xref: /linux/net/core/skbuff.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 
69 #include "kmap_skb.h"
70 
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 	                  "data:%p tail:%p end:%p dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 	       skb->dev ? skb->dev->name : "<NULL>");
94 	BUG();
95 }
96 
97 /**
98  *	skb_under_panic	- 	private function
99  *	@skb: buffer
100  *	@sz: size
101  *	@here: address
102  *
103  *	Out of line support code for skb_push(). Not user callable.
104  */
105 
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 {
108 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 	                  "data:%p tail:%p end:%p dev:%s\n",
110 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 	       skb->dev ? skb->dev->name : "<NULL>");
112 	BUG();
113 }
114 
115 void skb_truesize_bug(struct sk_buff *skb)
116 {
117 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
118 	       "len=%u, sizeof(sk_buff)=%Zd\n",
119 	       skb->truesize, skb->len, sizeof(struct sk_buff));
120 }
121 EXPORT_SYMBOL(skb_truesize_bug);
122 
123 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
124  *	'private' fields and also do memory statistics to find all the
125  *	[BEEP] leaks.
126  *
127  */
128 
129 /**
130  *	__alloc_skb	-	allocate a network buffer
131  *	@size: size to allocate
132  *	@gfp_mask: allocation mask
133  *	@fclone: allocate from fclone cache instead of head cache
134  *		and allocate a cloned (child) skb
135  *	@node: numa node to allocate memory on
136  *
137  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
138  *	tail room of size bytes. The object has a reference count of one.
139  *	The return is the buffer. On a failure the return is %NULL.
140  *
141  *	Buffers may only be allocated from interrupts using a @gfp_mask of
142  *	%GFP_ATOMIC.
143  */
144 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
145 			    int fclone, int node)
146 {
147 	struct kmem_cache *cache;
148 	struct skb_shared_info *shinfo;
149 	struct sk_buff *skb;
150 	u8 *data;
151 
152 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
153 
154 	/* Get the HEAD */
155 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
156 	if (!skb)
157 		goto out;
158 
159 	/* Get the DATA. Size must match skb_add_mtu(). */
160 	size = SKB_DATA_ALIGN(size);
161 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
162 			gfp_mask, node);
163 	if (!data)
164 		goto nodata;
165 
166 	memset(skb, 0, offsetof(struct sk_buff, truesize));
167 	skb->truesize = size + sizeof(struct sk_buff);
168 	atomic_set(&skb->users, 1);
169 	skb->head = data;
170 	skb->data = data;
171 	skb->tail = data;
172 	skb->end  = data + size;
173 	/* make sure we initialize shinfo sequentially */
174 	shinfo = skb_shinfo(skb);
175 	atomic_set(&shinfo->dataref, 1);
176 	shinfo->nr_frags  = 0;
177 	shinfo->gso_size = 0;
178 	shinfo->gso_segs = 0;
179 	shinfo->gso_type = 0;
180 	shinfo->ip6_frag_id = 0;
181 	shinfo->frag_list = NULL;
182 
183 	if (fclone) {
184 		struct sk_buff *child = skb + 1;
185 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
186 
187 		skb->fclone = SKB_FCLONE_ORIG;
188 		atomic_set(fclone_ref, 1);
189 
190 		child->fclone = SKB_FCLONE_UNAVAILABLE;
191 	}
192 out:
193 	return skb;
194 nodata:
195 	kmem_cache_free(cache, skb);
196 	skb = NULL;
197 	goto out;
198 }
199 
200 /**
201  *	alloc_skb_from_cache	-	allocate a network buffer
202  *	@cp: kmem_cache from which to allocate the data area
203  *           (object size must be big enough for @size bytes + skb overheads)
204  *	@size: size to allocate
205  *	@gfp_mask: allocation mask
206  *
207  *	Allocate a new &sk_buff. The returned buffer has no headroom and
208  *	tail room of size bytes. The object has a reference count of one.
209  *	The return is the buffer. On a failure the return is %NULL.
210  *
211  *	Buffers may only be allocated from interrupts using a @gfp_mask of
212  *	%GFP_ATOMIC.
213  */
214 struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp,
215 				     unsigned int size,
216 				     gfp_t gfp_mask)
217 {
218 	struct sk_buff *skb;
219 	u8 *data;
220 
221 	/* Get the HEAD */
222 	skb = kmem_cache_alloc(skbuff_head_cache,
223 			       gfp_mask & ~__GFP_DMA);
224 	if (!skb)
225 		goto out;
226 
227 	/* Get the DATA. */
228 	size = SKB_DATA_ALIGN(size);
229 	data = kmem_cache_alloc(cp, gfp_mask);
230 	if (!data)
231 		goto nodata;
232 
233 	memset(skb, 0, offsetof(struct sk_buff, truesize));
234 	skb->truesize = size + sizeof(struct sk_buff);
235 	atomic_set(&skb->users, 1);
236 	skb->head = data;
237 	skb->data = data;
238 	skb->tail = data;
239 	skb->end  = data + size;
240 
241 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
242 	skb_shinfo(skb)->nr_frags  = 0;
243 	skb_shinfo(skb)->gso_size = 0;
244 	skb_shinfo(skb)->gso_segs = 0;
245 	skb_shinfo(skb)->gso_type = 0;
246 	skb_shinfo(skb)->frag_list = NULL;
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(skbuff_head_cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 
255 /**
256  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
257  *	@dev: network device to receive on
258  *	@length: length to allocate
259  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
260  *
261  *	Allocate a new &sk_buff and assign it a usage count of one. The
262  *	buffer has unspecified headroom built in. Users should allocate
263  *	the headroom they think they need without accounting for the
264  *	built in space. The built in space is used for optimisations.
265  *
266  *	%NULL is returned if there is no free memory.
267  */
268 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
269 		unsigned int length, gfp_t gfp_mask)
270 {
271 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
272 	struct sk_buff *skb;
273 
274  	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
275 	if (likely(skb)) {
276 		skb_reserve(skb, NET_SKB_PAD);
277 		skb->dev = dev;
278 	}
279 	return skb;
280 }
281 
282 static void skb_drop_list(struct sk_buff **listp)
283 {
284 	struct sk_buff *list = *listp;
285 
286 	*listp = NULL;
287 
288 	do {
289 		struct sk_buff *this = list;
290 		list = list->next;
291 		kfree_skb(this);
292 	} while (list);
293 }
294 
295 static inline void skb_drop_fraglist(struct sk_buff *skb)
296 {
297 	skb_drop_list(&skb_shinfo(skb)->frag_list);
298 }
299 
300 static void skb_clone_fraglist(struct sk_buff *skb)
301 {
302 	struct sk_buff *list;
303 
304 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
305 		skb_get(list);
306 }
307 
308 static void skb_release_data(struct sk_buff *skb)
309 {
310 	if (!skb->cloned ||
311 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
312 			       &skb_shinfo(skb)->dataref)) {
313 		if (skb_shinfo(skb)->nr_frags) {
314 			int i;
315 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
316 				put_page(skb_shinfo(skb)->frags[i].page);
317 		}
318 
319 		if (skb_shinfo(skb)->frag_list)
320 			skb_drop_fraglist(skb);
321 
322 		kfree(skb->head);
323 	}
324 }
325 
326 /*
327  *	Free an skbuff by memory without cleaning the state.
328  */
329 void kfree_skbmem(struct sk_buff *skb)
330 {
331 	struct sk_buff *other;
332 	atomic_t *fclone_ref;
333 
334 	skb_release_data(skb);
335 	switch (skb->fclone) {
336 	case SKB_FCLONE_UNAVAILABLE:
337 		kmem_cache_free(skbuff_head_cache, skb);
338 		break;
339 
340 	case SKB_FCLONE_ORIG:
341 		fclone_ref = (atomic_t *) (skb + 2);
342 		if (atomic_dec_and_test(fclone_ref))
343 			kmem_cache_free(skbuff_fclone_cache, skb);
344 		break;
345 
346 	case SKB_FCLONE_CLONE:
347 		fclone_ref = (atomic_t *) (skb + 1);
348 		other = skb - 1;
349 
350 		/* The clone portion is available for
351 		 * fast-cloning again.
352 		 */
353 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
354 
355 		if (atomic_dec_and_test(fclone_ref))
356 			kmem_cache_free(skbuff_fclone_cache, other);
357 		break;
358 	};
359 }
360 
361 /**
362  *	__kfree_skb - private function
363  *	@skb: buffer
364  *
365  *	Free an sk_buff. Release anything attached to the buffer.
366  *	Clean the state. This is an internal helper function. Users should
367  *	always call kfree_skb
368  */
369 
370 void __kfree_skb(struct sk_buff *skb)
371 {
372 	dst_release(skb->dst);
373 #ifdef CONFIG_XFRM
374 	secpath_put(skb->sp);
375 #endif
376 	if (skb->destructor) {
377 		WARN_ON(in_irq());
378 		skb->destructor(skb);
379 	}
380 #ifdef CONFIG_NETFILTER
381 	nf_conntrack_put(skb->nfct);
382 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
383 	nf_conntrack_put_reasm(skb->nfct_reasm);
384 #endif
385 #ifdef CONFIG_BRIDGE_NETFILTER
386 	nf_bridge_put(skb->nf_bridge);
387 #endif
388 #endif
389 /* XXX: IS this still necessary? - JHS */
390 #ifdef CONFIG_NET_SCHED
391 	skb->tc_index = 0;
392 #ifdef CONFIG_NET_CLS_ACT
393 	skb->tc_verd = 0;
394 #endif
395 #endif
396 
397 	kfree_skbmem(skb);
398 }
399 
400 /**
401  *	kfree_skb - free an sk_buff
402  *	@skb: buffer to free
403  *
404  *	Drop a reference to the buffer and free it if the usage count has
405  *	hit zero.
406  */
407 void kfree_skb(struct sk_buff *skb)
408 {
409 	if (unlikely(!skb))
410 		return;
411 	if (likely(atomic_read(&skb->users) == 1))
412 		smp_rmb();
413 	else if (likely(!atomic_dec_and_test(&skb->users)))
414 		return;
415 	__kfree_skb(skb);
416 }
417 
418 /**
419  *	skb_clone	-	duplicate an sk_buff
420  *	@skb: buffer to clone
421  *	@gfp_mask: allocation priority
422  *
423  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
424  *	copies share the same packet data but not structure. The new
425  *	buffer has a reference count of 1. If the allocation fails the
426  *	function returns %NULL otherwise the new buffer is returned.
427  *
428  *	If this function is called from an interrupt gfp_mask() must be
429  *	%GFP_ATOMIC.
430  */
431 
432 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
433 {
434 	struct sk_buff *n;
435 
436 	n = skb + 1;
437 	if (skb->fclone == SKB_FCLONE_ORIG &&
438 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
439 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
440 		n->fclone = SKB_FCLONE_CLONE;
441 		atomic_inc(fclone_ref);
442 	} else {
443 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
444 		if (!n)
445 			return NULL;
446 		n->fclone = SKB_FCLONE_UNAVAILABLE;
447 	}
448 
449 #define C(x) n->x = skb->x
450 
451 	n->next = n->prev = NULL;
452 	n->sk = NULL;
453 	C(tstamp);
454 	C(dev);
455 	C(h);
456 	C(nh);
457 	C(mac);
458 	C(dst);
459 	dst_clone(skb->dst);
460 	C(sp);
461 #ifdef CONFIG_INET
462 	secpath_get(skb->sp);
463 #endif
464 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
465 	C(len);
466 	C(data_len);
467 	C(csum);
468 	C(local_df);
469 	n->cloned = 1;
470 	n->nohdr = 0;
471 	C(pkt_type);
472 	C(ip_summed);
473 	C(priority);
474 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
475 	C(ipvs_property);
476 #endif
477 	C(protocol);
478 	n->destructor = NULL;
479 	C(mark);
480 #ifdef CONFIG_NETFILTER
481 	C(nfct);
482 	nf_conntrack_get(skb->nfct);
483 	C(nfctinfo);
484 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
485 	C(nfct_reasm);
486 	nf_conntrack_get_reasm(skb->nfct_reasm);
487 #endif
488 #ifdef CONFIG_BRIDGE_NETFILTER
489 	C(nf_bridge);
490 	nf_bridge_get(skb->nf_bridge);
491 #endif
492 #endif /*CONFIG_NETFILTER*/
493 #ifdef CONFIG_NET_SCHED
494 	C(tc_index);
495 #ifdef CONFIG_NET_CLS_ACT
496 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
497 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
498 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
499 	C(input_dev);
500 #endif
501 	skb_copy_secmark(n, skb);
502 #endif
503 	C(truesize);
504 	atomic_set(&n->users, 1);
505 	C(head);
506 	C(data);
507 	C(tail);
508 	C(end);
509 
510 	atomic_inc(&(skb_shinfo(skb)->dataref));
511 	skb->cloned = 1;
512 
513 	return n;
514 }
515 
516 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
517 {
518 	/*
519 	 *	Shift between the two data areas in bytes
520 	 */
521 	unsigned long offset = new->data - old->data;
522 
523 	new->sk		= NULL;
524 	new->dev	= old->dev;
525 	new->priority	= old->priority;
526 	new->protocol	= old->protocol;
527 	new->dst	= dst_clone(old->dst);
528 #ifdef CONFIG_INET
529 	new->sp		= secpath_get(old->sp);
530 #endif
531 	new->h.raw	= old->h.raw + offset;
532 	new->nh.raw	= old->nh.raw + offset;
533 	new->mac.raw	= old->mac.raw + offset;
534 	memcpy(new->cb, old->cb, sizeof(old->cb));
535 	new->local_df	= old->local_df;
536 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
537 	new->pkt_type	= old->pkt_type;
538 	new->tstamp	= old->tstamp;
539 	new->destructor = NULL;
540 	new->mark	= old->mark;
541 #ifdef CONFIG_NETFILTER
542 	new->nfct	= old->nfct;
543 	nf_conntrack_get(old->nfct);
544 	new->nfctinfo	= old->nfctinfo;
545 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
546 	new->nfct_reasm = old->nfct_reasm;
547 	nf_conntrack_get_reasm(old->nfct_reasm);
548 #endif
549 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
550 	new->ipvs_property = old->ipvs_property;
551 #endif
552 #ifdef CONFIG_BRIDGE_NETFILTER
553 	new->nf_bridge	= old->nf_bridge;
554 	nf_bridge_get(old->nf_bridge);
555 #endif
556 #endif
557 #ifdef CONFIG_NET_SCHED
558 #ifdef CONFIG_NET_CLS_ACT
559 	new->tc_verd = old->tc_verd;
560 #endif
561 	new->tc_index	= old->tc_index;
562 #endif
563 	skb_copy_secmark(new, old);
564 	atomic_set(&new->users, 1);
565 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
566 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
567 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
568 }
569 
570 /**
571  *	skb_copy	-	create private copy of an sk_buff
572  *	@skb: buffer to copy
573  *	@gfp_mask: allocation priority
574  *
575  *	Make a copy of both an &sk_buff and its data. This is used when the
576  *	caller wishes to modify the data and needs a private copy of the
577  *	data to alter. Returns %NULL on failure or the pointer to the buffer
578  *	on success. The returned buffer has a reference count of 1.
579  *
580  *	As by-product this function converts non-linear &sk_buff to linear
581  *	one, so that &sk_buff becomes completely private and caller is allowed
582  *	to modify all the data of returned buffer. This means that this
583  *	function is not recommended for use in circumstances when only
584  *	header is going to be modified. Use pskb_copy() instead.
585  */
586 
587 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
588 {
589 	int headerlen = skb->data - skb->head;
590 	/*
591 	 *	Allocate the copy buffer
592 	 */
593 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
594 				      gfp_mask);
595 	if (!n)
596 		return NULL;
597 
598 	/* Set the data pointer */
599 	skb_reserve(n, headerlen);
600 	/* Set the tail pointer and length */
601 	skb_put(n, skb->len);
602 	n->csum	     = skb->csum;
603 	n->ip_summed = skb->ip_summed;
604 
605 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
606 		BUG();
607 
608 	copy_skb_header(n, skb);
609 	return n;
610 }
611 
612 
613 /**
614  *	pskb_copy	-	create copy of an sk_buff with private head.
615  *	@skb: buffer to copy
616  *	@gfp_mask: allocation priority
617  *
618  *	Make a copy of both an &sk_buff and part of its data, located
619  *	in header. Fragmented data remain shared. This is used when
620  *	the caller wishes to modify only header of &sk_buff and needs
621  *	private copy of the header to alter. Returns %NULL on failure
622  *	or the pointer to the buffer on success.
623  *	The returned buffer has a reference count of 1.
624  */
625 
626 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
627 {
628 	/*
629 	 *	Allocate the copy buffer
630 	 */
631 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
632 
633 	if (!n)
634 		goto out;
635 
636 	/* Set the data pointer */
637 	skb_reserve(n, skb->data - skb->head);
638 	/* Set the tail pointer and length */
639 	skb_put(n, skb_headlen(skb));
640 	/* Copy the bytes */
641 	memcpy(n->data, skb->data, n->len);
642 	n->csum	     = skb->csum;
643 	n->ip_summed = skb->ip_summed;
644 
645 	n->truesize += skb->data_len;
646 	n->data_len  = skb->data_len;
647 	n->len	     = skb->len;
648 
649 	if (skb_shinfo(skb)->nr_frags) {
650 		int i;
651 
652 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
653 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
654 			get_page(skb_shinfo(n)->frags[i].page);
655 		}
656 		skb_shinfo(n)->nr_frags = i;
657 	}
658 
659 	if (skb_shinfo(skb)->frag_list) {
660 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
661 		skb_clone_fraglist(n);
662 	}
663 
664 	copy_skb_header(n, skb);
665 out:
666 	return n;
667 }
668 
669 /**
670  *	pskb_expand_head - reallocate header of &sk_buff
671  *	@skb: buffer to reallocate
672  *	@nhead: room to add at head
673  *	@ntail: room to add at tail
674  *	@gfp_mask: allocation priority
675  *
676  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
677  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
678  *	reference count of 1. Returns zero in the case of success or error,
679  *	if expansion failed. In the last case, &sk_buff is not changed.
680  *
681  *	All the pointers pointing into skb header may change and must be
682  *	reloaded after call to this function.
683  */
684 
685 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
686 		     gfp_t gfp_mask)
687 {
688 	int i;
689 	u8 *data;
690 	int size = nhead + (skb->end - skb->head) + ntail;
691 	long off;
692 
693 	if (skb_shared(skb))
694 		BUG();
695 
696 	size = SKB_DATA_ALIGN(size);
697 
698 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
699 	if (!data)
700 		goto nodata;
701 
702 	/* Copy only real data... and, alas, header. This should be
703 	 * optimized for the cases when header is void. */
704 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
705 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
706 
707 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
708 		get_page(skb_shinfo(skb)->frags[i].page);
709 
710 	if (skb_shinfo(skb)->frag_list)
711 		skb_clone_fraglist(skb);
712 
713 	skb_release_data(skb);
714 
715 	off = (data + nhead) - skb->head;
716 
717 	skb->head     = data;
718 	skb->end      = data + size;
719 	skb->data    += off;
720 	skb->tail    += off;
721 	skb->mac.raw += off;
722 	skb->h.raw   += off;
723 	skb->nh.raw  += off;
724 	skb->cloned   = 0;
725 	skb->nohdr    = 0;
726 	atomic_set(&skb_shinfo(skb)->dataref, 1);
727 	return 0;
728 
729 nodata:
730 	return -ENOMEM;
731 }
732 
733 /* Make private copy of skb with writable head and some headroom */
734 
735 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
736 {
737 	struct sk_buff *skb2;
738 	int delta = headroom - skb_headroom(skb);
739 
740 	if (delta <= 0)
741 		skb2 = pskb_copy(skb, GFP_ATOMIC);
742 	else {
743 		skb2 = skb_clone(skb, GFP_ATOMIC);
744 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
745 					     GFP_ATOMIC)) {
746 			kfree_skb(skb2);
747 			skb2 = NULL;
748 		}
749 	}
750 	return skb2;
751 }
752 
753 
754 /**
755  *	skb_copy_expand	-	copy and expand sk_buff
756  *	@skb: buffer to copy
757  *	@newheadroom: new free bytes at head
758  *	@newtailroom: new free bytes at tail
759  *	@gfp_mask: allocation priority
760  *
761  *	Make a copy of both an &sk_buff and its data and while doing so
762  *	allocate additional space.
763  *
764  *	This is used when the caller wishes to modify the data and needs a
765  *	private copy of the data to alter as well as more space for new fields.
766  *	Returns %NULL on failure or the pointer to the buffer
767  *	on success. The returned buffer has a reference count of 1.
768  *
769  *	You must pass %GFP_ATOMIC as the allocation priority if this function
770  *	is called from an interrupt.
771  *
772  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
773  *	only by netfilter in the cases when checksum is recalculated? --ANK
774  */
775 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
776 				int newheadroom, int newtailroom,
777 				gfp_t gfp_mask)
778 {
779 	/*
780 	 *	Allocate the copy buffer
781 	 */
782 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
783 				      gfp_mask);
784 	int head_copy_len, head_copy_off;
785 
786 	if (!n)
787 		return NULL;
788 
789 	skb_reserve(n, newheadroom);
790 
791 	/* Set the tail pointer and length */
792 	skb_put(n, skb->len);
793 
794 	head_copy_len = skb_headroom(skb);
795 	head_copy_off = 0;
796 	if (newheadroom <= head_copy_len)
797 		head_copy_len = newheadroom;
798 	else
799 		head_copy_off = newheadroom - head_copy_len;
800 
801 	/* Copy the linear header and data. */
802 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
803 			  skb->len + head_copy_len))
804 		BUG();
805 
806 	copy_skb_header(n, skb);
807 
808 	return n;
809 }
810 
811 /**
812  *	skb_pad			-	zero pad the tail of an skb
813  *	@skb: buffer to pad
814  *	@pad: space to pad
815  *
816  *	Ensure that a buffer is followed by a padding area that is zero
817  *	filled. Used by network drivers which may DMA or transfer data
818  *	beyond the buffer end onto the wire.
819  *
820  *	May return error in out of memory cases. The skb is freed on error.
821  */
822 
823 int skb_pad(struct sk_buff *skb, int pad)
824 {
825 	int err;
826 	int ntail;
827 
828 	/* If the skbuff is non linear tailroom is always zero.. */
829 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
830 		memset(skb->data+skb->len, 0, pad);
831 		return 0;
832 	}
833 
834 	ntail = skb->data_len + pad - (skb->end - skb->tail);
835 	if (likely(skb_cloned(skb) || ntail > 0)) {
836 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
837 		if (unlikely(err))
838 			goto free_skb;
839 	}
840 
841 	/* FIXME: The use of this function with non-linear skb's really needs
842 	 * to be audited.
843 	 */
844 	err = skb_linearize(skb);
845 	if (unlikely(err))
846 		goto free_skb;
847 
848 	memset(skb->data + skb->len, 0, pad);
849 	return 0;
850 
851 free_skb:
852 	kfree_skb(skb);
853 	return err;
854 }
855 
856 /* Trims skb to length len. It can change skb pointers.
857  */
858 
859 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
860 {
861 	struct sk_buff **fragp;
862 	struct sk_buff *frag;
863 	int offset = skb_headlen(skb);
864 	int nfrags = skb_shinfo(skb)->nr_frags;
865 	int i;
866 	int err;
867 
868 	if (skb_cloned(skb) &&
869 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
870 		return err;
871 
872 	i = 0;
873 	if (offset >= len)
874 		goto drop_pages;
875 
876 	for (; i < nfrags; i++) {
877 		int end = offset + skb_shinfo(skb)->frags[i].size;
878 
879 		if (end < len) {
880 			offset = end;
881 			continue;
882 		}
883 
884 		skb_shinfo(skb)->frags[i++].size = len - offset;
885 
886 drop_pages:
887 		skb_shinfo(skb)->nr_frags = i;
888 
889 		for (; i < nfrags; i++)
890 			put_page(skb_shinfo(skb)->frags[i].page);
891 
892 		if (skb_shinfo(skb)->frag_list)
893 			skb_drop_fraglist(skb);
894 		goto done;
895 	}
896 
897 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
898 	     fragp = &frag->next) {
899 		int end = offset + frag->len;
900 
901 		if (skb_shared(frag)) {
902 			struct sk_buff *nfrag;
903 
904 			nfrag = skb_clone(frag, GFP_ATOMIC);
905 			if (unlikely(!nfrag))
906 				return -ENOMEM;
907 
908 			nfrag->next = frag->next;
909 			kfree_skb(frag);
910 			frag = nfrag;
911 			*fragp = frag;
912 		}
913 
914 		if (end < len) {
915 			offset = end;
916 			continue;
917 		}
918 
919 		if (end > len &&
920 		    unlikely((err = pskb_trim(frag, len - offset))))
921 			return err;
922 
923 		if (frag->next)
924 			skb_drop_list(&frag->next);
925 		break;
926 	}
927 
928 done:
929 	if (len > skb_headlen(skb)) {
930 		skb->data_len -= skb->len - len;
931 		skb->len       = len;
932 	} else {
933 		skb->len       = len;
934 		skb->data_len  = 0;
935 		skb->tail      = skb->data + len;
936 	}
937 
938 	return 0;
939 }
940 
941 /**
942  *	__pskb_pull_tail - advance tail of skb header
943  *	@skb: buffer to reallocate
944  *	@delta: number of bytes to advance tail
945  *
946  *	The function makes a sense only on a fragmented &sk_buff,
947  *	it expands header moving its tail forward and copying necessary
948  *	data from fragmented part.
949  *
950  *	&sk_buff MUST have reference count of 1.
951  *
952  *	Returns %NULL (and &sk_buff does not change) if pull failed
953  *	or value of new tail of skb in the case of success.
954  *
955  *	All the pointers pointing into skb header may change and must be
956  *	reloaded after call to this function.
957  */
958 
959 /* Moves tail of skb head forward, copying data from fragmented part,
960  * when it is necessary.
961  * 1. It may fail due to malloc failure.
962  * 2. It may change skb pointers.
963  *
964  * It is pretty complicated. Luckily, it is called only in exceptional cases.
965  */
966 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
967 {
968 	/* If skb has not enough free space at tail, get new one
969 	 * plus 128 bytes for future expansions. If we have enough
970 	 * room at tail, reallocate without expansion only if skb is cloned.
971 	 */
972 	int i, k, eat = (skb->tail + delta) - skb->end;
973 
974 	if (eat > 0 || skb_cloned(skb)) {
975 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
976 				     GFP_ATOMIC))
977 			return NULL;
978 	}
979 
980 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
981 		BUG();
982 
983 	/* Optimization: no fragments, no reasons to preestimate
984 	 * size of pulled pages. Superb.
985 	 */
986 	if (!skb_shinfo(skb)->frag_list)
987 		goto pull_pages;
988 
989 	/* Estimate size of pulled pages. */
990 	eat = delta;
991 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
992 		if (skb_shinfo(skb)->frags[i].size >= eat)
993 			goto pull_pages;
994 		eat -= skb_shinfo(skb)->frags[i].size;
995 	}
996 
997 	/* If we need update frag list, we are in troubles.
998 	 * Certainly, it possible to add an offset to skb data,
999 	 * but taking into account that pulling is expected to
1000 	 * be very rare operation, it is worth to fight against
1001 	 * further bloating skb head and crucify ourselves here instead.
1002 	 * Pure masohism, indeed. 8)8)
1003 	 */
1004 	if (eat) {
1005 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1006 		struct sk_buff *clone = NULL;
1007 		struct sk_buff *insp = NULL;
1008 
1009 		do {
1010 			BUG_ON(!list);
1011 
1012 			if (list->len <= eat) {
1013 				/* Eaten as whole. */
1014 				eat -= list->len;
1015 				list = list->next;
1016 				insp = list;
1017 			} else {
1018 				/* Eaten partially. */
1019 
1020 				if (skb_shared(list)) {
1021 					/* Sucks! We need to fork list. :-( */
1022 					clone = skb_clone(list, GFP_ATOMIC);
1023 					if (!clone)
1024 						return NULL;
1025 					insp = list->next;
1026 					list = clone;
1027 				} else {
1028 					/* This may be pulled without
1029 					 * problems. */
1030 					insp = list;
1031 				}
1032 				if (!pskb_pull(list, eat)) {
1033 					if (clone)
1034 						kfree_skb(clone);
1035 					return NULL;
1036 				}
1037 				break;
1038 			}
1039 		} while (eat);
1040 
1041 		/* Free pulled out fragments. */
1042 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1043 			skb_shinfo(skb)->frag_list = list->next;
1044 			kfree_skb(list);
1045 		}
1046 		/* And insert new clone at head. */
1047 		if (clone) {
1048 			clone->next = list;
1049 			skb_shinfo(skb)->frag_list = clone;
1050 		}
1051 	}
1052 	/* Success! Now we may commit changes to skb data. */
1053 
1054 pull_pages:
1055 	eat = delta;
1056 	k = 0;
1057 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1058 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1059 			put_page(skb_shinfo(skb)->frags[i].page);
1060 			eat -= skb_shinfo(skb)->frags[i].size;
1061 		} else {
1062 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1063 			if (eat) {
1064 				skb_shinfo(skb)->frags[k].page_offset += eat;
1065 				skb_shinfo(skb)->frags[k].size -= eat;
1066 				eat = 0;
1067 			}
1068 			k++;
1069 		}
1070 	}
1071 	skb_shinfo(skb)->nr_frags = k;
1072 
1073 	skb->tail     += delta;
1074 	skb->data_len -= delta;
1075 
1076 	return skb->tail;
1077 }
1078 
1079 /* Copy some data bits from skb to kernel buffer. */
1080 
1081 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1082 {
1083 	int i, copy;
1084 	int start = skb_headlen(skb);
1085 
1086 	if (offset > (int)skb->len - len)
1087 		goto fault;
1088 
1089 	/* Copy header. */
1090 	if ((copy = start - offset) > 0) {
1091 		if (copy > len)
1092 			copy = len;
1093 		memcpy(to, skb->data + offset, copy);
1094 		if ((len -= copy) == 0)
1095 			return 0;
1096 		offset += copy;
1097 		to     += copy;
1098 	}
1099 
1100 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1101 		int end;
1102 
1103 		BUG_TRAP(start <= offset + len);
1104 
1105 		end = start + skb_shinfo(skb)->frags[i].size;
1106 		if ((copy = end - offset) > 0) {
1107 			u8 *vaddr;
1108 
1109 			if (copy > len)
1110 				copy = len;
1111 
1112 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1113 			memcpy(to,
1114 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1115 			       offset - start, copy);
1116 			kunmap_skb_frag(vaddr);
1117 
1118 			if ((len -= copy) == 0)
1119 				return 0;
1120 			offset += copy;
1121 			to     += copy;
1122 		}
1123 		start = end;
1124 	}
1125 
1126 	if (skb_shinfo(skb)->frag_list) {
1127 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1128 
1129 		for (; list; list = list->next) {
1130 			int end;
1131 
1132 			BUG_TRAP(start <= offset + len);
1133 
1134 			end = start + list->len;
1135 			if ((copy = end - offset) > 0) {
1136 				if (copy > len)
1137 					copy = len;
1138 				if (skb_copy_bits(list, offset - start,
1139 						  to, copy))
1140 					goto fault;
1141 				if ((len -= copy) == 0)
1142 					return 0;
1143 				offset += copy;
1144 				to     += copy;
1145 			}
1146 			start = end;
1147 		}
1148 	}
1149 	if (!len)
1150 		return 0;
1151 
1152 fault:
1153 	return -EFAULT;
1154 }
1155 
1156 /**
1157  *	skb_store_bits - store bits from kernel buffer to skb
1158  *	@skb: destination buffer
1159  *	@offset: offset in destination
1160  *	@from: source buffer
1161  *	@len: number of bytes to copy
1162  *
1163  *	Copy the specified number of bytes from the source buffer to the
1164  *	destination skb.  This function handles all the messy bits of
1165  *	traversing fragment lists and such.
1166  */
1167 
1168 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1169 {
1170 	int i, copy;
1171 	int start = skb_headlen(skb);
1172 
1173 	if (offset > (int)skb->len - len)
1174 		goto fault;
1175 
1176 	if ((copy = start - offset) > 0) {
1177 		if (copy > len)
1178 			copy = len;
1179 		memcpy(skb->data + offset, from, copy);
1180 		if ((len -= copy) == 0)
1181 			return 0;
1182 		offset += copy;
1183 		from += copy;
1184 	}
1185 
1186 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1187 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1188 		int end;
1189 
1190 		BUG_TRAP(start <= offset + len);
1191 
1192 		end = start + frag->size;
1193 		if ((copy = end - offset) > 0) {
1194 			u8 *vaddr;
1195 
1196 			if (copy > len)
1197 				copy = len;
1198 
1199 			vaddr = kmap_skb_frag(frag);
1200 			memcpy(vaddr + frag->page_offset + offset - start,
1201 			       from, copy);
1202 			kunmap_skb_frag(vaddr);
1203 
1204 			if ((len -= copy) == 0)
1205 				return 0;
1206 			offset += copy;
1207 			from += copy;
1208 		}
1209 		start = end;
1210 	}
1211 
1212 	if (skb_shinfo(skb)->frag_list) {
1213 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1214 
1215 		for (; list; list = list->next) {
1216 			int end;
1217 
1218 			BUG_TRAP(start <= offset + len);
1219 
1220 			end = start + list->len;
1221 			if ((copy = end - offset) > 0) {
1222 				if (copy > len)
1223 					copy = len;
1224 				if (skb_store_bits(list, offset - start,
1225 						   from, copy))
1226 					goto fault;
1227 				if ((len -= copy) == 0)
1228 					return 0;
1229 				offset += copy;
1230 				from += copy;
1231 			}
1232 			start = end;
1233 		}
1234 	}
1235 	if (!len)
1236 		return 0;
1237 
1238 fault:
1239 	return -EFAULT;
1240 }
1241 
1242 EXPORT_SYMBOL(skb_store_bits);
1243 
1244 /* Checksum skb data. */
1245 
1246 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1247 			  int len, __wsum csum)
1248 {
1249 	int start = skb_headlen(skb);
1250 	int i, copy = start - offset;
1251 	int pos = 0;
1252 
1253 	/* Checksum header. */
1254 	if (copy > 0) {
1255 		if (copy > len)
1256 			copy = len;
1257 		csum = csum_partial(skb->data + offset, copy, csum);
1258 		if ((len -= copy) == 0)
1259 			return csum;
1260 		offset += copy;
1261 		pos	= copy;
1262 	}
1263 
1264 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1265 		int end;
1266 
1267 		BUG_TRAP(start <= offset + len);
1268 
1269 		end = start + skb_shinfo(skb)->frags[i].size;
1270 		if ((copy = end - offset) > 0) {
1271 			__wsum csum2;
1272 			u8 *vaddr;
1273 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1274 
1275 			if (copy > len)
1276 				copy = len;
1277 			vaddr = kmap_skb_frag(frag);
1278 			csum2 = csum_partial(vaddr + frag->page_offset +
1279 					     offset - start, copy, 0);
1280 			kunmap_skb_frag(vaddr);
1281 			csum = csum_block_add(csum, csum2, pos);
1282 			if (!(len -= copy))
1283 				return csum;
1284 			offset += copy;
1285 			pos    += copy;
1286 		}
1287 		start = end;
1288 	}
1289 
1290 	if (skb_shinfo(skb)->frag_list) {
1291 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1292 
1293 		for (; list; list = list->next) {
1294 			int end;
1295 
1296 			BUG_TRAP(start <= offset + len);
1297 
1298 			end = start + list->len;
1299 			if ((copy = end - offset) > 0) {
1300 				__wsum csum2;
1301 				if (copy > len)
1302 					copy = len;
1303 				csum2 = skb_checksum(list, offset - start,
1304 						     copy, 0);
1305 				csum = csum_block_add(csum, csum2, pos);
1306 				if ((len -= copy) == 0)
1307 					return csum;
1308 				offset += copy;
1309 				pos    += copy;
1310 			}
1311 			start = end;
1312 		}
1313 	}
1314 	BUG_ON(len);
1315 
1316 	return csum;
1317 }
1318 
1319 /* Both of above in one bottle. */
1320 
1321 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1322 				    u8 *to, int len, __wsum csum)
1323 {
1324 	int start = skb_headlen(skb);
1325 	int i, copy = start - offset;
1326 	int pos = 0;
1327 
1328 	/* Copy header. */
1329 	if (copy > 0) {
1330 		if (copy > len)
1331 			copy = len;
1332 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1333 						 copy, csum);
1334 		if ((len -= copy) == 0)
1335 			return csum;
1336 		offset += copy;
1337 		to     += copy;
1338 		pos	= copy;
1339 	}
1340 
1341 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1342 		int end;
1343 
1344 		BUG_TRAP(start <= offset + len);
1345 
1346 		end = start + skb_shinfo(skb)->frags[i].size;
1347 		if ((copy = end - offset) > 0) {
1348 			__wsum csum2;
1349 			u8 *vaddr;
1350 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1351 
1352 			if (copy > len)
1353 				copy = len;
1354 			vaddr = kmap_skb_frag(frag);
1355 			csum2 = csum_partial_copy_nocheck(vaddr +
1356 							  frag->page_offset +
1357 							  offset - start, to,
1358 							  copy, 0);
1359 			kunmap_skb_frag(vaddr);
1360 			csum = csum_block_add(csum, csum2, pos);
1361 			if (!(len -= copy))
1362 				return csum;
1363 			offset += copy;
1364 			to     += copy;
1365 			pos    += copy;
1366 		}
1367 		start = end;
1368 	}
1369 
1370 	if (skb_shinfo(skb)->frag_list) {
1371 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1372 
1373 		for (; list; list = list->next) {
1374 			__wsum csum2;
1375 			int end;
1376 
1377 			BUG_TRAP(start <= offset + len);
1378 
1379 			end = start + list->len;
1380 			if ((copy = end - offset) > 0) {
1381 				if (copy > len)
1382 					copy = len;
1383 				csum2 = skb_copy_and_csum_bits(list,
1384 							       offset - start,
1385 							       to, copy, 0);
1386 				csum = csum_block_add(csum, csum2, pos);
1387 				if ((len -= copy) == 0)
1388 					return csum;
1389 				offset += copy;
1390 				to     += copy;
1391 				pos    += copy;
1392 			}
1393 			start = end;
1394 		}
1395 	}
1396 	BUG_ON(len);
1397 	return csum;
1398 }
1399 
1400 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1401 {
1402 	__wsum csum;
1403 	long csstart;
1404 
1405 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1406 		csstart = skb->h.raw - skb->data;
1407 	else
1408 		csstart = skb_headlen(skb);
1409 
1410 	BUG_ON(csstart > skb_headlen(skb));
1411 
1412 	memcpy(to, skb->data, csstart);
1413 
1414 	csum = 0;
1415 	if (csstart != skb->len)
1416 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1417 					      skb->len - csstart, 0);
1418 
1419 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1420 		long csstuff = csstart + skb->csum_offset;
1421 
1422 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1423 	}
1424 }
1425 
1426 /**
1427  *	skb_dequeue - remove from the head of the queue
1428  *	@list: list to dequeue from
1429  *
1430  *	Remove the head of the list. The list lock is taken so the function
1431  *	may be used safely with other locking list functions. The head item is
1432  *	returned or %NULL if the list is empty.
1433  */
1434 
1435 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1436 {
1437 	unsigned long flags;
1438 	struct sk_buff *result;
1439 
1440 	spin_lock_irqsave(&list->lock, flags);
1441 	result = __skb_dequeue(list);
1442 	spin_unlock_irqrestore(&list->lock, flags);
1443 	return result;
1444 }
1445 
1446 /**
1447  *	skb_dequeue_tail - remove from the tail of the queue
1448  *	@list: list to dequeue from
1449  *
1450  *	Remove the tail of the list. The list lock is taken so the function
1451  *	may be used safely with other locking list functions. The tail item is
1452  *	returned or %NULL if the list is empty.
1453  */
1454 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1455 {
1456 	unsigned long flags;
1457 	struct sk_buff *result;
1458 
1459 	spin_lock_irqsave(&list->lock, flags);
1460 	result = __skb_dequeue_tail(list);
1461 	spin_unlock_irqrestore(&list->lock, flags);
1462 	return result;
1463 }
1464 
1465 /**
1466  *	skb_queue_purge - empty a list
1467  *	@list: list to empty
1468  *
1469  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1470  *	the list and one reference dropped. This function takes the list
1471  *	lock and is atomic with respect to other list locking functions.
1472  */
1473 void skb_queue_purge(struct sk_buff_head *list)
1474 {
1475 	struct sk_buff *skb;
1476 	while ((skb = skb_dequeue(list)) != NULL)
1477 		kfree_skb(skb);
1478 }
1479 
1480 /**
1481  *	skb_queue_head - queue a buffer at the list head
1482  *	@list: list to use
1483  *	@newsk: buffer to queue
1484  *
1485  *	Queue a buffer at the start of the list. This function takes the
1486  *	list lock and can be used safely with other locking &sk_buff functions
1487  *	safely.
1488  *
1489  *	A buffer cannot be placed on two lists at the same time.
1490  */
1491 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1492 {
1493 	unsigned long flags;
1494 
1495 	spin_lock_irqsave(&list->lock, flags);
1496 	__skb_queue_head(list, newsk);
1497 	spin_unlock_irqrestore(&list->lock, flags);
1498 }
1499 
1500 /**
1501  *	skb_queue_tail - queue a buffer at the list tail
1502  *	@list: list to use
1503  *	@newsk: buffer to queue
1504  *
1505  *	Queue a buffer at the tail of the list. This function takes the
1506  *	list lock and can be used safely with other locking &sk_buff functions
1507  *	safely.
1508  *
1509  *	A buffer cannot be placed on two lists at the same time.
1510  */
1511 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1512 {
1513 	unsigned long flags;
1514 
1515 	spin_lock_irqsave(&list->lock, flags);
1516 	__skb_queue_tail(list, newsk);
1517 	spin_unlock_irqrestore(&list->lock, flags);
1518 }
1519 
1520 /**
1521  *	skb_unlink	-	remove a buffer from a list
1522  *	@skb: buffer to remove
1523  *	@list: list to use
1524  *
1525  *	Remove a packet from a list. The list locks are taken and this
1526  *	function is atomic with respect to other list locked calls
1527  *
1528  *	You must know what list the SKB is on.
1529  */
1530 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1531 {
1532 	unsigned long flags;
1533 
1534 	spin_lock_irqsave(&list->lock, flags);
1535 	__skb_unlink(skb, list);
1536 	spin_unlock_irqrestore(&list->lock, flags);
1537 }
1538 
1539 /**
1540  *	skb_append	-	append a buffer
1541  *	@old: buffer to insert after
1542  *	@newsk: buffer to insert
1543  *	@list: list to use
1544  *
1545  *	Place a packet after a given packet in a list. The list locks are taken
1546  *	and this function is atomic with respect to other list locked calls.
1547  *	A buffer cannot be placed on two lists at the same time.
1548  */
1549 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1550 {
1551 	unsigned long flags;
1552 
1553 	spin_lock_irqsave(&list->lock, flags);
1554 	__skb_append(old, newsk, list);
1555 	spin_unlock_irqrestore(&list->lock, flags);
1556 }
1557 
1558 
1559 /**
1560  *	skb_insert	-	insert a buffer
1561  *	@old: buffer to insert before
1562  *	@newsk: buffer to insert
1563  *	@list: list to use
1564  *
1565  *	Place a packet before a given packet in a list. The list locks are
1566  * 	taken and this function is atomic with respect to other list locked
1567  *	calls.
1568  *
1569  *	A buffer cannot be placed on two lists at the same time.
1570  */
1571 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1572 {
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&list->lock, flags);
1576 	__skb_insert(newsk, old->prev, old, list);
1577 	spin_unlock_irqrestore(&list->lock, flags);
1578 }
1579 
1580 #if 0
1581 /*
1582  * 	Tune the memory allocator for a new MTU size.
1583  */
1584 void skb_add_mtu(int mtu)
1585 {
1586 	/* Must match allocation in alloc_skb */
1587 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1588 
1589 	kmem_add_cache_size(mtu);
1590 }
1591 #endif
1592 
1593 static inline void skb_split_inside_header(struct sk_buff *skb,
1594 					   struct sk_buff* skb1,
1595 					   const u32 len, const int pos)
1596 {
1597 	int i;
1598 
1599 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1600 
1601 	/* And move data appendix as is. */
1602 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1603 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1604 
1605 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1606 	skb_shinfo(skb)->nr_frags  = 0;
1607 	skb1->data_len		   = skb->data_len;
1608 	skb1->len		   += skb1->data_len;
1609 	skb->data_len		   = 0;
1610 	skb->len		   = len;
1611 	skb->tail		   = skb->data + len;
1612 }
1613 
1614 static inline void skb_split_no_header(struct sk_buff *skb,
1615 				       struct sk_buff* skb1,
1616 				       const u32 len, int pos)
1617 {
1618 	int i, k = 0;
1619 	const int nfrags = skb_shinfo(skb)->nr_frags;
1620 
1621 	skb_shinfo(skb)->nr_frags = 0;
1622 	skb1->len		  = skb1->data_len = skb->len - len;
1623 	skb->len		  = len;
1624 	skb->data_len		  = len - pos;
1625 
1626 	for (i = 0; i < nfrags; i++) {
1627 		int size = skb_shinfo(skb)->frags[i].size;
1628 
1629 		if (pos + size > len) {
1630 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1631 
1632 			if (pos < len) {
1633 				/* Split frag.
1634 				 * We have two variants in this case:
1635 				 * 1. Move all the frag to the second
1636 				 *    part, if it is possible. F.e.
1637 				 *    this approach is mandatory for TUX,
1638 				 *    where splitting is expensive.
1639 				 * 2. Split is accurately. We make this.
1640 				 */
1641 				get_page(skb_shinfo(skb)->frags[i].page);
1642 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1643 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1644 				skb_shinfo(skb)->frags[i].size	= len - pos;
1645 				skb_shinfo(skb)->nr_frags++;
1646 			}
1647 			k++;
1648 		} else
1649 			skb_shinfo(skb)->nr_frags++;
1650 		pos += size;
1651 	}
1652 	skb_shinfo(skb1)->nr_frags = k;
1653 }
1654 
1655 /**
1656  * skb_split - Split fragmented skb to two parts at length len.
1657  * @skb: the buffer to split
1658  * @skb1: the buffer to receive the second part
1659  * @len: new length for skb
1660  */
1661 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1662 {
1663 	int pos = skb_headlen(skb);
1664 
1665 	if (len < pos)	/* Split line is inside header. */
1666 		skb_split_inside_header(skb, skb1, len, pos);
1667 	else		/* Second chunk has no header, nothing to copy. */
1668 		skb_split_no_header(skb, skb1, len, pos);
1669 }
1670 
1671 /**
1672  * skb_prepare_seq_read - Prepare a sequential read of skb data
1673  * @skb: the buffer to read
1674  * @from: lower offset of data to be read
1675  * @to: upper offset of data to be read
1676  * @st: state variable
1677  *
1678  * Initializes the specified state variable. Must be called before
1679  * invoking skb_seq_read() for the first time.
1680  */
1681 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1682 			  unsigned int to, struct skb_seq_state *st)
1683 {
1684 	st->lower_offset = from;
1685 	st->upper_offset = to;
1686 	st->root_skb = st->cur_skb = skb;
1687 	st->frag_idx = st->stepped_offset = 0;
1688 	st->frag_data = NULL;
1689 }
1690 
1691 /**
1692  * skb_seq_read - Sequentially read skb data
1693  * @consumed: number of bytes consumed by the caller so far
1694  * @data: destination pointer for data to be returned
1695  * @st: state variable
1696  *
1697  * Reads a block of skb data at &consumed relative to the
1698  * lower offset specified to skb_prepare_seq_read(). Assigns
1699  * the head of the data block to &data and returns the length
1700  * of the block or 0 if the end of the skb data or the upper
1701  * offset has been reached.
1702  *
1703  * The caller is not required to consume all of the data
1704  * returned, i.e. &consumed is typically set to the number
1705  * of bytes already consumed and the next call to
1706  * skb_seq_read() will return the remaining part of the block.
1707  *
1708  * Note: The size of each block of data returned can be arbitary,
1709  *       this limitation is the cost for zerocopy seqeuental
1710  *       reads of potentially non linear data.
1711  *
1712  * Note: Fragment lists within fragments are not implemented
1713  *       at the moment, state->root_skb could be replaced with
1714  *       a stack for this purpose.
1715  */
1716 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1717 			  struct skb_seq_state *st)
1718 {
1719 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1720 	skb_frag_t *frag;
1721 
1722 	if (unlikely(abs_offset >= st->upper_offset))
1723 		return 0;
1724 
1725 next_skb:
1726 	block_limit = skb_headlen(st->cur_skb);
1727 
1728 	if (abs_offset < block_limit) {
1729 		*data = st->cur_skb->data + abs_offset;
1730 		return block_limit - abs_offset;
1731 	}
1732 
1733 	if (st->frag_idx == 0 && !st->frag_data)
1734 		st->stepped_offset += skb_headlen(st->cur_skb);
1735 
1736 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1737 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1738 		block_limit = frag->size + st->stepped_offset;
1739 
1740 		if (abs_offset < block_limit) {
1741 			if (!st->frag_data)
1742 				st->frag_data = kmap_skb_frag(frag);
1743 
1744 			*data = (u8 *) st->frag_data + frag->page_offset +
1745 				(abs_offset - st->stepped_offset);
1746 
1747 			return block_limit - abs_offset;
1748 		}
1749 
1750 		if (st->frag_data) {
1751 			kunmap_skb_frag(st->frag_data);
1752 			st->frag_data = NULL;
1753 		}
1754 
1755 		st->frag_idx++;
1756 		st->stepped_offset += frag->size;
1757 	}
1758 
1759 	if (st->cur_skb->next) {
1760 		st->cur_skb = st->cur_skb->next;
1761 		st->frag_idx = 0;
1762 		goto next_skb;
1763 	} else if (st->root_skb == st->cur_skb &&
1764 		   skb_shinfo(st->root_skb)->frag_list) {
1765 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1766 		goto next_skb;
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 /**
1773  * skb_abort_seq_read - Abort a sequential read of skb data
1774  * @st: state variable
1775  *
1776  * Must be called if skb_seq_read() was not called until it
1777  * returned 0.
1778  */
1779 void skb_abort_seq_read(struct skb_seq_state *st)
1780 {
1781 	if (st->frag_data)
1782 		kunmap_skb_frag(st->frag_data);
1783 }
1784 
1785 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1786 
1787 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1788 					  struct ts_config *conf,
1789 					  struct ts_state *state)
1790 {
1791 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1792 }
1793 
1794 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1795 {
1796 	skb_abort_seq_read(TS_SKB_CB(state));
1797 }
1798 
1799 /**
1800  * skb_find_text - Find a text pattern in skb data
1801  * @skb: the buffer to look in
1802  * @from: search offset
1803  * @to: search limit
1804  * @config: textsearch configuration
1805  * @state: uninitialized textsearch state variable
1806  *
1807  * Finds a pattern in the skb data according to the specified
1808  * textsearch configuration. Use textsearch_next() to retrieve
1809  * subsequent occurrences of the pattern. Returns the offset
1810  * to the first occurrence or UINT_MAX if no match was found.
1811  */
1812 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1813 			   unsigned int to, struct ts_config *config,
1814 			   struct ts_state *state)
1815 {
1816 	unsigned int ret;
1817 
1818 	config->get_next_block = skb_ts_get_next_block;
1819 	config->finish = skb_ts_finish;
1820 
1821 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1822 
1823 	ret = textsearch_find(config, state);
1824 	return (ret <= to - from ? ret : UINT_MAX);
1825 }
1826 
1827 /**
1828  * skb_append_datato_frags: - append the user data to a skb
1829  * @sk: sock  structure
1830  * @skb: skb structure to be appened with user data.
1831  * @getfrag: call back function to be used for getting the user data
1832  * @from: pointer to user message iov
1833  * @length: length of the iov message
1834  *
1835  * Description: This procedure append the user data in the fragment part
1836  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1837  */
1838 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1839 			int (*getfrag)(void *from, char *to, int offset,
1840 					int len, int odd, struct sk_buff *skb),
1841 			void *from, int length)
1842 {
1843 	int frg_cnt = 0;
1844 	skb_frag_t *frag = NULL;
1845 	struct page *page = NULL;
1846 	int copy, left;
1847 	int offset = 0;
1848 	int ret;
1849 
1850 	do {
1851 		/* Return error if we don't have space for new frag */
1852 		frg_cnt = skb_shinfo(skb)->nr_frags;
1853 		if (frg_cnt >= MAX_SKB_FRAGS)
1854 			return -EFAULT;
1855 
1856 		/* allocate a new page for next frag */
1857 		page = alloc_pages(sk->sk_allocation, 0);
1858 
1859 		/* If alloc_page fails just return failure and caller will
1860 		 * free previous allocated pages by doing kfree_skb()
1861 		 */
1862 		if (page == NULL)
1863 			return -ENOMEM;
1864 
1865 		/* initialize the next frag */
1866 		sk->sk_sndmsg_page = page;
1867 		sk->sk_sndmsg_off = 0;
1868 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1869 		skb->truesize += PAGE_SIZE;
1870 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1871 
1872 		/* get the new initialized frag */
1873 		frg_cnt = skb_shinfo(skb)->nr_frags;
1874 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1875 
1876 		/* copy the user data to page */
1877 		left = PAGE_SIZE - frag->page_offset;
1878 		copy = (length > left)? left : length;
1879 
1880 		ret = getfrag(from, (page_address(frag->page) +
1881 			    frag->page_offset + frag->size),
1882 			    offset, copy, 0, skb);
1883 		if (ret < 0)
1884 			return -EFAULT;
1885 
1886 		/* copy was successful so update the size parameters */
1887 		sk->sk_sndmsg_off += copy;
1888 		frag->size += copy;
1889 		skb->len += copy;
1890 		skb->data_len += copy;
1891 		offset += copy;
1892 		length -= copy;
1893 
1894 	} while (length > 0);
1895 
1896 	return 0;
1897 }
1898 
1899 /**
1900  *	skb_pull_rcsum - pull skb and update receive checksum
1901  *	@skb: buffer to update
1902  *	@start: start of data before pull
1903  *	@len: length of data pulled
1904  *
1905  *	This function performs an skb_pull on the packet and updates
1906  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
1907  *	receive path processing instead of skb_pull unless you know
1908  *	that the checksum difference is zero (e.g., a valid IP header)
1909  *	or you are setting ip_summed to CHECKSUM_NONE.
1910  */
1911 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1912 {
1913 	BUG_ON(len > skb->len);
1914 	skb->len -= len;
1915 	BUG_ON(skb->len < skb->data_len);
1916 	skb_postpull_rcsum(skb, skb->data, len);
1917 	return skb->data += len;
1918 }
1919 
1920 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1921 
1922 /**
1923  *	skb_segment - Perform protocol segmentation on skb.
1924  *	@skb: buffer to segment
1925  *	@features: features for the output path (see dev->features)
1926  *
1927  *	This function performs segmentation on the given skb.  It returns
1928  *	the segment at the given position.  It returns NULL if there are
1929  *	no more segments to generate, or when an error is encountered.
1930  */
1931 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1932 {
1933 	struct sk_buff *segs = NULL;
1934 	struct sk_buff *tail = NULL;
1935 	unsigned int mss = skb_shinfo(skb)->gso_size;
1936 	unsigned int doffset = skb->data - skb->mac.raw;
1937 	unsigned int offset = doffset;
1938 	unsigned int headroom;
1939 	unsigned int len;
1940 	int sg = features & NETIF_F_SG;
1941 	int nfrags = skb_shinfo(skb)->nr_frags;
1942 	int err = -ENOMEM;
1943 	int i = 0;
1944 	int pos;
1945 
1946 	__skb_push(skb, doffset);
1947 	headroom = skb_headroom(skb);
1948 	pos = skb_headlen(skb);
1949 
1950 	do {
1951 		struct sk_buff *nskb;
1952 		skb_frag_t *frag;
1953 		int hsize;
1954 		int k;
1955 		int size;
1956 
1957 		len = skb->len - offset;
1958 		if (len > mss)
1959 			len = mss;
1960 
1961 		hsize = skb_headlen(skb) - offset;
1962 		if (hsize < 0)
1963 			hsize = 0;
1964 		if (hsize > len || !sg)
1965 			hsize = len;
1966 
1967 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1968 		if (unlikely(!nskb))
1969 			goto err;
1970 
1971 		if (segs)
1972 			tail->next = nskb;
1973 		else
1974 			segs = nskb;
1975 		tail = nskb;
1976 
1977 		nskb->dev = skb->dev;
1978 		nskb->priority = skb->priority;
1979 		nskb->protocol = skb->protocol;
1980 		nskb->dst = dst_clone(skb->dst);
1981 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1982 		nskb->pkt_type = skb->pkt_type;
1983 		nskb->mac_len = skb->mac_len;
1984 
1985 		skb_reserve(nskb, headroom);
1986 		nskb->mac.raw = nskb->data;
1987 		nskb->nh.raw = nskb->data + skb->mac_len;
1988 		nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1989 		memcpy(skb_put(nskb, doffset), skb->data, doffset);
1990 
1991 		if (!sg) {
1992 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1993 							    skb_put(nskb, len),
1994 							    len, 0);
1995 			continue;
1996 		}
1997 
1998 		frag = skb_shinfo(nskb)->frags;
1999 		k = 0;
2000 
2001 		nskb->ip_summed = CHECKSUM_PARTIAL;
2002 		nskb->csum = skb->csum;
2003 		memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
2004 
2005 		while (pos < offset + len) {
2006 			BUG_ON(i >= nfrags);
2007 
2008 			*frag = skb_shinfo(skb)->frags[i];
2009 			get_page(frag->page);
2010 			size = frag->size;
2011 
2012 			if (pos < offset) {
2013 				frag->page_offset += offset - pos;
2014 				frag->size -= offset - pos;
2015 			}
2016 
2017 			k++;
2018 
2019 			if (pos + size <= offset + len) {
2020 				i++;
2021 				pos += size;
2022 			} else {
2023 				frag->size -= pos + size - (offset + len);
2024 				break;
2025 			}
2026 
2027 			frag++;
2028 		}
2029 
2030 		skb_shinfo(nskb)->nr_frags = k;
2031 		nskb->data_len = len - hsize;
2032 		nskb->len += nskb->data_len;
2033 		nskb->truesize += nskb->data_len;
2034 	} while ((offset += len) < skb->len);
2035 
2036 	return segs;
2037 
2038 err:
2039 	while ((skb = segs)) {
2040 		segs = skb->next;
2041 		kfree(skb);
2042 	}
2043 	return ERR_PTR(err);
2044 }
2045 
2046 EXPORT_SYMBOL_GPL(skb_segment);
2047 
2048 void __init skb_init(void)
2049 {
2050 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2051 					      sizeof(struct sk_buff),
2052 					      0,
2053 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2054 					      NULL, NULL);
2055 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2056 						(2*sizeof(struct sk_buff)) +
2057 						sizeof(atomic_t),
2058 						0,
2059 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2060 						NULL, NULL);
2061 }
2062 
2063 EXPORT_SYMBOL(___pskb_trim);
2064 EXPORT_SYMBOL(__kfree_skb);
2065 EXPORT_SYMBOL(kfree_skb);
2066 EXPORT_SYMBOL(__pskb_pull_tail);
2067 EXPORT_SYMBOL(__alloc_skb);
2068 EXPORT_SYMBOL(__netdev_alloc_skb);
2069 EXPORT_SYMBOL(pskb_copy);
2070 EXPORT_SYMBOL(pskb_expand_head);
2071 EXPORT_SYMBOL(skb_checksum);
2072 EXPORT_SYMBOL(skb_clone);
2073 EXPORT_SYMBOL(skb_clone_fraglist);
2074 EXPORT_SYMBOL(skb_copy);
2075 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2076 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2077 EXPORT_SYMBOL(skb_copy_bits);
2078 EXPORT_SYMBOL(skb_copy_expand);
2079 EXPORT_SYMBOL(skb_over_panic);
2080 EXPORT_SYMBOL(skb_pad);
2081 EXPORT_SYMBOL(skb_realloc_headroom);
2082 EXPORT_SYMBOL(skb_under_panic);
2083 EXPORT_SYMBOL(skb_dequeue);
2084 EXPORT_SYMBOL(skb_dequeue_tail);
2085 EXPORT_SYMBOL(skb_insert);
2086 EXPORT_SYMBOL(skb_queue_purge);
2087 EXPORT_SYMBOL(skb_queue_head);
2088 EXPORT_SYMBOL(skb_queue_tail);
2089 EXPORT_SYMBOL(skb_unlink);
2090 EXPORT_SYMBOL(skb_append);
2091 EXPORT_SYMBOL(skb_split);
2092 EXPORT_SYMBOL(skb_prepare_seq_read);
2093 EXPORT_SYMBOL(skb_seq_read);
2094 EXPORT_SYMBOL(skb_abort_seq_read);
2095 EXPORT_SYMBOL(skb_find_text);
2096 EXPORT_SYMBOL(skb_append_datato_frags);
2097