xref: /linux/net/core/skbuff.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 
83 /**
84  *	skb_panic - private function for out-of-line support
85  *	@skb:	buffer
86  *	@sz:	size
87  *	@addr:	address
88  *	@msg:	skb_over_panic or skb_under_panic
89  *
90  *	Out-of-line support for skb_put() and skb_push().
91  *	Called via the wrapper skb_over_panic() or skb_under_panic().
92  *	Keep out of line to prevent kernel bloat.
93  *	__builtin_return_address is not used because it is not always reliable.
94  */
95 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
96 		      const char msg[])
97 {
98 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 		 msg, addr, skb->len, sz, skb->head, skb->data,
100 		 (unsigned long)skb->tail, (unsigned long)skb->end,
101 		 skb->dev ? skb->dev->name : "<NULL>");
102 	BUG();
103 }
104 
105 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
106 {
107 	skb_panic(skb, sz, addr, __func__);
108 }
109 
110 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 	skb_panic(skb, sz, addr, __func__);
113 }
114 
115 /*
116  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117  * the caller if emergency pfmemalloc reserves are being used. If it is and
118  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119  * may be used. Otherwise, the packet data may be discarded until enough
120  * memory is free
121  */
122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
124 
125 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
126 			       unsigned long ip, bool *pfmemalloc)
127 {
128 	void *obj;
129 	bool ret_pfmemalloc = false;
130 
131 	/*
132 	 * Try a regular allocation, when that fails and we're not entitled
133 	 * to the reserves, fail.
134 	 */
135 	obj = kmalloc_node_track_caller(size,
136 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
137 					node);
138 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
139 		goto out;
140 
141 	/* Try again but now we are using pfmemalloc reserves */
142 	ret_pfmemalloc = true;
143 	obj = kmalloc_node_track_caller(size, flags, node);
144 
145 out:
146 	if (pfmemalloc)
147 		*pfmemalloc = ret_pfmemalloc;
148 
149 	return obj;
150 }
151 
152 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
153  *	'private' fields and also do memory statistics to find all the
154  *	[BEEP] leaks.
155  *
156  */
157 
158 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
159 {
160 	struct sk_buff *skb;
161 
162 	/* Get the HEAD */
163 	skb = kmem_cache_alloc_node(skbuff_head_cache,
164 				    gfp_mask & ~__GFP_DMA, node);
165 	if (!skb)
166 		goto out;
167 
168 	/*
169 	 * Only clear those fields we need to clear, not those that we will
170 	 * actually initialise below. Hence, don't put any more fields after
171 	 * the tail pointer in struct sk_buff!
172 	 */
173 	memset(skb, 0, offsetof(struct sk_buff, tail));
174 	skb->head = NULL;
175 	skb->truesize = sizeof(struct sk_buff);
176 	atomic_set(&skb->users, 1);
177 
178 	skb->mac_header = (typeof(skb->mac_header))~0U;
179 out:
180 	return skb;
181 }
182 
183 /**
184  *	__alloc_skb	-	allocate a network buffer
185  *	@size: size to allocate
186  *	@gfp_mask: allocation mask
187  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188  *		instead of head cache and allocate a cloned (child) skb.
189  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190  *		allocations in case the data is required for writeback
191  *	@node: numa node to allocate memory on
192  *
193  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
194  *	tail room of at least size bytes. The object has a reference count
195  *	of one. The return is the buffer. On a failure the return is %NULL.
196  *
197  *	Buffers may only be allocated from interrupts using a @gfp_mask of
198  *	%GFP_ATOMIC.
199  */
200 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
201 			    int flags, int node)
202 {
203 	struct kmem_cache *cache;
204 	struct skb_shared_info *shinfo;
205 	struct sk_buff *skb;
206 	u8 *data;
207 	bool pfmemalloc;
208 
209 	cache = (flags & SKB_ALLOC_FCLONE)
210 		? skbuff_fclone_cache : skbuff_head_cache;
211 
212 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
213 		gfp_mask |= __GFP_MEMALLOC;
214 
215 	/* Get the HEAD */
216 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
217 	if (!skb)
218 		goto out;
219 	prefetchw(skb);
220 
221 	/* We do our best to align skb_shared_info on a separate cache
222 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 	 * Both skb->head and skb_shared_info are cache line aligned.
225 	 */
226 	size = SKB_DATA_ALIGN(size);
227 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
228 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
229 	if (!data)
230 		goto nodata;
231 	/* kmalloc(size) might give us more room than requested.
232 	 * Put skb_shared_info exactly at the end of allocated zone,
233 	 * to allow max possible filling before reallocation.
234 	 */
235 	size = SKB_WITH_OVERHEAD(ksize(data));
236 	prefetchw(data + size);
237 
238 	/*
239 	 * Only clear those fields we need to clear, not those that we will
240 	 * actually initialise below. Hence, don't put any more fields after
241 	 * the tail pointer in struct sk_buff!
242 	 */
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	/* Account for allocated memory : skb + skb->head */
245 	skb->truesize = SKB_TRUESIZE(size);
246 	skb->pfmemalloc = pfmemalloc;
247 	atomic_set(&skb->users, 1);
248 	skb->head = data;
249 	skb->data = data;
250 	skb_reset_tail_pointer(skb);
251 	skb->end = skb->tail + size;
252 	skb->mac_header = (typeof(skb->mac_header))~0U;
253 	skb->transport_header = (typeof(skb->transport_header))~0U;
254 
255 	/* make sure we initialize shinfo sequentially */
256 	shinfo = skb_shinfo(skb);
257 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
258 	atomic_set(&shinfo->dataref, 1);
259 	kmemcheck_annotate_variable(shinfo->destructor_arg);
260 
261 	if (flags & SKB_ALLOC_FCLONE) {
262 		struct sk_buff_fclones *fclones;
263 
264 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
265 
266 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
267 		skb->fclone = SKB_FCLONE_ORIG;
268 		atomic_set(&fclones->fclone_ref, 1);
269 
270 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
271 		fclones->skb2.pfmemalloc = pfmemalloc;
272 	}
273 out:
274 	return skb;
275 nodata:
276 	kmem_cache_free(cache, skb);
277 	skb = NULL;
278 	goto out;
279 }
280 EXPORT_SYMBOL(__alloc_skb);
281 
282 /**
283  * __build_skb - build a network buffer
284  * @data: data buffer provided by caller
285  * @frag_size: size of data, or 0 if head was kmalloced
286  *
287  * Allocate a new &sk_buff. Caller provides space holding head and
288  * skb_shared_info. @data must have been allocated by kmalloc() only if
289  * @frag_size is 0, otherwise data should come from the page allocator
290  *  or vmalloc()
291  * The return is the new skb buffer.
292  * On a failure the return is %NULL, and @data is not freed.
293  * Notes :
294  *  Before IO, driver allocates only data buffer where NIC put incoming frame
295  *  Driver should add room at head (NET_SKB_PAD) and
296  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
297  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
298  *  before giving packet to stack.
299  *  RX rings only contains data buffers, not full skbs.
300  */
301 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
302 {
303 	struct skb_shared_info *shinfo;
304 	struct sk_buff *skb;
305 	unsigned int size = frag_size ? : ksize(data);
306 
307 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
308 	if (!skb)
309 		return NULL;
310 
311 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
312 
313 	memset(skb, 0, offsetof(struct sk_buff, tail));
314 	skb->truesize = SKB_TRUESIZE(size);
315 	atomic_set(&skb->users, 1);
316 	skb->head = data;
317 	skb->data = data;
318 	skb_reset_tail_pointer(skb);
319 	skb->end = skb->tail + size;
320 	skb->mac_header = (typeof(skb->mac_header))~0U;
321 	skb->transport_header = (typeof(skb->transport_header))~0U;
322 
323 	/* make sure we initialize shinfo sequentially */
324 	shinfo = skb_shinfo(skb);
325 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
326 	atomic_set(&shinfo->dataref, 1);
327 	kmemcheck_annotate_variable(shinfo->destructor_arg);
328 
329 	return skb;
330 }
331 
332 /* build_skb() is wrapper over __build_skb(), that specifically
333  * takes care of skb->head and skb->pfmemalloc
334  * This means that if @frag_size is not zero, then @data must be backed
335  * by a page fragment, not kmalloc() or vmalloc()
336  */
337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 	struct sk_buff *skb = __build_skb(data, frag_size);
340 
341 	if (skb && frag_size) {
342 		skb->head_frag = 1;
343 		if (page_is_pfmemalloc(virt_to_head_page(data)))
344 			skb->pfmemalloc = 1;
345 	}
346 	return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349 
350 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
351 static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache);
352 
353 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
354 {
355 	struct page_frag_cache *nc;
356 	unsigned long flags;
357 	void *data;
358 
359 	local_irq_save(flags);
360 	nc = this_cpu_ptr(&netdev_alloc_cache);
361 	data = __alloc_page_frag(nc, fragsz, gfp_mask);
362 	local_irq_restore(flags);
363 	return data;
364 }
365 
366 /**
367  * netdev_alloc_frag - allocate a page fragment
368  * @fragsz: fragment size
369  *
370  * Allocates a frag from a page for receive buffer.
371  * Uses GFP_ATOMIC allocations.
372  */
373 void *netdev_alloc_frag(unsigned int fragsz)
374 {
375 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
376 }
377 EXPORT_SYMBOL(netdev_alloc_frag);
378 
379 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
380 {
381 	struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
382 
383 	return __alloc_page_frag(nc, fragsz, gfp_mask);
384 }
385 
386 void *napi_alloc_frag(unsigned int fragsz)
387 {
388 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391 
392 /**
393  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
394  *	@dev: network device to receive on
395  *	@len: length to allocate
396  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
397  *
398  *	Allocate a new &sk_buff and assign it a usage count of one. The
399  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
400  *	the headroom they think they need without accounting for the
401  *	built in space. The built in space is used for optimisations.
402  *
403  *	%NULL is returned if there is no free memory.
404  */
405 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
406 				   gfp_t gfp_mask)
407 {
408 	struct page_frag_cache *nc;
409 	unsigned long flags;
410 	struct sk_buff *skb;
411 	bool pfmemalloc;
412 	void *data;
413 
414 	len += NET_SKB_PAD;
415 
416 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
417 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
418 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
419 		if (!skb)
420 			goto skb_fail;
421 		goto skb_success;
422 	}
423 
424 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425 	len = SKB_DATA_ALIGN(len);
426 
427 	if (sk_memalloc_socks())
428 		gfp_mask |= __GFP_MEMALLOC;
429 
430 	local_irq_save(flags);
431 
432 	nc = this_cpu_ptr(&netdev_alloc_cache);
433 	data = __alloc_page_frag(nc, len, gfp_mask);
434 	pfmemalloc = nc->pfmemalloc;
435 
436 	local_irq_restore(flags);
437 
438 	if (unlikely(!data))
439 		return NULL;
440 
441 	skb = __build_skb(data, len);
442 	if (unlikely(!skb)) {
443 		skb_free_frag(data);
444 		return NULL;
445 	}
446 
447 	/* use OR instead of assignment to avoid clearing of bits in mask */
448 	if (pfmemalloc)
449 		skb->pfmemalloc = 1;
450 	skb->head_frag = 1;
451 
452 skb_success:
453 	skb_reserve(skb, NET_SKB_PAD);
454 	skb->dev = dev;
455 
456 skb_fail:
457 	return skb;
458 }
459 EXPORT_SYMBOL(__netdev_alloc_skb);
460 
461 /**
462  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
463  *	@napi: napi instance this buffer was allocated for
464  *	@len: length to allocate
465  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
466  *
467  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
468  *	attempt to allocate the head from a special reserved region used
469  *	only for NAPI Rx allocation.  By doing this we can save several
470  *	CPU cycles by avoiding having to disable and re-enable IRQs.
471  *
472  *	%NULL is returned if there is no free memory.
473  */
474 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
475 				 gfp_t gfp_mask)
476 {
477 	struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
478 	struct sk_buff *skb;
479 	void *data;
480 
481 	len += NET_SKB_PAD + NET_IP_ALIGN;
482 
483 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
484 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
485 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
486 		if (!skb)
487 			goto skb_fail;
488 		goto skb_success;
489 	}
490 
491 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
492 	len = SKB_DATA_ALIGN(len);
493 
494 	if (sk_memalloc_socks())
495 		gfp_mask |= __GFP_MEMALLOC;
496 
497 	data = __alloc_page_frag(nc, len, gfp_mask);
498 	if (unlikely(!data))
499 		return NULL;
500 
501 	skb = __build_skb(data, len);
502 	if (unlikely(!skb)) {
503 		skb_free_frag(data);
504 		return NULL;
505 	}
506 
507 	/* use OR instead of assignment to avoid clearing of bits in mask */
508 	if (nc->pfmemalloc)
509 		skb->pfmemalloc = 1;
510 	skb->head_frag = 1;
511 
512 skb_success:
513 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
514 	skb->dev = napi->dev;
515 
516 skb_fail:
517 	return skb;
518 }
519 EXPORT_SYMBOL(__napi_alloc_skb);
520 
521 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
522 		     int size, unsigned int truesize)
523 {
524 	skb_fill_page_desc(skb, i, page, off, size);
525 	skb->len += size;
526 	skb->data_len += size;
527 	skb->truesize += truesize;
528 }
529 EXPORT_SYMBOL(skb_add_rx_frag);
530 
531 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
532 			  unsigned int truesize)
533 {
534 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
535 
536 	skb_frag_size_add(frag, size);
537 	skb->len += size;
538 	skb->data_len += size;
539 	skb->truesize += truesize;
540 }
541 EXPORT_SYMBOL(skb_coalesce_rx_frag);
542 
543 static void skb_drop_list(struct sk_buff **listp)
544 {
545 	kfree_skb_list(*listp);
546 	*listp = NULL;
547 }
548 
549 static inline void skb_drop_fraglist(struct sk_buff *skb)
550 {
551 	skb_drop_list(&skb_shinfo(skb)->frag_list);
552 }
553 
554 static void skb_clone_fraglist(struct sk_buff *skb)
555 {
556 	struct sk_buff *list;
557 
558 	skb_walk_frags(skb, list)
559 		skb_get(list);
560 }
561 
562 static void skb_free_head(struct sk_buff *skb)
563 {
564 	unsigned char *head = skb->head;
565 
566 	if (skb->head_frag)
567 		skb_free_frag(head);
568 	else
569 		kfree(head);
570 }
571 
572 static void skb_release_data(struct sk_buff *skb)
573 {
574 	struct skb_shared_info *shinfo = skb_shinfo(skb);
575 	int i;
576 
577 	if (skb->cloned &&
578 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
579 			      &shinfo->dataref))
580 		return;
581 
582 	for (i = 0; i < shinfo->nr_frags; i++)
583 		__skb_frag_unref(&shinfo->frags[i]);
584 
585 	/*
586 	 * If skb buf is from userspace, we need to notify the caller
587 	 * the lower device DMA has done;
588 	 */
589 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
590 		struct ubuf_info *uarg;
591 
592 		uarg = shinfo->destructor_arg;
593 		if (uarg->callback)
594 			uarg->callback(uarg, true);
595 	}
596 
597 	if (shinfo->frag_list)
598 		kfree_skb_list(shinfo->frag_list);
599 
600 	skb_free_head(skb);
601 }
602 
603 /*
604  *	Free an skbuff by memory without cleaning the state.
605  */
606 static void kfree_skbmem(struct sk_buff *skb)
607 {
608 	struct sk_buff_fclones *fclones;
609 
610 	switch (skb->fclone) {
611 	case SKB_FCLONE_UNAVAILABLE:
612 		kmem_cache_free(skbuff_head_cache, skb);
613 		return;
614 
615 	case SKB_FCLONE_ORIG:
616 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
617 
618 		/* We usually free the clone (TX completion) before original skb
619 		 * This test would have no chance to be true for the clone,
620 		 * while here, branch prediction will be good.
621 		 */
622 		if (atomic_read(&fclones->fclone_ref) == 1)
623 			goto fastpath;
624 		break;
625 
626 	default: /* SKB_FCLONE_CLONE */
627 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
628 		break;
629 	}
630 	if (!atomic_dec_and_test(&fclones->fclone_ref))
631 		return;
632 fastpath:
633 	kmem_cache_free(skbuff_fclone_cache, fclones);
634 }
635 
636 static void skb_release_head_state(struct sk_buff *skb)
637 {
638 	skb_dst_drop(skb);
639 #ifdef CONFIG_XFRM
640 	secpath_put(skb->sp);
641 #endif
642 	if (skb->destructor) {
643 		WARN_ON(in_irq());
644 		skb->destructor(skb);
645 	}
646 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
647 	nf_conntrack_put(skb->nfct);
648 #endif
649 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
650 	nf_bridge_put(skb->nf_bridge);
651 #endif
652 }
653 
654 /* Free everything but the sk_buff shell. */
655 static void skb_release_all(struct sk_buff *skb)
656 {
657 	skb_release_head_state(skb);
658 	if (likely(skb->head))
659 		skb_release_data(skb);
660 }
661 
662 /**
663  *	__kfree_skb - private function
664  *	@skb: buffer
665  *
666  *	Free an sk_buff. Release anything attached to the buffer.
667  *	Clean the state. This is an internal helper function. Users should
668  *	always call kfree_skb
669  */
670 
671 void __kfree_skb(struct sk_buff *skb)
672 {
673 	skb_release_all(skb);
674 	kfree_skbmem(skb);
675 }
676 EXPORT_SYMBOL(__kfree_skb);
677 
678 /**
679  *	kfree_skb - free an sk_buff
680  *	@skb: buffer to free
681  *
682  *	Drop a reference to the buffer and free it if the usage count has
683  *	hit zero.
684  */
685 void kfree_skb(struct sk_buff *skb)
686 {
687 	if (unlikely(!skb))
688 		return;
689 	if (likely(atomic_read(&skb->users) == 1))
690 		smp_rmb();
691 	else if (likely(!atomic_dec_and_test(&skb->users)))
692 		return;
693 	trace_kfree_skb(skb, __builtin_return_address(0));
694 	__kfree_skb(skb);
695 }
696 EXPORT_SYMBOL(kfree_skb);
697 
698 void kfree_skb_list(struct sk_buff *segs)
699 {
700 	while (segs) {
701 		struct sk_buff *next = segs->next;
702 
703 		kfree_skb(segs);
704 		segs = next;
705 	}
706 }
707 EXPORT_SYMBOL(kfree_skb_list);
708 
709 /**
710  *	skb_tx_error - report an sk_buff xmit error
711  *	@skb: buffer that triggered an error
712  *
713  *	Report xmit error if a device callback is tracking this skb.
714  *	skb must be freed afterwards.
715  */
716 void skb_tx_error(struct sk_buff *skb)
717 {
718 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
719 		struct ubuf_info *uarg;
720 
721 		uarg = skb_shinfo(skb)->destructor_arg;
722 		if (uarg->callback)
723 			uarg->callback(uarg, false);
724 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
725 	}
726 }
727 EXPORT_SYMBOL(skb_tx_error);
728 
729 /**
730  *	consume_skb - free an skbuff
731  *	@skb: buffer to free
732  *
733  *	Drop a ref to the buffer and free it if the usage count has hit zero
734  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
735  *	is being dropped after a failure and notes that
736  */
737 void consume_skb(struct sk_buff *skb)
738 {
739 	if (unlikely(!skb))
740 		return;
741 	if (likely(atomic_read(&skb->users) == 1))
742 		smp_rmb();
743 	else if (likely(!atomic_dec_and_test(&skb->users)))
744 		return;
745 	trace_consume_skb(skb);
746 	__kfree_skb(skb);
747 }
748 EXPORT_SYMBOL(consume_skb);
749 
750 /* Make sure a field is enclosed inside headers_start/headers_end section */
751 #define CHECK_SKB_FIELD(field) \
752 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
753 		     offsetof(struct sk_buff, headers_start));	\
754 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
755 		     offsetof(struct sk_buff, headers_end));	\
756 
757 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
758 {
759 	new->tstamp		= old->tstamp;
760 	/* We do not copy old->sk */
761 	new->dev		= old->dev;
762 	memcpy(new->cb, old->cb, sizeof(old->cb));
763 	skb_dst_copy(new, old);
764 #ifdef CONFIG_XFRM
765 	new->sp			= secpath_get(old->sp);
766 #endif
767 	__nf_copy(new, old, false);
768 
769 	/* Note : this field could be in headers_start/headers_end section
770 	 * It is not yet because we do not want to have a 16 bit hole
771 	 */
772 	new->queue_mapping = old->queue_mapping;
773 
774 	memcpy(&new->headers_start, &old->headers_start,
775 	       offsetof(struct sk_buff, headers_end) -
776 	       offsetof(struct sk_buff, headers_start));
777 	CHECK_SKB_FIELD(protocol);
778 	CHECK_SKB_FIELD(csum);
779 	CHECK_SKB_FIELD(hash);
780 	CHECK_SKB_FIELD(priority);
781 	CHECK_SKB_FIELD(skb_iif);
782 	CHECK_SKB_FIELD(vlan_proto);
783 	CHECK_SKB_FIELD(vlan_tci);
784 	CHECK_SKB_FIELD(transport_header);
785 	CHECK_SKB_FIELD(network_header);
786 	CHECK_SKB_FIELD(mac_header);
787 	CHECK_SKB_FIELD(inner_protocol);
788 	CHECK_SKB_FIELD(inner_transport_header);
789 	CHECK_SKB_FIELD(inner_network_header);
790 	CHECK_SKB_FIELD(inner_mac_header);
791 	CHECK_SKB_FIELD(mark);
792 #ifdef CONFIG_NETWORK_SECMARK
793 	CHECK_SKB_FIELD(secmark);
794 #endif
795 #ifdef CONFIG_NET_RX_BUSY_POLL
796 	CHECK_SKB_FIELD(napi_id);
797 #endif
798 #ifdef CONFIG_XPS
799 	CHECK_SKB_FIELD(sender_cpu);
800 #endif
801 #ifdef CONFIG_NET_SCHED
802 	CHECK_SKB_FIELD(tc_index);
803 #ifdef CONFIG_NET_CLS_ACT
804 	CHECK_SKB_FIELD(tc_verd);
805 #endif
806 #endif
807 
808 }
809 
810 /*
811  * You should not add any new code to this function.  Add it to
812  * __copy_skb_header above instead.
813  */
814 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
815 {
816 #define C(x) n->x = skb->x
817 
818 	n->next = n->prev = NULL;
819 	n->sk = NULL;
820 	__copy_skb_header(n, skb);
821 
822 	C(len);
823 	C(data_len);
824 	C(mac_len);
825 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
826 	n->cloned = 1;
827 	n->nohdr = 0;
828 	n->destructor = NULL;
829 	C(tail);
830 	C(end);
831 	C(head);
832 	C(head_frag);
833 	C(data);
834 	C(truesize);
835 	atomic_set(&n->users, 1);
836 
837 	atomic_inc(&(skb_shinfo(skb)->dataref));
838 	skb->cloned = 1;
839 
840 	return n;
841 #undef C
842 }
843 
844 /**
845  *	skb_morph	-	morph one skb into another
846  *	@dst: the skb to receive the contents
847  *	@src: the skb to supply the contents
848  *
849  *	This is identical to skb_clone except that the target skb is
850  *	supplied by the user.
851  *
852  *	The target skb is returned upon exit.
853  */
854 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
855 {
856 	skb_release_all(dst);
857 	return __skb_clone(dst, src);
858 }
859 EXPORT_SYMBOL_GPL(skb_morph);
860 
861 /**
862  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
863  *	@skb: the skb to modify
864  *	@gfp_mask: allocation priority
865  *
866  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
867  *	It will copy all frags into kernel and drop the reference
868  *	to userspace pages.
869  *
870  *	If this function is called from an interrupt gfp_mask() must be
871  *	%GFP_ATOMIC.
872  *
873  *	Returns 0 on success or a negative error code on failure
874  *	to allocate kernel memory to copy to.
875  */
876 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
877 {
878 	int i;
879 	int num_frags = skb_shinfo(skb)->nr_frags;
880 	struct page *page, *head = NULL;
881 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
882 
883 	for (i = 0; i < num_frags; i++) {
884 		u8 *vaddr;
885 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
886 
887 		page = alloc_page(gfp_mask);
888 		if (!page) {
889 			while (head) {
890 				struct page *next = (struct page *)page_private(head);
891 				put_page(head);
892 				head = next;
893 			}
894 			return -ENOMEM;
895 		}
896 		vaddr = kmap_atomic(skb_frag_page(f));
897 		memcpy(page_address(page),
898 		       vaddr + f->page_offset, skb_frag_size(f));
899 		kunmap_atomic(vaddr);
900 		set_page_private(page, (unsigned long)head);
901 		head = page;
902 	}
903 
904 	/* skb frags release userspace buffers */
905 	for (i = 0; i < num_frags; i++)
906 		skb_frag_unref(skb, i);
907 
908 	uarg->callback(uarg, false);
909 
910 	/* skb frags point to kernel buffers */
911 	for (i = num_frags - 1; i >= 0; i--) {
912 		__skb_fill_page_desc(skb, i, head, 0,
913 				     skb_shinfo(skb)->frags[i].size);
914 		head = (struct page *)page_private(head);
915 	}
916 
917 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
918 	return 0;
919 }
920 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
921 
922 /**
923  *	skb_clone	-	duplicate an sk_buff
924  *	@skb: buffer to clone
925  *	@gfp_mask: allocation priority
926  *
927  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
928  *	copies share the same packet data but not structure. The new
929  *	buffer has a reference count of 1. If the allocation fails the
930  *	function returns %NULL otherwise the new buffer is returned.
931  *
932  *	If this function is called from an interrupt gfp_mask() must be
933  *	%GFP_ATOMIC.
934  */
935 
936 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
937 {
938 	struct sk_buff_fclones *fclones = container_of(skb,
939 						       struct sk_buff_fclones,
940 						       skb1);
941 	struct sk_buff *n;
942 
943 	if (skb_orphan_frags(skb, gfp_mask))
944 		return NULL;
945 
946 	if (skb->fclone == SKB_FCLONE_ORIG &&
947 	    atomic_read(&fclones->fclone_ref) == 1) {
948 		n = &fclones->skb2;
949 		atomic_set(&fclones->fclone_ref, 2);
950 	} else {
951 		if (skb_pfmemalloc(skb))
952 			gfp_mask |= __GFP_MEMALLOC;
953 
954 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
955 		if (!n)
956 			return NULL;
957 
958 		kmemcheck_annotate_bitfield(n, flags1);
959 		n->fclone = SKB_FCLONE_UNAVAILABLE;
960 	}
961 
962 	return __skb_clone(n, skb);
963 }
964 EXPORT_SYMBOL(skb_clone);
965 
966 static void skb_headers_offset_update(struct sk_buff *skb, int off)
967 {
968 	/* Only adjust this if it actually is csum_start rather than csum */
969 	if (skb->ip_summed == CHECKSUM_PARTIAL)
970 		skb->csum_start += off;
971 	/* {transport,network,mac}_header and tail are relative to skb->head */
972 	skb->transport_header += off;
973 	skb->network_header   += off;
974 	if (skb_mac_header_was_set(skb))
975 		skb->mac_header += off;
976 	skb->inner_transport_header += off;
977 	skb->inner_network_header += off;
978 	skb->inner_mac_header += off;
979 }
980 
981 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
982 {
983 	__copy_skb_header(new, old);
984 
985 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
986 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
987 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
988 }
989 
990 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
991 {
992 	if (skb_pfmemalloc(skb))
993 		return SKB_ALLOC_RX;
994 	return 0;
995 }
996 
997 /**
998  *	skb_copy	-	create private copy of an sk_buff
999  *	@skb: buffer to copy
1000  *	@gfp_mask: allocation priority
1001  *
1002  *	Make a copy of both an &sk_buff and its data. This is used when the
1003  *	caller wishes to modify the data and needs a private copy of the
1004  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1005  *	on success. The returned buffer has a reference count of 1.
1006  *
1007  *	As by-product this function converts non-linear &sk_buff to linear
1008  *	one, so that &sk_buff becomes completely private and caller is allowed
1009  *	to modify all the data of returned buffer. This means that this
1010  *	function is not recommended for use in circumstances when only
1011  *	header is going to be modified. Use pskb_copy() instead.
1012  */
1013 
1014 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1015 {
1016 	int headerlen = skb_headroom(skb);
1017 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1018 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1019 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1020 
1021 	if (!n)
1022 		return NULL;
1023 
1024 	/* Set the data pointer */
1025 	skb_reserve(n, headerlen);
1026 	/* Set the tail pointer and length */
1027 	skb_put(n, skb->len);
1028 
1029 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1030 		BUG();
1031 
1032 	copy_skb_header(n, skb);
1033 	return n;
1034 }
1035 EXPORT_SYMBOL(skb_copy);
1036 
1037 /**
1038  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1039  *	@skb: buffer to copy
1040  *	@headroom: headroom of new skb
1041  *	@gfp_mask: allocation priority
1042  *	@fclone: if true allocate the copy of the skb from the fclone
1043  *	cache instead of the head cache; it is recommended to set this
1044  *	to true for the cases where the copy will likely be cloned
1045  *
1046  *	Make a copy of both an &sk_buff and part of its data, located
1047  *	in header. Fragmented data remain shared. This is used when
1048  *	the caller wishes to modify only header of &sk_buff and needs
1049  *	private copy of the header to alter. Returns %NULL on failure
1050  *	or the pointer to the buffer on success.
1051  *	The returned buffer has a reference count of 1.
1052  */
1053 
1054 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1055 				   gfp_t gfp_mask, bool fclone)
1056 {
1057 	unsigned int size = skb_headlen(skb) + headroom;
1058 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1059 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1060 
1061 	if (!n)
1062 		goto out;
1063 
1064 	/* Set the data pointer */
1065 	skb_reserve(n, headroom);
1066 	/* Set the tail pointer and length */
1067 	skb_put(n, skb_headlen(skb));
1068 	/* Copy the bytes */
1069 	skb_copy_from_linear_data(skb, n->data, n->len);
1070 
1071 	n->truesize += skb->data_len;
1072 	n->data_len  = skb->data_len;
1073 	n->len	     = skb->len;
1074 
1075 	if (skb_shinfo(skb)->nr_frags) {
1076 		int i;
1077 
1078 		if (skb_orphan_frags(skb, gfp_mask)) {
1079 			kfree_skb(n);
1080 			n = NULL;
1081 			goto out;
1082 		}
1083 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1084 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1085 			skb_frag_ref(skb, i);
1086 		}
1087 		skb_shinfo(n)->nr_frags = i;
1088 	}
1089 
1090 	if (skb_has_frag_list(skb)) {
1091 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1092 		skb_clone_fraglist(n);
1093 	}
1094 
1095 	copy_skb_header(n, skb);
1096 out:
1097 	return n;
1098 }
1099 EXPORT_SYMBOL(__pskb_copy_fclone);
1100 
1101 /**
1102  *	pskb_expand_head - reallocate header of &sk_buff
1103  *	@skb: buffer to reallocate
1104  *	@nhead: room to add at head
1105  *	@ntail: room to add at tail
1106  *	@gfp_mask: allocation priority
1107  *
1108  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1109  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1110  *	reference count of 1. Returns zero in the case of success or error,
1111  *	if expansion failed. In the last case, &sk_buff is not changed.
1112  *
1113  *	All the pointers pointing into skb header may change and must be
1114  *	reloaded after call to this function.
1115  */
1116 
1117 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1118 		     gfp_t gfp_mask)
1119 {
1120 	int i;
1121 	u8 *data;
1122 	int size = nhead + skb_end_offset(skb) + ntail;
1123 	long off;
1124 
1125 	BUG_ON(nhead < 0);
1126 
1127 	if (skb_shared(skb))
1128 		BUG();
1129 
1130 	size = SKB_DATA_ALIGN(size);
1131 
1132 	if (skb_pfmemalloc(skb))
1133 		gfp_mask |= __GFP_MEMALLOC;
1134 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1135 			       gfp_mask, NUMA_NO_NODE, NULL);
1136 	if (!data)
1137 		goto nodata;
1138 	size = SKB_WITH_OVERHEAD(ksize(data));
1139 
1140 	/* Copy only real data... and, alas, header. This should be
1141 	 * optimized for the cases when header is void.
1142 	 */
1143 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1144 
1145 	memcpy((struct skb_shared_info *)(data + size),
1146 	       skb_shinfo(skb),
1147 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1148 
1149 	/*
1150 	 * if shinfo is shared we must drop the old head gracefully, but if it
1151 	 * is not we can just drop the old head and let the existing refcount
1152 	 * be since all we did is relocate the values
1153 	 */
1154 	if (skb_cloned(skb)) {
1155 		/* copy this zero copy skb frags */
1156 		if (skb_orphan_frags(skb, gfp_mask))
1157 			goto nofrags;
1158 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1159 			skb_frag_ref(skb, i);
1160 
1161 		if (skb_has_frag_list(skb))
1162 			skb_clone_fraglist(skb);
1163 
1164 		skb_release_data(skb);
1165 	} else {
1166 		skb_free_head(skb);
1167 	}
1168 	off = (data + nhead) - skb->head;
1169 
1170 	skb->head     = data;
1171 	skb->head_frag = 0;
1172 	skb->data    += off;
1173 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1174 	skb->end      = size;
1175 	off           = nhead;
1176 #else
1177 	skb->end      = skb->head + size;
1178 #endif
1179 	skb->tail	      += off;
1180 	skb_headers_offset_update(skb, nhead);
1181 	skb->cloned   = 0;
1182 	skb->hdr_len  = 0;
1183 	skb->nohdr    = 0;
1184 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1185 	return 0;
1186 
1187 nofrags:
1188 	kfree(data);
1189 nodata:
1190 	return -ENOMEM;
1191 }
1192 EXPORT_SYMBOL(pskb_expand_head);
1193 
1194 /* Make private copy of skb with writable head and some headroom */
1195 
1196 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1197 {
1198 	struct sk_buff *skb2;
1199 	int delta = headroom - skb_headroom(skb);
1200 
1201 	if (delta <= 0)
1202 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1203 	else {
1204 		skb2 = skb_clone(skb, GFP_ATOMIC);
1205 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1206 					     GFP_ATOMIC)) {
1207 			kfree_skb(skb2);
1208 			skb2 = NULL;
1209 		}
1210 	}
1211 	return skb2;
1212 }
1213 EXPORT_SYMBOL(skb_realloc_headroom);
1214 
1215 /**
1216  *	skb_copy_expand	-	copy and expand sk_buff
1217  *	@skb: buffer to copy
1218  *	@newheadroom: new free bytes at head
1219  *	@newtailroom: new free bytes at tail
1220  *	@gfp_mask: allocation priority
1221  *
1222  *	Make a copy of both an &sk_buff and its data and while doing so
1223  *	allocate additional space.
1224  *
1225  *	This is used when the caller wishes to modify the data and needs a
1226  *	private copy of the data to alter as well as more space for new fields.
1227  *	Returns %NULL on failure or the pointer to the buffer
1228  *	on success. The returned buffer has a reference count of 1.
1229  *
1230  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1231  *	is called from an interrupt.
1232  */
1233 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1234 				int newheadroom, int newtailroom,
1235 				gfp_t gfp_mask)
1236 {
1237 	/*
1238 	 *	Allocate the copy buffer
1239 	 */
1240 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1241 					gfp_mask, skb_alloc_rx_flag(skb),
1242 					NUMA_NO_NODE);
1243 	int oldheadroom = skb_headroom(skb);
1244 	int head_copy_len, head_copy_off;
1245 
1246 	if (!n)
1247 		return NULL;
1248 
1249 	skb_reserve(n, newheadroom);
1250 
1251 	/* Set the tail pointer and length */
1252 	skb_put(n, skb->len);
1253 
1254 	head_copy_len = oldheadroom;
1255 	head_copy_off = 0;
1256 	if (newheadroom <= head_copy_len)
1257 		head_copy_len = newheadroom;
1258 	else
1259 		head_copy_off = newheadroom - head_copy_len;
1260 
1261 	/* Copy the linear header and data. */
1262 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1263 			  skb->len + head_copy_len))
1264 		BUG();
1265 
1266 	copy_skb_header(n, skb);
1267 
1268 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1269 
1270 	return n;
1271 }
1272 EXPORT_SYMBOL(skb_copy_expand);
1273 
1274 /**
1275  *	skb_pad			-	zero pad the tail of an skb
1276  *	@skb: buffer to pad
1277  *	@pad: space to pad
1278  *
1279  *	Ensure that a buffer is followed by a padding area that is zero
1280  *	filled. Used by network drivers which may DMA or transfer data
1281  *	beyond the buffer end onto the wire.
1282  *
1283  *	May return error in out of memory cases. The skb is freed on error.
1284  */
1285 
1286 int skb_pad(struct sk_buff *skb, int pad)
1287 {
1288 	int err;
1289 	int ntail;
1290 
1291 	/* If the skbuff is non linear tailroom is always zero.. */
1292 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1293 		memset(skb->data+skb->len, 0, pad);
1294 		return 0;
1295 	}
1296 
1297 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1298 	if (likely(skb_cloned(skb) || ntail > 0)) {
1299 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1300 		if (unlikely(err))
1301 			goto free_skb;
1302 	}
1303 
1304 	/* FIXME: The use of this function with non-linear skb's really needs
1305 	 * to be audited.
1306 	 */
1307 	err = skb_linearize(skb);
1308 	if (unlikely(err))
1309 		goto free_skb;
1310 
1311 	memset(skb->data + skb->len, 0, pad);
1312 	return 0;
1313 
1314 free_skb:
1315 	kfree_skb(skb);
1316 	return err;
1317 }
1318 EXPORT_SYMBOL(skb_pad);
1319 
1320 /**
1321  *	pskb_put - add data to the tail of a potentially fragmented buffer
1322  *	@skb: start of the buffer to use
1323  *	@tail: tail fragment of the buffer to use
1324  *	@len: amount of data to add
1325  *
1326  *	This function extends the used data area of the potentially
1327  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1328  *	@skb itself. If this would exceed the total buffer size the kernel
1329  *	will panic. A pointer to the first byte of the extra data is
1330  *	returned.
1331  */
1332 
1333 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1334 {
1335 	if (tail != skb) {
1336 		skb->data_len += len;
1337 		skb->len += len;
1338 	}
1339 	return skb_put(tail, len);
1340 }
1341 EXPORT_SYMBOL_GPL(pskb_put);
1342 
1343 /**
1344  *	skb_put - add data to a buffer
1345  *	@skb: buffer to use
1346  *	@len: amount of data to add
1347  *
1348  *	This function extends the used data area of the buffer. If this would
1349  *	exceed the total buffer size the kernel will panic. A pointer to the
1350  *	first byte of the extra data is returned.
1351  */
1352 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1353 {
1354 	unsigned char *tmp = skb_tail_pointer(skb);
1355 	SKB_LINEAR_ASSERT(skb);
1356 	skb->tail += len;
1357 	skb->len  += len;
1358 	if (unlikely(skb->tail > skb->end))
1359 		skb_over_panic(skb, len, __builtin_return_address(0));
1360 	return tmp;
1361 }
1362 EXPORT_SYMBOL(skb_put);
1363 
1364 /**
1365  *	skb_push - add data to the start of a buffer
1366  *	@skb: buffer to use
1367  *	@len: amount of data to add
1368  *
1369  *	This function extends the used data area of the buffer at the buffer
1370  *	start. If this would exceed the total buffer headroom the kernel will
1371  *	panic. A pointer to the first byte of the extra data is returned.
1372  */
1373 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1374 {
1375 	skb->data -= len;
1376 	skb->len  += len;
1377 	if (unlikely(skb->data<skb->head))
1378 		skb_under_panic(skb, len, __builtin_return_address(0));
1379 	return skb->data;
1380 }
1381 EXPORT_SYMBOL(skb_push);
1382 
1383 /**
1384  *	skb_pull - remove data from the start of a buffer
1385  *	@skb: buffer to use
1386  *	@len: amount of data to remove
1387  *
1388  *	This function removes data from the start of a buffer, returning
1389  *	the memory to the headroom. A pointer to the next data in the buffer
1390  *	is returned. Once the data has been pulled future pushes will overwrite
1391  *	the old data.
1392  */
1393 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1394 {
1395 	return skb_pull_inline(skb, len);
1396 }
1397 EXPORT_SYMBOL(skb_pull);
1398 
1399 /**
1400  *	skb_trim - remove end from a buffer
1401  *	@skb: buffer to alter
1402  *	@len: new length
1403  *
1404  *	Cut the length of a buffer down by removing data from the tail. If
1405  *	the buffer is already under the length specified it is not modified.
1406  *	The skb must be linear.
1407  */
1408 void skb_trim(struct sk_buff *skb, unsigned int len)
1409 {
1410 	if (skb->len > len)
1411 		__skb_trim(skb, len);
1412 }
1413 EXPORT_SYMBOL(skb_trim);
1414 
1415 /* Trims skb to length len. It can change skb pointers.
1416  */
1417 
1418 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1419 {
1420 	struct sk_buff **fragp;
1421 	struct sk_buff *frag;
1422 	int offset = skb_headlen(skb);
1423 	int nfrags = skb_shinfo(skb)->nr_frags;
1424 	int i;
1425 	int err;
1426 
1427 	if (skb_cloned(skb) &&
1428 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1429 		return err;
1430 
1431 	i = 0;
1432 	if (offset >= len)
1433 		goto drop_pages;
1434 
1435 	for (; i < nfrags; i++) {
1436 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1437 
1438 		if (end < len) {
1439 			offset = end;
1440 			continue;
1441 		}
1442 
1443 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1444 
1445 drop_pages:
1446 		skb_shinfo(skb)->nr_frags = i;
1447 
1448 		for (; i < nfrags; i++)
1449 			skb_frag_unref(skb, i);
1450 
1451 		if (skb_has_frag_list(skb))
1452 			skb_drop_fraglist(skb);
1453 		goto done;
1454 	}
1455 
1456 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1457 	     fragp = &frag->next) {
1458 		int end = offset + frag->len;
1459 
1460 		if (skb_shared(frag)) {
1461 			struct sk_buff *nfrag;
1462 
1463 			nfrag = skb_clone(frag, GFP_ATOMIC);
1464 			if (unlikely(!nfrag))
1465 				return -ENOMEM;
1466 
1467 			nfrag->next = frag->next;
1468 			consume_skb(frag);
1469 			frag = nfrag;
1470 			*fragp = frag;
1471 		}
1472 
1473 		if (end < len) {
1474 			offset = end;
1475 			continue;
1476 		}
1477 
1478 		if (end > len &&
1479 		    unlikely((err = pskb_trim(frag, len - offset))))
1480 			return err;
1481 
1482 		if (frag->next)
1483 			skb_drop_list(&frag->next);
1484 		break;
1485 	}
1486 
1487 done:
1488 	if (len > skb_headlen(skb)) {
1489 		skb->data_len -= skb->len - len;
1490 		skb->len       = len;
1491 	} else {
1492 		skb->len       = len;
1493 		skb->data_len  = 0;
1494 		skb_set_tail_pointer(skb, len);
1495 	}
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL(___pskb_trim);
1500 
1501 /**
1502  *	__pskb_pull_tail - advance tail of skb header
1503  *	@skb: buffer to reallocate
1504  *	@delta: number of bytes to advance tail
1505  *
1506  *	The function makes a sense only on a fragmented &sk_buff,
1507  *	it expands header moving its tail forward and copying necessary
1508  *	data from fragmented part.
1509  *
1510  *	&sk_buff MUST have reference count of 1.
1511  *
1512  *	Returns %NULL (and &sk_buff does not change) if pull failed
1513  *	or value of new tail of skb in the case of success.
1514  *
1515  *	All the pointers pointing into skb header may change and must be
1516  *	reloaded after call to this function.
1517  */
1518 
1519 /* Moves tail of skb head forward, copying data from fragmented part,
1520  * when it is necessary.
1521  * 1. It may fail due to malloc failure.
1522  * 2. It may change skb pointers.
1523  *
1524  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1525  */
1526 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1527 {
1528 	/* If skb has not enough free space at tail, get new one
1529 	 * plus 128 bytes for future expansions. If we have enough
1530 	 * room at tail, reallocate without expansion only if skb is cloned.
1531 	 */
1532 	int i, k, eat = (skb->tail + delta) - skb->end;
1533 
1534 	if (eat > 0 || skb_cloned(skb)) {
1535 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1536 				     GFP_ATOMIC))
1537 			return NULL;
1538 	}
1539 
1540 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1541 		BUG();
1542 
1543 	/* Optimization: no fragments, no reasons to preestimate
1544 	 * size of pulled pages. Superb.
1545 	 */
1546 	if (!skb_has_frag_list(skb))
1547 		goto pull_pages;
1548 
1549 	/* Estimate size of pulled pages. */
1550 	eat = delta;
1551 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1552 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1553 
1554 		if (size >= eat)
1555 			goto pull_pages;
1556 		eat -= size;
1557 	}
1558 
1559 	/* If we need update frag list, we are in troubles.
1560 	 * Certainly, it possible to add an offset to skb data,
1561 	 * but taking into account that pulling is expected to
1562 	 * be very rare operation, it is worth to fight against
1563 	 * further bloating skb head and crucify ourselves here instead.
1564 	 * Pure masohism, indeed. 8)8)
1565 	 */
1566 	if (eat) {
1567 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1568 		struct sk_buff *clone = NULL;
1569 		struct sk_buff *insp = NULL;
1570 
1571 		do {
1572 			BUG_ON(!list);
1573 
1574 			if (list->len <= eat) {
1575 				/* Eaten as whole. */
1576 				eat -= list->len;
1577 				list = list->next;
1578 				insp = list;
1579 			} else {
1580 				/* Eaten partially. */
1581 
1582 				if (skb_shared(list)) {
1583 					/* Sucks! We need to fork list. :-( */
1584 					clone = skb_clone(list, GFP_ATOMIC);
1585 					if (!clone)
1586 						return NULL;
1587 					insp = list->next;
1588 					list = clone;
1589 				} else {
1590 					/* This may be pulled without
1591 					 * problems. */
1592 					insp = list;
1593 				}
1594 				if (!pskb_pull(list, eat)) {
1595 					kfree_skb(clone);
1596 					return NULL;
1597 				}
1598 				break;
1599 			}
1600 		} while (eat);
1601 
1602 		/* Free pulled out fragments. */
1603 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1604 			skb_shinfo(skb)->frag_list = list->next;
1605 			kfree_skb(list);
1606 		}
1607 		/* And insert new clone at head. */
1608 		if (clone) {
1609 			clone->next = list;
1610 			skb_shinfo(skb)->frag_list = clone;
1611 		}
1612 	}
1613 	/* Success! Now we may commit changes to skb data. */
1614 
1615 pull_pages:
1616 	eat = delta;
1617 	k = 0;
1618 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1619 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1620 
1621 		if (size <= eat) {
1622 			skb_frag_unref(skb, i);
1623 			eat -= size;
1624 		} else {
1625 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1626 			if (eat) {
1627 				skb_shinfo(skb)->frags[k].page_offset += eat;
1628 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1629 				eat = 0;
1630 			}
1631 			k++;
1632 		}
1633 	}
1634 	skb_shinfo(skb)->nr_frags = k;
1635 
1636 	skb->tail     += delta;
1637 	skb->data_len -= delta;
1638 
1639 	return skb_tail_pointer(skb);
1640 }
1641 EXPORT_SYMBOL(__pskb_pull_tail);
1642 
1643 /**
1644  *	skb_copy_bits - copy bits from skb to kernel buffer
1645  *	@skb: source skb
1646  *	@offset: offset in source
1647  *	@to: destination buffer
1648  *	@len: number of bytes to copy
1649  *
1650  *	Copy the specified number of bytes from the source skb to the
1651  *	destination buffer.
1652  *
1653  *	CAUTION ! :
1654  *		If its prototype is ever changed,
1655  *		check arch/{*}/net/{*}.S files,
1656  *		since it is called from BPF assembly code.
1657  */
1658 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1659 {
1660 	int start = skb_headlen(skb);
1661 	struct sk_buff *frag_iter;
1662 	int i, copy;
1663 
1664 	if (offset > (int)skb->len - len)
1665 		goto fault;
1666 
1667 	/* Copy header. */
1668 	if ((copy = start - offset) > 0) {
1669 		if (copy > len)
1670 			copy = len;
1671 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1672 		if ((len -= copy) == 0)
1673 			return 0;
1674 		offset += copy;
1675 		to     += copy;
1676 	}
1677 
1678 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1679 		int end;
1680 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1681 
1682 		WARN_ON(start > offset + len);
1683 
1684 		end = start + skb_frag_size(f);
1685 		if ((copy = end - offset) > 0) {
1686 			u8 *vaddr;
1687 
1688 			if (copy > len)
1689 				copy = len;
1690 
1691 			vaddr = kmap_atomic(skb_frag_page(f));
1692 			memcpy(to,
1693 			       vaddr + f->page_offset + offset - start,
1694 			       copy);
1695 			kunmap_atomic(vaddr);
1696 
1697 			if ((len -= copy) == 0)
1698 				return 0;
1699 			offset += copy;
1700 			to     += copy;
1701 		}
1702 		start = end;
1703 	}
1704 
1705 	skb_walk_frags(skb, frag_iter) {
1706 		int end;
1707 
1708 		WARN_ON(start > offset + len);
1709 
1710 		end = start + frag_iter->len;
1711 		if ((copy = end - offset) > 0) {
1712 			if (copy > len)
1713 				copy = len;
1714 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1715 				goto fault;
1716 			if ((len -= copy) == 0)
1717 				return 0;
1718 			offset += copy;
1719 			to     += copy;
1720 		}
1721 		start = end;
1722 	}
1723 
1724 	if (!len)
1725 		return 0;
1726 
1727 fault:
1728 	return -EFAULT;
1729 }
1730 EXPORT_SYMBOL(skb_copy_bits);
1731 
1732 /*
1733  * Callback from splice_to_pipe(), if we need to release some pages
1734  * at the end of the spd in case we error'ed out in filling the pipe.
1735  */
1736 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1737 {
1738 	put_page(spd->pages[i]);
1739 }
1740 
1741 static struct page *linear_to_page(struct page *page, unsigned int *len,
1742 				   unsigned int *offset,
1743 				   struct sock *sk)
1744 {
1745 	struct page_frag *pfrag = sk_page_frag(sk);
1746 
1747 	if (!sk_page_frag_refill(sk, pfrag))
1748 		return NULL;
1749 
1750 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1751 
1752 	memcpy(page_address(pfrag->page) + pfrag->offset,
1753 	       page_address(page) + *offset, *len);
1754 	*offset = pfrag->offset;
1755 	pfrag->offset += *len;
1756 
1757 	return pfrag->page;
1758 }
1759 
1760 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1761 			     struct page *page,
1762 			     unsigned int offset)
1763 {
1764 	return	spd->nr_pages &&
1765 		spd->pages[spd->nr_pages - 1] == page &&
1766 		(spd->partial[spd->nr_pages - 1].offset +
1767 		 spd->partial[spd->nr_pages - 1].len == offset);
1768 }
1769 
1770 /*
1771  * Fill page/offset/length into spd, if it can hold more pages.
1772  */
1773 static bool spd_fill_page(struct splice_pipe_desc *spd,
1774 			  struct pipe_inode_info *pipe, struct page *page,
1775 			  unsigned int *len, unsigned int offset,
1776 			  bool linear,
1777 			  struct sock *sk)
1778 {
1779 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1780 		return true;
1781 
1782 	if (linear) {
1783 		page = linear_to_page(page, len, &offset, sk);
1784 		if (!page)
1785 			return true;
1786 	}
1787 	if (spd_can_coalesce(spd, page, offset)) {
1788 		spd->partial[spd->nr_pages - 1].len += *len;
1789 		return false;
1790 	}
1791 	get_page(page);
1792 	spd->pages[spd->nr_pages] = page;
1793 	spd->partial[spd->nr_pages].len = *len;
1794 	spd->partial[spd->nr_pages].offset = offset;
1795 	spd->nr_pages++;
1796 
1797 	return false;
1798 }
1799 
1800 static bool __splice_segment(struct page *page, unsigned int poff,
1801 			     unsigned int plen, unsigned int *off,
1802 			     unsigned int *len,
1803 			     struct splice_pipe_desc *spd, bool linear,
1804 			     struct sock *sk,
1805 			     struct pipe_inode_info *pipe)
1806 {
1807 	if (!*len)
1808 		return true;
1809 
1810 	/* skip this segment if already processed */
1811 	if (*off >= plen) {
1812 		*off -= plen;
1813 		return false;
1814 	}
1815 
1816 	/* ignore any bits we already processed */
1817 	poff += *off;
1818 	plen -= *off;
1819 	*off = 0;
1820 
1821 	do {
1822 		unsigned int flen = min(*len, plen);
1823 
1824 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1825 				  linear, sk))
1826 			return true;
1827 		poff += flen;
1828 		plen -= flen;
1829 		*len -= flen;
1830 	} while (*len && plen);
1831 
1832 	return false;
1833 }
1834 
1835 /*
1836  * Map linear and fragment data from the skb to spd. It reports true if the
1837  * pipe is full or if we already spliced the requested length.
1838  */
1839 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1840 			      unsigned int *offset, unsigned int *len,
1841 			      struct splice_pipe_desc *spd, struct sock *sk)
1842 {
1843 	int seg;
1844 
1845 	/* map the linear part :
1846 	 * If skb->head_frag is set, this 'linear' part is backed by a
1847 	 * fragment, and if the head is not shared with any clones then
1848 	 * we can avoid a copy since we own the head portion of this page.
1849 	 */
1850 	if (__splice_segment(virt_to_page(skb->data),
1851 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1852 			     skb_headlen(skb),
1853 			     offset, len, spd,
1854 			     skb_head_is_locked(skb),
1855 			     sk, pipe))
1856 		return true;
1857 
1858 	/*
1859 	 * then map the fragments
1860 	 */
1861 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1862 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1863 
1864 		if (__splice_segment(skb_frag_page(f),
1865 				     f->page_offset, skb_frag_size(f),
1866 				     offset, len, spd, false, sk, pipe))
1867 			return true;
1868 	}
1869 
1870 	return false;
1871 }
1872 
1873 ssize_t skb_socket_splice(struct sock *sk,
1874 			  struct pipe_inode_info *pipe,
1875 			  struct splice_pipe_desc *spd)
1876 {
1877 	int ret;
1878 
1879 	/* Drop the socket lock, otherwise we have reverse
1880 	 * locking dependencies between sk_lock and i_mutex
1881 	 * here as compared to sendfile(). We enter here
1882 	 * with the socket lock held, and splice_to_pipe() will
1883 	 * grab the pipe inode lock. For sendfile() emulation,
1884 	 * we call into ->sendpage() with the i_mutex lock held
1885 	 * and networking will grab the socket lock.
1886 	 */
1887 	release_sock(sk);
1888 	ret = splice_to_pipe(pipe, spd);
1889 	lock_sock(sk);
1890 
1891 	return ret;
1892 }
1893 
1894 /*
1895  * Map data from the skb to a pipe. Should handle both the linear part,
1896  * the fragments, and the frag list. It does NOT handle frag lists within
1897  * the frag list, if such a thing exists. We'd probably need to recurse to
1898  * handle that cleanly.
1899  */
1900 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1901 		    struct pipe_inode_info *pipe, unsigned int tlen,
1902 		    unsigned int flags,
1903 		    ssize_t (*splice_cb)(struct sock *,
1904 					 struct pipe_inode_info *,
1905 					 struct splice_pipe_desc *))
1906 {
1907 	struct partial_page partial[MAX_SKB_FRAGS];
1908 	struct page *pages[MAX_SKB_FRAGS];
1909 	struct splice_pipe_desc spd = {
1910 		.pages = pages,
1911 		.partial = partial,
1912 		.nr_pages_max = MAX_SKB_FRAGS,
1913 		.flags = flags,
1914 		.ops = &nosteal_pipe_buf_ops,
1915 		.spd_release = sock_spd_release,
1916 	};
1917 	struct sk_buff *frag_iter;
1918 	int ret = 0;
1919 
1920 	/*
1921 	 * __skb_splice_bits() only fails if the output has no room left,
1922 	 * so no point in going over the frag_list for the error case.
1923 	 */
1924 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1925 		goto done;
1926 	else if (!tlen)
1927 		goto done;
1928 
1929 	/*
1930 	 * now see if we have a frag_list to map
1931 	 */
1932 	skb_walk_frags(skb, frag_iter) {
1933 		if (!tlen)
1934 			break;
1935 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1936 			break;
1937 	}
1938 
1939 done:
1940 	if (spd.nr_pages)
1941 		ret = splice_cb(sk, pipe, &spd);
1942 
1943 	return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(skb_splice_bits);
1946 
1947 /**
1948  *	skb_store_bits - store bits from kernel buffer to skb
1949  *	@skb: destination buffer
1950  *	@offset: offset in destination
1951  *	@from: source buffer
1952  *	@len: number of bytes to copy
1953  *
1954  *	Copy the specified number of bytes from the source buffer to the
1955  *	destination skb.  This function handles all the messy bits of
1956  *	traversing fragment lists and such.
1957  */
1958 
1959 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1960 {
1961 	int start = skb_headlen(skb);
1962 	struct sk_buff *frag_iter;
1963 	int i, copy;
1964 
1965 	if (offset > (int)skb->len - len)
1966 		goto fault;
1967 
1968 	if ((copy = start - offset) > 0) {
1969 		if (copy > len)
1970 			copy = len;
1971 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1972 		if ((len -= copy) == 0)
1973 			return 0;
1974 		offset += copy;
1975 		from += copy;
1976 	}
1977 
1978 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1979 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1980 		int end;
1981 
1982 		WARN_ON(start > offset + len);
1983 
1984 		end = start + skb_frag_size(frag);
1985 		if ((copy = end - offset) > 0) {
1986 			u8 *vaddr;
1987 
1988 			if (copy > len)
1989 				copy = len;
1990 
1991 			vaddr = kmap_atomic(skb_frag_page(frag));
1992 			memcpy(vaddr + frag->page_offset + offset - start,
1993 			       from, copy);
1994 			kunmap_atomic(vaddr);
1995 
1996 			if ((len -= copy) == 0)
1997 				return 0;
1998 			offset += copy;
1999 			from += copy;
2000 		}
2001 		start = end;
2002 	}
2003 
2004 	skb_walk_frags(skb, frag_iter) {
2005 		int end;
2006 
2007 		WARN_ON(start > offset + len);
2008 
2009 		end = start + frag_iter->len;
2010 		if ((copy = end - offset) > 0) {
2011 			if (copy > len)
2012 				copy = len;
2013 			if (skb_store_bits(frag_iter, offset - start,
2014 					   from, copy))
2015 				goto fault;
2016 			if ((len -= copy) == 0)
2017 				return 0;
2018 			offset += copy;
2019 			from += copy;
2020 		}
2021 		start = end;
2022 	}
2023 	if (!len)
2024 		return 0;
2025 
2026 fault:
2027 	return -EFAULT;
2028 }
2029 EXPORT_SYMBOL(skb_store_bits);
2030 
2031 /* Checksum skb data. */
2032 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2033 		      __wsum csum, const struct skb_checksum_ops *ops)
2034 {
2035 	int start = skb_headlen(skb);
2036 	int i, copy = start - offset;
2037 	struct sk_buff *frag_iter;
2038 	int pos = 0;
2039 
2040 	/* Checksum header. */
2041 	if (copy > 0) {
2042 		if (copy > len)
2043 			copy = len;
2044 		csum = ops->update(skb->data + offset, copy, csum);
2045 		if ((len -= copy) == 0)
2046 			return csum;
2047 		offset += copy;
2048 		pos	= copy;
2049 	}
2050 
2051 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2052 		int end;
2053 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2054 
2055 		WARN_ON(start > offset + len);
2056 
2057 		end = start + skb_frag_size(frag);
2058 		if ((copy = end - offset) > 0) {
2059 			__wsum csum2;
2060 			u8 *vaddr;
2061 
2062 			if (copy > len)
2063 				copy = len;
2064 			vaddr = kmap_atomic(skb_frag_page(frag));
2065 			csum2 = ops->update(vaddr + frag->page_offset +
2066 					    offset - start, copy, 0);
2067 			kunmap_atomic(vaddr);
2068 			csum = ops->combine(csum, csum2, pos, copy);
2069 			if (!(len -= copy))
2070 				return csum;
2071 			offset += copy;
2072 			pos    += copy;
2073 		}
2074 		start = end;
2075 	}
2076 
2077 	skb_walk_frags(skb, frag_iter) {
2078 		int end;
2079 
2080 		WARN_ON(start > offset + len);
2081 
2082 		end = start + frag_iter->len;
2083 		if ((copy = end - offset) > 0) {
2084 			__wsum csum2;
2085 			if (copy > len)
2086 				copy = len;
2087 			csum2 = __skb_checksum(frag_iter, offset - start,
2088 					       copy, 0, ops);
2089 			csum = ops->combine(csum, csum2, pos, copy);
2090 			if ((len -= copy) == 0)
2091 				return csum;
2092 			offset += copy;
2093 			pos    += copy;
2094 		}
2095 		start = end;
2096 	}
2097 	BUG_ON(len);
2098 
2099 	return csum;
2100 }
2101 EXPORT_SYMBOL(__skb_checksum);
2102 
2103 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2104 		    int len, __wsum csum)
2105 {
2106 	const struct skb_checksum_ops ops = {
2107 		.update  = csum_partial_ext,
2108 		.combine = csum_block_add_ext,
2109 	};
2110 
2111 	return __skb_checksum(skb, offset, len, csum, &ops);
2112 }
2113 EXPORT_SYMBOL(skb_checksum);
2114 
2115 /* Both of above in one bottle. */
2116 
2117 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2118 				    u8 *to, int len, __wsum csum)
2119 {
2120 	int start = skb_headlen(skb);
2121 	int i, copy = start - offset;
2122 	struct sk_buff *frag_iter;
2123 	int pos = 0;
2124 
2125 	/* Copy header. */
2126 	if (copy > 0) {
2127 		if (copy > len)
2128 			copy = len;
2129 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2130 						 copy, csum);
2131 		if ((len -= copy) == 0)
2132 			return csum;
2133 		offset += copy;
2134 		to     += copy;
2135 		pos	= copy;
2136 	}
2137 
2138 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2139 		int end;
2140 
2141 		WARN_ON(start > offset + len);
2142 
2143 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2144 		if ((copy = end - offset) > 0) {
2145 			__wsum csum2;
2146 			u8 *vaddr;
2147 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2148 
2149 			if (copy > len)
2150 				copy = len;
2151 			vaddr = kmap_atomic(skb_frag_page(frag));
2152 			csum2 = csum_partial_copy_nocheck(vaddr +
2153 							  frag->page_offset +
2154 							  offset - start, to,
2155 							  copy, 0);
2156 			kunmap_atomic(vaddr);
2157 			csum = csum_block_add(csum, csum2, pos);
2158 			if (!(len -= copy))
2159 				return csum;
2160 			offset += copy;
2161 			to     += copy;
2162 			pos    += copy;
2163 		}
2164 		start = end;
2165 	}
2166 
2167 	skb_walk_frags(skb, frag_iter) {
2168 		__wsum csum2;
2169 		int end;
2170 
2171 		WARN_ON(start > offset + len);
2172 
2173 		end = start + frag_iter->len;
2174 		if ((copy = end - offset) > 0) {
2175 			if (copy > len)
2176 				copy = len;
2177 			csum2 = skb_copy_and_csum_bits(frag_iter,
2178 						       offset - start,
2179 						       to, copy, 0);
2180 			csum = csum_block_add(csum, csum2, pos);
2181 			if ((len -= copy) == 0)
2182 				return csum;
2183 			offset += copy;
2184 			to     += copy;
2185 			pos    += copy;
2186 		}
2187 		start = end;
2188 	}
2189 	BUG_ON(len);
2190 	return csum;
2191 }
2192 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2193 
2194  /**
2195  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2196  *	@from: source buffer
2197  *
2198  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2199  *	into skb_zerocopy().
2200  */
2201 unsigned int
2202 skb_zerocopy_headlen(const struct sk_buff *from)
2203 {
2204 	unsigned int hlen = 0;
2205 
2206 	if (!from->head_frag ||
2207 	    skb_headlen(from) < L1_CACHE_BYTES ||
2208 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2209 		hlen = skb_headlen(from);
2210 
2211 	if (skb_has_frag_list(from))
2212 		hlen = from->len;
2213 
2214 	return hlen;
2215 }
2216 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2217 
2218 /**
2219  *	skb_zerocopy - Zero copy skb to skb
2220  *	@to: destination buffer
2221  *	@from: source buffer
2222  *	@len: number of bytes to copy from source buffer
2223  *	@hlen: size of linear headroom in destination buffer
2224  *
2225  *	Copies up to `len` bytes from `from` to `to` by creating references
2226  *	to the frags in the source buffer.
2227  *
2228  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2229  *	headroom in the `to` buffer.
2230  *
2231  *	Return value:
2232  *	0: everything is OK
2233  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2234  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2235  */
2236 int
2237 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2238 {
2239 	int i, j = 0;
2240 	int plen = 0; /* length of skb->head fragment */
2241 	int ret;
2242 	struct page *page;
2243 	unsigned int offset;
2244 
2245 	BUG_ON(!from->head_frag && !hlen);
2246 
2247 	/* dont bother with small payloads */
2248 	if (len <= skb_tailroom(to))
2249 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2250 
2251 	if (hlen) {
2252 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2253 		if (unlikely(ret))
2254 			return ret;
2255 		len -= hlen;
2256 	} else {
2257 		plen = min_t(int, skb_headlen(from), len);
2258 		if (plen) {
2259 			page = virt_to_head_page(from->head);
2260 			offset = from->data - (unsigned char *)page_address(page);
2261 			__skb_fill_page_desc(to, 0, page, offset, plen);
2262 			get_page(page);
2263 			j = 1;
2264 			len -= plen;
2265 		}
2266 	}
2267 
2268 	to->truesize += len + plen;
2269 	to->len += len + plen;
2270 	to->data_len += len + plen;
2271 
2272 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2273 		skb_tx_error(from);
2274 		return -ENOMEM;
2275 	}
2276 
2277 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2278 		if (!len)
2279 			break;
2280 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2281 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2282 		len -= skb_shinfo(to)->frags[j].size;
2283 		skb_frag_ref(to, j);
2284 		j++;
2285 	}
2286 	skb_shinfo(to)->nr_frags = j;
2287 
2288 	return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(skb_zerocopy);
2291 
2292 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2293 {
2294 	__wsum csum;
2295 	long csstart;
2296 
2297 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2298 		csstart = skb_checksum_start_offset(skb);
2299 	else
2300 		csstart = skb_headlen(skb);
2301 
2302 	BUG_ON(csstart > skb_headlen(skb));
2303 
2304 	skb_copy_from_linear_data(skb, to, csstart);
2305 
2306 	csum = 0;
2307 	if (csstart != skb->len)
2308 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2309 					      skb->len - csstart, 0);
2310 
2311 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2312 		long csstuff = csstart + skb->csum_offset;
2313 
2314 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2315 	}
2316 }
2317 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2318 
2319 /**
2320  *	skb_dequeue - remove from the head of the queue
2321  *	@list: list to dequeue from
2322  *
2323  *	Remove the head of the list. The list lock is taken so the function
2324  *	may be used safely with other locking list functions. The head item is
2325  *	returned or %NULL if the list is empty.
2326  */
2327 
2328 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2329 {
2330 	unsigned long flags;
2331 	struct sk_buff *result;
2332 
2333 	spin_lock_irqsave(&list->lock, flags);
2334 	result = __skb_dequeue(list);
2335 	spin_unlock_irqrestore(&list->lock, flags);
2336 	return result;
2337 }
2338 EXPORT_SYMBOL(skb_dequeue);
2339 
2340 /**
2341  *	skb_dequeue_tail - remove from the tail of the queue
2342  *	@list: list to dequeue from
2343  *
2344  *	Remove the tail of the list. The list lock is taken so the function
2345  *	may be used safely with other locking list functions. The tail item is
2346  *	returned or %NULL if the list is empty.
2347  */
2348 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2349 {
2350 	unsigned long flags;
2351 	struct sk_buff *result;
2352 
2353 	spin_lock_irqsave(&list->lock, flags);
2354 	result = __skb_dequeue_tail(list);
2355 	spin_unlock_irqrestore(&list->lock, flags);
2356 	return result;
2357 }
2358 EXPORT_SYMBOL(skb_dequeue_tail);
2359 
2360 /**
2361  *	skb_queue_purge - empty a list
2362  *	@list: list to empty
2363  *
2364  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2365  *	the list and one reference dropped. This function takes the list
2366  *	lock and is atomic with respect to other list locking functions.
2367  */
2368 void skb_queue_purge(struct sk_buff_head *list)
2369 {
2370 	struct sk_buff *skb;
2371 	while ((skb = skb_dequeue(list)) != NULL)
2372 		kfree_skb(skb);
2373 }
2374 EXPORT_SYMBOL(skb_queue_purge);
2375 
2376 /**
2377  *	skb_queue_head - queue a buffer at the list head
2378  *	@list: list to use
2379  *	@newsk: buffer to queue
2380  *
2381  *	Queue a buffer at the start of the list. This function takes the
2382  *	list lock and can be used safely with other locking &sk_buff functions
2383  *	safely.
2384  *
2385  *	A buffer cannot be placed on two lists at the same time.
2386  */
2387 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2388 {
2389 	unsigned long flags;
2390 
2391 	spin_lock_irqsave(&list->lock, flags);
2392 	__skb_queue_head(list, newsk);
2393 	spin_unlock_irqrestore(&list->lock, flags);
2394 }
2395 EXPORT_SYMBOL(skb_queue_head);
2396 
2397 /**
2398  *	skb_queue_tail - queue a buffer at the list tail
2399  *	@list: list to use
2400  *	@newsk: buffer to queue
2401  *
2402  *	Queue a buffer at the tail of the list. This function takes the
2403  *	list lock and can be used safely with other locking &sk_buff functions
2404  *	safely.
2405  *
2406  *	A buffer cannot be placed on two lists at the same time.
2407  */
2408 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2409 {
2410 	unsigned long flags;
2411 
2412 	spin_lock_irqsave(&list->lock, flags);
2413 	__skb_queue_tail(list, newsk);
2414 	spin_unlock_irqrestore(&list->lock, flags);
2415 }
2416 EXPORT_SYMBOL(skb_queue_tail);
2417 
2418 /**
2419  *	skb_unlink	-	remove a buffer from a list
2420  *	@skb: buffer to remove
2421  *	@list: list to use
2422  *
2423  *	Remove a packet from a list. The list locks are taken and this
2424  *	function is atomic with respect to other list locked calls
2425  *
2426  *	You must know what list the SKB is on.
2427  */
2428 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2429 {
2430 	unsigned long flags;
2431 
2432 	spin_lock_irqsave(&list->lock, flags);
2433 	__skb_unlink(skb, list);
2434 	spin_unlock_irqrestore(&list->lock, flags);
2435 }
2436 EXPORT_SYMBOL(skb_unlink);
2437 
2438 /**
2439  *	skb_append	-	append a buffer
2440  *	@old: buffer to insert after
2441  *	@newsk: buffer to insert
2442  *	@list: list to use
2443  *
2444  *	Place a packet after a given packet in a list. The list locks are taken
2445  *	and this function is atomic with respect to other list locked calls.
2446  *	A buffer cannot be placed on two lists at the same time.
2447  */
2448 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2449 {
2450 	unsigned long flags;
2451 
2452 	spin_lock_irqsave(&list->lock, flags);
2453 	__skb_queue_after(list, old, newsk);
2454 	spin_unlock_irqrestore(&list->lock, flags);
2455 }
2456 EXPORT_SYMBOL(skb_append);
2457 
2458 /**
2459  *	skb_insert	-	insert a buffer
2460  *	@old: buffer to insert before
2461  *	@newsk: buffer to insert
2462  *	@list: list to use
2463  *
2464  *	Place a packet before a given packet in a list. The list locks are
2465  * 	taken and this function is atomic with respect to other list locked
2466  *	calls.
2467  *
2468  *	A buffer cannot be placed on two lists at the same time.
2469  */
2470 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2471 {
2472 	unsigned long flags;
2473 
2474 	spin_lock_irqsave(&list->lock, flags);
2475 	__skb_insert(newsk, old->prev, old, list);
2476 	spin_unlock_irqrestore(&list->lock, flags);
2477 }
2478 EXPORT_SYMBOL(skb_insert);
2479 
2480 static inline void skb_split_inside_header(struct sk_buff *skb,
2481 					   struct sk_buff* skb1,
2482 					   const u32 len, const int pos)
2483 {
2484 	int i;
2485 
2486 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2487 					 pos - len);
2488 	/* And move data appendix as is. */
2489 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2490 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2491 
2492 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2493 	skb_shinfo(skb)->nr_frags  = 0;
2494 	skb1->data_len		   = skb->data_len;
2495 	skb1->len		   += skb1->data_len;
2496 	skb->data_len		   = 0;
2497 	skb->len		   = len;
2498 	skb_set_tail_pointer(skb, len);
2499 }
2500 
2501 static inline void skb_split_no_header(struct sk_buff *skb,
2502 				       struct sk_buff* skb1,
2503 				       const u32 len, int pos)
2504 {
2505 	int i, k = 0;
2506 	const int nfrags = skb_shinfo(skb)->nr_frags;
2507 
2508 	skb_shinfo(skb)->nr_frags = 0;
2509 	skb1->len		  = skb1->data_len = skb->len - len;
2510 	skb->len		  = len;
2511 	skb->data_len		  = len - pos;
2512 
2513 	for (i = 0; i < nfrags; i++) {
2514 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2515 
2516 		if (pos + size > len) {
2517 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2518 
2519 			if (pos < len) {
2520 				/* Split frag.
2521 				 * We have two variants in this case:
2522 				 * 1. Move all the frag to the second
2523 				 *    part, if it is possible. F.e.
2524 				 *    this approach is mandatory for TUX,
2525 				 *    where splitting is expensive.
2526 				 * 2. Split is accurately. We make this.
2527 				 */
2528 				skb_frag_ref(skb, i);
2529 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2530 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2531 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2532 				skb_shinfo(skb)->nr_frags++;
2533 			}
2534 			k++;
2535 		} else
2536 			skb_shinfo(skb)->nr_frags++;
2537 		pos += size;
2538 	}
2539 	skb_shinfo(skb1)->nr_frags = k;
2540 }
2541 
2542 /**
2543  * skb_split - Split fragmented skb to two parts at length len.
2544  * @skb: the buffer to split
2545  * @skb1: the buffer to receive the second part
2546  * @len: new length for skb
2547  */
2548 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2549 {
2550 	int pos = skb_headlen(skb);
2551 
2552 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2553 	if (len < pos)	/* Split line is inside header. */
2554 		skb_split_inside_header(skb, skb1, len, pos);
2555 	else		/* Second chunk has no header, nothing to copy. */
2556 		skb_split_no_header(skb, skb1, len, pos);
2557 }
2558 EXPORT_SYMBOL(skb_split);
2559 
2560 /* Shifting from/to a cloned skb is a no-go.
2561  *
2562  * Caller cannot keep skb_shinfo related pointers past calling here!
2563  */
2564 static int skb_prepare_for_shift(struct sk_buff *skb)
2565 {
2566 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2567 }
2568 
2569 /**
2570  * skb_shift - Shifts paged data partially from skb to another
2571  * @tgt: buffer into which tail data gets added
2572  * @skb: buffer from which the paged data comes from
2573  * @shiftlen: shift up to this many bytes
2574  *
2575  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2576  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2577  * It's up to caller to free skb if everything was shifted.
2578  *
2579  * If @tgt runs out of frags, the whole operation is aborted.
2580  *
2581  * Skb cannot include anything else but paged data while tgt is allowed
2582  * to have non-paged data as well.
2583  *
2584  * TODO: full sized shift could be optimized but that would need
2585  * specialized skb free'er to handle frags without up-to-date nr_frags.
2586  */
2587 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2588 {
2589 	int from, to, merge, todo;
2590 	struct skb_frag_struct *fragfrom, *fragto;
2591 
2592 	BUG_ON(shiftlen > skb->len);
2593 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2594 
2595 	todo = shiftlen;
2596 	from = 0;
2597 	to = skb_shinfo(tgt)->nr_frags;
2598 	fragfrom = &skb_shinfo(skb)->frags[from];
2599 
2600 	/* Actual merge is delayed until the point when we know we can
2601 	 * commit all, so that we don't have to undo partial changes
2602 	 */
2603 	if (!to ||
2604 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2605 			      fragfrom->page_offset)) {
2606 		merge = -1;
2607 	} else {
2608 		merge = to - 1;
2609 
2610 		todo -= skb_frag_size(fragfrom);
2611 		if (todo < 0) {
2612 			if (skb_prepare_for_shift(skb) ||
2613 			    skb_prepare_for_shift(tgt))
2614 				return 0;
2615 
2616 			/* All previous frag pointers might be stale! */
2617 			fragfrom = &skb_shinfo(skb)->frags[from];
2618 			fragto = &skb_shinfo(tgt)->frags[merge];
2619 
2620 			skb_frag_size_add(fragto, shiftlen);
2621 			skb_frag_size_sub(fragfrom, shiftlen);
2622 			fragfrom->page_offset += shiftlen;
2623 
2624 			goto onlymerged;
2625 		}
2626 
2627 		from++;
2628 	}
2629 
2630 	/* Skip full, not-fitting skb to avoid expensive operations */
2631 	if ((shiftlen == skb->len) &&
2632 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2633 		return 0;
2634 
2635 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2636 		return 0;
2637 
2638 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2639 		if (to == MAX_SKB_FRAGS)
2640 			return 0;
2641 
2642 		fragfrom = &skb_shinfo(skb)->frags[from];
2643 		fragto = &skb_shinfo(tgt)->frags[to];
2644 
2645 		if (todo >= skb_frag_size(fragfrom)) {
2646 			*fragto = *fragfrom;
2647 			todo -= skb_frag_size(fragfrom);
2648 			from++;
2649 			to++;
2650 
2651 		} else {
2652 			__skb_frag_ref(fragfrom);
2653 			fragto->page = fragfrom->page;
2654 			fragto->page_offset = fragfrom->page_offset;
2655 			skb_frag_size_set(fragto, todo);
2656 
2657 			fragfrom->page_offset += todo;
2658 			skb_frag_size_sub(fragfrom, todo);
2659 			todo = 0;
2660 
2661 			to++;
2662 			break;
2663 		}
2664 	}
2665 
2666 	/* Ready to "commit" this state change to tgt */
2667 	skb_shinfo(tgt)->nr_frags = to;
2668 
2669 	if (merge >= 0) {
2670 		fragfrom = &skb_shinfo(skb)->frags[0];
2671 		fragto = &skb_shinfo(tgt)->frags[merge];
2672 
2673 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2674 		__skb_frag_unref(fragfrom);
2675 	}
2676 
2677 	/* Reposition in the original skb */
2678 	to = 0;
2679 	while (from < skb_shinfo(skb)->nr_frags)
2680 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2681 	skb_shinfo(skb)->nr_frags = to;
2682 
2683 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2684 
2685 onlymerged:
2686 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2687 	 * the other hand might need it if it needs to be resent
2688 	 */
2689 	tgt->ip_summed = CHECKSUM_PARTIAL;
2690 	skb->ip_summed = CHECKSUM_PARTIAL;
2691 
2692 	/* Yak, is it really working this way? Some helper please? */
2693 	skb->len -= shiftlen;
2694 	skb->data_len -= shiftlen;
2695 	skb->truesize -= shiftlen;
2696 	tgt->len += shiftlen;
2697 	tgt->data_len += shiftlen;
2698 	tgt->truesize += shiftlen;
2699 
2700 	return shiftlen;
2701 }
2702 
2703 /**
2704  * skb_prepare_seq_read - Prepare a sequential read of skb data
2705  * @skb: the buffer to read
2706  * @from: lower offset of data to be read
2707  * @to: upper offset of data to be read
2708  * @st: state variable
2709  *
2710  * Initializes the specified state variable. Must be called before
2711  * invoking skb_seq_read() for the first time.
2712  */
2713 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2714 			  unsigned int to, struct skb_seq_state *st)
2715 {
2716 	st->lower_offset = from;
2717 	st->upper_offset = to;
2718 	st->root_skb = st->cur_skb = skb;
2719 	st->frag_idx = st->stepped_offset = 0;
2720 	st->frag_data = NULL;
2721 }
2722 EXPORT_SYMBOL(skb_prepare_seq_read);
2723 
2724 /**
2725  * skb_seq_read - Sequentially read skb data
2726  * @consumed: number of bytes consumed by the caller so far
2727  * @data: destination pointer for data to be returned
2728  * @st: state variable
2729  *
2730  * Reads a block of skb data at @consumed relative to the
2731  * lower offset specified to skb_prepare_seq_read(). Assigns
2732  * the head of the data block to @data and returns the length
2733  * of the block or 0 if the end of the skb data or the upper
2734  * offset has been reached.
2735  *
2736  * The caller is not required to consume all of the data
2737  * returned, i.e. @consumed is typically set to the number
2738  * of bytes already consumed and the next call to
2739  * skb_seq_read() will return the remaining part of the block.
2740  *
2741  * Note 1: The size of each block of data returned can be arbitrary,
2742  *       this limitation is the cost for zerocopy sequential
2743  *       reads of potentially non linear data.
2744  *
2745  * Note 2: Fragment lists within fragments are not implemented
2746  *       at the moment, state->root_skb could be replaced with
2747  *       a stack for this purpose.
2748  */
2749 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2750 			  struct skb_seq_state *st)
2751 {
2752 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2753 	skb_frag_t *frag;
2754 
2755 	if (unlikely(abs_offset >= st->upper_offset)) {
2756 		if (st->frag_data) {
2757 			kunmap_atomic(st->frag_data);
2758 			st->frag_data = NULL;
2759 		}
2760 		return 0;
2761 	}
2762 
2763 next_skb:
2764 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2765 
2766 	if (abs_offset < block_limit && !st->frag_data) {
2767 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2768 		return block_limit - abs_offset;
2769 	}
2770 
2771 	if (st->frag_idx == 0 && !st->frag_data)
2772 		st->stepped_offset += skb_headlen(st->cur_skb);
2773 
2774 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2775 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2776 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2777 
2778 		if (abs_offset < block_limit) {
2779 			if (!st->frag_data)
2780 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2781 
2782 			*data = (u8 *) st->frag_data + frag->page_offset +
2783 				(abs_offset - st->stepped_offset);
2784 
2785 			return block_limit - abs_offset;
2786 		}
2787 
2788 		if (st->frag_data) {
2789 			kunmap_atomic(st->frag_data);
2790 			st->frag_data = NULL;
2791 		}
2792 
2793 		st->frag_idx++;
2794 		st->stepped_offset += skb_frag_size(frag);
2795 	}
2796 
2797 	if (st->frag_data) {
2798 		kunmap_atomic(st->frag_data);
2799 		st->frag_data = NULL;
2800 	}
2801 
2802 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2803 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2804 		st->frag_idx = 0;
2805 		goto next_skb;
2806 	} else if (st->cur_skb->next) {
2807 		st->cur_skb = st->cur_skb->next;
2808 		st->frag_idx = 0;
2809 		goto next_skb;
2810 	}
2811 
2812 	return 0;
2813 }
2814 EXPORT_SYMBOL(skb_seq_read);
2815 
2816 /**
2817  * skb_abort_seq_read - Abort a sequential read of skb data
2818  * @st: state variable
2819  *
2820  * Must be called if skb_seq_read() was not called until it
2821  * returned 0.
2822  */
2823 void skb_abort_seq_read(struct skb_seq_state *st)
2824 {
2825 	if (st->frag_data)
2826 		kunmap_atomic(st->frag_data);
2827 }
2828 EXPORT_SYMBOL(skb_abort_seq_read);
2829 
2830 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2831 
2832 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2833 					  struct ts_config *conf,
2834 					  struct ts_state *state)
2835 {
2836 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2837 }
2838 
2839 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2840 {
2841 	skb_abort_seq_read(TS_SKB_CB(state));
2842 }
2843 
2844 /**
2845  * skb_find_text - Find a text pattern in skb data
2846  * @skb: the buffer to look in
2847  * @from: search offset
2848  * @to: search limit
2849  * @config: textsearch configuration
2850  *
2851  * Finds a pattern in the skb data according to the specified
2852  * textsearch configuration. Use textsearch_next() to retrieve
2853  * subsequent occurrences of the pattern. Returns the offset
2854  * to the first occurrence or UINT_MAX if no match was found.
2855  */
2856 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2857 			   unsigned int to, struct ts_config *config)
2858 {
2859 	struct ts_state state;
2860 	unsigned int ret;
2861 
2862 	config->get_next_block = skb_ts_get_next_block;
2863 	config->finish = skb_ts_finish;
2864 
2865 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2866 
2867 	ret = textsearch_find(config, &state);
2868 	return (ret <= to - from ? ret : UINT_MAX);
2869 }
2870 EXPORT_SYMBOL(skb_find_text);
2871 
2872 /**
2873  * skb_append_datato_frags - append the user data to a skb
2874  * @sk: sock  structure
2875  * @skb: skb structure to be appended with user data.
2876  * @getfrag: call back function to be used for getting the user data
2877  * @from: pointer to user message iov
2878  * @length: length of the iov message
2879  *
2880  * Description: This procedure append the user data in the fragment part
2881  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2882  */
2883 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2884 			int (*getfrag)(void *from, char *to, int offset,
2885 					int len, int odd, struct sk_buff *skb),
2886 			void *from, int length)
2887 {
2888 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2889 	int copy;
2890 	int offset = 0;
2891 	int ret;
2892 	struct page_frag *pfrag = &current->task_frag;
2893 
2894 	do {
2895 		/* Return error if we don't have space for new frag */
2896 		if (frg_cnt >= MAX_SKB_FRAGS)
2897 			return -EMSGSIZE;
2898 
2899 		if (!sk_page_frag_refill(sk, pfrag))
2900 			return -ENOMEM;
2901 
2902 		/* copy the user data to page */
2903 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2904 
2905 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2906 			      offset, copy, 0, skb);
2907 		if (ret < 0)
2908 			return -EFAULT;
2909 
2910 		/* copy was successful so update the size parameters */
2911 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2912 				   copy);
2913 		frg_cnt++;
2914 		pfrag->offset += copy;
2915 		get_page(pfrag->page);
2916 
2917 		skb->truesize += copy;
2918 		atomic_add(copy, &sk->sk_wmem_alloc);
2919 		skb->len += copy;
2920 		skb->data_len += copy;
2921 		offset += copy;
2922 		length -= copy;
2923 
2924 	} while (length > 0);
2925 
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL(skb_append_datato_frags);
2929 
2930 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2931 			 int offset, size_t size)
2932 {
2933 	int i = skb_shinfo(skb)->nr_frags;
2934 
2935 	if (skb_can_coalesce(skb, i, page, offset)) {
2936 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
2937 	} else if (i < MAX_SKB_FRAGS) {
2938 		get_page(page);
2939 		skb_fill_page_desc(skb, i, page, offset, size);
2940 	} else {
2941 		return -EMSGSIZE;
2942 	}
2943 
2944 	return 0;
2945 }
2946 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
2947 
2948 /**
2949  *	skb_pull_rcsum - pull skb and update receive checksum
2950  *	@skb: buffer to update
2951  *	@len: length of data pulled
2952  *
2953  *	This function performs an skb_pull on the packet and updates
2954  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2955  *	receive path processing instead of skb_pull unless you know
2956  *	that the checksum difference is zero (e.g., a valid IP header)
2957  *	or you are setting ip_summed to CHECKSUM_NONE.
2958  */
2959 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2960 {
2961 	unsigned char *data = skb->data;
2962 
2963 	BUG_ON(len > skb->len);
2964 	__skb_pull(skb, len);
2965 	skb_postpull_rcsum(skb, data, len);
2966 	return skb->data;
2967 }
2968 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2969 
2970 /**
2971  *	skb_segment - Perform protocol segmentation on skb.
2972  *	@head_skb: buffer to segment
2973  *	@features: features for the output path (see dev->features)
2974  *
2975  *	This function performs segmentation on the given skb.  It returns
2976  *	a pointer to the first in a list of new skbs for the segments.
2977  *	In case of error it returns ERR_PTR(err).
2978  */
2979 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2980 			    netdev_features_t features)
2981 {
2982 	struct sk_buff *segs = NULL;
2983 	struct sk_buff *tail = NULL;
2984 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2985 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2986 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
2987 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2988 	struct sk_buff *frag_skb = head_skb;
2989 	unsigned int offset = doffset;
2990 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2991 	unsigned int headroom;
2992 	unsigned int len;
2993 	__be16 proto;
2994 	bool csum;
2995 	int sg = !!(features & NETIF_F_SG);
2996 	int nfrags = skb_shinfo(head_skb)->nr_frags;
2997 	int err = -ENOMEM;
2998 	int i = 0;
2999 	int pos;
3000 	int dummy;
3001 
3002 	__skb_push(head_skb, doffset);
3003 	proto = skb_network_protocol(head_skb, &dummy);
3004 	if (unlikely(!proto))
3005 		return ERR_PTR(-EINVAL);
3006 
3007 	csum = !head_skb->encap_hdr_csum &&
3008 	    !!can_checksum_protocol(features, proto);
3009 
3010 	headroom = skb_headroom(head_skb);
3011 	pos = skb_headlen(head_skb);
3012 
3013 	do {
3014 		struct sk_buff *nskb;
3015 		skb_frag_t *nskb_frag;
3016 		int hsize;
3017 		int size;
3018 
3019 		len = head_skb->len - offset;
3020 		if (len > mss)
3021 			len = mss;
3022 
3023 		hsize = skb_headlen(head_skb) - offset;
3024 		if (hsize < 0)
3025 			hsize = 0;
3026 		if (hsize > len || !sg)
3027 			hsize = len;
3028 
3029 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3030 		    (skb_headlen(list_skb) == len || sg)) {
3031 			BUG_ON(skb_headlen(list_skb) > len);
3032 
3033 			i = 0;
3034 			nfrags = skb_shinfo(list_skb)->nr_frags;
3035 			frag = skb_shinfo(list_skb)->frags;
3036 			frag_skb = list_skb;
3037 			pos += skb_headlen(list_skb);
3038 
3039 			while (pos < offset + len) {
3040 				BUG_ON(i >= nfrags);
3041 
3042 				size = skb_frag_size(frag);
3043 				if (pos + size > offset + len)
3044 					break;
3045 
3046 				i++;
3047 				pos += size;
3048 				frag++;
3049 			}
3050 
3051 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3052 			list_skb = list_skb->next;
3053 
3054 			if (unlikely(!nskb))
3055 				goto err;
3056 
3057 			if (unlikely(pskb_trim(nskb, len))) {
3058 				kfree_skb(nskb);
3059 				goto err;
3060 			}
3061 
3062 			hsize = skb_end_offset(nskb);
3063 			if (skb_cow_head(nskb, doffset + headroom)) {
3064 				kfree_skb(nskb);
3065 				goto err;
3066 			}
3067 
3068 			nskb->truesize += skb_end_offset(nskb) - hsize;
3069 			skb_release_head_state(nskb);
3070 			__skb_push(nskb, doffset);
3071 		} else {
3072 			nskb = __alloc_skb(hsize + doffset + headroom,
3073 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3074 					   NUMA_NO_NODE);
3075 
3076 			if (unlikely(!nskb))
3077 				goto err;
3078 
3079 			skb_reserve(nskb, headroom);
3080 			__skb_put(nskb, doffset);
3081 		}
3082 
3083 		if (segs)
3084 			tail->next = nskb;
3085 		else
3086 			segs = nskb;
3087 		tail = nskb;
3088 
3089 		__copy_skb_header(nskb, head_skb);
3090 
3091 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3092 		skb_reset_mac_len(nskb);
3093 
3094 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3095 						 nskb->data - tnl_hlen,
3096 						 doffset + tnl_hlen);
3097 
3098 		if (nskb->len == len + doffset)
3099 			goto perform_csum_check;
3100 
3101 		if (!sg && !nskb->remcsum_offload) {
3102 			nskb->ip_summed = CHECKSUM_NONE;
3103 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3104 							    skb_put(nskb, len),
3105 							    len, 0);
3106 			SKB_GSO_CB(nskb)->csum_start =
3107 			    skb_headroom(nskb) + doffset;
3108 			continue;
3109 		}
3110 
3111 		nskb_frag = skb_shinfo(nskb)->frags;
3112 
3113 		skb_copy_from_linear_data_offset(head_skb, offset,
3114 						 skb_put(nskb, hsize), hsize);
3115 
3116 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3117 			SKBTX_SHARED_FRAG;
3118 
3119 		while (pos < offset + len) {
3120 			if (i >= nfrags) {
3121 				BUG_ON(skb_headlen(list_skb));
3122 
3123 				i = 0;
3124 				nfrags = skb_shinfo(list_skb)->nr_frags;
3125 				frag = skb_shinfo(list_skb)->frags;
3126 				frag_skb = list_skb;
3127 
3128 				BUG_ON(!nfrags);
3129 
3130 				list_skb = list_skb->next;
3131 			}
3132 
3133 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3134 				     MAX_SKB_FRAGS)) {
3135 				net_warn_ratelimited(
3136 					"skb_segment: too many frags: %u %u\n",
3137 					pos, mss);
3138 				goto err;
3139 			}
3140 
3141 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3142 				goto err;
3143 
3144 			*nskb_frag = *frag;
3145 			__skb_frag_ref(nskb_frag);
3146 			size = skb_frag_size(nskb_frag);
3147 
3148 			if (pos < offset) {
3149 				nskb_frag->page_offset += offset - pos;
3150 				skb_frag_size_sub(nskb_frag, offset - pos);
3151 			}
3152 
3153 			skb_shinfo(nskb)->nr_frags++;
3154 
3155 			if (pos + size <= offset + len) {
3156 				i++;
3157 				frag++;
3158 				pos += size;
3159 			} else {
3160 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3161 				goto skip_fraglist;
3162 			}
3163 
3164 			nskb_frag++;
3165 		}
3166 
3167 skip_fraglist:
3168 		nskb->data_len = len - hsize;
3169 		nskb->len += nskb->data_len;
3170 		nskb->truesize += nskb->data_len;
3171 
3172 perform_csum_check:
3173 		if (!csum && !nskb->remcsum_offload) {
3174 			nskb->csum = skb_checksum(nskb, doffset,
3175 						  nskb->len - doffset, 0);
3176 			nskb->ip_summed = CHECKSUM_NONE;
3177 			SKB_GSO_CB(nskb)->csum_start =
3178 			    skb_headroom(nskb) + doffset;
3179 		}
3180 	} while ((offset += len) < head_skb->len);
3181 
3182 	/* Some callers want to get the end of the list.
3183 	 * Put it in segs->prev to avoid walking the list.
3184 	 * (see validate_xmit_skb_list() for example)
3185 	 */
3186 	segs->prev = tail;
3187 
3188 	/* Following permits correct backpressure, for protocols
3189 	 * using skb_set_owner_w().
3190 	 * Idea is to tranfert ownership from head_skb to last segment.
3191 	 */
3192 	if (head_skb->destructor == sock_wfree) {
3193 		swap(tail->truesize, head_skb->truesize);
3194 		swap(tail->destructor, head_skb->destructor);
3195 		swap(tail->sk, head_skb->sk);
3196 	}
3197 	return segs;
3198 
3199 err:
3200 	kfree_skb_list(segs);
3201 	return ERR_PTR(err);
3202 }
3203 EXPORT_SYMBOL_GPL(skb_segment);
3204 
3205 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3206 {
3207 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3208 	unsigned int offset = skb_gro_offset(skb);
3209 	unsigned int headlen = skb_headlen(skb);
3210 	unsigned int len = skb_gro_len(skb);
3211 	struct sk_buff *lp, *p = *head;
3212 	unsigned int delta_truesize;
3213 
3214 	if (unlikely(p->len + len >= 65536))
3215 		return -E2BIG;
3216 
3217 	lp = NAPI_GRO_CB(p)->last;
3218 	pinfo = skb_shinfo(lp);
3219 
3220 	if (headlen <= offset) {
3221 		skb_frag_t *frag;
3222 		skb_frag_t *frag2;
3223 		int i = skbinfo->nr_frags;
3224 		int nr_frags = pinfo->nr_frags + i;
3225 
3226 		if (nr_frags > MAX_SKB_FRAGS)
3227 			goto merge;
3228 
3229 		offset -= headlen;
3230 		pinfo->nr_frags = nr_frags;
3231 		skbinfo->nr_frags = 0;
3232 
3233 		frag = pinfo->frags + nr_frags;
3234 		frag2 = skbinfo->frags + i;
3235 		do {
3236 			*--frag = *--frag2;
3237 		} while (--i);
3238 
3239 		frag->page_offset += offset;
3240 		skb_frag_size_sub(frag, offset);
3241 
3242 		/* all fragments truesize : remove (head size + sk_buff) */
3243 		delta_truesize = skb->truesize -
3244 				 SKB_TRUESIZE(skb_end_offset(skb));
3245 
3246 		skb->truesize -= skb->data_len;
3247 		skb->len -= skb->data_len;
3248 		skb->data_len = 0;
3249 
3250 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3251 		goto done;
3252 	} else if (skb->head_frag) {
3253 		int nr_frags = pinfo->nr_frags;
3254 		skb_frag_t *frag = pinfo->frags + nr_frags;
3255 		struct page *page = virt_to_head_page(skb->head);
3256 		unsigned int first_size = headlen - offset;
3257 		unsigned int first_offset;
3258 
3259 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3260 			goto merge;
3261 
3262 		first_offset = skb->data -
3263 			       (unsigned char *)page_address(page) +
3264 			       offset;
3265 
3266 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3267 
3268 		frag->page.p	  = page;
3269 		frag->page_offset = first_offset;
3270 		skb_frag_size_set(frag, first_size);
3271 
3272 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3273 		/* We dont need to clear skbinfo->nr_frags here */
3274 
3275 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3276 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3277 		goto done;
3278 	}
3279 
3280 merge:
3281 	delta_truesize = skb->truesize;
3282 	if (offset > headlen) {
3283 		unsigned int eat = offset - headlen;
3284 
3285 		skbinfo->frags[0].page_offset += eat;
3286 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3287 		skb->data_len -= eat;
3288 		skb->len -= eat;
3289 		offset = headlen;
3290 	}
3291 
3292 	__skb_pull(skb, offset);
3293 
3294 	if (NAPI_GRO_CB(p)->last == p)
3295 		skb_shinfo(p)->frag_list = skb;
3296 	else
3297 		NAPI_GRO_CB(p)->last->next = skb;
3298 	NAPI_GRO_CB(p)->last = skb;
3299 	__skb_header_release(skb);
3300 	lp = p;
3301 
3302 done:
3303 	NAPI_GRO_CB(p)->count++;
3304 	p->data_len += len;
3305 	p->truesize += delta_truesize;
3306 	p->len += len;
3307 	if (lp != p) {
3308 		lp->data_len += len;
3309 		lp->truesize += delta_truesize;
3310 		lp->len += len;
3311 	}
3312 	NAPI_GRO_CB(skb)->same_flow = 1;
3313 	return 0;
3314 }
3315 
3316 void __init skb_init(void)
3317 {
3318 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3319 					      sizeof(struct sk_buff),
3320 					      0,
3321 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3322 					      NULL);
3323 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3324 						sizeof(struct sk_buff_fclones),
3325 						0,
3326 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3327 						NULL);
3328 }
3329 
3330 /**
3331  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3332  *	@skb: Socket buffer containing the buffers to be mapped
3333  *	@sg: The scatter-gather list to map into
3334  *	@offset: The offset into the buffer's contents to start mapping
3335  *	@len: Length of buffer space to be mapped
3336  *
3337  *	Fill the specified scatter-gather list with mappings/pointers into a
3338  *	region of the buffer space attached to a socket buffer.
3339  */
3340 static int
3341 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3342 {
3343 	int start = skb_headlen(skb);
3344 	int i, copy = start - offset;
3345 	struct sk_buff *frag_iter;
3346 	int elt = 0;
3347 
3348 	if (copy > 0) {
3349 		if (copy > len)
3350 			copy = len;
3351 		sg_set_buf(sg, skb->data + offset, copy);
3352 		elt++;
3353 		if ((len -= copy) == 0)
3354 			return elt;
3355 		offset += copy;
3356 	}
3357 
3358 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3359 		int end;
3360 
3361 		WARN_ON(start > offset + len);
3362 
3363 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3364 		if ((copy = end - offset) > 0) {
3365 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3366 
3367 			if (copy > len)
3368 				copy = len;
3369 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3370 					frag->page_offset+offset-start);
3371 			elt++;
3372 			if (!(len -= copy))
3373 				return elt;
3374 			offset += copy;
3375 		}
3376 		start = end;
3377 	}
3378 
3379 	skb_walk_frags(skb, frag_iter) {
3380 		int end;
3381 
3382 		WARN_ON(start > offset + len);
3383 
3384 		end = start + frag_iter->len;
3385 		if ((copy = end - offset) > 0) {
3386 			if (copy > len)
3387 				copy = len;
3388 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3389 					      copy);
3390 			if ((len -= copy) == 0)
3391 				return elt;
3392 			offset += copy;
3393 		}
3394 		start = end;
3395 	}
3396 	BUG_ON(len);
3397 	return elt;
3398 }
3399 
3400 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3401  * sglist without mark the sg which contain last skb data as the end.
3402  * So the caller can mannipulate sg list as will when padding new data after
3403  * the first call without calling sg_unmark_end to expend sg list.
3404  *
3405  * Scenario to use skb_to_sgvec_nomark:
3406  * 1. sg_init_table
3407  * 2. skb_to_sgvec_nomark(payload1)
3408  * 3. skb_to_sgvec_nomark(payload2)
3409  *
3410  * This is equivalent to:
3411  * 1. sg_init_table
3412  * 2. skb_to_sgvec(payload1)
3413  * 3. sg_unmark_end
3414  * 4. skb_to_sgvec(payload2)
3415  *
3416  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3417  * is more preferable.
3418  */
3419 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3420 			int offset, int len)
3421 {
3422 	return __skb_to_sgvec(skb, sg, offset, len);
3423 }
3424 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3425 
3426 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3427 {
3428 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3429 
3430 	sg_mark_end(&sg[nsg - 1]);
3431 
3432 	return nsg;
3433 }
3434 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3435 
3436 /**
3437  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3438  *	@skb: The socket buffer to check.
3439  *	@tailbits: Amount of trailing space to be added
3440  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3441  *
3442  *	Make sure that the data buffers attached to a socket buffer are
3443  *	writable. If they are not, private copies are made of the data buffers
3444  *	and the socket buffer is set to use these instead.
3445  *
3446  *	If @tailbits is given, make sure that there is space to write @tailbits
3447  *	bytes of data beyond current end of socket buffer.  @trailer will be
3448  *	set to point to the skb in which this space begins.
3449  *
3450  *	The number of scatterlist elements required to completely map the
3451  *	COW'd and extended socket buffer will be returned.
3452  */
3453 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3454 {
3455 	int copyflag;
3456 	int elt;
3457 	struct sk_buff *skb1, **skb_p;
3458 
3459 	/* If skb is cloned or its head is paged, reallocate
3460 	 * head pulling out all the pages (pages are considered not writable
3461 	 * at the moment even if they are anonymous).
3462 	 */
3463 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3464 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3465 		return -ENOMEM;
3466 
3467 	/* Easy case. Most of packets will go this way. */
3468 	if (!skb_has_frag_list(skb)) {
3469 		/* A little of trouble, not enough of space for trailer.
3470 		 * This should not happen, when stack is tuned to generate
3471 		 * good frames. OK, on miss we reallocate and reserve even more
3472 		 * space, 128 bytes is fair. */
3473 
3474 		if (skb_tailroom(skb) < tailbits &&
3475 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3476 			return -ENOMEM;
3477 
3478 		/* Voila! */
3479 		*trailer = skb;
3480 		return 1;
3481 	}
3482 
3483 	/* Misery. We are in troubles, going to mincer fragments... */
3484 
3485 	elt = 1;
3486 	skb_p = &skb_shinfo(skb)->frag_list;
3487 	copyflag = 0;
3488 
3489 	while ((skb1 = *skb_p) != NULL) {
3490 		int ntail = 0;
3491 
3492 		/* The fragment is partially pulled by someone,
3493 		 * this can happen on input. Copy it and everything
3494 		 * after it. */
3495 
3496 		if (skb_shared(skb1))
3497 			copyflag = 1;
3498 
3499 		/* If the skb is the last, worry about trailer. */
3500 
3501 		if (skb1->next == NULL && tailbits) {
3502 			if (skb_shinfo(skb1)->nr_frags ||
3503 			    skb_has_frag_list(skb1) ||
3504 			    skb_tailroom(skb1) < tailbits)
3505 				ntail = tailbits + 128;
3506 		}
3507 
3508 		if (copyflag ||
3509 		    skb_cloned(skb1) ||
3510 		    ntail ||
3511 		    skb_shinfo(skb1)->nr_frags ||
3512 		    skb_has_frag_list(skb1)) {
3513 			struct sk_buff *skb2;
3514 
3515 			/* Fuck, we are miserable poor guys... */
3516 			if (ntail == 0)
3517 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3518 			else
3519 				skb2 = skb_copy_expand(skb1,
3520 						       skb_headroom(skb1),
3521 						       ntail,
3522 						       GFP_ATOMIC);
3523 			if (unlikely(skb2 == NULL))
3524 				return -ENOMEM;
3525 
3526 			if (skb1->sk)
3527 				skb_set_owner_w(skb2, skb1->sk);
3528 
3529 			/* Looking around. Are we still alive?
3530 			 * OK, link new skb, drop old one */
3531 
3532 			skb2->next = skb1->next;
3533 			*skb_p = skb2;
3534 			kfree_skb(skb1);
3535 			skb1 = skb2;
3536 		}
3537 		elt++;
3538 		*trailer = skb1;
3539 		skb_p = &skb1->next;
3540 	}
3541 
3542 	return elt;
3543 }
3544 EXPORT_SYMBOL_GPL(skb_cow_data);
3545 
3546 static void sock_rmem_free(struct sk_buff *skb)
3547 {
3548 	struct sock *sk = skb->sk;
3549 
3550 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3551 }
3552 
3553 /*
3554  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3555  */
3556 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3557 {
3558 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3559 	    (unsigned int)sk->sk_rcvbuf)
3560 		return -ENOMEM;
3561 
3562 	skb_orphan(skb);
3563 	skb->sk = sk;
3564 	skb->destructor = sock_rmem_free;
3565 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3566 
3567 	/* before exiting rcu section, make sure dst is refcounted */
3568 	skb_dst_force(skb);
3569 
3570 	skb_queue_tail(&sk->sk_error_queue, skb);
3571 	if (!sock_flag(sk, SOCK_DEAD))
3572 		sk->sk_data_ready(sk);
3573 	return 0;
3574 }
3575 EXPORT_SYMBOL(sock_queue_err_skb);
3576 
3577 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3578 {
3579 	struct sk_buff_head *q = &sk->sk_error_queue;
3580 	struct sk_buff *skb, *skb_next;
3581 	unsigned long flags;
3582 	int err = 0;
3583 
3584 	spin_lock_irqsave(&q->lock, flags);
3585 	skb = __skb_dequeue(q);
3586 	if (skb && (skb_next = skb_peek(q)))
3587 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3588 	spin_unlock_irqrestore(&q->lock, flags);
3589 
3590 	sk->sk_err = err;
3591 	if (err)
3592 		sk->sk_error_report(sk);
3593 
3594 	return skb;
3595 }
3596 EXPORT_SYMBOL(sock_dequeue_err_skb);
3597 
3598 /**
3599  * skb_clone_sk - create clone of skb, and take reference to socket
3600  * @skb: the skb to clone
3601  *
3602  * This function creates a clone of a buffer that holds a reference on
3603  * sk_refcnt.  Buffers created via this function are meant to be
3604  * returned using sock_queue_err_skb, or free via kfree_skb.
3605  *
3606  * When passing buffers allocated with this function to sock_queue_err_skb
3607  * it is necessary to wrap the call with sock_hold/sock_put in order to
3608  * prevent the socket from being released prior to being enqueued on
3609  * the sk_error_queue.
3610  */
3611 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3612 {
3613 	struct sock *sk = skb->sk;
3614 	struct sk_buff *clone;
3615 
3616 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3617 		return NULL;
3618 
3619 	clone = skb_clone(skb, GFP_ATOMIC);
3620 	if (!clone) {
3621 		sock_put(sk);
3622 		return NULL;
3623 	}
3624 
3625 	clone->sk = sk;
3626 	clone->destructor = sock_efree;
3627 
3628 	return clone;
3629 }
3630 EXPORT_SYMBOL(skb_clone_sk);
3631 
3632 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3633 					struct sock *sk,
3634 					int tstype)
3635 {
3636 	struct sock_exterr_skb *serr;
3637 	int err;
3638 
3639 	serr = SKB_EXT_ERR(skb);
3640 	memset(serr, 0, sizeof(*serr));
3641 	serr->ee.ee_errno = ENOMSG;
3642 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3643 	serr->ee.ee_info = tstype;
3644 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3645 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3646 		if (sk->sk_protocol == IPPROTO_TCP)
3647 			serr->ee.ee_data -= sk->sk_tskey;
3648 	}
3649 
3650 	err = sock_queue_err_skb(sk, skb);
3651 
3652 	if (err)
3653 		kfree_skb(skb);
3654 }
3655 
3656 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3657 {
3658 	bool ret;
3659 
3660 	if (likely(sysctl_tstamp_allow_data || tsonly))
3661 		return true;
3662 
3663 	read_lock_bh(&sk->sk_callback_lock);
3664 	ret = sk->sk_socket && sk->sk_socket->file &&
3665 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3666 	read_unlock_bh(&sk->sk_callback_lock);
3667 	return ret;
3668 }
3669 
3670 void skb_complete_tx_timestamp(struct sk_buff *skb,
3671 			       struct skb_shared_hwtstamps *hwtstamps)
3672 {
3673 	struct sock *sk = skb->sk;
3674 
3675 	if (!skb_may_tx_timestamp(sk, false))
3676 		return;
3677 
3678 	/* take a reference to prevent skb_orphan() from freeing the socket */
3679 	sock_hold(sk);
3680 
3681 	*skb_hwtstamps(skb) = *hwtstamps;
3682 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3683 
3684 	sock_put(sk);
3685 }
3686 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3687 
3688 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3689 		     struct skb_shared_hwtstamps *hwtstamps,
3690 		     struct sock *sk, int tstype)
3691 {
3692 	struct sk_buff *skb;
3693 	bool tsonly;
3694 
3695 	if (!sk)
3696 		return;
3697 
3698 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3699 	if (!skb_may_tx_timestamp(sk, tsonly))
3700 		return;
3701 
3702 	if (tsonly)
3703 		skb = alloc_skb(0, GFP_ATOMIC);
3704 	else
3705 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3706 	if (!skb)
3707 		return;
3708 
3709 	if (tsonly) {
3710 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3711 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3712 	}
3713 
3714 	if (hwtstamps)
3715 		*skb_hwtstamps(skb) = *hwtstamps;
3716 	else
3717 		skb->tstamp = ktime_get_real();
3718 
3719 	__skb_complete_tx_timestamp(skb, sk, tstype);
3720 }
3721 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3722 
3723 void skb_tstamp_tx(struct sk_buff *orig_skb,
3724 		   struct skb_shared_hwtstamps *hwtstamps)
3725 {
3726 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3727 			       SCM_TSTAMP_SND);
3728 }
3729 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3730 
3731 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3732 {
3733 	struct sock *sk = skb->sk;
3734 	struct sock_exterr_skb *serr;
3735 	int err;
3736 
3737 	skb->wifi_acked_valid = 1;
3738 	skb->wifi_acked = acked;
3739 
3740 	serr = SKB_EXT_ERR(skb);
3741 	memset(serr, 0, sizeof(*serr));
3742 	serr->ee.ee_errno = ENOMSG;
3743 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3744 
3745 	/* take a reference to prevent skb_orphan() from freeing the socket */
3746 	sock_hold(sk);
3747 
3748 	err = sock_queue_err_skb(sk, skb);
3749 	if (err)
3750 		kfree_skb(skb);
3751 
3752 	sock_put(sk);
3753 }
3754 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3755 
3756 /**
3757  * skb_partial_csum_set - set up and verify partial csum values for packet
3758  * @skb: the skb to set
3759  * @start: the number of bytes after skb->data to start checksumming.
3760  * @off: the offset from start to place the checksum.
3761  *
3762  * For untrusted partially-checksummed packets, we need to make sure the values
3763  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3764  *
3765  * This function checks and sets those values and skb->ip_summed: if this
3766  * returns false you should drop the packet.
3767  */
3768 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3769 {
3770 	if (unlikely(start > skb_headlen(skb)) ||
3771 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3772 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3773 				     start, off, skb_headlen(skb));
3774 		return false;
3775 	}
3776 	skb->ip_summed = CHECKSUM_PARTIAL;
3777 	skb->csum_start = skb_headroom(skb) + start;
3778 	skb->csum_offset = off;
3779 	skb_set_transport_header(skb, start);
3780 	return true;
3781 }
3782 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3783 
3784 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3785 			       unsigned int max)
3786 {
3787 	if (skb_headlen(skb) >= len)
3788 		return 0;
3789 
3790 	/* If we need to pullup then pullup to the max, so we
3791 	 * won't need to do it again.
3792 	 */
3793 	if (max > skb->len)
3794 		max = skb->len;
3795 
3796 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3797 		return -ENOMEM;
3798 
3799 	if (skb_headlen(skb) < len)
3800 		return -EPROTO;
3801 
3802 	return 0;
3803 }
3804 
3805 #define MAX_TCP_HDR_LEN (15 * 4)
3806 
3807 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3808 				      typeof(IPPROTO_IP) proto,
3809 				      unsigned int off)
3810 {
3811 	switch (proto) {
3812 		int err;
3813 
3814 	case IPPROTO_TCP:
3815 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3816 					  off + MAX_TCP_HDR_LEN);
3817 		if (!err && !skb_partial_csum_set(skb, off,
3818 						  offsetof(struct tcphdr,
3819 							   check)))
3820 			err = -EPROTO;
3821 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3822 
3823 	case IPPROTO_UDP:
3824 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3825 					  off + sizeof(struct udphdr));
3826 		if (!err && !skb_partial_csum_set(skb, off,
3827 						  offsetof(struct udphdr,
3828 							   check)))
3829 			err = -EPROTO;
3830 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3831 	}
3832 
3833 	return ERR_PTR(-EPROTO);
3834 }
3835 
3836 /* This value should be large enough to cover a tagged ethernet header plus
3837  * maximally sized IP and TCP or UDP headers.
3838  */
3839 #define MAX_IP_HDR_LEN 128
3840 
3841 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3842 {
3843 	unsigned int off;
3844 	bool fragment;
3845 	__sum16 *csum;
3846 	int err;
3847 
3848 	fragment = false;
3849 
3850 	err = skb_maybe_pull_tail(skb,
3851 				  sizeof(struct iphdr),
3852 				  MAX_IP_HDR_LEN);
3853 	if (err < 0)
3854 		goto out;
3855 
3856 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3857 		fragment = true;
3858 
3859 	off = ip_hdrlen(skb);
3860 
3861 	err = -EPROTO;
3862 
3863 	if (fragment)
3864 		goto out;
3865 
3866 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3867 	if (IS_ERR(csum))
3868 		return PTR_ERR(csum);
3869 
3870 	if (recalculate)
3871 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3872 					   ip_hdr(skb)->daddr,
3873 					   skb->len - off,
3874 					   ip_hdr(skb)->protocol, 0);
3875 	err = 0;
3876 
3877 out:
3878 	return err;
3879 }
3880 
3881 /* This value should be large enough to cover a tagged ethernet header plus
3882  * an IPv6 header, all options, and a maximal TCP or UDP header.
3883  */
3884 #define MAX_IPV6_HDR_LEN 256
3885 
3886 #define OPT_HDR(type, skb, off) \
3887 	(type *)(skb_network_header(skb) + (off))
3888 
3889 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3890 {
3891 	int err;
3892 	u8 nexthdr;
3893 	unsigned int off;
3894 	unsigned int len;
3895 	bool fragment;
3896 	bool done;
3897 	__sum16 *csum;
3898 
3899 	fragment = false;
3900 	done = false;
3901 
3902 	off = sizeof(struct ipv6hdr);
3903 
3904 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3905 	if (err < 0)
3906 		goto out;
3907 
3908 	nexthdr = ipv6_hdr(skb)->nexthdr;
3909 
3910 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3911 	while (off <= len && !done) {
3912 		switch (nexthdr) {
3913 		case IPPROTO_DSTOPTS:
3914 		case IPPROTO_HOPOPTS:
3915 		case IPPROTO_ROUTING: {
3916 			struct ipv6_opt_hdr *hp;
3917 
3918 			err = skb_maybe_pull_tail(skb,
3919 						  off +
3920 						  sizeof(struct ipv6_opt_hdr),
3921 						  MAX_IPV6_HDR_LEN);
3922 			if (err < 0)
3923 				goto out;
3924 
3925 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3926 			nexthdr = hp->nexthdr;
3927 			off += ipv6_optlen(hp);
3928 			break;
3929 		}
3930 		case IPPROTO_AH: {
3931 			struct ip_auth_hdr *hp;
3932 
3933 			err = skb_maybe_pull_tail(skb,
3934 						  off +
3935 						  sizeof(struct ip_auth_hdr),
3936 						  MAX_IPV6_HDR_LEN);
3937 			if (err < 0)
3938 				goto out;
3939 
3940 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3941 			nexthdr = hp->nexthdr;
3942 			off += ipv6_authlen(hp);
3943 			break;
3944 		}
3945 		case IPPROTO_FRAGMENT: {
3946 			struct frag_hdr *hp;
3947 
3948 			err = skb_maybe_pull_tail(skb,
3949 						  off +
3950 						  sizeof(struct frag_hdr),
3951 						  MAX_IPV6_HDR_LEN);
3952 			if (err < 0)
3953 				goto out;
3954 
3955 			hp = OPT_HDR(struct frag_hdr, skb, off);
3956 
3957 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3958 				fragment = true;
3959 
3960 			nexthdr = hp->nexthdr;
3961 			off += sizeof(struct frag_hdr);
3962 			break;
3963 		}
3964 		default:
3965 			done = true;
3966 			break;
3967 		}
3968 	}
3969 
3970 	err = -EPROTO;
3971 
3972 	if (!done || fragment)
3973 		goto out;
3974 
3975 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3976 	if (IS_ERR(csum))
3977 		return PTR_ERR(csum);
3978 
3979 	if (recalculate)
3980 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3981 					 &ipv6_hdr(skb)->daddr,
3982 					 skb->len - off, nexthdr, 0);
3983 	err = 0;
3984 
3985 out:
3986 	return err;
3987 }
3988 
3989 /**
3990  * skb_checksum_setup - set up partial checksum offset
3991  * @skb: the skb to set up
3992  * @recalculate: if true the pseudo-header checksum will be recalculated
3993  */
3994 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3995 {
3996 	int err;
3997 
3998 	switch (skb->protocol) {
3999 	case htons(ETH_P_IP):
4000 		err = skb_checksum_setup_ipv4(skb, recalculate);
4001 		break;
4002 
4003 	case htons(ETH_P_IPV6):
4004 		err = skb_checksum_setup_ipv6(skb, recalculate);
4005 		break;
4006 
4007 	default:
4008 		err = -EPROTO;
4009 		break;
4010 	}
4011 
4012 	return err;
4013 }
4014 EXPORT_SYMBOL(skb_checksum_setup);
4015 
4016 /**
4017  * skb_checksum_maybe_trim - maybe trims the given skb
4018  * @skb: the skb to check
4019  * @transport_len: the data length beyond the network header
4020  *
4021  * Checks whether the given skb has data beyond the given transport length.
4022  * If so, returns a cloned skb trimmed to this transport length.
4023  * Otherwise returns the provided skb. Returns NULL in error cases
4024  * (e.g. transport_len exceeds skb length or out-of-memory).
4025  *
4026  * Caller needs to set the skb transport header and free any returned skb if it
4027  * differs from the provided skb.
4028  */
4029 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4030 					       unsigned int transport_len)
4031 {
4032 	struct sk_buff *skb_chk;
4033 	unsigned int len = skb_transport_offset(skb) + transport_len;
4034 	int ret;
4035 
4036 	if (skb->len < len)
4037 		return NULL;
4038 	else if (skb->len == len)
4039 		return skb;
4040 
4041 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4042 	if (!skb_chk)
4043 		return NULL;
4044 
4045 	ret = pskb_trim_rcsum(skb_chk, len);
4046 	if (ret) {
4047 		kfree_skb(skb_chk);
4048 		return NULL;
4049 	}
4050 
4051 	return skb_chk;
4052 }
4053 
4054 /**
4055  * skb_checksum_trimmed - validate checksum of an skb
4056  * @skb: the skb to check
4057  * @transport_len: the data length beyond the network header
4058  * @skb_chkf: checksum function to use
4059  *
4060  * Applies the given checksum function skb_chkf to the provided skb.
4061  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4062  *
4063  * If the skb has data beyond the given transport length, then a
4064  * trimmed & cloned skb is checked and returned.
4065  *
4066  * Caller needs to set the skb transport header and free any returned skb if it
4067  * differs from the provided skb.
4068  */
4069 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4070 				     unsigned int transport_len,
4071 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4072 {
4073 	struct sk_buff *skb_chk;
4074 	unsigned int offset = skb_transport_offset(skb);
4075 	__sum16 ret;
4076 
4077 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4078 	if (!skb_chk)
4079 		goto err;
4080 
4081 	if (!pskb_may_pull(skb_chk, offset))
4082 		goto err;
4083 
4084 	__skb_pull(skb_chk, offset);
4085 	ret = skb_chkf(skb_chk);
4086 	__skb_push(skb_chk, offset);
4087 
4088 	if (ret)
4089 		goto err;
4090 
4091 	return skb_chk;
4092 
4093 err:
4094 	if (skb_chk && skb_chk != skb)
4095 		kfree_skb(skb_chk);
4096 
4097 	return NULL;
4098 
4099 }
4100 EXPORT_SYMBOL(skb_checksum_trimmed);
4101 
4102 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4103 {
4104 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4105 			     skb->dev->name);
4106 }
4107 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4108 
4109 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4110 {
4111 	if (head_stolen) {
4112 		skb_release_head_state(skb);
4113 		kmem_cache_free(skbuff_head_cache, skb);
4114 	} else {
4115 		__kfree_skb(skb);
4116 	}
4117 }
4118 EXPORT_SYMBOL(kfree_skb_partial);
4119 
4120 /**
4121  * skb_try_coalesce - try to merge skb to prior one
4122  * @to: prior buffer
4123  * @from: buffer to add
4124  * @fragstolen: pointer to boolean
4125  * @delta_truesize: how much more was allocated than was requested
4126  */
4127 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4128 		      bool *fragstolen, int *delta_truesize)
4129 {
4130 	int i, delta, len = from->len;
4131 
4132 	*fragstolen = false;
4133 
4134 	if (skb_cloned(to))
4135 		return false;
4136 
4137 	if (len <= skb_tailroom(to)) {
4138 		if (len)
4139 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4140 		*delta_truesize = 0;
4141 		return true;
4142 	}
4143 
4144 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4145 		return false;
4146 
4147 	if (skb_headlen(from) != 0) {
4148 		struct page *page;
4149 		unsigned int offset;
4150 
4151 		if (skb_shinfo(to)->nr_frags +
4152 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4153 			return false;
4154 
4155 		if (skb_head_is_locked(from))
4156 			return false;
4157 
4158 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4159 
4160 		page = virt_to_head_page(from->head);
4161 		offset = from->data - (unsigned char *)page_address(page);
4162 
4163 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4164 				   page, offset, skb_headlen(from));
4165 		*fragstolen = true;
4166 	} else {
4167 		if (skb_shinfo(to)->nr_frags +
4168 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4169 			return false;
4170 
4171 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4172 	}
4173 
4174 	WARN_ON_ONCE(delta < len);
4175 
4176 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4177 	       skb_shinfo(from)->frags,
4178 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4179 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4180 
4181 	if (!skb_cloned(from))
4182 		skb_shinfo(from)->nr_frags = 0;
4183 
4184 	/* if the skb is not cloned this does nothing
4185 	 * since we set nr_frags to 0.
4186 	 */
4187 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4188 		skb_frag_ref(from, i);
4189 
4190 	to->truesize += delta;
4191 	to->len += len;
4192 	to->data_len += len;
4193 
4194 	*delta_truesize = delta;
4195 	return true;
4196 }
4197 EXPORT_SYMBOL(skb_try_coalesce);
4198 
4199 /**
4200  * skb_scrub_packet - scrub an skb
4201  *
4202  * @skb: buffer to clean
4203  * @xnet: packet is crossing netns
4204  *
4205  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4206  * into/from a tunnel. Some information have to be cleared during these
4207  * operations.
4208  * skb_scrub_packet can also be used to clean a skb before injecting it in
4209  * another namespace (@xnet == true). We have to clear all information in the
4210  * skb that could impact namespace isolation.
4211  */
4212 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4213 {
4214 	skb->tstamp.tv64 = 0;
4215 	skb->pkt_type = PACKET_HOST;
4216 	skb->skb_iif = 0;
4217 	skb->ignore_df = 0;
4218 	skb_dst_drop(skb);
4219 	skb_sender_cpu_clear(skb);
4220 	secpath_reset(skb);
4221 	nf_reset(skb);
4222 	nf_reset_trace(skb);
4223 
4224 	if (!xnet)
4225 		return;
4226 
4227 	skb_orphan(skb);
4228 	skb->mark = 0;
4229 }
4230 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4231 
4232 /**
4233  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4234  *
4235  * @skb: GSO skb
4236  *
4237  * skb_gso_transport_seglen is used to determine the real size of the
4238  * individual segments, including Layer4 headers (TCP/UDP).
4239  *
4240  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4241  */
4242 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4243 {
4244 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4245 	unsigned int thlen = 0;
4246 
4247 	if (skb->encapsulation) {
4248 		thlen = skb_inner_transport_header(skb) -
4249 			skb_transport_header(skb);
4250 
4251 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4252 			thlen += inner_tcp_hdrlen(skb);
4253 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4254 		thlen = tcp_hdrlen(skb);
4255 	}
4256 	/* UFO sets gso_size to the size of the fragmentation
4257 	 * payload, i.e. the size of the L4 (UDP) header is already
4258 	 * accounted for.
4259 	 */
4260 	return thlen + shinfo->gso_size;
4261 }
4262 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4263 
4264 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4265 {
4266 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4267 		kfree_skb(skb);
4268 		return NULL;
4269 	}
4270 
4271 	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4272 	skb->mac_header += VLAN_HLEN;
4273 	return skb;
4274 }
4275 
4276 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4277 {
4278 	struct vlan_hdr *vhdr;
4279 	u16 vlan_tci;
4280 
4281 	if (unlikely(skb_vlan_tag_present(skb))) {
4282 		/* vlan_tci is already set-up so leave this for another time */
4283 		return skb;
4284 	}
4285 
4286 	skb = skb_share_check(skb, GFP_ATOMIC);
4287 	if (unlikely(!skb))
4288 		goto err_free;
4289 
4290 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4291 		goto err_free;
4292 
4293 	vhdr = (struct vlan_hdr *)skb->data;
4294 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4295 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4296 
4297 	skb_pull_rcsum(skb, VLAN_HLEN);
4298 	vlan_set_encap_proto(skb, vhdr);
4299 
4300 	skb = skb_reorder_vlan_header(skb);
4301 	if (unlikely(!skb))
4302 		goto err_free;
4303 
4304 	skb_reset_network_header(skb);
4305 	skb_reset_transport_header(skb);
4306 	skb_reset_mac_len(skb);
4307 
4308 	return skb;
4309 
4310 err_free:
4311 	kfree_skb(skb);
4312 	return NULL;
4313 }
4314 EXPORT_SYMBOL(skb_vlan_untag);
4315 
4316 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4317 {
4318 	if (!pskb_may_pull(skb, write_len))
4319 		return -ENOMEM;
4320 
4321 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4322 		return 0;
4323 
4324 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4325 }
4326 EXPORT_SYMBOL(skb_ensure_writable);
4327 
4328 /* remove VLAN header from packet and update csum accordingly. */
4329 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4330 {
4331 	struct vlan_hdr *vhdr;
4332 	unsigned int offset = skb->data - skb_mac_header(skb);
4333 	int err;
4334 
4335 	__skb_push(skb, offset);
4336 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4337 	if (unlikely(err))
4338 		goto pull;
4339 
4340 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4341 
4342 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4343 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4344 
4345 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4346 	__skb_pull(skb, VLAN_HLEN);
4347 
4348 	vlan_set_encap_proto(skb, vhdr);
4349 	skb->mac_header += VLAN_HLEN;
4350 
4351 	if (skb_network_offset(skb) < ETH_HLEN)
4352 		skb_set_network_header(skb, ETH_HLEN);
4353 
4354 	skb_reset_mac_len(skb);
4355 pull:
4356 	__skb_pull(skb, offset);
4357 
4358 	return err;
4359 }
4360 
4361 int skb_vlan_pop(struct sk_buff *skb)
4362 {
4363 	u16 vlan_tci;
4364 	__be16 vlan_proto;
4365 	int err;
4366 
4367 	if (likely(skb_vlan_tag_present(skb))) {
4368 		skb->vlan_tci = 0;
4369 	} else {
4370 		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4371 			      skb->protocol != htons(ETH_P_8021AD)) ||
4372 			     skb->len < VLAN_ETH_HLEN))
4373 			return 0;
4374 
4375 		err = __skb_vlan_pop(skb, &vlan_tci);
4376 		if (err)
4377 			return err;
4378 	}
4379 	/* move next vlan tag to hw accel tag */
4380 	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4381 		    skb->protocol != htons(ETH_P_8021AD)) ||
4382 		   skb->len < VLAN_ETH_HLEN))
4383 		return 0;
4384 
4385 	vlan_proto = skb->protocol;
4386 	err = __skb_vlan_pop(skb, &vlan_tci);
4387 	if (unlikely(err))
4388 		return err;
4389 
4390 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4391 	return 0;
4392 }
4393 EXPORT_SYMBOL(skb_vlan_pop);
4394 
4395 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4396 {
4397 	if (skb_vlan_tag_present(skb)) {
4398 		unsigned int offset = skb->data - skb_mac_header(skb);
4399 		int err;
4400 
4401 		/* __vlan_insert_tag expect skb->data pointing to mac header.
4402 		 * So change skb->data before calling it and change back to
4403 		 * original position later
4404 		 */
4405 		__skb_push(skb, offset);
4406 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4407 					skb_vlan_tag_get(skb));
4408 		if (err)
4409 			return err;
4410 		skb->protocol = skb->vlan_proto;
4411 		skb->mac_len += VLAN_HLEN;
4412 		__skb_pull(skb, offset);
4413 
4414 		if (skb->ip_summed == CHECKSUM_COMPLETE)
4415 			skb->csum = csum_add(skb->csum, csum_partial(skb->data
4416 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
4417 	}
4418 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4419 	return 0;
4420 }
4421 EXPORT_SYMBOL(skb_vlan_push);
4422 
4423 /**
4424  * alloc_skb_with_frags - allocate skb with page frags
4425  *
4426  * @header_len: size of linear part
4427  * @data_len: needed length in frags
4428  * @max_page_order: max page order desired.
4429  * @errcode: pointer to error code if any
4430  * @gfp_mask: allocation mask
4431  *
4432  * This can be used to allocate a paged skb, given a maximal order for frags.
4433  */
4434 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4435 				     unsigned long data_len,
4436 				     int max_page_order,
4437 				     int *errcode,
4438 				     gfp_t gfp_mask)
4439 {
4440 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4441 	unsigned long chunk;
4442 	struct sk_buff *skb;
4443 	struct page *page;
4444 	gfp_t gfp_head;
4445 	int i;
4446 
4447 	*errcode = -EMSGSIZE;
4448 	/* Note this test could be relaxed, if we succeed to allocate
4449 	 * high order pages...
4450 	 */
4451 	if (npages > MAX_SKB_FRAGS)
4452 		return NULL;
4453 
4454 	gfp_head = gfp_mask;
4455 	if (gfp_head & __GFP_DIRECT_RECLAIM)
4456 		gfp_head |= __GFP_REPEAT;
4457 
4458 	*errcode = -ENOBUFS;
4459 	skb = alloc_skb(header_len, gfp_head);
4460 	if (!skb)
4461 		return NULL;
4462 
4463 	skb->truesize += npages << PAGE_SHIFT;
4464 
4465 	for (i = 0; npages > 0; i++) {
4466 		int order = max_page_order;
4467 
4468 		while (order) {
4469 			if (npages >= 1 << order) {
4470 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4471 						   __GFP_COMP |
4472 						   __GFP_NOWARN |
4473 						   __GFP_NORETRY,
4474 						   order);
4475 				if (page)
4476 					goto fill_page;
4477 				/* Do not retry other high order allocations */
4478 				order = 1;
4479 				max_page_order = 0;
4480 			}
4481 			order--;
4482 		}
4483 		page = alloc_page(gfp_mask);
4484 		if (!page)
4485 			goto failure;
4486 fill_page:
4487 		chunk = min_t(unsigned long, data_len,
4488 			      PAGE_SIZE << order);
4489 		skb_fill_page_desc(skb, i, page, 0, chunk);
4490 		data_len -= chunk;
4491 		npages -= 1 << order;
4492 	}
4493 	return skb;
4494 
4495 failure:
4496 	kfree_skb(skb);
4497 	return NULL;
4498 }
4499 EXPORT_SYMBOL(alloc_skb_with_frags);
4500