1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 378 { 379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 380 381 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 382 } 383 384 void *napi_alloc_frag(unsigned int fragsz) 385 { 386 fragsz = SKB_DATA_ALIGN(fragsz); 387 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * netdev_alloc_frag - allocate a page fragment 394 * @fragsz: fragment size 395 * 396 * Allocates a frag from a page for receive buffer. 397 * Uses GFP_ATOMIC allocations. 398 */ 399 void *netdev_alloc_frag(unsigned int fragsz) 400 { 401 struct page_frag_cache *nc; 402 void *data; 403 404 fragsz = SKB_DATA_ALIGN(fragsz); 405 if (in_irq() || irqs_disabled()) { 406 nc = this_cpu_ptr(&netdev_alloc_cache); 407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 408 } else { 409 local_bh_disable(); 410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 411 local_bh_enable(); 412 } 413 return data; 414 } 415 EXPORT_SYMBOL(netdev_alloc_frag); 416 417 /** 418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 419 * @dev: network device to receive on 420 * @len: length to allocate 421 * @gfp_mask: get_free_pages mask, passed to alloc_skb 422 * 423 * Allocate a new &sk_buff and assign it a usage count of one. The 424 * buffer has NET_SKB_PAD headroom built in. Users should allocate 425 * the headroom they think they need without accounting for the 426 * built in space. The built in space is used for optimisations. 427 * 428 * %NULL is returned if there is no free memory. 429 */ 430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 431 gfp_t gfp_mask) 432 { 433 struct page_frag_cache *nc; 434 struct sk_buff *skb; 435 bool pfmemalloc; 436 void *data; 437 438 len += NET_SKB_PAD; 439 440 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 441 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 442 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 443 if (!skb) 444 goto skb_fail; 445 goto skb_success; 446 } 447 448 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 449 len = SKB_DATA_ALIGN(len); 450 451 if (sk_memalloc_socks()) 452 gfp_mask |= __GFP_MEMALLOC; 453 454 if (in_irq() || irqs_disabled()) { 455 nc = this_cpu_ptr(&netdev_alloc_cache); 456 data = page_frag_alloc(nc, len, gfp_mask); 457 pfmemalloc = nc->pfmemalloc; 458 } else { 459 local_bh_disable(); 460 nc = this_cpu_ptr(&napi_alloc_cache.page); 461 data = page_frag_alloc(nc, len, gfp_mask); 462 pfmemalloc = nc->pfmemalloc; 463 local_bh_enable(); 464 } 465 466 if (unlikely(!data)) 467 return NULL; 468 469 skb = __build_skb(data, len); 470 if (unlikely(!skb)) { 471 skb_free_frag(data); 472 return NULL; 473 } 474 475 if (pfmemalloc) 476 skb->pfmemalloc = 1; 477 skb->head_frag = 1; 478 479 skb_success: 480 skb_reserve(skb, NET_SKB_PAD); 481 skb->dev = dev; 482 483 skb_fail: 484 return skb; 485 } 486 EXPORT_SYMBOL(__netdev_alloc_skb); 487 488 /** 489 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 490 * @napi: napi instance this buffer was allocated for 491 * @len: length to allocate 492 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 493 * 494 * Allocate a new sk_buff for use in NAPI receive. This buffer will 495 * attempt to allocate the head from a special reserved region used 496 * only for NAPI Rx allocation. By doing this we can save several 497 * CPU cycles by avoiding having to disable and re-enable IRQs. 498 * 499 * %NULL is returned if there is no free memory. 500 */ 501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 502 gfp_t gfp_mask) 503 { 504 struct napi_alloc_cache *nc; 505 struct sk_buff *skb; 506 void *data; 507 508 len += NET_SKB_PAD + NET_IP_ALIGN; 509 510 /* If requested length is either too small or too big, 511 * we use kmalloc() for skb->head allocation. 512 */ 513 if (len <= SKB_WITH_OVERHEAD(1024) || 514 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 515 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 516 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 517 if (!skb) 518 goto skb_fail; 519 goto skb_success; 520 } 521 522 nc = this_cpu_ptr(&napi_alloc_cache); 523 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 524 len = SKB_DATA_ALIGN(len); 525 526 if (sk_memalloc_socks()) 527 gfp_mask |= __GFP_MEMALLOC; 528 529 data = page_frag_alloc(&nc->page, len, gfp_mask); 530 if (unlikely(!data)) 531 return NULL; 532 533 skb = __build_skb(data, len); 534 if (unlikely(!skb)) { 535 skb_free_frag(data); 536 return NULL; 537 } 538 539 if (nc->page.pfmemalloc) 540 skb->pfmemalloc = 1; 541 skb->head_frag = 1; 542 543 skb_success: 544 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 545 skb->dev = napi->dev; 546 547 skb_fail: 548 return skb; 549 } 550 EXPORT_SYMBOL(__napi_alloc_skb); 551 552 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 553 int size, unsigned int truesize) 554 { 555 skb_fill_page_desc(skb, i, page, off, size); 556 skb->len += size; 557 skb->data_len += size; 558 skb->truesize += truesize; 559 } 560 EXPORT_SYMBOL(skb_add_rx_frag); 561 562 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 563 unsigned int truesize) 564 { 565 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 566 567 skb_frag_size_add(frag, size); 568 skb->len += size; 569 skb->data_len += size; 570 skb->truesize += truesize; 571 } 572 EXPORT_SYMBOL(skb_coalesce_rx_frag); 573 574 static void skb_drop_list(struct sk_buff **listp) 575 { 576 kfree_skb_list(*listp); 577 *listp = NULL; 578 } 579 580 static inline void skb_drop_fraglist(struct sk_buff *skb) 581 { 582 skb_drop_list(&skb_shinfo(skb)->frag_list); 583 } 584 585 static void skb_clone_fraglist(struct sk_buff *skb) 586 { 587 struct sk_buff *list; 588 589 skb_walk_frags(skb, list) 590 skb_get(list); 591 } 592 593 static void skb_free_head(struct sk_buff *skb) 594 { 595 unsigned char *head = skb->head; 596 597 if (skb->head_frag) 598 skb_free_frag(head); 599 else 600 kfree(head); 601 } 602 603 static void skb_release_data(struct sk_buff *skb) 604 { 605 struct skb_shared_info *shinfo = skb_shinfo(skb); 606 int i; 607 608 if (skb->cloned && 609 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 610 &shinfo->dataref)) 611 return; 612 613 for (i = 0; i < shinfo->nr_frags; i++) 614 __skb_frag_unref(&shinfo->frags[i]); 615 616 if (shinfo->frag_list) 617 kfree_skb_list(shinfo->frag_list); 618 619 skb_zcopy_clear(skb, true); 620 skb_free_head(skb); 621 } 622 623 /* 624 * Free an skbuff by memory without cleaning the state. 625 */ 626 static void kfree_skbmem(struct sk_buff *skb) 627 { 628 struct sk_buff_fclones *fclones; 629 630 switch (skb->fclone) { 631 case SKB_FCLONE_UNAVAILABLE: 632 kmem_cache_free(skbuff_head_cache, skb); 633 return; 634 635 case SKB_FCLONE_ORIG: 636 fclones = container_of(skb, struct sk_buff_fclones, skb1); 637 638 /* We usually free the clone (TX completion) before original skb 639 * This test would have no chance to be true for the clone, 640 * while here, branch prediction will be good. 641 */ 642 if (refcount_read(&fclones->fclone_ref) == 1) 643 goto fastpath; 644 break; 645 646 default: /* SKB_FCLONE_CLONE */ 647 fclones = container_of(skb, struct sk_buff_fclones, skb2); 648 break; 649 } 650 if (!refcount_dec_and_test(&fclones->fclone_ref)) 651 return; 652 fastpath: 653 kmem_cache_free(skbuff_fclone_cache, fclones); 654 } 655 656 void skb_release_head_state(struct sk_buff *skb) 657 { 658 skb_dst_drop(skb); 659 if (skb->destructor) { 660 WARN_ON(in_irq()); 661 skb->destructor(skb); 662 } 663 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 664 nf_conntrack_put(skb_nfct(skb)); 665 #endif 666 skb_ext_put(skb); 667 } 668 669 /* Free everything but the sk_buff shell. */ 670 static void skb_release_all(struct sk_buff *skb) 671 { 672 skb_release_head_state(skb); 673 if (likely(skb->head)) 674 skb_release_data(skb); 675 } 676 677 /** 678 * __kfree_skb - private function 679 * @skb: buffer 680 * 681 * Free an sk_buff. Release anything attached to the buffer. 682 * Clean the state. This is an internal helper function. Users should 683 * always call kfree_skb 684 */ 685 686 void __kfree_skb(struct sk_buff *skb) 687 { 688 skb_release_all(skb); 689 kfree_skbmem(skb); 690 } 691 EXPORT_SYMBOL(__kfree_skb); 692 693 /** 694 * kfree_skb - free an sk_buff 695 * @skb: buffer to free 696 * 697 * Drop a reference to the buffer and free it if the usage count has 698 * hit zero. 699 */ 700 void kfree_skb(struct sk_buff *skb) 701 { 702 if (!skb_unref(skb)) 703 return; 704 705 trace_kfree_skb(skb, __builtin_return_address(0)); 706 __kfree_skb(skb); 707 } 708 EXPORT_SYMBOL(kfree_skb); 709 710 void kfree_skb_list(struct sk_buff *segs) 711 { 712 while (segs) { 713 struct sk_buff *next = segs->next; 714 715 kfree_skb(segs); 716 segs = next; 717 } 718 } 719 EXPORT_SYMBOL(kfree_skb_list); 720 721 /* Dump skb information and contents. 722 * 723 * Must only be called from net_ratelimit()-ed paths. 724 * 725 * Dumps whole packets if full_pkt, only headers otherwise. 726 */ 727 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 728 { 729 struct skb_shared_info *sh = skb_shinfo(skb); 730 struct net_device *dev = skb->dev; 731 struct sock *sk = skb->sk; 732 struct sk_buff *list_skb; 733 bool has_mac, has_trans; 734 int headroom, tailroom; 735 int i, len, seg_len; 736 737 if (full_pkt) 738 len = skb->len; 739 else 740 len = min_t(int, skb->len, MAX_HEADER + 128); 741 742 headroom = skb_headroom(skb); 743 tailroom = skb_tailroom(skb); 744 745 has_mac = skb_mac_header_was_set(skb); 746 has_trans = skb_transport_header_was_set(skb); 747 748 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 749 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 750 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 751 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 752 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 753 level, skb->len, headroom, skb_headlen(skb), tailroom, 754 has_mac ? skb->mac_header : -1, 755 has_mac ? skb_mac_header_len(skb) : -1, 756 skb->network_header, 757 has_trans ? skb_network_header_len(skb) : -1, 758 has_trans ? skb->transport_header : -1, 759 sh->tx_flags, sh->nr_frags, 760 sh->gso_size, sh->gso_type, sh->gso_segs, 761 skb->csum, skb->ip_summed, skb->csum_complete_sw, 762 skb->csum_valid, skb->csum_level, 763 skb->hash, skb->sw_hash, skb->l4_hash, 764 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 765 766 if (dev) 767 printk("%sdev name=%s feat=0x%pNF\n", 768 level, dev->name, &dev->features); 769 if (sk) 770 printk("%ssk family=%hu type=%u proto=%u\n", 771 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 772 773 if (full_pkt && headroom) 774 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 775 16, 1, skb->head, headroom, false); 776 777 seg_len = min_t(int, skb_headlen(skb), len); 778 if (seg_len) 779 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 780 16, 1, skb->data, seg_len, false); 781 len -= seg_len; 782 783 if (full_pkt && tailroom) 784 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 785 16, 1, skb_tail_pointer(skb), tailroom, false); 786 787 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 789 u32 p_off, p_len, copied; 790 struct page *p; 791 u8 *vaddr; 792 793 skb_frag_foreach_page(frag, skb_frag_off(frag), 794 skb_frag_size(frag), p, p_off, p_len, 795 copied) { 796 seg_len = min_t(int, p_len, len); 797 vaddr = kmap_atomic(p); 798 print_hex_dump(level, "skb frag: ", 799 DUMP_PREFIX_OFFSET, 800 16, 1, vaddr + p_off, seg_len, false); 801 kunmap_atomic(vaddr); 802 len -= seg_len; 803 if (!len) 804 break; 805 } 806 } 807 808 if (full_pkt && skb_has_frag_list(skb)) { 809 printk("skb fraglist:\n"); 810 skb_walk_frags(skb, list_skb) 811 skb_dump(level, list_skb, true); 812 } 813 } 814 EXPORT_SYMBOL(skb_dump); 815 816 /** 817 * skb_tx_error - report an sk_buff xmit error 818 * @skb: buffer that triggered an error 819 * 820 * Report xmit error if a device callback is tracking this skb. 821 * skb must be freed afterwards. 822 */ 823 void skb_tx_error(struct sk_buff *skb) 824 { 825 skb_zcopy_clear(skb, true); 826 } 827 EXPORT_SYMBOL(skb_tx_error); 828 829 #ifdef CONFIG_TRACEPOINTS 830 /** 831 * consume_skb - free an skbuff 832 * @skb: buffer to free 833 * 834 * Drop a ref to the buffer and free it if the usage count has hit zero 835 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 836 * is being dropped after a failure and notes that 837 */ 838 void consume_skb(struct sk_buff *skb) 839 { 840 if (!skb_unref(skb)) 841 return; 842 843 trace_consume_skb(skb); 844 __kfree_skb(skb); 845 } 846 EXPORT_SYMBOL(consume_skb); 847 #endif 848 849 /** 850 * __consume_stateless_skb - free an skbuff, assuming it is stateless 851 * @skb: buffer to free 852 * 853 * Alike consume_skb(), but this variant assumes that this is the last 854 * skb reference and all the head states have been already dropped 855 */ 856 void __consume_stateless_skb(struct sk_buff *skb) 857 { 858 trace_consume_skb(skb); 859 skb_release_data(skb); 860 kfree_skbmem(skb); 861 } 862 863 void __kfree_skb_flush(void) 864 { 865 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 866 867 /* flush skb_cache if containing objects */ 868 if (nc->skb_count) { 869 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 870 nc->skb_cache); 871 nc->skb_count = 0; 872 } 873 } 874 875 static inline void _kfree_skb_defer(struct sk_buff *skb) 876 { 877 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 878 879 /* drop skb->head and call any destructors for packet */ 880 skb_release_all(skb); 881 882 /* record skb to CPU local list */ 883 nc->skb_cache[nc->skb_count++] = skb; 884 885 #ifdef CONFIG_SLUB 886 /* SLUB writes into objects when freeing */ 887 prefetchw(skb); 888 #endif 889 890 /* flush skb_cache if it is filled */ 891 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 892 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 893 nc->skb_cache); 894 nc->skb_count = 0; 895 } 896 } 897 void __kfree_skb_defer(struct sk_buff *skb) 898 { 899 _kfree_skb_defer(skb); 900 } 901 902 void napi_consume_skb(struct sk_buff *skb, int budget) 903 { 904 /* Zero budget indicate non-NAPI context called us, like netpoll */ 905 if (unlikely(!budget)) { 906 dev_consume_skb_any(skb); 907 return; 908 } 909 910 lockdep_assert_in_softirq(); 911 912 if (!skb_unref(skb)) 913 return; 914 915 /* if reaching here SKB is ready to free */ 916 trace_consume_skb(skb); 917 918 /* if SKB is a clone, don't handle this case */ 919 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 920 __kfree_skb(skb); 921 return; 922 } 923 924 _kfree_skb_defer(skb); 925 } 926 EXPORT_SYMBOL(napi_consume_skb); 927 928 /* Make sure a field is enclosed inside headers_start/headers_end section */ 929 #define CHECK_SKB_FIELD(field) \ 930 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 931 offsetof(struct sk_buff, headers_start)); \ 932 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 933 offsetof(struct sk_buff, headers_end)); \ 934 935 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 936 { 937 new->tstamp = old->tstamp; 938 /* We do not copy old->sk */ 939 new->dev = old->dev; 940 memcpy(new->cb, old->cb, sizeof(old->cb)); 941 skb_dst_copy(new, old); 942 __skb_ext_copy(new, old); 943 __nf_copy(new, old, false); 944 945 /* Note : this field could be in headers_start/headers_end section 946 * It is not yet because we do not want to have a 16 bit hole 947 */ 948 new->queue_mapping = old->queue_mapping; 949 950 memcpy(&new->headers_start, &old->headers_start, 951 offsetof(struct sk_buff, headers_end) - 952 offsetof(struct sk_buff, headers_start)); 953 CHECK_SKB_FIELD(protocol); 954 CHECK_SKB_FIELD(csum); 955 CHECK_SKB_FIELD(hash); 956 CHECK_SKB_FIELD(priority); 957 CHECK_SKB_FIELD(skb_iif); 958 CHECK_SKB_FIELD(vlan_proto); 959 CHECK_SKB_FIELD(vlan_tci); 960 CHECK_SKB_FIELD(transport_header); 961 CHECK_SKB_FIELD(network_header); 962 CHECK_SKB_FIELD(mac_header); 963 CHECK_SKB_FIELD(inner_protocol); 964 CHECK_SKB_FIELD(inner_transport_header); 965 CHECK_SKB_FIELD(inner_network_header); 966 CHECK_SKB_FIELD(inner_mac_header); 967 CHECK_SKB_FIELD(mark); 968 #ifdef CONFIG_NETWORK_SECMARK 969 CHECK_SKB_FIELD(secmark); 970 #endif 971 #ifdef CONFIG_NET_RX_BUSY_POLL 972 CHECK_SKB_FIELD(napi_id); 973 #endif 974 #ifdef CONFIG_XPS 975 CHECK_SKB_FIELD(sender_cpu); 976 #endif 977 #ifdef CONFIG_NET_SCHED 978 CHECK_SKB_FIELD(tc_index); 979 #endif 980 981 } 982 983 /* 984 * You should not add any new code to this function. Add it to 985 * __copy_skb_header above instead. 986 */ 987 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 988 { 989 #define C(x) n->x = skb->x 990 991 n->next = n->prev = NULL; 992 n->sk = NULL; 993 __copy_skb_header(n, skb); 994 995 C(len); 996 C(data_len); 997 C(mac_len); 998 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 999 n->cloned = 1; 1000 n->nohdr = 0; 1001 n->peeked = 0; 1002 C(pfmemalloc); 1003 n->destructor = NULL; 1004 C(tail); 1005 C(end); 1006 C(head); 1007 C(head_frag); 1008 C(data); 1009 C(truesize); 1010 refcount_set(&n->users, 1); 1011 1012 atomic_inc(&(skb_shinfo(skb)->dataref)); 1013 skb->cloned = 1; 1014 1015 return n; 1016 #undef C 1017 } 1018 1019 /** 1020 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1021 * @first: first sk_buff of the msg 1022 */ 1023 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1024 { 1025 struct sk_buff *n; 1026 1027 n = alloc_skb(0, GFP_ATOMIC); 1028 if (!n) 1029 return NULL; 1030 1031 n->len = first->len; 1032 n->data_len = first->len; 1033 n->truesize = first->truesize; 1034 1035 skb_shinfo(n)->frag_list = first; 1036 1037 __copy_skb_header(n, first); 1038 n->destructor = NULL; 1039 1040 return n; 1041 } 1042 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1043 1044 /** 1045 * skb_morph - morph one skb into another 1046 * @dst: the skb to receive the contents 1047 * @src: the skb to supply the contents 1048 * 1049 * This is identical to skb_clone except that the target skb is 1050 * supplied by the user. 1051 * 1052 * The target skb is returned upon exit. 1053 */ 1054 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1055 { 1056 skb_release_all(dst); 1057 return __skb_clone(dst, src); 1058 } 1059 EXPORT_SYMBOL_GPL(skb_morph); 1060 1061 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1062 { 1063 unsigned long max_pg, num_pg, new_pg, old_pg; 1064 struct user_struct *user; 1065 1066 if (capable(CAP_IPC_LOCK) || !size) 1067 return 0; 1068 1069 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1070 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1071 user = mmp->user ? : current_user(); 1072 1073 do { 1074 old_pg = atomic_long_read(&user->locked_vm); 1075 new_pg = old_pg + num_pg; 1076 if (new_pg > max_pg) 1077 return -ENOBUFS; 1078 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1079 old_pg); 1080 1081 if (!mmp->user) { 1082 mmp->user = get_uid(user); 1083 mmp->num_pg = num_pg; 1084 } else { 1085 mmp->num_pg += num_pg; 1086 } 1087 1088 return 0; 1089 } 1090 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1091 1092 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1093 { 1094 if (mmp->user) { 1095 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1096 free_uid(mmp->user); 1097 } 1098 } 1099 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1100 1101 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1102 { 1103 struct ubuf_info *uarg; 1104 struct sk_buff *skb; 1105 1106 WARN_ON_ONCE(!in_task()); 1107 1108 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1109 if (!skb) 1110 return NULL; 1111 1112 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1113 uarg = (void *)skb->cb; 1114 uarg->mmp.user = NULL; 1115 1116 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1117 kfree_skb(skb); 1118 return NULL; 1119 } 1120 1121 uarg->callback = sock_zerocopy_callback; 1122 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1123 uarg->len = 1; 1124 uarg->bytelen = size; 1125 uarg->zerocopy = 1; 1126 refcount_set(&uarg->refcnt, 1); 1127 sock_hold(sk); 1128 1129 return uarg; 1130 } 1131 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1132 1133 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1134 { 1135 return container_of((void *)uarg, struct sk_buff, cb); 1136 } 1137 1138 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1139 struct ubuf_info *uarg) 1140 { 1141 if (uarg) { 1142 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1143 u32 bytelen, next; 1144 1145 /* realloc only when socket is locked (TCP, UDP cork), 1146 * so uarg->len and sk_zckey access is serialized 1147 */ 1148 if (!sock_owned_by_user(sk)) { 1149 WARN_ON_ONCE(1); 1150 return NULL; 1151 } 1152 1153 bytelen = uarg->bytelen + size; 1154 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1155 /* TCP can create new skb to attach new uarg */ 1156 if (sk->sk_type == SOCK_STREAM) 1157 goto new_alloc; 1158 return NULL; 1159 } 1160 1161 next = (u32)atomic_read(&sk->sk_zckey); 1162 if ((u32)(uarg->id + uarg->len) == next) { 1163 if (mm_account_pinned_pages(&uarg->mmp, size)) 1164 return NULL; 1165 uarg->len++; 1166 uarg->bytelen = bytelen; 1167 atomic_set(&sk->sk_zckey, ++next); 1168 1169 /* no extra ref when appending to datagram (MSG_MORE) */ 1170 if (sk->sk_type == SOCK_STREAM) 1171 sock_zerocopy_get(uarg); 1172 1173 return uarg; 1174 } 1175 } 1176 1177 new_alloc: 1178 return sock_zerocopy_alloc(sk, size); 1179 } 1180 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1181 1182 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1183 { 1184 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1185 u32 old_lo, old_hi; 1186 u64 sum_len; 1187 1188 old_lo = serr->ee.ee_info; 1189 old_hi = serr->ee.ee_data; 1190 sum_len = old_hi - old_lo + 1ULL + len; 1191 1192 if (sum_len >= (1ULL << 32)) 1193 return false; 1194 1195 if (lo != old_hi + 1) 1196 return false; 1197 1198 serr->ee.ee_data += len; 1199 return true; 1200 } 1201 1202 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1203 { 1204 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1205 struct sock_exterr_skb *serr; 1206 struct sock *sk = skb->sk; 1207 struct sk_buff_head *q; 1208 unsigned long flags; 1209 u32 lo, hi; 1210 u16 len; 1211 1212 mm_unaccount_pinned_pages(&uarg->mmp); 1213 1214 /* if !len, there was only 1 call, and it was aborted 1215 * so do not queue a completion notification 1216 */ 1217 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1218 goto release; 1219 1220 len = uarg->len; 1221 lo = uarg->id; 1222 hi = uarg->id + len - 1; 1223 1224 serr = SKB_EXT_ERR(skb); 1225 memset(serr, 0, sizeof(*serr)); 1226 serr->ee.ee_errno = 0; 1227 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1228 serr->ee.ee_data = hi; 1229 serr->ee.ee_info = lo; 1230 if (!success) 1231 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1232 1233 q = &sk->sk_error_queue; 1234 spin_lock_irqsave(&q->lock, flags); 1235 tail = skb_peek_tail(q); 1236 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1237 !skb_zerocopy_notify_extend(tail, lo, len)) { 1238 __skb_queue_tail(q, skb); 1239 skb = NULL; 1240 } 1241 spin_unlock_irqrestore(&q->lock, flags); 1242 1243 sk->sk_error_report(sk); 1244 1245 release: 1246 consume_skb(skb); 1247 sock_put(sk); 1248 } 1249 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1250 1251 void sock_zerocopy_put(struct ubuf_info *uarg) 1252 { 1253 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1254 if (uarg->callback) 1255 uarg->callback(uarg, uarg->zerocopy); 1256 else 1257 consume_skb(skb_from_uarg(uarg)); 1258 } 1259 } 1260 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1261 1262 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1263 { 1264 if (uarg) { 1265 struct sock *sk = skb_from_uarg(uarg)->sk; 1266 1267 atomic_dec(&sk->sk_zckey); 1268 uarg->len--; 1269 1270 if (have_uref) 1271 sock_zerocopy_put(uarg); 1272 } 1273 } 1274 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1275 1276 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1277 { 1278 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1279 } 1280 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1281 1282 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1283 struct msghdr *msg, int len, 1284 struct ubuf_info *uarg) 1285 { 1286 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1287 struct iov_iter orig_iter = msg->msg_iter; 1288 int err, orig_len = skb->len; 1289 1290 /* An skb can only point to one uarg. This edge case happens when 1291 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1292 */ 1293 if (orig_uarg && uarg != orig_uarg) 1294 return -EEXIST; 1295 1296 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1297 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1298 struct sock *save_sk = skb->sk; 1299 1300 /* Streams do not free skb on error. Reset to prev state. */ 1301 msg->msg_iter = orig_iter; 1302 skb->sk = sk; 1303 ___pskb_trim(skb, orig_len); 1304 skb->sk = save_sk; 1305 return err; 1306 } 1307 1308 skb_zcopy_set(skb, uarg, NULL); 1309 return skb->len - orig_len; 1310 } 1311 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1312 1313 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1314 gfp_t gfp_mask) 1315 { 1316 if (skb_zcopy(orig)) { 1317 if (skb_zcopy(nskb)) { 1318 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1319 if (!gfp_mask) { 1320 WARN_ON_ONCE(1); 1321 return -ENOMEM; 1322 } 1323 if (skb_uarg(nskb) == skb_uarg(orig)) 1324 return 0; 1325 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1326 return -EIO; 1327 } 1328 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1329 } 1330 return 0; 1331 } 1332 1333 /** 1334 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1335 * @skb: the skb to modify 1336 * @gfp_mask: allocation priority 1337 * 1338 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1339 * It will copy all frags into kernel and drop the reference 1340 * to userspace pages. 1341 * 1342 * If this function is called from an interrupt gfp_mask() must be 1343 * %GFP_ATOMIC. 1344 * 1345 * Returns 0 on success or a negative error code on failure 1346 * to allocate kernel memory to copy to. 1347 */ 1348 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1349 { 1350 int num_frags = skb_shinfo(skb)->nr_frags; 1351 struct page *page, *head = NULL; 1352 int i, new_frags; 1353 u32 d_off; 1354 1355 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1356 return -EINVAL; 1357 1358 if (!num_frags) 1359 goto release; 1360 1361 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1362 for (i = 0; i < new_frags; i++) { 1363 page = alloc_page(gfp_mask); 1364 if (!page) { 1365 while (head) { 1366 struct page *next = (struct page *)page_private(head); 1367 put_page(head); 1368 head = next; 1369 } 1370 return -ENOMEM; 1371 } 1372 set_page_private(page, (unsigned long)head); 1373 head = page; 1374 } 1375 1376 page = head; 1377 d_off = 0; 1378 for (i = 0; i < num_frags; i++) { 1379 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1380 u32 p_off, p_len, copied; 1381 struct page *p; 1382 u8 *vaddr; 1383 1384 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1385 p, p_off, p_len, copied) { 1386 u32 copy, done = 0; 1387 vaddr = kmap_atomic(p); 1388 1389 while (done < p_len) { 1390 if (d_off == PAGE_SIZE) { 1391 d_off = 0; 1392 page = (struct page *)page_private(page); 1393 } 1394 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1395 memcpy(page_address(page) + d_off, 1396 vaddr + p_off + done, copy); 1397 done += copy; 1398 d_off += copy; 1399 } 1400 kunmap_atomic(vaddr); 1401 } 1402 } 1403 1404 /* skb frags release userspace buffers */ 1405 for (i = 0; i < num_frags; i++) 1406 skb_frag_unref(skb, i); 1407 1408 /* skb frags point to kernel buffers */ 1409 for (i = 0; i < new_frags - 1; i++) { 1410 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1411 head = (struct page *)page_private(head); 1412 } 1413 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1414 skb_shinfo(skb)->nr_frags = new_frags; 1415 1416 release: 1417 skb_zcopy_clear(skb, false); 1418 return 0; 1419 } 1420 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1421 1422 /** 1423 * skb_clone - duplicate an sk_buff 1424 * @skb: buffer to clone 1425 * @gfp_mask: allocation priority 1426 * 1427 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1428 * copies share the same packet data but not structure. The new 1429 * buffer has a reference count of 1. If the allocation fails the 1430 * function returns %NULL otherwise the new buffer is returned. 1431 * 1432 * If this function is called from an interrupt gfp_mask() must be 1433 * %GFP_ATOMIC. 1434 */ 1435 1436 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1437 { 1438 struct sk_buff_fclones *fclones = container_of(skb, 1439 struct sk_buff_fclones, 1440 skb1); 1441 struct sk_buff *n; 1442 1443 if (skb_orphan_frags(skb, gfp_mask)) 1444 return NULL; 1445 1446 if (skb->fclone == SKB_FCLONE_ORIG && 1447 refcount_read(&fclones->fclone_ref) == 1) { 1448 n = &fclones->skb2; 1449 refcount_set(&fclones->fclone_ref, 2); 1450 } else { 1451 if (skb_pfmemalloc(skb)) 1452 gfp_mask |= __GFP_MEMALLOC; 1453 1454 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1455 if (!n) 1456 return NULL; 1457 1458 n->fclone = SKB_FCLONE_UNAVAILABLE; 1459 } 1460 1461 return __skb_clone(n, skb); 1462 } 1463 EXPORT_SYMBOL(skb_clone); 1464 1465 void skb_headers_offset_update(struct sk_buff *skb, int off) 1466 { 1467 /* Only adjust this if it actually is csum_start rather than csum */ 1468 if (skb->ip_summed == CHECKSUM_PARTIAL) 1469 skb->csum_start += off; 1470 /* {transport,network,mac}_header and tail are relative to skb->head */ 1471 skb->transport_header += off; 1472 skb->network_header += off; 1473 if (skb_mac_header_was_set(skb)) 1474 skb->mac_header += off; 1475 skb->inner_transport_header += off; 1476 skb->inner_network_header += off; 1477 skb->inner_mac_header += off; 1478 } 1479 EXPORT_SYMBOL(skb_headers_offset_update); 1480 1481 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1482 { 1483 __copy_skb_header(new, old); 1484 1485 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1486 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1487 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1488 } 1489 EXPORT_SYMBOL(skb_copy_header); 1490 1491 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1492 { 1493 if (skb_pfmemalloc(skb)) 1494 return SKB_ALLOC_RX; 1495 return 0; 1496 } 1497 1498 /** 1499 * skb_copy - create private copy of an sk_buff 1500 * @skb: buffer to copy 1501 * @gfp_mask: allocation priority 1502 * 1503 * Make a copy of both an &sk_buff and its data. This is used when the 1504 * caller wishes to modify the data and needs a private copy of the 1505 * data to alter. Returns %NULL on failure or the pointer to the buffer 1506 * on success. The returned buffer has a reference count of 1. 1507 * 1508 * As by-product this function converts non-linear &sk_buff to linear 1509 * one, so that &sk_buff becomes completely private and caller is allowed 1510 * to modify all the data of returned buffer. This means that this 1511 * function is not recommended for use in circumstances when only 1512 * header is going to be modified. Use pskb_copy() instead. 1513 */ 1514 1515 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1516 { 1517 int headerlen = skb_headroom(skb); 1518 unsigned int size = skb_end_offset(skb) + skb->data_len; 1519 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1520 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1521 1522 if (!n) 1523 return NULL; 1524 1525 /* Set the data pointer */ 1526 skb_reserve(n, headerlen); 1527 /* Set the tail pointer and length */ 1528 skb_put(n, skb->len); 1529 1530 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1531 1532 skb_copy_header(n, skb); 1533 return n; 1534 } 1535 EXPORT_SYMBOL(skb_copy); 1536 1537 /** 1538 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1539 * @skb: buffer to copy 1540 * @headroom: headroom of new skb 1541 * @gfp_mask: allocation priority 1542 * @fclone: if true allocate the copy of the skb from the fclone 1543 * cache instead of the head cache; it is recommended to set this 1544 * to true for the cases where the copy will likely be cloned 1545 * 1546 * Make a copy of both an &sk_buff and part of its data, located 1547 * in header. Fragmented data remain shared. This is used when 1548 * the caller wishes to modify only header of &sk_buff and needs 1549 * private copy of the header to alter. Returns %NULL on failure 1550 * or the pointer to the buffer on success. 1551 * The returned buffer has a reference count of 1. 1552 */ 1553 1554 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1555 gfp_t gfp_mask, bool fclone) 1556 { 1557 unsigned int size = skb_headlen(skb) + headroom; 1558 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1559 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1560 1561 if (!n) 1562 goto out; 1563 1564 /* Set the data pointer */ 1565 skb_reserve(n, headroom); 1566 /* Set the tail pointer and length */ 1567 skb_put(n, skb_headlen(skb)); 1568 /* Copy the bytes */ 1569 skb_copy_from_linear_data(skb, n->data, n->len); 1570 1571 n->truesize += skb->data_len; 1572 n->data_len = skb->data_len; 1573 n->len = skb->len; 1574 1575 if (skb_shinfo(skb)->nr_frags) { 1576 int i; 1577 1578 if (skb_orphan_frags(skb, gfp_mask) || 1579 skb_zerocopy_clone(n, skb, gfp_mask)) { 1580 kfree_skb(n); 1581 n = NULL; 1582 goto out; 1583 } 1584 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1585 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1586 skb_frag_ref(skb, i); 1587 } 1588 skb_shinfo(n)->nr_frags = i; 1589 } 1590 1591 if (skb_has_frag_list(skb)) { 1592 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1593 skb_clone_fraglist(n); 1594 } 1595 1596 skb_copy_header(n, skb); 1597 out: 1598 return n; 1599 } 1600 EXPORT_SYMBOL(__pskb_copy_fclone); 1601 1602 /** 1603 * pskb_expand_head - reallocate header of &sk_buff 1604 * @skb: buffer to reallocate 1605 * @nhead: room to add at head 1606 * @ntail: room to add at tail 1607 * @gfp_mask: allocation priority 1608 * 1609 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1610 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1611 * reference count of 1. Returns zero in the case of success or error, 1612 * if expansion failed. In the last case, &sk_buff is not changed. 1613 * 1614 * All the pointers pointing into skb header may change and must be 1615 * reloaded after call to this function. 1616 */ 1617 1618 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1619 gfp_t gfp_mask) 1620 { 1621 int i, osize = skb_end_offset(skb); 1622 int size = osize + nhead + ntail; 1623 long off; 1624 u8 *data; 1625 1626 BUG_ON(nhead < 0); 1627 1628 BUG_ON(skb_shared(skb)); 1629 1630 size = SKB_DATA_ALIGN(size); 1631 1632 if (skb_pfmemalloc(skb)) 1633 gfp_mask |= __GFP_MEMALLOC; 1634 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1635 gfp_mask, NUMA_NO_NODE, NULL); 1636 if (!data) 1637 goto nodata; 1638 size = SKB_WITH_OVERHEAD(ksize(data)); 1639 1640 /* Copy only real data... and, alas, header. This should be 1641 * optimized for the cases when header is void. 1642 */ 1643 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1644 1645 memcpy((struct skb_shared_info *)(data + size), 1646 skb_shinfo(skb), 1647 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1648 1649 /* 1650 * if shinfo is shared we must drop the old head gracefully, but if it 1651 * is not we can just drop the old head and let the existing refcount 1652 * be since all we did is relocate the values 1653 */ 1654 if (skb_cloned(skb)) { 1655 if (skb_orphan_frags(skb, gfp_mask)) 1656 goto nofrags; 1657 if (skb_zcopy(skb)) 1658 refcount_inc(&skb_uarg(skb)->refcnt); 1659 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1660 skb_frag_ref(skb, i); 1661 1662 if (skb_has_frag_list(skb)) 1663 skb_clone_fraglist(skb); 1664 1665 skb_release_data(skb); 1666 } else { 1667 skb_free_head(skb); 1668 } 1669 off = (data + nhead) - skb->head; 1670 1671 skb->head = data; 1672 skb->head_frag = 0; 1673 skb->data += off; 1674 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1675 skb->end = size; 1676 off = nhead; 1677 #else 1678 skb->end = skb->head + size; 1679 #endif 1680 skb->tail += off; 1681 skb_headers_offset_update(skb, nhead); 1682 skb->cloned = 0; 1683 skb->hdr_len = 0; 1684 skb->nohdr = 0; 1685 atomic_set(&skb_shinfo(skb)->dataref, 1); 1686 1687 skb_metadata_clear(skb); 1688 1689 /* It is not generally safe to change skb->truesize. 1690 * For the moment, we really care of rx path, or 1691 * when skb is orphaned (not attached to a socket). 1692 */ 1693 if (!skb->sk || skb->destructor == sock_edemux) 1694 skb->truesize += size - osize; 1695 1696 return 0; 1697 1698 nofrags: 1699 kfree(data); 1700 nodata: 1701 return -ENOMEM; 1702 } 1703 EXPORT_SYMBOL(pskb_expand_head); 1704 1705 /* Make private copy of skb with writable head and some headroom */ 1706 1707 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1708 { 1709 struct sk_buff *skb2; 1710 int delta = headroom - skb_headroom(skb); 1711 1712 if (delta <= 0) 1713 skb2 = pskb_copy(skb, GFP_ATOMIC); 1714 else { 1715 skb2 = skb_clone(skb, GFP_ATOMIC); 1716 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1717 GFP_ATOMIC)) { 1718 kfree_skb(skb2); 1719 skb2 = NULL; 1720 } 1721 } 1722 return skb2; 1723 } 1724 EXPORT_SYMBOL(skb_realloc_headroom); 1725 1726 /** 1727 * skb_copy_expand - copy and expand sk_buff 1728 * @skb: buffer to copy 1729 * @newheadroom: new free bytes at head 1730 * @newtailroom: new free bytes at tail 1731 * @gfp_mask: allocation priority 1732 * 1733 * Make a copy of both an &sk_buff and its data and while doing so 1734 * allocate additional space. 1735 * 1736 * This is used when the caller wishes to modify the data and needs a 1737 * private copy of the data to alter as well as more space for new fields. 1738 * Returns %NULL on failure or the pointer to the buffer 1739 * on success. The returned buffer has a reference count of 1. 1740 * 1741 * You must pass %GFP_ATOMIC as the allocation priority if this function 1742 * is called from an interrupt. 1743 */ 1744 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1745 int newheadroom, int newtailroom, 1746 gfp_t gfp_mask) 1747 { 1748 /* 1749 * Allocate the copy buffer 1750 */ 1751 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1752 gfp_mask, skb_alloc_rx_flag(skb), 1753 NUMA_NO_NODE); 1754 int oldheadroom = skb_headroom(skb); 1755 int head_copy_len, head_copy_off; 1756 1757 if (!n) 1758 return NULL; 1759 1760 skb_reserve(n, newheadroom); 1761 1762 /* Set the tail pointer and length */ 1763 skb_put(n, skb->len); 1764 1765 head_copy_len = oldheadroom; 1766 head_copy_off = 0; 1767 if (newheadroom <= head_copy_len) 1768 head_copy_len = newheadroom; 1769 else 1770 head_copy_off = newheadroom - head_copy_len; 1771 1772 /* Copy the linear header and data. */ 1773 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1774 skb->len + head_copy_len)); 1775 1776 skb_copy_header(n, skb); 1777 1778 skb_headers_offset_update(n, newheadroom - oldheadroom); 1779 1780 return n; 1781 } 1782 EXPORT_SYMBOL(skb_copy_expand); 1783 1784 /** 1785 * __skb_pad - zero pad the tail of an skb 1786 * @skb: buffer to pad 1787 * @pad: space to pad 1788 * @free_on_error: free buffer on error 1789 * 1790 * Ensure that a buffer is followed by a padding area that is zero 1791 * filled. Used by network drivers which may DMA or transfer data 1792 * beyond the buffer end onto the wire. 1793 * 1794 * May return error in out of memory cases. The skb is freed on error 1795 * if @free_on_error is true. 1796 */ 1797 1798 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1799 { 1800 int err; 1801 int ntail; 1802 1803 /* If the skbuff is non linear tailroom is always zero.. */ 1804 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1805 memset(skb->data+skb->len, 0, pad); 1806 return 0; 1807 } 1808 1809 ntail = skb->data_len + pad - (skb->end - skb->tail); 1810 if (likely(skb_cloned(skb) || ntail > 0)) { 1811 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1812 if (unlikely(err)) 1813 goto free_skb; 1814 } 1815 1816 /* FIXME: The use of this function with non-linear skb's really needs 1817 * to be audited. 1818 */ 1819 err = skb_linearize(skb); 1820 if (unlikely(err)) 1821 goto free_skb; 1822 1823 memset(skb->data + skb->len, 0, pad); 1824 return 0; 1825 1826 free_skb: 1827 if (free_on_error) 1828 kfree_skb(skb); 1829 return err; 1830 } 1831 EXPORT_SYMBOL(__skb_pad); 1832 1833 /** 1834 * pskb_put - add data to the tail of a potentially fragmented buffer 1835 * @skb: start of the buffer to use 1836 * @tail: tail fragment of the buffer to use 1837 * @len: amount of data to add 1838 * 1839 * This function extends the used data area of the potentially 1840 * fragmented buffer. @tail must be the last fragment of @skb -- or 1841 * @skb itself. If this would exceed the total buffer size the kernel 1842 * will panic. A pointer to the first byte of the extra data is 1843 * returned. 1844 */ 1845 1846 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1847 { 1848 if (tail != skb) { 1849 skb->data_len += len; 1850 skb->len += len; 1851 } 1852 return skb_put(tail, len); 1853 } 1854 EXPORT_SYMBOL_GPL(pskb_put); 1855 1856 /** 1857 * skb_put - add data to a buffer 1858 * @skb: buffer to use 1859 * @len: amount of data to add 1860 * 1861 * This function extends the used data area of the buffer. If this would 1862 * exceed the total buffer size the kernel will panic. A pointer to the 1863 * first byte of the extra data is returned. 1864 */ 1865 void *skb_put(struct sk_buff *skb, unsigned int len) 1866 { 1867 void *tmp = skb_tail_pointer(skb); 1868 SKB_LINEAR_ASSERT(skb); 1869 skb->tail += len; 1870 skb->len += len; 1871 if (unlikely(skb->tail > skb->end)) 1872 skb_over_panic(skb, len, __builtin_return_address(0)); 1873 return tmp; 1874 } 1875 EXPORT_SYMBOL(skb_put); 1876 1877 /** 1878 * skb_push - add data to the start of a buffer 1879 * @skb: buffer to use 1880 * @len: amount of data to add 1881 * 1882 * This function extends the used data area of the buffer at the buffer 1883 * start. If this would exceed the total buffer headroom the kernel will 1884 * panic. A pointer to the first byte of the extra data is returned. 1885 */ 1886 void *skb_push(struct sk_buff *skb, unsigned int len) 1887 { 1888 skb->data -= len; 1889 skb->len += len; 1890 if (unlikely(skb->data < skb->head)) 1891 skb_under_panic(skb, len, __builtin_return_address(0)); 1892 return skb->data; 1893 } 1894 EXPORT_SYMBOL(skb_push); 1895 1896 /** 1897 * skb_pull - remove data from the start of a buffer 1898 * @skb: buffer to use 1899 * @len: amount of data to remove 1900 * 1901 * This function removes data from the start of a buffer, returning 1902 * the memory to the headroom. A pointer to the next data in the buffer 1903 * is returned. Once the data has been pulled future pushes will overwrite 1904 * the old data. 1905 */ 1906 void *skb_pull(struct sk_buff *skb, unsigned int len) 1907 { 1908 return skb_pull_inline(skb, len); 1909 } 1910 EXPORT_SYMBOL(skb_pull); 1911 1912 /** 1913 * skb_trim - remove end from a buffer 1914 * @skb: buffer to alter 1915 * @len: new length 1916 * 1917 * Cut the length of a buffer down by removing data from the tail. If 1918 * the buffer is already under the length specified it is not modified. 1919 * The skb must be linear. 1920 */ 1921 void skb_trim(struct sk_buff *skb, unsigned int len) 1922 { 1923 if (skb->len > len) 1924 __skb_trim(skb, len); 1925 } 1926 EXPORT_SYMBOL(skb_trim); 1927 1928 /* Trims skb to length len. It can change skb pointers. 1929 */ 1930 1931 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1932 { 1933 struct sk_buff **fragp; 1934 struct sk_buff *frag; 1935 int offset = skb_headlen(skb); 1936 int nfrags = skb_shinfo(skb)->nr_frags; 1937 int i; 1938 int err; 1939 1940 if (skb_cloned(skb) && 1941 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1942 return err; 1943 1944 i = 0; 1945 if (offset >= len) 1946 goto drop_pages; 1947 1948 for (; i < nfrags; i++) { 1949 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1950 1951 if (end < len) { 1952 offset = end; 1953 continue; 1954 } 1955 1956 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1957 1958 drop_pages: 1959 skb_shinfo(skb)->nr_frags = i; 1960 1961 for (; i < nfrags; i++) 1962 skb_frag_unref(skb, i); 1963 1964 if (skb_has_frag_list(skb)) 1965 skb_drop_fraglist(skb); 1966 goto done; 1967 } 1968 1969 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1970 fragp = &frag->next) { 1971 int end = offset + frag->len; 1972 1973 if (skb_shared(frag)) { 1974 struct sk_buff *nfrag; 1975 1976 nfrag = skb_clone(frag, GFP_ATOMIC); 1977 if (unlikely(!nfrag)) 1978 return -ENOMEM; 1979 1980 nfrag->next = frag->next; 1981 consume_skb(frag); 1982 frag = nfrag; 1983 *fragp = frag; 1984 } 1985 1986 if (end < len) { 1987 offset = end; 1988 continue; 1989 } 1990 1991 if (end > len && 1992 unlikely((err = pskb_trim(frag, len - offset)))) 1993 return err; 1994 1995 if (frag->next) 1996 skb_drop_list(&frag->next); 1997 break; 1998 } 1999 2000 done: 2001 if (len > skb_headlen(skb)) { 2002 skb->data_len -= skb->len - len; 2003 skb->len = len; 2004 } else { 2005 skb->len = len; 2006 skb->data_len = 0; 2007 skb_set_tail_pointer(skb, len); 2008 } 2009 2010 if (!skb->sk || skb->destructor == sock_edemux) 2011 skb_condense(skb); 2012 return 0; 2013 } 2014 EXPORT_SYMBOL(___pskb_trim); 2015 2016 /* Note : use pskb_trim_rcsum() instead of calling this directly 2017 */ 2018 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2019 { 2020 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2021 int delta = skb->len - len; 2022 2023 skb->csum = csum_block_sub(skb->csum, 2024 skb_checksum(skb, len, delta, 0), 2025 len); 2026 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2027 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2028 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2029 2030 if (offset + sizeof(__sum16) > hdlen) 2031 return -EINVAL; 2032 } 2033 return __pskb_trim(skb, len); 2034 } 2035 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2036 2037 /** 2038 * __pskb_pull_tail - advance tail of skb header 2039 * @skb: buffer to reallocate 2040 * @delta: number of bytes to advance tail 2041 * 2042 * The function makes a sense only on a fragmented &sk_buff, 2043 * it expands header moving its tail forward and copying necessary 2044 * data from fragmented part. 2045 * 2046 * &sk_buff MUST have reference count of 1. 2047 * 2048 * Returns %NULL (and &sk_buff does not change) if pull failed 2049 * or value of new tail of skb in the case of success. 2050 * 2051 * All the pointers pointing into skb header may change and must be 2052 * reloaded after call to this function. 2053 */ 2054 2055 /* Moves tail of skb head forward, copying data from fragmented part, 2056 * when it is necessary. 2057 * 1. It may fail due to malloc failure. 2058 * 2. It may change skb pointers. 2059 * 2060 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2061 */ 2062 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2063 { 2064 /* If skb has not enough free space at tail, get new one 2065 * plus 128 bytes for future expansions. If we have enough 2066 * room at tail, reallocate without expansion only if skb is cloned. 2067 */ 2068 int i, k, eat = (skb->tail + delta) - skb->end; 2069 2070 if (eat > 0 || skb_cloned(skb)) { 2071 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2072 GFP_ATOMIC)) 2073 return NULL; 2074 } 2075 2076 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2077 skb_tail_pointer(skb), delta)); 2078 2079 /* Optimization: no fragments, no reasons to preestimate 2080 * size of pulled pages. Superb. 2081 */ 2082 if (!skb_has_frag_list(skb)) 2083 goto pull_pages; 2084 2085 /* Estimate size of pulled pages. */ 2086 eat = delta; 2087 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2088 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2089 2090 if (size >= eat) 2091 goto pull_pages; 2092 eat -= size; 2093 } 2094 2095 /* If we need update frag list, we are in troubles. 2096 * Certainly, it is possible to add an offset to skb data, 2097 * but taking into account that pulling is expected to 2098 * be very rare operation, it is worth to fight against 2099 * further bloating skb head and crucify ourselves here instead. 2100 * Pure masohism, indeed. 8)8) 2101 */ 2102 if (eat) { 2103 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2104 struct sk_buff *clone = NULL; 2105 struct sk_buff *insp = NULL; 2106 2107 do { 2108 if (list->len <= eat) { 2109 /* Eaten as whole. */ 2110 eat -= list->len; 2111 list = list->next; 2112 insp = list; 2113 } else { 2114 /* Eaten partially. */ 2115 2116 if (skb_shared(list)) { 2117 /* Sucks! We need to fork list. :-( */ 2118 clone = skb_clone(list, GFP_ATOMIC); 2119 if (!clone) 2120 return NULL; 2121 insp = list->next; 2122 list = clone; 2123 } else { 2124 /* This may be pulled without 2125 * problems. */ 2126 insp = list; 2127 } 2128 if (!pskb_pull(list, eat)) { 2129 kfree_skb(clone); 2130 return NULL; 2131 } 2132 break; 2133 } 2134 } while (eat); 2135 2136 /* Free pulled out fragments. */ 2137 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2138 skb_shinfo(skb)->frag_list = list->next; 2139 kfree_skb(list); 2140 } 2141 /* And insert new clone at head. */ 2142 if (clone) { 2143 clone->next = list; 2144 skb_shinfo(skb)->frag_list = clone; 2145 } 2146 } 2147 /* Success! Now we may commit changes to skb data. */ 2148 2149 pull_pages: 2150 eat = delta; 2151 k = 0; 2152 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2153 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2154 2155 if (size <= eat) { 2156 skb_frag_unref(skb, i); 2157 eat -= size; 2158 } else { 2159 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2160 2161 *frag = skb_shinfo(skb)->frags[i]; 2162 if (eat) { 2163 skb_frag_off_add(frag, eat); 2164 skb_frag_size_sub(frag, eat); 2165 if (!i) 2166 goto end; 2167 eat = 0; 2168 } 2169 k++; 2170 } 2171 } 2172 skb_shinfo(skb)->nr_frags = k; 2173 2174 end: 2175 skb->tail += delta; 2176 skb->data_len -= delta; 2177 2178 if (!skb->data_len) 2179 skb_zcopy_clear(skb, false); 2180 2181 return skb_tail_pointer(skb); 2182 } 2183 EXPORT_SYMBOL(__pskb_pull_tail); 2184 2185 /** 2186 * skb_copy_bits - copy bits from skb to kernel buffer 2187 * @skb: source skb 2188 * @offset: offset in source 2189 * @to: destination buffer 2190 * @len: number of bytes to copy 2191 * 2192 * Copy the specified number of bytes from the source skb to the 2193 * destination buffer. 2194 * 2195 * CAUTION ! : 2196 * If its prototype is ever changed, 2197 * check arch/{*}/net/{*}.S files, 2198 * since it is called from BPF assembly code. 2199 */ 2200 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2201 { 2202 int start = skb_headlen(skb); 2203 struct sk_buff *frag_iter; 2204 int i, copy; 2205 2206 if (offset > (int)skb->len - len) 2207 goto fault; 2208 2209 /* Copy header. */ 2210 if ((copy = start - offset) > 0) { 2211 if (copy > len) 2212 copy = len; 2213 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2214 if ((len -= copy) == 0) 2215 return 0; 2216 offset += copy; 2217 to += copy; 2218 } 2219 2220 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2221 int end; 2222 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2223 2224 WARN_ON(start > offset + len); 2225 2226 end = start + skb_frag_size(f); 2227 if ((copy = end - offset) > 0) { 2228 u32 p_off, p_len, copied; 2229 struct page *p; 2230 u8 *vaddr; 2231 2232 if (copy > len) 2233 copy = len; 2234 2235 skb_frag_foreach_page(f, 2236 skb_frag_off(f) + offset - start, 2237 copy, p, p_off, p_len, copied) { 2238 vaddr = kmap_atomic(p); 2239 memcpy(to + copied, vaddr + p_off, p_len); 2240 kunmap_atomic(vaddr); 2241 } 2242 2243 if ((len -= copy) == 0) 2244 return 0; 2245 offset += copy; 2246 to += copy; 2247 } 2248 start = end; 2249 } 2250 2251 skb_walk_frags(skb, frag_iter) { 2252 int end; 2253 2254 WARN_ON(start > offset + len); 2255 2256 end = start + frag_iter->len; 2257 if ((copy = end - offset) > 0) { 2258 if (copy > len) 2259 copy = len; 2260 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2261 goto fault; 2262 if ((len -= copy) == 0) 2263 return 0; 2264 offset += copy; 2265 to += copy; 2266 } 2267 start = end; 2268 } 2269 2270 if (!len) 2271 return 0; 2272 2273 fault: 2274 return -EFAULT; 2275 } 2276 EXPORT_SYMBOL(skb_copy_bits); 2277 2278 /* 2279 * Callback from splice_to_pipe(), if we need to release some pages 2280 * at the end of the spd in case we error'ed out in filling the pipe. 2281 */ 2282 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2283 { 2284 put_page(spd->pages[i]); 2285 } 2286 2287 static struct page *linear_to_page(struct page *page, unsigned int *len, 2288 unsigned int *offset, 2289 struct sock *sk) 2290 { 2291 struct page_frag *pfrag = sk_page_frag(sk); 2292 2293 if (!sk_page_frag_refill(sk, pfrag)) 2294 return NULL; 2295 2296 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2297 2298 memcpy(page_address(pfrag->page) + pfrag->offset, 2299 page_address(page) + *offset, *len); 2300 *offset = pfrag->offset; 2301 pfrag->offset += *len; 2302 2303 return pfrag->page; 2304 } 2305 2306 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2307 struct page *page, 2308 unsigned int offset) 2309 { 2310 return spd->nr_pages && 2311 spd->pages[spd->nr_pages - 1] == page && 2312 (spd->partial[spd->nr_pages - 1].offset + 2313 spd->partial[spd->nr_pages - 1].len == offset); 2314 } 2315 2316 /* 2317 * Fill page/offset/length into spd, if it can hold more pages. 2318 */ 2319 static bool spd_fill_page(struct splice_pipe_desc *spd, 2320 struct pipe_inode_info *pipe, struct page *page, 2321 unsigned int *len, unsigned int offset, 2322 bool linear, 2323 struct sock *sk) 2324 { 2325 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2326 return true; 2327 2328 if (linear) { 2329 page = linear_to_page(page, len, &offset, sk); 2330 if (!page) 2331 return true; 2332 } 2333 if (spd_can_coalesce(spd, page, offset)) { 2334 spd->partial[spd->nr_pages - 1].len += *len; 2335 return false; 2336 } 2337 get_page(page); 2338 spd->pages[spd->nr_pages] = page; 2339 spd->partial[spd->nr_pages].len = *len; 2340 spd->partial[spd->nr_pages].offset = offset; 2341 spd->nr_pages++; 2342 2343 return false; 2344 } 2345 2346 static bool __splice_segment(struct page *page, unsigned int poff, 2347 unsigned int plen, unsigned int *off, 2348 unsigned int *len, 2349 struct splice_pipe_desc *spd, bool linear, 2350 struct sock *sk, 2351 struct pipe_inode_info *pipe) 2352 { 2353 if (!*len) 2354 return true; 2355 2356 /* skip this segment if already processed */ 2357 if (*off >= plen) { 2358 *off -= plen; 2359 return false; 2360 } 2361 2362 /* ignore any bits we already processed */ 2363 poff += *off; 2364 plen -= *off; 2365 *off = 0; 2366 2367 do { 2368 unsigned int flen = min(*len, plen); 2369 2370 if (spd_fill_page(spd, pipe, page, &flen, poff, 2371 linear, sk)) 2372 return true; 2373 poff += flen; 2374 plen -= flen; 2375 *len -= flen; 2376 } while (*len && plen); 2377 2378 return false; 2379 } 2380 2381 /* 2382 * Map linear and fragment data from the skb to spd. It reports true if the 2383 * pipe is full or if we already spliced the requested length. 2384 */ 2385 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2386 unsigned int *offset, unsigned int *len, 2387 struct splice_pipe_desc *spd, struct sock *sk) 2388 { 2389 int seg; 2390 struct sk_buff *iter; 2391 2392 /* map the linear part : 2393 * If skb->head_frag is set, this 'linear' part is backed by a 2394 * fragment, and if the head is not shared with any clones then 2395 * we can avoid a copy since we own the head portion of this page. 2396 */ 2397 if (__splice_segment(virt_to_page(skb->data), 2398 (unsigned long) skb->data & (PAGE_SIZE - 1), 2399 skb_headlen(skb), 2400 offset, len, spd, 2401 skb_head_is_locked(skb), 2402 sk, pipe)) 2403 return true; 2404 2405 /* 2406 * then map the fragments 2407 */ 2408 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2409 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2410 2411 if (__splice_segment(skb_frag_page(f), 2412 skb_frag_off(f), skb_frag_size(f), 2413 offset, len, spd, false, sk, pipe)) 2414 return true; 2415 } 2416 2417 skb_walk_frags(skb, iter) { 2418 if (*offset >= iter->len) { 2419 *offset -= iter->len; 2420 continue; 2421 } 2422 /* __skb_splice_bits() only fails if the output has no room 2423 * left, so no point in going over the frag_list for the error 2424 * case. 2425 */ 2426 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2427 return true; 2428 } 2429 2430 return false; 2431 } 2432 2433 /* 2434 * Map data from the skb to a pipe. Should handle both the linear part, 2435 * the fragments, and the frag list. 2436 */ 2437 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2438 struct pipe_inode_info *pipe, unsigned int tlen, 2439 unsigned int flags) 2440 { 2441 struct partial_page partial[MAX_SKB_FRAGS]; 2442 struct page *pages[MAX_SKB_FRAGS]; 2443 struct splice_pipe_desc spd = { 2444 .pages = pages, 2445 .partial = partial, 2446 .nr_pages_max = MAX_SKB_FRAGS, 2447 .ops = &nosteal_pipe_buf_ops, 2448 .spd_release = sock_spd_release, 2449 }; 2450 int ret = 0; 2451 2452 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2453 2454 if (spd.nr_pages) 2455 ret = splice_to_pipe(pipe, &spd); 2456 2457 return ret; 2458 } 2459 EXPORT_SYMBOL_GPL(skb_splice_bits); 2460 2461 /* Send skb data on a socket. Socket must be locked. */ 2462 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2463 int len) 2464 { 2465 unsigned int orig_len = len; 2466 struct sk_buff *head = skb; 2467 unsigned short fragidx; 2468 int slen, ret; 2469 2470 do_frag_list: 2471 2472 /* Deal with head data */ 2473 while (offset < skb_headlen(skb) && len) { 2474 struct kvec kv; 2475 struct msghdr msg; 2476 2477 slen = min_t(int, len, skb_headlen(skb) - offset); 2478 kv.iov_base = skb->data + offset; 2479 kv.iov_len = slen; 2480 memset(&msg, 0, sizeof(msg)); 2481 msg.msg_flags = MSG_DONTWAIT; 2482 2483 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2484 if (ret <= 0) 2485 goto error; 2486 2487 offset += ret; 2488 len -= ret; 2489 } 2490 2491 /* All the data was skb head? */ 2492 if (!len) 2493 goto out; 2494 2495 /* Make offset relative to start of frags */ 2496 offset -= skb_headlen(skb); 2497 2498 /* Find where we are in frag list */ 2499 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2500 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2501 2502 if (offset < skb_frag_size(frag)) 2503 break; 2504 2505 offset -= skb_frag_size(frag); 2506 } 2507 2508 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2509 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2510 2511 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2512 2513 while (slen) { 2514 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2515 skb_frag_off(frag) + offset, 2516 slen, MSG_DONTWAIT); 2517 if (ret <= 0) 2518 goto error; 2519 2520 len -= ret; 2521 offset += ret; 2522 slen -= ret; 2523 } 2524 2525 offset = 0; 2526 } 2527 2528 if (len) { 2529 /* Process any frag lists */ 2530 2531 if (skb == head) { 2532 if (skb_has_frag_list(skb)) { 2533 skb = skb_shinfo(skb)->frag_list; 2534 goto do_frag_list; 2535 } 2536 } else if (skb->next) { 2537 skb = skb->next; 2538 goto do_frag_list; 2539 } 2540 } 2541 2542 out: 2543 return orig_len - len; 2544 2545 error: 2546 return orig_len == len ? ret : orig_len - len; 2547 } 2548 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2549 2550 /** 2551 * skb_store_bits - store bits from kernel buffer to skb 2552 * @skb: destination buffer 2553 * @offset: offset in destination 2554 * @from: source buffer 2555 * @len: number of bytes to copy 2556 * 2557 * Copy the specified number of bytes from the source buffer to the 2558 * destination skb. This function handles all the messy bits of 2559 * traversing fragment lists and such. 2560 */ 2561 2562 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2563 { 2564 int start = skb_headlen(skb); 2565 struct sk_buff *frag_iter; 2566 int i, copy; 2567 2568 if (offset > (int)skb->len - len) 2569 goto fault; 2570 2571 if ((copy = start - offset) > 0) { 2572 if (copy > len) 2573 copy = len; 2574 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2575 if ((len -= copy) == 0) 2576 return 0; 2577 offset += copy; 2578 from += copy; 2579 } 2580 2581 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2582 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2583 int end; 2584 2585 WARN_ON(start > offset + len); 2586 2587 end = start + skb_frag_size(frag); 2588 if ((copy = end - offset) > 0) { 2589 u32 p_off, p_len, copied; 2590 struct page *p; 2591 u8 *vaddr; 2592 2593 if (copy > len) 2594 copy = len; 2595 2596 skb_frag_foreach_page(frag, 2597 skb_frag_off(frag) + offset - start, 2598 copy, p, p_off, p_len, copied) { 2599 vaddr = kmap_atomic(p); 2600 memcpy(vaddr + p_off, from + copied, p_len); 2601 kunmap_atomic(vaddr); 2602 } 2603 2604 if ((len -= copy) == 0) 2605 return 0; 2606 offset += copy; 2607 from += copy; 2608 } 2609 start = end; 2610 } 2611 2612 skb_walk_frags(skb, frag_iter) { 2613 int end; 2614 2615 WARN_ON(start > offset + len); 2616 2617 end = start + frag_iter->len; 2618 if ((copy = end - offset) > 0) { 2619 if (copy > len) 2620 copy = len; 2621 if (skb_store_bits(frag_iter, offset - start, 2622 from, copy)) 2623 goto fault; 2624 if ((len -= copy) == 0) 2625 return 0; 2626 offset += copy; 2627 from += copy; 2628 } 2629 start = end; 2630 } 2631 if (!len) 2632 return 0; 2633 2634 fault: 2635 return -EFAULT; 2636 } 2637 EXPORT_SYMBOL(skb_store_bits); 2638 2639 /* Checksum skb data. */ 2640 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2641 __wsum csum, const struct skb_checksum_ops *ops) 2642 { 2643 int start = skb_headlen(skb); 2644 int i, copy = start - offset; 2645 struct sk_buff *frag_iter; 2646 int pos = 0; 2647 2648 /* Checksum header. */ 2649 if (copy > 0) { 2650 if (copy > len) 2651 copy = len; 2652 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2653 skb->data + offset, copy, csum); 2654 if ((len -= copy) == 0) 2655 return csum; 2656 offset += copy; 2657 pos = copy; 2658 } 2659 2660 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2661 int end; 2662 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2663 2664 WARN_ON(start > offset + len); 2665 2666 end = start + skb_frag_size(frag); 2667 if ((copy = end - offset) > 0) { 2668 u32 p_off, p_len, copied; 2669 struct page *p; 2670 __wsum csum2; 2671 u8 *vaddr; 2672 2673 if (copy > len) 2674 copy = len; 2675 2676 skb_frag_foreach_page(frag, 2677 skb_frag_off(frag) + offset - start, 2678 copy, p, p_off, p_len, copied) { 2679 vaddr = kmap_atomic(p); 2680 csum2 = INDIRECT_CALL_1(ops->update, 2681 csum_partial_ext, 2682 vaddr + p_off, p_len, 0); 2683 kunmap_atomic(vaddr); 2684 csum = INDIRECT_CALL_1(ops->combine, 2685 csum_block_add_ext, csum, 2686 csum2, pos, p_len); 2687 pos += p_len; 2688 } 2689 2690 if (!(len -= copy)) 2691 return csum; 2692 offset += copy; 2693 } 2694 start = end; 2695 } 2696 2697 skb_walk_frags(skb, frag_iter) { 2698 int end; 2699 2700 WARN_ON(start > offset + len); 2701 2702 end = start + frag_iter->len; 2703 if ((copy = end - offset) > 0) { 2704 __wsum csum2; 2705 if (copy > len) 2706 copy = len; 2707 csum2 = __skb_checksum(frag_iter, offset - start, 2708 copy, 0, ops); 2709 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2710 csum, csum2, pos, copy); 2711 if ((len -= copy) == 0) 2712 return csum; 2713 offset += copy; 2714 pos += copy; 2715 } 2716 start = end; 2717 } 2718 BUG_ON(len); 2719 2720 return csum; 2721 } 2722 EXPORT_SYMBOL(__skb_checksum); 2723 2724 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2725 int len, __wsum csum) 2726 { 2727 const struct skb_checksum_ops ops = { 2728 .update = csum_partial_ext, 2729 .combine = csum_block_add_ext, 2730 }; 2731 2732 return __skb_checksum(skb, offset, len, csum, &ops); 2733 } 2734 EXPORT_SYMBOL(skb_checksum); 2735 2736 /* Both of above in one bottle. */ 2737 2738 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2739 u8 *to, int len) 2740 { 2741 int start = skb_headlen(skb); 2742 int i, copy = start - offset; 2743 struct sk_buff *frag_iter; 2744 int pos = 0; 2745 __wsum csum = 0; 2746 2747 /* Copy header. */ 2748 if (copy > 0) { 2749 if (copy > len) 2750 copy = len; 2751 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2752 copy); 2753 if ((len -= copy) == 0) 2754 return csum; 2755 offset += copy; 2756 to += copy; 2757 pos = copy; 2758 } 2759 2760 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2761 int end; 2762 2763 WARN_ON(start > offset + len); 2764 2765 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2766 if ((copy = end - offset) > 0) { 2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2768 u32 p_off, p_len, copied; 2769 struct page *p; 2770 __wsum csum2; 2771 u8 *vaddr; 2772 2773 if (copy > len) 2774 copy = len; 2775 2776 skb_frag_foreach_page(frag, 2777 skb_frag_off(frag) + offset - start, 2778 copy, p, p_off, p_len, copied) { 2779 vaddr = kmap_atomic(p); 2780 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2781 to + copied, 2782 p_len); 2783 kunmap_atomic(vaddr); 2784 csum = csum_block_add(csum, csum2, pos); 2785 pos += p_len; 2786 } 2787 2788 if (!(len -= copy)) 2789 return csum; 2790 offset += copy; 2791 to += copy; 2792 } 2793 start = end; 2794 } 2795 2796 skb_walk_frags(skb, frag_iter) { 2797 __wsum csum2; 2798 int end; 2799 2800 WARN_ON(start > offset + len); 2801 2802 end = start + frag_iter->len; 2803 if ((copy = end - offset) > 0) { 2804 if (copy > len) 2805 copy = len; 2806 csum2 = skb_copy_and_csum_bits(frag_iter, 2807 offset - start, 2808 to, copy); 2809 csum = csum_block_add(csum, csum2, pos); 2810 if ((len -= copy) == 0) 2811 return csum; 2812 offset += copy; 2813 to += copy; 2814 pos += copy; 2815 } 2816 start = end; 2817 } 2818 BUG_ON(len); 2819 return csum; 2820 } 2821 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2822 2823 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2824 { 2825 __sum16 sum; 2826 2827 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2828 /* See comments in __skb_checksum_complete(). */ 2829 if (likely(!sum)) { 2830 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2831 !skb->csum_complete_sw) 2832 netdev_rx_csum_fault(skb->dev, skb); 2833 } 2834 if (!skb_shared(skb)) 2835 skb->csum_valid = !sum; 2836 return sum; 2837 } 2838 EXPORT_SYMBOL(__skb_checksum_complete_head); 2839 2840 /* This function assumes skb->csum already holds pseudo header's checksum, 2841 * which has been changed from the hardware checksum, for example, by 2842 * __skb_checksum_validate_complete(). And, the original skb->csum must 2843 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2844 * 2845 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2846 * zero. The new checksum is stored back into skb->csum unless the skb is 2847 * shared. 2848 */ 2849 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2850 { 2851 __wsum csum; 2852 __sum16 sum; 2853 2854 csum = skb_checksum(skb, 0, skb->len, 0); 2855 2856 sum = csum_fold(csum_add(skb->csum, csum)); 2857 /* This check is inverted, because we already knew the hardware 2858 * checksum is invalid before calling this function. So, if the 2859 * re-computed checksum is valid instead, then we have a mismatch 2860 * between the original skb->csum and skb_checksum(). This means either 2861 * the original hardware checksum is incorrect or we screw up skb->csum 2862 * when moving skb->data around. 2863 */ 2864 if (likely(!sum)) { 2865 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2866 !skb->csum_complete_sw) 2867 netdev_rx_csum_fault(skb->dev, skb); 2868 } 2869 2870 if (!skb_shared(skb)) { 2871 /* Save full packet checksum */ 2872 skb->csum = csum; 2873 skb->ip_summed = CHECKSUM_COMPLETE; 2874 skb->csum_complete_sw = 1; 2875 skb->csum_valid = !sum; 2876 } 2877 2878 return sum; 2879 } 2880 EXPORT_SYMBOL(__skb_checksum_complete); 2881 2882 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2883 { 2884 net_warn_ratelimited( 2885 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2886 __func__); 2887 return 0; 2888 } 2889 2890 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2891 int offset, int len) 2892 { 2893 net_warn_ratelimited( 2894 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2895 __func__); 2896 return 0; 2897 } 2898 2899 static const struct skb_checksum_ops default_crc32c_ops = { 2900 .update = warn_crc32c_csum_update, 2901 .combine = warn_crc32c_csum_combine, 2902 }; 2903 2904 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2905 &default_crc32c_ops; 2906 EXPORT_SYMBOL(crc32c_csum_stub); 2907 2908 /** 2909 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2910 * @from: source buffer 2911 * 2912 * Calculates the amount of linear headroom needed in the 'to' skb passed 2913 * into skb_zerocopy(). 2914 */ 2915 unsigned int 2916 skb_zerocopy_headlen(const struct sk_buff *from) 2917 { 2918 unsigned int hlen = 0; 2919 2920 if (!from->head_frag || 2921 skb_headlen(from) < L1_CACHE_BYTES || 2922 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2923 hlen = skb_headlen(from); 2924 2925 if (skb_has_frag_list(from)) 2926 hlen = from->len; 2927 2928 return hlen; 2929 } 2930 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2931 2932 /** 2933 * skb_zerocopy - Zero copy skb to skb 2934 * @to: destination buffer 2935 * @from: source buffer 2936 * @len: number of bytes to copy from source buffer 2937 * @hlen: size of linear headroom in destination buffer 2938 * 2939 * Copies up to `len` bytes from `from` to `to` by creating references 2940 * to the frags in the source buffer. 2941 * 2942 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2943 * headroom in the `to` buffer. 2944 * 2945 * Return value: 2946 * 0: everything is OK 2947 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2948 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2949 */ 2950 int 2951 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2952 { 2953 int i, j = 0; 2954 int plen = 0; /* length of skb->head fragment */ 2955 int ret; 2956 struct page *page; 2957 unsigned int offset; 2958 2959 BUG_ON(!from->head_frag && !hlen); 2960 2961 /* dont bother with small payloads */ 2962 if (len <= skb_tailroom(to)) 2963 return skb_copy_bits(from, 0, skb_put(to, len), len); 2964 2965 if (hlen) { 2966 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2967 if (unlikely(ret)) 2968 return ret; 2969 len -= hlen; 2970 } else { 2971 plen = min_t(int, skb_headlen(from), len); 2972 if (plen) { 2973 page = virt_to_head_page(from->head); 2974 offset = from->data - (unsigned char *)page_address(page); 2975 __skb_fill_page_desc(to, 0, page, offset, plen); 2976 get_page(page); 2977 j = 1; 2978 len -= plen; 2979 } 2980 } 2981 2982 to->truesize += len + plen; 2983 to->len += len + plen; 2984 to->data_len += len + plen; 2985 2986 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2987 skb_tx_error(from); 2988 return -ENOMEM; 2989 } 2990 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2991 2992 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2993 int size; 2994 2995 if (!len) 2996 break; 2997 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2998 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2999 len); 3000 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3001 len -= size; 3002 skb_frag_ref(to, j); 3003 j++; 3004 } 3005 skb_shinfo(to)->nr_frags = j; 3006 3007 return 0; 3008 } 3009 EXPORT_SYMBOL_GPL(skb_zerocopy); 3010 3011 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3012 { 3013 __wsum csum; 3014 long csstart; 3015 3016 if (skb->ip_summed == CHECKSUM_PARTIAL) 3017 csstart = skb_checksum_start_offset(skb); 3018 else 3019 csstart = skb_headlen(skb); 3020 3021 BUG_ON(csstart > skb_headlen(skb)); 3022 3023 skb_copy_from_linear_data(skb, to, csstart); 3024 3025 csum = 0; 3026 if (csstart != skb->len) 3027 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3028 skb->len - csstart); 3029 3030 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3031 long csstuff = csstart + skb->csum_offset; 3032 3033 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3034 } 3035 } 3036 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3037 3038 /** 3039 * skb_dequeue - remove from the head of the queue 3040 * @list: list to dequeue from 3041 * 3042 * Remove the head of the list. The list lock is taken so the function 3043 * may be used safely with other locking list functions. The head item is 3044 * returned or %NULL if the list is empty. 3045 */ 3046 3047 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3048 { 3049 unsigned long flags; 3050 struct sk_buff *result; 3051 3052 spin_lock_irqsave(&list->lock, flags); 3053 result = __skb_dequeue(list); 3054 spin_unlock_irqrestore(&list->lock, flags); 3055 return result; 3056 } 3057 EXPORT_SYMBOL(skb_dequeue); 3058 3059 /** 3060 * skb_dequeue_tail - remove from the tail of the queue 3061 * @list: list to dequeue from 3062 * 3063 * Remove the tail of the list. The list lock is taken so the function 3064 * may be used safely with other locking list functions. The tail item is 3065 * returned or %NULL if the list is empty. 3066 */ 3067 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3068 { 3069 unsigned long flags; 3070 struct sk_buff *result; 3071 3072 spin_lock_irqsave(&list->lock, flags); 3073 result = __skb_dequeue_tail(list); 3074 spin_unlock_irqrestore(&list->lock, flags); 3075 return result; 3076 } 3077 EXPORT_SYMBOL(skb_dequeue_tail); 3078 3079 /** 3080 * skb_queue_purge - empty a list 3081 * @list: list to empty 3082 * 3083 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3084 * the list and one reference dropped. This function takes the list 3085 * lock and is atomic with respect to other list locking functions. 3086 */ 3087 void skb_queue_purge(struct sk_buff_head *list) 3088 { 3089 struct sk_buff *skb; 3090 while ((skb = skb_dequeue(list)) != NULL) 3091 kfree_skb(skb); 3092 } 3093 EXPORT_SYMBOL(skb_queue_purge); 3094 3095 /** 3096 * skb_rbtree_purge - empty a skb rbtree 3097 * @root: root of the rbtree to empty 3098 * Return value: the sum of truesizes of all purged skbs. 3099 * 3100 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3101 * the list and one reference dropped. This function does not take 3102 * any lock. Synchronization should be handled by the caller (e.g., TCP 3103 * out-of-order queue is protected by the socket lock). 3104 */ 3105 unsigned int skb_rbtree_purge(struct rb_root *root) 3106 { 3107 struct rb_node *p = rb_first(root); 3108 unsigned int sum = 0; 3109 3110 while (p) { 3111 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3112 3113 p = rb_next(p); 3114 rb_erase(&skb->rbnode, root); 3115 sum += skb->truesize; 3116 kfree_skb(skb); 3117 } 3118 return sum; 3119 } 3120 3121 /** 3122 * skb_queue_head - queue a buffer at the list head 3123 * @list: list to use 3124 * @newsk: buffer to queue 3125 * 3126 * Queue a buffer at the start of the list. This function takes the 3127 * list lock and can be used safely with other locking &sk_buff functions 3128 * safely. 3129 * 3130 * A buffer cannot be placed on two lists at the same time. 3131 */ 3132 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3133 { 3134 unsigned long flags; 3135 3136 spin_lock_irqsave(&list->lock, flags); 3137 __skb_queue_head(list, newsk); 3138 spin_unlock_irqrestore(&list->lock, flags); 3139 } 3140 EXPORT_SYMBOL(skb_queue_head); 3141 3142 /** 3143 * skb_queue_tail - queue a buffer at the list tail 3144 * @list: list to use 3145 * @newsk: buffer to queue 3146 * 3147 * Queue a buffer at the tail of the list. This function takes the 3148 * list lock and can be used safely with other locking &sk_buff functions 3149 * safely. 3150 * 3151 * A buffer cannot be placed on two lists at the same time. 3152 */ 3153 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3154 { 3155 unsigned long flags; 3156 3157 spin_lock_irqsave(&list->lock, flags); 3158 __skb_queue_tail(list, newsk); 3159 spin_unlock_irqrestore(&list->lock, flags); 3160 } 3161 EXPORT_SYMBOL(skb_queue_tail); 3162 3163 /** 3164 * skb_unlink - remove a buffer from a list 3165 * @skb: buffer to remove 3166 * @list: list to use 3167 * 3168 * Remove a packet from a list. The list locks are taken and this 3169 * function is atomic with respect to other list locked calls 3170 * 3171 * You must know what list the SKB is on. 3172 */ 3173 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3174 { 3175 unsigned long flags; 3176 3177 spin_lock_irqsave(&list->lock, flags); 3178 __skb_unlink(skb, list); 3179 spin_unlock_irqrestore(&list->lock, flags); 3180 } 3181 EXPORT_SYMBOL(skb_unlink); 3182 3183 /** 3184 * skb_append - append a buffer 3185 * @old: buffer to insert after 3186 * @newsk: buffer to insert 3187 * @list: list to use 3188 * 3189 * Place a packet after a given packet in a list. The list locks are taken 3190 * and this function is atomic with respect to other list locked calls. 3191 * A buffer cannot be placed on two lists at the same time. 3192 */ 3193 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3194 { 3195 unsigned long flags; 3196 3197 spin_lock_irqsave(&list->lock, flags); 3198 __skb_queue_after(list, old, newsk); 3199 spin_unlock_irqrestore(&list->lock, flags); 3200 } 3201 EXPORT_SYMBOL(skb_append); 3202 3203 static inline void skb_split_inside_header(struct sk_buff *skb, 3204 struct sk_buff* skb1, 3205 const u32 len, const int pos) 3206 { 3207 int i; 3208 3209 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3210 pos - len); 3211 /* And move data appendix as is. */ 3212 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3213 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3214 3215 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3216 skb_shinfo(skb)->nr_frags = 0; 3217 skb1->data_len = skb->data_len; 3218 skb1->len += skb1->data_len; 3219 skb->data_len = 0; 3220 skb->len = len; 3221 skb_set_tail_pointer(skb, len); 3222 } 3223 3224 static inline void skb_split_no_header(struct sk_buff *skb, 3225 struct sk_buff* skb1, 3226 const u32 len, int pos) 3227 { 3228 int i, k = 0; 3229 const int nfrags = skb_shinfo(skb)->nr_frags; 3230 3231 skb_shinfo(skb)->nr_frags = 0; 3232 skb1->len = skb1->data_len = skb->len - len; 3233 skb->len = len; 3234 skb->data_len = len - pos; 3235 3236 for (i = 0; i < nfrags; i++) { 3237 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3238 3239 if (pos + size > len) { 3240 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3241 3242 if (pos < len) { 3243 /* Split frag. 3244 * We have two variants in this case: 3245 * 1. Move all the frag to the second 3246 * part, if it is possible. F.e. 3247 * this approach is mandatory for TUX, 3248 * where splitting is expensive. 3249 * 2. Split is accurately. We make this. 3250 */ 3251 skb_frag_ref(skb, i); 3252 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3253 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3254 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3255 skb_shinfo(skb)->nr_frags++; 3256 } 3257 k++; 3258 } else 3259 skb_shinfo(skb)->nr_frags++; 3260 pos += size; 3261 } 3262 skb_shinfo(skb1)->nr_frags = k; 3263 } 3264 3265 /** 3266 * skb_split - Split fragmented skb to two parts at length len. 3267 * @skb: the buffer to split 3268 * @skb1: the buffer to receive the second part 3269 * @len: new length for skb 3270 */ 3271 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3272 { 3273 int pos = skb_headlen(skb); 3274 3275 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3276 SKBTX_SHARED_FRAG; 3277 skb_zerocopy_clone(skb1, skb, 0); 3278 if (len < pos) /* Split line is inside header. */ 3279 skb_split_inside_header(skb, skb1, len, pos); 3280 else /* Second chunk has no header, nothing to copy. */ 3281 skb_split_no_header(skb, skb1, len, pos); 3282 } 3283 EXPORT_SYMBOL(skb_split); 3284 3285 /* Shifting from/to a cloned skb is a no-go. 3286 * 3287 * Caller cannot keep skb_shinfo related pointers past calling here! 3288 */ 3289 static int skb_prepare_for_shift(struct sk_buff *skb) 3290 { 3291 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3292 } 3293 3294 /** 3295 * skb_shift - Shifts paged data partially from skb to another 3296 * @tgt: buffer into which tail data gets added 3297 * @skb: buffer from which the paged data comes from 3298 * @shiftlen: shift up to this many bytes 3299 * 3300 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3301 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3302 * It's up to caller to free skb if everything was shifted. 3303 * 3304 * If @tgt runs out of frags, the whole operation is aborted. 3305 * 3306 * Skb cannot include anything else but paged data while tgt is allowed 3307 * to have non-paged data as well. 3308 * 3309 * TODO: full sized shift could be optimized but that would need 3310 * specialized skb free'er to handle frags without up-to-date nr_frags. 3311 */ 3312 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3313 { 3314 int from, to, merge, todo; 3315 skb_frag_t *fragfrom, *fragto; 3316 3317 BUG_ON(shiftlen > skb->len); 3318 3319 if (skb_headlen(skb)) 3320 return 0; 3321 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3322 return 0; 3323 3324 todo = shiftlen; 3325 from = 0; 3326 to = skb_shinfo(tgt)->nr_frags; 3327 fragfrom = &skb_shinfo(skb)->frags[from]; 3328 3329 /* Actual merge is delayed until the point when we know we can 3330 * commit all, so that we don't have to undo partial changes 3331 */ 3332 if (!to || 3333 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3334 skb_frag_off(fragfrom))) { 3335 merge = -1; 3336 } else { 3337 merge = to - 1; 3338 3339 todo -= skb_frag_size(fragfrom); 3340 if (todo < 0) { 3341 if (skb_prepare_for_shift(skb) || 3342 skb_prepare_for_shift(tgt)) 3343 return 0; 3344 3345 /* All previous frag pointers might be stale! */ 3346 fragfrom = &skb_shinfo(skb)->frags[from]; 3347 fragto = &skb_shinfo(tgt)->frags[merge]; 3348 3349 skb_frag_size_add(fragto, shiftlen); 3350 skb_frag_size_sub(fragfrom, shiftlen); 3351 skb_frag_off_add(fragfrom, shiftlen); 3352 3353 goto onlymerged; 3354 } 3355 3356 from++; 3357 } 3358 3359 /* Skip full, not-fitting skb to avoid expensive operations */ 3360 if ((shiftlen == skb->len) && 3361 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3362 return 0; 3363 3364 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3365 return 0; 3366 3367 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3368 if (to == MAX_SKB_FRAGS) 3369 return 0; 3370 3371 fragfrom = &skb_shinfo(skb)->frags[from]; 3372 fragto = &skb_shinfo(tgt)->frags[to]; 3373 3374 if (todo >= skb_frag_size(fragfrom)) { 3375 *fragto = *fragfrom; 3376 todo -= skb_frag_size(fragfrom); 3377 from++; 3378 to++; 3379 3380 } else { 3381 __skb_frag_ref(fragfrom); 3382 skb_frag_page_copy(fragto, fragfrom); 3383 skb_frag_off_copy(fragto, fragfrom); 3384 skb_frag_size_set(fragto, todo); 3385 3386 skb_frag_off_add(fragfrom, todo); 3387 skb_frag_size_sub(fragfrom, todo); 3388 todo = 0; 3389 3390 to++; 3391 break; 3392 } 3393 } 3394 3395 /* Ready to "commit" this state change to tgt */ 3396 skb_shinfo(tgt)->nr_frags = to; 3397 3398 if (merge >= 0) { 3399 fragfrom = &skb_shinfo(skb)->frags[0]; 3400 fragto = &skb_shinfo(tgt)->frags[merge]; 3401 3402 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3403 __skb_frag_unref(fragfrom); 3404 } 3405 3406 /* Reposition in the original skb */ 3407 to = 0; 3408 while (from < skb_shinfo(skb)->nr_frags) 3409 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3410 skb_shinfo(skb)->nr_frags = to; 3411 3412 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3413 3414 onlymerged: 3415 /* Most likely the tgt won't ever need its checksum anymore, skb on 3416 * the other hand might need it if it needs to be resent 3417 */ 3418 tgt->ip_summed = CHECKSUM_PARTIAL; 3419 skb->ip_summed = CHECKSUM_PARTIAL; 3420 3421 /* Yak, is it really working this way? Some helper please? */ 3422 skb->len -= shiftlen; 3423 skb->data_len -= shiftlen; 3424 skb->truesize -= shiftlen; 3425 tgt->len += shiftlen; 3426 tgt->data_len += shiftlen; 3427 tgt->truesize += shiftlen; 3428 3429 return shiftlen; 3430 } 3431 3432 /** 3433 * skb_prepare_seq_read - Prepare a sequential read of skb data 3434 * @skb: the buffer to read 3435 * @from: lower offset of data to be read 3436 * @to: upper offset of data to be read 3437 * @st: state variable 3438 * 3439 * Initializes the specified state variable. Must be called before 3440 * invoking skb_seq_read() for the first time. 3441 */ 3442 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3443 unsigned int to, struct skb_seq_state *st) 3444 { 3445 st->lower_offset = from; 3446 st->upper_offset = to; 3447 st->root_skb = st->cur_skb = skb; 3448 st->frag_idx = st->stepped_offset = 0; 3449 st->frag_data = NULL; 3450 st->frag_off = 0; 3451 } 3452 EXPORT_SYMBOL(skb_prepare_seq_read); 3453 3454 /** 3455 * skb_seq_read - Sequentially read skb data 3456 * @consumed: number of bytes consumed by the caller so far 3457 * @data: destination pointer for data to be returned 3458 * @st: state variable 3459 * 3460 * Reads a block of skb data at @consumed relative to the 3461 * lower offset specified to skb_prepare_seq_read(). Assigns 3462 * the head of the data block to @data and returns the length 3463 * of the block or 0 if the end of the skb data or the upper 3464 * offset has been reached. 3465 * 3466 * The caller is not required to consume all of the data 3467 * returned, i.e. @consumed is typically set to the number 3468 * of bytes already consumed and the next call to 3469 * skb_seq_read() will return the remaining part of the block. 3470 * 3471 * Note 1: The size of each block of data returned can be arbitrary, 3472 * this limitation is the cost for zerocopy sequential 3473 * reads of potentially non linear data. 3474 * 3475 * Note 2: Fragment lists within fragments are not implemented 3476 * at the moment, state->root_skb could be replaced with 3477 * a stack for this purpose. 3478 */ 3479 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3480 struct skb_seq_state *st) 3481 { 3482 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3483 skb_frag_t *frag; 3484 3485 if (unlikely(abs_offset >= st->upper_offset)) { 3486 if (st->frag_data) { 3487 kunmap_atomic(st->frag_data); 3488 st->frag_data = NULL; 3489 } 3490 return 0; 3491 } 3492 3493 next_skb: 3494 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3495 3496 if (abs_offset < block_limit && !st->frag_data) { 3497 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3498 return block_limit - abs_offset; 3499 } 3500 3501 if (st->frag_idx == 0 && !st->frag_data) 3502 st->stepped_offset += skb_headlen(st->cur_skb); 3503 3504 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3505 unsigned int pg_idx, pg_off, pg_sz; 3506 3507 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3508 3509 pg_idx = 0; 3510 pg_off = skb_frag_off(frag); 3511 pg_sz = skb_frag_size(frag); 3512 3513 if (skb_frag_must_loop(skb_frag_page(frag))) { 3514 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3515 pg_off = offset_in_page(pg_off + st->frag_off); 3516 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3517 PAGE_SIZE - pg_off); 3518 } 3519 3520 block_limit = pg_sz + st->stepped_offset; 3521 if (abs_offset < block_limit) { 3522 if (!st->frag_data) 3523 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3524 3525 *data = (u8 *)st->frag_data + pg_off + 3526 (abs_offset - st->stepped_offset); 3527 3528 return block_limit - abs_offset; 3529 } 3530 3531 if (st->frag_data) { 3532 kunmap_atomic(st->frag_data); 3533 st->frag_data = NULL; 3534 } 3535 3536 st->stepped_offset += pg_sz; 3537 st->frag_off += pg_sz; 3538 if (st->frag_off == skb_frag_size(frag)) { 3539 st->frag_off = 0; 3540 st->frag_idx++; 3541 } 3542 } 3543 3544 if (st->frag_data) { 3545 kunmap_atomic(st->frag_data); 3546 st->frag_data = NULL; 3547 } 3548 3549 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3550 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3551 st->frag_idx = 0; 3552 goto next_skb; 3553 } else if (st->cur_skb->next) { 3554 st->cur_skb = st->cur_skb->next; 3555 st->frag_idx = 0; 3556 goto next_skb; 3557 } 3558 3559 return 0; 3560 } 3561 EXPORT_SYMBOL(skb_seq_read); 3562 3563 /** 3564 * skb_abort_seq_read - Abort a sequential read of skb data 3565 * @st: state variable 3566 * 3567 * Must be called if skb_seq_read() was not called until it 3568 * returned 0. 3569 */ 3570 void skb_abort_seq_read(struct skb_seq_state *st) 3571 { 3572 if (st->frag_data) 3573 kunmap_atomic(st->frag_data); 3574 } 3575 EXPORT_SYMBOL(skb_abort_seq_read); 3576 3577 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3578 3579 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3580 struct ts_config *conf, 3581 struct ts_state *state) 3582 { 3583 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3584 } 3585 3586 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3587 { 3588 skb_abort_seq_read(TS_SKB_CB(state)); 3589 } 3590 3591 /** 3592 * skb_find_text - Find a text pattern in skb data 3593 * @skb: the buffer to look in 3594 * @from: search offset 3595 * @to: search limit 3596 * @config: textsearch configuration 3597 * 3598 * Finds a pattern in the skb data according to the specified 3599 * textsearch configuration. Use textsearch_next() to retrieve 3600 * subsequent occurrences of the pattern. Returns the offset 3601 * to the first occurrence or UINT_MAX if no match was found. 3602 */ 3603 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3604 unsigned int to, struct ts_config *config) 3605 { 3606 struct ts_state state; 3607 unsigned int ret; 3608 3609 config->get_next_block = skb_ts_get_next_block; 3610 config->finish = skb_ts_finish; 3611 3612 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3613 3614 ret = textsearch_find(config, &state); 3615 return (ret <= to - from ? ret : UINT_MAX); 3616 } 3617 EXPORT_SYMBOL(skb_find_text); 3618 3619 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3620 int offset, size_t size) 3621 { 3622 int i = skb_shinfo(skb)->nr_frags; 3623 3624 if (skb_can_coalesce(skb, i, page, offset)) { 3625 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3626 } else if (i < MAX_SKB_FRAGS) { 3627 get_page(page); 3628 skb_fill_page_desc(skb, i, page, offset, size); 3629 } else { 3630 return -EMSGSIZE; 3631 } 3632 3633 return 0; 3634 } 3635 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3636 3637 /** 3638 * skb_pull_rcsum - pull skb and update receive checksum 3639 * @skb: buffer to update 3640 * @len: length of data pulled 3641 * 3642 * This function performs an skb_pull on the packet and updates 3643 * the CHECKSUM_COMPLETE checksum. It should be used on 3644 * receive path processing instead of skb_pull unless you know 3645 * that the checksum difference is zero (e.g., a valid IP header) 3646 * or you are setting ip_summed to CHECKSUM_NONE. 3647 */ 3648 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3649 { 3650 unsigned char *data = skb->data; 3651 3652 BUG_ON(len > skb->len); 3653 __skb_pull(skb, len); 3654 skb_postpull_rcsum(skb, data, len); 3655 return skb->data; 3656 } 3657 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3658 3659 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3660 { 3661 skb_frag_t head_frag; 3662 struct page *page; 3663 3664 page = virt_to_head_page(frag_skb->head); 3665 __skb_frag_set_page(&head_frag, page); 3666 skb_frag_off_set(&head_frag, frag_skb->data - 3667 (unsigned char *)page_address(page)); 3668 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3669 return head_frag; 3670 } 3671 3672 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3673 netdev_features_t features, 3674 unsigned int offset) 3675 { 3676 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3677 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3678 unsigned int delta_truesize = 0; 3679 unsigned int delta_len = 0; 3680 struct sk_buff *tail = NULL; 3681 struct sk_buff *nskb, *tmp; 3682 int err; 3683 3684 skb_push(skb, -skb_network_offset(skb) + offset); 3685 3686 skb_shinfo(skb)->frag_list = NULL; 3687 3688 do { 3689 nskb = list_skb; 3690 list_skb = list_skb->next; 3691 3692 err = 0; 3693 if (skb_shared(nskb)) { 3694 tmp = skb_clone(nskb, GFP_ATOMIC); 3695 if (tmp) { 3696 consume_skb(nskb); 3697 nskb = tmp; 3698 err = skb_unclone(nskb, GFP_ATOMIC); 3699 } else { 3700 err = -ENOMEM; 3701 } 3702 } 3703 3704 if (!tail) 3705 skb->next = nskb; 3706 else 3707 tail->next = nskb; 3708 3709 if (unlikely(err)) { 3710 nskb->next = list_skb; 3711 goto err_linearize; 3712 } 3713 3714 tail = nskb; 3715 3716 delta_len += nskb->len; 3717 delta_truesize += nskb->truesize; 3718 3719 skb_push(nskb, -skb_network_offset(nskb) + offset); 3720 3721 skb_release_head_state(nskb); 3722 __copy_skb_header(nskb, skb); 3723 3724 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3725 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3726 nskb->data - tnl_hlen, 3727 offset + tnl_hlen); 3728 3729 if (skb_needs_linearize(nskb, features) && 3730 __skb_linearize(nskb)) 3731 goto err_linearize; 3732 3733 } while (list_skb); 3734 3735 skb->truesize = skb->truesize - delta_truesize; 3736 skb->data_len = skb->data_len - delta_len; 3737 skb->len = skb->len - delta_len; 3738 3739 skb_gso_reset(skb); 3740 3741 skb->prev = tail; 3742 3743 if (skb_needs_linearize(skb, features) && 3744 __skb_linearize(skb)) 3745 goto err_linearize; 3746 3747 skb_get(skb); 3748 3749 return skb; 3750 3751 err_linearize: 3752 kfree_skb_list(skb->next); 3753 skb->next = NULL; 3754 return ERR_PTR(-ENOMEM); 3755 } 3756 EXPORT_SYMBOL_GPL(skb_segment_list); 3757 3758 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3759 { 3760 if (unlikely(p->len + skb->len >= 65536)) 3761 return -E2BIG; 3762 3763 if (NAPI_GRO_CB(p)->last == p) 3764 skb_shinfo(p)->frag_list = skb; 3765 else 3766 NAPI_GRO_CB(p)->last->next = skb; 3767 3768 skb_pull(skb, skb_gro_offset(skb)); 3769 3770 NAPI_GRO_CB(p)->last = skb; 3771 NAPI_GRO_CB(p)->count++; 3772 p->data_len += skb->len; 3773 p->truesize += skb->truesize; 3774 p->len += skb->len; 3775 3776 NAPI_GRO_CB(skb)->same_flow = 1; 3777 3778 return 0; 3779 } 3780 3781 /** 3782 * skb_segment - Perform protocol segmentation on skb. 3783 * @head_skb: buffer to segment 3784 * @features: features for the output path (see dev->features) 3785 * 3786 * This function performs segmentation on the given skb. It returns 3787 * a pointer to the first in a list of new skbs for the segments. 3788 * In case of error it returns ERR_PTR(err). 3789 */ 3790 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3791 netdev_features_t features) 3792 { 3793 struct sk_buff *segs = NULL; 3794 struct sk_buff *tail = NULL; 3795 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3796 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3797 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3798 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3799 struct sk_buff *frag_skb = head_skb; 3800 unsigned int offset = doffset; 3801 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3802 unsigned int partial_segs = 0; 3803 unsigned int headroom; 3804 unsigned int len = head_skb->len; 3805 __be16 proto; 3806 bool csum, sg; 3807 int nfrags = skb_shinfo(head_skb)->nr_frags; 3808 int err = -ENOMEM; 3809 int i = 0; 3810 int pos; 3811 3812 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3813 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3814 /* gso_size is untrusted, and we have a frag_list with a linear 3815 * non head_frag head. 3816 * 3817 * (we assume checking the first list_skb member suffices; 3818 * i.e if either of the list_skb members have non head_frag 3819 * head, then the first one has too). 3820 * 3821 * If head_skb's headlen does not fit requested gso_size, it 3822 * means that the frag_list members do NOT terminate on exact 3823 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3824 * sharing. Therefore we must fallback to copying the frag_list 3825 * skbs; we do so by disabling SG. 3826 */ 3827 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3828 features &= ~NETIF_F_SG; 3829 } 3830 3831 __skb_push(head_skb, doffset); 3832 proto = skb_network_protocol(head_skb, NULL); 3833 if (unlikely(!proto)) 3834 return ERR_PTR(-EINVAL); 3835 3836 sg = !!(features & NETIF_F_SG); 3837 csum = !!can_checksum_protocol(features, proto); 3838 3839 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3840 if (!(features & NETIF_F_GSO_PARTIAL)) { 3841 struct sk_buff *iter; 3842 unsigned int frag_len; 3843 3844 if (!list_skb || 3845 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3846 goto normal; 3847 3848 /* If we get here then all the required 3849 * GSO features except frag_list are supported. 3850 * Try to split the SKB to multiple GSO SKBs 3851 * with no frag_list. 3852 * Currently we can do that only when the buffers don't 3853 * have a linear part and all the buffers except 3854 * the last are of the same length. 3855 */ 3856 frag_len = list_skb->len; 3857 skb_walk_frags(head_skb, iter) { 3858 if (frag_len != iter->len && iter->next) 3859 goto normal; 3860 if (skb_headlen(iter) && !iter->head_frag) 3861 goto normal; 3862 3863 len -= iter->len; 3864 } 3865 3866 if (len != frag_len) 3867 goto normal; 3868 } 3869 3870 /* GSO partial only requires that we trim off any excess that 3871 * doesn't fit into an MSS sized block, so take care of that 3872 * now. 3873 */ 3874 partial_segs = len / mss; 3875 if (partial_segs > 1) 3876 mss *= partial_segs; 3877 else 3878 partial_segs = 0; 3879 } 3880 3881 normal: 3882 headroom = skb_headroom(head_skb); 3883 pos = skb_headlen(head_skb); 3884 3885 do { 3886 struct sk_buff *nskb; 3887 skb_frag_t *nskb_frag; 3888 int hsize; 3889 int size; 3890 3891 if (unlikely(mss == GSO_BY_FRAGS)) { 3892 len = list_skb->len; 3893 } else { 3894 len = head_skb->len - offset; 3895 if (len > mss) 3896 len = mss; 3897 } 3898 3899 hsize = skb_headlen(head_skb) - offset; 3900 if (hsize < 0) 3901 hsize = 0; 3902 if (hsize > len || !sg) 3903 hsize = len; 3904 3905 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3906 (skb_headlen(list_skb) == len || sg)) { 3907 BUG_ON(skb_headlen(list_skb) > len); 3908 3909 i = 0; 3910 nfrags = skb_shinfo(list_skb)->nr_frags; 3911 frag = skb_shinfo(list_skb)->frags; 3912 frag_skb = list_skb; 3913 pos += skb_headlen(list_skb); 3914 3915 while (pos < offset + len) { 3916 BUG_ON(i >= nfrags); 3917 3918 size = skb_frag_size(frag); 3919 if (pos + size > offset + len) 3920 break; 3921 3922 i++; 3923 pos += size; 3924 frag++; 3925 } 3926 3927 nskb = skb_clone(list_skb, GFP_ATOMIC); 3928 list_skb = list_skb->next; 3929 3930 if (unlikely(!nskb)) 3931 goto err; 3932 3933 if (unlikely(pskb_trim(nskb, len))) { 3934 kfree_skb(nskb); 3935 goto err; 3936 } 3937 3938 hsize = skb_end_offset(nskb); 3939 if (skb_cow_head(nskb, doffset + headroom)) { 3940 kfree_skb(nskb); 3941 goto err; 3942 } 3943 3944 nskb->truesize += skb_end_offset(nskb) - hsize; 3945 skb_release_head_state(nskb); 3946 __skb_push(nskb, doffset); 3947 } else { 3948 nskb = __alloc_skb(hsize + doffset + headroom, 3949 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3950 NUMA_NO_NODE); 3951 3952 if (unlikely(!nskb)) 3953 goto err; 3954 3955 skb_reserve(nskb, headroom); 3956 __skb_put(nskb, doffset); 3957 } 3958 3959 if (segs) 3960 tail->next = nskb; 3961 else 3962 segs = nskb; 3963 tail = nskb; 3964 3965 __copy_skb_header(nskb, head_skb); 3966 3967 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3968 skb_reset_mac_len(nskb); 3969 3970 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3971 nskb->data - tnl_hlen, 3972 doffset + tnl_hlen); 3973 3974 if (nskb->len == len + doffset) 3975 goto perform_csum_check; 3976 3977 if (!sg) { 3978 if (!csum) { 3979 if (!nskb->remcsum_offload) 3980 nskb->ip_summed = CHECKSUM_NONE; 3981 SKB_GSO_CB(nskb)->csum = 3982 skb_copy_and_csum_bits(head_skb, offset, 3983 skb_put(nskb, 3984 len), 3985 len); 3986 SKB_GSO_CB(nskb)->csum_start = 3987 skb_headroom(nskb) + doffset; 3988 } else { 3989 skb_copy_bits(head_skb, offset, 3990 skb_put(nskb, len), 3991 len); 3992 } 3993 continue; 3994 } 3995 3996 nskb_frag = skb_shinfo(nskb)->frags; 3997 3998 skb_copy_from_linear_data_offset(head_skb, offset, 3999 skb_put(nskb, hsize), hsize); 4000 4001 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 4002 SKBTX_SHARED_FRAG; 4003 4004 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4005 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4006 goto err; 4007 4008 while (pos < offset + len) { 4009 if (i >= nfrags) { 4010 i = 0; 4011 nfrags = skb_shinfo(list_skb)->nr_frags; 4012 frag = skb_shinfo(list_skb)->frags; 4013 frag_skb = list_skb; 4014 if (!skb_headlen(list_skb)) { 4015 BUG_ON(!nfrags); 4016 } else { 4017 BUG_ON(!list_skb->head_frag); 4018 4019 /* to make room for head_frag. */ 4020 i--; 4021 frag--; 4022 } 4023 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4024 skb_zerocopy_clone(nskb, frag_skb, 4025 GFP_ATOMIC)) 4026 goto err; 4027 4028 list_skb = list_skb->next; 4029 } 4030 4031 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4032 MAX_SKB_FRAGS)) { 4033 net_warn_ratelimited( 4034 "skb_segment: too many frags: %u %u\n", 4035 pos, mss); 4036 err = -EINVAL; 4037 goto err; 4038 } 4039 4040 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4041 __skb_frag_ref(nskb_frag); 4042 size = skb_frag_size(nskb_frag); 4043 4044 if (pos < offset) { 4045 skb_frag_off_add(nskb_frag, offset - pos); 4046 skb_frag_size_sub(nskb_frag, offset - pos); 4047 } 4048 4049 skb_shinfo(nskb)->nr_frags++; 4050 4051 if (pos + size <= offset + len) { 4052 i++; 4053 frag++; 4054 pos += size; 4055 } else { 4056 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4057 goto skip_fraglist; 4058 } 4059 4060 nskb_frag++; 4061 } 4062 4063 skip_fraglist: 4064 nskb->data_len = len - hsize; 4065 nskb->len += nskb->data_len; 4066 nskb->truesize += nskb->data_len; 4067 4068 perform_csum_check: 4069 if (!csum) { 4070 if (skb_has_shared_frag(nskb) && 4071 __skb_linearize(nskb)) 4072 goto err; 4073 4074 if (!nskb->remcsum_offload) 4075 nskb->ip_summed = CHECKSUM_NONE; 4076 SKB_GSO_CB(nskb)->csum = 4077 skb_checksum(nskb, doffset, 4078 nskb->len - doffset, 0); 4079 SKB_GSO_CB(nskb)->csum_start = 4080 skb_headroom(nskb) + doffset; 4081 } 4082 } while ((offset += len) < head_skb->len); 4083 4084 /* Some callers want to get the end of the list. 4085 * Put it in segs->prev to avoid walking the list. 4086 * (see validate_xmit_skb_list() for example) 4087 */ 4088 segs->prev = tail; 4089 4090 if (partial_segs) { 4091 struct sk_buff *iter; 4092 int type = skb_shinfo(head_skb)->gso_type; 4093 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4094 4095 /* Update type to add partial and then remove dodgy if set */ 4096 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4097 type &= ~SKB_GSO_DODGY; 4098 4099 /* Update GSO info and prepare to start updating headers on 4100 * our way back down the stack of protocols. 4101 */ 4102 for (iter = segs; iter; iter = iter->next) { 4103 skb_shinfo(iter)->gso_size = gso_size; 4104 skb_shinfo(iter)->gso_segs = partial_segs; 4105 skb_shinfo(iter)->gso_type = type; 4106 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4107 } 4108 4109 if (tail->len - doffset <= gso_size) 4110 skb_shinfo(tail)->gso_size = 0; 4111 else if (tail != segs) 4112 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4113 } 4114 4115 /* Following permits correct backpressure, for protocols 4116 * using skb_set_owner_w(). 4117 * Idea is to tranfert ownership from head_skb to last segment. 4118 */ 4119 if (head_skb->destructor == sock_wfree) { 4120 swap(tail->truesize, head_skb->truesize); 4121 swap(tail->destructor, head_skb->destructor); 4122 swap(tail->sk, head_skb->sk); 4123 } 4124 return segs; 4125 4126 err: 4127 kfree_skb_list(segs); 4128 return ERR_PTR(err); 4129 } 4130 EXPORT_SYMBOL_GPL(skb_segment); 4131 4132 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4133 { 4134 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4135 unsigned int offset = skb_gro_offset(skb); 4136 unsigned int headlen = skb_headlen(skb); 4137 unsigned int len = skb_gro_len(skb); 4138 unsigned int delta_truesize; 4139 struct sk_buff *lp; 4140 4141 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4142 return -E2BIG; 4143 4144 lp = NAPI_GRO_CB(p)->last; 4145 pinfo = skb_shinfo(lp); 4146 4147 if (headlen <= offset) { 4148 skb_frag_t *frag; 4149 skb_frag_t *frag2; 4150 int i = skbinfo->nr_frags; 4151 int nr_frags = pinfo->nr_frags + i; 4152 4153 if (nr_frags > MAX_SKB_FRAGS) 4154 goto merge; 4155 4156 offset -= headlen; 4157 pinfo->nr_frags = nr_frags; 4158 skbinfo->nr_frags = 0; 4159 4160 frag = pinfo->frags + nr_frags; 4161 frag2 = skbinfo->frags + i; 4162 do { 4163 *--frag = *--frag2; 4164 } while (--i); 4165 4166 skb_frag_off_add(frag, offset); 4167 skb_frag_size_sub(frag, offset); 4168 4169 /* all fragments truesize : remove (head size + sk_buff) */ 4170 delta_truesize = skb->truesize - 4171 SKB_TRUESIZE(skb_end_offset(skb)); 4172 4173 skb->truesize -= skb->data_len; 4174 skb->len -= skb->data_len; 4175 skb->data_len = 0; 4176 4177 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4178 goto done; 4179 } else if (skb->head_frag) { 4180 int nr_frags = pinfo->nr_frags; 4181 skb_frag_t *frag = pinfo->frags + nr_frags; 4182 struct page *page = virt_to_head_page(skb->head); 4183 unsigned int first_size = headlen - offset; 4184 unsigned int first_offset; 4185 4186 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4187 goto merge; 4188 4189 first_offset = skb->data - 4190 (unsigned char *)page_address(page) + 4191 offset; 4192 4193 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4194 4195 __skb_frag_set_page(frag, page); 4196 skb_frag_off_set(frag, first_offset); 4197 skb_frag_size_set(frag, first_size); 4198 4199 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4200 /* We dont need to clear skbinfo->nr_frags here */ 4201 4202 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4203 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4204 goto done; 4205 } 4206 4207 merge: 4208 delta_truesize = skb->truesize; 4209 if (offset > headlen) { 4210 unsigned int eat = offset - headlen; 4211 4212 skb_frag_off_add(&skbinfo->frags[0], eat); 4213 skb_frag_size_sub(&skbinfo->frags[0], eat); 4214 skb->data_len -= eat; 4215 skb->len -= eat; 4216 offset = headlen; 4217 } 4218 4219 __skb_pull(skb, offset); 4220 4221 if (NAPI_GRO_CB(p)->last == p) 4222 skb_shinfo(p)->frag_list = skb; 4223 else 4224 NAPI_GRO_CB(p)->last->next = skb; 4225 NAPI_GRO_CB(p)->last = skb; 4226 __skb_header_release(skb); 4227 lp = p; 4228 4229 done: 4230 NAPI_GRO_CB(p)->count++; 4231 p->data_len += len; 4232 p->truesize += delta_truesize; 4233 p->len += len; 4234 if (lp != p) { 4235 lp->data_len += len; 4236 lp->truesize += delta_truesize; 4237 lp->len += len; 4238 } 4239 NAPI_GRO_CB(skb)->same_flow = 1; 4240 return 0; 4241 } 4242 4243 #ifdef CONFIG_SKB_EXTENSIONS 4244 #define SKB_EXT_ALIGN_VALUE 8 4245 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4246 4247 static const u8 skb_ext_type_len[] = { 4248 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4249 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4250 #endif 4251 #ifdef CONFIG_XFRM 4252 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4253 #endif 4254 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4255 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4256 #endif 4257 #if IS_ENABLED(CONFIG_MPTCP) 4258 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4259 #endif 4260 }; 4261 4262 static __always_inline unsigned int skb_ext_total_length(void) 4263 { 4264 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4265 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4266 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4267 #endif 4268 #ifdef CONFIG_XFRM 4269 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4270 #endif 4271 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4272 skb_ext_type_len[TC_SKB_EXT] + 4273 #endif 4274 #if IS_ENABLED(CONFIG_MPTCP) 4275 skb_ext_type_len[SKB_EXT_MPTCP] + 4276 #endif 4277 0; 4278 } 4279 4280 static void skb_extensions_init(void) 4281 { 4282 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4283 BUILD_BUG_ON(skb_ext_total_length() > 255); 4284 4285 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4286 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4287 0, 4288 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4289 NULL); 4290 } 4291 #else 4292 static void skb_extensions_init(void) {} 4293 #endif 4294 4295 void __init skb_init(void) 4296 { 4297 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4298 sizeof(struct sk_buff), 4299 0, 4300 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4301 offsetof(struct sk_buff, cb), 4302 sizeof_field(struct sk_buff, cb), 4303 NULL); 4304 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4305 sizeof(struct sk_buff_fclones), 4306 0, 4307 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4308 NULL); 4309 skb_extensions_init(); 4310 } 4311 4312 static int 4313 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4314 unsigned int recursion_level) 4315 { 4316 int start = skb_headlen(skb); 4317 int i, copy = start - offset; 4318 struct sk_buff *frag_iter; 4319 int elt = 0; 4320 4321 if (unlikely(recursion_level >= 24)) 4322 return -EMSGSIZE; 4323 4324 if (copy > 0) { 4325 if (copy > len) 4326 copy = len; 4327 sg_set_buf(sg, skb->data + offset, copy); 4328 elt++; 4329 if ((len -= copy) == 0) 4330 return elt; 4331 offset += copy; 4332 } 4333 4334 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4335 int end; 4336 4337 WARN_ON(start > offset + len); 4338 4339 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4340 if ((copy = end - offset) > 0) { 4341 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4342 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4343 return -EMSGSIZE; 4344 4345 if (copy > len) 4346 copy = len; 4347 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4348 skb_frag_off(frag) + offset - start); 4349 elt++; 4350 if (!(len -= copy)) 4351 return elt; 4352 offset += copy; 4353 } 4354 start = end; 4355 } 4356 4357 skb_walk_frags(skb, frag_iter) { 4358 int end, ret; 4359 4360 WARN_ON(start > offset + len); 4361 4362 end = start + frag_iter->len; 4363 if ((copy = end - offset) > 0) { 4364 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4365 return -EMSGSIZE; 4366 4367 if (copy > len) 4368 copy = len; 4369 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4370 copy, recursion_level + 1); 4371 if (unlikely(ret < 0)) 4372 return ret; 4373 elt += ret; 4374 if ((len -= copy) == 0) 4375 return elt; 4376 offset += copy; 4377 } 4378 start = end; 4379 } 4380 BUG_ON(len); 4381 return elt; 4382 } 4383 4384 /** 4385 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4386 * @skb: Socket buffer containing the buffers to be mapped 4387 * @sg: The scatter-gather list to map into 4388 * @offset: The offset into the buffer's contents to start mapping 4389 * @len: Length of buffer space to be mapped 4390 * 4391 * Fill the specified scatter-gather list with mappings/pointers into a 4392 * region of the buffer space attached to a socket buffer. Returns either 4393 * the number of scatterlist items used, or -EMSGSIZE if the contents 4394 * could not fit. 4395 */ 4396 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4397 { 4398 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4399 4400 if (nsg <= 0) 4401 return nsg; 4402 4403 sg_mark_end(&sg[nsg - 1]); 4404 4405 return nsg; 4406 } 4407 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4408 4409 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4410 * sglist without mark the sg which contain last skb data as the end. 4411 * So the caller can mannipulate sg list as will when padding new data after 4412 * the first call without calling sg_unmark_end to expend sg list. 4413 * 4414 * Scenario to use skb_to_sgvec_nomark: 4415 * 1. sg_init_table 4416 * 2. skb_to_sgvec_nomark(payload1) 4417 * 3. skb_to_sgvec_nomark(payload2) 4418 * 4419 * This is equivalent to: 4420 * 1. sg_init_table 4421 * 2. skb_to_sgvec(payload1) 4422 * 3. sg_unmark_end 4423 * 4. skb_to_sgvec(payload2) 4424 * 4425 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4426 * is more preferable. 4427 */ 4428 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4429 int offset, int len) 4430 { 4431 return __skb_to_sgvec(skb, sg, offset, len, 0); 4432 } 4433 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4434 4435 4436 4437 /** 4438 * skb_cow_data - Check that a socket buffer's data buffers are writable 4439 * @skb: The socket buffer to check. 4440 * @tailbits: Amount of trailing space to be added 4441 * @trailer: Returned pointer to the skb where the @tailbits space begins 4442 * 4443 * Make sure that the data buffers attached to a socket buffer are 4444 * writable. If they are not, private copies are made of the data buffers 4445 * and the socket buffer is set to use these instead. 4446 * 4447 * If @tailbits is given, make sure that there is space to write @tailbits 4448 * bytes of data beyond current end of socket buffer. @trailer will be 4449 * set to point to the skb in which this space begins. 4450 * 4451 * The number of scatterlist elements required to completely map the 4452 * COW'd and extended socket buffer will be returned. 4453 */ 4454 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4455 { 4456 int copyflag; 4457 int elt; 4458 struct sk_buff *skb1, **skb_p; 4459 4460 /* If skb is cloned or its head is paged, reallocate 4461 * head pulling out all the pages (pages are considered not writable 4462 * at the moment even if they are anonymous). 4463 */ 4464 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4465 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4466 return -ENOMEM; 4467 4468 /* Easy case. Most of packets will go this way. */ 4469 if (!skb_has_frag_list(skb)) { 4470 /* A little of trouble, not enough of space for trailer. 4471 * This should not happen, when stack is tuned to generate 4472 * good frames. OK, on miss we reallocate and reserve even more 4473 * space, 128 bytes is fair. */ 4474 4475 if (skb_tailroom(skb) < tailbits && 4476 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4477 return -ENOMEM; 4478 4479 /* Voila! */ 4480 *trailer = skb; 4481 return 1; 4482 } 4483 4484 /* Misery. We are in troubles, going to mincer fragments... */ 4485 4486 elt = 1; 4487 skb_p = &skb_shinfo(skb)->frag_list; 4488 copyflag = 0; 4489 4490 while ((skb1 = *skb_p) != NULL) { 4491 int ntail = 0; 4492 4493 /* The fragment is partially pulled by someone, 4494 * this can happen on input. Copy it and everything 4495 * after it. */ 4496 4497 if (skb_shared(skb1)) 4498 copyflag = 1; 4499 4500 /* If the skb is the last, worry about trailer. */ 4501 4502 if (skb1->next == NULL && tailbits) { 4503 if (skb_shinfo(skb1)->nr_frags || 4504 skb_has_frag_list(skb1) || 4505 skb_tailroom(skb1) < tailbits) 4506 ntail = tailbits + 128; 4507 } 4508 4509 if (copyflag || 4510 skb_cloned(skb1) || 4511 ntail || 4512 skb_shinfo(skb1)->nr_frags || 4513 skb_has_frag_list(skb1)) { 4514 struct sk_buff *skb2; 4515 4516 /* Fuck, we are miserable poor guys... */ 4517 if (ntail == 0) 4518 skb2 = skb_copy(skb1, GFP_ATOMIC); 4519 else 4520 skb2 = skb_copy_expand(skb1, 4521 skb_headroom(skb1), 4522 ntail, 4523 GFP_ATOMIC); 4524 if (unlikely(skb2 == NULL)) 4525 return -ENOMEM; 4526 4527 if (skb1->sk) 4528 skb_set_owner_w(skb2, skb1->sk); 4529 4530 /* Looking around. Are we still alive? 4531 * OK, link new skb, drop old one */ 4532 4533 skb2->next = skb1->next; 4534 *skb_p = skb2; 4535 kfree_skb(skb1); 4536 skb1 = skb2; 4537 } 4538 elt++; 4539 *trailer = skb1; 4540 skb_p = &skb1->next; 4541 } 4542 4543 return elt; 4544 } 4545 EXPORT_SYMBOL_GPL(skb_cow_data); 4546 4547 static void sock_rmem_free(struct sk_buff *skb) 4548 { 4549 struct sock *sk = skb->sk; 4550 4551 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4552 } 4553 4554 static void skb_set_err_queue(struct sk_buff *skb) 4555 { 4556 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4557 * So, it is safe to (mis)use it to mark skbs on the error queue. 4558 */ 4559 skb->pkt_type = PACKET_OUTGOING; 4560 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4561 } 4562 4563 /* 4564 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4565 */ 4566 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4567 { 4568 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4569 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4570 return -ENOMEM; 4571 4572 skb_orphan(skb); 4573 skb->sk = sk; 4574 skb->destructor = sock_rmem_free; 4575 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4576 skb_set_err_queue(skb); 4577 4578 /* before exiting rcu section, make sure dst is refcounted */ 4579 skb_dst_force(skb); 4580 4581 skb_queue_tail(&sk->sk_error_queue, skb); 4582 if (!sock_flag(sk, SOCK_DEAD)) 4583 sk->sk_error_report(sk); 4584 return 0; 4585 } 4586 EXPORT_SYMBOL(sock_queue_err_skb); 4587 4588 static bool is_icmp_err_skb(const struct sk_buff *skb) 4589 { 4590 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4591 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4592 } 4593 4594 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4595 { 4596 struct sk_buff_head *q = &sk->sk_error_queue; 4597 struct sk_buff *skb, *skb_next = NULL; 4598 bool icmp_next = false; 4599 unsigned long flags; 4600 4601 spin_lock_irqsave(&q->lock, flags); 4602 skb = __skb_dequeue(q); 4603 if (skb && (skb_next = skb_peek(q))) { 4604 icmp_next = is_icmp_err_skb(skb_next); 4605 if (icmp_next) 4606 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4607 } 4608 spin_unlock_irqrestore(&q->lock, flags); 4609 4610 if (is_icmp_err_skb(skb) && !icmp_next) 4611 sk->sk_err = 0; 4612 4613 if (skb_next) 4614 sk->sk_error_report(sk); 4615 4616 return skb; 4617 } 4618 EXPORT_SYMBOL(sock_dequeue_err_skb); 4619 4620 /** 4621 * skb_clone_sk - create clone of skb, and take reference to socket 4622 * @skb: the skb to clone 4623 * 4624 * This function creates a clone of a buffer that holds a reference on 4625 * sk_refcnt. Buffers created via this function are meant to be 4626 * returned using sock_queue_err_skb, or free via kfree_skb. 4627 * 4628 * When passing buffers allocated with this function to sock_queue_err_skb 4629 * it is necessary to wrap the call with sock_hold/sock_put in order to 4630 * prevent the socket from being released prior to being enqueued on 4631 * the sk_error_queue. 4632 */ 4633 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4634 { 4635 struct sock *sk = skb->sk; 4636 struct sk_buff *clone; 4637 4638 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4639 return NULL; 4640 4641 clone = skb_clone(skb, GFP_ATOMIC); 4642 if (!clone) { 4643 sock_put(sk); 4644 return NULL; 4645 } 4646 4647 clone->sk = sk; 4648 clone->destructor = sock_efree; 4649 4650 return clone; 4651 } 4652 EXPORT_SYMBOL(skb_clone_sk); 4653 4654 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4655 struct sock *sk, 4656 int tstype, 4657 bool opt_stats) 4658 { 4659 struct sock_exterr_skb *serr; 4660 int err; 4661 4662 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4663 4664 serr = SKB_EXT_ERR(skb); 4665 memset(serr, 0, sizeof(*serr)); 4666 serr->ee.ee_errno = ENOMSG; 4667 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4668 serr->ee.ee_info = tstype; 4669 serr->opt_stats = opt_stats; 4670 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4671 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4672 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4673 if (sk->sk_protocol == IPPROTO_TCP && 4674 sk->sk_type == SOCK_STREAM) 4675 serr->ee.ee_data -= sk->sk_tskey; 4676 } 4677 4678 err = sock_queue_err_skb(sk, skb); 4679 4680 if (err) 4681 kfree_skb(skb); 4682 } 4683 4684 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4685 { 4686 bool ret; 4687 4688 if (likely(sysctl_tstamp_allow_data || tsonly)) 4689 return true; 4690 4691 read_lock_bh(&sk->sk_callback_lock); 4692 ret = sk->sk_socket && sk->sk_socket->file && 4693 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4694 read_unlock_bh(&sk->sk_callback_lock); 4695 return ret; 4696 } 4697 4698 void skb_complete_tx_timestamp(struct sk_buff *skb, 4699 struct skb_shared_hwtstamps *hwtstamps) 4700 { 4701 struct sock *sk = skb->sk; 4702 4703 if (!skb_may_tx_timestamp(sk, false)) 4704 goto err; 4705 4706 /* Take a reference to prevent skb_orphan() from freeing the socket, 4707 * but only if the socket refcount is not zero. 4708 */ 4709 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4710 *skb_hwtstamps(skb) = *hwtstamps; 4711 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4712 sock_put(sk); 4713 return; 4714 } 4715 4716 err: 4717 kfree_skb(skb); 4718 } 4719 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4720 4721 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4722 struct skb_shared_hwtstamps *hwtstamps, 4723 struct sock *sk, int tstype) 4724 { 4725 struct sk_buff *skb; 4726 bool tsonly, opt_stats = false; 4727 4728 if (!sk) 4729 return; 4730 4731 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4732 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4733 return; 4734 4735 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4736 if (!skb_may_tx_timestamp(sk, tsonly)) 4737 return; 4738 4739 if (tsonly) { 4740 #ifdef CONFIG_INET 4741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4742 sk->sk_protocol == IPPROTO_TCP && 4743 sk->sk_type == SOCK_STREAM) { 4744 skb = tcp_get_timestamping_opt_stats(sk, orig_skb); 4745 opt_stats = true; 4746 } else 4747 #endif 4748 skb = alloc_skb(0, GFP_ATOMIC); 4749 } else { 4750 skb = skb_clone(orig_skb, GFP_ATOMIC); 4751 } 4752 if (!skb) 4753 return; 4754 4755 if (tsonly) { 4756 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4757 SKBTX_ANY_TSTAMP; 4758 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4759 } 4760 4761 if (hwtstamps) 4762 *skb_hwtstamps(skb) = *hwtstamps; 4763 else 4764 skb->tstamp = ktime_get_real(); 4765 4766 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4767 } 4768 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4769 4770 void skb_tstamp_tx(struct sk_buff *orig_skb, 4771 struct skb_shared_hwtstamps *hwtstamps) 4772 { 4773 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4774 SCM_TSTAMP_SND); 4775 } 4776 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4777 4778 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4779 { 4780 struct sock *sk = skb->sk; 4781 struct sock_exterr_skb *serr; 4782 int err = 1; 4783 4784 skb->wifi_acked_valid = 1; 4785 skb->wifi_acked = acked; 4786 4787 serr = SKB_EXT_ERR(skb); 4788 memset(serr, 0, sizeof(*serr)); 4789 serr->ee.ee_errno = ENOMSG; 4790 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4791 4792 /* Take a reference to prevent skb_orphan() from freeing the socket, 4793 * but only if the socket refcount is not zero. 4794 */ 4795 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4796 err = sock_queue_err_skb(sk, skb); 4797 sock_put(sk); 4798 } 4799 if (err) 4800 kfree_skb(skb); 4801 } 4802 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4803 4804 /** 4805 * skb_partial_csum_set - set up and verify partial csum values for packet 4806 * @skb: the skb to set 4807 * @start: the number of bytes after skb->data to start checksumming. 4808 * @off: the offset from start to place the checksum. 4809 * 4810 * For untrusted partially-checksummed packets, we need to make sure the values 4811 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4812 * 4813 * This function checks and sets those values and skb->ip_summed: if this 4814 * returns false you should drop the packet. 4815 */ 4816 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4817 { 4818 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4819 u32 csum_start = skb_headroom(skb) + (u32)start; 4820 4821 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4822 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4823 start, off, skb_headroom(skb), skb_headlen(skb)); 4824 return false; 4825 } 4826 skb->ip_summed = CHECKSUM_PARTIAL; 4827 skb->csum_start = csum_start; 4828 skb->csum_offset = off; 4829 skb_set_transport_header(skb, start); 4830 return true; 4831 } 4832 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4833 4834 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4835 unsigned int max) 4836 { 4837 if (skb_headlen(skb) >= len) 4838 return 0; 4839 4840 /* If we need to pullup then pullup to the max, so we 4841 * won't need to do it again. 4842 */ 4843 if (max > skb->len) 4844 max = skb->len; 4845 4846 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4847 return -ENOMEM; 4848 4849 if (skb_headlen(skb) < len) 4850 return -EPROTO; 4851 4852 return 0; 4853 } 4854 4855 #define MAX_TCP_HDR_LEN (15 * 4) 4856 4857 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4858 typeof(IPPROTO_IP) proto, 4859 unsigned int off) 4860 { 4861 int err; 4862 4863 switch (proto) { 4864 case IPPROTO_TCP: 4865 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4866 off + MAX_TCP_HDR_LEN); 4867 if (!err && !skb_partial_csum_set(skb, off, 4868 offsetof(struct tcphdr, 4869 check))) 4870 err = -EPROTO; 4871 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4872 4873 case IPPROTO_UDP: 4874 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4875 off + sizeof(struct udphdr)); 4876 if (!err && !skb_partial_csum_set(skb, off, 4877 offsetof(struct udphdr, 4878 check))) 4879 err = -EPROTO; 4880 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4881 } 4882 4883 return ERR_PTR(-EPROTO); 4884 } 4885 4886 /* This value should be large enough to cover a tagged ethernet header plus 4887 * maximally sized IP and TCP or UDP headers. 4888 */ 4889 #define MAX_IP_HDR_LEN 128 4890 4891 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4892 { 4893 unsigned int off; 4894 bool fragment; 4895 __sum16 *csum; 4896 int err; 4897 4898 fragment = false; 4899 4900 err = skb_maybe_pull_tail(skb, 4901 sizeof(struct iphdr), 4902 MAX_IP_HDR_LEN); 4903 if (err < 0) 4904 goto out; 4905 4906 if (ip_is_fragment(ip_hdr(skb))) 4907 fragment = true; 4908 4909 off = ip_hdrlen(skb); 4910 4911 err = -EPROTO; 4912 4913 if (fragment) 4914 goto out; 4915 4916 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4917 if (IS_ERR(csum)) 4918 return PTR_ERR(csum); 4919 4920 if (recalculate) 4921 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4922 ip_hdr(skb)->daddr, 4923 skb->len - off, 4924 ip_hdr(skb)->protocol, 0); 4925 err = 0; 4926 4927 out: 4928 return err; 4929 } 4930 4931 /* This value should be large enough to cover a tagged ethernet header plus 4932 * an IPv6 header, all options, and a maximal TCP or UDP header. 4933 */ 4934 #define MAX_IPV6_HDR_LEN 256 4935 4936 #define OPT_HDR(type, skb, off) \ 4937 (type *)(skb_network_header(skb) + (off)) 4938 4939 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4940 { 4941 int err; 4942 u8 nexthdr; 4943 unsigned int off; 4944 unsigned int len; 4945 bool fragment; 4946 bool done; 4947 __sum16 *csum; 4948 4949 fragment = false; 4950 done = false; 4951 4952 off = sizeof(struct ipv6hdr); 4953 4954 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4955 if (err < 0) 4956 goto out; 4957 4958 nexthdr = ipv6_hdr(skb)->nexthdr; 4959 4960 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4961 while (off <= len && !done) { 4962 switch (nexthdr) { 4963 case IPPROTO_DSTOPTS: 4964 case IPPROTO_HOPOPTS: 4965 case IPPROTO_ROUTING: { 4966 struct ipv6_opt_hdr *hp; 4967 4968 err = skb_maybe_pull_tail(skb, 4969 off + 4970 sizeof(struct ipv6_opt_hdr), 4971 MAX_IPV6_HDR_LEN); 4972 if (err < 0) 4973 goto out; 4974 4975 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4976 nexthdr = hp->nexthdr; 4977 off += ipv6_optlen(hp); 4978 break; 4979 } 4980 case IPPROTO_AH: { 4981 struct ip_auth_hdr *hp; 4982 4983 err = skb_maybe_pull_tail(skb, 4984 off + 4985 sizeof(struct ip_auth_hdr), 4986 MAX_IPV6_HDR_LEN); 4987 if (err < 0) 4988 goto out; 4989 4990 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4991 nexthdr = hp->nexthdr; 4992 off += ipv6_authlen(hp); 4993 break; 4994 } 4995 case IPPROTO_FRAGMENT: { 4996 struct frag_hdr *hp; 4997 4998 err = skb_maybe_pull_tail(skb, 4999 off + 5000 sizeof(struct frag_hdr), 5001 MAX_IPV6_HDR_LEN); 5002 if (err < 0) 5003 goto out; 5004 5005 hp = OPT_HDR(struct frag_hdr, skb, off); 5006 5007 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5008 fragment = true; 5009 5010 nexthdr = hp->nexthdr; 5011 off += sizeof(struct frag_hdr); 5012 break; 5013 } 5014 default: 5015 done = true; 5016 break; 5017 } 5018 } 5019 5020 err = -EPROTO; 5021 5022 if (!done || fragment) 5023 goto out; 5024 5025 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5026 if (IS_ERR(csum)) 5027 return PTR_ERR(csum); 5028 5029 if (recalculate) 5030 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5031 &ipv6_hdr(skb)->daddr, 5032 skb->len - off, nexthdr, 0); 5033 err = 0; 5034 5035 out: 5036 return err; 5037 } 5038 5039 /** 5040 * skb_checksum_setup - set up partial checksum offset 5041 * @skb: the skb to set up 5042 * @recalculate: if true the pseudo-header checksum will be recalculated 5043 */ 5044 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5045 { 5046 int err; 5047 5048 switch (skb->protocol) { 5049 case htons(ETH_P_IP): 5050 err = skb_checksum_setup_ipv4(skb, recalculate); 5051 break; 5052 5053 case htons(ETH_P_IPV6): 5054 err = skb_checksum_setup_ipv6(skb, recalculate); 5055 break; 5056 5057 default: 5058 err = -EPROTO; 5059 break; 5060 } 5061 5062 return err; 5063 } 5064 EXPORT_SYMBOL(skb_checksum_setup); 5065 5066 /** 5067 * skb_checksum_maybe_trim - maybe trims the given skb 5068 * @skb: the skb to check 5069 * @transport_len: the data length beyond the network header 5070 * 5071 * Checks whether the given skb has data beyond the given transport length. 5072 * If so, returns a cloned skb trimmed to this transport length. 5073 * Otherwise returns the provided skb. Returns NULL in error cases 5074 * (e.g. transport_len exceeds skb length or out-of-memory). 5075 * 5076 * Caller needs to set the skb transport header and free any returned skb if it 5077 * differs from the provided skb. 5078 */ 5079 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5080 unsigned int transport_len) 5081 { 5082 struct sk_buff *skb_chk; 5083 unsigned int len = skb_transport_offset(skb) + transport_len; 5084 int ret; 5085 5086 if (skb->len < len) 5087 return NULL; 5088 else if (skb->len == len) 5089 return skb; 5090 5091 skb_chk = skb_clone(skb, GFP_ATOMIC); 5092 if (!skb_chk) 5093 return NULL; 5094 5095 ret = pskb_trim_rcsum(skb_chk, len); 5096 if (ret) { 5097 kfree_skb(skb_chk); 5098 return NULL; 5099 } 5100 5101 return skb_chk; 5102 } 5103 5104 /** 5105 * skb_checksum_trimmed - validate checksum of an skb 5106 * @skb: the skb to check 5107 * @transport_len: the data length beyond the network header 5108 * @skb_chkf: checksum function to use 5109 * 5110 * Applies the given checksum function skb_chkf to the provided skb. 5111 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5112 * 5113 * If the skb has data beyond the given transport length, then a 5114 * trimmed & cloned skb is checked and returned. 5115 * 5116 * Caller needs to set the skb transport header and free any returned skb if it 5117 * differs from the provided skb. 5118 */ 5119 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5120 unsigned int transport_len, 5121 __sum16(*skb_chkf)(struct sk_buff *skb)) 5122 { 5123 struct sk_buff *skb_chk; 5124 unsigned int offset = skb_transport_offset(skb); 5125 __sum16 ret; 5126 5127 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5128 if (!skb_chk) 5129 goto err; 5130 5131 if (!pskb_may_pull(skb_chk, offset)) 5132 goto err; 5133 5134 skb_pull_rcsum(skb_chk, offset); 5135 ret = skb_chkf(skb_chk); 5136 skb_push_rcsum(skb_chk, offset); 5137 5138 if (ret) 5139 goto err; 5140 5141 return skb_chk; 5142 5143 err: 5144 if (skb_chk && skb_chk != skb) 5145 kfree_skb(skb_chk); 5146 5147 return NULL; 5148 5149 } 5150 EXPORT_SYMBOL(skb_checksum_trimmed); 5151 5152 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5153 { 5154 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5155 skb->dev->name); 5156 } 5157 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5158 5159 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5160 { 5161 if (head_stolen) { 5162 skb_release_head_state(skb); 5163 kmem_cache_free(skbuff_head_cache, skb); 5164 } else { 5165 __kfree_skb(skb); 5166 } 5167 } 5168 EXPORT_SYMBOL(kfree_skb_partial); 5169 5170 /** 5171 * skb_try_coalesce - try to merge skb to prior one 5172 * @to: prior buffer 5173 * @from: buffer to add 5174 * @fragstolen: pointer to boolean 5175 * @delta_truesize: how much more was allocated than was requested 5176 */ 5177 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5178 bool *fragstolen, int *delta_truesize) 5179 { 5180 struct skb_shared_info *to_shinfo, *from_shinfo; 5181 int i, delta, len = from->len; 5182 5183 *fragstolen = false; 5184 5185 if (skb_cloned(to)) 5186 return false; 5187 5188 if (len <= skb_tailroom(to)) { 5189 if (len) 5190 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5191 *delta_truesize = 0; 5192 return true; 5193 } 5194 5195 to_shinfo = skb_shinfo(to); 5196 from_shinfo = skb_shinfo(from); 5197 if (to_shinfo->frag_list || from_shinfo->frag_list) 5198 return false; 5199 if (skb_zcopy(to) || skb_zcopy(from)) 5200 return false; 5201 5202 if (skb_headlen(from) != 0) { 5203 struct page *page; 5204 unsigned int offset; 5205 5206 if (to_shinfo->nr_frags + 5207 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5208 return false; 5209 5210 if (skb_head_is_locked(from)) 5211 return false; 5212 5213 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5214 5215 page = virt_to_head_page(from->head); 5216 offset = from->data - (unsigned char *)page_address(page); 5217 5218 skb_fill_page_desc(to, to_shinfo->nr_frags, 5219 page, offset, skb_headlen(from)); 5220 *fragstolen = true; 5221 } else { 5222 if (to_shinfo->nr_frags + 5223 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5224 return false; 5225 5226 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5227 } 5228 5229 WARN_ON_ONCE(delta < len); 5230 5231 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5232 from_shinfo->frags, 5233 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5234 to_shinfo->nr_frags += from_shinfo->nr_frags; 5235 5236 if (!skb_cloned(from)) 5237 from_shinfo->nr_frags = 0; 5238 5239 /* if the skb is not cloned this does nothing 5240 * since we set nr_frags to 0. 5241 */ 5242 for (i = 0; i < from_shinfo->nr_frags; i++) 5243 __skb_frag_ref(&from_shinfo->frags[i]); 5244 5245 to->truesize += delta; 5246 to->len += len; 5247 to->data_len += len; 5248 5249 *delta_truesize = delta; 5250 return true; 5251 } 5252 EXPORT_SYMBOL(skb_try_coalesce); 5253 5254 /** 5255 * skb_scrub_packet - scrub an skb 5256 * 5257 * @skb: buffer to clean 5258 * @xnet: packet is crossing netns 5259 * 5260 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5261 * into/from a tunnel. Some information have to be cleared during these 5262 * operations. 5263 * skb_scrub_packet can also be used to clean a skb before injecting it in 5264 * another namespace (@xnet == true). We have to clear all information in the 5265 * skb that could impact namespace isolation. 5266 */ 5267 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5268 { 5269 skb->pkt_type = PACKET_HOST; 5270 skb->skb_iif = 0; 5271 skb->ignore_df = 0; 5272 skb_dst_drop(skb); 5273 skb_ext_reset(skb); 5274 nf_reset_ct(skb); 5275 nf_reset_trace(skb); 5276 5277 #ifdef CONFIG_NET_SWITCHDEV 5278 skb->offload_fwd_mark = 0; 5279 skb->offload_l3_fwd_mark = 0; 5280 #endif 5281 5282 if (!xnet) 5283 return; 5284 5285 ipvs_reset(skb); 5286 skb->mark = 0; 5287 skb->tstamp = 0; 5288 } 5289 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5290 5291 /** 5292 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5293 * 5294 * @skb: GSO skb 5295 * 5296 * skb_gso_transport_seglen is used to determine the real size of the 5297 * individual segments, including Layer4 headers (TCP/UDP). 5298 * 5299 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5300 */ 5301 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5302 { 5303 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5304 unsigned int thlen = 0; 5305 5306 if (skb->encapsulation) { 5307 thlen = skb_inner_transport_header(skb) - 5308 skb_transport_header(skb); 5309 5310 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5311 thlen += inner_tcp_hdrlen(skb); 5312 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5313 thlen = tcp_hdrlen(skb); 5314 } else if (unlikely(skb_is_gso_sctp(skb))) { 5315 thlen = sizeof(struct sctphdr); 5316 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5317 thlen = sizeof(struct udphdr); 5318 } 5319 /* UFO sets gso_size to the size of the fragmentation 5320 * payload, i.e. the size of the L4 (UDP) header is already 5321 * accounted for. 5322 */ 5323 return thlen + shinfo->gso_size; 5324 } 5325 5326 /** 5327 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5328 * 5329 * @skb: GSO skb 5330 * 5331 * skb_gso_network_seglen is used to determine the real size of the 5332 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5333 * 5334 * The MAC/L2 header is not accounted for. 5335 */ 5336 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5337 { 5338 unsigned int hdr_len = skb_transport_header(skb) - 5339 skb_network_header(skb); 5340 5341 return hdr_len + skb_gso_transport_seglen(skb); 5342 } 5343 5344 /** 5345 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5346 * 5347 * @skb: GSO skb 5348 * 5349 * skb_gso_mac_seglen is used to determine the real size of the 5350 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5351 * headers (TCP/UDP). 5352 */ 5353 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5354 { 5355 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5356 5357 return hdr_len + skb_gso_transport_seglen(skb); 5358 } 5359 5360 /** 5361 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5362 * 5363 * There are a couple of instances where we have a GSO skb, and we 5364 * want to determine what size it would be after it is segmented. 5365 * 5366 * We might want to check: 5367 * - L3+L4+payload size (e.g. IP forwarding) 5368 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5369 * 5370 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5371 * 5372 * @skb: GSO skb 5373 * 5374 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5375 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5376 * 5377 * @max_len: The maximum permissible length. 5378 * 5379 * Returns true if the segmented length <= max length. 5380 */ 5381 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5382 unsigned int seg_len, 5383 unsigned int max_len) { 5384 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5385 const struct sk_buff *iter; 5386 5387 if (shinfo->gso_size != GSO_BY_FRAGS) 5388 return seg_len <= max_len; 5389 5390 /* Undo this so we can re-use header sizes */ 5391 seg_len -= GSO_BY_FRAGS; 5392 5393 skb_walk_frags(skb, iter) { 5394 if (seg_len + skb_headlen(iter) > max_len) 5395 return false; 5396 } 5397 5398 return true; 5399 } 5400 5401 /** 5402 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5403 * 5404 * @skb: GSO skb 5405 * @mtu: MTU to validate against 5406 * 5407 * skb_gso_validate_network_len validates if a given skb will fit a 5408 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5409 * payload. 5410 */ 5411 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5412 { 5413 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5414 } 5415 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5416 5417 /** 5418 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5419 * 5420 * @skb: GSO skb 5421 * @len: length to validate against 5422 * 5423 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5424 * length once split, including L2, L3 and L4 headers and the payload. 5425 */ 5426 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5427 { 5428 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5429 } 5430 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5431 5432 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5433 { 5434 int mac_len, meta_len; 5435 void *meta; 5436 5437 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5438 kfree_skb(skb); 5439 return NULL; 5440 } 5441 5442 mac_len = skb->data - skb_mac_header(skb); 5443 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5444 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5445 mac_len - VLAN_HLEN - ETH_TLEN); 5446 } 5447 5448 meta_len = skb_metadata_len(skb); 5449 if (meta_len) { 5450 meta = skb_metadata_end(skb) - meta_len; 5451 memmove(meta + VLAN_HLEN, meta, meta_len); 5452 } 5453 5454 skb->mac_header += VLAN_HLEN; 5455 return skb; 5456 } 5457 5458 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5459 { 5460 struct vlan_hdr *vhdr; 5461 u16 vlan_tci; 5462 5463 if (unlikely(skb_vlan_tag_present(skb))) { 5464 /* vlan_tci is already set-up so leave this for another time */ 5465 return skb; 5466 } 5467 5468 skb = skb_share_check(skb, GFP_ATOMIC); 5469 if (unlikely(!skb)) 5470 goto err_free; 5471 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5472 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5473 goto err_free; 5474 5475 vhdr = (struct vlan_hdr *)skb->data; 5476 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5477 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5478 5479 skb_pull_rcsum(skb, VLAN_HLEN); 5480 vlan_set_encap_proto(skb, vhdr); 5481 5482 skb = skb_reorder_vlan_header(skb); 5483 if (unlikely(!skb)) 5484 goto err_free; 5485 5486 skb_reset_network_header(skb); 5487 if (!skb_transport_header_was_set(skb)) 5488 skb_reset_transport_header(skb); 5489 skb_reset_mac_len(skb); 5490 5491 return skb; 5492 5493 err_free: 5494 kfree_skb(skb); 5495 return NULL; 5496 } 5497 EXPORT_SYMBOL(skb_vlan_untag); 5498 5499 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5500 { 5501 if (!pskb_may_pull(skb, write_len)) 5502 return -ENOMEM; 5503 5504 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5505 return 0; 5506 5507 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5508 } 5509 EXPORT_SYMBOL(skb_ensure_writable); 5510 5511 /* remove VLAN header from packet and update csum accordingly. 5512 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5513 */ 5514 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5515 { 5516 struct vlan_hdr *vhdr; 5517 int offset = skb->data - skb_mac_header(skb); 5518 int err; 5519 5520 if (WARN_ONCE(offset, 5521 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5522 offset)) { 5523 return -EINVAL; 5524 } 5525 5526 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5527 if (unlikely(err)) 5528 return err; 5529 5530 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5531 5532 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5533 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5534 5535 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5536 __skb_pull(skb, VLAN_HLEN); 5537 5538 vlan_set_encap_proto(skb, vhdr); 5539 skb->mac_header += VLAN_HLEN; 5540 5541 if (skb_network_offset(skb) < ETH_HLEN) 5542 skb_set_network_header(skb, ETH_HLEN); 5543 5544 skb_reset_mac_len(skb); 5545 5546 return err; 5547 } 5548 EXPORT_SYMBOL(__skb_vlan_pop); 5549 5550 /* Pop a vlan tag either from hwaccel or from payload. 5551 * Expects skb->data at mac header. 5552 */ 5553 int skb_vlan_pop(struct sk_buff *skb) 5554 { 5555 u16 vlan_tci; 5556 __be16 vlan_proto; 5557 int err; 5558 5559 if (likely(skb_vlan_tag_present(skb))) { 5560 __vlan_hwaccel_clear_tag(skb); 5561 } else { 5562 if (unlikely(!eth_type_vlan(skb->protocol))) 5563 return 0; 5564 5565 err = __skb_vlan_pop(skb, &vlan_tci); 5566 if (err) 5567 return err; 5568 } 5569 /* move next vlan tag to hw accel tag */ 5570 if (likely(!eth_type_vlan(skb->protocol))) 5571 return 0; 5572 5573 vlan_proto = skb->protocol; 5574 err = __skb_vlan_pop(skb, &vlan_tci); 5575 if (unlikely(err)) 5576 return err; 5577 5578 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5579 return 0; 5580 } 5581 EXPORT_SYMBOL(skb_vlan_pop); 5582 5583 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5584 * Expects skb->data at mac header. 5585 */ 5586 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5587 { 5588 if (skb_vlan_tag_present(skb)) { 5589 int offset = skb->data - skb_mac_header(skb); 5590 int err; 5591 5592 if (WARN_ONCE(offset, 5593 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5594 offset)) { 5595 return -EINVAL; 5596 } 5597 5598 err = __vlan_insert_tag(skb, skb->vlan_proto, 5599 skb_vlan_tag_get(skb)); 5600 if (err) 5601 return err; 5602 5603 skb->protocol = skb->vlan_proto; 5604 skb->mac_len += VLAN_HLEN; 5605 5606 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5607 } 5608 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5609 return 0; 5610 } 5611 EXPORT_SYMBOL(skb_vlan_push); 5612 5613 /** 5614 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5615 * 5616 * @skb: Socket buffer to modify 5617 * 5618 * Drop the Ethernet header of @skb. 5619 * 5620 * Expects that skb->data points to the mac header and that no VLAN tags are 5621 * present. 5622 * 5623 * Returns 0 on success, -errno otherwise. 5624 */ 5625 int skb_eth_pop(struct sk_buff *skb) 5626 { 5627 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5628 skb_network_offset(skb) < ETH_HLEN) 5629 return -EPROTO; 5630 5631 skb_pull_rcsum(skb, ETH_HLEN); 5632 skb_reset_mac_header(skb); 5633 skb_reset_mac_len(skb); 5634 5635 return 0; 5636 } 5637 EXPORT_SYMBOL(skb_eth_pop); 5638 5639 /** 5640 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5641 * 5642 * @skb: Socket buffer to modify 5643 * @dst: Destination MAC address of the new header 5644 * @src: Source MAC address of the new header 5645 * 5646 * Prepend @skb with a new Ethernet header. 5647 * 5648 * Expects that skb->data points to the mac header, which must be empty. 5649 * 5650 * Returns 0 on success, -errno otherwise. 5651 */ 5652 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5653 const unsigned char *src) 5654 { 5655 struct ethhdr *eth; 5656 int err; 5657 5658 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5659 return -EPROTO; 5660 5661 err = skb_cow_head(skb, sizeof(*eth)); 5662 if (err < 0) 5663 return err; 5664 5665 skb_push(skb, sizeof(*eth)); 5666 skb_reset_mac_header(skb); 5667 skb_reset_mac_len(skb); 5668 5669 eth = eth_hdr(skb); 5670 ether_addr_copy(eth->h_dest, dst); 5671 ether_addr_copy(eth->h_source, src); 5672 eth->h_proto = skb->protocol; 5673 5674 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5675 5676 return 0; 5677 } 5678 EXPORT_SYMBOL(skb_eth_push); 5679 5680 /* Update the ethertype of hdr and the skb csum value if required. */ 5681 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5682 __be16 ethertype) 5683 { 5684 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5685 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5686 5687 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5688 } 5689 5690 hdr->h_proto = ethertype; 5691 } 5692 5693 /** 5694 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5695 * the packet 5696 * 5697 * @skb: buffer 5698 * @mpls_lse: MPLS label stack entry to push 5699 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5700 * @mac_len: length of the MAC header 5701 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5702 * ethernet 5703 * 5704 * Expects skb->data at mac header. 5705 * 5706 * Returns 0 on success, -errno otherwise. 5707 */ 5708 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5709 int mac_len, bool ethernet) 5710 { 5711 struct mpls_shim_hdr *lse; 5712 int err; 5713 5714 if (unlikely(!eth_p_mpls(mpls_proto))) 5715 return -EINVAL; 5716 5717 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5718 if (skb->encapsulation) 5719 return -EINVAL; 5720 5721 err = skb_cow_head(skb, MPLS_HLEN); 5722 if (unlikely(err)) 5723 return err; 5724 5725 if (!skb->inner_protocol) { 5726 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5727 skb_set_inner_protocol(skb, skb->protocol); 5728 } 5729 5730 skb_push(skb, MPLS_HLEN); 5731 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5732 mac_len); 5733 skb_reset_mac_header(skb); 5734 skb_set_network_header(skb, mac_len); 5735 skb_reset_mac_len(skb); 5736 5737 lse = mpls_hdr(skb); 5738 lse->label_stack_entry = mpls_lse; 5739 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5740 5741 if (ethernet && mac_len >= ETH_HLEN) 5742 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5743 skb->protocol = mpls_proto; 5744 5745 return 0; 5746 } 5747 EXPORT_SYMBOL_GPL(skb_mpls_push); 5748 5749 /** 5750 * skb_mpls_pop() - pop the outermost MPLS header 5751 * 5752 * @skb: buffer 5753 * @next_proto: ethertype of header after popped MPLS header 5754 * @mac_len: length of the MAC header 5755 * @ethernet: flag to indicate if the packet is ethernet 5756 * 5757 * Expects skb->data at mac header. 5758 * 5759 * Returns 0 on success, -errno otherwise. 5760 */ 5761 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5762 bool ethernet) 5763 { 5764 int err; 5765 5766 if (unlikely(!eth_p_mpls(skb->protocol))) 5767 return 0; 5768 5769 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5770 if (unlikely(err)) 5771 return err; 5772 5773 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5774 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5775 mac_len); 5776 5777 __skb_pull(skb, MPLS_HLEN); 5778 skb_reset_mac_header(skb); 5779 skb_set_network_header(skb, mac_len); 5780 5781 if (ethernet && mac_len >= ETH_HLEN) { 5782 struct ethhdr *hdr; 5783 5784 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5785 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5786 skb_mod_eth_type(skb, hdr, next_proto); 5787 } 5788 skb->protocol = next_proto; 5789 5790 return 0; 5791 } 5792 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5793 5794 /** 5795 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5796 * 5797 * @skb: buffer 5798 * @mpls_lse: new MPLS label stack entry to update to 5799 * 5800 * Expects skb->data at mac header. 5801 * 5802 * Returns 0 on success, -errno otherwise. 5803 */ 5804 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5805 { 5806 int err; 5807 5808 if (unlikely(!eth_p_mpls(skb->protocol))) 5809 return -EINVAL; 5810 5811 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5812 if (unlikely(err)) 5813 return err; 5814 5815 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5816 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5817 5818 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5819 } 5820 5821 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5822 5823 return 0; 5824 } 5825 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5826 5827 /** 5828 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5829 * 5830 * @skb: buffer 5831 * 5832 * Expects skb->data at mac header. 5833 * 5834 * Returns 0 on success, -errno otherwise. 5835 */ 5836 int skb_mpls_dec_ttl(struct sk_buff *skb) 5837 { 5838 u32 lse; 5839 u8 ttl; 5840 5841 if (unlikely(!eth_p_mpls(skb->protocol))) 5842 return -EINVAL; 5843 5844 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5845 return -ENOMEM; 5846 5847 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5848 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5849 if (!--ttl) 5850 return -EINVAL; 5851 5852 lse &= ~MPLS_LS_TTL_MASK; 5853 lse |= ttl << MPLS_LS_TTL_SHIFT; 5854 5855 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5856 } 5857 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5858 5859 /** 5860 * alloc_skb_with_frags - allocate skb with page frags 5861 * 5862 * @header_len: size of linear part 5863 * @data_len: needed length in frags 5864 * @max_page_order: max page order desired. 5865 * @errcode: pointer to error code if any 5866 * @gfp_mask: allocation mask 5867 * 5868 * This can be used to allocate a paged skb, given a maximal order for frags. 5869 */ 5870 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5871 unsigned long data_len, 5872 int max_page_order, 5873 int *errcode, 5874 gfp_t gfp_mask) 5875 { 5876 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5877 unsigned long chunk; 5878 struct sk_buff *skb; 5879 struct page *page; 5880 int i; 5881 5882 *errcode = -EMSGSIZE; 5883 /* Note this test could be relaxed, if we succeed to allocate 5884 * high order pages... 5885 */ 5886 if (npages > MAX_SKB_FRAGS) 5887 return NULL; 5888 5889 *errcode = -ENOBUFS; 5890 skb = alloc_skb(header_len, gfp_mask); 5891 if (!skb) 5892 return NULL; 5893 5894 skb->truesize += npages << PAGE_SHIFT; 5895 5896 for (i = 0; npages > 0; i++) { 5897 int order = max_page_order; 5898 5899 while (order) { 5900 if (npages >= 1 << order) { 5901 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5902 __GFP_COMP | 5903 __GFP_NOWARN, 5904 order); 5905 if (page) 5906 goto fill_page; 5907 /* Do not retry other high order allocations */ 5908 order = 1; 5909 max_page_order = 0; 5910 } 5911 order--; 5912 } 5913 page = alloc_page(gfp_mask); 5914 if (!page) 5915 goto failure; 5916 fill_page: 5917 chunk = min_t(unsigned long, data_len, 5918 PAGE_SIZE << order); 5919 skb_fill_page_desc(skb, i, page, 0, chunk); 5920 data_len -= chunk; 5921 npages -= 1 << order; 5922 } 5923 return skb; 5924 5925 failure: 5926 kfree_skb(skb); 5927 return NULL; 5928 } 5929 EXPORT_SYMBOL(alloc_skb_with_frags); 5930 5931 /* carve out the first off bytes from skb when off < headlen */ 5932 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5933 const int headlen, gfp_t gfp_mask) 5934 { 5935 int i; 5936 int size = skb_end_offset(skb); 5937 int new_hlen = headlen - off; 5938 u8 *data; 5939 5940 size = SKB_DATA_ALIGN(size); 5941 5942 if (skb_pfmemalloc(skb)) 5943 gfp_mask |= __GFP_MEMALLOC; 5944 data = kmalloc_reserve(size + 5945 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5946 gfp_mask, NUMA_NO_NODE, NULL); 5947 if (!data) 5948 return -ENOMEM; 5949 5950 size = SKB_WITH_OVERHEAD(ksize(data)); 5951 5952 /* Copy real data, and all frags */ 5953 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5954 skb->len -= off; 5955 5956 memcpy((struct skb_shared_info *)(data + size), 5957 skb_shinfo(skb), 5958 offsetof(struct skb_shared_info, 5959 frags[skb_shinfo(skb)->nr_frags])); 5960 if (skb_cloned(skb)) { 5961 /* drop the old head gracefully */ 5962 if (skb_orphan_frags(skb, gfp_mask)) { 5963 kfree(data); 5964 return -ENOMEM; 5965 } 5966 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5967 skb_frag_ref(skb, i); 5968 if (skb_has_frag_list(skb)) 5969 skb_clone_fraglist(skb); 5970 skb_release_data(skb); 5971 } else { 5972 /* we can reuse existing recount- all we did was 5973 * relocate values 5974 */ 5975 skb_free_head(skb); 5976 } 5977 5978 skb->head = data; 5979 skb->data = data; 5980 skb->head_frag = 0; 5981 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5982 skb->end = size; 5983 #else 5984 skb->end = skb->head + size; 5985 #endif 5986 skb_set_tail_pointer(skb, skb_headlen(skb)); 5987 skb_headers_offset_update(skb, 0); 5988 skb->cloned = 0; 5989 skb->hdr_len = 0; 5990 skb->nohdr = 0; 5991 atomic_set(&skb_shinfo(skb)->dataref, 1); 5992 5993 return 0; 5994 } 5995 5996 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5997 5998 /* carve out the first eat bytes from skb's frag_list. May recurse into 5999 * pskb_carve() 6000 */ 6001 static int pskb_carve_frag_list(struct sk_buff *skb, 6002 struct skb_shared_info *shinfo, int eat, 6003 gfp_t gfp_mask) 6004 { 6005 struct sk_buff *list = shinfo->frag_list; 6006 struct sk_buff *clone = NULL; 6007 struct sk_buff *insp = NULL; 6008 6009 do { 6010 if (!list) { 6011 pr_err("Not enough bytes to eat. Want %d\n", eat); 6012 return -EFAULT; 6013 } 6014 if (list->len <= eat) { 6015 /* Eaten as whole. */ 6016 eat -= list->len; 6017 list = list->next; 6018 insp = list; 6019 } else { 6020 /* Eaten partially. */ 6021 if (skb_shared(list)) { 6022 clone = skb_clone(list, gfp_mask); 6023 if (!clone) 6024 return -ENOMEM; 6025 insp = list->next; 6026 list = clone; 6027 } else { 6028 /* This may be pulled without problems. */ 6029 insp = list; 6030 } 6031 if (pskb_carve(list, eat, gfp_mask) < 0) { 6032 kfree_skb(clone); 6033 return -ENOMEM; 6034 } 6035 break; 6036 } 6037 } while (eat); 6038 6039 /* Free pulled out fragments. */ 6040 while ((list = shinfo->frag_list) != insp) { 6041 shinfo->frag_list = list->next; 6042 kfree_skb(list); 6043 } 6044 /* And insert new clone at head. */ 6045 if (clone) { 6046 clone->next = list; 6047 shinfo->frag_list = clone; 6048 } 6049 return 0; 6050 } 6051 6052 /* carve off first len bytes from skb. Split line (off) is in the 6053 * non-linear part of skb 6054 */ 6055 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6056 int pos, gfp_t gfp_mask) 6057 { 6058 int i, k = 0; 6059 int size = skb_end_offset(skb); 6060 u8 *data; 6061 const int nfrags = skb_shinfo(skb)->nr_frags; 6062 struct skb_shared_info *shinfo; 6063 6064 size = SKB_DATA_ALIGN(size); 6065 6066 if (skb_pfmemalloc(skb)) 6067 gfp_mask |= __GFP_MEMALLOC; 6068 data = kmalloc_reserve(size + 6069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6070 gfp_mask, NUMA_NO_NODE, NULL); 6071 if (!data) 6072 return -ENOMEM; 6073 6074 size = SKB_WITH_OVERHEAD(ksize(data)); 6075 6076 memcpy((struct skb_shared_info *)(data + size), 6077 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6078 if (skb_orphan_frags(skb, gfp_mask)) { 6079 kfree(data); 6080 return -ENOMEM; 6081 } 6082 shinfo = (struct skb_shared_info *)(data + size); 6083 for (i = 0; i < nfrags; i++) { 6084 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6085 6086 if (pos + fsize > off) { 6087 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6088 6089 if (pos < off) { 6090 /* Split frag. 6091 * We have two variants in this case: 6092 * 1. Move all the frag to the second 6093 * part, if it is possible. F.e. 6094 * this approach is mandatory for TUX, 6095 * where splitting is expensive. 6096 * 2. Split is accurately. We make this. 6097 */ 6098 skb_frag_off_add(&shinfo->frags[0], off - pos); 6099 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6100 } 6101 skb_frag_ref(skb, i); 6102 k++; 6103 } 6104 pos += fsize; 6105 } 6106 shinfo->nr_frags = k; 6107 if (skb_has_frag_list(skb)) 6108 skb_clone_fraglist(skb); 6109 6110 /* split line is in frag list */ 6111 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6112 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6113 if (skb_has_frag_list(skb)) 6114 kfree_skb_list(skb_shinfo(skb)->frag_list); 6115 kfree(data); 6116 return -ENOMEM; 6117 } 6118 skb_release_data(skb); 6119 6120 skb->head = data; 6121 skb->head_frag = 0; 6122 skb->data = data; 6123 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6124 skb->end = size; 6125 #else 6126 skb->end = skb->head + size; 6127 #endif 6128 skb_reset_tail_pointer(skb); 6129 skb_headers_offset_update(skb, 0); 6130 skb->cloned = 0; 6131 skb->hdr_len = 0; 6132 skb->nohdr = 0; 6133 skb->len -= off; 6134 skb->data_len = skb->len; 6135 atomic_set(&skb_shinfo(skb)->dataref, 1); 6136 return 0; 6137 } 6138 6139 /* remove len bytes from the beginning of the skb */ 6140 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6141 { 6142 int headlen = skb_headlen(skb); 6143 6144 if (len < headlen) 6145 return pskb_carve_inside_header(skb, len, headlen, gfp); 6146 else 6147 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6148 } 6149 6150 /* Extract to_copy bytes starting at off from skb, and return this in 6151 * a new skb 6152 */ 6153 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6154 int to_copy, gfp_t gfp) 6155 { 6156 struct sk_buff *clone = skb_clone(skb, gfp); 6157 6158 if (!clone) 6159 return NULL; 6160 6161 if (pskb_carve(clone, off, gfp) < 0 || 6162 pskb_trim(clone, to_copy)) { 6163 kfree_skb(clone); 6164 return NULL; 6165 } 6166 return clone; 6167 } 6168 EXPORT_SYMBOL(pskb_extract); 6169 6170 /** 6171 * skb_condense - try to get rid of fragments/frag_list if possible 6172 * @skb: buffer 6173 * 6174 * Can be used to save memory before skb is added to a busy queue. 6175 * If packet has bytes in frags and enough tail room in skb->head, 6176 * pull all of them, so that we can free the frags right now and adjust 6177 * truesize. 6178 * Notes: 6179 * We do not reallocate skb->head thus can not fail. 6180 * Caller must re-evaluate skb->truesize if needed. 6181 */ 6182 void skb_condense(struct sk_buff *skb) 6183 { 6184 if (skb->data_len) { 6185 if (skb->data_len > skb->end - skb->tail || 6186 skb_cloned(skb)) 6187 return; 6188 6189 /* Nice, we can free page frag(s) right now */ 6190 __pskb_pull_tail(skb, skb->data_len); 6191 } 6192 /* At this point, skb->truesize might be over estimated, 6193 * because skb had a fragment, and fragments do not tell 6194 * their truesize. 6195 * When we pulled its content into skb->head, fragment 6196 * was freed, but __pskb_pull_tail() could not possibly 6197 * adjust skb->truesize, not knowing the frag truesize. 6198 */ 6199 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6200 } 6201 6202 #ifdef CONFIG_SKB_EXTENSIONS 6203 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6204 { 6205 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6206 } 6207 6208 /** 6209 * __skb_ext_alloc - allocate a new skb extensions storage 6210 * 6211 * @flags: See kmalloc(). 6212 * 6213 * Returns the newly allocated pointer. The pointer can later attached to a 6214 * skb via __skb_ext_set(). 6215 * Note: caller must handle the skb_ext as an opaque data. 6216 */ 6217 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6218 { 6219 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6220 6221 if (new) { 6222 memset(new->offset, 0, sizeof(new->offset)); 6223 refcount_set(&new->refcnt, 1); 6224 } 6225 6226 return new; 6227 } 6228 6229 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6230 unsigned int old_active) 6231 { 6232 struct skb_ext *new; 6233 6234 if (refcount_read(&old->refcnt) == 1) 6235 return old; 6236 6237 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6238 if (!new) 6239 return NULL; 6240 6241 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6242 refcount_set(&new->refcnt, 1); 6243 6244 #ifdef CONFIG_XFRM 6245 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6246 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6247 unsigned int i; 6248 6249 for (i = 0; i < sp->len; i++) 6250 xfrm_state_hold(sp->xvec[i]); 6251 } 6252 #endif 6253 __skb_ext_put(old); 6254 return new; 6255 } 6256 6257 /** 6258 * __skb_ext_set - attach the specified extension storage to this skb 6259 * @skb: buffer 6260 * @id: extension id 6261 * @ext: extension storage previously allocated via __skb_ext_alloc() 6262 * 6263 * Existing extensions, if any, are cleared. 6264 * 6265 * Returns the pointer to the extension. 6266 */ 6267 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6268 struct skb_ext *ext) 6269 { 6270 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6271 6272 skb_ext_put(skb); 6273 newlen = newoff + skb_ext_type_len[id]; 6274 ext->chunks = newlen; 6275 ext->offset[id] = newoff; 6276 skb->extensions = ext; 6277 skb->active_extensions = 1 << id; 6278 return skb_ext_get_ptr(ext, id); 6279 } 6280 6281 /** 6282 * skb_ext_add - allocate space for given extension, COW if needed 6283 * @skb: buffer 6284 * @id: extension to allocate space for 6285 * 6286 * Allocates enough space for the given extension. 6287 * If the extension is already present, a pointer to that extension 6288 * is returned. 6289 * 6290 * If the skb was cloned, COW applies and the returned memory can be 6291 * modified without changing the extension space of clones buffers. 6292 * 6293 * Returns pointer to the extension or NULL on allocation failure. 6294 */ 6295 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6296 { 6297 struct skb_ext *new, *old = NULL; 6298 unsigned int newlen, newoff; 6299 6300 if (skb->active_extensions) { 6301 old = skb->extensions; 6302 6303 new = skb_ext_maybe_cow(old, skb->active_extensions); 6304 if (!new) 6305 return NULL; 6306 6307 if (__skb_ext_exist(new, id)) 6308 goto set_active; 6309 6310 newoff = new->chunks; 6311 } else { 6312 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6313 6314 new = __skb_ext_alloc(GFP_ATOMIC); 6315 if (!new) 6316 return NULL; 6317 } 6318 6319 newlen = newoff + skb_ext_type_len[id]; 6320 new->chunks = newlen; 6321 new->offset[id] = newoff; 6322 set_active: 6323 skb->extensions = new; 6324 skb->active_extensions |= 1 << id; 6325 return skb_ext_get_ptr(new, id); 6326 } 6327 EXPORT_SYMBOL(skb_ext_add); 6328 6329 #ifdef CONFIG_XFRM 6330 static void skb_ext_put_sp(struct sec_path *sp) 6331 { 6332 unsigned int i; 6333 6334 for (i = 0; i < sp->len; i++) 6335 xfrm_state_put(sp->xvec[i]); 6336 } 6337 #endif 6338 6339 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6340 { 6341 struct skb_ext *ext = skb->extensions; 6342 6343 skb->active_extensions &= ~(1 << id); 6344 if (skb->active_extensions == 0) { 6345 skb->extensions = NULL; 6346 __skb_ext_put(ext); 6347 #ifdef CONFIG_XFRM 6348 } else if (id == SKB_EXT_SEC_PATH && 6349 refcount_read(&ext->refcnt) == 1) { 6350 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6351 6352 skb_ext_put_sp(sp); 6353 sp->len = 0; 6354 #endif 6355 } 6356 } 6357 EXPORT_SYMBOL(__skb_ext_del); 6358 6359 void __skb_ext_put(struct skb_ext *ext) 6360 { 6361 /* If this is last clone, nothing can increment 6362 * it after check passes. Avoids one atomic op. 6363 */ 6364 if (refcount_read(&ext->refcnt) == 1) 6365 goto free_now; 6366 6367 if (!refcount_dec_and_test(&ext->refcnt)) 6368 return; 6369 free_now: 6370 #ifdef CONFIG_XFRM 6371 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6372 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6373 #endif 6374 6375 kmem_cache_free(skbuff_ext_cache, ext); 6376 } 6377 EXPORT_SYMBOL(__skb_ext_put); 6378 #endif /* CONFIG_SKB_EXTENSIONS */ 6379