xref: /linux/net/core/skbuff.c (revision 9e6d33937b42ca4867af3b341e5d09abca4a2746)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gso.h>
73 #include <net/hotdata.h>
74 #include <net/ip6_checksum.h>
75 #include <net/xfrm.h>
76 #include <net/mpls.h>
77 #include <net/mptcp.h>
78 #include <net/mctp.h>
79 #include <net/page_pool/helpers.h>
80 #include <net/dropreason.h>
81 
82 #include <linux/uaccess.h>
83 #include <trace/events/skb.h>
84 #include <linux/highmem.h>
85 #include <linux/capability.h>
86 #include <linux/user_namespace.h>
87 #include <linux/indirect_call_wrapper.h>
88 #include <linux/textsearch.h>
89 
90 #include "dev.h"
91 #include "sock_destructor.h"
92 
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
98 
99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
100  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
101  * size, and we can differentiate heads from skb_small_head_cache
102  * vs system slabs by looking at their size (skb_end_offset()).
103  */
104 #define SKB_SMALL_HEAD_CACHE_SIZE					\
105 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
106 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
107 		SKB_SMALL_HEAD_SIZE)
108 
109 #define SKB_SMALL_HEAD_HEADROOM						\
110 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
111 
112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
113  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
114  * netmem is a page.
115  */
116 static_assert(offsetof(struct bio_vec, bv_page) ==
117 	      offsetof(skb_frag_t, netmem));
118 static_assert(sizeof_field(struct bio_vec, bv_page) ==
119 	      sizeof_field(skb_frag_t, netmem));
120 
121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
122 static_assert(sizeof_field(struct bio_vec, bv_len) ==
123 	      sizeof_field(skb_frag_t, len));
124 
125 static_assert(offsetof(struct bio_vec, bv_offset) ==
126 	      offsetof(skb_frag_t, offset));
127 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
128 	      sizeof_field(skb_frag_t, offset));
129 
130 #undef FN
131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
132 static const char * const drop_reasons[] = {
133 	[SKB_CONSUMED] = "CONSUMED",
134 	DEFINE_DROP_REASON(FN, FN)
135 };
136 
137 static const struct drop_reason_list drop_reasons_core = {
138 	.reasons = drop_reasons,
139 	.n_reasons = ARRAY_SIZE(drop_reasons),
140 };
141 
142 const struct drop_reason_list __rcu *
143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
144 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
145 };
146 EXPORT_SYMBOL(drop_reasons_by_subsys);
147 
148 /**
149  * drop_reasons_register_subsys - register another drop reason subsystem
150  * @subsys: the subsystem to register, must not be the core
151  * @list: the list of drop reasons within the subsystem, must point to
152  *	a statically initialized list
153  */
154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
155 				  const struct drop_reason_list *list)
156 {
157 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
158 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
159 		 "invalid subsystem %d\n", subsys))
160 		return;
161 
162 	/* must point to statically allocated memory, so INIT is OK */
163 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
164 }
165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
166 
167 /**
168  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
169  * @subsys: the subsystem to remove, must not be the core
170  *
171  * Note: This will synchronize_rcu() to ensure no users when it returns.
172  */
173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
174 {
175 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
176 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
177 		 "invalid subsystem %d\n", subsys))
178 		return;
179 
180 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
181 
182 	synchronize_rcu();
183 }
184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
185 
186 /**
187  *	skb_panic - private function for out-of-line support
188  *	@skb:	buffer
189  *	@sz:	size
190  *	@addr:	address
191  *	@msg:	skb_over_panic or skb_under_panic
192  *
193  *	Out-of-line support for skb_put() and skb_push().
194  *	Called via the wrapper skb_over_panic() or skb_under_panic().
195  *	Keep out of line to prevent kernel bloat.
196  *	__builtin_return_address is not used because it is not always reliable.
197  */
198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
199 		      const char msg[])
200 {
201 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
202 		 msg, addr, skb->len, sz, skb->head, skb->data,
203 		 (unsigned long)skb->tail, (unsigned long)skb->end,
204 		 skb->dev ? skb->dev->name : "<NULL>");
205 	BUG();
206 }
207 
208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
209 {
210 	skb_panic(skb, sz, addr, __func__);
211 }
212 
213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
214 {
215 	skb_panic(skb, sz, addr, __func__);
216 }
217 
218 #define NAPI_SKB_CACHE_SIZE	64
219 #define NAPI_SKB_CACHE_BULK	16
220 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
221 
222 #if PAGE_SIZE == SZ_4K
223 
224 #define NAPI_HAS_SMALL_PAGE_FRAG	1
225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
226 
227 /* specialized page frag allocator using a single order 0 page
228  * and slicing it into 1K sized fragment. Constrained to systems
229  * with a very limited amount of 1K fragments fitting a single
230  * page - to avoid excessive truesize underestimation
231  */
232 
233 struct page_frag_1k {
234 	void *va;
235 	u16 offset;
236 	bool pfmemalloc;
237 };
238 
239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
240 {
241 	struct page *page;
242 	int offset;
243 
244 	offset = nc->offset - SZ_1K;
245 	if (likely(offset >= 0))
246 		goto use_frag;
247 
248 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
249 	if (!page)
250 		return NULL;
251 
252 	nc->va = page_address(page);
253 	nc->pfmemalloc = page_is_pfmemalloc(page);
254 	offset = PAGE_SIZE - SZ_1K;
255 	page_ref_add(page, offset / SZ_1K);
256 
257 use_frag:
258 	nc->offset = offset;
259 	return nc->va + offset;
260 }
261 #else
262 
263 /* the small page is actually unused in this build; add dummy helpers
264  * to please the compiler and avoid later preprocessor's conditionals
265  */
266 #define NAPI_HAS_SMALL_PAGE_FRAG	0
267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
268 
269 struct page_frag_1k {
270 };
271 
272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
273 {
274 	return NULL;
275 }
276 
277 #endif
278 
279 struct napi_alloc_cache {
280 	struct page_frag_cache page;
281 	struct page_frag_1k page_small;
282 	unsigned int skb_count;
283 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
284 };
285 
286 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
287 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
288 
289 /* Double check that napi_get_frags() allocates skbs with
290  * skb->head being backed by slab, not a page fragment.
291  * This is to make sure bug fixed in 3226b158e67c
292  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
293  * does not accidentally come back.
294  */
295 void napi_get_frags_check(struct napi_struct *napi)
296 {
297 	struct sk_buff *skb;
298 
299 	local_bh_disable();
300 	skb = napi_get_frags(napi);
301 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
302 	napi_free_frags(napi);
303 	local_bh_enable();
304 }
305 
306 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
307 {
308 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
309 
310 	fragsz = SKB_DATA_ALIGN(fragsz);
311 
312 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
313 				       align_mask);
314 }
315 EXPORT_SYMBOL(__napi_alloc_frag_align);
316 
317 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
318 {
319 	void *data;
320 
321 	fragsz = SKB_DATA_ALIGN(fragsz);
322 	if (in_hardirq() || irqs_disabled()) {
323 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
324 
325 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
326 					       align_mask);
327 	} else {
328 		struct napi_alloc_cache *nc;
329 
330 		local_bh_disable();
331 		nc = this_cpu_ptr(&napi_alloc_cache);
332 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
333 					       align_mask);
334 		local_bh_enable();
335 	}
336 	return data;
337 }
338 EXPORT_SYMBOL(__netdev_alloc_frag_align);
339 
340 static struct sk_buff *napi_skb_cache_get(void)
341 {
342 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
343 	struct sk_buff *skb;
344 
345 	if (unlikely(!nc->skb_count)) {
346 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
347 						      GFP_ATOMIC,
348 						      NAPI_SKB_CACHE_BULK,
349 						      nc->skb_cache);
350 		if (unlikely(!nc->skb_count))
351 			return NULL;
352 	}
353 
354 	skb = nc->skb_cache[--nc->skb_count];
355 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
356 
357 	return skb;
358 }
359 
360 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
361 					 unsigned int size)
362 {
363 	struct skb_shared_info *shinfo;
364 
365 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
366 
367 	/* Assumes caller memset cleared SKB */
368 	skb->truesize = SKB_TRUESIZE(size);
369 	refcount_set(&skb->users, 1);
370 	skb->head = data;
371 	skb->data = data;
372 	skb_reset_tail_pointer(skb);
373 	skb_set_end_offset(skb, size);
374 	skb->mac_header = (typeof(skb->mac_header))~0U;
375 	skb->transport_header = (typeof(skb->transport_header))~0U;
376 	skb->alloc_cpu = raw_smp_processor_id();
377 	/* make sure we initialize shinfo sequentially */
378 	shinfo = skb_shinfo(skb);
379 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
380 	atomic_set(&shinfo->dataref, 1);
381 
382 	skb_set_kcov_handle(skb, kcov_common_handle());
383 }
384 
385 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
386 				     unsigned int *size)
387 {
388 	void *resized;
389 
390 	/* Must find the allocation size (and grow it to match). */
391 	*size = ksize(data);
392 	/* krealloc() will immediately return "data" when
393 	 * "ksize(data)" is requested: it is the existing upper
394 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
395 	 * that this "new" pointer needs to be passed back to the
396 	 * caller for use so the __alloc_size hinting will be
397 	 * tracked correctly.
398 	 */
399 	resized = krealloc(data, *size, GFP_ATOMIC);
400 	WARN_ON_ONCE(resized != data);
401 	return resized;
402 }
403 
404 /* build_skb() variant which can operate on slab buffers.
405  * Note that this should be used sparingly as slab buffers
406  * cannot be combined efficiently by GRO!
407  */
408 struct sk_buff *slab_build_skb(void *data)
409 {
410 	struct sk_buff *skb;
411 	unsigned int size;
412 
413 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
414 	if (unlikely(!skb))
415 		return NULL;
416 
417 	memset(skb, 0, offsetof(struct sk_buff, tail));
418 	data = __slab_build_skb(skb, data, &size);
419 	__finalize_skb_around(skb, data, size);
420 
421 	return skb;
422 }
423 EXPORT_SYMBOL(slab_build_skb);
424 
425 /* Caller must provide SKB that is memset cleared */
426 static void __build_skb_around(struct sk_buff *skb, void *data,
427 			       unsigned int frag_size)
428 {
429 	unsigned int size = frag_size;
430 
431 	/* frag_size == 0 is considered deprecated now. Callers
432 	 * using slab buffer should use slab_build_skb() instead.
433 	 */
434 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
435 		data = __slab_build_skb(skb, data, &size);
436 
437 	__finalize_skb_around(skb, data, size);
438 }
439 
440 /**
441  * __build_skb - build a network buffer
442  * @data: data buffer provided by caller
443  * @frag_size: size of data (must not be 0)
444  *
445  * Allocate a new &sk_buff. Caller provides space holding head and
446  * skb_shared_info. @data must have been allocated from the page
447  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
448  * allocation is deprecated, and callers should use slab_build_skb()
449  * instead.)
450  * The return is the new skb buffer.
451  * On a failure the return is %NULL, and @data is not freed.
452  * Notes :
453  *  Before IO, driver allocates only data buffer where NIC put incoming frame
454  *  Driver should add room at head (NET_SKB_PAD) and
455  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
456  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
457  *  before giving packet to stack.
458  *  RX rings only contains data buffers, not full skbs.
459  */
460 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
461 {
462 	struct sk_buff *skb;
463 
464 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
465 	if (unlikely(!skb))
466 		return NULL;
467 
468 	memset(skb, 0, offsetof(struct sk_buff, tail));
469 	__build_skb_around(skb, data, frag_size);
470 
471 	return skb;
472 }
473 
474 /* build_skb() is wrapper over __build_skb(), that specifically
475  * takes care of skb->head and skb->pfmemalloc
476  */
477 struct sk_buff *build_skb(void *data, unsigned int frag_size)
478 {
479 	struct sk_buff *skb = __build_skb(data, frag_size);
480 
481 	if (likely(skb && frag_size)) {
482 		skb->head_frag = 1;
483 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
484 	}
485 	return skb;
486 }
487 EXPORT_SYMBOL(build_skb);
488 
489 /**
490  * build_skb_around - build a network buffer around provided skb
491  * @skb: sk_buff provide by caller, must be memset cleared
492  * @data: data buffer provided by caller
493  * @frag_size: size of data
494  */
495 struct sk_buff *build_skb_around(struct sk_buff *skb,
496 				 void *data, unsigned int frag_size)
497 {
498 	if (unlikely(!skb))
499 		return NULL;
500 
501 	__build_skb_around(skb, data, frag_size);
502 
503 	if (frag_size) {
504 		skb->head_frag = 1;
505 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
506 	}
507 	return skb;
508 }
509 EXPORT_SYMBOL(build_skb_around);
510 
511 /**
512  * __napi_build_skb - build a network buffer
513  * @data: data buffer provided by caller
514  * @frag_size: size of data
515  *
516  * Version of __build_skb() that uses NAPI percpu caches to obtain
517  * skbuff_head instead of inplace allocation.
518  *
519  * Returns a new &sk_buff on success, %NULL on allocation failure.
520  */
521 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
522 {
523 	struct sk_buff *skb;
524 
525 	skb = napi_skb_cache_get();
526 	if (unlikely(!skb))
527 		return NULL;
528 
529 	memset(skb, 0, offsetof(struct sk_buff, tail));
530 	__build_skb_around(skb, data, frag_size);
531 
532 	return skb;
533 }
534 
535 /**
536  * napi_build_skb - build a network buffer
537  * @data: data buffer provided by caller
538  * @frag_size: size of data
539  *
540  * Version of __napi_build_skb() that takes care of skb->head_frag
541  * and skb->pfmemalloc when the data is a page or page fragment.
542  *
543  * Returns a new &sk_buff on success, %NULL on allocation failure.
544  */
545 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
546 {
547 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
548 
549 	if (likely(skb) && frag_size) {
550 		skb->head_frag = 1;
551 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
552 	}
553 
554 	return skb;
555 }
556 EXPORT_SYMBOL(napi_build_skb);
557 
558 /*
559  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
560  * the caller if emergency pfmemalloc reserves are being used. If it is and
561  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
562  * may be used. Otherwise, the packet data may be discarded until enough
563  * memory is free
564  */
565 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
566 			     bool *pfmemalloc)
567 {
568 	bool ret_pfmemalloc = false;
569 	size_t obj_size;
570 	void *obj;
571 
572 	obj_size = SKB_HEAD_ALIGN(*size);
573 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
574 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
575 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
576 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
577 				node);
578 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
579 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
580 			goto out;
581 		/* Try again but now we are using pfmemalloc reserves */
582 		ret_pfmemalloc = true;
583 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
584 		goto out;
585 	}
586 
587 	obj_size = kmalloc_size_roundup(obj_size);
588 	/* The following cast might truncate high-order bits of obj_size, this
589 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
590 	 */
591 	*size = (unsigned int)obj_size;
592 
593 	/*
594 	 * Try a regular allocation, when that fails and we're not entitled
595 	 * to the reserves, fail.
596 	 */
597 	obj = kmalloc_node_track_caller(obj_size,
598 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
599 					node);
600 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
601 		goto out;
602 
603 	/* Try again but now we are using pfmemalloc reserves */
604 	ret_pfmemalloc = true;
605 	obj = kmalloc_node_track_caller(obj_size, flags, node);
606 
607 out:
608 	if (pfmemalloc)
609 		*pfmemalloc = ret_pfmemalloc;
610 
611 	return obj;
612 }
613 
614 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
615  *	'private' fields and also do memory statistics to find all the
616  *	[BEEP] leaks.
617  *
618  */
619 
620 /**
621  *	__alloc_skb	-	allocate a network buffer
622  *	@size: size to allocate
623  *	@gfp_mask: allocation mask
624  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
625  *		instead of head cache and allocate a cloned (child) skb.
626  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
627  *		allocations in case the data is required for writeback
628  *	@node: numa node to allocate memory on
629  *
630  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
631  *	tail room of at least size bytes. The object has a reference count
632  *	of one. The return is the buffer. On a failure the return is %NULL.
633  *
634  *	Buffers may only be allocated from interrupts using a @gfp_mask of
635  *	%GFP_ATOMIC.
636  */
637 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
638 			    int flags, int node)
639 {
640 	struct kmem_cache *cache;
641 	struct sk_buff *skb;
642 	bool pfmemalloc;
643 	u8 *data;
644 
645 	cache = (flags & SKB_ALLOC_FCLONE)
646 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
647 
648 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
649 		gfp_mask |= __GFP_MEMALLOC;
650 
651 	/* Get the HEAD */
652 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
653 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
654 		skb = napi_skb_cache_get();
655 	else
656 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
657 	if (unlikely(!skb))
658 		return NULL;
659 	prefetchw(skb);
660 
661 	/* We do our best to align skb_shared_info on a separate cache
662 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
663 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
664 	 * Both skb->head and skb_shared_info are cache line aligned.
665 	 */
666 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
667 	if (unlikely(!data))
668 		goto nodata;
669 	/* kmalloc_size_roundup() might give us more room than requested.
670 	 * Put skb_shared_info exactly at the end of allocated zone,
671 	 * to allow max possible filling before reallocation.
672 	 */
673 	prefetchw(data + SKB_WITH_OVERHEAD(size));
674 
675 	/*
676 	 * Only clear those fields we need to clear, not those that we will
677 	 * actually initialise below. Hence, don't put any more fields after
678 	 * the tail pointer in struct sk_buff!
679 	 */
680 	memset(skb, 0, offsetof(struct sk_buff, tail));
681 	__build_skb_around(skb, data, size);
682 	skb->pfmemalloc = pfmemalloc;
683 
684 	if (flags & SKB_ALLOC_FCLONE) {
685 		struct sk_buff_fclones *fclones;
686 
687 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
688 
689 		skb->fclone = SKB_FCLONE_ORIG;
690 		refcount_set(&fclones->fclone_ref, 1);
691 	}
692 
693 	return skb;
694 
695 nodata:
696 	kmem_cache_free(cache, skb);
697 	return NULL;
698 }
699 EXPORT_SYMBOL(__alloc_skb);
700 
701 /**
702  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
703  *	@dev: network device to receive on
704  *	@len: length to allocate
705  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
706  *
707  *	Allocate a new &sk_buff and assign it a usage count of one. The
708  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
709  *	the headroom they think they need without accounting for the
710  *	built in space. The built in space is used for optimisations.
711  *
712  *	%NULL is returned if there is no free memory.
713  */
714 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
715 				   gfp_t gfp_mask)
716 {
717 	struct page_frag_cache *nc;
718 	struct sk_buff *skb;
719 	bool pfmemalloc;
720 	void *data;
721 
722 	len += NET_SKB_PAD;
723 
724 	/* If requested length is either too small or too big,
725 	 * we use kmalloc() for skb->head allocation.
726 	 */
727 	if (len <= SKB_WITH_OVERHEAD(1024) ||
728 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
729 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
730 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
731 		if (!skb)
732 			goto skb_fail;
733 		goto skb_success;
734 	}
735 
736 	len = SKB_HEAD_ALIGN(len);
737 
738 	if (sk_memalloc_socks())
739 		gfp_mask |= __GFP_MEMALLOC;
740 
741 	if (in_hardirq() || irqs_disabled()) {
742 		nc = this_cpu_ptr(&netdev_alloc_cache);
743 		data = page_frag_alloc(nc, len, gfp_mask);
744 		pfmemalloc = nc->pfmemalloc;
745 	} else {
746 		local_bh_disable();
747 		nc = this_cpu_ptr(&napi_alloc_cache.page);
748 		data = page_frag_alloc(nc, len, gfp_mask);
749 		pfmemalloc = nc->pfmemalloc;
750 		local_bh_enable();
751 	}
752 
753 	if (unlikely(!data))
754 		return NULL;
755 
756 	skb = __build_skb(data, len);
757 	if (unlikely(!skb)) {
758 		skb_free_frag(data);
759 		return NULL;
760 	}
761 
762 	if (pfmemalloc)
763 		skb->pfmemalloc = 1;
764 	skb->head_frag = 1;
765 
766 skb_success:
767 	skb_reserve(skb, NET_SKB_PAD);
768 	skb->dev = dev;
769 
770 skb_fail:
771 	return skb;
772 }
773 EXPORT_SYMBOL(__netdev_alloc_skb);
774 
775 /**
776  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
777  *	@napi: napi instance this buffer was allocated for
778  *	@len: length to allocate
779  *
780  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
781  *	attempt to allocate the head from a special reserved region used
782  *	only for NAPI Rx allocation.  By doing this we can save several
783  *	CPU cycles by avoiding having to disable and re-enable IRQs.
784  *
785  *	%NULL is returned if there is no free memory.
786  */
787 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
788 {
789 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
790 	struct napi_alloc_cache *nc;
791 	struct sk_buff *skb;
792 	bool pfmemalloc;
793 	void *data;
794 
795 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
796 	len += NET_SKB_PAD + NET_IP_ALIGN;
797 
798 	/* If requested length is either too small or too big,
799 	 * we use kmalloc() for skb->head allocation.
800 	 * When the small frag allocator is available, prefer it over kmalloc
801 	 * for small fragments
802 	 */
803 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
804 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
805 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
806 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
807 				  NUMA_NO_NODE);
808 		if (!skb)
809 			goto skb_fail;
810 		goto skb_success;
811 	}
812 
813 	nc = this_cpu_ptr(&napi_alloc_cache);
814 
815 	if (sk_memalloc_socks())
816 		gfp_mask |= __GFP_MEMALLOC;
817 
818 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
819 		/* we are artificially inflating the allocation size, but
820 		 * that is not as bad as it may look like, as:
821 		 * - 'len' less than GRO_MAX_HEAD makes little sense
822 		 * - On most systems, larger 'len' values lead to fragment
823 		 *   size above 512 bytes
824 		 * - kmalloc would use the kmalloc-1k slab for such values
825 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
826 		 *   little networking, as that implies no WiFi and no
827 		 *   tunnels support, and 32 bits arches.
828 		 */
829 		len = SZ_1K;
830 
831 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
832 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
833 	} else {
834 		len = SKB_HEAD_ALIGN(len);
835 
836 		data = page_frag_alloc(&nc->page, len, gfp_mask);
837 		pfmemalloc = nc->page.pfmemalloc;
838 	}
839 
840 	if (unlikely(!data))
841 		return NULL;
842 
843 	skb = __napi_build_skb(data, len);
844 	if (unlikely(!skb)) {
845 		skb_free_frag(data);
846 		return NULL;
847 	}
848 
849 	if (pfmemalloc)
850 		skb->pfmemalloc = 1;
851 	skb->head_frag = 1;
852 
853 skb_success:
854 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
855 	skb->dev = napi->dev;
856 
857 skb_fail:
858 	return skb;
859 }
860 EXPORT_SYMBOL(napi_alloc_skb);
861 
862 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
863 			    int off, int size, unsigned int truesize)
864 {
865 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
866 
867 	skb_fill_netmem_desc(skb, i, netmem, off, size);
868 	skb->len += size;
869 	skb->data_len += size;
870 	skb->truesize += truesize;
871 }
872 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
873 
874 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
875 			  unsigned int truesize)
876 {
877 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
878 
879 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
880 
881 	skb_frag_size_add(frag, size);
882 	skb->len += size;
883 	skb->data_len += size;
884 	skb->truesize += truesize;
885 }
886 EXPORT_SYMBOL(skb_coalesce_rx_frag);
887 
888 static void skb_drop_list(struct sk_buff **listp)
889 {
890 	kfree_skb_list(*listp);
891 	*listp = NULL;
892 }
893 
894 static inline void skb_drop_fraglist(struct sk_buff *skb)
895 {
896 	skb_drop_list(&skb_shinfo(skb)->frag_list);
897 }
898 
899 static void skb_clone_fraglist(struct sk_buff *skb)
900 {
901 	struct sk_buff *list;
902 
903 	skb_walk_frags(skb, list)
904 		skb_get(list);
905 }
906 
907 static bool is_pp_page(struct page *page)
908 {
909 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
910 }
911 
912 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
913 		    unsigned int headroom)
914 {
915 #if IS_ENABLED(CONFIG_PAGE_POOL)
916 	u32 size, truesize, len, max_head_size, off;
917 	struct sk_buff *skb = *pskb, *nskb;
918 	int err, i, head_off;
919 	void *data;
920 
921 	/* XDP does not support fraglist so we need to linearize
922 	 * the skb.
923 	 */
924 	if (skb_has_frag_list(skb))
925 		return -EOPNOTSUPP;
926 
927 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
928 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
929 		return -ENOMEM;
930 
931 	size = min_t(u32, skb->len, max_head_size);
932 	truesize = SKB_HEAD_ALIGN(size) + headroom;
933 	data = page_pool_dev_alloc_va(pool, &truesize);
934 	if (!data)
935 		return -ENOMEM;
936 
937 	nskb = napi_build_skb(data, truesize);
938 	if (!nskb) {
939 		page_pool_free_va(pool, data, true);
940 		return -ENOMEM;
941 	}
942 
943 	skb_reserve(nskb, headroom);
944 	skb_copy_header(nskb, skb);
945 	skb_mark_for_recycle(nskb);
946 
947 	err = skb_copy_bits(skb, 0, nskb->data, size);
948 	if (err) {
949 		consume_skb(nskb);
950 		return err;
951 	}
952 	skb_put(nskb, size);
953 
954 	head_off = skb_headroom(nskb) - skb_headroom(skb);
955 	skb_headers_offset_update(nskb, head_off);
956 
957 	off = size;
958 	len = skb->len - off;
959 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
960 		struct page *page;
961 		u32 page_off;
962 
963 		size = min_t(u32, len, PAGE_SIZE);
964 		truesize = size;
965 
966 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
967 		if (!page) {
968 			consume_skb(nskb);
969 			return -ENOMEM;
970 		}
971 
972 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
973 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
974 				    size);
975 		if (err) {
976 			consume_skb(nskb);
977 			return err;
978 		}
979 
980 		len -= size;
981 		off += size;
982 	}
983 
984 	consume_skb(skb);
985 	*pskb = nskb;
986 
987 	return 0;
988 #else
989 	return -EOPNOTSUPP;
990 #endif
991 }
992 EXPORT_SYMBOL(skb_pp_cow_data);
993 
994 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
995 			 struct bpf_prog *prog)
996 {
997 	if (!prog->aux->xdp_has_frags)
998 		return -EINVAL;
999 
1000 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1001 }
1002 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1003 
1004 #if IS_ENABLED(CONFIG_PAGE_POOL)
1005 bool napi_pp_put_page(struct page *page)
1006 {
1007 	page = compound_head(page);
1008 
1009 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1010 	 * in order to preserve any existing bits, such as bit 0 for the
1011 	 * head page of compound page and bit 1 for pfmemalloc page, so
1012 	 * mask those bits for freeing side when doing below checking,
1013 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1014 	 * to avoid recycling the pfmemalloc page.
1015 	 */
1016 	if (unlikely(!is_pp_page(page)))
1017 		return false;
1018 
1019 	page_pool_put_full_page(page->pp, page, false);
1020 
1021 	return true;
1022 }
1023 EXPORT_SYMBOL(napi_pp_put_page);
1024 #endif
1025 
1026 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1027 {
1028 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1029 		return false;
1030 	return napi_pp_put_page(virt_to_page(data));
1031 }
1032 
1033 /**
1034  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1035  * @skb:	page pool aware skb
1036  *
1037  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1038  * intended to gain fragment references only for page pool aware skbs,
1039  * i.e. when skb->pp_recycle is true, and not for fragments in a
1040  * non-pp-recycling skb. It has a fallback to increase references on normal
1041  * pages, as page pool aware skbs may also have normal page fragments.
1042  */
1043 static int skb_pp_frag_ref(struct sk_buff *skb)
1044 {
1045 	struct skb_shared_info *shinfo;
1046 	struct page *head_page;
1047 	int i;
1048 
1049 	if (!skb->pp_recycle)
1050 		return -EINVAL;
1051 
1052 	shinfo = skb_shinfo(skb);
1053 
1054 	for (i = 0; i < shinfo->nr_frags; i++) {
1055 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1056 		if (likely(is_pp_page(head_page)))
1057 			page_pool_ref_page(head_page);
1058 		else
1059 			page_ref_inc(head_page);
1060 	}
1061 	return 0;
1062 }
1063 
1064 static void skb_kfree_head(void *head, unsigned int end_offset)
1065 {
1066 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1067 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1068 	else
1069 		kfree(head);
1070 }
1071 
1072 static void skb_free_head(struct sk_buff *skb)
1073 {
1074 	unsigned char *head = skb->head;
1075 
1076 	if (skb->head_frag) {
1077 		if (skb_pp_recycle(skb, head))
1078 			return;
1079 		skb_free_frag(head);
1080 	} else {
1081 		skb_kfree_head(head, skb_end_offset(skb));
1082 	}
1083 }
1084 
1085 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1086 {
1087 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1088 	int i;
1089 
1090 	if (!skb_data_unref(skb, shinfo))
1091 		goto exit;
1092 
1093 	if (skb_zcopy(skb)) {
1094 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1095 
1096 		skb_zcopy_clear(skb, true);
1097 		if (skip_unref)
1098 			goto free_head;
1099 	}
1100 
1101 	for (i = 0; i < shinfo->nr_frags; i++)
1102 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1103 
1104 free_head:
1105 	if (shinfo->frag_list)
1106 		kfree_skb_list_reason(shinfo->frag_list, reason);
1107 
1108 	skb_free_head(skb);
1109 exit:
1110 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1111 	 * bit is only set on the head though, so in order to avoid races
1112 	 * while trying to recycle fragments on __skb_frag_unref() we need
1113 	 * to make one SKB responsible for triggering the recycle path.
1114 	 * So disable the recycling bit if an SKB is cloned and we have
1115 	 * additional references to the fragmented part of the SKB.
1116 	 * Eventually the last SKB will have the recycling bit set and it's
1117 	 * dataref set to 0, which will trigger the recycling
1118 	 */
1119 	skb->pp_recycle = 0;
1120 }
1121 
1122 /*
1123  *	Free an skbuff by memory without cleaning the state.
1124  */
1125 static void kfree_skbmem(struct sk_buff *skb)
1126 {
1127 	struct sk_buff_fclones *fclones;
1128 
1129 	switch (skb->fclone) {
1130 	case SKB_FCLONE_UNAVAILABLE:
1131 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1132 		return;
1133 
1134 	case SKB_FCLONE_ORIG:
1135 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1136 
1137 		/* We usually free the clone (TX completion) before original skb
1138 		 * This test would have no chance to be true for the clone,
1139 		 * while here, branch prediction will be good.
1140 		 */
1141 		if (refcount_read(&fclones->fclone_ref) == 1)
1142 			goto fastpath;
1143 		break;
1144 
1145 	default: /* SKB_FCLONE_CLONE */
1146 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1147 		break;
1148 	}
1149 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1150 		return;
1151 fastpath:
1152 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1153 }
1154 
1155 void skb_release_head_state(struct sk_buff *skb)
1156 {
1157 	skb_dst_drop(skb);
1158 	if (skb->destructor) {
1159 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1160 		skb->destructor(skb);
1161 	}
1162 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1163 	nf_conntrack_put(skb_nfct(skb));
1164 #endif
1165 	skb_ext_put(skb);
1166 }
1167 
1168 /* Free everything but the sk_buff shell. */
1169 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1170 {
1171 	skb_release_head_state(skb);
1172 	if (likely(skb->head))
1173 		skb_release_data(skb, reason);
1174 }
1175 
1176 /**
1177  *	__kfree_skb - private function
1178  *	@skb: buffer
1179  *
1180  *	Free an sk_buff. Release anything attached to the buffer.
1181  *	Clean the state. This is an internal helper function. Users should
1182  *	always call kfree_skb
1183  */
1184 
1185 void __kfree_skb(struct sk_buff *skb)
1186 {
1187 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1188 	kfree_skbmem(skb);
1189 }
1190 EXPORT_SYMBOL(__kfree_skb);
1191 
1192 static __always_inline
1193 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1194 			  enum skb_drop_reason reason)
1195 {
1196 	if (unlikely(!skb_unref(skb)))
1197 		return false;
1198 
1199 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1200 			       u32_get_bits(reason,
1201 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1202 				SKB_DROP_REASON_SUBSYS_NUM);
1203 
1204 	if (reason == SKB_CONSUMED)
1205 		trace_consume_skb(skb, __builtin_return_address(0));
1206 	else
1207 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1208 	return true;
1209 }
1210 
1211 /**
1212  *	sk_skb_reason_drop - free an sk_buff with special reason
1213  *	@sk: the socket to receive @skb, or NULL if not applicable
1214  *	@skb: buffer to free
1215  *	@reason: reason why this skb is dropped
1216  *
1217  *	Drop a reference to the buffer and free it if the usage count has hit
1218  *	zero. Meanwhile, pass the receiving socket and drop reason to
1219  *	'kfree_skb' tracepoint.
1220  */
1221 void __fix_address
1222 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1223 {
1224 	if (__sk_skb_reason_drop(sk, skb, reason))
1225 		__kfree_skb(skb);
1226 }
1227 EXPORT_SYMBOL(sk_skb_reason_drop);
1228 
1229 #define KFREE_SKB_BULK_SIZE	16
1230 
1231 struct skb_free_array {
1232 	unsigned int skb_count;
1233 	void *skb_array[KFREE_SKB_BULK_SIZE];
1234 };
1235 
1236 static void kfree_skb_add_bulk(struct sk_buff *skb,
1237 			       struct skb_free_array *sa,
1238 			       enum skb_drop_reason reason)
1239 {
1240 	/* if SKB is a clone, don't handle this case */
1241 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1242 		__kfree_skb(skb);
1243 		return;
1244 	}
1245 
1246 	skb_release_all(skb, reason);
1247 	sa->skb_array[sa->skb_count++] = skb;
1248 
1249 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1250 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1251 				     sa->skb_array);
1252 		sa->skb_count = 0;
1253 	}
1254 }
1255 
1256 void __fix_address
1257 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1258 {
1259 	struct skb_free_array sa;
1260 
1261 	sa.skb_count = 0;
1262 
1263 	while (segs) {
1264 		struct sk_buff *next = segs->next;
1265 
1266 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1267 			skb_poison_list(segs);
1268 			kfree_skb_add_bulk(segs, &sa, reason);
1269 		}
1270 
1271 		segs = next;
1272 	}
1273 
1274 	if (sa.skb_count)
1275 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1276 }
1277 EXPORT_SYMBOL(kfree_skb_list_reason);
1278 
1279 /* Dump skb information and contents.
1280  *
1281  * Must only be called from net_ratelimit()-ed paths.
1282  *
1283  * Dumps whole packets if full_pkt, only headers otherwise.
1284  */
1285 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1286 {
1287 	struct skb_shared_info *sh = skb_shinfo(skb);
1288 	struct net_device *dev = skb->dev;
1289 	struct sock *sk = skb->sk;
1290 	struct sk_buff *list_skb;
1291 	bool has_mac, has_trans;
1292 	int headroom, tailroom;
1293 	int i, len, seg_len;
1294 
1295 	if (full_pkt)
1296 		len = skb->len;
1297 	else
1298 		len = min_t(int, skb->len, MAX_HEADER + 128);
1299 
1300 	headroom = skb_headroom(skb);
1301 	tailroom = skb_tailroom(skb);
1302 
1303 	has_mac = skb_mac_header_was_set(skb);
1304 	has_trans = skb_transport_header_was_set(skb);
1305 
1306 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1307 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1308 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1309 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1310 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1311 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1312 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1313 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1314 	       has_mac ? skb->mac_header : -1,
1315 	       has_mac ? skb_mac_header_len(skb) : -1,
1316 	       skb->mac_len,
1317 	       skb->network_header,
1318 	       has_trans ? skb_network_header_len(skb) : -1,
1319 	       has_trans ? skb->transport_header : -1,
1320 	       sh->tx_flags, sh->nr_frags,
1321 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1322 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1323 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1324 	       skb->hash, skb->sw_hash, skb->l4_hash,
1325 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1326 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1327 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1328 	       skb->inner_network_header, skb->inner_transport_header);
1329 
1330 	if (dev)
1331 		printk("%sdev name=%s feat=%pNF\n",
1332 		       level, dev->name, &dev->features);
1333 	if (sk)
1334 		printk("%ssk family=%hu type=%u proto=%u\n",
1335 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1336 
1337 	if (full_pkt && headroom)
1338 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1339 			       16, 1, skb->head, headroom, false);
1340 
1341 	seg_len = min_t(int, skb_headlen(skb), len);
1342 	if (seg_len)
1343 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1344 			       16, 1, skb->data, seg_len, false);
1345 	len -= seg_len;
1346 
1347 	if (full_pkt && tailroom)
1348 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1349 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1350 
1351 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1352 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1353 		u32 p_off, p_len, copied;
1354 		struct page *p;
1355 		u8 *vaddr;
1356 
1357 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1358 				      skb_frag_size(frag), p, p_off, p_len,
1359 				      copied) {
1360 			seg_len = min_t(int, p_len, len);
1361 			vaddr = kmap_atomic(p);
1362 			print_hex_dump(level, "skb frag:     ",
1363 				       DUMP_PREFIX_OFFSET,
1364 				       16, 1, vaddr + p_off, seg_len, false);
1365 			kunmap_atomic(vaddr);
1366 			len -= seg_len;
1367 			if (!len)
1368 				break;
1369 		}
1370 	}
1371 
1372 	if (full_pkt && skb_has_frag_list(skb)) {
1373 		printk("skb fraglist:\n");
1374 		skb_walk_frags(skb, list_skb)
1375 			skb_dump(level, list_skb, true);
1376 	}
1377 }
1378 EXPORT_SYMBOL(skb_dump);
1379 
1380 /**
1381  *	skb_tx_error - report an sk_buff xmit error
1382  *	@skb: buffer that triggered an error
1383  *
1384  *	Report xmit error if a device callback is tracking this skb.
1385  *	skb must be freed afterwards.
1386  */
1387 void skb_tx_error(struct sk_buff *skb)
1388 {
1389 	if (skb) {
1390 		skb_zcopy_downgrade_managed(skb);
1391 		skb_zcopy_clear(skb, true);
1392 	}
1393 }
1394 EXPORT_SYMBOL(skb_tx_error);
1395 
1396 #ifdef CONFIG_TRACEPOINTS
1397 /**
1398  *	consume_skb - free an skbuff
1399  *	@skb: buffer to free
1400  *
1401  *	Drop a ref to the buffer and free it if the usage count has hit zero
1402  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1403  *	is being dropped after a failure and notes that
1404  */
1405 void consume_skb(struct sk_buff *skb)
1406 {
1407 	if (!skb_unref(skb))
1408 		return;
1409 
1410 	trace_consume_skb(skb, __builtin_return_address(0));
1411 	__kfree_skb(skb);
1412 }
1413 EXPORT_SYMBOL(consume_skb);
1414 #endif
1415 
1416 /**
1417  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1418  *	@skb: buffer to free
1419  *
1420  *	Alike consume_skb(), but this variant assumes that this is the last
1421  *	skb reference and all the head states have been already dropped
1422  */
1423 void __consume_stateless_skb(struct sk_buff *skb)
1424 {
1425 	trace_consume_skb(skb, __builtin_return_address(0));
1426 	skb_release_data(skb, SKB_CONSUMED);
1427 	kfree_skbmem(skb);
1428 }
1429 
1430 static void napi_skb_cache_put(struct sk_buff *skb)
1431 {
1432 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1433 	u32 i;
1434 
1435 	if (!kasan_mempool_poison_object(skb))
1436 		return;
1437 
1438 	nc->skb_cache[nc->skb_count++] = skb;
1439 
1440 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1441 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1442 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1443 						kmem_cache_size(net_hotdata.skbuff_cache));
1444 
1445 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1446 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1447 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1448 	}
1449 }
1450 
1451 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1452 {
1453 	skb_release_all(skb, reason);
1454 	napi_skb_cache_put(skb);
1455 }
1456 
1457 void napi_skb_free_stolen_head(struct sk_buff *skb)
1458 {
1459 	if (unlikely(skb->slow_gro)) {
1460 		nf_reset_ct(skb);
1461 		skb_dst_drop(skb);
1462 		skb_ext_put(skb);
1463 		skb_orphan(skb);
1464 		skb->slow_gro = 0;
1465 	}
1466 	napi_skb_cache_put(skb);
1467 }
1468 
1469 void napi_consume_skb(struct sk_buff *skb, int budget)
1470 {
1471 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1472 	if (unlikely(!budget)) {
1473 		dev_consume_skb_any(skb);
1474 		return;
1475 	}
1476 
1477 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1478 
1479 	if (!skb_unref(skb))
1480 		return;
1481 
1482 	/* if reaching here SKB is ready to free */
1483 	trace_consume_skb(skb, __builtin_return_address(0));
1484 
1485 	/* if SKB is a clone, don't handle this case */
1486 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1487 		__kfree_skb(skb);
1488 		return;
1489 	}
1490 
1491 	skb_release_all(skb, SKB_CONSUMED);
1492 	napi_skb_cache_put(skb);
1493 }
1494 EXPORT_SYMBOL(napi_consume_skb);
1495 
1496 /* Make sure a field is contained by headers group */
1497 #define CHECK_SKB_FIELD(field) \
1498 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1499 		     offsetof(struct sk_buff, headers.field));	\
1500 
1501 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1502 {
1503 	new->tstamp		= old->tstamp;
1504 	/* We do not copy old->sk */
1505 	new->dev		= old->dev;
1506 	memcpy(new->cb, old->cb, sizeof(old->cb));
1507 	skb_dst_copy(new, old);
1508 	__skb_ext_copy(new, old);
1509 	__nf_copy(new, old, false);
1510 
1511 	/* Note : this field could be in the headers group.
1512 	 * It is not yet because we do not want to have a 16 bit hole
1513 	 */
1514 	new->queue_mapping = old->queue_mapping;
1515 
1516 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1517 	CHECK_SKB_FIELD(protocol);
1518 	CHECK_SKB_FIELD(csum);
1519 	CHECK_SKB_FIELD(hash);
1520 	CHECK_SKB_FIELD(priority);
1521 	CHECK_SKB_FIELD(skb_iif);
1522 	CHECK_SKB_FIELD(vlan_proto);
1523 	CHECK_SKB_FIELD(vlan_tci);
1524 	CHECK_SKB_FIELD(transport_header);
1525 	CHECK_SKB_FIELD(network_header);
1526 	CHECK_SKB_FIELD(mac_header);
1527 	CHECK_SKB_FIELD(inner_protocol);
1528 	CHECK_SKB_FIELD(inner_transport_header);
1529 	CHECK_SKB_FIELD(inner_network_header);
1530 	CHECK_SKB_FIELD(inner_mac_header);
1531 	CHECK_SKB_FIELD(mark);
1532 #ifdef CONFIG_NETWORK_SECMARK
1533 	CHECK_SKB_FIELD(secmark);
1534 #endif
1535 #ifdef CONFIG_NET_RX_BUSY_POLL
1536 	CHECK_SKB_FIELD(napi_id);
1537 #endif
1538 	CHECK_SKB_FIELD(alloc_cpu);
1539 #ifdef CONFIG_XPS
1540 	CHECK_SKB_FIELD(sender_cpu);
1541 #endif
1542 #ifdef CONFIG_NET_SCHED
1543 	CHECK_SKB_FIELD(tc_index);
1544 #endif
1545 
1546 }
1547 
1548 /*
1549  * You should not add any new code to this function.  Add it to
1550  * __copy_skb_header above instead.
1551  */
1552 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1553 {
1554 #define C(x) n->x = skb->x
1555 
1556 	n->next = n->prev = NULL;
1557 	n->sk = NULL;
1558 	__copy_skb_header(n, skb);
1559 
1560 	C(len);
1561 	C(data_len);
1562 	C(mac_len);
1563 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1564 	n->cloned = 1;
1565 	n->nohdr = 0;
1566 	n->peeked = 0;
1567 	C(pfmemalloc);
1568 	C(pp_recycle);
1569 	n->destructor = NULL;
1570 	C(tail);
1571 	C(end);
1572 	C(head);
1573 	C(head_frag);
1574 	C(data);
1575 	C(truesize);
1576 	refcount_set(&n->users, 1);
1577 
1578 	atomic_inc(&(skb_shinfo(skb)->dataref));
1579 	skb->cloned = 1;
1580 
1581 	return n;
1582 #undef C
1583 }
1584 
1585 /**
1586  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1587  * @first: first sk_buff of the msg
1588  */
1589 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1590 {
1591 	struct sk_buff *n;
1592 
1593 	n = alloc_skb(0, GFP_ATOMIC);
1594 	if (!n)
1595 		return NULL;
1596 
1597 	n->len = first->len;
1598 	n->data_len = first->len;
1599 	n->truesize = first->truesize;
1600 
1601 	skb_shinfo(n)->frag_list = first;
1602 
1603 	__copy_skb_header(n, first);
1604 	n->destructor = NULL;
1605 
1606 	return n;
1607 }
1608 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1609 
1610 /**
1611  *	skb_morph	-	morph one skb into another
1612  *	@dst: the skb to receive the contents
1613  *	@src: the skb to supply the contents
1614  *
1615  *	This is identical to skb_clone except that the target skb is
1616  *	supplied by the user.
1617  *
1618  *	The target skb is returned upon exit.
1619  */
1620 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1621 {
1622 	skb_release_all(dst, SKB_CONSUMED);
1623 	return __skb_clone(dst, src);
1624 }
1625 EXPORT_SYMBOL_GPL(skb_morph);
1626 
1627 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1628 {
1629 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1630 	struct user_struct *user;
1631 
1632 	if (capable(CAP_IPC_LOCK) || !size)
1633 		return 0;
1634 
1635 	rlim = rlimit(RLIMIT_MEMLOCK);
1636 	if (rlim == RLIM_INFINITY)
1637 		return 0;
1638 
1639 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1640 	max_pg = rlim >> PAGE_SHIFT;
1641 	user = mmp->user ? : current_user();
1642 
1643 	old_pg = atomic_long_read(&user->locked_vm);
1644 	do {
1645 		new_pg = old_pg + num_pg;
1646 		if (new_pg > max_pg)
1647 			return -ENOBUFS;
1648 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1649 
1650 	if (!mmp->user) {
1651 		mmp->user = get_uid(user);
1652 		mmp->num_pg = num_pg;
1653 	} else {
1654 		mmp->num_pg += num_pg;
1655 	}
1656 
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1660 
1661 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1662 {
1663 	if (mmp->user) {
1664 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1665 		free_uid(mmp->user);
1666 	}
1667 }
1668 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1669 
1670 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1671 {
1672 	struct ubuf_info_msgzc *uarg;
1673 	struct sk_buff *skb;
1674 
1675 	WARN_ON_ONCE(!in_task());
1676 
1677 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1678 	if (!skb)
1679 		return NULL;
1680 
1681 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1682 	uarg = (void *)skb->cb;
1683 	uarg->mmp.user = NULL;
1684 
1685 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1686 		kfree_skb(skb);
1687 		return NULL;
1688 	}
1689 
1690 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1691 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1692 	uarg->len = 1;
1693 	uarg->bytelen = size;
1694 	uarg->zerocopy = 1;
1695 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1696 	refcount_set(&uarg->ubuf.refcnt, 1);
1697 	sock_hold(sk);
1698 
1699 	return &uarg->ubuf;
1700 }
1701 
1702 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1703 {
1704 	return container_of((void *)uarg, struct sk_buff, cb);
1705 }
1706 
1707 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1708 				       struct ubuf_info *uarg)
1709 {
1710 	if (uarg) {
1711 		struct ubuf_info_msgzc *uarg_zc;
1712 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1713 		u32 bytelen, next;
1714 
1715 		/* there might be non MSG_ZEROCOPY users */
1716 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1717 			return NULL;
1718 
1719 		/* realloc only when socket is locked (TCP, UDP cork),
1720 		 * so uarg->len and sk_zckey access is serialized
1721 		 */
1722 		if (!sock_owned_by_user(sk)) {
1723 			WARN_ON_ONCE(1);
1724 			return NULL;
1725 		}
1726 
1727 		uarg_zc = uarg_to_msgzc(uarg);
1728 		bytelen = uarg_zc->bytelen + size;
1729 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1730 			/* TCP can create new skb to attach new uarg */
1731 			if (sk->sk_type == SOCK_STREAM)
1732 				goto new_alloc;
1733 			return NULL;
1734 		}
1735 
1736 		next = (u32)atomic_read(&sk->sk_zckey);
1737 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1738 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1739 				return NULL;
1740 			uarg_zc->len++;
1741 			uarg_zc->bytelen = bytelen;
1742 			atomic_set(&sk->sk_zckey, ++next);
1743 
1744 			/* no extra ref when appending to datagram (MSG_MORE) */
1745 			if (sk->sk_type == SOCK_STREAM)
1746 				net_zcopy_get(uarg);
1747 
1748 			return uarg;
1749 		}
1750 	}
1751 
1752 new_alloc:
1753 	return msg_zerocopy_alloc(sk, size);
1754 }
1755 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1756 
1757 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1758 {
1759 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1760 	u32 old_lo, old_hi;
1761 	u64 sum_len;
1762 
1763 	old_lo = serr->ee.ee_info;
1764 	old_hi = serr->ee.ee_data;
1765 	sum_len = old_hi - old_lo + 1ULL + len;
1766 
1767 	if (sum_len >= (1ULL << 32))
1768 		return false;
1769 
1770 	if (lo != old_hi + 1)
1771 		return false;
1772 
1773 	serr->ee.ee_data += len;
1774 	return true;
1775 }
1776 
1777 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1778 {
1779 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1780 	struct sock_exterr_skb *serr;
1781 	struct sock *sk = skb->sk;
1782 	struct sk_buff_head *q;
1783 	unsigned long flags;
1784 	bool is_zerocopy;
1785 	u32 lo, hi;
1786 	u16 len;
1787 
1788 	mm_unaccount_pinned_pages(&uarg->mmp);
1789 
1790 	/* if !len, there was only 1 call, and it was aborted
1791 	 * so do not queue a completion notification
1792 	 */
1793 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1794 		goto release;
1795 
1796 	len = uarg->len;
1797 	lo = uarg->id;
1798 	hi = uarg->id + len - 1;
1799 	is_zerocopy = uarg->zerocopy;
1800 
1801 	serr = SKB_EXT_ERR(skb);
1802 	memset(serr, 0, sizeof(*serr));
1803 	serr->ee.ee_errno = 0;
1804 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1805 	serr->ee.ee_data = hi;
1806 	serr->ee.ee_info = lo;
1807 	if (!is_zerocopy)
1808 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1809 
1810 	q = &sk->sk_error_queue;
1811 	spin_lock_irqsave(&q->lock, flags);
1812 	tail = skb_peek_tail(q);
1813 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1814 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1815 		__skb_queue_tail(q, skb);
1816 		skb = NULL;
1817 	}
1818 	spin_unlock_irqrestore(&q->lock, flags);
1819 
1820 	sk_error_report(sk);
1821 
1822 release:
1823 	consume_skb(skb);
1824 	sock_put(sk);
1825 }
1826 
1827 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1828 				  bool success)
1829 {
1830 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1831 
1832 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1833 
1834 	if (refcount_dec_and_test(&uarg->refcnt))
1835 		__msg_zerocopy_callback(uarg_zc);
1836 }
1837 
1838 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1839 {
1840 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1841 
1842 	atomic_dec(&sk->sk_zckey);
1843 	uarg_to_msgzc(uarg)->len--;
1844 
1845 	if (have_uref)
1846 		msg_zerocopy_complete(NULL, uarg, true);
1847 }
1848 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1849 
1850 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1851 	.complete = msg_zerocopy_complete,
1852 };
1853 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1854 
1855 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1856 			     struct msghdr *msg, int len,
1857 			     struct ubuf_info *uarg)
1858 {
1859 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1860 	int err, orig_len = skb->len;
1861 
1862 	if (uarg->ops->link_skb) {
1863 		err = uarg->ops->link_skb(skb, uarg);
1864 		if (err)
1865 			return err;
1866 	} else {
1867 		/* An skb can only point to one uarg. This edge case happens
1868 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1869 		 * a new alloc.
1870 		 */
1871 		if (orig_uarg && uarg != orig_uarg)
1872 			return -EEXIST;
1873 	}
1874 
1875 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1876 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1877 		struct sock *save_sk = skb->sk;
1878 
1879 		/* Streams do not free skb on error. Reset to prev state. */
1880 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1881 		skb->sk = sk;
1882 		___pskb_trim(skb, orig_len);
1883 		skb->sk = save_sk;
1884 		return err;
1885 	}
1886 
1887 	if (!uarg->ops->link_skb)
1888 		skb_zcopy_set(skb, uarg, NULL);
1889 	return skb->len - orig_len;
1890 }
1891 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1892 
1893 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1894 {
1895 	int i;
1896 
1897 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1898 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1899 		skb_frag_ref(skb, i);
1900 }
1901 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1902 
1903 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1904 			      gfp_t gfp_mask)
1905 {
1906 	if (skb_zcopy(orig)) {
1907 		if (skb_zcopy(nskb)) {
1908 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1909 			if (!gfp_mask) {
1910 				WARN_ON_ONCE(1);
1911 				return -ENOMEM;
1912 			}
1913 			if (skb_uarg(nskb) == skb_uarg(orig))
1914 				return 0;
1915 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1916 				return -EIO;
1917 		}
1918 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1919 	}
1920 	return 0;
1921 }
1922 
1923 /**
1924  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1925  *	@skb: the skb to modify
1926  *	@gfp_mask: allocation priority
1927  *
1928  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1929  *	It will copy all frags into kernel and drop the reference
1930  *	to userspace pages.
1931  *
1932  *	If this function is called from an interrupt gfp_mask() must be
1933  *	%GFP_ATOMIC.
1934  *
1935  *	Returns 0 on success or a negative error code on failure
1936  *	to allocate kernel memory to copy to.
1937  */
1938 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1939 {
1940 	int num_frags = skb_shinfo(skb)->nr_frags;
1941 	struct page *page, *head = NULL;
1942 	int i, order, psize, new_frags;
1943 	u32 d_off;
1944 
1945 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1946 		return -EINVAL;
1947 
1948 	if (!num_frags)
1949 		goto release;
1950 
1951 	/* We might have to allocate high order pages, so compute what minimum
1952 	 * page order is needed.
1953 	 */
1954 	order = 0;
1955 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1956 		order++;
1957 	psize = (PAGE_SIZE << order);
1958 
1959 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1960 	for (i = 0; i < new_frags; i++) {
1961 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1962 		if (!page) {
1963 			while (head) {
1964 				struct page *next = (struct page *)page_private(head);
1965 				put_page(head);
1966 				head = next;
1967 			}
1968 			return -ENOMEM;
1969 		}
1970 		set_page_private(page, (unsigned long)head);
1971 		head = page;
1972 	}
1973 
1974 	page = head;
1975 	d_off = 0;
1976 	for (i = 0; i < num_frags; i++) {
1977 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1978 		u32 p_off, p_len, copied;
1979 		struct page *p;
1980 		u8 *vaddr;
1981 
1982 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1983 				      p, p_off, p_len, copied) {
1984 			u32 copy, done = 0;
1985 			vaddr = kmap_atomic(p);
1986 
1987 			while (done < p_len) {
1988 				if (d_off == psize) {
1989 					d_off = 0;
1990 					page = (struct page *)page_private(page);
1991 				}
1992 				copy = min_t(u32, psize - d_off, p_len - done);
1993 				memcpy(page_address(page) + d_off,
1994 				       vaddr + p_off + done, copy);
1995 				done += copy;
1996 				d_off += copy;
1997 			}
1998 			kunmap_atomic(vaddr);
1999 		}
2000 	}
2001 
2002 	/* skb frags release userspace buffers */
2003 	for (i = 0; i < num_frags; i++)
2004 		skb_frag_unref(skb, i);
2005 
2006 	/* skb frags point to kernel buffers */
2007 	for (i = 0; i < new_frags - 1; i++) {
2008 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2009 		head = (struct page *)page_private(head);
2010 	}
2011 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2012 			       d_off);
2013 	skb_shinfo(skb)->nr_frags = new_frags;
2014 
2015 release:
2016 	skb_zcopy_clear(skb, false);
2017 	return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2020 
2021 /**
2022  *	skb_clone	-	duplicate an sk_buff
2023  *	@skb: buffer to clone
2024  *	@gfp_mask: allocation priority
2025  *
2026  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2027  *	copies share the same packet data but not structure. The new
2028  *	buffer has a reference count of 1. If the allocation fails the
2029  *	function returns %NULL otherwise the new buffer is returned.
2030  *
2031  *	If this function is called from an interrupt gfp_mask() must be
2032  *	%GFP_ATOMIC.
2033  */
2034 
2035 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2036 {
2037 	struct sk_buff_fclones *fclones = container_of(skb,
2038 						       struct sk_buff_fclones,
2039 						       skb1);
2040 	struct sk_buff *n;
2041 
2042 	if (skb_orphan_frags(skb, gfp_mask))
2043 		return NULL;
2044 
2045 	if (skb->fclone == SKB_FCLONE_ORIG &&
2046 	    refcount_read(&fclones->fclone_ref) == 1) {
2047 		n = &fclones->skb2;
2048 		refcount_set(&fclones->fclone_ref, 2);
2049 		n->fclone = SKB_FCLONE_CLONE;
2050 	} else {
2051 		if (skb_pfmemalloc(skb))
2052 			gfp_mask |= __GFP_MEMALLOC;
2053 
2054 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2055 		if (!n)
2056 			return NULL;
2057 
2058 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2059 	}
2060 
2061 	return __skb_clone(n, skb);
2062 }
2063 EXPORT_SYMBOL(skb_clone);
2064 
2065 void skb_headers_offset_update(struct sk_buff *skb, int off)
2066 {
2067 	/* Only adjust this if it actually is csum_start rather than csum */
2068 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2069 		skb->csum_start += off;
2070 	/* {transport,network,mac}_header and tail are relative to skb->head */
2071 	skb->transport_header += off;
2072 	skb->network_header   += off;
2073 	if (skb_mac_header_was_set(skb))
2074 		skb->mac_header += off;
2075 	skb->inner_transport_header += off;
2076 	skb->inner_network_header += off;
2077 	skb->inner_mac_header += off;
2078 }
2079 EXPORT_SYMBOL(skb_headers_offset_update);
2080 
2081 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2082 {
2083 	__copy_skb_header(new, old);
2084 
2085 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2086 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2087 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2088 }
2089 EXPORT_SYMBOL(skb_copy_header);
2090 
2091 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2092 {
2093 	if (skb_pfmemalloc(skb))
2094 		return SKB_ALLOC_RX;
2095 	return 0;
2096 }
2097 
2098 /**
2099  *	skb_copy	-	create private copy of an sk_buff
2100  *	@skb: buffer to copy
2101  *	@gfp_mask: allocation priority
2102  *
2103  *	Make a copy of both an &sk_buff and its data. This is used when the
2104  *	caller wishes to modify the data and needs a private copy of the
2105  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2106  *	on success. The returned buffer has a reference count of 1.
2107  *
2108  *	As by-product this function converts non-linear &sk_buff to linear
2109  *	one, so that &sk_buff becomes completely private and caller is allowed
2110  *	to modify all the data of returned buffer. This means that this
2111  *	function is not recommended for use in circumstances when only
2112  *	header is going to be modified. Use pskb_copy() instead.
2113  */
2114 
2115 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2116 {
2117 	struct sk_buff *n;
2118 	unsigned int size;
2119 	int headerlen;
2120 
2121 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2122 		return NULL;
2123 
2124 	headerlen = skb_headroom(skb);
2125 	size = skb_end_offset(skb) + skb->data_len;
2126 	n = __alloc_skb(size, gfp_mask,
2127 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2128 	if (!n)
2129 		return NULL;
2130 
2131 	/* Set the data pointer */
2132 	skb_reserve(n, headerlen);
2133 	/* Set the tail pointer and length */
2134 	skb_put(n, skb->len);
2135 
2136 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2137 
2138 	skb_copy_header(n, skb);
2139 	return n;
2140 }
2141 EXPORT_SYMBOL(skb_copy);
2142 
2143 /**
2144  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2145  *	@skb: buffer to copy
2146  *	@headroom: headroom of new skb
2147  *	@gfp_mask: allocation priority
2148  *	@fclone: if true allocate the copy of the skb from the fclone
2149  *	cache instead of the head cache; it is recommended to set this
2150  *	to true for the cases where the copy will likely be cloned
2151  *
2152  *	Make a copy of both an &sk_buff and part of its data, located
2153  *	in header. Fragmented data remain shared. This is used when
2154  *	the caller wishes to modify only header of &sk_buff and needs
2155  *	private copy of the header to alter. Returns %NULL on failure
2156  *	or the pointer to the buffer on success.
2157  *	The returned buffer has a reference count of 1.
2158  */
2159 
2160 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2161 				   gfp_t gfp_mask, bool fclone)
2162 {
2163 	unsigned int size = skb_headlen(skb) + headroom;
2164 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2165 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2166 
2167 	if (!n)
2168 		goto out;
2169 
2170 	/* Set the data pointer */
2171 	skb_reserve(n, headroom);
2172 	/* Set the tail pointer and length */
2173 	skb_put(n, skb_headlen(skb));
2174 	/* Copy the bytes */
2175 	skb_copy_from_linear_data(skb, n->data, n->len);
2176 
2177 	n->truesize += skb->data_len;
2178 	n->data_len  = skb->data_len;
2179 	n->len	     = skb->len;
2180 
2181 	if (skb_shinfo(skb)->nr_frags) {
2182 		int i;
2183 
2184 		if (skb_orphan_frags(skb, gfp_mask) ||
2185 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2186 			kfree_skb(n);
2187 			n = NULL;
2188 			goto out;
2189 		}
2190 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2191 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2192 			skb_frag_ref(skb, i);
2193 		}
2194 		skb_shinfo(n)->nr_frags = i;
2195 	}
2196 
2197 	if (skb_has_frag_list(skb)) {
2198 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2199 		skb_clone_fraglist(n);
2200 	}
2201 
2202 	skb_copy_header(n, skb);
2203 out:
2204 	return n;
2205 }
2206 EXPORT_SYMBOL(__pskb_copy_fclone);
2207 
2208 /**
2209  *	pskb_expand_head - reallocate header of &sk_buff
2210  *	@skb: buffer to reallocate
2211  *	@nhead: room to add at head
2212  *	@ntail: room to add at tail
2213  *	@gfp_mask: allocation priority
2214  *
2215  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2216  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2217  *	reference count of 1. Returns zero in the case of success or error,
2218  *	if expansion failed. In the last case, &sk_buff is not changed.
2219  *
2220  *	All the pointers pointing into skb header may change and must be
2221  *	reloaded after call to this function.
2222  */
2223 
2224 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2225 		     gfp_t gfp_mask)
2226 {
2227 	unsigned int osize = skb_end_offset(skb);
2228 	unsigned int size = osize + nhead + ntail;
2229 	long off;
2230 	u8 *data;
2231 	int i;
2232 
2233 	BUG_ON(nhead < 0);
2234 
2235 	BUG_ON(skb_shared(skb));
2236 
2237 	skb_zcopy_downgrade_managed(skb);
2238 
2239 	if (skb_pfmemalloc(skb))
2240 		gfp_mask |= __GFP_MEMALLOC;
2241 
2242 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2243 	if (!data)
2244 		goto nodata;
2245 	size = SKB_WITH_OVERHEAD(size);
2246 
2247 	/* Copy only real data... and, alas, header. This should be
2248 	 * optimized for the cases when header is void.
2249 	 */
2250 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2251 
2252 	memcpy((struct skb_shared_info *)(data + size),
2253 	       skb_shinfo(skb),
2254 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2255 
2256 	/*
2257 	 * if shinfo is shared we must drop the old head gracefully, but if it
2258 	 * is not we can just drop the old head and let the existing refcount
2259 	 * be since all we did is relocate the values
2260 	 */
2261 	if (skb_cloned(skb)) {
2262 		if (skb_orphan_frags(skb, gfp_mask))
2263 			goto nofrags;
2264 		if (skb_zcopy(skb))
2265 			refcount_inc(&skb_uarg(skb)->refcnt);
2266 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2267 			skb_frag_ref(skb, i);
2268 
2269 		if (skb_has_frag_list(skb))
2270 			skb_clone_fraglist(skb);
2271 
2272 		skb_release_data(skb, SKB_CONSUMED);
2273 	} else {
2274 		skb_free_head(skb);
2275 	}
2276 	off = (data + nhead) - skb->head;
2277 
2278 	skb->head     = data;
2279 	skb->head_frag = 0;
2280 	skb->data    += off;
2281 
2282 	skb_set_end_offset(skb, size);
2283 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2284 	off           = nhead;
2285 #endif
2286 	skb->tail	      += off;
2287 	skb_headers_offset_update(skb, nhead);
2288 	skb->cloned   = 0;
2289 	skb->hdr_len  = 0;
2290 	skb->nohdr    = 0;
2291 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2292 
2293 	skb_metadata_clear(skb);
2294 
2295 	/* It is not generally safe to change skb->truesize.
2296 	 * For the moment, we really care of rx path, or
2297 	 * when skb is orphaned (not attached to a socket).
2298 	 */
2299 	if (!skb->sk || skb->destructor == sock_edemux)
2300 		skb->truesize += size - osize;
2301 
2302 	return 0;
2303 
2304 nofrags:
2305 	skb_kfree_head(data, size);
2306 nodata:
2307 	return -ENOMEM;
2308 }
2309 EXPORT_SYMBOL(pskb_expand_head);
2310 
2311 /* Make private copy of skb with writable head and some headroom */
2312 
2313 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2314 {
2315 	struct sk_buff *skb2;
2316 	int delta = headroom - skb_headroom(skb);
2317 
2318 	if (delta <= 0)
2319 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2320 	else {
2321 		skb2 = skb_clone(skb, GFP_ATOMIC);
2322 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2323 					     GFP_ATOMIC)) {
2324 			kfree_skb(skb2);
2325 			skb2 = NULL;
2326 		}
2327 	}
2328 	return skb2;
2329 }
2330 EXPORT_SYMBOL(skb_realloc_headroom);
2331 
2332 /* Note: We plan to rework this in linux-6.4 */
2333 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2334 {
2335 	unsigned int saved_end_offset, saved_truesize;
2336 	struct skb_shared_info *shinfo;
2337 	int res;
2338 
2339 	saved_end_offset = skb_end_offset(skb);
2340 	saved_truesize = skb->truesize;
2341 
2342 	res = pskb_expand_head(skb, 0, 0, pri);
2343 	if (res)
2344 		return res;
2345 
2346 	skb->truesize = saved_truesize;
2347 
2348 	if (likely(skb_end_offset(skb) == saved_end_offset))
2349 		return 0;
2350 
2351 	/* We can not change skb->end if the original or new value
2352 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2353 	 */
2354 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2355 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2356 		/* We think this path should not be taken.
2357 		 * Add a temporary trace to warn us just in case.
2358 		 */
2359 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2360 			    saved_end_offset, skb_end_offset(skb));
2361 		WARN_ON_ONCE(1);
2362 		return 0;
2363 	}
2364 
2365 	shinfo = skb_shinfo(skb);
2366 
2367 	/* We are about to change back skb->end,
2368 	 * we need to move skb_shinfo() to its new location.
2369 	 */
2370 	memmove(skb->head + saved_end_offset,
2371 		shinfo,
2372 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2373 
2374 	skb_set_end_offset(skb, saved_end_offset);
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  *	skb_expand_head - reallocate header of &sk_buff
2381  *	@skb: buffer to reallocate
2382  *	@headroom: needed headroom
2383  *
2384  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2385  *	if possible; copies skb->sk to new skb as needed
2386  *	and frees original skb in case of failures.
2387  *
2388  *	It expect increased headroom and generates warning otherwise.
2389  */
2390 
2391 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2392 {
2393 	int delta = headroom - skb_headroom(skb);
2394 	int osize = skb_end_offset(skb);
2395 	struct sock *sk = skb->sk;
2396 
2397 	if (WARN_ONCE(delta <= 0,
2398 		      "%s is expecting an increase in the headroom", __func__))
2399 		return skb;
2400 
2401 	delta = SKB_DATA_ALIGN(delta);
2402 	/* pskb_expand_head() might crash, if skb is shared. */
2403 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2404 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2405 
2406 		if (unlikely(!nskb))
2407 			goto fail;
2408 
2409 		if (sk)
2410 			skb_set_owner_w(nskb, sk);
2411 		consume_skb(skb);
2412 		skb = nskb;
2413 	}
2414 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2415 		goto fail;
2416 
2417 	if (sk && is_skb_wmem(skb)) {
2418 		delta = skb_end_offset(skb) - osize;
2419 		refcount_add(delta, &sk->sk_wmem_alloc);
2420 		skb->truesize += delta;
2421 	}
2422 	return skb;
2423 
2424 fail:
2425 	kfree_skb(skb);
2426 	return NULL;
2427 }
2428 EXPORT_SYMBOL(skb_expand_head);
2429 
2430 /**
2431  *	skb_copy_expand	-	copy and expand sk_buff
2432  *	@skb: buffer to copy
2433  *	@newheadroom: new free bytes at head
2434  *	@newtailroom: new free bytes at tail
2435  *	@gfp_mask: allocation priority
2436  *
2437  *	Make a copy of both an &sk_buff and its data and while doing so
2438  *	allocate additional space.
2439  *
2440  *	This is used when the caller wishes to modify the data and needs a
2441  *	private copy of the data to alter as well as more space for new fields.
2442  *	Returns %NULL on failure or the pointer to the buffer
2443  *	on success. The returned buffer has a reference count of 1.
2444  *
2445  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2446  *	is called from an interrupt.
2447  */
2448 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2449 				int newheadroom, int newtailroom,
2450 				gfp_t gfp_mask)
2451 {
2452 	/*
2453 	 *	Allocate the copy buffer
2454 	 */
2455 	int head_copy_len, head_copy_off;
2456 	struct sk_buff *n;
2457 	int oldheadroom;
2458 
2459 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2460 		return NULL;
2461 
2462 	oldheadroom = skb_headroom(skb);
2463 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2464 			gfp_mask, skb_alloc_rx_flag(skb),
2465 			NUMA_NO_NODE);
2466 	if (!n)
2467 		return NULL;
2468 
2469 	skb_reserve(n, newheadroom);
2470 
2471 	/* Set the tail pointer and length */
2472 	skb_put(n, skb->len);
2473 
2474 	head_copy_len = oldheadroom;
2475 	head_copy_off = 0;
2476 	if (newheadroom <= head_copy_len)
2477 		head_copy_len = newheadroom;
2478 	else
2479 		head_copy_off = newheadroom - head_copy_len;
2480 
2481 	/* Copy the linear header and data. */
2482 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2483 			     skb->len + head_copy_len));
2484 
2485 	skb_copy_header(n, skb);
2486 
2487 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2488 
2489 	return n;
2490 }
2491 EXPORT_SYMBOL(skb_copy_expand);
2492 
2493 /**
2494  *	__skb_pad		-	zero pad the tail of an skb
2495  *	@skb: buffer to pad
2496  *	@pad: space to pad
2497  *	@free_on_error: free buffer on error
2498  *
2499  *	Ensure that a buffer is followed by a padding area that is zero
2500  *	filled. Used by network drivers which may DMA or transfer data
2501  *	beyond the buffer end onto the wire.
2502  *
2503  *	May return error in out of memory cases. The skb is freed on error
2504  *	if @free_on_error is true.
2505  */
2506 
2507 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2508 {
2509 	int err;
2510 	int ntail;
2511 
2512 	/* If the skbuff is non linear tailroom is always zero.. */
2513 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2514 		memset(skb->data+skb->len, 0, pad);
2515 		return 0;
2516 	}
2517 
2518 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2519 	if (likely(skb_cloned(skb) || ntail > 0)) {
2520 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2521 		if (unlikely(err))
2522 			goto free_skb;
2523 	}
2524 
2525 	/* FIXME: The use of this function with non-linear skb's really needs
2526 	 * to be audited.
2527 	 */
2528 	err = skb_linearize(skb);
2529 	if (unlikely(err))
2530 		goto free_skb;
2531 
2532 	memset(skb->data + skb->len, 0, pad);
2533 	return 0;
2534 
2535 free_skb:
2536 	if (free_on_error)
2537 		kfree_skb(skb);
2538 	return err;
2539 }
2540 EXPORT_SYMBOL(__skb_pad);
2541 
2542 /**
2543  *	pskb_put - add data to the tail of a potentially fragmented buffer
2544  *	@skb: start of the buffer to use
2545  *	@tail: tail fragment of the buffer to use
2546  *	@len: amount of data to add
2547  *
2548  *	This function extends the used data area of the potentially
2549  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2550  *	@skb itself. If this would exceed the total buffer size the kernel
2551  *	will panic. A pointer to the first byte of the extra data is
2552  *	returned.
2553  */
2554 
2555 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2556 {
2557 	if (tail != skb) {
2558 		skb->data_len += len;
2559 		skb->len += len;
2560 	}
2561 	return skb_put(tail, len);
2562 }
2563 EXPORT_SYMBOL_GPL(pskb_put);
2564 
2565 /**
2566  *	skb_put - add data to a buffer
2567  *	@skb: buffer to use
2568  *	@len: amount of data to add
2569  *
2570  *	This function extends the used data area of the buffer. If this would
2571  *	exceed the total buffer size the kernel will panic. A pointer to the
2572  *	first byte of the extra data is returned.
2573  */
2574 void *skb_put(struct sk_buff *skb, unsigned int len)
2575 {
2576 	void *tmp = skb_tail_pointer(skb);
2577 	SKB_LINEAR_ASSERT(skb);
2578 	skb->tail += len;
2579 	skb->len  += len;
2580 	if (unlikely(skb->tail > skb->end))
2581 		skb_over_panic(skb, len, __builtin_return_address(0));
2582 	return tmp;
2583 }
2584 EXPORT_SYMBOL(skb_put);
2585 
2586 /**
2587  *	skb_push - add data to the start of a buffer
2588  *	@skb: buffer to use
2589  *	@len: amount of data to add
2590  *
2591  *	This function extends the used data area of the buffer at the buffer
2592  *	start. If this would exceed the total buffer headroom the kernel will
2593  *	panic. A pointer to the first byte of the extra data is returned.
2594  */
2595 void *skb_push(struct sk_buff *skb, unsigned int len)
2596 {
2597 	skb->data -= len;
2598 	skb->len  += len;
2599 	if (unlikely(skb->data < skb->head))
2600 		skb_under_panic(skb, len, __builtin_return_address(0));
2601 	return skb->data;
2602 }
2603 EXPORT_SYMBOL(skb_push);
2604 
2605 /**
2606  *	skb_pull - remove data from the start of a buffer
2607  *	@skb: buffer to use
2608  *	@len: amount of data to remove
2609  *
2610  *	This function removes data from the start of a buffer, returning
2611  *	the memory to the headroom. A pointer to the next data in the buffer
2612  *	is returned. Once the data has been pulled future pushes will overwrite
2613  *	the old data.
2614  */
2615 void *skb_pull(struct sk_buff *skb, unsigned int len)
2616 {
2617 	return skb_pull_inline(skb, len);
2618 }
2619 EXPORT_SYMBOL(skb_pull);
2620 
2621 /**
2622  *	skb_pull_data - remove data from the start of a buffer returning its
2623  *	original position.
2624  *	@skb: buffer to use
2625  *	@len: amount of data to remove
2626  *
2627  *	This function removes data from the start of a buffer, returning
2628  *	the memory to the headroom. A pointer to the original data in the buffer
2629  *	is returned after checking if there is enough data to pull. Once the
2630  *	data has been pulled future pushes will overwrite the old data.
2631  */
2632 void *skb_pull_data(struct sk_buff *skb, size_t len)
2633 {
2634 	void *data = skb->data;
2635 
2636 	if (skb->len < len)
2637 		return NULL;
2638 
2639 	skb_pull(skb, len);
2640 
2641 	return data;
2642 }
2643 EXPORT_SYMBOL(skb_pull_data);
2644 
2645 /**
2646  *	skb_trim - remove end from a buffer
2647  *	@skb: buffer to alter
2648  *	@len: new length
2649  *
2650  *	Cut the length of a buffer down by removing data from the tail. If
2651  *	the buffer is already under the length specified it is not modified.
2652  *	The skb must be linear.
2653  */
2654 void skb_trim(struct sk_buff *skb, unsigned int len)
2655 {
2656 	if (skb->len > len)
2657 		__skb_trim(skb, len);
2658 }
2659 EXPORT_SYMBOL(skb_trim);
2660 
2661 /* Trims skb to length len. It can change skb pointers.
2662  */
2663 
2664 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2665 {
2666 	struct sk_buff **fragp;
2667 	struct sk_buff *frag;
2668 	int offset = skb_headlen(skb);
2669 	int nfrags = skb_shinfo(skb)->nr_frags;
2670 	int i;
2671 	int err;
2672 
2673 	if (skb_cloned(skb) &&
2674 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2675 		return err;
2676 
2677 	i = 0;
2678 	if (offset >= len)
2679 		goto drop_pages;
2680 
2681 	for (; i < nfrags; i++) {
2682 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2683 
2684 		if (end < len) {
2685 			offset = end;
2686 			continue;
2687 		}
2688 
2689 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2690 
2691 drop_pages:
2692 		skb_shinfo(skb)->nr_frags = i;
2693 
2694 		for (; i < nfrags; i++)
2695 			skb_frag_unref(skb, i);
2696 
2697 		if (skb_has_frag_list(skb))
2698 			skb_drop_fraglist(skb);
2699 		goto done;
2700 	}
2701 
2702 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2703 	     fragp = &frag->next) {
2704 		int end = offset + frag->len;
2705 
2706 		if (skb_shared(frag)) {
2707 			struct sk_buff *nfrag;
2708 
2709 			nfrag = skb_clone(frag, GFP_ATOMIC);
2710 			if (unlikely(!nfrag))
2711 				return -ENOMEM;
2712 
2713 			nfrag->next = frag->next;
2714 			consume_skb(frag);
2715 			frag = nfrag;
2716 			*fragp = frag;
2717 		}
2718 
2719 		if (end < len) {
2720 			offset = end;
2721 			continue;
2722 		}
2723 
2724 		if (end > len &&
2725 		    unlikely((err = pskb_trim(frag, len - offset))))
2726 			return err;
2727 
2728 		if (frag->next)
2729 			skb_drop_list(&frag->next);
2730 		break;
2731 	}
2732 
2733 done:
2734 	if (len > skb_headlen(skb)) {
2735 		skb->data_len -= skb->len - len;
2736 		skb->len       = len;
2737 	} else {
2738 		skb->len       = len;
2739 		skb->data_len  = 0;
2740 		skb_set_tail_pointer(skb, len);
2741 	}
2742 
2743 	if (!skb->sk || skb->destructor == sock_edemux)
2744 		skb_condense(skb);
2745 	return 0;
2746 }
2747 EXPORT_SYMBOL(___pskb_trim);
2748 
2749 /* Note : use pskb_trim_rcsum() instead of calling this directly
2750  */
2751 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2752 {
2753 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2754 		int delta = skb->len - len;
2755 
2756 		skb->csum = csum_block_sub(skb->csum,
2757 					   skb_checksum(skb, len, delta, 0),
2758 					   len);
2759 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2760 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2761 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2762 
2763 		if (offset + sizeof(__sum16) > hdlen)
2764 			return -EINVAL;
2765 	}
2766 	return __pskb_trim(skb, len);
2767 }
2768 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2769 
2770 /**
2771  *	__pskb_pull_tail - advance tail of skb header
2772  *	@skb: buffer to reallocate
2773  *	@delta: number of bytes to advance tail
2774  *
2775  *	The function makes a sense only on a fragmented &sk_buff,
2776  *	it expands header moving its tail forward and copying necessary
2777  *	data from fragmented part.
2778  *
2779  *	&sk_buff MUST have reference count of 1.
2780  *
2781  *	Returns %NULL (and &sk_buff does not change) if pull failed
2782  *	or value of new tail of skb in the case of success.
2783  *
2784  *	All the pointers pointing into skb header may change and must be
2785  *	reloaded after call to this function.
2786  */
2787 
2788 /* Moves tail of skb head forward, copying data from fragmented part,
2789  * when it is necessary.
2790  * 1. It may fail due to malloc failure.
2791  * 2. It may change skb pointers.
2792  *
2793  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2794  */
2795 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2796 {
2797 	/* If skb has not enough free space at tail, get new one
2798 	 * plus 128 bytes for future expansions. If we have enough
2799 	 * room at tail, reallocate without expansion only if skb is cloned.
2800 	 */
2801 	int i, k, eat = (skb->tail + delta) - skb->end;
2802 
2803 	if (eat > 0 || skb_cloned(skb)) {
2804 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2805 				     GFP_ATOMIC))
2806 			return NULL;
2807 	}
2808 
2809 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2810 			     skb_tail_pointer(skb), delta));
2811 
2812 	/* Optimization: no fragments, no reasons to preestimate
2813 	 * size of pulled pages. Superb.
2814 	 */
2815 	if (!skb_has_frag_list(skb))
2816 		goto pull_pages;
2817 
2818 	/* Estimate size of pulled pages. */
2819 	eat = delta;
2820 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2821 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2822 
2823 		if (size >= eat)
2824 			goto pull_pages;
2825 		eat -= size;
2826 	}
2827 
2828 	/* If we need update frag list, we are in troubles.
2829 	 * Certainly, it is possible to add an offset to skb data,
2830 	 * but taking into account that pulling is expected to
2831 	 * be very rare operation, it is worth to fight against
2832 	 * further bloating skb head and crucify ourselves here instead.
2833 	 * Pure masohism, indeed. 8)8)
2834 	 */
2835 	if (eat) {
2836 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2837 		struct sk_buff *clone = NULL;
2838 		struct sk_buff *insp = NULL;
2839 
2840 		do {
2841 			if (list->len <= eat) {
2842 				/* Eaten as whole. */
2843 				eat -= list->len;
2844 				list = list->next;
2845 				insp = list;
2846 			} else {
2847 				/* Eaten partially. */
2848 				if (skb_is_gso(skb) && !list->head_frag &&
2849 				    skb_headlen(list))
2850 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2851 
2852 				if (skb_shared(list)) {
2853 					/* Sucks! We need to fork list. :-( */
2854 					clone = skb_clone(list, GFP_ATOMIC);
2855 					if (!clone)
2856 						return NULL;
2857 					insp = list->next;
2858 					list = clone;
2859 				} else {
2860 					/* This may be pulled without
2861 					 * problems. */
2862 					insp = list;
2863 				}
2864 				if (!pskb_pull(list, eat)) {
2865 					kfree_skb(clone);
2866 					return NULL;
2867 				}
2868 				break;
2869 			}
2870 		} while (eat);
2871 
2872 		/* Free pulled out fragments. */
2873 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2874 			skb_shinfo(skb)->frag_list = list->next;
2875 			consume_skb(list);
2876 		}
2877 		/* And insert new clone at head. */
2878 		if (clone) {
2879 			clone->next = list;
2880 			skb_shinfo(skb)->frag_list = clone;
2881 		}
2882 	}
2883 	/* Success! Now we may commit changes to skb data. */
2884 
2885 pull_pages:
2886 	eat = delta;
2887 	k = 0;
2888 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2889 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2890 
2891 		if (size <= eat) {
2892 			skb_frag_unref(skb, i);
2893 			eat -= size;
2894 		} else {
2895 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2896 
2897 			*frag = skb_shinfo(skb)->frags[i];
2898 			if (eat) {
2899 				skb_frag_off_add(frag, eat);
2900 				skb_frag_size_sub(frag, eat);
2901 				if (!i)
2902 					goto end;
2903 				eat = 0;
2904 			}
2905 			k++;
2906 		}
2907 	}
2908 	skb_shinfo(skb)->nr_frags = k;
2909 
2910 end:
2911 	skb->tail     += delta;
2912 	skb->data_len -= delta;
2913 
2914 	if (!skb->data_len)
2915 		skb_zcopy_clear(skb, false);
2916 
2917 	return skb_tail_pointer(skb);
2918 }
2919 EXPORT_SYMBOL(__pskb_pull_tail);
2920 
2921 /**
2922  *	skb_copy_bits - copy bits from skb to kernel buffer
2923  *	@skb: source skb
2924  *	@offset: offset in source
2925  *	@to: destination buffer
2926  *	@len: number of bytes to copy
2927  *
2928  *	Copy the specified number of bytes from the source skb to the
2929  *	destination buffer.
2930  *
2931  *	CAUTION ! :
2932  *		If its prototype is ever changed,
2933  *		check arch/{*}/net/{*}.S files,
2934  *		since it is called from BPF assembly code.
2935  */
2936 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2937 {
2938 	int start = skb_headlen(skb);
2939 	struct sk_buff *frag_iter;
2940 	int i, copy;
2941 
2942 	if (offset > (int)skb->len - len)
2943 		goto fault;
2944 
2945 	/* Copy header. */
2946 	if ((copy = start - offset) > 0) {
2947 		if (copy > len)
2948 			copy = len;
2949 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2950 		if ((len -= copy) == 0)
2951 			return 0;
2952 		offset += copy;
2953 		to     += copy;
2954 	}
2955 
2956 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2957 		int end;
2958 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2959 
2960 		WARN_ON(start > offset + len);
2961 
2962 		end = start + skb_frag_size(f);
2963 		if ((copy = end - offset) > 0) {
2964 			u32 p_off, p_len, copied;
2965 			struct page *p;
2966 			u8 *vaddr;
2967 
2968 			if (copy > len)
2969 				copy = len;
2970 
2971 			skb_frag_foreach_page(f,
2972 					      skb_frag_off(f) + offset - start,
2973 					      copy, p, p_off, p_len, copied) {
2974 				vaddr = kmap_atomic(p);
2975 				memcpy(to + copied, vaddr + p_off, p_len);
2976 				kunmap_atomic(vaddr);
2977 			}
2978 
2979 			if ((len -= copy) == 0)
2980 				return 0;
2981 			offset += copy;
2982 			to     += copy;
2983 		}
2984 		start = end;
2985 	}
2986 
2987 	skb_walk_frags(skb, frag_iter) {
2988 		int end;
2989 
2990 		WARN_ON(start > offset + len);
2991 
2992 		end = start + frag_iter->len;
2993 		if ((copy = end - offset) > 0) {
2994 			if (copy > len)
2995 				copy = len;
2996 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2997 				goto fault;
2998 			if ((len -= copy) == 0)
2999 				return 0;
3000 			offset += copy;
3001 			to     += copy;
3002 		}
3003 		start = end;
3004 	}
3005 
3006 	if (!len)
3007 		return 0;
3008 
3009 fault:
3010 	return -EFAULT;
3011 }
3012 EXPORT_SYMBOL(skb_copy_bits);
3013 
3014 /*
3015  * Callback from splice_to_pipe(), if we need to release some pages
3016  * at the end of the spd in case we error'ed out in filling the pipe.
3017  */
3018 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3019 {
3020 	put_page(spd->pages[i]);
3021 }
3022 
3023 static struct page *linear_to_page(struct page *page, unsigned int *len,
3024 				   unsigned int *offset,
3025 				   struct sock *sk)
3026 {
3027 	struct page_frag *pfrag = sk_page_frag(sk);
3028 
3029 	if (!sk_page_frag_refill(sk, pfrag))
3030 		return NULL;
3031 
3032 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3033 
3034 	memcpy(page_address(pfrag->page) + pfrag->offset,
3035 	       page_address(page) + *offset, *len);
3036 	*offset = pfrag->offset;
3037 	pfrag->offset += *len;
3038 
3039 	return pfrag->page;
3040 }
3041 
3042 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3043 			     struct page *page,
3044 			     unsigned int offset)
3045 {
3046 	return	spd->nr_pages &&
3047 		spd->pages[spd->nr_pages - 1] == page &&
3048 		(spd->partial[spd->nr_pages - 1].offset +
3049 		 spd->partial[spd->nr_pages - 1].len == offset);
3050 }
3051 
3052 /*
3053  * Fill page/offset/length into spd, if it can hold more pages.
3054  */
3055 static bool spd_fill_page(struct splice_pipe_desc *spd,
3056 			  struct pipe_inode_info *pipe, struct page *page,
3057 			  unsigned int *len, unsigned int offset,
3058 			  bool linear,
3059 			  struct sock *sk)
3060 {
3061 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3062 		return true;
3063 
3064 	if (linear) {
3065 		page = linear_to_page(page, len, &offset, sk);
3066 		if (!page)
3067 			return true;
3068 	}
3069 	if (spd_can_coalesce(spd, page, offset)) {
3070 		spd->partial[spd->nr_pages - 1].len += *len;
3071 		return false;
3072 	}
3073 	get_page(page);
3074 	spd->pages[spd->nr_pages] = page;
3075 	spd->partial[spd->nr_pages].len = *len;
3076 	spd->partial[spd->nr_pages].offset = offset;
3077 	spd->nr_pages++;
3078 
3079 	return false;
3080 }
3081 
3082 static bool __splice_segment(struct page *page, unsigned int poff,
3083 			     unsigned int plen, unsigned int *off,
3084 			     unsigned int *len,
3085 			     struct splice_pipe_desc *spd, bool linear,
3086 			     struct sock *sk,
3087 			     struct pipe_inode_info *pipe)
3088 {
3089 	if (!*len)
3090 		return true;
3091 
3092 	/* skip this segment if already processed */
3093 	if (*off >= plen) {
3094 		*off -= plen;
3095 		return false;
3096 	}
3097 
3098 	/* ignore any bits we already processed */
3099 	poff += *off;
3100 	plen -= *off;
3101 	*off = 0;
3102 
3103 	do {
3104 		unsigned int flen = min(*len, plen);
3105 
3106 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3107 				  linear, sk))
3108 			return true;
3109 		poff += flen;
3110 		plen -= flen;
3111 		*len -= flen;
3112 	} while (*len && plen);
3113 
3114 	return false;
3115 }
3116 
3117 /*
3118  * Map linear and fragment data from the skb to spd. It reports true if the
3119  * pipe is full or if we already spliced the requested length.
3120  */
3121 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3122 			      unsigned int *offset, unsigned int *len,
3123 			      struct splice_pipe_desc *spd, struct sock *sk)
3124 {
3125 	int seg;
3126 	struct sk_buff *iter;
3127 
3128 	/* map the linear part :
3129 	 * If skb->head_frag is set, this 'linear' part is backed by a
3130 	 * fragment, and if the head is not shared with any clones then
3131 	 * we can avoid a copy since we own the head portion of this page.
3132 	 */
3133 	if (__splice_segment(virt_to_page(skb->data),
3134 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3135 			     skb_headlen(skb),
3136 			     offset, len, spd,
3137 			     skb_head_is_locked(skb),
3138 			     sk, pipe))
3139 		return true;
3140 
3141 	/*
3142 	 * then map the fragments
3143 	 */
3144 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3145 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3146 
3147 		if (__splice_segment(skb_frag_page(f),
3148 				     skb_frag_off(f), skb_frag_size(f),
3149 				     offset, len, spd, false, sk, pipe))
3150 			return true;
3151 	}
3152 
3153 	skb_walk_frags(skb, iter) {
3154 		if (*offset >= iter->len) {
3155 			*offset -= iter->len;
3156 			continue;
3157 		}
3158 		/* __skb_splice_bits() only fails if the output has no room
3159 		 * left, so no point in going over the frag_list for the error
3160 		 * case.
3161 		 */
3162 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3163 			return true;
3164 	}
3165 
3166 	return false;
3167 }
3168 
3169 /*
3170  * Map data from the skb to a pipe. Should handle both the linear part,
3171  * the fragments, and the frag list.
3172  */
3173 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3174 		    struct pipe_inode_info *pipe, unsigned int tlen,
3175 		    unsigned int flags)
3176 {
3177 	struct partial_page partial[MAX_SKB_FRAGS];
3178 	struct page *pages[MAX_SKB_FRAGS];
3179 	struct splice_pipe_desc spd = {
3180 		.pages = pages,
3181 		.partial = partial,
3182 		.nr_pages_max = MAX_SKB_FRAGS,
3183 		.ops = &nosteal_pipe_buf_ops,
3184 		.spd_release = sock_spd_release,
3185 	};
3186 	int ret = 0;
3187 
3188 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3189 
3190 	if (spd.nr_pages)
3191 		ret = splice_to_pipe(pipe, &spd);
3192 
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL_GPL(skb_splice_bits);
3196 
3197 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3198 {
3199 	struct socket *sock = sk->sk_socket;
3200 	size_t size = msg_data_left(msg);
3201 
3202 	if (!sock)
3203 		return -EINVAL;
3204 
3205 	if (!sock->ops->sendmsg_locked)
3206 		return sock_no_sendmsg_locked(sk, msg, size);
3207 
3208 	return sock->ops->sendmsg_locked(sk, msg, size);
3209 }
3210 
3211 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3212 {
3213 	struct socket *sock = sk->sk_socket;
3214 
3215 	if (!sock)
3216 		return -EINVAL;
3217 	return sock_sendmsg(sock, msg);
3218 }
3219 
3220 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3221 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3222 			   int len, sendmsg_func sendmsg)
3223 {
3224 	unsigned int orig_len = len;
3225 	struct sk_buff *head = skb;
3226 	unsigned short fragidx;
3227 	int slen, ret;
3228 
3229 do_frag_list:
3230 
3231 	/* Deal with head data */
3232 	while (offset < skb_headlen(skb) && len) {
3233 		struct kvec kv;
3234 		struct msghdr msg;
3235 
3236 		slen = min_t(int, len, skb_headlen(skb) - offset);
3237 		kv.iov_base = skb->data + offset;
3238 		kv.iov_len = slen;
3239 		memset(&msg, 0, sizeof(msg));
3240 		msg.msg_flags = MSG_DONTWAIT;
3241 
3242 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3243 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3244 				      sendmsg_unlocked, sk, &msg);
3245 		if (ret <= 0)
3246 			goto error;
3247 
3248 		offset += ret;
3249 		len -= ret;
3250 	}
3251 
3252 	/* All the data was skb head? */
3253 	if (!len)
3254 		goto out;
3255 
3256 	/* Make offset relative to start of frags */
3257 	offset -= skb_headlen(skb);
3258 
3259 	/* Find where we are in frag list */
3260 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3261 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3262 
3263 		if (offset < skb_frag_size(frag))
3264 			break;
3265 
3266 		offset -= skb_frag_size(frag);
3267 	}
3268 
3269 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3270 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3271 
3272 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3273 
3274 		while (slen) {
3275 			struct bio_vec bvec;
3276 			struct msghdr msg = {
3277 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3278 			};
3279 
3280 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3281 				      skb_frag_off(frag) + offset);
3282 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3283 				      slen);
3284 
3285 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3286 					      sendmsg_unlocked, sk, &msg);
3287 			if (ret <= 0)
3288 				goto error;
3289 
3290 			len -= ret;
3291 			offset += ret;
3292 			slen -= ret;
3293 		}
3294 
3295 		offset = 0;
3296 	}
3297 
3298 	if (len) {
3299 		/* Process any frag lists */
3300 
3301 		if (skb == head) {
3302 			if (skb_has_frag_list(skb)) {
3303 				skb = skb_shinfo(skb)->frag_list;
3304 				goto do_frag_list;
3305 			}
3306 		} else if (skb->next) {
3307 			skb = skb->next;
3308 			goto do_frag_list;
3309 		}
3310 	}
3311 
3312 out:
3313 	return orig_len - len;
3314 
3315 error:
3316 	return orig_len == len ? ret : orig_len - len;
3317 }
3318 
3319 /* Send skb data on a socket. Socket must be locked. */
3320 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3321 			 int len)
3322 {
3323 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3324 }
3325 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3326 
3327 /* Send skb data on a socket. Socket must be unlocked. */
3328 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3329 {
3330 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3331 }
3332 
3333 /**
3334  *	skb_store_bits - store bits from kernel buffer to skb
3335  *	@skb: destination buffer
3336  *	@offset: offset in destination
3337  *	@from: source buffer
3338  *	@len: number of bytes to copy
3339  *
3340  *	Copy the specified number of bytes from the source buffer to the
3341  *	destination skb.  This function handles all the messy bits of
3342  *	traversing fragment lists and such.
3343  */
3344 
3345 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3346 {
3347 	int start = skb_headlen(skb);
3348 	struct sk_buff *frag_iter;
3349 	int i, copy;
3350 
3351 	if (offset > (int)skb->len - len)
3352 		goto fault;
3353 
3354 	if ((copy = start - offset) > 0) {
3355 		if (copy > len)
3356 			copy = len;
3357 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3358 		if ((len -= copy) == 0)
3359 			return 0;
3360 		offset += copy;
3361 		from += copy;
3362 	}
3363 
3364 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3365 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3366 		int end;
3367 
3368 		WARN_ON(start > offset + len);
3369 
3370 		end = start + skb_frag_size(frag);
3371 		if ((copy = end - offset) > 0) {
3372 			u32 p_off, p_len, copied;
3373 			struct page *p;
3374 			u8 *vaddr;
3375 
3376 			if (copy > len)
3377 				copy = len;
3378 
3379 			skb_frag_foreach_page(frag,
3380 					      skb_frag_off(frag) + offset - start,
3381 					      copy, p, p_off, p_len, copied) {
3382 				vaddr = kmap_atomic(p);
3383 				memcpy(vaddr + p_off, from + copied, p_len);
3384 				kunmap_atomic(vaddr);
3385 			}
3386 
3387 			if ((len -= copy) == 0)
3388 				return 0;
3389 			offset += copy;
3390 			from += copy;
3391 		}
3392 		start = end;
3393 	}
3394 
3395 	skb_walk_frags(skb, frag_iter) {
3396 		int end;
3397 
3398 		WARN_ON(start > offset + len);
3399 
3400 		end = start + frag_iter->len;
3401 		if ((copy = end - offset) > 0) {
3402 			if (copy > len)
3403 				copy = len;
3404 			if (skb_store_bits(frag_iter, offset - start,
3405 					   from, copy))
3406 				goto fault;
3407 			if ((len -= copy) == 0)
3408 				return 0;
3409 			offset += copy;
3410 			from += copy;
3411 		}
3412 		start = end;
3413 	}
3414 	if (!len)
3415 		return 0;
3416 
3417 fault:
3418 	return -EFAULT;
3419 }
3420 EXPORT_SYMBOL(skb_store_bits);
3421 
3422 /* Checksum skb data. */
3423 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3424 		      __wsum csum, const struct skb_checksum_ops *ops)
3425 {
3426 	int start = skb_headlen(skb);
3427 	int i, copy = start - offset;
3428 	struct sk_buff *frag_iter;
3429 	int pos = 0;
3430 
3431 	/* Checksum header. */
3432 	if (copy > 0) {
3433 		if (copy > len)
3434 			copy = len;
3435 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3436 				       skb->data + offset, copy, csum);
3437 		if ((len -= copy) == 0)
3438 			return csum;
3439 		offset += copy;
3440 		pos	= copy;
3441 	}
3442 
3443 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3444 		int end;
3445 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446 
3447 		WARN_ON(start > offset + len);
3448 
3449 		end = start + skb_frag_size(frag);
3450 		if ((copy = end - offset) > 0) {
3451 			u32 p_off, p_len, copied;
3452 			struct page *p;
3453 			__wsum csum2;
3454 			u8 *vaddr;
3455 
3456 			if (copy > len)
3457 				copy = len;
3458 
3459 			skb_frag_foreach_page(frag,
3460 					      skb_frag_off(frag) + offset - start,
3461 					      copy, p, p_off, p_len, copied) {
3462 				vaddr = kmap_atomic(p);
3463 				csum2 = INDIRECT_CALL_1(ops->update,
3464 							csum_partial_ext,
3465 							vaddr + p_off, p_len, 0);
3466 				kunmap_atomic(vaddr);
3467 				csum = INDIRECT_CALL_1(ops->combine,
3468 						       csum_block_add_ext, csum,
3469 						       csum2, pos, p_len);
3470 				pos += p_len;
3471 			}
3472 
3473 			if (!(len -= copy))
3474 				return csum;
3475 			offset += copy;
3476 		}
3477 		start = end;
3478 	}
3479 
3480 	skb_walk_frags(skb, frag_iter) {
3481 		int end;
3482 
3483 		WARN_ON(start > offset + len);
3484 
3485 		end = start + frag_iter->len;
3486 		if ((copy = end - offset) > 0) {
3487 			__wsum csum2;
3488 			if (copy > len)
3489 				copy = len;
3490 			csum2 = __skb_checksum(frag_iter, offset - start,
3491 					       copy, 0, ops);
3492 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3493 					       csum, csum2, pos, copy);
3494 			if ((len -= copy) == 0)
3495 				return csum;
3496 			offset += copy;
3497 			pos    += copy;
3498 		}
3499 		start = end;
3500 	}
3501 	BUG_ON(len);
3502 
3503 	return csum;
3504 }
3505 EXPORT_SYMBOL(__skb_checksum);
3506 
3507 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3508 		    int len, __wsum csum)
3509 {
3510 	const struct skb_checksum_ops ops = {
3511 		.update  = csum_partial_ext,
3512 		.combine = csum_block_add_ext,
3513 	};
3514 
3515 	return __skb_checksum(skb, offset, len, csum, &ops);
3516 }
3517 EXPORT_SYMBOL(skb_checksum);
3518 
3519 /* Both of above in one bottle. */
3520 
3521 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3522 				    u8 *to, int len)
3523 {
3524 	int start = skb_headlen(skb);
3525 	int i, copy = start - offset;
3526 	struct sk_buff *frag_iter;
3527 	int pos = 0;
3528 	__wsum csum = 0;
3529 
3530 	/* Copy header. */
3531 	if (copy > 0) {
3532 		if (copy > len)
3533 			copy = len;
3534 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3535 						 copy);
3536 		if ((len -= copy) == 0)
3537 			return csum;
3538 		offset += copy;
3539 		to     += copy;
3540 		pos	= copy;
3541 	}
3542 
3543 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3544 		int end;
3545 
3546 		WARN_ON(start > offset + len);
3547 
3548 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3549 		if ((copy = end - offset) > 0) {
3550 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3551 			u32 p_off, p_len, copied;
3552 			struct page *p;
3553 			__wsum csum2;
3554 			u8 *vaddr;
3555 
3556 			if (copy > len)
3557 				copy = len;
3558 
3559 			skb_frag_foreach_page(frag,
3560 					      skb_frag_off(frag) + offset - start,
3561 					      copy, p, p_off, p_len, copied) {
3562 				vaddr = kmap_atomic(p);
3563 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3564 								  to + copied,
3565 								  p_len);
3566 				kunmap_atomic(vaddr);
3567 				csum = csum_block_add(csum, csum2, pos);
3568 				pos += p_len;
3569 			}
3570 
3571 			if (!(len -= copy))
3572 				return csum;
3573 			offset += copy;
3574 			to     += copy;
3575 		}
3576 		start = end;
3577 	}
3578 
3579 	skb_walk_frags(skb, frag_iter) {
3580 		__wsum csum2;
3581 		int end;
3582 
3583 		WARN_ON(start > offset + len);
3584 
3585 		end = start + frag_iter->len;
3586 		if ((copy = end - offset) > 0) {
3587 			if (copy > len)
3588 				copy = len;
3589 			csum2 = skb_copy_and_csum_bits(frag_iter,
3590 						       offset - start,
3591 						       to, copy);
3592 			csum = csum_block_add(csum, csum2, pos);
3593 			if ((len -= copy) == 0)
3594 				return csum;
3595 			offset += copy;
3596 			to     += copy;
3597 			pos    += copy;
3598 		}
3599 		start = end;
3600 	}
3601 	BUG_ON(len);
3602 	return csum;
3603 }
3604 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3605 
3606 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3607 {
3608 	__sum16 sum;
3609 
3610 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3611 	/* See comments in __skb_checksum_complete(). */
3612 	if (likely(!sum)) {
3613 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3614 		    !skb->csum_complete_sw)
3615 			netdev_rx_csum_fault(skb->dev, skb);
3616 	}
3617 	if (!skb_shared(skb))
3618 		skb->csum_valid = !sum;
3619 	return sum;
3620 }
3621 EXPORT_SYMBOL(__skb_checksum_complete_head);
3622 
3623 /* This function assumes skb->csum already holds pseudo header's checksum,
3624  * which has been changed from the hardware checksum, for example, by
3625  * __skb_checksum_validate_complete(). And, the original skb->csum must
3626  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3627  *
3628  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3629  * zero. The new checksum is stored back into skb->csum unless the skb is
3630  * shared.
3631  */
3632 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3633 {
3634 	__wsum csum;
3635 	__sum16 sum;
3636 
3637 	csum = skb_checksum(skb, 0, skb->len, 0);
3638 
3639 	sum = csum_fold(csum_add(skb->csum, csum));
3640 	/* This check is inverted, because we already knew the hardware
3641 	 * checksum is invalid before calling this function. So, if the
3642 	 * re-computed checksum is valid instead, then we have a mismatch
3643 	 * between the original skb->csum and skb_checksum(). This means either
3644 	 * the original hardware checksum is incorrect or we screw up skb->csum
3645 	 * when moving skb->data around.
3646 	 */
3647 	if (likely(!sum)) {
3648 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3649 		    !skb->csum_complete_sw)
3650 			netdev_rx_csum_fault(skb->dev, skb);
3651 	}
3652 
3653 	if (!skb_shared(skb)) {
3654 		/* Save full packet checksum */
3655 		skb->csum = csum;
3656 		skb->ip_summed = CHECKSUM_COMPLETE;
3657 		skb->csum_complete_sw = 1;
3658 		skb->csum_valid = !sum;
3659 	}
3660 
3661 	return sum;
3662 }
3663 EXPORT_SYMBOL(__skb_checksum_complete);
3664 
3665 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3666 {
3667 	net_warn_ratelimited(
3668 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3669 		__func__);
3670 	return 0;
3671 }
3672 
3673 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3674 				       int offset, int len)
3675 {
3676 	net_warn_ratelimited(
3677 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3678 		__func__);
3679 	return 0;
3680 }
3681 
3682 static const struct skb_checksum_ops default_crc32c_ops = {
3683 	.update  = warn_crc32c_csum_update,
3684 	.combine = warn_crc32c_csum_combine,
3685 };
3686 
3687 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3688 	&default_crc32c_ops;
3689 EXPORT_SYMBOL(crc32c_csum_stub);
3690 
3691  /**
3692  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3693  *	@from: source buffer
3694  *
3695  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3696  *	into skb_zerocopy().
3697  */
3698 unsigned int
3699 skb_zerocopy_headlen(const struct sk_buff *from)
3700 {
3701 	unsigned int hlen = 0;
3702 
3703 	if (!from->head_frag ||
3704 	    skb_headlen(from) < L1_CACHE_BYTES ||
3705 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3706 		hlen = skb_headlen(from);
3707 		if (!hlen)
3708 			hlen = from->len;
3709 	}
3710 
3711 	if (skb_has_frag_list(from))
3712 		hlen = from->len;
3713 
3714 	return hlen;
3715 }
3716 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3717 
3718 /**
3719  *	skb_zerocopy - Zero copy skb to skb
3720  *	@to: destination buffer
3721  *	@from: source buffer
3722  *	@len: number of bytes to copy from source buffer
3723  *	@hlen: size of linear headroom in destination buffer
3724  *
3725  *	Copies up to `len` bytes from `from` to `to` by creating references
3726  *	to the frags in the source buffer.
3727  *
3728  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3729  *	headroom in the `to` buffer.
3730  *
3731  *	Return value:
3732  *	0: everything is OK
3733  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3734  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3735  */
3736 int
3737 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3738 {
3739 	int i, j = 0;
3740 	int plen = 0; /* length of skb->head fragment */
3741 	int ret;
3742 	struct page *page;
3743 	unsigned int offset;
3744 
3745 	BUG_ON(!from->head_frag && !hlen);
3746 
3747 	/* dont bother with small payloads */
3748 	if (len <= skb_tailroom(to))
3749 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3750 
3751 	if (hlen) {
3752 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3753 		if (unlikely(ret))
3754 			return ret;
3755 		len -= hlen;
3756 	} else {
3757 		plen = min_t(int, skb_headlen(from), len);
3758 		if (plen) {
3759 			page = virt_to_head_page(from->head);
3760 			offset = from->data - (unsigned char *)page_address(page);
3761 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3762 					       offset, plen);
3763 			get_page(page);
3764 			j = 1;
3765 			len -= plen;
3766 		}
3767 	}
3768 
3769 	skb_len_add(to, len + plen);
3770 
3771 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3772 		skb_tx_error(from);
3773 		return -ENOMEM;
3774 	}
3775 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3776 
3777 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3778 		int size;
3779 
3780 		if (!len)
3781 			break;
3782 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3783 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3784 					len);
3785 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3786 		len -= size;
3787 		skb_frag_ref(to, j);
3788 		j++;
3789 	}
3790 	skb_shinfo(to)->nr_frags = j;
3791 
3792 	return 0;
3793 }
3794 EXPORT_SYMBOL_GPL(skb_zerocopy);
3795 
3796 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3797 {
3798 	__wsum csum;
3799 	long csstart;
3800 
3801 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3802 		csstart = skb_checksum_start_offset(skb);
3803 	else
3804 		csstart = skb_headlen(skb);
3805 
3806 	BUG_ON(csstart > skb_headlen(skb));
3807 
3808 	skb_copy_from_linear_data(skb, to, csstart);
3809 
3810 	csum = 0;
3811 	if (csstart != skb->len)
3812 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3813 					      skb->len - csstart);
3814 
3815 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3816 		long csstuff = csstart + skb->csum_offset;
3817 
3818 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3819 	}
3820 }
3821 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3822 
3823 /**
3824  *	skb_dequeue - remove from the head of the queue
3825  *	@list: list to dequeue from
3826  *
3827  *	Remove the head of the list. The list lock is taken so the function
3828  *	may be used safely with other locking list functions. The head item is
3829  *	returned or %NULL if the list is empty.
3830  */
3831 
3832 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3833 {
3834 	unsigned long flags;
3835 	struct sk_buff *result;
3836 
3837 	spin_lock_irqsave(&list->lock, flags);
3838 	result = __skb_dequeue(list);
3839 	spin_unlock_irqrestore(&list->lock, flags);
3840 	return result;
3841 }
3842 EXPORT_SYMBOL(skb_dequeue);
3843 
3844 /**
3845  *	skb_dequeue_tail - remove from the tail of the queue
3846  *	@list: list to dequeue from
3847  *
3848  *	Remove the tail of the list. The list lock is taken so the function
3849  *	may be used safely with other locking list functions. The tail item is
3850  *	returned or %NULL if the list is empty.
3851  */
3852 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3853 {
3854 	unsigned long flags;
3855 	struct sk_buff *result;
3856 
3857 	spin_lock_irqsave(&list->lock, flags);
3858 	result = __skb_dequeue_tail(list);
3859 	spin_unlock_irqrestore(&list->lock, flags);
3860 	return result;
3861 }
3862 EXPORT_SYMBOL(skb_dequeue_tail);
3863 
3864 /**
3865  *	skb_queue_purge_reason - empty a list
3866  *	@list: list to empty
3867  *	@reason: drop reason
3868  *
3869  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3870  *	the list and one reference dropped. This function takes the list
3871  *	lock and is atomic with respect to other list locking functions.
3872  */
3873 void skb_queue_purge_reason(struct sk_buff_head *list,
3874 			    enum skb_drop_reason reason)
3875 {
3876 	struct sk_buff_head tmp;
3877 	unsigned long flags;
3878 
3879 	if (skb_queue_empty_lockless(list))
3880 		return;
3881 
3882 	__skb_queue_head_init(&tmp);
3883 
3884 	spin_lock_irqsave(&list->lock, flags);
3885 	skb_queue_splice_init(list, &tmp);
3886 	spin_unlock_irqrestore(&list->lock, flags);
3887 
3888 	__skb_queue_purge_reason(&tmp, reason);
3889 }
3890 EXPORT_SYMBOL(skb_queue_purge_reason);
3891 
3892 /**
3893  *	skb_rbtree_purge - empty a skb rbtree
3894  *	@root: root of the rbtree to empty
3895  *	Return value: the sum of truesizes of all purged skbs.
3896  *
3897  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3898  *	the list and one reference dropped. This function does not take
3899  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3900  *	out-of-order queue is protected by the socket lock).
3901  */
3902 unsigned int skb_rbtree_purge(struct rb_root *root)
3903 {
3904 	struct rb_node *p = rb_first(root);
3905 	unsigned int sum = 0;
3906 
3907 	while (p) {
3908 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3909 
3910 		p = rb_next(p);
3911 		rb_erase(&skb->rbnode, root);
3912 		sum += skb->truesize;
3913 		kfree_skb(skb);
3914 	}
3915 	return sum;
3916 }
3917 
3918 void skb_errqueue_purge(struct sk_buff_head *list)
3919 {
3920 	struct sk_buff *skb, *next;
3921 	struct sk_buff_head kill;
3922 	unsigned long flags;
3923 
3924 	__skb_queue_head_init(&kill);
3925 
3926 	spin_lock_irqsave(&list->lock, flags);
3927 	skb_queue_walk_safe(list, skb, next) {
3928 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3929 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3930 			continue;
3931 		__skb_unlink(skb, list);
3932 		__skb_queue_tail(&kill, skb);
3933 	}
3934 	spin_unlock_irqrestore(&list->lock, flags);
3935 	__skb_queue_purge(&kill);
3936 }
3937 EXPORT_SYMBOL(skb_errqueue_purge);
3938 
3939 /**
3940  *	skb_queue_head - queue a buffer at the list head
3941  *	@list: list to use
3942  *	@newsk: buffer to queue
3943  *
3944  *	Queue a buffer at the start of the list. This function takes the
3945  *	list lock and can be used safely with other locking &sk_buff functions
3946  *	safely.
3947  *
3948  *	A buffer cannot be placed on two lists at the same time.
3949  */
3950 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3951 {
3952 	unsigned long flags;
3953 
3954 	spin_lock_irqsave(&list->lock, flags);
3955 	__skb_queue_head(list, newsk);
3956 	spin_unlock_irqrestore(&list->lock, flags);
3957 }
3958 EXPORT_SYMBOL(skb_queue_head);
3959 
3960 /**
3961  *	skb_queue_tail - queue a buffer at the list tail
3962  *	@list: list to use
3963  *	@newsk: buffer to queue
3964  *
3965  *	Queue a buffer at the tail of the list. This function takes the
3966  *	list lock and can be used safely with other locking &sk_buff functions
3967  *	safely.
3968  *
3969  *	A buffer cannot be placed on two lists at the same time.
3970  */
3971 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3972 {
3973 	unsigned long flags;
3974 
3975 	spin_lock_irqsave(&list->lock, flags);
3976 	__skb_queue_tail(list, newsk);
3977 	spin_unlock_irqrestore(&list->lock, flags);
3978 }
3979 EXPORT_SYMBOL(skb_queue_tail);
3980 
3981 /**
3982  *	skb_unlink	-	remove a buffer from a list
3983  *	@skb: buffer to remove
3984  *	@list: list to use
3985  *
3986  *	Remove a packet from a list. The list locks are taken and this
3987  *	function is atomic with respect to other list locked calls
3988  *
3989  *	You must know what list the SKB is on.
3990  */
3991 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3992 {
3993 	unsigned long flags;
3994 
3995 	spin_lock_irqsave(&list->lock, flags);
3996 	__skb_unlink(skb, list);
3997 	spin_unlock_irqrestore(&list->lock, flags);
3998 }
3999 EXPORT_SYMBOL(skb_unlink);
4000 
4001 /**
4002  *	skb_append	-	append a buffer
4003  *	@old: buffer to insert after
4004  *	@newsk: buffer to insert
4005  *	@list: list to use
4006  *
4007  *	Place a packet after a given packet in a list. The list locks are taken
4008  *	and this function is atomic with respect to other list locked calls.
4009  *	A buffer cannot be placed on two lists at the same time.
4010  */
4011 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4012 {
4013 	unsigned long flags;
4014 
4015 	spin_lock_irqsave(&list->lock, flags);
4016 	__skb_queue_after(list, old, newsk);
4017 	spin_unlock_irqrestore(&list->lock, flags);
4018 }
4019 EXPORT_SYMBOL(skb_append);
4020 
4021 static inline void skb_split_inside_header(struct sk_buff *skb,
4022 					   struct sk_buff* skb1,
4023 					   const u32 len, const int pos)
4024 {
4025 	int i;
4026 
4027 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4028 					 pos - len);
4029 	/* And move data appendix as is. */
4030 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4031 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4032 
4033 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4034 	skb_shinfo(skb)->nr_frags  = 0;
4035 	skb1->data_len		   = skb->data_len;
4036 	skb1->len		   += skb1->data_len;
4037 	skb->data_len		   = 0;
4038 	skb->len		   = len;
4039 	skb_set_tail_pointer(skb, len);
4040 }
4041 
4042 static inline void skb_split_no_header(struct sk_buff *skb,
4043 				       struct sk_buff* skb1,
4044 				       const u32 len, int pos)
4045 {
4046 	int i, k = 0;
4047 	const int nfrags = skb_shinfo(skb)->nr_frags;
4048 
4049 	skb_shinfo(skb)->nr_frags = 0;
4050 	skb1->len		  = skb1->data_len = skb->len - len;
4051 	skb->len		  = len;
4052 	skb->data_len		  = len - pos;
4053 
4054 	for (i = 0; i < nfrags; i++) {
4055 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4056 
4057 		if (pos + size > len) {
4058 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4059 
4060 			if (pos < len) {
4061 				/* Split frag.
4062 				 * We have two variants in this case:
4063 				 * 1. Move all the frag to the second
4064 				 *    part, if it is possible. F.e.
4065 				 *    this approach is mandatory for TUX,
4066 				 *    where splitting is expensive.
4067 				 * 2. Split is accurately. We make this.
4068 				 */
4069 				skb_frag_ref(skb, i);
4070 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4071 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4072 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4073 				skb_shinfo(skb)->nr_frags++;
4074 			}
4075 			k++;
4076 		} else
4077 			skb_shinfo(skb)->nr_frags++;
4078 		pos += size;
4079 	}
4080 	skb_shinfo(skb1)->nr_frags = k;
4081 }
4082 
4083 /**
4084  * skb_split - Split fragmented skb to two parts at length len.
4085  * @skb: the buffer to split
4086  * @skb1: the buffer to receive the second part
4087  * @len: new length for skb
4088  */
4089 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4090 {
4091 	int pos = skb_headlen(skb);
4092 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4093 
4094 	skb_zcopy_downgrade_managed(skb);
4095 
4096 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4097 	skb_zerocopy_clone(skb1, skb, 0);
4098 	if (len < pos)	/* Split line is inside header. */
4099 		skb_split_inside_header(skb, skb1, len, pos);
4100 	else		/* Second chunk has no header, nothing to copy. */
4101 		skb_split_no_header(skb, skb1, len, pos);
4102 }
4103 EXPORT_SYMBOL(skb_split);
4104 
4105 /* Shifting from/to a cloned skb is a no-go.
4106  *
4107  * Caller cannot keep skb_shinfo related pointers past calling here!
4108  */
4109 static int skb_prepare_for_shift(struct sk_buff *skb)
4110 {
4111 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4112 }
4113 
4114 /**
4115  * skb_shift - Shifts paged data partially from skb to another
4116  * @tgt: buffer into which tail data gets added
4117  * @skb: buffer from which the paged data comes from
4118  * @shiftlen: shift up to this many bytes
4119  *
4120  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4121  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4122  * It's up to caller to free skb if everything was shifted.
4123  *
4124  * If @tgt runs out of frags, the whole operation is aborted.
4125  *
4126  * Skb cannot include anything else but paged data while tgt is allowed
4127  * to have non-paged data as well.
4128  *
4129  * TODO: full sized shift could be optimized but that would need
4130  * specialized skb free'er to handle frags without up-to-date nr_frags.
4131  */
4132 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4133 {
4134 	int from, to, merge, todo;
4135 	skb_frag_t *fragfrom, *fragto;
4136 
4137 	BUG_ON(shiftlen > skb->len);
4138 
4139 	if (skb_headlen(skb))
4140 		return 0;
4141 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4142 		return 0;
4143 
4144 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4145 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4146 
4147 	todo = shiftlen;
4148 	from = 0;
4149 	to = skb_shinfo(tgt)->nr_frags;
4150 	fragfrom = &skb_shinfo(skb)->frags[from];
4151 
4152 	/* Actual merge is delayed until the point when we know we can
4153 	 * commit all, so that we don't have to undo partial changes
4154 	 */
4155 	if (!to ||
4156 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4157 			      skb_frag_off(fragfrom))) {
4158 		merge = -1;
4159 	} else {
4160 		merge = to - 1;
4161 
4162 		todo -= skb_frag_size(fragfrom);
4163 		if (todo < 0) {
4164 			if (skb_prepare_for_shift(skb) ||
4165 			    skb_prepare_for_shift(tgt))
4166 				return 0;
4167 
4168 			/* All previous frag pointers might be stale! */
4169 			fragfrom = &skb_shinfo(skb)->frags[from];
4170 			fragto = &skb_shinfo(tgt)->frags[merge];
4171 
4172 			skb_frag_size_add(fragto, shiftlen);
4173 			skb_frag_size_sub(fragfrom, shiftlen);
4174 			skb_frag_off_add(fragfrom, shiftlen);
4175 
4176 			goto onlymerged;
4177 		}
4178 
4179 		from++;
4180 	}
4181 
4182 	/* Skip full, not-fitting skb to avoid expensive operations */
4183 	if ((shiftlen == skb->len) &&
4184 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4185 		return 0;
4186 
4187 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4188 		return 0;
4189 
4190 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4191 		if (to == MAX_SKB_FRAGS)
4192 			return 0;
4193 
4194 		fragfrom = &skb_shinfo(skb)->frags[from];
4195 		fragto = &skb_shinfo(tgt)->frags[to];
4196 
4197 		if (todo >= skb_frag_size(fragfrom)) {
4198 			*fragto = *fragfrom;
4199 			todo -= skb_frag_size(fragfrom);
4200 			from++;
4201 			to++;
4202 
4203 		} else {
4204 			__skb_frag_ref(fragfrom);
4205 			skb_frag_page_copy(fragto, fragfrom);
4206 			skb_frag_off_copy(fragto, fragfrom);
4207 			skb_frag_size_set(fragto, todo);
4208 
4209 			skb_frag_off_add(fragfrom, todo);
4210 			skb_frag_size_sub(fragfrom, todo);
4211 			todo = 0;
4212 
4213 			to++;
4214 			break;
4215 		}
4216 	}
4217 
4218 	/* Ready to "commit" this state change to tgt */
4219 	skb_shinfo(tgt)->nr_frags = to;
4220 
4221 	if (merge >= 0) {
4222 		fragfrom = &skb_shinfo(skb)->frags[0];
4223 		fragto = &skb_shinfo(tgt)->frags[merge];
4224 
4225 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4226 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4227 	}
4228 
4229 	/* Reposition in the original skb */
4230 	to = 0;
4231 	while (from < skb_shinfo(skb)->nr_frags)
4232 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4233 	skb_shinfo(skb)->nr_frags = to;
4234 
4235 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4236 
4237 onlymerged:
4238 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4239 	 * the other hand might need it if it needs to be resent
4240 	 */
4241 	tgt->ip_summed = CHECKSUM_PARTIAL;
4242 	skb->ip_summed = CHECKSUM_PARTIAL;
4243 
4244 	skb_len_add(skb, -shiftlen);
4245 	skb_len_add(tgt, shiftlen);
4246 
4247 	return shiftlen;
4248 }
4249 
4250 /**
4251  * skb_prepare_seq_read - Prepare a sequential read of skb data
4252  * @skb: the buffer to read
4253  * @from: lower offset of data to be read
4254  * @to: upper offset of data to be read
4255  * @st: state variable
4256  *
4257  * Initializes the specified state variable. Must be called before
4258  * invoking skb_seq_read() for the first time.
4259  */
4260 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4261 			  unsigned int to, struct skb_seq_state *st)
4262 {
4263 	st->lower_offset = from;
4264 	st->upper_offset = to;
4265 	st->root_skb = st->cur_skb = skb;
4266 	st->frag_idx = st->stepped_offset = 0;
4267 	st->frag_data = NULL;
4268 	st->frag_off = 0;
4269 }
4270 EXPORT_SYMBOL(skb_prepare_seq_read);
4271 
4272 /**
4273  * skb_seq_read - Sequentially read skb data
4274  * @consumed: number of bytes consumed by the caller so far
4275  * @data: destination pointer for data to be returned
4276  * @st: state variable
4277  *
4278  * Reads a block of skb data at @consumed relative to the
4279  * lower offset specified to skb_prepare_seq_read(). Assigns
4280  * the head of the data block to @data and returns the length
4281  * of the block or 0 if the end of the skb data or the upper
4282  * offset has been reached.
4283  *
4284  * The caller is not required to consume all of the data
4285  * returned, i.e. @consumed is typically set to the number
4286  * of bytes already consumed and the next call to
4287  * skb_seq_read() will return the remaining part of the block.
4288  *
4289  * Note 1: The size of each block of data returned can be arbitrary,
4290  *       this limitation is the cost for zerocopy sequential
4291  *       reads of potentially non linear data.
4292  *
4293  * Note 2: Fragment lists within fragments are not implemented
4294  *       at the moment, state->root_skb could be replaced with
4295  *       a stack for this purpose.
4296  */
4297 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4298 			  struct skb_seq_state *st)
4299 {
4300 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4301 	skb_frag_t *frag;
4302 
4303 	if (unlikely(abs_offset >= st->upper_offset)) {
4304 		if (st->frag_data) {
4305 			kunmap_atomic(st->frag_data);
4306 			st->frag_data = NULL;
4307 		}
4308 		return 0;
4309 	}
4310 
4311 next_skb:
4312 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4313 
4314 	if (abs_offset < block_limit && !st->frag_data) {
4315 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4316 		return block_limit - abs_offset;
4317 	}
4318 
4319 	if (st->frag_idx == 0 && !st->frag_data)
4320 		st->stepped_offset += skb_headlen(st->cur_skb);
4321 
4322 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4323 		unsigned int pg_idx, pg_off, pg_sz;
4324 
4325 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4326 
4327 		pg_idx = 0;
4328 		pg_off = skb_frag_off(frag);
4329 		pg_sz = skb_frag_size(frag);
4330 
4331 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4332 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4333 			pg_off = offset_in_page(pg_off + st->frag_off);
4334 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4335 						    PAGE_SIZE - pg_off);
4336 		}
4337 
4338 		block_limit = pg_sz + st->stepped_offset;
4339 		if (abs_offset < block_limit) {
4340 			if (!st->frag_data)
4341 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4342 
4343 			*data = (u8 *)st->frag_data + pg_off +
4344 				(abs_offset - st->stepped_offset);
4345 
4346 			return block_limit - abs_offset;
4347 		}
4348 
4349 		if (st->frag_data) {
4350 			kunmap_atomic(st->frag_data);
4351 			st->frag_data = NULL;
4352 		}
4353 
4354 		st->stepped_offset += pg_sz;
4355 		st->frag_off += pg_sz;
4356 		if (st->frag_off == skb_frag_size(frag)) {
4357 			st->frag_off = 0;
4358 			st->frag_idx++;
4359 		}
4360 	}
4361 
4362 	if (st->frag_data) {
4363 		kunmap_atomic(st->frag_data);
4364 		st->frag_data = NULL;
4365 	}
4366 
4367 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4368 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4369 		st->frag_idx = 0;
4370 		goto next_skb;
4371 	} else if (st->cur_skb->next) {
4372 		st->cur_skb = st->cur_skb->next;
4373 		st->frag_idx = 0;
4374 		goto next_skb;
4375 	}
4376 
4377 	return 0;
4378 }
4379 EXPORT_SYMBOL(skb_seq_read);
4380 
4381 /**
4382  * skb_abort_seq_read - Abort a sequential read of skb data
4383  * @st: state variable
4384  *
4385  * Must be called if skb_seq_read() was not called until it
4386  * returned 0.
4387  */
4388 void skb_abort_seq_read(struct skb_seq_state *st)
4389 {
4390 	if (st->frag_data)
4391 		kunmap_atomic(st->frag_data);
4392 }
4393 EXPORT_SYMBOL(skb_abort_seq_read);
4394 
4395 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4396 
4397 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4398 					  struct ts_config *conf,
4399 					  struct ts_state *state)
4400 {
4401 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4402 }
4403 
4404 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4405 {
4406 	skb_abort_seq_read(TS_SKB_CB(state));
4407 }
4408 
4409 /**
4410  * skb_find_text - Find a text pattern in skb data
4411  * @skb: the buffer to look in
4412  * @from: search offset
4413  * @to: search limit
4414  * @config: textsearch configuration
4415  *
4416  * Finds a pattern in the skb data according to the specified
4417  * textsearch configuration. Use textsearch_next() to retrieve
4418  * subsequent occurrences of the pattern. Returns the offset
4419  * to the first occurrence or UINT_MAX if no match was found.
4420  */
4421 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4422 			   unsigned int to, struct ts_config *config)
4423 {
4424 	unsigned int patlen = config->ops->get_pattern_len(config);
4425 	struct ts_state state;
4426 	unsigned int ret;
4427 
4428 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4429 
4430 	config->get_next_block = skb_ts_get_next_block;
4431 	config->finish = skb_ts_finish;
4432 
4433 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4434 
4435 	ret = textsearch_find(config, &state);
4436 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4437 }
4438 EXPORT_SYMBOL(skb_find_text);
4439 
4440 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4441 			 int offset, size_t size, size_t max_frags)
4442 {
4443 	int i = skb_shinfo(skb)->nr_frags;
4444 
4445 	if (skb_can_coalesce(skb, i, page, offset)) {
4446 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4447 	} else if (i < max_frags) {
4448 		skb_zcopy_downgrade_managed(skb);
4449 		get_page(page);
4450 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4451 	} else {
4452 		return -EMSGSIZE;
4453 	}
4454 
4455 	return 0;
4456 }
4457 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4458 
4459 /**
4460  *	skb_pull_rcsum - pull skb and update receive checksum
4461  *	@skb: buffer to update
4462  *	@len: length of data pulled
4463  *
4464  *	This function performs an skb_pull on the packet and updates
4465  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4466  *	receive path processing instead of skb_pull unless you know
4467  *	that the checksum difference is zero (e.g., a valid IP header)
4468  *	or you are setting ip_summed to CHECKSUM_NONE.
4469  */
4470 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4471 {
4472 	unsigned char *data = skb->data;
4473 
4474 	BUG_ON(len > skb->len);
4475 	__skb_pull(skb, len);
4476 	skb_postpull_rcsum(skb, data, len);
4477 	return skb->data;
4478 }
4479 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4480 
4481 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4482 {
4483 	skb_frag_t head_frag;
4484 	struct page *page;
4485 
4486 	page = virt_to_head_page(frag_skb->head);
4487 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4488 				(unsigned char *)page_address(page),
4489 				skb_headlen(frag_skb));
4490 	return head_frag;
4491 }
4492 
4493 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4494 				 netdev_features_t features,
4495 				 unsigned int offset)
4496 {
4497 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4498 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4499 	unsigned int delta_truesize = 0;
4500 	unsigned int delta_len = 0;
4501 	struct sk_buff *tail = NULL;
4502 	struct sk_buff *nskb, *tmp;
4503 	int len_diff, err;
4504 
4505 	skb_push(skb, -skb_network_offset(skb) + offset);
4506 
4507 	/* Ensure the head is writeable before touching the shared info */
4508 	err = skb_unclone(skb, GFP_ATOMIC);
4509 	if (err)
4510 		goto err_linearize;
4511 
4512 	skb_shinfo(skb)->frag_list = NULL;
4513 
4514 	while (list_skb) {
4515 		nskb = list_skb;
4516 		list_skb = list_skb->next;
4517 
4518 		err = 0;
4519 		delta_truesize += nskb->truesize;
4520 		if (skb_shared(nskb)) {
4521 			tmp = skb_clone(nskb, GFP_ATOMIC);
4522 			if (tmp) {
4523 				consume_skb(nskb);
4524 				nskb = tmp;
4525 				err = skb_unclone(nskb, GFP_ATOMIC);
4526 			} else {
4527 				err = -ENOMEM;
4528 			}
4529 		}
4530 
4531 		if (!tail)
4532 			skb->next = nskb;
4533 		else
4534 			tail->next = nskb;
4535 
4536 		if (unlikely(err)) {
4537 			nskb->next = list_skb;
4538 			goto err_linearize;
4539 		}
4540 
4541 		tail = nskb;
4542 
4543 		delta_len += nskb->len;
4544 
4545 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4546 
4547 		skb_release_head_state(nskb);
4548 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4549 		__copy_skb_header(nskb, skb);
4550 
4551 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4552 		nskb->transport_header += len_diff;
4553 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4554 						 nskb->data - tnl_hlen,
4555 						 offset + tnl_hlen);
4556 
4557 		if (skb_needs_linearize(nskb, features) &&
4558 		    __skb_linearize(nskb))
4559 			goto err_linearize;
4560 	}
4561 
4562 	skb->truesize = skb->truesize - delta_truesize;
4563 	skb->data_len = skb->data_len - delta_len;
4564 	skb->len = skb->len - delta_len;
4565 
4566 	skb_gso_reset(skb);
4567 
4568 	skb->prev = tail;
4569 
4570 	if (skb_needs_linearize(skb, features) &&
4571 	    __skb_linearize(skb))
4572 		goto err_linearize;
4573 
4574 	skb_get(skb);
4575 
4576 	return skb;
4577 
4578 err_linearize:
4579 	kfree_skb_list(skb->next);
4580 	skb->next = NULL;
4581 	return ERR_PTR(-ENOMEM);
4582 }
4583 EXPORT_SYMBOL_GPL(skb_segment_list);
4584 
4585 /**
4586  *	skb_segment - Perform protocol segmentation on skb.
4587  *	@head_skb: buffer to segment
4588  *	@features: features for the output path (see dev->features)
4589  *
4590  *	This function performs segmentation on the given skb.  It returns
4591  *	a pointer to the first in a list of new skbs for the segments.
4592  *	In case of error it returns ERR_PTR(err).
4593  */
4594 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4595 			    netdev_features_t features)
4596 {
4597 	struct sk_buff *segs = NULL;
4598 	struct sk_buff *tail = NULL;
4599 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4600 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4601 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4602 	unsigned int offset = doffset;
4603 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4604 	unsigned int partial_segs = 0;
4605 	unsigned int headroom;
4606 	unsigned int len = head_skb->len;
4607 	struct sk_buff *frag_skb;
4608 	skb_frag_t *frag;
4609 	__be16 proto;
4610 	bool csum, sg;
4611 	int err = -ENOMEM;
4612 	int i = 0;
4613 	int nfrags, pos;
4614 
4615 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4616 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4617 		struct sk_buff *check_skb;
4618 
4619 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4620 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4621 				/* gso_size is untrusted, and we have a frag_list with
4622 				 * a linear non head_frag item.
4623 				 *
4624 				 * If head_skb's headlen does not fit requested gso_size,
4625 				 * it means that the frag_list members do NOT terminate
4626 				 * on exact gso_size boundaries. Hence we cannot perform
4627 				 * skb_frag_t page sharing. Therefore we must fallback to
4628 				 * copying the frag_list skbs; we do so by disabling SG.
4629 				 */
4630 				features &= ~NETIF_F_SG;
4631 				break;
4632 			}
4633 		}
4634 	}
4635 
4636 	__skb_push(head_skb, doffset);
4637 	proto = skb_network_protocol(head_skb, NULL);
4638 	if (unlikely(!proto))
4639 		return ERR_PTR(-EINVAL);
4640 
4641 	sg = !!(features & NETIF_F_SG);
4642 	csum = !!can_checksum_protocol(features, proto);
4643 
4644 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4645 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4646 			struct sk_buff *iter;
4647 			unsigned int frag_len;
4648 
4649 			if (!list_skb ||
4650 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4651 				goto normal;
4652 
4653 			/* If we get here then all the required
4654 			 * GSO features except frag_list are supported.
4655 			 * Try to split the SKB to multiple GSO SKBs
4656 			 * with no frag_list.
4657 			 * Currently we can do that only when the buffers don't
4658 			 * have a linear part and all the buffers except
4659 			 * the last are of the same length.
4660 			 */
4661 			frag_len = list_skb->len;
4662 			skb_walk_frags(head_skb, iter) {
4663 				if (frag_len != iter->len && iter->next)
4664 					goto normal;
4665 				if (skb_headlen(iter) && !iter->head_frag)
4666 					goto normal;
4667 
4668 				len -= iter->len;
4669 			}
4670 
4671 			if (len != frag_len)
4672 				goto normal;
4673 		}
4674 
4675 		/* GSO partial only requires that we trim off any excess that
4676 		 * doesn't fit into an MSS sized block, so take care of that
4677 		 * now.
4678 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4679 		 */
4680 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4681 		if (partial_segs > 1)
4682 			mss *= partial_segs;
4683 		else
4684 			partial_segs = 0;
4685 	}
4686 
4687 normal:
4688 	headroom = skb_headroom(head_skb);
4689 	pos = skb_headlen(head_skb);
4690 
4691 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4692 		return ERR_PTR(-ENOMEM);
4693 
4694 	nfrags = skb_shinfo(head_skb)->nr_frags;
4695 	frag = skb_shinfo(head_skb)->frags;
4696 	frag_skb = head_skb;
4697 
4698 	do {
4699 		struct sk_buff *nskb;
4700 		skb_frag_t *nskb_frag;
4701 		int hsize;
4702 		int size;
4703 
4704 		if (unlikely(mss == GSO_BY_FRAGS)) {
4705 			len = list_skb->len;
4706 		} else {
4707 			len = head_skb->len - offset;
4708 			if (len > mss)
4709 				len = mss;
4710 		}
4711 
4712 		hsize = skb_headlen(head_skb) - offset;
4713 
4714 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4715 		    (skb_headlen(list_skb) == len || sg)) {
4716 			BUG_ON(skb_headlen(list_skb) > len);
4717 
4718 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4719 			if (unlikely(!nskb))
4720 				goto err;
4721 
4722 			i = 0;
4723 			nfrags = skb_shinfo(list_skb)->nr_frags;
4724 			frag = skb_shinfo(list_skb)->frags;
4725 			frag_skb = list_skb;
4726 			pos += skb_headlen(list_skb);
4727 
4728 			while (pos < offset + len) {
4729 				BUG_ON(i >= nfrags);
4730 
4731 				size = skb_frag_size(frag);
4732 				if (pos + size > offset + len)
4733 					break;
4734 
4735 				i++;
4736 				pos += size;
4737 				frag++;
4738 			}
4739 
4740 			list_skb = list_skb->next;
4741 
4742 			if (unlikely(pskb_trim(nskb, len))) {
4743 				kfree_skb(nskb);
4744 				goto err;
4745 			}
4746 
4747 			hsize = skb_end_offset(nskb);
4748 			if (skb_cow_head(nskb, doffset + headroom)) {
4749 				kfree_skb(nskb);
4750 				goto err;
4751 			}
4752 
4753 			nskb->truesize += skb_end_offset(nskb) - hsize;
4754 			skb_release_head_state(nskb);
4755 			__skb_push(nskb, doffset);
4756 		} else {
4757 			if (hsize < 0)
4758 				hsize = 0;
4759 			if (hsize > len || !sg)
4760 				hsize = len;
4761 
4762 			nskb = __alloc_skb(hsize + doffset + headroom,
4763 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4764 					   NUMA_NO_NODE);
4765 
4766 			if (unlikely(!nskb))
4767 				goto err;
4768 
4769 			skb_reserve(nskb, headroom);
4770 			__skb_put(nskb, doffset);
4771 		}
4772 
4773 		if (segs)
4774 			tail->next = nskb;
4775 		else
4776 			segs = nskb;
4777 		tail = nskb;
4778 
4779 		__copy_skb_header(nskb, head_skb);
4780 
4781 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4782 		skb_reset_mac_len(nskb);
4783 
4784 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4785 						 nskb->data - tnl_hlen,
4786 						 doffset + tnl_hlen);
4787 
4788 		if (nskb->len == len + doffset)
4789 			goto perform_csum_check;
4790 
4791 		if (!sg) {
4792 			if (!csum) {
4793 				if (!nskb->remcsum_offload)
4794 					nskb->ip_summed = CHECKSUM_NONE;
4795 				SKB_GSO_CB(nskb)->csum =
4796 					skb_copy_and_csum_bits(head_skb, offset,
4797 							       skb_put(nskb,
4798 								       len),
4799 							       len);
4800 				SKB_GSO_CB(nskb)->csum_start =
4801 					skb_headroom(nskb) + doffset;
4802 			} else {
4803 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4804 					goto err;
4805 			}
4806 			continue;
4807 		}
4808 
4809 		nskb_frag = skb_shinfo(nskb)->frags;
4810 
4811 		skb_copy_from_linear_data_offset(head_skb, offset,
4812 						 skb_put(nskb, hsize), hsize);
4813 
4814 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4815 					   SKBFL_SHARED_FRAG;
4816 
4817 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4818 			goto err;
4819 
4820 		while (pos < offset + len) {
4821 			if (i >= nfrags) {
4822 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4823 				    skb_zerocopy_clone(nskb, list_skb,
4824 						       GFP_ATOMIC))
4825 					goto err;
4826 
4827 				i = 0;
4828 				nfrags = skb_shinfo(list_skb)->nr_frags;
4829 				frag = skb_shinfo(list_skb)->frags;
4830 				frag_skb = list_skb;
4831 				if (!skb_headlen(list_skb)) {
4832 					BUG_ON(!nfrags);
4833 				} else {
4834 					BUG_ON(!list_skb->head_frag);
4835 
4836 					/* to make room for head_frag. */
4837 					i--;
4838 					frag--;
4839 				}
4840 
4841 				list_skb = list_skb->next;
4842 			}
4843 
4844 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4845 				     MAX_SKB_FRAGS)) {
4846 				net_warn_ratelimited(
4847 					"skb_segment: too many frags: %u %u\n",
4848 					pos, mss);
4849 				err = -EINVAL;
4850 				goto err;
4851 			}
4852 
4853 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4854 			__skb_frag_ref(nskb_frag);
4855 			size = skb_frag_size(nskb_frag);
4856 
4857 			if (pos < offset) {
4858 				skb_frag_off_add(nskb_frag, offset - pos);
4859 				skb_frag_size_sub(nskb_frag, offset - pos);
4860 			}
4861 
4862 			skb_shinfo(nskb)->nr_frags++;
4863 
4864 			if (pos + size <= offset + len) {
4865 				i++;
4866 				frag++;
4867 				pos += size;
4868 			} else {
4869 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4870 				goto skip_fraglist;
4871 			}
4872 
4873 			nskb_frag++;
4874 		}
4875 
4876 skip_fraglist:
4877 		nskb->data_len = len - hsize;
4878 		nskb->len += nskb->data_len;
4879 		nskb->truesize += nskb->data_len;
4880 
4881 perform_csum_check:
4882 		if (!csum) {
4883 			if (skb_has_shared_frag(nskb) &&
4884 			    __skb_linearize(nskb))
4885 				goto err;
4886 
4887 			if (!nskb->remcsum_offload)
4888 				nskb->ip_summed = CHECKSUM_NONE;
4889 			SKB_GSO_CB(nskb)->csum =
4890 				skb_checksum(nskb, doffset,
4891 					     nskb->len - doffset, 0);
4892 			SKB_GSO_CB(nskb)->csum_start =
4893 				skb_headroom(nskb) + doffset;
4894 		}
4895 	} while ((offset += len) < head_skb->len);
4896 
4897 	/* Some callers want to get the end of the list.
4898 	 * Put it in segs->prev to avoid walking the list.
4899 	 * (see validate_xmit_skb_list() for example)
4900 	 */
4901 	segs->prev = tail;
4902 
4903 	if (partial_segs) {
4904 		struct sk_buff *iter;
4905 		int type = skb_shinfo(head_skb)->gso_type;
4906 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4907 
4908 		/* Update type to add partial and then remove dodgy if set */
4909 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4910 		type &= ~SKB_GSO_DODGY;
4911 
4912 		/* Update GSO info and prepare to start updating headers on
4913 		 * our way back down the stack of protocols.
4914 		 */
4915 		for (iter = segs; iter; iter = iter->next) {
4916 			skb_shinfo(iter)->gso_size = gso_size;
4917 			skb_shinfo(iter)->gso_segs = partial_segs;
4918 			skb_shinfo(iter)->gso_type = type;
4919 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4920 		}
4921 
4922 		if (tail->len - doffset <= gso_size)
4923 			skb_shinfo(tail)->gso_size = 0;
4924 		else if (tail != segs)
4925 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4926 	}
4927 
4928 	/* Following permits correct backpressure, for protocols
4929 	 * using skb_set_owner_w().
4930 	 * Idea is to tranfert ownership from head_skb to last segment.
4931 	 */
4932 	if (head_skb->destructor == sock_wfree) {
4933 		swap(tail->truesize, head_skb->truesize);
4934 		swap(tail->destructor, head_skb->destructor);
4935 		swap(tail->sk, head_skb->sk);
4936 	}
4937 	return segs;
4938 
4939 err:
4940 	kfree_skb_list(segs);
4941 	return ERR_PTR(err);
4942 }
4943 EXPORT_SYMBOL_GPL(skb_segment);
4944 
4945 #ifdef CONFIG_SKB_EXTENSIONS
4946 #define SKB_EXT_ALIGN_VALUE	8
4947 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4948 
4949 static const u8 skb_ext_type_len[] = {
4950 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4951 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4952 #endif
4953 #ifdef CONFIG_XFRM
4954 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4955 #endif
4956 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4957 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4958 #endif
4959 #if IS_ENABLED(CONFIG_MPTCP)
4960 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4961 #endif
4962 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4963 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4964 #endif
4965 };
4966 
4967 static __always_inline unsigned int skb_ext_total_length(void)
4968 {
4969 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4970 	int i;
4971 
4972 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4973 		l += skb_ext_type_len[i];
4974 
4975 	return l;
4976 }
4977 
4978 static void skb_extensions_init(void)
4979 {
4980 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4981 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4982 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4983 #endif
4984 
4985 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4986 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4987 					     0,
4988 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4989 					     NULL);
4990 }
4991 #else
4992 static void skb_extensions_init(void) {}
4993 #endif
4994 
4995 /* The SKB kmem_cache slab is critical for network performance.  Never
4996  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4997  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4998  */
4999 #ifndef CONFIG_SLUB_TINY
5000 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5001 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5002 #define FLAG_SKB_NO_MERGE	0
5003 #endif
5004 
5005 void __init skb_init(void)
5006 {
5007 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5008 					      sizeof(struct sk_buff),
5009 					      0,
5010 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5011 						FLAG_SKB_NO_MERGE,
5012 					      offsetof(struct sk_buff, cb),
5013 					      sizeof_field(struct sk_buff, cb),
5014 					      NULL);
5015 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5016 						sizeof(struct sk_buff_fclones),
5017 						0,
5018 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5019 						NULL);
5020 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5021 	 * struct skb_shared_info is located at the end of skb->head,
5022 	 * and should not be copied to/from user.
5023 	 */
5024 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5025 						SKB_SMALL_HEAD_CACHE_SIZE,
5026 						0,
5027 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5028 						0,
5029 						SKB_SMALL_HEAD_HEADROOM,
5030 						NULL);
5031 	skb_extensions_init();
5032 }
5033 
5034 static int
5035 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5036 	       unsigned int recursion_level)
5037 {
5038 	int start = skb_headlen(skb);
5039 	int i, copy = start - offset;
5040 	struct sk_buff *frag_iter;
5041 	int elt = 0;
5042 
5043 	if (unlikely(recursion_level >= 24))
5044 		return -EMSGSIZE;
5045 
5046 	if (copy > 0) {
5047 		if (copy > len)
5048 			copy = len;
5049 		sg_set_buf(sg, skb->data + offset, copy);
5050 		elt++;
5051 		if ((len -= copy) == 0)
5052 			return elt;
5053 		offset += copy;
5054 	}
5055 
5056 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5057 		int end;
5058 
5059 		WARN_ON(start > offset + len);
5060 
5061 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5062 		if ((copy = end - offset) > 0) {
5063 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5064 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5065 				return -EMSGSIZE;
5066 
5067 			if (copy > len)
5068 				copy = len;
5069 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5070 				    skb_frag_off(frag) + offset - start);
5071 			elt++;
5072 			if (!(len -= copy))
5073 				return elt;
5074 			offset += copy;
5075 		}
5076 		start = end;
5077 	}
5078 
5079 	skb_walk_frags(skb, frag_iter) {
5080 		int end, ret;
5081 
5082 		WARN_ON(start > offset + len);
5083 
5084 		end = start + frag_iter->len;
5085 		if ((copy = end - offset) > 0) {
5086 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5087 				return -EMSGSIZE;
5088 
5089 			if (copy > len)
5090 				copy = len;
5091 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5092 					      copy, recursion_level + 1);
5093 			if (unlikely(ret < 0))
5094 				return ret;
5095 			elt += ret;
5096 			if ((len -= copy) == 0)
5097 				return elt;
5098 			offset += copy;
5099 		}
5100 		start = end;
5101 	}
5102 	BUG_ON(len);
5103 	return elt;
5104 }
5105 
5106 /**
5107  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5108  *	@skb: Socket buffer containing the buffers to be mapped
5109  *	@sg: The scatter-gather list to map into
5110  *	@offset: The offset into the buffer's contents to start mapping
5111  *	@len: Length of buffer space to be mapped
5112  *
5113  *	Fill the specified scatter-gather list with mappings/pointers into a
5114  *	region of the buffer space attached to a socket buffer. Returns either
5115  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5116  *	could not fit.
5117  */
5118 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5119 {
5120 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5121 
5122 	if (nsg <= 0)
5123 		return nsg;
5124 
5125 	sg_mark_end(&sg[nsg - 1]);
5126 
5127 	return nsg;
5128 }
5129 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5130 
5131 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5132  * sglist without mark the sg which contain last skb data as the end.
5133  * So the caller can mannipulate sg list as will when padding new data after
5134  * the first call without calling sg_unmark_end to expend sg list.
5135  *
5136  * Scenario to use skb_to_sgvec_nomark:
5137  * 1. sg_init_table
5138  * 2. skb_to_sgvec_nomark(payload1)
5139  * 3. skb_to_sgvec_nomark(payload2)
5140  *
5141  * This is equivalent to:
5142  * 1. sg_init_table
5143  * 2. skb_to_sgvec(payload1)
5144  * 3. sg_unmark_end
5145  * 4. skb_to_sgvec(payload2)
5146  *
5147  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5148  * is more preferable.
5149  */
5150 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5151 			int offset, int len)
5152 {
5153 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5154 }
5155 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5156 
5157 
5158 
5159 /**
5160  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5161  *	@skb: The socket buffer to check.
5162  *	@tailbits: Amount of trailing space to be added
5163  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5164  *
5165  *	Make sure that the data buffers attached to a socket buffer are
5166  *	writable. If they are not, private copies are made of the data buffers
5167  *	and the socket buffer is set to use these instead.
5168  *
5169  *	If @tailbits is given, make sure that there is space to write @tailbits
5170  *	bytes of data beyond current end of socket buffer.  @trailer will be
5171  *	set to point to the skb in which this space begins.
5172  *
5173  *	The number of scatterlist elements required to completely map the
5174  *	COW'd and extended socket buffer will be returned.
5175  */
5176 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5177 {
5178 	int copyflag;
5179 	int elt;
5180 	struct sk_buff *skb1, **skb_p;
5181 
5182 	/* If skb is cloned or its head is paged, reallocate
5183 	 * head pulling out all the pages (pages are considered not writable
5184 	 * at the moment even if they are anonymous).
5185 	 */
5186 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5187 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5188 		return -ENOMEM;
5189 
5190 	/* Easy case. Most of packets will go this way. */
5191 	if (!skb_has_frag_list(skb)) {
5192 		/* A little of trouble, not enough of space for trailer.
5193 		 * This should not happen, when stack is tuned to generate
5194 		 * good frames. OK, on miss we reallocate and reserve even more
5195 		 * space, 128 bytes is fair. */
5196 
5197 		if (skb_tailroom(skb) < tailbits &&
5198 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5199 			return -ENOMEM;
5200 
5201 		/* Voila! */
5202 		*trailer = skb;
5203 		return 1;
5204 	}
5205 
5206 	/* Misery. We are in troubles, going to mincer fragments... */
5207 
5208 	elt = 1;
5209 	skb_p = &skb_shinfo(skb)->frag_list;
5210 	copyflag = 0;
5211 
5212 	while ((skb1 = *skb_p) != NULL) {
5213 		int ntail = 0;
5214 
5215 		/* The fragment is partially pulled by someone,
5216 		 * this can happen on input. Copy it and everything
5217 		 * after it. */
5218 
5219 		if (skb_shared(skb1))
5220 			copyflag = 1;
5221 
5222 		/* If the skb is the last, worry about trailer. */
5223 
5224 		if (skb1->next == NULL && tailbits) {
5225 			if (skb_shinfo(skb1)->nr_frags ||
5226 			    skb_has_frag_list(skb1) ||
5227 			    skb_tailroom(skb1) < tailbits)
5228 				ntail = tailbits + 128;
5229 		}
5230 
5231 		if (copyflag ||
5232 		    skb_cloned(skb1) ||
5233 		    ntail ||
5234 		    skb_shinfo(skb1)->nr_frags ||
5235 		    skb_has_frag_list(skb1)) {
5236 			struct sk_buff *skb2;
5237 
5238 			/* Fuck, we are miserable poor guys... */
5239 			if (ntail == 0)
5240 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5241 			else
5242 				skb2 = skb_copy_expand(skb1,
5243 						       skb_headroom(skb1),
5244 						       ntail,
5245 						       GFP_ATOMIC);
5246 			if (unlikely(skb2 == NULL))
5247 				return -ENOMEM;
5248 
5249 			if (skb1->sk)
5250 				skb_set_owner_w(skb2, skb1->sk);
5251 
5252 			/* Looking around. Are we still alive?
5253 			 * OK, link new skb, drop old one */
5254 
5255 			skb2->next = skb1->next;
5256 			*skb_p = skb2;
5257 			kfree_skb(skb1);
5258 			skb1 = skb2;
5259 		}
5260 		elt++;
5261 		*trailer = skb1;
5262 		skb_p = &skb1->next;
5263 	}
5264 
5265 	return elt;
5266 }
5267 EXPORT_SYMBOL_GPL(skb_cow_data);
5268 
5269 static void sock_rmem_free(struct sk_buff *skb)
5270 {
5271 	struct sock *sk = skb->sk;
5272 
5273 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5274 }
5275 
5276 static void skb_set_err_queue(struct sk_buff *skb)
5277 {
5278 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5279 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5280 	 */
5281 	skb->pkt_type = PACKET_OUTGOING;
5282 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5283 }
5284 
5285 /*
5286  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5287  */
5288 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5289 {
5290 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5291 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5292 		return -ENOMEM;
5293 
5294 	skb_orphan(skb);
5295 	skb->sk = sk;
5296 	skb->destructor = sock_rmem_free;
5297 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5298 	skb_set_err_queue(skb);
5299 
5300 	/* before exiting rcu section, make sure dst is refcounted */
5301 	skb_dst_force(skb);
5302 
5303 	skb_queue_tail(&sk->sk_error_queue, skb);
5304 	if (!sock_flag(sk, SOCK_DEAD))
5305 		sk_error_report(sk);
5306 	return 0;
5307 }
5308 EXPORT_SYMBOL(sock_queue_err_skb);
5309 
5310 static bool is_icmp_err_skb(const struct sk_buff *skb)
5311 {
5312 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5313 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5314 }
5315 
5316 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5317 {
5318 	struct sk_buff_head *q = &sk->sk_error_queue;
5319 	struct sk_buff *skb, *skb_next = NULL;
5320 	bool icmp_next = false;
5321 	unsigned long flags;
5322 
5323 	if (skb_queue_empty_lockless(q))
5324 		return NULL;
5325 
5326 	spin_lock_irqsave(&q->lock, flags);
5327 	skb = __skb_dequeue(q);
5328 	if (skb && (skb_next = skb_peek(q))) {
5329 		icmp_next = is_icmp_err_skb(skb_next);
5330 		if (icmp_next)
5331 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5332 	}
5333 	spin_unlock_irqrestore(&q->lock, flags);
5334 
5335 	if (is_icmp_err_skb(skb) && !icmp_next)
5336 		sk->sk_err = 0;
5337 
5338 	if (skb_next)
5339 		sk_error_report(sk);
5340 
5341 	return skb;
5342 }
5343 EXPORT_SYMBOL(sock_dequeue_err_skb);
5344 
5345 /**
5346  * skb_clone_sk - create clone of skb, and take reference to socket
5347  * @skb: the skb to clone
5348  *
5349  * This function creates a clone of a buffer that holds a reference on
5350  * sk_refcnt.  Buffers created via this function are meant to be
5351  * returned using sock_queue_err_skb, or free via kfree_skb.
5352  *
5353  * When passing buffers allocated with this function to sock_queue_err_skb
5354  * it is necessary to wrap the call with sock_hold/sock_put in order to
5355  * prevent the socket from being released prior to being enqueued on
5356  * the sk_error_queue.
5357  */
5358 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5359 {
5360 	struct sock *sk = skb->sk;
5361 	struct sk_buff *clone;
5362 
5363 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5364 		return NULL;
5365 
5366 	clone = skb_clone(skb, GFP_ATOMIC);
5367 	if (!clone) {
5368 		sock_put(sk);
5369 		return NULL;
5370 	}
5371 
5372 	clone->sk = sk;
5373 	clone->destructor = sock_efree;
5374 
5375 	return clone;
5376 }
5377 EXPORT_SYMBOL(skb_clone_sk);
5378 
5379 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5380 					struct sock *sk,
5381 					int tstype,
5382 					bool opt_stats)
5383 {
5384 	struct sock_exterr_skb *serr;
5385 	int err;
5386 
5387 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5388 
5389 	serr = SKB_EXT_ERR(skb);
5390 	memset(serr, 0, sizeof(*serr));
5391 	serr->ee.ee_errno = ENOMSG;
5392 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5393 	serr->ee.ee_info = tstype;
5394 	serr->opt_stats = opt_stats;
5395 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5396 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5397 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5398 		if (sk_is_tcp(sk))
5399 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5400 	}
5401 
5402 	err = sock_queue_err_skb(sk, skb);
5403 
5404 	if (err)
5405 		kfree_skb(skb);
5406 }
5407 
5408 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5409 {
5410 	bool ret;
5411 
5412 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5413 		return true;
5414 
5415 	read_lock_bh(&sk->sk_callback_lock);
5416 	ret = sk->sk_socket && sk->sk_socket->file &&
5417 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5418 	read_unlock_bh(&sk->sk_callback_lock);
5419 	return ret;
5420 }
5421 
5422 void skb_complete_tx_timestamp(struct sk_buff *skb,
5423 			       struct skb_shared_hwtstamps *hwtstamps)
5424 {
5425 	struct sock *sk = skb->sk;
5426 
5427 	if (!skb_may_tx_timestamp(sk, false))
5428 		goto err;
5429 
5430 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5431 	 * but only if the socket refcount is not zero.
5432 	 */
5433 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5434 		*skb_hwtstamps(skb) = *hwtstamps;
5435 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5436 		sock_put(sk);
5437 		return;
5438 	}
5439 
5440 err:
5441 	kfree_skb(skb);
5442 }
5443 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5444 
5445 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5446 		     const struct sk_buff *ack_skb,
5447 		     struct skb_shared_hwtstamps *hwtstamps,
5448 		     struct sock *sk, int tstype)
5449 {
5450 	struct sk_buff *skb;
5451 	bool tsonly, opt_stats = false;
5452 	u32 tsflags;
5453 
5454 	if (!sk)
5455 		return;
5456 
5457 	tsflags = READ_ONCE(sk->sk_tsflags);
5458 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5459 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5460 		return;
5461 
5462 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5463 	if (!skb_may_tx_timestamp(sk, tsonly))
5464 		return;
5465 
5466 	if (tsonly) {
5467 #ifdef CONFIG_INET
5468 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5469 		    sk_is_tcp(sk)) {
5470 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5471 							     ack_skb);
5472 			opt_stats = true;
5473 		} else
5474 #endif
5475 			skb = alloc_skb(0, GFP_ATOMIC);
5476 	} else {
5477 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5478 
5479 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5480 			kfree_skb(skb);
5481 			return;
5482 		}
5483 	}
5484 	if (!skb)
5485 		return;
5486 
5487 	if (tsonly) {
5488 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5489 					     SKBTX_ANY_TSTAMP;
5490 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5491 	}
5492 
5493 	if (hwtstamps)
5494 		*skb_hwtstamps(skb) = *hwtstamps;
5495 	else
5496 		__net_timestamp(skb);
5497 
5498 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5499 }
5500 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5501 
5502 void skb_tstamp_tx(struct sk_buff *orig_skb,
5503 		   struct skb_shared_hwtstamps *hwtstamps)
5504 {
5505 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5506 			       SCM_TSTAMP_SND);
5507 }
5508 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5509 
5510 #ifdef CONFIG_WIRELESS
5511 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5512 {
5513 	struct sock *sk = skb->sk;
5514 	struct sock_exterr_skb *serr;
5515 	int err = 1;
5516 
5517 	skb->wifi_acked_valid = 1;
5518 	skb->wifi_acked = acked;
5519 
5520 	serr = SKB_EXT_ERR(skb);
5521 	memset(serr, 0, sizeof(*serr));
5522 	serr->ee.ee_errno = ENOMSG;
5523 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5524 
5525 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5526 	 * but only if the socket refcount is not zero.
5527 	 */
5528 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5529 		err = sock_queue_err_skb(sk, skb);
5530 		sock_put(sk);
5531 	}
5532 	if (err)
5533 		kfree_skb(skb);
5534 }
5535 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5536 #endif /* CONFIG_WIRELESS */
5537 
5538 /**
5539  * skb_partial_csum_set - set up and verify partial csum values for packet
5540  * @skb: the skb to set
5541  * @start: the number of bytes after skb->data to start checksumming.
5542  * @off: the offset from start to place the checksum.
5543  *
5544  * For untrusted partially-checksummed packets, we need to make sure the values
5545  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5546  *
5547  * This function checks and sets those values and skb->ip_summed: if this
5548  * returns false you should drop the packet.
5549  */
5550 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5551 {
5552 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5553 	u32 csum_start = skb_headroom(skb) + (u32)start;
5554 
5555 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5556 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5557 				     start, off, skb_headroom(skb), skb_headlen(skb));
5558 		return false;
5559 	}
5560 	skb->ip_summed = CHECKSUM_PARTIAL;
5561 	skb->csum_start = csum_start;
5562 	skb->csum_offset = off;
5563 	skb->transport_header = csum_start;
5564 	return true;
5565 }
5566 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5567 
5568 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5569 			       unsigned int max)
5570 {
5571 	if (skb_headlen(skb) >= len)
5572 		return 0;
5573 
5574 	/* If we need to pullup then pullup to the max, so we
5575 	 * won't need to do it again.
5576 	 */
5577 	if (max > skb->len)
5578 		max = skb->len;
5579 
5580 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5581 		return -ENOMEM;
5582 
5583 	if (skb_headlen(skb) < len)
5584 		return -EPROTO;
5585 
5586 	return 0;
5587 }
5588 
5589 #define MAX_TCP_HDR_LEN (15 * 4)
5590 
5591 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5592 				      typeof(IPPROTO_IP) proto,
5593 				      unsigned int off)
5594 {
5595 	int err;
5596 
5597 	switch (proto) {
5598 	case IPPROTO_TCP:
5599 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5600 					  off + MAX_TCP_HDR_LEN);
5601 		if (!err && !skb_partial_csum_set(skb, off,
5602 						  offsetof(struct tcphdr,
5603 							   check)))
5604 			err = -EPROTO;
5605 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5606 
5607 	case IPPROTO_UDP:
5608 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5609 					  off + sizeof(struct udphdr));
5610 		if (!err && !skb_partial_csum_set(skb, off,
5611 						  offsetof(struct udphdr,
5612 							   check)))
5613 			err = -EPROTO;
5614 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5615 	}
5616 
5617 	return ERR_PTR(-EPROTO);
5618 }
5619 
5620 /* This value should be large enough to cover a tagged ethernet header plus
5621  * maximally sized IP and TCP or UDP headers.
5622  */
5623 #define MAX_IP_HDR_LEN 128
5624 
5625 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5626 {
5627 	unsigned int off;
5628 	bool fragment;
5629 	__sum16 *csum;
5630 	int err;
5631 
5632 	fragment = false;
5633 
5634 	err = skb_maybe_pull_tail(skb,
5635 				  sizeof(struct iphdr),
5636 				  MAX_IP_HDR_LEN);
5637 	if (err < 0)
5638 		goto out;
5639 
5640 	if (ip_is_fragment(ip_hdr(skb)))
5641 		fragment = true;
5642 
5643 	off = ip_hdrlen(skb);
5644 
5645 	err = -EPROTO;
5646 
5647 	if (fragment)
5648 		goto out;
5649 
5650 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5651 	if (IS_ERR(csum))
5652 		return PTR_ERR(csum);
5653 
5654 	if (recalculate)
5655 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5656 					   ip_hdr(skb)->daddr,
5657 					   skb->len - off,
5658 					   ip_hdr(skb)->protocol, 0);
5659 	err = 0;
5660 
5661 out:
5662 	return err;
5663 }
5664 
5665 /* This value should be large enough to cover a tagged ethernet header plus
5666  * an IPv6 header, all options, and a maximal TCP or UDP header.
5667  */
5668 #define MAX_IPV6_HDR_LEN 256
5669 
5670 #define OPT_HDR(type, skb, off) \
5671 	(type *)(skb_network_header(skb) + (off))
5672 
5673 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5674 {
5675 	int err;
5676 	u8 nexthdr;
5677 	unsigned int off;
5678 	unsigned int len;
5679 	bool fragment;
5680 	bool done;
5681 	__sum16 *csum;
5682 
5683 	fragment = false;
5684 	done = false;
5685 
5686 	off = sizeof(struct ipv6hdr);
5687 
5688 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5689 	if (err < 0)
5690 		goto out;
5691 
5692 	nexthdr = ipv6_hdr(skb)->nexthdr;
5693 
5694 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5695 	while (off <= len && !done) {
5696 		switch (nexthdr) {
5697 		case IPPROTO_DSTOPTS:
5698 		case IPPROTO_HOPOPTS:
5699 		case IPPROTO_ROUTING: {
5700 			struct ipv6_opt_hdr *hp;
5701 
5702 			err = skb_maybe_pull_tail(skb,
5703 						  off +
5704 						  sizeof(struct ipv6_opt_hdr),
5705 						  MAX_IPV6_HDR_LEN);
5706 			if (err < 0)
5707 				goto out;
5708 
5709 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5710 			nexthdr = hp->nexthdr;
5711 			off += ipv6_optlen(hp);
5712 			break;
5713 		}
5714 		case IPPROTO_AH: {
5715 			struct ip_auth_hdr *hp;
5716 
5717 			err = skb_maybe_pull_tail(skb,
5718 						  off +
5719 						  sizeof(struct ip_auth_hdr),
5720 						  MAX_IPV6_HDR_LEN);
5721 			if (err < 0)
5722 				goto out;
5723 
5724 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5725 			nexthdr = hp->nexthdr;
5726 			off += ipv6_authlen(hp);
5727 			break;
5728 		}
5729 		case IPPROTO_FRAGMENT: {
5730 			struct frag_hdr *hp;
5731 
5732 			err = skb_maybe_pull_tail(skb,
5733 						  off +
5734 						  sizeof(struct frag_hdr),
5735 						  MAX_IPV6_HDR_LEN);
5736 			if (err < 0)
5737 				goto out;
5738 
5739 			hp = OPT_HDR(struct frag_hdr, skb, off);
5740 
5741 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5742 				fragment = true;
5743 
5744 			nexthdr = hp->nexthdr;
5745 			off += sizeof(struct frag_hdr);
5746 			break;
5747 		}
5748 		default:
5749 			done = true;
5750 			break;
5751 		}
5752 	}
5753 
5754 	err = -EPROTO;
5755 
5756 	if (!done || fragment)
5757 		goto out;
5758 
5759 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5760 	if (IS_ERR(csum))
5761 		return PTR_ERR(csum);
5762 
5763 	if (recalculate)
5764 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5765 					 &ipv6_hdr(skb)->daddr,
5766 					 skb->len - off, nexthdr, 0);
5767 	err = 0;
5768 
5769 out:
5770 	return err;
5771 }
5772 
5773 /**
5774  * skb_checksum_setup - set up partial checksum offset
5775  * @skb: the skb to set up
5776  * @recalculate: if true the pseudo-header checksum will be recalculated
5777  */
5778 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5779 {
5780 	int err;
5781 
5782 	switch (skb->protocol) {
5783 	case htons(ETH_P_IP):
5784 		err = skb_checksum_setup_ipv4(skb, recalculate);
5785 		break;
5786 
5787 	case htons(ETH_P_IPV6):
5788 		err = skb_checksum_setup_ipv6(skb, recalculate);
5789 		break;
5790 
5791 	default:
5792 		err = -EPROTO;
5793 		break;
5794 	}
5795 
5796 	return err;
5797 }
5798 EXPORT_SYMBOL(skb_checksum_setup);
5799 
5800 /**
5801  * skb_checksum_maybe_trim - maybe trims the given skb
5802  * @skb: the skb to check
5803  * @transport_len: the data length beyond the network header
5804  *
5805  * Checks whether the given skb has data beyond the given transport length.
5806  * If so, returns a cloned skb trimmed to this transport length.
5807  * Otherwise returns the provided skb. Returns NULL in error cases
5808  * (e.g. transport_len exceeds skb length or out-of-memory).
5809  *
5810  * Caller needs to set the skb transport header and free any returned skb if it
5811  * differs from the provided skb.
5812  */
5813 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5814 					       unsigned int transport_len)
5815 {
5816 	struct sk_buff *skb_chk;
5817 	unsigned int len = skb_transport_offset(skb) + transport_len;
5818 	int ret;
5819 
5820 	if (skb->len < len)
5821 		return NULL;
5822 	else if (skb->len == len)
5823 		return skb;
5824 
5825 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5826 	if (!skb_chk)
5827 		return NULL;
5828 
5829 	ret = pskb_trim_rcsum(skb_chk, len);
5830 	if (ret) {
5831 		kfree_skb(skb_chk);
5832 		return NULL;
5833 	}
5834 
5835 	return skb_chk;
5836 }
5837 
5838 /**
5839  * skb_checksum_trimmed - validate checksum of an skb
5840  * @skb: the skb to check
5841  * @transport_len: the data length beyond the network header
5842  * @skb_chkf: checksum function to use
5843  *
5844  * Applies the given checksum function skb_chkf to the provided skb.
5845  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5846  *
5847  * If the skb has data beyond the given transport length, then a
5848  * trimmed & cloned skb is checked and returned.
5849  *
5850  * Caller needs to set the skb transport header and free any returned skb if it
5851  * differs from the provided skb.
5852  */
5853 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5854 				     unsigned int transport_len,
5855 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5856 {
5857 	struct sk_buff *skb_chk;
5858 	unsigned int offset = skb_transport_offset(skb);
5859 	__sum16 ret;
5860 
5861 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5862 	if (!skb_chk)
5863 		goto err;
5864 
5865 	if (!pskb_may_pull(skb_chk, offset))
5866 		goto err;
5867 
5868 	skb_pull_rcsum(skb_chk, offset);
5869 	ret = skb_chkf(skb_chk);
5870 	skb_push_rcsum(skb_chk, offset);
5871 
5872 	if (ret)
5873 		goto err;
5874 
5875 	return skb_chk;
5876 
5877 err:
5878 	if (skb_chk && skb_chk != skb)
5879 		kfree_skb(skb_chk);
5880 
5881 	return NULL;
5882 
5883 }
5884 EXPORT_SYMBOL(skb_checksum_trimmed);
5885 
5886 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5887 {
5888 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5889 			     skb->dev->name);
5890 }
5891 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5892 
5893 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5894 {
5895 	if (head_stolen) {
5896 		skb_release_head_state(skb);
5897 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5898 	} else {
5899 		__kfree_skb(skb);
5900 	}
5901 }
5902 EXPORT_SYMBOL(kfree_skb_partial);
5903 
5904 /**
5905  * skb_try_coalesce - try to merge skb to prior one
5906  * @to: prior buffer
5907  * @from: buffer to add
5908  * @fragstolen: pointer to boolean
5909  * @delta_truesize: how much more was allocated than was requested
5910  */
5911 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5912 		      bool *fragstolen, int *delta_truesize)
5913 {
5914 	struct skb_shared_info *to_shinfo, *from_shinfo;
5915 	int i, delta, len = from->len;
5916 
5917 	*fragstolen = false;
5918 
5919 	if (skb_cloned(to))
5920 		return false;
5921 
5922 	/* In general, avoid mixing page_pool and non-page_pool allocated
5923 	 * pages within the same SKB. In theory we could take full
5924 	 * references if @from is cloned and !@to->pp_recycle but its
5925 	 * tricky (due to potential race with the clone disappearing) and
5926 	 * rare, so not worth dealing with.
5927 	 */
5928 	if (to->pp_recycle != from->pp_recycle)
5929 		return false;
5930 
5931 	if (len <= skb_tailroom(to)) {
5932 		if (len)
5933 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5934 		*delta_truesize = 0;
5935 		return true;
5936 	}
5937 
5938 	to_shinfo = skb_shinfo(to);
5939 	from_shinfo = skb_shinfo(from);
5940 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5941 		return false;
5942 	if (skb_zcopy(to) || skb_zcopy(from))
5943 		return false;
5944 
5945 	if (skb_headlen(from) != 0) {
5946 		struct page *page;
5947 		unsigned int offset;
5948 
5949 		if (to_shinfo->nr_frags +
5950 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5951 			return false;
5952 
5953 		if (skb_head_is_locked(from))
5954 			return false;
5955 
5956 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5957 
5958 		page = virt_to_head_page(from->head);
5959 		offset = from->data - (unsigned char *)page_address(page);
5960 
5961 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5962 				   page, offset, skb_headlen(from));
5963 		*fragstolen = true;
5964 	} else {
5965 		if (to_shinfo->nr_frags +
5966 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5967 			return false;
5968 
5969 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5970 	}
5971 
5972 	WARN_ON_ONCE(delta < len);
5973 
5974 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5975 	       from_shinfo->frags,
5976 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5977 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5978 
5979 	if (!skb_cloned(from))
5980 		from_shinfo->nr_frags = 0;
5981 
5982 	/* if the skb is not cloned this does nothing
5983 	 * since we set nr_frags to 0.
5984 	 */
5985 	if (skb_pp_frag_ref(from)) {
5986 		for (i = 0; i < from_shinfo->nr_frags; i++)
5987 			__skb_frag_ref(&from_shinfo->frags[i]);
5988 	}
5989 
5990 	to->truesize += delta;
5991 	to->len += len;
5992 	to->data_len += len;
5993 
5994 	*delta_truesize = delta;
5995 	return true;
5996 }
5997 EXPORT_SYMBOL(skb_try_coalesce);
5998 
5999 /**
6000  * skb_scrub_packet - scrub an skb
6001  *
6002  * @skb: buffer to clean
6003  * @xnet: packet is crossing netns
6004  *
6005  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6006  * into/from a tunnel. Some information have to be cleared during these
6007  * operations.
6008  * skb_scrub_packet can also be used to clean a skb before injecting it in
6009  * another namespace (@xnet == true). We have to clear all information in the
6010  * skb that could impact namespace isolation.
6011  */
6012 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6013 {
6014 	skb->pkt_type = PACKET_HOST;
6015 	skb->skb_iif = 0;
6016 	skb->ignore_df = 0;
6017 	skb_dst_drop(skb);
6018 	skb_ext_reset(skb);
6019 	nf_reset_ct(skb);
6020 	nf_reset_trace(skb);
6021 
6022 #ifdef CONFIG_NET_SWITCHDEV
6023 	skb->offload_fwd_mark = 0;
6024 	skb->offload_l3_fwd_mark = 0;
6025 #endif
6026 
6027 	if (!xnet)
6028 		return;
6029 
6030 	ipvs_reset(skb);
6031 	skb->mark = 0;
6032 	skb_clear_tstamp(skb);
6033 }
6034 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6035 
6036 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6037 {
6038 	int mac_len, meta_len;
6039 	void *meta;
6040 
6041 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6042 		kfree_skb(skb);
6043 		return NULL;
6044 	}
6045 
6046 	mac_len = skb->data - skb_mac_header(skb);
6047 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6048 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6049 			mac_len - VLAN_HLEN - ETH_TLEN);
6050 	}
6051 
6052 	meta_len = skb_metadata_len(skb);
6053 	if (meta_len) {
6054 		meta = skb_metadata_end(skb) - meta_len;
6055 		memmove(meta + VLAN_HLEN, meta, meta_len);
6056 	}
6057 
6058 	skb->mac_header += VLAN_HLEN;
6059 	return skb;
6060 }
6061 
6062 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6063 {
6064 	struct vlan_hdr *vhdr;
6065 	u16 vlan_tci;
6066 
6067 	if (unlikely(skb_vlan_tag_present(skb))) {
6068 		/* vlan_tci is already set-up so leave this for another time */
6069 		return skb;
6070 	}
6071 
6072 	skb = skb_share_check(skb, GFP_ATOMIC);
6073 	if (unlikely(!skb))
6074 		goto err_free;
6075 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6076 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6077 		goto err_free;
6078 
6079 	vhdr = (struct vlan_hdr *)skb->data;
6080 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6081 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6082 
6083 	skb_pull_rcsum(skb, VLAN_HLEN);
6084 	vlan_set_encap_proto(skb, vhdr);
6085 
6086 	skb = skb_reorder_vlan_header(skb);
6087 	if (unlikely(!skb))
6088 		goto err_free;
6089 
6090 	skb_reset_network_header(skb);
6091 	if (!skb_transport_header_was_set(skb))
6092 		skb_reset_transport_header(skb);
6093 	skb_reset_mac_len(skb);
6094 
6095 	return skb;
6096 
6097 err_free:
6098 	kfree_skb(skb);
6099 	return NULL;
6100 }
6101 EXPORT_SYMBOL(skb_vlan_untag);
6102 
6103 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6104 {
6105 	if (!pskb_may_pull(skb, write_len))
6106 		return -ENOMEM;
6107 
6108 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6109 		return 0;
6110 
6111 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6112 }
6113 EXPORT_SYMBOL(skb_ensure_writable);
6114 
6115 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6116 {
6117 	int needed_headroom = dev->needed_headroom;
6118 	int needed_tailroom = dev->needed_tailroom;
6119 
6120 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6121 	 * that the tail tag does not fail at its role of being at the end of
6122 	 * the packet, once the conduit interface pads the frame. Account for
6123 	 * that pad length here, and pad later.
6124 	 */
6125 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6126 		needed_tailroom += ETH_ZLEN - skb->len;
6127 	/* skb_headroom() returns unsigned int... */
6128 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6129 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6130 
6131 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6132 		/* No reallocation needed, yay! */
6133 		return 0;
6134 
6135 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6136 				GFP_ATOMIC);
6137 }
6138 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6139 
6140 /* remove VLAN header from packet and update csum accordingly.
6141  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6142  */
6143 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6144 {
6145 	int offset = skb->data - skb_mac_header(skb);
6146 	int err;
6147 
6148 	if (WARN_ONCE(offset,
6149 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6150 		      offset)) {
6151 		return -EINVAL;
6152 	}
6153 
6154 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6155 	if (unlikely(err))
6156 		return err;
6157 
6158 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6159 
6160 	vlan_remove_tag(skb, vlan_tci);
6161 
6162 	skb->mac_header += VLAN_HLEN;
6163 
6164 	if (skb_network_offset(skb) < ETH_HLEN)
6165 		skb_set_network_header(skb, ETH_HLEN);
6166 
6167 	skb_reset_mac_len(skb);
6168 
6169 	return err;
6170 }
6171 EXPORT_SYMBOL(__skb_vlan_pop);
6172 
6173 /* Pop a vlan tag either from hwaccel or from payload.
6174  * Expects skb->data at mac header.
6175  */
6176 int skb_vlan_pop(struct sk_buff *skb)
6177 {
6178 	u16 vlan_tci;
6179 	__be16 vlan_proto;
6180 	int err;
6181 
6182 	if (likely(skb_vlan_tag_present(skb))) {
6183 		__vlan_hwaccel_clear_tag(skb);
6184 	} else {
6185 		if (unlikely(!eth_type_vlan(skb->protocol)))
6186 			return 0;
6187 
6188 		err = __skb_vlan_pop(skb, &vlan_tci);
6189 		if (err)
6190 			return err;
6191 	}
6192 	/* move next vlan tag to hw accel tag */
6193 	if (likely(!eth_type_vlan(skb->protocol)))
6194 		return 0;
6195 
6196 	vlan_proto = skb->protocol;
6197 	err = __skb_vlan_pop(skb, &vlan_tci);
6198 	if (unlikely(err))
6199 		return err;
6200 
6201 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6202 	return 0;
6203 }
6204 EXPORT_SYMBOL(skb_vlan_pop);
6205 
6206 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6207  * Expects skb->data at mac header.
6208  */
6209 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6210 {
6211 	if (skb_vlan_tag_present(skb)) {
6212 		int offset = skb->data - skb_mac_header(skb);
6213 		int err;
6214 
6215 		if (WARN_ONCE(offset,
6216 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6217 			      offset)) {
6218 			return -EINVAL;
6219 		}
6220 
6221 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6222 					skb_vlan_tag_get(skb));
6223 		if (err)
6224 			return err;
6225 
6226 		skb->protocol = skb->vlan_proto;
6227 		skb->mac_len += VLAN_HLEN;
6228 
6229 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6230 	}
6231 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6232 	return 0;
6233 }
6234 EXPORT_SYMBOL(skb_vlan_push);
6235 
6236 /**
6237  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6238  *
6239  * @skb: Socket buffer to modify
6240  *
6241  * Drop the Ethernet header of @skb.
6242  *
6243  * Expects that skb->data points to the mac header and that no VLAN tags are
6244  * present.
6245  *
6246  * Returns 0 on success, -errno otherwise.
6247  */
6248 int skb_eth_pop(struct sk_buff *skb)
6249 {
6250 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6251 	    skb_network_offset(skb) < ETH_HLEN)
6252 		return -EPROTO;
6253 
6254 	skb_pull_rcsum(skb, ETH_HLEN);
6255 	skb_reset_mac_header(skb);
6256 	skb_reset_mac_len(skb);
6257 
6258 	return 0;
6259 }
6260 EXPORT_SYMBOL(skb_eth_pop);
6261 
6262 /**
6263  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6264  *
6265  * @skb: Socket buffer to modify
6266  * @dst: Destination MAC address of the new header
6267  * @src: Source MAC address of the new header
6268  *
6269  * Prepend @skb with a new Ethernet header.
6270  *
6271  * Expects that skb->data points to the mac header, which must be empty.
6272  *
6273  * Returns 0 on success, -errno otherwise.
6274  */
6275 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6276 		 const unsigned char *src)
6277 {
6278 	struct ethhdr *eth;
6279 	int err;
6280 
6281 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6282 		return -EPROTO;
6283 
6284 	err = skb_cow_head(skb, sizeof(*eth));
6285 	if (err < 0)
6286 		return err;
6287 
6288 	skb_push(skb, sizeof(*eth));
6289 	skb_reset_mac_header(skb);
6290 	skb_reset_mac_len(skb);
6291 
6292 	eth = eth_hdr(skb);
6293 	ether_addr_copy(eth->h_dest, dst);
6294 	ether_addr_copy(eth->h_source, src);
6295 	eth->h_proto = skb->protocol;
6296 
6297 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6298 
6299 	return 0;
6300 }
6301 EXPORT_SYMBOL(skb_eth_push);
6302 
6303 /* Update the ethertype of hdr and the skb csum value if required. */
6304 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6305 			     __be16 ethertype)
6306 {
6307 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6308 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6309 
6310 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6311 	}
6312 
6313 	hdr->h_proto = ethertype;
6314 }
6315 
6316 /**
6317  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6318  *                   the packet
6319  *
6320  * @skb: buffer
6321  * @mpls_lse: MPLS label stack entry to push
6322  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6323  * @mac_len: length of the MAC header
6324  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6325  *            ethernet
6326  *
6327  * Expects skb->data at mac header.
6328  *
6329  * Returns 0 on success, -errno otherwise.
6330  */
6331 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6332 		  int mac_len, bool ethernet)
6333 {
6334 	struct mpls_shim_hdr *lse;
6335 	int err;
6336 
6337 	if (unlikely(!eth_p_mpls(mpls_proto)))
6338 		return -EINVAL;
6339 
6340 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6341 	if (skb->encapsulation)
6342 		return -EINVAL;
6343 
6344 	err = skb_cow_head(skb, MPLS_HLEN);
6345 	if (unlikely(err))
6346 		return err;
6347 
6348 	if (!skb->inner_protocol) {
6349 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6350 		skb_set_inner_protocol(skb, skb->protocol);
6351 	}
6352 
6353 	skb_push(skb, MPLS_HLEN);
6354 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6355 		mac_len);
6356 	skb_reset_mac_header(skb);
6357 	skb_set_network_header(skb, mac_len);
6358 	skb_reset_mac_len(skb);
6359 
6360 	lse = mpls_hdr(skb);
6361 	lse->label_stack_entry = mpls_lse;
6362 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6363 
6364 	if (ethernet && mac_len >= ETH_HLEN)
6365 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6366 	skb->protocol = mpls_proto;
6367 
6368 	return 0;
6369 }
6370 EXPORT_SYMBOL_GPL(skb_mpls_push);
6371 
6372 /**
6373  * skb_mpls_pop() - pop the outermost MPLS header
6374  *
6375  * @skb: buffer
6376  * @next_proto: ethertype of header after popped MPLS header
6377  * @mac_len: length of the MAC header
6378  * @ethernet: flag to indicate if the packet is ethernet
6379  *
6380  * Expects skb->data at mac header.
6381  *
6382  * Returns 0 on success, -errno otherwise.
6383  */
6384 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6385 		 bool ethernet)
6386 {
6387 	int err;
6388 
6389 	if (unlikely(!eth_p_mpls(skb->protocol)))
6390 		return 0;
6391 
6392 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6393 	if (unlikely(err))
6394 		return err;
6395 
6396 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6397 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6398 		mac_len);
6399 
6400 	__skb_pull(skb, MPLS_HLEN);
6401 	skb_reset_mac_header(skb);
6402 	skb_set_network_header(skb, mac_len);
6403 
6404 	if (ethernet && mac_len >= ETH_HLEN) {
6405 		struct ethhdr *hdr;
6406 
6407 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6408 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6409 		skb_mod_eth_type(skb, hdr, next_proto);
6410 	}
6411 	skb->protocol = next_proto;
6412 
6413 	return 0;
6414 }
6415 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6416 
6417 /**
6418  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6419  *
6420  * @skb: buffer
6421  * @mpls_lse: new MPLS label stack entry to update to
6422  *
6423  * Expects skb->data at mac header.
6424  *
6425  * Returns 0 on success, -errno otherwise.
6426  */
6427 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6428 {
6429 	int err;
6430 
6431 	if (unlikely(!eth_p_mpls(skb->protocol)))
6432 		return -EINVAL;
6433 
6434 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6435 	if (unlikely(err))
6436 		return err;
6437 
6438 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6439 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6440 
6441 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6442 	}
6443 
6444 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6445 
6446 	return 0;
6447 }
6448 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6449 
6450 /**
6451  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6452  *
6453  * @skb: buffer
6454  *
6455  * Expects skb->data at mac header.
6456  *
6457  * Returns 0 on success, -errno otherwise.
6458  */
6459 int skb_mpls_dec_ttl(struct sk_buff *skb)
6460 {
6461 	u32 lse;
6462 	u8 ttl;
6463 
6464 	if (unlikely(!eth_p_mpls(skb->protocol)))
6465 		return -EINVAL;
6466 
6467 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6468 		return -ENOMEM;
6469 
6470 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6471 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6472 	if (!--ttl)
6473 		return -EINVAL;
6474 
6475 	lse &= ~MPLS_LS_TTL_MASK;
6476 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6477 
6478 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6479 }
6480 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6481 
6482 /**
6483  * alloc_skb_with_frags - allocate skb with page frags
6484  *
6485  * @header_len: size of linear part
6486  * @data_len: needed length in frags
6487  * @order: max page order desired.
6488  * @errcode: pointer to error code if any
6489  * @gfp_mask: allocation mask
6490  *
6491  * This can be used to allocate a paged skb, given a maximal order for frags.
6492  */
6493 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6494 				     unsigned long data_len,
6495 				     int order,
6496 				     int *errcode,
6497 				     gfp_t gfp_mask)
6498 {
6499 	unsigned long chunk;
6500 	struct sk_buff *skb;
6501 	struct page *page;
6502 	int nr_frags = 0;
6503 
6504 	*errcode = -EMSGSIZE;
6505 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6506 		return NULL;
6507 
6508 	*errcode = -ENOBUFS;
6509 	skb = alloc_skb(header_len, gfp_mask);
6510 	if (!skb)
6511 		return NULL;
6512 
6513 	while (data_len) {
6514 		if (nr_frags == MAX_SKB_FRAGS - 1)
6515 			goto failure;
6516 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6517 			order--;
6518 
6519 		if (order) {
6520 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6521 					   __GFP_COMP |
6522 					   __GFP_NOWARN,
6523 					   order);
6524 			if (!page) {
6525 				order--;
6526 				continue;
6527 			}
6528 		} else {
6529 			page = alloc_page(gfp_mask);
6530 			if (!page)
6531 				goto failure;
6532 		}
6533 		chunk = min_t(unsigned long, data_len,
6534 			      PAGE_SIZE << order);
6535 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6536 		nr_frags++;
6537 		skb->truesize += (PAGE_SIZE << order);
6538 		data_len -= chunk;
6539 	}
6540 	return skb;
6541 
6542 failure:
6543 	kfree_skb(skb);
6544 	return NULL;
6545 }
6546 EXPORT_SYMBOL(alloc_skb_with_frags);
6547 
6548 /* carve out the first off bytes from skb when off < headlen */
6549 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6550 				    const int headlen, gfp_t gfp_mask)
6551 {
6552 	int i;
6553 	unsigned int size = skb_end_offset(skb);
6554 	int new_hlen = headlen - off;
6555 	u8 *data;
6556 
6557 	if (skb_pfmemalloc(skb))
6558 		gfp_mask |= __GFP_MEMALLOC;
6559 
6560 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6561 	if (!data)
6562 		return -ENOMEM;
6563 	size = SKB_WITH_OVERHEAD(size);
6564 
6565 	/* Copy real data, and all frags */
6566 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6567 	skb->len -= off;
6568 
6569 	memcpy((struct skb_shared_info *)(data + size),
6570 	       skb_shinfo(skb),
6571 	       offsetof(struct skb_shared_info,
6572 			frags[skb_shinfo(skb)->nr_frags]));
6573 	if (skb_cloned(skb)) {
6574 		/* drop the old head gracefully */
6575 		if (skb_orphan_frags(skb, gfp_mask)) {
6576 			skb_kfree_head(data, size);
6577 			return -ENOMEM;
6578 		}
6579 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6580 			skb_frag_ref(skb, i);
6581 		if (skb_has_frag_list(skb))
6582 			skb_clone_fraglist(skb);
6583 		skb_release_data(skb, SKB_CONSUMED);
6584 	} else {
6585 		/* we can reuse existing recount- all we did was
6586 		 * relocate values
6587 		 */
6588 		skb_free_head(skb);
6589 	}
6590 
6591 	skb->head = data;
6592 	skb->data = data;
6593 	skb->head_frag = 0;
6594 	skb_set_end_offset(skb, size);
6595 	skb_set_tail_pointer(skb, skb_headlen(skb));
6596 	skb_headers_offset_update(skb, 0);
6597 	skb->cloned = 0;
6598 	skb->hdr_len = 0;
6599 	skb->nohdr = 0;
6600 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6601 
6602 	return 0;
6603 }
6604 
6605 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6606 
6607 /* carve out the first eat bytes from skb's frag_list. May recurse into
6608  * pskb_carve()
6609  */
6610 static int pskb_carve_frag_list(struct sk_buff *skb,
6611 				struct skb_shared_info *shinfo, int eat,
6612 				gfp_t gfp_mask)
6613 {
6614 	struct sk_buff *list = shinfo->frag_list;
6615 	struct sk_buff *clone = NULL;
6616 	struct sk_buff *insp = NULL;
6617 
6618 	do {
6619 		if (!list) {
6620 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6621 			return -EFAULT;
6622 		}
6623 		if (list->len <= eat) {
6624 			/* Eaten as whole. */
6625 			eat -= list->len;
6626 			list = list->next;
6627 			insp = list;
6628 		} else {
6629 			/* Eaten partially. */
6630 			if (skb_shared(list)) {
6631 				clone = skb_clone(list, gfp_mask);
6632 				if (!clone)
6633 					return -ENOMEM;
6634 				insp = list->next;
6635 				list = clone;
6636 			} else {
6637 				/* This may be pulled without problems. */
6638 				insp = list;
6639 			}
6640 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6641 				kfree_skb(clone);
6642 				return -ENOMEM;
6643 			}
6644 			break;
6645 		}
6646 	} while (eat);
6647 
6648 	/* Free pulled out fragments. */
6649 	while ((list = shinfo->frag_list) != insp) {
6650 		shinfo->frag_list = list->next;
6651 		consume_skb(list);
6652 	}
6653 	/* And insert new clone at head. */
6654 	if (clone) {
6655 		clone->next = list;
6656 		shinfo->frag_list = clone;
6657 	}
6658 	return 0;
6659 }
6660 
6661 /* carve off first len bytes from skb. Split line (off) is in the
6662  * non-linear part of skb
6663  */
6664 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6665 				       int pos, gfp_t gfp_mask)
6666 {
6667 	int i, k = 0;
6668 	unsigned int size = skb_end_offset(skb);
6669 	u8 *data;
6670 	const int nfrags = skb_shinfo(skb)->nr_frags;
6671 	struct skb_shared_info *shinfo;
6672 
6673 	if (skb_pfmemalloc(skb))
6674 		gfp_mask |= __GFP_MEMALLOC;
6675 
6676 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6677 	if (!data)
6678 		return -ENOMEM;
6679 	size = SKB_WITH_OVERHEAD(size);
6680 
6681 	memcpy((struct skb_shared_info *)(data + size),
6682 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6683 	if (skb_orphan_frags(skb, gfp_mask)) {
6684 		skb_kfree_head(data, size);
6685 		return -ENOMEM;
6686 	}
6687 	shinfo = (struct skb_shared_info *)(data + size);
6688 	for (i = 0; i < nfrags; i++) {
6689 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6690 
6691 		if (pos + fsize > off) {
6692 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6693 
6694 			if (pos < off) {
6695 				/* Split frag.
6696 				 * We have two variants in this case:
6697 				 * 1. Move all the frag to the second
6698 				 *    part, if it is possible. F.e.
6699 				 *    this approach is mandatory for TUX,
6700 				 *    where splitting is expensive.
6701 				 * 2. Split is accurately. We make this.
6702 				 */
6703 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6704 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6705 			}
6706 			skb_frag_ref(skb, i);
6707 			k++;
6708 		}
6709 		pos += fsize;
6710 	}
6711 	shinfo->nr_frags = k;
6712 	if (skb_has_frag_list(skb))
6713 		skb_clone_fraglist(skb);
6714 
6715 	/* split line is in frag list */
6716 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6717 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6718 		if (skb_has_frag_list(skb))
6719 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6720 		skb_kfree_head(data, size);
6721 		return -ENOMEM;
6722 	}
6723 	skb_release_data(skb, SKB_CONSUMED);
6724 
6725 	skb->head = data;
6726 	skb->head_frag = 0;
6727 	skb->data = data;
6728 	skb_set_end_offset(skb, size);
6729 	skb_reset_tail_pointer(skb);
6730 	skb_headers_offset_update(skb, 0);
6731 	skb->cloned   = 0;
6732 	skb->hdr_len  = 0;
6733 	skb->nohdr    = 0;
6734 	skb->len -= off;
6735 	skb->data_len = skb->len;
6736 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6737 	return 0;
6738 }
6739 
6740 /* remove len bytes from the beginning of the skb */
6741 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6742 {
6743 	int headlen = skb_headlen(skb);
6744 
6745 	if (len < headlen)
6746 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6747 	else
6748 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6749 }
6750 
6751 /* Extract to_copy bytes starting at off from skb, and return this in
6752  * a new skb
6753  */
6754 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6755 			     int to_copy, gfp_t gfp)
6756 {
6757 	struct sk_buff  *clone = skb_clone(skb, gfp);
6758 
6759 	if (!clone)
6760 		return NULL;
6761 
6762 	if (pskb_carve(clone, off, gfp) < 0 ||
6763 	    pskb_trim(clone, to_copy)) {
6764 		kfree_skb(clone);
6765 		return NULL;
6766 	}
6767 	return clone;
6768 }
6769 EXPORT_SYMBOL(pskb_extract);
6770 
6771 /**
6772  * skb_condense - try to get rid of fragments/frag_list if possible
6773  * @skb: buffer
6774  *
6775  * Can be used to save memory before skb is added to a busy queue.
6776  * If packet has bytes in frags and enough tail room in skb->head,
6777  * pull all of them, so that we can free the frags right now and adjust
6778  * truesize.
6779  * Notes:
6780  *	We do not reallocate skb->head thus can not fail.
6781  *	Caller must re-evaluate skb->truesize if needed.
6782  */
6783 void skb_condense(struct sk_buff *skb)
6784 {
6785 	if (skb->data_len) {
6786 		if (skb->data_len > skb->end - skb->tail ||
6787 		    skb_cloned(skb))
6788 			return;
6789 
6790 		/* Nice, we can free page frag(s) right now */
6791 		__pskb_pull_tail(skb, skb->data_len);
6792 	}
6793 	/* At this point, skb->truesize might be over estimated,
6794 	 * because skb had a fragment, and fragments do not tell
6795 	 * their truesize.
6796 	 * When we pulled its content into skb->head, fragment
6797 	 * was freed, but __pskb_pull_tail() could not possibly
6798 	 * adjust skb->truesize, not knowing the frag truesize.
6799 	 */
6800 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6801 }
6802 EXPORT_SYMBOL(skb_condense);
6803 
6804 #ifdef CONFIG_SKB_EXTENSIONS
6805 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6806 {
6807 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6808 }
6809 
6810 /**
6811  * __skb_ext_alloc - allocate a new skb extensions storage
6812  *
6813  * @flags: See kmalloc().
6814  *
6815  * Returns the newly allocated pointer. The pointer can later attached to a
6816  * skb via __skb_ext_set().
6817  * Note: caller must handle the skb_ext as an opaque data.
6818  */
6819 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6820 {
6821 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6822 
6823 	if (new) {
6824 		memset(new->offset, 0, sizeof(new->offset));
6825 		refcount_set(&new->refcnt, 1);
6826 	}
6827 
6828 	return new;
6829 }
6830 
6831 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6832 					 unsigned int old_active)
6833 {
6834 	struct skb_ext *new;
6835 
6836 	if (refcount_read(&old->refcnt) == 1)
6837 		return old;
6838 
6839 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6840 	if (!new)
6841 		return NULL;
6842 
6843 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6844 	refcount_set(&new->refcnt, 1);
6845 
6846 #ifdef CONFIG_XFRM
6847 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6848 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6849 		unsigned int i;
6850 
6851 		for (i = 0; i < sp->len; i++)
6852 			xfrm_state_hold(sp->xvec[i]);
6853 	}
6854 #endif
6855 #ifdef CONFIG_MCTP_FLOWS
6856 	if (old_active & (1 << SKB_EXT_MCTP)) {
6857 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6858 
6859 		if (flow->key)
6860 			refcount_inc(&flow->key->refs);
6861 	}
6862 #endif
6863 	__skb_ext_put(old);
6864 	return new;
6865 }
6866 
6867 /**
6868  * __skb_ext_set - attach the specified extension storage to this skb
6869  * @skb: buffer
6870  * @id: extension id
6871  * @ext: extension storage previously allocated via __skb_ext_alloc()
6872  *
6873  * Existing extensions, if any, are cleared.
6874  *
6875  * Returns the pointer to the extension.
6876  */
6877 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6878 		    struct skb_ext *ext)
6879 {
6880 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6881 
6882 	skb_ext_put(skb);
6883 	newlen = newoff + skb_ext_type_len[id];
6884 	ext->chunks = newlen;
6885 	ext->offset[id] = newoff;
6886 	skb->extensions = ext;
6887 	skb->active_extensions = 1 << id;
6888 	return skb_ext_get_ptr(ext, id);
6889 }
6890 
6891 /**
6892  * skb_ext_add - allocate space for given extension, COW if needed
6893  * @skb: buffer
6894  * @id: extension to allocate space for
6895  *
6896  * Allocates enough space for the given extension.
6897  * If the extension is already present, a pointer to that extension
6898  * is returned.
6899  *
6900  * If the skb was cloned, COW applies and the returned memory can be
6901  * modified without changing the extension space of clones buffers.
6902  *
6903  * Returns pointer to the extension or NULL on allocation failure.
6904  */
6905 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6906 {
6907 	struct skb_ext *new, *old = NULL;
6908 	unsigned int newlen, newoff;
6909 
6910 	if (skb->active_extensions) {
6911 		old = skb->extensions;
6912 
6913 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6914 		if (!new)
6915 			return NULL;
6916 
6917 		if (__skb_ext_exist(new, id))
6918 			goto set_active;
6919 
6920 		newoff = new->chunks;
6921 	} else {
6922 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6923 
6924 		new = __skb_ext_alloc(GFP_ATOMIC);
6925 		if (!new)
6926 			return NULL;
6927 	}
6928 
6929 	newlen = newoff + skb_ext_type_len[id];
6930 	new->chunks = newlen;
6931 	new->offset[id] = newoff;
6932 set_active:
6933 	skb->slow_gro = 1;
6934 	skb->extensions = new;
6935 	skb->active_extensions |= 1 << id;
6936 	return skb_ext_get_ptr(new, id);
6937 }
6938 EXPORT_SYMBOL(skb_ext_add);
6939 
6940 #ifdef CONFIG_XFRM
6941 static void skb_ext_put_sp(struct sec_path *sp)
6942 {
6943 	unsigned int i;
6944 
6945 	for (i = 0; i < sp->len; i++)
6946 		xfrm_state_put(sp->xvec[i]);
6947 }
6948 #endif
6949 
6950 #ifdef CONFIG_MCTP_FLOWS
6951 static void skb_ext_put_mctp(struct mctp_flow *flow)
6952 {
6953 	if (flow->key)
6954 		mctp_key_unref(flow->key);
6955 }
6956 #endif
6957 
6958 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6959 {
6960 	struct skb_ext *ext = skb->extensions;
6961 
6962 	skb->active_extensions &= ~(1 << id);
6963 	if (skb->active_extensions == 0) {
6964 		skb->extensions = NULL;
6965 		__skb_ext_put(ext);
6966 #ifdef CONFIG_XFRM
6967 	} else if (id == SKB_EXT_SEC_PATH &&
6968 		   refcount_read(&ext->refcnt) == 1) {
6969 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6970 
6971 		skb_ext_put_sp(sp);
6972 		sp->len = 0;
6973 #endif
6974 	}
6975 }
6976 EXPORT_SYMBOL(__skb_ext_del);
6977 
6978 void __skb_ext_put(struct skb_ext *ext)
6979 {
6980 	/* If this is last clone, nothing can increment
6981 	 * it after check passes.  Avoids one atomic op.
6982 	 */
6983 	if (refcount_read(&ext->refcnt) == 1)
6984 		goto free_now;
6985 
6986 	if (!refcount_dec_and_test(&ext->refcnt))
6987 		return;
6988 free_now:
6989 #ifdef CONFIG_XFRM
6990 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6991 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6992 #endif
6993 #ifdef CONFIG_MCTP_FLOWS
6994 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6995 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6996 #endif
6997 
6998 	kmem_cache_free(skbuff_ext_cache, ext);
6999 }
7000 EXPORT_SYMBOL(__skb_ext_put);
7001 #endif /* CONFIG_SKB_EXTENSIONS */
7002 
7003 static void kfree_skb_napi_cache(struct sk_buff *skb)
7004 {
7005 	/* if SKB is a clone, don't handle this case */
7006 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7007 		__kfree_skb(skb);
7008 		return;
7009 	}
7010 
7011 	local_bh_disable();
7012 	__napi_kfree_skb(skb, SKB_CONSUMED);
7013 	local_bh_enable();
7014 }
7015 
7016 /**
7017  * skb_attempt_defer_free - queue skb for remote freeing
7018  * @skb: buffer
7019  *
7020  * Put @skb in a per-cpu list, using the cpu which
7021  * allocated the skb/pages to reduce false sharing
7022  * and memory zone spinlock contention.
7023  */
7024 void skb_attempt_defer_free(struct sk_buff *skb)
7025 {
7026 	int cpu = skb->alloc_cpu;
7027 	struct softnet_data *sd;
7028 	unsigned int defer_max;
7029 	bool kick;
7030 
7031 	if (cpu == raw_smp_processor_id() ||
7032 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7033 	    !cpu_online(cpu)) {
7034 nodefer:	kfree_skb_napi_cache(skb);
7035 		return;
7036 	}
7037 
7038 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7039 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7040 
7041 	sd = &per_cpu(softnet_data, cpu);
7042 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7043 	if (READ_ONCE(sd->defer_count) >= defer_max)
7044 		goto nodefer;
7045 
7046 	spin_lock_bh(&sd->defer_lock);
7047 	/* Send an IPI every time queue reaches half capacity. */
7048 	kick = sd->defer_count == (defer_max >> 1);
7049 	/* Paired with the READ_ONCE() few lines above */
7050 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7051 
7052 	skb->next = sd->defer_list;
7053 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7054 	WRITE_ONCE(sd->defer_list, skb);
7055 	spin_unlock_bh(&sd->defer_lock);
7056 
7057 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7058 	 * if we are unlucky enough (this seems very unlikely).
7059 	 */
7060 	if (unlikely(kick))
7061 		kick_defer_list_purge(sd, cpu);
7062 }
7063 
7064 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7065 				 size_t offset, size_t len)
7066 {
7067 	const char *kaddr;
7068 	__wsum csum;
7069 
7070 	kaddr = kmap_local_page(page);
7071 	csum = csum_partial(kaddr + offset, len, 0);
7072 	kunmap_local(kaddr);
7073 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7074 }
7075 
7076 /**
7077  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7078  * @skb: The buffer to add pages to
7079  * @iter: Iterator representing the pages to be added
7080  * @maxsize: Maximum amount of pages to be added
7081  * @gfp: Allocation flags
7082  *
7083  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7084  * extracts pages from an iterator and adds them to the socket buffer if
7085  * possible, copying them to fragments if not possible (such as if they're slab
7086  * pages).
7087  *
7088  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7089  * insufficient space in the buffer to transfer anything.
7090  */
7091 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7092 			     ssize_t maxsize, gfp_t gfp)
7093 {
7094 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7095 	struct page *pages[8], **ppages = pages;
7096 	ssize_t spliced = 0, ret = 0;
7097 	unsigned int i;
7098 
7099 	while (iter->count > 0) {
7100 		ssize_t space, nr, len;
7101 		size_t off;
7102 
7103 		ret = -EMSGSIZE;
7104 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7105 		if (space < 0)
7106 			break;
7107 
7108 		/* We might be able to coalesce without increasing nr_frags */
7109 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7110 
7111 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7112 		if (len <= 0) {
7113 			ret = len ?: -EIO;
7114 			break;
7115 		}
7116 
7117 		i = 0;
7118 		do {
7119 			struct page *page = pages[i++];
7120 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7121 
7122 			ret = -EIO;
7123 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7124 				goto out;
7125 
7126 			ret = skb_append_pagefrags(skb, page, off, part,
7127 						   frag_limit);
7128 			if (ret < 0) {
7129 				iov_iter_revert(iter, len);
7130 				goto out;
7131 			}
7132 
7133 			if (skb->ip_summed == CHECKSUM_NONE)
7134 				skb_splice_csum_page(skb, page, off, part);
7135 
7136 			off = 0;
7137 			spliced += part;
7138 			maxsize -= part;
7139 			len -= part;
7140 		} while (len > 0);
7141 
7142 		if (maxsize <= 0)
7143 			break;
7144 	}
7145 
7146 out:
7147 	skb_len_add(skb, spliced);
7148 	return spliced ?: ret;
7149 }
7150 EXPORT_SYMBOL(skb_splice_from_iter);
7151 
7152 static __always_inline
7153 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7154 			     size_t len, void *to, void *priv2)
7155 {
7156 	__wsum *csum = priv2;
7157 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7158 
7159 	*csum = csum_block_add(*csum, next, progress);
7160 	return 0;
7161 }
7162 
7163 static __always_inline
7164 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7165 				size_t len, void *to, void *priv2)
7166 {
7167 	__wsum next, *csum = priv2;
7168 
7169 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7170 	*csum = csum_block_add(*csum, next, progress);
7171 	return next ? 0 : len;
7172 }
7173 
7174 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7175 				  __wsum *csum, struct iov_iter *i)
7176 {
7177 	size_t copied;
7178 
7179 	if (WARN_ON_ONCE(!i->data_source))
7180 		return false;
7181 	copied = iterate_and_advance2(i, bytes, addr, csum,
7182 				      copy_from_user_iter_csum,
7183 				      memcpy_from_iter_csum);
7184 	if (likely(copied == bytes))
7185 		return true;
7186 	iov_iter_revert(i, copied);
7187 	return false;
7188 }
7189 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7190