1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 /* The array 'drop_reasons' is auto-generated in dropreason_str.c */ 95 EXPORT_SYMBOL(drop_reasons); 96 97 /** 98 * skb_panic - private function for out-of-line support 99 * @skb: buffer 100 * @sz: size 101 * @addr: address 102 * @msg: skb_over_panic or skb_under_panic 103 * 104 * Out-of-line support for skb_put() and skb_push(). 105 * Called via the wrapper skb_over_panic() or skb_under_panic(). 106 * Keep out of line to prevent kernel bloat. 107 * __builtin_return_address is not used because it is not always reliable. 108 */ 109 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 110 const char msg[]) 111 { 112 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 113 msg, addr, skb->len, sz, skb->head, skb->data, 114 (unsigned long)skb->tail, (unsigned long)skb->end, 115 skb->dev ? skb->dev->name : "<NULL>"); 116 BUG(); 117 } 118 119 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 120 { 121 skb_panic(skb, sz, addr, __func__); 122 } 123 124 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 125 { 126 skb_panic(skb, sz, addr, __func__); 127 } 128 129 #define NAPI_SKB_CACHE_SIZE 64 130 #define NAPI_SKB_CACHE_BULK 16 131 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 132 133 struct napi_alloc_cache { 134 struct page_frag_cache page; 135 unsigned int skb_count; 136 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 137 }; 138 139 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 140 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 141 142 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 143 { 144 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 145 146 fragsz = SKB_DATA_ALIGN(fragsz); 147 148 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 149 } 150 EXPORT_SYMBOL(__napi_alloc_frag_align); 151 152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 153 { 154 void *data; 155 156 fragsz = SKB_DATA_ALIGN(fragsz); 157 if (in_hardirq() || irqs_disabled()) { 158 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 159 160 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 161 } else { 162 struct napi_alloc_cache *nc; 163 164 local_bh_disable(); 165 nc = this_cpu_ptr(&napi_alloc_cache); 166 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 167 local_bh_enable(); 168 } 169 return data; 170 } 171 EXPORT_SYMBOL(__netdev_alloc_frag_align); 172 173 static struct sk_buff *napi_skb_cache_get(void) 174 { 175 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 176 struct sk_buff *skb; 177 178 if (unlikely(!nc->skb_count)) { 179 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 180 GFP_ATOMIC, 181 NAPI_SKB_CACHE_BULK, 182 nc->skb_cache); 183 if (unlikely(!nc->skb_count)) 184 return NULL; 185 } 186 187 skb = nc->skb_cache[--nc->skb_count]; 188 kasan_unpoison_object_data(skbuff_head_cache, skb); 189 190 return skb; 191 } 192 193 /* Caller must provide SKB that is memset cleared */ 194 static void __build_skb_around(struct sk_buff *skb, void *data, 195 unsigned int frag_size) 196 { 197 struct skb_shared_info *shinfo; 198 unsigned int size = frag_size ? : ksize(data); 199 200 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 201 202 /* Assumes caller memset cleared SKB */ 203 skb->truesize = SKB_TRUESIZE(size); 204 refcount_set(&skb->users, 1); 205 skb->head = data; 206 skb->data = data; 207 skb_reset_tail_pointer(skb); 208 skb_set_end_offset(skb, size); 209 skb->mac_header = (typeof(skb->mac_header))~0U; 210 skb->transport_header = (typeof(skb->transport_header))~0U; 211 skb->alloc_cpu = raw_smp_processor_id(); 212 /* make sure we initialize shinfo sequentially */ 213 shinfo = skb_shinfo(skb); 214 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 215 atomic_set(&shinfo->dataref, 1); 216 217 skb_set_kcov_handle(skb, kcov_common_handle()); 218 } 219 220 /** 221 * __build_skb - build a network buffer 222 * @data: data buffer provided by caller 223 * @frag_size: size of data, or 0 if head was kmalloced 224 * 225 * Allocate a new &sk_buff. Caller provides space holding head and 226 * skb_shared_info. @data must have been allocated by kmalloc() only if 227 * @frag_size is 0, otherwise data should come from the page allocator 228 * or vmalloc() 229 * The return is the new skb buffer. 230 * On a failure the return is %NULL, and @data is not freed. 231 * Notes : 232 * Before IO, driver allocates only data buffer where NIC put incoming frame 233 * Driver should add room at head (NET_SKB_PAD) and 234 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 235 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 236 * before giving packet to stack. 237 * RX rings only contains data buffers, not full skbs. 238 */ 239 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 240 { 241 struct sk_buff *skb; 242 243 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 244 if (unlikely(!skb)) 245 return NULL; 246 247 memset(skb, 0, offsetof(struct sk_buff, tail)); 248 __build_skb_around(skb, data, frag_size); 249 250 return skb; 251 } 252 253 /* build_skb() is wrapper over __build_skb(), that specifically 254 * takes care of skb->head and skb->pfmemalloc 255 * This means that if @frag_size is not zero, then @data must be backed 256 * by a page fragment, not kmalloc() or vmalloc() 257 */ 258 struct sk_buff *build_skb(void *data, unsigned int frag_size) 259 { 260 struct sk_buff *skb = __build_skb(data, frag_size); 261 262 if (skb && frag_size) { 263 skb->head_frag = 1; 264 if (page_is_pfmemalloc(virt_to_head_page(data))) 265 skb->pfmemalloc = 1; 266 } 267 return skb; 268 } 269 EXPORT_SYMBOL(build_skb); 270 271 /** 272 * build_skb_around - build a network buffer around provided skb 273 * @skb: sk_buff provide by caller, must be memset cleared 274 * @data: data buffer provided by caller 275 * @frag_size: size of data, or 0 if head was kmalloced 276 */ 277 struct sk_buff *build_skb_around(struct sk_buff *skb, 278 void *data, unsigned int frag_size) 279 { 280 if (unlikely(!skb)) 281 return NULL; 282 283 __build_skb_around(skb, data, frag_size); 284 285 if (frag_size) { 286 skb->head_frag = 1; 287 if (page_is_pfmemalloc(virt_to_head_page(data))) 288 skb->pfmemalloc = 1; 289 } 290 return skb; 291 } 292 EXPORT_SYMBOL(build_skb_around); 293 294 /** 295 * __napi_build_skb - build a network buffer 296 * @data: data buffer provided by caller 297 * @frag_size: size of data, or 0 if head was kmalloced 298 * 299 * Version of __build_skb() that uses NAPI percpu caches to obtain 300 * skbuff_head instead of inplace allocation. 301 * 302 * Returns a new &sk_buff on success, %NULL on allocation failure. 303 */ 304 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 305 { 306 struct sk_buff *skb; 307 308 skb = napi_skb_cache_get(); 309 if (unlikely(!skb)) 310 return NULL; 311 312 memset(skb, 0, offsetof(struct sk_buff, tail)); 313 __build_skb_around(skb, data, frag_size); 314 315 return skb; 316 } 317 318 /** 319 * napi_build_skb - build a network buffer 320 * @data: data buffer provided by caller 321 * @frag_size: size of data, or 0 if head was kmalloced 322 * 323 * Version of __napi_build_skb() that takes care of skb->head_frag 324 * and skb->pfmemalloc when the data is a page or page fragment. 325 * 326 * Returns a new &sk_buff on success, %NULL on allocation failure. 327 */ 328 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 329 { 330 struct sk_buff *skb = __napi_build_skb(data, frag_size); 331 332 if (likely(skb) && frag_size) { 333 skb->head_frag = 1; 334 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 335 } 336 337 return skb; 338 } 339 EXPORT_SYMBOL(napi_build_skb); 340 341 /* 342 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 343 * the caller if emergency pfmemalloc reserves are being used. If it is and 344 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 345 * may be used. Otherwise, the packet data may be discarded until enough 346 * memory is free 347 */ 348 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 349 bool *pfmemalloc) 350 { 351 void *obj; 352 bool ret_pfmemalloc = false; 353 354 /* 355 * Try a regular allocation, when that fails and we're not entitled 356 * to the reserves, fail. 357 */ 358 obj = kmalloc_node_track_caller(size, 359 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 360 node); 361 if (obj || !(gfp_pfmemalloc_allowed(flags))) 362 goto out; 363 364 /* Try again but now we are using pfmemalloc reserves */ 365 ret_pfmemalloc = true; 366 obj = kmalloc_node_track_caller(size, flags, node); 367 368 out: 369 if (pfmemalloc) 370 *pfmemalloc = ret_pfmemalloc; 371 372 return obj; 373 } 374 375 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 376 * 'private' fields and also do memory statistics to find all the 377 * [BEEP] leaks. 378 * 379 */ 380 381 /** 382 * __alloc_skb - allocate a network buffer 383 * @size: size to allocate 384 * @gfp_mask: allocation mask 385 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 386 * instead of head cache and allocate a cloned (child) skb. 387 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 388 * allocations in case the data is required for writeback 389 * @node: numa node to allocate memory on 390 * 391 * Allocate a new &sk_buff. The returned buffer has no headroom and a 392 * tail room of at least size bytes. The object has a reference count 393 * of one. The return is the buffer. On a failure the return is %NULL. 394 * 395 * Buffers may only be allocated from interrupts using a @gfp_mask of 396 * %GFP_ATOMIC. 397 */ 398 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 399 int flags, int node) 400 { 401 struct kmem_cache *cache; 402 struct sk_buff *skb; 403 unsigned int osize; 404 bool pfmemalloc; 405 u8 *data; 406 407 cache = (flags & SKB_ALLOC_FCLONE) 408 ? skbuff_fclone_cache : skbuff_head_cache; 409 410 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 411 gfp_mask |= __GFP_MEMALLOC; 412 413 /* Get the HEAD */ 414 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 415 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 416 skb = napi_skb_cache_get(); 417 else 418 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 419 if (unlikely(!skb)) 420 return NULL; 421 prefetchw(skb); 422 423 /* We do our best to align skb_shared_info on a separate cache 424 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 425 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 426 * Both skb->head and skb_shared_info are cache line aligned. 427 */ 428 size = SKB_DATA_ALIGN(size); 429 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 430 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 431 if (unlikely(!data)) 432 goto nodata; 433 /* kmalloc(size) might give us more room than requested. 434 * Put skb_shared_info exactly at the end of allocated zone, 435 * to allow max possible filling before reallocation. 436 */ 437 osize = ksize(data); 438 size = SKB_WITH_OVERHEAD(osize); 439 prefetchw(data + size); 440 441 /* 442 * Only clear those fields we need to clear, not those that we will 443 * actually initialise below. Hence, don't put any more fields after 444 * the tail pointer in struct sk_buff! 445 */ 446 memset(skb, 0, offsetof(struct sk_buff, tail)); 447 __build_skb_around(skb, data, osize); 448 skb->pfmemalloc = pfmemalloc; 449 450 if (flags & SKB_ALLOC_FCLONE) { 451 struct sk_buff_fclones *fclones; 452 453 fclones = container_of(skb, struct sk_buff_fclones, skb1); 454 455 skb->fclone = SKB_FCLONE_ORIG; 456 refcount_set(&fclones->fclone_ref, 1); 457 } 458 459 return skb; 460 461 nodata: 462 kmem_cache_free(cache, skb); 463 return NULL; 464 } 465 EXPORT_SYMBOL(__alloc_skb); 466 467 /** 468 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 469 * @dev: network device to receive on 470 * @len: length to allocate 471 * @gfp_mask: get_free_pages mask, passed to alloc_skb 472 * 473 * Allocate a new &sk_buff and assign it a usage count of one. The 474 * buffer has NET_SKB_PAD headroom built in. Users should allocate 475 * the headroom they think they need without accounting for the 476 * built in space. The built in space is used for optimisations. 477 * 478 * %NULL is returned if there is no free memory. 479 */ 480 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 481 gfp_t gfp_mask) 482 { 483 struct page_frag_cache *nc; 484 struct sk_buff *skb; 485 bool pfmemalloc; 486 void *data; 487 488 len += NET_SKB_PAD; 489 490 /* If requested length is either too small or too big, 491 * we use kmalloc() for skb->head allocation. 492 */ 493 if (len <= SKB_WITH_OVERHEAD(1024) || 494 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 497 if (!skb) 498 goto skb_fail; 499 goto skb_success; 500 } 501 502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 503 len = SKB_DATA_ALIGN(len); 504 505 if (sk_memalloc_socks()) 506 gfp_mask |= __GFP_MEMALLOC; 507 508 if (in_hardirq() || irqs_disabled()) { 509 nc = this_cpu_ptr(&netdev_alloc_cache); 510 data = page_frag_alloc(nc, len, gfp_mask); 511 pfmemalloc = nc->pfmemalloc; 512 } else { 513 local_bh_disable(); 514 nc = this_cpu_ptr(&napi_alloc_cache.page); 515 data = page_frag_alloc(nc, len, gfp_mask); 516 pfmemalloc = nc->pfmemalloc; 517 local_bh_enable(); 518 } 519 520 if (unlikely(!data)) 521 return NULL; 522 523 skb = __build_skb(data, len); 524 if (unlikely(!skb)) { 525 skb_free_frag(data); 526 return NULL; 527 } 528 529 if (pfmemalloc) 530 skb->pfmemalloc = 1; 531 skb->head_frag = 1; 532 533 skb_success: 534 skb_reserve(skb, NET_SKB_PAD); 535 skb->dev = dev; 536 537 skb_fail: 538 return skb; 539 } 540 EXPORT_SYMBOL(__netdev_alloc_skb); 541 542 /** 543 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 544 * @napi: napi instance this buffer was allocated for 545 * @len: length to allocate 546 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 547 * 548 * Allocate a new sk_buff for use in NAPI receive. This buffer will 549 * attempt to allocate the head from a special reserved region used 550 * only for NAPI Rx allocation. By doing this we can save several 551 * CPU cycles by avoiding having to disable and re-enable IRQs. 552 * 553 * %NULL is returned if there is no free memory. 554 */ 555 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 556 gfp_t gfp_mask) 557 { 558 struct napi_alloc_cache *nc; 559 struct sk_buff *skb; 560 void *data; 561 562 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 563 len += NET_SKB_PAD + NET_IP_ALIGN; 564 565 /* If requested length is either too small or too big, 566 * we use kmalloc() for skb->head allocation. 567 */ 568 if (len <= SKB_WITH_OVERHEAD(1024) || 569 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 570 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 571 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 572 NUMA_NO_NODE); 573 if (!skb) 574 goto skb_fail; 575 goto skb_success; 576 } 577 578 nc = this_cpu_ptr(&napi_alloc_cache); 579 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 580 len = SKB_DATA_ALIGN(len); 581 582 if (sk_memalloc_socks()) 583 gfp_mask |= __GFP_MEMALLOC; 584 585 data = page_frag_alloc(&nc->page, len, gfp_mask); 586 if (unlikely(!data)) 587 return NULL; 588 589 skb = __napi_build_skb(data, len); 590 if (unlikely(!skb)) { 591 skb_free_frag(data); 592 return NULL; 593 } 594 595 if (nc->page.pfmemalloc) 596 skb->pfmemalloc = 1; 597 skb->head_frag = 1; 598 599 skb_success: 600 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 601 skb->dev = napi->dev; 602 603 skb_fail: 604 return skb; 605 } 606 EXPORT_SYMBOL(__napi_alloc_skb); 607 608 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 609 int size, unsigned int truesize) 610 { 611 skb_fill_page_desc(skb, i, page, off, size); 612 skb->len += size; 613 skb->data_len += size; 614 skb->truesize += truesize; 615 } 616 EXPORT_SYMBOL(skb_add_rx_frag); 617 618 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 619 unsigned int truesize) 620 { 621 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 622 623 skb_frag_size_add(frag, size); 624 skb->len += size; 625 skb->data_len += size; 626 skb->truesize += truesize; 627 } 628 EXPORT_SYMBOL(skb_coalesce_rx_frag); 629 630 static void skb_drop_list(struct sk_buff **listp) 631 { 632 kfree_skb_list(*listp); 633 *listp = NULL; 634 } 635 636 static inline void skb_drop_fraglist(struct sk_buff *skb) 637 { 638 skb_drop_list(&skb_shinfo(skb)->frag_list); 639 } 640 641 static void skb_clone_fraglist(struct sk_buff *skb) 642 { 643 struct sk_buff *list; 644 645 skb_walk_frags(skb, list) 646 skb_get(list); 647 } 648 649 static void skb_free_head(struct sk_buff *skb) 650 { 651 unsigned char *head = skb->head; 652 653 if (skb->head_frag) { 654 if (skb_pp_recycle(skb, head)) 655 return; 656 skb_free_frag(head); 657 } else { 658 kfree(head); 659 } 660 } 661 662 static void skb_release_data(struct sk_buff *skb) 663 { 664 struct skb_shared_info *shinfo = skb_shinfo(skb); 665 int i; 666 667 if (skb->cloned && 668 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 669 &shinfo->dataref)) 670 goto exit; 671 672 if (skb_zcopy(skb)) { 673 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 674 675 skb_zcopy_clear(skb, true); 676 if (skip_unref) 677 goto free_head; 678 } 679 680 for (i = 0; i < shinfo->nr_frags; i++) 681 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 682 683 free_head: 684 if (shinfo->frag_list) 685 kfree_skb_list(shinfo->frag_list); 686 687 skb_free_head(skb); 688 exit: 689 /* When we clone an SKB we copy the reycling bit. The pp_recycle 690 * bit is only set on the head though, so in order to avoid races 691 * while trying to recycle fragments on __skb_frag_unref() we need 692 * to make one SKB responsible for triggering the recycle path. 693 * So disable the recycling bit if an SKB is cloned and we have 694 * additional references to the fragmented part of the SKB. 695 * Eventually the last SKB will have the recycling bit set and it's 696 * dataref set to 0, which will trigger the recycling 697 */ 698 skb->pp_recycle = 0; 699 } 700 701 /* 702 * Free an skbuff by memory without cleaning the state. 703 */ 704 static void kfree_skbmem(struct sk_buff *skb) 705 { 706 struct sk_buff_fclones *fclones; 707 708 switch (skb->fclone) { 709 case SKB_FCLONE_UNAVAILABLE: 710 kmem_cache_free(skbuff_head_cache, skb); 711 return; 712 713 case SKB_FCLONE_ORIG: 714 fclones = container_of(skb, struct sk_buff_fclones, skb1); 715 716 /* We usually free the clone (TX completion) before original skb 717 * This test would have no chance to be true for the clone, 718 * while here, branch prediction will be good. 719 */ 720 if (refcount_read(&fclones->fclone_ref) == 1) 721 goto fastpath; 722 break; 723 724 default: /* SKB_FCLONE_CLONE */ 725 fclones = container_of(skb, struct sk_buff_fclones, skb2); 726 break; 727 } 728 if (!refcount_dec_and_test(&fclones->fclone_ref)) 729 return; 730 fastpath: 731 kmem_cache_free(skbuff_fclone_cache, fclones); 732 } 733 734 void skb_release_head_state(struct sk_buff *skb) 735 { 736 skb_dst_drop(skb); 737 if (skb->destructor) { 738 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 739 skb->destructor(skb); 740 } 741 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 742 nf_conntrack_put(skb_nfct(skb)); 743 #endif 744 skb_ext_put(skb); 745 } 746 747 /* Free everything but the sk_buff shell. */ 748 static void skb_release_all(struct sk_buff *skb) 749 { 750 skb_release_head_state(skb); 751 if (likely(skb->head)) 752 skb_release_data(skb); 753 } 754 755 /** 756 * __kfree_skb - private function 757 * @skb: buffer 758 * 759 * Free an sk_buff. Release anything attached to the buffer. 760 * Clean the state. This is an internal helper function. Users should 761 * always call kfree_skb 762 */ 763 764 void __kfree_skb(struct sk_buff *skb) 765 { 766 skb_release_all(skb); 767 kfree_skbmem(skb); 768 } 769 EXPORT_SYMBOL(__kfree_skb); 770 771 /** 772 * kfree_skb_reason - free an sk_buff with special reason 773 * @skb: buffer to free 774 * @reason: reason why this skb is dropped 775 * 776 * Drop a reference to the buffer and free it if the usage count has 777 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 778 * tracepoint. 779 */ 780 void __fix_address 781 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 782 { 783 if (unlikely(!skb_unref(skb))) 784 return; 785 786 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 787 788 trace_kfree_skb(skb, __builtin_return_address(0), reason); 789 __kfree_skb(skb); 790 } 791 EXPORT_SYMBOL(kfree_skb_reason); 792 793 void kfree_skb_list_reason(struct sk_buff *segs, 794 enum skb_drop_reason reason) 795 { 796 while (segs) { 797 struct sk_buff *next = segs->next; 798 799 kfree_skb_reason(segs, reason); 800 segs = next; 801 } 802 } 803 EXPORT_SYMBOL(kfree_skb_list_reason); 804 805 /* Dump skb information and contents. 806 * 807 * Must only be called from net_ratelimit()-ed paths. 808 * 809 * Dumps whole packets if full_pkt, only headers otherwise. 810 */ 811 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 812 { 813 struct skb_shared_info *sh = skb_shinfo(skb); 814 struct net_device *dev = skb->dev; 815 struct sock *sk = skb->sk; 816 struct sk_buff *list_skb; 817 bool has_mac, has_trans; 818 int headroom, tailroom; 819 int i, len, seg_len; 820 821 if (full_pkt) 822 len = skb->len; 823 else 824 len = min_t(int, skb->len, MAX_HEADER + 128); 825 826 headroom = skb_headroom(skb); 827 tailroom = skb_tailroom(skb); 828 829 has_mac = skb_mac_header_was_set(skb); 830 has_trans = skb_transport_header_was_set(skb); 831 832 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 833 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 834 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 835 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 836 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 837 level, skb->len, headroom, skb_headlen(skb), tailroom, 838 has_mac ? skb->mac_header : -1, 839 has_mac ? skb_mac_header_len(skb) : -1, 840 skb->network_header, 841 has_trans ? skb_network_header_len(skb) : -1, 842 has_trans ? skb->transport_header : -1, 843 sh->tx_flags, sh->nr_frags, 844 sh->gso_size, sh->gso_type, sh->gso_segs, 845 skb->csum, skb->ip_summed, skb->csum_complete_sw, 846 skb->csum_valid, skb->csum_level, 847 skb->hash, skb->sw_hash, skb->l4_hash, 848 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 849 850 if (dev) 851 printk("%sdev name=%s feat=%pNF\n", 852 level, dev->name, &dev->features); 853 if (sk) 854 printk("%ssk family=%hu type=%u proto=%u\n", 855 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 856 857 if (full_pkt && headroom) 858 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 859 16, 1, skb->head, headroom, false); 860 861 seg_len = min_t(int, skb_headlen(skb), len); 862 if (seg_len) 863 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 864 16, 1, skb->data, seg_len, false); 865 len -= seg_len; 866 867 if (full_pkt && tailroom) 868 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 869 16, 1, skb_tail_pointer(skb), tailroom, false); 870 871 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 872 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 873 u32 p_off, p_len, copied; 874 struct page *p; 875 u8 *vaddr; 876 877 skb_frag_foreach_page(frag, skb_frag_off(frag), 878 skb_frag_size(frag), p, p_off, p_len, 879 copied) { 880 seg_len = min_t(int, p_len, len); 881 vaddr = kmap_atomic(p); 882 print_hex_dump(level, "skb frag: ", 883 DUMP_PREFIX_OFFSET, 884 16, 1, vaddr + p_off, seg_len, false); 885 kunmap_atomic(vaddr); 886 len -= seg_len; 887 if (!len) 888 break; 889 } 890 } 891 892 if (full_pkt && skb_has_frag_list(skb)) { 893 printk("skb fraglist:\n"); 894 skb_walk_frags(skb, list_skb) 895 skb_dump(level, list_skb, true); 896 } 897 } 898 EXPORT_SYMBOL(skb_dump); 899 900 /** 901 * skb_tx_error - report an sk_buff xmit error 902 * @skb: buffer that triggered an error 903 * 904 * Report xmit error if a device callback is tracking this skb. 905 * skb must be freed afterwards. 906 */ 907 void skb_tx_error(struct sk_buff *skb) 908 { 909 if (skb) { 910 skb_zcopy_downgrade_managed(skb); 911 skb_zcopy_clear(skb, true); 912 } 913 } 914 EXPORT_SYMBOL(skb_tx_error); 915 916 #ifdef CONFIG_TRACEPOINTS 917 /** 918 * consume_skb - free an skbuff 919 * @skb: buffer to free 920 * 921 * Drop a ref to the buffer and free it if the usage count has hit zero 922 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 923 * is being dropped after a failure and notes that 924 */ 925 void consume_skb(struct sk_buff *skb) 926 { 927 if (!skb_unref(skb)) 928 return; 929 930 trace_consume_skb(skb); 931 __kfree_skb(skb); 932 } 933 EXPORT_SYMBOL(consume_skb); 934 #endif 935 936 /** 937 * __consume_stateless_skb - free an skbuff, assuming it is stateless 938 * @skb: buffer to free 939 * 940 * Alike consume_skb(), but this variant assumes that this is the last 941 * skb reference and all the head states have been already dropped 942 */ 943 void __consume_stateless_skb(struct sk_buff *skb) 944 { 945 trace_consume_skb(skb); 946 skb_release_data(skb); 947 kfree_skbmem(skb); 948 } 949 950 static void napi_skb_cache_put(struct sk_buff *skb) 951 { 952 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 953 u32 i; 954 955 kasan_poison_object_data(skbuff_head_cache, skb); 956 nc->skb_cache[nc->skb_count++] = skb; 957 958 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 959 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 960 kasan_unpoison_object_data(skbuff_head_cache, 961 nc->skb_cache[i]); 962 963 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 964 nc->skb_cache + NAPI_SKB_CACHE_HALF); 965 nc->skb_count = NAPI_SKB_CACHE_HALF; 966 } 967 } 968 969 void __kfree_skb_defer(struct sk_buff *skb) 970 { 971 skb_release_all(skb); 972 napi_skb_cache_put(skb); 973 } 974 975 void napi_skb_free_stolen_head(struct sk_buff *skb) 976 { 977 if (unlikely(skb->slow_gro)) { 978 nf_reset_ct(skb); 979 skb_dst_drop(skb); 980 skb_ext_put(skb); 981 skb_orphan(skb); 982 skb->slow_gro = 0; 983 } 984 napi_skb_cache_put(skb); 985 } 986 987 void napi_consume_skb(struct sk_buff *skb, int budget) 988 { 989 /* Zero budget indicate non-NAPI context called us, like netpoll */ 990 if (unlikely(!budget)) { 991 dev_consume_skb_any(skb); 992 return; 993 } 994 995 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 996 997 if (!skb_unref(skb)) 998 return; 999 1000 /* if reaching here SKB is ready to free */ 1001 trace_consume_skb(skb); 1002 1003 /* if SKB is a clone, don't handle this case */ 1004 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1005 __kfree_skb(skb); 1006 return; 1007 } 1008 1009 skb_release_all(skb); 1010 napi_skb_cache_put(skb); 1011 } 1012 EXPORT_SYMBOL(napi_consume_skb); 1013 1014 /* Make sure a field is contained by headers group */ 1015 #define CHECK_SKB_FIELD(field) \ 1016 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1017 offsetof(struct sk_buff, headers.field)); \ 1018 1019 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1020 { 1021 new->tstamp = old->tstamp; 1022 /* We do not copy old->sk */ 1023 new->dev = old->dev; 1024 memcpy(new->cb, old->cb, sizeof(old->cb)); 1025 skb_dst_copy(new, old); 1026 __skb_ext_copy(new, old); 1027 __nf_copy(new, old, false); 1028 1029 /* Note : this field could be in the headers group. 1030 * It is not yet because we do not want to have a 16 bit hole 1031 */ 1032 new->queue_mapping = old->queue_mapping; 1033 1034 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1035 CHECK_SKB_FIELD(protocol); 1036 CHECK_SKB_FIELD(csum); 1037 CHECK_SKB_FIELD(hash); 1038 CHECK_SKB_FIELD(priority); 1039 CHECK_SKB_FIELD(skb_iif); 1040 CHECK_SKB_FIELD(vlan_proto); 1041 CHECK_SKB_FIELD(vlan_tci); 1042 CHECK_SKB_FIELD(transport_header); 1043 CHECK_SKB_FIELD(network_header); 1044 CHECK_SKB_FIELD(mac_header); 1045 CHECK_SKB_FIELD(inner_protocol); 1046 CHECK_SKB_FIELD(inner_transport_header); 1047 CHECK_SKB_FIELD(inner_network_header); 1048 CHECK_SKB_FIELD(inner_mac_header); 1049 CHECK_SKB_FIELD(mark); 1050 #ifdef CONFIG_NETWORK_SECMARK 1051 CHECK_SKB_FIELD(secmark); 1052 #endif 1053 #ifdef CONFIG_NET_RX_BUSY_POLL 1054 CHECK_SKB_FIELD(napi_id); 1055 #endif 1056 CHECK_SKB_FIELD(alloc_cpu); 1057 #ifdef CONFIG_XPS 1058 CHECK_SKB_FIELD(sender_cpu); 1059 #endif 1060 #ifdef CONFIG_NET_SCHED 1061 CHECK_SKB_FIELD(tc_index); 1062 #endif 1063 1064 } 1065 1066 /* 1067 * You should not add any new code to this function. Add it to 1068 * __copy_skb_header above instead. 1069 */ 1070 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1071 { 1072 #define C(x) n->x = skb->x 1073 1074 n->next = n->prev = NULL; 1075 n->sk = NULL; 1076 __copy_skb_header(n, skb); 1077 1078 C(len); 1079 C(data_len); 1080 C(mac_len); 1081 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1082 n->cloned = 1; 1083 n->nohdr = 0; 1084 n->peeked = 0; 1085 C(pfmemalloc); 1086 C(pp_recycle); 1087 n->destructor = NULL; 1088 C(tail); 1089 C(end); 1090 C(head); 1091 C(head_frag); 1092 C(data); 1093 C(truesize); 1094 refcount_set(&n->users, 1); 1095 1096 atomic_inc(&(skb_shinfo(skb)->dataref)); 1097 skb->cloned = 1; 1098 1099 return n; 1100 #undef C 1101 } 1102 1103 /** 1104 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1105 * @first: first sk_buff of the msg 1106 */ 1107 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1108 { 1109 struct sk_buff *n; 1110 1111 n = alloc_skb(0, GFP_ATOMIC); 1112 if (!n) 1113 return NULL; 1114 1115 n->len = first->len; 1116 n->data_len = first->len; 1117 n->truesize = first->truesize; 1118 1119 skb_shinfo(n)->frag_list = first; 1120 1121 __copy_skb_header(n, first); 1122 n->destructor = NULL; 1123 1124 return n; 1125 } 1126 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1127 1128 /** 1129 * skb_morph - morph one skb into another 1130 * @dst: the skb to receive the contents 1131 * @src: the skb to supply the contents 1132 * 1133 * This is identical to skb_clone except that the target skb is 1134 * supplied by the user. 1135 * 1136 * The target skb is returned upon exit. 1137 */ 1138 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1139 { 1140 skb_release_all(dst); 1141 return __skb_clone(dst, src); 1142 } 1143 EXPORT_SYMBOL_GPL(skb_morph); 1144 1145 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1146 { 1147 unsigned long max_pg, num_pg, new_pg, old_pg; 1148 struct user_struct *user; 1149 1150 if (capable(CAP_IPC_LOCK) || !size) 1151 return 0; 1152 1153 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1154 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1155 user = mmp->user ? : current_user(); 1156 1157 do { 1158 old_pg = atomic_long_read(&user->locked_vm); 1159 new_pg = old_pg + num_pg; 1160 if (new_pg > max_pg) 1161 return -ENOBUFS; 1162 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1163 old_pg); 1164 1165 if (!mmp->user) { 1166 mmp->user = get_uid(user); 1167 mmp->num_pg = num_pg; 1168 } else { 1169 mmp->num_pg += num_pg; 1170 } 1171 1172 return 0; 1173 } 1174 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1175 1176 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1177 { 1178 if (mmp->user) { 1179 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1180 free_uid(mmp->user); 1181 } 1182 } 1183 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1184 1185 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1186 { 1187 struct ubuf_info *uarg; 1188 struct sk_buff *skb; 1189 1190 WARN_ON_ONCE(!in_task()); 1191 1192 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1193 if (!skb) 1194 return NULL; 1195 1196 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1197 uarg = (void *)skb->cb; 1198 uarg->mmp.user = NULL; 1199 1200 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1201 kfree_skb(skb); 1202 return NULL; 1203 } 1204 1205 uarg->callback = msg_zerocopy_callback; 1206 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1207 uarg->len = 1; 1208 uarg->bytelen = size; 1209 uarg->zerocopy = 1; 1210 uarg->flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1211 refcount_set(&uarg->refcnt, 1); 1212 sock_hold(sk); 1213 1214 return uarg; 1215 } 1216 1217 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1218 { 1219 return container_of((void *)uarg, struct sk_buff, cb); 1220 } 1221 1222 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1223 struct ubuf_info *uarg) 1224 { 1225 if (uarg) { 1226 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1227 u32 bytelen, next; 1228 1229 /* there might be non MSG_ZEROCOPY users */ 1230 if (uarg->callback != msg_zerocopy_callback) 1231 return NULL; 1232 1233 /* realloc only when socket is locked (TCP, UDP cork), 1234 * so uarg->len and sk_zckey access is serialized 1235 */ 1236 if (!sock_owned_by_user(sk)) { 1237 WARN_ON_ONCE(1); 1238 return NULL; 1239 } 1240 1241 bytelen = uarg->bytelen + size; 1242 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1243 /* TCP can create new skb to attach new uarg */ 1244 if (sk->sk_type == SOCK_STREAM) 1245 goto new_alloc; 1246 return NULL; 1247 } 1248 1249 next = (u32)atomic_read(&sk->sk_zckey); 1250 if ((u32)(uarg->id + uarg->len) == next) { 1251 if (mm_account_pinned_pages(&uarg->mmp, size)) 1252 return NULL; 1253 uarg->len++; 1254 uarg->bytelen = bytelen; 1255 atomic_set(&sk->sk_zckey, ++next); 1256 1257 /* no extra ref when appending to datagram (MSG_MORE) */ 1258 if (sk->sk_type == SOCK_STREAM) 1259 net_zcopy_get(uarg); 1260 1261 return uarg; 1262 } 1263 } 1264 1265 new_alloc: 1266 return msg_zerocopy_alloc(sk, size); 1267 } 1268 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1269 1270 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1271 { 1272 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1273 u32 old_lo, old_hi; 1274 u64 sum_len; 1275 1276 old_lo = serr->ee.ee_info; 1277 old_hi = serr->ee.ee_data; 1278 sum_len = old_hi - old_lo + 1ULL + len; 1279 1280 if (sum_len >= (1ULL << 32)) 1281 return false; 1282 1283 if (lo != old_hi + 1) 1284 return false; 1285 1286 serr->ee.ee_data += len; 1287 return true; 1288 } 1289 1290 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1291 { 1292 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1293 struct sock_exterr_skb *serr; 1294 struct sock *sk = skb->sk; 1295 struct sk_buff_head *q; 1296 unsigned long flags; 1297 bool is_zerocopy; 1298 u32 lo, hi; 1299 u16 len; 1300 1301 mm_unaccount_pinned_pages(&uarg->mmp); 1302 1303 /* if !len, there was only 1 call, and it was aborted 1304 * so do not queue a completion notification 1305 */ 1306 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1307 goto release; 1308 1309 len = uarg->len; 1310 lo = uarg->id; 1311 hi = uarg->id + len - 1; 1312 is_zerocopy = uarg->zerocopy; 1313 1314 serr = SKB_EXT_ERR(skb); 1315 memset(serr, 0, sizeof(*serr)); 1316 serr->ee.ee_errno = 0; 1317 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1318 serr->ee.ee_data = hi; 1319 serr->ee.ee_info = lo; 1320 if (!is_zerocopy) 1321 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1322 1323 q = &sk->sk_error_queue; 1324 spin_lock_irqsave(&q->lock, flags); 1325 tail = skb_peek_tail(q); 1326 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1327 !skb_zerocopy_notify_extend(tail, lo, len)) { 1328 __skb_queue_tail(q, skb); 1329 skb = NULL; 1330 } 1331 spin_unlock_irqrestore(&q->lock, flags); 1332 1333 sk_error_report(sk); 1334 1335 release: 1336 consume_skb(skb); 1337 sock_put(sk); 1338 } 1339 1340 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1341 bool success) 1342 { 1343 uarg->zerocopy = uarg->zerocopy & success; 1344 1345 if (refcount_dec_and_test(&uarg->refcnt)) 1346 __msg_zerocopy_callback(uarg); 1347 } 1348 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1349 1350 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1351 { 1352 struct sock *sk = skb_from_uarg(uarg)->sk; 1353 1354 atomic_dec(&sk->sk_zckey); 1355 uarg->len--; 1356 1357 if (have_uref) 1358 msg_zerocopy_callback(NULL, uarg, true); 1359 } 1360 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1361 1362 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1363 struct msghdr *msg, int len, 1364 struct ubuf_info *uarg) 1365 { 1366 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1367 int err, orig_len = skb->len; 1368 1369 /* An skb can only point to one uarg. This edge case happens when 1370 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1371 */ 1372 if (orig_uarg && uarg != orig_uarg) 1373 return -EEXIST; 1374 1375 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1376 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1377 struct sock *save_sk = skb->sk; 1378 1379 /* Streams do not free skb on error. Reset to prev state. */ 1380 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1381 skb->sk = sk; 1382 ___pskb_trim(skb, orig_len); 1383 skb->sk = save_sk; 1384 return err; 1385 } 1386 1387 skb_zcopy_set(skb, uarg, NULL); 1388 return skb->len - orig_len; 1389 } 1390 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1391 1392 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1393 { 1394 int i; 1395 1396 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1397 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1398 skb_frag_ref(skb, i); 1399 } 1400 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1401 1402 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1403 gfp_t gfp_mask) 1404 { 1405 if (skb_zcopy(orig)) { 1406 if (skb_zcopy(nskb)) { 1407 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1408 if (!gfp_mask) { 1409 WARN_ON_ONCE(1); 1410 return -ENOMEM; 1411 } 1412 if (skb_uarg(nskb) == skb_uarg(orig)) 1413 return 0; 1414 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1415 return -EIO; 1416 } 1417 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1418 } 1419 return 0; 1420 } 1421 1422 /** 1423 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1424 * @skb: the skb to modify 1425 * @gfp_mask: allocation priority 1426 * 1427 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1428 * It will copy all frags into kernel and drop the reference 1429 * to userspace pages. 1430 * 1431 * If this function is called from an interrupt gfp_mask() must be 1432 * %GFP_ATOMIC. 1433 * 1434 * Returns 0 on success or a negative error code on failure 1435 * to allocate kernel memory to copy to. 1436 */ 1437 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1438 { 1439 int num_frags = skb_shinfo(skb)->nr_frags; 1440 struct page *page, *head = NULL; 1441 int i, new_frags; 1442 u32 d_off; 1443 1444 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1445 return -EINVAL; 1446 1447 if (!num_frags) 1448 goto release; 1449 1450 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1451 for (i = 0; i < new_frags; i++) { 1452 page = alloc_page(gfp_mask); 1453 if (!page) { 1454 while (head) { 1455 struct page *next = (struct page *)page_private(head); 1456 put_page(head); 1457 head = next; 1458 } 1459 return -ENOMEM; 1460 } 1461 set_page_private(page, (unsigned long)head); 1462 head = page; 1463 } 1464 1465 page = head; 1466 d_off = 0; 1467 for (i = 0; i < num_frags; i++) { 1468 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1469 u32 p_off, p_len, copied; 1470 struct page *p; 1471 u8 *vaddr; 1472 1473 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1474 p, p_off, p_len, copied) { 1475 u32 copy, done = 0; 1476 vaddr = kmap_atomic(p); 1477 1478 while (done < p_len) { 1479 if (d_off == PAGE_SIZE) { 1480 d_off = 0; 1481 page = (struct page *)page_private(page); 1482 } 1483 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1484 memcpy(page_address(page) + d_off, 1485 vaddr + p_off + done, copy); 1486 done += copy; 1487 d_off += copy; 1488 } 1489 kunmap_atomic(vaddr); 1490 } 1491 } 1492 1493 /* skb frags release userspace buffers */ 1494 for (i = 0; i < num_frags; i++) 1495 skb_frag_unref(skb, i); 1496 1497 /* skb frags point to kernel buffers */ 1498 for (i = 0; i < new_frags - 1; i++) { 1499 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1500 head = (struct page *)page_private(head); 1501 } 1502 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1503 skb_shinfo(skb)->nr_frags = new_frags; 1504 1505 release: 1506 skb_zcopy_clear(skb, false); 1507 return 0; 1508 } 1509 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1510 1511 /** 1512 * skb_clone - duplicate an sk_buff 1513 * @skb: buffer to clone 1514 * @gfp_mask: allocation priority 1515 * 1516 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1517 * copies share the same packet data but not structure. The new 1518 * buffer has a reference count of 1. If the allocation fails the 1519 * function returns %NULL otherwise the new buffer is returned. 1520 * 1521 * If this function is called from an interrupt gfp_mask() must be 1522 * %GFP_ATOMIC. 1523 */ 1524 1525 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1526 { 1527 struct sk_buff_fclones *fclones = container_of(skb, 1528 struct sk_buff_fclones, 1529 skb1); 1530 struct sk_buff *n; 1531 1532 if (skb_orphan_frags(skb, gfp_mask)) 1533 return NULL; 1534 1535 if (skb->fclone == SKB_FCLONE_ORIG && 1536 refcount_read(&fclones->fclone_ref) == 1) { 1537 n = &fclones->skb2; 1538 refcount_set(&fclones->fclone_ref, 2); 1539 n->fclone = SKB_FCLONE_CLONE; 1540 } else { 1541 if (skb_pfmemalloc(skb)) 1542 gfp_mask |= __GFP_MEMALLOC; 1543 1544 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1545 if (!n) 1546 return NULL; 1547 1548 n->fclone = SKB_FCLONE_UNAVAILABLE; 1549 } 1550 1551 return __skb_clone(n, skb); 1552 } 1553 EXPORT_SYMBOL(skb_clone); 1554 1555 void skb_headers_offset_update(struct sk_buff *skb, int off) 1556 { 1557 /* Only adjust this if it actually is csum_start rather than csum */ 1558 if (skb->ip_summed == CHECKSUM_PARTIAL) 1559 skb->csum_start += off; 1560 /* {transport,network,mac}_header and tail are relative to skb->head */ 1561 skb->transport_header += off; 1562 skb->network_header += off; 1563 if (skb_mac_header_was_set(skb)) 1564 skb->mac_header += off; 1565 skb->inner_transport_header += off; 1566 skb->inner_network_header += off; 1567 skb->inner_mac_header += off; 1568 } 1569 EXPORT_SYMBOL(skb_headers_offset_update); 1570 1571 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1572 { 1573 __copy_skb_header(new, old); 1574 1575 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1576 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1577 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1578 } 1579 EXPORT_SYMBOL(skb_copy_header); 1580 1581 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1582 { 1583 if (skb_pfmemalloc(skb)) 1584 return SKB_ALLOC_RX; 1585 return 0; 1586 } 1587 1588 /** 1589 * skb_copy - create private copy of an sk_buff 1590 * @skb: buffer to copy 1591 * @gfp_mask: allocation priority 1592 * 1593 * Make a copy of both an &sk_buff and its data. This is used when the 1594 * caller wishes to modify the data and needs a private copy of the 1595 * data to alter. Returns %NULL on failure or the pointer to the buffer 1596 * on success. The returned buffer has a reference count of 1. 1597 * 1598 * As by-product this function converts non-linear &sk_buff to linear 1599 * one, so that &sk_buff becomes completely private and caller is allowed 1600 * to modify all the data of returned buffer. This means that this 1601 * function is not recommended for use in circumstances when only 1602 * header is going to be modified. Use pskb_copy() instead. 1603 */ 1604 1605 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1606 { 1607 int headerlen = skb_headroom(skb); 1608 unsigned int size = skb_end_offset(skb) + skb->data_len; 1609 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1610 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1611 1612 if (!n) 1613 return NULL; 1614 1615 /* Set the data pointer */ 1616 skb_reserve(n, headerlen); 1617 /* Set the tail pointer and length */ 1618 skb_put(n, skb->len); 1619 1620 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1621 1622 skb_copy_header(n, skb); 1623 return n; 1624 } 1625 EXPORT_SYMBOL(skb_copy); 1626 1627 /** 1628 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1629 * @skb: buffer to copy 1630 * @headroom: headroom of new skb 1631 * @gfp_mask: allocation priority 1632 * @fclone: if true allocate the copy of the skb from the fclone 1633 * cache instead of the head cache; it is recommended to set this 1634 * to true for the cases where the copy will likely be cloned 1635 * 1636 * Make a copy of both an &sk_buff and part of its data, located 1637 * in header. Fragmented data remain shared. This is used when 1638 * the caller wishes to modify only header of &sk_buff and needs 1639 * private copy of the header to alter. Returns %NULL on failure 1640 * or the pointer to the buffer on success. 1641 * The returned buffer has a reference count of 1. 1642 */ 1643 1644 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1645 gfp_t gfp_mask, bool fclone) 1646 { 1647 unsigned int size = skb_headlen(skb) + headroom; 1648 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1649 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1650 1651 if (!n) 1652 goto out; 1653 1654 /* Set the data pointer */ 1655 skb_reserve(n, headroom); 1656 /* Set the tail pointer and length */ 1657 skb_put(n, skb_headlen(skb)); 1658 /* Copy the bytes */ 1659 skb_copy_from_linear_data(skb, n->data, n->len); 1660 1661 n->truesize += skb->data_len; 1662 n->data_len = skb->data_len; 1663 n->len = skb->len; 1664 1665 if (skb_shinfo(skb)->nr_frags) { 1666 int i; 1667 1668 if (skb_orphan_frags(skb, gfp_mask) || 1669 skb_zerocopy_clone(n, skb, gfp_mask)) { 1670 kfree_skb(n); 1671 n = NULL; 1672 goto out; 1673 } 1674 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1675 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1676 skb_frag_ref(skb, i); 1677 } 1678 skb_shinfo(n)->nr_frags = i; 1679 } 1680 1681 if (skb_has_frag_list(skb)) { 1682 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1683 skb_clone_fraglist(n); 1684 } 1685 1686 skb_copy_header(n, skb); 1687 out: 1688 return n; 1689 } 1690 EXPORT_SYMBOL(__pskb_copy_fclone); 1691 1692 /** 1693 * pskb_expand_head - reallocate header of &sk_buff 1694 * @skb: buffer to reallocate 1695 * @nhead: room to add at head 1696 * @ntail: room to add at tail 1697 * @gfp_mask: allocation priority 1698 * 1699 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1700 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1701 * reference count of 1. Returns zero in the case of success or error, 1702 * if expansion failed. In the last case, &sk_buff is not changed. 1703 * 1704 * All the pointers pointing into skb header may change and must be 1705 * reloaded after call to this function. 1706 */ 1707 1708 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1709 gfp_t gfp_mask) 1710 { 1711 int i, osize = skb_end_offset(skb); 1712 int size = osize + nhead + ntail; 1713 long off; 1714 u8 *data; 1715 1716 BUG_ON(nhead < 0); 1717 1718 BUG_ON(skb_shared(skb)); 1719 1720 skb_zcopy_downgrade_managed(skb); 1721 1722 size = SKB_DATA_ALIGN(size); 1723 1724 if (skb_pfmemalloc(skb)) 1725 gfp_mask |= __GFP_MEMALLOC; 1726 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1727 gfp_mask, NUMA_NO_NODE, NULL); 1728 if (!data) 1729 goto nodata; 1730 size = SKB_WITH_OVERHEAD(ksize(data)); 1731 1732 /* Copy only real data... and, alas, header. This should be 1733 * optimized for the cases when header is void. 1734 */ 1735 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1736 1737 memcpy((struct skb_shared_info *)(data + size), 1738 skb_shinfo(skb), 1739 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1740 1741 /* 1742 * if shinfo is shared we must drop the old head gracefully, but if it 1743 * is not we can just drop the old head and let the existing refcount 1744 * be since all we did is relocate the values 1745 */ 1746 if (skb_cloned(skb)) { 1747 if (skb_orphan_frags(skb, gfp_mask)) 1748 goto nofrags; 1749 if (skb_zcopy(skb)) 1750 refcount_inc(&skb_uarg(skb)->refcnt); 1751 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1752 skb_frag_ref(skb, i); 1753 1754 if (skb_has_frag_list(skb)) 1755 skb_clone_fraglist(skb); 1756 1757 skb_release_data(skb); 1758 } else { 1759 skb_free_head(skb); 1760 } 1761 off = (data + nhead) - skb->head; 1762 1763 skb->head = data; 1764 skb->head_frag = 0; 1765 skb->data += off; 1766 1767 skb_set_end_offset(skb, size); 1768 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1769 off = nhead; 1770 #endif 1771 skb->tail += off; 1772 skb_headers_offset_update(skb, nhead); 1773 skb->cloned = 0; 1774 skb->hdr_len = 0; 1775 skb->nohdr = 0; 1776 atomic_set(&skb_shinfo(skb)->dataref, 1); 1777 1778 skb_metadata_clear(skb); 1779 1780 /* It is not generally safe to change skb->truesize. 1781 * For the moment, we really care of rx path, or 1782 * when skb is orphaned (not attached to a socket). 1783 */ 1784 if (!skb->sk || skb->destructor == sock_edemux) 1785 skb->truesize += size - osize; 1786 1787 return 0; 1788 1789 nofrags: 1790 kfree(data); 1791 nodata: 1792 return -ENOMEM; 1793 } 1794 EXPORT_SYMBOL(pskb_expand_head); 1795 1796 /* Make private copy of skb with writable head and some headroom */ 1797 1798 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1799 { 1800 struct sk_buff *skb2; 1801 int delta = headroom - skb_headroom(skb); 1802 1803 if (delta <= 0) 1804 skb2 = pskb_copy(skb, GFP_ATOMIC); 1805 else { 1806 skb2 = skb_clone(skb, GFP_ATOMIC); 1807 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1808 GFP_ATOMIC)) { 1809 kfree_skb(skb2); 1810 skb2 = NULL; 1811 } 1812 } 1813 return skb2; 1814 } 1815 EXPORT_SYMBOL(skb_realloc_headroom); 1816 1817 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1818 { 1819 unsigned int saved_end_offset, saved_truesize; 1820 struct skb_shared_info *shinfo; 1821 int res; 1822 1823 saved_end_offset = skb_end_offset(skb); 1824 saved_truesize = skb->truesize; 1825 1826 res = pskb_expand_head(skb, 0, 0, pri); 1827 if (res) 1828 return res; 1829 1830 skb->truesize = saved_truesize; 1831 1832 if (likely(skb_end_offset(skb) == saved_end_offset)) 1833 return 0; 1834 1835 shinfo = skb_shinfo(skb); 1836 1837 /* We are about to change back skb->end, 1838 * we need to move skb_shinfo() to its new location. 1839 */ 1840 memmove(skb->head + saved_end_offset, 1841 shinfo, 1842 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1843 1844 skb_set_end_offset(skb, saved_end_offset); 1845 1846 return 0; 1847 } 1848 1849 /** 1850 * skb_expand_head - reallocate header of &sk_buff 1851 * @skb: buffer to reallocate 1852 * @headroom: needed headroom 1853 * 1854 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1855 * if possible; copies skb->sk to new skb as needed 1856 * and frees original skb in case of failures. 1857 * 1858 * It expect increased headroom and generates warning otherwise. 1859 */ 1860 1861 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1862 { 1863 int delta = headroom - skb_headroom(skb); 1864 int osize = skb_end_offset(skb); 1865 struct sock *sk = skb->sk; 1866 1867 if (WARN_ONCE(delta <= 0, 1868 "%s is expecting an increase in the headroom", __func__)) 1869 return skb; 1870 1871 delta = SKB_DATA_ALIGN(delta); 1872 /* pskb_expand_head() might crash, if skb is shared. */ 1873 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1874 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1875 1876 if (unlikely(!nskb)) 1877 goto fail; 1878 1879 if (sk) 1880 skb_set_owner_w(nskb, sk); 1881 consume_skb(skb); 1882 skb = nskb; 1883 } 1884 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1885 goto fail; 1886 1887 if (sk && is_skb_wmem(skb)) { 1888 delta = skb_end_offset(skb) - osize; 1889 refcount_add(delta, &sk->sk_wmem_alloc); 1890 skb->truesize += delta; 1891 } 1892 return skb; 1893 1894 fail: 1895 kfree_skb(skb); 1896 return NULL; 1897 } 1898 EXPORT_SYMBOL(skb_expand_head); 1899 1900 /** 1901 * skb_copy_expand - copy and expand sk_buff 1902 * @skb: buffer to copy 1903 * @newheadroom: new free bytes at head 1904 * @newtailroom: new free bytes at tail 1905 * @gfp_mask: allocation priority 1906 * 1907 * Make a copy of both an &sk_buff and its data and while doing so 1908 * allocate additional space. 1909 * 1910 * This is used when the caller wishes to modify the data and needs a 1911 * private copy of the data to alter as well as more space for new fields. 1912 * Returns %NULL on failure or the pointer to the buffer 1913 * on success. The returned buffer has a reference count of 1. 1914 * 1915 * You must pass %GFP_ATOMIC as the allocation priority if this function 1916 * is called from an interrupt. 1917 */ 1918 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1919 int newheadroom, int newtailroom, 1920 gfp_t gfp_mask) 1921 { 1922 /* 1923 * Allocate the copy buffer 1924 */ 1925 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1926 gfp_mask, skb_alloc_rx_flag(skb), 1927 NUMA_NO_NODE); 1928 int oldheadroom = skb_headroom(skb); 1929 int head_copy_len, head_copy_off; 1930 1931 if (!n) 1932 return NULL; 1933 1934 skb_reserve(n, newheadroom); 1935 1936 /* Set the tail pointer and length */ 1937 skb_put(n, skb->len); 1938 1939 head_copy_len = oldheadroom; 1940 head_copy_off = 0; 1941 if (newheadroom <= head_copy_len) 1942 head_copy_len = newheadroom; 1943 else 1944 head_copy_off = newheadroom - head_copy_len; 1945 1946 /* Copy the linear header and data. */ 1947 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1948 skb->len + head_copy_len)); 1949 1950 skb_copy_header(n, skb); 1951 1952 skb_headers_offset_update(n, newheadroom - oldheadroom); 1953 1954 return n; 1955 } 1956 EXPORT_SYMBOL(skb_copy_expand); 1957 1958 /** 1959 * __skb_pad - zero pad the tail of an skb 1960 * @skb: buffer to pad 1961 * @pad: space to pad 1962 * @free_on_error: free buffer on error 1963 * 1964 * Ensure that a buffer is followed by a padding area that is zero 1965 * filled. Used by network drivers which may DMA or transfer data 1966 * beyond the buffer end onto the wire. 1967 * 1968 * May return error in out of memory cases. The skb is freed on error 1969 * if @free_on_error is true. 1970 */ 1971 1972 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1973 { 1974 int err; 1975 int ntail; 1976 1977 /* If the skbuff is non linear tailroom is always zero.. */ 1978 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1979 memset(skb->data+skb->len, 0, pad); 1980 return 0; 1981 } 1982 1983 ntail = skb->data_len + pad - (skb->end - skb->tail); 1984 if (likely(skb_cloned(skb) || ntail > 0)) { 1985 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1986 if (unlikely(err)) 1987 goto free_skb; 1988 } 1989 1990 /* FIXME: The use of this function with non-linear skb's really needs 1991 * to be audited. 1992 */ 1993 err = skb_linearize(skb); 1994 if (unlikely(err)) 1995 goto free_skb; 1996 1997 memset(skb->data + skb->len, 0, pad); 1998 return 0; 1999 2000 free_skb: 2001 if (free_on_error) 2002 kfree_skb(skb); 2003 return err; 2004 } 2005 EXPORT_SYMBOL(__skb_pad); 2006 2007 /** 2008 * pskb_put - add data to the tail of a potentially fragmented buffer 2009 * @skb: start of the buffer to use 2010 * @tail: tail fragment of the buffer to use 2011 * @len: amount of data to add 2012 * 2013 * This function extends the used data area of the potentially 2014 * fragmented buffer. @tail must be the last fragment of @skb -- or 2015 * @skb itself. If this would exceed the total buffer size the kernel 2016 * will panic. A pointer to the first byte of the extra data is 2017 * returned. 2018 */ 2019 2020 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2021 { 2022 if (tail != skb) { 2023 skb->data_len += len; 2024 skb->len += len; 2025 } 2026 return skb_put(tail, len); 2027 } 2028 EXPORT_SYMBOL_GPL(pskb_put); 2029 2030 /** 2031 * skb_put - add data to a buffer 2032 * @skb: buffer to use 2033 * @len: amount of data to add 2034 * 2035 * This function extends the used data area of the buffer. If this would 2036 * exceed the total buffer size the kernel will panic. A pointer to the 2037 * first byte of the extra data is returned. 2038 */ 2039 void *skb_put(struct sk_buff *skb, unsigned int len) 2040 { 2041 void *tmp = skb_tail_pointer(skb); 2042 SKB_LINEAR_ASSERT(skb); 2043 skb->tail += len; 2044 skb->len += len; 2045 if (unlikely(skb->tail > skb->end)) 2046 skb_over_panic(skb, len, __builtin_return_address(0)); 2047 return tmp; 2048 } 2049 EXPORT_SYMBOL(skb_put); 2050 2051 /** 2052 * skb_push - add data to the start of a buffer 2053 * @skb: buffer to use 2054 * @len: amount of data to add 2055 * 2056 * This function extends the used data area of the buffer at the buffer 2057 * start. If this would exceed the total buffer headroom the kernel will 2058 * panic. A pointer to the first byte of the extra data is returned. 2059 */ 2060 void *skb_push(struct sk_buff *skb, unsigned int len) 2061 { 2062 skb->data -= len; 2063 skb->len += len; 2064 if (unlikely(skb->data < skb->head)) 2065 skb_under_panic(skb, len, __builtin_return_address(0)); 2066 return skb->data; 2067 } 2068 EXPORT_SYMBOL(skb_push); 2069 2070 /** 2071 * skb_pull - remove data from the start of a buffer 2072 * @skb: buffer to use 2073 * @len: amount of data to remove 2074 * 2075 * This function removes data from the start of a buffer, returning 2076 * the memory to the headroom. A pointer to the next data in the buffer 2077 * is returned. Once the data has been pulled future pushes will overwrite 2078 * the old data. 2079 */ 2080 void *skb_pull(struct sk_buff *skb, unsigned int len) 2081 { 2082 return skb_pull_inline(skb, len); 2083 } 2084 EXPORT_SYMBOL(skb_pull); 2085 2086 /** 2087 * skb_pull_data - remove data from the start of a buffer returning its 2088 * original position. 2089 * @skb: buffer to use 2090 * @len: amount of data to remove 2091 * 2092 * This function removes data from the start of a buffer, returning 2093 * the memory to the headroom. A pointer to the original data in the buffer 2094 * is returned after checking if there is enough data to pull. Once the 2095 * data has been pulled future pushes will overwrite the old data. 2096 */ 2097 void *skb_pull_data(struct sk_buff *skb, size_t len) 2098 { 2099 void *data = skb->data; 2100 2101 if (skb->len < len) 2102 return NULL; 2103 2104 skb_pull(skb, len); 2105 2106 return data; 2107 } 2108 EXPORT_SYMBOL(skb_pull_data); 2109 2110 /** 2111 * skb_trim - remove end from a buffer 2112 * @skb: buffer to alter 2113 * @len: new length 2114 * 2115 * Cut the length of a buffer down by removing data from the tail. If 2116 * the buffer is already under the length specified it is not modified. 2117 * The skb must be linear. 2118 */ 2119 void skb_trim(struct sk_buff *skb, unsigned int len) 2120 { 2121 if (skb->len > len) 2122 __skb_trim(skb, len); 2123 } 2124 EXPORT_SYMBOL(skb_trim); 2125 2126 /* Trims skb to length len. It can change skb pointers. 2127 */ 2128 2129 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2130 { 2131 struct sk_buff **fragp; 2132 struct sk_buff *frag; 2133 int offset = skb_headlen(skb); 2134 int nfrags = skb_shinfo(skb)->nr_frags; 2135 int i; 2136 int err; 2137 2138 if (skb_cloned(skb) && 2139 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2140 return err; 2141 2142 i = 0; 2143 if (offset >= len) 2144 goto drop_pages; 2145 2146 for (; i < nfrags; i++) { 2147 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2148 2149 if (end < len) { 2150 offset = end; 2151 continue; 2152 } 2153 2154 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2155 2156 drop_pages: 2157 skb_shinfo(skb)->nr_frags = i; 2158 2159 for (; i < nfrags; i++) 2160 skb_frag_unref(skb, i); 2161 2162 if (skb_has_frag_list(skb)) 2163 skb_drop_fraglist(skb); 2164 goto done; 2165 } 2166 2167 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2168 fragp = &frag->next) { 2169 int end = offset + frag->len; 2170 2171 if (skb_shared(frag)) { 2172 struct sk_buff *nfrag; 2173 2174 nfrag = skb_clone(frag, GFP_ATOMIC); 2175 if (unlikely(!nfrag)) 2176 return -ENOMEM; 2177 2178 nfrag->next = frag->next; 2179 consume_skb(frag); 2180 frag = nfrag; 2181 *fragp = frag; 2182 } 2183 2184 if (end < len) { 2185 offset = end; 2186 continue; 2187 } 2188 2189 if (end > len && 2190 unlikely((err = pskb_trim(frag, len - offset)))) 2191 return err; 2192 2193 if (frag->next) 2194 skb_drop_list(&frag->next); 2195 break; 2196 } 2197 2198 done: 2199 if (len > skb_headlen(skb)) { 2200 skb->data_len -= skb->len - len; 2201 skb->len = len; 2202 } else { 2203 skb->len = len; 2204 skb->data_len = 0; 2205 skb_set_tail_pointer(skb, len); 2206 } 2207 2208 if (!skb->sk || skb->destructor == sock_edemux) 2209 skb_condense(skb); 2210 return 0; 2211 } 2212 EXPORT_SYMBOL(___pskb_trim); 2213 2214 /* Note : use pskb_trim_rcsum() instead of calling this directly 2215 */ 2216 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2217 { 2218 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2219 int delta = skb->len - len; 2220 2221 skb->csum = csum_block_sub(skb->csum, 2222 skb_checksum(skb, len, delta, 0), 2223 len); 2224 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2225 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2226 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2227 2228 if (offset + sizeof(__sum16) > hdlen) 2229 return -EINVAL; 2230 } 2231 return __pskb_trim(skb, len); 2232 } 2233 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2234 2235 /** 2236 * __pskb_pull_tail - advance tail of skb header 2237 * @skb: buffer to reallocate 2238 * @delta: number of bytes to advance tail 2239 * 2240 * The function makes a sense only on a fragmented &sk_buff, 2241 * it expands header moving its tail forward and copying necessary 2242 * data from fragmented part. 2243 * 2244 * &sk_buff MUST have reference count of 1. 2245 * 2246 * Returns %NULL (and &sk_buff does not change) if pull failed 2247 * or value of new tail of skb in the case of success. 2248 * 2249 * All the pointers pointing into skb header may change and must be 2250 * reloaded after call to this function. 2251 */ 2252 2253 /* Moves tail of skb head forward, copying data from fragmented part, 2254 * when it is necessary. 2255 * 1. It may fail due to malloc failure. 2256 * 2. It may change skb pointers. 2257 * 2258 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2259 */ 2260 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2261 { 2262 /* If skb has not enough free space at tail, get new one 2263 * plus 128 bytes for future expansions. If we have enough 2264 * room at tail, reallocate without expansion only if skb is cloned. 2265 */ 2266 int i, k, eat = (skb->tail + delta) - skb->end; 2267 2268 if (eat > 0 || skb_cloned(skb)) { 2269 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2270 GFP_ATOMIC)) 2271 return NULL; 2272 } 2273 2274 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2275 skb_tail_pointer(skb), delta)); 2276 2277 /* Optimization: no fragments, no reasons to preestimate 2278 * size of pulled pages. Superb. 2279 */ 2280 if (!skb_has_frag_list(skb)) 2281 goto pull_pages; 2282 2283 /* Estimate size of pulled pages. */ 2284 eat = delta; 2285 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2286 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2287 2288 if (size >= eat) 2289 goto pull_pages; 2290 eat -= size; 2291 } 2292 2293 /* If we need update frag list, we are in troubles. 2294 * Certainly, it is possible to add an offset to skb data, 2295 * but taking into account that pulling is expected to 2296 * be very rare operation, it is worth to fight against 2297 * further bloating skb head and crucify ourselves here instead. 2298 * Pure masohism, indeed. 8)8) 2299 */ 2300 if (eat) { 2301 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2302 struct sk_buff *clone = NULL; 2303 struct sk_buff *insp = NULL; 2304 2305 do { 2306 if (list->len <= eat) { 2307 /* Eaten as whole. */ 2308 eat -= list->len; 2309 list = list->next; 2310 insp = list; 2311 } else { 2312 /* Eaten partially. */ 2313 2314 if (skb_shared(list)) { 2315 /* Sucks! We need to fork list. :-( */ 2316 clone = skb_clone(list, GFP_ATOMIC); 2317 if (!clone) 2318 return NULL; 2319 insp = list->next; 2320 list = clone; 2321 } else { 2322 /* This may be pulled without 2323 * problems. */ 2324 insp = list; 2325 } 2326 if (!pskb_pull(list, eat)) { 2327 kfree_skb(clone); 2328 return NULL; 2329 } 2330 break; 2331 } 2332 } while (eat); 2333 2334 /* Free pulled out fragments. */ 2335 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2336 skb_shinfo(skb)->frag_list = list->next; 2337 consume_skb(list); 2338 } 2339 /* And insert new clone at head. */ 2340 if (clone) { 2341 clone->next = list; 2342 skb_shinfo(skb)->frag_list = clone; 2343 } 2344 } 2345 /* Success! Now we may commit changes to skb data. */ 2346 2347 pull_pages: 2348 eat = delta; 2349 k = 0; 2350 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2351 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2352 2353 if (size <= eat) { 2354 skb_frag_unref(skb, i); 2355 eat -= size; 2356 } else { 2357 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2358 2359 *frag = skb_shinfo(skb)->frags[i]; 2360 if (eat) { 2361 skb_frag_off_add(frag, eat); 2362 skb_frag_size_sub(frag, eat); 2363 if (!i) 2364 goto end; 2365 eat = 0; 2366 } 2367 k++; 2368 } 2369 } 2370 skb_shinfo(skb)->nr_frags = k; 2371 2372 end: 2373 skb->tail += delta; 2374 skb->data_len -= delta; 2375 2376 if (!skb->data_len) 2377 skb_zcopy_clear(skb, false); 2378 2379 return skb_tail_pointer(skb); 2380 } 2381 EXPORT_SYMBOL(__pskb_pull_tail); 2382 2383 /** 2384 * skb_copy_bits - copy bits from skb to kernel buffer 2385 * @skb: source skb 2386 * @offset: offset in source 2387 * @to: destination buffer 2388 * @len: number of bytes to copy 2389 * 2390 * Copy the specified number of bytes from the source skb to the 2391 * destination buffer. 2392 * 2393 * CAUTION ! : 2394 * If its prototype is ever changed, 2395 * check arch/{*}/net/{*}.S files, 2396 * since it is called from BPF assembly code. 2397 */ 2398 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2399 { 2400 int start = skb_headlen(skb); 2401 struct sk_buff *frag_iter; 2402 int i, copy; 2403 2404 if (offset > (int)skb->len - len) 2405 goto fault; 2406 2407 /* Copy header. */ 2408 if ((copy = start - offset) > 0) { 2409 if (copy > len) 2410 copy = len; 2411 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2412 if ((len -= copy) == 0) 2413 return 0; 2414 offset += copy; 2415 to += copy; 2416 } 2417 2418 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2419 int end; 2420 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2421 2422 WARN_ON(start > offset + len); 2423 2424 end = start + skb_frag_size(f); 2425 if ((copy = end - offset) > 0) { 2426 u32 p_off, p_len, copied; 2427 struct page *p; 2428 u8 *vaddr; 2429 2430 if (copy > len) 2431 copy = len; 2432 2433 skb_frag_foreach_page(f, 2434 skb_frag_off(f) + offset - start, 2435 copy, p, p_off, p_len, copied) { 2436 vaddr = kmap_atomic(p); 2437 memcpy(to + copied, vaddr + p_off, p_len); 2438 kunmap_atomic(vaddr); 2439 } 2440 2441 if ((len -= copy) == 0) 2442 return 0; 2443 offset += copy; 2444 to += copy; 2445 } 2446 start = end; 2447 } 2448 2449 skb_walk_frags(skb, frag_iter) { 2450 int end; 2451 2452 WARN_ON(start > offset + len); 2453 2454 end = start + frag_iter->len; 2455 if ((copy = end - offset) > 0) { 2456 if (copy > len) 2457 copy = len; 2458 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2459 goto fault; 2460 if ((len -= copy) == 0) 2461 return 0; 2462 offset += copy; 2463 to += copy; 2464 } 2465 start = end; 2466 } 2467 2468 if (!len) 2469 return 0; 2470 2471 fault: 2472 return -EFAULT; 2473 } 2474 EXPORT_SYMBOL(skb_copy_bits); 2475 2476 /* 2477 * Callback from splice_to_pipe(), if we need to release some pages 2478 * at the end of the spd in case we error'ed out in filling the pipe. 2479 */ 2480 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2481 { 2482 put_page(spd->pages[i]); 2483 } 2484 2485 static struct page *linear_to_page(struct page *page, unsigned int *len, 2486 unsigned int *offset, 2487 struct sock *sk) 2488 { 2489 struct page_frag *pfrag = sk_page_frag(sk); 2490 2491 if (!sk_page_frag_refill(sk, pfrag)) 2492 return NULL; 2493 2494 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2495 2496 memcpy(page_address(pfrag->page) + pfrag->offset, 2497 page_address(page) + *offset, *len); 2498 *offset = pfrag->offset; 2499 pfrag->offset += *len; 2500 2501 return pfrag->page; 2502 } 2503 2504 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2505 struct page *page, 2506 unsigned int offset) 2507 { 2508 return spd->nr_pages && 2509 spd->pages[spd->nr_pages - 1] == page && 2510 (spd->partial[spd->nr_pages - 1].offset + 2511 spd->partial[spd->nr_pages - 1].len == offset); 2512 } 2513 2514 /* 2515 * Fill page/offset/length into spd, if it can hold more pages. 2516 */ 2517 static bool spd_fill_page(struct splice_pipe_desc *spd, 2518 struct pipe_inode_info *pipe, struct page *page, 2519 unsigned int *len, unsigned int offset, 2520 bool linear, 2521 struct sock *sk) 2522 { 2523 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2524 return true; 2525 2526 if (linear) { 2527 page = linear_to_page(page, len, &offset, sk); 2528 if (!page) 2529 return true; 2530 } 2531 if (spd_can_coalesce(spd, page, offset)) { 2532 spd->partial[spd->nr_pages - 1].len += *len; 2533 return false; 2534 } 2535 get_page(page); 2536 spd->pages[spd->nr_pages] = page; 2537 spd->partial[spd->nr_pages].len = *len; 2538 spd->partial[spd->nr_pages].offset = offset; 2539 spd->nr_pages++; 2540 2541 return false; 2542 } 2543 2544 static bool __splice_segment(struct page *page, unsigned int poff, 2545 unsigned int plen, unsigned int *off, 2546 unsigned int *len, 2547 struct splice_pipe_desc *spd, bool linear, 2548 struct sock *sk, 2549 struct pipe_inode_info *pipe) 2550 { 2551 if (!*len) 2552 return true; 2553 2554 /* skip this segment if already processed */ 2555 if (*off >= plen) { 2556 *off -= plen; 2557 return false; 2558 } 2559 2560 /* ignore any bits we already processed */ 2561 poff += *off; 2562 plen -= *off; 2563 *off = 0; 2564 2565 do { 2566 unsigned int flen = min(*len, plen); 2567 2568 if (spd_fill_page(spd, pipe, page, &flen, poff, 2569 linear, sk)) 2570 return true; 2571 poff += flen; 2572 plen -= flen; 2573 *len -= flen; 2574 } while (*len && plen); 2575 2576 return false; 2577 } 2578 2579 /* 2580 * Map linear and fragment data from the skb to spd. It reports true if the 2581 * pipe is full or if we already spliced the requested length. 2582 */ 2583 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2584 unsigned int *offset, unsigned int *len, 2585 struct splice_pipe_desc *spd, struct sock *sk) 2586 { 2587 int seg; 2588 struct sk_buff *iter; 2589 2590 /* map the linear part : 2591 * If skb->head_frag is set, this 'linear' part is backed by a 2592 * fragment, and if the head is not shared with any clones then 2593 * we can avoid a copy since we own the head portion of this page. 2594 */ 2595 if (__splice_segment(virt_to_page(skb->data), 2596 (unsigned long) skb->data & (PAGE_SIZE - 1), 2597 skb_headlen(skb), 2598 offset, len, spd, 2599 skb_head_is_locked(skb), 2600 sk, pipe)) 2601 return true; 2602 2603 /* 2604 * then map the fragments 2605 */ 2606 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2607 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2608 2609 if (__splice_segment(skb_frag_page(f), 2610 skb_frag_off(f), skb_frag_size(f), 2611 offset, len, spd, false, sk, pipe)) 2612 return true; 2613 } 2614 2615 skb_walk_frags(skb, iter) { 2616 if (*offset >= iter->len) { 2617 *offset -= iter->len; 2618 continue; 2619 } 2620 /* __skb_splice_bits() only fails if the output has no room 2621 * left, so no point in going over the frag_list for the error 2622 * case. 2623 */ 2624 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2625 return true; 2626 } 2627 2628 return false; 2629 } 2630 2631 /* 2632 * Map data from the skb to a pipe. Should handle both the linear part, 2633 * the fragments, and the frag list. 2634 */ 2635 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2636 struct pipe_inode_info *pipe, unsigned int tlen, 2637 unsigned int flags) 2638 { 2639 struct partial_page partial[MAX_SKB_FRAGS]; 2640 struct page *pages[MAX_SKB_FRAGS]; 2641 struct splice_pipe_desc spd = { 2642 .pages = pages, 2643 .partial = partial, 2644 .nr_pages_max = MAX_SKB_FRAGS, 2645 .ops = &nosteal_pipe_buf_ops, 2646 .spd_release = sock_spd_release, 2647 }; 2648 int ret = 0; 2649 2650 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2651 2652 if (spd.nr_pages) 2653 ret = splice_to_pipe(pipe, &spd); 2654 2655 return ret; 2656 } 2657 EXPORT_SYMBOL_GPL(skb_splice_bits); 2658 2659 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2660 struct kvec *vec, size_t num, size_t size) 2661 { 2662 struct socket *sock = sk->sk_socket; 2663 2664 if (!sock) 2665 return -EINVAL; 2666 return kernel_sendmsg(sock, msg, vec, num, size); 2667 } 2668 2669 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2670 size_t size, int flags) 2671 { 2672 struct socket *sock = sk->sk_socket; 2673 2674 if (!sock) 2675 return -EINVAL; 2676 return kernel_sendpage(sock, page, offset, size, flags); 2677 } 2678 2679 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2680 struct kvec *vec, size_t num, size_t size); 2681 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2682 size_t size, int flags); 2683 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2684 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2685 { 2686 unsigned int orig_len = len; 2687 struct sk_buff *head = skb; 2688 unsigned short fragidx; 2689 int slen, ret; 2690 2691 do_frag_list: 2692 2693 /* Deal with head data */ 2694 while (offset < skb_headlen(skb) && len) { 2695 struct kvec kv; 2696 struct msghdr msg; 2697 2698 slen = min_t(int, len, skb_headlen(skb) - offset); 2699 kv.iov_base = skb->data + offset; 2700 kv.iov_len = slen; 2701 memset(&msg, 0, sizeof(msg)); 2702 msg.msg_flags = MSG_DONTWAIT; 2703 2704 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2705 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2706 if (ret <= 0) 2707 goto error; 2708 2709 offset += ret; 2710 len -= ret; 2711 } 2712 2713 /* All the data was skb head? */ 2714 if (!len) 2715 goto out; 2716 2717 /* Make offset relative to start of frags */ 2718 offset -= skb_headlen(skb); 2719 2720 /* Find where we are in frag list */ 2721 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2722 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2723 2724 if (offset < skb_frag_size(frag)) 2725 break; 2726 2727 offset -= skb_frag_size(frag); 2728 } 2729 2730 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2731 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2732 2733 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2734 2735 while (slen) { 2736 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2737 sendpage_unlocked, sk, 2738 skb_frag_page(frag), 2739 skb_frag_off(frag) + offset, 2740 slen, MSG_DONTWAIT); 2741 if (ret <= 0) 2742 goto error; 2743 2744 len -= ret; 2745 offset += ret; 2746 slen -= ret; 2747 } 2748 2749 offset = 0; 2750 } 2751 2752 if (len) { 2753 /* Process any frag lists */ 2754 2755 if (skb == head) { 2756 if (skb_has_frag_list(skb)) { 2757 skb = skb_shinfo(skb)->frag_list; 2758 goto do_frag_list; 2759 } 2760 } else if (skb->next) { 2761 skb = skb->next; 2762 goto do_frag_list; 2763 } 2764 } 2765 2766 out: 2767 return orig_len - len; 2768 2769 error: 2770 return orig_len == len ? ret : orig_len - len; 2771 } 2772 2773 /* Send skb data on a socket. Socket must be locked. */ 2774 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2775 int len) 2776 { 2777 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2778 kernel_sendpage_locked); 2779 } 2780 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2781 2782 /* Send skb data on a socket. Socket must be unlocked. */ 2783 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2784 { 2785 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2786 sendpage_unlocked); 2787 } 2788 2789 /** 2790 * skb_store_bits - store bits from kernel buffer to skb 2791 * @skb: destination buffer 2792 * @offset: offset in destination 2793 * @from: source buffer 2794 * @len: number of bytes to copy 2795 * 2796 * Copy the specified number of bytes from the source buffer to the 2797 * destination skb. This function handles all the messy bits of 2798 * traversing fragment lists and such. 2799 */ 2800 2801 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2802 { 2803 int start = skb_headlen(skb); 2804 struct sk_buff *frag_iter; 2805 int i, copy; 2806 2807 if (offset > (int)skb->len - len) 2808 goto fault; 2809 2810 if ((copy = start - offset) > 0) { 2811 if (copy > len) 2812 copy = len; 2813 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2814 if ((len -= copy) == 0) 2815 return 0; 2816 offset += copy; 2817 from += copy; 2818 } 2819 2820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2822 int end; 2823 2824 WARN_ON(start > offset + len); 2825 2826 end = start + skb_frag_size(frag); 2827 if ((copy = end - offset) > 0) { 2828 u32 p_off, p_len, copied; 2829 struct page *p; 2830 u8 *vaddr; 2831 2832 if (copy > len) 2833 copy = len; 2834 2835 skb_frag_foreach_page(frag, 2836 skb_frag_off(frag) + offset - start, 2837 copy, p, p_off, p_len, copied) { 2838 vaddr = kmap_atomic(p); 2839 memcpy(vaddr + p_off, from + copied, p_len); 2840 kunmap_atomic(vaddr); 2841 } 2842 2843 if ((len -= copy) == 0) 2844 return 0; 2845 offset += copy; 2846 from += copy; 2847 } 2848 start = end; 2849 } 2850 2851 skb_walk_frags(skb, frag_iter) { 2852 int end; 2853 2854 WARN_ON(start > offset + len); 2855 2856 end = start + frag_iter->len; 2857 if ((copy = end - offset) > 0) { 2858 if (copy > len) 2859 copy = len; 2860 if (skb_store_bits(frag_iter, offset - start, 2861 from, copy)) 2862 goto fault; 2863 if ((len -= copy) == 0) 2864 return 0; 2865 offset += copy; 2866 from += copy; 2867 } 2868 start = end; 2869 } 2870 if (!len) 2871 return 0; 2872 2873 fault: 2874 return -EFAULT; 2875 } 2876 EXPORT_SYMBOL(skb_store_bits); 2877 2878 /* Checksum skb data. */ 2879 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2880 __wsum csum, const struct skb_checksum_ops *ops) 2881 { 2882 int start = skb_headlen(skb); 2883 int i, copy = start - offset; 2884 struct sk_buff *frag_iter; 2885 int pos = 0; 2886 2887 /* Checksum header. */ 2888 if (copy > 0) { 2889 if (copy > len) 2890 copy = len; 2891 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2892 skb->data + offset, copy, csum); 2893 if ((len -= copy) == 0) 2894 return csum; 2895 offset += copy; 2896 pos = copy; 2897 } 2898 2899 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2900 int end; 2901 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2902 2903 WARN_ON(start > offset + len); 2904 2905 end = start + skb_frag_size(frag); 2906 if ((copy = end - offset) > 0) { 2907 u32 p_off, p_len, copied; 2908 struct page *p; 2909 __wsum csum2; 2910 u8 *vaddr; 2911 2912 if (copy > len) 2913 copy = len; 2914 2915 skb_frag_foreach_page(frag, 2916 skb_frag_off(frag) + offset - start, 2917 copy, p, p_off, p_len, copied) { 2918 vaddr = kmap_atomic(p); 2919 csum2 = INDIRECT_CALL_1(ops->update, 2920 csum_partial_ext, 2921 vaddr + p_off, p_len, 0); 2922 kunmap_atomic(vaddr); 2923 csum = INDIRECT_CALL_1(ops->combine, 2924 csum_block_add_ext, csum, 2925 csum2, pos, p_len); 2926 pos += p_len; 2927 } 2928 2929 if (!(len -= copy)) 2930 return csum; 2931 offset += copy; 2932 } 2933 start = end; 2934 } 2935 2936 skb_walk_frags(skb, frag_iter) { 2937 int end; 2938 2939 WARN_ON(start > offset + len); 2940 2941 end = start + frag_iter->len; 2942 if ((copy = end - offset) > 0) { 2943 __wsum csum2; 2944 if (copy > len) 2945 copy = len; 2946 csum2 = __skb_checksum(frag_iter, offset - start, 2947 copy, 0, ops); 2948 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2949 csum, csum2, pos, copy); 2950 if ((len -= copy) == 0) 2951 return csum; 2952 offset += copy; 2953 pos += copy; 2954 } 2955 start = end; 2956 } 2957 BUG_ON(len); 2958 2959 return csum; 2960 } 2961 EXPORT_SYMBOL(__skb_checksum); 2962 2963 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2964 int len, __wsum csum) 2965 { 2966 const struct skb_checksum_ops ops = { 2967 .update = csum_partial_ext, 2968 .combine = csum_block_add_ext, 2969 }; 2970 2971 return __skb_checksum(skb, offset, len, csum, &ops); 2972 } 2973 EXPORT_SYMBOL(skb_checksum); 2974 2975 /* Both of above in one bottle. */ 2976 2977 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2978 u8 *to, int len) 2979 { 2980 int start = skb_headlen(skb); 2981 int i, copy = start - offset; 2982 struct sk_buff *frag_iter; 2983 int pos = 0; 2984 __wsum csum = 0; 2985 2986 /* Copy header. */ 2987 if (copy > 0) { 2988 if (copy > len) 2989 copy = len; 2990 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2991 copy); 2992 if ((len -= copy) == 0) 2993 return csum; 2994 offset += copy; 2995 to += copy; 2996 pos = copy; 2997 } 2998 2999 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3000 int end; 3001 3002 WARN_ON(start > offset + len); 3003 3004 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3005 if ((copy = end - offset) > 0) { 3006 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3007 u32 p_off, p_len, copied; 3008 struct page *p; 3009 __wsum csum2; 3010 u8 *vaddr; 3011 3012 if (copy > len) 3013 copy = len; 3014 3015 skb_frag_foreach_page(frag, 3016 skb_frag_off(frag) + offset - start, 3017 copy, p, p_off, p_len, copied) { 3018 vaddr = kmap_atomic(p); 3019 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3020 to + copied, 3021 p_len); 3022 kunmap_atomic(vaddr); 3023 csum = csum_block_add(csum, csum2, pos); 3024 pos += p_len; 3025 } 3026 3027 if (!(len -= copy)) 3028 return csum; 3029 offset += copy; 3030 to += copy; 3031 } 3032 start = end; 3033 } 3034 3035 skb_walk_frags(skb, frag_iter) { 3036 __wsum csum2; 3037 int end; 3038 3039 WARN_ON(start > offset + len); 3040 3041 end = start + frag_iter->len; 3042 if ((copy = end - offset) > 0) { 3043 if (copy > len) 3044 copy = len; 3045 csum2 = skb_copy_and_csum_bits(frag_iter, 3046 offset - start, 3047 to, copy); 3048 csum = csum_block_add(csum, csum2, pos); 3049 if ((len -= copy) == 0) 3050 return csum; 3051 offset += copy; 3052 to += copy; 3053 pos += copy; 3054 } 3055 start = end; 3056 } 3057 BUG_ON(len); 3058 return csum; 3059 } 3060 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3061 3062 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3063 { 3064 __sum16 sum; 3065 3066 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3067 /* See comments in __skb_checksum_complete(). */ 3068 if (likely(!sum)) { 3069 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3070 !skb->csum_complete_sw) 3071 netdev_rx_csum_fault(skb->dev, skb); 3072 } 3073 if (!skb_shared(skb)) 3074 skb->csum_valid = !sum; 3075 return sum; 3076 } 3077 EXPORT_SYMBOL(__skb_checksum_complete_head); 3078 3079 /* This function assumes skb->csum already holds pseudo header's checksum, 3080 * which has been changed from the hardware checksum, for example, by 3081 * __skb_checksum_validate_complete(). And, the original skb->csum must 3082 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3083 * 3084 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3085 * zero. The new checksum is stored back into skb->csum unless the skb is 3086 * shared. 3087 */ 3088 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3089 { 3090 __wsum csum; 3091 __sum16 sum; 3092 3093 csum = skb_checksum(skb, 0, skb->len, 0); 3094 3095 sum = csum_fold(csum_add(skb->csum, csum)); 3096 /* This check is inverted, because we already knew the hardware 3097 * checksum is invalid before calling this function. So, if the 3098 * re-computed checksum is valid instead, then we have a mismatch 3099 * between the original skb->csum and skb_checksum(). This means either 3100 * the original hardware checksum is incorrect or we screw up skb->csum 3101 * when moving skb->data around. 3102 */ 3103 if (likely(!sum)) { 3104 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3105 !skb->csum_complete_sw) 3106 netdev_rx_csum_fault(skb->dev, skb); 3107 } 3108 3109 if (!skb_shared(skb)) { 3110 /* Save full packet checksum */ 3111 skb->csum = csum; 3112 skb->ip_summed = CHECKSUM_COMPLETE; 3113 skb->csum_complete_sw = 1; 3114 skb->csum_valid = !sum; 3115 } 3116 3117 return sum; 3118 } 3119 EXPORT_SYMBOL(__skb_checksum_complete); 3120 3121 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3122 { 3123 net_warn_ratelimited( 3124 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3125 __func__); 3126 return 0; 3127 } 3128 3129 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3130 int offset, int len) 3131 { 3132 net_warn_ratelimited( 3133 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3134 __func__); 3135 return 0; 3136 } 3137 3138 static const struct skb_checksum_ops default_crc32c_ops = { 3139 .update = warn_crc32c_csum_update, 3140 .combine = warn_crc32c_csum_combine, 3141 }; 3142 3143 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3144 &default_crc32c_ops; 3145 EXPORT_SYMBOL(crc32c_csum_stub); 3146 3147 /** 3148 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3149 * @from: source buffer 3150 * 3151 * Calculates the amount of linear headroom needed in the 'to' skb passed 3152 * into skb_zerocopy(). 3153 */ 3154 unsigned int 3155 skb_zerocopy_headlen(const struct sk_buff *from) 3156 { 3157 unsigned int hlen = 0; 3158 3159 if (!from->head_frag || 3160 skb_headlen(from) < L1_CACHE_BYTES || 3161 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3162 hlen = skb_headlen(from); 3163 if (!hlen) 3164 hlen = from->len; 3165 } 3166 3167 if (skb_has_frag_list(from)) 3168 hlen = from->len; 3169 3170 return hlen; 3171 } 3172 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3173 3174 /** 3175 * skb_zerocopy - Zero copy skb to skb 3176 * @to: destination buffer 3177 * @from: source buffer 3178 * @len: number of bytes to copy from source buffer 3179 * @hlen: size of linear headroom in destination buffer 3180 * 3181 * Copies up to `len` bytes from `from` to `to` by creating references 3182 * to the frags in the source buffer. 3183 * 3184 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3185 * headroom in the `to` buffer. 3186 * 3187 * Return value: 3188 * 0: everything is OK 3189 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3190 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3191 */ 3192 int 3193 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3194 { 3195 int i, j = 0; 3196 int plen = 0; /* length of skb->head fragment */ 3197 int ret; 3198 struct page *page; 3199 unsigned int offset; 3200 3201 BUG_ON(!from->head_frag && !hlen); 3202 3203 /* dont bother with small payloads */ 3204 if (len <= skb_tailroom(to)) 3205 return skb_copy_bits(from, 0, skb_put(to, len), len); 3206 3207 if (hlen) { 3208 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3209 if (unlikely(ret)) 3210 return ret; 3211 len -= hlen; 3212 } else { 3213 plen = min_t(int, skb_headlen(from), len); 3214 if (plen) { 3215 page = virt_to_head_page(from->head); 3216 offset = from->data - (unsigned char *)page_address(page); 3217 __skb_fill_page_desc(to, 0, page, offset, plen); 3218 get_page(page); 3219 j = 1; 3220 len -= plen; 3221 } 3222 } 3223 3224 skb_len_add(to, len + plen); 3225 3226 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3227 skb_tx_error(from); 3228 return -ENOMEM; 3229 } 3230 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3231 3232 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3233 int size; 3234 3235 if (!len) 3236 break; 3237 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3238 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3239 len); 3240 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3241 len -= size; 3242 skb_frag_ref(to, j); 3243 j++; 3244 } 3245 skb_shinfo(to)->nr_frags = j; 3246 3247 return 0; 3248 } 3249 EXPORT_SYMBOL_GPL(skb_zerocopy); 3250 3251 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3252 { 3253 __wsum csum; 3254 long csstart; 3255 3256 if (skb->ip_summed == CHECKSUM_PARTIAL) 3257 csstart = skb_checksum_start_offset(skb); 3258 else 3259 csstart = skb_headlen(skb); 3260 3261 BUG_ON(csstart > skb_headlen(skb)); 3262 3263 skb_copy_from_linear_data(skb, to, csstart); 3264 3265 csum = 0; 3266 if (csstart != skb->len) 3267 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3268 skb->len - csstart); 3269 3270 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3271 long csstuff = csstart + skb->csum_offset; 3272 3273 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3274 } 3275 } 3276 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3277 3278 /** 3279 * skb_dequeue - remove from the head of the queue 3280 * @list: list to dequeue from 3281 * 3282 * Remove the head of the list. The list lock is taken so the function 3283 * may be used safely with other locking list functions. The head item is 3284 * returned or %NULL if the list is empty. 3285 */ 3286 3287 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3288 { 3289 unsigned long flags; 3290 struct sk_buff *result; 3291 3292 spin_lock_irqsave(&list->lock, flags); 3293 result = __skb_dequeue(list); 3294 spin_unlock_irqrestore(&list->lock, flags); 3295 return result; 3296 } 3297 EXPORT_SYMBOL(skb_dequeue); 3298 3299 /** 3300 * skb_dequeue_tail - remove from the tail of the queue 3301 * @list: list to dequeue from 3302 * 3303 * Remove the tail of the list. The list lock is taken so the function 3304 * may be used safely with other locking list functions. The tail item is 3305 * returned or %NULL if the list is empty. 3306 */ 3307 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3308 { 3309 unsigned long flags; 3310 struct sk_buff *result; 3311 3312 spin_lock_irqsave(&list->lock, flags); 3313 result = __skb_dequeue_tail(list); 3314 spin_unlock_irqrestore(&list->lock, flags); 3315 return result; 3316 } 3317 EXPORT_SYMBOL(skb_dequeue_tail); 3318 3319 /** 3320 * skb_queue_purge - empty a list 3321 * @list: list to empty 3322 * 3323 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3324 * the list and one reference dropped. This function takes the list 3325 * lock and is atomic with respect to other list locking functions. 3326 */ 3327 void skb_queue_purge(struct sk_buff_head *list) 3328 { 3329 struct sk_buff *skb; 3330 while ((skb = skb_dequeue(list)) != NULL) 3331 kfree_skb(skb); 3332 } 3333 EXPORT_SYMBOL(skb_queue_purge); 3334 3335 /** 3336 * skb_rbtree_purge - empty a skb rbtree 3337 * @root: root of the rbtree to empty 3338 * Return value: the sum of truesizes of all purged skbs. 3339 * 3340 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3341 * the list and one reference dropped. This function does not take 3342 * any lock. Synchronization should be handled by the caller (e.g., TCP 3343 * out-of-order queue is protected by the socket lock). 3344 */ 3345 unsigned int skb_rbtree_purge(struct rb_root *root) 3346 { 3347 struct rb_node *p = rb_first(root); 3348 unsigned int sum = 0; 3349 3350 while (p) { 3351 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3352 3353 p = rb_next(p); 3354 rb_erase(&skb->rbnode, root); 3355 sum += skb->truesize; 3356 kfree_skb(skb); 3357 } 3358 return sum; 3359 } 3360 3361 /** 3362 * skb_queue_head - queue a buffer at the list head 3363 * @list: list to use 3364 * @newsk: buffer to queue 3365 * 3366 * Queue a buffer at the start of the list. This function takes the 3367 * list lock and can be used safely with other locking &sk_buff functions 3368 * safely. 3369 * 3370 * A buffer cannot be placed on two lists at the same time. 3371 */ 3372 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3373 { 3374 unsigned long flags; 3375 3376 spin_lock_irqsave(&list->lock, flags); 3377 __skb_queue_head(list, newsk); 3378 spin_unlock_irqrestore(&list->lock, flags); 3379 } 3380 EXPORT_SYMBOL(skb_queue_head); 3381 3382 /** 3383 * skb_queue_tail - queue a buffer at the list tail 3384 * @list: list to use 3385 * @newsk: buffer to queue 3386 * 3387 * Queue a buffer at the tail of the list. This function takes the 3388 * list lock and can be used safely with other locking &sk_buff functions 3389 * safely. 3390 * 3391 * A buffer cannot be placed on two lists at the same time. 3392 */ 3393 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3394 { 3395 unsigned long flags; 3396 3397 spin_lock_irqsave(&list->lock, flags); 3398 __skb_queue_tail(list, newsk); 3399 spin_unlock_irqrestore(&list->lock, flags); 3400 } 3401 EXPORT_SYMBOL(skb_queue_tail); 3402 3403 /** 3404 * skb_unlink - remove a buffer from a list 3405 * @skb: buffer to remove 3406 * @list: list to use 3407 * 3408 * Remove a packet from a list. The list locks are taken and this 3409 * function is atomic with respect to other list locked calls 3410 * 3411 * You must know what list the SKB is on. 3412 */ 3413 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3414 { 3415 unsigned long flags; 3416 3417 spin_lock_irqsave(&list->lock, flags); 3418 __skb_unlink(skb, list); 3419 spin_unlock_irqrestore(&list->lock, flags); 3420 } 3421 EXPORT_SYMBOL(skb_unlink); 3422 3423 /** 3424 * skb_append - append a buffer 3425 * @old: buffer to insert after 3426 * @newsk: buffer to insert 3427 * @list: list to use 3428 * 3429 * Place a packet after a given packet in a list. The list locks are taken 3430 * and this function is atomic with respect to other list locked calls. 3431 * A buffer cannot be placed on two lists at the same time. 3432 */ 3433 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3434 { 3435 unsigned long flags; 3436 3437 spin_lock_irqsave(&list->lock, flags); 3438 __skb_queue_after(list, old, newsk); 3439 spin_unlock_irqrestore(&list->lock, flags); 3440 } 3441 EXPORT_SYMBOL(skb_append); 3442 3443 static inline void skb_split_inside_header(struct sk_buff *skb, 3444 struct sk_buff* skb1, 3445 const u32 len, const int pos) 3446 { 3447 int i; 3448 3449 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3450 pos - len); 3451 /* And move data appendix as is. */ 3452 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3453 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3454 3455 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3456 skb_shinfo(skb)->nr_frags = 0; 3457 skb1->data_len = skb->data_len; 3458 skb1->len += skb1->data_len; 3459 skb->data_len = 0; 3460 skb->len = len; 3461 skb_set_tail_pointer(skb, len); 3462 } 3463 3464 static inline void skb_split_no_header(struct sk_buff *skb, 3465 struct sk_buff* skb1, 3466 const u32 len, int pos) 3467 { 3468 int i, k = 0; 3469 const int nfrags = skb_shinfo(skb)->nr_frags; 3470 3471 skb_shinfo(skb)->nr_frags = 0; 3472 skb1->len = skb1->data_len = skb->len - len; 3473 skb->len = len; 3474 skb->data_len = len - pos; 3475 3476 for (i = 0; i < nfrags; i++) { 3477 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3478 3479 if (pos + size > len) { 3480 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3481 3482 if (pos < len) { 3483 /* Split frag. 3484 * We have two variants in this case: 3485 * 1. Move all the frag to the second 3486 * part, if it is possible. F.e. 3487 * this approach is mandatory for TUX, 3488 * where splitting is expensive. 3489 * 2. Split is accurately. We make this. 3490 */ 3491 skb_frag_ref(skb, i); 3492 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3493 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3494 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3495 skb_shinfo(skb)->nr_frags++; 3496 } 3497 k++; 3498 } else 3499 skb_shinfo(skb)->nr_frags++; 3500 pos += size; 3501 } 3502 skb_shinfo(skb1)->nr_frags = k; 3503 } 3504 3505 /** 3506 * skb_split - Split fragmented skb to two parts at length len. 3507 * @skb: the buffer to split 3508 * @skb1: the buffer to receive the second part 3509 * @len: new length for skb 3510 */ 3511 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3512 { 3513 int pos = skb_headlen(skb); 3514 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3515 3516 skb_zcopy_downgrade_managed(skb); 3517 3518 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3519 skb_zerocopy_clone(skb1, skb, 0); 3520 if (len < pos) /* Split line is inside header. */ 3521 skb_split_inside_header(skb, skb1, len, pos); 3522 else /* Second chunk has no header, nothing to copy. */ 3523 skb_split_no_header(skb, skb1, len, pos); 3524 } 3525 EXPORT_SYMBOL(skb_split); 3526 3527 /* Shifting from/to a cloned skb is a no-go. 3528 * 3529 * Caller cannot keep skb_shinfo related pointers past calling here! 3530 */ 3531 static int skb_prepare_for_shift(struct sk_buff *skb) 3532 { 3533 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3534 } 3535 3536 /** 3537 * skb_shift - Shifts paged data partially from skb to another 3538 * @tgt: buffer into which tail data gets added 3539 * @skb: buffer from which the paged data comes from 3540 * @shiftlen: shift up to this many bytes 3541 * 3542 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3543 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3544 * It's up to caller to free skb if everything was shifted. 3545 * 3546 * If @tgt runs out of frags, the whole operation is aborted. 3547 * 3548 * Skb cannot include anything else but paged data while tgt is allowed 3549 * to have non-paged data as well. 3550 * 3551 * TODO: full sized shift could be optimized but that would need 3552 * specialized skb free'er to handle frags without up-to-date nr_frags. 3553 */ 3554 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3555 { 3556 int from, to, merge, todo; 3557 skb_frag_t *fragfrom, *fragto; 3558 3559 BUG_ON(shiftlen > skb->len); 3560 3561 if (skb_headlen(skb)) 3562 return 0; 3563 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3564 return 0; 3565 3566 todo = shiftlen; 3567 from = 0; 3568 to = skb_shinfo(tgt)->nr_frags; 3569 fragfrom = &skb_shinfo(skb)->frags[from]; 3570 3571 /* Actual merge is delayed until the point when we know we can 3572 * commit all, so that we don't have to undo partial changes 3573 */ 3574 if (!to || 3575 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3576 skb_frag_off(fragfrom))) { 3577 merge = -1; 3578 } else { 3579 merge = to - 1; 3580 3581 todo -= skb_frag_size(fragfrom); 3582 if (todo < 0) { 3583 if (skb_prepare_for_shift(skb) || 3584 skb_prepare_for_shift(tgt)) 3585 return 0; 3586 3587 /* All previous frag pointers might be stale! */ 3588 fragfrom = &skb_shinfo(skb)->frags[from]; 3589 fragto = &skb_shinfo(tgt)->frags[merge]; 3590 3591 skb_frag_size_add(fragto, shiftlen); 3592 skb_frag_size_sub(fragfrom, shiftlen); 3593 skb_frag_off_add(fragfrom, shiftlen); 3594 3595 goto onlymerged; 3596 } 3597 3598 from++; 3599 } 3600 3601 /* Skip full, not-fitting skb to avoid expensive operations */ 3602 if ((shiftlen == skb->len) && 3603 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3604 return 0; 3605 3606 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3607 return 0; 3608 3609 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3610 if (to == MAX_SKB_FRAGS) 3611 return 0; 3612 3613 fragfrom = &skb_shinfo(skb)->frags[from]; 3614 fragto = &skb_shinfo(tgt)->frags[to]; 3615 3616 if (todo >= skb_frag_size(fragfrom)) { 3617 *fragto = *fragfrom; 3618 todo -= skb_frag_size(fragfrom); 3619 from++; 3620 to++; 3621 3622 } else { 3623 __skb_frag_ref(fragfrom); 3624 skb_frag_page_copy(fragto, fragfrom); 3625 skb_frag_off_copy(fragto, fragfrom); 3626 skb_frag_size_set(fragto, todo); 3627 3628 skb_frag_off_add(fragfrom, todo); 3629 skb_frag_size_sub(fragfrom, todo); 3630 todo = 0; 3631 3632 to++; 3633 break; 3634 } 3635 } 3636 3637 /* Ready to "commit" this state change to tgt */ 3638 skb_shinfo(tgt)->nr_frags = to; 3639 3640 if (merge >= 0) { 3641 fragfrom = &skb_shinfo(skb)->frags[0]; 3642 fragto = &skb_shinfo(tgt)->frags[merge]; 3643 3644 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3645 __skb_frag_unref(fragfrom, skb->pp_recycle); 3646 } 3647 3648 /* Reposition in the original skb */ 3649 to = 0; 3650 while (from < skb_shinfo(skb)->nr_frags) 3651 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3652 skb_shinfo(skb)->nr_frags = to; 3653 3654 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3655 3656 onlymerged: 3657 /* Most likely the tgt won't ever need its checksum anymore, skb on 3658 * the other hand might need it if it needs to be resent 3659 */ 3660 tgt->ip_summed = CHECKSUM_PARTIAL; 3661 skb->ip_summed = CHECKSUM_PARTIAL; 3662 3663 skb_len_add(skb, -shiftlen); 3664 skb_len_add(tgt, shiftlen); 3665 3666 return shiftlen; 3667 } 3668 3669 /** 3670 * skb_prepare_seq_read - Prepare a sequential read of skb data 3671 * @skb: the buffer to read 3672 * @from: lower offset of data to be read 3673 * @to: upper offset of data to be read 3674 * @st: state variable 3675 * 3676 * Initializes the specified state variable. Must be called before 3677 * invoking skb_seq_read() for the first time. 3678 */ 3679 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3680 unsigned int to, struct skb_seq_state *st) 3681 { 3682 st->lower_offset = from; 3683 st->upper_offset = to; 3684 st->root_skb = st->cur_skb = skb; 3685 st->frag_idx = st->stepped_offset = 0; 3686 st->frag_data = NULL; 3687 st->frag_off = 0; 3688 } 3689 EXPORT_SYMBOL(skb_prepare_seq_read); 3690 3691 /** 3692 * skb_seq_read - Sequentially read skb data 3693 * @consumed: number of bytes consumed by the caller so far 3694 * @data: destination pointer for data to be returned 3695 * @st: state variable 3696 * 3697 * Reads a block of skb data at @consumed relative to the 3698 * lower offset specified to skb_prepare_seq_read(). Assigns 3699 * the head of the data block to @data and returns the length 3700 * of the block or 0 if the end of the skb data or the upper 3701 * offset has been reached. 3702 * 3703 * The caller is not required to consume all of the data 3704 * returned, i.e. @consumed is typically set to the number 3705 * of bytes already consumed and the next call to 3706 * skb_seq_read() will return the remaining part of the block. 3707 * 3708 * Note 1: The size of each block of data returned can be arbitrary, 3709 * this limitation is the cost for zerocopy sequential 3710 * reads of potentially non linear data. 3711 * 3712 * Note 2: Fragment lists within fragments are not implemented 3713 * at the moment, state->root_skb could be replaced with 3714 * a stack for this purpose. 3715 */ 3716 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3717 struct skb_seq_state *st) 3718 { 3719 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3720 skb_frag_t *frag; 3721 3722 if (unlikely(abs_offset >= st->upper_offset)) { 3723 if (st->frag_data) { 3724 kunmap_atomic(st->frag_data); 3725 st->frag_data = NULL; 3726 } 3727 return 0; 3728 } 3729 3730 next_skb: 3731 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3732 3733 if (abs_offset < block_limit && !st->frag_data) { 3734 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3735 return block_limit - abs_offset; 3736 } 3737 3738 if (st->frag_idx == 0 && !st->frag_data) 3739 st->stepped_offset += skb_headlen(st->cur_skb); 3740 3741 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3742 unsigned int pg_idx, pg_off, pg_sz; 3743 3744 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3745 3746 pg_idx = 0; 3747 pg_off = skb_frag_off(frag); 3748 pg_sz = skb_frag_size(frag); 3749 3750 if (skb_frag_must_loop(skb_frag_page(frag))) { 3751 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3752 pg_off = offset_in_page(pg_off + st->frag_off); 3753 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3754 PAGE_SIZE - pg_off); 3755 } 3756 3757 block_limit = pg_sz + st->stepped_offset; 3758 if (abs_offset < block_limit) { 3759 if (!st->frag_data) 3760 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3761 3762 *data = (u8 *)st->frag_data + pg_off + 3763 (abs_offset - st->stepped_offset); 3764 3765 return block_limit - abs_offset; 3766 } 3767 3768 if (st->frag_data) { 3769 kunmap_atomic(st->frag_data); 3770 st->frag_data = NULL; 3771 } 3772 3773 st->stepped_offset += pg_sz; 3774 st->frag_off += pg_sz; 3775 if (st->frag_off == skb_frag_size(frag)) { 3776 st->frag_off = 0; 3777 st->frag_idx++; 3778 } 3779 } 3780 3781 if (st->frag_data) { 3782 kunmap_atomic(st->frag_data); 3783 st->frag_data = NULL; 3784 } 3785 3786 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3787 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3788 st->frag_idx = 0; 3789 goto next_skb; 3790 } else if (st->cur_skb->next) { 3791 st->cur_skb = st->cur_skb->next; 3792 st->frag_idx = 0; 3793 goto next_skb; 3794 } 3795 3796 return 0; 3797 } 3798 EXPORT_SYMBOL(skb_seq_read); 3799 3800 /** 3801 * skb_abort_seq_read - Abort a sequential read of skb data 3802 * @st: state variable 3803 * 3804 * Must be called if skb_seq_read() was not called until it 3805 * returned 0. 3806 */ 3807 void skb_abort_seq_read(struct skb_seq_state *st) 3808 { 3809 if (st->frag_data) 3810 kunmap_atomic(st->frag_data); 3811 } 3812 EXPORT_SYMBOL(skb_abort_seq_read); 3813 3814 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3815 3816 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3817 struct ts_config *conf, 3818 struct ts_state *state) 3819 { 3820 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3821 } 3822 3823 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3824 { 3825 skb_abort_seq_read(TS_SKB_CB(state)); 3826 } 3827 3828 /** 3829 * skb_find_text - Find a text pattern in skb data 3830 * @skb: the buffer to look in 3831 * @from: search offset 3832 * @to: search limit 3833 * @config: textsearch configuration 3834 * 3835 * Finds a pattern in the skb data according to the specified 3836 * textsearch configuration. Use textsearch_next() to retrieve 3837 * subsequent occurrences of the pattern. Returns the offset 3838 * to the first occurrence or UINT_MAX if no match was found. 3839 */ 3840 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3841 unsigned int to, struct ts_config *config) 3842 { 3843 struct ts_state state; 3844 unsigned int ret; 3845 3846 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3847 3848 config->get_next_block = skb_ts_get_next_block; 3849 config->finish = skb_ts_finish; 3850 3851 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3852 3853 ret = textsearch_find(config, &state); 3854 return (ret <= to - from ? ret : UINT_MAX); 3855 } 3856 EXPORT_SYMBOL(skb_find_text); 3857 3858 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3859 int offset, size_t size) 3860 { 3861 int i = skb_shinfo(skb)->nr_frags; 3862 3863 if (skb_can_coalesce(skb, i, page, offset)) { 3864 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3865 } else if (i < MAX_SKB_FRAGS) { 3866 skb_zcopy_downgrade_managed(skb); 3867 get_page(page); 3868 skb_fill_page_desc(skb, i, page, offset, size); 3869 } else { 3870 return -EMSGSIZE; 3871 } 3872 3873 return 0; 3874 } 3875 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3876 3877 /** 3878 * skb_pull_rcsum - pull skb and update receive checksum 3879 * @skb: buffer to update 3880 * @len: length of data pulled 3881 * 3882 * This function performs an skb_pull on the packet and updates 3883 * the CHECKSUM_COMPLETE checksum. It should be used on 3884 * receive path processing instead of skb_pull unless you know 3885 * that the checksum difference is zero (e.g., a valid IP header) 3886 * or you are setting ip_summed to CHECKSUM_NONE. 3887 */ 3888 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3889 { 3890 unsigned char *data = skb->data; 3891 3892 BUG_ON(len > skb->len); 3893 __skb_pull(skb, len); 3894 skb_postpull_rcsum(skb, data, len); 3895 return skb->data; 3896 } 3897 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3898 3899 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3900 { 3901 skb_frag_t head_frag; 3902 struct page *page; 3903 3904 page = virt_to_head_page(frag_skb->head); 3905 __skb_frag_set_page(&head_frag, page); 3906 skb_frag_off_set(&head_frag, frag_skb->data - 3907 (unsigned char *)page_address(page)); 3908 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3909 return head_frag; 3910 } 3911 3912 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3913 netdev_features_t features, 3914 unsigned int offset) 3915 { 3916 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3917 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3918 unsigned int delta_truesize = 0; 3919 unsigned int delta_len = 0; 3920 struct sk_buff *tail = NULL; 3921 struct sk_buff *nskb, *tmp; 3922 int len_diff, err; 3923 3924 skb_push(skb, -skb_network_offset(skb) + offset); 3925 3926 skb_shinfo(skb)->frag_list = NULL; 3927 3928 do { 3929 nskb = list_skb; 3930 list_skb = list_skb->next; 3931 3932 err = 0; 3933 delta_truesize += nskb->truesize; 3934 if (skb_shared(nskb)) { 3935 tmp = skb_clone(nskb, GFP_ATOMIC); 3936 if (tmp) { 3937 consume_skb(nskb); 3938 nskb = tmp; 3939 err = skb_unclone(nskb, GFP_ATOMIC); 3940 } else { 3941 err = -ENOMEM; 3942 } 3943 } 3944 3945 if (!tail) 3946 skb->next = nskb; 3947 else 3948 tail->next = nskb; 3949 3950 if (unlikely(err)) { 3951 nskb->next = list_skb; 3952 goto err_linearize; 3953 } 3954 3955 tail = nskb; 3956 3957 delta_len += nskb->len; 3958 3959 skb_push(nskb, -skb_network_offset(nskb) + offset); 3960 3961 skb_release_head_state(nskb); 3962 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 3963 __copy_skb_header(nskb, skb); 3964 3965 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3966 nskb->transport_header += len_diff; 3967 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3968 nskb->data - tnl_hlen, 3969 offset + tnl_hlen); 3970 3971 if (skb_needs_linearize(nskb, features) && 3972 __skb_linearize(nskb)) 3973 goto err_linearize; 3974 3975 } while (list_skb); 3976 3977 skb->truesize = skb->truesize - delta_truesize; 3978 skb->data_len = skb->data_len - delta_len; 3979 skb->len = skb->len - delta_len; 3980 3981 skb_gso_reset(skb); 3982 3983 skb->prev = tail; 3984 3985 if (skb_needs_linearize(skb, features) && 3986 __skb_linearize(skb)) 3987 goto err_linearize; 3988 3989 skb_get(skb); 3990 3991 return skb; 3992 3993 err_linearize: 3994 kfree_skb_list(skb->next); 3995 skb->next = NULL; 3996 return ERR_PTR(-ENOMEM); 3997 } 3998 EXPORT_SYMBOL_GPL(skb_segment_list); 3999 4000 /** 4001 * skb_segment - Perform protocol segmentation on skb. 4002 * @head_skb: buffer to segment 4003 * @features: features for the output path (see dev->features) 4004 * 4005 * This function performs segmentation on the given skb. It returns 4006 * a pointer to the first in a list of new skbs for the segments. 4007 * In case of error it returns ERR_PTR(err). 4008 */ 4009 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4010 netdev_features_t features) 4011 { 4012 struct sk_buff *segs = NULL; 4013 struct sk_buff *tail = NULL; 4014 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4015 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4016 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4017 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4018 struct sk_buff *frag_skb = head_skb; 4019 unsigned int offset = doffset; 4020 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4021 unsigned int partial_segs = 0; 4022 unsigned int headroom; 4023 unsigned int len = head_skb->len; 4024 __be16 proto; 4025 bool csum, sg; 4026 int nfrags = skb_shinfo(head_skb)->nr_frags; 4027 int err = -ENOMEM; 4028 int i = 0; 4029 int pos; 4030 4031 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4032 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4033 /* gso_size is untrusted, and we have a frag_list with a linear 4034 * non head_frag head. 4035 * 4036 * (we assume checking the first list_skb member suffices; 4037 * i.e if either of the list_skb members have non head_frag 4038 * head, then the first one has too). 4039 * 4040 * If head_skb's headlen does not fit requested gso_size, it 4041 * means that the frag_list members do NOT terminate on exact 4042 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4043 * sharing. Therefore we must fallback to copying the frag_list 4044 * skbs; we do so by disabling SG. 4045 */ 4046 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4047 features &= ~NETIF_F_SG; 4048 } 4049 4050 __skb_push(head_skb, doffset); 4051 proto = skb_network_protocol(head_skb, NULL); 4052 if (unlikely(!proto)) 4053 return ERR_PTR(-EINVAL); 4054 4055 sg = !!(features & NETIF_F_SG); 4056 csum = !!can_checksum_protocol(features, proto); 4057 4058 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4059 if (!(features & NETIF_F_GSO_PARTIAL)) { 4060 struct sk_buff *iter; 4061 unsigned int frag_len; 4062 4063 if (!list_skb || 4064 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4065 goto normal; 4066 4067 /* If we get here then all the required 4068 * GSO features except frag_list are supported. 4069 * Try to split the SKB to multiple GSO SKBs 4070 * with no frag_list. 4071 * Currently we can do that only when the buffers don't 4072 * have a linear part and all the buffers except 4073 * the last are of the same length. 4074 */ 4075 frag_len = list_skb->len; 4076 skb_walk_frags(head_skb, iter) { 4077 if (frag_len != iter->len && iter->next) 4078 goto normal; 4079 if (skb_headlen(iter) && !iter->head_frag) 4080 goto normal; 4081 4082 len -= iter->len; 4083 } 4084 4085 if (len != frag_len) 4086 goto normal; 4087 } 4088 4089 /* GSO partial only requires that we trim off any excess that 4090 * doesn't fit into an MSS sized block, so take care of that 4091 * now. 4092 */ 4093 partial_segs = len / mss; 4094 if (partial_segs > 1) 4095 mss *= partial_segs; 4096 else 4097 partial_segs = 0; 4098 } 4099 4100 normal: 4101 headroom = skb_headroom(head_skb); 4102 pos = skb_headlen(head_skb); 4103 4104 do { 4105 struct sk_buff *nskb; 4106 skb_frag_t *nskb_frag; 4107 int hsize; 4108 int size; 4109 4110 if (unlikely(mss == GSO_BY_FRAGS)) { 4111 len = list_skb->len; 4112 } else { 4113 len = head_skb->len - offset; 4114 if (len > mss) 4115 len = mss; 4116 } 4117 4118 hsize = skb_headlen(head_skb) - offset; 4119 4120 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4121 (skb_headlen(list_skb) == len || sg)) { 4122 BUG_ON(skb_headlen(list_skb) > len); 4123 4124 i = 0; 4125 nfrags = skb_shinfo(list_skb)->nr_frags; 4126 frag = skb_shinfo(list_skb)->frags; 4127 frag_skb = list_skb; 4128 pos += skb_headlen(list_skb); 4129 4130 while (pos < offset + len) { 4131 BUG_ON(i >= nfrags); 4132 4133 size = skb_frag_size(frag); 4134 if (pos + size > offset + len) 4135 break; 4136 4137 i++; 4138 pos += size; 4139 frag++; 4140 } 4141 4142 nskb = skb_clone(list_skb, GFP_ATOMIC); 4143 list_skb = list_skb->next; 4144 4145 if (unlikely(!nskb)) 4146 goto err; 4147 4148 if (unlikely(pskb_trim(nskb, len))) { 4149 kfree_skb(nskb); 4150 goto err; 4151 } 4152 4153 hsize = skb_end_offset(nskb); 4154 if (skb_cow_head(nskb, doffset + headroom)) { 4155 kfree_skb(nskb); 4156 goto err; 4157 } 4158 4159 nskb->truesize += skb_end_offset(nskb) - hsize; 4160 skb_release_head_state(nskb); 4161 __skb_push(nskb, doffset); 4162 } else { 4163 if (hsize < 0) 4164 hsize = 0; 4165 if (hsize > len || !sg) 4166 hsize = len; 4167 4168 nskb = __alloc_skb(hsize + doffset + headroom, 4169 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4170 NUMA_NO_NODE); 4171 4172 if (unlikely(!nskb)) 4173 goto err; 4174 4175 skb_reserve(nskb, headroom); 4176 __skb_put(nskb, doffset); 4177 } 4178 4179 if (segs) 4180 tail->next = nskb; 4181 else 4182 segs = nskb; 4183 tail = nskb; 4184 4185 __copy_skb_header(nskb, head_skb); 4186 4187 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4188 skb_reset_mac_len(nskb); 4189 4190 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4191 nskb->data - tnl_hlen, 4192 doffset + tnl_hlen); 4193 4194 if (nskb->len == len + doffset) 4195 goto perform_csum_check; 4196 4197 if (!sg) { 4198 if (!csum) { 4199 if (!nskb->remcsum_offload) 4200 nskb->ip_summed = CHECKSUM_NONE; 4201 SKB_GSO_CB(nskb)->csum = 4202 skb_copy_and_csum_bits(head_skb, offset, 4203 skb_put(nskb, 4204 len), 4205 len); 4206 SKB_GSO_CB(nskb)->csum_start = 4207 skb_headroom(nskb) + doffset; 4208 } else { 4209 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4210 goto err; 4211 } 4212 continue; 4213 } 4214 4215 nskb_frag = skb_shinfo(nskb)->frags; 4216 4217 skb_copy_from_linear_data_offset(head_skb, offset, 4218 skb_put(nskb, hsize), hsize); 4219 4220 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4221 SKBFL_SHARED_FRAG; 4222 4223 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4224 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4225 goto err; 4226 4227 while (pos < offset + len) { 4228 if (i >= nfrags) { 4229 i = 0; 4230 nfrags = skb_shinfo(list_skb)->nr_frags; 4231 frag = skb_shinfo(list_skb)->frags; 4232 frag_skb = list_skb; 4233 if (!skb_headlen(list_skb)) { 4234 BUG_ON(!nfrags); 4235 } else { 4236 BUG_ON(!list_skb->head_frag); 4237 4238 /* to make room for head_frag. */ 4239 i--; 4240 frag--; 4241 } 4242 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4243 skb_zerocopy_clone(nskb, frag_skb, 4244 GFP_ATOMIC)) 4245 goto err; 4246 4247 list_skb = list_skb->next; 4248 } 4249 4250 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4251 MAX_SKB_FRAGS)) { 4252 net_warn_ratelimited( 4253 "skb_segment: too many frags: %u %u\n", 4254 pos, mss); 4255 err = -EINVAL; 4256 goto err; 4257 } 4258 4259 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4260 __skb_frag_ref(nskb_frag); 4261 size = skb_frag_size(nskb_frag); 4262 4263 if (pos < offset) { 4264 skb_frag_off_add(nskb_frag, offset - pos); 4265 skb_frag_size_sub(nskb_frag, offset - pos); 4266 } 4267 4268 skb_shinfo(nskb)->nr_frags++; 4269 4270 if (pos + size <= offset + len) { 4271 i++; 4272 frag++; 4273 pos += size; 4274 } else { 4275 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4276 goto skip_fraglist; 4277 } 4278 4279 nskb_frag++; 4280 } 4281 4282 skip_fraglist: 4283 nskb->data_len = len - hsize; 4284 nskb->len += nskb->data_len; 4285 nskb->truesize += nskb->data_len; 4286 4287 perform_csum_check: 4288 if (!csum) { 4289 if (skb_has_shared_frag(nskb) && 4290 __skb_linearize(nskb)) 4291 goto err; 4292 4293 if (!nskb->remcsum_offload) 4294 nskb->ip_summed = CHECKSUM_NONE; 4295 SKB_GSO_CB(nskb)->csum = 4296 skb_checksum(nskb, doffset, 4297 nskb->len - doffset, 0); 4298 SKB_GSO_CB(nskb)->csum_start = 4299 skb_headroom(nskb) + doffset; 4300 } 4301 } while ((offset += len) < head_skb->len); 4302 4303 /* Some callers want to get the end of the list. 4304 * Put it in segs->prev to avoid walking the list. 4305 * (see validate_xmit_skb_list() for example) 4306 */ 4307 segs->prev = tail; 4308 4309 if (partial_segs) { 4310 struct sk_buff *iter; 4311 int type = skb_shinfo(head_skb)->gso_type; 4312 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4313 4314 /* Update type to add partial and then remove dodgy if set */ 4315 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4316 type &= ~SKB_GSO_DODGY; 4317 4318 /* Update GSO info and prepare to start updating headers on 4319 * our way back down the stack of protocols. 4320 */ 4321 for (iter = segs; iter; iter = iter->next) { 4322 skb_shinfo(iter)->gso_size = gso_size; 4323 skb_shinfo(iter)->gso_segs = partial_segs; 4324 skb_shinfo(iter)->gso_type = type; 4325 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4326 } 4327 4328 if (tail->len - doffset <= gso_size) 4329 skb_shinfo(tail)->gso_size = 0; 4330 else if (tail != segs) 4331 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4332 } 4333 4334 /* Following permits correct backpressure, for protocols 4335 * using skb_set_owner_w(). 4336 * Idea is to tranfert ownership from head_skb to last segment. 4337 */ 4338 if (head_skb->destructor == sock_wfree) { 4339 swap(tail->truesize, head_skb->truesize); 4340 swap(tail->destructor, head_skb->destructor); 4341 swap(tail->sk, head_skb->sk); 4342 } 4343 return segs; 4344 4345 err: 4346 kfree_skb_list(segs); 4347 return ERR_PTR(err); 4348 } 4349 EXPORT_SYMBOL_GPL(skb_segment); 4350 4351 #ifdef CONFIG_SKB_EXTENSIONS 4352 #define SKB_EXT_ALIGN_VALUE 8 4353 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4354 4355 static const u8 skb_ext_type_len[] = { 4356 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4357 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4358 #endif 4359 #ifdef CONFIG_XFRM 4360 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4361 #endif 4362 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4363 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4364 #endif 4365 #if IS_ENABLED(CONFIG_MPTCP) 4366 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4367 #endif 4368 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4369 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4370 #endif 4371 }; 4372 4373 static __always_inline unsigned int skb_ext_total_length(void) 4374 { 4375 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4376 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4377 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4378 #endif 4379 #ifdef CONFIG_XFRM 4380 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4381 #endif 4382 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4383 skb_ext_type_len[TC_SKB_EXT] + 4384 #endif 4385 #if IS_ENABLED(CONFIG_MPTCP) 4386 skb_ext_type_len[SKB_EXT_MPTCP] + 4387 #endif 4388 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4389 skb_ext_type_len[SKB_EXT_MCTP] + 4390 #endif 4391 0; 4392 } 4393 4394 static void skb_extensions_init(void) 4395 { 4396 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4397 BUILD_BUG_ON(skb_ext_total_length() > 255); 4398 4399 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4400 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4401 0, 4402 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4403 NULL); 4404 } 4405 #else 4406 static void skb_extensions_init(void) {} 4407 #endif 4408 4409 void __init skb_init(void) 4410 { 4411 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4412 sizeof(struct sk_buff), 4413 0, 4414 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4415 offsetof(struct sk_buff, cb), 4416 sizeof_field(struct sk_buff, cb), 4417 NULL); 4418 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4419 sizeof(struct sk_buff_fclones), 4420 0, 4421 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4422 NULL); 4423 skb_extensions_init(); 4424 } 4425 4426 static int 4427 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4428 unsigned int recursion_level) 4429 { 4430 int start = skb_headlen(skb); 4431 int i, copy = start - offset; 4432 struct sk_buff *frag_iter; 4433 int elt = 0; 4434 4435 if (unlikely(recursion_level >= 24)) 4436 return -EMSGSIZE; 4437 4438 if (copy > 0) { 4439 if (copy > len) 4440 copy = len; 4441 sg_set_buf(sg, skb->data + offset, copy); 4442 elt++; 4443 if ((len -= copy) == 0) 4444 return elt; 4445 offset += copy; 4446 } 4447 4448 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4449 int end; 4450 4451 WARN_ON(start > offset + len); 4452 4453 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4454 if ((copy = end - offset) > 0) { 4455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4456 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4457 return -EMSGSIZE; 4458 4459 if (copy > len) 4460 copy = len; 4461 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4462 skb_frag_off(frag) + offset - start); 4463 elt++; 4464 if (!(len -= copy)) 4465 return elt; 4466 offset += copy; 4467 } 4468 start = end; 4469 } 4470 4471 skb_walk_frags(skb, frag_iter) { 4472 int end, ret; 4473 4474 WARN_ON(start > offset + len); 4475 4476 end = start + frag_iter->len; 4477 if ((copy = end - offset) > 0) { 4478 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4479 return -EMSGSIZE; 4480 4481 if (copy > len) 4482 copy = len; 4483 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4484 copy, recursion_level + 1); 4485 if (unlikely(ret < 0)) 4486 return ret; 4487 elt += ret; 4488 if ((len -= copy) == 0) 4489 return elt; 4490 offset += copy; 4491 } 4492 start = end; 4493 } 4494 BUG_ON(len); 4495 return elt; 4496 } 4497 4498 /** 4499 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4500 * @skb: Socket buffer containing the buffers to be mapped 4501 * @sg: The scatter-gather list to map into 4502 * @offset: The offset into the buffer's contents to start mapping 4503 * @len: Length of buffer space to be mapped 4504 * 4505 * Fill the specified scatter-gather list with mappings/pointers into a 4506 * region of the buffer space attached to a socket buffer. Returns either 4507 * the number of scatterlist items used, or -EMSGSIZE if the contents 4508 * could not fit. 4509 */ 4510 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4511 { 4512 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4513 4514 if (nsg <= 0) 4515 return nsg; 4516 4517 sg_mark_end(&sg[nsg - 1]); 4518 4519 return nsg; 4520 } 4521 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4522 4523 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4524 * sglist without mark the sg which contain last skb data as the end. 4525 * So the caller can mannipulate sg list as will when padding new data after 4526 * the first call without calling sg_unmark_end to expend sg list. 4527 * 4528 * Scenario to use skb_to_sgvec_nomark: 4529 * 1. sg_init_table 4530 * 2. skb_to_sgvec_nomark(payload1) 4531 * 3. skb_to_sgvec_nomark(payload2) 4532 * 4533 * This is equivalent to: 4534 * 1. sg_init_table 4535 * 2. skb_to_sgvec(payload1) 4536 * 3. sg_unmark_end 4537 * 4. skb_to_sgvec(payload2) 4538 * 4539 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4540 * is more preferable. 4541 */ 4542 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4543 int offset, int len) 4544 { 4545 return __skb_to_sgvec(skb, sg, offset, len, 0); 4546 } 4547 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4548 4549 4550 4551 /** 4552 * skb_cow_data - Check that a socket buffer's data buffers are writable 4553 * @skb: The socket buffer to check. 4554 * @tailbits: Amount of trailing space to be added 4555 * @trailer: Returned pointer to the skb where the @tailbits space begins 4556 * 4557 * Make sure that the data buffers attached to a socket buffer are 4558 * writable. If they are not, private copies are made of the data buffers 4559 * and the socket buffer is set to use these instead. 4560 * 4561 * If @tailbits is given, make sure that there is space to write @tailbits 4562 * bytes of data beyond current end of socket buffer. @trailer will be 4563 * set to point to the skb in which this space begins. 4564 * 4565 * The number of scatterlist elements required to completely map the 4566 * COW'd and extended socket buffer will be returned. 4567 */ 4568 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4569 { 4570 int copyflag; 4571 int elt; 4572 struct sk_buff *skb1, **skb_p; 4573 4574 /* If skb is cloned or its head is paged, reallocate 4575 * head pulling out all the pages (pages are considered not writable 4576 * at the moment even if they are anonymous). 4577 */ 4578 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4579 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4580 return -ENOMEM; 4581 4582 /* Easy case. Most of packets will go this way. */ 4583 if (!skb_has_frag_list(skb)) { 4584 /* A little of trouble, not enough of space for trailer. 4585 * This should not happen, when stack is tuned to generate 4586 * good frames. OK, on miss we reallocate and reserve even more 4587 * space, 128 bytes is fair. */ 4588 4589 if (skb_tailroom(skb) < tailbits && 4590 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4591 return -ENOMEM; 4592 4593 /* Voila! */ 4594 *trailer = skb; 4595 return 1; 4596 } 4597 4598 /* Misery. We are in troubles, going to mincer fragments... */ 4599 4600 elt = 1; 4601 skb_p = &skb_shinfo(skb)->frag_list; 4602 copyflag = 0; 4603 4604 while ((skb1 = *skb_p) != NULL) { 4605 int ntail = 0; 4606 4607 /* The fragment is partially pulled by someone, 4608 * this can happen on input. Copy it and everything 4609 * after it. */ 4610 4611 if (skb_shared(skb1)) 4612 copyflag = 1; 4613 4614 /* If the skb is the last, worry about trailer. */ 4615 4616 if (skb1->next == NULL && tailbits) { 4617 if (skb_shinfo(skb1)->nr_frags || 4618 skb_has_frag_list(skb1) || 4619 skb_tailroom(skb1) < tailbits) 4620 ntail = tailbits + 128; 4621 } 4622 4623 if (copyflag || 4624 skb_cloned(skb1) || 4625 ntail || 4626 skb_shinfo(skb1)->nr_frags || 4627 skb_has_frag_list(skb1)) { 4628 struct sk_buff *skb2; 4629 4630 /* Fuck, we are miserable poor guys... */ 4631 if (ntail == 0) 4632 skb2 = skb_copy(skb1, GFP_ATOMIC); 4633 else 4634 skb2 = skb_copy_expand(skb1, 4635 skb_headroom(skb1), 4636 ntail, 4637 GFP_ATOMIC); 4638 if (unlikely(skb2 == NULL)) 4639 return -ENOMEM; 4640 4641 if (skb1->sk) 4642 skb_set_owner_w(skb2, skb1->sk); 4643 4644 /* Looking around. Are we still alive? 4645 * OK, link new skb, drop old one */ 4646 4647 skb2->next = skb1->next; 4648 *skb_p = skb2; 4649 kfree_skb(skb1); 4650 skb1 = skb2; 4651 } 4652 elt++; 4653 *trailer = skb1; 4654 skb_p = &skb1->next; 4655 } 4656 4657 return elt; 4658 } 4659 EXPORT_SYMBOL_GPL(skb_cow_data); 4660 4661 static void sock_rmem_free(struct sk_buff *skb) 4662 { 4663 struct sock *sk = skb->sk; 4664 4665 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4666 } 4667 4668 static void skb_set_err_queue(struct sk_buff *skb) 4669 { 4670 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4671 * So, it is safe to (mis)use it to mark skbs on the error queue. 4672 */ 4673 skb->pkt_type = PACKET_OUTGOING; 4674 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4675 } 4676 4677 /* 4678 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4679 */ 4680 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4681 { 4682 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4683 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4684 return -ENOMEM; 4685 4686 skb_orphan(skb); 4687 skb->sk = sk; 4688 skb->destructor = sock_rmem_free; 4689 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4690 skb_set_err_queue(skb); 4691 4692 /* before exiting rcu section, make sure dst is refcounted */ 4693 skb_dst_force(skb); 4694 4695 skb_queue_tail(&sk->sk_error_queue, skb); 4696 if (!sock_flag(sk, SOCK_DEAD)) 4697 sk_error_report(sk); 4698 return 0; 4699 } 4700 EXPORT_SYMBOL(sock_queue_err_skb); 4701 4702 static bool is_icmp_err_skb(const struct sk_buff *skb) 4703 { 4704 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4705 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4706 } 4707 4708 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4709 { 4710 struct sk_buff_head *q = &sk->sk_error_queue; 4711 struct sk_buff *skb, *skb_next = NULL; 4712 bool icmp_next = false; 4713 unsigned long flags; 4714 4715 spin_lock_irqsave(&q->lock, flags); 4716 skb = __skb_dequeue(q); 4717 if (skb && (skb_next = skb_peek(q))) { 4718 icmp_next = is_icmp_err_skb(skb_next); 4719 if (icmp_next) 4720 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4721 } 4722 spin_unlock_irqrestore(&q->lock, flags); 4723 4724 if (is_icmp_err_skb(skb) && !icmp_next) 4725 sk->sk_err = 0; 4726 4727 if (skb_next) 4728 sk_error_report(sk); 4729 4730 return skb; 4731 } 4732 EXPORT_SYMBOL(sock_dequeue_err_skb); 4733 4734 /** 4735 * skb_clone_sk - create clone of skb, and take reference to socket 4736 * @skb: the skb to clone 4737 * 4738 * This function creates a clone of a buffer that holds a reference on 4739 * sk_refcnt. Buffers created via this function are meant to be 4740 * returned using sock_queue_err_skb, or free via kfree_skb. 4741 * 4742 * When passing buffers allocated with this function to sock_queue_err_skb 4743 * it is necessary to wrap the call with sock_hold/sock_put in order to 4744 * prevent the socket from being released prior to being enqueued on 4745 * the sk_error_queue. 4746 */ 4747 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4748 { 4749 struct sock *sk = skb->sk; 4750 struct sk_buff *clone; 4751 4752 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4753 return NULL; 4754 4755 clone = skb_clone(skb, GFP_ATOMIC); 4756 if (!clone) { 4757 sock_put(sk); 4758 return NULL; 4759 } 4760 4761 clone->sk = sk; 4762 clone->destructor = sock_efree; 4763 4764 return clone; 4765 } 4766 EXPORT_SYMBOL(skb_clone_sk); 4767 4768 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4769 struct sock *sk, 4770 int tstype, 4771 bool opt_stats) 4772 { 4773 struct sock_exterr_skb *serr; 4774 int err; 4775 4776 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4777 4778 serr = SKB_EXT_ERR(skb); 4779 memset(serr, 0, sizeof(*serr)); 4780 serr->ee.ee_errno = ENOMSG; 4781 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4782 serr->ee.ee_info = tstype; 4783 serr->opt_stats = opt_stats; 4784 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4785 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4786 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4787 if (sk_is_tcp(sk)) 4788 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4789 } 4790 4791 err = sock_queue_err_skb(sk, skb); 4792 4793 if (err) 4794 kfree_skb(skb); 4795 } 4796 4797 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4798 { 4799 bool ret; 4800 4801 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 4802 return true; 4803 4804 read_lock_bh(&sk->sk_callback_lock); 4805 ret = sk->sk_socket && sk->sk_socket->file && 4806 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4807 read_unlock_bh(&sk->sk_callback_lock); 4808 return ret; 4809 } 4810 4811 void skb_complete_tx_timestamp(struct sk_buff *skb, 4812 struct skb_shared_hwtstamps *hwtstamps) 4813 { 4814 struct sock *sk = skb->sk; 4815 4816 if (!skb_may_tx_timestamp(sk, false)) 4817 goto err; 4818 4819 /* Take a reference to prevent skb_orphan() from freeing the socket, 4820 * but only if the socket refcount is not zero. 4821 */ 4822 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4823 *skb_hwtstamps(skb) = *hwtstamps; 4824 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4825 sock_put(sk); 4826 return; 4827 } 4828 4829 err: 4830 kfree_skb(skb); 4831 } 4832 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4833 4834 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4835 const struct sk_buff *ack_skb, 4836 struct skb_shared_hwtstamps *hwtstamps, 4837 struct sock *sk, int tstype) 4838 { 4839 struct sk_buff *skb; 4840 bool tsonly, opt_stats = false; 4841 4842 if (!sk) 4843 return; 4844 4845 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4846 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4847 return; 4848 4849 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4850 if (!skb_may_tx_timestamp(sk, tsonly)) 4851 return; 4852 4853 if (tsonly) { 4854 #ifdef CONFIG_INET 4855 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4856 sk_is_tcp(sk)) { 4857 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4858 ack_skb); 4859 opt_stats = true; 4860 } else 4861 #endif 4862 skb = alloc_skb(0, GFP_ATOMIC); 4863 } else { 4864 skb = skb_clone(orig_skb, GFP_ATOMIC); 4865 } 4866 if (!skb) 4867 return; 4868 4869 if (tsonly) { 4870 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4871 SKBTX_ANY_TSTAMP; 4872 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4873 } 4874 4875 if (hwtstamps) 4876 *skb_hwtstamps(skb) = *hwtstamps; 4877 else 4878 __net_timestamp(skb); 4879 4880 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4881 } 4882 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4883 4884 void skb_tstamp_tx(struct sk_buff *orig_skb, 4885 struct skb_shared_hwtstamps *hwtstamps) 4886 { 4887 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4888 SCM_TSTAMP_SND); 4889 } 4890 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4891 4892 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4893 { 4894 struct sock *sk = skb->sk; 4895 struct sock_exterr_skb *serr; 4896 int err = 1; 4897 4898 skb->wifi_acked_valid = 1; 4899 skb->wifi_acked = acked; 4900 4901 serr = SKB_EXT_ERR(skb); 4902 memset(serr, 0, sizeof(*serr)); 4903 serr->ee.ee_errno = ENOMSG; 4904 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4905 4906 /* Take a reference to prevent skb_orphan() from freeing the socket, 4907 * but only if the socket refcount is not zero. 4908 */ 4909 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4910 err = sock_queue_err_skb(sk, skb); 4911 sock_put(sk); 4912 } 4913 if (err) 4914 kfree_skb(skb); 4915 } 4916 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4917 4918 /** 4919 * skb_partial_csum_set - set up and verify partial csum values for packet 4920 * @skb: the skb to set 4921 * @start: the number of bytes after skb->data to start checksumming. 4922 * @off: the offset from start to place the checksum. 4923 * 4924 * For untrusted partially-checksummed packets, we need to make sure the values 4925 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4926 * 4927 * This function checks and sets those values and skb->ip_summed: if this 4928 * returns false you should drop the packet. 4929 */ 4930 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4931 { 4932 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4933 u32 csum_start = skb_headroom(skb) + (u32)start; 4934 4935 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4936 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4937 start, off, skb_headroom(skb), skb_headlen(skb)); 4938 return false; 4939 } 4940 skb->ip_summed = CHECKSUM_PARTIAL; 4941 skb->csum_start = csum_start; 4942 skb->csum_offset = off; 4943 skb_set_transport_header(skb, start); 4944 return true; 4945 } 4946 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4947 4948 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4949 unsigned int max) 4950 { 4951 if (skb_headlen(skb) >= len) 4952 return 0; 4953 4954 /* If we need to pullup then pullup to the max, so we 4955 * won't need to do it again. 4956 */ 4957 if (max > skb->len) 4958 max = skb->len; 4959 4960 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4961 return -ENOMEM; 4962 4963 if (skb_headlen(skb) < len) 4964 return -EPROTO; 4965 4966 return 0; 4967 } 4968 4969 #define MAX_TCP_HDR_LEN (15 * 4) 4970 4971 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4972 typeof(IPPROTO_IP) proto, 4973 unsigned int off) 4974 { 4975 int err; 4976 4977 switch (proto) { 4978 case IPPROTO_TCP: 4979 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4980 off + MAX_TCP_HDR_LEN); 4981 if (!err && !skb_partial_csum_set(skb, off, 4982 offsetof(struct tcphdr, 4983 check))) 4984 err = -EPROTO; 4985 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4986 4987 case IPPROTO_UDP: 4988 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4989 off + sizeof(struct udphdr)); 4990 if (!err && !skb_partial_csum_set(skb, off, 4991 offsetof(struct udphdr, 4992 check))) 4993 err = -EPROTO; 4994 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4995 } 4996 4997 return ERR_PTR(-EPROTO); 4998 } 4999 5000 /* This value should be large enough to cover a tagged ethernet header plus 5001 * maximally sized IP and TCP or UDP headers. 5002 */ 5003 #define MAX_IP_HDR_LEN 128 5004 5005 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5006 { 5007 unsigned int off; 5008 bool fragment; 5009 __sum16 *csum; 5010 int err; 5011 5012 fragment = false; 5013 5014 err = skb_maybe_pull_tail(skb, 5015 sizeof(struct iphdr), 5016 MAX_IP_HDR_LEN); 5017 if (err < 0) 5018 goto out; 5019 5020 if (ip_is_fragment(ip_hdr(skb))) 5021 fragment = true; 5022 5023 off = ip_hdrlen(skb); 5024 5025 err = -EPROTO; 5026 5027 if (fragment) 5028 goto out; 5029 5030 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5031 if (IS_ERR(csum)) 5032 return PTR_ERR(csum); 5033 5034 if (recalculate) 5035 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5036 ip_hdr(skb)->daddr, 5037 skb->len - off, 5038 ip_hdr(skb)->protocol, 0); 5039 err = 0; 5040 5041 out: 5042 return err; 5043 } 5044 5045 /* This value should be large enough to cover a tagged ethernet header plus 5046 * an IPv6 header, all options, and a maximal TCP or UDP header. 5047 */ 5048 #define MAX_IPV6_HDR_LEN 256 5049 5050 #define OPT_HDR(type, skb, off) \ 5051 (type *)(skb_network_header(skb) + (off)) 5052 5053 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5054 { 5055 int err; 5056 u8 nexthdr; 5057 unsigned int off; 5058 unsigned int len; 5059 bool fragment; 5060 bool done; 5061 __sum16 *csum; 5062 5063 fragment = false; 5064 done = false; 5065 5066 off = sizeof(struct ipv6hdr); 5067 5068 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5069 if (err < 0) 5070 goto out; 5071 5072 nexthdr = ipv6_hdr(skb)->nexthdr; 5073 5074 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5075 while (off <= len && !done) { 5076 switch (nexthdr) { 5077 case IPPROTO_DSTOPTS: 5078 case IPPROTO_HOPOPTS: 5079 case IPPROTO_ROUTING: { 5080 struct ipv6_opt_hdr *hp; 5081 5082 err = skb_maybe_pull_tail(skb, 5083 off + 5084 sizeof(struct ipv6_opt_hdr), 5085 MAX_IPV6_HDR_LEN); 5086 if (err < 0) 5087 goto out; 5088 5089 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5090 nexthdr = hp->nexthdr; 5091 off += ipv6_optlen(hp); 5092 break; 5093 } 5094 case IPPROTO_AH: { 5095 struct ip_auth_hdr *hp; 5096 5097 err = skb_maybe_pull_tail(skb, 5098 off + 5099 sizeof(struct ip_auth_hdr), 5100 MAX_IPV6_HDR_LEN); 5101 if (err < 0) 5102 goto out; 5103 5104 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5105 nexthdr = hp->nexthdr; 5106 off += ipv6_authlen(hp); 5107 break; 5108 } 5109 case IPPROTO_FRAGMENT: { 5110 struct frag_hdr *hp; 5111 5112 err = skb_maybe_pull_tail(skb, 5113 off + 5114 sizeof(struct frag_hdr), 5115 MAX_IPV6_HDR_LEN); 5116 if (err < 0) 5117 goto out; 5118 5119 hp = OPT_HDR(struct frag_hdr, skb, off); 5120 5121 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5122 fragment = true; 5123 5124 nexthdr = hp->nexthdr; 5125 off += sizeof(struct frag_hdr); 5126 break; 5127 } 5128 default: 5129 done = true; 5130 break; 5131 } 5132 } 5133 5134 err = -EPROTO; 5135 5136 if (!done || fragment) 5137 goto out; 5138 5139 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5140 if (IS_ERR(csum)) 5141 return PTR_ERR(csum); 5142 5143 if (recalculate) 5144 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5145 &ipv6_hdr(skb)->daddr, 5146 skb->len - off, nexthdr, 0); 5147 err = 0; 5148 5149 out: 5150 return err; 5151 } 5152 5153 /** 5154 * skb_checksum_setup - set up partial checksum offset 5155 * @skb: the skb to set up 5156 * @recalculate: if true the pseudo-header checksum will be recalculated 5157 */ 5158 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5159 { 5160 int err; 5161 5162 switch (skb->protocol) { 5163 case htons(ETH_P_IP): 5164 err = skb_checksum_setup_ipv4(skb, recalculate); 5165 break; 5166 5167 case htons(ETH_P_IPV6): 5168 err = skb_checksum_setup_ipv6(skb, recalculate); 5169 break; 5170 5171 default: 5172 err = -EPROTO; 5173 break; 5174 } 5175 5176 return err; 5177 } 5178 EXPORT_SYMBOL(skb_checksum_setup); 5179 5180 /** 5181 * skb_checksum_maybe_trim - maybe trims the given skb 5182 * @skb: the skb to check 5183 * @transport_len: the data length beyond the network header 5184 * 5185 * Checks whether the given skb has data beyond the given transport length. 5186 * If so, returns a cloned skb trimmed to this transport length. 5187 * Otherwise returns the provided skb. Returns NULL in error cases 5188 * (e.g. transport_len exceeds skb length or out-of-memory). 5189 * 5190 * Caller needs to set the skb transport header and free any returned skb if it 5191 * differs from the provided skb. 5192 */ 5193 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5194 unsigned int transport_len) 5195 { 5196 struct sk_buff *skb_chk; 5197 unsigned int len = skb_transport_offset(skb) + transport_len; 5198 int ret; 5199 5200 if (skb->len < len) 5201 return NULL; 5202 else if (skb->len == len) 5203 return skb; 5204 5205 skb_chk = skb_clone(skb, GFP_ATOMIC); 5206 if (!skb_chk) 5207 return NULL; 5208 5209 ret = pskb_trim_rcsum(skb_chk, len); 5210 if (ret) { 5211 kfree_skb(skb_chk); 5212 return NULL; 5213 } 5214 5215 return skb_chk; 5216 } 5217 5218 /** 5219 * skb_checksum_trimmed - validate checksum of an skb 5220 * @skb: the skb to check 5221 * @transport_len: the data length beyond the network header 5222 * @skb_chkf: checksum function to use 5223 * 5224 * Applies the given checksum function skb_chkf to the provided skb. 5225 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5226 * 5227 * If the skb has data beyond the given transport length, then a 5228 * trimmed & cloned skb is checked and returned. 5229 * 5230 * Caller needs to set the skb transport header and free any returned skb if it 5231 * differs from the provided skb. 5232 */ 5233 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5234 unsigned int transport_len, 5235 __sum16(*skb_chkf)(struct sk_buff *skb)) 5236 { 5237 struct sk_buff *skb_chk; 5238 unsigned int offset = skb_transport_offset(skb); 5239 __sum16 ret; 5240 5241 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5242 if (!skb_chk) 5243 goto err; 5244 5245 if (!pskb_may_pull(skb_chk, offset)) 5246 goto err; 5247 5248 skb_pull_rcsum(skb_chk, offset); 5249 ret = skb_chkf(skb_chk); 5250 skb_push_rcsum(skb_chk, offset); 5251 5252 if (ret) 5253 goto err; 5254 5255 return skb_chk; 5256 5257 err: 5258 if (skb_chk && skb_chk != skb) 5259 kfree_skb(skb_chk); 5260 5261 return NULL; 5262 5263 } 5264 EXPORT_SYMBOL(skb_checksum_trimmed); 5265 5266 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5267 { 5268 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5269 skb->dev->name); 5270 } 5271 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5272 5273 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5274 { 5275 if (head_stolen) { 5276 skb_release_head_state(skb); 5277 kmem_cache_free(skbuff_head_cache, skb); 5278 } else { 5279 __kfree_skb(skb); 5280 } 5281 } 5282 EXPORT_SYMBOL(kfree_skb_partial); 5283 5284 /** 5285 * skb_try_coalesce - try to merge skb to prior one 5286 * @to: prior buffer 5287 * @from: buffer to add 5288 * @fragstolen: pointer to boolean 5289 * @delta_truesize: how much more was allocated than was requested 5290 */ 5291 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5292 bool *fragstolen, int *delta_truesize) 5293 { 5294 struct skb_shared_info *to_shinfo, *from_shinfo; 5295 int i, delta, len = from->len; 5296 5297 *fragstolen = false; 5298 5299 if (skb_cloned(to)) 5300 return false; 5301 5302 /* In general, avoid mixing slab allocated and page_pool allocated 5303 * pages within the same SKB. However when @to is not pp_recycle and 5304 * @from is cloned, we can transition frag pages from page_pool to 5305 * reference counted. 5306 * 5307 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5308 * @from is cloned, in case the SKB is using page_pool fragment 5309 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5310 * references for cloned SKBs at the moment that would result in 5311 * inconsistent reference counts. 5312 */ 5313 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5314 return false; 5315 5316 if (len <= skb_tailroom(to)) { 5317 if (len) 5318 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5319 *delta_truesize = 0; 5320 return true; 5321 } 5322 5323 to_shinfo = skb_shinfo(to); 5324 from_shinfo = skb_shinfo(from); 5325 if (to_shinfo->frag_list || from_shinfo->frag_list) 5326 return false; 5327 if (skb_zcopy(to) || skb_zcopy(from)) 5328 return false; 5329 5330 if (skb_headlen(from) != 0) { 5331 struct page *page; 5332 unsigned int offset; 5333 5334 if (to_shinfo->nr_frags + 5335 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5336 return false; 5337 5338 if (skb_head_is_locked(from)) 5339 return false; 5340 5341 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5342 5343 page = virt_to_head_page(from->head); 5344 offset = from->data - (unsigned char *)page_address(page); 5345 5346 skb_fill_page_desc(to, to_shinfo->nr_frags, 5347 page, offset, skb_headlen(from)); 5348 *fragstolen = true; 5349 } else { 5350 if (to_shinfo->nr_frags + 5351 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5352 return false; 5353 5354 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5355 } 5356 5357 WARN_ON_ONCE(delta < len); 5358 5359 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5360 from_shinfo->frags, 5361 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5362 to_shinfo->nr_frags += from_shinfo->nr_frags; 5363 5364 if (!skb_cloned(from)) 5365 from_shinfo->nr_frags = 0; 5366 5367 /* if the skb is not cloned this does nothing 5368 * since we set nr_frags to 0. 5369 */ 5370 for (i = 0; i < from_shinfo->nr_frags; i++) 5371 __skb_frag_ref(&from_shinfo->frags[i]); 5372 5373 to->truesize += delta; 5374 to->len += len; 5375 to->data_len += len; 5376 5377 *delta_truesize = delta; 5378 return true; 5379 } 5380 EXPORT_SYMBOL(skb_try_coalesce); 5381 5382 /** 5383 * skb_scrub_packet - scrub an skb 5384 * 5385 * @skb: buffer to clean 5386 * @xnet: packet is crossing netns 5387 * 5388 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5389 * into/from a tunnel. Some information have to be cleared during these 5390 * operations. 5391 * skb_scrub_packet can also be used to clean a skb before injecting it in 5392 * another namespace (@xnet == true). We have to clear all information in the 5393 * skb that could impact namespace isolation. 5394 */ 5395 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5396 { 5397 skb->pkt_type = PACKET_HOST; 5398 skb->skb_iif = 0; 5399 skb->ignore_df = 0; 5400 skb_dst_drop(skb); 5401 skb_ext_reset(skb); 5402 nf_reset_ct(skb); 5403 nf_reset_trace(skb); 5404 5405 #ifdef CONFIG_NET_SWITCHDEV 5406 skb->offload_fwd_mark = 0; 5407 skb->offload_l3_fwd_mark = 0; 5408 #endif 5409 5410 if (!xnet) 5411 return; 5412 5413 ipvs_reset(skb); 5414 skb->mark = 0; 5415 skb_clear_tstamp(skb); 5416 } 5417 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5418 5419 /** 5420 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5421 * 5422 * @skb: GSO skb 5423 * 5424 * skb_gso_transport_seglen is used to determine the real size of the 5425 * individual segments, including Layer4 headers (TCP/UDP). 5426 * 5427 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5428 */ 5429 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5430 { 5431 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5432 unsigned int thlen = 0; 5433 5434 if (skb->encapsulation) { 5435 thlen = skb_inner_transport_header(skb) - 5436 skb_transport_header(skb); 5437 5438 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5439 thlen += inner_tcp_hdrlen(skb); 5440 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5441 thlen = tcp_hdrlen(skb); 5442 } else if (unlikely(skb_is_gso_sctp(skb))) { 5443 thlen = sizeof(struct sctphdr); 5444 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5445 thlen = sizeof(struct udphdr); 5446 } 5447 /* UFO sets gso_size to the size of the fragmentation 5448 * payload, i.e. the size of the L4 (UDP) header is already 5449 * accounted for. 5450 */ 5451 return thlen + shinfo->gso_size; 5452 } 5453 5454 /** 5455 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5456 * 5457 * @skb: GSO skb 5458 * 5459 * skb_gso_network_seglen is used to determine the real size of the 5460 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5461 * 5462 * The MAC/L2 header is not accounted for. 5463 */ 5464 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5465 { 5466 unsigned int hdr_len = skb_transport_header(skb) - 5467 skb_network_header(skb); 5468 5469 return hdr_len + skb_gso_transport_seglen(skb); 5470 } 5471 5472 /** 5473 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5474 * 5475 * @skb: GSO skb 5476 * 5477 * skb_gso_mac_seglen is used to determine the real size of the 5478 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5479 * headers (TCP/UDP). 5480 */ 5481 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5482 { 5483 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5484 5485 return hdr_len + skb_gso_transport_seglen(skb); 5486 } 5487 5488 /** 5489 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5490 * 5491 * There are a couple of instances where we have a GSO skb, and we 5492 * want to determine what size it would be after it is segmented. 5493 * 5494 * We might want to check: 5495 * - L3+L4+payload size (e.g. IP forwarding) 5496 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5497 * 5498 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5499 * 5500 * @skb: GSO skb 5501 * 5502 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5503 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5504 * 5505 * @max_len: The maximum permissible length. 5506 * 5507 * Returns true if the segmented length <= max length. 5508 */ 5509 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5510 unsigned int seg_len, 5511 unsigned int max_len) { 5512 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5513 const struct sk_buff *iter; 5514 5515 if (shinfo->gso_size != GSO_BY_FRAGS) 5516 return seg_len <= max_len; 5517 5518 /* Undo this so we can re-use header sizes */ 5519 seg_len -= GSO_BY_FRAGS; 5520 5521 skb_walk_frags(skb, iter) { 5522 if (seg_len + skb_headlen(iter) > max_len) 5523 return false; 5524 } 5525 5526 return true; 5527 } 5528 5529 /** 5530 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5531 * 5532 * @skb: GSO skb 5533 * @mtu: MTU to validate against 5534 * 5535 * skb_gso_validate_network_len validates if a given skb will fit a 5536 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5537 * payload. 5538 */ 5539 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5540 { 5541 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5542 } 5543 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5544 5545 /** 5546 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5547 * 5548 * @skb: GSO skb 5549 * @len: length to validate against 5550 * 5551 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5552 * length once split, including L2, L3 and L4 headers and the payload. 5553 */ 5554 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5555 { 5556 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5557 } 5558 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5559 5560 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5561 { 5562 int mac_len, meta_len; 5563 void *meta; 5564 5565 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5566 kfree_skb(skb); 5567 return NULL; 5568 } 5569 5570 mac_len = skb->data - skb_mac_header(skb); 5571 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5572 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5573 mac_len - VLAN_HLEN - ETH_TLEN); 5574 } 5575 5576 meta_len = skb_metadata_len(skb); 5577 if (meta_len) { 5578 meta = skb_metadata_end(skb) - meta_len; 5579 memmove(meta + VLAN_HLEN, meta, meta_len); 5580 } 5581 5582 skb->mac_header += VLAN_HLEN; 5583 return skb; 5584 } 5585 5586 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5587 { 5588 struct vlan_hdr *vhdr; 5589 u16 vlan_tci; 5590 5591 if (unlikely(skb_vlan_tag_present(skb))) { 5592 /* vlan_tci is already set-up so leave this for another time */ 5593 return skb; 5594 } 5595 5596 skb = skb_share_check(skb, GFP_ATOMIC); 5597 if (unlikely(!skb)) 5598 goto err_free; 5599 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5600 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5601 goto err_free; 5602 5603 vhdr = (struct vlan_hdr *)skb->data; 5604 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5605 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5606 5607 skb_pull_rcsum(skb, VLAN_HLEN); 5608 vlan_set_encap_proto(skb, vhdr); 5609 5610 skb = skb_reorder_vlan_header(skb); 5611 if (unlikely(!skb)) 5612 goto err_free; 5613 5614 skb_reset_network_header(skb); 5615 if (!skb_transport_header_was_set(skb)) 5616 skb_reset_transport_header(skb); 5617 skb_reset_mac_len(skb); 5618 5619 return skb; 5620 5621 err_free: 5622 kfree_skb(skb); 5623 return NULL; 5624 } 5625 EXPORT_SYMBOL(skb_vlan_untag); 5626 5627 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5628 { 5629 if (!pskb_may_pull(skb, write_len)) 5630 return -ENOMEM; 5631 5632 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5633 return 0; 5634 5635 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5636 } 5637 EXPORT_SYMBOL(skb_ensure_writable); 5638 5639 /* remove VLAN header from packet and update csum accordingly. 5640 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5641 */ 5642 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5643 { 5644 struct vlan_hdr *vhdr; 5645 int offset = skb->data - skb_mac_header(skb); 5646 int err; 5647 5648 if (WARN_ONCE(offset, 5649 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5650 offset)) { 5651 return -EINVAL; 5652 } 5653 5654 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5655 if (unlikely(err)) 5656 return err; 5657 5658 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5659 5660 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5661 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5662 5663 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5664 __skb_pull(skb, VLAN_HLEN); 5665 5666 vlan_set_encap_proto(skb, vhdr); 5667 skb->mac_header += VLAN_HLEN; 5668 5669 if (skb_network_offset(skb) < ETH_HLEN) 5670 skb_set_network_header(skb, ETH_HLEN); 5671 5672 skb_reset_mac_len(skb); 5673 5674 return err; 5675 } 5676 EXPORT_SYMBOL(__skb_vlan_pop); 5677 5678 /* Pop a vlan tag either from hwaccel or from payload. 5679 * Expects skb->data at mac header. 5680 */ 5681 int skb_vlan_pop(struct sk_buff *skb) 5682 { 5683 u16 vlan_tci; 5684 __be16 vlan_proto; 5685 int err; 5686 5687 if (likely(skb_vlan_tag_present(skb))) { 5688 __vlan_hwaccel_clear_tag(skb); 5689 } else { 5690 if (unlikely(!eth_type_vlan(skb->protocol))) 5691 return 0; 5692 5693 err = __skb_vlan_pop(skb, &vlan_tci); 5694 if (err) 5695 return err; 5696 } 5697 /* move next vlan tag to hw accel tag */ 5698 if (likely(!eth_type_vlan(skb->protocol))) 5699 return 0; 5700 5701 vlan_proto = skb->protocol; 5702 err = __skb_vlan_pop(skb, &vlan_tci); 5703 if (unlikely(err)) 5704 return err; 5705 5706 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5707 return 0; 5708 } 5709 EXPORT_SYMBOL(skb_vlan_pop); 5710 5711 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5712 * Expects skb->data at mac header. 5713 */ 5714 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5715 { 5716 if (skb_vlan_tag_present(skb)) { 5717 int offset = skb->data - skb_mac_header(skb); 5718 int err; 5719 5720 if (WARN_ONCE(offset, 5721 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5722 offset)) { 5723 return -EINVAL; 5724 } 5725 5726 err = __vlan_insert_tag(skb, skb->vlan_proto, 5727 skb_vlan_tag_get(skb)); 5728 if (err) 5729 return err; 5730 5731 skb->protocol = skb->vlan_proto; 5732 skb->mac_len += VLAN_HLEN; 5733 5734 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5735 } 5736 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5737 return 0; 5738 } 5739 EXPORT_SYMBOL(skb_vlan_push); 5740 5741 /** 5742 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5743 * 5744 * @skb: Socket buffer to modify 5745 * 5746 * Drop the Ethernet header of @skb. 5747 * 5748 * Expects that skb->data points to the mac header and that no VLAN tags are 5749 * present. 5750 * 5751 * Returns 0 on success, -errno otherwise. 5752 */ 5753 int skb_eth_pop(struct sk_buff *skb) 5754 { 5755 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5756 skb_network_offset(skb) < ETH_HLEN) 5757 return -EPROTO; 5758 5759 skb_pull_rcsum(skb, ETH_HLEN); 5760 skb_reset_mac_header(skb); 5761 skb_reset_mac_len(skb); 5762 5763 return 0; 5764 } 5765 EXPORT_SYMBOL(skb_eth_pop); 5766 5767 /** 5768 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5769 * 5770 * @skb: Socket buffer to modify 5771 * @dst: Destination MAC address of the new header 5772 * @src: Source MAC address of the new header 5773 * 5774 * Prepend @skb with a new Ethernet header. 5775 * 5776 * Expects that skb->data points to the mac header, which must be empty. 5777 * 5778 * Returns 0 on success, -errno otherwise. 5779 */ 5780 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5781 const unsigned char *src) 5782 { 5783 struct ethhdr *eth; 5784 int err; 5785 5786 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5787 return -EPROTO; 5788 5789 err = skb_cow_head(skb, sizeof(*eth)); 5790 if (err < 0) 5791 return err; 5792 5793 skb_push(skb, sizeof(*eth)); 5794 skb_reset_mac_header(skb); 5795 skb_reset_mac_len(skb); 5796 5797 eth = eth_hdr(skb); 5798 ether_addr_copy(eth->h_dest, dst); 5799 ether_addr_copy(eth->h_source, src); 5800 eth->h_proto = skb->protocol; 5801 5802 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5803 5804 return 0; 5805 } 5806 EXPORT_SYMBOL(skb_eth_push); 5807 5808 /* Update the ethertype of hdr and the skb csum value if required. */ 5809 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5810 __be16 ethertype) 5811 { 5812 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5813 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5814 5815 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5816 } 5817 5818 hdr->h_proto = ethertype; 5819 } 5820 5821 /** 5822 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5823 * the packet 5824 * 5825 * @skb: buffer 5826 * @mpls_lse: MPLS label stack entry to push 5827 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5828 * @mac_len: length of the MAC header 5829 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5830 * ethernet 5831 * 5832 * Expects skb->data at mac header. 5833 * 5834 * Returns 0 on success, -errno otherwise. 5835 */ 5836 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5837 int mac_len, bool ethernet) 5838 { 5839 struct mpls_shim_hdr *lse; 5840 int err; 5841 5842 if (unlikely(!eth_p_mpls(mpls_proto))) 5843 return -EINVAL; 5844 5845 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5846 if (skb->encapsulation) 5847 return -EINVAL; 5848 5849 err = skb_cow_head(skb, MPLS_HLEN); 5850 if (unlikely(err)) 5851 return err; 5852 5853 if (!skb->inner_protocol) { 5854 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5855 skb_set_inner_protocol(skb, skb->protocol); 5856 } 5857 5858 skb_push(skb, MPLS_HLEN); 5859 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5860 mac_len); 5861 skb_reset_mac_header(skb); 5862 skb_set_network_header(skb, mac_len); 5863 skb_reset_mac_len(skb); 5864 5865 lse = mpls_hdr(skb); 5866 lse->label_stack_entry = mpls_lse; 5867 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5868 5869 if (ethernet && mac_len >= ETH_HLEN) 5870 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5871 skb->protocol = mpls_proto; 5872 5873 return 0; 5874 } 5875 EXPORT_SYMBOL_GPL(skb_mpls_push); 5876 5877 /** 5878 * skb_mpls_pop() - pop the outermost MPLS header 5879 * 5880 * @skb: buffer 5881 * @next_proto: ethertype of header after popped MPLS header 5882 * @mac_len: length of the MAC header 5883 * @ethernet: flag to indicate if the packet is ethernet 5884 * 5885 * Expects skb->data at mac header. 5886 * 5887 * Returns 0 on success, -errno otherwise. 5888 */ 5889 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5890 bool ethernet) 5891 { 5892 int err; 5893 5894 if (unlikely(!eth_p_mpls(skb->protocol))) 5895 return 0; 5896 5897 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5898 if (unlikely(err)) 5899 return err; 5900 5901 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5902 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5903 mac_len); 5904 5905 __skb_pull(skb, MPLS_HLEN); 5906 skb_reset_mac_header(skb); 5907 skb_set_network_header(skb, mac_len); 5908 5909 if (ethernet && mac_len >= ETH_HLEN) { 5910 struct ethhdr *hdr; 5911 5912 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5913 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5914 skb_mod_eth_type(skb, hdr, next_proto); 5915 } 5916 skb->protocol = next_proto; 5917 5918 return 0; 5919 } 5920 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5921 5922 /** 5923 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5924 * 5925 * @skb: buffer 5926 * @mpls_lse: new MPLS label stack entry to update to 5927 * 5928 * Expects skb->data at mac header. 5929 * 5930 * Returns 0 on success, -errno otherwise. 5931 */ 5932 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5933 { 5934 int err; 5935 5936 if (unlikely(!eth_p_mpls(skb->protocol))) 5937 return -EINVAL; 5938 5939 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5940 if (unlikely(err)) 5941 return err; 5942 5943 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5944 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5945 5946 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5947 } 5948 5949 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5950 5951 return 0; 5952 } 5953 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5954 5955 /** 5956 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5957 * 5958 * @skb: buffer 5959 * 5960 * Expects skb->data at mac header. 5961 * 5962 * Returns 0 on success, -errno otherwise. 5963 */ 5964 int skb_mpls_dec_ttl(struct sk_buff *skb) 5965 { 5966 u32 lse; 5967 u8 ttl; 5968 5969 if (unlikely(!eth_p_mpls(skb->protocol))) 5970 return -EINVAL; 5971 5972 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5973 return -ENOMEM; 5974 5975 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5976 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5977 if (!--ttl) 5978 return -EINVAL; 5979 5980 lse &= ~MPLS_LS_TTL_MASK; 5981 lse |= ttl << MPLS_LS_TTL_SHIFT; 5982 5983 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5984 } 5985 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5986 5987 /** 5988 * alloc_skb_with_frags - allocate skb with page frags 5989 * 5990 * @header_len: size of linear part 5991 * @data_len: needed length in frags 5992 * @max_page_order: max page order desired. 5993 * @errcode: pointer to error code if any 5994 * @gfp_mask: allocation mask 5995 * 5996 * This can be used to allocate a paged skb, given a maximal order for frags. 5997 */ 5998 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5999 unsigned long data_len, 6000 int max_page_order, 6001 int *errcode, 6002 gfp_t gfp_mask) 6003 { 6004 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6005 unsigned long chunk; 6006 struct sk_buff *skb; 6007 struct page *page; 6008 int i; 6009 6010 *errcode = -EMSGSIZE; 6011 /* Note this test could be relaxed, if we succeed to allocate 6012 * high order pages... 6013 */ 6014 if (npages > MAX_SKB_FRAGS) 6015 return NULL; 6016 6017 *errcode = -ENOBUFS; 6018 skb = alloc_skb(header_len, gfp_mask); 6019 if (!skb) 6020 return NULL; 6021 6022 skb->truesize += npages << PAGE_SHIFT; 6023 6024 for (i = 0; npages > 0; i++) { 6025 int order = max_page_order; 6026 6027 while (order) { 6028 if (npages >= 1 << order) { 6029 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6030 __GFP_COMP | 6031 __GFP_NOWARN, 6032 order); 6033 if (page) 6034 goto fill_page; 6035 /* Do not retry other high order allocations */ 6036 order = 1; 6037 max_page_order = 0; 6038 } 6039 order--; 6040 } 6041 page = alloc_page(gfp_mask); 6042 if (!page) 6043 goto failure; 6044 fill_page: 6045 chunk = min_t(unsigned long, data_len, 6046 PAGE_SIZE << order); 6047 skb_fill_page_desc(skb, i, page, 0, chunk); 6048 data_len -= chunk; 6049 npages -= 1 << order; 6050 } 6051 return skb; 6052 6053 failure: 6054 kfree_skb(skb); 6055 return NULL; 6056 } 6057 EXPORT_SYMBOL(alloc_skb_with_frags); 6058 6059 /* carve out the first off bytes from skb when off < headlen */ 6060 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6061 const int headlen, gfp_t gfp_mask) 6062 { 6063 int i; 6064 int size = skb_end_offset(skb); 6065 int new_hlen = headlen - off; 6066 u8 *data; 6067 6068 size = SKB_DATA_ALIGN(size); 6069 6070 if (skb_pfmemalloc(skb)) 6071 gfp_mask |= __GFP_MEMALLOC; 6072 data = kmalloc_reserve(size + 6073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6074 gfp_mask, NUMA_NO_NODE, NULL); 6075 if (!data) 6076 return -ENOMEM; 6077 6078 size = SKB_WITH_OVERHEAD(ksize(data)); 6079 6080 /* Copy real data, and all frags */ 6081 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6082 skb->len -= off; 6083 6084 memcpy((struct skb_shared_info *)(data + size), 6085 skb_shinfo(skb), 6086 offsetof(struct skb_shared_info, 6087 frags[skb_shinfo(skb)->nr_frags])); 6088 if (skb_cloned(skb)) { 6089 /* drop the old head gracefully */ 6090 if (skb_orphan_frags(skb, gfp_mask)) { 6091 kfree(data); 6092 return -ENOMEM; 6093 } 6094 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6095 skb_frag_ref(skb, i); 6096 if (skb_has_frag_list(skb)) 6097 skb_clone_fraglist(skb); 6098 skb_release_data(skb); 6099 } else { 6100 /* we can reuse existing recount- all we did was 6101 * relocate values 6102 */ 6103 skb_free_head(skb); 6104 } 6105 6106 skb->head = data; 6107 skb->data = data; 6108 skb->head_frag = 0; 6109 skb_set_end_offset(skb, size); 6110 skb_set_tail_pointer(skb, skb_headlen(skb)); 6111 skb_headers_offset_update(skb, 0); 6112 skb->cloned = 0; 6113 skb->hdr_len = 0; 6114 skb->nohdr = 0; 6115 atomic_set(&skb_shinfo(skb)->dataref, 1); 6116 6117 return 0; 6118 } 6119 6120 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6121 6122 /* carve out the first eat bytes from skb's frag_list. May recurse into 6123 * pskb_carve() 6124 */ 6125 static int pskb_carve_frag_list(struct sk_buff *skb, 6126 struct skb_shared_info *shinfo, int eat, 6127 gfp_t gfp_mask) 6128 { 6129 struct sk_buff *list = shinfo->frag_list; 6130 struct sk_buff *clone = NULL; 6131 struct sk_buff *insp = NULL; 6132 6133 do { 6134 if (!list) { 6135 pr_err("Not enough bytes to eat. Want %d\n", eat); 6136 return -EFAULT; 6137 } 6138 if (list->len <= eat) { 6139 /* Eaten as whole. */ 6140 eat -= list->len; 6141 list = list->next; 6142 insp = list; 6143 } else { 6144 /* Eaten partially. */ 6145 if (skb_shared(list)) { 6146 clone = skb_clone(list, gfp_mask); 6147 if (!clone) 6148 return -ENOMEM; 6149 insp = list->next; 6150 list = clone; 6151 } else { 6152 /* This may be pulled without problems. */ 6153 insp = list; 6154 } 6155 if (pskb_carve(list, eat, gfp_mask) < 0) { 6156 kfree_skb(clone); 6157 return -ENOMEM; 6158 } 6159 break; 6160 } 6161 } while (eat); 6162 6163 /* Free pulled out fragments. */ 6164 while ((list = shinfo->frag_list) != insp) { 6165 shinfo->frag_list = list->next; 6166 consume_skb(list); 6167 } 6168 /* And insert new clone at head. */ 6169 if (clone) { 6170 clone->next = list; 6171 shinfo->frag_list = clone; 6172 } 6173 return 0; 6174 } 6175 6176 /* carve off first len bytes from skb. Split line (off) is in the 6177 * non-linear part of skb 6178 */ 6179 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6180 int pos, gfp_t gfp_mask) 6181 { 6182 int i, k = 0; 6183 int size = skb_end_offset(skb); 6184 u8 *data; 6185 const int nfrags = skb_shinfo(skb)->nr_frags; 6186 struct skb_shared_info *shinfo; 6187 6188 size = SKB_DATA_ALIGN(size); 6189 6190 if (skb_pfmemalloc(skb)) 6191 gfp_mask |= __GFP_MEMALLOC; 6192 data = kmalloc_reserve(size + 6193 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6194 gfp_mask, NUMA_NO_NODE, NULL); 6195 if (!data) 6196 return -ENOMEM; 6197 6198 size = SKB_WITH_OVERHEAD(ksize(data)); 6199 6200 memcpy((struct skb_shared_info *)(data + size), 6201 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6202 if (skb_orphan_frags(skb, gfp_mask)) { 6203 kfree(data); 6204 return -ENOMEM; 6205 } 6206 shinfo = (struct skb_shared_info *)(data + size); 6207 for (i = 0; i < nfrags; i++) { 6208 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6209 6210 if (pos + fsize > off) { 6211 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6212 6213 if (pos < off) { 6214 /* Split frag. 6215 * We have two variants in this case: 6216 * 1. Move all the frag to the second 6217 * part, if it is possible. F.e. 6218 * this approach is mandatory for TUX, 6219 * where splitting is expensive. 6220 * 2. Split is accurately. We make this. 6221 */ 6222 skb_frag_off_add(&shinfo->frags[0], off - pos); 6223 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6224 } 6225 skb_frag_ref(skb, i); 6226 k++; 6227 } 6228 pos += fsize; 6229 } 6230 shinfo->nr_frags = k; 6231 if (skb_has_frag_list(skb)) 6232 skb_clone_fraglist(skb); 6233 6234 /* split line is in frag list */ 6235 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6236 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6237 if (skb_has_frag_list(skb)) 6238 kfree_skb_list(skb_shinfo(skb)->frag_list); 6239 kfree(data); 6240 return -ENOMEM; 6241 } 6242 skb_release_data(skb); 6243 6244 skb->head = data; 6245 skb->head_frag = 0; 6246 skb->data = data; 6247 skb_set_end_offset(skb, size); 6248 skb_reset_tail_pointer(skb); 6249 skb_headers_offset_update(skb, 0); 6250 skb->cloned = 0; 6251 skb->hdr_len = 0; 6252 skb->nohdr = 0; 6253 skb->len -= off; 6254 skb->data_len = skb->len; 6255 atomic_set(&skb_shinfo(skb)->dataref, 1); 6256 return 0; 6257 } 6258 6259 /* remove len bytes from the beginning of the skb */ 6260 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6261 { 6262 int headlen = skb_headlen(skb); 6263 6264 if (len < headlen) 6265 return pskb_carve_inside_header(skb, len, headlen, gfp); 6266 else 6267 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6268 } 6269 6270 /* Extract to_copy bytes starting at off from skb, and return this in 6271 * a new skb 6272 */ 6273 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6274 int to_copy, gfp_t gfp) 6275 { 6276 struct sk_buff *clone = skb_clone(skb, gfp); 6277 6278 if (!clone) 6279 return NULL; 6280 6281 if (pskb_carve(clone, off, gfp) < 0 || 6282 pskb_trim(clone, to_copy)) { 6283 kfree_skb(clone); 6284 return NULL; 6285 } 6286 return clone; 6287 } 6288 EXPORT_SYMBOL(pskb_extract); 6289 6290 /** 6291 * skb_condense - try to get rid of fragments/frag_list if possible 6292 * @skb: buffer 6293 * 6294 * Can be used to save memory before skb is added to a busy queue. 6295 * If packet has bytes in frags and enough tail room in skb->head, 6296 * pull all of them, so that we can free the frags right now and adjust 6297 * truesize. 6298 * Notes: 6299 * We do not reallocate skb->head thus can not fail. 6300 * Caller must re-evaluate skb->truesize if needed. 6301 */ 6302 void skb_condense(struct sk_buff *skb) 6303 { 6304 if (skb->data_len) { 6305 if (skb->data_len > skb->end - skb->tail || 6306 skb_cloned(skb)) 6307 return; 6308 6309 /* Nice, we can free page frag(s) right now */ 6310 __pskb_pull_tail(skb, skb->data_len); 6311 } 6312 /* At this point, skb->truesize might be over estimated, 6313 * because skb had a fragment, and fragments do not tell 6314 * their truesize. 6315 * When we pulled its content into skb->head, fragment 6316 * was freed, but __pskb_pull_tail() could not possibly 6317 * adjust skb->truesize, not knowing the frag truesize. 6318 */ 6319 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6320 } 6321 6322 #ifdef CONFIG_SKB_EXTENSIONS 6323 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6324 { 6325 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6326 } 6327 6328 /** 6329 * __skb_ext_alloc - allocate a new skb extensions storage 6330 * 6331 * @flags: See kmalloc(). 6332 * 6333 * Returns the newly allocated pointer. The pointer can later attached to a 6334 * skb via __skb_ext_set(). 6335 * Note: caller must handle the skb_ext as an opaque data. 6336 */ 6337 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6338 { 6339 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6340 6341 if (new) { 6342 memset(new->offset, 0, sizeof(new->offset)); 6343 refcount_set(&new->refcnt, 1); 6344 } 6345 6346 return new; 6347 } 6348 6349 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6350 unsigned int old_active) 6351 { 6352 struct skb_ext *new; 6353 6354 if (refcount_read(&old->refcnt) == 1) 6355 return old; 6356 6357 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6358 if (!new) 6359 return NULL; 6360 6361 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6362 refcount_set(&new->refcnt, 1); 6363 6364 #ifdef CONFIG_XFRM 6365 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6366 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6367 unsigned int i; 6368 6369 for (i = 0; i < sp->len; i++) 6370 xfrm_state_hold(sp->xvec[i]); 6371 } 6372 #endif 6373 __skb_ext_put(old); 6374 return new; 6375 } 6376 6377 /** 6378 * __skb_ext_set - attach the specified extension storage to this skb 6379 * @skb: buffer 6380 * @id: extension id 6381 * @ext: extension storage previously allocated via __skb_ext_alloc() 6382 * 6383 * Existing extensions, if any, are cleared. 6384 * 6385 * Returns the pointer to the extension. 6386 */ 6387 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6388 struct skb_ext *ext) 6389 { 6390 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6391 6392 skb_ext_put(skb); 6393 newlen = newoff + skb_ext_type_len[id]; 6394 ext->chunks = newlen; 6395 ext->offset[id] = newoff; 6396 skb->extensions = ext; 6397 skb->active_extensions = 1 << id; 6398 return skb_ext_get_ptr(ext, id); 6399 } 6400 6401 /** 6402 * skb_ext_add - allocate space for given extension, COW if needed 6403 * @skb: buffer 6404 * @id: extension to allocate space for 6405 * 6406 * Allocates enough space for the given extension. 6407 * If the extension is already present, a pointer to that extension 6408 * is returned. 6409 * 6410 * If the skb was cloned, COW applies and the returned memory can be 6411 * modified without changing the extension space of clones buffers. 6412 * 6413 * Returns pointer to the extension or NULL on allocation failure. 6414 */ 6415 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6416 { 6417 struct skb_ext *new, *old = NULL; 6418 unsigned int newlen, newoff; 6419 6420 if (skb->active_extensions) { 6421 old = skb->extensions; 6422 6423 new = skb_ext_maybe_cow(old, skb->active_extensions); 6424 if (!new) 6425 return NULL; 6426 6427 if (__skb_ext_exist(new, id)) 6428 goto set_active; 6429 6430 newoff = new->chunks; 6431 } else { 6432 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6433 6434 new = __skb_ext_alloc(GFP_ATOMIC); 6435 if (!new) 6436 return NULL; 6437 } 6438 6439 newlen = newoff + skb_ext_type_len[id]; 6440 new->chunks = newlen; 6441 new->offset[id] = newoff; 6442 set_active: 6443 skb->slow_gro = 1; 6444 skb->extensions = new; 6445 skb->active_extensions |= 1 << id; 6446 return skb_ext_get_ptr(new, id); 6447 } 6448 EXPORT_SYMBOL(skb_ext_add); 6449 6450 #ifdef CONFIG_XFRM 6451 static void skb_ext_put_sp(struct sec_path *sp) 6452 { 6453 unsigned int i; 6454 6455 for (i = 0; i < sp->len; i++) 6456 xfrm_state_put(sp->xvec[i]); 6457 } 6458 #endif 6459 6460 #ifdef CONFIG_MCTP_FLOWS 6461 static void skb_ext_put_mctp(struct mctp_flow *flow) 6462 { 6463 if (flow->key) 6464 mctp_key_unref(flow->key); 6465 } 6466 #endif 6467 6468 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6469 { 6470 struct skb_ext *ext = skb->extensions; 6471 6472 skb->active_extensions &= ~(1 << id); 6473 if (skb->active_extensions == 0) { 6474 skb->extensions = NULL; 6475 __skb_ext_put(ext); 6476 #ifdef CONFIG_XFRM 6477 } else if (id == SKB_EXT_SEC_PATH && 6478 refcount_read(&ext->refcnt) == 1) { 6479 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6480 6481 skb_ext_put_sp(sp); 6482 sp->len = 0; 6483 #endif 6484 } 6485 } 6486 EXPORT_SYMBOL(__skb_ext_del); 6487 6488 void __skb_ext_put(struct skb_ext *ext) 6489 { 6490 /* If this is last clone, nothing can increment 6491 * it after check passes. Avoids one atomic op. 6492 */ 6493 if (refcount_read(&ext->refcnt) == 1) 6494 goto free_now; 6495 6496 if (!refcount_dec_and_test(&ext->refcnt)) 6497 return; 6498 free_now: 6499 #ifdef CONFIG_XFRM 6500 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6501 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6502 #endif 6503 #ifdef CONFIG_MCTP_FLOWS 6504 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6505 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6506 #endif 6507 6508 kmem_cache_free(skbuff_ext_cache, ext); 6509 } 6510 EXPORT_SYMBOL(__skb_ext_put); 6511 #endif /* CONFIG_SKB_EXTENSIONS */ 6512 6513 /** 6514 * skb_attempt_defer_free - queue skb for remote freeing 6515 * @skb: buffer 6516 * 6517 * Put @skb in a per-cpu list, using the cpu which 6518 * allocated the skb/pages to reduce false sharing 6519 * and memory zone spinlock contention. 6520 */ 6521 void skb_attempt_defer_free(struct sk_buff *skb) 6522 { 6523 int cpu = skb->alloc_cpu; 6524 struct softnet_data *sd; 6525 unsigned long flags; 6526 unsigned int defer_max; 6527 bool kick; 6528 6529 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6530 !cpu_online(cpu) || 6531 cpu == raw_smp_processor_id()) { 6532 nodefer: __kfree_skb(skb); 6533 return; 6534 } 6535 6536 sd = &per_cpu(softnet_data, cpu); 6537 defer_max = READ_ONCE(sysctl_skb_defer_max); 6538 if (READ_ONCE(sd->defer_count) >= defer_max) 6539 goto nodefer; 6540 6541 spin_lock_irqsave(&sd->defer_lock, flags); 6542 /* Send an IPI every time queue reaches half capacity. */ 6543 kick = sd->defer_count == (defer_max >> 1); 6544 /* Paired with the READ_ONCE() few lines above */ 6545 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6546 6547 skb->next = sd->defer_list; 6548 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6549 WRITE_ONCE(sd->defer_list, skb); 6550 spin_unlock_irqrestore(&sd->defer_lock, flags); 6551 6552 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6553 * if we are unlucky enough (this seems very unlikely). 6554 */ 6555 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6556 smp_call_function_single_async(cpu, &sd->defer_csd); 6557 } 6558