1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <asm/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __read_mostly; 81 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 82 83 /** 84 * skb_panic - private function for out-of-line support 85 * @skb: buffer 86 * @sz: size 87 * @addr: address 88 * @msg: skb_over_panic or skb_under_panic 89 * 90 * Out-of-line support for skb_put() and skb_push(). 91 * Called via the wrapper skb_over_panic() or skb_under_panic(). 92 * Keep out of line to prevent kernel bloat. 93 * __builtin_return_address is not used because it is not always reliable. 94 */ 95 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 96 const char msg[]) 97 { 98 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 99 msg, addr, skb->len, sz, skb->head, skb->data, 100 (unsigned long)skb->tail, (unsigned long)skb->end, 101 skb->dev ? skb->dev->name : "<NULL>"); 102 BUG(); 103 } 104 105 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 106 { 107 skb_panic(skb, sz, addr, __func__); 108 } 109 110 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 111 { 112 skb_panic(skb, sz, addr, __func__); 113 } 114 115 /* 116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 117 * the caller if emergency pfmemalloc reserves are being used. If it is and 118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 119 * may be used. Otherwise, the packet data may be discarded until enough 120 * memory is free 121 */ 122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 123 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 124 125 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 126 unsigned long ip, bool *pfmemalloc) 127 { 128 void *obj; 129 bool ret_pfmemalloc = false; 130 131 /* 132 * Try a regular allocation, when that fails and we're not entitled 133 * to the reserves, fail. 134 */ 135 obj = kmalloc_node_track_caller(size, 136 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 137 node); 138 if (obj || !(gfp_pfmemalloc_allowed(flags))) 139 goto out; 140 141 /* Try again but now we are using pfmemalloc reserves */ 142 ret_pfmemalloc = true; 143 obj = kmalloc_node_track_caller(size, flags, node); 144 145 out: 146 if (pfmemalloc) 147 *pfmemalloc = ret_pfmemalloc; 148 149 return obj; 150 } 151 152 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 153 * 'private' fields and also do memory statistics to find all the 154 * [BEEP] leaks. 155 * 156 */ 157 158 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 159 { 160 struct sk_buff *skb; 161 162 /* Get the HEAD */ 163 skb = kmem_cache_alloc_node(skbuff_head_cache, 164 gfp_mask & ~__GFP_DMA, node); 165 if (!skb) 166 goto out; 167 168 /* 169 * Only clear those fields we need to clear, not those that we will 170 * actually initialise below. Hence, don't put any more fields after 171 * the tail pointer in struct sk_buff! 172 */ 173 memset(skb, 0, offsetof(struct sk_buff, tail)); 174 skb->head = NULL; 175 skb->truesize = sizeof(struct sk_buff); 176 atomic_set(&skb->users, 1); 177 178 skb->mac_header = (typeof(skb->mac_header))~0U; 179 out: 180 return skb; 181 } 182 183 /** 184 * __alloc_skb - allocate a network buffer 185 * @size: size to allocate 186 * @gfp_mask: allocation mask 187 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 188 * instead of head cache and allocate a cloned (child) skb. 189 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 190 * allocations in case the data is required for writeback 191 * @node: numa node to allocate memory on 192 * 193 * Allocate a new &sk_buff. The returned buffer has no headroom and a 194 * tail room of at least size bytes. The object has a reference count 195 * of one. The return is the buffer. On a failure the return is %NULL. 196 * 197 * Buffers may only be allocated from interrupts using a @gfp_mask of 198 * %GFP_ATOMIC. 199 */ 200 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 201 int flags, int node) 202 { 203 struct kmem_cache *cache; 204 struct skb_shared_info *shinfo; 205 struct sk_buff *skb; 206 u8 *data; 207 bool pfmemalloc; 208 209 cache = (flags & SKB_ALLOC_FCLONE) 210 ? skbuff_fclone_cache : skbuff_head_cache; 211 212 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 213 gfp_mask |= __GFP_MEMALLOC; 214 215 /* Get the HEAD */ 216 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 217 if (!skb) 218 goto out; 219 prefetchw(skb); 220 221 /* We do our best to align skb_shared_info on a separate cache 222 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 223 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 224 * Both skb->head and skb_shared_info are cache line aligned. 225 */ 226 size = SKB_DATA_ALIGN(size); 227 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 228 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 229 if (!data) 230 goto nodata; 231 /* kmalloc(size) might give us more room than requested. 232 * Put skb_shared_info exactly at the end of allocated zone, 233 * to allow max possible filling before reallocation. 234 */ 235 size = SKB_WITH_OVERHEAD(ksize(data)); 236 prefetchw(data + size); 237 238 /* 239 * Only clear those fields we need to clear, not those that we will 240 * actually initialise below. Hence, don't put any more fields after 241 * the tail pointer in struct sk_buff! 242 */ 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 /* Account for allocated memory : skb + skb->head */ 245 skb->truesize = SKB_TRUESIZE(size); 246 skb->pfmemalloc = pfmemalloc; 247 atomic_set(&skb->users, 1); 248 skb->head = data; 249 skb->data = data; 250 skb_reset_tail_pointer(skb); 251 skb->end = skb->tail + size; 252 skb->mac_header = (typeof(skb->mac_header))~0U; 253 skb->transport_header = (typeof(skb->transport_header))~0U; 254 255 /* make sure we initialize shinfo sequentially */ 256 shinfo = skb_shinfo(skb); 257 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 258 atomic_set(&shinfo->dataref, 1); 259 kmemcheck_annotate_variable(shinfo->destructor_arg); 260 261 if (flags & SKB_ALLOC_FCLONE) { 262 struct sk_buff_fclones *fclones; 263 264 fclones = container_of(skb, struct sk_buff_fclones, skb1); 265 266 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 267 skb->fclone = SKB_FCLONE_ORIG; 268 atomic_set(&fclones->fclone_ref, 1); 269 270 fclones->skb2.fclone = SKB_FCLONE_CLONE; 271 fclones->skb2.pfmemalloc = pfmemalloc; 272 } 273 out: 274 return skb; 275 nodata: 276 kmem_cache_free(cache, skb); 277 skb = NULL; 278 goto out; 279 } 280 EXPORT_SYMBOL(__alloc_skb); 281 282 /** 283 * __build_skb - build a network buffer 284 * @data: data buffer provided by caller 285 * @frag_size: size of data, or 0 if head was kmalloced 286 * 287 * Allocate a new &sk_buff. Caller provides space holding head and 288 * skb_shared_info. @data must have been allocated by kmalloc() only if 289 * @frag_size is 0, otherwise data should come from the page allocator 290 * or vmalloc() 291 * The return is the new skb buffer. 292 * On a failure the return is %NULL, and @data is not freed. 293 * Notes : 294 * Before IO, driver allocates only data buffer where NIC put incoming frame 295 * Driver should add room at head (NET_SKB_PAD) and 296 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 297 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 298 * before giving packet to stack. 299 * RX rings only contains data buffers, not full skbs. 300 */ 301 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 302 { 303 struct skb_shared_info *shinfo; 304 struct sk_buff *skb; 305 unsigned int size = frag_size ? : ksize(data); 306 307 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 308 if (!skb) 309 return NULL; 310 311 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 312 313 memset(skb, 0, offsetof(struct sk_buff, tail)); 314 skb->truesize = SKB_TRUESIZE(size); 315 atomic_set(&skb->users, 1); 316 skb->head = data; 317 skb->data = data; 318 skb_reset_tail_pointer(skb); 319 skb->end = skb->tail + size; 320 skb->mac_header = (typeof(skb->mac_header))~0U; 321 skb->transport_header = (typeof(skb->transport_header))~0U; 322 323 /* make sure we initialize shinfo sequentially */ 324 shinfo = skb_shinfo(skb); 325 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 326 atomic_set(&shinfo->dataref, 1); 327 kmemcheck_annotate_variable(shinfo->destructor_arg); 328 329 return skb; 330 } 331 332 /* build_skb() is wrapper over __build_skb(), that specifically 333 * takes care of skb->head and skb->pfmemalloc 334 * This means that if @frag_size is not zero, then @data must be backed 335 * by a page fragment, not kmalloc() or vmalloc() 336 */ 337 struct sk_buff *build_skb(void *data, unsigned int frag_size) 338 { 339 struct sk_buff *skb = __build_skb(data, frag_size); 340 341 if (skb && frag_size) { 342 skb->head_frag = 1; 343 if (page_is_pfmemalloc(virt_to_head_page(data))) 344 skb->pfmemalloc = 1; 345 } 346 return skb; 347 } 348 EXPORT_SYMBOL(build_skb); 349 350 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 351 static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache); 352 353 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 354 { 355 struct page_frag_cache *nc; 356 unsigned long flags; 357 void *data; 358 359 local_irq_save(flags); 360 nc = this_cpu_ptr(&netdev_alloc_cache); 361 data = __alloc_page_frag(nc, fragsz, gfp_mask); 362 local_irq_restore(flags); 363 return data; 364 } 365 366 /** 367 * netdev_alloc_frag - allocate a page fragment 368 * @fragsz: fragment size 369 * 370 * Allocates a frag from a page for receive buffer. 371 * Uses GFP_ATOMIC allocations. 372 */ 373 void *netdev_alloc_frag(unsigned int fragsz) 374 { 375 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 376 } 377 EXPORT_SYMBOL(netdev_alloc_frag); 378 379 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 380 { 381 struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache); 382 383 return __alloc_page_frag(nc, fragsz, gfp_mask); 384 } 385 386 void *napi_alloc_frag(unsigned int fragsz) 387 { 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 394 * @dev: network device to receive on 395 * @len: length to allocate 396 * @gfp_mask: get_free_pages mask, passed to alloc_skb 397 * 398 * Allocate a new &sk_buff and assign it a usage count of one. The 399 * buffer has NET_SKB_PAD headroom built in. Users should allocate 400 * the headroom they think they need without accounting for the 401 * built in space. The built in space is used for optimisations. 402 * 403 * %NULL is returned if there is no free memory. 404 */ 405 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 406 gfp_t gfp_mask) 407 { 408 struct page_frag_cache *nc; 409 unsigned long flags; 410 struct sk_buff *skb; 411 bool pfmemalloc; 412 void *data; 413 414 len += NET_SKB_PAD; 415 416 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 417 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 418 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 419 if (!skb) 420 goto skb_fail; 421 goto skb_success; 422 } 423 424 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 425 len = SKB_DATA_ALIGN(len); 426 427 if (sk_memalloc_socks()) 428 gfp_mask |= __GFP_MEMALLOC; 429 430 local_irq_save(flags); 431 432 nc = this_cpu_ptr(&netdev_alloc_cache); 433 data = __alloc_page_frag(nc, len, gfp_mask); 434 pfmemalloc = nc->pfmemalloc; 435 436 local_irq_restore(flags); 437 438 if (unlikely(!data)) 439 return NULL; 440 441 skb = __build_skb(data, len); 442 if (unlikely(!skb)) { 443 skb_free_frag(data); 444 return NULL; 445 } 446 447 /* use OR instead of assignment to avoid clearing of bits in mask */ 448 if (pfmemalloc) 449 skb->pfmemalloc = 1; 450 skb->head_frag = 1; 451 452 skb_success: 453 skb_reserve(skb, NET_SKB_PAD); 454 skb->dev = dev; 455 456 skb_fail: 457 return skb; 458 } 459 EXPORT_SYMBOL(__netdev_alloc_skb); 460 461 /** 462 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 463 * @napi: napi instance this buffer was allocated for 464 * @len: length to allocate 465 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 466 * 467 * Allocate a new sk_buff for use in NAPI receive. This buffer will 468 * attempt to allocate the head from a special reserved region used 469 * only for NAPI Rx allocation. By doing this we can save several 470 * CPU cycles by avoiding having to disable and re-enable IRQs. 471 * 472 * %NULL is returned if there is no free memory. 473 */ 474 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 475 gfp_t gfp_mask) 476 { 477 struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache); 478 struct sk_buff *skb; 479 void *data; 480 481 len += NET_SKB_PAD + NET_IP_ALIGN; 482 483 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 484 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 485 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 486 if (!skb) 487 goto skb_fail; 488 goto skb_success; 489 } 490 491 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 492 len = SKB_DATA_ALIGN(len); 493 494 if (sk_memalloc_socks()) 495 gfp_mask |= __GFP_MEMALLOC; 496 497 data = __alloc_page_frag(nc, len, gfp_mask); 498 if (unlikely(!data)) 499 return NULL; 500 501 skb = __build_skb(data, len); 502 if (unlikely(!skb)) { 503 skb_free_frag(data); 504 return NULL; 505 } 506 507 /* use OR instead of assignment to avoid clearing of bits in mask */ 508 if (nc->pfmemalloc) 509 skb->pfmemalloc = 1; 510 skb->head_frag = 1; 511 512 skb_success: 513 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 514 skb->dev = napi->dev; 515 516 skb_fail: 517 return skb; 518 } 519 EXPORT_SYMBOL(__napi_alloc_skb); 520 521 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 522 int size, unsigned int truesize) 523 { 524 skb_fill_page_desc(skb, i, page, off, size); 525 skb->len += size; 526 skb->data_len += size; 527 skb->truesize += truesize; 528 } 529 EXPORT_SYMBOL(skb_add_rx_frag); 530 531 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 532 unsigned int truesize) 533 { 534 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 535 536 skb_frag_size_add(frag, size); 537 skb->len += size; 538 skb->data_len += size; 539 skb->truesize += truesize; 540 } 541 EXPORT_SYMBOL(skb_coalesce_rx_frag); 542 543 static void skb_drop_list(struct sk_buff **listp) 544 { 545 kfree_skb_list(*listp); 546 *listp = NULL; 547 } 548 549 static inline void skb_drop_fraglist(struct sk_buff *skb) 550 { 551 skb_drop_list(&skb_shinfo(skb)->frag_list); 552 } 553 554 static void skb_clone_fraglist(struct sk_buff *skb) 555 { 556 struct sk_buff *list; 557 558 skb_walk_frags(skb, list) 559 skb_get(list); 560 } 561 562 static void skb_free_head(struct sk_buff *skb) 563 { 564 unsigned char *head = skb->head; 565 566 if (skb->head_frag) 567 skb_free_frag(head); 568 else 569 kfree(head); 570 } 571 572 static void skb_release_data(struct sk_buff *skb) 573 { 574 struct skb_shared_info *shinfo = skb_shinfo(skb); 575 int i; 576 577 if (skb->cloned && 578 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 579 &shinfo->dataref)) 580 return; 581 582 for (i = 0; i < shinfo->nr_frags; i++) 583 __skb_frag_unref(&shinfo->frags[i]); 584 585 /* 586 * If skb buf is from userspace, we need to notify the caller 587 * the lower device DMA has done; 588 */ 589 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { 590 struct ubuf_info *uarg; 591 592 uarg = shinfo->destructor_arg; 593 if (uarg->callback) 594 uarg->callback(uarg, true); 595 } 596 597 if (shinfo->frag_list) 598 kfree_skb_list(shinfo->frag_list); 599 600 skb_free_head(skb); 601 } 602 603 /* 604 * Free an skbuff by memory without cleaning the state. 605 */ 606 static void kfree_skbmem(struct sk_buff *skb) 607 { 608 struct sk_buff_fclones *fclones; 609 610 switch (skb->fclone) { 611 case SKB_FCLONE_UNAVAILABLE: 612 kmem_cache_free(skbuff_head_cache, skb); 613 return; 614 615 case SKB_FCLONE_ORIG: 616 fclones = container_of(skb, struct sk_buff_fclones, skb1); 617 618 /* We usually free the clone (TX completion) before original skb 619 * This test would have no chance to be true for the clone, 620 * while here, branch prediction will be good. 621 */ 622 if (atomic_read(&fclones->fclone_ref) == 1) 623 goto fastpath; 624 break; 625 626 default: /* SKB_FCLONE_CLONE */ 627 fclones = container_of(skb, struct sk_buff_fclones, skb2); 628 break; 629 } 630 if (!atomic_dec_and_test(&fclones->fclone_ref)) 631 return; 632 fastpath: 633 kmem_cache_free(skbuff_fclone_cache, fclones); 634 } 635 636 static void skb_release_head_state(struct sk_buff *skb) 637 { 638 skb_dst_drop(skb); 639 #ifdef CONFIG_XFRM 640 secpath_put(skb->sp); 641 #endif 642 if (skb->destructor) { 643 WARN_ON(in_irq()); 644 skb->destructor(skb); 645 } 646 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 647 nf_conntrack_put(skb->nfct); 648 #endif 649 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 650 nf_bridge_put(skb->nf_bridge); 651 #endif 652 } 653 654 /* Free everything but the sk_buff shell. */ 655 static void skb_release_all(struct sk_buff *skb) 656 { 657 skb_release_head_state(skb); 658 if (likely(skb->head)) 659 skb_release_data(skb); 660 } 661 662 /** 663 * __kfree_skb - private function 664 * @skb: buffer 665 * 666 * Free an sk_buff. Release anything attached to the buffer. 667 * Clean the state. This is an internal helper function. Users should 668 * always call kfree_skb 669 */ 670 671 void __kfree_skb(struct sk_buff *skb) 672 { 673 skb_release_all(skb); 674 kfree_skbmem(skb); 675 } 676 EXPORT_SYMBOL(__kfree_skb); 677 678 /** 679 * kfree_skb - free an sk_buff 680 * @skb: buffer to free 681 * 682 * Drop a reference to the buffer and free it if the usage count has 683 * hit zero. 684 */ 685 void kfree_skb(struct sk_buff *skb) 686 { 687 if (unlikely(!skb)) 688 return; 689 if (likely(atomic_read(&skb->users) == 1)) 690 smp_rmb(); 691 else if (likely(!atomic_dec_and_test(&skb->users))) 692 return; 693 trace_kfree_skb(skb, __builtin_return_address(0)); 694 __kfree_skb(skb); 695 } 696 EXPORT_SYMBOL(kfree_skb); 697 698 void kfree_skb_list(struct sk_buff *segs) 699 { 700 while (segs) { 701 struct sk_buff *next = segs->next; 702 703 kfree_skb(segs); 704 segs = next; 705 } 706 } 707 EXPORT_SYMBOL(kfree_skb_list); 708 709 /** 710 * skb_tx_error - report an sk_buff xmit error 711 * @skb: buffer that triggered an error 712 * 713 * Report xmit error if a device callback is tracking this skb. 714 * skb must be freed afterwards. 715 */ 716 void skb_tx_error(struct sk_buff *skb) 717 { 718 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 719 struct ubuf_info *uarg; 720 721 uarg = skb_shinfo(skb)->destructor_arg; 722 if (uarg->callback) 723 uarg->callback(uarg, false); 724 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 725 } 726 } 727 EXPORT_SYMBOL(skb_tx_error); 728 729 /** 730 * consume_skb - free an skbuff 731 * @skb: buffer to free 732 * 733 * Drop a ref to the buffer and free it if the usage count has hit zero 734 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 735 * is being dropped after a failure and notes that 736 */ 737 void consume_skb(struct sk_buff *skb) 738 { 739 if (unlikely(!skb)) 740 return; 741 if (likely(atomic_read(&skb->users) == 1)) 742 smp_rmb(); 743 else if (likely(!atomic_dec_and_test(&skb->users))) 744 return; 745 trace_consume_skb(skb); 746 __kfree_skb(skb); 747 } 748 EXPORT_SYMBOL(consume_skb); 749 750 /* Make sure a field is enclosed inside headers_start/headers_end section */ 751 #define CHECK_SKB_FIELD(field) \ 752 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 753 offsetof(struct sk_buff, headers_start)); \ 754 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 755 offsetof(struct sk_buff, headers_end)); \ 756 757 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 758 { 759 new->tstamp = old->tstamp; 760 /* We do not copy old->sk */ 761 new->dev = old->dev; 762 memcpy(new->cb, old->cb, sizeof(old->cb)); 763 skb_dst_copy(new, old); 764 #ifdef CONFIG_XFRM 765 new->sp = secpath_get(old->sp); 766 #endif 767 __nf_copy(new, old, false); 768 769 /* Note : this field could be in headers_start/headers_end section 770 * It is not yet because we do not want to have a 16 bit hole 771 */ 772 new->queue_mapping = old->queue_mapping; 773 774 memcpy(&new->headers_start, &old->headers_start, 775 offsetof(struct sk_buff, headers_end) - 776 offsetof(struct sk_buff, headers_start)); 777 CHECK_SKB_FIELD(protocol); 778 CHECK_SKB_FIELD(csum); 779 CHECK_SKB_FIELD(hash); 780 CHECK_SKB_FIELD(priority); 781 CHECK_SKB_FIELD(skb_iif); 782 CHECK_SKB_FIELD(vlan_proto); 783 CHECK_SKB_FIELD(vlan_tci); 784 CHECK_SKB_FIELD(transport_header); 785 CHECK_SKB_FIELD(network_header); 786 CHECK_SKB_FIELD(mac_header); 787 CHECK_SKB_FIELD(inner_protocol); 788 CHECK_SKB_FIELD(inner_transport_header); 789 CHECK_SKB_FIELD(inner_network_header); 790 CHECK_SKB_FIELD(inner_mac_header); 791 CHECK_SKB_FIELD(mark); 792 #ifdef CONFIG_NETWORK_SECMARK 793 CHECK_SKB_FIELD(secmark); 794 #endif 795 #ifdef CONFIG_NET_RX_BUSY_POLL 796 CHECK_SKB_FIELD(napi_id); 797 #endif 798 #ifdef CONFIG_XPS 799 CHECK_SKB_FIELD(sender_cpu); 800 #endif 801 #ifdef CONFIG_NET_SCHED 802 CHECK_SKB_FIELD(tc_index); 803 #ifdef CONFIG_NET_CLS_ACT 804 CHECK_SKB_FIELD(tc_verd); 805 #endif 806 #endif 807 808 } 809 810 /* 811 * You should not add any new code to this function. Add it to 812 * __copy_skb_header above instead. 813 */ 814 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 815 { 816 #define C(x) n->x = skb->x 817 818 n->next = n->prev = NULL; 819 n->sk = NULL; 820 __copy_skb_header(n, skb); 821 822 C(len); 823 C(data_len); 824 C(mac_len); 825 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 826 n->cloned = 1; 827 n->nohdr = 0; 828 n->destructor = NULL; 829 C(tail); 830 C(end); 831 C(head); 832 C(head_frag); 833 C(data); 834 C(truesize); 835 atomic_set(&n->users, 1); 836 837 atomic_inc(&(skb_shinfo(skb)->dataref)); 838 skb->cloned = 1; 839 840 return n; 841 #undef C 842 } 843 844 /** 845 * skb_morph - morph one skb into another 846 * @dst: the skb to receive the contents 847 * @src: the skb to supply the contents 848 * 849 * This is identical to skb_clone except that the target skb is 850 * supplied by the user. 851 * 852 * The target skb is returned upon exit. 853 */ 854 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 855 { 856 skb_release_all(dst); 857 return __skb_clone(dst, src); 858 } 859 EXPORT_SYMBOL_GPL(skb_morph); 860 861 /** 862 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 863 * @skb: the skb to modify 864 * @gfp_mask: allocation priority 865 * 866 * This must be called on SKBTX_DEV_ZEROCOPY skb. 867 * It will copy all frags into kernel and drop the reference 868 * to userspace pages. 869 * 870 * If this function is called from an interrupt gfp_mask() must be 871 * %GFP_ATOMIC. 872 * 873 * Returns 0 on success or a negative error code on failure 874 * to allocate kernel memory to copy to. 875 */ 876 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 877 { 878 int i; 879 int num_frags = skb_shinfo(skb)->nr_frags; 880 struct page *page, *head = NULL; 881 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 882 883 for (i = 0; i < num_frags; i++) { 884 u8 *vaddr; 885 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 886 887 page = alloc_page(gfp_mask); 888 if (!page) { 889 while (head) { 890 struct page *next = (struct page *)page_private(head); 891 put_page(head); 892 head = next; 893 } 894 return -ENOMEM; 895 } 896 vaddr = kmap_atomic(skb_frag_page(f)); 897 memcpy(page_address(page), 898 vaddr + f->page_offset, skb_frag_size(f)); 899 kunmap_atomic(vaddr); 900 set_page_private(page, (unsigned long)head); 901 head = page; 902 } 903 904 /* skb frags release userspace buffers */ 905 for (i = 0; i < num_frags; i++) 906 skb_frag_unref(skb, i); 907 908 uarg->callback(uarg, false); 909 910 /* skb frags point to kernel buffers */ 911 for (i = num_frags - 1; i >= 0; i--) { 912 __skb_fill_page_desc(skb, i, head, 0, 913 skb_shinfo(skb)->frags[i].size); 914 head = (struct page *)page_private(head); 915 } 916 917 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 918 return 0; 919 } 920 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 921 922 /** 923 * skb_clone - duplicate an sk_buff 924 * @skb: buffer to clone 925 * @gfp_mask: allocation priority 926 * 927 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 928 * copies share the same packet data but not structure. The new 929 * buffer has a reference count of 1. If the allocation fails the 930 * function returns %NULL otherwise the new buffer is returned. 931 * 932 * If this function is called from an interrupt gfp_mask() must be 933 * %GFP_ATOMIC. 934 */ 935 936 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 937 { 938 struct sk_buff_fclones *fclones = container_of(skb, 939 struct sk_buff_fclones, 940 skb1); 941 struct sk_buff *n; 942 943 if (skb_orphan_frags(skb, gfp_mask)) 944 return NULL; 945 946 if (skb->fclone == SKB_FCLONE_ORIG && 947 atomic_read(&fclones->fclone_ref) == 1) { 948 n = &fclones->skb2; 949 atomic_set(&fclones->fclone_ref, 2); 950 } else { 951 if (skb_pfmemalloc(skb)) 952 gfp_mask |= __GFP_MEMALLOC; 953 954 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 955 if (!n) 956 return NULL; 957 958 kmemcheck_annotate_bitfield(n, flags1); 959 n->fclone = SKB_FCLONE_UNAVAILABLE; 960 } 961 962 return __skb_clone(n, skb); 963 } 964 EXPORT_SYMBOL(skb_clone); 965 966 static void skb_headers_offset_update(struct sk_buff *skb, int off) 967 { 968 /* Only adjust this if it actually is csum_start rather than csum */ 969 if (skb->ip_summed == CHECKSUM_PARTIAL) 970 skb->csum_start += off; 971 /* {transport,network,mac}_header and tail are relative to skb->head */ 972 skb->transport_header += off; 973 skb->network_header += off; 974 if (skb_mac_header_was_set(skb)) 975 skb->mac_header += off; 976 skb->inner_transport_header += off; 977 skb->inner_network_header += off; 978 skb->inner_mac_header += off; 979 } 980 981 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 982 { 983 __copy_skb_header(new, old); 984 985 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 986 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 987 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 988 } 989 990 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 991 { 992 if (skb_pfmemalloc(skb)) 993 return SKB_ALLOC_RX; 994 return 0; 995 } 996 997 /** 998 * skb_copy - create private copy of an sk_buff 999 * @skb: buffer to copy 1000 * @gfp_mask: allocation priority 1001 * 1002 * Make a copy of both an &sk_buff and its data. This is used when the 1003 * caller wishes to modify the data and needs a private copy of the 1004 * data to alter. Returns %NULL on failure or the pointer to the buffer 1005 * on success. The returned buffer has a reference count of 1. 1006 * 1007 * As by-product this function converts non-linear &sk_buff to linear 1008 * one, so that &sk_buff becomes completely private and caller is allowed 1009 * to modify all the data of returned buffer. This means that this 1010 * function is not recommended for use in circumstances when only 1011 * header is going to be modified. Use pskb_copy() instead. 1012 */ 1013 1014 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1015 { 1016 int headerlen = skb_headroom(skb); 1017 unsigned int size = skb_end_offset(skb) + skb->data_len; 1018 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1019 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1020 1021 if (!n) 1022 return NULL; 1023 1024 /* Set the data pointer */ 1025 skb_reserve(n, headerlen); 1026 /* Set the tail pointer and length */ 1027 skb_put(n, skb->len); 1028 1029 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1030 BUG(); 1031 1032 copy_skb_header(n, skb); 1033 return n; 1034 } 1035 EXPORT_SYMBOL(skb_copy); 1036 1037 /** 1038 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1039 * @skb: buffer to copy 1040 * @headroom: headroom of new skb 1041 * @gfp_mask: allocation priority 1042 * @fclone: if true allocate the copy of the skb from the fclone 1043 * cache instead of the head cache; it is recommended to set this 1044 * to true for the cases where the copy will likely be cloned 1045 * 1046 * Make a copy of both an &sk_buff and part of its data, located 1047 * in header. Fragmented data remain shared. This is used when 1048 * the caller wishes to modify only header of &sk_buff and needs 1049 * private copy of the header to alter. Returns %NULL on failure 1050 * or the pointer to the buffer on success. 1051 * The returned buffer has a reference count of 1. 1052 */ 1053 1054 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1055 gfp_t gfp_mask, bool fclone) 1056 { 1057 unsigned int size = skb_headlen(skb) + headroom; 1058 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1059 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1060 1061 if (!n) 1062 goto out; 1063 1064 /* Set the data pointer */ 1065 skb_reserve(n, headroom); 1066 /* Set the tail pointer and length */ 1067 skb_put(n, skb_headlen(skb)); 1068 /* Copy the bytes */ 1069 skb_copy_from_linear_data(skb, n->data, n->len); 1070 1071 n->truesize += skb->data_len; 1072 n->data_len = skb->data_len; 1073 n->len = skb->len; 1074 1075 if (skb_shinfo(skb)->nr_frags) { 1076 int i; 1077 1078 if (skb_orphan_frags(skb, gfp_mask)) { 1079 kfree_skb(n); 1080 n = NULL; 1081 goto out; 1082 } 1083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1084 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1085 skb_frag_ref(skb, i); 1086 } 1087 skb_shinfo(n)->nr_frags = i; 1088 } 1089 1090 if (skb_has_frag_list(skb)) { 1091 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1092 skb_clone_fraglist(n); 1093 } 1094 1095 copy_skb_header(n, skb); 1096 out: 1097 return n; 1098 } 1099 EXPORT_SYMBOL(__pskb_copy_fclone); 1100 1101 /** 1102 * pskb_expand_head - reallocate header of &sk_buff 1103 * @skb: buffer to reallocate 1104 * @nhead: room to add at head 1105 * @ntail: room to add at tail 1106 * @gfp_mask: allocation priority 1107 * 1108 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1109 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1110 * reference count of 1. Returns zero in the case of success or error, 1111 * if expansion failed. In the last case, &sk_buff is not changed. 1112 * 1113 * All the pointers pointing into skb header may change and must be 1114 * reloaded after call to this function. 1115 */ 1116 1117 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1118 gfp_t gfp_mask) 1119 { 1120 int i; 1121 u8 *data; 1122 int size = nhead + skb_end_offset(skb) + ntail; 1123 long off; 1124 1125 BUG_ON(nhead < 0); 1126 1127 if (skb_shared(skb)) 1128 BUG(); 1129 1130 size = SKB_DATA_ALIGN(size); 1131 1132 if (skb_pfmemalloc(skb)) 1133 gfp_mask |= __GFP_MEMALLOC; 1134 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1135 gfp_mask, NUMA_NO_NODE, NULL); 1136 if (!data) 1137 goto nodata; 1138 size = SKB_WITH_OVERHEAD(ksize(data)); 1139 1140 /* Copy only real data... and, alas, header. This should be 1141 * optimized for the cases when header is void. 1142 */ 1143 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1144 1145 memcpy((struct skb_shared_info *)(data + size), 1146 skb_shinfo(skb), 1147 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1148 1149 /* 1150 * if shinfo is shared we must drop the old head gracefully, but if it 1151 * is not we can just drop the old head and let the existing refcount 1152 * be since all we did is relocate the values 1153 */ 1154 if (skb_cloned(skb)) { 1155 /* copy this zero copy skb frags */ 1156 if (skb_orphan_frags(skb, gfp_mask)) 1157 goto nofrags; 1158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1159 skb_frag_ref(skb, i); 1160 1161 if (skb_has_frag_list(skb)) 1162 skb_clone_fraglist(skb); 1163 1164 skb_release_data(skb); 1165 } else { 1166 skb_free_head(skb); 1167 } 1168 off = (data + nhead) - skb->head; 1169 1170 skb->head = data; 1171 skb->head_frag = 0; 1172 skb->data += off; 1173 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1174 skb->end = size; 1175 off = nhead; 1176 #else 1177 skb->end = skb->head + size; 1178 #endif 1179 skb->tail += off; 1180 skb_headers_offset_update(skb, nhead); 1181 skb->cloned = 0; 1182 skb->hdr_len = 0; 1183 skb->nohdr = 0; 1184 atomic_set(&skb_shinfo(skb)->dataref, 1); 1185 return 0; 1186 1187 nofrags: 1188 kfree(data); 1189 nodata: 1190 return -ENOMEM; 1191 } 1192 EXPORT_SYMBOL(pskb_expand_head); 1193 1194 /* Make private copy of skb with writable head and some headroom */ 1195 1196 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1197 { 1198 struct sk_buff *skb2; 1199 int delta = headroom - skb_headroom(skb); 1200 1201 if (delta <= 0) 1202 skb2 = pskb_copy(skb, GFP_ATOMIC); 1203 else { 1204 skb2 = skb_clone(skb, GFP_ATOMIC); 1205 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1206 GFP_ATOMIC)) { 1207 kfree_skb(skb2); 1208 skb2 = NULL; 1209 } 1210 } 1211 return skb2; 1212 } 1213 EXPORT_SYMBOL(skb_realloc_headroom); 1214 1215 /** 1216 * skb_copy_expand - copy and expand sk_buff 1217 * @skb: buffer to copy 1218 * @newheadroom: new free bytes at head 1219 * @newtailroom: new free bytes at tail 1220 * @gfp_mask: allocation priority 1221 * 1222 * Make a copy of both an &sk_buff and its data and while doing so 1223 * allocate additional space. 1224 * 1225 * This is used when the caller wishes to modify the data and needs a 1226 * private copy of the data to alter as well as more space for new fields. 1227 * Returns %NULL on failure or the pointer to the buffer 1228 * on success. The returned buffer has a reference count of 1. 1229 * 1230 * You must pass %GFP_ATOMIC as the allocation priority if this function 1231 * is called from an interrupt. 1232 */ 1233 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1234 int newheadroom, int newtailroom, 1235 gfp_t gfp_mask) 1236 { 1237 /* 1238 * Allocate the copy buffer 1239 */ 1240 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1241 gfp_mask, skb_alloc_rx_flag(skb), 1242 NUMA_NO_NODE); 1243 int oldheadroom = skb_headroom(skb); 1244 int head_copy_len, head_copy_off; 1245 1246 if (!n) 1247 return NULL; 1248 1249 skb_reserve(n, newheadroom); 1250 1251 /* Set the tail pointer and length */ 1252 skb_put(n, skb->len); 1253 1254 head_copy_len = oldheadroom; 1255 head_copy_off = 0; 1256 if (newheadroom <= head_copy_len) 1257 head_copy_len = newheadroom; 1258 else 1259 head_copy_off = newheadroom - head_copy_len; 1260 1261 /* Copy the linear header and data. */ 1262 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1263 skb->len + head_copy_len)) 1264 BUG(); 1265 1266 copy_skb_header(n, skb); 1267 1268 skb_headers_offset_update(n, newheadroom - oldheadroom); 1269 1270 return n; 1271 } 1272 EXPORT_SYMBOL(skb_copy_expand); 1273 1274 /** 1275 * skb_pad - zero pad the tail of an skb 1276 * @skb: buffer to pad 1277 * @pad: space to pad 1278 * 1279 * Ensure that a buffer is followed by a padding area that is zero 1280 * filled. Used by network drivers which may DMA or transfer data 1281 * beyond the buffer end onto the wire. 1282 * 1283 * May return error in out of memory cases. The skb is freed on error. 1284 */ 1285 1286 int skb_pad(struct sk_buff *skb, int pad) 1287 { 1288 int err; 1289 int ntail; 1290 1291 /* If the skbuff is non linear tailroom is always zero.. */ 1292 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1293 memset(skb->data+skb->len, 0, pad); 1294 return 0; 1295 } 1296 1297 ntail = skb->data_len + pad - (skb->end - skb->tail); 1298 if (likely(skb_cloned(skb) || ntail > 0)) { 1299 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1300 if (unlikely(err)) 1301 goto free_skb; 1302 } 1303 1304 /* FIXME: The use of this function with non-linear skb's really needs 1305 * to be audited. 1306 */ 1307 err = skb_linearize(skb); 1308 if (unlikely(err)) 1309 goto free_skb; 1310 1311 memset(skb->data + skb->len, 0, pad); 1312 return 0; 1313 1314 free_skb: 1315 kfree_skb(skb); 1316 return err; 1317 } 1318 EXPORT_SYMBOL(skb_pad); 1319 1320 /** 1321 * pskb_put - add data to the tail of a potentially fragmented buffer 1322 * @skb: start of the buffer to use 1323 * @tail: tail fragment of the buffer to use 1324 * @len: amount of data to add 1325 * 1326 * This function extends the used data area of the potentially 1327 * fragmented buffer. @tail must be the last fragment of @skb -- or 1328 * @skb itself. If this would exceed the total buffer size the kernel 1329 * will panic. A pointer to the first byte of the extra data is 1330 * returned. 1331 */ 1332 1333 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1334 { 1335 if (tail != skb) { 1336 skb->data_len += len; 1337 skb->len += len; 1338 } 1339 return skb_put(tail, len); 1340 } 1341 EXPORT_SYMBOL_GPL(pskb_put); 1342 1343 /** 1344 * skb_put - add data to a buffer 1345 * @skb: buffer to use 1346 * @len: amount of data to add 1347 * 1348 * This function extends the used data area of the buffer. If this would 1349 * exceed the total buffer size the kernel will panic. A pointer to the 1350 * first byte of the extra data is returned. 1351 */ 1352 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1353 { 1354 unsigned char *tmp = skb_tail_pointer(skb); 1355 SKB_LINEAR_ASSERT(skb); 1356 skb->tail += len; 1357 skb->len += len; 1358 if (unlikely(skb->tail > skb->end)) 1359 skb_over_panic(skb, len, __builtin_return_address(0)); 1360 return tmp; 1361 } 1362 EXPORT_SYMBOL(skb_put); 1363 1364 /** 1365 * skb_push - add data to the start of a buffer 1366 * @skb: buffer to use 1367 * @len: amount of data to add 1368 * 1369 * This function extends the used data area of the buffer at the buffer 1370 * start. If this would exceed the total buffer headroom the kernel will 1371 * panic. A pointer to the first byte of the extra data is returned. 1372 */ 1373 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1374 { 1375 skb->data -= len; 1376 skb->len += len; 1377 if (unlikely(skb->data<skb->head)) 1378 skb_under_panic(skb, len, __builtin_return_address(0)); 1379 return skb->data; 1380 } 1381 EXPORT_SYMBOL(skb_push); 1382 1383 /** 1384 * skb_pull - remove data from the start of a buffer 1385 * @skb: buffer to use 1386 * @len: amount of data to remove 1387 * 1388 * This function removes data from the start of a buffer, returning 1389 * the memory to the headroom. A pointer to the next data in the buffer 1390 * is returned. Once the data has been pulled future pushes will overwrite 1391 * the old data. 1392 */ 1393 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1394 { 1395 return skb_pull_inline(skb, len); 1396 } 1397 EXPORT_SYMBOL(skb_pull); 1398 1399 /** 1400 * skb_trim - remove end from a buffer 1401 * @skb: buffer to alter 1402 * @len: new length 1403 * 1404 * Cut the length of a buffer down by removing data from the tail. If 1405 * the buffer is already under the length specified it is not modified. 1406 * The skb must be linear. 1407 */ 1408 void skb_trim(struct sk_buff *skb, unsigned int len) 1409 { 1410 if (skb->len > len) 1411 __skb_trim(skb, len); 1412 } 1413 EXPORT_SYMBOL(skb_trim); 1414 1415 /* Trims skb to length len. It can change skb pointers. 1416 */ 1417 1418 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1419 { 1420 struct sk_buff **fragp; 1421 struct sk_buff *frag; 1422 int offset = skb_headlen(skb); 1423 int nfrags = skb_shinfo(skb)->nr_frags; 1424 int i; 1425 int err; 1426 1427 if (skb_cloned(skb) && 1428 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1429 return err; 1430 1431 i = 0; 1432 if (offset >= len) 1433 goto drop_pages; 1434 1435 for (; i < nfrags; i++) { 1436 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1437 1438 if (end < len) { 1439 offset = end; 1440 continue; 1441 } 1442 1443 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1444 1445 drop_pages: 1446 skb_shinfo(skb)->nr_frags = i; 1447 1448 for (; i < nfrags; i++) 1449 skb_frag_unref(skb, i); 1450 1451 if (skb_has_frag_list(skb)) 1452 skb_drop_fraglist(skb); 1453 goto done; 1454 } 1455 1456 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1457 fragp = &frag->next) { 1458 int end = offset + frag->len; 1459 1460 if (skb_shared(frag)) { 1461 struct sk_buff *nfrag; 1462 1463 nfrag = skb_clone(frag, GFP_ATOMIC); 1464 if (unlikely(!nfrag)) 1465 return -ENOMEM; 1466 1467 nfrag->next = frag->next; 1468 consume_skb(frag); 1469 frag = nfrag; 1470 *fragp = frag; 1471 } 1472 1473 if (end < len) { 1474 offset = end; 1475 continue; 1476 } 1477 1478 if (end > len && 1479 unlikely((err = pskb_trim(frag, len - offset)))) 1480 return err; 1481 1482 if (frag->next) 1483 skb_drop_list(&frag->next); 1484 break; 1485 } 1486 1487 done: 1488 if (len > skb_headlen(skb)) { 1489 skb->data_len -= skb->len - len; 1490 skb->len = len; 1491 } else { 1492 skb->len = len; 1493 skb->data_len = 0; 1494 skb_set_tail_pointer(skb, len); 1495 } 1496 1497 return 0; 1498 } 1499 EXPORT_SYMBOL(___pskb_trim); 1500 1501 /** 1502 * __pskb_pull_tail - advance tail of skb header 1503 * @skb: buffer to reallocate 1504 * @delta: number of bytes to advance tail 1505 * 1506 * The function makes a sense only on a fragmented &sk_buff, 1507 * it expands header moving its tail forward and copying necessary 1508 * data from fragmented part. 1509 * 1510 * &sk_buff MUST have reference count of 1. 1511 * 1512 * Returns %NULL (and &sk_buff does not change) if pull failed 1513 * or value of new tail of skb in the case of success. 1514 * 1515 * All the pointers pointing into skb header may change and must be 1516 * reloaded after call to this function. 1517 */ 1518 1519 /* Moves tail of skb head forward, copying data from fragmented part, 1520 * when it is necessary. 1521 * 1. It may fail due to malloc failure. 1522 * 2. It may change skb pointers. 1523 * 1524 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1525 */ 1526 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1527 { 1528 /* If skb has not enough free space at tail, get new one 1529 * plus 128 bytes for future expansions. If we have enough 1530 * room at tail, reallocate without expansion only if skb is cloned. 1531 */ 1532 int i, k, eat = (skb->tail + delta) - skb->end; 1533 1534 if (eat > 0 || skb_cloned(skb)) { 1535 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1536 GFP_ATOMIC)) 1537 return NULL; 1538 } 1539 1540 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1541 BUG(); 1542 1543 /* Optimization: no fragments, no reasons to preestimate 1544 * size of pulled pages. Superb. 1545 */ 1546 if (!skb_has_frag_list(skb)) 1547 goto pull_pages; 1548 1549 /* Estimate size of pulled pages. */ 1550 eat = delta; 1551 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1552 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1553 1554 if (size >= eat) 1555 goto pull_pages; 1556 eat -= size; 1557 } 1558 1559 /* If we need update frag list, we are in troubles. 1560 * Certainly, it possible to add an offset to skb data, 1561 * but taking into account that pulling is expected to 1562 * be very rare operation, it is worth to fight against 1563 * further bloating skb head and crucify ourselves here instead. 1564 * Pure masohism, indeed. 8)8) 1565 */ 1566 if (eat) { 1567 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1568 struct sk_buff *clone = NULL; 1569 struct sk_buff *insp = NULL; 1570 1571 do { 1572 BUG_ON(!list); 1573 1574 if (list->len <= eat) { 1575 /* Eaten as whole. */ 1576 eat -= list->len; 1577 list = list->next; 1578 insp = list; 1579 } else { 1580 /* Eaten partially. */ 1581 1582 if (skb_shared(list)) { 1583 /* Sucks! We need to fork list. :-( */ 1584 clone = skb_clone(list, GFP_ATOMIC); 1585 if (!clone) 1586 return NULL; 1587 insp = list->next; 1588 list = clone; 1589 } else { 1590 /* This may be pulled without 1591 * problems. */ 1592 insp = list; 1593 } 1594 if (!pskb_pull(list, eat)) { 1595 kfree_skb(clone); 1596 return NULL; 1597 } 1598 break; 1599 } 1600 } while (eat); 1601 1602 /* Free pulled out fragments. */ 1603 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1604 skb_shinfo(skb)->frag_list = list->next; 1605 kfree_skb(list); 1606 } 1607 /* And insert new clone at head. */ 1608 if (clone) { 1609 clone->next = list; 1610 skb_shinfo(skb)->frag_list = clone; 1611 } 1612 } 1613 /* Success! Now we may commit changes to skb data. */ 1614 1615 pull_pages: 1616 eat = delta; 1617 k = 0; 1618 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1619 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1620 1621 if (size <= eat) { 1622 skb_frag_unref(skb, i); 1623 eat -= size; 1624 } else { 1625 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1626 if (eat) { 1627 skb_shinfo(skb)->frags[k].page_offset += eat; 1628 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1629 eat = 0; 1630 } 1631 k++; 1632 } 1633 } 1634 skb_shinfo(skb)->nr_frags = k; 1635 1636 skb->tail += delta; 1637 skb->data_len -= delta; 1638 1639 return skb_tail_pointer(skb); 1640 } 1641 EXPORT_SYMBOL(__pskb_pull_tail); 1642 1643 /** 1644 * skb_copy_bits - copy bits from skb to kernel buffer 1645 * @skb: source skb 1646 * @offset: offset in source 1647 * @to: destination buffer 1648 * @len: number of bytes to copy 1649 * 1650 * Copy the specified number of bytes from the source skb to the 1651 * destination buffer. 1652 * 1653 * CAUTION ! : 1654 * If its prototype is ever changed, 1655 * check arch/{*}/net/{*}.S files, 1656 * since it is called from BPF assembly code. 1657 */ 1658 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1659 { 1660 int start = skb_headlen(skb); 1661 struct sk_buff *frag_iter; 1662 int i, copy; 1663 1664 if (offset > (int)skb->len - len) 1665 goto fault; 1666 1667 /* Copy header. */ 1668 if ((copy = start - offset) > 0) { 1669 if (copy > len) 1670 copy = len; 1671 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1672 if ((len -= copy) == 0) 1673 return 0; 1674 offset += copy; 1675 to += copy; 1676 } 1677 1678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1679 int end; 1680 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1681 1682 WARN_ON(start > offset + len); 1683 1684 end = start + skb_frag_size(f); 1685 if ((copy = end - offset) > 0) { 1686 u8 *vaddr; 1687 1688 if (copy > len) 1689 copy = len; 1690 1691 vaddr = kmap_atomic(skb_frag_page(f)); 1692 memcpy(to, 1693 vaddr + f->page_offset + offset - start, 1694 copy); 1695 kunmap_atomic(vaddr); 1696 1697 if ((len -= copy) == 0) 1698 return 0; 1699 offset += copy; 1700 to += copy; 1701 } 1702 start = end; 1703 } 1704 1705 skb_walk_frags(skb, frag_iter) { 1706 int end; 1707 1708 WARN_ON(start > offset + len); 1709 1710 end = start + frag_iter->len; 1711 if ((copy = end - offset) > 0) { 1712 if (copy > len) 1713 copy = len; 1714 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1715 goto fault; 1716 if ((len -= copy) == 0) 1717 return 0; 1718 offset += copy; 1719 to += copy; 1720 } 1721 start = end; 1722 } 1723 1724 if (!len) 1725 return 0; 1726 1727 fault: 1728 return -EFAULT; 1729 } 1730 EXPORT_SYMBOL(skb_copy_bits); 1731 1732 /* 1733 * Callback from splice_to_pipe(), if we need to release some pages 1734 * at the end of the spd in case we error'ed out in filling the pipe. 1735 */ 1736 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1737 { 1738 put_page(spd->pages[i]); 1739 } 1740 1741 static struct page *linear_to_page(struct page *page, unsigned int *len, 1742 unsigned int *offset, 1743 struct sock *sk) 1744 { 1745 struct page_frag *pfrag = sk_page_frag(sk); 1746 1747 if (!sk_page_frag_refill(sk, pfrag)) 1748 return NULL; 1749 1750 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1751 1752 memcpy(page_address(pfrag->page) + pfrag->offset, 1753 page_address(page) + *offset, *len); 1754 *offset = pfrag->offset; 1755 pfrag->offset += *len; 1756 1757 return pfrag->page; 1758 } 1759 1760 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1761 struct page *page, 1762 unsigned int offset) 1763 { 1764 return spd->nr_pages && 1765 spd->pages[spd->nr_pages - 1] == page && 1766 (spd->partial[spd->nr_pages - 1].offset + 1767 spd->partial[spd->nr_pages - 1].len == offset); 1768 } 1769 1770 /* 1771 * Fill page/offset/length into spd, if it can hold more pages. 1772 */ 1773 static bool spd_fill_page(struct splice_pipe_desc *spd, 1774 struct pipe_inode_info *pipe, struct page *page, 1775 unsigned int *len, unsigned int offset, 1776 bool linear, 1777 struct sock *sk) 1778 { 1779 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1780 return true; 1781 1782 if (linear) { 1783 page = linear_to_page(page, len, &offset, sk); 1784 if (!page) 1785 return true; 1786 } 1787 if (spd_can_coalesce(spd, page, offset)) { 1788 spd->partial[spd->nr_pages - 1].len += *len; 1789 return false; 1790 } 1791 get_page(page); 1792 spd->pages[spd->nr_pages] = page; 1793 spd->partial[spd->nr_pages].len = *len; 1794 spd->partial[spd->nr_pages].offset = offset; 1795 spd->nr_pages++; 1796 1797 return false; 1798 } 1799 1800 static bool __splice_segment(struct page *page, unsigned int poff, 1801 unsigned int plen, unsigned int *off, 1802 unsigned int *len, 1803 struct splice_pipe_desc *spd, bool linear, 1804 struct sock *sk, 1805 struct pipe_inode_info *pipe) 1806 { 1807 if (!*len) 1808 return true; 1809 1810 /* skip this segment if already processed */ 1811 if (*off >= plen) { 1812 *off -= plen; 1813 return false; 1814 } 1815 1816 /* ignore any bits we already processed */ 1817 poff += *off; 1818 plen -= *off; 1819 *off = 0; 1820 1821 do { 1822 unsigned int flen = min(*len, plen); 1823 1824 if (spd_fill_page(spd, pipe, page, &flen, poff, 1825 linear, sk)) 1826 return true; 1827 poff += flen; 1828 plen -= flen; 1829 *len -= flen; 1830 } while (*len && plen); 1831 1832 return false; 1833 } 1834 1835 /* 1836 * Map linear and fragment data from the skb to spd. It reports true if the 1837 * pipe is full or if we already spliced the requested length. 1838 */ 1839 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1840 unsigned int *offset, unsigned int *len, 1841 struct splice_pipe_desc *spd, struct sock *sk) 1842 { 1843 int seg; 1844 1845 /* map the linear part : 1846 * If skb->head_frag is set, this 'linear' part is backed by a 1847 * fragment, and if the head is not shared with any clones then 1848 * we can avoid a copy since we own the head portion of this page. 1849 */ 1850 if (__splice_segment(virt_to_page(skb->data), 1851 (unsigned long) skb->data & (PAGE_SIZE - 1), 1852 skb_headlen(skb), 1853 offset, len, spd, 1854 skb_head_is_locked(skb), 1855 sk, pipe)) 1856 return true; 1857 1858 /* 1859 * then map the fragments 1860 */ 1861 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1862 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1863 1864 if (__splice_segment(skb_frag_page(f), 1865 f->page_offset, skb_frag_size(f), 1866 offset, len, spd, false, sk, pipe)) 1867 return true; 1868 } 1869 1870 return false; 1871 } 1872 1873 ssize_t skb_socket_splice(struct sock *sk, 1874 struct pipe_inode_info *pipe, 1875 struct splice_pipe_desc *spd) 1876 { 1877 int ret; 1878 1879 /* Drop the socket lock, otherwise we have reverse 1880 * locking dependencies between sk_lock and i_mutex 1881 * here as compared to sendfile(). We enter here 1882 * with the socket lock held, and splice_to_pipe() will 1883 * grab the pipe inode lock. For sendfile() emulation, 1884 * we call into ->sendpage() with the i_mutex lock held 1885 * and networking will grab the socket lock. 1886 */ 1887 release_sock(sk); 1888 ret = splice_to_pipe(pipe, spd); 1889 lock_sock(sk); 1890 1891 return ret; 1892 } 1893 1894 /* 1895 * Map data from the skb to a pipe. Should handle both the linear part, 1896 * the fragments, and the frag list. It does NOT handle frag lists within 1897 * the frag list, if such a thing exists. We'd probably need to recurse to 1898 * handle that cleanly. 1899 */ 1900 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 1901 struct pipe_inode_info *pipe, unsigned int tlen, 1902 unsigned int flags, 1903 ssize_t (*splice_cb)(struct sock *, 1904 struct pipe_inode_info *, 1905 struct splice_pipe_desc *)) 1906 { 1907 struct partial_page partial[MAX_SKB_FRAGS]; 1908 struct page *pages[MAX_SKB_FRAGS]; 1909 struct splice_pipe_desc spd = { 1910 .pages = pages, 1911 .partial = partial, 1912 .nr_pages_max = MAX_SKB_FRAGS, 1913 .flags = flags, 1914 .ops = &nosteal_pipe_buf_ops, 1915 .spd_release = sock_spd_release, 1916 }; 1917 struct sk_buff *frag_iter; 1918 int ret = 0; 1919 1920 /* 1921 * __skb_splice_bits() only fails if the output has no room left, 1922 * so no point in going over the frag_list for the error case. 1923 */ 1924 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1925 goto done; 1926 else if (!tlen) 1927 goto done; 1928 1929 /* 1930 * now see if we have a frag_list to map 1931 */ 1932 skb_walk_frags(skb, frag_iter) { 1933 if (!tlen) 1934 break; 1935 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1936 break; 1937 } 1938 1939 done: 1940 if (spd.nr_pages) 1941 ret = splice_cb(sk, pipe, &spd); 1942 1943 return ret; 1944 } 1945 EXPORT_SYMBOL_GPL(skb_splice_bits); 1946 1947 /** 1948 * skb_store_bits - store bits from kernel buffer to skb 1949 * @skb: destination buffer 1950 * @offset: offset in destination 1951 * @from: source buffer 1952 * @len: number of bytes to copy 1953 * 1954 * Copy the specified number of bytes from the source buffer to the 1955 * destination skb. This function handles all the messy bits of 1956 * traversing fragment lists and such. 1957 */ 1958 1959 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1960 { 1961 int start = skb_headlen(skb); 1962 struct sk_buff *frag_iter; 1963 int i, copy; 1964 1965 if (offset > (int)skb->len - len) 1966 goto fault; 1967 1968 if ((copy = start - offset) > 0) { 1969 if (copy > len) 1970 copy = len; 1971 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1972 if ((len -= copy) == 0) 1973 return 0; 1974 offset += copy; 1975 from += copy; 1976 } 1977 1978 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1979 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1980 int end; 1981 1982 WARN_ON(start > offset + len); 1983 1984 end = start + skb_frag_size(frag); 1985 if ((copy = end - offset) > 0) { 1986 u8 *vaddr; 1987 1988 if (copy > len) 1989 copy = len; 1990 1991 vaddr = kmap_atomic(skb_frag_page(frag)); 1992 memcpy(vaddr + frag->page_offset + offset - start, 1993 from, copy); 1994 kunmap_atomic(vaddr); 1995 1996 if ((len -= copy) == 0) 1997 return 0; 1998 offset += copy; 1999 from += copy; 2000 } 2001 start = end; 2002 } 2003 2004 skb_walk_frags(skb, frag_iter) { 2005 int end; 2006 2007 WARN_ON(start > offset + len); 2008 2009 end = start + frag_iter->len; 2010 if ((copy = end - offset) > 0) { 2011 if (copy > len) 2012 copy = len; 2013 if (skb_store_bits(frag_iter, offset - start, 2014 from, copy)) 2015 goto fault; 2016 if ((len -= copy) == 0) 2017 return 0; 2018 offset += copy; 2019 from += copy; 2020 } 2021 start = end; 2022 } 2023 if (!len) 2024 return 0; 2025 2026 fault: 2027 return -EFAULT; 2028 } 2029 EXPORT_SYMBOL(skb_store_bits); 2030 2031 /* Checksum skb data. */ 2032 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2033 __wsum csum, const struct skb_checksum_ops *ops) 2034 { 2035 int start = skb_headlen(skb); 2036 int i, copy = start - offset; 2037 struct sk_buff *frag_iter; 2038 int pos = 0; 2039 2040 /* Checksum header. */ 2041 if (copy > 0) { 2042 if (copy > len) 2043 copy = len; 2044 csum = ops->update(skb->data + offset, copy, csum); 2045 if ((len -= copy) == 0) 2046 return csum; 2047 offset += copy; 2048 pos = copy; 2049 } 2050 2051 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2052 int end; 2053 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2054 2055 WARN_ON(start > offset + len); 2056 2057 end = start + skb_frag_size(frag); 2058 if ((copy = end - offset) > 0) { 2059 __wsum csum2; 2060 u8 *vaddr; 2061 2062 if (copy > len) 2063 copy = len; 2064 vaddr = kmap_atomic(skb_frag_page(frag)); 2065 csum2 = ops->update(vaddr + frag->page_offset + 2066 offset - start, copy, 0); 2067 kunmap_atomic(vaddr); 2068 csum = ops->combine(csum, csum2, pos, copy); 2069 if (!(len -= copy)) 2070 return csum; 2071 offset += copy; 2072 pos += copy; 2073 } 2074 start = end; 2075 } 2076 2077 skb_walk_frags(skb, frag_iter) { 2078 int end; 2079 2080 WARN_ON(start > offset + len); 2081 2082 end = start + frag_iter->len; 2083 if ((copy = end - offset) > 0) { 2084 __wsum csum2; 2085 if (copy > len) 2086 copy = len; 2087 csum2 = __skb_checksum(frag_iter, offset - start, 2088 copy, 0, ops); 2089 csum = ops->combine(csum, csum2, pos, copy); 2090 if ((len -= copy) == 0) 2091 return csum; 2092 offset += copy; 2093 pos += copy; 2094 } 2095 start = end; 2096 } 2097 BUG_ON(len); 2098 2099 return csum; 2100 } 2101 EXPORT_SYMBOL(__skb_checksum); 2102 2103 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2104 int len, __wsum csum) 2105 { 2106 const struct skb_checksum_ops ops = { 2107 .update = csum_partial_ext, 2108 .combine = csum_block_add_ext, 2109 }; 2110 2111 return __skb_checksum(skb, offset, len, csum, &ops); 2112 } 2113 EXPORT_SYMBOL(skb_checksum); 2114 2115 /* Both of above in one bottle. */ 2116 2117 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2118 u8 *to, int len, __wsum csum) 2119 { 2120 int start = skb_headlen(skb); 2121 int i, copy = start - offset; 2122 struct sk_buff *frag_iter; 2123 int pos = 0; 2124 2125 /* Copy header. */ 2126 if (copy > 0) { 2127 if (copy > len) 2128 copy = len; 2129 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2130 copy, csum); 2131 if ((len -= copy) == 0) 2132 return csum; 2133 offset += copy; 2134 to += copy; 2135 pos = copy; 2136 } 2137 2138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2139 int end; 2140 2141 WARN_ON(start > offset + len); 2142 2143 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2144 if ((copy = end - offset) > 0) { 2145 __wsum csum2; 2146 u8 *vaddr; 2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2148 2149 if (copy > len) 2150 copy = len; 2151 vaddr = kmap_atomic(skb_frag_page(frag)); 2152 csum2 = csum_partial_copy_nocheck(vaddr + 2153 frag->page_offset + 2154 offset - start, to, 2155 copy, 0); 2156 kunmap_atomic(vaddr); 2157 csum = csum_block_add(csum, csum2, pos); 2158 if (!(len -= copy)) 2159 return csum; 2160 offset += copy; 2161 to += copy; 2162 pos += copy; 2163 } 2164 start = end; 2165 } 2166 2167 skb_walk_frags(skb, frag_iter) { 2168 __wsum csum2; 2169 int end; 2170 2171 WARN_ON(start > offset + len); 2172 2173 end = start + frag_iter->len; 2174 if ((copy = end - offset) > 0) { 2175 if (copy > len) 2176 copy = len; 2177 csum2 = skb_copy_and_csum_bits(frag_iter, 2178 offset - start, 2179 to, copy, 0); 2180 csum = csum_block_add(csum, csum2, pos); 2181 if ((len -= copy) == 0) 2182 return csum; 2183 offset += copy; 2184 to += copy; 2185 pos += copy; 2186 } 2187 start = end; 2188 } 2189 BUG_ON(len); 2190 return csum; 2191 } 2192 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2193 2194 /** 2195 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2196 * @from: source buffer 2197 * 2198 * Calculates the amount of linear headroom needed in the 'to' skb passed 2199 * into skb_zerocopy(). 2200 */ 2201 unsigned int 2202 skb_zerocopy_headlen(const struct sk_buff *from) 2203 { 2204 unsigned int hlen = 0; 2205 2206 if (!from->head_frag || 2207 skb_headlen(from) < L1_CACHE_BYTES || 2208 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2209 hlen = skb_headlen(from); 2210 2211 if (skb_has_frag_list(from)) 2212 hlen = from->len; 2213 2214 return hlen; 2215 } 2216 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2217 2218 /** 2219 * skb_zerocopy - Zero copy skb to skb 2220 * @to: destination buffer 2221 * @from: source buffer 2222 * @len: number of bytes to copy from source buffer 2223 * @hlen: size of linear headroom in destination buffer 2224 * 2225 * Copies up to `len` bytes from `from` to `to` by creating references 2226 * to the frags in the source buffer. 2227 * 2228 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2229 * headroom in the `to` buffer. 2230 * 2231 * Return value: 2232 * 0: everything is OK 2233 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2234 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2235 */ 2236 int 2237 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2238 { 2239 int i, j = 0; 2240 int plen = 0; /* length of skb->head fragment */ 2241 int ret; 2242 struct page *page; 2243 unsigned int offset; 2244 2245 BUG_ON(!from->head_frag && !hlen); 2246 2247 /* dont bother with small payloads */ 2248 if (len <= skb_tailroom(to)) 2249 return skb_copy_bits(from, 0, skb_put(to, len), len); 2250 2251 if (hlen) { 2252 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2253 if (unlikely(ret)) 2254 return ret; 2255 len -= hlen; 2256 } else { 2257 plen = min_t(int, skb_headlen(from), len); 2258 if (plen) { 2259 page = virt_to_head_page(from->head); 2260 offset = from->data - (unsigned char *)page_address(page); 2261 __skb_fill_page_desc(to, 0, page, offset, plen); 2262 get_page(page); 2263 j = 1; 2264 len -= plen; 2265 } 2266 } 2267 2268 to->truesize += len + plen; 2269 to->len += len + plen; 2270 to->data_len += len + plen; 2271 2272 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2273 skb_tx_error(from); 2274 return -ENOMEM; 2275 } 2276 2277 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2278 if (!len) 2279 break; 2280 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2281 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2282 len -= skb_shinfo(to)->frags[j].size; 2283 skb_frag_ref(to, j); 2284 j++; 2285 } 2286 skb_shinfo(to)->nr_frags = j; 2287 2288 return 0; 2289 } 2290 EXPORT_SYMBOL_GPL(skb_zerocopy); 2291 2292 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2293 { 2294 __wsum csum; 2295 long csstart; 2296 2297 if (skb->ip_summed == CHECKSUM_PARTIAL) 2298 csstart = skb_checksum_start_offset(skb); 2299 else 2300 csstart = skb_headlen(skb); 2301 2302 BUG_ON(csstart > skb_headlen(skb)); 2303 2304 skb_copy_from_linear_data(skb, to, csstart); 2305 2306 csum = 0; 2307 if (csstart != skb->len) 2308 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2309 skb->len - csstart, 0); 2310 2311 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2312 long csstuff = csstart + skb->csum_offset; 2313 2314 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2315 } 2316 } 2317 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2318 2319 /** 2320 * skb_dequeue - remove from the head of the queue 2321 * @list: list to dequeue from 2322 * 2323 * Remove the head of the list. The list lock is taken so the function 2324 * may be used safely with other locking list functions. The head item is 2325 * returned or %NULL if the list is empty. 2326 */ 2327 2328 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2329 { 2330 unsigned long flags; 2331 struct sk_buff *result; 2332 2333 spin_lock_irqsave(&list->lock, flags); 2334 result = __skb_dequeue(list); 2335 spin_unlock_irqrestore(&list->lock, flags); 2336 return result; 2337 } 2338 EXPORT_SYMBOL(skb_dequeue); 2339 2340 /** 2341 * skb_dequeue_tail - remove from the tail of the queue 2342 * @list: list to dequeue from 2343 * 2344 * Remove the tail of the list. The list lock is taken so the function 2345 * may be used safely with other locking list functions. The tail item is 2346 * returned or %NULL if the list is empty. 2347 */ 2348 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2349 { 2350 unsigned long flags; 2351 struct sk_buff *result; 2352 2353 spin_lock_irqsave(&list->lock, flags); 2354 result = __skb_dequeue_tail(list); 2355 spin_unlock_irqrestore(&list->lock, flags); 2356 return result; 2357 } 2358 EXPORT_SYMBOL(skb_dequeue_tail); 2359 2360 /** 2361 * skb_queue_purge - empty a list 2362 * @list: list to empty 2363 * 2364 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2365 * the list and one reference dropped. This function takes the list 2366 * lock and is atomic with respect to other list locking functions. 2367 */ 2368 void skb_queue_purge(struct sk_buff_head *list) 2369 { 2370 struct sk_buff *skb; 2371 while ((skb = skb_dequeue(list)) != NULL) 2372 kfree_skb(skb); 2373 } 2374 EXPORT_SYMBOL(skb_queue_purge); 2375 2376 /** 2377 * skb_queue_head - queue a buffer at the list head 2378 * @list: list to use 2379 * @newsk: buffer to queue 2380 * 2381 * Queue a buffer at the start of the list. This function takes the 2382 * list lock and can be used safely with other locking &sk_buff functions 2383 * safely. 2384 * 2385 * A buffer cannot be placed on two lists at the same time. 2386 */ 2387 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2388 { 2389 unsigned long flags; 2390 2391 spin_lock_irqsave(&list->lock, flags); 2392 __skb_queue_head(list, newsk); 2393 spin_unlock_irqrestore(&list->lock, flags); 2394 } 2395 EXPORT_SYMBOL(skb_queue_head); 2396 2397 /** 2398 * skb_queue_tail - queue a buffer at the list tail 2399 * @list: list to use 2400 * @newsk: buffer to queue 2401 * 2402 * Queue a buffer at the tail of the list. This function takes the 2403 * list lock and can be used safely with other locking &sk_buff functions 2404 * safely. 2405 * 2406 * A buffer cannot be placed on two lists at the same time. 2407 */ 2408 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2409 { 2410 unsigned long flags; 2411 2412 spin_lock_irqsave(&list->lock, flags); 2413 __skb_queue_tail(list, newsk); 2414 spin_unlock_irqrestore(&list->lock, flags); 2415 } 2416 EXPORT_SYMBOL(skb_queue_tail); 2417 2418 /** 2419 * skb_unlink - remove a buffer from a list 2420 * @skb: buffer to remove 2421 * @list: list to use 2422 * 2423 * Remove a packet from a list. The list locks are taken and this 2424 * function is atomic with respect to other list locked calls 2425 * 2426 * You must know what list the SKB is on. 2427 */ 2428 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2429 { 2430 unsigned long flags; 2431 2432 spin_lock_irqsave(&list->lock, flags); 2433 __skb_unlink(skb, list); 2434 spin_unlock_irqrestore(&list->lock, flags); 2435 } 2436 EXPORT_SYMBOL(skb_unlink); 2437 2438 /** 2439 * skb_append - append a buffer 2440 * @old: buffer to insert after 2441 * @newsk: buffer to insert 2442 * @list: list to use 2443 * 2444 * Place a packet after a given packet in a list. The list locks are taken 2445 * and this function is atomic with respect to other list locked calls. 2446 * A buffer cannot be placed on two lists at the same time. 2447 */ 2448 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2449 { 2450 unsigned long flags; 2451 2452 spin_lock_irqsave(&list->lock, flags); 2453 __skb_queue_after(list, old, newsk); 2454 spin_unlock_irqrestore(&list->lock, flags); 2455 } 2456 EXPORT_SYMBOL(skb_append); 2457 2458 /** 2459 * skb_insert - insert a buffer 2460 * @old: buffer to insert before 2461 * @newsk: buffer to insert 2462 * @list: list to use 2463 * 2464 * Place a packet before a given packet in a list. The list locks are 2465 * taken and this function is atomic with respect to other list locked 2466 * calls. 2467 * 2468 * A buffer cannot be placed on two lists at the same time. 2469 */ 2470 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2471 { 2472 unsigned long flags; 2473 2474 spin_lock_irqsave(&list->lock, flags); 2475 __skb_insert(newsk, old->prev, old, list); 2476 spin_unlock_irqrestore(&list->lock, flags); 2477 } 2478 EXPORT_SYMBOL(skb_insert); 2479 2480 static inline void skb_split_inside_header(struct sk_buff *skb, 2481 struct sk_buff* skb1, 2482 const u32 len, const int pos) 2483 { 2484 int i; 2485 2486 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2487 pos - len); 2488 /* And move data appendix as is. */ 2489 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2490 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2491 2492 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2493 skb_shinfo(skb)->nr_frags = 0; 2494 skb1->data_len = skb->data_len; 2495 skb1->len += skb1->data_len; 2496 skb->data_len = 0; 2497 skb->len = len; 2498 skb_set_tail_pointer(skb, len); 2499 } 2500 2501 static inline void skb_split_no_header(struct sk_buff *skb, 2502 struct sk_buff* skb1, 2503 const u32 len, int pos) 2504 { 2505 int i, k = 0; 2506 const int nfrags = skb_shinfo(skb)->nr_frags; 2507 2508 skb_shinfo(skb)->nr_frags = 0; 2509 skb1->len = skb1->data_len = skb->len - len; 2510 skb->len = len; 2511 skb->data_len = len - pos; 2512 2513 for (i = 0; i < nfrags; i++) { 2514 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2515 2516 if (pos + size > len) { 2517 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2518 2519 if (pos < len) { 2520 /* Split frag. 2521 * We have two variants in this case: 2522 * 1. Move all the frag to the second 2523 * part, if it is possible. F.e. 2524 * this approach is mandatory for TUX, 2525 * where splitting is expensive. 2526 * 2. Split is accurately. We make this. 2527 */ 2528 skb_frag_ref(skb, i); 2529 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2530 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2531 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2532 skb_shinfo(skb)->nr_frags++; 2533 } 2534 k++; 2535 } else 2536 skb_shinfo(skb)->nr_frags++; 2537 pos += size; 2538 } 2539 skb_shinfo(skb1)->nr_frags = k; 2540 } 2541 2542 /** 2543 * skb_split - Split fragmented skb to two parts at length len. 2544 * @skb: the buffer to split 2545 * @skb1: the buffer to receive the second part 2546 * @len: new length for skb 2547 */ 2548 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2549 { 2550 int pos = skb_headlen(skb); 2551 2552 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2553 if (len < pos) /* Split line is inside header. */ 2554 skb_split_inside_header(skb, skb1, len, pos); 2555 else /* Second chunk has no header, nothing to copy. */ 2556 skb_split_no_header(skb, skb1, len, pos); 2557 } 2558 EXPORT_SYMBOL(skb_split); 2559 2560 /* Shifting from/to a cloned skb is a no-go. 2561 * 2562 * Caller cannot keep skb_shinfo related pointers past calling here! 2563 */ 2564 static int skb_prepare_for_shift(struct sk_buff *skb) 2565 { 2566 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2567 } 2568 2569 /** 2570 * skb_shift - Shifts paged data partially from skb to another 2571 * @tgt: buffer into which tail data gets added 2572 * @skb: buffer from which the paged data comes from 2573 * @shiftlen: shift up to this many bytes 2574 * 2575 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2576 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2577 * It's up to caller to free skb if everything was shifted. 2578 * 2579 * If @tgt runs out of frags, the whole operation is aborted. 2580 * 2581 * Skb cannot include anything else but paged data while tgt is allowed 2582 * to have non-paged data as well. 2583 * 2584 * TODO: full sized shift could be optimized but that would need 2585 * specialized skb free'er to handle frags without up-to-date nr_frags. 2586 */ 2587 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2588 { 2589 int from, to, merge, todo; 2590 struct skb_frag_struct *fragfrom, *fragto; 2591 2592 BUG_ON(shiftlen > skb->len); 2593 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2594 2595 todo = shiftlen; 2596 from = 0; 2597 to = skb_shinfo(tgt)->nr_frags; 2598 fragfrom = &skb_shinfo(skb)->frags[from]; 2599 2600 /* Actual merge is delayed until the point when we know we can 2601 * commit all, so that we don't have to undo partial changes 2602 */ 2603 if (!to || 2604 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2605 fragfrom->page_offset)) { 2606 merge = -1; 2607 } else { 2608 merge = to - 1; 2609 2610 todo -= skb_frag_size(fragfrom); 2611 if (todo < 0) { 2612 if (skb_prepare_for_shift(skb) || 2613 skb_prepare_for_shift(tgt)) 2614 return 0; 2615 2616 /* All previous frag pointers might be stale! */ 2617 fragfrom = &skb_shinfo(skb)->frags[from]; 2618 fragto = &skb_shinfo(tgt)->frags[merge]; 2619 2620 skb_frag_size_add(fragto, shiftlen); 2621 skb_frag_size_sub(fragfrom, shiftlen); 2622 fragfrom->page_offset += shiftlen; 2623 2624 goto onlymerged; 2625 } 2626 2627 from++; 2628 } 2629 2630 /* Skip full, not-fitting skb to avoid expensive operations */ 2631 if ((shiftlen == skb->len) && 2632 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2633 return 0; 2634 2635 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2636 return 0; 2637 2638 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2639 if (to == MAX_SKB_FRAGS) 2640 return 0; 2641 2642 fragfrom = &skb_shinfo(skb)->frags[from]; 2643 fragto = &skb_shinfo(tgt)->frags[to]; 2644 2645 if (todo >= skb_frag_size(fragfrom)) { 2646 *fragto = *fragfrom; 2647 todo -= skb_frag_size(fragfrom); 2648 from++; 2649 to++; 2650 2651 } else { 2652 __skb_frag_ref(fragfrom); 2653 fragto->page = fragfrom->page; 2654 fragto->page_offset = fragfrom->page_offset; 2655 skb_frag_size_set(fragto, todo); 2656 2657 fragfrom->page_offset += todo; 2658 skb_frag_size_sub(fragfrom, todo); 2659 todo = 0; 2660 2661 to++; 2662 break; 2663 } 2664 } 2665 2666 /* Ready to "commit" this state change to tgt */ 2667 skb_shinfo(tgt)->nr_frags = to; 2668 2669 if (merge >= 0) { 2670 fragfrom = &skb_shinfo(skb)->frags[0]; 2671 fragto = &skb_shinfo(tgt)->frags[merge]; 2672 2673 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2674 __skb_frag_unref(fragfrom); 2675 } 2676 2677 /* Reposition in the original skb */ 2678 to = 0; 2679 while (from < skb_shinfo(skb)->nr_frags) 2680 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2681 skb_shinfo(skb)->nr_frags = to; 2682 2683 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2684 2685 onlymerged: 2686 /* Most likely the tgt won't ever need its checksum anymore, skb on 2687 * the other hand might need it if it needs to be resent 2688 */ 2689 tgt->ip_summed = CHECKSUM_PARTIAL; 2690 skb->ip_summed = CHECKSUM_PARTIAL; 2691 2692 /* Yak, is it really working this way? Some helper please? */ 2693 skb->len -= shiftlen; 2694 skb->data_len -= shiftlen; 2695 skb->truesize -= shiftlen; 2696 tgt->len += shiftlen; 2697 tgt->data_len += shiftlen; 2698 tgt->truesize += shiftlen; 2699 2700 return shiftlen; 2701 } 2702 2703 /** 2704 * skb_prepare_seq_read - Prepare a sequential read of skb data 2705 * @skb: the buffer to read 2706 * @from: lower offset of data to be read 2707 * @to: upper offset of data to be read 2708 * @st: state variable 2709 * 2710 * Initializes the specified state variable. Must be called before 2711 * invoking skb_seq_read() for the first time. 2712 */ 2713 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2714 unsigned int to, struct skb_seq_state *st) 2715 { 2716 st->lower_offset = from; 2717 st->upper_offset = to; 2718 st->root_skb = st->cur_skb = skb; 2719 st->frag_idx = st->stepped_offset = 0; 2720 st->frag_data = NULL; 2721 } 2722 EXPORT_SYMBOL(skb_prepare_seq_read); 2723 2724 /** 2725 * skb_seq_read - Sequentially read skb data 2726 * @consumed: number of bytes consumed by the caller so far 2727 * @data: destination pointer for data to be returned 2728 * @st: state variable 2729 * 2730 * Reads a block of skb data at @consumed relative to the 2731 * lower offset specified to skb_prepare_seq_read(). Assigns 2732 * the head of the data block to @data and returns the length 2733 * of the block or 0 if the end of the skb data or the upper 2734 * offset has been reached. 2735 * 2736 * The caller is not required to consume all of the data 2737 * returned, i.e. @consumed is typically set to the number 2738 * of bytes already consumed and the next call to 2739 * skb_seq_read() will return the remaining part of the block. 2740 * 2741 * Note 1: The size of each block of data returned can be arbitrary, 2742 * this limitation is the cost for zerocopy sequential 2743 * reads of potentially non linear data. 2744 * 2745 * Note 2: Fragment lists within fragments are not implemented 2746 * at the moment, state->root_skb could be replaced with 2747 * a stack for this purpose. 2748 */ 2749 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2750 struct skb_seq_state *st) 2751 { 2752 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2753 skb_frag_t *frag; 2754 2755 if (unlikely(abs_offset >= st->upper_offset)) { 2756 if (st->frag_data) { 2757 kunmap_atomic(st->frag_data); 2758 st->frag_data = NULL; 2759 } 2760 return 0; 2761 } 2762 2763 next_skb: 2764 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2765 2766 if (abs_offset < block_limit && !st->frag_data) { 2767 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2768 return block_limit - abs_offset; 2769 } 2770 2771 if (st->frag_idx == 0 && !st->frag_data) 2772 st->stepped_offset += skb_headlen(st->cur_skb); 2773 2774 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2775 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2776 block_limit = skb_frag_size(frag) + st->stepped_offset; 2777 2778 if (abs_offset < block_limit) { 2779 if (!st->frag_data) 2780 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2781 2782 *data = (u8 *) st->frag_data + frag->page_offset + 2783 (abs_offset - st->stepped_offset); 2784 2785 return block_limit - abs_offset; 2786 } 2787 2788 if (st->frag_data) { 2789 kunmap_atomic(st->frag_data); 2790 st->frag_data = NULL; 2791 } 2792 2793 st->frag_idx++; 2794 st->stepped_offset += skb_frag_size(frag); 2795 } 2796 2797 if (st->frag_data) { 2798 kunmap_atomic(st->frag_data); 2799 st->frag_data = NULL; 2800 } 2801 2802 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2803 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2804 st->frag_idx = 0; 2805 goto next_skb; 2806 } else if (st->cur_skb->next) { 2807 st->cur_skb = st->cur_skb->next; 2808 st->frag_idx = 0; 2809 goto next_skb; 2810 } 2811 2812 return 0; 2813 } 2814 EXPORT_SYMBOL(skb_seq_read); 2815 2816 /** 2817 * skb_abort_seq_read - Abort a sequential read of skb data 2818 * @st: state variable 2819 * 2820 * Must be called if skb_seq_read() was not called until it 2821 * returned 0. 2822 */ 2823 void skb_abort_seq_read(struct skb_seq_state *st) 2824 { 2825 if (st->frag_data) 2826 kunmap_atomic(st->frag_data); 2827 } 2828 EXPORT_SYMBOL(skb_abort_seq_read); 2829 2830 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2831 2832 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2833 struct ts_config *conf, 2834 struct ts_state *state) 2835 { 2836 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2837 } 2838 2839 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2840 { 2841 skb_abort_seq_read(TS_SKB_CB(state)); 2842 } 2843 2844 /** 2845 * skb_find_text - Find a text pattern in skb data 2846 * @skb: the buffer to look in 2847 * @from: search offset 2848 * @to: search limit 2849 * @config: textsearch configuration 2850 * 2851 * Finds a pattern in the skb data according to the specified 2852 * textsearch configuration. Use textsearch_next() to retrieve 2853 * subsequent occurrences of the pattern. Returns the offset 2854 * to the first occurrence or UINT_MAX if no match was found. 2855 */ 2856 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2857 unsigned int to, struct ts_config *config) 2858 { 2859 struct ts_state state; 2860 unsigned int ret; 2861 2862 config->get_next_block = skb_ts_get_next_block; 2863 config->finish = skb_ts_finish; 2864 2865 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 2866 2867 ret = textsearch_find(config, &state); 2868 return (ret <= to - from ? ret : UINT_MAX); 2869 } 2870 EXPORT_SYMBOL(skb_find_text); 2871 2872 /** 2873 * skb_append_datato_frags - append the user data to a skb 2874 * @sk: sock structure 2875 * @skb: skb structure to be appended with user data. 2876 * @getfrag: call back function to be used for getting the user data 2877 * @from: pointer to user message iov 2878 * @length: length of the iov message 2879 * 2880 * Description: This procedure append the user data in the fragment part 2881 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2882 */ 2883 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2884 int (*getfrag)(void *from, char *to, int offset, 2885 int len, int odd, struct sk_buff *skb), 2886 void *from, int length) 2887 { 2888 int frg_cnt = skb_shinfo(skb)->nr_frags; 2889 int copy; 2890 int offset = 0; 2891 int ret; 2892 struct page_frag *pfrag = ¤t->task_frag; 2893 2894 do { 2895 /* Return error if we don't have space for new frag */ 2896 if (frg_cnt >= MAX_SKB_FRAGS) 2897 return -EMSGSIZE; 2898 2899 if (!sk_page_frag_refill(sk, pfrag)) 2900 return -ENOMEM; 2901 2902 /* copy the user data to page */ 2903 copy = min_t(int, length, pfrag->size - pfrag->offset); 2904 2905 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2906 offset, copy, 0, skb); 2907 if (ret < 0) 2908 return -EFAULT; 2909 2910 /* copy was successful so update the size parameters */ 2911 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2912 copy); 2913 frg_cnt++; 2914 pfrag->offset += copy; 2915 get_page(pfrag->page); 2916 2917 skb->truesize += copy; 2918 atomic_add(copy, &sk->sk_wmem_alloc); 2919 skb->len += copy; 2920 skb->data_len += copy; 2921 offset += copy; 2922 length -= copy; 2923 2924 } while (length > 0); 2925 2926 return 0; 2927 } 2928 EXPORT_SYMBOL(skb_append_datato_frags); 2929 2930 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 2931 int offset, size_t size) 2932 { 2933 int i = skb_shinfo(skb)->nr_frags; 2934 2935 if (skb_can_coalesce(skb, i, page, offset)) { 2936 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 2937 } else if (i < MAX_SKB_FRAGS) { 2938 get_page(page); 2939 skb_fill_page_desc(skb, i, page, offset, size); 2940 } else { 2941 return -EMSGSIZE; 2942 } 2943 2944 return 0; 2945 } 2946 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 2947 2948 /** 2949 * skb_pull_rcsum - pull skb and update receive checksum 2950 * @skb: buffer to update 2951 * @len: length of data pulled 2952 * 2953 * This function performs an skb_pull on the packet and updates 2954 * the CHECKSUM_COMPLETE checksum. It should be used on 2955 * receive path processing instead of skb_pull unless you know 2956 * that the checksum difference is zero (e.g., a valid IP header) 2957 * or you are setting ip_summed to CHECKSUM_NONE. 2958 */ 2959 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2960 { 2961 unsigned char *data = skb->data; 2962 2963 BUG_ON(len > skb->len); 2964 __skb_pull(skb, len); 2965 skb_postpull_rcsum(skb, data, len); 2966 return skb->data; 2967 } 2968 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2969 2970 /** 2971 * skb_segment - Perform protocol segmentation on skb. 2972 * @head_skb: buffer to segment 2973 * @features: features for the output path (see dev->features) 2974 * 2975 * This function performs segmentation on the given skb. It returns 2976 * a pointer to the first in a list of new skbs for the segments. 2977 * In case of error it returns ERR_PTR(err). 2978 */ 2979 struct sk_buff *skb_segment(struct sk_buff *head_skb, 2980 netdev_features_t features) 2981 { 2982 struct sk_buff *segs = NULL; 2983 struct sk_buff *tail = NULL; 2984 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 2985 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 2986 unsigned int mss = skb_shinfo(head_skb)->gso_size; 2987 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 2988 struct sk_buff *frag_skb = head_skb; 2989 unsigned int offset = doffset; 2990 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 2991 unsigned int headroom; 2992 unsigned int len; 2993 __be16 proto; 2994 bool csum; 2995 int sg = !!(features & NETIF_F_SG); 2996 int nfrags = skb_shinfo(head_skb)->nr_frags; 2997 int err = -ENOMEM; 2998 int i = 0; 2999 int pos; 3000 int dummy; 3001 3002 __skb_push(head_skb, doffset); 3003 proto = skb_network_protocol(head_skb, &dummy); 3004 if (unlikely(!proto)) 3005 return ERR_PTR(-EINVAL); 3006 3007 csum = !head_skb->encap_hdr_csum && 3008 !!can_checksum_protocol(features, proto); 3009 3010 headroom = skb_headroom(head_skb); 3011 pos = skb_headlen(head_skb); 3012 3013 do { 3014 struct sk_buff *nskb; 3015 skb_frag_t *nskb_frag; 3016 int hsize; 3017 int size; 3018 3019 len = head_skb->len - offset; 3020 if (len > mss) 3021 len = mss; 3022 3023 hsize = skb_headlen(head_skb) - offset; 3024 if (hsize < 0) 3025 hsize = 0; 3026 if (hsize > len || !sg) 3027 hsize = len; 3028 3029 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3030 (skb_headlen(list_skb) == len || sg)) { 3031 BUG_ON(skb_headlen(list_skb) > len); 3032 3033 i = 0; 3034 nfrags = skb_shinfo(list_skb)->nr_frags; 3035 frag = skb_shinfo(list_skb)->frags; 3036 frag_skb = list_skb; 3037 pos += skb_headlen(list_skb); 3038 3039 while (pos < offset + len) { 3040 BUG_ON(i >= nfrags); 3041 3042 size = skb_frag_size(frag); 3043 if (pos + size > offset + len) 3044 break; 3045 3046 i++; 3047 pos += size; 3048 frag++; 3049 } 3050 3051 nskb = skb_clone(list_skb, GFP_ATOMIC); 3052 list_skb = list_skb->next; 3053 3054 if (unlikely(!nskb)) 3055 goto err; 3056 3057 if (unlikely(pskb_trim(nskb, len))) { 3058 kfree_skb(nskb); 3059 goto err; 3060 } 3061 3062 hsize = skb_end_offset(nskb); 3063 if (skb_cow_head(nskb, doffset + headroom)) { 3064 kfree_skb(nskb); 3065 goto err; 3066 } 3067 3068 nskb->truesize += skb_end_offset(nskb) - hsize; 3069 skb_release_head_state(nskb); 3070 __skb_push(nskb, doffset); 3071 } else { 3072 nskb = __alloc_skb(hsize + doffset + headroom, 3073 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3074 NUMA_NO_NODE); 3075 3076 if (unlikely(!nskb)) 3077 goto err; 3078 3079 skb_reserve(nskb, headroom); 3080 __skb_put(nskb, doffset); 3081 } 3082 3083 if (segs) 3084 tail->next = nskb; 3085 else 3086 segs = nskb; 3087 tail = nskb; 3088 3089 __copy_skb_header(nskb, head_skb); 3090 3091 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3092 skb_reset_mac_len(nskb); 3093 3094 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3095 nskb->data - tnl_hlen, 3096 doffset + tnl_hlen); 3097 3098 if (nskb->len == len + doffset) 3099 goto perform_csum_check; 3100 3101 if (!sg && !nskb->remcsum_offload) { 3102 nskb->ip_summed = CHECKSUM_NONE; 3103 nskb->csum = skb_copy_and_csum_bits(head_skb, offset, 3104 skb_put(nskb, len), 3105 len, 0); 3106 SKB_GSO_CB(nskb)->csum_start = 3107 skb_headroom(nskb) + doffset; 3108 continue; 3109 } 3110 3111 nskb_frag = skb_shinfo(nskb)->frags; 3112 3113 skb_copy_from_linear_data_offset(head_skb, offset, 3114 skb_put(nskb, hsize), hsize); 3115 3116 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 3117 SKBTX_SHARED_FRAG; 3118 3119 while (pos < offset + len) { 3120 if (i >= nfrags) { 3121 BUG_ON(skb_headlen(list_skb)); 3122 3123 i = 0; 3124 nfrags = skb_shinfo(list_skb)->nr_frags; 3125 frag = skb_shinfo(list_skb)->frags; 3126 frag_skb = list_skb; 3127 3128 BUG_ON(!nfrags); 3129 3130 list_skb = list_skb->next; 3131 } 3132 3133 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3134 MAX_SKB_FRAGS)) { 3135 net_warn_ratelimited( 3136 "skb_segment: too many frags: %u %u\n", 3137 pos, mss); 3138 goto err; 3139 } 3140 3141 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3142 goto err; 3143 3144 *nskb_frag = *frag; 3145 __skb_frag_ref(nskb_frag); 3146 size = skb_frag_size(nskb_frag); 3147 3148 if (pos < offset) { 3149 nskb_frag->page_offset += offset - pos; 3150 skb_frag_size_sub(nskb_frag, offset - pos); 3151 } 3152 3153 skb_shinfo(nskb)->nr_frags++; 3154 3155 if (pos + size <= offset + len) { 3156 i++; 3157 frag++; 3158 pos += size; 3159 } else { 3160 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3161 goto skip_fraglist; 3162 } 3163 3164 nskb_frag++; 3165 } 3166 3167 skip_fraglist: 3168 nskb->data_len = len - hsize; 3169 nskb->len += nskb->data_len; 3170 nskb->truesize += nskb->data_len; 3171 3172 perform_csum_check: 3173 if (!csum && !nskb->remcsum_offload) { 3174 nskb->csum = skb_checksum(nskb, doffset, 3175 nskb->len - doffset, 0); 3176 nskb->ip_summed = CHECKSUM_NONE; 3177 SKB_GSO_CB(nskb)->csum_start = 3178 skb_headroom(nskb) + doffset; 3179 } 3180 } while ((offset += len) < head_skb->len); 3181 3182 /* Some callers want to get the end of the list. 3183 * Put it in segs->prev to avoid walking the list. 3184 * (see validate_xmit_skb_list() for example) 3185 */ 3186 segs->prev = tail; 3187 3188 /* Following permits correct backpressure, for protocols 3189 * using skb_set_owner_w(). 3190 * Idea is to tranfert ownership from head_skb to last segment. 3191 */ 3192 if (head_skb->destructor == sock_wfree) { 3193 swap(tail->truesize, head_skb->truesize); 3194 swap(tail->destructor, head_skb->destructor); 3195 swap(tail->sk, head_skb->sk); 3196 } 3197 return segs; 3198 3199 err: 3200 kfree_skb_list(segs); 3201 return ERR_PTR(err); 3202 } 3203 EXPORT_SYMBOL_GPL(skb_segment); 3204 3205 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3206 { 3207 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3208 unsigned int offset = skb_gro_offset(skb); 3209 unsigned int headlen = skb_headlen(skb); 3210 unsigned int len = skb_gro_len(skb); 3211 struct sk_buff *lp, *p = *head; 3212 unsigned int delta_truesize; 3213 3214 if (unlikely(p->len + len >= 65536)) 3215 return -E2BIG; 3216 3217 lp = NAPI_GRO_CB(p)->last; 3218 pinfo = skb_shinfo(lp); 3219 3220 if (headlen <= offset) { 3221 skb_frag_t *frag; 3222 skb_frag_t *frag2; 3223 int i = skbinfo->nr_frags; 3224 int nr_frags = pinfo->nr_frags + i; 3225 3226 if (nr_frags > MAX_SKB_FRAGS) 3227 goto merge; 3228 3229 offset -= headlen; 3230 pinfo->nr_frags = nr_frags; 3231 skbinfo->nr_frags = 0; 3232 3233 frag = pinfo->frags + nr_frags; 3234 frag2 = skbinfo->frags + i; 3235 do { 3236 *--frag = *--frag2; 3237 } while (--i); 3238 3239 frag->page_offset += offset; 3240 skb_frag_size_sub(frag, offset); 3241 3242 /* all fragments truesize : remove (head size + sk_buff) */ 3243 delta_truesize = skb->truesize - 3244 SKB_TRUESIZE(skb_end_offset(skb)); 3245 3246 skb->truesize -= skb->data_len; 3247 skb->len -= skb->data_len; 3248 skb->data_len = 0; 3249 3250 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3251 goto done; 3252 } else if (skb->head_frag) { 3253 int nr_frags = pinfo->nr_frags; 3254 skb_frag_t *frag = pinfo->frags + nr_frags; 3255 struct page *page = virt_to_head_page(skb->head); 3256 unsigned int first_size = headlen - offset; 3257 unsigned int first_offset; 3258 3259 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3260 goto merge; 3261 3262 first_offset = skb->data - 3263 (unsigned char *)page_address(page) + 3264 offset; 3265 3266 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3267 3268 frag->page.p = page; 3269 frag->page_offset = first_offset; 3270 skb_frag_size_set(frag, first_size); 3271 3272 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3273 /* We dont need to clear skbinfo->nr_frags here */ 3274 3275 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3276 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3277 goto done; 3278 } 3279 3280 merge: 3281 delta_truesize = skb->truesize; 3282 if (offset > headlen) { 3283 unsigned int eat = offset - headlen; 3284 3285 skbinfo->frags[0].page_offset += eat; 3286 skb_frag_size_sub(&skbinfo->frags[0], eat); 3287 skb->data_len -= eat; 3288 skb->len -= eat; 3289 offset = headlen; 3290 } 3291 3292 __skb_pull(skb, offset); 3293 3294 if (NAPI_GRO_CB(p)->last == p) 3295 skb_shinfo(p)->frag_list = skb; 3296 else 3297 NAPI_GRO_CB(p)->last->next = skb; 3298 NAPI_GRO_CB(p)->last = skb; 3299 __skb_header_release(skb); 3300 lp = p; 3301 3302 done: 3303 NAPI_GRO_CB(p)->count++; 3304 p->data_len += len; 3305 p->truesize += delta_truesize; 3306 p->len += len; 3307 if (lp != p) { 3308 lp->data_len += len; 3309 lp->truesize += delta_truesize; 3310 lp->len += len; 3311 } 3312 NAPI_GRO_CB(skb)->same_flow = 1; 3313 return 0; 3314 } 3315 3316 void __init skb_init(void) 3317 { 3318 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3319 sizeof(struct sk_buff), 3320 0, 3321 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3322 NULL); 3323 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3324 sizeof(struct sk_buff_fclones), 3325 0, 3326 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3327 NULL); 3328 } 3329 3330 /** 3331 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3332 * @skb: Socket buffer containing the buffers to be mapped 3333 * @sg: The scatter-gather list to map into 3334 * @offset: The offset into the buffer's contents to start mapping 3335 * @len: Length of buffer space to be mapped 3336 * 3337 * Fill the specified scatter-gather list with mappings/pointers into a 3338 * region of the buffer space attached to a socket buffer. 3339 */ 3340 static int 3341 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3342 { 3343 int start = skb_headlen(skb); 3344 int i, copy = start - offset; 3345 struct sk_buff *frag_iter; 3346 int elt = 0; 3347 3348 if (copy > 0) { 3349 if (copy > len) 3350 copy = len; 3351 sg_set_buf(sg, skb->data + offset, copy); 3352 elt++; 3353 if ((len -= copy) == 0) 3354 return elt; 3355 offset += copy; 3356 } 3357 3358 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3359 int end; 3360 3361 WARN_ON(start > offset + len); 3362 3363 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3364 if ((copy = end - offset) > 0) { 3365 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3366 3367 if (copy > len) 3368 copy = len; 3369 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3370 frag->page_offset+offset-start); 3371 elt++; 3372 if (!(len -= copy)) 3373 return elt; 3374 offset += copy; 3375 } 3376 start = end; 3377 } 3378 3379 skb_walk_frags(skb, frag_iter) { 3380 int end; 3381 3382 WARN_ON(start > offset + len); 3383 3384 end = start + frag_iter->len; 3385 if ((copy = end - offset) > 0) { 3386 if (copy > len) 3387 copy = len; 3388 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3389 copy); 3390 if ((len -= copy) == 0) 3391 return elt; 3392 offset += copy; 3393 } 3394 start = end; 3395 } 3396 BUG_ON(len); 3397 return elt; 3398 } 3399 3400 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 3401 * sglist without mark the sg which contain last skb data as the end. 3402 * So the caller can mannipulate sg list as will when padding new data after 3403 * the first call without calling sg_unmark_end to expend sg list. 3404 * 3405 * Scenario to use skb_to_sgvec_nomark: 3406 * 1. sg_init_table 3407 * 2. skb_to_sgvec_nomark(payload1) 3408 * 3. skb_to_sgvec_nomark(payload2) 3409 * 3410 * This is equivalent to: 3411 * 1. sg_init_table 3412 * 2. skb_to_sgvec(payload1) 3413 * 3. sg_unmark_end 3414 * 4. skb_to_sgvec(payload2) 3415 * 3416 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 3417 * is more preferable. 3418 */ 3419 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 3420 int offset, int len) 3421 { 3422 return __skb_to_sgvec(skb, sg, offset, len); 3423 } 3424 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 3425 3426 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3427 { 3428 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3429 3430 sg_mark_end(&sg[nsg - 1]); 3431 3432 return nsg; 3433 } 3434 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3435 3436 /** 3437 * skb_cow_data - Check that a socket buffer's data buffers are writable 3438 * @skb: The socket buffer to check. 3439 * @tailbits: Amount of trailing space to be added 3440 * @trailer: Returned pointer to the skb where the @tailbits space begins 3441 * 3442 * Make sure that the data buffers attached to a socket buffer are 3443 * writable. If they are not, private copies are made of the data buffers 3444 * and the socket buffer is set to use these instead. 3445 * 3446 * If @tailbits is given, make sure that there is space to write @tailbits 3447 * bytes of data beyond current end of socket buffer. @trailer will be 3448 * set to point to the skb in which this space begins. 3449 * 3450 * The number of scatterlist elements required to completely map the 3451 * COW'd and extended socket buffer will be returned. 3452 */ 3453 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3454 { 3455 int copyflag; 3456 int elt; 3457 struct sk_buff *skb1, **skb_p; 3458 3459 /* If skb is cloned or its head is paged, reallocate 3460 * head pulling out all the pages (pages are considered not writable 3461 * at the moment even if they are anonymous). 3462 */ 3463 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3464 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3465 return -ENOMEM; 3466 3467 /* Easy case. Most of packets will go this way. */ 3468 if (!skb_has_frag_list(skb)) { 3469 /* A little of trouble, not enough of space for trailer. 3470 * This should not happen, when stack is tuned to generate 3471 * good frames. OK, on miss we reallocate and reserve even more 3472 * space, 128 bytes is fair. */ 3473 3474 if (skb_tailroom(skb) < tailbits && 3475 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3476 return -ENOMEM; 3477 3478 /* Voila! */ 3479 *trailer = skb; 3480 return 1; 3481 } 3482 3483 /* Misery. We are in troubles, going to mincer fragments... */ 3484 3485 elt = 1; 3486 skb_p = &skb_shinfo(skb)->frag_list; 3487 copyflag = 0; 3488 3489 while ((skb1 = *skb_p) != NULL) { 3490 int ntail = 0; 3491 3492 /* The fragment is partially pulled by someone, 3493 * this can happen on input. Copy it and everything 3494 * after it. */ 3495 3496 if (skb_shared(skb1)) 3497 copyflag = 1; 3498 3499 /* If the skb is the last, worry about trailer. */ 3500 3501 if (skb1->next == NULL && tailbits) { 3502 if (skb_shinfo(skb1)->nr_frags || 3503 skb_has_frag_list(skb1) || 3504 skb_tailroom(skb1) < tailbits) 3505 ntail = tailbits + 128; 3506 } 3507 3508 if (copyflag || 3509 skb_cloned(skb1) || 3510 ntail || 3511 skb_shinfo(skb1)->nr_frags || 3512 skb_has_frag_list(skb1)) { 3513 struct sk_buff *skb2; 3514 3515 /* Fuck, we are miserable poor guys... */ 3516 if (ntail == 0) 3517 skb2 = skb_copy(skb1, GFP_ATOMIC); 3518 else 3519 skb2 = skb_copy_expand(skb1, 3520 skb_headroom(skb1), 3521 ntail, 3522 GFP_ATOMIC); 3523 if (unlikely(skb2 == NULL)) 3524 return -ENOMEM; 3525 3526 if (skb1->sk) 3527 skb_set_owner_w(skb2, skb1->sk); 3528 3529 /* Looking around. Are we still alive? 3530 * OK, link new skb, drop old one */ 3531 3532 skb2->next = skb1->next; 3533 *skb_p = skb2; 3534 kfree_skb(skb1); 3535 skb1 = skb2; 3536 } 3537 elt++; 3538 *trailer = skb1; 3539 skb_p = &skb1->next; 3540 } 3541 3542 return elt; 3543 } 3544 EXPORT_SYMBOL_GPL(skb_cow_data); 3545 3546 static void sock_rmem_free(struct sk_buff *skb) 3547 { 3548 struct sock *sk = skb->sk; 3549 3550 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3551 } 3552 3553 /* 3554 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3555 */ 3556 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3557 { 3558 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3559 (unsigned int)sk->sk_rcvbuf) 3560 return -ENOMEM; 3561 3562 skb_orphan(skb); 3563 skb->sk = sk; 3564 skb->destructor = sock_rmem_free; 3565 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3566 3567 /* before exiting rcu section, make sure dst is refcounted */ 3568 skb_dst_force(skb); 3569 3570 skb_queue_tail(&sk->sk_error_queue, skb); 3571 if (!sock_flag(sk, SOCK_DEAD)) 3572 sk->sk_data_ready(sk); 3573 return 0; 3574 } 3575 EXPORT_SYMBOL(sock_queue_err_skb); 3576 3577 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 3578 { 3579 struct sk_buff_head *q = &sk->sk_error_queue; 3580 struct sk_buff *skb, *skb_next; 3581 unsigned long flags; 3582 int err = 0; 3583 3584 spin_lock_irqsave(&q->lock, flags); 3585 skb = __skb_dequeue(q); 3586 if (skb && (skb_next = skb_peek(q))) 3587 err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 3588 spin_unlock_irqrestore(&q->lock, flags); 3589 3590 sk->sk_err = err; 3591 if (err) 3592 sk->sk_error_report(sk); 3593 3594 return skb; 3595 } 3596 EXPORT_SYMBOL(sock_dequeue_err_skb); 3597 3598 /** 3599 * skb_clone_sk - create clone of skb, and take reference to socket 3600 * @skb: the skb to clone 3601 * 3602 * This function creates a clone of a buffer that holds a reference on 3603 * sk_refcnt. Buffers created via this function are meant to be 3604 * returned using sock_queue_err_skb, or free via kfree_skb. 3605 * 3606 * When passing buffers allocated with this function to sock_queue_err_skb 3607 * it is necessary to wrap the call with sock_hold/sock_put in order to 3608 * prevent the socket from being released prior to being enqueued on 3609 * the sk_error_queue. 3610 */ 3611 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 3612 { 3613 struct sock *sk = skb->sk; 3614 struct sk_buff *clone; 3615 3616 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) 3617 return NULL; 3618 3619 clone = skb_clone(skb, GFP_ATOMIC); 3620 if (!clone) { 3621 sock_put(sk); 3622 return NULL; 3623 } 3624 3625 clone->sk = sk; 3626 clone->destructor = sock_efree; 3627 3628 return clone; 3629 } 3630 EXPORT_SYMBOL(skb_clone_sk); 3631 3632 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 3633 struct sock *sk, 3634 int tstype) 3635 { 3636 struct sock_exterr_skb *serr; 3637 int err; 3638 3639 serr = SKB_EXT_ERR(skb); 3640 memset(serr, 0, sizeof(*serr)); 3641 serr->ee.ee_errno = ENOMSG; 3642 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3643 serr->ee.ee_info = tstype; 3644 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 3645 serr->ee.ee_data = skb_shinfo(skb)->tskey; 3646 if (sk->sk_protocol == IPPROTO_TCP) 3647 serr->ee.ee_data -= sk->sk_tskey; 3648 } 3649 3650 err = sock_queue_err_skb(sk, skb); 3651 3652 if (err) 3653 kfree_skb(skb); 3654 } 3655 3656 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 3657 { 3658 bool ret; 3659 3660 if (likely(sysctl_tstamp_allow_data || tsonly)) 3661 return true; 3662 3663 read_lock_bh(&sk->sk_callback_lock); 3664 ret = sk->sk_socket && sk->sk_socket->file && 3665 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 3666 read_unlock_bh(&sk->sk_callback_lock); 3667 return ret; 3668 } 3669 3670 void skb_complete_tx_timestamp(struct sk_buff *skb, 3671 struct skb_shared_hwtstamps *hwtstamps) 3672 { 3673 struct sock *sk = skb->sk; 3674 3675 if (!skb_may_tx_timestamp(sk, false)) 3676 return; 3677 3678 /* take a reference to prevent skb_orphan() from freeing the socket */ 3679 sock_hold(sk); 3680 3681 *skb_hwtstamps(skb) = *hwtstamps; 3682 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND); 3683 3684 sock_put(sk); 3685 } 3686 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 3687 3688 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3689 struct skb_shared_hwtstamps *hwtstamps, 3690 struct sock *sk, int tstype) 3691 { 3692 struct sk_buff *skb; 3693 bool tsonly; 3694 3695 if (!sk) 3696 return; 3697 3698 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 3699 if (!skb_may_tx_timestamp(sk, tsonly)) 3700 return; 3701 3702 if (tsonly) 3703 skb = alloc_skb(0, GFP_ATOMIC); 3704 else 3705 skb = skb_clone(orig_skb, GFP_ATOMIC); 3706 if (!skb) 3707 return; 3708 3709 if (tsonly) { 3710 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; 3711 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 3712 } 3713 3714 if (hwtstamps) 3715 *skb_hwtstamps(skb) = *hwtstamps; 3716 else 3717 skb->tstamp = ktime_get_real(); 3718 3719 __skb_complete_tx_timestamp(skb, sk, tstype); 3720 } 3721 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 3722 3723 void skb_tstamp_tx(struct sk_buff *orig_skb, 3724 struct skb_shared_hwtstamps *hwtstamps) 3725 { 3726 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 3727 SCM_TSTAMP_SND); 3728 } 3729 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3730 3731 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3732 { 3733 struct sock *sk = skb->sk; 3734 struct sock_exterr_skb *serr; 3735 int err; 3736 3737 skb->wifi_acked_valid = 1; 3738 skb->wifi_acked = acked; 3739 3740 serr = SKB_EXT_ERR(skb); 3741 memset(serr, 0, sizeof(*serr)); 3742 serr->ee.ee_errno = ENOMSG; 3743 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3744 3745 /* take a reference to prevent skb_orphan() from freeing the socket */ 3746 sock_hold(sk); 3747 3748 err = sock_queue_err_skb(sk, skb); 3749 if (err) 3750 kfree_skb(skb); 3751 3752 sock_put(sk); 3753 } 3754 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3755 3756 /** 3757 * skb_partial_csum_set - set up and verify partial csum values for packet 3758 * @skb: the skb to set 3759 * @start: the number of bytes after skb->data to start checksumming. 3760 * @off: the offset from start to place the checksum. 3761 * 3762 * For untrusted partially-checksummed packets, we need to make sure the values 3763 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3764 * 3765 * This function checks and sets those values and skb->ip_summed: if this 3766 * returns false you should drop the packet. 3767 */ 3768 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3769 { 3770 if (unlikely(start > skb_headlen(skb)) || 3771 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3772 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3773 start, off, skb_headlen(skb)); 3774 return false; 3775 } 3776 skb->ip_summed = CHECKSUM_PARTIAL; 3777 skb->csum_start = skb_headroom(skb) + start; 3778 skb->csum_offset = off; 3779 skb_set_transport_header(skb, start); 3780 return true; 3781 } 3782 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3783 3784 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3785 unsigned int max) 3786 { 3787 if (skb_headlen(skb) >= len) 3788 return 0; 3789 3790 /* If we need to pullup then pullup to the max, so we 3791 * won't need to do it again. 3792 */ 3793 if (max > skb->len) 3794 max = skb->len; 3795 3796 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3797 return -ENOMEM; 3798 3799 if (skb_headlen(skb) < len) 3800 return -EPROTO; 3801 3802 return 0; 3803 } 3804 3805 #define MAX_TCP_HDR_LEN (15 * 4) 3806 3807 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 3808 typeof(IPPROTO_IP) proto, 3809 unsigned int off) 3810 { 3811 switch (proto) { 3812 int err; 3813 3814 case IPPROTO_TCP: 3815 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 3816 off + MAX_TCP_HDR_LEN); 3817 if (!err && !skb_partial_csum_set(skb, off, 3818 offsetof(struct tcphdr, 3819 check))) 3820 err = -EPROTO; 3821 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 3822 3823 case IPPROTO_UDP: 3824 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 3825 off + sizeof(struct udphdr)); 3826 if (!err && !skb_partial_csum_set(skb, off, 3827 offsetof(struct udphdr, 3828 check))) 3829 err = -EPROTO; 3830 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 3831 } 3832 3833 return ERR_PTR(-EPROTO); 3834 } 3835 3836 /* This value should be large enough to cover a tagged ethernet header plus 3837 * maximally sized IP and TCP or UDP headers. 3838 */ 3839 #define MAX_IP_HDR_LEN 128 3840 3841 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 3842 { 3843 unsigned int off; 3844 bool fragment; 3845 __sum16 *csum; 3846 int err; 3847 3848 fragment = false; 3849 3850 err = skb_maybe_pull_tail(skb, 3851 sizeof(struct iphdr), 3852 MAX_IP_HDR_LEN); 3853 if (err < 0) 3854 goto out; 3855 3856 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 3857 fragment = true; 3858 3859 off = ip_hdrlen(skb); 3860 3861 err = -EPROTO; 3862 3863 if (fragment) 3864 goto out; 3865 3866 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 3867 if (IS_ERR(csum)) 3868 return PTR_ERR(csum); 3869 3870 if (recalculate) 3871 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3872 ip_hdr(skb)->daddr, 3873 skb->len - off, 3874 ip_hdr(skb)->protocol, 0); 3875 err = 0; 3876 3877 out: 3878 return err; 3879 } 3880 3881 /* This value should be large enough to cover a tagged ethernet header plus 3882 * an IPv6 header, all options, and a maximal TCP or UDP header. 3883 */ 3884 #define MAX_IPV6_HDR_LEN 256 3885 3886 #define OPT_HDR(type, skb, off) \ 3887 (type *)(skb_network_header(skb) + (off)) 3888 3889 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 3890 { 3891 int err; 3892 u8 nexthdr; 3893 unsigned int off; 3894 unsigned int len; 3895 bool fragment; 3896 bool done; 3897 __sum16 *csum; 3898 3899 fragment = false; 3900 done = false; 3901 3902 off = sizeof(struct ipv6hdr); 3903 3904 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 3905 if (err < 0) 3906 goto out; 3907 3908 nexthdr = ipv6_hdr(skb)->nexthdr; 3909 3910 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 3911 while (off <= len && !done) { 3912 switch (nexthdr) { 3913 case IPPROTO_DSTOPTS: 3914 case IPPROTO_HOPOPTS: 3915 case IPPROTO_ROUTING: { 3916 struct ipv6_opt_hdr *hp; 3917 3918 err = skb_maybe_pull_tail(skb, 3919 off + 3920 sizeof(struct ipv6_opt_hdr), 3921 MAX_IPV6_HDR_LEN); 3922 if (err < 0) 3923 goto out; 3924 3925 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 3926 nexthdr = hp->nexthdr; 3927 off += ipv6_optlen(hp); 3928 break; 3929 } 3930 case IPPROTO_AH: { 3931 struct ip_auth_hdr *hp; 3932 3933 err = skb_maybe_pull_tail(skb, 3934 off + 3935 sizeof(struct ip_auth_hdr), 3936 MAX_IPV6_HDR_LEN); 3937 if (err < 0) 3938 goto out; 3939 3940 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 3941 nexthdr = hp->nexthdr; 3942 off += ipv6_authlen(hp); 3943 break; 3944 } 3945 case IPPROTO_FRAGMENT: { 3946 struct frag_hdr *hp; 3947 3948 err = skb_maybe_pull_tail(skb, 3949 off + 3950 sizeof(struct frag_hdr), 3951 MAX_IPV6_HDR_LEN); 3952 if (err < 0) 3953 goto out; 3954 3955 hp = OPT_HDR(struct frag_hdr, skb, off); 3956 3957 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 3958 fragment = true; 3959 3960 nexthdr = hp->nexthdr; 3961 off += sizeof(struct frag_hdr); 3962 break; 3963 } 3964 default: 3965 done = true; 3966 break; 3967 } 3968 } 3969 3970 err = -EPROTO; 3971 3972 if (!done || fragment) 3973 goto out; 3974 3975 csum = skb_checksum_setup_ip(skb, nexthdr, off); 3976 if (IS_ERR(csum)) 3977 return PTR_ERR(csum); 3978 3979 if (recalculate) 3980 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3981 &ipv6_hdr(skb)->daddr, 3982 skb->len - off, nexthdr, 0); 3983 err = 0; 3984 3985 out: 3986 return err; 3987 } 3988 3989 /** 3990 * skb_checksum_setup - set up partial checksum offset 3991 * @skb: the skb to set up 3992 * @recalculate: if true the pseudo-header checksum will be recalculated 3993 */ 3994 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 3995 { 3996 int err; 3997 3998 switch (skb->protocol) { 3999 case htons(ETH_P_IP): 4000 err = skb_checksum_setup_ipv4(skb, recalculate); 4001 break; 4002 4003 case htons(ETH_P_IPV6): 4004 err = skb_checksum_setup_ipv6(skb, recalculate); 4005 break; 4006 4007 default: 4008 err = -EPROTO; 4009 break; 4010 } 4011 4012 return err; 4013 } 4014 EXPORT_SYMBOL(skb_checksum_setup); 4015 4016 /** 4017 * skb_checksum_maybe_trim - maybe trims the given skb 4018 * @skb: the skb to check 4019 * @transport_len: the data length beyond the network header 4020 * 4021 * Checks whether the given skb has data beyond the given transport length. 4022 * If so, returns a cloned skb trimmed to this transport length. 4023 * Otherwise returns the provided skb. Returns NULL in error cases 4024 * (e.g. transport_len exceeds skb length or out-of-memory). 4025 * 4026 * Caller needs to set the skb transport header and free any returned skb if it 4027 * differs from the provided skb. 4028 */ 4029 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4030 unsigned int transport_len) 4031 { 4032 struct sk_buff *skb_chk; 4033 unsigned int len = skb_transport_offset(skb) + transport_len; 4034 int ret; 4035 4036 if (skb->len < len) 4037 return NULL; 4038 else if (skb->len == len) 4039 return skb; 4040 4041 skb_chk = skb_clone(skb, GFP_ATOMIC); 4042 if (!skb_chk) 4043 return NULL; 4044 4045 ret = pskb_trim_rcsum(skb_chk, len); 4046 if (ret) { 4047 kfree_skb(skb_chk); 4048 return NULL; 4049 } 4050 4051 return skb_chk; 4052 } 4053 4054 /** 4055 * skb_checksum_trimmed - validate checksum of an skb 4056 * @skb: the skb to check 4057 * @transport_len: the data length beyond the network header 4058 * @skb_chkf: checksum function to use 4059 * 4060 * Applies the given checksum function skb_chkf to the provided skb. 4061 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4062 * 4063 * If the skb has data beyond the given transport length, then a 4064 * trimmed & cloned skb is checked and returned. 4065 * 4066 * Caller needs to set the skb transport header and free any returned skb if it 4067 * differs from the provided skb. 4068 */ 4069 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4070 unsigned int transport_len, 4071 __sum16(*skb_chkf)(struct sk_buff *skb)) 4072 { 4073 struct sk_buff *skb_chk; 4074 unsigned int offset = skb_transport_offset(skb); 4075 __sum16 ret; 4076 4077 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4078 if (!skb_chk) 4079 goto err; 4080 4081 if (!pskb_may_pull(skb_chk, offset)) 4082 goto err; 4083 4084 __skb_pull(skb_chk, offset); 4085 ret = skb_chkf(skb_chk); 4086 __skb_push(skb_chk, offset); 4087 4088 if (ret) 4089 goto err; 4090 4091 return skb_chk; 4092 4093 err: 4094 if (skb_chk && skb_chk != skb) 4095 kfree_skb(skb_chk); 4096 4097 return NULL; 4098 4099 } 4100 EXPORT_SYMBOL(skb_checksum_trimmed); 4101 4102 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4103 { 4104 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4105 skb->dev->name); 4106 } 4107 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4108 4109 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4110 { 4111 if (head_stolen) { 4112 skb_release_head_state(skb); 4113 kmem_cache_free(skbuff_head_cache, skb); 4114 } else { 4115 __kfree_skb(skb); 4116 } 4117 } 4118 EXPORT_SYMBOL(kfree_skb_partial); 4119 4120 /** 4121 * skb_try_coalesce - try to merge skb to prior one 4122 * @to: prior buffer 4123 * @from: buffer to add 4124 * @fragstolen: pointer to boolean 4125 * @delta_truesize: how much more was allocated than was requested 4126 */ 4127 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4128 bool *fragstolen, int *delta_truesize) 4129 { 4130 int i, delta, len = from->len; 4131 4132 *fragstolen = false; 4133 4134 if (skb_cloned(to)) 4135 return false; 4136 4137 if (len <= skb_tailroom(to)) { 4138 if (len) 4139 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4140 *delta_truesize = 0; 4141 return true; 4142 } 4143 4144 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4145 return false; 4146 4147 if (skb_headlen(from) != 0) { 4148 struct page *page; 4149 unsigned int offset; 4150 4151 if (skb_shinfo(to)->nr_frags + 4152 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4153 return false; 4154 4155 if (skb_head_is_locked(from)) 4156 return false; 4157 4158 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4159 4160 page = virt_to_head_page(from->head); 4161 offset = from->data - (unsigned char *)page_address(page); 4162 4163 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4164 page, offset, skb_headlen(from)); 4165 *fragstolen = true; 4166 } else { 4167 if (skb_shinfo(to)->nr_frags + 4168 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4169 return false; 4170 4171 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4172 } 4173 4174 WARN_ON_ONCE(delta < len); 4175 4176 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4177 skb_shinfo(from)->frags, 4178 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4179 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4180 4181 if (!skb_cloned(from)) 4182 skb_shinfo(from)->nr_frags = 0; 4183 4184 /* if the skb is not cloned this does nothing 4185 * since we set nr_frags to 0. 4186 */ 4187 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4188 skb_frag_ref(from, i); 4189 4190 to->truesize += delta; 4191 to->len += len; 4192 to->data_len += len; 4193 4194 *delta_truesize = delta; 4195 return true; 4196 } 4197 EXPORT_SYMBOL(skb_try_coalesce); 4198 4199 /** 4200 * skb_scrub_packet - scrub an skb 4201 * 4202 * @skb: buffer to clean 4203 * @xnet: packet is crossing netns 4204 * 4205 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4206 * into/from a tunnel. Some information have to be cleared during these 4207 * operations. 4208 * skb_scrub_packet can also be used to clean a skb before injecting it in 4209 * another namespace (@xnet == true). We have to clear all information in the 4210 * skb that could impact namespace isolation. 4211 */ 4212 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4213 { 4214 skb->tstamp.tv64 = 0; 4215 skb->pkt_type = PACKET_HOST; 4216 skb->skb_iif = 0; 4217 skb->ignore_df = 0; 4218 skb_dst_drop(skb); 4219 skb_sender_cpu_clear(skb); 4220 secpath_reset(skb); 4221 nf_reset(skb); 4222 nf_reset_trace(skb); 4223 4224 if (!xnet) 4225 return; 4226 4227 skb_orphan(skb); 4228 skb->mark = 0; 4229 } 4230 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4231 4232 /** 4233 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4234 * 4235 * @skb: GSO skb 4236 * 4237 * skb_gso_transport_seglen is used to determine the real size of the 4238 * individual segments, including Layer4 headers (TCP/UDP). 4239 * 4240 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4241 */ 4242 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4243 { 4244 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4245 unsigned int thlen = 0; 4246 4247 if (skb->encapsulation) { 4248 thlen = skb_inner_transport_header(skb) - 4249 skb_transport_header(skb); 4250 4251 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4252 thlen += inner_tcp_hdrlen(skb); 4253 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4254 thlen = tcp_hdrlen(skb); 4255 } 4256 /* UFO sets gso_size to the size of the fragmentation 4257 * payload, i.e. the size of the L4 (UDP) header is already 4258 * accounted for. 4259 */ 4260 return thlen + shinfo->gso_size; 4261 } 4262 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4263 4264 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4265 { 4266 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4267 kfree_skb(skb); 4268 return NULL; 4269 } 4270 4271 memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN); 4272 skb->mac_header += VLAN_HLEN; 4273 return skb; 4274 } 4275 4276 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4277 { 4278 struct vlan_hdr *vhdr; 4279 u16 vlan_tci; 4280 4281 if (unlikely(skb_vlan_tag_present(skb))) { 4282 /* vlan_tci is already set-up so leave this for another time */ 4283 return skb; 4284 } 4285 4286 skb = skb_share_check(skb, GFP_ATOMIC); 4287 if (unlikely(!skb)) 4288 goto err_free; 4289 4290 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4291 goto err_free; 4292 4293 vhdr = (struct vlan_hdr *)skb->data; 4294 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4295 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4296 4297 skb_pull_rcsum(skb, VLAN_HLEN); 4298 vlan_set_encap_proto(skb, vhdr); 4299 4300 skb = skb_reorder_vlan_header(skb); 4301 if (unlikely(!skb)) 4302 goto err_free; 4303 4304 skb_reset_network_header(skb); 4305 skb_reset_transport_header(skb); 4306 skb_reset_mac_len(skb); 4307 4308 return skb; 4309 4310 err_free: 4311 kfree_skb(skb); 4312 return NULL; 4313 } 4314 EXPORT_SYMBOL(skb_vlan_untag); 4315 4316 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4317 { 4318 if (!pskb_may_pull(skb, write_len)) 4319 return -ENOMEM; 4320 4321 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4322 return 0; 4323 4324 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4325 } 4326 EXPORT_SYMBOL(skb_ensure_writable); 4327 4328 /* remove VLAN header from packet and update csum accordingly. */ 4329 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 4330 { 4331 struct vlan_hdr *vhdr; 4332 unsigned int offset = skb->data - skb_mac_header(skb); 4333 int err; 4334 4335 __skb_push(skb, offset); 4336 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 4337 if (unlikely(err)) 4338 goto pull; 4339 4340 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4341 4342 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 4343 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 4344 4345 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 4346 __skb_pull(skb, VLAN_HLEN); 4347 4348 vlan_set_encap_proto(skb, vhdr); 4349 skb->mac_header += VLAN_HLEN; 4350 4351 if (skb_network_offset(skb) < ETH_HLEN) 4352 skb_set_network_header(skb, ETH_HLEN); 4353 4354 skb_reset_mac_len(skb); 4355 pull: 4356 __skb_pull(skb, offset); 4357 4358 return err; 4359 } 4360 4361 int skb_vlan_pop(struct sk_buff *skb) 4362 { 4363 u16 vlan_tci; 4364 __be16 vlan_proto; 4365 int err; 4366 4367 if (likely(skb_vlan_tag_present(skb))) { 4368 skb->vlan_tci = 0; 4369 } else { 4370 if (unlikely((skb->protocol != htons(ETH_P_8021Q) && 4371 skb->protocol != htons(ETH_P_8021AD)) || 4372 skb->len < VLAN_ETH_HLEN)) 4373 return 0; 4374 4375 err = __skb_vlan_pop(skb, &vlan_tci); 4376 if (err) 4377 return err; 4378 } 4379 /* move next vlan tag to hw accel tag */ 4380 if (likely((skb->protocol != htons(ETH_P_8021Q) && 4381 skb->protocol != htons(ETH_P_8021AD)) || 4382 skb->len < VLAN_ETH_HLEN)) 4383 return 0; 4384 4385 vlan_proto = skb->protocol; 4386 err = __skb_vlan_pop(skb, &vlan_tci); 4387 if (unlikely(err)) 4388 return err; 4389 4390 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4391 return 0; 4392 } 4393 EXPORT_SYMBOL(skb_vlan_pop); 4394 4395 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 4396 { 4397 if (skb_vlan_tag_present(skb)) { 4398 unsigned int offset = skb->data - skb_mac_header(skb); 4399 int err; 4400 4401 /* __vlan_insert_tag expect skb->data pointing to mac header. 4402 * So change skb->data before calling it and change back to 4403 * original position later 4404 */ 4405 __skb_push(skb, offset); 4406 err = __vlan_insert_tag(skb, skb->vlan_proto, 4407 skb_vlan_tag_get(skb)); 4408 if (err) 4409 return err; 4410 skb->protocol = skb->vlan_proto; 4411 skb->mac_len += VLAN_HLEN; 4412 __skb_pull(skb, offset); 4413 4414 if (skb->ip_summed == CHECKSUM_COMPLETE) 4415 skb->csum = csum_add(skb->csum, csum_partial(skb->data 4416 + (2 * ETH_ALEN), VLAN_HLEN, 0)); 4417 } 4418 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4419 return 0; 4420 } 4421 EXPORT_SYMBOL(skb_vlan_push); 4422 4423 /** 4424 * alloc_skb_with_frags - allocate skb with page frags 4425 * 4426 * @header_len: size of linear part 4427 * @data_len: needed length in frags 4428 * @max_page_order: max page order desired. 4429 * @errcode: pointer to error code if any 4430 * @gfp_mask: allocation mask 4431 * 4432 * This can be used to allocate a paged skb, given a maximal order for frags. 4433 */ 4434 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 4435 unsigned long data_len, 4436 int max_page_order, 4437 int *errcode, 4438 gfp_t gfp_mask) 4439 { 4440 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 4441 unsigned long chunk; 4442 struct sk_buff *skb; 4443 struct page *page; 4444 gfp_t gfp_head; 4445 int i; 4446 4447 *errcode = -EMSGSIZE; 4448 /* Note this test could be relaxed, if we succeed to allocate 4449 * high order pages... 4450 */ 4451 if (npages > MAX_SKB_FRAGS) 4452 return NULL; 4453 4454 gfp_head = gfp_mask; 4455 if (gfp_head & __GFP_DIRECT_RECLAIM) 4456 gfp_head |= __GFP_REPEAT; 4457 4458 *errcode = -ENOBUFS; 4459 skb = alloc_skb(header_len, gfp_head); 4460 if (!skb) 4461 return NULL; 4462 4463 skb->truesize += npages << PAGE_SHIFT; 4464 4465 for (i = 0; npages > 0; i++) { 4466 int order = max_page_order; 4467 4468 while (order) { 4469 if (npages >= 1 << order) { 4470 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 4471 __GFP_COMP | 4472 __GFP_NOWARN | 4473 __GFP_NORETRY, 4474 order); 4475 if (page) 4476 goto fill_page; 4477 /* Do not retry other high order allocations */ 4478 order = 1; 4479 max_page_order = 0; 4480 } 4481 order--; 4482 } 4483 page = alloc_page(gfp_mask); 4484 if (!page) 4485 goto failure; 4486 fill_page: 4487 chunk = min_t(unsigned long, data_len, 4488 PAGE_SIZE << order); 4489 skb_fill_page_desc(skb, i, page, 0, chunk); 4490 data_len -= chunk; 4491 npages -= 1 << order; 4492 } 4493 return skb; 4494 4495 failure: 4496 kfree_skb(skb); 4497 return NULL; 4498 } 4499 EXPORT_SYMBOL(alloc_skb_with_frags); 4500