1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 #include <linux/crc32.h> 68 69 #include <net/protocol.h> 70 #include <net/dst.h> 71 #include <net/sock.h> 72 #include <net/checksum.h> 73 #include <net/gro.h> 74 #include <net/gso.h> 75 #include <net/hotdata.h> 76 #include <net/ip6_checksum.h> 77 #include <net/xfrm.h> 78 #include <net/mpls.h> 79 #include <net/mptcp.h> 80 #include <net/mctp.h> 81 #include <net/page_pool/helpers.h> 82 #include <net/dropreason.h> 83 84 #include <linux/uaccess.h> 85 #include <trace/events/skb.h> 86 #include <linux/highmem.h> 87 #include <linux/capability.h> 88 #include <linux/user_namespace.h> 89 #include <linux/indirect_call_wrapper.h> 90 #include <linux/textsearch.h> 91 92 #include "dev.h" 93 #include "devmem.h" 94 #include "netmem_priv.h" 95 #include "sock_destructor.h" 96 97 #ifdef CONFIG_SKB_EXTENSIONS 98 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 99 #endif 100 101 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 102 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 103 GRO_MAX_HEAD_PAD)) 104 105 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 106 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 107 * size, and we can differentiate heads from skb_small_head_cache 108 * vs system slabs by looking at their size (skb_end_offset()). 109 */ 110 #define SKB_SMALL_HEAD_CACHE_SIZE \ 111 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 112 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 113 SKB_SMALL_HEAD_SIZE) 114 115 #define SKB_SMALL_HEAD_HEADROOM \ 116 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 117 118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 119 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 120 * netmem is a page. 121 */ 122 static_assert(offsetof(struct bio_vec, bv_page) == 123 offsetof(skb_frag_t, netmem)); 124 static_assert(sizeof_field(struct bio_vec, bv_page) == 125 sizeof_field(skb_frag_t, netmem)); 126 127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 128 static_assert(sizeof_field(struct bio_vec, bv_len) == 129 sizeof_field(skb_frag_t, len)); 130 131 static_assert(offsetof(struct bio_vec, bv_offset) == 132 offsetof(skb_frag_t, offset)); 133 static_assert(sizeof_field(struct bio_vec, bv_offset) == 134 sizeof_field(skb_frag_t, offset)); 135 136 #undef FN 137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 138 static const char * const drop_reasons[] = { 139 [SKB_CONSUMED] = "CONSUMED", 140 DEFINE_DROP_REASON(FN, FN) 141 }; 142 143 static const struct drop_reason_list drop_reasons_core = { 144 .reasons = drop_reasons, 145 .n_reasons = ARRAY_SIZE(drop_reasons), 146 }; 147 148 const struct drop_reason_list __rcu * 149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 150 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 151 }; 152 EXPORT_SYMBOL(drop_reasons_by_subsys); 153 154 /** 155 * drop_reasons_register_subsys - register another drop reason subsystem 156 * @subsys: the subsystem to register, must not be the core 157 * @list: the list of drop reasons within the subsystem, must point to 158 * a statically initialized list 159 */ 160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 161 const struct drop_reason_list *list) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 /* must point to statically allocated memory, so INIT is OK */ 169 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 172 173 /** 174 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 175 * @subsys: the subsystem to remove, must not be the core 176 * 177 * Note: This will synchronize_rcu() to ensure no users when it returns. 178 */ 179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 180 { 181 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 182 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 183 "invalid subsystem %d\n", subsys)) 184 return; 185 186 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 187 188 synchronize_rcu(); 189 } 190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 191 192 /** 193 * skb_panic - private function for out-of-line support 194 * @skb: buffer 195 * @sz: size 196 * @addr: address 197 * @msg: skb_over_panic or skb_under_panic 198 * 199 * Out-of-line support for skb_put() and skb_push(). 200 * Called via the wrapper skb_over_panic() or skb_under_panic(). 201 * Keep out of line to prevent kernel bloat. 202 * __builtin_return_address is not used because it is not always reliable. 203 */ 204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 205 const char msg[]) 206 { 207 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 208 msg, addr, skb->len, sz, skb->head, skb->data, 209 (unsigned long)skb->tail, (unsigned long)skb->end, 210 skb->dev ? skb->dev->name : "<NULL>"); 211 BUG(); 212 } 213 214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 215 { 216 skb_panic(skb, sz, addr, __func__); 217 } 218 219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 220 { 221 skb_panic(skb, sz, addr, __func__); 222 } 223 224 #define NAPI_SKB_CACHE_SIZE 64 225 #define NAPI_SKB_CACHE_BULK 16 226 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 227 228 struct napi_alloc_cache { 229 local_lock_t bh_lock; 230 struct page_frag_cache page; 231 unsigned int skb_count; 232 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 233 }; 234 235 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 236 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 237 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 238 }; 239 240 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 241 { 242 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 243 void *data; 244 245 fragsz = SKB_DATA_ALIGN(fragsz); 246 247 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 248 data = __page_frag_alloc_align(&nc->page, fragsz, 249 GFP_ATOMIC | __GFP_NOWARN, align_mask); 250 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 251 return data; 252 253 } 254 EXPORT_SYMBOL(__napi_alloc_frag_align); 255 256 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 257 { 258 void *data; 259 260 if (in_hardirq() || irqs_disabled()) { 261 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 262 263 fragsz = SKB_DATA_ALIGN(fragsz); 264 data = __page_frag_alloc_align(nc, fragsz, 265 GFP_ATOMIC | __GFP_NOWARN, 266 align_mask); 267 } else { 268 local_bh_disable(); 269 data = __napi_alloc_frag_align(fragsz, align_mask); 270 local_bh_enable(); 271 } 272 return data; 273 } 274 EXPORT_SYMBOL(__netdev_alloc_frag_align); 275 276 static struct sk_buff *napi_skb_cache_get(void) 277 { 278 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 279 struct sk_buff *skb; 280 281 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 282 if (unlikely(!nc->skb_count)) { 283 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 284 GFP_ATOMIC | __GFP_NOWARN, 285 NAPI_SKB_CACHE_BULK, 286 nc->skb_cache); 287 if (unlikely(!nc->skb_count)) { 288 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 289 return NULL; 290 } 291 } 292 293 skb = nc->skb_cache[--nc->skb_count]; 294 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 295 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 296 297 return skb; 298 } 299 300 /** 301 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 302 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 303 * @n: number of entries to provide 304 * 305 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 306 * the pointers into the provided array @skbs. If there are less entries 307 * available, tries to replenish the cache and bulk-allocates the diff from 308 * the MM layer if needed. 309 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 310 * ready for {,__}build_skb_around() and don't have any data buffers attached. 311 * Must be called *only* from the BH context. 312 * 313 * Return: number of successfully allocated skbs (@n if no actual allocation 314 * needed or kmem_cache_alloc_bulk() didn't fail). 315 */ 316 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 317 { 318 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 319 u32 bulk, total = n; 320 321 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 322 323 if (nc->skb_count >= n) 324 goto get; 325 326 /* No enough cached skbs. Try refilling the cache first */ 327 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 328 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 329 GFP_ATOMIC | __GFP_NOWARN, bulk, 330 &nc->skb_cache[nc->skb_count]); 331 if (likely(nc->skb_count >= n)) 332 goto get; 333 334 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 335 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 336 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 337 n - nc->skb_count, &skbs[nc->skb_count]); 338 if (likely(nc->skb_count >= n)) 339 goto get; 340 341 /* kmem_cache didn't allocate the number we need, limit the output */ 342 total -= n - nc->skb_count; 343 n = nc->skb_count; 344 345 get: 346 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 347 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 348 349 skbs[i] = nc->skb_cache[base + i]; 350 351 kasan_mempool_unpoison_object(skbs[i], cache_size); 352 memset(skbs[i], 0, offsetof(struct sk_buff, tail)); 353 } 354 355 nc->skb_count -= n; 356 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 357 358 return total; 359 } 360 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 361 362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 363 unsigned int size) 364 { 365 struct skb_shared_info *shinfo; 366 367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 368 369 /* Assumes caller memset cleared SKB */ 370 skb->truesize = SKB_TRUESIZE(size); 371 refcount_set(&skb->users, 1); 372 skb->head = data; 373 skb->data = data; 374 skb_reset_tail_pointer(skb); 375 skb_set_end_offset(skb, size); 376 skb->mac_header = (typeof(skb->mac_header))~0U; 377 skb->transport_header = (typeof(skb->transport_header))~0U; 378 skb->alloc_cpu = raw_smp_processor_id(); 379 /* make sure we initialize shinfo sequentially */ 380 shinfo = skb_shinfo(skb); 381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 382 atomic_set(&shinfo->dataref, 1); 383 384 skb_set_kcov_handle(skb, kcov_common_handle()); 385 } 386 387 static inline void *__slab_build_skb(void *data, unsigned int *size) 388 { 389 void *resized; 390 391 /* Must find the allocation size (and grow it to match). */ 392 *size = ksize(data); 393 /* krealloc() will immediately return "data" when 394 * "ksize(data)" is requested: it is the existing upper 395 * bounds. As a result, GFP_ATOMIC will be ignored. Note 396 * that this "new" pointer needs to be passed back to the 397 * caller for use so the __alloc_size hinting will be 398 * tracked correctly. 399 */ 400 resized = krealloc(data, *size, GFP_ATOMIC); 401 WARN_ON_ONCE(resized != data); 402 return resized; 403 } 404 405 /* build_skb() variant which can operate on slab buffers. 406 * Note that this should be used sparingly as slab buffers 407 * cannot be combined efficiently by GRO! 408 */ 409 struct sk_buff *slab_build_skb(void *data) 410 { 411 struct sk_buff *skb; 412 unsigned int size; 413 414 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 415 GFP_ATOMIC | __GFP_NOWARN); 416 if (unlikely(!skb)) 417 return NULL; 418 419 memset(skb, 0, offsetof(struct sk_buff, tail)); 420 data = __slab_build_skb(data, &size); 421 __finalize_skb_around(skb, data, size); 422 423 return skb; 424 } 425 EXPORT_SYMBOL(slab_build_skb); 426 427 /* Caller must provide SKB that is memset cleared */ 428 static void __build_skb_around(struct sk_buff *skb, void *data, 429 unsigned int frag_size) 430 { 431 unsigned int size = frag_size; 432 433 /* frag_size == 0 is considered deprecated now. Callers 434 * using slab buffer should use slab_build_skb() instead. 435 */ 436 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 437 data = __slab_build_skb(data, &size); 438 439 __finalize_skb_around(skb, data, size); 440 } 441 442 /** 443 * __build_skb - build a network buffer 444 * @data: data buffer provided by caller 445 * @frag_size: size of data (must not be 0) 446 * 447 * Allocate a new &sk_buff. Caller provides space holding head and 448 * skb_shared_info. @data must have been allocated from the page 449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 450 * allocation is deprecated, and callers should use slab_build_skb() 451 * instead.) 452 * The return is the new skb buffer. 453 * On a failure the return is %NULL, and @data is not freed. 454 * Notes : 455 * Before IO, driver allocates only data buffer where NIC put incoming frame 456 * Driver should add room at head (NET_SKB_PAD) and 457 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 458 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 459 * before giving packet to stack. 460 * RX rings only contains data buffers, not full skbs. 461 */ 462 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb; 465 466 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 467 GFP_ATOMIC | __GFP_NOWARN); 468 if (unlikely(!skb)) 469 return NULL; 470 471 memset(skb, 0, offsetof(struct sk_buff, tail)); 472 __build_skb_around(skb, data, frag_size); 473 474 return skb; 475 } 476 477 /* build_skb() is wrapper over __build_skb(), that specifically 478 * takes care of skb->head and skb->pfmemalloc 479 */ 480 struct sk_buff *build_skb(void *data, unsigned int frag_size) 481 { 482 struct sk_buff *skb = __build_skb(data, frag_size); 483 484 if (likely(skb && frag_size)) { 485 skb->head_frag = 1; 486 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 487 } 488 return skb; 489 } 490 EXPORT_SYMBOL(build_skb); 491 492 /** 493 * build_skb_around - build a network buffer around provided skb 494 * @skb: sk_buff provide by caller, must be memset cleared 495 * @data: data buffer provided by caller 496 * @frag_size: size of data 497 */ 498 struct sk_buff *build_skb_around(struct sk_buff *skb, 499 void *data, unsigned int frag_size) 500 { 501 if (unlikely(!skb)) 502 return NULL; 503 504 __build_skb_around(skb, data, frag_size); 505 506 if (frag_size) { 507 skb->head_frag = 1; 508 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 509 } 510 return skb; 511 } 512 EXPORT_SYMBOL(build_skb_around); 513 514 /** 515 * __napi_build_skb - build a network buffer 516 * @data: data buffer provided by caller 517 * @frag_size: size of data 518 * 519 * Version of __build_skb() that uses NAPI percpu caches to obtain 520 * skbuff_head instead of inplace allocation. 521 * 522 * Returns a new &sk_buff on success, %NULL on allocation failure. 523 */ 524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 525 { 526 struct sk_buff *skb; 527 528 skb = napi_skb_cache_get(); 529 if (unlikely(!skb)) 530 return NULL; 531 532 memset(skb, 0, offsetof(struct sk_buff, tail)); 533 __build_skb_around(skb, data, frag_size); 534 535 return skb; 536 } 537 538 /** 539 * napi_build_skb - build a network buffer 540 * @data: data buffer provided by caller 541 * @frag_size: size of data 542 * 543 * Version of __napi_build_skb() that takes care of skb->head_frag 544 * and skb->pfmemalloc when the data is a page or page fragment. 545 * 546 * Returns a new &sk_buff on success, %NULL on allocation failure. 547 */ 548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 549 { 550 struct sk_buff *skb = __napi_build_skb(data, frag_size); 551 552 if (likely(skb) && frag_size) { 553 skb->head_frag = 1; 554 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 555 } 556 557 return skb; 558 } 559 EXPORT_SYMBOL(napi_build_skb); 560 561 /* 562 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 563 * the caller if emergency pfmemalloc reserves are being used. If it is and 564 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 565 * may be used. Otherwise, the packet data may be discarded until enough 566 * memory is free 567 */ 568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 569 bool *pfmemalloc) 570 { 571 bool ret_pfmemalloc = false; 572 size_t obj_size; 573 void *obj; 574 575 obj_size = SKB_HEAD_ALIGN(*size); 576 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 577 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 578 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 579 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 580 node); 581 *size = SKB_SMALL_HEAD_CACHE_SIZE; 582 if (obj || !(gfp_pfmemalloc_allowed(flags))) 583 goto out; 584 /* Try again but now we are using pfmemalloc reserves */ 585 ret_pfmemalloc = true; 586 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 587 goto out; 588 } 589 590 obj_size = kmalloc_size_roundup(obj_size); 591 /* The following cast might truncate high-order bits of obj_size, this 592 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 593 */ 594 *size = (unsigned int)obj_size; 595 596 /* 597 * Try a regular allocation, when that fails and we're not entitled 598 * to the reserves, fail. 599 */ 600 obj = kmalloc_node_track_caller(obj_size, 601 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 602 node); 603 if (obj || !(gfp_pfmemalloc_allowed(flags))) 604 goto out; 605 606 /* Try again but now we are using pfmemalloc reserves */ 607 ret_pfmemalloc = true; 608 obj = kmalloc_node_track_caller(obj_size, flags, node); 609 610 out: 611 if (pfmemalloc) 612 *pfmemalloc = ret_pfmemalloc; 613 614 return obj; 615 } 616 617 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 618 * 'private' fields and also do memory statistics to find all the 619 * [BEEP] leaks. 620 * 621 */ 622 623 /** 624 * __alloc_skb - allocate a network buffer 625 * @size: size to allocate 626 * @gfp_mask: allocation mask 627 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 628 * instead of head cache and allocate a cloned (child) skb. 629 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 630 * allocations in case the data is required for writeback 631 * @node: numa node to allocate memory on 632 * 633 * Allocate a new &sk_buff. The returned buffer has no headroom and a 634 * tail room of at least size bytes. The object has a reference count 635 * of one. The return is the buffer. On a failure the return is %NULL. 636 * 637 * Buffers may only be allocated from interrupts using a @gfp_mask of 638 * %GFP_ATOMIC. 639 */ 640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 641 int flags, int node) 642 { 643 struct kmem_cache *cache; 644 struct sk_buff *skb; 645 bool pfmemalloc; 646 u8 *data; 647 648 cache = (flags & SKB_ALLOC_FCLONE) 649 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 650 651 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 652 gfp_mask |= __GFP_MEMALLOC; 653 654 /* Get the HEAD */ 655 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 656 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 657 skb = napi_skb_cache_get(); 658 else 659 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 660 if (unlikely(!skb)) 661 return NULL; 662 prefetchw(skb); 663 664 /* We do our best to align skb_shared_info on a separate cache 665 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 666 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 667 * Both skb->head and skb_shared_info are cache line aligned. 668 */ 669 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 670 if (unlikely(!data)) 671 goto nodata; 672 /* kmalloc_size_roundup() might give us more room than requested. 673 * Put skb_shared_info exactly at the end of allocated zone, 674 * to allow max possible filling before reallocation. 675 */ 676 prefetchw(data + SKB_WITH_OVERHEAD(size)); 677 678 /* 679 * Only clear those fields we need to clear, not those that we will 680 * actually initialise below. Hence, don't put any more fields after 681 * the tail pointer in struct sk_buff! 682 */ 683 memset(skb, 0, offsetof(struct sk_buff, tail)); 684 __build_skb_around(skb, data, size); 685 skb->pfmemalloc = pfmemalloc; 686 687 if (flags & SKB_ALLOC_FCLONE) { 688 struct sk_buff_fclones *fclones; 689 690 fclones = container_of(skb, struct sk_buff_fclones, skb1); 691 692 skb->fclone = SKB_FCLONE_ORIG; 693 refcount_set(&fclones->fclone_ref, 1); 694 } 695 696 return skb; 697 698 nodata: 699 kmem_cache_free(cache, skb); 700 return NULL; 701 } 702 EXPORT_SYMBOL(__alloc_skb); 703 704 /** 705 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 706 * @dev: network device to receive on 707 * @len: length to allocate 708 * @gfp_mask: get_free_pages mask, passed to alloc_skb 709 * 710 * Allocate a new &sk_buff and assign it a usage count of one. The 711 * buffer has NET_SKB_PAD headroom built in. Users should allocate 712 * the headroom they think they need without accounting for the 713 * built in space. The built in space is used for optimisations. 714 * 715 * %NULL is returned if there is no free memory. 716 */ 717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 718 gfp_t gfp_mask) 719 { 720 struct page_frag_cache *nc; 721 struct sk_buff *skb; 722 bool pfmemalloc; 723 void *data; 724 725 len += NET_SKB_PAD; 726 727 /* If requested length is either too small or too big, 728 * we use kmalloc() for skb->head allocation. 729 */ 730 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 731 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 732 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 733 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 734 if (!skb) 735 goto skb_fail; 736 goto skb_success; 737 } 738 739 len = SKB_HEAD_ALIGN(len); 740 741 if (sk_memalloc_socks()) 742 gfp_mask |= __GFP_MEMALLOC; 743 744 if (in_hardirq() || irqs_disabled()) { 745 nc = this_cpu_ptr(&netdev_alloc_cache); 746 data = page_frag_alloc(nc, len, gfp_mask); 747 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 748 } else { 749 local_bh_disable(); 750 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 751 752 nc = this_cpu_ptr(&napi_alloc_cache.page); 753 data = page_frag_alloc(nc, len, gfp_mask); 754 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 755 756 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 757 local_bh_enable(); 758 } 759 760 if (unlikely(!data)) 761 return NULL; 762 763 skb = __build_skb(data, len); 764 if (unlikely(!skb)) { 765 skb_free_frag(data); 766 return NULL; 767 } 768 769 if (pfmemalloc) 770 skb->pfmemalloc = 1; 771 skb->head_frag = 1; 772 773 skb_success: 774 skb_reserve(skb, NET_SKB_PAD); 775 skb->dev = dev; 776 777 skb_fail: 778 return skb; 779 } 780 EXPORT_SYMBOL(__netdev_alloc_skb); 781 782 /** 783 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 784 * @napi: napi instance this buffer was allocated for 785 * @len: length to allocate 786 * 787 * Allocate a new sk_buff for use in NAPI receive. This buffer will 788 * attempt to allocate the head from a special reserved region used 789 * only for NAPI Rx allocation. By doing this we can save several 790 * CPU cycles by avoiding having to disable and re-enable IRQs. 791 * 792 * %NULL is returned if there is no free memory. 793 */ 794 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 795 { 796 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 797 struct napi_alloc_cache *nc; 798 struct sk_buff *skb; 799 bool pfmemalloc; 800 void *data; 801 802 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 803 len += NET_SKB_PAD + NET_IP_ALIGN; 804 805 /* If requested length is either too small or too big, 806 * we use kmalloc() for skb->head allocation. 807 */ 808 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 809 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 810 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 811 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 812 NUMA_NO_NODE); 813 if (!skb) 814 goto skb_fail; 815 goto skb_success; 816 } 817 818 len = SKB_HEAD_ALIGN(len); 819 820 if (sk_memalloc_socks()) 821 gfp_mask |= __GFP_MEMALLOC; 822 823 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 824 nc = this_cpu_ptr(&napi_alloc_cache); 825 826 data = page_frag_alloc(&nc->page, len, gfp_mask); 827 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 828 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 829 830 if (unlikely(!data)) 831 return NULL; 832 833 skb = __napi_build_skb(data, len); 834 if (unlikely(!skb)) { 835 skb_free_frag(data); 836 return NULL; 837 } 838 839 if (pfmemalloc) 840 skb->pfmemalloc = 1; 841 skb->head_frag = 1; 842 843 skb_success: 844 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 845 skb->dev = napi->dev; 846 847 skb_fail: 848 return skb; 849 } 850 EXPORT_SYMBOL(napi_alloc_skb); 851 852 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 853 int off, int size, unsigned int truesize) 854 { 855 DEBUG_NET_WARN_ON_ONCE(size > truesize); 856 857 skb_fill_netmem_desc(skb, i, netmem, off, size); 858 skb->len += size; 859 skb->data_len += size; 860 skb->truesize += truesize; 861 } 862 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 863 864 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 865 unsigned int truesize) 866 { 867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 868 869 DEBUG_NET_WARN_ON_ONCE(size > truesize); 870 871 skb_frag_size_add(frag, size); 872 skb->len += size; 873 skb->data_len += size; 874 skb->truesize += truesize; 875 } 876 EXPORT_SYMBOL(skb_coalesce_rx_frag); 877 878 static void skb_drop_list(struct sk_buff **listp) 879 { 880 kfree_skb_list(*listp); 881 *listp = NULL; 882 } 883 884 static inline void skb_drop_fraglist(struct sk_buff *skb) 885 { 886 skb_drop_list(&skb_shinfo(skb)->frag_list); 887 } 888 889 static void skb_clone_fraglist(struct sk_buff *skb) 890 { 891 struct sk_buff *list; 892 893 skb_walk_frags(skb, list) 894 skb_get(list); 895 } 896 897 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 898 unsigned int headroom) 899 { 900 #if IS_ENABLED(CONFIG_PAGE_POOL) 901 u32 size, truesize, len, max_head_size, off; 902 struct sk_buff *skb = *pskb, *nskb; 903 int err, i, head_off; 904 void *data; 905 906 /* XDP does not support fraglist so we need to linearize 907 * the skb. 908 */ 909 if (skb_has_frag_list(skb)) 910 return -EOPNOTSUPP; 911 912 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 913 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 914 return -ENOMEM; 915 916 size = min_t(u32, skb->len, max_head_size); 917 truesize = SKB_HEAD_ALIGN(size) + headroom; 918 data = page_pool_dev_alloc_va(pool, &truesize); 919 if (!data) 920 return -ENOMEM; 921 922 nskb = napi_build_skb(data, truesize); 923 if (!nskb) { 924 page_pool_free_va(pool, data, true); 925 return -ENOMEM; 926 } 927 928 skb_reserve(nskb, headroom); 929 skb_copy_header(nskb, skb); 930 skb_mark_for_recycle(nskb); 931 932 err = skb_copy_bits(skb, 0, nskb->data, size); 933 if (err) { 934 consume_skb(nskb); 935 return err; 936 } 937 skb_put(nskb, size); 938 939 head_off = skb_headroom(nskb) - skb_headroom(skb); 940 skb_headers_offset_update(nskb, head_off); 941 942 off = size; 943 len = skb->len - off; 944 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 945 struct page *page; 946 u32 page_off; 947 948 size = min_t(u32, len, PAGE_SIZE); 949 truesize = size; 950 951 page = page_pool_dev_alloc(pool, &page_off, &truesize); 952 if (!page) { 953 consume_skb(nskb); 954 return -ENOMEM; 955 } 956 957 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 958 err = skb_copy_bits(skb, off, page_address(page) + page_off, 959 size); 960 if (err) { 961 consume_skb(nskb); 962 return err; 963 } 964 965 len -= size; 966 off += size; 967 } 968 969 consume_skb(skb); 970 *pskb = nskb; 971 972 return 0; 973 #else 974 return -EOPNOTSUPP; 975 #endif 976 } 977 EXPORT_SYMBOL(skb_pp_cow_data); 978 979 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 980 const struct bpf_prog *prog) 981 { 982 if (!prog->aux->xdp_has_frags) 983 return -EINVAL; 984 985 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 986 } 987 EXPORT_SYMBOL(skb_cow_data_for_xdp); 988 989 #if IS_ENABLED(CONFIG_PAGE_POOL) 990 bool napi_pp_put_page(netmem_ref netmem) 991 { 992 netmem = netmem_compound_head(netmem); 993 994 if (unlikely(!netmem_is_pp(netmem))) 995 return false; 996 997 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 998 999 return true; 1000 } 1001 EXPORT_SYMBOL(napi_pp_put_page); 1002 #endif 1003 1004 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1005 { 1006 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1007 return false; 1008 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1009 } 1010 1011 /** 1012 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1013 * @skb: page pool aware skb 1014 * 1015 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1016 * intended to gain fragment references only for page pool aware skbs, 1017 * i.e. when skb->pp_recycle is true, and not for fragments in a 1018 * non-pp-recycling skb. It has a fallback to increase references on normal 1019 * pages, as page pool aware skbs may also have normal page fragments. 1020 */ 1021 static int skb_pp_frag_ref(struct sk_buff *skb) 1022 { 1023 struct skb_shared_info *shinfo; 1024 netmem_ref head_netmem; 1025 int i; 1026 1027 if (!skb->pp_recycle) 1028 return -EINVAL; 1029 1030 shinfo = skb_shinfo(skb); 1031 1032 for (i = 0; i < shinfo->nr_frags; i++) { 1033 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1034 if (likely(netmem_is_pp(head_netmem))) 1035 page_pool_ref_netmem(head_netmem); 1036 else 1037 page_ref_inc(netmem_to_page(head_netmem)); 1038 } 1039 return 0; 1040 } 1041 1042 static void skb_kfree_head(void *head, unsigned int end_offset) 1043 { 1044 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1045 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1046 else 1047 kfree(head); 1048 } 1049 1050 static void skb_free_head(struct sk_buff *skb) 1051 { 1052 unsigned char *head = skb->head; 1053 1054 if (skb->head_frag) { 1055 if (skb_pp_recycle(skb, head)) 1056 return; 1057 skb_free_frag(head); 1058 } else { 1059 skb_kfree_head(head, skb_end_offset(skb)); 1060 } 1061 } 1062 1063 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1064 { 1065 struct skb_shared_info *shinfo = skb_shinfo(skb); 1066 int i; 1067 1068 if (!skb_data_unref(skb, shinfo)) 1069 goto exit; 1070 1071 if (skb_zcopy(skb)) { 1072 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1073 1074 skb_zcopy_clear(skb, true); 1075 if (skip_unref) 1076 goto free_head; 1077 } 1078 1079 for (i = 0; i < shinfo->nr_frags; i++) 1080 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1081 1082 free_head: 1083 if (shinfo->frag_list) 1084 kfree_skb_list_reason(shinfo->frag_list, reason); 1085 1086 skb_free_head(skb); 1087 exit: 1088 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1089 * bit is only set on the head though, so in order to avoid races 1090 * while trying to recycle fragments on __skb_frag_unref() we need 1091 * to make one SKB responsible for triggering the recycle path. 1092 * So disable the recycling bit if an SKB is cloned and we have 1093 * additional references to the fragmented part of the SKB. 1094 * Eventually the last SKB will have the recycling bit set and it's 1095 * dataref set to 0, which will trigger the recycling 1096 */ 1097 skb->pp_recycle = 0; 1098 } 1099 1100 /* 1101 * Free an skbuff by memory without cleaning the state. 1102 */ 1103 static void kfree_skbmem(struct sk_buff *skb) 1104 { 1105 struct sk_buff_fclones *fclones; 1106 1107 switch (skb->fclone) { 1108 case SKB_FCLONE_UNAVAILABLE: 1109 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1110 return; 1111 1112 case SKB_FCLONE_ORIG: 1113 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1114 1115 /* We usually free the clone (TX completion) before original skb 1116 * This test would have no chance to be true for the clone, 1117 * while here, branch prediction will be good. 1118 */ 1119 if (refcount_read(&fclones->fclone_ref) == 1) 1120 goto fastpath; 1121 break; 1122 1123 default: /* SKB_FCLONE_CLONE */ 1124 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1125 break; 1126 } 1127 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1128 return; 1129 fastpath: 1130 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1131 } 1132 1133 void skb_release_head_state(struct sk_buff *skb) 1134 { 1135 skb_dst_drop(skb); 1136 if (skb->destructor) { 1137 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1138 skb->destructor(skb); 1139 } 1140 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1141 nf_conntrack_put(skb_nfct(skb)); 1142 #endif 1143 skb_ext_put(skb); 1144 } 1145 1146 /* Free everything but the sk_buff shell. */ 1147 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1148 { 1149 skb_release_head_state(skb); 1150 if (likely(skb->head)) 1151 skb_release_data(skb, reason); 1152 } 1153 1154 /** 1155 * __kfree_skb - private function 1156 * @skb: buffer 1157 * 1158 * Free an sk_buff. Release anything attached to the buffer. 1159 * Clean the state. This is an internal helper function. Users should 1160 * always call kfree_skb 1161 */ 1162 1163 void __kfree_skb(struct sk_buff *skb) 1164 { 1165 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1166 kfree_skbmem(skb); 1167 } 1168 EXPORT_SYMBOL(__kfree_skb); 1169 1170 static __always_inline 1171 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1172 enum skb_drop_reason reason) 1173 { 1174 if (unlikely(!skb_unref(skb))) 1175 return false; 1176 1177 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1178 u32_get_bits(reason, 1179 SKB_DROP_REASON_SUBSYS_MASK) >= 1180 SKB_DROP_REASON_SUBSYS_NUM); 1181 1182 if (reason == SKB_CONSUMED) 1183 trace_consume_skb(skb, __builtin_return_address(0)); 1184 else 1185 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1186 return true; 1187 } 1188 1189 /** 1190 * sk_skb_reason_drop - free an sk_buff with special reason 1191 * @sk: the socket to receive @skb, or NULL if not applicable 1192 * @skb: buffer to free 1193 * @reason: reason why this skb is dropped 1194 * 1195 * Drop a reference to the buffer and free it if the usage count has hit 1196 * zero. Meanwhile, pass the receiving socket and drop reason to 1197 * 'kfree_skb' tracepoint. 1198 */ 1199 void __fix_address 1200 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1201 { 1202 if (__sk_skb_reason_drop(sk, skb, reason)) 1203 __kfree_skb(skb); 1204 } 1205 EXPORT_SYMBOL(sk_skb_reason_drop); 1206 1207 #define KFREE_SKB_BULK_SIZE 16 1208 1209 struct skb_free_array { 1210 unsigned int skb_count; 1211 void *skb_array[KFREE_SKB_BULK_SIZE]; 1212 }; 1213 1214 static void kfree_skb_add_bulk(struct sk_buff *skb, 1215 struct skb_free_array *sa, 1216 enum skb_drop_reason reason) 1217 { 1218 /* if SKB is a clone, don't handle this case */ 1219 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1220 __kfree_skb(skb); 1221 return; 1222 } 1223 1224 skb_release_all(skb, reason); 1225 sa->skb_array[sa->skb_count++] = skb; 1226 1227 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1228 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1229 sa->skb_array); 1230 sa->skb_count = 0; 1231 } 1232 } 1233 1234 void __fix_address 1235 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1236 { 1237 struct skb_free_array sa; 1238 1239 sa.skb_count = 0; 1240 1241 while (segs) { 1242 struct sk_buff *next = segs->next; 1243 1244 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1245 skb_poison_list(segs); 1246 kfree_skb_add_bulk(segs, &sa, reason); 1247 } 1248 1249 segs = next; 1250 } 1251 1252 if (sa.skb_count) 1253 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1254 } 1255 EXPORT_SYMBOL(kfree_skb_list_reason); 1256 1257 /* Dump skb information and contents. 1258 * 1259 * Must only be called from net_ratelimit()-ed paths. 1260 * 1261 * Dumps whole packets if full_pkt, only headers otherwise. 1262 */ 1263 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1264 { 1265 struct skb_shared_info *sh = skb_shinfo(skb); 1266 struct net_device *dev = skb->dev; 1267 struct sock *sk = skb->sk; 1268 struct sk_buff *list_skb; 1269 bool has_mac, has_trans; 1270 int headroom, tailroom; 1271 int i, len, seg_len; 1272 1273 if (full_pkt) 1274 len = skb->len; 1275 else 1276 len = min_t(int, skb->len, MAX_HEADER + 128); 1277 1278 headroom = skb_headroom(skb); 1279 tailroom = skb_tailroom(skb); 1280 1281 has_mac = skb_mac_header_was_set(skb); 1282 has_trans = skb_transport_header_was_set(skb); 1283 1284 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1285 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1286 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1287 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1288 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1289 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1290 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1291 level, skb->len, headroom, skb_headlen(skb), tailroom, 1292 has_mac ? skb->mac_header : -1, 1293 has_mac ? skb_mac_header_len(skb) : -1, 1294 skb->mac_len, 1295 skb->network_header, 1296 has_trans ? skb_network_header_len(skb) : -1, 1297 has_trans ? skb->transport_header : -1, 1298 sh->tx_flags, sh->nr_frags, 1299 sh->gso_size, sh->gso_type, sh->gso_segs, 1300 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1301 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1302 skb->hash, skb->sw_hash, skb->l4_hash, 1303 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1304 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1305 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1306 skb->inner_network_header, skb->inner_transport_header); 1307 1308 if (dev) 1309 printk("%sdev name=%s feat=%pNF\n", 1310 level, dev->name, &dev->features); 1311 if (sk) 1312 printk("%ssk family=%hu type=%u proto=%u\n", 1313 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1314 1315 if (full_pkt && headroom) 1316 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1317 16, 1, skb->head, headroom, false); 1318 1319 seg_len = min_t(int, skb_headlen(skb), len); 1320 if (seg_len) 1321 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1322 16, 1, skb->data, seg_len, false); 1323 len -= seg_len; 1324 1325 if (full_pkt && tailroom) 1326 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1327 16, 1, skb_tail_pointer(skb), tailroom, false); 1328 1329 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1330 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1331 u32 p_off, p_len, copied; 1332 struct page *p; 1333 u8 *vaddr; 1334 1335 if (skb_frag_is_net_iov(frag)) { 1336 printk("%sskb frag %d: not readable\n", level, i); 1337 len -= skb_frag_size(frag); 1338 if (!len) 1339 break; 1340 continue; 1341 } 1342 1343 skb_frag_foreach_page(frag, skb_frag_off(frag), 1344 skb_frag_size(frag), p, p_off, p_len, 1345 copied) { 1346 seg_len = min_t(int, p_len, len); 1347 vaddr = kmap_atomic(p); 1348 print_hex_dump(level, "skb frag: ", 1349 DUMP_PREFIX_OFFSET, 1350 16, 1, vaddr + p_off, seg_len, false); 1351 kunmap_atomic(vaddr); 1352 len -= seg_len; 1353 if (!len) 1354 break; 1355 } 1356 } 1357 1358 if (full_pkt && skb_has_frag_list(skb)) { 1359 printk("skb fraglist:\n"); 1360 skb_walk_frags(skb, list_skb) 1361 skb_dump(level, list_skb, true); 1362 } 1363 } 1364 EXPORT_SYMBOL(skb_dump); 1365 1366 /** 1367 * skb_tx_error - report an sk_buff xmit error 1368 * @skb: buffer that triggered an error 1369 * 1370 * Report xmit error if a device callback is tracking this skb. 1371 * skb must be freed afterwards. 1372 */ 1373 void skb_tx_error(struct sk_buff *skb) 1374 { 1375 if (skb) { 1376 skb_zcopy_downgrade_managed(skb); 1377 skb_zcopy_clear(skb, true); 1378 } 1379 } 1380 EXPORT_SYMBOL(skb_tx_error); 1381 1382 #ifdef CONFIG_TRACEPOINTS 1383 /** 1384 * consume_skb - free an skbuff 1385 * @skb: buffer to free 1386 * 1387 * Drop a ref to the buffer and free it if the usage count has hit zero 1388 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1389 * is being dropped after a failure and notes that 1390 */ 1391 void consume_skb(struct sk_buff *skb) 1392 { 1393 if (!skb_unref(skb)) 1394 return; 1395 1396 trace_consume_skb(skb, __builtin_return_address(0)); 1397 __kfree_skb(skb); 1398 } 1399 EXPORT_SYMBOL(consume_skb); 1400 #endif 1401 1402 /** 1403 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1404 * @skb: buffer to free 1405 * 1406 * Alike consume_skb(), but this variant assumes that this is the last 1407 * skb reference and all the head states have been already dropped 1408 */ 1409 void __consume_stateless_skb(struct sk_buff *skb) 1410 { 1411 trace_consume_skb(skb, __builtin_return_address(0)); 1412 skb_release_data(skb, SKB_CONSUMED); 1413 kfree_skbmem(skb); 1414 } 1415 1416 static void napi_skb_cache_put(struct sk_buff *skb) 1417 { 1418 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1419 u32 i; 1420 1421 if (!kasan_mempool_poison_object(skb)) 1422 return; 1423 1424 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1425 nc->skb_cache[nc->skb_count++] = skb; 1426 1427 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1428 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1429 kasan_mempool_unpoison_object(nc->skb_cache[i], 1430 kmem_cache_size(net_hotdata.skbuff_cache)); 1431 1432 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1433 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1434 nc->skb_count = NAPI_SKB_CACHE_HALF; 1435 } 1436 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1437 } 1438 1439 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1440 { 1441 skb_release_all(skb, reason); 1442 napi_skb_cache_put(skb); 1443 } 1444 1445 void napi_skb_free_stolen_head(struct sk_buff *skb) 1446 { 1447 if (unlikely(skb->slow_gro)) { 1448 nf_reset_ct(skb); 1449 skb_dst_drop(skb); 1450 skb_ext_put(skb); 1451 skb_orphan(skb); 1452 skb->slow_gro = 0; 1453 } 1454 napi_skb_cache_put(skb); 1455 } 1456 1457 void napi_consume_skb(struct sk_buff *skb, int budget) 1458 { 1459 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1460 if (unlikely(!budget)) { 1461 dev_consume_skb_any(skb); 1462 return; 1463 } 1464 1465 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1466 1467 if (!skb_unref(skb)) 1468 return; 1469 1470 /* if reaching here SKB is ready to free */ 1471 trace_consume_skb(skb, __builtin_return_address(0)); 1472 1473 /* if SKB is a clone, don't handle this case */ 1474 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1475 __kfree_skb(skb); 1476 return; 1477 } 1478 1479 skb_release_all(skb, SKB_CONSUMED); 1480 napi_skb_cache_put(skb); 1481 } 1482 EXPORT_SYMBOL(napi_consume_skb); 1483 1484 /* Make sure a field is contained by headers group */ 1485 #define CHECK_SKB_FIELD(field) \ 1486 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1487 offsetof(struct sk_buff, headers.field)); \ 1488 1489 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1490 { 1491 new->tstamp = old->tstamp; 1492 /* We do not copy old->sk */ 1493 new->dev = old->dev; 1494 memcpy(new->cb, old->cb, sizeof(old->cb)); 1495 skb_dst_copy(new, old); 1496 __skb_ext_copy(new, old); 1497 __nf_copy(new, old, false); 1498 1499 /* Note : this field could be in the headers group. 1500 * It is not yet because we do not want to have a 16 bit hole 1501 */ 1502 new->queue_mapping = old->queue_mapping; 1503 1504 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1505 CHECK_SKB_FIELD(protocol); 1506 CHECK_SKB_FIELD(csum); 1507 CHECK_SKB_FIELD(hash); 1508 CHECK_SKB_FIELD(priority); 1509 CHECK_SKB_FIELD(skb_iif); 1510 CHECK_SKB_FIELD(vlan_proto); 1511 CHECK_SKB_FIELD(vlan_tci); 1512 CHECK_SKB_FIELD(transport_header); 1513 CHECK_SKB_FIELD(network_header); 1514 CHECK_SKB_FIELD(mac_header); 1515 CHECK_SKB_FIELD(inner_protocol); 1516 CHECK_SKB_FIELD(inner_transport_header); 1517 CHECK_SKB_FIELD(inner_network_header); 1518 CHECK_SKB_FIELD(inner_mac_header); 1519 CHECK_SKB_FIELD(mark); 1520 #ifdef CONFIG_NETWORK_SECMARK 1521 CHECK_SKB_FIELD(secmark); 1522 #endif 1523 #ifdef CONFIG_NET_RX_BUSY_POLL 1524 CHECK_SKB_FIELD(napi_id); 1525 #endif 1526 CHECK_SKB_FIELD(alloc_cpu); 1527 #ifdef CONFIG_XPS 1528 CHECK_SKB_FIELD(sender_cpu); 1529 #endif 1530 #ifdef CONFIG_NET_SCHED 1531 CHECK_SKB_FIELD(tc_index); 1532 #endif 1533 1534 } 1535 1536 /* 1537 * You should not add any new code to this function. Add it to 1538 * __copy_skb_header above instead. 1539 */ 1540 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1541 { 1542 #define C(x) n->x = skb->x 1543 1544 n->next = n->prev = NULL; 1545 n->sk = NULL; 1546 __copy_skb_header(n, skb); 1547 1548 C(len); 1549 C(data_len); 1550 C(mac_len); 1551 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1552 n->cloned = 1; 1553 n->nohdr = 0; 1554 n->peeked = 0; 1555 C(pfmemalloc); 1556 C(pp_recycle); 1557 n->destructor = NULL; 1558 C(tail); 1559 C(end); 1560 C(head); 1561 C(head_frag); 1562 C(data); 1563 C(truesize); 1564 refcount_set(&n->users, 1); 1565 1566 atomic_inc(&(skb_shinfo(skb)->dataref)); 1567 skb->cloned = 1; 1568 1569 return n; 1570 #undef C 1571 } 1572 1573 /** 1574 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1575 * @first: first sk_buff of the msg 1576 */ 1577 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1578 { 1579 struct sk_buff *n; 1580 1581 n = alloc_skb(0, GFP_ATOMIC); 1582 if (!n) 1583 return NULL; 1584 1585 n->len = first->len; 1586 n->data_len = first->len; 1587 n->truesize = first->truesize; 1588 1589 skb_shinfo(n)->frag_list = first; 1590 1591 __copy_skb_header(n, first); 1592 n->destructor = NULL; 1593 1594 return n; 1595 } 1596 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1597 1598 /** 1599 * skb_morph - morph one skb into another 1600 * @dst: the skb to receive the contents 1601 * @src: the skb to supply the contents 1602 * 1603 * This is identical to skb_clone except that the target skb is 1604 * supplied by the user. 1605 * 1606 * The target skb is returned upon exit. 1607 */ 1608 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1609 { 1610 skb_release_all(dst, SKB_CONSUMED); 1611 return __skb_clone(dst, src); 1612 } 1613 EXPORT_SYMBOL_GPL(skb_morph); 1614 1615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1616 { 1617 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1618 struct user_struct *user; 1619 1620 if (capable(CAP_IPC_LOCK) || !size) 1621 return 0; 1622 1623 rlim = rlimit(RLIMIT_MEMLOCK); 1624 if (rlim == RLIM_INFINITY) 1625 return 0; 1626 1627 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1628 max_pg = rlim >> PAGE_SHIFT; 1629 user = mmp->user ? : current_user(); 1630 1631 old_pg = atomic_long_read(&user->locked_vm); 1632 do { 1633 new_pg = old_pg + num_pg; 1634 if (new_pg > max_pg) 1635 return -ENOBUFS; 1636 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1637 1638 if (!mmp->user) { 1639 mmp->user = get_uid(user); 1640 mmp->num_pg = num_pg; 1641 } else { 1642 mmp->num_pg += num_pg; 1643 } 1644 1645 return 0; 1646 } 1647 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1648 1649 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1650 { 1651 if (mmp->user) { 1652 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1653 free_uid(mmp->user); 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1657 1658 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1659 bool devmem) 1660 { 1661 struct ubuf_info_msgzc *uarg; 1662 struct sk_buff *skb; 1663 1664 WARN_ON_ONCE(!in_task()); 1665 1666 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1667 if (!skb) 1668 return NULL; 1669 1670 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1671 uarg = (void *)skb->cb; 1672 uarg->mmp.user = NULL; 1673 1674 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1675 kfree_skb(skb); 1676 return NULL; 1677 } 1678 1679 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1680 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1681 uarg->len = 1; 1682 uarg->bytelen = size; 1683 uarg->zerocopy = 1; 1684 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1685 refcount_set(&uarg->ubuf.refcnt, 1); 1686 sock_hold(sk); 1687 1688 return &uarg->ubuf; 1689 } 1690 1691 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1692 { 1693 return container_of((void *)uarg, struct sk_buff, cb); 1694 } 1695 1696 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1697 struct ubuf_info *uarg, bool devmem) 1698 { 1699 if (uarg) { 1700 struct ubuf_info_msgzc *uarg_zc; 1701 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1702 u32 bytelen, next; 1703 1704 /* there might be non MSG_ZEROCOPY users */ 1705 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1706 return NULL; 1707 1708 /* realloc only when socket is locked (TCP, UDP cork), 1709 * so uarg->len and sk_zckey access is serialized 1710 */ 1711 if (!sock_owned_by_user(sk)) { 1712 WARN_ON_ONCE(1); 1713 return NULL; 1714 } 1715 1716 uarg_zc = uarg_to_msgzc(uarg); 1717 bytelen = uarg_zc->bytelen + size; 1718 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1719 /* TCP can create new skb to attach new uarg */ 1720 if (sk->sk_type == SOCK_STREAM) 1721 goto new_alloc; 1722 return NULL; 1723 } 1724 1725 next = (u32)atomic_read(&sk->sk_zckey); 1726 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1727 if (likely(!devmem) && 1728 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1729 return NULL; 1730 uarg_zc->len++; 1731 uarg_zc->bytelen = bytelen; 1732 atomic_set(&sk->sk_zckey, ++next); 1733 1734 /* no extra ref when appending to datagram (MSG_MORE) */ 1735 if (sk->sk_type == SOCK_STREAM) 1736 net_zcopy_get(uarg); 1737 1738 return uarg; 1739 } 1740 } 1741 1742 new_alloc: 1743 return msg_zerocopy_alloc(sk, size, devmem); 1744 } 1745 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1746 1747 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1748 { 1749 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1750 u32 old_lo, old_hi; 1751 u64 sum_len; 1752 1753 old_lo = serr->ee.ee_info; 1754 old_hi = serr->ee.ee_data; 1755 sum_len = old_hi - old_lo + 1ULL + len; 1756 1757 if (sum_len >= (1ULL << 32)) 1758 return false; 1759 1760 if (lo != old_hi + 1) 1761 return false; 1762 1763 serr->ee.ee_data += len; 1764 return true; 1765 } 1766 1767 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1768 { 1769 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1770 struct sock_exterr_skb *serr; 1771 struct sock *sk = skb->sk; 1772 struct sk_buff_head *q; 1773 unsigned long flags; 1774 bool is_zerocopy; 1775 u32 lo, hi; 1776 u16 len; 1777 1778 mm_unaccount_pinned_pages(&uarg->mmp); 1779 1780 /* if !len, there was only 1 call, and it was aborted 1781 * so do not queue a completion notification 1782 */ 1783 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1784 goto release; 1785 1786 len = uarg->len; 1787 lo = uarg->id; 1788 hi = uarg->id + len - 1; 1789 is_zerocopy = uarg->zerocopy; 1790 1791 serr = SKB_EXT_ERR(skb); 1792 memset(serr, 0, sizeof(*serr)); 1793 serr->ee.ee_errno = 0; 1794 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1795 serr->ee.ee_data = hi; 1796 serr->ee.ee_info = lo; 1797 if (!is_zerocopy) 1798 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1799 1800 q = &sk->sk_error_queue; 1801 spin_lock_irqsave(&q->lock, flags); 1802 tail = skb_peek_tail(q); 1803 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1804 !skb_zerocopy_notify_extend(tail, lo, len)) { 1805 __skb_queue_tail(q, skb); 1806 skb = NULL; 1807 } 1808 spin_unlock_irqrestore(&q->lock, flags); 1809 1810 sk_error_report(sk); 1811 1812 release: 1813 consume_skb(skb); 1814 sock_put(sk); 1815 } 1816 1817 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1818 bool success) 1819 { 1820 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1821 1822 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1823 1824 if (refcount_dec_and_test(&uarg->refcnt)) 1825 __msg_zerocopy_callback(uarg_zc); 1826 } 1827 1828 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1829 { 1830 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1831 1832 atomic_dec(&sk->sk_zckey); 1833 uarg_to_msgzc(uarg)->len--; 1834 1835 if (have_uref) 1836 msg_zerocopy_complete(NULL, uarg, true); 1837 } 1838 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1839 1840 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1841 .complete = msg_zerocopy_complete, 1842 }; 1843 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1844 1845 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1846 struct msghdr *msg, int len, 1847 struct ubuf_info *uarg, 1848 struct net_devmem_dmabuf_binding *binding) 1849 { 1850 int err, orig_len = skb->len; 1851 1852 if (uarg->ops->link_skb) { 1853 err = uarg->ops->link_skb(skb, uarg); 1854 if (err) 1855 return err; 1856 } else { 1857 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1858 1859 /* An skb can only point to one uarg. This edge case happens 1860 * when TCP appends to an skb, but zerocopy_realloc triggered 1861 * a new alloc. 1862 */ 1863 if (orig_uarg && uarg != orig_uarg) 1864 return -EEXIST; 1865 } 1866 1867 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1868 binding); 1869 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1870 struct sock *save_sk = skb->sk; 1871 1872 /* Streams do not free skb on error. Reset to prev state. */ 1873 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1874 skb->sk = sk; 1875 ___pskb_trim(skb, orig_len); 1876 skb->sk = save_sk; 1877 return err; 1878 } 1879 1880 skb_zcopy_set(skb, uarg, NULL); 1881 return skb->len - orig_len; 1882 } 1883 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1884 1885 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1886 { 1887 int i; 1888 1889 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1891 skb_frag_ref(skb, i); 1892 } 1893 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1894 1895 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1896 gfp_t gfp_mask) 1897 { 1898 if (skb_zcopy(orig)) { 1899 if (skb_zcopy(nskb)) { 1900 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1901 if (!gfp_mask) { 1902 WARN_ON_ONCE(1); 1903 return -ENOMEM; 1904 } 1905 if (skb_uarg(nskb) == skb_uarg(orig)) 1906 return 0; 1907 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1908 return -EIO; 1909 } 1910 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1911 } 1912 return 0; 1913 } 1914 1915 /** 1916 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1917 * @skb: the skb to modify 1918 * @gfp_mask: allocation priority 1919 * 1920 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1921 * It will copy all frags into kernel and drop the reference 1922 * to userspace pages. 1923 * 1924 * If this function is called from an interrupt gfp_mask() must be 1925 * %GFP_ATOMIC. 1926 * 1927 * Returns 0 on success or a negative error code on failure 1928 * to allocate kernel memory to copy to. 1929 */ 1930 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1931 { 1932 int num_frags = skb_shinfo(skb)->nr_frags; 1933 struct page *page, *head = NULL; 1934 int i, order, psize, new_frags; 1935 u32 d_off; 1936 1937 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1938 return -EINVAL; 1939 1940 if (!skb_frags_readable(skb)) 1941 return -EFAULT; 1942 1943 if (!num_frags) 1944 goto release; 1945 1946 /* We might have to allocate high order pages, so compute what minimum 1947 * page order is needed. 1948 */ 1949 order = 0; 1950 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1951 order++; 1952 psize = (PAGE_SIZE << order); 1953 1954 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1955 for (i = 0; i < new_frags; i++) { 1956 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1957 if (!page) { 1958 while (head) { 1959 struct page *next = (struct page *)page_private(head); 1960 put_page(head); 1961 head = next; 1962 } 1963 return -ENOMEM; 1964 } 1965 set_page_private(page, (unsigned long)head); 1966 head = page; 1967 } 1968 1969 page = head; 1970 d_off = 0; 1971 for (i = 0; i < num_frags; i++) { 1972 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1973 u32 p_off, p_len, copied; 1974 struct page *p; 1975 u8 *vaddr; 1976 1977 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1978 p, p_off, p_len, copied) { 1979 u32 copy, done = 0; 1980 vaddr = kmap_atomic(p); 1981 1982 while (done < p_len) { 1983 if (d_off == psize) { 1984 d_off = 0; 1985 page = (struct page *)page_private(page); 1986 } 1987 copy = min_t(u32, psize - d_off, p_len - done); 1988 memcpy(page_address(page) + d_off, 1989 vaddr + p_off + done, copy); 1990 done += copy; 1991 d_off += copy; 1992 } 1993 kunmap_atomic(vaddr); 1994 } 1995 } 1996 1997 /* skb frags release userspace buffers */ 1998 for (i = 0; i < num_frags; i++) 1999 skb_frag_unref(skb, i); 2000 2001 /* skb frags point to kernel buffers */ 2002 for (i = 0; i < new_frags - 1; i++) { 2003 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2004 head = (struct page *)page_private(head); 2005 } 2006 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2007 d_off); 2008 skb_shinfo(skb)->nr_frags = new_frags; 2009 2010 release: 2011 skb_zcopy_clear(skb, false); 2012 return 0; 2013 } 2014 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2015 2016 /** 2017 * skb_clone - duplicate an sk_buff 2018 * @skb: buffer to clone 2019 * @gfp_mask: allocation priority 2020 * 2021 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2022 * copies share the same packet data but not structure. The new 2023 * buffer has a reference count of 1. If the allocation fails the 2024 * function returns %NULL otherwise the new buffer is returned. 2025 * 2026 * If this function is called from an interrupt gfp_mask() must be 2027 * %GFP_ATOMIC. 2028 */ 2029 2030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2031 { 2032 struct sk_buff_fclones *fclones = container_of(skb, 2033 struct sk_buff_fclones, 2034 skb1); 2035 struct sk_buff *n; 2036 2037 if (skb_orphan_frags(skb, gfp_mask)) 2038 return NULL; 2039 2040 if (skb->fclone == SKB_FCLONE_ORIG && 2041 refcount_read(&fclones->fclone_ref) == 1) { 2042 n = &fclones->skb2; 2043 refcount_set(&fclones->fclone_ref, 2); 2044 n->fclone = SKB_FCLONE_CLONE; 2045 } else { 2046 if (skb_pfmemalloc(skb)) 2047 gfp_mask |= __GFP_MEMALLOC; 2048 2049 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2050 if (!n) 2051 return NULL; 2052 2053 n->fclone = SKB_FCLONE_UNAVAILABLE; 2054 } 2055 2056 return __skb_clone(n, skb); 2057 } 2058 EXPORT_SYMBOL(skb_clone); 2059 2060 void skb_headers_offset_update(struct sk_buff *skb, int off) 2061 { 2062 /* Only adjust this if it actually is csum_start rather than csum */ 2063 if (skb->ip_summed == CHECKSUM_PARTIAL) 2064 skb->csum_start += off; 2065 /* {transport,network,mac}_header and tail are relative to skb->head */ 2066 skb->transport_header += off; 2067 skb->network_header += off; 2068 if (skb_mac_header_was_set(skb)) 2069 skb->mac_header += off; 2070 skb->inner_transport_header += off; 2071 skb->inner_network_header += off; 2072 skb->inner_mac_header += off; 2073 } 2074 EXPORT_SYMBOL(skb_headers_offset_update); 2075 2076 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2077 { 2078 __copy_skb_header(new, old); 2079 2080 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2081 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2082 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2083 } 2084 EXPORT_SYMBOL(skb_copy_header); 2085 2086 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2087 { 2088 if (skb_pfmemalloc(skb)) 2089 return SKB_ALLOC_RX; 2090 return 0; 2091 } 2092 2093 /** 2094 * skb_copy - create private copy of an sk_buff 2095 * @skb: buffer to copy 2096 * @gfp_mask: allocation priority 2097 * 2098 * Make a copy of both an &sk_buff and its data. This is used when the 2099 * caller wishes to modify the data and needs a private copy of the 2100 * data to alter. Returns %NULL on failure or the pointer to the buffer 2101 * on success. The returned buffer has a reference count of 1. 2102 * 2103 * As by-product this function converts non-linear &sk_buff to linear 2104 * one, so that &sk_buff becomes completely private and caller is allowed 2105 * to modify all the data of returned buffer. This means that this 2106 * function is not recommended for use in circumstances when only 2107 * header is going to be modified. Use pskb_copy() instead. 2108 */ 2109 2110 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2111 { 2112 struct sk_buff *n; 2113 unsigned int size; 2114 int headerlen; 2115 2116 if (!skb_frags_readable(skb)) 2117 return NULL; 2118 2119 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2120 return NULL; 2121 2122 headerlen = skb_headroom(skb); 2123 size = skb_end_offset(skb) + skb->data_len; 2124 n = __alloc_skb(size, gfp_mask, 2125 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2126 if (!n) 2127 return NULL; 2128 2129 /* Set the data pointer */ 2130 skb_reserve(n, headerlen); 2131 /* Set the tail pointer and length */ 2132 skb_put(n, skb->len); 2133 2134 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2135 2136 skb_copy_header(n, skb); 2137 return n; 2138 } 2139 EXPORT_SYMBOL(skb_copy); 2140 2141 /** 2142 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2143 * @skb: buffer to copy 2144 * @headroom: headroom of new skb 2145 * @gfp_mask: allocation priority 2146 * @fclone: if true allocate the copy of the skb from the fclone 2147 * cache instead of the head cache; it is recommended to set this 2148 * to true for the cases where the copy will likely be cloned 2149 * 2150 * Make a copy of both an &sk_buff and part of its data, located 2151 * in header. Fragmented data remain shared. This is used when 2152 * the caller wishes to modify only header of &sk_buff and needs 2153 * private copy of the header to alter. Returns %NULL on failure 2154 * or the pointer to the buffer on success. 2155 * The returned buffer has a reference count of 1. 2156 */ 2157 2158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2159 gfp_t gfp_mask, bool fclone) 2160 { 2161 unsigned int size = skb_headlen(skb) + headroom; 2162 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2163 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2164 2165 if (!n) 2166 goto out; 2167 2168 /* Set the data pointer */ 2169 skb_reserve(n, headroom); 2170 /* Set the tail pointer and length */ 2171 skb_put(n, skb_headlen(skb)); 2172 /* Copy the bytes */ 2173 skb_copy_from_linear_data(skb, n->data, n->len); 2174 2175 n->truesize += skb->data_len; 2176 n->data_len = skb->data_len; 2177 n->len = skb->len; 2178 2179 if (skb_shinfo(skb)->nr_frags) { 2180 int i; 2181 2182 if (skb_orphan_frags(skb, gfp_mask) || 2183 skb_zerocopy_clone(n, skb, gfp_mask)) { 2184 kfree_skb(n); 2185 n = NULL; 2186 goto out; 2187 } 2188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2189 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2190 skb_frag_ref(skb, i); 2191 } 2192 skb_shinfo(n)->nr_frags = i; 2193 } 2194 2195 if (skb_has_frag_list(skb)) { 2196 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2197 skb_clone_fraglist(n); 2198 } 2199 2200 skb_copy_header(n, skb); 2201 out: 2202 return n; 2203 } 2204 EXPORT_SYMBOL(__pskb_copy_fclone); 2205 2206 /** 2207 * pskb_expand_head - reallocate header of &sk_buff 2208 * @skb: buffer to reallocate 2209 * @nhead: room to add at head 2210 * @ntail: room to add at tail 2211 * @gfp_mask: allocation priority 2212 * 2213 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2214 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2215 * reference count of 1. Returns zero in the case of success or error, 2216 * if expansion failed. In the last case, &sk_buff is not changed. 2217 * 2218 * All the pointers pointing into skb header may change and must be 2219 * reloaded after call to this function. 2220 */ 2221 2222 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2223 gfp_t gfp_mask) 2224 { 2225 unsigned int osize = skb_end_offset(skb); 2226 unsigned int size = osize + nhead + ntail; 2227 long off; 2228 u8 *data; 2229 int i; 2230 2231 BUG_ON(nhead < 0); 2232 2233 BUG_ON(skb_shared(skb)); 2234 2235 skb_zcopy_downgrade_managed(skb); 2236 2237 if (skb_pfmemalloc(skb)) 2238 gfp_mask |= __GFP_MEMALLOC; 2239 2240 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2241 if (!data) 2242 goto nodata; 2243 size = SKB_WITH_OVERHEAD(size); 2244 2245 /* Copy only real data... and, alas, header. This should be 2246 * optimized for the cases when header is void. 2247 */ 2248 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2249 2250 memcpy((struct skb_shared_info *)(data + size), 2251 skb_shinfo(skb), 2252 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2253 2254 /* 2255 * if shinfo is shared we must drop the old head gracefully, but if it 2256 * is not we can just drop the old head and let the existing refcount 2257 * be since all we did is relocate the values 2258 */ 2259 if (skb_cloned(skb)) { 2260 if (skb_orphan_frags(skb, gfp_mask)) 2261 goto nofrags; 2262 if (skb_zcopy(skb)) 2263 refcount_inc(&skb_uarg(skb)->refcnt); 2264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2265 skb_frag_ref(skb, i); 2266 2267 if (skb_has_frag_list(skb)) 2268 skb_clone_fraglist(skb); 2269 2270 skb_release_data(skb, SKB_CONSUMED); 2271 } else { 2272 skb_free_head(skb); 2273 } 2274 off = (data + nhead) - skb->head; 2275 2276 skb->head = data; 2277 skb->head_frag = 0; 2278 skb->data += off; 2279 2280 skb_set_end_offset(skb, size); 2281 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2282 off = nhead; 2283 #endif 2284 skb->tail += off; 2285 skb_headers_offset_update(skb, nhead); 2286 skb->cloned = 0; 2287 skb->hdr_len = 0; 2288 skb->nohdr = 0; 2289 atomic_set(&skb_shinfo(skb)->dataref, 1); 2290 2291 skb_metadata_clear(skb); 2292 2293 /* It is not generally safe to change skb->truesize. 2294 * For the moment, we really care of rx path, or 2295 * when skb is orphaned (not attached to a socket). 2296 */ 2297 if (!skb->sk || skb->destructor == sock_edemux) 2298 skb->truesize += size - osize; 2299 2300 return 0; 2301 2302 nofrags: 2303 skb_kfree_head(data, size); 2304 nodata: 2305 return -ENOMEM; 2306 } 2307 EXPORT_SYMBOL(pskb_expand_head); 2308 2309 /* Make private copy of skb with writable head and some headroom */ 2310 2311 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2312 { 2313 struct sk_buff *skb2; 2314 int delta = headroom - skb_headroom(skb); 2315 2316 if (delta <= 0) 2317 skb2 = pskb_copy(skb, GFP_ATOMIC); 2318 else { 2319 skb2 = skb_clone(skb, GFP_ATOMIC); 2320 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2321 GFP_ATOMIC)) { 2322 kfree_skb(skb2); 2323 skb2 = NULL; 2324 } 2325 } 2326 return skb2; 2327 } 2328 EXPORT_SYMBOL(skb_realloc_headroom); 2329 2330 /* Note: We plan to rework this in linux-6.4 */ 2331 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2332 { 2333 unsigned int saved_end_offset, saved_truesize; 2334 struct skb_shared_info *shinfo; 2335 int res; 2336 2337 saved_end_offset = skb_end_offset(skb); 2338 saved_truesize = skb->truesize; 2339 2340 res = pskb_expand_head(skb, 0, 0, pri); 2341 if (res) 2342 return res; 2343 2344 skb->truesize = saved_truesize; 2345 2346 if (likely(skb_end_offset(skb) == saved_end_offset)) 2347 return 0; 2348 2349 /* We can not change skb->end if the original or new value 2350 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2351 */ 2352 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2353 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2354 /* We think this path should not be taken. 2355 * Add a temporary trace to warn us just in case. 2356 */ 2357 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2358 saved_end_offset, skb_end_offset(skb)); 2359 WARN_ON_ONCE(1); 2360 return 0; 2361 } 2362 2363 shinfo = skb_shinfo(skb); 2364 2365 /* We are about to change back skb->end, 2366 * we need to move skb_shinfo() to its new location. 2367 */ 2368 memmove(skb->head + saved_end_offset, 2369 shinfo, 2370 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2371 2372 skb_set_end_offset(skb, saved_end_offset); 2373 2374 return 0; 2375 } 2376 2377 /** 2378 * skb_expand_head - reallocate header of &sk_buff 2379 * @skb: buffer to reallocate 2380 * @headroom: needed headroom 2381 * 2382 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2383 * if possible; copies skb->sk to new skb as needed 2384 * and frees original skb in case of failures. 2385 * 2386 * It expect increased headroom and generates warning otherwise. 2387 */ 2388 2389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2390 { 2391 int delta = headroom - skb_headroom(skb); 2392 int osize = skb_end_offset(skb); 2393 struct sock *sk = skb->sk; 2394 2395 if (WARN_ONCE(delta <= 0, 2396 "%s is expecting an increase in the headroom", __func__)) 2397 return skb; 2398 2399 delta = SKB_DATA_ALIGN(delta); 2400 /* pskb_expand_head() might crash, if skb is shared. */ 2401 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2402 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2403 2404 if (unlikely(!nskb)) 2405 goto fail; 2406 2407 if (sk) 2408 skb_set_owner_w(nskb, sk); 2409 consume_skb(skb); 2410 skb = nskb; 2411 } 2412 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2413 goto fail; 2414 2415 if (sk && is_skb_wmem(skb)) { 2416 delta = skb_end_offset(skb) - osize; 2417 refcount_add(delta, &sk->sk_wmem_alloc); 2418 skb->truesize += delta; 2419 } 2420 return skb; 2421 2422 fail: 2423 kfree_skb(skb); 2424 return NULL; 2425 } 2426 EXPORT_SYMBOL(skb_expand_head); 2427 2428 /** 2429 * skb_copy_expand - copy and expand sk_buff 2430 * @skb: buffer to copy 2431 * @newheadroom: new free bytes at head 2432 * @newtailroom: new free bytes at tail 2433 * @gfp_mask: allocation priority 2434 * 2435 * Make a copy of both an &sk_buff and its data and while doing so 2436 * allocate additional space. 2437 * 2438 * This is used when the caller wishes to modify the data and needs a 2439 * private copy of the data to alter as well as more space for new fields. 2440 * Returns %NULL on failure or the pointer to the buffer 2441 * on success. The returned buffer has a reference count of 1. 2442 * 2443 * You must pass %GFP_ATOMIC as the allocation priority if this function 2444 * is called from an interrupt. 2445 */ 2446 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2447 int newheadroom, int newtailroom, 2448 gfp_t gfp_mask) 2449 { 2450 /* 2451 * Allocate the copy buffer 2452 */ 2453 int head_copy_len, head_copy_off; 2454 struct sk_buff *n; 2455 int oldheadroom; 2456 2457 if (!skb_frags_readable(skb)) 2458 return NULL; 2459 2460 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2461 return NULL; 2462 2463 oldheadroom = skb_headroom(skb); 2464 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2465 gfp_mask, skb_alloc_rx_flag(skb), 2466 NUMA_NO_NODE); 2467 if (!n) 2468 return NULL; 2469 2470 skb_reserve(n, newheadroom); 2471 2472 /* Set the tail pointer and length */ 2473 skb_put(n, skb->len); 2474 2475 head_copy_len = oldheadroom; 2476 head_copy_off = 0; 2477 if (newheadroom <= head_copy_len) 2478 head_copy_len = newheadroom; 2479 else 2480 head_copy_off = newheadroom - head_copy_len; 2481 2482 /* Copy the linear header and data. */ 2483 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2484 skb->len + head_copy_len)); 2485 2486 skb_copy_header(n, skb); 2487 2488 skb_headers_offset_update(n, newheadroom - oldheadroom); 2489 2490 return n; 2491 } 2492 EXPORT_SYMBOL(skb_copy_expand); 2493 2494 /** 2495 * __skb_pad - zero pad the tail of an skb 2496 * @skb: buffer to pad 2497 * @pad: space to pad 2498 * @free_on_error: free buffer on error 2499 * 2500 * Ensure that a buffer is followed by a padding area that is zero 2501 * filled. Used by network drivers which may DMA or transfer data 2502 * beyond the buffer end onto the wire. 2503 * 2504 * May return error in out of memory cases. The skb is freed on error 2505 * if @free_on_error is true. 2506 */ 2507 2508 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2509 { 2510 int err; 2511 int ntail; 2512 2513 /* If the skbuff is non linear tailroom is always zero.. */ 2514 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2515 memset(skb->data+skb->len, 0, pad); 2516 return 0; 2517 } 2518 2519 ntail = skb->data_len + pad - (skb->end - skb->tail); 2520 if (likely(skb_cloned(skb) || ntail > 0)) { 2521 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2522 if (unlikely(err)) 2523 goto free_skb; 2524 } 2525 2526 /* FIXME: The use of this function with non-linear skb's really needs 2527 * to be audited. 2528 */ 2529 err = skb_linearize(skb); 2530 if (unlikely(err)) 2531 goto free_skb; 2532 2533 memset(skb->data + skb->len, 0, pad); 2534 return 0; 2535 2536 free_skb: 2537 if (free_on_error) 2538 kfree_skb(skb); 2539 return err; 2540 } 2541 EXPORT_SYMBOL(__skb_pad); 2542 2543 /** 2544 * pskb_put - add data to the tail of a potentially fragmented buffer 2545 * @skb: start of the buffer to use 2546 * @tail: tail fragment of the buffer to use 2547 * @len: amount of data to add 2548 * 2549 * This function extends the used data area of the potentially 2550 * fragmented buffer. @tail must be the last fragment of @skb -- or 2551 * @skb itself. If this would exceed the total buffer size the kernel 2552 * will panic. A pointer to the first byte of the extra data is 2553 * returned. 2554 */ 2555 2556 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2557 { 2558 if (tail != skb) { 2559 skb->data_len += len; 2560 skb->len += len; 2561 } 2562 return skb_put(tail, len); 2563 } 2564 EXPORT_SYMBOL_GPL(pskb_put); 2565 2566 /** 2567 * skb_put - add data to a buffer 2568 * @skb: buffer to use 2569 * @len: amount of data to add 2570 * 2571 * This function extends the used data area of the buffer. If this would 2572 * exceed the total buffer size the kernel will panic. A pointer to the 2573 * first byte of the extra data is returned. 2574 */ 2575 void *skb_put(struct sk_buff *skb, unsigned int len) 2576 { 2577 void *tmp = skb_tail_pointer(skb); 2578 SKB_LINEAR_ASSERT(skb); 2579 skb->tail += len; 2580 skb->len += len; 2581 if (unlikely(skb->tail > skb->end)) 2582 skb_over_panic(skb, len, __builtin_return_address(0)); 2583 return tmp; 2584 } 2585 EXPORT_SYMBOL(skb_put); 2586 2587 /** 2588 * skb_push - add data to the start of a buffer 2589 * @skb: buffer to use 2590 * @len: amount of data to add 2591 * 2592 * This function extends the used data area of the buffer at the buffer 2593 * start. If this would exceed the total buffer headroom the kernel will 2594 * panic. A pointer to the first byte of the extra data is returned. 2595 */ 2596 void *skb_push(struct sk_buff *skb, unsigned int len) 2597 { 2598 skb->data -= len; 2599 skb->len += len; 2600 if (unlikely(skb->data < skb->head)) 2601 skb_under_panic(skb, len, __builtin_return_address(0)); 2602 return skb->data; 2603 } 2604 EXPORT_SYMBOL(skb_push); 2605 2606 /** 2607 * skb_pull - remove data from the start of a buffer 2608 * @skb: buffer to use 2609 * @len: amount of data to remove 2610 * 2611 * This function removes data from the start of a buffer, returning 2612 * the memory to the headroom. A pointer to the next data in the buffer 2613 * is returned. Once the data has been pulled future pushes will overwrite 2614 * the old data. 2615 */ 2616 void *skb_pull(struct sk_buff *skb, unsigned int len) 2617 { 2618 return skb_pull_inline(skb, len); 2619 } 2620 EXPORT_SYMBOL(skb_pull); 2621 2622 /** 2623 * skb_pull_data - remove data from the start of a buffer returning its 2624 * original position. 2625 * @skb: buffer to use 2626 * @len: amount of data to remove 2627 * 2628 * This function removes data from the start of a buffer, returning 2629 * the memory to the headroom. A pointer to the original data in the buffer 2630 * is returned after checking if there is enough data to pull. Once the 2631 * data has been pulled future pushes will overwrite the old data. 2632 */ 2633 void *skb_pull_data(struct sk_buff *skb, size_t len) 2634 { 2635 void *data = skb->data; 2636 2637 if (skb->len < len) 2638 return NULL; 2639 2640 skb_pull(skb, len); 2641 2642 return data; 2643 } 2644 EXPORT_SYMBOL(skb_pull_data); 2645 2646 /** 2647 * skb_trim - remove end from a buffer 2648 * @skb: buffer to alter 2649 * @len: new length 2650 * 2651 * Cut the length of a buffer down by removing data from the tail. If 2652 * the buffer is already under the length specified it is not modified. 2653 * The skb must be linear. 2654 */ 2655 void skb_trim(struct sk_buff *skb, unsigned int len) 2656 { 2657 if (skb->len > len) 2658 __skb_trim(skb, len); 2659 } 2660 EXPORT_SYMBOL(skb_trim); 2661 2662 /* Trims skb to length len. It can change skb pointers. 2663 */ 2664 2665 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2666 { 2667 struct sk_buff **fragp; 2668 struct sk_buff *frag; 2669 int offset = skb_headlen(skb); 2670 int nfrags = skb_shinfo(skb)->nr_frags; 2671 int i; 2672 int err; 2673 2674 if (skb_cloned(skb) && 2675 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2676 return err; 2677 2678 i = 0; 2679 if (offset >= len) 2680 goto drop_pages; 2681 2682 for (; i < nfrags; i++) { 2683 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2684 2685 if (end < len) { 2686 offset = end; 2687 continue; 2688 } 2689 2690 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2691 2692 drop_pages: 2693 skb_shinfo(skb)->nr_frags = i; 2694 2695 for (; i < nfrags; i++) 2696 skb_frag_unref(skb, i); 2697 2698 if (skb_has_frag_list(skb)) 2699 skb_drop_fraglist(skb); 2700 goto done; 2701 } 2702 2703 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2704 fragp = &frag->next) { 2705 int end = offset + frag->len; 2706 2707 if (skb_shared(frag)) { 2708 struct sk_buff *nfrag; 2709 2710 nfrag = skb_clone(frag, GFP_ATOMIC); 2711 if (unlikely(!nfrag)) 2712 return -ENOMEM; 2713 2714 nfrag->next = frag->next; 2715 consume_skb(frag); 2716 frag = nfrag; 2717 *fragp = frag; 2718 } 2719 2720 if (end < len) { 2721 offset = end; 2722 continue; 2723 } 2724 2725 if (end > len && 2726 unlikely((err = pskb_trim(frag, len - offset)))) 2727 return err; 2728 2729 if (frag->next) 2730 skb_drop_list(&frag->next); 2731 break; 2732 } 2733 2734 done: 2735 if (len > skb_headlen(skb)) { 2736 skb->data_len -= skb->len - len; 2737 skb->len = len; 2738 } else { 2739 skb->len = len; 2740 skb->data_len = 0; 2741 skb_set_tail_pointer(skb, len); 2742 } 2743 2744 if (!skb->sk || skb->destructor == sock_edemux) 2745 skb_condense(skb); 2746 return 0; 2747 } 2748 EXPORT_SYMBOL(___pskb_trim); 2749 2750 /* Note : use pskb_trim_rcsum() instead of calling this directly 2751 */ 2752 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2753 { 2754 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2755 int delta = skb->len - len; 2756 2757 skb->csum = csum_block_sub(skb->csum, 2758 skb_checksum(skb, len, delta, 0), 2759 len); 2760 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2761 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2762 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2763 2764 if (offset + sizeof(__sum16) > hdlen) 2765 return -EINVAL; 2766 } 2767 return __pskb_trim(skb, len); 2768 } 2769 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2770 2771 /** 2772 * __pskb_pull_tail - advance tail of skb header 2773 * @skb: buffer to reallocate 2774 * @delta: number of bytes to advance tail 2775 * 2776 * The function makes a sense only on a fragmented &sk_buff, 2777 * it expands header moving its tail forward and copying necessary 2778 * data from fragmented part. 2779 * 2780 * &sk_buff MUST have reference count of 1. 2781 * 2782 * Returns %NULL (and &sk_buff does not change) if pull failed 2783 * or value of new tail of skb in the case of success. 2784 * 2785 * All the pointers pointing into skb header may change and must be 2786 * reloaded after call to this function. 2787 */ 2788 2789 /* Moves tail of skb head forward, copying data from fragmented part, 2790 * when it is necessary. 2791 * 1. It may fail due to malloc failure. 2792 * 2. It may change skb pointers. 2793 * 2794 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2795 */ 2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2797 { 2798 /* If skb has not enough free space at tail, get new one 2799 * plus 128 bytes for future expansions. If we have enough 2800 * room at tail, reallocate without expansion only if skb is cloned. 2801 */ 2802 int i, k, eat = (skb->tail + delta) - skb->end; 2803 2804 if (!skb_frags_readable(skb)) 2805 return NULL; 2806 2807 if (eat > 0 || skb_cloned(skb)) { 2808 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2809 GFP_ATOMIC)) 2810 return NULL; 2811 } 2812 2813 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2814 skb_tail_pointer(skb), delta)); 2815 2816 /* Optimization: no fragments, no reasons to preestimate 2817 * size of pulled pages. Superb. 2818 */ 2819 if (!skb_has_frag_list(skb)) 2820 goto pull_pages; 2821 2822 /* Estimate size of pulled pages. */ 2823 eat = delta; 2824 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2825 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2826 2827 if (size >= eat) 2828 goto pull_pages; 2829 eat -= size; 2830 } 2831 2832 /* If we need update frag list, we are in troubles. 2833 * Certainly, it is possible to add an offset to skb data, 2834 * but taking into account that pulling is expected to 2835 * be very rare operation, it is worth to fight against 2836 * further bloating skb head and crucify ourselves here instead. 2837 * Pure masohism, indeed. 8)8) 2838 */ 2839 if (eat) { 2840 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2841 struct sk_buff *clone = NULL; 2842 struct sk_buff *insp = NULL; 2843 2844 do { 2845 if (list->len <= eat) { 2846 /* Eaten as whole. */ 2847 eat -= list->len; 2848 list = list->next; 2849 insp = list; 2850 } else { 2851 /* Eaten partially. */ 2852 if (skb_is_gso(skb) && !list->head_frag && 2853 skb_headlen(list)) 2854 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2855 2856 if (skb_shared(list)) { 2857 /* Sucks! We need to fork list. :-( */ 2858 clone = skb_clone(list, GFP_ATOMIC); 2859 if (!clone) 2860 return NULL; 2861 insp = list->next; 2862 list = clone; 2863 } else { 2864 /* This may be pulled without 2865 * problems. */ 2866 insp = list; 2867 } 2868 if (!pskb_pull(list, eat)) { 2869 kfree_skb(clone); 2870 return NULL; 2871 } 2872 break; 2873 } 2874 } while (eat); 2875 2876 /* Free pulled out fragments. */ 2877 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2878 skb_shinfo(skb)->frag_list = list->next; 2879 consume_skb(list); 2880 } 2881 /* And insert new clone at head. */ 2882 if (clone) { 2883 clone->next = list; 2884 skb_shinfo(skb)->frag_list = clone; 2885 } 2886 } 2887 /* Success! Now we may commit changes to skb data. */ 2888 2889 pull_pages: 2890 eat = delta; 2891 k = 0; 2892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2893 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2894 2895 if (size <= eat) { 2896 skb_frag_unref(skb, i); 2897 eat -= size; 2898 } else { 2899 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2900 2901 *frag = skb_shinfo(skb)->frags[i]; 2902 if (eat) { 2903 skb_frag_off_add(frag, eat); 2904 skb_frag_size_sub(frag, eat); 2905 if (!i) 2906 goto end; 2907 eat = 0; 2908 } 2909 k++; 2910 } 2911 } 2912 skb_shinfo(skb)->nr_frags = k; 2913 2914 end: 2915 skb->tail += delta; 2916 skb->data_len -= delta; 2917 2918 if (!skb->data_len) 2919 skb_zcopy_clear(skb, false); 2920 2921 return skb_tail_pointer(skb); 2922 } 2923 EXPORT_SYMBOL(__pskb_pull_tail); 2924 2925 /** 2926 * skb_copy_bits - copy bits from skb to kernel buffer 2927 * @skb: source skb 2928 * @offset: offset in source 2929 * @to: destination buffer 2930 * @len: number of bytes to copy 2931 * 2932 * Copy the specified number of bytes from the source skb to the 2933 * destination buffer. 2934 * 2935 * CAUTION ! : 2936 * If its prototype is ever changed, 2937 * check arch/{*}/net/{*}.S files, 2938 * since it is called from BPF assembly code. 2939 */ 2940 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2941 { 2942 int start = skb_headlen(skb); 2943 struct sk_buff *frag_iter; 2944 int i, copy; 2945 2946 if (offset > (int)skb->len - len) 2947 goto fault; 2948 2949 /* Copy header. */ 2950 if ((copy = start - offset) > 0) { 2951 if (copy > len) 2952 copy = len; 2953 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2954 if ((len -= copy) == 0) 2955 return 0; 2956 offset += copy; 2957 to += copy; 2958 } 2959 2960 if (!skb_frags_readable(skb)) 2961 goto fault; 2962 2963 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2964 int end; 2965 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2966 2967 WARN_ON(start > offset + len); 2968 2969 end = start + skb_frag_size(f); 2970 if ((copy = end - offset) > 0) { 2971 u32 p_off, p_len, copied; 2972 struct page *p; 2973 u8 *vaddr; 2974 2975 if (copy > len) 2976 copy = len; 2977 2978 skb_frag_foreach_page(f, 2979 skb_frag_off(f) + offset - start, 2980 copy, p, p_off, p_len, copied) { 2981 vaddr = kmap_atomic(p); 2982 memcpy(to + copied, vaddr + p_off, p_len); 2983 kunmap_atomic(vaddr); 2984 } 2985 2986 if ((len -= copy) == 0) 2987 return 0; 2988 offset += copy; 2989 to += copy; 2990 } 2991 start = end; 2992 } 2993 2994 skb_walk_frags(skb, frag_iter) { 2995 int end; 2996 2997 WARN_ON(start > offset + len); 2998 2999 end = start + frag_iter->len; 3000 if ((copy = end - offset) > 0) { 3001 if (copy > len) 3002 copy = len; 3003 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3004 goto fault; 3005 if ((len -= copy) == 0) 3006 return 0; 3007 offset += copy; 3008 to += copy; 3009 } 3010 start = end; 3011 } 3012 3013 if (!len) 3014 return 0; 3015 3016 fault: 3017 return -EFAULT; 3018 } 3019 EXPORT_SYMBOL(skb_copy_bits); 3020 3021 /* 3022 * Callback from splice_to_pipe(), if we need to release some pages 3023 * at the end of the spd in case we error'ed out in filling the pipe. 3024 */ 3025 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3026 { 3027 put_page(spd->pages[i]); 3028 } 3029 3030 static struct page *linear_to_page(struct page *page, unsigned int *len, 3031 unsigned int *offset, 3032 struct sock *sk) 3033 { 3034 struct page_frag *pfrag = sk_page_frag(sk); 3035 3036 if (!sk_page_frag_refill(sk, pfrag)) 3037 return NULL; 3038 3039 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3040 3041 memcpy(page_address(pfrag->page) + pfrag->offset, 3042 page_address(page) + *offset, *len); 3043 *offset = pfrag->offset; 3044 pfrag->offset += *len; 3045 3046 return pfrag->page; 3047 } 3048 3049 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3050 struct page *page, 3051 unsigned int offset) 3052 { 3053 return spd->nr_pages && 3054 spd->pages[spd->nr_pages - 1] == page && 3055 (spd->partial[spd->nr_pages - 1].offset + 3056 spd->partial[spd->nr_pages - 1].len == offset); 3057 } 3058 3059 /* 3060 * Fill page/offset/length into spd, if it can hold more pages. 3061 */ 3062 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3063 unsigned int *len, unsigned int offset, bool linear, 3064 struct sock *sk) 3065 { 3066 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3067 return true; 3068 3069 if (linear) { 3070 page = linear_to_page(page, len, &offset, sk); 3071 if (!page) 3072 return true; 3073 } 3074 if (spd_can_coalesce(spd, page, offset)) { 3075 spd->partial[spd->nr_pages - 1].len += *len; 3076 return false; 3077 } 3078 get_page(page); 3079 spd->pages[spd->nr_pages] = page; 3080 spd->partial[spd->nr_pages].len = *len; 3081 spd->partial[spd->nr_pages].offset = offset; 3082 spd->nr_pages++; 3083 3084 return false; 3085 } 3086 3087 static bool __splice_segment(struct page *page, unsigned int poff, 3088 unsigned int plen, unsigned int *off, 3089 unsigned int *len, 3090 struct splice_pipe_desc *spd, bool linear, 3091 struct sock *sk) 3092 { 3093 if (!*len) 3094 return true; 3095 3096 /* skip this segment if already processed */ 3097 if (*off >= plen) { 3098 *off -= plen; 3099 return false; 3100 } 3101 3102 /* ignore any bits we already processed */ 3103 poff += *off; 3104 plen -= *off; 3105 *off = 0; 3106 3107 do { 3108 unsigned int flen = min(*len, plen); 3109 3110 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3111 return true; 3112 poff += flen; 3113 plen -= flen; 3114 *len -= flen; 3115 if (!*len) 3116 return true; 3117 } while (plen); 3118 3119 return false; 3120 } 3121 3122 /* 3123 * Map linear and fragment data from the skb to spd. It reports true if the 3124 * pipe is full or if we already spliced the requested length. 3125 */ 3126 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3127 unsigned int *offset, unsigned int *len, 3128 struct splice_pipe_desc *spd, struct sock *sk) 3129 { 3130 struct sk_buff *iter; 3131 int seg; 3132 3133 /* map the linear part : 3134 * If skb->head_frag is set, this 'linear' part is backed by a 3135 * fragment, and if the head is not shared with any clones then 3136 * we can avoid a copy since we own the head portion of this page. 3137 */ 3138 if (__splice_segment(virt_to_page(skb->data), 3139 (unsigned long) skb->data & (PAGE_SIZE - 1), 3140 skb_headlen(skb), 3141 offset, len, spd, 3142 skb_head_is_locked(skb), 3143 sk)) 3144 return true; 3145 3146 /* 3147 * then map the fragments 3148 */ 3149 if (!skb_frags_readable(skb)) 3150 return false; 3151 3152 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3153 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3154 3155 if (WARN_ON_ONCE(!skb_frag_page(f))) 3156 return false; 3157 3158 if (__splice_segment(skb_frag_page(f), 3159 skb_frag_off(f), skb_frag_size(f), 3160 offset, len, spd, false, sk)) 3161 return true; 3162 } 3163 3164 skb_walk_frags(skb, iter) { 3165 if (*offset >= iter->len) { 3166 *offset -= iter->len; 3167 continue; 3168 } 3169 /* __skb_splice_bits() only fails if the output has no room 3170 * left, so no point in going over the frag_list for the error 3171 * case. 3172 */ 3173 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3174 return true; 3175 } 3176 3177 return false; 3178 } 3179 3180 /* 3181 * Map data from the skb to a pipe. Should handle both the linear part, 3182 * the fragments, and the frag list. 3183 */ 3184 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3185 struct pipe_inode_info *pipe, unsigned int tlen, 3186 unsigned int flags) 3187 { 3188 struct partial_page partial[MAX_SKB_FRAGS]; 3189 struct page *pages[MAX_SKB_FRAGS]; 3190 struct splice_pipe_desc spd = { 3191 .pages = pages, 3192 .partial = partial, 3193 .nr_pages_max = MAX_SKB_FRAGS, 3194 .ops = &nosteal_pipe_buf_ops, 3195 .spd_release = sock_spd_release, 3196 }; 3197 int ret = 0; 3198 3199 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3200 3201 if (spd.nr_pages) 3202 ret = splice_to_pipe(pipe, &spd); 3203 3204 return ret; 3205 } 3206 EXPORT_SYMBOL_GPL(skb_splice_bits); 3207 3208 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3209 { 3210 struct socket *sock = sk->sk_socket; 3211 size_t size = msg_data_left(msg); 3212 3213 if (!sock) 3214 return -EINVAL; 3215 3216 if (!sock->ops->sendmsg_locked) 3217 return sock_no_sendmsg_locked(sk, msg, size); 3218 3219 return sock->ops->sendmsg_locked(sk, msg, size); 3220 } 3221 3222 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3223 { 3224 struct socket *sock = sk->sk_socket; 3225 3226 if (!sock) 3227 return -EINVAL; 3228 return sock_sendmsg(sock, msg); 3229 } 3230 3231 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3232 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3233 int len, sendmsg_func sendmsg, int flags) 3234 { 3235 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0; 3236 unsigned int orig_len = len; 3237 struct sk_buff *head = skb; 3238 unsigned short fragidx; 3239 int slen, ret; 3240 3241 do_frag_list: 3242 3243 /* Deal with head data */ 3244 while (offset < skb_headlen(skb) && len) { 3245 struct kvec kv; 3246 struct msghdr msg; 3247 3248 slen = min_t(int, len, skb_headlen(skb) - offset); 3249 kv.iov_base = skb->data + offset; 3250 kv.iov_len = slen; 3251 memset(&msg, 0, sizeof(msg)); 3252 msg.msg_flags = MSG_DONTWAIT | flags; 3253 if (slen < len) 3254 msg.msg_flags |= more_hint; 3255 3256 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3257 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3258 sendmsg_unlocked, sk, &msg); 3259 if (ret <= 0) 3260 goto error; 3261 3262 offset += ret; 3263 len -= ret; 3264 } 3265 3266 /* All the data was skb head? */ 3267 if (!len) 3268 goto out; 3269 3270 /* Make offset relative to start of frags */ 3271 offset -= skb_headlen(skb); 3272 3273 /* Find where we are in frag list */ 3274 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3275 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3276 3277 if (offset < skb_frag_size(frag)) 3278 break; 3279 3280 offset -= skb_frag_size(frag); 3281 } 3282 3283 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3284 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3285 3286 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3287 3288 while (slen) { 3289 struct bio_vec bvec; 3290 struct msghdr msg = { 3291 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3292 flags, 3293 }; 3294 3295 if (slen < len) 3296 msg.msg_flags |= more_hint; 3297 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3298 skb_frag_off(frag) + offset); 3299 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3300 slen); 3301 3302 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3303 sendmsg_unlocked, sk, &msg); 3304 if (ret <= 0) 3305 goto error; 3306 3307 len -= ret; 3308 offset += ret; 3309 slen -= ret; 3310 } 3311 3312 offset = 0; 3313 } 3314 3315 if (len) { 3316 /* Process any frag lists */ 3317 3318 if (skb == head) { 3319 if (skb_has_frag_list(skb)) { 3320 skb = skb_shinfo(skb)->frag_list; 3321 goto do_frag_list; 3322 } 3323 } else if (skb->next) { 3324 skb = skb->next; 3325 goto do_frag_list; 3326 } 3327 } 3328 3329 out: 3330 return orig_len - len; 3331 3332 error: 3333 return orig_len == len ? ret : orig_len - len; 3334 } 3335 3336 /* Send skb data on a socket. Socket must be locked. */ 3337 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3338 int len) 3339 { 3340 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3341 } 3342 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3343 3344 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3345 int offset, int len, int flags) 3346 { 3347 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3348 } 3349 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3350 3351 /* Send skb data on a socket. Socket must be unlocked. */ 3352 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3353 { 3354 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3355 } 3356 3357 /** 3358 * skb_store_bits - store bits from kernel buffer to skb 3359 * @skb: destination buffer 3360 * @offset: offset in destination 3361 * @from: source buffer 3362 * @len: number of bytes to copy 3363 * 3364 * Copy the specified number of bytes from the source buffer to the 3365 * destination skb. This function handles all the messy bits of 3366 * traversing fragment lists and such. 3367 */ 3368 3369 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3370 { 3371 int start = skb_headlen(skb); 3372 struct sk_buff *frag_iter; 3373 int i, copy; 3374 3375 if (offset > (int)skb->len - len) 3376 goto fault; 3377 3378 if ((copy = start - offset) > 0) { 3379 if (copy > len) 3380 copy = len; 3381 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3382 if ((len -= copy) == 0) 3383 return 0; 3384 offset += copy; 3385 from += copy; 3386 } 3387 3388 if (!skb_frags_readable(skb)) 3389 goto fault; 3390 3391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3392 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3393 int end; 3394 3395 WARN_ON(start > offset + len); 3396 3397 end = start + skb_frag_size(frag); 3398 if ((copy = end - offset) > 0) { 3399 u32 p_off, p_len, copied; 3400 struct page *p; 3401 u8 *vaddr; 3402 3403 if (copy > len) 3404 copy = len; 3405 3406 skb_frag_foreach_page(frag, 3407 skb_frag_off(frag) + offset - start, 3408 copy, p, p_off, p_len, copied) { 3409 vaddr = kmap_atomic(p); 3410 memcpy(vaddr + p_off, from + copied, p_len); 3411 kunmap_atomic(vaddr); 3412 } 3413 3414 if ((len -= copy) == 0) 3415 return 0; 3416 offset += copy; 3417 from += copy; 3418 } 3419 start = end; 3420 } 3421 3422 skb_walk_frags(skb, frag_iter) { 3423 int end; 3424 3425 WARN_ON(start > offset + len); 3426 3427 end = start + frag_iter->len; 3428 if ((copy = end - offset) > 0) { 3429 if (copy > len) 3430 copy = len; 3431 if (skb_store_bits(frag_iter, offset - start, 3432 from, copy)) 3433 goto fault; 3434 if ((len -= copy) == 0) 3435 return 0; 3436 offset += copy; 3437 from += copy; 3438 } 3439 start = end; 3440 } 3441 if (!len) 3442 return 0; 3443 3444 fault: 3445 return -EFAULT; 3446 } 3447 EXPORT_SYMBOL(skb_store_bits); 3448 3449 /* Checksum skb data. */ 3450 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3451 { 3452 int start = skb_headlen(skb); 3453 int i, copy = start - offset; 3454 struct sk_buff *frag_iter; 3455 int pos = 0; 3456 3457 /* Checksum header. */ 3458 if (copy > 0) { 3459 if (copy > len) 3460 copy = len; 3461 csum = csum_partial(skb->data + offset, copy, csum); 3462 if ((len -= copy) == 0) 3463 return csum; 3464 offset += copy; 3465 pos = copy; 3466 } 3467 3468 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3469 return 0; 3470 3471 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3472 int end; 3473 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3474 3475 WARN_ON(start > offset + len); 3476 3477 end = start + skb_frag_size(frag); 3478 if ((copy = end - offset) > 0) { 3479 u32 p_off, p_len, copied; 3480 struct page *p; 3481 __wsum csum2; 3482 u8 *vaddr; 3483 3484 if (copy > len) 3485 copy = len; 3486 3487 skb_frag_foreach_page(frag, 3488 skb_frag_off(frag) + offset - start, 3489 copy, p, p_off, p_len, copied) { 3490 vaddr = kmap_atomic(p); 3491 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3492 kunmap_atomic(vaddr); 3493 csum = csum_block_add(csum, csum2, pos); 3494 pos += p_len; 3495 } 3496 3497 if (!(len -= copy)) 3498 return csum; 3499 offset += copy; 3500 } 3501 start = end; 3502 } 3503 3504 skb_walk_frags(skb, frag_iter) { 3505 int end; 3506 3507 WARN_ON(start > offset + len); 3508 3509 end = start + frag_iter->len; 3510 if ((copy = end - offset) > 0) { 3511 __wsum csum2; 3512 if (copy > len) 3513 copy = len; 3514 csum2 = skb_checksum(frag_iter, offset - start, copy, 3515 0); 3516 csum = csum_block_add(csum, csum2, pos); 3517 if ((len -= copy) == 0) 3518 return csum; 3519 offset += copy; 3520 pos += copy; 3521 } 3522 start = end; 3523 } 3524 BUG_ON(len); 3525 3526 return csum; 3527 } 3528 EXPORT_SYMBOL(skb_checksum); 3529 3530 /* Both of above in one bottle. */ 3531 3532 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3533 u8 *to, int len) 3534 { 3535 int start = skb_headlen(skb); 3536 int i, copy = start - offset; 3537 struct sk_buff *frag_iter; 3538 int pos = 0; 3539 __wsum csum = 0; 3540 3541 /* Copy header. */ 3542 if (copy > 0) { 3543 if (copy > len) 3544 copy = len; 3545 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3546 copy); 3547 if ((len -= copy) == 0) 3548 return csum; 3549 offset += copy; 3550 to += copy; 3551 pos = copy; 3552 } 3553 3554 if (!skb_frags_readable(skb)) 3555 return 0; 3556 3557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3558 int end; 3559 3560 WARN_ON(start > offset + len); 3561 3562 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3563 if ((copy = end - offset) > 0) { 3564 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3565 u32 p_off, p_len, copied; 3566 struct page *p; 3567 __wsum csum2; 3568 u8 *vaddr; 3569 3570 if (copy > len) 3571 copy = len; 3572 3573 skb_frag_foreach_page(frag, 3574 skb_frag_off(frag) + offset - start, 3575 copy, p, p_off, p_len, copied) { 3576 vaddr = kmap_atomic(p); 3577 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3578 to + copied, 3579 p_len); 3580 kunmap_atomic(vaddr); 3581 csum = csum_block_add(csum, csum2, pos); 3582 pos += p_len; 3583 } 3584 3585 if (!(len -= copy)) 3586 return csum; 3587 offset += copy; 3588 to += copy; 3589 } 3590 start = end; 3591 } 3592 3593 skb_walk_frags(skb, frag_iter) { 3594 __wsum csum2; 3595 int end; 3596 3597 WARN_ON(start > offset + len); 3598 3599 end = start + frag_iter->len; 3600 if ((copy = end - offset) > 0) { 3601 if (copy > len) 3602 copy = len; 3603 csum2 = skb_copy_and_csum_bits(frag_iter, 3604 offset - start, 3605 to, copy); 3606 csum = csum_block_add(csum, csum2, pos); 3607 if ((len -= copy) == 0) 3608 return csum; 3609 offset += copy; 3610 to += copy; 3611 pos += copy; 3612 } 3613 start = end; 3614 } 3615 BUG_ON(len); 3616 return csum; 3617 } 3618 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3619 3620 #ifdef CONFIG_NET_CRC32C 3621 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3622 { 3623 int start = skb_headlen(skb); 3624 int i, copy = start - offset; 3625 struct sk_buff *frag_iter; 3626 3627 if (copy > 0) { 3628 copy = min(copy, len); 3629 crc = crc32c(crc, skb->data + offset, copy); 3630 len -= copy; 3631 if (len == 0) 3632 return crc; 3633 offset += copy; 3634 } 3635 3636 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3637 return 0; 3638 3639 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3640 int end; 3641 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3642 3643 WARN_ON(start > offset + len); 3644 3645 end = start + skb_frag_size(frag); 3646 copy = end - offset; 3647 if (copy > 0) { 3648 u32 p_off, p_len, copied; 3649 struct page *p; 3650 u8 *vaddr; 3651 3652 copy = min(copy, len); 3653 skb_frag_foreach_page(frag, 3654 skb_frag_off(frag) + offset - start, 3655 copy, p, p_off, p_len, copied) { 3656 vaddr = kmap_atomic(p); 3657 crc = crc32c(crc, vaddr + p_off, p_len); 3658 kunmap_atomic(vaddr); 3659 } 3660 len -= copy; 3661 if (len == 0) 3662 return crc; 3663 offset += copy; 3664 } 3665 start = end; 3666 } 3667 3668 skb_walk_frags(skb, frag_iter) { 3669 int end; 3670 3671 WARN_ON(start > offset + len); 3672 3673 end = start + frag_iter->len; 3674 copy = end - offset; 3675 if (copy > 0) { 3676 copy = min(copy, len); 3677 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3678 len -= copy; 3679 if (len == 0) 3680 return crc; 3681 offset += copy; 3682 } 3683 start = end; 3684 } 3685 BUG_ON(len); 3686 3687 return crc; 3688 } 3689 EXPORT_SYMBOL(skb_crc32c); 3690 #endif /* CONFIG_NET_CRC32C */ 3691 3692 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3693 { 3694 __sum16 sum; 3695 3696 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3697 /* See comments in __skb_checksum_complete(). */ 3698 if (likely(!sum)) { 3699 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3700 !skb->csum_complete_sw) 3701 netdev_rx_csum_fault(skb->dev, skb); 3702 } 3703 if (!skb_shared(skb)) 3704 skb->csum_valid = !sum; 3705 return sum; 3706 } 3707 EXPORT_SYMBOL(__skb_checksum_complete_head); 3708 3709 /* This function assumes skb->csum already holds pseudo header's checksum, 3710 * which has been changed from the hardware checksum, for example, by 3711 * __skb_checksum_validate_complete(). And, the original skb->csum must 3712 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3713 * 3714 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3715 * zero. The new checksum is stored back into skb->csum unless the skb is 3716 * shared. 3717 */ 3718 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3719 { 3720 __wsum csum; 3721 __sum16 sum; 3722 3723 csum = skb_checksum(skb, 0, skb->len, 0); 3724 3725 sum = csum_fold(csum_add(skb->csum, csum)); 3726 /* This check is inverted, because we already knew the hardware 3727 * checksum is invalid before calling this function. So, if the 3728 * re-computed checksum is valid instead, then we have a mismatch 3729 * between the original skb->csum and skb_checksum(). This means either 3730 * the original hardware checksum is incorrect or we screw up skb->csum 3731 * when moving skb->data around. 3732 */ 3733 if (likely(!sum)) { 3734 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3735 !skb->csum_complete_sw) 3736 netdev_rx_csum_fault(skb->dev, skb); 3737 } 3738 3739 if (!skb_shared(skb)) { 3740 /* Save full packet checksum */ 3741 skb->csum = csum; 3742 skb->ip_summed = CHECKSUM_COMPLETE; 3743 skb->csum_complete_sw = 1; 3744 skb->csum_valid = !sum; 3745 } 3746 3747 return sum; 3748 } 3749 EXPORT_SYMBOL(__skb_checksum_complete); 3750 3751 /** 3752 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3753 * @from: source buffer 3754 * 3755 * Calculates the amount of linear headroom needed in the 'to' skb passed 3756 * into skb_zerocopy(). 3757 */ 3758 unsigned int 3759 skb_zerocopy_headlen(const struct sk_buff *from) 3760 { 3761 unsigned int hlen = 0; 3762 3763 if (!from->head_frag || 3764 skb_headlen(from) < L1_CACHE_BYTES || 3765 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3766 hlen = skb_headlen(from); 3767 if (!hlen) 3768 hlen = from->len; 3769 } 3770 3771 if (skb_has_frag_list(from)) 3772 hlen = from->len; 3773 3774 return hlen; 3775 } 3776 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3777 3778 /** 3779 * skb_zerocopy - Zero copy skb to skb 3780 * @to: destination buffer 3781 * @from: source buffer 3782 * @len: number of bytes to copy from source buffer 3783 * @hlen: size of linear headroom in destination buffer 3784 * 3785 * Copies up to `len` bytes from `from` to `to` by creating references 3786 * to the frags in the source buffer. 3787 * 3788 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3789 * headroom in the `to` buffer. 3790 * 3791 * Return value: 3792 * 0: everything is OK 3793 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3794 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3795 */ 3796 int 3797 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3798 { 3799 int i, j = 0; 3800 int plen = 0; /* length of skb->head fragment */ 3801 int ret; 3802 struct page *page; 3803 unsigned int offset; 3804 3805 BUG_ON(!from->head_frag && !hlen); 3806 3807 /* dont bother with small payloads */ 3808 if (len <= skb_tailroom(to)) 3809 return skb_copy_bits(from, 0, skb_put(to, len), len); 3810 3811 if (hlen) { 3812 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3813 if (unlikely(ret)) 3814 return ret; 3815 len -= hlen; 3816 } else { 3817 plen = min_t(int, skb_headlen(from), len); 3818 if (plen) { 3819 page = virt_to_head_page(from->head); 3820 offset = from->data - (unsigned char *)page_address(page); 3821 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3822 offset, plen); 3823 get_page(page); 3824 j = 1; 3825 len -= plen; 3826 } 3827 } 3828 3829 skb_len_add(to, len + plen); 3830 3831 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3832 skb_tx_error(from); 3833 return -ENOMEM; 3834 } 3835 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3836 3837 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3838 int size; 3839 3840 if (!len) 3841 break; 3842 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3843 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3844 len); 3845 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3846 len -= size; 3847 skb_frag_ref(to, j); 3848 j++; 3849 } 3850 skb_shinfo(to)->nr_frags = j; 3851 3852 return 0; 3853 } 3854 EXPORT_SYMBOL_GPL(skb_zerocopy); 3855 3856 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3857 { 3858 __wsum csum; 3859 long csstart; 3860 3861 if (skb->ip_summed == CHECKSUM_PARTIAL) 3862 csstart = skb_checksum_start_offset(skb); 3863 else 3864 csstart = skb_headlen(skb); 3865 3866 BUG_ON(csstart > skb_headlen(skb)); 3867 3868 skb_copy_from_linear_data(skb, to, csstart); 3869 3870 csum = 0; 3871 if (csstart != skb->len) 3872 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3873 skb->len - csstart); 3874 3875 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3876 long csstuff = csstart + skb->csum_offset; 3877 3878 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3879 } 3880 } 3881 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3882 3883 /** 3884 * skb_dequeue - remove from the head of the queue 3885 * @list: list to dequeue from 3886 * 3887 * Remove the head of the list. The list lock is taken so the function 3888 * may be used safely with other locking list functions. The head item is 3889 * returned or %NULL if the list is empty. 3890 */ 3891 3892 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3893 { 3894 unsigned long flags; 3895 struct sk_buff *result; 3896 3897 spin_lock_irqsave(&list->lock, flags); 3898 result = __skb_dequeue(list); 3899 spin_unlock_irqrestore(&list->lock, flags); 3900 return result; 3901 } 3902 EXPORT_SYMBOL(skb_dequeue); 3903 3904 /** 3905 * skb_dequeue_tail - remove from the tail of the queue 3906 * @list: list to dequeue from 3907 * 3908 * Remove the tail of the list. The list lock is taken so the function 3909 * may be used safely with other locking list functions. The tail item is 3910 * returned or %NULL if the list is empty. 3911 */ 3912 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3913 { 3914 unsigned long flags; 3915 struct sk_buff *result; 3916 3917 spin_lock_irqsave(&list->lock, flags); 3918 result = __skb_dequeue_tail(list); 3919 spin_unlock_irqrestore(&list->lock, flags); 3920 return result; 3921 } 3922 EXPORT_SYMBOL(skb_dequeue_tail); 3923 3924 /** 3925 * skb_queue_purge_reason - empty a list 3926 * @list: list to empty 3927 * @reason: drop reason 3928 * 3929 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3930 * the list and one reference dropped. This function takes the list 3931 * lock and is atomic with respect to other list locking functions. 3932 */ 3933 void skb_queue_purge_reason(struct sk_buff_head *list, 3934 enum skb_drop_reason reason) 3935 { 3936 struct sk_buff_head tmp; 3937 unsigned long flags; 3938 3939 if (skb_queue_empty_lockless(list)) 3940 return; 3941 3942 __skb_queue_head_init(&tmp); 3943 3944 spin_lock_irqsave(&list->lock, flags); 3945 skb_queue_splice_init(list, &tmp); 3946 spin_unlock_irqrestore(&list->lock, flags); 3947 3948 __skb_queue_purge_reason(&tmp, reason); 3949 } 3950 EXPORT_SYMBOL(skb_queue_purge_reason); 3951 3952 /** 3953 * skb_rbtree_purge - empty a skb rbtree 3954 * @root: root of the rbtree to empty 3955 * Return value: the sum of truesizes of all purged skbs. 3956 * 3957 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3958 * the list and one reference dropped. This function does not take 3959 * any lock. Synchronization should be handled by the caller (e.g., TCP 3960 * out-of-order queue is protected by the socket lock). 3961 */ 3962 unsigned int skb_rbtree_purge(struct rb_root *root) 3963 { 3964 struct rb_node *p = rb_first(root); 3965 unsigned int sum = 0; 3966 3967 while (p) { 3968 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3969 3970 p = rb_next(p); 3971 rb_erase(&skb->rbnode, root); 3972 sum += skb->truesize; 3973 kfree_skb(skb); 3974 } 3975 return sum; 3976 } 3977 3978 void skb_errqueue_purge(struct sk_buff_head *list) 3979 { 3980 struct sk_buff *skb, *next; 3981 struct sk_buff_head kill; 3982 unsigned long flags; 3983 3984 __skb_queue_head_init(&kill); 3985 3986 spin_lock_irqsave(&list->lock, flags); 3987 skb_queue_walk_safe(list, skb, next) { 3988 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3989 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3990 continue; 3991 __skb_unlink(skb, list); 3992 __skb_queue_tail(&kill, skb); 3993 } 3994 spin_unlock_irqrestore(&list->lock, flags); 3995 __skb_queue_purge(&kill); 3996 } 3997 EXPORT_SYMBOL(skb_errqueue_purge); 3998 3999 /** 4000 * skb_queue_head - queue a buffer at the list head 4001 * @list: list to use 4002 * @newsk: buffer to queue 4003 * 4004 * Queue a buffer at the start of the list. This function takes the 4005 * list lock and can be used safely with other locking &sk_buff functions 4006 * safely. 4007 * 4008 * A buffer cannot be placed on two lists at the same time. 4009 */ 4010 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4011 { 4012 unsigned long flags; 4013 4014 spin_lock_irqsave(&list->lock, flags); 4015 __skb_queue_head(list, newsk); 4016 spin_unlock_irqrestore(&list->lock, flags); 4017 } 4018 EXPORT_SYMBOL(skb_queue_head); 4019 4020 /** 4021 * skb_queue_tail - queue a buffer at the list tail 4022 * @list: list to use 4023 * @newsk: buffer to queue 4024 * 4025 * Queue a buffer at the tail of the list. This function takes the 4026 * list lock and can be used safely with other locking &sk_buff functions 4027 * safely. 4028 * 4029 * A buffer cannot be placed on two lists at the same time. 4030 */ 4031 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4032 { 4033 unsigned long flags; 4034 4035 spin_lock_irqsave(&list->lock, flags); 4036 __skb_queue_tail(list, newsk); 4037 spin_unlock_irqrestore(&list->lock, flags); 4038 } 4039 EXPORT_SYMBOL(skb_queue_tail); 4040 4041 /** 4042 * skb_unlink - remove a buffer from a list 4043 * @skb: buffer to remove 4044 * @list: list to use 4045 * 4046 * Remove a packet from a list. The list locks are taken and this 4047 * function is atomic with respect to other list locked calls 4048 * 4049 * You must know what list the SKB is on. 4050 */ 4051 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4052 { 4053 unsigned long flags; 4054 4055 spin_lock_irqsave(&list->lock, flags); 4056 __skb_unlink(skb, list); 4057 spin_unlock_irqrestore(&list->lock, flags); 4058 } 4059 EXPORT_SYMBOL(skb_unlink); 4060 4061 /** 4062 * skb_append - append a buffer 4063 * @old: buffer to insert after 4064 * @newsk: buffer to insert 4065 * @list: list to use 4066 * 4067 * Place a packet after a given packet in a list. The list locks are taken 4068 * and this function is atomic with respect to other list locked calls. 4069 * A buffer cannot be placed on two lists at the same time. 4070 */ 4071 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4072 { 4073 unsigned long flags; 4074 4075 spin_lock_irqsave(&list->lock, flags); 4076 __skb_queue_after(list, old, newsk); 4077 spin_unlock_irqrestore(&list->lock, flags); 4078 } 4079 EXPORT_SYMBOL(skb_append); 4080 4081 static inline void skb_split_inside_header(struct sk_buff *skb, 4082 struct sk_buff* skb1, 4083 const u32 len, const int pos) 4084 { 4085 int i; 4086 4087 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4088 pos - len); 4089 /* And move data appendix as is. */ 4090 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4091 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4092 4093 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4094 skb1->unreadable = skb->unreadable; 4095 skb_shinfo(skb)->nr_frags = 0; 4096 skb1->data_len = skb->data_len; 4097 skb1->len += skb1->data_len; 4098 skb->data_len = 0; 4099 skb->len = len; 4100 skb_set_tail_pointer(skb, len); 4101 } 4102 4103 static inline void skb_split_no_header(struct sk_buff *skb, 4104 struct sk_buff* skb1, 4105 const u32 len, int pos) 4106 { 4107 int i, k = 0; 4108 const int nfrags = skb_shinfo(skb)->nr_frags; 4109 4110 skb_shinfo(skb)->nr_frags = 0; 4111 skb1->len = skb1->data_len = skb->len - len; 4112 skb->len = len; 4113 skb->data_len = len - pos; 4114 4115 for (i = 0; i < nfrags; i++) { 4116 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4117 4118 if (pos + size > len) { 4119 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4120 4121 if (pos < len) { 4122 /* Split frag. 4123 * We have two variants in this case: 4124 * 1. Move all the frag to the second 4125 * part, if it is possible. F.e. 4126 * this approach is mandatory for TUX, 4127 * where splitting is expensive. 4128 * 2. Split is accurately. We make this. 4129 */ 4130 skb_frag_ref(skb, i); 4131 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4132 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4133 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4134 skb_shinfo(skb)->nr_frags++; 4135 } 4136 k++; 4137 } else 4138 skb_shinfo(skb)->nr_frags++; 4139 pos += size; 4140 } 4141 skb_shinfo(skb1)->nr_frags = k; 4142 4143 skb1->unreadable = skb->unreadable; 4144 } 4145 4146 /** 4147 * skb_split - Split fragmented skb to two parts at length len. 4148 * @skb: the buffer to split 4149 * @skb1: the buffer to receive the second part 4150 * @len: new length for skb 4151 */ 4152 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4153 { 4154 int pos = skb_headlen(skb); 4155 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4156 4157 skb_zcopy_downgrade_managed(skb); 4158 4159 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4160 skb_zerocopy_clone(skb1, skb, 0); 4161 if (len < pos) /* Split line is inside header. */ 4162 skb_split_inside_header(skb, skb1, len, pos); 4163 else /* Second chunk has no header, nothing to copy. */ 4164 skb_split_no_header(skb, skb1, len, pos); 4165 } 4166 EXPORT_SYMBOL(skb_split); 4167 4168 /* Shifting from/to a cloned skb is a no-go. 4169 * 4170 * Caller cannot keep skb_shinfo related pointers past calling here! 4171 */ 4172 static int skb_prepare_for_shift(struct sk_buff *skb) 4173 { 4174 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4175 } 4176 4177 /** 4178 * skb_shift - Shifts paged data partially from skb to another 4179 * @tgt: buffer into which tail data gets added 4180 * @skb: buffer from which the paged data comes from 4181 * @shiftlen: shift up to this many bytes 4182 * 4183 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4184 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4185 * It's up to caller to free skb if everything was shifted. 4186 * 4187 * If @tgt runs out of frags, the whole operation is aborted. 4188 * 4189 * Skb cannot include anything else but paged data while tgt is allowed 4190 * to have non-paged data as well. 4191 * 4192 * TODO: full sized shift could be optimized but that would need 4193 * specialized skb free'er to handle frags without up-to-date nr_frags. 4194 */ 4195 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4196 { 4197 int from, to, merge, todo; 4198 skb_frag_t *fragfrom, *fragto; 4199 4200 BUG_ON(shiftlen > skb->len); 4201 4202 if (skb_headlen(skb)) 4203 return 0; 4204 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4205 return 0; 4206 4207 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4208 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4209 4210 todo = shiftlen; 4211 from = 0; 4212 to = skb_shinfo(tgt)->nr_frags; 4213 fragfrom = &skb_shinfo(skb)->frags[from]; 4214 4215 /* Actual merge is delayed until the point when we know we can 4216 * commit all, so that we don't have to undo partial changes 4217 */ 4218 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4219 skb_frag_off(fragfrom))) { 4220 merge = -1; 4221 } else { 4222 merge = to - 1; 4223 4224 todo -= skb_frag_size(fragfrom); 4225 if (todo < 0) { 4226 if (skb_prepare_for_shift(skb) || 4227 skb_prepare_for_shift(tgt)) 4228 return 0; 4229 4230 /* All previous frag pointers might be stale! */ 4231 fragfrom = &skb_shinfo(skb)->frags[from]; 4232 fragto = &skb_shinfo(tgt)->frags[merge]; 4233 4234 skb_frag_size_add(fragto, shiftlen); 4235 skb_frag_size_sub(fragfrom, shiftlen); 4236 skb_frag_off_add(fragfrom, shiftlen); 4237 4238 goto onlymerged; 4239 } 4240 4241 from++; 4242 } 4243 4244 /* Skip full, not-fitting skb to avoid expensive operations */ 4245 if ((shiftlen == skb->len) && 4246 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4247 return 0; 4248 4249 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4250 return 0; 4251 4252 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4253 if (to == MAX_SKB_FRAGS) 4254 return 0; 4255 4256 fragfrom = &skb_shinfo(skb)->frags[from]; 4257 fragto = &skb_shinfo(tgt)->frags[to]; 4258 4259 if (todo >= skb_frag_size(fragfrom)) { 4260 *fragto = *fragfrom; 4261 todo -= skb_frag_size(fragfrom); 4262 from++; 4263 to++; 4264 4265 } else { 4266 __skb_frag_ref(fragfrom); 4267 skb_frag_page_copy(fragto, fragfrom); 4268 skb_frag_off_copy(fragto, fragfrom); 4269 skb_frag_size_set(fragto, todo); 4270 4271 skb_frag_off_add(fragfrom, todo); 4272 skb_frag_size_sub(fragfrom, todo); 4273 todo = 0; 4274 4275 to++; 4276 break; 4277 } 4278 } 4279 4280 /* Ready to "commit" this state change to tgt */ 4281 skb_shinfo(tgt)->nr_frags = to; 4282 4283 if (merge >= 0) { 4284 fragfrom = &skb_shinfo(skb)->frags[0]; 4285 fragto = &skb_shinfo(tgt)->frags[merge]; 4286 4287 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4288 __skb_frag_unref(fragfrom, skb->pp_recycle); 4289 } 4290 4291 /* Reposition in the original skb */ 4292 to = 0; 4293 while (from < skb_shinfo(skb)->nr_frags) 4294 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4295 skb_shinfo(skb)->nr_frags = to; 4296 4297 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4298 4299 onlymerged: 4300 /* Most likely the tgt won't ever need its checksum anymore, skb on 4301 * the other hand might need it if it needs to be resent 4302 */ 4303 tgt->ip_summed = CHECKSUM_PARTIAL; 4304 skb->ip_summed = CHECKSUM_PARTIAL; 4305 4306 skb_len_add(skb, -shiftlen); 4307 skb_len_add(tgt, shiftlen); 4308 4309 return shiftlen; 4310 } 4311 4312 /** 4313 * skb_prepare_seq_read - Prepare a sequential read of skb data 4314 * @skb: the buffer to read 4315 * @from: lower offset of data to be read 4316 * @to: upper offset of data to be read 4317 * @st: state variable 4318 * 4319 * Initializes the specified state variable. Must be called before 4320 * invoking skb_seq_read() for the first time. 4321 */ 4322 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4323 unsigned int to, struct skb_seq_state *st) 4324 { 4325 st->lower_offset = from; 4326 st->upper_offset = to; 4327 st->root_skb = st->cur_skb = skb; 4328 st->frag_idx = st->stepped_offset = 0; 4329 st->frag_data = NULL; 4330 st->frag_off = 0; 4331 } 4332 EXPORT_SYMBOL(skb_prepare_seq_read); 4333 4334 /** 4335 * skb_seq_read - Sequentially read skb data 4336 * @consumed: number of bytes consumed by the caller so far 4337 * @data: destination pointer for data to be returned 4338 * @st: state variable 4339 * 4340 * Reads a block of skb data at @consumed relative to the 4341 * lower offset specified to skb_prepare_seq_read(). Assigns 4342 * the head of the data block to @data and returns the length 4343 * of the block or 0 if the end of the skb data or the upper 4344 * offset has been reached. 4345 * 4346 * The caller is not required to consume all of the data 4347 * returned, i.e. @consumed is typically set to the number 4348 * of bytes already consumed and the next call to 4349 * skb_seq_read() will return the remaining part of the block. 4350 * 4351 * Note 1: The size of each block of data returned can be arbitrary, 4352 * this limitation is the cost for zerocopy sequential 4353 * reads of potentially non linear data. 4354 * 4355 * Note 2: Fragment lists within fragments are not implemented 4356 * at the moment, state->root_skb could be replaced with 4357 * a stack for this purpose. 4358 */ 4359 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4360 struct skb_seq_state *st) 4361 { 4362 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4363 skb_frag_t *frag; 4364 4365 if (unlikely(abs_offset >= st->upper_offset)) { 4366 if (st->frag_data) { 4367 kunmap_atomic(st->frag_data); 4368 st->frag_data = NULL; 4369 } 4370 return 0; 4371 } 4372 4373 next_skb: 4374 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4375 4376 if (abs_offset < block_limit && !st->frag_data) { 4377 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4378 return block_limit - abs_offset; 4379 } 4380 4381 if (!skb_frags_readable(st->cur_skb)) 4382 return 0; 4383 4384 if (st->frag_idx == 0 && !st->frag_data) 4385 st->stepped_offset += skb_headlen(st->cur_skb); 4386 4387 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4388 unsigned int pg_idx, pg_off, pg_sz; 4389 4390 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4391 4392 pg_idx = 0; 4393 pg_off = skb_frag_off(frag); 4394 pg_sz = skb_frag_size(frag); 4395 4396 if (skb_frag_must_loop(skb_frag_page(frag))) { 4397 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4398 pg_off = offset_in_page(pg_off + st->frag_off); 4399 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4400 PAGE_SIZE - pg_off); 4401 } 4402 4403 block_limit = pg_sz + st->stepped_offset; 4404 if (abs_offset < block_limit) { 4405 if (!st->frag_data) 4406 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4407 4408 *data = (u8 *)st->frag_data + pg_off + 4409 (abs_offset - st->stepped_offset); 4410 4411 return block_limit - abs_offset; 4412 } 4413 4414 if (st->frag_data) { 4415 kunmap_atomic(st->frag_data); 4416 st->frag_data = NULL; 4417 } 4418 4419 st->stepped_offset += pg_sz; 4420 st->frag_off += pg_sz; 4421 if (st->frag_off == skb_frag_size(frag)) { 4422 st->frag_off = 0; 4423 st->frag_idx++; 4424 } 4425 } 4426 4427 if (st->frag_data) { 4428 kunmap_atomic(st->frag_data); 4429 st->frag_data = NULL; 4430 } 4431 4432 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4433 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4434 st->frag_idx = 0; 4435 goto next_skb; 4436 } else if (st->cur_skb->next) { 4437 st->cur_skb = st->cur_skb->next; 4438 st->frag_idx = 0; 4439 goto next_skb; 4440 } 4441 4442 return 0; 4443 } 4444 EXPORT_SYMBOL(skb_seq_read); 4445 4446 /** 4447 * skb_abort_seq_read - Abort a sequential read of skb data 4448 * @st: state variable 4449 * 4450 * Must be called if skb_seq_read() was not called until it 4451 * returned 0. 4452 */ 4453 void skb_abort_seq_read(struct skb_seq_state *st) 4454 { 4455 if (st->frag_data) 4456 kunmap_atomic(st->frag_data); 4457 } 4458 EXPORT_SYMBOL(skb_abort_seq_read); 4459 4460 /** 4461 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4462 * @st: source skb_seq_state 4463 * @offset: offset in source 4464 * @to: destination buffer 4465 * @len: number of bytes to copy 4466 * 4467 * Copy @len bytes from @offset bytes into the source @st to the destination 4468 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4469 * call to this function. If offset needs to decrease from the previous use `st` 4470 * should be reset first. 4471 * 4472 * Return: 0 on success or -EINVAL if the copy ended early 4473 */ 4474 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4475 { 4476 const u8 *data; 4477 u32 sqlen; 4478 4479 for (;;) { 4480 sqlen = skb_seq_read(offset, &data, st); 4481 if (sqlen == 0) 4482 return -EINVAL; 4483 if (sqlen >= len) { 4484 memcpy(to, data, len); 4485 return 0; 4486 } 4487 memcpy(to, data, sqlen); 4488 to += sqlen; 4489 offset += sqlen; 4490 len -= sqlen; 4491 } 4492 } 4493 EXPORT_SYMBOL(skb_copy_seq_read); 4494 4495 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4496 4497 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4498 struct ts_config *conf, 4499 struct ts_state *state) 4500 { 4501 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4502 } 4503 4504 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4505 { 4506 skb_abort_seq_read(TS_SKB_CB(state)); 4507 } 4508 4509 /** 4510 * skb_find_text - Find a text pattern in skb data 4511 * @skb: the buffer to look in 4512 * @from: search offset 4513 * @to: search limit 4514 * @config: textsearch configuration 4515 * 4516 * Finds a pattern in the skb data according to the specified 4517 * textsearch configuration. Use textsearch_next() to retrieve 4518 * subsequent occurrences of the pattern. Returns the offset 4519 * to the first occurrence or UINT_MAX if no match was found. 4520 */ 4521 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4522 unsigned int to, struct ts_config *config) 4523 { 4524 unsigned int patlen = config->ops->get_pattern_len(config); 4525 struct ts_state state; 4526 unsigned int ret; 4527 4528 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4529 4530 config->get_next_block = skb_ts_get_next_block; 4531 config->finish = skb_ts_finish; 4532 4533 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4534 4535 ret = textsearch_find(config, &state); 4536 return (ret + patlen <= to - from ? ret : UINT_MAX); 4537 } 4538 EXPORT_SYMBOL(skb_find_text); 4539 4540 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4541 int offset, size_t size, size_t max_frags) 4542 { 4543 int i = skb_shinfo(skb)->nr_frags; 4544 4545 if (skb_can_coalesce(skb, i, page, offset)) { 4546 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4547 } else if (i < max_frags) { 4548 skb_zcopy_downgrade_managed(skb); 4549 get_page(page); 4550 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4551 } else { 4552 return -EMSGSIZE; 4553 } 4554 4555 return 0; 4556 } 4557 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4558 4559 /** 4560 * skb_pull_rcsum - pull skb and update receive checksum 4561 * @skb: buffer to update 4562 * @len: length of data pulled 4563 * 4564 * This function performs an skb_pull on the packet and updates 4565 * the CHECKSUM_COMPLETE checksum. It should be used on 4566 * receive path processing instead of skb_pull unless you know 4567 * that the checksum difference is zero (e.g., a valid IP header) 4568 * or you are setting ip_summed to CHECKSUM_NONE. 4569 */ 4570 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4571 { 4572 unsigned char *data = skb->data; 4573 4574 BUG_ON(len > skb->len); 4575 __skb_pull(skb, len); 4576 skb_postpull_rcsum(skb, data, len); 4577 return skb->data; 4578 } 4579 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4580 4581 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4582 { 4583 skb_frag_t head_frag; 4584 struct page *page; 4585 4586 page = virt_to_head_page(frag_skb->head); 4587 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4588 (unsigned char *)page_address(page), 4589 skb_headlen(frag_skb)); 4590 return head_frag; 4591 } 4592 4593 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4594 netdev_features_t features, 4595 unsigned int offset) 4596 { 4597 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4598 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4599 unsigned int delta_truesize = 0; 4600 unsigned int delta_len = 0; 4601 struct sk_buff *tail = NULL; 4602 struct sk_buff *nskb, *tmp; 4603 int len_diff, err; 4604 4605 skb_push(skb, -skb_network_offset(skb) + offset); 4606 4607 /* Ensure the head is writeable before touching the shared info */ 4608 err = skb_unclone(skb, GFP_ATOMIC); 4609 if (err) 4610 goto err_linearize; 4611 4612 skb_shinfo(skb)->frag_list = NULL; 4613 4614 while (list_skb) { 4615 nskb = list_skb; 4616 list_skb = list_skb->next; 4617 4618 err = 0; 4619 delta_truesize += nskb->truesize; 4620 if (skb_shared(nskb)) { 4621 tmp = skb_clone(nskb, GFP_ATOMIC); 4622 if (tmp) { 4623 consume_skb(nskb); 4624 nskb = tmp; 4625 err = skb_unclone(nskb, GFP_ATOMIC); 4626 } else { 4627 err = -ENOMEM; 4628 } 4629 } 4630 4631 if (!tail) 4632 skb->next = nskb; 4633 else 4634 tail->next = nskb; 4635 4636 if (unlikely(err)) { 4637 nskb->next = list_skb; 4638 goto err_linearize; 4639 } 4640 4641 tail = nskb; 4642 4643 delta_len += nskb->len; 4644 4645 skb_push(nskb, -skb_network_offset(nskb) + offset); 4646 4647 skb_release_head_state(nskb); 4648 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4649 __copy_skb_header(nskb, skb); 4650 4651 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4652 nskb->transport_header += len_diff; 4653 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4654 nskb->data - tnl_hlen, 4655 offset + tnl_hlen); 4656 4657 if (skb_needs_linearize(nskb, features) && 4658 __skb_linearize(nskb)) 4659 goto err_linearize; 4660 } 4661 4662 skb->truesize = skb->truesize - delta_truesize; 4663 skb->data_len = skb->data_len - delta_len; 4664 skb->len = skb->len - delta_len; 4665 4666 skb_gso_reset(skb); 4667 4668 skb->prev = tail; 4669 4670 if (skb_needs_linearize(skb, features) && 4671 __skb_linearize(skb)) 4672 goto err_linearize; 4673 4674 skb_get(skb); 4675 4676 return skb; 4677 4678 err_linearize: 4679 kfree_skb_list(skb->next); 4680 skb->next = NULL; 4681 return ERR_PTR(-ENOMEM); 4682 } 4683 EXPORT_SYMBOL_GPL(skb_segment_list); 4684 4685 /** 4686 * skb_segment - Perform protocol segmentation on skb. 4687 * @head_skb: buffer to segment 4688 * @features: features for the output path (see dev->features) 4689 * 4690 * This function performs segmentation on the given skb. It returns 4691 * a pointer to the first in a list of new skbs for the segments. 4692 * In case of error it returns ERR_PTR(err). 4693 */ 4694 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4695 netdev_features_t features) 4696 { 4697 struct sk_buff *segs = NULL; 4698 struct sk_buff *tail = NULL; 4699 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4700 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4701 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4702 unsigned int offset = doffset; 4703 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4704 unsigned int partial_segs = 0; 4705 unsigned int headroom; 4706 unsigned int len = head_skb->len; 4707 struct sk_buff *frag_skb; 4708 skb_frag_t *frag; 4709 __be16 proto; 4710 bool csum, sg; 4711 int err = -ENOMEM; 4712 int i = 0; 4713 int nfrags, pos; 4714 4715 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4716 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4717 struct sk_buff *check_skb; 4718 4719 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4720 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4721 /* gso_size is untrusted, and we have a frag_list with 4722 * a linear non head_frag item. 4723 * 4724 * If head_skb's headlen does not fit requested gso_size, 4725 * it means that the frag_list members do NOT terminate 4726 * on exact gso_size boundaries. Hence we cannot perform 4727 * skb_frag_t page sharing. Therefore we must fallback to 4728 * copying the frag_list skbs; we do so by disabling SG. 4729 */ 4730 features &= ~NETIF_F_SG; 4731 break; 4732 } 4733 } 4734 } 4735 4736 __skb_push(head_skb, doffset); 4737 proto = skb_network_protocol(head_skb, NULL); 4738 if (unlikely(!proto)) 4739 return ERR_PTR(-EINVAL); 4740 4741 sg = !!(features & NETIF_F_SG); 4742 csum = !!can_checksum_protocol(features, proto); 4743 4744 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4745 if (!(features & NETIF_F_GSO_PARTIAL)) { 4746 struct sk_buff *iter; 4747 unsigned int frag_len; 4748 4749 if (!list_skb || 4750 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4751 goto normal; 4752 4753 /* If we get here then all the required 4754 * GSO features except frag_list are supported. 4755 * Try to split the SKB to multiple GSO SKBs 4756 * with no frag_list. 4757 * Currently we can do that only when the buffers don't 4758 * have a linear part and all the buffers except 4759 * the last are of the same length. 4760 */ 4761 frag_len = list_skb->len; 4762 skb_walk_frags(head_skb, iter) { 4763 if (frag_len != iter->len && iter->next) 4764 goto normal; 4765 if (skb_headlen(iter) && !iter->head_frag) 4766 goto normal; 4767 4768 len -= iter->len; 4769 } 4770 4771 if (len != frag_len) 4772 goto normal; 4773 } 4774 4775 /* GSO partial only requires that we trim off any excess that 4776 * doesn't fit into an MSS sized block, so take care of that 4777 * now. 4778 * Cap len to not accidentally hit GSO_BY_FRAGS. 4779 */ 4780 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4781 if (partial_segs > 1) 4782 mss *= partial_segs; 4783 else 4784 partial_segs = 0; 4785 } 4786 4787 normal: 4788 headroom = skb_headroom(head_skb); 4789 pos = skb_headlen(head_skb); 4790 4791 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4792 return ERR_PTR(-ENOMEM); 4793 4794 nfrags = skb_shinfo(head_skb)->nr_frags; 4795 frag = skb_shinfo(head_skb)->frags; 4796 frag_skb = head_skb; 4797 4798 do { 4799 struct sk_buff *nskb; 4800 skb_frag_t *nskb_frag; 4801 int hsize; 4802 int size; 4803 4804 if (unlikely(mss == GSO_BY_FRAGS)) { 4805 len = list_skb->len; 4806 } else { 4807 len = head_skb->len - offset; 4808 if (len > mss) 4809 len = mss; 4810 } 4811 4812 hsize = skb_headlen(head_skb) - offset; 4813 4814 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4815 (skb_headlen(list_skb) == len || sg)) { 4816 BUG_ON(skb_headlen(list_skb) > len); 4817 4818 nskb = skb_clone(list_skb, GFP_ATOMIC); 4819 if (unlikely(!nskb)) 4820 goto err; 4821 4822 i = 0; 4823 nfrags = skb_shinfo(list_skb)->nr_frags; 4824 frag = skb_shinfo(list_skb)->frags; 4825 frag_skb = list_skb; 4826 pos += skb_headlen(list_skb); 4827 4828 while (pos < offset + len) { 4829 BUG_ON(i >= nfrags); 4830 4831 size = skb_frag_size(frag); 4832 if (pos + size > offset + len) 4833 break; 4834 4835 i++; 4836 pos += size; 4837 frag++; 4838 } 4839 4840 list_skb = list_skb->next; 4841 4842 if (unlikely(pskb_trim(nskb, len))) { 4843 kfree_skb(nskb); 4844 goto err; 4845 } 4846 4847 hsize = skb_end_offset(nskb); 4848 if (skb_cow_head(nskb, doffset + headroom)) { 4849 kfree_skb(nskb); 4850 goto err; 4851 } 4852 4853 nskb->truesize += skb_end_offset(nskb) - hsize; 4854 skb_release_head_state(nskb); 4855 __skb_push(nskb, doffset); 4856 } else { 4857 if (hsize < 0) 4858 hsize = 0; 4859 if (hsize > len || !sg) 4860 hsize = len; 4861 4862 nskb = __alloc_skb(hsize + doffset + headroom, 4863 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4864 NUMA_NO_NODE); 4865 4866 if (unlikely(!nskb)) 4867 goto err; 4868 4869 skb_reserve(nskb, headroom); 4870 __skb_put(nskb, doffset); 4871 } 4872 4873 if (segs) 4874 tail->next = nskb; 4875 else 4876 segs = nskb; 4877 tail = nskb; 4878 4879 __copy_skb_header(nskb, head_skb); 4880 4881 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4882 skb_reset_mac_len(nskb); 4883 4884 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4885 nskb->data - tnl_hlen, 4886 doffset + tnl_hlen); 4887 4888 if (nskb->len == len + doffset) 4889 goto perform_csum_check; 4890 4891 if (!sg) { 4892 if (!csum) { 4893 if (!nskb->remcsum_offload) 4894 nskb->ip_summed = CHECKSUM_NONE; 4895 SKB_GSO_CB(nskb)->csum = 4896 skb_copy_and_csum_bits(head_skb, offset, 4897 skb_put(nskb, 4898 len), 4899 len); 4900 SKB_GSO_CB(nskb)->csum_start = 4901 skb_headroom(nskb) + doffset; 4902 } else { 4903 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4904 goto err; 4905 } 4906 continue; 4907 } 4908 4909 nskb_frag = skb_shinfo(nskb)->frags; 4910 4911 skb_copy_from_linear_data_offset(head_skb, offset, 4912 skb_put(nskb, hsize), hsize); 4913 4914 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4915 SKBFL_SHARED_FRAG; 4916 4917 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4918 goto err; 4919 4920 while (pos < offset + len) { 4921 if (i >= nfrags) { 4922 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4923 skb_zerocopy_clone(nskb, list_skb, 4924 GFP_ATOMIC)) 4925 goto err; 4926 4927 i = 0; 4928 nfrags = skb_shinfo(list_skb)->nr_frags; 4929 frag = skb_shinfo(list_skb)->frags; 4930 frag_skb = list_skb; 4931 if (!skb_headlen(list_skb)) { 4932 BUG_ON(!nfrags); 4933 } else { 4934 BUG_ON(!list_skb->head_frag); 4935 4936 /* to make room for head_frag. */ 4937 i--; 4938 frag--; 4939 } 4940 4941 list_skb = list_skb->next; 4942 } 4943 4944 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4945 MAX_SKB_FRAGS)) { 4946 net_warn_ratelimited( 4947 "skb_segment: too many frags: %u %u\n", 4948 pos, mss); 4949 err = -EINVAL; 4950 goto err; 4951 } 4952 4953 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4954 __skb_frag_ref(nskb_frag); 4955 size = skb_frag_size(nskb_frag); 4956 4957 if (pos < offset) { 4958 skb_frag_off_add(nskb_frag, offset - pos); 4959 skb_frag_size_sub(nskb_frag, offset - pos); 4960 } 4961 4962 skb_shinfo(nskb)->nr_frags++; 4963 4964 if (pos + size <= offset + len) { 4965 i++; 4966 frag++; 4967 pos += size; 4968 } else { 4969 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4970 goto skip_fraglist; 4971 } 4972 4973 nskb_frag++; 4974 } 4975 4976 skip_fraglist: 4977 nskb->data_len = len - hsize; 4978 nskb->len += nskb->data_len; 4979 nskb->truesize += nskb->data_len; 4980 4981 perform_csum_check: 4982 if (!csum) { 4983 if (skb_has_shared_frag(nskb) && 4984 __skb_linearize(nskb)) 4985 goto err; 4986 4987 if (!nskb->remcsum_offload) 4988 nskb->ip_summed = CHECKSUM_NONE; 4989 SKB_GSO_CB(nskb)->csum = 4990 skb_checksum(nskb, doffset, 4991 nskb->len - doffset, 0); 4992 SKB_GSO_CB(nskb)->csum_start = 4993 skb_headroom(nskb) + doffset; 4994 } 4995 } while ((offset += len) < head_skb->len); 4996 4997 /* Some callers want to get the end of the list. 4998 * Put it in segs->prev to avoid walking the list. 4999 * (see validate_xmit_skb_list() for example) 5000 */ 5001 segs->prev = tail; 5002 5003 if (partial_segs) { 5004 struct sk_buff *iter; 5005 int type = skb_shinfo(head_skb)->gso_type; 5006 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5007 5008 /* Update type to add partial and then remove dodgy if set */ 5009 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5010 type &= ~SKB_GSO_DODGY; 5011 5012 /* Update GSO info and prepare to start updating headers on 5013 * our way back down the stack of protocols. 5014 */ 5015 for (iter = segs; iter; iter = iter->next) { 5016 skb_shinfo(iter)->gso_size = gso_size; 5017 skb_shinfo(iter)->gso_segs = partial_segs; 5018 skb_shinfo(iter)->gso_type = type; 5019 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5020 } 5021 5022 if (tail->len - doffset <= gso_size) 5023 skb_shinfo(tail)->gso_size = 0; 5024 else if (tail != segs) 5025 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5026 } 5027 5028 /* Following permits correct backpressure, for protocols 5029 * using skb_set_owner_w(). 5030 * Idea is to tranfert ownership from head_skb to last segment. 5031 */ 5032 if (head_skb->destructor == sock_wfree) { 5033 swap(tail->truesize, head_skb->truesize); 5034 swap(tail->destructor, head_skb->destructor); 5035 swap(tail->sk, head_skb->sk); 5036 } 5037 return segs; 5038 5039 err: 5040 kfree_skb_list(segs); 5041 return ERR_PTR(err); 5042 } 5043 EXPORT_SYMBOL_GPL(skb_segment); 5044 5045 #ifdef CONFIG_SKB_EXTENSIONS 5046 #define SKB_EXT_ALIGN_VALUE 8 5047 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5048 5049 static const u8 skb_ext_type_len[] = { 5050 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5051 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5052 #endif 5053 #ifdef CONFIG_XFRM 5054 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5055 #endif 5056 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5057 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5058 #endif 5059 #if IS_ENABLED(CONFIG_MPTCP) 5060 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5061 #endif 5062 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5063 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5064 #endif 5065 }; 5066 5067 static __always_inline unsigned int skb_ext_total_length(void) 5068 { 5069 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5070 int i; 5071 5072 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5073 l += skb_ext_type_len[i]; 5074 5075 return l; 5076 } 5077 5078 static void skb_extensions_init(void) 5079 { 5080 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5081 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5082 BUILD_BUG_ON(skb_ext_total_length() > 255); 5083 #endif 5084 5085 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5086 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5087 0, 5088 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5089 NULL); 5090 } 5091 #else 5092 static void skb_extensions_init(void) {} 5093 #endif 5094 5095 /* The SKB kmem_cache slab is critical for network performance. Never 5096 * merge/alias the slab with similar sized objects. This avoids fragmentation 5097 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5098 */ 5099 #ifndef CONFIG_SLUB_TINY 5100 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5101 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5102 #define FLAG_SKB_NO_MERGE 0 5103 #endif 5104 5105 void __init skb_init(void) 5106 { 5107 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5108 sizeof(struct sk_buff), 5109 0, 5110 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5111 FLAG_SKB_NO_MERGE, 5112 offsetof(struct sk_buff, cb), 5113 sizeof_field(struct sk_buff, cb), 5114 NULL); 5115 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5116 sizeof(struct sk_buff_fclones), 5117 0, 5118 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5119 NULL); 5120 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5121 * struct skb_shared_info is located at the end of skb->head, 5122 * and should not be copied to/from user. 5123 */ 5124 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5125 SKB_SMALL_HEAD_CACHE_SIZE, 5126 0, 5127 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5128 0, 5129 SKB_SMALL_HEAD_HEADROOM, 5130 NULL); 5131 skb_extensions_init(); 5132 } 5133 5134 static int 5135 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5136 unsigned int recursion_level) 5137 { 5138 int start = skb_headlen(skb); 5139 int i, copy = start - offset; 5140 struct sk_buff *frag_iter; 5141 int elt = 0; 5142 5143 if (unlikely(recursion_level >= 24)) 5144 return -EMSGSIZE; 5145 5146 if (copy > 0) { 5147 if (copy > len) 5148 copy = len; 5149 sg_set_buf(sg, skb->data + offset, copy); 5150 elt++; 5151 if ((len -= copy) == 0) 5152 return elt; 5153 offset += copy; 5154 } 5155 5156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5157 int end; 5158 5159 WARN_ON(start > offset + len); 5160 5161 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5162 if ((copy = end - offset) > 0) { 5163 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5164 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5165 return -EMSGSIZE; 5166 5167 if (copy > len) 5168 copy = len; 5169 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5170 skb_frag_off(frag) + offset - start); 5171 elt++; 5172 if (!(len -= copy)) 5173 return elt; 5174 offset += copy; 5175 } 5176 start = end; 5177 } 5178 5179 skb_walk_frags(skb, frag_iter) { 5180 int end, ret; 5181 5182 WARN_ON(start > offset + len); 5183 5184 end = start + frag_iter->len; 5185 if ((copy = end - offset) > 0) { 5186 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5187 return -EMSGSIZE; 5188 5189 if (copy > len) 5190 copy = len; 5191 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5192 copy, recursion_level + 1); 5193 if (unlikely(ret < 0)) 5194 return ret; 5195 elt += ret; 5196 if ((len -= copy) == 0) 5197 return elt; 5198 offset += copy; 5199 } 5200 start = end; 5201 } 5202 BUG_ON(len); 5203 return elt; 5204 } 5205 5206 /** 5207 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5208 * @skb: Socket buffer containing the buffers to be mapped 5209 * @sg: The scatter-gather list to map into 5210 * @offset: The offset into the buffer's contents to start mapping 5211 * @len: Length of buffer space to be mapped 5212 * 5213 * Fill the specified scatter-gather list with mappings/pointers into a 5214 * region of the buffer space attached to a socket buffer. Returns either 5215 * the number of scatterlist items used, or -EMSGSIZE if the contents 5216 * could not fit. 5217 */ 5218 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5219 { 5220 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5221 5222 if (nsg <= 0) 5223 return nsg; 5224 5225 sg_mark_end(&sg[nsg - 1]); 5226 5227 return nsg; 5228 } 5229 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5230 5231 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5232 * sglist without mark the sg which contain last skb data as the end. 5233 * So the caller can mannipulate sg list as will when padding new data after 5234 * the first call without calling sg_unmark_end to expend sg list. 5235 * 5236 * Scenario to use skb_to_sgvec_nomark: 5237 * 1. sg_init_table 5238 * 2. skb_to_sgvec_nomark(payload1) 5239 * 3. skb_to_sgvec_nomark(payload2) 5240 * 5241 * This is equivalent to: 5242 * 1. sg_init_table 5243 * 2. skb_to_sgvec(payload1) 5244 * 3. sg_unmark_end 5245 * 4. skb_to_sgvec(payload2) 5246 * 5247 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5248 * is more preferable. 5249 */ 5250 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5251 int offset, int len) 5252 { 5253 return __skb_to_sgvec(skb, sg, offset, len, 0); 5254 } 5255 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5256 5257 5258 5259 /** 5260 * skb_cow_data - Check that a socket buffer's data buffers are writable 5261 * @skb: The socket buffer to check. 5262 * @tailbits: Amount of trailing space to be added 5263 * @trailer: Returned pointer to the skb where the @tailbits space begins 5264 * 5265 * Make sure that the data buffers attached to a socket buffer are 5266 * writable. If they are not, private copies are made of the data buffers 5267 * and the socket buffer is set to use these instead. 5268 * 5269 * If @tailbits is given, make sure that there is space to write @tailbits 5270 * bytes of data beyond current end of socket buffer. @trailer will be 5271 * set to point to the skb in which this space begins. 5272 * 5273 * The number of scatterlist elements required to completely map the 5274 * COW'd and extended socket buffer will be returned. 5275 */ 5276 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5277 { 5278 int copyflag; 5279 int elt; 5280 struct sk_buff *skb1, **skb_p; 5281 5282 /* If skb is cloned or its head is paged, reallocate 5283 * head pulling out all the pages (pages are considered not writable 5284 * at the moment even if they are anonymous). 5285 */ 5286 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5287 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5288 return -ENOMEM; 5289 5290 /* Easy case. Most of packets will go this way. */ 5291 if (!skb_has_frag_list(skb)) { 5292 /* A little of trouble, not enough of space for trailer. 5293 * This should not happen, when stack is tuned to generate 5294 * good frames. OK, on miss we reallocate and reserve even more 5295 * space, 128 bytes is fair. */ 5296 5297 if (skb_tailroom(skb) < tailbits && 5298 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5299 return -ENOMEM; 5300 5301 /* Voila! */ 5302 *trailer = skb; 5303 return 1; 5304 } 5305 5306 /* Misery. We are in troubles, going to mincer fragments... */ 5307 5308 elt = 1; 5309 skb_p = &skb_shinfo(skb)->frag_list; 5310 copyflag = 0; 5311 5312 while ((skb1 = *skb_p) != NULL) { 5313 int ntail = 0; 5314 5315 /* The fragment is partially pulled by someone, 5316 * this can happen on input. Copy it and everything 5317 * after it. */ 5318 5319 if (skb_shared(skb1)) 5320 copyflag = 1; 5321 5322 /* If the skb is the last, worry about trailer. */ 5323 5324 if (skb1->next == NULL && tailbits) { 5325 if (skb_shinfo(skb1)->nr_frags || 5326 skb_has_frag_list(skb1) || 5327 skb_tailroom(skb1) < tailbits) 5328 ntail = tailbits + 128; 5329 } 5330 5331 if (copyflag || 5332 skb_cloned(skb1) || 5333 ntail || 5334 skb_shinfo(skb1)->nr_frags || 5335 skb_has_frag_list(skb1)) { 5336 struct sk_buff *skb2; 5337 5338 /* Fuck, we are miserable poor guys... */ 5339 if (ntail == 0) 5340 skb2 = skb_copy(skb1, GFP_ATOMIC); 5341 else 5342 skb2 = skb_copy_expand(skb1, 5343 skb_headroom(skb1), 5344 ntail, 5345 GFP_ATOMIC); 5346 if (unlikely(skb2 == NULL)) 5347 return -ENOMEM; 5348 5349 if (skb1->sk) 5350 skb_set_owner_w(skb2, skb1->sk); 5351 5352 /* Looking around. Are we still alive? 5353 * OK, link new skb, drop old one */ 5354 5355 skb2->next = skb1->next; 5356 *skb_p = skb2; 5357 kfree_skb(skb1); 5358 skb1 = skb2; 5359 } 5360 elt++; 5361 *trailer = skb1; 5362 skb_p = &skb1->next; 5363 } 5364 5365 return elt; 5366 } 5367 EXPORT_SYMBOL_GPL(skb_cow_data); 5368 5369 static void sock_rmem_free(struct sk_buff *skb) 5370 { 5371 struct sock *sk = skb->sk; 5372 5373 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5374 } 5375 5376 static void skb_set_err_queue(struct sk_buff *skb) 5377 { 5378 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5379 * So, it is safe to (mis)use it to mark skbs on the error queue. 5380 */ 5381 skb->pkt_type = PACKET_OUTGOING; 5382 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5383 } 5384 5385 /* 5386 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5387 */ 5388 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5389 { 5390 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5391 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5392 return -ENOMEM; 5393 5394 skb_orphan(skb); 5395 skb->sk = sk; 5396 skb->destructor = sock_rmem_free; 5397 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5398 skb_set_err_queue(skb); 5399 5400 /* before exiting rcu section, make sure dst is refcounted */ 5401 skb_dst_force(skb); 5402 5403 skb_queue_tail(&sk->sk_error_queue, skb); 5404 if (!sock_flag(sk, SOCK_DEAD)) 5405 sk_error_report(sk); 5406 return 0; 5407 } 5408 EXPORT_SYMBOL(sock_queue_err_skb); 5409 5410 static bool is_icmp_err_skb(const struct sk_buff *skb) 5411 { 5412 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5413 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5414 } 5415 5416 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5417 { 5418 struct sk_buff_head *q = &sk->sk_error_queue; 5419 struct sk_buff *skb, *skb_next = NULL; 5420 bool icmp_next = false; 5421 unsigned long flags; 5422 5423 if (skb_queue_empty_lockless(q)) 5424 return NULL; 5425 5426 spin_lock_irqsave(&q->lock, flags); 5427 skb = __skb_dequeue(q); 5428 if (skb && (skb_next = skb_peek(q))) { 5429 icmp_next = is_icmp_err_skb(skb_next); 5430 if (icmp_next) 5431 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5432 } 5433 spin_unlock_irqrestore(&q->lock, flags); 5434 5435 if (is_icmp_err_skb(skb) && !icmp_next) 5436 sk->sk_err = 0; 5437 5438 if (skb_next) 5439 sk_error_report(sk); 5440 5441 return skb; 5442 } 5443 EXPORT_SYMBOL(sock_dequeue_err_skb); 5444 5445 /** 5446 * skb_clone_sk - create clone of skb, and take reference to socket 5447 * @skb: the skb to clone 5448 * 5449 * This function creates a clone of a buffer that holds a reference on 5450 * sk_refcnt. Buffers created via this function are meant to be 5451 * returned using sock_queue_err_skb, or free via kfree_skb. 5452 * 5453 * When passing buffers allocated with this function to sock_queue_err_skb 5454 * it is necessary to wrap the call with sock_hold/sock_put in order to 5455 * prevent the socket from being released prior to being enqueued on 5456 * the sk_error_queue. 5457 */ 5458 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5459 { 5460 struct sock *sk = skb->sk; 5461 struct sk_buff *clone; 5462 5463 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5464 return NULL; 5465 5466 clone = skb_clone(skb, GFP_ATOMIC); 5467 if (!clone) { 5468 sock_put(sk); 5469 return NULL; 5470 } 5471 5472 clone->sk = sk; 5473 clone->destructor = sock_efree; 5474 5475 return clone; 5476 } 5477 EXPORT_SYMBOL(skb_clone_sk); 5478 5479 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5480 struct sock *sk, 5481 int tstype, 5482 bool opt_stats) 5483 { 5484 struct sock_exterr_skb *serr; 5485 int err; 5486 5487 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5488 5489 serr = SKB_EXT_ERR(skb); 5490 memset(serr, 0, sizeof(*serr)); 5491 serr->ee.ee_errno = ENOMSG; 5492 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5493 serr->ee.ee_info = tstype; 5494 serr->opt_stats = opt_stats; 5495 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5496 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5497 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5498 if (sk_is_tcp(sk)) 5499 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5500 } 5501 5502 err = sock_queue_err_skb(sk, skb); 5503 5504 if (err) 5505 kfree_skb(skb); 5506 } 5507 5508 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5509 { 5510 bool ret; 5511 5512 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5513 return true; 5514 5515 read_lock_bh(&sk->sk_callback_lock); 5516 ret = sk->sk_socket && sk->sk_socket->file && 5517 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5518 read_unlock_bh(&sk->sk_callback_lock); 5519 return ret; 5520 } 5521 5522 void skb_complete_tx_timestamp(struct sk_buff *skb, 5523 struct skb_shared_hwtstamps *hwtstamps) 5524 { 5525 struct sock *sk = skb->sk; 5526 5527 if (!skb_may_tx_timestamp(sk, false)) 5528 goto err; 5529 5530 /* Take a reference to prevent skb_orphan() from freeing the socket, 5531 * but only if the socket refcount is not zero. 5532 */ 5533 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5534 *skb_hwtstamps(skb) = *hwtstamps; 5535 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5536 sock_put(sk); 5537 return; 5538 } 5539 5540 err: 5541 kfree_skb(skb); 5542 } 5543 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5544 5545 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5546 struct skb_shared_hwtstamps *hwtstamps, 5547 int tstype) 5548 { 5549 switch (tstype) { 5550 case SCM_TSTAMP_SCHED: 5551 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5552 case SCM_TSTAMP_SND: 5553 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5554 SKBTX_SW_TSTAMP); 5555 case SCM_TSTAMP_ACK: 5556 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5557 case SCM_TSTAMP_COMPLETION: 5558 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5559 } 5560 5561 return false; 5562 } 5563 5564 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5565 struct skb_shared_hwtstamps *hwtstamps, 5566 struct sock *sk, 5567 int tstype) 5568 { 5569 int op; 5570 5571 switch (tstype) { 5572 case SCM_TSTAMP_SCHED: 5573 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5574 break; 5575 case SCM_TSTAMP_SND: 5576 if (hwtstamps) { 5577 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5578 *skb_hwtstamps(skb) = *hwtstamps; 5579 } else { 5580 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5581 } 5582 break; 5583 case SCM_TSTAMP_ACK: 5584 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5585 break; 5586 default: 5587 return; 5588 } 5589 5590 bpf_skops_tx_timestamping(sk, skb, op); 5591 } 5592 5593 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5594 const struct sk_buff *ack_skb, 5595 struct skb_shared_hwtstamps *hwtstamps, 5596 struct sock *sk, int tstype) 5597 { 5598 struct sk_buff *skb; 5599 bool tsonly, opt_stats = false; 5600 u32 tsflags; 5601 5602 if (!sk) 5603 return; 5604 5605 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5606 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5607 sk, tstype); 5608 5609 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5610 return; 5611 5612 tsflags = READ_ONCE(sk->sk_tsflags); 5613 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5614 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5615 return; 5616 5617 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5618 if (!skb_may_tx_timestamp(sk, tsonly)) 5619 return; 5620 5621 if (tsonly) { 5622 #ifdef CONFIG_INET 5623 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5624 sk_is_tcp(sk)) { 5625 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5626 ack_skb); 5627 opt_stats = true; 5628 } else 5629 #endif 5630 skb = alloc_skb(0, GFP_ATOMIC); 5631 } else { 5632 skb = skb_clone(orig_skb, GFP_ATOMIC); 5633 5634 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5635 kfree_skb(skb); 5636 return; 5637 } 5638 } 5639 if (!skb) 5640 return; 5641 5642 if (tsonly) { 5643 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5644 SKBTX_ANY_TSTAMP; 5645 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5646 } 5647 5648 if (hwtstamps) 5649 *skb_hwtstamps(skb) = *hwtstamps; 5650 else 5651 __net_timestamp(skb); 5652 5653 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5654 } 5655 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5656 5657 void skb_tstamp_tx(struct sk_buff *orig_skb, 5658 struct skb_shared_hwtstamps *hwtstamps) 5659 { 5660 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5661 SCM_TSTAMP_SND); 5662 } 5663 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5664 5665 #ifdef CONFIG_WIRELESS 5666 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5667 { 5668 struct sock *sk = skb->sk; 5669 struct sock_exterr_skb *serr; 5670 int err = 1; 5671 5672 skb->wifi_acked_valid = 1; 5673 skb->wifi_acked = acked; 5674 5675 serr = SKB_EXT_ERR(skb); 5676 memset(serr, 0, sizeof(*serr)); 5677 serr->ee.ee_errno = ENOMSG; 5678 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5679 5680 /* Take a reference to prevent skb_orphan() from freeing the socket, 5681 * but only if the socket refcount is not zero. 5682 */ 5683 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5684 err = sock_queue_err_skb(sk, skb); 5685 sock_put(sk); 5686 } 5687 if (err) 5688 kfree_skb(skb); 5689 } 5690 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5691 #endif /* CONFIG_WIRELESS */ 5692 5693 /** 5694 * skb_partial_csum_set - set up and verify partial csum values for packet 5695 * @skb: the skb to set 5696 * @start: the number of bytes after skb->data to start checksumming. 5697 * @off: the offset from start to place the checksum. 5698 * 5699 * For untrusted partially-checksummed packets, we need to make sure the values 5700 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5701 * 5702 * This function checks and sets those values and skb->ip_summed: if this 5703 * returns false you should drop the packet. 5704 */ 5705 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5706 { 5707 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5708 u32 csum_start = skb_headroom(skb) + (u32)start; 5709 5710 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5711 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5712 start, off, skb_headroom(skb), skb_headlen(skb)); 5713 return false; 5714 } 5715 skb->ip_summed = CHECKSUM_PARTIAL; 5716 skb->csum_start = csum_start; 5717 skb->csum_offset = off; 5718 skb->transport_header = csum_start; 5719 return true; 5720 } 5721 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5722 5723 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5724 unsigned int max) 5725 { 5726 if (skb_headlen(skb) >= len) 5727 return 0; 5728 5729 /* If we need to pullup then pullup to the max, so we 5730 * won't need to do it again. 5731 */ 5732 if (max > skb->len) 5733 max = skb->len; 5734 5735 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5736 return -ENOMEM; 5737 5738 if (skb_headlen(skb) < len) 5739 return -EPROTO; 5740 5741 return 0; 5742 } 5743 5744 #define MAX_TCP_HDR_LEN (15 * 4) 5745 5746 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5747 typeof(IPPROTO_IP) proto, 5748 unsigned int off) 5749 { 5750 int err; 5751 5752 switch (proto) { 5753 case IPPROTO_TCP: 5754 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5755 off + MAX_TCP_HDR_LEN); 5756 if (!err && !skb_partial_csum_set(skb, off, 5757 offsetof(struct tcphdr, 5758 check))) 5759 err = -EPROTO; 5760 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5761 5762 case IPPROTO_UDP: 5763 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5764 off + sizeof(struct udphdr)); 5765 if (!err && !skb_partial_csum_set(skb, off, 5766 offsetof(struct udphdr, 5767 check))) 5768 err = -EPROTO; 5769 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5770 } 5771 5772 return ERR_PTR(-EPROTO); 5773 } 5774 5775 /* This value should be large enough to cover a tagged ethernet header plus 5776 * maximally sized IP and TCP or UDP headers. 5777 */ 5778 #define MAX_IP_HDR_LEN 128 5779 5780 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5781 { 5782 unsigned int off; 5783 bool fragment; 5784 __sum16 *csum; 5785 int err; 5786 5787 fragment = false; 5788 5789 err = skb_maybe_pull_tail(skb, 5790 sizeof(struct iphdr), 5791 MAX_IP_HDR_LEN); 5792 if (err < 0) 5793 goto out; 5794 5795 if (ip_is_fragment(ip_hdr(skb))) 5796 fragment = true; 5797 5798 off = ip_hdrlen(skb); 5799 5800 err = -EPROTO; 5801 5802 if (fragment) 5803 goto out; 5804 5805 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5806 if (IS_ERR(csum)) 5807 return PTR_ERR(csum); 5808 5809 if (recalculate) 5810 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5811 ip_hdr(skb)->daddr, 5812 skb->len - off, 5813 ip_hdr(skb)->protocol, 0); 5814 err = 0; 5815 5816 out: 5817 return err; 5818 } 5819 5820 /* This value should be large enough to cover a tagged ethernet header plus 5821 * an IPv6 header, all options, and a maximal TCP or UDP header. 5822 */ 5823 #define MAX_IPV6_HDR_LEN 256 5824 5825 #define OPT_HDR(type, skb, off) \ 5826 (type *)(skb_network_header(skb) + (off)) 5827 5828 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5829 { 5830 int err; 5831 u8 nexthdr; 5832 unsigned int off; 5833 unsigned int len; 5834 bool fragment; 5835 bool done; 5836 __sum16 *csum; 5837 5838 fragment = false; 5839 done = false; 5840 5841 off = sizeof(struct ipv6hdr); 5842 5843 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5844 if (err < 0) 5845 goto out; 5846 5847 nexthdr = ipv6_hdr(skb)->nexthdr; 5848 5849 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5850 while (off <= len && !done) { 5851 switch (nexthdr) { 5852 case IPPROTO_DSTOPTS: 5853 case IPPROTO_HOPOPTS: 5854 case IPPROTO_ROUTING: { 5855 struct ipv6_opt_hdr *hp; 5856 5857 err = skb_maybe_pull_tail(skb, 5858 off + 5859 sizeof(struct ipv6_opt_hdr), 5860 MAX_IPV6_HDR_LEN); 5861 if (err < 0) 5862 goto out; 5863 5864 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5865 nexthdr = hp->nexthdr; 5866 off += ipv6_optlen(hp); 5867 break; 5868 } 5869 case IPPROTO_AH: { 5870 struct ip_auth_hdr *hp; 5871 5872 err = skb_maybe_pull_tail(skb, 5873 off + 5874 sizeof(struct ip_auth_hdr), 5875 MAX_IPV6_HDR_LEN); 5876 if (err < 0) 5877 goto out; 5878 5879 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5880 nexthdr = hp->nexthdr; 5881 off += ipv6_authlen(hp); 5882 break; 5883 } 5884 case IPPROTO_FRAGMENT: { 5885 struct frag_hdr *hp; 5886 5887 err = skb_maybe_pull_tail(skb, 5888 off + 5889 sizeof(struct frag_hdr), 5890 MAX_IPV6_HDR_LEN); 5891 if (err < 0) 5892 goto out; 5893 5894 hp = OPT_HDR(struct frag_hdr, skb, off); 5895 5896 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5897 fragment = true; 5898 5899 nexthdr = hp->nexthdr; 5900 off += sizeof(struct frag_hdr); 5901 break; 5902 } 5903 default: 5904 done = true; 5905 break; 5906 } 5907 } 5908 5909 err = -EPROTO; 5910 5911 if (!done || fragment) 5912 goto out; 5913 5914 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5915 if (IS_ERR(csum)) 5916 return PTR_ERR(csum); 5917 5918 if (recalculate) 5919 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5920 &ipv6_hdr(skb)->daddr, 5921 skb->len - off, nexthdr, 0); 5922 err = 0; 5923 5924 out: 5925 return err; 5926 } 5927 5928 /** 5929 * skb_checksum_setup - set up partial checksum offset 5930 * @skb: the skb to set up 5931 * @recalculate: if true the pseudo-header checksum will be recalculated 5932 */ 5933 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5934 { 5935 int err; 5936 5937 switch (skb->protocol) { 5938 case htons(ETH_P_IP): 5939 err = skb_checksum_setup_ipv4(skb, recalculate); 5940 break; 5941 5942 case htons(ETH_P_IPV6): 5943 err = skb_checksum_setup_ipv6(skb, recalculate); 5944 break; 5945 5946 default: 5947 err = -EPROTO; 5948 break; 5949 } 5950 5951 return err; 5952 } 5953 EXPORT_SYMBOL(skb_checksum_setup); 5954 5955 /** 5956 * skb_checksum_maybe_trim - maybe trims the given skb 5957 * @skb: the skb to check 5958 * @transport_len: the data length beyond the network header 5959 * 5960 * Checks whether the given skb has data beyond the given transport length. 5961 * If so, returns a cloned skb trimmed to this transport length. 5962 * Otherwise returns the provided skb. Returns NULL in error cases 5963 * (e.g. transport_len exceeds skb length or out-of-memory). 5964 * 5965 * Caller needs to set the skb transport header and free any returned skb if it 5966 * differs from the provided skb. 5967 */ 5968 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5969 unsigned int transport_len) 5970 { 5971 struct sk_buff *skb_chk; 5972 unsigned int len = skb_transport_offset(skb) + transport_len; 5973 int ret; 5974 5975 if (skb->len < len) 5976 return NULL; 5977 else if (skb->len == len) 5978 return skb; 5979 5980 skb_chk = skb_clone(skb, GFP_ATOMIC); 5981 if (!skb_chk) 5982 return NULL; 5983 5984 ret = pskb_trim_rcsum(skb_chk, len); 5985 if (ret) { 5986 kfree_skb(skb_chk); 5987 return NULL; 5988 } 5989 5990 return skb_chk; 5991 } 5992 5993 /** 5994 * skb_checksum_trimmed - validate checksum of an skb 5995 * @skb: the skb to check 5996 * @transport_len: the data length beyond the network header 5997 * @skb_chkf: checksum function to use 5998 * 5999 * Applies the given checksum function skb_chkf to the provided skb. 6000 * Returns a checked and maybe trimmed skb. Returns NULL on error. 6001 * 6002 * If the skb has data beyond the given transport length, then a 6003 * trimmed & cloned skb is checked and returned. 6004 * 6005 * Caller needs to set the skb transport header and free any returned skb if it 6006 * differs from the provided skb. 6007 */ 6008 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6009 unsigned int transport_len, 6010 __sum16(*skb_chkf)(struct sk_buff *skb)) 6011 { 6012 struct sk_buff *skb_chk; 6013 unsigned int offset = skb_transport_offset(skb); 6014 __sum16 ret; 6015 6016 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6017 if (!skb_chk) 6018 goto err; 6019 6020 if (!pskb_may_pull(skb_chk, offset)) 6021 goto err; 6022 6023 skb_pull_rcsum(skb_chk, offset); 6024 ret = skb_chkf(skb_chk); 6025 skb_push_rcsum(skb_chk, offset); 6026 6027 if (ret) 6028 goto err; 6029 6030 return skb_chk; 6031 6032 err: 6033 if (skb_chk && skb_chk != skb) 6034 kfree_skb(skb_chk); 6035 6036 return NULL; 6037 6038 } 6039 EXPORT_SYMBOL(skb_checksum_trimmed); 6040 6041 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6042 { 6043 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6044 skb->dev->name); 6045 } 6046 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6047 6048 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6049 { 6050 if (head_stolen) { 6051 skb_release_head_state(skb); 6052 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6053 } else { 6054 __kfree_skb(skb); 6055 } 6056 } 6057 EXPORT_SYMBOL(kfree_skb_partial); 6058 6059 /** 6060 * skb_try_coalesce - try to merge skb to prior one 6061 * @to: prior buffer 6062 * @from: buffer to add 6063 * @fragstolen: pointer to boolean 6064 * @delta_truesize: how much more was allocated than was requested 6065 */ 6066 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6067 bool *fragstolen, int *delta_truesize) 6068 { 6069 struct skb_shared_info *to_shinfo, *from_shinfo; 6070 int i, delta, len = from->len; 6071 6072 *fragstolen = false; 6073 6074 if (skb_cloned(to)) 6075 return false; 6076 6077 /* In general, avoid mixing page_pool and non-page_pool allocated 6078 * pages within the same SKB. In theory we could take full 6079 * references if @from is cloned and !@to->pp_recycle but its 6080 * tricky (due to potential race with the clone disappearing) and 6081 * rare, so not worth dealing with. 6082 */ 6083 if (to->pp_recycle != from->pp_recycle) 6084 return false; 6085 6086 if (skb_frags_readable(from) != skb_frags_readable(to)) 6087 return false; 6088 6089 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6090 if (len) 6091 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6092 *delta_truesize = 0; 6093 return true; 6094 } 6095 6096 to_shinfo = skb_shinfo(to); 6097 from_shinfo = skb_shinfo(from); 6098 if (to_shinfo->frag_list || from_shinfo->frag_list) 6099 return false; 6100 if (skb_zcopy(to) || skb_zcopy(from)) 6101 return false; 6102 6103 if (skb_headlen(from) != 0) { 6104 struct page *page; 6105 unsigned int offset; 6106 6107 if (to_shinfo->nr_frags + 6108 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6109 return false; 6110 6111 if (skb_head_is_locked(from)) 6112 return false; 6113 6114 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6115 6116 page = virt_to_head_page(from->head); 6117 offset = from->data - (unsigned char *)page_address(page); 6118 6119 skb_fill_page_desc(to, to_shinfo->nr_frags, 6120 page, offset, skb_headlen(from)); 6121 *fragstolen = true; 6122 } else { 6123 if (to_shinfo->nr_frags + 6124 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6125 return false; 6126 6127 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6128 } 6129 6130 WARN_ON_ONCE(delta < len); 6131 6132 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6133 from_shinfo->frags, 6134 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6135 to_shinfo->nr_frags += from_shinfo->nr_frags; 6136 6137 if (!skb_cloned(from)) 6138 from_shinfo->nr_frags = 0; 6139 6140 /* if the skb is not cloned this does nothing 6141 * since we set nr_frags to 0. 6142 */ 6143 if (skb_pp_frag_ref(from)) { 6144 for (i = 0; i < from_shinfo->nr_frags; i++) 6145 __skb_frag_ref(&from_shinfo->frags[i]); 6146 } 6147 6148 to->truesize += delta; 6149 to->len += len; 6150 to->data_len += len; 6151 6152 *delta_truesize = delta; 6153 return true; 6154 } 6155 EXPORT_SYMBOL(skb_try_coalesce); 6156 6157 /** 6158 * skb_scrub_packet - scrub an skb 6159 * 6160 * @skb: buffer to clean 6161 * @xnet: packet is crossing netns 6162 * 6163 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6164 * into/from a tunnel. Some information have to be cleared during these 6165 * operations. 6166 * skb_scrub_packet can also be used to clean a skb before injecting it in 6167 * another namespace (@xnet == true). We have to clear all information in the 6168 * skb that could impact namespace isolation. 6169 */ 6170 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6171 { 6172 skb->pkt_type = PACKET_HOST; 6173 skb->skb_iif = 0; 6174 skb->ignore_df = 0; 6175 skb_dst_drop(skb); 6176 skb_ext_reset(skb); 6177 nf_reset_ct(skb); 6178 nf_reset_trace(skb); 6179 6180 #ifdef CONFIG_NET_SWITCHDEV 6181 skb->offload_fwd_mark = 0; 6182 skb->offload_l3_fwd_mark = 0; 6183 #endif 6184 ipvs_reset(skb); 6185 6186 if (!xnet) 6187 return; 6188 6189 skb->mark = 0; 6190 skb_clear_tstamp(skb); 6191 } 6192 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6193 6194 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6195 { 6196 int mac_len, meta_len; 6197 void *meta; 6198 6199 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6200 kfree_skb(skb); 6201 return NULL; 6202 } 6203 6204 mac_len = skb->data - skb_mac_header(skb); 6205 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6206 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6207 mac_len - VLAN_HLEN - ETH_TLEN); 6208 } 6209 6210 meta_len = skb_metadata_len(skb); 6211 if (meta_len) { 6212 meta = skb_metadata_end(skb) - meta_len; 6213 memmove(meta + VLAN_HLEN, meta, meta_len); 6214 } 6215 6216 skb->mac_header += VLAN_HLEN; 6217 return skb; 6218 } 6219 6220 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6221 { 6222 struct vlan_hdr *vhdr; 6223 u16 vlan_tci; 6224 6225 if (unlikely(skb_vlan_tag_present(skb))) { 6226 /* vlan_tci is already set-up so leave this for another time */ 6227 return skb; 6228 } 6229 6230 skb = skb_share_check(skb, GFP_ATOMIC); 6231 if (unlikely(!skb)) 6232 goto err_free; 6233 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6234 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6235 goto err_free; 6236 6237 vhdr = (struct vlan_hdr *)skb->data; 6238 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6239 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6240 6241 skb_pull_rcsum(skb, VLAN_HLEN); 6242 vlan_set_encap_proto(skb, vhdr); 6243 6244 skb = skb_reorder_vlan_header(skb); 6245 if (unlikely(!skb)) 6246 goto err_free; 6247 6248 skb_reset_network_header(skb); 6249 if (!skb_transport_header_was_set(skb)) 6250 skb_reset_transport_header(skb); 6251 skb_reset_mac_len(skb); 6252 6253 return skb; 6254 6255 err_free: 6256 kfree_skb(skb); 6257 return NULL; 6258 } 6259 EXPORT_SYMBOL(skb_vlan_untag); 6260 6261 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6262 { 6263 if (!pskb_may_pull(skb, write_len)) 6264 return -ENOMEM; 6265 6266 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6267 return 0; 6268 6269 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6270 } 6271 EXPORT_SYMBOL(skb_ensure_writable); 6272 6273 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6274 { 6275 int needed_headroom = dev->needed_headroom; 6276 int needed_tailroom = dev->needed_tailroom; 6277 6278 /* For tail taggers, we need to pad short frames ourselves, to ensure 6279 * that the tail tag does not fail at its role of being at the end of 6280 * the packet, once the conduit interface pads the frame. Account for 6281 * that pad length here, and pad later. 6282 */ 6283 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6284 needed_tailroom += ETH_ZLEN - skb->len; 6285 /* skb_headroom() returns unsigned int... */ 6286 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6287 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6288 6289 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6290 /* No reallocation needed, yay! */ 6291 return 0; 6292 6293 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6294 GFP_ATOMIC); 6295 } 6296 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6297 6298 /* remove VLAN header from packet and update csum accordingly. 6299 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6300 */ 6301 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6302 { 6303 int offset = skb->data - skb_mac_header(skb); 6304 int err; 6305 6306 if (WARN_ONCE(offset, 6307 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6308 offset)) { 6309 return -EINVAL; 6310 } 6311 6312 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6313 if (unlikely(err)) 6314 return err; 6315 6316 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6317 6318 vlan_remove_tag(skb, vlan_tci); 6319 6320 skb->mac_header += VLAN_HLEN; 6321 6322 if (skb_network_offset(skb) < ETH_HLEN) 6323 skb_set_network_header(skb, ETH_HLEN); 6324 6325 skb_reset_mac_len(skb); 6326 6327 return err; 6328 } 6329 EXPORT_SYMBOL(__skb_vlan_pop); 6330 6331 /* Pop a vlan tag either from hwaccel or from payload. 6332 * Expects skb->data at mac header. 6333 */ 6334 int skb_vlan_pop(struct sk_buff *skb) 6335 { 6336 u16 vlan_tci; 6337 __be16 vlan_proto; 6338 int err; 6339 6340 if (likely(skb_vlan_tag_present(skb))) { 6341 __vlan_hwaccel_clear_tag(skb); 6342 } else { 6343 if (unlikely(!eth_type_vlan(skb->protocol))) 6344 return 0; 6345 6346 err = __skb_vlan_pop(skb, &vlan_tci); 6347 if (err) 6348 return err; 6349 } 6350 /* move next vlan tag to hw accel tag */ 6351 if (likely(!eth_type_vlan(skb->protocol))) 6352 return 0; 6353 6354 vlan_proto = skb->protocol; 6355 err = __skb_vlan_pop(skb, &vlan_tci); 6356 if (unlikely(err)) 6357 return err; 6358 6359 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6360 return 0; 6361 } 6362 EXPORT_SYMBOL(skb_vlan_pop); 6363 6364 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6365 * Expects skb->data at mac header. 6366 */ 6367 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6368 { 6369 if (skb_vlan_tag_present(skb)) { 6370 int offset = skb->data - skb_mac_header(skb); 6371 int err; 6372 6373 if (WARN_ONCE(offset, 6374 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6375 offset)) { 6376 return -EINVAL; 6377 } 6378 6379 err = __vlan_insert_tag(skb, skb->vlan_proto, 6380 skb_vlan_tag_get(skb)); 6381 if (err) 6382 return err; 6383 6384 skb->protocol = skb->vlan_proto; 6385 skb->network_header -= VLAN_HLEN; 6386 6387 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6388 } 6389 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6390 return 0; 6391 } 6392 EXPORT_SYMBOL(skb_vlan_push); 6393 6394 /** 6395 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6396 * 6397 * @skb: Socket buffer to modify 6398 * 6399 * Drop the Ethernet header of @skb. 6400 * 6401 * Expects that skb->data points to the mac header and that no VLAN tags are 6402 * present. 6403 * 6404 * Returns 0 on success, -errno otherwise. 6405 */ 6406 int skb_eth_pop(struct sk_buff *skb) 6407 { 6408 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6409 skb_network_offset(skb) < ETH_HLEN) 6410 return -EPROTO; 6411 6412 skb_pull_rcsum(skb, ETH_HLEN); 6413 skb_reset_mac_header(skb); 6414 skb_reset_mac_len(skb); 6415 6416 return 0; 6417 } 6418 EXPORT_SYMBOL(skb_eth_pop); 6419 6420 /** 6421 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6422 * 6423 * @skb: Socket buffer to modify 6424 * @dst: Destination MAC address of the new header 6425 * @src: Source MAC address of the new header 6426 * 6427 * Prepend @skb with a new Ethernet header. 6428 * 6429 * Expects that skb->data points to the mac header, which must be empty. 6430 * 6431 * Returns 0 on success, -errno otherwise. 6432 */ 6433 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6434 const unsigned char *src) 6435 { 6436 struct ethhdr *eth; 6437 int err; 6438 6439 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6440 return -EPROTO; 6441 6442 err = skb_cow_head(skb, sizeof(*eth)); 6443 if (err < 0) 6444 return err; 6445 6446 skb_push(skb, sizeof(*eth)); 6447 skb_reset_mac_header(skb); 6448 skb_reset_mac_len(skb); 6449 6450 eth = eth_hdr(skb); 6451 ether_addr_copy(eth->h_dest, dst); 6452 ether_addr_copy(eth->h_source, src); 6453 eth->h_proto = skb->protocol; 6454 6455 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6456 6457 return 0; 6458 } 6459 EXPORT_SYMBOL(skb_eth_push); 6460 6461 /* Update the ethertype of hdr and the skb csum value if required. */ 6462 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6463 __be16 ethertype) 6464 { 6465 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6466 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6467 6468 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6469 } 6470 6471 hdr->h_proto = ethertype; 6472 } 6473 6474 /** 6475 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6476 * the packet 6477 * 6478 * @skb: buffer 6479 * @mpls_lse: MPLS label stack entry to push 6480 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6481 * @mac_len: length of the MAC header 6482 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6483 * ethernet 6484 * 6485 * Expects skb->data at mac header. 6486 * 6487 * Returns 0 on success, -errno otherwise. 6488 */ 6489 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6490 int mac_len, bool ethernet) 6491 { 6492 struct mpls_shim_hdr *lse; 6493 int err; 6494 6495 if (unlikely(!eth_p_mpls(mpls_proto))) 6496 return -EINVAL; 6497 6498 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6499 if (skb->encapsulation) 6500 return -EINVAL; 6501 6502 err = skb_cow_head(skb, MPLS_HLEN); 6503 if (unlikely(err)) 6504 return err; 6505 6506 if (!skb->inner_protocol) { 6507 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6508 skb_set_inner_protocol(skb, skb->protocol); 6509 } 6510 6511 skb_push(skb, MPLS_HLEN); 6512 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6513 mac_len); 6514 skb_reset_mac_header(skb); 6515 skb_set_network_header(skb, mac_len); 6516 skb_reset_mac_len(skb); 6517 6518 lse = mpls_hdr(skb); 6519 lse->label_stack_entry = mpls_lse; 6520 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6521 6522 if (ethernet && mac_len >= ETH_HLEN) 6523 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6524 skb->protocol = mpls_proto; 6525 6526 return 0; 6527 } 6528 EXPORT_SYMBOL_GPL(skb_mpls_push); 6529 6530 /** 6531 * skb_mpls_pop() - pop the outermost MPLS header 6532 * 6533 * @skb: buffer 6534 * @next_proto: ethertype of header after popped MPLS header 6535 * @mac_len: length of the MAC header 6536 * @ethernet: flag to indicate if the packet is ethernet 6537 * 6538 * Expects skb->data at mac header. 6539 * 6540 * Returns 0 on success, -errno otherwise. 6541 */ 6542 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6543 bool ethernet) 6544 { 6545 int err; 6546 6547 if (unlikely(!eth_p_mpls(skb->protocol))) 6548 return 0; 6549 6550 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6551 if (unlikely(err)) 6552 return err; 6553 6554 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6555 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6556 mac_len); 6557 6558 __skb_pull(skb, MPLS_HLEN); 6559 skb_reset_mac_header(skb); 6560 skb_set_network_header(skb, mac_len); 6561 6562 if (ethernet && mac_len >= ETH_HLEN) { 6563 struct ethhdr *hdr; 6564 6565 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6566 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6567 skb_mod_eth_type(skb, hdr, next_proto); 6568 } 6569 skb->protocol = next_proto; 6570 6571 return 0; 6572 } 6573 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6574 6575 /** 6576 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6577 * 6578 * @skb: buffer 6579 * @mpls_lse: new MPLS label stack entry to update to 6580 * 6581 * Expects skb->data at mac header. 6582 * 6583 * Returns 0 on success, -errno otherwise. 6584 */ 6585 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6586 { 6587 int err; 6588 6589 if (unlikely(!eth_p_mpls(skb->protocol))) 6590 return -EINVAL; 6591 6592 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6593 if (unlikely(err)) 6594 return err; 6595 6596 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6597 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6598 6599 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6600 } 6601 6602 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6603 6604 return 0; 6605 } 6606 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6607 6608 /** 6609 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6610 * 6611 * @skb: buffer 6612 * 6613 * Expects skb->data at mac header. 6614 * 6615 * Returns 0 on success, -errno otherwise. 6616 */ 6617 int skb_mpls_dec_ttl(struct sk_buff *skb) 6618 { 6619 u32 lse; 6620 u8 ttl; 6621 6622 if (unlikely(!eth_p_mpls(skb->protocol))) 6623 return -EINVAL; 6624 6625 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6626 return -ENOMEM; 6627 6628 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6629 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6630 if (!--ttl) 6631 return -EINVAL; 6632 6633 lse &= ~MPLS_LS_TTL_MASK; 6634 lse |= ttl << MPLS_LS_TTL_SHIFT; 6635 6636 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6637 } 6638 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6639 6640 /** 6641 * alloc_skb_with_frags - allocate skb with page frags 6642 * 6643 * @header_len: size of linear part 6644 * @data_len: needed length in frags 6645 * @order: max page order desired. 6646 * @errcode: pointer to error code if any 6647 * @gfp_mask: allocation mask 6648 * 6649 * This can be used to allocate a paged skb, given a maximal order for frags. 6650 */ 6651 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6652 unsigned long data_len, 6653 int order, 6654 int *errcode, 6655 gfp_t gfp_mask) 6656 { 6657 unsigned long chunk; 6658 struct sk_buff *skb; 6659 struct page *page; 6660 int nr_frags = 0; 6661 6662 *errcode = -EMSGSIZE; 6663 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6664 return NULL; 6665 6666 *errcode = -ENOBUFS; 6667 skb = alloc_skb(header_len, gfp_mask); 6668 if (!skb) 6669 return NULL; 6670 6671 while (data_len) { 6672 if (nr_frags == MAX_SKB_FRAGS - 1) 6673 goto failure; 6674 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6675 order--; 6676 6677 if (order) { 6678 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6679 __GFP_COMP | 6680 __GFP_NOWARN, 6681 order); 6682 if (!page) { 6683 order--; 6684 continue; 6685 } 6686 } else { 6687 page = alloc_page(gfp_mask); 6688 if (!page) 6689 goto failure; 6690 } 6691 chunk = min_t(unsigned long, data_len, 6692 PAGE_SIZE << order); 6693 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6694 nr_frags++; 6695 skb->truesize += (PAGE_SIZE << order); 6696 data_len -= chunk; 6697 } 6698 return skb; 6699 6700 failure: 6701 kfree_skb(skb); 6702 return NULL; 6703 } 6704 EXPORT_SYMBOL(alloc_skb_with_frags); 6705 6706 /* carve out the first off bytes from skb when off < headlen */ 6707 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6708 const int headlen, gfp_t gfp_mask) 6709 { 6710 int i; 6711 unsigned int size = skb_end_offset(skb); 6712 int new_hlen = headlen - off; 6713 u8 *data; 6714 6715 if (skb_pfmemalloc(skb)) 6716 gfp_mask |= __GFP_MEMALLOC; 6717 6718 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6719 if (!data) 6720 return -ENOMEM; 6721 size = SKB_WITH_OVERHEAD(size); 6722 6723 /* Copy real data, and all frags */ 6724 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6725 skb->len -= off; 6726 6727 memcpy((struct skb_shared_info *)(data + size), 6728 skb_shinfo(skb), 6729 offsetof(struct skb_shared_info, 6730 frags[skb_shinfo(skb)->nr_frags])); 6731 if (skb_cloned(skb)) { 6732 /* drop the old head gracefully */ 6733 if (skb_orphan_frags(skb, gfp_mask)) { 6734 skb_kfree_head(data, size); 6735 return -ENOMEM; 6736 } 6737 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6738 skb_frag_ref(skb, i); 6739 if (skb_has_frag_list(skb)) 6740 skb_clone_fraglist(skb); 6741 skb_release_data(skb, SKB_CONSUMED); 6742 } else { 6743 /* we can reuse existing recount- all we did was 6744 * relocate values 6745 */ 6746 skb_free_head(skb); 6747 } 6748 6749 skb->head = data; 6750 skb->data = data; 6751 skb->head_frag = 0; 6752 skb_set_end_offset(skb, size); 6753 skb_set_tail_pointer(skb, skb_headlen(skb)); 6754 skb_headers_offset_update(skb, 0); 6755 skb->cloned = 0; 6756 skb->hdr_len = 0; 6757 skb->nohdr = 0; 6758 atomic_set(&skb_shinfo(skb)->dataref, 1); 6759 6760 return 0; 6761 } 6762 6763 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6764 6765 /* carve out the first eat bytes from skb's frag_list. May recurse into 6766 * pskb_carve() 6767 */ 6768 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6769 gfp_t gfp_mask) 6770 { 6771 struct sk_buff *list = shinfo->frag_list; 6772 struct sk_buff *clone = NULL; 6773 struct sk_buff *insp = NULL; 6774 6775 do { 6776 if (!list) { 6777 pr_err("Not enough bytes to eat. Want %d\n", eat); 6778 return -EFAULT; 6779 } 6780 if (list->len <= eat) { 6781 /* Eaten as whole. */ 6782 eat -= list->len; 6783 list = list->next; 6784 insp = list; 6785 } else { 6786 /* Eaten partially. */ 6787 if (skb_shared(list)) { 6788 clone = skb_clone(list, gfp_mask); 6789 if (!clone) 6790 return -ENOMEM; 6791 insp = list->next; 6792 list = clone; 6793 } else { 6794 /* This may be pulled without problems. */ 6795 insp = list; 6796 } 6797 if (pskb_carve(list, eat, gfp_mask) < 0) { 6798 kfree_skb(clone); 6799 return -ENOMEM; 6800 } 6801 break; 6802 } 6803 } while (eat); 6804 6805 /* Free pulled out fragments. */ 6806 while ((list = shinfo->frag_list) != insp) { 6807 shinfo->frag_list = list->next; 6808 consume_skb(list); 6809 } 6810 /* And insert new clone at head. */ 6811 if (clone) { 6812 clone->next = list; 6813 shinfo->frag_list = clone; 6814 } 6815 return 0; 6816 } 6817 6818 /* carve off first len bytes from skb. Split line (off) is in the 6819 * non-linear part of skb 6820 */ 6821 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6822 int pos, gfp_t gfp_mask) 6823 { 6824 int i, k = 0; 6825 unsigned int size = skb_end_offset(skb); 6826 u8 *data; 6827 const int nfrags = skb_shinfo(skb)->nr_frags; 6828 struct skb_shared_info *shinfo; 6829 6830 if (skb_pfmemalloc(skb)) 6831 gfp_mask |= __GFP_MEMALLOC; 6832 6833 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6834 if (!data) 6835 return -ENOMEM; 6836 size = SKB_WITH_OVERHEAD(size); 6837 6838 memcpy((struct skb_shared_info *)(data + size), 6839 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6840 if (skb_orphan_frags(skb, gfp_mask)) { 6841 skb_kfree_head(data, size); 6842 return -ENOMEM; 6843 } 6844 shinfo = (struct skb_shared_info *)(data + size); 6845 for (i = 0; i < nfrags; i++) { 6846 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6847 6848 if (pos + fsize > off) { 6849 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6850 6851 if (pos < off) { 6852 /* Split frag. 6853 * We have two variants in this case: 6854 * 1. Move all the frag to the second 6855 * part, if it is possible. F.e. 6856 * this approach is mandatory for TUX, 6857 * where splitting is expensive. 6858 * 2. Split is accurately. We make this. 6859 */ 6860 skb_frag_off_add(&shinfo->frags[0], off - pos); 6861 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6862 } 6863 skb_frag_ref(skb, i); 6864 k++; 6865 } 6866 pos += fsize; 6867 } 6868 shinfo->nr_frags = k; 6869 if (skb_has_frag_list(skb)) 6870 skb_clone_fraglist(skb); 6871 6872 /* split line is in frag list */ 6873 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6874 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6875 if (skb_has_frag_list(skb)) 6876 kfree_skb_list(skb_shinfo(skb)->frag_list); 6877 skb_kfree_head(data, size); 6878 return -ENOMEM; 6879 } 6880 skb_release_data(skb, SKB_CONSUMED); 6881 6882 skb->head = data; 6883 skb->head_frag = 0; 6884 skb->data = data; 6885 skb_set_end_offset(skb, size); 6886 skb_reset_tail_pointer(skb); 6887 skb_headers_offset_update(skb, 0); 6888 skb->cloned = 0; 6889 skb->hdr_len = 0; 6890 skb->nohdr = 0; 6891 skb->len -= off; 6892 skb->data_len = skb->len; 6893 atomic_set(&skb_shinfo(skb)->dataref, 1); 6894 return 0; 6895 } 6896 6897 /* remove len bytes from the beginning of the skb */ 6898 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6899 { 6900 int headlen = skb_headlen(skb); 6901 6902 if (len < headlen) 6903 return pskb_carve_inside_header(skb, len, headlen, gfp); 6904 else 6905 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6906 } 6907 6908 /* Extract to_copy bytes starting at off from skb, and return this in 6909 * a new skb 6910 */ 6911 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6912 int to_copy, gfp_t gfp) 6913 { 6914 struct sk_buff *clone = skb_clone(skb, gfp); 6915 6916 if (!clone) 6917 return NULL; 6918 6919 if (pskb_carve(clone, off, gfp) < 0 || 6920 pskb_trim(clone, to_copy)) { 6921 kfree_skb(clone); 6922 return NULL; 6923 } 6924 return clone; 6925 } 6926 EXPORT_SYMBOL(pskb_extract); 6927 6928 /** 6929 * skb_condense - try to get rid of fragments/frag_list if possible 6930 * @skb: buffer 6931 * 6932 * Can be used to save memory before skb is added to a busy queue. 6933 * If packet has bytes in frags and enough tail room in skb->head, 6934 * pull all of them, so that we can free the frags right now and adjust 6935 * truesize. 6936 * Notes: 6937 * We do not reallocate skb->head thus can not fail. 6938 * Caller must re-evaluate skb->truesize if needed. 6939 */ 6940 void skb_condense(struct sk_buff *skb) 6941 { 6942 if (skb->data_len) { 6943 if (skb->data_len > skb->end - skb->tail || 6944 skb_cloned(skb) || !skb_frags_readable(skb)) 6945 return; 6946 6947 /* Nice, we can free page frag(s) right now */ 6948 __pskb_pull_tail(skb, skb->data_len); 6949 } 6950 /* At this point, skb->truesize might be over estimated, 6951 * because skb had a fragment, and fragments do not tell 6952 * their truesize. 6953 * When we pulled its content into skb->head, fragment 6954 * was freed, but __pskb_pull_tail() could not possibly 6955 * adjust skb->truesize, not knowing the frag truesize. 6956 */ 6957 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6958 } 6959 EXPORT_SYMBOL(skb_condense); 6960 6961 #ifdef CONFIG_SKB_EXTENSIONS 6962 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6963 { 6964 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6965 } 6966 6967 /** 6968 * __skb_ext_alloc - allocate a new skb extensions storage 6969 * 6970 * @flags: See kmalloc(). 6971 * 6972 * Returns the newly allocated pointer. The pointer can later attached to a 6973 * skb via __skb_ext_set(). 6974 * Note: caller must handle the skb_ext as an opaque data. 6975 */ 6976 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6977 { 6978 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6979 6980 if (new) { 6981 memset(new->offset, 0, sizeof(new->offset)); 6982 refcount_set(&new->refcnt, 1); 6983 } 6984 6985 return new; 6986 } 6987 6988 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6989 unsigned int old_active) 6990 { 6991 struct skb_ext *new; 6992 6993 if (refcount_read(&old->refcnt) == 1) 6994 return old; 6995 6996 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6997 if (!new) 6998 return NULL; 6999 7000 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 7001 refcount_set(&new->refcnt, 1); 7002 7003 #ifdef CONFIG_XFRM 7004 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 7005 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 7006 unsigned int i; 7007 7008 for (i = 0; i < sp->len; i++) 7009 xfrm_state_hold(sp->xvec[i]); 7010 } 7011 #endif 7012 #ifdef CONFIG_MCTP_FLOWS 7013 if (old_active & (1 << SKB_EXT_MCTP)) { 7014 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7015 7016 if (flow->key) 7017 refcount_inc(&flow->key->refs); 7018 } 7019 #endif 7020 __skb_ext_put(old); 7021 return new; 7022 } 7023 7024 /** 7025 * __skb_ext_set - attach the specified extension storage to this skb 7026 * @skb: buffer 7027 * @id: extension id 7028 * @ext: extension storage previously allocated via __skb_ext_alloc() 7029 * 7030 * Existing extensions, if any, are cleared. 7031 * 7032 * Returns the pointer to the extension. 7033 */ 7034 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7035 struct skb_ext *ext) 7036 { 7037 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7038 7039 skb_ext_put(skb); 7040 newlen = newoff + skb_ext_type_len[id]; 7041 ext->chunks = newlen; 7042 ext->offset[id] = newoff; 7043 skb->extensions = ext; 7044 skb->active_extensions = 1 << id; 7045 return skb_ext_get_ptr(ext, id); 7046 } 7047 7048 /** 7049 * skb_ext_add - allocate space for given extension, COW if needed 7050 * @skb: buffer 7051 * @id: extension to allocate space for 7052 * 7053 * Allocates enough space for the given extension. 7054 * If the extension is already present, a pointer to that extension 7055 * is returned. 7056 * 7057 * If the skb was cloned, COW applies and the returned memory can be 7058 * modified without changing the extension space of clones buffers. 7059 * 7060 * Returns pointer to the extension or NULL on allocation failure. 7061 */ 7062 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7063 { 7064 struct skb_ext *new, *old = NULL; 7065 unsigned int newlen, newoff; 7066 7067 if (skb->active_extensions) { 7068 old = skb->extensions; 7069 7070 new = skb_ext_maybe_cow(old, skb->active_extensions); 7071 if (!new) 7072 return NULL; 7073 7074 if (__skb_ext_exist(new, id)) 7075 goto set_active; 7076 7077 newoff = new->chunks; 7078 } else { 7079 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7080 7081 new = __skb_ext_alloc(GFP_ATOMIC); 7082 if (!new) 7083 return NULL; 7084 } 7085 7086 newlen = newoff + skb_ext_type_len[id]; 7087 new->chunks = newlen; 7088 new->offset[id] = newoff; 7089 set_active: 7090 skb->slow_gro = 1; 7091 skb->extensions = new; 7092 skb->active_extensions |= 1 << id; 7093 return skb_ext_get_ptr(new, id); 7094 } 7095 EXPORT_SYMBOL(skb_ext_add); 7096 7097 #ifdef CONFIG_XFRM 7098 static void skb_ext_put_sp(struct sec_path *sp) 7099 { 7100 unsigned int i; 7101 7102 for (i = 0; i < sp->len; i++) 7103 xfrm_state_put(sp->xvec[i]); 7104 } 7105 #endif 7106 7107 #ifdef CONFIG_MCTP_FLOWS 7108 static void skb_ext_put_mctp(struct mctp_flow *flow) 7109 { 7110 if (flow->key) 7111 mctp_key_unref(flow->key); 7112 } 7113 #endif 7114 7115 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7116 { 7117 struct skb_ext *ext = skb->extensions; 7118 7119 skb->active_extensions &= ~(1 << id); 7120 if (skb->active_extensions == 0) { 7121 skb->extensions = NULL; 7122 __skb_ext_put(ext); 7123 #ifdef CONFIG_XFRM 7124 } else if (id == SKB_EXT_SEC_PATH && 7125 refcount_read(&ext->refcnt) == 1) { 7126 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7127 7128 skb_ext_put_sp(sp); 7129 sp->len = 0; 7130 #endif 7131 } 7132 } 7133 EXPORT_SYMBOL(__skb_ext_del); 7134 7135 void __skb_ext_put(struct skb_ext *ext) 7136 { 7137 /* If this is last clone, nothing can increment 7138 * it after check passes. Avoids one atomic op. 7139 */ 7140 if (refcount_read(&ext->refcnt) == 1) 7141 goto free_now; 7142 7143 if (!refcount_dec_and_test(&ext->refcnt)) 7144 return; 7145 free_now: 7146 #ifdef CONFIG_XFRM 7147 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7148 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7149 #endif 7150 #ifdef CONFIG_MCTP_FLOWS 7151 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7152 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7153 #endif 7154 7155 kmem_cache_free(skbuff_ext_cache, ext); 7156 } 7157 EXPORT_SYMBOL(__skb_ext_put); 7158 #endif /* CONFIG_SKB_EXTENSIONS */ 7159 7160 static void kfree_skb_napi_cache(struct sk_buff *skb) 7161 { 7162 /* if SKB is a clone, don't handle this case */ 7163 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7164 __kfree_skb(skb); 7165 return; 7166 } 7167 7168 local_bh_disable(); 7169 __napi_kfree_skb(skb, SKB_CONSUMED); 7170 local_bh_enable(); 7171 } 7172 7173 /** 7174 * skb_attempt_defer_free - queue skb for remote freeing 7175 * @skb: buffer 7176 * 7177 * Put @skb in a per-cpu list, using the cpu which 7178 * allocated the skb/pages to reduce false sharing 7179 * and memory zone spinlock contention. 7180 */ 7181 void skb_attempt_defer_free(struct sk_buff *skb) 7182 { 7183 int cpu = skb->alloc_cpu; 7184 struct softnet_data *sd; 7185 unsigned int defer_max; 7186 bool kick; 7187 7188 if (cpu == raw_smp_processor_id() || 7189 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7190 !cpu_online(cpu)) { 7191 nodefer: kfree_skb_napi_cache(skb); 7192 return; 7193 } 7194 7195 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7196 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7197 7198 sd = &per_cpu(softnet_data, cpu); 7199 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7200 if (READ_ONCE(sd->defer_count) >= defer_max) 7201 goto nodefer; 7202 7203 spin_lock_bh(&sd->defer_lock); 7204 /* Send an IPI every time queue reaches half capacity. */ 7205 kick = sd->defer_count == (defer_max >> 1); 7206 /* Paired with the READ_ONCE() few lines above */ 7207 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7208 7209 skb->next = sd->defer_list; 7210 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7211 WRITE_ONCE(sd->defer_list, skb); 7212 spin_unlock_bh(&sd->defer_lock); 7213 7214 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7215 * if we are unlucky enough (this seems very unlikely). 7216 */ 7217 if (unlikely(kick)) 7218 kick_defer_list_purge(sd, cpu); 7219 } 7220 7221 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7222 size_t offset, size_t len) 7223 { 7224 const char *kaddr; 7225 __wsum csum; 7226 7227 kaddr = kmap_local_page(page); 7228 csum = csum_partial(kaddr + offset, len, 0); 7229 kunmap_local(kaddr); 7230 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7231 } 7232 7233 /** 7234 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7235 * @skb: The buffer to add pages to 7236 * @iter: Iterator representing the pages to be added 7237 * @maxsize: Maximum amount of pages to be added 7238 * 7239 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7240 * extracts pages from an iterator and adds them to the socket buffer if 7241 * possible, copying them to fragments if not possible (such as if they're slab 7242 * pages). 7243 * 7244 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7245 * insufficient space in the buffer to transfer anything. 7246 */ 7247 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7248 ssize_t maxsize) 7249 { 7250 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7251 struct page *pages[8], **ppages = pages; 7252 ssize_t spliced = 0, ret = 0; 7253 unsigned int i; 7254 7255 while (iter->count > 0) { 7256 ssize_t space, nr, len; 7257 size_t off; 7258 7259 ret = -EMSGSIZE; 7260 space = frag_limit - skb_shinfo(skb)->nr_frags; 7261 if (space < 0) 7262 break; 7263 7264 /* We might be able to coalesce without increasing nr_frags */ 7265 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7266 7267 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7268 if (len <= 0) { 7269 ret = len ?: -EIO; 7270 break; 7271 } 7272 7273 i = 0; 7274 do { 7275 struct page *page = pages[i++]; 7276 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7277 7278 ret = -EIO; 7279 if (WARN_ON_ONCE(!sendpage_ok(page))) 7280 goto out; 7281 7282 ret = skb_append_pagefrags(skb, page, off, part, 7283 frag_limit); 7284 if (ret < 0) { 7285 iov_iter_revert(iter, len); 7286 goto out; 7287 } 7288 7289 if (skb->ip_summed == CHECKSUM_NONE) 7290 skb_splice_csum_page(skb, page, off, part); 7291 7292 off = 0; 7293 spliced += part; 7294 maxsize -= part; 7295 len -= part; 7296 } while (len > 0); 7297 7298 if (maxsize <= 0) 7299 break; 7300 } 7301 7302 out: 7303 skb_len_add(skb, spliced); 7304 return spliced ?: ret; 7305 } 7306 EXPORT_SYMBOL(skb_splice_from_iter); 7307 7308 static __always_inline 7309 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7310 size_t len, void *to, void *priv2) 7311 { 7312 __wsum *csum = priv2; 7313 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7314 7315 *csum = csum_block_add(*csum, next, progress); 7316 return 0; 7317 } 7318 7319 static __always_inline 7320 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7321 size_t len, void *to, void *priv2) 7322 { 7323 __wsum next, *csum = priv2; 7324 7325 next = csum_and_copy_from_user(iter_from, to + progress, len); 7326 *csum = csum_block_add(*csum, next, progress); 7327 return next ? 0 : len; 7328 } 7329 7330 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7331 __wsum *csum, struct iov_iter *i) 7332 { 7333 size_t copied; 7334 7335 if (WARN_ON_ONCE(!i->data_source)) 7336 return false; 7337 copied = iterate_and_advance2(i, bytes, addr, csum, 7338 copy_from_user_iter_csum, 7339 memcpy_from_iter_csum); 7340 if (likely(copied == bytes)) 7341 return true; 7342 iov_iter_revert(i, copied); 7343 return false; 7344 } 7345 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7346 7347 void get_netmem(netmem_ref netmem) 7348 { 7349 struct net_iov *niov; 7350 7351 if (netmem_is_net_iov(netmem)) { 7352 niov = netmem_to_net_iov(netmem); 7353 if (net_is_devmem_iov(niov)) 7354 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7355 return; 7356 } 7357 get_page(netmem_to_page(netmem)); 7358 } 7359 EXPORT_SYMBOL(get_netmem); 7360 7361 void put_netmem(netmem_ref netmem) 7362 { 7363 struct net_iov *niov; 7364 7365 if (netmem_is_net_iov(netmem)) { 7366 niov = netmem_to_net_iov(netmem); 7367 if (net_is_devmem_iov(niov)) 7368 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7369 return; 7370 } 7371 7372 put_page(netmem_to_page(netmem)); 7373 } 7374 EXPORT_SYMBOL(put_netmem); 7375