1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/splice.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/scatterlist.h> 61 #include <linux/errqueue.h> 62 #include <linux/prefetch.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 71 #include <asm/uaccess.h> 72 #include <trace/events/skb.h> 73 #include <linux/highmem.h> 74 75 struct kmem_cache *skbuff_head_cache __read_mostly; 76 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 77 78 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 79 struct pipe_buffer *buf) 80 { 81 put_page(buf->page); 82 } 83 84 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 85 struct pipe_buffer *buf) 86 { 87 get_page(buf->page); 88 } 89 90 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 91 struct pipe_buffer *buf) 92 { 93 return 1; 94 } 95 96 97 /* Pipe buffer operations for a socket. */ 98 static const struct pipe_buf_operations sock_pipe_buf_ops = { 99 .can_merge = 0, 100 .map = generic_pipe_buf_map, 101 .unmap = generic_pipe_buf_unmap, 102 .confirm = generic_pipe_buf_confirm, 103 .release = sock_pipe_buf_release, 104 .steal = sock_pipe_buf_steal, 105 .get = sock_pipe_buf_get, 106 }; 107 108 /** 109 * skb_panic - private function for out-of-line support 110 * @skb: buffer 111 * @sz: size 112 * @addr: address 113 * @msg: skb_over_panic or skb_under_panic 114 * 115 * Out-of-line support for skb_put() and skb_push(). 116 * Called via the wrapper skb_over_panic() or skb_under_panic(). 117 * Keep out of line to prevent kernel bloat. 118 * __builtin_return_address is not used because it is not always reliable. 119 */ 120 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 121 const char msg[]) 122 { 123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 124 msg, addr, skb->len, sz, skb->head, skb->data, 125 (unsigned long)skb->tail, (unsigned long)skb->end, 126 skb->dev ? skb->dev->name : "<NULL>"); 127 BUG(); 128 } 129 130 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 131 { 132 skb_panic(skb, sz, addr, __func__); 133 } 134 135 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 136 { 137 skb_panic(skb, sz, addr, __func__); 138 } 139 140 /* 141 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 142 * the caller if emergency pfmemalloc reserves are being used. If it is and 143 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 144 * may be used. Otherwise, the packet data may be discarded until enough 145 * memory is free 146 */ 147 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 148 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 149 150 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 151 unsigned long ip, bool *pfmemalloc) 152 { 153 void *obj; 154 bool ret_pfmemalloc = false; 155 156 /* 157 * Try a regular allocation, when that fails and we're not entitled 158 * to the reserves, fail. 159 */ 160 obj = kmalloc_node_track_caller(size, 161 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 162 node); 163 if (obj || !(gfp_pfmemalloc_allowed(flags))) 164 goto out; 165 166 /* Try again but now we are using pfmemalloc reserves */ 167 ret_pfmemalloc = true; 168 obj = kmalloc_node_track_caller(size, flags, node); 169 170 out: 171 if (pfmemalloc) 172 *pfmemalloc = ret_pfmemalloc; 173 174 return obj; 175 } 176 177 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 178 * 'private' fields and also do memory statistics to find all the 179 * [BEEP] leaks. 180 * 181 */ 182 183 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 184 { 185 struct sk_buff *skb; 186 187 /* Get the HEAD */ 188 skb = kmem_cache_alloc_node(skbuff_head_cache, 189 gfp_mask & ~__GFP_DMA, node); 190 if (!skb) 191 goto out; 192 193 /* 194 * Only clear those fields we need to clear, not those that we will 195 * actually initialise below. Hence, don't put any more fields after 196 * the tail pointer in struct sk_buff! 197 */ 198 memset(skb, 0, offsetof(struct sk_buff, tail)); 199 skb->head = NULL; 200 skb->truesize = sizeof(struct sk_buff); 201 atomic_set(&skb->users, 1); 202 203 skb->mac_header = (typeof(skb->mac_header))~0U; 204 out: 205 return skb; 206 } 207 208 /** 209 * __alloc_skb - allocate a network buffer 210 * @size: size to allocate 211 * @gfp_mask: allocation mask 212 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 213 * instead of head cache and allocate a cloned (child) skb. 214 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 215 * allocations in case the data is required for writeback 216 * @node: numa node to allocate memory on 217 * 218 * Allocate a new &sk_buff. The returned buffer has no headroom and a 219 * tail room of at least size bytes. The object has a reference count 220 * of one. The return is the buffer. On a failure the return is %NULL. 221 * 222 * Buffers may only be allocated from interrupts using a @gfp_mask of 223 * %GFP_ATOMIC. 224 */ 225 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 226 int flags, int node) 227 { 228 struct kmem_cache *cache; 229 struct skb_shared_info *shinfo; 230 struct sk_buff *skb; 231 u8 *data; 232 bool pfmemalloc; 233 234 cache = (flags & SKB_ALLOC_FCLONE) 235 ? skbuff_fclone_cache : skbuff_head_cache; 236 237 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 238 gfp_mask |= __GFP_MEMALLOC; 239 240 /* Get the HEAD */ 241 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 242 if (!skb) 243 goto out; 244 prefetchw(skb); 245 246 /* We do our best to align skb_shared_info on a separate cache 247 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 248 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 249 * Both skb->head and skb_shared_info are cache line aligned. 250 */ 251 size = SKB_DATA_ALIGN(size); 252 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 253 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 254 if (!data) 255 goto nodata; 256 /* kmalloc(size) might give us more room than requested. 257 * Put skb_shared_info exactly at the end of allocated zone, 258 * to allow max possible filling before reallocation. 259 */ 260 size = SKB_WITH_OVERHEAD(ksize(data)); 261 prefetchw(data + size); 262 263 /* 264 * Only clear those fields we need to clear, not those that we will 265 * actually initialise below. Hence, don't put any more fields after 266 * the tail pointer in struct sk_buff! 267 */ 268 memset(skb, 0, offsetof(struct sk_buff, tail)); 269 /* Account for allocated memory : skb + skb->head */ 270 skb->truesize = SKB_TRUESIZE(size); 271 skb->pfmemalloc = pfmemalloc; 272 atomic_set(&skb->users, 1); 273 skb->head = data; 274 skb->data = data; 275 skb_reset_tail_pointer(skb); 276 skb->end = skb->tail + size; 277 skb->mac_header = (typeof(skb->mac_header))~0U; 278 skb->transport_header = (typeof(skb->transport_header))~0U; 279 280 /* make sure we initialize shinfo sequentially */ 281 shinfo = skb_shinfo(skb); 282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 283 atomic_set(&shinfo->dataref, 1); 284 kmemcheck_annotate_variable(shinfo->destructor_arg); 285 286 if (flags & SKB_ALLOC_FCLONE) { 287 struct sk_buff *child = skb + 1; 288 atomic_t *fclone_ref = (atomic_t *) (child + 1); 289 290 kmemcheck_annotate_bitfield(child, flags1); 291 kmemcheck_annotate_bitfield(child, flags2); 292 skb->fclone = SKB_FCLONE_ORIG; 293 atomic_set(fclone_ref, 1); 294 295 child->fclone = SKB_FCLONE_UNAVAILABLE; 296 child->pfmemalloc = pfmemalloc; 297 } 298 out: 299 return skb; 300 nodata: 301 kmem_cache_free(cache, skb); 302 skb = NULL; 303 goto out; 304 } 305 EXPORT_SYMBOL(__alloc_skb); 306 307 /** 308 * build_skb - build a network buffer 309 * @data: data buffer provided by caller 310 * @frag_size: size of fragment, or 0 if head was kmalloced 311 * 312 * Allocate a new &sk_buff. Caller provides space holding head and 313 * skb_shared_info. @data must have been allocated by kmalloc() only if 314 * @frag_size is 0, otherwise data should come from the page allocator. 315 * The return is the new skb buffer. 316 * On a failure the return is %NULL, and @data is not freed. 317 * Notes : 318 * Before IO, driver allocates only data buffer where NIC put incoming frame 319 * Driver should add room at head (NET_SKB_PAD) and 320 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 321 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 322 * before giving packet to stack. 323 * RX rings only contains data buffers, not full skbs. 324 */ 325 struct sk_buff *build_skb(void *data, unsigned int frag_size) 326 { 327 struct skb_shared_info *shinfo; 328 struct sk_buff *skb; 329 unsigned int size = frag_size ? : ksize(data); 330 331 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 332 if (!skb) 333 return NULL; 334 335 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 336 337 memset(skb, 0, offsetof(struct sk_buff, tail)); 338 skb->truesize = SKB_TRUESIZE(size); 339 skb->head_frag = frag_size != 0; 340 atomic_set(&skb->users, 1); 341 skb->head = data; 342 skb->data = data; 343 skb_reset_tail_pointer(skb); 344 skb->end = skb->tail + size; 345 skb->mac_header = (typeof(skb->mac_header))~0U; 346 skb->transport_header = (typeof(skb->transport_header))~0U; 347 348 /* make sure we initialize shinfo sequentially */ 349 shinfo = skb_shinfo(skb); 350 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 351 atomic_set(&shinfo->dataref, 1); 352 kmemcheck_annotate_variable(shinfo->destructor_arg); 353 354 return skb; 355 } 356 EXPORT_SYMBOL(build_skb); 357 358 struct netdev_alloc_cache { 359 struct page_frag frag; 360 /* we maintain a pagecount bias, so that we dont dirty cache line 361 * containing page->_count every time we allocate a fragment. 362 */ 363 unsigned int pagecnt_bias; 364 }; 365 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 366 367 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 368 { 369 struct netdev_alloc_cache *nc; 370 void *data = NULL; 371 int order; 372 unsigned long flags; 373 374 local_irq_save(flags); 375 nc = &__get_cpu_var(netdev_alloc_cache); 376 if (unlikely(!nc->frag.page)) { 377 refill: 378 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 379 gfp_t gfp = gfp_mask; 380 381 if (order) 382 gfp |= __GFP_COMP | __GFP_NOWARN; 383 nc->frag.page = alloc_pages(gfp, order); 384 if (likely(nc->frag.page)) 385 break; 386 if (--order < 0) 387 goto end; 388 } 389 nc->frag.size = PAGE_SIZE << order; 390 recycle: 391 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 392 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 393 nc->frag.offset = 0; 394 } 395 396 if (nc->frag.offset + fragsz > nc->frag.size) { 397 /* avoid unnecessary locked operations if possible */ 398 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 399 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 400 goto recycle; 401 goto refill; 402 } 403 404 data = page_address(nc->frag.page) + nc->frag.offset; 405 nc->frag.offset += fragsz; 406 nc->pagecnt_bias--; 407 end: 408 local_irq_restore(flags); 409 return data; 410 } 411 412 /** 413 * netdev_alloc_frag - allocate a page fragment 414 * @fragsz: fragment size 415 * 416 * Allocates a frag from a page for receive buffer. 417 * Uses GFP_ATOMIC allocations. 418 */ 419 void *netdev_alloc_frag(unsigned int fragsz) 420 { 421 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 422 } 423 EXPORT_SYMBOL(netdev_alloc_frag); 424 425 /** 426 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 427 * @dev: network device to receive on 428 * @length: length to allocate 429 * @gfp_mask: get_free_pages mask, passed to alloc_skb 430 * 431 * Allocate a new &sk_buff and assign it a usage count of one. The 432 * buffer has unspecified headroom built in. Users should allocate 433 * the headroom they think they need without accounting for the 434 * built in space. The built in space is used for optimisations. 435 * 436 * %NULL is returned if there is no free memory. 437 */ 438 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 439 unsigned int length, gfp_t gfp_mask) 440 { 441 struct sk_buff *skb = NULL; 442 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 443 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 444 445 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 446 void *data; 447 448 if (sk_memalloc_socks()) 449 gfp_mask |= __GFP_MEMALLOC; 450 451 data = __netdev_alloc_frag(fragsz, gfp_mask); 452 453 if (likely(data)) { 454 skb = build_skb(data, fragsz); 455 if (unlikely(!skb)) 456 put_page(virt_to_head_page(data)); 457 } 458 } else { 459 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 460 SKB_ALLOC_RX, NUMA_NO_NODE); 461 } 462 if (likely(skb)) { 463 skb_reserve(skb, NET_SKB_PAD); 464 skb->dev = dev; 465 } 466 return skb; 467 } 468 EXPORT_SYMBOL(__netdev_alloc_skb); 469 470 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 471 int size, unsigned int truesize) 472 { 473 skb_fill_page_desc(skb, i, page, off, size); 474 skb->len += size; 475 skb->data_len += size; 476 skb->truesize += truesize; 477 } 478 EXPORT_SYMBOL(skb_add_rx_frag); 479 480 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 481 unsigned int truesize) 482 { 483 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 484 485 skb_frag_size_add(frag, size); 486 skb->len += size; 487 skb->data_len += size; 488 skb->truesize += truesize; 489 } 490 EXPORT_SYMBOL(skb_coalesce_rx_frag); 491 492 static void skb_drop_list(struct sk_buff **listp) 493 { 494 kfree_skb_list(*listp); 495 *listp = NULL; 496 } 497 498 static inline void skb_drop_fraglist(struct sk_buff *skb) 499 { 500 skb_drop_list(&skb_shinfo(skb)->frag_list); 501 } 502 503 static void skb_clone_fraglist(struct sk_buff *skb) 504 { 505 struct sk_buff *list; 506 507 skb_walk_frags(skb, list) 508 skb_get(list); 509 } 510 511 static void skb_free_head(struct sk_buff *skb) 512 { 513 if (skb->head_frag) 514 put_page(virt_to_head_page(skb->head)); 515 else 516 kfree(skb->head); 517 } 518 519 static void skb_release_data(struct sk_buff *skb) 520 { 521 if (!skb->cloned || 522 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 523 &skb_shinfo(skb)->dataref)) { 524 if (skb_shinfo(skb)->nr_frags) { 525 int i; 526 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 527 skb_frag_unref(skb, i); 528 } 529 530 /* 531 * If skb buf is from userspace, we need to notify the caller 532 * the lower device DMA has done; 533 */ 534 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 535 struct ubuf_info *uarg; 536 537 uarg = skb_shinfo(skb)->destructor_arg; 538 if (uarg->callback) 539 uarg->callback(uarg, true); 540 } 541 542 if (skb_has_frag_list(skb)) 543 skb_drop_fraglist(skb); 544 545 skb_free_head(skb); 546 } 547 } 548 549 /* 550 * Free an skbuff by memory without cleaning the state. 551 */ 552 static void kfree_skbmem(struct sk_buff *skb) 553 { 554 struct sk_buff *other; 555 atomic_t *fclone_ref; 556 557 switch (skb->fclone) { 558 case SKB_FCLONE_UNAVAILABLE: 559 kmem_cache_free(skbuff_head_cache, skb); 560 break; 561 562 case SKB_FCLONE_ORIG: 563 fclone_ref = (atomic_t *) (skb + 2); 564 if (atomic_dec_and_test(fclone_ref)) 565 kmem_cache_free(skbuff_fclone_cache, skb); 566 break; 567 568 case SKB_FCLONE_CLONE: 569 fclone_ref = (atomic_t *) (skb + 1); 570 other = skb - 1; 571 572 /* The clone portion is available for 573 * fast-cloning again. 574 */ 575 skb->fclone = SKB_FCLONE_UNAVAILABLE; 576 577 if (atomic_dec_and_test(fclone_ref)) 578 kmem_cache_free(skbuff_fclone_cache, other); 579 break; 580 } 581 } 582 583 static void skb_release_head_state(struct sk_buff *skb) 584 { 585 skb_dst_drop(skb); 586 #ifdef CONFIG_XFRM 587 secpath_put(skb->sp); 588 #endif 589 if (skb->destructor) { 590 WARN_ON(in_irq()); 591 skb->destructor(skb); 592 } 593 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 594 nf_conntrack_put(skb->nfct); 595 #endif 596 #ifdef CONFIG_BRIDGE_NETFILTER 597 nf_bridge_put(skb->nf_bridge); 598 #endif 599 /* XXX: IS this still necessary? - JHS */ 600 #ifdef CONFIG_NET_SCHED 601 skb->tc_index = 0; 602 #ifdef CONFIG_NET_CLS_ACT 603 skb->tc_verd = 0; 604 #endif 605 #endif 606 } 607 608 /* Free everything but the sk_buff shell. */ 609 static void skb_release_all(struct sk_buff *skb) 610 { 611 skb_release_head_state(skb); 612 if (likely(skb->head)) 613 skb_release_data(skb); 614 } 615 616 /** 617 * __kfree_skb - private function 618 * @skb: buffer 619 * 620 * Free an sk_buff. Release anything attached to the buffer. 621 * Clean the state. This is an internal helper function. Users should 622 * always call kfree_skb 623 */ 624 625 void __kfree_skb(struct sk_buff *skb) 626 { 627 skb_release_all(skb); 628 kfree_skbmem(skb); 629 } 630 EXPORT_SYMBOL(__kfree_skb); 631 632 /** 633 * kfree_skb - free an sk_buff 634 * @skb: buffer to free 635 * 636 * Drop a reference to the buffer and free it if the usage count has 637 * hit zero. 638 */ 639 void kfree_skb(struct sk_buff *skb) 640 { 641 if (unlikely(!skb)) 642 return; 643 if (likely(atomic_read(&skb->users) == 1)) 644 smp_rmb(); 645 else if (likely(!atomic_dec_and_test(&skb->users))) 646 return; 647 trace_kfree_skb(skb, __builtin_return_address(0)); 648 __kfree_skb(skb); 649 } 650 EXPORT_SYMBOL(kfree_skb); 651 652 void kfree_skb_list(struct sk_buff *segs) 653 { 654 while (segs) { 655 struct sk_buff *next = segs->next; 656 657 kfree_skb(segs); 658 segs = next; 659 } 660 } 661 EXPORT_SYMBOL(kfree_skb_list); 662 663 /** 664 * skb_tx_error - report an sk_buff xmit error 665 * @skb: buffer that triggered an error 666 * 667 * Report xmit error if a device callback is tracking this skb. 668 * skb must be freed afterwards. 669 */ 670 void skb_tx_error(struct sk_buff *skb) 671 { 672 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 673 struct ubuf_info *uarg; 674 675 uarg = skb_shinfo(skb)->destructor_arg; 676 if (uarg->callback) 677 uarg->callback(uarg, false); 678 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 679 } 680 } 681 EXPORT_SYMBOL(skb_tx_error); 682 683 /** 684 * consume_skb - free an skbuff 685 * @skb: buffer to free 686 * 687 * Drop a ref to the buffer and free it if the usage count has hit zero 688 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 689 * is being dropped after a failure and notes that 690 */ 691 void consume_skb(struct sk_buff *skb) 692 { 693 if (unlikely(!skb)) 694 return; 695 if (likely(atomic_read(&skb->users) == 1)) 696 smp_rmb(); 697 else if (likely(!atomic_dec_and_test(&skb->users))) 698 return; 699 trace_consume_skb(skb); 700 __kfree_skb(skb); 701 } 702 EXPORT_SYMBOL(consume_skb); 703 704 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 705 { 706 new->tstamp = old->tstamp; 707 new->dev = old->dev; 708 new->transport_header = old->transport_header; 709 new->network_header = old->network_header; 710 new->mac_header = old->mac_header; 711 new->inner_protocol = old->inner_protocol; 712 new->inner_transport_header = old->inner_transport_header; 713 new->inner_network_header = old->inner_network_header; 714 new->inner_mac_header = old->inner_mac_header; 715 skb_dst_copy(new, old); 716 skb_copy_hash(new, old); 717 new->ooo_okay = old->ooo_okay; 718 new->no_fcs = old->no_fcs; 719 new->encapsulation = old->encapsulation; 720 #ifdef CONFIG_XFRM 721 new->sp = secpath_get(old->sp); 722 #endif 723 memcpy(new->cb, old->cb, sizeof(old->cb)); 724 new->csum = old->csum; 725 new->local_df = old->local_df; 726 new->pkt_type = old->pkt_type; 727 new->ip_summed = old->ip_summed; 728 skb_copy_queue_mapping(new, old); 729 new->priority = old->priority; 730 #if IS_ENABLED(CONFIG_IP_VS) 731 new->ipvs_property = old->ipvs_property; 732 #endif 733 new->pfmemalloc = old->pfmemalloc; 734 new->protocol = old->protocol; 735 new->mark = old->mark; 736 new->skb_iif = old->skb_iif; 737 __nf_copy(new, old); 738 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 739 new->nf_trace = old->nf_trace; 740 #endif 741 #ifdef CONFIG_NET_SCHED 742 new->tc_index = old->tc_index; 743 #ifdef CONFIG_NET_CLS_ACT 744 new->tc_verd = old->tc_verd; 745 #endif 746 #endif 747 new->vlan_proto = old->vlan_proto; 748 new->vlan_tci = old->vlan_tci; 749 750 skb_copy_secmark(new, old); 751 752 #ifdef CONFIG_NET_RX_BUSY_POLL 753 new->napi_id = old->napi_id; 754 #endif 755 } 756 757 /* 758 * You should not add any new code to this function. Add it to 759 * __copy_skb_header above instead. 760 */ 761 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 762 { 763 #define C(x) n->x = skb->x 764 765 n->next = n->prev = NULL; 766 n->sk = NULL; 767 __copy_skb_header(n, skb); 768 769 C(len); 770 C(data_len); 771 C(mac_len); 772 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 773 n->cloned = 1; 774 n->nohdr = 0; 775 n->destructor = NULL; 776 C(tail); 777 C(end); 778 C(head); 779 C(head_frag); 780 C(data); 781 C(truesize); 782 atomic_set(&n->users, 1); 783 784 atomic_inc(&(skb_shinfo(skb)->dataref)); 785 skb->cloned = 1; 786 787 return n; 788 #undef C 789 } 790 791 /** 792 * skb_morph - morph one skb into another 793 * @dst: the skb to receive the contents 794 * @src: the skb to supply the contents 795 * 796 * This is identical to skb_clone except that the target skb is 797 * supplied by the user. 798 * 799 * The target skb is returned upon exit. 800 */ 801 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 802 { 803 skb_release_all(dst); 804 return __skb_clone(dst, src); 805 } 806 EXPORT_SYMBOL_GPL(skb_morph); 807 808 /** 809 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 810 * @skb: the skb to modify 811 * @gfp_mask: allocation priority 812 * 813 * This must be called on SKBTX_DEV_ZEROCOPY skb. 814 * It will copy all frags into kernel and drop the reference 815 * to userspace pages. 816 * 817 * If this function is called from an interrupt gfp_mask() must be 818 * %GFP_ATOMIC. 819 * 820 * Returns 0 on success or a negative error code on failure 821 * to allocate kernel memory to copy to. 822 */ 823 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 824 { 825 int i; 826 int num_frags = skb_shinfo(skb)->nr_frags; 827 struct page *page, *head = NULL; 828 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 829 830 for (i = 0; i < num_frags; i++) { 831 u8 *vaddr; 832 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 833 834 page = alloc_page(gfp_mask); 835 if (!page) { 836 while (head) { 837 struct page *next = (struct page *)page_private(head); 838 put_page(head); 839 head = next; 840 } 841 return -ENOMEM; 842 } 843 vaddr = kmap_atomic(skb_frag_page(f)); 844 memcpy(page_address(page), 845 vaddr + f->page_offset, skb_frag_size(f)); 846 kunmap_atomic(vaddr); 847 set_page_private(page, (unsigned long)head); 848 head = page; 849 } 850 851 /* skb frags release userspace buffers */ 852 for (i = 0; i < num_frags; i++) 853 skb_frag_unref(skb, i); 854 855 uarg->callback(uarg, false); 856 857 /* skb frags point to kernel buffers */ 858 for (i = num_frags - 1; i >= 0; i--) { 859 __skb_fill_page_desc(skb, i, head, 0, 860 skb_shinfo(skb)->frags[i].size); 861 head = (struct page *)page_private(head); 862 } 863 864 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 865 return 0; 866 } 867 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 868 869 /** 870 * skb_clone - duplicate an sk_buff 871 * @skb: buffer to clone 872 * @gfp_mask: allocation priority 873 * 874 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 875 * copies share the same packet data but not structure. The new 876 * buffer has a reference count of 1. If the allocation fails the 877 * function returns %NULL otherwise the new buffer is returned. 878 * 879 * If this function is called from an interrupt gfp_mask() must be 880 * %GFP_ATOMIC. 881 */ 882 883 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 884 { 885 struct sk_buff *n; 886 887 if (skb_orphan_frags(skb, gfp_mask)) 888 return NULL; 889 890 n = skb + 1; 891 if (skb->fclone == SKB_FCLONE_ORIG && 892 n->fclone == SKB_FCLONE_UNAVAILABLE) { 893 atomic_t *fclone_ref = (atomic_t *) (n + 1); 894 n->fclone = SKB_FCLONE_CLONE; 895 atomic_inc(fclone_ref); 896 } else { 897 if (skb_pfmemalloc(skb)) 898 gfp_mask |= __GFP_MEMALLOC; 899 900 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 901 if (!n) 902 return NULL; 903 904 kmemcheck_annotate_bitfield(n, flags1); 905 kmemcheck_annotate_bitfield(n, flags2); 906 n->fclone = SKB_FCLONE_UNAVAILABLE; 907 } 908 909 return __skb_clone(n, skb); 910 } 911 EXPORT_SYMBOL(skb_clone); 912 913 static void skb_headers_offset_update(struct sk_buff *skb, int off) 914 { 915 /* Only adjust this if it actually is csum_start rather than csum */ 916 if (skb->ip_summed == CHECKSUM_PARTIAL) 917 skb->csum_start += off; 918 /* {transport,network,mac}_header and tail are relative to skb->head */ 919 skb->transport_header += off; 920 skb->network_header += off; 921 if (skb_mac_header_was_set(skb)) 922 skb->mac_header += off; 923 skb->inner_transport_header += off; 924 skb->inner_network_header += off; 925 skb->inner_mac_header += off; 926 } 927 928 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 929 { 930 __copy_skb_header(new, old); 931 932 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 933 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 934 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 935 } 936 937 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 938 { 939 if (skb_pfmemalloc(skb)) 940 return SKB_ALLOC_RX; 941 return 0; 942 } 943 944 /** 945 * skb_copy - create private copy of an sk_buff 946 * @skb: buffer to copy 947 * @gfp_mask: allocation priority 948 * 949 * Make a copy of both an &sk_buff and its data. This is used when the 950 * caller wishes to modify the data and needs a private copy of the 951 * data to alter. Returns %NULL on failure or the pointer to the buffer 952 * on success. The returned buffer has a reference count of 1. 953 * 954 * As by-product this function converts non-linear &sk_buff to linear 955 * one, so that &sk_buff becomes completely private and caller is allowed 956 * to modify all the data of returned buffer. This means that this 957 * function is not recommended for use in circumstances when only 958 * header is going to be modified. Use pskb_copy() instead. 959 */ 960 961 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 962 { 963 int headerlen = skb_headroom(skb); 964 unsigned int size = skb_end_offset(skb) + skb->data_len; 965 struct sk_buff *n = __alloc_skb(size, gfp_mask, 966 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 967 968 if (!n) 969 return NULL; 970 971 /* Set the data pointer */ 972 skb_reserve(n, headerlen); 973 /* Set the tail pointer and length */ 974 skb_put(n, skb->len); 975 976 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 977 BUG(); 978 979 copy_skb_header(n, skb); 980 return n; 981 } 982 EXPORT_SYMBOL(skb_copy); 983 984 /** 985 * __pskb_copy - create copy of an sk_buff with private head. 986 * @skb: buffer to copy 987 * @headroom: headroom of new skb 988 * @gfp_mask: allocation priority 989 * 990 * Make a copy of both an &sk_buff and part of its data, located 991 * in header. Fragmented data remain shared. This is used when 992 * the caller wishes to modify only header of &sk_buff and needs 993 * private copy of the header to alter. Returns %NULL on failure 994 * or the pointer to the buffer on success. 995 * The returned buffer has a reference count of 1. 996 */ 997 998 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 999 { 1000 unsigned int size = skb_headlen(skb) + headroom; 1001 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1002 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1003 1004 if (!n) 1005 goto out; 1006 1007 /* Set the data pointer */ 1008 skb_reserve(n, headroom); 1009 /* Set the tail pointer and length */ 1010 skb_put(n, skb_headlen(skb)); 1011 /* Copy the bytes */ 1012 skb_copy_from_linear_data(skb, n->data, n->len); 1013 1014 n->truesize += skb->data_len; 1015 n->data_len = skb->data_len; 1016 n->len = skb->len; 1017 1018 if (skb_shinfo(skb)->nr_frags) { 1019 int i; 1020 1021 if (skb_orphan_frags(skb, gfp_mask)) { 1022 kfree_skb(n); 1023 n = NULL; 1024 goto out; 1025 } 1026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1027 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1028 skb_frag_ref(skb, i); 1029 } 1030 skb_shinfo(n)->nr_frags = i; 1031 } 1032 1033 if (skb_has_frag_list(skb)) { 1034 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1035 skb_clone_fraglist(n); 1036 } 1037 1038 copy_skb_header(n, skb); 1039 out: 1040 return n; 1041 } 1042 EXPORT_SYMBOL(__pskb_copy); 1043 1044 /** 1045 * pskb_expand_head - reallocate header of &sk_buff 1046 * @skb: buffer to reallocate 1047 * @nhead: room to add at head 1048 * @ntail: room to add at tail 1049 * @gfp_mask: allocation priority 1050 * 1051 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1052 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1053 * reference count of 1. Returns zero in the case of success or error, 1054 * if expansion failed. In the last case, &sk_buff is not changed. 1055 * 1056 * All the pointers pointing into skb header may change and must be 1057 * reloaded after call to this function. 1058 */ 1059 1060 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1061 gfp_t gfp_mask) 1062 { 1063 int i; 1064 u8 *data; 1065 int size = nhead + skb_end_offset(skb) + ntail; 1066 long off; 1067 1068 BUG_ON(nhead < 0); 1069 1070 if (skb_shared(skb)) 1071 BUG(); 1072 1073 size = SKB_DATA_ALIGN(size); 1074 1075 if (skb_pfmemalloc(skb)) 1076 gfp_mask |= __GFP_MEMALLOC; 1077 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1078 gfp_mask, NUMA_NO_NODE, NULL); 1079 if (!data) 1080 goto nodata; 1081 size = SKB_WITH_OVERHEAD(ksize(data)); 1082 1083 /* Copy only real data... and, alas, header. This should be 1084 * optimized for the cases when header is void. 1085 */ 1086 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1087 1088 memcpy((struct skb_shared_info *)(data + size), 1089 skb_shinfo(skb), 1090 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1091 1092 /* 1093 * if shinfo is shared we must drop the old head gracefully, but if it 1094 * is not we can just drop the old head and let the existing refcount 1095 * be since all we did is relocate the values 1096 */ 1097 if (skb_cloned(skb)) { 1098 /* copy this zero copy skb frags */ 1099 if (skb_orphan_frags(skb, gfp_mask)) 1100 goto nofrags; 1101 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1102 skb_frag_ref(skb, i); 1103 1104 if (skb_has_frag_list(skb)) 1105 skb_clone_fraglist(skb); 1106 1107 skb_release_data(skb); 1108 } else { 1109 skb_free_head(skb); 1110 } 1111 off = (data + nhead) - skb->head; 1112 1113 skb->head = data; 1114 skb->head_frag = 0; 1115 skb->data += off; 1116 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1117 skb->end = size; 1118 off = nhead; 1119 #else 1120 skb->end = skb->head + size; 1121 #endif 1122 skb->tail += off; 1123 skb_headers_offset_update(skb, nhead); 1124 skb->cloned = 0; 1125 skb->hdr_len = 0; 1126 skb->nohdr = 0; 1127 atomic_set(&skb_shinfo(skb)->dataref, 1); 1128 return 0; 1129 1130 nofrags: 1131 kfree(data); 1132 nodata: 1133 return -ENOMEM; 1134 } 1135 EXPORT_SYMBOL(pskb_expand_head); 1136 1137 /* Make private copy of skb with writable head and some headroom */ 1138 1139 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1140 { 1141 struct sk_buff *skb2; 1142 int delta = headroom - skb_headroom(skb); 1143 1144 if (delta <= 0) 1145 skb2 = pskb_copy(skb, GFP_ATOMIC); 1146 else { 1147 skb2 = skb_clone(skb, GFP_ATOMIC); 1148 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1149 GFP_ATOMIC)) { 1150 kfree_skb(skb2); 1151 skb2 = NULL; 1152 } 1153 } 1154 return skb2; 1155 } 1156 EXPORT_SYMBOL(skb_realloc_headroom); 1157 1158 /** 1159 * skb_copy_expand - copy and expand sk_buff 1160 * @skb: buffer to copy 1161 * @newheadroom: new free bytes at head 1162 * @newtailroom: new free bytes at tail 1163 * @gfp_mask: allocation priority 1164 * 1165 * Make a copy of both an &sk_buff and its data and while doing so 1166 * allocate additional space. 1167 * 1168 * This is used when the caller wishes to modify the data and needs a 1169 * private copy of the data to alter as well as more space for new fields. 1170 * Returns %NULL on failure or the pointer to the buffer 1171 * on success. The returned buffer has a reference count of 1. 1172 * 1173 * You must pass %GFP_ATOMIC as the allocation priority if this function 1174 * is called from an interrupt. 1175 */ 1176 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1177 int newheadroom, int newtailroom, 1178 gfp_t gfp_mask) 1179 { 1180 /* 1181 * Allocate the copy buffer 1182 */ 1183 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1184 gfp_mask, skb_alloc_rx_flag(skb), 1185 NUMA_NO_NODE); 1186 int oldheadroom = skb_headroom(skb); 1187 int head_copy_len, head_copy_off; 1188 1189 if (!n) 1190 return NULL; 1191 1192 skb_reserve(n, newheadroom); 1193 1194 /* Set the tail pointer and length */ 1195 skb_put(n, skb->len); 1196 1197 head_copy_len = oldheadroom; 1198 head_copy_off = 0; 1199 if (newheadroom <= head_copy_len) 1200 head_copy_len = newheadroom; 1201 else 1202 head_copy_off = newheadroom - head_copy_len; 1203 1204 /* Copy the linear header and data. */ 1205 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1206 skb->len + head_copy_len)) 1207 BUG(); 1208 1209 copy_skb_header(n, skb); 1210 1211 skb_headers_offset_update(n, newheadroom - oldheadroom); 1212 1213 return n; 1214 } 1215 EXPORT_SYMBOL(skb_copy_expand); 1216 1217 /** 1218 * skb_pad - zero pad the tail of an skb 1219 * @skb: buffer to pad 1220 * @pad: space to pad 1221 * 1222 * Ensure that a buffer is followed by a padding area that is zero 1223 * filled. Used by network drivers which may DMA or transfer data 1224 * beyond the buffer end onto the wire. 1225 * 1226 * May return error in out of memory cases. The skb is freed on error. 1227 */ 1228 1229 int skb_pad(struct sk_buff *skb, int pad) 1230 { 1231 int err; 1232 int ntail; 1233 1234 /* If the skbuff is non linear tailroom is always zero.. */ 1235 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1236 memset(skb->data+skb->len, 0, pad); 1237 return 0; 1238 } 1239 1240 ntail = skb->data_len + pad - (skb->end - skb->tail); 1241 if (likely(skb_cloned(skb) || ntail > 0)) { 1242 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1243 if (unlikely(err)) 1244 goto free_skb; 1245 } 1246 1247 /* FIXME: The use of this function with non-linear skb's really needs 1248 * to be audited. 1249 */ 1250 err = skb_linearize(skb); 1251 if (unlikely(err)) 1252 goto free_skb; 1253 1254 memset(skb->data + skb->len, 0, pad); 1255 return 0; 1256 1257 free_skb: 1258 kfree_skb(skb); 1259 return err; 1260 } 1261 EXPORT_SYMBOL(skb_pad); 1262 1263 /** 1264 * pskb_put - add data to the tail of a potentially fragmented buffer 1265 * @skb: start of the buffer to use 1266 * @tail: tail fragment of the buffer to use 1267 * @len: amount of data to add 1268 * 1269 * This function extends the used data area of the potentially 1270 * fragmented buffer. @tail must be the last fragment of @skb -- or 1271 * @skb itself. If this would exceed the total buffer size the kernel 1272 * will panic. A pointer to the first byte of the extra data is 1273 * returned. 1274 */ 1275 1276 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1277 { 1278 if (tail != skb) { 1279 skb->data_len += len; 1280 skb->len += len; 1281 } 1282 return skb_put(tail, len); 1283 } 1284 EXPORT_SYMBOL_GPL(pskb_put); 1285 1286 /** 1287 * skb_put - add data to a buffer 1288 * @skb: buffer to use 1289 * @len: amount of data to add 1290 * 1291 * This function extends the used data area of the buffer. If this would 1292 * exceed the total buffer size the kernel will panic. A pointer to the 1293 * first byte of the extra data is returned. 1294 */ 1295 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1296 { 1297 unsigned char *tmp = skb_tail_pointer(skb); 1298 SKB_LINEAR_ASSERT(skb); 1299 skb->tail += len; 1300 skb->len += len; 1301 if (unlikely(skb->tail > skb->end)) 1302 skb_over_panic(skb, len, __builtin_return_address(0)); 1303 return tmp; 1304 } 1305 EXPORT_SYMBOL(skb_put); 1306 1307 /** 1308 * skb_push - add data to the start of a buffer 1309 * @skb: buffer to use 1310 * @len: amount of data to add 1311 * 1312 * This function extends the used data area of the buffer at the buffer 1313 * start. If this would exceed the total buffer headroom the kernel will 1314 * panic. A pointer to the first byte of the extra data is returned. 1315 */ 1316 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1317 { 1318 skb->data -= len; 1319 skb->len += len; 1320 if (unlikely(skb->data<skb->head)) 1321 skb_under_panic(skb, len, __builtin_return_address(0)); 1322 return skb->data; 1323 } 1324 EXPORT_SYMBOL(skb_push); 1325 1326 /** 1327 * skb_pull - remove data from the start of a buffer 1328 * @skb: buffer to use 1329 * @len: amount of data to remove 1330 * 1331 * This function removes data from the start of a buffer, returning 1332 * the memory to the headroom. A pointer to the next data in the buffer 1333 * is returned. Once the data has been pulled future pushes will overwrite 1334 * the old data. 1335 */ 1336 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1337 { 1338 return skb_pull_inline(skb, len); 1339 } 1340 EXPORT_SYMBOL(skb_pull); 1341 1342 /** 1343 * skb_trim - remove end from a buffer 1344 * @skb: buffer to alter 1345 * @len: new length 1346 * 1347 * Cut the length of a buffer down by removing data from the tail. If 1348 * the buffer is already under the length specified it is not modified. 1349 * The skb must be linear. 1350 */ 1351 void skb_trim(struct sk_buff *skb, unsigned int len) 1352 { 1353 if (skb->len > len) 1354 __skb_trim(skb, len); 1355 } 1356 EXPORT_SYMBOL(skb_trim); 1357 1358 /* Trims skb to length len. It can change skb pointers. 1359 */ 1360 1361 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1362 { 1363 struct sk_buff **fragp; 1364 struct sk_buff *frag; 1365 int offset = skb_headlen(skb); 1366 int nfrags = skb_shinfo(skb)->nr_frags; 1367 int i; 1368 int err; 1369 1370 if (skb_cloned(skb) && 1371 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1372 return err; 1373 1374 i = 0; 1375 if (offset >= len) 1376 goto drop_pages; 1377 1378 for (; i < nfrags; i++) { 1379 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1380 1381 if (end < len) { 1382 offset = end; 1383 continue; 1384 } 1385 1386 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1387 1388 drop_pages: 1389 skb_shinfo(skb)->nr_frags = i; 1390 1391 for (; i < nfrags; i++) 1392 skb_frag_unref(skb, i); 1393 1394 if (skb_has_frag_list(skb)) 1395 skb_drop_fraglist(skb); 1396 goto done; 1397 } 1398 1399 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1400 fragp = &frag->next) { 1401 int end = offset + frag->len; 1402 1403 if (skb_shared(frag)) { 1404 struct sk_buff *nfrag; 1405 1406 nfrag = skb_clone(frag, GFP_ATOMIC); 1407 if (unlikely(!nfrag)) 1408 return -ENOMEM; 1409 1410 nfrag->next = frag->next; 1411 consume_skb(frag); 1412 frag = nfrag; 1413 *fragp = frag; 1414 } 1415 1416 if (end < len) { 1417 offset = end; 1418 continue; 1419 } 1420 1421 if (end > len && 1422 unlikely((err = pskb_trim(frag, len - offset)))) 1423 return err; 1424 1425 if (frag->next) 1426 skb_drop_list(&frag->next); 1427 break; 1428 } 1429 1430 done: 1431 if (len > skb_headlen(skb)) { 1432 skb->data_len -= skb->len - len; 1433 skb->len = len; 1434 } else { 1435 skb->len = len; 1436 skb->data_len = 0; 1437 skb_set_tail_pointer(skb, len); 1438 } 1439 1440 return 0; 1441 } 1442 EXPORT_SYMBOL(___pskb_trim); 1443 1444 /** 1445 * __pskb_pull_tail - advance tail of skb header 1446 * @skb: buffer to reallocate 1447 * @delta: number of bytes to advance tail 1448 * 1449 * The function makes a sense only on a fragmented &sk_buff, 1450 * it expands header moving its tail forward and copying necessary 1451 * data from fragmented part. 1452 * 1453 * &sk_buff MUST have reference count of 1. 1454 * 1455 * Returns %NULL (and &sk_buff does not change) if pull failed 1456 * or value of new tail of skb in the case of success. 1457 * 1458 * All the pointers pointing into skb header may change and must be 1459 * reloaded after call to this function. 1460 */ 1461 1462 /* Moves tail of skb head forward, copying data from fragmented part, 1463 * when it is necessary. 1464 * 1. It may fail due to malloc failure. 1465 * 2. It may change skb pointers. 1466 * 1467 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1468 */ 1469 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1470 { 1471 /* If skb has not enough free space at tail, get new one 1472 * plus 128 bytes for future expansions. If we have enough 1473 * room at tail, reallocate without expansion only if skb is cloned. 1474 */ 1475 int i, k, eat = (skb->tail + delta) - skb->end; 1476 1477 if (eat > 0 || skb_cloned(skb)) { 1478 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1479 GFP_ATOMIC)) 1480 return NULL; 1481 } 1482 1483 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1484 BUG(); 1485 1486 /* Optimization: no fragments, no reasons to preestimate 1487 * size of pulled pages. Superb. 1488 */ 1489 if (!skb_has_frag_list(skb)) 1490 goto pull_pages; 1491 1492 /* Estimate size of pulled pages. */ 1493 eat = delta; 1494 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1495 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1496 1497 if (size >= eat) 1498 goto pull_pages; 1499 eat -= size; 1500 } 1501 1502 /* If we need update frag list, we are in troubles. 1503 * Certainly, it possible to add an offset to skb data, 1504 * but taking into account that pulling is expected to 1505 * be very rare operation, it is worth to fight against 1506 * further bloating skb head and crucify ourselves here instead. 1507 * Pure masohism, indeed. 8)8) 1508 */ 1509 if (eat) { 1510 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1511 struct sk_buff *clone = NULL; 1512 struct sk_buff *insp = NULL; 1513 1514 do { 1515 BUG_ON(!list); 1516 1517 if (list->len <= eat) { 1518 /* Eaten as whole. */ 1519 eat -= list->len; 1520 list = list->next; 1521 insp = list; 1522 } else { 1523 /* Eaten partially. */ 1524 1525 if (skb_shared(list)) { 1526 /* Sucks! We need to fork list. :-( */ 1527 clone = skb_clone(list, GFP_ATOMIC); 1528 if (!clone) 1529 return NULL; 1530 insp = list->next; 1531 list = clone; 1532 } else { 1533 /* This may be pulled without 1534 * problems. */ 1535 insp = list; 1536 } 1537 if (!pskb_pull(list, eat)) { 1538 kfree_skb(clone); 1539 return NULL; 1540 } 1541 break; 1542 } 1543 } while (eat); 1544 1545 /* Free pulled out fragments. */ 1546 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1547 skb_shinfo(skb)->frag_list = list->next; 1548 kfree_skb(list); 1549 } 1550 /* And insert new clone at head. */ 1551 if (clone) { 1552 clone->next = list; 1553 skb_shinfo(skb)->frag_list = clone; 1554 } 1555 } 1556 /* Success! Now we may commit changes to skb data. */ 1557 1558 pull_pages: 1559 eat = delta; 1560 k = 0; 1561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1562 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1563 1564 if (size <= eat) { 1565 skb_frag_unref(skb, i); 1566 eat -= size; 1567 } else { 1568 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1569 if (eat) { 1570 skb_shinfo(skb)->frags[k].page_offset += eat; 1571 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1572 eat = 0; 1573 } 1574 k++; 1575 } 1576 } 1577 skb_shinfo(skb)->nr_frags = k; 1578 1579 skb->tail += delta; 1580 skb->data_len -= delta; 1581 1582 return skb_tail_pointer(skb); 1583 } 1584 EXPORT_SYMBOL(__pskb_pull_tail); 1585 1586 /** 1587 * skb_copy_bits - copy bits from skb to kernel buffer 1588 * @skb: source skb 1589 * @offset: offset in source 1590 * @to: destination buffer 1591 * @len: number of bytes to copy 1592 * 1593 * Copy the specified number of bytes from the source skb to the 1594 * destination buffer. 1595 * 1596 * CAUTION ! : 1597 * If its prototype is ever changed, 1598 * check arch/{*}/net/{*}.S files, 1599 * since it is called from BPF assembly code. 1600 */ 1601 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1602 { 1603 int start = skb_headlen(skb); 1604 struct sk_buff *frag_iter; 1605 int i, copy; 1606 1607 if (offset > (int)skb->len - len) 1608 goto fault; 1609 1610 /* Copy header. */ 1611 if ((copy = start - offset) > 0) { 1612 if (copy > len) 1613 copy = len; 1614 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1615 if ((len -= copy) == 0) 1616 return 0; 1617 offset += copy; 1618 to += copy; 1619 } 1620 1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1622 int end; 1623 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1624 1625 WARN_ON(start > offset + len); 1626 1627 end = start + skb_frag_size(f); 1628 if ((copy = end - offset) > 0) { 1629 u8 *vaddr; 1630 1631 if (copy > len) 1632 copy = len; 1633 1634 vaddr = kmap_atomic(skb_frag_page(f)); 1635 memcpy(to, 1636 vaddr + f->page_offset + offset - start, 1637 copy); 1638 kunmap_atomic(vaddr); 1639 1640 if ((len -= copy) == 0) 1641 return 0; 1642 offset += copy; 1643 to += copy; 1644 } 1645 start = end; 1646 } 1647 1648 skb_walk_frags(skb, frag_iter) { 1649 int end; 1650 1651 WARN_ON(start > offset + len); 1652 1653 end = start + frag_iter->len; 1654 if ((copy = end - offset) > 0) { 1655 if (copy > len) 1656 copy = len; 1657 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1658 goto fault; 1659 if ((len -= copy) == 0) 1660 return 0; 1661 offset += copy; 1662 to += copy; 1663 } 1664 start = end; 1665 } 1666 1667 if (!len) 1668 return 0; 1669 1670 fault: 1671 return -EFAULT; 1672 } 1673 EXPORT_SYMBOL(skb_copy_bits); 1674 1675 /* 1676 * Callback from splice_to_pipe(), if we need to release some pages 1677 * at the end of the spd in case we error'ed out in filling the pipe. 1678 */ 1679 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1680 { 1681 put_page(spd->pages[i]); 1682 } 1683 1684 static struct page *linear_to_page(struct page *page, unsigned int *len, 1685 unsigned int *offset, 1686 struct sock *sk) 1687 { 1688 struct page_frag *pfrag = sk_page_frag(sk); 1689 1690 if (!sk_page_frag_refill(sk, pfrag)) 1691 return NULL; 1692 1693 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1694 1695 memcpy(page_address(pfrag->page) + pfrag->offset, 1696 page_address(page) + *offset, *len); 1697 *offset = pfrag->offset; 1698 pfrag->offset += *len; 1699 1700 return pfrag->page; 1701 } 1702 1703 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1704 struct page *page, 1705 unsigned int offset) 1706 { 1707 return spd->nr_pages && 1708 spd->pages[spd->nr_pages - 1] == page && 1709 (spd->partial[spd->nr_pages - 1].offset + 1710 spd->partial[spd->nr_pages - 1].len == offset); 1711 } 1712 1713 /* 1714 * Fill page/offset/length into spd, if it can hold more pages. 1715 */ 1716 static bool spd_fill_page(struct splice_pipe_desc *spd, 1717 struct pipe_inode_info *pipe, struct page *page, 1718 unsigned int *len, unsigned int offset, 1719 bool linear, 1720 struct sock *sk) 1721 { 1722 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1723 return true; 1724 1725 if (linear) { 1726 page = linear_to_page(page, len, &offset, sk); 1727 if (!page) 1728 return true; 1729 } 1730 if (spd_can_coalesce(spd, page, offset)) { 1731 spd->partial[spd->nr_pages - 1].len += *len; 1732 return false; 1733 } 1734 get_page(page); 1735 spd->pages[spd->nr_pages] = page; 1736 spd->partial[spd->nr_pages].len = *len; 1737 spd->partial[spd->nr_pages].offset = offset; 1738 spd->nr_pages++; 1739 1740 return false; 1741 } 1742 1743 static bool __splice_segment(struct page *page, unsigned int poff, 1744 unsigned int plen, unsigned int *off, 1745 unsigned int *len, 1746 struct splice_pipe_desc *spd, bool linear, 1747 struct sock *sk, 1748 struct pipe_inode_info *pipe) 1749 { 1750 if (!*len) 1751 return true; 1752 1753 /* skip this segment if already processed */ 1754 if (*off >= plen) { 1755 *off -= plen; 1756 return false; 1757 } 1758 1759 /* ignore any bits we already processed */ 1760 poff += *off; 1761 plen -= *off; 1762 *off = 0; 1763 1764 do { 1765 unsigned int flen = min(*len, plen); 1766 1767 if (spd_fill_page(spd, pipe, page, &flen, poff, 1768 linear, sk)) 1769 return true; 1770 poff += flen; 1771 plen -= flen; 1772 *len -= flen; 1773 } while (*len && plen); 1774 1775 return false; 1776 } 1777 1778 /* 1779 * Map linear and fragment data from the skb to spd. It reports true if the 1780 * pipe is full or if we already spliced the requested length. 1781 */ 1782 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1783 unsigned int *offset, unsigned int *len, 1784 struct splice_pipe_desc *spd, struct sock *sk) 1785 { 1786 int seg; 1787 1788 /* map the linear part : 1789 * If skb->head_frag is set, this 'linear' part is backed by a 1790 * fragment, and if the head is not shared with any clones then 1791 * we can avoid a copy since we own the head portion of this page. 1792 */ 1793 if (__splice_segment(virt_to_page(skb->data), 1794 (unsigned long) skb->data & (PAGE_SIZE - 1), 1795 skb_headlen(skb), 1796 offset, len, spd, 1797 skb_head_is_locked(skb), 1798 sk, pipe)) 1799 return true; 1800 1801 /* 1802 * then map the fragments 1803 */ 1804 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1805 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1806 1807 if (__splice_segment(skb_frag_page(f), 1808 f->page_offset, skb_frag_size(f), 1809 offset, len, spd, false, sk, pipe)) 1810 return true; 1811 } 1812 1813 return false; 1814 } 1815 1816 /* 1817 * Map data from the skb to a pipe. Should handle both the linear part, 1818 * the fragments, and the frag list. It does NOT handle frag lists within 1819 * the frag list, if such a thing exists. We'd probably need to recurse to 1820 * handle that cleanly. 1821 */ 1822 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1823 struct pipe_inode_info *pipe, unsigned int tlen, 1824 unsigned int flags) 1825 { 1826 struct partial_page partial[MAX_SKB_FRAGS]; 1827 struct page *pages[MAX_SKB_FRAGS]; 1828 struct splice_pipe_desc spd = { 1829 .pages = pages, 1830 .partial = partial, 1831 .nr_pages_max = MAX_SKB_FRAGS, 1832 .flags = flags, 1833 .ops = &sock_pipe_buf_ops, 1834 .spd_release = sock_spd_release, 1835 }; 1836 struct sk_buff *frag_iter; 1837 struct sock *sk = skb->sk; 1838 int ret = 0; 1839 1840 /* 1841 * __skb_splice_bits() only fails if the output has no room left, 1842 * so no point in going over the frag_list for the error case. 1843 */ 1844 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1845 goto done; 1846 else if (!tlen) 1847 goto done; 1848 1849 /* 1850 * now see if we have a frag_list to map 1851 */ 1852 skb_walk_frags(skb, frag_iter) { 1853 if (!tlen) 1854 break; 1855 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1856 break; 1857 } 1858 1859 done: 1860 if (spd.nr_pages) { 1861 /* 1862 * Drop the socket lock, otherwise we have reverse 1863 * locking dependencies between sk_lock and i_mutex 1864 * here as compared to sendfile(). We enter here 1865 * with the socket lock held, and splice_to_pipe() will 1866 * grab the pipe inode lock. For sendfile() emulation, 1867 * we call into ->sendpage() with the i_mutex lock held 1868 * and networking will grab the socket lock. 1869 */ 1870 release_sock(sk); 1871 ret = splice_to_pipe(pipe, &spd); 1872 lock_sock(sk); 1873 } 1874 1875 return ret; 1876 } 1877 1878 /** 1879 * skb_store_bits - store bits from kernel buffer to skb 1880 * @skb: destination buffer 1881 * @offset: offset in destination 1882 * @from: source buffer 1883 * @len: number of bytes to copy 1884 * 1885 * Copy the specified number of bytes from the source buffer to the 1886 * destination skb. This function handles all the messy bits of 1887 * traversing fragment lists and such. 1888 */ 1889 1890 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1891 { 1892 int start = skb_headlen(skb); 1893 struct sk_buff *frag_iter; 1894 int i, copy; 1895 1896 if (offset > (int)skb->len - len) 1897 goto fault; 1898 1899 if ((copy = start - offset) > 0) { 1900 if (copy > len) 1901 copy = len; 1902 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1903 if ((len -= copy) == 0) 1904 return 0; 1905 offset += copy; 1906 from += copy; 1907 } 1908 1909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1910 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1911 int end; 1912 1913 WARN_ON(start > offset + len); 1914 1915 end = start + skb_frag_size(frag); 1916 if ((copy = end - offset) > 0) { 1917 u8 *vaddr; 1918 1919 if (copy > len) 1920 copy = len; 1921 1922 vaddr = kmap_atomic(skb_frag_page(frag)); 1923 memcpy(vaddr + frag->page_offset + offset - start, 1924 from, copy); 1925 kunmap_atomic(vaddr); 1926 1927 if ((len -= copy) == 0) 1928 return 0; 1929 offset += copy; 1930 from += copy; 1931 } 1932 start = end; 1933 } 1934 1935 skb_walk_frags(skb, frag_iter) { 1936 int end; 1937 1938 WARN_ON(start > offset + len); 1939 1940 end = start + frag_iter->len; 1941 if ((copy = end - offset) > 0) { 1942 if (copy > len) 1943 copy = len; 1944 if (skb_store_bits(frag_iter, offset - start, 1945 from, copy)) 1946 goto fault; 1947 if ((len -= copy) == 0) 1948 return 0; 1949 offset += copy; 1950 from += copy; 1951 } 1952 start = end; 1953 } 1954 if (!len) 1955 return 0; 1956 1957 fault: 1958 return -EFAULT; 1959 } 1960 EXPORT_SYMBOL(skb_store_bits); 1961 1962 /* Checksum skb data. */ 1963 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 1964 __wsum csum, const struct skb_checksum_ops *ops) 1965 { 1966 int start = skb_headlen(skb); 1967 int i, copy = start - offset; 1968 struct sk_buff *frag_iter; 1969 int pos = 0; 1970 1971 /* Checksum header. */ 1972 if (copy > 0) { 1973 if (copy > len) 1974 copy = len; 1975 csum = ops->update(skb->data + offset, copy, csum); 1976 if ((len -= copy) == 0) 1977 return csum; 1978 offset += copy; 1979 pos = copy; 1980 } 1981 1982 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1983 int end; 1984 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1985 1986 WARN_ON(start > offset + len); 1987 1988 end = start + skb_frag_size(frag); 1989 if ((copy = end - offset) > 0) { 1990 __wsum csum2; 1991 u8 *vaddr; 1992 1993 if (copy > len) 1994 copy = len; 1995 vaddr = kmap_atomic(skb_frag_page(frag)); 1996 csum2 = ops->update(vaddr + frag->page_offset + 1997 offset - start, copy, 0); 1998 kunmap_atomic(vaddr); 1999 csum = ops->combine(csum, csum2, pos, copy); 2000 if (!(len -= copy)) 2001 return csum; 2002 offset += copy; 2003 pos += copy; 2004 } 2005 start = end; 2006 } 2007 2008 skb_walk_frags(skb, frag_iter) { 2009 int end; 2010 2011 WARN_ON(start > offset + len); 2012 2013 end = start + frag_iter->len; 2014 if ((copy = end - offset) > 0) { 2015 __wsum csum2; 2016 if (copy > len) 2017 copy = len; 2018 csum2 = __skb_checksum(frag_iter, offset - start, 2019 copy, 0, ops); 2020 csum = ops->combine(csum, csum2, pos, copy); 2021 if ((len -= copy) == 0) 2022 return csum; 2023 offset += copy; 2024 pos += copy; 2025 } 2026 start = end; 2027 } 2028 BUG_ON(len); 2029 2030 return csum; 2031 } 2032 EXPORT_SYMBOL(__skb_checksum); 2033 2034 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2035 int len, __wsum csum) 2036 { 2037 const struct skb_checksum_ops ops = { 2038 .update = csum_partial_ext, 2039 .combine = csum_block_add_ext, 2040 }; 2041 2042 return __skb_checksum(skb, offset, len, csum, &ops); 2043 } 2044 EXPORT_SYMBOL(skb_checksum); 2045 2046 /* Both of above in one bottle. */ 2047 2048 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2049 u8 *to, int len, __wsum csum) 2050 { 2051 int start = skb_headlen(skb); 2052 int i, copy = start - offset; 2053 struct sk_buff *frag_iter; 2054 int pos = 0; 2055 2056 /* Copy header. */ 2057 if (copy > 0) { 2058 if (copy > len) 2059 copy = len; 2060 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2061 copy, csum); 2062 if ((len -= copy) == 0) 2063 return csum; 2064 offset += copy; 2065 to += copy; 2066 pos = copy; 2067 } 2068 2069 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2070 int end; 2071 2072 WARN_ON(start > offset + len); 2073 2074 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2075 if ((copy = end - offset) > 0) { 2076 __wsum csum2; 2077 u8 *vaddr; 2078 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2079 2080 if (copy > len) 2081 copy = len; 2082 vaddr = kmap_atomic(skb_frag_page(frag)); 2083 csum2 = csum_partial_copy_nocheck(vaddr + 2084 frag->page_offset + 2085 offset - start, to, 2086 copy, 0); 2087 kunmap_atomic(vaddr); 2088 csum = csum_block_add(csum, csum2, pos); 2089 if (!(len -= copy)) 2090 return csum; 2091 offset += copy; 2092 to += copy; 2093 pos += copy; 2094 } 2095 start = end; 2096 } 2097 2098 skb_walk_frags(skb, frag_iter) { 2099 __wsum csum2; 2100 int end; 2101 2102 WARN_ON(start > offset + len); 2103 2104 end = start + frag_iter->len; 2105 if ((copy = end - offset) > 0) { 2106 if (copy > len) 2107 copy = len; 2108 csum2 = skb_copy_and_csum_bits(frag_iter, 2109 offset - start, 2110 to, copy, 0); 2111 csum = csum_block_add(csum, csum2, pos); 2112 if ((len -= copy) == 0) 2113 return csum; 2114 offset += copy; 2115 to += copy; 2116 pos += copy; 2117 } 2118 start = end; 2119 } 2120 BUG_ON(len); 2121 return csum; 2122 } 2123 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2124 2125 /** 2126 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2127 * @from: source buffer 2128 * 2129 * Calculates the amount of linear headroom needed in the 'to' skb passed 2130 * into skb_zerocopy(). 2131 */ 2132 unsigned int 2133 skb_zerocopy_headlen(const struct sk_buff *from) 2134 { 2135 unsigned int hlen = 0; 2136 2137 if (!from->head_frag || 2138 skb_headlen(from) < L1_CACHE_BYTES || 2139 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2140 hlen = skb_headlen(from); 2141 2142 if (skb_has_frag_list(from)) 2143 hlen = from->len; 2144 2145 return hlen; 2146 } 2147 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2148 2149 /** 2150 * skb_zerocopy - Zero copy skb to skb 2151 * @to: destination buffer 2152 * @source: source buffer 2153 * @len: number of bytes to copy from source buffer 2154 * @hlen: size of linear headroom in destination buffer 2155 * 2156 * Copies up to `len` bytes from `from` to `to` by creating references 2157 * to the frags in the source buffer. 2158 * 2159 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2160 * headroom in the `to` buffer. 2161 */ 2162 void 2163 skb_zerocopy(struct sk_buff *to, const struct sk_buff *from, int len, int hlen) 2164 { 2165 int i, j = 0; 2166 int plen = 0; /* length of skb->head fragment */ 2167 struct page *page; 2168 unsigned int offset; 2169 2170 BUG_ON(!from->head_frag && !hlen); 2171 2172 /* dont bother with small payloads */ 2173 if (len <= skb_tailroom(to)) { 2174 skb_copy_bits(from, 0, skb_put(to, len), len); 2175 return; 2176 } 2177 2178 if (hlen) { 2179 skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2180 len -= hlen; 2181 } else { 2182 plen = min_t(int, skb_headlen(from), len); 2183 if (plen) { 2184 page = virt_to_head_page(from->head); 2185 offset = from->data - (unsigned char *)page_address(page); 2186 __skb_fill_page_desc(to, 0, page, offset, plen); 2187 get_page(page); 2188 j = 1; 2189 len -= plen; 2190 } 2191 } 2192 2193 to->truesize += len + plen; 2194 to->len += len + plen; 2195 to->data_len += len + plen; 2196 2197 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2198 if (!len) 2199 break; 2200 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2201 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2202 len -= skb_shinfo(to)->frags[j].size; 2203 skb_frag_ref(to, j); 2204 j++; 2205 } 2206 skb_shinfo(to)->nr_frags = j; 2207 } 2208 EXPORT_SYMBOL_GPL(skb_zerocopy); 2209 2210 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2211 { 2212 __wsum csum; 2213 long csstart; 2214 2215 if (skb->ip_summed == CHECKSUM_PARTIAL) 2216 csstart = skb_checksum_start_offset(skb); 2217 else 2218 csstart = skb_headlen(skb); 2219 2220 BUG_ON(csstart > skb_headlen(skb)); 2221 2222 skb_copy_from_linear_data(skb, to, csstart); 2223 2224 csum = 0; 2225 if (csstart != skb->len) 2226 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2227 skb->len - csstart, 0); 2228 2229 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2230 long csstuff = csstart + skb->csum_offset; 2231 2232 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2233 } 2234 } 2235 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2236 2237 /** 2238 * skb_dequeue - remove from the head of the queue 2239 * @list: list to dequeue from 2240 * 2241 * Remove the head of the list. The list lock is taken so the function 2242 * may be used safely with other locking list functions. The head item is 2243 * returned or %NULL if the list is empty. 2244 */ 2245 2246 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2247 { 2248 unsigned long flags; 2249 struct sk_buff *result; 2250 2251 spin_lock_irqsave(&list->lock, flags); 2252 result = __skb_dequeue(list); 2253 spin_unlock_irqrestore(&list->lock, flags); 2254 return result; 2255 } 2256 EXPORT_SYMBOL(skb_dequeue); 2257 2258 /** 2259 * skb_dequeue_tail - remove from the tail of the queue 2260 * @list: list to dequeue from 2261 * 2262 * Remove the tail of the list. The list lock is taken so the function 2263 * may be used safely with other locking list functions. The tail item is 2264 * returned or %NULL if the list is empty. 2265 */ 2266 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2267 { 2268 unsigned long flags; 2269 struct sk_buff *result; 2270 2271 spin_lock_irqsave(&list->lock, flags); 2272 result = __skb_dequeue_tail(list); 2273 spin_unlock_irqrestore(&list->lock, flags); 2274 return result; 2275 } 2276 EXPORT_SYMBOL(skb_dequeue_tail); 2277 2278 /** 2279 * skb_queue_purge - empty a list 2280 * @list: list to empty 2281 * 2282 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2283 * the list and one reference dropped. This function takes the list 2284 * lock and is atomic with respect to other list locking functions. 2285 */ 2286 void skb_queue_purge(struct sk_buff_head *list) 2287 { 2288 struct sk_buff *skb; 2289 while ((skb = skb_dequeue(list)) != NULL) 2290 kfree_skb(skb); 2291 } 2292 EXPORT_SYMBOL(skb_queue_purge); 2293 2294 /** 2295 * skb_queue_head - queue a buffer at the list head 2296 * @list: list to use 2297 * @newsk: buffer to queue 2298 * 2299 * Queue a buffer at the start of the list. This function takes the 2300 * list lock and can be used safely with other locking &sk_buff functions 2301 * safely. 2302 * 2303 * A buffer cannot be placed on two lists at the same time. 2304 */ 2305 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2306 { 2307 unsigned long flags; 2308 2309 spin_lock_irqsave(&list->lock, flags); 2310 __skb_queue_head(list, newsk); 2311 spin_unlock_irqrestore(&list->lock, flags); 2312 } 2313 EXPORT_SYMBOL(skb_queue_head); 2314 2315 /** 2316 * skb_queue_tail - queue a buffer at the list tail 2317 * @list: list to use 2318 * @newsk: buffer to queue 2319 * 2320 * Queue a buffer at the tail of the list. This function takes the 2321 * list lock and can be used safely with other locking &sk_buff functions 2322 * safely. 2323 * 2324 * A buffer cannot be placed on two lists at the same time. 2325 */ 2326 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2327 { 2328 unsigned long flags; 2329 2330 spin_lock_irqsave(&list->lock, flags); 2331 __skb_queue_tail(list, newsk); 2332 spin_unlock_irqrestore(&list->lock, flags); 2333 } 2334 EXPORT_SYMBOL(skb_queue_tail); 2335 2336 /** 2337 * skb_unlink - remove a buffer from a list 2338 * @skb: buffer to remove 2339 * @list: list to use 2340 * 2341 * Remove a packet from a list. The list locks are taken and this 2342 * function is atomic with respect to other list locked calls 2343 * 2344 * You must know what list the SKB is on. 2345 */ 2346 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2347 { 2348 unsigned long flags; 2349 2350 spin_lock_irqsave(&list->lock, flags); 2351 __skb_unlink(skb, list); 2352 spin_unlock_irqrestore(&list->lock, flags); 2353 } 2354 EXPORT_SYMBOL(skb_unlink); 2355 2356 /** 2357 * skb_append - append a buffer 2358 * @old: buffer to insert after 2359 * @newsk: buffer to insert 2360 * @list: list to use 2361 * 2362 * Place a packet after a given packet in a list. The list locks are taken 2363 * and this function is atomic with respect to other list locked calls. 2364 * A buffer cannot be placed on two lists at the same time. 2365 */ 2366 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2367 { 2368 unsigned long flags; 2369 2370 spin_lock_irqsave(&list->lock, flags); 2371 __skb_queue_after(list, old, newsk); 2372 spin_unlock_irqrestore(&list->lock, flags); 2373 } 2374 EXPORT_SYMBOL(skb_append); 2375 2376 /** 2377 * skb_insert - insert a buffer 2378 * @old: buffer to insert before 2379 * @newsk: buffer to insert 2380 * @list: list to use 2381 * 2382 * Place a packet before a given packet in a list. The list locks are 2383 * taken and this function is atomic with respect to other list locked 2384 * calls. 2385 * 2386 * A buffer cannot be placed on two lists at the same time. 2387 */ 2388 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2389 { 2390 unsigned long flags; 2391 2392 spin_lock_irqsave(&list->lock, flags); 2393 __skb_insert(newsk, old->prev, old, list); 2394 spin_unlock_irqrestore(&list->lock, flags); 2395 } 2396 EXPORT_SYMBOL(skb_insert); 2397 2398 static inline void skb_split_inside_header(struct sk_buff *skb, 2399 struct sk_buff* skb1, 2400 const u32 len, const int pos) 2401 { 2402 int i; 2403 2404 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2405 pos - len); 2406 /* And move data appendix as is. */ 2407 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2408 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2409 2410 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2411 skb_shinfo(skb)->nr_frags = 0; 2412 skb1->data_len = skb->data_len; 2413 skb1->len += skb1->data_len; 2414 skb->data_len = 0; 2415 skb->len = len; 2416 skb_set_tail_pointer(skb, len); 2417 } 2418 2419 static inline void skb_split_no_header(struct sk_buff *skb, 2420 struct sk_buff* skb1, 2421 const u32 len, int pos) 2422 { 2423 int i, k = 0; 2424 const int nfrags = skb_shinfo(skb)->nr_frags; 2425 2426 skb_shinfo(skb)->nr_frags = 0; 2427 skb1->len = skb1->data_len = skb->len - len; 2428 skb->len = len; 2429 skb->data_len = len - pos; 2430 2431 for (i = 0; i < nfrags; i++) { 2432 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2433 2434 if (pos + size > len) { 2435 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2436 2437 if (pos < len) { 2438 /* Split frag. 2439 * We have two variants in this case: 2440 * 1. Move all the frag to the second 2441 * part, if it is possible. F.e. 2442 * this approach is mandatory for TUX, 2443 * where splitting is expensive. 2444 * 2. Split is accurately. We make this. 2445 */ 2446 skb_frag_ref(skb, i); 2447 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2448 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2449 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2450 skb_shinfo(skb)->nr_frags++; 2451 } 2452 k++; 2453 } else 2454 skb_shinfo(skb)->nr_frags++; 2455 pos += size; 2456 } 2457 skb_shinfo(skb1)->nr_frags = k; 2458 } 2459 2460 /** 2461 * skb_split - Split fragmented skb to two parts at length len. 2462 * @skb: the buffer to split 2463 * @skb1: the buffer to receive the second part 2464 * @len: new length for skb 2465 */ 2466 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2467 { 2468 int pos = skb_headlen(skb); 2469 2470 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2471 if (len < pos) /* Split line is inside header. */ 2472 skb_split_inside_header(skb, skb1, len, pos); 2473 else /* Second chunk has no header, nothing to copy. */ 2474 skb_split_no_header(skb, skb1, len, pos); 2475 } 2476 EXPORT_SYMBOL(skb_split); 2477 2478 /* Shifting from/to a cloned skb is a no-go. 2479 * 2480 * Caller cannot keep skb_shinfo related pointers past calling here! 2481 */ 2482 static int skb_prepare_for_shift(struct sk_buff *skb) 2483 { 2484 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2485 } 2486 2487 /** 2488 * skb_shift - Shifts paged data partially from skb to another 2489 * @tgt: buffer into which tail data gets added 2490 * @skb: buffer from which the paged data comes from 2491 * @shiftlen: shift up to this many bytes 2492 * 2493 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2494 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2495 * It's up to caller to free skb if everything was shifted. 2496 * 2497 * If @tgt runs out of frags, the whole operation is aborted. 2498 * 2499 * Skb cannot include anything else but paged data while tgt is allowed 2500 * to have non-paged data as well. 2501 * 2502 * TODO: full sized shift could be optimized but that would need 2503 * specialized skb free'er to handle frags without up-to-date nr_frags. 2504 */ 2505 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2506 { 2507 int from, to, merge, todo; 2508 struct skb_frag_struct *fragfrom, *fragto; 2509 2510 BUG_ON(shiftlen > skb->len); 2511 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2512 2513 todo = shiftlen; 2514 from = 0; 2515 to = skb_shinfo(tgt)->nr_frags; 2516 fragfrom = &skb_shinfo(skb)->frags[from]; 2517 2518 /* Actual merge is delayed until the point when we know we can 2519 * commit all, so that we don't have to undo partial changes 2520 */ 2521 if (!to || 2522 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2523 fragfrom->page_offset)) { 2524 merge = -1; 2525 } else { 2526 merge = to - 1; 2527 2528 todo -= skb_frag_size(fragfrom); 2529 if (todo < 0) { 2530 if (skb_prepare_for_shift(skb) || 2531 skb_prepare_for_shift(tgt)) 2532 return 0; 2533 2534 /* All previous frag pointers might be stale! */ 2535 fragfrom = &skb_shinfo(skb)->frags[from]; 2536 fragto = &skb_shinfo(tgt)->frags[merge]; 2537 2538 skb_frag_size_add(fragto, shiftlen); 2539 skb_frag_size_sub(fragfrom, shiftlen); 2540 fragfrom->page_offset += shiftlen; 2541 2542 goto onlymerged; 2543 } 2544 2545 from++; 2546 } 2547 2548 /* Skip full, not-fitting skb to avoid expensive operations */ 2549 if ((shiftlen == skb->len) && 2550 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2551 return 0; 2552 2553 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2554 return 0; 2555 2556 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2557 if (to == MAX_SKB_FRAGS) 2558 return 0; 2559 2560 fragfrom = &skb_shinfo(skb)->frags[from]; 2561 fragto = &skb_shinfo(tgt)->frags[to]; 2562 2563 if (todo >= skb_frag_size(fragfrom)) { 2564 *fragto = *fragfrom; 2565 todo -= skb_frag_size(fragfrom); 2566 from++; 2567 to++; 2568 2569 } else { 2570 __skb_frag_ref(fragfrom); 2571 fragto->page = fragfrom->page; 2572 fragto->page_offset = fragfrom->page_offset; 2573 skb_frag_size_set(fragto, todo); 2574 2575 fragfrom->page_offset += todo; 2576 skb_frag_size_sub(fragfrom, todo); 2577 todo = 0; 2578 2579 to++; 2580 break; 2581 } 2582 } 2583 2584 /* Ready to "commit" this state change to tgt */ 2585 skb_shinfo(tgt)->nr_frags = to; 2586 2587 if (merge >= 0) { 2588 fragfrom = &skb_shinfo(skb)->frags[0]; 2589 fragto = &skb_shinfo(tgt)->frags[merge]; 2590 2591 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2592 __skb_frag_unref(fragfrom); 2593 } 2594 2595 /* Reposition in the original skb */ 2596 to = 0; 2597 while (from < skb_shinfo(skb)->nr_frags) 2598 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2599 skb_shinfo(skb)->nr_frags = to; 2600 2601 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2602 2603 onlymerged: 2604 /* Most likely the tgt won't ever need its checksum anymore, skb on 2605 * the other hand might need it if it needs to be resent 2606 */ 2607 tgt->ip_summed = CHECKSUM_PARTIAL; 2608 skb->ip_summed = CHECKSUM_PARTIAL; 2609 2610 /* Yak, is it really working this way? Some helper please? */ 2611 skb->len -= shiftlen; 2612 skb->data_len -= shiftlen; 2613 skb->truesize -= shiftlen; 2614 tgt->len += shiftlen; 2615 tgt->data_len += shiftlen; 2616 tgt->truesize += shiftlen; 2617 2618 return shiftlen; 2619 } 2620 2621 /** 2622 * skb_prepare_seq_read - Prepare a sequential read of skb data 2623 * @skb: the buffer to read 2624 * @from: lower offset of data to be read 2625 * @to: upper offset of data to be read 2626 * @st: state variable 2627 * 2628 * Initializes the specified state variable. Must be called before 2629 * invoking skb_seq_read() for the first time. 2630 */ 2631 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2632 unsigned int to, struct skb_seq_state *st) 2633 { 2634 st->lower_offset = from; 2635 st->upper_offset = to; 2636 st->root_skb = st->cur_skb = skb; 2637 st->frag_idx = st->stepped_offset = 0; 2638 st->frag_data = NULL; 2639 } 2640 EXPORT_SYMBOL(skb_prepare_seq_read); 2641 2642 /** 2643 * skb_seq_read - Sequentially read skb data 2644 * @consumed: number of bytes consumed by the caller so far 2645 * @data: destination pointer for data to be returned 2646 * @st: state variable 2647 * 2648 * Reads a block of skb data at @consumed relative to the 2649 * lower offset specified to skb_prepare_seq_read(). Assigns 2650 * the head of the data block to @data and returns the length 2651 * of the block or 0 if the end of the skb data or the upper 2652 * offset has been reached. 2653 * 2654 * The caller is not required to consume all of the data 2655 * returned, i.e. @consumed is typically set to the number 2656 * of bytes already consumed and the next call to 2657 * skb_seq_read() will return the remaining part of the block. 2658 * 2659 * Note 1: The size of each block of data returned can be arbitrary, 2660 * this limitation is the cost for zerocopy seqeuental 2661 * reads of potentially non linear data. 2662 * 2663 * Note 2: Fragment lists within fragments are not implemented 2664 * at the moment, state->root_skb could be replaced with 2665 * a stack for this purpose. 2666 */ 2667 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2668 struct skb_seq_state *st) 2669 { 2670 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2671 skb_frag_t *frag; 2672 2673 if (unlikely(abs_offset >= st->upper_offset)) { 2674 if (st->frag_data) { 2675 kunmap_atomic(st->frag_data); 2676 st->frag_data = NULL; 2677 } 2678 return 0; 2679 } 2680 2681 next_skb: 2682 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2683 2684 if (abs_offset < block_limit && !st->frag_data) { 2685 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2686 return block_limit - abs_offset; 2687 } 2688 2689 if (st->frag_idx == 0 && !st->frag_data) 2690 st->stepped_offset += skb_headlen(st->cur_skb); 2691 2692 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2693 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2694 block_limit = skb_frag_size(frag) + st->stepped_offset; 2695 2696 if (abs_offset < block_limit) { 2697 if (!st->frag_data) 2698 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2699 2700 *data = (u8 *) st->frag_data + frag->page_offset + 2701 (abs_offset - st->stepped_offset); 2702 2703 return block_limit - abs_offset; 2704 } 2705 2706 if (st->frag_data) { 2707 kunmap_atomic(st->frag_data); 2708 st->frag_data = NULL; 2709 } 2710 2711 st->frag_idx++; 2712 st->stepped_offset += skb_frag_size(frag); 2713 } 2714 2715 if (st->frag_data) { 2716 kunmap_atomic(st->frag_data); 2717 st->frag_data = NULL; 2718 } 2719 2720 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2721 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2722 st->frag_idx = 0; 2723 goto next_skb; 2724 } else if (st->cur_skb->next) { 2725 st->cur_skb = st->cur_skb->next; 2726 st->frag_idx = 0; 2727 goto next_skb; 2728 } 2729 2730 return 0; 2731 } 2732 EXPORT_SYMBOL(skb_seq_read); 2733 2734 /** 2735 * skb_abort_seq_read - Abort a sequential read of skb data 2736 * @st: state variable 2737 * 2738 * Must be called if skb_seq_read() was not called until it 2739 * returned 0. 2740 */ 2741 void skb_abort_seq_read(struct skb_seq_state *st) 2742 { 2743 if (st->frag_data) 2744 kunmap_atomic(st->frag_data); 2745 } 2746 EXPORT_SYMBOL(skb_abort_seq_read); 2747 2748 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2749 2750 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2751 struct ts_config *conf, 2752 struct ts_state *state) 2753 { 2754 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2755 } 2756 2757 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2758 { 2759 skb_abort_seq_read(TS_SKB_CB(state)); 2760 } 2761 2762 /** 2763 * skb_find_text - Find a text pattern in skb data 2764 * @skb: the buffer to look in 2765 * @from: search offset 2766 * @to: search limit 2767 * @config: textsearch configuration 2768 * @state: uninitialized textsearch state variable 2769 * 2770 * Finds a pattern in the skb data according to the specified 2771 * textsearch configuration. Use textsearch_next() to retrieve 2772 * subsequent occurrences of the pattern. Returns the offset 2773 * to the first occurrence or UINT_MAX if no match was found. 2774 */ 2775 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2776 unsigned int to, struct ts_config *config, 2777 struct ts_state *state) 2778 { 2779 unsigned int ret; 2780 2781 config->get_next_block = skb_ts_get_next_block; 2782 config->finish = skb_ts_finish; 2783 2784 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2785 2786 ret = textsearch_find(config, state); 2787 return (ret <= to - from ? ret : UINT_MAX); 2788 } 2789 EXPORT_SYMBOL(skb_find_text); 2790 2791 /** 2792 * skb_append_datato_frags - append the user data to a skb 2793 * @sk: sock structure 2794 * @skb: skb structure to be appened with user data. 2795 * @getfrag: call back function to be used for getting the user data 2796 * @from: pointer to user message iov 2797 * @length: length of the iov message 2798 * 2799 * Description: This procedure append the user data in the fragment part 2800 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2801 */ 2802 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2803 int (*getfrag)(void *from, char *to, int offset, 2804 int len, int odd, struct sk_buff *skb), 2805 void *from, int length) 2806 { 2807 int frg_cnt = skb_shinfo(skb)->nr_frags; 2808 int copy; 2809 int offset = 0; 2810 int ret; 2811 struct page_frag *pfrag = ¤t->task_frag; 2812 2813 do { 2814 /* Return error if we don't have space for new frag */ 2815 if (frg_cnt >= MAX_SKB_FRAGS) 2816 return -EMSGSIZE; 2817 2818 if (!sk_page_frag_refill(sk, pfrag)) 2819 return -ENOMEM; 2820 2821 /* copy the user data to page */ 2822 copy = min_t(int, length, pfrag->size - pfrag->offset); 2823 2824 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2825 offset, copy, 0, skb); 2826 if (ret < 0) 2827 return -EFAULT; 2828 2829 /* copy was successful so update the size parameters */ 2830 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2831 copy); 2832 frg_cnt++; 2833 pfrag->offset += copy; 2834 get_page(pfrag->page); 2835 2836 skb->truesize += copy; 2837 atomic_add(copy, &sk->sk_wmem_alloc); 2838 skb->len += copy; 2839 skb->data_len += copy; 2840 offset += copy; 2841 length -= copy; 2842 2843 } while (length > 0); 2844 2845 return 0; 2846 } 2847 EXPORT_SYMBOL(skb_append_datato_frags); 2848 2849 /** 2850 * skb_pull_rcsum - pull skb and update receive checksum 2851 * @skb: buffer to update 2852 * @len: length of data pulled 2853 * 2854 * This function performs an skb_pull on the packet and updates 2855 * the CHECKSUM_COMPLETE checksum. It should be used on 2856 * receive path processing instead of skb_pull unless you know 2857 * that the checksum difference is zero (e.g., a valid IP header) 2858 * or you are setting ip_summed to CHECKSUM_NONE. 2859 */ 2860 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2861 { 2862 BUG_ON(len > skb->len); 2863 skb->len -= len; 2864 BUG_ON(skb->len < skb->data_len); 2865 skb_postpull_rcsum(skb, skb->data, len); 2866 return skb->data += len; 2867 } 2868 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2869 2870 /** 2871 * skb_segment - Perform protocol segmentation on skb. 2872 * @skb: buffer to segment 2873 * @features: features for the output path (see dev->features) 2874 * 2875 * This function performs segmentation on the given skb. It returns 2876 * a pointer to the first in a list of new skbs for the segments. 2877 * In case of error it returns ERR_PTR(err). 2878 */ 2879 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features) 2880 { 2881 struct sk_buff *segs = NULL; 2882 struct sk_buff *tail = NULL; 2883 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2884 skb_frag_t *skb_frag = skb_shinfo(skb)->frags; 2885 unsigned int mss = skb_shinfo(skb)->gso_size; 2886 unsigned int doffset = skb->data - skb_mac_header(skb); 2887 unsigned int offset = doffset; 2888 unsigned int tnl_hlen = skb_tnl_header_len(skb); 2889 unsigned int headroom; 2890 unsigned int len; 2891 __be16 proto; 2892 bool csum; 2893 int sg = !!(features & NETIF_F_SG); 2894 int nfrags = skb_shinfo(skb)->nr_frags; 2895 int err = -ENOMEM; 2896 int i = 0; 2897 int pos; 2898 2899 proto = skb_network_protocol(skb); 2900 if (unlikely(!proto)) 2901 return ERR_PTR(-EINVAL); 2902 2903 csum = !!can_checksum_protocol(features, proto); 2904 __skb_push(skb, doffset); 2905 headroom = skb_headroom(skb); 2906 pos = skb_headlen(skb); 2907 2908 do { 2909 struct sk_buff *nskb; 2910 skb_frag_t *frag; 2911 int hsize; 2912 int size; 2913 2914 len = skb->len - offset; 2915 if (len > mss) 2916 len = mss; 2917 2918 hsize = skb_headlen(skb) - offset; 2919 if (hsize < 0) 2920 hsize = 0; 2921 if (hsize > len || !sg) 2922 hsize = len; 2923 2924 if (!hsize && i >= nfrags && skb_headlen(fskb) && 2925 (skb_headlen(fskb) == len || sg)) { 2926 BUG_ON(skb_headlen(fskb) > len); 2927 2928 i = 0; 2929 nfrags = skb_shinfo(fskb)->nr_frags; 2930 skb_frag = skb_shinfo(fskb)->frags; 2931 pos += skb_headlen(fskb); 2932 2933 while (pos < offset + len) { 2934 BUG_ON(i >= nfrags); 2935 2936 size = skb_frag_size(skb_frag); 2937 if (pos + size > offset + len) 2938 break; 2939 2940 i++; 2941 pos += size; 2942 skb_frag++; 2943 } 2944 2945 nskb = skb_clone(fskb, GFP_ATOMIC); 2946 fskb = fskb->next; 2947 2948 if (unlikely(!nskb)) 2949 goto err; 2950 2951 if (unlikely(pskb_trim(nskb, len))) { 2952 kfree_skb(nskb); 2953 goto err; 2954 } 2955 2956 hsize = skb_end_offset(nskb); 2957 if (skb_cow_head(nskb, doffset + headroom)) { 2958 kfree_skb(nskb); 2959 goto err; 2960 } 2961 2962 nskb->truesize += skb_end_offset(nskb) - hsize; 2963 skb_release_head_state(nskb); 2964 __skb_push(nskb, doffset); 2965 } else { 2966 nskb = __alloc_skb(hsize + doffset + headroom, 2967 GFP_ATOMIC, skb_alloc_rx_flag(skb), 2968 NUMA_NO_NODE); 2969 2970 if (unlikely(!nskb)) 2971 goto err; 2972 2973 skb_reserve(nskb, headroom); 2974 __skb_put(nskb, doffset); 2975 } 2976 2977 if (segs) 2978 tail->next = nskb; 2979 else 2980 segs = nskb; 2981 tail = nskb; 2982 2983 __copy_skb_header(nskb, skb); 2984 nskb->mac_len = skb->mac_len; 2985 2986 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 2987 2988 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 2989 nskb->data - tnl_hlen, 2990 doffset + tnl_hlen); 2991 2992 if (nskb->len == len + doffset) 2993 goto perform_csum_check; 2994 2995 if (!sg) { 2996 nskb->ip_summed = CHECKSUM_NONE; 2997 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2998 skb_put(nskb, len), 2999 len, 0); 3000 continue; 3001 } 3002 3003 frag = skb_shinfo(nskb)->frags; 3004 3005 skb_copy_from_linear_data_offset(skb, offset, 3006 skb_put(nskb, hsize), hsize); 3007 3008 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3009 3010 while (pos < offset + len) { 3011 if (i >= nfrags) { 3012 BUG_ON(skb_headlen(fskb)); 3013 3014 i = 0; 3015 nfrags = skb_shinfo(fskb)->nr_frags; 3016 skb_frag = skb_shinfo(fskb)->frags; 3017 3018 BUG_ON(!nfrags); 3019 3020 fskb = fskb->next; 3021 } 3022 3023 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3024 MAX_SKB_FRAGS)) { 3025 net_warn_ratelimited( 3026 "skb_segment: too many frags: %u %u\n", 3027 pos, mss); 3028 goto err; 3029 } 3030 3031 *frag = *skb_frag; 3032 __skb_frag_ref(frag); 3033 size = skb_frag_size(frag); 3034 3035 if (pos < offset) { 3036 frag->page_offset += offset - pos; 3037 skb_frag_size_sub(frag, offset - pos); 3038 } 3039 3040 skb_shinfo(nskb)->nr_frags++; 3041 3042 if (pos + size <= offset + len) { 3043 i++; 3044 skb_frag++; 3045 pos += size; 3046 } else { 3047 skb_frag_size_sub(frag, pos + size - (offset + len)); 3048 goto skip_fraglist; 3049 } 3050 3051 frag++; 3052 } 3053 3054 skip_fraglist: 3055 nskb->data_len = len - hsize; 3056 nskb->len += nskb->data_len; 3057 nskb->truesize += nskb->data_len; 3058 3059 perform_csum_check: 3060 if (!csum) { 3061 nskb->csum = skb_checksum(nskb, doffset, 3062 nskb->len - doffset, 0); 3063 nskb->ip_summed = CHECKSUM_NONE; 3064 } 3065 } while ((offset += len) < skb->len); 3066 3067 return segs; 3068 3069 err: 3070 kfree_skb_list(segs); 3071 return ERR_PTR(err); 3072 } 3073 EXPORT_SYMBOL_GPL(skb_segment); 3074 3075 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3076 { 3077 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3078 unsigned int offset = skb_gro_offset(skb); 3079 unsigned int headlen = skb_headlen(skb); 3080 struct sk_buff *nskb, *lp, *p = *head; 3081 unsigned int len = skb_gro_len(skb); 3082 unsigned int delta_truesize; 3083 unsigned int headroom; 3084 3085 if (unlikely(p->len + len >= 65536)) 3086 return -E2BIG; 3087 3088 lp = NAPI_GRO_CB(p)->last ?: p; 3089 pinfo = skb_shinfo(lp); 3090 3091 if (headlen <= offset) { 3092 skb_frag_t *frag; 3093 skb_frag_t *frag2; 3094 int i = skbinfo->nr_frags; 3095 int nr_frags = pinfo->nr_frags + i; 3096 3097 if (nr_frags > MAX_SKB_FRAGS) 3098 goto merge; 3099 3100 offset -= headlen; 3101 pinfo->nr_frags = nr_frags; 3102 skbinfo->nr_frags = 0; 3103 3104 frag = pinfo->frags + nr_frags; 3105 frag2 = skbinfo->frags + i; 3106 do { 3107 *--frag = *--frag2; 3108 } while (--i); 3109 3110 frag->page_offset += offset; 3111 skb_frag_size_sub(frag, offset); 3112 3113 /* all fragments truesize : remove (head size + sk_buff) */ 3114 delta_truesize = skb->truesize - 3115 SKB_TRUESIZE(skb_end_offset(skb)); 3116 3117 skb->truesize -= skb->data_len; 3118 skb->len -= skb->data_len; 3119 skb->data_len = 0; 3120 3121 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3122 goto done; 3123 } else if (skb->head_frag) { 3124 int nr_frags = pinfo->nr_frags; 3125 skb_frag_t *frag = pinfo->frags + nr_frags; 3126 struct page *page = virt_to_head_page(skb->head); 3127 unsigned int first_size = headlen - offset; 3128 unsigned int first_offset; 3129 3130 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3131 goto merge; 3132 3133 first_offset = skb->data - 3134 (unsigned char *)page_address(page) + 3135 offset; 3136 3137 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3138 3139 frag->page.p = page; 3140 frag->page_offset = first_offset; 3141 skb_frag_size_set(frag, first_size); 3142 3143 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3144 /* We dont need to clear skbinfo->nr_frags here */ 3145 3146 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3147 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3148 goto done; 3149 } 3150 if (pinfo->frag_list) 3151 goto merge; 3152 if (skb_gro_len(p) != pinfo->gso_size) 3153 return -E2BIG; 3154 3155 headroom = skb_headroom(p); 3156 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3157 if (unlikely(!nskb)) 3158 return -ENOMEM; 3159 3160 __copy_skb_header(nskb, p); 3161 nskb->mac_len = p->mac_len; 3162 3163 skb_reserve(nskb, headroom); 3164 __skb_put(nskb, skb_gro_offset(p)); 3165 3166 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3167 skb_set_network_header(nskb, skb_network_offset(p)); 3168 skb_set_transport_header(nskb, skb_transport_offset(p)); 3169 3170 __skb_pull(p, skb_gro_offset(p)); 3171 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3172 p->data - skb_mac_header(p)); 3173 3174 skb_shinfo(nskb)->frag_list = p; 3175 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3176 pinfo->gso_size = 0; 3177 skb_header_release(p); 3178 NAPI_GRO_CB(nskb)->last = p; 3179 3180 nskb->data_len += p->len; 3181 nskb->truesize += p->truesize; 3182 nskb->len += p->len; 3183 3184 *head = nskb; 3185 nskb->next = p->next; 3186 p->next = NULL; 3187 3188 p = nskb; 3189 3190 merge: 3191 delta_truesize = skb->truesize; 3192 if (offset > headlen) { 3193 unsigned int eat = offset - headlen; 3194 3195 skbinfo->frags[0].page_offset += eat; 3196 skb_frag_size_sub(&skbinfo->frags[0], eat); 3197 skb->data_len -= eat; 3198 skb->len -= eat; 3199 offset = headlen; 3200 } 3201 3202 __skb_pull(skb, offset); 3203 3204 if (!NAPI_GRO_CB(p)->last) 3205 skb_shinfo(p)->frag_list = skb; 3206 else 3207 NAPI_GRO_CB(p)->last->next = skb; 3208 NAPI_GRO_CB(p)->last = skb; 3209 skb_header_release(skb); 3210 lp = p; 3211 3212 done: 3213 NAPI_GRO_CB(p)->count++; 3214 p->data_len += len; 3215 p->truesize += delta_truesize; 3216 p->len += len; 3217 if (lp != p) { 3218 lp->data_len += len; 3219 lp->truesize += delta_truesize; 3220 lp->len += len; 3221 } 3222 NAPI_GRO_CB(skb)->same_flow = 1; 3223 return 0; 3224 } 3225 EXPORT_SYMBOL_GPL(skb_gro_receive); 3226 3227 void __init skb_init(void) 3228 { 3229 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3230 sizeof(struct sk_buff), 3231 0, 3232 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3233 NULL); 3234 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3235 (2*sizeof(struct sk_buff)) + 3236 sizeof(atomic_t), 3237 0, 3238 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3239 NULL); 3240 } 3241 3242 /** 3243 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3244 * @skb: Socket buffer containing the buffers to be mapped 3245 * @sg: The scatter-gather list to map into 3246 * @offset: The offset into the buffer's contents to start mapping 3247 * @len: Length of buffer space to be mapped 3248 * 3249 * Fill the specified scatter-gather list with mappings/pointers into a 3250 * region of the buffer space attached to a socket buffer. 3251 */ 3252 static int 3253 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3254 { 3255 int start = skb_headlen(skb); 3256 int i, copy = start - offset; 3257 struct sk_buff *frag_iter; 3258 int elt = 0; 3259 3260 if (copy > 0) { 3261 if (copy > len) 3262 copy = len; 3263 sg_set_buf(sg, skb->data + offset, copy); 3264 elt++; 3265 if ((len -= copy) == 0) 3266 return elt; 3267 offset += copy; 3268 } 3269 3270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3271 int end; 3272 3273 WARN_ON(start > offset + len); 3274 3275 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3276 if ((copy = end - offset) > 0) { 3277 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3278 3279 if (copy > len) 3280 copy = len; 3281 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3282 frag->page_offset+offset-start); 3283 elt++; 3284 if (!(len -= copy)) 3285 return elt; 3286 offset += copy; 3287 } 3288 start = end; 3289 } 3290 3291 skb_walk_frags(skb, frag_iter) { 3292 int end; 3293 3294 WARN_ON(start > offset + len); 3295 3296 end = start + frag_iter->len; 3297 if ((copy = end - offset) > 0) { 3298 if (copy > len) 3299 copy = len; 3300 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3301 copy); 3302 if ((len -= copy) == 0) 3303 return elt; 3304 offset += copy; 3305 } 3306 start = end; 3307 } 3308 BUG_ON(len); 3309 return elt; 3310 } 3311 3312 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3313 { 3314 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3315 3316 sg_mark_end(&sg[nsg - 1]); 3317 3318 return nsg; 3319 } 3320 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3321 3322 /** 3323 * skb_cow_data - Check that a socket buffer's data buffers are writable 3324 * @skb: The socket buffer to check. 3325 * @tailbits: Amount of trailing space to be added 3326 * @trailer: Returned pointer to the skb where the @tailbits space begins 3327 * 3328 * Make sure that the data buffers attached to a socket buffer are 3329 * writable. If they are not, private copies are made of the data buffers 3330 * and the socket buffer is set to use these instead. 3331 * 3332 * If @tailbits is given, make sure that there is space to write @tailbits 3333 * bytes of data beyond current end of socket buffer. @trailer will be 3334 * set to point to the skb in which this space begins. 3335 * 3336 * The number of scatterlist elements required to completely map the 3337 * COW'd and extended socket buffer will be returned. 3338 */ 3339 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3340 { 3341 int copyflag; 3342 int elt; 3343 struct sk_buff *skb1, **skb_p; 3344 3345 /* If skb is cloned or its head is paged, reallocate 3346 * head pulling out all the pages (pages are considered not writable 3347 * at the moment even if they are anonymous). 3348 */ 3349 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3350 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3351 return -ENOMEM; 3352 3353 /* Easy case. Most of packets will go this way. */ 3354 if (!skb_has_frag_list(skb)) { 3355 /* A little of trouble, not enough of space for trailer. 3356 * This should not happen, when stack is tuned to generate 3357 * good frames. OK, on miss we reallocate and reserve even more 3358 * space, 128 bytes is fair. */ 3359 3360 if (skb_tailroom(skb) < tailbits && 3361 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3362 return -ENOMEM; 3363 3364 /* Voila! */ 3365 *trailer = skb; 3366 return 1; 3367 } 3368 3369 /* Misery. We are in troubles, going to mincer fragments... */ 3370 3371 elt = 1; 3372 skb_p = &skb_shinfo(skb)->frag_list; 3373 copyflag = 0; 3374 3375 while ((skb1 = *skb_p) != NULL) { 3376 int ntail = 0; 3377 3378 /* The fragment is partially pulled by someone, 3379 * this can happen on input. Copy it and everything 3380 * after it. */ 3381 3382 if (skb_shared(skb1)) 3383 copyflag = 1; 3384 3385 /* If the skb is the last, worry about trailer. */ 3386 3387 if (skb1->next == NULL && tailbits) { 3388 if (skb_shinfo(skb1)->nr_frags || 3389 skb_has_frag_list(skb1) || 3390 skb_tailroom(skb1) < tailbits) 3391 ntail = tailbits + 128; 3392 } 3393 3394 if (copyflag || 3395 skb_cloned(skb1) || 3396 ntail || 3397 skb_shinfo(skb1)->nr_frags || 3398 skb_has_frag_list(skb1)) { 3399 struct sk_buff *skb2; 3400 3401 /* Fuck, we are miserable poor guys... */ 3402 if (ntail == 0) 3403 skb2 = skb_copy(skb1, GFP_ATOMIC); 3404 else 3405 skb2 = skb_copy_expand(skb1, 3406 skb_headroom(skb1), 3407 ntail, 3408 GFP_ATOMIC); 3409 if (unlikely(skb2 == NULL)) 3410 return -ENOMEM; 3411 3412 if (skb1->sk) 3413 skb_set_owner_w(skb2, skb1->sk); 3414 3415 /* Looking around. Are we still alive? 3416 * OK, link new skb, drop old one */ 3417 3418 skb2->next = skb1->next; 3419 *skb_p = skb2; 3420 kfree_skb(skb1); 3421 skb1 = skb2; 3422 } 3423 elt++; 3424 *trailer = skb1; 3425 skb_p = &skb1->next; 3426 } 3427 3428 return elt; 3429 } 3430 EXPORT_SYMBOL_GPL(skb_cow_data); 3431 3432 static void sock_rmem_free(struct sk_buff *skb) 3433 { 3434 struct sock *sk = skb->sk; 3435 3436 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3437 } 3438 3439 /* 3440 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3441 */ 3442 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3443 { 3444 int len = skb->len; 3445 3446 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3447 (unsigned int)sk->sk_rcvbuf) 3448 return -ENOMEM; 3449 3450 skb_orphan(skb); 3451 skb->sk = sk; 3452 skb->destructor = sock_rmem_free; 3453 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3454 3455 /* before exiting rcu section, make sure dst is refcounted */ 3456 skb_dst_force(skb); 3457 3458 skb_queue_tail(&sk->sk_error_queue, skb); 3459 if (!sock_flag(sk, SOCK_DEAD)) 3460 sk->sk_data_ready(sk, len); 3461 return 0; 3462 } 3463 EXPORT_SYMBOL(sock_queue_err_skb); 3464 3465 void skb_tstamp_tx(struct sk_buff *orig_skb, 3466 struct skb_shared_hwtstamps *hwtstamps) 3467 { 3468 struct sock *sk = orig_skb->sk; 3469 struct sock_exterr_skb *serr; 3470 struct sk_buff *skb; 3471 int err; 3472 3473 if (!sk) 3474 return; 3475 3476 if (hwtstamps) { 3477 *skb_hwtstamps(orig_skb) = 3478 *hwtstamps; 3479 } else { 3480 /* 3481 * no hardware time stamps available, 3482 * so keep the shared tx_flags and only 3483 * store software time stamp 3484 */ 3485 orig_skb->tstamp = ktime_get_real(); 3486 } 3487 3488 skb = skb_clone(orig_skb, GFP_ATOMIC); 3489 if (!skb) 3490 return; 3491 3492 serr = SKB_EXT_ERR(skb); 3493 memset(serr, 0, sizeof(*serr)); 3494 serr->ee.ee_errno = ENOMSG; 3495 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3496 3497 err = sock_queue_err_skb(sk, skb); 3498 3499 if (err) 3500 kfree_skb(skb); 3501 } 3502 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3503 3504 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3505 { 3506 struct sock *sk = skb->sk; 3507 struct sock_exterr_skb *serr; 3508 int err; 3509 3510 skb->wifi_acked_valid = 1; 3511 skb->wifi_acked = acked; 3512 3513 serr = SKB_EXT_ERR(skb); 3514 memset(serr, 0, sizeof(*serr)); 3515 serr->ee.ee_errno = ENOMSG; 3516 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3517 3518 err = sock_queue_err_skb(sk, skb); 3519 if (err) 3520 kfree_skb(skb); 3521 } 3522 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3523 3524 3525 /** 3526 * skb_partial_csum_set - set up and verify partial csum values for packet 3527 * @skb: the skb to set 3528 * @start: the number of bytes after skb->data to start checksumming. 3529 * @off: the offset from start to place the checksum. 3530 * 3531 * For untrusted partially-checksummed packets, we need to make sure the values 3532 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3533 * 3534 * This function checks and sets those values and skb->ip_summed: if this 3535 * returns false you should drop the packet. 3536 */ 3537 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3538 { 3539 if (unlikely(start > skb_headlen(skb)) || 3540 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3541 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3542 start, off, skb_headlen(skb)); 3543 return false; 3544 } 3545 skb->ip_summed = CHECKSUM_PARTIAL; 3546 skb->csum_start = skb_headroom(skb) + start; 3547 skb->csum_offset = off; 3548 skb_set_transport_header(skb, start); 3549 return true; 3550 } 3551 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3552 3553 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3554 unsigned int max) 3555 { 3556 if (skb_headlen(skb) >= len) 3557 return 0; 3558 3559 /* If we need to pullup then pullup to the max, so we 3560 * won't need to do it again. 3561 */ 3562 if (max > skb->len) 3563 max = skb->len; 3564 3565 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3566 return -ENOMEM; 3567 3568 if (skb_headlen(skb) < len) 3569 return -EPROTO; 3570 3571 return 0; 3572 } 3573 3574 /* This value should be large enough to cover a tagged ethernet header plus 3575 * maximally sized IP and TCP or UDP headers. 3576 */ 3577 #define MAX_IP_HDR_LEN 128 3578 3579 static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate) 3580 { 3581 unsigned int off; 3582 bool fragment; 3583 int err; 3584 3585 fragment = false; 3586 3587 err = skb_maybe_pull_tail(skb, 3588 sizeof(struct iphdr), 3589 MAX_IP_HDR_LEN); 3590 if (err < 0) 3591 goto out; 3592 3593 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 3594 fragment = true; 3595 3596 off = ip_hdrlen(skb); 3597 3598 err = -EPROTO; 3599 3600 if (fragment) 3601 goto out; 3602 3603 switch (ip_hdr(skb)->protocol) { 3604 case IPPROTO_TCP: 3605 err = skb_maybe_pull_tail(skb, 3606 off + sizeof(struct tcphdr), 3607 MAX_IP_HDR_LEN); 3608 if (err < 0) 3609 goto out; 3610 3611 if (!skb_partial_csum_set(skb, off, 3612 offsetof(struct tcphdr, check))) { 3613 err = -EPROTO; 3614 goto out; 3615 } 3616 3617 if (recalculate) 3618 tcp_hdr(skb)->check = 3619 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3620 ip_hdr(skb)->daddr, 3621 skb->len - off, 3622 IPPROTO_TCP, 0); 3623 break; 3624 case IPPROTO_UDP: 3625 err = skb_maybe_pull_tail(skb, 3626 off + sizeof(struct udphdr), 3627 MAX_IP_HDR_LEN); 3628 if (err < 0) 3629 goto out; 3630 3631 if (!skb_partial_csum_set(skb, off, 3632 offsetof(struct udphdr, check))) { 3633 err = -EPROTO; 3634 goto out; 3635 } 3636 3637 if (recalculate) 3638 udp_hdr(skb)->check = 3639 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3640 ip_hdr(skb)->daddr, 3641 skb->len - off, 3642 IPPROTO_UDP, 0); 3643 break; 3644 default: 3645 goto out; 3646 } 3647 3648 err = 0; 3649 3650 out: 3651 return err; 3652 } 3653 3654 /* This value should be large enough to cover a tagged ethernet header plus 3655 * an IPv6 header, all options, and a maximal TCP or UDP header. 3656 */ 3657 #define MAX_IPV6_HDR_LEN 256 3658 3659 #define OPT_HDR(type, skb, off) \ 3660 (type *)(skb_network_header(skb) + (off)) 3661 3662 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 3663 { 3664 int err; 3665 u8 nexthdr; 3666 unsigned int off; 3667 unsigned int len; 3668 bool fragment; 3669 bool done; 3670 3671 fragment = false; 3672 done = false; 3673 3674 off = sizeof(struct ipv6hdr); 3675 3676 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 3677 if (err < 0) 3678 goto out; 3679 3680 nexthdr = ipv6_hdr(skb)->nexthdr; 3681 3682 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 3683 while (off <= len && !done) { 3684 switch (nexthdr) { 3685 case IPPROTO_DSTOPTS: 3686 case IPPROTO_HOPOPTS: 3687 case IPPROTO_ROUTING: { 3688 struct ipv6_opt_hdr *hp; 3689 3690 err = skb_maybe_pull_tail(skb, 3691 off + 3692 sizeof(struct ipv6_opt_hdr), 3693 MAX_IPV6_HDR_LEN); 3694 if (err < 0) 3695 goto out; 3696 3697 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 3698 nexthdr = hp->nexthdr; 3699 off += ipv6_optlen(hp); 3700 break; 3701 } 3702 case IPPROTO_AH: { 3703 struct ip_auth_hdr *hp; 3704 3705 err = skb_maybe_pull_tail(skb, 3706 off + 3707 sizeof(struct ip_auth_hdr), 3708 MAX_IPV6_HDR_LEN); 3709 if (err < 0) 3710 goto out; 3711 3712 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 3713 nexthdr = hp->nexthdr; 3714 off += ipv6_authlen(hp); 3715 break; 3716 } 3717 case IPPROTO_FRAGMENT: { 3718 struct frag_hdr *hp; 3719 3720 err = skb_maybe_pull_tail(skb, 3721 off + 3722 sizeof(struct frag_hdr), 3723 MAX_IPV6_HDR_LEN); 3724 if (err < 0) 3725 goto out; 3726 3727 hp = OPT_HDR(struct frag_hdr, skb, off); 3728 3729 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 3730 fragment = true; 3731 3732 nexthdr = hp->nexthdr; 3733 off += sizeof(struct frag_hdr); 3734 break; 3735 } 3736 default: 3737 done = true; 3738 break; 3739 } 3740 } 3741 3742 err = -EPROTO; 3743 3744 if (!done || fragment) 3745 goto out; 3746 3747 switch (nexthdr) { 3748 case IPPROTO_TCP: 3749 err = skb_maybe_pull_tail(skb, 3750 off + sizeof(struct tcphdr), 3751 MAX_IPV6_HDR_LEN); 3752 if (err < 0) 3753 goto out; 3754 3755 if (!skb_partial_csum_set(skb, off, 3756 offsetof(struct tcphdr, check))) { 3757 err = -EPROTO; 3758 goto out; 3759 } 3760 3761 if (recalculate) 3762 tcp_hdr(skb)->check = 3763 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3764 &ipv6_hdr(skb)->daddr, 3765 skb->len - off, 3766 IPPROTO_TCP, 0); 3767 break; 3768 case IPPROTO_UDP: 3769 err = skb_maybe_pull_tail(skb, 3770 off + sizeof(struct udphdr), 3771 MAX_IPV6_HDR_LEN); 3772 if (err < 0) 3773 goto out; 3774 3775 if (!skb_partial_csum_set(skb, off, 3776 offsetof(struct udphdr, check))) { 3777 err = -EPROTO; 3778 goto out; 3779 } 3780 3781 if (recalculate) 3782 udp_hdr(skb)->check = 3783 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3784 &ipv6_hdr(skb)->daddr, 3785 skb->len - off, 3786 IPPROTO_UDP, 0); 3787 break; 3788 default: 3789 goto out; 3790 } 3791 3792 err = 0; 3793 3794 out: 3795 return err; 3796 } 3797 3798 /** 3799 * skb_checksum_setup - set up partial checksum offset 3800 * @skb: the skb to set up 3801 * @recalculate: if true the pseudo-header checksum will be recalculated 3802 */ 3803 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 3804 { 3805 int err; 3806 3807 switch (skb->protocol) { 3808 case htons(ETH_P_IP): 3809 err = skb_checksum_setup_ip(skb, recalculate); 3810 break; 3811 3812 case htons(ETH_P_IPV6): 3813 err = skb_checksum_setup_ipv6(skb, recalculate); 3814 break; 3815 3816 default: 3817 err = -EPROTO; 3818 break; 3819 } 3820 3821 return err; 3822 } 3823 EXPORT_SYMBOL(skb_checksum_setup); 3824 3825 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3826 { 3827 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3828 skb->dev->name); 3829 } 3830 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3831 3832 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3833 { 3834 if (head_stolen) { 3835 skb_release_head_state(skb); 3836 kmem_cache_free(skbuff_head_cache, skb); 3837 } else { 3838 __kfree_skb(skb); 3839 } 3840 } 3841 EXPORT_SYMBOL(kfree_skb_partial); 3842 3843 /** 3844 * skb_try_coalesce - try to merge skb to prior one 3845 * @to: prior buffer 3846 * @from: buffer to add 3847 * @fragstolen: pointer to boolean 3848 * @delta_truesize: how much more was allocated than was requested 3849 */ 3850 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3851 bool *fragstolen, int *delta_truesize) 3852 { 3853 int i, delta, len = from->len; 3854 3855 *fragstolen = false; 3856 3857 if (skb_cloned(to)) 3858 return false; 3859 3860 if (len <= skb_tailroom(to)) { 3861 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3862 *delta_truesize = 0; 3863 return true; 3864 } 3865 3866 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3867 return false; 3868 3869 if (skb_headlen(from) != 0) { 3870 struct page *page; 3871 unsigned int offset; 3872 3873 if (skb_shinfo(to)->nr_frags + 3874 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3875 return false; 3876 3877 if (skb_head_is_locked(from)) 3878 return false; 3879 3880 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3881 3882 page = virt_to_head_page(from->head); 3883 offset = from->data - (unsigned char *)page_address(page); 3884 3885 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3886 page, offset, skb_headlen(from)); 3887 *fragstolen = true; 3888 } else { 3889 if (skb_shinfo(to)->nr_frags + 3890 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3891 return false; 3892 3893 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3894 } 3895 3896 WARN_ON_ONCE(delta < len); 3897 3898 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3899 skb_shinfo(from)->frags, 3900 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3901 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3902 3903 if (!skb_cloned(from)) 3904 skb_shinfo(from)->nr_frags = 0; 3905 3906 /* if the skb is not cloned this does nothing 3907 * since we set nr_frags to 0. 3908 */ 3909 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3910 skb_frag_ref(from, i); 3911 3912 to->truesize += delta; 3913 to->len += len; 3914 to->data_len += len; 3915 3916 *delta_truesize = delta; 3917 return true; 3918 } 3919 EXPORT_SYMBOL(skb_try_coalesce); 3920 3921 /** 3922 * skb_scrub_packet - scrub an skb 3923 * 3924 * @skb: buffer to clean 3925 * @xnet: packet is crossing netns 3926 * 3927 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 3928 * into/from a tunnel. Some information have to be cleared during these 3929 * operations. 3930 * skb_scrub_packet can also be used to clean a skb before injecting it in 3931 * another namespace (@xnet == true). We have to clear all information in the 3932 * skb that could impact namespace isolation. 3933 */ 3934 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 3935 { 3936 if (xnet) 3937 skb_orphan(skb); 3938 skb->tstamp.tv64 = 0; 3939 skb->pkt_type = PACKET_HOST; 3940 skb->skb_iif = 0; 3941 skb->local_df = 0; 3942 skb_dst_drop(skb); 3943 skb->mark = 0; 3944 secpath_reset(skb); 3945 nf_reset(skb); 3946 nf_reset_trace(skb); 3947 } 3948 EXPORT_SYMBOL_GPL(skb_scrub_packet); 3949