xref: /linux/net/core/skbuff.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 
63 #include <net/protocol.h>
64 #include <net/dst.h>
65 #include <net/sock.h>
66 #include <net/checksum.h>
67 #include <net/ip6_checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <linux/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 #include <linux/capability.h>
74 #include <linux/user_namespace.h>
75 #include <linux/indirect_call_wrapper.h>
76 
77 #include "datagram.h"
78 
79 struct kmem_cache *skbuff_head_cache __ro_after_init;
80 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
81 #ifdef CONFIG_SKB_EXTENSIONS
82 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
83 #endif
84 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
85 EXPORT_SYMBOL(sysctl_max_skb_frags);
86 
87 /**
88  *	skb_panic - private function for out-of-line support
89  *	@skb:	buffer
90  *	@sz:	size
91  *	@addr:	address
92  *	@msg:	skb_over_panic or skb_under_panic
93  *
94  *	Out-of-line support for skb_put() and skb_push().
95  *	Called via the wrapper skb_over_panic() or skb_under_panic().
96  *	Keep out of line to prevent kernel bloat.
97  *	__builtin_return_address is not used because it is not always reliable.
98  */
99 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
100 		      const char msg[])
101 {
102 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
103 		 msg, addr, skb->len, sz, skb->head, skb->data,
104 		 (unsigned long)skb->tail, (unsigned long)skb->end,
105 		 skb->dev ? skb->dev->name : "<NULL>");
106 	BUG();
107 }
108 
109 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
110 {
111 	skb_panic(skb, sz, addr, __func__);
112 }
113 
114 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 {
116 	skb_panic(skb, sz, addr, __func__);
117 }
118 
119 /*
120  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
121  * the caller if emergency pfmemalloc reserves are being used. If it is and
122  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
123  * may be used. Otherwise, the packet data may be discarded until enough
124  * memory is free
125  */
126 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
127 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
128 
129 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
130 			       unsigned long ip, bool *pfmemalloc)
131 {
132 	void *obj;
133 	bool ret_pfmemalloc = false;
134 
135 	/*
136 	 * Try a regular allocation, when that fails and we're not entitled
137 	 * to the reserves, fail.
138 	 */
139 	obj = kmalloc_node_track_caller(size,
140 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
141 					node);
142 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
143 		goto out;
144 
145 	/* Try again but now we are using pfmemalloc reserves */
146 	ret_pfmemalloc = true;
147 	obj = kmalloc_node_track_caller(size, flags, node);
148 
149 out:
150 	if (pfmemalloc)
151 		*pfmemalloc = ret_pfmemalloc;
152 
153 	return obj;
154 }
155 
156 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
157  *	'private' fields and also do memory statistics to find all the
158  *	[BEEP] leaks.
159  *
160  */
161 
162 /**
163  *	__alloc_skb	-	allocate a network buffer
164  *	@size: size to allocate
165  *	@gfp_mask: allocation mask
166  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
167  *		instead of head cache and allocate a cloned (child) skb.
168  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
169  *		allocations in case the data is required for writeback
170  *	@node: numa node to allocate memory on
171  *
172  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
173  *	tail room of at least size bytes. The object has a reference count
174  *	of one. The return is the buffer. On a failure the return is %NULL.
175  *
176  *	Buffers may only be allocated from interrupts using a @gfp_mask of
177  *	%GFP_ATOMIC.
178  */
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 			    int flags, int node)
181 {
182 	struct kmem_cache *cache;
183 	struct skb_shared_info *shinfo;
184 	struct sk_buff *skb;
185 	u8 *data;
186 	bool pfmemalloc;
187 
188 	cache = (flags & SKB_ALLOC_FCLONE)
189 		? skbuff_fclone_cache : skbuff_head_cache;
190 
191 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
192 		gfp_mask |= __GFP_MEMALLOC;
193 
194 	/* Get the HEAD */
195 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
196 	if (!skb)
197 		goto out;
198 	prefetchw(skb);
199 
200 	/* We do our best to align skb_shared_info on a separate cache
201 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
202 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
203 	 * Both skb->head and skb_shared_info are cache line aligned.
204 	 */
205 	size = SKB_DATA_ALIGN(size);
206 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
207 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
208 	if (!data)
209 		goto nodata;
210 	/* kmalloc(size) might give us more room than requested.
211 	 * Put skb_shared_info exactly at the end of allocated zone,
212 	 * to allow max possible filling before reallocation.
213 	 */
214 	size = SKB_WITH_OVERHEAD(ksize(data));
215 	prefetchw(data + size);
216 
217 	/*
218 	 * Only clear those fields we need to clear, not those that we will
219 	 * actually initialise below. Hence, don't put any more fields after
220 	 * the tail pointer in struct sk_buff!
221 	 */
222 	memset(skb, 0, offsetof(struct sk_buff, tail));
223 	/* Account for allocated memory : skb + skb->head */
224 	skb->truesize = SKB_TRUESIZE(size);
225 	skb->pfmemalloc = pfmemalloc;
226 	refcount_set(&skb->users, 1);
227 	skb->head = data;
228 	skb->data = data;
229 	skb_reset_tail_pointer(skb);
230 	skb->end = skb->tail + size;
231 	skb->mac_header = (typeof(skb->mac_header))~0U;
232 	skb->transport_header = (typeof(skb->transport_header))~0U;
233 
234 	/* make sure we initialize shinfo sequentially */
235 	shinfo = skb_shinfo(skb);
236 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
237 	atomic_set(&shinfo->dataref, 1);
238 
239 	if (flags & SKB_ALLOC_FCLONE) {
240 		struct sk_buff_fclones *fclones;
241 
242 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
243 
244 		skb->fclone = SKB_FCLONE_ORIG;
245 		refcount_set(&fclones->fclone_ref, 1);
246 
247 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
248 	}
249 out:
250 	return skb;
251 nodata:
252 	kmem_cache_free(cache, skb);
253 	skb = NULL;
254 	goto out;
255 }
256 EXPORT_SYMBOL(__alloc_skb);
257 
258 /* Caller must provide SKB that is memset cleared */
259 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
260 					  void *data, unsigned int frag_size)
261 {
262 	struct skb_shared_info *shinfo;
263 	unsigned int size = frag_size ? : ksize(data);
264 
265 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
266 
267 	/* Assumes caller memset cleared SKB */
268 	skb->truesize = SKB_TRUESIZE(size);
269 	refcount_set(&skb->users, 1);
270 	skb->head = data;
271 	skb->data = data;
272 	skb_reset_tail_pointer(skb);
273 	skb->end = skb->tail + size;
274 	skb->mac_header = (typeof(skb->mac_header))~0U;
275 	skb->transport_header = (typeof(skb->transport_header))~0U;
276 
277 	/* make sure we initialize shinfo sequentially */
278 	shinfo = skb_shinfo(skb);
279 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
280 	atomic_set(&shinfo->dataref, 1);
281 
282 	return skb;
283 }
284 
285 /**
286  * __build_skb - build a network buffer
287  * @data: data buffer provided by caller
288  * @frag_size: size of data, or 0 if head was kmalloced
289  *
290  * Allocate a new &sk_buff. Caller provides space holding head and
291  * skb_shared_info. @data must have been allocated by kmalloc() only if
292  * @frag_size is 0, otherwise data should come from the page allocator
293  *  or vmalloc()
294  * The return is the new skb buffer.
295  * On a failure the return is %NULL, and @data is not freed.
296  * Notes :
297  *  Before IO, driver allocates only data buffer where NIC put incoming frame
298  *  Driver should add room at head (NET_SKB_PAD) and
299  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
301  *  before giving packet to stack.
302  *  RX rings only contains data buffers, not full skbs.
303  */
304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
305 {
306 	struct sk_buff *skb;
307 
308 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
309 	if (unlikely(!skb))
310 		return NULL;
311 
312 	memset(skb, 0, offsetof(struct sk_buff, tail));
313 
314 	return __build_skb_around(skb, data, frag_size);
315 }
316 
317 /* build_skb() is wrapper over __build_skb(), that specifically
318  * takes care of skb->head and skb->pfmemalloc
319  * This means that if @frag_size is not zero, then @data must be backed
320  * by a page fragment, not kmalloc() or vmalloc()
321  */
322 struct sk_buff *build_skb(void *data, unsigned int frag_size)
323 {
324 	struct sk_buff *skb = __build_skb(data, frag_size);
325 
326 	if (skb && frag_size) {
327 		skb->head_frag = 1;
328 		if (page_is_pfmemalloc(virt_to_head_page(data)))
329 			skb->pfmemalloc = 1;
330 	}
331 	return skb;
332 }
333 EXPORT_SYMBOL(build_skb);
334 
335 /**
336  * build_skb_around - build a network buffer around provided skb
337  * @skb: sk_buff provide by caller, must be memset cleared
338  * @data: data buffer provided by caller
339  * @frag_size: size of data, or 0 if head was kmalloced
340  */
341 struct sk_buff *build_skb_around(struct sk_buff *skb,
342 				 void *data, unsigned int frag_size)
343 {
344 	if (unlikely(!skb))
345 		return NULL;
346 
347 	skb = __build_skb_around(skb, data, frag_size);
348 
349 	if (skb && frag_size) {
350 		skb->head_frag = 1;
351 		if (page_is_pfmemalloc(virt_to_head_page(data)))
352 			skb->pfmemalloc = 1;
353 	}
354 	return skb;
355 }
356 EXPORT_SYMBOL(build_skb_around);
357 
358 #define NAPI_SKB_CACHE_SIZE	64
359 
360 struct napi_alloc_cache {
361 	struct page_frag_cache page;
362 	unsigned int skb_count;
363 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
364 };
365 
366 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
367 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
368 
369 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
370 {
371 	struct page_frag_cache *nc;
372 	unsigned long flags;
373 	void *data;
374 
375 	local_irq_save(flags);
376 	nc = this_cpu_ptr(&netdev_alloc_cache);
377 	data = page_frag_alloc(nc, fragsz, gfp_mask);
378 	local_irq_restore(flags);
379 	return data;
380 }
381 
382 /**
383  * netdev_alloc_frag - allocate a page fragment
384  * @fragsz: fragment size
385  *
386  * Allocates a frag from a page for receive buffer.
387  * Uses GFP_ATOMIC allocations.
388  */
389 void *netdev_alloc_frag(unsigned int fragsz)
390 {
391 	fragsz = SKB_DATA_ALIGN(fragsz);
392 
393 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
394 }
395 EXPORT_SYMBOL(netdev_alloc_frag);
396 
397 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
398 {
399 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
400 
401 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
402 }
403 
404 void *napi_alloc_frag(unsigned int fragsz)
405 {
406 	fragsz = SKB_DATA_ALIGN(fragsz);
407 
408 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
409 }
410 EXPORT_SYMBOL(napi_alloc_frag);
411 
412 /**
413  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
414  *	@dev: network device to receive on
415  *	@len: length to allocate
416  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
417  *
418  *	Allocate a new &sk_buff and assign it a usage count of one. The
419  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
420  *	the headroom they think they need without accounting for the
421  *	built in space. The built in space is used for optimisations.
422  *
423  *	%NULL is returned if there is no free memory.
424  */
425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 				   gfp_t gfp_mask)
427 {
428 	struct page_frag_cache *nc;
429 	unsigned long flags;
430 	struct sk_buff *skb;
431 	bool pfmemalloc;
432 	void *data;
433 
434 	len += NET_SKB_PAD;
435 
436 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
437 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
438 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
439 		if (!skb)
440 			goto skb_fail;
441 		goto skb_success;
442 	}
443 
444 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
445 	len = SKB_DATA_ALIGN(len);
446 
447 	if (sk_memalloc_socks())
448 		gfp_mask |= __GFP_MEMALLOC;
449 
450 	local_irq_save(flags);
451 
452 	nc = this_cpu_ptr(&netdev_alloc_cache);
453 	data = page_frag_alloc(nc, len, gfp_mask);
454 	pfmemalloc = nc->pfmemalloc;
455 
456 	local_irq_restore(flags);
457 
458 	if (unlikely(!data))
459 		return NULL;
460 
461 	skb = __build_skb(data, len);
462 	if (unlikely(!skb)) {
463 		skb_free_frag(data);
464 		return NULL;
465 	}
466 
467 	/* use OR instead of assignment to avoid clearing of bits in mask */
468 	if (pfmemalloc)
469 		skb->pfmemalloc = 1;
470 	skb->head_frag = 1;
471 
472 skb_success:
473 	skb_reserve(skb, NET_SKB_PAD);
474 	skb->dev = dev;
475 
476 skb_fail:
477 	return skb;
478 }
479 EXPORT_SYMBOL(__netdev_alloc_skb);
480 
481 /**
482  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
483  *	@napi: napi instance this buffer was allocated for
484  *	@len: length to allocate
485  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
486  *
487  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
488  *	attempt to allocate the head from a special reserved region used
489  *	only for NAPI Rx allocation.  By doing this we can save several
490  *	CPU cycles by avoiding having to disable and re-enable IRQs.
491  *
492  *	%NULL is returned if there is no free memory.
493  */
494 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
495 				 gfp_t gfp_mask)
496 {
497 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
498 	struct sk_buff *skb;
499 	void *data;
500 
501 	len += NET_SKB_PAD + NET_IP_ALIGN;
502 
503 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
504 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
505 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
506 		if (!skb)
507 			goto skb_fail;
508 		goto skb_success;
509 	}
510 
511 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
512 	len = SKB_DATA_ALIGN(len);
513 
514 	if (sk_memalloc_socks())
515 		gfp_mask |= __GFP_MEMALLOC;
516 
517 	data = page_frag_alloc(&nc->page, len, gfp_mask);
518 	if (unlikely(!data))
519 		return NULL;
520 
521 	skb = __build_skb(data, len);
522 	if (unlikely(!skb)) {
523 		skb_free_frag(data);
524 		return NULL;
525 	}
526 
527 	/* use OR instead of assignment to avoid clearing of bits in mask */
528 	if (nc->page.pfmemalloc)
529 		skb->pfmemalloc = 1;
530 	skb->head_frag = 1;
531 
532 skb_success:
533 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
534 	skb->dev = napi->dev;
535 
536 skb_fail:
537 	return skb;
538 }
539 EXPORT_SYMBOL(__napi_alloc_skb);
540 
541 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
542 		     int size, unsigned int truesize)
543 {
544 	skb_fill_page_desc(skb, i, page, off, size);
545 	skb->len += size;
546 	skb->data_len += size;
547 	skb->truesize += truesize;
548 }
549 EXPORT_SYMBOL(skb_add_rx_frag);
550 
551 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
552 			  unsigned int truesize)
553 {
554 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
555 
556 	skb_frag_size_add(frag, size);
557 	skb->len += size;
558 	skb->data_len += size;
559 	skb->truesize += truesize;
560 }
561 EXPORT_SYMBOL(skb_coalesce_rx_frag);
562 
563 static void skb_drop_list(struct sk_buff **listp)
564 {
565 	kfree_skb_list(*listp);
566 	*listp = NULL;
567 }
568 
569 static inline void skb_drop_fraglist(struct sk_buff *skb)
570 {
571 	skb_drop_list(&skb_shinfo(skb)->frag_list);
572 }
573 
574 static void skb_clone_fraglist(struct sk_buff *skb)
575 {
576 	struct sk_buff *list;
577 
578 	skb_walk_frags(skb, list)
579 		skb_get(list);
580 }
581 
582 static void skb_free_head(struct sk_buff *skb)
583 {
584 	unsigned char *head = skb->head;
585 
586 	if (skb->head_frag)
587 		skb_free_frag(head);
588 	else
589 		kfree(head);
590 }
591 
592 static void skb_release_data(struct sk_buff *skb)
593 {
594 	struct skb_shared_info *shinfo = skb_shinfo(skb);
595 	int i;
596 
597 	if (skb->cloned &&
598 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
599 			      &shinfo->dataref))
600 		return;
601 
602 	for (i = 0; i < shinfo->nr_frags; i++)
603 		__skb_frag_unref(&shinfo->frags[i]);
604 
605 	if (shinfo->frag_list)
606 		kfree_skb_list(shinfo->frag_list);
607 
608 	skb_zcopy_clear(skb, true);
609 	skb_free_head(skb);
610 }
611 
612 /*
613  *	Free an skbuff by memory without cleaning the state.
614  */
615 static void kfree_skbmem(struct sk_buff *skb)
616 {
617 	struct sk_buff_fclones *fclones;
618 
619 	switch (skb->fclone) {
620 	case SKB_FCLONE_UNAVAILABLE:
621 		kmem_cache_free(skbuff_head_cache, skb);
622 		return;
623 
624 	case SKB_FCLONE_ORIG:
625 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
626 
627 		/* We usually free the clone (TX completion) before original skb
628 		 * This test would have no chance to be true for the clone,
629 		 * while here, branch prediction will be good.
630 		 */
631 		if (refcount_read(&fclones->fclone_ref) == 1)
632 			goto fastpath;
633 		break;
634 
635 	default: /* SKB_FCLONE_CLONE */
636 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
637 		break;
638 	}
639 	if (!refcount_dec_and_test(&fclones->fclone_ref))
640 		return;
641 fastpath:
642 	kmem_cache_free(skbuff_fclone_cache, fclones);
643 }
644 
645 void skb_release_head_state(struct sk_buff *skb)
646 {
647 	skb_dst_drop(skb);
648 	if (skb->destructor) {
649 		WARN_ON(in_irq());
650 		skb->destructor(skb);
651 	}
652 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
653 	nf_conntrack_put(skb_nfct(skb));
654 #endif
655 	skb_ext_put(skb);
656 }
657 
658 /* Free everything but the sk_buff shell. */
659 static void skb_release_all(struct sk_buff *skb)
660 {
661 	skb_release_head_state(skb);
662 	if (likely(skb->head))
663 		skb_release_data(skb);
664 }
665 
666 /**
667  *	__kfree_skb - private function
668  *	@skb: buffer
669  *
670  *	Free an sk_buff. Release anything attached to the buffer.
671  *	Clean the state. This is an internal helper function. Users should
672  *	always call kfree_skb
673  */
674 
675 void __kfree_skb(struct sk_buff *skb)
676 {
677 	skb_release_all(skb);
678 	kfree_skbmem(skb);
679 }
680 EXPORT_SYMBOL(__kfree_skb);
681 
682 /**
683  *	kfree_skb - free an sk_buff
684  *	@skb: buffer to free
685  *
686  *	Drop a reference to the buffer and free it if the usage count has
687  *	hit zero.
688  */
689 void kfree_skb(struct sk_buff *skb)
690 {
691 	if (!skb_unref(skb))
692 		return;
693 
694 	trace_kfree_skb(skb, __builtin_return_address(0));
695 	__kfree_skb(skb);
696 }
697 EXPORT_SYMBOL(kfree_skb);
698 
699 void kfree_skb_list(struct sk_buff *segs)
700 {
701 	while (segs) {
702 		struct sk_buff *next = segs->next;
703 
704 		kfree_skb(segs);
705 		segs = next;
706 	}
707 }
708 EXPORT_SYMBOL(kfree_skb_list);
709 
710 /**
711  *	skb_tx_error - report an sk_buff xmit error
712  *	@skb: buffer that triggered an error
713  *
714  *	Report xmit error if a device callback is tracking this skb.
715  *	skb must be freed afterwards.
716  */
717 void skb_tx_error(struct sk_buff *skb)
718 {
719 	skb_zcopy_clear(skb, true);
720 }
721 EXPORT_SYMBOL(skb_tx_error);
722 
723 /**
724  *	consume_skb - free an skbuff
725  *	@skb: buffer to free
726  *
727  *	Drop a ref to the buffer and free it if the usage count has hit zero
728  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
729  *	is being dropped after a failure and notes that
730  */
731 void consume_skb(struct sk_buff *skb)
732 {
733 	if (!skb_unref(skb))
734 		return;
735 
736 	trace_consume_skb(skb);
737 	__kfree_skb(skb);
738 }
739 EXPORT_SYMBOL(consume_skb);
740 
741 /**
742  *	consume_stateless_skb - free an skbuff, assuming it is stateless
743  *	@skb: buffer to free
744  *
745  *	Alike consume_skb(), but this variant assumes that this is the last
746  *	skb reference and all the head states have been already dropped
747  */
748 void __consume_stateless_skb(struct sk_buff *skb)
749 {
750 	trace_consume_skb(skb);
751 	skb_release_data(skb);
752 	kfree_skbmem(skb);
753 }
754 
755 void __kfree_skb_flush(void)
756 {
757 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
758 
759 	/* flush skb_cache if containing objects */
760 	if (nc->skb_count) {
761 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
762 				     nc->skb_cache);
763 		nc->skb_count = 0;
764 	}
765 }
766 
767 static inline void _kfree_skb_defer(struct sk_buff *skb)
768 {
769 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
770 
771 	/* drop skb->head and call any destructors for packet */
772 	skb_release_all(skb);
773 
774 	/* record skb to CPU local list */
775 	nc->skb_cache[nc->skb_count++] = skb;
776 
777 #ifdef CONFIG_SLUB
778 	/* SLUB writes into objects when freeing */
779 	prefetchw(skb);
780 #endif
781 
782 	/* flush skb_cache if it is filled */
783 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
784 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
785 				     nc->skb_cache);
786 		nc->skb_count = 0;
787 	}
788 }
789 void __kfree_skb_defer(struct sk_buff *skb)
790 {
791 	_kfree_skb_defer(skb);
792 }
793 
794 void napi_consume_skb(struct sk_buff *skb, int budget)
795 {
796 	if (unlikely(!skb))
797 		return;
798 
799 	/* Zero budget indicate non-NAPI context called us, like netpoll */
800 	if (unlikely(!budget)) {
801 		dev_consume_skb_any(skb);
802 		return;
803 	}
804 
805 	if (!skb_unref(skb))
806 		return;
807 
808 	/* if reaching here SKB is ready to free */
809 	trace_consume_skb(skb);
810 
811 	/* if SKB is a clone, don't handle this case */
812 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
813 		__kfree_skb(skb);
814 		return;
815 	}
816 
817 	_kfree_skb_defer(skb);
818 }
819 EXPORT_SYMBOL(napi_consume_skb);
820 
821 /* Make sure a field is enclosed inside headers_start/headers_end section */
822 #define CHECK_SKB_FIELD(field) \
823 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
824 		     offsetof(struct sk_buff, headers_start));	\
825 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
826 		     offsetof(struct sk_buff, headers_end));	\
827 
828 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
829 {
830 	new->tstamp		= old->tstamp;
831 	/* We do not copy old->sk */
832 	new->dev		= old->dev;
833 	memcpy(new->cb, old->cb, sizeof(old->cb));
834 	skb_dst_copy(new, old);
835 	__skb_ext_copy(new, old);
836 	__nf_copy(new, old, false);
837 
838 	/* Note : this field could be in headers_start/headers_end section
839 	 * It is not yet because we do not want to have a 16 bit hole
840 	 */
841 	new->queue_mapping = old->queue_mapping;
842 
843 	memcpy(&new->headers_start, &old->headers_start,
844 	       offsetof(struct sk_buff, headers_end) -
845 	       offsetof(struct sk_buff, headers_start));
846 	CHECK_SKB_FIELD(protocol);
847 	CHECK_SKB_FIELD(csum);
848 	CHECK_SKB_FIELD(hash);
849 	CHECK_SKB_FIELD(priority);
850 	CHECK_SKB_FIELD(skb_iif);
851 	CHECK_SKB_FIELD(vlan_proto);
852 	CHECK_SKB_FIELD(vlan_tci);
853 	CHECK_SKB_FIELD(transport_header);
854 	CHECK_SKB_FIELD(network_header);
855 	CHECK_SKB_FIELD(mac_header);
856 	CHECK_SKB_FIELD(inner_protocol);
857 	CHECK_SKB_FIELD(inner_transport_header);
858 	CHECK_SKB_FIELD(inner_network_header);
859 	CHECK_SKB_FIELD(inner_mac_header);
860 	CHECK_SKB_FIELD(mark);
861 #ifdef CONFIG_NETWORK_SECMARK
862 	CHECK_SKB_FIELD(secmark);
863 #endif
864 #ifdef CONFIG_NET_RX_BUSY_POLL
865 	CHECK_SKB_FIELD(napi_id);
866 #endif
867 #ifdef CONFIG_XPS
868 	CHECK_SKB_FIELD(sender_cpu);
869 #endif
870 #ifdef CONFIG_NET_SCHED
871 	CHECK_SKB_FIELD(tc_index);
872 #endif
873 
874 }
875 
876 /*
877  * You should not add any new code to this function.  Add it to
878  * __copy_skb_header above instead.
879  */
880 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
881 {
882 #define C(x) n->x = skb->x
883 
884 	n->next = n->prev = NULL;
885 	n->sk = NULL;
886 	__copy_skb_header(n, skb);
887 
888 	C(len);
889 	C(data_len);
890 	C(mac_len);
891 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
892 	n->cloned = 1;
893 	n->nohdr = 0;
894 	n->peeked = 0;
895 	C(pfmemalloc);
896 	n->destructor = NULL;
897 	C(tail);
898 	C(end);
899 	C(head);
900 	C(head_frag);
901 	C(data);
902 	C(truesize);
903 	refcount_set(&n->users, 1);
904 
905 	atomic_inc(&(skb_shinfo(skb)->dataref));
906 	skb->cloned = 1;
907 
908 	return n;
909 #undef C
910 }
911 
912 /**
913  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
914  * @first: first sk_buff of the msg
915  */
916 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
917 {
918 	struct sk_buff *n;
919 
920 	n = alloc_skb(0, GFP_ATOMIC);
921 	if (!n)
922 		return NULL;
923 
924 	n->len = first->len;
925 	n->data_len = first->len;
926 	n->truesize = first->truesize;
927 
928 	skb_shinfo(n)->frag_list = first;
929 
930 	__copy_skb_header(n, first);
931 	n->destructor = NULL;
932 
933 	return n;
934 }
935 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
936 
937 /**
938  *	skb_morph	-	morph one skb into another
939  *	@dst: the skb to receive the contents
940  *	@src: the skb to supply the contents
941  *
942  *	This is identical to skb_clone except that the target skb is
943  *	supplied by the user.
944  *
945  *	The target skb is returned upon exit.
946  */
947 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
948 {
949 	skb_release_all(dst);
950 	return __skb_clone(dst, src);
951 }
952 EXPORT_SYMBOL_GPL(skb_morph);
953 
954 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
955 {
956 	unsigned long max_pg, num_pg, new_pg, old_pg;
957 	struct user_struct *user;
958 
959 	if (capable(CAP_IPC_LOCK) || !size)
960 		return 0;
961 
962 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
963 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
964 	user = mmp->user ? : current_user();
965 
966 	do {
967 		old_pg = atomic_long_read(&user->locked_vm);
968 		new_pg = old_pg + num_pg;
969 		if (new_pg > max_pg)
970 			return -ENOBUFS;
971 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
972 		 old_pg);
973 
974 	if (!mmp->user) {
975 		mmp->user = get_uid(user);
976 		mmp->num_pg = num_pg;
977 	} else {
978 		mmp->num_pg += num_pg;
979 	}
980 
981 	return 0;
982 }
983 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
984 
985 void mm_unaccount_pinned_pages(struct mmpin *mmp)
986 {
987 	if (mmp->user) {
988 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
989 		free_uid(mmp->user);
990 	}
991 }
992 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
993 
994 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
995 {
996 	struct ubuf_info *uarg;
997 	struct sk_buff *skb;
998 
999 	WARN_ON_ONCE(!in_task());
1000 
1001 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1002 	if (!skb)
1003 		return NULL;
1004 
1005 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1006 	uarg = (void *)skb->cb;
1007 	uarg->mmp.user = NULL;
1008 
1009 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1010 		kfree_skb(skb);
1011 		return NULL;
1012 	}
1013 
1014 	uarg->callback = sock_zerocopy_callback;
1015 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1016 	uarg->len = 1;
1017 	uarg->bytelen = size;
1018 	uarg->zerocopy = 1;
1019 	refcount_set(&uarg->refcnt, 1);
1020 	sock_hold(sk);
1021 
1022 	return uarg;
1023 }
1024 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1025 
1026 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1027 {
1028 	return container_of((void *)uarg, struct sk_buff, cb);
1029 }
1030 
1031 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1032 					struct ubuf_info *uarg)
1033 {
1034 	if (uarg) {
1035 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1036 		u32 bytelen, next;
1037 
1038 		/* realloc only when socket is locked (TCP, UDP cork),
1039 		 * so uarg->len and sk_zckey access is serialized
1040 		 */
1041 		if (!sock_owned_by_user(sk)) {
1042 			WARN_ON_ONCE(1);
1043 			return NULL;
1044 		}
1045 
1046 		bytelen = uarg->bytelen + size;
1047 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1048 			/* TCP can create new skb to attach new uarg */
1049 			if (sk->sk_type == SOCK_STREAM)
1050 				goto new_alloc;
1051 			return NULL;
1052 		}
1053 
1054 		next = (u32)atomic_read(&sk->sk_zckey);
1055 		if ((u32)(uarg->id + uarg->len) == next) {
1056 			if (mm_account_pinned_pages(&uarg->mmp, size))
1057 				return NULL;
1058 			uarg->len++;
1059 			uarg->bytelen = bytelen;
1060 			atomic_set(&sk->sk_zckey, ++next);
1061 
1062 			/* no extra ref when appending to datagram (MSG_MORE) */
1063 			if (sk->sk_type == SOCK_STREAM)
1064 				sock_zerocopy_get(uarg);
1065 
1066 			return uarg;
1067 		}
1068 	}
1069 
1070 new_alloc:
1071 	return sock_zerocopy_alloc(sk, size);
1072 }
1073 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1074 
1075 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1076 {
1077 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1078 	u32 old_lo, old_hi;
1079 	u64 sum_len;
1080 
1081 	old_lo = serr->ee.ee_info;
1082 	old_hi = serr->ee.ee_data;
1083 	sum_len = old_hi - old_lo + 1ULL + len;
1084 
1085 	if (sum_len >= (1ULL << 32))
1086 		return false;
1087 
1088 	if (lo != old_hi + 1)
1089 		return false;
1090 
1091 	serr->ee.ee_data += len;
1092 	return true;
1093 }
1094 
1095 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1096 {
1097 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1098 	struct sock_exterr_skb *serr;
1099 	struct sock *sk = skb->sk;
1100 	struct sk_buff_head *q;
1101 	unsigned long flags;
1102 	u32 lo, hi;
1103 	u16 len;
1104 
1105 	mm_unaccount_pinned_pages(&uarg->mmp);
1106 
1107 	/* if !len, there was only 1 call, and it was aborted
1108 	 * so do not queue a completion notification
1109 	 */
1110 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1111 		goto release;
1112 
1113 	len = uarg->len;
1114 	lo = uarg->id;
1115 	hi = uarg->id + len - 1;
1116 
1117 	serr = SKB_EXT_ERR(skb);
1118 	memset(serr, 0, sizeof(*serr));
1119 	serr->ee.ee_errno = 0;
1120 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1121 	serr->ee.ee_data = hi;
1122 	serr->ee.ee_info = lo;
1123 	if (!success)
1124 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1125 
1126 	q = &sk->sk_error_queue;
1127 	spin_lock_irqsave(&q->lock, flags);
1128 	tail = skb_peek_tail(q);
1129 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1130 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1131 		__skb_queue_tail(q, skb);
1132 		skb = NULL;
1133 	}
1134 	spin_unlock_irqrestore(&q->lock, flags);
1135 
1136 	sk->sk_error_report(sk);
1137 
1138 release:
1139 	consume_skb(skb);
1140 	sock_put(sk);
1141 }
1142 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1143 
1144 void sock_zerocopy_put(struct ubuf_info *uarg)
1145 {
1146 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1147 		if (uarg->callback)
1148 			uarg->callback(uarg, uarg->zerocopy);
1149 		else
1150 			consume_skb(skb_from_uarg(uarg));
1151 	}
1152 }
1153 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1154 
1155 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1156 {
1157 	if (uarg) {
1158 		struct sock *sk = skb_from_uarg(uarg)->sk;
1159 
1160 		atomic_dec(&sk->sk_zckey);
1161 		uarg->len--;
1162 
1163 		if (have_uref)
1164 			sock_zerocopy_put(uarg);
1165 	}
1166 }
1167 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1168 
1169 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1170 {
1171 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1172 }
1173 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1174 
1175 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1176 			     struct msghdr *msg, int len,
1177 			     struct ubuf_info *uarg)
1178 {
1179 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1180 	struct iov_iter orig_iter = msg->msg_iter;
1181 	int err, orig_len = skb->len;
1182 
1183 	/* An skb can only point to one uarg. This edge case happens when
1184 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1185 	 */
1186 	if (orig_uarg && uarg != orig_uarg)
1187 		return -EEXIST;
1188 
1189 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1190 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1191 		struct sock *save_sk = skb->sk;
1192 
1193 		/* Streams do not free skb on error. Reset to prev state. */
1194 		msg->msg_iter = orig_iter;
1195 		skb->sk = sk;
1196 		___pskb_trim(skb, orig_len);
1197 		skb->sk = save_sk;
1198 		return err;
1199 	}
1200 
1201 	skb_zcopy_set(skb, uarg, NULL);
1202 	return skb->len - orig_len;
1203 }
1204 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1205 
1206 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1207 			      gfp_t gfp_mask)
1208 {
1209 	if (skb_zcopy(orig)) {
1210 		if (skb_zcopy(nskb)) {
1211 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1212 			if (!gfp_mask) {
1213 				WARN_ON_ONCE(1);
1214 				return -ENOMEM;
1215 			}
1216 			if (skb_uarg(nskb) == skb_uarg(orig))
1217 				return 0;
1218 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1219 				return -EIO;
1220 		}
1221 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1222 	}
1223 	return 0;
1224 }
1225 
1226 /**
1227  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1228  *	@skb: the skb to modify
1229  *	@gfp_mask: allocation priority
1230  *
1231  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1232  *	It will copy all frags into kernel and drop the reference
1233  *	to userspace pages.
1234  *
1235  *	If this function is called from an interrupt gfp_mask() must be
1236  *	%GFP_ATOMIC.
1237  *
1238  *	Returns 0 on success or a negative error code on failure
1239  *	to allocate kernel memory to copy to.
1240  */
1241 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1242 {
1243 	int num_frags = skb_shinfo(skb)->nr_frags;
1244 	struct page *page, *head = NULL;
1245 	int i, new_frags;
1246 	u32 d_off;
1247 
1248 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1249 		return -EINVAL;
1250 
1251 	if (!num_frags)
1252 		goto release;
1253 
1254 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1255 	for (i = 0; i < new_frags; i++) {
1256 		page = alloc_page(gfp_mask);
1257 		if (!page) {
1258 			while (head) {
1259 				struct page *next = (struct page *)page_private(head);
1260 				put_page(head);
1261 				head = next;
1262 			}
1263 			return -ENOMEM;
1264 		}
1265 		set_page_private(page, (unsigned long)head);
1266 		head = page;
1267 	}
1268 
1269 	page = head;
1270 	d_off = 0;
1271 	for (i = 0; i < num_frags; i++) {
1272 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1273 		u32 p_off, p_len, copied;
1274 		struct page *p;
1275 		u8 *vaddr;
1276 
1277 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1278 				      p, p_off, p_len, copied) {
1279 			u32 copy, done = 0;
1280 			vaddr = kmap_atomic(p);
1281 
1282 			while (done < p_len) {
1283 				if (d_off == PAGE_SIZE) {
1284 					d_off = 0;
1285 					page = (struct page *)page_private(page);
1286 				}
1287 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1288 				memcpy(page_address(page) + d_off,
1289 				       vaddr + p_off + done, copy);
1290 				done += copy;
1291 				d_off += copy;
1292 			}
1293 			kunmap_atomic(vaddr);
1294 		}
1295 	}
1296 
1297 	/* skb frags release userspace buffers */
1298 	for (i = 0; i < num_frags; i++)
1299 		skb_frag_unref(skb, i);
1300 
1301 	/* skb frags point to kernel buffers */
1302 	for (i = 0; i < new_frags - 1; i++) {
1303 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1304 		head = (struct page *)page_private(head);
1305 	}
1306 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1307 	skb_shinfo(skb)->nr_frags = new_frags;
1308 
1309 release:
1310 	skb_zcopy_clear(skb, false);
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1314 
1315 /**
1316  *	skb_clone	-	duplicate an sk_buff
1317  *	@skb: buffer to clone
1318  *	@gfp_mask: allocation priority
1319  *
1320  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1321  *	copies share the same packet data but not structure. The new
1322  *	buffer has a reference count of 1. If the allocation fails the
1323  *	function returns %NULL otherwise the new buffer is returned.
1324  *
1325  *	If this function is called from an interrupt gfp_mask() must be
1326  *	%GFP_ATOMIC.
1327  */
1328 
1329 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1330 {
1331 	struct sk_buff_fclones *fclones = container_of(skb,
1332 						       struct sk_buff_fclones,
1333 						       skb1);
1334 	struct sk_buff *n;
1335 
1336 	if (skb_orphan_frags(skb, gfp_mask))
1337 		return NULL;
1338 
1339 	if (skb->fclone == SKB_FCLONE_ORIG &&
1340 	    refcount_read(&fclones->fclone_ref) == 1) {
1341 		n = &fclones->skb2;
1342 		refcount_set(&fclones->fclone_ref, 2);
1343 	} else {
1344 		if (skb_pfmemalloc(skb))
1345 			gfp_mask |= __GFP_MEMALLOC;
1346 
1347 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1348 		if (!n)
1349 			return NULL;
1350 
1351 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1352 	}
1353 
1354 	return __skb_clone(n, skb);
1355 }
1356 EXPORT_SYMBOL(skb_clone);
1357 
1358 void skb_headers_offset_update(struct sk_buff *skb, int off)
1359 {
1360 	/* Only adjust this if it actually is csum_start rather than csum */
1361 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1362 		skb->csum_start += off;
1363 	/* {transport,network,mac}_header and tail are relative to skb->head */
1364 	skb->transport_header += off;
1365 	skb->network_header   += off;
1366 	if (skb_mac_header_was_set(skb))
1367 		skb->mac_header += off;
1368 	skb->inner_transport_header += off;
1369 	skb->inner_network_header += off;
1370 	skb->inner_mac_header += off;
1371 }
1372 EXPORT_SYMBOL(skb_headers_offset_update);
1373 
1374 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1375 {
1376 	__copy_skb_header(new, old);
1377 
1378 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1379 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1380 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1381 }
1382 EXPORT_SYMBOL(skb_copy_header);
1383 
1384 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1385 {
1386 	if (skb_pfmemalloc(skb))
1387 		return SKB_ALLOC_RX;
1388 	return 0;
1389 }
1390 
1391 /**
1392  *	skb_copy	-	create private copy of an sk_buff
1393  *	@skb: buffer to copy
1394  *	@gfp_mask: allocation priority
1395  *
1396  *	Make a copy of both an &sk_buff and its data. This is used when the
1397  *	caller wishes to modify the data and needs a private copy of the
1398  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1399  *	on success. The returned buffer has a reference count of 1.
1400  *
1401  *	As by-product this function converts non-linear &sk_buff to linear
1402  *	one, so that &sk_buff becomes completely private and caller is allowed
1403  *	to modify all the data of returned buffer. This means that this
1404  *	function is not recommended for use in circumstances when only
1405  *	header is going to be modified. Use pskb_copy() instead.
1406  */
1407 
1408 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1409 {
1410 	int headerlen = skb_headroom(skb);
1411 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1412 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1413 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1414 
1415 	if (!n)
1416 		return NULL;
1417 
1418 	/* Set the data pointer */
1419 	skb_reserve(n, headerlen);
1420 	/* Set the tail pointer and length */
1421 	skb_put(n, skb->len);
1422 
1423 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1424 
1425 	skb_copy_header(n, skb);
1426 	return n;
1427 }
1428 EXPORT_SYMBOL(skb_copy);
1429 
1430 /**
1431  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1432  *	@skb: buffer to copy
1433  *	@headroom: headroom of new skb
1434  *	@gfp_mask: allocation priority
1435  *	@fclone: if true allocate the copy of the skb from the fclone
1436  *	cache instead of the head cache; it is recommended to set this
1437  *	to true for the cases where the copy will likely be cloned
1438  *
1439  *	Make a copy of both an &sk_buff and part of its data, located
1440  *	in header. Fragmented data remain shared. This is used when
1441  *	the caller wishes to modify only header of &sk_buff and needs
1442  *	private copy of the header to alter. Returns %NULL on failure
1443  *	or the pointer to the buffer on success.
1444  *	The returned buffer has a reference count of 1.
1445  */
1446 
1447 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1448 				   gfp_t gfp_mask, bool fclone)
1449 {
1450 	unsigned int size = skb_headlen(skb) + headroom;
1451 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1452 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1453 
1454 	if (!n)
1455 		goto out;
1456 
1457 	/* Set the data pointer */
1458 	skb_reserve(n, headroom);
1459 	/* Set the tail pointer and length */
1460 	skb_put(n, skb_headlen(skb));
1461 	/* Copy the bytes */
1462 	skb_copy_from_linear_data(skb, n->data, n->len);
1463 
1464 	n->truesize += skb->data_len;
1465 	n->data_len  = skb->data_len;
1466 	n->len	     = skb->len;
1467 
1468 	if (skb_shinfo(skb)->nr_frags) {
1469 		int i;
1470 
1471 		if (skb_orphan_frags(skb, gfp_mask) ||
1472 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1473 			kfree_skb(n);
1474 			n = NULL;
1475 			goto out;
1476 		}
1477 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1478 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1479 			skb_frag_ref(skb, i);
1480 		}
1481 		skb_shinfo(n)->nr_frags = i;
1482 	}
1483 
1484 	if (skb_has_frag_list(skb)) {
1485 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1486 		skb_clone_fraglist(n);
1487 	}
1488 
1489 	skb_copy_header(n, skb);
1490 out:
1491 	return n;
1492 }
1493 EXPORT_SYMBOL(__pskb_copy_fclone);
1494 
1495 /**
1496  *	pskb_expand_head - reallocate header of &sk_buff
1497  *	@skb: buffer to reallocate
1498  *	@nhead: room to add at head
1499  *	@ntail: room to add at tail
1500  *	@gfp_mask: allocation priority
1501  *
1502  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1503  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1504  *	reference count of 1. Returns zero in the case of success or error,
1505  *	if expansion failed. In the last case, &sk_buff is not changed.
1506  *
1507  *	All the pointers pointing into skb header may change and must be
1508  *	reloaded after call to this function.
1509  */
1510 
1511 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1512 		     gfp_t gfp_mask)
1513 {
1514 	int i, osize = skb_end_offset(skb);
1515 	int size = osize + nhead + ntail;
1516 	long off;
1517 	u8 *data;
1518 
1519 	BUG_ON(nhead < 0);
1520 
1521 	BUG_ON(skb_shared(skb));
1522 
1523 	size = SKB_DATA_ALIGN(size);
1524 
1525 	if (skb_pfmemalloc(skb))
1526 		gfp_mask |= __GFP_MEMALLOC;
1527 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1528 			       gfp_mask, NUMA_NO_NODE, NULL);
1529 	if (!data)
1530 		goto nodata;
1531 	size = SKB_WITH_OVERHEAD(ksize(data));
1532 
1533 	/* Copy only real data... and, alas, header. This should be
1534 	 * optimized for the cases when header is void.
1535 	 */
1536 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1537 
1538 	memcpy((struct skb_shared_info *)(data + size),
1539 	       skb_shinfo(skb),
1540 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1541 
1542 	/*
1543 	 * if shinfo is shared we must drop the old head gracefully, but if it
1544 	 * is not we can just drop the old head and let the existing refcount
1545 	 * be since all we did is relocate the values
1546 	 */
1547 	if (skb_cloned(skb)) {
1548 		if (skb_orphan_frags(skb, gfp_mask))
1549 			goto nofrags;
1550 		if (skb_zcopy(skb))
1551 			refcount_inc(&skb_uarg(skb)->refcnt);
1552 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1553 			skb_frag_ref(skb, i);
1554 
1555 		if (skb_has_frag_list(skb))
1556 			skb_clone_fraglist(skb);
1557 
1558 		skb_release_data(skb);
1559 	} else {
1560 		skb_free_head(skb);
1561 	}
1562 	off = (data + nhead) - skb->head;
1563 
1564 	skb->head     = data;
1565 	skb->head_frag = 0;
1566 	skb->data    += off;
1567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1568 	skb->end      = size;
1569 	off           = nhead;
1570 #else
1571 	skb->end      = skb->head + size;
1572 #endif
1573 	skb->tail	      += off;
1574 	skb_headers_offset_update(skb, nhead);
1575 	skb->cloned   = 0;
1576 	skb->hdr_len  = 0;
1577 	skb->nohdr    = 0;
1578 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1579 
1580 	skb_metadata_clear(skb);
1581 
1582 	/* It is not generally safe to change skb->truesize.
1583 	 * For the moment, we really care of rx path, or
1584 	 * when skb is orphaned (not attached to a socket).
1585 	 */
1586 	if (!skb->sk || skb->destructor == sock_edemux)
1587 		skb->truesize += size - osize;
1588 
1589 	return 0;
1590 
1591 nofrags:
1592 	kfree(data);
1593 nodata:
1594 	return -ENOMEM;
1595 }
1596 EXPORT_SYMBOL(pskb_expand_head);
1597 
1598 /* Make private copy of skb with writable head and some headroom */
1599 
1600 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1601 {
1602 	struct sk_buff *skb2;
1603 	int delta = headroom - skb_headroom(skb);
1604 
1605 	if (delta <= 0)
1606 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1607 	else {
1608 		skb2 = skb_clone(skb, GFP_ATOMIC);
1609 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1610 					     GFP_ATOMIC)) {
1611 			kfree_skb(skb2);
1612 			skb2 = NULL;
1613 		}
1614 	}
1615 	return skb2;
1616 }
1617 EXPORT_SYMBOL(skb_realloc_headroom);
1618 
1619 /**
1620  *	skb_copy_expand	-	copy and expand sk_buff
1621  *	@skb: buffer to copy
1622  *	@newheadroom: new free bytes at head
1623  *	@newtailroom: new free bytes at tail
1624  *	@gfp_mask: allocation priority
1625  *
1626  *	Make a copy of both an &sk_buff and its data and while doing so
1627  *	allocate additional space.
1628  *
1629  *	This is used when the caller wishes to modify the data and needs a
1630  *	private copy of the data to alter as well as more space for new fields.
1631  *	Returns %NULL on failure or the pointer to the buffer
1632  *	on success. The returned buffer has a reference count of 1.
1633  *
1634  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1635  *	is called from an interrupt.
1636  */
1637 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1638 				int newheadroom, int newtailroom,
1639 				gfp_t gfp_mask)
1640 {
1641 	/*
1642 	 *	Allocate the copy buffer
1643 	 */
1644 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1645 					gfp_mask, skb_alloc_rx_flag(skb),
1646 					NUMA_NO_NODE);
1647 	int oldheadroom = skb_headroom(skb);
1648 	int head_copy_len, head_copy_off;
1649 
1650 	if (!n)
1651 		return NULL;
1652 
1653 	skb_reserve(n, newheadroom);
1654 
1655 	/* Set the tail pointer and length */
1656 	skb_put(n, skb->len);
1657 
1658 	head_copy_len = oldheadroom;
1659 	head_copy_off = 0;
1660 	if (newheadroom <= head_copy_len)
1661 		head_copy_len = newheadroom;
1662 	else
1663 		head_copy_off = newheadroom - head_copy_len;
1664 
1665 	/* Copy the linear header and data. */
1666 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1667 			     skb->len + head_copy_len));
1668 
1669 	skb_copy_header(n, skb);
1670 
1671 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1672 
1673 	return n;
1674 }
1675 EXPORT_SYMBOL(skb_copy_expand);
1676 
1677 /**
1678  *	__skb_pad		-	zero pad the tail of an skb
1679  *	@skb: buffer to pad
1680  *	@pad: space to pad
1681  *	@free_on_error: free buffer on error
1682  *
1683  *	Ensure that a buffer is followed by a padding area that is zero
1684  *	filled. Used by network drivers which may DMA or transfer data
1685  *	beyond the buffer end onto the wire.
1686  *
1687  *	May return error in out of memory cases. The skb is freed on error
1688  *	if @free_on_error is true.
1689  */
1690 
1691 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1692 {
1693 	int err;
1694 	int ntail;
1695 
1696 	/* If the skbuff is non linear tailroom is always zero.. */
1697 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1698 		memset(skb->data+skb->len, 0, pad);
1699 		return 0;
1700 	}
1701 
1702 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1703 	if (likely(skb_cloned(skb) || ntail > 0)) {
1704 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1705 		if (unlikely(err))
1706 			goto free_skb;
1707 	}
1708 
1709 	/* FIXME: The use of this function with non-linear skb's really needs
1710 	 * to be audited.
1711 	 */
1712 	err = skb_linearize(skb);
1713 	if (unlikely(err))
1714 		goto free_skb;
1715 
1716 	memset(skb->data + skb->len, 0, pad);
1717 	return 0;
1718 
1719 free_skb:
1720 	if (free_on_error)
1721 		kfree_skb(skb);
1722 	return err;
1723 }
1724 EXPORT_SYMBOL(__skb_pad);
1725 
1726 /**
1727  *	pskb_put - add data to the tail of a potentially fragmented buffer
1728  *	@skb: start of the buffer to use
1729  *	@tail: tail fragment of the buffer to use
1730  *	@len: amount of data to add
1731  *
1732  *	This function extends the used data area of the potentially
1733  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1734  *	@skb itself. If this would exceed the total buffer size the kernel
1735  *	will panic. A pointer to the first byte of the extra data is
1736  *	returned.
1737  */
1738 
1739 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1740 {
1741 	if (tail != skb) {
1742 		skb->data_len += len;
1743 		skb->len += len;
1744 	}
1745 	return skb_put(tail, len);
1746 }
1747 EXPORT_SYMBOL_GPL(pskb_put);
1748 
1749 /**
1750  *	skb_put - add data to a buffer
1751  *	@skb: buffer to use
1752  *	@len: amount of data to add
1753  *
1754  *	This function extends the used data area of the buffer. If this would
1755  *	exceed the total buffer size the kernel will panic. A pointer to the
1756  *	first byte of the extra data is returned.
1757  */
1758 void *skb_put(struct sk_buff *skb, unsigned int len)
1759 {
1760 	void *tmp = skb_tail_pointer(skb);
1761 	SKB_LINEAR_ASSERT(skb);
1762 	skb->tail += len;
1763 	skb->len  += len;
1764 	if (unlikely(skb->tail > skb->end))
1765 		skb_over_panic(skb, len, __builtin_return_address(0));
1766 	return tmp;
1767 }
1768 EXPORT_SYMBOL(skb_put);
1769 
1770 /**
1771  *	skb_push - add data to the start of a buffer
1772  *	@skb: buffer to use
1773  *	@len: amount of data to add
1774  *
1775  *	This function extends the used data area of the buffer at the buffer
1776  *	start. If this would exceed the total buffer headroom the kernel will
1777  *	panic. A pointer to the first byte of the extra data is returned.
1778  */
1779 void *skb_push(struct sk_buff *skb, unsigned int len)
1780 {
1781 	skb->data -= len;
1782 	skb->len  += len;
1783 	if (unlikely(skb->data < skb->head))
1784 		skb_under_panic(skb, len, __builtin_return_address(0));
1785 	return skb->data;
1786 }
1787 EXPORT_SYMBOL(skb_push);
1788 
1789 /**
1790  *	skb_pull - remove data from the start of a buffer
1791  *	@skb: buffer to use
1792  *	@len: amount of data to remove
1793  *
1794  *	This function removes data from the start of a buffer, returning
1795  *	the memory to the headroom. A pointer to the next data in the buffer
1796  *	is returned. Once the data has been pulled future pushes will overwrite
1797  *	the old data.
1798  */
1799 void *skb_pull(struct sk_buff *skb, unsigned int len)
1800 {
1801 	return skb_pull_inline(skb, len);
1802 }
1803 EXPORT_SYMBOL(skb_pull);
1804 
1805 /**
1806  *	skb_trim - remove end from a buffer
1807  *	@skb: buffer to alter
1808  *	@len: new length
1809  *
1810  *	Cut the length of a buffer down by removing data from the tail. If
1811  *	the buffer is already under the length specified it is not modified.
1812  *	The skb must be linear.
1813  */
1814 void skb_trim(struct sk_buff *skb, unsigned int len)
1815 {
1816 	if (skb->len > len)
1817 		__skb_trim(skb, len);
1818 }
1819 EXPORT_SYMBOL(skb_trim);
1820 
1821 /* Trims skb to length len. It can change skb pointers.
1822  */
1823 
1824 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1825 {
1826 	struct sk_buff **fragp;
1827 	struct sk_buff *frag;
1828 	int offset = skb_headlen(skb);
1829 	int nfrags = skb_shinfo(skb)->nr_frags;
1830 	int i;
1831 	int err;
1832 
1833 	if (skb_cloned(skb) &&
1834 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1835 		return err;
1836 
1837 	i = 0;
1838 	if (offset >= len)
1839 		goto drop_pages;
1840 
1841 	for (; i < nfrags; i++) {
1842 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1843 
1844 		if (end < len) {
1845 			offset = end;
1846 			continue;
1847 		}
1848 
1849 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1850 
1851 drop_pages:
1852 		skb_shinfo(skb)->nr_frags = i;
1853 
1854 		for (; i < nfrags; i++)
1855 			skb_frag_unref(skb, i);
1856 
1857 		if (skb_has_frag_list(skb))
1858 			skb_drop_fraglist(skb);
1859 		goto done;
1860 	}
1861 
1862 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1863 	     fragp = &frag->next) {
1864 		int end = offset + frag->len;
1865 
1866 		if (skb_shared(frag)) {
1867 			struct sk_buff *nfrag;
1868 
1869 			nfrag = skb_clone(frag, GFP_ATOMIC);
1870 			if (unlikely(!nfrag))
1871 				return -ENOMEM;
1872 
1873 			nfrag->next = frag->next;
1874 			consume_skb(frag);
1875 			frag = nfrag;
1876 			*fragp = frag;
1877 		}
1878 
1879 		if (end < len) {
1880 			offset = end;
1881 			continue;
1882 		}
1883 
1884 		if (end > len &&
1885 		    unlikely((err = pskb_trim(frag, len - offset))))
1886 			return err;
1887 
1888 		if (frag->next)
1889 			skb_drop_list(&frag->next);
1890 		break;
1891 	}
1892 
1893 done:
1894 	if (len > skb_headlen(skb)) {
1895 		skb->data_len -= skb->len - len;
1896 		skb->len       = len;
1897 	} else {
1898 		skb->len       = len;
1899 		skb->data_len  = 0;
1900 		skb_set_tail_pointer(skb, len);
1901 	}
1902 
1903 	if (!skb->sk || skb->destructor == sock_edemux)
1904 		skb_condense(skb);
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL(___pskb_trim);
1908 
1909 /* Note : use pskb_trim_rcsum() instead of calling this directly
1910  */
1911 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1912 {
1913 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1914 		int delta = skb->len - len;
1915 
1916 		skb->csum = csum_block_sub(skb->csum,
1917 					   skb_checksum(skb, len, delta, 0),
1918 					   len);
1919 	}
1920 	return __pskb_trim(skb, len);
1921 }
1922 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1923 
1924 /**
1925  *	__pskb_pull_tail - advance tail of skb header
1926  *	@skb: buffer to reallocate
1927  *	@delta: number of bytes to advance tail
1928  *
1929  *	The function makes a sense only on a fragmented &sk_buff,
1930  *	it expands header moving its tail forward and copying necessary
1931  *	data from fragmented part.
1932  *
1933  *	&sk_buff MUST have reference count of 1.
1934  *
1935  *	Returns %NULL (and &sk_buff does not change) if pull failed
1936  *	or value of new tail of skb in the case of success.
1937  *
1938  *	All the pointers pointing into skb header may change and must be
1939  *	reloaded after call to this function.
1940  */
1941 
1942 /* Moves tail of skb head forward, copying data from fragmented part,
1943  * when it is necessary.
1944  * 1. It may fail due to malloc failure.
1945  * 2. It may change skb pointers.
1946  *
1947  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1948  */
1949 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1950 {
1951 	/* If skb has not enough free space at tail, get new one
1952 	 * plus 128 bytes for future expansions. If we have enough
1953 	 * room at tail, reallocate without expansion only if skb is cloned.
1954 	 */
1955 	int i, k, eat = (skb->tail + delta) - skb->end;
1956 
1957 	if (eat > 0 || skb_cloned(skb)) {
1958 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1959 				     GFP_ATOMIC))
1960 			return NULL;
1961 	}
1962 
1963 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1964 			     skb_tail_pointer(skb), delta));
1965 
1966 	/* Optimization: no fragments, no reasons to preestimate
1967 	 * size of pulled pages. Superb.
1968 	 */
1969 	if (!skb_has_frag_list(skb))
1970 		goto pull_pages;
1971 
1972 	/* Estimate size of pulled pages. */
1973 	eat = delta;
1974 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1975 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1976 
1977 		if (size >= eat)
1978 			goto pull_pages;
1979 		eat -= size;
1980 	}
1981 
1982 	/* If we need update frag list, we are in troubles.
1983 	 * Certainly, it is possible to add an offset to skb data,
1984 	 * but taking into account that pulling is expected to
1985 	 * be very rare operation, it is worth to fight against
1986 	 * further bloating skb head and crucify ourselves here instead.
1987 	 * Pure masohism, indeed. 8)8)
1988 	 */
1989 	if (eat) {
1990 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1991 		struct sk_buff *clone = NULL;
1992 		struct sk_buff *insp = NULL;
1993 
1994 		do {
1995 			if (list->len <= eat) {
1996 				/* Eaten as whole. */
1997 				eat -= list->len;
1998 				list = list->next;
1999 				insp = list;
2000 			} else {
2001 				/* Eaten partially. */
2002 
2003 				if (skb_shared(list)) {
2004 					/* Sucks! We need to fork list. :-( */
2005 					clone = skb_clone(list, GFP_ATOMIC);
2006 					if (!clone)
2007 						return NULL;
2008 					insp = list->next;
2009 					list = clone;
2010 				} else {
2011 					/* This may be pulled without
2012 					 * problems. */
2013 					insp = list;
2014 				}
2015 				if (!pskb_pull(list, eat)) {
2016 					kfree_skb(clone);
2017 					return NULL;
2018 				}
2019 				break;
2020 			}
2021 		} while (eat);
2022 
2023 		/* Free pulled out fragments. */
2024 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2025 			skb_shinfo(skb)->frag_list = list->next;
2026 			kfree_skb(list);
2027 		}
2028 		/* And insert new clone at head. */
2029 		if (clone) {
2030 			clone->next = list;
2031 			skb_shinfo(skb)->frag_list = clone;
2032 		}
2033 	}
2034 	/* Success! Now we may commit changes to skb data. */
2035 
2036 pull_pages:
2037 	eat = delta;
2038 	k = 0;
2039 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2040 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2041 
2042 		if (size <= eat) {
2043 			skb_frag_unref(skb, i);
2044 			eat -= size;
2045 		} else {
2046 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
2047 			if (eat) {
2048 				skb_shinfo(skb)->frags[k].page_offset += eat;
2049 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
2050 				if (!i)
2051 					goto end;
2052 				eat = 0;
2053 			}
2054 			k++;
2055 		}
2056 	}
2057 	skb_shinfo(skb)->nr_frags = k;
2058 
2059 end:
2060 	skb->tail     += delta;
2061 	skb->data_len -= delta;
2062 
2063 	if (!skb->data_len)
2064 		skb_zcopy_clear(skb, false);
2065 
2066 	return skb_tail_pointer(skb);
2067 }
2068 EXPORT_SYMBOL(__pskb_pull_tail);
2069 
2070 /**
2071  *	skb_copy_bits - copy bits from skb to kernel buffer
2072  *	@skb: source skb
2073  *	@offset: offset in source
2074  *	@to: destination buffer
2075  *	@len: number of bytes to copy
2076  *
2077  *	Copy the specified number of bytes from the source skb to the
2078  *	destination buffer.
2079  *
2080  *	CAUTION ! :
2081  *		If its prototype is ever changed,
2082  *		check arch/{*}/net/{*}.S files,
2083  *		since it is called from BPF assembly code.
2084  */
2085 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2086 {
2087 	int start = skb_headlen(skb);
2088 	struct sk_buff *frag_iter;
2089 	int i, copy;
2090 
2091 	if (offset > (int)skb->len - len)
2092 		goto fault;
2093 
2094 	/* Copy header. */
2095 	if ((copy = start - offset) > 0) {
2096 		if (copy > len)
2097 			copy = len;
2098 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2099 		if ((len -= copy) == 0)
2100 			return 0;
2101 		offset += copy;
2102 		to     += copy;
2103 	}
2104 
2105 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2106 		int end;
2107 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2108 
2109 		WARN_ON(start > offset + len);
2110 
2111 		end = start + skb_frag_size(f);
2112 		if ((copy = end - offset) > 0) {
2113 			u32 p_off, p_len, copied;
2114 			struct page *p;
2115 			u8 *vaddr;
2116 
2117 			if (copy > len)
2118 				copy = len;
2119 
2120 			skb_frag_foreach_page(f,
2121 					      f->page_offset + offset - start,
2122 					      copy, p, p_off, p_len, copied) {
2123 				vaddr = kmap_atomic(p);
2124 				memcpy(to + copied, vaddr + p_off, p_len);
2125 				kunmap_atomic(vaddr);
2126 			}
2127 
2128 			if ((len -= copy) == 0)
2129 				return 0;
2130 			offset += copy;
2131 			to     += copy;
2132 		}
2133 		start = end;
2134 	}
2135 
2136 	skb_walk_frags(skb, frag_iter) {
2137 		int end;
2138 
2139 		WARN_ON(start > offset + len);
2140 
2141 		end = start + frag_iter->len;
2142 		if ((copy = end - offset) > 0) {
2143 			if (copy > len)
2144 				copy = len;
2145 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2146 				goto fault;
2147 			if ((len -= copy) == 0)
2148 				return 0;
2149 			offset += copy;
2150 			to     += copy;
2151 		}
2152 		start = end;
2153 	}
2154 
2155 	if (!len)
2156 		return 0;
2157 
2158 fault:
2159 	return -EFAULT;
2160 }
2161 EXPORT_SYMBOL(skb_copy_bits);
2162 
2163 /*
2164  * Callback from splice_to_pipe(), if we need to release some pages
2165  * at the end of the spd in case we error'ed out in filling the pipe.
2166  */
2167 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2168 {
2169 	put_page(spd->pages[i]);
2170 }
2171 
2172 static struct page *linear_to_page(struct page *page, unsigned int *len,
2173 				   unsigned int *offset,
2174 				   struct sock *sk)
2175 {
2176 	struct page_frag *pfrag = sk_page_frag(sk);
2177 
2178 	if (!sk_page_frag_refill(sk, pfrag))
2179 		return NULL;
2180 
2181 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2182 
2183 	memcpy(page_address(pfrag->page) + pfrag->offset,
2184 	       page_address(page) + *offset, *len);
2185 	*offset = pfrag->offset;
2186 	pfrag->offset += *len;
2187 
2188 	return pfrag->page;
2189 }
2190 
2191 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2192 			     struct page *page,
2193 			     unsigned int offset)
2194 {
2195 	return	spd->nr_pages &&
2196 		spd->pages[spd->nr_pages - 1] == page &&
2197 		(spd->partial[spd->nr_pages - 1].offset +
2198 		 spd->partial[spd->nr_pages - 1].len == offset);
2199 }
2200 
2201 /*
2202  * Fill page/offset/length into spd, if it can hold more pages.
2203  */
2204 static bool spd_fill_page(struct splice_pipe_desc *spd,
2205 			  struct pipe_inode_info *pipe, struct page *page,
2206 			  unsigned int *len, unsigned int offset,
2207 			  bool linear,
2208 			  struct sock *sk)
2209 {
2210 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2211 		return true;
2212 
2213 	if (linear) {
2214 		page = linear_to_page(page, len, &offset, sk);
2215 		if (!page)
2216 			return true;
2217 	}
2218 	if (spd_can_coalesce(spd, page, offset)) {
2219 		spd->partial[spd->nr_pages - 1].len += *len;
2220 		return false;
2221 	}
2222 	get_page(page);
2223 	spd->pages[spd->nr_pages] = page;
2224 	spd->partial[spd->nr_pages].len = *len;
2225 	spd->partial[spd->nr_pages].offset = offset;
2226 	spd->nr_pages++;
2227 
2228 	return false;
2229 }
2230 
2231 static bool __splice_segment(struct page *page, unsigned int poff,
2232 			     unsigned int plen, unsigned int *off,
2233 			     unsigned int *len,
2234 			     struct splice_pipe_desc *spd, bool linear,
2235 			     struct sock *sk,
2236 			     struct pipe_inode_info *pipe)
2237 {
2238 	if (!*len)
2239 		return true;
2240 
2241 	/* skip this segment if already processed */
2242 	if (*off >= plen) {
2243 		*off -= plen;
2244 		return false;
2245 	}
2246 
2247 	/* ignore any bits we already processed */
2248 	poff += *off;
2249 	plen -= *off;
2250 	*off = 0;
2251 
2252 	do {
2253 		unsigned int flen = min(*len, plen);
2254 
2255 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2256 				  linear, sk))
2257 			return true;
2258 		poff += flen;
2259 		plen -= flen;
2260 		*len -= flen;
2261 	} while (*len && plen);
2262 
2263 	return false;
2264 }
2265 
2266 /*
2267  * Map linear and fragment data from the skb to spd. It reports true if the
2268  * pipe is full or if we already spliced the requested length.
2269  */
2270 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2271 			      unsigned int *offset, unsigned int *len,
2272 			      struct splice_pipe_desc *spd, struct sock *sk)
2273 {
2274 	int seg;
2275 	struct sk_buff *iter;
2276 
2277 	/* map the linear part :
2278 	 * If skb->head_frag is set, this 'linear' part is backed by a
2279 	 * fragment, and if the head is not shared with any clones then
2280 	 * we can avoid a copy since we own the head portion of this page.
2281 	 */
2282 	if (__splice_segment(virt_to_page(skb->data),
2283 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2284 			     skb_headlen(skb),
2285 			     offset, len, spd,
2286 			     skb_head_is_locked(skb),
2287 			     sk, pipe))
2288 		return true;
2289 
2290 	/*
2291 	 * then map the fragments
2292 	 */
2293 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2294 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2295 
2296 		if (__splice_segment(skb_frag_page(f),
2297 				     f->page_offset, skb_frag_size(f),
2298 				     offset, len, spd, false, sk, pipe))
2299 			return true;
2300 	}
2301 
2302 	skb_walk_frags(skb, iter) {
2303 		if (*offset >= iter->len) {
2304 			*offset -= iter->len;
2305 			continue;
2306 		}
2307 		/* __skb_splice_bits() only fails if the output has no room
2308 		 * left, so no point in going over the frag_list for the error
2309 		 * case.
2310 		 */
2311 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2312 			return true;
2313 	}
2314 
2315 	return false;
2316 }
2317 
2318 /*
2319  * Map data from the skb to a pipe. Should handle both the linear part,
2320  * the fragments, and the frag list.
2321  */
2322 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2323 		    struct pipe_inode_info *pipe, unsigned int tlen,
2324 		    unsigned int flags)
2325 {
2326 	struct partial_page partial[MAX_SKB_FRAGS];
2327 	struct page *pages[MAX_SKB_FRAGS];
2328 	struct splice_pipe_desc spd = {
2329 		.pages = pages,
2330 		.partial = partial,
2331 		.nr_pages_max = MAX_SKB_FRAGS,
2332 		.ops = &nosteal_pipe_buf_ops,
2333 		.spd_release = sock_spd_release,
2334 	};
2335 	int ret = 0;
2336 
2337 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2338 
2339 	if (spd.nr_pages)
2340 		ret = splice_to_pipe(pipe, &spd);
2341 
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(skb_splice_bits);
2345 
2346 /* Send skb data on a socket. Socket must be locked. */
2347 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2348 			 int len)
2349 {
2350 	unsigned int orig_len = len;
2351 	struct sk_buff *head = skb;
2352 	unsigned short fragidx;
2353 	int slen, ret;
2354 
2355 do_frag_list:
2356 
2357 	/* Deal with head data */
2358 	while (offset < skb_headlen(skb) && len) {
2359 		struct kvec kv;
2360 		struct msghdr msg;
2361 
2362 		slen = min_t(int, len, skb_headlen(skb) - offset);
2363 		kv.iov_base = skb->data + offset;
2364 		kv.iov_len = slen;
2365 		memset(&msg, 0, sizeof(msg));
2366 
2367 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2368 		if (ret <= 0)
2369 			goto error;
2370 
2371 		offset += ret;
2372 		len -= ret;
2373 	}
2374 
2375 	/* All the data was skb head? */
2376 	if (!len)
2377 		goto out;
2378 
2379 	/* Make offset relative to start of frags */
2380 	offset -= skb_headlen(skb);
2381 
2382 	/* Find where we are in frag list */
2383 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2384 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2385 
2386 		if (offset < frag->size)
2387 			break;
2388 
2389 		offset -= frag->size;
2390 	}
2391 
2392 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2393 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2394 
2395 		slen = min_t(size_t, len, frag->size - offset);
2396 
2397 		while (slen) {
2398 			ret = kernel_sendpage_locked(sk, frag->page.p,
2399 						     frag->page_offset + offset,
2400 						     slen, MSG_DONTWAIT);
2401 			if (ret <= 0)
2402 				goto error;
2403 
2404 			len -= ret;
2405 			offset += ret;
2406 			slen -= ret;
2407 		}
2408 
2409 		offset = 0;
2410 	}
2411 
2412 	if (len) {
2413 		/* Process any frag lists */
2414 
2415 		if (skb == head) {
2416 			if (skb_has_frag_list(skb)) {
2417 				skb = skb_shinfo(skb)->frag_list;
2418 				goto do_frag_list;
2419 			}
2420 		} else if (skb->next) {
2421 			skb = skb->next;
2422 			goto do_frag_list;
2423 		}
2424 	}
2425 
2426 out:
2427 	return orig_len - len;
2428 
2429 error:
2430 	return orig_len == len ? ret : orig_len - len;
2431 }
2432 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2433 
2434 /**
2435  *	skb_store_bits - store bits from kernel buffer to skb
2436  *	@skb: destination buffer
2437  *	@offset: offset in destination
2438  *	@from: source buffer
2439  *	@len: number of bytes to copy
2440  *
2441  *	Copy the specified number of bytes from the source buffer to the
2442  *	destination skb.  This function handles all the messy bits of
2443  *	traversing fragment lists and such.
2444  */
2445 
2446 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2447 {
2448 	int start = skb_headlen(skb);
2449 	struct sk_buff *frag_iter;
2450 	int i, copy;
2451 
2452 	if (offset > (int)skb->len - len)
2453 		goto fault;
2454 
2455 	if ((copy = start - offset) > 0) {
2456 		if (copy > len)
2457 			copy = len;
2458 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2459 		if ((len -= copy) == 0)
2460 			return 0;
2461 		offset += copy;
2462 		from += copy;
2463 	}
2464 
2465 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 		int end;
2468 
2469 		WARN_ON(start > offset + len);
2470 
2471 		end = start + skb_frag_size(frag);
2472 		if ((copy = end - offset) > 0) {
2473 			u32 p_off, p_len, copied;
2474 			struct page *p;
2475 			u8 *vaddr;
2476 
2477 			if (copy > len)
2478 				copy = len;
2479 
2480 			skb_frag_foreach_page(frag,
2481 					      frag->page_offset + offset - start,
2482 					      copy, p, p_off, p_len, copied) {
2483 				vaddr = kmap_atomic(p);
2484 				memcpy(vaddr + p_off, from + copied, p_len);
2485 				kunmap_atomic(vaddr);
2486 			}
2487 
2488 			if ((len -= copy) == 0)
2489 				return 0;
2490 			offset += copy;
2491 			from += copy;
2492 		}
2493 		start = end;
2494 	}
2495 
2496 	skb_walk_frags(skb, frag_iter) {
2497 		int end;
2498 
2499 		WARN_ON(start > offset + len);
2500 
2501 		end = start + frag_iter->len;
2502 		if ((copy = end - offset) > 0) {
2503 			if (copy > len)
2504 				copy = len;
2505 			if (skb_store_bits(frag_iter, offset - start,
2506 					   from, copy))
2507 				goto fault;
2508 			if ((len -= copy) == 0)
2509 				return 0;
2510 			offset += copy;
2511 			from += copy;
2512 		}
2513 		start = end;
2514 	}
2515 	if (!len)
2516 		return 0;
2517 
2518 fault:
2519 	return -EFAULT;
2520 }
2521 EXPORT_SYMBOL(skb_store_bits);
2522 
2523 /* Checksum skb data. */
2524 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2525 		      __wsum csum, const struct skb_checksum_ops *ops)
2526 {
2527 	int start = skb_headlen(skb);
2528 	int i, copy = start - offset;
2529 	struct sk_buff *frag_iter;
2530 	int pos = 0;
2531 
2532 	/* Checksum header. */
2533 	if (copy > 0) {
2534 		if (copy > len)
2535 			copy = len;
2536 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2537 				       skb->data + offset, copy, csum);
2538 		if ((len -= copy) == 0)
2539 			return csum;
2540 		offset += copy;
2541 		pos	= copy;
2542 	}
2543 
2544 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2545 		int end;
2546 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2547 
2548 		WARN_ON(start > offset + len);
2549 
2550 		end = start + skb_frag_size(frag);
2551 		if ((copy = end - offset) > 0) {
2552 			u32 p_off, p_len, copied;
2553 			struct page *p;
2554 			__wsum csum2;
2555 			u8 *vaddr;
2556 
2557 			if (copy > len)
2558 				copy = len;
2559 
2560 			skb_frag_foreach_page(frag,
2561 					      frag->page_offset + offset - start,
2562 					      copy, p, p_off, p_len, copied) {
2563 				vaddr = kmap_atomic(p);
2564 				csum2 = INDIRECT_CALL_1(ops->update,
2565 							csum_partial_ext,
2566 							vaddr + p_off, p_len, 0);
2567 				kunmap_atomic(vaddr);
2568 				csum = INDIRECT_CALL_1(ops->combine,
2569 						       csum_block_add_ext, csum,
2570 						       csum2, pos, p_len);
2571 				pos += p_len;
2572 			}
2573 
2574 			if (!(len -= copy))
2575 				return csum;
2576 			offset += copy;
2577 		}
2578 		start = end;
2579 	}
2580 
2581 	skb_walk_frags(skb, frag_iter) {
2582 		int end;
2583 
2584 		WARN_ON(start > offset + len);
2585 
2586 		end = start + frag_iter->len;
2587 		if ((copy = end - offset) > 0) {
2588 			__wsum csum2;
2589 			if (copy > len)
2590 				copy = len;
2591 			csum2 = __skb_checksum(frag_iter, offset - start,
2592 					       copy, 0, ops);
2593 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2594 					       csum, csum2, pos, copy);
2595 			if ((len -= copy) == 0)
2596 				return csum;
2597 			offset += copy;
2598 			pos    += copy;
2599 		}
2600 		start = end;
2601 	}
2602 	BUG_ON(len);
2603 
2604 	return csum;
2605 }
2606 EXPORT_SYMBOL(__skb_checksum);
2607 
2608 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2609 		    int len, __wsum csum)
2610 {
2611 	const struct skb_checksum_ops ops = {
2612 		.update  = csum_partial_ext,
2613 		.combine = csum_block_add_ext,
2614 	};
2615 
2616 	return __skb_checksum(skb, offset, len, csum, &ops);
2617 }
2618 EXPORT_SYMBOL(skb_checksum);
2619 
2620 /* Both of above in one bottle. */
2621 
2622 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2623 				    u8 *to, int len, __wsum csum)
2624 {
2625 	int start = skb_headlen(skb);
2626 	int i, copy = start - offset;
2627 	struct sk_buff *frag_iter;
2628 	int pos = 0;
2629 
2630 	/* Copy header. */
2631 	if (copy > 0) {
2632 		if (copy > len)
2633 			copy = len;
2634 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2635 						 copy, csum);
2636 		if ((len -= copy) == 0)
2637 			return csum;
2638 		offset += copy;
2639 		to     += copy;
2640 		pos	= copy;
2641 	}
2642 
2643 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2644 		int end;
2645 
2646 		WARN_ON(start > offset + len);
2647 
2648 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2649 		if ((copy = end - offset) > 0) {
2650 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2651 			u32 p_off, p_len, copied;
2652 			struct page *p;
2653 			__wsum csum2;
2654 			u8 *vaddr;
2655 
2656 			if (copy > len)
2657 				copy = len;
2658 
2659 			skb_frag_foreach_page(frag,
2660 					      frag->page_offset + offset - start,
2661 					      copy, p, p_off, p_len, copied) {
2662 				vaddr = kmap_atomic(p);
2663 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2664 								  to + copied,
2665 								  p_len, 0);
2666 				kunmap_atomic(vaddr);
2667 				csum = csum_block_add(csum, csum2, pos);
2668 				pos += p_len;
2669 			}
2670 
2671 			if (!(len -= copy))
2672 				return csum;
2673 			offset += copy;
2674 			to     += copy;
2675 		}
2676 		start = end;
2677 	}
2678 
2679 	skb_walk_frags(skb, frag_iter) {
2680 		__wsum csum2;
2681 		int end;
2682 
2683 		WARN_ON(start > offset + len);
2684 
2685 		end = start + frag_iter->len;
2686 		if ((copy = end - offset) > 0) {
2687 			if (copy > len)
2688 				copy = len;
2689 			csum2 = skb_copy_and_csum_bits(frag_iter,
2690 						       offset - start,
2691 						       to, copy, 0);
2692 			csum = csum_block_add(csum, csum2, pos);
2693 			if ((len -= copy) == 0)
2694 				return csum;
2695 			offset += copy;
2696 			to     += copy;
2697 			pos    += copy;
2698 		}
2699 		start = end;
2700 	}
2701 	BUG_ON(len);
2702 	return csum;
2703 }
2704 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2705 
2706 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2707 {
2708 	__sum16 sum;
2709 
2710 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2711 	/* See comments in __skb_checksum_complete(). */
2712 	if (likely(!sum)) {
2713 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2714 		    !skb->csum_complete_sw)
2715 			netdev_rx_csum_fault(skb->dev, skb);
2716 	}
2717 	if (!skb_shared(skb))
2718 		skb->csum_valid = !sum;
2719 	return sum;
2720 }
2721 EXPORT_SYMBOL(__skb_checksum_complete_head);
2722 
2723 /* This function assumes skb->csum already holds pseudo header's checksum,
2724  * which has been changed from the hardware checksum, for example, by
2725  * __skb_checksum_validate_complete(). And, the original skb->csum must
2726  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2727  *
2728  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2729  * zero. The new checksum is stored back into skb->csum unless the skb is
2730  * shared.
2731  */
2732 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2733 {
2734 	__wsum csum;
2735 	__sum16 sum;
2736 
2737 	csum = skb_checksum(skb, 0, skb->len, 0);
2738 
2739 	sum = csum_fold(csum_add(skb->csum, csum));
2740 	/* This check is inverted, because we already knew the hardware
2741 	 * checksum is invalid before calling this function. So, if the
2742 	 * re-computed checksum is valid instead, then we have a mismatch
2743 	 * between the original skb->csum and skb_checksum(). This means either
2744 	 * the original hardware checksum is incorrect or we screw up skb->csum
2745 	 * when moving skb->data around.
2746 	 */
2747 	if (likely(!sum)) {
2748 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2749 		    !skb->csum_complete_sw)
2750 			netdev_rx_csum_fault(skb->dev, skb);
2751 	}
2752 
2753 	if (!skb_shared(skb)) {
2754 		/* Save full packet checksum */
2755 		skb->csum = csum;
2756 		skb->ip_summed = CHECKSUM_COMPLETE;
2757 		skb->csum_complete_sw = 1;
2758 		skb->csum_valid = !sum;
2759 	}
2760 
2761 	return sum;
2762 }
2763 EXPORT_SYMBOL(__skb_checksum_complete);
2764 
2765 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2766 {
2767 	net_warn_ratelimited(
2768 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2769 		__func__);
2770 	return 0;
2771 }
2772 
2773 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2774 				       int offset, int len)
2775 {
2776 	net_warn_ratelimited(
2777 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2778 		__func__);
2779 	return 0;
2780 }
2781 
2782 static const struct skb_checksum_ops default_crc32c_ops = {
2783 	.update  = warn_crc32c_csum_update,
2784 	.combine = warn_crc32c_csum_combine,
2785 };
2786 
2787 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2788 	&default_crc32c_ops;
2789 EXPORT_SYMBOL(crc32c_csum_stub);
2790 
2791  /**
2792  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2793  *	@from: source buffer
2794  *
2795  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2796  *	into skb_zerocopy().
2797  */
2798 unsigned int
2799 skb_zerocopy_headlen(const struct sk_buff *from)
2800 {
2801 	unsigned int hlen = 0;
2802 
2803 	if (!from->head_frag ||
2804 	    skb_headlen(from) < L1_CACHE_BYTES ||
2805 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2806 		hlen = skb_headlen(from);
2807 
2808 	if (skb_has_frag_list(from))
2809 		hlen = from->len;
2810 
2811 	return hlen;
2812 }
2813 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2814 
2815 /**
2816  *	skb_zerocopy - Zero copy skb to skb
2817  *	@to: destination buffer
2818  *	@from: source buffer
2819  *	@len: number of bytes to copy from source buffer
2820  *	@hlen: size of linear headroom in destination buffer
2821  *
2822  *	Copies up to `len` bytes from `from` to `to` by creating references
2823  *	to the frags in the source buffer.
2824  *
2825  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2826  *	headroom in the `to` buffer.
2827  *
2828  *	Return value:
2829  *	0: everything is OK
2830  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2831  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2832  */
2833 int
2834 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2835 {
2836 	int i, j = 0;
2837 	int plen = 0; /* length of skb->head fragment */
2838 	int ret;
2839 	struct page *page;
2840 	unsigned int offset;
2841 
2842 	BUG_ON(!from->head_frag && !hlen);
2843 
2844 	/* dont bother with small payloads */
2845 	if (len <= skb_tailroom(to))
2846 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2847 
2848 	if (hlen) {
2849 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2850 		if (unlikely(ret))
2851 			return ret;
2852 		len -= hlen;
2853 	} else {
2854 		plen = min_t(int, skb_headlen(from), len);
2855 		if (plen) {
2856 			page = virt_to_head_page(from->head);
2857 			offset = from->data - (unsigned char *)page_address(page);
2858 			__skb_fill_page_desc(to, 0, page, offset, plen);
2859 			get_page(page);
2860 			j = 1;
2861 			len -= plen;
2862 		}
2863 	}
2864 
2865 	to->truesize += len + plen;
2866 	to->len += len + plen;
2867 	to->data_len += len + plen;
2868 
2869 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2870 		skb_tx_error(from);
2871 		return -ENOMEM;
2872 	}
2873 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2874 
2875 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2876 		if (!len)
2877 			break;
2878 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2879 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2880 		len -= skb_shinfo(to)->frags[j].size;
2881 		skb_frag_ref(to, j);
2882 		j++;
2883 	}
2884 	skb_shinfo(to)->nr_frags = j;
2885 
2886 	return 0;
2887 }
2888 EXPORT_SYMBOL_GPL(skb_zerocopy);
2889 
2890 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2891 {
2892 	__wsum csum;
2893 	long csstart;
2894 
2895 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2896 		csstart = skb_checksum_start_offset(skb);
2897 	else
2898 		csstart = skb_headlen(skb);
2899 
2900 	BUG_ON(csstart > skb_headlen(skb));
2901 
2902 	skb_copy_from_linear_data(skb, to, csstart);
2903 
2904 	csum = 0;
2905 	if (csstart != skb->len)
2906 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2907 					      skb->len - csstart, 0);
2908 
2909 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2910 		long csstuff = csstart + skb->csum_offset;
2911 
2912 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2913 	}
2914 }
2915 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2916 
2917 /**
2918  *	skb_dequeue - remove from the head of the queue
2919  *	@list: list to dequeue from
2920  *
2921  *	Remove the head of the list. The list lock is taken so the function
2922  *	may be used safely with other locking list functions. The head item is
2923  *	returned or %NULL if the list is empty.
2924  */
2925 
2926 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2927 {
2928 	unsigned long flags;
2929 	struct sk_buff *result;
2930 
2931 	spin_lock_irqsave(&list->lock, flags);
2932 	result = __skb_dequeue(list);
2933 	spin_unlock_irqrestore(&list->lock, flags);
2934 	return result;
2935 }
2936 EXPORT_SYMBOL(skb_dequeue);
2937 
2938 /**
2939  *	skb_dequeue_tail - remove from the tail of the queue
2940  *	@list: list to dequeue from
2941  *
2942  *	Remove the tail of the list. The list lock is taken so the function
2943  *	may be used safely with other locking list functions. The tail item is
2944  *	returned or %NULL if the list is empty.
2945  */
2946 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2947 {
2948 	unsigned long flags;
2949 	struct sk_buff *result;
2950 
2951 	spin_lock_irqsave(&list->lock, flags);
2952 	result = __skb_dequeue_tail(list);
2953 	spin_unlock_irqrestore(&list->lock, flags);
2954 	return result;
2955 }
2956 EXPORT_SYMBOL(skb_dequeue_tail);
2957 
2958 /**
2959  *	skb_queue_purge - empty a list
2960  *	@list: list to empty
2961  *
2962  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2963  *	the list and one reference dropped. This function takes the list
2964  *	lock and is atomic with respect to other list locking functions.
2965  */
2966 void skb_queue_purge(struct sk_buff_head *list)
2967 {
2968 	struct sk_buff *skb;
2969 	while ((skb = skb_dequeue(list)) != NULL)
2970 		kfree_skb(skb);
2971 }
2972 EXPORT_SYMBOL(skb_queue_purge);
2973 
2974 /**
2975  *	skb_rbtree_purge - empty a skb rbtree
2976  *	@root: root of the rbtree to empty
2977  *	Return value: the sum of truesizes of all purged skbs.
2978  *
2979  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2980  *	the list and one reference dropped. This function does not take
2981  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2982  *	out-of-order queue is protected by the socket lock).
2983  */
2984 unsigned int skb_rbtree_purge(struct rb_root *root)
2985 {
2986 	struct rb_node *p = rb_first(root);
2987 	unsigned int sum = 0;
2988 
2989 	while (p) {
2990 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2991 
2992 		p = rb_next(p);
2993 		rb_erase(&skb->rbnode, root);
2994 		sum += skb->truesize;
2995 		kfree_skb(skb);
2996 	}
2997 	return sum;
2998 }
2999 
3000 /**
3001  *	skb_queue_head - queue a buffer at the list head
3002  *	@list: list to use
3003  *	@newsk: buffer to queue
3004  *
3005  *	Queue a buffer at the start of the list. This function takes the
3006  *	list lock and can be used safely with other locking &sk_buff functions
3007  *	safely.
3008  *
3009  *	A buffer cannot be placed on two lists at the same time.
3010  */
3011 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3012 {
3013 	unsigned long flags;
3014 
3015 	spin_lock_irqsave(&list->lock, flags);
3016 	__skb_queue_head(list, newsk);
3017 	spin_unlock_irqrestore(&list->lock, flags);
3018 }
3019 EXPORT_SYMBOL(skb_queue_head);
3020 
3021 /**
3022  *	skb_queue_tail - queue a buffer at the list tail
3023  *	@list: list to use
3024  *	@newsk: buffer to queue
3025  *
3026  *	Queue a buffer at the tail of the list. This function takes the
3027  *	list lock and can be used safely with other locking &sk_buff functions
3028  *	safely.
3029  *
3030  *	A buffer cannot be placed on two lists at the same time.
3031  */
3032 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3033 {
3034 	unsigned long flags;
3035 
3036 	spin_lock_irqsave(&list->lock, flags);
3037 	__skb_queue_tail(list, newsk);
3038 	spin_unlock_irqrestore(&list->lock, flags);
3039 }
3040 EXPORT_SYMBOL(skb_queue_tail);
3041 
3042 /**
3043  *	skb_unlink	-	remove a buffer from a list
3044  *	@skb: buffer to remove
3045  *	@list: list to use
3046  *
3047  *	Remove a packet from a list. The list locks are taken and this
3048  *	function is atomic with respect to other list locked calls
3049  *
3050  *	You must know what list the SKB is on.
3051  */
3052 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3053 {
3054 	unsigned long flags;
3055 
3056 	spin_lock_irqsave(&list->lock, flags);
3057 	__skb_unlink(skb, list);
3058 	spin_unlock_irqrestore(&list->lock, flags);
3059 }
3060 EXPORT_SYMBOL(skb_unlink);
3061 
3062 /**
3063  *	skb_append	-	append a buffer
3064  *	@old: buffer to insert after
3065  *	@newsk: buffer to insert
3066  *	@list: list to use
3067  *
3068  *	Place a packet after a given packet in a list. The list locks are taken
3069  *	and this function is atomic with respect to other list locked calls.
3070  *	A buffer cannot be placed on two lists at the same time.
3071  */
3072 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3073 {
3074 	unsigned long flags;
3075 
3076 	spin_lock_irqsave(&list->lock, flags);
3077 	__skb_queue_after(list, old, newsk);
3078 	spin_unlock_irqrestore(&list->lock, flags);
3079 }
3080 EXPORT_SYMBOL(skb_append);
3081 
3082 static inline void skb_split_inside_header(struct sk_buff *skb,
3083 					   struct sk_buff* skb1,
3084 					   const u32 len, const int pos)
3085 {
3086 	int i;
3087 
3088 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3089 					 pos - len);
3090 	/* And move data appendix as is. */
3091 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3092 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3093 
3094 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3095 	skb_shinfo(skb)->nr_frags  = 0;
3096 	skb1->data_len		   = skb->data_len;
3097 	skb1->len		   += skb1->data_len;
3098 	skb->data_len		   = 0;
3099 	skb->len		   = len;
3100 	skb_set_tail_pointer(skb, len);
3101 }
3102 
3103 static inline void skb_split_no_header(struct sk_buff *skb,
3104 				       struct sk_buff* skb1,
3105 				       const u32 len, int pos)
3106 {
3107 	int i, k = 0;
3108 	const int nfrags = skb_shinfo(skb)->nr_frags;
3109 
3110 	skb_shinfo(skb)->nr_frags = 0;
3111 	skb1->len		  = skb1->data_len = skb->len - len;
3112 	skb->len		  = len;
3113 	skb->data_len		  = len - pos;
3114 
3115 	for (i = 0; i < nfrags; i++) {
3116 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3117 
3118 		if (pos + size > len) {
3119 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3120 
3121 			if (pos < len) {
3122 				/* Split frag.
3123 				 * We have two variants in this case:
3124 				 * 1. Move all the frag to the second
3125 				 *    part, if it is possible. F.e.
3126 				 *    this approach is mandatory for TUX,
3127 				 *    where splitting is expensive.
3128 				 * 2. Split is accurately. We make this.
3129 				 */
3130 				skb_frag_ref(skb, i);
3131 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3132 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3133 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3134 				skb_shinfo(skb)->nr_frags++;
3135 			}
3136 			k++;
3137 		} else
3138 			skb_shinfo(skb)->nr_frags++;
3139 		pos += size;
3140 	}
3141 	skb_shinfo(skb1)->nr_frags = k;
3142 }
3143 
3144 /**
3145  * skb_split - Split fragmented skb to two parts at length len.
3146  * @skb: the buffer to split
3147  * @skb1: the buffer to receive the second part
3148  * @len: new length for skb
3149  */
3150 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3151 {
3152 	int pos = skb_headlen(skb);
3153 
3154 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3155 				      SKBTX_SHARED_FRAG;
3156 	skb_zerocopy_clone(skb1, skb, 0);
3157 	if (len < pos)	/* Split line is inside header. */
3158 		skb_split_inside_header(skb, skb1, len, pos);
3159 	else		/* Second chunk has no header, nothing to copy. */
3160 		skb_split_no_header(skb, skb1, len, pos);
3161 }
3162 EXPORT_SYMBOL(skb_split);
3163 
3164 /* Shifting from/to a cloned skb is a no-go.
3165  *
3166  * Caller cannot keep skb_shinfo related pointers past calling here!
3167  */
3168 static int skb_prepare_for_shift(struct sk_buff *skb)
3169 {
3170 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3171 }
3172 
3173 /**
3174  * skb_shift - Shifts paged data partially from skb to another
3175  * @tgt: buffer into which tail data gets added
3176  * @skb: buffer from which the paged data comes from
3177  * @shiftlen: shift up to this many bytes
3178  *
3179  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3180  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3181  * It's up to caller to free skb if everything was shifted.
3182  *
3183  * If @tgt runs out of frags, the whole operation is aborted.
3184  *
3185  * Skb cannot include anything else but paged data while tgt is allowed
3186  * to have non-paged data as well.
3187  *
3188  * TODO: full sized shift could be optimized but that would need
3189  * specialized skb free'er to handle frags without up-to-date nr_frags.
3190  */
3191 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3192 {
3193 	int from, to, merge, todo;
3194 	struct skb_frag_struct *fragfrom, *fragto;
3195 
3196 	BUG_ON(shiftlen > skb->len);
3197 
3198 	if (skb_headlen(skb))
3199 		return 0;
3200 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3201 		return 0;
3202 
3203 	todo = shiftlen;
3204 	from = 0;
3205 	to = skb_shinfo(tgt)->nr_frags;
3206 	fragfrom = &skb_shinfo(skb)->frags[from];
3207 
3208 	/* Actual merge is delayed until the point when we know we can
3209 	 * commit all, so that we don't have to undo partial changes
3210 	 */
3211 	if (!to ||
3212 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3213 			      fragfrom->page_offset)) {
3214 		merge = -1;
3215 	} else {
3216 		merge = to - 1;
3217 
3218 		todo -= skb_frag_size(fragfrom);
3219 		if (todo < 0) {
3220 			if (skb_prepare_for_shift(skb) ||
3221 			    skb_prepare_for_shift(tgt))
3222 				return 0;
3223 
3224 			/* All previous frag pointers might be stale! */
3225 			fragfrom = &skb_shinfo(skb)->frags[from];
3226 			fragto = &skb_shinfo(tgt)->frags[merge];
3227 
3228 			skb_frag_size_add(fragto, shiftlen);
3229 			skb_frag_size_sub(fragfrom, shiftlen);
3230 			fragfrom->page_offset += shiftlen;
3231 
3232 			goto onlymerged;
3233 		}
3234 
3235 		from++;
3236 	}
3237 
3238 	/* Skip full, not-fitting skb to avoid expensive operations */
3239 	if ((shiftlen == skb->len) &&
3240 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3241 		return 0;
3242 
3243 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3244 		return 0;
3245 
3246 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3247 		if (to == MAX_SKB_FRAGS)
3248 			return 0;
3249 
3250 		fragfrom = &skb_shinfo(skb)->frags[from];
3251 		fragto = &skb_shinfo(tgt)->frags[to];
3252 
3253 		if (todo >= skb_frag_size(fragfrom)) {
3254 			*fragto = *fragfrom;
3255 			todo -= skb_frag_size(fragfrom);
3256 			from++;
3257 			to++;
3258 
3259 		} else {
3260 			__skb_frag_ref(fragfrom);
3261 			fragto->page = fragfrom->page;
3262 			fragto->page_offset = fragfrom->page_offset;
3263 			skb_frag_size_set(fragto, todo);
3264 
3265 			fragfrom->page_offset += todo;
3266 			skb_frag_size_sub(fragfrom, todo);
3267 			todo = 0;
3268 
3269 			to++;
3270 			break;
3271 		}
3272 	}
3273 
3274 	/* Ready to "commit" this state change to tgt */
3275 	skb_shinfo(tgt)->nr_frags = to;
3276 
3277 	if (merge >= 0) {
3278 		fragfrom = &skb_shinfo(skb)->frags[0];
3279 		fragto = &skb_shinfo(tgt)->frags[merge];
3280 
3281 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3282 		__skb_frag_unref(fragfrom);
3283 	}
3284 
3285 	/* Reposition in the original skb */
3286 	to = 0;
3287 	while (from < skb_shinfo(skb)->nr_frags)
3288 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3289 	skb_shinfo(skb)->nr_frags = to;
3290 
3291 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3292 
3293 onlymerged:
3294 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3295 	 * the other hand might need it if it needs to be resent
3296 	 */
3297 	tgt->ip_summed = CHECKSUM_PARTIAL;
3298 	skb->ip_summed = CHECKSUM_PARTIAL;
3299 
3300 	/* Yak, is it really working this way? Some helper please? */
3301 	skb->len -= shiftlen;
3302 	skb->data_len -= shiftlen;
3303 	skb->truesize -= shiftlen;
3304 	tgt->len += shiftlen;
3305 	tgt->data_len += shiftlen;
3306 	tgt->truesize += shiftlen;
3307 
3308 	return shiftlen;
3309 }
3310 
3311 /**
3312  * skb_prepare_seq_read - Prepare a sequential read of skb data
3313  * @skb: the buffer to read
3314  * @from: lower offset of data to be read
3315  * @to: upper offset of data to be read
3316  * @st: state variable
3317  *
3318  * Initializes the specified state variable. Must be called before
3319  * invoking skb_seq_read() for the first time.
3320  */
3321 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3322 			  unsigned int to, struct skb_seq_state *st)
3323 {
3324 	st->lower_offset = from;
3325 	st->upper_offset = to;
3326 	st->root_skb = st->cur_skb = skb;
3327 	st->frag_idx = st->stepped_offset = 0;
3328 	st->frag_data = NULL;
3329 }
3330 EXPORT_SYMBOL(skb_prepare_seq_read);
3331 
3332 /**
3333  * skb_seq_read - Sequentially read skb data
3334  * @consumed: number of bytes consumed by the caller so far
3335  * @data: destination pointer for data to be returned
3336  * @st: state variable
3337  *
3338  * Reads a block of skb data at @consumed relative to the
3339  * lower offset specified to skb_prepare_seq_read(). Assigns
3340  * the head of the data block to @data and returns the length
3341  * of the block or 0 if the end of the skb data or the upper
3342  * offset has been reached.
3343  *
3344  * The caller is not required to consume all of the data
3345  * returned, i.e. @consumed is typically set to the number
3346  * of bytes already consumed and the next call to
3347  * skb_seq_read() will return the remaining part of the block.
3348  *
3349  * Note 1: The size of each block of data returned can be arbitrary,
3350  *       this limitation is the cost for zerocopy sequential
3351  *       reads of potentially non linear data.
3352  *
3353  * Note 2: Fragment lists within fragments are not implemented
3354  *       at the moment, state->root_skb could be replaced with
3355  *       a stack for this purpose.
3356  */
3357 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3358 			  struct skb_seq_state *st)
3359 {
3360 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3361 	skb_frag_t *frag;
3362 
3363 	if (unlikely(abs_offset >= st->upper_offset)) {
3364 		if (st->frag_data) {
3365 			kunmap_atomic(st->frag_data);
3366 			st->frag_data = NULL;
3367 		}
3368 		return 0;
3369 	}
3370 
3371 next_skb:
3372 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3373 
3374 	if (abs_offset < block_limit && !st->frag_data) {
3375 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3376 		return block_limit - abs_offset;
3377 	}
3378 
3379 	if (st->frag_idx == 0 && !st->frag_data)
3380 		st->stepped_offset += skb_headlen(st->cur_skb);
3381 
3382 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3383 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3384 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3385 
3386 		if (abs_offset < block_limit) {
3387 			if (!st->frag_data)
3388 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3389 
3390 			*data = (u8 *) st->frag_data + frag->page_offset +
3391 				(abs_offset - st->stepped_offset);
3392 
3393 			return block_limit - abs_offset;
3394 		}
3395 
3396 		if (st->frag_data) {
3397 			kunmap_atomic(st->frag_data);
3398 			st->frag_data = NULL;
3399 		}
3400 
3401 		st->frag_idx++;
3402 		st->stepped_offset += skb_frag_size(frag);
3403 	}
3404 
3405 	if (st->frag_data) {
3406 		kunmap_atomic(st->frag_data);
3407 		st->frag_data = NULL;
3408 	}
3409 
3410 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3411 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3412 		st->frag_idx = 0;
3413 		goto next_skb;
3414 	} else if (st->cur_skb->next) {
3415 		st->cur_skb = st->cur_skb->next;
3416 		st->frag_idx = 0;
3417 		goto next_skb;
3418 	}
3419 
3420 	return 0;
3421 }
3422 EXPORT_SYMBOL(skb_seq_read);
3423 
3424 /**
3425  * skb_abort_seq_read - Abort a sequential read of skb data
3426  * @st: state variable
3427  *
3428  * Must be called if skb_seq_read() was not called until it
3429  * returned 0.
3430  */
3431 void skb_abort_seq_read(struct skb_seq_state *st)
3432 {
3433 	if (st->frag_data)
3434 		kunmap_atomic(st->frag_data);
3435 }
3436 EXPORT_SYMBOL(skb_abort_seq_read);
3437 
3438 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3439 
3440 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3441 					  struct ts_config *conf,
3442 					  struct ts_state *state)
3443 {
3444 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3445 }
3446 
3447 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3448 {
3449 	skb_abort_seq_read(TS_SKB_CB(state));
3450 }
3451 
3452 /**
3453  * skb_find_text - Find a text pattern in skb data
3454  * @skb: the buffer to look in
3455  * @from: search offset
3456  * @to: search limit
3457  * @config: textsearch configuration
3458  *
3459  * Finds a pattern in the skb data according to the specified
3460  * textsearch configuration. Use textsearch_next() to retrieve
3461  * subsequent occurrences of the pattern. Returns the offset
3462  * to the first occurrence or UINT_MAX if no match was found.
3463  */
3464 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3465 			   unsigned int to, struct ts_config *config)
3466 {
3467 	struct ts_state state;
3468 	unsigned int ret;
3469 
3470 	config->get_next_block = skb_ts_get_next_block;
3471 	config->finish = skb_ts_finish;
3472 
3473 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3474 
3475 	ret = textsearch_find(config, &state);
3476 	return (ret <= to - from ? ret : UINT_MAX);
3477 }
3478 EXPORT_SYMBOL(skb_find_text);
3479 
3480 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3481 			 int offset, size_t size)
3482 {
3483 	int i = skb_shinfo(skb)->nr_frags;
3484 
3485 	if (skb_can_coalesce(skb, i, page, offset)) {
3486 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3487 	} else if (i < MAX_SKB_FRAGS) {
3488 		get_page(page);
3489 		skb_fill_page_desc(skb, i, page, offset, size);
3490 	} else {
3491 		return -EMSGSIZE;
3492 	}
3493 
3494 	return 0;
3495 }
3496 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3497 
3498 /**
3499  *	skb_pull_rcsum - pull skb and update receive checksum
3500  *	@skb: buffer to update
3501  *	@len: length of data pulled
3502  *
3503  *	This function performs an skb_pull on the packet and updates
3504  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3505  *	receive path processing instead of skb_pull unless you know
3506  *	that the checksum difference is zero (e.g., a valid IP header)
3507  *	or you are setting ip_summed to CHECKSUM_NONE.
3508  */
3509 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3510 {
3511 	unsigned char *data = skb->data;
3512 
3513 	BUG_ON(len > skb->len);
3514 	__skb_pull(skb, len);
3515 	skb_postpull_rcsum(skb, data, len);
3516 	return skb->data;
3517 }
3518 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3519 
3520 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3521 {
3522 	skb_frag_t head_frag;
3523 	struct page *page;
3524 
3525 	page = virt_to_head_page(frag_skb->head);
3526 	head_frag.page.p = page;
3527 	head_frag.page_offset = frag_skb->data -
3528 		(unsigned char *)page_address(page);
3529 	head_frag.size = skb_headlen(frag_skb);
3530 	return head_frag;
3531 }
3532 
3533 /**
3534  *	skb_segment - Perform protocol segmentation on skb.
3535  *	@head_skb: buffer to segment
3536  *	@features: features for the output path (see dev->features)
3537  *
3538  *	This function performs segmentation on the given skb.  It returns
3539  *	a pointer to the first in a list of new skbs for the segments.
3540  *	In case of error it returns ERR_PTR(err).
3541  */
3542 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3543 			    netdev_features_t features)
3544 {
3545 	struct sk_buff *segs = NULL;
3546 	struct sk_buff *tail = NULL;
3547 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3548 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3549 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3550 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3551 	struct sk_buff *frag_skb = head_skb;
3552 	unsigned int offset = doffset;
3553 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3554 	unsigned int partial_segs = 0;
3555 	unsigned int headroom;
3556 	unsigned int len = head_skb->len;
3557 	__be16 proto;
3558 	bool csum, sg;
3559 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3560 	int err = -ENOMEM;
3561 	int i = 0;
3562 	int pos;
3563 	int dummy;
3564 
3565 	__skb_push(head_skb, doffset);
3566 	proto = skb_network_protocol(head_skb, &dummy);
3567 	if (unlikely(!proto))
3568 		return ERR_PTR(-EINVAL);
3569 
3570 	sg = !!(features & NETIF_F_SG);
3571 	csum = !!can_checksum_protocol(features, proto);
3572 
3573 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3574 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3575 			struct sk_buff *iter;
3576 			unsigned int frag_len;
3577 
3578 			if (!list_skb ||
3579 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3580 				goto normal;
3581 
3582 			/* If we get here then all the required
3583 			 * GSO features except frag_list are supported.
3584 			 * Try to split the SKB to multiple GSO SKBs
3585 			 * with no frag_list.
3586 			 * Currently we can do that only when the buffers don't
3587 			 * have a linear part and all the buffers except
3588 			 * the last are of the same length.
3589 			 */
3590 			frag_len = list_skb->len;
3591 			skb_walk_frags(head_skb, iter) {
3592 				if (frag_len != iter->len && iter->next)
3593 					goto normal;
3594 				if (skb_headlen(iter) && !iter->head_frag)
3595 					goto normal;
3596 
3597 				len -= iter->len;
3598 			}
3599 
3600 			if (len != frag_len)
3601 				goto normal;
3602 		}
3603 
3604 		/* GSO partial only requires that we trim off any excess that
3605 		 * doesn't fit into an MSS sized block, so take care of that
3606 		 * now.
3607 		 */
3608 		partial_segs = len / mss;
3609 		if (partial_segs > 1)
3610 			mss *= partial_segs;
3611 		else
3612 			partial_segs = 0;
3613 	}
3614 
3615 normal:
3616 	headroom = skb_headroom(head_skb);
3617 	pos = skb_headlen(head_skb);
3618 
3619 	do {
3620 		struct sk_buff *nskb;
3621 		skb_frag_t *nskb_frag;
3622 		int hsize;
3623 		int size;
3624 
3625 		if (unlikely(mss == GSO_BY_FRAGS)) {
3626 			len = list_skb->len;
3627 		} else {
3628 			len = head_skb->len - offset;
3629 			if (len > mss)
3630 				len = mss;
3631 		}
3632 
3633 		hsize = skb_headlen(head_skb) - offset;
3634 		if (hsize < 0)
3635 			hsize = 0;
3636 		if (hsize > len || !sg)
3637 			hsize = len;
3638 
3639 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3640 		    (skb_headlen(list_skb) == len || sg)) {
3641 			BUG_ON(skb_headlen(list_skb) > len);
3642 
3643 			i = 0;
3644 			nfrags = skb_shinfo(list_skb)->nr_frags;
3645 			frag = skb_shinfo(list_skb)->frags;
3646 			frag_skb = list_skb;
3647 			pos += skb_headlen(list_skb);
3648 
3649 			while (pos < offset + len) {
3650 				BUG_ON(i >= nfrags);
3651 
3652 				size = skb_frag_size(frag);
3653 				if (pos + size > offset + len)
3654 					break;
3655 
3656 				i++;
3657 				pos += size;
3658 				frag++;
3659 			}
3660 
3661 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3662 			list_skb = list_skb->next;
3663 
3664 			if (unlikely(!nskb))
3665 				goto err;
3666 
3667 			if (unlikely(pskb_trim(nskb, len))) {
3668 				kfree_skb(nskb);
3669 				goto err;
3670 			}
3671 
3672 			hsize = skb_end_offset(nskb);
3673 			if (skb_cow_head(nskb, doffset + headroom)) {
3674 				kfree_skb(nskb);
3675 				goto err;
3676 			}
3677 
3678 			nskb->truesize += skb_end_offset(nskb) - hsize;
3679 			skb_release_head_state(nskb);
3680 			__skb_push(nskb, doffset);
3681 		} else {
3682 			nskb = __alloc_skb(hsize + doffset + headroom,
3683 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3684 					   NUMA_NO_NODE);
3685 
3686 			if (unlikely(!nskb))
3687 				goto err;
3688 
3689 			skb_reserve(nskb, headroom);
3690 			__skb_put(nskb, doffset);
3691 		}
3692 
3693 		if (segs)
3694 			tail->next = nskb;
3695 		else
3696 			segs = nskb;
3697 		tail = nskb;
3698 
3699 		__copy_skb_header(nskb, head_skb);
3700 
3701 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3702 		skb_reset_mac_len(nskb);
3703 
3704 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3705 						 nskb->data - tnl_hlen,
3706 						 doffset + tnl_hlen);
3707 
3708 		if (nskb->len == len + doffset)
3709 			goto perform_csum_check;
3710 
3711 		if (!sg) {
3712 			if (!nskb->remcsum_offload)
3713 				nskb->ip_summed = CHECKSUM_NONE;
3714 			SKB_GSO_CB(nskb)->csum =
3715 				skb_copy_and_csum_bits(head_skb, offset,
3716 						       skb_put(nskb, len),
3717 						       len, 0);
3718 			SKB_GSO_CB(nskb)->csum_start =
3719 				skb_headroom(nskb) + doffset;
3720 			continue;
3721 		}
3722 
3723 		nskb_frag = skb_shinfo(nskb)->frags;
3724 
3725 		skb_copy_from_linear_data_offset(head_skb, offset,
3726 						 skb_put(nskb, hsize), hsize);
3727 
3728 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3729 					      SKBTX_SHARED_FRAG;
3730 
3731 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3732 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3733 			goto err;
3734 
3735 		while (pos < offset + len) {
3736 			if (i >= nfrags) {
3737 				i = 0;
3738 				nfrags = skb_shinfo(list_skb)->nr_frags;
3739 				frag = skb_shinfo(list_skb)->frags;
3740 				frag_skb = list_skb;
3741 				if (!skb_headlen(list_skb)) {
3742 					BUG_ON(!nfrags);
3743 				} else {
3744 					BUG_ON(!list_skb->head_frag);
3745 
3746 					/* to make room for head_frag. */
3747 					i--;
3748 					frag--;
3749 				}
3750 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3751 				    skb_zerocopy_clone(nskb, frag_skb,
3752 						       GFP_ATOMIC))
3753 					goto err;
3754 
3755 				list_skb = list_skb->next;
3756 			}
3757 
3758 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3759 				     MAX_SKB_FRAGS)) {
3760 				net_warn_ratelimited(
3761 					"skb_segment: too many frags: %u %u\n",
3762 					pos, mss);
3763 				err = -EINVAL;
3764 				goto err;
3765 			}
3766 
3767 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3768 			__skb_frag_ref(nskb_frag);
3769 			size = skb_frag_size(nskb_frag);
3770 
3771 			if (pos < offset) {
3772 				nskb_frag->page_offset += offset - pos;
3773 				skb_frag_size_sub(nskb_frag, offset - pos);
3774 			}
3775 
3776 			skb_shinfo(nskb)->nr_frags++;
3777 
3778 			if (pos + size <= offset + len) {
3779 				i++;
3780 				frag++;
3781 				pos += size;
3782 			} else {
3783 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3784 				goto skip_fraglist;
3785 			}
3786 
3787 			nskb_frag++;
3788 		}
3789 
3790 skip_fraglist:
3791 		nskb->data_len = len - hsize;
3792 		nskb->len += nskb->data_len;
3793 		nskb->truesize += nskb->data_len;
3794 
3795 perform_csum_check:
3796 		if (!csum) {
3797 			if (skb_has_shared_frag(nskb) &&
3798 			    __skb_linearize(nskb))
3799 				goto err;
3800 
3801 			if (!nskb->remcsum_offload)
3802 				nskb->ip_summed = CHECKSUM_NONE;
3803 			SKB_GSO_CB(nskb)->csum =
3804 				skb_checksum(nskb, doffset,
3805 					     nskb->len - doffset, 0);
3806 			SKB_GSO_CB(nskb)->csum_start =
3807 				skb_headroom(nskb) + doffset;
3808 		}
3809 	} while ((offset += len) < head_skb->len);
3810 
3811 	/* Some callers want to get the end of the list.
3812 	 * Put it in segs->prev to avoid walking the list.
3813 	 * (see validate_xmit_skb_list() for example)
3814 	 */
3815 	segs->prev = tail;
3816 
3817 	if (partial_segs) {
3818 		struct sk_buff *iter;
3819 		int type = skb_shinfo(head_skb)->gso_type;
3820 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3821 
3822 		/* Update type to add partial and then remove dodgy if set */
3823 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3824 		type &= ~SKB_GSO_DODGY;
3825 
3826 		/* Update GSO info and prepare to start updating headers on
3827 		 * our way back down the stack of protocols.
3828 		 */
3829 		for (iter = segs; iter; iter = iter->next) {
3830 			skb_shinfo(iter)->gso_size = gso_size;
3831 			skb_shinfo(iter)->gso_segs = partial_segs;
3832 			skb_shinfo(iter)->gso_type = type;
3833 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3834 		}
3835 
3836 		if (tail->len - doffset <= gso_size)
3837 			skb_shinfo(tail)->gso_size = 0;
3838 		else if (tail != segs)
3839 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3840 	}
3841 
3842 	/* Following permits correct backpressure, for protocols
3843 	 * using skb_set_owner_w().
3844 	 * Idea is to tranfert ownership from head_skb to last segment.
3845 	 */
3846 	if (head_skb->destructor == sock_wfree) {
3847 		swap(tail->truesize, head_skb->truesize);
3848 		swap(tail->destructor, head_skb->destructor);
3849 		swap(tail->sk, head_skb->sk);
3850 	}
3851 	return segs;
3852 
3853 err:
3854 	kfree_skb_list(segs);
3855 	return ERR_PTR(err);
3856 }
3857 EXPORT_SYMBOL_GPL(skb_segment);
3858 
3859 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3860 {
3861 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3862 	unsigned int offset = skb_gro_offset(skb);
3863 	unsigned int headlen = skb_headlen(skb);
3864 	unsigned int len = skb_gro_len(skb);
3865 	unsigned int delta_truesize;
3866 	struct sk_buff *lp;
3867 
3868 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3869 		return -E2BIG;
3870 
3871 	lp = NAPI_GRO_CB(p)->last;
3872 	pinfo = skb_shinfo(lp);
3873 
3874 	if (headlen <= offset) {
3875 		skb_frag_t *frag;
3876 		skb_frag_t *frag2;
3877 		int i = skbinfo->nr_frags;
3878 		int nr_frags = pinfo->nr_frags + i;
3879 
3880 		if (nr_frags > MAX_SKB_FRAGS)
3881 			goto merge;
3882 
3883 		offset -= headlen;
3884 		pinfo->nr_frags = nr_frags;
3885 		skbinfo->nr_frags = 0;
3886 
3887 		frag = pinfo->frags + nr_frags;
3888 		frag2 = skbinfo->frags + i;
3889 		do {
3890 			*--frag = *--frag2;
3891 		} while (--i);
3892 
3893 		frag->page_offset += offset;
3894 		skb_frag_size_sub(frag, offset);
3895 
3896 		/* all fragments truesize : remove (head size + sk_buff) */
3897 		delta_truesize = skb->truesize -
3898 				 SKB_TRUESIZE(skb_end_offset(skb));
3899 
3900 		skb->truesize -= skb->data_len;
3901 		skb->len -= skb->data_len;
3902 		skb->data_len = 0;
3903 
3904 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3905 		goto done;
3906 	} else if (skb->head_frag) {
3907 		int nr_frags = pinfo->nr_frags;
3908 		skb_frag_t *frag = pinfo->frags + nr_frags;
3909 		struct page *page = virt_to_head_page(skb->head);
3910 		unsigned int first_size = headlen - offset;
3911 		unsigned int first_offset;
3912 
3913 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3914 			goto merge;
3915 
3916 		first_offset = skb->data -
3917 			       (unsigned char *)page_address(page) +
3918 			       offset;
3919 
3920 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3921 
3922 		frag->page.p	  = page;
3923 		frag->page_offset = first_offset;
3924 		skb_frag_size_set(frag, first_size);
3925 
3926 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3927 		/* We dont need to clear skbinfo->nr_frags here */
3928 
3929 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3930 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3931 		goto done;
3932 	}
3933 
3934 merge:
3935 	delta_truesize = skb->truesize;
3936 	if (offset > headlen) {
3937 		unsigned int eat = offset - headlen;
3938 
3939 		skbinfo->frags[0].page_offset += eat;
3940 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3941 		skb->data_len -= eat;
3942 		skb->len -= eat;
3943 		offset = headlen;
3944 	}
3945 
3946 	__skb_pull(skb, offset);
3947 
3948 	if (NAPI_GRO_CB(p)->last == p)
3949 		skb_shinfo(p)->frag_list = skb;
3950 	else
3951 		NAPI_GRO_CB(p)->last->next = skb;
3952 	NAPI_GRO_CB(p)->last = skb;
3953 	__skb_header_release(skb);
3954 	lp = p;
3955 
3956 done:
3957 	NAPI_GRO_CB(p)->count++;
3958 	p->data_len += len;
3959 	p->truesize += delta_truesize;
3960 	p->len += len;
3961 	if (lp != p) {
3962 		lp->data_len += len;
3963 		lp->truesize += delta_truesize;
3964 		lp->len += len;
3965 	}
3966 	NAPI_GRO_CB(skb)->same_flow = 1;
3967 	return 0;
3968 }
3969 EXPORT_SYMBOL_GPL(skb_gro_receive);
3970 
3971 #ifdef CONFIG_SKB_EXTENSIONS
3972 #define SKB_EXT_ALIGN_VALUE	8
3973 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
3974 
3975 static const u8 skb_ext_type_len[] = {
3976 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3977 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
3978 #endif
3979 #ifdef CONFIG_XFRM
3980 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
3981 #endif
3982 };
3983 
3984 static __always_inline unsigned int skb_ext_total_length(void)
3985 {
3986 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
3987 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3988 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
3989 #endif
3990 #ifdef CONFIG_XFRM
3991 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
3992 #endif
3993 		0;
3994 }
3995 
3996 static void skb_extensions_init(void)
3997 {
3998 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
3999 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4000 
4001 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4002 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4003 					     0,
4004 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4005 					     NULL);
4006 }
4007 #else
4008 static void skb_extensions_init(void) {}
4009 #endif
4010 
4011 void __init skb_init(void)
4012 {
4013 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4014 					      sizeof(struct sk_buff),
4015 					      0,
4016 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4017 					      offsetof(struct sk_buff, cb),
4018 					      sizeof_field(struct sk_buff, cb),
4019 					      NULL);
4020 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4021 						sizeof(struct sk_buff_fclones),
4022 						0,
4023 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4024 						NULL);
4025 	skb_extensions_init();
4026 }
4027 
4028 static int
4029 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4030 	       unsigned int recursion_level)
4031 {
4032 	int start = skb_headlen(skb);
4033 	int i, copy = start - offset;
4034 	struct sk_buff *frag_iter;
4035 	int elt = 0;
4036 
4037 	if (unlikely(recursion_level >= 24))
4038 		return -EMSGSIZE;
4039 
4040 	if (copy > 0) {
4041 		if (copy > len)
4042 			copy = len;
4043 		sg_set_buf(sg, skb->data + offset, copy);
4044 		elt++;
4045 		if ((len -= copy) == 0)
4046 			return elt;
4047 		offset += copy;
4048 	}
4049 
4050 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4051 		int end;
4052 
4053 		WARN_ON(start > offset + len);
4054 
4055 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4056 		if ((copy = end - offset) > 0) {
4057 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4058 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4059 				return -EMSGSIZE;
4060 
4061 			if (copy > len)
4062 				copy = len;
4063 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4064 					frag->page_offset+offset-start);
4065 			elt++;
4066 			if (!(len -= copy))
4067 				return elt;
4068 			offset += copy;
4069 		}
4070 		start = end;
4071 	}
4072 
4073 	skb_walk_frags(skb, frag_iter) {
4074 		int end, ret;
4075 
4076 		WARN_ON(start > offset + len);
4077 
4078 		end = start + frag_iter->len;
4079 		if ((copy = end - offset) > 0) {
4080 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4081 				return -EMSGSIZE;
4082 
4083 			if (copy > len)
4084 				copy = len;
4085 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4086 					      copy, recursion_level + 1);
4087 			if (unlikely(ret < 0))
4088 				return ret;
4089 			elt += ret;
4090 			if ((len -= copy) == 0)
4091 				return elt;
4092 			offset += copy;
4093 		}
4094 		start = end;
4095 	}
4096 	BUG_ON(len);
4097 	return elt;
4098 }
4099 
4100 /**
4101  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4102  *	@skb: Socket buffer containing the buffers to be mapped
4103  *	@sg: The scatter-gather list to map into
4104  *	@offset: The offset into the buffer's contents to start mapping
4105  *	@len: Length of buffer space to be mapped
4106  *
4107  *	Fill the specified scatter-gather list with mappings/pointers into a
4108  *	region of the buffer space attached to a socket buffer. Returns either
4109  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4110  *	could not fit.
4111  */
4112 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4113 {
4114 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4115 
4116 	if (nsg <= 0)
4117 		return nsg;
4118 
4119 	sg_mark_end(&sg[nsg - 1]);
4120 
4121 	return nsg;
4122 }
4123 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4124 
4125 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4126  * sglist without mark the sg which contain last skb data as the end.
4127  * So the caller can mannipulate sg list as will when padding new data after
4128  * the first call without calling sg_unmark_end to expend sg list.
4129  *
4130  * Scenario to use skb_to_sgvec_nomark:
4131  * 1. sg_init_table
4132  * 2. skb_to_sgvec_nomark(payload1)
4133  * 3. skb_to_sgvec_nomark(payload2)
4134  *
4135  * This is equivalent to:
4136  * 1. sg_init_table
4137  * 2. skb_to_sgvec(payload1)
4138  * 3. sg_unmark_end
4139  * 4. skb_to_sgvec(payload2)
4140  *
4141  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4142  * is more preferable.
4143  */
4144 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4145 			int offset, int len)
4146 {
4147 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4148 }
4149 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4150 
4151 
4152 
4153 /**
4154  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4155  *	@skb: The socket buffer to check.
4156  *	@tailbits: Amount of trailing space to be added
4157  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4158  *
4159  *	Make sure that the data buffers attached to a socket buffer are
4160  *	writable. If they are not, private copies are made of the data buffers
4161  *	and the socket buffer is set to use these instead.
4162  *
4163  *	If @tailbits is given, make sure that there is space to write @tailbits
4164  *	bytes of data beyond current end of socket buffer.  @trailer will be
4165  *	set to point to the skb in which this space begins.
4166  *
4167  *	The number of scatterlist elements required to completely map the
4168  *	COW'd and extended socket buffer will be returned.
4169  */
4170 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4171 {
4172 	int copyflag;
4173 	int elt;
4174 	struct sk_buff *skb1, **skb_p;
4175 
4176 	/* If skb is cloned or its head is paged, reallocate
4177 	 * head pulling out all the pages (pages are considered not writable
4178 	 * at the moment even if they are anonymous).
4179 	 */
4180 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4181 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4182 		return -ENOMEM;
4183 
4184 	/* Easy case. Most of packets will go this way. */
4185 	if (!skb_has_frag_list(skb)) {
4186 		/* A little of trouble, not enough of space for trailer.
4187 		 * This should not happen, when stack is tuned to generate
4188 		 * good frames. OK, on miss we reallocate and reserve even more
4189 		 * space, 128 bytes is fair. */
4190 
4191 		if (skb_tailroom(skb) < tailbits &&
4192 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4193 			return -ENOMEM;
4194 
4195 		/* Voila! */
4196 		*trailer = skb;
4197 		return 1;
4198 	}
4199 
4200 	/* Misery. We are in troubles, going to mincer fragments... */
4201 
4202 	elt = 1;
4203 	skb_p = &skb_shinfo(skb)->frag_list;
4204 	copyflag = 0;
4205 
4206 	while ((skb1 = *skb_p) != NULL) {
4207 		int ntail = 0;
4208 
4209 		/* The fragment is partially pulled by someone,
4210 		 * this can happen on input. Copy it and everything
4211 		 * after it. */
4212 
4213 		if (skb_shared(skb1))
4214 			copyflag = 1;
4215 
4216 		/* If the skb is the last, worry about trailer. */
4217 
4218 		if (skb1->next == NULL && tailbits) {
4219 			if (skb_shinfo(skb1)->nr_frags ||
4220 			    skb_has_frag_list(skb1) ||
4221 			    skb_tailroom(skb1) < tailbits)
4222 				ntail = tailbits + 128;
4223 		}
4224 
4225 		if (copyflag ||
4226 		    skb_cloned(skb1) ||
4227 		    ntail ||
4228 		    skb_shinfo(skb1)->nr_frags ||
4229 		    skb_has_frag_list(skb1)) {
4230 			struct sk_buff *skb2;
4231 
4232 			/* Fuck, we are miserable poor guys... */
4233 			if (ntail == 0)
4234 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4235 			else
4236 				skb2 = skb_copy_expand(skb1,
4237 						       skb_headroom(skb1),
4238 						       ntail,
4239 						       GFP_ATOMIC);
4240 			if (unlikely(skb2 == NULL))
4241 				return -ENOMEM;
4242 
4243 			if (skb1->sk)
4244 				skb_set_owner_w(skb2, skb1->sk);
4245 
4246 			/* Looking around. Are we still alive?
4247 			 * OK, link new skb, drop old one */
4248 
4249 			skb2->next = skb1->next;
4250 			*skb_p = skb2;
4251 			kfree_skb(skb1);
4252 			skb1 = skb2;
4253 		}
4254 		elt++;
4255 		*trailer = skb1;
4256 		skb_p = &skb1->next;
4257 	}
4258 
4259 	return elt;
4260 }
4261 EXPORT_SYMBOL_GPL(skb_cow_data);
4262 
4263 static void sock_rmem_free(struct sk_buff *skb)
4264 {
4265 	struct sock *sk = skb->sk;
4266 
4267 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4268 }
4269 
4270 static void skb_set_err_queue(struct sk_buff *skb)
4271 {
4272 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4273 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4274 	 */
4275 	skb->pkt_type = PACKET_OUTGOING;
4276 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4277 }
4278 
4279 /*
4280  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4281  */
4282 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4283 {
4284 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4285 	    (unsigned int)sk->sk_rcvbuf)
4286 		return -ENOMEM;
4287 
4288 	skb_orphan(skb);
4289 	skb->sk = sk;
4290 	skb->destructor = sock_rmem_free;
4291 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4292 	skb_set_err_queue(skb);
4293 
4294 	/* before exiting rcu section, make sure dst is refcounted */
4295 	skb_dst_force(skb);
4296 
4297 	skb_queue_tail(&sk->sk_error_queue, skb);
4298 	if (!sock_flag(sk, SOCK_DEAD))
4299 		sk->sk_error_report(sk);
4300 	return 0;
4301 }
4302 EXPORT_SYMBOL(sock_queue_err_skb);
4303 
4304 static bool is_icmp_err_skb(const struct sk_buff *skb)
4305 {
4306 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4307 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4308 }
4309 
4310 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4311 {
4312 	struct sk_buff_head *q = &sk->sk_error_queue;
4313 	struct sk_buff *skb, *skb_next = NULL;
4314 	bool icmp_next = false;
4315 	unsigned long flags;
4316 
4317 	spin_lock_irqsave(&q->lock, flags);
4318 	skb = __skb_dequeue(q);
4319 	if (skb && (skb_next = skb_peek(q))) {
4320 		icmp_next = is_icmp_err_skb(skb_next);
4321 		if (icmp_next)
4322 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4323 	}
4324 	spin_unlock_irqrestore(&q->lock, flags);
4325 
4326 	if (is_icmp_err_skb(skb) && !icmp_next)
4327 		sk->sk_err = 0;
4328 
4329 	if (skb_next)
4330 		sk->sk_error_report(sk);
4331 
4332 	return skb;
4333 }
4334 EXPORT_SYMBOL(sock_dequeue_err_skb);
4335 
4336 /**
4337  * skb_clone_sk - create clone of skb, and take reference to socket
4338  * @skb: the skb to clone
4339  *
4340  * This function creates a clone of a buffer that holds a reference on
4341  * sk_refcnt.  Buffers created via this function are meant to be
4342  * returned using sock_queue_err_skb, or free via kfree_skb.
4343  *
4344  * When passing buffers allocated with this function to sock_queue_err_skb
4345  * it is necessary to wrap the call with sock_hold/sock_put in order to
4346  * prevent the socket from being released prior to being enqueued on
4347  * the sk_error_queue.
4348  */
4349 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4350 {
4351 	struct sock *sk = skb->sk;
4352 	struct sk_buff *clone;
4353 
4354 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4355 		return NULL;
4356 
4357 	clone = skb_clone(skb, GFP_ATOMIC);
4358 	if (!clone) {
4359 		sock_put(sk);
4360 		return NULL;
4361 	}
4362 
4363 	clone->sk = sk;
4364 	clone->destructor = sock_efree;
4365 
4366 	return clone;
4367 }
4368 EXPORT_SYMBOL(skb_clone_sk);
4369 
4370 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4371 					struct sock *sk,
4372 					int tstype,
4373 					bool opt_stats)
4374 {
4375 	struct sock_exterr_skb *serr;
4376 	int err;
4377 
4378 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4379 
4380 	serr = SKB_EXT_ERR(skb);
4381 	memset(serr, 0, sizeof(*serr));
4382 	serr->ee.ee_errno = ENOMSG;
4383 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4384 	serr->ee.ee_info = tstype;
4385 	serr->opt_stats = opt_stats;
4386 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4387 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4388 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4389 		if (sk->sk_protocol == IPPROTO_TCP &&
4390 		    sk->sk_type == SOCK_STREAM)
4391 			serr->ee.ee_data -= sk->sk_tskey;
4392 	}
4393 
4394 	err = sock_queue_err_skb(sk, skb);
4395 
4396 	if (err)
4397 		kfree_skb(skb);
4398 }
4399 
4400 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4401 {
4402 	bool ret;
4403 
4404 	if (likely(sysctl_tstamp_allow_data || tsonly))
4405 		return true;
4406 
4407 	read_lock_bh(&sk->sk_callback_lock);
4408 	ret = sk->sk_socket && sk->sk_socket->file &&
4409 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4410 	read_unlock_bh(&sk->sk_callback_lock);
4411 	return ret;
4412 }
4413 
4414 void skb_complete_tx_timestamp(struct sk_buff *skb,
4415 			       struct skb_shared_hwtstamps *hwtstamps)
4416 {
4417 	struct sock *sk = skb->sk;
4418 
4419 	if (!skb_may_tx_timestamp(sk, false))
4420 		goto err;
4421 
4422 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4423 	 * but only if the socket refcount is not zero.
4424 	 */
4425 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4426 		*skb_hwtstamps(skb) = *hwtstamps;
4427 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4428 		sock_put(sk);
4429 		return;
4430 	}
4431 
4432 err:
4433 	kfree_skb(skb);
4434 }
4435 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4436 
4437 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4438 		     struct skb_shared_hwtstamps *hwtstamps,
4439 		     struct sock *sk, int tstype)
4440 {
4441 	struct sk_buff *skb;
4442 	bool tsonly, opt_stats = false;
4443 
4444 	if (!sk)
4445 		return;
4446 
4447 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4448 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4449 		return;
4450 
4451 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4452 	if (!skb_may_tx_timestamp(sk, tsonly))
4453 		return;
4454 
4455 	if (tsonly) {
4456 #ifdef CONFIG_INET
4457 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4458 		    sk->sk_protocol == IPPROTO_TCP &&
4459 		    sk->sk_type == SOCK_STREAM) {
4460 			skb = tcp_get_timestamping_opt_stats(sk);
4461 			opt_stats = true;
4462 		} else
4463 #endif
4464 			skb = alloc_skb(0, GFP_ATOMIC);
4465 	} else {
4466 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4467 	}
4468 	if (!skb)
4469 		return;
4470 
4471 	if (tsonly) {
4472 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4473 					     SKBTX_ANY_TSTAMP;
4474 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4475 	}
4476 
4477 	if (hwtstamps)
4478 		*skb_hwtstamps(skb) = *hwtstamps;
4479 	else
4480 		skb->tstamp = ktime_get_real();
4481 
4482 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4483 }
4484 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4485 
4486 void skb_tstamp_tx(struct sk_buff *orig_skb,
4487 		   struct skb_shared_hwtstamps *hwtstamps)
4488 {
4489 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4490 			       SCM_TSTAMP_SND);
4491 }
4492 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4493 
4494 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4495 {
4496 	struct sock *sk = skb->sk;
4497 	struct sock_exterr_skb *serr;
4498 	int err = 1;
4499 
4500 	skb->wifi_acked_valid = 1;
4501 	skb->wifi_acked = acked;
4502 
4503 	serr = SKB_EXT_ERR(skb);
4504 	memset(serr, 0, sizeof(*serr));
4505 	serr->ee.ee_errno = ENOMSG;
4506 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4507 
4508 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4509 	 * but only if the socket refcount is not zero.
4510 	 */
4511 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4512 		err = sock_queue_err_skb(sk, skb);
4513 		sock_put(sk);
4514 	}
4515 	if (err)
4516 		kfree_skb(skb);
4517 }
4518 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4519 
4520 /**
4521  * skb_partial_csum_set - set up and verify partial csum values for packet
4522  * @skb: the skb to set
4523  * @start: the number of bytes after skb->data to start checksumming.
4524  * @off: the offset from start to place the checksum.
4525  *
4526  * For untrusted partially-checksummed packets, we need to make sure the values
4527  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4528  *
4529  * This function checks and sets those values and skb->ip_summed: if this
4530  * returns false you should drop the packet.
4531  */
4532 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4533 {
4534 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4535 	u32 csum_start = skb_headroom(skb) + (u32)start;
4536 
4537 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4538 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4539 				     start, off, skb_headroom(skb), skb_headlen(skb));
4540 		return false;
4541 	}
4542 	skb->ip_summed = CHECKSUM_PARTIAL;
4543 	skb->csum_start = csum_start;
4544 	skb->csum_offset = off;
4545 	skb_set_transport_header(skb, start);
4546 	return true;
4547 }
4548 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4549 
4550 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4551 			       unsigned int max)
4552 {
4553 	if (skb_headlen(skb) >= len)
4554 		return 0;
4555 
4556 	/* If we need to pullup then pullup to the max, so we
4557 	 * won't need to do it again.
4558 	 */
4559 	if (max > skb->len)
4560 		max = skb->len;
4561 
4562 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4563 		return -ENOMEM;
4564 
4565 	if (skb_headlen(skb) < len)
4566 		return -EPROTO;
4567 
4568 	return 0;
4569 }
4570 
4571 #define MAX_TCP_HDR_LEN (15 * 4)
4572 
4573 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4574 				      typeof(IPPROTO_IP) proto,
4575 				      unsigned int off)
4576 {
4577 	switch (proto) {
4578 		int err;
4579 
4580 	case IPPROTO_TCP:
4581 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4582 					  off + MAX_TCP_HDR_LEN);
4583 		if (!err && !skb_partial_csum_set(skb, off,
4584 						  offsetof(struct tcphdr,
4585 							   check)))
4586 			err = -EPROTO;
4587 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4588 
4589 	case IPPROTO_UDP:
4590 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4591 					  off + sizeof(struct udphdr));
4592 		if (!err && !skb_partial_csum_set(skb, off,
4593 						  offsetof(struct udphdr,
4594 							   check)))
4595 			err = -EPROTO;
4596 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4597 	}
4598 
4599 	return ERR_PTR(-EPROTO);
4600 }
4601 
4602 /* This value should be large enough to cover a tagged ethernet header plus
4603  * maximally sized IP and TCP or UDP headers.
4604  */
4605 #define MAX_IP_HDR_LEN 128
4606 
4607 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4608 {
4609 	unsigned int off;
4610 	bool fragment;
4611 	__sum16 *csum;
4612 	int err;
4613 
4614 	fragment = false;
4615 
4616 	err = skb_maybe_pull_tail(skb,
4617 				  sizeof(struct iphdr),
4618 				  MAX_IP_HDR_LEN);
4619 	if (err < 0)
4620 		goto out;
4621 
4622 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4623 		fragment = true;
4624 
4625 	off = ip_hdrlen(skb);
4626 
4627 	err = -EPROTO;
4628 
4629 	if (fragment)
4630 		goto out;
4631 
4632 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4633 	if (IS_ERR(csum))
4634 		return PTR_ERR(csum);
4635 
4636 	if (recalculate)
4637 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4638 					   ip_hdr(skb)->daddr,
4639 					   skb->len - off,
4640 					   ip_hdr(skb)->protocol, 0);
4641 	err = 0;
4642 
4643 out:
4644 	return err;
4645 }
4646 
4647 /* This value should be large enough to cover a tagged ethernet header plus
4648  * an IPv6 header, all options, and a maximal TCP or UDP header.
4649  */
4650 #define MAX_IPV6_HDR_LEN 256
4651 
4652 #define OPT_HDR(type, skb, off) \
4653 	(type *)(skb_network_header(skb) + (off))
4654 
4655 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4656 {
4657 	int err;
4658 	u8 nexthdr;
4659 	unsigned int off;
4660 	unsigned int len;
4661 	bool fragment;
4662 	bool done;
4663 	__sum16 *csum;
4664 
4665 	fragment = false;
4666 	done = false;
4667 
4668 	off = sizeof(struct ipv6hdr);
4669 
4670 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4671 	if (err < 0)
4672 		goto out;
4673 
4674 	nexthdr = ipv6_hdr(skb)->nexthdr;
4675 
4676 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4677 	while (off <= len && !done) {
4678 		switch (nexthdr) {
4679 		case IPPROTO_DSTOPTS:
4680 		case IPPROTO_HOPOPTS:
4681 		case IPPROTO_ROUTING: {
4682 			struct ipv6_opt_hdr *hp;
4683 
4684 			err = skb_maybe_pull_tail(skb,
4685 						  off +
4686 						  sizeof(struct ipv6_opt_hdr),
4687 						  MAX_IPV6_HDR_LEN);
4688 			if (err < 0)
4689 				goto out;
4690 
4691 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4692 			nexthdr = hp->nexthdr;
4693 			off += ipv6_optlen(hp);
4694 			break;
4695 		}
4696 		case IPPROTO_AH: {
4697 			struct ip_auth_hdr *hp;
4698 
4699 			err = skb_maybe_pull_tail(skb,
4700 						  off +
4701 						  sizeof(struct ip_auth_hdr),
4702 						  MAX_IPV6_HDR_LEN);
4703 			if (err < 0)
4704 				goto out;
4705 
4706 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4707 			nexthdr = hp->nexthdr;
4708 			off += ipv6_authlen(hp);
4709 			break;
4710 		}
4711 		case IPPROTO_FRAGMENT: {
4712 			struct frag_hdr *hp;
4713 
4714 			err = skb_maybe_pull_tail(skb,
4715 						  off +
4716 						  sizeof(struct frag_hdr),
4717 						  MAX_IPV6_HDR_LEN);
4718 			if (err < 0)
4719 				goto out;
4720 
4721 			hp = OPT_HDR(struct frag_hdr, skb, off);
4722 
4723 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4724 				fragment = true;
4725 
4726 			nexthdr = hp->nexthdr;
4727 			off += sizeof(struct frag_hdr);
4728 			break;
4729 		}
4730 		default:
4731 			done = true;
4732 			break;
4733 		}
4734 	}
4735 
4736 	err = -EPROTO;
4737 
4738 	if (!done || fragment)
4739 		goto out;
4740 
4741 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4742 	if (IS_ERR(csum))
4743 		return PTR_ERR(csum);
4744 
4745 	if (recalculate)
4746 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4747 					 &ipv6_hdr(skb)->daddr,
4748 					 skb->len - off, nexthdr, 0);
4749 	err = 0;
4750 
4751 out:
4752 	return err;
4753 }
4754 
4755 /**
4756  * skb_checksum_setup - set up partial checksum offset
4757  * @skb: the skb to set up
4758  * @recalculate: if true the pseudo-header checksum will be recalculated
4759  */
4760 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4761 {
4762 	int err;
4763 
4764 	switch (skb->protocol) {
4765 	case htons(ETH_P_IP):
4766 		err = skb_checksum_setup_ipv4(skb, recalculate);
4767 		break;
4768 
4769 	case htons(ETH_P_IPV6):
4770 		err = skb_checksum_setup_ipv6(skb, recalculate);
4771 		break;
4772 
4773 	default:
4774 		err = -EPROTO;
4775 		break;
4776 	}
4777 
4778 	return err;
4779 }
4780 EXPORT_SYMBOL(skb_checksum_setup);
4781 
4782 /**
4783  * skb_checksum_maybe_trim - maybe trims the given skb
4784  * @skb: the skb to check
4785  * @transport_len: the data length beyond the network header
4786  *
4787  * Checks whether the given skb has data beyond the given transport length.
4788  * If so, returns a cloned skb trimmed to this transport length.
4789  * Otherwise returns the provided skb. Returns NULL in error cases
4790  * (e.g. transport_len exceeds skb length or out-of-memory).
4791  *
4792  * Caller needs to set the skb transport header and free any returned skb if it
4793  * differs from the provided skb.
4794  */
4795 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4796 					       unsigned int transport_len)
4797 {
4798 	struct sk_buff *skb_chk;
4799 	unsigned int len = skb_transport_offset(skb) + transport_len;
4800 	int ret;
4801 
4802 	if (skb->len < len)
4803 		return NULL;
4804 	else if (skb->len == len)
4805 		return skb;
4806 
4807 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4808 	if (!skb_chk)
4809 		return NULL;
4810 
4811 	ret = pskb_trim_rcsum(skb_chk, len);
4812 	if (ret) {
4813 		kfree_skb(skb_chk);
4814 		return NULL;
4815 	}
4816 
4817 	return skb_chk;
4818 }
4819 
4820 /**
4821  * skb_checksum_trimmed - validate checksum of an skb
4822  * @skb: the skb to check
4823  * @transport_len: the data length beyond the network header
4824  * @skb_chkf: checksum function to use
4825  *
4826  * Applies the given checksum function skb_chkf to the provided skb.
4827  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4828  *
4829  * If the skb has data beyond the given transport length, then a
4830  * trimmed & cloned skb is checked and returned.
4831  *
4832  * Caller needs to set the skb transport header and free any returned skb if it
4833  * differs from the provided skb.
4834  */
4835 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4836 				     unsigned int transport_len,
4837 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4838 {
4839 	struct sk_buff *skb_chk;
4840 	unsigned int offset = skb_transport_offset(skb);
4841 	__sum16 ret;
4842 
4843 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4844 	if (!skb_chk)
4845 		goto err;
4846 
4847 	if (!pskb_may_pull(skb_chk, offset))
4848 		goto err;
4849 
4850 	skb_pull_rcsum(skb_chk, offset);
4851 	ret = skb_chkf(skb_chk);
4852 	skb_push_rcsum(skb_chk, offset);
4853 
4854 	if (ret)
4855 		goto err;
4856 
4857 	return skb_chk;
4858 
4859 err:
4860 	if (skb_chk && skb_chk != skb)
4861 		kfree_skb(skb_chk);
4862 
4863 	return NULL;
4864 
4865 }
4866 EXPORT_SYMBOL(skb_checksum_trimmed);
4867 
4868 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4869 {
4870 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4871 			     skb->dev->name);
4872 }
4873 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4874 
4875 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4876 {
4877 	if (head_stolen) {
4878 		skb_release_head_state(skb);
4879 		kmem_cache_free(skbuff_head_cache, skb);
4880 	} else {
4881 		__kfree_skb(skb);
4882 	}
4883 }
4884 EXPORT_SYMBOL(kfree_skb_partial);
4885 
4886 /**
4887  * skb_try_coalesce - try to merge skb to prior one
4888  * @to: prior buffer
4889  * @from: buffer to add
4890  * @fragstolen: pointer to boolean
4891  * @delta_truesize: how much more was allocated than was requested
4892  */
4893 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4894 		      bool *fragstolen, int *delta_truesize)
4895 {
4896 	struct skb_shared_info *to_shinfo, *from_shinfo;
4897 	int i, delta, len = from->len;
4898 
4899 	*fragstolen = false;
4900 
4901 	if (skb_cloned(to))
4902 		return false;
4903 
4904 	if (len <= skb_tailroom(to)) {
4905 		if (len)
4906 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4907 		*delta_truesize = 0;
4908 		return true;
4909 	}
4910 
4911 	to_shinfo = skb_shinfo(to);
4912 	from_shinfo = skb_shinfo(from);
4913 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4914 		return false;
4915 	if (skb_zcopy(to) || skb_zcopy(from))
4916 		return false;
4917 
4918 	if (skb_headlen(from) != 0) {
4919 		struct page *page;
4920 		unsigned int offset;
4921 
4922 		if (to_shinfo->nr_frags +
4923 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4924 			return false;
4925 
4926 		if (skb_head_is_locked(from))
4927 			return false;
4928 
4929 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4930 
4931 		page = virt_to_head_page(from->head);
4932 		offset = from->data - (unsigned char *)page_address(page);
4933 
4934 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4935 				   page, offset, skb_headlen(from));
4936 		*fragstolen = true;
4937 	} else {
4938 		if (to_shinfo->nr_frags +
4939 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4940 			return false;
4941 
4942 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4943 	}
4944 
4945 	WARN_ON_ONCE(delta < len);
4946 
4947 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4948 	       from_shinfo->frags,
4949 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4950 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4951 
4952 	if (!skb_cloned(from))
4953 		from_shinfo->nr_frags = 0;
4954 
4955 	/* if the skb is not cloned this does nothing
4956 	 * since we set nr_frags to 0.
4957 	 */
4958 	for (i = 0; i < from_shinfo->nr_frags; i++)
4959 		__skb_frag_ref(&from_shinfo->frags[i]);
4960 
4961 	to->truesize += delta;
4962 	to->len += len;
4963 	to->data_len += len;
4964 
4965 	*delta_truesize = delta;
4966 	return true;
4967 }
4968 EXPORT_SYMBOL(skb_try_coalesce);
4969 
4970 /**
4971  * skb_scrub_packet - scrub an skb
4972  *
4973  * @skb: buffer to clean
4974  * @xnet: packet is crossing netns
4975  *
4976  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4977  * into/from a tunnel. Some information have to be cleared during these
4978  * operations.
4979  * skb_scrub_packet can also be used to clean a skb before injecting it in
4980  * another namespace (@xnet == true). We have to clear all information in the
4981  * skb that could impact namespace isolation.
4982  */
4983 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4984 {
4985 	skb->pkt_type = PACKET_HOST;
4986 	skb->skb_iif = 0;
4987 	skb->ignore_df = 0;
4988 	skb_dst_drop(skb);
4989 	secpath_reset(skb);
4990 	nf_reset(skb);
4991 	nf_reset_trace(skb);
4992 
4993 #ifdef CONFIG_NET_SWITCHDEV
4994 	skb->offload_fwd_mark = 0;
4995 	skb->offload_l3_fwd_mark = 0;
4996 #endif
4997 
4998 	if (!xnet)
4999 		return;
5000 
5001 	ipvs_reset(skb);
5002 	skb->mark = 0;
5003 	skb->tstamp = 0;
5004 }
5005 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5006 
5007 /**
5008  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5009  *
5010  * @skb: GSO skb
5011  *
5012  * skb_gso_transport_seglen is used to determine the real size of the
5013  * individual segments, including Layer4 headers (TCP/UDP).
5014  *
5015  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5016  */
5017 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5018 {
5019 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5020 	unsigned int thlen = 0;
5021 
5022 	if (skb->encapsulation) {
5023 		thlen = skb_inner_transport_header(skb) -
5024 			skb_transport_header(skb);
5025 
5026 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5027 			thlen += inner_tcp_hdrlen(skb);
5028 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5029 		thlen = tcp_hdrlen(skb);
5030 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5031 		thlen = sizeof(struct sctphdr);
5032 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5033 		thlen = sizeof(struct udphdr);
5034 	}
5035 	/* UFO sets gso_size to the size of the fragmentation
5036 	 * payload, i.e. the size of the L4 (UDP) header is already
5037 	 * accounted for.
5038 	 */
5039 	return thlen + shinfo->gso_size;
5040 }
5041 
5042 /**
5043  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5044  *
5045  * @skb: GSO skb
5046  *
5047  * skb_gso_network_seglen is used to determine the real size of the
5048  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5049  *
5050  * The MAC/L2 header is not accounted for.
5051  */
5052 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5053 {
5054 	unsigned int hdr_len = skb_transport_header(skb) -
5055 			       skb_network_header(skb);
5056 
5057 	return hdr_len + skb_gso_transport_seglen(skb);
5058 }
5059 
5060 /**
5061  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5062  *
5063  * @skb: GSO skb
5064  *
5065  * skb_gso_mac_seglen is used to determine the real size of the
5066  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5067  * headers (TCP/UDP).
5068  */
5069 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5070 {
5071 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5072 
5073 	return hdr_len + skb_gso_transport_seglen(skb);
5074 }
5075 
5076 /**
5077  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5078  *
5079  * There are a couple of instances where we have a GSO skb, and we
5080  * want to determine what size it would be after it is segmented.
5081  *
5082  * We might want to check:
5083  * -    L3+L4+payload size (e.g. IP forwarding)
5084  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5085  *
5086  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5087  *
5088  * @skb: GSO skb
5089  *
5090  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5091  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5092  *
5093  * @max_len: The maximum permissible length.
5094  *
5095  * Returns true if the segmented length <= max length.
5096  */
5097 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5098 				      unsigned int seg_len,
5099 				      unsigned int max_len) {
5100 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5101 	const struct sk_buff *iter;
5102 
5103 	if (shinfo->gso_size != GSO_BY_FRAGS)
5104 		return seg_len <= max_len;
5105 
5106 	/* Undo this so we can re-use header sizes */
5107 	seg_len -= GSO_BY_FRAGS;
5108 
5109 	skb_walk_frags(skb, iter) {
5110 		if (seg_len + skb_headlen(iter) > max_len)
5111 			return false;
5112 	}
5113 
5114 	return true;
5115 }
5116 
5117 /**
5118  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5119  *
5120  * @skb: GSO skb
5121  * @mtu: MTU to validate against
5122  *
5123  * skb_gso_validate_network_len validates if a given skb will fit a
5124  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5125  * payload.
5126  */
5127 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5128 {
5129 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5130 }
5131 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5132 
5133 /**
5134  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5135  *
5136  * @skb: GSO skb
5137  * @len: length to validate against
5138  *
5139  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5140  * length once split, including L2, L3 and L4 headers and the payload.
5141  */
5142 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5143 {
5144 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5145 }
5146 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5147 
5148 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5149 {
5150 	int mac_len, meta_len;
5151 	void *meta;
5152 
5153 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5154 		kfree_skb(skb);
5155 		return NULL;
5156 	}
5157 
5158 	mac_len = skb->data - skb_mac_header(skb);
5159 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5160 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5161 			mac_len - VLAN_HLEN - ETH_TLEN);
5162 	}
5163 
5164 	meta_len = skb_metadata_len(skb);
5165 	if (meta_len) {
5166 		meta = skb_metadata_end(skb) - meta_len;
5167 		memmove(meta + VLAN_HLEN, meta, meta_len);
5168 	}
5169 
5170 	skb->mac_header += VLAN_HLEN;
5171 	return skb;
5172 }
5173 
5174 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5175 {
5176 	struct vlan_hdr *vhdr;
5177 	u16 vlan_tci;
5178 
5179 	if (unlikely(skb_vlan_tag_present(skb))) {
5180 		/* vlan_tci is already set-up so leave this for another time */
5181 		return skb;
5182 	}
5183 
5184 	skb = skb_share_check(skb, GFP_ATOMIC);
5185 	if (unlikely(!skb))
5186 		goto err_free;
5187 
5188 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5189 		goto err_free;
5190 
5191 	vhdr = (struct vlan_hdr *)skb->data;
5192 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5193 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5194 
5195 	skb_pull_rcsum(skb, VLAN_HLEN);
5196 	vlan_set_encap_proto(skb, vhdr);
5197 
5198 	skb = skb_reorder_vlan_header(skb);
5199 	if (unlikely(!skb))
5200 		goto err_free;
5201 
5202 	skb_reset_network_header(skb);
5203 	skb_reset_transport_header(skb);
5204 	skb_reset_mac_len(skb);
5205 
5206 	return skb;
5207 
5208 err_free:
5209 	kfree_skb(skb);
5210 	return NULL;
5211 }
5212 EXPORT_SYMBOL(skb_vlan_untag);
5213 
5214 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5215 {
5216 	if (!pskb_may_pull(skb, write_len))
5217 		return -ENOMEM;
5218 
5219 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5220 		return 0;
5221 
5222 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5223 }
5224 EXPORT_SYMBOL(skb_ensure_writable);
5225 
5226 /* remove VLAN header from packet and update csum accordingly.
5227  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5228  */
5229 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5230 {
5231 	struct vlan_hdr *vhdr;
5232 	int offset = skb->data - skb_mac_header(skb);
5233 	int err;
5234 
5235 	if (WARN_ONCE(offset,
5236 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5237 		      offset)) {
5238 		return -EINVAL;
5239 	}
5240 
5241 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5242 	if (unlikely(err))
5243 		return err;
5244 
5245 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5246 
5247 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5248 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5249 
5250 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5251 	__skb_pull(skb, VLAN_HLEN);
5252 
5253 	vlan_set_encap_proto(skb, vhdr);
5254 	skb->mac_header += VLAN_HLEN;
5255 
5256 	if (skb_network_offset(skb) < ETH_HLEN)
5257 		skb_set_network_header(skb, ETH_HLEN);
5258 
5259 	skb_reset_mac_len(skb);
5260 
5261 	return err;
5262 }
5263 EXPORT_SYMBOL(__skb_vlan_pop);
5264 
5265 /* Pop a vlan tag either from hwaccel or from payload.
5266  * Expects skb->data at mac header.
5267  */
5268 int skb_vlan_pop(struct sk_buff *skb)
5269 {
5270 	u16 vlan_tci;
5271 	__be16 vlan_proto;
5272 	int err;
5273 
5274 	if (likely(skb_vlan_tag_present(skb))) {
5275 		__vlan_hwaccel_clear_tag(skb);
5276 	} else {
5277 		if (unlikely(!eth_type_vlan(skb->protocol)))
5278 			return 0;
5279 
5280 		err = __skb_vlan_pop(skb, &vlan_tci);
5281 		if (err)
5282 			return err;
5283 	}
5284 	/* move next vlan tag to hw accel tag */
5285 	if (likely(!eth_type_vlan(skb->protocol)))
5286 		return 0;
5287 
5288 	vlan_proto = skb->protocol;
5289 	err = __skb_vlan_pop(skb, &vlan_tci);
5290 	if (unlikely(err))
5291 		return err;
5292 
5293 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5294 	return 0;
5295 }
5296 EXPORT_SYMBOL(skb_vlan_pop);
5297 
5298 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5299  * Expects skb->data at mac header.
5300  */
5301 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5302 {
5303 	if (skb_vlan_tag_present(skb)) {
5304 		int offset = skb->data - skb_mac_header(skb);
5305 		int err;
5306 
5307 		if (WARN_ONCE(offset,
5308 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5309 			      offset)) {
5310 			return -EINVAL;
5311 		}
5312 
5313 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5314 					skb_vlan_tag_get(skb));
5315 		if (err)
5316 			return err;
5317 
5318 		skb->protocol = skb->vlan_proto;
5319 		skb->mac_len += VLAN_HLEN;
5320 
5321 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5322 	}
5323 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5324 	return 0;
5325 }
5326 EXPORT_SYMBOL(skb_vlan_push);
5327 
5328 /**
5329  * alloc_skb_with_frags - allocate skb with page frags
5330  *
5331  * @header_len: size of linear part
5332  * @data_len: needed length in frags
5333  * @max_page_order: max page order desired.
5334  * @errcode: pointer to error code if any
5335  * @gfp_mask: allocation mask
5336  *
5337  * This can be used to allocate a paged skb, given a maximal order for frags.
5338  */
5339 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5340 				     unsigned long data_len,
5341 				     int max_page_order,
5342 				     int *errcode,
5343 				     gfp_t gfp_mask)
5344 {
5345 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5346 	unsigned long chunk;
5347 	struct sk_buff *skb;
5348 	struct page *page;
5349 	int i;
5350 
5351 	*errcode = -EMSGSIZE;
5352 	/* Note this test could be relaxed, if we succeed to allocate
5353 	 * high order pages...
5354 	 */
5355 	if (npages > MAX_SKB_FRAGS)
5356 		return NULL;
5357 
5358 	*errcode = -ENOBUFS;
5359 	skb = alloc_skb(header_len, gfp_mask);
5360 	if (!skb)
5361 		return NULL;
5362 
5363 	skb->truesize += npages << PAGE_SHIFT;
5364 
5365 	for (i = 0; npages > 0; i++) {
5366 		int order = max_page_order;
5367 
5368 		while (order) {
5369 			if (npages >= 1 << order) {
5370 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5371 						   __GFP_COMP |
5372 						   __GFP_NOWARN,
5373 						   order);
5374 				if (page)
5375 					goto fill_page;
5376 				/* Do not retry other high order allocations */
5377 				order = 1;
5378 				max_page_order = 0;
5379 			}
5380 			order--;
5381 		}
5382 		page = alloc_page(gfp_mask);
5383 		if (!page)
5384 			goto failure;
5385 fill_page:
5386 		chunk = min_t(unsigned long, data_len,
5387 			      PAGE_SIZE << order);
5388 		skb_fill_page_desc(skb, i, page, 0, chunk);
5389 		data_len -= chunk;
5390 		npages -= 1 << order;
5391 	}
5392 	return skb;
5393 
5394 failure:
5395 	kfree_skb(skb);
5396 	return NULL;
5397 }
5398 EXPORT_SYMBOL(alloc_skb_with_frags);
5399 
5400 /* carve out the first off bytes from skb when off < headlen */
5401 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5402 				    const int headlen, gfp_t gfp_mask)
5403 {
5404 	int i;
5405 	int size = skb_end_offset(skb);
5406 	int new_hlen = headlen - off;
5407 	u8 *data;
5408 
5409 	size = SKB_DATA_ALIGN(size);
5410 
5411 	if (skb_pfmemalloc(skb))
5412 		gfp_mask |= __GFP_MEMALLOC;
5413 	data = kmalloc_reserve(size +
5414 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5415 			       gfp_mask, NUMA_NO_NODE, NULL);
5416 	if (!data)
5417 		return -ENOMEM;
5418 
5419 	size = SKB_WITH_OVERHEAD(ksize(data));
5420 
5421 	/* Copy real data, and all frags */
5422 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5423 	skb->len -= off;
5424 
5425 	memcpy((struct skb_shared_info *)(data + size),
5426 	       skb_shinfo(skb),
5427 	       offsetof(struct skb_shared_info,
5428 			frags[skb_shinfo(skb)->nr_frags]));
5429 	if (skb_cloned(skb)) {
5430 		/* drop the old head gracefully */
5431 		if (skb_orphan_frags(skb, gfp_mask)) {
5432 			kfree(data);
5433 			return -ENOMEM;
5434 		}
5435 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5436 			skb_frag_ref(skb, i);
5437 		if (skb_has_frag_list(skb))
5438 			skb_clone_fraglist(skb);
5439 		skb_release_data(skb);
5440 	} else {
5441 		/* we can reuse existing recount- all we did was
5442 		 * relocate values
5443 		 */
5444 		skb_free_head(skb);
5445 	}
5446 
5447 	skb->head = data;
5448 	skb->data = data;
5449 	skb->head_frag = 0;
5450 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5451 	skb->end = size;
5452 #else
5453 	skb->end = skb->head + size;
5454 #endif
5455 	skb_set_tail_pointer(skb, skb_headlen(skb));
5456 	skb_headers_offset_update(skb, 0);
5457 	skb->cloned = 0;
5458 	skb->hdr_len = 0;
5459 	skb->nohdr = 0;
5460 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5461 
5462 	return 0;
5463 }
5464 
5465 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5466 
5467 /* carve out the first eat bytes from skb's frag_list. May recurse into
5468  * pskb_carve()
5469  */
5470 static int pskb_carve_frag_list(struct sk_buff *skb,
5471 				struct skb_shared_info *shinfo, int eat,
5472 				gfp_t gfp_mask)
5473 {
5474 	struct sk_buff *list = shinfo->frag_list;
5475 	struct sk_buff *clone = NULL;
5476 	struct sk_buff *insp = NULL;
5477 
5478 	do {
5479 		if (!list) {
5480 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5481 			return -EFAULT;
5482 		}
5483 		if (list->len <= eat) {
5484 			/* Eaten as whole. */
5485 			eat -= list->len;
5486 			list = list->next;
5487 			insp = list;
5488 		} else {
5489 			/* Eaten partially. */
5490 			if (skb_shared(list)) {
5491 				clone = skb_clone(list, gfp_mask);
5492 				if (!clone)
5493 					return -ENOMEM;
5494 				insp = list->next;
5495 				list = clone;
5496 			} else {
5497 				/* This may be pulled without problems. */
5498 				insp = list;
5499 			}
5500 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5501 				kfree_skb(clone);
5502 				return -ENOMEM;
5503 			}
5504 			break;
5505 		}
5506 	} while (eat);
5507 
5508 	/* Free pulled out fragments. */
5509 	while ((list = shinfo->frag_list) != insp) {
5510 		shinfo->frag_list = list->next;
5511 		kfree_skb(list);
5512 	}
5513 	/* And insert new clone at head. */
5514 	if (clone) {
5515 		clone->next = list;
5516 		shinfo->frag_list = clone;
5517 	}
5518 	return 0;
5519 }
5520 
5521 /* carve off first len bytes from skb. Split line (off) is in the
5522  * non-linear part of skb
5523  */
5524 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5525 				       int pos, gfp_t gfp_mask)
5526 {
5527 	int i, k = 0;
5528 	int size = skb_end_offset(skb);
5529 	u8 *data;
5530 	const int nfrags = skb_shinfo(skb)->nr_frags;
5531 	struct skb_shared_info *shinfo;
5532 
5533 	size = SKB_DATA_ALIGN(size);
5534 
5535 	if (skb_pfmemalloc(skb))
5536 		gfp_mask |= __GFP_MEMALLOC;
5537 	data = kmalloc_reserve(size +
5538 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5539 			       gfp_mask, NUMA_NO_NODE, NULL);
5540 	if (!data)
5541 		return -ENOMEM;
5542 
5543 	size = SKB_WITH_OVERHEAD(ksize(data));
5544 
5545 	memcpy((struct skb_shared_info *)(data + size),
5546 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5547 					 frags[skb_shinfo(skb)->nr_frags]));
5548 	if (skb_orphan_frags(skb, gfp_mask)) {
5549 		kfree(data);
5550 		return -ENOMEM;
5551 	}
5552 	shinfo = (struct skb_shared_info *)(data + size);
5553 	for (i = 0; i < nfrags; i++) {
5554 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5555 
5556 		if (pos + fsize > off) {
5557 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5558 
5559 			if (pos < off) {
5560 				/* Split frag.
5561 				 * We have two variants in this case:
5562 				 * 1. Move all the frag to the second
5563 				 *    part, if it is possible. F.e.
5564 				 *    this approach is mandatory for TUX,
5565 				 *    where splitting is expensive.
5566 				 * 2. Split is accurately. We make this.
5567 				 */
5568 				shinfo->frags[0].page_offset += off - pos;
5569 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5570 			}
5571 			skb_frag_ref(skb, i);
5572 			k++;
5573 		}
5574 		pos += fsize;
5575 	}
5576 	shinfo->nr_frags = k;
5577 	if (skb_has_frag_list(skb))
5578 		skb_clone_fraglist(skb);
5579 
5580 	if (k == 0) {
5581 		/* split line is in frag list */
5582 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5583 	}
5584 	skb_release_data(skb);
5585 
5586 	skb->head = data;
5587 	skb->head_frag = 0;
5588 	skb->data = data;
5589 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5590 	skb->end = size;
5591 #else
5592 	skb->end = skb->head + size;
5593 #endif
5594 	skb_reset_tail_pointer(skb);
5595 	skb_headers_offset_update(skb, 0);
5596 	skb->cloned   = 0;
5597 	skb->hdr_len  = 0;
5598 	skb->nohdr    = 0;
5599 	skb->len -= off;
5600 	skb->data_len = skb->len;
5601 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5602 	return 0;
5603 }
5604 
5605 /* remove len bytes from the beginning of the skb */
5606 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5607 {
5608 	int headlen = skb_headlen(skb);
5609 
5610 	if (len < headlen)
5611 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5612 	else
5613 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5614 }
5615 
5616 /* Extract to_copy bytes starting at off from skb, and return this in
5617  * a new skb
5618  */
5619 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5620 			     int to_copy, gfp_t gfp)
5621 {
5622 	struct sk_buff  *clone = skb_clone(skb, gfp);
5623 
5624 	if (!clone)
5625 		return NULL;
5626 
5627 	if (pskb_carve(clone, off, gfp) < 0 ||
5628 	    pskb_trim(clone, to_copy)) {
5629 		kfree_skb(clone);
5630 		return NULL;
5631 	}
5632 	return clone;
5633 }
5634 EXPORT_SYMBOL(pskb_extract);
5635 
5636 /**
5637  * skb_condense - try to get rid of fragments/frag_list if possible
5638  * @skb: buffer
5639  *
5640  * Can be used to save memory before skb is added to a busy queue.
5641  * If packet has bytes in frags and enough tail room in skb->head,
5642  * pull all of them, so that we can free the frags right now and adjust
5643  * truesize.
5644  * Notes:
5645  *	We do not reallocate skb->head thus can not fail.
5646  *	Caller must re-evaluate skb->truesize if needed.
5647  */
5648 void skb_condense(struct sk_buff *skb)
5649 {
5650 	if (skb->data_len) {
5651 		if (skb->data_len > skb->end - skb->tail ||
5652 		    skb_cloned(skb))
5653 			return;
5654 
5655 		/* Nice, we can free page frag(s) right now */
5656 		__pskb_pull_tail(skb, skb->data_len);
5657 	}
5658 	/* At this point, skb->truesize might be over estimated,
5659 	 * because skb had a fragment, and fragments do not tell
5660 	 * their truesize.
5661 	 * When we pulled its content into skb->head, fragment
5662 	 * was freed, but __pskb_pull_tail() could not possibly
5663 	 * adjust skb->truesize, not knowing the frag truesize.
5664 	 */
5665 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5666 }
5667 
5668 #ifdef CONFIG_SKB_EXTENSIONS
5669 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5670 {
5671 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5672 }
5673 
5674 static struct skb_ext *skb_ext_alloc(void)
5675 {
5676 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5677 
5678 	if (new) {
5679 		memset(new->offset, 0, sizeof(new->offset));
5680 		refcount_set(&new->refcnt, 1);
5681 	}
5682 
5683 	return new;
5684 }
5685 
5686 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5687 					 unsigned int old_active)
5688 {
5689 	struct skb_ext *new;
5690 
5691 	if (refcount_read(&old->refcnt) == 1)
5692 		return old;
5693 
5694 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5695 	if (!new)
5696 		return NULL;
5697 
5698 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5699 	refcount_set(&new->refcnt, 1);
5700 
5701 #ifdef CONFIG_XFRM
5702 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5703 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5704 		unsigned int i;
5705 
5706 		for (i = 0; i < sp->len; i++)
5707 			xfrm_state_hold(sp->xvec[i]);
5708 	}
5709 #endif
5710 	__skb_ext_put(old);
5711 	return new;
5712 }
5713 
5714 /**
5715  * skb_ext_add - allocate space for given extension, COW if needed
5716  * @skb: buffer
5717  * @id: extension to allocate space for
5718  *
5719  * Allocates enough space for the given extension.
5720  * If the extension is already present, a pointer to that extension
5721  * is returned.
5722  *
5723  * If the skb was cloned, COW applies and the returned memory can be
5724  * modified without changing the extension space of clones buffers.
5725  *
5726  * Returns pointer to the extension or NULL on allocation failure.
5727  */
5728 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5729 {
5730 	struct skb_ext *new, *old = NULL;
5731 	unsigned int newlen, newoff;
5732 
5733 	if (skb->active_extensions) {
5734 		old = skb->extensions;
5735 
5736 		new = skb_ext_maybe_cow(old, skb->active_extensions);
5737 		if (!new)
5738 			return NULL;
5739 
5740 		if (__skb_ext_exist(new, id))
5741 			goto set_active;
5742 
5743 		newoff = new->chunks;
5744 	} else {
5745 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
5746 
5747 		new = skb_ext_alloc();
5748 		if (!new)
5749 			return NULL;
5750 	}
5751 
5752 	newlen = newoff + skb_ext_type_len[id];
5753 	new->chunks = newlen;
5754 	new->offset[id] = newoff;
5755 set_active:
5756 	skb->extensions = new;
5757 	skb->active_extensions |= 1 << id;
5758 	return skb_ext_get_ptr(new, id);
5759 }
5760 EXPORT_SYMBOL(skb_ext_add);
5761 
5762 #ifdef CONFIG_XFRM
5763 static void skb_ext_put_sp(struct sec_path *sp)
5764 {
5765 	unsigned int i;
5766 
5767 	for (i = 0; i < sp->len; i++)
5768 		xfrm_state_put(sp->xvec[i]);
5769 }
5770 #endif
5771 
5772 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
5773 {
5774 	struct skb_ext *ext = skb->extensions;
5775 
5776 	skb->active_extensions &= ~(1 << id);
5777 	if (skb->active_extensions == 0) {
5778 		skb->extensions = NULL;
5779 		__skb_ext_put(ext);
5780 #ifdef CONFIG_XFRM
5781 	} else if (id == SKB_EXT_SEC_PATH &&
5782 		   refcount_read(&ext->refcnt) == 1) {
5783 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
5784 
5785 		skb_ext_put_sp(sp);
5786 		sp->len = 0;
5787 #endif
5788 	}
5789 }
5790 EXPORT_SYMBOL(__skb_ext_del);
5791 
5792 void __skb_ext_put(struct skb_ext *ext)
5793 {
5794 	/* If this is last clone, nothing can increment
5795 	 * it after check passes.  Avoids one atomic op.
5796 	 */
5797 	if (refcount_read(&ext->refcnt) == 1)
5798 		goto free_now;
5799 
5800 	if (!refcount_dec_and_test(&ext->refcnt))
5801 		return;
5802 free_now:
5803 #ifdef CONFIG_XFRM
5804 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
5805 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
5806 #endif
5807 
5808 	kmem_cache_free(skbuff_ext_cache, ext);
5809 }
5810 EXPORT_SYMBOL(__skb_ext_put);
5811 #endif /* CONFIG_SKB_EXTENSIONS */
5812