xref: /linux/net/core/skbuff.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 
75 #include <asm/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 
86 /**
87  *	skb_panic - private function for out-of-line support
88  *	@skb:	buffer
89  *	@sz:	size
90  *	@addr:	address
91  *	@msg:	skb_over_panic or skb_under_panic
92  *
93  *	Out-of-line support for skb_put() and skb_push().
94  *	Called via the wrapper skb_over_panic() or skb_under_panic().
95  *	Keep out of line to prevent kernel bloat.
96  *	__builtin_return_address is not used because it is not always reliable.
97  */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 		      const char msg[])
100 {
101 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 		 msg, addr, skb->len, sz, skb->head, skb->data,
103 		 (unsigned long)skb->tail, (unsigned long)skb->end,
104 		 skb->dev ? skb->dev->name : "<NULL>");
105 	BUG();
106 }
107 
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 /*
119  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120  * the caller if emergency pfmemalloc reserves are being used. If it is and
121  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122  * may be used. Otherwise, the packet data may be discarded until enough
123  * memory is free
124  */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 			       unsigned long ip, bool *pfmemalloc)
130 {
131 	void *obj;
132 	bool ret_pfmemalloc = false;
133 
134 	/*
135 	 * Try a regular allocation, when that fails and we're not entitled
136 	 * to the reserves, fail.
137 	 */
138 	obj = kmalloc_node_track_caller(size,
139 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 					node);
141 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 		goto out;
143 
144 	/* Try again but now we are using pfmemalloc reserves */
145 	ret_pfmemalloc = true;
146 	obj = kmalloc_node_track_caller(size, flags, node);
147 
148 out:
149 	if (pfmemalloc)
150 		*pfmemalloc = ret_pfmemalloc;
151 
152 	return obj;
153 }
154 
155 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
156  *	'private' fields and also do memory statistics to find all the
157  *	[BEEP] leaks.
158  *
159  */
160 
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 	struct sk_buff *skb;
164 
165 	/* Get the HEAD */
166 	skb = kmem_cache_alloc_node(skbuff_head_cache,
167 				    gfp_mask & ~__GFP_DMA, node);
168 	if (!skb)
169 		goto out;
170 
171 	/*
172 	 * Only clear those fields we need to clear, not those that we will
173 	 * actually initialise below. Hence, don't put any more fields after
174 	 * the tail pointer in struct sk_buff!
175 	 */
176 	memset(skb, 0, offsetof(struct sk_buff, tail));
177 	skb->head = NULL;
178 	skb->truesize = sizeof(struct sk_buff);
179 	atomic_set(&skb->users, 1);
180 
181 	skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 	return skb;
184 }
185 
186 /**
187  *	__alloc_skb	-	allocate a network buffer
188  *	@size: size to allocate
189  *	@gfp_mask: allocation mask
190  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191  *		instead of head cache and allocate a cloned (child) skb.
192  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193  *		allocations in case the data is required for writeback
194  *	@node: numa node to allocate memory on
195  *
196  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
197  *	tail room of at least size bytes. The object has a reference count
198  *	of one. The return is the buffer. On a failure the return is %NULL.
199  *
200  *	Buffers may only be allocated from interrupts using a @gfp_mask of
201  *	%GFP_ATOMIC.
202  */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 			    int flags, int node)
205 {
206 	struct kmem_cache *cache;
207 	struct skb_shared_info *shinfo;
208 	struct sk_buff *skb;
209 	u8 *data;
210 	bool pfmemalloc;
211 
212 	cache = (flags & SKB_ALLOC_FCLONE)
213 		? skbuff_fclone_cache : skbuff_head_cache;
214 
215 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 		gfp_mask |= __GFP_MEMALLOC;
217 
218 	/* Get the HEAD */
219 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 	if (!skb)
221 		goto out;
222 	prefetchw(skb);
223 
224 	/* We do our best to align skb_shared_info on a separate cache
225 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 	 * Both skb->head and skb_shared_info are cache line aligned.
228 	 */
229 	size = SKB_DATA_ALIGN(size);
230 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 	if (!data)
233 		goto nodata;
234 	/* kmalloc(size) might give us more room than requested.
235 	 * Put skb_shared_info exactly at the end of allocated zone,
236 	 * to allow max possible filling before reallocation.
237 	 */
238 	size = SKB_WITH_OVERHEAD(ksize(data));
239 	prefetchw(data + size);
240 
241 	/*
242 	 * Only clear those fields we need to clear, not those that we will
243 	 * actually initialise below. Hence, don't put any more fields after
244 	 * the tail pointer in struct sk_buff!
245 	 */
246 	memset(skb, 0, offsetof(struct sk_buff, tail));
247 	/* Account for allocated memory : skb + skb->head */
248 	skb->truesize = SKB_TRUESIZE(size);
249 	skb->pfmemalloc = pfmemalloc;
250 	atomic_set(&skb->users, 1);
251 	skb->head = data;
252 	skb->data = data;
253 	skb_reset_tail_pointer(skb);
254 	skb->end = skb->tail + size;
255 	skb->mac_header = (typeof(skb->mac_header))~0U;
256 	skb->transport_header = (typeof(skb->transport_header))~0U;
257 
258 	/* make sure we initialize shinfo sequentially */
259 	shinfo = skb_shinfo(skb);
260 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 	atomic_set(&shinfo->dataref, 1);
262 	kmemcheck_annotate_variable(shinfo->destructor_arg);
263 
264 	if (flags & SKB_ALLOC_FCLONE) {
265 		struct sk_buff_fclones *fclones;
266 
267 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
268 
269 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 		skb->fclone = SKB_FCLONE_ORIG;
271 		atomic_set(&fclones->fclone_ref, 1);
272 
273 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 		fclones->skb2.pfmemalloc = pfmemalloc;
275 	}
276 out:
277 	return skb;
278 nodata:
279 	kmem_cache_free(cache, skb);
280 	skb = NULL;
281 	goto out;
282 }
283 EXPORT_SYMBOL(__alloc_skb);
284 
285 /**
286  * __build_skb - build a network buffer
287  * @data: data buffer provided by caller
288  * @frag_size: size of data, or 0 if head was kmalloced
289  *
290  * Allocate a new &sk_buff. Caller provides space holding head and
291  * skb_shared_info. @data must have been allocated by kmalloc() only if
292  * @frag_size is 0, otherwise data should come from the page allocator
293  *  or vmalloc()
294  * The return is the new skb buffer.
295  * On a failure the return is %NULL, and @data is not freed.
296  * Notes :
297  *  Before IO, driver allocates only data buffer where NIC put incoming frame
298  *  Driver should add room at head (NET_SKB_PAD) and
299  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
301  *  before giving packet to stack.
302  *  RX rings only contains data buffers, not full skbs.
303  */
304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
305 {
306 	struct skb_shared_info *shinfo;
307 	struct sk_buff *skb;
308 	unsigned int size = frag_size ? : ksize(data);
309 
310 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 	if (!skb)
312 		return NULL;
313 
314 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
315 
316 	memset(skb, 0, offsetof(struct sk_buff, tail));
317 	skb->truesize = SKB_TRUESIZE(size);
318 	atomic_set(&skb->users, 1);
319 	skb->head = data;
320 	skb->data = data;
321 	skb_reset_tail_pointer(skb);
322 	skb->end = skb->tail + size;
323 	skb->mac_header = (typeof(skb->mac_header))~0U;
324 	skb->transport_header = (typeof(skb->transport_header))~0U;
325 
326 	/* make sure we initialize shinfo sequentially */
327 	shinfo = skb_shinfo(skb);
328 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
329 	atomic_set(&shinfo->dataref, 1);
330 	kmemcheck_annotate_variable(shinfo->destructor_arg);
331 
332 	return skb;
333 }
334 
335 /* build_skb() is wrapper over __build_skb(), that specifically
336  * takes care of skb->head and skb->pfmemalloc
337  * This means that if @frag_size is not zero, then @data must be backed
338  * by a page fragment, not kmalloc() or vmalloc()
339  */
340 struct sk_buff *build_skb(void *data, unsigned int frag_size)
341 {
342 	struct sk_buff *skb = __build_skb(data, frag_size);
343 
344 	if (skb && frag_size) {
345 		skb->head_frag = 1;
346 		if (page_is_pfmemalloc(virt_to_head_page(data)))
347 			skb->pfmemalloc = 1;
348 	}
349 	return skb;
350 }
351 EXPORT_SYMBOL(build_skb);
352 
353 #define NAPI_SKB_CACHE_SIZE	64
354 
355 struct napi_alloc_cache {
356 	struct page_frag_cache page;
357 	size_t skb_count;
358 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
359 };
360 
361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
363 
364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 	struct page_frag_cache *nc;
367 	unsigned long flags;
368 	void *data;
369 
370 	local_irq_save(flags);
371 	nc = this_cpu_ptr(&netdev_alloc_cache);
372 	data = __alloc_page_frag(nc, fragsz, gfp_mask);
373 	local_irq_restore(flags);
374 	return data;
375 }
376 
377 /**
378  * netdev_alloc_frag - allocate a page fragment
379  * @fragsz: fragment size
380  *
381  * Allocates a frag from a page for receive buffer.
382  * Uses GFP_ATOMIC allocations.
383  */
384 void *netdev_alloc_frag(unsigned int fragsz)
385 {
386 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
387 }
388 EXPORT_SYMBOL(netdev_alloc_frag);
389 
390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
391 {
392 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
393 
394 	return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
395 }
396 
397 void *napi_alloc_frag(unsigned int fragsz)
398 {
399 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
400 }
401 EXPORT_SYMBOL(napi_alloc_frag);
402 
403 /**
404  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
405  *	@dev: network device to receive on
406  *	@len: length to allocate
407  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
408  *
409  *	Allocate a new &sk_buff and assign it a usage count of one. The
410  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
411  *	the headroom they think they need without accounting for the
412  *	built in space. The built in space is used for optimisations.
413  *
414  *	%NULL is returned if there is no free memory.
415  */
416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
417 				   gfp_t gfp_mask)
418 {
419 	struct page_frag_cache *nc;
420 	unsigned long flags;
421 	struct sk_buff *skb;
422 	bool pfmemalloc;
423 	void *data;
424 
425 	len += NET_SKB_PAD;
426 
427 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
428 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
429 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
430 		if (!skb)
431 			goto skb_fail;
432 		goto skb_success;
433 	}
434 
435 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 	len = SKB_DATA_ALIGN(len);
437 
438 	if (sk_memalloc_socks())
439 		gfp_mask |= __GFP_MEMALLOC;
440 
441 	local_irq_save(flags);
442 
443 	nc = this_cpu_ptr(&netdev_alloc_cache);
444 	data = __alloc_page_frag(nc, len, gfp_mask);
445 	pfmemalloc = nc->pfmemalloc;
446 
447 	local_irq_restore(flags);
448 
449 	if (unlikely(!data))
450 		return NULL;
451 
452 	skb = __build_skb(data, len);
453 	if (unlikely(!skb)) {
454 		skb_free_frag(data);
455 		return NULL;
456 	}
457 
458 	/* use OR instead of assignment to avoid clearing of bits in mask */
459 	if (pfmemalloc)
460 		skb->pfmemalloc = 1;
461 	skb->head_frag = 1;
462 
463 skb_success:
464 	skb_reserve(skb, NET_SKB_PAD);
465 	skb->dev = dev;
466 
467 skb_fail:
468 	return skb;
469 }
470 EXPORT_SYMBOL(__netdev_alloc_skb);
471 
472 /**
473  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474  *	@napi: napi instance this buffer was allocated for
475  *	@len: length to allocate
476  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477  *
478  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
479  *	attempt to allocate the head from a special reserved region used
480  *	only for NAPI Rx allocation.  By doing this we can save several
481  *	CPU cycles by avoiding having to disable and re-enable IRQs.
482  *
483  *	%NULL is returned if there is no free memory.
484  */
485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
486 				 gfp_t gfp_mask)
487 {
488 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
489 	struct sk_buff *skb;
490 	void *data;
491 
492 	len += NET_SKB_PAD + NET_IP_ALIGN;
493 
494 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
495 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
497 		if (!skb)
498 			goto skb_fail;
499 		goto skb_success;
500 	}
501 
502 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 	len = SKB_DATA_ALIGN(len);
504 
505 	if (sk_memalloc_socks())
506 		gfp_mask |= __GFP_MEMALLOC;
507 
508 	data = __alloc_page_frag(&nc->page, len, gfp_mask);
509 	if (unlikely(!data))
510 		return NULL;
511 
512 	skb = __build_skb(data, len);
513 	if (unlikely(!skb)) {
514 		skb_free_frag(data);
515 		return NULL;
516 	}
517 
518 	/* use OR instead of assignment to avoid clearing of bits in mask */
519 	if (nc->page.pfmemalloc)
520 		skb->pfmemalloc = 1;
521 	skb->head_frag = 1;
522 
523 skb_success:
524 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
525 	skb->dev = napi->dev;
526 
527 skb_fail:
528 	return skb;
529 }
530 EXPORT_SYMBOL(__napi_alloc_skb);
531 
532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
533 		     int size, unsigned int truesize)
534 {
535 	skb_fill_page_desc(skb, i, page, off, size);
536 	skb->len += size;
537 	skb->data_len += size;
538 	skb->truesize += truesize;
539 }
540 EXPORT_SYMBOL(skb_add_rx_frag);
541 
542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
543 			  unsigned int truesize)
544 {
545 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
546 
547 	skb_frag_size_add(frag, size);
548 	skb->len += size;
549 	skb->data_len += size;
550 	skb->truesize += truesize;
551 }
552 EXPORT_SYMBOL(skb_coalesce_rx_frag);
553 
554 static void skb_drop_list(struct sk_buff **listp)
555 {
556 	kfree_skb_list(*listp);
557 	*listp = NULL;
558 }
559 
560 static inline void skb_drop_fraglist(struct sk_buff *skb)
561 {
562 	skb_drop_list(&skb_shinfo(skb)->frag_list);
563 }
564 
565 static void skb_clone_fraglist(struct sk_buff *skb)
566 {
567 	struct sk_buff *list;
568 
569 	skb_walk_frags(skb, list)
570 		skb_get(list);
571 }
572 
573 static void skb_free_head(struct sk_buff *skb)
574 {
575 	unsigned char *head = skb->head;
576 
577 	if (skb->head_frag)
578 		skb_free_frag(head);
579 	else
580 		kfree(head);
581 }
582 
583 static void skb_release_data(struct sk_buff *skb)
584 {
585 	struct skb_shared_info *shinfo = skb_shinfo(skb);
586 	int i;
587 
588 	if (skb->cloned &&
589 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
590 			      &shinfo->dataref))
591 		return;
592 
593 	for (i = 0; i < shinfo->nr_frags; i++)
594 		__skb_frag_unref(&shinfo->frags[i]);
595 
596 	/*
597 	 * If skb buf is from userspace, we need to notify the caller
598 	 * the lower device DMA has done;
599 	 */
600 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
601 		struct ubuf_info *uarg;
602 
603 		uarg = shinfo->destructor_arg;
604 		if (uarg->callback)
605 			uarg->callback(uarg, true);
606 	}
607 
608 	if (shinfo->frag_list)
609 		kfree_skb_list(shinfo->frag_list);
610 
611 	skb_free_head(skb);
612 }
613 
614 /*
615  *	Free an skbuff by memory without cleaning the state.
616  */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 	struct sk_buff_fclones *fclones;
620 
621 	switch (skb->fclone) {
622 	case SKB_FCLONE_UNAVAILABLE:
623 		kmem_cache_free(skbuff_head_cache, skb);
624 		return;
625 
626 	case SKB_FCLONE_ORIG:
627 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
628 
629 		/* We usually free the clone (TX completion) before original skb
630 		 * This test would have no chance to be true for the clone,
631 		 * while here, branch prediction will be good.
632 		 */
633 		if (atomic_read(&fclones->fclone_ref) == 1)
634 			goto fastpath;
635 		break;
636 
637 	default: /* SKB_FCLONE_CLONE */
638 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 		break;
640 	}
641 	if (!atomic_dec_and_test(&fclones->fclone_ref))
642 		return;
643 fastpath:
644 	kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646 
647 static void skb_release_head_state(struct sk_buff *skb)
648 {
649 	skb_dst_drop(skb);
650 #ifdef CONFIG_XFRM
651 	secpath_put(skb->sp);
652 #endif
653 	if (skb->destructor) {
654 		WARN_ON(in_irq());
655 		skb->destructor(skb);
656 	}
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 	nf_conntrack_put(skb->nfct);
659 #endif
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 	nf_bridge_put(skb->nf_bridge);
662 #endif
663 }
664 
665 /* Free everything but the sk_buff shell. */
666 static void skb_release_all(struct sk_buff *skb)
667 {
668 	skb_release_head_state(skb);
669 	if (likely(skb->head))
670 		skb_release_data(skb);
671 }
672 
673 /**
674  *	__kfree_skb - private function
675  *	@skb: buffer
676  *
677  *	Free an sk_buff. Release anything attached to the buffer.
678  *	Clean the state. This is an internal helper function. Users should
679  *	always call kfree_skb
680  */
681 
682 void __kfree_skb(struct sk_buff *skb)
683 {
684 	skb_release_all(skb);
685 	kfree_skbmem(skb);
686 }
687 EXPORT_SYMBOL(__kfree_skb);
688 
689 /**
690  *	kfree_skb - free an sk_buff
691  *	@skb: buffer to free
692  *
693  *	Drop a reference to the buffer and free it if the usage count has
694  *	hit zero.
695  */
696 void kfree_skb(struct sk_buff *skb)
697 {
698 	if (unlikely(!skb))
699 		return;
700 	if (likely(atomic_read(&skb->users) == 1))
701 		smp_rmb();
702 	else if (likely(!atomic_dec_and_test(&skb->users)))
703 		return;
704 	trace_kfree_skb(skb, __builtin_return_address(0));
705 	__kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(kfree_skb);
708 
709 void kfree_skb_list(struct sk_buff *segs)
710 {
711 	while (segs) {
712 		struct sk_buff *next = segs->next;
713 
714 		kfree_skb(segs);
715 		segs = next;
716 	}
717 }
718 EXPORT_SYMBOL(kfree_skb_list);
719 
720 /**
721  *	skb_tx_error - report an sk_buff xmit error
722  *	@skb: buffer that triggered an error
723  *
724  *	Report xmit error if a device callback is tracking this skb.
725  *	skb must be freed afterwards.
726  */
727 void skb_tx_error(struct sk_buff *skb)
728 {
729 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
730 		struct ubuf_info *uarg;
731 
732 		uarg = skb_shinfo(skb)->destructor_arg;
733 		if (uarg->callback)
734 			uarg->callback(uarg, false);
735 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
736 	}
737 }
738 EXPORT_SYMBOL(skb_tx_error);
739 
740 /**
741  *	consume_skb - free an skbuff
742  *	@skb: buffer to free
743  *
744  *	Drop a ref to the buffer and free it if the usage count has hit zero
745  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
746  *	is being dropped after a failure and notes that
747  */
748 void consume_skb(struct sk_buff *skb)
749 {
750 	if (unlikely(!skb))
751 		return;
752 	if (likely(atomic_read(&skb->users) == 1))
753 		smp_rmb();
754 	else if (likely(!atomic_dec_and_test(&skb->users)))
755 		return;
756 	trace_consume_skb(skb);
757 	__kfree_skb(skb);
758 }
759 EXPORT_SYMBOL(consume_skb);
760 
761 void __kfree_skb_flush(void)
762 {
763 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
764 
765 	/* flush skb_cache if containing objects */
766 	if (nc->skb_count) {
767 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
768 				     nc->skb_cache);
769 		nc->skb_count = 0;
770 	}
771 }
772 
773 static inline void _kfree_skb_defer(struct sk_buff *skb)
774 {
775 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
776 
777 	/* drop skb->head and call any destructors for packet */
778 	skb_release_all(skb);
779 
780 	/* record skb to CPU local list */
781 	nc->skb_cache[nc->skb_count++] = skb;
782 
783 #ifdef CONFIG_SLUB
784 	/* SLUB writes into objects when freeing */
785 	prefetchw(skb);
786 #endif
787 
788 	/* flush skb_cache if it is filled */
789 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
790 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
791 				     nc->skb_cache);
792 		nc->skb_count = 0;
793 	}
794 }
795 void __kfree_skb_defer(struct sk_buff *skb)
796 {
797 	_kfree_skb_defer(skb);
798 }
799 
800 void napi_consume_skb(struct sk_buff *skb, int budget)
801 {
802 	if (unlikely(!skb))
803 		return;
804 
805 	/* Zero budget indicate non-NAPI context called us, like netpoll */
806 	if (unlikely(!budget)) {
807 		dev_consume_skb_any(skb);
808 		return;
809 	}
810 
811 	if (likely(atomic_read(&skb->users) == 1))
812 		smp_rmb();
813 	else if (likely(!atomic_dec_and_test(&skb->users)))
814 		return;
815 	/* if reaching here SKB is ready to free */
816 	trace_consume_skb(skb);
817 
818 	/* if SKB is a clone, don't handle this case */
819 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
820 		__kfree_skb(skb);
821 		return;
822 	}
823 
824 	_kfree_skb_defer(skb);
825 }
826 EXPORT_SYMBOL(napi_consume_skb);
827 
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
831 		     offsetof(struct sk_buff, headers_start));	\
832 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
833 		     offsetof(struct sk_buff, headers_end));	\
834 
835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
836 {
837 	new->tstamp		= old->tstamp;
838 	/* We do not copy old->sk */
839 	new->dev		= old->dev;
840 	memcpy(new->cb, old->cb, sizeof(old->cb));
841 	skb_dst_copy(new, old);
842 #ifdef CONFIG_XFRM
843 	new->sp			= secpath_get(old->sp);
844 #endif
845 	__nf_copy(new, old, false);
846 
847 	/* Note : this field could be in headers_start/headers_end section
848 	 * It is not yet because we do not want to have a 16 bit hole
849 	 */
850 	new->queue_mapping = old->queue_mapping;
851 
852 	memcpy(&new->headers_start, &old->headers_start,
853 	       offsetof(struct sk_buff, headers_end) -
854 	       offsetof(struct sk_buff, headers_start));
855 	CHECK_SKB_FIELD(protocol);
856 	CHECK_SKB_FIELD(csum);
857 	CHECK_SKB_FIELD(hash);
858 	CHECK_SKB_FIELD(priority);
859 	CHECK_SKB_FIELD(skb_iif);
860 	CHECK_SKB_FIELD(vlan_proto);
861 	CHECK_SKB_FIELD(vlan_tci);
862 	CHECK_SKB_FIELD(transport_header);
863 	CHECK_SKB_FIELD(network_header);
864 	CHECK_SKB_FIELD(mac_header);
865 	CHECK_SKB_FIELD(inner_protocol);
866 	CHECK_SKB_FIELD(inner_transport_header);
867 	CHECK_SKB_FIELD(inner_network_header);
868 	CHECK_SKB_FIELD(inner_mac_header);
869 	CHECK_SKB_FIELD(mark);
870 #ifdef CONFIG_NETWORK_SECMARK
871 	CHECK_SKB_FIELD(secmark);
872 #endif
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 	CHECK_SKB_FIELD(napi_id);
875 #endif
876 #ifdef CONFIG_XPS
877 	CHECK_SKB_FIELD(sender_cpu);
878 #endif
879 #ifdef CONFIG_NET_SCHED
880 	CHECK_SKB_FIELD(tc_index);
881 #ifdef CONFIG_NET_CLS_ACT
882 	CHECK_SKB_FIELD(tc_verd);
883 #endif
884 #endif
885 
886 }
887 
888 /*
889  * You should not add any new code to this function.  Add it to
890  * __copy_skb_header above instead.
891  */
892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
893 {
894 #define C(x) n->x = skb->x
895 
896 	n->next = n->prev = NULL;
897 	n->sk = NULL;
898 	__copy_skb_header(n, skb);
899 
900 	C(len);
901 	C(data_len);
902 	C(mac_len);
903 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
904 	n->cloned = 1;
905 	n->nohdr = 0;
906 	n->destructor = NULL;
907 	C(tail);
908 	C(end);
909 	C(head);
910 	C(head_frag);
911 	C(data);
912 	C(truesize);
913 	atomic_set(&n->users, 1);
914 
915 	atomic_inc(&(skb_shinfo(skb)->dataref));
916 	skb->cloned = 1;
917 
918 	return n;
919 #undef C
920 }
921 
922 /**
923  *	skb_morph	-	morph one skb into another
924  *	@dst: the skb to receive the contents
925  *	@src: the skb to supply the contents
926  *
927  *	This is identical to skb_clone except that the target skb is
928  *	supplied by the user.
929  *
930  *	The target skb is returned upon exit.
931  */
932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
933 {
934 	skb_release_all(dst);
935 	return __skb_clone(dst, src);
936 }
937 EXPORT_SYMBOL_GPL(skb_morph);
938 
939 /**
940  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
941  *	@skb: the skb to modify
942  *	@gfp_mask: allocation priority
943  *
944  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
945  *	It will copy all frags into kernel and drop the reference
946  *	to userspace pages.
947  *
948  *	If this function is called from an interrupt gfp_mask() must be
949  *	%GFP_ATOMIC.
950  *
951  *	Returns 0 on success or a negative error code on failure
952  *	to allocate kernel memory to copy to.
953  */
954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
955 {
956 	int i;
957 	int num_frags = skb_shinfo(skb)->nr_frags;
958 	struct page *page, *head = NULL;
959 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
960 
961 	for (i = 0; i < num_frags; i++) {
962 		u8 *vaddr;
963 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
964 
965 		page = alloc_page(gfp_mask);
966 		if (!page) {
967 			while (head) {
968 				struct page *next = (struct page *)page_private(head);
969 				put_page(head);
970 				head = next;
971 			}
972 			return -ENOMEM;
973 		}
974 		vaddr = kmap_atomic(skb_frag_page(f));
975 		memcpy(page_address(page),
976 		       vaddr + f->page_offset, skb_frag_size(f));
977 		kunmap_atomic(vaddr);
978 		set_page_private(page, (unsigned long)head);
979 		head = page;
980 	}
981 
982 	/* skb frags release userspace buffers */
983 	for (i = 0; i < num_frags; i++)
984 		skb_frag_unref(skb, i);
985 
986 	uarg->callback(uarg, false);
987 
988 	/* skb frags point to kernel buffers */
989 	for (i = num_frags - 1; i >= 0; i--) {
990 		__skb_fill_page_desc(skb, i, head, 0,
991 				     skb_shinfo(skb)->frags[i].size);
992 		head = (struct page *)page_private(head);
993 	}
994 
995 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
996 	return 0;
997 }
998 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
999 
1000 /**
1001  *	skb_clone	-	duplicate an sk_buff
1002  *	@skb: buffer to clone
1003  *	@gfp_mask: allocation priority
1004  *
1005  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1006  *	copies share the same packet data but not structure. The new
1007  *	buffer has a reference count of 1. If the allocation fails the
1008  *	function returns %NULL otherwise the new buffer is returned.
1009  *
1010  *	If this function is called from an interrupt gfp_mask() must be
1011  *	%GFP_ATOMIC.
1012  */
1013 
1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1015 {
1016 	struct sk_buff_fclones *fclones = container_of(skb,
1017 						       struct sk_buff_fclones,
1018 						       skb1);
1019 	struct sk_buff *n;
1020 
1021 	if (skb_orphan_frags(skb, gfp_mask))
1022 		return NULL;
1023 
1024 	if (skb->fclone == SKB_FCLONE_ORIG &&
1025 	    atomic_read(&fclones->fclone_ref) == 1) {
1026 		n = &fclones->skb2;
1027 		atomic_set(&fclones->fclone_ref, 2);
1028 	} else {
1029 		if (skb_pfmemalloc(skb))
1030 			gfp_mask |= __GFP_MEMALLOC;
1031 
1032 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1033 		if (!n)
1034 			return NULL;
1035 
1036 		kmemcheck_annotate_bitfield(n, flags1);
1037 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1038 	}
1039 
1040 	return __skb_clone(n, skb);
1041 }
1042 EXPORT_SYMBOL(skb_clone);
1043 
1044 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1045 {
1046 	/* Only adjust this if it actually is csum_start rather than csum */
1047 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1048 		skb->csum_start += off;
1049 	/* {transport,network,mac}_header and tail are relative to skb->head */
1050 	skb->transport_header += off;
1051 	skb->network_header   += off;
1052 	if (skb_mac_header_was_set(skb))
1053 		skb->mac_header += off;
1054 	skb->inner_transport_header += off;
1055 	skb->inner_network_header += off;
1056 	skb->inner_mac_header += off;
1057 }
1058 
1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1060 {
1061 	__copy_skb_header(new, old);
1062 
1063 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1064 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1065 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1066 }
1067 
1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1069 {
1070 	if (skb_pfmemalloc(skb))
1071 		return SKB_ALLOC_RX;
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	skb_copy	-	create private copy of an sk_buff
1077  *	@skb: buffer to copy
1078  *	@gfp_mask: allocation priority
1079  *
1080  *	Make a copy of both an &sk_buff and its data. This is used when the
1081  *	caller wishes to modify the data and needs a private copy of the
1082  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1083  *	on success. The returned buffer has a reference count of 1.
1084  *
1085  *	As by-product this function converts non-linear &sk_buff to linear
1086  *	one, so that &sk_buff becomes completely private and caller is allowed
1087  *	to modify all the data of returned buffer. This means that this
1088  *	function is not recommended for use in circumstances when only
1089  *	header is going to be modified. Use pskb_copy() instead.
1090  */
1091 
1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1093 {
1094 	int headerlen = skb_headroom(skb);
1095 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1096 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1097 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1098 
1099 	if (!n)
1100 		return NULL;
1101 
1102 	/* Set the data pointer */
1103 	skb_reserve(n, headerlen);
1104 	/* Set the tail pointer and length */
1105 	skb_put(n, skb->len);
1106 
1107 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1108 		BUG();
1109 
1110 	copy_skb_header(n, skb);
1111 	return n;
1112 }
1113 EXPORT_SYMBOL(skb_copy);
1114 
1115 /**
1116  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1117  *	@skb: buffer to copy
1118  *	@headroom: headroom of new skb
1119  *	@gfp_mask: allocation priority
1120  *	@fclone: if true allocate the copy of the skb from the fclone
1121  *	cache instead of the head cache; it is recommended to set this
1122  *	to true for the cases where the copy will likely be cloned
1123  *
1124  *	Make a copy of both an &sk_buff and part of its data, located
1125  *	in header. Fragmented data remain shared. This is used when
1126  *	the caller wishes to modify only header of &sk_buff and needs
1127  *	private copy of the header to alter. Returns %NULL on failure
1128  *	or the pointer to the buffer on success.
1129  *	The returned buffer has a reference count of 1.
1130  */
1131 
1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1133 				   gfp_t gfp_mask, bool fclone)
1134 {
1135 	unsigned int size = skb_headlen(skb) + headroom;
1136 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1137 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1138 
1139 	if (!n)
1140 		goto out;
1141 
1142 	/* Set the data pointer */
1143 	skb_reserve(n, headroom);
1144 	/* Set the tail pointer and length */
1145 	skb_put(n, skb_headlen(skb));
1146 	/* Copy the bytes */
1147 	skb_copy_from_linear_data(skb, n->data, n->len);
1148 
1149 	n->truesize += skb->data_len;
1150 	n->data_len  = skb->data_len;
1151 	n->len	     = skb->len;
1152 
1153 	if (skb_shinfo(skb)->nr_frags) {
1154 		int i;
1155 
1156 		if (skb_orphan_frags(skb, gfp_mask)) {
1157 			kfree_skb(n);
1158 			n = NULL;
1159 			goto out;
1160 		}
1161 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1163 			skb_frag_ref(skb, i);
1164 		}
1165 		skb_shinfo(n)->nr_frags = i;
1166 	}
1167 
1168 	if (skb_has_frag_list(skb)) {
1169 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1170 		skb_clone_fraglist(n);
1171 	}
1172 
1173 	copy_skb_header(n, skb);
1174 out:
1175 	return n;
1176 }
1177 EXPORT_SYMBOL(__pskb_copy_fclone);
1178 
1179 /**
1180  *	pskb_expand_head - reallocate header of &sk_buff
1181  *	@skb: buffer to reallocate
1182  *	@nhead: room to add at head
1183  *	@ntail: room to add at tail
1184  *	@gfp_mask: allocation priority
1185  *
1186  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1187  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1188  *	reference count of 1. Returns zero in the case of success or error,
1189  *	if expansion failed. In the last case, &sk_buff is not changed.
1190  *
1191  *	All the pointers pointing into skb header may change and must be
1192  *	reloaded after call to this function.
1193  */
1194 
1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1196 		     gfp_t gfp_mask)
1197 {
1198 	int i;
1199 	u8 *data;
1200 	int size = nhead + skb_end_offset(skb) + ntail;
1201 	long off;
1202 
1203 	BUG_ON(nhead < 0);
1204 
1205 	if (skb_shared(skb))
1206 		BUG();
1207 
1208 	size = SKB_DATA_ALIGN(size);
1209 
1210 	if (skb_pfmemalloc(skb))
1211 		gfp_mask |= __GFP_MEMALLOC;
1212 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1213 			       gfp_mask, NUMA_NO_NODE, NULL);
1214 	if (!data)
1215 		goto nodata;
1216 	size = SKB_WITH_OVERHEAD(ksize(data));
1217 
1218 	/* Copy only real data... and, alas, header. This should be
1219 	 * optimized for the cases when header is void.
1220 	 */
1221 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1222 
1223 	memcpy((struct skb_shared_info *)(data + size),
1224 	       skb_shinfo(skb),
1225 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1226 
1227 	/*
1228 	 * if shinfo is shared we must drop the old head gracefully, but if it
1229 	 * is not we can just drop the old head and let the existing refcount
1230 	 * be since all we did is relocate the values
1231 	 */
1232 	if (skb_cloned(skb)) {
1233 		/* copy this zero copy skb frags */
1234 		if (skb_orphan_frags(skb, gfp_mask))
1235 			goto nofrags;
1236 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1237 			skb_frag_ref(skb, i);
1238 
1239 		if (skb_has_frag_list(skb))
1240 			skb_clone_fraglist(skb);
1241 
1242 		skb_release_data(skb);
1243 	} else {
1244 		skb_free_head(skb);
1245 	}
1246 	off = (data + nhead) - skb->head;
1247 
1248 	skb->head     = data;
1249 	skb->head_frag = 0;
1250 	skb->data    += off;
1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1252 	skb->end      = size;
1253 	off           = nhead;
1254 #else
1255 	skb->end      = skb->head + size;
1256 #endif
1257 	skb->tail	      += off;
1258 	skb_headers_offset_update(skb, nhead);
1259 	skb->cloned   = 0;
1260 	skb->hdr_len  = 0;
1261 	skb->nohdr    = 0;
1262 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1263 	return 0;
1264 
1265 nofrags:
1266 	kfree(data);
1267 nodata:
1268 	return -ENOMEM;
1269 }
1270 EXPORT_SYMBOL(pskb_expand_head);
1271 
1272 /* Make private copy of skb with writable head and some headroom */
1273 
1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1275 {
1276 	struct sk_buff *skb2;
1277 	int delta = headroom - skb_headroom(skb);
1278 
1279 	if (delta <= 0)
1280 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1281 	else {
1282 		skb2 = skb_clone(skb, GFP_ATOMIC);
1283 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1284 					     GFP_ATOMIC)) {
1285 			kfree_skb(skb2);
1286 			skb2 = NULL;
1287 		}
1288 	}
1289 	return skb2;
1290 }
1291 EXPORT_SYMBOL(skb_realloc_headroom);
1292 
1293 /**
1294  *	skb_copy_expand	-	copy and expand sk_buff
1295  *	@skb: buffer to copy
1296  *	@newheadroom: new free bytes at head
1297  *	@newtailroom: new free bytes at tail
1298  *	@gfp_mask: allocation priority
1299  *
1300  *	Make a copy of both an &sk_buff and its data and while doing so
1301  *	allocate additional space.
1302  *
1303  *	This is used when the caller wishes to modify the data and needs a
1304  *	private copy of the data to alter as well as more space for new fields.
1305  *	Returns %NULL on failure or the pointer to the buffer
1306  *	on success. The returned buffer has a reference count of 1.
1307  *
1308  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1309  *	is called from an interrupt.
1310  */
1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1312 				int newheadroom, int newtailroom,
1313 				gfp_t gfp_mask)
1314 {
1315 	/*
1316 	 *	Allocate the copy buffer
1317 	 */
1318 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1319 					gfp_mask, skb_alloc_rx_flag(skb),
1320 					NUMA_NO_NODE);
1321 	int oldheadroom = skb_headroom(skb);
1322 	int head_copy_len, head_copy_off;
1323 
1324 	if (!n)
1325 		return NULL;
1326 
1327 	skb_reserve(n, newheadroom);
1328 
1329 	/* Set the tail pointer and length */
1330 	skb_put(n, skb->len);
1331 
1332 	head_copy_len = oldheadroom;
1333 	head_copy_off = 0;
1334 	if (newheadroom <= head_copy_len)
1335 		head_copy_len = newheadroom;
1336 	else
1337 		head_copy_off = newheadroom - head_copy_len;
1338 
1339 	/* Copy the linear header and data. */
1340 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1341 			  skb->len + head_copy_len))
1342 		BUG();
1343 
1344 	copy_skb_header(n, skb);
1345 
1346 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1347 
1348 	return n;
1349 }
1350 EXPORT_SYMBOL(skb_copy_expand);
1351 
1352 /**
1353  *	skb_pad			-	zero pad the tail of an skb
1354  *	@skb: buffer to pad
1355  *	@pad: space to pad
1356  *
1357  *	Ensure that a buffer is followed by a padding area that is zero
1358  *	filled. Used by network drivers which may DMA or transfer data
1359  *	beyond the buffer end onto the wire.
1360  *
1361  *	May return error in out of memory cases. The skb is freed on error.
1362  */
1363 
1364 int skb_pad(struct sk_buff *skb, int pad)
1365 {
1366 	int err;
1367 	int ntail;
1368 
1369 	/* If the skbuff is non linear tailroom is always zero.. */
1370 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1371 		memset(skb->data+skb->len, 0, pad);
1372 		return 0;
1373 	}
1374 
1375 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1376 	if (likely(skb_cloned(skb) || ntail > 0)) {
1377 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1378 		if (unlikely(err))
1379 			goto free_skb;
1380 	}
1381 
1382 	/* FIXME: The use of this function with non-linear skb's really needs
1383 	 * to be audited.
1384 	 */
1385 	err = skb_linearize(skb);
1386 	if (unlikely(err))
1387 		goto free_skb;
1388 
1389 	memset(skb->data + skb->len, 0, pad);
1390 	return 0;
1391 
1392 free_skb:
1393 	kfree_skb(skb);
1394 	return err;
1395 }
1396 EXPORT_SYMBOL(skb_pad);
1397 
1398 /**
1399  *	pskb_put - add data to the tail of a potentially fragmented buffer
1400  *	@skb: start of the buffer to use
1401  *	@tail: tail fragment of the buffer to use
1402  *	@len: amount of data to add
1403  *
1404  *	This function extends the used data area of the potentially
1405  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1406  *	@skb itself. If this would exceed the total buffer size the kernel
1407  *	will panic. A pointer to the first byte of the extra data is
1408  *	returned.
1409  */
1410 
1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1412 {
1413 	if (tail != skb) {
1414 		skb->data_len += len;
1415 		skb->len += len;
1416 	}
1417 	return skb_put(tail, len);
1418 }
1419 EXPORT_SYMBOL_GPL(pskb_put);
1420 
1421 /**
1422  *	skb_put - add data to a buffer
1423  *	@skb: buffer to use
1424  *	@len: amount of data to add
1425  *
1426  *	This function extends the used data area of the buffer. If this would
1427  *	exceed the total buffer size the kernel will panic. A pointer to the
1428  *	first byte of the extra data is returned.
1429  */
1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1431 {
1432 	unsigned char *tmp = skb_tail_pointer(skb);
1433 	SKB_LINEAR_ASSERT(skb);
1434 	skb->tail += len;
1435 	skb->len  += len;
1436 	if (unlikely(skb->tail > skb->end))
1437 		skb_over_panic(skb, len, __builtin_return_address(0));
1438 	return tmp;
1439 }
1440 EXPORT_SYMBOL(skb_put);
1441 
1442 /**
1443  *	skb_push - add data to the start of a buffer
1444  *	@skb: buffer to use
1445  *	@len: amount of data to add
1446  *
1447  *	This function extends the used data area of the buffer at the buffer
1448  *	start. If this would exceed the total buffer headroom the kernel will
1449  *	panic. A pointer to the first byte of the extra data is returned.
1450  */
1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1452 {
1453 	skb->data -= len;
1454 	skb->len  += len;
1455 	if (unlikely(skb->data<skb->head))
1456 		skb_under_panic(skb, len, __builtin_return_address(0));
1457 	return skb->data;
1458 }
1459 EXPORT_SYMBOL(skb_push);
1460 
1461 /**
1462  *	skb_pull - remove data from the start of a buffer
1463  *	@skb: buffer to use
1464  *	@len: amount of data to remove
1465  *
1466  *	This function removes data from the start of a buffer, returning
1467  *	the memory to the headroom. A pointer to the next data in the buffer
1468  *	is returned. Once the data has been pulled future pushes will overwrite
1469  *	the old data.
1470  */
1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1472 {
1473 	return skb_pull_inline(skb, len);
1474 }
1475 EXPORT_SYMBOL(skb_pull);
1476 
1477 /**
1478  *	skb_trim - remove end from a buffer
1479  *	@skb: buffer to alter
1480  *	@len: new length
1481  *
1482  *	Cut the length of a buffer down by removing data from the tail. If
1483  *	the buffer is already under the length specified it is not modified.
1484  *	The skb must be linear.
1485  */
1486 void skb_trim(struct sk_buff *skb, unsigned int len)
1487 {
1488 	if (skb->len > len)
1489 		__skb_trim(skb, len);
1490 }
1491 EXPORT_SYMBOL(skb_trim);
1492 
1493 /* Trims skb to length len. It can change skb pointers.
1494  */
1495 
1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1497 {
1498 	struct sk_buff **fragp;
1499 	struct sk_buff *frag;
1500 	int offset = skb_headlen(skb);
1501 	int nfrags = skb_shinfo(skb)->nr_frags;
1502 	int i;
1503 	int err;
1504 
1505 	if (skb_cloned(skb) &&
1506 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1507 		return err;
1508 
1509 	i = 0;
1510 	if (offset >= len)
1511 		goto drop_pages;
1512 
1513 	for (; i < nfrags; i++) {
1514 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1515 
1516 		if (end < len) {
1517 			offset = end;
1518 			continue;
1519 		}
1520 
1521 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1522 
1523 drop_pages:
1524 		skb_shinfo(skb)->nr_frags = i;
1525 
1526 		for (; i < nfrags; i++)
1527 			skb_frag_unref(skb, i);
1528 
1529 		if (skb_has_frag_list(skb))
1530 			skb_drop_fraglist(skb);
1531 		goto done;
1532 	}
1533 
1534 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1535 	     fragp = &frag->next) {
1536 		int end = offset + frag->len;
1537 
1538 		if (skb_shared(frag)) {
1539 			struct sk_buff *nfrag;
1540 
1541 			nfrag = skb_clone(frag, GFP_ATOMIC);
1542 			if (unlikely(!nfrag))
1543 				return -ENOMEM;
1544 
1545 			nfrag->next = frag->next;
1546 			consume_skb(frag);
1547 			frag = nfrag;
1548 			*fragp = frag;
1549 		}
1550 
1551 		if (end < len) {
1552 			offset = end;
1553 			continue;
1554 		}
1555 
1556 		if (end > len &&
1557 		    unlikely((err = pskb_trim(frag, len - offset))))
1558 			return err;
1559 
1560 		if (frag->next)
1561 			skb_drop_list(&frag->next);
1562 		break;
1563 	}
1564 
1565 done:
1566 	if (len > skb_headlen(skb)) {
1567 		skb->data_len -= skb->len - len;
1568 		skb->len       = len;
1569 	} else {
1570 		skb->len       = len;
1571 		skb->data_len  = 0;
1572 		skb_set_tail_pointer(skb, len);
1573 	}
1574 
1575 	return 0;
1576 }
1577 EXPORT_SYMBOL(___pskb_trim);
1578 
1579 /**
1580  *	__pskb_pull_tail - advance tail of skb header
1581  *	@skb: buffer to reallocate
1582  *	@delta: number of bytes to advance tail
1583  *
1584  *	The function makes a sense only on a fragmented &sk_buff,
1585  *	it expands header moving its tail forward and copying necessary
1586  *	data from fragmented part.
1587  *
1588  *	&sk_buff MUST have reference count of 1.
1589  *
1590  *	Returns %NULL (and &sk_buff does not change) if pull failed
1591  *	or value of new tail of skb in the case of success.
1592  *
1593  *	All the pointers pointing into skb header may change and must be
1594  *	reloaded after call to this function.
1595  */
1596 
1597 /* Moves tail of skb head forward, copying data from fragmented part,
1598  * when it is necessary.
1599  * 1. It may fail due to malloc failure.
1600  * 2. It may change skb pointers.
1601  *
1602  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1603  */
1604 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1605 {
1606 	/* If skb has not enough free space at tail, get new one
1607 	 * plus 128 bytes for future expansions. If we have enough
1608 	 * room at tail, reallocate without expansion only if skb is cloned.
1609 	 */
1610 	int i, k, eat = (skb->tail + delta) - skb->end;
1611 
1612 	if (eat > 0 || skb_cloned(skb)) {
1613 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1614 				     GFP_ATOMIC))
1615 			return NULL;
1616 	}
1617 
1618 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1619 		BUG();
1620 
1621 	/* Optimization: no fragments, no reasons to preestimate
1622 	 * size of pulled pages. Superb.
1623 	 */
1624 	if (!skb_has_frag_list(skb))
1625 		goto pull_pages;
1626 
1627 	/* Estimate size of pulled pages. */
1628 	eat = delta;
1629 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1631 
1632 		if (size >= eat)
1633 			goto pull_pages;
1634 		eat -= size;
1635 	}
1636 
1637 	/* If we need update frag list, we are in troubles.
1638 	 * Certainly, it possible to add an offset to skb data,
1639 	 * but taking into account that pulling is expected to
1640 	 * be very rare operation, it is worth to fight against
1641 	 * further bloating skb head and crucify ourselves here instead.
1642 	 * Pure masohism, indeed. 8)8)
1643 	 */
1644 	if (eat) {
1645 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1646 		struct sk_buff *clone = NULL;
1647 		struct sk_buff *insp = NULL;
1648 
1649 		do {
1650 			BUG_ON(!list);
1651 
1652 			if (list->len <= eat) {
1653 				/* Eaten as whole. */
1654 				eat -= list->len;
1655 				list = list->next;
1656 				insp = list;
1657 			} else {
1658 				/* Eaten partially. */
1659 
1660 				if (skb_shared(list)) {
1661 					/* Sucks! We need to fork list. :-( */
1662 					clone = skb_clone(list, GFP_ATOMIC);
1663 					if (!clone)
1664 						return NULL;
1665 					insp = list->next;
1666 					list = clone;
1667 				} else {
1668 					/* This may be pulled without
1669 					 * problems. */
1670 					insp = list;
1671 				}
1672 				if (!pskb_pull(list, eat)) {
1673 					kfree_skb(clone);
1674 					return NULL;
1675 				}
1676 				break;
1677 			}
1678 		} while (eat);
1679 
1680 		/* Free pulled out fragments. */
1681 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1682 			skb_shinfo(skb)->frag_list = list->next;
1683 			kfree_skb(list);
1684 		}
1685 		/* And insert new clone at head. */
1686 		if (clone) {
1687 			clone->next = list;
1688 			skb_shinfo(skb)->frag_list = clone;
1689 		}
1690 	}
1691 	/* Success! Now we may commit changes to skb data. */
1692 
1693 pull_pages:
1694 	eat = delta;
1695 	k = 0;
1696 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1697 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1698 
1699 		if (size <= eat) {
1700 			skb_frag_unref(skb, i);
1701 			eat -= size;
1702 		} else {
1703 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1704 			if (eat) {
1705 				skb_shinfo(skb)->frags[k].page_offset += eat;
1706 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1707 				eat = 0;
1708 			}
1709 			k++;
1710 		}
1711 	}
1712 	skb_shinfo(skb)->nr_frags = k;
1713 
1714 	skb->tail     += delta;
1715 	skb->data_len -= delta;
1716 
1717 	return skb_tail_pointer(skb);
1718 }
1719 EXPORT_SYMBOL(__pskb_pull_tail);
1720 
1721 /**
1722  *	skb_copy_bits - copy bits from skb to kernel buffer
1723  *	@skb: source skb
1724  *	@offset: offset in source
1725  *	@to: destination buffer
1726  *	@len: number of bytes to copy
1727  *
1728  *	Copy the specified number of bytes from the source skb to the
1729  *	destination buffer.
1730  *
1731  *	CAUTION ! :
1732  *		If its prototype is ever changed,
1733  *		check arch/{*}/net/{*}.S files,
1734  *		since it is called from BPF assembly code.
1735  */
1736 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1737 {
1738 	int start = skb_headlen(skb);
1739 	struct sk_buff *frag_iter;
1740 	int i, copy;
1741 
1742 	if (offset > (int)skb->len - len)
1743 		goto fault;
1744 
1745 	/* Copy header. */
1746 	if ((copy = start - offset) > 0) {
1747 		if (copy > len)
1748 			copy = len;
1749 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1750 		if ((len -= copy) == 0)
1751 			return 0;
1752 		offset += copy;
1753 		to     += copy;
1754 	}
1755 
1756 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1757 		int end;
1758 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1759 
1760 		WARN_ON(start > offset + len);
1761 
1762 		end = start + skb_frag_size(f);
1763 		if ((copy = end - offset) > 0) {
1764 			u8 *vaddr;
1765 
1766 			if (copy > len)
1767 				copy = len;
1768 
1769 			vaddr = kmap_atomic(skb_frag_page(f));
1770 			memcpy(to,
1771 			       vaddr + f->page_offset + offset - start,
1772 			       copy);
1773 			kunmap_atomic(vaddr);
1774 
1775 			if ((len -= copy) == 0)
1776 				return 0;
1777 			offset += copy;
1778 			to     += copy;
1779 		}
1780 		start = end;
1781 	}
1782 
1783 	skb_walk_frags(skb, frag_iter) {
1784 		int end;
1785 
1786 		WARN_ON(start > offset + len);
1787 
1788 		end = start + frag_iter->len;
1789 		if ((copy = end - offset) > 0) {
1790 			if (copy > len)
1791 				copy = len;
1792 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1793 				goto fault;
1794 			if ((len -= copy) == 0)
1795 				return 0;
1796 			offset += copy;
1797 			to     += copy;
1798 		}
1799 		start = end;
1800 	}
1801 
1802 	if (!len)
1803 		return 0;
1804 
1805 fault:
1806 	return -EFAULT;
1807 }
1808 EXPORT_SYMBOL(skb_copy_bits);
1809 
1810 /*
1811  * Callback from splice_to_pipe(), if we need to release some pages
1812  * at the end of the spd in case we error'ed out in filling the pipe.
1813  */
1814 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1815 {
1816 	put_page(spd->pages[i]);
1817 }
1818 
1819 static struct page *linear_to_page(struct page *page, unsigned int *len,
1820 				   unsigned int *offset,
1821 				   struct sock *sk)
1822 {
1823 	struct page_frag *pfrag = sk_page_frag(sk);
1824 
1825 	if (!sk_page_frag_refill(sk, pfrag))
1826 		return NULL;
1827 
1828 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1829 
1830 	memcpy(page_address(pfrag->page) + pfrag->offset,
1831 	       page_address(page) + *offset, *len);
1832 	*offset = pfrag->offset;
1833 	pfrag->offset += *len;
1834 
1835 	return pfrag->page;
1836 }
1837 
1838 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1839 			     struct page *page,
1840 			     unsigned int offset)
1841 {
1842 	return	spd->nr_pages &&
1843 		spd->pages[spd->nr_pages - 1] == page &&
1844 		(spd->partial[spd->nr_pages - 1].offset +
1845 		 spd->partial[spd->nr_pages - 1].len == offset);
1846 }
1847 
1848 /*
1849  * Fill page/offset/length into spd, if it can hold more pages.
1850  */
1851 static bool spd_fill_page(struct splice_pipe_desc *spd,
1852 			  struct pipe_inode_info *pipe, struct page *page,
1853 			  unsigned int *len, unsigned int offset,
1854 			  bool linear,
1855 			  struct sock *sk)
1856 {
1857 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1858 		return true;
1859 
1860 	if (linear) {
1861 		page = linear_to_page(page, len, &offset, sk);
1862 		if (!page)
1863 			return true;
1864 	}
1865 	if (spd_can_coalesce(spd, page, offset)) {
1866 		spd->partial[spd->nr_pages - 1].len += *len;
1867 		return false;
1868 	}
1869 	get_page(page);
1870 	spd->pages[spd->nr_pages] = page;
1871 	spd->partial[spd->nr_pages].len = *len;
1872 	spd->partial[spd->nr_pages].offset = offset;
1873 	spd->nr_pages++;
1874 
1875 	return false;
1876 }
1877 
1878 static bool __splice_segment(struct page *page, unsigned int poff,
1879 			     unsigned int plen, unsigned int *off,
1880 			     unsigned int *len,
1881 			     struct splice_pipe_desc *spd, bool linear,
1882 			     struct sock *sk,
1883 			     struct pipe_inode_info *pipe)
1884 {
1885 	if (!*len)
1886 		return true;
1887 
1888 	/* skip this segment if already processed */
1889 	if (*off >= plen) {
1890 		*off -= plen;
1891 		return false;
1892 	}
1893 
1894 	/* ignore any bits we already processed */
1895 	poff += *off;
1896 	plen -= *off;
1897 	*off = 0;
1898 
1899 	do {
1900 		unsigned int flen = min(*len, plen);
1901 
1902 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1903 				  linear, sk))
1904 			return true;
1905 		poff += flen;
1906 		plen -= flen;
1907 		*len -= flen;
1908 	} while (*len && plen);
1909 
1910 	return false;
1911 }
1912 
1913 /*
1914  * Map linear and fragment data from the skb to spd. It reports true if the
1915  * pipe is full or if we already spliced the requested length.
1916  */
1917 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1918 			      unsigned int *offset, unsigned int *len,
1919 			      struct splice_pipe_desc *spd, struct sock *sk)
1920 {
1921 	int seg;
1922 	struct sk_buff *iter;
1923 
1924 	/* map the linear part :
1925 	 * If skb->head_frag is set, this 'linear' part is backed by a
1926 	 * fragment, and if the head is not shared with any clones then
1927 	 * we can avoid a copy since we own the head portion of this page.
1928 	 */
1929 	if (__splice_segment(virt_to_page(skb->data),
1930 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1931 			     skb_headlen(skb),
1932 			     offset, len, spd,
1933 			     skb_head_is_locked(skb),
1934 			     sk, pipe))
1935 		return true;
1936 
1937 	/*
1938 	 * then map the fragments
1939 	 */
1940 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1941 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1942 
1943 		if (__splice_segment(skb_frag_page(f),
1944 				     f->page_offset, skb_frag_size(f),
1945 				     offset, len, spd, false, sk, pipe))
1946 			return true;
1947 	}
1948 
1949 	skb_walk_frags(skb, iter) {
1950 		if (*offset >= iter->len) {
1951 			*offset -= iter->len;
1952 			continue;
1953 		}
1954 		/* __skb_splice_bits() only fails if the output has no room
1955 		 * left, so no point in going over the frag_list for the error
1956 		 * case.
1957 		 */
1958 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1959 			return true;
1960 	}
1961 
1962 	return false;
1963 }
1964 
1965 ssize_t skb_socket_splice(struct sock *sk,
1966 			  struct pipe_inode_info *pipe,
1967 			  struct splice_pipe_desc *spd)
1968 {
1969 	int ret;
1970 
1971 	/* Drop the socket lock, otherwise we have reverse
1972 	 * locking dependencies between sk_lock and i_mutex
1973 	 * here as compared to sendfile(). We enter here
1974 	 * with the socket lock held, and splice_to_pipe() will
1975 	 * grab the pipe inode lock. For sendfile() emulation,
1976 	 * we call into ->sendpage() with the i_mutex lock held
1977 	 * and networking will grab the socket lock.
1978 	 */
1979 	release_sock(sk);
1980 	ret = splice_to_pipe(pipe, spd);
1981 	lock_sock(sk);
1982 
1983 	return ret;
1984 }
1985 
1986 /*
1987  * Map data from the skb to a pipe. Should handle both the linear part,
1988  * the fragments, and the frag list.
1989  */
1990 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1991 		    struct pipe_inode_info *pipe, unsigned int tlen,
1992 		    unsigned int flags,
1993 		    ssize_t (*splice_cb)(struct sock *,
1994 					 struct pipe_inode_info *,
1995 					 struct splice_pipe_desc *))
1996 {
1997 	struct partial_page partial[MAX_SKB_FRAGS];
1998 	struct page *pages[MAX_SKB_FRAGS];
1999 	struct splice_pipe_desc spd = {
2000 		.pages = pages,
2001 		.partial = partial,
2002 		.nr_pages_max = MAX_SKB_FRAGS,
2003 		.flags = flags,
2004 		.ops = &nosteal_pipe_buf_ops,
2005 		.spd_release = sock_spd_release,
2006 	};
2007 	int ret = 0;
2008 
2009 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2010 
2011 	if (spd.nr_pages)
2012 		ret = splice_cb(sk, pipe, &spd);
2013 
2014 	return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(skb_splice_bits);
2017 
2018 /**
2019  *	skb_store_bits - store bits from kernel buffer to skb
2020  *	@skb: destination buffer
2021  *	@offset: offset in destination
2022  *	@from: source buffer
2023  *	@len: number of bytes to copy
2024  *
2025  *	Copy the specified number of bytes from the source buffer to the
2026  *	destination skb.  This function handles all the messy bits of
2027  *	traversing fragment lists and such.
2028  */
2029 
2030 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2031 {
2032 	int start = skb_headlen(skb);
2033 	struct sk_buff *frag_iter;
2034 	int i, copy;
2035 
2036 	if (offset > (int)skb->len - len)
2037 		goto fault;
2038 
2039 	if ((copy = start - offset) > 0) {
2040 		if (copy > len)
2041 			copy = len;
2042 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2043 		if ((len -= copy) == 0)
2044 			return 0;
2045 		offset += copy;
2046 		from += copy;
2047 	}
2048 
2049 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 		int end;
2052 
2053 		WARN_ON(start > offset + len);
2054 
2055 		end = start + skb_frag_size(frag);
2056 		if ((copy = end - offset) > 0) {
2057 			u8 *vaddr;
2058 
2059 			if (copy > len)
2060 				copy = len;
2061 
2062 			vaddr = kmap_atomic(skb_frag_page(frag));
2063 			memcpy(vaddr + frag->page_offset + offset - start,
2064 			       from, copy);
2065 			kunmap_atomic(vaddr);
2066 
2067 			if ((len -= copy) == 0)
2068 				return 0;
2069 			offset += copy;
2070 			from += copy;
2071 		}
2072 		start = end;
2073 	}
2074 
2075 	skb_walk_frags(skb, frag_iter) {
2076 		int end;
2077 
2078 		WARN_ON(start > offset + len);
2079 
2080 		end = start + frag_iter->len;
2081 		if ((copy = end - offset) > 0) {
2082 			if (copy > len)
2083 				copy = len;
2084 			if (skb_store_bits(frag_iter, offset - start,
2085 					   from, copy))
2086 				goto fault;
2087 			if ((len -= copy) == 0)
2088 				return 0;
2089 			offset += copy;
2090 			from += copy;
2091 		}
2092 		start = end;
2093 	}
2094 	if (!len)
2095 		return 0;
2096 
2097 fault:
2098 	return -EFAULT;
2099 }
2100 EXPORT_SYMBOL(skb_store_bits);
2101 
2102 /* Checksum skb data. */
2103 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2104 		      __wsum csum, const struct skb_checksum_ops *ops)
2105 {
2106 	int start = skb_headlen(skb);
2107 	int i, copy = start - offset;
2108 	struct sk_buff *frag_iter;
2109 	int pos = 0;
2110 
2111 	/* Checksum header. */
2112 	if (copy > 0) {
2113 		if (copy > len)
2114 			copy = len;
2115 		csum = ops->update(skb->data + offset, copy, csum);
2116 		if ((len -= copy) == 0)
2117 			return csum;
2118 		offset += copy;
2119 		pos	= copy;
2120 	}
2121 
2122 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2123 		int end;
2124 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2125 
2126 		WARN_ON(start > offset + len);
2127 
2128 		end = start + skb_frag_size(frag);
2129 		if ((copy = end - offset) > 0) {
2130 			__wsum csum2;
2131 			u8 *vaddr;
2132 
2133 			if (copy > len)
2134 				copy = len;
2135 			vaddr = kmap_atomic(skb_frag_page(frag));
2136 			csum2 = ops->update(vaddr + frag->page_offset +
2137 					    offset - start, copy, 0);
2138 			kunmap_atomic(vaddr);
2139 			csum = ops->combine(csum, csum2, pos, copy);
2140 			if (!(len -= copy))
2141 				return csum;
2142 			offset += copy;
2143 			pos    += copy;
2144 		}
2145 		start = end;
2146 	}
2147 
2148 	skb_walk_frags(skb, frag_iter) {
2149 		int end;
2150 
2151 		WARN_ON(start > offset + len);
2152 
2153 		end = start + frag_iter->len;
2154 		if ((copy = end - offset) > 0) {
2155 			__wsum csum2;
2156 			if (copy > len)
2157 				copy = len;
2158 			csum2 = __skb_checksum(frag_iter, offset - start,
2159 					       copy, 0, ops);
2160 			csum = ops->combine(csum, csum2, pos, copy);
2161 			if ((len -= copy) == 0)
2162 				return csum;
2163 			offset += copy;
2164 			pos    += copy;
2165 		}
2166 		start = end;
2167 	}
2168 	BUG_ON(len);
2169 
2170 	return csum;
2171 }
2172 EXPORT_SYMBOL(__skb_checksum);
2173 
2174 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2175 		    int len, __wsum csum)
2176 {
2177 	const struct skb_checksum_ops ops = {
2178 		.update  = csum_partial_ext,
2179 		.combine = csum_block_add_ext,
2180 	};
2181 
2182 	return __skb_checksum(skb, offset, len, csum, &ops);
2183 }
2184 EXPORT_SYMBOL(skb_checksum);
2185 
2186 /* Both of above in one bottle. */
2187 
2188 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2189 				    u8 *to, int len, __wsum csum)
2190 {
2191 	int start = skb_headlen(skb);
2192 	int i, copy = start - offset;
2193 	struct sk_buff *frag_iter;
2194 	int pos = 0;
2195 
2196 	/* Copy header. */
2197 	if (copy > 0) {
2198 		if (copy > len)
2199 			copy = len;
2200 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2201 						 copy, csum);
2202 		if ((len -= copy) == 0)
2203 			return csum;
2204 		offset += copy;
2205 		to     += copy;
2206 		pos	= copy;
2207 	}
2208 
2209 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210 		int end;
2211 
2212 		WARN_ON(start > offset + len);
2213 
2214 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2215 		if ((copy = end - offset) > 0) {
2216 			__wsum csum2;
2217 			u8 *vaddr;
2218 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2219 
2220 			if (copy > len)
2221 				copy = len;
2222 			vaddr = kmap_atomic(skb_frag_page(frag));
2223 			csum2 = csum_partial_copy_nocheck(vaddr +
2224 							  frag->page_offset +
2225 							  offset - start, to,
2226 							  copy, 0);
2227 			kunmap_atomic(vaddr);
2228 			csum = csum_block_add(csum, csum2, pos);
2229 			if (!(len -= copy))
2230 				return csum;
2231 			offset += copy;
2232 			to     += copy;
2233 			pos    += copy;
2234 		}
2235 		start = end;
2236 	}
2237 
2238 	skb_walk_frags(skb, frag_iter) {
2239 		__wsum csum2;
2240 		int end;
2241 
2242 		WARN_ON(start > offset + len);
2243 
2244 		end = start + frag_iter->len;
2245 		if ((copy = end - offset) > 0) {
2246 			if (copy > len)
2247 				copy = len;
2248 			csum2 = skb_copy_and_csum_bits(frag_iter,
2249 						       offset - start,
2250 						       to, copy, 0);
2251 			csum = csum_block_add(csum, csum2, pos);
2252 			if ((len -= copy) == 0)
2253 				return csum;
2254 			offset += copy;
2255 			to     += copy;
2256 			pos    += copy;
2257 		}
2258 		start = end;
2259 	}
2260 	BUG_ON(len);
2261 	return csum;
2262 }
2263 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2264 
2265  /**
2266  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2267  *	@from: source buffer
2268  *
2269  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2270  *	into skb_zerocopy().
2271  */
2272 unsigned int
2273 skb_zerocopy_headlen(const struct sk_buff *from)
2274 {
2275 	unsigned int hlen = 0;
2276 
2277 	if (!from->head_frag ||
2278 	    skb_headlen(from) < L1_CACHE_BYTES ||
2279 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2280 		hlen = skb_headlen(from);
2281 
2282 	if (skb_has_frag_list(from))
2283 		hlen = from->len;
2284 
2285 	return hlen;
2286 }
2287 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2288 
2289 /**
2290  *	skb_zerocopy - Zero copy skb to skb
2291  *	@to: destination buffer
2292  *	@from: source buffer
2293  *	@len: number of bytes to copy from source buffer
2294  *	@hlen: size of linear headroom in destination buffer
2295  *
2296  *	Copies up to `len` bytes from `from` to `to` by creating references
2297  *	to the frags in the source buffer.
2298  *
2299  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2300  *	headroom in the `to` buffer.
2301  *
2302  *	Return value:
2303  *	0: everything is OK
2304  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2305  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2306  */
2307 int
2308 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2309 {
2310 	int i, j = 0;
2311 	int plen = 0; /* length of skb->head fragment */
2312 	int ret;
2313 	struct page *page;
2314 	unsigned int offset;
2315 
2316 	BUG_ON(!from->head_frag && !hlen);
2317 
2318 	/* dont bother with small payloads */
2319 	if (len <= skb_tailroom(to))
2320 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2321 
2322 	if (hlen) {
2323 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2324 		if (unlikely(ret))
2325 			return ret;
2326 		len -= hlen;
2327 	} else {
2328 		plen = min_t(int, skb_headlen(from), len);
2329 		if (plen) {
2330 			page = virt_to_head_page(from->head);
2331 			offset = from->data - (unsigned char *)page_address(page);
2332 			__skb_fill_page_desc(to, 0, page, offset, plen);
2333 			get_page(page);
2334 			j = 1;
2335 			len -= plen;
2336 		}
2337 	}
2338 
2339 	to->truesize += len + plen;
2340 	to->len += len + plen;
2341 	to->data_len += len + plen;
2342 
2343 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2344 		skb_tx_error(from);
2345 		return -ENOMEM;
2346 	}
2347 
2348 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2349 		if (!len)
2350 			break;
2351 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2352 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2353 		len -= skb_shinfo(to)->frags[j].size;
2354 		skb_frag_ref(to, j);
2355 		j++;
2356 	}
2357 	skb_shinfo(to)->nr_frags = j;
2358 
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL_GPL(skb_zerocopy);
2362 
2363 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2364 {
2365 	__wsum csum;
2366 	long csstart;
2367 
2368 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2369 		csstart = skb_checksum_start_offset(skb);
2370 	else
2371 		csstart = skb_headlen(skb);
2372 
2373 	BUG_ON(csstart > skb_headlen(skb));
2374 
2375 	skb_copy_from_linear_data(skb, to, csstart);
2376 
2377 	csum = 0;
2378 	if (csstart != skb->len)
2379 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2380 					      skb->len - csstart, 0);
2381 
2382 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2383 		long csstuff = csstart + skb->csum_offset;
2384 
2385 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2386 	}
2387 }
2388 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2389 
2390 /**
2391  *	skb_dequeue - remove from the head of the queue
2392  *	@list: list to dequeue from
2393  *
2394  *	Remove the head of the list. The list lock is taken so the function
2395  *	may be used safely with other locking list functions. The head item is
2396  *	returned or %NULL if the list is empty.
2397  */
2398 
2399 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2400 {
2401 	unsigned long flags;
2402 	struct sk_buff *result;
2403 
2404 	spin_lock_irqsave(&list->lock, flags);
2405 	result = __skb_dequeue(list);
2406 	spin_unlock_irqrestore(&list->lock, flags);
2407 	return result;
2408 }
2409 EXPORT_SYMBOL(skb_dequeue);
2410 
2411 /**
2412  *	skb_dequeue_tail - remove from the tail of the queue
2413  *	@list: list to dequeue from
2414  *
2415  *	Remove the tail of the list. The list lock is taken so the function
2416  *	may be used safely with other locking list functions. The tail item is
2417  *	returned or %NULL if the list is empty.
2418  */
2419 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2420 {
2421 	unsigned long flags;
2422 	struct sk_buff *result;
2423 
2424 	spin_lock_irqsave(&list->lock, flags);
2425 	result = __skb_dequeue_tail(list);
2426 	spin_unlock_irqrestore(&list->lock, flags);
2427 	return result;
2428 }
2429 EXPORT_SYMBOL(skb_dequeue_tail);
2430 
2431 /**
2432  *	skb_queue_purge - empty a list
2433  *	@list: list to empty
2434  *
2435  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2436  *	the list and one reference dropped. This function takes the list
2437  *	lock and is atomic with respect to other list locking functions.
2438  */
2439 void skb_queue_purge(struct sk_buff_head *list)
2440 {
2441 	struct sk_buff *skb;
2442 	while ((skb = skb_dequeue(list)) != NULL)
2443 		kfree_skb(skb);
2444 }
2445 EXPORT_SYMBOL(skb_queue_purge);
2446 
2447 /**
2448  *	skb_rbtree_purge - empty a skb rbtree
2449  *	@root: root of the rbtree to empty
2450  *
2451  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2452  *	the list and one reference dropped. This function does not take
2453  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2454  *	out-of-order queue is protected by the socket lock).
2455  */
2456 void skb_rbtree_purge(struct rb_root *root)
2457 {
2458 	struct sk_buff *skb, *next;
2459 
2460 	rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2461 		kfree_skb(skb);
2462 
2463 	*root = RB_ROOT;
2464 }
2465 
2466 /**
2467  *	skb_queue_head - queue a buffer at the list head
2468  *	@list: list to use
2469  *	@newsk: buffer to queue
2470  *
2471  *	Queue a buffer at the start of the list. This function takes the
2472  *	list lock and can be used safely with other locking &sk_buff functions
2473  *	safely.
2474  *
2475  *	A buffer cannot be placed on two lists at the same time.
2476  */
2477 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2478 {
2479 	unsigned long flags;
2480 
2481 	spin_lock_irqsave(&list->lock, flags);
2482 	__skb_queue_head(list, newsk);
2483 	spin_unlock_irqrestore(&list->lock, flags);
2484 }
2485 EXPORT_SYMBOL(skb_queue_head);
2486 
2487 /**
2488  *	skb_queue_tail - queue a buffer at the list tail
2489  *	@list: list to use
2490  *	@newsk: buffer to queue
2491  *
2492  *	Queue a buffer at the tail of the list. This function takes the
2493  *	list lock and can be used safely with other locking &sk_buff functions
2494  *	safely.
2495  *
2496  *	A buffer cannot be placed on two lists at the same time.
2497  */
2498 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2499 {
2500 	unsigned long flags;
2501 
2502 	spin_lock_irqsave(&list->lock, flags);
2503 	__skb_queue_tail(list, newsk);
2504 	spin_unlock_irqrestore(&list->lock, flags);
2505 }
2506 EXPORT_SYMBOL(skb_queue_tail);
2507 
2508 /**
2509  *	skb_unlink	-	remove a buffer from a list
2510  *	@skb: buffer to remove
2511  *	@list: list to use
2512  *
2513  *	Remove a packet from a list. The list locks are taken and this
2514  *	function is atomic with respect to other list locked calls
2515  *
2516  *	You must know what list the SKB is on.
2517  */
2518 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2519 {
2520 	unsigned long flags;
2521 
2522 	spin_lock_irqsave(&list->lock, flags);
2523 	__skb_unlink(skb, list);
2524 	spin_unlock_irqrestore(&list->lock, flags);
2525 }
2526 EXPORT_SYMBOL(skb_unlink);
2527 
2528 /**
2529  *	skb_append	-	append a buffer
2530  *	@old: buffer to insert after
2531  *	@newsk: buffer to insert
2532  *	@list: list to use
2533  *
2534  *	Place a packet after a given packet in a list. The list locks are taken
2535  *	and this function is atomic with respect to other list locked calls.
2536  *	A buffer cannot be placed on two lists at the same time.
2537  */
2538 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2539 {
2540 	unsigned long flags;
2541 
2542 	spin_lock_irqsave(&list->lock, flags);
2543 	__skb_queue_after(list, old, newsk);
2544 	spin_unlock_irqrestore(&list->lock, flags);
2545 }
2546 EXPORT_SYMBOL(skb_append);
2547 
2548 /**
2549  *	skb_insert	-	insert a buffer
2550  *	@old: buffer to insert before
2551  *	@newsk: buffer to insert
2552  *	@list: list to use
2553  *
2554  *	Place a packet before a given packet in a list. The list locks are
2555  * 	taken and this function is atomic with respect to other list locked
2556  *	calls.
2557  *
2558  *	A buffer cannot be placed on two lists at the same time.
2559  */
2560 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2561 {
2562 	unsigned long flags;
2563 
2564 	spin_lock_irqsave(&list->lock, flags);
2565 	__skb_insert(newsk, old->prev, old, list);
2566 	spin_unlock_irqrestore(&list->lock, flags);
2567 }
2568 EXPORT_SYMBOL(skb_insert);
2569 
2570 static inline void skb_split_inside_header(struct sk_buff *skb,
2571 					   struct sk_buff* skb1,
2572 					   const u32 len, const int pos)
2573 {
2574 	int i;
2575 
2576 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2577 					 pos - len);
2578 	/* And move data appendix as is. */
2579 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2580 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2581 
2582 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2583 	skb_shinfo(skb)->nr_frags  = 0;
2584 	skb1->data_len		   = skb->data_len;
2585 	skb1->len		   += skb1->data_len;
2586 	skb->data_len		   = 0;
2587 	skb->len		   = len;
2588 	skb_set_tail_pointer(skb, len);
2589 }
2590 
2591 static inline void skb_split_no_header(struct sk_buff *skb,
2592 				       struct sk_buff* skb1,
2593 				       const u32 len, int pos)
2594 {
2595 	int i, k = 0;
2596 	const int nfrags = skb_shinfo(skb)->nr_frags;
2597 
2598 	skb_shinfo(skb)->nr_frags = 0;
2599 	skb1->len		  = skb1->data_len = skb->len - len;
2600 	skb->len		  = len;
2601 	skb->data_len		  = len - pos;
2602 
2603 	for (i = 0; i < nfrags; i++) {
2604 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2605 
2606 		if (pos + size > len) {
2607 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2608 
2609 			if (pos < len) {
2610 				/* Split frag.
2611 				 * We have two variants in this case:
2612 				 * 1. Move all the frag to the second
2613 				 *    part, if it is possible. F.e.
2614 				 *    this approach is mandatory for TUX,
2615 				 *    where splitting is expensive.
2616 				 * 2. Split is accurately. We make this.
2617 				 */
2618 				skb_frag_ref(skb, i);
2619 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2620 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2621 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2622 				skb_shinfo(skb)->nr_frags++;
2623 			}
2624 			k++;
2625 		} else
2626 			skb_shinfo(skb)->nr_frags++;
2627 		pos += size;
2628 	}
2629 	skb_shinfo(skb1)->nr_frags = k;
2630 }
2631 
2632 /**
2633  * skb_split - Split fragmented skb to two parts at length len.
2634  * @skb: the buffer to split
2635  * @skb1: the buffer to receive the second part
2636  * @len: new length for skb
2637  */
2638 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2639 {
2640 	int pos = skb_headlen(skb);
2641 
2642 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2643 	if (len < pos)	/* Split line is inside header. */
2644 		skb_split_inside_header(skb, skb1, len, pos);
2645 	else		/* Second chunk has no header, nothing to copy. */
2646 		skb_split_no_header(skb, skb1, len, pos);
2647 }
2648 EXPORT_SYMBOL(skb_split);
2649 
2650 /* Shifting from/to a cloned skb is a no-go.
2651  *
2652  * Caller cannot keep skb_shinfo related pointers past calling here!
2653  */
2654 static int skb_prepare_for_shift(struct sk_buff *skb)
2655 {
2656 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657 }
2658 
2659 /**
2660  * skb_shift - Shifts paged data partially from skb to another
2661  * @tgt: buffer into which tail data gets added
2662  * @skb: buffer from which the paged data comes from
2663  * @shiftlen: shift up to this many bytes
2664  *
2665  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2666  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2667  * It's up to caller to free skb if everything was shifted.
2668  *
2669  * If @tgt runs out of frags, the whole operation is aborted.
2670  *
2671  * Skb cannot include anything else but paged data while tgt is allowed
2672  * to have non-paged data as well.
2673  *
2674  * TODO: full sized shift could be optimized but that would need
2675  * specialized skb free'er to handle frags without up-to-date nr_frags.
2676  */
2677 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2678 {
2679 	int from, to, merge, todo;
2680 	struct skb_frag_struct *fragfrom, *fragto;
2681 
2682 	BUG_ON(shiftlen > skb->len);
2683 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2684 
2685 	todo = shiftlen;
2686 	from = 0;
2687 	to = skb_shinfo(tgt)->nr_frags;
2688 	fragfrom = &skb_shinfo(skb)->frags[from];
2689 
2690 	/* Actual merge is delayed until the point when we know we can
2691 	 * commit all, so that we don't have to undo partial changes
2692 	 */
2693 	if (!to ||
2694 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2695 			      fragfrom->page_offset)) {
2696 		merge = -1;
2697 	} else {
2698 		merge = to - 1;
2699 
2700 		todo -= skb_frag_size(fragfrom);
2701 		if (todo < 0) {
2702 			if (skb_prepare_for_shift(skb) ||
2703 			    skb_prepare_for_shift(tgt))
2704 				return 0;
2705 
2706 			/* All previous frag pointers might be stale! */
2707 			fragfrom = &skb_shinfo(skb)->frags[from];
2708 			fragto = &skb_shinfo(tgt)->frags[merge];
2709 
2710 			skb_frag_size_add(fragto, shiftlen);
2711 			skb_frag_size_sub(fragfrom, shiftlen);
2712 			fragfrom->page_offset += shiftlen;
2713 
2714 			goto onlymerged;
2715 		}
2716 
2717 		from++;
2718 	}
2719 
2720 	/* Skip full, not-fitting skb to avoid expensive operations */
2721 	if ((shiftlen == skb->len) &&
2722 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2723 		return 0;
2724 
2725 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2726 		return 0;
2727 
2728 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2729 		if (to == MAX_SKB_FRAGS)
2730 			return 0;
2731 
2732 		fragfrom = &skb_shinfo(skb)->frags[from];
2733 		fragto = &skb_shinfo(tgt)->frags[to];
2734 
2735 		if (todo >= skb_frag_size(fragfrom)) {
2736 			*fragto = *fragfrom;
2737 			todo -= skb_frag_size(fragfrom);
2738 			from++;
2739 			to++;
2740 
2741 		} else {
2742 			__skb_frag_ref(fragfrom);
2743 			fragto->page = fragfrom->page;
2744 			fragto->page_offset = fragfrom->page_offset;
2745 			skb_frag_size_set(fragto, todo);
2746 
2747 			fragfrom->page_offset += todo;
2748 			skb_frag_size_sub(fragfrom, todo);
2749 			todo = 0;
2750 
2751 			to++;
2752 			break;
2753 		}
2754 	}
2755 
2756 	/* Ready to "commit" this state change to tgt */
2757 	skb_shinfo(tgt)->nr_frags = to;
2758 
2759 	if (merge >= 0) {
2760 		fragfrom = &skb_shinfo(skb)->frags[0];
2761 		fragto = &skb_shinfo(tgt)->frags[merge];
2762 
2763 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2764 		__skb_frag_unref(fragfrom);
2765 	}
2766 
2767 	/* Reposition in the original skb */
2768 	to = 0;
2769 	while (from < skb_shinfo(skb)->nr_frags)
2770 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2771 	skb_shinfo(skb)->nr_frags = to;
2772 
2773 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2774 
2775 onlymerged:
2776 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2777 	 * the other hand might need it if it needs to be resent
2778 	 */
2779 	tgt->ip_summed = CHECKSUM_PARTIAL;
2780 	skb->ip_summed = CHECKSUM_PARTIAL;
2781 
2782 	/* Yak, is it really working this way? Some helper please? */
2783 	skb->len -= shiftlen;
2784 	skb->data_len -= shiftlen;
2785 	skb->truesize -= shiftlen;
2786 	tgt->len += shiftlen;
2787 	tgt->data_len += shiftlen;
2788 	tgt->truesize += shiftlen;
2789 
2790 	return shiftlen;
2791 }
2792 
2793 /**
2794  * skb_prepare_seq_read - Prepare a sequential read of skb data
2795  * @skb: the buffer to read
2796  * @from: lower offset of data to be read
2797  * @to: upper offset of data to be read
2798  * @st: state variable
2799  *
2800  * Initializes the specified state variable. Must be called before
2801  * invoking skb_seq_read() for the first time.
2802  */
2803 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2804 			  unsigned int to, struct skb_seq_state *st)
2805 {
2806 	st->lower_offset = from;
2807 	st->upper_offset = to;
2808 	st->root_skb = st->cur_skb = skb;
2809 	st->frag_idx = st->stepped_offset = 0;
2810 	st->frag_data = NULL;
2811 }
2812 EXPORT_SYMBOL(skb_prepare_seq_read);
2813 
2814 /**
2815  * skb_seq_read - Sequentially read skb data
2816  * @consumed: number of bytes consumed by the caller so far
2817  * @data: destination pointer for data to be returned
2818  * @st: state variable
2819  *
2820  * Reads a block of skb data at @consumed relative to the
2821  * lower offset specified to skb_prepare_seq_read(). Assigns
2822  * the head of the data block to @data and returns the length
2823  * of the block or 0 if the end of the skb data or the upper
2824  * offset has been reached.
2825  *
2826  * The caller is not required to consume all of the data
2827  * returned, i.e. @consumed is typically set to the number
2828  * of bytes already consumed and the next call to
2829  * skb_seq_read() will return the remaining part of the block.
2830  *
2831  * Note 1: The size of each block of data returned can be arbitrary,
2832  *       this limitation is the cost for zerocopy sequential
2833  *       reads of potentially non linear data.
2834  *
2835  * Note 2: Fragment lists within fragments are not implemented
2836  *       at the moment, state->root_skb could be replaced with
2837  *       a stack for this purpose.
2838  */
2839 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2840 			  struct skb_seq_state *st)
2841 {
2842 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2843 	skb_frag_t *frag;
2844 
2845 	if (unlikely(abs_offset >= st->upper_offset)) {
2846 		if (st->frag_data) {
2847 			kunmap_atomic(st->frag_data);
2848 			st->frag_data = NULL;
2849 		}
2850 		return 0;
2851 	}
2852 
2853 next_skb:
2854 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2855 
2856 	if (abs_offset < block_limit && !st->frag_data) {
2857 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2858 		return block_limit - abs_offset;
2859 	}
2860 
2861 	if (st->frag_idx == 0 && !st->frag_data)
2862 		st->stepped_offset += skb_headlen(st->cur_skb);
2863 
2864 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2865 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2866 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2867 
2868 		if (abs_offset < block_limit) {
2869 			if (!st->frag_data)
2870 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2871 
2872 			*data = (u8 *) st->frag_data + frag->page_offset +
2873 				(abs_offset - st->stepped_offset);
2874 
2875 			return block_limit - abs_offset;
2876 		}
2877 
2878 		if (st->frag_data) {
2879 			kunmap_atomic(st->frag_data);
2880 			st->frag_data = NULL;
2881 		}
2882 
2883 		st->frag_idx++;
2884 		st->stepped_offset += skb_frag_size(frag);
2885 	}
2886 
2887 	if (st->frag_data) {
2888 		kunmap_atomic(st->frag_data);
2889 		st->frag_data = NULL;
2890 	}
2891 
2892 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2893 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2894 		st->frag_idx = 0;
2895 		goto next_skb;
2896 	} else if (st->cur_skb->next) {
2897 		st->cur_skb = st->cur_skb->next;
2898 		st->frag_idx = 0;
2899 		goto next_skb;
2900 	}
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(skb_seq_read);
2905 
2906 /**
2907  * skb_abort_seq_read - Abort a sequential read of skb data
2908  * @st: state variable
2909  *
2910  * Must be called if skb_seq_read() was not called until it
2911  * returned 0.
2912  */
2913 void skb_abort_seq_read(struct skb_seq_state *st)
2914 {
2915 	if (st->frag_data)
2916 		kunmap_atomic(st->frag_data);
2917 }
2918 EXPORT_SYMBOL(skb_abort_seq_read);
2919 
2920 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2921 
2922 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2923 					  struct ts_config *conf,
2924 					  struct ts_state *state)
2925 {
2926 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2927 }
2928 
2929 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2930 {
2931 	skb_abort_seq_read(TS_SKB_CB(state));
2932 }
2933 
2934 /**
2935  * skb_find_text - Find a text pattern in skb data
2936  * @skb: the buffer to look in
2937  * @from: search offset
2938  * @to: search limit
2939  * @config: textsearch configuration
2940  *
2941  * Finds a pattern in the skb data according to the specified
2942  * textsearch configuration. Use textsearch_next() to retrieve
2943  * subsequent occurrences of the pattern. Returns the offset
2944  * to the first occurrence or UINT_MAX if no match was found.
2945  */
2946 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2947 			   unsigned int to, struct ts_config *config)
2948 {
2949 	struct ts_state state;
2950 	unsigned int ret;
2951 
2952 	config->get_next_block = skb_ts_get_next_block;
2953 	config->finish = skb_ts_finish;
2954 
2955 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2956 
2957 	ret = textsearch_find(config, &state);
2958 	return (ret <= to - from ? ret : UINT_MAX);
2959 }
2960 EXPORT_SYMBOL(skb_find_text);
2961 
2962 /**
2963  * skb_append_datato_frags - append the user data to a skb
2964  * @sk: sock  structure
2965  * @skb: skb structure to be appended with user data.
2966  * @getfrag: call back function to be used for getting the user data
2967  * @from: pointer to user message iov
2968  * @length: length of the iov message
2969  *
2970  * Description: This procedure append the user data in the fragment part
2971  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2972  */
2973 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2974 			int (*getfrag)(void *from, char *to, int offset,
2975 					int len, int odd, struct sk_buff *skb),
2976 			void *from, int length)
2977 {
2978 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2979 	int copy;
2980 	int offset = 0;
2981 	int ret;
2982 	struct page_frag *pfrag = &current->task_frag;
2983 
2984 	do {
2985 		/* Return error if we don't have space for new frag */
2986 		if (frg_cnt >= MAX_SKB_FRAGS)
2987 			return -EMSGSIZE;
2988 
2989 		if (!sk_page_frag_refill(sk, pfrag))
2990 			return -ENOMEM;
2991 
2992 		/* copy the user data to page */
2993 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2994 
2995 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2996 			      offset, copy, 0, skb);
2997 		if (ret < 0)
2998 			return -EFAULT;
2999 
3000 		/* copy was successful so update the size parameters */
3001 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3002 				   copy);
3003 		frg_cnt++;
3004 		pfrag->offset += copy;
3005 		get_page(pfrag->page);
3006 
3007 		skb->truesize += copy;
3008 		atomic_add(copy, &sk->sk_wmem_alloc);
3009 		skb->len += copy;
3010 		skb->data_len += copy;
3011 		offset += copy;
3012 		length -= copy;
3013 
3014 	} while (length > 0);
3015 
3016 	return 0;
3017 }
3018 EXPORT_SYMBOL(skb_append_datato_frags);
3019 
3020 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3021 			 int offset, size_t size)
3022 {
3023 	int i = skb_shinfo(skb)->nr_frags;
3024 
3025 	if (skb_can_coalesce(skb, i, page, offset)) {
3026 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3027 	} else if (i < MAX_SKB_FRAGS) {
3028 		get_page(page);
3029 		skb_fill_page_desc(skb, i, page, offset, size);
3030 	} else {
3031 		return -EMSGSIZE;
3032 	}
3033 
3034 	return 0;
3035 }
3036 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3037 
3038 /**
3039  *	skb_pull_rcsum - pull skb and update receive checksum
3040  *	@skb: buffer to update
3041  *	@len: length of data pulled
3042  *
3043  *	This function performs an skb_pull on the packet and updates
3044  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3045  *	receive path processing instead of skb_pull unless you know
3046  *	that the checksum difference is zero (e.g., a valid IP header)
3047  *	or you are setting ip_summed to CHECKSUM_NONE.
3048  */
3049 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3050 {
3051 	unsigned char *data = skb->data;
3052 
3053 	BUG_ON(len > skb->len);
3054 	__skb_pull(skb, len);
3055 	skb_postpull_rcsum(skb, data, len);
3056 	return skb->data;
3057 }
3058 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3059 
3060 /**
3061  *	skb_segment - Perform protocol segmentation on skb.
3062  *	@head_skb: buffer to segment
3063  *	@features: features for the output path (see dev->features)
3064  *
3065  *	This function performs segmentation on the given skb.  It returns
3066  *	a pointer to the first in a list of new skbs for the segments.
3067  *	In case of error it returns ERR_PTR(err).
3068  */
3069 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3070 			    netdev_features_t features)
3071 {
3072 	struct sk_buff *segs = NULL;
3073 	struct sk_buff *tail = NULL;
3074 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3075 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3076 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3077 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3078 	struct sk_buff *frag_skb = head_skb;
3079 	unsigned int offset = doffset;
3080 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3081 	unsigned int partial_segs = 0;
3082 	unsigned int headroom;
3083 	unsigned int len = head_skb->len;
3084 	__be16 proto;
3085 	bool csum, sg;
3086 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3087 	int err = -ENOMEM;
3088 	int i = 0;
3089 	int pos;
3090 	int dummy;
3091 
3092 	__skb_push(head_skb, doffset);
3093 	proto = skb_network_protocol(head_skb, &dummy);
3094 	if (unlikely(!proto))
3095 		return ERR_PTR(-EINVAL);
3096 
3097 	sg = !!(features & NETIF_F_SG);
3098 	csum = !!can_checksum_protocol(features, proto);
3099 
3100 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3101 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3102 			struct sk_buff *iter;
3103 
3104 			if (!list_skb ||
3105 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3106 				goto normal;
3107 
3108 			/* Split the buffer at the frag_list pointer.
3109 			 * This is based on the assumption that all
3110 			 * buffers in the chain excluding the last
3111 			 * containing the same amount of data.
3112 			 */
3113 			skb_walk_frags(head_skb, iter) {
3114 				if (skb_headlen(iter))
3115 					goto normal;
3116 
3117 				len -= iter->len;
3118 			}
3119 		}
3120 
3121 		/* GSO partial only requires that we trim off any excess that
3122 		 * doesn't fit into an MSS sized block, so take care of that
3123 		 * now.
3124 		 */
3125 		partial_segs = len / mss;
3126 		if (partial_segs > 1)
3127 			mss *= partial_segs;
3128 		else
3129 			partial_segs = 0;
3130 	}
3131 
3132 normal:
3133 	headroom = skb_headroom(head_skb);
3134 	pos = skb_headlen(head_skb);
3135 
3136 	do {
3137 		struct sk_buff *nskb;
3138 		skb_frag_t *nskb_frag;
3139 		int hsize;
3140 		int size;
3141 
3142 		if (unlikely(mss == GSO_BY_FRAGS)) {
3143 			len = list_skb->len;
3144 		} else {
3145 			len = head_skb->len - offset;
3146 			if (len > mss)
3147 				len = mss;
3148 		}
3149 
3150 		hsize = skb_headlen(head_skb) - offset;
3151 		if (hsize < 0)
3152 			hsize = 0;
3153 		if (hsize > len || !sg)
3154 			hsize = len;
3155 
3156 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3157 		    (skb_headlen(list_skb) == len || sg)) {
3158 			BUG_ON(skb_headlen(list_skb) > len);
3159 
3160 			i = 0;
3161 			nfrags = skb_shinfo(list_skb)->nr_frags;
3162 			frag = skb_shinfo(list_skb)->frags;
3163 			frag_skb = list_skb;
3164 			pos += skb_headlen(list_skb);
3165 
3166 			while (pos < offset + len) {
3167 				BUG_ON(i >= nfrags);
3168 
3169 				size = skb_frag_size(frag);
3170 				if (pos + size > offset + len)
3171 					break;
3172 
3173 				i++;
3174 				pos += size;
3175 				frag++;
3176 			}
3177 
3178 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3179 			list_skb = list_skb->next;
3180 
3181 			if (unlikely(!nskb))
3182 				goto err;
3183 
3184 			if (unlikely(pskb_trim(nskb, len))) {
3185 				kfree_skb(nskb);
3186 				goto err;
3187 			}
3188 
3189 			hsize = skb_end_offset(nskb);
3190 			if (skb_cow_head(nskb, doffset + headroom)) {
3191 				kfree_skb(nskb);
3192 				goto err;
3193 			}
3194 
3195 			nskb->truesize += skb_end_offset(nskb) - hsize;
3196 			skb_release_head_state(nskb);
3197 			__skb_push(nskb, doffset);
3198 		} else {
3199 			nskb = __alloc_skb(hsize + doffset + headroom,
3200 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3201 					   NUMA_NO_NODE);
3202 
3203 			if (unlikely(!nskb))
3204 				goto err;
3205 
3206 			skb_reserve(nskb, headroom);
3207 			__skb_put(nskb, doffset);
3208 		}
3209 
3210 		if (segs)
3211 			tail->next = nskb;
3212 		else
3213 			segs = nskb;
3214 		tail = nskb;
3215 
3216 		__copy_skb_header(nskb, head_skb);
3217 
3218 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3219 		skb_reset_mac_len(nskb);
3220 
3221 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3222 						 nskb->data - tnl_hlen,
3223 						 doffset + tnl_hlen);
3224 
3225 		if (nskb->len == len + doffset)
3226 			goto perform_csum_check;
3227 
3228 		if (!sg) {
3229 			if (!nskb->remcsum_offload)
3230 				nskb->ip_summed = CHECKSUM_NONE;
3231 			SKB_GSO_CB(nskb)->csum =
3232 				skb_copy_and_csum_bits(head_skb, offset,
3233 						       skb_put(nskb, len),
3234 						       len, 0);
3235 			SKB_GSO_CB(nskb)->csum_start =
3236 				skb_headroom(nskb) + doffset;
3237 			continue;
3238 		}
3239 
3240 		nskb_frag = skb_shinfo(nskb)->frags;
3241 
3242 		skb_copy_from_linear_data_offset(head_skb, offset,
3243 						 skb_put(nskb, hsize), hsize);
3244 
3245 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3246 			SKBTX_SHARED_FRAG;
3247 
3248 		while (pos < offset + len) {
3249 			if (i >= nfrags) {
3250 				BUG_ON(skb_headlen(list_skb));
3251 
3252 				i = 0;
3253 				nfrags = skb_shinfo(list_skb)->nr_frags;
3254 				frag = skb_shinfo(list_skb)->frags;
3255 				frag_skb = list_skb;
3256 
3257 				BUG_ON(!nfrags);
3258 
3259 				list_skb = list_skb->next;
3260 			}
3261 
3262 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3263 				     MAX_SKB_FRAGS)) {
3264 				net_warn_ratelimited(
3265 					"skb_segment: too many frags: %u %u\n",
3266 					pos, mss);
3267 				goto err;
3268 			}
3269 
3270 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3271 				goto err;
3272 
3273 			*nskb_frag = *frag;
3274 			__skb_frag_ref(nskb_frag);
3275 			size = skb_frag_size(nskb_frag);
3276 
3277 			if (pos < offset) {
3278 				nskb_frag->page_offset += offset - pos;
3279 				skb_frag_size_sub(nskb_frag, offset - pos);
3280 			}
3281 
3282 			skb_shinfo(nskb)->nr_frags++;
3283 
3284 			if (pos + size <= offset + len) {
3285 				i++;
3286 				frag++;
3287 				pos += size;
3288 			} else {
3289 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3290 				goto skip_fraglist;
3291 			}
3292 
3293 			nskb_frag++;
3294 		}
3295 
3296 skip_fraglist:
3297 		nskb->data_len = len - hsize;
3298 		nskb->len += nskb->data_len;
3299 		nskb->truesize += nskb->data_len;
3300 
3301 perform_csum_check:
3302 		if (!csum) {
3303 			if (skb_has_shared_frag(nskb)) {
3304 				err = __skb_linearize(nskb);
3305 				if (err)
3306 					goto err;
3307 			}
3308 			if (!nskb->remcsum_offload)
3309 				nskb->ip_summed = CHECKSUM_NONE;
3310 			SKB_GSO_CB(nskb)->csum =
3311 				skb_checksum(nskb, doffset,
3312 					     nskb->len - doffset, 0);
3313 			SKB_GSO_CB(nskb)->csum_start =
3314 				skb_headroom(nskb) + doffset;
3315 		}
3316 	} while ((offset += len) < head_skb->len);
3317 
3318 	/* Some callers want to get the end of the list.
3319 	 * Put it in segs->prev to avoid walking the list.
3320 	 * (see validate_xmit_skb_list() for example)
3321 	 */
3322 	segs->prev = tail;
3323 
3324 	if (partial_segs) {
3325 		struct sk_buff *iter;
3326 		int type = skb_shinfo(head_skb)->gso_type;
3327 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3328 
3329 		/* Update type to add partial and then remove dodgy if set */
3330 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3331 		type &= ~SKB_GSO_DODGY;
3332 
3333 		/* Update GSO info and prepare to start updating headers on
3334 		 * our way back down the stack of protocols.
3335 		 */
3336 		for (iter = segs; iter; iter = iter->next) {
3337 			skb_shinfo(iter)->gso_size = gso_size;
3338 			skb_shinfo(iter)->gso_segs = partial_segs;
3339 			skb_shinfo(iter)->gso_type = type;
3340 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3341 		}
3342 
3343 		if (tail->len - doffset <= gso_size)
3344 			skb_shinfo(tail)->gso_size = 0;
3345 		else if (tail != segs)
3346 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3347 	}
3348 
3349 	/* Following permits correct backpressure, for protocols
3350 	 * using skb_set_owner_w().
3351 	 * Idea is to tranfert ownership from head_skb to last segment.
3352 	 */
3353 	if (head_skb->destructor == sock_wfree) {
3354 		swap(tail->truesize, head_skb->truesize);
3355 		swap(tail->destructor, head_skb->destructor);
3356 		swap(tail->sk, head_skb->sk);
3357 	}
3358 	return segs;
3359 
3360 err:
3361 	kfree_skb_list(segs);
3362 	return ERR_PTR(err);
3363 }
3364 EXPORT_SYMBOL_GPL(skb_segment);
3365 
3366 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3367 {
3368 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3369 	unsigned int offset = skb_gro_offset(skb);
3370 	unsigned int headlen = skb_headlen(skb);
3371 	unsigned int len = skb_gro_len(skb);
3372 	struct sk_buff *lp, *p = *head;
3373 	unsigned int delta_truesize;
3374 
3375 	if (unlikely(p->len + len >= 65536))
3376 		return -E2BIG;
3377 
3378 	lp = NAPI_GRO_CB(p)->last;
3379 	pinfo = skb_shinfo(lp);
3380 
3381 	if (headlen <= offset) {
3382 		skb_frag_t *frag;
3383 		skb_frag_t *frag2;
3384 		int i = skbinfo->nr_frags;
3385 		int nr_frags = pinfo->nr_frags + i;
3386 
3387 		if (nr_frags > MAX_SKB_FRAGS)
3388 			goto merge;
3389 
3390 		offset -= headlen;
3391 		pinfo->nr_frags = nr_frags;
3392 		skbinfo->nr_frags = 0;
3393 
3394 		frag = pinfo->frags + nr_frags;
3395 		frag2 = skbinfo->frags + i;
3396 		do {
3397 			*--frag = *--frag2;
3398 		} while (--i);
3399 
3400 		frag->page_offset += offset;
3401 		skb_frag_size_sub(frag, offset);
3402 
3403 		/* all fragments truesize : remove (head size + sk_buff) */
3404 		delta_truesize = skb->truesize -
3405 				 SKB_TRUESIZE(skb_end_offset(skb));
3406 
3407 		skb->truesize -= skb->data_len;
3408 		skb->len -= skb->data_len;
3409 		skb->data_len = 0;
3410 
3411 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3412 		goto done;
3413 	} else if (skb->head_frag) {
3414 		int nr_frags = pinfo->nr_frags;
3415 		skb_frag_t *frag = pinfo->frags + nr_frags;
3416 		struct page *page = virt_to_head_page(skb->head);
3417 		unsigned int first_size = headlen - offset;
3418 		unsigned int first_offset;
3419 
3420 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3421 			goto merge;
3422 
3423 		first_offset = skb->data -
3424 			       (unsigned char *)page_address(page) +
3425 			       offset;
3426 
3427 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3428 
3429 		frag->page.p	  = page;
3430 		frag->page_offset = first_offset;
3431 		skb_frag_size_set(frag, first_size);
3432 
3433 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3434 		/* We dont need to clear skbinfo->nr_frags here */
3435 
3436 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3437 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3438 		goto done;
3439 	}
3440 
3441 merge:
3442 	delta_truesize = skb->truesize;
3443 	if (offset > headlen) {
3444 		unsigned int eat = offset - headlen;
3445 
3446 		skbinfo->frags[0].page_offset += eat;
3447 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3448 		skb->data_len -= eat;
3449 		skb->len -= eat;
3450 		offset = headlen;
3451 	}
3452 
3453 	__skb_pull(skb, offset);
3454 
3455 	if (NAPI_GRO_CB(p)->last == p)
3456 		skb_shinfo(p)->frag_list = skb;
3457 	else
3458 		NAPI_GRO_CB(p)->last->next = skb;
3459 	NAPI_GRO_CB(p)->last = skb;
3460 	__skb_header_release(skb);
3461 	lp = p;
3462 
3463 done:
3464 	NAPI_GRO_CB(p)->count++;
3465 	p->data_len += len;
3466 	p->truesize += delta_truesize;
3467 	p->len += len;
3468 	if (lp != p) {
3469 		lp->data_len += len;
3470 		lp->truesize += delta_truesize;
3471 		lp->len += len;
3472 	}
3473 	NAPI_GRO_CB(skb)->same_flow = 1;
3474 	return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(skb_gro_receive);
3477 
3478 void __init skb_init(void)
3479 {
3480 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3481 					      sizeof(struct sk_buff),
3482 					      0,
3483 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3484 					      NULL);
3485 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3486 						sizeof(struct sk_buff_fclones),
3487 						0,
3488 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3489 						NULL);
3490 }
3491 
3492 /**
3493  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3494  *	@skb: Socket buffer containing the buffers to be mapped
3495  *	@sg: The scatter-gather list to map into
3496  *	@offset: The offset into the buffer's contents to start mapping
3497  *	@len: Length of buffer space to be mapped
3498  *
3499  *	Fill the specified scatter-gather list with mappings/pointers into a
3500  *	region of the buffer space attached to a socket buffer.
3501  */
3502 static int
3503 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3504 {
3505 	int start = skb_headlen(skb);
3506 	int i, copy = start - offset;
3507 	struct sk_buff *frag_iter;
3508 	int elt = 0;
3509 
3510 	if (copy > 0) {
3511 		if (copy > len)
3512 			copy = len;
3513 		sg_set_buf(sg, skb->data + offset, copy);
3514 		elt++;
3515 		if ((len -= copy) == 0)
3516 			return elt;
3517 		offset += copy;
3518 	}
3519 
3520 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3521 		int end;
3522 
3523 		WARN_ON(start > offset + len);
3524 
3525 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3526 		if ((copy = end - offset) > 0) {
3527 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3528 
3529 			if (copy > len)
3530 				copy = len;
3531 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3532 					frag->page_offset+offset-start);
3533 			elt++;
3534 			if (!(len -= copy))
3535 				return elt;
3536 			offset += copy;
3537 		}
3538 		start = end;
3539 	}
3540 
3541 	skb_walk_frags(skb, frag_iter) {
3542 		int end;
3543 
3544 		WARN_ON(start > offset + len);
3545 
3546 		end = start + frag_iter->len;
3547 		if ((copy = end - offset) > 0) {
3548 			if (copy > len)
3549 				copy = len;
3550 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3551 					      copy);
3552 			if ((len -= copy) == 0)
3553 				return elt;
3554 			offset += copy;
3555 		}
3556 		start = end;
3557 	}
3558 	BUG_ON(len);
3559 	return elt;
3560 }
3561 
3562 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3563  * sglist without mark the sg which contain last skb data as the end.
3564  * So the caller can mannipulate sg list as will when padding new data after
3565  * the first call without calling sg_unmark_end to expend sg list.
3566  *
3567  * Scenario to use skb_to_sgvec_nomark:
3568  * 1. sg_init_table
3569  * 2. skb_to_sgvec_nomark(payload1)
3570  * 3. skb_to_sgvec_nomark(payload2)
3571  *
3572  * This is equivalent to:
3573  * 1. sg_init_table
3574  * 2. skb_to_sgvec(payload1)
3575  * 3. sg_unmark_end
3576  * 4. skb_to_sgvec(payload2)
3577  *
3578  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3579  * is more preferable.
3580  */
3581 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3582 			int offset, int len)
3583 {
3584 	return __skb_to_sgvec(skb, sg, offset, len);
3585 }
3586 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3587 
3588 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3589 {
3590 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3591 
3592 	sg_mark_end(&sg[nsg - 1]);
3593 
3594 	return nsg;
3595 }
3596 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3597 
3598 /**
3599  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3600  *	@skb: The socket buffer to check.
3601  *	@tailbits: Amount of trailing space to be added
3602  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3603  *
3604  *	Make sure that the data buffers attached to a socket buffer are
3605  *	writable. If they are not, private copies are made of the data buffers
3606  *	and the socket buffer is set to use these instead.
3607  *
3608  *	If @tailbits is given, make sure that there is space to write @tailbits
3609  *	bytes of data beyond current end of socket buffer.  @trailer will be
3610  *	set to point to the skb in which this space begins.
3611  *
3612  *	The number of scatterlist elements required to completely map the
3613  *	COW'd and extended socket buffer will be returned.
3614  */
3615 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3616 {
3617 	int copyflag;
3618 	int elt;
3619 	struct sk_buff *skb1, **skb_p;
3620 
3621 	/* If skb is cloned or its head is paged, reallocate
3622 	 * head pulling out all the pages (pages are considered not writable
3623 	 * at the moment even if they are anonymous).
3624 	 */
3625 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3626 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3627 		return -ENOMEM;
3628 
3629 	/* Easy case. Most of packets will go this way. */
3630 	if (!skb_has_frag_list(skb)) {
3631 		/* A little of trouble, not enough of space for trailer.
3632 		 * This should not happen, when stack is tuned to generate
3633 		 * good frames. OK, on miss we reallocate and reserve even more
3634 		 * space, 128 bytes is fair. */
3635 
3636 		if (skb_tailroom(skb) < tailbits &&
3637 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3638 			return -ENOMEM;
3639 
3640 		/* Voila! */
3641 		*trailer = skb;
3642 		return 1;
3643 	}
3644 
3645 	/* Misery. We are in troubles, going to mincer fragments... */
3646 
3647 	elt = 1;
3648 	skb_p = &skb_shinfo(skb)->frag_list;
3649 	copyflag = 0;
3650 
3651 	while ((skb1 = *skb_p) != NULL) {
3652 		int ntail = 0;
3653 
3654 		/* The fragment is partially pulled by someone,
3655 		 * this can happen on input. Copy it and everything
3656 		 * after it. */
3657 
3658 		if (skb_shared(skb1))
3659 			copyflag = 1;
3660 
3661 		/* If the skb is the last, worry about trailer. */
3662 
3663 		if (skb1->next == NULL && tailbits) {
3664 			if (skb_shinfo(skb1)->nr_frags ||
3665 			    skb_has_frag_list(skb1) ||
3666 			    skb_tailroom(skb1) < tailbits)
3667 				ntail = tailbits + 128;
3668 		}
3669 
3670 		if (copyflag ||
3671 		    skb_cloned(skb1) ||
3672 		    ntail ||
3673 		    skb_shinfo(skb1)->nr_frags ||
3674 		    skb_has_frag_list(skb1)) {
3675 			struct sk_buff *skb2;
3676 
3677 			/* Fuck, we are miserable poor guys... */
3678 			if (ntail == 0)
3679 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3680 			else
3681 				skb2 = skb_copy_expand(skb1,
3682 						       skb_headroom(skb1),
3683 						       ntail,
3684 						       GFP_ATOMIC);
3685 			if (unlikely(skb2 == NULL))
3686 				return -ENOMEM;
3687 
3688 			if (skb1->sk)
3689 				skb_set_owner_w(skb2, skb1->sk);
3690 
3691 			/* Looking around. Are we still alive?
3692 			 * OK, link new skb, drop old one */
3693 
3694 			skb2->next = skb1->next;
3695 			*skb_p = skb2;
3696 			kfree_skb(skb1);
3697 			skb1 = skb2;
3698 		}
3699 		elt++;
3700 		*trailer = skb1;
3701 		skb_p = &skb1->next;
3702 	}
3703 
3704 	return elt;
3705 }
3706 EXPORT_SYMBOL_GPL(skb_cow_data);
3707 
3708 static void sock_rmem_free(struct sk_buff *skb)
3709 {
3710 	struct sock *sk = skb->sk;
3711 
3712 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3713 }
3714 
3715 /*
3716  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3717  */
3718 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3719 {
3720 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3721 	    (unsigned int)sk->sk_rcvbuf)
3722 		return -ENOMEM;
3723 
3724 	skb_orphan(skb);
3725 	skb->sk = sk;
3726 	skb->destructor = sock_rmem_free;
3727 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3728 
3729 	/* before exiting rcu section, make sure dst is refcounted */
3730 	skb_dst_force(skb);
3731 
3732 	skb_queue_tail(&sk->sk_error_queue, skb);
3733 	if (!sock_flag(sk, SOCK_DEAD))
3734 		sk->sk_data_ready(sk);
3735 	return 0;
3736 }
3737 EXPORT_SYMBOL(sock_queue_err_skb);
3738 
3739 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3740 {
3741 	struct sk_buff_head *q = &sk->sk_error_queue;
3742 	struct sk_buff *skb, *skb_next;
3743 	unsigned long flags;
3744 	int err = 0;
3745 
3746 	spin_lock_irqsave(&q->lock, flags);
3747 	skb = __skb_dequeue(q);
3748 	if (skb && (skb_next = skb_peek(q)))
3749 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3750 	spin_unlock_irqrestore(&q->lock, flags);
3751 
3752 	sk->sk_err = err;
3753 	if (err)
3754 		sk->sk_error_report(sk);
3755 
3756 	return skb;
3757 }
3758 EXPORT_SYMBOL(sock_dequeue_err_skb);
3759 
3760 /**
3761  * skb_clone_sk - create clone of skb, and take reference to socket
3762  * @skb: the skb to clone
3763  *
3764  * This function creates a clone of a buffer that holds a reference on
3765  * sk_refcnt.  Buffers created via this function are meant to be
3766  * returned using sock_queue_err_skb, or free via kfree_skb.
3767  *
3768  * When passing buffers allocated with this function to sock_queue_err_skb
3769  * it is necessary to wrap the call with sock_hold/sock_put in order to
3770  * prevent the socket from being released prior to being enqueued on
3771  * the sk_error_queue.
3772  */
3773 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3774 {
3775 	struct sock *sk = skb->sk;
3776 	struct sk_buff *clone;
3777 
3778 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3779 		return NULL;
3780 
3781 	clone = skb_clone(skb, GFP_ATOMIC);
3782 	if (!clone) {
3783 		sock_put(sk);
3784 		return NULL;
3785 	}
3786 
3787 	clone->sk = sk;
3788 	clone->destructor = sock_efree;
3789 
3790 	return clone;
3791 }
3792 EXPORT_SYMBOL(skb_clone_sk);
3793 
3794 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3795 					struct sock *sk,
3796 					int tstype)
3797 {
3798 	struct sock_exterr_skb *serr;
3799 	int err;
3800 
3801 	serr = SKB_EXT_ERR(skb);
3802 	memset(serr, 0, sizeof(*serr));
3803 	serr->ee.ee_errno = ENOMSG;
3804 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3805 	serr->ee.ee_info = tstype;
3806 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3807 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3808 		if (sk->sk_protocol == IPPROTO_TCP &&
3809 		    sk->sk_type == SOCK_STREAM)
3810 			serr->ee.ee_data -= sk->sk_tskey;
3811 	}
3812 
3813 	err = sock_queue_err_skb(sk, skb);
3814 
3815 	if (err)
3816 		kfree_skb(skb);
3817 }
3818 
3819 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3820 {
3821 	bool ret;
3822 
3823 	if (likely(sysctl_tstamp_allow_data || tsonly))
3824 		return true;
3825 
3826 	read_lock_bh(&sk->sk_callback_lock);
3827 	ret = sk->sk_socket && sk->sk_socket->file &&
3828 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3829 	read_unlock_bh(&sk->sk_callback_lock);
3830 	return ret;
3831 }
3832 
3833 void skb_complete_tx_timestamp(struct sk_buff *skb,
3834 			       struct skb_shared_hwtstamps *hwtstamps)
3835 {
3836 	struct sock *sk = skb->sk;
3837 
3838 	if (!skb_may_tx_timestamp(sk, false))
3839 		return;
3840 
3841 	/* take a reference to prevent skb_orphan() from freeing the socket */
3842 	sock_hold(sk);
3843 
3844 	*skb_hwtstamps(skb) = *hwtstamps;
3845 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3846 
3847 	sock_put(sk);
3848 }
3849 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3850 
3851 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3852 		     struct skb_shared_hwtstamps *hwtstamps,
3853 		     struct sock *sk, int tstype)
3854 {
3855 	struct sk_buff *skb;
3856 	bool tsonly;
3857 
3858 	if (!sk)
3859 		return;
3860 
3861 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3862 	if (!skb_may_tx_timestamp(sk, tsonly))
3863 		return;
3864 
3865 	if (tsonly)
3866 		skb = alloc_skb(0, GFP_ATOMIC);
3867 	else
3868 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3869 	if (!skb)
3870 		return;
3871 
3872 	if (tsonly) {
3873 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3874 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3875 	}
3876 
3877 	if (hwtstamps)
3878 		*skb_hwtstamps(skb) = *hwtstamps;
3879 	else
3880 		skb->tstamp = ktime_get_real();
3881 
3882 	__skb_complete_tx_timestamp(skb, sk, tstype);
3883 }
3884 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3885 
3886 void skb_tstamp_tx(struct sk_buff *orig_skb,
3887 		   struct skb_shared_hwtstamps *hwtstamps)
3888 {
3889 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3890 			       SCM_TSTAMP_SND);
3891 }
3892 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3893 
3894 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3895 {
3896 	struct sock *sk = skb->sk;
3897 	struct sock_exterr_skb *serr;
3898 	int err;
3899 
3900 	skb->wifi_acked_valid = 1;
3901 	skb->wifi_acked = acked;
3902 
3903 	serr = SKB_EXT_ERR(skb);
3904 	memset(serr, 0, sizeof(*serr));
3905 	serr->ee.ee_errno = ENOMSG;
3906 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3907 
3908 	/* take a reference to prevent skb_orphan() from freeing the socket */
3909 	sock_hold(sk);
3910 
3911 	err = sock_queue_err_skb(sk, skb);
3912 	if (err)
3913 		kfree_skb(skb);
3914 
3915 	sock_put(sk);
3916 }
3917 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3918 
3919 /**
3920  * skb_partial_csum_set - set up and verify partial csum values for packet
3921  * @skb: the skb to set
3922  * @start: the number of bytes after skb->data to start checksumming.
3923  * @off: the offset from start to place the checksum.
3924  *
3925  * For untrusted partially-checksummed packets, we need to make sure the values
3926  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3927  *
3928  * This function checks and sets those values and skb->ip_summed: if this
3929  * returns false you should drop the packet.
3930  */
3931 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3932 {
3933 	if (unlikely(start > skb_headlen(skb)) ||
3934 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3935 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3936 				     start, off, skb_headlen(skb));
3937 		return false;
3938 	}
3939 	skb->ip_summed = CHECKSUM_PARTIAL;
3940 	skb->csum_start = skb_headroom(skb) + start;
3941 	skb->csum_offset = off;
3942 	skb_set_transport_header(skb, start);
3943 	return true;
3944 }
3945 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3946 
3947 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3948 			       unsigned int max)
3949 {
3950 	if (skb_headlen(skb) >= len)
3951 		return 0;
3952 
3953 	/* If we need to pullup then pullup to the max, so we
3954 	 * won't need to do it again.
3955 	 */
3956 	if (max > skb->len)
3957 		max = skb->len;
3958 
3959 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3960 		return -ENOMEM;
3961 
3962 	if (skb_headlen(skb) < len)
3963 		return -EPROTO;
3964 
3965 	return 0;
3966 }
3967 
3968 #define MAX_TCP_HDR_LEN (15 * 4)
3969 
3970 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3971 				      typeof(IPPROTO_IP) proto,
3972 				      unsigned int off)
3973 {
3974 	switch (proto) {
3975 		int err;
3976 
3977 	case IPPROTO_TCP:
3978 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3979 					  off + MAX_TCP_HDR_LEN);
3980 		if (!err && !skb_partial_csum_set(skb, off,
3981 						  offsetof(struct tcphdr,
3982 							   check)))
3983 			err = -EPROTO;
3984 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3985 
3986 	case IPPROTO_UDP:
3987 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3988 					  off + sizeof(struct udphdr));
3989 		if (!err && !skb_partial_csum_set(skb, off,
3990 						  offsetof(struct udphdr,
3991 							   check)))
3992 			err = -EPROTO;
3993 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3994 	}
3995 
3996 	return ERR_PTR(-EPROTO);
3997 }
3998 
3999 /* This value should be large enough to cover a tagged ethernet header plus
4000  * maximally sized IP and TCP or UDP headers.
4001  */
4002 #define MAX_IP_HDR_LEN 128
4003 
4004 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4005 {
4006 	unsigned int off;
4007 	bool fragment;
4008 	__sum16 *csum;
4009 	int err;
4010 
4011 	fragment = false;
4012 
4013 	err = skb_maybe_pull_tail(skb,
4014 				  sizeof(struct iphdr),
4015 				  MAX_IP_HDR_LEN);
4016 	if (err < 0)
4017 		goto out;
4018 
4019 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4020 		fragment = true;
4021 
4022 	off = ip_hdrlen(skb);
4023 
4024 	err = -EPROTO;
4025 
4026 	if (fragment)
4027 		goto out;
4028 
4029 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4030 	if (IS_ERR(csum))
4031 		return PTR_ERR(csum);
4032 
4033 	if (recalculate)
4034 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4035 					   ip_hdr(skb)->daddr,
4036 					   skb->len - off,
4037 					   ip_hdr(skb)->protocol, 0);
4038 	err = 0;
4039 
4040 out:
4041 	return err;
4042 }
4043 
4044 /* This value should be large enough to cover a tagged ethernet header plus
4045  * an IPv6 header, all options, and a maximal TCP or UDP header.
4046  */
4047 #define MAX_IPV6_HDR_LEN 256
4048 
4049 #define OPT_HDR(type, skb, off) \
4050 	(type *)(skb_network_header(skb) + (off))
4051 
4052 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4053 {
4054 	int err;
4055 	u8 nexthdr;
4056 	unsigned int off;
4057 	unsigned int len;
4058 	bool fragment;
4059 	bool done;
4060 	__sum16 *csum;
4061 
4062 	fragment = false;
4063 	done = false;
4064 
4065 	off = sizeof(struct ipv6hdr);
4066 
4067 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4068 	if (err < 0)
4069 		goto out;
4070 
4071 	nexthdr = ipv6_hdr(skb)->nexthdr;
4072 
4073 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4074 	while (off <= len && !done) {
4075 		switch (nexthdr) {
4076 		case IPPROTO_DSTOPTS:
4077 		case IPPROTO_HOPOPTS:
4078 		case IPPROTO_ROUTING: {
4079 			struct ipv6_opt_hdr *hp;
4080 
4081 			err = skb_maybe_pull_tail(skb,
4082 						  off +
4083 						  sizeof(struct ipv6_opt_hdr),
4084 						  MAX_IPV6_HDR_LEN);
4085 			if (err < 0)
4086 				goto out;
4087 
4088 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4089 			nexthdr = hp->nexthdr;
4090 			off += ipv6_optlen(hp);
4091 			break;
4092 		}
4093 		case IPPROTO_AH: {
4094 			struct ip_auth_hdr *hp;
4095 
4096 			err = skb_maybe_pull_tail(skb,
4097 						  off +
4098 						  sizeof(struct ip_auth_hdr),
4099 						  MAX_IPV6_HDR_LEN);
4100 			if (err < 0)
4101 				goto out;
4102 
4103 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4104 			nexthdr = hp->nexthdr;
4105 			off += ipv6_authlen(hp);
4106 			break;
4107 		}
4108 		case IPPROTO_FRAGMENT: {
4109 			struct frag_hdr *hp;
4110 
4111 			err = skb_maybe_pull_tail(skb,
4112 						  off +
4113 						  sizeof(struct frag_hdr),
4114 						  MAX_IPV6_HDR_LEN);
4115 			if (err < 0)
4116 				goto out;
4117 
4118 			hp = OPT_HDR(struct frag_hdr, skb, off);
4119 
4120 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4121 				fragment = true;
4122 
4123 			nexthdr = hp->nexthdr;
4124 			off += sizeof(struct frag_hdr);
4125 			break;
4126 		}
4127 		default:
4128 			done = true;
4129 			break;
4130 		}
4131 	}
4132 
4133 	err = -EPROTO;
4134 
4135 	if (!done || fragment)
4136 		goto out;
4137 
4138 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4139 	if (IS_ERR(csum))
4140 		return PTR_ERR(csum);
4141 
4142 	if (recalculate)
4143 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4144 					 &ipv6_hdr(skb)->daddr,
4145 					 skb->len - off, nexthdr, 0);
4146 	err = 0;
4147 
4148 out:
4149 	return err;
4150 }
4151 
4152 /**
4153  * skb_checksum_setup - set up partial checksum offset
4154  * @skb: the skb to set up
4155  * @recalculate: if true the pseudo-header checksum will be recalculated
4156  */
4157 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4158 {
4159 	int err;
4160 
4161 	switch (skb->protocol) {
4162 	case htons(ETH_P_IP):
4163 		err = skb_checksum_setup_ipv4(skb, recalculate);
4164 		break;
4165 
4166 	case htons(ETH_P_IPV6):
4167 		err = skb_checksum_setup_ipv6(skb, recalculate);
4168 		break;
4169 
4170 	default:
4171 		err = -EPROTO;
4172 		break;
4173 	}
4174 
4175 	return err;
4176 }
4177 EXPORT_SYMBOL(skb_checksum_setup);
4178 
4179 /**
4180  * skb_checksum_maybe_trim - maybe trims the given skb
4181  * @skb: the skb to check
4182  * @transport_len: the data length beyond the network header
4183  *
4184  * Checks whether the given skb has data beyond the given transport length.
4185  * If so, returns a cloned skb trimmed to this transport length.
4186  * Otherwise returns the provided skb. Returns NULL in error cases
4187  * (e.g. transport_len exceeds skb length or out-of-memory).
4188  *
4189  * Caller needs to set the skb transport header and free any returned skb if it
4190  * differs from the provided skb.
4191  */
4192 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4193 					       unsigned int transport_len)
4194 {
4195 	struct sk_buff *skb_chk;
4196 	unsigned int len = skb_transport_offset(skb) + transport_len;
4197 	int ret;
4198 
4199 	if (skb->len < len)
4200 		return NULL;
4201 	else if (skb->len == len)
4202 		return skb;
4203 
4204 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4205 	if (!skb_chk)
4206 		return NULL;
4207 
4208 	ret = pskb_trim_rcsum(skb_chk, len);
4209 	if (ret) {
4210 		kfree_skb(skb_chk);
4211 		return NULL;
4212 	}
4213 
4214 	return skb_chk;
4215 }
4216 
4217 /**
4218  * skb_checksum_trimmed - validate checksum of an skb
4219  * @skb: the skb to check
4220  * @transport_len: the data length beyond the network header
4221  * @skb_chkf: checksum function to use
4222  *
4223  * Applies the given checksum function skb_chkf to the provided skb.
4224  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4225  *
4226  * If the skb has data beyond the given transport length, then a
4227  * trimmed & cloned skb is checked and returned.
4228  *
4229  * Caller needs to set the skb transport header and free any returned skb if it
4230  * differs from the provided skb.
4231  */
4232 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4233 				     unsigned int transport_len,
4234 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4235 {
4236 	struct sk_buff *skb_chk;
4237 	unsigned int offset = skb_transport_offset(skb);
4238 	__sum16 ret;
4239 
4240 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4241 	if (!skb_chk)
4242 		goto err;
4243 
4244 	if (!pskb_may_pull(skb_chk, offset))
4245 		goto err;
4246 
4247 	skb_pull_rcsum(skb_chk, offset);
4248 	ret = skb_chkf(skb_chk);
4249 	skb_push_rcsum(skb_chk, offset);
4250 
4251 	if (ret)
4252 		goto err;
4253 
4254 	return skb_chk;
4255 
4256 err:
4257 	if (skb_chk && skb_chk != skb)
4258 		kfree_skb(skb_chk);
4259 
4260 	return NULL;
4261 
4262 }
4263 EXPORT_SYMBOL(skb_checksum_trimmed);
4264 
4265 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4266 {
4267 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4268 			     skb->dev->name);
4269 }
4270 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4271 
4272 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4273 {
4274 	if (head_stolen) {
4275 		skb_release_head_state(skb);
4276 		kmem_cache_free(skbuff_head_cache, skb);
4277 	} else {
4278 		__kfree_skb(skb);
4279 	}
4280 }
4281 EXPORT_SYMBOL(kfree_skb_partial);
4282 
4283 /**
4284  * skb_try_coalesce - try to merge skb to prior one
4285  * @to: prior buffer
4286  * @from: buffer to add
4287  * @fragstolen: pointer to boolean
4288  * @delta_truesize: how much more was allocated than was requested
4289  */
4290 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4291 		      bool *fragstolen, int *delta_truesize)
4292 {
4293 	int i, delta, len = from->len;
4294 
4295 	*fragstolen = false;
4296 
4297 	if (skb_cloned(to))
4298 		return false;
4299 
4300 	if (len <= skb_tailroom(to)) {
4301 		if (len)
4302 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4303 		*delta_truesize = 0;
4304 		return true;
4305 	}
4306 
4307 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4308 		return false;
4309 
4310 	if (skb_headlen(from) != 0) {
4311 		struct page *page;
4312 		unsigned int offset;
4313 
4314 		if (skb_shinfo(to)->nr_frags +
4315 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4316 			return false;
4317 
4318 		if (skb_head_is_locked(from))
4319 			return false;
4320 
4321 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4322 
4323 		page = virt_to_head_page(from->head);
4324 		offset = from->data - (unsigned char *)page_address(page);
4325 
4326 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4327 				   page, offset, skb_headlen(from));
4328 		*fragstolen = true;
4329 	} else {
4330 		if (skb_shinfo(to)->nr_frags +
4331 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4332 			return false;
4333 
4334 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4335 	}
4336 
4337 	WARN_ON_ONCE(delta < len);
4338 
4339 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4340 	       skb_shinfo(from)->frags,
4341 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4342 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4343 
4344 	if (!skb_cloned(from))
4345 		skb_shinfo(from)->nr_frags = 0;
4346 
4347 	/* if the skb is not cloned this does nothing
4348 	 * since we set nr_frags to 0.
4349 	 */
4350 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4351 		skb_frag_ref(from, i);
4352 
4353 	to->truesize += delta;
4354 	to->len += len;
4355 	to->data_len += len;
4356 
4357 	*delta_truesize = delta;
4358 	return true;
4359 }
4360 EXPORT_SYMBOL(skb_try_coalesce);
4361 
4362 /**
4363  * skb_scrub_packet - scrub an skb
4364  *
4365  * @skb: buffer to clean
4366  * @xnet: packet is crossing netns
4367  *
4368  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4369  * into/from a tunnel. Some information have to be cleared during these
4370  * operations.
4371  * skb_scrub_packet can also be used to clean a skb before injecting it in
4372  * another namespace (@xnet == true). We have to clear all information in the
4373  * skb that could impact namespace isolation.
4374  */
4375 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4376 {
4377 	skb->tstamp.tv64 = 0;
4378 	skb->pkt_type = PACKET_HOST;
4379 	skb->skb_iif = 0;
4380 	skb->ignore_df = 0;
4381 	skb_dst_drop(skb);
4382 	secpath_reset(skb);
4383 	nf_reset(skb);
4384 	nf_reset_trace(skb);
4385 
4386 	if (!xnet)
4387 		return;
4388 
4389 	skb_orphan(skb);
4390 	skb->mark = 0;
4391 }
4392 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4393 
4394 /**
4395  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4396  *
4397  * @skb: GSO skb
4398  *
4399  * skb_gso_transport_seglen is used to determine the real size of the
4400  * individual segments, including Layer4 headers (TCP/UDP).
4401  *
4402  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4403  */
4404 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4405 {
4406 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4407 	unsigned int thlen = 0;
4408 
4409 	if (skb->encapsulation) {
4410 		thlen = skb_inner_transport_header(skb) -
4411 			skb_transport_header(skb);
4412 
4413 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4414 			thlen += inner_tcp_hdrlen(skb);
4415 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4416 		thlen = tcp_hdrlen(skb);
4417 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4418 		thlen = sizeof(struct sctphdr);
4419 	}
4420 	/* UFO sets gso_size to the size of the fragmentation
4421 	 * payload, i.e. the size of the L4 (UDP) header is already
4422 	 * accounted for.
4423 	 */
4424 	return thlen + shinfo->gso_size;
4425 }
4426 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4427 
4428 /**
4429  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4430  *
4431  * @skb: GSO skb
4432  * @mtu: MTU to validate against
4433  *
4434  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4435  * once split.
4436  */
4437 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4438 {
4439 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4440 	const struct sk_buff *iter;
4441 	unsigned int hlen;
4442 
4443 	hlen = skb_gso_network_seglen(skb);
4444 
4445 	if (shinfo->gso_size != GSO_BY_FRAGS)
4446 		return hlen <= mtu;
4447 
4448 	/* Undo this so we can re-use header sizes */
4449 	hlen -= GSO_BY_FRAGS;
4450 
4451 	skb_walk_frags(skb, iter) {
4452 		if (hlen + skb_headlen(iter) > mtu)
4453 			return false;
4454 	}
4455 
4456 	return true;
4457 }
4458 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4459 
4460 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4461 {
4462 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4463 		kfree_skb(skb);
4464 		return NULL;
4465 	}
4466 
4467 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4468 		2 * ETH_ALEN);
4469 	skb->mac_header += VLAN_HLEN;
4470 	return skb;
4471 }
4472 
4473 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4474 {
4475 	struct vlan_hdr *vhdr;
4476 	u16 vlan_tci;
4477 
4478 	if (unlikely(skb_vlan_tag_present(skb))) {
4479 		/* vlan_tci is already set-up so leave this for another time */
4480 		return skb;
4481 	}
4482 
4483 	skb = skb_share_check(skb, GFP_ATOMIC);
4484 	if (unlikely(!skb))
4485 		goto err_free;
4486 
4487 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4488 		goto err_free;
4489 
4490 	vhdr = (struct vlan_hdr *)skb->data;
4491 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4492 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4493 
4494 	skb_pull_rcsum(skb, VLAN_HLEN);
4495 	vlan_set_encap_proto(skb, vhdr);
4496 
4497 	skb = skb_reorder_vlan_header(skb);
4498 	if (unlikely(!skb))
4499 		goto err_free;
4500 
4501 	skb_reset_network_header(skb);
4502 	skb_reset_transport_header(skb);
4503 	skb_reset_mac_len(skb);
4504 
4505 	return skb;
4506 
4507 err_free:
4508 	kfree_skb(skb);
4509 	return NULL;
4510 }
4511 EXPORT_SYMBOL(skb_vlan_untag);
4512 
4513 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4514 {
4515 	if (!pskb_may_pull(skb, write_len))
4516 		return -ENOMEM;
4517 
4518 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4519 		return 0;
4520 
4521 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4522 }
4523 EXPORT_SYMBOL(skb_ensure_writable);
4524 
4525 /* remove VLAN header from packet and update csum accordingly.
4526  * expects a non skb_vlan_tag_present skb with a vlan tag payload
4527  */
4528 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4529 {
4530 	struct vlan_hdr *vhdr;
4531 	int offset = skb->data - skb_mac_header(skb);
4532 	int err;
4533 
4534 	if (WARN_ONCE(offset,
4535 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4536 		      offset)) {
4537 		return -EINVAL;
4538 	}
4539 
4540 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4541 	if (unlikely(err))
4542 		return err;
4543 
4544 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4545 
4546 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4547 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4548 
4549 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4550 	__skb_pull(skb, VLAN_HLEN);
4551 
4552 	vlan_set_encap_proto(skb, vhdr);
4553 	skb->mac_header += VLAN_HLEN;
4554 
4555 	if (skb_network_offset(skb) < ETH_HLEN)
4556 		skb_set_network_header(skb, ETH_HLEN);
4557 
4558 	skb_reset_mac_len(skb);
4559 
4560 	return err;
4561 }
4562 EXPORT_SYMBOL(__skb_vlan_pop);
4563 
4564 /* Pop a vlan tag either from hwaccel or from payload.
4565  * Expects skb->data at mac header.
4566  */
4567 int skb_vlan_pop(struct sk_buff *skb)
4568 {
4569 	u16 vlan_tci;
4570 	__be16 vlan_proto;
4571 	int err;
4572 
4573 	if (likely(skb_vlan_tag_present(skb))) {
4574 		skb->vlan_tci = 0;
4575 	} else {
4576 		if (unlikely(!eth_type_vlan(skb->protocol)))
4577 			return 0;
4578 
4579 		err = __skb_vlan_pop(skb, &vlan_tci);
4580 		if (err)
4581 			return err;
4582 	}
4583 	/* move next vlan tag to hw accel tag */
4584 	if (likely(!eth_type_vlan(skb->protocol)))
4585 		return 0;
4586 
4587 	vlan_proto = skb->protocol;
4588 	err = __skb_vlan_pop(skb, &vlan_tci);
4589 	if (unlikely(err))
4590 		return err;
4591 
4592 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4593 	return 0;
4594 }
4595 EXPORT_SYMBOL(skb_vlan_pop);
4596 
4597 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4598  * Expects skb->data at mac header.
4599  */
4600 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4601 {
4602 	if (skb_vlan_tag_present(skb)) {
4603 		int offset = skb->data - skb_mac_header(skb);
4604 		int err;
4605 
4606 		if (WARN_ONCE(offset,
4607 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4608 			      offset)) {
4609 			return -EINVAL;
4610 		}
4611 
4612 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4613 					skb_vlan_tag_get(skb));
4614 		if (err)
4615 			return err;
4616 
4617 		skb->protocol = skb->vlan_proto;
4618 		skb->mac_len += VLAN_HLEN;
4619 
4620 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4621 	}
4622 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4623 	return 0;
4624 }
4625 EXPORT_SYMBOL(skb_vlan_push);
4626 
4627 /**
4628  * alloc_skb_with_frags - allocate skb with page frags
4629  *
4630  * @header_len: size of linear part
4631  * @data_len: needed length in frags
4632  * @max_page_order: max page order desired.
4633  * @errcode: pointer to error code if any
4634  * @gfp_mask: allocation mask
4635  *
4636  * This can be used to allocate a paged skb, given a maximal order for frags.
4637  */
4638 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4639 				     unsigned long data_len,
4640 				     int max_page_order,
4641 				     int *errcode,
4642 				     gfp_t gfp_mask)
4643 {
4644 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4645 	unsigned long chunk;
4646 	struct sk_buff *skb;
4647 	struct page *page;
4648 	gfp_t gfp_head;
4649 	int i;
4650 
4651 	*errcode = -EMSGSIZE;
4652 	/* Note this test could be relaxed, if we succeed to allocate
4653 	 * high order pages...
4654 	 */
4655 	if (npages > MAX_SKB_FRAGS)
4656 		return NULL;
4657 
4658 	gfp_head = gfp_mask;
4659 	if (gfp_head & __GFP_DIRECT_RECLAIM)
4660 		gfp_head |= __GFP_REPEAT;
4661 
4662 	*errcode = -ENOBUFS;
4663 	skb = alloc_skb(header_len, gfp_head);
4664 	if (!skb)
4665 		return NULL;
4666 
4667 	skb->truesize += npages << PAGE_SHIFT;
4668 
4669 	for (i = 0; npages > 0; i++) {
4670 		int order = max_page_order;
4671 
4672 		while (order) {
4673 			if (npages >= 1 << order) {
4674 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4675 						   __GFP_COMP |
4676 						   __GFP_NOWARN |
4677 						   __GFP_NORETRY,
4678 						   order);
4679 				if (page)
4680 					goto fill_page;
4681 				/* Do not retry other high order allocations */
4682 				order = 1;
4683 				max_page_order = 0;
4684 			}
4685 			order--;
4686 		}
4687 		page = alloc_page(gfp_mask);
4688 		if (!page)
4689 			goto failure;
4690 fill_page:
4691 		chunk = min_t(unsigned long, data_len,
4692 			      PAGE_SIZE << order);
4693 		skb_fill_page_desc(skb, i, page, 0, chunk);
4694 		data_len -= chunk;
4695 		npages -= 1 << order;
4696 	}
4697 	return skb;
4698 
4699 failure:
4700 	kfree_skb(skb);
4701 	return NULL;
4702 }
4703 EXPORT_SYMBOL(alloc_skb_with_frags);
4704 
4705 /* carve out the first off bytes from skb when off < headlen */
4706 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4707 				    const int headlen, gfp_t gfp_mask)
4708 {
4709 	int i;
4710 	int size = skb_end_offset(skb);
4711 	int new_hlen = headlen - off;
4712 	u8 *data;
4713 
4714 	size = SKB_DATA_ALIGN(size);
4715 
4716 	if (skb_pfmemalloc(skb))
4717 		gfp_mask |= __GFP_MEMALLOC;
4718 	data = kmalloc_reserve(size +
4719 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4720 			       gfp_mask, NUMA_NO_NODE, NULL);
4721 	if (!data)
4722 		return -ENOMEM;
4723 
4724 	size = SKB_WITH_OVERHEAD(ksize(data));
4725 
4726 	/* Copy real data, and all frags */
4727 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4728 	skb->len -= off;
4729 
4730 	memcpy((struct skb_shared_info *)(data + size),
4731 	       skb_shinfo(skb),
4732 	       offsetof(struct skb_shared_info,
4733 			frags[skb_shinfo(skb)->nr_frags]));
4734 	if (skb_cloned(skb)) {
4735 		/* drop the old head gracefully */
4736 		if (skb_orphan_frags(skb, gfp_mask)) {
4737 			kfree(data);
4738 			return -ENOMEM;
4739 		}
4740 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4741 			skb_frag_ref(skb, i);
4742 		if (skb_has_frag_list(skb))
4743 			skb_clone_fraglist(skb);
4744 		skb_release_data(skb);
4745 	} else {
4746 		/* we can reuse existing recount- all we did was
4747 		 * relocate values
4748 		 */
4749 		skb_free_head(skb);
4750 	}
4751 
4752 	skb->head = data;
4753 	skb->data = data;
4754 	skb->head_frag = 0;
4755 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4756 	skb->end = size;
4757 #else
4758 	skb->end = skb->head + size;
4759 #endif
4760 	skb_set_tail_pointer(skb, skb_headlen(skb));
4761 	skb_headers_offset_update(skb, 0);
4762 	skb->cloned = 0;
4763 	skb->hdr_len = 0;
4764 	skb->nohdr = 0;
4765 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4766 
4767 	return 0;
4768 }
4769 
4770 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4771 
4772 /* carve out the first eat bytes from skb's frag_list. May recurse into
4773  * pskb_carve()
4774  */
4775 static int pskb_carve_frag_list(struct sk_buff *skb,
4776 				struct skb_shared_info *shinfo, int eat,
4777 				gfp_t gfp_mask)
4778 {
4779 	struct sk_buff *list = shinfo->frag_list;
4780 	struct sk_buff *clone = NULL;
4781 	struct sk_buff *insp = NULL;
4782 
4783 	do {
4784 		if (!list) {
4785 			pr_err("Not enough bytes to eat. Want %d\n", eat);
4786 			return -EFAULT;
4787 		}
4788 		if (list->len <= eat) {
4789 			/* Eaten as whole. */
4790 			eat -= list->len;
4791 			list = list->next;
4792 			insp = list;
4793 		} else {
4794 			/* Eaten partially. */
4795 			if (skb_shared(list)) {
4796 				clone = skb_clone(list, gfp_mask);
4797 				if (!clone)
4798 					return -ENOMEM;
4799 				insp = list->next;
4800 				list = clone;
4801 			} else {
4802 				/* This may be pulled without problems. */
4803 				insp = list;
4804 			}
4805 			if (pskb_carve(list, eat, gfp_mask) < 0) {
4806 				kfree_skb(clone);
4807 				return -ENOMEM;
4808 			}
4809 			break;
4810 		}
4811 	} while (eat);
4812 
4813 	/* Free pulled out fragments. */
4814 	while ((list = shinfo->frag_list) != insp) {
4815 		shinfo->frag_list = list->next;
4816 		kfree_skb(list);
4817 	}
4818 	/* And insert new clone at head. */
4819 	if (clone) {
4820 		clone->next = list;
4821 		shinfo->frag_list = clone;
4822 	}
4823 	return 0;
4824 }
4825 
4826 /* carve off first len bytes from skb. Split line (off) is in the
4827  * non-linear part of skb
4828  */
4829 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4830 				       int pos, gfp_t gfp_mask)
4831 {
4832 	int i, k = 0;
4833 	int size = skb_end_offset(skb);
4834 	u8 *data;
4835 	const int nfrags = skb_shinfo(skb)->nr_frags;
4836 	struct skb_shared_info *shinfo;
4837 
4838 	size = SKB_DATA_ALIGN(size);
4839 
4840 	if (skb_pfmemalloc(skb))
4841 		gfp_mask |= __GFP_MEMALLOC;
4842 	data = kmalloc_reserve(size +
4843 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4844 			       gfp_mask, NUMA_NO_NODE, NULL);
4845 	if (!data)
4846 		return -ENOMEM;
4847 
4848 	size = SKB_WITH_OVERHEAD(ksize(data));
4849 
4850 	memcpy((struct skb_shared_info *)(data + size),
4851 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
4852 					 frags[skb_shinfo(skb)->nr_frags]));
4853 	if (skb_orphan_frags(skb, gfp_mask)) {
4854 		kfree(data);
4855 		return -ENOMEM;
4856 	}
4857 	shinfo = (struct skb_shared_info *)(data + size);
4858 	for (i = 0; i < nfrags; i++) {
4859 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4860 
4861 		if (pos + fsize > off) {
4862 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4863 
4864 			if (pos < off) {
4865 				/* Split frag.
4866 				 * We have two variants in this case:
4867 				 * 1. Move all the frag to the second
4868 				 *    part, if it is possible. F.e.
4869 				 *    this approach is mandatory for TUX,
4870 				 *    where splitting is expensive.
4871 				 * 2. Split is accurately. We make this.
4872 				 */
4873 				shinfo->frags[0].page_offset += off - pos;
4874 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
4875 			}
4876 			skb_frag_ref(skb, i);
4877 			k++;
4878 		}
4879 		pos += fsize;
4880 	}
4881 	shinfo->nr_frags = k;
4882 	if (skb_has_frag_list(skb))
4883 		skb_clone_fraglist(skb);
4884 
4885 	if (k == 0) {
4886 		/* split line is in frag list */
4887 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4888 	}
4889 	skb_release_data(skb);
4890 
4891 	skb->head = data;
4892 	skb->head_frag = 0;
4893 	skb->data = data;
4894 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4895 	skb->end = size;
4896 #else
4897 	skb->end = skb->head + size;
4898 #endif
4899 	skb_reset_tail_pointer(skb);
4900 	skb_headers_offset_update(skb, 0);
4901 	skb->cloned   = 0;
4902 	skb->hdr_len  = 0;
4903 	skb->nohdr    = 0;
4904 	skb->len -= off;
4905 	skb->data_len = skb->len;
4906 	atomic_set(&skb_shinfo(skb)->dataref, 1);
4907 	return 0;
4908 }
4909 
4910 /* remove len bytes from the beginning of the skb */
4911 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4912 {
4913 	int headlen = skb_headlen(skb);
4914 
4915 	if (len < headlen)
4916 		return pskb_carve_inside_header(skb, len, headlen, gfp);
4917 	else
4918 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4919 }
4920 
4921 /* Extract to_copy bytes starting at off from skb, and return this in
4922  * a new skb
4923  */
4924 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4925 			     int to_copy, gfp_t gfp)
4926 {
4927 	struct sk_buff  *clone = skb_clone(skb, gfp);
4928 
4929 	if (!clone)
4930 		return NULL;
4931 
4932 	if (pskb_carve(clone, off, gfp) < 0 ||
4933 	    pskb_trim(clone, to_copy)) {
4934 		kfree_skb(clone);
4935 		return NULL;
4936 	}
4937 	return clone;
4938 }
4939 EXPORT_SYMBOL(pskb_extract);
4940