xref: /linux/net/core/skbuff.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/hotdata.h>
73 #include <net/ip6_checksum.h>
74 #include <net/xfrm.h>
75 #include <net/mpls.h>
76 #include <net/mptcp.h>
77 #include <net/mctp.h>
78 #include <net/page_pool/helpers.h>
79 #include <net/dropreason.h>
80 
81 #include <linux/uaccess.h>
82 #include <trace/events/skb.h>
83 #include <linux/highmem.h>
84 #include <linux/capability.h>
85 #include <linux/user_namespace.h>
86 #include <linux/indirect_call_wrapper.h>
87 #include <linux/textsearch.h>
88 
89 #include "dev.h"
90 #include "sock_destructor.h"
91 
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95 
96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97 
98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100  * size, and we can differentiate heads from skb_small_head_cache
101  * vs system slabs by looking at their size (skb_end_offset()).
102  */
103 #define SKB_SMALL_HEAD_CACHE_SIZE					\
104 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
105 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
106 		SKB_SMALL_HEAD_SIZE)
107 
108 #define SKB_SMALL_HEAD_HEADROOM						\
109 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110 
111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112 EXPORT_SYMBOL(sysctl_max_skb_frags);
113 
114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116  * netmem is a page.
117  */
118 static_assert(offsetof(struct bio_vec, bv_page) ==
119 	      offsetof(skb_frag_t, netmem));
120 static_assert(sizeof_field(struct bio_vec, bv_page) ==
121 	      sizeof_field(skb_frag_t, netmem));
122 
123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124 static_assert(sizeof_field(struct bio_vec, bv_len) ==
125 	      sizeof_field(skb_frag_t, len));
126 
127 static_assert(offsetof(struct bio_vec, bv_offset) ==
128 	      offsetof(skb_frag_t, offset));
129 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130 	      sizeof_field(skb_frag_t, offset));
131 
132 #undef FN
133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134 static const char * const drop_reasons[] = {
135 	[SKB_CONSUMED] = "CONSUMED",
136 	DEFINE_DROP_REASON(FN, FN)
137 };
138 
139 static const struct drop_reason_list drop_reasons_core = {
140 	.reasons = drop_reasons,
141 	.n_reasons = ARRAY_SIZE(drop_reasons),
142 };
143 
144 const struct drop_reason_list __rcu *
145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147 };
148 EXPORT_SYMBOL(drop_reasons_by_subsys);
149 
150 /**
151  * drop_reasons_register_subsys - register another drop reason subsystem
152  * @subsys: the subsystem to register, must not be the core
153  * @list: the list of drop reasons within the subsystem, must point to
154  *	a statically initialized list
155  */
156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157 				  const struct drop_reason_list *list)
158 {
159 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161 		 "invalid subsystem %d\n", subsys))
162 		return;
163 
164 	/* must point to statically allocated memory, so INIT is OK */
165 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166 }
167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168 
169 /**
170  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171  * @subsys: the subsystem to remove, must not be the core
172  *
173  * Note: This will synchronize_rcu() to ensure no users when it returns.
174  */
175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176 {
177 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179 		 "invalid subsystem %d\n", subsys))
180 		return;
181 
182 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183 
184 	synchronize_rcu();
185 }
186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187 
188 /**
189  *	skb_panic - private function for out-of-line support
190  *	@skb:	buffer
191  *	@sz:	size
192  *	@addr:	address
193  *	@msg:	skb_over_panic or skb_under_panic
194  *
195  *	Out-of-line support for skb_put() and skb_push().
196  *	Called via the wrapper skb_over_panic() or skb_under_panic().
197  *	Keep out of line to prevent kernel bloat.
198  *	__builtin_return_address is not used because it is not always reliable.
199  */
200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201 		      const char msg[])
202 {
203 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204 		 msg, addr, skb->len, sz, skb->head, skb->data,
205 		 (unsigned long)skb->tail, (unsigned long)skb->end,
206 		 skb->dev ? skb->dev->name : "<NULL>");
207 	BUG();
208 }
209 
210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211 {
212 	skb_panic(skb, sz, addr, __func__);
213 }
214 
215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 #define NAPI_SKB_CACHE_SIZE	64
221 #define NAPI_SKB_CACHE_BULK	16
222 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
223 
224 #if PAGE_SIZE == SZ_4K
225 
226 #define NAPI_HAS_SMALL_PAGE_FRAG	1
227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
228 
229 /* specialized page frag allocator using a single order 0 page
230  * and slicing it into 1K sized fragment. Constrained to systems
231  * with a very limited amount of 1K fragments fitting a single
232  * page - to avoid excessive truesize underestimation
233  */
234 
235 struct page_frag_1k {
236 	void *va;
237 	u16 offset;
238 	bool pfmemalloc;
239 };
240 
241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242 {
243 	struct page *page;
244 	int offset;
245 
246 	offset = nc->offset - SZ_1K;
247 	if (likely(offset >= 0))
248 		goto use_frag;
249 
250 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251 	if (!page)
252 		return NULL;
253 
254 	nc->va = page_address(page);
255 	nc->pfmemalloc = page_is_pfmemalloc(page);
256 	offset = PAGE_SIZE - SZ_1K;
257 	page_ref_add(page, offset / SZ_1K);
258 
259 use_frag:
260 	nc->offset = offset;
261 	return nc->va + offset;
262 }
263 #else
264 
265 /* the small page is actually unused in this build; add dummy helpers
266  * to please the compiler and avoid later preprocessor's conditionals
267  */
268 #define NAPI_HAS_SMALL_PAGE_FRAG	0
269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
270 
271 struct page_frag_1k {
272 };
273 
274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275 {
276 	return NULL;
277 }
278 
279 #endif
280 
281 struct napi_alloc_cache {
282 	struct page_frag_cache page;
283 	struct page_frag_1k page_small;
284 	unsigned int skb_count;
285 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286 };
287 
288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290 
291 /* Double check that napi_get_frags() allocates skbs with
292  * skb->head being backed by slab, not a page fragment.
293  * This is to make sure bug fixed in 3226b158e67c
294  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295  * does not accidentally come back.
296  */
297 void napi_get_frags_check(struct napi_struct *napi)
298 {
299 	struct sk_buff *skb;
300 
301 	local_bh_disable();
302 	skb = napi_get_frags(napi);
303 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304 	napi_free_frags(napi);
305 	local_bh_enable();
306 }
307 
308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309 {
310 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311 
312 	fragsz = SKB_DATA_ALIGN(fragsz);
313 
314 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315 				       align_mask);
316 }
317 EXPORT_SYMBOL(__napi_alloc_frag_align);
318 
319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320 {
321 	void *data;
322 
323 	fragsz = SKB_DATA_ALIGN(fragsz);
324 	if (in_hardirq() || irqs_disabled()) {
325 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326 
327 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328 					       align_mask);
329 	} else {
330 		struct napi_alloc_cache *nc;
331 
332 		local_bh_disable();
333 		nc = this_cpu_ptr(&napi_alloc_cache);
334 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335 					       align_mask);
336 		local_bh_enable();
337 	}
338 	return data;
339 }
340 EXPORT_SYMBOL(__netdev_alloc_frag_align);
341 
342 static struct sk_buff *napi_skb_cache_get(void)
343 {
344 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345 	struct sk_buff *skb;
346 
347 	if (unlikely(!nc->skb_count)) {
348 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349 						      GFP_ATOMIC,
350 						      NAPI_SKB_CACHE_BULK,
351 						      nc->skb_cache);
352 		if (unlikely(!nc->skb_count))
353 			return NULL;
354 	}
355 
356 	skb = nc->skb_cache[--nc->skb_count];
357 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358 
359 	return skb;
360 }
361 
362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 				     unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(skb, data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(skb, data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467 	if (unlikely(!skb))
468 		return NULL;
469 
470 	memset(skb, 0, offsetof(struct sk_buff, tail));
471 	__build_skb_around(skb, data, frag_size);
472 
473 	return skb;
474 }
475 
476 /* build_skb() is wrapper over __build_skb(), that specifically
477  * takes care of skb->head and skb->pfmemalloc
478  */
479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 	struct sk_buff *skb = __build_skb(data, frag_size);
482 
483 	if (likely(skb && frag_size)) {
484 		skb->head_frag = 1;
485 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 	}
487 	return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490 
491 /**
492  * build_skb_around - build a network buffer around provided skb
493  * @skb: sk_buff provide by caller, must be memset cleared
494  * @data: data buffer provided by caller
495  * @frag_size: size of data
496  */
497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 				 void *data, unsigned int frag_size)
499 {
500 	if (unlikely(!skb))
501 		return NULL;
502 
503 	__build_skb_around(skb, data, frag_size);
504 
505 	if (frag_size) {
506 		skb->head_frag = 1;
507 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 	}
509 	return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512 
513 /**
514  * __napi_build_skb - build a network buffer
515  * @data: data buffer provided by caller
516  * @frag_size: size of data
517  *
518  * Version of __build_skb() that uses NAPI percpu caches to obtain
519  * skbuff_head instead of inplace allocation.
520  *
521  * Returns a new &sk_buff on success, %NULL on allocation failure.
522  */
523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 	struct sk_buff *skb;
526 
527 	skb = napi_skb_cache_get();
528 	if (unlikely(!skb))
529 		return NULL;
530 
531 	memset(skb, 0, offsetof(struct sk_buff, tail));
532 	__build_skb_around(skb, data, frag_size);
533 
534 	return skb;
535 }
536 
537 /**
538  * napi_build_skb - build a network buffer
539  * @data: data buffer provided by caller
540  * @frag_size: size of data
541  *
542  * Version of __napi_build_skb() that takes care of skb->head_frag
543  * and skb->pfmemalloc when the data is a page or page fragment.
544  *
545  * Returns a new &sk_buff on success, %NULL on allocation failure.
546  */
547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550 
551 	if (likely(skb) && frag_size) {
552 		skb->head_frag = 1;
553 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 	}
555 
556 	return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559 
560 /*
561  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562  * the caller if emergency pfmemalloc reserves are being used. If it is and
563  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564  * may be used. Otherwise, the packet data may be discarded until enough
565  * memory is free
566  */
567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 			     bool *pfmemalloc)
569 {
570 	bool ret_pfmemalloc = false;
571 	size_t obj_size;
572 	void *obj;
573 
574 	obj_size = SKB_HEAD_ALIGN(*size);
575 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 				node);
580 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 			goto out;
583 		/* Try again but now we are using pfmemalloc reserves */
584 		ret_pfmemalloc = true;
585 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 		goto out;
587 	}
588 
589 	obj_size = kmalloc_size_roundup(obj_size);
590 	/* The following cast might truncate high-order bits of obj_size, this
591 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 	 */
593 	*size = (unsigned int)obj_size;
594 
595 	/*
596 	 * Try a regular allocation, when that fails and we're not entitled
597 	 * to the reserves, fail.
598 	 */
599 	obj = kmalloc_node_track_caller(obj_size,
600 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 					node);
602 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 		goto out;
604 
605 	/* Try again but now we are using pfmemalloc reserves */
606 	ret_pfmemalloc = true;
607 	obj = kmalloc_node_track_caller(obj_size, flags, node);
608 
609 out:
610 	if (pfmemalloc)
611 		*pfmemalloc = ret_pfmemalloc;
612 
613 	return obj;
614 }
615 
616 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617  *	'private' fields and also do memory statistics to find all the
618  *	[BEEP] leaks.
619  *
620  */
621 
622 /**
623  *	__alloc_skb	-	allocate a network buffer
624  *	@size: size to allocate
625  *	@gfp_mask: allocation mask
626  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627  *		instead of head cache and allocate a cloned (child) skb.
628  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629  *		allocations in case the data is required for writeback
630  *	@node: numa node to allocate memory on
631  *
632  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633  *	tail room of at least size bytes. The object has a reference count
634  *	of one. The return is the buffer. On a failure the return is %NULL.
635  *
636  *	Buffers may only be allocated from interrupts using a @gfp_mask of
637  *	%GFP_ATOMIC.
638  */
639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 			    int flags, int node)
641 {
642 	struct kmem_cache *cache;
643 	struct sk_buff *skb;
644 	bool pfmemalloc;
645 	u8 *data;
646 
647 	cache = (flags & SKB_ALLOC_FCLONE)
648 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649 
650 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 		gfp_mask |= __GFP_MEMALLOC;
652 
653 	/* Get the HEAD */
654 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 		skb = napi_skb_cache_get();
657 	else
658 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 	if (unlikely(!skb))
660 		return NULL;
661 	prefetchw(skb);
662 
663 	/* We do our best to align skb_shared_info on a separate cache
664 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 	 * Both skb->head and skb_shared_info are cache line aligned.
667 	 */
668 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 	if (unlikely(!data))
670 		goto nodata;
671 	/* kmalloc_size_roundup() might give us more room than requested.
672 	 * Put skb_shared_info exactly at the end of allocated zone,
673 	 * to allow max possible filling before reallocation.
674 	 */
675 	prefetchw(data + SKB_WITH_OVERHEAD(size));
676 
677 	/*
678 	 * Only clear those fields we need to clear, not those that we will
679 	 * actually initialise below. Hence, don't put any more fields after
680 	 * the tail pointer in struct sk_buff!
681 	 */
682 	memset(skb, 0, offsetof(struct sk_buff, tail));
683 	__build_skb_around(skb, data, size);
684 	skb->pfmemalloc = pfmemalloc;
685 
686 	if (flags & SKB_ALLOC_FCLONE) {
687 		struct sk_buff_fclones *fclones;
688 
689 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 
691 		skb->fclone = SKB_FCLONE_ORIG;
692 		refcount_set(&fclones->fclone_ref, 1);
693 	}
694 
695 	return skb;
696 
697 nodata:
698 	kmem_cache_free(cache, skb);
699 	return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702 
703 /**
704  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705  *	@dev: network device to receive on
706  *	@len: length to allocate
707  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708  *
709  *	Allocate a new &sk_buff and assign it a usage count of one. The
710  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711  *	the headroom they think they need without accounting for the
712  *	built in space. The built in space is used for optimisations.
713  *
714  *	%NULL is returned if there is no free memory.
715  */
716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 				   gfp_t gfp_mask)
718 {
719 	struct page_frag_cache *nc;
720 	struct sk_buff *skb;
721 	bool pfmemalloc;
722 	void *data;
723 
724 	len += NET_SKB_PAD;
725 
726 	/* If requested length is either too small or too big,
727 	 * we use kmalloc() for skb->head allocation.
728 	 */
729 	if (len <= SKB_WITH_OVERHEAD(1024) ||
730 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 		if (!skb)
734 			goto skb_fail;
735 		goto skb_success;
736 	}
737 
738 	len = SKB_HEAD_ALIGN(len);
739 
740 	if (sk_memalloc_socks())
741 		gfp_mask |= __GFP_MEMALLOC;
742 
743 	if (in_hardirq() || irqs_disabled()) {
744 		nc = this_cpu_ptr(&netdev_alloc_cache);
745 		data = page_frag_alloc(nc, len, gfp_mask);
746 		pfmemalloc = nc->pfmemalloc;
747 	} else {
748 		local_bh_disable();
749 		nc = this_cpu_ptr(&napi_alloc_cache.page);
750 		data = page_frag_alloc(nc, len, gfp_mask);
751 		pfmemalloc = nc->pfmemalloc;
752 		local_bh_enable();
753 	}
754 
755 	if (unlikely(!data))
756 		return NULL;
757 
758 	skb = __build_skb(data, len);
759 	if (unlikely(!skb)) {
760 		skb_free_frag(data);
761 		return NULL;
762 	}
763 
764 	if (pfmemalloc)
765 		skb->pfmemalloc = 1;
766 	skb->head_frag = 1;
767 
768 skb_success:
769 	skb_reserve(skb, NET_SKB_PAD);
770 	skb->dev = dev;
771 
772 skb_fail:
773 	return skb;
774 }
775 EXPORT_SYMBOL(__netdev_alloc_skb);
776 
777 /**
778  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779  *	@napi: napi instance this buffer was allocated for
780  *	@len: length to allocate
781  *
782  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
783  *	attempt to allocate the head from a special reserved region used
784  *	only for NAPI Rx allocation.  By doing this we can save several
785  *	CPU cycles by avoiding having to disable and re-enable IRQs.
786  *
787  *	%NULL is returned if there is no free memory.
788  */
789 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
790 {
791 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
792 	struct napi_alloc_cache *nc;
793 	struct sk_buff *skb;
794 	bool pfmemalloc;
795 	void *data;
796 
797 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
798 	len += NET_SKB_PAD + NET_IP_ALIGN;
799 
800 	/* If requested length is either too small or too big,
801 	 * we use kmalloc() for skb->head allocation.
802 	 * When the small frag allocator is available, prefer it over kmalloc
803 	 * for small fragments
804 	 */
805 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
806 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
807 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
808 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
809 				  NUMA_NO_NODE);
810 		if (!skb)
811 			goto skb_fail;
812 		goto skb_success;
813 	}
814 
815 	nc = this_cpu_ptr(&napi_alloc_cache);
816 
817 	if (sk_memalloc_socks())
818 		gfp_mask |= __GFP_MEMALLOC;
819 
820 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
821 		/* we are artificially inflating the allocation size, but
822 		 * that is not as bad as it may look like, as:
823 		 * - 'len' less than GRO_MAX_HEAD makes little sense
824 		 * - On most systems, larger 'len' values lead to fragment
825 		 *   size above 512 bytes
826 		 * - kmalloc would use the kmalloc-1k slab for such values
827 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
828 		 *   little networking, as that implies no WiFi and no
829 		 *   tunnels support, and 32 bits arches.
830 		 */
831 		len = SZ_1K;
832 
833 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
834 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
835 	} else {
836 		len = SKB_HEAD_ALIGN(len);
837 
838 		data = page_frag_alloc(&nc->page, len, gfp_mask);
839 		pfmemalloc = nc->page.pfmemalloc;
840 	}
841 
842 	if (unlikely(!data))
843 		return NULL;
844 
845 	skb = __napi_build_skb(data, len);
846 	if (unlikely(!skb)) {
847 		skb_free_frag(data);
848 		return NULL;
849 	}
850 
851 	if (pfmemalloc)
852 		skb->pfmemalloc = 1;
853 	skb->head_frag = 1;
854 
855 skb_success:
856 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
857 	skb->dev = napi->dev;
858 
859 skb_fail:
860 	return skb;
861 }
862 EXPORT_SYMBOL(napi_alloc_skb);
863 
864 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
865 			    int off, int size, unsigned int truesize)
866 {
867 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
868 
869 	skb_fill_netmem_desc(skb, i, netmem, off, size);
870 	skb->len += size;
871 	skb->data_len += size;
872 	skb->truesize += truesize;
873 }
874 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
875 
876 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
877 			  unsigned int truesize)
878 {
879 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
880 
881 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
882 
883 	skb_frag_size_add(frag, size);
884 	skb->len += size;
885 	skb->data_len += size;
886 	skb->truesize += truesize;
887 }
888 EXPORT_SYMBOL(skb_coalesce_rx_frag);
889 
890 static void skb_drop_list(struct sk_buff **listp)
891 {
892 	kfree_skb_list(*listp);
893 	*listp = NULL;
894 }
895 
896 static inline void skb_drop_fraglist(struct sk_buff *skb)
897 {
898 	skb_drop_list(&skb_shinfo(skb)->frag_list);
899 }
900 
901 static void skb_clone_fraglist(struct sk_buff *skb)
902 {
903 	struct sk_buff *list;
904 
905 	skb_walk_frags(skb, list)
906 		skb_get(list);
907 }
908 
909 static bool is_pp_page(struct page *page)
910 {
911 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
912 }
913 
914 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
915 		    unsigned int headroom)
916 {
917 #if IS_ENABLED(CONFIG_PAGE_POOL)
918 	u32 size, truesize, len, max_head_size, off;
919 	struct sk_buff *skb = *pskb, *nskb;
920 	int err, i, head_off;
921 	void *data;
922 
923 	/* XDP does not support fraglist so we need to linearize
924 	 * the skb.
925 	 */
926 	if (skb_has_frag_list(skb))
927 		return -EOPNOTSUPP;
928 
929 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
930 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
931 		return -ENOMEM;
932 
933 	size = min_t(u32, skb->len, max_head_size);
934 	truesize = SKB_HEAD_ALIGN(size) + headroom;
935 	data = page_pool_dev_alloc_va(pool, &truesize);
936 	if (!data)
937 		return -ENOMEM;
938 
939 	nskb = napi_build_skb(data, truesize);
940 	if (!nskb) {
941 		page_pool_free_va(pool, data, true);
942 		return -ENOMEM;
943 	}
944 
945 	skb_reserve(nskb, headroom);
946 	skb_copy_header(nskb, skb);
947 	skb_mark_for_recycle(nskb);
948 
949 	err = skb_copy_bits(skb, 0, nskb->data, size);
950 	if (err) {
951 		consume_skb(nskb);
952 		return err;
953 	}
954 	skb_put(nskb, size);
955 
956 	head_off = skb_headroom(nskb) - skb_headroom(skb);
957 	skb_headers_offset_update(nskb, head_off);
958 
959 	off = size;
960 	len = skb->len - off;
961 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
962 		struct page *page;
963 		u32 page_off;
964 
965 		size = min_t(u32, len, PAGE_SIZE);
966 		truesize = size;
967 
968 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
969 		if (!page) {
970 			consume_skb(nskb);
971 			return -ENOMEM;
972 		}
973 
974 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
975 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
976 				    size);
977 		if (err) {
978 			consume_skb(nskb);
979 			return err;
980 		}
981 
982 		len -= size;
983 		off += size;
984 	}
985 
986 	consume_skb(skb);
987 	*pskb = nskb;
988 
989 	return 0;
990 #else
991 	return -EOPNOTSUPP;
992 #endif
993 }
994 EXPORT_SYMBOL(skb_pp_cow_data);
995 
996 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
997 			 struct bpf_prog *prog)
998 {
999 	if (!prog->aux->xdp_has_frags)
1000 		return -EINVAL;
1001 
1002 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1003 }
1004 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1005 
1006 #if IS_ENABLED(CONFIG_PAGE_POOL)
1007 bool napi_pp_put_page(struct page *page)
1008 {
1009 	page = compound_head(page);
1010 
1011 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1012 	 * in order to preserve any existing bits, such as bit 0 for the
1013 	 * head page of compound page and bit 1 for pfmemalloc page, so
1014 	 * mask those bits for freeing side when doing below checking,
1015 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1016 	 * to avoid recycling the pfmemalloc page.
1017 	 */
1018 	if (unlikely(!is_pp_page(page)))
1019 		return false;
1020 
1021 	page_pool_put_full_page(page->pp, page, false);
1022 
1023 	return true;
1024 }
1025 EXPORT_SYMBOL(napi_pp_put_page);
1026 #endif
1027 
1028 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1029 {
1030 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1031 		return false;
1032 	return napi_pp_put_page(virt_to_page(data));
1033 }
1034 
1035 /**
1036  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1037  * @skb:	page pool aware skb
1038  *
1039  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1040  * intended to gain fragment references only for page pool aware skbs,
1041  * i.e. when skb->pp_recycle is true, and not for fragments in a
1042  * non-pp-recycling skb. It has a fallback to increase references on normal
1043  * pages, as page pool aware skbs may also have normal page fragments.
1044  */
1045 static int skb_pp_frag_ref(struct sk_buff *skb)
1046 {
1047 	struct skb_shared_info *shinfo;
1048 	struct page *head_page;
1049 	int i;
1050 
1051 	if (!skb->pp_recycle)
1052 		return -EINVAL;
1053 
1054 	shinfo = skb_shinfo(skb);
1055 
1056 	for (i = 0; i < shinfo->nr_frags; i++) {
1057 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1058 		if (likely(is_pp_page(head_page)))
1059 			page_pool_ref_page(head_page);
1060 		else
1061 			page_ref_inc(head_page);
1062 	}
1063 	return 0;
1064 }
1065 
1066 static void skb_kfree_head(void *head, unsigned int end_offset)
1067 {
1068 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1069 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1070 	else
1071 		kfree(head);
1072 }
1073 
1074 static void skb_free_head(struct sk_buff *skb)
1075 {
1076 	unsigned char *head = skb->head;
1077 
1078 	if (skb->head_frag) {
1079 		if (skb_pp_recycle(skb, head))
1080 			return;
1081 		skb_free_frag(head);
1082 	} else {
1083 		skb_kfree_head(head, skb_end_offset(skb));
1084 	}
1085 }
1086 
1087 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1088 {
1089 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1090 	int i;
1091 
1092 	if (!skb_data_unref(skb, shinfo))
1093 		goto exit;
1094 
1095 	if (skb_zcopy(skb)) {
1096 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1097 
1098 		skb_zcopy_clear(skb, true);
1099 		if (skip_unref)
1100 			goto free_head;
1101 	}
1102 
1103 	for (i = 0; i < shinfo->nr_frags; i++)
1104 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1105 
1106 free_head:
1107 	if (shinfo->frag_list)
1108 		kfree_skb_list_reason(shinfo->frag_list, reason);
1109 
1110 	skb_free_head(skb);
1111 exit:
1112 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1113 	 * bit is only set on the head though, so in order to avoid races
1114 	 * while trying to recycle fragments on __skb_frag_unref() we need
1115 	 * to make one SKB responsible for triggering the recycle path.
1116 	 * So disable the recycling bit if an SKB is cloned and we have
1117 	 * additional references to the fragmented part of the SKB.
1118 	 * Eventually the last SKB will have the recycling bit set and it's
1119 	 * dataref set to 0, which will trigger the recycling
1120 	 */
1121 	skb->pp_recycle = 0;
1122 }
1123 
1124 /*
1125  *	Free an skbuff by memory without cleaning the state.
1126  */
1127 static void kfree_skbmem(struct sk_buff *skb)
1128 {
1129 	struct sk_buff_fclones *fclones;
1130 
1131 	switch (skb->fclone) {
1132 	case SKB_FCLONE_UNAVAILABLE:
1133 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1134 		return;
1135 
1136 	case SKB_FCLONE_ORIG:
1137 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1138 
1139 		/* We usually free the clone (TX completion) before original skb
1140 		 * This test would have no chance to be true for the clone,
1141 		 * while here, branch prediction will be good.
1142 		 */
1143 		if (refcount_read(&fclones->fclone_ref) == 1)
1144 			goto fastpath;
1145 		break;
1146 
1147 	default: /* SKB_FCLONE_CLONE */
1148 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1149 		break;
1150 	}
1151 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1152 		return;
1153 fastpath:
1154 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1155 }
1156 
1157 void skb_release_head_state(struct sk_buff *skb)
1158 {
1159 	skb_dst_drop(skb);
1160 	if (skb->destructor) {
1161 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1162 		skb->destructor(skb);
1163 	}
1164 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1165 	nf_conntrack_put(skb_nfct(skb));
1166 #endif
1167 	skb_ext_put(skb);
1168 }
1169 
1170 /* Free everything but the sk_buff shell. */
1171 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1172 {
1173 	skb_release_head_state(skb);
1174 	if (likely(skb->head))
1175 		skb_release_data(skb, reason);
1176 }
1177 
1178 /**
1179  *	__kfree_skb - private function
1180  *	@skb: buffer
1181  *
1182  *	Free an sk_buff. Release anything attached to the buffer.
1183  *	Clean the state. This is an internal helper function. Users should
1184  *	always call kfree_skb
1185  */
1186 
1187 void __kfree_skb(struct sk_buff *skb)
1188 {
1189 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1190 	kfree_skbmem(skb);
1191 }
1192 EXPORT_SYMBOL(__kfree_skb);
1193 
1194 static __always_inline
1195 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1196 {
1197 	if (unlikely(!skb_unref(skb)))
1198 		return false;
1199 
1200 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1201 			       u32_get_bits(reason,
1202 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1203 				SKB_DROP_REASON_SUBSYS_NUM);
1204 
1205 	if (reason == SKB_CONSUMED)
1206 		trace_consume_skb(skb, __builtin_return_address(0));
1207 	else
1208 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1209 	return true;
1210 }
1211 
1212 /**
1213  *	kfree_skb_reason - free an sk_buff with special reason
1214  *	@skb: buffer to free
1215  *	@reason: reason why this skb is dropped
1216  *
1217  *	Drop a reference to the buffer and free it if the usage count has
1218  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1219  *	tracepoint.
1220  */
1221 void __fix_address
1222 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223 {
1224 	if (__kfree_skb_reason(skb, reason))
1225 		__kfree_skb(skb);
1226 }
1227 EXPORT_SYMBOL(kfree_skb_reason);
1228 
1229 #define KFREE_SKB_BULK_SIZE	16
1230 
1231 struct skb_free_array {
1232 	unsigned int skb_count;
1233 	void *skb_array[KFREE_SKB_BULK_SIZE];
1234 };
1235 
1236 static void kfree_skb_add_bulk(struct sk_buff *skb,
1237 			       struct skb_free_array *sa,
1238 			       enum skb_drop_reason reason)
1239 {
1240 	/* if SKB is a clone, don't handle this case */
1241 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1242 		__kfree_skb(skb);
1243 		return;
1244 	}
1245 
1246 	skb_release_all(skb, reason);
1247 	sa->skb_array[sa->skb_count++] = skb;
1248 
1249 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1250 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1251 				     sa->skb_array);
1252 		sa->skb_count = 0;
1253 	}
1254 }
1255 
1256 void __fix_address
1257 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1258 {
1259 	struct skb_free_array sa;
1260 
1261 	sa.skb_count = 0;
1262 
1263 	while (segs) {
1264 		struct sk_buff *next = segs->next;
1265 
1266 		if (__kfree_skb_reason(segs, reason)) {
1267 			skb_poison_list(segs);
1268 			kfree_skb_add_bulk(segs, &sa, reason);
1269 		}
1270 
1271 		segs = next;
1272 	}
1273 
1274 	if (sa.skb_count)
1275 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1276 }
1277 EXPORT_SYMBOL(kfree_skb_list_reason);
1278 
1279 /* Dump skb information and contents.
1280  *
1281  * Must only be called from net_ratelimit()-ed paths.
1282  *
1283  * Dumps whole packets if full_pkt, only headers otherwise.
1284  */
1285 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1286 {
1287 	struct skb_shared_info *sh = skb_shinfo(skb);
1288 	struct net_device *dev = skb->dev;
1289 	struct sock *sk = skb->sk;
1290 	struct sk_buff *list_skb;
1291 	bool has_mac, has_trans;
1292 	int headroom, tailroom;
1293 	int i, len, seg_len;
1294 
1295 	if (full_pkt)
1296 		len = skb->len;
1297 	else
1298 		len = min_t(int, skb->len, MAX_HEADER + 128);
1299 
1300 	headroom = skb_headroom(skb);
1301 	tailroom = skb_tailroom(skb);
1302 
1303 	has_mac = skb_mac_header_was_set(skb);
1304 	has_trans = skb_transport_header_was_set(skb);
1305 
1306 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1307 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1308 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1309 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1310 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1311 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1312 	       has_mac ? skb->mac_header : -1,
1313 	       has_mac ? skb_mac_header_len(skb) : -1,
1314 	       skb->network_header,
1315 	       has_trans ? skb_network_header_len(skb) : -1,
1316 	       has_trans ? skb->transport_header : -1,
1317 	       sh->tx_flags, sh->nr_frags,
1318 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1319 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1320 	       skb->csum_valid, skb->csum_level,
1321 	       skb->hash, skb->sw_hash, skb->l4_hash,
1322 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1323 
1324 	if (dev)
1325 		printk("%sdev name=%s feat=%pNF\n",
1326 		       level, dev->name, &dev->features);
1327 	if (sk)
1328 		printk("%ssk family=%hu type=%u proto=%u\n",
1329 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1330 
1331 	if (full_pkt && headroom)
1332 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1333 			       16, 1, skb->head, headroom, false);
1334 
1335 	seg_len = min_t(int, skb_headlen(skb), len);
1336 	if (seg_len)
1337 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1338 			       16, 1, skb->data, seg_len, false);
1339 	len -= seg_len;
1340 
1341 	if (full_pkt && tailroom)
1342 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1343 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1344 
1345 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1346 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1347 		u32 p_off, p_len, copied;
1348 		struct page *p;
1349 		u8 *vaddr;
1350 
1351 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1352 				      skb_frag_size(frag), p, p_off, p_len,
1353 				      copied) {
1354 			seg_len = min_t(int, p_len, len);
1355 			vaddr = kmap_atomic(p);
1356 			print_hex_dump(level, "skb frag:     ",
1357 				       DUMP_PREFIX_OFFSET,
1358 				       16, 1, vaddr + p_off, seg_len, false);
1359 			kunmap_atomic(vaddr);
1360 			len -= seg_len;
1361 			if (!len)
1362 				break;
1363 		}
1364 	}
1365 
1366 	if (full_pkt && skb_has_frag_list(skb)) {
1367 		printk("skb fraglist:\n");
1368 		skb_walk_frags(skb, list_skb)
1369 			skb_dump(level, list_skb, true);
1370 	}
1371 }
1372 EXPORT_SYMBOL(skb_dump);
1373 
1374 /**
1375  *	skb_tx_error - report an sk_buff xmit error
1376  *	@skb: buffer that triggered an error
1377  *
1378  *	Report xmit error if a device callback is tracking this skb.
1379  *	skb must be freed afterwards.
1380  */
1381 void skb_tx_error(struct sk_buff *skb)
1382 {
1383 	if (skb) {
1384 		skb_zcopy_downgrade_managed(skb);
1385 		skb_zcopy_clear(skb, true);
1386 	}
1387 }
1388 EXPORT_SYMBOL(skb_tx_error);
1389 
1390 #ifdef CONFIG_TRACEPOINTS
1391 /**
1392  *	consume_skb - free an skbuff
1393  *	@skb: buffer to free
1394  *
1395  *	Drop a ref to the buffer and free it if the usage count has hit zero
1396  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1397  *	is being dropped after a failure and notes that
1398  */
1399 void consume_skb(struct sk_buff *skb)
1400 {
1401 	if (!skb_unref(skb))
1402 		return;
1403 
1404 	trace_consume_skb(skb, __builtin_return_address(0));
1405 	__kfree_skb(skb);
1406 }
1407 EXPORT_SYMBOL(consume_skb);
1408 #endif
1409 
1410 /**
1411  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1412  *	@skb: buffer to free
1413  *
1414  *	Alike consume_skb(), but this variant assumes that this is the last
1415  *	skb reference and all the head states have been already dropped
1416  */
1417 void __consume_stateless_skb(struct sk_buff *skb)
1418 {
1419 	trace_consume_skb(skb, __builtin_return_address(0));
1420 	skb_release_data(skb, SKB_CONSUMED);
1421 	kfree_skbmem(skb);
1422 }
1423 
1424 static void napi_skb_cache_put(struct sk_buff *skb)
1425 {
1426 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1427 	u32 i;
1428 
1429 	if (!kasan_mempool_poison_object(skb))
1430 		return;
1431 
1432 	nc->skb_cache[nc->skb_count++] = skb;
1433 
1434 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1435 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1436 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1437 						kmem_cache_size(net_hotdata.skbuff_cache));
1438 
1439 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1440 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1441 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1442 	}
1443 }
1444 
1445 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1446 {
1447 	skb_release_all(skb, reason);
1448 	napi_skb_cache_put(skb);
1449 }
1450 
1451 void napi_skb_free_stolen_head(struct sk_buff *skb)
1452 {
1453 	if (unlikely(skb->slow_gro)) {
1454 		nf_reset_ct(skb);
1455 		skb_dst_drop(skb);
1456 		skb_ext_put(skb);
1457 		skb_orphan(skb);
1458 		skb->slow_gro = 0;
1459 	}
1460 	napi_skb_cache_put(skb);
1461 }
1462 
1463 void napi_consume_skb(struct sk_buff *skb, int budget)
1464 {
1465 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1466 	if (unlikely(!budget)) {
1467 		dev_consume_skb_any(skb);
1468 		return;
1469 	}
1470 
1471 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1472 
1473 	if (!skb_unref(skb))
1474 		return;
1475 
1476 	/* if reaching here SKB is ready to free */
1477 	trace_consume_skb(skb, __builtin_return_address(0));
1478 
1479 	/* if SKB is a clone, don't handle this case */
1480 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1481 		__kfree_skb(skb);
1482 		return;
1483 	}
1484 
1485 	skb_release_all(skb, SKB_CONSUMED);
1486 	napi_skb_cache_put(skb);
1487 }
1488 EXPORT_SYMBOL(napi_consume_skb);
1489 
1490 /* Make sure a field is contained by headers group */
1491 #define CHECK_SKB_FIELD(field) \
1492 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1493 		     offsetof(struct sk_buff, headers.field));	\
1494 
1495 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1496 {
1497 	new->tstamp		= old->tstamp;
1498 	/* We do not copy old->sk */
1499 	new->dev		= old->dev;
1500 	memcpy(new->cb, old->cb, sizeof(old->cb));
1501 	skb_dst_copy(new, old);
1502 	__skb_ext_copy(new, old);
1503 	__nf_copy(new, old, false);
1504 
1505 	/* Note : this field could be in the headers group.
1506 	 * It is not yet because we do not want to have a 16 bit hole
1507 	 */
1508 	new->queue_mapping = old->queue_mapping;
1509 
1510 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1511 	CHECK_SKB_FIELD(protocol);
1512 	CHECK_SKB_FIELD(csum);
1513 	CHECK_SKB_FIELD(hash);
1514 	CHECK_SKB_FIELD(priority);
1515 	CHECK_SKB_FIELD(skb_iif);
1516 	CHECK_SKB_FIELD(vlan_proto);
1517 	CHECK_SKB_FIELD(vlan_tci);
1518 	CHECK_SKB_FIELD(transport_header);
1519 	CHECK_SKB_FIELD(network_header);
1520 	CHECK_SKB_FIELD(mac_header);
1521 	CHECK_SKB_FIELD(inner_protocol);
1522 	CHECK_SKB_FIELD(inner_transport_header);
1523 	CHECK_SKB_FIELD(inner_network_header);
1524 	CHECK_SKB_FIELD(inner_mac_header);
1525 	CHECK_SKB_FIELD(mark);
1526 #ifdef CONFIG_NETWORK_SECMARK
1527 	CHECK_SKB_FIELD(secmark);
1528 #endif
1529 #ifdef CONFIG_NET_RX_BUSY_POLL
1530 	CHECK_SKB_FIELD(napi_id);
1531 #endif
1532 	CHECK_SKB_FIELD(alloc_cpu);
1533 #ifdef CONFIG_XPS
1534 	CHECK_SKB_FIELD(sender_cpu);
1535 #endif
1536 #ifdef CONFIG_NET_SCHED
1537 	CHECK_SKB_FIELD(tc_index);
1538 #endif
1539 
1540 }
1541 
1542 /*
1543  * You should not add any new code to this function.  Add it to
1544  * __copy_skb_header above instead.
1545  */
1546 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1547 {
1548 #define C(x) n->x = skb->x
1549 
1550 	n->next = n->prev = NULL;
1551 	n->sk = NULL;
1552 	__copy_skb_header(n, skb);
1553 
1554 	C(len);
1555 	C(data_len);
1556 	C(mac_len);
1557 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1558 	n->cloned = 1;
1559 	n->nohdr = 0;
1560 	n->peeked = 0;
1561 	C(pfmemalloc);
1562 	C(pp_recycle);
1563 	n->destructor = NULL;
1564 	C(tail);
1565 	C(end);
1566 	C(head);
1567 	C(head_frag);
1568 	C(data);
1569 	C(truesize);
1570 	refcount_set(&n->users, 1);
1571 
1572 	atomic_inc(&(skb_shinfo(skb)->dataref));
1573 	skb->cloned = 1;
1574 
1575 	return n;
1576 #undef C
1577 }
1578 
1579 /**
1580  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1581  * @first: first sk_buff of the msg
1582  */
1583 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1584 {
1585 	struct sk_buff *n;
1586 
1587 	n = alloc_skb(0, GFP_ATOMIC);
1588 	if (!n)
1589 		return NULL;
1590 
1591 	n->len = first->len;
1592 	n->data_len = first->len;
1593 	n->truesize = first->truesize;
1594 
1595 	skb_shinfo(n)->frag_list = first;
1596 
1597 	__copy_skb_header(n, first);
1598 	n->destructor = NULL;
1599 
1600 	return n;
1601 }
1602 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1603 
1604 /**
1605  *	skb_morph	-	morph one skb into another
1606  *	@dst: the skb to receive the contents
1607  *	@src: the skb to supply the contents
1608  *
1609  *	This is identical to skb_clone except that the target skb is
1610  *	supplied by the user.
1611  *
1612  *	The target skb is returned upon exit.
1613  */
1614 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1615 {
1616 	skb_release_all(dst, SKB_CONSUMED);
1617 	return __skb_clone(dst, src);
1618 }
1619 EXPORT_SYMBOL_GPL(skb_morph);
1620 
1621 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1622 {
1623 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1624 	struct user_struct *user;
1625 
1626 	if (capable(CAP_IPC_LOCK) || !size)
1627 		return 0;
1628 
1629 	rlim = rlimit(RLIMIT_MEMLOCK);
1630 	if (rlim == RLIM_INFINITY)
1631 		return 0;
1632 
1633 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1634 	max_pg = rlim >> PAGE_SHIFT;
1635 	user = mmp->user ? : current_user();
1636 
1637 	old_pg = atomic_long_read(&user->locked_vm);
1638 	do {
1639 		new_pg = old_pg + num_pg;
1640 		if (new_pg > max_pg)
1641 			return -ENOBUFS;
1642 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1643 
1644 	if (!mmp->user) {
1645 		mmp->user = get_uid(user);
1646 		mmp->num_pg = num_pg;
1647 	} else {
1648 		mmp->num_pg += num_pg;
1649 	}
1650 
1651 	return 0;
1652 }
1653 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1654 
1655 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1656 {
1657 	if (mmp->user) {
1658 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1659 		free_uid(mmp->user);
1660 	}
1661 }
1662 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1663 
1664 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1665 {
1666 	struct ubuf_info_msgzc *uarg;
1667 	struct sk_buff *skb;
1668 
1669 	WARN_ON_ONCE(!in_task());
1670 
1671 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1672 	if (!skb)
1673 		return NULL;
1674 
1675 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1676 	uarg = (void *)skb->cb;
1677 	uarg->mmp.user = NULL;
1678 
1679 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1680 		kfree_skb(skb);
1681 		return NULL;
1682 	}
1683 
1684 	uarg->ubuf.callback = msg_zerocopy_callback;
1685 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1686 	uarg->len = 1;
1687 	uarg->bytelen = size;
1688 	uarg->zerocopy = 1;
1689 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1690 	refcount_set(&uarg->ubuf.refcnt, 1);
1691 	sock_hold(sk);
1692 
1693 	return &uarg->ubuf;
1694 }
1695 
1696 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1697 {
1698 	return container_of((void *)uarg, struct sk_buff, cb);
1699 }
1700 
1701 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1702 				       struct ubuf_info *uarg)
1703 {
1704 	if (uarg) {
1705 		struct ubuf_info_msgzc *uarg_zc;
1706 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1707 		u32 bytelen, next;
1708 
1709 		/* there might be non MSG_ZEROCOPY users */
1710 		if (uarg->callback != msg_zerocopy_callback)
1711 			return NULL;
1712 
1713 		/* realloc only when socket is locked (TCP, UDP cork),
1714 		 * so uarg->len and sk_zckey access is serialized
1715 		 */
1716 		if (!sock_owned_by_user(sk)) {
1717 			WARN_ON_ONCE(1);
1718 			return NULL;
1719 		}
1720 
1721 		uarg_zc = uarg_to_msgzc(uarg);
1722 		bytelen = uarg_zc->bytelen + size;
1723 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1724 			/* TCP can create new skb to attach new uarg */
1725 			if (sk->sk_type == SOCK_STREAM)
1726 				goto new_alloc;
1727 			return NULL;
1728 		}
1729 
1730 		next = (u32)atomic_read(&sk->sk_zckey);
1731 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1732 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1733 				return NULL;
1734 			uarg_zc->len++;
1735 			uarg_zc->bytelen = bytelen;
1736 			atomic_set(&sk->sk_zckey, ++next);
1737 
1738 			/* no extra ref when appending to datagram (MSG_MORE) */
1739 			if (sk->sk_type == SOCK_STREAM)
1740 				net_zcopy_get(uarg);
1741 
1742 			return uarg;
1743 		}
1744 	}
1745 
1746 new_alloc:
1747 	return msg_zerocopy_alloc(sk, size);
1748 }
1749 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1750 
1751 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1752 {
1753 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1754 	u32 old_lo, old_hi;
1755 	u64 sum_len;
1756 
1757 	old_lo = serr->ee.ee_info;
1758 	old_hi = serr->ee.ee_data;
1759 	sum_len = old_hi - old_lo + 1ULL + len;
1760 
1761 	if (sum_len >= (1ULL << 32))
1762 		return false;
1763 
1764 	if (lo != old_hi + 1)
1765 		return false;
1766 
1767 	serr->ee.ee_data += len;
1768 	return true;
1769 }
1770 
1771 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1772 {
1773 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1774 	struct sock_exterr_skb *serr;
1775 	struct sock *sk = skb->sk;
1776 	struct sk_buff_head *q;
1777 	unsigned long flags;
1778 	bool is_zerocopy;
1779 	u32 lo, hi;
1780 	u16 len;
1781 
1782 	mm_unaccount_pinned_pages(&uarg->mmp);
1783 
1784 	/* if !len, there was only 1 call, and it was aborted
1785 	 * so do not queue a completion notification
1786 	 */
1787 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1788 		goto release;
1789 
1790 	len = uarg->len;
1791 	lo = uarg->id;
1792 	hi = uarg->id + len - 1;
1793 	is_zerocopy = uarg->zerocopy;
1794 
1795 	serr = SKB_EXT_ERR(skb);
1796 	memset(serr, 0, sizeof(*serr));
1797 	serr->ee.ee_errno = 0;
1798 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1799 	serr->ee.ee_data = hi;
1800 	serr->ee.ee_info = lo;
1801 	if (!is_zerocopy)
1802 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1803 
1804 	q = &sk->sk_error_queue;
1805 	spin_lock_irqsave(&q->lock, flags);
1806 	tail = skb_peek_tail(q);
1807 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1808 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1809 		__skb_queue_tail(q, skb);
1810 		skb = NULL;
1811 	}
1812 	spin_unlock_irqrestore(&q->lock, flags);
1813 
1814 	sk_error_report(sk);
1815 
1816 release:
1817 	consume_skb(skb);
1818 	sock_put(sk);
1819 }
1820 
1821 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1822 			   bool success)
1823 {
1824 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1825 
1826 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1827 
1828 	if (refcount_dec_and_test(&uarg->refcnt))
1829 		__msg_zerocopy_callback(uarg_zc);
1830 }
1831 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1832 
1833 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1834 {
1835 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1836 
1837 	atomic_dec(&sk->sk_zckey);
1838 	uarg_to_msgzc(uarg)->len--;
1839 
1840 	if (have_uref)
1841 		msg_zerocopy_callback(NULL, uarg, true);
1842 }
1843 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1844 
1845 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1846 			     struct msghdr *msg, int len,
1847 			     struct ubuf_info *uarg)
1848 {
1849 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1850 	int err, orig_len = skb->len;
1851 
1852 	/* An skb can only point to one uarg. This edge case happens when
1853 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1854 	 */
1855 	if (orig_uarg && uarg != orig_uarg)
1856 		return -EEXIST;
1857 
1858 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1859 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1860 		struct sock *save_sk = skb->sk;
1861 
1862 		/* Streams do not free skb on error. Reset to prev state. */
1863 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1864 		skb->sk = sk;
1865 		___pskb_trim(skb, orig_len);
1866 		skb->sk = save_sk;
1867 		return err;
1868 	}
1869 
1870 	skb_zcopy_set(skb, uarg, NULL);
1871 	return skb->len - orig_len;
1872 }
1873 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1874 
1875 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1876 {
1877 	int i;
1878 
1879 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1880 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1881 		skb_frag_ref(skb, i);
1882 }
1883 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1884 
1885 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1886 			      gfp_t gfp_mask)
1887 {
1888 	if (skb_zcopy(orig)) {
1889 		if (skb_zcopy(nskb)) {
1890 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1891 			if (!gfp_mask) {
1892 				WARN_ON_ONCE(1);
1893 				return -ENOMEM;
1894 			}
1895 			if (skb_uarg(nskb) == skb_uarg(orig))
1896 				return 0;
1897 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1898 				return -EIO;
1899 		}
1900 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1901 	}
1902 	return 0;
1903 }
1904 
1905 /**
1906  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1907  *	@skb: the skb to modify
1908  *	@gfp_mask: allocation priority
1909  *
1910  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1911  *	It will copy all frags into kernel and drop the reference
1912  *	to userspace pages.
1913  *
1914  *	If this function is called from an interrupt gfp_mask() must be
1915  *	%GFP_ATOMIC.
1916  *
1917  *	Returns 0 on success or a negative error code on failure
1918  *	to allocate kernel memory to copy to.
1919  */
1920 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1921 {
1922 	int num_frags = skb_shinfo(skb)->nr_frags;
1923 	struct page *page, *head = NULL;
1924 	int i, order, psize, new_frags;
1925 	u32 d_off;
1926 
1927 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1928 		return -EINVAL;
1929 
1930 	if (!num_frags)
1931 		goto release;
1932 
1933 	/* We might have to allocate high order pages, so compute what minimum
1934 	 * page order is needed.
1935 	 */
1936 	order = 0;
1937 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1938 		order++;
1939 	psize = (PAGE_SIZE << order);
1940 
1941 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1942 	for (i = 0; i < new_frags; i++) {
1943 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1944 		if (!page) {
1945 			while (head) {
1946 				struct page *next = (struct page *)page_private(head);
1947 				put_page(head);
1948 				head = next;
1949 			}
1950 			return -ENOMEM;
1951 		}
1952 		set_page_private(page, (unsigned long)head);
1953 		head = page;
1954 	}
1955 
1956 	page = head;
1957 	d_off = 0;
1958 	for (i = 0; i < num_frags; i++) {
1959 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1960 		u32 p_off, p_len, copied;
1961 		struct page *p;
1962 		u8 *vaddr;
1963 
1964 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1965 				      p, p_off, p_len, copied) {
1966 			u32 copy, done = 0;
1967 			vaddr = kmap_atomic(p);
1968 
1969 			while (done < p_len) {
1970 				if (d_off == psize) {
1971 					d_off = 0;
1972 					page = (struct page *)page_private(page);
1973 				}
1974 				copy = min_t(u32, psize - d_off, p_len - done);
1975 				memcpy(page_address(page) + d_off,
1976 				       vaddr + p_off + done, copy);
1977 				done += copy;
1978 				d_off += copy;
1979 			}
1980 			kunmap_atomic(vaddr);
1981 		}
1982 	}
1983 
1984 	/* skb frags release userspace buffers */
1985 	for (i = 0; i < num_frags; i++)
1986 		skb_frag_unref(skb, i);
1987 
1988 	/* skb frags point to kernel buffers */
1989 	for (i = 0; i < new_frags - 1; i++) {
1990 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1991 		head = (struct page *)page_private(head);
1992 	}
1993 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
1994 			       d_off);
1995 	skb_shinfo(skb)->nr_frags = new_frags;
1996 
1997 release:
1998 	skb_zcopy_clear(skb, false);
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2002 
2003 /**
2004  *	skb_clone	-	duplicate an sk_buff
2005  *	@skb: buffer to clone
2006  *	@gfp_mask: allocation priority
2007  *
2008  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2009  *	copies share the same packet data but not structure. The new
2010  *	buffer has a reference count of 1. If the allocation fails the
2011  *	function returns %NULL otherwise the new buffer is returned.
2012  *
2013  *	If this function is called from an interrupt gfp_mask() must be
2014  *	%GFP_ATOMIC.
2015  */
2016 
2017 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2018 {
2019 	struct sk_buff_fclones *fclones = container_of(skb,
2020 						       struct sk_buff_fclones,
2021 						       skb1);
2022 	struct sk_buff *n;
2023 
2024 	if (skb_orphan_frags(skb, gfp_mask))
2025 		return NULL;
2026 
2027 	if (skb->fclone == SKB_FCLONE_ORIG &&
2028 	    refcount_read(&fclones->fclone_ref) == 1) {
2029 		n = &fclones->skb2;
2030 		refcount_set(&fclones->fclone_ref, 2);
2031 		n->fclone = SKB_FCLONE_CLONE;
2032 	} else {
2033 		if (skb_pfmemalloc(skb))
2034 			gfp_mask |= __GFP_MEMALLOC;
2035 
2036 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2037 		if (!n)
2038 			return NULL;
2039 
2040 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2041 	}
2042 
2043 	return __skb_clone(n, skb);
2044 }
2045 EXPORT_SYMBOL(skb_clone);
2046 
2047 void skb_headers_offset_update(struct sk_buff *skb, int off)
2048 {
2049 	/* Only adjust this if it actually is csum_start rather than csum */
2050 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2051 		skb->csum_start += off;
2052 	/* {transport,network,mac}_header and tail are relative to skb->head */
2053 	skb->transport_header += off;
2054 	skb->network_header   += off;
2055 	if (skb_mac_header_was_set(skb))
2056 		skb->mac_header += off;
2057 	skb->inner_transport_header += off;
2058 	skb->inner_network_header += off;
2059 	skb->inner_mac_header += off;
2060 }
2061 EXPORT_SYMBOL(skb_headers_offset_update);
2062 
2063 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2064 {
2065 	__copy_skb_header(new, old);
2066 
2067 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2068 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2069 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2070 }
2071 EXPORT_SYMBOL(skb_copy_header);
2072 
2073 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2074 {
2075 	if (skb_pfmemalloc(skb))
2076 		return SKB_ALLOC_RX;
2077 	return 0;
2078 }
2079 
2080 /**
2081  *	skb_copy	-	create private copy of an sk_buff
2082  *	@skb: buffer to copy
2083  *	@gfp_mask: allocation priority
2084  *
2085  *	Make a copy of both an &sk_buff and its data. This is used when the
2086  *	caller wishes to modify the data and needs a private copy of the
2087  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2088  *	on success. The returned buffer has a reference count of 1.
2089  *
2090  *	As by-product this function converts non-linear &sk_buff to linear
2091  *	one, so that &sk_buff becomes completely private and caller is allowed
2092  *	to modify all the data of returned buffer. This means that this
2093  *	function is not recommended for use in circumstances when only
2094  *	header is going to be modified. Use pskb_copy() instead.
2095  */
2096 
2097 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2098 {
2099 	int headerlen = skb_headroom(skb);
2100 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2101 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2102 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2103 
2104 	if (!n)
2105 		return NULL;
2106 
2107 	/* Set the data pointer */
2108 	skb_reserve(n, headerlen);
2109 	/* Set the tail pointer and length */
2110 	skb_put(n, skb->len);
2111 
2112 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2113 
2114 	skb_copy_header(n, skb);
2115 	return n;
2116 }
2117 EXPORT_SYMBOL(skb_copy);
2118 
2119 /**
2120  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2121  *	@skb: buffer to copy
2122  *	@headroom: headroom of new skb
2123  *	@gfp_mask: allocation priority
2124  *	@fclone: if true allocate the copy of the skb from the fclone
2125  *	cache instead of the head cache; it is recommended to set this
2126  *	to true for the cases where the copy will likely be cloned
2127  *
2128  *	Make a copy of both an &sk_buff and part of its data, located
2129  *	in header. Fragmented data remain shared. This is used when
2130  *	the caller wishes to modify only header of &sk_buff and needs
2131  *	private copy of the header to alter. Returns %NULL on failure
2132  *	or the pointer to the buffer on success.
2133  *	The returned buffer has a reference count of 1.
2134  */
2135 
2136 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2137 				   gfp_t gfp_mask, bool fclone)
2138 {
2139 	unsigned int size = skb_headlen(skb) + headroom;
2140 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2141 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2142 
2143 	if (!n)
2144 		goto out;
2145 
2146 	/* Set the data pointer */
2147 	skb_reserve(n, headroom);
2148 	/* Set the tail pointer and length */
2149 	skb_put(n, skb_headlen(skb));
2150 	/* Copy the bytes */
2151 	skb_copy_from_linear_data(skb, n->data, n->len);
2152 
2153 	n->truesize += skb->data_len;
2154 	n->data_len  = skb->data_len;
2155 	n->len	     = skb->len;
2156 
2157 	if (skb_shinfo(skb)->nr_frags) {
2158 		int i;
2159 
2160 		if (skb_orphan_frags(skb, gfp_mask) ||
2161 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2162 			kfree_skb(n);
2163 			n = NULL;
2164 			goto out;
2165 		}
2166 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2167 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2168 			skb_frag_ref(skb, i);
2169 		}
2170 		skb_shinfo(n)->nr_frags = i;
2171 	}
2172 
2173 	if (skb_has_frag_list(skb)) {
2174 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2175 		skb_clone_fraglist(n);
2176 	}
2177 
2178 	skb_copy_header(n, skb);
2179 out:
2180 	return n;
2181 }
2182 EXPORT_SYMBOL(__pskb_copy_fclone);
2183 
2184 /**
2185  *	pskb_expand_head - reallocate header of &sk_buff
2186  *	@skb: buffer to reallocate
2187  *	@nhead: room to add at head
2188  *	@ntail: room to add at tail
2189  *	@gfp_mask: allocation priority
2190  *
2191  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2192  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2193  *	reference count of 1. Returns zero in the case of success or error,
2194  *	if expansion failed. In the last case, &sk_buff is not changed.
2195  *
2196  *	All the pointers pointing into skb header may change and must be
2197  *	reloaded after call to this function.
2198  */
2199 
2200 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2201 		     gfp_t gfp_mask)
2202 {
2203 	unsigned int osize = skb_end_offset(skb);
2204 	unsigned int size = osize + nhead + ntail;
2205 	long off;
2206 	u8 *data;
2207 	int i;
2208 
2209 	BUG_ON(nhead < 0);
2210 
2211 	BUG_ON(skb_shared(skb));
2212 
2213 	skb_zcopy_downgrade_managed(skb);
2214 
2215 	if (skb_pfmemalloc(skb))
2216 		gfp_mask |= __GFP_MEMALLOC;
2217 
2218 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2219 	if (!data)
2220 		goto nodata;
2221 	size = SKB_WITH_OVERHEAD(size);
2222 
2223 	/* Copy only real data... and, alas, header. This should be
2224 	 * optimized for the cases when header is void.
2225 	 */
2226 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2227 
2228 	memcpy((struct skb_shared_info *)(data + size),
2229 	       skb_shinfo(skb),
2230 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2231 
2232 	/*
2233 	 * if shinfo is shared we must drop the old head gracefully, but if it
2234 	 * is not we can just drop the old head and let the existing refcount
2235 	 * be since all we did is relocate the values
2236 	 */
2237 	if (skb_cloned(skb)) {
2238 		if (skb_orphan_frags(skb, gfp_mask))
2239 			goto nofrags;
2240 		if (skb_zcopy(skb))
2241 			refcount_inc(&skb_uarg(skb)->refcnt);
2242 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2243 			skb_frag_ref(skb, i);
2244 
2245 		if (skb_has_frag_list(skb))
2246 			skb_clone_fraglist(skb);
2247 
2248 		skb_release_data(skb, SKB_CONSUMED);
2249 	} else {
2250 		skb_free_head(skb);
2251 	}
2252 	off = (data + nhead) - skb->head;
2253 
2254 	skb->head     = data;
2255 	skb->head_frag = 0;
2256 	skb->data    += off;
2257 
2258 	skb_set_end_offset(skb, size);
2259 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2260 	off           = nhead;
2261 #endif
2262 	skb->tail	      += off;
2263 	skb_headers_offset_update(skb, nhead);
2264 	skb->cloned   = 0;
2265 	skb->hdr_len  = 0;
2266 	skb->nohdr    = 0;
2267 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2268 
2269 	skb_metadata_clear(skb);
2270 
2271 	/* It is not generally safe to change skb->truesize.
2272 	 * For the moment, we really care of rx path, or
2273 	 * when skb is orphaned (not attached to a socket).
2274 	 */
2275 	if (!skb->sk || skb->destructor == sock_edemux)
2276 		skb->truesize += size - osize;
2277 
2278 	return 0;
2279 
2280 nofrags:
2281 	skb_kfree_head(data, size);
2282 nodata:
2283 	return -ENOMEM;
2284 }
2285 EXPORT_SYMBOL(pskb_expand_head);
2286 
2287 /* Make private copy of skb with writable head and some headroom */
2288 
2289 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2290 {
2291 	struct sk_buff *skb2;
2292 	int delta = headroom - skb_headroom(skb);
2293 
2294 	if (delta <= 0)
2295 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2296 	else {
2297 		skb2 = skb_clone(skb, GFP_ATOMIC);
2298 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2299 					     GFP_ATOMIC)) {
2300 			kfree_skb(skb2);
2301 			skb2 = NULL;
2302 		}
2303 	}
2304 	return skb2;
2305 }
2306 EXPORT_SYMBOL(skb_realloc_headroom);
2307 
2308 /* Note: We plan to rework this in linux-6.4 */
2309 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2310 {
2311 	unsigned int saved_end_offset, saved_truesize;
2312 	struct skb_shared_info *shinfo;
2313 	int res;
2314 
2315 	saved_end_offset = skb_end_offset(skb);
2316 	saved_truesize = skb->truesize;
2317 
2318 	res = pskb_expand_head(skb, 0, 0, pri);
2319 	if (res)
2320 		return res;
2321 
2322 	skb->truesize = saved_truesize;
2323 
2324 	if (likely(skb_end_offset(skb) == saved_end_offset))
2325 		return 0;
2326 
2327 	/* We can not change skb->end if the original or new value
2328 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2329 	 */
2330 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2331 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2332 		/* We think this path should not be taken.
2333 		 * Add a temporary trace to warn us just in case.
2334 		 */
2335 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2336 			    saved_end_offset, skb_end_offset(skb));
2337 		WARN_ON_ONCE(1);
2338 		return 0;
2339 	}
2340 
2341 	shinfo = skb_shinfo(skb);
2342 
2343 	/* We are about to change back skb->end,
2344 	 * we need to move skb_shinfo() to its new location.
2345 	 */
2346 	memmove(skb->head + saved_end_offset,
2347 		shinfo,
2348 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2349 
2350 	skb_set_end_offset(skb, saved_end_offset);
2351 
2352 	return 0;
2353 }
2354 
2355 /**
2356  *	skb_expand_head - reallocate header of &sk_buff
2357  *	@skb: buffer to reallocate
2358  *	@headroom: needed headroom
2359  *
2360  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2361  *	if possible; copies skb->sk to new skb as needed
2362  *	and frees original skb in case of failures.
2363  *
2364  *	It expect increased headroom and generates warning otherwise.
2365  */
2366 
2367 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2368 {
2369 	int delta = headroom - skb_headroom(skb);
2370 	int osize = skb_end_offset(skb);
2371 	struct sock *sk = skb->sk;
2372 
2373 	if (WARN_ONCE(delta <= 0,
2374 		      "%s is expecting an increase in the headroom", __func__))
2375 		return skb;
2376 
2377 	delta = SKB_DATA_ALIGN(delta);
2378 	/* pskb_expand_head() might crash, if skb is shared. */
2379 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2380 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2381 
2382 		if (unlikely(!nskb))
2383 			goto fail;
2384 
2385 		if (sk)
2386 			skb_set_owner_w(nskb, sk);
2387 		consume_skb(skb);
2388 		skb = nskb;
2389 	}
2390 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2391 		goto fail;
2392 
2393 	if (sk && is_skb_wmem(skb)) {
2394 		delta = skb_end_offset(skb) - osize;
2395 		refcount_add(delta, &sk->sk_wmem_alloc);
2396 		skb->truesize += delta;
2397 	}
2398 	return skb;
2399 
2400 fail:
2401 	kfree_skb(skb);
2402 	return NULL;
2403 }
2404 EXPORT_SYMBOL(skb_expand_head);
2405 
2406 /**
2407  *	skb_copy_expand	-	copy and expand sk_buff
2408  *	@skb: buffer to copy
2409  *	@newheadroom: new free bytes at head
2410  *	@newtailroom: new free bytes at tail
2411  *	@gfp_mask: allocation priority
2412  *
2413  *	Make a copy of both an &sk_buff and its data and while doing so
2414  *	allocate additional space.
2415  *
2416  *	This is used when the caller wishes to modify the data and needs a
2417  *	private copy of the data to alter as well as more space for new fields.
2418  *	Returns %NULL on failure or the pointer to the buffer
2419  *	on success. The returned buffer has a reference count of 1.
2420  *
2421  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2422  *	is called from an interrupt.
2423  */
2424 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2425 				int newheadroom, int newtailroom,
2426 				gfp_t gfp_mask)
2427 {
2428 	/*
2429 	 *	Allocate the copy buffer
2430 	 */
2431 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2432 					gfp_mask, skb_alloc_rx_flag(skb),
2433 					NUMA_NO_NODE);
2434 	int oldheadroom = skb_headroom(skb);
2435 	int head_copy_len, head_copy_off;
2436 
2437 	if (!n)
2438 		return NULL;
2439 
2440 	skb_reserve(n, newheadroom);
2441 
2442 	/* Set the tail pointer and length */
2443 	skb_put(n, skb->len);
2444 
2445 	head_copy_len = oldheadroom;
2446 	head_copy_off = 0;
2447 	if (newheadroom <= head_copy_len)
2448 		head_copy_len = newheadroom;
2449 	else
2450 		head_copy_off = newheadroom - head_copy_len;
2451 
2452 	/* Copy the linear header and data. */
2453 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2454 			     skb->len + head_copy_len));
2455 
2456 	skb_copy_header(n, skb);
2457 
2458 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2459 
2460 	return n;
2461 }
2462 EXPORT_SYMBOL(skb_copy_expand);
2463 
2464 /**
2465  *	__skb_pad		-	zero pad the tail of an skb
2466  *	@skb: buffer to pad
2467  *	@pad: space to pad
2468  *	@free_on_error: free buffer on error
2469  *
2470  *	Ensure that a buffer is followed by a padding area that is zero
2471  *	filled. Used by network drivers which may DMA or transfer data
2472  *	beyond the buffer end onto the wire.
2473  *
2474  *	May return error in out of memory cases. The skb is freed on error
2475  *	if @free_on_error is true.
2476  */
2477 
2478 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2479 {
2480 	int err;
2481 	int ntail;
2482 
2483 	/* If the skbuff is non linear tailroom is always zero.. */
2484 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2485 		memset(skb->data+skb->len, 0, pad);
2486 		return 0;
2487 	}
2488 
2489 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2490 	if (likely(skb_cloned(skb) || ntail > 0)) {
2491 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2492 		if (unlikely(err))
2493 			goto free_skb;
2494 	}
2495 
2496 	/* FIXME: The use of this function with non-linear skb's really needs
2497 	 * to be audited.
2498 	 */
2499 	err = skb_linearize(skb);
2500 	if (unlikely(err))
2501 		goto free_skb;
2502 
2503 	memset(skb->data + skb->len, 0, pad);
2504 	return 0;
2505 
2506 free_skb:
2507 	if (free_on_error)
2508 		kfree_skb(skb);
2509 	return err;
2510 }
2511 EXPORT_SYMBOL(__skb_pad);
2512 
2513 /**
2514  *	pskb_put - add data to the tail of a potentially fragmented buffer
2515  *	@skb: start of the buffer to use
2516  *	@tail: tail fragment of the buffer to use
2517  *	@len: amount of data to add
2518  *
2519  *	This function extends the used data area of the potentially
2520  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2521  *	@skb itself. If this would exceed the total buffer size the kernel
2522  *	will panic. A pointer to the first byte of the extra data is
2523  *	returned.
2524  */
2525 
2526 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2527 {
2528 	if (tail != skb) {
2529 		skb->data_len += len;
2530 		skb->len += len;
2531 	}
2532 	return skb_put(tail, len);
2533 }
2534 EXPORT_SYMBOL_GPL(pskb_put);
2535 
2536 /**
2537  *	skb_put - add data to a buffer
2538  *	@skb: buffer to use
2539  *	@len: amount of data to add
2540  *
2541  *	This function extends the used data area of the buffer. If this would
2542  *	exceed the total buffer size the kernel will panic. A pointer to the
2543  *	first byte of the extra data is returned.
2544  */
2545 void *skb_put(struct sk_buff *skb, unsigned int len)
2546 {
2547 	void *tmp = skb_tail_pointer(skb);
2548 	SKB_LINEAR_ASSERT(skb);
2549 	skb->tail += len;
2550 	skb->len  += len;
2551 	if (unlikely(skb->tail > skb->end))
2552 		skb_over_panic(skb, len, __builtin_return_address(0));
2553 	return tmp;
2554 }
2555 EXPORT_SYMBOL(skb_put);
2556 
2557 /**
2558  *	skb_push - add data to the start of a buffer
2559  *	@skb: buffer to use
2560  *	@len: amount of data to add
2561  *
2562  *	This function extends the used data area of the buffer at the buffer
2563  *	start. If this would exceed the total buffer headroom the kernel will
2564  *	panic. A pointer to the first byte of the extra data is returned.
2565  */
2566 void *skb_push(struct sk_buff *skb, unsigned int len)
2567 {
2568 	skb->data -= len;
2569 	skb->len  += len;
2570 	if (unlikely(skb->data < skb->head))
2571 		skb_under_panic(skb, len, __builtin_return_address(0));
2572 	return skb->data;
2573 }
2574 EXPORT_SYMBOL(skb_push);
2575 
2576 /**
2577  *	skb_pull - remove data from the start of a buffer
2578  *	@skb: buffer to use
2579  *	@len: amount of data to remove
2580  *
2581  *	This function removes data from the start of a buffer, returning
2582  *	the memory to the headroom. A pointer to the next data in the buffer
2583  *	is returned. Once the data has been pulled future pushes will overwrite
2584  *	the old data.
2585  */
2586 void *skb_pull(struct sk_buff *skb, unsigned int len)
2587 {
2588 	return skb_pull_inline(skb, len);
2589 }
2590 EXPORT_SYMBOL(skb_pull);
2591 
2592 /**
2593  *	skb_pull_data - remove data from the start of a buffer returning its
2594  *	original position.
2595  *	@skb: buffer to use
2596  *	@len: amount of data to remove
2597  *
2598  *	This function removes data from the start of a buffer, returning
2599  *	the memory to the headroom. A pointer to the original data in the buffer
2600  *	is returned after checking if there is enough data to pull. Once the
2601  *	data has been pulled future pushes will overwrite the old data.
2602  */
2603 void *skb_pull_data(struct sk_buff *skb, size_t len)
2604 {
2605 	void *data = skb->data;
2606 
2607 	if (skb->len < len)
2608 		return NULL;
2609 
2610 	skb_pull(skb, len);
2611 
2612 	return data;
2613 }
2614 EXPORT_SYMBOL(skb_pull_data);
2615 
2616 /**
2617  *	skb_trim - remove end from a buffer
2618  *	@skb: buffer to alter
2619  *	@len: new length
2620  *
2621  *	Cut the length of a buffer down by removing data from the tail. If
2622  *	the buffer is already under the length specified it is not modified.
2623  *	The skb must be linear.
2624  */
2625 void skb_trim(struct sk_buff *skb, unsigned int len)
2626 {
2627 	if (skb->len > len)
2628 		__skb_trim(skb, len);
2629 }
2630 EXPORT_SYMBOL(skb_trim);
2631 
2632 /* Trims skb to length len. It can change skb pointers.
2633  */
2634 
2635 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2636 {
2637 	struct sk_buff **fragp;
2638 	struct sk_buff *frag;
2639 	int offset = skb_headlen(skb);
2640 	int nfrags = skb_shinfo(skb)->nr_frags;
2641 	int i;
2642 	int err;
2643 
2644 	if (skb_cloned(skb) &&
2645 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2646 		return err;
2647 
2648 	i = 0;
2649 	if (offset >= len)
2650 		goto drop_pages;
2651 
2652 	for (; i < nfrags; i++) {
2653 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2654 
2655 		if (end < len) {
2656 			offset = end;
2657 			continue;
2658 		}
2659 
2660 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2661 
2662 drop_pages:
2663 		skb_shinfo(skb)->nr_frags = i;
2664 
2665 		for (; i < nfrags; i++)
2666 			skb_frag_unref(skb, i);
2667 
2668 		if (skb_has_frag_list(skb))
2669 			skb_drop_fraglist(skb);
2670 		goto done;
2671 	}
2672 
2673 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2674 	     fragp = &frag->next) {
2675 		int end = offset + frag->len;
2676 
2677 		if (skb_shared(frag)) {
2678 			struct sk_buff *nfrag;
2679 
2680 			nfrag = skb_clone(frag, GFP_ATOMIC);
2681 			if (unlikely(!nfrag))
2682 				return -ENOMEM;
2683 
2684 			nfrag->next = frag->next;
2685 			consume_skb(frag);
2686 			frag = nfrag;
2687 			*fragp = frag;
2688 		}
2689 
2690 		if (end < len) {
2691 			offset = end;
2692 			continue;
2693 		}
2694 
2695 		if (end > len &&
2696 		    unlikely((err = pskb_trim(frag, len - offset))))
2697 			return err;
2698 
2699 		if (frag->next)
2700 			skb_drop_list(&frag->next);
2701 		break;
2702 	}
2703 
2704 done:
2705 	if (len > skb_headlen(skb)) {
2706 		skb->data_len -= skb->len - len;
2707 		skb->len       = len;
2708 	} else {
2709 		skb->len       = len;
2710 		skb->data_len  = 0;
2711 		skb_set_tail_pointer(skb, len);
2712 	}
2713 
2714 	if (!skb->sk || skb->destructor == sock_edemux)
2715 		skb_condense(skb);
2716 	return 0;
2717 }
2718 EXPORT_SYMBOL(___pskb_trim);
2719 
2720 /* Note : use pskb_trim_rcsum() instead of calling this directly
2721  */
2722 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2723 {
2724 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2725 		int delta = skb->len - len;
2726 
2727 		skb->csum = csum_block_sub(skb->csum,
2728 					   skb_checksum(skb, len, delta, 0),
2729 					   len);
2730 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2731 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2732 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2733 
2734 		if (offset + sizeof(__sum16) > hdlen)
2735 			return -EINVAL;
2736 	}
2737 	return __pskb_trim(skb, len);
2738 }
2739 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2740 
2741 /**
2742  *	__pskb_pull_tail - advance tail of skb header
2743  *	@skb: buffer to reallocate
2744  *	@delta: number of bytes to advance tail
2745  *
2746  *	The function makes a sense only on a fragmented &sk_buff,
2747  *	it expands header moving its tail forward and copying necessary
2748  *	data from fragmented part.
2749  *
2750  *	&sk_buff MUST have reference count of 1.
2751  *
2752  *	Returns %NULL (and &sk_buff does not change) if pull failed
2753  *	or value of new tail of skb in the case of success.
2754  *
2755  *	All the pointers pointing into skb header may change and must be
2756  *	reloaded after call to this function.
2757  */
2758 
2759 /* Moves tail of skb head forward, copying data from fragmented part,
2760  * when it is necessary.
2761  * 1. It may fail due to malloc failure.
2762  * 2. It may change skb pointers.
2763  *
2764  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2765  */
2766 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2767 {
2768 	/* If skb has not enough free space at tail, get new one
2769 	 * plus 128 bytes for future expansions. If we have enough
2770 	 * room at tail, reallocate without expansion only if skb is cloned.
2771 	 */
2772 	int i, k, eat = (skb->tail + delta) - skb->end;
2773 
2774 	if (eat > 0 || skb_cloned(skb)) {
2775 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2776 				     GFP_ATOMIC))
2777 			return NULL;
2778 	}
2779 
2780 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2781 			     skb_tail_pointer(skb), delta));
2782 
2783 	/* Optimization: no fragments, no reasons to preestimate
2784 	 * size of pulled pages. Superb.
2785 	 */
2786 	if (!skb_has_frag_list(skb))
2787 		goto pull_pages;
2788 
2789 	/* Estimate size of pulled pages. */
2790 	eat = delta;
2791 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2792 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2793 
2794 		if (size >= eat)
2795 			goto pull_pages;
2796 		eat -= size;
2797 	}
2798 
2799 	/* If we need update frag list, we are in troubles.
2800 	 * Certainly, it is possible to add an offset to skb data,
2801 	 * but taking into account that pulling is expected to
2802 	 * be very rare operation, it is worth to fight against
2803 	 * further bloating skb head and crucify ourselves here instead.
2804 	 * Pure masohism, indeed. 8)8)
2805 	 */
2806 	if (eat) {
2807 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2808 		struct sk_buff *clone = NULL;
2809 		struct sk_buff *insp = NULL;
2810 
2811 		do {
2812 			if (list->len <= eat) {
2813 				/* Eaten as whole. */
2814 				eat -= list->len;
2815 				list = list->next;
2816 				insp = list;
2817 			} else {
2818 				/* Eaten partially. */
2819 				if (skb_is_gso(skb) && !list->head_frag &&
2820 				    skb_headlen(list))
2821 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2822 
2823 				if (skb_shared(list)) {
2824 					/* Sucks! We need to fork list. :-( */
2825 					clone = skb_clone(list, GFP_ATOMIC);
2826 					if (!clone)
2827 						return NULL;
2828 					insp = list->next;
2829 					list = clone;
2830 				} else {
2831 					/* This may be pulled without
2832 					 * problems. */
2833 					insp = list;
2834 				}
2835 				if (!pskb_pull(list, eat)) {
2836 					kfree_skb(clone);
2837 					return NULL;
2838 				}
2839 				break;
2840 			}
2841 		} while (eat);
2842 
2843 		/* Free pulled out fragments. */
2844 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2845 			skb_shinfo(skb)->frag_list = list->next;
2846 			consume_skb(list);
2847 		}
2848 		/* And insert new clone at head. */
2849 		if (clone) {
2850 			clone->next = list;
2851 			skb_shinfo(skb)->frag_list = clone;
2852 		}
2853 	}
2854 	/* Success! Now we may commit changes to skb data. */
2855 
2856 pull_pages:
2857 	eat = delta;
2858 	k = 0;
2859 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2860 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2861 
2862 		if (size <= eat) {
2863 			skb_frag_unref(skb, i);
2864 			eat -= size;
2865 		} else {
2866 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2867 
2868 			*frag = skb_shinfo(skb)->frags[i];
2869 			if (eat) {
2870 				skb_frag_off_add(frag, eat);
2871 				skb_frag_size_sub(frag, eat);
2872 				if (!i)
2873 					goto end;
2874 				eat = 0;
2875 			}
2876 			k++;
2877 		}
2878 	}
2879 	skb_shinfo(skb)->nr_frags = k;
2880 
2881 end:
2882 	skb->tail     += delta;
2883 	skb->data_len -= delta;
2884 
2885 	if (!skb->data_len)
2886 		skb_zcopy_clear(skb, false);
2887 
2888 	return skb_tail_pointer(skb);
2889 }
2890 EXPORT_SYMBOL(__pskb_pull_tail);
2891 
2892 /**
2893  *	skb_copy_bits - copy bits from skb to kernel buffer
2894  *	@skb: source skb
2895  *	@offset: offset in source
2896  *	@to: destination buffer
2897  *	@len: number of bytes to copy
2898  *
2899  *	Copy the specified number of bytes from the source skb to the
2900  *	destination buffer.
2901  *
2902  *	CAUTION ! :
2903  *		If its prototype is ever changed,
2904  *		check arch/{*}/net/{*}.S files,
2905  *		since it is called from BPF assembly code.
2906  */
2907 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2908 {
2909 	int start = skb_headlen(skb);
2910 	struct sk_buff *frag_iter;
2911 	int i, copy;
2912 
2913 	if (offset > (int)skb->len - len)
2914 		goto fault;
2915 
2916 	/* Copy header. */
2917 	if ((copy = start - offset) > 0) {
2918 		if (copy > len)
2919 			copy = len;
2920 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2921 		if ((len -= copy) == 0)
2922 			return 0;
2923 		offset += copy;
2924 		to     += copy;
2925 	}
2926 
2927 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2928 		int end;
2929 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2930 
2931 		WARN_ON(start > offset + len);
2932 
2933 		end = start + skb_frag_size(f);
2934 		if ((copy = end - offset) > 0) {
2935 			u32 p_off, p_len, copied;
2936 			struct page *p;
2937 			u8 *vaddr;
2938 
2939 			if (copy > len)
2940 				copy = len;
2941 
2942 			skb_frag_foreach_page(f,
2943 					      skb_frag_off(f) + offset - start,
2944 					      copy, p, p_off, p_len, copied) {
2945 				vaddr = kmap_atomic(p);
2946 				memcpy(to + copied, vaddr + p_off, p_len);
2947 				kunmap_atomic(vaddr);
2948 			}
2949 
2950 			if ((len -= copy) == 0)
2951 				return 0;
2952 			offset += copy;
2953 			to     += copy;
2954 		}
2955 		start = end;
2956 	}
2957 
2958 	skb_walk_frags(skb, frag_iter) {
2959 		int end;
2960 
2961 		WARN_ON(start > offset + len);
2962 
2963 		end = start + frag_iter->len;
2964 		if ((copy = end - offset) > 0) {
2965 			if (copy > len)
2966 				copy = len;
2967 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2968 				goto fault;
2969 			if ((len -= copy) == 0)
2970 				return 0;
2971 			offset += copy;
2972 			to     += copy;
2973 		}
2974 		start = end;
2975 	}
2976 
2977 	if (!len)
2978 		return 0;
2979 
2980 fault:
2981 	return -EFAULT;
2982 }
2983 EXPORT_SYMBOL(skb_copy_bits);
2984 
2985 /*
2986  * Callback from splice_to_pipe(), if we need to release some pages
2987  * at the end of the spd in case we error'ed out in filling the pipe.
2988  */
2989 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2990 {
2991 	put_page(spd->pages[i]);
2992 }
2993 
2994 static struct page *linear_to_page(struct page *page, unsigned int *len,
2995 				   unsigned int *offset,
2996 				   struct sock *sk)
2997 {
2998 	struct page_frag *pfrag = sk_page_frag(sk);
2999 
3000 	if (!sk_page_frag_refill(sk, pfrag))
3001 		return NULL;
3002 
3003 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3004 
3005 	memcpy(page_address(pfrag->page) + pfrag->offset,
3006 	       page_address(page) + *offset, *len);
3007 	*offset = pfrag->offset;
3008 	pfrag->offset += *len;
3009 
3010 	return pfrag->page;
3011 }
3012 
3013 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3014 			     struct page *page,
3015 			     unsigned int offset)
3016 {
3017 	return	spd->nr_pages &&
3018 		spd->pages[spd->nr_pages - 1] == page &&
3019 		(spd->partial[spd->nr_pages - 1].offset +
3020 		 spd->partial[spd->nr_pages - 1].len == offset);
3021 }
3022 
3023 /*
3024  * Fill page/offset/length into spd, if it can hold more pages.
3025  */
3026 static bool spd_fill_page(struct splice_pipe_desc *spd,
3027 			  struct pipe_inode_info *pipe, struct page *page,
3028 			  unsigned int *len, unsigned int offset,
3029 			  bool linear,
3030 			  struct sock *sk)
3031 {
3032 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3033 		return true;
3034 
3035 	if (linear) {
3036 		page = linear_to_page(page, len, &offset, sk);
3037 		if (!page)
3038 			return true;
3039 	}
3040 	if (spd_can_coalesce(spd, page, offset)) {
3041 		spd->partial[spd->nr_pages - 1].len += *len;
3042 		return false;
3043 	}
3044 	get_page(page);
3045 	spd->pages[spd->nr_pages] = page;
3046 	spd->partial[spd->nr_pages].len = *len;
3047 	spd->partial[spd->nr_pages].offset = offset;
3048 	spd->nr_pages++;
3049 
3050 	return false;
3051 }
3052 
3053 static bool __splice_segment(struct page *page, unsigned int poff,
3054 			     unsigned int plen, unsigned int *off,
3055 			     unsigned int *len,
3056 			     struct splice_pipe_desc *spd, bool linear,
3057 			     struct sock *sk,
3058 			     struct pipe_inode_info *pipe)
3059 {
3060 	if (!*len)
3061 		return true;
3062 
3063 	/* skip this segment if already processed */
3064 	if (*off >= plen) {
3065 		*off -= plen;
3066 		return false;
3067 	}
3068 
3069 	/* ignore any bits we already processed */
3070 	poff += *off;
3071 	plen -= *off;
3072 	*off = 0;
3073 
3074 	do {
3075 		unsigned int flen = min(*len, plen);
3076 
3077 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3078 				  linear, sk))
3079 			return true;
3080 		poff += flen;
3081 		plen -= flen;
3082 		*len -= flen;
3083 	} while (*len && plen);
3084 
3085 	return false;
3086 }
3087 
3088 /*
3089  * Map linear and fragment data from the skb to spd. It reports true if the
3090  * pipe is full or if we already spliced the requested length.
3091  */
3092 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3093 			      unsigned int *offset, unsigned int *len,
3094 			      struct splice_pipe_desc *spd, struct sock *sk)
3095 {
3096 	int seg;
3097 	struct sk_buff *iter;
3098 
3099 	/* map the linear part :
3100 	 * If skb->head_frag is set, this 'linear' part is backed by a
3101 	 * fragment, and if the head is not shared with any clones then
3102 	 * we can avoid a copy since we own the head portion of this page.
3103 	 */
3104 	if (__splice_segment(virt_to_page(skb->data),
3105 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3106 			     skb_headlen(skb),
3107 			     offset, len, spd,
3108 			     skb_head_is_locked(skb),
3109 			     sk, pipe))
3110 		return true;
3111 
3112 	/*
3113 	 * then map the fragments
3114 	 */
3115 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3116 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3117 
3118 		if (__splice_segment(skb_frag_page(f),
3119 				     skb_frag_off(f), skb_frag_size(f),
3120 				     offset, len, spd, false, sk, pipe))
3121 			return true;
3122 	}
3123 
3124 	skb_walk_frags(skb, iter) {
3125 		if (*offset >= iter->len) {
3126 			*offset -= iter->len;
3127 			continue;
3128 		}
3129 		/* __skb_splice_bits() only fails if the output has no room
3130 		 * left, so no point in going over the frag_list for the error
3131 		 * case.
3132 		 */
3133 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3134 			return true;
3135 	}
3136 
3137 	return false;
3138 }
3139 
3140 /*
3141  * Map data from the skb to a pipe. Should handle both the linear part,
3142  * the fragments, and the frag list.
3143  */
3144 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3145 		    struct pipe_inode_info *pipe, unsigned int tlen,
3146 		    unsigned int flags)
3147 {
3148 	struct partial_page partial[MAX_SKB_FRAGS];
3149 	struct page *pages[MAX_SKB_FRAGS];
3150 	struct splice_pipe_desc spd = {
3151 		.pages = pages,
3152 		.partial = partial,
3153 		.nr_pages_max = MAX_SKB_FRAGS,
3154 		.ops = &nosteal_pipe_buf_ops,
3155 		.spd_release = sock_spd_release,
3156 	};
3157 	int ret = 0;
3158 
3159 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3160 
3161 	if (spd.nr_pages)
3162 		ret = splice_to_pipe(pipe, &spd);
3163 
3164 	return ret;
3165 }
3166 EXPORT_SYMBOL_GPL(skb_splice_bits);
3167 
3168 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3169 {
3170 	struct socket *sock = sk->sk_socket;
3171 	size_t size = msg_data_left(msg);
3172 
3173 	if (!sock)
3174 		return -EINVAL;
3175 
3176 	if (!sock->ops->sendmsg_locked)
3177 		return sock_no_sendmsg_locked(sk, msg, size);
3178 
3179 	return sock->ops->sendmsg_locked(sk, msg, size);
3180 }
3181 
3182 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3183 {
3184 	struct socket *sock = sk->sk_socket;
3185 
3186 	if (!sock)
3187 		return -EINVAL;
3188 	return sock_sendmsg(sock, msg);
3189 }
3190 
3191 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3192 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3193 			   int len, sendmsg_func sendmsg)
3194 {
3195 	unsigned int orig_len = len;
3196 	struct sk_buff *head = skb;
3197 	unsigned short fragidx;
3198 	int slen, ret;
3199 
3200 do_frag_list:
3201 
3202 	/* Deal with head data */
3203 	while (offset < skb_headlen(skb) && len) {
3204 		struct kvec kv;
3205 		struct msghdr msg;
3206 
3207 		slen = min_t(int, len, skb_headlen(skb) - offset);
3208 		kv.iov_base = skb->data + offset;
3209 		kv.iov_len = slen;
3210 		memset(&msg, 0, sizeof(msg));
3211 		msg.msg_flags = MSG_DONTWAIT;
3212 
3213 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3214 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3215 				      sendmsg_unlocked, sk, &msg);
3216 		if (ret <= 0)
3217 			goto error;
3218 
3219 		offset += ret;
3220 		len -= ret;
3221 	}
3222 
3223 	/* All the data was skb head? */
3224 	if (!len)
3225 		goto out;
3226 
3227 	/* Make offset relative to start of frags */
3228 	offset -= skb_headlen(skb);
3229 
3230 	/* Find where we are in frag list */
3231 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3232 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3233 
3234 		if (offset < skb_frag_size(frag))
3235 			break;
3236 
3237 		offset -= skb_frag_size(frag);
3238 	}
3239 
3240 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3241 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3242 
3243 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3244 
3245 		while (slen) {
3246 			struct bio_vec bvec;
3247 			struct msghdr msg = {
3248 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3249 			};
3250 
3251 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3252 				      skb_frag_off(frag) + offset);
3253 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3254 				      slen);
3255 
3256 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3257 					      sendmsg_unlocked, sk, &msg);
3258 			if (ret <= 0)
3259 				goto error;
3260 
3261 			len -= ret;
3262 			offset += ret;
3263 			slen -= ret;
3264 		}
3265 
3266 		offset = 0;
3267 	}
3268 
3269 	if (len) {
3270 		/* Process any frag lists */
3271 
3272 		if (skb == head) {
3273 			if (skb_has_frag_list(skb)) {
3274 				skb = skb_shinfo(skb)->frag_list;
3275 				goto do_frag_list;
3276 			}
3277 		} else if (skb->next) {
3278 			skb = skb->next;
3279 			goto do_frag_list;
3280 		}
3281 	}
3282 
3283 out:
3284 	return orig_len - len;
3285 
3286 error:
3287 	return orig_len == len ? ret : orig_len - len;
3288 }
3289 
3290 /* Send skb data on a socket. Socket must be locked. */
3291 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3292 			 int len)
3293 {
3294 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3295 }
3296 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3297 
3298 /* Send skb data on a socket. Socket must be unlocked. */
3299 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3300 {
3301 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3302 }
3303 
3304 /**
3305  *	skb_store_bits - store bits from kernel buffer to skb
3306  *	@skb: destination buffer
3307  *	@offset: offset in destination
3308  *	@from: source buffer
3309  *	@len: number of bytes to copy
3310  *
3311  *	Copy the specified number of bytes from the source buffer to the
3312  *	destination skb.  This function handles all the messy bits of
3313  *	traversing fragment lists and such.
3314  */
3315 
3316 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3317 {
3318 	int start = skb_headlen(skb);
3319 	struct sk_buff *frag_iter;
3320 	int i, copy;
3321 
3322 	if (offset > (int)skb->len - len)
3323 		goto fault;
3324 
3325 	if ((copy = start - offset) > 0) {
3326 		if (copy > len)
3327 			copy = len;
3328 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3329 		if ((len -= copy) == 0)
3330 			return 0;
3331 		offset += copy;
3332 		from += copy;
3333 	}
3334 
3335 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3336 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3337 		int end;
3338 
3339 		WARN_ON(start > offset + len);
3340 
3341 		end = start + skb_frag_size(frag);
3342 		if ((copy = end - offset) > 0) {
3343 			u32 p_off, p_len, copied;
3344 			struct page *p;
3345 			u8 *vaddr;
3346 
3347 			if (copy > len)
3348 				copy = len;
3349 
3350 			skb_frag_foreach_page(frag,
3351 					      skb_frag_off(frag) + offset - start,
3352 					      copy, p, p_off, p_len, copied) {
3353 				vaddr = kmap_atomic(p);
3354 				memcpy(vaddr + p_off, from + copied, p_len);
3355 				kunmap_atomic(vaddr);
3356 			}
3357 
3358 			if ((len -= copy) == 0)
3359 				return 0;
3360 			offset += copy;
3361 			from += copy;
3362 		}
3363 		start = end;
3364 	}
3365 
3366 	skb_walk_frags(skb, frag_iter) {
3367 		int end;
3368 
3369 		WARN_ON(start > offset + len);
3370 
3371 		end = start + frag_iter->len;
3372 		if ((copy = end - offset) > 0) {
3373 			if (copy > len)
3374 				copy = len;
3375 			if (skb_store_bits(frag_iter, offset - start,
3376 					   from, copy))
3377 				goto fault;
3378 			if ((len -= copy) == 0)
3379 				return 0;
3380 			offset += copy;
3381 			from += copy;
3382 		}
3383 		start = end;
3384 	}
3385 	if (!len)
3386 		return 0;
3387 
3388 fault:
3389 	return -EFAULT;
3390 }
3391 EXPORT_SYMBOL(skb_store_bits);
3392 
3393 /* Checksum skb data. */
3394 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3395 		      __wsum csum, const struct skb_checksum_ops *ops)
3396 {
3397 	int start = skb_headlen(skb);
3398 	int i, copy = start - offset;
3399 	struct sk_buff *frag_iter;
3400 	int pos = 0;
3401 
3402 	/* Checksum header. */
3403 	if (copy > 0) {
3404 		if (copy > len)
3405 			copy = len;
3406 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3407 				       skb->data + offset, copy, csum);
3408 		if ((len -= copy) == 0)
3409 			return csum;
3410 		offset += copy;
3411 		pos	= copy;
3412 	}
3413 
3414 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3415 		int end;
3416 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3417 
3418 		WARN_ON(start > offset + len);
3419 
3420 		end = start + skb_frag_size(frag);
3421 		if ((copy = end - offset) > 0) {
3422 			u32 p_off, p_len, copied;
3423 			struct page *p;
3424 			__wsum csum2;
3425 			u8 *vaddr;
3426 
3427 			if (copy > len)
3428 				copy = len;
3429 
3430 			skb_frag_foreach_page(frag,
3431 					      skb_frag_off(frag) + offset - start,
3432 					      copy, p, p_off, p_len, copied) {
3433 				vaddr = kmap_atomic(p);
3434 				csum2 = INDIRECT_CALL_1(ops->update,
3435 							csum_partial_ext,
3436 							vaddr + p_off, p_len, 0);
3437 				kunmap_atomic(vaddr);
3438 				csum = INDIRECT_CALL_1(ops->combine,
3439 						       csum_block_add_ext, csum,
3440 						       csum2, pos, p_len);
3441 				pos += p_len;
3442 			}
3443 
3444 			if (!(len -= copy))
3445 				return csum;
3446 			offset += copy;
3447 		}
3448 		start = end;
3449 	}
3450 
3451 	skb_walk_frags(skb, frag_iter) {
3452 		int end;
3453 
3454 		WARN_ON(start > offset + len);
3455 
3456 		end = start + frag_iter->len;
3457 		if ((copy = end - offset) > 0) {
3458 			__wsum csum2;
3459 			if (copy > len)
3460 				copy = len;
3461 			csum2 = __skb_checksum(frag_iter, offset - start,
3462 					       copy, 0, ops);
3463 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3464 					       csum, csum2, pos, copy);
3465 			if ((len -= copy) == 0)
3466 				return csum;
3467 			offset += copy;
3468 			pos    += copy;
3469 		}
3470 		start = end;
3471 	}
3472 	BUG_ON(len);
3473 
3474 	return csum;
3475 }
3476 EXPORT_SYMBOL(__skb_checksum);
3477 
3478 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3479 		    int len, __wsum csum)
3480 {
3481 	const struct skb_checksum_ops ops = {
3482 		.update  = csum_partial_ext,
3483 		.combine = csum_block_add_ext,
3484 	};
3485 
3486 	return __skb_checksum(skb, offset, len, csum, &ops);
3487 }
3488 EXPORT_SYMBOL(skb_checksum);
3489 
3490 /* Both of above in one bottle. */
3491 
3492 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3493 				    u8 *to, int len)
3494 {
3495 	int start = skb_headlen(skb);
3496 	int i, copy = start - offset;
3497 	struct sk_buff *frag_iter;
3498 	int pos = 0;
3499 	__wsum csum = 0;
3500 
3501 	/* Copy header. */
3502 	if (copy > 0) {
3503 		if (copy > len)
3504 			copy = len;
3505 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3506 						 copy);
3507 		if ((len -= copy) == 0)
3508 			return csum;
3509 		offset += copy;
3510 		to     += copy;
3511 		pos	= copy;
3512 	}
3513 
3514 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3515 		int end;
3516 
3517 		WARN_ON(start > offset + len);
3518 
3519 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3520 		if ((copy = end - offset) > 0) {
3521 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3522 			u32 p_off, p_len, copied;
3523 			struct page *p;
3524 			__wsum csum2;
3525 			u8 *vaddr;
3526 
3527 			if (copy > len)
3528 				copy = len;
3529 
3530 			skb_frag_foreach_page(frag,
3531 					      skb_frag_off(frag) + offset - start,
3532 					      copy, p, p_off, p_len, copied) {
3533 				vaddr = kmap_atomic(p);
3534 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3535 								  to + copied,
3536 								  p_len);
3537 				kunmap_atomic(vaddr);
3538 				csum = csum_block_add(csum, csum2, pos);
3539 				pos += p_len;
3540 			}
3541 
3542 			if (!(len -= copy))
3543 				return csum;
3544 			offset += copy;
3545 			to     += copy;
3546 		}
3547 		start = end;
3548 	}
3549 
3550 	skb_walk_frags(skb, frag_iter) {
3551 		__wsum csum2;
3552 		int end;
3553 
3554 		WARN_ON(start > offset + len);
3555 
3556 		end = start + frag_iter->len;
3557 		if ((copy = end - offset) > 0) {
3558 			if (copy > len)
3559 				copy = len;
3560 			csum2 = skb_copy_and_csum_bits(frag_iter,
3561 						       offset - start,
3562 						       to, copy);
3563 			csum = csum_block_add(csum, csum2, pos);
3564 			if ((len -= copy) == 0)
3565 				return csum;
3566 			offset += copy;
3567 			to     += copy;
3568 			pos    += copy;
3569 		}
3570 		start = end;
3571 	}
3572 	BUG_ON(len);
3573 	return csum;
3574 }
3575 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3576 
3577 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3578 {
3579 	__sum16 sum;
3580 
3581 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3582 	/* See comments in __skb_checksum_complete(). */
3583 	if (likely(!sum)) {
3584 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3585 		    !skb->csum_complete_sw)
3586 			netdev_rx_csum_fault(skb->dev, skb);
3587 	}
3588 	if (!skb_shared(skb))
3589 		skb->csum_valid = !sum;
3590 	return sum;
3591 }
3592 EXPORT_SYMBOL(__skb_checksum_complete_head);
3593 
3594 /* This function assumes skb->csum already holds pseudo header's checksum,
3595  * which has been changed from the hardware checksum, for example, by
3596  * __skb_checksum_validate_complete(). And, the original skb->csum must
3597  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3598  *
3599  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3600  * zero. The new checksum is stored back into skb->csum unless the skb is
3601  * shared.
3602  */
3603 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3604 {
3605 	__wsum csum;
3606 	__sum16 sum;
3607 
3608 	csum = skb_checksum(skb, 0, skb->len, 0);
3609 
3610 	sum = csum_fold(csum_add(skb->csum, csum));
3611 	/* This check is inverted, because we already knew the hardware
3612 	 * checksum is invalid before calling this function. So, if the
3613 	 * re-computed checksum is valid instead, then we have a mismatch
3614 	 * between the original skb->csum and skb_checksum(). This means either
3615 	 * the original hardware checksum is incorrect or we screw up skb->csum
3616 	 * when moving skb->data around.
3617 	 */
3618 	if (likely(!sum)) {
3619 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3620 		    !skb->csum_complete_sw)
3621 			netdev_rx_csum_fault(skb->dev, skb);
3622 	}
3623 
3624 	if (!skb_shared(skb)) {
3625 		/* Save full packet checksum */
3626 		skb->csum = csum;
3627 		skb->ip_summed = CHECKSUM_COMPLETE;
3628 		skb->csum_complete_sw = 1;
3629 		skb->csum_valid = !sum;
3630 	}
3631 
3632 	return sum;
3633 }
3634 EXPORT_SYMBOL(__skb_checksum_complete);
3635 
3636 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3637 {
3638 	net_warn_ratelimited(
3639 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3640 		__func__);
3641 	return 0;
3642 }
3643 
3644 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3645 				       int offset, int len)
3646 {
3647 	net_warn_ratelimited(
3648 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3649 		__func__);
3650 	return 0;
3651 }
3652 
3653 static const struct skb_checksum_ops default_crc32c_ops = {
3654 	.update  = warn_crc32c_csum_update,
3655 	.combine = warn_crc32c_csum_combine,
3656 };
3657 
3658 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3659 	&default_crc32c_ops;
3660 EXPORT_SYMBOL(crc32c_csum_stub);
3661 
3662  /**
3663  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3664  *	@from: source buffer
3665  *
3666  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3667  *	into skb_zerocopy().
3668  */
3669 unsigned int
3670 skb_zerocopy_headlen(const struct sk_buff *from)
3671 {
3672 	unsigned int hlen = 0;
3673 
3674 	if (!from->head_frag ||
3675 	    skb_headlen(from) < L1_CACHE_BYTES ||
3676 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3677 		hlen = skb_headlen(from);
3678 		if (!hlen)
3679 			hlen = from->len;
3680 	}
3681 
3682 	if (skb_has_frag_list(from))
3683 		hlen = from->len;
3684 
3685 	return hlen;
3686 }
3687 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3688 
3689 /**
3690  *	skb_zerocopy - Zero copy skb to skb
3691  *	@to: destination buffer
3692  *	@from: source buffer
3693  *	@len: number of bytes to copy from source buffer
3694  *	@hlen: size of linear headroom in destination buffer
3695  *
3696  *	Copies up to `len` bytes from `from` to `to` by creating references
3697  *	to the frags in the source buffer.
3698  *
3699  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3700  *	headroom in the `to` buffer.
3701  *
3702  *	Return value:
3703  *	0: everything is OK
3704  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3705  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3706  */
3707 int
3708 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3709 {
3710 	int i, j = 0;
3711 	int plen = 0; /* length of skb->head fragment */
3712 	int ret;
3713 	struct page *page;
3714 	unsigned int offset;
3715 
3716 	BUG_ON(!from->head_frag && !hlen);
3717 
3718 	/* dont bother with small payloads */
3719 	if (len <= skb_tailroom(to))
3720 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3721 
3722 	if (hlen) {
3723 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3724 		if (unlikely(ret))
3725 			return ret;
3726 		len -= hlen;
3727 	} else {
3728 		plen = min_t(int, skb_headlen(from), len);
3729 		if (plen) {
3730 			page = virt_to_head_page(from->head);
3731 			offset = from->data - (unsigned char *)page_address(page);
3732 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3733 					       offset, plen);
3734 			get_page(page);
3735 			j = 1;
3736 			len -= plen;
3737 		}
3738 	}
3739 
3740 	skb_len_add(to, len + plen);
3741 
3742 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3743 		skb_tx_error(from);
3744 		return -ENOMEM;
3745 	}
3746 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3747 
3748 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3749 		int size;
3750 
3751 		if (!len)
3752 			break;
3753 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3754 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3755 					len);
3756 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3757 		len -= size;
3758 		skb_frag_ref(to, j);
3759 		j++;
3760 	}
3761 	skb_shinfo(to)->nr_frags = j;
3762 
3763 	return 0;
3764 }
3765 EXPORT_SYMBOL_GPL(skb_zerocopy);
3766 
3767 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3768 {
3769 	__wsum csum;
3770 	long csstart;
3771 
3772 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3773 		csstart = skb_checksum_start_offset(skb);
3774 	else
3775 		csstart = skb_headlen(skb);
3776 
3777 	BUG_ON(csstart > skb_headlen(skb));
3778 
3779 	skb_copy_from_linear_data(skb, to, csstart);
3780 
3781 	csum = 0;
3782 	if (csstart != skb->len)
3783 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3784 					      skb->len - csstart);
3785 
3786 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3787 		long csstuff = csstart + skb->csum_offset;
3788 
3789 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3790 	}
3791 }
3792 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3793 
3794 /**
3795  *	skb_dequeue - remove from the head of the queue
3796  *	@list: list to dequeue from
3797  *
3798  *	Remove the head of the list. The list lock is taken so the function
3799  *	may be used safely with other locking list functions. The head item is
3800  *	returned or %NULL if the list is empty.
3801  */
3802 
3803 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3804 {
3805 	unsigned long flags;
3806 	struct sk_buff *result;
3807 
3808 	spin_lock_irqsave(&list->lock, flags);
3809 	result = __skb_dequeue(list);
3810 	spin_unlock_irqrestore(&list->lock, flags);
3811 	return result;
3812 }
3813 EXPORT_SYMBOL(skb_dequeue);
3814 
3815 /**
3816  *	skb_dequeue_tail - remove from the tail of the queue
3817  *	@list: list to dequeue from
3818  *
3819  *	Remove the tail of the list. The list lock is taken so the function
3820  *	may be used safely with other locking list functions. The tail item is
3821  *	returned or %NULL if the list is empty.
3822  */
3823 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3824 {
3825 	unsigned long flags;
3826 	struct sk_buff *result;
3827 
3828 	spin_lock_irqsave(&list->lock, flags);
3829 	result = __skb_dequeue_tail(list);
3830 	spin_unlock_irqrestore(&list->lock, flags);
3831 	return result;
3832 }
3833 EXPORT_SYMBOL(skb_dequeue_tail);
3834 
3835 /**
3836  *	skb_queue_purge_reason - empty a list
3837  *	@list: list to empty
3838  *	@reason: drop reason
3839  *
3840  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3841  *	the list and one reference dropped. This function takes the list
3842  *	lock and is atomic with respect to other list locking functions.
3843  */
3844 void skb_queue_purge_reason(struct sk_buff_head *list,
3845 			    enum skb_drop_reason reason)
3846 {
3847 	struct sk_buff_head tmp;
3848 	unsigned long flags;
3849 
3850 	if (skb_queue_empty_lockless(list))
3851 		return;
3852 
3853 	__skb_queue_head_init(&tmp);
3854 
3855 	spin_lock_irqsave(&list->lock, flags);
3856 	skb_queue_splice_init(list, &tmp);
3857 	spin_unlock_irqrestore(&list->lock, flags);
3858 
3859 	__skb_queue_purge_reason(&tmp, reason);
3860 }
3861 EXPORT_SYMBOL(skb_queue_purge_reason);
3862 
3863 /**
3864  *	skb_rbtree_purge - empty a skb rbtree
3865  *	@root: root of the rbtree to empty
3866  *	Return value: the sum of truesizes of all purged skbs.
3867  *
3868  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3869  *	the list and one reference dropped. This function does not take
3870  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3871  *	out-of-order queue is protected by the socket lock).
3872  */
3873 unsigned int skb_rbtree_purge(struct rb_root *root)
3874 {
3875 	struct rb_node *p = rb_first(root);
3876 	unsigned int sum = 0;
3877 
3878 	while (p) {
3879 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3880 
3881 		p = rb_next(p);
3882 		rb_erase(&skb->rbnode, root);
3883 		sum += skb->truesize;
3884 		kfree_skb(skb);
3885 	}
3886 	return sum;
3887 }
3888 
3889 void skb_errqueue_purge(struct sk_buff_head *list)
3890 {
3891 	struct sk_buff *skb, *next;
3892 	struct sk_buff_head kill;
3893 	unsigned long flags;
3894 
3895 	__skb_queue_head_init(&kill);
3896 
3897 	spin_lock_irqsave(&list->lock, flags);
3898 	skb_queue_walk_safe(list, skb, next) {
3899 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3900 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3901 			continue;
3902 		__skb_unlink(skb, list);
3903 		__skb_queue_tail(&kill, skb);
3904 	}
3905 	spin_unlock_irqrestore(&list->lock, flags);
3906 	__skb_queue_purge(&kill);
3907 }
3908 EXPORT_SYMBOL(skb_errqueue_purge);
3909 
3910 /**
3911  *	skb_queue_head - queue a buffer at the list head
3912  *	@list: list to use
3913  *	@newsk: buffer to queue
3914  *
3915  *	Queue a buffer at the start of the list. This function takes the
3916  *	list lock and can be used safely with other locking &sk_buff functions
3917  *	safely.
3918  *
3919  *	A buffer cannot be placed on two lists at the same time.
3920  */
3921 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3922 {
3923 	unsigned long flags;
3924 
3925 	spin_lock_irqsave(&list->lock, flags);
3926 	__skb_queue_head(list, newsk);
3927 	spin_unlock_irqrestore(&list->lock, flags);
3928 }
3929 EXPORT_SYMBOL(skb_queue_head);
3930 
3931 /**
3932  *	skb_queue_tail - queue a buffer at the list tail
3933  *	@list: list to use
3934  *	@newsk: buffer to queue
3935  *
3936  *	Queue a buffer at the tail of the list. This function takes the
3937  *	list lock and can be used safely with other locking &sk_buff functions
3938  *	safely.
3939  *
3940  *	A buffer cannot be placed on two lists at the same time.
3941  */
3942 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3943 {
3944 	unsigned long flags;
3945 
3946 	spin_lock_irqsave(&list->lock, flags);
3947 	__skb_queue_tail(list, newsk);
3948 	spin_unlock_irqrestore(&list->lock, flags);
3949 }
3950 EXPORT_SYMBOL(skb_queue_tail);
3951 
3952 /**
3953  *	skb_unlink	-	remove a buffer from a list
3954  *	@skb: buffer to remove
3955  *	@list: list to use
3956  *
3957  *	Remove a packet from a list. The list locks are taken and this
3958  *	function is atomic with respect to other list locked calls
3959  *
3960  *	You must know what list the SKB is on.
3961  */
3962 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3963 {
3964 	unsigned long flags;
3965 
3966 	spin_lock_irqsave(&list->lock, flags);
3967 	__skb_unlink(skb, list);
3968 	spin_unlock_irqrestore(&list->lock, flags);
3969 }
3970 EXPORT_SYMBOL(skb_unlink);
3971 
3972 /**
3973  *	skb_append	-	append a buffer
3974  *	@old: buffer to insert after
3975  *	@newsk: buffer to insert
3976  *	@list: list to use
3977  *
3978  *	Place a packet after a given packet in a list. The list locks are taken
3979  *	and this function is atomic with respect to other list locked calls.
3980  *	A buffer cannot be placed on two lists at the same time.
3981  */
3982 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3983 {
3984 	unsigned long flags;
3985 
3986 	spin_lock_irqsave(&list->lock, flags);
3987 	__skb_queue_after(list, old, newsk);
3988 	spin_unlock_irqrestore(&list->lock, flags);
3989 }
3990 EXPORT_SYMBOL(skb_append);
3991 
3992 static inline void skb_split_inside_header(struct sk_buff *skb,
3993 					   struct sk_buff* skb1,
3994 					   const u32 len, const int pos)
3995 {
3996 	int i;
3997 
3998 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3999 					 pos - len);
4000 	/* And move data appendix as is. */
4001 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4002 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4003 
4004 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4005 	skb_shinfo(skb)->nr_frags  = 0;
4006 	skb1->data_len		   = skb->data_len;
4007 	skb1->len		   += skb1->data_len;
4008 	skb->data_len		   = 0;
4009 	skb->len		   = len;
4010 	skb_set_tail_pointer(skb, len);
4011 }
4012 
4013 static inline void skb_split_no_header(struct sk_buff *skb,
4014 				       struct sk_buff* skb1,
4015 				       const u32 len, int pos)
4016 {
4017 	int i, k = 0;
4018 	const int nfrags = skb_shinfo(skb)->nr_frags;
4019 
4020 	skb_shinfo(skb)->nr_frags = 0;
4021 	skb1->len		  = skb1->data_len = skb->len - len;
4022 	skb->len		  = len;
4023 	skb->data_len		  = len - pos;
4024 
4025 	for (i = 0; i < nfrags; i++) {
4026 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4027 
4028 		if (pos + size > len) {
4029 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4030 
4031 			if (pos < len) {
4032 				/* Split frag.
4033 				 * We have two variants in this case:
4034 				 * 1. Move all the frag to the second
4035 				 *    part, if it is possible. F.e.
4036 				 *    this approach is mandatory for TUX,
4037 				 *    where splitting is expensive.
4038 				 * 2. Split is accurately. We make this.
4039 				 */
4040 				skb_frag_ref(skb, i);
4041 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4042 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4043 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4044 				skb_shinfo(skb)->nr_frags++;
4045 			}
4046 			k++;
4047 		} else
4048 			skb_shinfo(skb)->nr_frags++;
4049 		pos += size;
4050 	}
4051 	skb_shinfo(skb1)->nr_frags = k;
4052 }
4053 
4054 /**
4055  * skb_split - Split fragmented skb to two parts at length len.
4056  * @skb: the buffer to split
4057  * @skb1: the buffer to receive the second part
4058  * @len: new length for skb
4059  */
4060 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4061 {
4062 	int pos = skb_headlen(skb);
4063 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4064 
4065 	skb_zcopy_downgrade_managed(skb);
4066 
4067 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4068 	skb_zerocopy_clone(skb1, skb, 0);
4069 	if (len < pos)	/* Split line is inside header. */
4070 		skb_split_inside_header(skb, skb1, len, pos);
4071 	else		/* Second chunk has no header, nothing to copy. */
4072 		skb_split_no_header(skb, skb1, len, pos);
4073 }
4074 EXPORT_SYMBOL(skb_split);
4075 
4076 /* Shifting from/to a cloned skb is a no-go.
4077  *
4078  * Caller cannot keep skb_shinfo related pointers past calling here!
4079  */
4080 static int skb_prepare_for_shift(struct sk_buff *skb)
4081 {
4082 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4083 }
4084 
4085 /**
4086  * skb_shift - Shifts paged data partially from skb to another
4087  * @tgt: buffer into which tail data gets added
4088  * @skb: buffer from which the paged data comes from
4089  * @shiftlen: shift up to this many bytes
4090  *
4091  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4092  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4093  * It's up to caller to free skb if everything was shifted.
4094  *
4095  * If @tgt runs out of frags, the whole operation is aborted.
4096  *
4097  * Skb cannot include anything else but paged data while tgt is allowed
4098  * to have non-paged data as well.
4099  *
4100  * TODO: full sized shift could be optimized but that would need
4101  * specialized skb free'er to handle frags without up-to-date nr_frags.
4102  */
4103 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4104 {
4105 	int from, to, merge, todo;
4106 	skb_frag_t *fragfrom, *fragto;
4107 
4108 	BUG_ON(shiftlen > skb->len);
4109 
4110 	if (skb_headlen(skb))
4111 		return 0;
4112 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4113 		return 0;
4114 
4115 	todo = shiftlen;
4116 	from = 0;
4117 	to = skb_shinfo(tgt)->nr_frags;
4118 	fragfrom = &skb_shinfo(skb)->frags[from];
4119 
4120 	/* Actual merge is delayed until the point when we know we can
4121 	 * commit all, so that we don't have to undo partial changes
4122 	 */
4123 	if (!to ||
4124 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4125 			      skb_frag_off(fragfrom))) {
4126 		merge = -1;
4127 	} else {
4128 		merge = to - 1;
4129 
4130 		todo -= skb_frag_size(fragfrom);
4131 		if (todo < 0) {
4132 			if (skb_prepare_for_shift(skb) ||
4133 			    skb_prepare_for_shift(tgt))
4134 				return 0;
4135 
4136 			/* All previous frag pointers might be stale! */
4137 			fragfrom = &skb_shinfo(skb)->frags[from];
4138 			fragto = &skb_shinfo(tgt)->frags[merge];
4139 
4140 			skb_frag_size_add(fragto, shiftlen);
4141 			skb_frag_size_sub(fragfrom, shiftlen);
4142 			skb_frag_off_add(fragfrom, shiftlen);
4143 
4144 			goto onlymerged;
4145 		}
4146 
4147 		from++;
4148 	}
4149 
4150 	/* Skip full, not-fitting skb to avoid expensive operations */
4151 	if ((shiftlen == skb->len) &&
4152 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4153 		return 0;
4154 
4155 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4156 		return 0;
4157 
4158 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4159 		if (to == MAX_SKB_FRAGS)
4160 			return 0;
4161 
4162 		fragfrom = &skb_shinfo(skb)->frags[from];
4163 		fragto = &skb_shinfo(tgt)->frags[to];
4164 
4165 		if (todo >= skb_frag_size(fragfrom)) {
4166 			*fragto = *fragfrom;
4167 			todo -= skb_frag_size(fragfrom);
4168 			from++;
4169 			to++;
4170 
4171 		} else {
4172 			__skb_frag_ref(fragfrom);
4173 			skb_frag_page_copy(fragto, fragfrom);
4174 			skb_frag_off_copy(fragto, fragfrom);
4175 			skb_frag_size_set(fragto, todo);
4176 
4177 			skb_frag_off_add(fragfrom, todo);
4178 			skb_frag_size_sub(fragfrom, todo);
4179 			todo = 0;
4180 
4181 			to++;
4182 			break;
4183 		}
4184 	}
4185 
4186 	/* Ready to "commit" this state change to tgt */
4187 	skb_shinfo(tgt)->nr_frags = to;
4188 
4189 	if (merge >= 0) {
4190 		fragfrom = &skb_shinfo(skb)->frags[0];
4191 		fragto = &skb_shinfo(tgt)->frags[merge];
4192 
4193 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4194 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4195 	}
4196 
4197 	/* Reposition in the original skb */
4198 	to = 0;
4199 	while (from < skb_shinfo(skb)->nr_frags)
4200 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4201 	skb_shinfo(skb)->nr_frags = to;
4202 
4203 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4204 
4205 onlymerged:
4206 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4207 	 * the other hand might need it if it needs to be resent
4208 	 */
4209 	tgt->ip_summed = CHECKSUM_PARTIAL;
4210 	skb->ip_summed = CHECKSUM_PARTIAL;
4211 
4212 	skb_len_add(skb, -shiftlen);
4213 	skb_len_add(tgt, shiftlen);
4214 
4215 	return shiftlen;
4216 }
4217 
4218 /**
4219  * skb_prepare_seq_read - Prepare a sequential read of skb data
4220  * @skb: the buffer to read
4221  * @from: lower offset of data to be read
4222  * @to: upper offset of data to be read
4223  * @st: state variable
4224  *
4225  * Initializes the specified state variable. Must be called before
4226  * invoking skb_seq_read() for the first time.
4227  */
4228 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4229 			  unsigned int to, struct skb_seq_state *st)
4230 {
4231 	st->lower_offset = from;
4232 	st->upper_offset = to;
4233 	st->root_skb = st->cur_skb = skb;
4234 	st->frag_idx = st->stepped_offset = 0;
4235 	st->frag_data = NULL;
4236 	st->frag_off = 0;
4237 }
4238 EXPORT_SYMBOL(skb_prepare_seq_read);
4239 
4240 /**
4241  * skb_seq_read - Sequentially read skb data
4242  * @consumed: number of bytes consumed by the caller so far
4243  * @data: destination pointer for data to be returned
4244  * @st: state variable
4245  *
4246  * Reads a block of skb data at @consumed relative to the
4247  * lower offset specified to skb_prepare_seq_read(). Assigns
4248  * the head of the data block to @data and returns the length
4249  * of the block or 0 if the end of the skb data or the upper
4250  * offset has been reached.
4251  *
4252  * The caller is not required to consume all of the data
4253  * returned, i.e. @consumed is typically set to the number
4254  * of bytes already consumed and the next call to
4255  * skb_seq_read() will return the remaining part of the block.
4256  *
4257  * Note 1: The size of each block of data returned can be arbitrary,
4258  *       this limitation is the cost for zerocopy sequential
4259  *       reads of potentially non linear data.
4260  *
4261  * Note 2: Fragment lists within fragments are not implemented
4262  *       at the moment, state->root_skb could be replaced with
4263  *       a stack for this purpose.
4264  */
4265 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4266 			  struct skb_seq_state *st)
4267 {
4268 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4269 	skb_frag_t *frag;
4270 
4271 	if (unlikely(abs_offset >= st->upper_offset)) {
4272 		if (st->frag_data) {
4273 			kunmap_atomic(st->frag_data);
4274 			st->frag_data = NULL;
4275 		}
4276 		return 0;
4277 	}
4278 
4279 next_skb:
4280 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4281 
4282 	if (abs_offset < block_limit && !st->frag_data) {
4283 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4284 		return block_limit - abs_offset;
4285 	}
4286 
4287 	if (st->frag_idx == 0 && !st->frag_data)
4288 		st->stepped_offset += skb_headlen(st->cur_skb);
4289 
4290 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4291 		unsigned int pg_idx, pg_off, pg_sz;
4292 
4293 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4294 
4295 		pg_idx = 0;
4296 		pg_off = skb_frag_off(frag);
4297 		pg_sz = skb_frag_size(frag);
4298 
4299 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4300 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4301 			pg_off = offset_in_page(pg_off + st->frag_off);
4302 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4303 						    PAGE_SIZE - pg_off);
4304 		}
4305 
4306 		block_limit = pg_sz + st->stepped_offset;
4307 		if (abs_offset < block_limit) {
4308 			if (!st->frag_data)
4309 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4310 
4311 			*data = (u8 *)st->frag_data + pg_off +
4312 				(abs_offset - st->stepped_offset);
4313 
4314 			return block_limit - abs_offset;
4315 		}
4316 
4317 		if (st->frag_data) {
4318 			kunmap_atomic(st->frag_data);
4319 			st->frag_data = NULL;
4320 		}
4321 
4322 		st->stepped_offset += pg_sz;
4323 		st->frag_off += pg_sz;
4324 		if (st->frag_off == skb_frag_size(frag)) {
4325 			st->frag_off = 0;
4326 			st->frag_idx++;
4327 		}
4328 	}
4329 
4330 	if (st->frag_data) {
4331 		kunmap_atomic(st->frag_data);
4332 		st->frag_data = NULL;
4333 	}
4334 
4335 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4336 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4337 		st->frag_idx = 0;
4338 		goto next_skb;
4339 	} else if (st->cur_skb->next) {
4340 		st->cur_skb = st->cur_skb->next;
4341 		st->frag_idx = 0;
4342 		goto next_skb;
4343 	}
4344 
4345 	return 0;
4346 }
4347 EXPORT_SYMBOL(skb_seq_read);
4348 
4349 /**
4350  * skb_abort_seq_read - Abort a sequential read of skb data
4351  * @st: state variable
4352  *
4353  * Must be called if skb_seq_read() was not called until it
4354  * returned 0.
4355  */
4356 void skb_abort_seq_read(struct skb_seq_state *st)
4357 {
4358 	if (st->frag_data)
4359 		kunmap_atomic(st->frag_data);
4360 }
4361 EXPORT_SYMBOL(skb_abort_seq_read);
4362 
4363 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4364 
4365 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4366 					  struct ts_config *conf,
4367 					  struct ts_state *state)
4368 {
4369 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4370 }
4371 
4372 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4373 {
4374 	skb_abort_seq_read(TS_SKB_CB(state));
4375 }
4376 
4377 /**
4378  * skb_find_text - Find a text pattern in skb data
4379  * @skb: the buffer to look in
4380  * @from: search offset
4381  * @to: search limit
4382  * @config: textsearch configuration
4383  *
4384  * Finds a pattern in the skb data according to the specified
4385  * textsearch configuration. Use textsearch_next() to retrieve
4386  * subsequent occurrences of the pattern. Returns the offset
4387  * to the first occurrence or UINT_MAX if no match was found.
4388  */
4389 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4390 			   unsigned int to, struct ts_config *config)
4391 {
4392 	unsigned int patlen = config->ops->get_pattern_len(config);
4393 	struct ts_state state;
4394 	unsigned int ret;
4395 
4396 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4397 
4398 	config->get_next_block = skb_ts_get_next_block;
4399 	config->finish = skb_ts_finish;
4400 
4401 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4402 
4403 	ret = textsearch_find(config, &state);
4404 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4405 }
4406 EXPORT_SYMBOL(skb_find_text);
4407 
4408 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4409 			 int offset, size_t size, size_t max_frags)
4410 {
4411 	int i = skb_shinfo(skb)->nr_frags;
4412 
4413 	if (skb_can_coalesce(skb, i, page, offset)) {
4414 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4415 	} else if (i < max_frags) {
4416 		skb_zcopy_downgrade_managed(skb);
4417 		get_page(page);
4418 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4419 	} else {
4420 		return -EMSGSIZE;
4421 	}
4422 
4423 	return 0;
4424 }
4425 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4426 
4427 /**
4428  *	skb_pull_rcsum - pull skb and update receive checksum
4429  *	@skb: buffer to update
4430  *	@len: length of data pulled
4431  *
4432  *	This function performs an skb_pull on the packet and updates
4433  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4434  *	receive path processing instead of skb_pull unless you know
4435  *	that the checksum difference is zero (e.g., a valid IP header)
4436  *	or you are setting ip_summed to CHECKSUM_NONE.
4437  */
4438 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4439 {
4440 	unsigned char *data = skb->data;
4441 
4442 	BUG_ON(len > skb->len);
4443 	__skb_pull(skb, len);
4444 	skb_postpull_rcsum(skb, data, len);
4445 	return skb->data;
4446 }
4447 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4448 
4449 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4450 {
4451 	skb_frag_t head_frag;
4452 	struct page *page;
4453 
4454 	page = virt_to_head_page(frag_skb->head);
4455 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4456 				(unsigned char *)page_address(page),
4457 				skb_headlen(frag_skb));
4458 	return head_frag;
4459 }
4460 
4461 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4462 				 netdev_features_t features,
4463 				 unsigned int offset)
4464 {
4465 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4466 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4467 	unsigned int delta_truesize = 0;
4468 	unsigned int delta_len = 0;
4469 	struct sk_buff *tail = NULL;
4470 	struct sk_buff *nskb, *tmp;
4471 	int len_diff, err;
4472 
4473 	skb_push(skb, -skb_network_offset(skb) + offset);
4474 
4475 	/* Ensure the head is writeable before touching the shared info */
4476 	err = skb_unclone(skb, GFP_ATOMIC);
4477 	if (err)
4478 		goto err_linearize;
4479 
4480 	skb_shinfo(skb)->frag_list = NULL;
4481 
4482 	while (list_skb) {
4483 		nskb = list_skb;
4484 		list_skb = list_skb->next;
4485 
4486 		err = 0;
4487 		delta_truesize += nskb->truesize;
4488 		if (skb_shared(nskb)) {
4489 			tmp = skb_clone(nskb, GFP_ATOMIC);
4490 			if (tmp) {
4491 				consume_skb(nskb);
4492 				nskb = tmp;
4493 				err = skb_unclone(nskb, GFP_ATOMIC);
4494 			} else {
4495 				err = -ENOMEM;
4496 			}
4497 		}
4498 
4499 		if (!tail)
4500 			skb->next = nskb;
4501 		else
4502 			tail->next = nskb;
4503 
4504 		if (unlikely(err)) {
4505 			nskb->next = list_skb;
4506 			goto err_linearize;
4507 		}
4508 
4509 		tail = nskb;
4510 
4511 		delta_len += nskb->len;
4512 
4513 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4514 
4515 		skb_release_head_state(nskb);
4516 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4517 		__copy_skb_header(nskb, skb);
4518 
4519 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4520 		nskb->transport_header += len_diff;
4521 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4522 						 nskb->data - tnl_hlen,
4523 						 offset + tnl_hlen);
4524 
4525 		if (skb_needs_linearize(nskb, features) &&
4526 		    __skb_linearize(nskb))
4527 			goto err_linearize;
4528 	}
4529 
4530 	skb->truesize = skb->truesize - delta_truesize;
4531 	skb->data_len = skb->data_len - delta_len;
4532 	skb->len = skb->len - delta_len;
4533 
4534 	skb_gso_reset(skb);
4535 
4536 	skb->prev = tail;
4537 
4538 	if (skb_needs_linearize(skb, features) &&
4539 	    __skb_linearize(skb))
4540 		goto err_linearize;
4541 
4542 	skb_get(skb);
4543 
4544 	return skb;
4545 
4546 err_linearize:
4547 	kfree_skb_list(skb->next);
4548 	skb->next = NULL;
4549 	return ERR_PTR(-ENOMEM);
4550 }
4551 EXPORT_SYMBOL_GPL(skb_segment_list);
4552 
4553 /**
4554  *	skb_segment - Perform protocol segmentation on skb.
4555  *	@head_skb: buffer to segment
4556  *	@features: features for the output path (see dev->features)
4557  *
4558  *	This function performs segmentation on the given skb.  It returns
4559  *	a pointer to the first in a list of new skbs for the segments.
4560  *	In case of error it returns ERR_PTR(err).
4561  */
4562 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4563 			    netdev_features_t features)
4564 {
4565 	struct sk_buff *segs = NULL;
4566 	struct sk_buff *tail = NULL;
4567 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4568 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4569 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4570 	unsigned int offset = doffset;
4571 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4572 	unsigned int partial_segs = 0;
4573 	unsigned int headroom;
4574 	unsigned int len = head_skb->len;
4575 	struct sk_buff *frag_skb;
4576 	skb_frag_t *frag;
4577 	__be16 proto;
4578 	bool csum, sg;
4579 	int err = -ENOMEM;
4580 	int i = 0;
4581 	int nfrags, pos;
4582 
4583 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4584 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4585 		struct sk_buff *check_skb;
4586 
4587 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4588 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4589 				/* gso_size is untrusted, and we have a frag_list with
4590 				 * a linear non head_frag item.
4591 				 *
4592 				 * If head_skb's headlen does not fit requested gso_size,
4593 				 * it means that the frag_list members do NOT terminate
4594 				 * on exact gso_size boundaries. Hence we cannot perform
4595 				 * skb_frag_t page sharing. Therefore we must fallback to
4596 				 * copying the frag_list skbs; we do so by disabling SG.
4597 				 */
4598 				features &= ~NETIF_F_SG;
4599 				break;
4600 			}
4601 		}
4602 	}
4603 
4604 	__skb_push(head_skb, doffset);
4605 	proto = skb_network_protocol(head_skb, NULL);
4606 	if (unlikely(!proto))
4607 		return ERR_PTR(-EINVAL);
4608 
4609 	sg = !!(features & NETIF_F_SG);
4610 	csum = !!can_checksum_protocol(features, proto);
4611 
4612 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4613 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4614 			struct sk_buff *iter;
4615 			unsigned int frag_len;
4616 
4617 			if (!list_skb ||
4618 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4619 				goto normal;
4620 
4621 			/* If we get here then all the required
4622 			 * GSO features except frag_list are supported.
4623 			 * Try to split the SKB to multiple GSO SKBs
4624 			 * with no frag_list.
4625 			 * Currently we can do that only when the buffers don't
4626 			 * have a linear part and all the buffers except
4627 			 * the last are of the same length.
4628 			 */
4629 			frag_len = list_skb->len;
4630 			skb_walk_frags(head_skb, iter) {
4631 				if (frag_len != iter->len && iter->next)
4632 					goto normal;
4633 				if (skb_headlen(iter) && !iter->head_frag)
4634 					goto normal;
4635 
4636 				len -= iter->len;
4637 			}
4638 
4639 			if (len != frag_len)
4640 				goto normal;
4641 		}
4642 
4643 		/* GSO partial only requires that we trim off any excess that
4644 		 * doesn't fit into an MSS sized block, so take care of that
4645 		 * now.
4646 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4647 		 */
4648 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4649 		if (partial_segs > 1)
4650 			mss *= partial_segs;
4651 		else
4652 			partial_segs = 0;
4653 	}
4654 
4655 normal:
4656 	headroom = skb_headroom(head_skb);
4657 	pos = skb_headlen(head_skb);
4658 
4659 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4660 		return ERR_PTR(-ENOMEM);
4661 
4662 	nfrags = skb_shinfo(head_skb)->nr_frags;
4663 	frag = skb_shinfo(head_skb)->frags;
4664 	frag_skb = head_skb;
4665 
4666 	do {
4667 		struct sk_buff *nskb;
4668 		skb_frag_t *nskb_frag;
4669 		int hsize;
4670 		int size;
4671 
4672 		if (unlikely(mss == GSO_BY_FRAGS)) {
4673 			len = list_skb->len;
4674 		} else {
4675 			len = head_skb->len - offset;
4676 			if (len > mss)
4677 				len = mss;
4678 		}
4679 
4680 		hsize = skb_headlen(head_skb) - offset;
4681 
4682 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4683 		    (skb_headlen(list_skb) == len || sg)) {
4684 			BUG_ON(skb_headlen(list_skb) > len);
4685 
4686 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4687 			if (unlikely(!nskb))
4688 				goto err;
4689 
4690 			i = 0;
4691 			nfrags = skb_shinfo(list_skb)->nr_frags;
4692 			frag = skb_shinfo(list_skb)->frags;
4693 			frag_skb = list_skb;
4694 			pos += skb_headlen(list_skb);
4695 
4696 			while (pos < offset + len) {
4697 				BUG_ON(i >= nfrags);
4698 
4699 				size = skb_frag_size(frag);
4700 				if (pos + size > offset + len)
4701 					break;
4702 
4703 				i++;
4704 				pos += size;
4705 				frag++;
4706 			}
4707 
4708 			list_skb = list_skb->next;
4709 
4710 			if (unlikely(pskb_trim(nskb, len))) {
4711 				kfree_skb(nskb);
4712 				goto err;
4713 			}
4714 
4715 			hsize = skb_end_offset(nskb);
4716 			if (skb_cow_head(nskb, doffset + headroom)) {
4717 				kfree_skb(nskb);
4718 				goto err;
4719 			}
4720 
4721 			nskb->truesize += skb_end_offset(nskb) - hsize;
4722 			skb_release_head_state(nskb);
4723 			__skb_push(nskb, doffset);
4724 		} else {
4725 			if (hsize < 0)
4726 				hsize = 0;
4727 			if (hsize > len || !sg)
4728 				hsize = len;
4729 
4730 			nskb = __alloc_skb(hsize + doffset + headroom,
4731 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4732 					   NUMA_NO_NODE);
4733 
4734 			if (unlikely(!nskb))
4735 				goto err;
4736 
4737 			skb_reserve(nskb, headroom);
4738 			__skb_put(nskb, doffset);
4739 		}
4740 
4741 		if (segs)
4742 			tail->next = nskb;
4743 		else
4744 			segs = nskb;
4745 		tail = nskb;
4746 
4747 		__copy_skb_header(nskb, head_skb);
4748 
4749 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4750 		skb_reset_mac_len(nskb);
4751 
4752 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4753 						 nskb->data - tnl_hlen,
4754 						 doffset + tnl_hlen);
4755 
4756 		if (nskb->len == len + doffset)
4757 			goto perform_csum_check;
4758 
4759 		if (!sg) {
4760 			if (!csum) {
4761 				if (!nskb->remcsum_offload)
4762 					nskb->ip_summed = CHECKSUM_NONE;
4763 				SKB_GSO_CB(nskb)->csum =
4764 					skb_copy_and_csum_bits(head_skb, offset,
4765 							       skb_put(nskb,
4766 								       len),
4767 							       len);
4768 				SKB_GSO_CB(nskb)->csum_start =
4769 					skb_headroom(nskb) + doffset;
4770 			} else {
4771 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4772 					goto err;
4773 			}
4774 			continue;
4775 		}
4776 
4777 		nskb_frag = skb_shinfo(nskb)->frags;
4778 
4779 		skb_copy_from_linear_data_offset(head_skb, offset,
4780 						 skb_put(nskb, hsize), hsize);
4781 
4782 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4783 					   SKBFL_SHARED_FRAG;
4784 
4785 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4786 			goto err;
4787 
4788 		while (pos < offset + len) {
4789 			if (i >= nfrags) {
4790 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4791 				    skb_zerocopy_clone(nskb, list_skb,
4792 						       GFP_ATOMIC))
4793 					goto err;
4794 
4795 				i = 0;
4796 				nfrags = skb_shinfo(list_skb)->nr_frags;
4797 				frag = skb_shinfo(list_skb)->frags;
4798 				frag_skb = list_skb;
4799 				if (!skb_headlen(list_skb)) {
4800 					BUG_ON(!nfrags);
4801 				} else {
4802 					BUG_ON(!list_skb->head_frag);
4803 
4804 					/* to make room for head_frag. */
4805 					i--;
4806 					frag--;
4807 				}
4808 
4809 				list_skb = list_skb->next;
4810 			}
4811 
4812 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4813 				     MAX_SKB_FRAGS)) {
4814 				net_warn_ratelimited(
4815 					"skb_segment: too many frags: %u %u\n",
4816 					pos, mss);
4817 				err = -EINVAL;
4818 				goto err;
4819 			}
4820 
4821 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4822 			__skb_frag_ref(nskb_frag);
4823 			size = skb_frag_size(nskb_frag);
4824 
4825 			if (pos < offset) {
4826 				skb_frag_off_add(nskb_frag, offset - pos);
4827 				skb_frag_size_sub(nskb_frag, offset - pos);
4828 			}
4829 
4830 			skb_shinfo(nskb)->nr_frags++;
4831 
4832 			if (pos + size <= offset + len) {
4833 				i++;
4834 				frag++;
4835 				pos += size;
4836 			} else {
4837 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4838 				goto skip_fraglist;
4839 			}
4840 
4841 			nskb_frag++;
4842 		}
4843 
4844 skip_fraglist:
4845 		nskb->data_len = len - hsize;
4846 		nskb->len += nskb->data_len;
4847 		nskb->truesize += nskb->data_len;
4848 
4849 perform_csum_check:
4850 		if (!csum) {
4851 			if (skb_has_shared_frag(nskb) &&
4852 			    __skb_linearize(nskb))
4853 				goto err;
4854 
4855 			if (!nskb->remcsum_offload)
4856 				nskb->ip_summed = CHECKSUM_NONE;
4857 			SKB_GSO_CB(nskb)->csum =
4858 				skb_checksum(nskb, doffset,
4859 					     nskb->len - doffset, 0);
4860 			SKB_GSO_CB(nskb)->csum_start =
4861 				skb_headroom(nskb) + doffset;
4862 		}
4863 	} while ((offset += len) < head_skb->len);
4864 
4865 	/* Some callers want to get the end of the list.
4866 	 * Put it in segs->prev to avoid walking the list.
4867 	 * (see validate_xmit_skb_list() for example)
4868 	 */
4869 	segs->prev = tail;
4870 
4871 	if (partial_segs) {
4872 		struct sk_buff *iter;
4873 		int type = skb_shinfo(head_skb)->gso_type;
4874 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4875 
4876 		/* Update type to add partial and then remove dodgy if set */
4877 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4878 		type &= ~SKB_GSO_DODGY;
4879 
4880 		/* Update GSO info and prepare to start updating headers on
4881 		 * our way back down the stack of protocols.
4882 		 */
4883 		for (iter = segs; iter; iter = iter->next) {
4884 			skb_shinfo(iter)->gso_size = gso_size;
4885 			skb_shinfo(iter)->gso_segs = partial_segs;
4886 			skb_shinfo(iter)->gso_type = type;
4887 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4888 		}
4889 
4890 		if (tail->len - doffset <= gso_size)
4891 			skb_shinfo(tail)->gso_size = 0;
4892 		else if (tail != segs)
4893 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4894 	}
4895 
4896 	/* Following permits correct backpressure, for protocols
4897 	 * using skb_set_owner_w().
4898 	 * Idea is to tranfert ownership from head_skb to last segment.
4899 	 */
4900 	if (head_skb->destructor == sock_wfree) {
4901 		swap(tail->truesize, head_skb->truesize);
4902 		swap(tail->destructor, head_skb->destructor);
4903 		swap(tail->sk, head_skb->sk);
4904 	}
4905 	return segs;
4906 
4907 err:
4908 	kfree_skb_list(segs);
4909 	return ERR_PTR(err);
4910 }
4911 EXPORT_SYMBOL_GPL(skb_segment);
4912 
4913 #ifdef CONFIG_SKB_EXTENSIONS
4914 #define SKB_EXT_ALIGN_VALUE	8
4915 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4916 
4917 static const u8 skb_ext_type_len[] = {
4918 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4919 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4920 #endif
4921 #ifdef CONFIG_XFRM
4922 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4923 #endif
4924 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4925 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4926 #endif
4927 #if IS_ENABLED(CONFIG_MPTCP)
4928 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4929 #endif
4930 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4931 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4932 #endif
4933 };
4934 
4935 static __always_inline unsigned int skb_ext_total_length(void)
4936 {
4937 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4938 	int i;
4939 
4940 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4941 		l += skb_ext_type_len[i];
4942 
4943 	return l;
4944 }
4945 
4946 static void skb_extensions_init(void)
4947 {
4948 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4949 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4950 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4951 #endif
4952 
4953 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4954 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4955 					     0,
4956 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4957 					     NULL);
4958 }
4959 #else
4960 static void skb_extensions_init(void) {}
4961 #endif
4962 
4963 /* The SKB kmem_cache slab is critical for network performance.  Never
4964  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4965  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4966  */
4967 #ifndef CONFIG_SLUB_TINY
4968 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4969 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4970 #define FLAG_SKB_NO_MERGE	0
4971 #endif
4972 
4973 void __init skb_init(void)
4974 {
4975 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4976 					      sizeof(struct sk_buff),
4977 					      0,
4978 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4979 						FLAG_SKB_NO_MERGE,
4980 					      offsetof(struct sk_buff, cb),
4981 					      sizeof_field(struct sk_buff, cb),
4982 					      NULL);
4983 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4984 						sizeof(struct sk_buff_fclones),
4985 						0,
4986 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4987 						NULL);
4988 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4989 	 * struct skb_shared_info is located at the end of skb->head,
4990 	 * and should not be copied to/from user.
4991 	 */
4992 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4993 						SKB_SMALL_HEAD_CACHE_SIZE,
4994 						0,
4995 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4996 						0,
4997 						SKB_SMALL_HEAD_HEADROOM,
4998 						NULL);
4999 	skb_extensions_init();
5000 }
5001 
5002 static int
5003 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5004 	       unsigned int recursion_level)
5005 {
5006 	int start = skb_headlen(skb);
5007 	int i, copy = start - offset;
5008 	struct sk_buff *frag_iter;
5009 	int elt = 0;
5010 
5011 	if (unlikely(recursion_level >= 24))
5012 		return -EMSGSIZE;
5013 
5014 	if (copy > 0) {
5015 		if (copy > len)
5016 			copy = len;
5017 		sg_set_buf(sg, skb->data + offset, copy);
5018 		elt++;
5019 		if ((len -= copy) == 0)
5020 			return elt;
5021 		offset += copy;
5022 	}
5023 
5024 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5025 		int end;
5026 
5027 		WARN_ON(start > offset + len);
5028 
5029 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5030 		if ((copy = end - offset) > 0) {
5031 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5032 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5033 				return -EMSGSIZE;
5034 
5035 			if (copy > len)
5036 				copy = len;
5037 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5038 				    skb_frag_off(frag) + offset - start);
5039 			elt++;
5040 			if (!(len -= copy))
5041 				return elt;
5042 			offset += copy;
5043 		}
5044 		start = end;
5045 	}
5046 
5047 	skb_walk_frags(skb, frag_iter) {
5048 		int end, ret;
5049 
5050 		WARN_ON(start > offset + len);
5051 
5052 		end = start + frag_iter->len;
5053 		if ((copy = end - offset) > 0) {
5054 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5055 				return -EMSGSIZE;
5056 
5057 			if (copy > len)
5058 				copy = len;
5059 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5060 					      copy, recursion_level + 1);
5061 			if (unlikely(ret < 0))
5062 				return ret;
5063 			elt += ret;
5064 			if ((len -= copy) == 0)
5065 				return elt;
5066 			offset += copy;
5067 		}
5068 		start = end;
5069 	}
5070 	BUG_ON(len);
5071 	return elt;
5072 }
5073 
5074 /**
5075  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5076  *	@skb: Socket buffer containing the buffers to be mapped
5077  *	@sg: The scatter-gather list to map into
5078  *	@offset: The offset into the buffer's contents to start mapping
5079  *	@len: Length of buffer space to be mapped
5080  *
5081  *	Fill the specified scatter-gather list with mappings/pointers into a
5082  *	region of the buffer space attached to a socket buffer. Returns either
5083  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5084  *	could not fit.
5085  */
5086 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5087 {
5088 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5089 
5090 	if (nsg <= 0)
5091 		return nsg;
5092 
5093 	sg_mark_end(&sg[nsg - 1]);
5094 
5095 	return nsg;
5096 }
5097 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5098 
5099 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5100  * sglist without mark the sg which contain last skb data as the end.
5101  * So the caller can mannipulate sg list as will when padding new data after
5102  * the first call without calling sg_unmark_end to expend sg list.
5103  *
5104  * Scenario to use skb_to_sgvec_nomark:
5105  * 1. sg_init_table
5106  * 2. skb_to_sgvec_nomark(payload1)
5107  * 3. skb_to_sgvec_nomark(payload2)
5108  *
5109  * This is equivalent to:
5110  * 1. sg_init_table
5111  * 2. skb_to_sgvec(payload1)
5112  * 3. sg_unmark_end
5113  * 4. skb_to_sgvec(payload2)
5114  *
5115  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5116  * is more preferable.
5117  */
5118 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5119 			int offset, int len)
5120 {
5121 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5122 }
5123 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5124 
5125 
5126 
5127 /**
5128  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5129  *	@skb: The socket buffer to check.
5130  *	@tailbits: Amount of trailing space to be added
5131  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5132  *
5133  *	Make sure that the data buffers attached to a socket buffer are
5134  *	writable. If they are not, private copies are made of the data buffers
5135  *	and the socket buffer is set to use these instead.
5136  *
5137  *	If @tailbits is given, make sure that there is space to write @tailbits
5138  *	bytes of data beyond current end of socket buffer.  @trailer will be
5139  *	set to point to the skb in which this space begins.
5140  *
5141  *	The number of scatterlist elements required to completely map the
5142  *	COW'd and extended socket buffer will be returned.
5143  */
5144 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5145 {
5146 	int copyflag;
5147 	int elt;
5148 	struct sk_buff *skb1, **skb_p;
5149 
5150 	/* If skb is cloned or its head is paged, reallocate
5151 	 * head pulling out all the pages (pages are considered not writable
5152 	 * at the moment even if they are anonymous).
5153 	 */
5154 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5155 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5156 		return -ENOMEM;
5157 
5158 	/* Easy case. Most of packets will go this way. */
5159 	if (!skb_has_frag_list(skb)) {
5160 		/* A little of trouble, not enough of space for trailer.
5161 		 * This should not happen, when stack is tuned to generate
5162 		 * good frames. OK, on miss we reallocate and reserve even more
5163 		 * space, 128 bytes is fair. */
5164 
5165 		if (skb_tailroom(skb) < tailbits &&
5166 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5167 			return -ENOMEM;
5168 
5169 		/* Voila! */
5170 		*trailer = skb;
5171 		return 1;
5172 	}
5173 
5174 	/* Misery. We are in troubles, going to mincer fragments... */
5175 
5176 	elt = 1;
5177 	skb_p = &skb_shinfo(skb)->frag_list;
5178 	copyflag = 0;
5179 
5180 	while ((skb1 = *skb_p) != NULL) {
5181 		int ntail = 0;
5182 
5183 		/* The fragment is partially pulled by someone,
5184 		 * this can happen on input. Copy it and everything
5185 		 * after it. */
5186 
5187 		if (skb_shared(skb1))
5188 			copyflag = 1;
5189 
5190 		/* If the skb is the last, worry about trailer. */
5191 
5192 		if (skb1->next == NULL && tailbits) {
5193 			if (skb_shinfo(skb1)->nr_frags ||
5194 			    skb_has_frag_list(skb1) ||
5195 			    skb_tailroom(skb1) < tailbits)
5196 				ntail = tailbits + 128;
5197 		}
5198 
5199 		if (copyflag ||
5200 		    skb_cloned(skb1) ||
5201 		    ntail ||
5202 		    skb_shinfo(skb1)->nr_frags ||
5203 		    skb_has_frag_list(skb1)) {
5204 			struct sk_buff *skb2;
5205 
5206 			/* Fuck, we are miserable poor guys... */
5207 			if (ntail == 0)
5208 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5209 			else
5210 				skb2 = skb_copy_expand(skb1,
5211 						       skb_headroom(skb1),
5212 						       ntail,
5213 						       GFP_ATOMIC);
5214 			if (unlikely(skb2 == NULL))
5215 				return -ENOMEM;
5216 
5217 			if (skb1->sk)
5218 				skb_set_owner_w(skb2, skb1->sk);
5219 
5220 			/* Looking around. Are we still alive?
5221 			 * OK, link new skb, drop old one */
5222 
5223 			skb2->next = skb1->next;
5224 			*skb_p = skb2;
5225 			kfree_skb(skb1);
5226 			skb1 = skb2;
5227 		}
5228 		elt++;
5229 		*trailer = skb1;
5230 		skb_p = &skb1->next;
5231 	}
5232 
5233 	return elt;
5234 }
5235 EXPORT_SYMBOL_GPL(skb_cow_data);
5236 
5237 static void sock_rmem_free(struct sk_buff *skb)
5238 {
5239 	struct sock *sk = skb->sk;
5240 
5241 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5242 }
5243 
5244 static void skb_set_err_queue(struct sk_buff *skb)
5245 {
5246 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5247 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5248 	 */
5249 	skb->pkt_type = PACKET_OUTGOING;
5250 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5251 }
5252 
5253 /*
5254  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5255  */
5256 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5257 {
5258 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5259 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5260 		return -ENOMEM;
5261 
5262 	skb_orphan(skb);
5263 	skb->sk = sk;
5264 	skb->destructor = sock_rmem_free;
5265 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5266 	skb_set_err_queue(skb);
5267 
5268 	/* before exiting rcu section, make sure dst is refcounted */
5269 	skb_dst_force(skb);
5270 
5271 	skb_queue_tail(&sk->sk_error_queue, skb);
5272 	if (!sock_flag(sk, SOCK_DEAD))
5273 		sk_error_report(sk);
5274 	return 0;
5275 }
5276 EXPORT_SYMBOL(sock_queue_err_skb);
5277 
5278 static bool is_icmp_err_skb(const struct sk_buff *skb)
5279 {
5280 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5281 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5282 }
5283 
5284 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5285 {
5286 	struct sk_buff_head *q = &sk->sk_error_queue;
5287 	struct sk_buff *skb, *skb_next = NULL;
5288 	bool icmp_next = false;
5289 	unsigned long flags;
5290 
5291 	if (skb_queue_empty_lockless(q))
5292 		return NULL;
5293 
5294 	spin_lock_irqsave(&q->lock, flags);
5295 	skb = __skb_dequeue(q);
5296 	if (skb && (skb_next = skb_peek(q))) {
5297 		icmp_next = is_icmp_err_skb(skb_next);
5298 		if (icmp_next)
5299 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5300 	}
5301 	spin_unlock_irqrestore(&q->lock, flags);
5302 
5303 	if (is_icmp_err_skb(skb) && !icmp_next)
5304 		sk->sk_err = 0;
5305 
5306 	if (skb_next)
5307 		sk_error_report(sk);
5308 
5309 	return skb;
5310 }
5311 EXPORT_SYMBOL(sock_dequeue_err_skb);
5312 
5313 /**
5314  * skb_clone_sk - create clone of skb, and take reference to socket
5315  * @skb: the skb to clone
5316  *
5317  * This function creates a clone of a buffer that holds a reference on
5318  * sk_refcnt.  Buffers created via this function are meant to be
5319  * returned using sock_queue_err_skb, or free via kfree_skb.
5320  *
5321  * When passing buffers allocated with this function to sock_queue_err_skb
5322  * it is necessary to wrap the call with sock_hold/sock_put in order to
5323  * prevent the socket from being released prior to being enqueued on
5324  * the sk_error_queue.
5325  */
5326 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5327 {
5328 	struct sock *sk = skb->sk;
5329 	struct sk_buff *clone;
5330 
5331 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5332 		return NULL;
5333 
5334 	clone = skb_clone(skb, GFP_ATOMIC);
5335 	if (!clone) {
5336 		sock_put(sk);
5337 		return NULL;
5338 	}
5339 
5340 	clone->sk = sk;
5341 	clone->destructor = sock_efree;
5342 
5343 	return clone;
5344 }
5345 EXPORT_SYMBOL(skb_clone_sk);
5346 
5347 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5348 					struct sock *sk,
5349 					int tstype,
5350 					bool opt_stats)
5351 {
5352 	struct sock_exterr_skb *serr;
5353 	int err;
5354 
5355 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5356 
5357 	serr = SKB_EXT_ERR(skb);
5358 	memset(serr, 0, sizeof(*serr));
5359 	serr->ee.ee_errno = ENOMSG;
5360 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5361 	serr->ee.ee_info = tstype;
5362 	serr->opt_stats = opt_stats;
5363 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5364 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5365 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5366 		if (sk_is_tcp(sk))
5367 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5368 	}
5369 
5370 	err = sock_queue_err_skb(sk, skb);
5371 
5372 	if (err)
5373 		kfree_skb(skb);
5374 }
5375 
5376 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5377 {
5378 	bool ret;
5379 
5380 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5381 		return true;
5382 
5383 	read_lock_bh(&sk->sk_callback_lock);
5384 	ret = sk->sk_socket && sk->sk_socket->file &&
5385 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5386 	read_unlock_bh(&sk->sk_callback_lock);
5387 	return ret;
5388 }
5389 
5390 void skb_complete_tx_timestamp(struct sk_buff *skb,
5391 			       struct skb_shared_hwtstamps *hwtstamps)
5392 {
5393 	struct sock *sk = skb->sk;
5394 
5395 	if (!skb_may_tx_timestamp(sk, false))
5396 		goto err;
5397 
5398 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5399 	 * but only if the socket refcount is not zero.
5400 	 */
5401 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5402 		*skb_hwtstamps(skb) = *hwtstamps;
5403 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5404 		sock_put(sk);
5405 		return;
5406 	}
5407 
5408 err:
5409 	kfree_skb(skb);
5410 }
5411 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5412 
5413 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5414 		     const struct sk_buff *ack_skb,
5415 		     struct skb_shared_hwtstamps *hwtstamps,
5416 		     struct sock *sk, int tstype)
5417 {
5418 	struct sk_buff *skb;
5419 	bool tsonly, opt_stats = false;
5420 	u32 tsflags;
5421 
5422 	if (!sk)
5423 		return;
5424 
5425 	tsflags = READ_ONCE(sk->sk_tsflags);
5426 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5427 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5428 		return;
5429 
5430 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5431 	if (!skb_may_tx_timestamp(sk, tsonly))
5432 		return;
5433 
5434 	if (tsonly) {
5435 #ifdef CONFIG_INET
5436 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5437 		    sk_is_tcp(sk)) {
5438 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5439 							     ack_skb);
5440 			opt_stats = true;
5441 		} else
5442 #endif
5443 			skb = alloc_skb(0, GFP_ATOMIC);
5444 	} else {
5445 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5446 
5447 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5448 			kfree_skb(skb);
5449 			return;
5450 		}
5451 	}
5452 	if (!skb)
5453 		return;
5454 
5455 	if (tsonly) {
5456 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5457 					     SKBTX_ANY_TSTAMP;
5458 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5459 	}
5460 
5461 	if (hwtstamps)
5462 		*skb_hwtstamps(skb) = *hwtstamps;
5463 	else
5464 		__net_timestamp(skb);
5465 
5466 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5467 }
5468 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5469 
5470 void skb_tstamp_tx(struct sk_buff *orig_skb,
5471 		   struct skb_shared_hwtstamps *hwtstamps)
5472 {
5473 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5474 			       SCM_TSTAMP_SND);
5475 }
5476 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5477 
5478 #ifdef CONFIG_WIRELESS
5479 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5480 {
5481 	struct sock *sk = skb->sk;
5482 	struct sock_exterr_skb *serr;
5483 	int err = 1;
5484 
5485 	skb->wifi_acked_valid = 1;
5486 	skb->wifi_acked = acked;
5487 
5488 	serr = SKB_EXT_ERR(skb);
5489 	memset(serr, 0, sizeof(*serr));
5490 	serr->ee.ee_errno = ENOMSG;
5491 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5492 
5493 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5494 	 * but only if the socket refcount is not zero.
5495 	 */
5496 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5497 		err = sock_queue_err_skb(sk, skb);
5498 		sock_put(sk);
5499 	}
5500 	if (err)
5501 		kfree_skb(skb);
5502 }
5503 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5504 #endif /* CONFIG_WIRELESS */
5505 
5506 /**
5507  * skb_partial_csum_set - set up and verify partial csum values for packet
5508  * @skb: the skb to set
5509  * @start: the number of bytes after skb->data to start checksumming.
5510  * @off: the offset from start to place the checksum.
5511  *
5512  * For untrusted partially-checksummed packets, we need to make sure the values
5513  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5514  *
5515  * This function checks and sets those values and skb->ip_summed: if this
5516  * returns false you should drop the packet.
5517  */
5518 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5519 {
5520 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5521 	u32 csum_start = skb_headroom(skb) + (u32)start;
5522 
5523 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5524 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5525 				     start, off, skb_headroom(skb), skb_headlen(skb));
5526 		return false;
5527 	}
5528 	skb->ip_summed = CHECKSUM_PARTIAL;
5529 	skb->csum_start = csum_start;
5530 	skb->csum_offset = off;
5531 	skb->transport_header = csum_start;
5532 	return true;
5533 }
5534 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5535 
5536 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5537 			       unsigned int max)
5538 {
5539 	if (skb_headlen(skb) >= len)
5540 		return 0;
5541 
5542 	/* If we need to pullup then pullup to the max, so we
5543 	 * won't need to do it again.
5544 	 */
5545 	if (max > skb->len)
5546 		max = skb->len;
5547 
5548 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5549 		return -ENOMEM;
5550 
5551 	if (skb_headlen(skb) < len)
5552 		return -EPROTO;
5553 
5554 	return 0;
5555 }
5556 
5557 #define MAX_TCP_HDR_LEN (15 * 4)
5558 
5559 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5560 				      typeof(IPPROTO_IP) proto,
5561 				      unsigned int off)
5562 {
5563 	int err;
5564 
5565 	switch (proto) {
5566 	case IPPROTO_TCP:
5567 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5568 					  off + MAX_TCP_HDR_LEN);
5569 		if (!err && !skb_partial_csum_set(skb, off,
5570 						  offsetof(struct tcphdr,
5571 							   check)))
5572 			err = -EPROTO;
5573 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5574 
5575 	case IPPROTO_UDP:
5576 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5577 					  off + sizeof(struct udphdr));
5578 		if (!err && !skb_partial_csum_set(skb, off,
5579 						  offsetof(struct udphdr,
5580 							   check)))
5581 			err = -EPROTO;
5582 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5583 	}
5584 
5585 	return ERR_PTR(-EPROTO);
5586 }
5587 
5588 /* This value should be large enough to cover a tagged ethernet header plus
5589  * maximally sized IP and TCP or UDP headers.
5590  */
5591 #define MAX_IP_HDR_LEN 128
5592 
5593 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5594 {
5595 	unsigned int off;
5596 	bool fragment;
5597 	__sum16 *csum;
5598 	int err;
5599 
5600 	fragment = false;
5601 
5602 	err = skb_maybe_pull_tail(skb,
5603 				  sizeof(struct iphdr),
5604 				  MAX_IP_HDR_LEN);
5605 	if (err < 0)
5606 		goto out;
5607 
5608 	if (ip_is_fragment(ip_hdr(skb)))
5609 		fragment = true;
5610 
5611 	off = ip_hdrlen(skb);
5612 
5613 	err = -EPROTO;
5614 
5615 	if (fragment)
5616 		goto out;
5617 
5618 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5619 	if (IS_ERR(csum))
5620 		return PTR_ERR(csum);
5621 
5622 	if (recalculate)
5623 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5624 					   ip_hdr(skb)->daddr,
5625 					   skb->len - off,
5626 					   ip_hdr(skb)->protocol, 0);
5627 	err = 0;
5628 
5629 out:
5630 	return err;
5631 }
5632 
5633 /* This value should be large enough to cover a tagged ethernet header plus
5634  * an IPv6 header, all options, and a maximal TCP or UDP header.
5635  */
5636 #define MAX_IPV6_HDR_LEN 256
5637 
5638 #define OPT_HDR(type, skb, off) \
5639 	(type *)(skb_network_header(skb) + (off))
5640 
5641 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5642 {
5643 	int err;
5644 	u8 nexthdr;
5645 	unsigned int off;
5646 	unsigned int len;
5647 	bool fragment;
5648 	bool done;
5649 	__sum16 *csum;
5650 
5651 	fragment = false;
5652 	done = false;
5653 
5654 	off = sizeof(struct ipv6hdr);
5655 
5656 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5657 	if (err < 0)
5658 		goto out;
5659 
5660 	nexthdr = ipv6_hdr(skb)->nexthdr;
5661 
5662 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5663 	while (off <= len && !done) {
5664 		switch (nexthdr) {
5665 		case IPPROTO_DSTOPTS:
5666 		case IPPROTO_HOPOPTS:
5667 		case IPPROTO_ROUTING: {
5668 			struct ipv6_opt_hdr *hp;
5669 
5670 			err = skb_maybe_pull_tail(skb,
5671 						  off +
5672 						  sizeof(struct ipv6_opt_hdr),
5673 						  MAX_IPV6_HDR_LEN);
5674 			if (err < 0)
5675 				goto out;
5676 
5677 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5678 			nexthdr = hp->nexthdr;
5679 			off += ipv6_optlen(hp);
5680 			break;
5681 		}
5682 		case IPPROTO_AH: {
5683 			struct ip_auth_hdr *hp;
5684 
5685 			err = skb_maybe_pull_tail(skb,
5686 						  off +
5687 						  sizeof(struct ip_auth_hdr),
5688 						  MAX_IPV6_HDR_LEN);
5689 			if (err < 0)
5690 				goto out;
5691 
5692 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5693 			nexthdr = hp->nexthdr;
5694 			off += ipv6_authlen(hp);
5695 			break;
5696 		}
5697 		case IPPROTO_FRAGMENT: {
5698 			struct frag_hdr *hp;
5699 
5700 			err = skb_maybe_pull_tail(skb,
5701 						  off +
5702 						  sizeof(struct frag_hdr),
5703 						  MAX_IPV6_HDR_LEN);
5704 			if (err < 0)
5705 				goto out;
5706 
5707 			hp = OPT_HDR(struct frag_hdr, skb, off);
5708 
5709 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5710 				fragment = true;
5711 
5712 			nexthdr = hp->nexthdr;
5713 			off += sizeof(struct frag_hdr);
5714 			break;
5715 		}
5716 		default:
5717 			done = true;
5718 			break;
5719 		}
5720 	}
5721 
5722 	err = -EPROTO;
5723 
5724 	if (!done || fragment)
5725 		goto out;
5726 
5727 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5728 	if (IS_ERR(csum))
5729 		return PTR_ERR(csum);
5730 
5731 	if (recalculate)
5732 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5733 					 &ipv6_hdr(skb)->daddr,
5734 					 skb->len - off, nexthdr, 0);
5735 	err = 0;
5736 
5737 out:
5738 	return err;
5739 }
5740 
5741 /**
5742  * skb_checksum_setup - set up partial checksum offset
5743  * @skb: the skb to set up
5744  * @recalculate: if true the pseudo-header checksum will be recalculated
5745  */
5746 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5747 {
5748 	int err;
5749 
5750 	switch (skb->protocol) {
5751 	case htons(ETH_P_IP):
5752 		err = skb_checksum_setup_ipv4(skb, recalculate);
5753 		break;
5754 
5755 	case htons(ETH_P_IPV6):
5756 		err = skb_checksum_setup_ipv6(skb, recalculate);
5757 		break;
5758 
5759 	default:
5760 		err = -EPROTO;
5761 		break;
5762 	}
5763 
5764 	return err;
5765 }
5766 EXPORT_SYMBOL(skb_checksum_setup);
5767 
5768 /**
5769  * skb_checksum_maybe_trim - maybe trims the given skb
5770  * @skb: the skb to check
5771  * @transport_len: the data length beyond the network header
5772  *
5773  * Checks whether the given skb has data beyond the given transport length.
5774  * If so, returns a cloned skb trimmed to this transport length.
5775  * Otherwise returns the provided skb. Returns NULL in error cases
5776  * (e.g. transport_len exceeds skb length or out-of-memory).
5777  *
5778  * Caller needs to set the skb transport header and free any returned skb if it
5779  * differs from the provided skb.
5780  */
5781 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5782 					       unsigned int transport_len)
5783 {
5784 	struct sk_buff *skb_chk;
5785 	unsigned int len = skb_transport_offset(skb) + transport_len;
5786 	int ret;
5787 
5788 	if (skb->len < len)
5789 		return NULL;
5790 	else if (skb->len == len)
5791 		return skb;
5792 
5793 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5794 	if (!skb_chk)
5795 		return NULL;
5796 
5797 	ret = pskb_trim_rcsum(skb_chk, len);
5798 	if (ret) {
5799 		kfree_skb(skb_chk);
5800 		return NULL;
5801 	}
5802 
5803 	return skb_chk;
5804 }
5805 
5806 /**
5807  * skb_checksum_trimmed - validate checksum of an skb
5808  * @skb: the skb to check
5809  * @transport_len: the data length beyond the network header
5810  * @skb_chkf: checksum function to use
5811  *
5812  * Applies the given checksum function skb_chkf to the provided skb.
5813  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5814  *
5815  * If the skb has data beyond the given transport length, then a
5816  * trimmed & cloned skb is checked and returned.
5817  *
5818  * Caller needs to set the skb transport header and free any returned skb if it
5819  * differs from the provided skb.
5820  */
5821 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5822 				     unsigned int transport_len,
5823 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5824 {
5825 	struct sk_buff *skb_chk;
5826 	unsigned int offset = skb_transport_offset(skb);
5827 	__sum16 ret;
5828 
5829 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5830 	if (!skb_chk)
5831 		goto err;
5832 
5833 	if (!pskb_may_pull(skb_chk, offset))
5834 		goto err;
5835 
5836 	skb_pull_rcsum(skb_chk, offset);
5837 	ret = skb_chkf(skb_chk);
5838 	skb_push_rcsum(skb_chk, offset);
5839 
5840 	if (ret)
5841 		goto err;
5842 
5843 	return skb_chk;
5844 
5845 err:
5846 	if (skb_chk && skb_chk != skb)
5847 		kfree_skb(skb_chk);
5848 
5849 	return NULL;
5850 
5851 }
5852 EXPORT_SYMBOL(skb_checksum_trimmed);
5853 
5854 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5855 {
5856 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5857 			     skb->dev->name);
5858 }
5859 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5860 
5861 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5862 {
5863 	if (head_stolen) {
5864 		skb_release_head_state(skb);
5865 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5866 	} else {
5867 		__kfree_skb(skb);
5868 	}
5869 }
5870 EXPORT_SYMBOL(kfree_skb_partial);
5871 
5872 /**
5873  * skb_try_coalesce - try to merge skb to prior one
5874  * @to: prior buffer
5875  * @from: buffer to add
5876  * @fragstolen: pointer to boolean
5877  * @delta_truesize: how much more was allocated than was requested
5878  */
5879 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5880 		      bool *fragstolen, int *delta_truesize)
5881 {
5882 	struct skb_shared_info *to_shinfo, *from_shinfo;
5883 	int i, delta, len = from->len;
5884 
5885 	*fragstolen = false;
5886 
5887 	if (skb_cloned(to))
5888 		return false;
5889 
5890 	/* In general, avoid mixing page_pool and non-page_pool allocated
5891 	 * pages within the same SKB. In theory we could take full
5892 	 * references if @from is cloned and !@to->pp_recycle but its
5893 	 * tricky (due to potential race with the clone disappearing) and
5894 	 * rare, so not worth dealing with.
5895 	 */
5896 	if (to->pp_recycle != from->pp_recycle)
5897 		return false;
5898 
5899 	if (len <= skb_tailroom(to)) {
5900 		if (len)
5901 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5902 		*delta_truesize = 0;
5903 		return true;
5904 	}
5905 
5906 	to_shinfo = skb_shinfo(to);
5907 	from_shinfo = skb_shinfo(from);
5908 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5909 		return false;
5910 	if (skb_zcopy(to) || skb_zcopy(from))
5911 		return false;
5912 
5913 	if (skb_headlen(from) != 0) {
5914 		struct page *page;
5915 		unsigned int offset;
5916 
5917 		if (to_shinfo->nr_frags +
5918 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5919 			return false;
5920 
5921 		if (skb_head_is_locked(from))
5922 			return false;
5923 
5924 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5925 
5926 		page = virt_to_head_page(from->head);
5927 		offset = from->data - (unsigned char *)page_address(page);
5928 
5929 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5930 				   page, offset, skb_headlen(from));
5931 		*fragstolen = true;
5932 	} else {
5933 		if (to_shinfo->nr_frags +
5934 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5935 			return false;
5936 
5937 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5938 	}
5939 
5940 	WARN_ON_ONCE(delta < len);
5941 
5942 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5943 	       from_shinfo->frags,
5944 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5945 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5946 
5947 	if (!skb_cloned(from))
5948 		from_shinfo->nr_frags = 0;
5949 
5950 	/* if the skb is not cloned this does nothing
5951 	 * since we set nr_frags to 0.
5952 	 */
5953 	if (skb_pp_frag_ref(from)) {
5954 		for (i = 0; i < from_shinfo->nr_frags; i++)
5955 			__skb_frag_ref(&from_shinfo->frags[i]);
5956 	}
5957 
5958 	to->truesize += delta;
5959 	to->len += len;
5960 	to->data_len += len;
5961 
5962 	*delta_truesize = delta;
5963 	return true;
5964 }
5965 EXPORT_SYMBOL(skb_try_coalesce);
5966 
5967 /**
5968  * skb_scrub_packet - scrub an skb
5969  *
5970  * @skb: buffer to clean
5971  * @xnet: packet is crossing netns
5972  *
5973  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5974  * into/from a tunnel. Some information have to be cleared during these
5975  * operations.
5976  * skb_scrub_packet can also be used to clean a skb before injecting it in
5977  * another namespace (@xnet == true). We have to clear all information in the
5978  * skb that could impact namespace isolation.
5979  */
5980 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5981 {
5982 	skb->pkt_type = PACKET_HOST;
5983 	skb->skb_iif = 0;
5984 	skb->ignore_df = 0;
5985 	skb_dst_drop(skb);
5986 	skb_ext_reset(skb);
5987 	nf_reset_ct(skb);
5988 	nf_reset_trace(skb);
5989 
5990 #ifdef CONFIG_NET_SWITCHDEV
5991 	skb->offload_fwd_mark = 0;
5992 	skb->offload_l3_fwd_mark = 0;
5993 #endif
5994 
5995 	if (!xnet)
5996 		return;
5997 
5998 	ipvs_reset(skb);
5999 	skb->mark = 0;
6000 	skb_clear_tstamp(skb);
6001 }
6002 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6003 
6004 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6005 {
6006 	int mac_len, meta_len;
6007 	void *meta;
6008 
6009 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6010 		kfree_skb(skb);
6011 		return NULL;
6012 	}
6013 
6014 	mac_len = skb->data - skb_mac_header(skb);
6015 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6016 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6017 			mac_len - VLAN_HLEN - ETH_TLEN);
6018 	}
6019 
6020 	meta_len = skb_metadata_len(skb);
6021 	if (meta_len) {
6022 		meta = skb_metadata_end(skb) - meta_len;
6023 		memmove(meta + VLAN_HLEN, meta, meta_len);
6024 	}
6025 
6026 	skb->mac_header += VLAN_HLEN;
6027 	return skb;
6028 }
6029 
6030 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6031 {
6032 	struct vlan_hdr *vhdr;
6033 	u16 vlan_tci;
6034 
6035 	if (unlikely(skb_vlan_tag_present(skb))) {
6036 		/* vlan_tci is already set-up so leave this for another time */
6037 		return skb;
6038 	}
6039 
6040 	skb = skb_share_check(skb, GFP_ATOMIC);
6041 	if (unlikely(!skb))
6042 		goto err_free;
6043 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6044 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6045 		goto err_free;
6046 
6047 	vhdr = (struct vlan_hdr *)skb->data;
6048 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6049 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6050 
6051 	skb_pull_rcsum(skb, VLAN_HLEN);
6052 	vlan_set_encap_proto(skb, vhdr);
6053 
6054 	skb = skb_reorder_vlan_header(skb);
6055 	if (unlikely(!skb))
6056 		goto err_free;
6057 
6058 	skb_reset_network_header(skb);
6059 	if (!skb_transport_header_was_set(skb))
6060 		skb_reset_transport_header(skb);
6061 	skb_reset_mac_len(skb);
6062 
6063 	return skb;
6064 
6065 err_free:
6066 	kfree_skb(skb);
6067 	return NULL;
6068 }
6069 EXPORT_SYMBOL(skb_vlan_untag);
6070 
6071 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6072 {
6073 	if (!pskb_may_pull(skb, write_len))
6074 		return -ENOMEM;
6075 
6076 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6077 		return 0;
6078 
6079 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6080 }
6081 EXPORT_SYMBOL(skb_ensure_writable);
6082 
6083 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6084 {
6085 	int needed_headroom = dev->needed_headroom;
6086 	int needed_tailroom = dev->needed_tailroom;
6087 
6088 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6089 	 * that the tail tag does not fail at its role of being at the end of
6090 	 * the packet, once the conduit interface pads the frame. Account for
6091 	 * that pad length here, and pad later.
6092 	 */
6093 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6094 		needed_tailroom += ETH_ZLEN - skb->len;
6095 	/* skb_headroom() returns unsigned int... */
6096 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6097 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6098 
6099 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6100 		/* No reallocation needed, yay! */
6101 		return 0;
6102 
6103 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6104 				GFP_ATOMIC);
6105 }
6106 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6107 
6108 /* remove VLAN header from packet and update csum accordingly.
6109  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6110  */
6111 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6112 {
6113 	int offset = skb->data - skb_mac_header(skb);
6114 	int err;
6115 
6116 	if (WARN_ONCE(offset,
6117 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6118 		      offset)) {
6119 		return -EINVAL;
6120 	}
6121 
6122 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6123 	if (unlikely(err))
6124 		return err;
6125 
6126 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6127 
6128 	vlan_remove_tag(skb, vlan_tci);
6129 
6130 	skb->mac_header += VLAN_HLEN;
6131 
6132 	if (skb_network_offset(skb) < ETH_HLEN)
6133 		skb_set_network_header(skb, ETH_HLEN);
6134 
6135 	skb_reset_mac_len(skb);
6136 
6137 	return err;
6138 }
6139 EXPORT_SYMBOL(__skb_vlan_pop);
6140 
6141 /* Pop a vlan tag either from hwaccel or from payload.
6142  * Expects skb->data at mac header.
6143  */
6144 int skb_vlan_pop(struct sk_buff *skb)
6145 {
6146 	u16 vlan_tci;
6147 	__be16 vlan_proto;
6148 	int err;
6149 
6150 	if (likely(skb_vlan_tag_present(skb))) {
6151 		__vlan_hwaccel_clear_tag(skb);
6152 	} else {
6153 		if (unlikely(!eth_type_vlan(skb->protocol)))
6154 			return 0;
6155 
6156 		err = __skb_vlan_pop(skb, &vlan_tci);
6157 		if (err)
6158 			return err;
6159 	}
6160 	/* move next vlan tag to hw accel tag */
6161 	if (likely(!eth_type_vlan(skb->protocol)))
6162 		return 0;
6163 
6164 	vlan_proto = skb->protocol;
6165 	err = __skb_vlan_pop(skb, &vlan_tci);
6166 	if (unlikely(err))
6167 		return err;
6168 
6169 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6170 	return 0;
6171 }
6172 EXPORT_SYMBOL(skb_vlan_pop);
6173 
6174 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6175  * Expects skb->data at mac header.
6176  */
6177 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6178 {
6179 	if (skb_vlan_tag_present(skb)) {
6180 		int offset = skb->data - skb_mac_header(skb);
6181 		int err;
6182 
6183 		if (WARN_ONCE(offset,
6184 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6185 			      offset)) {
6186 			return -EINVAL;
6187 		}
6188 
6189 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6190 					skb_vlan_tag_get(skb));
6191 		if (err)
6192 			return err;
6193 
6194 		skb->protocol = skb->vlan_proto;
6195 		skb->mac_len += VLAN_HLEN;
6196 
6197 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6198 	}
6199 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6200 	return 0;
6201 }
6202 EXPORT_SYMBOL(skb_vlan_push);
6203 
6204 /**
6205  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6206  *
6207  * @skb: Socket buffer to modify
6208  *
6209  * Drop the Ethernet header of @skb.
6210  *
6211  * Expects that skb->data points to the mac header and that no VLAN tags are
6212  * present.
6213  *
6214  * Returns 0 on success, -errno otherwise.
6215  */
6216 int skb_eth_pop(struct sk_buff *skb)
6217 {
6218 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6219 	    skb_network_offset(skb) < ETH_HLEN)
6220 		return -EPROTO;
6221 
6222 	skb_pull_rcsum(skb, ETH_HLEN);
6223 	skb_reset_mac_header(skb);
6224 	skb_reset_mac_len(skb);
6225 
6226 	return 0;
6227 }
6228 EXPORT_SYMBOL(skb_eth_pop);
6229 
6230 /**
6231  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6232  *
6233  * @skb: Socket buffer to modify
6234  * @dst: Destination MAC address of the new header
6235  * @src: Source MAC address of the new header
6236  *
6237  * Prepend @skb with a new Ethernet header.
6238  *
6239  * Expects that skb->data points to the mac header, which must be empty.
6240  *
6241  * Returns 0 on success, -errno otherwise.
6242  */
6243 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6244 		 const unsigned char *src)
6245 {
6246 	struct ethhdr *eth;
6247 	int err;
6248 
6249 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6250 		return -EPROTO;
6251 
6252 	err = skb_cow_head(skb, sizeof(*eth));
6253 	if (err < 0)
6254 		return err;
6255 
6256 	skb_push(skb, sizeof(*eth));
6257 	skb_reset_mac_header(skb);
6258 	skb_reset_mac_len(skb);
6259 
6260 	eth = eth_hdr(skb);
6261 	ether_addr_copy(eth->h_dest, dst);
6262 	ether_addr_copy(eth->h_source, src);
6263 	eth->h_proto = skb->protocol;
6264 
6265 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6266 
6267 	return 0;
6268 }
6269 EXPORT_SYMBOL(skb_eth_push);
6270 
6271 /* Update the ethertype of hdr and the skb csum value if required. */
6272 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6273 			     __be16 ethertype)
6274 {
6275 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6276 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6277 
6278 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6279 	}
6280 
6281 	hdr->h_proto = ethertype;
6282 }
6283 
6284 /**
6285  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6286  *                   the packet
6287  *
6288  * @skb: buffer
6289  * @mpls_lse: MPLS label stack entry to push
6290  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6291  * @mac_len: length of the MAC header
6292  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6293  *            ethernet
6294  *
6295  * Expects skb->data at mac header.
6296  *
6297  * Returns 0 on success, -errno otherwise.
6298  */
6299 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6300 		  int mac_len, bool ethernet)
6301 {
6302 	struct mpls_shim_hdr *lse;
6303 	int err;
6304 
6305 	if (unlikely(!eth_p_mpls(mpls_proto)))
6306 		return -EINVAL;
6307 
6308 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6309 	if (skb->encapsulation)
6310 		return -EINVAL;
6311 
6312 	err = skb_cow_head(skb, MPLS_HLEN);
6313 	if (unlikely(err))
6314 		return err;
6315 
6316 	if (!skb->inner_protocol) {
6317 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6318 		skb_set_inner_protocol(skb, skb->protocol);
6319 	}
6320 
6321 	skb_push(skb, MPLS_HLEN);
6322 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6323 		mac_len);
6324 	skb_reset_mac_header(skb);
6325 	skb_set_network_header(skb, mac_len);
6326 	skb_reset_mac_len(skb);
6327 
6328 	lse = mpls_hdr(skb);
6329 	lse->label_stack_entry = mpls_lse;
6330 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6331 
6332 	if (ethernet && mac_len >= ETH_HLEN)
6333 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6334 	skb->protocol = mpls_proto;
6335 
6336 	return 0;
6337 }
6338 EXPORT_SYMBOL_GPL(skb_mpls_push);
6339 
6340 /**
6341  * skb_mpls_pop() - pop the outermost MPLS header
6342  *
6343  * @skb: buffer
6344  * @next_proto: ethertype of header after popped MPLS header
6345  * @mac_len: length of the MAC header
6346  * @ethernet: flag to indicate if the packet is ethernet
6347  *
6348  * Expects skb->data at mac header.
6349  *
6350  * Returns 0 on success, -errno otherwise.
6351  */
6352 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6353 		 bool ethernet)
6354 {
6355 	int err;
6356 
6357 	if (unlikely(!eth_p_mpls(skb->protocol)))
6358 		return 0;
6359 
6360 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6361 	if (unlikely(err))
6362 		return err;
6363 
6364 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6365 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6366 		mac_len);
6367 
6368 	__skb_pull(skb, MPLS_HLEN);
6369 	skb_reset_mac_header(skb);
6370 	skb_set_network_header(skb, mac_len);
6371 
6372 	if (ethernet && mac_len >= ETH_HLEN) {
6373 		struct ethhdr *hdr;
6374 
6375 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6376 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6377 		skb_mod_eth_type(skb, hdr, next_proto);
6378 	}
6379 	skb->protocol = next_proto;
6380 
6381 	return 0;
6382 }
6383 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6384 
6385 /**
6386  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6387  *
6388  * @skb: buffer
6389  * @mpls_lse: new MPLS label stack entry to update to
6390  *
6391  * Expects skb->data at mac header.
6392  *
6393  * Returns 0 on success, -errno otherwise.
6394  */
6395 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6396 {
6397 	int err;
6398 
6399 	if (unlikely(!eth_p_mpls(skb->protocol)))
6400 		return -EINVAL;
6401 
6402 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6403 	if (unlikely(err))
6404 		return err;
6405 
6406 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6407 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6408 
6409 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6410 	}
6411 
6412 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6413 
6414 	return 0;
6415 }
6416 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6417 
6418 /**
6419  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6420  *
6421  * @skb: buffer
6422  *
6423  * Expects skb->data at mac header.
6424  *
6425  * Returns 0 on success, -errno otherwise.
6426  */
6427 int skb_mpls_dec_ttl(struct sk_buff *skb)
6428 {
6429 	u32 lse;
6430 	u8 ttl;
6431 
6432 	if (unlikely(!eth_p_mpls(skb->protocol)))
6433 		return -EINVAL;
6434 
6435 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6436 		return -ENOMEM;
6437 
6438 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6439 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6440 	if (!--ttl)
6441 		return -EINVAL;
6442 
6443 	lse &= ~MPLS_LS_TTL_MASK;
6444 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6445 
6446 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6447 }
6448 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6449 
6450 /**
6451  * alloc_skb_with_frags - allocate skb with page frags
6452  *
6453  * @header_len: size of linear part
6454  * @data_len: needed length in frags
6455  * @order: max page order desired.
6456  * @errcode: pointer to error code if any
6457  * @gfp_mask: allocation mask
6458  *
6459  * This can be used to allocate a paged skb, given a maximal order for frags.
6460  */
6461 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6462 				     unsigned long data_len,
6463 				     int order,
6464 				     int *errcode,
6465 				     gfp_t gfp_mask)
6466 {
6467 	unsigned long chunk;
6468 	struct sk_buff *skb;
6469 	struct page *page;
6470 	int nr_frags = 0;
6471 
6472 	*errcode = -EMSGSIZE;
6473 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6474 		return NULL;
6475 
6476 	*errcode = -ENOBUFS;
6477 	skb = alloc_skb(header_len, gfp_mask);
6478 	if (!skb)
6479 		return NULL;
6480 
6481 	while (data_len) {
6482 		if (nr_frags == MAX_SKB_FRAGS - 1)
6483 			goto failure;
6484 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6485 			order--;
6486 
6487 		if (order) {
6488 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6489 					   __GFP_COMP |
6490 					   __GFP_NOWARN,
6491 					   order);
6492 			if (!page) {
6493 				order--;
6494 				continue;
6495 			}
6496 		} else {
6497 			page = alloc_page(gfp_mask);
6498 			if (!page)
6499 				goto failure;
6500 		}
6501 		chunk = min_t(unsigned long, data_len,
6502 			      PAGE_SIZE << order);
6503 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6504 		nr_frags++;
6505 		skb->truesize += (PAGE_SIZE << order);
6506 		data_len -= chunk;
6507 	}
6508 	return skb;
6509 
6510 failure:
6511 	kfree_skb(skb);
6512 	return NULL;
6513 }
6514 EXPORT_SYMBOL(alloc_skb_with_frags);
6515 
6516 /* carve out the first off bytes from skb when off < headlen */
6517 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6518 				    const int headlen, gfp_t gfp_mask)
6519 {
6520 	int i;
6521 	unsigned int size = skb_end_offset(skb);
6522 	int new_hlen = headlen - off;
6523 	u8 *data;
6524 
6525 	if (skb_pfmemalloc(skb))
6526 		gfp_mask |= __GFP_MEMALLOC;
6527 
6528 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6529 	if (!data)
6530 		return -ENOMEM;
6531 	size = SKB_WITH_OVERHEAD(size);
6532 
6533 	/* Copy real data, and all frags */
6534 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6535 	skb->len -= off;
6536 
6537 	memcpy((struct skb_shared_info *)(data + size),
6538 	       skb_shinfo(skb),
6539 	       offsetof(struct skb_shared_info,
6540 			frags[skb_shinfo(skb)->nr_frags]));
6541 	if (skb_cloned(skb)) {
6542 		/* drop the old head gracefully */
6543 		if (skb_orphan_frags(skb, gfp_mask)) {
6544 			skb_kfree_head(data, size);
6545 			return -ENOMEM;
6546 		}
6547 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6548 			skb_frag_ref(skb, i);
6549 		if (skb_has_frag_list(skb))
6550 			skb_clone_fraglist(skb);
6551 		skb_release_data(skb, SKB_CONSUMED);
6552 	} else {
6553 		/* we can reuse existing recount- all we did was
6554 		 * relocate values
6555 		 */
6556 		skb_free_head(skb);
6557 	}
6558 
6559 	skb->head = data;
6560 	skb->data = data;
6561 	skb->head_frag = 0;
6562 	skb_set_end_offset(skb, size);
6563 	skb_set_tail_pointer(skb, skb_headlen(skb));
6564 	skb_headers_offset_update(skb, 0);
6565 	skb->cloned = 0;
6566 	skb->hdr_len = 0;
6567 	skb->nohdr = 0;
6568 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6569 
6570 	return 0;
6571 }
6572 
6573 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6574 
6575 /* carve out the first eat bytes from skb's frag_list. May recurse into
6576  * pskb_carve()
6577  */
6578 static int pskb_carve_frag_list(struct sk_buff *skb,
6579 				struct skb_shared_info *shinfo, int eat,
6580 				gfp_t gfp_mask)
6581 {
6582 	struct sk_buff *list = shinfo->frag_list;
6583 	struct sk_buff *clone = NULL;
6584 	struct sk_buff *insp = NULL;
6585 
6586 	do {
6587 		if (!list) {
6588 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6589 			return -EFAULT;
6590 		}
6591 		if (list->len <= eat) {
6592 			/* Eaten as whole. */
6593 			eat -= list->len;
6594 			list = list->next;
6595 			insp = list;
6596 		} else {
6597 			/* Eaten partially. */
6598 			if (skb_shared(list)) {
6599 				clone = skb_clone(list, gfp_mask);
6600 				if (!clone)
6601 					return -ENOMEM;
6602 				insp = list->next;
6603 				list = clone;
6604 			} else {
6605 				/* This may be pulled without problems. */
6606 				insp = list;
6607 			}
6608 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6609 				kfree_skb(clone);
6610 				return -ENOMEM;
6611 			}
6612 			break;
6613 		}
6614 	} while (eat);
6615 
6616 	/* Free pulled out fragments. */
6617 	while ((list = shinfo->frag_list) != insp) {
6618 		shinfo->frag_list = list->next;
6619 		consume_skb(list);
6620 	}
6621 	/* And insert new clone at head. */
6622 	if (clone) {
6623 		clone->next = list;
6624 		shinfo->frag_list = clone;
6625 	}
6626 	return 0;
6627 }
6628 
6629 /* carve off first len bytes from skb. Split line (off) is in the
6630  * non-linear part of skb
6631  */
6632 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6633 				       int pos, gfp_t gfp_mask)
6634 {
6635 	int i, k = 0;
6636 	unsigned int size = skb_end_offset(skb);
6637 	u8 *data;
6638 	const int nfrags = skb_shinfo(skb)->nr_frags;
6639 	struct skb_shared_info *shinfo;
6640 
6641 	if (skb_pfmemalloc(skb))
6642 		gfp_mask |= __GFP_MEMALLOC;
6643 
6644 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6645 	if (!data)
6646 		return -ENOMEM;
6647 	size = SKB_WITH_OVERHEAD(size);
6648 
6649 	memcpy((struct skb_shared_info *)(data + size),
6650 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6651 	if (skb_orphan_frags(skb, gfp_mask)) {
6652 		skb_kfree_head(data, size);
6653 		return -ENOMEM;
6654 	}
6655 	shinfo = (struct skb_shared_info *)(data + size);
6656 	for (i = 0; i < nfrags; i++) {
6657 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6658 
6659 		if (pos + fsize > off) {
6660 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6661 
6662 			if (pos < off) {
6663 				/* Split frag.
6664 				 * We have two variants in this case:
6665 				 * 1. Move all the frag to the second
6666 				 *    part, if it is possible. F.e.
6667 				 *    this approach is mandatory for TUX,
6668 				 *    where splitting is expensive.
6669 				 * 2. Split is accurately. We make this.
6670 				 */
6671 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6672 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6673 			}
6674 			skb_frag_ref(skb, i);
6675 			k++;
6676 		}
6677 		pos += fsize;
6678 	}
6679 	shinfo->nr_frags = k;
6680 	if (skb_has_frag_list(skb))
6681 		skb_clone_fraglist(skb);
6682 
6683 	/* split line is in frag list */
6684 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6685 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6686 		if (skb_has_frag_list(skb))
6687 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6688 		skb_kfree_head(data, size);
6689 		return -ENOMEM;
6690 	}
6691 	skb_release_data(skb, SKB_CONSUMED);
6692 
6693 	skb->head = data;
6694 	skb->head_frag = 0;
6695 	skb->data = data;
6696 	skb_set_end_offset(skb, size);
6697 	skb_reset_tail_pointer(skb);
6698 	skb_headers_offset_update(skb, 0);
6699 	skb->cloned   = 0;
6700 	skb->hdr_len  = 0;
6701 	skb->nohdr    = 0;
6702 	skb->len -= off;
6703 	skb->data_len = skb->len;
6704 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6705 	return 0;
6706 }
6707 
6708 /* remove len bytes from the beginning of the skb */
6709 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6710 {
6711 	int headlen = skb_headlen(skb);
6712 
6713 	if (len < headlen)
6714 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6715 	else
6716 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6717 }
6718 
6719 /* Extract to_copy bytes starting at off from skb, and return this in
6720  * a new skb
6721  */
6722 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6723 			     int to_copy, gfp_t gfp)
6724 {
6725 	struct sk_buff  *clone = skb_clone(skb, gfp);
6726 
6727 	if (!clone)
6728 		return NULL;
6729 
6730 	if (pskb_carve(clone, off, gfp) < 0 ||
6731 	    pskb_trim(clone, to_copy)) {
6732 		kfree_skb(clone);
6733 		return NULL;
6734 	}
6735 	return clone;
6736 }
6737 EXPORT_SYMBOL(pskb_extract);
6738 
6739 /**
6740  * skb_condense - try to get rid of fragments/frag_list if possible
6741  * @skb: buffer
6742  *
6743  * Can be used to save memory before skb is added to a busy queue.
6744  * If packet has bytes in frags and enough tail room in skb->head,
6745  * pull all of them, so that we can free the frags right now and adjust
6746  * truesize.
6747  * Notes:
6748  *	We do not reallocate skb->head thus can not fail.
6749  *	Caller must re-evaluate skb->truesize if needed.
6750  */
6751 void skb_condense(struct sk_buff *skb)
6752 {
6753 	if (skb->data_len) {
6754 		if (skb->data_len > skb->end - skb->tail ||
6755 		    skb_cloned(skb))
6756 			return;
6757 
6758 		/* Nice, we can free page frag(s) right now */
6759 		__pskb_pull_tail(skb, skb->data_len);
6760 	}
6761 	/* At this point, skb->truesize might be over estimated,
6762 	 * because skb had a fragment, and fragments do not tell
6763 	 * their truesize.
6764 	 * When we pulled its content into skb->head, fragment
6765 	 * was freed, but __pskb_pull_tail() could not possibly
6766 	 * adjust skb->truesize, not knowing the frag truesize.
6767 	 */
6768 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6769 }
6770 EXPORT_SYMBOL(skb_condense);
6771 
6772 #ifdef CONFIG_SKB_EXTENSIONS
6773 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6774 {
6775 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6776 }
6777 
6778 /**
6779  * __skb_ext_alloc - allocate a new skb extensions storage
6780  *
6781  * @flags: See kmalloc().
6782  *
6783  * Returns the newly allocated pointer. The pointer can later attached to a
6784  * skb via __skb_ext_set().
6785  * Note: caller must handle the skb_ext as an opaque data.
6786  */
6787 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6788 {
6789 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6790 
6791 	if (new) {
6792 		memset(new->offset, 0, sizeof(new->offset));
6793 		refcount_set(&new->refcnt, 1);
6794 	}
6795 
6796 	return new;
6797 }
6798 
6799 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6800 					 unsigned int old_active)
6801 {
6802 	struct skb_ext *new;
6803 
6804 	if (refcount_read(&old->refcnt) == 1)
6805 		return old;
6806 
6807 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6808 	if (!new)
6809 		return NULL;
6810 
6811 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6812 	refcount_set(&new->refcnt, 1);
6813 
6814 #ifdef CONFIG_XFRM
6815 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6816 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6817 		unsigned int i;
6818 
6819 		for (i = 0; i < sp->len; i++)
6820 			xfrm_state_hold(sp->xvec[i]);
6821 	}
6822 #endif
6823 #ifdef CONFIG_MCTP_FLOWS
6824 	if (old_active & (1 << SKB_EXT_MCTP)) {
6825 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6826 
6827 		if (flow->key)
6828 			refcount_inc(&flow->key->refs);
6829 	}
6830 #endif
6831 	__skb_ext_put(old);
6832 	return new;
6833 }
6834 
6835 /**
6836  * __skb_ext_set - attach the specified extension storage to this skb
6837  * @skb: buffer
6838  * @id: extension id
6839  * @ext: extension storage previously allocated via __skb_ext_alloc()
6840  *
6841  * Existing extensions, if any, are cleared.
6842  *
6843  * Returns the pointer to the extension.
6844  */
6845 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6846 		    struct skb_ext *ext)
6847 {
6848 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6849 
6850 	skb_ext_put(skb);
6851 	newlen = newoff + skb_ext_type_len[id];
6852 	ext->chunks = newlen;
6853 	ext->offset[id] = newoff;
6854 	skb->extensions = ext;
6855 	skb->active_extensions = 1 << id;
6856 	return skb_ext_get_ptr(ext, id);
6857 }
6858 
6859 /**
6860  * skb_ext_add - allocate space for given extension, COW if needed
6861  * @skb: buffer
6862  * @id: extension to allocate space for
6863  *
6864  * Allocates enough space for the given extension.
6865  * If the extension is already present, a pointer to that extension
6866  * is returned.
6867  *
6868  * If the skb was cloned, COW applies and the returned memory can be
6869  * modified without changing the extension space of clones buffers.
6870  *
6871  * Returns pointer to the extension or NULL on allocation failure.
6872  */
6873 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6874 {
6875 	struct skb_ext *new, *old = NULL;
6876 	unsigned int newlen, newoff;
6877 
6878 	if (skb->active_extensions) {
6879 		old = skb->extensions;
6880 
6881 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6882 		if (!new)
6883 			return NULL;
6884 
6885 		if (__skb_ext_exist(new, id))
6886 			goto set_active;
6887 
6888 		newoff = new->chunks;
6889 	} else {
6890 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6891 
6892 		new = __skb_ext_alloc(GFP_ATOMIC);
6893 		if (!new)
6894 			return NULL;
6895 	}
6896 
6897 	newlen = newoff + skb_ext_type_len[id];
6898 	new->chunks = newlen;
6899 	new->offset[id] = newoff;
6900 set_active:
6901 	skb->slow_gro = 1;
6902 	skb->extensions = new;
6903 	skb->active_extensions |= 1 << id;
6904 	return skb_ext_get_ptr(new, id);
6905 }
6906 EXPORT_SYMBOL(skb_ext_add);
6907 
6908 #ifdef CONFIG_XFRM
6909 static void skb_ext_put_sp(struct sec_path *sp)
6910 {
6911 	unsigned int i;
6912 
6913 	for (i = 0; i < sp->len; i++)
6914 		xfrm_state_put(sp->xvec[i]);
6915 }
6916 #endif
6917 
6918 #ifdef CONFIG_MCTP_FLOWS
6919 static void skb_ext_put_mctp(struct mctp_flow *flow)
6920 {
6921 	if (flow->key)
6922 		mctp_key_unref(flow->key);
6923 }
6924 #endif
6925 
6926 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6927 {
6928 	struct skb_ext *ext = skb->extensions;
6929 
6930 	skb->active_extensions &= ~(1 << id);
6931 	if (skb->active_extensions == 0) {
6932 		skb->extensions = NULL;
6933 		__skb_ext_put(ext);
6934 #ifdef CONFIG_XFRM
6935 	} else if (id == SKB_EXT_SEC_PATH &&
6936 		   refcount_read(&ext->refcnt) == 1) {
6937 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6938 
6939 		skb_ext_put_sp(sp);
6940 		sp->len = 0;
6941 #endif
6942 	}
6943 }
6944 EXPORT_SYMBOL(__skb_ext_del);
6945 
6946 void __skb_ext_put(struct skb_ext *ext)
6947 {
6948 	/* If this is last clone, nothing can increment
6949 	 * it after check passes.  Avoids one atomic op.
6950 	 */
6951 	if (refcount_read(&ext->refcnt) == 1)
6952 		goto free_now;
6953 
6954 	if (!refcount_dec_and_test(&ext->refcnt))
6955 		return;
6956 free_now:
6957 #ifdef CONFIG_XFRM
6958 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6959 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6960 #endif
6961 #ifdef CONFIG_MCTP_FLOWS
6962 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6963 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6964 #endif
6965 
6966 	kmem_cache_free(skbuff_ext_cache, ext);
6967 }
6968 EXPORT_SYMBOL(__skb_ext_put);
6969 #endif /* CONFIG_SKB_EXTENSIONS */
6970 
6971 /**
6972  * skb_attempt_defer_free - queue skb for remote freeing
6973  * @skb: buffer
6974  *
6975  * Put @skb in a per-cpu list, using the cpu which
6976  * allocated the skb/pages to reduce false sharing
6977  * and memory zone spinlock contention.
6978  */
6979 void skb_attempt_defer_free(struct sk_buff *skb)
6980 {
6981 	int cpu = skb->alloc_cpu;
6982 	struct softnet_data *sd;
6983 	unsigned int defer_max;
6984 	bool kick;
6985 
6986 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6987 	    !cpu_online(cpu) ||
6988 	    cpu == raw_smp_processor_id()) {
6989 nodefer:	__kfree_skb(skb);
6990 		return;
6991 	}
6992 
6993 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6994 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6995 
6996 	sd = &per_cpu(softnet_data, cpu);
6997 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6998 	if (READ_ONCE(sd->defer_count) >= defer_max)
6999 		goto nodefer;
7000 
7001 	spin_lock_bh(&sd->defer_lock);
7002 	/* Send an IPI every time queue reaches half capacity. */
7003 	kick = sd->defer_count == (defer_max >> 1);
7004 	/* Paired with the READ_ONCE() few lines above */
7005 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7006 
7007 	skb->next = sd->defer_list;
7008 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7009 	WRITE_ONCE(sd->defer_list, skb);
7010 	spin_unlock_bh(&sd->defer_lock);
7011 
7012 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7013 	 * if we are unlucky enough (this seems very unlikely).
7014 	 */
7015 	if (unlikely(kick))
7016 		kick_defer_list_purge(sd, cpu);
7017 }
7018 
7019 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7020 				 size_t offset, size_t len)
7021 {
7022 	const char *kaddr;
7023 	__wsum csum;
7024 
7025 	kaddr = kmap_local_page(page);
7026 	csum = csum_partial(kaddr + offset, len, 0);
7027 	kunmap_local(kaddr);
7028 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7029 }
7030 
7031 /**
7032  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7033  * @skb: The buffer to add pages to
7034  * @iter: Iterator representing the pages to be added
7035  * @maxsize: Maximum amount of pages to be added
7036  * @gfp: Allocation flags
7037  *
7038  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7039  * extracts pages from an iterator and adds them to the socket buffer if
7040  * possible, copying them to fragments if not possible (such as if they're slab
7041  * pages).
7042  *
7043  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7044  * insufficient space in the buffer to transfer anything.
7045  */
7046 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7047 			     ssize_t maxsize, gfp_t gfp)
7048 {
7049 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7050 	struct page *pages[8], **ppages = pages;
7051 	ssize_t spliced = 0, ret = 0;
7052 	unsigned int i;
7053 
7054 	while (iter->count > 0) {
7055 		ssize_t space, nr, len;
7056 		size_t off;
7057 
7058 		ret = -EMSGSIZE;
7059 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7060 		if (space < 0)
7061 			break;
7062 
7063 		/* We might be able to coalesce without increasing nr_frags */
7064 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7065 
7066 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7067 		if (len <= 0) {
7068 			ret = len ?: -EIO;
7069 			break;
7070 		}
7071 
7072 		i = 0;
7073 		do {
7074 			struct page *page = pages[i++];
7075 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7076 
7077 			ret = -EIO;
7078 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7079 				goto out;
7080 
7081 			ret = skb_append_pagefrags(skb, page, off, part,
7082 						   frag_limit);
7083 			if (ret < 0) {
7084 				iov_iter_revert(iter, len);
7085 				goto out;
7086 			}
7087 
7088 			if (skb->ip_summed == CHECKSUM_NONE)
7089 				skb_splice_csum_page(skb, page, off, part);
7090 
7091 			off = 0;
7092 			spliced += part;
7093 			maxsize -= part;
7094 			len -= part;
7095 		} while (len > 0);
7096 
7097 		if (maxsize <= 0)
7098 			break;
7099 	}
7100 
7101 out:
7102 	skb_len_add(skb, spliced);
7103 	return spliced ?: ret;
7104 }
7105 EXPORT_SYMBOL(skb_splice_from_iter);
7106 
7107 static __always_inline
7108 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7109 			     size_t len, void *to, void *priv2)
7110 {
7111 	__wsum *csum = priv2;
7112 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7113 
7114 	*csum = csum_block_add(*csum, next, progress);
7115 	return 0;
7116 }
7117 
7118 static __always_inline
7119 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7120 				size_t len, void *to, void *priv2)
7121 {
7122 	__wsum next, *csum = priv2;
7123 
7124 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7125 	*csum = csum_block_add(*csum, next, progress);
7126 	return next ? 0 : len;
7127 }
7128 
7129 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7130 				  __wsum *csum, struct iov_iter *i)
7131 {
7132 	size_t copied;
7133 
7134 	if (WARN_ON_ONCE(!i->data_source))
7135 		return false;
7136 	copied = iterate_and_advance2(i, bytes, addr, csum,
7137 				      copy_from_user_iter_csum,
7138 				      memcpy_from_iter_csum);
7139 	if (likely(copied == bytes))
7140 		return true;
7141 	iov_iter_revert(i, copied);
7142 	return false;
7143 }
7144 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7145