xref: /linux/net/core/skbuff.c (revision a6a6a98094116b60e5523a571d9443c53325f5b1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gso.h>
73 #include <net/hotdata.h>
74 #include <net/ip6_checksum.h>
75 #include <net/xfrm.h>
76 #include <net/mpls.h>
77 #include <net/mptcp.h>
78 #include <net/mctp.h>
79 #include <net/page_pool/helpers.h>
80 #include <net/dropreason.h>
81 
82 #include <linux/uaccess.h>
83 #include <trace/events/skb.h>
84 #include <linux/highmem.h>
85 #include <linux/capability.h>
86 #include <linux/user_namespace.h>
87 #include <linux/indirect_call_wrapper.h>
88 #include <linux/textsearch.h>
89 
90 #include "dev.h"
91 #include "sock_destructor.h"
92 
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
98 
99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
100  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
101  * size, and we can differentiate heads from skb_small_head_cache
102  * vs system slabs by looking at their size (skb_end_offset()).
103  */
104 #define SKB_SMALL_HEAD_CACHE_SIZE					\
105 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
106 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
107 		SKB_SMALL_HEAD_SIZE)
108 
109 #define SKB_SMALL_HEAD_HEADROOM						\
110 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
111 
112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
113  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
114  * netmem is a page.
115  */
116 static_assert(offsetof(struct bio_vec, bv_page) ==
117 	      offsetof(skb_frag_t, netmem));
118 static_assert(sizeof_field(struct bio_vec, bv_page) ==
119 	      sizeof_field(skb_frag_t, netmem));
120 
121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
122 static_assert(sizeof_field(struct bio_vec, bv_len) ==
123 	      sizeof_field(skb_frag_t, len));
124 
125 static_assert(offsetof(struct bio_vec, bv_offset) ==
126 	      offsetof(skb_frag_t, offset));
127 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
128 	      sizeof_field(skb_frag_t, offset));
129 
130 #undef FN
131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
132 static const char * const drop_reasons[] = {
133 	[SKB_CONSUMED] = "CONSUMED",
134 	DEFINE_DROP_REASON(FN, FN)
135 };
136 
137 static const struct drop_reason_list drop_reasons_core = {
138 	.reasons = drop_reasons,
139 	.n_reasons = ARRAY_SIZE(drop_reasons),
140 };
141 
142 const struct drop_reason_list __rcu *
143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
144 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
145 };
146 EXPORT_SYMBOL(drop_reasons_by_subsys);
147 
148 /**
149  * drop_reasons_register_subsys - register another drop reason subsystem
150  * @subsys: the subsystem to register, must not be the core
151  * @list: the list of drop reasons within the subsystem, must point to
152  *	a statically initialized list
153  */
154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
155 				  const struct drop_reason_list *list)
156 {
157 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
158 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
159 		 "invalid subsystem %d\n", subsys))
160 		return;
161 
162 	/* must point to statically allocated memory, so INIT is OK */
163 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
164 }
165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
166 
167 /**
168  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
169  * @subsys: the subsystem to remove, must not be the core
170  *
171  * Note: This will synchronize_rcu() to ensure no users when it returns.
172  */
173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
174 {
175 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
176 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
177 		 "invalid subsystem %d\n", subsys))
178 		return;
179 
180 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
181 
182 	synchronize_rcu();
183 }
184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
185 
186 /**
187  *	skb_panic - private function for out-of-line support
188  *	@skb:	buffer
189  *	@sz:	size
190  *	@addr:	address
191  *	@msg:	skb_over_panic or skb_under_panic
192  *
193  *	Out-of-line support for skb_put() and skb_push().
194  *	Called via the wrapper skb_over_panic() or skb_under_panic().
195  *	Keep out of line to prevent kernel bloat.
196  *	__builtin_return_address is not used because it is not always reliable.
197  */
198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
199 		      const char msg[])
200 {
201 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
202 		 msg, addr, skb->len, sz, skb->head, skb->data,
203 		 (unsigned long)skb->tail, (unsigned long)skb->end,
204 		 skb->dev ? skb->dev->name : "<NULL>");
205 	BUG();
206 }
207 
208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
209 {
210 	skb_panic(skb, sz, addr, __func__);
211 }
212 
213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
214 {
215 	skb_panic(skb, sz, addr, __func__);
216 }
217 
218 #define NAPI_SKB_CACHE_SIZE	64
219 #define NAPI_SKB_CACHE_BULK	16
220 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
221 
222 #if PAGE_SIZE == SZ_4K
223 
224 #define NAPI_HAS_SMALL_PAGE_FRAG	1
225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
226 
227 /* specialized page frag allocator using a single order 0 page
228  * and slicing it into 1K sized fragment. Constrained to systems
229  * with a very limited amount of 1K fragments fitting a single
230  * page - to avoid excessive truesize underestimation
231  */
232 
233 struct page_frag_1k {
234 	void *va;
235 	u16 offset;
236 	bool pfmemalloc;
237 };
238 
239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
240 {
241 	struct page *page;
242 	int offset;
243 
244 	offset = nc->offset - SZ_1K;
245 	if (likely(offset >= 0))
246 		goto use_frag;
247 
248 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
249 	if (!page)
250 		return NULL;
251 
252 	nc->va = page_address(page);
253 	nc->pfmemalloc = page_is_pfmemalloc(page);
254 	offset = PAGE_SIZE - SZ_1K;
255 	page_ref_add(page, offset / SZ_1K);
256 
257 use_frag:
258 	nc->offset = offset;
259 	return nc->va + offset;
260 }
261 #else
262 
263 /* the small page is actually unused in this build; add dummy helpers
264  * to please the compiler and avoid later preprocessor's conditionals
265  */
266 #define NAPI_HAS_SMALL_PAGE_FRAG	0
267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
268 
269 struct page_frag_1k {
270 };
271 
272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
273 {
274 	return NULL;
275 }
276 
277 #endif
278 
279 struct napi_alloc_cache {
280 	local_lock_t bh_lock;
281 	struct page_frag_cache page;
282 	struct page_frag_1k page_small;
283 	unsigned int skb_count;
284 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
285 };
286 
287 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
288 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
289 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
290 };
291 
292 /* Double check that napi_get_frags() allocates skbs with
293  * skb->head being backed by slab, not a page fragment.
294  * This is to make sure bug fixed in 3226b158e67c
295  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
296  * does not accidentally come back.
297  */
298 void napi_get_frags_check(struct napi_struct *napi)
299 {
300 	struct sk_buff *skb;
301 
302 	local_bh_disable();
303 	skb = napi_get_frags(napi);
304 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
305 	napi_free_frags(napi);
306 	local_bh_enable();
307 }
308 
309 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
310 {
311 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
312 	void *data;
313 
314 	fragsz = SKB_DATA_ALIGN(fragsz);
315 
316 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
317 	data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
318 				       align_mask);
319 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
320 	return data;
321 
322 }
323 EXPORT_SYMBOL(__napi_alloc_frag_align);
324 
325 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
326 {
327 	void *data;
328 
329 	if (in_hardirq() || irqs_disabled()) {
330 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
331 
332 		fragsz = SKB_DATA_ALIGN(fragsz);
333 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
334 					       align_mask);
335 	} else {
336 		local_bh_disable();
337 		data = __napi_alloc_frag_align(fragsz, align_mask);
338 		local_bh_enable();
339 	}
340 	return data;
341 }
342 EXPORT_SYMBOL(__netdev_alloc_frag_align);
343 
344 static struct sk_buff *napi_skb_cache_get(void)
345 {
346 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
347 	struct sk_buff *skb;
348 
349 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
350 	if (unlikely(!nc->skb_count)) {
351 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
352 						      GFP_ATOMIC,
353 						      NAPI_SKB_CACHE_BULK,
354 						      nc->skb_cache);
355 		if (unlikely(!nc->skb_count)) {
356 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
357 			return NULL;
358 		}
359 	}
360 
361 	skb = nc->skb_cache[--nc->skb_count];
362 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
363 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
364 
365 	return skb;
366 }
367 
368 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
369 					 unsigned int size)
370 {
371 	struct skb_shared_info *shinfo;
372 
373 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
374 
375 	/* Assumes caller memset cleared SKB */
376 	skb->truesize = SKB_TRUESIZE(size);
377 	refcount_set(&skb->users, 1);
378 	skb->head = data;
379 	skb->data = data;
380 	skb_reset_tail_pointer(skb);
381 	skb_set_end_offset(skb, size);
382 	skb->mac_header = (typeof(skb->mac_header))~0U;
383 	skb->transport_header = (typeof(skb->transport_header))~0U;
384 	skb->alloc_cpu = raw_smp_processor_id();
385 	/* make sure we initialize shinfo sequentially */
386 	shinfo = skb_shinfo(skb);
387 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
388 	atomic_set(&shinfo->dataref, 1);
389 
390 	skb_set_kcov_handle(skb, kcov_common_handle());
391 }
392 
393 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
394 				     unsigned int *size)
395 {
396 	void *resized;
397 
398 	/* Must find the allocation size (and grow it to match). */
399 	*size = ksize(data);
400 	/* krealloc() will immediately return "data" when
401 	 * "ksize(data)" is requested: it is the existing upper
402 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
403 	 * that this "new" pointer needs to be passed back to the
404 	 * caller for use so the __alloc_size hinting will be
405 	 * tracked correctly.
406 	 */
407 	resized = krealloc(data, *size, GFP_ATOMIC);
408 	WARN_ON_ONCE(resized != data);
409 	return resized;
410 }
411 
412 /* build_skb() variant which can operate on slab buffers.
413  * Note that this should be used sparingly as slab buffers
414  * cannot be combined efficiently by GRO!
415  */
416 struct sk_buff *slab_build_skb(void *data)
417 {
418 	struct sk_buff *skb;
419 	unsigned int size;
420 
421 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
422 	if (unlikely(!skb))
423 		return NULL;
424 
425 	memset(skb, 0, offsetof(struct sk_buff, tail));
426 	data = __slab_build_skb(skb, data, &size);
427 	__finalize_skb_around(skb, data, size);
428 
429 	return skb;
430 }
431 EXPORT_SYMBOL(slab_build_skb);
432 
433 /* Caller must provide SKB that is memset cleared */
434 static void __build_skb_around(struct sk_buff *skb, void *data,
435 			       unsigned int frag_size)
436 {
437 	unsigned int size = frag_size;
438 
439 	/* frag_size == 0 is considered deprecated now. Callers
440 	 * using slab buffer should use slab_build_skb() instead.
441 	 */
442 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
443 		data = __slab_build_skb(skb, data, &size);
444 
445 	__finalize_skb_around(skb, data, size);
446 }
447 
448 /**
449  * __build_skb - build a network buffer
450  * @data: data buffer provided by caller
451  * @frag_size: size of data (must not be 0)
452  *
453  * Allocate a new &sk_buff. Caller provides space holding head and
454  * skb_shared_info. @data must have been allocated from the page
455  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
456  * allocation is deprecated, and callers should use slab_build_skb()
457  * instead.)
458  * The return is the new skb buffer.
459  * On a failure the return is %NULL, and @data is not freed.
460  * Notes :
461  *  Before IO, driver allocates only data buffer where NIC put incoming frame
462  *  Driver should add room at head (NET_SKB_PAD) and
463  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
464  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
465  *  before giving packet to stack.
466  *  RX rings only contains data buffers, not full skbs.
467  */
468 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
469 {
470 	struct sk_buff *skb;
471 
472 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
473 	if (unlikely(!skb))
474 		return NULL;
475 
476 	memset(skb, 0, offsetof(struct sk_buff, tail));
477 	__build_skb_around(skb, data, frag_size);
478 
479 	return skb;
480 }
481 
482 /* build_skb() is wrapper over __build_skb(), that specifically
483  * takes care of skb->head and skb->pfmemalloc
484  */
485 struct sk_buff *build_skb(void *data, unsigned int frag_size)
486 {
487 	struct sk_buff *skb = __build_skb(data, frag_size);
488 
489 	if (likely(skb && frag_size)) {
490 		skb->head_frag = 1;
491 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
492 	}
493 	return skb;
494 }
495 EXPORT_SYMBOL(build_skb);
496 
497 /**
498  * build_skb_around - build a network buffer around provided skb
499  * @skb: sk_buff provide by caller, must be memset cleared
500  * @data: data buffer provided by caller
501  * @frag_size: size of data
502  */
503 struct sk_buff *build_skb_around(struct sk_buff *skb,
504 				 void *data, unsigned int frag_size)
505 {
506 	if (unlikely(!skb))
507 		return NULL;
508 
509 	__build_skb_around(skb, data, frag_size);
510 
511 	if (frag_size) {
512 		skb->head_frag = 1;
513 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
514 	}
515 	return skb;
516 }
517 EXPORT_SYMBOL(build_skb_around);
518 
519 /**
520  * __napi_build_skb - build a network buffer
521  * @data: data buffer provided by caller
522  * @frag_size: size of data
523  *
524  * Version of __build_skb() that uses NAPI percpu caches to obtain
525  * skbuff_head instead of inplace allocation.
526  *
527  * Returns a new &sk_buff on success, %NULL on allocation failure.
528  */
529 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
530 {
531 	struct sk_buff *skb;
532 
533 	skb = napi_skb_cache_get();
534 	if (unlikely(!skb))
535 		return NULL;
536 
537 	memset(skb, 0, offsetof(struct sk_buff, tail));
538 	__build_skb_around(skb, data, frag_size);
539 
540 	return skb;
541 }
542 
543 /**
544  * napi_build_skb - build a network buffer
545  * @data: data buffer provided by caller
546  * @frag_size: size of data
547  *
548  * Version of __napi_build_skb() that takes care of skb->head_frag
549  * and skb->pfmemalloc when the data is a page or page fragment.
550  *
551  * Returns a new &sk_buff on success, %NULL on allocation failure.
552  */
553 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
554 {
555 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
556 
557 	if (likely(skb) && frag_size) {
558 		skb->head_frag = 1;
559 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
560 	}
561 
562 	return skb;
563 }
564 EXPORT_SYMBOL(napi_build_skb);
565 
566 /*
567  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
568  * the caller if emergency pfmemalloc reserves are being used. If it is and
569  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
570  * may be used. Otherwise, the packet data may be discarded until enough
571  * memory is free
572  */
573 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
574 			     bool *pfmemalloc)
575 {
576 	bool ret_pfmemalloc = false;
577 	size_t obj_size;
578 	void *obj;
579 
580 	obj_size = SKB_HEAD_ALIGN(*size);
581 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
582 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
583 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
584 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
585 				node);
586 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
587 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
588 			goto out;
589 		/* Try again but now we are using pfmemalloc reserves */
590 		ret_pfmemalloc = true;
591 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
592 		goto out;
593 	}
594 
595 	obj_size = kmalloc_size_roundup(obj_size);
596 	/* The following cast might truncate high-order bits of obj_size, this
597 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
598 	 */
599 	*size = (unsigned int)obj_size;
600 
601 	/*
602 	 * Try a regular allocation, when that fails and we're not entitled
603 	 * to the reserves, fail.
604 	 */
605 	obj = kmalloc_node_track_caller(obj_size,
606 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
607 					node);
608 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
609 		goto out;
610 
611 	/* Try again but now we are using pfmemalloc reserves */
612 	ret_pfmemalloc = true;
613 	obj = kmalloc_node_track_caller(obj_size, flags, node);
614 
615 out:
616 	if (pfmemalloc)
617 		*pfmemalloc = ret_pfmemalloc;
618 
619 	return obj;
620 }
621 
622 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
623  *	'private' fields and also do memory statistics to find all the
624  *	[BEEP] leaks.
625  *
626  */
627 
628 /**
629  *	__alloc_skb	-	allocate a network buffer
630  *	@size: size to allocate
631  *	@gfp_mask: allocation mask
632  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
633  *		instead of head cache and allocate a cloned (child) skb.
634  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
635  *		allocations in case the data is required for writeback
636  *	@node: numa node to allocate memory on
637  *
638  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
639  *	tail room of at least size bytes. The object has a reference count
640  *	of one. The return is the buffer. On a failure the return is %NULL.
641  *
642  *	Buffers may only be allocated from interrupts using a @gfp_mask of
643  *	%GFP_ATOMIC.
644  */
645 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
646 			    int flags, int node)
647 {
648 	struct kmem_cache *cache;
649 	struct sk_buff *skb;
650 	bool pfmemalloc;
651 	u8 *data;
652 
653 	cache = (flags & SKB_ALLOC_FCLONE)
654 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
655 
656 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
657 		gfp_mask |= __GFP_MEMALLOC;
658 
659 	/* Get the HEAD */
660 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
661 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
662 		skb = napi_skb_cache_get();
663 	else
664 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
665 	if (unlikely(!skb))
666 		return NULL;
667 	prefetchw(skb);
668 
669 	/* We do our best to align skb_shared_info on a separate cache
670 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
671 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
672 	 * Both skb->head and skb_shared_info are cache line aligned.
673 	 */
674 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
675 	if (unlikely(!data))
676 		goto nodata;
677 	/* kmalloc_size_roundup() might give us more room than requested.
678 	 * Put skb_shared_info exactly at the end of allocated zone,
679 	 * to allow max possible filling before reallocation.
680 	 */
681 	prefetchw(data + SKB_WITH_OVERHEAD(size));
682 
683 	/*
684 	 * Only clear those fields we need to clear, not those that we will
685 	 * actually initialise below. Hence, don't put any more fields after
686 	 * the tail pointer in struct sk_buff!
687 	 */
688 	memset(skb, 0, offsetof(struct sk_buff, tail));
689 	__build_skb_around(skb, data, size);
690 	skb->pfmemalloc = pfmemalloc;
691 
692 	if (flags & SKB_ALLOC_FCLONE) {
693 		struct sk_buff_fclones *fclones;
694 
695 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
696 
697 		skb->fclone = SKB_FCLONE_ORIG;
698 		refcount_set(&fclones->fclone_ref, 1);
699 	}
700 
701 	return skb;
702 
703 nodata:
704 	kmem_cache_free(cache, skb);
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__alloc_skb);
708 
709 /**
710  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
711  *	@dev: network device to receive on
712  *	@len: length to allocate
713  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
714  *
715  *	Allocate a new &sk_buff and assign it a usage count of one. The
716  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
717  *	the headroom they think they need without accounting for the
718  *	built in space. The built in space is used for optimisations.
719  *
720  *	%NULL is returned if there is no free memory.
721  */
722 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
723 				   gfp_t gfp_mask)
724 {
725 	struct page_frag_cache *nc;
726 	struct sk_buff *skb;
727 	bool pfmemalloc;
728 	void *data;
729 
730 	len += NET_SKB_PAD;
731 
732 	/* If requested length is either too small or too big,
733 	 * we use kmalloc() for skb->head allocation.
734 	 */
735 	if (len <= SKB_WITH_OVERHEAD(1024) ||
736 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
737 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
738 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
739 		if (!skb)
740 			goto skb_fail;
741 		goto skb_success;
742 	}
743 
744 	len = SKB_HEAD_ALIGN(len);
745 
746 	if (sk_memalloc_socks())
747 		gfp_mask |= __GFP_MEMALLOC;
748 
749 	if (in_hardirq() || irqs_disabled()) {
750 		nc = this_cpu_ptr(&netdev_alloc_cache);
751 		data = page_frag_alloc(nc, len, gfp_mask);
752 		pfmemalloc = nc->pfmemalloc;
753 	} else {
754 		local_bh_disable();
755 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
756 
757 		nc = this_cpu_ptr(&napi_alloc_cache.page);
758 		data = page_frag_alloc(nc, len, gfp_mask);
759 		pfmemalloc = nc->pfmemalloc;
760 
761 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
762 		local_bh_enable();
763 	}
764 
765 	if (unlikely(!data))
766 		return NULL;
767 
768 	skb = __build_skb(data, len);
769 	if (unlikely(!skb)) {
770 		skb_free_frag(data);
771 		return NULL;
772 	}
773 
774 	if (pfmemalloc)
775 		skb->pfmemalloc = 1;
776 	skb->head_frag = 1;
777 
778 skb_success:
779 	skb_reserve(skb, NET_SKB_PAD);
780 	skb->dev = dev;
781 
782 skb_fail:
783 	return skb;
784 }
785 EXPORT_SYMBOL(__netdev_alloc_skb);
786 
787 /**
788  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
789  *	@napi: napi instance this buffer was allocated for
790  *	@len: length to allocate
791  *
792  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
793  *	attempt to allocate the head from a special reserved region used
794  *	only for NAPI Rx allocation.  By doing this we can save several
795  *	CPU cycles by avoiding having to disable and re-enable IRQs.
796  *
797  *	%NULL is returned if there is no free memory.
798  */
799 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
800 {
801 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
802 	struct napi_alloc_cache *nc;
803 	struct sk_buff *skb;
804 	bool pfmemalloc;
805 	void *data;
806 
807 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
808 	len += NET_SKB_PAD + NET_IP_ALIGN;
809 
810 	/* If requested length is either too small or too big,
811 	 * we use kmalloc() for skb->head allocation.
812 	 * When the small frag allocator is available, prefer it over kmalloc
813 	 * for small fragments
814 	 */
815 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
816 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
817 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
818 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
819 				  NUMA_NO_NODE);
820 		if (!skb)
821 			goto skb_fail;
822 		goto skb_success;
823 	}
824 
825 	if (sk_memalloc_socks())
826 		gfp_mask |= __GFP_MEMALLOC;
827 
828 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
829 	nc = this_cpu_ptr(&napi_alloc_cache);
830 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
831 		/* we are artificially inflating the allocation size, but
832 		 * that is not as bad as it may look like, as:
833 		 * - 'len' less than GRO_MAX_HEAD makes little sense
834 		 * - On most systems, larger 'len' values lead to fragment
835 		 *   size above 512 bytes
836 		 * - kmalloc would use the kmalloc-1k slab for such values
837 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
838 		 *   little networking, as that implies no WiFi and no
839 		 *   tunnels support, and 32 bits arches.
840 		 */
841 		len = SZ_1K;
842 
843 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
844 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
845 	} else {
846 		len = SKB_HEAD_ALIGN(len);
847 
848 		data = page_frag_alloc(&nc->page, len, gfp_mask);
849 		pfmemalloc = nc->page.pfmemalloc;
850 	}
851 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
852 
853 	if (unlikely(!data))
854 		return NULL;
855 
856 	skb = __napi_build_skb(data, len);
857 	if (unlikely(!skb)) {
858 		skb_free_frag(data);
859 		return NULL;
860 	}
861 
862 	if (pfmemalloc)
863 		skb->pfmemalloc = 1;
864 	skb->head_frag = 1;
865 
866 skb_success:
867 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
868 	skb->dev = napi->dev;
869 
870 skb_fail:
871 	return skb;
872 }
873 EXPORT_SYMBOL(napi_alloc_skb);
874 
875 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
876 			    int off, int size, unsigned int truesize)
877 {
878 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
879 
880 	skb_fill_netmem_desc(skb, i, netmem, off, size);
881 	skb->len += size;
882 	skb->data_len += size;
883 	skb->truesize += truesize;
884 }
885 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
886 
887 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
888 			  unsigned int truesize)
889 {
890 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
891 
892 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
893 
894 	skb_frag_size_add(frag, size);
895 	skb->len += size;
896 	skb->data_len += size;
897 	skb->truesize += truesize;
898 }
899 EXPORT_SYMBOL(skb_coalesce_rx_frag);
900 
901 static void skb_drop_list(struct sk_buff **listp)
902 {
903 	kfree_skb_list(*listp);
904 	*listp = NULL;
905 }
906 
907 static inline void skb_drop_fraglist(struct sk_buff *skb)
908 {
909 	skb_drop_list(&skb_shinfo(skb)->frag_list);
910 }
911 
912 static void skb_clone_fraglist(struct sk_buff *skb)
913 {
914 	struct sk_buff *list;
915 
916 	skb_walk_frags(skb, list)
917 		skb_get(list);
918 }
919 
920 static bool is_pp_page(struct page *page)
921 {
922 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
923 }
924 
925 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
926 		    unsigned int headroom)
927 {
928 #if IS_ENABLED(CONFIG_PAGE_POOL)
929 	u32 size, truesize, len, max_head_size, off;
930 	struct sk_buff *skb = *pskb, *nskb;
931 	int err, i, head_off;
932 	void *data;
933 
934 	/* XDP does not support fraglist so we need to linearize
935 	 * the skb.
936 	 */
937 	if (skb_has_frag_list(skb))
938 		return -EOPNOTSUPP;
939 
940 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
941 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
942 		return -ENOMEM;
943 
944 	size = min_t(u32, skb->len, max_head_size);
945 	truesize = SKB_HEAD_ALIGN(size) + headroom;
946 	data = page_pool_dev_alloc_va(pool, &truesize);
947 	if (!data)
948 		return -ENOMEM;
949 
950 	nskb = napi_build_skb(data, truesize);
951 	if (!nskb) {
952 		page_pool_free_va(pool, data, true);
953 		return -ENOMEM;
954 	}
955 
956 	skb_reserve(nskb, headroom);
957 	skb_copy_header(nskb, skb);
958 	skb_mark_for_recycle(nskb);
959 
960 	err = skb_copy_bits(skb, 0, nskb->data, size);
961 	if (err) {
962 		consume_skb(nskb);
963 		return err;
964 	}
965 	skb_put(nskb, size);
966 
967 	head_off = skb_headroom(nskb) - skb_headroom(skb);
968 	skb_headers_offset_update(nskb, head_off);
969 
970 	off = size;
971 	len = skb->len - off;
972 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
973 		struct page *page;
974 		u32 page_off;
975 
976 		size = min_t(u32, len, PAGE_SIZE);
977 		truesize = size;
978 
979 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
980 		if (!page) {
981 			consume_skb(nskb);
982 			return -ENOMEM;
983 		}
984 
985 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
986 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
987 				    size);
988 		if (err) {
989 			consume_skb(nskb);
990 			return err;
991 		}
992 
993 		len -= size;
994 		off += size;
995 	}
996 
997 	consume_skb(skb);
998 	*pskb = nskb;
999 
1000 	return 0;
1001 #else
1002 	return -EOPNOTSUPP;
1003 #endif
1004 }
1005 EXPORT_SYMBOL(skb_pp_cow_data);
1006 
1007 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
1008 			 struct bpf_prog *prog)
1009 {
1010 	if (!prog->aux->xdp_has_frags)
1011 		return -EINVAL;
1012 
1013 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1014 }
1015 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1016 
1017 #if IS_ENABLED(CONFIG_PAGE_POOL)
1018 bool napi_pp_put_page(struct page *page)
1019 {
1020 	page = compound_head(page);
1021 
1022 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1023 	 * in order to preserve any existing bits, such as bit 0 for the
1024 	 * head page of compound page and bit 1 for pfmemalloc page, so
1025 	 * mask those bits for freeing side when doing below checking,
1026 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1027 	 * to avoid recycling the pfmemalloc page.
1028 	 */
1029 	if (unlikely(!is_pp_page(page)))
1030 		return false;
1031 
1032 	page_pool_put_full_page(page->pp, page, false);
1033 
1034 	return true;
1035 }
1036 EXPORT_SYMBOL(napi_pp_put_page);
1037 #endif
1038 
1039 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1040 {
1041 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1042 		return false;
1043 	return napi_pp_put_page(virt_to_page(data));
1044 }
1045 
1046 /**
1047  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1048  * @skb:	page pool aware skb
1049  *
1050  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1051  * intended to gain fragment references only for page pool aware skbs,
1052  * i.e. when skb->pp_recycle is true, and not for fragments in a
1053  * non-pp-recycling skb. It has a fallback to increase references on normal
1054  * pages, as page pool aware skbs may also have normal page fragments.
1055  */
1056 static int skb_pp_frag_ref(struct sk_buff *skb)
1057 {
1058 	struct skb_shared_info *shinfo;
1059 	struct page *head_page;
1060 	int i;
1061 
1062 	if (!skb->pp_recycle)
1063 		return -EINVAL;
1064 
1065 	shinfo = skb_shinfo(skb);
1066 
1067 	for (i = 0; i < shinfo->nr_frags; i++) {
1068 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1069 		if (likely(is_pp_page(head_page)))
1070 			page_pool_ref_page(head_page);
1071 		else
1072 			page_ref_inc(head_page);
1073 	}
1074 	return 0;
1075 }
1076 
1077 static void skb_kfree_head(void *head, unsigned int end_offset)
1078 {
1079 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1080 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1081 	else
1082 		kfree(head);
1083 }
1084 
1085 static void skb_free_head(struct sk_buff *skb)
1086 {
1087 	unsigned char *head = skb->head;
1088 
1089 	if (skb->head_frag) {
1090 		if (skb_pp_recycle(skb, head))
1091 			return;
1092 		skb_free_frag(head);
1093 	} else {
1094 		skb_kfree_head(head, skb_end_offset(skb));
1095 	}
1096 }
1097 
1098 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1099 {
1100 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1101 	int i;
1102 
1103 	if (!skb_data_unref(skb, shinfo))
1104 		goto exit;
1105 
1106 	if (skb_zcopy(skb)) {
1107 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1108 
1109 		skb_zcopy_clear(skb, true);
1110 		if (skip_unref)
1111 			goto free_head;
1112 	}
1113 
1114 	for (i = 0; i < shinfo->nr_frags; i++)
1115 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1116 
1117 free_head:
1118 	if (shinfo->frag_list)
1119 		kfree_skb_list_reason(shinfo->frag_list, reason);
1120 
1121 	skb_free_head(skb);
1122 exit:
1123 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1124 	 * bit is only set on the head though, so in order to avoid races
1125 	 * while trying to recycle fragments on __skb_frag_unref() we need
1126 	 * to make one SKB responsible for triggering the recycle path.
1127 	 * So disable the recycling bit if an SKB is cloned and we have
1128 	 * additional references to the fragmented part of the SKB.
1129 	 * Eventually the last SKB will have the recycling bit set and it's
1130 	 * dataref set to 0, which will trigger the recycling
1131 	 */
1132 	skb->pp_recycle = 0;
1133 }
1134 
1135 /*
1136  *	Free an skbuff by memory without cleaning the state.
1137  */
1138 static void kfree_skbmem(struct sk_buff *skb)
1139 {
1140 	struct sk_buff_fclones *fclones;
1141 
1142 	switch (skb->fclone) {
1143 	case SKB_FCLONE_UNAVAILABLE:
1144 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1145 		return;
1146 
1147 	case SKB_FCLONE_ORIG:
1148 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1149 
1150 		/* We usually free the clone (TX completion) before original skb
1151 		 * This test would have no chance to be true for the clone,
1152 		 * while here, branch prediction will be good.
1153 		 */
1154 		if (refcount_read(&fclones->fclone_ref) == 1)
1155 			goto fastpath;
1156 		break;
1157 
1158 	default: /* SKB_FCLONE_CLONE */
1159 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1160 		break;
1161 	}
1162 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1163 		return;
1164 fastpath:
1165 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1166 }
1167 
1168 void skb_release_head_state(struct sk_buff *skb)
1169 {
1170 	skb_dst_drop(skb);
1171 	if (skb->destructor) {
1172 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1173 		skb->destructor(skb);
1174 	}
1175 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1176 	nf_conntrack_put(skb_nfct(skb));
1177 #endif
1178 	skb_ext_put(skb);
1179 }
1180 
1181 /* Free everything but the sk_buff shell. */
1182 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1183 {
1184 	skb_release_head_state(skb);
1185 	if (likely(skb->head))
1186 		skb_release_data(skb, reason);
1187 }
1188 
1189 /**
1190  *	__kfree_skb - private function
1191  *	@skb: buffer
1192  *
1193  *	Free an sk_buff. Release anything attached to the buffer.
1194  *	Clean the state. This is an internal helper function. Users should
1195  *	always call kfree_skb
1196  */
1197 
1198 void __kfree_skb(struct sk_buff *skb)
1199 {
1200 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1201 	kfree_skbmem(skb);
1202 }
1203 EXPORT_SYMBOL(__kfree_skb);
1204 
1205 static __always_inline
1206 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1207 			  enum skb_drop_reason reason)
1208 {
1209 	if (unlikely(!skb_unref(skb)))
1210 		return false;
1211 
1212 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1213 			       u32_get_bits(reason,
1214 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1215 				SKB_DROP_REASON_SUBSYS_NUM);
1216 
1217 	if (reason == SKB_CONSUMED)
1218 		trace_consume_skb(skb, __builtin_return_address(0));
1219 	else
1220 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1221 	return true;
1222 }
1223 
1224 /**
1225  *	sk_skb_reason_drop - free an sk_buff with special reason
1226  *	@sk: the socket to receive @skb, or NULL if not applicable
1227  *	@skb: buffer to free
1228  *	@reason: reason why this skb is dropped
1229  *
1230  *	Drop a reference to the buffer and free it if the usage count has hit
1231  *	zero. Meanwhile, pass the receiving socket and drop reason to
1232  *	'kfree_skb' tracepoint.
1233  */
1234 void __fix_address
1235 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1236 {
1237 	if (__sk_skb_reason_drop(sk, skb, reason))
1238 		__kfree_skb(skb);
1239 }
1240 EXPORT_SYMBOL(sk_skb_reason_drop);
1241 
1242 #define KFREE_SKB_BULK_SIZE	16
1243 
1244 struct skb_free_array {
1245 	unsigned int skb_count;
1246 	void *skb_array[KFREE_SKB_BULK_SIZE];
1247 };
1248 
1249 static void kfree_skb_add_bulk(struct sk_buff *skb,
1250 			       struct skb_free_array *sa,
1251 			       enum skb_drop_reason reason)
1252 {
1253 	/* if SKB is a clone, don't handle this case */
1254 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1255 		__kfree_skb(skb);
1256 		return;
1257 	}
1258 
1259 	skb_release_all(skb, reason);
1260 	sa->skb_array[sa->skb_count++] = skb;
1261 
1262 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1263 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1264 				     sa->skb_array);
1265 		sa->skb_count = 0;
1266 	}
1267 }
1268 
1269 void __fix_address
1270 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1271 {
1272 	struct skb_free_array sa;
1273 
1274 	sa.skb_count = 0;
1275 
1276 	while (segs) {
1277 		struct sk_buff *next = segs->next;
1278 
1279 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1280 			skb_poison_list(segs);
1281 			kfree_skb_add_bulk(segs, &sa, reason);
1282 		}
1283 
1284 		segs = next;
1285 	}
1286 
1287 	if (sa.skb_count)
1288 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1289 }
1290 EXPORT_SYMBOL(kfree_skb_list_reason);
1291 
1292 /* Dump skb information and contents.
1293  *
1294  * Must only be called from net_ratelimit()-ed paths.
1295  *
1296  * Dumps whole packets if full_pkt, only headers otherwise.
1297  */
1298 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1299 {
1300 	struct skb_shared_info *sh = skb_shinfo(skb);
1301 	struct net_device *dev = skb->dev;
1302 	struct sock *sk = skb->sk;
1303 	struct sk_buff *list_skb;
1304 	bool has_mac, has_trans;
1305 	int headroom, tailroom;
1306 	int i, len, seg_len;
1307 
1308 	if (full_pkt)
1309 		len = skb->len;
1310 	else
1311 		len = min_t(int, skb->len, MAX_HEADER + 128);
1312 
1313 	headroom = skb_headroom(skb);
1314 	tailroom = skb_tailroom(skb);
1315 
1316 	has_mac = skb_mac_header_was_set(skb);
1317 	has_trans = skb_transport_header_was_set(skb);
1318 
1319 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1320 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1321 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1322 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1323 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1324 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1325 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1326 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1327 	       has_mac ? skb->mac_header : -1,
1328 	       has_mac ? skb_mac_header_len(skb) : -1,
1329 	       skb->mac_len,
1330 	       skb->network_header,
1331 	       has_trans ? skb_network_header_len(skb) : -1,
1332 	       has_trans ? skb->transport_header : -1,
1333 	       sh->tx_flags, sh->nr_frags,
1334 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1335 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1336 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1337 	       skb->hash, skb->sw_hash, skb->l4_hash,
1338 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1339 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1340 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1341 	       skb->inner_network_header, skb->inner_transport_header);
1342 
1343 	if (dev)
1344 		printk("%sdev name=%s feat=%pNF\n",
1345 		       level, dev->name, &dev->features);
1346 	if (sk)
1347 		printk("%ssk family=%hu type=%u proto=%u\n",
1348 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1349 
1350 	if (full_pkt && headroom)
1351 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1352 			       16, 1, skb->head, headroom, false);
1353 
1354 	seg_len = min_t(int, skb_headlen(skb), len);
1355 	if (seg_len)
1356 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1357 			       16, 1, skb->data, seg_len, false);
1358 	len -= seg_len;
1359 
1360 	if (full_pkt && tailroom)
1361 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1362 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1363 
1364 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1365 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1366 		u32 p_off, p_len, copied;
1367 		struct page *p;
1368 		u8 *vaddr;
1369 
1370 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1371 				      skb_frag_size(frag), p, p_off, p_len,
1372 				      copied) {
1373 			seg_len = min_t(int, p_len, len);
1374 			vaddr = kmap_atomic(p);
1375 			print_hex_dump(level, "skb frag:     ",
1376 				       DUMP_PREFIX_OFFSET,
1377 				       16, 1, vaddr + p_off, seg_len, false);
1378 			kunmap_atomic(vaddr);
1379 			len -= seg_len;
1380 			if (!len)
1381 				break;
1382 		}
1383 	}
1384 
1385 	if (full_pkt && skb_has_frag_list(skb)) {
1386 		printk("skb fraglist:\n");
1387 		skb_walk_frags(skb, list_skb)
1388 			skb_dump(level, list_skb, true);
1389 	}
1390 }
1391 EXPORT_SYMBOL(skb_dump);
1392 
1393 /**
1394  *	skb_tx_error - report an sk_buff xmit error
1395  *	@skb: buffer that triggered an error
1396  *
1397  *	Report xmit error if a device callback is tracking this skb.
1398  *	skb must be freed afterwards.
1399  */
1400 void skb_tx_error(struct sk_buff *skb)
1401 {
1402 	if (skb) {
1403 		skb_zcopy_downgrade_managed(skb);
1404 		skb_zcopy_clear(skb, true);
1405 	}
1406 }
1407 EXPORT_SYMBOL(skb_tx_error);
1408 
1409 #ifdef CONFIG_TRACEPOINTS
1410 /**
1411  *	consume_skb - free an skbuff
1412  *	@skb: buffer to free
1413  *
1414  *	Drop a ref to the buffer and free it if the usage count has hit zero
1415  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1416  *	is being dropped after a failure and notes that
1417  */
1418 void consume_skb(struct sk_buff *skb)
1419 {
1420 	if (!skb_unref(skb))
1421 		return;
1422 
1423 	trace_consume_skb(skb, __builtin_return_address(0));
1424 	__kfree_skb(skb);
1425 }
1426 EXPORT_SYMBOL(consume_skb);
1427 #endif
1428 
1429 /**
1430  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1431  *	@skb: buffer to free
1432  *
1433  *	Alike consume_skb(), but this variant assumes that this is the last
1434  *	skb reference and all the head states have been already dropped
1435  */
1436 void __consume_stateless_skb(struct sk_buff *skb)
1437 {
1438 	trace_consume_skb(skb, __builtin_return_address(0));
1439 	skb_release_data(skb, SKB_CONSUMED);
1440 	kfree_skbmem(skb);
1441 }
1442 
1443 static void napi_skb_cache_put(struct sk_buff *skb)
1444 {
1445 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1446 	u32 i;
1447 
1448 	if (!kasan_mempool_poison_object(skb))
1449 		return;
1450 
1451 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1452 	nc->skb_cache[nc->skb_count++] = skb;
1453 
1454 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1455 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1456 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1457 						kmem_cache_size(net_hotdata.skbuff_cache));
1458 
1459 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1460 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1461 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1462 	}
1463 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1464 }
1465 
1466 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1467 {
1468 	skb_release_all(skb, reason);
1469 	napi_skb_cache_put(skb);
1470 }
1471 
1472 void napi_skb_free_stolen_head(struct sk_buff *skb)
1473 {
1474 	if (unlikely(skb->slow_gro)) {
1475 		nf_reset_ct(skb);
1476 		skb_dst_drop(skb);
1477 		skb_ext_put(skb);
1478 		skb_orphan(skb);
1479 		skb->slow_gro = 0;
1480 	}
1481 	napi_skb_cache_put(skb);
1482 }
1483 
1484 void napi_consume_skb(struct sk_buff *skb, int budget)
1485 {
1486 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1487 	if (unlikely(!budget)) {
1488 		dev_consume_skb_any(skb);
1489 		return;
1490 	}
1491 
1492 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1493 
1494 	if (!skb_unref(skb))
1495 		return;
1496 
1497 	/* if reaching here SKB is ready to free */
1498 	trace_consume_skb(skb, __builtin_return_address(0));
1499 
1500 	/* if SKB is a clone, don't handle this case */
1501 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1502 		__kfree_skb(skb);
1503 		return;
1504 	}
1505 
1506 	skb_release_all(skb, SKB_CONSUMED);
1507 	napi_skb_cache_put(skb);
1508 }
1509 EXPORT_SYMBOL(napi_consume_skb);
1510 
1511 /* Make sure a field is contained by headers group */
1512 #define CHECK_SKB_FIELD(field) \
1513 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1514 		     offsetof(struct sk_buff, headers.field));	\
1515 
1516 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1517 {
1518 	new->tstamp		= old->tstamp;
1519 	/* We do not copy old->sk */
1520 	new->dev		= old->dev;
1521 	memcpy(new->cb, old->cb, sizeof(old->cb));
1522 	skb_dst_copy(new, old);
1523 	__skb_ext_copy(new, old);
1524 	__nf_copy(new, old, false);
1525 
1526 	/* Note : this field could be in the headers group.
1527 	 * It is not yet because we do not want to have a 16 bit hole
1528 	 */
1529 	new->queue_mapping = old->queue_mapping;
1530 
1531 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1532 	CHECK_SKB_FIELD(protocol);
1533 	CHECK_SKB_FIELD(csum);
1534 	CHECK_SKB_FIELD(hash);
1535 	CHECK_SKB_FIELD(priority);
1536 	CHECK_SKB_FIELD(skb_iif);
1537 	CHECK_SKB_FIELD(vlan_proto);
1538 	CHECK_SKB_FIELD(vlan_tci);
1539 	CHECK_SKB_FIELD(transport_header);
1540 	CHECK_SKB_FIELD(network_header);
1541 	CHECK_SKB_FIELD(mac_header);
1542 	CHECK_SKB_FIELD(inner_protocol);
1543 	CHECK_SKB_FIELD(inner_transport_header);
1544 	CHECK_SKB_FIELD(inner_network_header);
1545 	CHECK_SKB_FIELD(inner_mac_header);
1546 	CHECK_SKB_FIELD(mark);
1547 #ifdef CONFIG_NETWORK_SECMARK
1548 	CHECK_SKB_FIELD(secmark);
1549 #endif
1550 #ifdef CONFIG_NET_RX_BUSY_POLL
1551 	CHECK_SKB_FIELD(napi_id);
1552 #endif
1553 	CHECK_SKB_FIELD(alloc_cpu);
1554 #ifdef CONFIG_XPS
1555 	CHECK_SKB_FIELD(sender_cpu);
1556 #endif
1557 #ifdef CONFIG_NET_SCHED
1558 	CHECK_SKB_FIELD(tc_index);
1559 #endif
1560 
1561 }
1562 
1563 /*
1564  * You should not add any new code to this function.  Add it to
1565  * __copy_skb_header above instead.
1566  */
1567 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1568 {
1569 #define C(x) n->x = skb->x
1570 
1571 	n->next = n->prev = NULL;
1572 	n->sk = NULL;
1573 	__copy_skb_header(n, skb);
1574 
1575 	C(len);
1576 	C(data_len);
1577 	C(mac_len);
1578 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1579 	n->cloned = 1;
1580 	n->nohdr = 0;
1581 	n->peeked = 0;
1582 	C(pfmemalloc);
1583 	C(pp_recycle);
1584 	n->destructor = NULL;
1585 	C(tail);
1586 	C(end);
1587 	C(head);
1588 	C(head_frag);
1589 	C(data);
1590 	C(truesize);
1591 	refcount_set(&n->users, 1);
1592 
1593 	atomic_inc(&(skb_shinfo(skb)->dataref));
1594 	skb->cloned = 1;
1595 
1596 	return n;
1597 #undef C
1598 }
1599 
1600 /**
1601  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1602  * @first: first sk_buff of the msg
1603  */
1604 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1605 {
1606 	struct sk_buff *n;
1607 
1608 	n = alloc_skb(0, GFP_ATOMIC);
1609 	if (!n)
1610 		return NULL;
1611 
1612 	n->len = first->len;
1613 	n->data_len = first->len;
1614 	n->truesize = first->truesize;
1615 
1616 	skb_shinfo(n)->frag_list = first;
1617 
1618 	__copy_skb_header(n, first);
1619 	n->destructor = NULL;
1620 
1621 	return n;
1622 }
1623 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1624 
1625 /**
1626  *	skb_morph	-	morph one skb into another
1627  *	@dst: the skb to receive the contents
1628  *	@src: the skb to supply the contents
1629  *
1630  *	This is identical to skb_clone except that the target skb is
1631  *	supplied by the user.
1632  *
1633  *	The target skb is returned upon exit.
1634  */
1635 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1636 {
1637 	skb_release_all(dst, SKB_CONSUMED);
1638 	return __skb_clone(dst, src);
1639 }
1640 EXPORT_SYMBOL_GPL(skb_morph);
1641 
1642 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1643 {
1644 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1645 	struct user_struct *user;
1646 
1647 	if (capable(CAP_IPC_LOCK) || !size)
1648 		return 0;
1649 
1650 	rlim = rlimit(RLIMIT_MEMLOCK);
1651 	if (rlim == RLIM_INFINITY)
1652 		return 0;
1653 
1654 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1655 	max_pg = rlim >> PAGE_SHIFT;
1656 	user = mmp->user ? : current_user();
1657 
1658 	old_pg = atomic_long_read(&user->locked_vm);
1659 	do {
1660 		new_pg = old_pg + num_pg;
1661 		if (new_pg > max_pg)
1662 			return -ENOBUFS;
1663 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1664 
1665 	if (!mmp->user) {
1666 		mmp->user = get_uid(user);
1667 		mmp->num_pg = num_pg;
1668 	} else {
1669 		mmp->num_pg += num_pg;
1670 	}
1671 
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1675 
1676 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1677 {
1678 	if (mmp->user) {
1679 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1680 		free_uid(mmp->user);
1681 	}
1682 }
1683 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1684 
1685 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1686 {
1687 	struct ubuf_info_msgzc *uarg;
1688 	struct sk_buff *skb;
1689 
1690 	WARN_ON_ONCE(!in_task());
1691 
1692 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1693 	if (!skb)
1694 		return NULL;
1695 
1696 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1697 	uarg = (void *)skb->cb;
1698 	uarg->mmp.user = NULL;
1699 
1700 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1701 		kfree_skb(skb);
1702 		return NULL;
1703 	}
1704 
1705 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1706 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1707 	uarg->len = 1;
1708 	uarg->bytelen = size;
1709 	uarg->zerocopy = 1;
1710 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1711 	refcount_set(&uarg->ubuf.refcnt, 1);
1712 	sock_hold(sk);
1713 
1714 	return &uarg->ubuf;
1715 }
1716 
1717 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1718 {
1719 	return container_of((void *)uarg, struct sk_buff, cb);
1720 }
1721 
1722 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1723 				       struct ubuf_info *uarg)
1724 {
1725 	if (uarg) {
1726 		struct ubuf_info_msgzc *uarg_zc;
1727 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1728 		u32 bytelen, next;
1729 
1730 		/* there might be non MSG_ZEROCOPY users */
1731 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1732 			return NULL;
1733 
1734 		/* realloc only when socket is locked (TCP, UDP cork),
1735 		 * so uarg->len and sk_zckey access is serialized
1736 		 */
1737 		if (!sock_owned_by_user(sk)) {
1738 			WARN_ON_ONCE(1);
1739 			return NULL;
1740 		}
1741 
1742 		uarg_zc = uarg_to_msgzc(uarg);
1743 		bytelen = uarg_zc->bytelen + size;
1744 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1745 			/* TCP can create new skb to attach new uarg */
1746 			if (sk->sk_type == SOCK_STREAM)
1747 				goto new_alloc;
1748 			return NULL;
1749 		}
1750 
1751 		next = (u32)atomic_read(&sk->sk_zckey);
1752 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1753 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1754 				return NULL;
1755 			uarg_zc->len++;
1756 			uarg_zc->bytelen = bytelen;
1757 			atomic_set(&sk->sk_zckey, ++next);
1758 
1759 			/* no extra ref when appending to datagram (MSG_MORE) */
1760 			if (sk->sk_type == SOCK_STREAM)
1761 				net_zcopy_get(uarg);
1762 
1763 			return uarg;
1764 		}
1765 	}
1766 
1767 new_alloc:
1768 	return msg_zerocopy_alloc(sk, size);
1769 }
1770 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1771 
1772 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1773 {
1774 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1775 	u32 old_lo, old_hi;
1776 	u64 sum_len;
1777 
1778 	old_lo = serr->ee.ee_info;
1779 	old_hi = serr->ee.ee_data;
1780 	sum_len = old_hi - old_lo + 1ULL + len;
1781 
1782 	if (sum_len >= (1ULL << 32))
1783 		return false;
1784 
1785 	if (lo != old_hi + 1)
1786 		return false;
1787 
1788 	serr->ee.ee_data += len;
1789 	return true;
1790 }
1791 
1792 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1793 {
1794 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1795 	struct sock_exterr_skb *serr;
1796 	struct sock *sk = skb->sk;
1797 	struct sk_buff_head *q;
1798 	unsigned long flags;
1799 	bool is_zerocopy;
1800 	u32 lo, hi;
1801 	u16 len;
1802 
1803 	mm_unaccount_pinned_pages(&uarg->mmp);
1804 
1805 	/* if !len, there was only 1 call, and it was aborted
1806 	 * so do not queue a completion notification
1807 	 */
1808 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1809 		goto release;
1810 
1811 	len = uarg->len;
1812 	lo = uarg->id;
1813 	hi = uarg->id + len - 1;
1814 	is_zerocopy = uarg->zerocopy;
1815 
1816 	serr = SKB_EXT_ERR(skb);
1817 	memset(serr, 0, sizeof(*serr));
1818 	serr->ee.ee_errno = 0;
1819 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1820 	serr->ee.ee_data = hi;
1821 	serr->ee.ee_info = lo;
1822 	if (!is_zerocopy)
1823 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1824 
1825 	q = &sk->sk_error_queue;
1826 	spin_lock_irqsave(&q->lock, flags);
1827 	tail = skb_peek_tail(q);
1828 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1829 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1830 		__skb_queue_tail(q, skb);
1831 		skb = NULL;
1832 	}
1833 	spin_unlock_irqrestore(&q->lock, flags);
1834 
1835 	sk_error_report(sk);
1836 
1837 release:
1838 	consume_skb(skb);
1839 	sock_put(sk);
1840 }
1841 
1842 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1843 				  bool success)
1844 {
1845 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1846 
1847 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1848 
1849 	if (refcount_dec_and_test(&uarg->refcnt))
1850 		__msg_zerocopy_callback(uarg_zc);
1851 }
1852 
1853 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1854 {
1855 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1856 
1857 	atomic_dec(&sk->sk_zckey);
1858 	uarg_to_msgzc(uarg)->len--;
1859 
1860 	if (have_uref)
1861 		msg_zerocopy_complete(NULL, uarg, true);
1862 }
1863 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1864 
1865 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1866 	.complete = msg_zerocopy_complete,
1867 };
1868 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1869 
1870 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1871 			     struct msghdr *msg, int len,
1872 			     struct ubuf_info *uarg)
1873 {
1874 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1875 	int err, orig_len = skb->len;
1876 
1877 	if (uarg->ops->link_skb) {
1878 		err = uarg->ops->link_skb(skb, uarg);
1879 		if (err)
1880 			return err;
1881 	} else {
1882 		/* An skb can only point to one uarg. This edge case happens
1883 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1884 		 * a new alloc.
1885 		 */
1886 		if (orig_uarg && uarg != orig_uarg)
1887 			return -EEXIST;
1888 	}
1889 
1890 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1891 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1892 		struct sock *save_sk = skb->sk;
1893 
1894 		/* Streams do not free skb on error. Reset to prev state. */
1895 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1896 		skb->sk = sk;
1897 		___pskb_trim(skb, orig_len);
1898 		skb->sk = save_sk;
1899 		return err;
1900 	}
1901 
1902 	if (!uarg->ops->link_skb)
1903 		skb_zcopy_set(skb, uarg, NULL);
1904 	return skb->len - orig_len;
1905 }
1906 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1907 
1908 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1909 {
1910 	int i;
1911 
1912 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1913 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1914 		skb_frag_ref(skb, i);
1915 }
1916 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1917 
1918 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1919 			      gfp_t gfp_mask)
1920 {
1921 	if (skb_zcopy(orig)) {
1922 		if (skb_zcopy(nskb)) {
1923 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1924 			if (!gfp_mask) {
1925 				WARN_ON_ONCE(1);
1926 				return -ENOMEM;
1927 			}
1928 			if (skb_uarg(nskb) == skb_uarg(orig))
1929 				return 0;
1930 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1931 				return -EIO;
1932 		}
1933 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1934 	}
1935 	return 0;
1936 }
1937 
1938 /**
1939  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1940  *	@skb: the skb to modify
1941  *	@gfp_mask: allocation priority
1942  *
1943  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1944  *	It will copy all frags into kernel and drop the reference
1945  *	to userspace pages.
1946  *
1947  *	If this function is called from an interrupt gfp_mask() must be
1948  *	%GFP_ATOMIC.
1949  *
1950  *	Returns 0 on success or a negative error code on failure
1951  *	to allocate kernel memory to copy to.
1952  */
1953 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1954 {
1955 	int num_frags = skb_shinfo(skb)->nr_frags;
1956 	struct page *page, *head = NULL;
1957 	int i, order, psize, new_frags;
1958 	u32 d_off;
1959 
1960 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1961 		return -EINVAL;
1962 
1963 	if (!num_frags)
1964 		goto release;
1965 
1966 	/* We might have to allocate high order pages, so compute what minimum
1967 	 * page order is needed.
1968 	 */
1969 	order = 0;
1970 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1971 		order++;
1972 	psize = (PAGE_SIZE << order);
1973 
1974 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1975 	for (i = 0; i < new_frags; i++) {
1976 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1977 		if (!page) {
1978 			while (head) {
1979 				struct page *next = (struct page *)page_private(head);
1980 				put_page(head);
1981 				head = next;
1982 			}
1983 			return -ENOMEM;
1984 		}
1985 		set_page_private(page, (unsigned long)head);
1986 		head = page;
1987 	}
1988 
1989 	page = head;
1990 	d_off = 0;
1991 	for (i = 0; i < num_frags; i++) {
1992 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1993 		u32 p_off, p_len, copied;
1994 		struct page *p;
1995 		u8 *vaddr;
1996 
1997 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1998 				      p, p_off, p_len, copied) {
1999 			u32 copy, done = 0;
2000 			vaddr = kmap_atomic(p);
2001 
2002 			while (done < p_len) {
2003 				if (d_off == psize) {
2004 					d_off = 0;
2005 					page = (struct page *)page_private(page);
2006 				}
2007 				copy = min_t(u32, psize - d_off, p_len - done);
2008 				memcpy(page_address(page) + d_off,
2009 				       vaddr + p_off + done, copy);
2010 				done += copy;
2011 				d_off += copy;
2012 			}
2013 			kunmap_atomic(vaddr);
2014 		}
2015 	}
2016 
2017 	/* skb frags release userspace buffers */
2018 	for (i = 0; i < num_frags; i++)
2019 		skb_frag_unref(skb, i);
2020 
2021 	/* skb frags point to kernel buffers */
2022 	for (i = 0; i < new_frags - 1; i++) {
2023 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2024 		head = (struct page *)page_private(head);
2025 	}
2026 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2027 			       d_off);
2028 	skb_shinfo(skb)->nr_frags = new_frags;
2029 
2030 release:
2031 	skb_zcopy_clear(skb, false);
2032 	return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2035 
2036 /**
2037  *	skb_clone	-	duplicate an sk_buff
2038  *	@skb: buffer to clone
2039  *	@gfp_mask: allocation priority
2040  *
2041  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2042  *	copies share the same packet data but not structure. The new
2043  *	buffer has a reference count of 1. If the allocation fails the
2044  *	function returns %NULL otherwise the new buffer is returned.
2045  *
2046  *	If this function is called from an interrupt gfp_mask() must be
2047  *	%GFP_ATOMIC.
2048  */
2049 
2050 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2051 {
2052 	struct sk_buff_fclones *fclones = container_of(skb,
2053 						       struct sk_buff_fclones,
2054 						       skb1);
2055 	struct sk_buff *n;
2056 
2057 	if (skb_orphan_frags(skb, gfp_mask))
2058 		return NULL;
2059 
2060 	if (skb->fclone == SKB_FCLONE_ORIG &&
2061 	    refcount_read(&fclones->fclone_ref) == 1) {
2062 		n = &fclones->skb2;
2063 		refcount_set(&fclones->fclone_ref, 2);
2064 		n->fclone = SKB_FCLONE_CLONE;
2065 	} else {
2066 		if (skb_pfmemalloc(skb))
2067 			gfp_mask |= __GFP_MEMALLOC;
2068 
2069 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2070 		if (!n)
2071 			return NULL;
2072 
2073 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2074 	}
2075 
2076 	return __skb_clone(n, skb);
2077 }
2078 EXPORT_SYMBOL(skb_clone);
2079 
2080 void skb_headers_offset_update(struct sk_buff *skb, int off)
2081 {
2082 	/* Only adjust this if it actually is csum_start rather than csum */
2083 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2084 		skb->csum_start += off;
2085 	/* {transport,network,mac}_header and tail are relative to skb->head */
2086 	skb->transport_header += off;
2087 	skb->network_header   += off;
2088 	if (skb_mac_header_was_set(skb))
2089 		skb->mac_header += off;
2090 	skb->inner_transport_header += off;
2091 	skb->inner_network_header += off;
2092 	skb->inner_mac_header += off;
2093 }
2094 EXPORT_SYMBOL(skb_headers_offset_update);
2095 
2096 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2097 {
2098 	__copy_skb_header(new, old);
2099 
2100 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2101 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2102 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2103 }
2104 EXPORT_SYMBOL(skb_copy_header);
2105 
2106 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2107 {
2108 	if (skb_pfmemalloc(skb))
2109 		return SKB_ALLOC_RX;
2110 	return 0;
2111 }
2112 
2113 /**
2114  *	skb_copy	-	create private copy of an sk_buff
2115  *	@skb: buffer to copy
2116  *	@gfp_mask: allocation priority
2117  *
2118  *	Make a copy of both an &sk_buff and its data. This is used when the
2119  *	caller wishes to modify the data and needs a private copy of the
2120  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2121  *	on success. The returned buffer has a reference count of 1.
2122  *
2123  *	As by-product this function converts non-linear &sk_buff to linear
2124  *	one, so that &sk_buff becomes completely private and caller is allowed
2125  *	to modify all the data of returned buffer. This means that this
2126  *	function is not recommended for use in circumstances when only
2127  *	header is going to be modified. Use pskb_copy() instead.
2128  */
2129 
2130 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2131 {
2132 	struct sk_buff *n;
2133 	unsigned int size;
2134 	int headerlen;
2135 
2136 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2137 		return NULL;
2138 
2139 	headerlen = skb_headroom(skb);
2140 	size = skb_end_offset(skb) + skb->data_len;
2141 	n = __alloc_skb(size, gfp_mask,
2142 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2143 	if (!n)
2144 		return NULL;
2145 
2146 	/* Set the data pointer */
2147 	skb_reserve(n, headerlen);
2148 	/* Set the tail pointer and length */
2149 	skb_put(n, skb->len);
2150 
2151 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2152 
2153 	skb_copy_header(n, skb);
2154 	return n;
2155 }
2156 EXPORT_SYMBOL(skb_copy);
2157 
2158 /**
2159  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2160  *	@skb: buffer to copy
2161  *	@headroom: headroom of new skb
2162  *	@gfp_mask: allocation priority
2163  *	@fclone: if true allocate the copy of the skb from the fclone
2164  *	cache instead of the head cache; it is recommended to set this
2165  *	to true for the cases where the copy will likely be cloned
2166  *
2167  *	Make a copy of both an &sk_buff and part of its data, located
2168  *	in header. Fragmented data remain shared. This is used when
2169  *	the caller wishes to modify only header of &sk_buff and needs
2170  *	private copy of the header to alter. Returns %NULL on failure
2171  *	or the pointer to the buffer on success.
2172  *	The returned buffer has a reference count of 1.
2173  */
2174 
2175 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2176 				   gfp_t gfp_mask, bool fclone)
2177 {
2178 	unsigned int size = skb_headlen(skb) + headroom;
2179 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2180 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2181 
2182 	if (!n)
2183 		goto out;
2184 
2185 	/* Set the data pointer */
2186 	skb_reserve(n, headroom);
2187 	/* Set the tail pointer and length */
2188 	skb_put(n, skb_headlen(skb));
2189 	/* Copy the bytes */
2190 	skb_copy_from_linear_data(skb, n->data, n->len);
2191 
2192 	n->truesize += skb->data_len;
2193 	n->data_len  = skb->data_len;
2194 	n->len	     = skb->len;
2195 
2196 	if (skb_shinfo(skb)->nr_frags) {
2197 		int i;
2198 
2199 		if (skb_orphan_frags(skb, gfp_mask) ||
2200 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2201 			kfree_skb(n);
2202 			n = NULL;
2203 			goto out;
2204 		}
2205 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2206 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2207 			skb_frag_ref(skb, i);
2208 		}
2209 		skb_shinfo(n)->nr_frags = i;
2210 	}
2211 
2212 	if (skb_has_frag_list(skb)) {
2213 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2214 		skb_clone_fraglist(n);
2215 	}
2216 
2217 	skb_copy_header(n, skb);
2218 out:
2219 	return n;
2220 }
2221 EXPORT_SYMBOL(__pskb_copy_fclone);
2222 
2223 /**
2224  *	pskb_expand_head - reallocate header of &sk_buff
2225  *	@skb: buffer to reallocate
2226  *	@nhead: room to add at head
2227  *	@ntail: room to add at tail
2228  *	@gfp_mask: allocation priority
2229  *
2230  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2231  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2232  *	reference count of 1. Returns zero in the case of success or error,
2233  *	if expansion failed. In the last case, &sk_buff is not changed.
2234  *
2235  *	All the pointers pointing into skb header may change and must be
2236  *	reloaded after call to this function.
2237  */
2238 
2239 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2240 		     gfp_t gfp_mask)
2241 {
2242 	unsigned int osize = skb_end_offset(skb);
2243 	unsigned int size = osize + nhead + ntail;
2244 	long off;
2245 	u8 *data;
2246 	int i;
2247 
2248 	BUG_ON(nhead < 0);
2249 
2250 	BUG_ON(skb_shared(skb));
2251 
2252 	skb_zcopy_downgrade_managed(skb);
2253 
2254 	if (skb_pfmemalloc(skb))
2255 		gfp_mask |= __GFP_MEMALLOC;
2256 
2257 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2258 	if (!data)
2259 		goto nodata;
2260 	size = SKB_WITH_OVERHEAD(size);
2261 
2262 	/* Copy only real data... and, alas, header. This should be
2263 	 * optimized for the cases when header is void.
2264 	 */
2265 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2266 
2267 	memcpy((struct skb_shared_info *)(data + size),
2268 	       skb_shinfo(skb),
2269 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2270 
2271 	/*
2272 	 * if shinfo is shared we must drop the old head gracefully, but if it
2273 	 * is not we can just drop the old head and let the existing refcount
2274 	 * be since all we did is relocate the values
2275 	 */
2276 	if (skb_cloned(skb)) {
2277 		if (skb_orphan_frags(skb, gfp_mask))
2278 			goto nofrags;
2279 		if (skb_zcopy(skb))
2280 			refcount_inc(&skb_uarg(skb)->refcnt);
2281 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2282 			skb_frag_ref(skb, i);
2283 
2284 		if (skb_has_frag_list(skb))
2285 			skb_clone_fraglist(skb);
2286 
2287 		skb_release_data(skb, SKB_CONSUMED);
2288 	} else {
2289 		skb_free_head(skb);
2290 	}
2291 	off = (data + nhead) - skb->head;
2292 
2293 	skb->head     = data;
2294 	skb->head_frag = 0;
2295 	skb->data    += off;
2296 
2297 	skb_set_end_offset(skb, size);
2298 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2299 	off           = nhead;
2300 #endif
2301 	skb->tail	      += off;
2302 	skb_headers_offset_update(skb, nhead);
2303 	skb->cloned   = 0;
2304 	skb->hdr_len  = 0;
2305 	skb->nohdr    = 0;
2306 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2307 
2308 	skb_metadata_clear(skb);
2309 
2310 	/* It is not generally safe to change skb->truesize.
2311 	 * For the moment, we really care of rx path, or
2312 	 * when skb is orphaned (not attached to a socket).
2313 	 */
2314 	if (!skb->sk || skb->destructor == sock_edemux)
2315 		skb->truesize += size - osize;
2316 
2317 	return 0;
2318 
2319 nofrags:
2320 	skb_kfree_head(data, size);
2321 nodata:
2322 	return -ENOMEM;
2323 }
2324 EXPORT_SYMBOL(pskb_expand_head);
2325 
2326 /* Make private copy of skb with writable head and some headroom */
2327 
2328 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2329 {
2330 	struct sk_buff *skb2;
2331 	int delta = headroom - skb_headroom(skb);
2332 
2333 	if (delta <= 0)
2334 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2335 	else {
2336 		skb2 = skb_clone(skb, GFP_ATOMIC);
2337 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2338 					     GFP_ATOMIC)) {
2339 			kfree_skb(skb2);
2340 			skb2 = NULL;
2341 		}
2342 	}
2343 	return skb2;
2344 }
2345 EXPORT_SYMBOL(skb_realloc_headroom);
2346 
2347 /* Note: We plan to rework this in linux-6.4 */
2348 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2349 {
2350 	unsigned int saved_end_offset, saved_truesize;
2351 	struct skb_shared_info *shinfo;
2352 	int res;
2353 
2354 	saved_end_offset = skb_end_offset(skb);
2355 	saved_truesize = skb->truesize;
2356 
2357 	res = pskb_expand_head(skb, 0, 0, pri);
2358 	if (res)
2359 		return res;
2360 
2361 	skb->truesize = saved_truesize;
2362 
2363 	if (likely(skb_end_offset(skb) == saved_end_offset))
2364 		return 0;
2365 
2366 	/* We can not change skb->end if the original or new value
2367 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2368 	 */
2369 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2370 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2371 		/* We think this path should not be taken.
2372 		 * Add a temporary trace to warn us just in case.
2373 		 */
2374 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2375 			    saved_end_offset, skb_end_offset(skb));
2376 		WARN_ON_ONCE(1);
2377 		return 0;
2378 	}
2379 
2380 	shinfo = skb_shinfo(skb);
2381 
2382 	/* We are about to change back skb->end,
2383 	 * we need to move skb_shinfo() to its new location.
2384 	 */
2385 	memmove(skb->head + saved_end_offset,
2386 		shinfo,
2387 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2388 
2389 	skb_set_end_offset(skb, saved_end_offset);
2390 
2391 	return 0;
2392 }
2393 
2394 /**
2395  *	skb_expand_head - reallocate header of &sk_buff
2396  *	@skb: buffer to reallocate
2397  *	@headroom: needed headroom
2398  *
2399  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2400  *	if possible; copies skb->sk to new skb as needed
2401  *	and frees original skb in case of failures.
2402  *
2403  *	It expect increased headroom and generates warning otherwise.
2404  */
2405 
2406 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2407 {
2408 	int delta = headroom - skb_headroom(skb);
2409 	int osize = skb_end_offset(skb);
2410 	struct sock *sk = skb->sk;
2411 
2412 	if (WARN_ONCE(delta <= 0,
2413 		      "%s is expecting an increase in the headroom", __func__))
2414 		return skb;
2415 
2416 	delta = SKB_DATA_ALIGN(delta);
2417 	/* pskb_expand_head() might crash, if skb is shared. */
2418 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2419 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2420 
2421 		if (unlikely(!nskb))
2422 			goto fail;
2423 
2424 		if (sk)
2425 			skb_set_owner_w(nskb, sk);
2426 		consume_skb(skb);
2427 		skb = nskb;
2428 	}
2429 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2430 		goto fail;
2431 
2432 	if (sk && is_skb_wmem(skb)) {
2433 		delta = skb_end_offset(skb) - osize;
2434 		refcount_add(delta, &sk->sk_wmem_alloc);
2435 		skb->truesize += delta;
2436 	}
2437 	return skb;
2438 
2439 fail:
2440 	kfree_skb(skb);
2441 	return NULL;
2442 }
2443 EXPORT_SYMBOL(skb_expand_head);
2444 
2445 /**
2446  *	skb_copy_expand	-	copy and expand sk_buff
2447  *	@skb: buffer to copy
2448  *	@newheadroom: new free bytes at head
2449  *	@newtailroom: new free bytes at tail
2450  *	@gfp_mask: allocation priority
2451  *
2452  *	Make a copy of both an &sk_buff and its data and while doing so
2453  *	allocate additional space.
2454  *
2455  *	This is used when the caller wishes to modify the data and needs a
2456  *	private copy of the data to alter as well as more space for new fields.
2457  *	Returns %NULL on failure or the pointer to the buffer
2458  *	on success. The returned buffer has a reference count of 1.
2459  *
2460  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2461  *	is called from an interrupt.
2462  */
2463 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2464 				int newheadroom, int newtailroom,
2465 				gfp_t gfp_mask)
2466 {
2467 	/*
2468 	 *	Allocate the copy buffer
2469 	 */
2470 	int head_copy_len, head_copy_off;
2471 	struct sk_buff *n;
2472 	int oldheadroom;
2473 
2474 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2475 		return NULL;
2476 
2477 	oldheadroom = skb_headroom(skb);
2478 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2479 			gfp_mask, skb_alloc_rx_flag(skb),
2480 			NUMA_NO_NODE);
2481 	if (!n)
2482 		return NULL;
2483 
2484 	skb_reserve(n, newheadroom);
2485 
2486 	/* Set the tail pointer and length */
2487 	skb_put(n, skb->len);
2488 
2489 	head_copy_len = oldheadroom;
2490 	head_copy_off = 0;
2491 	if (newheadroom <= head_copy_len)
2492 		head_copy_len = newheadroom;
2493 	else
2494 		head_copy_off = newheadroom - head_copy_len;
2495 
2496 	/* Copy the linear header and data. */
2497 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2498 			     skb->len + head_copy_len));
2499 
2500 	skb_copy_header(n, skb);
2501 
2502 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2503 
2504 	return n;
2505 }
2506 EXPORT_SYMBOL(skb_copy_expand);
2507 
2508 /**
2509  *	__skb_pad		-	zero pad the tail of an skb
2510  *	@skb: buffer to pad
2511  *	@pad: space to pad
2512  *	@free_on_error: free buffer on error
2513  *
2514  *	Ensure that a buffer is followed by a padding area that is zero
2515  *	filled. Used by network drivers which may DMA or transfer data
2516  *	beyond the buffer end onto the wire.
2517  *
2518  *	May return error in out of memory cases. The skb is freed on error
2519  *	if @free_on_error is true.
2520  */
2521 
2522 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2523 {
2524 	int err;
2525 	int ntail;
2526 
2527 	/* If the skbuff is non linear tailroom is always zero.. */
2528 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2529 		memset(skb->data+skb->len, 0, pad);
2530 		return 0;
2531 	}
2532 
2533 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2534 	if (likely(skb_cloned(skb) || ntail > 0)) {
2535 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2536 		if (unlikely(err))
2537 			goto free_skb;
2538 	}
2539 
2540 	/* FIXME: The use of this function with non-linear skb's really needs
2541 	 * to be audited.
2542 	 */
2543 	err = skb_linearize(skb);
2544 	if (unlikely(err))
2545 		goto free_skb;
2546 
2547 	memset(skb->data + skb->len, 0, pad);
2548 	return 0;
2549 
2550 free_skb:
2551 	if (free_on_error)
2552 		kfree_skb(skb);
2553 	return err;
2554 }
2555 EXPORT_SYMBOL(__skb_pad);
2556 
2557 /**
2558  *	pskb_put - add data to the tail of a potentially fragmented buffer
2559  *	@skb: start of the buffer to use
2560  *	@tail: tail fragment of the buffer to use
2561  *	@len: amount of data to add
2562  *
2563  *	This function extends the used data area of the potentially
2564  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2565  *	@skb itself. If this would exceed the total buffer size the kernel
2566  *	will panic. A pointer to the first byte of the extra data is
2567  *	returned.
2568  */
2569 
2570 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2571 {
2572 	if (tail != skb) {
2573 		skb->data_len += len;
2574 		skb->len += len;
2575 	}
2576 	return skb_put(tail, len);
2577 }
2578 EXPORT_SYMBOL_GPL(pskb_put);
2579 
2580 /**
2581  *	skb_put - add data to a buffer
2582  *	@skb: buffer to use
2583  *	@len: amount of data to add
2584  *
2585  *	This function extends the used data area of the buffer. If this would
2586  *	exceed the total buffer size the kernel will panic. A pointer to the
2587  *	first byte of the extra data is returned.
2588  */
2589 void *skb_put(struct sk_buff *skb, unsigned int len)
2590 {
2591 	void *tmp = skb_tail_pointer(skb);
2592 	SKB_LINEAR_ASSERT(skb);
2593 	skb->tail += len;
2594 	skb->len  += len;
2595 	if (unlikely(skb->tail > skb->end))
2596 		skb_over_panic(skb, len, __builtin_return_address(0));
2597 	return tmp;
2598 }
2599 EXPORT_SYMBOL(skb_put);
2600 
2601 /**
2602  *	skb_push - add data to the start of a buffer
2603  *	@skb: buffer to use
2604  *	@len: amount of data to add
2605  *
2606  *	This function extends the used data area of the buffer at the buffer
2607  *	start. If this would exceed the total buffer headroom the kernel will
2608  *	panic. A pointer to the first byte of the extra data is returned.
2609  */
2610 void *skb_push(struct sk_buff *skb, unsigned int len)
2611 {
2612 	skb->data -= len;
2613 	skb->len  += len;
2614 	if (unlikely(skb->data < skb->head))
2615 		skb_under_panic(skb, len, __builtin_return_address(0));
2616 	return skb->data;
2617 }
2618 EXPORT_SYMBOL(skb_push);
2619 
2620 /**
2621  *	skb_pull - remove data from the start of a buffer
2622  *	@skb: buffer to use
2623  *	@len: amount of data to remove
2624  *
2625  *	This function removes data from the start of a buffer, returning
2626  *	the memory to the headroom. A pointer to the next data in the buffer
2627  *	is returned. Once the data has been pulled future pushes will overwrite
2628  *	the old data.
2629  */
2630 void *skb_pull(struct sk_buff *skb, unsigned int len)
2631 {
2632 	return skb_pull_inline(skb, len);
2633 }
2634 EXPORT_SYMBOL(skb_pull);
2635 
2636 /**
2637  *	skb_pull_data - remove data from the start of a buffer returning its
2638  *	original position.
2639  *	@skb: buffer to use
2640  *	@len: amount of data to remove
2641  *
2642  *	This function removes data from the start of a buffer, returning
2643  *	the memory to the headroom. A pointer to the original data in the buffer
2644  *	is returned after checking if there is enough data to pull. Once the
2645  *	data has been pulled future pushes will overwrite the old data.
2646  */
2647 void *skb_pull_data(struct sk_buff *skb, size_t len)
2648 {
2649 	void *data = skb->data;
2650 
2651 	if (skb->len < len)
2652 		return NULL;
2653 
2654 	skb_pull(skb, len);
2655 
2656 	return data;
2657 }
2658 EXPORT_SYMBOL(skb_pull_data);
2659 
2660 /**
2661  *	skb_trim - remove end from a buffer
2662  *	@skb: buffer to alter
2663  *	@len: new length
2664  *
2665  *	Cut the length of a buffer down by removing data from the tail. If
2666  *	the buffer is already under the length specified it is not modified.
2667  *	The skb must be linear.
2668  */
2669 void skb_trim(struct sk_buff *skb, unsigned int len)
2670 {
2671 	if (skb->len > len)
2672 		__skb_trim(skb, len);
2673 }
2674 EXPORT_SYMBOL(skb_trim);
2675 
2676 /* Trims skb to length len. It can change skb pointers.
2677  */
2678 
2679 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2680 {
2681 	struct sk_buff **fragp;
2682 	struct sk_buff *frag;
2683 	int offset = skb_headlen(skb);
2684 	int nfrags = skb_shinfo(skb)->nr_frags;
2685 	int i;
2686 	int err;
2687 
2688 	if (skb_cloned(skb) &&
2689 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2690 		return err;
2691 
2692 	i = 0;
2693 	if (offset >= len)
2694 		goto drop_pages;
2695 
2696 	for (; i < nfrags; i++) {
2697 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2698 
2699 		if (end < len) {
2700 			offset = end;
2701 			continue;
2702 		}
2703 
2704 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2705 
2706 drop_pages:
2707 		skb_shinfo(skb)->nr_frags = i;
2708 
2709 		for (; i < nfrags; i++)
2710 			skb_frag_unref(skb, i);
2711 
2712 		if (skb_has_frag_list(skb))
2713 			skb_drop_fraglist(skb);
2714 		goto done;
2715 	}
2716 
2717 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2718 	     fragp = &frag->next) {
2719 		int end = offset + frag->len;
2720 
2721 		if (skb_shared(frag)) {
2722 			struct sk_buff *nfrag;
2723 
2724 			nfrag = skb_clone(frag, GFP_ATOMIC);
2725 			if (unlikely(!nfrag))
2726 				return -ENOMEM;
2727 
2728 			nfrag->next = frag->next;
2729 			consume_skb(frag);
2730 			frag = nfrag;
2731 			*fragp = frag;
2732 		}
2733 
2734 		if (end < len) {
2735 			offset = end;
2736 			continue;
2737 		}
2738 
2739 		if (end > len &&
2740 		    unlikely((err = pskb_trim(frag, len - offset))))
2741 			return err;
2742 
2743 		if (frag->next)
2744 			skb_drop_list(&frag->next);
2745 		break;
2746 	}
2747 
2748 done:
2749 	if (len > skb_headlen(skb)) {
2750 		skb->data_len -= skb->len - len;
2751 		skb->len       = len;
2752 	} else {
2753 		skb->len       = len;
2754 		skb->data_len  = 0;
2755 		skb_set_tail_pointer(skb, len);
2756 	}
2757 
2758 	if (!skb->sk || skb->destructor == sock_edemux)
2759 		skb_condense(skb);
2760 	return 0;
2761 }
2762 EXPORT_SYMBOL(___pskb_trim);
2763 
2764 /* Note : use pskb_trim_rcsum() instead of calling this directly
2765  */
2766 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2767 {
2768 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2769 		int delta = skb->len - len;
2770 
2771 		skb->csum = csum_block_sub(skb->csum,
2772 					   skb_checksum(skb, len, delta, 0),
2773 					   len);
2774 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2775 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2776 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2777 
2778 		if (offset + sizeof(__sum16) > hdlen)
2779 			return -EINVAL;
2780 	}
2781 	return __pskb_trim(skb, len);
2782 }
2783 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2784 
2785 /**
2786  *	__pskb_pull_tail - advance tail of skb header
2787  *	@skb: buffer to reallocate
2788  *	@delta: number of bytes to advance tail
2789  *
2790  *	The function makes a sense only on a fragmented &sk_buff,
2791  *	it expands header moving its tail forward and copying necessary
2792  *	data from fragmented part.
2793  *
2794  *	&sk_buff MUST have reference count of 1.
2795  *
2796  *	Returns %NULL (and &sk_buff does not change) if pull failed
2797  *	or value of new tail of skb in the case of success.
2798  *
2799  *	All the pointers pointing into skb header may change and must be
2800  *	reloaded after call to this function.
2801  */
2802 
2803 /* Moves tail of skb head forward, copying data from fragmented part,
2804  * when it is necessary.
2805  * 1. It may fail due to malloc failure.
2806  * 2. It may change skb pointers.
2807  *
2808  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2809  */
2810 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2811 {
2812 	/* If skb has not enough free space at tail, get new one
2813 	 * plus 128 bytes for future expansions. If we have enough
2814 	 * room at tail, reallocate without expansion only if skb is cloned.
2815 	 */
2816 	int i, k, eat = (skb->tail + delta) - skb->end;
2817 
2818 	if (eat > 0 || skb_cloned(skb)) {
2819 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2820 				     GFP_ATOMIC))
2821 			return NULL;
2822 	}
2823 
2824 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2825 			     skb_tail_pointer(skb), delta));
2826 
2827 	/* Optimization: no fragments, no reasons to preestimate
2828 	 * size of pulled pages. Superb.
2829 	 */
2830 	if (!skb_has_frag_list(skb))
2831 		goto pull_pages;
2832 
2833 	/* Estimate size of pulled pages. */
2834 	eat = delta;
2835 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2836 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2837 
2838 		if (size >= eat)
2839 			goto pull_pages;
2840 		eat -= size;
2841 	}
2842 
2843 	/* If we need update frag list, we are in troubles.
2844 	 * Certainly, it is possible to add an offset to skb data,
2845 	 * but taking into account that pulling is expected to
2846 	 * be very rare operation, it is worth to fight against
2847 	 * further bloating skb head and crucify ourselves here instead.
2848 	 * Pure masohism, indeed. 8)8)
2849 	 */
2850 	if (eat) {
2851 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2852 		struct sk_buff *clone = NULL;
2853 		struct sk_buff *insp = NULL;
2854 
2855 		do {
2856 			if (list->len <= eat) {
2857 				/* Eaten as whole. */
2858 				eat -= list->len;
2859 				list = list->next;
2860 				insp = list;
2861 			} else {
2862 				/* Eaten partially. */
2863 				if (skb_is_gso(skb) && !list->head_frag &&
2864 				    skb_headlen(list))
2865 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2866 
2867 				if (skb_shared(list)) {
2868 					/* Sucks! We need to fork list. :-( */
2869 					clone = skb_clone(list, GFP_ATOMIC);
2870 					if (!clone)
2871 						return NULL;
2872 					insp = list->next;
2873 					list = clone;
2874 				} else {
2875 					/* This may be pulled without
2876 					 * problems. */
2877 					insp = list;
2878 				}
2879 				if (!pskb_pull(list, eat)) {
2880 					kfree_skb(clone);
2881 					return NULL;
2882 				}
2883 				break;
2884 			}
2885 		} while (eat);
2886 
2887 		/* Free pulled out fragments. */
2888 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2889 			skb_shinfo(skb)->frag_list = list->next;
2890 			consume_skb(list);
2891 		}
2892 		/* And insert new clone at head. */
2893 		if (clone) {
2894 			clone->next = list;
2895 			skb_shinfo(skb)->frag_list = clone;
2896 		}
2897 	}
2898 	/* Success! Now we may commit changes to skb data. */
2899 
2900 pull_pages:
2901 	eat = delta;
2902 	k = 0;
2903 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2904 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2905 
2906 		if (size <= eat) {
2907 			skb_frag_unref(skb, i);
2908 			eat -= size;
2909 		} else {
2910 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2911 
2912 			*frag = skb_shinfo(skb)->frags[i];
2913 			if (eat) {
2914 				skb_frag_off_add(frag, eat);
2915 				skb_frag_size_sub(frag, eat);
2916 				if (!i)
2917 					goto end;
2918 				eat = 0;
2919 			}
2920 			k++;
2921 		}
2922 	}
2923 	skb_shinfo(skb)->nr_frags = k;
2924 
2925 end:
2926 	skb->tail     += delta;
2927 	skb->data_len -= delta;
2928 
2929 	if (!skb->data_len)
2930 		skb_zcopy_clear(skb, false);
2931 
2932 	return skb_tail_pointer(skb);
2933 }
2934 EXPORT_SYMBOL(__pskb_pull_tail);
2935 
2936 /**
2937  *	skb_copy_bits - copy bits from skb to kernel buffer
2938  *	@skb: source skb
2939  *	@offset: offset in source
2940  *	@to: destination buffer
2941  *	@len: number of bytes to copy
2942  *
2943  *	Copy the specified number of bytes from the source skb to the
2944  *	destination buffer.
2945  *
2946  *	CAUTION ! :
2947  *		If its prototype is ever changed,
2948  *		check arch/{*}/net/{*}.S files,
2949  *		since it is called from BPF assembly code.
2950  */
2951 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2952 {
2953 	int start = skb_headlen(skb);
2954 	struct sk_buff *frag_iter;
2955 	int i, copy;
2956 
2957 	if (offset > (int)skb->len - len)
2958 		goto fault;
2959 
2960 	/* Copy header. */
2961 	if ((copy = start - offset) > 0) {
2962 		if (copy > len)
2963 			copy = len;
2964 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2965 		if ((len -= copy) == 0)
2966 			return 0;
2967 		offset += copy;
2968 		to     += copy;
2969 	}
2970 
2971 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2972 		int end;
2973 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2974 
2975 		WARN_ON(start > offset + len);
2976 
2977 		end = start + skb_frag_size(f);
2978 		if ((copy = end - offset) > 0) {
2979 			u32 p_off, p_len, copied;
2980 			struct page *p;
2981 			u8 *vaddr;
2982 
2983 			if (copy > len)
2984 				copy = len;
2985 
2986 			skb_frag_foreach_page(f,
2987 					      skb_frag_off(f) + offset - start,
2988 					      copy, p, p_off, p_len, copied) {
2989 				vaddr = kmap_atomic(p);
2990 				memcpy(to + copied, vaddr + p_off, p_len);
2991 				kunmap_atomic(vaddr);
2992 			}
2993 
2994 			if ((len -= copy) == 0)
2995 				return 0;
2996 			offset += copy;
2997 			to     += copy;
2998 		}
2999 		start = end;
3000 	}
3001 
3002 	skb_walk_frags(skb, frag_iter) {
3003 		int end;
3004 
3005 		WARN_ON(start > offset + len);
3006 
3007 		end = start + frag_iter->len;
3008 		if ((copy = end - offset) > 0) {
3009 			if (copy > len)
3010 				copy = len;
3011 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3012 				goto fault;
3013 			if ((len -= copy) == 0)
3014 				return 0;
3015 			offset += copy;
3016 			to     += copy;
3017 		}
3018 		start = end;
3019 	}
3020 
3021 	if (!len)
3022 		return 0;
3023 
3024 fault:
3025 	return -EFAULT;
3026 }
3027 EXPORT_SYMBOL(skb_copy_bits);
3028 
3029 /*
3030  * Callback from splice_to_pipe(), if we need to release some pages
3031  * at the end of the spd in case we error'ed out in filling the pipe.
3032  */
3033 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3034 {
3035 	put_page(spd->pages[i]);
3036 }
3037 
3038 static struct page *linear_to_page(struct page *page, unsigned int *len,
3039 				   unsigned int *offset,
3040 				   struct sock *sk)
3041 {
3042 	struct page_frag *pfrag = sk_page_frag(sk);
3043 
3044 	if (!sk_page_frag_refill(sk, pfrag))
3045 		return NULL;
3046 
3047 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3048 
3049 	memcpy(page_address(pfrag->page) + pfrag->offset,
3050 	       page_address(page) + *offset, *len);
3051 	*offset = pfrag->offset;
3052 	pfrag->offset += *len;
3053 
3054 	return pfrag->page;
3055 }
3056 
3057 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3058 			     struct page *page,
3059 			     unsigned int offset)
3060 {
3061 	return	spd->nr_pages &&
3062 		spd->pages[spd->nr_pages - 1] == page &&
3063 		(spd->partial[spd->nr_pages - 1].offset +
3064 		 spd->partial[spd->nr_pages - 1].len == offset);
3065 }
3066 
3067 /*
3068  * Fill page/offset/length into spd, if it can hold more pages.
3069  */
3070 static bool spd_fill_page(struct splice_pipe_desc *spd,
3071 			  struct pipe_inode_info *pipe, struct page *page,
3072 			  unsigned int *len, unsigned int offset,
3073 			  bool linear,
3074 			  struct sock *sk)
3075 {
3076 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3077 		return true;
3078 
3079 	if (linear) {
3080 		page = linear_to_page(page, len, &offset, sk);
3081 		if (!page)
3082 			return true;
3083 	}
3084 	if (spd_can_coalesce(spd, page, offset)) {
3085 		spd->partial[spd->nr_pages - 1].len += *len;
3086 		return false;
3087 	}
3088 	get_page(page);
3089 	spd->pages[spd->nr_pages] = page;
3090 	spd->partial[spd->nr_pages].len = *len;
3091 	spd->partial[spd->nr_pages].offset = offset;
3092 	spd->nr_pages++;
3093 
3094 	return false;
3095 }
3096 
3097 static bool __splice_segment(struct page *page, unsigned int poff,
3098 			     unsigned int plen, unsigned int *off,
3099 			     unsigned int *len,
3100 			     struct splice_pipe_desc *spd, bool linear,
3101 			     struct sock *sk,
3102 			     struct pipe_inode_info *pipe)
3103 {
3104 	if (!*len)
3105 		return true;
3106 
3107 	/* skip this segment if already processed */
3108 	if (*off >= plen) {
3109 		*off -= plen;
3110 		return false;
3111 	}
3112 
3113 	/* ignore any bits we already processed */
3114 	poff += *off;
3115 	plen -= *off;
3116 	*off = 0;
3117 
3118 	do {
3119 		unsigned int flen = min(*len, plen);
3120 
3121 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3122 				  linear, sk))
3123 			return true;
3124 		poff += flen;
3125 		plen -= flen;
3126 		*len -= flen;
3127 	} while (*len && plen);
3128 
3129 	return false;
3130 }
3131 
3132 /*
3133  * Map linear and fragment data from the skb to spd. It reports true if the
3134  * pipe is full or if we already spliced the requested length.
3135  */
3136 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3137 			      unsigned int *offset, unsigned int *len,
3138 			      struct splice_pipe_desc *spd, struct sock *sk)
3139 {
3140 	int seg;
3141 	struct sk_buff *iter;
3142 
3143 	/* map the linear part :
3144 	 * If skb->head_frag is set, this 'linear' part is backed by a
3145 	 * fragment, and if the head is not shared with any clones then
3146 	 * we can avoid a copy since we own the head portion of this page.
3147 	 */
3148 	if (__splice_segment(virt_to_page(skb->data),
3149 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3150 			     skb_headlen(skb),
3151 			     offset, len, spd,
3152 			     skb_head_is_locked(skb),
3153 			     sk, pipe))
3154 		return true;
3155 
3156 	/*
3157 	 * then map the fragments
3158 	 */
3159 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3160 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3161 
3162 		if (__splice_segment(skb_frag_page(f),
3163 				     skb_frag_off(f), skb_frag_size(f),
3164 				     offset, len, spd, false, sk, pipe))
3165 			return true;
3166 	}
3167 
3168 	skb_walk_frags(skb, iter) {
3169 		if (*offset >= iter->len) {
3170 			*offset -= iter->len;
3171 			continue;
3172 		}
3173 		/* __skb_splice_bits() only fails if the output has no room
3174 		 * left, so no point in going over the frag_list for the error
3175 		 * case.
3176 		 */
3177 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3178 			return true;
3179 	}
3180 
3181 	return false;
3182 }
3183 
3184 /*
3185  * Map data from the skb to a pipe. Should handle both the linear part,
3186  * the fragments, and the frag list.
3187  */
3188 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3189 		    struct pipe_inode_info *pipe, unsigned int tlen,
3190 		    unsigned int flags)
3191 {
3192 	struct partial_page partial[MAX_SKB_FRAGS];
3193 	struct page *pages[MAX_SKB_FRAGS];
3194 	struct splice_pipe_desc spd = {
3195 		.pages = pages,
3196 		.partial = partial,
3197 		.nr_pages_max = MAX_SKB_FRAGS,
3198 		.ops = &nosteal_pipe_buf_ops,
3199 		.spd_release = sock_spd_release,
3200 	};
3201 	int ret = 0;
3202 
3203 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3204 
3205 	if (spd.nr_pages)
3206 		ret = splice_to_pipe(pipe, &spd);
3207 
3208 	return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(skb_splice_bits);
3211 
3212 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3213 {
3214 	struct socket *sock = sk->sk_socket;
3215 	size_t size = msg_data_left(msg);
3216 
3217 	if (!sock)
3218 		return -EINVAL;
3219 
3220 	if (!sock->ops->sendmsg_locked)
3221 		return sock_no_sendmsg_locked(sk, msg, size);
3222 
3223 	return sock->ops->sendmsg_locked(sk, msg, size);
3224 }
3225 
3226 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3227 {
3228 	struct socket *sock = sk->sk_socket;
3229 
3230 	if (!sock)
3231 		return -EINVAL;
3232 	return sock_sendmsg(sock, msg);
3233 }
3234 
3235 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3236 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3237 			   int len, sendmsg_func sendmsg)
3238 {
3239 	unsigned int orig_len = len;
3240 	struct sk_buff *head = skb;
3241 	unsigned short fragidx;
3242 	int slen, ret;
3243 
3244 do_frag_list:
3245 
3246 	/* Deal with head data */
3247 	while (offset < skb_headlen(skb) && len) {
3248 		struct kvec kv;
3249 		struct msghdr msg;
3250 
3251 		slen = min_t(int, len, skb_headlen(skb) - offset);
3252 		kv.iov_base = skb->data + offset;
3253 		kv.iov_len = slen;
3254 		memset(&msg, 0, sizeof(msg));
3255 		msg.msg_flags = MSG_DONTWAIT;
3256 
3257 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3258 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3259 				      sendmsg_unlocked, sk, &msg);
3260 		if (ret <= 0)
3261 			goto error;
3262 
3263 		offset += ret;
3264 		len -= ret;
3265 	}
3266 
3267 	/* All the data was skb head? */
3268 	if (!len)
3269 		goto out;
3270 
3271 	/* Make offset relative to start of frags */
3272 	offset -= skb_headlen(skb);
3273 
3274 	/* Find where we are in frag list */
3275 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3276 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3277 
3278 		if (offset < skb_frag_size(frag))
3279 			break;
3280 
3281 		offset -= skb_frag_size(frag);
3282 	}
3283 
3284 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3285 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3286 
3287 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3288 
3289 		while (slen) {
3290 			struct bio_vec bvec;
3291 			struct msghdr msg = {
3292 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3293 			};
3294 
3295 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3296 				      skb_frag_off(frag) + offset);
3297 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3298 				      slen);
3299 
3300 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3301 					      sendmsg_unlocked, sk, &msg);
3302 			if (ret <= 0)
3303 				goto error;
3304 
3305 			len -= ret;
3306 			offset += ret;
3307 			slen -= ret;
3308 		}
3309 
3310 		offset = 0;
3311 	}
3312 
3313 	if (len) {
3314 		/* Process any frag lists */
3315 
3316 		if (skb == head) {
3317 			if (skb_has_frag_list(skb)) {
3318 				skb = skb_shinfo(skb)->frag_list;
3319 				goto do_frag_list;
3320 			}
3321 		} else if (skb->next) {
3322 			skb = skb->next;
3323 			goto do_frag_list;
3324 		}
3325 	}
3326 
3327 out:
3328 	return orig_len - len;
3329 
3330 error:
3331 	return orig_len == len ? ret : orig_len - len;
3332 }
3333 
3334 /* Send skb data on a socket. Socket must be locked. */
3335 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3336 			 int len)
3337 {
3338 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3339 }
3340 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3341 
3342 /* Send skb data on a socket. Socket must be unlocked. */
3343 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3344 {
3345 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3346 }
3347 
3348 /**
3349  *	skb_store_bits - store bits from kernel buffer to skb
3350  *	@skb: destination buffer
3351  *	@offset: offset in destination
3352  *	@from: source buffer
3353  *	@len: number of bytes to copy
3354  *
3355  *	Copy the specified number of bytes from the source buffer to the
3356  *	destination skb.  This function handles all the messy bits of
3357  *	traversing fragment lists and such.
3358  */
3359 
3360 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3361 {
3362 	int start = skb_headlen(skb);
3363 	struct sk_buff *frag_iter;
3364 	int i, copy;
3365 
3366 	if (offset > (int)skb->len - len)
3367 		goto fault;
3368 
3369 	if ((copy = start - offset) > 0) {
3370 		if (copy > len)
3371 			copy = len;
3372 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3373 		if ((len -= copy) == 0)
3374 			return 0;
3375 		offset += copy;
3376 		from += copy;
3377 	}
3378 
3379 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3380 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3381 		int end;
3382 
3383 		WARN_ON(start > offset + len);
3384 
3385 		end = start + skb_frag_size(frag);
3386 		if ((copy = end - offset) > 0) {
3387 			u32 p_off, p_len, copied;
3388 			struct page *p;
3389 			u8 *vaddr;
3390 
3391 			if (copy > len)
3392 				copy = len;
3393 
3394 			skb_frag_foreach_page(frag,
3395 					      skb_frag_off(frag) + offset - start,
3396 					      copy, p, p_off, p_len, copied) {
3397 				vaddr = kmap_atomic(p);
3398 				memcpy(vaddr + p_off, from + copied, p_len);
3399 				kunmap_atomic(vaddr);
3400 			}
3401 
3402 			if ((len -= copy) == 0)
3403 				return 0;
3404 			offset += copy;
3405 			from += copy;
3406 		}
3407 		start = end;
3408 	}
3409 
3410 	skb_walk_frags(skb, frag_iter) {
3411 		int end;
3412 
3413 		WARN_ON(start > offset + len);
3414 
3415 		end = start + frag_iter->len;
3416 		if ((copy = end - offset) > 0) {
3417 			if (copy > len)
3418 				copy = len;
3419 			if (skb_store_bits(frag_iter, offset - start,
3420 					   from, copy))
3421 				goto fault;
3422 			if ((len -= copy) == 0)
3423 				return 0;
3424 			offset += copy;
3425 			from += copy;
3426 		}
3427 		start = end;
3428 	}
3429 	if (!len)
3430 		return 0;
3431 
3432 fault:
3433 	return -EFAULT;
3434 }
3435 EXPORT_SYMBOL(skb_store_bits);
3436 
3437 /* Checksum skb data. */
3438 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3439 		      __wsum csum, const struct skb_checksum_ops *ops)
3440 {
3441 	int start = skb_headlen(skb);
3442 	int i, copy = start - offset;
3443 	struct sk_buff *frag_iter;
3444 	int pos = 0;
3445 
3446 	/* Checksum header. */
3447 	if (copy > 0) {
3448 		if (copy > len)
3449 			copy = len;
3450 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3451 				       skb->data + offset, copy, csum);
3452 		if ((len -= copy) == 0)
3453 			return csum;
3454 		offset += copy;
3455 		pos	= copy;
3456 	}
3457 
3458 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3459 		int end;
3460 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3461 
3462 		WARN_ON(start > offset + len);
3463 
3464 		end = start + skb_frag_size(frag);
3465 		if ((copy = end - offset) > 0) {
3466 			u32 p_off, p_len, copied;
3467 			struct page *p;
3468 			__wsum csum2;
3469 			u8 *vaddr;
3470 
3471 			if (copy > len)
3472 				copy = len;
3473 
3474 			skb_frag_foreach_page(frag,
3475 					      skb_frag_off(frag) + offset - start,
3476 					      copy, p, p_off, p_len, copied) {
3477 				vaddr = kmap_atomic(p);
3478 				csum2 = INDIRECT_CALL_1(ops->update,
3479 							csum_partial_ext,
3480 							vaddr + p_off, p_len, 0);
3481 				kunmap_atomic(vaddr);
3482 				csum = INDIRECT_CALL_1(ops->combine,
3483 						       csum_block_add_ext, csum,
3484 						       csum2, pos, p_len);
3485 				pos += p_len;
3486 			}
3487 
3488 			if (!(len -= copy))
3489 				return csum;
3490 			offset += copy;
3491 		}
3492 		start = end;
3493 	}
3494 
3495 	skb_walk_frags(skb, frag_iter) {
3496 		int end;
3497 
3498 		WARN_ON(start > offset + len);
3499 
3500 		end = start + frag_iter->len;
3501 		if ((copy = end - offset) > 0) {
3502 			__wsum csum2;
3503 			if (copy > len)
3504 				copy = len;
3505 			csum2 = __skb_checksum(frag_iter, offset - start,
3506 					       copy, 0, ops);
3507 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3508 					       csum, csum2, pos, copy);
3509 			if ((len -= copy) == 0)
3510 				return csum;
3511 			offset += copy;
3512 			pos    += copy;
3513 		}
3514 		start = end;
3515 	}
3516 	BUG_ON(len);
3517 
3518 	return csum;
3519 }
3520 EXPORT_SYMBOL(__skb_checksum);
3521 
3522 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3523 		    int len, __wsum csum)
3524 {
3525 	const struct skb_checksum_ops ops = {
3526 		.update  = csum_partial_ext,
3527 		.combine = csum_block_add_ext,
3528 	};
3529 
3530 	return __skb_checksum(skb, offset, len, csum, &ops);
3531 }
3532 EXPORT_SYMBOL(skb_checksum);
3533 
3534 /* Both of above in one bottle. */
3535 
3536 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3537 				    u8 *to, int len)
3538 {
3539 	int start = skb_headlen(skb);
3540 	int i, copy = start - offset;
3541 	struct sk_buff *frag_iter;
3542 	int pos = 0;
3543 	__wsum csum = 0;
3544 
3545 	/* Copy header. */
3546 	if (copy > 0) {
3547 		if (copy > len)
3548 			copy = len;
3549 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3550 						 copy);
3551 		if ((len -= copy) == 0)
3552 			return csum;
3553 		offset += copy;
3554 		to     += copy;
3555 		pos	= copy;
3556 	}
3557 
3558 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3559 		int end;
3560 
3561 		WARN_ON(start > offset + len);
3562 
3563 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3564 		if ((copy = end - offset) > 0) {
3565 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3566 			u32 p_off, p_len, copied;
3567 			struct page *p;
3568 			__wsum csum2;
3569 			u8 *vaddr;
3570 
3571 			if (copy > len)
3572 				copy = len;
3573 
3574 			skb_frag_foreach_page(frag,
3575 					      skb_frag_off(frag) + offset - start,
3576 					      copy, p, p_off, p_len, copied) {
3577 				vaddr = kmap_atomic(p);
3578 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3579 								  to + copied,
3580 								  p_len);
3581 				kunmap_atomic(vaddr);
3582 				csum = csum_block_add(csum, csum2, pos);
3583 				pos += p_len;
3584 			}
3585 
3586 			if (!(len -= copy))
3587 				return csum;
3588 			offset += copy;
3589 			to     += copy;
3590 		}
3591 		start = end;
3592 	}
3593 
3594 	skb_walk_frags(skb, frag_iter) {
3595 		__wsum csum2;
3596 		int end;
3597 
3598 		WARN_ON(start > offset + len);
3599 
3600 		end = start + frag_iter->len;
3601 		if ((copy = end - offset) > 0) {
3602 			if (copy > len)
3603 				copy = len;
3604 			csum2 = skb_copy_and_csum_bits(frag_iter,
3605 						       offset - start,
3606 						       to, copy);
3607 			csum = csum_block_add(csum, csum2, pos);
3608 			if ((len -= copy) == 0)
3609 				return csum;
3610 			offset += copy;
3611 			to     += copy;
3612 			pos    += copy;
3613 		}
3614 		start = end;
3615 	}
3616 	BUG_ON(len);
3617 	return csum;
3618 }
3619 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3620 
3621 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3622 {
3623 	__sum16 sum;
3624 
3625 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3626 	/* See comments in __skb_checksum_complete(). */
3627 	if (likely(!sum)) {
3628 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3629 		    !skb->csum_complete_sw)
3630 			netdev_rx_csum_fault(skb->dev, skb);
3631 	}
3632 	if (!skb_shared(skb))
3633 		skb->csum_valid = !sum;
3634 	return sum;
3635 }
3636 EXPORT_SYMBOL(__skb_checksum_complete_head);
3637 
3638 /* This function assumes skb->csum already holds pseudo header's checksum,
3639  * which has been changed from the hardware checksum, for example, by
3640  * __skb_checksum_validate_complete(). And, the original skb->csum must
3641  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3642  *
3643  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3644  * zero. The new checksum is stored back into skb->csum unless the skb is
3645  * shared.
3646  */
3647 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3648 {
3649 	__wsum csum;
3650 	__sum16 sum;
3651 
3652 	csum = skb_checksum(skb, 0, skb->len, 0);
3653 
3654 	sum = csum_fold(csum_add(skb->csum, csum));
3655 	/* This check is inverted, because we already knew the hardware
3656 	 * checksum is invalid before calling this function. So, if the
3657 	 * re-computed checksum is valid instead, then we have a mismatch
3658 	 * between the original skb->csum and skb_checksum(). This means either
3659 	 * the original hardware checksum is incorrect or we screw up skb->csum
3660 	 * when moving skb->data around.
3661 	 */
3662 	if (likely(!sum)) {
3663 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3664 		    !skb->csum_complete_sw)
3665 			netdev_rx_csum_fault(skb->dev, skb);
3666 	}
3667 
3668 	if (!skb_shared(skb)) {
3669 		/* Save full packet checksum */
3670 		skb->csum = csum;
3671 		skb->ip_summed = CHECKSUM_COMPLETE;
3672 		skb->csum_complete_sw = 1;
3673 		skb->csum_valid = !sum;
3674 	}
3675 
3676 	return sum;
3677 }
3678 EXPORT_SYMBOL(__skb_checksum_complete);
3679 
3680 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3681 {
3682 	net_warn_ratelimited(
3683 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3684 		__func__);
3685 	return 0;
3686 }
3687 
3688 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3689 				       int offset, int len)
3690 {
3691 	net_warn_ratelimited(
3692 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3693 		__func__);
3694 	return 0;
3695 }
3696 
3697 static const struct skb_checksum_ops default_crc32c_ops = {
3698 	.update  = warn_crc32c_csum_update,
3699 	.combine = warn_crc32c_csum_combine,
3700 };
3701 
3702 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3703 	&default_crc32c_ops;
3704 EXPORT_SYMBOL(crc32c_csum_stub);
3705 
3706  /**
3707  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3708  *	@from: source buffer
3709  *
3710  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3711  *	into skb_zerocopy().
3712  */
3713 unsigned int
3714 skb_zerocopy_headlen(const struct sk_buff *from)
3715 {
3716 	unsigned int hlen = 0;
3717 
3718 	if (!from->head_frag ||
3719 	    skb_headlen(from) < L1_CACHE_BYTES ||
3720 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3721 		hlen = skb_headlen(from);
3722 		if (!hlen)
3723 			hlen = from->len;
3724 	}
3725 
3726 	if (skb_has_frag_list(from))
3727 		hlen = from->len;
3728 
3729 	return hlen;
3730 }
3731 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3732 
3733 /**
3734  *	skb_zerocopy - Zero copy skb to skb
3735  *	@to: destination buffer
3736  *	@from: source buffer
3737  *	@len: number of bytes to copy from source buffer
3738  *	@hlen: size of linear headroom in destination buffer
3739  *
3740  *	Copies up to `len` bytes from `from` to `to` by creating references
3741  *	to the frags in the source buffer.
3742  *
3743  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3744  *	headroom in the `to` buffer.
3745  *
3746  *	Return value:
3747  *	0: everything is OK
3748  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3749  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3750  */
3751 int
3752 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3753 {
3754 	int i, j = 0;
3755 	int plen = 0; /* length of skb->head fragment */
3756 	int ret;
3757 	struct page *page;
3758 	unsigned int offset;
3759 
3760 	BUG_ON(!from->head_frag && !hlen);
3761 
3762 	/* dont bother with small payloads */
3763 	if (len <= skb_tailroom(to))
3764 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3765 
3766 	if (hlen) {
3767 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3768 		if (unlikely(ret))
3769 			return ret;
3770 		len -= hlen;
3771 	} else {
3772 		plen = min_t(int, skb_headlen(from), len);
3773 		if (plen) {
3774 			page = virt_to_head_page(from->head);
3775 			offset = from->data - (unsigned char *)page_address(page);
3776 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3777 					       offset, plen);
3778 			get_page(page);
3779 			j = 1;
3780 			len -= plen;
3781 		}
3782 	}
3783 
3784 	skb_len_add(to, len + plen);
3785 
3786 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3787 		skb_tx_error(from);
3788 		return -ENOMEM;
3789 	}
3790 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3791 
3792 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3793 		int size;
3794 
3795 		if (!len)
3796 			break;
3797 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3798 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3799 					len);
3800 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3801 		len -= size;
3802 		skb_frag_ref(to, j);
3803 		j++;
3804 	}
3805 	skb_shinfo(to)->nr_frags = j;
3806 
3807 	return 0;
3808 }
3809 EXPORT_SYMBOL_GPL(skb_zerocopy);
3810 
3811 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3812 {
3813 	__wsum csum;
3814 	long csstart;
3815 
3816 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3817 		csstart = skb_checksum_start_offset(skb);
3818 	else
3819 		csstart = skb_headlen(skb);
3820 
3821 	BUG_ON(csstart > skb_headlen(skb));
3822 
3823 	skb_copy_from_linear_data(skb, to, csstart);
3824 
3825 	csum = 0;
3826 	if (csstart != skb->len)
3827 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3828 					      skb->len - csstart);
3829 
3830 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3831 		long csstuff = csstart + skb->csum_offset;
3832 
3833 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3834 	}
3835 }
3836 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3837 
3838 /**
3839  *	skb_dequeue - remove from the head of the queue
3840  *	@list: list to dequeue from
3841  *
3842  *	Remove the head of the list. The list lock is taken so the function
3843  *	may be used safely with other locking list functions. The head item is
3844  *	returned or %NULL if the list is empty.
3845  */
3846 
3847 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3848 {
3849 	unsigned long flags;
3850 	struct sk_buff *result;
3851 
3852 	spin_lock_irqsave(&list->lock, flags);
3853 	result = __skb_dequeue(list);
3854 	spin_unlock_irqrestore(&list->lock, flags);
3855 	return result;
3856 }
3857 EXPORT_SYMBOL(skb_dequeue);
3858 
3859 /**
3860  *	skb_dequeue_tail - remove from the tail of the queue
3861  *	@list: list to dequeue from
3862  *
3863  *	Remove the tail of the list. The list lock is taken so the function
3864  *	may be used safely with other locking list functions. The tail item is
3865  *	returned or %NULL if the list is empty.
3866  */
3867 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3868 {
3869 	unsigned long flags;
3870 	struct sk_buff *result;
3871 
3872 	spin_lock_irqsave(&list->lock, flags);
3873 	result = __skb_dequeue_tail(list);
3874 	spin_unlock_irqrestore(&list->lock, flags);
3875 	return result;
3876 }
3877 EXPORT_SYMBOL(skb_dequeue_tail);
3878 
3879 /**
3880  *	skb_queue_purge_reason - empty a list
3881  *	@list: list to empty
3882  *	@reason: drop reason
3883  *
3884  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3885  *	the list and one reference dropped. This function takes the list
3886  *	lock and is atomic with respect to other list locking functions.
3887  */
3888 void skb_queue_purge_reason(struct sk_buff_head *list,
3889 			    enum skb_drop_reason reason)
3890 {
3891 	struct sk_buff_head tmp;
3892 	unsigned long flags;
3893 
3894 	if (skb_queue_empty_lockless(list))
3895 		return;
3896 
3897 	__skb_queue_head_init(&tmp);
3898 
3899 	spin_lock_irqsave(&list->lock, flags);
3900 	skb_queue_splice_init(list, &tmp);
3901 	spin_unlock_irqrestore(&list->lock, flags);
3902 
3903 	__skb_queue_purge_reason(&tmp, reason);
3904 }
3905 EXPORT_SYMBOL(skb_queue_purge_reason);
3906 
3907 /**
3908  *	skb_rbtree_purge - empty a skb rbtree
3909  *	@root: root of the rbtree to empty
3910  *	Return value: the sum of truesizes of all purged skbs.
3911  *
3912  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3913  *	the list and one reference dropped. This function does not take
3914  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3915  *	out-of-order queue is protected by the socket lock).
3916  */
3917 unsigned int skb_rbtree_purge(struct rb_root *root)
3918 {
3919 	struct rb_node *p = rb_first(root);
3920 	unsigned int sum = 0;
3921 
3922 	while (p) {
3923 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3924 
3925 		p = rb_next(p);
3926 		rb_erase(&skb->rbnode, root);
3927 		sum += skb->truesize;
3928 		kfree_skb(skb);
3929 	}
3930 	return sum;
3931 }
3932 
3933 void skb_errqueue_purge(struct sk_buff_head *list)
3934 {
3935 	struct sk_buff *skb, *next;
3936 	struct sk_buff_head kill;
3937 	unsigned long flags;
3938 
3939 	__skb_queue_head_init(&kill);
3940 
3941 	spin_lock_irqsave(&list->lock, flags);
3942 	skb_queue_walk_safe(list, skb, next) {
3943 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3944 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3945 			continue;
3946 		__skb_unlink(skb, list);
3947 		__skb_queue_tail(&kill, skb);
3948 	}
3949 	spin_unlock_irqrestore(&list->lock, flags);
3950 	__skb_queue_purge(&kill);
3951 }
3952 EXPORT_SYMBOL(skb_errqueue_purge);
3953 
3954 /**
3955  *	skb_queue_head - queue a buffer at the list head
3956  *	@list: list to use
3957  *	@newsk: buffer to queue
3958  *
3959  *	Queue a buffer at the start of the list. This function takes the
3960  *	list lock and can be used safely with other locking &sk_buff functions
3961  *	safely.
3962  *
3963  *	A buffer cannot be placed on two lists at the same time.
3964  */
3965 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3966 {
3967 	unsigned long flags;
3968 
3969 	spin_lock_irqsave(&list->lock, flags);
3970 	__skb_queue_head(list, newsk);
3971 	spin_unlock_irqrestore(&list->lock, flags);
3972 }
3973 EXPORT_SYMBOL(skb_queue_head);
3974 
3975 /**
3976  *	skb_queue_tail - queue a buffer at the list tail
3977  *	@list: list to use
3978  *	@newsk: buffer to queue
3979  *
3980  *	Queue a buffer at the tail of the list. This function takes the
3981  *	list lock and can be used safely with other locking &sk_buff functions
3982  *	safely.
3983  *
3984  *	A buffer cannot be placed on two lists at the same time.
3985  */
3986 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3987 {
3988 	unsigned long flags;
3989 
3990 	spin_lock_irqsave(&list->lock, flags);
3991 	__skb_queue_tail(list, newsk);
3992 	spin_unlock_irqrestore(&list->lock, flags);
3993 }
3994 EXPORT_SYMBOL(skb_queue_tail);
3995 
3996 /**
3997  *	skb_unlink	-	remove a buffer from a list
3998  *	@skb: buffer to remove
3999  *	@list: list to use
4000  *
4001  *	Remove a packet from a list. The list locks are taken and this
4002  *	function is atomic with respect to other list locked calls
4003  *
4004  *	You must know what list the SKB is on.
4005  */
4006 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4007 {
4008 	unsigned long flags;
4009 
4010 	spin_lock_irqsave(&list->lock, flags);
4011 	__skb_unlink(skb, list);
4012 	spin_unlock_irqrestore(&list->lock, flags);
4013 }
4014 EXPORT_SYMBOL(skb_unlink);
4015 
4016 /**
4017  *	skb_append	-	append a buffer
4018  *	@old: buffer to insert after
4019  *	@newsk: buffer to insert
4020  *	@list: list to use
4021  *
4022  *	Place a packet after a given packet in a list. The list locks are taken
4023  *	and this function is atomic with respect to other list locked calls.
4024  *	A buffer cannot be placed on two lists at the same time.
4025  */
4026 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4027 {
4028 	unsigned long flags;
4029 
4030 	spin_lock_irqsave(&list->lock, flags);
4031 	__skb_queue_after(list, old, newsk);
4032 	spin_unlock_irqrestore(&list->lock, flags);
4033 }
4034 EXPORT_SYMBOL(skb_append);
4035 
4036 static inline void skb_split_inside_header(struct sk_buff *skb,
4037 					   struct sk_buff* skb1,
4038 					   const u32 len, const int pos)
4039 {
4040 	int i;
4041 
4042 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4043 					 pos - len);
4044 	/* And move data appendix as is. */
4045 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4046 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4047 
4048 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4049 	skb_shinfo(skb)->nr_frags  = 0;
4050 	skb1->data_len		   = skb->data_len;
4051 	skb1->len		   += skb1->data_len;
4052 	skb->data_len		   = 0;
4053 	skb->len		   = len;
4054 	skb_set_tail_pointer(skb, len);
4055 }
4056 
4057 static inline void skb_split_no_header(struct sk_buff *skb,
4058 				       struct sk_buff* skb1,
4059 				       const u32 len, int pos)
4060 {
4061 	int i, k = 0;
4062 	const int nfrags = skb_shinfo(skb)->nr_frags;
4063 
4064 	skb_shinfo(skb)->nr_frags = 0;
4065 	skb1->len		  = skb1->data_len = skb->len - len;
4066 	skb->len		  = len;
4067 	skb->data_len		  = len - pos;
4068 
4069 	for (i = 0; i < nfrags; i++) {
4070 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4071 
4072 		if (pos + size > len) {
4073 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4074 
4075 			if (pos < len) {
4076 				/* Split frag.
4077 				 * We have two variants in this case:
4078 				 * 1. Move all the frag to the second
4079 				 *    part, if it is possible. F.e.
4080 				 *    this approach is mandatory for TUX,
4081 				 *    where splitting is expensive.
4082 				 * 2. Split is accurately. We make this.
4083 				 */
4084 				skb_frag_ref(skb, i);
4085 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4086 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4087 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4088 				skb_shinfo(skb)->nr_frags++;
4089 			}
4090 			k++;
4091 		} else
4092 			skb_shinfo(skb)->nr_frags++;
4093 		pos += size;
4094 	}
4095 	skb_shinfo(skb1)->nr_frags = k;
4096 }
4097 
4098 /**
4099  * skb_split - Split fragmented skb to two parts at length len.
4100  * @skb: the buffer to split
4101  * @skb1: the buffer to receive the second part
4102  * @len: new length for skb
4103  */
4104 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4105 {
4106 	int pos = skb_headlen(skb);
4107 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4108 
4109 	skb_zcopy_downgrade_managed(skb);
4110 
4111 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4112 	skb_zerocopy_clone(skb1, skb, 0);
4113 	if (len < pos)	/* Split line is inside header. */
4114 		skb_split_inside_header(skb, skb1, len, pos);
4115 	else		/* Second chunk has no header, nothing to copy. */
4116 		skb_split_no_header(skb, skb1, len, pos);
4117 }
4118 EXPORT_SYMBOL(skb_split);
4119 
4120 /* Shifting from/to a cloned skb is a no-go.
4121  *
4122  * Caller cannot keep skb_shinfo related pointers past calling here!
4123  */
4124 static int skb_prepare_for_shift(struct sk_buff *skb)
4125 {
4126 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4127 }
4128 
4129 /**
4130  * skb_shift - Shifts paged data partially from skb to another
4131  * @tgt: buffer into which tail data gets added
4132  * @skb: buffer from which the paged data comes from
4133  * @shiftlen: shift up to this many bytes
4134  *
4135  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4136  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4137  * It's up to caller to free skb if everything was shifted.
4138  *
4139  * If @tgt runs out of frags, the whole operation is aborted.
4140  *
4141  * Skb cannot include anything else but paged data while tgt is allowed
4142  * to have non-paged data as well.
4143  *
4144  * TODO: full sized shift could be optimized but that would need
4145  * specialized skb free'er to handle frags without up-to-date nr_frags.
4146  */
4147 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4148 {
4149 	int from, to, merge, todo;
4150 	skb_frag_t *fragfrom, *fragto;
4151 
4152 	BUG_ON(shiftlen > skb->len);
4153 
4154 	if (skb_headlen(skb))
4155 		return 0;
4156 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4157 		return 0;
4158 
4159 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4160 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4161 
4162 	todo = shiftlen;
4163 	from = 0;
4164 	to = skb_shinfo(tgt)->nr_frags;
4165 	fragfrom = &skb_shinfo(skb)->frags[from];
4166 
4167 	/* Actual merge is delayed until the point when we know we can
4168 	 * commit all, so that we don't have to undo partial changes
4169 	 */
4170 	if (!to ||
4171 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4172 			      skb_frag_off(fragfrom))) {
4173 		merge = -1;
4174 	} else {
4175 		merge = to - 1;
4176 
4177 		todo -= skb_frag_size(fragfrom);
4178 		if (todo < 0) {
4179 			if (skb_prepare_for_shift(skb) ||
4180 			    skb_prepare_for_shift(tgt))
4181 				return 0;
4182 
4183 			/* All previous frag pointers might be stale! */
4184 			fragfrom = &skb_shinfo(skb)->frags[from];
4185 			fragto = &skb_shinfo(tgt)->frags[merge];
4186 
4187 			skb_frag_size_add(fragto, shiftlen);
4188 			skb_frag_size_sub(fragfrom, shiftlen);
4189 			skb_frag_off_add(fragfrom, shiftlen);
4190 
4191 			goto onlymerged;
4192 		}
4193 
4194 		from++;
4195 	}
4196 
4197 	/* Skip full, not-fitting skb to avoid expensive operations */
4198 	if ((shiftlen == skb->len) &&
4199 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4200 		return 0;
4201 
4202 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4203 		return 0;
4204 
4205 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4206 		if (to == MAX_SKB_FRAGS)
4207 			return 0;
4208 
4209 		fragfrom = &skb_shinfo(skb)->frags[from];
4210 		fragto = &skb_shinfo(tgt)->frags[to];
4211 
4212 		if (todo >= skb_frag_size(fragfrom)) {
4213 			*fragto = *fragfrom;
4214 			todo -= skb_frag_size(fragfrom);
4215 			from++;
4216 			to++;
4217 
4218 		} else {
4219 			__skb_frag_ref(fragfrom);
4220 			skb_frag_page_copy(fragto, fragfrom);
4221 			skb_frag_off_copy(fragto, fragfrom);
4222 			skb_frag_size_set(fragto, todo);
4223 
4224 			skb_frag_off_add(fragfrom, todo);
4225 			skb_frag_size_sub(fragfrom, todo);
4226 			todo = 0;
4227 
4228 			to++;
4229 			break;
4230 		}
4231 	}
4232 
4233 	/* Ready to "commit" this state change to tgt */
4234 	skb_shinfo(tgt)->nr_frags = to;
4235 
4236 	if (merge >= 0) {
4237 		fragfrom = &skb_shinfo(skb)->frags[0];
4238 		fragto = &skb_shinfo(tgt)->frags[merge];
4239 
4240 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4241 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4242 	}
4243 
4244 	/* Reposition in the original skb */
4245 	to = 0;
4246 	while (from < skb_shinfo(skb)->nr_frags)
4247 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4248 	skb_shinfo(skb)->nr_frags = to;
4249 
4250 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4251 
4252 onlymerged:
4253 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4254 	 * the other hand might need it if it needs to be resent
4255 	 */
4256 	tgt->ip_summed = CHECKSUM_PARTIAL;
4257 	skb->ip_summed = CHECKSUM_PARTIAL;
4258 
4259 	skb_len_add(skb, -shiftlen);
4260 	skb_len_add(tgt, shiftlen);
4261 
4262 	return shiftlen;
4263 }
4264 
4265 /**
4266  * skb_prepare_seq_read - Prepare a sequential read of skb data
4267  * @skb: the buffer to read
4268  * @from: lower offset of data to be read
4269  * @to: upper offset of data to be read
4270  * @st: state variable
4271  *
4272  * Initializes the specified state variable. Must be called before
4273  * invoking skb_seq_read() for the first time.
4274  */
4275 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4276 			  unsigned int to, struct skb_seq_state *st)
4277 {
4278 	st->lower_offset = from;
4279 	st->upper_offset = to;
4280 	st->root_skb = st->cur_skb = skb;
4281 	st->frag_idx = st->stepped_offset = 0;
4282 	st->frag_data = NULL;
4283 	st->frag_off = 0;
4284 }
4285 EXPORT_SYMBOL(skb_prepare_seq_read);
4286 
4287 /**
4288  * skb_seq_read - Sequentially read skb data
4289  * @consumed: number of bytes consumed by the caller so far
4290  * @data: destination pointer for data to be returned
4291  * @st: state variable
4292  *
4293  * Reads a block of skb data at @consumed relative to the
4294  * lower offset specified to skb_prepare_seq_read(). Assigns
4295  * the head of the data block to @data and returns the length
4296  * of the block or 0 if the end of the skb data or the upper
4297  * offset has been reached.
4298  *
4299  * The caller is not required to consume all of the data
4300  * returned, i.e. @consumed is typically set to the number
4301  * of bytes already consumed and the next call to
4302  * skb_seq_read() will return the remaining part of the block.
4303  *
4304  * Note 1: The size of each block of data returned can be arbitrary,
4305  *       this limitation is the cost for zerocopy sequential
4306  *       reads of potentially non linear data.
4307  *
4308  * Note 2: Fragment lists within fragments are not implemented
4309  *       at the moment, state->root_skb could be replaced with
4310  *       a stack for this purpose.
4311  */
4312 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4313 			  struct skb_seq_state *st)
4314 {
4315 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4316 	skb_frag_t *frag;
4317 
4318 	if (unlikely(abs_offset >= st->upper_offset)) {
4319 		if (st->frag_data) {
4320 			kunmap_atomic(st->frag_data);
4321 			st->frag_data = NULL;
4322 		}
4323 		return 0;
4324 	}
4325 
4326 next_skb:
4327 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4328 
4329 	if (abs_offset < block_limit && !st->frag_data) {
4330 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4331 		return block_limit - abs_offset;
4332 	}
4333 
4334 	if (st->frag_idx == 0 && !st->frag_data)
4335 		st->stepped_offset += skb_headlen(st->cur_skb);
4336 
4337 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4338 		unsigned int pg_idx, pg_off, pg_sz;
4339 
4340 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4341 
4342 		pg_idx = 0;
4343 		pg_off = skb_frag_off(frag);
4344 		pg_sz = skb_frag_size(frag);
4345 
4346 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4347 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4348 			pg_off = offset_in_page(pg_off + st->frag_off);
4349 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4350 						    PAGE_SIZE - pg_off);
4351 		}
4352 
4353 		block_limit = pg_sz + st->stepped_offset;
4354 		if (abs_offset < block_limit) {
4355 			if (!st->frag_data)
4356 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4357 
4358 			*data = (u8 *)st->frag_data + pg_off +
4359 				(abs_offset - st->stepped_offset);
4360 
4361 			return block_limit - abs_offset;
4362 		}
4363 
4364 		if (st->frag_data) {
4365 			kunmap_atomic(st->frag_data);
4366 			st->frag_data = NULL;
4367 		}
4368 
4369 		st->stepped_offset += pg_sz;
4370 		st->frag_off += pg_sz;
4371 		if (st->frag_off == skb_frag_size(frag)) {
4372 			st->frag_off = 0;
4373 			st->frag_idx++;
4374 		}
4375 	}
4376 
4377 	if (st->frag_data) {
4378 		kunmap_atomic(st->frag_data);
4379 		st->frag_data = NULL;
4380 	}
4381 
4382 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4383 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4384 		st->frag_idx = 0;
4385 		goto next_skb;
4386 	} else if (st->cur_skb->next) {
4387 		st->cur_skb = st->cur_skb->next;
4388 		st->frag_idx = 0;
4389 		goto next_skb;
4390 	}
4391 
4392 	return 0;
4393 }
4394 EXPORT_SYMBOL(skb_seq_read);
4395 
4396 /**
4397  * skb_abort_seq_read - Abort a sequential read of skb data
4398  * @st: state variable
4399  *
4400  * Must be called if skb_seq_read() was not called until it
4401  * returned 0.
4402  */
4403 void skb_abort_seq_read(struct skb_seq_state *st)
4404 {
4405 	if (st->frag_data)
4406 		kunmap_atomic(st->frag_data);
4407 }
4408 EXPORT_SYMBOL(skb_abort_seq_read);
4409 
4410 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4411 
4412 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4413 					  struct ts_config *conf,
4414 					  struct ts_state *state)
4415 {
4416 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4417 }
4418 
4419 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4420 {
4421 	skb_abort_seq_read(TS_SKB_CB(state));
4422 }
4423 
4424 /**
4425  * skb_find_text - Find a text pattern in skb data
4426  * @skb: the buffer to look in
4427  * @from: search offset
4428  * @to: search limit
4429  * @config: textsearch configuration
4430  *
4431  * Finds a pattern in the skb data according to the specified
4432  * textsearch configuration. Use textsearch_next() to retrieve
4433  * subsequent occurrences of the pattern. Returns the offset
4434  * to the first occurrence or UINT_MAX if no match was found.
4435  */
4436 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4437 			   unsigned int to, struct ts_config *config)
4438 {
4439 	unsigned int patlen = config->ops->get_pattern_len(config);
4440 	struct ts_state state;
4441 	unsigned int ret;
4442 
4443 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4444 
4445 	config->get_next_block = skb_ts_get_next_block;
4446 	config->finish = skb_ts_finish;
4447 
4448 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4449 
4450 	ret = textsearch_find(config, &state);
4451 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4452 }
4453 EXPORT_SYMBOL(skb_find_text);
4454 
4455 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4456 			 int offset, size_t size, size_t max_frags)
4457 {
4458 	int i = skb_shinfo(skb)->nr_frags;
4459 
4460 	if (skb_can_coalesce(skb, i, page, offset)) {
4461 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4462 	} else if (i < max_frags) {
4463 		skb_zcopy_downgrade_managed(skb);
4464 		get_page(page);
4465 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4466 	} else {
4467 		return -EMSGSIZE;
4468 	}
4469 
4470 	return 0;
4471 }
4472 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4473 
4474 /**
4475  *	skb_pull_rcsum - pull skb and update receive checksum
4476  *	@skb: buffer to update
4477  *	@len: length of data pulled
4478  *
4479  *	This function performs an skb_pull on the packet and updates
4480  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4481  *	receive path processing instead of skb_pull unless you know
4482  *	that the checksum difference is zero (e.g., a valid IP header)
4483  *	or you are setting ip_summed to CHECKSUM_NONE.
4484  */
4485 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4486 {
4487 	unsigned char *data = skb->data;
4488 
4489 	BUG_ON(len > skb->len);
4490 	__skb_pull(skb, len);
4491 	skb_postpull_rcsum(skb, data, len);
4492 	return skb->data;
4493 }
4494 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4495 
4496 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4497 {
4498 	skb_frag_t head_frag;
4499 	struct page *page;
4500 
4501 	page = virt_to_head_page(frag_skb->head);
4502 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4503 				(unsigned char *)page_address(page),
4504 				skb_headlen(frag_skb));
4505 	return head_frag;
4506 }
4507 
4508 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4509 				 netdev_features_t features,
4510 				 unsigned int offset)
4511 {
4512 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4513 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4514 	unsigned int delta_truesize = 0;
4515 	unsigned int delta_len = 0;
4516 	struct sk_buff *tail = NULL;
4517 	struct sk_buff *nskb, *tmp;
4518 	int len_diff, err;
4519 
4520 	skb_push(skb, -skb_network_offset(skb) + offset);
4521 
4522 	/* Ensure the head is writeable before touching the shared info */
4523 	err = skb_unclone(skb, GFP_ATOMIC);
4524 	if (err)
4525 		goto err_linearize;
4526 
4527 	skb_shinfo(skb)->frag_list = NULL;
4528 
4529 	while (list_skb) {
4530 		nskb = list_skb;
4531 		list_skb = list_skb->next;
4532 
4533 		err = 0;
4534 		delta_truesize += nskb->truesize;
4535 		if (skb_shared(nskb)) {
4536 			tmp = skb_clone(nskb, GFP_ATOMIC);
4537 			if (tmp) {
4538 				consume_skb(nskb);
4539 				nskb = tmp;
4540 				err = skb_unclone(nskb, GFP_ATOMIC);
4541 			} else {
4542 				err = -ENOMEM;
4543 			}
4544 		}
4545 
4546 		if (!tail)
4547 			skb->next = nskb;
4548 		else
4549 			tail->next = nskb;
4550 
4551 		if (unlikely(err)) {
4552 			nskb->next = list_skb;
4553 			goto err_linearize;
4554 		}
4555 
4556 		tail = nskb;
4557 
4558 		delta_len += nskb->len;
4559 
4560 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4561 
4562 		skb_release_head_state(nskb);
4563 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4564 		__copy_skb_header(nskb, skb);
4565 
4566 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4567 		nskb->transport_header += len_diff;
4568 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4569 						 nskb->data - tnl_hlen,
4570 						 offset + tnl_hlen);
4571 
4572 		if (skb_needs_linearize(nskb, features) &&
4573 		    __skb_linearize(nskb))
4574 			goto err_linearize;
4575 	}
4576 
4577 	skb->truesize = skb->truesize - delta_truesize;
4578 	skb->data_len = skb->data_len - delta_len;
4579 	skb->len = skb->len - delta_len;
4580 
4581 	skb_gso_reset(skb);
4582 
4583 	skb->prev = tail;
4584 
4585 	if (skb_needs_linearize(skb, features) &&
4586 	    __skb_linearize(skb))
4587 		goto err_linearize;
4588 
4589 	skb_get(skb);
4590 
4591 	return skb;
4592 
4593 err_linearize:
4594 	kfree_skb_list(skb->next);
4595 	skb->next = NULL;
4596 	return ERR_PTR(-ENOMEM);
4597 }
4598 EXPORT_SYMBOL_GPL(skb_segment_list);
4599 
4600 /**
4601  *	skb_segment - Perform protocol segmentation on skb.
4602  *	@head_skb: buffer to segment
4603  *	@features: features for the output path (see dev->features)
4604  *
4605  *	This function performs segmentation on the given skb.  It returns
4606  *	a pointer to the first in a list of new skbs for the segments.
4607  *	In case of error it returns ERR_PTR(err).
4608  */
4609 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4610 			    netdev_features_t features)
4611 {
4612 	struct sk_buff *segs = NULL;
4613 	struct sk_buff *tail = NULL;
4614 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4615 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4616 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4617 	unsigned int offset = doffset;
4618 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4619 	unsigned int partial_segs = 0;
4620 	unsigned int headroom;
4621 	unsigned int len = head_skb->len;
4622 	struct sk_buff *frag_skb;
4623 	skb_frag_t *frag;
4624 	__be16 proto;
4625 	bool csum, sg;
4626 	int err = -ENOMEM;
4627 	int i = 0;
4628 	int nfrags, pos;
4629 
4630 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4631 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4632 		struct sk_buff *check_skb;
4633 
4634 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4635 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4636 				/* gso_size is untrusted, and we have a frag_list with
4637 				 * a linear non head_frag item.
4638 				 *
4639 				 * If head_skb's headlen does not fit requested gso_size,
4640 				 * it means that the frag_list members do NOT terminate
4641 				 * on exact gso_size boundaries. Hence we cannot perform
4642 				 * skb_frag_t page sharing. Therefore we must fallback to
4643 				 * copying the frag_list skbs; we do so by disabling SG.
4644 				 */
4645 				features &= ~NETIF_F_SG;
4646 				break;
4647 			}
4648 		}
4649 	}
4650 
4651 	__skb_push(head_skb, doffset);
4652 	proto = skb_network_protocol(head_skb, NULL);
4653 	if (unlikely(!proto))
4654 		return ERR_PTR(-EINVAL);
4655 
4656 	sg = !!(features & NETIF_F_SG);
4657 	csum = !!can_checksum_protocol(features, proto);
4658 
4659 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4660 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4661 			struct sk_buff *iter;
4662 			unsigned int frag_len;
4663 
4664 			if (!list_skb ||
4665 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4666 				goto normal;
4667 
4668 			/* If we get here then all the required
4669 			 * GSO features except frag_list are supported.
4670 			 * Try to split the SKB to multiple GSO SKBs
4671 			 * with no frag_list.
4672 			 * Currently we can do that only when the buffers don't
4673 			 * have a linear part and all the buffers except
4674 			 * the last are of the same length.
4675 			 */
4676 			frag_len = list_skb->len;
4677 			skb_walk_frags(head_skb, iter) {
4678 				if (frag_len != iter->len && iter->next)
4679 					goto normal;
4680 				if (skb_headlen(iter) && !iter->head_frag)
4681 					goto normal;
4682 
4683 				len -= iter->len;
4684 			}
4685 
4686 			if (len != frag_len)
4687 				goto normal;
4688 		}
4689 
4690 		/* GSO partial only requires that we trim off any excess that
4691 		 * doesn't fit into an MSS sized block, so take care of that
4692 		 * now.
4693 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4694 		 */
4695 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4696 		if (partial_segs > 1)
4697 			mss *= partial_segs;
4698 		else
4699 			partial_segs = 0;
4700 	}
4701 
4702 normal:
4703 	headroom = skb_headroom(head_skb);
4704 	pos = skb_headlen(head_skb);
4705 
4706 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4707 		return ERR_PTR(-ENOMEM);
4708 
4709 	nfrags = skb_shinfo(head_skb)->nr_frags;
4710 	frag = skb_shinfo(head_skb)->frags;
4711 	frag_skb = head_skb;
4712 
4713 	do {
4714 		struct sk_buff *nskb;
4715 		skb_frag_t *nskb_frag;
4716 		int hsize;
4717 		int size;
4718 
4719 		if (unlikely(mss == GSO_BY_FRAGS)) {
4720 			len = list_skb->len;
4721 		} else {
4722 			len = head_skb->len - offset;
4723 			if (len > mss)
4724 				len = mss;
4725 		}
4726 
4727 		hsize = skb_headlen(head_skb) - offset;
4728 
4729 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4730 		    (skb_headlen(list_skb) == len || sg)) {
4731 			BUG_ON(skb_headlen(list_skb) > len);
4732 
4733 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4734 			if (unlikely(!nskb))
4735 				goto err;
4736 
4737 			i = 0;
4738 			nfrags = skb_shinfo(list_skb)->nr_frags;
4739 			frag = skb_shinfo(list_skb)->frags;
4740 			frag_skb = list_skb;
4741 			pos += skb_headlen(list_skb);
4742 
4743 			while (pos < offset + len) {
4744 				BUG_ON(i >= nfrags);
4745 
4746 				size = skb_frag_size(frag);
4747 				if (pos + size > offset + len)
4748 					break;
4749 
4750 				i++;
4751 				pos += size;
4752 				frag++;
4753 			}
4754 
4755 			list_skb = list_skb->next;
4756 
4757 			if (unlikely(pskb_trim(nskb, len))) {
4758 				kfree_skb(nskb);
4759 				goto err;
4760 			}
4761 
4762 			hsize = skb_end_offset(nskb);
4763 			if (skb_cow_head(nskb, doffset + headroom)) {
4764 				kfree_skb(nskb);
4765 				goto err;
4766 			}
4767 
4768 			nskb->truesize += skb_end_offset(nskb) - hsize;
4769 			skb_release_head_state(nskb);
4770 			__skb_push(nskb, doffset);
4771 		} else {
4772 			if (hsize < 0)
4773 				hsize = 0;
4774 			if (hsize > len || !sg)
4775 				hsize = len;
4776 
4777 			nskb = __alloc_skb(hsize + doffset + headroom,
4778 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4779 					   NUMA_NO_NODE);
4780 
4781 			if (unlikely(!nskb))
4782 				goto err;
4783 
4784 			skb_reserve(nskb, headroom);
4785 			__skb_put(nskb, doffset);
4786 		}
4787 
4788 		if (segs)
4789 			tail->next = nskb;
4790 		else
4791 			segs = nskb;
4792 		tail = nskb;
4793 
4794 		__copy_skb_header(nskb, head_skb);
4795 
4796 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4797 		skb_reset_mac_len(nskb);
4798 
4799 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4800 						 nskb->data - tnl_hlen,
4801 						 doffset + tnl_hlen);
4802 
4803 		if (nskb->len == len + doffset)
4804 			goto perform_csum_check;
4805 
4806 		if (!sg) {
4807 			if (!csum) {
4808 				if (!nskb->remcsum_offload)
4809 					nskb->ip_summed = CHECKSUM_NONE;
4810 				SKB_GSO_CB(nskb)->csum =
4811 					skb_copy_and_csum_bits(head_skb, offset,
4812 							       skb_put(nskb,
4813 								       len),
4814 							       len);
4815 				SKB_GSO_CB(nskb)->csum_start =
4816 					skb_headroom(nskb) + doffset;
4817 			} else {
4818 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4819 					goto err;
4820 			}
4821 			continue;
4822 		}
4823 
4824 		nskb_frag = skb_shinfo(nskb)->frags;
4825 
4826 		skb_copy_from_linear_data_offset(head_skb, offset,
4827 						 skb_put(nskb, hsize), hsize);
4828 
4829 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4830 					   SKBFL_SHARED_FRAG;
4831 
4832 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4833 			goto err;
4834 
4835 		while (pos < offset + len) {
4836 			if (i >= nfrags) {
4837 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4838 				    skb_zerocopy_clone(nskb, list_skb,
4839 						       GFP_ATOMIC))
4840 					goto err;
4841 
4842 				i = 0;
4843 				nfrags = skb_shinfo(list_skb)->nr_frags;
4844 				frag = skb_shinfo(list_skb)->frags;
4845 				frag_skb = list_skb;
4846 				if (!skb_headlen(list_skb)) {
4847 					BUG_ON(!nfrags);
4848 				} else {
4849 					BUG_ON(!list_skb->head_frag);
4850 
4851 					/* to make room for head_frag. */
4852 					i--;
4853 					frag--;
4854 				}
4855 
4856 				list_skb = list_skb->next;
4857 			}
4858 
4859 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4860 				     MAX_SKB_FRAGS)) {
4861 				net_warn_ratelimited(
4862 					"skb_segment: too many frags: %u %u\n",
4863 					pos, mss);
4864 				err = -EINVAL;
4865 				goto err;
4866 			}
4867 
4868 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4869 			__skb_frag_ref(nskb_frag);
4870 			size = skb_frag_size(nskb_frag);
4871 
4872 			if (pos < offset) {
4873 				skb_frag_off_add(nskb_frag, offset - pos);
4874 				skb_frag_size_sub(nskb_frag, offset - pos);
4875 			}
4876 
4877 			skb_shinfo(nskb)->nr_frags++;
4878 
4879 			if (pos + size <= offset + len) {
4880 				i++;
4881 				frag++;
4882 				pos += size;
4883 			} else {
4884 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4885 				goto skip_fraglist;
4886 			}
4887 
4888 			nskb_frag++;
4889 		}
4890 
4891 skip_fraglist:
4892 		nskb->data_len = len - hsize;
4893 		nskb->len += nskb->data_len;
4894 		nskb->truesize += nskb->data_len;
4895 
4896 perform_csum_check:
4897 		if (!csum) {
4898 			if (skb_has_shared_frag(nskb) &&
4899 			    __skb_linearize(nskb))
4900 				goto err;
4901 
4902 			if (!nskb->remcsum_offload)
4903 				nskb->ip_summed = CHECKSUM_NONE;
4904 			SKB_GSO_CB(nskb)->csum =
4905 				skb_checksum(nskb, doffset,
4906 					     nskb->len - doffset, 0);
4907 			SKB_GSO_CB(nskb)->csum_start =
4908 				skb_headroom(nskb) + doffset;
4909 		}
4910 	} while ((offset += len) < head_skb->len);
4911 
4912 	/* Some callers want to get the end of the list.
4913 	 * Put it in segs->prev to avoid walking the list.
4914 	 * (see validate_xmit_skb_list() for example)
4915 	 */
4916 	segs->prev = tail;
4917 
4918 	if (partial_segs) {
4919 		struct sk_buff *iter;
4920 		int type = skb_shinfo(head_skb)->gso_type;
4921 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4922 
4923 		/* Update type to add partial and then remove dodgy if set */
4924 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4925 		type &= ~SKB_GSO_DODGY;
4926 
4927 		/* Update GSO info and prepare to start updating headers on
4928 		 * our way back down the stack of protocols.
4929 		 */
4930 		for (iter = segs; iter; iter = iter->next) {
4931 			skb_shinfo(iter)->gso_size = gso_size;
4932 			skb_shinfo(iter)->gso_segs = partial_segs;
4933 			skb_shinfo(iter)->gso_type = type;
4934 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4935 		}
4936 
4937 		if (tail->len - doffset <= gso_size)
4938 			skb_shinfo(tail)->gso_size = 0;
4939 		else if (tail != segs)
4940 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4941 	}
4942 
4943 	/* Following permits correct backpressure, for protocols
4944 	 * using skb_set_owner_w().
4945 	 * Idea is to tranfert ownership from head_skb to last segment.
4946 	 */
4947 	if (head_skb->destructor == sock_wfree) {
4948 		swap(tail->truesize, head_skb->truesize);
4949 		swap(tail->destructor, head_skb->destructor);
4950 		swap(tail->sk, head_skb->sk);
4951 	}
4952 	return segs;
4953 
4954 err:
4955 	kfree_skb_list(segs);
4956 	return ERR_PTR(err);
4957 }
4958 EXPORT_SYMBOL_GPL(skb_segment);
4959 
4960 #ifdef CONFIG_SKB_EXTENSIONS
4961 #define SKB_EXT_ALIGN_VALUE	8
4962 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4963 
4964 static const u8 skb_ext_type_len[] = {
4965 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4966 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4967 #endif
4968 #ifdef CONFIG_XFRM
4969 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4970 #endif
4971 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4972 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4973 #endif
4974 #if IS_ENABLED(CONFIG_MPTCP)
4975 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4976 #endif
4977 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4978 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4979 #endif
4980 };
4981 
4982 static __always_inline unsigned int skb_ext_total_length(void)
4983 {
4984 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4985 	int i;
4986 
4987 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4988 		l += skb_ext_type_len[i];
4989 
4990 	return l;
4991 }
4992 
4993 static void skb_extensions_init(void)
4994 {
4995 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4996 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4997 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4998 #endif
4999 
5000 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5001 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5002 					     0,
5003 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5004 					     NULL);
5005 }
5006 #else
5007 static void skb_extensions_init(void) {}
5008 #endif
5009 
5010 /* The SKB kmem_cache slab is critical for network performance.  Never
5011  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5012  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5013  */
5014 #ifndef CONFIG_SLUB_TINY
5015 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5016 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5017 #define FLAG_SKB_NO_MERGE	0
5018 #endif
5019 
5020 void __init skb_init(void)
5021 {
5022 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5023 					      sizeof(struct sk_buff),
5024 					      0,
5025 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5026 						FLAG_SKB_NO_MERGE,
5027 					      offsetof(struct sk_buff, cb),
5028 					      sizeof_field(struct sk_buff, cb),
5029 					      NULL);
5030 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5031 						sizeof(struct sk_buff_fclones),
5032 						0,
5033 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5034 						NULL);
5035 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5036 	 * struct skb_shared_info is located at the end of skb->head,
5037 	 * and should not be copied to/from user.
5038 	 */
5039 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5040 						SKB_SMALL_HEAD_CACHE_SIZE,
5041 						0,
5042 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5043 						0,
5044 						SKB_SMALL_HEAD_HEADROOM,
5045 						NULL);
5046 	skb_extensions_init();
5047 }
5048 
5049 static int
5050 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5051 	       unsigned int recursion_level)
5052 {
5053 	int start = skb_headlen(skb);
5054 	int i, copy = start - offset;
5055 	struct sk_buff *frag_iter;
5056 	int elt = 0;
5057 
5058 	if (unlikely(recursion_level >= 24))
5059 		return -EMSGSIZE;
5060 
5061 	if (copy > 0) {
5062 		if (copy > len)
5063 			copy = len;
5064 		sg_set_buf(sg, skb->data + offset, copy);
5065 		elt++;
5066 		if ((len -= copy) == 0)
5067 			return elt;
5068 		offset += copy;
5069 	}
5070 
5071 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5072 		int end;
5073 
5074 		WARN_ON(start > offset + len);
5075 
5076 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5077 		if ((copy = end - offset) > 0) {
5078 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5079 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5080 				return -EMSGSIZE;
5081 
5082 			if (copy > len)
5083 				copy = len;
5084 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5085 				    skb_frag_off(frag) + offset - start);
5086 			elt++;
5087 			if (!(len -= copy))
5088 				return elt;
5089 			offset += copy;
5090 		}
5091 		start = end;
5092 	}
5093 
5094 	skb_walk_frags(skb, frag_iter) {
5095 		int end, ret;
5096 
5097 		WARN_ON(start > offset + len);
5098 
5099 		end = start + frag_iter->len;
5100 		if ((copy = end - offset) > 0) {
5101 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5102 				return -EMSGSIZE;
5103 
5104 			if (copy > len)
5105 				copy = len;
5106 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5107 					      copy, recursion_level + 1);
5108 			if (unlikely(ret < 0))
5109 				return ret;
5110 			elt += ret;
5111 			if ((len -= copy) == 0)
5112 				return elt;
5113 			offset += copy;
5114 		}
5115 		start = end;
5116 	}
5117 	BUG_ON(len);
5118 	return elt;
5119 }
5120 
5121 /**
5122  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5123  *	@skb: Socket buffer containing the buffers to be mapped
5124  *	@sg: The scatter-gather list to map into
5125  *	@offset: The offset into the buffer's contents to start mapping
5126  *	@len: Length of buffer space to be mapped
5127  *
5128  *	Fill the specified scatter-gather list with mappings/pointers into a
5129  *	region of the buffer space attached to a socket buffer. Returns either
5130  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5131  *	could not fit.
5132  */
5133 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5134 {
5135 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5136 
5137 	if (nsg <= 0)
5138 		return nsg;
5139 
5140 	sg_mark_end(&sg[nsg - 1]);
5141 
5142 	return nsg;
5143 }
5144 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5145 
5146 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5147  * sglist without mark the sg which contain last skb data as the end.
5148  * So the caller can mannipulate sg list as will when padding new data after
5149  * the first call without calling sg_unmark_end to expend sg list.
5150  *
5151  * Scenario to use skb_to_sgvec_nomark:
5152  * 1. sg_init_table
5153  * 2. skb_to_sgvec_nomark(payload1)
5154  * 3. skb_to_sgvec_nomark(payload2)
5155  *
5156  * This is equivalent to:
5157  * 1. sg_init_table
5158  * 2. skb_to_sgvec(payload1)
5159  * 3. sg_unmark_end
5160  * 4. skb_to_sgvec(payload2)
5161  *
5162  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5163  * is more preferable.
5164  */
5165 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5166 			int offset, int len)
5167 {
5168 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5169 }
5170 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5171 
5172 
5173 
5174 /**
5175  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5176  *	@skb: The socket buffer to check.
5177  *	@tailbits: Amount of trailing space to be added
5178  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5179  *
5180  *	Make sure that the data buffers attached to a socket buffer are
5181  *	writable. If they are not, private copies are made of the data buffers
5182  *	and the socket buffer is set to use these instead.
5183  *
5184  *	If @tailbits is given, make sure that there is space to write @tailbits
5185  *	bytes of data beyond current end of socket buffer.  @trailer will be
5186  *	set to point to the skb in which this space begins.
5187  *
5188  *	The number of scatterlist elements required to completely map the
5189  *	COW'd and extended socket buffer will be returned.
5190  */
5191 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5192 {
5193 	int copyflag;
5194 	int elt;
5195 	struct sk_buff *skb1, **skb_p;
5196 
5197 	/* If skb is cloned or its head is paged, reallocate
5198 	 * head pulling out all the pages (pages are considered not writable
5199 	 * at the moment even if they are anonymous).
5200 	 */
5201 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5202 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5203 		return -ENOMEM;
5204 
5205 	/* Easy case. Most of packets will go this way. */
5206 	if (!skb_has_frag_list(skb)) {
5207 		/* A little of trouble, not enough of space for trailer.
5208 		 * This should not happen, when stack is tuned to generate
5209 		 * good frames. OK, on miss we reallocate and reserve even more
5210 		 * space, 128 bytes is fair. */
5211 
5212 		if (skb_tailroom(skb) < tailbits &&
5213 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5214 			return -ENOMEM;
5215 
5216 		/* Voila! */
5217 		*trailer = skb;
5218 		return 1;
5219 	}
5220 
5221 	/* Misery. We are in troubles, going to mincer fragments... */
5222 
5223 	elt = 1;
5224 	skb_p = &skb_shinfo(skb)->frag_list;
5225 	copyflag = 0;
5226 
5227 	while ((skb1 = *skb_p) != NULL) {
5228 		int ntail = 0;
5229 
5230 		/* The fragment is partially pulled by someone,
5231 		 * this can happen on input. Copy it and everything
5232 		 * after it. */
5233 
5234 		if (skb_shared(skb1))
5235 			copyflag = 1;
5236 
5237 		/* If the skb is the last, worry about trailer. */
5238 
5239 		if (skb1->next == NULL && tailbits) {
5240 			if (skb_shinfo(skb1)->nr_frags ||
5241 			    skb_has_frag_list(skb1) ||
5242 			    skb_tailroom(skb1) < tailbits)
5243 				ntail = tailbits + 128;
5244 		}
5245 
5246 		if (copyflag ||
5247 		    skb_cloned(skb1) ||
5248 		    ntail ||
5249 		    skb_shinfo(skb1)->nr_frags ||
5250 		    skb_has_frag_list(skb1)) {
5251 			struct sk_buff *skb2;
5252 
5253 			/* Fuck, we are miserable poor guys... */
5254 			if (ntail == 0)
5255 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5256 			else
5257 				skb2 = skb_copy_expand(skb1,
5258 						       skb_headroom(skb1),
5259 						       ntail,
5260 						       GFP_ATOMIC);
5261 			if (unlikely(skb2 == NULL))
5262 				return -ENOMEM;
5263 
5264 			if (skb1->sk)
5265 				skb_set_owner_w(skb2, skb1->sk);
5266 
5267 			/* Looking around. Are we still alive?
5268 			 * OK, link new skb, drop old one */
5269 
5270 			skb2->next = skb1->next;
5271 			*skb_p = skb2;
5272 			kfree_skb(skb1);
5273 			skb1 = skb2;
5274 		}
5275 		elt++;
5276 		*trailer = skb1;
5277 		skb_p = &skb1->next;
5278 	}
5279 
5280 	return elt;
5281 }
5282 EXPORT_SYMBOL_GPL(skb_cow_data);
5283 
5284 static void sock_rmem_free(struct sk_buff *skb)
5285 {
5286 	struct sock *sk = skb->sk;
5287 
5288 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5289 }
5290 
5291 static void skb_set_err_queue(struct sk_buff *skb)
5292 {
5293 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5294 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5295 	 */
5296 	skb->pkt_type = PACKET_OUTGOING;
5297 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5298 }
5299 
5300 /*
5301  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5302  */
5303 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5304 {
5305 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5306 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5307 		return -ENOMEM;
5308 
5309 	skb_orphan(skb);
5310 	skb->sk = sk;
5311 	skb->destructor = sock_rmem_free;
5312 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5313 	skb_set_err_queue(skb);
5314 
5315 	/* before exiting rcu section, make sure dst is refcounted */
5316 	skb_dst_force(skb);
5317 
5318 	skb_queue_tail(&sk->sk_error_queue, skb);
5319 	if (!sock_flag(sk, SOCK_DEAD))
5320 		sk_error_report(sk);
5321 	return 0;
5322 }
5323 EXPORT_SYMBOL(sock_queue_err_skb);
5324 
5325 static bool is_icmp_err_skb(const struct sk_buff *skb)
5326 {
5327 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5328 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5329 }
5330 
5331 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5332 {
5333 	struct sk_buff_head *q = &sk->sk_error_queue;
5334 	struct sk_buff *skb, *skb_next = NULL;
5335 	bool icmp_next = false;
5336 	unsigned long flags;
5337 
5338 	if (skb_queue_empty_lockless(q))
5339 		return NULL;
5340 
5341 	spin_lock_irqsave(&q->lock, flags);
5342 	skb = __skb_dequeue(q);
5343 	if (skb && (skb_next = skb_peek(q))) {
5344 		icmp_next = is_icmp_err_skb(skb_next);
5345 		if (icmp_next)
5346 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5347 	}
5348 	spin_unlock_irqrestore(&q->lock, flags);
5349 
5350 	if (is_icmp_err_skb(skb) && !icmp_next)
5351 		sk->sk_err = 0;
5352 
5353 	if (skb_next)
5354 		sk_error_report(sk);
5355 
5356 	return skb;
5357 }
5358 EXPORT_SYMBOL(sock_dequeue_err_skb);
5359 
5360 /**
5361  * skb_clone_sk - create clone of skb, and take reference to socket
5362  * @skb: the skb to clone
5363  *
5364  * This function creates a clone of a buffer that holds a reference on
5365  * sk_refcnt.  Buffers created via this function are meant to be
5366  * returned using sock_queue_err_skb, or free via kfree_skb.
5367  *
5368  * When passing buffers allocated with this function to sock_queue_err_skb
5369  * it is necessary to wrap the call with sock_hold/sock_put in order to
5370  * prevent the socket from being released prior to being enqueued on
5371  * the sk_error_queue.
5372  */
5373 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5374 {
5375 	struct sock *sk = skb->sk;
5376 	struct sk_buff *clone;
5377 
5378 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5379 		return NULL;
5380 
5381 	clone = skb_clone(skb, GFP_ATOMIC);
5382 	if (!clone) {
5383 		sock_put(sk);
5384 		return NULL;
5385 	}
5386 
5387 	clone->sk = sk;
5388 	clone->destructor = sock_efree;
5389 
5390 	return clone;
5391 }
5392 EXPORT_SYMBOL(skb_clone_sk);
5393 
5394 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5395 					struct sock *sk,
5396 					int tstype,
5397 					bool opt_stats)
5398 {
5399 	struct sock_exterr_skb *serr;
5400 	int err;
5401 
5402 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5403 
5404 	serr = SKB_EXT_ERR(skb);
5405 	memset(serr, 0, sizeof(*serr));
5406 	serr->ee.ee_errno = ENOMSG;
5407 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5408 	serr->ee.ee_info = tstype;
5409 	serr->opt_stats = opt_stats;
5410 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5411 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5412 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5413 		if (sk_is_tcp(sk))
5414 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5415 	}
5416 
5417 	err = sock_queue_err_skb(sk, skb);
5418 
5419 	if (err)
5420 		kfree_skb(skb);
5421 }
5422 
5423 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5424 {
5425 	bool ret;
5426 
5427 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5428 		return true;
5429 
5430 	read_lock_bh(&sk->sk_callback_lock);
5431 	ret = sk->sk_socket && sk->sk_socket->file &&
5432 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5433 	read_unlock_bh(&sk->sk_callback_lock);
5434 	return ret;
5435 }
5436 
5437 void skb_complete_tx_timestamp(struct sk_buff *skb,
5438 			       struct skb_shared_hwtstamps *hwtstamps)
5439 {
5440 	struct sock *sk = skb->sk;
5441 
5442 	if (!skb_may_tx_timestamp(sk, false))
5443 		goto err;
5444 
5445 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5446 	 * but only if the socket refcount is not zero.
5447 	 */
5448 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5449 		*skb_hwtstamps(skb) = *hwtstamps;
5450 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5451 		sock_put(sk);
5452 		return;
5453 	}
5454 
5455 err:
5456 	kfree_skb(skb);
5457 }
5458 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5459 
5460 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5461 		     const struct sk_buff *ack_skb,
5462 		     struct skb_shared_hwtstamps *hwtstamps,
5463 		     struct sock *sk, int tstype)
5464 {
5465 	struct sk_buff *skb;
5466 	bool tsonly, opt_stats = false;
5467 	u32 tsflags;
5468 
5469 	if (!sk)
5470 		return;
5471 
5472 	tsflags = READ_ONCE(sk->sk_tsflags);
5473 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5474 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5475 		return;
5476 
5477 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5478 	if (!skb_may_tx_timestamp(sk, tsonly))
5479 		return;
5480 
5481 	if (tsonly) {
5482 #ifdef CONFIG_INET
5483 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5484 		    sk_is_tcp(sk)) {
5485 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5486 							     ack_skb);
5487 			opt_stats = true;
5488 		} else
5489 #endif
5490 			skb = alloc_skb(0, GFP_ATOMIC);
5491 	} else {
5492 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5493 
5494 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5495 			kfree_skb(skb);
5496 			return;
5497 		}
5498 	}
5499 	if (!skb)
5500 		return;
5501 
5502 	if (tsonly) {
5503 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5504 					     SKBTX_ANY_TSTAMP;
5505 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5506 	}
5507 
5508 	if (hwtstamps)
5509 		*skb_hwtstamps(skb) = *hwtstamps;
5510 	else
5511 		__net_timestamp(skb);
5512 
5513 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5514 }
5515 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5516 
5517 void skb_tstamp_tx(struct sk_buff *orig_skb,
5518 		   struct skb_shared_hwtstamps *hwtstamps)
5519 {
5520 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5521 			       SCM_TSTAMP_SND);
5522 }
5523 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5524 
5525 #ifdef CONFIG_WIRELESS
5526 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5527 {
5528 	struct sock *sk = skb->sk;
5529 	struct sock_exterr_skb *serr;
5530 	int err = 1;
5531 
5532 	skb->wifi_acked_valid = 1;
5533 	skb->wifi_acked = acked;
5534 
5535 	serr = SKB_EXT_ERR(skb);
5536 	memset(serr, 0, sizeof(*serr));
5537 	serr->ee.ee_errno = ENOMSG;
5538 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5539 
5540 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5541 	 * but only if the socket refcount is not zero.
5542 	 */
5543 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5544 		err = sock_queue_err_skb(sk, skb);
5545 		sock_put(sk);
5546 	}
5547 	if (err)
5548 		kfree_skb(skb);
5549 }
5550 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5551 #endif /* CONFIG_WIRELESS */
5552 
5553 /**
5554  * skb_partial_csum_set - set up and verify partial csum values for packet
5555  * @skb: the skb to set
5556  * @start: the number of bytes after skb->data to start checksumming.
5557  * @off: the offset from start to place the checksum.
5558  *
5559  * For untrusted partially-checksummed packets, we need to make sure the values
5560  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5561  *
5562  * This function checks and sets those values and skb->ip_summed: if this
5563  * returns false you should drop the packet.
5564  */
5565 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5566 {
5567 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5568 	u32 csum_start = skb_headroom(skb) + (u32)start;
5569 
5570 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5571 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5572 				     start, off, skb_headroom(skb), skb_headlen(skb));
5573 		return false;
5574 	}
5575 	skb->ip_summed = CHECKSUM_PARTIAL;
5576 	skb->csum_start = csum_start;
5577 	skb->csum_offset = off;
5578 	skb->transport_header = csum_start;
5579 	return true;
5580 }
5581 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5582 
5583 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5584 			       unsigned int max)
5585 {
5586 	if (skb_headlen(skb) >= len)
5587 		return 0;
5588 
5589 	/* If we need to pullup then pullup to the max, so we
5590 	 * won't need to do it again.
5591 	 */
5592 	if (max > skb->len)
5593 		max = skb->len;
5594 
5595 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5596 		return -ENOMEM;
5597 
5598 	if (skb_headlen(skb) < len)
5599 		return -EPROTO;
5600 
5601 	return 0;
5602 }
5603 
5604 #define MAX_TCP_HDR_LEN (15 * 4)
5605 
5606 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5607 				      typeof(IPPROTO_IP) proto,
5608 				      unsigned int off)
5609 {
5610 	int err;
5611 
5612 	switch (proto) {
5613 	case IPPROTO_TCP:
5614 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5615 					  off + MAX_TCP_HDR_LEN);
5616 		if (!err && !skb_partial_csum_set(skb, off,
5617 						  offsetof(struct tcphdr,
5618 							   check)))
5619 			err = -EPROTO;
5620 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5621 
5622 	case IPPROTO_UDP:
5623 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5624 					  off + sizeof(struct udphdr));
5625 		if (!err && !skb_partial_csum_set(skb, off,
5626 						  offsetof(struct udphdr,
5627 							   check)))
5628 			err = -EPROTO;
5629 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5630 	}
5631 
5632 	return ERR_PTR(-EPROTO);
5633 }
5634 
5635 /* This value should be large enough to cover a tagged ethernet header plus
5636  * maximally sized IP and TCP or UDP headers.
5637  */
5638 #define MAX_IP_HDR_LEN 128
5639 
5640 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5641 {
5642 	unsigned int off;
5643 	bool fragment;
5644 	__sum16 *csum;
5645 	int err;
5646 
5647 	fragment = false;
5648 
5649 	err = skb_maybe_pull_tail(skb,
5650 				  sizeof(struct iphdr),
5651 				  MAX_IP_HDR_LEN);
5652 	if (err < 0)
5653 		goto out;
5654 
5655 	if (ip_is_fragment(ip_hdr(skb)))
5656 		fragment = true;
5657 
5658 	off = ip_hdrlen(skb);
5659 
5660 	err = -EPROTO;
5661 
5662 	if (fragment)
5663 		goto out;
5664 
5665 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5666 	if (IS_ERR(csum))
5667 		return PTR_ERR(csum);
5668 
5669 	if (recalculate)
5670 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5671 					   ip_hdr(skb)->daddr,
5672 					   skb->len - off,
5673 					   ip_hdr(skb)->protocol, 0);
5674 	err = 0;
5675 
5676 out:
5677 	return err;
5678 }
5679 
5680 /* This value should be large enough to cover a tagged ethernet header plus
5681  * an IPv6 header, all options, and a maximal TCP or UDP header.
5682  */
5683 #define MAX_IPV6_HDR_LEN 256
5684 
5685 #define OPT_HDR(type, skb, off) \
5686 	(type *)(skb_network_header(skb) + (off))
5687 
5688 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5689 {
5690 	int err;
5691 	u8 nexthdr;
5692 	unsigned int off;
5693 	unsigned int len;
5694 	bool fragment;
5695 	bool done;
5696 	__sum16 *csum;
5697 
5698 	fragment = false;
5699 	done = false;
5700 
5701 	off = sizeof(struct ipv6hdr);
5702 
5703 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5704 	if (err < 0)
5705 		goto out;
5706 
5707 	nexthdr = ipv6_hdr(skb)->nexthdr;
5708 
5709 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5710 	while (off <= len && !done) {
5711 		switch (nexthdr) {
5712 		case IPPROTO_DSTOPTS:
5713 		case IPPROTO_HOPOPTS:
5714 		case IPPROTO_ROUTING: {
5715 			struct ipv6_opt_hdr *hp;
5716 
5717 			err = skb_maybe_pull_tail(skb,
5718 						  off +
5719 						  sizeof(struct ipv6_opt_hdr),
5720 						  MAX_IPV6_HDR_LEN);
5721 			if (err < 0)
5722 				goto out;
5723 
5724 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5725 			nexthdr = hp->nexthdr;
5726 			off += ipv6_optlen(hp);
5727 			break;
5728 		}
5729 		case IPPROTO_AH: {
5730 			struct ip_auth_hdr *hp;
5731 
5732 			err = skb_maybe_pull_tail(skb,
5733 						  off +
5734 						  sizeof(struct ip_auth_hdr),
5735 						  MAX_IPV6_HDR_LEN);
5736 			if (err < 0)
5737 				goto out;
5738 
5739 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5740 			nexthdr = hp->nexthdr;
5741 			off += ipv6_authlen(hp);
5742 			break;
5743 		}
5744 		case IPPROTO_FRAGMENT: {
5745 			struct frag_hdr *hp;
5746 
5747 			err = skb_maybe_pull_tail(skb,
5748 						  off +
5749 						  sizeof(struct frag_hdr),
5750 						  MAX_IPV6_HDR_LEN);
5751 			if (err < 0)
5752 				goto out;
5753 
5754 			hp = OPT_HDR(struct frag_hdr, skb, off);
5755 
5756 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5757 				fragment = true;
5758 
5759 			nexthdr = hp->nexthdr;
5760 			off += sizeof(struct frag_hdr);
5761 			break;
5762 		}
5763 		default:
5764 			done = true;
5765 			break;
5766 		}
5767 	}
5768 
5769 	err = -EPROTO;
5770 
5771 	if (!done || fragment)
5772 		goto out;
5773 
5774 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5775 	if (IS_ERR(csum))
5776 		return PTR_ERR(csum);
5777 
5778 	if (recalculate)
5779 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5780 					 &ipv6_hdr(skb)->daddr,
5781 					 skb->len - off, nexthdr, 0);
5782 	err = 0;
5783 
5784 out:
5785 	return err;
5786 }
5787 
5788 /**
5789  * skb_checksum_setup - set up partial checksum offset
5790  * @skb: the skb to set up
5791  * @recalculate: if true the pseudo-header checksum will be recalculated
5792  */
5793 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5794 {
5795 	int err;
5796 
5797 	switch (skb->protocol) {
5798 	case htons(ETH_P_IP):
5799 		err = skb_checksum_setup_ipv4(skb, recalculate);
5800 		break;
5801 
5802 	case htons(ETH_P_IPV6):
5803 		err = skb_checksum_setup_ipv6(skb, recalculate);
5804 		break;
5805 
5806 	default:
5807 		err = -EPROTO;
5808 		break;
5809 	}
5810 
5811 	return err;
5812 }
5813 EXPORT_SYMBOL(skb_checksum_setup);
5814 
5815 /**
5816  * skb_checksum_maybe_trim - maybe trims the given skb
5817  * @skb: the skb to check
5818  * @transport_len: the data length beyond the network header
5819  *
5820  * Checks whether the given skb has data beyond the given transport length.
5821  * If so, returns a cloned skb trimmed to this transport length.
5822  * Otherwise returns the provided skb. Returns NULL in error cases
5823  * (e.g. transport_len exceeds skb length or out-of-memory).
5824  *
5825  * Caller needs to set the skb transport header and free any returned skb if it
5826  * differs from the provided skb.
5827  */
5828 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5829 					       unsigned int transport_len)
5830 {
5831 	struct sk_buff *skb_chk;
5832 	unsigned int len = skb_transport_offset(skb) + transport_len;
5833 	int ret;
5834 
5835 	if (skb->len < len)
5836 		return NULL;
5837 	else if (skb->len == len)
5838 		return skb;
5839 
5840 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5841 	if (!skb_chk)
5842 		return NULL;
5843 
5844 	ret = pskb_trim_rcsum(skb_chk, len);
5845 	if (ret) {
5846 		kfree_skb(skb_chk);
5847 		return NULL;
5848 	}
5849 
5850 	return skb_chk;
5851 }
5852 
5853 /**
5854  * skb_checksum_trimmed - validate checksum of an skb
5855  * @skb: the skb to check
5856  * @transport_len: the data length beyond the network header
5857  * @skb_chkf: checksum function to use
5858  *
5859  * Applies the given checksum function skb_chkf to the provided skb.
5860  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5861  *
5862  * If the skb has data beyond the given transport length, then a
5863  * trimmed & cloned skb is checked and returned.
5864  *
5865  * Caller needs to set the skb transport header and free any returned skb if it
5866  * differs from the provided skb.
5867  */
5868 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5869 				     unsigned int transport_len,
5870 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5871 {
5872 	struct sk_buff *skb_chk;
5873 	unsigned int offset = skb_transport_offset(skb);
5874 	__sum16 ret;
5875 
5876 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5877 	if (!skb_chk)
5878 		goto err;
5879 
5880 	if (!pskb_may_pull(skb_chk, offset))
5881 		goto err;
5882 
5883 	skb_pull_rcsum(skb_chk, offset);
5884 	ret = skb_chkf(skb_chk);
5885 	skb_push_rcsum(skb_chk, offset);
5886 
5887 	if (ret)
5888 		goto err;
5889 
5890 	return skb_chk;
5891 
5892 err:
5893 	if (skb_chk && skb_chk != skb)
5894 		kfree_skb(skb_chk);
5895 
5896 	return NULL;
5897 
5898 }
5899 EXPORT_SYMBOL(skb_checksum_trimmed);
5900 
5901 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5902 {
5903 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5904 			     skb->dev->name);
5905 }
5906 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5907 
5908 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5909 {
5910 	if (head_stolen) {
5911 		skb_release_head_state(skb);
5912 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5913 	} else {
5914 		__kfree_skb(skb);
5915 	}
5916 }
5917 EXPORT_SYMBOL(kfree_skb_partial);
5918 
5919 /**
5920  * skb_try_coalesce - try to merge skb to prior one
5921  * @to: prior buffer
5922  * @from: buffer to add
5923  * @fragstolen: pointer to boolean
5924  * @delta_truesize: how much more was allocated than was requested
5925  */
5926 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5927 		      bool *fragstolen, int *delta_truesize)
5928 {
5929 	struct skb_shared_info *to_shinfo, *from_shinfo;
5930 	int i, delta, len = from->len;
5931 
5932 	*fragstolen = false;
5933 
5934 	if (skb_cloned(to))
5935 		return false;
5936 
5937 	/* In general, avoid mixing page_pool and non-page_pool allocated
5938 	 * pages within the same SKB. In theory we could take full
5939 	 * references if @from is cloned and !@to->pp_recycle but its
5940 	 * tricky (due to potential race with the clone disappearing) and
5941 	 * rare, so not worth dealing with.
5942 	 */
5943 	if (to->pp_recycle != from->pp_recycle)
5944 		return false;
5945 
5946 	if (len <= skb_tailroom(to)) {
5947 		if (len)
5948 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5949 		*delta_truesize = 0;
5950 		return true;
5951 	}
5952 
5953 	to_shinfo = skb_shinfo(to);
5954 	from_shinfo = skb_shinfo(from);
5955 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5956 		return false;
5957 	if (skb_zcopy(to) || skb_zcopy(from))
5958 		return false;
5959 
5960 	if (skb_headlen(from) != 0) {
5961 		struct page *page;
5962 		unsigned int offset;
5963 
5964 		if (to_shinfo->nr_frags +
5965 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5966 			return false;
5967 
5968 		if (skb_head_is_locked(from))
5969 			return false;
5970 
5971 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5972 
5973 		page = virt_to_head_page(from->head);
5974 		offset = from->data - (unsigned char *)page_address(page);
5975 
5976 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5977 				   page, offset, skb_headlen(from));
5978 		*fragstolen = true;
5979 	} else {
5980 		if (to_shinfo->nr_frags +
5981 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5982 			return false;
5983 
5984 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5985 	}
5986 
5987 	WARN_ON_ONCE(delta < len);
5988 
5989 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5990 	       from_shinfo->frags,
5991 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5992 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5993 
5994 	if (!skb_cloned(from))
5995 		from_shinfo->nr_frags = 0;
5996 
5997 	/* if the skb is not cloned this does nothing
5998 	 * since we set nr_frags to 0.
5999 	 */
6000 	if (skb_pp_frag_ref(from)) {
6001 		for (i = 0; i < from_shinfo->nr_frags; i++)
6002 			__skb_frag_ref(&from_shinfo->frags[i]);
6003 	}
6004 
6005 	to->truesize += delta;
6006 	to->len += len;
6007 	to->data_len += len;
6008 
6009 	*delta_truesize = delta;
6010 	return true;
6011 }
6012 EXPORT_SYMBOL(skb_try_coalesce);
6013 
6014 /**
6015  * skb_scrub_packet - scrub an skb
6016  *
6017  * @skb: buffer to clean
6018  * @xnet: packet is crossing netns
6019  *
6020  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6021  * into/from a tunnel. Some information have to be cleared during these
6022  * operations.
6023  * skb_scrub_packet can also be used to clean a skb before injecting it in
6024  * another namespace (@xnet == true). We have to clear all information in the
6025  * skb that could impact namespace isolation.
6026  */
6027 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6028 {
6029 	skb->pkt_type = PACKET_HOST;
6030 	skb->skb_iif = 0;
6031 	skb->ignore_df = 0;
6032 	skb_dst_drop(skb);
6033 	skb_ext_reset(skb);
6034 	nf_reset_ct(skb);
6035 	nf_reset_trace(skb);
6036 
6037 #ifdef CONFIG_NET_SWITCHDEV
6038 	skb->offload_fwd_mark = 0;
6039 	skb->offload_l3_fwd_mark = 0;
6040 #endif
6041 
6042 	if (!xnet)
6043 		return;
6044 
6045 	ipvs_reset(skb);
6046 	skb->mark = 0;
6047 	skb_clear_tstamp(skb);
6048 }
6049 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6050 
6051 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6052 {
6053 	int mac_len, meta_len;
6054 	void *meta;
6055 
6056 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6057 		kfree_skb(skb);
6058 		return NULL;
6059 	}
6060 
6061 	mac_len = skb->data - skb_mac_header(skb);
6062 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6063 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6064 			mac_len - VLAN_HLEN - ETH_TLEN);
6065 	}
6066 
6067 	meta_len = skb_metadata_len(skb);
6068 	if (meta_len) {
6069 		meta = skb_metadata_end(skb) - meta_len;
6070 		memmove(meta + VLAN_HLEN, meta, meta_len);
6071 	}
6072 
6073 	skb->mac_header += VLAN_HLEN;
6074 	return skb;
6075 }
6076 
6077 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6078 {
6079 	struct vlan_hdr *vhdr;
6080 	u16 vlan_tci;
6081 
6082 	if (unlikely(skb_vlan_tag_present(skb))) {
6083 		/* vlan_tci is already set-up so leave this for another time */
6084 		return skb;
6085 	}
6086 
6087 	skb = skb_share_check(skb, GFP_ATOMIC);
6088 	if (unlikely(!skb))
6089 		goto err_free;
6090 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6091 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6092 		goto err_free;
6093 
6094 	vhdr = (struct vlan_hdr *)skb->data;
6095 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6096 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6097 
6098 	skb_pull_rcsum(skb, VLAN_HLEN);
6099 	vlan_set_encap_proto(skb, vhdr);
6100 
6101 	skb = skb_reorder_vlan_header(skb);
6102 	if (unlikely(!skb))
6103 		goto err_free;
6104 
6105 	skb_reset_network_header(skb);
6106 	if (!skb_transport_header_was_set(skb))
6107 		skb_reset_transport_header(skb);
6108 	skb_reset_mac_len(skb);
6109 
6110 	return skb;
6111 
6112 err_free:
6113 	kfree_skb(skb);
6114 	return NULL;
6115 }
6116 EXPORT_SYMBOL(skb_vlan_untag);
6117 
6118 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6119 {
6120 	if (!pskb_may_pull(skb, write_len))
6121 		return -ENOMEM;
6122 
6123 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6124 		return 0;
6125 
6126 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6127 }
6128 EXPORT_SYMBOL(skb_ensure_writable);
6129 
6130 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6131 {
6132 	int needed_headroom = dev->needed_headroom;
6133 	int needed_tailroom = dev->needed_tailroom;
6134 
6135 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6136 	 * that the tail tag does not fail at its role of being at the end of
6137 	 * the packet, once the conduit interface pads the frame. Account for
6138 	 * that pad length here, and pad later.
6139 	 */
6140 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6141 		needed_tailroom += ETH_ZLEN - skb->len;
6142 	/* skb_headroom() returns unsigned int... */
6143 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6144 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6145 
6146 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6147 		/* No reallocation needed, yay! */
6148 		return 0;
6149 
6150 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6151 				GFP_ATOMIC);
6152 }
6153 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6154 
6155 /* remove VLAN header from packet and update csum accordingly.
6156  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6157  */
6158 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6159 {
6160 	int offset = skb->data - skb_mac_header(skb);
6161 	int err;
6162 
6163 	if (WARN_ONCE(offset,
6164 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6165 		      offset)) {
6166 		return -EINVAL;
6167 	}
6168 
6169 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6170 	if (unlikely(err))
6171 		return err;
6172 
6173 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6174 
6175 	vlan_remove_tag(skb, vlan_tci);
6176 
6177 	skb->mac_header += VLAN_HLEN;
6178 
6179 	if (skb_network_offset(skb) < ETH_HLEN)
6180 		skb_set_network_header(skb, ETH_HLEN);
6181 
6182 	skb_reset_mac_len(skb);
6183 
6184 	return err;
6185 }
6186 EXPORT_SYMBOL(__skb_vlan_pop);
6187 
6188 /* Pop a vlan tag either from hwaccel or from payload.
6189  * Expects skb->data at mac header.
6190  */
6191 int skb_vlan_pop(struct sk_buff *skb)
6192 {
6193 	u16 vlan_tci;
6194 	__be16 vlan_proto;
6195 	int err;
6196 
6197 	if (likely(skb_vlan_tag_present(skb))) {
6198 		__vlan_hwaccel_clear_tag(skb);
6199 	} else {
6200 		if (unlikely(!eth_type_vlan(skb->protocol)))
6201 			return 0;
6202 
6203 		err = __skb_vlan_pop(skb, &vlan_tci);
6204 		if (err)
6205 			return err;
6206 	}
6207 	/* move next vlan tag to hw accel tag */
6208 	if (likely(!eth_type_vlan(skb->protocol)))
6209 		return 0;
6210 
6211 	vlan_proto = skb->protocol;
6212 	err = __skb_vlan_pop(skb, &vlan_tci);
6213 	if (unlikely(err))
6214 		return err;
6215 
6216 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6217 	return 0;
6218 }
6219 EXPORT_SYMBOL(skb_vlan_pop);
6220 
6221 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6222  * Expects skb->data at mac header.
6223  */
6224 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6225 {
6226 	if (skb_vlan_tag_present(skb)) {
6227 		int offset = skb->data - skb_mac_header(skb);
6228 		int err;
6229 
6230 		if (WARN_ONCE(offset,
6231 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6232 			      offset)) {
6233 			return -EINVAL;
6234 		}
6235 
6236 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6237 					skb_vlan_tag_get(skb));
6238 		if (err)
6239 			return err;
6240 
6241 		skb->protocol = skb->vlan_proto;
6242 		skb->mac_len += VLAN_HLEN;
6243 
6244 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6245 	}
6246 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6247 	return 0;
6248 }
6249 EXPORT_SYMBOL(skb_vlan_push);
6250 
6251 /**
6252  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6253  *
6254  * @skb: Socket buffer to modify
6255  *
6256  * Drop the Ethernet header of @skb.
6257  *
6258  * Expects that skb->data points to the mac header and that no VLAN tags are
6259  * present.
6260  *
6261  * Returns 0 on success, -errno otherwise.
6262  */
6263 int skb_eth_pop(struct sk_buff *skb)
6264 {
6265 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6266 	    skb_network_offset(skb) < ETH_HLEN)
6267 		return -EPROTO;
6268 
6269 	skb_pull_rcsum(skb, ETH_HLEN);
6270 	skb_reset_mac_header(skb);
6271 	skb_reset_mac_len(skb);
6272 
6273 	return 0;
6274 }
6275 EXPORT_SYMBOL(skb_eth_pop);
6276 
6277 /**
6278  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6279  *
6280  * @skb: Socket buffer to modify
6281  * @dst: Destination MAC address of the new header
6282  * @src: Source MAC address of the new header
6283  *
6284  * Prepend @skb with a new Ethernet header.
6285  *
6286  * Expects that skb->data points to the mac header, which must be empty.
6287  *
6288  * Returns 0 on success, -errno otherwise.
6289  */
6290 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6291 		 const unsigned char *src)
6292 {
6293 	struct ethhdr *eth;
6294 	int err;
6295 
6296 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6297 		return -EPROTO;
6298 
6299 	err = skb_cow_head(skb, sizeof(*eth));
6300 	if (err < 0)
6301 		return err;
6302 
6303 	skb_push(skb, sizeof(*eth));
6304 	skb_reset_mac_header(skb);
6305 	skb_reset_mac_len(skb);
6306 
6307 	eth = eth_hdr(skb);
6308 	ether_addr_copy(eth->h_dest, dst);
6309 	ether_addr_copy(eth->h_source, src);
6310 	eth->h_proto = skb->protocol;
6311 
6312 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6313 
6314 	return 0;
6315 }
6316 EXPORT_SYMBOL(skb_eth_push);
6317 
6318 /* Update the ethertype of hdr and the skb csum value if required. */
6319 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6320 			     __be16 ethertype)
6321 {
6322 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6323 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6324 
6325 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6326 	}
6327 
6328 	hdr->h_proto = ethertype;
6329 }
6330 
6331 /**
6332  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6333  *                   the packet
6334  *
6335  * @skb: buffer
6336  * @mpls_lse: MPLS label stack entry to push
6337  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6338  * @mac_len: length of the MAC header
6339  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6340  *            ethernet
6341  *
6342  * Expects skb->data at mac header.
6343  *
6344  * Returns 0 on success, -errno otherwise.
6345  */
6346 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6347 		  int mac_len, bool ethernet)
6348 {
6349 	struct mpls_shim_hdr *lse;
6350 	int err;
6351 
6352 	if (unlikely(!eth_p_mpls(mpls_proto)))
6353 		return -EINVAL;
6354 
6355 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6356 	if (skb->encapsulation)
6357 		return -EINVAL;
6358 
6359 	err = skb_cow_head(skb, MPLS_HLEN);
6360 	if (unlikely(err))
6361 		return err;
6362 
6363 	if (!skb->inner_protocol) {
6364 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6365 		skb_set_inner_protocol(skb, skb->protocol);
6366 	}
6367 
6368 	skb_push(skb, MPLS_HLEN);
6369 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6370 		mac_len);
6371 	skb_reset_mac_header(skb);
6372 	skb_set_network_header(skb, mac_len);
6373 	skb_reset_mac_len(skb);
6374 
6375 	lse = mpls_hdr(skb);
6376 	lse->label_stack_entry = mpls_lse;
6377 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6378 
6379 	if (ethernet && mac_len >= ETH_HLEN)
6380 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6381 	skb->protocol = mpls_proto;
6382 
6383 	return 0;
6384 }
6385 EXPORT_SYMBOL_GPL(skb_mpls_push);
6386 
6387 /**
6388  * skb_mpls_pop() - pop the outermost MPLS header
6389  *
6390  * @skb: buffer
6391  * @next_proto: ethertype of header after popped MPLS header
6392  * @mac_len: length of the MAC header
6393  * @ethernet: flag to indicate if the packet is ethernet
6394  *
6395  * Expects skb->data at mac header.
6396  *
6397  * Returns 0 on success, -errno otherwise.
6398  */
6399 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6400 		 bool ethernet)
6401 {
6402 	int err;
6403 
6404 	if (unlikely(!eth_p_mpls(skb->protocol)))
6405 		return 0;
6406 
6407 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6408 	if (unlikely(err))
6409 		return err;
6410 
6411 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6412 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6413 		mac_len);
6414 
6415 	__skb_pull(skb, MPLS_HLEN);
6416 	skb_reset_mac_header(skb);
6417 	skb_set_network_header(skb, mac_len);
6418 
6419 	if (ethernet && mac_len >= ETH_HLEN) {
6420 		struct ethhdr *hdr;
6421 
6422 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6423 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6424 		skb_mod_eth_type(skb, hdr, next_proto);
6425 	}
6426 	skb->protocol = next_proto;
6427 
6428 	return 0;
6429 }
6430 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6431 
6432 /**
6433  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6434  *
6435  * @skb: buffer
6436  * @mpls_lse: new MPLS label stack entry to update to
6437  *
6438  * Expects skb->data at mac header.
6439  *
6440  * Returns 0 on success, -errno otherwise.
6441  */
6442 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6443 {
6444 	int err;
6445 
6446 	if (unlikely(!eth_p_mpls(skb->protocol)))
6447 		return -EINVAL;
6448 
6449 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6450 	if (unlikely(err))
6451 		return err;
6452 
6453 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6454 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6455 
6456 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6457 	}
6458 
6459 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6460 
6461 	return 0;
6462 }
6463 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6464 
6465 /**
6466  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6467  *
6468  * @skb: buffer
6469  *
6470  * Expects skb->data at mac header.
6471  *
6472  * Returns 0 on success, -errno otherwise.
6473  */
6474 int skb_mpls_dec_ttl(struct sk_buff *skb)
6475 {
6476 	u32 lse;
6477 	u8 ttl;
6478 
6479 	if (unlikely(!eth_p_mpls(skb->protocol)))
6480 		return -EINVAL;
6481 
6482 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6483 		return -ENOMEM;
6484 
6485 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6486 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6487 	if (!--ttl)
6488 		return -EINVAL;
6489 
6490 	lse &= ~MPLS_LS_TTL_MASK;
6491 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6492 
6493 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6494 }
6495 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6496 
6497 /**
6498  * alloc_skb_with_frags - allocate skb with page frags
6499  *
6500  * @header_len: size of linear part
6501  * @data_len: needed length in frags
6502  * @order: max page order desired.
6503  * @errcode: pointer to error code if any
6504  * @gfp_mask: allocation mask
6505  *
6506  * This can be used to allocate a paged skb, given a maximal order for frags.
6507  */
6508 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6509 				     unsigned long data_len,
6510 				     int order,
6511 				     int *errcode,
6512 				     gfp_t gfp_mask)
6513 {
6514 	unsigned long chunk;
6515 	struct sk_buff *skb;
6516 	struct page *page;
6517 	int nr_frags = 0;
6518 
6519 	*errcode = -EMSGSIZE;
6520 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6521 		return NULL;
6522 
6523 	*errcode = -ENOBUFS;
6524 	skb = alloc_skb(header_len, gfp_mask);
6525 	if (!skb)
6526 		return NULL;
6527 
6528 	while (data_len) {
6529 		if (nr_frags == MAX_SKB_FRAGS - 1)
6530 			goto failure;
6531 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6532 			order--;
6533 
6534 		if (order) {
6535 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6536 					   __GFP_COMP |
6537 					   __GFP_NOWARN,
6538 					   order);
6539 			if (!page) {
6540 				order--;
6541 				continue;
6542 			}
6543 		} else {
6544 			page = alloc_page(gfp_mask);
6545 			if (!page)
6546 				goto failure;
6547 		}
6548 		chunk = min_t(unsigned long, data_len,
6549 			      PAGE_SIZE << order);
6550 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6551 		nr_frags++;
6552 		skb->truesize += (PAGE_SIZE << order);
6553 		data_len -= chunk;
6554 	}
6555 	return skb;
6556 
6557 failure:
6558 	kfree_skb(skb);
6559 	return NULL;
6560 }
6561 EXPORT_SYMBOL(alloc_skb_with_frags);
6562 
6563 /* carve out the first off bytes from skb when off < headlen */
6564 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6565 				    const int headlen, gfp_t gfp_mask)
6566 {
6567 	int i;
6568 	unsigned int size = skb_end_offset(skb);
6569 	int new_hlen = headlen - off;
6570 	u8 *data;
6571 
6572 	if (skb_pfmemalloc(skb))
6573 		gfp_mask |= __GFP_MEMALLOC;
6574 
6575 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6576 	if (!data)
6577 		return -ENOMEM;
6578 	size = SKB_WITH_OVERHEAD(size);
6579 
6580 	/* Copy real data, and all frags */
6581 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6582 	skb->len -= off;
6583 
6584 	memcpy((struct skb_shared_info *)(data + size),
6585 	       skb_shinfo(skb),
6586 	       offsetof(struct skb_shared_info,
6587 			frags[skb_shinfo(skb)->nr_frags]));
6588 	if (skb_cloned(skb)) {
6589 		/* drop the old head gracefully */
6590 		if (skb_orphan_frags(skb, gfp_mask)) {
6591 			skb_kfree_head(data, size);
6592 			return -ENOMEM;
6593 		}
6594 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6595 			skb_frag_ref(skb, i);
6596 		if (skb_has_frag_list(skb))
6597 			skb_clone_fraglist(skb);
6598 		skb_release_data(skb, SKB_CONSUMED);
6599 	} else {
6600 		/* we can reuse existing recount- all we did was
6601 		 * relocate values
6602 		 */
6603 		skb_free_head(skb);
6604 	}
6605 
6606 	skb->head = data;
6607 	skb->data = data;
6608 	skb->head_frag = 0;
6609 	skb_set_end_offset(skb, size);
6610 	skb_set_tail_pointer(skb, skb_headlen(skb));
6611 	skb_headers_offset_update(skb, 0);
6612 	skb->cloned = 0;
6613 	skb->hdr_len = 0;
6614 	skb->nohdr = 0;
6615 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6616 
6617 	return 0;
6618 }
6619 
6620 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6621 
6622 /* carve out the first eat bytes from skb's frag_list. May recurse into
6623  * pskb_carve()
6624  */
6625 static int pskb_carve_frag_list(struct sk_buff *skb,
6626 				struct skb_shared_info *shinfo, int eat,
6627 				gfp_t gfp_mask)
6628 {
6629 	struct sk_buff *list = shinfo->frag_list;
6630 	struct sk_buff *clone = NULL;
6631 	struct sk_buff *insp = NULL;
6632 
6633 	do {
6634 		if (!list) {
6635 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6636 			return -EFAULT;
6637 		}
6638 		if (list->len <= eat) {
6639 			/* Eaten as whole. */
6640 			eat -= list->len;
6641 			list = list->next;
6642 			insp = list;
6643 		} else {
6644 			/* Eaten partially. */
6645 			if (skb_shared(list)) {
6646 				clone = skb_clone(list, gfp_mask);
6647 				if (!clone)
6648 					return -ENOMEM;
6649 				insp = list->next;
6650 				list = clone;
6651 			} else {
6652 				/* This may be pulled without problems. */
6653 				insp = list;
6654 			}
6655 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6656 				kfree_skb(clone);
6657 				return -ENOMEM;
6658 			}
6659 			break;
6660 		}
6661 	} while (eat);
6662 
6663 	/* Free pulled out fragments. */
6664 	while ((list = shinfo->frag_list) != insp) {
6665 		shinfo->frag_list = list->next;
6666 		consume_skb(list);
6667 	}
6668 	/* And insert new clone at head. */
6669 	if (clone) {
6670 		clone->next = list;
6671 		shinfo->frag_list = clone;
6672 	}
6673 	return 0;
6674 }
6675 
6676 /* carve off first len bytes from skb. Split line (off) is in the
6677  * non-linear part of skb
6678  */
6679 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6680 				       int pos, gfp_t gfp_mask)
6681 {
6682 	int i, k = 0;
6683 	unsigned int size = skb_end_offset(skb);
6684 	u8 *data;
6685 	const int nfrags = skb_shinfo(skb)->nr_frags;
6686 	struct skb_shared_info *shinfo;
6687 
6688 	if (skb_pfmemalloc(skb))
6689 		gfp_mask |= __GFP_MEMALLOC;
6690 
6691 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6692 	if (!data)
6693 		return -ENOMEM;
6694 	size = SKB_WITH_OVERHEAD(size);
6695 
6696 	memcpy((struct skb_shared_info *)(data + size),
6697 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6698 	if (skb_orphan_frags(skb, gfp_mask)) {
6699 		skb_kfree_head(data, size);
6700 		return -ENOMEM;
6701 	}
6702 	shinfo = (struct skb_shared_info *)(data + size);
6703 	for (i = 0; i < nfrags; i++) {
6704 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6705 
6706 		if (pos + fsize > off) {
6707 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6708 
6709 			if (pos < off) {
6710 				/* Split frag.
6711 				 * We have two variants in this case:
6712 				 * 1. Move all the frag to the second
6713 				 *    part, if it is possible. F.e.
6714 				 *    this approach is mandatory for TUX,
6715 				 *    where splitting is expensive.
6716 				 * 2. Split is accurately. We make this.
6717 				 */
6718 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6719 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6720 			}
6721 			skb_frag_ref(skb, i);
6722 			k++;
6723 		}
6724 		pos += fsize;
6725 	}
6726 	shinfo->nr_frags = k;
6727 	if (skb_has_frag_list(skb))
6728 		skb_clone_fraglist(skb);
6729 
6730 	/* split line is in frag list */
6731 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6732 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6733 		if (skb_has_frag_list(skb))
6734 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6735 		skb_kfree_head(data, size);
6736 		return -ENOMEM;
6737 	}
6738 	skb_release_data(skb, SKB_CONSUMED);
6739 
6740 	skb->head = data;
6741 	skb->head_frag = 0;
6742 	skb->data = data;
6743 	skb_set_end_offset(skb, size);
6744 	skb_reset_tail_pointer(skb);
6745 	skb_headers_offset_update(skb, 0);
6746 	skb->cloned   = 0;
6747 	skb->hdr_len  = 0;
6748 	skb->nohdr    = 0;
6749 	skb->len -= off;
6750 	skb->data_len = skb->len;
6751 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6752 	return 0;
6753 }
6754 
6755 /* remove len bytes from the beginning of the skb */
6756 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6757 {
6758 	int headlen = skb_headlen(skb);
6759 
6760 	if (len < headlen)
6761 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6762 	else
6763 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6764 }
6765 
6766 /* Extract to_copy bytes starting at off from skb, and return this in
6767  * a new skb
6768  */
6769 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6770 			     int to_copy, gfp_t gfp)
6771 {
6772 	struct sk_buff  *clone = skb_clone(skb, gfp);
6773 
6774 	if (!clone)
6775 		return NULL;
6776 
6777 	if (pskb_carve(clone, off, gfp) < 0 ||
6778 	    pskb_trim(clone, to_copy)) {
6779 		kfree_skb(clone);
6780 		return NULL;
6781 	}
6782 	return clone;
6783 }
6784 EXPORT_SYMBOL(pskb_extract);
6785 
6786 /**
6787  * skb_condense - try to get rid of fragments/frag_list if possible
6788  * @skb: buffer
6789  *
6790  * Can be used to save memory before skb is added to a busy queue.
6791  * If packet has bytes in frags and enough tail room in skb->head,
6792  * pull all of them, so that we can free the frags right now and adjust
6793  * truesize.
6794  * Notes:
6795  *	We do not reallocate skb->head thus can not fail.
6796  *	Caller must re-evaluate skb->truesize if needed.
6797  */
6798 void skb_condense(struct sk_buff *skb)
6799 {
6800 	if (skb->data_len) {
6801 		if (skb->data_len > skb->end - skb->tail ||
6802 		    skb_cloned(skb))
6803 			return;
6804 
6805 		/* Nice, we can free page frag(s) right now */
6806 		__pskb_pull_tail(skb, skb->data_len);
6807 	}
6808 	/* At this point, skb->truesize might be over estimated,
6809 	 * because skb had a fragment, and fragments do not tell
6810 	 * their truesize.
6811 	 * When we pulled its content into skb->head, fragment
6812 	 * was freed, but __pskb_pull_tail() could not possibly
6813 	 * adjust skb->truesize, not knowing the frag truesize.
6814 	 */
6815 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6816 }
6817 EXPORT_SYMBOL(skb_condense);
6818 
6819 #ifdef CONFIG_SKB_EXTENSIONS
6820 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6821 {
6822 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6823 }
6824 
6825 /**
6826  * __skb_ext_alloc - allocate a new skb extensions storage
6827  *
6828  * @flags: See kmalloc().
6829  *
6830  * Returns the newly allocated pointer. The pointer can later attached to a
6831  * skb via __skb_ext_set().
6832  * Note: caller must handle the skb_ext as an opaque data.
6833  */
6834 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6835 {
6836 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6837 
6838 	if (new) {
6839 		memset(new->offset, 0, sizeof(new->offset));
6840 		refcount_set(&new->refcnt, 1);
6841 	}
6842 
6843 	return new;
6844 }
6845 
6846 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6847 					 unsigned int old_active)
6848 {
6849 	struct skb_ext *new;
6850 
6851 	if (refcount_read(&old->refcnt) == 1)
6852 		return old;
6853 
6854 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6855 	if (!new)
6856 		return NULL;
6857 
6858 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6859 	refcount_set(&new->refcnt, 1);
6860 
6861 #ifdef CONFIG_XFRM
6862 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6863 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6864 		unsigned int i;
6865 
6866 		for (i = 0; i < sp->len; i++)
6867 			xfrm_state_hold(sp->xvec[i]);
6868 	}
6869 #endif
6870 #ifdef CONFIG_MCTP_FLOWS
6871 	if (old_active & (1 << SKB_EXT_MCTP)) {
6872 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6873 
6874 		if (flow->key)
6875 			refcount_inc(&flow->key->refs);
6876 	}
6877 #endif
6878 	__skb_ext_put(old);
6879 	return new;
6880 }
6881 
6882 /**
6883  * __skb_ext_set - attach the specified extension storage to this skb
6884  * @skb: buffer
6885  * @id: extension id
6886  * @ext: extension storage previously allocated via __skb_ext_alloc()
6887  *
6888  * Existing extensions, if any, are cleared.
6889  *
6890  * Returns the pointer to the extension.
6891  */
6892 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6893 		    struct skb_ext *ext)
6894 {
6895 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6896 
6897 	skb_ext_put(skb);
6898 	newlen = newoff + skb_ext_type_len[id];
6899 	ext->chunks = newlen;
6900 	ext->offset[id] = newoff;
6901 	skb->extensions = ext;
6902 	skb->active_extensions = 1 << id;
6903 	return skb_ext_get_ptr(ext, id);
6904 }
6905 
6906 /**
6907  * skb_ext_add - allocate space for given extension, COW if needed
6908  * @skb: buffer
6909  * @id: extension to allocate space for
6910  *
6911  * Allocates enough space for the given extension.
6912  * If the extension is already present, a pointer to that extension
6913  * is returned.
6914  *
6915  * If the skb was cloned, COW applies and the returned memory can be
6916  * modified without changing the extension space of clones buffers.
6917  *
6918  * Returns pointer to the extension or NULL on allocation failure.
6919  */
6920 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6921 {
6922 	struct skb_ext *new, *old = NULL;
6923 	unsigned int newlen, newoff;
6924 
6925 	if (skb->active_extensions) {
6926 		old = skb->extensions;
6927 
6928 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6929 		if (!new)
6930 			return NULL;
6931 
6932 		if (__skb_ext_exist(new, id))
6933 			goto set_active;
6934 
6935 		newoff = new->chunks;
6936 	} else {
6937 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6938 
6939 		new = __skb_ext_alloc(GFP_ATOMIC);
6940 		if (!new)
6941 			return NULL;
6942 	}
6943 
6944 	newlen = newoff + skb_ext_type_len[id];
6945 	new->chunks = newlen;
6946 	new->offset[id] = newoff;
6947 set_active:
6948 	skb->slow_gro = 1;
6949 	skb->extensions = new;
6950 	skb->active_extensions |= 1 << id;
6951 	return skb_ext_get_ptr(new, id);
6952 }
6953 EXPORT_SYMBOL(skb_ext_add);
6954 
6955 #ifdef CONFIG_XFRM
6956 static void skb_ext_put_sp(struct sec_path *sp)
6957 {
6958 	unsigned int i;
6959 
6960 	for (i = 0; i < sp->len; i++)
6961 		xfrm_state_put(sp->xvec[i]);
6962 }
6963 #endif
6964 
6965 #ifdef CONFIG_MCTP_FLOWS
6966 static void skb_ext_put_mctp(struct mctp_flow *flow)
6967 {
6968 	if (flow->key)
6969 		mctp_key_unref(flow->key);
6970 }
6971 #endif
6972 
6973 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6974 {
6975 	struct skb_ext *ext = skb->extensions;
6976 
6977 	skb->active_extensions &= ~(1 << id);
6978 	if (skb->active_extensions == 0) {
6979 		skb->extensions = NULL;
6980 		__skb_ext_put(ext);
6981 #ifdef CONFIG_XFRM
6982 	} else if (id == SKB_EXT_SEC_PATH &&
6983 		   refcount_read(&ext->refcnt) == 1) {
6984 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6985 
6986 		skb_ext_put_sp(sp);
6987 		sp->len = 0;
6988 #endif
6989 	}
6990 }
6991 EXPORT_SYMBOL(__skb_ext_del);
6992 
6993 void __skb_ext_put(struct skb_ext *ext)
6994 {
6995 	/* If this is last clone, nothing can increment
6996 	 * it after check passes.  Avoids one atomic op.
6997 	 */
6998 	if (refcount_read(&ext->refcnt) == 1)
6999 		goto free_now;
7000 
7001 	if (!refcount_dec_and_test(&ext->refcnt))
7002 		return;
7003 free_now:
7004 #ifdef CONFIG_XFRM
7005 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7006 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7007 #endif
7008 #ifdef CONFIG_MCTP_FLOWS
7009 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7010 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7011 #endif
7012 
7013 	kmem_cache_free(skbuff_ext_cache, ext);
7014 }
7015 EXPORT_SYMBOL(__skb_ext_put);
7016 #endif /* CONFIG_SKB_EXTENSIONS */
7017 
7018 static void kfree_skb_napi_cache(struct sk_buff *skb)
7019 {
7020 	/* if SKB is a clone, don't handle this case */
7021 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7022 		__kfree_skb(skb);
7023 		return;
7024 	}
7025 
7026 	local_bh_disable();
7027 	__napi_kfree_skb(skb, SKB_CONSUMED);
7028 	local_bh_enable();
7029 }
7030 
7031 /**
7032  * skb_attempt_defer_free - queue skb for remote freeing
7033  * @skb: buffer
7034  *
7035  * Put @skb in a per-cpu list, using the cpu which
7036  * allocated the skb/pages to reduce false sharing
7037  * and memory zone spinlock contention.
7038  */
7039 void skb_attempt_defer_free(struct sk_buff *skb)
7040 {
7041 	int cpu = skb->alloc_cpu;
7042 	struct softnet_data *sd;
7043 	unsigned int defer_max;
7044 	bool kick;
7045 
7046 	if (cpu == raw_smp_processor_id() ||
7047 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7048 	    !cpu_online(cpu)) {
7049 nodefer:	kfree_skb_napi_cache(skb);
7050 		return;
7051 	}
7052 
7053 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7054 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7055 
7056 	sd = &per_cpu(softnet_data, cpu);
7057 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7058 	if (READ_ONCE(sd->defer_count) >= defer_max)
7059 		goto nodefer;
7060 
7061 	spin_lock_bh(&sd->defer_lock);
7062 	/* Send an IPI every time queue reaches half capacity. */
7063 	kick = sd->defer_count == (defer_max >> 1);
7064 	/* Paired with the READ_ONCE() few lines above */
7065 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7066 
7067 	skb->next = sd->defer_list;
7068 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7069 	WRITE_ONCE(sd->defer_list, skb);
7070 	spin_unlock_bh(&sd->defer_lock);
7071 
7072 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7073 	 * if we are unlucky enough (this seems very unlikely).
7074 	 */
7075 	if (unlikely(kick))
7076 		kick_defer_list_purge(sd, cpu);
7077 }
7078 
7079 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7080 				 size_t offset, size_t len)
7081 {
7082 	const char *kaddr;
7083 	__wsum csum;
7084 
7085 	kaddr = kmap_local_page(page);
7086 	csum = csum_partial(kaddr + offset, len, 0);
7087 	kunmap_local(kaddr);
7088 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7089 }
7090 
7091 /**
7092  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7093  * @skb: The buffer to add pages to
7094  * @iter: Iterator representing the pages to be added
7095  * @maxsize: Maximum amount of pages to be added
7096  * @gfp: Allocation flags
7097  *
7098  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7099  * extracts pages from an iterator and adds them to the socket buffer if
7100  * possible, copying them to fragments if not possible (such as if they're slab
7101  * pages).
7102  *
7103  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7104  * insufficient space in the buffer to transfer anything.
7105  */
7106 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7107 			     ssize_t maxsize, gfp_t gfp)
7108 {
7109 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7110 	struct page *pages[8], **ppages = pages;
7111 	ssize_t spliced = 0, ret = 0;
7112 	unsigned int i;
7113 
7114 	while (iter->count > 0) {
7115 		ssize_t space, nr, len;
7116 		size_t off;
7117 
7118 		ret = -EMSGSIZE;
7119 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7120 		if (space < 0)
7121 			break;
7122 
7123 		/* We might be able to coalesce without increasing nr_frags */
7124 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7125 
7126 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7127 		if (len <= 0) {
7128 			ret = len ?: -EIO;
7129 			break;
7130 		}
7131 
7132 		i = 0;
7133 		do {
7134 			struct page *page = pages[i++];
7135 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7136 
7137 			ret = -EIO;
7138 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7139 				goto out;
7140 
7141 			ret = skb_append_pagefrags(skb, page, off, part,
7142 						   frag_limit);
7143 			if (ret < 0) {
7144 				iov_iter_revert(iter, len);
7145 				goto out;
7146 			}
7147 
7148 			if (skb->ip_summed == CHECKSUM_NONE)
7149 				skb_splice_csum_page(skb, page, off, part);
7150 
7151 			off = 0;
7152 			spliced += part;
7153 			maxsize -= part;
7154 			len -= part;
7155 		} while (len > 0);
7156 
7157 		if (maxsize <= 0)
7158 			break;
7159 	}
7160 
7161 out:
7162 	skb_len_add(skb, spliced);
7163 	return spliced ?: ret;
7164 }
7165 EXPORT_SYMBOL(skb_splice_from_iter);
7166 
7167 static __always_inline
7168 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7169 			     size_t len, void *to, void *priv2)
7170 {
7171 	__wsum *csum = priv2;
7172 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7173 
7174 	*csum = csum_block_add(*csum, next, progress);
7175 	return 0;
7176 }
7177 
7178 static __always_inline
7179 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7180 				size_t len, void *to, void *priv2)
7181 {
7182 	__wsum next, *csum = priv2;
7183 
7184 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7185 	*csum = csum_block_add(*csum, next, progress);
7186 	return next ? 0 : len;
7187 }
7188 
7189 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7190 				  __wsum *csum, struct iov_iter *i)
7191 {
7192 	size_t copied;
7193 
7194 	if (WARN_ON_ONCE(!i->data_source))
7195 		return false;
7196 	copied = iterate_and_advance2(i, bytes, addr, csum,
7197 				      copy_from_user_iter_csum,
7198 				      memcpy_from_iter_csum);
7199 	if (likely(copied == bytes))
7200 		return true;
7201 	iov_iter_revert(i, copied);
7202 	return false;
7203 }
7204 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7205