_inc(&flow->key->refs); 7097 } 7098 #endif 7099 __skb_ext_put(old); 7100 return new; 7101 } 7102 7103 /** 7104 * __skb_ext_set - attach the specified extension storage to this skb 7105 * @skb: buffer 7106 * @id: extension id 7107 * @ext: extension storage previously allocated via __skb_ext_alloc() 7108 * 7109 * Existing extensions, if any, are cleared. 7110 * 7111 * Returns the pointer to the extension. 7112 */ 7113 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7114 struct skb_ext *ext) 7115 { 7116 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7117 7118 skb_ext_put(skb); 7119 newlen = newoff + skb_ext_type_len[id]; 7120 ext->chunks = newlen; 7121 ext->offset[id] = newoff; 7122 skb->extensions = ext; 7123 skb->active_extensions = 1 << id; 7124 return skb_ext_get_ptr(ext, id); 7125 } 7126 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL"); 7127 7128 /** 7129 * skb_ext_add - allocate space for given extension, COW if needed 7130 * @skb: buffer 7131 * @id: extension to allocate space for 7132 * 7133 * Allocates enough space for the given extension. 7134 * If the extension is already present, a pointer to that extension 7135 * is returned. 7136 * 7137 * If the skb was cloned, COW applies and the returned memory can be 7138 * modified without changing the extension space of clones buffers. 7139 * 7140 * Returns pointer to the extension or NULL on allocation failure. 7141 */ 7142 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7143 { 7144 struct skb_ext *new, *old = NULL; 7145 unsigned int newlen, newoff; 7146 7147 if (skb->active_extensions) { 7148 old = skb->extensions; 7149 7150 new = skb_ext_maybe_cow(old, skb->active_extensions); 7151 if (!new) 7152 return NULL; 7153 7154 if (__skb_ext_exist(new, id)) 7155 goto set_active; 7156 7157 newoff = new->chunks; 7158 } else { 7159 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7160 7161 new = __skb_ext_alloc(GFP_ATOMIC); 7162 if (!new) 7163 return NULL; 7164 } 7165 7166 newlen = newoff + skb_ext_type_len[id]; 7167 new->chunks = newlen; 7168 new->offset[id] = newoff; 7169 set_active: 7170 skb->slow_gro = 1; 7171 skb->extensions = new; 7172 skb->active_extensions |= 1 << id; 7173 return skb_ext_get_ptr(new, id); 7174 } 7175 EXPORT_SYMBOL(skb_ext_add); 7176 7177 #ifdef CONFIG_XFRM 7178 static void skb_ext_put_sp(struct sec_path *sp) 7179 { 7180 unsigned int i; 7181 7182 for (i = 0; i < sp->len; i++) 7183 xfrm_state_put(sp->xvec[i]); 7184 } 7185 #endif 7186 7187 #ifdef CONFIG_MCTP_FLOWS 7188 static void skb_ext_put_mctp(struct mctp_flow *flow) 7189 { 7190 if (flow->key) 7191 mctp_key_unref(flow->key); 7192 } 7193 #endif 7194 7195 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7196 { 7197 struct skb_ext *ext = skb->extensions; 7198 7199 skb->active_extensions &= ~(1 << id); 7200 if (skb->active_extensions == 0) { 7201 skb->extensions = NULL; 7202 __skb_ext_put(ext); 7203 #ifdef CONFIG_XFRM 7204 } else if (id == SKB_EXT_SEC_PATH && 7205 refcount_read(&ext->refcnt) == 1) { 7206 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7207 7208 skb_ext_put_sp(sp); 7209 sp->len = 0; 7210 #endif 7211 } 7212 } 7213 EXPORT_SYMBOL(__skb_ext_del); 7214 7215 void __skb_ext_put(struct skb_ext *ext) 7216 { 7217 /* If this is last clone, nothing can increment 7218 * it after check passes. Avoids one atomic op. 7219 */ 7220 if (refcount_read(&ext->refcnt) == 1) 7221 goto free_now; 7222 7223 if (!refcount_dec_and_test(&ext->refcnt)) 7224 return; 7225 free_now: 7226 #ifdef CONFIG_XFRM 7227 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7228 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7229 #endif 7230 #ifdef CONFIG_MCTP_FLOWS 7231 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7232 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7233 #endif 7234 7235 kmem_cache_free(skbuff_ext_cache, ext); 7236 } 7237 EXPORT_SYMBOL(__skb_ext_put); 7238 #endif /* CONFIG_SKB_EXTENSIONS */ 7239 7240 static void kfree_skb_napi_cache(struct sk_buff *skb) 7241 { 7242 /* if SKB is a clone, don't handle this case */ 7243 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7244 __kfree_skb(skb); 7245 return; 7246 } 7247 7248 local_bh_disable(); 7249 __napi_kfree_skb(skb, SKB_CONSUMED); 7250 local_bh_enable(); 7251 } 7252 7253 /** 7254 * skb_attempt_defer_free - queue skb for remote freeing 7255 * @skb: buffer 7256 * 7257 * Put @skb in a per-cpu list, using the cpu which 7258 * allocated the skb/pages to reduce false sharing 7259 * and memory zone spinlock contention. 7260 */ 7261 void skb_attempt_defer_free(struct sk_buff *skb) 7262 { 7263 struct skb_defer_node *sdn; 7264 unsigned long defer_count; 7265 int cpu = skb->alloc_cpu; 7266 unsigned int defer_max; 7267 bool kick; 7268 7269 if (cpu == raw_smp_processor_id() || 7270 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7271 !cpu_online(cpu)) { 7272 nodefer: kfree_skb_napi_cache(skb); 7273 return; 7274 } 7275 7276 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7277 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7278 DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb)); 7279 7280 sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id(); 7281 7282 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7283 defer_count = atomic_long_inc_return(&sdn->defer_count); 7284 7285 if (defer_count >= defer_max) 7286 goto nodefer; 7287 7288 llist_add(&skb->ll_node, &sdn->defer_list); 7289 7290 /* Send an IPI every time queue reaches half capacity. */ 7291 kick = (defer_count - 1) == (defer_max >> 1); 7292 7293 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7294 * if we are unlucky enough (this seems very unlikely). 7295 */ 7296 if (unlikely(kick)) 7297 kick_defer_list_purge(cpu); 7298 } 7299 7300 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7301 size_t offset, size_t len) 7302 { 7303 const char *kaddr; 7304 __wsum csum; 7305 7306 kaddr = kmap_local_page(page); 7307 csum = csum_partial(kaddr + offset, len, 0); 7308 kunmap_local(kaddr); 7309 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7310 } 7311 7312 /** 7313 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7314 * @skb: The buffer to add pages to 7315 * @iter: Iterator representing the pages to be added 7316 * @maxsize: Maximum amount of pages to be added 7317 * 7318 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7319 * extracts pages from an iterator and adds them to the socket buffer if 7320 * possible, copying them to fragments if not possible (such as if they're slab 7321 * pages). 7322 * 7323 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7324 * insufficient space in the buffer to transfer anything. 7325 */ 7326 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7327 ssize_t maxsize) 7328 { 7329 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7330 struct page *pages[8], **ppages = pages; 7331 ssize_t spliced = 0, ret = 0; 7332 unsigned int i; 7333 7334 while (iter->count > 0) { 7335 ssize_t space, nr, len; 7336 size_t off; 7337 7338 ret = -EMSGSIZE; 7339 space = frag_limit - skb_shinfo(skb)->nr_frags; 7340 if (space < 0) 7341 break; 7342 7343 /* We might be able to coalesce without increasing nr_frags */ 7344 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7345 7346 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7347 if (len <= 0) { 7348 ret = len ?: -EIO; 7349 break; 7350 } 7351 7352 i = 0; 7353 do { 7354 struct page *page = pages[i++]; 7355 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7356 7357 ret = -EIO; 7358 if (WARN_ON_ONCE(!sendpage_ok(page))) 7359 goto out; 7360 7361 ret = skb_append_pagefrags(skb, page, off, part, 7362 frag_limit); 7363 if (ret < 0) { 7364 iov_iter_revert(iter, len); 7365 goto out; 7366 } 7367 7368 if (skb->ip_summed == CHECKSUM_NONE) 7369 skb_splice_csum_page(skb, page, off, part); 7370 7371 off = 0; 7372 spliced += part; 7373 maxsize -= part; 7374 len -= part; 7375 } while (len > 0); 7376 7377 if (maxsize <= 0) 7378 break; 7379 } 7380 7381 out: 7382 skb_len_add(skb, spliced); 7383 return spliced ?: ret; 7384 } 7385 EXPORT_SYMBOL(skb_splice_from_iter); 7386 7387 static __always_inline 7388 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7389 size_t len, void *to, void *priv2) 7390 { 7391 __wsum *csum = priv2; 7392 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7393 7394 *csum = csum_block_add(*csum, next, progress); 7395 return 0; 7396 } 7397 7398 static __always_inline 7399 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7400 size_t len, void *to, void *priv2) 7401 { 7402 __wsum next, *csum = priv2; 7403 7404 next = csum_and_copy_from_user(iter_from, to + progress, len); 7405 *csum = csum_block_add(*csum, next, progress); 7406 return next ? 0 : len; 7407 } 7408 7409 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7410 __wsum *csum, struct iov_iter *i) 7411 { 7412 size_t copied; 7413 7414 if (WARN_ON_ONCE(!i->data_source)) 7415 return false; 7416 copied = iterate_and_advance2(i, bytes, addr, csum, 7417 copy_from_user_iter_csum, 7418 memcpy_from_iter_csum); 7419 if (likely(copied == bytes)) 7420 return true; 7421 iov_iter_revert(i, copied); 7422 return false; 7423 } 7424 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7425 7426 void __get_netmem(netmem_ref netmem) 7427 { 7428 struct net_iov *niov = netmem_to_net_iov(netmem); 7429 7430 if (net_is_devmem_iov(niov)) 7431 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7432 } 7433 EXPORT_SYMBOL(__get_netmem); 7434 7435 void __put_netmem(netmem_ref netmem) 7436 { 7437 struct net_iov *niov = netmem_to_net_iov(netmem); 7438 7439 if (net_is_devmem_iov(niov)) 7440 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7441 } 7442 EXPORT_SYMBOL(__put_netmem); 7443