1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 378 { 379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 380 381 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 382 } 383 384 void *napi_alloc_frag(unsigned int fragsz) 385 { 386 fragsz = SKB_DATA_ALIGN(fragsz); 387 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * netdev_alloc_frag - allocate a page fragment 394 * @fragsz: fragment size 395 * 396 * Allocates a frag from a page for receive buffer. 397 * Uses GFP_ATOMIC allocations. 398 */ 399 void *netdev_alloc_frag(unsigned int fragsz) 400 { 401 struct page_frag_cache *nc; 402 void *data; 403 404 fragsz = SKB_DATA_ALIGN(fragsz); 405 if (in_irq() || irqs_disabled()) { 406 nc = this_cpu_ptr(&netdev_alloc_cache); 407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 408 } else { 409 local_bh_disable(); 410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 411 local_bh_enable(); 412 } 413 return data; 414 } 415 EXPORT_SYMBOL(netdev_alloc_frag); 416 417 /** 418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 419 * @dev: network device to receive on 420 * @len: length to allocate 421 * @gfp_mask: get_free_pages mask, passed to alloc_skb 422 * 423 * Allocate a new &sk_buff and assign it a usage count of one. The 424 * buffer has NET_SKB_PAD headroom built in. Users should allocate 425 * the headroom they think they need without accounting for the 426 * built in space. The built in space is used for optimisations. 427 * 428 * %NULL is returned if there is no free memory. 429 */ 430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 431 gfp_t gfp_mask) 432 { 433 struct page_frag_cache *nc; 434 struct sk_buff *skb; 435 bool pfmemalloc; 436 void *data; 437 438 len += NET_SKB_PAD; 439 440 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 441 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 442 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 443 if (!skb) 444 goto skb_fail; 445 goto skb_success; 446 } 447 448 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 449 len = SKB_DATA_ALIGN(len); 450 451 if (sk_memalloc_socks()) 452 gfp_mask |= __GFP_MEMALLOC; 453 454 if (in_irq() || irqs_disabled()) { 455 nc = this_cpu_ptr(&netdev_alloc_cache); 456 data = page_frag_alloc(nc, len, gfp_mask); 457 pfmemalloc = nc->pfmemalloc; 458 } else { 459 local_bh_disable(); 460 nc = this_cpu_ptr(&napi_alloc_cache.page); 461 data = page_frag_alloc(nc, len, gfp_mask); 462 pfmemalloc = nc->pfmemalloc; 463 local_bh_enable(); 464 } 465 466 if (unlikely(!data)) 467 return NULL; 468 469 skb = __build_skb(data, len); 470 if (unlikely(!skb)) { 471 skb_free_frag(data); 472 return NULL; 473 } 474 475 if (pfmemalloc) 476 skb->pfmemalloc = 1; 477 skb->head_frag = 1; 478 479 skb_success: 480 skb_reserve(skb, NET_SKB_PAD); 481 skb->dev = dev; 482 483 skb_fail: 484 return skb; 485 } 486 EXPORT_SYMBOL(__netdev_alloc_skb); 487 488 /** 489 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 490 * @napi: napi instance this buffer was allocated for 491 * @len: length to allocate 492 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 493 * 494 * Allocate a new sk_buff for use in NAPI receive. This buffer will 495 * attempt to allocate the head from a special reserved region used 496 * only for NAPI Rx allocation. By doing this we can save several 497 * CPU cycles by avoiding having to disable and re-enable IRQs. 498 * 499 * %NULL is returned if there is no free memory. 500 */ 501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 502 gfp_t gfp_mask) 503 { 504 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 505 struct sk_buff *skb; 506 void *data; 507 508 len += NET_SKB_PAD + NET_IP_ALIGN; 509 510 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 511 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 512 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 513 if (!skb) 514 goto skb_fail; 515 goto skb_success; 516 } 517 518 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 519 len = SKB_DATA_ALIGN(len); 520 521 if (sk_memalloc_socks()) 522 gfp_mask |= __GFP_MEMALLOC; 523 524 data = page_frag_alloc(&nc->page, len, gfp_mask); 525 if (unlikely(!data)) 526 return NULL; 527 528 skb = __build_skb(data, len); 529 if (unlikely(!skb)) { 530 skb_free_frag(data); 531 return NULL; 532 } 533 534 if (nc->page.pfmemalloc) 535 skb->pfmemalloc = 1; 536 skb->head_frag = 1; 537 538 skb_success: 539 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 540 skb->dev = napi->dev; 541 542 skb_fail: 543 return skb; 544 } 545 EXPORT_SYMBOL(__napi_alloc_skb); 546 547 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 548 int size, unsigned int truesize) 549 { 550 skb_fill_page_desc(skb, i, page, off, size); 551 skb->len += size; 552 skb->data_len += size; 553 skb->truesize += truesize; 554 } 555 EXPORT_SYMBOL(skb_add_rx_frag); 556 557 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 558 unsigned int truesize) 559 { 560 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 561 562 skb_frag_size_add(frag, size); 563 skb->len += size; 564 skb->data_len += size; 565 skb->truesize += truesize; 566 } 567 EXPORT_SYMBOL(skb_coalesce_rx_frag); 568 569 static void skb_drop_list(struct sk_buff **listp) 570 { 571 kfree_skb_list(*listp); 572 *listp = NULL; 573 } 574 575 static inline void skb_drop_fraglist(struct sk_buff *skb) 576 { 577 skb_drop_list(&skb_shinfo(skb)->frag_list); 578 } 579 580 static void skb_clone_fraglist(struct sk_buff *skb) 581 { 582 struct sk_buff *list; 583 584 skb_walk_frags(skb, list) 585 skb_get(list); 586 } 587 588 static void skb_free_head(struct sk_buff *skb) 589 { 590 unsigned char *head = skb->head; 591 592 if (skb->head_frag) 593 skb_free_frag(head); 594 else 595 kfree(head); 596 } 597 598 static void skb_release_data(struct sk_buff *skb) 599 { 600 struct skb_shared_info *shinfo = skb_shinfo(skb); 601 int i; 602 603 if (skb->cloned && 604 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 605 &shinfo->dataref)) 606 return; 607 608 for (i = 0; i < shinfo->nr_frags; i++) 609 __skb_frag_unref(&shinfo->frags[i]); 610 611 if (shinfo->frag_list) 612 kfree_skb_list(shinfo->frag_list); 613 614 skb_zcopy_clear(skb, true); 615 skb_free_head(skb); 616 } 617 618 /* 619 * Free an skbuff by memory without cleaning the state. 620 */ 621 static void kfree_skbmem(struct sk_buff *skb) 622 { 623 struct sk_buff_fclones *fclones; 624 625 switch (skb->fclone) { 626 case SKB_FCLONE_UNAVAILABLE: 627 kmem_cache_free(skbuff_head_cache, skb); 628 return; 629 630 case SKB_FCLONE_ORIG: 631 fclones = container_of(skb, struct sk_buff_fclones, skb1); 632 633 /* We usually free the clone (TX completion) before original skb 634 * This test would have no chance to be true for the clone, 635 * while here, branch prediction will be good. 636 */ 637 if (refcount_read(&fclones->fclone_ref) == 1) 638 goto fastpath; 639 break; 640 641 default: /* SKB_FCLONE_CLONE */ 642 fclones = container_of(skb, struct sk_buff_fclones, skb2); 643 break; 644 } 645 if (!refcount_dec_and_test(&fclones->fclone_ref)) 646 return; 647 fastpath: 648 kmem_cache_free(skbuff_fclone_cache, fclones); 649 } 650 651 void skb_release_head_state(struct sk_buff *skb) 652 { 653 skb_dst_drop(skb); 654 if (skb->destructor) { 655 WARN_ON(in_irq()); 656 skb->destructor(skb); 657 } 658 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 659 nf_conntrack_put(skb_nfct(skb)); 660 #endif 661 skb_ext_put(skb); 662 } 663 664 /* Free everything but the sk_buff shell. */ 665 static void skb_release_all(struct sk_buff *skb) 666 { 667 skb_release_head_state(skb); 668 if (likely(skb->head)) 669 skb_release_data(skb); 670 } 671 672 /** 673 * __kfree_skb - private function 674 * @skb: buffer 675 * 676 * Free an sk_buff. Release anything attached to the buffer. 677 * Clean the state. This is an internal helper function. Users should 678 * always call kfree_skb 679 */ 680 681 void __kfree_skb(struct sk_buff *skb) 682 { 683 skb_release_all(skb); 684 kfree_skbmem(skb); 685 } 686 EXPORT_SYMBOL(__kfree_skb); 687 688 /** 689 * kfree_skb - free an sk_buff 690 * @skb: buffer to free 691 * 692 * Drop a reference to the buffer and free it if the usage count has 693 * hit zero. 694 */ 695 void kfree_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_kfree_skb(skb, __builtin_return_address(0)); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(kfree_skb); 704 705 void kfree_skb_list(struct sk_buff *segs) 706 { 707 while (segs) { 708 struct sk_buff *next = segs->next; 709 710 kfree_skb(segs); 711 segs = next; 712 } 713 } 714 EXPORT_SYMBOL(kfree_skb_list); 715 716 /* Dump skb information and contents. 717 * 718 * Must only be called from net_ratelimit()-ed paths. 719 * 720 * Dumps whole packets if full_pkt, only headers otherwise. 721 */ 722 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 723 { 724 struct skb_shared_info *sh = skb_shinfo(skb); 725 struct net_device *dev = skb->dev; 726 struct sock *sk = skb->sk; 727 struct sk_buff *list_skb; 728 bool has_mac, has_trans; 729 int headroom, tailroom; 730 int i, len, seg_len; 731 732 if (full_pkt) 733 len = skb->len; 734 else 735 len = min_t(int, skb->len, MAX_HEADER + 128); 736 737 headroom = skb_headroom(skb); 738 tailroom = skb_tailroom(skb); 739 740 has_mac = skb_mac_header_was_set(skb); 741 has_trans = skb_transport_header_was_set(skb); 742 743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 744 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 748 level, skb->len, headroom, skb_headlen(skb), tailroom, 749 has_mac ? skb->mac_header : -1, 750 has_mac ? skb_mac_header_len(skb) : -1, 751 skb->network_header, 752 has_trans ? skb_network_header_len(skb) : -1, 753 has_trans ? skb->transport_header : -1, 754 sh->tx_flags, sh->nr_frags, 755 sh->gso_size, sh->gso_type, sh->gso_segs, 756 skb->csum, skb->ip_summed, skb->csum_complete_sw, 757 skb->csum_valid, skb->csum_level, 758 skb->hash, skb->sw_hash, skb->l4_hash, 759 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 760 761 if (dev) 762 printk("%sdev name=%s feat=0x%pNF\n", 763 level, dev->name, &dev->features); 764 if (sk) 765 printk("%ssk family=%hu type=%u proto=%u\n", 766 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 767 768 if (full_pkt && headroom) 769 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 770 16, 1, skb->head, headroom, false); 771 772 seg_len = min_t(int, skb_headlen(skb), len); 773 if (seg_len) 774 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 775 16, 1, skb->data, seg_len, false); 776 len -= seg_len; 777 778 if (full_pkt && tailroom) 779 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 780 16, 1, skb_tail_pointer(skb), tailroom, false); 781 782 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 784 u32 p_off, p_len, copied; 785 struct page *p; 786 u8 *vaddr; 787 788 skb_frag_foreach_page(frag, skb_frag_off(frag), 789 skb_frag_size(frag), p, p_off, p_len, 790 copied) { 791 seg_len = min_t(int, p_len, len); 792 vaddr = kmap_atomic(p); 793 print_hex_dump(level, "skb frag: ", 794 DUMP_PREFIX_OFFSET, 795 16, 1, vaddr + p_off, seg_len, false); 796 kunmap_atomic(vaddr); 797 len -= seg_len; 798 if (!len) 799 break; 800 } 801 } 802 803 if (full_pkt && skb_has_frag_list(skb)) { 804 printk("skb fraglist:\n"); 805 skb_walk_frags(skb, list_skb) 806 skb_dump(level, list_skb, true); 807 } 808 } 809 EXPORT_SYMBOL(skb_dump); 810 811 /** 812 * skb_tx_error - report an sk_buff xmit error 813 * @skb: buffer that triggered an error 814 * 815 * Report xmit error if a device callback is tracking this skb. 816 * skb must be freed afterwards. 817 */ 818 void skb_tx_error(struct sk_buff *skb) 819 { 820 skb_zcopy_clear(skb, true); 821 } 822 EXPORT_SYMBOL(skb_tx_error); 823 824 #ifdef CONFIG_TRACEPOINTS 825 /** 826 * consume_skb - free an skbuff 827 * @skb: buffer to free 828 * 829 * Drop a ref to the buffer and free it if the usage count has hit zero 830 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 831 * is being dropped after a failure and notes that 832 */ 833 void consume_skb(struct sk_buff *skb) 834 { 835 if (!skb_unref(skb)) 836 return; 837 838 trace_consume_skb(skb); 839 __kfree_skb(skb); 840 } 841 EXPORT_SYMBOL(consume_skb); 842 #endif 843 844 /** 845 * __consume_stateless_skb - free an skbuff, assuming it is stateless 846 * @skb: buffer to free 847 * 848 * Alike consume_skb(), but this variant assumes that this is the last 849 * skb reference and all the head states have been already dropped 850 */ 851 void __consume_stateless_skb(struct sk_buff *skb) 852 { 853 trace_consume_skb(skb); 854 skb_release_data(skb); 855 kfree_skbmem(skb); 856 } 857 858 void __kfree_skb_flush(void) 859 { 860 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 861 862 /* flush skb_cache if containing objects */ 863 if (nc->skb_count) { 864 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 865 nc->skb_cache); 866 nc->skb_count = 0; 867 } 868 } 869 870 static inline void _kfree_skb_defer(struct sk_buff *skb) 871 { 872 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 873 874 /* drop skb->head and call any destructors for packet */ 875 skb_release_all(skb); 876 877 /* record skb to CPU local list */ 878 nc->skb_cache[nc->skb_count++] = skb; 879 880 #ifdef CONFIG_SLUB 881 /* SLUB writes into objects when freeing */ 882 prefetchw(skb); 883 #endif 884 885 /* flush skb_cache if it is filled */ 886 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 887 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 888 nc->skb_cache); 889 nc->skb_count = 0; 890 } 891 } 892 void __kfree_skb_defer(struct sk_buff *skb) 893 { 894 _kfree_skb_defer(skb); 895 } 896 897 void napi_consume_skb(struct sk_buff *skb, int budget) 898 { 899 /* Zero budget indicate non-NAPI context called us, like netpoll */ 900 if (unlikely(!budget)) { 901 dev_consume_skb_any(skb); 902 return; 903 } 904 905 lockdep_assert_in_softirq(); 906 907 if (!skb_unref(skb)) 908 return; 909 910 /* if reaching here SKB is ready to free */ 911 trace_consume_skb(skb); 912 913 /* if SKB is a clone, don't handle this case */ 914 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 915 __kfree_skb(skb); 916 return; 917 } 918 919 _kfree_skb_defer(skb); 920 } 921 EXPORT_SYMBOL(napi_consume_skb); 922 923 /* Make sure a field is enclosed inside headers_start/headers_end section */ 924 #define CHECK_SKB_FIELD(field) \ 925 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 926 offsetof(struct sk_buff, headers_start)); \ 927 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 928 offsetof(struct sk_buff, headers_end)); \ 929 930 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 931 { 932 new->tstamp = old->tstamp; 933 /* We do not copy old->sk */ 934 new->dev = old->dev; 935 memcpy(new->cb, old->cb, sizeof(old->cb)); 936 skb_dst_copy(new, old); 937 __skb_ext_copy(new, old); 938 __nf_copy(new, old, false); 939 940 /* Note : this field could be in headers_start/headers_end section 941 * It is not yet because we do not want to have a 16 bit hole 942 */ 943 new->queue_mapping = old->queue_mapping; 944 945 memcpy(&new->headers_start, &old->headers_start, 946 offsetof(struct sk_buff, headers_end) - 947 offsetof(struct sk_buff, headers_start)); 948 CHECK_SKB_FIELD(protocol); 949 CHECK_SKB_FIELD(csum); 950 CHECK_SKB_FIELD(hash); 951 CHECK_SKB_FIELD(priority); 952 CHECK_SKB_FIELD(skb_iif); 953 CHECK_SKB_FIELD(vlan_proto); 954 CHECK_SKB_FIELD(vlan_tci); 955 CHECK_SKB_FIELD(transport_header); 956 CHECK_SKB_FIELD(network_header); 957 CHECK_SKB_FIELD(mac_header); 958 CHECK_SKB_FIELD(inner_protocol); 959 CHECK_SKB_FIELD(inner_transport_header); 960 CHECK_SKB_FIELD(inner_network_header); 961 CHECK_SKB_FIELD(inner_mac_header); 962 CHECK_SKB_FIELD(mark); 963 #ifdef CONFIG_NETWORK_SECMARK 964 CHECK_SKB_FIELD(secmark); 965 #endif 966 #ifdef CONFIG_NET_RX_BUSY_POLL 967 CHECK_SKB_FIELD(napi_id); 968 #endif 969 #ifdef CONFIG_XPS 970 CHECK_SKB_FIELD(sender_cpu); 971 #endif 972 #ifdef CONFIG_NET_SCHED 973 CHECK_SKB_FIELD(tc_index); 974 #endif 975 976 } 977 978 /* 979 * You should not add any new code to this function. Add it to 980 * __copy_skb_header above instead. 981 */ 982 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 983 { 984 #define C(x) n->x = skb->x 985 986 n->next = n->prev = NULL; 987 n->sk = NULL; 988 __copy_skb_header(n, skb); 989 990 C(len); 991 C(data_len); 992 C(mac_len); 993 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 994 n->cloned = 1; 995 n->nohdr = 0; 996 n->peeked = 0; 997 C(pfmemalloc); 998 n->destructor = NULL; 999 C(tail); 1000 C(end); 1001 C(head); 1002 C(head_frag); 1003 C(data); 1004 C(truesize); 1005 refcount_set(&n->users, 1); 1006 1007 atomic_inc(&(skb_shinfo(skb)->dataref)); 1008 skb->cloned = 1; 1009 1010 return n; 1011 #undef C 1012 } 1013 1014 /** 1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1016 * @first: first sk_buff of the msg 1017 */ 1018 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1019 { 1020 struct sk_buff *n; 1021 1022 n = alloc_skb(0, GFP_ATOMIC); 1023 if (!n) 1024 return NULL; 1025 1026 n->len = first->len; 1027 n->data_len = first->len; 1028 n->truesize = first->truesize; 1029 1030 skb_shinfo(n)->frag_list = first; 1031 1032 __copy_skb_header(n, first); 1033 n->destructor = NULL; 1034 1035 return n; 1036 } 1037 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1038 1039 /** 1040 * skb_morph - morph one skb into another 1041 * @dst: the skb to receive the contents 1042 * @src: the skb to supply the contents 1043 * 1044 * This is identical to skb_clone except that the target skb is 1045 * supplied by the user. 1046 * 1047 * The target skb is returned upon exit. 1048 */ 1049 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1050 { 1051 skb_release_all(dst); 1052 return __skb_clone(dst, src); 1053 } 1054 EXPORT_SYMBOL_GPL(skb_morph); 1055 1056 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1057 { 1058 unsigned long max_pg, num_pg, new_pg, old_pg; 1059 struct user_struct *user; 1060 1061 if (capable(CAP_IPC_LOCK) || !size) 1062 return 0; 1063 1064 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1065 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1066 user = mmp->user ? : current_user(); 1067 1068 do { 1069 old_pg = atomic_long_read(&user->locked_vm); 1070 new_pg = old_pg + num_pg; 1071 if (new_pg > max_pg) 1072 return -ENOBUFS; 1073 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1074 old_pg); 1075 1076 if (!mmp->user) { 1077 mmp->user = get_uid(user); 1078 mmp->num_pg = num_pg; 1079 } else { 1080 mmp->num_pg += num_pg; 1081 } 1082 1083 return 0; 1084 } 1085 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1086 1087 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1088 { 1089 if (mmp->user) { 1090 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1091 free_uid(mmp->user); 1092 } 1093 } 1094 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1095 1096 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1097 { 1098 struct ubuf_info *uarg; 1099 struct sk_buff *skb; 1100 1101 WARN_ON_ONCE(!in_task()); 1102 1103 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1104 if (!skb) 1105 return NULL; 1106 1107 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1108 uarg = (void *)skb->cb; 1109 uarg->mmp.user = NULL; 1110 1111 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1112 kfree_skb(skb); 1113 return NULL; 1114 } 1115 1116 uarg->callback = sock_zerocopy_callback; 1117 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1118 uarg->len = 1; 1119 uarg->bytelen = size; 1120 uarg->zerocopy = 1; 1121 refcount_set(&uarg->refcnt, 1); 1122 sock_hold(sk); 1123 1124 return uarg; 1125 } 1126 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1127 1128 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1129 { 1130 return container_of((void *)uarg, struct sk_buff, cb); 1131 } 1132 1133 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1134 struct ubuf_info *uarg) 1135 { 1136 if (uarg) { 1137 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1138 u32 bytelen, next; 1139 1140 /* realloc only when socket is locked (TCP, UDP cork), 1141 * so uarg->len and sk_zckey access is serialized 1142 */ 1143 if (!sock_owned_by_user(sk)) { 1144 WARN_ON_ONCE(1); 1145 return NULL; 1146 } 1147 1148 bytelen = uarg->bytelen + size; 1149 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1150 /* TCP can create new skb to attach new uarg */ 1151 if (sk->sk_type == SOCK_STREAM) 1152 goto new_alloc; 1153 return NULL; 1154 } 1155 1156 next = (u32)atomic_read(&sk->sk_zckey); 1157 if ((u32)(uarg->id + uarg->len) == next) { 1158 if (mm_account_pinned_pages(&uarg->mmp, size)) 1159 return NULL; 1160 uarg->len++; 1161 uarg->bytelen = bytelen; 1162 atomic_set(&sk->sk_zckey, ++next); 1163 1164 /* no extra ref when appending to datagram (MSG_MORE) */ 1165 if (sk->sk_type == SOCK_STREAM) 1166 sock_zerocopy_get(uarg); 1167 1168 return uarg; 1169 } 1170 } 1171 1172 new_alloc: 1173 return sock_zerocopy_alloc(sk, size); 1174 } 1175 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1176 1177 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1178 { 1179 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1180 u32 old_lo, old_hi; 1181 u64 sum_len; 1182 1183 old_lo = serr->ee.ee_info; 1184 old_hi = serr->ee.ee_data; 1185 sum_len = old_hi - old_lo + 1ULL + len; 1186 1187 if (sum_len >= (1ULL << 32)) 1188 return false; 1189 1190 if (lo != old_hi + 1) 1191 return false; 1192 1193 serr->ee.ee_data += len; 1194 return true; 1195 } 1196 1197 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1198 { 1199 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1200 struct sock_exterr_skb *serr; 1201 struct sock *sk = skb->sk; 1202 struct sk_buff_head *q; 1203 unsigned long flags; 1204 u32 lo, hi; 1205 u16 len; 1206 1207 mm_unaccount_pinned_pages(&uarg->mmp); 1208 1209 /* if !len, there was only 1 call, and it was aborted 1210 * so do not queue a completion notification 1211 */ 1212 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1213 goto release; 1214 1215 len = uarg->len; 1216 lo = uarg->id; 1217 hi = uarg->id + len - 1; 1218 1219 serr = SKB_EXT_ERR(skb); 1220 memset(serr, 0, sizeof(*serr)); 1221 serr->ee.ee_errno = 0; 1222 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1223 serr->ee.ee_data = hi; 1224 serr->ee.ee_info = lo; 1225 if (!success) 1226 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1227 1228 q = &sk->sk_error_queue; 1229 spin_lock_irqsave(&q->lock, flags); 1230 tail = skb_peek_tail(q); 1231 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1232 !skb_zerocopy_notify_extend(tail, lo, len)) { 1233 __skb_queue_tail(q, skb); 1234 skb = NULL; 1235 } 1236 spin_unlock_irqrestore(&q->lock, flags); 1237 1238 sk->sk_error_report(sk); 1239 1240 release: 1241 consume_skb(skb); 1242 sock_put(sk); 1243 } 1244 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1245 1246 void sock_zerocopy_put(struct ubuf_info *uarg) 1247 { 1248 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1249 if (uarg->callback) 1250 uarg->callback(uarg, uarg->zerocopy); 1251 else 1252 consume_skb(skb_from_uarg(uarg)); 1253 } 1254 } 1255 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1256 1257 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1258 { 1259 if (uarg) { 1260 struct sock *sk = skb_from_uarg(uarg)->sk; 1261 1262 atomic_dec(&sk->sk_zckey); 1263 uarg->len--; 1264 1265 if (have_uref) 1266 sock_zerocopy_put(uarg); 1267 } 1268 } 1269 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1270 1271 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1272 { 1273 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1274 } 1275 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1276 1277 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1278 struct msghdr *msg, int len, 1279 struct ubuf_info *uarg) 1280 { 1281 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1282 struct iov_iter orig_iter = msg->msg_iter; 1283 int err, orig_len = skb->len; 1284 1285 /* An skb can only point to one uarg. This edge case happens when 1286 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1287 */ 1288 if (orig_uarg && uarg != orig_uarg) 1289 return -EEXIST; 1290 1291 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1292 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1293 struct sock *save_sk = skb->sk; 1294 1295 /* Streams do not free skb on error. Reset to prev state. */ 1296 msg->msg_iter = orig_iter; 1297 skb->sk = sk; 1298 ___pskb_trim(skb, orig_len); 1299 skb->sk = save_sk; 1300 return err; 1301 } 1302 1303 skb_zcopy_set(skb, uarg, NULL); 1304 return skb->len - orig_len; 1305 } 1306 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1307 1308 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1309 gfp_t gfp_mask) 1310 { 1311 if (skb_zcopy(orig)) { 1312 if (skb_zcopy(nskb)) { 1313 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1314 if (!gfp_mask) { 1315 WARN_ON_ONCE(1); 1316 return -ENOMEM; 1317 } 1318 if (skb_uarg(nskb) == skb_uarg(orig)) 1319 return 0; 1320 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1321 return -EIO; 1322 } 1323 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1324 } 1325 return 0; 1326 } 1327 1328 /** 1329 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1330 * @skb: the skb to modify 1331 * @gfp_mask: allocation priority 1332 * 1333 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1334 * It will copy all frags into kernel and drop the reference 1335 * to userspace pages. 1336 * 1337 * If this function is called from an interrupt gfp_mask() must be 1338 * %GFP_ATOMIC. 1339 * 1340 * Returns 0 on success or a negative error code on failure 1341 * to allocate kernel memory to copy to. 1342 */ 1343 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1344 { 1345 int num_frags = skb_shinfo(skb)->nr_frags; 1346 struct page *page, *head = NULL; 1347 int i, new_frags; 1348 u32 d_off; 1349 1350 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1351 return -EINVAL; 1352 1353 if (!num_frags) 1354 goto release; 1355 1356 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1357 for (i = 0; i < new_frags; i++) { 1358 page = alloc_page(gfp_mask); 1359 if (!page) { 1360 while (head) { 1361 struct page *next = (struct page *)page_private(head); 1362 put_page(head); 1363 head = next; 1364 } 1365 return -ENOMEM; 1366 } 1367 set_page_private(page, (unsigned long)head); 1368 head = page; 1369 } 1370 1371 page = head; 1372 d_off = 0; 1373 for (i = 0; i < num_frags; i++) { 1374 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1375 u32 p_off, p_len, copied; 1376 struct page *p; 1377 u8 *vaddr; 1378 1379 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1380 p, p_off, p_len, copied) { 1381 u32 copy, done = 0; 1382 vaddr = kmap_atomic(p); 1383 1384 while (done < p_len) { 1385 if (d_off == PAGE_SIZE) { 1386 d_off = 0; 1387 page = (struct page *)page_private(page); 1388 } 1389 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1390 memcpy(page_address(page) + d_off, 1391 vaddr + p_off + done, copy); 1392 done += copy; 1393 d_off += copy; 1394 } 1395 kunmap_atomic(vaddr); 1396 } 1397 } 1398 1399 /* skb frags release userspace buffers */ 1400 for (i = 0; i < num_frags; i++) 1401 skb_frag_unref(skb, i); 1402 1403 /* skb frags point to kernel buffers */ 1404 for (i = 0; i < new_frags - 1; i++) { 1405 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1406 head = (struct page *)page_private(head); 1407 } 1408 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1409 skb_shinfo(skb)->nr_frags = new_frags; 1410 1411 release: 1412 skb_zcopy_clear(skb, false); 1413 return 0; 1414 } 1415 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1416 1417 /** 1418 * skb_clone - duplicate an sk_buff 1419 * @skb: buffer to clone 1420 * @gfp_mask: allocation priority 1421 * 1422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1423 * copies share the same packet data but not structure. The new 1424 * buffer has a reference count of 1. If the allocation fails the 1425 * function returns %NULL otherwise the new buffer is returned. 1426 * 1427 * If this function is called from an interrupt gfp_mask() must be 1428 * %GFP_ATOMIC. 1429 */ 1430 1431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1432 { 1433 struct sk_buff_fclones *fclones = container_of(skb, 1434 struct sk_buff_fclones, 1435 skb1); 1436 struct sk_buff *n; 1437 1438 if (skb_orphan_frags(skb, gfp_mask)) 1439 return NULL; 1440 1441 if (skb->fclone == SKB_FCLONE_ORIG && 1442 refcount_read(&fclones->fclone_ref) == 1) { 1443 n = &fclones->skb2; 1444 refcount_set(&fclones->fclone_ref, 2); 1445 } else { 1446 if (skb_pfmemalloc(skb)) 1447 gfp_mask |= __GFP_MEMALLOC; 1448 1449 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1450 if (!n) 1451 return NULL; 1452 1453 n->fclone = SKB_FCLONE_UNAVAILABLE; 1454 } 1455 1456 return __skb_clone(n, skb); 1457 } 1458 EXPORT_SYMBOL(skb_clone); 1459 1460 void skb_headers_offset_update(struct sk_buff *skb, int off) 1461 { 1462 /* Only adjust this if it actually is csum_start rather than csum */ 1463 if (skb->ip_summed == CHECKSUM_PARTIAL) 1464 skb->csum_start += off; 1465 /* {transport,network,mac}_header and tail are relative to skb->head */ 1466 skb->transport_header += off; 1467 skb->network_header += off; 1468 if (skb_mac_header_was_set(skb)) 1469 skb->mac_header += off; 1470 skb->inner_transport_header += off; 1471 skb->inner_network_header += off; 1472 skb->inner_mac_header += off; 1473 } 1474 EXPORT_SYMBOL(skb_headers_offset_update); 1475 1476 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1477 { 1478 __copy_skb_header(new, old); 1479 1480 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1481 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1482 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1483 } 1484 EXPORT_SYMBOL(skb_copy_header); 1485 1486 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1487 { 1488 if (skb_pfmemalloc(skb)) 1489 return SKB_ALLOC_RX; 1490 return 0; 1491 } 1492 1493 /** 1494 * skb_copy - create private copy of an sk_buff 1495 * @skb: buffer to copy 1496 * @gfp_mask: allocation priority 1497 * 1498 * Make a copy of both an &sk_buff and its data. This is used when the 1499 * caller wishes to modify the data and needs a private copy of the 1500 * data to alter. Returns %NULL on failure or the pointer to the buffer 1501 * on success. The returned buffer has a reference count of 1. 1502 * 1503 * As by-product this function converts non-linear &sk_buff to linear 1504 * one, so that &sk_buff becomes completely private and caller is allowed 1505 * to modify all the data of returned buffer. This means that this 1506 * function is not recommended for use in circumstances when only 1507 * header is going to be modified. Use pskb_copy() instead. 1508 */ 1509 1510 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1511 { 1512 int headerlen = skb_headroom(skb); 1513 unsigned int size = skb_end_offset(skb) + skb->data_len; 1514 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1515 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1516 1517 if (!n) 1518 return NULL; 1519 1520 /* Set the data pointer */ 1521 skb_reserve(n, headerlen); 1522 /* Set the tail pointer and length */ 1523 skb_put(n, skb->len); 1524 1525 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1526 1527 skb_copy_header(n, skb); 1528 return n; 1529 } 1530 EXPORT_SYMBOL(skb_copy); 1531 1532 /** 1533 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1534 * @skb: buffer to copy 1535 * @headroom: headroom of new skb 1536 * @gfp_mask: allocation priority 1537 * @fclone: if true allocate the copy of the skb from the fclone 1538 * cache instead of the head cache; it is recommended to set this 1539 * to true for the cases where the copy will likely be cloned 1540 * 1541 * Make a copy of both an &sk_buff and part of its data, located 1542 * in header. Fragmented data remain shared. This is used when 1543 * the caller wishes to modify only header of &sk_buff and needs 1544 * private copy of the header to alter. Returns %NULL on failure 1545 * or the pointer to the buffer on success. 1546 * The returned buffer has a reference count of 1. 1547 */ 1548 1549 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1550 gfp_t gfp_mask, bool fclone) 1551 { 1552 unsigned int size = skb_headlen(skb) + headroom; 1553 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1554 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1555 1556 if (!n) 1557 goto out; 1558 1559 /* Set the data pointer */ 1560 skb_reserve(n, headroom); 1561 /* Set the tail pointer and length */ 1562 skb_put(n, skb_headlen(skb)); 1563 /* Copy the bytes */ 1564 skb_copy_from_linear_data(skb, n->data, n->len); 1565 1566 n->truesize += skb->data_len; 1567 n->data_len = skb->data_len; 1568 n->len = skb->len; 1569 1570 if (skb_shinfo(skb)->nr_frags) { 1571 int i; 1572 1573 if (skb_orphan_frags(skb, gfp_mask) || 1574 skb_zerocopy_clone(n, skb, gfp_mask)) { 1575 kfree_skb(n); 1576 n = NULL; 1577 goto out; 1578 } 1579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1580 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1581 skb_frag_ref(skb, i); 1582 } 1583 skb_shinfo(n)->nr_frags = i; 1584 } 1585 1586 if (skb_has_frag_list(skb)) { 1587 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1588 skb_clone_fraglist(n); 1589 } 1590 1591 skb_copy_header(n, skb); 1592 out: 1593 return n; 1594 } 1595 EXPORT_SYMBOL(__pskb_copy_fclone); 1596 1597 /** 1598 * pskb_expand_head - reallocate header of &sk_buff 1599 * @skb: buffer to reallocate 1600 * @nhead: room to add at head 1601 * @ntail: room to add at tail 1602 * @gfp_mask: allocation priority 1603 * 1604 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1605 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1606 * reference count of 1. Returns zero in the case of success or error, 1607 * if expansion failed. In the last case, &sk_buff is not changed. 1608 * 1609 * All the pointers pointing into skb header may change and must be 1610 * reloaded after call to this function. 1611 */ 1612 1613 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1614 gfp_t gfp_mask) 1615 { 1616 int i, osize = skb_end_offset(skb); 1617 int size = osize + nhead + ntail; 1618 long off; 1619 u8 *data; 1620 1621 BUG_ON(nhead < 0); 1622 1623 BUG_ON(skb_shared(skb)); 1624 1625 size = SKB_DATA_ALIGN(size); 1626 1627 if (skb_pfmemalloc(skb)) 1628 gfp_mask |= __GFP_MEMALLOC; 1629 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1630 gfp_mask, NUMA_NO_NODE, NULL); 1631 if (!data) 1632 goto nodata; 1633 size = SKB_WITH_OVERHEAD(ksize(data)); 1634 1635 /* Copy only real data... and, alas, header. This should be 1636 * optimized for the cases when header is void. 1637 */ 1638 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1639 1640 memcpy((struct skb_shared_info *)(data + size), 1641 skb_shinfo(skb), 1642 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1643 1644 /* 1645 * if shinfo is shared we must drop the old head gracefully, but if it 1646 * is not we can just drop the old head and let the existing refcount 1647 * be since all we did is relocate the values 1648 */ 1649 if (skb_cloned(skb)) { 1650 if (skb_orphan_frags(skb, gfp_mask)) 1651 goto nofrags; 1652 if (skb_zcopy(skb)) 1653 refcount_inc(&skb_uarg(skb)->refcnt); 1654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1655 skb_frag_ref(skb, i); 1656 1657 if (skb_has_frag_list(skb)) 1658 skb_clone_fraglist(skb); 1659 1660 skb_release_data(skb); 1661 } else { 1662 skb_free_head(skb); 1663 } 1664 off = (data + nhead) - skb->head; 1665 1666 skb->head = data; 1667 skb->head_frag = 0; 1668 skb->data += off; 1669 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1670 skb->end = size; 1671 off = nhead; 1672 #else 1673 skb->end = skb->head + size; 1674 #endif 1675 skb->tail += off; 1676 skb_headers_offset_update(skb, nhead); 1677 skb->cloned = 0; 1678 skb->hdr_len = 0; 1679 skb->nohdr = 0; 1680 atomic_set(&skb_shinfo(skb)->dataref, 1); 1681 1682 skb_metadata_clear(skb); 1683 1684 /* It is not generally safe to change skb->truesize. 1685 * For the moment, we really care of rx path, or 1686 * when skb is orphaned (not attached to a socket). 1687 */ 1688 if (!skb->sk || skb->destructor == sock_edemux) 1689 skb->truesize += size - osize; 1690 1691 return 0; 1692 1693 nofrags: 1694 kfree(data); 1695 nodata: 1696 return -ENOMEM; 1697 } 1698 EXPORT_SYMBOL(pskb_expand_head); 1699 1700 /* Make private copy of skb with writable head and some headroom */ 1701 1702 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1703 { 1704 struct sk_buff *skb2; 1705 int delta = headroom - skb_headroom(skb); 1706 1707 if (delta <= 0) 1708 skb2 = pskb_copy(skb, GFP_ATOMIC); 1709 else { 1710 skb2 = skb_clone(skb, GFP_ATOMIC); 1711 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1712 GFP_ATOMIC)) { 1713 kfree_skb(skb2); 1714 skb2 = NULL; 1715 } 1716 } 1717 return skb2; 1718 } 1719 EXPORT_SYMBOL(skb_realloc_headroom); 1720 1721 /** 1722 * skb_copy_expand - copy and expand sk_buff 1723 * @skb: buffer to copy 1724 * @newheadroom: new free bytes at head 1725 * @newtailroom: new free bytes at tail 1726 * @gfp_mask: allocation priority 1727 * 1728 * Make a copy of both an &sk_buff and its data and while doing so 1729 * allocate additional space. 1730 * 1731 * This is used when the caller wishes to modify the data and needs a 1732 * private copy of the data to alter as well as more space for new fields. 1733 * Returns %NULL on failure or the pointer to the buffer 1734 * on success. The returned buffer has a reference count of 1. 1735 * 1736 * You must pass %GFP_ATOMIC as the allocation priority if this function 1737 * is called from an interrupt. 1738 */ 1739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1740 int newheadroom, int newtailroom, 1741 gfp_t gfp_mask) 1742 { 1743 /* 1744 * Allocate the copy buffer 1745 */ 1746 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1747 gfp_mask, skb_alloc_rx_flag(skb), 1748 NUMA_NO_NODE); 1749 int oldheadroom = skb_headroom(skb); 1750 int head_copy_len, head_copy_off; 1751 1752 if (!n) 1753 return NULL; 1754 1755 skb_reserve(n, newheadroom); 1756 1757 /* Set the tail pointer and length */ 1758 skb_put(n, skb->len); 1759 1760 head_copy_len = oldheadroom; 1761 head_copy_off = 0; 1762 if (newheadroom <= head_copy_len) 1763 head_copy_len = newheadroom; 1764 else 1765 head_copy_off = newheadroom - head_copy_len; 1766 1767 /* Copy the linear header and data. */ 1768 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1769 skb->len + head_copy_len)); 1770 1771 skb_copy_header(n, skb); 1772 1773 skb_headers_offset_update(n, newheadroom - oldheadroom); 1774 1775 return n; 1776 } 1777 EXPORT_SYMBOL(skb_copy_expand); 1778 1779 /** 1780 * __skb_pad - zero pad the tail of an skb 1781 * @skb: buffer to pad 1782 * @pad: space to pad 1783 * @free_on_error: free buffer on error 1784 * 1785 * Ensure that a buffer is followed by a padding area that is zero 1786 * filled. Used by network drivers which may DMA or transfer data 1787 * beyond the buffer end onto the wire. 1788 * 1789 * May return error in out of memory cases. The skb is freed on error 1790 * if @free_on_error is true. 1791 */ 1792 1793 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1794 { 1795 int err; 1796 int ntail; 1797 1798 /* If the skbuff is non linear tailroom is always zero.. */ 1799 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1800 memset(skb->data+skb->len, 0, pad); 1801 return 0; 1802 } 1803 1804 ntail = skb->data_len + pad - (skb->end - skb->tail); 1805 if (likely(skb_cloned(skb) || ntail > 0)) { 1806 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1807 if (unlikely(err)) 1808 goto free_skb; 1809 } 1810 1811 /* FIXME: The use of this function with non-linear skb's really needs 1812 * to be audited. 1813 */ 1814 err = skb_linearize(skb); 1815 if (unlikely(err)) 1816 goto free_skb; 1817 1818 memset(skb->data + skb->len, 0, pad); 1819 return 0; 1820 1821 free_skb: 1822 if (free_on_error) 1823 kfree_skb(skb); 1824 return err; 1825 } 1826 EXPORT_SYMBOL(__skb_pad); 1827 1828 /** 1829 * pskb_put - add data to the tail of a potentially fragmented buffer 1830 * @skb: start of the buffer to use 1831 * @tail: tail fragment of the buffer to use 1832 * @len: amount of data to add 1833 * 1834 * This function extends the used data area of the potentially 1835 * fragmented buffer. @tail must be the last fragment of @skb -- or 1836 * @skb itself. If this would exceed the total buffer size the kernel 1837 * will panic. A pointer to the first byte of the extra data is 1838 * returned. 1839 */ 1840 1841 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1842 { 1843 if (tail != skb) { 1844 skb->data_len += len; 1845 skb->len += len; 1846 } 1847 return skb_put(tail, len); 1848 } 1849 EXPORT_SYMBOL_GPL(pskb_put); 1850 1851 /** 1852 * skb_put - add data to a buffer 1853 * @skb: buffer to use 1854 * @len: amount of data to add 1855 * 1856 * This function extends the used data area of the buffer. If this would 1857 * exceed the total buffer size the kernel will panic. A pointer to the 1858 * first byte of the extra data is returned. 1859 */ 1860 void *skb_put(struct sk_buff *skb, unsigned int len) 1861 { 1862 void *tmp = skb_tail_pointer(skb); 1863 SKB_LINEAR_ASSERT(skb); 1864 skb->tail += len; 1865 skb->len += len; 1866 if (unlikely(skb->tail > skb->end)) 1867 skb_over_panic(skb, len, __builtin_return_address(0)); 1868 return tmp; 1869 } 1870 EXPORT_SYMBOL(skb_put); 1871 1872 /** 1873 * skb_push - add data to the start of a buffer 1874 * @skb: buffer to use 1875 * @len: amount of data to add 1876 * 1877 * This function extends the used data area of the buffer at the buffer 1878 * start. If this would exceed the total buffer headroom the kernel will 1879 * panic. A pointer to the first byte of the extra data is returned. 1880 */ 1881 void *skb_push(struct sk_buff *skb, unsigned int len) 1882 { 1883 skb->data -= len; 1884 skb->len += len; 1885 if (unlikely(skb->data < skb->head)) 1886 skb_under_panic(skb, len, __builtin_return_address(0)); 1887 return skb->data; 1888 } 1889 EXPORT_SYMBOL(skb_push); 1890 1891 /** 1892 * skb_pull - remove data from the start of a buffer 1893 * @skb: buffer to use 1894 * @len: amount of data to remove 1895 * 1896 * This function removes data from the start of a buffer, returning 1897 * the memory to the headroom. A pointer to the next data in the buffer 1898 * is returned. Once the data has been pulled future pushes will overwrite 1899 * the old data. 1900 */ 1901 void *skb_pull(struct sk_buff *skb, unsigned int len) 1902 { 1903 return skb_pull_inline(skb, len); 1904 } 1905 EXPORT_SYMBOL(skb_pull); 1906 1907 /** 1908 * skb_trim - remove end from a buffer 1909 * @skb: buffer to alter 1910 * @len: new length 1911 * 1912 * Cut the length of a buffer down by removing data from the tail. If 1913 * the buffer is already under the length specified it is not modified. 1914 * The skb must be linear. 1915 */ 1916 void skb_trim(struct sk_buff *skb, unsigned int len) 1917 { 1918 if (skb->len > len) 1919 __skb_trim(skb, len); 1920 } 1921 EXPORT_SYMBOL(skb_trim); 1922 1923 /* Trims skb to length len. It can change skb pointers. 1924 */ 1925 1926 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1927 { 1928 struct sk_buff **fragp; 1929 struct sk_buff *frag; 1930 int offset = skb_headlen(skb); 1931 int nfrags = skb_shinfo(skb)->nr_frags; 1932 int i; 1933 int err; 1934 1935 if (skb_cloned(skb) && 1936 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1937 return err; 1938 1939 i = 0; 1940 if (offset >= len) 1941 goto drop_pages; 1942 1943 for (; i < nfrags; i++) { 1944 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1945 1946 if (end < len) { 1947 offset = end; 1948 continue; 1949 } 1950 1951 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1952 1953 drop_pages: 1954 skb_shinfo(skb)->nr_frags = i; 1955 1956 for (; i < nfrags; i++) 1957 skb_frag_unref(skb, i); 1958 1959 if (skb_has_frag_list(skb)) 1960 skb_drop_fraglist(skb); 1961 goto done; 1962 } 1963 1964 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1965 fragp = &frag->next) { 1966 int end = offset + frag->len; 1967 1968 if (skb_shared(frag)) { 1969 struct sk_buff *nfrag; 1970 1971 nfrag = skb_clone(frag, GFP_ATOMIC); 1972 if (unlikely(!nfrag)) 1973 return -ENOMEM; 1974 1975 nfrag->next = frag->next; 1976 consume_skb(frag); 1977 frag = nfrag; 1978 *fragp = frag; 1979 } 1980 1981 if (end < len) { 1982 offset = end; 1983 continue; 1984 } 1985 1986 if (end > len && 1987 unlikely((err = pskb_trim(frag, len - offset)))) 1988 return err; 1989 1990 if (frag->next) 1991 skb_drop_list(&frag->next); 1992 break; 1993 } 1994 1995 done: 1996 if (len > skb_headlen(skb)) { 1997 skb->data_len -= skb->len - len; 1998 skb->len = len; 1999 } else { 2000 skb->len = len; 2001 skb->data_len = 0; 2002 skb_set_tail_pointer(skb, len); 2003 } 2004 2005 if (!skb->sk || skb->destructor == sock_edemux) 2006 skb_condense(skb); 2007 return 0; 2008 } 2009 EXPORT_SYMBOL(___pskb_trim); 2010 2011 /* Note : use pskb_trim_rcsum() instead of calling this directly 2012 */ 2013 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2014 { 2015 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2016 int delta = skb->len - len; 2017 2018 skb->csum = csum_block_sub(skb->csum, 2019 skb_checksum(skb, len, delta, 0), 2020 len); 2021 } 2022 return __pskb_trim(skb, len); 2023 } 2024 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2025 2026 /** 2027 * __pskb_pull_tail - advance tail of skb header 2028 * @skb: buffer to reallocate 2029 * @delta: number of bytes to advance tail 2030 * 2031 * The function makes a sense only on a fragmented &sk_buff, 2032 * it expands header moving its tail forward and copying necessary 2033 * data from fragmented part. 2034 * 2035 * &sk_buff MUST have reference count of 1. 2036 * 2037 * Returns %NULL (and &sk_buff does not change) if pull failed 2038 * or value of new tail of skb in the case of success. 2039 * 2040 * All the pointers pointing into skb header may change and must be 2041 * reloaded after call to this function. 2042 */ 2043 2044 /* Moves tail of skb head forward, copying data from fragmented part, 2045 * when it is necessary. 2046 * 1. It may fail due to malloc failure. 2047 * 2. It may change skb pointers. 2048 * 2049 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2050 */ 2051 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2052 { 2053 /* If skb has not enough free space at tail, get new one 2054 * plus 128 bytes for future expansions. If we have enough 2055 * room at tail, reallocate without expansion only if skb is cloned. 2056 */ 2057 int i, k, eat = (skb->tail + delta) - skb->end; 2058 2059 if (eat > 0 || skb_cloned(skb)) { 2060 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2061 GFP_ATOMIC)) 2062 return NULL; 2063 } 2064 2065 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2066 skb_tail_pointer(skb), delta)); 2067 2068 /* Optimization: no fragments, no reasons to preestimate 2069 * size of pulled pages. Superb. 2070 */ 2071 if (!skb_has_frag_list(skb)) 2072 goto pull_pages; 2073 2074 /* Estimate size of pulled pages. */ 2075 eat = delta; 2076 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2077 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2078 2079 if (size >= eat) 2080 goto pull_pages; 2081 eat -= size; 2082 } 2083 2084 /* If we need update frag list, we are in troubles. 2085 * Certainly, it is possible to add an offset to skb data, 2086 * but taking into account that pulling is expected to 2087 * be very rare operation, it is worth to fight against 2088 * further bloating skb head and crucify ourselves here instead. 2089 * Pure masohism, indeed. 8)8) 2090 */ 2091 if (eat) { 2092 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2093 struct sk_buff *clone = NULL; 2094 struct sk_buff *insp = NULL; 2095 2096 do { 2097 if (list->len <= eat) { 2098 /* Eaten as whole. */ 2099 eat -= list->len; 2100 list = list->next; 2101 insp = list; 2102 } else { 2103 /* Eaten partially. */ 2104 2105 if (skb_shared(list)) { 2106 /* Sucks! We need to fork list. :-( */ 2107 clone = skb_clone(list, GFP_ATOMIC); 2108 if (!clone) 2109 return NULL; 2110 insp = list->next; 2111 list = clone; 2112 } else { 2113 /* This may be pulled without 2114 * problems. */ 2115 insp = list; 2116 } 2117 if (!pskb_pull(list, eat)) { 2118 kfree_skb(clone); 2119 return NULL; 2120 } 2121 break; 2122 } 2123 } while (eat); 2124 2125 /* Free pulled out fragments. */ 2126 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2127 skb_shinfo(skb)->frag_list = list->next; 2128 kfree_skb(list); 2129 } 2130 /* And insert new clone at head. */ 2131 if (clone) { 2132 clone->next = list; 2133 skb_shinfo(skb)->frag_list = clone; 2134 } 2135 } 2136 /* Success! Now we may commit changes to skb data. */ 2137 2138 pull_pages: 2139 eat = delta; 2140 k = 0; 2141 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2142 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2143 2144 if (size <= eat) { 2145 skb_frag_unref(skb, i); 2146 eat -= size; 2147 } else { 2148 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2149 2150 *frag = skb_shinfo(skb)->frags[i]; 2151 if (eat) { 2152 skb_frag_off_add(frag, eat); 2153 skb_frag_size_sub(frag, eat); 2154 if (!i) 2155 goto end; 2156 eat = 0; 2157 } 2158 k++; 2159 } 2160 } 2161 skb_shinfo(skb)->nr_frags = k; 2162 2163 end: 2164 skb->tail += delta; 2165 skb->data_len -= delta; 2166 2167 if (!skb->data_len) 2168 skb_zcopy_clear(skb, false); 2169 2170 return skb_tail_pointer(skb); 2171 } 2172 EXPORT_SYMBOL(__pskb_pull_tail); 2173 2174 /** 2175 * skb_copy_bits - copy bits from skb to kernel buffer 2176 * @skb: source skb 2177 * @offset: offset in source 2178 * @to: destination buffer 2179 * @len: number of bytes to copy 2180 * 2181 * Copy the specified number of bytes from the source skb to the 2182 * destination buffer. 2183 * 2184 * CAUTION ! : 2185 * If its prototype is ever changed, 2186 * check arch/{*}/net/{*}.S files, 2187 * since it is called from BPF assembly code. 2188 */ 2189 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2190 { 2191 int start = skb_headlen(skb); 2192 struct sk_buff *frag_iter; 2193 int i, copy; 2194 2195 if (offset > (int)skb->len - len) 2196 goto fault; 2197 2198 /* Copy header. */ 2199 if ((copy = start - offset) > 0) { 2200 if (copy > len) 2201 copy = len; 2202 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2203 if ((len -= copy) == 0) 2204 return 0; 2205 offset += copy; 2206 to += copy; 2207 } 2208 2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2210 int end; 2211 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2212 2213 WARN_ON(start > offset + len); 2214 2215 end = start + skb_frag_size(f); 2216 if ((copy = end - offset) > 0) { 2217 u32 p_off, p_len, copied; 2218 struct page *p; 2219 u8 *vaddr; 2220 2221 if (copy > len) 2222 copy = len; 2223 2224 skb_frag_foreach_page(f, 2225 skb_frag_off(f) + offset - start, 2226 copy, p, p_off, p_len, copied) { 2227 vaddr = kmap_atomic(p); 2228 memcpy(to + copied, vaddr + p_off, p_len); 2229 kunmap_atomic(vaddr); 2230 } 2231 2232 if ((len -= copy) == 0) 2233 return 0; 2234 offset += copy; 2235 to += copy; 2236 } 2237 start = end; 2238 } 2239 2240 skb_walk_frags(skb, frag_iter) { 2241 int end; 2242 2243 WARN_ON(start > offset + len); 2244 2245 end = start + frag_iter->len; 2246 if ((copy = end - offset) > 0) { 2247 if (copy > len) 2248 copy = len; 2249 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2250 goto fault; 2251 if ((len -= copy) == 0) 2252 return 0; 2253 offset += copy; 2254 to += copy; 2255 } 2256 start = end; 2257 } 2258 2259 if (!len) 2260 return 0; 2261 2262 fault: 2263 return -EFAULT; 2264 } 2265 EXPORT_SYMBOL(skb_copy_bits); 2266 2267 /* 2268 * Callback from splice_to_pipe(), if we need to release some pages 2269 * at the end of the spd in case we error'ed out in filling the pipe. 2270 */ 2271 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2272 { 2273 put_page(spd->pages[i]); 2274 } 2275 2276 static struct page *linear_to_page(struct page *page, unsigned int *len, 2277 unsigned int *offset, 2278 struct sock *sk) 2279 { 2280 struct page_frag *pfrag = sk_page_frag(sk); 2281 2282 if (!sk_page_frag_refill(sk, pfrag)) 2283 return NULL; 2284 2285 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2286 2287 memcpy(page_address(pfrag->page) + pfrag->offset, 2288 page_address(page) + *offset, *len); 2289 *offset = pfrag->offset; 2290 pfrag->offset += *len; 2291 2292 return pfrag->page; 2293 } 2294 2295 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2296 struct page *page, 2297 unsigned int offset) 2298 { 2299 return spd->nr_pages && 2300 spd->pages[spd->nr_pages - 1] == page && 2301 (spd->partial[spd->nr_pages - 1].offset + 2302 spd->partial[spd->nr_pages - 1].len == offset); 2303 } 2304 2305 /* 2306 * Fill page/offset/length into spd, if it can hold more pages. 2307 */ 2308 static bool spd_fill_page(struct splice_pipe_desc *spd, 2309 struct pipe_inode_info *pipe, struct page *page, 2310 unsigned int *len, unsigned int offset, 2311 bool linear, 2312 struct sock *sk) 2313 { 2314 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2315 return true; 2316 2317 if (linear) { 2318 page = linear_to_page(page, len, &offset, sk); 2319 if (!page) 2320 return true; 2321 } 2322 if (spd_can_coalesce(spd, page, offset)) { 2323 spd->partial[spd->nr_pages - 1].len += *len; 2324 return false; 2325 } 2326 get_page(page); 2327 spd->pages[spd->nr_pages] = page; 2328 spd->partial[spd->nr_pages].len = *len; 2329 spd->partial[spd->nr_pages].offset = offset; 2330 spd->nr_pages++; 2331 2332 return false; 2333 } 2334 2335 static bool __splice_segment(struct page *page, unsigned int poff, 2336 unsigned int plen, unsigned int *off, 2337 unsigned int *len, 2338 struct splice_pipe_desc *spd, bool linear, 2339 struct sock *sk, 2340 struct pipe_inode_info *pipe) 2341 { 2342 if (!*len) 2343 return true; 2344 2345 /* skip this segment if already processed */ 2346 if (*off >= plen) { 2347 *off -= plen; 2348 return false; 2349 } 2350 2351 /* ignore any bits we already processed */ 2352 poff += *off; 2353 plen -= *off; 2354 *off = 0; 2355 2356 do { 2357 unsigned int flen = min(*len, plen); 2358 2359 if (spd_fill_page(spd, pipe, page, &flen, poff, 2360 linear, sk)) 2361 return true; 2362 poff += flen; 2363 plen -= flen; 2364 *len -= flen; 2365 } while (*len && plen); 2366 2367 return false; 2368 } 2369 2370 /* 2371 * Map linear and fragment data from the skb to spd. It reports true if the 2372 * pipe is full or if we already spliced the requested length. 2373 */ 2374 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2375 unsigned int *offset, unsigned int *len, 2376 struct splice_pipe_desc *spd, struct sock *sk) 2377 { 2378 int seg; 2379 struct sk_buff *iter; 2380 2381 /* map the linear part : 2382 * If skb->head_frag is set, this 'linear' part is backed by a 2383 * fragment, and if the head is not shared with any clones then 2384 * we can avoid a copy since we own the head portion of this page. 2385 */ 2386 if (__splice_segment(virt_to_page(skb->data), 2387 (unsigned long) skb->data & (PAGE_SIZE - 1), 2388 skb_headlen(skb), 2389 offset, len, spd, 2390 skb_head_is_locked(skb), 2391 sk, pipe)) 2392 return true; 2393 2394 /* 2395 * then map the fragments 2396 */ 2397 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2398 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2399 2400 if (__splice_segment(skb_frag_page(f), 2401 skb_frag_off(f), skb_frag_size(f), 2402 offset, len, spd, false, sk, pipe)) 2403 return true; 2404 } 2405 2406 skb_walk_frags(skb, iter) { 2407 if (*offset >= iter->len) { 2408 *offset -= iter->len; 2409 continue; 2410 } 2411 /* __skb_splice_bits() only fails if the output has no room 2412 * left, so no point in going over the frag_list for the error 2413 * case. 2414 */ 2415 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2416 return true; 2417 } 2418 2419 return false; 2420 } 2421 2422 /* 2423 * Map data from the skb to a pipe. Should handle both the linear part, 2424 * the fragments, and the frag list. 2425 */ 2426 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2427 struct pipe_inode_info *pipe, unsigned int tlen, 2428 unsigned int flags) 2429 { 2430 struct partial_page partial[MAX_SKB_FRAGS]; 2431 struct page *pages[MAX_SKB_FRAGS]; 2432 struct splice_pipe_desc spd = { 2433 .pages = pages, 2434 .partial = partial, 2435 .nr_pages_max = MAX_SKB_FRAGS, 2436 .ops = &nosteal_pipe_buf_ops, 2437 .spd_release = sock_spd_release, 2438 }; 2439 int ret = 0; 2440 2441 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2442 2443 if (spd.nr_pages) 2444 ret = splice_to_pipe(pipe, &spd); 2445 2446 return ret; 2447 } 2448 EXPORT_SYMBOL_GPL(skb_splice_bits); 2449 2450 /* Send skb data on a socket. Socket must be locked. */ 2451 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2452 int len) 2453 { 2454 unsigned int orig_len = len; 2455 struct sk_buff *head = skb; 2456 unsigned short fragidx; 2457 int slen, ret; 2458 2459 do_frag_list: 2460 2461 /* Deal with head data */ 2462 while (offset < skb_headlen(skb) && len) { 2463 struct kvec kv; 2464 struct msghdr msg; 2465 2466 slen = min_t(int, len, skb_headlen(skb) - offset); 2467 kv.iov_base = skb->data + offset; 2468 kv.iov_len = slen; 2469 memset(&msg, 0, sizeof(msg)); 2470 msg.msg_flags = MSG_DONTWAIT; 2471 2472 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2473 if (ret <= 0) 2474 goto error; 2475 2476 offset += ret; 2477 len -= ret; 2478 } 2479 2480 /* All the data was skb head? */ 2481 if (!len) 2482 goto out; 2483 2484 /* Make offset relative to start of frags */ 2485 offset -= skb_headlen(skb); 2486 2487 /* Find where we are in frag list */ 2488 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2489 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2490 2491 if (offset < skb_frag_size(frag)) 2492 break; 2493 2494 offset -= skb_frag_size(frag); 2495 } 2496 2497 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2498 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2499 2500 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2501 2502 while (slen) { 2503 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2504 skb_frag_off(frag) + offset, 2505 slen, MSG_DONTWAIT); 2506 if (ret <= 0) 2507 goto error; 2508 2509 len -= ret; 2510 offset += ret; 2511 slen -= ret; 2512 } 2513 2514 offset = 0; 2515 } 2516 2517 if (len) { 2518 /* Process any frag lists */ 2519 2520 if (skb == head) { 2521 if (skb_has_frag_list(skb)) { 2522 skb = skb_shinfo(skb)->frag_list; 2523 goto do_frag_list; 2524 } 2525 } else if (skb->next) { 2526 skb = skb->next; 2527 goto do_frag_list; 2528 } 2529 } 2530 2531 out: 2532 return orig_len - len; 2533 2534 error: 2535 return orig_len == len ? ret : orig_len - len; 2536 } 2537 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2538 2539 /** 2540 * skb_store_bits - store bits from kernel buffer to skb 2541 * @skb: destination buffer 2542 * @offset: offset in destination 2543 * @from: source buffer 2544 * @len: number of bytes to copy 2545 * 2546 * Copy the specified number of bytes from the source buffer to the 2547 * destination skb. This function handles all the messy bits of 2548 * traversing fragment lists and such. 2549 */ 2550 2551 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2552 { 2553 int start = skb_headlen(skb); 2554 struct sk_buff *frag_iter; 2555 int i, copy; 2556 2557 if (offset > (int)skb->len - len) 2558 goto fault; 2559 2560 if ((copy = start - offset) > 0) { 2561 if (copy > len) 2562 copy = len; 2563 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2564 if ((len -= copy) == 0) 2565 return 0; 2566 offset += copy; 2567 from += copy; 2568 } 2569 2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2572 int end; 2573 2574 WARN_ON(start > offset + len); 2575 2576 end = start + skb_frag_size(frag); 2577 if ((copy = end - offset) > 0) { 2578 u32 p_off, p_len, copied; 2579 struct page *p; 2580 u8 *vaddr; 2581 2582 if (copy > len) 2583 copy = len; 2584 2585 skb_frag_foreach_page(frag, 2586 skb_frag_off(frag) + offset - start, 2587 copy, p, p_off, p_len, copied) { 2588 vaddr = kmap_atomic(p); 2589 memcpy(vaddr + p_off, from + copied, p_len); 2590 kunmap_atomic(vaddr); 2591 } 2592 2593 if ((len -= copy) == 0) 2594 return 0; 2595 offset += copy; 2596 from += copy; 2597 } 2598 start = end; 2599 } 2600 2601 skb_walk_frags(skb, frag_iter) { 2602 int end; 2603 2604 WARN_ON(start > offset + len); 2605 2606 end = start + frag_iter->len; 2607 if ((copy = end - offset) > 0) { 2608 if (copy > len) 2609 copy = len; 2610 if (skb_store_bits(frag_iter, offset - start, 2611 from, copy)) 2612 goto fault; 2613 if ((len -= copy) == 0) 2614 return 0; 2615 offset += copy; 2616 from += copy; 2617 } 2618 start = end; 2619 } 2620 if (!len) 2621 return 0; 2622 2623 fault: 2624 return -EFAULT; 2625 } 2626 EXPORT_SYMBOL(skb_store_bits); 2627 2628 /* Checksum skb data. */ 2629 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2630 __wsum csum, const struct skb_checksum_ops *ops) 2631 { 2632 int start = skb_headlen(skb); 2633 int i, copy = start - offset; 2634 struct sk_buff *frag_iter; 2635 int pos = 0; 2636 2637 /* Checksum header. */ 2638 if (copy > 0) { 2639 if (copy > len) 2640 copy = len; 2641 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2642 skb->data + offset, copy, csum); 2643 if ((len -= copy) == 0) 2644 return csum; 2645 offset += copy; 2646 pos = copy; 2647 } 2648 2649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2650 int end; 2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2652 2653 WARN_ON(start > offset + len); 2654 2655 end = start + skb_frag_size(frag); 2656 if ((copy = end - offset) > 0) { 2657 u32 p_off, p_len, copied; 2658 struct page *p; 2659 __wsum csum2; 2660 u8 *vaddr; 2661 2662 if (copy > len) 2663 copy = len; 2664 2665 skb_frag_foreach_page(frag, 2666 skb_frag_off(frag) + offset - start, 2667 copy, p, p_off, p_len, copied) { 2668 vaddr = kmap_atomic(p); 2669 csum2 = INDIRECT_CALL_1(ops->update, 2670 csum_partial_ext, 2671 vaddr + p_off, p_len, 0); 2672 kunmap_atomic(vaddr); 2673 csum = INDIRECT_CALL_1(ops->combine, 2674 csum_block_add_ext, csum, 2675 csum2, pos, p_len); 2676 pos += p_len; 2677 } 2678 2679 if (!(len -= copy)) 2680 return csum; 2681 offset += copy; 2682 } 2683 start = end; 2684 } 2685 2686 skb_walk_frags(skb, frag_iter) { 2687 int end; 2688 2689 WARN_ON(start > offset + len); 2690 2691 end = start + frag_iter->len; 2692 if ((copy = end - offset) > 0) { 2693 __wsum csum2; 2694 if (copy > len) 2695 copy = len; 2696 csum2 = __skb_checksum(frag_iter, offset - start, 2697 copy, 0, ops); 2698 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2699 csum, csum2, pos, copy); 2700 if ((len -= copy) == 0) 2701 return csum; 2702 offset += copy; 2703 pos += copy; 2704 } 2705 start = end; 2706 } 2707 BUG_ON(len); 2708 2709 return csum; 2710 } 2711 EXPORT_SYMBOL(__skb_checksum); 2712 2713 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2714 int len, __wsum csum) 2715 { 2716 const struct skb_checksum_ops ops = { 2717 .update = csum_partial_ext, 2718 .combine = csum_block_add_ext, 2719 }; 2720 2721 return __skb_checksum(skb, offset, len, csum, &ops); 2722 } 2723 EXPORT_SYMBOL(skb_checksum); 2724 2725 /* Both of above in one bottle. */ 2726 2727 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2728 u8 *to, int len) 2729 { 2730 int start = skb_headlen(skb); 2731 int i, copy = start - offset; 2732 struct sk_buff *frag_iter; 2733 int pos = 0; 2734 __wsum csum = 0; 2735 2736 /* Copy header. */ 2737 if (copy > 0) { 2738 if (copy > len) 2739 copy = len; 2740 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2741 copy); 2742 if ((len -= copy) == 0) 2743 return csum; 2744 offset += copy; 2745 to += copy; 2746 pos = copy; 2747 } 2748 2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2750 int end; 2751 2752 WARN_ON(start > offset + len); 2753 2754 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2755 if ((copy = end - offset) > 0) { 2756 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2757 u32 p_off, p_len, copied; 2758 struct page *p; 2759 __wsum csum2; 2760 u8 *vaddr; 2761 2762 if (copy > len) 2763 copy = len; 2764 2765 skb_frag_foreach_page(frag, 2766 skb_frag_off(frag) + offset - start, 2767 copy, p, p_off, p_len, copied) { 2768 vaddr = kmap_atomic(p); 2769 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2770 to + copied, 2771 p_len); 2772 kunmap_atomic(vaddr); 2773 csum = csum_block_add(csum, csum2, pos); 2774 pos += p_len; 2775 } 2776 2777 if (!(len -= copy)) 2778 return csum; 2779 offset += copy; 2780 to += copy; 2781 } 2782 start = end; 2783 } 2784 2785 skb_walk_frags(skb, frag_iter) { 2786 __wsum csum2; 2787 int end; 2788 2789 WARN_ON(start > offset + len); 2790 2791 end = start + frag_iter->len; 2792 if ((copy = end - offset) > 0) { 2793 if (copy > len) 2794 copy = len; 2795 csum2 = skb_copy_and_csum_bits(frag_iter, 2796 offset - start, 2797 to, copy); 2798 csum = csum_block_add(csum, csum2, pos); 2799 if ((len -= copy) == 0) 2800 return csum; 2801 offset += copy; 2802 to += copy; 2803 pos += copy; 2804 } 2805 start = end; 2806 } 2807 BUG_ON(len); 2808 return csum; 2809 } 2810 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2811 2812 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2813 { 2814 __sum16 sum; 2815 2816 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2817 /* See comments in __skb_checksum_complete(). */ 2818 if (likely(!sum)) { 2819 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2820 !skb->csum_complete_sw) 2821 netdev_rx_csum_fault(skb->dev, skb); 2822 } 2823 if (!skb_shared(skb)) 2824 skb->csum_valid = !sum; 2825 return sum; 2826 } 2827 EXPORT_SYMBOL(__skb_checksum_complete_head); 2828 2829 /* This function assumes skb->csum already holds pseudo header's checksum, 2830 * which has been changed from the hardware checksum, for example, by 2831 * __skb_checksum_validate_complete(). And, the original skb->csum must 2832 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2833 * 2834 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2835 * zero. The new checksum is stored back into skb->csum unless the skb is 2836 * shared. 2837 */ 2838 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2839 { 2840 __wsum csum; 2841 __sum16 sum; 2842 2843 csum = skb_checksum(skb, 0, skb->len, 0); 2844 2845 sum = csum_fold(csum_add(skb->csum, csum)); 2846 /* This check is inverted, because we already knew the hardware 2847 * checksum is invalid before calling this function. So, if the 2848 * re-computed checksum is valid instead, then we have a mismatch 2849 * between the original skb->csum and skb_checksum(). This means either 2850 * the original hardware checksum is incorrect or we screw up skb->csum 2851 * when moving skb->data around. 2852 */ 2853 if (likely(!sum)) { 2854 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2855 !skb->csum_complete_sw) 2856 netdev_rx_csum_fault(skb->dev, skb); 2857 } 2858 2859 if (!skb_shared(skb)) { 2860 /* Save full packet checksum */ 2861 skb->csum = csum; 2862 skb->ip_summed = CHECKSUM_COMPLETE; 2863 skb->csum_complete_sw = 1; 2864 skb->csum_valid = !sum; 2865 } 2866 2867 return sum; 2868 } 2869 EXPORT_SYMBOL(__skb_checksum_complete); 2870 2871 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2872 { 2873 net_warn_ratelimited( 2874 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2875 __func__); 2876 return 0; 2877 } 2878 2879 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2880 int offset, int len) 2881 { 2882 net_warn_ratelimited( 2883 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2884 __func__); 2885 return 0; 2886 } 2887 2888 static const struct skb_checksum_ops default_crc32c_ops = { 2889 .update = warn_crc32c_csum_update, 2890 .combine = warn_crc32c_csum_combine, 2891 }; 2892 2893 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2894 &default_crc32c_ops; 2895 EXPORT_SYMBOL(crc32c_csum_stub); 2896 2897 /** 2898 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2899 * @from: source buffer 2900 * 2901 * Calculates the amount of linear headroom needed in the 'to' skb passed 2902 * into skb_zerocopy(). 2903 */ 2904 unsigned int 2905 skb_zerocopy_headlen(const struct sk_buff *from) 2906 { 2907 unsigned int hlen = 0; 2908 2909 if (!from->head_frag || 2910 skb_headlen(from) < L1_CACHE_BYTES || 2911 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2912 hlen = skb_headlen(from); 2913 2914 if (skb_has_frag_list(from)) 2915 hlen = from->len; 2916 2917 return hlen; 2918 } 2919 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2920 2921 /** 2922 * skb_zerocopy - Zero copy skb to skb 2923 * @to: destination buffer 2924 * @from: source buffer 2925 * @len: number of bytes to copy from source buffer 2926 * @hlen: size of linear headroom in destination buffer 2927 * 2928 * Copies up to `len` bytes from `from` to `to` by creating references 2929 * to the frags in the source buffer. 2930 * 2931 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2932 * headroom in the `to` buffer. 2933 * 2934 * Return value: 2935 * 0: everything is OK 2936 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2937 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2938 */ 2939 int 2940 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2941 { 2942 int i, j = 0; 2943 int plen = 0; /* length of skb->head fragment */ 2944 int ret; 2945 struct page *page; 2946 unsigned int offset; 2947 2948 BUG_ON(!from->head_frag && !hlen); 2949 2950 /* dont bother with small payloads */ 2951 if (len <= skb_tailroom(to)) 2952 return skb_copy_bits(from, 0, skb_put(to, len), len); 2953 2954 if (hlen) { 2955 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2956 if (unlikely(ret)) 2957 return ret; 2958 len -= hlen; 2959 } else { 2960 plen = min_t(int, skb_headlen(from), len); 2961 if (plen) { 2962 page = virt_to_head_page(from->head); 2963 offset = from->data - (unsigned char *)page_address(page); 2964 __skb_fill_page_desc(to, 0, page, offset, plen); 2965 get_page(page); 2966 j = 1; 2967 len -= plen; 2968 } 2969 } 2970 2971 to->truesize += len + plen; 2972 to->len += len + plen; 2973 to->data_len += len + plen; 2974 2975 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2976 skb_tx_error(from); 2977 return -ENOMEM; 2978 } 2979 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2980 2981 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2982 int size; 2983 2984 if (!len) 2985 break; 2986 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2987 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2988 len); 2989 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 2990 len -= size; 2991 skb_frag_ref(to, j); 2992 j++; 2993 } 2994 skb_shinfo(to)->nr_frags = j; 2995 2996 return 0; 2997 } 2998 EXPORT_SYMBOL_GPL(skb_zerocopy); 2999 3000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3001 { 3002 __wsum csum; 3003 long csstart; 3004 3005 if (skb->ip_summed == CHECKSUM_PARTIAL) 3006 csstart = skb_checksum_start_offset(skb); 3007 else 3008 csstart = skb_headlen(skb); 3009 3010 BUG_ON(csstart > skb_headlen(skb)); 3011 3012 skb_copy_from_linear_data(skb, to, csstart); 3013 3014 csum = 0; 3015 if (csstart != skb->len) 3016 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3017 skb->len - csstart); 3018 3019 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3020 long csstuff = csstart + skb->csum_offset; 3021 3022 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3023 } 3024 } 3025 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3026 3027 /** 3028 * skb_dequeue - remove from the head of the queue 3029 * @list: list to dequeue from 3030 * 3031 * Remove the head of the list. The list lock is taken so the function 3032 * may be used safely with other locking list functions. The head item is 3033 * returned or %NULL if the list is empty. 3034 */ 3035 3036 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3037 { 3038 unsigned long flags; 3039 struct sk_buff *result; 3040 3041 spin_lock_irqsave(&list->lock, flags); 3042 result = __skb_dequeue(list); 3043 spin_unlock_irqrestore(&list->lock, flags); 3044 return result; 3045 } 3046 EXPORT_SYMBOL(skb_dequeue); 3047 3048 /** 3049 * skb_dequeue_tail - remove from the tail of the queue 3050 * @list: list to dequeue from 3051 * 3052 * Remove the tail of the list. The list lock is taken so the function 3053 * may be used safely with other locking list functions. The tail item is 3054 * returned or %NULL if the list is empty. 3055 */ 3056 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3057 { 3058 unsigned long flags; 3059 struct sk_buff *result; 3060 3061 spin_lock_irqsave(&list->lock, flags); 3062 result = __skb_dequeue_tail(list); 3063 spin_unlock_irqrestore(&list->lock, flags); 3064 return result; 3065 } 3066 EXPORT_SYMBOL(skb_dequeue_tail); 3067 3068 /** 3069 * skb_queue_purge - empty a list 3070 * @list: list to empty 3071 * 3072 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3073 * the list and one reference dropped. This function takes the list 3074 * lock and is atomic with respect to other list locking functions. 3075 */ 3076 void skb_queue_purge(struct sk_buff_head *list) 3077 { 3078 struct sk_buff *skb; 3079 while ((skb = skb_dequeue(list)) != NULL) 3080 kfree_skb(skb); 3081 } 3082 EXPORT_SYMBOL(skb_queue_purge); 3083 3084 /** 3085 * skb_rbtree_purge - empty a skb rbtree 3086 * @root: root of the rbtree to empty 3087 * Return value: the sum of truesizes of all purged skbs. 3088 * 3089 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3090 * the list and one reference dropped. This function does not take 3091 * any lock. Synchronization should be handled by the caller (e.g., TCP 3092 * out-of-order queue is protected by the socket lock). 3093 */ 3094 unsigned int skb_rbtree_purge(struct rb_root *root) 3095 { 3096 struct rb_node *p = rb_first(root); 3097 unsigned int sum = 0; 3098 3099 while (p) { 3100 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3101 3102 p = rb_next(p); 3103 rb_erase(&skb->rbnode, root); 3104 sum += skb->truesize; 3105 kfree_skb(skb); 3106 } 3107 return sum; 3108 } 3109 3110 /** 3111 * skb_queue_head - queue a buffer at the list head 3112 * @list: list to use 3113 * @newsk: buffer to queue 3114 * 3115 * Queue a buffer at the start of the list. This function takes the 3116 * list lock and can be used safely with other locking &sk_buff functions 3117 * safely. 3118 * 3119 * A buffer cannot be placed on two lists at the same time. 3120 */ 3121 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3122 { 3123 unsigned long flags; 3124 3125 spin_lock_irqsave(&list->lock, flags); 3126 __skb_queue_head(list, newsk); 3127 spin_unlock_irqrestore(&list->lock, flags); 3128 } 3129 EXPORT_SYMBOL(skb_queue_head); 3130 3131 /** 3132 * skb_queue_tail - queue a buffer at the list tail 3133 * @list: list to use 3134 * @newsk: buffer to queue 3135 * 3136 * Queue a buffer at the tail of the list. This function takes the 3137 * list lock and can be used safely with other locking &sk_buff functions 3138 * safely. 3139 * 3140 * A buffer cannot be placed on two lists at the same time. 3141 */ 3142 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3143 { 3144 unsigned long flags; 3145 3146 spin_lock_irqsave(&list->lock, flags); 3147 __skb_queue_tail(list, newsk); 3148 spin_unlock_irqrestore(&list->lock, flags); 3149 } 3150 EXPORT_SYMBOL(skb_queue_tail); 3151 3152 /** 3153 * skb_unlink - remove a buffer from a list 3154 * @skb: buffer to remove 3155 * @list: list to use 3156 * 3157 * Remove a packet from a list. The list locks are taken and this 3158 * function is atomic with respect to other list locked calls 3159 * 3160 * You must know what list the SKB is on. 3161 */ 3162 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3163 { 3164 unsigned long flags; 3165 3166 spin_lock_irqsave(&list->lock, flags); 3167 __skb_unlink(skb, list); 3168 spin_unlock_irqrestore(&list->lock, flags); 3169 } 3170 EXPORT_SYMBOL(skb_unlink); 3171 3172 /** 3173 * skb_append - append a buffer 3174 * @old: buffer to insert after 3175 * @newsk: buffer to insert 3176 * @list: list to use 3177 * 3178 * Place a packet after a given packet in a list. The list locks are taken 3179 * and this function is atomic with respect to other list locked calls. 3180 * A buffer cannot be placed on two lists at the same time. 3181 */ 3182 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3183 { 3184 unsigned long flags; 3185 3186 spin_lock_irqsave(&list->lock, flags); 3187 __skb_queue_after(list, old, newsk); 3188 spin_unlock_irqrestore(&list->lock, flags); 3189 } 3190 EXPORT_SYMBOL(skb_append); 3191 3192 static inline void skb_split_inside_header(struct sk_buff *skb, 3193 struct sk_buff* skb1, 3194 const u32 len, const int pos) 3195 { 3196 int i; 3197 3198 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3199 pos - len); 3200 /* And move data appendix as is. */ 3201 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3202 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3203 3204 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3205 skb_shinfo(skb)->nr_frags = 0; 3206 skb1->data_len = skb->data_len; 3207 skb1->len += skb1->data_len; 3208 skb->data_len = 0; 3209 skb->len = len; 3210 skb_set_tail_pointer(skb, len); 3211 } 3212 3213 static inline void skb_split_no_header(struct sk_buff *skb, 3214 struct sk_buff* skb1, 3215 const u32 len, int pos) 3216 { 3217 int i, k = 0; 3218 const int nfrags = skb_shinfo(skb)->nr_frags; 3219 3220 skb_shinfo(skb)->nr_frags = 0; 3221 skb1->len = skb1->data_len = skb->len - len; 3222 skb->len = len; 3223 skb->data_len = len - pos; 3224 3225 for (i = 0; i < nfrags; i++) { 3226 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3227 3228 if (pos + size > len) { 3229 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3230 3231 if (pos < len) { 3232 /* Split frag. 3233 * We have two variants in this case: 3234 * 1. Move all the frag to the second 3235 * part, if it is possible. F.e. 3236 * this approach is mandatory for TUX, 3237 * where splitting is expensive. 3238 * 2. Split is accurately. We make this. 3239 */ 3240 skb_frag_ref(skb, i); 3241 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3242 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3243 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3244 skb_shinfo(skb)->nr_frags++; 3245 } 3246 k++; 3247 } else 3248 skb_shinfo(skb)->nr_frags++; 3249 pos += size; 3250 } 3251 skb_shinfo(skb1)->nr_frags = k; 3252 } 3253 3254 /** 3255 * skb_split - Split fragmented skb to two parts at length len. 3256 * @skb: the buffer to split 3257 * @skb1: the buffer to receive the second part 3258 * @len: new length for skb 3259 */ 3260 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3261 { 3262 int pos = skb_headlen(skb); 3263 3264 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3265 SKBTX_SHARED_FRAG; 3266 skb_zerocopy_clone(skb1, skb, 0); 3267 if (len < pos) /* Split line is inside header. */ 3268 skb_split_inside_header(skb, skb1, len, pos); 3269 else /* Second chunk has no header, nothing to copy. */ 3270 skb_split_no_header(skb, skb1, len, pos); 3271 } 3272 EXPORT_SYMBOL(skb_split); 3273 3274 /* Shifting from/to a cloned skb is a no-go. 3275 * 3276 * Caller cannot keep skb_shinfo related pointers past calling here! 3277 */ 3278 static int skb_prepare_for_shift(struct sk_buff *skb) 3279 { 3280 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3281 } 3282 3283 /** 3284 * skb_shift - Shifts paged data partially from skb to another 3285 * @tgt: buffer into which tail data gets added 3286 * @skb: buffer from which the paged data comes from 3287 * @shiftlen: shift up to this many bytes 3288 * 3289 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3290 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3291 * It's up to caller to free skb if everything was shifted. 3292 * 3293 * If @tgt runs out of frags, the whole operation is aborted. 3294 * 3295 * Skb cannot include anything else but paged data while tgt is allowed 3296 * to have non-paged data as well. 3297 * 3298 * TODO: full sized shift could be optimized but that would need 3299 * specialized skb free'er to handle frags without up-to-date nr_frags. 3300 */ 3301 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3302 { 3303 int from, to, merge, todo; 3304 skb_frag_t *fragfrom, *fragto; 3305 3306 BUG_ON(shiftlen > skb->len); 3307 3308 if (skb_headlen(skb)) 3309 return 0; 3310 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3311 return 0; 3312 3313 todo = shiftlen; 3314 from = 0; 3315 to = skb_shinfo(tgt)->nr_frags; 3316 fragfrom = &skb_shinfo(skb)->frags[from]; 3317 3318 /* Actual merge is delayed until the point when we know we can 3319 * commit all, so that we don't have to undo partial changes 3320 */ 3321 if (!to || 3322 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3323 skb_frag_off(fragfrom))) { 3324 merge = -1; 3325 } else { 3326 merge = to - 1; 3327 3328 todo -= skb_frag_size(fragfrom); 3329 if (todo < 0) { 3330 if (skb_prepare_for_shift(skb) || 3331 skb_prepare_for_shift(tgt)) 3332 return 0; 3333 3334 /* All previous frag pointers might be stale! */ 3335 fragfrom = &skb_shinfo(skb)->frags[from]; 3336 fragto = &skb_shinfo(tgt)->frags[merge]; 3337 3338 skb_frag_size_add(fragto, shiftlen); 3339 skb_frag_size_sub(fragfrom, shiftlen); 3340 skb_frag_off_add(fragfrom, shiftlen); 3341 3342 goto onlymerged; 3343 } 3344 3345 from++; 3346 } 3347 3348 /* Skip full, not-fitting skb to avoid expensive operations */ 3349 if ((shiftlen == skb->len) && 3350 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3351 return 0; 3352 3353 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3354 return 0; 3355 3356 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3357 if (to == MAX_SKB_FRAGS) 3358 return 0; 3359 3360 fragfrom = &skb_shinfo(skb)->frags[from]; 3361 fragto = &skb_shinfo(tgt)->frags[to]; 3362 3363 if (todo >= skb_frag_size(fragfrom)) { 3364 *fragto = *fragfrom; 3365 todo -= skb_frag_size(fragfrom); 3366 from++; 3367 to++; 3368 3369 } else { 3370 __skb_frag_ref(fragfrom); 3371 skb_frag_page_copy(fragto, fragfrom); 3372 skb_frag_off_copy(fragto, fragfrom); 3373 skb_frag_size_set(fragto, todo); 3374 3375 skb_frag_off_add(fragfrom, todo); 3376 skb_frag_size_sub(fragfrom, todo); 3377 todo = 0; 3378 3379 to++; 3380 break; 3381 } 3382 } 3383 3384 /* Ready to "commit" this state change to tgt */ 3385 skb_shinfo(tgt)->nr_frags = to; 3386 3387 if (merge >= 0) { 3388 fragfrom = &skb_shinfo(skb)->frags[0]; 3389 fragto = &skb_shinfo(tgt)->frags[merge]; 3390 3391 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3392 __skb_frag_unref(fragfrom); 3393 } 3394 3395 /* Reposition in the original skb */ 3396 to = 0; 3397 while (from < skb_shinfo(skb)->nr_frags) 3398 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3399 skb_shinfo(skb)->nr_frags = to; 3400 3401 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3402 3403 onlymerged: 3404 /* Most likely the tgt won't ever need its checksum anymore, skb on 3405 * the other hand might need it if it needs to be resent 3406 */ 3407 tgt->ip_summed = CHECKSUM_PARTIAL; 3408 skb->ip_summed = CHECKSUM_PARTIAL; 3409 3410 /* Yak, is it really working this way? Some helper please? */ 3411 skb->len -= shiftlen; 3412 skb->data_len -= shiftlen; 3413 skb->truesize -= shiftlen; 3414 tgt->len += shiftlen; 3415 tgt->data_len += shiftlen; 3416 tgt->truesize += shiftlen; 3417 3418 return shiftlen; 3419 } 3420 3421 /** 3422 * skb_prepare_seq_read - Prepare a sequential read of skb data 3423 * @skb: the buffer to read 3424 * @from: lower offset of data to be read 3425 * @to: upper offset of data to be read 3426 * @st: state variable 3427 * 3428 * Initializes the specified state variable. Must be called before 3429 * invoking skb_seq_read() for the first time. 3430 */ 3431 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3432 unsigned int to, struct skb_seq_state *st) 3433 { 3434 st->lower_offset = from; 3435 st->upper_offset = to; 3436 st->root_skb = st->cur_skb = skb; 3437 st->frag_idx = st->stepped_offset = 0; 3438 st->frag_data = NULL; 3439 } 3440 EXPORT_SYMBOL(skb_prepare_seq_read); 3441 3442 /** 3443 * skb_seq_read - Sequentially read skb data 3444 * @consumed: number of bytes consumed by the caller so far 3445 * @data: destination pointer for data to be returned 3446 * @st: state variable 3447 * 3448 * Reads a block of skb data at @consumed relative to the 3449 * lower offset specified to skb_prepare_seq_read(). Assigns 3450 * the head of the data block to @data and returns the length 3451 * of the block or 0 if the end of the skb data or the upper 3452 * offset has been reached. 3453 * 3454 * The caller is not required to consume all of the data 3455 * returned, i.e. @consumed is typically set to the number 3456 * of bytes already consumed and the next call to 3457 * skb_seq_read() will return the remaining part of the block. 3458 * 3459 * Note 1: The size of each block of data returned can be arbitrary, 3460 * this limitation is the cost for zerocopy sequential 3461 * reads of potentially non linear data. 3462 * 3463 * Note 2: Fragment lists within fragments are not implemented 3464 * at the moment, state->root_skb could be replaced with 3465 * a stack for this purpose. 3466 */ 3467 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3468 struct skb_seq_state *st) 3469 { 3470 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3471 skb_frag_t *frag; 3472 3473 if (unlikely(abs_offset >= st->upper_offset)) { 3474 if (st->frag_data) { 3475 kunmap_atomic(st->frag_data); 3476 st->frag_data = NULL; 3477 } 3478 return 0; 3479 } 3480 3481 next_skb: 3482 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3483 3484 if (abs_offset < block_limit && !st->frag_data) { 3485 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3486 return block_limit - abs_offset; 3487 } 3488 3489 if (st->frag_idx == 0 && !st->frag_data) 3490 st->stepped_offset += skb_headlen(st->cur_skb); 3491 3492 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3493 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3494 block_limit = skb_frag_size(frag) + st->stepped_offset; 3495 3496 if (abs_offset < block_limit) { 3497 if (!st->frag_data) 3498 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3499 3500 *data = (u8 *) st->frag_data + skb_frag_off(frag) + 3501 (abs_offset - st->stepped_offset); 3502 3503 return block_limit - abs_offset; 3504 } 3505 3506 if (st->frag_data) { 3507 kunmap_atomic(st->frag_data); 3508 st->frag_data = NULL; 3509 } 3510 3511 st->frag_idx++; 3512 st->stepped_offset += skb_frag_size(frag); 3513 } 3514 3515 if (st->frag_data) { 3516 kunmap_atomic(st->frag_data); 3517 st->frag_data = NULL; 3518 } 3519 3520 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3521 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3522 st->frag_idx = 0; 3523 goto next_skb; 3524 } else if (st->cur_skb->next) { 3525 st->cur_skb = st->cur_skb->next; 3526 st->frag_idx = 0; 3527 goto next_skb; 3528 } 3529 3530 return 0; 3531 } 3532 EXPORT_SYMBOL(skb_seq_read); 3533 3534 /** 3535 * skb_abort_seq_read - Abort a sequential read of skb data 3536 * @st: state variable 3537 * 3538 * Must be called if skb_seq_read() was not called until it 3539 * returned 0. 3540 */ 3541 void skb_abort_seq_read(struct skb_seq_state *st) 3542 { 3543 if (st->frag_data) 3544 kunmap_atomic(st->frag_data); 3545 } 3546 EXPORT_SYMBOL(skb_abort_seq_read); 3547 3548 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3549 3550 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3551 struct ts_config *conf, 3552 struct ts_state *state) 3553 { 3554 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3555 } 3556 3557 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3558 { 3559 skb_abort_seq_read(TS_SKB_CB(state)); 3560 } 3561 3562 /** 3563 * skb_find_text - Find a text pattern in skb data 3564 * @skb: the buffer to look in 3565 * @from: search offset 3566 * @to: search limit 3567 * @config: textsearch configuration 3568 * 3569 * Finds a pattern in the skb data according to the specified 3570 * textsearch configuration. Use textsearch_next() to retrieve 3571 * subsequent occurrences of the pattern. Returns the offset 3572 * to the first occurrence or UINT_MAX if no match was found. 3573 */ 3574 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3575 unsigned int to, struct ts_config *config) 3576 { 3577 struct ts_state state; 3578 unsigned int ret; 3579 3580 config->get_next_block = skb_ts_get_next_block; 3581 config->finish = skb_ts_finish; 3582 3583 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3584 3585 ret = textsearch_find(config, &state); 3586 return (ret <= to - from ? ret : UINT_MAX); 3587 } 3588 EXPORT_SYMBOL(skb_find_text); 3589 3590 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3591 int offset, size_t size) 3592 { 3593 int i = skb_shinfo(skb)->nr_frags; 3594 3595 if (skb_can_coalesce(skb, i, page, offset)) { 3596 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3597 } else if (i < MAX_SKB_FRAGS) { 3598 get_page(page); 3599 skb_fill_page_desc(skb, i, page, offset, size); 3600 } else { 3601 return -EMSGSIZE; 3602 } 3603 3604 return 0; 3605 } 3606 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3607 3608 /** 3609 * skb_pull_rcsum - pull skb and update receive checksum 3610 * @skb: buffer to update 3611 * @len: length of data pulled 3612 * 3613 * This function performs an skb_pull on the packet and updates 3614 * the CHECKSUM_COMPLETE checksum. It should be used on 3615 * receive path processing instead of skb_pull unless you know 3616 * that the checksum difference is zero (e.g., a valid IP header) 3617 * or you are setting ip_summed to CHECKSUM_NONE. 3618 */ 3619 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3620 { 3621 unsigned char *data = skb->data; 3622 3623 BUG_ON(len > skb->len); 3624 __skb_pull(skb, len); 3625 skb_postpull_rcsum(skb, data, len); 3626 return skb->data; 3627 } 3628 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3629 3630 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3631 { 3632 skb_frag_t head_frag; 3633 struct page *page; 3634 3635 page = virt_to_head_page(frag_skb->head); 3636 __skb_frag_set_page(&head_frag, page); 3637 skb_frag_off_set(&head_frag, frag_skb->data - 3638 (unsigned char *)page_address(page)); 3639 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3640 return head_frag; 3641 } 3642 3643 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3644 netdev_features_t features, 3645 unsigned int offset) 3646 { 3647 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3648 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3649 unsigned int delta_truesize = 0; 3650 unsigned int delta_len = 0; 3651 struct sk_buff *tail = NULL; 3652 struct sk_buff *nskb; 3653 3654 skb_push(skb, -skb_network_offset(skb) + offset); 3655 3656 skb_shinfo(skb)->frag_list = NULL; 3657 3658 do { 3659 nskb = list_skb; 3660 list_skb = list_skb->next; 3661 3662 if (!tail) 3663 skb->next = nskb; 3664 else 3665 tail->next = nskb; 3666 3667 tail = nskb; 3668 3669 delta_len += nskb->len; 3670 delta_truesize += nskb->truesize; 3671 3672 skb_push(nskb, -skb_network_offset(nskb) + offset); 3673 3674 skb_release_head_state(nskb); 3675 __copy_skb_header(nskb, skb); 3676 3677 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3678 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3679 nskb->data - tnl_hlen, 3680 offset + tnl_hlen); 3681 3682 if (skb_needs_linearize(nskb, features) && 3683 __skb_linearize(nskb)) 3684 goto err_linearize; 3685 3686 } while (list_skb); 3687 3688 skb->truesize = skb->truesize - delta_truesize; 3689 skb->data_len = skb->data_len - delta_len; 3690 skb->len = skb->len - delta_len; 3691 3692 skb_gso_reset(skb); 3693 3694 skb->prev = tail; 3695 3696 if (skb_needs_linearize(skb, features) && 3697 __skb_linearize(skb)) 3698 goto err_linearize; 3699 3700 skb_get(skb); 3701 3702 return skb; 3703 3704 err_linearize: 3705 kfree_skb_list(skb->next); 3706 skb->next = NULL; 3707 return ERR_PTR(-ENOMEM); 3708 } 3709 EXPORT_SYMBOL_GPL(skb_segment_list); 3710 3711 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3712 { 3713 if (unlikely(p->len + skb->len >= 65536)) 3714 return -E2BIG; 3715 3716 if (NAPI_GRO_CB(p)->last == p) 3717 skb_shinfo(p)->frag_list = skb; 3718 else 3719 NAPI_GRO_CB(p)->last->next = skb; 3720 3721 skb_pull(skb, skb_gro_offset(skb)); 3722 3723 NAPI_GRO_CB(p)->last = skb; 3724 NAPI_GRO_CB(p)->count++; 3725 p->data_len += skb->len; 3726 p->truesize += skb->truesize; 3727 p->len += skb->len; 3728 3729 NAPI_GRO_CB(skb)->same_flow = 1; 3730 3731 return 0; 3732 } 3733 3734 /** 3735 * skb_segment - Perform protocol segmentation on skb. 3736 * @head_skb: buffer to segment 3737 * @features: features for the output path (see dev->features) 3738 * 3739 * This function performs segmentation on the given skb. It returns 3740 * a pointer to the first in a list of new skbs for the segments. 3741 * In case of error it returns ERR_PTR(err). 3742 */ 3743 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3744 netdev_features_t features) 3745 { 3746 struct sk_buff *segs = NULL; 3747 struct sk_buff *tail = NULL; 3748 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3749 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3750 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3751 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3752 struct sk_buff *frag_skb = head_skb; 3753 unsigned int offset = doffset; 3754 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3755 unsigned int partial_segs = 0; 3756 unsigned int headroom; 3757 unsigned int len = head_skb->len; 3758 __be16 proto; 3759 bool csum, sg; 3760 int nfrags = skb_shinfo(head_skb)->nr_frags; 3761 int err = -ENOMEM; 3762 int i = 0; 3763 int pos; 3764 3765 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3766 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3767 /* gso_size is untrusted, and we have a frag_list with a linear 3768 * non head_frag head. 3769 * 3770 * (we assume checking the first list_skb member suffices; 3771 * i.e if either of the list_skb members have non head_frag 3772 * head, then the first one has too). 3773 * 3774 * If head_skb's headlen does not fit requested gso_size, it 3775 * means that the frag_list members do NOT terminate on exact 3776 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3777 * sharing. Therefore we must fallback to copying the frag_list 3778 * skbs; we do so by disabling SG. 3779 */ 3780 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3781 features &= ~NETIF_F_SG; 3782 } 3783 3784 __skb_push(head_skb, doffset); 3785 proto = skb_network_protocol(head_skb, NULL); 3786 if (unlikely(!proto)) 3787 return ERR_PTR(-EINVAL); 3788 3789 sg = !!(features & NETIF_F_SG); 3790 csum = !!can_checksum_protocol(features, proto); 3791 3792 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3793 if (!(features & NETIF_F_GSO_PARTIAL)) { 3794 struct sk_buff *iter; 3795 unsigned int frag_len; 3796 3797 if (!list_skb || 3798 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3799 goto normal; 3800 3801 /* If we get here then all the required 3802 * GSO features except frag_list are supported. 3803 * Try to split the SKB to multiple GSO SKBs 3804 * with no frag_list. 3805 * Currently we can do that only when the buffers don't 3806 * have a linear part and all the buffers except 3807 * the last are of the same length. 3808 */ 3809 frag_len = list_skb->len; 3810 skb_walk_frags(head_skb, iter) { 3811 if (frag_len != iter->len && iter->next) 3812 goto normal; 3813 if (skb_headlen(iter) && !iter->head_frag) 3814 goto normal; 3815 3816 len -= iter->len; 3817 } 3818 3819 if (len != frag_len) 3820 goto normal; 3821 } 3822 3823 /* GSO partial only requires that we trim off any excess that 3824 * doesn't fit into an MSS sized block, so take care of that 3825 * now. 3826 */ 3827 partial_segs = len / mss; 3828 if (partial_segs > 1) 3829 mss *= partial_segs; 3830 else 3831 partial_segs = 0; 3832 } 3833 3834 normal: 3835 headroom = skb_headroom(head_skb); 3836 pos = skb_headlen(head_skb); 3837 3838 do { 3839 struct sk_buff *nskb; 3840 skb_frag_t *nskb_frag; 3841 int hsize; 3842 int size; 3843 3844 if (unlikely(mss == GSO_BY_FRAGS)) { 3845 len = list_skb->len; 3846 } else { 3847 len = head_skb->len - offset; 3848 if (len > mss) 3849 len = mss; 3850 } 3851 3852 hsize = skb_headlen(head_skb) - offset; 3853 if (hsize < 0) 3854 hsize = 0; 3855 if (hsize > len || !sg) 3856 hsize = len; 3857 3858 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3859 (skb_headlen(list_skb) == len || sg)) { 3860 BUG_ON(skb_headlen(list_skb) > len); 3861 3862 i = 0; 3863 nfrags = skb_shinfo(list_skb)->nr_frags; 3864 frag = skb_shinfo(list_skb)->frags; 3865 frag_skb = list_skb; 3866 pos += skb_headlen(list_skb); 3867 3868 while (pos < offset + len) { 3869 BUG_ON(i >= nfrags); 3870 3871 size = skb_frag_size(frag); 3872 if (pos + size > offset + len) 3873 break; 3874 3875 i++; 3876 pos += size; 3877 frag++; 3878 } 3879 3880 nskb = skb_clone(list_skb, GFP_ATOMIC); 3881 list_skb = list_skb->next; 3882 3883 if (unlikely(!nskb)) 3884 goto err; 3885 3886 if (unlikely(pskb_trim(nskb, len))) { 3887 kfree_skb(nskb); 3888 goto err; 3889 } 3890 3891 hsize = skb_end_offset(nskb); 3892 if (skb_cow_head(nskb, doffset + headroom)) { 3893 kfree_skb(nskb); 3894 goto err; 3895 } 3896 3897 nskb->truesize += skb_end_offset(nskb) - hsize; 3898 skb_release_head_state(nskb); 3899 __skb_push(nskb, doffset); 3900 } else { 3901 nskb = __alloc_skb(hsize + doffset + headroom, 3902 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3903 NUMA_NO_NODE); 3904 3905 if (unlikely(!nskb)) 3906 goto err; 3907 3908 skb_reserve(nskb, headroom); 3909 __skb_put(nskb, doffset); 3910 } 3911 3912 if (segs) 3913 tail->next = nskb; 3914 else 3915 segs = nskb; 3916 tail = nskb; 3917 3918 __copy_skb_header(nskb, head_skb); 3919 3920 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3921 skb_reset_mac_len(nskb); 3922 3923 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3924 nskb->data - tnl_hlen, 3925 doffset + tnl_hlen); 3926 3927 if (nskb->len == len + doffset) 3928 goto perform_csum_check; 3929 3930 if (!sg) { 3931 if (!csum) { 3932 if (!nskb->remcsum_offload) 3933 nskb->ip_summed = CHECKSUM_NONE; 3934 SKB_GSO_CB(nskb)->csum = 3935 skb_copy_and_csum_bits(head_skb, offset, 3936 skb_put(nskb, 3937 len), 3938 len); 3939 SKB_GSO_CB(nskb)->csum_start = 3940 skb_headroom(nskb) + doffset; 3941 } else { 3942 skb_copy_bits(head_skb, offset, 3943 skb_put(nskb, len), 3944 len); 3945 } 3946 continue; 3947 } 3948 3949 nskb_frag = skb_shinfo(nskb)->frags; 3950 3951 skb_copy_from_linear_data_offset(head_skb, offset, 3952 skb_put(nskb, hsize), hsize); 3953 3954 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3955 SKBTX_SHARED_FRAG; 3956 3957 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3958 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3959 goto err; 3960 3961 while (pos < offset + len) { 3962 if (i >= nfrags) { 3963 i = 0; 3964 nfrags = skb_shinfo(list_skb)->nr_frags; 3965 frag = skb_shinfo(list_skb)->frags; 3966 frag_skb = list_skb; 3967 if (!skb_headlen(list_skb)) { 3968 BUG_ON(!nfrags); 3969 } else { 3970 BUG_ON(!list_skb->head_frag); 3971 3972 /* to make room for head_frag. */ 3973 i--; 3974 frag--; 3975 } 3976 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3977 skb_zerocopy_clone(nskb, frag_skb, 3978 GFP_ATOMIC)) 3979 goto err; 3980 3981 list_skb = list_skb->next; 3982 } 3983 3984 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3985 MAX_SKB_FRAGS)) { 3986 net_warn_ratelimited( 3987 "skb_segment: too many frags: %u %u\n", 3988 pos, mss); 3989 err = -EINVAL; 3990 goto err; 3991 } 3992 3993 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3994 __skb_frag_ref(nskb_frag); 3995 size = skb_frag_size(nskb_frag); 3996 3997 if (pos < offset) { 3998 skb_frag_off_add(nskb_frag, offset - pos); 3999 skb_frag_size_sub(nskb_frag, offset - pos); 4000 } 4001 4002 skb_shinfo(nskb)->nr_frags++; 4003 4004 if (pos + size <= offset + len) { 4005 i++; 4006 frag++; 4007 pos += size; 4008 } else { 4009 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4010 goto skip_fraglist; 4011 } 4012 4013 nskb_frag++; 4014 } 4015 4016 skip_fraglist: 4017 nskb->data_len = len - hsize; 4018 nskb->len += nskb->data_len; 4019 nskb->truesize += nskb->data_len; 4020 4021 perform_csum_check: 4022 if (!csum) { 4023 if (skb_has_shared_frag(nskb) && 4024 __skb_linearize(nskb)) 4025 goto err; 4026 4027 if (!nskb->remcsum_offload) 4028 nskb->ip_summed = CHECKSUM_NONE; 4029 SKB_GSO_CB(nskb)->csum = 4030 skb_checksum(nskb, doffset, 4031 nskb->len - doffset, 0); 4032 SKB_GSO_CB(nskb)->csum_start = 4033 skb_headroom(nskb) + doffset; 4034 } 4035 } while ((offset += len) < head_skb->len); 4036 4037 /* Some callers want to get the end of the list. 4038 * Put it in segs->prev to avoid walking the list. 4039 * (see validate_xmit_skb_list() for example) 4040 */ 4041 segs->prev = tail; 4042 4043 if (partial_segs) { 4044 struct sk_buff *iter; 4045 int type = skb_shinfo(head_skb)->gso_type; 4046 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4047 4048 /* Update type to add partial and then remove dodgy if set */ 4049 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4050 type &= ~SKB_GSO_DODGY; 4051 4052 /* Update GSO info and prepare to start updating headers on 4053 * our way back down the stack of protocols. 4054 */ 4055 for (iter = segs; iter; iter = iter->next) { 4056 skb_shinfo(iter)->gso_size = gso_size; 4057 skb_shinfo(iter)->gso_segs = partial_segs; 4058 skb_shinfo(iter)->gso_type = type; 4059 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4060 } 4061 4062 if (tail->len - doffset <= gso_size) 4063 skb_shinfo(tail)->gso_size = 0; 4064 else if (tail != segs) 4065 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4066 } 4067 4068 /* Following permits correct backpressure, for protocols 4069 * using skb_set_owner_w(). 4070 * Idea is to tranfert ownership from head_skb to last segment. 4071 */ 4072 if (head_skb->destructor == sock_wfree) { 4073 swap(tail->truesize, head_skb->truesize); 4074 swap(tail->destructor, head_skb->destructor); 4075 swap(tail->sk, head_skb->sk); 4076 } 4077 return segs; 4078 4079 err: 4080 kfree_skb_list(segs); 4081 return ERR_PTR(err); 4082 } 4083 EXPORT_SYMBOL_GPL(skb_segment); 4084 4085 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4086 { 4087 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4088 unsigned int offset = skb_gro_offset(skb); 4089 unsigned int headlen = skb_headlen(skb); 4090 unsigned int len = skb_gro_len(skb); 4091 unsigned int delta_truesize; 4092 struct sk_buff *lp; 4093 4094 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4095 return -E2BIG; 4096 4097 lp = NAPI_GRO_CB(p)->last; 4098 pinfo = skb_shinfo(lp); 4099 4100 if (headlen <= offset) { 4101 skb_frag_t *frag; 4102 skb_frag_t *frag2; 4103 int i = skbinfo->nr_frags; 4104 int nr_frags = pinfo->nr_frags + i; 4105 4106 if (nr_frags > MAX_SKB_FRAGS) 4107 goto merge; 4108 4109 offset -= headlen; 4110 pinfo->nr_frags = nr_frags; 4111 skbinfo->nr_frags = 0; 4112 4113 frag = pinfo->frags + nr_frags; 4114 frag2 = skbinfo->frags + i; 4115 do { 4116 *--frag = *--frag2; 4117 } while (--i); 4118 4119 skb_frag_off_add(frag, offset); 4120 skb_frag_size_sub(frag, offset); 4121 4122 /* all fragments truesize : remove (head size + sk_buff) */ 4123 delta_truesize = skb->truesize - 4124 SKB_TRUESIZE(skb_end_offset(skb)); 4125 4126 skb->truesize -= skb->data_len; 4127 skb->len -= skb->data_len; 4128 skb->data_len = 0; 4129 4130 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4131 goto done; 4132 } else if (skb->head_frag) { 4133 int nr_frags = pinfo->nr_frags; 4134 skb_frag_t *frag = pinfo->frags + nr_frags; 4135 struct page *page = virt_to_head_page(skb->head); 4136 unsigned int first_size = headlen - offset; 4137 unsigned int first_offset; 4138 4139 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4140 goto merge; 4141 4142 first_offset = skb->data - 4143 (unsigned char *)page_address(page) + 4144 offset; 4145 4146 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4147 4148 __skb_frag_set_page(frag, page); 4149 skb_frag_off_set(frag, first_offset); 4150 skb_frag_size_set(frag, first_size); 4151 4152 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4153 /* We dont need to clear skbinfo->nr_frags here */ 4154 4155 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4156 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4157 goto done; 4158 } 4159 4160 merge: 4161 delta_truesize = skb->truesize; 4162 if (offset > headlen) { 4163 unsigned int eat = offset - headlen; 4164 4165 skb_frag_off_add(&skbinfo->frags[0], eat); 4166 skb_frag_size_sub(&skbinfo->frags[0], eat); 4167 skb->data_len -= eat; 4168 skb->len -= eat; 4169 offset = headlen; 4170 } 4171 4172 __skb_pull(skb, offset); 4173 4174 if (NAPI_GRO_CB(p)->last == p) 4175 skb_shinfo(p)->frag_list = skb; 4176 else 4177 NAPI_GRO_CB(p)->last->next = skb; 4178 NAPI_GRO_CB(p)->last = skb; 4179 __skb_header_release(skb); 4180 lp = p; 4181 4182 done: 4183 NAPI_GRO_CB(p)->count++; 4184 p->data_len += len; 4185 p->truesize += delta_truesize; 4186 p->len += len; 4187 if (lp != p) { 4188 lp->data_len += len; 4189 lp->truesize += delta_truesize; 4190 lp->len += len; 4191 } 4192 NAPI_GRO_CB(skb)->same_flow = 1; 4193 return 0; 4194 } 4195 4196 #ifdef CONFIG_SKB_EXTENSIONS 4197 #define SKB_EXT_ALIGN_VALUE 8 4198 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4199 4200 static const u8 skb_ext_type_len[] = { 4201 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4202 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4203 #endif 4204 #ifdef CONFIG_XFRM 4205 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4206 #endif 4207 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4208 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4209 #endif 4210 #if IS_ENABLED(CONFIG_MPTCP) 4211 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4212 #endif 4213 #if IS_ENABLED(CONFIG_KCOV) 4214 [SKB_EXT_KCOV_HANDLE] = SKB_EXT_CHUNKSIZEOF(u64), 4215 #endif 4216 }; 4217 4218 static __always_inline unsigned int skb_ext_total_length(void) 4219 { 4220 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4221 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4222 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4223 #endif 4224 #ifdef CONFIG_XFRM 4225 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4226 #endif 4227 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4228 skb_ext_type_len[TC_SKB_EXT] + 4229 #endif 4230 #if IS_ENABLED(CONFIG_MPTCP) 4231 skb_ext_type_len[SKB_EXT_MPTCP] + 4232 #endif 4233 #if IS_ENABLED(CONFIG_KCOV) 4234 skb_ext_type_len[SKB_EXT_KCOV_HANDLE] + 4235 #endif 4236 0; 4237 } 4238 4239 static void skb_extensions_init(void) 4240 { 4241 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4242 BUILD_BUG_ON(skb_ext_total_length() > 255); 4243 4244 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4245 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4246 0, 4247 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4248 NULL); 4249 } 4250 #else 4251 static void skb_extensions_init(void) {} 4252 #endif 4253 4254 void __init skb_init(void) 4255 { 4256 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4257 sizeof(struct sk_buff), 4258 0, 4259 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4260 offsetof(struct sk_buff, cb), 4261 sizeof_field(struct sk_buff, cb), 4262 NULL); 4263 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4264 sizeof(struct sk_buff_fclones), 4265 0, 4266 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4267 NULL); 4268 skb_extensions_init(); 4269 } 4270 4271 static int 4272 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4273 unsigned int recursion_level) 4274 { 4275 int start = skb_headlen(skb); 4276 int i, copy = start - offset; 4277 struct sk_buff *frag_iter; 4278 int elt = 0; 4279 4280 if (unlikely(recursion_level >= 24)) 4281 return -EMSGSIZE; 4282 4283 if (copy > 0) { 4284 if (copy > len) 4285 copy = len; 4286 sg_set_buf(sg, skb->data + offset, copy); 4287 elt++; 4288 if ((len -= copy) == 0) 4289 return elt; 4290 offset += copy; 4291 } 4292 4293 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4294 int end; 4295 4296 WARN_ON(start > offset + len); 4297 4298 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4299 if ((copy = end - offset) > 0) { 4300 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4301 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4302 return -EMSGSIZE; 4303 4304 if (copy > len) 4305 copy = len; 4306 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4307 skb_frag_off(frag) + offset - start); 4308 elt++; 4309 if (!(len -= copy)) 4310 return elt; 4311 offset += copy; 4312 } 4313 start = end; 4314 } 4315 4316 skb_walk_frags(skb, frag_iter) { 4317 int end, ret; 4318 4319 WARN_ON(start > offset + len); 4320 4321 end = start + frag_iter->len; 4322 if ((copy = end - offset) > 0) { 4323 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4324 return -EMSGSIZE; 4325 4326 if (copy > len) 4327 copy = len; 4328 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4329 copy, recursion_level + 1); 4330 if (unlikely(ret < 0)) 4331 return ret; 4332 elt += ret; 4333 if ((len -= copy) == 0) 4334 return elt; 4335 offset += copy; 4336 } 4337 start = end; 4338 } 4339 BUG_ON(len); 4340 return elt; 4341 } 4342 4343 /** 4344 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4345 * @skb: Socket buffer containing the buffers to be mapped 4346 * @sg: The scatter-gather list to map into 4347 * @offset: The offset into the buffer's contents to start mapping 4348 * @len: Length of buffer space to be mapped 4349 * 4350 * Fill the specified scatter-gather list with mappings/pointers into a 4351 * region of the buffer space attached to a socket buffer. Returns either 4352 * the number of scatterlist items used, or -EMSGSIZE if the contents 4353 * could not fit. 4354 */ 4355 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4356 { 4357 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4358 4359 if (nsg <= 0) 4360 return nsg; 4361 4362 sg_mark_end(&sg[nsg - 1]); 4363 4364 return nsg; 4365 } 4366 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4367 4368 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4369 * sglist without mark the sg which contain last skb data as the end. 4370 * So the caller can mannipulate sg list as will when padding new data after 4371 * the first call without calling sg_unmark_end to expend sg list. 4372 * 4373 * Scenario to use skb_to_sgvec_nomark: 4374 * 1. sg_init_table 4375 * 2. skb_to_sgvec_nomark(payload1) 4376 * 3. skb_to_sgvec_nomark(payload2) 4377 * 4378 * This is equivalent to: 4379 * 1. sg_init_table 4380 * 2. skb_to_sgvec(payload1) 4381 * 3. sg_unmark_end 4382 * 4. skb_to_sgvec(payload2) 4383 * 4384 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4385 * is more preferable. 4386 */ 4387 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4388 int offset, int len) 4389 { 4390 return __skb_to_sgvec(skb, sg, offset, len, 0); 4391 } 4392 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4393 4394 4395 4396 /** 4397 * skb_cow_data - Check that a socket buffer's data buffers are writable 4398 * @skb: The socket buffer to check. 4399 * @tailbits: Amount of trailing space to be added 4400 * @trailer: Returned pointer to the skb where the @tailbits space begins 4401 * 4402 * Make sure that the data buffers attached to a socket buffer are 4403 * writable. If they are not, private copies are made of the data buffers 4404 * and the socket buffer is set to use these instead. 4405 * 4406 * If @tailbits is given, make sure that there is space to write @tailbits 4407 * bytes of data beyond current end of socket buffer. @trailer will be 4408 * set to point to the skb in which this space begins. 4409 * 4410 * The number of scatterlist elements required to completely map the 4411 * COW'd and extended socket buffer will be returned. 4412 */ 4413 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4414 { 4415 int copyflag; 4416 int elt; 4417 struct sk_buff *skb1, **skb_p; 4418 4419 /* If skb is cloned or its head is paged, reallocate 4420 * head pulling out all the pages (pages are considered not writable 4421 * at the moment even if they are anonymous). 4422 */ 4423 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4424 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4425 return -ENOMEM; 4426 4427 /* Easy case. Most of packets will go this way. */ 4428 if (!skb_has_frag_list(skb)) { 4429 /* A little of trouble, not enough of space for trailer. 4430 * This should not happen, when stack is tuned to generate 4431 * good frames. OK, on miss we reallocate and reserve even more 4432 * space, 128 bytes is fair. */ 4433 4434 if (skb_tailroom(skb) < tailbits && 4435 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4436 return -ENOMEM; 4437 4438 /* Voila! */ 4439 *trailer = skb; 4440 return 1; 4441 } 4442 4443 /* Misery. We are in troubles, going to mincer fragments... */ 4444 4445 elt = 1; 4446 skb_p = &skb_shinfo(skb)->frag_list; 4447 copyflag = 0; 4448 4449 while ((skb1 = *skb_p) != NULL) { 4450 int ntail = 0; 4451 4452 /* The fragment is partially pulled by someone, 4453 * this can happen on input. Copy it and everything 4454 * after it. */ 4455 4456 if (skb_shared(skb1)) 4457 copyflag = 1; 4458 4459 /* If the skb is the last, worry about trailer. */ 4460 4461 if (skb1->next == NULL && tailbits) { 4462 if (skb_shinfo(skb1)->nr_frags || 4463 skb_has_frag_list(skb1) || 4464 skb_tailroom(skb1) < tailbits) 4465 ntail = tailbits + 128; 4466 } 4467 4468 if (copyflag || 4469 skb_cloned(skb1) || 4470 ntail || 4471 skb_shinfo(skb1)->nr_frags || 4472 skb_has_frag_list(skb1)) { 4473 struct sk_buff *skb2; 4474 4475 /* Fuck, we are miserable poor guys... */ 4476 if (ntail == 0) 4477 skb2 = skb_copy(skb1, GFP_ATOMIC); 4478 else 4479 skb2 = skb_copy_expand(skb1, 4480 skb_headroom(skb1), 4481 ntail, 4482 GFP_ATOMIC); 4483 if (unlikely(skb2 == NULL)) 4484 return -ENOMEM; 4485 4486 if (skb1->sk) 4487 skb_set_owner_w(skb2, skb1->sk); 4488 4489 /* Looking around. Are we still alive? 4490 * OK, link new skb, drop old one */ 4491 4492 skb2->next = skb1->next; 4493 *skb_p = skb2; 4494 kfree_skb(skb1); 4495 skb1 = skb2; 4496 } 4497 elt++; 4498 *trailer = skb1; 4499 skb_p = &skb1->next; 4500 } 4501 4502 return elt; 4503 } 4504 EXPORT_SYMBOL_GPL(skb_cow_data); 4505 4506 static void sock_rmem_free(struct sk_buff *skb) 4507 { 4508 struct sock *sk = skb->sk; 4509 4510 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4511 } 4512 4513 static void skb_set_err_queue(struct sk_buff *skb) 4514 { 4515 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4516 * So, it is safe to (mis)use it to mark skbs on the error queue. 4517 */ 4518 skb->pkt_type = PACKET_OUTGOING; 4519 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4520 } 4521 4522 /* 4523 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4524 */ 4525 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4526 { 4527 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4528 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4529 return -ENOMEM; 4530 4531 skb_orphan(skb); 4532 skb->sk = sk; 4533 skb->destructor = sock_rmem_free; 4534 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4535 skb_set_err_queue(skb); 4536 4537 /* before exiting rcu section, make sure dst is refcounted */ 4538 skb_dst_force(skb); 4539 4540 skb_queue_tail(&sk->sk_error_queue, skb); 4541 if (!sock_flag(sk, SOCK_DEAD)) 4542 sk->sk_error_report(sk); 4543 return 0; 4544 } 4545 EXPORT_SYMBOL(sock_queue_err_skb); 4546 4547 static bool is_icmp_err_skb(const struct sk_buff *skb) 4548 { 4549 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4550 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4551 } 4552 4553 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4554 { 4555 struct sk_buff_head *q = &sk->sk_error_queue; 4556 struct sk_buff *skb, *skb_next = NULL; 4557 bool icmp_next = false; 4558 unsigned long flags; 4559 4560 spin_lock_irqsave(&q->lock, flags); 4561 skb = __skb_dequeue(q); 4562 if (skb && (skb_next = skb_peek(q))) { 4563 icmp_next = is_icmp_err_skb(skb_next); 4564 if (icmp_next) 4565 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4566 } 4567 spin_unlock_irqrestore(&q->lock, flags); 4568 4569 if (is_icmp_err_skb(skb) && !icmp_next) 4570 sk->sk_err = 0; 4571 4572 if (skb_next) 4573 sk->sk_error_report(sk); 4574 4575 return skb; 4576 } 4577 EXPORT_SYMBOL(sock_dequeue_err_skb); 4578 4579 /** 4580 * skb_clone_sk - create clone of skb, and take reference to socket 4581 * @skb: the skb to clone 4582 * 4583 * This function creates a clone of a buffer that holds a reference on 4584 * sk_refcnt. Buffers created via this function are meant to be 4585 * returned using sock_queue_err_skb, or free via kfree_skb. 4586 * 4587 * When passing buffers allocated with this function to sock_queue_err_skb 4588 * it is necessary to wrap the call with sock_hold/sock_put in order to 4589 * prevent the socket from being released prior to being enqueued on 4590 * the sk_error_queue. 4591 */ 4592 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4593 { 4594 struct sock *sk = skb->sk; 4595 struct sk_buff *clone; 4596 4597 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4598 return NULL; 4599 4600 clone = skb_clone(skb, GFP_ATOMIC); 4601 if (!clone) { 4602 sock_put(sk); 4603 return NULL; 4604 } 4605 4606 clone->sk = sk; 4607 clone->destructor = sock_efree; 4608 4609 return clone; 4610 } 4611 EXPORT_SYMBOL(skb_clone_sk); 4612 4613 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4614 struct sock *sk, 4615 int tstype, 4616 bool opt_stats) 4617 { 4618 struct sock_exterr_skb *serr; 4619 int err; 4620 4621 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4622 4623 serr = SKB_EXT_ERR(skb); 4624 memset(serr, 0, sizeof(*serr)); 4625 serr->ee.ee_errno = ENOMSG; 4626 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4627 serr->ee.ee_info = tstype; 4628 serr->opt_stats = opt_stats; 4629 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4630 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4631 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4632 if (sk->sk_protocol == IPPROTO_TCP && 4633 sk->sk_type == SOCK_STREAM) 4634 serr->ee.ee_data -= sk->sk_tskey; 4635 } 4636 4637 err = sock_queue_err_skb(sk, skb); 4638 4639 if (err) 4640 kfree_skb(skb); 4641 } 4642 4643 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4644 { 4645 bool ret; 4646 4647 if (likely(sysctl_tstamp_allow_data || tsonly)) 4648 return true; 4649 4650 read_lock_bh(&sk->sk_callback_lock); 4651 ret = sk->sk_socket && sk->sk_socket->file && 4652 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4653 read_unlock_bh(&sk->sk_callback_lock); 4654 return ret; 4655 } 4656 4657 void skb_complete_tx_timestamp(struct sk_buff *skb, 4658 struct skb_shared_hwtstamps *hwtstamps) 4659 { 4660 struct sock *sk = skb->sk; 4661 4662 if (!skb_may_tx_timestamp(sk, false)) 4663 goto err; 4664 4665 /* Take a reference to prevent skb_orphan() from freeing the socket, 4666 * but only if the socket refcount is not zero. 4667 */ 4668 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4669 *skb_hwtstamps(skb) = *hwtstamps; 4670 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4671 sock_put(sk); 4672 return; 4673 } 4674 4675 err: 4676 kfree_skb(skb); 4677 } 4678 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4679 4680 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4681 struct skb_shared_hwtstamps *hwtstamps, 4682 struct sock *sk, int tstype) 4683 { 4684 struct sk_buff *skb; 4685 bool tsonly, opt_stats = false; 4686 4687 if (!sk) 4688 return; 4689 4690 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4691 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4692 return; 4693 4694 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4695 if (!skb_may_tx_timestamp(sk, tsonly)) 4696 return; 4697 4698 if (tsonly) { 4699 #ifdef CONFIG_INET 4700 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4701 sk->sk_protocol == IPPROTO_TCP && 4702 sk->sk_type == SOCK_STREAM) { 4703 skb = tcp_get_timestamping_opt_stats(sk, orig_skb); 4704 opt_stats = true; 4705 } else 4706 #endif 4707 skb = alloc_skb(0, GFP_ATOMIC); 4708 } else { 4709 skb = skb_clone(orig_skb, GFP_ATOMIC); 4710 } 4711 if (!skb) 4712 return; 4713 4714 if (tsonly) { 4715 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4716 SKBTX_ANY_TSTAMP; 4717 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4718 } 4719 4720 if (hwtstamps) 4721 *skb_hwtstamps(skb) = *hwtstamps; 4722 else 4723 skb->tstamp = ktime_get_real(); 4724 4725 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4726 } 4727 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4728 4729 void skb_tstamp_tx(struct sk_buff *orig_skb, 4730 struct skb_shared_hwtstamps *hwtstamps) 4731 { 4732 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4733 SCM_TSTAMP_SND); 4734 } 4735 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4736 4737 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4738 { 4739 struct sock *sk = skb->sk; 4740 struct sock_exterr_skb *serr; 4741 int err = 1; 4742 4743 skb->wifi_acked_valid = 1; 4744 skb->wifi_acked = acked; 4745 4746 serr = SKB_EXT_ERR(skb); 4747 memset(serr, 0, sizeof(*serr)); 4748 serr->ee.ee_errno = ENOMSG; 4749 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4750 4751 /* Take a reference to prevent skb_orphan() from freeing the socket, 4752 * but only if the socket refcount is not zero. 4753 */ 4754 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4755 err = sock_queue_err_skb(sk, skb); 4756 sock_put(sk); 4757 } 4758 if (err) 4759 kfree_skb(skb); 4760 } 4761 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4762 4763 /** 4764 * skb_partial_csum_set - set up and verify partial csum values for packet 4765 * @skb: the skb to set 4766 * @start: the number of bytes after skb->data to start checksumming. 4767 * @off: the offset from start to place the checksum. 4768 * 4769 * For untrusted partially-checksummed packets, we need to make sure the values 4770 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4771 * 4772 * This function checks and sets those values and skb->ip_summed: if this 4773 * returns false you should drop the packet. 4774 */ 4775 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4776 { 4777 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4778 u32 csum_start = skb_headroom(skb) + (u32)start; 4779 4780 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4781 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4782 start, off, skb_headroom(skb), skb_headlen(skb)); 4783 return false; 4784 } 4785 skb->ip_summed = CHECKSUM_PARTIAL; 4786 skb->csum_start = csum_start; 4787 skb->csum_offset = off; 4788 skb_set_transport_header(skb, start); 4789 return true; 4790 } 4791 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4792 4793 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4794 unsigned int max) 4795 { 4796 if (skb_headlen(skb) >= len) 4797 return 0; 4798 4799 /* If we need to pullup then pullup to the max, so we 4800 * won't need to do it again. 4801 */ 4802 if (max > skb->len) 4803 max = skb->len; 4804 4805 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4806 return -ENOMEM; 4807 4808 if (skb_headlen(skb) < len) 4809 return -EPROTO; 4810 4811 return 0; 4812 } 4813 4814 #define MAX_TCP_HDR_LEN (15 * 4) 4815 4816 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4817 typeof(IPPROTO_IP) proto, 4818 unsigned int off) 4819 { 4820 int err; 4821 4822 switch (proto) { 4823 case IPPROTO_TCP: 4824 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4825 off + MAX_TCP_HDR_LEN); 4826 if (!err && !skb_partial_csum_set(skb, off, 4827 offsetof(struct tcphdr, 4828 check))) 4829 err = -EPROTO; 4830 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4831 4832 case IPPROTO_UDP: 4833 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4834 off + sizeof(struct udphdr)); 4835 if (!err && !skb_partial_csum_set(skb, off, 4836 offsetof(struct udphdr, 4837 check))) 4838 err = -EPROTO; 4839 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4840 } 4841 4842 return ERR_PTR(-EPROTO); 4843 } 4844 4845 /* This value should be large enough to cover a tagged ethernet header plus 4846 * maximally sized IP and TCP or UDP headers. 4847 */ 4848 #define MAX_IP_HDR_LEN 128 4849 4850 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4851 { 4852 unsigned int off; 4853 bool fragment; 4854 __sum16 *csum; 4855 int err; 4856 4857 fragment = false; 4858 4859 err = skb_maybe_pull_tail(skb, 4860 sizeof(struct iphdr), 4861 MAX_IP_HDR_LEN); 4862 if (err < 0) 4863 goto out; 4864 4865 if (ip_is_fragment(ip_hdr(skb))) 4866 fragment = true; 4867 4868 off = ip_hdrlen(skb); 4869 4870 err = -EPROTO; 4871 4872 if (fragment) 4873 goto out; 4874 4875 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4876 if (IS_ERR(csum)) 4877 return PTR_ERR(csum); 4878 4879 if (recalculate) 4880 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4881 ip_hdr(skb)->daddr, 4882 skb->len - off, 4883 ip_hdr(skb)->protocol, 0); 4884 err = 0; 4885 4886 out: 4887 return err; 4888 } 4889 4890 /* This value should be large enough to cover a tagged ethernet header plus 4891 * an IPv6 header, all options, and a maximal TCP or UDP header. 4892 */ 4893 #define MAX_IPV6_HDR_LEN 256 4894 4895 #define OPT_HDR(type, skb, off) \ 4896 (type *)(skb_network_header(skb) + (off)) 4897 4898 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4899 { 4900 int err; 4901 u8 nexthdr; 4902 unsigned int off; 4903 unsigned int len; 4904 bool fragment; 4905 bool done; 4906 __sum16 *csum; 4907 4908 fragment = false; 4909 done = false; 4910 4911 off = sizeof(struct ipv6hdr); 4912 4913 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4914 if (err < 0) 4915 goto out; 4916 4917 nexthdr = ipv6_hdr(skb)->nexthdr; 4918 4919 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4920 while (off <= len && !done) { 4921 switch (nexthdr) { 4922 case IPPROTO_DSTOPTS: 4923 case IPPROTO_HOPOPTS: 4924 case IPPROTO_ROUTING: { 4925 struct ipv6_opt_hdr *hp; 4926 4927 err = skb_maybe_pull_tail(skb, 4928 off + 4929 sizeof(struct ipv6_opt_hdr), 4930 MAX_IPV6_HDR_LEN); 4931 if (err < 0) 4932 goto out; 4933 4934 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4935 nexthdr = hp->nexthdr; 4936 off += ipv6_optlen(hp); 4937 break; 4938 } 4939 case IPPROTO_AH: { 4940 struct ip_auth_hdr *hp; 4941 4942 err = skb_maybe_pull_tail(skb, 4943 off + 4944 sizeof(struct ip_auth_hdr), 4945 MAX_IPV6_HDR_LEN); 4946 if (err < 0) 4947 goto out; 4948 4949 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4950 nexthdr = hp->nexthdr; 4951 off += ipv6_authlen(hp); 4952 break; 4953 } 4954 case IPPROTO_FRAGMENT: { 4955 struct frag_hdr *hp; 4956 4957 err = skb_maybe_pull_tail(skb, 4958 off + 4959 sizeof(struct frag_hdr), 4960 MAX_IPV6_HDR_LEN); 4961 if (err < 0) 4962 goto out; 4963 4964 hp = OPT_HDR(struct frag_hdr, skb, off); 4965 4966 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4967 fragment = true; 4968 4969 nexthdr = hp->nexthdr; 4970 off += sizeof(struct frag_hdr); 4971 break; 4972 } 4973 default: 4974 done = true; 4975 break; 4976 } 4977 } 4978 4979 err = -EPROTO; 4980 4981 if (!done || fragment) 4982 goto out; 4983 4984 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4985 if (IS_ERR(csum)) 4986 return PTR_ERR(csum); 4987 4988 if (recalculate) 4989 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4990 &ipv6_hdr(skb)->daddr, 4991 skb->len - off, nexthdr, 0); 4992 err = 0; 4993 4994 out: 4995 return err; 4996 } 4997 4998 /** 4999 * skb_checksum_setup - set up partial checksum offset 5000 * @skb: the skb to set up 5001 * @recalculate: if true the pseudo-header checksum will be recalculated 5002 */ 5003 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5004 { 5005 int err; 5006 5007 switch (skb->protocol) { 5008 case htons(ETH_P_IP): 5009 err = skb_checksum_setup_ipv4(skb, recalculate); 5010 break; 5011 5012 case htons(ETH_P_IPV6): 5013 err = skb_checksum_setup_ipv6(skb, recalculate); 5014 break; 5015 5016 default: 5017 err = -EPROTO; 5018 break; 5019 } 5020 5021 return err; 5022 } 5023 EXPORT_SYMBOL(skb_checksum_setup); 5024 5025 /** 5026 * skb_checksum_maybe_trim - maybe trims the given skb 5027 * @skb: the skb to check 5028 * @transport_len: the data length beyond the network header 5029 * 5030 * Checks whether the given skb has data beyond the given transport length. 5031 * If so, returns a cloned skb trimmed to this transport length. 5032 * Otherwise returns the provided skb. Returns NULL in error cases 5033 * (e.g. transport_len exceeds skb length or out-of-memory). 5034 * 5035 * Caller needs to set the skb transport header and free any returned skb if it 5036 * differs from the provided skb. 5037 */ 5038 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5039 unsigned int transport_len) 5040 { 5041 struct sk_buff *skb_chk; 5042 unsigned int len = skb_transport_offset(skb) + transport_len; 5043 int ret; 5044 5045 if (skb->len < len) 5046 return NULL; 5047 else if (skb->len == len) 5048 return skb; 5049 5050 skb_chk = skb_clone(skb, GFP_ATOMIC); 5051 if (!skb_chk) 5052 return NULL; 5053 5054 ret = pskb_trim_rcsum(skb_chk, len); 5055 if (ret) { 5056 kfree_skb(skb_chk); 5057 return NULL; 5058 } 5059 5060 return skb_chk; 5061 } 5062 5063 /** 5064 * skb_checksum_trimmed - validate checksum of an skb 5065 * @skb: the skb to check 5066 * @transport_len: the data length beyond the network header 5067 * @skb_chkf: checksum function to use 5068 * 5069 * Applies the given checksum function skb_chkf to the provided skb. 5070 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5071 * 5072 * If the skb has data beyond the given transport length, then a 5073 * trimmed & cloned skb is checked and returned. 5074 * 5075 * Caller needs to set the skb transport header and free any returned skb if it 5076 * differs from the provided skb. 5077 */ 5078 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5079 unsigned int transport_len, 5080 __sum16(*skb_chkf)(struct sk_buff *skb)) 5081 { 5082 struct sk_buff *skb_chk; 5083 unsigned int offset = skb_transport_offset(skb); 5084 __sum16 ret; 5085 5086 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5087 if (!skb_chk) 5088 goto err; 5089 5090 if (!pskb_may_pull(skb_chk, offset)) 5091 goto err; 5092 5093 skb_pull_rcsum(skb_chk, offset); 5094 ret = skb_chkf(skb_chk); 5095 skb_push_rcsum(skb_chk, offset); 5096 5097 if (ret) 5098 goto err; 5099 5100 return skb_chk; 5101 5102 err: 5103 if (skb_chk && skb_chk != skb) 5104 kfree_skb(skb_chk); 5105 5106 return NULL; 5107 5108 } 5109 EXPORT_SYMBOL(skb_checksum_trimmed); 5110 5111 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5112 { 5113 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5114 skb->dev->name); 5115 } 5116 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5117 5118 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5119 { 5120 if (head_stolen) { 5121 skb_release_head_state(skb); 5122 kmem_cache_free(skbuff_head_cache, skb); 5123 } else { 5124 __kfree_skb(skb); 5125 } 5126 } 5127 EXPORT_SYMBOL(kfree_skb_partial); 5128 5129 /** 5130 * skb_try_coalesce - try to merge skb to prior one 5131 * @to: prior buffer 5132 * @from: buffer to add 5133 * @fragstolen: pointer to boolean 5134 * @delta_truesize: how much more was allocated than was requested 5135 */ 5136 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5137 bool *fragstolen, int *delta_truesize) 5138 { 5139 struct skb_shared_info *to_shinfo, *from_shinfo; 5140 int i, delta, len = from->len; 5141 5142 *fragstolen = false; 5143 5144 if (skb_cloned(to)) 5145 return false; 5146 5147 if (len <= skb_tailroom(to)) { 5148 if (len) 5149 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5150 *delta_truesize = 0; 5151 return true; 5152 } 5153 5154 to_shinfo = skb_shinfo(to); 5155 from_shinfo = skb_shinfo(from); 5156 if (to_shinfo->frag_list || from_shinfo->frag_list) 5157 return false; 5158 if (skb_zcopy(to) || skb_zcopy(from)) 5159 return false; 5160 5161 if (skb_headlen(from) != 0) { 5162 struct page *page; 5163 unsigned int offset; 5164 5165 if (to_shinfo->nr_frags + 5166 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5167 return false; 5168 5169 if (skb_head_is_locked(from)) 5170 return false; 5171 5172 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5173 5174 page = virt_to_head_page(from->head); 5175 offset = from->data - (unsigned char *)page_address(page); 5176 5177 skb_fill_page_desc(to, to_shinfo->nr_frags, 5178 page, offset, skb_headlen(from)); 5179 *fragstolen = true; 5180 } else { 5181 if (to_shinfo->nr_frags + 5182 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5183 return false; 5184 5185 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5186 } 5187 5188 WARN_ON_ONCE(delta < len); 5189 5190 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5191 from_shinfo->frags, 5192 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5193 to_shinfo->nr_frags += from_shinfo->nr_frags; 5194 5195 if (!skb_cloned(from)) 5196 from_shinfo->nr_frags = 0; 5197 5198 /* if the skb is not cloned this does nothing 5199 * since we set nr_frags to 0. 5200 */ 5201 for (i = 0; i < from_shinfo->nr_frags; i++) 5202 __skb_frag_ref(&from_shinfo->frags[i]); 5203 5204 to->truesize += delta; 5205 to->len += len; 5206 to->data_len += len; 5207 5208 *delta_truesize = delta; 5209 return true; 5210 } 5211 EXPORT_SYMBOL(skb_try_coalesce); 5212 5213 /** 5214 * skb_scrub_packet - scrub an skb 5215 * 5216 * @skb: buffer to clean 5217 * @xnet: packet is crossing netns 5218 * 5219 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5220 * into/from a tunnel. Some information have to be cleared during these 5221 * operations. 5222 * skb_scrub_packet can also be used to clean a skb before injecting it in 5223 * another namespace (@xnet == true). We have to clear all information in the 5224 * skb that could impact namespace isolation. 5225 */ 5226 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5227 { 5228 skb->pkt_type = PACKET_HOST; 5229 skb->skb_iif = 0; 5230 skb->ignore_df = 0; 5231 skb_dst_drop(skb); 5232 skb_ext_reset(skb); 5233 nf_reset_ct(skb); 5234 nf_reset_trace(skb); 5235 5236 #ifdef CONFIG_NET_SWITCHDEV 5237 skb->offload_fwd_mark = 0; 5238 skb->offload_l3_fwd_mark = 0; 5239 #endif 5240 5241 if (!xnet) 5242 return; 5243 5244 ipvs_reset(skb); 5245 skb->mark = 0; 5246 skb->tstamp = 0; 5247 } 5248 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5249 5250 /** 5251 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5252 * 5253 * @skb: GSO skb 5254 * 5255 * skb_gso_transport_seglen is used to determine the real size of the 5256 * individual segments, including Layer4 headers (TCP/UDP). 5257 * 5258 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5259 */ 5260 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5261 { 5262 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5263 unsigned int thlen = 0; 5264 5265 if (skb->encapsulation) { 5266 thlen = skb_inner_transport_header(skb) - 5267 skb_transport_header(skb); 5268 5269 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5270 thlen += inner_tcp_hdrlen(skb); 5271 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5272 thlen = tcp_hdrlen(skb); 5273 } else if (unlikely(skb_is_gso_sctp(skb))) { 5274 thlen = sizeof(struct sctphdr); 5275 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5276 thlen = sizeof(struct udphdr); 5277 } 5278 /* UFO sets gso_size to the size of the fragmentation 5279 * payload, i.e. the size of the L4 (UDP) header is already 5280 * accounted for. 5281 */ 5282 return thlen + shinfo->gso_size; 5283 } 5284 5285 /** 5286 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5287 * 5288 * @skb: GSO skb 5289 * 5290 * skb_gso_network_seglen is used to determine the real size of the 5291 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5292 * 5293 * The MAC/L2 header is not accounted for. 5294 */ 5295 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5296 { 5297 unsigned int hdr_len = skb_transport_header(skb) - 5298 skb_network_header(skb); 5299 5300 return hdr_len + skb_gso_transport_seglen(skb); 5301 } 5302 5303 /** 5304 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5305 * 5306 * @skb: GSO skb 5307 * 5308 * skb_gso_mac_seglen is used to determine the real size of the 5309 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5310 * headers (TCP/UDP). 5311 */ 5312 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5313 { 5314 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5315 5316 return hdr_len + skb_gso_transport_seglen(skb); 5317 } 5318 5319 /** 5320 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5321 * 5322 * There are a couple of instances where we have a GSO skb, and we 5323 * want to determine what size it would be after it is segmented. 5324 * 5325 * We might want to check: 5326 * - L3+L4+payload size (e.g. IP forwarding) 5327 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5328 * 5329 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5330 * 5331 * @skb: GSO skb 5332 * 5333 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5334 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5335 * 5336 * @max_len: The maximum permissible length. 5337 * 5338 * Returns true if the segmented length <= max length. 5339 */ 5340 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5341 unsigned int seg_len, 5342 unsigned int max_len) { 5343 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5344 const struct sk_buff *iter; 5345 5346 if (shinfo->gso_size != GSO_BY_FRAGS) 5347 return seg_len <= max_len; 5348 5349 /* Undo this so we can re-use header sizes */ 5350 seg_len -= GSO_BY_FRAGS; 5351 5352 skb_walk_frags(skb, iter) { 5353 if (seg_len + skb_headlen(iter) > max_len) 5354 return false; 5355 } 5356 5357 return true; 5358 } 5359 5360 /** 5361 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5362 * 5363 * @skb: GSO skb 5364 * @mtu: MTU to validate against 5365 * 5366 * skb_gso_validate_network_len validates if a given skb will fit a 5367 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5368 * payload. 5369 */ 5370 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5371 { 5372 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5373 } 5374 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5375 5376 /** 5377 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5378 * 5379 * @skb: GSO skb 5380 * @len: length to validate against 5381 * 5382 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5383 * length once split, including L2, L3 and L4 headers and the payload. 5384 */ 5385 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5386 { 5387 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5388 } 5389 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5390 5391 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5392 { 5393 int mac_len, meta_len; 5394 void *meta; 5395 5396 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5397 kfree_skb(skb); 5398 return NULL; 5399 } 5400 5401 mac_len = skb->data - skb_mac_header(skb); 5402 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5403 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5404 mac_len - VLAN_HLEN - ETH_TLEN); 5405 } 5406 5407 meta_len = skb_metadata_len(skb); 5408 if (meta_len) { 5409 meta = skb_metadata_end(skb) - meta_len; 5410 memmove(meta + VLAN_HLEN, meta, meta_len); 5411 } 5412 5413 skb->mac_header += VLAN_HLEN; 5414 return skb; 5415 } 5416 5417 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5418 { 5419 struct vlan_hdr *vhdr; 5420 u16 vlan_tci; 5421 5422 if (unlikely(skb_vlan_tag_present(skb))) { 5423 /* vlan_tci is already set-up so leave this for another time */ 5424 return skb; 5425 } 5426 5427 skb = skb_share_check(skb, GFP_ATOMIC); 5428 if (unlikely(!skb)) 5429 goto err_free; 5430 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5431 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5432 goto err_free; 5433 5434 vhdr = (struct vlan_hdr *)skb->data; 5435 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5436 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5437 5438 skb_pull_rcsum(skb, VLAN_HLEN); 5439 vlan_set_encap_proto(skb, vhdr); 5440 5441 skb = skb_reorder_vlan_header(skb); 5442 if (unlikely(!skb)) 5443 goto err_free; 5444 5445 skb_reset_network_header(skb); 5446 if (!skb_transport_header_was_set(skb)) 5447 skb_reset_transport_header(skb); 5448 skb_reset_mac_len(skb); 5449 5450 return skb; 5451 5452 err_free: 5453 kfree_skb(skb); 5454 return NULL; 5455 } 5456 EXPORT_SYMBOL(skb_vlan_untag); 5457 5458 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5459 { 5460 if (!pskb_may_pull(skb, write_len)) 5461 return -ENOMEM; 5462 5463 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5464 return 0; 5465 5466 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5467 } 5468 EXPORT_SYMBOL(skb_ensure_writable); 5469 5470 /* remove VLAN header from packet and update csum accordingly. 5471 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5472 */ 5473 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5474 { 5475 struct vlan_hdr *vhdr; 5476 int offset = skb->data - skb_mac_header(skb); 5477 int err; 5478 5479 if (WARN_ONCE(offset, 5480 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5481 offset)) { 5482 return -EINVAL; 5483 } 5484 5485 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5486 if (unlikely(err)) 5487 return err; 5488 5489 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5490 5491 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5492 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5493 5494 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5495 __skb_pull(skb, VLAN_HLEN); 5496 5497 vlan_set_encap_proto(skb, vhdr); 5498 skb->mac_header += VLAN_HLEN; 5499 5500 if (skb_network_offset(skb) < ETH_HLEN) 5501 skb_set_network_header(skb, ETH_HLEN); 5502 5503 skb_reset_mac_len(skb); 5504 5505 return err; 5506 } 5507 EXPORT_SYMBOL(__skb_vlan_pop); 5508 5509 /* Pop a vlan tag either from hwaccel or from payload. 5510 * Expects skb->data at mac header. 5511 */ 5512 int skb_vlan_pop(struct sk_buff *skb) 5513 { 5514 u16 vlan_tci; 5515 __be16 vlan_proto; 5516 int err; 5517 5518 if (likely(skb_vlan_tag_present(skb))) { 5519 __vlan_hwaccel_clear_tag(skb); 5520 } else { 5521 if (unlikely(!eth_type_vlan(skb->protocol))) 5522 return 0; 5523 5524 err = __skb_vlan_pop(skb, &vlan_tci); 5525 if (err) 5526 return err; 5527 } 5528 /* move next vlan tag to hw accel tag */ 5529 if (likely(!eth_type_vlan(skb->protocol))) 5530 return 0; 5531 5532 vlan_proto = skb->protocol; 5533 err = __skb_vlan_pop(skb, &vlan_tci); 5534 if (unlikely(err)) 5535 return err; 5536 5537 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5538 return 0; 5539 } 5540 EXPORT_SYMBOL(skb_vlan_pop); 5541 5542 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5543 * Expects skb->data at mac header. 5544 */ 5545 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5546 { 5547 if (skb_vlan_tag_present(skb)) { 5548 int offset = skb->data - skb_mac_header(skb); 5549 int err; 5550 5551 if (WARN_ONCE(offset, 5552 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5553 offset)) { 5554 return -EINVAL; 5555 } 5556 5557 err = __vlan_insert_tag(skb, skb->vlan_proto, 5558 skb_vlan_tag_get(skb)); 5559 if (err) 5560 return err; 5561 5562 skb->protocol = skb->vlan_proto; 5563 skb->mac_len += VLAN_HLEN; 5564 5565 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5566 } 5567 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5568 return 0; 5569 } 5570 EXPORT_SYMBOL(skb_vlan_push); 5571 5572 /** 5573 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5574 * 5575 * @skb: Socket buffer to modify 5576 * 5577 * Drop the Ethernet header of @skb. 5578 * 5579 * Expects that skb->data points to the mac header and that no VLAN tags are 5580 * present. 5581 * 5582 * Returns 0 on success, -errno otherwise. 5583 */ 5584 int skb_eth_pop(struct sk_buff *skb) 5585 { 5586 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5587 skb_network_offset(skb) < ETH_HLEN) 5588 return -EPROTO; 5589 5590 skb_pull_rcsum(skb, ETH_HLEN); 5591 skb_reset_mac_header(skb); 5592 skb_reset_mac_len(skb); 5593 5594 return 0; 5595 } 5596 EXPORT_SYMBOL(skb_eth_pop); 5597 5598 /** 5599 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5600 * 5601 * @skb: Socket buffer to modify 5602 * @dst: Destination MAC address of the new header 5603 * @src: Source MAC address of the new header 5604 * 5605 * Prepend @skb with a new Ethernet header. 5606 * 5607 * Expects that skb->data points to the mac header, which must be empty. 5608 * 5609 * Returns 0 on success, -errno otherwise. 5610 */ 5611 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5612 const unsigned char *src) 5613 { 5614 struct ethhdr *eth; 5615 int err; 5616 5617 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5618 return -EPROTO; 5619 5620 err = skb_cow_head(skb, sizeof(*eth)); 5621 if (err < 0) 5622 return err; 5623 5624 skb_push(skb, sizeof(*eth)); 5625 skb_reset_mac_header(skb); 5626 skb_reset_mac_len(skb); 5627 5628 eth = eth_hdr(skb); 5629 ether_addr_copy(eth->h_dest, dst); 5630 ether_addr_copy(eth->h_source, src); 5631 eth->h_proto = skb->protocol; 5632 5633 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5634 5635 return 0; 5636 } 5637 EXPORT_SYMBOL(skb_eth_push); 5638 5639 /* Update the ethertype of hdr and the skb csum value if required. */ 5640 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5641 __be16 ethertype) 5642 { 5643 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5644 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5645 5646 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5647 } 5648 5649 hdr->h_proto = ethertype; 5650 } 5651 5652 /** 5653 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5654 * the packet 5655 * 5656 * @skb: buffer 5657 * @mpls_lse: MPLS label stack entry to push 5658 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5659 * @mac_len: length of the MAC header 5660 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5661 * ethernet 5662 * 5663 * Expects skb->data at mac header. 5664 * 5665 * Returns 0 on success, -errno otherwise. 5666 */ 5667 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5668 int mac_len, bool ethernet) 5669 { 5670 struct mpls_shim_hdr *lse; 5671 int err; 5672 5673 if (unlikely(!eth_p_mpls(mpls_proto))) 5674 return -EINVAL; 5675 5676 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5677 if (skb->encapsulation) 5678 return -EINVAL; 5679 5680 err = skb_cow_head(skb, MPLS_HLEN); 5681 if (unlikely(err)) 5682 return err; 5683 5684 if (!skb->inner_protocol) { 5685 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5686 skb_set_inner_protocol(skb, skb->protocol); 5687 } 5688 5689 skb_push(skb, MPLS_HLEN); 5690 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5691 mac_len); 5692 skb_reset_mac_header(skb); 5693 skb_set_network_header(skb, mac_len); 5694 skb_reset_mac_len(skb); 5695 5696 lse = mpls_hdr(skb); 5697 lse->label_stack_entry = mpls_lse; 5698 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5699 5700 if (ethernet && mac_len >= ETH_HLEN) 5701 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5702 skb->protocol = mpls_proto; 5703 5704 return 0; 5705 } 5706 EXPORT_SYMBOL_GPL(skb_mpls_push); 5707 5708 /** 5709 * skb_mpls_pop() - pop the outermost MPLS header 5710 * 5711 * @skb: buffer 5712 * @next_proto: ethertype of header after popped MPLS header 5713 * @mac_len: length of the MAC header 5714 * @ethernet: flag to indicate if the packet is ethernet 5715 * 5716 * Expects skb->data at mac header. 5717 * 5718 * Returns 0 on success, -errno otherwise. 5719 */ 5720 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5721 bool ethernet) 5722 { 5723 int err; 5724 5725 if (unlikely(!eth_p_mpls(skb->protocol))) 5726 return 0; 5727 5728 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5729 if (unlikely(err)) 5730 return err; 5731 5732 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5733 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5734 mac_len); 5735 5736 __skb_pull(skb, MPLS_HLEN); 5737 skb_reset_mac_header(skb); 5738 skb_set_network_header(skb, mac_len); 5739 5740 if (ethernet && mac_len >= ETH_HLEN) { 5741 struct ethhdr *hdr; 5742 5743 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5744 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5745 skb_mod_eth_type(skb, hdr, next_proto); 5746 } 5747 skb->protocol = next_proto; 5748 5749 return 0; 5750 } 5751 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5752 5753 /** 5754 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5755 * 5756 * @skb: buffer 5757 * @mpls_lse: new MPLS label stack entry to update to 5758 * 5759 * Expects skb->data at mac header. 5760 * 5761 * Returns 0 on success, -errno otherwise. 5762 */ 5763 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5764 { 5765 int err; 5766 5767 if (unlikely(!eth_p_mpls(skb->protocol))) 5768 return -EINVAL; 5769 5770 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5771 if (unlikely(err)) 5772 return err; 5773 5774 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5775 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5776 5777 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5778 } 5779 5780 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5781 5782 return 0; 5783 } 5784 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5785 5786 /** 5787 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5788 * 5789 * @skb: buffer 5790 * 5791 * Expects skb->data at mac header. 5792 * 5793 * Returns 0 on success, -errno otherwise. 5794 */ 5795 int skb_mpls_dec_ttl(struct sk_buff *skb) 5796 { 5797 u32 lse; 5798 u8 ttl; 5799 5800 if (unlikely(!eth_p_mpls(skb->protocol))) 5801 return -EINVAL; 5802 5803 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5804 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5805 if (!--ttl) 5806 return -EINVAL; 5807 5808 lse &= ~MPLS_LS_TTL_MASK; 5809 lse |= ttl << MPLS_LS_TTL_SHIFT; 5810 5811 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5812 } 5813 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5814 5815 /** 5816 * alloc_skb_with_frags - allocate skb with page frags 5817 * 5818 * @header_len: size of linear part 5819 * @data_len: needed length in frags 5820 * @max_page_order: max page order desired. 5821 * @errcode: pointer to error code if any 5822 * @gfp_mask: allocation mask 5823 * 5824 * This can be used to allocate a paged skb, given a maximal order for frags. 5825 */ 5826 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5827 unsigned long data_len, 5828 int max_page_order, 5829 int *errcode, 5830 gfp_t gfp_mask) 5831 { 5832 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5833 unsigned long chunk; 5834 struct sk_buff *skb; 5835 struct page *page; 5836 int i; 5837 5838 *errcode = -EMSGSIZE; 5839 /* Note this test could be relaxed, if we succeed to allocate 5840 * high order pages... 5841 */ 5842 if (npages > MAX_SKB_FRAGS) 5843 return NULL; 5844 5845 *errcode = -ENOBUFS; 5846 skb = alloc_skb(header_len, gfp_mask); 5847 if (!skb) 5848 return NULL; 5849 5850 skb->truesize += npages << PAGE_SHIFT; 5851 5852 for (i = 0; npages > 0; i++) { 5853 int order = max_page_order; 5854 5855 while (order) { 5856 if (npages >= 1 << order) { 5857 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5858 __GFP_COMP | 5859 __GFP_NOWARN, 5860 order); 5861 if (page) 5862 goto fill_page; 5863 /* Do not retry other high order allocations */ 5864 order = 1; 5865 max_page_order = 0; 5866 } 5867 order--; 5868 } 5869 page = alloc_page(gfp_mask); 5870 if (!page) 5871 goto failure; 5872 fill_page: 5873 chunk = min_t(unsigned long, data_len, 5874 PAGE_SIZE << order); 5875 skb_fill_page_desc(skb, i, page, 0, chunk); 5876 data_len -= chunk; 5877 npages -= 1 << order; 5878 } 5879 return skb; 5880 5881 failure: 5882 kfree_skb(skb); 5883 return NULL; 5884 } 5885 EXPORT_SYMBOL(alloc_skb_with_frags); 5886 5887 /* carve out the first off bytes from skb when off < headlen */ 5888 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5889 const int headlen, gfp_t gfp_mask) 5890 { 5891 int i; 5892 int size = skb_end_offset(skb); 5893 int new_hlen = headlen - off; 5894 u8 *data; 5895 5896 size = SKB_DATA_ALIGN(size); 5897 5898 if (skb_pfmemalloc(skb)) 5899 gfp_mask |= __GFP_MEMALLOC; 5900 data = kmalloc_reserve(size + 5901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5902 gfp_mask, NUMA_NO_NODE, NULL); 5903 if (!data) 5904 return -ENOMEM; 5905 5906 size = SKB_WITH_OVERHEAD(ksize(data)); 5907 5908 /* Copy real data, and all frags */ 5909 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5910 skb->len -= off; 5911 5912 memcpy((struct skb_shared_info *)(data + size), 5913 skb_shinfo(skb), 5914 offsetof(struct skb_shared_info, 5915 frags[skb_shinfo(skb)->nr_frags])); 5916 if (skb_cloned(skb)) { 5917 /* drop the old head gracefully */ 5918 if (skb_orphan_frags(skb, gfp_mask)) { 5919 kfree(data); 5920 return -ENOMEM; 5921 } 5922 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5923 skb_frag_ref(skb, i); 5924 if (skb_has_frag_list(skb)) 5925 skb_clone_fraglist(skb); 5926 skb_release_data(skb); 5927 } else { 5928 /* we can reuse existing recount- all we did was 5929 * relocate values 5930 */ 5931 skb_free_head(skb); 5932 } 5933 5934 skb->head = data; 5935 skb->data = data; 5936 skb->head_frag = 0; 5937 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5938 skb->end = size; 5939 #else 5940 skb->end = skb->head + size; 5941 #endif 5942 skb_set_tail_pointer(skb, skb_headlen(skb)); 5943 skb_headers_offset_update(skb, 0); 5944 skb->cloned = 0; 5945 skb->hdr_len = 0; 5946 skb->nohdr = 0; 5947 atomic_set(&skb_shinfo(skb)->dataref, 1); 5948 5949 return 0; 5950 } 5951 5952 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5953 5954 /* carve out the first eat bytes from skb's frag_list. May recurse into 5955 * pskb_carve() 5956 */ 5957 static int pskb_carve_frag_list(struct sk_buff *skb, 5958 struct skb_shared_info *shinfo, int eat, 5959 gfp_t gfp_mask) 5960 { 5961 struct sk_buff *list = shinfo->frag_list; 5962 struct sk_buff *clone = NULL; 5963 struct sk_buff *insp = NULL; 5964 5965 do { 5966 if (!list) { 5967 pr_err("Not enough bytes to eat. Want %d\n", eat); 5968 return -EFAULT; 5969 } 5970 if (list->len <= eat) { 5971 /* Eaten as whole. */ 5972 eat -= list->len; 5973 list = list->next; 5974 insp = list; 5975 } else { 5976 /* Eaten partially. */ 5977 if (skb_shared(list)) { 5978 clone = skb_clone(list, gfp_mask); 5979 if (!clone) 5980 return -ENOMEM; 5981 insp = list->next; 5982 list = clone; 5983 } else { 5984 /* This may be pulled without problems. */ 5985 insp = list; 5986 } 5987 if (pskb_carve(list, eat, gfp_mask) < 0) { 5988 kfree_skb(clone); 5989 return -ENOMEM; 5990 } 5991 break; 5992 } 5993 } while (eat); 5994 5995 /* Free pulled out fragments. */ 5996 while ((list = shinfo->frag_list) != insp) { 5997 shinfo->frag_list = list->next; 5998 kfree_skb(list); 5999 } 6000 /* And insert new clone at head. */ 6001 if (clone) { 6002 clone->next = list; 6003 shinfo->frag_list = clone; 6004 } 6005 return 0; 6006 } 6007 6008 /* carve off first len bytes from skb. Split line (off) is in the 6009 * non-linear part of skb 6010 */ 6011 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6012 int pos, gfp_t gfp_mask) 6013 { 6014 int i, k = 0; 6015 int size = skb_end_offset(skb); 6016 u8 *data; 6017 const int nfrags = skb_shinfo(skb)->nr_frags; 6018 struct skb_shared_info *shinfo; 6019 6020 size = SKB_DATA_ALIGN(size); 6021 6022 if (skb_pfmemalloc(skb)) 6023 gfp_mask |= __GFP_MEMALLOC; 6024 data = kmalloc_reserve(size + 6025 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6026 gfp_mask, NUMA_NO_NODE, NULL); 6027 if (!data) 6028 return -ENOMEM; 6029 6030 size = SKB_WITH_OVERHEAD(ksize(data)); 6031 6032 memcpy((struct skb_shared_info *)(data + size), 6033 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6034 if (skb_orphan_frags(skb, gfp_mask)) { 6035 kfree(data); 6036 return -ENOMEM; 6037 } 6038 shinfo = (struct skb_shared_info *)(data + size); 6039 for (i = 0; i < nfrags; i++) { 6040 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6041 6042 if (pos + fsize > off) { 6043 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6044 6045 if (pos < off) { 6046 /* Split frag. 6047 * We have two variants in this case: 6048 * 1. Move all the frag to the second 6049 * part, if it is possible. F.e. 6050 * this approach is mandatory for TUX, 6051 * where splitting is expensive. 6052 * 2. Split is accurately. We make this. 6053 */ 6054 skb_frag_off_add(&shinfo->frags[0], off - pos); 6055 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6056 } 6057 skb_frag_ref(skb, i); 6058 k++; 6059 } 6060 pos += fsize; 6061 } 6062 shinfo->nr_frags = k; 6063 if (skb_has_frag_list(skb)) 6064 skb_clone_fraglist(skb); 6065 6066 /* split line is in frag list */ 6067 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6068 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6069 if (skb_has_frag_list(skb)) 6070 kfree_skb_list(skb_shinfo(skb)->frag_list); 6071 kfree(data); 6072 return -ENOMEM; 6073 } 6074 skb_release_data(skb); 6075 6076 skb->head = data; 6077 skb->head_frag = 0; 6078 skb->data = data; 6079 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6080 skb->end = size; 6081 #else 6082 skb->end = skb->head + size; 6083 #endif 6084 skb_reset_tail_pointer(skb); 6085 skb_headers_offset_update(skb, 0); 6086 skb->cloned = 0; 6087 skb->hdr_len = 0; 6088 skb->nohdr = 0; 6089 skb->len -= off; 6090 skb->data_len = skb->len; 6091 atomic_set(&skb_shinfo(skb)->dataref, 1); 6092 return 0; 6093 } 6094 6095 /* remove len bytes from the beginning of the skb */ 6096 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6097 { 6098 int headlen = skb_headlen(skb); 6099 6100 if (len < headlen) 6101 return pskb_carve_inside_header(skb, len, headlen, gfp); 6102 else 6103 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6104 } 6105 6106 /* Extract to_copy bytes starting at off from skb, and return this in 6107 * a new skb 6108 */ 6109 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6110 int to_copy, gfp_t gfp) 6111 { 6112 struct sk_buff *clone = skb_clone(skb, gfp); 6113 6114 if (!clone) 6115 return NULL; 6116 6117 if (pskb_carve(clone, off, gfp) < 0 || 6118 pskb_trim(clone, to_copy)) { 6119 kfree_skb(clone); 6120 return NULL; 6121 } 6122 return clone; 6123 } 6124 EXPORT_SYMBOL(pskb_extract); 6125 6126 /** 6127 * skb_condense - try to get rid of fragments/frag_list if possible 6128 * @skb: buffer 6129 * 6130 * Can be used to save memory before skb is added to a busy queue. 6131 * If packet has bytes in frags and enough tail room in skb->head, 6132 * pull all of them, so that we can free the frags right now and adjust 6133 * truesize. 6134 * Notes: 6135 * We do not reallocate skb->head thus can not fail. 6136 * Caller must re-evaluate skb->truesize if needed. 6137 */ 6138 void skb_condense(struct sk_buff *skb) 6139 { 6140 if (skb->data_len) { 6141 if (skb->data_len > skb->end - skb->tail || 6142 skb_cloned(skb)) 6143 return; 6144 6145 /* Nice, we can free page frag(s) right now */ 6146 __pskb_pull_tail(skb, skb->data_len); 6147 } 6148 /* At this point, skb->truesize might be over estimated, 6149 * because skb had a fragment, and fragments do not tell 6150 * their truesize. 6151 * When we pulled its content into skb->head, fragment 6152 * was freed, but __pskb_pull_tail() could not possibly 6153 * adjust skb->truesize, not knowing the frag truesize. 6154 */ 6155 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6156 } 6157 6158 #ifdef CONFIG_SKB_EXTENSIONS 6159 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6160 { 6161 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6162 } 6163 6164 /** 6165 * __skb_ext_alloc - allocate a new skb extensions storage 6166 * 6167 * @flags: See kmalloc(). 6168 * 6169 * Returns the newly allocated pointer. The pointer can later attached to a 6170 * skb via __skb_ext_set(). 6171 * Note: caller must handle the skb_ext as an opaque data. 6172 */ 6173 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6174 { 6175 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6176 6177 if (new) { 6178 memset(new->offset, 0, sizeof(new->offset)); 6179 refcount_set(&new->refcnt, 1); 6180 } 6181 6182 return new; 6183 } 6184 6185 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6186 unsigned int old_active) 6187 { 6188 struct skb_ext *new; 6189 6190 if (refcount_read(&old->refcnt) == 1) 6191 return old; 6192 6193 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6194 if (!new) 6195 return NULL; 6196 6197 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6198 refcount_set(&new->refcnt, 1); 6199 6200 #ifdef CONFIG_XFRM 6201 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6202 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6203 unsigned int i; 6204 6205 for (i = 0; i < sp->len; i++) 6206 xfrm_state_hold(sp->xvec[i]); 6207 } 6208 #endif 6209 __skb_ext_put(old); 6210 return new; 6211 } 6212 6213 /** 6214 * __skb_ext_set - attach the specified extension storage to this skb 6215 * @skb: buffer 6216 * @id: extension id 6217 * @ext: extension storage previously allocated via __skb_ext_alloc() 6218 * 6219 * Existing extensions, if any, are cleared. 6220 * 6221 * Returns the pointer to the extension. 6222 */ 6223 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6224 struct skb_ext *ext) 6225 { 6226 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6227 6228 skb_ext_put(skb); 6229 newlen = newoff + skb_ext_type_len[id]; 6230 ext->chunks = newlen; 6231 ext->offset[id] = newoff; 6232 skb->extensions = ext; 6233 skb->active_extensions = 1 << id; 6234 return skb_ext_get_ptr(ext, id); 6235 } 6236 6237 /** 6238 * skb_ext_add - allocate space for given extension, COW if needed 6239 * @skb: buffer 6240 * @id: extension to allocate space for 6241 * 6242 * Allocates enough space for the given extension. 6243 * If the extension is already present, a pointer to that extension 6244 * is returned. 6245 * 6246 * If the skb was cloned, COW applies and the returned memory can be 6247 * modified without changing the extension space of clones buffers. 6248 * 6249 * Returns pointer to the extension or NULL on allocation failure. 6250 */ 6251 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6252 { 6253 struct skb_ext *new, *old = NULL; 6254 unsigned int newlen, newoff; 6255 6256 if (skb->active_extensions) { 6257 old = skb->extensions; 6258 6259 new = skb_ext_maybe_cow(old, skb->active_extensions); 6260 if (!new) 6261 return NULL; 6262 6263 if (__skb_ext_exist(new, id)) 6264 goto set_active; 6265 6266 newoff = new->chunks; 6267 } else { 6268 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6269 6270 new = __skb_ext_alloc(GFP_ATOMIC); 6271 if (!new) 6272 return NULL; 6273 } 6274 6275 newlen = newoff + skb_ext_type_len[id]; 6276 new->chunks = newlen; 6277 new->offset[id] = newoff; 6278 set_active: 6279 skb->extensions = new; 6280 skb->active_extensions |= 1 << id; 6281 return skb_ext_get_ptr(new, id); 6282 } 6283 EXPORT_SYMBOL(skb_ext_add); 6284 6285 #ifdef CONFIG_XFRM 6286 static void skb_ext_put_sp(struct sec_path *sp) 6287 { 6288 unsigned int i; 6289 6290 for (i = 0; i < sp->len; i++) 6291 xfrm_state_put(sp->xvec[i]); 6292 } 6293 #endif 6294 6295 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6296 { 6297 struct skb_ext *ext = skb->extensions; 6298 6299 skb->active_extensions &= ~(1 << id); 6300 if (skb->active_extensions == 0) { 6301 skb->extensions = NULL; 6302 __skb_ext_put(ext); 6303 #ifdef CONFIG_XFRM 6304 } else if (id == SKB_EXT_SEC_PATH && 6305 refcount_read(&ext->refcnt) == 1) { 6306 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6307 6308 skb_ext_put_sp(sp); 6309 sp->len = 0; 6310 #endif 6311 } 6312 } 6313 EXPORT_SYMBOL(__skb_ext_del); 6314 6315 void __skb_ext_put(struct skb_ext *ext) 6316 { 6317 /* If this is last clone, nothing can increment 6318 * it after check passes. Avoids one atomic op. 6319 */ 6320 if (refcount_read(&ext->refcnt) == 1) 6321 goto free_now; 6322 6323 if (!refcount_dec_and_test(&ext->refcnt)) 6324 return; 6325 free_now: 6326 #ifdef CONFIG_XFRM 6327 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6328 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6329 #endif 6330 6331 kmem_cache_free(skbuff_ext_cache, ext); 6332 } 6333 EXPORT_SYMBOL(__skb_ext_put); 6334 #endif /* CONFIG_SKB_EXTENSIONS */ 6335