xref: /linux/net/core/skbuff.c (revision a81ab36bf52d0ca3a32251a923be1dbced726141)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 
71 #include <asm/uaccess.h>
72 #include <trace/events/skb.h>
73 #include <linux/highmem.h>
74 
75 struct kmem_cache *skbuff_head_cache __read_mostly;
76 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 
78 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
79 				  struct pipe_buffer *buf)
80 {
81 	put_page(buf->page);
82 }
83 
84 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
85 				struct pipe_buffer *buf)
86 {
87 	get_page(buf->page);
88 }
89 
90 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
91 			       struct pipe_buffer *buf)
92 {
93 	return 1;
94 }
95 
96 
97 /* Pipe buffer operations for a socket. */
98 static const struct pipe_buf_operations sock_pipe_buf_ops = {
99 	.can_merge = 0,
100 	.map = generic_pipe_buf_map,
101 	.unmap = generic_pipe_buf_unmap,
102 	.confirm = generic_pipe_buf_confirm,
103 	.release = sock_pipe_buf_release,
104 	.steal = sock_pipe_buf_steal,
105 	.get = sock_pipe_buf_get,
106 };
107 
108 /**
109  *	skb_panic - private function for out-of-line support
110  *	@skb:	buffer
111  *	@sz:	size
112  *	@addr:	address
113  *	@msg:	skb_over_panic or skb_under_panic
114  *
115  *	Out-of-line support for skb_put() and skb_push().
116  *	Called via the wrapper skb_over_panic() or skb_under_panic().
117  *	Keep out of line to prevent kernel bloat.
118  *	__builtin_return_address is not used because it is not always reliable.
119  */
120 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
121 		      const char msg[])
122 {
123 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 		 msg, addr, skb->len, sz, skb->head, skb->data,
125 		 (unsigned long)skb->tail, (unsigned long)skb->end,
126 		 skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
131 {
132 	skb_panic(skb, sz, addr, __func__);
133 }
134 
135 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
136 {
137 	skb_panic(skb, sz, addr, __func__);
138 }
139 
140 /*
141  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
142  * the caller if emergency pfmemalloc reserves are being used. If it is and
143  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
144  * may be used. Otherwise, the packet data may be discarded until enough
145  * memory is free
146  */
147 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
148 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
149 
150 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
151 			       unsigned long ip, bool *pfmemalloc)
152 {
153 	void *obj;
154 	bool ret_pfmemalloc = false;
155 
156 	/*
157 	 * Try a regular allocation, when that fails and we're not entitled
158 	 * to the reserves, fail.
159 	 */
160 	obj = kmalloc_node_track_caller(size,
161 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
162 					node);
163 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
164 		goto out;
165 
166 	/* Try again but now we are using pfmemalloc reserves */
167 	ret_pfmemalloc = true;
168 	obj = kmalloc_node_track_caller(size, flags, node);
169 
170 out:
171 	if (pfmemalloc)
172 		*pfmemalloc = ret_pfmemalloc;
173 
174 	return obj;
175 }
176 
177 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
178  *	'private' fields and also do memory statistics to find all the
179  *	[BEEP] leaks.
180  *
181  */
182 
183 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
184 {
185 	struct sk_buff *skb;
186 
187 	/* Get the HEAD */
188 	skb = kmem_cache_alloc_node(skbuff_head_cache,
189 				    gfp_mask & ~__GFP_DMA, node);
190 	if (!skb)
191 		goto out;
192 
193 	/*
194 	 * Only clear those fields we need to clear, not those that we will
195 	 * actually initialise below. Hence, don't put any more fields after
196 	 * the tail pointer in struct sk_buff!
197 	 */
198 	memset(skb, 0, offsetof(struct sk_buff, tail));
199 	skb->head = NULL;
200 	skb->truesize = sizeof(struct sk_buff);
201 	atomic_set(&skb->users, 1);
202 
203 	skb->mac_header = (typeof(skb->mac_header))~0U;
204 out:
205 	return skb;
206 }
207 
208 /**
209  *	__alloc_skb	-	allocate a network buffer
210  *	@size: size to allocate
211  *	@gfp_mask: allocation mask
212  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
213  *		instead of head cache and allocate a cloned (child) skb.
214  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
215  *		allocations in case the data is required for writeback
216  *	@node: numa node to allocate memory on
217  *
218  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
219  *	tail room of at least size bytes. The object has a reference count
220  *	of one. The return is the buffer. On a failure the return is %NULL.
221  *
222  *	Buffers may only be allocated from interrupts using a @gfp_mask of
223  *	%GFP_ATOMIC.
224  */
225 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
226 			    int flags, int node)
227 {
228 	struct kmem_cache *cache;
229 	struct skb_shared_info *shinfo;
230 	struct sk_buff *skb;
231 	u8 *data;
232 	bool pfmemalloc;
233 
234 	cache = (flags & SKB_ALLOC_FCLONE)
235 		? skbuff_fclone_cache : skbuff_head_cache;
236 
237 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
238 		gfp_mask |= __GFP_MEMALLOC;
239 
240 	/* Get the HEAD */
241 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
242 	if (!skb)
243 		goto out;
244 	prefetchw(skb);
245 
246 	/* We do our best to align skb_shared_info on a separate cache
247 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
248 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
249 	 * Both skb->head and skb_shared_info are cache line aligned.
250 	 */
251 	size = SKB_DATA_ALIGN(size);
252 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
253 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
254 	if (!data)
255 		goto nodata;
256 	/* kmalloc(size) might give us more room than requested.
257 	 * Put skb_shared_info exactly at the end of allocated zone,
258 	 * to allow max possible filling before reallocation.
259 	 */
260 	size = SKB_WITH_OVERHEAD(ksize(data));
261 	prefetchw(data + size);
262 
263 	/*
264 	 * Only clear those fields we need to clear, not those that we will
265 	 * actually initialise below. Hence, don't put any more fields after
266 	 * the tail pointer in struct sk_buff!
267 	 */
268 	memset(skb, 0, offsetof(struct sk_buff, tail));
269 	/* Account for allocated memory : skb + skb->head */
270 	skb->truesize = SKB_TRUESIZE(size);
271 	skb->pfmemalloc = pfmemalloc;
272 	atomic_set(&skb->users, 1);
273 	skb->head = data;
274 	skb->data = data;
275 	skb_reset_tail_pointer(skb);
276 	skb->end = skb->tail + size;
277 	skb->mac_header = (typeof(skb->mac_header))~0U;
278 	skb->transport_header = (typeof(skb->transport_header))~0U;
279 
280 	/* make sure we initialize shinfo sequentially */
281 	shinfo = skb_shinfo(skb);
282 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 	atomic_set(&shinfo->dataref, 1);
284 	kmemcheck_annotate_variable(shinfo->destructor_arg);
285 
286 	if (flags & SKB_ALLOC_FCLONE) {
287 		struct sk_buff *child = skb + 1;
288 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
289 
290 		kmemcheck_annotate_bitfield(child, flags1);
291 		kmemcheck_annotate_bitfield(child, flags2);
292 		skb->fclone = SKB_FCLONE_ORIG;
293 		atomic_set(fclone_ref, 1);
294 
295 		child->fclone = SKB_FCLONE_UNAVAILABLE;
296 		child->pfmemalloc = pfmemalloc;
297 	}
298 out:
299 	return skb;
300 nodata:
301 	kmem_cache_free(cache, skb);
302 	skb = NULL;
303 	goto out;
304 }
305 EXPORT_SYMBOL(__alloc_skb);
306 
307 /**
308  * build_skb - build a network buffer
309  * @data: data buffer provided by caller
310  * @frag_size: size of fragment, or 0 if head was kmalloced
311  *
312  * Allocate a new &sk_buff. Caller provides space holding head and
313  * skb_shared_info. @data must have been allocated by kmalloc() only if
314  * @frag_size is 0, otherwise data should come from the page allocator.
315  * The return is the new skb buffer.
316  * On a failure the return is %NULL, and @data is not freed.
317  * Notes :
318  *  Before IO, driver allocates only data buffer where NIC put incoming frame
319  *  Driver should add room at head (NET_SKB_PAD) and
320  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
321  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
322  *  before giving packet to stack.
323  *  RX rings only contains data buffers, not full skbs.
324  */
325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
326 {
327 	struct skb_shared_info *shinfo;
328 	struct sk_buff *skb;
329 	unsigned int size = frag_size ? : ksize(data);
330 
331 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
332 	if (!skb)
333 		return NULL;
334 
335 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
336 
337 	memset(skb, 0, offsetof(struct sk_buff, tail));
338 	skb->truesize = SKB_TRUESIZE(size);
339 	skb->head_frag = frag_size != 0;
340 	atomic_set(&skb->users, 1);
341 	skb->head = data;
342 	skb->data = data;
343 	skb_reset_tail_pointer(skb);
344 	skb->end = skb->tail + size;
345 	skb->mac_header = (typeof(skb->mac_header))~0U;
346 	skb->transport_header = (typeof(skb->transport_header))~0U;
347 
348 	/* make sure we initialize shinfo sequentially */
349 	shinfo = skb_shinfo(skb);
350 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
351 	atomic_set(&shinfo->dataref, 1);
352 	kmemcheck_annotate_variable(shinfo->destructor_arg);
353 
354 	return skb;
355 }
356 EXPORT_SYMBOL(build_skb);
357 
358 struct netdev_alloc_cache {
359 	struct page_frag	frag;
360 	/* we maintain a pagecount bias, so that we dont dirty cache line
361 	 * containing page->_count every time we allocate a fragment.
362 	 */
363 	unsigned int		pagecnt_bias;
364 };
365 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
366 
367 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
368 {
369 	struct netdev_alloc_cache *nc;
370 	void *data = NULL;
371 	int order;
372 	unsigned long flags;
373 
374 	local_irq_save(flags);
375 	nc = &__get_cpu_var(netdev_alloc_cache);
376 	if (unlikely(!nc->frag.page)) {
377 refill:
378 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
379 			gfp_t gfp = gfp_mask;
380 
381 			if (order)
382 				gfp |= __GFP_COMP | __GFP_NOWARN;
383 			nc->frag.page = alloc_pages(gfp, order);
384 			if (likely(nc->frag.page))
385 				break;
386 			if (--order < 0)
387 				goto end;
388 		}
389 		nc->frag.size = PAGE_SIZE << order;
390 recycle:
391 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
392 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
393 		nc->frag.offset = 0;
394 	}
395 
396 	if (nc->frag.offset + fragsz > nc->frag.size) {
397 		/* avoid unnecessary locked operations if possible */
398 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
399 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
400 			goto recycle;
401 		goto refill;
402 	}
403 
404 	data = page_address(nc->frag.page) + nc->frag.offset;
405 	nc->frag.offset += fragsz;
406 	nc->pagecnt_bias--;
407 end:
408 	local_irq_restore(flags);
409 	return data;
410 }
411 
412 /**
413  * netdev_alloc_frag - allocate a page fragment
414  * @fragsz: fragment size
415  *
416  * Allocates a frag from a page for receive buffer.
417  * Uses GFP_ATOMIC allocations.
418  */
419 void *netdev_alloc_frag(unsigned int fragsz)
420 {
421 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
422 }
423 EXPORT_SYMBOL(netdev_alloc_frag);
424 
425 /**
426  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
427  *	@dev: network device to receive on
428  *	@length: length to allocate
429  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
430  *
431  *	Allocate a new &sk_buff and assign it a usage count of one. The
432  *	buffer has unspecified headroom built in. Users should allocate
433  *	the headroom they think they need without accounting for the
434  *	built in space. The built in space is used for optimisations.
435  *
436  *	%NULL is returned if there is no free memory.
437  */
438 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
439 				   unsigned int length, gfp_t gfp_mask)
440 {
441 	struct sk_buff *skb = NULL;
442 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
443 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 
445 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
446 		void *data;
447 
448 		if (sk_memalloc_socks())
449 			gfp_mask |= __GFP_MEMALLOC;
450 
451 		data = __netdev_alloc_frag(fragsz, gfp_mask);
452 
453 		if (likely(data)) {
454 			skb = build_skb(data, fragsz);
455 			if (unlikely(!skb))
456 				put_page(virt_to_head_page(data));
457 		}
458 	} else {
459 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
460 				  SKB_ALLOC_RX, NUMA_NO_NODE);
461 	}
462 	if (likely(skb)) {
463 		skb_reserve(skb, NET_SKB_PAD);
464 		skb->dev = dev;
465 	}
466 	return skb;
467 }
468 EXPORT_SYMBOL(__netdev_alloc_skb);
469 
470 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
471 		     int size, unsigned int truesize)
472 {
473 	skb_fill_page_desc(skb, i, page, off, size);
474 	skb->len += size;
475 	skb->data_len += size;
476 	skb->truesize += truesize;
477 }
478 EXPORT_SYMBOL(skb_add_rx_frag);
479 
480 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
481 			  unsigned int truesize)
482 {
483 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
484 
485 	skb_frag_size_add(frag, size);
486 	skb->len += size;
487 	skb->data_len += size;
488 	skb->truesize += truesize;
489 }
490 EXPORT_SYMBOL(skb_coalesce_rx_frag);
491 
492 static void skb_drop_list(struct sk_buff **listp)
493 {
494 	kfree_skb_list(*listp);
495 	*listp = NULL;
496 }
497 
498 static inline void skb_drop_fraglist(struct sk_buff *skb)
499 {
500 	skb_drop_list(&skb_shinfo(skb)->frag_list);
501 }
502 
503 static void skb_clone_fraglist(struct sk_buff *skb)
504 {
505 	struct sk_buff *list;
506 
507 	skb_walk_frags(skb, list)
508 		skb_get(list);
509 }
510 
511 static void skb_free_head(struct sk_buff *skb)
512 {
513 	if (skb->head_frag)
514 		put_page(virt_to_head_page(skb->head));
515 	else
516 		kfree(skb->head);
517 }
518 
519 static void skb_release_data(struct sk_buff *skb)
520 {
521 	if (!skb->cloned ||
522 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
523 			       &skb_shinfo(skb)->dataref)) {
524 		if (skb_shinfo(skb)->nr_frags) {
525 			int i;
526 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
527 				skb_frag_unref(skb, i);
528 		}
529 
530 		/*
531 		 * If skb buf is from userspace, we need to notify the caller
532 		 * the lower device DMA has done;
533 		 */
534 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
535 			struct ubuf_info *uarg;
536 
537 			uarg = skb_shinfo(skb)->destructor_arg;
538 			if (uarg->callback)
539 				uarg->callback(uarg, true);
540 		}
541 
542 		if (skb_has_frag_list(skb))
543 			skb_drop_fraglist(skb);
544 
545 		skb_free_head(skb);
546 	}
547 }
548 
549 /*
550  *	Free an skbuff by memory without cleaning the state.
551  */
552 static void kfree_skbmem(struct sk_buff *skb)
553 {
554 	struct sk_buff *other;
555 	atomic_t *fclone_ref;
556 
557 	switch (skb->fclone) {
558 	case SKB_FCLONE_UNAVAILABLE:
559 		kmem_cache_free(skbuff_head_cache, skb);
560 		break;
561 
562 	case SKB_FCLONE_ORIG:
563 		fclone_ref = (atomic_t *) (skb + 2);
564 		if (atomic_dec_and_test(fclone_ref))
565 			kmem_cache_free(skbuff_fclone_cache, skb);
566 		break;
567 
568 	case SKB_FCLONE_CLONE:
569 		fclone_ref = (atomic_t *) (skb + 1);
570 		other = skb - 1;
571 
572 		/* The clone portion is available for
573 		 * fast-cloning again.
574 		 */
575 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
576 
577 		if (atomic_dec_and_test(fclone_ref))
578 			kmem_cache_free(skbuff_fclone_cache, other);
579 		break;
580 	}
581 }
582 
583 static void skb_release_head_state(struct sk_buff *skb)
584 {
585 	skb_dst_drop(skb);
586 #ifdef CONFIG_XFRM
587 	secpath_put(skb->sp);
588 #endif
589 	if (skb->destructor) {
590 		WARN_ON(in_irq());
591 		skb->destructor(skb);
592 	}
593 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
594 	nf_conntrack_put(skb->nfct);
595 #endif
596 #ifdef CONFIG_BRIDGE_NETFILTER
597 	nf_bridge_put(skb->nf_bridge);
598 #endif
599 /* XXX: IS this still necessary? - JHS */
600 #ifdef CONFIG_NET_SCHED
601 	skb->tc_index = 0;
602 #ifdef CONFIG_NET_CLS_ACT
603 	skb->tc_verd = 0;
604 #endif
605 #endif
606 }
607 
608 /* Free everything but the sk_buff shell. */
609 static void skb_release_all(struct sk_buff *skb)
610 {
611 	skb_release_head_state(skb);
612 	if (likely(skb->head))
613 		skb_release_data(skb);
614 }
615 
616 /**
617  *	__kfree_skb - private function
618  *	@skb: buffer
619  *
620  *	Free an sk_buff. Release anything attached to the buffer.
621  *	Clean the state. This is an internal helper function. Users should
622  *	always call kfree_skb
623  */
624 
625 void __kfree_skb(struct sk_buff *skb)
626 {
627 	skb_release_all(skb);
628 	kfree_skbmem(skb);
629 }
630 EXPORT_SYMBOL(__kfree_skb);
631 
632 /**
633  *	kfree_skb - free an sk_buff
634  *	@skb: buffer to free
635  *
636  *	Drop a reference to the buffer and free it if the usage count has
637  *	hit zero.
638  */
639 void kfree_skb(struct sk_buff *skb)
640 {
641 	if (unlikely(!skb))
642 		return;
643 	if (likely(atomic_read(&skb->users) == 1))
644 		smp_rmb();
645 	else if (likely(!atomic_dec_and_test(&skb->users)))
646 		return;
647 	trace_kfree_skb(skb, __builtin_return_address(0));
648 	__kfree_skb(skb);
649 }
650 EXPORT_SYMBOL(kfree_skb);
651 
652 void kfree_skb_list(struct sk_buff *segs)
653 {
654 	while (segs) {
655 		struct sk_buff *next = segs->next;
656 
657 		kfree_skb(segs);
658 		segs = next;
659 	}
660 }
661 EXPORT_SYMBOL(kfree_skb_list);
662 
663 /**
664  *	skb_tx_error - report an sk_buff xmit error
665  *	@skb: buffer that triggered an error
666  *
667  *	Report xmit error if a device callback is tracking this skb.
668  *	skb must be freed afterwards.
669  */
670 void skb_tx_error(struct sk_buff *skb)
671 {
672 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
673 		struct ubuf_info *uarg;
674 
675 		uarg = skb_shinfo(skb)->destructor_arg;
676 		if (uarg->callback)
677 			uarg->callback(uarg, false);
678 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
679 	}
680 }
681 EXPORT_SYMBOL(skb_tx_error);
682 
683 /**
684  *	consume_skb - free an skbuff
685  *	@skb: buffer to free
686  *
687  *	Drop a ref to the buffer and free it if the usage count has hit zero
688  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
689  *	is being dropped after a failure and notes that
690  */
691 void consume_skb(struct sk_buff *skb)
692 {
693 	if (unlikely(!skb))
694 		return;
695 	if (likely(atomic_read(&skb->users) == 1))
696 		smp_rmb();
697 	else if (likely(!atomic_dec_and_test(&skb->users)))
698 		return;
699 	trace_consume_skb(skb);
700 	__kfree_skb(skb);
701 }
702 EXPORT_SYMBOL(consume_skb);
703 
704 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
705 {
706 	new->tstamp		= old->tstamp;
707 	new->dev		= old->dev;
708 	new->transport_header	= old->transport_header;
709 	new->network_header	= old->network_header;
710 	new->mac_header		= old->mac_header;
711 	new->inner_protocol	= old->inner_protocol;
712 	new->inner_transport_header = old->inner_transport_header;
713 	new->inner_network_header = old->inner_network_header;
714 	new->inner_mac_header = old->inner_mac_header;
715 	skb_dst_copy(new, old);
716 	skb_copy_hash(new, old);
717 	new->ooo_okay		= old->ooo_okay;
718 	new->no_fcs		= old->no_fcs;
719 	new->encapsulation	= old->encapsulation;
720 #ifdef CONFIG_XFRM
721 	new->sp			= secpath_get(old->sp);
722 #endif
723 	memcpy(new->cb, old->cb, sizeof(old->cb));
724 	new->csum		= old->csum;
725 	new->local_df		= old->local_df;
726 	new->pkt_type		= old->pkt_type;
727 	new->ip_summed		= old->ip_summed;
728 	skb_copy_queue_mapping(new, old);
729 	new->priority		= old->priority;
730 #if IS_ENABLED(CONFIG_IP_VS)
731 	new->ipvs_property	= old->ipvs_property;
732 #endif
733 	new->pfmemalloc		= old->pfmemalloc;
734 	new->protocol		= old->protocol;
735 	new->mark		= old->mark;
736 	new->skb_iif		= old->skb_iif;
737 	__nf_copy(new, old);
738 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
739 	new->nf_trace		= old->nf_trace;
740 #endif
741 #ifdef CONFIG_NET_SCHED
742 	new->tc_index		= old->tc_index;
743 #ifdef CONFIG_NET_CLS_ACT
744 	new->tc_verd		= old->tc_verd;
745 #endif
746 #endif
747 	new->vlan_proto		= old->vlan_proto;
748 	new->vlan_tci		= old->vlan_tci;
749 
750 	skb_copy_secmark(new, old);
751 
752 #ifdef CONFIG_NET_RX_BUSY_POLL
753 	new->napi_id	= old->napi_id;
754 #endif
755 }
756 
757 /*
758  * You should not add any new code to this function.  Add it to
759  * __copy_skb_header above instead.
760  */
761 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
762 {
763 #define C(x) n->x = skb->x
764 
765 	n->next = n->prev = NULL;
766 	n->sk = NULL;
767 	__copy_skb_header(n, skb);
768 
769 	C(len);
770 	C(data_len);
771 	C(mac_len);
772 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
773 	n->cloned = 1;
774 	n->nohdr = 0;
775 	n->destructor = NULL;
776 	C(tail);
777 	C(end);
778 	C(head);
779 	C(head_frag);
780 	C(data);
781 	C(truesize);
782 	atomic_set(&n->users, 1);
783 
784 	atomic_inc(&(skb_shinfo(skb)->dataref));
785 	skb->cloned = 1;
786 
787 	return n;
788 #undef C
789 }
790 
791 /**
792  *	skb_morph	-	morph one skb into another
793  *	@dst: the skb to receive the contents
794  *	@src: the skb to supply the contents
795  *
796  *	This is identical to skb_clone except that the target skb is
797  *	supplied by the user.
798  *
799  *	The target skb is returned upon exit.
800  */
801 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
802 {
803 	skb_release_all(dst);
804 	return __skb_clone(dst, src);
805 }
806 EXPORT_SYMBOL_GPL(skb_morph);
807 
808 /**
809  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
810  *	@skb: the skb to modify
811  *	@gfp_mask: allocation priority
812  *
813  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
814  *	It will copy all frags into kernel and drop the reference
815  *	to userspace pages.
816  *
817  *	If this function is called from an interrupt gfp_mask() must be
818  *	%GFP_ATOMIC.
819  *
820  *	Returns 0 on success or a negative error code on failure
821  *	to allocate kernel memory to copy to.
822  */
823 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
824 {
825 	int i;
826 	int num_frags = skb_shinfo(skb)->nr_frags;
827 	struct page *page, *head = NULL;
828 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
829 
830 	for (i = 0; i < num_frags; i++) {
831 		u8 *vaddr;
832 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
833 
834 		page = alloc_page(gfp_mask);
835 		if (!page) {
836 			while (head) {
837 				struct page *next = (struct page *)page_private(head);
838 				put_page(head);
839 				head = next;
840 			}
841 			return -ENOMEM;
842 		}
843 		vaddr = kmap_atomic(skb_frag_page(f));
844 		memcpy(page_address(page),
845 		       vaddr + f->page_offset, skb_frag_size(f));
846 		kunmap_atomic(vaddr);
847 		set_page_private(page, (unsigned long)head);
848 		head = page;
849 	}
850 
851 	/* skb frags release userspace buffers */
852 	for (i = 0; i < num_frags; i++)
853 		skb_frag_unref(skb, i);
854 
855 	uarg->callback(uarg, false);
856 
857 	/* skb frags point to kernel buffers */
858 	for (i = num_frags - 1; i >= 0; i--) {
859 		__skb_fill_page_desc(skb, i, head, 0,
860 				     skb_shinfo(skb)->frags[i].size);
861 		head = (struct page *)page_private(head);
862 	}
863 
864 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
865 	return 0;
866 }
867 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
868 
869 /**
870  *	skb_clone	-	duplicate an sk_buff
871  *	@skb: buffer to clone
872  *	@gfp_mask: allocation priority
873  *
874  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
875  *	copies share the same packet data but not structure. The new
876  *	buffer has a reference count of 1. If the allocation fails the
877  *	function returns %NULL otherwise the new buffer is returned.
878  *
879  *	If this function is called from an interrupt gfp_mask() must be
880  *	%GFP_ATOMIC.
881  */
882 
883 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
884 {
885 	struct sk_buff *n;
886 
887 	if (skb_orphan_frags(skb, gfp_mask))
888 		return NULL;
889 
890 	n = skb + 1;
891 	if (skb->fclone == SKB_FCLONE_ORIG &&
892 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
893 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
894 		n->fclone = SKB_FCLONE_CLONE;
895 		atomic_inc(fclone_ref);
896 	} else {
897 		if (skb_pfmemalloc(skb))
898 			gfp_mask |= __GFP_MEMALLOC;
899 
900 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
901 		if (!n)
902 			return NULL;
903 
904 		kmemcheck_annotate_bitfield(n, flags1);
905 		kmemcheck_annotate_bitfield(n, flags2);
906 		n->fclone = SKB_FCLONE_UNAVAILABLE;
907 	}
908 
909 	return __skb_clone(n, skb);
910 }
911 EXPORT_SYMBOL(skb_clone);
912 
913 static void skb_headers_offset_update(struct sk_buff *skb, int off)
914 {
915 	/* Only adjust this if it actually is csum_start rather than csum */
916 	if (skb->ip_summed == CHECKSUM_PARTIAL)
917 		skb->csum_start += off;
918 	/* {transport,network,mac}_header and tail are relative to skb->head */
919 	skb->transport_header += off;
920 	skb->network_header   += off;
921 	if (skb_mac_header_was_set(skb))
922 		skb->mac_header += off;
923 	skb->inner_transport_header += off;
924 	skb->inner_network_header += off;
925 	skb->inner_mac_header += off;
926 }
927 
928 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
929 {
930 	__copy_skb_header(new, old);
931 
932 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
933 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
934 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
935 }
936 
937 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
938 {
939 	if (skb_pfmemalloc(skb))
940 		return SKB_ALLOC_RX;
941 	return 0;
942 }
943 
944 /**
945  *	skb_copy	-	create private copy of an sk_buff
946  *	@skb: buffer to copy
947  *	@gfp_mask: allocation priority
948  *
949  *	Make a copy of both an &sk_buff and its data. This is used when the
950  *	caller wishes to modify the data and needs a private copy of the
951  *	data to alter. Returns %NULL on failure or the pointer to the buffer
952  *	on success. The returned buffer has a reference count of 1.
953  *
954  *	As by-product this function converts non-linear &sk_buff to linear
955  *	one, so that &sk_buff becomes completely private and caller is allowed
956  *	to modify all the data of returned buffer. This means that this
957  *	function is not recommended for use in circumstances when only
958  *	header is going to be modified. Use pskb_copy() instead.
959  */
960 
961 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
962 {
963 	int headerlen = skb_headroom(skb);
964 	unsigned int size = skb_end_offset(skb) + skb->data_len;
965 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
966 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
967 
968 	if (!n)
969 		return NULL;
970 
971 	/* Set the data pointer */
972 	skb_reserve(n, headerlen);
973 	/* Set the tail pointer and length */
974 	skb_put(n, skb->len);
975 
976 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
977 		BUG();
978 
979 	copy_skb_header(n, skb);
980 	return n;
981 }
982 EXPORT_SYMBOL(skb_copy);
983 
984 /**
985  *	__pskb_copy	-	create copy of an sk_buff with private head.
986  *	@skb: buffer to copy
987  *	@headroom: headroom of new skb
988  *	@gfp_mask: allocation priority
989  *
990  *	Make a copy of both an &sk_buff and part of its data, located
991  *	in header. Fragmented data remain shared. This is used when
992  *	the caller wishes to modify only header of &sk_buff and needs
993  *	private copy of the header to alter. Returns %NULL on failure
994  *	or the pointer to the buffer on success.
995  *	The returned buffer has a reference count of 1.
996  */
997 
998 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
999 {
1000 	unsigned int size = skb_headlen(skb) + headroom;
1001 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1002 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1003 
1004 	if (!n)
1005 		goto out;
1006 
1007 	/* Set the data pointer */
1008 	skb_reserve(n, headroom);
1009 	/* Set the tail pointer and length */
1010 	skb_put(n, skb_headlen(skb));
1011 	/* Copy the bytes */
1012 	skb_copy_from_linear_data(skb, n->data, n->len);
1013 
1014 	n->truesize += skb->data_len;
1015 	n->data_len  = skb->data_len;
1016 	n->len	     = skb->len;
1017 
1018 	if (skb_shinfo(skb)->nr_frags) {
1019 		int i;
1020 
1021 		if (skb_orphan_frags(skb, gfp_mask)) {
1022 			kfree_skb(n);
1023 			n = NULL;
1024 			goto out;
1025 		}
1026 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1027 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1028 			skb_frag_ref(skb, i);
1029 		}
1030 		skb_shinfo(n)->nr_frags = i;
1031 	}
1032 
1033 	if (skb_has_frag_list(skb)) {
1034 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1035 		skb_clone_fraglist(n);
1036 	}
1037 
1038 	copy_skb_header(n, skb);
1039 out:
1040 	return n;
1041 }
1042 EXPORT_SYMBOL(__pskb_copy);
1043 
1044 /**
1045  *	pskb_expand_head - reallocate header of &sk_buff
1046  *	@skb: buffer to reallocate
1047  *	@nhead: room to add at head
1048  *	@ntail: room to add at tail
1049  *	@gfp_mask: allocation priority
1050  *
1051  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1052  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1053  *	reference count of 1. Returns zero in the case of success or error,
1054  *	if expansion failed. In the last case, &sk_buff is not changed.
1055  *
1056  *	All the pointers pointing into skb header may change and must be
1057  *	reloaded after call to this function.
1058  */
1059 
1060 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1061 		     gfp_t gfp_mask)
1062 {
1063 	int i;
1064 	u8 *data;
1065 	int size = nhead + skb_end_offset(skb) + ntail;
1066 	long off;
1067 
1068 	BUG_ON(nhead < 0);
1069 
1070 	if (skb_shared(skb))
1071 		BUG();
1072 
1073 	size = SKB_DATA_ALIGN(size);
1074 
1075 	if (skb_pfmemalloc(skb))
1076 		gfp_mask |= __GFP_MEMALLOC;
1077 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1078 			       gfp_mask, NUMA_NO_NODE, NULL);
1079 	if (!data)
1080 		goto nodata;
1081 	size = SKB_WITH_OVERHEAD(ksize(data));
1082 
1083 	/* Copy only real data... and, alas, header. This should be
1084 	 * optimized for the cases when header is void.
1085 	 */
1086 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1087 
1088 	memcpy((struct skb_shared_info *)(data + size),
1089 	       skb_shinfo(skb),
1090 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1091 
1092 	/*
1093 	 * if shinfo is shared we must drop the old head gracefully, but if it
1094 	 * is not we can just drop the old head and let the existing refcount
1095 	 * be since all we did is relocate the values
1096 	 */
1097 	if (skb_cloned(skb)) {
1098 		/* copy this zero copy skb frags */
1099 		if (skb_orphan_frags(skb, gfp_mask))
1100 			goto nofrags;
1101 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1102 			skb_frag_ref(skb, i);
1103 
1104 		if (skb_has_frag_list(skb))
1105 			skb_clone_fraglist(skb);
1106 
1107 		skb_release_data(skb);
1108 	} else {
1109 		skb_free_head(skb);
1110 	}
1111 	off = (data + nhead) - skb->head;
1112 
1113 	skb->head     = data;
1114 	skb->head_frag = 0;
1115 	skb->data    += off;
1116 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1117 	skb->end      = size;
1118 	off           = nhead;
1119 #else
1120 	skb->end      = skb->head + size;
1121 #endif
1122 	skb->tail	      += off;
1123 	skb_headers_offset_update(skb, nhead);
1124 	skb->cloned   = 0;
1125 	skb->hdr_len  = 0;
1126 	skb->nohdr    = 0;
1127 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1128 	return 0;
1129 
1130 nofrags:
1131 	kfree(data);
1132 nodata:
1133 	return -ENOMEM;
1134 }
1135 EXPORT_SYMBOL(pskb_expand_head);
1136 
1137 /* Make private copy of skb with writable head and some headroom */
1138 
1139 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1140 {
1141 	struct sk_buff *skb2;
1142 	int delta = headroom - skb_headroom(skb);
1143 
1144 	if (delta <= 0)
1145 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1146 	else {
1147 		skb2 = skb_clone(skb, GFP_ATOMIC);
1148 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1149 					     GFP_ATOMIC)) {
1150 			kfree_skb(skb2);
1151 			skb2 = NULL;
1152 		}
1153 	}
1154 	return skb2;
1155 }
1156 EXPORT_SYMBOL(skb_realloc_headroom);
1157 
1158 /**
1159  *	skb_copy_expand	-	copy and expand sk_buff
1160  *	@skb: buffer to copy
1161  *	@newheadroom: new free bytes at head
1162  *	@newtailroom: new free bytes at tail
1163  *	@gfp_mask: allocation priority
1164  *
1165  *	Make a copy of both an &sk_buff and its data and while doing so
1166  *	allocate additional space.
1167  *
1168  *	This is used when the caller wishes to modify the data and needs a
1169  *	private copy of the data to alter as well as more space for new fields.
1170  *	Returns %NULL on failure or the pointer to the buffer
1171  *	on success. The returned buffer has a reference count of 1.
1172  *
1173  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1174  *	is called from an interrupt.
1175  */
1176 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1177 				int newheadroom, int newtailroom,
1178 				gfp_t gfp_mask)
1179 {
1180 	/*
1181 	 *	Allocate the copy buffer
1182 	 */
1183 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1184 					gfp_mask, skb_alloc_rx_flag(skb),
1185 					NUMA_NO_NODE);
1186 	int oldheadroom = skb_headroom(skb);
1187 	int head_copy_len, head_copy_off;
1188 
1189 	if (!n)
1190 		return NULL;
1191 
1192 	skb_reserve(n, newheadroom);
1193 
1194 	/* Set the tail pointer and length */
1195 	skb_put(n, skb->len);
1196 
1197 	head_copy_len = oldheadroom;
1198 	head_copy_off = 0;
1199 	if (newheadroom <= head_copy_len)
1200 		head_copy_len = newheadroom;
1201 	else
1202 		head_copy_off = newheadroom - head_copy_len;
1203 
1204 	/* Copy the linear header and data. */
1205 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1206 			  skb->len + head_copy_len))
1207 		BUG();
1208 
1209 	copy_skb_header(n, skb);
1210 
1211 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1212 
1213 	return n;
1214 }
1215 EXPORT_SYMBOL(skb_copy_expand);
1216 
1217 /**
1218  *	skb_pad			-	zero pad the tail of an skb
1219  *	@skb: buffer to pad
1220  *	@pad: space to pad
1221  *
1222  *	Ensure that a buffer is followed by a padding area that is zero
1223  *	filled. Used by network drivers which may DMA or transfer data
1224  *	beyond the buffer end onto the wire.
1225  *
1226  *	May return error in out of memory cases. The skb is freed on error.
1227  */
1228 
1229 int skb_pad(struct sk_buff *skb, int pad)
1230 {
1231 	int err;
1232 	int ntail;
1233 
1234 	/* If the skbuff is non linear tailroom is always zero.. */
1235 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1236 		memset(skb->data+skb->len, 0, pad);
1237 		return 0;
1238 	}
1239 
1240 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1241 	if (likely(skb_cloned(skb) || ntail > 0)) {
1242 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1243 		if (unlikely(err))
1244 			goto free_skb;
1245 	}
1246 
1247 	/* FIXME: The use of this function with non-linear skb's really needs
1248 	 * to be audited.
1249 	 */
1250 	err = skb_linearize(skb);
1251 	if (unlikely(err))
1252 		goto free_skb;
1253 
1254 	memset(skb->data + skb->len, 0, pad);
1255 	return 0;
1256 
1257 free_skb:
1258 	kfree_skb(skb);
1259 	return err;
1260 }
1261 EXPORT_SYMBOL(skb_pad);
1262 
1263 /**
1264  *	pskb_put - add data to the tail of a potentially fragmented buffer
1265  *	@skb: start of the buffer to use
1266  *	@tail: tail fragment of the buffer to use
1267  *	@len: amount of data to add
1268  *
1269  *	This function extends the used data area of the potentially
1270  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1271  *	@skb itself. If this would exceed the total buffer size the kernel
1272  *	will panic. A pointer to the first byte of the extra data is
1273  *	returned.
1274  */
1275 
1276 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1277 {
1278 	if (tail != skb) {
1279 		skb->data_len += len;
1280 		skb->len += len;
1281 	}
1282 	return skb_put(tail, len);
1283 }
1284 EXPORT_SYMBOL_GPL(pskb_put);
1285 
1286 /**
1287  *	skb_put - add data to a buffer
1288  *	@skb: buffer to use
1289  *	@len: amount of data to add
1290  *
1291  *	This function extends the used data area of the buffer. If this would
1292  *	exceed the total buffer size the kernel will panic. A pointer to the
1293  *	first byte of the extra data is returned.
1294  */
1295 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1296 {
1297 	unsigned char *tmp = skb_tail_pointer(skb);
1298 	SKB_LINEAR_ASSERT(skb);
1299 	skb->tail += len;
1300 	skb->len  += len;
1301 	if (unlikely(skb->tail > skb->end))
1302 		skb_over_panic(skb, len, __builtin_return_address(0));
1303 	return tmp;
1304 }
1305 EXPORT_SYMBOL(skb_put);
1306 
1307 /**
1308  *	skb_push - add data to the start of a buffer
1309  *	@skb: buffer to use
1310  *	@len: amount of data to add
1311  *
1312  *	This function extends the used data area of the buffer at the buffer
1313  *	start. If this would exceed the total buffer headroom the kernel will
1314  *	panic. A pointer to the first byte of the extra data is returned.
1315  */
1316 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1317 {
1318 	skb->data -= len;
1319 	skb->len  += len;
1320 	if (unlikely(skb->data<skb->head))
1321 		skb_under_panic(skb, len, __builtin_return_address(0));
1322 	return skb->data;
1323 }
1324 EXPORT_SYMBOL(skb_push);
1325 
1326 /**
1327  *	skb_pull - remove data from the start of a buffer
1328  *	@skb: buffer to use
1329  *	@len: amount of data to remove
1330  *
1331  *	This function removes data from the start of a buffer, returning
1332  *	the memory to the headroom. A pointer to the next data in the buffer
1333  *	is returned. Once the data has been pulled future pushes will overwrite
1334  *	the old data.
1335  */
1336 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1337 {
1338 	return skb_pull_inline(skb, len);
1339 }
1340 EXPORT_SYMBOL(skb_pull);
1341 
1342 /**
1343  *	skb_trim - remove end from a buffer
1344  *	@skb: buffer to alter
1345  *	@len: new length
1346  *
1347  *	Cut the length of a buffer down by removing data from the tail. If
1348  *	the buffer is already under the length specified it is not modified.
1349  *	The skb must be linear.
1350  */
1351 void skb_trim(struct sk_buff *skb, unsigned int len)
1352 {
1353 	if (skb->len > len)
1354 		__skb_trim(skb, len);
1355 }
1356 EXPORT_SYMBOL(skb_trim);
1357 
1358 /* Trims skb to length len. It can change skb pointers.
1359  */
1360 
1361 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1362 {
1363 	struct sk_buff **fragp;
1364 	struct sk_buff *frag;
1365 	int offset = skb_headlen(skb);
1366 	int nfrags = skb_shinfo(skb)->nr_frags;
1367 	int i;
1368 	int err;
1369 
1370 	if (skb_cloned(skb) &&
1371 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1372 		return err;
1373 
1374 	i = 0;
1375 	if (offset >= len)
1376 		goto drop_pages;
1377 
1378 	for (; i < nfrags; i++) {
1379 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1380 
1381 		if (end < len) {
1382 			offset = end;
1383 			continue;
1384 		}
1385 
1386 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1387 
1388 drop_pages:
1389 		skb_shinfo(skb)->nr_frags = i;
1390 
1391 		for (; i < nfrags; i++)
1392 			skb_frag_unref(skb, i);
1393 
1394 		if (skb_has_frag_list(skb))
1395 			skb_drop_fraglist(skb);
1396 		goto done;
1397 	}
1398 
1399 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1400 	     fragp = &frag->next) {
1401 		int end = offset + frag->len;
1402 
1403 		if (skb_shared(frag)) {
1404 			struct sk_buff *nfrag;
1405 
1406 			nfrag = skb_clone(frag, GFP_ATOMIC);
1407 			if (unlikely(!nfrag))
1408 				return -ENOMEM;
1409 
1410 			nfrag->next = frag->next;
1411 			consume_skb(frag);
1412 			frag = nfrag;
1413 			*fragp = frag;
1414 		}
1415 
1416 		if (end < len) {
1417 			offset = end;
1418 			continue;
1419 		}
1420 
1421 		if (end > len &&
1422 		    unlikely((err = pskb_trim(frag, len - offset))))
1423 			return err;
1424 
1425 		if (frag->next)
1426 			skb_drop_list(&frag->next);
1427 		break;
1428 	}
1429 
1430 done:
1431 	if (len > skb_headlen(skb)) {
1432 		skb->data_len -= skb->len - len;
1433 		skb->len       = len;
1434 	} else {
1435 		skb->len       = len;
1436 		skb->data_len  = 0;
1437 		skb_set_tail_pointer(skb, len);
1438 	}
1439 
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(___pskb_trim);
1443 
1444 /**
1445  *	__pskb_pull_tail - advance tail of skb header
1446  *	@skb: buffer to reallocate
1447  *	@delta: number of bytes to advance tail
1448  *
1449  *	The function makes a sense only on a fragmented &sk_buff,
1450  *	it expands header moving its tail forward and copying necessary
1451  *	data from fragmented part.
1452  *
1453  *	&sk_buff MUST have reference count of 1.
1454  *
1455  *	Returns %NULL (and &sk_buff does not change) if pull failed
1456  *	or value of new tail of skb in the case of success.
1457  *
1458  *	All the pointers pointing into skb header may change and must be
1459  *	reloaded after call to this function.
1460  */
1461 
1462 /* Moves tail of skb head forward, copying data from fragmented part,
1463  * when it is necessary.
1464  * 1. It may fail due to malloc failure.
1465  * 2. It may change skb pointers.
1466  *
1467  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1468  */
1469 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1470 {
1471 	/* If skb has not enough free space at tail, get new one
1472 	 * plus 128 bytes for future expansions. If we have enough
1473 	 * room at tail, reallocate without expansion only if skb is cloned.
1474 	 */
1475 	int i, k, eat = (skb->tail + delta) - skb->end;
1476 
1477 	if (eat > 0 || skb_cloned(skb)) {
1478 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1479 				     GFP_ATOMIC))
1480 			return NULL;
1481 	}
1482 
1483 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1484 		BUG();
1485 
1486 	/* Optimization: no fragments, no reasons to preestimate
1487 	 * size of pulled pages. Superb.
1488 	 */
1489 	if (!skb_has_frag_list(skb))
1490 		goto pull_pages;
1491 
1492 	/* Estimate size of pulled pages. */
1493 	eat = delta;
1494 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1495 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1496 
1497 		if (size >= eat)
1498 			goto pull_pages;
1499 		eat -= size;
1500 	}
1501 
1502 	/* If we need update frag list, we are in troubles.
1503 	 * Certainly, it possible to add an offset to skb data,
1504 	 * but taking into account that pulling is expected to
1505 	 * be very rare operation, it is worth to fight against
1506 	 * further bloating skb head and crucify ourselves here instead.
1507 	 * Pure masohism, indeed. 8)8)
1508 	 */
1509 	if (eat) {
1510 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1511 		struct sk_buff *clone = NULL;
1512 		struct sk_buff *insp = NULL;
1513 
1514 		do {
1515 			BUG_ON(!list);
1516 
1517 			if (list->len <= eat) {
1518 				/* Eaten as whole. */
1519 				eat -= list->len;
1520 				list = list->next;
1521 				insp = list;
1522 			} else {
1523 				/* Eaten partially. */
1524 
1525 				if (skb_shared(list)) {
1526 					/* Sucks! We need to fork list. :-( */
1527 					clone = skb_clone(list, GFP_ATOMIC);
1528 					if (!clone)
1529 						return NULL;
1530 					insp = list->next;
1531 					list = clone;
1532 				} else {
1533 					/* This may be pulled without
1534 					 * problems. */
1535 					insp = list;
1536 				}
1537 				if (!pskb_pull(list, eat)) {
1538 					kfree_skb(clone);
1539 					return NULL;
1540 				}
1541 				break;
1542 			}
1543 		} while (eat);
1544 
1545 		/* Free pulled out fragments. */
1546 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1547 			skb_shinfo(skb)->frag_list = list->next;
1548 			kfree_skb(list);
1549 		}
1550 		/* And insert new clone at head. */
1551 		if (clone) {
1552 			clone->next = list;
1553 			skb_shinfo(skb)->frag_list = clone;
1554 		}
1555 	}
1556 	/* Success! Now we may commit changes to skb data. */
1557 
1558 pull_pages:
1559 	eat = delta;
1560 	k = 0;
1561 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1562 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1563 
1564 		if (size <= eat) {
1565 			skb_frag_unref(skb, i);
1566 			eat -= size;
1567 		} else {
1568 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1569 			if (eat) {
1570 				skb_shinfo(skb)->frags[k].page_offset += eat;
1571 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1572 				eat = 0;
1573 			}
1574 			k++;
1575 		}
1576 	}
1577 	skb_shinfo(skb)->nr_frags = k;
1578 
1579 	skb->tail     += delta;
1580 	skb->data_len -= delta;
1581 
1582 	return skb_tail_pointer(skb);
1583 }
1584 EXPORT_SYMBOL(__pskb_pull_tail);
1585 
1586 /**
1587  *	skb_copy_bits - copy bits from skb to kernel buffer
1588  *	@skb: source skb
1589  *	@offset: offset in source
1590  *	@to: destination buffer
1591  *	@len: number of bytes to copy
1592  *
1593  *	Copy the specified number of bytes from the source skb to the
1594  *	destination buffer.
1595  *
1596  *	CAUTION ! :
1597  *		If its prototype is ever changed,
1598  *		check arch/{*}/net/{*}.S files,
1599  *		since it is called from BPF assembly code.
1600  */
1601 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1602 {
1603 	int start = skb_headlen(skb);
1604 	struct sk_buff *frag_iter;
1605 	int i, copy;
1606 
1607 	if (offset > (int)skb->len - len)
1608 		goto fault;
1609 
1610 	/* Copy header. */
1611 	if ((copy = start - offset) > 0) {
1612 		if (copy > len)
1613 			copy = len;
1614 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1615 		if ((len -= copy) == 0)
1616 			return 0;
1617 		offset += copy;
1618 		to     += copy;
1619 	}
1620 
1621 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1622 		int end;
1623 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1624 
1625 		WARN_ON(start > offset + len);
1626 
1627 		end = start + skb_frag_size(f);
1628 		if ((copy = end - offset) > 0) {
1629 			u8 *vaddr;
1630 
1631 			if (copy > len)
1632 				copy = len;
1633 
1634 			vaddr = kmap_atomic(skb_frag_page(f));
1635 			memcpy(to,
1636 			       vaddr + f->page_offset + offset - start,
1637 			       copy);
1638 			kunmap_atomic(vaddr);
1639 
1640 			if ((len -= copy) == 0)
1641 				return 0;
1642 			offset += copy;
1643 			to     += copy;
1644 		}
1645 		start = end;
1646 	}
1647 
1648 	skb_walk_frags(skb, frag_iter) {
1649 		int end;
1650 
1651 		WARN_ON(start > offset + len);
1652 
1653 		end = start + frag_iter->len;
1654 		if ((copy = end - offset) > 0) {
1655 			if (copy > len)
1656 				copy = len;
1657 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1658 				goto fault;
1659 			if ((len -= copy) == 0)
1660 				return 0;
1661 			offset += copy;
1662 			to     += copy;
1663 		}
1664 		start = end;
1665 	}
1666 
1667 	if (!len)
1668 		return 0;
1669 
1670 fault:
1671 	return -EFAULT;
1672 }
1673 EXPORT_SYMBOL(skb_copy_bits);
1674 
1675 /*
1676  * Callback from splice_to_pipe(), if we need to release some pages
1677  * at the end of the spd in case we error'ed out in filling the pipe.
1678  */
1679 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1680 {
1681 	put_page(spd->pages[i]);
1682 }
1683 
1684 static struct page *linear_to_page(struct page *page, unsigned int *len,
1685 				   unsigned int *offset,
1686 				   struct sock *sk)
1687 {
1688 	struct page_frag *pfrag = sk_page_frag(sk);
1689 
1690 	if (!sk_page_frag_refill(sk, pfrag))
1691 		return NULL;
1692 
1693 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1694 
1695 	memcpy(page_address(pfrag->page) + pfrag->offset,
1696 	       page_address(page) + *offset, *len);
1697 	*offset = pfrag->offset;
1698 	pfrag->offset += *len;
1699 
1700 	return pfrag->page;
1701 }
1702 
1703 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1704 			     struct page *page,
1705 			     unsigned int offset)
1706 {
1707 	return	spd->nr_pages &&
1708 		spd->pages[spd->nr_pages - 1] == page &&
1709 		(spd->partial[spd->nr_pages - 1].offset +
1710 		 spd->partial[spd->nr_pages - 1].len == offset);
1711 }
1712 
1713 /*
1714  * Fill page/offset/length into spd, if it can hold more pages.
1715  */
1716 static bool spd_fill_page(struct splice_pipe_desc *spd,
1717 			  struct pipe_inode_info *pipe, struct page *page,
1718 			  unsigned int *len, unsigned int offset,
1719 			  bool linear,
1720 			  struct sock *sk)
1721 {
1722 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1723 		return true;
1724 
1725 	if (linear) {
1726 		page = linear_to_page(page, len, &offset, sk);
1727 		if (!page)
1728 			return true;
1729 	}
1730 	if (spd_can_coalesce(spd, page, offset)) {
1731 		spd->partial[spd->nr_pages - 1].len += *len;
1732 		return false;
1733 	}
1734 	get_page(page);
1735 	spd->pages[spd->nr_pages] = page;
1736 	spd->partial[spd->nr_pages].len = *len;
1737 	spd->partial[spd->nr_pages].offset = offset;
1738 	spd->nr_pages++;
1739 
1740 	return false;
1741 }
1742 
1743 static bool __splice_segment(struct page *page, unsigned int poff,
1744 			     unsigned int plen, unsigned int *off,
1745 			     unsigned int *len,
1746 			     struct splice_pipe_desc *spd, bool linear,
1747 			     struct sock *sk,
1748 			     struct pipe_inode_info *pipe)
1749 {
1750 	if (!*len)
1751 		return true;
1752 
1753 	/* skip this segment if already processed */
1754 	if (*off >= plen) {
1755 		*off -= plen;
1756 		return false;
1757 	}
1758 
1759 	/* ignore any bits we already processed */
1760 	poff += *off;
1761 	plen -= *off;
1762 	*off = 0;
1763 
1764 	do {
1765 		unsigned int flen = min(*len, plen);
1766 
1767 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1768 				  linear, sk))
1769 			return true;
1770 		poff += flen;
1771 		plen -= flen;
1772 		*len -= flen;
1773 	} while (*len && plen);
1774 
1775 	return false;
1776 }
1777 
1778 /*
1779  * Map linear and fragment data from the skb to spd. It reports true if the
1780  * pipe is full or if we already spliced the requested length.
1781  */
1782 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1783 			      unsigned int *offset, unsigned int *len,
1784 			      struct splice_pipe_desc *spd, struct sock *sk)
1785 {
1786 	int seg;
1787 
1788 	/* map the linear part :
1789 	 * If skb->head_frag is set, this 'linear' part is backed by a
1790 	 * fragment, and if the head is not shared with any clones then
1791 	 * we can avoid a copy since we own the head portion of this page.
1792 	 */
1793 	if (__splice_segment(virt_to_page(skb->data),
1794 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1795 			     skb_headlen(skb),
1796 			     offset, len, spd,
1797 			     skb_head_is_locked(skb),
1798 			     sk, pipe))
1799 		return true;
1800 
1801 	/*
1802 	 * then map the fragments
1803 	 */
1804 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1805 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1806 
1807 		if (__splice_segment(skb_frag_page(f),
1808 				     f->page_offset, skb_frag_size(f),
1809 				     offset, len, spd, false, sk, pipe))
1810 			return true;
1811 	}
1812 
1813 	return false;
1814 }
1815 
1816 /*
1817  * Map data from the skb to a pipe. Should handle both the linear part,
1818  * the fragments, and the frag list. It does NOT handle frag lists within
1819  * the frag list, if such a thing exists. We'd probably need to recurse to
1820  * handle that cleanly.
1821  */
1822 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1823 		    struct pipe_inode_info *pipe, unsigned int tlen,
1824 		    unsigned int flags)
1825 {
1826 	struct partial_page partial[MAX_SKB_FRAGS];
1827 	struct page *pages[MAX_SKB_FRAGS];
1828 	struct splice_pipe_desc spd = {
1829 		.pages = pages,
1830 		.partial = partial,
1831 		.nr_pages_max = MAX_SKB_FRAGS,
1832 		.flags = flags,
1833 		.ops = &sock_pipe_buf_ops,
1834 		.spd_release = sock_spd_release,
1835 	};
1836 	struct sk_buff *frag_iter;
1837 	struct sock *sk = skb->sk;
1838 	int ret = 0;
1839 
1840 	/*
1841 	 * __skb_splice_bits() only fails if the output has no room left,
1842 	 * so no point in going over the frag_list for the error case.
1843 	 */
1844 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1845 		goto done;
1846 	else if (!tlen)
1847 		goto done;
1848 
1849 	/*
1850 	 * now see if we have a frag_list to map
1851 	 */
1852 	skb_walk_frags(skb, frag_iter) {
1853 		if (!tlen)
1854 			break;
1855 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1856 			break;
1857 	}
1858 
1859 done:
1860 	if (spd.nr_pages) {
1861 		/*
1862 		 * Drop the socket lock, otherwise we have reverse
1863 		 * locking dependencies between sk_lock and i_mutex
1864 		 * here as compared to sendfile(). We enter here
1865 		 * with the socket lock held, and splice_to_pipe() will
1866 		 * grab the pipe inode lock. For sendfile() emulation,
1867 		 * we call into ->sendpage() with the i_mutex lock held
1868 		 * and networking will grab the socket lock.
1869 		 */
1870 		release_sock(sk);
1871 		ret = splice_to_pipe(pipe, &spd);
1872 		lock_sock(sk);
1873 	}
1874 
1875 	return ret;
1876 }
1877 
1878 /**
1879  *	skb_store_bits - store bits from kernel buffer to skb
1880  *	@skb: destination buffer
1881  *	@offset: offset in destination
1882  *	@from: source buffer
1883  *	@len: number of bytes to copy
1884  *
1885  *	Copy the specified number of bytes from the source buffer to the
1886  *	destination skb.  This function handles all the messy bits of
1887  *	traversing fragment lists and such.
1888  */
1889 
1890 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1891 {
1892 	int start = skb_headlen(skb);
1893 	struct sk_buff *frag_iter;
1894 	int i, copy;
1895 
1896 	if (offset > (int)skb->len - len)
1897 		goto fault;
1898 
1899 	if ((copy = start - offset) > 0) {
1900 		if (copy > len)
1901 			copy = len;
1902 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1903 		if ((len -= copy) == 0)
1904 			return 0;
1905 		offset += copy;
1906 		from += copy;
1907 	}
1908 
1909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1910 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1911 		int end;
1912 
1913 		WARN_ON(start > offset + len);
1914 
1915 		end = start + skb_frag_size(frag);
1916 		if ((copy = end - offset) > 0) {
1917 			u8 *vaddr;
1918 
1919 			if (copy > len)
1920 				copy = len;
1921 
1922 			vaddr = kmap_atomic(skb_frag_page(frag));
1923 			memcpy(vaddr + frag->page_offset + offset - start,
1924 			       from, copy);
1925 			kunmap_atomic(vaddr);
1926 
1927 			if ((len -= copy) == 0)
1928 				return 0;
1929 			offset += copy;
1930 			from += copy;
1931 		}
1932 		start = end;
1933 	}
1934 
1935 	skb_walk_frags(skb, frag_iter) {
1936 		int end;
1937 
1938 		WARN_ON(start > offset + len);
1939 
1940 		end = start + frag_iter->len;
1941 		if ((copy = end - offset) > 0) {
1942 			if (copy > len)
1943 				copy = len;
1944 			if (skb_store_bits(frag_iter, offset - start,
1945 					   from, copy))
1946 				goto fault;
1947 			if ((len -= copy) == 0)
1948 				return 0;
1949 			offset += copy;
1950 			from += copy;
1951 		}
1952 		start = end;
1953 	}
1954 	if (!len)
1955 		return 0;
1956 
1957 fault:
1958 	return -EFAULT;
1959 }
1960 EXPORT_SYMBOL(skb_store_bits);
1961 
1962 /* Checksum skb data. */
1963 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1964 		      __wsum csum, const struct skb_checksum_ops *ops)
1965 {
1966 	int start = skb_headlen(skb);
1967 	int i, copy = start - offset;
1968 	struct sk_buff *frag_iter;
1969 	int pos = 0;
1970 
1971 	/* Checksum header. */
1972 	if (copy > 0) {
1973 		if (copy > len)
1974 			copy = len;
1975 		csum = ops->update(skb->data + offset, copy, csum);
1976 		if ((len -= copy) == 0)
1977 			return csum;
1978 		offset += copy;
1979 		pos	= copy;
1980 	}
1981 
1982 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1983 		int end;
1984 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1985 
1986 		WARN_ON(start > offset + len);
1987 
1988 		end = start + skb_frag_size(frag);
1989 		if ((copy = end - offset) > 0) {
1990 			__wsum csum2;
1991 			u8 *vaddr;
1992 
1993 			if (copy > len)
1994 				copy = len;
1995 			vaddr = kmap_atomic(skb_frag_page(frag));
1996 			csum2 = ops->update(vaddr + frag->page_offset +
1997 					    offset - start, copy, 0);
1998 			kunmap_atomic(vaddr);
1999 			csum = ops->combine(csum, csum2, pos, copy);
2000 			if (!(len -= copy))
2001 				return csum;
2002 			offset += copy;
2003 			pos    += copy;
2004 		}
2005 		start = end;
2006 	}
2007 
2008 	skb_walk_frags(skb, frag_iter) {
2009 		int end;
2010 
2011 		WARN_ON(start > offset + len);
2012 
2013 		end = start + frag_iter->len;
2014 		if ((copy = end - offset) > 0) {
2015 			__wsum csum2;
2016 			if (copy > len)
2017 				copy = len;
2018 			csum2 = __skb_checksum(frag_iter, offset - start,
2019 					       copy, 0, ops);
2020 			csum = ops->combine(csum, csum2, pos, copy);
2021 			if ((len -= copy) == 0)
2022 				return csum;
2023 			offset += copy;
2024 			pos    += copy;
2025 		}
2026 		start = end;
2027 	}
2028 	BUG_ON(len);
2029 
2030 	return csum;
2031 }
2032 EXPORT_SYMBOL(__skb_checksum);
2033 
2034 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2035 		    int len, __wsum csum)
2036 {
2037 	const struct skb_checksum_ops ops = {
2038 		.update  = csum_partial_ext,
2039 		.combine = csum_block_add_ext,
2040 	};
2041 
2042 	return __skb_checksum(skb, offset, len, csum, &ops);
2043 }
2044 EXPORT_SYMBOL(skb_checksum);
2045 
2046 /* Both of above in one bottle. */
2047 
2048 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2049 				    u8 *to, int len, __wsum csum)
2050 {
2051 	int start = skb_headlen(skb);
2052 	int i, copy = start - offset;
2053 	struct sk_buff *frag_iter;
2054 	int pos = 0;
2055 
2056 	/* Copy header. */
2057 	if (copy > 0) {
2058 		if (copy > len)
2059 			copy = len;
2060 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2061 						 copy, csum);
2062 		if ((len -= copy) == 0)
2063 			return csum;
2064 		offset += copy;
2065 		to     += copy;
2066 		pos	= copy;
2067 	}
2068 
2069 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2070 		int end;
2071 
2072 		WARN_ON(start > offset + len);
2073 
2074 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2075 		if ((copy = end - offset) > 0) {
2076 			__wsum csum2;
2077 			u8 *vaddr;
2078 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2079 
2080 			if (copy > len)
2081 				copy = len;
2082 			vaddr = kmap_atomic(skb_frag_page(frag));
2083 			csum2 = csum_partial_copy_nocheck(vaddr +
2084 							  frag->page_offset +
2085 							  offset - start, to,
2086 							  copy, 0);
2087 			kunmap_atomic(vaddr);
2088 			csum = csum_block_add(csum, csum2, pos);
2089 			if (!(len -= copy))
2090 				return csum;
2091 			offset += copy;
2092 			to     += copy;
2093 			pos    += copy;
2094 		}
2095 		start = end;
2096 	}
2097 
2098 	skb_walk_frags(skb, frag_iter) {
2099 		__wsum csum2;
2100 		int end;
2101 
2102 		WARN_ON(start > offset + len);
2103 
2104 		end = start + frag_iter->len;
2105 		if ((copy = end - offset) > 0) {
2106 			if (copy > len)
2107 				copy = len;
2108 			csum2 = skb_copy_and_csum_bits(frag_iter,
2109 						       offset - start,
2110 						       to, copy, 0);
2111 			csum = csum_block_add(csum, csum2, pos);
2112 			if ((len -= copy) == 0)
2113 				return csum;
2114 			offset += copy;
2115 			to     += copy;
2116 			pos    += copy;
2117 		}
2118 		start = end;
2119 	}
2120 	BUG_ON(len);
2121 	return csum;
2122 }
2123 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2124 
2125  /**
2126  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2127  *	@from: source buffer
2128  *
2129  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2130  *	into skb_zerocopy().
2131  */
2132 unsigned int
2133 skb_zerocopy_headlen(const struct sk_buff *from)
2134 {
2135 	unsigned int hlen = 0;
2136 
2137 	if (!from->head_frag ||
2138 	    skb_headlen(from) < L1_CACHE_BYTES ||
2139 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2140 		hlen = skb_headlen(from);
2141 
2142 	if (skb_has_frag_list(from))
2143 		hlen = from->len;
2144 
2145 	return hlen;
2146 }
2147 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2148 
2149 /**
2150  *	skb_zerocopy - Zero copy skb to skb
2151  *	@to: destination buffer
2152  *	@source: source buffer
2153  *	@len: number of bytes to copy from source buffer
2154  *	@hlen: size of linear headroom in destination buffer
2155  *
2156  *	Copies up to `len` bytes from `from` to `to` by creating references
2157  *	to the frags in the source buffer.
2158  *
2159  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2160  *	headroom in the `to` buffer.
2161  */
2162 void
2163 skb_zerocopy(struct sk_buff *to, const struct sk_buff *from, int len, int hlen)
2164 {
2165 	int i, j = 0;
2166 	int plen = 0; /* length of skb->head fragment */
2167 	struct page *page;
2168 	unsigned int offset;
2169 
2170 	BUG_ON(!from->head_frag && !hlen);
2171 
2172 	/* dont bother with small payloads */
2173 	if (len <= skb_tailroom(to)) {
2174 		skb_copy_bits(from, 0, skb_put(to, len), len);
2175 		return;
2176 	}
2177 
2178 	if (hlen) {
2179 		skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2180 		len -= hlen;
2181 	} else {
2182 		plen = min_t(int, skb_headlen(from), len);
2183 		if (plen) {
2184 			page = virt_to_head_page(from->head);
2185 			offset = from->data - (unsigned char *)page_address(page);
2186 			__skb_fill_page_desc(to, 0, page, offset, plen);
2187 			get_page(page);
2188 			j = 1;
2189 			len -= plen;
2190 		}
2191 	}
2192 
2193 	to->truesize += len + plen;
2194 	to->len += len + plen;
2195 	to->data_len += len + plen;
2196 
2197 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2198 		if (!len)
2199 			break;
2200 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2201 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2202 		len -= skb_shinfo(to)->frags[j].size;
2203 		skb_frag_ref(to, j);
2204 		j++;
2205 	}
2206 	skb_shinfo(to)->nr_frags = j;
2207 }
2208 EXPORT_SYMBOL_GPL(skb_zerocopy);
2209 
2210 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2211 {
2212 	__wsum csum;
2213 	long csstart;
2214 
2215 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2216 		csstart = skb_checksum_start_offset(skb);
2217 	else
2218 		csstart = skb_headlen(skb);
2219 
2220 	BUG_ON(csstart > skb_headlen(skb));
2221 
2222 	skb_copy_from_linear_data(skb, to, csstart);
2223 
2224 	csum = 0;
2225 	if (csstart != skb->len)
2226 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2227 					      skb->len - csstart, 0);
2228 
2229 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2230 		long csstuff = csstart + skb->csum_offset;
2231 
2232 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2233 	}
2234 }
2235 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2236 
2237 /**
2238  *	skb_dequeue - remove from the head of the queue
2239  *	@list: list to dequeue from
2240  *
2241  *	Remove the head of the list. The list lock is taken so the function
2242  *	may be used safely with other locking list functions. The head item is
2243  *	returned or %NULL if the list is empty.
2244  */
2245 
2246 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2247 {
2248 	unsigned long flags;
2249 	struct sk_buff *result;
2250 
2251 	spin_lock_irqsave(&list->lock, flags);
2252 	result = __skb_dequeue(list);
2253 	spin_unlock_irqrestore(&list->lock, flags);
2254 	return result;
2255 }
2256 EXPORT_SYMBOL(skb_dequeue);
2257 
2258 /**
2259  *	skb_dequeue_tail - remove from the tail of the queue
2260  *	@list: list to dequeue from
2261  *
2262  *	Remove the tail of the list. The list lock is taken so the function
2263  *	may be used safely with other locking list functions. The tail item is
2264  *	returned or %NULL if the list is empty.
2265  */
2266 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2267 {
2268 	unsigned long flags;
2269 	struct sk_buff *result;
2270 
2271 	spin_lock_irqsave(&list->lock, flags);
2272 	result = __skb_dequeue_tail(list);
2273 	spin_unlock_irqrestore(&list->lock, flags);
2274 	return result;
2275 }
2276 EXPORT_SYMBOL(skb_dequeue_tail);
2277 
2278 /**
2279  *	skb_queue_purge - empty a list
2280  *	@list: list to empty
2281  *
2282  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2283  *	the list and one reference dropped. This function takes the list
2284  *	lock and is atomic with respect to other list locking functions.
2285  */
2286 void skb_queue_purge(struct sk_buff_head *list)
2287 {
2288 	struct sk_buff *skb;
2289 	while ((skb = skb_dequeue(list)) != NULL)
2290 		kfree_skb(skb);
2291 }
2292 EXPORT_SYMBOL(skb_queue_purge);
2293 
2294 /**
2295  *	skb_queue_head - queue a buffer at the list head
2296  *	@list: list to use
2297  *	@newsk: buffer to queue
2298  *
2299  *	Queue a buffer at the start of the list. This function takes the
2300  *	list lock and can be used safely with other locking &sk_buff functions
2301  *	safely.
2302  *
2303  *	A buffer cannot be placed on two lists at the same time.
2304  */
2305 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2306 {
2307 	unsigned long flags;
2308 
2309 	spin_lock_irqsave(&list->lock, flags);
2310 	__skb_queue_head(list, newsk);
2311 	spin_unlock_irqrestore(&list->lock, flags);
2312 }
2313 EXPORT_SYMBOL(skb_queue_head);
2314 
2315 /**
2316  *	skb_queue_tail - queue a buffer at the list tail
2317  *	@list: list to use
2318  *	@newsk: buffer to queue
2319  *
2320  *	Queue a buffer at the tail of the list. This function takes the
2321  *	list lock and can be used safely with other locking &sk_buff functions
2322  *	safely.
2323  *
2324  *	A buffer cannot be placed on two lists at the same time.
2325  */
2326 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2327 {
2328 	unsigned long flags;
2329 
2330 	spin_lock_irqsave(&list->lock, flags);
2331 	__skb_queue_tail(list, newsk);
2332 	spin_unlock_irqrestore(&list->lock, flags);
2333 }
2334 EXPORT_SYMBOL(skb_queue_tail);
2335 
2336 /**
2337  *	skb_unlink	-	remove a buffer from a list
2338  *	@skb: buffer to remove
2339  *	@list: list to use
2340  *
2341  *	Remove a packet from a list. The list locks are taken and this
2342  *	function is atomic with respect to other list locked calls
2343  *
2344  *	You must know what list the SKB is on.
2345  */
2346 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2347 {
2348 	unsigned long flags;
2349 
2350 	spin_lock_irqsave(&list->lock, flags);
2351 	__skb_unlink(skb, list);
2352 	spin_unlock_irqrestore(&list->lock, flags);
2353 }
2354 EXPORT_SYMBOL(skb_unlink);
2355 
2356 /**
2357  *	skb_append	-	append a buffer
2358  *	@old: buffer to insert after
2359  *	@newsk: buffer to insert
2360  *	@list: list to use
2361  *
2362  *	Place a packet after a given packet in a list. The list locks are taken
2363  *	and this function is atomic with respect to other list locked calls.
2364  *	A buffer cannot be placed on two lists at the same time.
2365  */
2366 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2367 {
2368 	unsigned long flags;
2369 
2370 	spin_lock_irqsave(&list->lock, flags);
2371 	__skb_queue_after(list, old, newsk);
2372 	spin_unlock_irqrestore(&list->lock, flags);
2373 }
2374 EXPORT_SYMBOL(skb_append);
2375 
2376 /**
2377  *	skb_insert	-	insert a buffer
2378  *	@old: buffer to insert before
2379  *	@newsk: buffer to insert
2380  *	@list: list to use
2381  *
2382  *	Place a packet before a given packet in a list. The list locks are
2383  * 	taken and this function is atomic with respect to other list locked
2384  *	calls.
2385  *
2386  *	A buffer cannot be placed on two lists at the same time.
2387  */
2388 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2389 {
2390 	unsigned long flags;
2391 
2392 	spin_lock_irqsave(&list->lock, flags);
2393 	__skb_insert(newsk, old->prev, old, list);
2394 	spin_unlock_irqrestore(&list->lock, flags);
2395 }
2396 EXPORT_SYMBOL(skb_insert);
2397 
2398 static inline void skb_split_inside_header(struct sk_buff *skb,
2399 					   struct sk_buff* skb1,
2400 					   const u32 len, const int pos)
2401 {
2402 	int i;
2403 
2404 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2405 					 pos - len);
2406 	/* And move data appendix as is. */
2407 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2408 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2409 
2410 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2411 	skb_shinfo(skb)->nr_frags  = 0;
2412 	skb1->data_len		   = skb->data_len;
2413 	skb1->len		   += skb1->data_len;
2414 	skb->data_len		   = 0;
2415 	skb->len		   = len;
2416 	skb_set_tail_pointer(skb, len);
2417 }
2418 
2419 static inline void skb_split_no_header(struct sk_buff *skb,
2420 				       struct sk_buff* skb1,
2421 				       const u32 len, int pos)
2422 {
2423 	int i, k = 0;
2424 	const int nfrags = skb_shinfo(skb)->nr_frags;
2425 
2426 	skb_shinfo(skb)->nr_frags = 0;
2427 	skb1->len		  = skb1->data_len = skb->len - len;
2428 	skb->len		  = len;
2429 	skb->data_len		  = len - pos;
2430 
2431 	for (i = 0; i < nfrags; i++) {
2432 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2433 
2434 		if (pos + size > len) {
2435 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2436 
2437 			if (pos < len) {
2438 				/* Split frag.
2439 				 * We have two variants in this case:
2440 				 * 1. Move all the frag to the second
2441 				 *    part, if it is possible. F.e.
2442 				 *    this approach is mandatory for TUX,
2443 				 *    where splitting is expensive.
2444 				 * 2. Split is accurately. We make this.
2445 				 */
2446 				skb_frag_ref(skb, i);
2447 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2448 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2449 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2450 				skb_shinfo(skb)->nr_frags++;
2451 			}
2452 			k++;
2453 		} else
2454 			skb_shinfo(skb)->nr_frags++;
2455 		pos += size;
2456 	}
2457 	skb_shinfo(skb1)->nr_frags = k;
2458 }
2459 
2460 /**
2461  * skb_split - Split fragmented skb to two parts at length len.
2462  * @skb: the buffer to split
2463  * @skb1: the buffer to receive the second part
2464  * @len: new length for skb
2465  */
2466 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2467 {
2468 	int pos = skb_headlen(skb);
2469 
2470 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2471 	if (len < pos)	/* Split line is inside header. */
2472 		skb_split_inside_header(skb, skb1, len, pos);
2473 	else		/* Second chunk has no header, nothing to copy. */
2474 		skb_split_no_header(skb, skb1, len, pos);
2475 }
2476 EXPORT_SYMBOL(skb_split);
2477 
2478 /* Shifting from/to a cloned skb is a no-go.
2479  *
2480  * Caller cannot keep skb_shinfo related pointers past calling here!
2481  */
2482 static int skb_prepare_for_shift(struct sk_buff *skb)
2483 {
2484 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2485 }
2486 
2487 /**
2488  * skb_shift - Shifts paged data partially from skb to another
2489  * @tgt: buffer into which tail data gets added
2490  * @skb: buffer from which the paged data comes from
2491  * @shiftlen: shift up to this many bytes
2492  *
2493  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2494  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2495  * It's up to caller to free skb if everything was shifted.
2496  *
2497  * If @tgt runs out of frags, the whole operation is aborted.
2498  *
2499  * Skb cannot include anything else but paged data while tgt is allowed
2500  * to have non-paged data as well.
2501  *
2502  * TODO: full sized shift could be optimized but that would need
2503  * specialized skb free'er to handle frags without up-to-date nr_frags.
2504  */
2505 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2506 {
2507 	int from, to, merge, todo;
2508 	struct skb_frag_struct *fragfrom, *fragto;
2509 
2510 	BUG_ON(shiftlen > skb->len);
2511 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2512 
2513 	todo = shiftlen;
2514 	from = 0;
2515 	to = skb_shinfo(tgt)->nr_frags;
2516 	fragfrom = &skb_shinfo(skb)->frags[from];
2517 
2518 	/* Actual merge is delayed until the point when we know we can
2519 	 * commit all, so that we don't have to undo partial changes
2520 	 */
2521 	if (!to ||
2522 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2523 			      fragfrom->page_offset)) {
2524 		merge = -1;
2525 	} else {
2526 		merge = to - 1;
2527 
2528 		todo -= skb_frag_size(fragfrom);
2529 		if (todo < 0) {
2530 			if (skb_prepare_for_shift(skb) ||
2531 			    skb_prepare_for_shift(tgt))
2532 				return 0;
2533 
2534 			/* All previous frag pointers might be stale! */
2535 			fragfrom = &skb_shinfo(skb)->frags[from];
2536 			fragto = &skb_shinfo(tgt)->frags[merge];
2537 
2538 			skb_frag_size_add(fragto, shiftlen);
2539 			skb_frag_size_sub(fragfrom, shiftlen);
2540 			fragfrom->page_offset += shiftlen;
2541 
2542 			goto onlymerged;
2543 		}
2544 
2545 		from++;
2546 	}
2547 
2548 	/* Skip full, not-fitting skb to avoid expensive operations */
2549 	if ((shiftlen == skb->len) &&
2550 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2551 		return 0;
2552 
2553 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2554 		return 0;
2555 
2556 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2557 		if (to == MAX_SKB_FRAGS)
2558 			return 0;
2559 
2560 		fragfrom = &skb_shinfo(skb)->frags[from];
2561 		fragto = &skb_shinfo(tgt)->frags[to];
2562 
2563 		if (todo >= skb_frag_size(fragfrom)) {
2564 			*fragto = *fragfrom;
2565 			todo -= skb_frag_size(fragfrom);
2566 			from++;
2567 			to++;
2568 
2569 		} else {
2570 			__skb_frag_ref(fragfrom);
2571 			fragto->page = fragfrom->page;
2572 			fragto->page_offset = fragfrom->page_offset;
2573 			skb_frag_size_set(fragto, todo);
2574 
2575 			fragfrom->page_offset += todo;
2576 			skb_frag_size_sub(fragfrom, todo);
2577 			todo = 0;
2578 
2579 			to++;
2580 			break;
2581 		}
2582 	}
2583 
2584 	/* Ready to "commit" this state change to tgt */
2585 	skb_shinfo(tgt)->nr_frags = to;
2586 
2587 	if (merge >= 0) {
2588 		fragfrom = &skb_shinfo(skb)->frags[0];
2589 		fragto = &skb_shinfo(tgt)->frags[merge];
2590 
2591 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2592 		__skb_frag_unref(fragfrom);
2593 	}
2594 
2595 	/* Reposition in the original skb */
2596 	to = 0;
2597 	while (from < skb_shinfo(skb)->nr_frags)
2598 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2599 	skb_shinfo(skb)->nr_frags = to;
2600 
2601 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2602 
2603 onlymerged:
2604 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2605 	 * the other hand might need it if it needs to be resent
2606 	 */
2607 	tgt->ip_summed = CHECKSUM_PARTIAL;
2608 	skb->ip_summed = CHECKSUM_PARTIAL;
2609 
2610 	/* Yak, is it really working this way? Some helper please? */
2611 	skb->len -= shiftlen;
2612 	skb->data_len -= shiftlen;
2613 	skb->truesize -= shiftlen;
2614 	tgt->len += shiftlen;
2615 	tgt->data_len += shiftlen;
2616 	tgt->truesize += shiftlen;
2617 
2618 	return shiftlen;
2619 }
2620 
2621 /**
2622  * skb_prepare_seq_read - Prepare a sequential read of skb data
2623  * @skb: the buffer to read
2624  * @from: lower offset of data to be read
2625  * @to: upper offset of data to be read
2626  * @st: state variable
2627  *
2628  * Initializes the specified state variable. Must be called before
2629  * invoking skb_seq_read() for the first time.
2630  */
2631 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2632 			  unsigned int to, struct skb_seq_state *st)
2633 {
2634 	st->lower_offset = from;
2635 	st->upper_offset = to;
2636 	st->root_skb = st->cur_skb = skb;
2637 	st->frag_idx = st->stepped_offset = 0;
2638 	st->frag_data = NULL;
2639 }
2640 EXPORT_SYMBOL(skb_prepare_seq_read);
2641 
2642 /**
2643  * skb_seq_read - Sequentially read skb data
2644  * @consumed: number of bytes consumed by the caller so far
2645  * @data: destination pointer for data to be returned
2646  * @st: state variable
2647  *
2648  * Reads a block of skb data at @consumed relative to the
2649  * lower offset specified to skb_prepare_seq_read(). Assigns
2650  * the head of the data block to @data and returns the length
2651  * of the block or 0 if the end of the skb data or the upper
2652  * offset has been reached.
2653  *
2654  * The caller is not required to consume all of the data
2655  * returned, i.e. @consumed is typically set to the number
2656  * of bytes already consumed and the next call to
2657  * skb_seq_read() will return the remaining part of the block.
2658  *
2659  * Note 1: The size of each block of data returned can be arbitrary,
2660  *       this limitation is the cost for zerocopy seqeuental
2661  *       reads of potentially non linear data.
2662  *
2663  * Note 2: Fragment lists within fragments are not implemented
2664  *       at the moment, state->root_skb could be replaced with
2665  *       a stack for this purpose.
2666  */
2667 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2668 			  struct skb_seq_state *st)
2669 {
2670 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2671 	skb_frag_t *frag;
2672 
2673 	if (unlikely(abs_offset >= st->upper_offset)) {
2674 		if (st->frag_data) {
2675 			kunmap_atomic(st->frag_data);
2676 			st->frag_data = NULL;
2677 		}
2678 		return 0;
2679 	}
2680 
2681 next_skb:
2682 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2683 
2684 	if (abs_offset < block_limit && !st->frag_data) {
2685 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2686 		return block_limit - abs_offset;
2687 	}
2688 
2689 	if (st->frag_idx == 0 && !st->frag_data)
2690 		st->stepped_offset += skb_headlen(st->cur_skb);
2691 
2692 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2693 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2694 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2695 
2696 		if (abs_offset < block_limit) {
2697 			if (!st->frag_data)
2698 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2699 
2700 			*data = (u8 *) st->frag_data + frag->page_offset +
2701 				(abs_offset - st->stepped_offset);
2702 
2703 			return block_limit - abs_offset;
2704 		}
2705 
2706 		if (st->frag_data) {
2707 			kunmap_atomic(st->frag_data);
2708 			st->frag_data = NULL;
2709 		}
2710 
2711 		st->frag_idx++;
2712 		st->stepped_offset += skb_frag_size(frag);
2713 	}
2714 
2715 	if (st->frag_data) {
2716 		kunmap_atomic(st->frag_data);
2717 		st->frag_data = NULL;
2718 	}
2719 
2720 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2721 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2722 		st->frag_idx = 0;
2723 		goto next_skb;
2724 	} else if (st->cur_skb->next) {
2725 		st->cur_skb = st->cur_skb->next;
2726 		st->frag_idx = 0;
2727 		goto next_skb;
2728 	}
2729 
2730 	return 0;
2731 }
2732 EXPORT_SYMBOL(skb_seq_read);
2733 
2734 /**
2735  * skb_abort_seq_read - Abort a sequential read of skb data
2736  * @st: state variable
2737  *
2738  * Must be called if skb_seq_read() was not called until it
2739  * returned 0.
2740  */
2741 void skb_abort_seq_read(struct skb_seq_state *st)
2742 {
2743 	if (st->frag_data)
2744 		kunmap_atomic(st->frag_data);
2745 }
2746 EXPORT_SYMBOL(skb_abort_seq_read);
2747 
2748 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2749 
2750 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2751 					  struct ts_config *conf,
2752 					  struct ts_state *state)
2753 {
2754 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2755 }
2756 
2757 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2758 {
2759 	skb_abort_seq_read(TS_SKB_CB(state));
2760 }
2761 
2762 /**
2763  * skb_find_text - Find a text pattern in skb data
2764  * @skb: the buffer to look in
2765  * @from: search offset
2766  * @to: search limit
2767  * @config: textsearch configuration
2768  * @state: uninitialized textsearch state variable
2769  *
2770  * Finds a pattern in the skb data according to the specified
2771  * textsearch configuration. Use textsearch_next() to retrieve
2772  * subsequent occurrences of the pattern. Returns the offset
2773  * to the first occurrence or UINT_MAX if no match was found.
2774  */
2775 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2776 			   unsigned int to, struct ts_config *config,
2777 			   struct ts_state *state)
2778 {
2779 	unsigned int ret;
2780 
2781 	config->get_next_block = skb_ts_get_next_block;
2782 	config->finish = skb_ts_finish;
2783 
2784 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2785 
2786 	ret = textsearch_find(config, state);
2787 	return (ret <= to - from ? ret : UINT_MAX);
2788 }
2789 EXPORT_SYMBOL(skb_find_text);
2790 
2791 /**
2792  * skb_append_datato_frags - append the user data to a skb
2793  * @sk: sock  structure
2794  * @skb: skb structure to be appened with user data.
2795  * @getfrag: call back function to be used for getting the user data
2796  * @from: pointer to user message iov
2797  * @length: length of the iov message
2798  *
2799  * Description: This procedure append the user data in the fragment part
2800  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2801  */
2802 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2803 			int (*getfrag)(void *from, char *to, int offset,
2804 					int len, int odd, struct sk_buff *skb),
2805 			void *from, int length)
2806 {
2807 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2808 	int copy;
2809 	int offset = 0;
2810 	int ret;
2811 	struct page_frag *pfrag = &current->task_frag;
2812 
2813 	do {
2814 		/* Return error if we don't have space for new frag */
2815 		if (frg_cnt >= MAX_SKB_FRAGS)
2816 			return -EMSGSIZE;
2817 
2818 		if (!sk_page_frag_refill(sk, pfrag))
2819 			return -ENOMEM;
2820 
2821 		/* copy the user data to page */
2822 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2823 
2824 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2825 			      offset, copy, 0, skb);
2826 		if (ret < 0)
2827 			return -EFAULT;
2828 
2829 		/* copy was successful so update the size parameters */
2830 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2831 				   copy);
2832 		frg_cnt++;
2833 		pfrag->offset += copy;
2834 		get_page(pfrag->page);
2835 
2836 		skb->truesize += copy;
2837 		atomic_add(copy, &sk->sk_wmem_alloc);
2838 		skb->len += copy;
2839 		skb->data_len += copy;
2840 		offset += copy;
2841 		length -= copy;
2842 
2843 	} while (length > 0);
2844 
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL(skb_append_datato_frags);
2848 
2849 /**
2850  *	skb_pull_rcsum - pull skb and update receive checksum
2851  *	@skb: buffer to update
2852  *	@len: length of data pulled
2853  *
2854  *	This function performs an skb_pull on the packet and updates
2855  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2856  *	receive path processing instead of skb_pull unless you know
2857  *	that the checksum difference is zero (e.g., a valid IP header)
2858  *	or you are setting ip_summed to CHECKSUM_NONE.
2859  */
2860 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2861 {
2862 	BUG_ON(len > skb->len);
2863 	skb->len -= len;
2864 	BUG_ON(skb->len < skb->data_len);
2865 	skb_postpull_rcsum(skb, skb->data, len);
2866 	return skb->data += len;
2867 }
2868 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2869 
2870 /**
2871  *	skb_segment - Perform protocol segmentation on skb.
2872  *	@skb: buffer to segment
2873  *	@features: features for the output path (see dev->features)
2874  *
2875  *	This function performs segmentation on the given skb.  It returns
2876  *	a pointer to the first in a list of new skbs for the segments.
2877  *	In case of error it returns ERR_PTR(err).
2878  */
2879 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2880 {
2881 	struct sk_buff *segs = NULL;
2882 	struct sk_buff *tail = NULL;
2883 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2884 	skb_frag_t *skb_frag = skb_shinfo(skb)->frags;
2885 	unsigned int mss = skb_shinfo(skb)->gso_size;
2886 	unsigned int doffset = skb->data - skb_mac_header(skb);
2887 	unsigned int offset = doffset;
2888 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
2889 	unsigned int headroom;
2890 	unsigned int len;
2891 	__be16 proto;
2892 	bool csum;
2893 	int sg = !!(features & NETIF_F_SG);
2894 	int nfrags = skb_shinfo(skb)->nr_frags;
2895 	int err = -ENOMEM;
2896 	int i = 0;
2897 	int pos;
2898 
2899 	proto = skb_network_protocol(skb);
2900 	if (unlikely(!proto))
2901 		return ERR_PTR(-EINVAL);
2902 
2903 	csum = !!can_checksum_protocol(features, proto);
2904 	__skb_push(skb, doffset);
2905 	headroom = skb_headroom(skb);
2906 	pos = skb_headlen(skb);
2907 
2908 	do {
2909 		struct sk_buff *nskb;
2910 		skb_frag_t *frag;
2911 		int hsize;
2912 		int size;
2913 
2914 		len = skb->len - offset;
2915 		if (len > mss)
2916 			len = mss;
2917 
2918 		hsize = skb_headlen(skb) - offset;
2919 		if (hsize < 0)
2920 			hsize = 0;
2921 		if (hsize > len || !sg)
2922 			hsize = len;
2923 
2924 		if (!hsize && i >= nfrags && skb_headlen(fskb) &&
2925 		    (skb_headlen(fskb) == len || sg)) {
2926 			BUG_ON(skb_headlen(fskb) > len);
2927 
2928 			i = 0;
2929 			nfrags = skb_shinfo(fskb)->nr_frags;
2930 			skb_frag = skb_shinfo(fskb)->frags;
2931 			pos += skb_headlen(fskb);
2932 
2933 			while (pos < offset + len) {
2934 				BUG_ON(i >= nfrags);
2935 
2936 				size = skb_frag_size(skb_frag);
2937 				if (pos + size > offset + len)
2938 					break;
2939 
2940 				i++;
2941 				pos += size;
2942 				skb_frag++;
2943 			}
2944 
2945 			nskb = skb_clone(fskb, GFP_ATOMIC);
2946 			fskb = fskb->next;
2947 
2948 			if (unlikely(!nskb))
2949 				goto err;
2950 
2951 			if (unlikely(pskb_trim(nskb, len))) {
2952 				kfree_skb(nskb);
2953 				goto err;
2954 			}
2955 
2956 			hsize = skb_end_offset(nskb);
2957 			if (skb_cow_head(nskb, doffset + headroom)) {
2958 				kfree_skb(nskb);
2959 				goto err;
2960 			}
2961 
2962 			nskb->truesize += skb_end_offset(nskb) - hsize;
2963 			skb_release_head_state(nskb);
2964 			__skb_push(nskb, doffset);
2965 		} else {
2966 			nskb = __alloc_skb(hsize + doffset + headroom,
2967 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2968 					   NUMA_NO_NODE);
2969 
2970 			if (unlikely(!nskb))
2971 				goto err;
2972 
2973 			skb_reserve(nskb, headroom);
2974 			__skb_put(nskb, doffset);
2975 		}
2976 
2977 		if (segs)
2978 			tail->next = nskb;
2979 		else
2980 			segs = nskb;
2981 		tail = nskb;
2982 
2983 		__copy_skb_header(nskb, skb);
2984 		nskb->mac_len = skb->mac_len;
2985 
2986 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2987 
2988 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2989 						 nskb->data - tnl_hlen,
2990 						 doffset + tnl_hlen);
2991 
2992 		if (nskb->len == len + doffset)
2993 			goto perform_csum_check;
2994 
2995 		if (!sg) {
2996 			nskb->ip_summed = CHECKSUM_NONE;
2997 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2998 							    skb_put(nskb, len),
2999 							    len, 0);
3000 			continue;
3001 		}
3002 
3003 		frag = skb_shinfo(nskb)->frags;
3004 
3005 		skb_copy_from_linear_data_offset(skb, offset,
3006 						 skb_put(nskb, hsize), hsize);
3007 
3008 		skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3009 
3010 		while (pos < offset + len) {
3011 			if (i >= nfrags) {
3012 				BUG_ON(skb_headlen(fskb));
3013 
3014 				i = 0;
3015 				nfrags = skb_shinfo(fskb)->nr_frags;
3016 				skb_frag = skb_shinfo(fskb)->frags;
3017 
3018 				BUG_ON(!nfrags);
3019 
3020 				fskb = fskb->next;
3021 			}
3022 
3023 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3024 				     MAX_SKB_FRAGS)) {
3025 				net_warn_ratelimited(
3026 					"skb_segment: too many frags: %u %u\n",
3027 					pos, mss);
3028 				goto err;
3029 			}
3030 
3031 			*frag = *skb_frag;
3032 			__skb_frag_ref(frag);
3033 			size = skb_frag_size(frag);
3034 
3035 			if (pos < offset) {
3036 				frag->page_offset += offset - pos;
3037 				skb_frag_size_sub(frag, offset - pos);
3038 			}
3039 
3040 			skb_shinfo(nskb)->nr_frags++;
3041 
3042 			if (pos + size <= offset + len) {
3043 				i++;
3044 				skb_frag++;
3045 				pos += size;
3046 			} else {
3047 				skb_frag_size_sub(frag, pos + size - (offset + len));
3048 				goto skip_fraglist;
3049 			}
3050 
3051 			frag++;
3052 		}
3053 
3054 skip_fraglist:
3055 		nskb->data_len = len - hsize;
3056 		nskb->len += nskb->data_len;
3057 		nskb->truesize += nskb->data_len;
3058 
3059 perform_csum_check:
3060 		if (!csum) {
3061 			nskb->csum = skb_checksum(nskb, doffset,
3062 						  nskb->len - doffset, 0);
3063 			nskb->ip_summed = CHECKSUM_NONE;
3064 		}
3065 	} while ((offset += len) < skb->len);
3066 
3067 	return segs;
3068 
3069 err:
3070 	kfree_skb_list(segs);
3071 	return ERR_PTR(err);
3072 }
3073 EXPORT_SYMBOL_GPL(skb_segment);
3074 
3075 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3076 {
3077 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3078 	unsigned int offset = skb_gro_offset(skb);
3079 	unsigned int headlen = skb_headlen(skb);
3080 	struct sk_buff *nskb, *lp, *p = *head;
3081 	unsigned int len = skb_gro_len(skb);
3082 	unsigned int delta_truesize;
3083 	unsigned int headroom;
3084 
3085 	if (unlikely(p->len + len >= 65536))
3086 		return -E2BIG;
3087 
3088 	lp = NAPI_GRO_CB(p)->last ?: p;
3089 	pinfo = skb_shinfo(lp);
3090 
3091 	if (headlen <= offset) {
3092 		skb_frag_t *frag;
3093 		skb_frag_t *frag2;
3094 		int i = skbinfo->nr_frags;
3095 		int nr_frags = pinfo->nr_frags + i;
3096 
3097 		if (nr_frags > MAX_SKB_FRAGS)
3098 			goto merge;
3099 
3100 		offset -= headlen;
3101 		pinfo->nr_frags = nr_frags;
3102 		skbinfo->nr_frags = 0;
3103 
3104 		frag = pinfo->frags + nr_frags;
3105 		frag2 = skbinfo->frags + i;
3106 		do {
3107 			*--frag = *--frag2;
3108 		} while (--i);
3109 
3110 		frag->page_offset += offset;
3111 		skb_frag_size_sub(frag, offset);
3112 
3113 		/* all fragments truesize : remove (head size + sk_buff) */
3114 		delta_truesize = skb->truesize -
3115 				 SKB_TRUESIZE(skb_end_offset(skb));
3116 
3117 		skb->truesize -= skb->data_len;
3118 		skb->len -= skb->data_len;
3119 		skb->data_len = 0;
3120 
3121 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3122 		goto done;
3123 	} else if (skb->head_frag) {
3124 		int nr_frags = pinfo->nr_frags;
3125 		skb_frag_t *frag = pinfo->frags + nr_frags;
3126 		struct page *page = virt_to_head_page(skb->head);
3127 		unsigned int first_size = headlen - offset;
3128 		unsigned int first_offset;
3129 
3130 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3131 			goto merge;
3132 
3133 		first_offset = skb->data -
3134 			       (unsigned char *)page_address(page) +
3135 			       offset;
3136 
3137 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3138 
3139 		frag->page.p	  = page;
3140 		frag->page_offset = first_offset;
3141 		skb_frag_size_set(frag, first_size);
3142 
3143 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3144 		/* We dont need to clear skbinfo->nr_frags here */
3145 
3146 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3147 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3148 		goto done;
3149 	}
3150 	if (pinfo->frag_list)
3151 		goto merge;
3152 	if (skb_gro_len(p) != pinfo->gso_size)
3153 		return -E2BIG;
3154 
3155 	headroom = skb_headroom(p);
3156 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3157 	if (unlikely(!nskb))
3158 		return -ENOMEM;
3159 
3160 	__copy_skb_header(nskb, p);
3161 	nskb->mac_len = p->mac_len;
3162 
3163 	skb_reserve(nskb, headroom);
3164 	__skb_put(nskb, skb_gro_offset(p));
3165 
3166 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3167 	skb_set_network_header(nskb, skb_network_offset(p));
3168 	skb_set_transport_header(nskb, skb_transport_offset(p));
3169 
3170 	__skb_pull(p, skb_gro_offset(p));
3171 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3172 	       p->data - skb_mac_header(p));
3173 
3174 	skb_shinfo(nskb)->frag_list = p;
3175 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3176 	pinfo->gso_size = 0;
3177 	skb_header_release(p);
3178 	NAPI_GRO_CB(nskb)->last = p;
3179 
3180 	nskb->data_len += p->len;
3181 	nskb->truesize += p->truesize;
3182 	nskb->len += p->len;
3183 
3184 	*head = nskb;
3185 	nskb->next = p->next;
3186 	p->next = NULL;
3187 
3188 	p = nskb;
3189 
3190 merge:
3191 	delta_truesize = skb->truesize;
3192 	if (offset > headlen) {
3193 		unsigned int eat = offset - headlen;
3194 
3195 		skbinfo->frags[0].page_offset += eat;
3196 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3197 		skb->data_len -= eat;
3198 		skb->len -= eat;
3199 		offset = headlen;
3200 	}
3201 
3202 	__skb_pull(skb, offset);
3203 
3204 	if (!NAPI_GRO_CB(p)->last)
3205 		skb_shinfo(p)->frag_list = skb;
3206 	else
3207 		NAPI_GRO_CB(p)->last->next = skb;
3208 	NAPI_GRO_CB(p)->last = skb;
3209 	skb_header_release(skb);
3210 	lp = p;
3211 
3212 done:
3213 	NAPI_GRO_CB(p)->count++;
3214 	p->data_len += len;
3215 	p->truesize += delta_truesize;
3216 	p->len += len;
3217 	if (lp != p) {
3218 		lp->data_len += len;
3219 		lp->truesize += delta_truesize;
3220 		lp->len += len;
3221 	}
3222 	NAPI_GRO_CB(skb)->same_flow = 1;
3223 	return 0;
3224 }
3225 EXPORT_SYMBOL_GPL(skb_gro_receive);
3226 
3227 void __init skb_init(void)
3228 {
3229 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3230 					      sizeof(struct sk_buff),
3231 					      0,
3232 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3233 					      NULL);
3234 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3235 						(2*sizeof(struct sk_buff)) +
3236 						sizeof(atomic_t),
3237 						0,
3238 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3239 						NULL);
3240 }
3241 
3242 /**
3243  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3244  *	@skb: Socket buffer containing the buffers to be mapped
3245  *	@sg: The scatter-gather list to map into
3246  *	@offset: The offset into the buffer's contents to start mapping
3247  *	@len: Length of buffer space to be mapped
3248  *
3249  *	Fill the specified scatter-gather list with mappings/pointers into a
3250  *	region of the buffer space attached to a socket buffer.
3251  */
3252 static int
3253 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3254 {
3255 	int start = skb_headlen(skb);
3256 	int i, copy = start - offset;
3257 	struct sk_buff *frag_iter;
3258 	int elt = 0;
3259 
3260 	if (copy > 0) {
3261 		if (copy > len)
3262 			copy = len;
3263 		sg_set_buf(sg, skb->data + offset, copy);
3264 		elt++;
3265 		if ((len -= copy) == 0)
3266 			return elt;
3267 		offset += copy;
3268 	}
3269 
3270 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3271 		int end;
3272 
3273 		WARN_ON(start > offset + len);
3274 
3275 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3276 		if ((copy = end - offset) > 0) {
3277 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3278 
3279 			if (copy > len)
3280 				copy = len;
3281 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3282 					frag->page_offset+offset-start);
3283 			elt++;
3284 			if (!(len -= copy))
3285 				return elt;
3286 			offset += copy;
3287 		}
3288 		start = end;
3289 	}
3290 
3291 	skb_walk_frags(skb, frag_iter) {
3292 		int end;
3293 
3294 		WARN_ON(start > offset + len);
3295 
3296 		end = start + frag_iter->len;
3297 		if ((copy = end - offset) > 0) {
3298 			if (copy > len)
3299 				copy = len;
3300 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3301 					      copy);
3302 			if ((len -= copy) == 0)
3303 				return elt;
3304 			offset += copy;
3305 		}
3306 		start = end;
3307 	}
3308 	BUG_ON(len);
3309 	return elt;
3310 }
3311 
3312 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3313 {
3314 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3315 
3316 	sg_mark_end(&sg[nsg - 1]);
3317 
3318 	return nsg;
3319 }
3320 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3321 
3322 /**
3323  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3324  *	@skb: The socket buffer to check.
3325  *	@tailbits: Amount of trailing space to be added
3326  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3327  *
3328  *	Make sure that the data buffers attached to a socket buffer are
3329  *	writable. If they are not, private copies are made of the data buffers
3330  *	and the socket buffer is set to use these instead.
3331  *
3332  *	If @tailbits is given, make sure that there is space to write @tailbits
3333  *	bytes of data beyond current end of socket buffer.  @trailer will be
3334  *	set to point to the skb in which this space begins.
3335  *
3336  *	The number of scatterlist elements required to completely map the
3337  *	COW'd and extended socket buffer will be returned.
3338  */
3339 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3340 {
3341 	int copyflag;
3342 	int elt;
3343 	struct sk_buff *skb1, **skb_p;
3344 
3345 	/* If skb is cloned or its head is paged, reallocate
3346 	 * head pulling out all the pages (pages are considered not writable
3347 	 * at the moment even if they are anonymous).
3348 	 */
3349 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3350 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3351 		return -ENOMEM;
3352 
3353 	/* Easy case. Most of packets will go this way. */
3354 	if (!skb_has_frag_list(skb)) {
3355 		/* A little of trouble, not enough of space for trailer.
3356 		 * This should not happen, when stack is tuned to generate
3357 		 * good frames. OK, on miss we reallocate and reserve even more
3358 		 * space, 128 bytes is fair. */
3359 
3360 		if (skb_tailroom(skb) < tailbits &&
3361 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3362 			return -ENOMEM;
3363 
3364 		/* Voila! */
3365 		*trailer = skb;
3366 		return 1;
3367 	}
3368 
3369 	/* Misery. We are in troubles, going to mincer fragments... */
3370 
3371 	elt = 1;
3372 	skb_p = &skb_shinfo(skb)->frag_list;
3373 	copyflag = 0;
3374 
3375 	while ((skb1 = *skb_p) != NULL) {
3376 		int ntail = 0;
3377 
3378 		/* The fragment is partially pulled by someone,
3379 		 * this can happen on input. Copy it and everything
3380 		 * after it. */
3381 
3382 		if (skb_shared(skb1))
3383 			copyflag = 1;
3384 
3385 		/* If the skb is the last, worry about trailer. */
3386 
3387 		if (skb1->next == NULL && tailbits) {
3388 			if (skb_shinfo(skb1)->nr_frags ||
3389 			    skb_has_frag_list(skb1) ||
3390 			    skb_tailroom(skb1) < tailbits)
3391 				ntail = tailbits + 128;
3392 		}
3393 
3394 		if (copyflag ||
3395 		    skb_cloned(skb1) ||
3396 		    ntail ||
3397 		    skb_shinfo(skb1)->nr_frags ||
3398 		    skb_has_frag_list(skb1)) {
3399 			struct sk_buff *skb2;
3400 
3401 			/* Fuck, we are miserable poor guys... */
3402 			if (ntail == 0)
3403 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3404 			else
3405 				skb2 = skb_copy_expand(skb1,
3406 						       skb_headroom(skb1),
3407 						       ntail,
3408 						       GFP_ATOMIC);
3409 			if (unlikely(skb2 == NULL))
3410 				return -ENOMEM;
3411 
3412 			if (skb1->sk)
3413 				skb_set_owner_w(skb2, skb1->sk);
3414 
3415 			/* Looking around. Are we still alive?
3416 			 * OK, link new skb, drop old one */
3417 
3418 			skb2->next = skb1->next;
3419 			*skb_p = skb2;
3420 			kfree_skb(skb1);
3421 			skb1 = skb2;
3422 		}
3423 		elt++;
3424 		*trailer = skb1;
3425 		skb_p = &skb1->next;
3426 	}
3427 
3428 	return elt;
3429 }
3430 EXPORT_SYMBOL_GPL(skb_cow_data);
3431 
3432 static void sock_rmem_free(struct sk_buff *skb)
3433 {
3434 	struct sock *sk = skb->sk;
3435 
3436 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3437 }
3438 
3439 /*
3440  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3441  */
3442 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3443 {
3444 	int len = skb->len;
3445 
3446 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3447 	    (unsigned int)sk->sk_rcvbuf)
3448 		return -ENOMEM;
3449 
3450 	skb_orphan(skb);
3451 	skb->sk = sk;
3452 	skb->destructor = sock_rmem_free;
3453 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3454 
3455 	/* before exiting rcu section, make sure dst is refcounted */
3456 	skb_dst_force(skb);
3457 
3458 	skb_queue_tail(&sk->sk_error_queue, skb);
3459 	if (!sock_flag(sk, SOCK_DEAD))
3460 		sk->sk_data_ready(sk, len);
3461 	return 0;
3462 }
3463 EXPORT_SYMBOL(sock_queue_err_skb);
3464 
3465 void skb_tstamp_tx(struct sk_buff *orig_skb,
3466 		struct skb_shared_hwtstamps *hwtstamps)
3467 {
3468 	struct sock *sk = orig_skb->sk;
3469 	struct sock_exterr_skb *serr;
3470 	struct sk_buff *skb;
3471 	int err;
3472 
3473 	if (!sk)
3474 		return;
3475 
3476 	if (hwtstamps) {
3477 		*skb_hwtstamps(orig_skb) =
3478 			*hwtstamps;
3479 	} else {
3480 		/*
3481 		 * no hardware time stamps available,
3482 		 * so keep the shared tx_flags and only
3483 		 * store software time stamp
3484 		 */
3485 		orig_skb->tstamp = ktime_get_real();
3486 	}
3487 
3488 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3489 	if (!skb)
3490 		return;
3491 
3492 	serr = SKB_EXT_ERR(skb);
3493 	memset(serr, 0, sizeof(*serr));
3494 	serr->ee.ee_errno = ENOMSG;
3495 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3496 
3497 	err = sock_queue_err_skb(sk, skb);
3498 
3499 	if (err)
3500 		kfree_skb(skb);
3501 }
3502 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3503 
3504 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3505 {
3506 	struct sock *sk = skb->sk;
3507 	struct sock_exterr_skb *serr;
3508 	int err;
3509 
3510 	skb->wifi_acked_valid = 1;
3511 	skb->wifi_acked = acked;
3512 
3513 	serr = SKB_EXT_ERR(skb);
3514 	memset(serr, 0, sizeof(*serr));
3515 	serr->ee.ee_errno = ENOMSG;
3516 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3517 
3518 	err = sock_queue_err_skb(sk, skb);
3519 	if (err)
3520 		kfree_skb(skb);
3521 }
3522 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3523 
3524 
3525 /**
3526  * skb_partial_csum_set - set up and verify partial csum values for packet
3527  * @skb: the skb to set
3528  * @start: the number of bytes after skb->data to start checksumming.
3529  * @off: the offset from start to place the checksum.
3530  *
3531  * For untrusted partially-checksummed packets, we need to make sure the values
3532  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3533  *
3534  * This function checks and sets those values and skb->ip_summed: if this
3535  * returns false you should drop the packet.
3536  */
3537 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3538 {
3539 	if (unlikely(start > skb_headlen(skb)) ||
3540 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3541 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3542 				     start, off, skb_headlen(skb));
3543 		return false;
3544 	}
3545 	skb->ip_summed = CHECKSUM_PARTIAL;
3546 	skb->csum_start = skb_headroom(skb) + start;
3547 	skb->csum_offset = off;
3548 	skb_set_transport_header(skb, start);
3549 	return true;
3550 }
3551 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3552 
3553 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3554 			       unsigned int max)
3555 {
3556 	if (skb_headlen(skb) >= len)
3557 		return 0;
3558 
3559 	/* If we need to pullup then pullup to the max, so we
3560 	 * won't need to do it again.
3561 	 */
3562 	if (max > skb->len)
3563 		max = skb->len;
3564 
3565 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3566 		return -ENOMEM;
3567 
3568 	if (skb_headlen(skb) < len)
3569 		return -EPROTO;
3570 
3571 	return 0;
3572 }
3573 
3574 /* This value should be large enough to cover a tagged ethernet header plus
3575  * maximally sized IP and TCP or UDP headers.
3576  */
3577 #define MAX_IP_HDR_LEN 128
3578 
3579 static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate)
3580 {
3581 	unsigned int off;
3582 	bool fragment;
3583 	int err;
3584 
3585 	fragment = false;
3586 
3587 	err = skb_maybe_pull_tail(skb,
3588 				  sizeof(struct iphdr),
3589 				  MAX_IP_HDR_LEN);
3590 	if (err < 0)
3591 		goto out;
3592 
3593 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3594 		fragment = true;
3595 
3596 	off = ip_hdrlen(skb);
3597 
3598 	err = -EPROTO;
3599 
3600 	if (fragment)
3601 		goto out;
3602 
3603 	switch (ip_hdr(skb)->protocol) {
3604 	case IPPROTO_TCP:
3605 		err = skb_maybe_pull_tail(skb,
3606 					  off + sizeof(struct tcphdr),
3607 					  MAX_IP_HDR_LEN);
3608 		if (err < 0)
3609 			goto out;
3610 
3611 		if (!skb_partial_csum_set(skb, off,
3612 					  offsetof(struct tcphdr, check))) {
3613 			err = -EPROTO;
3614 			goto out;
3615 		}
3616 
3617 		if (recalculate)
3618 			tcp_hdr(skb)->check =
3619 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3620 						   ip_hdr(skb)->daddr,
3621 						   skb->len - off,
3622 						   IPPROTO_TCP, 0);
3623 		break;
3624 	case IPPROTO_UDP:
3625 		err = skb_maybe_pull_tail(skb,
3626 					  off + sizeof(struct udphdr),
3627 					  MAX_IP_HDR_LEN);
3628 		if (err < 0)
3629 			goto out;
3630 
3631 		if (!skb_partial_csum_set(skb, off,
3632 					  offsetof(struct udphdr, check))) {
3633 			err = -EPROTO;
3634 			goto out;
3635 		}
3636 
3637 		if (recalculate)
3638 			udp_hdr(skb)->check =
3639 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3640 						   ip_hdr(skb)->daddr,
3641 						   skb->len - off,
3642 						   IPPROTO_UDP, 0);
3643 		break;
3644 	default:
3645 		goto out;
3646 	}
3647 
3648 	err = 0;
3649 
3650 out:
3651 	return err;
3652 }
3653 
3654 /* This value should be large enough to cover a tagged ethernet header plus
3655  * an IPv6 header, all options, and a maximal TCP or UDP header.
3656  */
3657 #define MAX_IPV6_HDR_LEN 256
3658 
3659 #define OPT_HDR(type, skb, off) \
3660 	(type *)(skb_network_header(skb) + (off))
3661 
3662 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3663 {
3664 	int err;
3665 	u8 nexthdr;
3666 	unsigned int off;
3667 	unsigned int len;
3668 	bool fragment;
3669 	bool done;
3670 
3671 	fragment = false;
3672 	done = false;
3673 
3674 	off = sizeof(struct ipv6hdr);
3675 
3676 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3677 	if (err < 0)
3678 		goto out;
3679 
3680 	nexthdr = ipv6_hdr(skb)->nexthdr;
3681 
3682 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3683 	while (off <= len && !done) {
3684 		switch (nexthdr) {
3685 		case IPPROTO_DSTOPTS:
3686 		case IPPROTO_HOPOPTS:
3687 		case IPPROTO_ROUTING: {
3688 			struct ipv6_opt_hdr *hp;
3689 
3690 			err = skb_maybe_pull_tail(skb,
3691 						  off +
3692 						  sizeof(struct ipv6_opt_hdr),
3693 						  MAX_IPV6_HDR_LEN);
3694 			if (err < 0)
3695 				goto out;
3696 
3697 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3698 			nexthdr = hp->nexthdr;
3699 			off += ipv6_optlen(hp);
3700 			break;
3701 		}
3702 		case IPPROTO_AH: {
3703 			struct ip_auth_hdr *hp;
3704 
3705 			err = skb_maybe_pull_tail(skb,
3706 						  off +
3707 						  sizeof(struct ip_auth_hdr),
3708 						  MAX_IPV6_HDR_LEN);
3709 			if (err < 0)
3710 				goto out;
3711 
3712 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3713 			nexthdr = hp->nexthdr;
3714 			off += ipv6_authlen(hp);
3715 			break;
3716 		}
3717 		case IPPROTO_FRAGMENT: {
3718 			struct frag_hdr *hp;
3719 
3720 			err = skb_maybe_pull_tail(skb,
3721 						  off +
3722 						  sizeof(struct frag_hdr),
3723 						  MAX_IPV6_HDR_LEN);
3724 			if (err < 0)
3725 				goto out;
3726 
3727 			hp = OPT_HDR(struct frag_hdr, skb, off);
3728 
3729 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3730 				fragment = true;
3731 
3732 			nexthdr = hp->nexthdr;
3733 			off += sizeof(struct frag_hdr);
3734 			break;
3735 		}
3736 		default:
3737 			done = true;
3738 			break;
3739 		}
3740 	}
3741 
3742 	err = -EPROTO;
3743 
3744 	if (!done || fragment)
3745 		goto out;
3746 
3747 	switch (nexthdr) {
3748 	case IPPROTO_TCP:
3749 		err = skb_maybe_pull_tail(skb,
3750 					  off + sizeof(struct tcphdr),
3751 					  MAX_IPV6_HDR_LEN);
3752 		if (err < 0)
3753 			goto out;
3754 
3755 		if (!skb_partial_csum_set(skb, off,
3756 					  offsetof(struct tcphdr, check))) {
3757 			err = -EPROTO;
3758 			goto out;
3759 		}
3760 
3761 		if (recalculate)
3762 			tcp_hdr(skb)->check =
3763 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3764 						 &ipv6_hdr(skb)->daddr,
3765 						 skb->len - off,
3766 						 IPPROTO_TCP, 0);
3767 		break;
3768 	case IPPROTO_UDP:
3769 		err = skb_maybe_pull_tail(skb,
3770 					  off + sizeof(struct udphdr),
3771 					  MAX_IPV6_HDR_LEN);
3772 		if (err < 0)
3773 			goto out;
3774 
3775 		if (!skb_partial_csum_set(skb, off,
3776 					  offsetof(struct udphdr, check))) {
3777 			err = -EPROTO;
3778 			goto out;
3779 		}
3780 
3781 		if (recalculate)
3782 			udp_hdr(skb)->check =
3783 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3784 						 &ipv6_hdr(skb)->daddr,
3785 						 skb->len - off,
3786 						 IPPROTO_UDP, 0);
3787 		break;
3788 	default:
3789 		goto out;
3790 	}
3791 
3792 	err = 0;
3793 
3794 out:
3795 	return err;
3796 }
3797 
3798 /**
3799  * skb_checksum_setup - set up partial checksum offset
3800  * @skb: the skb to set up
3801  * @recalculate: if true the pseudo-header checksum will be recalculated
3802  */
3803 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3804 {
3805 	int err;
3806 
3807 	switch (skb->protocol) {
3808 	case htons(ETH_P_IP):
3809 		err = skb_checksum_setup_ip(skb, recalculate);
3810 		break;
3811 
3812 	case htons(ETH_P_IPV6):
3813 		err = skb_checksum_setup_ipv6(skb, recalculate);
3814 		break;
3815 
3816 	default:
3817 		err = -EPROTO;
3818 		break;
3819 	}
3820 
3821 	return err;
3822 }
3823 EXPORT_SYMBOL(skb_checksum_setup);
3824 
3825 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3826 {
3827 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3828 			     skb->dev->name);
3829 }
3830 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3831 
3832 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3833 {
3834 	if (head_stolen) {
3835 		skb_release_head_state(skb);
3836 		kmem_cache_free(skbuff_head_cache, skb);
3837 	} else {
3838 		__kfree_skb(skb);
3839 	}
3840 }
3841 EXPORT_SYMBOL(kfree_skb_partial);
3842 
3843 /**
3844  * skb_try_coalesce - try to merge skb to prior one
3845  * @to: prior buffer
3846  * @from: buffer to add
3847  * @fragstolen: pointer to boolean
3848  * @delta_truesize: how much more was allocated than was requested
3849  */
3850 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3851 		      bool *fragstolen, int *delta_truesize)
3852 {
3853 	int i, delta, len = from->len;
3854 
3855 	*fragstolen = false;
3856 
3857 	if (skb_cloned(to))
3858 		return false;
3859 
3860 	if (len <= skb_tailroom(to)) {
3861 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3862 		*delta_truesize = 0;
3863 		return true;
3864 	}
3865 
3866 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3867 		return false;
3868 
3869 	if (skb_headlen(from) != 0) {
3870 		struct page *page;
3871 		unsigned int offset;
3872 
3873 		if (skb_shinfo(to)->nr_frags +
3874 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3875 			return false;
3876 
3877 		if (skb_head_is_locked(from))
3878 			return false;
3879 
3880 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3881 
3882 		page = virt_to_head_page(from->head);
3883 		offset = from->data - (unsigned char *)page_address(page);
3884 
3885 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3886 				   page, offset, skb_headlen(from));
3887 		*fragstolen = true;
3888 	} else {
3889 		if (skb_shinfo(to)->nr_frags +
3890 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3891 			return false;
3892 
3893 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3894 	}
3895 
3896 	WARN_ON_ONCE(delta < len);
3897 
3898 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3899 	       skb_shinfo(from)->frags,
3900 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3901 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3902 
3903 	if (!skb_cloned(from))
3904 		skb_shinfo(from)->nr_frags = 0;
3905 
3906 	/* if the skb is not cloned this does nothing
3907 	 * since we set nr_frags to 0.
3908 	 */
3909 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3910 		skb_frag_ref(from, i);
3911 
3912 	to->truesize += delta;
3913 	to->len += len;
3914 	to->data_len += len;
3915 
3916 	*delta_truesize = delta;
3917 	return true;
3918 }
3919 EXPORT_SYMBOL(skb_try_coalesce);
3920 
3921 /**
3922  * skb_scrub_packet - scrub an skb
3923  *
3924  * @skb: buffer to clean
3925  * @xnet: packet is crossing netns
3926  *
3927  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3928  * into/from a tunnel. Some information have to be cleared during these
3929  * operations.
3930  * skb_scrub_packet can also be used to clean a skb before injecting it in
3931  * another namespace (@xnet == true). We have to clear all information in the
3932  * skb that could impact namespace isolation.
3933  */
3934 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3935 {
3936 	if (xnet)
3937 		skb_orphan(skb);
3938 	skb->tstamp.tv64 = 0;
3939 	skb->pkt_type = PACKET_HOST;
3940 	skb->skb_iif = 0;
3941 	skb->local_df = 0;
3942 	skb_dst_drop(skb);
3943 	skb->mark = 0;
3944 	secpath_reset(skb);
3945 	nf_reset(skb);
3946 	nf_reset_trace(skb);
3947 }
3948 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3949