xref: /linux/net/core/skbuff.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64 
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67 
68 #include "kmap_skb.h"
69 
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72 
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 				  struct pipe_buffer *buf)
75 {
76 	put_page(buf->page);
77 }
78 
79 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
80 				struct pipe_buffer *buf)
81 {
82 	get_page(buf->page);
83 }
84 
85 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
86 			       struct pipe_buffer *buf)
87 {
88 	return 1;
89 }
90 
91 
92 /* Pipe buffer operations for a socket. */
93 static struct pipe_buf_operations sock_pipe_buf_ops = {
94 	.can_merge = 0,
95 	.map = generic_pipe_buf_map,
96 	.unmap = generic_pipe_buf_unmap,
97 	.confirm = generic_pipe_buf_confirm,
98 	.release = sock_pipe_buf_release,
99 	.steal = sock_pipe_buf_steal,
100 	.get = sock_pipe_buf_get,
101 };
102 
103 /*
104  *	Keep out-of-line to prevent kernel bloat.
105  *	__builtin_return_address is not used because it is not always
106  *	reliable.
107  */
108 
109 /**
110  *	skb_over_panic	- 	private function
111  *	@skb: buffer
112  *	@sz: size
113  *	@here: address
114  *
115  *	Out of line support code for skb_put(). Not user callable.
116  */
117 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
118 {
119 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
120 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
121 	       here, skb->len, sz, skb->head, skb->data,
122 	       (unsigned long)skb->tail, (unsigned long)skb->end,
123 	       skb->dev ? skb->dev->name : "<NULL>");
124 	BUG();
125 }
126 
127 /**
128  *	skb_under_panic	- 	private function
129  *	@skb: buffer
130  *	@sz: size
131  *	@here: address
132  *
133  *	Out of line support code for skb_push(). Not user callable.
134  */
135 
136 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
137 {
138 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
139 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
140 	       here, skb->len, sz, skb->head, skb->data,
141 	       (unsigned long)skb->tail, (unsigned long)skb->end,
142 	       skb->dev ? skb->dev->name : "<NULL>");
143 	BUG();
144 }
145 
146 void skb_truesize_bug(struct sk_buff *skb)
147 {
148 	WARN(net_ratelimit(), KERN_ERR "SKB BUG: Invalid truesize (%u) "
149 	       "len=%u, sizeof(sk_buff)=%Zd\n",
150 	       skb->truesize, skb->len, sizeof(struct sk_buff));
151 }
152 EXPORT_SYMBOL(skb_truesize_bug);
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@fclone: allocate from fclone cache instead of head cache
165  *		and allocate a cloned (child) skb
166  *	@node: numa node to allocate memory on
167  *
168  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
169  *	tail room of size bytes. The object has a reference count of one.
170  *	The return is the buffer. On a failure the return is %NULL.
171  *
172  *	Buffers may only be allocated from interrupts using a @gfp_mask of
173  *	%GFP_ATOMIC.
174  */
175 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
176 			    int fclone, int node)
177 {
178 	struct kmem_cache *cache;
179 	struct skb_shared_info *shinfo;
180 	struct sk_buff *skb;
181 	u8 *data;
182 
183 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
184 
185 	/* Get the HEAD */
186 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
187 	if (!skb)
188 		goto out;
189 
190 	size = SKB_DATA_ALIGN(size);
191 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
192 			gfp_mask, node);
193 	if (!data)
194 		goto nodata;
195 
196 	/*
197 	 * Only clear those fields we need to clear, not those that we will
198 	 * actually initialise below. Hence, don't put any more fields after
199 	 * the tail pointer in struct sk_buff!
200 	 */
201 	memset(skb, 0, offsetof(struct sk_buff, tail));
202 	skb->truesize = size + sizeof(struct sk_buff);
203 	atomic_set(&skb->users, 1);
204 	skb->head = data;
205 	skb->data = data;
206 	skb_reset_tail_pointer(skb);
207 	skb->end = skb->tail + size;
208 	/* make sure we initialize shinfo sequentially */
209 	shinfo = skb_shinfo(skb);
210 	atomic_set(&shinfo->dataref, 1);
211 	shinfo->nr_frags  = 0;
212 	shinfo->gso_size = 0;
213 	shinfo->gso_segs = 0;
214 	shinfo->gso_type = 0;
215 	shinfo->ip6_frag_id = 0;
216 	shinfo->frag_list = NULL;
217 
218 	if (fclone) {
219 		struct sk_buff *child = skb + 1;
220 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
221 
222 		skb->fclone = SKB_FCLONE_ORIG;
223 		atomic_set(fclone_ref, 1);
224 
225 		child->fclone = SKB_FCLONE_UNAVAILABLE;
226 	}
227 out:
228 	return skb;
229 nodata:
230 	kmem_cache_free(cache, skb);
231 	skb = NULL;
232 	goto out;
233 }
234 
235 /**
236  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
237  *	@dev: network device to receive on
238  *	@length: length to allocate
239  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
240  *
241  *	Allocate a new &sk_buff and assign it a usage count of one. The
242  *	buffer has unspecified headroom built in. Users should allocate
243  *	the headroom they think they need without accounting for the
244  *	built in space. The built in space is used for optimisations.
245  *
246  *	%NULL is returned if there is no free memory.
247  */
248 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
249 		unsigned int length, gfp_t gfp_mask)
250 {
251 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
252 	struct sk_buff *skb;
253 
254 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
255 	if (likely(skb)) {
256 		skb_reserve(skb, NET_SKB_PAD);
257 		skb->dev = dev;
258 	}
259 	return skb;
260 }
261 
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 {
264 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 	struct page *page;
266 
267 	page = alloc_pages_node(node, gfp_mask, 0);
268 	return page;
269 }
270 EXPORT_SYMBOL(__netdev_alloc_page);
271 
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 		int size)
274 {
275 	skb_fill_page_desc(skb, i, page, off, size);
276 	skb->len += size;
277 	skb->data_len += size;
278 	skb->truesize += size;
279 }
280 EXPORT_SYMBOL(skb_add_rx_frag);
281 
282 /**
283  *	dev_alloc_skb - allocate an skbuff for receiving
284  *	@length: length to allocate
285  *
286  *	Allocate a new &sk_buff and assign it a usage count of one. The
287  *	buffer has unspecified headroom built in. Users should allocate
288  *	the headroom they think they need without accounting for the
289  *	built in space. The built in space is used for optimisations.
290  *
291  *	%NULL is returned if there is no free memory. Although this function
292  *	allocates memory it can be called from an interrupt.
293  */
294 struct sk_buff *dev_alloc_skb(unsigned int length)
295 {
296 	/*
297 	 * There is more code here than it seems:
298 	 * __dev_alloc_skb is an inline
299 	 */
300 	return __dev_alloc_skb(length, GFP_ATOMIC);
301 }
302 EXPORT_SYMBOL(dev_alloc_skb);
303 
304 static void skb_drop_list(struct sk_buff **listp)
305 {
306 	struct sk_buff *list = *listp;
307 
308 	*listp = NULL;
309 
310 	do {
311 		struct sk_buff *this = list;
312 		list = list->next;
313 		kfree_skb(this);
314 	} while (list);
315 }
316 
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 {
319 	skb_drop_list(&skb_shinfo(skb)->frag_list);
320 }
321 
322 static void skb_clone_fraglist(struct sk_buff *skb)
323 {
324 	struct sk_buff *list;
325 
326 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
327 		skb_get(list);
328 }
329 
330 static void skb_release_data(struct sk_buff *skb)
331 {
332 	if (!skb->cloned ||
333 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 			       &skb_shinfo(skb)->dataref)) {
335 		if (skb_shinfo(skb)->nr_frags) {
336 			int i;
337 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 				put_page(skb_shinfo(skb)->frags[i].page);
339 		}
340 
341 		if (skb_shinfo(skb)->frag_list)
342 			skb_drop_fraglist(skb);
343 
344 		kfree(skb->head);
345 	}
346 }
347 
348 /*
349  *	Free an skbuff by memory without cleaning the state.
350  */
351 static void kfree_skbmem(struct sk_buff *skb)
352 {
353 	struct sk_buff *other;
354 	atomic_t *fclone_ref;
355 
356 	switch (skb->fclone) {
357 	case SKB_FCLONE_UNAVAILABLE:
358 		kmem_cache_free(skbuff_head_cache, skb);
359 		break;
360 
361 	case SKB_FCLONE_ORIG:
362 		fclone_ref = (atomic_t *) (skb + 2);
363 		if (atomic_dec_and_test(fclone_ref))
364 			kmem_cache_free(skbuff_fclone_cache, skb);
365 		break;
366 
367 	case SKB_FCLONE_CLONE:
368 		fclone_ref = (atomic_t *) (skb + 1);
369 		other = skb - 1;
370 
371 		/* The clone portion is available for
372 		 * fast-cloning again.
373 		 */
374 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
375 
376 		if (atomic_dec_and_test(fclone_ref))
377 			kmem_cache_free(skbuff_fclone_cache, other);
378 		break;
379 	}
380 }
381 
382 static void skb_release_head_state(struct sk_buff *skb)
383 {
384 	dst_release(skb->dst);
385 #ifdef CONFIG_XFRM
386 	secpath_put(skb->sp);
387 #endif
388 	if (skb->destructor) {
389 		WARN_ON(in_irq());
390 		skb->destructor(skb);
391 	}
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 	nf_conntrack_put(skb->nfct);
394 	nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 	nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 	skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 	skb->tc_verd = 0;
404 #endif
405 #endif
406 }
407 
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
410 {
411 	skb_release_head_state(skb);
412 	skb_release_data(skb);
413 }
414 
415 /**
416  *	__kfree_skb - private function
417  *	@skb: buffer
418  *
419  *	Free an sk_buff. Release anything attached to the buffer.
420  *	Clean the state. This is an internal helper function. Users should
421  *	always call kfree_skb
422  */
423 
424 void __kfree_skb(struct sk_buff *skb)
425 {
426 	skb_release_all(skb);
427 	kfree_skbmem(skb);
428 }
429 
430 /**
431  *	kfree_skb - free an sk_buff
432  *	@skb: buffer to free
433  *
434  *	Drop a reference to the buffer and free it if the usage count has
435  *	hit zero.
436  */
437 void kfree_skb(struct sk_buff *skb)
438 {
439 	if (unlikely(!skb))
440 		return;
441 	if (likely(atomic_read(&skb->users) == 1))
442 		smp_rmb();
443 	else if (likely(!atomic_dec_and_test(&skb->users)))
444 		return;
445 	__kfree_skb(skb);
446 }
447 
448 /**
449  *	skb_recycle_check - check if skb can be reused for receive
450  *	@skb: buffer
451  *	@skb_size: minimum receive buffer size
452  *
453  *	Checks that the skb passed in is not shared or cloned, and
454  *	that it is linear and its head portion at least as large as
455  *	skb_size so that it can be recycled as a receive buffer.
456  *	If these conditions are met, this function does any necessary
457  *	reference count dropping and cleans up the skbuff as if it
458  *	just came from __alloc_skb().
459  */
460 int skb_recycle_check(struct sk_buff *skb, int skb_size)
461 {
462 	struct skb_shared_info *shinfo;
463 
464 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
465 		return 0;
466 
467 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
468 	if (skb_end_pointer(skb) - skb->head < skb_size)
469 		return 0;
470 
471 	if (skb_shared(skb) || skb_cloned(skb))
472 		return 0;
473 
474 	skb_release_head_state(skb);
475 	shinfo = skb_shinfo(skb);
476 	atomic_set(&shinfo->dataref, 1);
477 	shinfo->nr_frags = 0;
478 	shinfo->gso_size = 0;
479 	shinfo->gso_segs = 0;
480 	shinfo->gso_type = 0;
481 	shinfo->ip6_frag_id = 0;
482 	shinfo->frag_list = NULL;
483 
484 	memset(skb, 0, offsetof(struct sk_buff, tail));
485 	skb->data = skb->head + NET_SKB_PAD;
486 	skb_reset_tail_pointer(skb);
487 
488 	return 1;
489 }
490 EXPORT_SYMBOL(skb_recycle_check);
491 
492 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
493 {
494 	new->tstamp		= old->tstamp;
495 	new->dev		= old->dev;
496 	new->transport_header	= old->transport_header;
497 	new->network_header	= old->network_header;
498 	new->mac_header		= old->mac_header;
499 	new->dst		= dst_clone(old->dst);
500 #ifdef CONFIG_XFRM
501 	new->sp			= secpath_get(old->sp);
502 #endif
503 	memcpy(new->cb, old->cb, sizeof(old->cb));
504 	new->csum_start		= old->csum_start;
505 	new->csum_offset	= old->csum_offset;
506 	new->local_df		= old->local_df;
507 	new->pkt_type		= old->pkt_type;
508 	new->ip_summed		= old->ip_summed;
509 	skb_copy_queue_mapping(new, old);
510 	new->priority		= old->priority;
511 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
512 	new->ipvs_property	= old->ipvs_property;
513 #endif
514 	new->protocol		= old->protocol;
515 	new->mark		= old->mark;
516 	__nf_copy(new, old);
517 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
518     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
519 	new->nf_trace		= old->nf_trace;
520 #endif
521 #ifdef CONFIG_NET_SCHED
522 	new->tc_index		= old->tc_index;
523 #ifdef CONFIG_NET_CLS_ACT
524 	new->tc_verd		= old->tc_verd;
525 #endif
526 #endif
527 	new->vlan_tci		= old->vlan_tci;
528 
529 	skb_copy_secmark(new, old);
530 }
531 
532 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
533 {
534 #define C(x) n->x = skb->x
535 
536 	n->next = n->prev = NULL;
537 	n->sk = NULL;
538 	__copy_skb_header(n, skb);
539 
540 	C(len);
541 	C(data_len);
542 	C(mac_len);
543 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
544 	n->cloned = 1;
545 	n->nohdr = 0;
546 	n->destructor = NULL;
547 	C(iif);
548 	C(tail);
549 	C(end);
550 	C(head);
551 	C(data);
552 	C(truesize);
553 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
554 	C(do_not_encrypt);
555 	C(requeue);
556 #endif
557 	atomic_set(&n->users, 1);
558 
559 	atomic_inc(&(skb_shinfo(skb)->dataref));
560 	skb->cloned = 1;
561 
562 	return n;
563 #undef C
564 }
565 
566 /**
567  *	skb_morph	-	morph one skb into another
568  *	@dst: the skb to receive the contents
569  *	@src: the skb to supply the contents
570  *
571  *	This is identical to skb_clone except that the target skb is
572  *	supplied by the user.
573  *
574  *	The target skb is returned upon exit.
575  */
576 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
577 {
578 	skb_release_all(dst);
579 	return __skb_clone(dst, src);
580 }
581 EXPORT_SYMBOL_GPL(skb_morph);
582 
583 /**
584  *	skb_clone	-	duplicate an sk_buff
585  *	@skb: buffer to clone
586  *	@gfp_mask: allocation priority
587  *
588  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
589  *	copies share the same packet data but not structure. The new
590  *	buffer has a reference count of 1. If the allocation fails the
591  *	function returns %NULL otherwise the new buffer is returned.
592  *
593  *	If this function is called from an interrupt gfp_mask() must be
594  *	%GFP_ATOMIC.
595  */
596 
597 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
598 {
599 	struct sk_buff *n;
600 
601 	n = skb + 1;
602 	if (skb->fclone == SKB_FCLONE_ORIG &&
603 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
604 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
605 		n->fclone = SKB_FCLONE_CLONE;
606 		atomic_inc(fclone_ref);
607 	} else {
608 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
609 		if (!n)
610 			return NULL;
611 		n->fclone = SKB_FCLONE_UNAVAILABLE;
612 	}
613 
614 	return __skb_clone(n, skb);
615 }
616 
617 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
618 {
619 #ifndef NET_SKBUFF_DATA_USES_OFFSET
620 	/*
621 	 *	Shift between the two data areas in bytes
622 	 */
623 	unsigned long offset = new->data - old->data;
624 #endif
625 
626 	__copy_skb_header(new, old);
627 
628 #ifndef NET_SKBUFF_DATA_USES_OFFSET
629 	/* {transport,network,mac}_header are relative to skb->head */
630 	new->transport_header += offset;
631 	new->network_header   += offset;
632 	new->mac_header	      += offset;
633 #endif
634 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
635 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
636 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
637 }
638 
639 /**
640  *	skb_copy	-	create private copy of an sk_buff
641  *	@skb: buffer to copy
642  *	@gfp_mask: allocation priority
643  *
644  *	Make a copy of both an &sk_buff and its data. This is used when the
645  *	caller wishes to modify the data and needs a private copy of the
646  *	data to alter. Returns %NULL on failure or the pointer to the buffer
647  *	on success. The returned buffer has a reference count of 1.
648  *
649  *	As by-product this function converts non-linear &sk_buff to linear
650  *	one, so that &sk_buff becomes completely private and caller is allowed
651  *	to modify all the data of returned buffer. This means that this
652  *	function is not recommended for use in circumstances when only
653  *	header is going to be modified. Use pskb_copy() instead.
654  */
655 
656 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
657 {
658 	int headerlen = skb->data - skb->head;
659 	/*
660 	 *	Allocate the copy buffer
661 	 */
662 	struct sk_buff *n;
663 #ifdef NET_SKBUFF_DATA_USES_OFFSET
664 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
665 #else
666 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
667 #endif
668 	if (!n)
669 		return NULL;
670 
671 	/* Set the data pointer */
672 	skb_reserve(n, headerlen);
673 	/* Set the tail pointer and length */
674 	skb_put(n, skb->len);
675 
676 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
677 		BUG();
678 
679 	copy_skb_header(n, skb);
680 	return n;
681 }
682 
683 
684 /**
685  *	pskb_copy	-	create copy of an sk_buff with private head.
686  *	@skb: buffer to copy
687  *	@gfp_mask: allocation priority
688  *
689  *	Make a copy of both an &sk_buff and part of its data, located
690  *	in header. Fragmented data remain shared. This is used when
691  *	the caller wishes to modify only header of &sk_buff and needs
692  *	private copy of the header to alter. Returns %NULL on failure
693  *	or the pointer to the buffer on success.
694  *	The returned buffer has a reference count of 1.
695  */
696 
697 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
698 {
699 	/*
700 	 *	Allocate the copy buffer
701 	 */
702 	struct sk_buff *n;
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 	n = alloc_skb(skb->end, gfp_mask);
705 #else
706 	n = alloc_skb(skb->end - skb->head, gfp_mask);
707 #endif
708 	if (!n)
709 		goto out;
710 
711 	/* Set the data pointer */
712 	skb_reserve(n, skb->data - skb->head);
713 	/* Set the tail pointer and length */
714 	skb_put(n, skb_headlen(skb));
715 	/* Copy the bytes */
716 	skb_copy_from_linear_data(skb, n->data, n->len);
717 
718 	n->truesize += skb->data_len;
719 	n->data_len  = skb->data_len;
720 	n->len	     = skb->len;
721 
722 	if (skb_shinfo(skb)->nr_frags) {
723 		int i;
724 
725 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
726 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
727 			get_page(skb_shinfo(n)->frags[i].page);
728 		}
729 		skb_shinfo(n)->nr_frags = i;
730 	}
731 
732 	if (skb_shinfo(skb)->frag_list) {
733 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
734 		skb_clone_fraglist(n);
735 	}
736 
737 	copy_skb_header(n, skb);
738 out:
739 	return n;
740 }
741 
742 /**
743  *	pskb_expand_head - reallocate header of &sk_buff
744  *	@skb: buffer to reallocate
745  *	@nhead: room to add at head
746  *	@ntail: room to add at tail
747  *	@gfp_mask: allocation priority
748  *
749  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
750  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
751  *	reference count of 1. Returns zero in the case of success or error,
752  *	if expansion failed. In the last case, &sk_buff is not changed.
753  *
754  *	All the pointers pointing into skb header may change and must be
755  *	reloaded after call to this function.
756  */
757 
758 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
759 		     gfp_t gfp_mask)
760 {
761 	int i;
762 	u8 *data;
763 #ifdef NET_SKBUFF_DATA_USES_OFFSET
764 	int size = nhead + skb->end + ntail;
765 #else
766 	int size = nhead + (skb->end - skb->head) + ntail;
767 #endif
768 	long off;
769 
770 	BUG_ON(nhead < 0);
771 
772 	if (skb_shared(skb))
773 		BUG();
774 
775 	size = SKB_DATA_ALIGN(size);
776 
777 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
778 	if (!data)
779 		goto nodata;
780 
781 	/* Copy only real data... and, alas, header. This should be
782 	 * optimized for the cases when header is void. */
783 #ifdef NET_SKBUFF_DATA_USES_OFFSET
784 	memcpy(data + nhead, skb->head, skb->tail);
785 #else
786 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
787 #endif
788 	memcpy(data + size, skb_end_pointer(skb),
789 	       sizeof(struct skb_shared_info));
790 
791 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
792 		get_page(skb_shinfo(skb)->frags[i].page);
793 
794 	if (skb_shinfo(skb)->frag_list)
795 		skb_clone_fraglist(skb);
796 
797 	skb_release_data(skb);
798 
799 	off = (data + nhead) - skb->head;
800 
801 	skb->head     = data;
802 	skb->data    += off;
803 #ifdef NET_SKBUFF_DATA_USES_OFFSET
804 	skb->end      = size;
805 	off           = nhead;
806 #else
807 	skb->end      = skb->head + size;
808 #endif
809 	/* {transport,network,mac}_header and tail are relative to skb->head */
810 	skb->tail	      += off;
811 	skb->transport_header += off;
812 	skb->network_header   += off;
813 	skb->mac_header	      += off;
814 	skb->csum_start       += nhead;
815 	skb->cloned   = 0;
816 	skb->hdr_len  = 0;
817 	skb->nohdr    = 0;
818 	atomic_set(&skb_shinfo(skb)->dataref, 1);
819 	return 0;
820 
821 nodata:
822 	return -ENOMEM;
823 }
824 
825 /* Make private copy of skb with writable head and some headroom */
826 
827 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
828 {
829 	struct sk_buff *skb2;
830 	int delta = headroom - skb_headroom(skb);
831 
832 	if (delta <= 0)
833 		skb2 = pskb_copy(skb, GFP_ATOMIC);
834 	else {
835 		skb2 = skb_clone(skb, GFP_ATOMIC);
836 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
837 					     GFP_ATOMIC)) {
838 			kfree_skb(skb2);
839 			skb2 = NULL;
840 		}
841 	}
842 	return skb2;
843 }
844 
845 
846 /**
847  *	skb_copy_expand	-	copy and expand sk_buff
848  *	@skb: buffer to copy
849  *	@newheadroom: new free bytes at head
850  *	@newtailroom: new free bytes at tail
851  *	@gfp_mask: allocation priority
852  *
853  *	Make a copy of both an &sk_buff and its data and while doing so
854  *	allocate additional space.
855  *
856  *	This is used when the caller wishes to modify the data and needs a
857  *	private copy of the data to alter as well as more space for new fields.
858  *	Returns %NULL on failure or the pointer to the buffer
859  *	on success. The returned buffer has a reference count of 1.
860  *
861  *	You must pass %GFP_ATOMIC as the allocation priority if this function
862  *	is called from an interrupt.
863  */
864 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
865 				int newheadroom, int newtailroom,
866 				gfp_t gfp_mask)
867 {
868 	/*
869 	 *	Allocate the copy buffer
870 	 */
871 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
872 				      gfp_mask);
873 	int oldheadroom = skb_headroom(skb);
874 	int head_copy_len, head_copy_off;
875 	int off;
876 
877 	if (!n)
878 		return NULL;
879 
880 	skb_reserve(n, newheadroom);
881 
882 	/* Set the tail pointer and length */
883 	skb_put(n, skb->len);
884 
885 	head_copy_len = oldheadroom;
886 	head_copy_off = 0;
887 	if (newheadroom <= head_copy_len)
888 		head_copy_len = newheadroom;
889 	else
890 		head_copy_off = newheadroom - head_copy_len;
891 
892 	/* Copy the linear header and data. */
893 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
894 			  skb->len + head_copy_len))
895 		BUG();
896 
897 	copy_skb_header(n, skb);
898 
899 	off                  = newheadroom - oldheadroom;
900 	n->csum_start       += off;
901 #ifdef NET_SKBUFF_DATA_USES_OFFSET
902 	n->transport_header += off;
903 	n->network_header   += off;
904 	n->mac_header	    += off;
905 #endif
906 
907 	return n;
908 }
909 
910 /**
911  *	skb_pad			-	zero pad the tail of an skb
912  *	@skb: buffer to pad
913  *	@pad: space to pad
914  *
915  *	Ensure that a buffer is followed by a padding area that is zero
916  *	filled. Used by network drivers which may DMA or transfer data
917  *	beyond the buffer end onto the wire.
918  *
919  *	May return error in out of memory cases. The skb is freed on error.
920  */
921 
922 int skb_pad(struct sk_buff *skb, int pad)
923 {
924 	int err;
925 	int ntail;
926 
927 	/* If the skbuff is non linear tailroom is always zero.. */
928 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
929 		memset(skb->data+skb->len, 0, pad);
930 		return 0;
931 	}
932 
933 	ntail = skb->data_len + pad - (skb->end - skb->tail);
934 	if (likely(skb_cloned(skb) || ntail > 0)) {
935 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
936 		if (unlikely(err))
937 			goto free_skb;
938 	}
939 
940 	/* FIXME: The use of this function with non-linear skb's really needs
941 	 * to be audited.
942 	 */
943 	err = skb_linearize(skb);
944 	if (unlikely(err))
945 		goto free_skb;
946 
947 	memset(skb->data + skb->len, 0, pad);
948 	return 0;
949 
950 free_skb:
951 	kfree_skb(skb);
952 	return err;
953 }
954 
955 /**
956  *	skb_put - add data to a buffer
957  *	@skb: buffer to use
958  *	@len: amount of data to add
959  *
960  *	This function extends the used data area of the buffer. If this would
961  *	exceed the total buffer size the kernel will panic. A pointer to the
962  *	first byte of the extra data is returned.
963  */
964 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
965 {
966 	unsigned char *tmp = skb_tail_pointer(skb);
967 	SKB_LINEAR_ASSERT(skb);
968 	skb->tail += len;
969 	skb->len  += len;
970 	if (unlikely(skb->tail > skb->end))
971 		skb_over_panic(skb, len, __builtin_return_address(0));
972 	return tmp;
973 }
974 EXPORT_SYMBOL(skb_put);
975 
976 /**
977  *	skb_push - add data to the start of a buffer
978  *	@skb: buffer to use
979  *	@len: amount of data to add
980  *
981  *	This function extends the used data area of the buffer at the buffer
982  *	start. If this would exceed the total buffer headroom the kernel will
983  *	panic. A pointer to the first byte of the extra data is returned.
984  */
985 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
986 {
987 	skb->data -= len;
988 	skb->len  += len;
989 	if (unlikely(skb->data<skb->head))
990 		skb_under_panic(skb, len, __builtin_return_address(0));
991 	return skb->data;
992 }
993 EXPORT_SYMBOL(skb_push);
994 
995 /**
996  *	skb_pull - remove data from the start of a buffer
997  *	@skb: buffer to use
998  *	@len: amount of data to remove
999  *
1000  *	This function removes data from the start of a buffer, returning
1001  *	the memory to the headroom. A pointer to the next data in the buffer
1002  *	is returned. Once the data has been pulled future pushes will overwrite
1003  *	the old data.
1004  */
1005 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1006 {
1007 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1008 }
1009 EXPORT_SYMBOL(skb_pull);
1010 
1011 /**
1012  *	skb_trim - remove end from a buffer
1013  *	@skb: buffer to alter
1014  *	@len: new length
1015  *
1016  *	Cut the length of a buffer down by removing data from the tail. If
1017  *	the buffer is already under the length specified it is not modified.
1018  *	The skb must be linear.
1019  */
1020 void skb_trim(struct sk_buff *skb, unsigned int len)
1021 {
1022 	if (skb->len > len)
1023 		__skb_trim(skb, len);
1024 }
1025 EXPORT_SYMBOL(skb_trim);
1026 
1027 /* Trims skb to length len. It can change skb pointers.
1028  */
1029 
1030 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1031 {
1032 	struct sk_buff **fragp;
1033 	struct sk_buff *frag;
1034 	int offset = skb_headlen(skb);
1035 	int nfrags = skb_shinfo(skb)->nr_frags;
1036 	int i;
1037 	int err;
1038 
1039 	if (skb_cloned(skb) &&
1040 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1041 		return err;
1042 
1043 	i = 0;
1044 	if (offset >= len)
1045 		goto drop_pages;
1046 
1047 	for (; i < nfrags; i++) {
1048 		int end = offset + skb_shinfo(skb)->frags[i].size;
1049 
1050 		if (end < len) {
1051 			offset = end;
1052 			continue;
1053 		}
1054 
1055 		skb_shinfo(skb)->frags[i++].size = len - offset;
1056 
1057 drop_pages:
1058 		skb_shinfo(skb)->nr_frags = i;
1059 
1060 		for (; i < nfrags; i++)
1061 			put_page(skb_shinfo(skb)->frags[i].page);
1062 
1063 		if (skb_shinfo(skb)->frag_list)
1064 			skb_drop_fraglist(skb);
1065 		goto done;
1066 	}
1067 
1068 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1069 	     fragp = &frag->next) {
1070 		int end = offset + frag->len;
1071 
1072 		if (skb_shared(frag)) {
1073 			struct sk_buff *nfrag;
1074 
1075 			nfrag = skb_clone(frag, GFP_ATOMIC);
1076 			if (unlikely(!nfrag))
1077 				return -ENOMEM;
1078 
1079 			nfrag->next = frag->next;
1080 			kfree_skb(frag);
1081 			frag = nfrag;
1082 			*fragp = frag;
1083 		}
1084 
1085 		if (end < len) {
1086 			offset = end;
1087 			continue;
1088 		}
1089 
1090 		if (end > len &&
1091 		    unlikely((err = pskb_trim(frag, len - offset))))
1092 			return err;
1093 
1094 		if (frag->next)
1095 			skb_drop_list(&frag->next);
1096 		break;
1097 	}
1098 
1099 done:
1100 	if (len > skb_headlen(skb)) {
1101 		skb->data_len -= skb->len - len;
1102 		skb->len       = len;
1103 	} else {
1104 		skb->len       = len;
1105 		skb->data_len  = 0;
1106 		skb_set_tail_pointer(skb, len);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  *	__pskb_pull_tail - advance tail of skb header
1114  *	@skb: buffer to reallocate
1115  *	@delta: number of bytes to advance tail
1116  *
1117  *	The function makes a sense only on a fragmented &sk_buff,
1118  *	it expands header moving its tail forward and copying necessary
1119  *	data from fragmented part.
1120  *
1121  *	&sk_buff MUST have reference count of 1.
1122  *
1123  *	Returns %NULL (and &sk_buff does not change) if pull failed
1124  *	or value of new tail of skb in the case of success.
1125  *
1126  *	All the pointers pointing into skb header may change and must be
1127  *	reloaded after call to this function.
1128  */
1129 
1130 /* Moves tail of skb head forward, copying data from fragmented part,
1131  * when it is necessary.
1132  * 1. It may fail due to malloc failure.
1133  * 2. It may change skb pointers.
1134  *
1135  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1136  */
1137 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1138 {
1139 	/* If skb has not enough free space at tail, get new one
1140 	 * plus 128 bytes for future expansions. If we have enough
1141 	 * room at tail, reallocate without expansion only if skb is cloned.
1142 	 */
1143 	int i, k, eat = (skb->tail + delta) - skb->end;
1144 
1145 	if (eat > 0 || skb_cloned(skb)) {
1146 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1147 				     GFP_ATOMIC))
1148 			return NULL;
1149 	}
1150 
1151 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1152 		BUG();
1153 
1154 	/* Optimization: no fragments, no reasons to preestimate
1155 	 * size of pulled pages. Superb.
1156 	 */
1157 	if (!skb_shinfo(skb)->frag_list)
1158 		goto pull_pages;
1159 
1160 	/* Estimate size of pulled pages. */
1161 	eat = delta;
1162 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1163 		if (skb_shinfo(skb)->frags[i].size >= eat)
1164 			goto pull_pages;
1165 		eat -= skb_shinfo(skb)->frags[i].size;
1166 	}
1167 
1168 	/* If we need update frag list, we are in troubles.
1169 	 * Certainly, it possible to add an offset to skb data,
1170 	 * but taking into account that pulling is expected to
1171 	 * be very rare operation, it is worth to fight against
1172 	 * further bloating skb head and crucify ourselves here instead.
1173 	 * Pure masohism, indeed. 8)8)
1174 	 */
1175 	if (eat) {
1176 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1177 		struct sk_buff *clone = NULL;
1178 		struct sk_buff *insp = NULL;
1179 
1180 		do {
1181 			BUG_ON(!list);
1182 
1183 			if (list->len <= eat) {
1184 				/* Eaten as whole. */
1185 				eat -= list->len;
1186 				list = list->next;
1187 				insp = list;
1188 			} else {
1189 				/* Eaten partially. */
1190 
1191 				if (skb_shared(list)) {
1192 					/* Sucks! We need to fork list. :-( */
1193 					clone = skb_clone(list, GFP_ATOMIC);
1194 					if (!clone)
1195 						return NULL;
1196 					insp = list->next;
1197 					list = clone;
1198 				} else {
1199 					/* This may be pulled without
1200 					 * problems. */
1201 					insp = list;
1202 				}
1203 				if (!pskb_pull(list, eat)) {
1204 					if (clone)
1205 						kfree_skb(clone);
1206 					return NULL;
1207 				}
1208 				break;
1209 			}
1210 		} while (eat);
1211 
1212 		/* Free pulled out fragments. */
1213 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1214 			skb_shinfo(skb)->frag_list = list->next;
1215 			kfree_skb(list);
1216 		}
1217 		/* And insert new clone at head. */
1218 		if (clone) {
1219 			clone->next = list;
1220 			skb_shinfo(skb)->frag_list = clone;
1221 		}
1222 	}
1223 	/* Success! Now we may commit changes to skb data. */
1224 
1225 pull_pages:
1226 	eat = delta;
1227 	k = 0;
1228 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1229 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1230 			put_page(skb_shinfo(skb)->frags[i].page);
1231 			eat -= skb_shinfo(skb)->frags[i].size;
1232 		} else {
1233 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1234 			if (eat) {
1235 				skb_shinfo(skb)->frags[k].page_offset += eat;
1236 				skb_shinfo(skb)->frags[k].size -= eat;
1237 				eat = 0;
1238 			}
1239 			k++;
1240 		}
1241 	}
1242 	skb_shinfo(skb)->nr_frags = k;
1243 
1244 	skb->tail     += delta;
1245 	skb->data_len -= delta;
1246 
1247 	return skb_tail_pointer(skb);
1248 }
1249 
1250 /* Copy some data bits from skb to kernel buffer. */
1251 
1252 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1253 {
1254 	int i, copy;
1255 	int start = skb_headlen(skb);
1256 
1257 	if (offset > (int)skb->len - len)
1258 		goto fault;
1259 
1260 	/* Copy header. */
1261 	if ((copy = start - offset) > 0) {
1262 		if (copy > len)
1263 			copy = len;
1264 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1265 		if ((len -= copy) == 0)
1266 			return 0;
1267 		offset += copy;
1268 		to     += copy;
1269 	}
1270 
1271 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1272 		int end;
1273 
1274 		WARN_ON(start > offset + len);
1275 
1276 		end = start + skb_shinfo(skb)->frags[i].size;
1277 		if ((copy = end - offset) > 0) {
1278 			u8 *vaddr;
1279 
1280 			if (copy > len)
1281 				copy = len;
1282 
1283 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1284 			memcpy(to,
1285 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1286 			       offset - start, copy);
1287 			kunmap_skb_frag(vaddr);
1288 
1289 			if ((len -= copy) == 0)
1290 				return 0;
1291 			offset += copy;
1292 			to     += copy;
1293 		}
1294 		start = end;
1295 	}
1296 
1297 	if (skb_shinfo(skb)->frag_list) {
1298 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1299 
1300 		for (; list; list = list->next) {
1301 			int end;
1302 
1303 			WARN_ON(start > offset + len);
1304 
1305 			end = start + list->len;
1306 			if ((copy = end - offset) > 0) {
1307 				if (copy > len)
1308 					copy = len;
1309 				if (skb_copy_bits(list, offset - start,
1310 						  to, copy))
1311 					goto fault;
1312 				if ((len -= copy) == 0)
1313 					return 0;
1314 				offset += copy;
1315 				to     += copy;
1316 			}
1317 			start = end;
1318 		}
1319 	}
1320 	if (!len)
1321 		return 0;
1322 
1323 fault:
1324 	return -EFAULT;
1325 }
1326 
1327 /*
1328  * Callback from splice_to_pipe(), if we need to release some pages
1329  * at the end of the spd in case we error'ed out in filling the pipe.
1330  */
1331 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1332 {
1333 	put_page(spd->pages[i]);
1334 }
1335 
1336 static inline struct page *linear_to_page(struct page *page, unsigned int len,
1337 					  unsigned int offset)
1338 {
1339 	struct page *p = alloc_pages(GFP_KERNEL, 0);
1340 
1341 	if (!p)
1342 		return NULL;
1343 	memcpy(page_address(p) + offset, page_address(page) + offset, len);
1344 
1345 	return p;
1346 }
1347 
1348 /*
1349  * Fill page/offset/length into spd, if it can hold more pages.
1350  */
1351 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1352 				unsigned int len, unsigned int offset,
1353 				struct sk_buff *skb, int linear)
1354 {
1355 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1356 		return 1;
1357 
1358 	if (linear) {
1359 		page = linear_to_page(page, len, offset);
1360 		if (!page)
1361 			return 1;
1362 	} else
1363 		get_page(page);
1364 
1365 	spd->pages[spd->nr_pages] = page;
1366 	spd->partial[spd->nr_pages].len = len;
1367 	spd->partial[spd->nr_pages].offset = offset;
1368 	spd->nr_pages++;
1369 
1370 	return 0;
1371 }
1372 
1373 static inline void __segment_seek(struct page **page, unsigned int *poff,
1374 				  unsigned int *plen, unsigned int off)
1375 {
1376 	*poff += off;
1377 	*page += *poff / PAGE_SIZE;
1378 	*poff = *poff % PAGE_SIZE;
1379 	*plen -= off;
1380 }
1381 
1382 static inline int __splice_segment(struct page *page, unsigned int poff,
1383 				   unsigned int plen, unsigned int *off,
1384 				   unsigned int *len, struct sk_buff *skb,
1385 				   struct splice_pipe_desc *spd, int linear)
1386 {
1387 	if (!*len)
1388 		return 1;
1389 
1390 	/* skip this segment if already processed */
1391 	if (*off >= plen) {
1392 		*off -= plen;
1393 		return 0;
1394 	}
1395 
1396 	/* ignore any bits we already processed */
1397 	if (*off) {
1398 		__segment_seek(&page, &poff, &plen, *off);
1399 		*off = 0;
1400 	}
1401 
1402 	do {
1403 		unsigned int flen = min(*len, plen);
1404 
1405 		/* the linear region may spread across several pages  */
1406 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1407 
1408 		if (spd_fill_page(spd, page, flen, poff, skb, linear))
1409 			return 1;
1410 
1411 		__segment_seek(&page, &poff, &plen, flen);
1412 		*len -= flen;
1413 
1414 	} while (*len && plen);
1415 
1416 	return 0;
1417 }
1418 
1419 /*
1420  * Map linear and fragment data from the skb to spd. It reports failure if the
1421  * pipe is full or if we already spliced the requested length.
1422  */
1423 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1424 		      unsigned int *len,
1425 		      struct splice_pipe_desc *spd)
1426 {
1427 	int seg;
1428 
1429 	/*
1430 	 * map the linear part
1431 	 */
1432 	if (__splice_segment(virt_to_page(skb->data),
1433 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1434 			     skb_headlen(skb),
1435 			     offset, len, skb, spd, 1))
1436 		return 1;
1437 
1438 	/*
1439 	 * then map the fragments
1440 	 */
1441 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1442 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1443 
1444 		if (__splice_segment(f->page, f->page_offset, f->size,
1445 				     offset, len, skb, spd, 0))
1446 			return 1;
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 /*
1453  * Map data from the skb to a pipe. Should handle both the linear part,
1454  * the fragments, and the frag list. It does NOT handle frag lists within
1455  * the frag list, if such a thing exists. We'd probably need to recurse to
1456  * handle that cleanly.
1457  */
1458 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1459 		    struct pipe_inode_info *pipe, unsigned int tlen,
1460 		    unsigned int flags)
1461 {
1462 	struct partial_page partial[PIPE_BUFFERS];
1463 	struct page *pages[PIPE_BUFFERS];
1464 	struct splice_pipe_desc spd = {
1465 		.pages = pages,
1466 		.partial = partial,
1467 		.flags = flags,
1468 		.ops = &sock_pipe_buf_ops,
1469 		.spd_release = sock_spd_release,
1470 	};
1471 
1472 	/*
1473 	 * __skb_splice_bits() only fails if the output has no room left,
1474 	 * so no point in going over the frag_list for the error case.
1475 	 */
1476 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1477 		goto done;
1478 	else if (!tlen)
1479 		goto done;
1480 
1481 	/*
1482 	 * now see if we have a frag_list to map
1483 	 */
1484 	if (skb_shinfo(skb)->frag_list) {
1485 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1486 
1487 		for (; list && tlen; list = list->next) {
1488 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1489 				break;
1490 		}
1491 	}
1492 
1493 done:
1494 	if (spd.nr_pages) {
1495 		struct sock *sk = skb->sk;
1496 		int ret;
1497 
1498 		/*
1499 		 * Drop the socket lock, otherwise we have reverse
1500 		 * locking dependencies between sk_lock and i_mutex
1501 		 * here as compared to sendfile(). We enter here
1502 		 * with the socket lock held, and splice_to_pipe() will
1503 		 * grab the pipe inode lock. For sendfile() emulation,
1504 		 * we call into ->sendpage() with the i_mutex lock held
1505 		 * and networking will grab the socket lock.
1506 		 */
1507 		release_sock(sk);
1508 		ret = splice_to_pipe(pipe, &spd);
1509 		lock_sock(sk);
1510 		return ret;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /**
1517  *	skb_store_bits - store bits from kernel buffer to skb
1518  *	@skb: destination buffer
1519  *	@offset: offset in destination
1520  *	@from: source buffer
1521  *	@len: number of bytes to copy
1522  *
1523  *	Copy the specified number of bytes from the source buffer to the
1524  *	destination skb.  This function handles all the messy bits of
1525  *	traversing fragment lists and such.
1526  */
1527 
1528 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1529 {
1530 	int i, copy;
1531 	int start = skb_headlen(skb);
1532 
1533 	if (offset > (int)skb->len - len)
1534 		goto fault;
1535 
1536 	if ((copy = start - offset) > 0) {
1537 		if (copy > len)
1538 			copy = len;
1539 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1540 		if ((len -= copy) == 0)
1541 			return 0;
1542 		offset += copy;
1543 		from += copy;
1544 	}
1545 
1546 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1547 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1548 		int end;
1549 
1550 		WARN_ON(start > offset + len);
1551 
1552 		end = start + frag->size;
1553 		if ((copy = end - offset) > 0) {
1554 			u8 *vaddr;
1555 
1556 			if (copy > len)
1557 				copy = len;
1558 
1559 			vaddr = kmap_skb_frag(frag);
1560 			memcpy(vaddr + frag->page_offset + offset - start,
1561 			       from, copy);
1562 			kunmap_skb_frag(vaddr);
1563 
1564 			if ((len -= copy) == 0)
1565 				return 0;
1566 			offset += copy;
1567 			from += copy;
1568 		}
1569 		start = end;
1570 	}
1571 
1572 	if (skb_shinfo(skb)->frag_list) {
1573 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1574 
1575 		for (; list; list = list->next) {
1576 			int end;
1577 
1578 			WARN_ON(start > offset + len);
1579 
1580 			end = start + list->len;
1581 			if ((copy = end - offset) > 0) {
1582 				if (copy > len)
1583 					copy = len;
1584 				if (skb_store_bits(list, offset - start,
1585 						   from, copy))
1586 					goto fault;
1587 				if ((len -= copy) == 0)
1588 					return 0;
1589 				offset += copy;
1590 				from += copy;
1591 			}
1592 			start = end;
1593 		}
1594 	}
1595 	if (!len)
1596 		return 0;
1597 
1598 fault:
1599 	return -EFAULT;
1600 }
1601 
1602 EXPORT_SYMBOL(skb_store_bits);
1603 
1604 /* Checksum skb data. */
1605 
1606 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1607 			  int len, __wsum csum)
1608 {
1609 	int start = skb_headlen(skb);
1610 	int i, copy = start - offset;
1611 	int pos = 0;
1612 
1613 	/* Checksum header. */
1614 	if (copy > 0) {
1615 		if (copy > len)
1616 			copy = len;
1617 		csum = csum_partial(skb->data + offset, copy, csum);
1618 		if ((len -= copy) == 0)
1619 			return csum;
1620 		offset += copy;
1621 		pos	= copy;
1622 	}
1623 
1624 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1625 		int end;
1626 
1627 		WARN_ON(start > offset + len);
1628 
1629 		end = start + skb_shinfo(skb)->frags[i].size;
1630 		if ((copy = end - offset) > 0) {
1631 			__wsum csum2;
1632 			u8 *vaddr;
1633 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1634 
1635 			if (copy > len)
1636 				copy = len;
1637 			vaddr = kmap_skb_frag(frag);
1638 			csum2 = csum_partial(vaddr + frag->page_offset +
1639 					     offset - start, copy, 0);
1640 			kunmap_skb_frag(vaddr);
1641 			csum = csum_block_add(csum, csum2, pos);
1642 			if (!(len -= copy))
1643 				return csum;
1644 			offset += copy;
1645 			pos    += copy;
1646 		}
1647 		start = end;
1648 	}
1649 
1650 	if (skb_shinfo(skb)->frag_list) {
1651 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1652 
1653 		for (; list; list = list->next) {
1654 			int end;
1655 
1656 			WARN_ON(start > offset + len);
1657 
1658 			end = start + list->len;
1659 			if ((copy = end - offset) > 0) {
1660 				__wsum csum2;
1661 				if (copy > len)
1662 					copy = len;
1663 				csum2 = skb_checksum(list, offset - start,
1664 						     copy, 0);
1665 				csum = csum_block_add(csum, csum2, pos);
1666 				if ((len -= copy) == 0)
1667 					return csum;
1668 				offset += copy;
1669 				pos    += copy;
1670 			}
1671 			start = end;
1672 		}
1673 	}
1674 	BUG_ON(len);
1675 
1676 	return csum;
1677 }
1678 
1679 /* Both of above in one bottle. */
1680 
1681 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1682 				    u8 *to, int len, __wsum csum)
1683 {
1684 	int start = skb_headlen(skb);
1685 	int i, copy = start - offset;
1686 	int pos = 0;
1687 
1688 	/* Copy header. */
1689 	if (copy > 0) {
1690 		if (copy > len)
1691 			copy = len;
1692 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1693 						 copy, csum);
1694 		if ((len -= copy) == 0)
1695 			return csum;
1696 		offset += copy;
1697 		to     += copy;
1698 		pos	= copy;
1699 	}
1700 
1701 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1702 		int end;
1703 
1704 		WARN_ON(start > offset + len);
1705 
1706 		end = start + skb_shinfo(skb)->frags[i].size;
1707 		if ((copy = end - offset) > 0) {
1708 			__wsum csum2;
1709 			u8 *vaddr;
1710 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1711 
1712 			if (copy > len)
1713 				copy = len;
1714 			vaddr = kmap_skb_frag(frag);
1715 			csum2 = csum_partial_copy_nocheck(vaddr +
1716 							  frag->page_offset +
1717 							  offset - start, to,
1718 							  copy, 0);
1719 			kunmap_skb_frag(vaddr);
1720 			csum = csum_block_add(csum, csum2, pos);
1721 			if (!(len -= copy))
1722 				return csum;
1723 			offset += copy;
1724 			to     += copy;
1725 			pos    += copy;
1726 		}
1727 		start = end;
1728 	}
1729 
1730 	if (skb_shinfo(skb)->frag_list) {
1731 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1732 
1733 		for (; list; list = list->next) {
1734 			__wsum csum2;
1735 			int end;
1736 
1737 			WARN_ON(start > offset + len);
1738 
1739 			end = start + list->len;
1740 			if ((copy = end - offset) > 0) {
1741 				if (copy > len)
1742 					copy = len;
1743 				csum2 = skb_copy_and_csum_bits(list,
1744 							       offset - start,
1745 							       to, copy, 0);
1746 				csum = csum_block_add(csum, csum2, pos);
1747 				if ((len -= copy) == 0)
1748 					return csum;
1749 				offset += copy;
1750 				to     += copy;
1751 				pos    += copy;
1752 			}
1753 			start = end;
1754 		}
1755 	}
1756 	BUG_ON(len);
1757 	return csum;
1758 }
1759 
1760 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1761 {
1762 	__wsum csum;
1763 	long csstart;
1764 
1765 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1766 		csstart = skb->csum_start - skb_headroom(skb);
1767 	else
1768 		csstart = skb_headlen(skb);
1769 
1770 	BUG_ON(csstart > skb_headlen(skb));
1771 
1772 	skb_copy_from_linear_data(skb, to, csstart);
1773 
1774 	csum = 0;
1775 	if (csstart != skb->len)
1776 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1777 					      skb->len - csstart, 0);
1778 
1779 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1780 		long csstuff = csstart + skb->csum_offset;
1781 
1782 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1783 	}
1784 }
1785 
1786 /**
1787  *	skb_dequeue - remove from the head of the queue
1788  *	@list: list to dequeue from
1789  *
1790  *	Remove the head of the list. The list lock is taken so the function
1791  *	may be used safely with other locking list functions. The head item is
1792  *	returned or %NULL if the list is empty.
1793  */
1794 
1795 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1796 {
1797 	unsigned long flags;
1798 	struct sk_buff *result;
1799 
1800 	spin_lock_irqsave(&list->lock, flags);
1801 	result = __skb_dequeue(list);
1802 	spin_unlock_irqrestore(&list->lock, flags);
1803 	return result;
1804 }
1805 
1806 /**
1807  *	skb_dequeue_tail - remove from the tail of the queue
1808  *	@list: list to dequeue from
1809  *
1810  *	Remove the tail of the list. The list lock is taken so the function
1811  *	may be used safely with other locking list functions. The tail item is
1812  *	returned or %NULL if the list is empty.
1813  */
1814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1815 {
1816 	unsigned long flags;
1817 	struct sk_buff *result;
1818 
1819 	spin_lock_irqsave(&list->lock, flags);
1820 	result = __skb_dequeue_tail(list);
1821 	spin_unlock_irqrestore(&list->lock, flags);
1822 	return result;
1823 }
1824 
1825 /**
1826  *	skb_queue_purge - empty a list
1827  *	@list: list to empty
1828  *
1829  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1830  *	the list and one reference dropped. This function takes the list
1831  *	lock and is atomic with respect to other list locking functions.
1832  */
1833 void skb_queue_purge(struct sk_buff_head *list)
1834 {
1835 	struct sk_buff *skb;
1836 	while ((skb = skb_dequeue(list)) != NULL)
1837 		kfree_skb(skb);
1838 }
1839 
1840 /**
1841  *	skb_queue_head - queue a buffer at the list head
1842  *	@list: list to use
1843  *	@newsk: buffer to queue
1844  *
1845  *	Queue a buffer at the start of the list. This function takes the
1846  *	list lock and can be used safely with other locking &sk_buff functions
1847  *	safely.
1848  *
1849  *	A buffer cannot be placed on two lists at the same time.
1850  */
1851 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1852 {
1853 	unsigned long flags;
1854 
1855 	spin_lock_irqsave(&list->lock, flags);
1856 	__skb_queue_head(list, newsk);
1857 	spin_unlock_irqrestore(&list->lock, flags);
1858 }
1859 
1860 /**
1861  *	skb_queue_tail - queue a buffer at the list tail
1862  *	@list: list to use
1863  *	@newsk: buffer to queue
1864  *
1865  *	Queue a buffer at the tail of the list. This function takes the
1866  *	list lock and can be used safely with other locking &sk_buff functions
1867  *	safely.
1868  *
1869  *	A buffer cannot be placed on two lists at the same time.
1870  */
1871 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1872 {
1873 	unsigned long flags;
1874 
1875 	spin_lock_irqsave(&list->lock, flags);
1876 	__skb_queue_tail(list, newsk);
1877 	spin_unlock_irqrestore(&list->lock, flags);
1878 }
1879 
1880 /**
1881  *	skb_unlink	-	remove a buffer from a list
1882  *	@skb: buffer to remove
1883  *	@list: list to use
1884  *
1885  *	Remove a packet from a list. The list locks are taken and this
1886  *	function is atomic with respect to other list locked calls
1887  *
1888  *	You must know what list the SKB is on.
1889  */
1890 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(&list->lock, flags);
1895 	__skb_unlink(skb, list);
1896 	spin_unlock_irqrestore(&list->lock, flags);
1897 }
1898 
1899 /**
1900  *	skb_append	-	append a buffer
1901  *	@old: buffer to insert after
1902  *	@newsk: buffer to insert
1903  *	@list: list to use
1904  *
1905  *	Place a packet after a given packet in a list. The list locks are taken
1906  *	and this function is atomic with respect to other list locked calls.
1907  *	A buffer cannot be placed on two lists at the same time.
1908  */
1909 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1910 {
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(&list->lock, flags);
1914 	__skb_queue_after(list, old, newsk);
1915 	spin_unlock_irqrestore(&list->lock, flags);
1916 }
1917 
1918 
1919 /**
1920  *	skb_insert	-	insert a buffer
1921  *	@old: buffer to insert before
1922  *	@newsk: buffer to insert
1923  *	@list: list to use
1924  *
1925  *	Place a packet before a given packet in a list. The list locks are
1926  * 	taken and this function is atomic with respect to other list locked
1927  *	calls.
1928  *
1929  *	A buffer cannot be placed on two lists at the same time.
1930  */
1931 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1932 {
1933 	unsigned long flags;
1934 
1935 	spin_lock_irqsave(&list->lock, flags);
1936 	__skb_insert(newsk, old->prev, old, list);
1937 	spin_unlock_irqrestore(&list->lock, flags);
1938 }
1939 
1940 static inline void skb_split_inside_header(struct sk_buff *skb,
1941 					   struct sk_buff* skb1,
1942 					   const u32 len, const int pos)
1943 {
1944 	int i;
1945 
1946 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1947 					 pos - len);
1948 	/* And move data appendix as is. */
1949 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1950 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1951 
1952 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1953 	skb_shinfo(skb)->nr_frags  = 0;
1954 	skb1->data_len		   = skb->data_len;
1955 	skb1->len		   += skb1->data_len;
1956 	skb->data_len		   = 0;
1957 	skb->len		   = len;
1958 	skb_set_tail_pointer(skb, len);
1959 }
1960 
1961 static inline void skb_split_no_header(struct sk_buff *skb,
1962 				       struct sk_buff* skb1,
1963 				       const u32 len, int pos)
1964 {
1965 	int i, k = 0;
1966 	const int nfrags = skb_shinfo(skb)->nr_frags;
1967 
1968 	skb_shinfo(skb)->nr_frags = 0;
1969 	skb1->len		  = skb1->data_len = skb->len - len;
1970 	skb->len		  = len;
1971 	skb->data_len		  = len - pos;
1972 
1973 	for (i = 0; i < nfrags; i++) {
1974 		int size = skb_shinfo(skb)->frags[i].size;
1975 
1976 		if (pos + size > len) {
1977 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1978 
1979 			if (pos < len) {
1980 				/* Split frag.
1981 				 * We have two variants in this case:
1982 				 * 1. Move all the frag to the second
1983 				 *    part, if it is possible. F.e.
1984 				 *    this approach is mandatory for TUX,
1985 				 *    where splitting is expensive.
1986 				 * 2. Split is accurately. We make this.
1987 				 */
1988 				get_page(skb_shinfo(skb)->frags[i].page);
1989 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1990 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1991 				skb_shinfo(skb)->frags[i].size	= len - pos;
1992 				skb_shinfo(skb)->nr_frags++;
1993 			}
1994 			k++;
1995 		} else
1996 			skb_shinfo(skb)->nr_frags++;
1997 		pos += size;
1998 	}
1999 	skb_shinfo(skb1)->nr_frags = k;
2000 }
2001 
2002 /**
2003  * skb_split - Split fragmented skb to two parts at length len.
2004  * @skb: the buffer to split
2005  * @skb1: the buffer to receive the second part
2006  * @len: new length for skb
2007  */
2008 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2009 {
2010 	int pos = skb_headlen(skb);
2011 
2012 	if (len < pos)	/* Split line is inside header. */
2013 		skb_split_inside_header(skb, skb1, len, pos);
2014 	else		/* Second chunk has no header, nothing to copy. */
2015 		skb_split_no_header(skb, skb1, len, pos);
2016 }
2017 
2018 /* Shifting from/to a cloned skb is a no-go.
2019  *
2020  * Caller cannot keep skb_shinfo related pointers past calling here!
2021  */
2022 static int skb_prepare_for_shift(struct sk_buff *skb)
2023 {
2024 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2025 }
2026 
2027 /**
2028  * skb_shift - Shifts paged data partially from skb to another
2029  * @tgt: buffer into which tail data gets added
2030  * @skb: buffer from which the paged data comes from
2031  * @shiftlen: shift up to this many bytes
2032  *
2033  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2034  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2035  * It's up to caller to free skb if everything was shifted.
2036  *
2037  * If @tgt runs out of frags, the whole operation is aborted.
2038  *
2039  * Skb cannot include anything else but paged data while tgt is allowed
2040  * to have non-paged data as well.
2041  *
2042  * TODO: full sized shift could be optimized but that would need
2043  * specialized skb free'er to handle frags without up-to-date nr_frags.
2044  */
2045 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2046 {
2047 	int from, to, merge, todo;
2048 	struct skb_frag_struct *fragfrom, *fragto;
2049 
2050 	BUG_ON(shiftlen > skb->len);
2051 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2052 
2053 	todo = shiftlen;
2054 	from = 0;
2055 	to = skb_shinfo(tgt)->nr_frags;
2056 	fragfrom = &skb_shinfo(skb)->frags[from];
2057 
2058 	/* Actual merge is delayed until the point when we know we can
2059 	 * commit all, so that we don't have to undo partial changes
2060 	 */
2061 	if (!to ||
2062 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2063 		merge = -1;
2064 	} else {
2065 		merge = to - 1;
2066 
2067 		todo -= fragfrom->size;
2068 		if (todo < 0) {
2069 			if (skb_prepare_for_shift(skb) ||
2070 			    skb_prepare_for_shift(tgt))
2071 				return 0;
2072 
2073 			/* All previous frag pointers might be stale! */
2074 			fragfrom = &skb_shinfo(skb)->frags[from];
2075 			fragto = &skb_shinfo(tgt)->frags[merge];
2076 
2077 			fragto->size += shiftlen;
2078 			fragfrom->size -= shiftlen;
2079 			fragfrom->page_offset += shiftlen;
2080 
2081 			goto onlymerged;
2082 		}
2083 
2084 		from++;
2085 	}
2086 
2087 	/* Skip full, not-fitting skb to avoid expensive operations */
2088 	if ((shiftlen == skb->len) &&
2089 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2090 		return 0;
2091 
2092 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2093 		return 0;
2094 
2095 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2096 		if (to == MAX_SKB_FRAGS)
2097 			return 0;
2098 
2099 		fragfrom = &skb_shinfo(skb)->frags[from];
2100 		fragto = &skb_shinfo(tgt)->frags[to];
2101 
2102 		if (todo >= fragfrom->size) {
2103 			*fragto = *fragfrom;
2104 			todo -= fragfrom->size;
2105 			from++;
2106 			to++;
2107 
2108 		} else {
2109 			get_page(fragfrom->page);
2110 			fragto->page = fragfrom->page;
2111 			fragto->page_offset = fragfrom->page_offset;
2112 			fragto->size = todo;
2113 
2114 			fragfrom->page_offset += todo;
2115 			fragfrom->size -= todo;
2116 			todo = 0;
2117 
2118 			to++;
2119 			break;
2120 		}
2121 	}
2122 
2123 	/* Ready to "commit" this state change to tgt */
2124 	skb_shinfo(tgt)->nr_frags = to;
2125 
2126 	if (merge >= 0) {
2127 		fragfrom = &skb_shinfo(skb)->frags[0];
2128 		fragto = &skb_shinfo(tgt)->frags[merge];
2129 
2130 		fragto->size += fragfrom->size;
2131 		put_page(fragfrom->page);
2132 	}
2133 
2134 	/* Reposition in the original skb */
2135 	to = 0;
2136 	while (from < skb_shinfo(skb)->nr_frags)
2137 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2138 	skb_shinfo(skb)->nr_frags = to;
2139 
2140 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2141 
2142 onlymerged:
2143 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2144 	 * the other hand might need it if it needs to be resent
2145 	 */
2146 	tgt->ip_summed = CHECKSUM_PARTIAL;
2147 	skb->ip_summed = CHECKSUM_PARTIAL;
2148 
2149 	/* Yak, is it really working this way? Some helper please? */
2150 	skb->len -= shiftlen;
2151 	skb->data_len -= shiftlen;
2152 	skb->truesize -= shiftlen;
2153 	tgt->len += shiftlen;
2154 	tgt->data_len += shiftlen;
2155 	tgt->truesize += shiftlen;
2156 
2157 	return shiftlen;
2158 }
2159 
2160 /**
2161  * skb_prepare_seq_read - Prepare a sequential read of skb data
2162  * @skb: the buffer to read
2163  * @from: lower offset of data to be read
2164  * @to: upper offset of data to be read
2165  * @st: state variable
2166  *
2167  * Initializes the specified state variable. Must be called before
2168  * invoking skb_seq_read() for the first time.
2169  */
2170 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2171 			  unsigned int to, struct skb_seq_state *st)
2172 {
2173 	st->lower_offset = from;
2174 	st->upper_offset = to;
2175 	st->root_skb = st->cur_skb = skb;
2176 	st->frag_idx = st->stepped_offset = 0;
2177 	st->frag_data = NULL;
2178 }
2179 
2180 /**
2181  * skb_seq_read - Sequentially read skb data
2182  * @consumed: number of bytes consumed by the caller so far
2183  * @data: destination pointer for data to be returned
2184  * @st: state variable
2185  *
2186  * Reads a block of skb data at &consumed relative to the
2187  * lower offset specified to skb_prepare_seq_read(). Assigns
2188  * the head of the data block to &data and returns the length
2189  * of the block or 0 if the end of the skb data or the upper
2190  * offset has been reached.
2191  *
2192  * The caller is not required to consume all of the data
2193  * returned, i.e. &consumed is typically set to the number
2194  * of bytes already consumed and the next call to
2195  * skb_seq_read() will return the remaining part of the block.
2196  *
2197  * Note 1: The size of each block of data returned can be arbitary,
2198  *       this limitation is the cost for zerocopy seqeuental
2199  *       reads of potentially non linear data.
2200  *
2201  * Note 2: Fragment lists within fragments are not implemented
2202  *       at the moment, state->root_skb could be replaced with
2203  *       a stack for this purpose.
2204  */
2205 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2206 			  struct skb_seq_state *st)
2207 {
2208 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2209 	skb_frag_t *frag;
2210 
2211 	if (unlikely(abs_offset >= st->upper_offset))
2212 		return 0;
2213 
2214 next_skb:
2215 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2216 
2217 	if (abs_offset < block_limit) {
2218 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2219 		return block_limit - abs_offset;
2220 	}
2221 
2222 	if (st->frag_idx == 0 && !st->frag_data)
2223 		st->stepped_offset += skb_headlen(st->cur_skb);
2224 
2225 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2226 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2227 		block_limit = frag->size + st->stepped_offset;
2228 
2229 		if (abs_offset < block_limit) {
2230 			if (!st->frag_data)
2231 				st->frag_data = kmap_skb_frag(frag);
2232 
2233 			*data = (u8 *) st->frag_data + frag->page_offset +
2234 				(abs_offset - st->stepped_offset);
2235 
2236 			return block_limit - abs_offset;
2237 		}
2238 
2239 		if (st->frag_data) {
2240 			kunmap_skb_frag(st->frag_data);
2241 			st->frag_data = NULL;
2242 		}
2243 
2244 		st->frag_idx++;
2245 		st->stepped_offset += frag->size;
2246 	}
2247 
2248 	if (st->frag_data) {
2249 		kunmap_skb_frag(st->frag_data);
2250 		st->frag_data = NULL;
2251 	}
2252 
2253 	if (st->root_skb == st->cur_skb &&
2254 	    skb_shinfo(st->root_skb)->frag_list) {
2255 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2256 		st->frag_idx = 0;
2257 		goto next_skb;
2258 	} else if (st->cur_skb->next) {
2259 		st->cur_skb = st->cur_skb->next;
2260 		st->frag_idx = 0;
2261 		goto next_skb;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * skb_abort_seq_read - Abort a sequential read of skb data
2269  * @st: state variable
2270  *
2271  * Must be called if skb_seq_read() was not called until it
2272  * returned 0.
2273  */
2274 void skb_abort_seq_read(struct skb_seq_state *st)
2275 {
2276 	if (st->frag_data)
2277 		kunmap_skb_frag(st->frag_data);
2278 }
2279 
2280 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2281 
2282 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2283 					  struct ts_config *conf,
2284 					  struct ts_state *state)
2285 {
2286 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2287 }
2288 
2289 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2290 {
2291 	skb_abort_seq_read(TS_SKB_CB(state));
2292 }
2293 
2294 /**
2295  * skb_find_text - Find a text pattern in skb data
2296  * @skb: the buffer to look in
2297  * @from: search offset
2298  * @to: search limit
2299  * @config: textsearch configuration
2300  * @state: uninitialized textsearch state variable
2301  *
2302  * Finds a pattern in the skb data according to the specified
2303  * textsearch configuration. Use textsearch_next() to retrieve
2304  * subsequent occurrences of the pattern. Returns the offset
2305  * to the first occurrence or UINT_MAX if no match was found.
2306  */
2307 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2308 			   unsigned int to, struct ts_config *config,
2309 			   struct ts_state *state)
2310 {
2311 	unsigned int ret;
2312 
2313 	config->get_next_block = skb_ts_get_next_block;
2314 	config->finish = skb_ts_finish;
2315 
2316 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2317 
2318 	ret = textsearch_find(config, state);
2319 	return (ret <= to - from ? ret : UINT_MAX);
2320 }
2321 
2322 /**
2323  * skb_append_datato_frags: - append the user data to a skb
2324  * @sk: sock  structure
2325  * @skb: skb structure to be appened with user data.
2326  * @getfrag: call back function to be used for getting the user data
2327  * @from: pointer to user message iov
2328  * @length: length of the iov message
2329  *
2330  * Description: This procedure append the user data in the fragment part
2331  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2332  */
2333 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2334 			int (*getfrag)(void *from, char *to, int offset,
2335 					int len, int odd, struct sk_buff *skb),
2336 			void *from, int length)
2337 {
2338 	int frg_cnt = 0;
2339 	skb_frag_t *frag = NULL;
2340 	struct page *page = NULL;
2341 	int copy, left;
2342 	int offset = 0;
2343 	int ret;
2344 
2345 	do {
2346 		/* Return error if we don't have space for new frag */
2347 		frg_cnt = skb_shinfo(skb)->nr_frags;
2348 		if (frg_cnt >= MAX_SKB_FRAGS)
2349 			return -EFAULT;
2350 
2351 		/* allocate a new page for next frag */
2352 		page = alloc_pages(sk->sk_allocation, 0);
2353 
2354 		/* If alloc_page fails just return failure and caller will
2355 		 * free previous allocated pages by doing kfree_skb()
2356 		 */
2357 		if (page == NULL)
2358 			return -ENOMEM;
2359 
2360 		/* initialize the next frag */
2361 		sk->sk_sndmsg_page = page;
2362 		sk->sk_sndmsg_off = 0;
2363 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2364 		skb->truesize += PAGE_SIZE;
2365 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2366 
2367 		/* get the new initialized frag */
2368 		frg_cnt = skb_shinfo(skb)->nr_frags;
2369 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2370 
2371 		/* copy the user data to page */
2372 		left = PAGE_SIZE - frag->page_offset;
2373 		copy = (length > left)? left : length;
2374 
2375 		ret = getfrag(from, (page_address(frag->page) +
2376 			    frag->page_offset + frag->size),
2377 			    offset, copy, 0, skb);
2378 		if (ret < 0)
2379 			return -EFAULT;
2380 
2381 		/* copy was successful so update the size parameters */
2382 		sk->sk_sndmsg_off += copy;
2383 		frag->size += copy;
2384 		skb->len += copy;
2385 		skb->data_len += copy;
2386 		offset += copy;
2387 		length -= copy;
2388 
2389 	} while (length > 0);
2390 
2391 	return 0;
2392 }
2393 
2394 /**
2395  *	skb_pull_rcsum - pull skb and update receive checksum
2396  *	@skb: buffer to update
2397  *	@len: length of data pulled
2398  *
2399  *	This function performs an skb_pull on the packet and updates
2400  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2401  *	receive path processing instead of skb_pull unless you know
2402  *	that the checksum difference is zero (e.g., a valid IP header)
2403  *	or you are setting ip_summed to CHECKSUM_NONE.
2404  */
2405 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2406 {
2407 	BUG_ON(len > skb->len);
2408 	skb->len -= len;
2409 	BUG_ON(skb->len < skb->data_len);
2410 	skb_postpull_rcsum(skb, skb->data, len);
2411 	return skb->data += len;
2412 }
2413 
2414 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2415 
2416 /**
2417  *	skb_segment - Perform protocol segmentation on skb.
2418  *	@skb: buffer to segment
2419  *	@features: features for the output path (see dev->features)
2420  *
2421  *	This function performs segmentation on the given skb.  It returns
2422  *	a pointer to the first in a list of new skbs for the segments.
2423  *	In case of error it returns ERR_PTR(err).
2424  */
2425 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2426 {
2427 	struct sk_buff *segs = NULL;
2428 	struct sk_buff *tail = NULL;
2429 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2430 	unsigned int mss = skb_shinfo(skb)->gso_size;
2431 	unsigned int doffset = skb->data - skb_mac_header(skb);
2432 	unsigned int offset = doffset;
2433 	unsigned int headroom;
2434 	unsigned int len;
2435 	int sg = features & NETIF_F_SG;
2436 	int nfrags = skb_shinfo(skb)->nr_frags;
2437 	int err = -ENOMEM;
2438 	int i = 0;
2439 	int pos;
2440 
2441 	__skb_push(skb, doffset);
2442 	headroom = skb_headroom(skb);
2443 	pos = skb_headlen(skb);
2444 
2445 	do {
2446 		struct sk_buff *nskb;
2447 		skb_frag_t *frag;
2448 		int hsize;
2449 		int size;
2450 
2451 		len = skb->len - offset;
2452 		if (len > mss)
2453 			len = mss;
2454 
2455 		hsize = skb_headlen(skb) - offset;
2456 		if (hsize < 0)
2457 			hsize = 0;
2458 		if (hsize > len || !sg)
2459 			hsize = len;
2460 
2461 		if (!hsize && i >= nfrags) {
2462 			BUG_ON(fskb->len != len);
2463 
2464 			pos += len;
2465 			nskb = skb_clone(fskb, GFP_ATOMIC);
2466 			fskb = fskb->next;
2467 
2468 			if (unlikely(!nskb))
2469 				goto err;
2470 
2471 			hsize = skb_end_pointer(nskb) - nskb->head;
2472 			if (skb_cow_head(nskb, doffset + headroom)) {
2473 				kfree_skb(nskb);
2474 				goto err;
2475 			}
2476 
2477 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2478 					  hsize;
2479 			skb_release_head_state(nskb);
2480 			__skb_push(nskb, doffset);
2481 		} else {
2482 			nskb = alloc_skb(hsize + doffset + headroom,
2483 					 GFP_ATOMIC);
2484 
2485 			if (unlikely(!nskb))
2486 				goto err;
2487 
2488 			skb_reserve(nskb, headroom);
2489 			__skb_put(nskb, doffset);
2490 		}
2491 
2492 		if (segs)
2493 			tail->next = nskb;
2494 		else
2495 			segs = nskb;
2496 		tail = nskb;
2497 
2498 		__copy_skb_header(nskb, skb);
2499 		nskb->mac_len = skb->mac_len;
2500 
2501 		skb_reset_mac_header(nskb);
2502 		skb_set_network_header(nskb, skb->mac_len);
2503 		nskb->transport_header = (nskb->network_header +
2504 					  skb_network_header_len(skb));
2505 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2506 
2507 		if (pos >= offset + len)
2508 			continue;
2509 
2510 		if (!sg) {
2511 			nskb->ip_summed = CHECKSUM_NONE;
2512 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2513 							    skb_put(nskb, len),
2514 							    len, 0);
2515 			continue;
2516 		}
2517 
2518 		frag = skb_shinfo(nskb)->frags;
2519 
2520 		skb_copy_from_linear_data_offset(skb, offset,
2521 						 skb_put(nskb, hsize), hsize);
2522 
2523 		while (pos < offset + len && i < nfrags) {
2524 			*frag = skb_shinfo(skb)->frags[i];
2525 			get_page(frag->page);
2526 			size = frag->size;
2527 
2528 			if (pos < offset) {
2529 				frag->page_offset += offset - pos;
2530 				frag->size -= offset - pos;
2531 			}
2532 
2533 			skb_shinfo(nskb)->nr_frags++;
2534 
2535 			if (pos + size <= offset + len) {
2536 				i++;
2537 				pos += size;
2538 			} else {
2539 				frag->size -= pos + size - (offset + len);
2540 				goto skip_fraglist;
2541 			}
2542 
2543 			frag++;
2544 		}
2545 
2546 		if (pos < offset + len) {
2547 			struct sk_buff *fskb2 = fskb;
2548 
2549 			BUG_ON(pos + fskb->len != offset + len);
2550 
2551 			pos += fskb->len;
2552 			fskb = fskb->next;
2553 
2554 			if (fskb2->next) {
2555 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2556 				if (!fskb2)
2557 					goto err;
2558 			} else
2559 				skb_get(fskb2);
2560 
2561 			BUG_ON(skb_shinfo(nskb)->frag_list);
2562 			skb_shinfo(nskb)->frag_list = fskb2;
2563 		}
2564 
2565 skip_fraglist:
2566 		nskb->data_len = len - hsize;
2567 		nskb->len += nskb->data_len;
2568 		nskb->truesize += nskb->data_len;
2569 	} while ((offset += len) < skb->len);
2570 
2571 	return segs;
2572 
2573 err:
2574 	while ((skb = segs)) {
2575 		segs = skb->next;
2576 		kfree_skb(skb);
2577 	}
2578 	return ERR_PTR(err);
2579 }
2580 
2581 EXPORT_SYMBOL_GPL(skb_segment);
2582 
2583 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2584 {
2585 	struct sk_buff *p = *head;
2586 	struct sk_buff *nskb;
2587 	unsigned int headroom;
2588 	unsigned int hlen = p->data - skb_mac_header(p);
2589 	unsigned int len = skb->len;
2590 
2591 	if (hlen + p->len + len >= 65536)
2592 		return -E2BIG;
2593 
2594 	if (skb_shinfo(p)->frag_list)
2595 		goto merge;
2596 	else if (!skb_headlen(p) && !skb_headlen(skb) &&
2597 		 skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags <
2598 		 MAX_SKB_FRAGS) {
2599 		memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2600 		       skb_shinfo(skb)->frags,
2601 		       skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2602 
2603 		skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2604 		skb_shinfo(skb)->nr_frags = 0;
2605 
2606 		skb->truesize -= skb->data_len;
2607 		skb->len -= skb->data_len;
2608 		skb->data_len = 0;
2609 
2610 		NAPI_GRO_CB(skb)->free = 1;
2611 		goto done;
2612 	}
2613 
2614 	headroom = skb_headroom(p);
2615 	nskb = netdev_alloc_skb(p->dev, headroom);
2616 	if (unlikely(!nskb))
2617 		return -ENOMEM;
2618 
2619 	__copy_skb_header(nskb, p);
2620 	nskb->mac_len = p->mac_len;
2621 
2622 	skb_reserve(nskb, headroom);
2623 
2624 	skb_set_mac_header(nskb, -hlen);
2625 	skb_set_network_header(nskb, skb_network_offset(p));
2626 	skb_set_transport_header(nskb, skb_transport_offset(p));
2627 
2628 	memcpy(skb_mac_header(nskb), skb_mac_header(p), hlen);
2629 
2630 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2631 	skb_shinfo(nskb)->frag_list = p;
2632 	skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2633 	skb_header_release(p);
2634 	nskb->prev = p;
2635 
2636 	nskb->data_len += p->len;
2637 	nskb->truesize += p->len;
2638 	nskb->len += p->len;
2639 
2640 	*head = nskb;
2641 	nskb->next = p->next;
2642 	p->next = NULL;
2643 
2644 	p = nskb;
2645 
2646 merge:
2647 	p->prev->next = skb;
2648 	p->prev = skb;
2649 	skb_header_release(skb);
2650 
2651 done:
2652 	NAPI_GRO_CB(p)->count++;
2653 	p->data_len += len;
2654 	p->truesize += len;
2655 	p->len += len;
2656 
2657 	NAPI_GRO_CB(skb)->same_flow = 1;
2658 	return 0;
2659 }
2660 EXPORT_SYMBOL_GPL(skb_gro_receive);
2661 
2662 void __init skb_init(void)
2663 {
2664 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2665 					      sizeof(struct sk_buff),
2666 					      0,
2667 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2668 					      NULL);
2669 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2670 						(2*sizeof(struct sk_buff)) +
2671 						sizeof(atomic_t),
2672 						0,
2673 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2674 						NULL);
2675 }
2676 
2677 /**
2678  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2679  *	@skb: Socket buffer containing the buffers to be mapped
2680  *	@sg: The scatter-gather list to map into
2681  *	@offset: The offset into the buffer's contents to start mapping
2682  *	@len: Length of buffer space to be mapped
2683  *
2684  *	Fill the specified scatter-gather list with mappings/pointers into a
2685  *	region of the buffer space attached to a socket buffer.
2686  */
2687 static int
2688 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2689 {
2690 	int start = skb_headlen(skb);
2691 	int i, copy = start - offset;
2692 	int elt = 0;
2693 
2694 	if (copy > 0) {
2695 		if (copy > len)
2696 			copy = len;
2697 		sg_set_buf(sg, skb->data + offset, copy);
2698 		elt++;
2699 		if ((len -= copy) == 0)
2700 			return elt;
2701 		offset += copy;
2702 	}
2703 
2704 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2705 		int end;
2706 
2707 		WARN_ON(start > offset + len);
2708 
2709 		end = start + skb_shinfo(skb)->frags[i].size;
2710 		if ((copy = end - offset) > 0) {
2711 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2712 
2713 			if (copy > len)
2714 				copy = len;
2715 			sg_set_page(&sg[elt], frag->page, copy,
2716 					frag->page_offset+offset-start);
2717 			elt++;
2718 			if (!(len -= copy))
2719 				return elt;
2720 			offset += copy;
2721 		}
2722 		start = end;
2723 	}
2724 
2725 	if (skb_shinfo(skb)->frag_list) {
2726 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2727 
2728 		for (; list; list = list->next) {
2729 			int end;
2730 
2731 			WARN_ON(start > offset + len);
2732 
2733 			end = start + list->len;
2734 			if ((copy = end - offset) > 0) {
2735 				if (copy > len)
2736 					copy = len;
2737 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2738 						      copy);
2739 				if ((len -= copy) == 0)
2740 					return elt;
2741 				offset += copy;
2742 			}
2743 			start = end;
2744 		}
2745 	}
2746 	BUG_ON(len);
2747 	return elt;
2748 }
2749 
2750 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2751 {
2752 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2753 
2754 	sg_mark_end(&sg[nsg - 1]);
2755 
2756 	return nsg;
2757 }
2758 
2759 /**
2760  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2761  *	@skb: The socket buffer to check.
2762  *	@tailbits: Amount of trailing space to be added
2763  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2764  *
2765  *	Make sure that the data buffers attached to a socket buffer are
2766  *	writable. If they are not, private copies are made of the data buffers
2767  *	and the socket buffer is set to use these instead.
2768  *
2769  *	If @tailbits is given, make sure that there is space to write @tailbits
2770  *	bytes of data beyond current end of socket buffer.  @trailer will be
2771  *	set to point to the skb in which this space begins.
2772  *
2773  *	The number of scatterlist elements required to completely map the
2774  *	COW'd and extended socket buffer will be returned.
2775  */
2776 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2777 {
2778 	int copyflag;
2779 	int elt;
2780 	struct sk_buff *skb1, **skb_p;
2781 
2782 	/* If skb is cloned or its head is paged, reallocate
2783 	 * head pulling out all the pages (pages are considered not writable
2784 	 * at the moment even if they are anonymous).
2785 	 */
2786 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2787 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2788 		return -ENOMEM;
2789 
2790 	/* Easy case. Most of packets will go this way. */
2791 	if (!skb_shinfo(skb)->frag_list) {
2792 		/* A little of trouble, not enough of space for trailer.
2793 		 * This should not happen, when stack is tuned to generate
2794 		 * good frames. OK, on miss we reallocate and reserve even more
2795 		 * space, 128 bytes is fair. */
2796 
2797 		if (skb_tailroom(skb) < tailbits &&
2798 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2799 			return -ENOMEM;
2800 
2801 		/* Voila! */
2802 		*trailer = skb;
2803 		return 1;
2804 	}
2805 
2806 	/* Misery. We are in troubles, going to mincer fragments... */
2807 
2808 	elt = 1;
2809 	skb_p = &skb_shinfo(skb)->frag_list;
2810 	copyflag = 0;
2811 
2812 	while ((skb1 = *skb_p) != NULL) {
2813 		int ntail = 0;
2814 
2815 		/* The fragment is partially pulled by someone,
2816 		 * this can happen on input. Copy it and everything
2817 		 * after it. */
2818 
2819 		if (skb_shared(skb1))
2820 			copyflag = 1;
2821 
2822 		/* If the skb is the last, worry about trailer. */
2823 
2824 		if (skb1->next == NULL && tailbits) {
2825 			if (skb_shinfo(skb1)->nr_frags ||
2826 			    skb_shinfo(skb1)->frag_list ||
2827 			    skb_tailroom(skb1) < tailbits)
2828 				ntail = tailbits + 128;
2829 		}
2830 
2831 		if (copyflag ||
2832 		    skb_cloned(skb1) ||
2833 		    ntail ||
2834 		    skb_shinfo(skb1)->nr_frags ||
2835 		    skb_shinfo(skb1)->frag_list) {
2836 			struct sk_buff *skb2;
2837 
2838 			/* Fuck, we are miserable poor guys... */
2839 			if (ntail == 0)
2840 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2841 			else
2842 				skb2 = skb_copy_expand(skb1,
2843 						       skb_headroom(skb1),
2844 						       ntail,
2845 						       GFP_ATOMIC);
2846 			if (unlikely(skb2 == NULL))
2847 				return -ENOMEM;
2848 
2849 			if (skb1->sk)
2850 				skb_set_owner_w(skb2, skb1->sk);
2851 
2852 			/* Looking around. Are we still alive?
2853 			 * OK, link new skb, drop old one */
2854 
2855 			skb2->next = skb1->next;
2856 			*skb_p = skb2;
2857 			kfree_skb(skb1);
2858 			skb1 = skb2;
2859 		}
2860 		elt++;
2861 		*trailer = skb1;
2862 		skb_p = &skb1->next;
2863 	}
2864 
2865 	return elt;
2866 }
2867 
2868 /**
2869  * skb_partial_csum_set - set up and verify partial csum values for packet
2870  * @skb: the skb to set
2871  * @start: the number of bytes after skb->data to start checksumming.
2872  * @off: the offset from start to place the checksum.
2873  *
2874  * For untrusted partially-checksummed packets, we need to make sure the values
2875  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2876  *
2877  * This function checks and sets those values and skb->ip_summed: if this
2878  * returns false you should drop the packet.
2879  */
2880 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2881 {
2882 	if (unlikely(start > skb->len - 2) ||
2883 	    unlikely((int)start + off > skb->len - 2)) {
2884 		if (net_ratelimit())
2885 			printk(KERN_WARNING
2886 			       "bad partial csum: csum=%u/%u len=%u\n",
2887 			       start, off, skb->len);
2888 		return false;
2889 	}
2890 	skb->ip_summed = CHECKSUM_PARTIAL;
2891 	skb->csum_start = skb_headroom(skb) + start;
2892 	skb->csum_offset = off;
2893 	return true;
2894 }
2895 
2896 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2897 {
2898 	if (net_ratelimit())
2899 		pr_warning("%s: received packets cannot be forwarded"
2900 			   " while LRO is enabled\n", skb->dev->name);
2901 }
2902 
2903 EXPORT_SYMBOL(___pskb_trim);
2904 EXPORT_SYMBOL(__kfree_skb);
2905 EXPORT_SYMBOL(kfree_skb);
2906 EXPORT_SYMBOL(__pskb_pull_tail);
2907 EXPORT_SYMBOL(__alloc_skb);
2908 EXPORT_SYMBOL(__netdev_alloc_skb);
2909 EXPORT_SYMBOL(pskb_copy);
2910 EXPORT_SYMBOL(pskb_expand_head);
2911 EXPORT_SYMBOL(skb_checksum);
2912 EXPORT_SYMBOL(skb_clone);
2913 EXPORT_SYMBOL(skb_copy);
2914 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2915 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2916 EXPORT_SYMBOL(skb_copy_bits);
2917 EXPORT_SYMBOL(skb_copy_expand);
2918 EXPORT_SYMBOL(skb_over_panic);
2919 EXPORT_SYMBOL(skb_pad);
2920 EXPORT_SYMBOL(skb_realloc_headroom);
2921 EXPORT_SYMBOL(skb_under_panic);
2922 EXPORT_SYMBOL(skb_dequeue);
2923 EXPORT_SYMBOL(skb_dequeue_tail);
2924 EXPORT_SYMBOL(skb_insert);
2925 EXPORT_SYMBOL(skb_queue_purge);
2926 EXPORT_SYMBOL(skb_queue_head);
2927 EXPORT_SYMBOL(skb_queue_tail);
2928 EXPORT_SYMBOL(skb_unlink);
2929 EXPORT_SYMBOL(skb_append);
2930 EXPORT_SYMBOL(skb_split);
2931 EXPORT_SYMBOL(skb_prepare_seq_read);
2932 EXPORT_SYMBOL(skb_seq_read);
2933 EXPORT_SYMBOL(skb_abort_seq_read);
2934 EXPORT_SYMBOL(skb_find_text);
2935 EXPORT_SYMBOL(skb_append_datato_frags);
2936 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2937 
2938 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2939 EXPORT_SYMBOL_GPL(skb_cow_data);
2940 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2941