xref: /linux/net/core/skbuff.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 	                  "data:%p tail:%p end:%p dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 	       skb->dev ? skb->dev->name : "<NULL>");
94 	BUG();
95 }
96 
97 /**
98  *	skb_under_panic	- 	private function
99  *	@skb: buffer
100  *	@sz: size
101  *	@here: address
102  *
103  *	Out of line support code for skb_push(). Not user callable.
104  */
105 
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 {
108 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 	                  "data:%p tail:%p end:%p dev:%s\n",
110 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 	       skb->dev ? skb->dev->name : "<NULL>");
112 	BUG();
113 }
114 
115 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
116  *	'private' fields and also do memory statistics to find all the
117  *	[BEEP] leaks.
118  *
119  */
120 
121 /**
122  *	__alloc_skb	-	allocate a network buffer
123  *	@size: size to allocate
124  *	@gfp_mask: allocation mask
125  *	@fclone: allocate from fclone cache instead of head cache
126  *		and allocate a cloned (child) skb
127  *
128  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
129  *	tail room of size bytes. The object has a reference count of one.
130  *	The return is the buffer. On a failure the return is %NULL.
131  *
132  *	Buffers may only be allocated from interrupts using a @gfp_mask of
133  *	%GFP_ATOMIC.
134  */
135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
136 			    int fclone)
137 {
138 	struct sk_buff *skb;
139 	u8 *data;
140 
141 	/* Get the HEAD */
142 	if (fclone)
143 		skb = kmem_cache_alloc(skbuff_fclone_cache,
144 				       gfp_mask & ~__GFP_DMA);
145 	else
146 		skb = kmem_cache_alloc(skbuff_head_cache,
147 				       gfp_mask & ~__GFP_DMA);
148 
149 	if (!skb)
150 		goto out;
151 
152 	/* Get the DATA. Size must match skb_add_mtu(). */
153 	size = SKB_DATA_ALIGN(size);
154 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
155 	if (!data)
156 		goto nodata;
157 
158 	memset(skb, 0, offsetof(struct sk_buff, truesize));
159 	skb->truesize = size + sizeof(struct sk_buff);
160 	atomic_set(&skb->users, 1);
161 	skb->head = data;
162 	skb->data = data;
163 	skb->tail = data;
164 	skb->end  = data + size;
165 	if (fclone) {
166 		struct sk_buff *child = skb + 1;
167 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
168 
169 		skb->fclone = SKB_FCLONE_ORIG;
170 		atomic_set(fclone_ref, 1);
171 
172 		child->fclone = SKB_FCLONE_UNAVAILABLE;
173 	}
174 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
175 	skb_shinfo(skb)->nr_frags  = 0;
176 	skb_shinfo(skb)->tso_size = 0;
177 	skb_shinfo(skb)->tso_segs = 0;
178 	skb_shinfo(skb)->frag_list = NULL;
179 	skb_shinfo(skb)->ufo_size = 0;
180 	skb_shinfo(skb)->ip6_frag_id = 0;
181 out:
182 	return skb;
183 nodata:
184 	kmem_cache_free(skbuff_head_cache, skb);
185 	skb = NULL;
186 	goto out;
187 }
188 
189 /**
190  *	alloc_skb_from_cache	-	allocate a network buffer
191  *	@cp: kmem_cache from which to allocate the data area
192  *           (object size must be big enough for @size bytes + skb overheads)
193  *	@size: size to allocate
194  *	@gfp_mask: allocation mask
195  *
196  *	Allocate a new &sk_buff. The returned buffer has no headroom and
197  *	tail room of size bytes. The object has a reference count of one.
198  *	The return is the buffer. On a failure the return is %NULL.
199  *
200  *	Buffers may only be allocated from interrupts using a @gfp_mask of
201  *	%GFP_ATOMIC.
202  */
203 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
204 				     unsigned int size,
205 				     gfp_t gfp_mask)
206 {
207 	struct sk_buff *skb;
208 	u8 *data;
209 
210 	/* Get the HEAD */
211 	skb = kmem_cache_alloc(skbuff_head_cache,
212 			       gfp_mask & ~__GFP_DMA);
213 	if (!skb)
214 		goto out;
215 
216 	/* Get the DATA. */
217 	size = SKB_DATA_ALIGN(size);
218 	data = kmem_cache_alloc(cp, gfp_mask);
219 	if (!data)
220 		goto nodata;
221 
222 	memset(skb, 0, offsetof(struct sk_buff, truesize));
223 	skb->truesize = size + sizeof(struct sk_buff);
224 	atomic_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb->tail = data;
228 	skb->end  = data + size;
229 
230 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
231 	skb_shinfo(skb)->nr_frags  = 0;
232 	skb_shinfo(skb)->tso_size = 0;
233 	skb_shinfo(skb)->tso_segs = 0;
234 	skb_shinfo(skb)->frag_list = NULL;
235 out:
236 	return skb;
237 nodata:
238 	kmem_cache_free(skbuff_head_cache, skb);
239 	skb = NULL;
240 	goto out;
241 }
242 
243 
244 static void skb_drop_fraglist(struct sk_buff *skb)
245 {
246 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
247 
248 	skb_shinfo(skb)->frag_list = NULL;
249 
250 	do {
251 		struct sk_buff *this = list;
252 		list = list->next;
253 		kfree_skb(this);
254 	} while (list);
255 }
256 
257 static void skb_clone_fraglist(struct sk_buff *skb)
258 {
259 	struct sk_buff *list;
260 
261 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
262 		skb_get(list);
263 }
264 
265 void skb_release_data(struct sk_buff *skb)
266 {
267 	if (!skb->cloned ||
268 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
269 			       &skb_shinfo(skb)->dataref)) {
270 		if (skb_shinfo(skb)->nr_frags) {
271 			int i;
272 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
273 				put_page(skb_shinfo(skb)->frags[i].page);
274 		}
275 
276 		if (skb_shinfo(skb)->frag_list)
277 			skb_drop_fraglist(skb);
278 
279 		kfree(skb->head);
280 	}
281 }
282 
283 /*
284  *	Free an skbuff by memory without cleaning the state.
285  */
286 void kfree_skbmem(struct sk_buff *skb)
287 {
288 	struct sk_buff *other;
289 	atomic_t *fclone_ref;
290 
291 	skb_release_data(skb);
292 	switch (skb->fclone) {
293 	case SKB_FCLONE_UNAVAILABLE:
294 		kmem_cache_free(skbuff_head_cache, skb);
295 		break;
296 
297 	case SKB_FCLONE_ORIG:
298 		fclone_ref = (atomic_t *) (skb + 2);
299 		if (atomic_dec_and_test(fclone_ref))
300 			kmem_cache_free(skbuff_fclone_cache, skb);
301 		break;
302 
303 	case SKB_FCLONE_CLONE:
304 		fclone_ref = (atomic_t *) (skb + 1);
305 		other = skb - 1;
306 
307 		/* The clone portion is available for
308 		 * fast-cloning again.
309 		 */
310 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
311 
312 		if (atomic_dec_and_test(fclone_ref))
313 			kmem_cache_free(skbuff_fclone_cache, other);
314 		break;
315 	};
316 }
317 
318 /**
319  *	__kfree_skb - private function
320  *	@skb: buffer
321  *
322  *	Free an sk_buff. Release anything attached to the buffer.
323  *	Clean the state. This is an internal helper function. Users should
324  *	always call kfree_skb
325  */
326 
327 void __kfree_skb(struct sk_buff *skb)
328 {
329 	dst_release(skb->dst);
330 #ifdef CONFIG_XFRM
331 	secpath_put(skb->sp);
332 #endif
333 	if (skb->destructor) {
334 		WARN_ON(in_irq());
335 		skb->destructor(skb);
336 	}
337 #ifdef CONFIG_NETFILTER
338 	nf_conntrack_put(skb->nfct);
339 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
340 	nf_conntrack_put_reasm(skb->nfct_reasm);
341 #endif
342 #ifdef CONFIG_BRIDGE_NETFILTER
343 	nf_bridge_put(skb->nf_bridge);
344 #endif
345 #endif
346 /* XXX: IS this still necessary? - JHS */
347 #ifdef CONFIG_NET_SCHED
348 	skb->tc_index = 0;
349 #ifdef CONFIG_NET_CLS_ACT
350 	skb->tc_verd = 0;
351 #endif
352 #endif
353 
354 	kfree_skbmem(skb);
355 }
356 
357 /**
358  *	skb_clone	-	duplicate an sk_buff
359  *	@skb: buffer to clone
360  *	@gfp_mask: allocation priority
361  *
362  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
363  *	copies share the same packet data but not structure. The new
364  *	buffer has a reference count of 1. If the allocation fails the
365  *	function returns %NULL otherwise the new buffer is returned.
366  *
367  *	If this function is called from an interrupt gfp_mask() must be
368  *	%GFP_ATOMIC.
369  */
370 
371 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
372 {
373 	struct sk_buff *n;
374 
375 	n = skb + 1;
376 	if (skb->fclone == SKB_FCLONE_ORIG &&
377 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
378 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
379 		n->fclone = SKB_FCLONE_CLONE;
380 		atomic_inc(fclone_ref);
381 	} else {
382 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
383 		if (!n)
384 			return NULL;
385 		n->fclone = SKB_FCLONE_UNAVAILABLE;
386 	}
387 
388 #define C(x) n->x = skb->x
389 
390 	n->next = n->prev = NULL;
391 	n->sk = NULL;
392 	C(tstamp);
393 	C(dev);
394 	C(h);
395 	C(nh);
396 	C(mac);
397 	C(dst);
398 	dst_clone(skb->dst);
399 	C(sp);
400 #ifdef CONFIG_INET
401 	secpath_get(skb->sp);
402 #endif
403 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
404 	C(len);
405 	C(data_len);
406 	C(csum);
407 	C(local_df);
408 	n->cloned = 1;
409 	n->nohdr = 0;
410 	C(pkt_type);
411 	C(ip_summed);
412 	C(priority);
413 	C(protocol);
414 	n->destructor = NULL;
415 #ifdef CONFIG_NETFILTER
416 	C(nfmark);
417 	C(nfct);
418 	nf_conntrack_get(skb->nfct);
419 	C(nfctinfo);
420 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
421 	C(nfct_reasm);
422 	nf_conntrack_get_reasm(skb->nfct_reasm);
423 #endif
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 	C(ipvs_property);
426 #endif
427 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
428 	C(nfct_reasm);
429 	nf_conntrack_get_reasm(skb->nfct_reasm);
430 #endif
431 #ifdef CONFIG_BRIDGE_NETFILTER
432 	C(nf_bridge);
433 	nf_bridge_get(skb->nf_bridge);
434 #endif
435 #endif /*CONFIG_NETFILTER*/
436 #ifdef CONFIG_NET_SCHED
437 	C(tc_index);
438 #ifdef CONFIG_NET_CLS_ACT
439 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
440 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
441 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
442 	C(input_dev);
443 #endif
444 
445 #endif
446 	C(truesize);
447 	atomic_set(&n->users, 1);
448 	C(head);
449 	C(data);
450 	C(tail);
451 	C(end);
452 
453 	atomic_inc(&(skb_shinfo(skb)->dataref));
454 	skb->cloned = 1;
455 
456 	return n;
457 }
458 
459 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
460 {
461 	/*
462 	 *	Shift between the two data areas in bytes
463 	 */
464 	unsigned long offset = new->data - old->data;
465 
466 	new->sk		= NULL;
467 	new->dev	= old->dev;
468 	new->priority	= old->priority;
469 	new->protocol	= old->protocol;
470 	new->dst	= dst_clone(old->dst);
471 #ifdef CONFIG_INET
472 	new->sp		= secpath_get(old->sp);
473 #endif
474 	new->h.raw	= old->h.raw + offset;
475 	new->nh.raw	= old->nh.raw + offset;
476 	new->mac.raw	= old->mac.raw + offset;
477 	memcpy(new->cb, old->cb, sizeof(old->cb));
478 	new->local_df	= old->local_df;
479 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
480 	new->pkt_type	= old->pkt_type;
481 	new->tstamp	= old->tstamp;
482 	new->destructor = NULL;
483 #ifdef CONFIG_NETFILTER
484 	new->nfmark	= old->nfmark;
485 	new->nfct	= old->nfct;
486 	nf_conntrack_get(old->nfct);
487 	new->nfctinfo	= old->nfctinfo;
488 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
489 	new->nfct_reasm = old->nfct_reasm;
490 	nf_conntrack_get_reasm(old->nfct_reasm);
491 #endif
492 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
493 	new->ipvs_property = old->ipvs_property;
494 #endif
495 #ifdef CONFIG_BRIDGE_NETFILTER
496 	new->nf_bridge	= old->nf_bridge;
497 	nf_bridge_get(old->nf_bridge);
498 #endif
499 #endif
500 #ifdef CONFIG_NET_SCHED
501 #ifdef CONFIG_NET_CLS_ACT
502 	new->tc_verd = old->tc_verd;
503 #endif
504 	new->tc_index	= old->tc_index;
505 #endif
506 	atomic_set(&new->users, 1);
507 	skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
508 	skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
509 }
510 
511 /**
512  *	skb_copy	-	create private copy of an sk_buff
513  *	@skb: buffer to copy
514  *	@gfp_mask: allocation priority
515  *
516  *	Make a copy of both an &sk_buff and its data. This is used when the
517  *	caller wishes to modify the data and needs a private copy of the
518  *	data to alter. Returns %NULL on failure or the pointer to the buffer
519  *	on success. The returned buffer has a reference count of 1.
520  *
521  *	As by-product this function converts non-linear &sk_buff to linear
522  *	one, so that &sk_buff becomes completely private and caller is allowed
523  *	to modify all the data of returned buffer. This means that this
524  *	function is not recommended for use in circumstances when only
525  *	header is going to be modified. Use pskb_copy() instead.
526  */
527 
528 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
529 {
530 	int headerlen = skb->data - skb->head;
531 	/*
532 	 *	Allocate the copy buffer
533 	 */
534 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
535 				      gfp_mask);
536 	if (!n)
537 		return NULL;
538 
539 	/* Set the data pointer */
540 	skb_reserve(n, headerlen);
541 	/* Set the tail pointer and length */
542 	skb_put(n, skb->len);
543 	n->csum	     = skb->csum;
544 	n->ip_summed = skb->ip_summed;
545 
546 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
547 		BUG();
548 
549 	copy_skb_header(n, skb);
550 	return n;
551 }
552 
553 
554 /**
555  *	pskb_copy	-	create copy of an sk_buff with private head.
556  *	@skb: buffer to copy
557  *	@gfp_mask: allocation priority
558  *
559  *	Make a copy of both an &sk_buff and part of its data, located
560  *	in header. Fragmented data remain shared. This is used when
561  *	the caller wishes to modify only header of &sk_buff and needs
562  *	private copy of the header to alter. Returns %NULL on failure
563  *	or the pointer to the buffer on success.
564  *	The returned buffer has a reference count of 1.
565  */
566 
567 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
568 {
569 	/*
570 	 *	Allocate the copy buffer
571 	 */
572 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
573 
574 	if (!n)
575 		goto out;
576 
577 	/* Set the data pointer */
578 	skb_reserve(n, skb->data - skb->head);
579 	/* Set the tail pointer and length */
580 	skb_put(n, skb_headlen(skb));
581 	/* Copy the bytes */
582 	memcpy(n->data, skb->data, n->len);
583 	n->csum	     = skb->csum;
584 	n->ip_summed = skb->ip_summed;
585 
586 	n->data_len  = skb->data_len;
587 	n->len	     = skb->len;
588 
589 	if (skb_shinfo(skb)->nr_frags) {
590 		int i;
591 
592 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
593 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
594 			get_page(skb_shinfo(n)->frags[i].page);
595 		}
596 		skb_shinfo(n)->nr_frags = i;
597 	}
598 
599 	if (skb_shinfo(skb)->frag_list) {
600 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
601 		skb_clone_fraglist(n);
602 	}
603 
604 	copy_skb_header(n, skb);
605 out:
606 	return n;
607 }
608 
609 /**
610  *	pskb_expand_head - reallocate header of &sk_buff
611  *	@skb: buffer to reallocate
612  *	@nhead: room to add at head
613  *	@ntail: room to add at tail
614  *	@gfp_mask: allocation priority
615  *
616  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
617  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
618  *	reference count of 1. Returns zero in the case of success or error,
619  *	if expansion failed. In the last case, &sk_buff is not changed.
620  *
621  *	All the pointers pointing into skb header may change and must be
622  *	reloaded after call to this function.
623  */
624 
625 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
626 		     gfp_t gfp_mask)
627 {
628 	int i;
629 	u8 *data;
630 	int size = nhead + (skb->end - skb->head) + ntail;
631 	long off;
632 
633 	if (skb_shared(skb))
634 		BUG();
635 
636 	size = SKB_DATA_ALIGN(size);
637 
638 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
639 	if (!data)
640 		goto nodata;
641 
642 	/* Copy only real data... and, alas, header. This should be
643 	 * optimized for the cases when header is void. */
644 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
645 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
646 
647 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
648 		get_page(skb_shinfo(skb)->frags[i].page);
649 
650 	if (skb_shinfo(skb)->frag_list)
651 		skb_clone_fraglist(skb);
652 
653 	skb_release_data(skb);
654 
655 	off = (data + nhead) - skb->head;
656 
657 	skb->head     = data;
658 	skb->end      = data + size;
659 	skb->data    += off;
660 	skb->tail    += off;
661 	skb->mac.raw += off;
662 	skb->h.raw   += off;
663 	skb->nh.raw  += off;
664 	skb->cloned   = 0;
665 	skb->nohdr    = 0;
666 	atomic_set(&skb_shinfo(skb)->dataref, 1);
667 	return 0;
668 
669 nodata:
670 	return -ENOMEM;
671 }
672 
673 /* Make private copy of skb with writable head and some headroom */
674 
675 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
676 {
677 	struct sk_buff *skb2;
678 	int delta = headroom - skb_headroom(skb);
679 
680 	if (delta <= 0)
681 		skb2 = pskb_copy(skb, GFP_ATOMIC);
682 	else {
683 		skb2 = skb_clone(skb, GFP_ATOMIC);
684 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
685 					     GFP_ATOMIC)) {
686 			kfree_skb(skb2);
687 			skb2 = NULL;
688 		}
689 	}
690 	return skb2;
691 }
692 
693 
694 /**
695  *	skb_copy_expand	-	copy and expand sk_buff
696  *	@skb: buffer to copy
697  *	@newheadroom: new free bytes at head
698  *	@newtailroom: new free bytes at tail
699  *	@gfp_mask: allocation priority
700  *
701  *	Make a copy of both an &sk_buff and its data and while doing so
702  *	allocate additional space.
703  *
704  *	This is used when the caller wishes to modify the data and needs a
705  *	private copy of the data to alter as well as more space for new fields.
706  *	Returns %NULL on failure or the pointer to the buffer
707  *	on success. The returned buffer has a reference count of 1.
708  *
709  *	You must pass %GFP_ATOMIC as the allocation priority if this function
710  *	is called from an interrupt.
711  *
712  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
713  *	only by netfilter in the cases when checksum is recalculated? --ANK
714  */
715 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
716 				int newheadroom, int newtailroom,
717 				gfp_t gfp_mask)
718 {
719 	/*
720 	 *	Allocate the copy buffer
721 	 */
722 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
723 				      gfp_mask);
724 	int head_copy_len, head_copy_off;
725 
726 	if (!n)
727 		return NULL;
728 
729 	skb_reserve(n, newheadroom);
730 
731 	/* Set the tail pointer and length */
732 	skb_put(n, skb->len);
733 
734 	head_copy_len = skb_headroom(skb);
735 	head_copy_off = 0;
736 	if (newheadroom <= head_copy_len)
737 		head_copy_len = newheadroom;
738 	else
739 		head_copy_off = newheadroom - head_copy_len;
740 
741 	/* Copy the linear header and data. */
742 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
743 			  skb->len + head_copy_len))
744 		BUG();
745 
746 	copy_skb_header(n, skb);
747 
748 	return n;
749 }
750 
751 /**
752  *	skb_pad			-	zero pad the tail of an skb
753  *	@skb: buffer to pad
754  *	@pad: space to pad
755  *
756  *	Ensure that a buffer is followed by a padding area that is zero
757  *	filled. Used by network drivers which may DMA or transfer data
758  *	beyond the buffer end onto the wire.
759  *
760  *	May return NULL in out of memory cases.
761  */
762 
763 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
764 {
765 	struct sk_buff *nskb;
766 
767 	/* If the skbuff is non linear tailroom is always zero.. */
768 	if (skb_tailroom(skb) >= pad) {
769 		memset(skb->data+skb->len, 0, pad);
770 		return skb;
771 	}
772 
773 	nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
774 	kfree_skb(skb);
775 	if (nskb)
776 		memset(nskb->data+nskb->len, 0, pad);
777 	return nskb;
778 }
779 
780 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
781  * If realloc==0 and trimming is impossible without change of data,
782  * it is BUG().
783  */
784 
785 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
786 {
787 	int offset = skb_headlen(skb);
788 	int nfrags = skb_shinfo(skb)->nr_frags;
789 	int i;
790 
791 	for (i = 0; i < nfrags; i++) {
792 		int end = offset + skb_shinfo(skb)->frags[i].size;
793 		if (end > len) {
794 			if (skb_cloned(skb)) {
795 				if (!realloc)
796 					BUG();
797 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
798 					return -ENOMEM;
799 			}
800 			if (len <= offset) {
801 				put_page(skb_shinfo(skb)->frags[i].page);
802 				skb_shinfo(skb)->nr_frags--;
803 			} else {
804 				skb_shinfo(skb)->frags[i].size = len - offset;
805 			}
806 		}
807 		offset = end;
808 	}
809 
810 	if (offset < len) {
811 		skb->data_len -= skb->len - len;
812 		skb->len       = len;
813 	} else {
814 		if (len <= skb_headlen(skb)) {
815 			skb->len      = len;
816 			skb->data_len = 0;
817 			skb->tail     = skb->data + len;
818 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
819 				skb_drop_fraglist(skb);
820 		} else {
821 			skb->data_len -= skb->len - len;
822 			skb->len       = len;
823 		}
824 	}
825 
826 	return 0;
827 }
828 
829 /**
830  *	__pskb_pull_tail - advance tail of skb header
831  *	@skb: buffer to reallocate
832  *	@delta: number of bytes to advance tail
833  *
834  *	The function makes a sense only on a fragmented &sk_buff,
835  *	it expands header moving its tail forward and copying necessary
836  *	data from fragmented part.
837  *
838  *	&sk_buff MUST have reference count of 1.
839  *
840  *	Returns %NULL (and &sk_buff does not change) if pull failed
841  *	or value of new tail of skb in the case of success.
842  *
843  *	All the pointers pointing into skb header may change and must be
844  *	reloaded after call to this function.
845  */
846 
847 /* Moves tail of skb head forward, copying data from fragmented part,
848  * when it is necessary.
849  * 1. It may fail due to malloc failure.
850  * 2. It may change skb pointers.
851  *
852  * It is pretty complicated. Luckily, it is called only in exceptional cases.
853  */
854 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
855 {
856 	/* If skb has not enough free space at tail, get new one
857 	 * plus 128 bytes for future expansions. If we have enough
858 	 * room at tail, reallocate without expansion only if skb is cloned.
859 	 */
860 	int i, k, eat = (skb->tail + delta) - skb->end;
861 
862 	if (eat > 0 || skb_cloned(skb)) {
863 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
864 				     GFP_ATOMIC))
865 			return NULL;
866 	}
867 
868 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
869 		BUG();
870 
871 	/* Optimization: no fragments, no reasons to preestimate
872 	 * size of pulled pages. Superb.
873 	 */
874 	if (!skb_shinfo(skb)->frag_list)
875 		goto pull_pages;
876 
877 	/* Estimate size of pulled pages. */
878 	eat = delta;
879 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
880 		if (skb_shinfo(skb)->frags[i].size >= eat)
881 			goto pull_pages;
882 		eat -= skb_shinfo(skb)->frags[i].size;
883 	}
884 
885 	/* If we need update frag list, we are in troubles.
886 	 * Certainly, it possible to add an offset to skb data,
887 	 * but taking into account that pulling is expected to
888 	 * be very rare operation, it is worth to fight against
889 	 * further bloating skb head and crucify ourselves here instead.
890 	 * Pure masohism, indeed. 8)8)
891 	 */
892 	if (eat) {
893 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
894 		struct sk_buff *clone = NULL;
895 		struct sk_buff *insp = NULL;
896 
897 		do {
898 			if (!list)
899 				BUG();
900 
901 			if (list->len <= eat) {
902 				/* Eaten as whole. */
903 				eat -= list->len;
904 				list = list->next;
905 				insp = list;
906 			} else {
907 				/* Eaten partially. */
908 
909 				if (skb_shared(list)) {
910 					/* Sucks! We need to fork list. :-( */
911 					clone = skb_clone(list, GFP_ATOMIC);
912 					if (!clone)
913 						return NULL;
914 					insp = list->next;
915 					list = clone;
916 				} else {
917 					/* This may be pulled without
918 					 * problems. */
919 					insp = list;
920 				}
921 				if (!pskb_pull(list, eat)) {
922 					if (clone)
923 						kfree_skb(clone);
924 					return NULL;
925 				}
926 				break;
927 			}
928 		} while (eat);
929 
930 		/* Free pulled out fragments. */
931 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
932 			skb_shinfo(skb)->frag_list = list->next;
933 			kfree_skb(list);
934 		}
935 		/* And insert new clone at head. */
936 		if (clone) {
937 			clone->next = list;
938 			skb_shinfo(skb)->frag_list = clone;
939 		}
940 	}
941 	/* Success! Now we may commit changes to skb data. */
942 
943 pull_pages:
944 	eat = delta;
945 	k = 0;
946 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
947 		if (skb_shinfo(skb)->frags[i].size <= eat) {
948 			put_page(skb_shinfo(skb)->frags[i].page);
949 			eat -= skb_shinfo(skb)->frags[i].size;
950 		} else {
951 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
952 			if (eat) {
953 				skb_shinfo(skb)->frags[k].page_offset += eat;
954 				skb_shinfo(skb)->frags[k].size -= eat;
955 				eat = 0;
956 			}
957 			k++;
958 		}
959 	}
960 	skb_shinfo(skb)->nr_frags = k;
961 
962 	skb->tail     += delta;
963 	skb->data_len -= delta;
964 
965 	return skb->tail;
966 }
967 
968 /* Copy some data bits from skb to kernel buffer. */
969 
970 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
971 {
972 	int i, copy;
973 	int start = skb_headlen(skb);
974 
975 	if (offset > (int)skb->len - len)
976 		goto fault;
977 
978 	/* Copy header. */
979 	if ((copy = start - offset) > 0) {
980 		if (copy > len)
981 			copy = len;
982 		memcpy(to, skb->data + offset, copy);
983 		if ((len -= copy) == 0)
984 			return 0;
985 		offset += copy;
986 		to     += copy;
987 	}
988 
989 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
990 		int end;
991 
992 		BUG_TRAP(start <= offset + len);
993 
994 		end = start + skb_shinfo(skb)->frags[i].size;
995 		if ((copy = end - offset) > 0) {
996 			u8 *vaddr;
997 
998 			if (copy > len)
999 				copy = len;
1000 
1001 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1002 			memcpy(to,
1003 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1004 			       offset - start, copy);
1005 			kunmap_skb_frag(vaddr);
1006 
1007 			if ((len -= copy) == 0)
1008 				return 0;
1009 			offset += copy;
1010 			to     += copy;
1011 		}
1012 		start = end;
1013 	}
1014 
1015 	if (skb_shinfo(skb)->frag_list) {
1016 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1017 
1018 		for (; list; list = list->next) {
1019 			int end;
1020 
1021 			BUG_TRAP(start <= offset + len);
1022 
1023 			end = start + list->len;
1024 			if ((copy = end - offset) > 0) {
1025 				if (copy > len)
1026 					copy = len;
1027 				if (skb_copy_bits(list, offset - start,
1028 						  to, copy))
1029 					goto fault;
1030 				if ((len -= copy) == 0)
1031 					return 0;
1032 				offset += copy;
1033 				to     += copy;
1034 			}
1035 			start = end;
1036 		}
1037 	}
1038 	if (!len)
1039 		return 0;
1040 
1041 fault:
1042 	return -EFAULT;
1043 }
1044 
1045 /**
1046  *	skb_store_bits - store bits from kernel buffer to skb
1047  *	@skb: destination buffer
1048  *	@offset: offset in destination
1049  *	@from: source buffer
1050  *	@len: number of bytes to copy
1051  *
1052  *	Copy the specified number of bytes from the source buffer to the
1053  *	destination skb.  This function handles all the messy bits of
1054  *	traversing fragment lists and such.
1055  */
1056 
1057 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1058 {
1059 	int i, copy;
1060 	int start = skb_headlen(skb);
1061 
1062 	if (offset > (int)skb->len - len)
1063 		goto fault;
1064 
1065 	if ((copy = start - offset) > 0) {
1066 		if (copy > len)
1067 			copy = len;
1068 		memcpy(skb->data + offset, from, copy);
1069 		if ((len -= copy) == 0)
1070 			return 0;
1071 		offset += copy;
1072 		from += copy;
1073 	}
1074 
1075 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1076 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1077 		int end;
1078 
1079 		BUG_TRAP(start <= offset + len);
1080 
1081 		end = start + frag->size;
1082 		if ((copy = end - offset) > 0) {
1083 			u8 *vaddr;
1084 
1085 			if (copy > len)
1086 				copy = len;
1087 
1088 			vaddr = kmap_skb_frag(frag);
1089 			memcpy(vaddr + frag->page_offset + offset - start,
1090 			       from, copy);
1091 			kunmap_skb_frag(vaddr);
1092 
1093 			if ((len -= copy) == 0)
1094 				return 0;
1095 			offset += copy;
1096 			from += copy;
1097 		}
1098 		start = end;
1099 	}
1100 
1101 	if (skb_shinfo(skb)->frag_list) {
1102 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1103 
1104 		for (; list; list = list->next) {
1105 			int end;
1106 
1107 			BUG_TRAP(start <= offset + len);
1108 
1109 			end = start + list->len;
1110 			if ((copy = end - offset) > 0) {
1111 				if (copy > len)
1112 					copy = len;
1113 				if (skb_store_bits(list, offset - start,
1114 						   from, copy))
1115 					goto fault;
1116 				if ((len -= copy) == 0)
1117 					return 0;
1118 				offset += copy;
1119 				from += copy;
1120 			}
1121 			start = end;
1122 		}
1123 	}
1124 	if (!len)
1125 		return 0;
1126 
1127 fault:
1128 	return -EFAULT;
1129 }
1130 
1131 EXPORT_SYMBOL(skb_store_bits);
1132 
1133 /* Checksum skb data. */
1134 
1135 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1136 			  int len, unsigned int csum)
1137 {
1138 	int start = skb_headlen(skb);
1139 	int i, copy = start - offset;
1140 	int pos = 0;
1141 
1142 	/* Checksum header. */
1143 	if (copy > 0) {
1144 		if (copy > len)
1145 			copy = len;
1146 		csum = csum_partial(skb->data + offset, copy, csum);
1147 		if ((len -= copy) == 0)
1148 			return csum;
1149 		offset += copy;
1150 		pos	= copy;
1151 	}
1152 
1153 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1154 		int end;
1155 
1156 		BUG_TRAP(start <= offset + len);
1157 
1158 		end = start + skb_shinfo(skb)->frags[i].size;
1159 		if ((copy = end - offset) > 0) {
1160 			unsigned int csum2;
1161 			u8 *vaddr;
1162 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1163 
1164 			if (copy > len)
1165 				copy = len;
1166 			vaddr = kmap_skb_frag(frag);
1167 			csum2 = csum_partial(vaddr + frag->page_offset +
1168 					     offset - start, copy, 0);
1169 			kunmap_skb_frag(vaddr);
1170 			csum = csum_block_add(csum, csum2, pos);
1171 			if (!(len -= copy))
1172 				return csum;
1173 			offset += copy;
1174 			pos    += copy;
1175 		}
1176 		start = end;
1177 	}
1178 
1179 	if (skb_shinfo(skb)->frag_list) {
1180 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1181 
1182 		for (; list; list = list->next) {
1183 			int end;
1184 
1185 			BUG_TRAP(start <= offset + len);
1186 
1187 			end = start + list->len;
1188 			if ((copy = end - offset) > 0) {
1189 				unsigned int csum2;
1190 				if (copy > len)
1191 					copy = len;
1192 				csum2 = skb_checksum(list, offset - start,
1193 						     copy, 0);
1194 				csum = csum_block_add(csum, csum2, pos);
1195 				if ((len -= copy) == 0)
1196 					return csum;
1197 				offset += copy;
1198 				pos    += copy;
1199 			}
1200 			start = end;
1201 		}
1202 	}
1203 	if (len)
1204 		BUG();
1205 
1206 	return csum;
1207 }
1208 
1209 /* Both of above in one bottle. */
1210 
1211 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1212 				    u8 *to, int len, unsigned int csum)
1213 {
1214 	int start = skb_headlen(skb);
1215 	int i, copy = start - offset;
1216 	int pos = 0;
1217 
1218 	/* Copy header. */
1219 	if (copy > 0) {
1220 		if (copy > len)
1221 			copy = len;
1222 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1223 						 copy, csum);
1224 		if ((len -= copy) == 0)
1225 			return csum;
1226 		offset += copy;
1227 		to     += copy;
1228 		pos	= copy;
1229 	}
1230 
1231 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1232 		int end;
1233 
1234 		BUG_TRAP(start <= offset + len);
1235 
1236 		end = start + skb_shinfo(skb)->frags[i].size;
1237 		if ((copy = end - offset) > 0) {
1238 			unsigned int csum2;
1239 			u8 *vaddr;
1240 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1241 
1242 			if (copy > len)
1243 				copy = len;
1244 			vaddr = kmap_skb_frag(frag);
1245 			csum2 = csum_partial_copy_nocheck(vaddr +
1246 							  frag->page_offset +
1247 							  offset - start, to,
1248 							  copy, 0);
1249 			kunmap_skb_frag(vaddr);
1250 			csum = csum_block_add(csum, csum2, pos);
1251 			if (!(len -= copy))
1252 				return csum;
1253 			offset += copy;
1254 			to     += copy;
1255 			pos    += copy;
1256 		}
1257 		start = end;
1258 	}
1259 
1260 	if (skb_shinfo(skb)->frag_list) {
1261 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1262 
1263 		for (; list; list = list->next) {
1264 			unsigned int csum2;
1265 			int end;
1266 
1267 			BUG_TRAP(start <= offset + len);
1268 
1269 			end = start + list->len;
1270 			if ((copy = end - offset) > 0) {
1271 				if (copy > len)
1272 					copy = len;
1273 				csum2 = skb_copy_and_csum_bits(list,
1274 							       offset - start,
1275 							       to, copy, 0);
1276 				csum = csum_block_add(csum, csum2, pos);
1277 				if ((len -= copy) == 0)
1278 					return csum;
1279 				offset += copy;
1280 				to     += copy;
1281 				pos    += copy;
1282 			}
1283 			start = end;
1284 		}
1285 	}
1286 	if (len)
1287 		BUG();
1288 	return csum;
1289 }
1290 
1291 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1292 {
1293 	unsigned int csum;
1294 	long csstart;
1295 
1296 	if (skb->ip_summed == CHECKSUM_HW)
1297 		csstart = skb->h.raw - skb->data;
1298 	else
1299 		csstart = skb_headlen(skb);
1300 
1301 	if (csstart > skb_headlen(skb))
1302 		BUG();
1303 
1304 	memcpy(to, skb->data, csstart);
1305 
1306 	csum = 0;
1307 	if (csstart != skb->len)
1308 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1309 					      skb->len - csstart, 0);
1310 
1311 	if (skb->ip_summed == CHECKSUM_HW) {
1312 		long csstuff = csstart + skb->csum;
1313 
1314 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1315 	}
1316 }
1317 
1318 /**
1319  *	skb_dequeue - remove from the head of the queue
1320  *	@list: list to dequeue from
1321  *
1322  *	Remove the head of the list. The list lock is taken so the function
1323  *	may be used safely with other locking list functions. The head item is
1324  *	returned or %NULL if the list is empty.
1325  */
1326 
1327 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1328 {
1329 	unsigned long flags;
1330 	struct sk_buff *result;
1331 
1332 	spin_lock_irqsave(&list->lock, flags);
1333 	result = __skb_dequeue(list);
1334 	spin_unlock_irqrestore(&list->lock, flags);
1335 	return result;
1336 }
1337 
1338 /**
1339  *	skb_dequeue_tail - remove from the tail of the queue
1340  *	@list: list to dequeue from
1341  *
1342  *	Remove the tail of the list. The list lock is taken so the function
1343  *	may be used safely with other locking list functions. The tail item is
1344  *	returned or %NULL if the list is empty.
1345  */
1346 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1347 {
1348 	unsigned long flags;
1349 	struct sk_buff *result;
1350 
1351 	spin_lock_irqsave(&list->lock, flags);
1352 	result = __skb_dequeue_tail(list);
1353 	spin_unlock_irqrestore(&list->lock, flags);
1354 	return result;
1355 }
1356 
1357 /**
1358  *	skb_queue_purge - empty a list
1359  *	@list: list to empty
1360  *
1361  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1362  *	the list and one reference dropped. This function takes the list
1363  *	lock and is atomic with respect to other list locking functions.
1364  */
1365 void skb_queue_purge(struct sk_buff_head *list)
1366 {
1367 	struct sk_buff *skb;
1368 	while ((skb = skb_dequeue(list)) != NULL)
1369 		kfree_skb(skb);
1370 }
1371 
1372 /**
1373  *	skb_queue_head - queue a buffer at the list head
1374  *	@list: list to use
1375  *	@newsk: buffer to queue
1376  *
1377  *	Queue a buffer at the start of the list. This function takes the
1378  *	list lock and can be used safely with other locking &sk_buff functions
1379  *	safely.
1380  *
1381  *	A buffer cannot be placed on two lists at the same time.
1382  */
1383 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1384 {
1385 	unsigned long flags;
1386 
1387 	spin_lock_irqsave(&list->lock, flags);
1388 	__skb_queue_head(list, newsk);
1389 	spin_unlock_irqrestore(&list->lock, flags);
1390 }
1391 
1392 /**
1393  *	skb_queue_tail - queue a buffer at the list tail
1394  *	@list: list to use
1395  *	@newsk: buffer to queue
1396  *
1397  *	Queue a buffer at the tail of the list. This function takes the
1398  *	list lock and can be used safely with other locking &sk_buff functions
1399  *	safely.
1400  *
1401  *	A buffer cannot be placed on two lists at the same time.
1402  */
1403 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1404 {
1405 	unsigned long flags;
1406 
1407 	spin_lock_irqsave(&list->lock, flags);
1408 	__skb_queue_tail(list, newsk);
1409 	spin_unlock_irqrestore(&list->lock, flags);
1410 }
1411 
1412 /**
1413  *	skb_unlink	-	remove a buffer from a list
1414  *	@skb: buffer to remove
1415  *	@list: list to use
1416  *
1417  *	Remove a packet from a list. The list locks are taken and this
1418  *	function is atomic with respect to other list locked calls
1419  *
1420  *	You must know what list the SKB is on.
1421  */
1422 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1423 {
1424 	unsigned long flags;
1425 
1426 	spin_lock_irqsave(&list->lock, flags);
1427 	__skb_unlink(skb, list);
1428 	spin_unlock_irqrestore(&list->lock, flags);
1429 }
1430 
1431 /**
1432  *	skb_append	-	append a buffer
1433  *	@old: buffer to insert after
1434  *	@newsk: buffer to insert
1435  *	@list: list to use
1436  *
1437  *	Place a packet after a given packet in a list. The list locks are taken
1438  *	and this function is atomic with respect to other list locked calls.
1439  *	A buffer cannot be placed on two lists at the same time.
1440  */
1441 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1442 {
1443 	unsigned long flags;
1444 
1445 	spin_lock_irqsave(&list->lock, flags);
1446 	__skb_append(old, newsk, list);
1447 	spin_unlock_irqrestore(&list->lock, flags);
1448 }
1449 
1450 
1451 /**
1452  *	skb_insert	-	insert a buffer
1453  *	@old: buffer to insert before
1454  *	@newsk: buffer to insert
1455  *	@list: list to use
1456  *
1457  *	Place a packet before a given packet in a list. The list locks are
1458  * 	taken and this function is atomic with respect to other list locked
1459  *	calls.
1460  *
1461  *	A buffer cannot be placed on two lists at the same time.
1462  */
1463 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1464 {
1465 	unsigned long flags;
1466 
1467 	spin_lock_irqsave(&list->lock, flags);
1468 	__skb_insert(newsk, old->prev, old, list);
1469 	spin_unlock_irqrestore(&list->lock, flags);
1470 }
1471 
1472 #if 0
1473 /*
1474  * 	Tune the memory allocator for a new MTU size.
1475  */
1476 void skb_add_mtu(int mtu)
1477 {
1478 	/* Must match allocation in alloc_skb */
1479 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1480 
1481 	kmem_add_cache_size(mtu);
1482 }
1483 #endif
1484 
1485 static inline void skb_split_inside_header(struct sk_buff *skb,
1486 					   struct sk_buff* skb1,
1487 					   const u32 len, const int pos)
1488 {
1489 	int i;
1490 
1491 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1492 
1493 	/* And move data appendix as is. */
1494 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1495 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1496 
1497 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1498 	skb_shinfo(skb)->nr_frags  = 0;
1499 	skb1->data_len		   = skb->data_len;
1500 	skb1->len		   += skb1->data_len;
1501 	skb->data_len		   = 0;
1502 	skb->len		   = len;
1503 	skb->tail		   = skb->data + len;
1504 }
1505 
1506 static inline void skb_split_no_header(struct sk_buff *skb,
1507 				       struct sk_buff* skb1,
1508 				       const u32 len, int pos)
1509 {
1510 	int i, k = 0;
1511 	const int nfrags = skb_shinfo(skb)->nr_frags;
1512 
1513 	skb_shinfo(skb)->nr_frags = 0;
1514 	skb1->len		  = skb1->data_len = skb->len - len;
1515 	skb->len		  = len;
1516 	skb->data_len		  = len - pos;
1517 
1518 	for (i = 0; i < nfrags; i++) {
1519 		int size = skb_shinfo(skb)->frags[i].size;
1520 
1521 		if (pos + size > len) {
1522 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1523 
1524 			if (pos < len) {
1525 				/* Split frag.
1526 				 * We have two variants in this case:
1527 				 * 1. Move all the frag to the second
1528 				 *    part, if it is possible. F.e.
1529 				 *    this approach is mandatory for TUX,
1530 				 *    where splitting is expensive.
1531 				 * 2. Split is accurately. We make this.
1532 				 */
1533 				get_page(skb_shinfo(skb)->frags[i].page);
1534 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1535 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1536 				skb_shinfo(skb)->frags[i].size	= len - pos;
1537 				skb_shinfo(skb)->nr_frags++;
1538 			}
1539 			k++;
1540 		} else
1541 			skb_shinfo(skb)->nr_frags++;
1542 		pos += size;
1543 	}
1544 	skb_shinfo(skb1)->nr_frags = k;
1545 }
1546 
1547 /**
1548  * skb_split - Split fragmented skb to two parts at length len.
1549  * @skb: the buffer to split
1550  * @skb1: the buffer to receive the second part
1551  * @len: new length for skb
1552  */
1553 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1554 {
1555 	int pos = skb_headlen(skb);
1556 
1557 	if (len < pos)	/* Split line is inside header. */
1558 		skb_split_inside_header(skb, skb1, len, pos);
1559 	else		/* Second chunk has no header, nothing to copy. */
1560 		skb_split_no_header(skb, skb1, len, pos);
1561 }
1562 
1563 /**
1564  * skb_prepare_seq_read - Prepare a sequential read of skb data
1565  * @skb: the buffer to read
1566  * @from: lower offset of data to be read
1567  * @to: upper offset of data to be read
1568  * @st: state variable
1569  *
1570  * Initializes the specified state variable. Must be called before
1571  * invoking skb_seq_read() for the first time.
1572  */
1573 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1574 			  unsigned int to, struct skb_seq_state *st)
1575 {
1576 	st->lower_offset = from;
1577 	st->upper_offset = to;
1578 	st->root_skb = st->cur_skb = skb;
1579 	st->frag_idx = st->stepped_offset = 0;
1580 	st->frag_data = NULL;
1581 }
1582 
1583 /**
1584  * skb_seq_read - Sequentially read skb data
1585  * @consumed: number of bytes consumed by the caller so far
1586  * @data: destination pointer for data to be returned
1587  * @st: state variable
1588  *
1589  * Reads a block of skb data at &consumed relative to the
1590  * lower offset specified to skb_prepare_seq_read(). Assigns
1591  * the head of the data block to &data and returns the length
1592  * of the block or 0 if the end of the skb data or the upper
1593  * offset has been reached.
1594  *
1595  * The caller is not required to consume all of the data
1596  * returned, i.e. &consumed is typically set to the number
1597  * of bytes already consumed and the next call to
1598  * skb_seq_read() will return the remaining part of the block.
1599  *
1600  * Note: The size of each block of data returned can be arbitary,
1601  *       this limitation is the cost for zerocopy seqeuental
1602  *       reads of potentially non linear data.
1603  *
1604  * Note: Fragment lists within fragments are not implemented
1605  *       at the moment, state->root_skb could be replaced with
1606  *       a stack for this purpose.
1607  */
1608 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1609 			  struct skb_seq_state *st)
1610 {
1611 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1612 	skb_frag_t *frag;
1613 
1614 	if (unlikely(abs_offset >= st->upper_offset))
1615 		return 0;
1616 
1617 next_skb:
1618 	block_limit = skb_headlen(st->cur_skb);
1619 
1620 	if (abs_offset < block_limit) {
1621 		*data = st->cur_skb->data + abs_offset;
1622 		return block_limit - abs_offset;
1623 	}
1624 
1625 	if (st->frag_idx == 0 && !st->frag_data)
1626 		st->stepped_offset += skb_headlen(st->cur_skb);
1627 
1628 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1629 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1630 		block_limit = frag->size + st->stepped_offset;
1631 
1632 		if (abs_offset < block_limit) {
1633 			if (!st->frag_data)
1634 				st->frag_data = kmap_skb_frag(frag);
1635 
1636 			*data = (u8 *) st->frag_data + frag->page_offset +
1637 				(abs_offset - st->stepped_offset);
1638 
1639 			return block_limit - abs_offset;
1640 		}
1641 
1642 		if (st->frag_data) {
1643 			kunmap_skb_frag(st->frag_data);
1644 			st->frag_data = NULL;
1645 		}
1646 
1647 		st->frag_idx++;
1648 		st->stepped_offset += frag->size;
1649 	}
1650 
1651 	if (st->cur_skb->next) {
1652 		st->cur_skb = st->cur_skb->next;
1653 		st->frag_idx = 0;
1654 		goto next_skb;
1655 	} else if (st->root_skb == st->cur_skb &&
1656 		   skb_shinfo(st->root_skb)->frag_list) {
1657 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1658 		goto next_skb;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 /**
1665  * skb_abort_seq_read - Abort a sequential read of skb data
1666  * @st: state variable
1667  *
1668  * Must be called if skb_seq_read() was not called until it
1669  * returned 0.
1670  */
1671 void skb_abort_seq_read(struct skb_seq_state *st)
1672 {
1673 	if (st->frag_data)
1674 		kunmap_skb_frag(st->frag_data);
1675 }
1676 
1677 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1678 
1679 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1680 					  struct ts_config *conf,
1681 					  struct ts_state *state)
1682 {
1683 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1684 }
1685 
1686 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1687 {
1688 	skb_abort_seq_read(TS_SKB_CB(state));
1689 }
1690 
1691 /**
1692  * skb_find_text - Find a text pattern in skb data
1693  * @skb: the buffer to look in
1694  * @from: search offset
1695  * @to: search limit
1696  * @config: textsearch configuration
1697  * @state: uninitialized textsearch state variable
1698  *
1699  * Finds a pattern in the skb data according to the specified
1700  * textsearch configuration. Use textsearch_next() to retrieve
1701  * subsequent occurrences of the pattern. Returns the offset
1702  * to the first occurrence or UINT_MAX if no match was found.
1703  */
1704 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1705 			   unsigned int to, struct ts_config *config,
1706 			   struct ts_state *state)
1707 {
1708 	config->get_next_block = skb_ts_get_next_block;
1709 	config->finish = skb_ts_finish;
1710 
1711 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1712 
1713 	return textsearch_find(config, state);
1714 }
1715 
1716 /**
1717  * skb_append_datato_frags: - append the user data to a skb
1718  * @sk: sock  structure
1719  * @skb: skb structure to be appened with user data.
1720  * @getfrag: call back function to be used for getting the user data
1721  * @from: pointer to user message iov
1722  * @length: length of the iov message
1723  *
1724  * Description: This procedure append the user data in the fragment part
1725  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1726  */
1727 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1728 			int (*getfrag)(void *from, char *to, int offset,
1729 					int len, int odd, struct sk_buff *skb),
1730 			void *from, int length)
1731 {
1732 	int frg_cnt = 0;
1733 	skb_frag_t *frag = NULL;
1734 	struct page *page = NULL;
1735 	int copy, left;
1736 	int offset = 0;
1737 	int ret;
1738 
1739 	do {
1740 		/* Return error if we don't have space for new frag */
1741 		frg_cnt = skb_shinfo(skb)->nr_frags;
1742 		if (frg_cnt >= MAX_SKB_FRAGS)
1743 			return -EFAULT;
1744 
1745 		/* allocate a new page for next frag */
1746 		page = alloc_pages(sk->sk_allocation, 0);
1747 
1748 		/* If alloc_page fails just return failure and caller will
1749 		 * free previous allocated pages by doing kfree_skb()
1750 		 */
1751 		if (page == NULL)
1752 			return -ENOMEM;
1753 
1754 		/* initialize the next frag */
1755 		sk->sk_sndmsg_page = page;
1756 		sk->sk_sndmsg_off = 0;
1757 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1758 		skb->truesize += PAGE_SIZE;
1759 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1760 
1761 		/* get the new initialized frag */
1762 		frg_cnt = skb_shinfo(skb)->nr_frags;
1763 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1764 
1765 		/* copy the user data to page */
1766 		left = PAGE_SIZE - frag->page_offset;
1767 		copy = (length > left)? left : length;
1768 
1769 		ret = getfrag(from, (page_address(frag->page) +
1770 			    frag->page_offset + frag->size),
1771 			    offset, copy, 0, skb);
1772 		if (ret < 0)
1773 			return -EFAULT;
1774 
1775 		/* copy was successful so update the size parameters */
1776 		sk->sk_sndmsg_off += copy;
1777 		frag->size += copy;
1778 		skb->len += copy;
1779 		skb->data_len += copy;
1780 		offset += copy;
1781 		length -= copy;
1782 
1783 	} while (length > 0);
1784 
1785 	return 0;
1786 }
1787 
1788 void __init skb_init(void)
1789 {
1790 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1791 					      sizeof(struct sk_buff),
1792 					      0,
1793 					      SLAB_HWCACHE_ALIGN,
1794 					      NULL, NULL);
1795 	if (!skbuff_head_cache)
1796 		panic("cannot create skbuff cache");
1797 
1798 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1799 						(2*sizeof(struct sk_buff)) +
1800 						sizeof(atomic_t),
1801 						0,
1802 						SLAB_HWCACHE_ALIGN,
1803 						NULL, NULL);
1804 	if (!skbuff_fclone_cache)
1805 		panic("cannot create skbuff cache");
1806 }
1807 
1808 EXPORT_SYMBOL(___pskb_trim);
1809 EXPORT_SYMBOL(__kfree_skb);
1810 EXPORT_SYMBOL(__pskb_pull_tail);
1811 EXPORT_SYMBOL(__alloc_skb);
1812 EXPORT_SYMBOL(pskb_copy);
1813 EXPORT_SYMBOL(pskb_expand_head);
1814 EXPORT_SYMBOL(skb_checksum);
1815 EXPORT_SYMBOL(skb_clone);
1816 EXPORT_SYMBOL(skb_clone_fraglist);
1817 EXPORT_SYMBOL(skb_copy);
1818 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1819 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1820 EXPORT_SYMBOL(skb_copy_bits);
1821 EXPORT_SYMBOL(skb_copy_expand);
1822 EXPORT_SYMBOL(skb_over_panic);
1823 EXPORT_SYMBOL(skb_pad);
1824 EXPORT_SYMBOL(skb_realloc_headroom);
1825 EXPORT_SYMBOL(skb_under_panic);
1826 EXPORT_SYMBOL(skb_dequeue);
1827 EXPORT_SYMBOL(skb_dequeue_tail);
1828 EXPORT_SYMBOL(skb_insert);
1829 EXPORT_SYMBOL(skb_queue_purge);
1830 EXPORT_SYMBOL(skb_queue_head);
1831 EXPORT_SYMBOL(skb_queue_tail);
1832 EXPORT_SYMBOL(skb_unlink);
1833 EXPORT_SYMBOL(skb_append);
1834 EXPORT_SYMBOL(skb_split);
1835 EXPORT_SYMBOL(skb_prepare_seq_read);
1836 EXPORT_SYMBOL(skb_seq_read);
1837 EXPORT_SYMBOL(skb_abort_seq_read);
1838 EXPORT_SYMBOL(skb_find_text);
1839 EXPORT_SYMBOL(skb_append_datato_frags);
1840