xref: /linux/net/core/skbuff.c (revision a37e31fc97efe7f7c68cb381cf4390e472c09061)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 
253 	skb_set_kcov_handle(skb, kcov_common_handle());
254 
255 out:
256 	return skb;
257 nodata:
258 	kmem_cache_free(cache, skb);
259 	skb = NULL;
260 	goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263 
264 /* Caller must provide SKB that is memset cleared */
265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 					  void *data, unsigned int frag_size)
267 {
268 	struct skb_shared_info *shinfo;
269 	unsigned int size = frag_size ? : ksize(data);
270 
271 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272 
273 	/* Assumes caller memset cleared SKB */
274 	skb->truesize = SKB_TRUESIZE(size);
275 	refcount_set(&skb->users, 1);
276 	skb->head = data;
277 	skb->data = data;
278 	skb_reset_tail_pointer(skb);
279 	skb->end = skb->tail + size;
280 	skb->mac_header = (typeof(skb->mac_header))~0U;
281 	skb->transport_header = (typeof(skb->transport_header))~0U;
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 
288 	skb_set_kcov_handle(skb, kcov_common_handle());
289 
290 	return skb;
291 }
292 
293 /**
294  * __build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Allocate a new &sk_buff. Caller provides space holding head and
299  * skb_shared_info. @data must have been allocated by kmalloc() only if
300  * @frag_size is 0, otherwise data should come from the page allocator
301  *  or vmalloc()
302  * The return is the new skb buffer.
303  * On a failure the return is %NULL, and @data is not freed.
304  * Notes :
305  *  Before IO, driver allocates only data buffer where NIC put incoming frame
306  *  Driver should add room at head (NET_SKB_PAD) and
307  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
309  *  before giving packet to stack.
310  *  RX rings only contains data buffers, not full skbs.
311  */
312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 	struct sk_buff *skb;
315 
316 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 	if (unlikely(!skb))
318 		return NULL;
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 
322 	return __build_skb_around(skb, data, frag_size);
323 }
324 
325 /* build_skb() is wrapper over __build_skb(), that specifically
326  * takes care of skb->head and skb->pfmemalloc
327  * This means that if @frag_size is not zero, then @data must be backed
328  * by a page fragment, not kmalloc() or vmalloc()
329  */
330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 	struct sk_buff *skb = __build_skb(data, frag_size);
333 
334 	if (skb && frag_size) {
335 		skb->head_frag = 1;
336 		if (page_is_pfmemalloc(virt_to_head_page(data)))
337 			skb->pfmemalloc = 1;
338 	}
339 	return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342 
343 /**
344  * build_skb_around - build a network buffer around provided skb
345  * @skb: sk_buff provide by caller, must be memset cleared
346  * @data: data buffer provided by caller
347  * @frag_size: size of data, or 0 if head was kmalloced
348  */
349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 				 void *data, unsigned int frag_size)
351 {
352 	if (unlikely(!skb))
353 		return NULL;
354 
355 	skb = __build_skb_around(skb, data, frag_size);
356 
357 	if (skb && frag_size) {
358 		skb->head_frag = 1;
359 		if (page_is_pfmemalloc(virt_to_head_page(data)))
360 			skb->pfmemalloc = 1;
361 	}
362 	return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365 
366 #define NAPI_SKB_CACHE_SIZE	64
367 
368 struct napi_alloc_cache {
369 	struct page_frag_cache page;
370 	unsigned int skb_count;
371 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373 
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376 
377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380 
381 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383 
384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 	fragsz = SKB_DATA_ALIGN(fragsz);
387 
388 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391 
392 /**
393  * netdev_alloc_frag - allocate a page fragment
394  * @fragsz: fragment size
395  *
396  * Allocates a frag from a page for receive buffer.
397  * Uses GFP_ATOMIC allocations.
398  */
399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 	struct page_frag_cache *nc;
402 	void *data;
403 
404 	fragsz = SKB_DATA_ALIGN(fragsz);
405 	if (in_irq() || irqs_disabled()) {
406 		nc = this_cpu_ptr(&netdev_alloc_cache);
407 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 	} else {
409 		local_bh_disable();
410 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 		local_bh_enable();
412 	}
413 	return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416 
417 /**
418  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
419  *	@dev: network device to receive on
420  *	@len: length to allocate
421  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
422  *
423  *	Allocate a new &sk_buff and assign it a usage count of one. The
424  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
425  *	the headroom they think they need without accounting for the
426  *	built in space. The built in space is used for optimisations.
427  *
428  *	%NULL is returned if there is no free memory.
429  */
430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 				   gfp_t gfp_mask)
432 {
433 	struct page_frag_cache *nc;
434 	struct sk_buff *skb;
435 	bool pfmemalloc;
436 	void *data;
437 
438 	len += NET_SKB_PAD;
439 
440 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
441 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
442 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
443 		if (!skb)
444 			goto skb_fail;
445 		goto skb_success;
446 	}
447 
448 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
449 	len = SKB_DATA_ALIGN(len);
450 
451 	if (sk_memalloc_socks())
452 		gfp_mask |= __GFP_MEMALLOC;
453 
454 	if (in_irq() || irqs_disabled()) {
455 		nc = this_cpu_ptr(&netdev_alloc_cache);
456 		data = page_frag_alloc(nc, len, gfp_mask);
457 		pfmemalloc = nc->pfmemalloc;
458 	} else {
459 		local_bh_disable();
460 		nc = this_cpu_ptr(&napi_alloc_cache.page);
461 		data = page_frag_alloc(nc, len, gfp_mask);
462 		pfmemalloc = nc->pfmemalloc;
463 		local_bh_enable();
464 	}
465 
466 	if (unlikely(!data))
467 		return NULL;
468 
469 	skb = __build_skb(data, len);
470 	if (unlikely(!skb)) {
471 		skb_free_frag(data);
472 		return NULL;
473 	}
474 
475 	if (pfmemalloc)
476 		skb->pfmemalloc = 1;
477 	skb->head_frag = 1;
478 
479 skb_success:
480 	skb_reserve(skb, NET_SKB_PAD);
481 	skb->dev = dev;
482 
483 skb_fail:
484 	return skb;
485 }
486 EXPORT_SYMBOL(__netdev_alloc_skb);
487 
488 /**
489  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
490  *	@napi: napi instance this buffer was allocated for
491  *	@len: length to allocate
492  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
493  *
494  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
495  *	attempt to allocate the head from a special reserved region used
496  *	only for NAPI Rx allocation.  By doing this we can save several
497  *	CPU cycles by avoiding having to disable and re-enable IRQs.
498  *
499  *	%NULL is returned if there is no free memory.
500  */
501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
502 				 gfp_t gfp_mask)
503 {
504 	struct napi_alloc_cache *nc;
505 	struct sk_buff *skb;
506 	void *data;
507 
508 	len += NET_SKB_PAD + NET_IP_ALIGN;
509 
510 	/* If requested length is either too small or too big,
511 	 * we use kmalloc() for skb->head allocation.
512 	 */
513 	if (len <= SKB_WITH_OVERHEAD(1024) ||
514 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
515 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
516 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
517 		if (!skb)
518 			goto skb_fail;
519 		goto skb_success;
520 	}
521 
522 	nc = this_cpu_ptr(&napi_alloc_cache);
523 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
524 	len = SKB_DATA_ALIGN(len);
525 
526 	if (sk_memalloc_socks())
527 		gfp_mask |= __GFP_MEMALLOC;
528 
529 	data = page_frag_alloc(&nc->page, len, gfp_mask);
530 	if (unlikely(!data))
531 		return NULL;
532 
533 	skb = __build_skb(data, len);
534 	if (unlikely(!skb)) {
535 		skb_free_frag(data);
536 		return NULL;
537 	}
538 
539 	if (nc->page.pfmemalloc)
540 		skb->pfmemalloc = 1;
541 	skb->head_frag = 1;
542 
543 skb_success:
544 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
545 	skb->dev = napi->dev;
546 
547 skb_fail:
548 	return skb;
549 }
550 EXPORT_SYMBOL(__napi_alloc_skb);
551 
552 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
553 		     int size, unsigned int truesize)
554 {
555 	skb_fill_page_desc(skb, i, page, off, size);
556 	skb->len += size;
557 	skb->data_len += size;
558 	skb->truesize += truesize;
559 }
560 EXPORT_SYMBOL(skb_add_rx_frag);
561 
562 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
563 			  unsigned int truesize)
564 {
565 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
566 
567 	skb_frag_size_add(frag, size);
568 	skb->len += size;
569 	skb->data_len += size;
570 	skb->truesize += truesize;
571 }
572 EXPORT_SYMBOL(skb_coalesce_rx_frag);
573 
574 static void skb_drop_list(struct sk_buff **listp)
575 {
576 	kfree_skb_list(*listp);
577 	*listp = NULL;
578 }
579 
580 static inline void skb_drop_fraglist(struct sk_buff *skb)
581 {
582 	skb_drop_list(&skb_shinfo(skb)->frag_list);
583 }
584 
585 static void skb_clone_fraglist(struct sk_buff *skb)
586 {
587 	struct sk_buff *list;
588 
589 	skb_walk_frags(skb, list)
590 		skb_get(list);
591 }
592 
593 static void skb_free_head(struct sk_buff *skb)
594 {
595 	unsigned char *head = skb->head;
596 
597 	if (skb->head_frag)
598 		skb_free_frag(head);
599 	else
600 		kfree(head);
601 }
602 
603 static void skb_release_data(struct sk_buff *skb)
604 {
605 	struct skb_shared_info *shinfo = skb_shinfo(skb);
606 	int i;
607 
608 	if (skb->cloned &&
609 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
610 			      &shinfo->dataref))
611 		return;
612 
613 	for (i = 0; i < shinfo->nr_frags; i++)
614 		__skb_frag_unref(&shinfo->frags[i]);
615 
616 	if (shinfo->frag_list)
617 		kfree_skb_list(shinfo->frag_list);
618 
619 	skb_zcopy_clear(skb, true);
620 	skb_free_head(skb);
621 }
622 
623 /*
624  *	Free an skbuff by memory without cleaning the state.
625  */
626 static void kfree_skbmem(struct sk_buff *skb)
627 {
628 	struct sk_buff_fclones *fclones;
629 
630 	switch (skb->fclone) {
631 	case SKB_FCLONE_UNAVAILABLE:
632 		kmem_cache_free(skbuff_head_cache, skb);
633 		return;
634 
635 	case SKB_FCLONE_ORIG:
636 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
637 
638 		/* We usually free the clone (TX completion) before original skb
639 		 * This test would have no chance to be true for the clone,
640 		 * while here, branch prediction will be good.
641 		 */
642 		if (refcount_read(&fclones->fclone_ref) == 1)
643 			goto fastpath;
644 		break;
645 
646 	default: /* SKB_FCLONE_CLONE */
647 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
648 		break;
649 	}
650 	if (!refcount_dec_and_test(&fclones->fclone_ref))
651 		return;
652 fastpath:
653 	kmem_cache_free(skbuff_fclone_cache, fclones);
654 }
655 
656 void skb_release_head_state(struct sk_buff *skb)
657 {
658 	skb_dst_drop(skb);
659 	if (skb->destructor) {
660 		WARN_ON(in_irq());
661 		skb->destructor(skb);
662 	}
663 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
664 	nf_conntrack_put(skb_nfct(skb));
665 #endif
666 	skb_ext_put(skb);
667 }
668 
669 /* Free everything but the sk_buff shell. */
670 static void skb_release_all(struct sk_buff *skb)
671 {
672 	skb_release_head_state(skb);
673 	if (likely(skb->head))
674 		skb_release_data(skb);
675 }
676 
677 /**
678  *	__kfree_skb - private function
679  *	@skb: buffer
680  *
681  *	Free an sk_buff. Release anything attached to the buffer.
682  *	Clean the state. This is an internal helper function. Users should
683  *	always call kfree_skb
684  */
685 
686 void __kfree_skb(struct sk_buff *skb)
687 {
688 	skb_release_all(skb);
689 	kfree_skbmem(skb);
690 }
691 EXPORT_SYMBOL(__kfree_skb);
692 
693 /**
694  *	kfree_skb - free an sk_buff
695  *	@skb: buffer to free
696  *
697  *	Drop a reference to the buffer and free it if the usage count has
698  *	hit zero.
699  */
700 void kfree_skb(struct sk_buff *skb)
701 {
702 	if (!skb_unref(skb))
703 		return;
704 
705 	trace_kfree_skb(skb, __builtin_return_address(0));
706 	__kfree_skb(skb);
707 }
708 EXPORT_SYMBOL(kfree_skb);
709 
710 void kfree_skb_list(struct sk_buff *segs)
711 {
712 	while (segs) {
713 		struct sk_buff *next = segs->next;
714 
715 		kfree_skb(segs);
716 		segs = next;
717 	}
718 }
719 EXPORT_SYMBOL(kfree_skb_list);
720 
721 /* Dump skb information and contents.
722  *
723  * Must only be called from net_ratelimit()-ed paths.
724  *
725  * Dumps whole packets if full_pkt, only headers otherwise.
726  */
727 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
728 {
729 	struct skb_shared_info *sh = skb_shinfo(skb);
730 	struct net_device *dev = skb->dev;
731 	struct sock *sk = skb->sk;
732 	struct sk_buff *list_skb;
733 	bool has_mac, has_trans;
734 	int headroom, tailroom;
735 	int i, len, seg_len;
736 
737 	if (full_pkt)
738 		len = skb->len;
739 	else
740 		len = min_t(int, skb->len, MAX_HEADER + 128);
741 
742 	headroom = skb_headroom(skb);
743 	tailroom = skb_tailroom(skb);
744 
745 	has_mac = skb_mac_header_was_set(skb);
746 	has_trans = skb_transport_header_was_set(skb);
747 
748 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
749 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
750 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
751 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
752 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
753 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
754 	       has_mac ? skb->mac_header : -1,
755 	       has_mac ? skb_mac_header_len(skb) : -1,
756 	       skb->network_header,
757 	       has_trans ? skb_network_header_len(skb) : -1,
758 	       has_trans ? skb->transport_header : -1,
759 	       sh->tx_flags, sh->nr_frags,
760 	       sh->gso_size, sh->gso_type, sh->gso_segs,
761 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
762 	       skb->csum_valid, skb->csum_level,
763 	       skb->hash, skb->sw_hash, skb->l4_hash,
764 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
765 
766 	if (dev)
767 		printk("%sdev name=%s feat=0x%pNF\n",
768 		       level, dev->name, &dev->features);
769 	if (sk)
770 		printk("%ssk family=%hu type=%u proto=%u\n",
771 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
772 
773 	if (full_pkt && headroom)
774 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
775 			       16, 1, skb->head, headroom, false);
776 
777 	seg_len = min_t(int, skb_headlen(skb), len);
778 	if (seg_len)
779 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb->data, seg_len, false);
781 	len -= seg_len;
782 
783 	if (full_pkt && tailroom)
784 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
785 			       16, 1, skb_tail_pointer(skb), tailroom, false);
786 
787 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
788 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
789 		u32 p_off, p_len, copied;
790 		struct page *p;
791 		u8 *vaddr;
792 
793 		skb_frag_foreach_page(frag, skb_frag_off(frag),
794 				      skb_frag_size(frag), p, p_off, p_len,
795 				      copied) {
796 			seg_len = min_t(int, p_len, len);
797 			vaddr = kmap_atomic(p);
798 			print_hex_dump(level, "skb frag:     ",
799 				       DUMP_PREFIX_OFFSET,
800 				       16, 1, vaddr + p_off, seg_len, false);
801 			kunmap_atomic(vaddr);
802 			len -= seg_len;
803 			if (!len)
804 				break;
805 		}
806 	}
807 
808 	if (full_pkt && skb_has_frag_list(skb)) {
809 		printk("skb fraglist:\n");
810 		skb_walk_frags(skb, list_skb)
811 			skb_dump(level, list_skb, true);
812 	}
813 }
814 EXPORT_SYMBOL(skb_dump);
815 
816 /**
817  *	skb_tx_error - report an sk_buff xmit error
818  *	@skb: buffer that triggered an error
819  *
820  *	Report xmit error if a device callback is tracking this skb.
821  *	skb must be freed afterwards.
822  */
823 void skb_tx_error(struct sk_buff *skb)
824 {
825 	skb_zcopy_clear(skb, true);
826 }
827 EXPORT_SYMBOL(skb_tx_error);
828 
829 #ifdef CONFIG_TRACEPOINTS
830 /**
831  *	consume_skb - free an skbuff
832  *	@skb: buffer to free
833  *
834  *	Drop a ref to the buffer and free it if the usage count has hit zero
835  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
836  *	is being dropped after a failure and notes that
837  */
838 void consume_skb(struct sk_buff *skb)
839 {
840 	if (!skb_unref(skb))
841 		return;
842 
843 	trace_consume_skb(skb);
844 	__kfree_skb(skb);
845 }
846 EXPORT_SYMBOL(consume_skb);
847 #endif
848 
849 /**
850  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
851  *	@skb: buffer to free
852  *
853  *	Alike consume_skb(), but this variant assumes that this is the last
854  *	skb reference and all the head states have been already dropped
855  */
856 void __consume_stateless_skb(struct sk_buff *skb)
857 {
858 	trace_consume_skb(skb);
859 	skb_release_data(skb);
860 	kfree_skbmem(skb);
861 }
862 
863 void __kfree_skb_flush(void)
864 {
865 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
866 
867 	/* flush skb_cache if containing objects */
868 	if (nc->skb_count) {
869 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
870 				     nc->skb_cache);
871 		nc->skb_count = 0;
872 	}
873 }
874 
875 static inline void _kfree_skb_defer(struct sk_buff *skb)
876 {
877 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
878 
879 	/* drop skb->head and call any destructors for packet */
880 	skb_release_all(skb);
881 
882 	/* record skb to CPU local list */
883 	nc->skb_cache[nc->skb_count++] = skb;
884 
885 #ifdef CONFIG_SLUB
886 	/* SLUB writes into objects when freeing */
887 	prefetchw(skb);
888 #endif
889 
890 	/* flush skb_cache if it is filled */
891 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
892 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
893 				     nc->skb_cache);
894 		nc->skb_count = 0;
895 	}
896 }
897 void __kfree_skb_defer(struct sk_buff *skb)
898 {
899 	_kfree_skb_defer(skb);
900 }
901 
902 void napi_consume_skb(struct sk_buff *skb, int budget)
903 {
904 	/* Zero budget indicate non-NAPI context called us, like netpoll */
905 	if (unlikely(!budget)) {
906 		dev_consume_skb_any(skb);
907 		return;
908 	}
909 
910 	lockdep_assert_in_softirq();
911 
912 	if (!skb_unref(skb))
913 		return;
914 
915 	/* if reaching here SKB is ready to free */
916 	trace_consume_skb(skb);
917 
918 	/* if SKB is a clone, don't handle this case */
919 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
920 		__kfree_skb(skb);
921 		return;
922 	}
923 
924 	_kfree_skb_defer(skb);
925 }
926 EXPORT_SYMBOL(napi_consume_skb);
927 
928 /* Make sure a field is enclosed inside headers_start/headers_end section */
929 #define CHECK_SKB_FIELD(field) \
930 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
931 		     offsetof(struct sk_buff, headers_start));	\
932 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
933 		     offsetof(struct sk_buff, headers_end));	\
934 
935 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
936 {
937 	new->tstamp		= old->tstamp;
938 	/* We do not copy old->sk */
939 	new->dev		= old->dev;
940 	memcpy(new->cb, old->cb, sizeof(old->cb));
941 	skb_dst_copy(new, old);
942 	__skb_ext_copy(new, old);
943 	__nf_copy(new, old, false);
944 
945 	/* Note : this field could be in headers_start/headers_end section
946 	 * It is not yet because we do not want to have a 16 bit hole
947 	 */
948 	new->queue_mapping = old->queue_mapping;
949 
950 	memcpy(&new->headers_start, &old->headers_start,
951 	       offsetof(struct sk_buff, headers_end) -
952 	       offsetof(struct sk_buff, headers_start));
953 	CHECK_SKB_FIELD(protocol);
954 	CHECK_SKB_FIELD(csum);
955 	CHECK_SKB_FIELD(hash);
956 	CHECK_SKB_FIELD(priority);
957 	CHECK_SKB_FIELD(skb_iif);
958 	CHECK_SKB_FIELD(vlan_proto);
959 	CHECK_SKB_FIELD(vlan_tci);
960 	CHECK_SKB_FIELD(transport_header);
961 	CHECK_SKB_FIELD(network_header);
962 	CHECK_SKB_FIELD(mac_header);
963 	CHECK_SKB_FIELD(inner_protocol);
964 	CHECK_SKB_FIELD(inner_transport_header);
965 	CHECK_SKB_FIELD(inner_network_header);
966 	CHECK_SKB_FIELD(inner_mac_header);
967 	CHECK_SKB_FIELD(mark);
968 #ifdef CONFIG_NETWORK_SECMARK
969 	CHECK_SKB_FIELD(secmark);
970 #endif
971 #ifdef CONFIG_NET_RX_BUSY_POLL
972 	CHECK_SKB_FIELD(napi_id);
973 #endif
974 #ifdef CONFIG_XPS
975 	CHECK_SKB_FIELD(sender_cpu);
976 #endif
977 #ifdef CONFIG_NET_SCHED
978 	CHECK_SKB_FIELD(tc_index);
979 #endif
980 
981 }
982 
983 /*
984  * You should not add any new code to this function.  Add it to
985  * __copy_skb_header above instead.
986  */
987 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
988 {
989 #define C(x) n->x = skb->x
990 
991 	n->next = n->prev = NULL;
992 	n->sk = NULL;
993 	__copy_skb_header(n, skb);
994 
995 	C(len);
996 	C(data_len);
997 	C(mac_len);
998 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
999 	n->cloned = 1;
1000 	n->nohdr = 0;
1001 	n->peeked = 0;
1002 	C(pfmemalloc);
1003 	n->destructor = NULL;
1004 	C(tail);
1005 	C(end);
1006 	C(head);
1007 	C(head_frag);
1008 	C(data);
1009 	C(truesize);
1010 	refcount_set(&n->users, 1);
1011 
1012 	atomic_inc(&(skb_shinfo(skb)->dataref));
1013 	skb->cloned = 1;
1014 
1015 	return n;
1016 #undef C
1017 }
1018 
1019 /**
1020  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1021  * @first: first sk_buff of the msg
1022  */
1023 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1024 {
1025 	struct sk_buff *n;
1026 
1027 	n = alloc_skb(0, GFP_ATOMIC);
1028 	if (!n)
1029 		return NULL;
1030 
1031 	n->len = first->len;
1032 	n->data_len = first->len;
1033 	n->truesize = first->truesize;
1034 
1035 	skb_shinfo(n)->frag_list = first;
1036 
1037 	__copy_skb_header(n, first);
1038 	n->destructor = NULL;
1039 
1040 	return n;
1041 }
1042 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1043 
1044 /**
1045  *	skb_morph	-	morph one skb into another
1046  *	@dst: the skb to receive the contents
1047  *	@src: the skb to supply the contents
1048  *
1049  *	This is identical to skb_clone except that the target skb is
1050  *	supplied by the user.
1051  *
1052  *	The target skb is returned upon exit.
1053  */
1054 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1055 {
1056 	skb_release_all(dst);
1057 	return __skb_clone(dst, src);
1058 }
1059 EXPORT_SYMBOL_GPL(skb_morph);
1060 
1061 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1062 {
1063 	unsigned long max_pg, num_pg, new_pg, old_pg;
1064 	struct user_struct *user;
1065 
1066 	if (capable(CAP_IPC_LOCK) || !size)
1067 		return 0;
1068 
1069 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1070 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1071 	user = mmp->user ? : current_user();
1072 
1073 	do {
1074 		old_pg = atomic_long_read(&user->locked_vm);
1075 		new_pg = old_pg + num_pg;
1076 		if (new_pg > max_pg)
1077 			return -ENOBUFS;
1078 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1079 		 old_pg);
1080 
1081 	if (!mmp->user) {
1082 		mmp->user = get_uid(user);
1083 		mmp->num_pg = num_pg;
1084 	} else {
1085 		mmp->num_pg += num_pg;
1086 	}
1087 
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1091 
1092 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1093 {
1094 	if (mmp->user) {
1095 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1096 		free_uid(mmp->user);
1097 	}
1098 }
1099 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1100 
1101 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1102 {
1103 	struct ubuf_info *uarg;
1104 	struct sk_buff *skb;
1105 
1106 	WARN_ON_ONCE(!in_task());
1107 
1108 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1109 	if (!skb)
1110 		return NULL;
1111 
1112 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1113 	uarg = (void *)skb->cb;
1114 	uarg->mmp.user = NULL;
1115 
1116 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1117 		kfree_skb(skb);
1118 		return NULL;
1119 	}
1120 
1121 	uarg->callback = sock_zerocopy_callback;
1122 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1123 	uarg->len = 1;
1124 	uarg->bytelen = size;
1125 	uarg->zerocopy = 1;
1126 	refcount_set(&uarg->refcnt, 1);
1127 	sock_hold(sk);
1128 
1129 	return uarg;
1130 }
1131 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1132 
1133 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1134 {
1135 	return container_of((void *)uarg, struct sk_buff, cb);
1136 }
1137 
1138 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1139 					struct ubuf_info *uarg)
1140 {
1141 	if (uarg) {
1142 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1143 		u32 bytelen, next;
1144 
1145 		/* realloc only when socket is locked (TCP, UDP cork),
1146 		 * so uarg->len and sk_zckey access is serialized
1147 		 */
1148 		if (!sock_owned_by_user(sk)) {
1149 			WARN_ON_ONCE(1);
1150 			return NULL;
1151 		}
1152 
1153 		bytelen = uarg->bytelen + size;
1154 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1155 			/* TCP can create new skb to attach new uarg */
1156 			if (sk->sk_type == SOCK_STREAM)
1157 				goto new_alloc;
1158 			return NULL;
1159 		}
1160 
1161 		next = (u32)atomic_read(&sk->sk_zckey);
1162 		if ((u32)(uarg->id + uarg->len) == next) {
1163 			if (mm_account_pinned_pages(&uarg->mmp, size))
1164 				return NULL;
1165 			uarg->len++;
1166 			uarg->bytelen = bytelen;
1167 			atomic_set(&sk->sk_zckey, ++next);
1168 
1169 			/* no extra ref when appending to datagram (MSG_MORE) */
1170 			if (sk->sk_type == SOCK_STREAM)
1171 				sock_zerocopy_get(uarg);
1172 
1173 			return uarg;
1174 		}
1175 	}
1176 
1177 new_alloc:
1178 	return sock_zerocopy_alloc(sk, size);
1179 }
1180 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1181 
1182 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1183 {
1184 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1185 	u32 old_lo, old_hi;
1186 	u64 sum_len;
1187 
1188 	old_lo = serr->ee.ee_info;
1189 	old_hi = serr->ee.ee_data;
1190 	sum_len = old_hi - old_lo + 1ULL + len;
1191 
1192 	if (sum_len >= (1ULL << 32))
1193 		return false;
1194 
1195 	if (lo != old_hi + 1)
1196 		return false;
1197 
1198 	serr->ee.ee_data += len;
1199 	return true;
1200 }
1201 
1202 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1203 {
1204 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1205 	struct sock_exterr_skb *serr;
1206 	struct sock *sk = skb->sk;
1207 	struct sk_buff_head *q;
1208 	unsigned long flags;
1209 	u32 lo, hi;
1210 	u16 len;
1211 
1212 	mm_unaccount_pinned_pages(&uarg->mmp);
1213 
1214 	/* if !len, there was only 1 call, and it was aborted
1215 	 * so do not queue a completion notification
1216 	 */
1217 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1218 		goto release;
1219 
1220 	len = uarg->len;
1221 	lo = uarg->id;
1222 	hi = uarg->id + len - 1;
1223 
1224 	serr = SKB_EXT_ERR(skb);
1225 	memset(serr, 0, sizeof(*serr));
1226 	serr->ee.ee_errno = 0;
1227 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1228 	serr->ee.ee_data = hi;
1229 	serr->ee.ee_info = lo;
1230 	if (!success)
1231 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1232 
1233 	q = &sk->sk_error_queue;
1234 	spin_lock_irqsave(&q->lock, flags);
1235 	tail = skb_peek_tail(q);
1236 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1237 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1238 		__skb_queue_tail(q, skb);
1239 		skb = NULL;
1240 	}
1241 	spin_unlock_irqrestore(&q->lock, flags);
1242 
1243 	sk->sk_error_report(sk);
1244 
1245 release:
1246 	consume_skb(skb);
1247 	sock_put(sk);
1248 }
1249 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1250 
1251 void sock_zerocopy_put(struct ubuf_info *uarg)
1252 {
1253 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1254 		if (uarg->callback)
1255 			uarg->callback(uarg, uarg->zerocopy);
1256 		else
1257 			consume_skb(skb_from_uarg(uarg));
1258 	}
1259 }
1260 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1261 
1262 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1263 {
1264 	if (uarg) {
1265 		struct sock *sk = skb_from_uarg(uarg)->sk;
1266 
1267 		atomic_dec(&sk->sk_zckey);
1268 		uarg->len--;
1269 
1270 		if (have_uref)
1271 			sock_zerocopy_put(uarg);
1272 	}
1273 }
1274 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1275 
1276 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1277 {
1278 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1279 }
1280 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1281 
1282 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1283 			     struct msghdr *msg, int len,
1284 			     struct ubuf_info *uarg)
1285 {
1286 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1287 	struct iov_iter orig_iter = msg->msg_iter;
1288 	int err, orig_len = skb->len;
1289 
1290 	/* An skb can only point to one uarg. This edge case happens when
1291 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1292 	 */
1293 	if (orig_uarg && uarg != orig_uarg)
1294 		return -EEXIST;
1295 
1296 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1297 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1298 		struct sock *save_sk = skb->sk;
1299 
1300 		/* Streams do not free skb on error. Reset to prev state. */
1301 		msg->msg_iter = orig_iter;
1302 		skb->sk = sk;
1303 		___pskb_trim(skb, orig_len);
1304 		skb->sk = save_sk;
1305 		return err;
1306 	}
1307 
1308 	skb_zcopy_set(skb, uarg, NULL);
1309 	return skb->len - orig_len;
1310 }
1311 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1312 
1313 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1314 			      gfp_t gfp_mask)
1315 {
1316 	if (skb_zcopy(orig)) {
1317 		if (skb_zcopy(nskb)) {
1318 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1319 			if (!gfp_mask) {
1320 				WARN_ON_ONCE(1);
1321 				return -ENOMEM;
1322 			}
1323 			if (skb_uarg(nskb) == skb_uarg(orig))
1324 				return 0;
1325 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1326 				return -EIO;
1327 		}
1328 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1329 	}
1330 	return 0;
1331 }
1332 
1333 /**
1334  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1335  *	@skb: the skb to modify
1336  *	@gfp_mask: allocation priority
1337  *
1338  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1339  *	It will copy all frags into kernel and drop the reference
1340  *	to userspace pages.
1341  *
1342  *	If this function is called from an interrupt gfp_mask() must be
1343  *	%GFP_ATOMIC.
1344  *
1345  *	Returns 0 on success or a negative error code on failure
1346  *	to allocate kernel memory to copy to.
1347  */
1348 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1349 {
1350 	int num_frags = skb_shinfo(skb)->nr_frags;
1351 	struct page *page, *head = NULL;
1352 	int i, new_frags;
1353 	u32 d_off;
1354 
1355 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1356 		return -EINVAL;
1357 
1358 	if (!num_frags)
1359 		goto release;
1360 
1361 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1362 	for (i = 0; i < new_frags; i++) {
1363 		page = alloc_page(gfp_mask);
1364 		if (!page) {
1365 			while (head) {
1366 				struct page *next = (struct page *)page_private(head);
1367 				put_page(head);
1368 				head = next;
1369 			}
1370 			return -ENOMEM;
1371 		}
1372 		set_page_private(page, (unsigned long)head);
1373 		head = page;
1374 	}
1375 
1376 	page = head;
1377 	d_off = 0;
1378 	for (i = 0; i < num_frags; i++) {
1379 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1380 		u32 p_off, p_len, copied;
1381 		struct page *p;
1382 		u8 *vaddr;
1383 
1384 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1385 				      p, p_off, p_len, copied) {
1386 			u32 copy, done = 0;
1387 			vaddr = kmap_atomic(p);
1388 
1389 			while (done < p_len) {
1390 				if (d_off == PAGE_SIZE) {
1391 					d_off = 0;
1392 					page = (struct page *)page_private(page);
1393 				}
1394 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1395 				memcpy(page_address(page) + d_off,
1396 				       vaddr + p_off + done, copy);
1397 				done += copy;
1398 				d_off += copy;
1399 			}
1400 			kunmap_atomic(vaddr);
1401 		}
1402 	}
1403 
1404 	/* skb frags release userspace buffers */
1405 	for (i = 0; i < num_frags; i++)
1406 		skb_frag_unref(skb, i);
1407 
1408 	/* skb frags point to kernel buffers */
1409 	for (i = 0; i < new_frags - 1; i++) {
1410 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1411 		head = (struct page *)page_private(head);
1412 	}
1413 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1414 	skb_shinfo(skb)->nr_frags = new_frags;
1415 
1416 release:
1417 	skb_zcopy_clear(skb, false);
1418 	return 0;
1419 }
1420 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1421 
1422 /**
1423  *	skb_clone	-	duplicate an sk_buff
1424  *	@skb: buffer to clone
1425  *	@gfp_mask: allocation priority
1426  *
1427  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1428  *	copies share the same packet data but not structure. The new
1429  *	buffer has a reference count of 1. If the allocation fails the
1430  *	function returns %NULL otherwise the new buffer is returned.
1431  *
1432  *	If this function is called from an interrupt gfp_mask() must be
1433  *	%GFP_ATOMIC.
1434  */
1435 
1436 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1437 {
1438 	struct sk_buff_fclones *fclones = container_of(skb,
1439 						       struct sk_buff_fclones,
1440 						       skb1);
1441 	struct sk_buff *n;
1442 
1443 	if (skb_orphan_frags(skb, gfp_mask))
1444 		return NULL;
1445 
1446 	if (skb->fclone == SKB_FCLONE_ORIG &&
1447 	    refcount_read(&fclones->fclone_ref) == 1) {
1448 		n = &fclones->skb2;
1449 		refcount_set(&fclones->fclone_ref, 2);
1450 	} else {
1451 		if (skb_pfmemalloc(skb))
1452 			gfp_mask |= __GFP_MEMALLOC;
1453 
1454 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1455 		if (!n)
1456 			return NULL;
1457 
1458 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1459 	}
1460 
1461 	return __skb_clone(n, skb);
1462 }
1463 EXPORT_SYMBOL(skb_clone);
1464 
1465 void skb_headers_offset_update(struct sk_buff *skb, int off)
1466 {
1467 	/* Only adjust this if it actually is csum_start rather than csum */
1468 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1469 		skb->csum_start += off;
1470 	/* {transport,network,mac}_header and tail are relative to skb->head */
1471 	skb->transport_header += off;
1472 	skb->network_header   += off;
1473 	if (skb_mac_header_was_set(skb))
1474 		skb->mac_header += off;
1475 	skb->inner_transport_header += off;
1476 	skb->inner_network_header += off;
1477 	skb->inner_mac_header += off;
1478 }
1479 EXPORT_SYMBOL(skb_headers_offset_update);
1480 
1481 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1482 {
1483 	__copy_skb_header(new, old);
1484 
1485 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1486 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1487 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1488 }
1489 EXPORT_SYMBOL(skb_copy_header);
1490 
1491 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1492 {
1493 	if (skb_pfmemalloc(skb))
1494 		return SKB_ALLOC_RX;
1495 	return 0;
1496 }
1497 
1498 /**
1499  *	skb_copy	-	create private copy of an sk_buff
1500  *	@skb: buffer to copy
1501  *	@gfp_mask: allocation priority
1502  *
1503  *	Make a copy of both an &sk_buff and its data. This is used when the
1504  *	caller wishes to modify the data and needs a private copy of the
1505  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1506  *	on success. The returned buffer has a reference count of 1.
1507  *
1508  *	As by-product this function converts non-linear &sk_buff to linear
1509  *	one, so that &sk_buff becomes completely private and caller is allowed
1510  *	to modify all the data of returned buffer. This means that this
1511  *	function is not recommended for use in circumstances when only
1512  *	header is going to be modified. Use pskb_copy() instead.
1513  */
1514 
1515 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1516 {
1517 	int headerlen = skb_headroom(skb);
1518 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1519 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1520 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1521 
1522 	if (!n)
1523 		return NULL;
1524 
1525 	/* Set the data pointer */
1526 	skb_reserve(n, headerlen);
1527 	/* Set the tail pointer and length */
1528 	skb_put(n, skb->len);
1529 
1530 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1531 
1532 	skb_copy_header(n, skb);
1533 	return n;
1534 }
1535 EXPORT_SYMBOL(skb_copy);
1536 
1537 /**
1538  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1539  *	@skb: buffer to copy
1540  *	@headroom: headroom of new skb
1541  *	@gfp_mask: allocation priority
1542  *	@fclone: if true allocate the copy of the skb from the fclone
1543  *	cache instead of the head cache; it is recommended to set this
1544  *	to true for the cases where the copy will likely be cloned
1545  *
1546  *	Make a copy of both an &sk_buff and part of its data, located
1547  *	in header. Fragmented data remain shared. This is used when
1548  *	the caller wishes to modify only header of &sk_buff and needs
1549  *	private copy of the header to alter. Returns %NULL on failure
1550  *	or the pointer to the buffer on success.
1551  *	The returned buffer has a reference count of 1.
1552  */
1553 
1554 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1555 				   gfp_t gfp_mask, bool fclone)
1556 {
1557 	unsigned int size = skb_headlen(skb) + headroom;
1558 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1559 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1560 
1561 	if (!n)
1562 		goto out;
1563 
1564 	/* Set the data pointer */
1565 	skb_reserve(n, headroom);
1566 	/* Set the tail pointer and length */
1567 	skb_put(n, skb_headlen(skb));
1568 	/* Copy the bytes */
1569 	skb_copy_from_linear_data(skb, n->data, n->len);
1570 
1571 	n->truesize += skb->data_len;
1572 	n->data_len  = skb->data_len;
1573 	n->len	     = skb->len;
1574 
1575 	if (skb_shinfo(skb)->nr_frags) {
1576 		int i;
1577 
1578 		if (skb_orphan_frags(skb, gfp_mask) ||
1579 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1580 			kfree_skb(n);
1581 			n = NULL;
1582 			goto out;
1583 		}
1584 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1585 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1586 			skb_frag_ref(skb, i);
1587 		}
1588 		skb_shinfo(n)->nr_frags = i;
1589 	}
1590 
1591 	if (skb_has_frag_list(skb)) {
1592 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1593 		skb_clone_fraglist(n);
1594 	}
1595 
1596 	skb_copy_header(n, skb);
1597 out:
1598 	return n;
1599 }
1600 EXPORT_SYMBOL(__pskb_copy_fclone);
1601 
1602 /**
1603  *	pskb_expand_head - reallocate header of &sk_buff
1604  *	@skb: buffer to reallocate
1605  *	@nhead: room to add at head
1606  *	@ntail: room to add at tail
1607  *	@gfp_mask: allocation priority
1608  *
1609  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1610  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1611  *	reference count of 1. Returns zero in the case of success or error,
1612  *	if expansion failed. In the last case, &sk_buff is not changed.
1613  *
1614  *	All the pointers pointing into skb header may change and must be
1615  *	reloaded after call to this function.
1616  */
1617 
1618 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1619 		     gfp_t gfp_mask)
1620 {
1621 	int i, osize = skb_end_offset(skb);
1622 	int size = osize + nhead + ntail;
1623 	long off;
1624 	u8 *data;
1625 
1626 	BUG_ON(nhead < 0);
1627 
1628 	BUG_ON(skb_shared(skb));
1629 
1630 	size = SKB_DATA_ALIGN(size);
1631 
1632 	if (skb_pfmemalloc(skb))
1633 		gfp_mask |= __GFP_MEMALLOC;
1634 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1635 			       gfp_mask, NUMA_NO_NODE, NULL);
1636 	if (!data)
1637 		goto nodata;
1638 	size = SKB_WITH_OVERHEAD(ksize(data));
1639 
1640 	/* Copy only real data... and, alas, header. This should be
1641 	 * optimized for the cases when header is void.
1642 	 */
1643 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1644 
1645 	memcpy((struct skb_shared_info *)(data + size),
1646 	       skb_shinfo(skb),
1647 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1648 
1649 	/*
1650 	 * if shinfo is shared we must drop the old head gracefully, but if it
1651 	 * is not we can just drop the old head and let the existing refcount
1652 	 * be since all we did is relocate the values
1653 	 */
1654 	if (skb_cloned(skb)) {
1655 		if (skb_orphan_frags(skb, gfp_mask))
1656 			goto nofrags;
1657 		if (skb_zcopy(skb))
1658 			refcount_inc(&skb_uarg(skb)->refcnt);
1659 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1660 			skb_frag_ref(skb, i);
1661 
1662 		if (skb_has_frag_list(skb))
1663 			skb_clone_fraglist(skb);
1664 
1665 		skb_release_data(skb);
1666 	} else {
1667 		skb_free_head(skb);
1668 	}
1669 	off = (data + nhead) - skb->head;
1670 
1671 	skb->head     = data;
1672 	skb->head_frag = 0;
1673 	skb->data    += off;
1674 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1675 	skb->end      = size;
1676 	off           = nhead;
1677 #else
1678 	skb->end      = skb->head + size;
1679 #endif
1680 	skb->tail	      += off;
1681 	skb_headers_offset_update(skb, nhead);
1682 	skb->cloned   = 0;
1683 	skb->hdr_len  = 0;
1684 	skb->nohdr    = 0;
1685 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1686 
1687 	skb_metadata_clear(skb);
1688 
1689 	/* It is not generally safe to change skb->truesize.
1690 	 * For the moment, we really care of rx path, or
1691 	 * when skb is orphaned (not attached to a socket).
1692 	 */
1693 	if (!skb->sk || skb->destructor == sock_edemux)
1694 		skb->truesize += size - osize;
1695 
1696 	return 0;
1697 
1698 nofrags:
1699 	kfree(data);
1700 nodata:
1701 	return -ENOMEM;
1702 }
1703 EXPORT_SYMBOL(pskb_expand_head);
1704 
1705 /* Make private copy of skb with writable head and some headroom */
1706 
1707 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1708 {
1709 	struct sk_buff *skb2;
1710 	int delta = headroom - skb_headroom(skb);
1711 
1712 	if (delta <= 0)
1713 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1714 	else {
1715 		skb2 = skb_clone(skb, GFP_ATOMIC);
1716 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1717 					     GFP_ATOMIC)) {
1718 			kfree_skb(skb2);
1719 			skb2 = NULL;
1720 		}
1721 	}
1722 	return skb2;
1723 }
1724 EXPORT_SYMBOL(skb_realloc_headroom);
1725 
1726 /**
1727  *	skb_copy_expand	-	copy and expand sk_buff
1728  *	@skb: buffer to copy
1729  *	@newheadroom: new free bytes at head
1730  *	@newtailroom: new free bytes at tail
1731  *	@gfp_mask: allocation priority
1732  *
1733  *	Make a copy of both an &sk_buff and its data and while doing so
1734  *	allocate additional space.
1735  *
1736  *	This is used when the caller wishes to modify the data and needs a
1737  *	private copy of the data to alter as well as more space for new fields.
1738  *	Returns %NULL on failure or the pointer to the buffer
1739  *	on success. The returned buffer has a reference count of 1.
1740  *
1741  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1742  *	is called from an interrupt.
1743  */
1744 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1745 				int newheadroom, int newtailroom,
1746 				gfp_t gfp_mask)
1747 {
1748 	/*
1749 	 *	Allocate the copy buffer
1750 	 */
1751 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1752 					gfp_mask, skb_alloc_rx_flag(skb),
1753 					NUMA_NO_NODE);
1754 	int oldheadroom = skb_headroom(skb);
1755 	int head_copy_len, head_copy_off;
1756 
1757 	if (!n)
1758 		return NULL;
1759 
1760 	skb_reserve(n, newheadroom);
1761 
1762 	/* Set the tail pointer and length */
1763 	skb_put(n, skb->len);
1764 
1765 	head_copy_len = oldheadroom;
1766 	head_copy_off = 0;
1767 	if (newheadroom <= head_copy_len)
1768 		head_copy_len = newheadroom;
1769 	else
1770 		head_copy_off = newheadroom - head_copy_len;
1771 
1772 	/* Copy the linear header and data. */
1773 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1774 			     skb->len + head_copy_len));
1775 
1776 	skb_copy_header(n, skb);
1777 
1778 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1779 
1780 	return n;
1781 }
1782 EXPORT_SYMBOL(skb_copy_expand);
1783 
1784 /**
1785  *	__skb_pad		-	zero pad the tail of an skb
1786  *	@skb: buffer to pad
1787  *	@pad: space to pad
1788  *	@free_on_error: free buffer on error
1789  *
1790  *	Ensure that a buffer is followed by a padding area that is zero
1791  *	filled. Used by network drivers which may DMA or transfer data
1792  *	beyond the buffer end onto the wire.
1793  *
1794  *	May return error in out of memory cases. The skb is freed on error
1795  *	if @free_on_error is true.
1796  */
1797 
1798 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1799 {
1800 	int err;
1801 	int ntail;
1802 
1803 	/* If the skbuff is non linear tailroom is always zero.. */
1804 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1805 		memset(skb->data+skb->len, 0, pad);
1806 		return 0;
1807 	}
1808 
1809 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1810 	if (likely(skb_cloned(skb) || ntail > 0)) {
1811 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1812 		if (unlikely(err))
1813 			goto free_skb;
1814 	}
1815 
1816 	/* FIXME: The use of this function with non-linear skb's really needs
1817 	 * to be audited.
1818 	 */
1819 	err = skb_linearize(skb);
1820 	if (unlikely(err))
1821 		goto free_skb;
1822 
1823 	memset(skb->data + skb->len, 0, pad);
1824 	return 0;
1825 
1826 free_skb:
1827 	if (free_on_error)
1828 		kfree_skb(skb);
1829 	return err;
1830 }
1831 EXPORT_SYMBOL(__skb_pad);
1832 
1833 /**
1834  *	pskb_put - add data to the tail of a potentially fragmented buffer
1835  *	@skb: start of the buffer to use
1836  *	@tail: tail fragment of the buffer to use
1837  *	@len: amount of data to add
1838  *
1839  *	This function extends the used data area of the potentially
1840  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1841  *	@skb itself. If this would exceed the total buffer size the kernel
1842  *	will panic. A pointer to the first byte of the extra data is
1843  *	returned.
1844  */
1845 
1846 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1847 {
1848 	if (tail != skb) {
1849 		skb->data_len += len;
1850 		skb->len += len;
1851 	}
1852 	return skb_put(tail, len);
1853 }
1854 EXPORT_SYMBOL_GPL(pskb_put);
1855 
1856 /**
1857  *	skb_put - add data to a buffer
1858  *	@skb: buffer to use
1859  *	@len: amount of data to add
1860  *
1861  *	This function extends the used data area of the buffer. If this would
1862  *	exceed the total buffer size the kernel will panic. A pointer to the
1863  *	first byte of the extra data is returned.
1864  */
1865 void *skb_put(struct sk_buff *skb, unsigned int len)
1866 {
1867 	void *tmp = skb_tail_pointer(skb);
1868 	SKB_LINEAR_ASSERT(skb);
1869 	skb->tail += len;
1870 	skb->len  += len;
1871 	if (unlikely(skb->tail > skb->end))
1872 		skb_over_panic(skb, len, __builtin_return_address(0));
1873 	return tmp;
1874 }
1875 EXPORT_SYMBOL(skb_put);
1876 
1877 /**
1878  *	skb_push - add data to the start of a buffer
1879  *	@skb: buffer to use
1880  *	@len: amount of data to add
1881  *
1882  *	This function extends the used data area of the buffer at the buffer
1883  *	start. If this would exceed the total buffer headroom the kernel will
1884  *	panic. A pointer to the first byte of the extra data is returned.
1885  */
1886 void *skb_push(struct sk_buff *skb, unsigned int len)
1887 {
1888 	skb->data -= len;
1889 	skb->len  += len;
1890 	if (unlikely(skb->data < skb->head))
1891 		skb_under_panic(skb, len, __builtin_return_address(0));
1892 	return skb->data;
1893 }
1894 EXPORT_SYMBOL(skb_push);
1895 
1896 /**
1897  *	skb_pull - remove data from the start of a buffer
1898  *	@skb: buffer to use
1899  *	@len: amount of data to remove
1900  *
1901  *	This function removes data from the start of a buffer, returning
1902  *	the memory to the headroom. A pointer to the next data in the buffer
1903  *	is returned. Once the data has been pulled future pushes will overwrite
1904  *	the old data.
1905  */
1906 void *skb_pull(struct sk_buff *skb, unsigned int len)
1907 {
1908 	return skb_pull_inline(skb, len);
1909 }
1910 EXPORT_SYMBOL(skb_pull);
1911 
1912 /**
1913  *	skb_trim - remove end from a buffer
1914  *	@skb: buffer to alter
1915  *	@len: new length
1916  *
1917  *	Cut the length of a buffer down by removing data from the tail. If
1918  *	the buffer is already under the length specified it is not modified.
1919  *	The skb must be linear.
1920  */
1921 void skb_trim(struct sk_buff *skb, unsigned int len)
1922 {
1923 	if (skb->len > len)
1924 		__skb_trim(skb, len);
1925 }
1926 EXPORT_SYMBOL(skb_trim);
1927 
1928 /* Trims skb to length len. It can change skb pointers.
1929  */
1930 
1931 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1932 {
1933 	struct sk_buff **fragp;
1934 	struct sk_buff *frag;
1935 	int offset = skb_headlen(skb);
1936 	int nfrags = skb_shinfo(skb)->nr_frags;
1937 	int i;
1938 	int err;
1939 
1940 	if (skb_cloned(skb) &&
1941 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1942 		return err;
1943 
1944 	i = 0;
1945 	if (offset >= len)
1946 		goto drop_pages;
1947 
1948 	for (; i < nfrags; i++) {
1949 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1950 
1951 		if (end < len) {
1952 			offset = end;
1953 			continue;
1954 		}
1955 
1956 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1957 
1958 drop_pages:
1959 		skb_shinfo(skb)->nr_frags = i;
1960 
1961 		for (; i < nfrags; i++)
1962 			skb_frag_unref(skb, i);
1963 
1964 		if (skb_has_frag_list(skb))
1965 			skb_drop_fraglist(skb);
1966 		goto done;
1967 	}
1968 
1969 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1970 	     fragp = &frag->next) {
1971 		int end = offset + frag->len;
1972 
1973 		if (skb_shared(frag)) {
1974 			struct sk_buff *nfrag;
1975 
1976 			nfrag = skb_clone(frag, GFP_ATOMIC);
1977 			if (unlikely(!nfrag))
1978 				return -ENOMEM;
1979 
1980 			nfrag->next = frag->next;
1981 			consume_skb(frag);
1982 			frag = nfrag;
1983 			*fragp = frag;
1984 		}
1985 
1986 		if (end < len) {
1987 			offset = end;
1988 			continue;
1989 		}
1990 
1991 		if (end > len &&
1992 		    unlikely((err = pskb_trim(frag, len - offset))))
1993 			return err;
1994 
1995 		if (frag->next)
1996 			skb_drop_list(&frag->next);
1997 		break;
1998 	}
1999 
2000 done:
2001 	if (len > skb_headlen(skb)) {
2002 		skb->data_len -= skb->len - len;
2003 		skb->len       = len;
2004 	} else {
2005 		skb->len       = len;
2006 		skb->data_len  = 0;
2007 		skb_set_tail_pointer(skb, len);
2008 	}
2009 
2010 	if (!skb->sk || skb->destructor == sock_edemux)
2011 		skb_condense(skb);
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL(___pskb_trim);
2015 
2016 /* Note : use pskb_trim_rcsum() instead of calling this directly
2017  */
2018 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2019 {
2020 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2021 		int delta = skb->len - len;
2022 
2023 		skb->csum = csum_block_sub(skb->csum,
2024 					   skb_checksum(skb, len, delta, 0),
2025 					   len);
2026 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2027 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2028 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2029 
2030 		if (offset + sizeof(__sum16) > hdlen)
2031 			return -EINVAL;
2032 	}
2033 	return __pskb_trim(skb, len);
2034 }
2035 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2036 
2037 /**
2038  *	__pskb_pull_tail - advance tail of skb header
2039  *	@skb: buffer to reallocate
2040  *	@delta: number of bytes to advance tail
2041  *
2042  *	The function makes a sense only on a fragmented &sk_buff,
2043  *	it expands header moving its tail forward and copying necessary
2044  *	data from fragmented part.
2045  *
2046  *	&sk_buff MUST have reference count of 1.
2047  *
2048  *	Returns %NULL (and &sk_buff does not change) if pull failed
2049  *	or value of new tail of skb in the case of success.
2050  *
2051  *	All the pointers pointing into skb header may change and must be
2052  *	reloaded after call to this function.
2053  */
2054 
2055 /* Moves tail of skb head forward, copying data from fragmented part,
2056  * when it is necessary.
2057  * 1. It may fail due to malloc failure.
2058  * 2. It may change skb pointers.
2059  *
2060  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2061  */
2062 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2063 {
2064 	/* If skb has not enough free space at tail, get new one
2065 	 * plus 128 bytes for future expansions. If we have enough
2066 	 * room at tail, reallocate without expansion only if skb is cloned.
2067 	 */
2068 	int i, k, eat = (skb->tail + delta) - skb->end;
2069 
2070 	if (eat > 0 || skb_cloned(skb)) {
2071 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2072 				     GFP_ATOMIC))
2073 			return NULL;
2074 	}
2075 
2076 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2077 			     skb_tail_pointer(skb), delta));
2078 
2079 	/* Optimization: no fragments, no reasons to preestimate
2080 	 * size of pulled pages. Superb.
2081 	 */
2082 	if (!skb_has_frag_list(skb))
2083 		goto pull_pages;
2084 
2085 	/* Estimate size of pulled pages. */
2086 	eat = delta;
2087 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2088 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2089 
2090 		if (size >= eat)
2091 			goto pull_pages;
2092 		eat -= size;
2093 	}
2094 
2095 	/* If we need update frag list, we are in troubles.
2096 	 * Certainly, it is possible to add an offset to skb data,
2097 	 * but taking into account that pulling is expected to
2098 	 * be very rare operation, it is worth to fight against
2099 	 * further bloating skb head and crucify ourselves here instead.
2100 	 * Pure masohism, indeed. 8)8)
2101 	 */
2102 	if (eat) {
2103 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2104 		struct sk_buff *clone = NULL;
2105 		struct sk_buff *insp = NULL;
2106 
2107 		do {
2108 			if (list->len <= eat) {
2109 				/* Eaten as whole. */
2110 				eat -= list->len;
2111 				list = list->next;
2112 				insp = list;
2113 			} else {
2114 				/* Eaten partially. */
2115 
2116 				if (skb_shared(list)) {
2117 					/* Sucks! We need to fork list. :-( */
2118 					clone = skb_clone(list, GFP_ATOMIC);
2119 					if (!clone)
2120 						return NULL;
2121 					insp = list->next;
2122 					list = clone;
2123 				} else {
2124 					/* This may be pulled without
2125 					 * problems. */
2126 					insp = list;
2127 				}
2128 				if (!pskb_pull(list, eat)) {
2129 					kfree_skb(clone);
2130 					return NULL;
2131 				}
2132 				break;
2133 			}
2134 		} while (eat);
2135 
2136 		/* Free pulled out fragments. */
2137 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2138 			skb_shinfo(skb)->frag_list = list->next;
2139 			kfree_skb(list);
2140 		}
2141 		/* And insert new clone at head. */
2142 		if (clone) {
2143 			clone->next = list;
2144 			skb_shinfo(skb)->frag_list = clone;
2145 		}
2146 	}
2147 	/* Success! Now we may commit changes to skb data. */
2148 
2149 pull_pages:
2150 	eat = delta;
2151 	k = 0;
2152 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2153 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2154 
2155 		if (size <= eat) {
2156 			skb_frag_unref(skb, i);
2157 			eat -= size;
2158 		} else {
2159 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2160 
2161 			*frag = skb_shinfo(skb)->frags[i];
2162 			if (eat) {
2163 				skb_frag_off_add(frag, eat);
2164 				skb_frag_size_sub(frag, eat);
2165 				if (!i)
2166 					goto end;
2167 				eat = 0;
2168 			}
2169 			k++;
2170 		}
2171 	}
2172 	skb_shinfo(skb)->nr_frags = k;
2173 
2174 end:
2175 	skb->tail     += delta;
2176 	skb->data_len -= delta;
2177 
2178 	if (!skb->data_len)
2179 		skb_zcopy_clear(skb, false);
2180 
2181 	return skb_tail_pointer(skb);
2182 }
2183 EXPORT_SYMBOL(__pskb_pull_tail);
2184 
2185 /**
2186  *	skb_copy_bits - copy bits from skb to kernel buffer
2187  *	@skb: source skb
2188  *	@offset: offset in source
2189  *	@to: destination buffer
2190  *	@len: number of bytes to copy
2191  *
2192  *	Copy the specified number of bytes from the source skb to the
2193  *	destination buffer.
2194  *
2195  *	CAUTION ! :
2196  *		If its prototype is ever changed,
2197  *		check arch/{*}/net/{*}.S files,
2198  *		since it is called from BPF assembly code.
2199  */
2200 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2201 {
2202 	int start = skb_headlen(skb);
2203 	struct sk_buff *frag_iter;
2204 	int i, copy;
2205 
2206 	if (offset > (int)skb->len - len)
2207 		goto fault;
2208 
2209 	/* Copy header. */
2210 	if ((copy = start - offset) > 0) {
2211 		if (copy > len)
2212 			copy = len;
2213 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2214 		if ((len -= copy) == 0)
2215 			return 0;
2216 		offset += copy;
2217 		to     += copy;
2218 	}
2219 
2220 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2221 		int end;
2222 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2223 
2224 		WARN_ON(start > offset + len);
2225 
2226 		end = start + skb_frag_size(f);
2227 		if ((copy = end - offset) > 0) {
2228 			u32 p_off, p_len, copied;
2229 			struct page *p;
2230 			u8 *vaddr;
2231 
2232 			if (copy > len)
2233 				copy = len;
2234 
2235 			skb_frag_foreach_page(f,
2236 					      skb_frag_off(f) + offset - start,
2237 					      copy, p, p_off, p_len, copied) {
2238 				vaddr = kmap_atomic(p);
2239 				memcpy(to + copied, vaddr + p_off, p_len);
2240 				kunmap_atomic(vaddr);
2241 			}
2242 
2243 			if ((len -= copy) == 0)
2244 				return 0;
2245 			offset += copy;
2246 			to     += copy;
2247 		}
2248 		start = end;
2249 	}
2250 
2251 	skb_walk_frags(skb, frag_iter) {
2252 		int end;
2253 
2254 		WARN_ON(start > offset + len);
2255 
2256 		end = start + frag_iter->len;
2257 		if ((copy = end - offset) > 0) {
2258 			if (copy > len)
2259 				copy = len;
2260 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2261 				goto fault;
2262 			if ((len -= copy) == 0)
2263 				return 0;
2264 			offset += copy;
2265 			to     += copy;
2266 		}
2267 		start = end;
2268 	}
2269 
2270 	if (!len)
2271 		return 0;
2272 
2273 fault:
2274 	return -EFAULT;
2275 }
2276 EXPORT_SYMBOL(skb_copy_bits);
2277 
2278 /*
2279  * Callback from splice_to_pipe(), if we need to release some pages
2280  * at the end of the spd in case we error'ed out in filling the pipe.
2281  */
2282 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2283 {
2284 	put_page(spd->pages[i]);
2285 }
2286 
2287 static struct page *linear_to_page(struct page *page, unsigned int *len,
2288 				   unsigned int *offset,
2289 				   struct sock *sk)
2290 {
2291 	struct page_frag *pfrag = sk_page_frag(sk);
2292 
2293 	if (!sk_page_frag_refill(sk, pfrag))
2294 		return NULL;
2295 
2296 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2297 
2298 	memcpy(page_address(pfrag->page) + pfrag->offset,
2299 	       page_address(page) + *offset, *len);
2300 	*offset = pfrag->offset;
2301 	pfrag->offset += *len;
2302 
2303 	return pfrag->page;
2304 }
2305 
2306 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2307 			     struct page *page,
2308 			     unsigned int offset)
2309 {
2310 	return	spd->nr_pages &&
2311 		spd->pages[spd->nr_pages - 1] == page &&
2312 		(spd->partial[spd->nr_pages - 1].offset +
2313 		 spd->partial[spd->nr_pages - 1].len == offset);
2314 }
2315 
2316 /*
2317  * Fill page/offset/length into spd, if it can hold more pages.
2318  */
2319 static bool spd_fill_page(struct splice_pipe_desc *spd,
2320 			  struct pipe_inode_info *pipe, struct page *page,
2321 			  unsigned int *len, unsigned int offset,
2322 			  bool linear,
2323 			  struct sock *sk)
2324 {
2325 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2326 		return true;
2327 
2328 	if (linear) {
2329 		page = linear_to_page(page, len, &offset, sk);
2330 		if (!page)
2331 			return true;
2332 	}
2333 	if (spd_can_coalesce(spd, page, offset)) {
2334 		spd->partial[spd->nr_pages - 1].len += *len;
2335 		return false;
2336 	}
2337 	get_page(page);
2338 	spd->pages[spd->nr_pages] = page;
2339 	spd->partial[spd->nr_pages].len = *len;
2340 	spd->partial[spd->nr_pages].offset = offset;
2341 	spd->nr_pages++;
2342 
2343 	return false;
2344 }
2345 
2346 static bool __splice_segment(struct page *page, unsigned int poff,
2347 			     unsigned int plen, unsigned int *off,
2348 			     unsigned int *len,
2349 			     struct splice_pipe_desc *spd, bool linear,
2350 			     struct sock *sk,
2351 			     struct pipe_inode_info *pipe)
2352 {
2353 	if (!*len)
2354 		return true;
2355 
2356 	/* skip this segment if already processed */
2357 	if (*off >= plen) {
2358 		*off -= plen;
2359 		return false;
2360 	}
2361 
2362 	/* ignore any bits we already processed */
2363 	poff += *off;
2364 	plen -= *off;
2365 	*off = 0;
2366 
2367 	do {
2368 		unsigned int flen = min(*len, plen);
2369 
2370 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2371 				  linear, sk))
2372 			return true;
2373 		poff += flen;
2374 		plen -= flen;
2375 		*len -= flen;
2376 	} while (*len && plen);
2377 
2378 	return false;
2379 }
2380 
2381 /*
2382  * Map linear and fragment data from the skb to spd. It reports true if the
2383  * pipe is full or if we already spliced the requested length.
2384  */
2385 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2386 			      unsigned int *offset, unsigned int *len,
2387 			      struct splice_pipe_desc *spd, struct sock *sk)
2388 {
2389 	int seg;
2390 	struct sk_buff *iter;
2391 
2392 	/* map the linear part :
2393 	 * If skb->head_frag is set, this 'linear' part is backed by a
2394 	 * fragment, and if the head is not shared with any clones then
2395 	 * we can avoid a copy since we own the head portion of this page.
2396 	 */
2397 	if (__splice_segment(virt_to_page(skb->data),
2398 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2399 			     skb_headlen(skb),
2400 			     offset, len, spd,
2401 			     skb_head_is_locked(skb),
2402 			     sk, pipe))
2403 		return true;
2404 
2405 	/*
2406 	 * then map the fragments
2407 	 */
2408 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2409 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2410 
2411 		if (__splice_segment(skb_frag_page(f),
2412 				     skb_frag_off(f), skb_frag_size(f),
2413 				     offset, len, spd, false, sk, pipe))
2414 			return true;
2415 	}
2416 
2417 	skb_walk_frags(skb, iter) {
2418 		if (*offset >= iter->len) {
2419 			*offset -= iter->len;
2420 			continue;
2421 		}
2422 		/* __skb_splice_bits() only fails if the output has no room
2423 		 * left, so no point in going over the frag_list for the error
2424 		 * case.
2425 		 */
2426 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2427 			return true;
2428 	}
2429 
2430 	return false;
2431 }
2432 
2433 /*
2434  * Map data from the skb to a pipe. Should handle both the linear part,
2435  * the fragments, and the frag list.
2436  */
2437 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2438 		    struct pipe_inode_info *pipe, unsigned int tlen,
2439 		    unsigned int flags)
2440 {
2441 	struct partial_page partial[MAX_SKB_FRAGS];
2442 	struct page *pages[MAX_SKB_FRAGS];
2443 	struct splice_pipe_desc spd = {
2444 		.pages = pages,
2445 		.partial = partial,
2446 		.nr_pages_max = MAX_SKB_FRAGS,
2447 		.ops = &nosteal_pipe_buf_ops,
2448 		.spd_release = sock_spd_release,
2449 	};
2450 	int ret = 0;
2451 
2452 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2453 
2454 	if (spd.nr_pages)
2455 		ret = splice_to_pipe(pipe, &spd);
2456 
2457 	return ret;
2458 }
2459 EXPORT_SYMBOL_GPL(skb_splice_bits);
2460 
2461 /* Send skb data on a socket. Socket must be locked. */
2462 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2463 			 int len)
2464 {
2465 	unsigned int orig_len = len;
2466 	struct sk_buff *head = skb;
2467 	unsigned short fragidx;
2468 	int slen, ret;
2469 
2470 do_frag_list:
2471 
2472 	/* Deal with head data */
2473 	while (offset < skb_headlen(skb) && len) {
2474 		struct kvec kv;
2475 		struct msghdr msg;
2476 
2477 		slen = min_t(int, len, skb_headlen(skb) - offset);
2478 		kv.iov_base = skb->data + offset;
2479 		kv.iov_len = slen;
2480 		memset(&msg, 0, sizeof(msg));
2481 		msg.msg_flags = MSG_DONTWAIT;
2482 
2483 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2484 		if (ret <= 0)
2485 			goto error;
2486 
2487 		offset += ret;
2488 		len -= ret;
2489 	}
2490 
2491 	/* All the data was skb head? */
2492 	if (!len)
2493 		goto out;
2494 
2495 	/* Make offset relative to start of frags */
2496 	offset -= skb_headlen(skb);
2497 
2498 	/* Find where we are in frag list */
2499 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2500 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2501 
2502 		if (offset < skb_frag_size(frag))
2503 			break;
2504 
2505 		offset -= skb_frag_size(frag);
2506 	}
2507 
2508 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2509 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2510 
2511 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2512 
2513 		while (slen) {
2514 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2515 						     skb_frag_off(frag) + offset,
2516 						     slen, MSG_DONTWAIT);
2517 			if (ret <= 0)
2518 				goto error;
2519 
2520 			len -= ret;
2521 			offset += ret;
2522 			slen -= ret;
2523 		}
2524 
2525 		offset = 0;
2526 	}
2527 
2528 	if (len) {
2529 		/* Process any frag lists */
2530 
2531 		if (skb == head) {
2532 			if (skb_has_frag_list(skb)) {
2533 				skb = skb_shinfo(skb)->frag_list;
2534 				goto do_frag_list;
2535 			}
2536 		} else if (skb->next) {
2537 			skb = skb->next;
2538 			goto do_frag_list;
2539 		}
2540 	}
2541 
2542 out:
2543 	return orig_len - len;
2544 
2545 error:
2546 	return orig_len == len ? ret : orig_len - len;
2547 }
2548 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2549 
2550 /**
2551  *	skb_store_bits - store bits from kernel buffer to skb
2552  *	@skb: destination buffer
2553  *	@offset: offset in destination
2554  *	@from: source buffer
2555  *	@len: number of bytes to copy
2556  *
2557  *	Copy the specified number of bytes from the source buffer to the
2558  *	destination skb.  This function handles all the messy bits of
2559  *	traversing fragment lists and such.
2560  */
2561 
2562 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2563 {
2564 	int start = skb_headlen(skb);
2565 	struct sk_buff *frag_iter;
2566 	int i, copy;
2567 
2568 	if (offset > (int)skb->len - len)
2569 		goto fault;
2570 
2571 	if ((copy = start - offset) > 0) {
2572 		if (copy > len)
2573 			copy = len;
2574 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2575 		if ((len -= copy) == 0)
2576 			return 0;
2577 		offset += copy;
2578 		from += copy;
2579 	}
2580 
2581 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2582 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2583 		int end;
2584 
2585 		WARN_ON(start > offset + len);
2586 
2587 		end = start + skb_frag_size(frag);
2588 		if ((copy = end - offset) > 0) {
2589 			u32 p_off, p_len, copied;
2590 			struct page *p;
2591 			u8 *vaddr;
2592 
2593 			if (copy > len)
2594 				copy = len;
2595 
2596 			skb_frag_foreach_page(frag,
2597 					      skb_frag_off(frag) + offset - start,
2598 					      copy, p, p_off, p_len, copied) {
2599 				vaddr = kmap_atomic(p);
2600 				memcpy(vaddr + p_off, from + copied, p_len);
2601 				kunmap_atomic(vaddr);
2602 			}
2603 
2604 			if ((len -= copy) == 0)
2605 				return 0;
2606 			offset += copy;
2607 			from += copy;
2608 		}
2609 		start = end;
2610 	}
2611 
2612 	skb_walk_frags(skb, frag_iter) {
2613 		int end;
2614 
2615 		WARN_ON(start > offset + len);
2616 
2617 		end = start + frag_iter->len;
2618 		if ((copy = end - offset) > 0) {
2619 			if (copy > len)
2620 				copy = len;
2621 			if (skb_store_bits(frag_iter, offset - start,
2622 					   from, copy))
2623 				goto fault;
2624 			if ((len -= copy) == 0)
2625 				return 0;
2626 			offset += copy;
2627 			from += copy;
2628 		}
2629 		start = end;
2630 	}
2631 	if (!len)
2632 		return 0;
2633 
2634 fault:
2635 	return -EFAULT;
2636 }
2637 EXPORT_SYMBOL(skb_store_bits);
2638 
2639 /* Checksum skb data. */
2640 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2641 		      __wsum csum, const struct skb_checksum_ops *ops)
2642 {
2643 	int start = skb_headlen(skb);
2644 	int i, copy = start - offset;
2645 	struct sk_buff *frag_iter;
2646 	int pos = 0;
2647 
2648 	/* Checksum header. */
2649 	if (copy > 0) {
2650 		if (copy > len)
2651 			copy = len;
2652 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2653 				       skb->data + offset, copy, csum);
2654 		if ((len -= copy) == 0)
2655 			return csum;
2656 		offset += copy;
2657 		pos	= copy;
2658 	}
2659 
2660 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2661 		int end;
2662 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2663 
2664 		WARN_ON(start > offset + len);
2665 
2666 		end = start + skb_frag_size(frag);
2667 		if ((copy = end - offset) > 0) {
2668 			u32 p_off, p_len, copied;
2669 			struct page *p;
2670 			__wsum csum2;
2671 			u8 *vaddr;
2672 
2673 			if (copy > len)
2674 				copy = len;
2675 
2676 			skb_frag_foreach_page(frag,
2677 					      skb_frag_off(frag) + offset - start,
2678 					      copy, p, p_off, p_len, copied) {
2679 				vaddr = kmap_atomic(p);
2680 				csum2 = INDIRECT_CALL_1(ops->update,
2681 							csum_partial_ext,
2682 							vaddr + p_off, p_len, 0);
2683 				kunmap_atomic(vaddr);
2684 				csum = INDIRECT_CALL_1(ops->combine,
2685 						       csum_block_add_ext, csum,
2686 						       csum2, pos, p_len);
2687 				pos += p_len;
2688 			}
2689 
2690 			if (!(len -= copy))
2691 				return csum;
2692 			offset += copy;
2693 		}
2694 		start = end;
2695 	}
2696 
2697 	skb_walk_frags(skb, frag_iter) {
2698 		int end;
2699 
2700 		WARN_ON(start > offset + len);
2701 
2702 		end = start + frag_iter->len;
2703 		if ((copy = end - offset) > 0) {
2704 			__wsum csum2;
2705 			if (copy > len)
2706 				copy = len;
2707 			csum2 = __skb_checksum(frag_iter, offset - start,
2708 					       copy, 0, ops);
2709 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2710 					       csum, csum2, pos, copy);
2711 			if ((len -= copy) == 0)
2712 				return csum;
2713 			offset += copy;
2714 			pos    += copy;
2715 		}
2716 		start = end;
2717 	}
2718 	BUG_ON(len);
2719 
2720 	return csum;
2721 }
2722 EXPORT_SYMBOL(__skb_checksum);
2723 
2724 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2725 		    int len, __wsum csum)
2726 {
2727 	const struct skb_checksum_ops ops = {
2728 		.update  = csum_partial_ext,
2729 		.combine = csum_block_add_ext,
2730 	};
2731 
2732 	return __skb_checksum(skb, offset, len, csum, &ops);
2733 }
2734 EXPORT_SYMBOL(skb_checksum);
2735 
2736 /* Both of above in one bottle. */
2737 
2738 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2739 				    u8 *to, int len)
2740 {
2741 	int start = skb_headlen(skb);
2742 	int i, copy = start - offset;
2743 	struct sk_buff *frag_iter;
2744 	int pos = 0;
2745 	__wsum csum = 0;
2746 
2747 	/* Copy header. */
2748 	if (copy > 0) {
2749 		if (copy > len)
2750 			copy = len;
2751 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2752 						 copy);
2753 		if ((len -= copy) == 0)
2754 			return csum;
2755 		offset += copy;
2756 		to     += copy;
2757 		pos	= copy;
2758 	}
2759 
2760 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2761 		int end;
2762 
2763 		WARN_ON(start > offset + len);
2764 
2765 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2766 		if ((copy = end - offset) > 0) {
2767 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 			u32 p_off, p_len, copied;
2769 			struct page *p;
2770 			__wsum csum2;
2771 			u8 *vaddr;
2772 
2773 			if (copy > len)
2774 				copy = len;
2775 
2776 			skb_frag_foreach_page(frag,
2777 					      skb_frag_off(frag) + offset - start,
2778 					      copy, p, p_off, p_len, copied) {
2779 				vaddr = kmap_atomic(p);
2780 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2781 								  to + copied,
2782 								  p_len);
2783 				kunmap_atomic(vaddr);
2784 				csum = csum_block_add(csum, csum2, pos);
2785 				pos += p_len;
2786 			}
2787 
2788 			if (!(len -= copy))
2789 				return csum;
2790 			offset += copy;
2791 			to     += copy;
2792 		}
2793 		start = end;
2794 	}
2795 
2796 	skb_walk_frags(skb, frag_iter) {
2797 		__wsum csum2;
2798 		int end;
2799 
2800 		WARN_ON(start > offset + len);
2801 
2802 		end = start + frag_iter->len;
2803 		if ((copy = end - offset) > 0) {
2804 			if (copy > len)
2805 				copy = len;
2806 			csum2 = skb_copy_and_csum_bits(frag_iter,
2807 						       offset - start,
2808 						       to, copy);
2809 			csum = csum_block_add(csum, csum2, pos);
2810 			if ((len -= copy) == 0)
2811 				return csum;
2812 			offset += copy;
2813 			to     += copy;
2814 			pos    += copy;
2815 		}
2816 		start = end;
2817 	}
2818 	BUG_ON(len);
2819 	return csum;
2820 }
2821 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2822 
2823 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2824 {
2825 	__sum16 sum;
2826 
2827 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2828 	/* See comments in __skb_checksum_complete(). */
2829 	if (likely(!sum)) {
2830 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2831 		    !skb->csum_complete_sw)
2832 			netdev_rx_csum_fault(skb->dev, skb);
2833 	}
2834 	if (!skb_shared(skb))
2835 		skb->csum_valid = !sum;
2836 	return sum;
2837 }
2838 EXPORT_SYMBOL(__skb_checksum_complete_head);
2839 
2840 /* This function assumes skb->csum already holds pseudo header's checksum,
2841  * which has been changed from the hardware checksum, for example, by
2842  * __skb_checksum_validate_complete(). And, the original skb->csum must
2843  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2844  *
2845  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2846  * zero. The new checksum is stored back into skb->csum unless the skb is
2847  * shared.
2848  */
2849 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2850 {
2851 	__wsum csum;
2852 	__sum16 sum;
2853 
2854 	csum = skb_checksum(skb, 0, skb->len, 0);
2855 
2856 	sum = csum_fold(csum_add(skb->csum, csum));
2857 	/* This check is inverted, because we already knew the hardware
2858 	 * checksum is invalid before calling this function. So, if the
2859 	 * re-computed checksum is valid instead, then we have a mismatch
2860 	 * between the original skb->csum and skb_checksum(). This means either
2861 	 * the original hardware checksum is incorrect or we screw up skb->csum
2862 	 * when moving skb->data around.
2863 	 */
2864 	if (likely(!sum)) {
2865 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2866 		    !skb->csum_complete_sw)
2867 			netdev_rx_csum_fault(skb->dev, skb);
2868 	}
2869 
2870 	if (!skb_shared(skb)) {
2871 		/* Save full packet checksum */
2872 		skb->csum = csum;
2873 		skb->ip_summed = CHECKSUM_COMPLETE;
2874 		skb->csum_complete_sw = 1;
2875 		skb->csum_valid = !sum;
2876 	}
2877 
2878 	return sum;
2879 }
2880 EXPORT_SYMBOL(__skb_checksum_complete);
2881 
2882 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2883 {
2884 	net_warn_ratelimited(
2885 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2886 		__func__);
2887 	return 0;
2888 }
2889 
2890 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2891 				       int offset, int len)
2892 {
2893 	net_warn_ratelimited(
2894 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2895 		__func__);
2896 	return 0;
2897 }
2898 
2899 static const struct skb_checksum_ops default_crc32c_ops = {
2900 	.update  = warn_crc32c_csum_update,
2901 	.combine = warn_crc32c_csum_combine,
2902 };
2903 
2904 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2905 	&default_crc32c_ops;
2906 EXPORT_SYMBOL(crc32c_csum_stub);
2907 
2908  /**
2909  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2910  *	@from: source buffer
2911  *
2912  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2913  *	into skb_zerocopy().
2914  */
2915 unsigned int
2916 skb_zerocopy_headlen(const struct sk_buff *from)
2917 {
2918 	unsigned int hlen = 0;
2919 
2920 	if (!from->head_frag ||
2921 	    skb_headlen(from) < L1_CACHE_BYTES ||
2922 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2923 		hlen = skb_headlen(from);
2924 
2925 	if (skb_has_frag_list(from))
2926 		hlen = from->len;
2927 
2928 	return hlen;
2929 }
2930 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2931 
2932 /**
2933  *	skb_zerocopy - Zero copy skb to skb
2934  *	@to: destination buffer
2935  *	@from: source buffer
2936  *	@len: number of bytes to copy from source buffer
2937  *	@hlen: size of linear headroom in destination buffer
2938  *
2939  *	Copies up to `len` bytes from `from` to `to` by creating references
2940  *	to the frags in the source buffer.
2941  *
2942  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2943  *	headroom in the `to` buffer.
2944  *
2945  *	Return value:
2946  *	0: everything is OK
2947  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2948  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2949  */
2950 int
2951 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2952 {
2953 	int i, j = 0;
2954 	int plen = 0; /* length of skb->head fragment */
2955 	int ret;
2956 	struct page *page;
2957 	unsigned int offset;
2958 
2959 	BUG_ON(!from->head_frag && !hlen);
2960 
2961 	/* dont bother with small payloads */
2962 	if (len <= skb_tailroom(to))
2963 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2964 
2965 	if (hlen) {
2966 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2967 		if (unlikely(ret))
2968 			return ret;
2969 		len -= hlen;
2970 	} else {
2971 		plen = min_t(int, skb_headlen(from), len);
2972 		if (plen) {
2973 			page = virt_to_head_page(from->head);
2974 			offset = from->data - (unsigned char *)page_address(page);
2975 			__skb_fill_page_desc(to, 0, page, offset, plen);
2976 			get_page(page);
2977 			j = 1;
2978 			len -= plen;
2979 		}
2980 	}
2981 
2982 	to->truesize += len + plen;
2983 	to->len += len + plen;
2984 	to->data_len += len + plen;
2985 
2986 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2987 		skb_tx_error(from);
2988 		return -ENOMEM;
2989 	}
2990 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2991 
2992 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2993 		int size;
2994 
2995 		if (!len)
2996 			break;
2997 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2998 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2999 					len);
3000 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3001 		len -= size;
3002 		skb_frag_ref(to, j);
3003 		j++;
3004 	}
3005 	skb_shinfo(to)->nr_frags = j;
3006 
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(skb_zerocopy);
3010 
3011 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3012 {
3013 	__wsum csum;
3014 	long csstart;
3015 
3016 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3017 		csstart = skb_checksum_start_offset(skb);
3018 	else
3019 		csstart = skb_headlen(skb);
3020 
3021 	BUG_ON(csstart > skb_headlen(skb));
3022 
3023 	skb_copy_from_linear_data(skb, to, csstart);
3024 
3025 	csum = 0;
3026 	if (csstart != skb->len)
3027 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3028 					      skb->len - csstart);
3029 
3030 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3031 		long csstuff = csstart + skb->csum_offset;
3032 
3033 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3034 	}
3035 }
3036 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3037 
3038 /**
3039  *	skb_dequeue - remove from the head of the queue
3040  *	@list: list to dequeue from
3041  *
3042  *	Remove the head of the list. The list lock is taken so the function
3043  *	may be used safely with other locking list functions. The head item is
3044  *	returned or %NULL if the list is empty.
3045  */
3046 
3047 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3048 {
3049 	unsigned long flags;
3050 	struct sk_buff *result;
3051 
3052 	spin_lock_irqsave(&list->lock, flags);
3053 	result = __skb_dequeue(list);
3054 	spin_unlock_irqrestore(&list->lock, flags);
3055 	return result;
3056 }
3057 EXPORT_SYMBOL(skb_dequeue);
3058 
3059 /**
3060  *	skb_dequeue_tail - remove from the tail of the queue
3061  *	@list: list to dequeue from
3062  *
3063  *	Remove the tail of the list. The list lock is taken so the function
3064  *	may be used safely with other locking list functions. The tail item is
3065  *	returned or %NULL if the list is empty.
3066  */
3067 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3068 {
3069 	unsigned long flags;
3070 	struct sk_buff *result;
3071 
3072 	spin_lock_irqsave(&list->lock, flags);
3073 	result = __skb_dequeue_tail(list);
3074 	spin_unlock_irqrestore(&list->lock, flags);
3075 	return result;
3076 }
3077 EXPORT_SYMBOL(skb_dequeue_tail);
3078 
3079 /**
3080  *	skb_queue_purge - empty a list
3081  *	@list: list to empty
3082  *
3083  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3084  *	the list and one reference dropped. This function takes the list
3085  *	lock and is atomic with respect to other list locking functions.
3086  */
3087 void skb_queue_purge(struct sk_buff_head *list)
3088 {
3089 	struct sk_buff *skb;
3090 	while ((skb = skb_dequeue(list)) != NULL)
3091 		kfree_skb(skb);
3092 }
3093 EXPORT_SYMBOL(skb_queue_purge);
3094 
3095 /**
3096  *	skb_rbtree_purge - empty a skb rbtree
3097  *	@root: root of the rbtree to empty
3098  *	Return value: the sum of truesizes of all purged skbs.
3099  *
3100  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3101  *	the list and one reference dropped. This function does not take
3102  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3103  *	out-of-order queue is protected by the socket lock).
3104  */
3105 unsigned int skb_rbtree_purge(struct rb_root *root)
3106 {
3107 	struct rb_node *p = rb_first(root);
3108 	unsigned int sum = 0;
3109 
3110 	while (p) {
3111 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3112 
3113 		p = rb_next(p);
3114 		rb_erase(&skb->rbnode, root);
3115 		sum += skb->truesize;
3116 		kfree_skb(skb);
3117 	}
3118 	return sum;
3119 }
3120 
3121 /**
3122  *	skb_queue_head - queue a buffer at the list head
3123  *	@list: list to use
3124  *	@newsk: buffer to queue
3125  *
3126  *	Queue a buffer at the start of the list. This function takes the
3127  *	list lock and can be used safely with other locking &sk_buff functions
3128  *	safely.
3129  *
3130  *	A buffer cannot be placed on two lists at the same time.
3131  */
3132 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3133 {
3134 	unsigned long flags;
3135 
3136 	spin_lock_irqsave(&list->lock, flags);
3137 	__skb_queue_head(list, newsk);
3138 	spin_unlock_irqrestore(&list->lock, flags);
3139 }
3140 EXPORT_SYMBOL(skb_queue_head);
3141 
3142 /**
3143  *	skb_queue_tail - queue a buffer at the list tail
3144  *	@list: list to use
3145  *	@newsk: buffer to queue
3146  *
3147  *	Queue a buffer at the tail of the list. This function takes the
3148  *	list lock and can be used safely with other locking &sk_buff functions
3149  *	safely.
3150  *
3151  *	A buffer cannot be placed on two lists at the same time.
3152  */
3153 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3154 {
3155 	unsigned long flags;
3156 
3157 	spin_lock_irqsave(&list->lock, flags);
3158 	__skb_queue_tail(list, newsk);
3159 	spin_unlock_irqrestore(&list->lock, flags);
3160 }
3161 EXPORT_SYMBOL(skb_queue_tail);
3162 
3163 /**
3164  *	skb_unlink	-	remove a buffer from a list
3165  *	@skb: buffer to remove
3166  *	@list: list to use
3167  *
3168  *	Remove a packet from a list. The list locks are taken and this
3169  *	function is atomic with respect to other list locked calls
3170  *
3171  *	You must know what list the SKB is on.
3172  */
3173 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3174 {
3175 	unsigned long flags;
3176 
3177 	spin_lock_irqsave(&list->lock, flags);
3178 	__skb_unlink(skb, list);
3179 	spin_unlock_irqrestore(&list->lock, flags);
3180 }
3181 EXPORT_SYMBOL(skb_unlink);
3182 
3183 /**
3184  *	skb_append	-	append a buffer
3185  *	@old: buffer to insert after
3186  *	@newsk: buffer to insert
3187  *	@list: list to use
3188  *
3189  *	Place a packet after a given packet in a list. The list locks are taken
3190  *	and this function is atomic with respect to other list locked calls.
3191  *	A buffer cannot be placed on two lists at the same time.
3192  */
3193 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3194 {
3195 	unsigned long flags;
3196 
3197 	spin_lock_irqsave(&list->lock, flags);
3198 	__skb_queue_after(list, old, newsk);
3199 	spin_unlock_irqrestore(&list->lock, flags);
3200 }
3201 EXPORT_SYMBOL(skb_append);
3202 
3203 static inline void skb_split_inside_header(struct sk_buff *skb,
3204 					   struct sk_buff* skb1,
3205 					   const u32 len, const int pos)
3206 {
3207 	int i;
3208 
3209 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3210 					 pos - len);
3211 	/* And move data appendix as is. */
3212 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3213 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3214 
3215 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3216 	skb_shinfo(skb)->nr_frags  = 0;
3217 	skb1->data_len		   = skb->data_len;
3218 	skb1->len		   += skb1->data_len;
3219 	skb->data_len		   = 0;
3220 	skb->len		   = len;
3221 	skb_set_tail_pointer(skb, len);
3222 }
3223 
3224 static inline void skb_split_no_header(struct sk_buff *skb,
3225 				       struct sk_buff* skb1,
3226 				       const u32 len, int pos)
3227 {
3228 	int i, k = 0;
3229 	const int nfrags = skb_shinfo(skb)->nr_frags;
3230 
3231 	skb_shinfo(skb)->nr_frags = 0;
3232 	skb1->len		  = skb1->data_len = skb->len - len;
3233 	skb->len		  = len;
3234 	skb->data_len		  = len - pos;
3235 
3236 	for (i = 0; i < nfrags; i++) {
3237 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3238 
3239 		if (pos + size > len) {
3240 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3241 
3242 			if (pos < len) {
3243 				/* Split frag.
3244 				 * We have two variants in this case:
3245 				 * 1. Move all the frag to the second
3246 				 *    part, if it is possible. F.e.
3247 				 *    this approach is mandatory for TUX,
3248 				 *    where splitting is expensive.
3249 				 * 2. Split is accurately. We make this.
3250 				 */
3251 				skb_frag_ref(skb, i);
3252 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3253 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3254 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3255 				skb_shinfo(skb)->nr_frags++;
3256 			}
3257 			k++;
3258 		} else
3259 			skb_shinfo(skb)->nr_frags++;
3260 		pos += size;
3261 	}
3262 	skb_shinfo(skb1)->nr_frags = k;
3263 }
3264 
3265 /**
3266  * skb_split - Split fragmented skb to two parts at length len.
3267  * @skb: the buffer to split
3268  * @skb1: the buffer to receive the second part
3269  * @len: new length for skb
3270  */
3271 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3272 {
3273 	int pos = skb_headlen(skb);
3274 
3275 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3276 				      SKBTX_SHARED_FRAG;
3277 	skb_zerocopy_clone(skb1, skb, 0);
3278 	if (len < pos)	/* Split line is inside header. */
3279 		skb_split_inside_header(skb, skb1, len, pos);
3280 	else		/* Second chunk has no header, nothing to copy. */
3281 		skb_split_no_header(skb, skb1, len, pos);
3282 }
3283 EXPORT_SYMBOL(skb_split);
3284 
3285 /* Shifting from/to a cloned skb is a no-go.
3286  *
3287  * Caller cannot keep skb_shinfo related pointers past calling here!
3288  */
3289 static int skb_prepare_for_shift(struct sk_buff *skb)
3290 {
3291 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3292 }
3293 
3294 /**
3295  * skb_shift - Shifts paged data partially from skb to another
3296  * @tgt: buffer into which tail data gets added
3297  * @skb: buffer from which the paged data comes from
3298  * @shiftlen: shift up to this many bytes
3299  *
3300  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3301  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3302  * It's up to caller to free skb if everything was shifted.
3303  *
3304  * If @tgt runs out of frags, the whole operation is aborted.
3305  *
3306  * Skb cannot include anything else but paged data while tgt is allowed
3307  * to have non-paged data as well.
3308  *
3309  * TODO: full sized shift could be optimized but that would need
3310  * specialized skb free'er to handle frags without up-to-date nr_frags.
3311  */
3312 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3313 {
3314 	int from, to, merge, todo;
3315 	skb_frag_t *fragfrom, *fragto;
3316 
3317 	BUG_ON(shiftlen > skb->len);
3318 
3319 	if (skb_headlen(skb))
3320 		return 0;
3321 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3322 		return 0;
3323 
3324 	todo = shiftlen;
3325 	from = 0;
3326 	to = skb_shinfo(tgt)->nr_frags;
3327 	fragfrom = &skb_shinfo(skb)->frags[from];
3328 
3329 	/* Actual merge is delayed until the point when we know we can
3330 	 * commit all, so that we don't have to undo partial changes
3331 	 */
3332 	if (!to ||
3333 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3334 			      skb_frag_off(fragfrom))) {
3335 		merge = -1;
3336 	} else {
3337 		merge = to - 1;
3338 
3339 		todo -= skb_frag_size(fragfrom);
3340 		if (todo < 0) {
3341 			if (skb_prepare_for_shift(skb) ||
3342 			    skb_prepare_for_shift(tgt))
3343 				return 0;
3344 
3345 			/* All previous frag pointers might be stale! */
3346 			fragfrom = &skb_shinfo(skb)->frags[from];
3347 			fragto = &skb_shinfo(tgt)->frags[merge];
3348 
3349 			skb_frag_size_add(fragto, shiftlen);
3350 			skb_frag_size_sub(fragfrom, shiftlen);
3351 			skb_frag_off_add(fragfrom, shiftlen);
3352 
3353 			goto onlymerged;
3354 		}
3355 
3356 		from++;
3357 	}
3358 
3359 	/* Skip full, not-fitting skb to avoid expensive operations */
3360 	if ((shiftlen == skb->len) &&
3361 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3362 		return 0;
3363 
3364 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3365 		return 0;
3366 
3367 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3368 		if (to == MAX_SKB_FRAGS)
3369 			return 0;
3370 
3371 		fragfrom = &skb_shinfo(skb)->frags[from];
3372 		fragto = &skb_shinfo(tgt)->frags[to];
3373 
3374 		if (todo >= skb_frag_size(fragfrom)) {
3375 			*fragto = *fragfrom;
3376 			todo -= skb_frag_size(fragfrom);
3377 			from++;
3378 			to++;
3379 
3380 		} else {
3381 			__skb_frag_ref(fragfrom);
3382 			skb_frag_page_copy(fragto, fragfrom);
3383 			skb_frag_off_copy(fragto, fragfrom);
3384 			skb_frag_size_set(fragto, todo);
3385 
3386 			skb_frag_off_add(fragfrom, todo);
3387 			skb_frag_size_sub(fragfrom, todo);
3388 			todo = 0;
3389 
3390 			to++;
3391 			break;
3392 		}
3393 	}
3394 
3395 	/* Ready to "commit" this state change to tgt */
3396 	skb_shinfo(tgt)->nr_frags = to;
3397 
3398 	if (merge >= 0) {
3399 		fragfrom = &skb_shinfo(skb)->frags[0];
3400 		fragto = &skb_shinfo(tgt)->frags[merge];
3401 
3402 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3403 		__skb_frag_unref(fragfrom);
3404 	}
3405 
3406 	/* Reposition in the original skb */
3407 	to = 0;
3408 	while (from < skb_shinfo(skb)->nr_frags)
3409 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3410 	skb_shinfo(skb)->nr_frags = to;
3411 
3412 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3413 
3414 onlymerged:
3415 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3416 	 * the other hand might need it if it needs to be resent
3417 	 */
3418 	tgt->ip_summed = CHECKSUM_PARTIAL;
3419 	skb->ip_summed = CHECKSUM_PARTIAL;
3420 
3421 	/* Yak, is it really working this way? Some helper please? */
3422 	skb->len -= shiftlen;
3423 	skb->data_len -= shiftlen;
3424 	skb->truesize -= shiftlen;
3425 	tgt->len += shiftlen;
3426 	tgt->data_len += shiftlen;
3427 	tgt->truesize += shiftlen;
3428 
3429 	return shiftlen;
3430 }
3431 
3432 /**
3433  * skb_prepare_seq_read - Prepare a sequential read of skb data
3434  * @skb: the buffer to read
3435  * @from: lower offset of data to be read
3436  * @to: upper offset of data to be read
3437  * @st: state variable
3438  *
3439  * Initializes the specified state variable. Must be called before
3440  * invoking skb_seq_read() for the first time.
3441  */
3442 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3443 			  unsigned int to, struct skb_seq_state *st)
3444 {
3445 	st->lower_offset = from;
3446 	st->upper_offset = to;
3447 	st->root_skb = st->cur_skb = skb;
3448 	st->frag_idx = st->stepped_offset = 0;
3449 	st->frag_data = NULL;
3450 	st->frag_off = 0;
3451 }
3452 EXPORT_SYMBOL(skb_prepare_seq_read);
3453 
3454 /**
3455  * skb_seq_read - Sequentially read skb data
3456  * @consumed: number of bytes consumed by the caller so far
3457  * @data: destination pointer for data to be returned
3458  * @st: state variable
3459  *
3460  * Reads a block of skb data at @consumed relative to the
3461  * lower offset specified to skb_prepare_seq_read(). Assigns
3462  * the head of the data block to @data and returns the length
3463  * of the block or 0 if the end of the skb data or the upper
3464  * offset has been reached.
3465  *
3466  * The caller is not required to consume all of the data
3467  * returned, i.e. @consumed is typically set to the number
3468  * of bytes already consumed and the next call to
3469  * skb_seq_read() will return the remaining part of the block.
3470  *
3471  * Note 1: The size of each block of data returned can be arbitrary,
3472  *       this limitation is the cost for zerocopy sequential
3473  *       reads of potentially non linear data.
3474  *
3475  * Note 2: Fragment lists within fragments are not implemented
3476  *       at the moment, state->root_skb could be replaced with
3477  *       a stack for this purpose.
3478  */
3479 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3480 			  struct skb_seq_state *st)
3481 {
3482 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3483 	skb_frag_t *frag;
3484 
3485 	if (unlikely(abs_offset >= st->upper_offset)) {
3486 		if (st->frag_data) {
3487 			kunmap_atomic(st->frag_data);
3488 			st->frag_data = NULL;
3489 		}
3490 		return 0;
3491 	}
3492 
3493 next_skb:
3494 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3495 
3496 	if (abs_offset < block_limit && !st->frag_data) {
3497 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3498 		return block_limit - abs_offset;
3499 	}
3500 
3501 	if (st->frag_idx == 0 && !st->frag_data)
3502 		st->stepped_offset += skb_headlen(st->cur_skb);
3503 
3504 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3505 		unsigned int pg_idx, pg_off, pg_sz;
3506 
3507 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3508 
3509 		pg_idx = 0;
3510 		pg_off = skb_frag_off(frag);
3511 		pg_sz = skb_frag_size(frag);
3512 
3513 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3514 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3515 			pg_off = offset_in_page(pg_off + st->frag_off);
3516 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3517 						    PAGE_SIZE - pg_off);
3518 		}
3519 
3520 		block_limit = pg_sz + st->stepped_offset;
3521 		if (abs_offset < block_limit) {
3522 			if (!st->frag_data)
3523 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3524 
3525 			*data = (u8 *)st->frag_data + pg_off +
3526 				(abs_offset - st->stepped_offset);
3527 
3528 			return block_limit - abs_offset;
3529 		}
3530 
3531 		if (st->frag_data) {
3532 			kunmap_atomic(st->frag_data);
3533 			st->frag_data = NULL;
3534 		}
3535 
3536 		st->stepped_offset += pg_sz;
3537 		st->frag_off += pg_sz;
3538 		if (st->frag_off == skb_frag_size(frag)) {
3539 			st->frag_off = 0;
3540 			st->frag_idx++;
3541 		}
3542 	}
3543 
3544 	if (st->frag_data) {
3545 		kunmap_atomic(st->frag_data);
3546 		st->frag_data = NULL;
3547 	}
3548 
3549 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3550 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3551 		st->frag_idx = 0;
3552 		goto next_skb;
3553 	} else if (st->cur_skb->next) {
3554 		st->cur_skb = st->cur_skb->next;
3555 		st->frag_idx = 0;
3556 		goto next_skb;
3557 	}
3558 
3559 	return 0;
3560 }
3561 EXPORT_SYMBOL(skb_seq_read);
3562 
3563 /**
3564  * skb_abort_seq_read - Abort a sequential read of skb data
3565  * @st: state variable
3566  *
3567  * Must be called if skb_seq_read() was not called until it
3568  * returned 0.
3569  */
3570 void skb_abort_seq_read(struct skb_seq_state *st)
3571 {
3572 	if (st->frag_data)
3573 		kunmap_atomic(st->frag_data);
3574 }
3575 EXPORT_SYMBOL(skb_abort_seq_read);
3576 
3577 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3578 
3579 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3580 					  struct ts_config *conf,
3581 					  struct ts_state *state)
3582 {
3583 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3584 }
3585 
3586 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3587 {
3588 	skb_abort_seq_read(TS_SKB_CB(state));
3589 }
3590 
3591 /**
3592  * skb_find_text - Find a text pattern in skb data
3593  * @skb: the buffer to look in
3594  * @from: search offset
3595  * @to: search limit
3596  * @config: textsearch configuration
3597  *
3598  * Finds a pattern in the skb data according to the specified
3599  * textsearch configuration. Use textsearch_next() to retrieve
3600  * subsequent occurrences of the pattern. Returns the offset
3601  * to the first occurrence or UINT_MAX if no match was found.
3602  */
3603 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3604 			   unsigned int to, struct ts_config *config)
3605 {
3606 	struct ts_state state;
3607 	unsigned int ret;
3608 
3609 	config->get_next_block = skb_ts_get_next_block;
3610 	config->finish = skb_ts_finish;
3611 
3612 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3613 
3614 	ret = textsearch_find(config, &state);
3615 	return (ret <= to - from ? ret : UINT_MAX);
3616 }
3617 EXPORT_SYMBOL(skb_find_text);
3618 
3619 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3620 			 int offset, size_t size)
3621 {
3622 	int i = skb_shinfo(skb)->nr_frags;
3623 
3624 	if (skb_can_coalesce(skb, i, page, offset)) {
3625 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3626 	} else if (i < MAX_SKB_FRAGS) {
3627 		get_page(page);
3628 		skb_fill_page_desc(skb, i, page, offset, size);
3629 	} else {
3630 		return -EMSGSIZE;
3631 	}
3632 
3633 	return 0;
3634 }
3635 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3636 
3637 /**
3638  *	skb_pull_rcsum - pull skb and update receive checksum
3639  *	@skb: buffer to update
3640  *	@len: length of data pulled
3641  *
3642  *	This function performs an skb_pull on the packet and updates
3643  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3644  *	receive path processing instead of skb_pull unless you know
3645  *	that the checksum difference is zero (e.g., a valid IP header)
3646  *	or you are setting ip_summed to CHECKSUM_NONE.
3647  */
3648 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3649 {
3650 	unsigned char *data = skb->data;
3651 
3652 	BUG_ON(len > skb->len);
3653 	__skb_pull(skb, len);
3654 	skb_postpull_rcsum(skb, data, len);
3655 	return skb->data;
3656 }
3657 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3658 
3659 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3660 {
3661 	skb_frag_t head_frag;
3662 	struct page *page;
3663 
3664 	page = virt_to_head_page(frag_skb->head);
3665 	__skb_frag_set_page(&head_frag, page);
3666 	skb_frag_off_set(&head_frag, frag_skb->data -
3667 			 (unsigned char *)page_address(page));
3668 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3669 	return head_frag;
3670 }
3671 
3672 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3673 				 netdev_features_t features,
3674 				 unsigned int offset)
3675 {
3676 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3677 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3678 	unsigned int delta_truesize = 0;
3679 	unsigned int delta_len = 0;
3680 	struct sk_buff *tail = NULL;
3681 	struct sk_buff *nskb, *tmp;
3682 	int err;
3683 
3684 	skb_push(skb, -skb_network_offset(skb) + offset);
3685 
3686 	skb_shinfo(skb)->frag_list = NULL;
3687 
3688 	do {
3689 		nskb = list_skb;
3690 		list_skb = list_skb->next;
3691 
3692 		err = 0;
3693 		if (skb_shared(nskb)) {
3694 			tmp = skb_clone(nskb, GFP_ATOMIC);
3695 			if (tmp) {
3696 				consume_skb(nskb);
3697 				nskb = tmp;
3698 				err = skb_unclone(nskb, GFP_ATOMIC);
3699 			} else {
3700 				err = -ENOMEM;
3701 			}
3702 		}
3703 
3704 		if (!tail)
3705 			skb->next = nskb;
3706 		else
3707 			tail->next = nskb;
3708 
3709 		if (unlikely(err)) {
3710 			nskb->next = list_skb;
3711 			goto err_linearize;
3712 		}
3713 
3714 		tail = nskb;
3715 
3716 		delta_len += nskb->len;
3717 		delta_truesize += nskb->truesize;
3718 
3719 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3720 
3721 		skb_release_head_state(nskb);
3722 		 __copy_skb_header(nskb, skb);
3723 
3724 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3725 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3726 						 nskb->data - tnl_hlen,
3727 						 offset + tnl_hlen);
3728 
3729 		if (skb_needs_linearize(nskb, features) &&
3730 		    __skb_linearize(nskb))
3731 			goto err_linearize;
3732 
3733 	} while (list_skb);
3734 
3735 	skb->truesize = skb->truesize - delta_truesize;
3736 	skb->data_len = skb->data_len - delta_len;
3737 	skb->len = skb->len - delta_len;
3738 
3739 	skb_gso_reset(skb);
3740 
3741 	skb->prev = tail;
3742 
3743 	if (skb_needs_linearize(skb, features) &&
3744 	    __skb_linearize(skb))
3745 		goto err_linearize;
3746 
3747 	skb_get(skb);
3748 
3749 	return skb;
3750 
3751 err_linearize:
3752 	kfree_skb_list(skb->next);
3753 	skb->next = NULL;
3754 	return ERR_PTR(-ENOMEM);
3755 }
3756 EXPORT_SYMBOL_GPL(skb_segment_list);
3757 
3758 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3759 {
3760 	if (unlikely(p->len + skb->len >= 65536))
3761 		return -E2BIG;
3762 
3763 	if (NAPI_GRO_CB(p)->last == p)
3764 		skb_shinfo(p)->frag_list = skb;
3765 	else
3766 		NAPI_GRO_CB(p)->last->next = skb;
3767 
3768 	skb_pull(skb, skb_gro_offset(skb));
3769 
3770 	NAPI_GRO_CB(p)->last = skb;
3771 	NAPI_GRO_CB(p)->count++;
3772 	p->data_len += skb->len;
3773 	p->truesize += skb->truesize;
3774 	p->len += skb->len;
3775 
3776 	NAPI_GRO_CB(skb)->same_flow = 1;
3777 
3778 	return 0;
3779 }
3780 
3781 /**
3782  *	skb_segment - Perform protocol segmentation on skb.
3783  *	@head_skb: buffer to segment
3784  *	@features: features for the output path (see dev->features)
3785  *
3786  *	This function performs segmentation on the given skb.  It returns
3787  *	a pointer to the first in a list of new skbs for the segments.
3788  *	In case of error it returns ERR_PTR(err).
3789  */
3790 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3791 			    netdev_features_t features)
3792 {
3793 	struct sk_buff *segs = NULL;
3794 	struct sk_buff *tail = NULL;
3795 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3796 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3797 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3798 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3799 	struct sk_buff *frag_skb = head_skb;
3800 	unsigned int offset = doffset;
3801 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3802 	unsigned int partial_segs = 0;
3803 	unsigned int headroom;
3804 	unsigned int len = head_skb->len;
3805 	__be16 proto;
3806 	bool csum, sg;
3807 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3808 	int err = -ENOMEM;
3809 	int i = 0;
3810 	int pos;
3811 
3812 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3813 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3814 		/* gso_size is untrusted, and we have a frag_list with a linear
3815 		 * non head_frag head.
3816 		 *
3817 		 * (we assume checking the first list_skb member suffices;
3818 		 * i.e if either of the list_skb members have non head_frag
3819 		 * head, then the first one has too).
3820 		 *
3821 		 * If head_skb's headlen does not fit requested gso_size, it
3822 		 * means that the frag_list members do NOT terminate on exact
3823 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3824 		 * sharing. Therefore we must fallback to copying the frag_list
3825 		 * skbs; we do so by disabling SG.
3826 		 */
3827 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3828 			features &= ~NETIF_F_SG;
3829 	}
3830 
3831 	__skb_push(head_skb, doffset);
3832 	proto = skb_network_protocol(head_skb, NULL);
3833 	if (unlikely(!proto))
3834 		return ERR_PTR(-EINVAL);
3835 
3836 	sg = !!(features & NETIF_F_SG);
3837 	csum = !!can_checksum_protocol(features, proto);
3838 
3839 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3840 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3841 			struct sk_buff *iter;
3842 			unsigned int frag_len;
3843 
3844 			if (!list_skb ||
3845 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3846 				goto normal;
3847 
3848 			/* If we get here then all the required
3849 			 * GSO features except frag_list are supported.
3850 			 * Try to split the SKB to multiple GSO SKBs
3851 			 * with no frag_list.
3852 			 * Currently we can do that only when the buffers don't
3853 			 * have a linear part and all the buffers except
3854 			 * the last are of the same length.
3855 			 */
3856 			frag_len = list_skb->len;
3857 			skb_walk_frags(head_skb, iter) {
3858 				if (frag_len != iter->len && iter->next)
3859 					goto normal;
3860 				if (skb_headlen(iter) && !iter->head_frag)
3861 					goto normal;
3862 
3863 				len -= iter->len;
3864 			}
3865 
3866 			if (len != frag_len)
3867 				goto normal;
3868 		}
3869 
3870 		/* GSO partial only requires that we trim off any excess that
3871 		 * doesn't fit into an MSS sized block, so take care of that
3872 		 * now.
3873 		 */
3874 		partial_segs = len / mss;
3875 		if (partial_segs > 1)
3876 			mss *= partial_segs;
3877 		else
3878 			partial_segs = 0;
3879 	}
3880 
3881 normal:
3882 	headroom = skb_headroom(head_skb);
3883 	pos = skb_headlen(head_skb);
3884 
3885 	do {
3886 		struct sk_buff *nskb;
3887 		skb_frag_t *nskb_frag;
3888 		int hsize;
3889 		int size;
3890 
3891 		if (unlikely(mss == GSO_BY_FRAGS)) {
3892 			len = list_skb->len;
3893 		} else {
3894 			len = head_skb->len - offset;
3895 			if (len > mss)
3896 				len = mss;
3897 		}
3898 
3899 		hsize = skb_headlen(head_skb) - offset;
3900 		if (hsize < 0)
3901 			hsize = 0;
3902 		if (hsize > len || !sg)
3903 			hsize = len;
3904 
3905 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3906 		    (skb_headlen(list_skb) == len || sg)) {
3907 			BUG_ON(skb_headlen(list_skb) > len);
3908 
3909 			i = 0;
3910 			nfrags = skb_shinfo(list_skb)->nr_frags;
3911 			frag = skb_shinfo(list_skb)->frags;
3912 			frag_skb = list_skb;
3913 			pos += skb_headlen(list_skb);
3914 
3915 			while (pos < offset + len) {
3916 				BUG_ON(i >= nfrags);
3917 
3918 				size = skb_frag_size(frag);
3919 				if (pos + size > offset + len)
3920 					break;
3921 
3922 				i++;
3923 				pos += size;
3924 				frag++;
3925 			}
3926 
3927 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3928 			list_skb = list_skb->next;
3929 
3930 			if (unlikely(!nskb))
3931 				goto err;
3932 
3933 			if (unlikely(pskb_trim(nskb, len))) {
3934 				kfree_skb(nskb);
3935 				goto err;
3936 			}
3937 
3938 			hsize = skb_end_offset(nskb);
3939 			if (skb_cow_head(nskb, doffset + headroom)) {
3940 				kfree_skb(nskb);
3941 				goto err;
3942 			}
3943 
3944 			nskb->truesize += skb_end_offset(nskb) - hsize;
3945 			skb_release_head_state(nskb);
3946 			__skb_push(nskb, doffset);
3947 		} else {
3948 			nskb = __alloc_skb(hsize + doffset + headroom,
3949 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3950 					   NUMA_NO_NODE);
3951 
3952 			if (unlikely(!nskb))
3953 				goto err;
3954 
3955 			skb_reserve(nskb, headroom);
3956 			__skb_put(nskb, doffset);
3957 		}
3958 
3959 		if (segs)
3960 			tail->next = nskb;
3961 		else
3962 			segs = nskb;
3963 		tail = nskb;
3964 
3965 		__copy_skb_header(nskb, head_skb);
3966 
3967 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3968 		skb_reset_mac_len(nskb);
3969 
3970 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3971 						 nskb->data - tnl_hlen,
3972 						 doffset + tnl_hlen);
3973 
3974 		if (nskb->len == len + doffset)
3975 			goto perform_csum_check;
3976 
3977 		if (!sg) {
3978 			if (!csum) {
3979 				if (!nskb->remcsum_offload)
3980 					nskb->ip_summed = CHECKSUM_NONE;
3981 				SKB_GSO_CB(nskb)->csum =
3982 					skb_copy_and_csum_bits(head_skb, offset,
3983 							       skb_put(nskb,
3984 								       len),
3985 							       len);
3986 				SKB_GSO_CB(nskb)->csum_start =
3987 					skb_headroom(nskb) + doffset;
3988 			} else {
3989 				skb_copy_bits(head_skb, offset,
3990 					      skb_put(nskb, len),
3991 					      len);
3992 			}
3993 			continue;
3994 		}
3995 
3996 		nskb_frag = skb_shinfo(nskb)->frags;
3997 
3998 		skb_copy_from_linear_data_offset(head_skb, offset,
3999 						 skb_put(nskb, hsize), hsize);
4000 
4001 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4002 					      SKBTX_SHARED_FRAG;
4003 
4004 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4005 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4006 			goto err;
4007 
4008 		while (pos < offset + len) {
4009 			if (i >= nfrags) {
4010 				i = 0;
4011 				nfrags = skb_shinfo(list_skb)->nr_frags;
4012 				frag = skb_shinfo(list_skb)->frags;
4013 				frag_skb = list_skb;
4014 				if (!skb_headlen(list_skb)) {
4015 					BUG_ON(!nfrags);
4016 				} else {
4017 					BUG_ON(!list_skb->head_frag);
4018 
4019 					/* to make room for head_frag. */
4020 					i--;
4021 					frag--;
4022 				}
4023 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4024 				    skb_zerocopy_clone(nskb, frag_skb,
4025 						       GFP_ATOMIC))
4026 					goto err;
4027 
4028 				list_skb = list_skb->next;
4029 			}
4030 
4031 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4032 				     MAX_SKB_FRAGS)) {
4033 				net_warn_ratelimited(
4034 					"skb_segment: too many frags: %u %u\n",
4035 					pos, mss);
4036 				err = -EINVAL;
4037 				goto err;
4038 			}
4039 
4040 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4041 			__skb_frag_ref(nskb_frag);
4042 			size = skb_frag_size(nskb_frag);
4043 
4044 			if (pos < offset) {
4045 				skb_frag_off_add(nskb_frag, offset - pos);
4046 				skb_frag_size_sub(nskb_frag, offset - pos);
4047 			}
4048 
4049 			skb_shinfo(nskb)->nr_frags++;
4050 
4051 			if (pos + size <= offset + len) {
4052 				i++;
4053 				frag++;
4054 				pos += size;
4055 			} else {
4056 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4057 				goto skip_fraglist;
4058 			}
4059 
4060 			nskb_frag++;
4061 		}
4062 
4063 skip_fraglist:
4064 		nskb->data_len = len - hsize;
4065 		nskb->len += nskb->data_len;
4066 		nskb->truesize += nskb->data_len;
4067 
4068 perform_csum_check:
4069 		if (!csum) {
4070 			if (skb_has_shared_frag(nskb) &&
4071 			    __skb_linearize(nskb))
4072 				goto err;
4073 
4074 			if (!nskb->remcsum_offload)
4075 				nskb->ip_summed = CHECKSUM_NONE;
4076 			SKB_GSO_CB(nskb)->csum =
4077 				skb_checksum(nskb, doffset,
4078 					     nskb->len - doffset, 0);
4079 			SKB_GSO_CB(nskb)->csum_start =
4080 				skb_headroom(nskb) + doffset;
4081 		}
4082 	} while ((offset += len) < head_skb->len);
4083 
4084 	/* Some callers want to get the end of the list.
4085 	 * Put it in segs->prev to avoid walking the list.
4086 	 * (see validate_xmit_skb_list() for example)
4087 	 */
4088 	segs->prev = tail;
4089 
4090 	if (partial_segs) {
4091 		struct sk_buff *iter;
4092 		int type = skb_shinfo(head_skb)->gso_type;
4093 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4094 
4095 		/* Update type to add partial and then remove dodgy if set */
4096 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4097 		type &= ~SKB_GSO_DODGY;
4098 
4099 		/* Update GSO info and prepare to start updating headers on
4100 		 * our way back down the stack of protocols.
4101 		 */
4102 		for (iter = segs; iter; iter = iter->next) {
4103 			skb_shinfo(iter)->gso_size = gso_size;
4104 			skb_shinfo(iter)->gso_segs = partial_segs;
4105 			skb_shinfo(iter)->gso_type = type;
4106 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4107 		}
4108 
4109 		if (tail->len - doffset <= gso_size)
4110 			skb_shinfo(tail)->gso_size = 0;
4111 		else if (tail != segs)
4112 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4113 	}
4114 
4115 	/* Following permits correct backpressure, for protocols
4116 	 * using skb_set_owner_w().
4117 	 * Idea is to tranfert ownership from head_skb to last segment.
4118 	 */
4119 	if (head_skb->destructor == sock_wfree) {
4120 		swap(tail->truesize, head_skb->truesize);
4121 		swap(tail->destructor, head_skb->destructor);
4122 		swap(tail->sk, head_skb->sk);
4123 	}
4124 	return segs;
4125 
4126 err:
4127 	kfree_skb_list(segs);
4128 	return ERR_PTR(err);
4129 }
4130 EXPORT_SYMBOL_GPL(skb_segment);
4131 
4132 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4133 {
4134 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4135 	unsigned int offset = skb_gro_offset(skb);
4136 	unsigned int headlen = skb_headlen(skb);
4137 	unsigned int len = skb_gro_len(skb);
4138 	unsigned int delta_truesize;
4139 	struct sk_buff *lp;
4140 
4141 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4142 		return -E2BIG;
4143 
4144 	lp = NAPI_GRO_CB(p)->last;
4145 	pinfo = skb_shinfo(lp);
4146 
4147 	if (headlen <= offset) {
4148 		skb_frag_t *frag;
4149 		skb_frag_t *frag2;
4150 		int i = skbinfo->nr_frags;
4151 		int nr_frags = pinfo->nr_frags + i;
4152 
4153 		if (nr_frags > MAX_SKB_FRAGS)
4154 			goto merge;
4155 
4156 		offset -= headlen;
4157 		pinfo->nr_frags = nr_frags;
4158 		skbinfo->nr_frags = 0;
4159 
4160 		frag = pinfo->frags + nr_frags;
4161 		frag2 = skbinfo->frags + i;
4162 		do {
4163 			*--frag = *--frag2;
4164 		} while (--i);
4165 
4166 		skb_frag_off_add(frag, offset);
4167 		skb_frag_size_sub(frag, offset);
4168 
4169 		/* all fragments truesize : remove (head size + sk_buff) */
4170 		delta_truesize = skb->truesize -
4171 				 SKB_TRUESIZE(skb_end_offset(skb));
4172 
4173 		skb->truesize -= skb->data_len;
4174 		skb->len -= skb->data_len;
4175 		skb->data_len = 0;
4176 
4177 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4178 		goto done;
4179 	} else if (skb->head_frag) {
4180 		int nr_frags = pinfo->nr_frags;
4181 		skb_frag_t *frag = pinfo->frags + nr_frags;
4182 		struct page *page = virt_to_head_page(skb->head);
4183 		unsigned int first_size = headlen - offset;
4184 		unsigned int first_offset;
4185 
4186 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4187 			goto merge;
4188 
4189 		first_offset = skb->data -
4190 			       (unsigned char *)page_address(page) +
4191 			       offset;
4192 
4193 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4194 
4195 		__skb_frag_set_page(frag, page);
4196 		skb_frag_off_set(frag, first_offset);
4197 		skb_frag_size_set(frag, first_size);
4198 
4199 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4200 		/* We dont need to clear skbinfo->nr_frags here */
4201 
4202 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4203 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4204 		goto done;
4205 	}
4206 
4207 merge:
4208 	delta_truesize = skb->truesize;
4209 	if (offset > headlen) {
4210 		unsigned int eat = offset - headlen;
4211 
4212 		skb_frag_off_add(&skbinfo->frags[0], eat);
4213 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4214 		skb->data_len -= eat;
4215 		skb->len -= eat;
4216 		offset = headlen;
4217 	}
4218 
4219 	__skb_pull(skb, offset);
4220 
4221 	if (NAPI_GRO_CB(p)->last == p)
4222 		skb_shinfo(p)->frag_list = skb;
4223 	else
4224 		NAPI_GRO_CB(p)->last->next = skb;
4225 	NAPI_GRO_CB(p)->last = skb;
4226 	__skb_header_release(skb);
4227 	lp = p;
4228 
4229 done:
4230 	NAPI_GRO_CB(p)->count++;
4231 	p->data_len += len;
4232 	p->truesize += delta_truesize;
4233 	p->len += len;
4234 	if (lp != p) {
4235 		lp->data_len += len;
4236 		lp->truesize += delta_truesize;
4237 		lp->len += len;
4238 	}
4239 	NAPI_GRO_CB(skb)->same_flow = 1;
4240 	return 0;
4241 }
4242 
4243 #ifdef CONFIG_SKB_EXTENSIONS
4244 #define SKB_EXT_ALIGN_VALUE	8
4245 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4246 
4247 static const u8 skb_ext_type_len[] = {
4248 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4249 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4250 #endif
4251 #ifdef CONFIG_XFRM
4252 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4253 #endif
4254 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4255 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4256 #endif
4257 #if IS_ENABLED(CONFIG_MPTCP)
4258 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4259 #endif
4260 };
4261 
4262 static __always_inline unsigned int skb_ext_total_length(void)
4263 {
4264 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4265 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4266 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4267 #endif
4268 #ifdef CONFIG_XFRM
4269 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4270 #endif
4271 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4272 		skb_ext_type_len[TC_SKB_EXT] +
4273 #endif
4274 #if IS_ENABLED(CONFIG_MPTCP)
4275 		skb_ext_type_len[SKB_EXT_MPTCP] +
4276 #endif
4277 		0;
4278 }
4279 
4280 static void skb_extensions_init(void)
4281 {
4282 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4283 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4284 
4285 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4286 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4287 					     0,
4288 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4289 					     NULL);
4290 }
4291 #else
4292 static void skb_extensions_init(void) {}
4293 #endif
4294 
4295 void __init skb_init(void)
4296 {
4297 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4298 					      sizeof(struct sk_buff),
4299 					      0,
4300 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4301 					      offsetof(struct sk_buff, cb),
4302 					      sizeof_field(struct sk_buff, cb),
4303 					      NULL);
4304 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4305 						sizeof(struct sk_buff_fclones),
4306 						0,
4307 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4308 						NULL);
4309 	skb_extensions_init();
4310 }
4311 
4312 static int
4313 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4314 	       unsigned int recursion_level)
4315 {
4316 	int start = skb_headlen(skb);
4317 	int i, copy = start - offset;
4318 	struct sk_buff *frag_iter;
4319 	int elt = 0;
4320 
4321 	if (unlikely(recursion_level >= 24))
4322 		return -EMSGSIZE;
4323 
4324 	if (copy > 0) {
4325 		if (copy > len)
4326 			copy = len;
4327 		sg_set_buf(sg, skb->data + offset, copy);
4328 		elt++;
4329 		if ((len -= copy) == 0)
4330 			return elt;
4331 		offset += copy;
4332 	}
4333 
4334 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4335 		int end;
4336 
4337 		WARN_ON(start > offset + len);
4338 
4339 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4340 		if ((copy = end - offset) > 0) {
4341 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4342 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4343 				return -EMSGSIZE;
4344 
4345 			if (copy > len)
4346 				copy = len;
4347 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4348 				    skb_frag_off(frag) + offset - start);
4349 			elt++;
4350 			if (!(len -= copy))
4351 				return elt;
4352 			offset += copy;
4353 		}
4354 		start = end;
4355 	}
4356 
4357 	skb_walk_frags(skb, frag_iter) {
4358 		int end, ret;
4359 
4360 		WARN_ON(start > offset + len);
4361 
4362 		end = start + frag_iter->len;
4363 		if ((copy = end - offset) > 0) {
4364 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4365 				return -EMSGSIZE;
4366 
4367 			if (copy > len)
4368 				copy = len;
4369 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4370 					      copy, recursion_level + 1);
4371 			if (unlikely(ret < 0))
4372 				return ret;
4373 			elt += ret;
4374 			if ((len -= copy) == 0)
4375 				return elt;
4376 			offset += copy;
4377 		}
4378 		start = end;
4379 	}
4380 	BUG_ON(len);
4381 	return elt;
4382 }
4383 
4384 /**
4385  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4386  *	@skb: Socket buffer containing the buffers to be mapped
4387  *	@sg: The scatter-gather list to map into
4388  *	@offset: The offset into the buffer's contents to start mapping
4389  *	@len: Length of buffer space to be mapped
4390  *
4391  *	Fill the specified scatter-gather list with mappings/pointers into a
4392  *	region of the buffer space attached to a socket buffer. Returns either
4393  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4394  *	could not fit.
4395  */
4396 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4397 {
4398 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4399 
4400 	if (nsg <= 0)
4401 		return nsg;
4402 
4403 	sg_mark_end(&sg[nsg - 1]);
4404 
4405 	return nsg;
4406 }
4407 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4408 
4409 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4410  * sglist without mark the sg which contain last skb data as the end.
4411  * So the caller can mannipulate sg list as will when padding new data after
4412  * the first call without calling sg_unmark_end to expend sg list.
4413  *
4414  * Scenario to use skb_to_sgvec_nomark:
4415  * 1. sg_init_table
4416  * 2. skb_to_sgvec_nomark(payload1)
4417  * 3. skb_to_sgvec_nomark(payload2)
4418  *
4419  * This is equivalent to:
4420  * 1. sg_init_table
4421  * 2. skb_to_sgvec(payload1)
4422  * 3. sg_unmark_end
4423  * 4. skb_to_sgvec(payload2)
4424  *
4425  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4426  * is more preferable.
4427  */
4428 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4429 			int offset, int len)
4430 {
4431 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4432 }
4433 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4434 
4435 
4436 
4437 /**
4438  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4439  *	@skb: The socket buffer to check.
4440  *	@tailbits: Amount of trailing space to be added
4441  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4442  *
4443  *	Make sure that the data buffers attached to a socket buffer are
4444  *	writable. If they are not, private copies are made of the data buffers
4445  *	and the socket buffer is set to use these instead.
4446  *
4447  *	If @tailbits is given, make sure that there is space to write @tailbits
4448  *	bytes of data beyond current end of socket buffer.  @trailer will be
4449  *	set to point to the skb in which this space begins.
4450  *
4451  *	The number of scatterlist elements required to completely map the
4452  *	COW'd and extended socket buffer will be returned.
4453  */
4454 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4455 {
4456 	int copyflag;
4457 	int elt;
4458 	struct sk_buff *skb1, **skb_p;
4459 
4460 	/* If skb is cloned or its head is paged, reallocate
4461 	 * head pulling out all the pages (pages are considered not writable
4462 	 * at the moment even if they are anonymous).
4463 	 */
4464 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4465 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4466 		return -ENOMEM;
4467 
4468 	/* Easy case. Most of packets will go this way. */
4469 	if (!skb_has_frag_list(skb)) {
4470 		/* A little of trouble, not enough of space for trailer.
4471 		 * This should not happen, when stack is tuned to generate
4472 		 * good frames. OK, on miss we reallocate and reserve even more
4473 		 * space, 128 bytes is fair. */
4474 
4475 		if (skb_tailroom(skb) < tailbits &&
4476 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4477 			return -ENOMEM;
4478 
4479 		/* Voila! */
4480 		*trailer = skb;
4481 		return 1;
4482 	}
4483 
4484 	/* Misery. We are in troubles, going to mincer fragments... */
4485 
4486 	elt = 1;
4487 	skb_p = &skb_shinfo(skb)->frag_list;
4488 	copyflag = 0;
4489 
4490 	while ((skb1 = *skb_p) != NULL) {
4491 		int ntail = 0;
4492 
4493 		/* The fragment is partially pulled by someone,
4494 		 * this can happen on input. Copy it and everything
4495 		 * after it. */
4496 
4497 		if (skb_shared(skb1))
4498 			copyflag = 1;
4499 
4500 		/* If the skb is the last, worry about trailer. */
4501 
4502 		if (skb1->next == NULL && tailbits) {
4503 			if (skb_shinfo(skb1)->nr_frags ||
4504 			    skb_has_frag_list(skb1) ||
4505 			    skb_tailroom(skb1) < tailbits)
4506 				ntail = tailbits + 128;
4507 		}
4508 
4509 		if (copyflag ||
4510 		    skb_cloned(skb1) ||
4511 		    ntail ||
4512 		    skb_shinfo(skb1)->nr_frags ||
4513 		    skb_has_frag_list(skb1)) {
4514 			struct sk_buff *skb2;
4515 
4516 			/* Fuck, we are miserable poor guys... */
4517 			if (ntail == 0)
4518 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4519 			else
4520 				skb2 = skb_copy_expand(skb1,
4521 						       skb_headroom(skb1),
4522 						       ntail,
4523 						       GFP_ATOMIC);
4524 			if (unlikely(skb2 == NULL))
4525 				return -ENOMEM;
4526 
4527 			if (skb1->sk)
4528 				skb_set_owner_w(skb2, skb1->sk);
4529 
4530 			/* Looking around. Are we still alive?
4531 			 * OK, link new skb, drop old one */
4532 
4533 			skb2->next = skb1->next;
4534 			*skb_p = skb2;
4535 			kfree_skb(skb1);
4536 			skb1 = skb2;
4537 		}
4538 		elt++;
4539 		*trailer = skb1;
4540 		skb_p = &skb1->next;
4541 	}
4542 
4543 	return elt;
4544 }
4545 EXPORT_SYMBOL_GPL(skb_cow_data);
4546 
4547 static void sock_rmem_free(struct sk_buff *skb)
4548 {
4549 	struct sock *sk = skb->sk;
4550 
4551 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4552 }
4553 
4554 static void skb_set_err_queue(struct sk_buff *skb)
4555 {
4556 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4557 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4558 	 */
4559 	skb->pkt_type = PACKET_OUTGOING;
4560 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4561 }
4562 
4563 /*
4564  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4565  */
4566 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4567 {
4568 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4569 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4570 		return -ENOMEM;
4571 
4572 	skb_orphan(skb);
4573 	skb->sk = sk;
4574 	skb->destructor = sock_rmem_free;
4575 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4576 	skb_set_err_queue(skb);
4577 
4578 	/* before exiting rcu section, make sure dst is refcounted */
4579 	skb_dst_force(skb);
4580 
4581 	skb_queue_tail(&sk->sk_error_queue, skb);
4582 	if (!sock_flag(sk, SOCK_DEAD))
4583 		sk->sk_error_report(sk);
4584 	return 0;
4585 }
4586 EXPORT_SYMBOL(sock_queue_err_skb);
4587 
4588 static bool is_icmp_err_skb(const struct sk_buff *skb)
4589 {
4590 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4591 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4592 }
4593 
4594 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4595 {
4596 	struct sk_buff_head *q = &sk->sk_error_queue;
4597 	struct sk_buff *skb, *skb_next = NULL;
4598 	bool icmp_next = false;
4599 	unsigned long flags;
4600 
4601 	spin_lock_irqsave(&q->lock, flags);
4602 	skb = __skb_dequeue(q);
4603 	if (skb && (skb_next = skb_peek(q))) {
4604 		icmp_next = is_icmp_err_skb(skb_next);
4605 		if (icmp_next)
4606 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4607 	}
4608 	spin_unlock_irqrestore(&q->lock, flags);
4609 
4610 	if (is_icmp_err_skb(skb) && !icmp_next)
4611 		sk->sk_err = 0;
4612 
4613 	if (skb_next)
4614 		sk->sk_error_report(sk);
4615 
4616 	return skb;
4617 }
4618 EXPORT_SYMBOL(sock_dequeue_err_skb);
4619 
4620 /**
4621  * skb_clone_sk - create clone of skb, and take reference to socket
4622  * @skb: the skb to clone
4623  *
4624  * This function creates a clone of a buffer that holds a reference on
4625  * sk_refcnt.  Buffers created via this function are meant to be
4626  * returned using sock_queue_err_skb, or free via kfree_skb.
4627  *
4628  * When passing buffers allocated with this function to sock_queue_err_skb
4629  * it is necessary to wrap the call with sock_hold/sock_put in order to
4630  * prevent the socket from being released prior to being enqueued on
4631  * the sk_error_queue.
4632  */
4633 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4634 {
4635 	struct sock *sk = skb->sk;
4636 	struct sk_buff *clone;
4637 
4638 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4639 		return NULL;
4640 
4641 	clone = skb_clone(skb, GFP_ATOMIC);
4642 	if (!clone) {
4643 		sock_put(sk);
4644 		return NULL;
4645 	}
4646 
4647 	clone->sk = sk;
4648 	clone->destructor = sock_efree;
4649 
4650 	return clone;
4651 }
4652 EXPORT_SYMBOL(skb_clone_sk);
4653 
4654 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4655 					struct sock *sk,
4656 					int tstype,
4657 					bool opt_stats)
4658 {
4659 	struct sock_exterr_skb *serr;
4660 	int err;
4661 
4662 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4663 
4664 	serr = SKB_EXT_ERR(skb);
4665 	memset(serr, 0, sizeof(*serr));
4666 	serr->ee.ee_errno = ENOMSG;
4667 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4668 	serr->ee.ee_info = tstype;
4669 	serr->opt_stats = opt_stats;
4670 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4671 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4672 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4673 		if (sk->sk_protocol == IPPROTO_TCP &&
4674 		    sk->sk_type == SOCK_STREAM)
4675 			serr->ee.ee_data -= sk->sk_tskey;
4676 	}
4677 
4678 	err = sock_queue_err_skb(sk, skb);
4679 
4680 	if (err)
4681 		kfree_skb(skb);
4682 }
4683 
4684 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4685 {
4686 	bool ret;
4687 
4688 	if (likely(sysctl_tstamp_allow_data || tsonly))
4689 		return true;
4690 
4691 	read_lock_bh(&sk->sk_callback_lock);
4692 	ret = sk->sk_socket && sk->sk_socket->file &&
4693 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4694 	read_unlock_bh(&sk->sk_callback_lock);
4695 	return ret;
4696 }
4697 
4698 void skb_complete_tx_timestamp(struct sk_buff *skb,
4699 			       struct skb_shared_hwtstamps *hwtstamps)
4700 {
4701 	struct sock *sk = skb->sk;
4702 
4703 	if (!skb_may_tx_timestamp(sk, false))
4704 		goto err;
4705 
4706 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4707 	 * but only if the socket refcount is not zero.
4708 	 */
4709 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4710 		*skb_hwtstamps(skb) = *hwtstamps;
4711 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4712 		sock_put(sk);
4713 		return;
4714 	}
4715 
4716 err:
4717 	kfree_skb(skb);
4718 }
4719 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4720 
4721 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4722 		     struct skb_shared_hwtstamps *hwtstamps,
4723 		     struct sock *sk, int tstype)
4724 {
4725 	struct sk_buff *skb;
4726 	bool tsonly, opt_stats = false;
4727 
4728 	if (!sk)
4729 		return;
4730 
4731 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4732 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4733 		return;
4734 
4735 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4736 	if (!skb_may_tx_timestamp(sk, tsonly))
4737 		return;
4738 
4739 	if (tsonly) {
4740 #ifdef CONFIG_INET
4741 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4742 		    sk->sk_protocol == IPPROTO_TCP &&
4743 		    sk->sk_type == SOCK_STREAM) {
4744 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4745 			opt_stats = true;
4746 		} else
4747 #endif
4748 			skb = alloc_skb(0, GFP_ATOMIC);
4749 	} else {
4750 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4751 	}
4752 	if (!skb)
4753 		return;
4754 
4755 	if (tsonly) {
4756 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4757 					     SKBTX_ANY_TSTAMP;
4758 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4759 	}
4760 
4761 	if (hwtstamps)
4762 		*skb_hwtstamps(skb) = *hwtstamps;
4763 	else
4764 		skb->tstamp = ktime_get_real();
4765 
4766 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4767 }
4768 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4769 
4770 void skb_tstamp_tx(struct sk_buff *orig_skb,
4771 		   struct skb_shared_hwtstamps *hwtstamps)
4772 {
4773 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4774 			       SCM_TSTAMP_SND);
4775 }
4776 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4777 
4778 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4779 {
4780 	struct sock *sk = skb->sk;
4781 	struct sock_exterr_skb *serr;
4782 	int err = 1;
4783 
4784 	skb->wifi_acked_valid = 1;
4785 	skb->wifi_acked = acked;
4786 
4787 	serr = SKB_EXT_ERR(skb);
4788 	memset(serr, 0, sizeof(*serr));
4789 	serr->ee.ee_errno = ENOMSG;
4790 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4791 
4792 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4793 	 * but only if the socket refcount is not zero.
4794 	 */
4795 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4796 		err = sock_queue_err_skb(sk, skb);
4797 		sock_put(sk);
4798 	}
4799 	if (err)
4800 		kfree_skb(skb);
4801 }
4802 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4803 
4804 /**
4805  * skb_partial_csum_set - set up and verify partial csum values for packet
4806  * @skb: the skb to set
4807  * @start: the number of bytes after skb->data to start checksumming.
4808  * @off: the offset from start to place the checksum.
4809  *
4810  * For untrusted partially-checksummed packets, we need to make sure the values
4811  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4812  *
4813  * This function checks and sets those values and skb->ip_summed: if this
4814  * returns false you should drop the packet.
4815  */
4816 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4817 {
4818 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4819 	u32 csum_start = skb_headroom(skb) + (u32)start;
4820 
4821 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4822 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4823 				     start, off, skb_headroom(skb), skb_headlen(skb));
4824 		return false;
4825 	}
4826 	skb->ip_summed = CHECKSUM_PARTIAL;
4827 	skb->csum_start = csum_start;
4828 	skb->csum_offset = off;
4829 	skb_set_transport_header(skb, start);
4830 	return true;
4831 }
4832 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4833 
4834 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4835 			       unsigned int max)
4836 {
4837 	if (skb_headlen(skb) >= len)
4838 		return 0;
4839 
4840 	/* If we need to pullup then pullup to the max, so we
4841 	 * won't need to do it again.
4842 	 */
4843 	if (max > skb->len)
4844 		max = skb->len;
4845 
4846 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4847 		return -ENOMEM;
4848 
4849 	if (skb_headlen(skb) < len)
4850 		return -EPROTO;
4851 
4852 	return 0;
4853 }
4854 
4855 #define MAX_TCP_HDR_LEN (15 * 4)
4856 
4857 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4858 				      typeof(IPPROTO_IP) proto,
4859 				      unsigned int off)
4860 {
4861 	int err;
4862 
4863 	switch (proto) {
4864 	case IPPROTO_TCP:
4865 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4866 					  off + MAX_TCP_HDR_LEN);
4867 		if (!err && !skb_partial_csum_set(skb, off,
4868 						  offsetof(struct tcphdr,
4869 							   check)))
4870 			err = -EPROTO;
4871 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4872 
4873 	case IPPROTO_UDP:
4874 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4875 					  off + sizeof(struct udphdr));
4876 		if (!err && !skb_partial_csum_set(skb, off,
4877 						  offsetof(struct udphdr,
4878 							   check)))
4879 			err = -EPROTO;
4880 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4881 	}
4882 
4883 	return ERR_PTR(-EPROTO);
4884 }
4885 
4886 /* This value should be large enough to cover a tagged ethernet header plus
4887  * maximally sized IP and TCP or UDP headers.
4888  */
4889 #define MAX_IP_HDR_LEN 128
4890 
4891 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4892 {
4893 	unsigned int off;
4894 	bool fragment;
4895 	__sum16 *csum;
4896 	int err;
4897 
4898 	fragment = false;
4899 
4900 	err = skb_maybe_pull_tail(skb,
4901 				  sizeof(struct iphdr),
4902 				  MAX_IP_HDR_LEN);
4903 	if (err < 0)
4904 		goto out;
4905 
4906 	if (ip_is_fragment(ip_hdr(skb)))
4907 		fragment = true;
4908 
4909 	off = ip_hdrlen(skb);
4910 
4911 	err = -EPROTO;
4912 
4913 	if (fragment)
4914 		goto out;
4915 
4916 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4917 	if (IS_ERR(csum))
4918 		return PTR_ERR(csum);
4919 
4920 	if (recalculate)
4921 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4922 					   ip_hdr(skb)->daddr,
4923 					   skb->len - off,
4924 					   ip_hdr(skb)->protocol, 0);
4925 	err = 0;
4926 
4927 out:
4928 	return err;
4929 }
4930 
4931 /* This value should be large enough to cover a tagged ethernet header plus
4932  * an IPv6 header, all options, and a maximal TCP or UDP header.
4933  */
4934 #define MAX_IPV6_HDR_LEN 256
4935 
4936 #define OPT_HDR(type, skb, off) \
4937 	(type *)(skb_network_header(skb) + (off))
4938 
4939 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4940 {
4941 	int err;
4942 	u8 nexthdr;
4943 	unsigned int off;
4944 	unsigned int len;
4945 	bool fragment;
4946 	bool done;
4947 	__sum16 *csum;
4948 
4949 	fragment = false;
4950 	done = false;
4951 
4952 	off = sizeof(struct ipv6hdr);
4953 
4954 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4955 	if (err < 0)
4956 		goto out;
4957 
4958 	nexthdr = ipv6_hdr(skb)->nexthdr;
4959 
4960 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4961 	while (off <= len && !done) {
4962 		switch (nexthdr) {
4963 		case IPPROTO_DSTOPTS:
4964 		case IPPROTO_HOPOPTS:
4965 		case IPPROTO_ROUTING: {
4966 			struct ipv6_opt_hdr *hp;
4967 
4968 			err = skb_maybe_pull_tail(skb,
4969 						  off +
4970 						  sizeof(struct ipv6_opt_hdr),
4971 						  MAX_IPV6_HDR_LEN);
4972 			if (err < 0)
4973 				goto out;
4974 
4975 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4976 			nexthdr = hp->nexthdr;
4977 			off += ipv6_optlen(hp);
4978 			break;
4979 		}
4980 		case IPPROTO_AH: {
4981 			struct ip_auth_hdr *hp;
4982 
4983 			err = skb_maybe_pull_tail(skb,
4984 						  off +
4985 						  sizeof(struct ip_auth_hdr),
4986 						  MAX_IPV6_HDR_LEN);
4987 			if (err < 0)
4988 				goto out;
4989 
4990 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4991 			nexthdr = hp->nexthdr;
4992 			off += ipv6_authlen(hp);
4993 			break;
4994 		}
4995 		case IPPROTO_FRAGMENT: {
4996 			struct frag_hdr *hp;
4997 
4998 			err = skb_maybe_pull_tail(skb,
4999 						  off +
5000 						  sizeof(struct frag_hdr),
5001 						  MAX_IPV6_HDR_LEN);
5002 			if (err < 0)
5003 				goto out;
5004 
5005 			hp = OPT_HDR(struct frag_hdr, skb, off);
5006 
5007 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5008 				fragment = true;
5009 
5010 			nexthdr = hp->nexthdr;
5011 			off += sizeof(struct frag_hdr);
5012 			break;
5013 		}
5014 		default:
5015 			done = true;
5016 			break;
5017 		}
5018 	}
5019 
5020 	err = -EPROTO;
5021 
5022 	if (!done || fragment)
5023 		goto out;
5024 
5025 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5026 	if (IS_ERR(csum))
5027 		return PTR_ERR(csum);
5028 
5029 	if (recalculate)
5030 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5031 					 &ipv6_hdr(skb)->daddr,
5032 					 skb->len - off, nexthdr, 0);
5033 	err = 0;
5034 
5035 out:
5036 	return err;
5037 }
5038 
5039 /**
5040  * skb_checksum_setup - set up partial checksum offset
5041  * @skb: the skb to set up
5042  * @recalculate: if true the pseudo-header checksum will be recalculated
5043  */
5044 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5045 {
5046 	int err;
5047 
5048 	switch (skb->protocol) {
5049 	case htons(ETH_P_IP):
5050 		err = skb_checksum_setup_ipv4(skb, recalculate);
5051 		break;
5052 
5053 	case htons(ETH_P_IPV6):
5054 		err = skb_checksum_setup_ipv6(skb, recalculate);
5055 		break;
5056 
5057 	default:
5058 		err = -EPROTO;
5059 		break;
5060 	}
5061 
5062 	return err;
5063 }
5064 EXPORT_SYMBOL(skb_checksum_setup);
5065 
5066 /**
5067  * skb_checksum_maybe_trim - maybe trims the given skb
5068  * @skb: the skb to check
5069  * @transport_len: the data length beyond the network header
5070  *
5071  * Checks whether the given skb has data beyond the given transport length.
5072  * If so, returns a cloned skb trimmed to this transport length.
5073  * Otherwise returns the provided skb. Returns NULL in error cases
5074  * (e.g. transport_len exceeds skb length or out-of-memory).
5075  *
5076  * Caller needs to set the skb transport header and free any returned skb if it
5077  * differs from the provided skb.
5078  */
5079 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5080 					       unsigned int transport_len)
5081 {
5082 	struct sk_buff *skb_chk;
5083 	unsigned int len = skb_transport_offset(skb) + transport_len;
5084 	int ret;
5085 
5086 	if (skb->len < len)
5087 		return NULL;
5088 	else if (skb->len == len)
5089 		return skb;
5090 
5091 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5092 	if (!skb_chk)
5093 		return NULL;
5094 
5095 	ret = pskb_trim_rcsum(skb_chk, len);
5096 	if (ret) {
5097 		kfree_skb(skb_chk);
5098 		return NULL;
5099 	}
5100 
5101 	return skb_chk;
5102 }
5103 
5104 /**
5105  * skb_checksum_trimmed - validate checksum of an skb
5106  * @skb: the skb to check
5107  * @transport_len: the data length beyond the network header
5108  * @skb_chkf: checksum function to use
5109  *
5110  * Applies the given checksum function skb_chkf to the provided skb.
5111  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5112  *
5113  * If the skb has data beyond the given transport length, then a
5114  * trimmed & cloned skb is checked and returned.
5115  *
5116  * Caller needs to set the skb transport header and free any returned skb if it
5117  * differs from the provided skb.
5118  */
5119 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5120 				     unsigned int transport_len,
5121 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5122 {
5123 	struct sk_buff *skb_chk;
5124 	unsigned int offset = skb_transport_offset(skb);
5125 	__sum16 ret;
5126 
5127 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5128 	if (!skb_chk)
5129 		goto err;
5130 
5131 	if (!pskb_may_pull(skb_chk, offset))
5132 		goto err;
5133 
5134 	skb_pull_rcsum(skb_chk, offset);
5135 	ret = skb_chkf(skb_chk);
5136 	skb_push_rcsum(skb_chk, offset);
5137 
5138 	if (ret)
5139 		goto err;
5140 
5141 	return skb_chk;
5142 
5143 err:
5144 	if (skb_chk && skb_chk != skb)
5145 		kfree_skb(skb_chk);
5146 
5147 	return NULL;
5148 
5149 }
5150 EXPORT_SYMBOL(skb_checksum_trimmed);
5151 
5152 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5153 {
5154 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5155 			     skb->dev->name);
5156 }
5157 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5158 
5159 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5160 {
5161 	if (head_stolen) {
5162 		skb_release_head_state(skb);
5163 		kmem_cache_free(skbuff_head_cache, skb);
5164 	} else {
5165 		__kfree_skb(skb);
5166 	}
5167 }
5168 EXPORT_SYMBOL(kfree_skb_partial);
5169 
5170 /**
5171  * skb_try_coalesce - try to merge skb to prior one
5172  * @to: prior buffer
5173  * @from: buffer to add
5174  * @fragstolen: pointer to boolean
5175  * @delta_truesize: how much more was allocated than was requested
5176  */
5177 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5178 		      bool *fragstolen, int *delta_truesize)
5179 {
5180 	struct skb_shared_info *to_shinfo, *from_shinfo;
5181 	int i, delta, len = from->len;
5182 
5183 	*fragstolen = false;
5184 
5185 	if (skb_cloned(to))
5186 		return false;
5187 
5188 	if (len <= skb_tailroom(to)) {
5189 		if (len)
5190 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5191 		*delta_truesize = 0;
5192 		return true;
5193 	}
5194 
5195 	to_shinfo = skb_shinfo(to);
5196 	from_shinfo = skb_shinfo(from);
5197 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5198 		return false;
5199 	if (skb_zcopy(to) || skb_zcopy(from))
5200 		return false;
5201 
5202 	if (skb_headlen(from) != 0) {
5203 		struct page *page;
5204 		unsigned int offset;
5205 
5206 		if (to_shinfo->nr_frags +
5207 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5208 			return false;
5209 
5210 		if (skb_head_is_locked(from))
5211 			return false;
5212 
5213 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5214 
5215 		page = virt_to_head_page(from->head);
5216 		offset = from->data - (unsigned char *)page_address(page);
5217 
5218 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5219 				   page, offset, skb_headlen(from));
5220 		*fragstolen = true;
5221 	} else {
5222 		if (to_shinfo->nr_frags +
5223 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5224 			return false;
5225 
5226 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5227 	}
5228 
5229 	WARN_ON_ONCE(delta < len);
5230 
5231 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5232 	       from_shinfo->frags,
5233 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5234 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5235 
5236 	if (!skb_cloned(from))
5237 		from_shinfo->nr_frags = 0;
5238 
5239 	/* if the skb is not cloned this does nothing
5240 	 * since we set nr_frags to 0.
5241 	 */
5242 	for (i = 0; i < from_shinfo->nr_frags; i++)
5243 		__skb_frag_ref(&from_shinfo->frags[i]);
5244 
5245 	to->truesize += delta;
5246 	to->len += len;
5247 	to->data_len += len;
5248 
5249 	*delta_truesize = delta;
5250 	return true;
5251 }
5252 EXPORT_SYMBOL(skb_try_coalesce);
5253 
5254 /**
5255  * skb_scrub_packet - scrub an skb
5256  *
5257  * @skb: buffer to clean
5258  * @xnet: packet is crossing netns
5259  *
5260  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5261  * into/from a tunnel. Some information have to be cleared during these
5262  * operations.
5263  * skb_scrub_packet can also be used to clean a skb before injecting it in
5264  * another namespace (@xnet == true). We have to clear all information in the
5265  * skb that could impact namespace isolation.
5266  */
5267 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5268 {
5269 	skb->pkt_type = PACKET_HOST;
5270 	skb->skb_iif = 0;
5271 	skb->ignore_df = 0;
5272 	skb_dst_drop(skb);
5273 	skb_ext_reset(skb);
5274 	nf_reset_ct(skb);
5275 	nf_reset_trace(skb);
5276 
5277 #ifdef CONFIG_NET_SWITCHDEV
5278 	skb->offload_fwd_mark = 0;
5279 	skb->offload_l3_fwd_mark = 0;
5280 #endif
5281 
5282 	if (!xnet)
5283 		return;
5284 
5285 	ipvs_reset(skb);
5286 	skb->mark = 0;
5287 	skb->tstamp = 0;
5288 }
5289 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5290 
5291 /**
5292  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5293  *
5294  * @skb: GSO skb
5295  *
5296  * skb_gso_transport_seglen is used to determine the real size of the
5297  * individual segments, including Layer4 headers (TCP/UDP).
5298  *
5299  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5300  */
5301 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5302 {
5303 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5304 	unsigned int thlen = 0;
5305 
5306 	if (skb->encapsulation) {
5307 		thlen = skb_inner_transport_header(skb) -
5308 			skb_transport_header(skb);
5309 
5310 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5311 			thlen += inner_tcp_hdrlen(skb);
5312 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5313 		thlen = tcp_hdrlen(skb);
5314 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5315 		thlen = sizeof(struct sctphdr);
5316 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5317 		thlen = sizeof(struct udphdr);
5318 	}
5319 	/* UFO sets gso_size to the size of the fragmentation
5320 	 * payload, i.e. the size of the L4 (UDP) header is already
5321 	 * accounted for.
5322 	 */
5323 	return thlen + shinfo->gso_size;
5324 }
5325 
5326 /**
5327  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5328  *
5329  * @skb: GSO skb
5330  *
5331  * skb_gso_network_seglen is used to determine the real size of the
5332  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5333  *
5334  * The MAC/L2 header is not accounted for.
5335  */
5336 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5337 {
5338 	unsigned int hdr_len = skb_transport_header(skb) -
5339 			       skb_network_header(skb);
5340 
5341 	return hdr_len + skb_gso_transport_seglen(skb);
5342 }
5343 
5344 /**
5345  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5346  *
5347  * @skb: GSO skb
5348  *
5349  * skb_gso_mac_seglen is used to determine the real size of the
5350  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5351  * headers (TCP/UDP).
5352  */
5353 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5354 {
5355 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5356 
5357 	return hdr_len + skb_gso_transport_seglen(skb);
5358 }
5359 
5360 /**
5361  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5362  *
5363  * There are a couple of instances where we have a GSO skb, and we
5364  * want to determine what size it would be after it is segmented.
5365  *
5366  * We might want to check:
5367  * -    L3+L4+payload size (e.g. IP forwarding)
5368  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5369  *
5370  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5371  *
5372  * @skb: GSO skb
5373  *
5374  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5375  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5376  *
5377  * @max_len: The maximum permissible length.
5378  *
5379  * Returns true if the segmented length <= max length.
5380  */
5381 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5382 				      unsigned int seg_len,
5383 				      unsigned int max_len) {
5384 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5385 	const struct sk_buff *iter;
5386 
5387 	if (shinfo->gso_size != GSO_BY_FRAGS)
5388 		return seg_len <= max_len;
5389 
5390 	/* Undo this so we can re-use header sizes */
5391 	seg_len -= GSO_BY_FRAGS;
5392 
5393 	skb_walk_frags(skb, iter) {
5394 		if (seg_len + skb_headlen(iter) > max_len)
5395 			return false;
5396 	}
5397 
5398 	return true;
5399 }
5400 
5401 /**
5402  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5403  *
5404  * @skb: GSO skb
5405  * @mtu: MTU to validate against
5406  *
5407  * skb_gso_validate_network_len validates if a given skb will fit a
5408  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5409  * payload.
5410  */
5411 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5412 {
5413 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5414 }
5415 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5416 
5417 /**
5418  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5419  *
5420  * @skb: GSO skb
5421  * @len: length to validate against
5422  *
5423  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5424  * length once split, including L2, L3 and L4 headers and the payload.
5425  */
5426 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5427 {
5428 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5429 }
5430 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5431 
5432 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5433 {
5434 	int mac_len, meta_len;
5435 	void *meta;
5436 
5437 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5438 		kfree_skb(skb);
5439 		return NULL;
5440 	}
5441 
5442 	mac_len = skb->data - skb_mac_header(skb);
5443 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5444 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5445 			mac_len - VLAN_HLEN - ETH_TLEN);
5446 	}
5447 
5448 	meta_len = skb_metadata_len(skb);
5449 	if (meta_len) {
5450 		meta = skb_metadata_end(skb) - meta_len;
5451 		memmove(meta + VLAN_HLEN, meta, meta_len);
5452 	}
5453 
5454 	skb->mac_header += VLAN_HLEN;
5455 	return skb;
5456 }
5457 
5458 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5459 {
5460 	struct vlan_hdr *vhdr;
5461 	u16 vlan_tci;
5462 
5463 	if (unlikely(skb_vlan_tag_present(skb))) {
5464 		/* vlan_tci is already set-up so leave this for another time */
5465 		return skb;
5466 	}
5467 
5468 	skb = skb_share_check(skb, GFP_ATOMIC);
5469 	if (unlikely(!skb))
5470 		goto err_free;
5471 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5472 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5473 		goto err_free;
5474 
5475 	vhdr = (struct vlan_hdr *)skb->data;
5476 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5477 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5478 
5479 	skb_pull_rcsum(skb, VLAN_HLEN);
5480 	vlan_set_encap_proto(skb, vhdr);
5481 
5482 	skb = skb_reorder_vlan_header(skb);
5483 	if (unlikely(!skb))
5484 		goto err_free;
5485 
5486 	skb_reset_network_header(skb);
5487 	if (!skb_transport_header_was_set(skb))
5488 		skb_reset_transport_header(skb);
5489 	skb_reset_mac_len(skb);
5490 
5491 	return skb;
5492 
5493 err_free:
5494 	kfree_skb(skb);
5495 	return NULL;
5496 }
5497 EXPORT_SYMBOL(skb_vlan_untag);
5498 
5499 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5500 {
5501 	if (!pskb_may_pull(skb, write_len))
5502 		return -ENOMEM;
5503 
5504 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5505 		return 0;
5506 
5507 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5508 }
5509 EXPORT_SYMBOL(skb_ensure_writable);
5510 
5511 /* remove VLAN header from packet and update csum accordingly.
5512  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5513  */
5514 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5515 {
5516 	struct vlan_hdr *vhdr;
5517 	int offset = skb->data - skb_mac_header(skb);
5518 	int err;
5519 
5520 	if (WARN_ONCE(offset,
5521 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5522 		      offset)) {
5523 		return -EINVAL;
5524 	}
5525 
5526 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5527 	if (unlikely(err))
5528 		return err;
5529 
5530 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5531 
5532 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5533 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5534 
5535 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5536 	__skb_pull(skb, VLAN_HLEN);
5537 
5538 	vlan_set_encap_proto(skb, vhdr);
5539 	skb->mac_header += VLAN_HLEN;
5540 
5541 	if (skb_network_offset(skb) < ETH_HLEN)
5542 		skb_set_network_header(skb, ETH_HLEN);
5543 
5544 	skb_reset_mac_len(skb);
5545 
5546 	return err;
5547 }
5548 EXPORT_SYMBOL(__skb_vlan_pop);
5549 
5550 /* Pop a vlan tag either from hwaccel or from payload.
5551  * Expects skb->data at mac header.
5552  */
5553 int skb_vlan_pop(struct sk_buff *skb)
5554 {
5555 	u16 vlan_tci;
5556 	__be16 vlan_proto;
5557 	int err;
5558 
5559 	if (likely(skb_vlan_tag_present(skb))) {
5560 		__vlan_hwaccel_clear_tag(skb);
5561 	} else {
5562 		if (unlikely(!eth_type_vlan(skb->protocol)))
5563 			return 0;
5564 
5565 		err = __skb_vlan_pop(skb, &vlan_tci);
5566 		if (err)
5567 			return err;
5568 	}
5569 	/* move next vlan tag to hw accel tag */
5570 	if (likely(!eth_type_vlan(skb->protocol)))
5571 		return 0;
5572 
5573 	vlan_proto = skb->protocol;
5574 	err = __skb_vlan_pop(skb, &vlan_tci);
5575 	if (unlikely(err))
5576 		return err;
5577 
5578 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5579 	return 0;
5580 }
5581 EXPORT_SYMBOL(skb_vlan_pop);
5582 
5583 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5584  * Expects skb->data at mac header.
5585  */
5586 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5587 {
5588 	if (skb_vlan_tag_present(skb)) {
5589 		int offset = skb->data - skb_mac_header(skb);
5590 		int err;
5591 
5592 		if (WARN_ONCE(offset,
5593 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5594 			      offset)) {
5595 			return -EINVAL;
5596 		}
5597 
5598 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5599 					skb_vlan_tag_get(skb));
5600 		if (err)
5601 			return err;
5602 
5603 		skb->protocol = skb->vlan_proto;
5604 		skb->mac_len += VLAN_HLEN;
5605 
5606 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5607 	}
5608 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5609 	return 0;
5610 }
5611 EXPORT_SYMBOL(skb_vlan_push);
5612 
5613 /**
5614  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5615  *
5616  * @skb: Socket buffer to modify
5617  *
5618  * Drop the Ethernet header of @skb.
5619  *
5620  * Expects that skb->data points to the mac header and that no VLAN tags are
5621  * present.
5622  *
5623  * Returns 0 on success, -errno otherwise.
5624  */
5625 int skb_eth_pop(struct sk_buff *skb)
5626 {
5627 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5628 	    skb_network_offset(skb) < ETH_HLEN)
5629 		return -EPROTO;
5630 
5631 	skb_pull_rcsum(skb, ETH_HLEN);
5632 	skb_reset_mac_header(skb);
5633 	skb_reset_mac_len(skb);
5634 
5635 	return 0;
5636 }
5637 EXPORT_SYMBOL(skb_eth_pop);
5638 
5639 /**
5640  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5641  *
5642  * @skb: Socket buffer to modify
5643  * @dst: Destination MAC address of the new header
5644  * @src: Source MAC address of the new header
5645  *
5646  * Prepend @skb with a new Ethernet header.
5647  *
5648  * Expects that skb->data points to the mac header, which must be empty.
5649  *
5650  * Returns 0 on success, -errno otherwise.
5651  */
5652 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5653 		 const unsigned char *src)
5654 {
5655 	struct ethhdr *eth;
5656 	int err;
5657 
5658 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5659 		return -EPROTO;
5660 
5661 	err = skb_cow_head(skb, sizeof(*eth));
5662 	if (err < 0)
5663 		return err;
5664 
5665 	skb_push(skb, sizeof(*eth));
5666 	skb_reset_mac_header(skb);
5667 	skb_reset_mac_len(skb);
5668 
5669 	eth = eth_hdr(skb);
5670 	ether_addr_copy(eth->h_dest, dst);
5671 	ether_addr_copy(eth->h_source, src);
5672 	eth->h_proto = skb->protocol;
5673 
5674 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5675 
5676 	return 0;
5677 }
5678 EXPORT_SYMBOL(skb_eth_push);
5679 
5680 /* Update the ethertype of hdr and the skb csum value if required. */
5681 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5682 			     __be16 ethertype)
5683 {
5684 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5685 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5686 
5687 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5688 	}
5689 
5690 	hdr->h_proto = ethertype;
5691 }
5692 
5693 /**
5694  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5695  *                   the packet
5696  *
5697  * @skb: buffer
5698  * @mpls_lse: MPLS label stack entry to push
5699  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5700  * @mac_len: length of the MAC header
5701  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5702  *            ethernet
5703  *
5704  * Expects skb->data at mac header.
5705  *
5706  * Returns 0 on success, -errno otherwise.
5707  */
5708 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5709 		  int mac_len, bool ethernet)
5710 {
5711 	struct mpls_shim_hdr *lse;
5712 	int err;
5713 
5714 	if (unlikely(!eth_p_mpls(mpls_proto)))
5715 		return -EINVAL;
5716 
5717 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5718 	if (skb->encapsulation)
5719 		return -EINVAL;
5720 
5721 	err = skb_cow_head(skb, MPLS_HLEN);
5722 	if (unlikely(err))
5723 		return err;
5724 
5725 	if (!skb->inner_protocol) {
5726 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5727 		skb_set_inner_protocol(skb, skb->protocol);
5728 	}
5729 
5730 	skb_push(skb, MPLS_HLEN);
5731 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5732 		mac_len);
5733 	skb_reset_mac_header(skb);
5734 	skb_set_network_header(skb, mac_len);
5735 	skb_reset_mac_len(skb);
5736 
5737 	lse = mpls_hdr(skb);
5738 	lse->label_stack_entry = mpls_lse;
5739 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5740 
5741 	if (ethernet && mac_len >= ETH_HLEN)
5742 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5743 	skb->protocol = mpls_proto;
5744 
5745 	return 0;
5746 }
5747 EXPORT_SYMBOL_GPL(skb_mpls_push);
5748 
5749 /**
5750  * skb_mpls_pop() - pop the outermost MPLS header
5751  *
5752  * @skb: buffer
5753  * @next_proto: ethertype of header after popped MPLS header
5754  * @mac_len: length of the MAC header
5755  * @ethernet: flag to indicate if the packet is ethernet
5756  *
5757  * Expects skb->data at mac header.
5758  *
5759  * Returns 0 on success, -errno otherwise.
5760  */
5761 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5762 		 bool ethernet)
5763 {
5764 	int err;
5765 
5766 	if (unlikely(!eth_p_mpls(skb->protocol)))
5767 		return 0;
5768 
5769 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5770 	if (unlikely(err))
5771 		return err;
5772 
5773 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5774 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5775 		mac_len);
5776 
5777 	__skb_pull(skb, MPLS_HLEN);
5778 	skb_reset_mac_header(skb);
5779 	skb_set_network_header(skb, mac_len);
5780 
5781 	if (ethernet && mac_len >= ETH_HLEN) {
5782 		struct ethhdr *hdr;
5783 
5784 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5785 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5786 		skb_mod_eth_type(skb, hdr, next_proto);
5787 	}
5788 	skb->protocol = next_proto;
5789 
5790 	return 0;
5791 }
5792 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5793 
5794 /**
5795  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5796  *
5797  * @skb: buffer
5798  * @mpls_lse: new MPLS label stack entry to update to
5799  *
5800  * Expects skb->data at mac header.
5801  *
5802  * Returns 0 on success, -errno otherwise.
5803  */
5804 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5805 {
5806 	int err;
5807 
5808 	if (unlikely(!eth_p_mpls(skb->protocol)))
5809 		return -EINVAL;
5810 
5811 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5812 	if (unlikely(err))
5813 		return err;
5814 
5815 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5816 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5817 
5818 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5819 	}
5820 
5821 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5822 
5823 	return 0;
5824 }
5825 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5826 
5827 /**
5828  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5829  *
5830  * @skb: buffer
5831  *
5832  * Expects skb->data at mac header.
5833  *
5834  * Returns 0 on success, -errno otherwise.
5835  */
5836 int skb_mpls_dec_ttl(struct sk_buff *skb)
5837 {
5838 	u32 lse;
5839 	u8 ttl;
5840 
5841 	if (unlikely(!eth_p_mpls(skb->protocol)))
5842 		return -EINVAL;
5843 
5844 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5845 		return -ENOMEM;
5846 
5847 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5848 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5849 	if (!--ttl)
5850 		return -EINVAL;
5851 
5852 	lse &= ~MPLS_LS_TTL_MASK;
5853 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5854 
5855 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5856 }
5857 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5858 
5859 /**
5860  * alloc_skb_with_frags - allocate skb with page frags
5861  *
5862  * @header_len: size of linear part
5863  * @data_len: needed length in frags
5864  * @max_page_order: max page order desired.
5865  * @errcode: pointer to error code if any
5866  * @gfp_mask: allocation mask
5867  *
5868  * This can be used to allocate a paged skb, given a maximal order for frags.
5869  */
5870 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5871 				     unsigned long data_len,
5872 				     int max_page_order,
5873 				     int *errcode,
5874 				     gfp_t gfp_mask)
5875 {
5876 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5877 	unsigned long chunk;
5878 	struct sk_buff *skb;
5879 	struct page *page;
5880 	int i;
5881 
5882 	*errcode = -EMSGSIZE;
5883 	/* Note this test could be relaxed, if we succeed to allocate
5884 	 * high order pages...
5885 	 */
5886 	if (npages > MAX_SKB_FRAGS)
5887 		return NULL;
5888 
5889 	*errcode = -ENOBUFS;
5890 	skb = alloc_skb(header_len, gfp_mask);
5891 	if (!skb)
5892 		return NULL;
5893 
5894 	skb->truesize += npages << PAGE_SHIFT;
5895 
5896 	for (i = 0; npages > 0; i++) {
5897 		int order = max_page_order;
5898 
5899 		while (order) {
5900 			if (npages >= 1 << order) {
5901 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5902 						   __GFP_COMP |
5903 						   __GFP_NOWARN,
5904 						   order);
5905 				if (page)
5906 					goto fill_page;
5907 				/* Do not retry other high order allocations */
5908 				order = 1;
5909 				max_page_order = 0;
5910 			}
5911 			order--;
5912 		}
5913 		page = alloc_page(gfp_mask);
5914 		if (!page)
5915 			goto failure;
5916 fill_page:
5917 		chunk = min_t(unsigned long, data_len,
5918 			      PAGE_SIZE << order);
5919 		skb_fill_page_desc(skb, i, page, 0, chunk);
5920 		data_len -= chunk;
5921 		npages -= 1 << order;
5922 	}
5923 	return skb;
5924 
5925 failure:
5926 	kfree_skb(skb);
5927 	return NULL;
5928 }
5929 EXPORT_SYMBOL(alloc_skb_with_frags);
5930 
5931 /* carve out the first off bytes from skb when off < headlen */
5932 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5933 				    const int headlen, gfp_t gfp_mask)
5934 {
5935 	int i;
5936 	int size = skb_end_offset(skb);
5937 	int new_hlen = headlen - off;
5938 	u8 *data;
5939 
5940 	size = SKB_DATA_ALIGN(size);
5941 
5942 	if (skb_pfmemalloc(skb))
5943 		gfp_mask |= __GFP_MEMALLOC;
5944 	data = kmalloc_reserve(size +
5945 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5946 			       gfp_mask, NUMA_NO_NODE, NULL);
5947 	if (!data)
5948 		return -ENOMEM;
5949 
5950 	size = SKB_WITH_OVERHEAD(ksize(data));
5951 
5952 	/* Copy real data, and all frags */
5953 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5954 	skb->len -= off;
5955 
5956 	memcpy((struct skb_shared_info *)(data + size),
5957 	       skb_shinfo(skb),
5958 	       offsetof(struct skb_shared_info,
5959 			frags[skb_shinfo(skb)->nr_frags]));
5960 	if (skb_cloned(skb)) {
5961 		/* drop the old head gracefully */
5962 		if (skb_orphan_frags(skb, gfp_mask)) {
5963 			kfree(data);
5964 			return -ENOMEM;
5965 		}
5966 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5967 			skb_frag_ref(skb, i);
5968 		if (skb_has_frag_list(skb))
5969 			skb_clone_fraglist(skb);
5970 		skb_release_data(skb);
5971 	} else {
5972 		/* we can reuse existing recount- all we did was
5973 		 * relocate values
5974 		 */
5975 		skb_free_head(skb);
5976 	}
5977 
5978 	skb->head = data;
5979 	skb->data = data;
5980 	skb->head_frag = 0;
5981 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5982 	skb->end = size;
5983 #else
5984 	skb->end = skb->head + size;
5985 #endif
5986 	skb_set_tail_pointer(skb, skb_headlen(skb));
5987 	skb_headers_offset_update(skb, 0);
5988 	skb->cloned = 0;
5989 	skb->hdr_len = 0;
5990 	skb->nohdr = 0;
5991 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5992 
5993 	return 0;
5994 }
5995 
5996 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5997 
5998 /* carve out the first eat bytes from skb's frag_list. May recurse into
5999  * pskb_carve()
6000  */
6001 static int pskb_carve_frag_list(struct sk_buff *skb,
6002 				struct skb_shared_info *shinfo, int eat,
6003 				gfp_t gfp_mask)
6004 {
6005 	struct sk_buff *list = shinfo->frag_list;
6006 	struct sk_buff *clone = NULL;
6007 	struct sk_buff *insp = NULL;
6008 
6009 	do {
6010 		if (!list) {
6011 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6012 			return -EFAULT;
6013 		}
6014 		if (list->len <= eat) {
6015 			/* Eaten as whole. */
6016 			eat -= list->len;
6017 			list = list->next;
6018 			insp = list;
6019 		} else {
6020 			/* Eaten partially. */
6021 			if (skb_shared(list)) {
6022 				clone = skb_clone(list, gfp_mask);
6023 				if (!clone)
6024 					return -ENOMEM;
6025 				insp = list->next;
6026 				list = clone;
6027 			} else {
6028 				/* This may be pulled without problems. */
6029 				insp = list;
6030 			}
6031 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6032 				kfree_skb(clone);
6033 				return -ENOMEM;
6034 			}
6035 			break;
6036 		}
6037 	} while (eat);
6038 
6039 	/* Free pulled out fragments. */
6040 	while ((list = shinfo->frag_list) != insp) {
6041 		shinfo->frag_list = list->next;
6042 		kfree_skb(list);
6043 	}
6044 	/* And insert new clone at head. */
6045 	if (clone) {
6046 		clone->next = list;
6047 		shinfo->frag_list = clone;
6048 	}
6049 	return 0;
6050 }
6051 
6052 /* carve off first len bytes from skb. Split line (off) is in the
6053  * non-linear part of skb
6054  */
6055 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6056 				       int pos, gfp_t gfp_mask)
6057 {
6058 	int i, k = 0;
6059 	int size = skb_end_offset(skb);
6060 	u8 *data;
6061 	const int nfrags = skb_shinfo(skb)->nr_frags;
6062 	struct skb_shared_info *shinfo;
6063 
6064 	size = SKB_DATA_ALIGN(size);
6065 
6066 	if (skb_pfmemalloc(skb))
6067 		gfp_mask |= __GFP_MEMALLOC;
6068 	data = kmalloc_reserve(size +
6069 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6070 			       gfp_mask, NUMA_NO_NODE, NULL);
6071 	if (!data)
6072 		return -ENOMEM;
6073 
6074 	size = SKB_WITH_OVERHEAD(ksize(data));
6075 
6076 	memcpy((struct skb_shared_info *)(data + size),
6077 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6078 	if (skb_orphan_frags(skb, gfp_mask)) {
6079 		kfree(data);
6080 		return -ENOMEM;
6081 	}
6082 	shinfo = (struct skb_shared_info *)(data + size);
6083 	for (i = 0; i < nfrags; i++) {
6084 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6085 
6086 		if (pos + fsize > off) {
6087 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6088 
6089 			if (pos < off) {
6090 				/* Split frag.
6091 				 * We have two variants in this case:
6092 				 * 1. Move all the frag to the second
6093 				 *    part, if it is possible. F.e.
6094 				 *    this approach is mandatory for TUX,
6095 				 *    where splitting is expensive.
6096 				 * 2. Split is accurately. We make this.
6097 				 */
6098 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6099 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6100 			}
6101 			skb_frag_ref(skb, i);
6102 			k++;
6103 		}
6104 		pos += fsize;
6105 	}
6106 	shinfo->nr_frags = k;
6107 	if (skb_has_frag_list(skb))
6108 		skb_clone_fraglist(skb);
6109 
6110 	/* split line is in frag list */
6111 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6112 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6113 		if (skb_has_frag_list(skb))
6114 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6115 		kfree(data);
6116 		return -ENOMEM;
6117 	}
6118 	skb_release_data(skb);
6119 
6120 	skb->head = data;
6121 	skb->head_frag = 0;
6122 	skb->data = data;
6123 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6124 	skb->end = size;
6125 #else
6126 	skb->end = skb->head + size;
6127 #endif
6128 	skb_reset_tail_pointer(skb);
6129 	skb_headers_offset_update(skb, 0);
6130 	skb->cloned   = 0;
6131 	skb->hdr_len  = 0;
6132 	skb->nohdr    = 0;
6133 	skb->len -= off;
6134 	skb->data_len = skb->len;
6135 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6136 	return 0;
6137 }
6138 
6139 /* remove len bytes from the beginning of the skb */
6140 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6141 {
6142 	int headlen = skb_headlen(skb);
6143 
6144 	if (len < headlen)
6145 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6146 	else
6147 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6148 }
6149 
6150 /* Extract to_copy bytes starting at off from skb, and return this in
6151  * a new skb
6152  */
6153 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6154 			     int to_copy, gfp_t gfp)
6155 {
6156 	struct sk_buff  *clone = skb_clone(skb, gfp);
6157 
6158 	if (!clone)
6159 		return NULL;
6160 
6161 	if (pskb_carve(clone, off, gfp) < 0 ||
6162 	    pskb_trim(clone, to_copy)) {
6163 		kfree_skb(clone);
6164 		return NULL;
6165 	}
6166 	return clone;
6167 }
6168 EXPORT_SYMBOL(pskb_extract);
6169 
6170 /**
6171  * skb_condense - try to get rid of fragments/frag_list if possible
6172  * @skb: buffer
6173  *
6174  * Can be used to save memory before skb is added to a busy queue.
6175  * If packet has bytes in frags and enough tail room in skb->head,
6176  * pull all of them, so that we can free the frags right now and adjust
6177  * truesize.
6178  * Notes:
6179  *	We do not reallocate skb->head thus can not fail.
6180  *	Caller must re-evaluate skb->truesize if needed.
6181  */
6182 void skb_condense(struct sk_buff *skb)
6183 {
6184 	if (skb->data_len) {
6185 		if (skb->data_len > skb->end - skb->tail ||
6186 		    skb_cloned(skb))
6187 			return;
6188 
6189 		/* Nice, we can free page frag(s) right now */
6190 		__pskb_pull_tail(skb, skb->data_len);
6191 	}
6192 	/* At this point, skb->truesize might be over estimated,
6193 	 * because skb had a fragment, and fragments do not tell
6194 	 * their truesize.
6195 	 * When we pulled its content into skb->head, fragment
6196 	 * was freed, but __pskb_pull_tail() could not possibly
6197 	 * adjust skb->truesize, not knowing the frag truesize.
6198 	 */
6199 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6200 }
6201 
6202 #ifdef CONFIG_SKB_EXTENSIONS
6203 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6204 {
6205 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6206 }
6207 
6208 /**
6209  * __skb_ext_alloc - allocate a new skb extensions storage
6210  *
6211  * @flags: See kmalloc().
6212  *
6213  * Returns the newly allocated pointer. The pointer can later attached to a
6214  * skb via __skb_ext_set().
6215  * Note: caller must handle the skb_ext as an opaque data.
6216  */
6217 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6218 {
6219 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6220 
6221 	if (new) {
6222 		memset(new->offset, 0, sizeof(new->offset));
6223 		refcount_set(&new->refcnt, 1);
6224 	}
6225 
6226 	return new;
6227 }
6228 
6229 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6230 					 unsigned int old_active)
6231 {
6232 	struct skb_ext *new;
6233 
6234 	if (refcount_read(&old->refcnt) == 1)
6235 		return old;
6236 
6237 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6238 	if (!new)
6239 		return NULL;
6240 
6241 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6242 	refcount_set(&new->refcnt, 1);
6243 
6244 #ifdef CONFIG_XFRM
6245 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6246 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6247 		unsigned int i;
6248 
6249 		for (i = 0; i < sp->len; i++)
6250 			xfrm_state_hold(sp->xvec[i]);
6251 	}
6252 #endif
6253 	__skb_ext_put(old);
6254 	return new;
6255 }
6256 
6257 /**
6258  * __skb_ext_set - attach the specified extension storage to this skb
6259  * @skb: buffer
6260  * @id: extension id
6261  * @ext: extension storage previously allocated via __skb_ext_alloc()
6262  *
6263  * Existing extensions, if any, are cleared.
6264  *
6265  * Returns the pointer to the extension.
6266  */
6267 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6268 		    struct skb_ext *ext)
6269 {
6270 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6271 
6272 	skb_ext_put(skb);
6273 	newlen = newoff + skb_ext_type_len[id];
6274 	ext->chunks = newlen;
6275 	ext->offset[id] = newoff;
6276 	skb->extensions = ext;
6277 	skb->active_extensions = 1 << id;
6278 	return skb_ext_get_ptr(ext, id);
6279 }
6280 
6281 /**
6282  * skb_ext_add - allocate space for given extension, COW if needed
6283  * @skb: buffer
6284  * @id: extension to allocate space for
6285  *
6286  * Allocates enough space for the given extension.
6287  * If the extension is already present, a pointer to that extension
6288  * is returned.
6289  *
6290  * If the skb was cloned, COW applies and the returned memory can be
6291  * modified without changing the extension space of clones buffers.
6292  *
6293  * Returns pointer to the extension or NULL on allocation failure.
6294  */
6295 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6296 {
6297 	struct skb_ext *new, *old = NULL;
6298 	unsigned int newlen, newoff;
6299 
6300 	if (skb->active_extensions) {
6301 		old = skb->extensions;
6302 
6303 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6304 		if (!new)
6305 			return NULL;
6306 
6307 		if (__skb_ext_exist(new, id))
6308 			goto set_active;
6309 
6310 		newoff = new->chunks;
6311 	} else {
6312 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6313 
6314 		new = __skb_ext_alloc(GFP_ATOMIC);
6315 		if (!new)
6316 			return NULL;
6317 	}
6318 
6319 	newlen = newoff + skb_ext_type_len[id];
6320 	new->chunks = newlen;
6321 	new->offset[id] = newoff;
6322 set_active:
6323 	skb->extensions = new;
6324 	skb->active_extensions |= 1 << id;
6325 	return skb_ext_get_ptr(new, id);
6326 }
6327 EXPORT_SYMBOL(skb_ext_add);
6328 
6329 #ifdef CONFIG_XFRM
6330 static void skb_ext_put_sp(struct sec_path *sp)
6331 {
6332 	unsigned int i;
6333 
6334 	for (i = 0; i < sp->len; i++)
6335 		xfrm_state_put(sp->xvec[i]);
6336 }
6337 #endif
6338 
6339 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6340 {
6341 	struct skb_ext *ext = skb->extensions;
6342 
6343 	skb->active_extensions &= ~(1 << id);
6344 	if (skb->active_extensions == 0) {
6345 		skb->extensions = NULL;
6346 		__skb_ext_put(ext);
6347 #ifdef CONFIG_XFRM
6348 	} else if (id == SKB_EXT_SEC_PATH &&
6349 		   refcount_read(&ext->refcnt) == 1) {
6350 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6351 
6352 		skb_ext_put_sp(sp);
6353 		sp->len = 0;
6354 #endif
6355 	}
6356 }
6357 EXPORT_SYMBOL(__skb_ext_del);
6358 
6359 void __skb_ext_put(struct skb_ext *ext)
6360 {
6361 	/* If this is last clone, nothing can increment
6362 	 * it after check passes.  Avoids one atomic op.
6363 	 */
6364 	if (refcount_read(&ext->refcnt) == 1)
6365 		goto free_now;
6366 
6367 	if (!refcount_dec_and_test(&ext->refcnt))
6368 		return;
6369 free_now:
6370 #ifdef CONFIG_XFRM
6371 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6372 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6373 #endif
6374 
6375 	kmem_cache_free(skbuff_ext_cache, ext);
6376 }
6377 EXPORT_SYMBOL(__skb_ext_put);
6378 #endif /* CONFIG_SKB_EXTENSIONS */
6379