1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/sched.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 60 #include <net/protocol.h> 61 #include <net/dst.h> 62 #include <net/sock.h> 63 #include <net/checksum.h> 64 #include <net/xfrm.h> 65 66 #include <asm/uaccess.h> 67 #include <asm/system.h> 68 69 #include "kmap_skb.h" 70 71 static struct kmem_cache *skbuff_head_cache __read_mostly; 72 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%p end:%p dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 93 skb->dev ? skb->dev->name : "<NULL>"); 94 BUG(); 95 } 96 97 /** 98 * skb_under_panic - private function 99 * @skb: buffer 100 * @sz: size 101 * @here: address 102 * 103 * Out of line support code for skb_push(). Not user callable. 104 */ 105 106 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 107 { 108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 109 "data:%p tail:%p end:%p dev:%s\n", 110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 111 skb->dev ? skb->dev->name : "<NULL>"); 112 BUG(); 113 } 114 115 void skb_truesize_bug(struct sk_buff *skb) 116 { 117 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 118 "len=%u, sizeof(sk_buff)=%Zd\n", 119 skb->truesize, skb->len, sizeof(struct sk_buff)); 120 } 121 EXPORT_SYMBOL(skb_truesize_bug); 122 123 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 124 * 'private' fields and also do memory statistics to find all the 125 * [BEEP] leaks. 126 * 127 */ 128 129 /** 130 * __alloc_skb - allocate a network buffer 131 * @size: size to allocate 132 * @gfp_mask: allocation mask 133 * @fclone: allocate from fclone cache instead of head cache 134 * and allocate a cloned (child) skb 135 * @node: numa node to allocate memory on 136 * 137 * Allocate a new &sk_buff. The returned buffer has no headroom and a 138 * tail room of size bytes. The object has a reference count of one. 139 * The return is the buffer. On a failure the return is %NULL. 140 * 141 * Buffers may only be allocated from interrupts using a @gfp_mask of 142 * %GFP_ATOMIC. 143 */ 144 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 145 int fclone, int node) 146 { 147 struct kmem_cache *cache; 148 struct skb_shared_info *shinfo; 149 struct sk_buff *skb; 150 u8 *data; 151 152 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 153 154 /* Get the HEAD */ 155 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 156 if (!skb) 157 goto out; 158 159 /* Get the DATA. Size must match skb_add_mtu(). */ 160 size = SKB_DATA_ALIGN(size); 161 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 162 gfp_mask, node); 163 if (!data) 164 goto nodata; 165 166 memset(skb, 0, offsetof(struct sk_buff, truesize)); 167 skb->truesize = size + sizeof(struct sk_buff); 168 atomic_set(&skb->users, 1); 169 skb->head = data; 170 skb->data = data; 171 skb->tail = data; 172 skb->end = data + size; 173 /* make sure we initialize shinfo sequentially */ 174 shinfo = skb_shinfo(skb); 175 atomic_set(&shinfo->dataref, 1); 176 shinfo->nr_frags = 0; 177 shinfo->gso_size = 0; 178 shinfo->gso_segs = 0; 179 shinfo->gso_type = 0; 180 shinfo->ip6_frag_id = 0; 181 shinfo->frag_list = NULL; 182 183 if (fclone) { 184 struct sk_buff *child = skb + 1; 185 atomic_t *fclone_ref = (atomic_t *) (child + 1); 186 187 skb->fclone = SKB_FCLONE_ORIG; 188 atomic_set(fclone_ref, 1); 189 190 child->fclone = SKB_FCLONE_UNAVAILABLE; 191 } 192 out: 193 return skb; 194 nodata: 195 kmem_cache_free(cache, skb); 196 skb = NULL; 197 goto out; 198 } 199 200 /** 201 * alloc_skb_from_cache - allocate a network buffer 202 * @cp: kmem_cache from which to allocate the data area 203 * (object size must be big enough for @size bytes + skb overheads) 204 * @size: size to allocate 205 * @gfp_mask: allocation mask 206 * 207 * Allocate a new &sk_buff. The returned buffer has no headroom and 208 * tail room of size bytes. The object has a reference count of one. 209 * The return is the buffer. On a failure the return is %NULL. 210 * 211 * Buffers may only be allocated from interrupts using a @gfp_mask of 212 * %GFP_ATOMIC. 213 */ 214 struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp, 215 unsigned int size, 216 gfp_t gfp_mask) 217 { 218 struct sk_buff *skb; 219 u8 *data; 220 221 /* Get the HEAD */ 222 skb = kmem_cache_alloc(skbuff_head_cache, 223 gfp_mask & ~__GFP_DMA); 224 if (!skb) 225 goto out; 226 227 /* Get the DATA. */ 228 size = SKB_DATA_ALIGN(size); 229 data = kmem_cache_alloc(cp, gfp_mask); 230 if (!data) 231 goto nodata; 232 233 memset(skb, 0, offsetof(struct sk_buff, truesize)); 234 skb->truesize = size + sizeof(struct sk_buff); 235 atomic_set(&skb->users, 1); 236 skb->head = data; 237 skb->data = data; 238 skb->tail = data; 239 skb->end = data + size; 240 241 atomic_set(&(skb_shinfo(skb)->dataref), 1); 242 skb_shinfo(skb)->nr_frags = 0; 243 skb_shinfo(skb)->gso_size = 0; 244 skb_shinfo(skb)->gso_segs = 0; 245 skb_shinfo(skb)->gso_type = 0; 246 skb_shinfo(skb)->frag_list = NULL; 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(skbuff_head_cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 255 /** 256 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 257 * @dev: network device to receive on 258 * @length: length to allocate 259 * @gfp_mask: get_free_pages mask, passed to alloc_skb 260 * 261 * Allocate a new &sk_buff and assign it a usage count of one. The 262 * buffer has unspecified headroom built in. Users should allocate 263 * the headroom they think they need without accounting for the 264 * built in space. The built in space is used for optimisations. 265 * 266 * %NULL is returned if there is no free memory. 267 */ 268 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 269 unsigned int length, gfp_t gfp_mask) 270 { 271 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 272 struct sk_buff *skb; 273 274 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 275 if (likely(skb)) { 276 skb_reserve(skb, NET_SKB_PAD); 277 skb->dev = dev; 278 } 279 return skb; 280 } 281 282 static void skb_drop_list(struct sk_buff **listp) 283 { 284 struct sk_buff *list = *listp; 285 286 *listp = NULL; 287 288 do { 289 struct sk_buff *this = list; 290 list = list->next; 291 kfree_skb(this); 292 } while (list); 293 } 294 295 static inline void skb_drop_fraglist(struct sk_buff *skb) 296 { 297 skb_drop_list(&skb_shinfo(skb)->frag_list); 298 } 299 300 static void skb_clone_fraglist(struct sk_buff *skb) 301 { 302 struct sk_buff *list; 303 304 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 305 skb_get(list); 306 } 307 308 static void skb_release_data(struct sk_buff *skb) 309 { 310 if (!skb->cloned || 311 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 312 &skb_shinfo(skb)->dataref)) { 313 if (skb_shinfo(skb)->nr_frags) { 314 int i; 315 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 316 put_page(skb_shinfo(skb)->frags[i].page); 317 } 318 319 if (skb_shinfo(skb)->frag_list) 320 skb_drop_fraglist(skb); 321 322 kfree(skb->head); 323 } 324 } 325 326 /* 327 * Free an skbuff by memory without cleaning the state. 328 */ 329 void kfree_skbmem(struct sk_buff *skb) 330 { 331 struct sk_buff *other; 332 atomic_t *fclone_ref; 333 334 skb_release_data(skb); 335 switch (skb->fclone) { 336 case SKB_FCLONE_UNAVAILABLE: 337 kmem_cache_free(skbuff_head_cache, skb); 338 break; 339 340 case SKB_FCLONE_ORIG: 341 fclone_ref = (atomic_t *) (skb + 2); 342 if (atomic_dec_and_test(fclone_ref)) 343 kmem_cache_free(skbuff_fclone_cache, skb); 344 break; 345 346 case SKB_FCLONE_CLONE: 347 fclone_ref = (atomic_t *) (skb + 1); 348 other = skb - 1; 349 350 /* The clone portion is available for 351 * fast-cloning again. 352 */ 353 skb->fclone = SKB_FCLONE_UNAVAILABLE; 354 355 if (atomic_dec_and_test(fclone_ref)) 356 kmem_cache_free(skbuff_fclone_cache, other); 357 break; 358 }; 359 } 360 361 /** 362 * __kfree_skb - private function 363 * @skb: buffer 364 * 365 * Free an sk_buff. Release anything attached to the buffer. 366 * Clean the state. This is an internal helper function. Users should 367 * always call kfree_skb 368 */ 369 370 void __kfree_skb(struct sk_buff *skb) 371 { 372 dst_release(skb->dst); 373 #ifdef CONFIG_XFRM 374 secpath_put(skb->sp); 375 #endif 376 if (skb->destructor) { 377 WARN_ON(in_irq()); 378 skb->destructor(skb); 379 } 380 #ifdef CONFIG_NETFILTER 381 nf_conntrack_put(skb->nfct); 382 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 383 nf_conntrack_put_reasm(skb->nfct_reasm); 384 #endif 385 #ifdef CONFIG_BRIDGE_NETFILTER 386 nf_bridge_put(skb->nf_bridge); 387 #endif 388 #endif 389 /* XXX: IS this still necessary? - JHS */ 390 #ifdef CONFIG_NET_SCHED 391 skb->tc_index = 0; 392 #ifdef CONFIG_NET_CLS_ACT 393 skb->tc_verd = 0; 394 #endif 395 #endif 396 397 kfree_skbmem(skb); 398 } 399 400 /** 401 * kfree_skb - free an sk_buff 402 * @skb: buffer to free 403 * 404 * Drop a reference to the buffer and free it if the usage count has 405 * hit zero. 406 */ 407 void kfree_skb(struct sk_buff *skb) 408 { 409 if (unlikely(!skb)) 410 return; 411 if (likely(atomic_read(&skb->users) == 1)) 412 smp_rmb(); 413 else if (likely(!atomic_dec_and_test(&skb->users))) 414 return; 415 __kfree_skb(skb); 416 } 417 418 /** 419 * skb_clone - duplicate an sk_buff 420 * @skb: buffer to clone 421 * @gfp_mask: allocation priority 422 * 423 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 424 * copies share the same packet data but not structure. The new 425 * buffer has a reference count of 1. If the allocation fails the 426 * function returns %NULL otherwise the new buffer is returned. 427 * 428 * If this function is called from an interrupt gfp_mask() must be 429 * %GFP_ATOMIC. 430 */ 431 432 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 433 { 434 struct sk_buff *n; 435 436 n = skb + 1; 437 if (skb->fclone == SKB_FCLONE_ORIG && 438 n->fclone == SKB_FCLONE_UNAVAILABLE) { 439 atomic_t *fclone_ref = (atomic_t *) (n + 1); 440 n->fclone = SKB_FCLONE_CLONE; 441 atomic_inc(fclone_ref); 442 } else { 443 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 444 if (!n) 445 return NULL; 446 n->fclone = SKB_FCLONE_UNAVAILABLE; 447 } 448 449 #define C(x) n->x = skb->x 450 451 n->next = n->prev = NULL; 452 n->sk = NULL; 453 C(tstamp); 454 C(dev); 455 C(h); 456 C(nh); 457 C(mac); 458 C(dst); 459 dst_clone(skb->dst); 460 C(sp); 461 #ifdef CONFIG_INET 462 secpath_get(skb->sp); 463 #endif 464 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 465 C(len); 466 C(data_len); 467 C(csum); 468 C(local_df); 469 n->cloned = 1; 470 n->nohdr = 0; 471 C(pkt_type); 472 C(ip_summed); 473 C(priority); 474 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 475 C(ipvs_property); 476 #endif 477 C(protocol); 478 n->destructor = NULL; 479 C(mark); 480 #ifdef CONFIG_NETFILTER 481 C(nfct); 482 nf_conntrack_get(skb->nfct); 483 C(nfctinfo); 484 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 485 C(nfct_reasm); 486 nf_conntrack_get_reasm(skb->nfct_reasm); 487 #endif 488 #ifdef CONFIG_BRIDGE_NETFILTER 489 C(nf_bridge); 490 nf_bridge_get(skb->nf_bridge); 491 #endif 492 #endif /*CONFIG_NETFILTER*/ 493 #ifdef CONFIG_NET_SCHED 494 C(tc_index); 495 #ifdef CONFIG_NET_CLS_ACT 496 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 497 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 498 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 499 C(input_dev); 500 #endif 501 skb_copy_secmark(n, skb); 502 #endif 503 C(truesize); 504 atomic_set(&n->users, 1); 505 C(head); 506 C(data); 507 C(tail); 508 C(end); 509 510 atomic_inc(&(skb_shinfo(skb)->dataref)); 511 skb->cloned = 1; 512 513 return n; 514 } 515 516 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 517 { 518 /* 519 * Shift between the two data areas in bytes 520 */ 521 unsigned long offset = new->data - old->data; 522 523 new->sk = NULL; 524 new->dev = old->dev; 525 new->priority = old->priority; 526 new->protocol = old->protocol; 527 new->dst = dst_clone(old->dst); 528 #ifdef CONFIG_INET 529 new->sp = secpath_get(old->sp); 530 #endif 531 new->h.raw = old->h.raw + offset; 532 new->nh.raw = old->nh.raw + offset; 533 new->mac.raw = old->mac.raw + offset; 534 memcpy(new->cb, old->cb, sizeof(old->cb)); 535 new->local_df = old->local_df; 536 new->fclone = SKB_FCLONE_UNAVAILABLE; 537 new->pkt_type = old->pkt_type; 538 new->tstamp = old->tstamp; 539 new->destructor = NULL; 540 new->mark = old->mark; 541 #ifdef CONFIG_NETFILTER 542 new->nfct = old->nfct; 543 nf_conntrack_get(old->nfct); 544 new->nfctinfo = old->nfctinfo; 545 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 546 new->nfct_reasm = old->nfct_reasm; 547 nf_conntrack_get_reasm(old->nfct_reasm); 548 #endif 549 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 550 new->ipvs_property = old->ipvs_property; 551 #endif 552 #ifdef CONFIG_BRIDGE_NETFILTER 553 new->nf_bridge = old->nf_bridge; 554 nf_bridge_get(old->nf_bridge); 555 #endif 556 #endif 557 #ifdef CONFIG_NET_SCHED 558 #ifdef CONFIG_NET_CLS_ACT 559 new->tc_verd = old->tc_verd; 560 #endif 561 new->tc_index = old->tc_index; 562 #endif 563 skb_copy_secmark(new, old); 564 atomic_set(&new->users, 1); 565 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 566 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 567 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 568 } 569 570 /** 571 * skb_copy - create private copy of an sk_buff 572 * @skb: buffer to copy 573 * @gfp_mask: allocation priority 574 * 575 * Make a copy of both an &sk_buff and its data. This is used when the 576 * caller wishes to modify the data and needs a private copy of the 577 * data to alter. Returns %NULL on failure or the pointer to the buffer 578 * on success. The returned buffer has a reference count of 1. 579 * 580 * As by-product this function converts non-linear &sk_buff to linear 581 * one, so that &sk_buff becomes completely private and caller is allowed 582 * to modify all the data of returned buffer. This means that this 583 * function is not recommended for use in circumstances when only 584 * header is going to be modified. Use pskb_copy() instead. 585 */ 586 587 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 588 { 589 int headerlen = skb->data - skb->head; 590 /* 591 * Allocate the copy buffer 592 */ 593 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 594 gfp_mask); 595 if (!n) 596 return NULL; 597 598 /* Set the data pointer */ 599 skb_reserve(n, headerlen); 600 /* Set the tail pointer and length */ 601 skb_put(n, skb->len); 602 n->csum = skb->csum; 603 n->ip_summed = skb->ip_summed; 604 605 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 606 BUG(); 607 608 copy_skb_header(n, skb); 609 return n; 610 } 611 612 613 /** 614 * pskb_copy - create copy of an sk_buff with private head. 615 * @skb: buffer to copy 616 * @gfp_mask: allocation priority 617 * 618 * Make a copy of both an &sk_buff and part of its data, located 619 * in header. Fragmented data remain shared. This is used when 620 * the caller wishes to modify only header of &sk_buff and needs 621 * private copy of the header to alter. Returns %NULL on failure 622 * or the pointer to the buffer on success. 623 * The returned buffer has a reference count of 1. 624 */ 625 626 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 627 { 628 /* 629 * Allocate the copy buffer 630 */ 631 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 632 633 if (!n) 634 goto out; 635 636 /* Set the data pointer */ 637 skb_reserve(n, skb->data - skb->head); 638 /* Set the tail pointer and length */ 639 skb_put(n, skb_headlen(skb)); 640 /* Copy the bytes */ 641 memcpy(n->data, skb->data, n->len); 642 n->csum = skb->csum; 643 n->ip_summed = skb->ip_summed; 644 645 n->truesize += skb->data_len; 646 n->data_len = skb->data_len; 647 n->len = skb->len; 648 649 if (skb_shinfo(skb)->nr_frags) { 650 int i; 651 652 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 653 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 654 get_page(skb_shinfo(n)->frags[i].page); 655 } 656 skb_shinfo(n)->nr_frags = i; 657 } 658 659 if (skb_shinfo(skb)->frag_list) { 660 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 661 skb_clone_fraglist(n); 662 } 663 664 copy_skb_header(n, skb); 665 out: 666 return n; 667 } 668 669 /** 670 * pskb_expand_head - reallocate header of &sk_buff 671 * @skb: buffer to reallocate 672 * @nhead: room to add at head 673 * @ntail: room to add at tail 674 * @gfp_mask: allocation priority 675 * 676 * Expands (or creates identical copy, if &nhead and &ntail are zero) 677 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 678 * reference count of 1. Returns zero in the case of success or error, 679 * if expansion failed. In the last case, &sk_buff is not changed. 680 * 681 * All the pointers pointing into skb header may change and must be 682 * reloaded after call to this function. 683 */ 684 685 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 686 gfp_t gfp_mask) 687 { 688 int i; 689 u8 *data; 690 int size = nhead + (skb->end - skb->head) + ntail; 691 long off; 692 693 if (skb_shared(skb)) 694 BUG(); 695 696 size = SKB_DATA_ALIGN(size); 697 698 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 699 if (!data) 700 goto nodata; 701 702 /* Copy only real data... and, alas, header. This should be 703 * optimized for the cases when header is void. */ 704 memcpy(data + nhead, skb->head, skb->tail - skb->head); 705 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 706 707 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 708 get_page(skb_shinfo(skb)->frags[i].page); 709 710 if (skb_shinfo(skb)->frag_list) 711 skb_clone_fraglist(skb); 712 713 skb_release_data(skb); 714 715 off = (data + nhead) - skb->head; 716 717 skb->head = data; 718 skb->end = data + size; 719 skb->data += off; 720 skb->tail += off; 721 skb->mac.raw += off; 722 skb->h.raw += off; 723 skb->nh.raw += off; 724 skb->cloned = 0; 725 skb->nohdr = 0; 726 atomic_set(&skb_shinfo(skb)->dataref, 1); 727 return 0; 728 729 nodata: 730 return -ENOMEM; 731 } 732 733 /* Make private copy of skb with writable head and some headroom */ 734 735 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 736 { 737 struct sk_buff *skb2; 738 int delta = headroom - skb_headroom(skb); 739 740 if (delta <= 0) 741 skb2 = pskb_copy(skb, GFP_ATOMIC); 742 else { 743 skb2 = skb_clone(skb, GFP_ATOMIC); 744 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 745 GFP_ATOMIC)) { 746 kfree_skb(skb2); 747 skb2 = NULL; 748 } 749 } 750 return skb2; 751 } 752 753 754 /** 755 * skb_copy_expand - copy and expand sk_buff 756 * @skb: buffer to copy 757 * @newheadroom: new free bytes at head 758 * @newtailroom: new free bytes at tail 759 * @gfp_mask: allocation priority 760 * 761 * Make a copy of both an &sk_buff and its data and while doing so 762 * allocate additional space. 763 * 764 * This is used when the caller wishes to modify the data and needs a 765 * private copy of the data to alter as well as more space for new fields. 766 * Returns %NULL on failure or the pointer to the buffer 767 * on success. The returned buffer has a reference count of 1. 768 * 769 * You must pass %GFP_ATOMIC as the allocation priority if this function 770 * is called from an interrupt. 771 * 772 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 773 * only by netfilter in the cases when checksum is recalculated? --ANK 774 */ 775 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 776 int newheadroom, int newtailroom, 777 gfp_t gfp_mask) 778 { 779 /* 780 * Allocate the copy buffer 781 */ 782 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 783 gfp_mask); 784 int head_copy_len, head_copy_off; 785 786 if (!n) 787 return NULL; 788 789 skb_reserve(n, newheadroom); 790 791 /* Set the tail pointer and length */ 792 skb_put(n, skb->len); 793 794 head_copy_len = skb_headroom(skb); 795 head_copy_off = 0; 796 if (newheadroom <= head_copy_len) 797 head_copy_len = newheadroom; 798 else 799 head_copy_off = newheadroom - head_copy_len; 800 801 /* Copy the linear header and data. */ 802 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 803 skb->len + head_copy_len)) 804 BUG(); 805 806 copy_skb_header(n, skb); 807 808 return n; 809 } 810 811 /** 812 * skb_pad - zero pad the tail of an skb 813 * @skb: buffer to pad 814 * @pad: space to pad 815 * 816 * Ensure that a buffer is followed by a padding area that is zero 817 * filled. Used by network drivers which may DMA or transfer data 818 * beyond the buffer end onto the wire. 819 * 820 * May return error in out of memory cases. The skb is freed on error. 821 */ 822 823 int skb_pad(struct sk_buff *skb, int pad) 824 { 825 int err; 826 int ntail; 827 828 /* If the skbuff is non linear tailroom is always zero.. */ 829 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 830 memset(skb->data+skb->len, 0, pad); 831 return 0; 832 } 833 834 ntail = skb->data_len + pad - (skb->end - skb->tail); 835 if (likely(skb_cloned(skb) || ntail > 0)) { 836 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 837 if (unlikely(err)) 838 goto free_skb; 839 } 840 841 /* FIXME: The use of this function with non-linear skb's really needs 842 * to be audited. 843 */ 844 err = skb_linearize(skb); 845 if (unlikely(err)) 846 goto free_skb; 847 848 memset(skb->data + skb->len, 0, pad); 849 return 0; 850 851 free_skb: 852 kfree_skb(skb); 853 return err; 854 } 855 856 /* Trims skb to length len. It can change skb pointers. 857 */ 858 859 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 860 { 861 struct sk_buff **fragp; 862 struct sk_buff *frag; 863 int offset = skb_headlen(skb); 864 int nfrags = skb_shinfo(skb)->nr_frags; 865 int i; 866 int err; 867 868 if (skb_cloned(skb) && 869 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 870 return err; 871 872 i = 0; 873 if (offset >= len) 874 goto drop_pages; 875 876 for (; i < nfrags; i++) { 877 int end = offset + skb_shinfo(skb)->frags[i].size; 878 879 if (end < len) { 880 offset = end; 881 continue; 882 } 883 884 skb_shinfo(skb)->frags[i++].size = len - offset; 885 886 drop_pages: 887 skb_shinfo(skb)->nr_frags = i; 888 889 for (; i < nfrags; i++) 890 put_page(skb_shinfo(skb)->frags[i].page); 891 892 if (skb_shinfo(skb)->frag_list) 893 skb_drop_fraglist(skb); 894 goto done; 895 } 896 897 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 898 fragp = &frag->next) { 899 int end = offset + frag->len; 900 901 if (skb_shared(frag)) { 902 struct sk_buff *nfrag; 903 904 nfrag = skb_clone(frag, GFP_ATOMIC); 905 if (unlikely(!nfrag)) 906 return -ENOMEM; 907 908 nfrag->next = frag->next; 909 kfree_skb(frag); 910 frag = nfrag; 911 *fragp = frag; 912 } 913 914 if (end < len) { 915 offset = end; 916 continue; 917 } 918 919 if (end > len && 920 unlikely((err = pskb_trim(frag, len - offset)))) 921 return err; 922 923 if (frag->next) 924 skb_drop_list(&frag->next); 925 break; 926 } 927 928 done: 929 if (len > skb_headlen(skb)) { 930 skb->data_len -= skb->len - len; 931 skb->len = len; 932 } else { 933 skb->len = len; 934 skb->data_len = 0; 935 skb->tail = skb->data + len; 936 } 937 938 return 0; 939 } 940 941 /** 942 * __pskb_pull_tail - advance tail of skb header 943 * @skb: buffer to reallocate 944 * @delta: number of bytes to advance tail 945 * 946 * The function makes a sense only on a fragmented &sk_buff, 947 * it expands header moving its tail forward and copying necessary 948 * data from fragmented part. 949 * 950 * &sk_buff MUST have reference count of 1. 951 * 952 * Returns %NULL (and &sk_buff does not change) if pull failed 953 * or value of new tail of skb in the case of success. 954 * 955 * All the pointers pointing into skb header may change and must be 956 * reloaded after call to this function. 957 */ 958 959 /* Moves tail of skb head forward, copying data from fragmented part, 960 * when it is necessary. 961 * 1. It may fail due to malloc failure. 962 * 2. It may change skb pointers. 963 * 964 * It is pretty complicated. Luckily, it is called only in exceptional cases. 965 */ 966 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 967 { 968 /* If skb has not enough free space at tail, get new one 969 * plus 128 bytes for future expansions. If we have enough 970 * room at tail, reallocate without expansion only if skb is cloned. 971 */ 972 int i, k, eat = (skb->tail + delta) - skb->end; 973 974 if (eat > 0 || skb_cloned(skb)) { 975 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 976 GFP_ATOMIC)) 977 return NULL; 978 } 979 980 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 981 BUG(); 982 983 /* Optimization: no fragments, no reasons to preestimate 984 * size of pulled pages. Superb. 985 */ 986 if (!skb_shinfo(skb)->frag_list) 987 goto pull_pages; 988 989 /* Estimate size of pulled pages. */ 990 eat = delta; 991 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 992 if (skb_shinfo(skb)->frags[i].size >= eat) 993 goto pull_pages; 994 eat -= skb_shinfo(skb)->frags[i].size; 995 } 996 997 /* If we need update frag list, we are in troubles. 998 * Certainly, it possible to add an offset to skb data, 999 * but taking into account that pulling is expected to 1000 * be very rare operation, it is worth to fight against 1001 * further bloating skb head and crucify ourselves here instead. 1002 * Pure masohism, indeed. 8)8) 1003 */ 1004 if (eat) { 1005 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1006 struct sk_buff *clone = NULL; 1007 struct sk_buff *insp = NULL; 1008 1009 do { 1010 BUG_ON(!list); 1011 1012 if (list->len <= eat) { 1013 /* Eaten as whole. */ 1014 eat -= list->len; 1015 list = list->next; 1016 insp = list; 1017 } else { 1018 /* Eaten partially. */ 1019 1020 if (skb_shared(list)) { 1021 /* Sucks! We need to fork list. :-( */ 1022 clone = skb_clone(list, GFP_ATOMIC); 1023 if (!clone) 1024 return NULL; 1025 insp = list->next; 1026 list = clone; 1027 } else { 1028 /* This may be pulled without 1029 * problems. */ 1030 insp = list; 1031 } 1032 if (!pskb_pull(list, eat)) { 1033 if (clone) 1034 kfree_skb(clone); 1035 return NULL; 1036 } 1037 break; 1038 } 1039 } while (eat); 1040 1041 /* Free pulled out fragments. */ 1042 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1043 skb_shinfo(skb)->frag_list = list->next; 1044 kfree_skb(list); 1045 } 1046 /* And insert new clone at head. */ 1047 if (clone) { 1048 clone->next = list; 1049 skb_shinfo(skb)->frag_list = clone; 1050 } 1051 } 1052 /* Success! Now we may commit changes to skb data. */ 1053 1054 pull_pages: 1055 eat = delta; 1056 k = 0; 1057 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1058 if (skb_shinfo(skb)->frags[i].size <= eat) { 1059 put_page(skb_shinfo(skb)->frags[i].page); 1060 eat -= skb_shinfo(skb)->frags[i].size; 1061 } else { 1062 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1063 if (eat) { 1064 skb_shinfo(skb)->frags[k].page_offset += eat; 1065 skb_shinfo(skb)->frags[k].size -= eat; 1066 eat = 0; 1067 } 1068 k++; 1069 } 1070 } 1071 skb_shinfo(skb)->nr_frags = k; 1072 1073 skb->tail += delta; 1074 skb->data_len -= delta; 1075 1076 return skb->tail; 1077 } 1078 1079 /* Copy some data bits from skb to kernel buffer. */ 1080 1081 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1082 { 1083 int i, copy; 1084 int start = skb_headlen(skb); 1085 1086 if (offset > (int)skb->len - len) 1087 goto fault; 1088 1089 /* Copy header. */ 1090 if ((copy = start - offset) > 0) { 1091 if (copy > len) 1092 copy = len; 1093 memcpy(to, skb->data + offset, copy); 1094 if ((len -= copy) == 0) 1095 return 0; 1096 offset += copy; 1097 to += copy; 1098 } 1099 1100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1101 int end; 1102 1103 BUG_TRAP(start <= offset + len); 1104 1105 end = start + skb_shinfo(skb)->frags[i].size; 1106 if ((copy = end - offset) > 0) { 1107 u8 *vaddr; 1108 1109 if (copy > len) 1110 copy = len; 1111 1112 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1113 memcpy(to, 1114 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1115 offset - start, copy); 1116 kunmap_skb_frag(vaddr); 1117 1118 if ((len -= copy) == 0) 1119 return 0; 1120 offset += copy; 1121 to += copy; 1122 } 1123 start = end; 1124 } 1125 1126 if (skb_shinfo(skb)->frag_list) { 1127 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1128 1129 for (; list; list = list->next) { 1130 int end; 1131 1132 BUG_TRAP(start <= offset + len); 1133 1134 end = start + list->len; 1135 if ((copy = end - offset) > 0) { 1136 if (copy > len) 1137 copy = len; 1138 if (skb_copy_bits(list, offset - start, 1139 to, copy)) 1140 goto fault; 1141 if ((len -= copy) == 0) 1142 return 0; 1143 offset += copy; 1144 to += copy; 1145 } 1146 start = end; 1147 } 1148 } 1149 if (!len) 1150 return 0; 1151 1152 fault: 1153 return -EFAULT; 1154 } 1155 1156 /** 1157 * skb_store_bits - store bits from kernel buffer to skb 1158 * @skb: destination buffer 1159 * @offset: offset in destination 1160 * @from: source buffer 1161 * @len: number of bytes to copy 1162 * 1163 * Copy the specified number of bytes from the source buffer to the 1164 * destination skb. This function handles all the messy bits of 1165 * traversing fragment lists and such. 1166 */ 1167 1168 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1169 { 1170 int i, copy; 1171 int start = skb_headlen(skb); 1172 1173 if (offset > (int)skb->len - len) 1174 goto fault; 1175 1176 if ((copy = start - offset) > 0) { 1177 if (copy > len) 1178 copy = len; 1179 memcpy(skb->data + offset, from, copy); 1180 if ((len -= copy) == 0) 1181 return 0; 1182 offset += copy; 1183 from += copy; 1184 } 1185 1186 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1187 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1188 int end; 1189 1190 BUG_TRAP(start <= offset + len); 1191 1192 end = start + frag->size; 1193 if ((copy = end - offset) > 0) { 1194 u8 *vaddr; 1195 1196 if (copy > len) 1197 copy = len; 1198 1199 vaddr = kmap_skb_frag(frag); 1200 memcpy(vaddr + frag->page_offset + offset - start, 1201 from, copy); 1202 kunmap_skb_frag(vaddr); 1203 1204 if ((len -= copy) == 0) 1205 return 0; 1206 offset += copy; 1207 from += copy; 1208 } 1209 start = end; 1210 } 1211 1212 if (skb_shinfo(skb)->frag_list) { 1213 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1214 1215 for (; list; list = list->next) { 1216 int end; 1217 1218 BUG_TRAP(start <= offset + len); 1219 1220 end = start + list->len; 1221 if ((copy = end - offset) > 0) { 1222 if (copy > len) 1223 copy = len; 1224 if (skb_store_bits(list, offset - start, 1225 from, copy)) 1226 goto fault; 1227 if ((len -= copy) == 0) 1228 return 0; 1229 offset += copy; 1230 from += copy; 1231 } 1232 start = end; 1233 } 1234 } 1235 if (!len) 1236 return 0; 1237 1238 fault: 1239 return -EFAULT; 1240 } 1241 1242 EXPORT_SYMBOL(skb_store_bits); 1243 1244 /* Checksum skb data. */ 1245 1246 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1247 int len, __wsum csum) 1248 { 1249 int start = skb_headlen(skb); 1250 int i, copy = start - offset; 1251 int pos = 0; 1252 1253 /* Checksum header. */ 1254 if (copy > 0) { 1255 if (copy > len) 1256 copy = len; 1257 csum = csum_partial(skb->data + offset, copy, csum); 1258 if ((len -= copy) == 0) 1259 return csum; 1260 offset += copy; 1261 pos = copy; 1262 } 1263 1264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1265 int end; 1266 1267 BUG_TRAP(start <= offset + len); 1268 1269 end = start + skb_shinfo(skb)->frags[i].size; 1270 if ((copy = end - offset) > 0) { 1271 __wsum csum2; 1272 u8 *vaddr; 1273 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1274 1275 if (copy > len) 1276 copy = len; 1277 vaddr = kmap_skb_frag(frag); 1278 csum2 = csum_partial(vaddr + frag->page_offset + 1279 offset - start, copy, 0); 1280 kunmap_skb_frag(vaddr); 1281 csum = csum_block_add(csum, csum2, pos); 1282 if (!(len -= copy)) 1283 return csum; 1284 offset += copy; 1285 pos += copy; 1286 } 1287 start = end; 1288 } 1289 1290 if (skb_shinfo(skb)->frag_list) { 1291 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1292 1293 for (; list; list = list->next) { 1294 int end; 1295 1296 BUG_TRAP(start <= offset + len); 1297 1298 end = start + list->len; 1299 if ((copy = end - offset) > 0) { 1300 __wsum csum2; 1301 if (copy > len) 1302 copy = len; 1303 csum2 = skb_checksum(list, offset - start, 1304 copy, 0); 1305 csum = csum_block_add(csum, csum2, pos); 1306 if ((len -= copy) == 0) 1307 return csum; 1308 offset += copy; 1309 pos += copy; 1310 } 1311 start = end; 1312 } 1313 } 1314 BUG_ON(len); 1315 1316 return csum; 1317 } 1318 1319 /* Both of above in one bottle. */ 1320 1321 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1322 u8 *to, int len, __wsum csum) 1323 { 1324 int start = skb_headlen(skb); 1325 int i, copy = start - offset; 1326 int pos = 0; 1327 1328 /* Copy header. */ 1329 if (copy > 0) { 1330 if (copy > len) 1331 copy = len; 1332 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1333 copy, csum); 1334 if ((len -= copy) == 0) 1335 return csum; 1336 offset += copy; 1337 to += copy; 1338 pos = copy; 1339 } 1340 1341 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1342 int end; 1343 1344 BUG_TRAP(start <= offset + len); 1345 1346 end = start + skb_shinfo(skb)->frags[i].size; 1347 if ((copy = end - offset) > 0) { 1348 __wsum csum2; 1349 u8 *vaddr; 1350 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1351 1352 if (copy > len) 1353 copy = len; 1354 vaddr = kmap_skb_frag(frag); 1355 csum2 = csum_partial_copy_nocheck(vaddr + 1356 frag->page_offset + 1357 offset - start, to, 1358 copy, 0); 1359 kunmap_skb_frag(vaddr); 1360 csum = csum_block_add(csum, csum2, pos); 1361 if (!(len -= copy)) 1362 return csum; 1363 offset += copy; 1364 to += copy; 1365 pos += copy; 1366 } 1367 start = end; 1368 } 1369 1370 if (skb_shinfo(skb)->frag_list) { 1371 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1372 1373 for (; list; list = list->next) { 1374 __wsum csum2; 1375 int end; 1376 1377 BUG_TRAP(start <= offset + len); 1378 1379 end = start + list->len; 1380 if ((copy = end - offset) > 0) { 1381 if (copy > len) 1382 copy = len; 1383 csum2 = skb_copy_and_csum_bits(list, 1384 offset - start, 1385 to, copy, 0); 1386 csum = csum_block_add(csum, csum2, pos); 1387 if ((len -= copy) == 0) 1388 return csum; 1389 offset += copy; 1390 to += copy; 1391 pos += copy; 1392 } 1393 start = end; 1394 } 1395 } 1396 BUG_ON(len); 1397 return csum; 1398 } 1399 1400 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1401 { 1402 __wsum csum; 1403 long csstart; 1404 1405 if (skb->ip_summed == CHECKSUM_PARTIAL) 1406 csstart = skb->h.raw - skb->data; 1407 else 1408 csstart = skb_headlen(skb); 1409 1410 BUG_ON(csstart > skb_headlen(skb)); 1411 1412 memcpy(to, skb->data, csstart); 1413 1414 csum = 0; 1415 if (csstart != skb->len) 1416 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1417 skb->len - csstart, 0); 1418 1419 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1420 long csstuff = csstart + skb->csum_offset; 1421 1422 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1423 } 1424 } 1425 1426 /** 1427 * skb_dequeue - remove from the head of the queue 1428 * @list: list to dequeue from 1429 * 1430 * Remove the head of the list. The list lock is taken so the function 1431 * may be used safely with other locking list functions. The head item is 1432 * returned or %NULL if the list is empty. 1433 */ 1434 1435 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1436 { 1437 unsigned long flags; 1438 struct sk_buff *result; 1439 1440 spin_lock_irqsave(&list->lock, flags); 1441 result = __skb_dequeue(list); 1442 spin_unlock_irqrestore(&list->lock, flags); 1443 return result; 1444 } 1445 1446 /** 1447 * skb_dequeue_tail - remove from the tail of the queue 1448 * @list: list to dequeue from 1449 * 1450 * Remove the tail of the list. The list lock is taken so the function 1451 * may be used safely with other locking list functions. The tail item is 1452 * returned or %NULL if the list is empty. 1453 */ 1454 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1455 { 1456 unsigned long flags; 1457 struct sk_buff *result; 1458 1459 spin_lock_irqsave(&list->lock, flags); 1460 result = __skb_dequeue_tail(list); 1461 spin_unlock_irqrestore(&list->lock, flags); 1462 return result; 1463 } 1464 1465 /** 1466 * skb_queue_purge - empty a list 1467 * @list: list to empty 1468 * 1469 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1470 * the list and one reference dropped. This function takes the list 1471 * lock and is atomic with respect to other list locking functions. 1472 */ 1473 void skb_queue_purge(struct sk_buff_head *list) 1474 { 1475 struct sk_buff *skb; 1476 while ((skb = skb_dequeue(list)) != NULL) 1477 kfree_skb(skb); 1478 } 1479 1480 /** 1481 * skb_queue_head - queue a buffer at the list head 1482 * @list: list to use 1483 * @newsk: buffer to queue 1484 * 1485 * Queue a buffer at the start of the list. This function takes the 1486 * list lock and can be used safely with other locking &sk_buff functions 1487 * safely. 1488 * 1489 * A buffer cannot be placed on two lists at the same time. 1490 */ 1491 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1492 { 1493 unsigned long flags; 1494 1495 spin_lock_irqsave(&list->lock, flags); 1496 __skb_queue_head(list, newsk); 1497 spin_unlock_irqrestore(&list->lock, flags); 1498 } 1499 1500 /** 1501 * skb_queue_tail - queue a buffer at the list tail 1502 * @list: list to use 1503 * @newsk: buffer to queue 1504 * 1505 * Queue a buffer at the tail of the list. This function takes the 1506 * list lock and can be used safely with other locking &sk_buff functions 1507 * safely. 1508 * 1509 * A buffer cannot be placed on two lists at the same time. 1510 */ 1511 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1512 { 1513 unsigned long flags; 1514 1515 spin_lock_irqsave(&list->lock, flags); 1516 __skb_queue_tail(list, newsk); 1517 spin_unlock_irqrestore(&list->lock, flags); 1518 } 1519 1520 /** 1521 * skb_unlink - remove a buffer from a list 1522 * @skb: buffer to remove 1523 * @list: list to use 1524 * 1525 * Remove a packet from a list. The list locks are taken and this 1526 * function is atomic with respect to other list locked calls 1527 * 1528 * You must know what list the SKB is on. 1529 */ 1530 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1531 { 1532 unsigned long flags; 1533 1534 spin_lock_irqsave(&list->lock, flags); 1535 __skb_unlink(skb, list); 1536 spin_unlock_irqrestore(&list->lock, flags); 1537 } 1538 1539 /** 1540 * skb_append - append a buffer 1541 * @old: buffer to insert after 1542 * @newsk: buffer to insert 1543 * @list: list to use 1544 * 1545 * Place a packet after a given packet in a list. The list locks are taken 1546 * and this function is atomic with respect to other list locked calls. 1547 * A buffer cannot be placed on two lists at the same time. 1548 */ 1549 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1550 { 1551 unsigned long flags; 1552 1553 spin_lock_irqsave(&list->lock, flags); 1554 __skb_append(old, newsk, list); 1555 spin_unlock_irqrestore(&list->lock, flags); 1556 } 1557 1558 1559 /** 1560 * skb_insert - insert a buffer 1561 * @old: buffer to insert before 1562 * @newsk: buffer to insert 1563 * @list: list to use 1564 * 1565 * Place a packet before a given packet in a list. The list locks are 1566 * taken and this function is atomic with respect to other list locked 1567 * calls. 1568 * 1569 * A buffer cannot be placed on two lists at the same time. 1570 */ 1571 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1572 { 1573 unsigned long flags; 1574 1575 spin_lock_irqsave(&list->lock, flags); 1576 __skb_insert(newsk, old->prev, old, list); 1577 spin_unlock_irqrestore(&list->lock, flags); 1578 } 1579 1580 #if 0 1581 /* 1582 * Tune the memory allocator for a new MTU size. 1583 */ 1584 void skb_add_mtu(int mtu) 1585 { 1586 /* Must match allocation in alloc_skb */ 1587 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1588 1589 kmem_add_cache_size(mtu); 1590 } 1591 #endif 1592 1593 static inline void skb_split_inside_header(struct sk_buff *skb, 1594 struct sk_buff* skb1, 1595 const u32 len, const int pos) 1596 { 1597 int i; 1598 1599 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1600 1601 /* And move data appendix as is. */ 1602 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1603 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1604 1605 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1606 skb_shinfo(skb)->nr_frags = 0; 1607 skb1->data_len = skb->data_len; 1608 skb1->len += skb1->data_len; 1609 skb->data_len = 0; 1610 skb->len = len; 1611 skb->tail = skb->data + len; 1612 } 1613 1614 static inline void skb_split_no_header(struct sk_buff *skb, 1615 struct sk_buff* skb1, 1616 const u32 len, int pos) 1617 { 1618 int i, k = 0; 1619 const int nfrags = skb_shinfo(skb)->nr_frags; 1620 1621 skb_shinfo(skb)->nr_frags = 0; 1622 skb1->len = skb1->data_len = skb->len - len; 1623 skb->len = len; 1624 skb->data_len = len - pos; 1625 1626 for (i = 0; i < nfrags; i++) { 1627 int size = skb_shinfo(skb)->frags[i].size; 1628 1629 if (pos + size > len) { 1630 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1631 1632 if (pos < len) { 1633 /* Split frag. 1634 * We have two variants in this case: 1635 * 1. Move all the frag to the second 1636 * part, if it is possible. F.e. 1637 * this approach is mandatory for TUX, 1638 * where splitting is expensive. 1639 * 2. Split is accurately. We make this. 1640 */ 1641 get_page(skb_shinfo(skb)->frags[i].page); 1642 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1643 skb_shinfo(skb1)->frags[0].size -= len - pos; 1644 skb_shinfo(skb)->frags[i].size = len - pos; 1645 skb_shinfo(skb)->nr_frags++; 1646 } 1647 k++; 1648 } else 1649 skb_shinfo(skb)->nr_frags++; 1650 pos += size; 1651 } 1652 skb_shinfo(skb1)->nr_frags = k; 1653 } 1654 1655 /** 1656 * skb_split - Split fragmented skb to two parts at length len. 1657 * @skb: the buffer to split 1658 * @skb1: the buffer to receive the second part 1659 * @len: new length for skb 1660 */ 1661 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1662 { 1663 int pos = skb_headlen(skb); 1664 1665 if (len < pos) /* Split line is inside header. */ 1666 skb_split_inside_header(skb, skb1, len, pos); 1667 else /* Second chunk has no header, nothing to copy. */ 1668 skb_split_no_header(skb, skb1, len, pos); 1669 } 1670 1671 /** 1672 * skb_prepare_seq_read - Prepare a sequential read of skb data 1673 * @skb: the buffer to read 1674 * @from: lower offset of data to be read 1675 * @to: upper offset of data to be read 1676 * @st: state variable 1677 * 1678 * Initializes the specified state variable. Must be called before 1679 * invoking skb_seq_read() for the first time. 1680 */ 1681 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1682 unsigned int to, struct skb_seq_state *st) 1683 { 1684 st->lower_offset = from; 1685 st->upper_offset = to; 1686 st->root_skb = st->cur_skb = skb; 1687 st->frag_idx = st->stepped_offset = 0; 1688 st->frag_data = NULL; 1689 } 1690 1691 /** 1692 * skb_seq_read - Sequentially read skb data 1693 * @consumed: number of bytes consumed by the caller so far 1694 * @data: destination pointer for data to be returned 1695 * @st: state variable 1696 * 1697 * Reads a block of skb data at &consumed relative to the 1698 * lower offset specified to skb_prepare_seq_read(). Assigns 1699 * the head of the data block to &data and returns the length 1700 * of the block or 0 if the end of the skb data or the upper 1701 * offset has been reached. 1702 * 1703 * The caller is not required to consume all of the data 1704 * returned, i.e. &consumed is typically set to the number 1705 * of bytes already consumed and the next call to 1706 * skb_seq_read() will return the remaining part of the block. 1707 * 1708 * Note: The size of each block of data returned can be arbitary, 1709 * this limitation is the cost for zerocopy seqeuental 1710 * reads of potentially non linear data. 1711 * 1712 * Note: Fragment lists within fragments are not implemented 1713 * at the moment, state->root_skb could be replaced with 1714 * a stack for this purpose. 1715 */ 1716 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1717 struct skb_seq_state *st) 1718 { 1719 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1720 skb_frag_t *frag; 1721 1722 if (unlikely(abs_offset >= st->upper_offset)) 1723 return 0; 1724 1725 next_skb: 1726 block_limit = skb_headlen(st->cur_skb); 1727 1728 if (abs_offset < block_limit) { 1729 *data = st->cur_skb->data + abs_offset; 1730 return block_limit - abs_offset; 1731 } 1732 1733 if (st->frag_idx == 0 && !st->frag_data) 1734 st->stepped_offset += skb_headlen(st->cur_skb); 1735 1736 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1737 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1738 block_limit = frag->size + st->stepped_offset; 1739 1740 if (abs_offset < block_limit) { 1741 if (!st->frag_data) 1742 st->frag_data = kmap_skb_frag(frag); 1743 1744 *data = (u8 *) st->frag_data + frag->page_offset + 1745 (abs_offset - st->stepped_offset); 1746 1747 return block_limit - abs_offset; 1748 } 1749 1750 if (st->frag_data) { 1751 kunmap_skb_frag(st->frag_data); 1752 st->frag_data = NULL; 1753 } 1754 1755 st->frag_idx++; 1756 st->stepped_offset += frag->size; 1757 } 1758 1759 if (st->cur_skb->next) { 1760 st->cur_skb = st->cur_skb->next; 1761 st->frag_idx = 0; 1762 goto next_skb; 1763 } else if (st->root_skb == st->cur_skb && 1764 skb_shinfo(st->root_skb)->frag_list) { 1765 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1766 goto next_skb; 1767 } 1768 1769 return 0; 1770 } 1771 1772 /** 1773 * skb_abort_seq_read - Abort a sequential read of skb data 1774 * @st: state variable 1775 * 1776 * Must be called if skb_seq_read() was not called until it 1777 * returned 0. 1778 */ 1779 void skb_abort_seq_read(struct skb_seq_state *st) 1780 { 1781 if (st->frag_data) 1782 kunmap_skb_frag(st->frag_data); 1783 } 1784 1785 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1786 1787 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1788 struct ts_config *conf, 1789 struct ts_state *state) 1790 { 1791 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1792 } 1793 1794 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1795 { 1796 skb_abort_seq_read(TS_SKB_CB(state)); 1797 } 1798 1799 /** 1800 * skb_find_text - Find a text pattern in skb data 1801 * @skb: the buffer to look in 1802 * @from: search offset 1803 * @to: search limit 1804 * @config: textsearch configuration 1805 * @state: uninitialized textsearch state variable 1806 * 1807 * Finds a pattern in the skb data according to the specified 1808 * textsearch configuration. Use textsearch_next() to retrieve 1809 * subsequent occurrences of the pattern. Returns the offset 1810 * to the first occurrence or UINT_MAX if no match was found. 1811 */ 1812 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1813 unsigned int to, struct ts_config *config, 1814 struct ts_state *state) 1815 { 1816 unsigned int ret; 1817 1818 config->get_next_block = skb_ts_get_next_block; 1819 config->finish = skb_ts_finish; 1820 1821 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1822 1823 ret = textsearch_find(config, state); 1824 return (ret <= to - from ? ret : UINT_MAX); 1825 } 1826 1827 /** 1828 * skb_append_datato_frags: - append the user data to a skb 1829 * @sk: sock structure 1830 * @skb: skb structure to be appened with user data. 1831 * @getfrag: call back function to be used for getting the user data 1832 * @from: pointer to user message iov 1833 * @length: length of the iov message 1834 * 1835 * Description: This procedure append the user data in the fragment part 1836 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1837 */ 1838 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1839 int (*getfrag)(void *from, char *to, int offset, 1840 int len, int odd, struct sk_buff *skb), 1841 void *from, int length) 1842 { 1843 int frg_cnt = 0; 1844 skb_frag_t *frag = NULL; 1845 struct page *page = NULL; 1846 int copy, left; 1847 int offset = 0; 1848 int ret; 1849 1850 do { 1851 /* Return error if we don't have space for new frag */ 1852 frg_cnt = skb_shinfo(skb)->nr_frags; 1853 if (frg_cnt >= MAX_SKB_FRAGS) 1854 return -EFAULT; 1855 1856 /* allocate a new page for next frag */ 1857 page = alloc_pages(sk->sk_allocation, 0); 1858 1859 /* If alloc_page fails just return failure and caller will 1860 * free previous allocated pages by doing kfree_skb() 1861 */ 1862 if (page == NULL) 1863 return -ENOMEM; 1864 1865 /* initialize the next frag */ 1866 sk->sk_sndmsg_page = page; 1867 sk->sk_sndmsg_off = 0; 1868 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1869 skb->truesize += PAGE_SIZE; 1870 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1871 1872 /* get the new initialized frag */ 1873 frg_cnt = skb_shinfo(skb)->nr_frags; 1874 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1875 1876 /* copy the user data to page */ 1877 left = PAGE_SIZE - frag->page_offset; 1878 copy = (length > left)? left : length; 1879 1880 ret = getfrag(from, (page_address(frag->page) + 1881 frag->page_offset + frag->size), 1882 offset, copy, 0, skb); 1883 if (ret < 0) 1884 return -EFAULT; 1885 1886 /* copy was successful so update the size parameters */ 1887 sk->sk_sndmsg_off += copy; 1888 frag->size += copy; 1889 skb->len += copy; 1890 skb->data_len += copy; 1891 offset += copy; 1892 length -= copy; 1893 1894 } while (length > 0); 1895 1896 return 0; 1897 } 1898 1899 /** 1900 * skb_pull_rcsum - pull skb and update receive checksum 1901 * @skb: buffer to update 1902 * @start: start of data before pull 1903 * @len: length of data pulled 1904 * 1905 * This function performs an skb_pull on the packet and updates 1906 * update the CHECKSUM_COMPLETE checksum. It should be used on 1907 * receive path processing instead of skb_pull unless you know 1908 * that the checksum difference is zero (e.g., a valid IP header) 1909 * or you are setting ip_summed to CHECKSUM_NONE. 1910 */ 1911 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1912 { 1913 BUG_ON(len > skb->len); 1914 skb->len -= len; 1915 BUG_ON(skb->len < skb->data_len); 1916 skb_postpull_rcsum(skb, skb->data, len); 1917 return skb->data += len; 1918 } 1919 1920 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1921 1922 /** 1923 * skb_segment - Perform protocol segmentation on skb. 1924 * @skb: buffer to segment 1925 * @features: features for the output path (see dev->features) 1926 * 1927 * This function performs segmentation on the given skb. It returns 1928 * the segment at the given position. It returns NULL if there are 1929 * no more segments to generate, or when an error is encountered. 1930 */ 1931 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1932 { 1933 struct sk_buff *segs = NULL; 1934 struct sk_buff *tail = NULL; 1935 unsigned int mss = skb_shinfo(skb)->gso_size; 1936 unsigned int doffset = skb->data - skb->mac.raw; 1937 unsigned int offset = doffset; 1938 unsigned int headroom; 1939 unsigned int len; 1940 int sg = features & NETIF_F_SG; 1941 int nfrags = skb_shinfo(skb)->nr_frags; 1942 int err = -ENOMEM; 1943 int i = 0; 1944 int pos; 1945 1946 __skb_push(skb, doffset); 1947 headroom = skb_headroom(skb); 1948 pos = skb_headlen(skb); 1949 1950 do { 1951 struct sk_buff *nskb; 1952 skb_frag_t *frag; 1953 int hsize; 1954 int k; 1955 int size; 1956 1957 len = skb->len - offset; 1958 if (len > mss) 1959 len = mss; 1960 1961 hsize = skb_headlen(skb) - offset; 1962 if (hsize < 0) 1963 hsize = 0; 1964 if (hsize > len || !sg) 1965 hsize = len; 1966 1967 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 1968 if (unlikely(!nskb)) 1969 goto err; 1970 1971 if (segs) 1972 tail->next = nskb; 1973 else 1974 segs = nskb; 1975 tail = nskb; 1976 1977 nskb->dev = skb->dev; 1978 nskb->priority = skb->priority; 1979 nskb->protocol = skb->protocol; 1980 nskb->dst = dst_clone(skb->dst); 1981 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1982 nskb->pkt_type = skb->pkt_type; 1983 nskb->mac_len = skb->mac_len; 1984 1985 skb_reserve(nskb, headroom); 1986 nskb->mac.raw = nskb->data; 1987 nskb->nh.raw = nskb->data + skb->mac_len; 1988 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw); 1989 memcpy(skb_put(nskb, doffset), skb->data, doffset); 1990 1991 if (!sg) { 1992 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1993 skb_put(nskb, len), 1994 len, 0); 1995 continue; 1996 } 1997 1998 frag = skb_shinfo(nskb)->frags; 1999 k = 0; 2000 2001 nskb->ip_summed = CHECKSUM_PARTIAL; 2002 nskb->csum = skb->csum; 2003 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize); 2004 2005 while (pos < offset + len) { 2006 BUG_ON(i >= nfrags); 2007 2008 *frag = skb_shinfo(skb)->frags[i]; 2009 get_page(frag->page); 2010 size = frag->size; 2011 2012 if (pos < offset) { 2013 frag->page_offset += offset - pos; 2014 frag->size -= offset - pos; 2015 } 2016 2017 k++; 2018 2019 if (pos + size <= offset + len) { 2020 i++; 2021 pos += size; 2022 } else { 2023 frag->size -= pos + size - (offset + len); 2024 break; 2025 } 2026 2027 frag++; 2028 } 2029 2030 skb_shinfo(nskb)->nr_frags = k; 2031 nskb->data_len = len - hsize; 2032 nskb->len += nskb->data_len; 2033 nskb->truesize += nskb->data_len; 2034 } while ((offset += len) < skb->len); 2035 2036 return segs; 2037 2038 err: 2039 while ((skb = segs)) { 2040 segs = skb->next; 2041 kfree(skb); 2042 } 2043 return ERR_PTR(err); 2044 } 2045 2046 EXPORT_SYMBOL_GPL(skb_segment); 2047 2048 void __init skb_init(void) 2049 { 2050 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2051 sizeof(struct sk_buff), 2052 0, 2053 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2054 NULL, NULL); 2055 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2056 (2*sizeof(struct sk_buff)) + 2057 sizeof(atomic_t), 2058 0, 2059 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2060 NULL, NULL); 2061 } 2062 2063 EXPORT_SYMBOL(___pskb_trim); 2064 EXPORT_SYMBOL(__kfree_skb); 2065 EXPORT_SYMBOL(kfree_skb); 2066 EXPORT_SYMBOL(__pskb_pull_tail); 2067 EXPORT_SYMBOL(__alloc_skb); 2068 EXPORT_SYMBOL(__netdev_alloc_skb); 2069 EXPORT_SYMBOL(pskb_copy); 2070 EXPORT_SYMBOL(pskb_expand_head); 2071 EXPORT_SYMBOL(skb_checksum); 2072 EXPORT_SYMBOL(skb_clone); 2073 EXPORT_SYMBOL(skb_clone_fraglist); 2074 EXPORT_SYMBOL(skb_copy); 2075 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2076 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2077 EXPORT_SYMBOL(skb_copy_bits); 2078 EXPORT_SYMBOL(skb_copy_expand); 2079 EXPORT_SYMBOL(skb_over_panic); 2080 EXPORT_SYMBOL(skb_pad); 2081 EXPORT_SYMBOL(skb_realloc_headroom); 2082 EXPORT_SYMBOL(skb_under_panic); 2083 EXPORT_SYMBOL(skb_dequeue); 2084 EXPORT_SYMBOL(skb_dequeue_tail); 2085 EXPORT_SYMBOL(skb_insert); 2086 EXPORT_SYMBOL(skb_queue_purge); 2087 EXPORT_SYMBOL(skb_queue_head); 2088 EXPORT_SYMBOL(skb_queue_tail); 2089 EXPORT_SYMBOL(skb_unlink); 2090 EXPORT_SYMBOL(skb_append); 2091 EXPORT_SYMBOL(skb_split); 2092 EXPORT_SYMBOL(skb_prepare_seq_read); 2093 EXPORT_SYMBOL(skb_seq_read); 2094 EXPORT_SYMBOL(skb_abort_seq_read); 2095 EXPORT_SYMBOL(skb_find_text); 2096 EXPORT_SYMBOL(skb_append_datato_frags); 2097