xref: /linux/net/core/skbuff.c (revision b1ca2f1b04b8e89629c3c37430213267fd56c956)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 #include <linux/textsearch.h>
83 
84 #include "dev.h"
85 #include "sock_destructor.h"
86 
87 struct kmem_cache *skbuff_head_cache __ro_after_init;
88 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
89 #ifdef CONFIG_SKB_EXTENSIONS
90 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
91 #endif
92 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
93 EXPORT_SYMBOL(sysctl_max_skb_frags);
94 
95 #undef FN
96 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
97 const char * const drop_reasons[] = {
98 	[SKB_CONSUMED] = "CONSUMED",
99 	DEFINE_DROP_REASON(FN, FN)
100 };
101 EXPORT_SYMBOL(drop_reasons);
102 
103 /**
104  *	skb_panic - private function for out-of-line support
105  *	@skb:	buffer
106  *	@sz:	size
107  *	@addr:	address
108  *	@msg:	skb_over_panic or skb_under_panic
109  *
110  *	Out-of-line support for skb_put() and skb_push().
111  *	Called via the wrapper skb_over_panic() or skb_under_panic().
112  *	Keep out of line to prevent kernel bloat.
113  *	__builtin_return_address is not used because it is not always reliable.
114  */
115 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
116 		      const char msg[])
117 {
118 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
119 		 msg, addr, skb->len, sz, skb->head, skb->data,
120 		 (unsigned long)skb->tail, (unsigned long)skb->end,
121 		 skb->dev ? skb->dev->name : "<NULL>");
122 	BUG();
123 }
124 
125 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
126 {
127 	skb_panic(skb, sz, addr, __func__);
128 }
129 
130 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
131 {
132 	skb_panic(skb, sz, addr, __func__);
133 }
134 
135 #define NAPI_SKB_CACHE_SIZE	64
136 #define NAPI_SKB_CACHE_BULK	16
137 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
138 
139 #if PAGE_SIZE == SZ_4K
140 
141 #define NAPI_HAS_SMALL_PAGE_FRAG	1
142 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
143 
144 /* specialized page frag allocator using a single order 0 page
145  * and slicing it into 1K sized fragment. Constrained to systems
146  * with a very limited amount of 1K fragments fitting a single
147  * page - to avoid excessive truesize underestimation
148  */
149 
150 struct page_frag_1k {
151 	void *va;
152 	u16 offset;
153 	bool pfmemalloc;
154 };
155 
156 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
157 {
158 	struct page *page;
159 	int offset;
160 
161 	offset = nc->offset - SZ_1K;
162 	if (likely(offset >= 0))
163 		goto use_frag;
164 
165 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
166 	if (!page)
167 		return NULL;
168 
169 	nc->va = page_address(page);
170 	nc->pfmemalloc = page_is_pfmemalloc(page);
171 	offset = PAGE_SIZE - SZ_1K;
172 	page_ref_add(page, offset / SZ_1K);
173 
174 use_frag:
175 	nc->offset = offset;
176 	return nc->va + offset;
177 }
178 #else
179 
180 /* the small page is actually unused in this build; add dummy helpers
181  * to please the compiler and avoid later preprocessor's conditionals
182  */
183 #define NAPI_HAS_SMALL_PAGE_FRAG	0
184 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
185 
186 struct page_frag_1k {
187 };
188 
189 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
190 {
191 	return NULL;
192 }
193 
194 #endif
195 
196 struct napi_alloc_cache {
197 	struct page_frag_cache page;
198 	struct page_frag_1k page_small;
199 	unsigned int skb_count;
200 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
201 };
202 
203 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
204 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
205 
206 /* Double check that napi_get_frags() allocates skbs with
207  * skb->head being backed by slab, not a page fragment.
208  * This is to make sure bug fixed in 3226b158e67c
209  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
210  * does not accidentally come back.
211  */
212 void napi_get_frags_check(struct napi_struct *napi)
213 {
214 	struct sk_buff *skb;
215 
216 	local_bh_disable();
217 	skb = napi_get_frags(napi);
218 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
219 	napi_free_frags(napi);
220 	local_bh_enable();
221 }
222 
223 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
224 {
225 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
226 
227 	fragsz = SKB_DATA_ALIGN(fragsz);
228 
229 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
230 }
231 EXPORT_SYMBOL(__napi_alloc_frag_align);
232 
233 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
234 {
235 	void *data;
236 
237 	fragsz = SKB_DATA_ALIGN(fragsz);
238 	if (in_hardirq() || irqs_disabled()) {
239 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
240 
241 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
242 	} else {
243 		struct napi_alloc_cache *nc;
244 
245 		local_bh_disable();
246 		nc = this_cpu_ptr(&napi_alloc_cache);
247 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
248 		local_bh_enable();
249 	}
250 	return data;
251 }
252 EXPORT_SYMBOL(__netdev_alloc_frag_align);
253 
254 static struct sk_buff *napi_skb_cache_get(void)
255 {
256 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
257 	struct sk_buff *skb;
258 
259 	if (unlikely(!nc->skb_count)) {
260 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
261 						      GFP_ATOMIC,
262 						      NAPI_SKB_CACHE_BULK,
263 						      nc->skb_cache);
264 		if (unlikely(!nc->skb_count))
265 			return NULL;
266 	}
267 
268 	skb = nc->skb_cache[--nc->skb_count];
269 	kasan_unpoison_object_data(skbuff_head_cache, skb);
270 
271 	return skb;
272 }
273 
274 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
275 					 unsigned int size)
276 {
277 	struct skb_shared_info *shinfo;
278 
279 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
280 
281 	/* Assumes caller memset cleared SKB */
282 	skb->truesize = SKB_TRUESIZE(size);
283 	refcount_set(&skb->users, 1);
284 	skb->head = data;
285 	skb->data = data;
286 	skb_reset_tail_pointer(skb);
287 	skb_set_end_offset(skb, size);
288 	skb->mac_header = (typeof(skb->mac_header))~0U;
289 	skb->transport_header = (typeof(skb->transport_header))~0U;
290 	skb->alloc_cpu = raw_smp_processor_id();
291 	/* make sure we initialize shinfo sequentially */
292 	shinfo = skb_shinfo(skb);
293 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
294 	atomic_set(&shinfo->dataref, 1);
295 
296 	skb_set_kcov_handle(skb, kcov_common_handle());
297 }
298 
299 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
300 				     unsigned int *size)
301 {
302 	void *resized;
303 
304 	/* Must find the allocation size (and grow it to match). */
305 	*size = ksize(data);
306 	/* krealloc() will immediately return "data" when
307 	 * "ksize(data)" is requested: it is the existing upper
308 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
309 	 * that this "new" pointer needs to be passed back to the
310 	 * caller for use so the __alloc_size hinting will be
311 	 * tracked correctly.
312 	 */
313 	resized = krealloc(data, *size, GFP_ATOMIC);
314 	WARN_ON_ONCE(resized != data);
315 	return resized;
316 }
317 
318 /* build_skb() variant which can operate on slab buffers.
319  * Note that this should be used sparingly as slab buffers
320  * cannot be combined efficiently by GRO!
321  */
322 struct sk_buff *slab_build_skb(void *data)
323 {
324 	struct sk_buff *skb;
325 	unsigned int size;
326 
327 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
328 	if (unlikely(!skb))
329 		return NULL;
330 
331 	memset(skb, 0, offsetof(struct sk_buff, tail));
332 	data = __slab_build_skb(skb, data, &size);
333 	__finalize_skb_around(skb, data, size);
334 
335 	return skb;
336 }
337 EXPORT_SYMBOL(slab_build_skb);
338 
339 /* Caller must provide SKB that is memset cleared */
340 static void __build_skb_around(struct sk_buff *skb, void *data,
341 			       unsigned int frag_size)
342 {
343 	unsigned int size = frag_size;
344 
345 	/* frag_size == 0 is considered deprecated now. Callers
346 	 * using slab buffer should use slab_build_skb() instead.
347 	 */
348 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
349 		data = __slab_build_skb(skb, data, &size);
350 
351 	__finalize_skb_around(skb, data, size);
352 }
353 
354 /**
355  * __build_skb - build a network buffer
356  * @data: data buffer provided by caller
357  * @frag_size: size of data (must not be 0)
358  *
359  * Allocate a new &sk_buff. Caller provides space holding head and
360  * skb_shared_info. @data must have been allocated from the page
361  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
362  * allocation is deprecated, and callers should use slab_build_skb()
363  * instead.)
364  * The return is the new skb buffer.
365  * On a failure the return is %NULL, and @data is not freed.
366  * Notes :
367  *  Before IO, driver allocates only data buffer where NIC put incoming frame
368  *  Driver should add room at head (NET_SKB_PAD) and
369  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
370  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
371  *  before giving packet to stack.
372  *  RX rings only contains data buffers, not full skbs.
373  */
374 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
375 {
376 	struct sk_buff *skb;
377 
378 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
379 	if (unlikely(!skb))
380 		return NULL;
381 
382 	memset(skb, 0, offsetof(struct sk_buff, tail));
383 	__build_skb_around(skb, data, frag_size);
384 
385 	return skb;
386 }
387 
388 /* build_skb() is wrapper over __build_skb(), that specifically
389  * takes care of skb->head and skb->pfmemalloc
390  */
391 struct sk_buff *build_skb(void *data, unsigned int frag_size)
392 {
393 	struct sk_buff *skb = __build_skb(data, frag_size);
394 
395 	if (skb && frag_size) {
396 		skb->head_frag = 1;
397 		if (page_is_pfmemalloc(virt_to_head_page(data)))
398 			skb->pfmemalloc = 1;
399 	}
400 	return skb;
401 }
402 EXPORT_SYMBOL(build_skb);
403 
404 /**
405  * build_skb_around - build a network buffer around provided skb
406  * @skb: sk_buff provide by caller, must be memset cleared
407  * @data: data buffer provided by caller
408  * @frag_size: size of data
409  */
410 struct sk_buff *build_skb_around(struct sk_buff *skb,
411 				 void *data, unsigned int frag_size)
412 {
413 	if (unlikely(!skb))
414 		return NULL;
415 
416 	__build_skb_around(skb, data, frag_size);
417 
418 	if (frag_size) {
419 		skb->head_frag = 1;
420 		if (page_is_pfmemalloc(virt_to_head_page(data)))
421 			skb->pfmemalloc = 1;
422 	}
423 	return skb;
424 }
425 EXPORT_SYMBOL(build_skb_around);
426 
427 /**
428  * __napi_build_skb - build a network buffer
429  * @data: data buffer provided by caller
430  * @frag_size: size of data
431  *
432  * Version of __build_skb() that uses NAPI percpu caches to obtain
433  * skbuff_head instead of inplace allocation.
434  *
435  * Returns a new &sk_buff on success, %NULL on allocation failure.
436  */
437 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
438 {
439 	struct sk_buff *skb;
440 
441 	skb = napi_skb_cache_get();
442 	if (unlikely(!skb))
443 		return NULL;
444 
445 	memset(skb, 0, offsetof(struct sk_buff, tail));
446 	__build_skb_around(skb, data, frag_size);
447 
448 	return skb;
449 }
450 
451 /**
452  * napi_build_skb - build a network buffer
453  * @data: data buffer provided by caller
454  * @frag_size: size of data
455  *
456  * Version of __napi_build_skb() that takes care of skb->head_frag
457  * and skb->pfmemalloc when the data is a page or page fragment.
458  *
459  * Returns a new &sk_buff on success, %NULL on allocation failure.
460  */
461 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
462 {
463 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
464 
465 	if (likely(skb) && frag_size) {
466 		skb->head_frag = 1;
467 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
468 	}
469 
470 	return skb;
471 }
472 EXPORT_SYMBOL(napi_build_skb);
473 
474 /*
475  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
476  * the caller if emergency pfmemalloc reserves are being used. If it is and
477  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
478  * may be used. Otherwise, the packet data may be discarded until enough
479  * memory is free
480  */
481 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
482 			     bool *pfmemalloc)
483 {
484 	void *obj;
485 	bool ret_pfmemalloc = false;
486 
487 	/*
488 	 * Try a regular allocation, when that fails and we're not entitled
489 	 * to the reserves, fail.
490 	 */
491 	obj = kmalloc_node_track_caller(size,
492 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
493 					node);
494 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
495 		goto out;
496 
497 	/* Try again but now we are using pfmemalloc reserves */
498 	ret_pfmemalloc = true;
499 	obj = kmalloc_node_track_caller(size, flags, node);
500 
501 out:
502 	if (pfmemalloc)
503 		*pfmemalloc = ret_pfmemalloc;
504 
505 	return obj;
506 }
507 
508 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
509  *	'private' fields and also do memory statistics to find all the
510  *	[BEEP] leaks.
511  *
512  */
513 
514 /**
515  *	__alloc_skb	-	allocate a network buffer
516  *	@size: size to allocate
517  *	@gfp_mask: allocation mask
518  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
519  *		instead of head cache and allocate a cloned (child) skb.
520  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
521  *		allocations in case the data is required for writeback
522  *	@node: numa node to allocate memory on
523  *
524  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
525  *	tail room of at least size bytes. The object has a reference count
526  *	of one. The return is the buffer. On a failure the return is %NULL.
527  *
528  *	Buffers may only be allocated from interrupts using a @gfp_mask of
529  *	%GFP_ATOMIC.
530  */
531 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
532 			    int flags, int node)
533 {
534 	struct kmem_cache *cache;
535 	struct sk_buff *skb;
536 	unsigned int osize;
537 	bool pfmemalloc;
538 	u8 *data;
539 
540 	cache = (flags & SKB_ALLOC_FCLONE)
541 		? skbuff_fclone_cache : skbuff_head_cache;
542 
543 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
544 		gfp_mask |= __GFP_MEMALLOC;
545 
546 	/* Get the HEAD */
547 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
548 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
549 		skb = napi_skb_cache_get();
550 	else
551 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
552 	if (unlikely(!skb))
553 		return NULL;
554 	prefetchw(skb);
555 
556 	/* We do our best to align skb_shared_info on a separate cache
557 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
558 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
559 	 * Both skb->head and skb_shared_info are cache line aligned.
560 	 */
561 	size = SKB_DATA_ALIGN(size);
562 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
563 	osize = kmalloc_size_roundup(size);
564 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
565 	if (unlikely(!data))
566 		goto nodata;
567 	/* kmalloc_size_roundup() might give us more room than requested.
568 	 * Put skb_shared_info exactly at the end of allocated zone,
569 	 * to allow max possible filling before reallocation.
570 	 */
571 	size = SKB_WITH_OVERHEAD(osize);
572 	prefetchw(data + size);
573 
574 	/*
575 	 * Only clear those fields we need to clear, not those that we will
576 	 * actually initialise below. Hence, don't put any more fields after
577 	 * the tail pointer in struct sk_buff!
578 	 */
579 	memset(skb, 0, offsetof(struct sk_buff, tail));
580 	__build_skb_around(skb, data, osize);
581 	skb->pfmemalloc = pfmemalloc;
582 
583 	if (flags & SKB_ALLOC_FCLONE) {
584 		struct sk_buff_fclones *fclones;
585 
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		skb->fclone = SKB_FCLONE_ORIG;
589 		refcount_set(&fclones->fclone_ref, 1);
590 	}
591 
592 	return skb;
593 
594 nodata:
595 	kmem_cache_free(cache, skb);
596 	return NULL;
597 }
598 EXPORT_SYMBOL(__alloc_skb);
599 
600 /**
601  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
602  *	@dev: network device to receive on
603  *	@len: length to allocate
604  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
605  *
606  *	Allocate a new &sk_buff and assign it a usage count of one. The
607  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
608  *	the headroom they think they need without accounting for the
609  *	built in space. The built in space is used for optimisations.
610  *
611  *	%NULL is returned if there is no free memory.
612  */
613 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
614 				   gfp_t gfp_mask)
615 {
616 	struct page_frag_cache *nc;
617 	struct sk_buff *skb;
618 	bool pfmemalloc;
619 	void *data;
620 
621 	len += NET_SKB_PAD;
622 
623 	/* If requested length is either too small or too big,
624 	 * we use kmalloc() for skb->head allocation.
625 	 */
626 	if (len <= SKB_WITH_OVERHEAD(1024) ||
627 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
628 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
629 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
630 		if (!skb)
631 			goto skb_fail;
632 		goto skb_success;
633 	}
634 
635 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
636 	len = SKB_DATA_ALIGN(len);
637 
638 	if (sk_memalloc_socks())
639 		gfp_mask |= __GFP_MEMALLOC;
640 
641 	if (in_hardirq() || irqs_disabled()) {
642 		nc = this_cpu_ptr(&netdev_alloc_cache);
643 		data = page_frag_alloc(nc, len, gfp_mask);
644 		pfmemalloc = nc->pfmemalloc;
645 	} else {
646 		local_bh_disable();
647 		nc = this_cpu_ptr(&napi_alloc_cache.page);
648 		data = page_frag_alloc(nc, len, gfp_mask);
649 		pfmemalloc = nc->pfmemalloc;
650 		local_bh_enable();
651 	}
652 
653 	if (unlikely(!data))
654 		return NULL;
655 
656 	skb = __build_skb(data, len);
657 	if (unlikely(!skb)) {
658 		skb_free_frag(data);
659 		return NULL;
660 	}
661 
662 	if (pfmemalloc)
663 		skb->pfmemalloc = 1;
664 	skb->head_frag = 1;
665 
666 skb_success:
667 	skb_reserve(skb, NET_SKB_PAD);
668 	skb->dev = dev;
669 
670 skb_fail:
671 	return skb;
672 }
673 EXPORT_SYMBOL(__netdev_alloc_skb);
674 
675 /**
676  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
677  *	@napi: napi instance this buffer was allocated for
678  *	@len: length to allocate
679  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
680  *
681  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
682  *	attempt to allocate the head from a special reserved region used
683  *	only for NAPI Rx allocation.  By doing this we can save several
684  *	CPU cycles by avoiding having to disable and re-enable IRQs.
685  *
686  *	%NULL is returned if there is no free memory.
687  */
688 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
689 				 gfp_t gfp_mask)
690 {
691 	struct napi_alloc_cache *nc;
692 	struct sk_buff *skb;
693 	bool pfmemalloc;
694 	void *data;
695 
696 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
697 	len += NET_SKB_PAD + NET_IP_ALIGN;
698 
699 	/* If requested length is either too small or too big,
700 	 * we use kmalloc() for skb->head allocation.
701 	 * When the small frag allocator is available, prefer it over kmalloc
702 	 * for small fragments
703 	 */
704 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
705 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
706 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
707 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
708 				  NUMA_NO_NODE);
709 		if (!skb)
710 			goto skb_fail;
711 		goto skb_success;
712 	}
713 
714 	nc = this_cpu_ptr(&napi_alloc_cache);
715 
716 	if (sk_memalloc_socks())
717 		gfp_mask |= __GFP_MEMALLOC;
718 
719 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
720 		/* we are artificially inflating the allocation size, but
721 		 * that is not as bad as it may look like, as:
722 		 * - 'len' less than GRO_MAX_HEAD makes little sense
723 		 * - On most systems, larger 'len' values lead to fragment
724 		 *   size above 512 bytes
725 		 * - kmalloc would use the kmalloc-1k slab for such values
726 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
727 		 *   little networking, as that implies no WiFi and no
728 		 *   tunnels support, and 32 bits arches.
729 		 */
730 		len = SZ_1K;
731 
732 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
733 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
734 	} else {
735 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
736 		len = SKB_DATA_ALIGN(len);
737 
738 		data = page_frag_alloc(&nc->page, len, gfp_mask);
739 		pfmemalloc = nc->page.pfmemalloc;
740 	}
741 
742 	if (unlikely(!data))
743 		return NULL;
744 
745 	skb = __napi_build_skb(data, len);
746 	if (unlikely(!skb)) {
747 		skb_free_frag(data);
748 		return NULL;
749 	}
750 
751 	if (pfmemalloc)
752 		skb->pfmemalloc = 1;
753 	skb->head_frag = 1;
754 
755 skb_success:
756 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
757 	skb->dev = napi->dev;
758 
759 skb_fail:
760 	return skb;
761 }
762 EXPORT_SYMBOL(__napi_alloc_skb);
763 
764 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
765 		     int size, unsigned int truesize)
766 {
767 	skb_fill_page_desc(skb, i, page, off, size);
768 	skb->len += size;
769 	skb->data_len += size;
770 	skb->truesize += truesize;
771 }
772 EXPORT_SYMBOL(skb_add_rx_frag);
773 
774 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
775 			  unsigned int truesize)
776 {
777 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
778 
779 	skb_frag_size_add(frag, size);
780 	skb->len += size;
781 	skb->data_len += size;
782 	skb->truesize += truesize;
783 }
784 EXPORT_SYMBOL(skb_coalesce_rx_frag);
785 
786 static void skb_drop_list(struct sk_buff **listp)
787 {
788 	kfree_skb_list(*listp);
789 	*listp = NULL;
790 }
791 
792 static inline void skb_drop_fraglist(struct sk_buff *skb)
793 {
794 	skb_drop_list(&skb_shinfo(skb)->frag_list);
795 }
796 
797 static void skb_clone_fraglist(struct sk_buff *skb)
798 {
799 	struct sk_buff *list;
800 
801 	skb_walk_frags(skb, list)
802 		skb_get(list);
803 }
804 
805 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
806 {
807 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
808 		return false;
809 	return page_pool_return_skb_page(virt_to_page(data));
810 }
811 
812 static void skb_free_head(struct sk_buff *skb)
813 {
814 	unsigned char *head = skb->head;
815 
816 	if (skb->head_frag) {
817 		if (skb_pp_recycle(skb, head))
818 			return;
819 		skb_free_frag(head);
820 	} else {
821 		kfree(head);
822 	}
823 }
824 
825 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
826 {
827 	struct skb_shared_info *shinfo = skb_shinfo(skb);
828 	int i;
829 
830 	if (skb->cloned &&
831 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
832 			      &shinfo->dataref))
833 		goto exit;
834 
835 	if (skb_zcopy(skb)) {
836 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
837 
838 		skb_zcopy_clear(skb, true);
839 		if (skip_unref)
840 			goto free_head;
841 	}
842 
843 	for (i = 0; i < shinfo->nr_frags; i++)
844 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
845 
846 free_head:
847 	if (shinfo->frag_list)
848 		kfree_skb_list_reason(shinfo->frag_list, reason);
849 
850 	skb_free_head(skb);
851 exit:
852 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
853 	 * bit is only set on the head though, so in order to avoid races
854 	 * while trying to recycle fragments on __skb_frag_unref() we need
855 	 * to make one SKB responsible for triggering the recycle path.
856 	 * So disable the recycling bit if an SKB is cloned and we have
857 	 * additional references to the fragmented part of the SKB.
858 	 * Eventually the last SKB will have the recycling bit set and it's
859 	 * dataref set to 0, which will trigger the recycling
860 	 */
861 	skb->pp_recycle = 0;
862 }
863 
864 /*
865  *	Free an skbuff by memory without cleaning the state.
866  */
867 static void kfree_skbmem(struct sk_buff *skb)
868 {
869 	struct sk_buff_fclones *fclones;
870 
871 	switch (skb->fclone) {
872 	case SKB_FCLONE_UNAVAILABLE:
873 		kmem_cache_free(skbuff_head_cache, skb);
874 		return;
875 
876 	case SKB_FCLONE_ORIG:
877 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
878 
879 		/* We usually free the clone (TX completion) before original skb
880 		 * This test would have no chance to be true for the clone,
881 		 * while here, branch prediction will be good.
882 		 */
883 		if (refcount_read(&fclones->fclone_ref) == 1)
884 			goto fastpath;
885 		break;
886 
887 	default: /* SKB_FCLONE_CLONE */
888 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
889 		break;
890 	}
891 	if (!refcount_dec_and_test(&fclones->fclone_ref))
892 		return;
893 fastpath:
894 	kmem_cache_free(skbuff_fclone_cache, fclones);
895 }
896 
897 void skb_release_head_state(struct sk_buff *skb)
898 {
899 	skb_dst_drop(skb);
900 	if (skb->destructor) {
901 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
902 		skb->destructor(skb);
903 	}
904 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
905 	nf_conntrack_put(skb_nfct(skb));
906 #endif
907 	skb_ext_put(skb);
908 }
909 
910 /* Free everything but the sk_buff shell. */
911 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
912 {
913 	skb_release_head_state(skb);
914 	if (likely(skb->head))
915 		skb_release_data(skb, reason);
916 }
917 
918 /**
919  *	__kfree_skb - private function
920  *	@skb: buffer
921  *
922  *	Free an sk_buff. Release anything attached to the buffer.
923  *	Clean the state. This is an internal helper function. Users should
924  *	always call kfree_skb
925  */
926 
927 void __kfree_skb(struct sk_buff *skb)
928 {
929 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
930 	kfree_skbmem(skb);
931 }
932 EXPORT_SYMBOL(__kfree_skb);
933 
934 static __always_inline
935 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
936 {
937 	if (unlikely(!skb_unref(skb)))
938 		return false;
939 
940 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
941 
942 	if (reason == SKB_CONSUMED)
943 		trace_consume_skb(skb);
944 	else
945 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
946 	return true;
947 }
948 
949 /**
950  *	kfree_skb_reason - free an sk_buff with special reason
951  *	@skb: buffer to free
952  *	@reason: reason why this skb is dropped
953  *
954  *	Drop a reference to the buffer and free it if the usage count has
955  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
956  *	tracepoint.
957  */
958 void __fix_address
959 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
960 {
961 	if (__kfree_skb_reason(skb, reason))
962 		__kfree_skb(skb);
963 }
964 EXPORT_SYMBOL(kfree_skb_reason);
965 
966 #define KFREE_SKB_BULK_SIZE	16
967 
968 struct skb_free_array {
969 	unsigned int skb_count;
970 	void *skb_array[KFREE_SKB_BULK_SIZE];
971 };
972 
973 static void kfree_skb_add_bulk(struct sk_buff *skb,
974 			       struct skb_free_array *sa,
975 			       enum skb_drop_reason reason)
976 {
977 	/* if SKB is a clone, don't handle this case */
978 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
979 		__kfree_skb(skb);
980 		return;
981 	}
982 
983 	skb_release_all(skb, reason);
984 	sa->skb_array[sa->skb_count++] = skb;
985 
986 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
987 		kmem_cache_free_bulk(skbuff_head_cache, KFREE_SKB_BULK_SIZE,
988 				     sa->skb_array);
989 		sa->skb_count = 0;
990 	}
991 }
992 
993 void __fix_address
994 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
995 {
996 	struct skb_free_array sa;
997 
998 	sa.skb_count = 0;
999 
1000 	while (segs) {
1001 		struct sk_buff *next = segs->next;
1002 
1003 		if (__kfree_skb_reason(segs, reason)) {
1004 			skb_poison_list(segs);
1005 			kfree_skb_add_bulk(segs, &sa, reason);
1006 		}
1007 
1008 		segs = next;
1009 	}
1010 
1011 	if (sa.skb_count)
1012 		kmem_cache_free_bulk(skbuff_head_cache, sa.skb_count,
1013 				     sa.skb_array);
1014 }
1015 EXPORT_SYMBOL(kfree_skb_list_reason);
1016 
1017 /* Dump skb information and contents.
1018  *
1019  * Must only be called from net_ratelimit()-ed paths.
1020  *
1021  * Dumps whole packets if full_pkt, only headers otherwise.
1022  */
1023 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1024 {
1025 	struct skb_shared_info *sh = skb_shinfo(skb);
1026 	struct net_device *dev = skb->dev;
1027 	struct sock *sk = skb->sk;
1028 	struct sk_buff *list_skb;
1029 	bool has_mac, has_trans;
1030 	int headroom, tailroom;
1031 	int i, len, seg_len;
1032 
1033 	if (full_pkt)
1034 		len = skb->len;
1035 	else
1036 		len = min_t(int, skb->len, MAX_HEADER + 128);
1037 
1038 	headroom = skb_headroom(skb);
1039 	tailroom = skb_tailroom(skb);
1040 
1041 	has_mac = skb_mac_header_was_set(skb);
1042 	has_trans = skb_transport_header_was_set(skb);
1043 
1044 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1045 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1046 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1047 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1048 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1049 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1050 	       has_mac ? skb->mac_header : -1,
1051 	       has_mac ? skb_mac_header_len(skb) : -1,
1052 	       skb->network_header,
1053 	       has_trans ? skb_network_header_len(skb) : -1,
1054 	       has_trans ? skb->transport_header : -1,
1055 	       sh->tx_flags, sh->nr_frags,
1056 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1057 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1058 	       skb->csum_valid, skb->csum_level,
1059 	       skb->hash, skb->sw_hash, skb->l4_hash,
1060 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1061 
1062 	if (dev)
1063 		printk("%sdev name=%s feat=%pNF\n",
1064 		       level, dev->name, &dev->features);
1065 	if (sk)
1066 		printk("%ssk family=%hu type=%u proto=%u\n",
1067 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1068 
1069 	if (full_pkt && headroom)
1070 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1071 			       16, 1, skb->head, headroom, false);
1072 
1073 	seg_len = min_t(int, skb_headlen(skb), len);
1074 	if (seg_len)
1075 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1076 			       16, 1, skb->data, seg_len, false);
1077 	len -= seg_len;
1078 
1079 	if (full_pkt && tailroom)
1080 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1081 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1082 
1083 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1084 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1085 		u32 p_off, p_len, copied;
1086 		struct page *p;
1087 		u8 *vaddr;
1088 
1089 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1090 				      skb_frag_size(frag), p, p_off, p_len,
1091 				      copied) {
1092 			seg_len = min_t(int, p_len, len);
1093 			vaddr = kmap_atomic(p);
1094 			print_hex_dump(level, "skb frag:     ",
1095 				       DUMP_PREFIX_OFFSET,
1096 				       16, 1, vaddr + p_off, seg_len, false);
1097 			kunmap_atomic(vaddr);
1098 			len -= seg_len;
1099 			if (!len)
1100 				break;
1101 		}
1102 	}
1103 
1104 	if (full_pkt && skb_has_frag_list(skb)) {
1105 		printk("skb fraglist:\n");
1106 		skb_walk_frags(skb, list_skb)
1107 			skb_dump(level, list_skb, true);
1108 	}
1109 }
1110 EXPORT_SYMBOL(skb_dump);
1111 
1112 /**
1113  *	skb_tx_error - report an sk_buff xmit error
1114  *	@skb: buffer that triggered an error
1115  *
1116  *	Report xmit error if a device callback is tracking this skb.
1117  *	skb must be freed afterwards.
1118  */
1119 void skb_tx_error(struct sk_buff *skb)
1120 {
1121 	if (skb) {
1122 		skb_zcopy_downgrade_managed(skb);
1123 		skb_zcopy_clear(skb, true);
1124 	}
1125 }
1126 EXPORT_SYMBOL(skb_tx_error);
1127 
1128 #ifdef CONFIG_TRACEPOINTS
1129 /**
1130  *	consume_skb - free an skbuff
1131  *	@skb: buffer to free
1132  *
1133  *	Drop a ref to the buffer and free it if the usage count has hit zero
1134  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1135  *	is being dropped after a failure and notes that
1136  */
1137 void consume_skb(struct sk_buff *skb)
1138 {
1139 	if (!skb_unref(skb))
1140 		return;
1141 
1142 	trace_consume_skb(skb);
1143 	__kfree_skb(skb);
1144 }
1145 EXPORT_SYMBOL(consume_skb);
1146 #endif
1147 
1148 /**
1149  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1150  *	@skb: buffer to free
1151  *
1152  *	Alike consume_skb(), but this variant assumes that this is the last
1153  *	skb reference and all the head states have been already dropped
1154  */
1155 void __consume_stateless_skb(struct sk_buff *skb)
1156 {
1157 	trace_consume_skb(skb);
1158 	skb_release_data(skb, SKB_CONSUMED);
1159 	kfree_skbmem(skb);
1160 }
1161 
1162 static void napi_skb_cache_put(struct sk_buff *skb)
1163 {
1164 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1165 	u32 i;
1166 
1167 	kasan_poison_object_data(skbuff_head_cache, skb);
1168 	nc->skb_cache[nc->skb_count++] = skb;
1169 
1170 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1171 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1172 			kasan_unpoison_object_data(skbuff_head_cache,
1173 						   nc->skb_cache[i]);
1174 
1175 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1176 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1177 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1178 	}
1179 }
1180 
1181 void __kfree_skb_defer(struct sk_buff *skb)
1182 {
1183 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1184 	napi_skb_cache_put(skb);
1185 }
1186 
1187 void napi_skb_free_stolen_head(struct sk_buff *skb)
1188 {
1189 	if (unlikely(skb->slow_gro)) {
1190 		nf_reset_ct(skb);
1191 		skb_dst_drop(skb);
1192 		skb_ext_put(skb);
1193 		skb_orphan(skb);
1194 		skb->slow_gro = 0;
1195 	}
1196 	napi_skb_cache_put(skb);
1197 }
1198 
1199 void napi_consume_skb(struct sk_buff *skb, int budget)
1200 {
1201 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1202 	if (unlikely(!budget)) {
1203 		dev_consume_skb_any(skb);
1204 		return;
1205 	}
1206 
1207 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1208 
1209 	if (!skb_unref(skb))
1210 		return;
1211 
1212 	/* if reaching here SKB is ready to free */
1213 	trace_consume_skb(skb);
1214 
1215 	/* if SKB is a clone, don't handle this case */
1216 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1217 		__kfree_skb(skb);
1218 		return;
1219 	}
1220 
1221 	skb_release_all(skb, SKB_CONSUMED);
1222 	napi_skb_cache_put(skb);
1223 }
1224 EXPORT_SYMBOL(napi_consume_skb);
1225 
1226 /* Make sure a field is contained by headers group */
1227 #define CHECK_SKB_FIELD(field) \
1228 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1229 		     offsetof(struct sk_buff, headers.field));	\
1230 
1231 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1232 {
1233 	new->tstamp		= old->tstamp;
1234 	/* We do not copy old->sk */
1235 	new->dev		= old->dev;
1236 	memcpy(new->cb, old->cb, sizeof(old->cb));
1237 	skb_dst_copy(new, old);
1238 	__skb_ext_copy(new, old);
1239 	__nf_copy(new, old, false);
1240 
1241 	/* Note : this field could be in the headers group.
1242 	 * It is not yet because we do not want to have a 16 bit hole
1243 	 */
1244 	new->queue_mapping = old->queue_mapping;
1245 
1246 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1247 	CHECK_SKB_FIELD(protocol);
1248 	CHECK_SKB_FIELD(csum);
1249 	CHECK_SKB_FIELD(hash);
1250 	CHECK_SKB_FIELD(priority);
1251 	CHECK_SKB_FIELD(skb_iif);
1252 	CHECK_SKB_FIELD(vlan_proto);
1253 	CHECK_SKB_FIELD(vlan_tci);
1254 	CHECK_SKB_FIELD(transport_header);
1255 	CHECK_SKB_FIELD(network_header);
1256 	CHECK_SKB_FIELD(mac_header);
1257 	CHECK_SKB_FIELD(inner_protocol);
1258 	CHECK_SKB_FIELD(inner_transport_header);
1259 	CHECK_SKB_FIELD(inner_network_header);
1260 	CHECK_SKB_FIELD(inner_mac_header);
1261 	CHECK_SKB_FIELD(mark);
1262 #ifdef CONFIG_NETWORK_SECMARK
1263 	CHECK_SKB_FIELD(secmark);
1264 #endif
1265 #ifdef CONFIG_NET_RX_BUSY_POLL
1266 	CHECK_SKB_FIELD(napi_id);
1267 #endif
1268 	CHECK_SKB_FIELD(alloc_cpu);
1269 #ifdef CONFIG_XPS
1270 	CHECK_SKB_FIELD(sender_cpu);
1271 #endif
1272 #ifdef CONFIG_NET_SCHED
1273 	CHECK_SKB_FIELD(tc_index);
1274 #endif
1275 
1276 }
1277 
1278 /*
1279  * You should not add any new code to this function.  Add it to
1280  * __copy_skb_header above instead.
1281  */
1282 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1283 {
1284 #define C(x) n->x = skb->x
1285 
1286 	n->next = n->prev = NULL;
1287 	n->sk = NULL;
1288 	__copy_skb_header(n, skb);
1289 
1290 	C(len);
1291 	C(data_len);
1292 	C(mac_len);
1293 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1294 	n->cloned = 1;
1295 	n->nohdr = 0;
1296 	n->peeked = 0;
1297 	C(pfmemalloc);
1298 	C(pp_recycle);
1299 	n->destructor = NULL;
1300 	C(tail);
1301 	C(end);
1302 	C(head);
1303 	C(head_frag);
1304 	C(data);
1305 	C(truesize);
1306 	refcount_set(&n->users, 1);
1307 
1308 	atomic_inc(&(skb_shinfo(skb)->dataref));
1309 	skb->cloned = 1;
1310 
1311 	return n;
1312 #undef C
1313 }
1314 
1315 /**
1316  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1317  * @first: first sk_buff of the msg
1318  */
1319 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1320 {
1321 	struct sk_buff *n;
1322 
1323 	n = alloc_skb(0, GFP_ATOMIC);
1324 	if (!n)
1325 		return NULL;
1326 
1327 	n->len = first->len;
1328 	n->data_len = first->len;
1329 	n->truesize = first->truesize;
1330 
1331 	skb_shinfo(n)->frag_list = first;
1332 
1333 	__copy_skb_header(n, first);
1334 	n->destructor = NULL;
1335 
1336 	return n;
1337 }
1338 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1339 
1340 /**
1341  *	skb_morph	-	morph one skb into another
1342  *	@dst: the skb to receive the contents
1343  *	@src: the skb to supply the contents
1344  *
1345  *	This is identical to skb_clone except that the target skb is
1346  *	supplied by the user.
1347  *
1348  *	The target skb is returned upon exit.
1349  */
1350 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1351 {
1352 	skb_release_all(dst, SKB_CONSUMED);
1353 	return __skb_clone(dst, src);
1354 }
1355 EXPORT_SYMBOL_GPL(skb_morph);
1356 
1357 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1358 {
1359 	unsigned long max_pg, num_pg, new_pg, old_pg;
1360 	struct user_struct *user;
1361 
1362 	if (capable(CAP_IPC_LOCK) || !size)
1363 		return 0;
1364 
1365 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1366 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1367 	user = mmp->user ? : current_user();
1368 
1369 	old_pg = atomic_long_read(&user->locked_vm);
1370 	do {
1371 		new_pg = old_pg + num_pg;
1372 		if (new_pg > max_pg)
1373 			return -ENOBUFS;
1374 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1375 
1376 	if (!mmp->user) {
1377 		mmp->user = get_uid(user);
1378 		mmp->num_pg = num_pg;
1379 	} else {
1380 		mmp->num_pg += num_pg;
1381 	}
1382 
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1386 
1387 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1388 {
1389 	if (mmp->user) {
1390 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1391 		free_uid(mmp->user);
1392 	}
1393 }
1394 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1395 
1396 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1397 {
1398 	struct ubuf_info_msgzc *uarg;
1399 	struct sk_buff *skb;
1400 
1401 	WARN_ON_ONCE(!in_task());
1402 
1403 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1404 	if (!skb)
1405 		return NULL;
1406 
1407 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1408 	uarg = (void *)skb->cb;
1409 	uarg->mmp.user = NULL;
1410 
1411 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1412 		kfree_skb(skb);
1413 		return NULL;
1414 	}
1415 
1416 	uarg->ubuf.callback = msg_zerocopy_callback;
1417 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1418 	uarg->len = 1;
1419 	uarg->bytelen = size;
1420 	uarg->zerocopy = 1;
1421 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1422 	refcount_set(&uarg->ubuf.refcnt, 1);
1423 	sock_hold(sk);
1424 
1425 	return &uarg->ubuf;
1426 }
1427 
1428 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1429 {
1430 	return container_of((void *)uarg, struct sk_buff, cb);
1431 }
1432 
1433 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1434 				       struct ubuf_info *uarg)
1435 {
1436 	if (uarg) {
1437 		struct ubuf_info_msgzc *uarg_zc;
1438 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1439 		u32 bytelen, next;
1440 
1441 		/* there might be non MSG_ZEROCOPY users */
1442 		if (uarg->callback != msg_zerocopy_callback)
1443 			return NULL;
1444 
1445 		/* realloc only when socket is locked (TCP, UDP cork),
1446 		 * so uarg->len and sk_zckey access is serialized
1447 		 */
1448 		if (!sock_owned_by_user(sk)) {
1449 			WARN_ON_ONCE(1);
1450 			return NULL;
1451 		}
1452 
1453 		uarg_zc = uarg_to_msgzc(uarg);
1454 		bytelen = uarg_zc->bytelen + size;
1455 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1456 			/* TCP can create new skb to attach new uarg */
1457 			if (sk->sk_type == SOCK_STREAM)
1458 				goto new_alloc;
1459 			return NULL;
1460 		}
1461 
1462 		next = (u32)atomic_read(&sk->sk_zckey);
1463 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1464 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1465 				return NULL;
1466 			uarg_zc->len++;
1467 			uarg_zc->bytelen = bytelen;
1468 			atomic_set(&sk->sk_zckey, ++next);
1469 
1470 			/* no extra ref when appending to datagram (MSG_MORE) */
1471 			if (sk->sk_type == SOCK_STREAM)
1472 				net_zcopy_get(uarg);
1473 
1474 			return uarg;
1475 		}
1476 	}
1477 
1478 new_alloc:
1479 	return msg_zerocopy_alloc(sk, size);
1480 }
1481 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1482 
1483 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1484 {
1485 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1486 	u32 old_lo, old_hi;
1487 	u64 sum_len;
1488 
1489 	old_lo = serr->ee.ee_info;
1490 	old_hi = serr->ee.ee_data;
1491 	sum_len = old_hi - old_lo + 1ULL + len;
1492 
1493 	if (sum_len >= (1ULL << 32))
1494 		return false;
1495 
1496 	if (lo != old_hi + 1)
1497 		return false;
1498 
1499 	serr->ee.ee_data += len;
1500 	return true;
1501 }
1502 
1503 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1504 {
1505 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1506 	struct sock_exterr_skb *serr;
1507 	struct sock *sk = skb->sk;
1508 	struct sk_buff_head *q;
1509 	unsigned long flags;
1510 	bool is_zerocopy;
1511 	u32 lo, hi;
1512 	u16 len;
1513 
1514 	mm_unaccount_pinned_pages(&uarg->mmp);
1515 
1516 	/* if !len, there was only 1 call, and it was aborted
1517 	 * so do not queue a completion notification
1518 	 */
1519 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1520 		goto release;
1521 
1522 	len = uarg->len;
1523 	lo = uarg->id;
1524 	hi = uarg->id + len - 1;
1525 	is_zerocopy = uarg->zerocopy;
1526 
1527 	serr = SKB_EXT_ERR(skb);
1528 	memset(serr, 0, sizeof(*serr));
1529 	serr->ee.ee_errno = 0;
1530 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1531 	serr->ee.ee_data = hi;
1532 	serr->ee.ee_info = lo;
1533 	if (!is_zerocopy)
1534 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1535 
1536 	q = &sk->sk_error_queue;
1537 	spin_lock_irqsave(&q->lock, flags);
1538 	tail = skb_peek_tail(q);
1539 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1540 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1541 		__skb_queue_tail(q, skb);
1542 		skb = NULL;
1543 	}
1544 	spin_unlock_irqrestore(&q->lock, flags);
1545 
1546 	sk_error_report(sk);
1547 
1548 release:
1549 	consume_skb(skb);
1550 	sock_put(sk);
1551 }
1552 
1553 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1554 			   bool success)
1555 {
1556 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1557 
1558 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1559 
1560 	if (refcount_dec_and_test(&uarg->refcnt))
1561 		__msg_zerocopy_callback(uarg_zc);
1562 }
1563 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1564 
1565 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1566 {
1567 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1568 
1569 	atomic_dec(&sk->sk_zckey);
1570 	uarg_to_msgzc(uarg)->len--;
1571 
1572 	if (have_uref)
1573 		msg_zerocopy_callback(NULL, uarg, true);
1574 }
1575 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1576 
1577 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1578 			     struct msghdr *msg, int len,
1579 			     struct ubuf_info *uarg)
1580 {
1581 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1582 	int err, orig_len = skb->len;
1583 
1584 	/* An skb can only point to one uarg. This edge case happens when
1585 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1586 	 */
1587 	if (orig_uarg && uarg != orig_uarg)
1588 		return -EEXIST;
1589 
1590 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1591 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1592 		struct sock *save_sk = skb->sk;
1593 
1594 		/* Streams do not free skb on error. Reset to prev state. */
1595 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1596 		skb->sk = sk;
1597 		___pskb_trim(skb, orig_len);
1598 		skb->sk = save_sk;
1599 		return err;
1600 	}
1601 
1602 	skb_zcopy_set(skb, uarg, NULL);
1603 	return skb->len - orig_len;
1604 }
1605 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1606 
1607 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1608 {
1609 	int i;
1610 
1611 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1612 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1613 		skb_frag_ref(skb, i);
1614 }
1615 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1616 
1617 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1618 			      gfp_t gfp_mask)
1619 {
1620 	if (skb_zcopy(orig)) {
1621 		if (skb_zcopy(nskb)) {
1622 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1623 			if (!gfp_mask) {
1624 				WARN_ON_ONCE(1);
1625 				return -ENOMEM;
1626 			}
1627 			if (skb_uarg(nskb) == skb_uarg(orig))
1628 				return 0;
1629 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1630 				return -EIO;
1631 		}
1632 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1633 	}
1634 	return 0;
1635 }
1636 
1637 /**
1638  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1639  *	@skb: the skb to modify
1640  *	@gfp_mask: allocation priority
1641  *
1642  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1643  *	It will copy all frags into kernel and drop the reference
1644  *	to userspace pages.
1645  *
1646  *	If this function is called from an interrupt gfp_mask() must be
1647  *	%GFP_ATOMIC.
1648  *
1649  *	Returns 0 on success or a negative error code on failure
1650  *	to allocate kernel memory to copy to.
1651  */
1652 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1653 {
1654 	int num_frags = skb_shinfo(skb)->nr_frags;
1655 	struct page *page, *head = NULL;
1656 	int i, new_frags;
1657 	u32 d_off;
1658 
1659 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1660 		return -EINVAL;
1661 
1662 	if (!num_frags)
1663 		goto release;
1664 
1665 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1666 	for (i = 0; i < new_frags; i++) {
1667 		page = alloc_page(gfp_mask);
1668 		if (!page) {
1669 			while (head) {
1670 				struct page *next = (struct page *)page_private(head);
1671 				put_page(head);
1672 				head = next;
1673 			}
1674 			return -ENOMEM;
1675 		}
1676 		set_page_private(page, (unsigned long)head);
1677 		head = page;
1678 	}
1679 
1680 	page = head;
1681 	d_off = 0;
1682 	for (i = 0; i < num_frags; i++) {
1683 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1684 		u32 p_off, p_len, copied;
1685 		struct page *p;
1686 		u8 *vaddr;
1687 
1688 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1689 				      p, p_off, p_len, copied) {
1690 			u32 copy, done = 0;
1691 			vaddr = kmap_atomic(p);
1692 
1693 			while (done < p_len) {
1694 				if (d_off == PAGE_SIZE) {
1695 					d_off = 0;
1696 					page = (struct page *)page_private(page);
1697 				}
1698 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1699 				memcpy(page_address(page) + d_off,
1700 				       vaddr + p_off + done, copy);
1701 				done += copy;
1702 				d_off += copy;
1703 			}
1704 			kunmap_atomic(vaddr);
1705 		}
1706 	}
1707 
1708 	/* skb frags release userspace buffers */
1709 	for (i = 0; i < num_frags; i++)
1710 		skb_frag_unref(skb, i);
1711 
1712 	/* skb frags point to kernel buffers */
1713 	for (i = 0; i < new_frags - 1; i++) {
1714 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1715 		head = (struct page *)page_private(head);
1716 	}
1717 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1718 	skb_shinfo(skb)->nr_frags = new_frags;
1719 
1720 release:
1721 	skb_zcopy_clear(skb, false);
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1725 
1726 /**
1727  *	skb_clone	-	duplicate an sk_buff
1728  *	@skb: buffer to clone
1729  *	@gfp_mask: allocation priority
1730  *
1731  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1732  *	copies share the same packet data but not structure. The new
1733  *	buffer has a reference count of 1. If the allocation fails the
1734  *	function returns %NULL otherwise the new buffer is returned.
1735  *
1736  *	If this function is called from an interrupt gfp_mask() must be
1737  *	%GFP_ATOMIC.
1738  */
1739 
1740 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1741 {
1742 	struct sk_buff_fclones *fclones = container_of(skb,
1743 						       struct sk_buff_fclones,
1744 						       skb1);
1745 	struct sk_buff *n;
1746 
1747 	if (skb_orphan_frags(skb, gfp_mask))
1748 		return NULL;
1749 
1750 	if (skb->fclone == SKB_FCLONE_ORIG &&
1751 	    refcount_read(&fclones->fclone_ref) == 1) {
1752 		n = &fclones->skb2;
1753 		refcount_set(&fclones->fclone_ref, 2);
1754 		n->fclone = SKB_FCLONE_CLONE;
1755 	} else {
1756 		if (skb_pfmemalloc(skb))
1757 			gfp_mask |= __GFP_MEMALLOC;
1758 
1759 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1760 		if (!n)
1761 			return NULL;
1762 
1763 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1764 	}
1765 
1766 	return __skb_clone(n, skb);
1767 }
1768 EXPORT_SYMBOL(skb_clone);
1769 
1770 void skb_headers_offset_update(struct sk_buff *skb, int off)
1771 {
1772 	/* Only adjust this if it actually is csum_start rather than csum */
1773 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1774 		skb->csum_start += off;
1775 	/* {transport,network,mac}_header and tail are relative to skb->head */
1776 	skb->transport_header += off;
1777 	skb->network_header   += off;
1778 	if (skb_mac_header_was_set(skb))
1779 		skb->mac_header += off;
1780 	skb->inner_transport_header += off;
1781 	skb->inner_network_header += off;
1782 	skb->inner_mac_header += off;
1783 }
1784 EXPORT_SYMBOL(skb_headers_offset_update);
1785 
1786 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1787 {
1788 	__copy_skb_header(new, old);
1789 
1790 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1791 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1792 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1793 }
1794 EXPORT_SYMBOL(skb_copy_header);
1795 
1796 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1797 {
1798 	if (skb_pfmemalloc(skb))
1799 		return SKB_ALLOC_RX;
1800 	return 0;
1801 }
1802 
1803 /**
1804  *	skb_copy	-	create private copy of an sk_buff
1805  *	@skb: buffer to copy
1806  *	@gfp_mask: allocation priority
1807  *
1808  *	Make a copy of both an &sk_buff and its data. This is used when the
1809  *	caller wishes to modify the data and needs a private copy of the
1810  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1811  *	on success. The returned buffer has a reference count of 1.
1812  *
1813  *	As by-product this function converts non-linear &sk_buff to linear
1814  *	one, so that &sk_buff becomes completely private and caller is allowed
1815  *	to modify all the data of returned buffer. This means that this
1816  *	function is not recommended for use in circumstances when only
1817  *	header is going to be modified. Use pskb_copy() instead.
1818  */
1819 
1820 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1821 {
1822 	int headerlen = skb_headroom(skb);
1823 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1824 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1825 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1826 
1827 	if (!n)
1828 		return NULL;
1829 
1830 	/* Set the data pointer */
1831 	skb_reserve(n, headerlen);
1832 	/* Set the tail pointer and length */
1833 	skb_put(n, skb->len);
1834 
1835 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1836 
1837 	skb_copy_header(n, skb);
1838 	return n;
1839 }
1840 EXPORT_SYMBOL(skb_copy);
1841 
1842 /**
1843  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1844  *	@skb: buffer to copy
1845  *	@headroom: headroom of new skb
1846  *	@gfp_mask: allocation priority
1847  *	@fclone: if true allocate the copy of the skb from the fclone
1848  *	cache instead of the head cache; it is recommended to set this
1849  *	to true for the cases where the copy will likely be cloned
1850  *
1851  *	Make a copy of both an &sk_buff and part of its data, located
1852  *	in header. Fragmented data remain shared. This is used when
1853  *	the caller wishes to modify only header of &sk_buff and needs
1854  *	private copy of the header to alter. Returns %NULL on failure
1855  *	or the pointer to the buffer on success.
1856  *	The returned buffer has a reference count of 1.
1857  */
1858 
1859 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1860 				   gfp_t gfp_mask, bool fclone)
1861 {
1862 	unsigned int size = skb_headlen(skb) + headroom;
1863 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1864 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1865 
1866 	if (!n)
1867 		goto out;
1868 
1869 	/* Set the data pointer */
1870 	skb_reserve(n, headroom);
1871 	/* Set the tail pointer and length */
1872 	skb_put(n, skb_headlen(skb));
1873 	/* Copy the bytes */
1874 	skb_copy_from_linear_data(skb, n->data, n->len);
1875 
1876 	n->truesize += skb->data_len;
1877 	n->data_len  = skb->data_len;
1878 	n->len	     = skb->len;
1879 
1880 	if (skb_shinfo(skb)->nr_frags) {
1881 		int i;
1882 
1883 		if (skb_orphan_frags(skb, gfp_mask) ||
1884 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1885 			kfree_skb(n);
1886 			n = NULL;
1887 			goto out;
1888 		}
1889 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1891 			skb_frag_ref(skb, i);
1892 		}
1893 		skb_shinfo(n)->nr_frags = i;
1894 	}
1895 
1896 	if (skb_has_frag_list(skb)) {
1897 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1898 		skb_clone_fraglist(n);
1899 	}
1900 
1901 	skb_copy_header(n, skb);
1902 out:
1903 	return n;
1904 }
1905 EXPORT_SYMBOL(__pskb_copy_fclone);
1906 
1907 /**
1908  *	pskb_expand_head - reallocate header of &sk_buff
1909  *	@skb: buffer to reallocate
1910  *	@nhead: room to add at head
1911  *	@ntail: room to add at tail
1912  *	@gfp_mask: allocation priority
1913  *
1914  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1915  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1916  *	reference count of 1. Returns zero in the case of success or error,
1917  *	if expansion failed. In the last case, &sk_buff is not changed.
1918  *
1919  *	All the pointers pointing into skb header may change and must be
1920  *	reloaded after call to this function.
1921  */
1922 
1923 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1924 		     gfp_t gfp_mask)
1925 {
1926 	unsigned int osize = skb_end_offset(skb);
1927 	unsigned int size = osize + nhead + ntail;
1928 	long off;
1929 	u8 *data;
1930 	int i;
1931 
1932 	BUG_ON(nhead < 0);
1933 
1934 	BUG_ON(skb_shared(skb));
1935 
1936 	skb_zcopy_downgrade_managed(skb);
1937 
1938 	if (skb_pfmemalloc(skb))
1939 		gfp_mask |= __GFP_MEMALLOC;
1940 
1941 	size = SKB_DATA_ALIGN(size);
1942 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1943 	size = kmalloc_size_roundup(size);
1944 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1945 	if (!data)
1946 		goto nodata;
1947 	size = SKB_WITH_OVERHEAD(size);
1948 
1949 	/* Copy only real data... and, alas, header. This should be
1950 	 * optimized for the cases when header is void.
1951 	 */
1952 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1953 
1954 	memcpy((struct skb_shared_info *)(data + size),
1955 	       skb_shinfo(skb),
1956 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1957 
1958 	/*
1959 	 * if shinfo is shared we must drop the old head gracefully, but if it
1960 	 * is not we can just drop the old head and let the existing refcount
1961 	 * be since all we did is relocate the values
1962 	 */
1963 	if (skb_cloned(skb)) {
1964 		if (skb_orphan_frags(skb, gfp_mask))
1965 			goto nofrags;
1966 		if (skb_zcopy(skb))
1967 			refcount_inc(&skb_uarg(skb)->refcnt);
1968 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1969 			skb_frag_ref(skb, i);
1970 
1971 		if (skb_has_frag_list(skb))
1972 			skb_clone_fraglist(skb);
1973 
1974 		skb_release_data(skb, SKB_CONSUMED);
1975 	} else {
1976 		skb_free_head(skb);
1977 	}
1978 	off = (data + nhead) - skb->head;
1979 
1980 	skb->head     = data;
1981 	skb->head_frag = 0;
1982 	skb->data    += off;
1983 
1984 	skb_set_end_offset(skb, size);
1985 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1986 	off           = nhead;
1987 #endif
1988 	skb->tail	      += off;
1989 	skb_headers_offset_update(skb, nhead);
1990 	skb->cloned   = 0;
1991 	skb->hdr_len  = 0;
1992 	skb->nohdr    = 0;
1993 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1994 
1995 	skb_metadata_clear(skb);
1996 
1997 	/* It is not generally safe to change skb->truesize.
1998 	 * For the moment, we really care of rx path, or
1999 	 * when skb is orphaned (not attached to a socket).
2000 	 */
2001 	if (!skb->sk || skb->destructor == sock_edemux)
2002 		skb->truesize += size - osize;
2003 
2004 	return 0;
2005 
2006 nofrags:
2007 	kfree(data);
2008 nodata:
2009 	return -ENOMEM;
2010 }
2011 EXPORT_SYMBOL(pskb_expand_head);
2012 
2013 /* Make private copy of skb with writable head and some headroom */
2014 
2015 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2016 {
2017 	struct sk_buff *skb2;
2018 	int delta = headroom - skb_headroom(skb);
2019 
2020 	if (delta <= 0)
2021 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2022 	else {
2023 		skb2 = skb_clone(skb, GFP_ATOMIC);
2024 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2025 					     GFP_ATOMIC)) {
2026 			kfree_skb(skb2);
2027 			skb2 = NULL;
2028 		}
2029 	}
2030 	return skb2;
2031 }
2032 EXPORT_SYMBOL(skb_realloc_headroom);
2033 
2034 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2035 {
2036 	unsigned int saved_end_offset, saved_truesize;
2037 	struct skb_shared_info *shinfo;
2038 	int res;
2039 
2040 	saved_end_offset = skb_end_offset(skb);
2041 	saved_truesize = skb->truesize;
2042 
2043 	res = pskb_expand_head(skb, 0, 0, pri);
2044 	if (res)
2045 		return res;
2046 
2047 	skb->truesize = saved_truesize;
2048 
2049 	if (likely(skb_end_offset(skb) == saved_end_offset))
2050 		return 0;
2051 
2052 	shinfo = skb_shinfo(skb);
2053 
2054 	/* We are about to change back skb->end,
2055 	 * we need to move skb_shinfo() to its new location.
2056 	 */
2057 	memmove(skb->head + saved_end_offset,
2058 		shinfo,
2059 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2060 
2061 	skb_set_end_offset(skb, saved_end_offset);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  *	skb_expand_head - reallocate header of &sk_buff
2068  *	@skb: buffer to reallocate
2069  *	@headroom: needed headroom
2070  *
2071  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2072  *	if possible; copies skb->sk to new skb as needed
2073  *	and frees original skb in case of failures.
2074  *
2075  *	It expect increased headroom and generates warning otherwise.
2076  */
2077 
2078 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2079 {
2080 	int delta = headroom - skb_headroom(skb);
2081 	int osize = skb_end_offset(skb);
2082 	struct sock *sk = skb->sk;
2083 
2084 	if (WARN_ONCE(delta <= 0,
2085 		      "%s is expecting an increase in the headroom", __func__))
2086 		return skb;
2087 
2088 	delta = SKB_DATA_ALIGN(delta);
2089 	/* pskb_expand_head() might crash, if skb is shared. */
2090 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2091 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2092 
2093 		if (unlikely(!nskb))
2094 			goto fail;
2095 
2096 		if (sk)
2097 			skb_set_owner_w(nskb, sk);
2098 		consume_skb(skb);
2099 		skb = nskb;
2100 	}
2101 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2102 		goto fail;
2103 
2104 	if (sk && is_skb_wmem(skb)) {
2105 		delta = skb_end_offset(skb) - osize;
2106 		refcount_add(delta, &sk->sk_wmem_alloc);
2107 		skb->truesize += delta;
2108 	}
2109 	return skb;
2110 
2111 fail:
2112 	kfree_skb(skb);
2113 	return NULL;
2114 }
2115 EXPORT_SYMBOL(skb_expand_head);
2116 
2117 /**
2118  *	skb_copy_expand	-	copy and expand sk_buff
2119  *	@skb: buffer to copy
2120  *	@newheadroom: new free bytes at head
2121  *	@newtailroom: new free bytes at tail
2122  *	@gfp_mask: allocation priority
2123  *
2124  *	Make a copy of both an &sk_buff and its data and while doing so
2125  *	allocate additional space.
2126  *
2127  *	This is used when the caller wishes to modify the data and needs a
2128  *	private copy of the data to alter as well as more space for new fields.
2129  *	Returns %NULL on failure or the pointer to the buffer
2130  *	on success. The returned buffer has a reference count of 1.
2131  *
2132  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2133  *	is called from an interrupt.
2134  */
2135 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2136 				int newheadroom, int newtailroom,
2137 				gfp_t gfp_mask)
2138 {
2139 	/*
2140 	 *	Allocate the copy buffer
2141 	 */
2142 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2143 					gfp_mask, skb_alloc_rx_flag(skb),
2144 					NUMA_NO_NODE);
2145 	int oldheadroom = skb_headroom(skb);
2146 	int head_copy_len, head_copy_off;
2147 
2148 	if (!n)
2149 		return NULL;
2150 
2151 	skb_reserve(n, newheadroom);
2152 
2153 	/* Set the tail pointer and length */
2154 	skb_put(n, skb->len);
2155 
2156 	head_copy_len = oldheadroom;
2157 	head_copy_off = 0;
2158 	if (newheadroom <= head_copy_len)
2159 		head_copy_len = newheadroom;
2160 	else
2161 		head_copy_off = newheadroom - head_copy_len;
2162 
2163 	/* Copy the linear header and data. */
2164 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2165 			     skb->len + head_copy_len));
2166 
2167 	skb_copy_header(n, skb);
2168 
2169 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2170 
2171 	return n;
2172 }
2173 EXPORT_SYMBOL(skb_copy_expand);
2174 
2175 /**
2176  *	__skb_pad		-	zero pad the tail of an skb
2177  *	@skb: buffer to pad
2178  *	@pad: space to pad
2179  *	@free_on_error: free buffer on error
2180  *
2181  *	Ensure that a buffer is followed by a padding area that is zero
2182  *	filled. Used by network drivers which may DMA or transfer data
2183  *	beyond the buffer end onto the wire.
2184  *
2185  *	May return error in out of memory cases. The skb is freed on error
2186  *	if @free_on_error is true.
2187  */
2188 
2189 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2190 {
2191 	int err;
2192 	int ntail;
2193 
2194 	/* If the skbuff is non linear tailroom is always zero.. */
2195 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2196 		memset(skb->data+skb->len, 0, pad);
2197 		return 0;
2198 	}
2199 
2200 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2201 	if (likely(skb_cloned(skb) || ntail > 0)) {
2202 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2203 		if (unlikely(err))
2204 			goto free_skb;
2205 	}
2206 
2207 	/* FIXME: The use of this function with non-linear skb's really needs
2208 	 * to be audited.
2209 	 */
2210 	err = skb_linearize(skb);
2211 	if (unlikely(err))
2212 		goto free_skb;
2213 
2214 	memset(skb->data + skb->len, 0, pad);
2215 	return 0;
2216 
2217 free_skb:
2218 	if (free_on_error)
2219 		kfree_skb(skb);
2220 	return err;
2221 }
2222 EXPORT_SYMBOL(__skb_pad);
2223 
2224 /**
2225  *	pskb_put - add data to the tail of a potentially fragmented buffer
2226  *	@skb: start of the buffer to use
2227  *	@tail: tail fragment of the buffer to use
2228  *	@len: amount of data to add
2229  *
2230  *	This function extends the used data area of the potentially
2231  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2232  *	@skb itself. If this would exceed the total buffer size the kernel
2233  *	will panic. A pointer to the first byte of the extra data is
2234  *	returned.
2235  */
2236 
2237 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2238 {
2239 	if (tail != skb) {
2240 		skb->data_len += len;
2241 		skb->len += len;
2242 	}
2243 	return skb_put(tail, len);
2244 }
2245 EXPORT_SYMBOL_GPL(pskb_put);
2246 
2247 /**
2248  *	skb_put - add data to a buffer
2249  *	@skb: buffer to use
2250  *	@len: amount of data to add
2251  *
2252  *	This function extends the used data area of the buffer. If this would
2253  *	exceed the total buffer size the kernel will panic. A pointer to the
2254  *	first byte of the extra data is returned.
2255  */
2256 void *skb_put(struct sk_buff *skb, unsigned int len)
2257 {
2258 	void *tmp = skb_tail_pointer(skb);
2259 	SKB_LINEAR_ASSERT(skb);
2260 	skb->tail += len;
2261 	skb->len  += len;
2262 	if (unlikely(skb->tail > skb->end))
2263 		skb_over_panic(skb, len, __builtin_return_address(0));
2264 	return tmp;
2265 }
2266 EXPORT_SYMBOL(skb_put);
2267 
2268 /**
2269  *	skb_push - add data to the start of a buffer
2270  *	@skb: buffer to use
2271  *	@len: amount of data to add
2272  *
2273  *	This function extends the used data area of the buffer at the buffer
2274  *	start. If this would exceed the total buffer headroom the kernel will
2275  *	panic. A pointer to the first byte of the extra data is returned.
2276  */
2277 void *skb_push(struct sk_buff *skb, unsigned int len)
2278 {
2279 	skb->data -= len;
2280 	skb->len  += len;
2281 	if (unlikely(skb->data < skb->head))
2282 		skb_under_panic(skb, len, __builtin_return_address(0));
2283 	return skb->data;
2284 }
2285 EXPORT_SYMBOL(skb_push);
2286 
2287 /**
2288  *	skb_pull - remove data from the start of a buffer
2289  *	@skb: buffer to use
2290  *	@len: amount of data to remove
2291  *
2292  *	This function removes data from the start of a buffer, returning
2293  *	the memory to the headroom. A pointer to the next data in the buffer
2294  *	is returned. Once the data has been pulled future pushes will overwrite
2295  *	the old data.
2296  */
2297 void *skb_pull(struct sk_buff *skb, unsigned int len)
2298 {
2299 	return skb_pull_inline(skb, len);
2300 }
2301 EXPORT_SYMBOL(skb_pull);
2302 
2303 /**
2304  *	skb_pull_data - remove data from the start of a buffer returning its
2305  *	original position.
2306  *	@skb: buffer to use
2307  *	@len: amount of data to remove
2308  *
2309  *	This function removes data from the start of a buffer, returning
2310  *	the memory to the headroom. A pointer to the original data in the buffer
2311  *	is returned after checking if there is enough data to pull. Once the
2312  *	data has been pulled future pushes will overwrite the old data.
2313  */
2314 void *skb_pull_data(struct sk_buff *skb, size_t len)
2315 {
2316 	void *data = skb->data;
2317 
2318 	if (skb->len < len)
2319 		return NULL;
2320 
2321 	skb_pull(skb, len);
2322 
2323 	return data;
2324 }
2325 EXPORT_SYMBOL(skb_pull_data);
2326 
2327 /**
2328  *	skb_trim - remove end from a buffer
2329  *	@skb: buffer to alter
2330  *	@len: new length
2331  *
2332  *	Cut the length of a buffer down by removing data from the tail. If
2333  *	the buffer is already under the length specified it is not modified.
2334  *	The skb must be linear.
2335  */
2336 void skb_trim(struct sk_buff *skb, unsigned int len)
2337 {
2338 	if (skb->len > len)
2339 		__skb_trim(skb, len);
2340 }
2341 EXPORT_SYMBOL(skb_trim);
2342 
2343 /* Trims skb to length len. It can change skb pointers.
2344  */
2345 
2346 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2347 {
2348 	struct sk_buff **fragp;
2349 	struct sk_buff *frag;
2350 	int offset = skb_headlen(skb);
2351 	int nfrags = skb_shinfo(skb)->nr_frags;
2352 	int i;
2353 	int err;
2354 
2355 	if (skb_cloned(skb) &&
2356 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2357 		return err;
2358 
2359 	i = 0;
2360 	if (offset >= len)
2361 		goto drop_pages;
2362 
2363 	for (; i < nfrags; i++) {
2364 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2365 
2366 		if (end < len) {
2367 			offset = end;
2368 			continue;
2369 		}
2370 
2371 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2372 
2373 drop_pages:
2374 		skb_shinfo(skb)->nr_frags = i;
2375 
2376 		for (; i < nfrags; i++)
2377 			skb_frag_unref(skb, i);
2378 
2379 		if (skb_has_frag_list(skb))
2380 			skb_drop_fraglist(skb);
2381 		goto done;
2382 	}
2383 
2384 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2385 	     fragp = &frag->next) {
2386 		int end = offset + frag->len;
2387 
2388 		if (skb_shared(frag)) {
2389 			struct sk_buff *nfrag;
2390 
2391 			nfrag = skb_clone(frag, GFP_ATOMIC);
2392 			if (unlikely(!nfrag))
2393 				return -ENOMEM;
2394 
2395 			nfrag->next = frag->next;
2396 			consume_skb(frag);
2397 			frag = nfrag;
2398 			*fragp = frag;
2399 		}
2400 
2401 		if (end < len) {
2402 			offset = end;
2403 			continue;
2404 		}
2405 
2406 		if (end > len &&
2407 		    unlikely((err = pskb_trim(frag, len - offset))))
2408 			return err;
2409 
2410 		if (frag->next)
2411 			skb_drop_list(&frag->next);
2412 		break;
2413 	}
2414 
2415 done:
2416 	if (len > skb_headlen(skb)) {
2417 		skb->data_len -= skb->len - len;
2418 		skb->len       = len;
2419 	} else {
2420 		skb->len       = len;
2421 		skb->data_len  = 0;
2422 		skb_set_tail_pointer(skb, len);
2423 	}
2424 
2425 	if (!skb->sk || skb->destructor == sock_edemux)
2426 		skb_condense(skb);
2427 	return 0;
2428 }
2429 EXPORT_SYMBOL(___pskb_trim);
2430 
2431 /* Note : use pskb_trim_rcsum() instead of calling this directly
2432  */
2433 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2434 {
2435 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2436 		int delta = skb->len - len;
2437 
2438 		skb->csum = csum_block_sub(skb->csum,
2439 					   skb_checksum(skb, len, delta, 0),
2440 					   len);
2441 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2442 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2443 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2444 
2445 		if (offset + sizeof(__sum16) > hdlen)
2446 			return -EINVAL;
2447 	}
2448 	return __pskb_trim(skb, len);
2449 }
2450 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2451 
2452 /**
2453  *	__pskb_pull_tail - advance tail of skb header
2454  *	@skb: buffer to reallocate
2455  *	@delta: number of bytes to advance tail
2456  *
2457  *	The function makes a sense only on a fragmented &sk_buff,
2458  *	it expands header moving its tail forward and copying necessary
2459  *	data from fragmented part.
2460  *
2461  *	&sk_buff MUST have reference count of 1.
2462  *
2463  *	Returns %NULL (and &sk_buff does not change) if pull failed
2464  *	or value of new tail of skb in the case of success.
2465  *
2466  *	All the pointers pointing into skb header may change and must be
2467  *	reloaded after call to this function.
2468  */
2469 
2470 /* Moves tail of skb head forward, copying data from fragmented part,
2471  * when it is necessary.
2472  * 1. It may fail due to malloc failure.
2473  * 2. It may change skb pointers.
2474  *
2475  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2476  */
2477 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2478 {
2479 	/* If skb has not enough free space at tail, get new one
2480 	 * plus 128 bytes for future expansions. If we have enough
2481 	 * room at tail, reallocate without expansion only if skb is cloned.
2482 	 */
2483 	int i, k, eat = (skb->tail + delta) - skb->end;
2484 
2485 	if (eat > 0 || skb_cloned(skb)) {
2486 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2487 				     GFP_ATOMIC))
2488 			return NULL;
2489 	}
2490 
2491 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2492 			     skb_tail_pointer(skb), delta));
2493 
2494 	/* Optimization: no fragments, no reasons to preestimate
2495 	 * size of pulled pages. Superb.
2496 	 */
2497 	if (!skb_has_frag_list(skb))
2498 		goto pull_pages;
2499 
2500 	/* Estimate size of pulled pages. */
2501 	eat = delta;
2502 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2503 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2504 
2505 		if (size >= eat)
2506 			goto pull_pages;
2507 		eat -= size;
2508 	}
2509 
2510 	/* If we need update frag list, we are in troubles.
2511 	 * Certainly, it is possible to add an offset to skb data,
2512 	 * but taking into account that pulling is expected to
2513 	 * be very rare operation, it is worth to fight against
2514 	 * further bloating skb head and crucify ourselves here instead.
2515 	 * Pure masohism, indeed. 8)8)
2516 	 */
2517 	if (eat) {
2518 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2519 		struct sk_buff *clone = NULL;
2520 		struct sk_buff *insp = NULL;
2521 
2522 		do {
2523 			if (list->len <= eat) {
2524 				/* Eaten as whole. */
2525 				eat -= list->len;
2526 				list = list->next;
2527 				insp = list;
2528 			} else {
2529 				/* Eaten partially. */
2530 				if (skb_is_gso(skb) && !list->head_frag &&
2531 				    skb_headlen(list))
2532 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2533 
2534 				if (skb_shared(list)) {
2535 					/* Sucks! We need to fork list. :-( */
2536 					clone = skb_clone(list, GFP_ATOMIC);
2537 					if (!clone)
2538 						return NULL;
2539 					insp = list->next;
2540 					list = clone;
2541 				} else {
2542 					/* This may be pulled without
2543 					 * problems. */
2544 					insp = list;
2545 				}
2546 				if (!pskb_pull(list, eat)) {
2547 					kfree_skb(clone);
2548 					return NULL;
2549 				}
2550 				break;
2551 			}
2552 		} while (eat);
2553 
2554 		/* Free pulled out fragments. */
2555 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2556 			skb_shinfo(skb)->frag_list = list->next;
2557 			consume_skb(list);
2558 		}
2559 		/* And insert new clone at head. */
2560 		if (clone) {
2561 			clone->next = list;
2562 			skb_shinfo(skb)->frag_list = clone;
2563 		}
2564 	}
2565 	/* Success! Now we may commit changes to skb data. */
2566 
2567 pull_pages:
2568 	eat = delta;
2569 	k = 0;
2570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2572 
2573 		if (size <= eat) {
2574 			skb_frag_unref(skb, i);
2575 			eat -= size;
2576 		} else {
2577 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2578 
2579 			*frag = skb_shinfo(skb)->frags[i];
2580 			if (eat) {
2581 				skb_frag_off_add(frag, eat);
2582 				skb_frag_size_sub(frag, eat);
2583 				if (!i)
2584 					goto end;
2585 				eat = 0;
2586 			}
2587 			k++;
2588 		}
2589 	}
2590 	skb_shinfo(skb)->nr_frags = k;
2591 
2592 end:
2593 	skb->tail     += delta;
2594 	skb->data_len -= delta;
2595 
2596 	if (!skb->data_len)
2597 		skb_zcopy_clear(skb, false);
2598 
2599 	return skb_tail_pointer(skb);
2600 }
2601 EXPORT_SYMBOL(__pskb_pull_tail);
2602 
2603 /**
2604  *	skb_copy_bits - copy bits from skb to kernel buffer
2605  *	@skb: source skb
2606  *	@offset: offset in source
2607  *	@to: destination buffer
2608  *	@len: number of bytes to copy
2609  *
2610  *	Copy the specified number of bytes from the source skb to the
2611  *	destination buffer.
2612  *
2613  *	CAUTION ! :
2614  *		If its prototype is ever changed,
2615  *		check arch/{*}/net/{*}.S files,
2616  *		since it is called from BPF assembly code.
2617  */
2618 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2619 {
2620 	int start = skb_headlen(skb);
2621 	struct sk_buff *frag_iter;
2622 	int i, copy;
2623 
2624 	if (offset > (int)skb->len - len)
2625 		goto fault;
2626 
2627 	/* Copy header. */
2628 	if ((copy = start - offset) > 0) {
2629 		if (copy > len)
2630 			copy = len;
2631 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2632 		if ((len -= copy) == 0)
2633 			return 0;
2634 		offset += copy;
2635 		to     += copy;
2636 	}
2637 
2638 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2639 		int end;
2640 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2641 
2642 		WARN_ON(start > offset + len);
2643 
2644 		end = start + skb_frag_size(f);
2645 		if ((copy = end - offset) > 0) {
2646 			u32 p_off, p_len, copied;
2647 			struct page *p;
2648 			u8 *vaddr;
2649 
2650 			if (copy > len)
2651 				copy = len;
2652 
2653 			skb_frag_foreach_page(f,
2654 					      skb_frag_off(f) + offset - start,
2655 					      copy, p, p_off, p_len, copied) {
2656 				vaddr = kmap_atomic(p);
2657 				memcpy(to + copied, vaddr + p_off, p_len);
2658 				kunmap_atomic(vaddr);
2659 			}
2660 
2661 			if ((len -= copy) == 0)
2662 				return 0;
2663 			offset += copy;
2664 			to     += copy;
2665 		}
2666 		start = end;
2667 	}
2668 
2669 	skb_walk_frags(skb, frag_iter) {
2670 		int end;
2671 
2672 		WARN_ON(start > offset + len);
2673 
2674 		end = start + frag_iter->len;
2675 		if ((copy = end - offset) > 0) {
2676 			if (copy > len)
2677 				copy = len;
2678 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2679 				goto fault;
2680 			if ((len -= copy) == 0)
2681 				return 0;
2682 			offset += copy;
2683 			to     += copy;
2684 		}
2685 		start = end;
2686 	}
2687 
2688 	if (!len)
2689 		return 0;
2690 
2691 fault:
2692 	return -EFAULT;
2693 }
2694 EXPORT_SYMBOL(skb_copy_bits);
2695 
2696 /*
2697  * Callback from splice_to_pipe(), if we need to release some pages
2698  * at the end of the spd in case we error'ed out in filling the pipe.
2699  */
2700 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2701 {
2702 	put_page(spd->pages[i]);
2703 }
2704 
2705 static struct page *linear_to_page(struct page *page, unsigned int *len,
2706 				   unsigned int *offset,
2707 				   struct sock *sk)
2708 {
2709 	struct page_frag *pfrag = sk_page_frag(sk);
2710 
2711 	if (!sk_page_frag_refill(sk, pfrag))
2712 		return NULL;
2713 
2714 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2715 
2716 	memcpy(page_address(pfrag->page) + pfrag->offset,
2717 	       page_address(page) + *offset, *len);
2718 	*offset = pfrag->offset;
2719 	pfrag->offset += *len;
2720 
2721 	return pfrag->page;
2722 }
2723 
2724 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2725 			     struct page *page,
2726 			     unsigned int offset)
2727 {
2728 	return	spd->nr_pages &&
2729 		spd->pages[spd->nr_pages - 1] == page &&
2730 		(spd->partial[spd->nr_pages - 1].offset +
2731 		 spd->partial[spd->nr_pages - 1].len == offset);
2732 }
2733 
2734 /*
2735  * Fill page/offset/length into spd, if it can hold more pages.
2736  */
2737 static bool spd_fill_page(struct splice_pipe_desc *spd,
2738 			  struct pipe_inode_info *pipe, struct page *page,
2739 			  unsigned int *len, unsigned int offset,
2740 			  bool linear,
2741 			  struct sock *sk)
2742 {
2743 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2744 		return true;
2745 
2746 	if (linear) {
2747 		page = linear_to_page(page, len, &offset, sk);
2748 		if (!page)
2749 			return true;
2750 	}
2751 	if (spd_can_coalesce(spd, page, offset)) {
2752 		spd->partial[spd->nr_pages - 1].len += *len;
2753 		return false;
2754 	}
2755 	get_page(page);
2756 	spd->pages[spd->nr_pages] = page;
2757 	spd->partial[spd->nr_pages].len = *len;
2758 	spd->partial[spd->nr_pages].offset = offset;
2759 	spd->nr_pages++;
2760 
2761 	return false;
2762 }
2763 
2764 static bool __splice_segment(struct page *page, unsigned int poff,
2765 			     unsigned int plen, unsigned int *off,
2766 			     unsigned int *len,
2767 			     struct splice_pipe_desc *spd, bool linear,
2768 			     struct sock *sk,
2769 			     struct pipe_inode_info *pipe)
2770 {
2771 	if (!*len)
2772 		return true;
2773 
2774 	/* skip this segment if already processed */
2775 	if (*off >= plen) {
2776 		*off -= plen;
2777 		return false;
2778 	}
2779 
2780 	/* ignore any bits we already processed */
2781 	poff += *off;
2782 	plen -= *off;
2783 	*off = 0;
2784 
2785 	do {
2786 		unsigned int flen = min(*len, plen);
2787 
2788 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2789 				  linear, sk))
2790 			return true;
2791 		poff += flen;
2792 		plen -= flen;
2793 		*len -= flen;
2794 	} while (*len && plen);
2795 
2796 	return false;
2797 }
2798 
2799 /*
2800  * Map linear and fragment data from the skb to spd. It reports true if the
2801  * pipe is full or if we already spliced the requested length.
2802  */
2803 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2804 			      unsigned int *offset, unsigned int *len,
2805 			      struct splice_pipe_desc *spd, struct sock *sk)
2806 {
2807 	int seg;
2808 	struct sk_buff *iter;
2809 
2810 	/* map the linear part :
2811 	 * If skb->head_frag is set, this 'linear' part is backed by a
2812 	 * fragment, and if the head is not shared with any clones then
2813 	 * we can avoid a copy since we own the head portion of this page.
2814 	 */
2815 	if (__splice_segment(virt_to_page(skb->data),
2816 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2817 			     skb_headlen(skb),
2818 			     offset, len, spd,
2819 			     skb_head_is_locked(skb),
2820 			     sk, pipe))
2821 		return true;
2822 
2823 	/*
2824 	 * then map the fragments
2825 	 */
2826 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2827 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2828 
2829 		if (__splice_segment(skb_frag_page(f),
2830 				     skb_frag_off(f), skb_frag_size(f),
2831 				     offset, len, spd, false, sk, pipe))
2832 			return true;
2833 	}
2834 
2835 	skb_walk_frags(skb, iter) {
2836 		if (*offset >= iter->len) {
2837 			*offset -= iter->len;
2838 			continue;
2839 		}
2840 		/* __skb_splice_bits() only fails if the output has no room
2841 		 * left, so no point in going over the frag_list for the error
2842 		 * case.
2843 		 */
2844 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2845 			return true;
2846 	}
2847 
2848 	return false;
2849 }
2850 
2851 /*
2852  * Map data from the skb to a pipe. Should handle both the linear part,
2853  * the fragments, and the frag list.
2854  */
2855 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2856 		    struct pipe_inode_info *pipe, unsigned int tlen,
2857 		    unsigned int flags)
2858 {
2859 	struct partial_page partial[MAX_SKB_FRAGS];
2860 	struct page *pages[MAX_SKB_FRAGS];
2861 	struct splice_pipe_desc spd = {
2862 		.pages = pages,
2863 		.partial = partial,
2864 		.nr_pages_max = MAX_SKB_FRAGS,
2865 		.ops = &nosteal_pipe_buf_ops,
2866 		.spd_release = sock_spd_release,
2867 	};
2868 	int ret = 0;
2869 
2870 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2871 
2872 	if (spd.nr_pages)
2873 		ret = splice_to_pipe(pipe, &spd);
2874 
2875 	return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(skb_splice_bits);
2878 
2879 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2880 			    struct kvec *vec, size_t num, size_t size)
2881 {
2882 	struct socket *sock = sk->sk_socket;
2883 
2884 	if (!sock)
2885 		return -EINVAL;
2886 	return kernel_sendmsg(sock, msg, vec, num, size);
2887 }
2888 
2889 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2890 			     size_t size, int flags)
2891 {
2892 	struct socket *sock = sk->sk_socket;
2893 
2894 	if (!sock)
2895 		return -EINVAL;
2896 	return kernel_sendpage(sock, page, offset, size, flags);
2897 }
2898 
2899 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2900 			    struct kvec *vec, size_t num, size_t size);
2901 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2902 			     size_t size, int flags);
2903 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2904 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2905 {
2906 	unsigned int orig_len = len;
2907 	struct sk_buff *head = skb;
2908 	unsigned short fragidx;
2909 	int slen, ret;
2910 
2911 do_frag_list:
2912 
2913 	/* Deal with head data */
2914 	while (offset < skb_headlen(skb) && len) {
2915 		struct kvec kv;
2916 		struct msghdr msg;
2917 
2918 		slen = min_t(int, len, skb_headlen(skb) - offset);
2919 		kv.iov_base = skb->data + offset;
2920 		kv.iov_len = slen;
2921 		memset(&msg, 0, sizeof(msg));
2922 		msg.msg_flags = MSG_DONTWAIT;
2923 
2924 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2925 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2926 		if (ret <= 0)
2927 			goto error;
2928 
2929 		offset += ret;
2930 		len -= ret;
2931 	}
2932 
2933 	/* All the data was skb head? */
2934 	if (!len)
2935 		goto out;
2936 
2937 	/* Make offset relative to start of frags */
2938 	offset -= skb_headlen(skb);
2939 
2940 	/* Find where we are in frag list */
2941 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2942 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2943 
2944 		if (offset < skb_frag_size(frag))
2945 			break;
2946 
2947 		offset -= skb_frag_size(frag);
2948 	}
2949 
2950 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2951 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2952 
2953 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2954 
2955 		while (slen) {
2956 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2957 					      sendpage_unlocked, sk,
2958 					      skb_frag_page(frag),
2959 					      skb_frag_off(frag) + offset,
2960 					      slen, MSG_DONTWAIT);
2961 			if (ret <= 0)
2962 				goto error;
2963 
2964 			len -= ret;
2965 			offset += ret;
2966 			slen -= ret;
2967 		}
2968 
2969 		offset = 0;
2970 	}
2971 
2972 	if (len) {
2973 		/* Process any frag lists */
2974 
2975 		if (skb == head) {
2976 			if (skb_has_frag_list(skb)) {
2977 				skb = skb_shinfo(skb)->frag_list;
2978 				goto do_frag_list;
2979 			}
2980 		} else if (skb->next) {
2981 			skb = skb->next;
2982 			goto do_frag_list;
2983 		}
2984 	}
2985 
2986 out:
2987 	return orig_len - len;
2988 
2989 error:
2990 	return orig_len == len ? ret : orig_len - len;
2991 }
2992 
2993 /* Send skb data on a socket. Socket must be locked. */
2994 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2995 			 int len)
2996 {
2997 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2998 			       kernel_sendpage_locked);
2999 }
3000 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3001 
3002 /* Send skb data on a socket. Socket must be unlocked. */
3003 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3004 {
3005 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
3006 			       sendpage_unlocked);
3007 }
3008 
3009 /**
3010  *	skb_store_bits - store bits from kernel buffer to skb
3011  *	@skb: destination buffer
3012  *	@offset: offset in destination
3013  *	@from: source buffer
3014  *	@len: number of bytes to copy
3015  *
3016  *	Copy the specified number of bytes from the source buffer to the
3017  *	destination skb.  This function handles all the messy bits of
3018  *	traversing fragment lists and such.
3019  */
3020 
3021 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3022 {
3023 	int start = skb_headlen(skb);
3024 	struct sk_buff *frag_iter;
3025 	int i, copy;
3026 
3027 	if (offset > (int)skb->len - len)
3028 		goto fault;
3029 
3030 	if ((copy = start - offset) > 0) {
3031 		if (copy > len)
3032 			copy = len;
3033 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3034 		if ((len -= copy) == 0)
3035 			return 0;
3036 		offset += copy;
3037 		from += copy;
3038 	}
3039 
3040 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3041 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3042 		int end;
3043 
3044 		WARN_ON(start > offset + len);
3045 
3046 		end = start + skb_frag_size(frag);
3047 		if ((copy = end - offset) > 0) {
3048 			u32 p_off, p_len, copied;
3049 			struct page *p;
3050 			u8 *vaddr;
3051 
3052 			if (copy > len)
3053 				copy = len;
3054 
3055 			skb_frag_foreach_page(frag,
3056 					      skb_frag_off(frag) + offset - start,
3057 					      copy, p, p_off, p_len, copied) {
3058 				vaddr = kmap_atomic(p);
3059 				memcpy(vaddr + p_off, from + copied, p_len);
3060 				kunmap_atomic(vaddr);
3061 			}
3062 
3063 			if ((len -= copy) == 0)
3064 				return 0;
3065 			offset += copy;
3066 			from += copy;
3067 		}
3068 		start = end;
3069 	}
3070 
3071 	skb_walk_frags(skb, frag_iter) {
3072 		int end;
3073 
3074 		WARN_ON(start > offset + len);
3075 
3076 		end = start + frag_iter->len;
3077 		if ((copy = end - offset) > 0) {
3078 			if (copy > len)
3079 				copy = len;
3080 			if (skb_store_bits(frag_iter, offset - start,
3081 					   from, copy))
3082 				goto fault;
3083 			if ((len -= copy) == 0)
3084 				return 0;
3085 			offset += copy;
3086 			from += copy;
3087 		}
3088 		start = end;
3089 	}
3090 	if (!len)
3091 		return 0;
3092 
3093 fault:
3094 	return -EFAULT;
3095 }
3096 EXPORT_SYMBOL(skb_store_bits);
3097 
3098 /* Checksum skb data. */
3099 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3100 		      __wsum csum, const struct skb_checksum_ops *ops)
3101 {
3102 	int start = skb_headlen(skb);
3103 	int i, copy = start - offset;
3104 	struct sk_buff *frag_iter;
3105 	int pos = 0;
3106 
3107 	/* Checksum header. */
3108 	if (copy > 0) {
3109 		if (copy > len)
3110 			copy = len;
3111 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3112 				       skb->data + offset, copy, csum);
3113 		if ((len -= copy) == 0)
3114 			return csum;
3115 		offset += copy;
3116 		pos	= copy;
3117 	}
3118 
3119 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3120 		int end;
3121 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3122 
3123 		WARN_ON(start > offset + len);
3124 
3125 		end = start + skb_frag_size(frag);
3126 		if ((copy = end - offset) > 0) {
3127 			u32 p_off, p_len, copied;
3128 			struct page *p;
3129 			__wsum csum2;
3130 			u8 *vaddr;
3131 
3132 			if (copy > len)
3133 				copy = len;
3134 
3135 			skb_frag_foreach_page(frag,
3136 					      skb_frag_off(frag) + offset - start,
3137 					      copy, p, p_off, p_len, copied) {
3138 				vaddr = kmap_atomic(p);
3139 				csum2 = INDIRECT_CALL_1(ops->update,
3140 							csum_partial_ext,
3141 							vaddr + p_off, p_len, 0);
3142 				kunmap_atomic(vaddr);
3143 				csum = INDIRECT_CALL_1(ops->combine,
3144 						       csum_block_add_ext, csum,
3145 						       csum2, pos, p_len);
3146 				pos += p_len;
3147 			}
3148 
3149 			if (!(len -= copy))
3150 				return csum;
3151 			offset += copy;
3152 		}
3153 		start = end;
3154 	}
3155 
3156 	skb_walk_frags(skb, frag_iter) {
3157 		int end;
3158 
3159 		WARN_ON(start > offset + len);
3160 
3161 		end = start + frag_iter->len;
3162 		if ((copy = end - offset) > 0) {
3163 			__wsum csum2;
3164 			if (copy > len)
3165 				copy = len;
3166 			csum2 = __skb_checksum(frag_iter, offset - start,
3167 					       copy, 0, ops);
3168 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3169 					       csum, csum2, pos, copy);
3170 			if ((len -= copy) == 0)
3171 				return csum;
3172 			offset += copy;
3173 			pos    += copy;
3174 		}
3175 		start = end;
3176 	}
3177 	BUG_ON(len);
3178 
3179 	return csum;
3180 }
3181 EXPORT_SYMBOL(__skb_checksum);
3182 
3183 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3184 		    int len, __wsum csum)
3185 {
3186 	const struct skb_checksum_ops ops = {
3187 		.update  = csum_partial_ext,
3188 		.combine = csum_block_add_ext,
3189 	};
3190 
3191 	return __skb_checksum(skb, offset, len, csum, &ops);
3192 }
3193 EXPORT_SYMBOL(skb_checksum);
3194 
3195 /* Both of above in one bottle. */
3196 
3197 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3198 				    u8 *to, int len)
3199 {
3200 	int start = skb_headlen(skb);
3201 	int i, copy = start - offset;
3202 	struct sk_buff *frag_iter;
3203 	int pos = 0;
3204 	__wsum csum = 0;
3205 
3206 	/* Copy header. */
3207 	if (copy > 0) {
3208 		if (copy > len)
3209 			copy = len;
3210 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3211 						 copy);
3212 		if ((len -= copy) == 0)
3213 			return csum;
3214 		offset += copy;
3215 		to     += copy;
3216 		pos	= copy;
3217 	}
3218 
3219 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3220 		int end;
3221 
3222 		WARN_ON(start > offset + len);
3223 
3224 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3225 		if ((copy = end - offset) > 0) {
3226 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3227 			u32 p_off, p_len, copied;
3228 			struct page *p;
3229 			__wsum csum2;
3230 			u8 *vaddr;
3231 
3232 			if (copy > len)
3233 				copy = len;
3234 
3235 			skb_frag_foreach_page(frag,
3236 					      skb_frag_off(frag) + offset - start,
3237 					      copy, p, p_off, p_len, copied) {
3238 				vaddr = kmap_atomic(p);
3239 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3240 								  to + copied,
3241 								  p_len);
3242 				kunmap_atomic(vaddr);
3243 				csum = csum_block_add(csum, csum2, pos);
3244 				pos += p_len;
3245 			}
3246 
3247 			if (!(len -= copy))
3248 				return csum;
3249 			offset += copy;
3250 			to     += copy;
3251 		}
3252 		start = end;
3253 	}
3254 
3255 	skb_walk_frags(skb, frag_iter) {
3256 		__wsum csum2;
3257 		int end;
3258 
3259 		WARN_ON(start > offset + len);
3260 
3261 		end = start + frag_iter->len;
3262 		if ((copy = end - offset) > 0) {
3263 			if (copy > len)
3264 				copy = len;
3265 			csum2 = skb_copy_and_csum_bits(frag_iter,
3266 						       offset - start,
3267 						       to, copy);
3268 			csum = csum_block_add(csum, csum2, pos);
3269 			if ((len -= copy) == 0)
3270 				return csum;
3271 			offset += copy;
3272 			to     += copy;
3273 			pos    += copy;
3274 		}
3275 		start = end;
3276 	}
3277 	BUG_ON(len);
3278 	return csum;
3279 }
3280 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3281 
3282 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3283 {
3284 	__sum16 sum;
3285 
3286 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3287 	/* See comments in __skb_checksum_complete(). */
3288 	if (likely(!sum)) {
3289 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3290 		    !skb->csum_complete_sw)
3291 			netdev_rx_csum_fault(skb->dev, skb);
3292 	}
3293 	if (!skb_shared(skb))
3294 		skb->csum_valid = !sum;
3295 	return sum;
3296 }
3297 EXPORT_SYMBOL(__skb_checksum_complete_head);
3298 
3299 /* This function assumes skb->csum already holds pseudo header's checksum,
3300  * which has been changed from the hardware checksum, for example, by
3301  * __skb_checksum_validate_complete(). And, the original skb->csum must
3302  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3303  *
3304  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3305  * zero. The new checksum is stored back into skb->csum unless the skb is
3306  * shared.
3307  */
3308 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3309 {
3310 	__wsum csum;
3311 	__sum16 sum;
3312 
3313 	csum = skb_checksum(skb, 0, skb->len, 0);
3314 
3315 	sum = csum_fold(csum_add(skb->csum, csum));
3316 	/* This check is inverted, because we already knew the hardware
3317 	 * checksum is invalid before calling this function. So, if the
3318 	 * re-computed checksum is valid instead, then we have a mismatch
3319 	 * between the original skb->csum and skb_checksum(). This means either
3320 	 * the original hardware checksum is incorrect or we screw up skb->csum
3321 	 * when moving skb->data around.
3322 	 */
3323 	if (likely(!sum)) {
3324 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3325 		    !skb->csum_complete_sw)
3326 			netdev_rx_csum_fault(skb->dev, skb);
3327 	}
3328 
3329 	if (!skb_shared(skb)) {
3330 		/* Save full packet checksum */
3331 		skb->csum = csum;
3332 		skb->ip_summed = CHECKSUM_COMPLETE;
3333 		skb->csum_complete_sw = 1;
3334 		skb->csum_valid = !sum;
3335 	}
3336 
3337 	return sum;
3338 }
3339 EXPORT_SYMBOL(__skb_checksum_complete);
3340 
3341 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3342 {
3343 	net_warn_ratelimited(
3344 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3345 		__func__);
3346 	return 0;
3347 }
3348 
3349 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3350 				       int offset, int len)
3351 {
3352 	net_warn_ratelimited(
3353 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3354 		__func__);
3355 	return 0;
3356 }
3357 
3358 static const struct skb_checksum_ops default_crc32c_ops = {
3359 	.update  = warn_crc32c_csum_update,
3360 	.combine = warn_crc32c_csum_combine,
3361 };
3362 
3363 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3364 	&default_crc32c_ops;
3365 EXPORT_SYMBOL(crc32c_csum_stub);
3366 
3367  /**
3368  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3369  *	@from: source buffer
3370  *
3371  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3372  *	into skb_zerocopy().
3373  */
3374 unsigned int
3375 skb_zerocopy_headlen(const struct sk_buff *from)
3376 {
3377 	unsigned int hlen = 0;
3378 
3379 	if (!from->head_frag ||
3380 	    skb_headlen(from) < L1_CACHE_BYTES ||
3381 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3382 		hlen = skb_headlen(from);
3383 		if (!hlen)
3384 			hlen = from->len;
3385 	}
3386 
3387 	if (skb_has_frag_list(from))
3388 		hlen = from->len;
3389 
3390 	return hlen;
3391 }
3392 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3393 
3394 /**
3395  *	skb_zerocopy - Zero copy skb to skb
3396  *	@to: destination buffer
3397  *	@from: source buffer
3398  *	@len: number of bytes to copy from source buffer
3399  *	@hlen: size of linear headroom in destination buffer
3400  *
3401  *	Copies up to `len` bytes from `from` to `to` by creating references
3402  *	to the frags in the source buffer.
3403  *
3404  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3405  *	headroom in the `to` buffer.
3406  *
3407  *	Return value:
3408  *	0: everything is OK
3409  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3410  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3411  */
3412 int
3413 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3414 {
3415 	int i, j = 0;
3416 	int plen = 0; /* length of skb->head fragment */
3417 	int ret;
3418 	struct page *page;
3419 	unsigned int offset;
3420 
3421 	BUG_ON(!from->head_frag && !hlen);
3422 
3423 	/* dont bother with small payloads */
3424 	if (len <= skb_tailroom(to))
3425 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3426 
3427 	if (hlen) {
3428 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3429 		if (unlikely(ret))
3430 			return ret;
3431 		len -= hlen;
3432 	} else {
3433 		plen = min_t(int, skb_headlen(from), len);
3434 		if (plen) {
3435 			page = virt_to_head_page(from->head);
3436 			offset = from->data - (unsigned char *)page_address(page);
3437 			__skb_fill_page_desc(to, 0, page, offset, plen);
3438 			get_page(page);
3439 			j = 1;
3440 			len -= plen;
3441 		}
3442 	}
3443 
3444 	skb_len_add(to, len + plen);
3445 
3446 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3447 		skb_tx_error(from);
3448 		return -ENOMEM;
3449 	}
3450 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3451 
3452 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3453 		int size;
3454 
3455 		if (!len)
3456 			break;
3457 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3458 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3459 					len);
3460 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3461 		len -= size;
3462 		skb_frag_ref(to, j);
3463 		j++;
3464 	}
3465 	skb_shinfo(to)->nr_frags = j;
3466 
3467 	return 0;
3468 }
3469 EXPORT_SYMBOL_GPL(skb_zerocopy);
3470 
3471 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3472 {
3473 	__wsum csum;
3474 	long csstart;
3475 
3476 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3477 		csstart = skb_checksum_start_offset(skb);
3478 	else
3479 		csstart = skb_headlen(skb);
3480 
3481 	BUG_ON(csstart > skb_headlen(skb));
3482 
3483 	skb_copy_from_linear_data(skb, to, csstart);
3484 
3485 	csum = 0;
3486 	if (csstart != skb->len)
3487 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3488 					      skb->len - csstart);
3489 
3490 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3491 		long csstuff = csstart + skb->csum_offset;
3492 
3493 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3494 	}
3495 }
3496 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3497 
3498 /**
3499  *	skb_dequeue - remove from the head of the queue
3500  *	@list: list to dequeue from
3501  *
3502  *	Remove the head of the list. The list lock is taken so the function
3503  *	may be used safely with other locking list functions. The head item is
3504  *	returned or %NULL if the list is empty.
3505  */
3506 
3507 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3508 {
3509 	unsigned long flags;
3510 	struct sk_buff *result;
3511 
3512 	spin_lock_irqsave(&list->lock, flags);
3513 	result = __skb_dequeue(list);
3514 	spin_unlock_irqrestore(&list->lock, flags);
3515 	return result;
3516 }
3517 EXPORT_SYMBOL(skb_dequeue);
3518 
3519 /**
3520  *	skb_dequeue_tail - remove from the tail of the queue
3521  *	@list: list to dequeue from
3522  *
3523  *	Remove the tail of the list. The list lock is taken so the function
3524  *	may be used safely with other locking list functions. The tail item is
3525  *	returned or %NULL if the list is empty.
3526  */
3527 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3528 {
3529 	unsigned long flags;
3530 	struct sk_buff *result;
3531 
3532 	spin_lock_irqsave(&list->lock, flags);
3533 	result = __skb_dequeue_tail(list);
3534 	spin_unlock_irqrestore(&list->lock, flags);
3535 	return result;
3536 }
3537 EXPORT_SYMBOL(skb_dequeue_tail);
3538 
3539 /**
3540  *	skb_queue_purge - empty a list
3541  *	@list: list to empty
3542  *
3543  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3544  *	the list and one reference dropped. This function takes the list
3545  *	lock and is atomic with respect to other list locking functions.
3546  */
3547 void skb_queue_purge(struct sk_buff_head *list)
3548 {
3549 	struct sk_buff *skb;
3550 	while ((skb = skb_dequeue(list)) != NULL)
3551 		kfree_skb(skb);
3552 }
3553 EXPORT_SYMBOL(skb_queue_purge);
3554 
3555 /**
3556  *	skb_rbtree_purge - empty a skb rbtree
3557  *	@root: root of the rbtree to empty
3558  *	Return value: the sum of truesizes of all purged skbs.
3559  *
3560  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3561  *	the list and one reference dropped. This function does not take
3562  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3563  *	out-of-order queue is protected by the socket lock).
3564  */
3565 unsigned int skb_rbtree_purge(struct rb_root *root)
3566 {
3567 	struct rb_node *p = rb_first(root);
3568 	unsigned int sum = 0;
3569 
3570 	while (p) {
3571 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3572 
3573 		p = rb_next(p);
3574 		rb_erase(&skb->rbnode, root);
3575 		sum += skb->truesize;
3576 		kfree_skb(skb);
3577 	}
3578 	return sum;
3579 }
3580 
3581 /**
3582  *	skb_queue_head - queue a buffer at the list head
3583  *	@list: list to use
3584  *	@newsk: buffer to queue
3585  *
3586  *	Queue a buffer at the start of the list. This function takes the
3587  *	list lock and can be used safely with other locking &sk_buff functions
3588  *	safely.
3589  *
3590  *	A buffer cannot be placed on two lists at the same time.
3591  */
3592 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3593 {
3594 	unsigned long flags;
3595 
3596 	spin_lock_irqsave(&list->lock, flags);
3597 	__skb_queue_head(list, newsk);
3598 	spin_unlock_irqrestore(&list->lock, flags);
3599 }
3600 EXPORT_SYMBOL(skb_queue_head);
3601 
3602 /**
3603  *	skb_queue_tail - queue a buffer at the list tail
3604  *	@list: list to use
3605  *	@newsk: buffer to queue
3606  *
3607  *	Queue a buffer at the tail of the list. This function takes the
3608  *	list lock and can be used safely with other locking &sk_buff functions
3609  *	safely.
3610  *
3611  *	A buffer cannot be placed on two lists at the same time.
3612  */
3613 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3614 {
3615 	unsigned long flags;
3616 
3617 	spin_lock_irqsave(&list->lock, flags);
3618 	__skb_queue_tail(list, newsk);
3619 	spin_unlock_irqrestore(&list->lock, flags);
3620 }
3621 EXPORT_SYMBOL(skb_queue_tail);
3622 
3623 /**
3624  *	skb_unlink	-	remove a buffer from a list
3625  *	@skb: buffer to remove
3626  *	@list: list to use
3627  *
3628  *	Remove a packet from a list. The list locks are taken and this
3629  *	function is atomic with respect to other list locked calls
3630  *
3631  *	You must know what list the SKB is on.
3632  */
3633 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3634 {
3635 	unsigned long flags;
3636 
3637 	spin_lock_irqsave(&list->lock, flags);
3638 	__skb_unlink(skb, list);
3639 	spin_unlock_irqrestore(&list->lock, flags);
3640 }
3641 EXPORT_SYMBOL(skb_unlink);
3642 
3643 /**
3644  *	skb_append	-	append a buffer
3645  *	@old: buffer to insert after
3646  *	@newsk: buffer to insert
3647  *	@list: list to use
3648  *
3649  *	Place a packet after a given packet in a list. The list locks are taken
3650  *	and this function is atomic with respect to other list locked calls.
3651  *	A buffer cannot be placed on two lists at the same time.
3652  */
3653 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3654 {
3655 	unsigned long flags;
3656 
3657 	spin_lock_irqsave(&list->lock, flags);
3658 	__skb_queue_after(list, old, newsk);
3659 	spin_unlock_irqrestore(&list->lock, flags);
3660 }
3661 EXPORT_SYMBOL(skb_append);
3662 
3663 static inline void skb_split_inside_header(struct sk_buff *skb,
3664 					   struct sk_buff* skb1,
3665 					   const u32 len, const int pos)
3666 {
3667 	int i;
3668 
3669 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3670 					 pos - len);
3671 	/* And move data appendix as is. */
3672 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3673 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3674 
3675 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3676 	skb_shinfo(skb)->nr_frags  = 0;
3677 	skb1->data_len		   = skb->data_len;
3678 	skb1->len		   += skb1->data_len;
3679 	skb->data_len		   = 0;
3680 	skb->len		   = len;
3681 	skb_set_tail_pointer(skb, len);
3682 }
3683 
3684 static inline void skb_split_no_header(struct sk_buff *skb,
3685 				       struct sk_buff* skb1,
3686 				       const u32 len, int pos)
3687 {
3688 	int i, k = 0;
3689 	const int nfrags = skb_shinfo(skb)->nr_frags;
3690 
3691 	skb_shinfo(skb)->nr_frags = 0;
3692 	skb1->len		  = skb1->data_len = skb->len - len;
3693 	skb->len		  = len;
3694 	skb->data_len		  = len - pos;
3695 
3696 	for (i = 0; i < nfrags; i++) {
3697 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3698 
3699 		if (pos + size > len) {
3700 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3701 
3702 			if (pos < len) {
3703 				/* Split frag.
3704 				 * We have two variants in this case:
3705 				 * 1. Move all the frag to the second
3706 				 *    part, if it is possible. F.e.
3707 				 *    this approach is mandatory for TUX,
3708 				 *    where splitting is expensive.
3709 				 * 2. Split is accurately. We make this.
3710 				 */
3711 				skb_frag_ref(skb, i);
3712 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3713 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3714 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3715 				skb_shinfo(skb)->nr_frags++;
3716 			}
3717 			k++;
3718 		} else
3719 			skb_shinfo(skb)->nr_frags++;
3720 		pos += size;
3721 	}
3722 	skb_shinfo(skb1)->nr_frags = k;
3723 }
3724 
3725 /**
3726  * skb_split - Split fragmented skb to two parts at length len.
3727  * @skb: the buffer to split
3728  * @skb1: the buffer to receive the second part
3729  * @len: new length for skb
3730  */
3731 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3732 {
3733 	int pos = skb_headlen(skb);
3734 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3735 
3736 	skb_zcopy_downgrade_managed(skb);
3737 
3738 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3739 	skb_zerocopy_clone(skb1, skb, 0);
3740 	if (len < pos)	/* Split line is inside header. */
3741 		skb_split_inside_header(skb, skb1, len, pos);
3742 	else		/* Second chunk has no header, nothing to copy. */
3743 		skb_split_no_header(skb, skb1, len, pos);
3744 }
3745 EXPORT_SYMBOL(skb_split);
3746 
3747 /* Shifting from/to a cloned skb is a no-go.
3748  *
3749  * Caller cannot keep skb_shinfo related pointers past calling here!
3750  */
3751 static int skb_prepare_for_shift(struct sk_buff *skb)
3752 {
3753 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3754 }
3755 
3756 /**
3757  * skb_shift - Shifts paged data partially from skb to another
3758  * @tgt: buffer into which tail data gets added
3759  * @skb: buffer from which the paged data comes from
3760  * @shiftlen: shift up to this many bytes
3761  *
3762  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3763  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3764  * It's up to caller to free skb if everything was shifted.
3765  *
3766  * If @tgt runs out of frags, the whole operation is aborted.
3767  *
3768  * Skb cannot include anything else but paged data while tgt is allowed
3769  * to have non-paged data as well.
3770  *
3771  * TODO: full sized shift could be optimized but that would need
3772  * specialized skb free'er to handle frags without up-to-date nr_frags.
3773  */
3774 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3775 {
3776 	int from, to, merge, todo;
3777 	skb_frag_t *fragfrom, *fragto;
3778 
3779 	BUG_ON(shiftlen > skb->len);
3780 
3781 	if (skb_headlen(skb))
3782 		return 0;
3783 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3784 		return 0;
3785 
3786 	todo = shiftlen;
3787 	from = 0;
3788 	to = skb_shinfo(tgt)->nr_frags;
3789 	fragfrom = &skb_shinfo(skb)->frags[from];
3790 
3791 	/* Actual merge is delayed until the point when we know we can
3792 	 * commit all, so that we don't have to undo partial changes
3793 	 */
3794 	if (!to ||
3795 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3796 			      skb_frag_off(fragfrom))) {
3797 		merge = -1;
3798 	} else {
3799 		merge = to - 1;
3800 
3801 		todo -= skb_frag_size(fragfrom);
3802 		if (todo < 0) {
3803 			if (skb_prepare_for_shift(skb) ||
3804 			    skb_prepare_for_shift(tgt))
3805 				return 0;
3806 
3807 			/* All previous frag pointers might be stale! */
3808 			fragfrom = &skb_shinfo(skb)->frags[from];
3809 			fragto = &skb_shinfo(tgt)->frags[merge];
3810 
3811 			skb_frag_size_add(fragto, shiftlen);
3812 			skb_frag_size_sub(fragfrom, shiftlen);
3813 			skb_frag_off_add(fragfrom, shiftlen);
3814 
3815 			goto onlymerged;
3816 		}
3817 
3818 		from++;
3819 	}
3820 
3821 	/* Skip full, not-fitting skb to avoid expensive operations */
3822 	if ((shiftlen == skb->len) &&
3823 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3824 		return 0;
3825 
3826 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3827 		return 0;
3828 
3829 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3830 		if (to == MAX_SKB_FRAGS)
3831 			return 0;
3832 
3833 		fragfrom = &skb_shinfo(skb)->frags[from];
3834 		fragto = &skb_shinfo(tgt)->frags[to];
3835 
3836 		if (todo >= skb_frag_size(fragfrom)) {
3837 			*fragto = *fragfrom;
3838 			todo -= skb_frag_size(fragfrom);
3839 			from++;
3840 			to++;
3841 
3842 		} else {
3843 			__skb_frag_ref(fragfrom);
3844 			skb_frag_page_copy(fragto, fragfrom);
3845 			skb_frag_off_copy(fragto, fragfrom);
3846 			skb_frag_size_set(fragto, todo);
3847 
3848 			skb_frag_off_add(fragfrom, todo);
3849 			skb_frag_size_sub(fragfrom, todo);
3850 			todo = 0;
3851 
3852 			to++;
3853 			break;
3854 		}
3855 	}
3856 
3857 	/* Ready to "commit" this state change to tgt */
3858 	skb_shinfo(tgt)->nr_frags = to;
3859 
3860 	if (merge >= 0) {
3861 		fragfrom = &skb_shinfo(skb)->frags[0];
3862 		fragto = &skb_shinfo(tgt)->frags[merge];
3863 
3864 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3865 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3866 	}
3867 
3868 	/* Reposition in the original skb */
3869 	to = 0;
3870 	while (from < skb_shinfo(skb)->nr_frags)
3871 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3872 	skb_shinfo(skb)->nr_frags = to;
3873 
3874 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3875 
3876 onlymerged:
3877 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3878 	 * the other hand might need it if it needs to be resent
3879 	 */
3880 	tgt->ip_summed = CHECKSUM_PARTIAL;
3881 	skb->ip_summed = CHECKSUM_PARTIAL;
3882 
3883 	skb_len_add(skb, -shiftlen);
3884 	skb_len_add(tgt, shiftlen);
3885 
3886 	return shiftlen;
3887 }
3888 
3889 /**
3890  * skb_prepare_seq_read - Prepare a sequential read of skb data
3891  * @skb: the buffer to read
3892  * @from: lower offset of data to be read
3893  * @to: upper offset of data to be read
3894  * @st: state variable
3895  *
3896  * Initializes the specified state variable. Must be called before
3897  * invoking skb_seq_read() for the first time.
3898  */
3899 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3900 			  unsigned int to, struct skb_seq_state *st)
3901 {
3902 	st->lower_offset = from;
3903 	st->upper_offset = to;
3904 	st->root_skb = st->cur_skb = skb;
3905 	st->frag_idx = st->stepped_offset = 0;
3906 	st->frag_data = NULL;
3907 	st->frag_off = 0;
3908 }
3909 EXPORT_SYMBOL(skb_prepare_seq_read);
3910 
3911 /**
3912  * skb_seq_read - Sequentially read skb data
3913  * @consumed: number of bytes consumed by the caller so far
3914  * @data: destination pointer for data to be returned
3915  * @st: state variable
3916  *
3917  * Reads a block of skb data at @consumed relative to the
3918  * lower offset specified to skb_prepare_seq_read(). Assigns
3919  * the head of the data block to @data and returns the length
3920  * of the block or 0 if the end of the skb data or the upper
3921  * offset has been reached.
3922  *
3923  * The caller is not required to consume all of the data
3924  * returned, i.e. @consumed is typically set to the number
3925  * of bytes already consumed and the next call to
3926  * skb_seq_read() will return the remaining part of the block.
3927  *
3928  * Note 1: The size of each block of data returned can be arbitrary,
3929  *       this limitation is the cost for zerocopy sequential
3930  *       reads of potentially non linear data.
3931  *
3932  * Note 2: Fragment lists within fragments are not implemented
3933  *       at the moment, state->root_skb could be replaced with
3934  *       a stack for this purpose.
3935  */
3936 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3937 			  struct skb_seq_state *st)
3938 {
3939 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3940 	skb_frag_t *frag;
3941 
3942 	if (unlikely(abs_offset >= st->upper_offset)) {
3943 		if (st->frag_data) {
3944 			kunmap_atomic(st->frag_data);
3945 			st->frag_data = NULL;
3946 		}
3947 		return 0;
3948 	}
3949 
3950 next_skb:
3951 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3952 
3953 	if (abs_offset < block_limit && !st->frag_data) {
3954 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3955 		return block_limit - abs_offset;
3956 	}
3957 
3958 	if (st->frag_idx == 0 && !st->frag_data)
3959 		st->stepped_offset += skb_headlen(st->cur_skb);
3960 
3961 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3962 		unsigned int pg_idx, pg_off, pg_sz;
3963 
3964 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3965 
3966 		pg_idx = 0;
3967 		pg_off = skb_frag_off(frag);
3968 		pg_sz = skb_frag_size(frag);
3969 
3970 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3971 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3972 			pg_off = offset_in_page(pg_off + st->frag_off);
3973 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3974 						    PAGE_SIZE - pg_off);
3975 		}
3976 
3977 		block_limit = pg_sz + st->stepped_offset;
3978 		if (abs_offset < block_limit) {
3979 			if (!st->frag_data)
3980 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3981 
3982 			*data = (u8 *)st->frag_data + pg_off +
3983 				(abs_offset - st->stepped_offset);
3984 
3985 			return block_limit - abs_offset;
3986 		}
3987 
3988 		if (st->frag_data) {
3989 			kunmap_atomic(st->frag_data);
3990 			st->frag_data = NULL;
3991 		}
3992 
3993 		st->stepped_offset += pg_sz;
3994 		st->frag_off += pg_sz;
3995 		if (st->frag_off == skb_frag_size(frag)) {
3996 			st->frag_off = 0;
3997 			st->frag_idx++;
3998 		}
3999 	}
4000 
4001 	if (st->frag_data) {
4002 		kunmap_atomic(st->frag_data);
4003 		st->frag_data = NULL;
4004 	}
4005 
4006 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4007 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4008 		st->frag_idx = 0;
4009 		goto next_skb;
4010 	} else if (st->cur_skb->next) {
4011 		st->cur_skb = st->cur_skb->next;
4012 		st->frag_idx = 0;
4013 		goto next_skb;
4014 	}
4015 
4016 	return 0;
4017 }
4018 EXPORT_SYMBOL(skb_seq_read);
4019 
4020 /**
4021  * skb_abort_seq_read - Abort a sequential read of skb data
4022  * @st: state variable
4023  *
4024  * Must be called if skb_seq_read() was not called until it
4025  * returned 0.
4026  */
4027 void skb_abort_seq_read(struct skb_seq_state *st)
4028 {
4029 	if (st->frag_data)
4030 		kunmap_atomic(st->frag_data);
4031 }
4032 EXPORT_SYMBOL(skb_abort_seq_read);
4033 
4034 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4035 
4036 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4037 					  struct ts_config *conf,
4038 					  struct ts_state *state)
4039 {
4040 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4041 }
4042 
4043 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4044 {
4045 	skb_abort_seq_read(TS_SKB_CB(state));
4046 }
4047 
4048 /**
4049  * skb_find_text - Find a text pattern in skb data
4050  * @skb: the buffer to look in
4051  * @from: search offset
4052  * @to: search limit
4053  * @config: textsearch configuration
4054  *
4055  * Finds a pattern in the skb data according to the specified
4056  * textsearch configuration. Use textsearch_next() to retrieve
4057  * subsequent occurrences of the pattern. Returns the offset
4058  * to the first occurrence or UINT_MAX if no match was found.
4059  */
4060 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4061 			   unsigned int to, struct ts_config *config)
4062 {
4063 	struct ts_state state;
4064 	unsigned int ret;
4065 
4066 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4067 
4068 	config->get_next_block = skb_ts_get_next_block;
4069 	config->finish = skb_ts_finish;
4070 
4071 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4072 
4073 	ret = textsearch_find(config, &state);
4074 	return (ret <= to - from ? ret : UINT_MAX);
4075 }
4076 EXPORT_SYMBOL(skb_find_text);
4077 
4078 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4079 			 int offset, size_t size)
4080 {
4081 	int i = skb_shinfo(skb)->nr_frags;
4082 
4083 	if (skb_can_coalesce(skb, i, page, offset)) {
4084 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4085 	} else if (i < MAX_SKB_FRAGS) {
4086 		skb_zcopy_downgrade_managed(skb);
4087 		get_page(page);
4088 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4089 	} else {
4090 		return -EMSGSIZE;
4091 	}
4092 
4093 	return 0;
4094 }
4095 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4096 
4097 /**
4098  *	skb_pull_rcsum - pull skb and update receive checksum
4099  *	@skb: buffer to update
4100  *	@len: length of data pulled
4101  *
4102  *	This function performs an skb_pull on the packet and updates
4103  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4104  *	receive path processing instead of skb_pull unless you know
4105  *	that the checksum difference is zero (e.g., a valid IP header)
4106  *	or you are setting ip_summed to CHECKSUM_NONE.
4107  */
4108 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4109 {
4110 	unsigned char *data = skb->data;
4111 
4112 	BUG_ON(len > skb->len);
4113 	__skb_pull(skb, len);
4114 	skb_postpull_rcsum(skb, data, len);
4115 	return skb->data;
4116 }
4117 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4118 
4119 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4120 {
4121 	skb_frag_t head_frag;
4122 	struct page *page;
4123 
4124 	page = virt_to_head_page(frag_skb->head);
4125 	__skb_frag_set_page(&head_frag, page);
4126 	skb_frag_off_set(&head_frag, frag_skb->data -
4127 			 (unsigned char *)page_address(page));
4128 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4129 	return head_frag;
4130 }
4131 
4132 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4133 				 netdev_features_t features,
4134 				 unsigned int offset)
4135 {
4136 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4137 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4138 	unsigned int delta_truesize = 0;
4139 	unsigned int delta_len = 0;
4140 	struct sk_buff *tail = NULL;
4141 	struct sk_buff *nskb, *tmp;
4142 	int len_diff, err;
4143 
4144 	skb_push(skb, -skb_network_offset(skb) + offset);
4145 
4146 	skb_shinfo(skb)->frag_list = NULL;
4147 
4148 	while (list_skb) {
4149 		nskb = list_skb;
4150 		list_skb = list_skb->next;
4151 
4152 		err = 0;
4153 		delta_truesize += nskb->truesize;
4154 		if (skb_shared(nskb)) {
4155 			tmp = skb_clone(nskb, GFP_ATOMIC);
4156 			if (tmp) {
4157 				consume_skb(nskb);
4158 				nskb = tmp;
4159 				err = skb_unclone(nskb, GFP_ATOMIC);
4160 			} else {
4161 				err = -ENOMEM;
4162 			}
4163 		}
4164 
4165 		if (!tail)
4166 			skb->next = nskb;
4167 		else
4168 			tail->next = nskb;
4169 
4170 		if (unlikely(err)) {
4171 			nskb->next = list_skb;
4172 			goto err_linearize;
4173 		}
4174 
4175 		tail = nskb;
4176 
4177 		delta_len += nskb->len;
4178 
4179 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4180 
4181 		skb_release_head_state(nskb);
4182 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4183 		__copy_skb_header(nskb, skb);
4184 
4185 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4186 		nskb->transport_header += len_diff;
4187 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4188 						 nskb->data - tnl_hlen,
4189 						 offset + tnl_hlen);
4190 
4191 		if (skb_needs_linearize(nskb, features) &&
4192 		    __skb_linearize(nskb))
4193 			goto err_linearize;
4194 	}
4195 
4196 	skb->truesize = skb->truesize - delta_truesize;
4197 	skb->data_len = skb->data_len - delta_len;
4198 	skb->len = skb->len - delta_len;
4199 
4200 	skb_gso_reset(skb);
4201 
4202 	skb->prev = tail;
4203 
4204 	if (skb_needs_linearize(skb, features) &&
4205 	    __skb_linearize(skb))
4206 		goto err_linearize;
4207 
4208 	skb_get(skb);
4209 
4210 	return skb;
4211 
4212 err_linearize:
4213 	kfree_skb_list(skb->next);
4214 	skb->next = NULL;
4215 	return ERR_PTR(-ENOMEM);
4216 }
4217 EXPORT_SYMBOL_GPL(skb_segment_list);
4218 
4219 /**
4220  *	skb_segment - Perform protocol segmentation on skb.
4221  *	@head_skb: buffer to segment
4222  *	@features: features for the output path (see dev->features)
4223  *
4224  *	This function performs segmentation on the given skb.  It returns
4225  *	a pointer to the first in a list of new skbs for the segments.
4226  *	In case of error it returns ERR_PTR(err).
4227  */
4228 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4229 			    netdev_features_t features)
4230 {
4231 	struct sk_buff *segs = NULL;
4232 	struct sk_buff *tail = NULL;
4233 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4234 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4235 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4236 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4237 	struct sk_buff *frag_skb = head_skb;
4238 	unsigned int offset = doffset;
4239 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4240 	unsigned int partial_segs = 0;
4241 	unsigned int headroom;
4242 	unsigned int len = head_skb->len;
4243 	__be16 proto;
4244 	bool csum, sg;
4245 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4246 	int err = -ENOMEM;
4247 	int i = 0;
4248 	int pos;
4249 
4250 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4251 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4252 		struct sk_buff *check_skb;
4253 
4254 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4255 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4256 				/* gso_size is untrusted, and we have a frag_list with
4257 				 * a linear non head_frag item.
4258 				 *
4259 				 * If head_skb's headlen does not fit requested gso_size,
4260 				 * it means that the frag_list members do NOT terminate
4261 				 * on exact gso_size boundaries. Hence we cannot perform
4262 				 * skb_frag_t page sharing. Therefore we must fallback to
4263 				 * copying the frag_list skbs; we do so by disabling SG.
4264 				 */
4265 				features &= ~NETIF_F_SG;
4266 				break;
4267 			}
4268 		}
4269 	}
4270 
4271 	__skb_push(head_skb, doffset);
4272 	proto = skb_network_protocol(head_skb, NULL);
4273 	if (unlikely(!proto))
4274 		return ERR_PTR(-EINVAL);
4275 
4276 	sg = !!(features & NETIF_F_SG);
4277 	csum = !!can_checksum_protocol(features, proto);
4278 
4279 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4280 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4281 			struct sk_buff *iter;
4282 			unsigned int frag_len;
4283 
4284 			if (!list_skb ||
4285 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4286 				goto normal;
4287 
4288 			/* If we get here then all the required
4289 			 * GSO features except frag_list are supported.
4290 			 * Try to split the SKB to multiple GSO SKBs
4291 			 * with no frag_list.
4292 			 * Currently we can do that only when the buffers don't
4293 			 * have a linear part and all the buffers except
4294 			 * the last are of the same length.
4295 			 */
4296 			frag_len = list_skb->len;
4297 			skb_walk_frags(head_skb, iter) {
4298 				if (frag_len != iter->len && iter->next)
4299 					goto normal;
4300 				if (skb_headlen(iter) && !iter->head_frag)
4301 					goto normal;
4302 
4303 				len -= iter->len;
4304 			}
4305 
4306 			if (len != frag_len)
4307 				goto normal;
4308 		}
4309 
4310 		/* GSO partial only requires that we trim off any excess that
4311 		 * doesn't fit into an MSS sized block, so take care of that
4312 		 * now.
4313 		 */
4314 		partial_segs = len / mss;
4315 		if (partial_segs > 1)
4316 			mss *= partial_segs;
4317 		else
4318 			partial_segs = 0;
4319 	}
4320 
4321 normal:
4322 	headroom = skb_headroom(head_skb);
4323 	pos = skb_headlen(head_skb);
4324 
4325 	do {
4326 		struct sk_buff *nskb;
4327 		skb_frag_t *nskb_frag;
4328 		int hsize;
4329 		int size;
4330 
4331 		if (unlikely(mss == GSO_BY_FRAGS)) {
4332 			len = list_skb->len;
4333 		} else {
4334 			len = head_skb->len - offset;
4335 			if (len > mss)
4336 				len = mss;
4337 		}
4338 
4339 		hsize = skb_headlen(head_skb) - offset;
4340 
4341 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4342 		    (skb_headlen(list_skb) == len || sg)) {
4343 			BUG_ON(skb_headlen(list_skb) > len);
4344 
4345 			i = 0;
4346 			nfrags = skb_shinfo(list_skb)->nr_frags;
4347 			frag = skb_shinfo(list_skb)->frags;
4348 			frag_skb = list_skb;
4349 			pos += skb_headlen(list_skb);
4350 
4351 			while (pos < offset + len) {
4352 				BUG_ON(i >= nfrags);
4353 
4354 				size = skb_frag_size(frag);
4355 				if (pos + size > offset + len)
4356 					break;
4357 
4358 				i++;
4359 				pos += size;
4360 				frag++;
4361 			}
4362 
4363 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4364 			list_skb = list_skb->next;
4365 
4366 			if (unlikely(!nskb))
4367 				goto err;
4368 
4369 			if (unlikely(pskb_trim(nskb, len))) {
4370 				kfree_skb(nskb);
4371 				goto err;
4372 			}
4373 
4374 			hsize = skb_end_offset(nskb);
4375 			if (skb_cow_head(nskb, doffset + headroom)) {
4376 				kfree_skb(nskb);
4377 				goto err;
4378 			}
4379 
4380 			nskb->truesize += skb_end_offset(nskb) - hsize;
4381 			skb_release_head_state(nskb);
4382 			__skb_push(nskb, doffset);
4383 		} else {
4384 			if (hsize < 0)
4385 				hsize = 0;
4386 			if (hsize > len || !sg)
4387 				hsize = len;
4388 
4389 			nskb = __alloc_skb(hsize + doffset + headroom,
4390 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4391 					   NUMA_NO_NODE);
4392 
4393 			if (unlikely(!nskb))
4394 				goto err;
4395 
4396 			skb_reserve(nskb, headroom);
4397 			__skb_put(nskb, doffset);
4398 		}
4399 
4400 		if (segs)
4401 			tail->next = nskb;
4402 		else
4403 			segs = nskb;
4404 		tail = nskb;
4405 
4406 		__copy_skb_header(nskb, head_skb);
4407 
4408 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4409 		skb_reset_mac_len(nskb);
4410 
4411 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4412 						 nskb->data - tnl_hlen,
4413 						 doffset + tnl_hlen);
4414 
4415 		if (nskb->len == len + doffset)
4416 			goto perform_csum_check;
4417 
4418 		if (!sg) {
4419 			if (!csum) {
4420 				if (!nskb->remcsum_offload)
4421 					nskb->ip_summed = CHECKSUM_NONE;
4422 				SKB_GSO_CB(nskb)->csum =
4423 					skb_copy_and_csum_bits(head_skb, offset,
4424 							       skb_put(nskb,
4425 								       len),
4426 							       len);
4427 				SKB_GSO_CB(nskb)->csum_start =
4428 					skb_headroom(nskb) + doffset;
4429 			} else {
4430 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4431 					goto err;
4432 			}
4433 			continue;
4434 		}
4435 
4436 		nskb_frag = skb_shinfo(nskb)->frags;
4437 
4438 		skb_copy_from_linear_data_offset(head_skb, offset,
4439 						 skb_put(nskb, hsize), hsize);
4440 
4441 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4442 					   SKBFL_SHARED_FRAG;
4443 
4444 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4445 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4446 			goto err;
4447 
4448 		while (pos < offset + len) {
4449 			if (i >= nfrags) {
4450 				i = 0;
4451 				nfrags = skb_shinfo(list_skb)->nr_frags;
4452 				frag = skb_shinfo(list_skb)->frags;
4453 				frag_skb = list_skb;
4454 				if (!skb_headlen(list_skb)) {
4455 					BUG_ON(!nfrags);
4456 				} else {
4457 					BUG_ON(!list_skb->head_frag);
4458 
4459 					/* to make room for head_frag. */
4460 					i--;
4461 					frag--;
4462 				}
4463 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4464 				    skb_zerocopy_clone(nskb, frag_skb,
4465 						       GFP_ATOMIC))
4466 					goto err;
4467 
4468 				list_skb = list_skb->next;
4469 			}
4470 
4471 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4472 				     MAX_SKB_FRAGS)) {
4473 				net_warn_ratelimited(
4474 					"skb_segment: too many frags: %u %u\n",
4475 					pos, mss);
4476 				err = -EINVAL;
4477 				goto err;
4478 			}
4479 
4480 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4481 			__skb_frag_ref(nskb_frag);
4482 			size = skb_frag_size(nskb_frag);
4483 
4484 			if (pos < offset) {
4485 				skb_frag_off_add(nskb_frag, offset - pos);
4486 				skb_frag_size_sub(nskb_frag, offset - pos);
4487 			}
4488 
4489 			skb_shinfo(nskb)->nr_frags++;
4490 
4491 			if (pos + size <= offset + len) {
4492 				i++;
4493 				frag++;
4494 				pos += size;
4495 			} else {
4496 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4497 				goto skip_fraglist;
4498 			}
4499 
4500 			nskb_frag++;
4501 		}
4502 
4503 skip_fraglist:
4504 		nskb->data_len = len - hsize;
4505 		nskb->len += nskb->data_len;
4506 		nskb->truesize += nskb->data_len;
4507 
4508 perform_csum_check:
4509 		if (!csum) {
4510 			if (skb_has_shared_frag(nskb) &&
4511 			    __skb_linearize(nskb))
4512 				goto err;
4513 
4514 			if (!nskb->remcsum_offload)
4515 				nskb->ip_summed = CHECKSUM_NONE;
4516 			SKB_GSO_CB(nskb)->csum =
4517 				skb_checksum(nskb, doffset,
4518 					     nskb->len - doffset, 0);
4519 			SKB_GSO_CB(nskb)->csum_start =
4520 				skb_headroom(nskb) + doffset;
4521 		}
4522 	} while ((offset += len) < head_skb->len);
4523 
4524 	/* Some callers want to get the end of the list.
4525 	 * Put it in segs->prev to avoid walking the list.
4526 	 * (see validate_xmit_skb_list() for example)
4527 	 */
4528 	segs->prev = tail;
4529 
4530 	if (partial_segs) {
4531 		struct sk_buff *iter;
4532 		int type = skb_shinfo(head_skb)->gso_type;
4533 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4534 
4535 		/* Update type to add partial and then remove dodgy if set */
4536 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4537 		type &= ~SKB_GSO_DODGY;
4538 
4539 		/* Update GSO info and prepare to start updating headers on
4540 		 * our way back down the stack of protocols.
4541 		 */
4542 		for (iter = segs; iter; iter = iter->next) {
4543 			skb_shinfo(iter)->gso_size = gso_size;
4544 			skb_shinfo(iter)->gso_segs = partial_segs;
4545 			skb_shinfo(iter)->gso_type = type;
4546 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4547 		}
4548 
4549 		if (tail->len - doffset <= gso_size)
4550 			skb_shinfo(tail)->gso_size = 0;
4551 		else if (tail != segs)
4552 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4553 	}
4554 
4555 	/* Following permits correct backpressure, for protocols
4556 	 * using skb_set_owner_w().
4557 	 * Idea is to tranfert ownership from head_skb to last segment.
4558 	 */
4559 	if (head_skb->destructor == sock_wfree) {
4560 		swap(tail->truesize, head_skb->truesize);
4561 		swap(tail->destructor, head_skb->destructor);
4562 		swap(tail->sk, head_skb->sk);
4563 	}
4564 	return segs;
4565 
4566 err:
4567 	kfree_skb_list(segs);
4568 	return ERR_PTR(err);
4569 }
4570 EXPORT_SYMBOL_GPL(skb_segment);
4571 
4572 #ifdef CONFIG_SKB_EXTENSIONS
4573 #define SKB_EXT_ALIGN_VALUE	8
4574 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4575 
4576 static const u8 skb_ext_type_len[] = {
4577 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4578 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4579 #endif
4580 #ifdef CONFIG_XFRM
4581 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4582 #endif
4583 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4584 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4585 #endif
4586 #if IS_ENABLED(CONFIG_MPTCP)
4587 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4588 #endif
4589 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4590 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4591 #endif
4592 };
4593 
4594 static __always_inline unsigned int skb_ext_total_length(void)
4595 {
4596 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4597 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4598 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4599 #endif
4600 #ifdef CONFIG_XFRM
4601 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4602 #endif
4603 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4604 		skb_ext_type_len[TC_SKB_EXT] +
4605 #endif
4606 #if IS_ENABLED(CONFIG_MPTCP)
4607 		skb_ext_type_len[SKB_EXT_MPTCP] +
4608 #endif
4609 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4610 		skb_ext_type_len[SKB_EXT_MCTP] +
4611 #endif
4612 		0;
4613 }
4614 
4615 static void skb_extensions_init(void)
4616 {
4617 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4618 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4619 
4620 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4621 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4622 					     0,
4623 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4624 					     NULL);
4625 }
4626 #else
4627 static void skb_extensions_init(void) {}
4628 #endif
4629 
4630 void __init skb_init(void)
4631 {
4632 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4633 					      sizeof(struct sk_buff),
4634 					      0,
4635 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4636 					      offsetof(struct sk_buff, cb),
4637 					      sizeof_field(struct sk_buff, cb),
4638 					      NULL);
4639 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4640 						sizeof(struct sk_buff_fclones),
4641 						0,
4642 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4643 						NULL);
4644 	skb_extensions_init();
4645 }
4646 
4647 static int
4648 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4649 	       unsigned int recursion_level)
4650 {
4651 	int start = skb_headlen(skb);
4652 	int i, copy = start - offset;
4653 	struct sk_buff *frag_iter;
4654 	int elt = 0;
4655 
4656 	if (unlikely(recursion_level >= 24))
4657 		return -EMSGSIZE;
4658 
4659 	if (copy > 0) {
4660 		if (copy > len)
4661 			copy = len;
4662 		sg_set_buf(sg, skb->data + offset, copy);
4663 		elt++;
4664 		if ((len -= copy) == 0)
4665 			return elt;
4666 		offset += copy;
4667 	}
4668 
4669 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4670 		int end;
4671 
4672 		WARN_ON(start > offset + len);
4673 
4674 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4675 		if ((copy = end - offset) > 0) {
4676 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4677 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4678 				return -EMSGSIZE;
4679 
4680 			if (copy > len)
4681 				copy = len;
4682 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4683 				    skb_frag_off(frag) + offset - start);
4684 			elt++;
4685 			if (!(len -= copy))
4686 				return elt;
4687 			offset += copy;
4688 		}
4689 		start = end;
4690 	}
4691 
4692 	skb_walk_frags(skb, frag_iter) {
4693 		int end, ret;
4694 
4695 		WARN_ON(start > offset + len);
4696 
4697 		end = start + frag_iter->len;
4698 		if ((copy = end - offset) > 0) {
4699 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4700 				return -EMSGSIZE;
4701 
4702 			if (copy > len)
4703 				copy = len;
4704 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4705 					      copy, recursion_level + 1);
4706 			if (unlikely(ret < 0))
4707 				return ret;
4708 			elt += ret;
4709 			if ((len -= copy) == 0)
4710 				return elt;
4711 			offset += copy;
4712 		}
4713 		start = end;
4714 	}
4715 	BUG_ON(len);
4716 	return elt;
4717 }
4718 
4719 /**
4720  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4721  *	@skb: Socket buffer containing the buffers to be mapped
4722  *	@sg: The scatter-gather list to map into
4723  *	@offset: The offset into the buffer's contents to start mapping
4724  *	@len: Length of buffer space to be mapped
4725  *
4726  *	Fill the specified scatter-gather list with mappings/pointers into a
4727  *	region of the buffer space attached to a socket buffer. Returns either
4728  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4729  *	could not fit.
4730  */
4731 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4732 {
4733 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4734 
4735 	if (nsg <= 0)
4736 		return nsg;
4737 
4738 	sg_mark_end(&sg[nsg - 1]);
4739 
4740 	return nsg;
4741 }
4742 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4743 
4744 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4745  * sglist without mark the sg which contain last skb data as the end.
4746  * So the caller can mannipulate sg list as will when padding new data after
4747  * the first call without calling sg_unmark_end to expend sg list.
4748  *
4749  * Scenario to use skb_to_sgvec_nomark:
4750  * 1. sg_init_table
4751  * 2. skb_to_sgvec_nomark(payload1)
4752  * 3. skb_to_sgvec_nomark(payload2)
4753  *
4754  * This is equivalent to:
4755  * 1. sg_init_table
4756  * 2. skb_to_sgvec(payload1)
4757  * 3. sg_unmark_end
4758  * 4. skb_to_sgvec(payload2)
4759  *
4760  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4761  * is more preferable.
4762  */
4763 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4764 			int offset, int len)
4765 {
4766 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4767 }
4768 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4769 
4770 
4771 
4772 /**
4773  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4774  *	@skb: The socket buffer to check.
4775  *	@tailbits: Amount of trailing space to be added
4776  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4777  *
4778  *	Make sure that the data buffers attached to a socket buffer are
4779  *	writable. If they are not, private copies are made of the data buffers
4780  *	and the socket buffer is set to use these instead.
4781  *
4782  *	If @tailbits is given, make sure that there is space to write @tailbits
4783  *	bytes of data beyond current end of socket buffer.  @trailer will be
4784  *	set to point to the skb in which this space begins.
4785  *
4786  *	The number of scatterlist elements required to completely map the
4787  *	COW'd and extended socket buffer will be returned.
4788  */
4789 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4790 {
4791 	int copyflag;
4792 	int elt;
4793 	struct sk_buff *skb1, **skb_p;
4794 
4795 	/* If skb is cloned or its head is paged, reallocate
4796 	 * head pulling out all the pages (pages are considered not writable
4797 	 * at the moment even if they are anonymous).
4798 	 */
4799 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4800 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4801 		return -ENOMEM;
4802 
4803 	/* Easy case. Most of packets will go this way. */
4804 	if (!skb_has_frag_list(skb)) {
4805 		/* A little of trouble, not enough of space for trailer.
4806 		 * This should not happen, when stack is tuned to generate
4807 		 * good frames. OK, on miss we reallocate and reserve even more
4808 		 * space, 128 bytes is fair. */
4809 
4810 		if (skb_tailroom(skb) < tailbits &&
4811 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4812 			return -ENOMEM;
4813 
4814 		/* Voila! */
4815 		*trailer = skb;
4816 		return 1;
4817 	}
4818 
4819 	/* Misery. We are in troubles, going to mincer fragments... */
4820 
4821 	elt = 1;
4822 	skb_p = &skb_shinfo(skb)->frag_list;
4823 	copyflag = 0;
4824 
4825 	while ((skb1 = *skb_p) != NULL) {
4826 		int ntail = 0;
4827 
4828 		/* The fragment is partially pulled by someone,
4829 		 * this can happen on input. Copy it and everything
4830 		 * after it. */
4831 
4832 		if (skb_shared(skb1))
4833 			copyflag = 1;
4834 
4835 		/* If the skb is the last, worry about trailer. */
4836 
4837 		if (skb1->next == NULL && tailbits) {
4838 			if (skb_shinfo(skb1)->nr_frags ||
4839 			    skb_has_frag_list(skb1) ||
4840 			    skb_tailroom(skb1) < tailbits)
4841 				ntail = tailbits + 128;
4842 		}
4843 
4844 		if (copyflag ||
4845 		    skb_cloned(skb1) ||
4846 		    ntail ||
4847 		    skb_shinfo(skb1)->nr_frags ||
4848 		    skb_has_frag_list(skb1)) {
4849 			struct sk_buff *skb2;
4850 
4851 			/* Fuck, we are miserable poor guys... */
4852 			if (ntail == 0)
4853 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4854 			else
4855 				skb2 = skb_copy_expand(skb1,
4856 						       skb_headroom(skb1),
4857 						       ntail,
4858 						       GFP_ATOMIC);
4859 			if (unlikely(skb2 == NULL))
4860 				return -ENOMEM;
4861 
4862 			if (skb1->sk)
4863 				skb_set_owner_w(skb2, skb1->sk);
4864 
4865 			/* Looking around. Are we still alive?
4866 			 * OK, link new skb, drop old one */
4867 
4868 			skb2->next = skb1->next;
4869 			*skb_p = skb2;
4870 			kfree_skb(skb1);
4871 			skb1 = skb2;
4872 		}
4873 		elt++;
4874 		*trailer = skb1;
4875 		skb_p = &skb1->next;
4876 	}
4877 
4878 	return elt;
4879 }
4880 EXPORT_SYMBOL_GPL(skb_cow_data);
4881 
4882 static void sock_rmem_free(struct sk_buff *skb)
4883 {
4884 	struct sock *sk = skb->sk;
4885 
4886 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4887 }
4888 
4889 static void skb_set_err_queue(struct sk_buff *skb)
4890 {
4891 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4892 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4893 	 */
4894 	skb->pkt_type = PACKET_OUTGOING;
4895 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4896 }
4897 
4898 /*
4899  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4900  */
4901 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4902 {
4903 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4904 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4905 		return -ENOMEM;
4906 
4907 	skb_orphan(skb);
4908 	skb->sk = sk;
4909 	skb->destructor = sock_rmem_free;
4910 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4911 	skb_set_err_queue(skb);
4912 
4913 	/* before exiting rcu section, make sure dst is refcounted */
4914 	skb_dst_force(skb);
4915 
4916 	skb_queue_tail(&sk->sk_error_queue, skb);
4917 	if (!sock_flag(sk, SOCK_DEAD))
4918 		sk_error_report(sk);
4919 	return 0;
4920 }
4921 EXPORT_SYMBOL(sock_queue_err_skb);
4922 
4923 static bool is_icmp_err_skb(const struct sk_buff *skb)
4924 {
4925 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4926 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4927 }
4928 
4929 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4930 {
4931 	struct sk_buff_head *q = &sk->sk_error_queue;
4932 	struct sk_buff *skb, *skb_next = NULL;
4933 	bool icmp_next = false;
4934 	unsigned long flags;
4935 
4936 	spin_lock_irqsave(&q->lock, flags);
4937 	skb = __skb_dequeue(q);
4938 	if (skb && (skb_next = skb_peek(q))) {
4939 		icmp_next = is_icmp_err_skb(skb_next);
4940 		if (icmp_next)
4941 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4942 	}
4943 	spin_unlock_irqrestore(&q->lock, flags);
4944 
4945 	if (is_icmp_err_skb(skb) && !icmp_next)
4946 		sk->sk_err = 0;
4947 
4948 	if (skb_next)
4949 		sk_error_report(sk);
4950 
4951 	return skb;
4952 }
4953 EXPORT_SYMBOL(sock_dequeue_err_skb);
4954 
4955 /**
4956  * skb_clone_sk - create clone of skb, and take reference to socket
4957  * @skb: the skb to clone
4958  *
4959  * This function creates a clone of a buffer that holds a reference on
4960  * sk_refcnt.  Buffers created via this function are meant to be
4961  * returned using sock_queue_err_skb, or free via kfree_skb.
4962  *
4963  * When passing buffers allocated with this function to sock_queue_err_skb
4964  * it is necessary to wrap the call with sock_hold/sock_put in order to
4965  * prevent the socket from being released prior to being enqueued on
4966  * the sk_error_queue.
4967  */
4968 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4969 {
4970 	struct sock *sk = skb->sk;
4971 	struct sk_buff *clone;
4972 
4973 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4974 		return NULL;
4975 
4976 	clone = skb_clone(skb, GFP_ATOMIC);
4977 	if (!clone) {
4978 		sock_put(sk);
4979 		return NULL;
4980 	}
4981 
4982 	clone->sk = sk;
4983 	clone->destructor = sock_efree;
4984 
4985 	return clone;
4986 }
4987 EXPORT_SYMBOL(skb_clone_sk);
4988 
4989 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4990 					struct sock *sk,
4991 					int tstype,
4992 					bool opt_stats)
4993 {
4994 	struct sock_exterr_skb *serr;
4995 	int err;
4996 
4997 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4998 
4999 	serr = SKB_EXT_ERR(skb);
5000 	memset(serr, 0, sizeof(*serr));
5001 	serr->ee.ee_errno = ENOMSG;
5002 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5003 	serr->ee.ee_info = tstype;
5004 	serr->opt_stats = opt_stats;
5005 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5006 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
5007 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5008 		if (sk_is_tcp(sk))
5009 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5010 	}
5011 
5012 	err = sock_queue_err_skb(sk, skb);
5013 
5014 	if (err)
5015 		kfree_skb(skb);
5016 }
5017 
5018 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5019 {
5020 	bool ret;
5021 
5022 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5023 		return true;
5024 
5025 	read_lock_bh(&sk->sk_callback_lock);
5026 	ret = sk->sk_socket && sk->sk_socket->file &&
5027 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5028 	read_unlock_bh(&sk->sk_callback_lock);
5029 	return ret;
5030 }
5031 
5032 void skb_complete_tx_timestamp(struct sk_buff *skb,
5033 			       struct skb_shared_hwtstamps *hwtstamps)
5034 {
5035 	struct sock *sk = skb->sk;
5036 
5037 	if (!skb_may_tx_timestamp(sk, false))
5038 		goto err;
5039 
5040 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5041 	 * but only if the socket refcount is not zero.
5042 	 */
5043 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5044 		*skb_hwtstamps(skb) = *hwtstamps;
5045 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5046 		sock_put(sk);
5047 		return;
5048 	}
5049 
5050 err:
5051 	kfree_skb(skb);
5052 }
5053 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5054 
5055 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5056 		     const struct sk_buff *ack_skb,
5057 		     struct skb_shared_hwtstamps *hwtstamps,
5058 		     struct sock *sk, int tstype)
5059 {
5060 	struct sk_buff *skb;
5061 	bool tsonly, opt_stats = false;
5062 
5063 	if (!sk)
5064 		return;
5065 
5066 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5067 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5068 		return;
5069 
5070 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5071 	if (!skb_may_tx_timestamp(sk, tsonly))
5072 		return;
5073 
5074 	if (tsonly) {
5075 #ifdef CONFIG_INET
5076 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5077 		    sk_is_tcp(sk)) {
5078 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5079 							     ack_skb);
5080 			opt_stats = true;
5081 		} else
5082 #endif
5083 			skb = alloc_skb(0, GFP_ATOMIC);
5084 	} else {
5085 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5086 	}
5087 	if (!skb)
5088 		return;
5089 
5090 	if (tsonly) {
5091 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5092 					     SKBTX_ANY_TSTAMP;
5093 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5094 	}
5095 
5096 	if (hwtstamps)
5097 		*skb_hwtstamps(skb) = *hwtstamps;
5098 	else
5099 		__net_timestamp(skb);
5100 
5101 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5102 }
5103 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5104 
5105 void skb_tstamp_tx(struct sk_buff *orig_skb,
5106 		   struct skb_shared_hwtstamps *hwtstamps)
5107 {
5108 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5109 			       SCM_TSTAMP_SND);
5110 }
5111 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5112 
5113 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5114 {
5115 	struct sock *sk = skb->sk;
5116 	struct sock_exterr_skb *serr;
5117 	int err = 1;
5118 
5119 	skb->wifi_acked_valid = 1;
5120 	skb->wifi_acked = acked;
5121 
5122 	serr = SKB_EXT_ERR(skb);
5123 	memset(serr, 0, sizeof(*serr));
5124 	serr->ee.ee_errno = ENOMSG;
5125 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5126 
5127 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5128 	 * but only if the socket refcount is not zero.
5129 	 */
5130 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5131 		err = sock_queue_err_skb(sk, skb);
5132 		sock_put(sk);
5133 	}
5134 	if (err)
5135 		kfree_skb(skb);
5136 }
5137 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5138 
5139 /**
5140  * skb_partial_csum_set - set up and verify partial csum values for packet
5141  * @skb: the skb to set
5142  * @start: the number of bytes after skb->data to start checksumming.
5143  * @off: the offset from start to place the checksum.
5144  *
5145  * For untrusted partially-checksummed packets, we need to make sure the values
5146  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5147  *
5148  * This function checks and sets those values and skb->ip_summed: if this
5149  * returns false you should drop the packet.
5150  */
5151 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5152 {
5153 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5154 	u32 csum_start = skb_headroom(skb) + (u32)start;
5155 
5156 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5157 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5158 				     start, off, skb_headroom(skb), skb_headlen(skb));
5159 		return false;
5160 	}
5161 	skb->ip_summed = CHECKSUM_PARTIAL;
5162 	skb->csum_start = csum_start;
5163 	skb->csum_offset = off;
5164 	skb_set_transport_header(skb, start);
5165 	return true;
5166 }
5167 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5168 
5169 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5170 			       unsigned int max)
5171 {
5172 	if (skb_headlen(skb) >= len)
5173 		return 0;
5174 
5175 	/* If we need to pullup then pullup to the max, so we
5176 	 * won't need to do it again.
5177 	 */
5178 	if (max > skb->len)
5179 		max = skb->len;
5180 
5181 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5182 		return -ENOMEM;
5183 
5184 	if (skb_headlen(skb) < len)
5185 		return -EPROTO;
5186 
5187 	return 0;
5188 }
5189 
5190 #define MAX_TCP_HDR_LEN (15 * 4)
5191 
5192 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5193 				      typeof(IPPROTO_IP) proto,
5194 				      unsigned int off)
5195 {
5196 	int err;
5197 
5198 	switch (proto) {
5199 	case IPPROTO_TCP:
5200 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5201 					  off + MAX_TCP_HDR_LEN);
5202 		if (!err && !skb_partial_csum_set(skb, off,
5203 						  offsetof(struct tcphdr,
5204 							   check)))
5205 			err = -EPROTO;
5206 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5207 
5208 	case IPPROTO_UDP:
5209 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5210 					  off + sizeof(struct udphdr));
5211 		if (!err && !skb_partial_csum_set(skb, off,
5212 						  offsetof(struct udphdr,
5213 							   check)))
5214 			err = -EPROTO;
5215 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5216 	}
5217 
5218 	return ERR_PTR(-EPROTO);
5219 }
5220 
5221 /* This value should be large enough to cover a tagged ethernet header plus
5222  * maximally sized IP and TCP or UDP headers.
5223  */
5224 #define MAX_IP_HDR_LEN 128
5225 
5226 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5227 {
5228 	unsigned int off;
5229 	bool fragment;
5230 	__sum16 *csum;
5231 	int err;
5232 
5233 	fragment = false;
5234 
5235 	err = skb_maybe_pull_tail(skb,
5236 				  sizeof(struct iphdr),
5237 				  MAX_IP_HDR_LEN);
5238 	if (err < 0)
5239 		goto out;
5240 
5241 	if (ip_is_fragment(ip_hdr(skb)))
5242 		fragment = true;
5243 
5244 	off = ip_hdrlen(skb);
5245 
5246 	err = -EPROTO;
5247 
5248 	if (fragment)
5249 		goto out;
5250 
5251 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5252 	if (IS_ERR(csum))
5253 		return PTR_ERR(csum);
5254 
5255 	if (recalculate)
5256 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5257 					   ip_hdr(skb)->daddr,
5258 					   skb->len - off,
5259 					   ip_hdr(skb)->protocol, 0);
5260 	err = 0;
5261 
5262 out:
5263 	return err;
5264 }
5265 
5266 /* This value should be large enough to cover a tagged ethernet header plus
5267  * an IPv6 header, all options, and a maximal TCP or UDP header.
5268  */
5269 #define MAX_IPV6_HDR_LEN 256
5270 
5271 #define OPT_HDR(type, skb, off) \
5272 	(type *)(skb_network_header(skb) + (off))
5273 
5274 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5275 {
5276 	int err;
5277 	u8 nexthdr;
5278 	unsigned int off;
5279 	unsigned int len;
5280 	bool fragment;
5281 	bool done;
5282 	__sum16 *csum;
5283 
5284 	fragment = false;
5285 	done = false;
5286 
5287 	off = sizeof(struct ipv6hdr);
5288 
5289 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5290 	if (err < 0)
5291 		goto out;
5292 
5293 	nexthdr = ipv6_hdr(skb)->nexthdr;
5294 
5295 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5296 	while (off <= len && !done) {
5297 		switch (nexthdr) {
5298 		case IPPROTO_DSTOPTS:
5299 		case IPPROTO_HOPOPTS:
5300 		case IPPROTO_ROUTING: {
5301 			struct ipv6_opt_hdr *hp;
5302 
5303 			err = skb_maybe_pull_tail(skb,
5304 						  off +
5305 						  sizeof(struct ipv6_opt_hdr),
5306 						  MAX_IPV6_HDR_LEN);
5307 			if (err < 0)
5308 				goto out;
5309 
5310 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5311 			nexthdr = hp->nexthdr;
5312 			off += ipv6_optlen(hp);
5313 			break;
5314 		}
5315 		case IPPROTO_AH: {
5316 			struct ip_auth_hdr *hp;
5317 
5318 			err = skb_maybe_pull_tail(skb,
5319 						  off +
5320 						  sizeof(struct ip_auth_hdr),
5321 						  MAX_IPV6_HDR_LEN);
5322 			if (err < 0)
5323 				goto out;
5324 
5325 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5326 			nexthdr = hp->nexthdr;
5327 			off += ipv6_authlen(hp);
5328 			break;
5329 		}
5330 		case IPPROTO_FRAGMENT: {
5331 			struct frag_hdr *hp;
5332 
5333 			err = skb_maybe_pull_tail(skb,
5334 						  off +
5335 						  sizeof(struct frag_hdr),
5336 						  MAX_IPV6_HDR_LEN);
5337 			if (err < 0)
5338 				goto out;
5339 
5340 			hp = OPT_HDR(struct frag_hdr, skb, off);
5341 
5342 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5343 				fragment = true;
5344 
5345 			nexthdr = hp->nexthdr;
5346 			off += sizeof(struct frag_hdr);
5347 			break;
5348 		}
5349 		default:
5350 			done = true;
5351 			break;
5352 		}
5353 	}
5354 
5355 	err = -EPROTO;
5356 
5357 	if (!done || fragment)
5358 		goto out;
5359 
5360 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5361 	if (IS_ERR(csum))
5362 		return PTR_ERR(csum);
5363 
5364 	if (recalculate)
5365 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5366 					 &ipv6_hdr(skb)->daddr,
5367 					 skb->len - off, nexthdr, 0);
5368 	err = 0;
5369 
5370 out:
5371 	return err;
5372 }
5373 
5374 /**
5375  * skb_checksum_setup - set up partial checksum offset
5376  * @skb: the skb to set up
5377  * @recalculate: if true the pseudo-header checksum will be recalculated
5378  */
5379 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5380 {
5381 	int err;
5382 
5383 	switch (skb->protocol) {
5384 	case htons(ETH_P_IP):
5385 		err = skb_checksum_setup_ipv4(skb, recalculate);
5386 		break;
5387 
5388 	case htons(ETH_P_IPV6):
5389 		err = skb_checksum_setup_ipv6(skb, recalculate);
5390 		break;
5391 
5392 	default:
5393 		err = -EPROTO;
5394 		break;
5395 	}
5396 
5397 	return err;
5398 }
5399 EXPORT_SYMBOL(skb_checksum_setup);
5400 
5401 /**
5402  * skb_checksum_maybe_trim - maybe trims the given skb
5403  * @skb: the skb to check
5404  * @transport_len: the data length beyond the network header
5405  *
5406  * Checks whether the given skb has data beyond the given transport length.
5407  * If so, returns a cloned skb trimmed to this transport length.
5408  * Otherwise returns the provided skb. Returns NULL in error cases
5409  * (e.g. transport_len exceeds skb length or out-of-memory).
5410  *
5411  * Caller needs to set the skb transport header and free any returned skb if it
5412  * differs from the provided skb.
5413  */
5414 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5415 					       unsigned int transport_len)
5416 {
5417 	struct sk_buff *skb_chk;
5418 	unsigned int len = skb_transport_offset(skb) + transport_len;
5419 	int ret;
5420 
5421 	if (skb->len < len)
5422 		return NULL;
5423 	else if (skb->len == len)
5424 		return skb;
5425 
5426 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5427 	if (!skb_chk)
5428 		return NULL;
5429 
5430 	ret = pskb_trim_rcsum(skb_chk, len);
5431 	if (ret) {
5432 		kfree_skb(skb_chk);
5433 		return NULL;
5434 	}
5435 
5436 	return skb_chk;
5437 }
5438 
5439 /**
5440  * skb_checksum_trimmed - validate checksum of an skb
5441  * @skb: the skb to check
5442  * @transport_len: the data length beyond the network header
5443  * @skb_chkf: checksum function to use
5444  *
5445  * Applies the given checksum function skb_chkf to the provided skb.
5446  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5447  *
5448  * If the skb has data beyond the given transport length, then a
5449  * trimmed & cloned skb is checked and returned.
5450  *
5451  * Caller needs to set the skb transport header and free any returned skb if it
5452  * differs from the provided skb.
5453  */
5454 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5455 				     unsigned int transport_len,
5456 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5457 {
5458 	struct sk_buff *skb_chk;
5459 	unsigned int offset = skb_transport_offset(skb);
5460 	__sum16 ret;
5461 
5462 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5463 	if (!skb_chk)
5464 		goto err;
5465 
5466 	if (!pskb_may_pull(skb_chk, offset))
5467 		goto err;
5468 
5469 	skb_pull_rcsum(skb_chk, offset);
5470 	ret = skb_chkf(skb_chk);
5471 	skb_push_rcsum(skb_chk, offset);
5472 
5473 	if (ret)
5474 		goto err;
5475 
5476 	return skb_chk;
5477 
5478 err:
5479 	if (skb_chk && skb_chk != skb)
5480 		kfree_skb(skb_chk);
5481 
5482 	return NULL;
5483 
5484 }
5485 EXPORT_SYMBOL(skb_checksum_trimmed);
5486 
5487 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5488 {
5489 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5490 			     skb->dev->name);
5491 }
5492 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5493 
5494 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5495 {
5496 	if (head_stolen) {
5497 		skb_release_head_state(skb);
5498 		kmem_cache_free(skbuff_head_cache, skb);
5499 	} else {
5500 		__kfree_skb(skb);
5501 	}
5502 }
5503 EXPORT_SYMBOL(kfree_skb_partial);
5504 
5505 /**
5506  * skb_try_coalesce - try to merge skb to prior one
5507  * @to: prior buffer
5508  * @from: buffer to add
5509  * @fragstolen: pointer to boolean
5510  * @delta_truesize: how much more was allocated than was requested
5511  */
5512 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5513 		      bool *fragstolen, int *delta_truesize)
5514 {
5515 	struct skb_shared_info *to_shinfo, *from_shinfo;
5516 	int i, delta, len = from->len;
5517 
5518 	*fragstolen = false;
5519 
5520 	if (skb_cloned(to))
5521 		return false;
5522 
5523 	/* In general, avoid mixing slab allocated and page_pool allocated
5524 	 * pages within the same SKB. However when @to is not pp_recycle and
5525 	 * @from is cloned, we can transition frag pages from page_pool to
5526 	 * reference counted.
5527 	 *
5528 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5529 	 * @from is cloned, in case the SKB is using page_pool fragment
5530 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5531 	 * references for cloned SKBs at the moment that would result in
5532 	 * inconsistent reference counts.
5533 	 */
5534 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5535 		return false;
5536 
5537 	if (len <= skb_tailroom(to)) {
5538 		if (len)
5539 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5540 		*delta_truesize = 0;
5541 		return true;
5542 	}
5543 
5544 	to_shinfo = skb_shinfo(to);
5545 	from_shinfo = skb_shinfo(from);
5546 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5547 		return false;
5548 	if (skb_zcopy(to) || skb_zcopy(from))
5549 		return false;
5550 
5551 	if (skb_headlen(from) != 0) {
5552 		struct page *page;
5553 		unsigned int offset;
5554 
5555 		if (to_shinfo->nr_frags +
5556 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5557 			return false;
5558 
5559 		if (skb_head_is_locked(from))
5560 			return false;
5561 
5562 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5563 
5564 		page = virt_to_head_page(from->head);
5565 		offset = from->data - (unsigned char *)page_address(page);
5566 
5567 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5568 				   page, offset, skb_headlen(from));
5569 		*fragstolen = true;
5570 	} else {
5571 		if (to_shinfo->nr_frags +
5572 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5573 			return false;
5574 
5575 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5576 	}
5577 
5578 	WARN_ON_ONCE(delta < len);
5579 
5580 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5581 	       from_shinfo->frags,
5582 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5583 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5584 
5585 	if (!skb_cloned(from))
5586 		from_shinfo->nr_frags = 0;
5587 
5588 	/* if the skb is not cloned this does nothing
5589 	 * since we set nr_frags to 0.
5590 	 */
5591 	for (i = 0; i < from_shinfo->nr_frags; i++)
5592 		__skb_frag_ref(&from_shinfo->frags[i]);
5593 
5594 	to->truesize += delta;
5595 	to->len += len;
5596 	to->data_len += len;
5597 
5598 	*delta_truesize = delta;
5599 	return true;
5600 }
5601 EXPORT_SYMBOL(skb_try_coalesce);
5602 
5603 /**
5604  * skb_scrub_packet - scrub an skb
5605  *
5606  * @skb: buffer to clean
5607  * @xnet: packet is crossing netns
5608  *
5609  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5610  * into/from a tunnel. Some information have to be cleared during these
5611  * operations.
5612  * skb_scrub_packet can also be used to clean a skb before injecting it in
5613  * another namespace (@xnet == true). We have to clear all information in the
5614  * skb that could impact namespace isolation.
5615  */
5616 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5617 {
5618 	skb->pkt_type = PACKET_HOST;
5619 	skb->skb_iif = 0;
5620 	skb->ignore_df = 0;
5621 	skb_dst_drop(skb);
5622 	skb_ext_reset(skb);
5623 	nf_reset_ct(skb);
5624 	nf_reset_trace(skb);
5625 
5626 #ifdef CONFIG_NET_SWITCHDEV
5627 	skb->offload_fwd_mark = 0;
5628 	skb->offload_l3_fwd_mark = 0;
5629 #endif
5630 
5631 	if (!xnet)
5632 		return;
5633 
5634 	ipvs_reset(skb);
5635 	skb->mark = 0;
5636 	skb_clear_tstamp(skb);
5637 }
5638 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5639 
5640 /**
5641  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5642  *
5643  * @skb: GSO skb
5644  *
5645  * skb_gso_transport_seglen is used to determine the real size of the
5646  * individual segments, including Layer4 headers (TCP/UDP).
5647  *
5648  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5649  */
5650 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5651 {
5652 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5653 	unsigned int thlen = 0;
5654 
5655 	if (skb->encapsulation) {
5656 		thlen = skb_inner_transport_header(skb) -
5657 			skb_transport_header(skb);
5658 
5659 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5660 			thlen += inner_tcp_hdrlen(skb);
5661 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5662 		thlen = tcp_hdrlen(skb);
5663 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5664 		thlen = sizeof(struct sctphdr);
5665 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5666 		thlen = sizeof(struct udphdr);
5667 	}
5668 	/* UFO sets gso_size to the size of the fragmentation
5669 	 * payload, i.e. the size of the L4 (UDP) header is already
5670 	 * accounted for.
5671 	 */
5672 	return thlen + shinfo->gso_size;
5673 }
5674 
5675 /**
5676  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5677  *
5678  * @skb: GSO skb
5679  *
5680  * skb_gso_network_seglen is used to determine the real size of the
5681  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5682  *
5683  * The MAC/L2 header is not accounted for.
5684  */
5685 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5686 {
5687 	unsigned int hdr_len = skb_transport_header(skb) -
5688 			       skb_network_header(skb);
5689 
5690 	return hdr_len + skb_gso_transport_seglen(skb);
5691 }
5692 
5693 /**
5694  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5695  *
5696  * @skb: GSO skb
5697  *
5698  * skb_gso_mac_seglen is used to determine the real size of the
5699  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5700  * headers (TCP/UDP).
5701  */
5702 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5703 {
5704 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5705 
5706 	return hdr_len + skb_gso_transport_seglen(skb);
5707 }
5708 
5709 /**
5710  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5711  *
5712  * There are a couple of instances where we have a GSO skb, and we
5713  * want to determine what size it would be after it is segmented.
5714  *
5715  * We might want to check:
5716  * -    L3+L4+payload size (e.g. IP forwarding)
5717  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5718  *
5719  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5720  *
5721  * @skb: GSO skb
5722  *
5723  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5724  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5725  *
5726  * @max_len: The maximum permissible length.
5727  *
5728  * Returns true if the segmented length <= max length.
5729  */
5730 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5731 				      unsigned int seg_len,
5732 				      unsigned int max_len) {
5733 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5734 	const struct sk_buff *iter;
5735 
5736 	if (shinfo->gso_size != GSO_BY_FRAGS)
5737 		return seg_len <= max_len;
5738 
5739 	/* Undo this so we can re-use header sizes */
5740 	seg_len -= GSO_BY_FRAGS;
5741 
5742 	skb_walk_frags(skb, iter) {
5743 		if (seg_len + skb_headlen(iter) > max_len)
5744 			return false;
5745 	}
5746 
5747 	return true;
5748 }
5749 
5750 /**
5751  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5752  *
5753  * @skb: GSO skb
5754  * @mtu: MTU to validate against
5755  *
5756  * skb_gso_validate_network_len validates if a given skb will fit a
5757  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5758  * payload.
5759  */
5760 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5761 {
5762 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5763 }
5764 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5765 
5766 /**
5767  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5768  *
5769  * @skb: GSO skb
5770  * @len: length to validate against
5771  *
5772  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5773  * length once split, including L2, L3 and L4 headers and the payload.
5774  */
5775 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5776 {
5777 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5778 }
5779 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5780 
5781 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5782 {
5783 	int mac_len, meta_len;
5784 	void *meta;
5785 
5786 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5787 		kfree_skb(skb);
5788 		return NULL;
5789 	}
5790 
5791 	mac_len = skb->data - skb_mac_header(skb);
5792 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5793 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5794 			mac_len - VLAN_HLEN - ETH_TLEN);
5795 	}
5796 
5797 	meta_len = skb_metadata_len(skb);
5798 	if (meta_len) {
5799 		meta = skb_metadata_end(skb) - meta_len;
5800 		memmove(meta + VLAN_HLEN, meta, meta_len);
5801 	}
5802 
5803 	skb->mac_header += VLAN_HLEN;
5804 	return skb;
5805 }
5806 
5807 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5808 {
5809 	struct vlan_hdr *vhdr;
5810 	u16 vlan_tci;
5811 
5812 	if (unlikely(skb_vlan_tag_present(skb))) {
5813 		/* vlan_tci is already set-up so leave this for another time */
5814 		return skb;
5815 	}
5816 
5817 	skb = skb_share_check(skb, GFP_ATOMIC);
5818 	if (unlikely(!skb))
5819 		goto err_free;
5820 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5821 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5822 		goto err_free;
5823 
5824 	vhdr = (struct vlan_hdr *)skb->data;
5825 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5826 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5827 
5828 	skb_pull_rcsum(skb, VLAN_HLEN);
5829 	vlan_set_encap_proto(skb, vhdr);
5830 
5831 	skb = skb_reorder_vlan_header(skb);
5832 	if (unlikely(!skb))
5833 		goto err_free;
5834 
5835 	skb_reset_network_header(skb);
5836 	if (!skb_transport_header_was_set(skb))
5837 		skb_reset_transport_header(skb);
5838 	skb_reset_mac_len(skb);
5839 
5840 	return skb;
5841 
5842 err_free:
5843 	kfree_skb(skb);
5844 	return NULL;
5845 }
5846 EXPORT_SYMBOL(skb_vlan_untag);
5847 
5848 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5849 {
5850 	if (!pskb_may_pull(skb, write_len))
5851 		return -ENOMEM;
5852 
5853 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5854 		return 0;
5855 
5856 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5857 }
5858 EXPORT_SYMBOL(skb_ensure_writable);
5859 
5860 /* remove VLAN header from packet and update csum accordingly.
5861  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5862  */
5863 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5864 {
5865 	struct vlan_hdr *vhdr;
5866 	int offset = skb->data - skb_mac_header(skb);
5867 	int err;
5868 
5869 	if (WARN_ONCE(offset,
5870 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5871 		      offset)) {
5872 		return -EINVAL;
5873 	}
5874 
5875 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5876 	if (unlikely(err))
5877 		return err;
5878 
5879 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5880 
5881 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5882 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5883 
5884 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5885 	__skb_pull(skb, VLAN_HLEN);
5886 
5887 	vlan_set_encap_proto(skb, vhdr);
5888 	skb->mac_header += VLAN_HLEN;
5889 
5890 	if (skb_network_offset(skb) < ETH_HLEN)
5891 		skb_set_network_header(skb, ETH_HLEN);
5892 
5893 	skb_reset_mac_len(skb);
5894 
5895 	return err;
5896 }
5897 EXPORT_SYMBOL(__skb_vlan_pop);
5898 
5899 /* Pop a vlan tag either from hwaccel or from payload.
5900  * Expects skb->data at mac header.
5901  */
5902 int skb_vlan_pop(struct sk_buff *skb)
5903 {
5904 	u16 vlan_tci;
5905 	__be16 vlan_proto;
5906 	int err;
5907 
5908 	if (likely(skb_vlan_tag_present(skb))) {
5909 		__vlan_hwaccel_clear_tag(skb);
5910 	} else {
5911 		if (unlikely(!eth_type_vlan(skb->protocol)))
5912 			return 0;
5913 
5914 		err = __skb_vlan_pop(skb, &vlan_tci);
5915 		if (err)
5916 			return err;
5917 	}
5918 	/* move next vlan tag to hw accel tag */
5919 	if (likely(!eth_type_vlan(skb->protocol)))
5920 		return 0;
5921 
5922 	vlan_proto = skb->protocol;
5923 	err = __skb_vlan_pop(skb, &vlan_tci);
5924 	if (unlikely(err))
5925 		return err;
5926 
5927 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5928 	return 0;
5929 }
5930 EXPORT_SYMBOL(skb_vlan_pop);
5931 
5932 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5933  * Expects skb->data at mac header.
5934  */
5935 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5936 {
5937 	if (skb_vlan_tag_present(skb)) {
5938 		int offset = skb->data - skb_mac_header(skb);
5939 		int err;
5940 
5941 		if (WARN_ONCE(offset,
5942 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5943 			      offset)) {
5944 			return -EINVAL;
5945 		}
5946 
5947 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5948 					skb_vlan_tag_get(skb));
5949 		if (err)
5950 			return err;
5951 
5952 		skb->protocol = skb->vlan_proto;
5953 		skb->mac_len += VLAN_HLEN;
5954 
5955 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5956 	}
5957 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5958 	return 0;
5959 }
5960 EXPORT_SYMBOL(skb_vlan_push);
5961 
5962 /**
5963  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5964  *
5965  * @skb: Socket buffer to modify
5966  *
5967  * Drop the Ethernet header of @skb.
5968  *
5969  * Expects that skb->data points to the mac header and that no VLAN tags are
5970  * present.
5971  *
5972  * Returns 0 on success, -errno otherwise.
5973  */
5974 int skb_eth_pop(struct sk_buff *skb)
5975 {
5976 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5977 	    skb_network_offset(skb) < ETH_HLEN)
5978 		return -EPROTO;
5979 
5980 	skb_pull_rcsum(skb, ETH_HLEN);
5981 	skb_reset_mac_header(skb);
5982 	skb_reset_mac_len(skb);
5983 
5984 	return 0;
5985 }
5986 EXPORT_SYMBOL(skb_eth_pop);
5987 
5988 /**
5989  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5990  *
5991  * @skb: Socket buffer to modify
5992  * @dst: Destination MAC address of the new header
5993  * @src: Source MAC address of the new header
5994  *
5995  * Prepend @skb with a new Ethernet header.
5996  *
5997  * Expects that skb->data points to the mac header, which must be empty.
5998  *
5999  * Returns 0 on success, -errno otherwise.
6000  */
6001 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6002 		 const unsigned char *src)
6003 {
6004 	struct ethhdr *eth;
6005 	int err;
6006 
6007 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6008 		return -EPROTO;
6009 
6010 	err = skb_cow_head(skb, sizeof(*eth));
6011 	if (err < 0)
6012 		return err;
6013 
6014 	skb_push(skb, sizeof(*eth));
6015 	skb_reset_mac_header(skb);
6016 	skb_reset_mac_len(skb);
6017 
6018 	eth = eth_hdr(skb);
6019 	ether_addr_copy(eth->h_dest, dst);
6020 	ether_addr_copy(eth->h_source, src);
6021 	eth->h_proto = skb->protocol;
6022 
6023 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6024 
6025 	return 0;
6026 }
6027 EXPORT_SYMBOL(skb_eth_push);
6028 
6029 /* Update the ethertype of hdr and the skb csum value if required. */
6030 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6031 			     __be16 ethertype)
6032 {
6033 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6034 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6035 
6036 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6037 	}
6038 
6039 	hdr->h_proto = ethertype;
6040 }
6041 
6042 /**
6043  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6044  *                   the packet
6045  *
6046  * @skb: buffer
6047  * @mpls_lse: MPLS label stack entry to push
6048  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6049  * @mac_len: length of the MAC header
6050  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6051  *            ethernet
6052  *
6053  * Expects skb->data at mac header.
6054  *
6055  * Returns 0 on success, -errno otherwise.
6056  */
6057 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6058 		  int mac_len, bool ethernet)
6059 {
6060 	struct mpls_shim_hdr *lse;
6061 	int err;
6062 
6063 	if (unlikely(!eth_p_mpls(mpls_proto)))
6064 		return -EINVAL;
6065 
6066 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6067 	if (skb->encapsulation)
6068 		return -EINVAL;
6069 
6070 	err = skb_cow_head(skb, MPLS_HLEN);
6071 	if (unlikely(err))
6072 		return err;
6073 
6074 	if (!skb->inner_protocol) {
6075 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6076 		skb_set_inner_protocol(skb, skb->protocol);
6077 	}
6078 
6079 	skb_push(skb, MPLS_HLEN);
6080 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6081 		mac_len);
6082 	skb_reset_mac_header(skb);
6083 	skb_set_network_header(skb, mac_len);
6084 	skb_reset_mac_len(skb);
6085 
6086 	lse = mpls_hdr(skb);
6087 	lse->label_stack_entry = mpls_lse;
6088 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6089 
6090 	if (ethernet && mac_len >= ETH_HLEN)
6091 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6092 	skb->protocol = mpls_proto;
6093 
6094 	return 0;
6095 }
6096 EXPORT_SYMBOL_GPL(skb_mpls_push);
6097 
6098 /**
6099  * skb_mpls_pop() - pop the outermost MPLS header
6100  *
6101  * @skb: buffer
6102  * @next_proto: ethertype of header after popped MPLS header
6103  * @mac_len: length of the MAC header
6104  * @ethernet: flag to indicate if the packet is ethernet
6105  *
6106  * Expects skb->data at mac header.
6107  *
6108  * Returns 0 on success, -errno otherwise.
6109  */
6110 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6111 		 bool ethernet)
6112 {
6113 	int err;
6114 
6115 	if (unlikely(!eth_p_mpls(skb->protocol)))
6116 		return 0;
6117 
6118 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6119 	if (unlikely(err))
6120 		return err;
6121 
6122 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6123 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6124 		mac_len);
6125 
6126 	__skb_pull(skb, MPLS_HLEN);
6127 	skb_reset_mac_header(skb);
6128 	skb_set_network_header(skb, mac_len);
6129 
6130 	if (ethernet && mac_len >= ETH_HLEN) {
6131 		struct ethhdr *hdr;
6132 
6133 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6134 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6135 		skb_mod_eth_type(skb, hdr, next_proto);
6136 	}
6137 	skb->protocol = next_proto;
6138 
6139 	return 0;
6140 }
6141 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6142 
6143 /**
6144  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6145  *
6146  * @skb: buffer
6147  * @mpls_lse: new MPLS label stack entry to update to
6148  *
6149  * Expects skb->data at mac header.
6150  *
6151  * Returns 0 on success, -errno otherwise.
6152  */
6153 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6154 {
6155 	int err;
6156 
6157 	if (unlikely(!eth_p_mpls(skb->protocol)))
6158 		return -EINVAL;
6159 
6160 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6161 	if (unlikely(err))
6162 		return err;
6163 
6164 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6165 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6166 
6167 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6168 	}
6169 
6170 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6171 
6172 	return 0;
6173 }
6174 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6175 
6176 /**
6177  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6178  *
6179  * @skb: buffer
6180  *
6181  * Expects skb->data at mac header.
6182  *
6183  * Returns 0 on success, -errno otherwise.
6184  */
6185 int skb_mpls_dec_ttl(struct sk_buff *skb)
6186 {
6187 	u32 lse;
6188 	u8 ttl;
6189 
6190 	if (unlikely(!eth_p_mpls(skb->protocol)))
6191 		return -EINVAL;
6192 
6193 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6194 		return -ENOMEM;
6195 
6196 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6197 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6198 	if (!--ttl)
6199 		return -EINVAL;
6200 
6201 	lse &= ~MPLS_LS_TTL_MASK;
6202 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6203 
6204 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6205 }
6206 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6207 
6208 /**
6209  * alloc_skb_with_frags - allocate skb with page frags
6210  *
6211  * @header_len: size of linear part
6212  * @data_len: needed length in frags
6213  * @max_page_order: max page order desired.
6214  * @errcode: pointer to error code if any
6215  * @gfp_mask: allocation mask
6216  *
6217  * This can be used to allocate a paged skb, given a maximal order for frags.
6218  */
6219 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6220 				     unsigned long data_len,
6221 				     int max_page_order,
6222 				     int *errcode,
6223 				     gfp_t gfp_mask)
6224 {
6225 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6226 	unsigned long chunk;
6227 	struct sk_buff *skb;
6228 	struct page *page;
6229 	int i;
6230 
6231 	*errcode = -EMSGSIZE;
6232 	/* Note this test could be relaxed, if we succeed to allocate
6233 	 * high order pages...
6234 	 */
6235 	if (npages > MAX_SKB_FRAGS)
6236 		return NULL;
6237 
6238 	*errcode = -ENOBUFS;
6239 	skb = alloc_skb(header_len, gfp_mask);
6240 	if (!skb)
6241 		return NULL;
6242 
6243 	skb->truesize += npages << PAGE_SHIFT;
6244 
6245 	for (i = 0; npages > 0; i++) {
6246 		int order = max_page_order;
6247 
6248 		while (order) {
6249 			if (npages >= 1 << order) {
6250 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6251 						   __GFP_COMP |
6252 						   __GFP_NOWARN,
6253 						   order);
6254 				if (page)
6255 					goto fill_page;
6256 				/* Do not retry other high order allocations */
6257 				order = 1;
6258 				max_page_order = 0;
6259 			}
6260 			order--;
6261 		}
6262 		page = alloc_page(gfp_mask);
6263 		if (!page)
6264 			goto failure;
6265 fill_page:
6266 		chunk = min_t(unsigned long, data_len,
6267 			      PAGE_SIZE << order);
6268 		skb_fill_page_desc(skb, i, page, 0, chunk);
6269 		data_len -= chunk;
6270 		npages -= 1 << order;
6271 	}
6272 	return skb;
6273 
6274 failure:
6275 	kfree_skb(skb);
6276 	return NULL;
6277 }
6278 EXPORT_SYMBOL(alloc_skb_with_frags);
6279 
6280 /* carve out the first off bytes from skb when off < headlen */
6281 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6282 				    const int headlen, gfp_t gfp_mask)
6283 {
6284 	int i;
6285 	unsigned int size = skb_end_offset(skb);
6286 	int new_hlen = headlen - off;
6287 	u8 *data;
6288 
6289 	if (skb_pfmemalloc(skb))
6290 		gfp_mask |= __GFP_MEMALLOC;
6291 
6292 	size = SKB_DATA_ALIGN(size);
6293 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6294 	size = kmalloc_size_roundup(size);
6295 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6296 	if (!data)
6297 		return -ENOMEM;
6298 	size = SKB_WITH_OVERHEAD(size);
6299 
6300 	/* Copy real data, and all frags */
6301 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6302 	skb->len -= off;
6303 
6304 	memcpy((struct skb_shared_info *)(data + size),
6305 	       skb_shinfo(skb),
6306 	       offsetof(struct skb_shared_info,
6307 			frags[skb_shinfo(skb)->nr_frags]));
6308 	if (skb_cloned(skb)) {
6309 		/* drop the old head gracefully */
6310 		if (skb_orphan_frags(skb, gfp_mask)) {
6311 			kfree(data);
6312 			return -ENOMEM;
6313 		}
6314 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6315 			skb_frag_ref(skb, i);
6316 		if (skb_has_frag_list(skb))
6317 			skb_clone_fraglist(skb);
6318 		skb_release_data(skb, SKB_CONSUMED);
6319 	} else {
6320 		/* we can reuse existing recount- all we did was
6321 		 * relocate values
6322 		 */
6323 		skb_free_head(skb);
6324 	}
6325 
6326 	skb->head = data;
6327 	skb->data = data;
6328 	skb->head_frag = 0;
6329 	skb_set_end_offset(skb, size);
6330 	skb_set_tail_pointer(skb, skb_headlen(skb));
6331 	skb_headers_offset_update(skb, 0);
6332 	skb->cloned = 0;
6333 	skb->hdr_len = 0;
6334 	skb->nohdr = 0;
6335 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6336 
6337 	return 0;
6338 }
6339 
6340 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6341 
6342 /* carve out the first eat bytes from skb's frag_list. May recurse into
6343  * pskb_carve()
6344  */
6345 static int pskb_carve_frag_list(struct sk_buff *skb,
6346 				struct skb_shared_info *shinfo, int eat,
6347 				gfp_t gfp_mask)
6348 {
6349 	struct sk_buff *list = shinfo->frag_list;
6350 	struct sk_buff *clone = NULL;
6351 	struct sk_buff *insp = NULL;
6352 
6353 	do {
6354 		if (!list) {
6355 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6356 			return -EFAULT;
6357 		}
6358 		if (list->len <= eat) {
6359 			/* Eaten as whole. */
6360 			eat -= list->len;
6361 			list = list->next;
6362 			insp = list;
6363 		} else {
6364 			/* Eaten partially. */
6365 			if (skb_shared(list)) {
6366 				clone = skb_clone(list, gfp_mask);
6367 				if (!clone)
6368 					return -ENOMEM;
6369 				insp = list->next;
6370 				list = clone;
6371 			} else {
6372 				/* This may be pulled without problems. */
6373 				insp = list;
6374 			}
6375 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6376 				kfree_skb(clone);
6377 				return -ENOMEM;
6378 			}
6379 			break;
6380 		}
6381 	} while (eat);
6382 
6383 	/* Free pulled out fragments. */
6384 	while ((list = shinfo->frag_list) != insp) {
6385 		shinfo->frag_list = list->next;
6386 		consume_skb(list);
6387 	}
6388 	/* And insert new clone at head. */
6389 	if (clone) {
6390 		clone->next = list;
6391 		shinfo->frag_list = clone;
6392 	}
6393 	return 0;
6394 }
6395 
6396 /* carve off first len bytes from skb. Split line (off) is in the
6397  * non-linear part of skb
6398  */
6399 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6400 				       int pos, gfp_t gfp_mask)
6401 {
6402 	int i, k = 0;
6403 	unsigned int size = skb_end_offset(skb);
6404 	u8 *data;
6405 	const int nfrags = skb_shinfo(skb)->nr_frags;
6406 	struct skb_shared_info *shinfo;
6407 
6408 	if (skb_pfmemalloc(skb))
6409 		gfp_mask |= __GFP_MEMALLOC;
6410 
6411 	size = SKB_DATA_ALIGN(size);
6412 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6413 	size = kmalloc_size_roundup(size);
6414 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6415 	if (!data)
6416 		return -ENOMEM;
6417 	size = SKB_WITH_OVERHEAD(size);
6418 
6419 	memcpy((struct skb_shared_info *)(data + size),
6420 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6421 	if (skb_orphan_frags(skb, gfp_mask)) {
6422 		kfree(data);
6423 		return -ENOMEM;
6424 	}
6425 	shinfo = (struct skb_shared_info *)(data + size);
6426 	for (i = 0; i < nfrags; i++) {
6427 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6428 
6429 		if (pos + fsize > off) {
6430 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6431 
6432 			if (pos < off) {
6433 				/* Split frag.
6434 				 * We have two variants in this case:
6435 				 * 1. Move all the frag to the second
6436 				 *    part, if it is possible. F.e.
6437 				 *    this approach is mandatory for TUX,
6438 				 *    where splitting is expensive.
6439 				 * 2. Split is accurately. We make this.
6440 				 */
6441 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6442 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6443 			}
6444 			skb_frag_ref(skb, i);
6445 			k++;
6446 		}
6447 		pos += fsize;
6448 	}
6449 	shinfo->nr_frags = k;
6450 	if (skb_has_frag_list(skb))
6451 		skb_clone_fraglist(skb);
6452 
6453 	/* split line is in frag list */
6454 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6455 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6456 		if (skb_has_frag_list(skb))
6457 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6458 		kfree(data);
6459 		return -ENOMEM;
6460 	}
6461 	skb_release_data(skb, SKB_CONSUMED);
6462 
6463 	skb->head = data;
6464 	skb->head_frag = 0;
6465 	skb->data = data;
6466 	skb_set_end_offset(skb, size);
6467 	skb_reset_tail_pointer(skb);
6468 	skb_headers_offset_update(skb, 0);
6469 	skb->cloned   = 0;
6470 	skb->hdr_len  = 0;
6471 	skb->nohdr    = 0;
6472 	skb->len -= off;
6473 	skb->data_len = skb->len;
6474 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6475 	return 0;
6476 }
6477 
6478 /* remove len bytes from the beginning of the skb */
6479 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6480 {
6481 	int headlen = skb_headlen(skb);
6482 
6483 	if (len < headlen)
6484 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6485 	else
6486 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6487 }
6488 
6489 /* Extract to_copy bytes starting at off from skb, and return this in
6490  * a new skb
6491  */
6492 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6493 			     int to_copy, gfp_t gfp)
6494 {
6495 	struct sk_buff  *clone = skb_clone(skb, gfp);
6496 
6497 	if (!clone)
6498 		return NULL;
6499 
6500 	if (pskb_carve(clone, off, gfp) < 0 ||
6501 	    pskb_trim(clone, to_copy)) {
6502 		kfree_skb(clone);
6503 		return NULL;
6504 	}
6505 	return clone;
6506 }
6507 EXPORT_SYMBOL(pskb_extract);
6508 
6509 /**
6510  * skb_condense - try to get rid of fragments/frag_list if possible
6511  * @skb: buffer
6512  *
6513  * Can be used to save memory before skb is added to a busy queue.
6514  * If packet has bytes in frags and enough tail room in skb->head,
6515  * pull all of them, so that we can free the frags right now and adjust
6516  * truesize.
6517  * Notes:
6518  *	We do not reallocate skb->head thus can not fail.
6519  *	Caller must re-evaluate skb->truesize if needed.
6520  */
6521 void skb_condense(struct sk_buff *skb)
6522 {
6523 	if (skb->data_len) {
6524 		if (skb->data_len > skb->end - skb->tail ||
6525 		    skb_cloned(skb))
6526 			return;
6527 
6528 		/* Nice, we can free page frag(s) right now */
6529 		__pskb_pull_tail(skb, skb->data_len);
6530 	}
6531 	/* At this point, skb->truesize might be over estimated,
6532 	 * because skb had a fragment, and fragments do not tell
6533 	 * their truesize.
6534 	 * When we pulled its content into skb->head, fragment
6535 	 * was freed, but __pskb_pull_tail() could not possibly
6536 	 * adjust skb->truesize, not knowing the frag truesize.
6537 	 */
6538 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6539 }
6540 EXPORT_SYMBOL(skb_condense);
6541 
6542 #ifdef CONFIG_SKB_EXTENSIONS
6543 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6544 {
6545 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6546 }
6547 
6548 /**
6549  * __skb_ext_alloc - allocate a new skb extensions storage
6550  *
6551  * @flags: See kmalloc().
6552  *
6553  * Returns the newly allocated pointer. The pointer can later attached to a
6554  * skb via __skb_ext_set().
6555  * Note: caller must handle the skb_ext as an opaque data.
6556  */
6557 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6558 {
6559 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6560 
6561 	if (new) {
6562 		memset(new->offset, 0, sizeof(new->offset));
6563 		refcount_set(&new->refcnt, 1);
6564 	}
6565 
6566 	return new;
6567 }
6568 
6569 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6570 					 unsigned int old_active)
6571 {
6572 	struct skb_ext *new;
6573 
6574 	if (refcount_read(&old->refcnt) == 1)
6575 		return old;
6576 
6577 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6578 	if (!new)
6579 		return NULL;
6580 
6581 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6582 	refcount_set(&new->refcnt, 1);
6583 
6584 #ifdef CONFIG_XFRM
6585 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6586 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6587 		unsigned int i;
6588 
6589 		for (i = 0; i < sp->len; i++)
6590 			xfrm_state_hold(sp->xvec[i]);
6591 	}
6592 #endif
6593 	__skb_ext_put(old);
6594 	return new;
6595 }
6596 
6597 /**
6598  * __skb_ext_set - attach the specified extension storage to this skb
6599  * @skb: buffer
6600  * @id: extension id
6601  * @ext: extension storage previously allocated via __skb_ext_alloc()
6602  *
6603  * Existing extensions, if any, are cleared.
6604  *
6605  * Returns the pointer to the extension.
6606  */
6607 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6608 		    struct skb_ext *ext)
6609 {
6610 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6611 
6612 	skb_ext_put(skb);
6613 	newlen = newoff + skb_ext_type_len[id];
6614 	ext->chunks = newlen;
6615 	ext->offset[id] = newoff;
6616 	skb->extensions = ext;
6617 	skb->active_extensions = 1 << id;
6618 	return skb_ext_get_ptr(ext, id);
6619 }
6620 
6621 /**
6622  * skb_ext_add - allocate space for given extension, COW if needed
6623  * @skb: buffer
6624  * @id: extension to allocate space for
6625  *
6626  * Allocates enough space for the given extension.
6627  * If the extension is already present, a pointer to that extension
6628  * is returned.
6629  *
6630  * If the skb was cloned, COW applies and the returned memory can be
6631  * modified without changing the extension space of clones buffers.
6632  *
6633  * Returns pointer to the extension or NULL on allocation failure.
6634  */
6635 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6636 {
6637 	struct skb_ext *new, *old = NULL;
6638 	unsigned int newlen, newoff;
6639 
6640 	if (skb->active_extensions) {
6641 		old = skb->extensions;
6642 
6643 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6644 		if (!new)
6645 			return NULL;
6646 
6647 		if (__skb_ext_exist(new, id))
6648 			goto set_active;
6649 
6650 		newoff = new->chunks;
6651 	} else {
6652 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6653 
6654 		new = __skb_ext_alloc(GFP_ATOMIC);
6655 		if (!new)
6656 			return NULL;
6657 	}
6658 
6659 	newlen = newoff + skb_ext_type_len[id];
6660 	new->chunks = newlen;
6661 	new->offset[id] = newoff;
6662 set_active:
6663 	skb->slow_gro = 1;
6664 	skb->extensions = new;
6665 	skb->active_extensions |= 1 << id;
6666 	return skb_ext_get_ptr(new, id);
6667 }
6668 EXPORT_SYMBOL(skb_ext_add);
6669 
6670 #ifdef CONFIG_XFRM
6671 static void skb_ext_put_sp(struct sec_path *sp)
6672 {
6673 	unsigned int i;
6674 
6675 	for (i = 0; i < sp->len; i++)
6676 		xfrm_state_put(sp->xvec[i]);
6677 }
6678 #endif
6679 
6680 #ifdef CONFIG_MCTP_FLOWS
6681 static void skb_ext_put_mctp(struct mctp_flow *flow)
6682 {
6683 	if (flow->key)
6684 		mctp_key_unref(flow->key);
6685 }
6686 #endif
6687 
6688 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6689 {
6690 	struct skb_ext *ext = skb->extensions;
6691 
6692 	skb->active_extensions &= ~(1 << id);
6693 	if (skb->active_extensions == 0) {
6694 		skb->extensions = NULL;
6695 		__skb_ext_put(ext);
6696 #ifdef CONFIG_XFRM
6697 	} else if (id == SKB_EXT_SEC_PATH &&
6698 		   refcount_read(&ext->refcnt) == 1) {
6699 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6700 
6701 		skb_ext_put_sp(sp);
6702 		sp->len = 0;
6703 #endif
6704 	}
6705 }
6706 EXPORT_SYMBOL(__skb_ext_del);
6707 
6708 void __skb_ext_put(struct skb_ext *ext)
6709 {
6710 	/* If this is last clone, nothing can increment
6711 	 * it after check passes.  Avoids one atomic op.
6712 	 */
6713 	if (refcount_read(&ext->refcnt) == 1)
6714 		goto free_now;
6715 
6716 	if (!refcount_dec_and_test(&ext->refcnt))
6717 		return;
6718 free_now:
6719 #ifdef CONFIG_XFRM
6720 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6721 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6722 #endif
6723 #ifdef CONFIG_MCTP_FLOWS
6724 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6725 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6726 #endif
6727 
6728 	kmem_cache_free(skbuff_ext_cache, ext);
6729 }
6730 EXPORT_SYMBOL(__skb_ext_put);
6731 #endif /* CONFIG_SKB_EXTENSIONS */
6732 
6733 /**
6734  * skb_attempt_defer_free - queue skb for remote freeing
6735  * @skb: buffer
6736  *
6737  * Put @skb in a per-cpu list, using the cpu which
6738  * allocated the skb/pages to reduce false sharing
6739  * and memory zone spinlock contention.
6740  */
6741 void skb_attempt_defer_free(struct sk_buff *skb)
6742 {
6743 	int cpu = skb->alloc_cpu;
6744 	struct softnet_data *sd;
6745 	unsigned long flags;
6746 	unsigned int defer_max;
6747 	bool kick;
6748 
6749 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6750 	    !cpu_online(cpu) ||
6751 	    cpu == raw_smp_processor_id()) {
6752 nodefer:	__kfree_skb(skb);
6753 		return;
6754 	}
6755 
6756 	sd = &per_cpu(softnet_data, cpu);
6757 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6758 	if (READ_ONCE(sd->defer_count) >= defer_max)
6759 		goto nodefer;
6760 
6761 	spin_lock_irqsave(&sd->defer_lock, flags);
6762 	/* Send an IPI every time queue reaches half capacity. */
6763 	kick = sd->defer_count == (defer_max >> 1);
6764 	/* Paired with the READ_ONCE() few lines above */
6765 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6766 
6767 	skb->next = sd->defer_list;
6768 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6769 	WRITE_ONCE(sd->defer_list, skb);
6770 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6771 
6772 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6773 	 * if we are unlucky enough (this seems very unlikely).
6774 	 */
6775 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6776 		smp_call_function_single_async(cpu, &sd->defer_csd);
6777 }
6778