1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/in.h> 45 #include <linux/inet.h> 46 #include <linux/slab.h> 47 #include <linux/netdevice.h> 48 #ifdef CONFIG_NET_CLS_ACT 49 #include <net/pkt_sched.h> 50 #endif 51 #include <linux/string.h> 52 #include <linux/skbuff.h> 53 #include <linux/splice.h> 54 #include <linux/cache.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/init.h> 57 #include <linux/scatterlist.h> 58 59 #include <net/protocol.h> 60 #include <net/dst.h> 61 #include <net/sock.h> 62 #include <net/checksum.h> 63 #include <net/xfrm.h> 64 65 #include <asm/uaccess.h> 66 #include <asm/system.h> 67 68 #include "kmap_skb.h" 69 70 static struct kmem_cache *skbuff_head_cache __read_mostly; 71 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 72 73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 74 struct pipe_buffer *buf) 75 { 76 put_page(buf->page); 77 } 78 79 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 80 struct pipe_buffer *buf) 81 { 82 get_page(buf->page); 83 } 84 85 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 86 struct pipe_buffer *buf) 87 { 88 return 1; 89 } 90 91 92 /* Pipe buffer operations for a socket. */ 93 static struct pipe_buf_operations sock_pipe_buf_ops = { 94 .can_merge = 0, 95 .map = generic_pipe_buf_map, 96 .unmap = generic_pipe_buf_unmap, 97 .confirm = generic_pipe_buf_confirm, 98 .release = sock_pipe_buf_release, 99 .steal = sock_pipe_buf_steal, 100 .get = sock_pipe_buf_get, 101 }; 102 103 /* 104 * Keep out-of-line to prevent kernel bloat. 105 * __builtin_return_address is not used because it is not always 106 * reliable. 107 */ 108 109 /** 110 * skb_over_panic - private function 111 * @skb: buffer 112 * @sz: size 113 * @here: address 114 * 115 * Out of line support code for skb_put(). Not user callable. 116 */ 117 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 118 { 119 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 120 "data:%p tail:%#lx end:%#lx dev:%s\n", 121 here, skb->len, sz, skb->head, skb->data, 122 (unsigned long)skb->tail, (unsigned long)skb->end, 123 skb->dev ? skb->dev->name : "<NULL>"); 124 BUG(); 125 } 126 127 /** 128 * skb_under_panic - private function 129 * @skb: buffer 130 * @sz: size 131 * @here: address 132 * 133 * Out of line support code for skb_push(). Not user callable. 134 */ 135 136 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 137 { 138 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 139 "data:%p tail:%#lx end:%#lx dev:%s\n", 140 here, skb->len, sz, skb->head, skb->data, 141 (unsigned long)skb->tail, (unsigned long)skb->end, 142 skb->dev ? skb->dev->name : "<NULL>"); 143 BUG(); 144 } 145 146 void skb_truesize_bug(struct sk_buff *skb) 147 { 148 WARN(net_ratelimit(), KERN_ERR "SKB BUG: Invalid truesize (%u) " 149 "len=%u, sizeof(sk_buff)=%Zd\n", 150 skb->truesize, skb->len, sizeof(struct sk_buff)); 151 } 152 EXPORT_SYMBOL(skb_truesize_bug); 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @fclone: allocate from fclone cache instead of head cache 165 * and allocate a cloned (child) skb 166 * @node: numa node to allocate memory on 167 * 168 * Allocate a new &sk_buff. The returned buffer has no headroom and a 169 * tail room of size bytes. The object has a reference count of one. 170 * The return is the buffer. On a failure the return is %NULL. 171 * 172 * Buffers may only be allocated from interrupts using a @gfp_mask of 173 * %GFP_ATOMIC. 174 */ 175 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 176 int fclone, int node) 177 { 178 struct kmem_cache *cache; 179 struct skb_shared_info *shinfo; 180 struct sk_buff *skb; 181 u8 *data; 182 183 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 184 185 /* Get the HEAD */ 186 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 187 if (!skb) 188 goto out; 189 190 size = SKB_DATA_ALIGN(size); 191 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 192 gfp_mask, node); 193 if (!data) 194 goto nodata; 195 196 /* 197 * Only clear those fields we need to clear, not those that we will 198 * actually initialise below. Hence, don't put any more fields after 199 * the tail pointer in struct sk_buff! 200 */ 201 memset(skb, 0, offsetof(struct sk_buff, tail)); 202 skb->truesize = size + sizeof(struct sk_buff); 203 atomic_set(&skb->users, 1); 204 skb->head = data; 205 skb->data = data; 206 skb_reset_tail_pointer(skb); 207 skb->end = skb->tail + size; 208 /* make sure we initialize shinfo sequentially */ 209 shinfo = skb_shinfo(skb); 210 atomic_set(&shinfo->dataref, 1); 211 shinfo->nr_frags = 0; 212 shinfo->gso_size = 0; 213 shinfo->gso_segs = 0; 214 shinfo->gso_type = 0; 215 shinfo->ip6_frag_id = 0; 216 shinfo->frag_list = NULL; 217 218 if (fclone) { 219 struct sk_buff *child = skb + 1; 220 atomic_t *fclone_ref = (atomic_t *) (child + 1); 221 222 skb->fclone = SKB_FCLONE_ORIG; 223 atomic_set(fclone_ref, 1); 224 225 child->fclone = SKB_FCLONE_UNAVAILABLE; 226 } 227 out: 228 return skb; 229 nodata: 230 kmem_cache_free(cache, skb); 231 skb = NULL; 232 goto out; 233 } 234 235 /** 236 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 237 * @dev: network device to receive on 238 * @length: length to allocate 239 * @gfp_mask: get_free_pages mask, passed to alloc_skb 240 * 241 * Allocate a new &sk_buff and assign it a usage count of one. The 242 * buffer has unspecified headroom built in. Users should allocate 243 * the headroom they think they need without accounting for the 244 * built in space. The built in space is used for optimisations. 245 * 246 * %NULL is returned if there is no free memory. 247 */ 248 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 249 unsigned int length, gfp_t gfp_mask) 250 { 251 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 252 struct sk_buff *skb; 253 254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 255 if (likely(skb)) { 256 skb_reserve(skb, NET_SKB_PAD); 257 skb->dev = dev; 258 } 259 return skb; 260 } 261 262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 263 { 264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 265 struct page *page; 266 267 page = alloc_pages_node(node, gfp_mask, 0); 268 return page; 269 } 270 EXPORT_SYMBOL(__netdev_alloc_page); 271 272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 273 int size) 274 { 275 skb_fill_page_desc(skb, i, page, off, size); 276 skb->len += size; 277 skb->data_len += size; 278 skb->truesize += size; 279 } 280 EXPORT_SYMBOL(skb_add_rx_frag); 281 282 /** 283 * dev_alloc_skb - allocate an skbuff for receiving 284 * @length: length to allocate 285 * 286 * Allocate a new &sk_buff and assign it a usage count of one. The 287 * buffer has unspecified headroom built in. Users should allocate 288 * the headroom they think they need without accounting for the 289 * built in space. The built in space is used for optimisations. 290 * 291 * %NULL is returned if there is no free memory. Although this function 292 * allocates memory it can be called from an interrupt. 293 */ 294 struct sk_buff *dev_alloc_skb(unsigned int length) 295 { 296 /* 297 * There is more code here than it seems: 298 * __dev_alloc_skb is an inline 299 */ 300 return __dev_alloc_skb(length, GFP_ATOMIC); 301 } 302 EXPORT_SYMBOL(dev_alloc_skb); 303 304 static void skb_drop_list(struct sk_buff **listp) 305 { 306 struct sk_buff *list = *listp; 307 308 *listp = NULL; 309 310 do { 311 struct sk_buff *this = list; 312 list = list->next; 313 kfree_skb(this); 314 } while (list); 315 } 316 317 static inline void skb_drop_fraglist(struct sk_buff *skb) 318 { 319 skb_drop_list(&skb_shinfo(skb)->frag_list); 320 } 321 322 static void skb_clone_fraglist(struct sk_buff *skb) 323 { 324 struct sk_buff *list; 325 326 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 327 skb_get(list); 328 } 329 330 static void skb_release_data(struct sk_buff *skb) 331 { 332 if (!skb->cloned || 333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 334 &skb_shinfo(skb)->dataref)) { 335 if (skb_shinfo(skb)->nr_frags) { 336 int i; 337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 338 put_page(skb_shinfo(skb)->frags[i].page); 339 } 340 341 if (skb_shinfo(skb)->frag_list) 342 skb_drop_fraglist(skb); 343 344 kfree(skb->head); 345 } 346 } 347 348 /* 349 * Free an skbuff by memory without cleaning the state. 350 */ 351 static void kfree_skbmem(struct sk_buff *skb) 352 { 353 struct sk_buff *other; 354 atomic_t *fclone_ref; 355 356 switch (skb->fclone) { 357 case SKB_FCLONE_UNAVAILABLE: 358 kmem_cache_free(skbuff_head_cache, skb); 359 break; 360 361 case SKB_FCLONE_ORIG: 362 fclone_ref = (atomic_t *) (skb + 2); 363 if (atomic_dec_and_test(fclone_ref)) 364 kmem_cache_free(skbuff_fclone_cache, skb); 365 break; 366 367 case SKB_FCLONE_CLONE: 368 fclone_ref = (atomic_t *) (skb + 1); 369 other = skb - 1; 370 371 /* The clone portion is available for 372 * fast-cloning again. 373 */ 374 skb->fclone = SKB_FCLONE_UNAVAILABLE; 375 376 if (atomic_dec_and_test(fclone_ref)) 377 kmem_cache_free(skbuff_fclone_cache, other); 378 break; 379 } 380 } 381 382 static void skb_release_head_state(struct sk_buff *skb) 383 { 384 dst_release(skb->dst); 385 #ifdef CONFIG_XFRM 386 secpath_put(skb->sp); 387 #endif 388 if (skb->destructor) { 389 WARN_ON(in_irq()); 390 skb->destructor(skb); 391 } 392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 393 nf_conntrack_put(skb->nfct); 394 nf_conntrack_put_reasm(skb->nfct_reasm); 395 #endif 396 #ifdef CONFIG_BRIDGE_NETFILTER 397 nf_bridge_put(skb->nf_bridge); 398 #endif 399 /* XXX: IS this still necessary? - JHS */ 400 #ifdef CONFIG_NET_SCHED 401 skb->tc_index = 0; 402 #ifdef CONFIG_NET_CLS_ACT 403 skb->tc_verd = 0; 404 #endif 405 #endif 406 } 407 408 /* Free everything but the sk_buff shell. */ 409 static void skb_release_all(struct sk_buff *skb) 410 { 411 skb_release_head_state(skb); 412 skb_release_data(skb); 413 } 414 415 /** 416 * __kfree_skb - private function 417 * @skb: buffer 418 * 419 * Free an sk_buff. Release anything attached to the buffer. 420 * Clean the state. This is an internal helper function. Users should 421 * always call kfree_skb 422 */ 423 424 void __kfree_skb(struct sk_buff *skb) 425 { 426 skb_release_all(skb); 427 kfree_skbmem(skb); 428 } 429 430 /** 431 * kfree_skb - free an sk_buff 432 * @skb: buffer to free 433 * 434 * Drop a reference to the buffer and free it if the usage count has 435 * hit zero. 436 */ 437 void kfree_skb(struct sk_buff *skb) 438 { 439 if (unlikely(!skb)) 440 return; 441 if (likely(atomic_read(&skb->users) == 1)) 442 smp_rmb(); 443 else if (likely(!atomic_dec_and_test(&skb->users))) 444 return; 445 __kfree_skb(skb); 446 } 447 448 /** 449 * skb_recycle_check - check if skb can be reused for receive 450 * @skb: buffer 451 * @skb_size: minimum receive buffer size 452 * 453 * Checks that the skb passed in is not shared or cloned, and 454 * that it is linear and its head portion at least as large as 455 * skb_size so that it can be recycled as a receive buffer. 456 * If these conditions are met, this function does any necessary 457 * reference count dropping and cleans up the skbuff as if it 458 * just came from __alloc_skb(). 459 */ 460 int skb_recycle_check(struct sk_buff *skb, int skb_size) 461 { 462 struct skb_shared_info *shinfo; 463 464 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 465 return 0; 466 467 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 468 if (skb_end_pointer(skb) - skb->head < skb_size) 469 return 0; 470 471 if (skb_shared(skb) || skb_cloned(skb)) 472 return 0; 473 474 skb_release_head_state(skb); 475 shinfo = skb_shinfo(skb); 476 atomic_set(&shinfo->dataref, 1); 477 shinfo->nr_frags = 0; 478 shinfo->gso_size = 0; 479 shinfo->gso_segs = 0; 480 shinfo->gso_type = 0; 481 shinfo->ip6_frag_id = 0; 482 shinfo->frag_list = NULL; 483 484 memset(skb, 0, offsetof(struct sk_buff, tail)); 485 skb->data = skb->head + NET_SKB_PAD; 486 skb_reset_tail_pointer(skb); 487 488 return 1; 489 } 490 EXPORT_SYMBOL(skb_recycle_check); 491 492 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 493 { 494 new->tstamp = old->tstamp; 495 new->dev = old->dev; 496 new->transport_header = old->transport_header; 497 new->network_header = old->network_header; 498 new->mac_header = old->mac_header; 499 new->dst = dst_clone(old->dst); 500 #ifdef CONFIG_XFRM 501 new->sp = secpath_get(old->sp); 502 #endif 503 memcpy(new->cb, old->cb, sizeof(old->cb)); 504 new->csum_start = old->csum_start; 505 new->csum_offset = old->csum_offset; 506 new->local_df = old->local_df; 507 new->pkt_type = old->pkt_type; 508 new->ip_summed = old->ip_summed; 509 skb_copy_queue_mapping(new, old); 510 new->priority = old->priority; 511 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 512 new->ipvs_property = old->ipvs_property; 513 #endif 514 new->protocol = old->protocol; 515 new->mark = old->mark; 516 __nf_copy(new, old); 517 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 518 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 519 new->nf_trace = old->nf_trace; 520 #endif 521 #ifdef CONFIG_NET_SCHED 522 new->tc_index = old->tc_index; 523 #ifdef CONFIG_NET_CLS_ACT 524 new->tc_verd = old->tc_verd; 525 #endif 526 #endif 527 new->vlan_tci = old->vlan_tci; 528 529 skb_copy_secmark(new, old); 530 } 531 532 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 533 { 534 #define C(x) n->x = skb->x 535 536 n->next = n->prev = NULL; 537 n->sk = NULL; 538 __copy_skb_header(n, skb); 539 540 C(len); 541 C(data_len); 542 C(mac_len); 543 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 544 n->cloned = 1; 545 n->nohdr = 0; 546 n->destructor = NULL; 547 C(iif); 548 C(tail); 549 C(end); 550 C(head); 551 C(data); 552 C(truesize); 553 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 554 C(do_not_encrypt); 555 C(requeue); 556 #endif 557 atomic_set(&n->users, 1); 558 559 atomic_inc(&(skb_shinfo(skb)->dataref)); 560 skb->cloned = 1; 561 562 return n; 563 #undef C 564 } 565 566 /** 567 * skb_morph - morph one skb into another 568 * @dst: the skb to receive the contents 569 * @src: the skb to supply the contents 570 * 571 * This is identical to skb_clone except that the target skb is 572 * supplied by the user. 573 * 574 * The target skb is returned upon exit. 575 */ 576 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 577 { 578 skb_release_all(dst); 579 return __skb_clone(dst, src); 580 } 581 EXPORT_SYMBOL_GPL(skb_morph); 582 583 /** 584 * skb_clone - duplicate an sk_buff 585 * @skb: buffer to clone 586 * @gfp_mask: allocation priority 587 * 588 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 589 * copies share the same packet data but not structure. The new 590 * buffer has a reference count of 1. If the allocation fails the 591 * function returns %NULL otherwise the new buffer is returned. 592 * 593 * If this function is called from an interrupt gfp_mask() must be 594 * %GFP_ATOMIC. 595 */ 596 597 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 598 { 599 struct sk_buff *n; 600 601 n = skb + 1; 602 if (skb->fclone == SKB_FCLONE_ORIG && 603 n->fclone == SKB_FCLONE_UNAVAILABLE) { 604 atomic_t *fclone_ref = (atomic_t *) (n + 1); 605 n->fclone = SKB_FCLONE_CLONE; 606 atomic_inc(fclone_ref); 607 } else { 608 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 609 if (!n) 610 return NULL; 611 n->fclone = SKB_FCLONE_UNAVAILABLE; 612 } 613 614 return __skb_clone(n, skb); 615 } 616 617 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 618 { 619 #ifndef NET_SKBUFF_DATA_USES_OFFSET 620 /* 621 * Shift between the two data areas in bytes 622 */ 623 unsigned long offset = new->data - old->data; 624 #endif 625 626 __copy_skb_header(new, old); 627 628 #ifndef NET_SKBUFF_DATA_USES_OFFSET 629 /* {transport,network,mac}_header are relative to skb->head */ 630 new->transport_header += offset; 631 new->network_header += offset; 632 new->mac_header += offset; 633 #endif 634 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 635 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 636 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 637 } 638 639 /** 640 * skb_copy - create private copy of an sk_buff 641 * @skb: buffer to copy 642 * @gfp_mask: allocation priority 643 * 644 * Make a copy of both an &sk_buff and its data. This is used when the 645 * caller wishes to modify the data and needs a private copy of the 646 * data to alter. Returns %NULL on failure or the pointer to the buffer 647 * on success. The returned buffer has a reference count of 1. 648 * 649 * As by-product this function converts non-linear &sk_buff to linear 650 * one, so that &sk_buff becomes completely private and caller is allowed 651 * to modify all the data of returned buffer. This means that this 652 * function is not recommended for use in circumstances when only 653 * header is going to be modified. Use pskb_copy() instead. 654 */ 655 656 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 657 { 658 int headerlen = skb->data - skb->head; 659 /* 660 * Allocate the copy buffer 661 */ 662 struct sk_buff *n; 663 #ifdef NET_SKBUFF_DATA_USES_OFFSET 664 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 665 #else 666 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 667 #endif 668 if (!n) 669 return NULL; 670 671 /* Set the data pointer */ 672 skb_reserve(n, headerlen); 673 /* Set the tail pointer and length */ 674 skb_put(n, skb->len); 675 676 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 677 BUG(); 678 679 copy_skb_header(n, skb); 680 return n; 681 } 682 683 684 /** 685 * pskb_copy - create copy of an sk_buff with private head. 686 * @skb: buffer to copy 687 * @gfp_mask: allocation priority 688 * 689 * Make a copy of both an &sk_buff and part of its data, located 690 * in header. Fragmented data remain shared. This is used when 691 * the caller wishes to modify only header of &sk_buff and needs 692 * private copy of the header to alter. Returns %NULL on failure 693 * or the pointer to the buffer on success. 694 * The returned buffer has a reference count of 1. 695 */ 696 697 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 698 { 699 /* 700 * Allocate the copy buffer 701 */ 702 struct sk_buff *n; 703 #ifdef NET_SKBUFF_DATA_USES_OFFSET 704 n = alloc_skb(skb->end, gfp_mask); 705 #else 706 n = alloc_skb(skb->end - skb->head, gfp_mask); 707 #endif 708 if (!n) 709 goto out; 710 711 /* Set the data pointer */ 712 skb_reserve(n, skb->data - skb->head); 713 /* Set the tail pointer and length */ 714 skb_put(n, skb_headlen(skb)); 715 /* Copy the bytes */ 716 skb_copy_from_linear_data(skb, n->data, n->len); 717 718 n->truesize += skb->data_len; 719 n->data_len = skb->data_len; 720 n->len = skb->len; 721 722 if (skb_shinfo(skb)->nr_frags) { 723 int i; 724 725 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 726 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 727 get_page(skb_shinfo(n)->frags[i].page); 728 } 729 skb_shinfo(n)->nr_frags = i; 730 } 731 732 if (skb_shinfo(skb)->frag_list) { 733 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 734 skb_clone_fraglist(n); 735 } 736 737 copy_skb_header(n, skb); 738 out: 739 return n; 740 } 741 742 /** 743 * pskb_expand_head - reallocate header of &sk_buff 744 * @skb: buffer to reallocate 745 * @nhead: room to add at head 746 * @ntail: room to add at tail 747 * @gfp_mask: allocation priority 748 * 749 * Expands (or creates identical copy, if &nhead and &ntail are zero) 750 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 751 * reference count of 1. Returns zero in the case of success or error, 752 * if expansion failed. In the last case, &sk_buff is not changed. 753 * 754 * All the pointers pointing into skb header may change and must be 755 * reloaded after call to this function. 756 */ 757 758 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 759 gfp_t gfp_mask) 760 { 761 int i; 762 u8 *data; 763 #ifdef NET_SKBUFF_DATA_USES_OFFSET 764 int size = nhead + skb->end + ntail; 765 #else 766 int size = nhead + (skb->end - skb->head) + ntail; 767 #endif 768 long off; 769 770 BUG_ON(nhead < 0); 771 772 if (skb_shared(skb)) 773 BUG(); 774 775 size = SKB_DATA_ALIGN(size); 776 777 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 778 if (!data) 779 goto nodata; 780 781 /* Copy only real data... and, alas, header. This should be 782 * optimized for the cases when header is void. */ 783 #ifdef NET_SKBUFF_DATA_USES_OFFSET 784 memcpy(data + nhead, skb->head, skb->tail); 785 #else 786 memcpy(data + nhead, skb->head, skb->tail - skb->head); 787 #endif 788 memcpy(data + size, skb_end_pointer(skb), 789 sizeof(struct skb_shared_info)); 790 791 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 792 get_page(skb_shinfo(skb)->frags[i].page); 793 794 if (skb_shinfo(skb)->frag_list) 795 skb_clone_fraglist(skb); 796 797 skb_release_data(skb); 798 799 off = (data + nhead) - skb->head; 800 801 skb->head = data; 802 skb->data += off; 803 #ifdef NET_SKBUFF_DATA_USES_OFFSET 804 skb->end = size; 805 off = nhead; 806 #else 807 skb->end = skb->head + size; 808 #endif 809 /* {transport,network,mac}_header and tail are relative to skb->head */ 810 skb->tail += off; 811 skb->transport_header += off; 812 skb->network_header += off; 813 skb->mac_header += off; 814 skb->csum_start += nhead; 815 skb->cloned = 0; 816 skb->hdr_len = 0; 817 skb->nohdr = 0; 818 atomic_set(&skb_shinfo(skb)->dataref, 1); 819 return 0; 820 821 nodata: 822 return -ENOMEM; 823 } 824 825 /* Make private copy of skb with writable head and some headroom */ 826 827 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 828 { 829 struct sk_buff *skb2; 830 int delta = headroom - skb_headroom(skb); 831 832 if (delta <= 0) 833 skb2 = pskb_copy(skb, GFP_ATOMIC); 834 else { 835 skb2 = skb_clone(skb, GFP_ATOMIC); 836 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 837 GFP_ATOMIC)) { 838 kfree_skb(skb2); 839 skb2 = NULL; 840 } 841 } 842 return skb2; 843 } 844 845 846 /** 847 * skb_copy_expand - copy and expand sk_buff 848 * @skb: buffer to copy 849 * @newheadroom: new free bytes at head 850 * @newtailroom: new free bytes at tail 851 * @gfp_mask: allocation priority 852 * 853 * Make a copy of both an &sk_buff and its data and while doing so 854 * allocate additional space. 855 * 856 * This is used when the caller wishes to modify the data and needs a 857 * private copy of the data to alter as well as more space for new fields. 858 * Returns %NULL on failure or the pointer to the buffer 859 * on success. The returned buffer has a reference count of 1. 860 * 861 * You must pass %GFP_ATOMIC as the allocation priority if this function 862 * is called from an interrupt. 863 */ 864 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 865 int newheadroom, int newtailroom, 866 gfp_t gfp_mask) 867 { 868 /* 869 * Allocate the copy buffer 870 */ 871 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 872 gfp_mask); 873 int oldheadroom = skb_headroom(skb); 874 int head_copy_len, head_copy_off; 875 int off; 876 877 if (!n) 878 return NULL; 879 880 skb_reserve(n, newheadroom); 881 882 /* Set the tail pointer and length */ 883 skb_put(n, skb->len); 884 885 head_copy_len = oldheadroom; 886 head_copy_off = 0; 887 if (newheadroom <= head_copy_len) 888 head_copy_len = newheadroom; 889 else 890 head_copy_off = newheadroom - head_copy_len; 891 892 /* Copy the linear header and data. */ 893 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 894 skb->len + head_copy_len)) 895 BUG(); 896 897 copy_skb_header(n, skb); 898 899 off = newheadroom - oldheadroom; 900 n->csum_start += off; 901 #ifdef NET_SKBUFF_DATA_USES_OFFSET 902 n->transport_header += off; 903 n->network_header += off; 904 n->mac_header += off; 905 #endif 906 907 return n; 908 } 909 910 /** 911 * skb_pad - zero pad the tail of an skb 912 * @skb: buffer to pad 913 * @pad: space to pad 914 * 915 * Ensure that a buffer is followed by a padding area that is zero 916 * filled. Used by network drivers which may DMA or transfer data 917 * beyond the buffer end onto the wire. 918 * 919 * May return error in out of memory cases. The skb is freed on error. 920 */ 921 922 int skb_pad(struct sk_buff *skb, int pad) 923 { 924 int err; 925 int ntail; 926 927 /* If the skbuff is non linear tailroom is always zero.. */ 928 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 929 memset(skb->data+skb->len, 0, pad); 930 return 0; 931 } 932 933 ntail = skb->data_len + pad - (skb->end - skb->tail); 934 if (likely(skb_cloned(skb) || ntail > 0)) { 935 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 936 if (unlikely(err)) 937 goto free_skb; 938 } 939 940 /* FIXME: The use of this function with non-linear skb's really needs 941 * to be audited. 942 */ 943 err = skb_linearize(skb); 944 if (unlikely(err)) 945 goto free_skb; 946 947 memset(skb->data + skb->len, 0, pad); 948 return 0; 949 950 free_skb: 951 kfree_skb(skb); 952 return err; 953 } 954 955 /** 956 * skb_put - add data to a buffer 957 * @skb: buffer to use 958 * @len: amount of data to add 959 * 960 * This function extends the used data area of the buffer. If this would 961 * exceed the total buffer size the kernel will panic. A pointer to the 962 * first byte of the extra data is returned. 963 */ 964 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 965 { 966 unsigned char *tmp = skb_tail_pointer(skb); 967 SKB_LINEAR_ASSERT(skb); 968 skb->tail += len; 969 skb->len += len; 970 if (unlikely(skb->tail > skb->end)) 971 skb_over_panic(skb, len, __builtin_return_address(0)); 972 return tmp; 973 } 974 EXPORT_SYMBOL(skb_put); 975 976 /** 977 * skb_push - add data to the start of a buffer 978 * @skb: buffer to use 979 * @len: amount of data to add 980 * 981 * This function extends the used data area of the buffer at the buffer 982 * start. If this would exceed the total buffer headroom the kernel will 983 * panic. A pointer to the first byte of the extra data is returned. 984 */ 985 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 986 { 987 skb->data -= len; 988 skb->len += len; 989 if (unlikely(skb->data<skb->head)) 990 skb_under_panic(skb, len, __builtin_return_address(0)); 991 return skb->data; 992 } 993 EXPORT_SYMBOL(skb_push); 994 995 /** 996 * skb_pull - remove data from the start of a buffer 997 * @skb: buffer to use 998 * @len: amount of data to remove 999 * 1000 * This function removes data from the start of a buffer, returning 1001 * the memory to the headroom. A pointer to the next data in the buffer 1002 * is returned. Once the data has been pulled future pushes will overwrite 1003 * the old data. 1004 */ 1005 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1006 { 1007 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1008 } 1009 EXPORT_SYMBOL(skb_pull); 1010 1011 /** 1012 * skb_trim - remove end from a buffer 1013 * @skb: buffer to alter 1014 * @len: new length 1015 * 1016 * Cut the length of a buffer down by removing data from the tail. If 1017 * the buffer is already under the length specified it is not modified. 1018 * The skb must be linear. 1019 */ 1020 void skb_trim(struct sk_buff *skb, unsigned int len) 1021 { 1022 if (skb->len > len) 1023 __skb_trim(skb, len); 1024 } 1025 EXPORT_SYMBOL(skb_trim); 1026 1027 /* Trims skb to length len. It can change skb pointers. 1028 */ 1029 1030 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1031 { 1032 struct sk_buff **fragp; 1033 struct sk_buff *frag; 1034 int offset = skb_headlen(skb); 1035 int nfrags = skb_shinfo(skb)->nr_frags; 1036 int i; 1037 int err; 1038 1039 if (skb_cloned(skb) && 1040 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1041 return err; 1042 1043 i = 0; 1044 if (offset >= len) 1045 goto drop_pages; 1046 1047 for (; i < nfrags; i++) { 1048 int end = offset + skb_shinfo(skb)->frags[i].size; 1049 1050 if (end < len) { 1051 offset = end; 1052 continue; 1053 } 1054 1055 skb_shinfo(skb)->frags[i++].size = len - offset; 1056 1057 drop_pages: 1058 skb_shinfo(skb)->nr_frags = i; 1059 1060 for (; i < nfrags; i++) 1061 put_page(skb_shinfo(skb)->frags[i].page); 1062 1063 if (skb_shinfo(skb)->frag_list) 1064 skb_drop_fraglist(skb); 1065 goto done; 1066 } 1067 1068 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1069 fragp = &frag->next) { 1070 int end = offset + frag->len; 1071 1072 if (skb_shared(frag)) { 1073 struct sk_buff *nfrag; 1074 1075 nfrag = skb_clone(frag, GFP_ATOMIC); 1076 if (unlikely(!nfrag)) 1077 return -ENOMEM; 1078 1079 nfrag->next = frag->next; 1080 kfree_skb(frag); 1081 frag = nfrag; 1082 *fragp = frag; 1083 } 1084 1085 if (end < len) { 1086 offset = end; 1087 continue; 1088 } 1089 1090 if (end > len && 1091 unlikely((err = pskb_trim(frag, len - offset)))) 1092 return err; 1093 1094 if (frag->next) 1095 skb_drop_list(&frag->next); 1096 break; 1097 } 1098 1099 done: 1100 if (len > skb_headlen(skb)) { 1101 skb->data_len -= skb->len - len; 1102 skb->len = len; 1103 } else { 1104 skb->len = len; 1105 skb->data_len = 0; 1106 skb_set_tail_pointer(skb, len); 1107 } 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * __pskb_pull_tail - advance tail of skb header 1114 * @skb: buffer to reallocate 1115 * @delta: number of bytes to advance tail 1116 * 1117 * The function makes a sense only on a fragmented &sk_buff, 1118 * it expands header moving its tail forward and copying necessary 1119 * data from fragmented part. 1120 * 1121 * &sk_buff MUST have reference count of 1. 1122 * 1123 * Returns %NULL (and &sk_buff does not change) if pull failed 1124 * or value of new tail of skb in the case of success. 1125 * 1126 * All the pointers pointing into skb header may change and must be 1127 * reloaded after call to this function. 1128 */ 1129 1130 /* Moves tail of skb head forward, copying data from fragmented part, 1131 * when it is necessary. 1132 * 1. It may fail due to malloc failure. 1133 * 2. It may change skb pointers. 1134 * 1135 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1136 */ 1137 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1138 { 1139 /* If skb has not enough free space at tail, get new one 1140 * plus 128 bytes for future expansions. If we have enough 1141 * room at tail, reallocate without expansion only if skb is cloned. 1142 */ 1143 int i, k, eat = (skb->tail + delta) - skb->end; 1144 1145 if (eat > 0 || skb_cloned(skb)) { 1146 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1147 GFP_ATOMIC)) 1148 return NULL; 1149 } 1150 1151 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1152 BUG(); 1153 1154 /* Optimization: no fragments, no reasons to preestimate 1155 * size of pulled pages. Superb. 1156 */ 1157 if (!skb_shinfo(skb)->frag_list) 1158 goto pull_pages; 1159 1160 /* Estimate size of pulled pages. */ 1161 eat = delta; 1162 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1163 if (skb_shinfo(skb)->frags[i].size >= eat) 1164 goto pull_pages; 1165 eat -= skb_shinfo(skb)->frags[i].size; 1166 } 1167 1168 /* If we need update frag list, we are in troubles. 1169 * Certainly, it possible to add an offset to skb data, 1170 * but taking into account that pulling is expected to 1171 * be very rare operation, it is worth to fight against 1172 * further bloating skb head and crucify ourselves here instead. 1173 * Pure masohism, indeed. 8)8) 1174 */ 1175 if (eat) { 1176 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1177 struct sk_buff *clone = NULL; 1178 struct sk_buff *insp = NULL; 1179 1180 do { 1181 BUG_ON(!list); 1182 1183 if (list->len <= eat) { 1184 /* Eaten as whole. */ 1185 eat -= list->len; 1186 list = list->next; 1187 insp = list; 1188 } else { 1189 /* Eaten partially. */ 1190 1191 if (skb_shared(list)) { 1192 /* Sucks! We need to fork list. :-( */ 1193 clone = skb_clone(list, GFP_ATOMIC); 1194 if (!clone) 1195 return NULL; 1196 insp = list->next; 1197 list = clone; 1198 } else { 1199 /* This may be pulled without 1200 * problems. */ 1201 insp = list; 1202 } 1203 if (!pskb_pull(list, eat)) { 1204 if (clone) 1205 kfree_skb(clone); 1206 return NULL; 1207 } 1208 break; 1209 } 1210 } while (eat); 1211 1212 /* Free pulled out fragments. */ 1213 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1214 skb_shinfo(skb)->frag_list = list->next; 1215 kfree_skb(list); 1216 } 1217 /* And insert new clone at head. */ 1218 if (clone) { 1219 clone->next = list; 1220 skb_shinfo(skb)->frag_list = clone; 1221 } 1222 } 1223 /* Success! Now we may commit changes to skb data. */ 1224 1225 pull_pages: 1226 eat = delta; 1227 k = 0; 1228 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1229 if (skb_shinfo(skb)->frags[i].size <= eat) { 1230 put_page(skb_shinfo(skb)->frags[i].page); 1231 eat -= skb_shinfo(skb)->frags[i].size; 1232 } else { 1233 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1234 if (eat) { 1235 skb_shinfo(skb)->frags[k].page_offset += eat; 1236 skb_shinfo(skb)->frags[k].size -= eat; 1237 eat = 0; 1238 } 1239 k++; 1240 } 1241 } 1242 skb_shinfo(skb)->nr_frags = k; 1243 1244 skb->tail += delta; 1245 skb->data_len -= delta; 1246 1247 return skb_tail_pointer(skb); 1248 } 1249 1250 /* Copy some data bits from skb to kernel buffer. */ 1251 1252 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1253 { 1254 int i, copy; 1255 int start = skb_headlen(skb); 1256 1257 if (offset > (int)skb->len - len) 1258 goto fault; 1259 1260 /* Copy header. */ 1261 if ((copy = start - offset) > 0) { 1262 if (copy > len) 1263 copy = len; 1264 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1265 if ((len -= copy) == 0) 1266 return 0; 1267 offset += copy; 1268 to += copy; 1269 } 1270 1271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1272 int end; 1273 1274 WARN_ON(start > offset + len); 1275 1276 end = start + skb_shinfo(skb)->frags[i].size; 1277 if ((copy = end - offset) > 0) { 1278 u8 *vaddr; 1279 1280 if (copy > len) 1281 copy = len; 1282 1283 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1284 memcpy(to, 1285 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1286 offset - start, copy); 1287 kunmap_skb_frag(vaddr); 1288 1289 if ((len -= copy) == 0) 1290 return 0; 1291 offset += copy; 1292 to += copy; 1293 } 1294 start = end; 1295 } 1296 1297 if (skb_shinfo(skb)->frag_list) { 1298 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1299 1300 for (; list; list = list->next) { 1301 int end; 1302 1303 WARN_ON(start > offset + len); 1304 1305 end = start + list->len; 1306 if ((copy = end - offset) > 0) { 1307 if (copy > len) 1308 copy = len; 1309 if (skb_copy_bits(list, offset - start, 1310 to, copy)) 1311 goto fault; 1312 if ((len -= copy) == 0) 1313 return 0; 1314 offset += copy; 1315 to += copy; 1316 } 1317 start = end; 1318 } 1319 } 1320 if (!len) 1321 return 0; 1322 1323 fault: 1324 return -EFAULT; 1325 } 1326 1327 /* 1328 * Callback from splice_to_pipe(), if we need to release some pages 1329 * at the end of the spd in case we error'ed out in filling the pipe. 1330 */ 1331 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1332 { 1333 put_page(spd->pages[i]); 1334 } 1335 1336 static inline struct page *linear_to_page(struct page *page, unsigned int len, 1337 unsigned int offset) 1338 { 1339 struct page *p = alloc_pages(GFP_KERNEL, 0); 1340 1341 if (!p) 1342 return NULL; 1343 memcpy(page_address(p) + offset, page_address(page) + offset, len); 1344 1345 return p; 1346 } 1347 1348 /* 1349 * Fill page/offset/length into spd, if it can hold more pages. 1350 */ 1351 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1352 unsigned int len, unsigned int offset, 1353 struct sk_buff *skb, int linear) 1354 { 1355 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1356 return 1; 1357 1358 if (linear) { 1359 page = linear_to_page(page, len, offset); 1360 if (!page) 1361 return 1; 1362 } else 1363 get_page(page); 1364 1365 spd->pages[spd->nr_pages] = page; 1366 spd->partial[spd->nr_pages].len = len; 1367 spd->partial[spd->nr_pages].offset = offset; 1368 spd->nr_pages++; 1369 1370 return 0; 1371 } 1372 1373 static inline void __segment_seek(struct page **page, unsigned int *poff, 1374 unsigned int *plen, unsigned int off) 1375 { 1376 *poff += off; 1377 *page += *poff / PAGE_SIZE; 1378 *poff = *poff % PAGE_SIZE; 1379 *plen -= off; 1380 } 1381 1382 static inline int __splice_segment(struct page *page, unsigned int poff, 1383 unsigned int plen, unsigned int *off, 1384 unsigned int *len, struct sk_buff *skb, 1385 struct splice_pipe_desc *spd, int linear) 1386 { 1387 if (!*len) 1388 return 1; 1389 1390 /* skip this segment if already processed */ 1391 if (*off >= plen) { 1392 *off -= plen; 1393 return 0; 1394 } 1395 1396 /* ignore any bits we already processed */ 1397 if (*off) { 1398 __segment_seek(&page, &poff, &plen, *off); 1399 *off = 0; 1400 } 1401 1402 do { 1403 unsigned int flen = min(*len, plen); 1404 1405 /* the linear region may spread across several pages */ 1406 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1407 1408 if (spd_fill_page(spd, page, flen, poff, skb, linear)) 1409 return 1; 1410 1411 __segment_seek(&page, &poff, &plen, flen); 1412 *len -= flen; 1413 1414 } while (*len && plen); 1415 1416 return 0; 1417 } 1418 1419 /* 1420 * Map linear and fragment data from the skb to spd. It reports failure if the 1421 * pipe is full or if we already spliced the requested length. 1422 */ 1423 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1424 unsigned int *len, 1425 struct splice_pipe_desc *spd) 1426 { 1427 int seg; 1428 1429 /* 1430 * map the linear part 1431 */ 1432 if (__splice_segment(virt_to_page(skb->data), 1433 (unsigned long) skb->data & (PAGE_SIZE - 1), 1434 skb_headlen(skb), 1435 offset, len, skb, spd, 1)) 1436 return 1; 1437 1438 /* 1439 * then map the fragments 1440 */ 1441 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1442 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1443 1444 if (__splice_segment(f->page, f->page_offset, f->size, 1445 offset, len, skb, spd, 0)) 1446 return 1; 1447 } 1448 1449 return 0; 1450 } 1451 1452 /* 1453 * Map data from the skb to a pipe. Should handle both the linear part, 1454 * the fragments, and the frag list. It does NOT handle frag lists within 1455 * the frag list, if such a thing exists. We'd probably need to recurse to 1456 * handle that cleanly. 1457 */ 1458 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1459 struct pipe_inode_info *pipe, unsigned int tlen, 1460 unsigned int flags) 1461 { 1462 struct partial_page partial[PIPE_BUFFERS]; 1463 struct page *pages[PIPE_BUFFERS]; 1464 struct splice_pipe_desc spd = { 1465 .pages = pages, 1466 .partial = partial, 1467 .flags = flags, 1468 .ops = &sock_pipe_buf_ops, 1469 .spd_release = sock_spd_release, 1470 }; 1471 1472 /* 1473 * __skb_splice_bits() only fails if the output has no room left, 1474 * so no point in going over the frag_list for the error case. 1475 */ 1476 if (__skb_splice_bits(skb, &offset, &tlen, &spd)) 1477 goto done; 1478 else if (!tlen) 1479 goto done; 1480 1481 /* 1482 * now see if we have a frag_list to map 1483 */ 1484 if (skb_shinfo(skb)->frag_list) { 1485 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1486 1487 for (; list && tlen; list = list->next) { 1488 if (__skb_splice_bits(list, &offset, &tlen, &spd)) 1489 break; 1490 } 1491 } 1492 1493 done: 1494 if (spd.nr_pages) { 1495 struct sock *sk = skb->sk; 1496 int ret; 1497 1498 /* 1499 * Drop the socket lock, otherwise we have reverse 1500 * locking dependencies between sk_lock and i_mutex 1501 * here as compared to sendfile(). We enter here 1502 * with the socket lock held, and splice_to_pipe() will 1503 * grab the pipe inode lock. For sendfile() emulation, 1504 * we call into ->sendpage() with the i_mutex lock held 1505 * and networking will grab the socket lock. 1506 */ 1507 release_sock(sk); 1508 ret = splice_to_pipe(pipe, &spd); 1509 lock_sock(sk); 1510 return ret; 1511 } 1512 1513 return 0; 1514 } 1515 1516 /** 1517 * skb_store_bits - store bits from kernel buffer to skb 1518 * @skb: destination buffer 1519 * @offset: offset in destination 1520 * @from: source buffer 1521 * @len: number of bytes to copy 1522 * 1523 * Copy the specified number of bytes from the source buffer to the 1524 * destination skb. This function handles all the messy bits of 1525 * traversing fragment lists and such. 1526 */ 1527 1528 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1529 { 1530 int i, copy; 1531 int start = skb_headlen(skb); 1532 1533 if (offset > (int)skb->len - len) 1534 goto fault; 1535 1536 if ((copy = start - offset) > 0) { 1537 if (copy > len) 1538 copy = len; 1539 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1540 if ((len -= copy) == 0) 1541 return 0; 1542 offset += copy; 1543 from += copy; 1544 } 1545 1546 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1547 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1548 int end; 1549 1550 WARN_ON(start > offset + len); 1551 1552 end = start + frag->size; 1553 if ((copy = end - offset) > 0) { 1554 u8 *vaddr; 1555 1556 if (copy > len) 1557 copy = len; 1558 1559 vaddr = kmap_skb_frag(frag); 1560 memcpy(vaddr + frag->page_offset + offset - start, 1561 from, copy); 1562 kunmap_skb_frag(vaddr); 1563 1564 if ((len -= copy) == 0) 1565 return 0; 1566 offset += copy; 1567 from += copy; 1568 } 1569 start = end; 1570 } 1571 1572 if (skb_shinfo(skb)->frag_list) { 1573 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1574 1575 for (; list; list = list->next) { 1576 int end; 1577 1578 WARN_ON(start > offset + len); 1579 1580 end = start + list->len; 1581 if ((copy = end - offset) > 0) { 1582 if (copy > len) 1583 copy = len; 1584 if (skb_store_bits(list, offset - start, 1585 from, copy)) 1586 goto fault; 1587 if ((len -= copy) == 0) 1588 return 0; 1589 offset += copy; 1590 from += copy; 1591 } 1592 start = end; 1593 } 1594 } 1595 if (!len) 1596 return 0; 1597 1598 fault: 1599 return -EFAULT; 1600 } 1601 1602 EXPORT_SYMBOL(skb_store_bits); 1603 1604 /* Checksum skb data. */ 1605 1606 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1607 int len, __wsum csum) 1608 { 1609 int start = skb_headlen(skb); 1610 int i, copy = start - offset; 1611 int pos = 0; 1612 1613 /* Checksum header. */ 1614 if (copy > 0) { 1615 if (copy > len) 1616 copy = len; 1617 csum = csum_partial(skb->data + offset, copy, csum); 1618 if ((len -= copy) == 0) 1619 return csum; 1620 offset += copy; 1621 pos = copy; 1622 } 1623 1624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1625 int end; 1626 1627 WARN_ON(start > offset + len); 1628 1629 end = start + skb_shinfo(skb)->frags[i].size; 1630 if ((copy = end - offset) > 0) { 1631 __wsum csum2; 1632 u8 *vaddr; 1633 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1634 1635 if (copy > len) 1636 copy = len; 1637 vaddr = kmap_skb_frag(frag); 1638 csum2 = csum_partial(vaddr + frag->page_offset + 1639 offset - start, copy, 0); 1640 kunmap_skb_frag(vaddr); 1641 csum = csum_block_add(csum, csum2, pos); 1642 if (!(len -= copy)) 1643 return csum; 1644 offset += copy; 1645 pos += copy; 1646 } 1647 start = end; 1648 } 1649 1650 if (skb_shinfo(skb)->frag_list) { 1651 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1652 1653 for (; list; list = list->next) { 1654 int end; 1655 1656 WARN_ON(start > offset + len); 1657 1658 end = start + list->len; 1659 if ((copy = end - offset) > 0) { 1660 __wsum csum2; 1661 if (copy > len) 1662 copy = len; 1663 csum2 = skb_checksum(list, offset - start, 1664 copy, 0); 1665 csum = csum_block_add(csum, csum2, pos); 1666 if ((len -= copy) == 0) 1667 return csum; 1668 offset += copy; 1669 pos += copy; 1670 } 1671 start = end; 1672 } 1673 } 1674 BUG_ON(len); 1675 1676 return csum; 1677 } 1678 1679 /* Both of above in one bottle. */ 1680 1681 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1682 u8 *to, int len, __wsum csum) 1683 { 1684 int start = skb_headlen(skb); 1685 int i, copy = start - offset; 1686 int pos = 0; 1687 1688 /* Copy header. */ 1689 if (copy > 0) { 1690 if (copy > len) 1691 copy = len; 1692 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1693 copy, csum); 1694 if ((len -= copy) == 0) 1695 return csum; 1696 offset += copy; 1697 to += copy; 1698 pos = copy; 1699 } 1700 1701 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1702 int end; 1703 1704 WARN_ON(start > offset + len); 1705 1706 end = start + skb_shinfo(skb)->frags[i].size; 1707 if ((copy = end - offset) > 0) { 1708 __wsum csum2; 1709 u8 *vaddr; 1710 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1711 1712 if (copy > len) 1713 copy = len; 1714 vaddr = kmap_skb_frag(frag); 1715 csum2 = csum_partial_copy_nocheck(vaddr + 1716 frag->page_offset + 1717 offset - start, to, 1718 copy, 0); 1719 kunmap_skb_frag(vaddr); 1720 csum = csum_block_add(csum, csum2, pos); 1721 if (!(len -= copy)) 1722 return csum; 1723 offset += copy; 1724 to += copy; 1725 pos += copy; 1726 } 1727 start = end; 1728 } 1729 1730 if (skb_shinfo(skb)->frag_list) { 1731 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1732 1733 for (; list; list = list->next) { 1734 __wsum csum2; 1735 int end; 1736 1737 WARN_ON(start > offset + len); 1738 1739 end = start + list->len; 1740 if ((copy = end - offset) > 0) { 1741 if (copy > len) 1742 copy = len; 1743 csum2 = skb_copy_and_csum_bits(list, 1744 offset - start, 1745 to, copy, 0); 1746 csum = csum_block_add(csum, csum2, pos); 1747 if ((len -= copy) == 0) 1748 return csum; 1749 offset += copy; 1750 to += copy; 1751 pos += copy; 1752 } 1753 start = end; 1754 } 1755 } 1756 BUG_ON(len); 1757 return csum; 1758 } 1759 1760 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1761 { 1762 __wsum csum; 1763 long csstart; 1764 1765 if (skb->ip_summed == CHECKSUM_PARTIAL) 1766 csstart = skb->csum_start - skb_headroom(skb); 1767 else 1768 csstart = skb_headlen(skb); 1769 1770 BUG_ON(csstart > skb_headlen(skb)); 1771 1772 skb_copy_from_linear_data(skb, to, csstart); 1773 1774 csum = 0; 1775 if (csstart != skb->len) 1776 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1777 skb->len - csstart, 0); 1778 1779 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1780 long csstuff = csstart + skb->csum_offset; 1781 1782 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1783 } 1784 } 1785 1786 /** 1787 * skb_dequeue - remove from the head of the queue 1788 * @list: list to dequeue from 1789 * 1790 * Remove the head of the list. The list lock is taken so the function 1791 * may be used safely with other locking list functions. The head item is 1792 * returned or %NULL if the list is empty. 1793 */ 1794 1795 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1796 { 1797 unsigned long flags; 1798 struct sk_buff *result; 1799 1800 spin_lock_irqsave(&list->lock, flags); 1801 result = __skb_dequeue(list); 1802 spin_unlock_irqrestore(&list->lock, flags); 1803 return result; 1804 } 1805 1806 /** 1807 * skb_dequeue_tail - remove from the tail of the queue 1808 * @list: list to dequeue from 1809 * 1810 * Remove the tail of the list. The list lock is taken so the function 1811 * may be used safely with other locking list functions. The tail item is 1812 * returned or %NULL if the list is empty. 1813 */ 1814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1815 { 1816 unsigned long flags; 1817 struct sk_buff *result; 1818 1819 spin_lock_irqsave(&list->lock, flags); 1820 result = __skb_dequeue_tail(list); 1821 spin_unlock_irqrestore(&list->lock, flags); 1822 return result; 1823 } 1824 1825 /** 1826 * skb_queue_purge - empty a list 1827 * @list: list to empty 1828 * 1829 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1830 * the list and one reference dropped. This function takes the list 1831 * lock and is atomic with respect to other list locking functions. 1832 */ 1833 void skb_queue_purge(struct sk_buff_head *list) 1834 { 1835 struct sk_buff *skb; 1836 while ((skb = skb_dequeue(list)) != NULL) 1837 kfree_skb(skb); 1838 } 1839 1840 /** 1841 * skb_queue_head - queue a buffer at the list head 1842 * @list: list to use 1843 * @newsk: buffer to queue 1844 * 1845 * Queue a buffer at the start of the list. This function takes the 1846 * list lock and can be used safely with other locking &sk_buff functions 1847 * safely. 1848 * 1849 * A buffer cannot be placed on two lists at the same time. 1850 */ 1851 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1852 { 1853 unsigned long flags; 1854 1855 spin_lock_irqsave(&list->lock, flags); 1856 __skb_queue_head(list, newsk); 1857 spin_unlock_irqrestore(&list->lock, flags); 1858 } 1859 1860 /** 1861 * skb_queue_tail - queue a buffer at the list tail 1862 * @list: list to use 1863 * @newsk: buffer to queue 1864 * 1865 * Queue a buffer at the tail of the list. This function takes the 1866 * list lock and can be used safely with other locking &sk_buff functions 1867 * safely. 1868 * 1869 * A buffer cannot be placed on two lists at the same time. 1870 */ 1871 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1872 { 1873 unsigned long flags; 1874 1875 spin_lock_irqsave(&list->lock, flags); 1876 __skb_queue_tail(list, newsk); 1877 spin_unlock_irqrestore(&list->lock, flags); 1878 } 1879 1880 /** 1881 * skb_unlink - remove a buffer from a list 1882 * @skb: buffer to remove 1883 * @list: list to use 1884 * 1885 * Remove a packet from a list. The list locks are taken and this 1886 * function is atomic with respect to other list locked calls 1887 * 1888 * You must know what list the SKB is on. 1889 */ 1890 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1891 { 1892 unsigned long flags; 1893 1894 spin_lock_irqsave(&list->lock, flags); 1895 __skb_unlink(skb, list); 1896 spin_unlock_irqrestore(&list->lock, flags); 1897 } 1898 1899 /** 1900 * skb_append - append a buffer 1901 * @old: buffer to insert after 1902 * @newsk: buffer to insert 1903 * @list: list to use 1904 * 1905 * Place a packet after a given packet in a list. The list locks are taken 1906 * and this function is atomic with respect to other list locked calls. 1907 * A buffer cannot be placed on two lists at the same time. 1908 */ 1909 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1910 { 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(&list->lock, flags); 1914 __skb_queue_after(list, old, newsk); 1915 spin_unlock_irqrestore(&list->lock, flags); 1916 } 1917 1918 1919 /** 1920 * skb_insert - insert a buffer 1921 * @old: buffer to insert before 1922 * @newsk: buffer to insert 1923 * @list: list to use 1924 * 1925 * Place a packet before a given packet in a list. The list locks are 1926 * taken and this function is atomic with respect to other list locked 1927 * calls. 1928 * 1929 * A buffer cannot be placed on two lists at the same time. 1930 */ 1931 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1932 { 1933 unsigned long flags; 1934 1935 spin_lock_irqsave(&list->lock, flags); 1936 __skb_insert(newsk, old->prev, old, list); 1937 spin_unlock_irqrestore(&list->lock, flags); 1938 } 1939 1940 static inline void skb_split_inside_header(struct sk_buff *skb, 1941 struct sk_buff* skb1, 1942 const u32 len, const int pos) 1943 { 1944 int i; 1945 1946 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1947 pos - len); 1948 /* And move data appendix as is. */ 1949 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1950 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1951 1952 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1953 skb_shinfo(skb)->nr_frags = 0; 1954 skb1->data_len = skb->data_len; 1955 skb1->len += skb1->data_len; 1956 skb->data_len = 0; 1957 skb->len = len; 1958 skb_set_tail_pointer(skb, len); 1959 } 1960 1961 static inline void skb_split_no_header(struct sk_buff *skb, 1962 struct sk_buff* skb1, 1963 const u32 len, int pos) 1964 { 1965 int i, k = 0; 1966 const int nfrags = skb_shinfo(skb)->nr_frags; 1967 1968 skb_shinfo(skb)->nr_frags = 0; 1969 skb1->len = skb1->data_len = skb->len - len; 1970 skb->len = len; 1971 skb->data_len = len - pos; 1972 1973 for (i = 0; i < nfrags; i++) { 1974 int size = skb_shinfo(skb)->frags[i].size; 1975 1976 if (pos + size > len) { 1977 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1978 1979 if (pos < len) { 1980 /* Split frag. 1981 * We have two variants in this case: 1982 * 1. Move all the frag to the second 1983 * part, if it is possible. F.e. 1984 * this approach is mandatory for TUX, 1985 * where splitting is expensive. 1986 * 2. Split is accurately. We make this. 1987 */ 1988 get_page(skb_shinfo(skb)->frags[i].page); 1989 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1990 skb_shinfo(skb1)->frags[0].size -= len - pos; 1991 skb_shinfo(skb)->frags[i].size = len - pos; 1992 skb_shinfo(skb)->nr_frags++; 1993 } 1994 k++; 1995 } else 1996 skb_shinfo(skb)->nr_frags++; 1997 pos += size; 1998 } 1999 skb_shinfo(skb1)->nr_frags = k; 2000 } 2001 2002 /** 2003 * skb_split - Split fragmented skb to two parts at length len. 2004 * @skb: the buffer to split 2005 * @skb1: the buffer to receive the second part 2006 * @len: new length for skb 2007 */ 2008 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2009 { 2010 int pos = skb_headlen(skb); 2011 2012 if (len < pos) /* Split line is inside header. */ 2013 skb_split_inside_header(skb, skb1, len, pos); 2014 else /* Second chunk has no header, nothing to copy. */ 2015 skb_split_no_header(skb, skb1, len, pos); 2016 } 2017 2018 /* Shifting from/to a cloned skb is a no-go. 2019 * 2020 * Caller cannot keep skb_shinfo related pointers past calling here! 2021 */ 2022 static int skb_prepare_for_shift(struct sk_buff *skb) 2023 { 2024 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2025 } 2026 2027 /** 2028 * skb_shift - Shifts paged data partially from skb to another 2029 * @tgt: buffer into which tail data gets added 2030 * @skb: buffer from which the paged data comes from 2031 * @shiftlen: shift up to this many bytes 2032 * 2033 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2034 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2035 * It's up to caller to free skb if everything was shifted. 2036 * 2037 * If @tgt runs out of frags, the whole operation is aborted. 2038 * 2039 * Skb cannot include anything else but paged data while tgt is allowed 2040 * to have non-paged data as well. 2041 * 2042 * TODO: full sized shift could be optimized but that would need 2043 * specialized skb free'er to handle frags without up-to-date nr_frags. 2044 */ 2045 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2046 { 2047 int from, to, merge, todo; 2048 struct skb_frag_struct *fragfrom, *fragto; 2049 2050 BUG_ON(shiftlen > skb->len); 2051 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2052 2053 todo = shiftlen; 2054 from = 0; 2055 to = skb_shinfo(tgt)->nr_frags; 2056 fragfrom = &skb_shinfo(skb)->frags[from]; 2057 2058 /* Actual merge is delayed until the point when we know we can 2059 * commit all, so that we don't have to undo partial changes 2060 */ 2061 if (!to || 2062 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) { 2063 merge = -1; 2064 } else { 2065 merge = to - 1; 2066 2067 todo -= fragfrom->size; 2068 if (todo < 0) { 2069 if (skb_prepare_for_shift(skb) || 2070 skb_prepare_for_shift(tgt)) 2071 return 0; 2072 2073 /* All previous frag pointers might be stale! */ 2074 fragfrom = &skb_shinfo(skb)->frags[from]; 2075 fragto = &skb_shinfo(tgt)->frags[merge]; 2076 2077 fragto->size += shiftlen; 2078 fragfrom->size -= shiftlen; 2079 fragfrom->page_offset += shiftlen; 2080 2081 goto onlymerged; 2082 } 2083 2084 from++; 2085 } 2086 2087 /* Skip full, not-fitting skb to avoid expensive operations */ 2088 if ((shiftlen == skb->len) && 2089 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2090 return 0; 2091 2092 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2093 return 0; 2094 2095 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2096 if (to == MAX_SKB_FRAGS) 2097 return 0; 2098 2099 fragfrom = &skb_shinfo(skb)->frags[from]; 2100 fragto = &skb_shinfo(tgt)->frags[to]; 2101 2102 if (todo >= fragfrom->size) { 2103 *fragto = *fragfrom; 2104 todo -= fragfrom->size; 2105 from++; 2106 to++; 2107 2108 } else { 2109 get_page(fragfrom->page); 2110 fragto->page = fragfrom->page; 2111 fragto->page_offset = fragfrom->page_offset; 2112 fragto->size = todo; 2113 2114 fragfrom->page_offset += todo; 2115 fragfrom->size -= todo; 2116 todo = 0; 2117 2118 to++; 2119 break; 2120 } 2121 } 2122 2123 /* Ready to "commit" this state change to tgt */ 2124 skb_shinfo(tgt)->nr_frags = to; 2125 2126 if (merge >= 0) { 2127 fragfrom = &skb_shinfo(skb)->frags[0]; 2128 fragto = &skb_shinfo(tgt)->frags[merge]; 2129 2130 fragto->size += fragfrom->size; 2131 put_page(fragfrom->page); 2132 } 2133 2134 /* Reposition in the original skb */ 2135 to = 0; 2136 while (from < skb_shinfo(skb)->nr_frags) 2137 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2138 skb_shinfo(skb)->nr_frags = to; 2139 2140 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2141 2142 onlymerged: 2143 /* Most likely the tgt won't ever need its checksum anymore, skb on 2144 * the other hand might need it if it needs to be resent 2145 */ 2146 tgt->ip_summed = CHECKSUM_PARTIAL; 2147 skb->ip_summed = CHECKSUM_PARTIAL; 2148 2149 /* Yak, is it really working this way? Some helper please? */ 2150 skb->len -= shiftlen; 2151 skb->data_len -= shiftlen; 2152 skb->truesize -= shiftlen; 2153 tgt->len += shiftlen; 2154 tgt->data_len += shiftlen; 2155 tgt->truesize += shiftlen; 2156 2157 return shiftlen; 2158 } 2159 2160 /** 2161 * skb_prepare_seq_read - Prepare a sequential read of skb data 2162 * @skb: the buffer to read 2163 * @from: lower offset of data to be read 2164 * @to: upper offset of data to be read 2165 * @st: state variable 2166 * 2167 * Initializes the specified state variable. Must be called before 2168 * invoking skb_seq_read() for the first time. 2169 */ 2170 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2171 unsigned int to, struct skb_seq_state *st) 2172 { 2173 st->lower_offset = from; 2174 st->upper_offset = to; 2175 st->root_skb = st->cur_skb = skb; 2176 st->frag_idx = st->stepped_offset = 0; 2177 st->frag_data = NULL; 2178 } 2179 2180 /** 2181 * skb_seq_read - Sequentially read skb data 2182 * @consumed: number of bytes consumed by the caller so far 2183 * @data: destination pointer for data to be returned 2184 * @st: state variable 2185 * 2186 * Reads a block of skb data at &consumed relative to the 2187 * lower offset specified to skb_prepare_seq_read(). Assigns 2188 * the head of the data block to &data and returns the length 2189 * of the block or 0 if the end of the skb data or the upper 2190 * offset has been reached. 2191 * 2192 * The caller is not required to consume all of the data 2193 * returned, i.e. &consumed is typically set to the number 2194 * of bytes already consumed and the next call to 2195 * skb_seq_read() will return the remaining part of the block. 2196 * 2197 * Note 1: The size of each block of data returned can be arbitary, 2198 * this limitation is the cost for zerocopy seqeuental 2199 * reads of potentially non linear data. 2200 * 2201 * Note 2: Fragment lists within fragments are not implemented 2202 * at the moment, state->root_skb could be replaced with 2203 * a stack for this purpose. 2204 */ 2205 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2206 struct skb_seq_state *st) 2207 { 2208 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2209 skb_frag_t *frag; 2210 2211 if (unlikely(abs_offset >= st->upper_offset)) 2212 return 0; 2213 2214 next_skb: 2215 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2216 2217 if (abs_offset < block_limit) { 2218 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2219 return block_limit - abs_offset; 2220 } 2221 2222 if (st->frag_idx == 0 && !st->frag_data) 2223 st->stepped_offset += skb_headlen(st->cur_skb); 2224 2225 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2226 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2227 block_limit = frag->size + st->stepped_offset; 2228 2229 if (abs_offset < block_limit) { 2230 if (!st->frag_data) 2231 st->frag_data = kmap_skb_frag(frag); 2232 2233 *data = (u8 *) st->frag_data + frag->page_offset + 2234 (abs_offset - st->stepped_offset); 2235 2236 return block_limit - abs_offset; 2237 } 2238 2239 if (st->frag_data) { 2240 kunmap_skb_frag(st->frag_data); 2241 st->frag_data = NULL; 2242 } 2243 2244 st->frag_idx++; 2245 st->stepped_offset += frag->size; 2246 } 2247 2248 if (st->frag_data) { 2249 kunmap_skb_frag(st->frag_data); 2250 st->frag_data = NULL; 2251 } 2252 2253 if (st->root_skb == st->cur_skb && 2254 skb_shinfo(st->root_skb)->frag_list) { 2255 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2256 st->frag_idx = 0; 2257 goto next_skb; 2258 } else if (st->cur_skb->next) { 2259 st->cur_skb = st->cur_skb->next; 2260 st->frag_idx = 0; 2261 goto next_skb; 2262 } 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * skb_abort_seq_read - Abort a sequential read of skb data 2269 * @st: state variable 2270 * 2271 * Must be called if skb_seq_read() was not called until it 2272 * returned 0. 2273 */ 2274 void skb_abort_seq_read(struct skb_seq_state *st) 2275 { 2276 if (st->frag_data) 2277 kunmap_skb_frag(st->frag_data); 2278 } 2279 2280 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2281 2282 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2283 struct ts_config *conf, 2284 struct ts_state *state) 2285 { 2286 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2287 } 2288 2289 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2290 { 2291 skb_abort_seq_read(TS_SKB_CB(state)); 2292 } 2293 2294 /** 2295 * skb_find_text - Find a text pattern in skb data 2296 * @skb: the buffer to look in 2297 * @from: search offset 2298 * @to: search limit 2299 * @config: textsearch configuration 2300 * @state: uninitialized textsearch state variable 2301 * 2302 * Finds a pattern in the skb data according to the specified 2303 * textsearch configuration. Use textsearch_next() to retrieve 2304 * subsequent occurrences of the pattern. Returns the offset 2305 * to the first occurrence or UINT_MAX if no match was found. 2306 */ 2307 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2308 unsigned int to, struct ts_config *config, 2309 struct ts_state *state) 2310 { 2311 unsigned int ret; 2312 2313 config->get_next_block = skb_ts_get_next_block; 2314 config->finish = skb_ts_finish; 2315 2316 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2317 2318 ret = textsearch_find(config, state); 2319 return (ret <= to - from ? ret : UINT_MAX); 2320 } 2321 2322 /** 2323 * skb_append_datato_frags: - append the user data to a skb 2324 * @sk: sock structure 2325 * @skb: skb structure to be appened with user data. 2326 * @getfrag: call back function to be used for getting the user data 2327 * @from: pointer to user message iov 2328 * @length: length of the iov message 2329 * 2330 * Description: This procedure append the user data in the fragment part 2331 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2332 */ 2333 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2334 int (*getfrag)(void *from, char *to, int offset, 2335 int len, int odd, struct sk_buff *skb), 2336 void *from, int length) 2337 { 2338 int frg_cnt = 0; 2339 skb_frag_t *frag = NULL; 2340 struct page *page = NULL; 2341 int copy, left; 2342 int offset = 0; 2343 int ret; 2344 2345 do { 2346 /* Return error if we don't have space for new frag */ 2347 frg_cnt = skb_shinfo(skb)->nr_frags; 2348 if (frg_cnt >= MAX_SKB_FRAGS) 2349 return -EFAULT; 2350 2351 /* allocate a new page for next frag */ 2352 page = alloc_pages(sk->sk_allocation, 0); 2353 2354 /* If alloc_page fails just return failure and caller will 2355 * free previous allocated pages by doing kfree_skb() 2356 */ 2357 if (page == NULL) 2358 return -ENOMEM; 2359 2360 /* initialize the next frag */ 2361 sk->sk_sndmsg_page = page; 2362 sk->sk_sndmsg_off = 0; 2363 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2364 skb->truesize += PAGE_SIZE; 2365 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2366 2367 /* get the new initialized frag */ 2368 frg_cnt = skb_shinfo(skb)->nr_frags; 2369 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2370 2371 /* copy the user data to page */ 2372 left = PAGE_SIZE - frag->page_offset; 2373 copy = (length > left)? left : length; 2374 2375 ret = getfrag(from, (page_address(frag->page) + 2376 frag->page_offset + frag->size), 2377 offset, copy, 0, skb); 2378 if (ret < 0) 2379 return -EFAULT; 2380 2381 /* copy was successful so update the size parameters */ 2382 sk->sk_sndmsg_off += copy; 2383 frag->size += copy; 2384 skb->len += copy; 2385 skb->data_len += copy; 2386 offset += copy; 2387 length -= copy; 2388 2389 } while (length > 0); 2390 2391 return 0; 2392 } 2393 2394 /** 2395 * skb_pull_rcsum - pull skb and update receive checksum 2396 * @skb: buffer to update 2397 * @len: length of data pulled 2398 * 2399 * This function performs an skb_pull on the packet and updates 2400 * the CHECKSUM_COMPLETE checksum. It should be used on 2401 * receive path processing instead of skb_pull unless you know 2402 * that the checksum difference is zero (e.g., a valid IP header) 2403 * or you are setting ip_summed to CHECKSUM_NONE. 2404 */ 2405 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2406 { 2407 BUG_ON(len > skb->len); 2408 skb->len -= len; 2409 BUG_ON(skb->len < skb->data_len); 2410 skb_postpull_rcsum(skb, skb->data, len); 2411 return skb->data += len; 2412 } 2413 2414 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2415 2416 /** 2417 * skb_segment - Perform protocol segmentation on skb. 2418 * @skb: buffer to segment 2419 * @features: features for the output path (see dev->features) 2420 * 2421 * This function performs segmentation on the given skb. It returns 2422 * a pointer to the first in a list of new skbs for the segments. 2423 * In case of error it returns ERR_PTR(err). 2424 */ 2425 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2426 { 2427 struct sk_buff *segs = NULL; 2428 struct sk_buff *tail = NULL; 2429 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2430 unsigned int mss = skb_shinfo(skb)->gso_size; 2431 unsigned int doffset = skb->data - skb_mac_header(skb); 2432 unsigned int offset = doffset; 2433 unsigned int headroom; 2434 unsigned int len; 2435 int sg = features & NETIF_F_SG; 2436 int nfrags = skb_shinfo(skb)->nr_frags; 2437 int err = -ENOMEM; 2438 int i = 0; 2439 int pos; 2440 2441 __skb_push(skb, doffset); 2442 headroom = skb_headroom(skb); 2443 pos = skb_headlen(skb); 2444 2445 do { 2446 struct sk_buff *nskb; 2447 skb_frag_t *frag; 2448 int hsize; 2449 int size; 2450 2451 len = skb->len - offset; 2452 if (len > mss) 2453 len = mss; 2454 2455 hsize = skb_headlen(skb) - offset; 2456 if (hsize < 0) 2457 hsize = 0; 2458 if (hsize > len || !sg) 2459 hsize = len; 2460 2461 if (!hsize && i >= nfrags) { 2462 BUG_ON(fskb->len != len); 2463 2464 pos += len; 2465 nskb = skb_clone(fskb, GFP_ATOMIC); 2466 fskb = fskb->next; 2467 2468 if (unlikely(!nskb)) 2469 goto err; 2470 2471 hsize = skb_end_pointer(nskb) - nskb->head; 2472 if (skb_cow_head(nskb, doffset + headroom)) { 2473 kfree_skb(nskb); 2474 goto err; 2475 } 2476 2477 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2478 hsize; 2479 skb_release_head_state(nskb); 2480 __skb_push(nskb, doffset); 2481 } else { 2482 nskb = alloc_skb(hsize + doffset + headroom, 2483 GFP_ATOMIC); 2484 2485 if (unlikely(!nskb)) 2486 goto err; 2487 2488 skb_reserve(nskb, headroom); 2489 __skb_put(nskb, doffset); 2490 } 2491 2492 if (segs) 2493 tail->next = nskb; 2494 else 2495 segs = nskb; 2496 tail = nskb; 2497 2498 __copy_skb_header(nskb, skb); 2499 nskb->mac_len = skb->mac_len; 2500 2501 skb_reset_mac_header(nskb); 2502 skb_set_network_header(nskb, skb->mac_len); 2503 nskb->transport_header = (nskb->network_header + 2504 skb_network_header_len(skb)); 2505 skb_copy_from_linear_data(skb, nskb->data, doffset); 2506 2507 if (pos >= offset + len) 2508 continue; 2509 2510 if (!sg) { 2511 nskb->ip_summed = CHECKSUM_NONE; 2512 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2513 skb_put(nskb, len), 2514 len, 0); 2515 continue; 2516 } 2517 2518 frag = skb_shinfo(nskb)->frags; 2519 2520 skb_copy_from_linear_data_offset(skb, offset, 2521 skb_put(nskb, hsize), hsize); 2522 2523 while (pos < offset + len && i < nfrags) { 2524 *frag = skb_shinfo(skb)->frags[i]; 2525 get_page(frag->page); 2526 size = frag->size; 2527 2528 if (pos < offset) { 2529 frag->page_offset += offset - pos; 2530 frag->size -= offset - pos; 2531 } 2532 2533 skb_shinfo(nskb)->nr_frags++; 2534 2535 if (pos + size <= offset + len) { 2536 i++; 2537 pos += size; 2538 } else { 2539 frag->size -= pos + size - (offset + len); 2540 goto skip_fraglist; 2541 } 2542 2543 frag++; 2544 } 2545 2546 if (pos < offset + len) { 2547 struct sk_buff *fskb2 = fskb; 2548 2549 BUG_ON(pos + fskb->len != offset + len); 2550 2551 pos += fskb->len; 2552 fskb = fskb->next; 2553 2554 if (fskb2->next) { 2555 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2556 if (!fskb2) 2557 goto err; 2558 } else 2559 skb_get(fskb2); 2560 2561 BUG_ON(skb_shinfo(nskb)->frag_list); 2562 skb_shinfo(nskb)->frag_list = fskb2; 2563 } 2564 2565 skip_fraglist: 2566 nskb->data_len = len - hsize; 2567 nskb->len += nskb->data_len; 2568 nskb->truesize += nskb->data_len; 2569 } while ((offset += len) < skb->len); 2570 2571 return segs; 2572 2573 err: 2574 while ((skb = segs)) { 2575 segs = skb->next; 2576 kfree_skb(skb); 2577 } 2578 return ERR_PTR(err); 2579 } 2580 2581 EXPORT_SYMBOL_GPL(skb_segment); 2582 2583 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2584 { 2585 struct sk_buff *p = *head; 2586 struct sk_buff *nskb; 2587 unsigned int headroom; 2588 unsigned int hlen = p->data - skb_mac_header(p); 2589 unsigned int len = skb->len; 2590 2591 if (hlen + p->len + len >= 65536) 2592 return -E2BIG; 2593 2594 if (skb_shinfo(p)->frag_list) 2595 goto merge; 2596 else if (!skb_headlen(p) && !skb_headlen(skb) && 2597 skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags < 2598 MAX_SKB_FRAGS) { 2599 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags, 2600 skb_shinfo(skb)->frags, 2601 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 2602 2603 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags; 2604 skb_shinfo(skb)->nr_frags = 0; 2605 2606 skb->truesize -= skb->data_len; 2607 skb->len -= skb->data_len; 2608 skb->data_len = 0; 2609 2610 NAPI_GRO_CB(skb)->free = 1; 2611 goto done; 2612 } 2613 2614 headroom = skb_headroom(p); 2615 nskb = netdev_alloc_skb(p->dev, headroom); 2616 if (unlikely(!nskb)) 2617 return -ENOMEM; 2618 2619 __copy_skb_header(nskb, p); 2620 nskb->mac_len = p->mac_len; 2621 2622 skb_reserve(nskb, headroom); 2623 2624 skb_set_mac_header(nskb, -hlen); 2625 skb_set_network_header(nskb, skb_network_offset(p)); 2626 skb_set_transport_header(nskb, skb_transport_offset(p)); 2627 2628 memcpy(skb_mac_header(nskb), skb_mac_header(p), hlen); 2629 2630 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2631 skb_shinfo(nskb)->frag_list = p; 2632 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size; 2633 skb_header_release(p); 2634 nskb->prev = p; 2635 2636 nskb->data_len += p->len; 2637 nskb->truesize += p->len; 2638 nskb->len += p->len; 2639 2640 *head = nskb; 2641 nskb->next = p->next; 2642 p->next = NULL; 2643 2644 p = nskb; 2645 2646 merge: 2647 p->prev->next = skb; 2648 p->prev = skb; 2649 skb_header_release(skb); 2650 2651 done: 2652 NAPI_GRO_CB(p)->count++; 2653 p->data_len += len; 2654 p->truesize += len; 2655 p->len += len; 2656 2657 NAPI_GRO_CB(skb)->same_flow = 1; 2658 return 0; 2659 } 2660 EXPORT_SYMBOL_GPL(skb_gro_receive); 2661 2662 void __init skb_init(void) 2663 { 2664 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2665 sizeof(struct sk_buff), 2666 0, 2667 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2668 NULL); 2669 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2670 (2*sizeof(struct sk_buff)) + 2671 sizeof(atomic_t), 2672 0, 2673 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2674 NULL); 2675 } 2676 2677 /** 2678 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2679 * @skb: Socket buffer containing the buffers to be mapped 2680 * @sg: The scatter-gather list to map into 2681 * @offset: The offset into the buffer's contents to start mapping 2682 * @len: Length of buffer space to be mapped 2683 * 2684 * Fill the specified scatter-gather list with mappings/pointers into a 2685 * region of the buffer space attached to a socket buffer. 2686 */ 2687 static int 2688 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2689 { 2690 int start = skb_headlen(skb); 2691 int i, copy = start - offset; 2692 int elt = 0; 2693 2694 if (copy > 0) { 2695 if (copy > len) 2696 copy = len; 2697 sg_set_buf(sg, skb->data + offset, copy); 2698 elt++; 2699 if ((len -= copy) == 0) 2700 return elt; 2701 offset += copy; 2702 } 2703 2704 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2705 int end; 2706 2707 WARN_ON(start > offset + len); 2708 2709 end = start + skb_shinfo(skb)->frags[i].size; 2710 if ((copy = end - offset) > 0) { 2711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2712 2713 if (copy > len) 2714 copy = len; 2715 sg_set_page(&sg[elt], frag->page, copy, 2716 frag->page_offset+offset-start); 2717 elt++; 2718 if (!(len -= copy)) 2719 return elt; 2720 offset += copy; 2721 } 2722 start = end; 2723 } 2724 2725 if (skb_shinfo(skb)->frag_list) { 2726 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2727 2728 for (; list; list = list->next) { 2729 int end; 2730 2731 WARN_ON(start > offset + len); 2732 2733 end = start + list->len; 2734 if ((copy = end - offset) > 0) { 2735 if (copy > len) 2736 copy = len; 2737 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2738 copy); 2739 if ((len -= copy) == 0) 2740 return elt; 2741 offset += copy; 2742 } 2743 start = end; 2744 } 2745 } 2746 BUG_ON(len); 2747 return elt; 2748 } 2749 2750 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2751 { 2752 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2753 2754 sg_mark_end(&sg[nsg - 1]); 2755 2756 return nsg; 2757 } 2758 2759 /** 2760 * skb_cow_data - Check that a socket buffer's data buffers are writable 2761 * @skb: The socket buffer to check. 2762 * @tailbits: Amount of trailing space to be added 2763 * @trailer: Returned pointer to the skb where the @tailbits space begins 2764 * 2765 * Make sure that the data buffers attached to a socket buffer are 2766 * writable. If they are not, private copies are made of the data buffers 2767 * and the socket buffer is set to use these instead. 2768 * 2769 * If @tailbits is given, make sure that there is space to write @tailbits 2770 * bytes of data beyond current end of socket buffer. @trailer will be 2771 * set to point to the skb in which this space begins. 2772 * 2773 * The number of scatterlist elements required to completely map the 2774 * COW'd and extended socket buffer will be returned. 2775 */ 2776 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2777 { 2778 int copyflag; 2779 int elt; 2780 struct sk_buff *skb1, **skb_p; 2781 2782 /* If skb is cloned or its head is paged, reallocate 2783 * head pulling out all the pages (pages are considered not writable 2784 * at the moment even if they are anonymous). 2785 */ 2786 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2787 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2788 return -ENOMEM; 2789 2790 /* Easy case. Most of packets will go this way. */ 2791 if (!skb_shinfo(skb)->frag_list) { 2792 /* A little of trouble, not enough of space for trailer. 2793 * This should not happen, when stack is tuned to generate 2794 * good frames. OK, on miss we reallocate and reserve even more 2795 * space, 128 bytes is fair. */ 2796 2797 if (skb_tailroom(skb) < tailbits && 2798 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2799 return -ENOMEM; 2800 2801 /* Voila! */ 2802 *trailer = skb; 2803 return 1; 2804 } 2805 2806 /* Misery. We are in troubles, going to mincer fragments... */ 2807 2808 elt = 1; 2809 skb_p = &skb_shinfo(skb)->frag_list; 2810 copyflag = 0; 2811 2812 while ((skb1 = *skb_p) != NULL) { 2813 int ntail = 0; 2814 2815 /* The fragment is partially pulled by someone, 2816 * this can happen on input. Copy it and everything 2817 * after it. */ 2818 2819 if (skb_shared(skb1)) 2820 copyflag = 1; 2821 2822 /* If the skb is the last, worry about trailer. */ 2823 2824 if (skb1->next == NULL && tailbits) { 2825 if (skb_shinfo(skb1)->nr_frags || 2826 skb_shinfo(skb1)->frag_list || 2827 skb_tailroom(skb1) < tailbits) 2828 ntail = tailbits + 128; 2829 } 2830 2831 if (copyflag || 2832 skb_cloned(skb1) || 2833 ntail || 2834 skb_shinfo(skb1)->nr_frags || 2835 skb_shinfo(skb1)->frag_list) { 2836 struct sk_buff *skb2; 2837 2838 /* Fuck, we are miserable poor guys... */ 2839 if (ntail == 0) 2840 skb2 = skb_copy(skb1, GFP_ATOMIC); 2841 else 2842 skb2 = skb_copy_expand(skb1, 2843 skb_headroom(skb1), 2844 ntail, 2845 GFP_ATOMIC); 2846 if (unlikely(skb2 == NULL)) 2847 return -ENOMEM; 2848 2849 if (skb1->sk) 2850 skb_set_owner_w(skb2, skb1->sk); 2851 2852 /* Looking around. Are we still alive? 2853 * OK, link new skb, drop old one */ 2854 2855 skb2->next = skb1->next; 2856 *skb_p = skb2; 2857 kfree_skb(skb1); 2858 skb1 = skb2; 2859 } 2860 elt++; 2861 *trailer = skb1; 2862 skb_p = &skb1->next; 2863 } 2864 2865 return elt; 2866 } 2867 2868 /** 2869 * skb_partial_csum_set - set up and verify partial csum values for packet 2870 * @skb: the skb to set 2871 * @start: the number of bytes after skb->data to start checksumming. 2872 * @off: the offset from start to place the checksum. 2873 * 2874 * For untrusted partially-checksummed packets, we need to make sure the values 2875 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 2876 * 2877 * This function checks and sets those values and skb->ip_summed: if this 2878 * returns false you should drop the packet. 2879 */ 2880 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 2881 { 2882 if (unlikely(start > skb->len - 2) || 2883 unlikely((int)start + off > skb->len - 2)) { 2884 if (net_ratelimit()) 2885 printk(KERN_WARNING 2886 "bad partial csum: csum=%u/%u len=%u\n", 2887 start, off, skb->len); 2888 return false; 2889 } 2890 skb->ip_summed = CHECKSUM_PARTIAL; 2891 skb->csum_start = skb_headroom(skb) + start; 2892 skb->csum_offset = off; 2893 return true; 2894 } 2895 2896 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 2897 { 2898 if (net_ratelimit()) 2899 pr_warning("%s: received packets cannot be forwarded" 2900 " while LRO is enabled\n", skb->dev->name); 2901 } 2902 2903 EXPORT_SYMBOL(___pskb_trim); 2904 EXPORT_SYMBOL(__kfree_skb); 2905 EXPORT_SYMBOL(kfree_skb); 2906 EXPORT_SYMBOL(__pskb_pull_tail); 2907 EXPORT_SYMBOL(__alloc_skb); 2908 EXPORT_SYMBOL(__netdev_alloc_skb); 2909 EXPORT_SYMBOL(pskb_copy); 2910 EXPORT_SYMBOL(pskb_expand_head); 2911 EXPORT_SYMBOL(skb_checksum); 2912 EXPORT_SYMBOL(skb_clone); 2913 EXPORT_SYMBOL(skb_copy); 2914 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2915 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2916 EXPORT_SYMBOL(skb_copy_bits); 2917 EXPORT_SYMBOL(skb_copy_expand); 2918 EXPORT_SYMBOL(skb_over_panic); 2919 EXPORT_SYMBOL(skb_pad); 2920 EXPORT_SYMBOL(skb_realloc_headroom); 2921 EXPORT_SYMBOL(skb_under_panic); 2922 EXPORT_SYMBOL(skb_dequeue); 2923 EXPORT_SYMBOL(skb_dequeue_tail); 2924 EXPORT_SYMBOL(skb_insert); 2925 EXPORT_SYMBOL(skb_queue_purge); 2926 EXPORT_SYMBOL(skb_queue_head); 2927 EXPORT_SYMBOL(skb_queue_tail); 2928 EXPORT_SYMBOL(skb_unlink); 2929 EXPORT_SYMBOL(skb_append); 2930 EXPORT_SYMBOL(skb_split); 2931 EXPORT_SYMBOL(skb_prepare_seq_read); 2932 EXPORT_SYMBOL(skb_seq_read); 2933 EXPORT_SYMBOL(skb_abort_seq_read); 2934 EXPORT_SYMBOL(skb_find_text); 2935 EXPORT_SYMBOL(skb_append_datato_frags); 2936 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 2937 2938 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2939 EXPORT_SYMBOL_GPL(skb_cow_data); 2940 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 2941