1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 #include <linux/crc32.h> 68 69 #include <net/protocol.h> 70 #include <net/dst.h> 71 #include <net/sock.h> 72 #include <net/checksum.h> 73 #include <net/gro.h> 74 #include <net/gso.h> 75 #include <net/hotdata.h> 76 #include <net/ip6_checksum.h> 77 #include <net/xfrm.h> 78 #include <net/mpls.h> 79 #include <net/mptcp.h> 80 #include <net/mctp.h> 81 #include <net/page_pool/helpers.h> 82 #include <net/psp/types.h> 83 #include <net/dropreason.h> 84 #include <net/xdp_sock.h> 85 86 #include <linux/uaccess.h> 87 #include <trace/events/skb.h> 88 #include <linux/highmem.h> 89 #include <linux/capability.h> 90 #include <linux/user_namespace.h> 91 #include <linux/indirect_call_wrapper.h> 92 #include <linux/textsearch.h> 93 94 #include "dev.h" 95 #include "devmem.h" 96 #include "netmem_priv.h" 97 #include "sock_destructor.h" 98 99 #ifdef CONFIG_SKB_EXTENSIONS 100 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 101 #endif 102 103 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 105 GRO_MAX_HEAD_PAD)) 106 107 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 108 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 109 * size, and we can differentiate heads from skb_small_head_cache 110 * vs system slabs by looking at their size (skb_end_offset()). 111 */ 112 #define SKB_SMALL_HEAD_CACHE_SIZE \ 113 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 114 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 115 SKB_SMALL_HEAD_SIZE) 116 117 #define SKB_SMALL_HEAD_HEADROOM \ 118 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 119 120 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 121 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 122 * netmem is a page. 123 */ 124 static_assert(offsetof(struct bio_vec, bv_page) == 125 offsetof(skb_frag_t, netmem)); 126 static_assert(sizeof_field(struct bio_vec, bv_page) == 127 sizeof_field(skb_frag_t, netmem)); 128 129 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 130 static_assert(sizeof_field(struct bio_vec, bv_len) == 131 sizeof_field(skb_frag_t, len)); 132 133 static_assert(offsetof(struct bio_vec, bv_offset) == 134 offsetof(skb_frag_t, offset)); 135 static_assert(sizeof_field(struct bio_vec, bv_offset) == 136 sizeof_field(skb_frag_t, offset)); 137 138 #undef FN 139 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 140 static const char * const drop_reasons[] = { 141 [SKB_CONSUMED] = "CONSUMED", 142 DEFINE_DROP_REASON(FN, FN) 143 }; 144 145 static const struct drop_reason_list drop_reasons_core = { 146 .reasons = drop_reasons, 147 .n_reasons = ARRAY_SIZE(drop_reasons), 148 }; 149 150 const struct drop_reason_list __rcu * 151 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 152 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 153 }; 154 EXPORT_SYMBOL(drop_reasons_by_subsys); 155 156 /** 157 * drop_reasons_register_subsys - register another drop reason subsystem 158 * @subsys: the subsystem to register, must not be the core 159 * @list: the list of drop reasons within the subsystem, must point to 160 * a statically initialized list 161 */ 162 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 163 const struct drop_reason_list *list) 164 { 165 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 166 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 167 "invalid subsystem %d\n", subsys)) 168 return; 169 170 /* must point to statically allocated memory, so INIT is OK */ 171 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 172 } 173 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 174 175 /** 176 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 177 * @subsys: the subsystem to remove, must not be the core 178 * 179 * Note: This will synchronize_rcu() to ensure no users when it returns. 180 */ 181 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 182 { 183 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 184 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 185 "invalid subsystem %d\n", subsys)) 186 return; 187 188 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 189 190 synchronize_rcu(); 191 } 192 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 193 194 /** 195 * skb_panic - private function for out-of-line support 196 * @skb: buffer 197 * @sz: size 198 * @addr: address 199 * @msg: skb_over_panic or skb_under_panic 200 * 201 * Out-of-line support for skb_put() and skb_push(). 202 * Called via the wrapper skb_over_panic() or skb_under_panic(). 203 * Keep out of line to prevent kernel bloat. 204 * __builtin_return_address is not used because it is not always reliable. 205 */ 206 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 207 const char msg[]) 208 { 209 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 210 msg, addr, skb->len, sz, skb->head, skb->data, 211 (unsigned long)skb->tail, (unsigned long)skb->end, 212 skb->dev ? skb->dev->name : "<NULL>"); 213 BUG(); 214 } 215 216 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 217 { 218 skb_panic(skb, sz, addr, __func__); 219 } 220 221 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 222 { 223 skb_panic(skb, sz, addr, __func__); 224 } 225 226 #define NAPI_SKB_CACHE_SIZE 64 227 #define NAPI_SKB_CACHE_BULK 16 228 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 229 230 struct napi_alloc_cache { 231 local_lock_t bh_lock; 232 struct page_frag_cache page; 233 unsigned int skb_count; 234 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 235 }; 236 237 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 238 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 239 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 240 }; 241 242 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 243 { 244 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 245 void *data; 246 247 fragsz = SKB_DATA_ALIGN(fragsz); 248 249 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 250 data = __page_frag_alloc_align(&nc->page, fragsz, 251 GFP_ATOMIC | __GFP_NOWARN, align_mask); 252 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 253 return data; 254 255 } 256 EXPORT_SYMBOL(__napi_alloc_frag_align); 257 258 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 259 { 260 void *data; 261 262 if (in_hardirq() || irqs_disabled()) { 263 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 264 265 fragsz = SKB_DATA_ALIGN(fragsz); 266 data = __page_frag_alloc_align(nc, fragsz, 267 GFP_ATOMIC | __GFP_NOWARN, 268 align_mask); 269 } else { 270 local_bh_disable(); 271 data = __napi_alloc_frag_align(fragsz, align_mask); 272 local_bh_enable(); 273 } 274 return data; 275 } 276 EXPORT_SYMBOL(__netdev_alloc_frag_align); 277 278 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler 279 * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset. 280 */ 281 static u32 skbuff_cache_size __read_mostly; 282 283 static struct sk_buff *napi_skb_cache_get(void) 284 { 285 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 286 struct sk_buff *skb; 287 288 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 289 if (unlikely(!nc->skb_count)) { 290 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 291 GFP_ATOMIC | __GFP_NOWARN, 292 NAPI_SKB_CACHE_BULK, 293 nc->skb_cache); 294 if (unlikely(!nc->skb_count)) { 295 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 296 return NULL; 297 } 298 } 299 300 skb = nc->skb_cache[--nc->skb_count]; 301 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 302 kasan_mempool_unpoison_object(skb, skbuff_cache_size); 303 304 return skb; 305 } 306 307 /** 308 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 309 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 310 * @n: number of entries to provide 311 * 312 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 313 * the pointers into the provided array @skbs. If there are less entries 314 * available, tries to replenish the cache and bulk-allocates the diff from 315 * the MM layer if needed. 316 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 317 * ready for {,__}build_skb_around() and don't have any data buffers attached. 318 * Must be called *only* from the BH context. 319 * 320 * Return: number of successfully allocated skbs (@n if no actual allocation 321 * needed or kmem_cache_alloc_bulk() didn't fail). 322 */ 323 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 324 { 325 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 326 u32 bulk, total = n; 327 328 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 329 330 if (nc->skb_count >= n) 331 goto get; 332 333 /* No enough cached skbs. Try refilling the cache first */ 334 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 335 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 336 GFP_ATOMIC | __GFP_NOWARN, bulk, 337 &nc->skb_cache[nc->skb_count]); 338 if (likely(nc->skb_count >= n)) 339 goto get; 340 341 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 342 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 343 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 344 n - nc->skb_count, &skbs[nc->skb_count]); 345 if (likely(nc->skb_count >= n)) 346 goto get; 347 348 /* kmem_cache didn't allocate the number we need, limit the output */ 349 total -= n - nc->skb_count; 350 n = nc->skb_count; 351 352 get: 353 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 354 skbs[i] = nc->skb_cache[base + i]; 355 356 kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size); 357 memset(skbs[i], 0, offsetof(struct sk_buff, tail)); 358 } 359 360 nc->skb_count -= n; 361 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 362 363 return total; 364 } 365 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 366 367 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 368 unsigned int size) 369 { 370 struct skb_shared_info *shinfo; 371 372 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 373 374 /* Assumes caller memset cleared SKB */ 375 skb->truesize = SKB_TRUESIZE(size); 376 refcount_set(&skb->users, 1); 377 skb->head = data; 378 skb->data = data; 379 skb_reset_tail_pointer(skb); 380 skb_set_end_offset(skb, size); 381 skb->mac_header = (typeof(skb->mac_header))~0U; 382 skb->transport_header = (typeof(skb->transport_header))~0U; 383 skb->alloc_cpu = raw_smp_processor_id(); 384 /* make sure we initialize shinfo sequentially */ 385 shinfo = skb_shinfo(skb); 386 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 387 atomic_set(&shinfo->dataref, 1); 388 389 skb_set_kcov_handle(skb, kcov_common_handle()); 390 } 391 392 static inline void *__slab_build_skb(void *data, unsigned int *size) 393 { 394 void *resized; 395 396 /* Must find the allocation size (and grow it to match). */ 397 *size = ksize(data); 398 /* krealloc() will immediately return "data" when 399 * "ksize(data)" is requested: it is the existing upper 400 * bounds. As a result, GFP_ATOMIC will be ignored. Note 401 * that this "new" pointer needs to be passed back to the 402 * caller for use so the __alloc_size hinting will be 403 * tracked correctly. 404 */ 405 resized = krealloc(data, *size, GFP_ATOMIC); 406 WARN_ON_ONCE(resized != data); 407 return resized; 408 } 409 410 /* build_skb() variant which can operate on slab buffers. 411 * Note that this should be used sparingly as slab buffers 412 * cannot be combined efficiently by GRO! 413 */ 414 struct sk_buff *slab_build_skb(void *data) 415 { 416 struct sk_buff *skb; 417 unsigned int size; 418 419 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 420 GFP_ATOMIC | __GFP_NOWARN); 421 if (unlikely(!skb)) 422 return NULL; 423 424 memset(skb, 0, offsetof(struct sk_buff, tail)); 425 data = __slab_build_skb(data, &size); 426 __finalize_skb_around(skb, data, size); 427 428 return skb; 429 } 430 EXPORT_SYMBOL(slab_build_skb); 431 432 /* Caller must provide SKB that is memset cleared */ 433 static void __build_skb_around(struct sk_buff *skb, void *data, 434 unsigned int frag_size) 435 { 436 unsigned int size = frag_size; 437 438 /* frag_size == 0 is considered deprecated now. Callers 439 * using slab buffer should use slab_build_skb() instead. 440 */ 441 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 442 data = __slab_build_skb(data, &size); 443 444 __finalize_skb_around(skb, data, size); 445 } 446 447 /** 448 * __build_skb - build a network buffer 449 * @data: data buffer provided by caller 450 * @frag_size: size of data (must not be 0) 451 * 452 * Allocate a new &sk_buff. Caller provides space holding head and 453 * skb_shared_info. @data must have been allocated from the page 454 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 455 * allocation is deprecated, and callers should use slab_build_skb() 456 * instead.) 457 * The return is the new skb buffer. 458 * On a failure the return is %NULL, and @data is not freed. 459 * Notes : 460 * Before IO, driver allocates only data buffer where NIC put incoming frame 461 * Driver should add room at head (NET_SKB_PAD) and 462 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 463 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 464 * before giving packet to stack. 465 * RX rings only contains data buffers, not full skbs. 466 */ 467 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 468 { 469 struct sk_buff *skb; 470 471 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 472 GFP_ATOMIC | __GFP_NOWARN); 473 if (unlikely(!skb)) 474 return NULL; 475 476 memset(skb, 0, offsetof(struct sk_buff, tail)); 477 __build_skb_around(skb, data, frag_size); 478 479 return skb; 480 } 481 482 /* build_skb() is wrapper over __build_skb(), that specifically 483 * takes care of skb->head and skb->pfmemalloc 484 */ 485 struct sk_buff *build_skb(void *data, unsigned int frag_size) 486 { 487 struct sk_buff *skb = __build_skb(data, frag_size); 488 489 if (likely(skb && frag_size)) { 490 skb->head_frag = 1; 491 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 492 } 493 return skb; 494 } 495 EXPORT_SYMBOL(build_skb); 496 497 /** 498 * build_skb_around - build a network buffer around provided skb 499 * @skb: sk_buff provide by caller, must be memset cleared 500 * @data: data buffer provided by caller 501 * @frag_size: size of data 502 */ 503 struct sk_buff *build_skb_around(struct sk_buff *skb, 504 void *data, unsigned int frag_size) 505 { 506 if (unlikely(!skb)) 507 return NULL; 508 509 __build_skb_around(skb, data, frag_size); 510 511 if (frag_size) { 512 skb->head_frag = 1; 513 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 514 } 515 return skb; 516 } 517 EXPORT_SYMBOL(build_skb_around); 518 519 /** 520 * __napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __build_skb() that uses NAPI percpu caches to obtain 525 * skbuff_head instead of inplace allocation. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb; 532 533 skb = napi_skb_cache_get(); 534 if (unlikely(!skb)) 535 return NULL; 536 537 memset(skb, 0, offsetof(struct sk_buff, tail)); 538 __build_skb_around(skb, data, frag_size); 539 540 return skb; 541 } 542 543 /** 544 * napi_build_skb - build a network buffer 545 * @data: data buffer provided by caller 546 * @frag_size: size of data 547 * 548 * Version of __napi_build_skb() that takes care of skb->head_frag 549 * and skb->pfmemalloc when the data is a page or page fragment. 550 * 551 * Returns a new &sk_buff on success, %NULL on allocation failure. 552 */ 553 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 554 { 555 struct sk_buff *skb = __napi_build_skb(data, frag_size); 556 557 if (likely(skb) && frag_size) { 558 skb->head_frag = 1; 559 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 560 } 561 562 return skb; 563 } 564 EXPORT_SYMBOL(napi_build_skb); 565 566 /* 567 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 568 * the caller if emergency pfmemalloc reserves are being used. If it is and 569 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 570 * may be used. Otherwise, the packet data may be discarded until enough 571 * memory is free 572 */ 573 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 574 bool *pfmemalloc) 575 { 576 bool ret_pfmemalloc = false; 577 size_t obj_size; 578 void *obj; 579 580 obj_size = SKB_HEAD_ALIGN(*size); 581 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 582 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 583 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 584 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 585 node); 586 *size = SKB_SMALL_HEAD_CACHE_SIZE; 587 if (obj || !(gfp_pfmemalloc_allowed(flags))) 588 goto out; 589 /* Try again but now we are using pfmemalloc reserves */ 590 ret_pfmemalloc = true; 591 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 592 goto out; 593 } 594 595 obj_size = kmalloc_size_roundup(obj_size); 596 /* The following cast might truncate high-order bits of obj_size, this 597 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 598 */ 599 *size = (unsigned int)obj_size; 600 601 /* 602 * Try a regular allocation, when that fails and we're not entitled 603 * to the reserves, fail. 604 */ 605 obj = kmalloc_node_track_caller(obj_size, 606 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 607 node); 608 if (obj || !(gfp_pfmemalloc_allowed(flags))) 609 goto out; 610 611 /* Try again but now we are using pfmemalloc reserves */ 612 ret_pfmemalloc = true; 613 obj = kmalloc_node_track_caller(obj_size, flags, node); 614 615 out: 616 if (pfmemalloc) 617 *pfmemalloc = ret_pfmemalloc; 618 619 return obj; 620 } 621 622 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 623 * 'private' fields and also do memory statistics to find all the 624 * [BEEP] leaks. 625 * 626 */ 627 628 /** 629 * __alloc_skb - allocate a network buffer 630 * @size: size to allocate 631 * @gfp_mask: allocation mask 632 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 633 * instead of head cache and allocate a cloned (child) skb. 634 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 635 * allocations in case the data is required for writeback 636 * @node: numa node to allocate memory on 637 * 638 * Allocate a new &sk_buff. The returned buffer has no headroom and a 639 * tail room of at least size bytes. The object has a reference count 640 * of one. The return is the buffer. On a failure the return is %NULL. 641 * 642 * Buffers may only be allocated from interrupts using a @gfp_mask of 643 * %GFP_ATOMIC. 644 */ 645 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 646 int flags, int node) 647 { 648 struct kmem_cache *cache; 649 struct sk_buff *skb; 650 bool pfmemalloc; 651 u8 *data; 652 653 cache = (flags & SKB_ALLOC_FCLONE) 654 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 655 656 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 657 gfp_mask |= __GFP_MEMALLOC; 658 659 /* Get the HEAD */ 660 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 661 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 662 skb = napi_skb_cache_get(); 663 else 664 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 665 if (unlikely(!skb)) 666 return NULL; 667 prefetchw(skb); 668 669 /* We do our best to align skb_shared_info on a separate cache 670 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 671 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 672 * Both skb->head and skb_shared_info are cache line aligned. 673 */ 674 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 675 if (unlikely(!data)) 676 goto nodata; 677 /* kmalloc_size_roundup() might give us more room than requested. 678 * Put skb_shared_info exactly at the end of allocated zone, 679 * to allow max possible filling before reallocation. 680 */ 681 prefetchw(data + SKB_WITH_OVERHEAD(size)); 682 683 /* 684 * Only clear those fields we need to clear, not those that we will 685 * actually initialise below. Hence, don't put any more fields after 686 * the tail pointer in struct sk_buff! 687 */ 688 memset(skb, 0, offsetof(struct sk_buff, tail)); 689 __build_skb_around(skb, data, size); 690 skb->pfmemalloc = pfmemalloc; 691 692 if (flags & SKB_ALLOC_FCLONE) { 693 struct sk_buff_fclones *fclones; 694 695 fclones = container_of(skb, struct sk_buff_fclones, skb1); 696 697 skb->fclone = SKB_FCLONE_ORIG; 698 refcount_set(&fclones->fclone_ref, 1); 699 } 700 701 return skb; 702 703 nodata: 704 kmem_cache_free(cache, skb); 705 return NULL; 706 } 707 EXPORT_SYMBOL(__alloc_skb); 708 709 /** 710 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 711 * @dev: network device to receive on 712 * @len: length to allocate 713 * @gfp_mask: get_free_pages mask, passed to alloc_skb 714 * 715 * Allocate a new &sk_buff and assign it a usage count of one. The 716 * buffer has NET_SKB_PAD headroom built in. Users should allocate 717 * the headroom they think they need without accounting for the 718 * built in space. The built in space is used for optimisations. 719 * 720 * %NULL is returned if there is no free memory. 721 */ 722 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 723 gfp_t gfp_mask) 724 { 725 struct page_frag_cache *nc; 726 struct sk_buff *skb; 727 bool pfmemalloc; 728 void *data; 729 730 len += NET_SKB_PAD; 731 732 /* If requested length is either too small or too big, 733 * we use kmalloc() for skb->head allocation. 734 */ 735 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 736 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 737 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 738 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 739 if (!skb) 740 goto skb_fail; 741 goto skb_success; 742 } 743 744 len = SKB_HEAD_ALIGN(len); 745 746 if (sk_memalloc_socks()) 747 gfp_mask |= __GFP_MEMALLOC; 748 749 if (in_hardirq() || irqs_disabled()) { 750 nc = this_cpu_ptr(&netdev_alloc_cache); 751 data = page_frag_alloc(nc, len, gfp_mask); 752 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 753 } else { 754 local_bh_disable(); 755 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 756 757 nc = this_cpu_ptr(&napi_alloc_cache.page); 758 data = page_frag_alloc(nc, len, gfp_mask); 759 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 760 761 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 762 local_bh_enable(); 763 } 764 765 if (unlikely(!data)) 766 return NULL; 767 768 skb = __build_skb(data, len); 769 if (unlikely(!skb)) { 770 skb_free_frag(data); 771 return NULL; 772 } 773 774 if (pfmemalloc) 775 skb->pfmemalloc = 1; 776 skb->head_frag = 1; 777 778 skb_success: 779 skb_reserve(skb, NET_SKB_PAD); 780 skb->dev = dev; 781 782 skb_fail: 783 return skb; 784 } 785 EXPORT_SYMBOL(__netdev_alloc_skb); 786 787 /** 788 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 789 * @napi: napi instance this buffer was allocated for 790 * @len: length to allocate 791 * 792 * Allocate a new sk_buff for use in NAPI receive. This buffer will 793 * attempt to allocate the head from a special reserved region used 794 * only for NAPI Rx allocation. By doing this we can save several 795 * CPU cycles by avoiding having to disable and re-enable IRQs. 796 * 797 * %NULL is returned if there is no free memory. 798 */ 799 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 800 { 801 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 802 struct napi_alloc_cache *nc; 803 struct sk_buff *skb; 804 bool pfmemalloc; 805 void *data; 806 807 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 808 len += NET_SKB_PAD + NET_IP_ALIGN; 809 810 /* If requested length is either too small or too big, 811 * we use kmalloc() for skb->head allocation. 812 */ 813 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 814 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 815 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 816 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 817 NUMA_NO_NODE); 818 if (!skb) 819 goto skb_fail; 820 goto skb_success; 821 } 822 823 len = SKB_HEAD_ALIGN(len); 824 825 if (sk_memalloc_socks()) 826 gfp_mask |= __GFP_MEMALLOC; 827 828 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 829 nc = this_cpu_ptr(&napi_alloc_cache); 830 831 data = page_frag_alloc(&nc->page, len, gfp_mask); 832 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 833 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 834 835 if (unlikely(!data)) 836 return NULL; 837 838 skb = __napi_build_skb(data, len); 839 if (unlikely(!skb)) { 840 skb_free_frag(data); 841 return NULL; 842 } 843 844 if (pfmemalloc) 845 skb->pfmemalloc = 1; 846 skb->head_frag = 1; 847 848 skb_success: 849 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 850 skb->dev = napi->dev; 851 852 skb_fail: 853 return skb; 854 } 855 EXPORT_SYMBOL(napi_alloc_skb); 856 857 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 858 int off, int size, unsigned int truesize) 859 { 860 DEBUG_NET_WARN_ON_ONCE(size > truesize); 861 862 skb_fill_netmem_desc(skb, i, netmem, off, size); 863 skb->len += size; 864 skb->data_len += size; 865 skb->truesize += truesize; 866 } 867 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 868 869 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 870 unsigned int truesize) 871 { 872 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 873 874 DEBUG_NET_WARN_ON_ONCE(size > truesize); 875 876 skb_frag_size_add(frag, size); 877 skb->len += size; 878 skb->data_len += size; 879 skb->truesize += truesize; 880 } 881 EXPORT_SYMBOL(skb_coalesce_rx_frag); 882 883 static void skb_drop_list(struct sk_buff **listp) 884 { 885 kfree_skb_list(*listp); 886 *listp = NULL; 887 } 888 889 static inline void skb_drop_fraglist(struct sk_buff *skb) 890 { 891 skb_drop_list(&skb_shinfo(skb)->frag_list); 892 } 893 894 static void skb_clone_fraglist(struct sk_buff *skb) 895 { 896 struct sk_buff *list; 897 898 skb_walk_frags(skb, list) 899 skb_get(list); 900 } 901 902 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 903 unsigned int headroom) 904 { 905 #if IS_ENABLED(CONFIG_PAGE_POOL) 906 u32 size, truesize, len, max_head_size, off; 907 struct sk_buff *skb = *pskb, *nskb; 908 int err, i, head_off; 909 void *data; 910 911 /* XDP does not support fraglist so we need to linearize 912 * the skb. 913 */ 914 if (skb_has_frag_list(skb)) 915 return -EOPNOTSUPP; 916 917 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 918 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 919 return -ENOMEM; 920 921 size = min_t(u32, skb->len, max_head_size); 922 truesize = SKB_HEAD_ALIGN(size) + headroom; 923 data = page_pool_dev_alloc_va(pool, &truesize); 924 if (!data) 925 return -ENOMEM; 926 927 nskb = napi_build_skb(data, truesize); 928 if (!nskb) { 929 page_pool_free_va(pool, data, true); 930 return -ENOMEM; 931 } 932 933 skb_reserve(nskb, headroom); 934 skb_copy_header(nskb, skb); 935 skb_mark_for_recycle(nskb); 936 937 err = skb_copy_bits(skb, 0, nskb->data, size); 938 if (err) { 939 consume_skb(nskb); 940 return err; 941 } 942 skb_put(nskb, size); 943 944 head_off = skb_headroom(nskb) - skb_headroom(skb); 945 skb_headers_offset_update(nskb, head_off); 946 947 off = size; 948 len = skb->len - off; 949 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 950 struct page *page; 951 u32 page_off; 952 953 size = min_t(u32, len, PAGE_SIZE); 954 truesize = size; 955 956 page = page_pool_dev_alloc(pool, &page_off, &truesize); 957 if (!page) { 958 consume_skb(nskb); 959 return -ENOMEM; 960 } 961 962 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 963 err = skb_copy_bits(skb, off, page_address(page) + page_off, 964 size); 965 if (err) { 966 consume_skb(nskb); 967 return err; 968 } 969 970 len -= size; 971 off += size; 972 } 973 974 consume_skb(skb); 975 *pskb = nskb; 976 977 return 0; 978 #else 979 return -EOPNOTSUPP; 980 #endif 981 } 982 EXPORT_SYMBOL(skb_pp_cow_data); 983 984 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 985 const struct bpf_prog *prog) 986 { 987 if (!prog->aux->xdp_has_frags) 988 return -EINVAL; 989 990 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 991 } 992 EXPORT_SYMBOL(skb_cow_data_for_xdp); 993 994 #if IS_ENABLED(CONFIG_PAGE_POOL) 995 bool napi_pp_put_page(netmem_ref netmem) 996 { 997 netmem = netmem_compound_head(netmem); 998 999 if (unlikely(!netmem_is_pp(netmem))) 1000 return false; 1001 1002 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 1003 1004 return true; 1005 } 1006 EXPORT_SYMBOL(napi_pp_put_page); 1007 #endif 1008 1009 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1010 { 1011 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1012 return false; 1013 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1014 } 1015 1016 /** 1017 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1018 * @skb: page pool aware skb 1019 * 1020 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1021 * intended to gain fragment references only for page pool aware skbs, 1022 * i.e. when skb->pp_recycle is true, and not for fragments in a 1023 * non-pp-recycling skb. It has a fallback to increase references on normal 1024 * pages, as page pool aware skbs may also have normal page fragments. 1025 */ 1026 static int skb_pp_frag_ref(struct sk_buff *skb) 1027 { 1028 struct skb_shared_info *shinfo; 1029 netmem_ref head_netmem; 1030 int i; 1031 1032 if (!skb->pp_recycle) 1033 return -EINVAL; 1034 1035 shinfo = skb_shinfo(skb); 1036 1037 for (i = 0; i < shinfo->nr_frags; i++) { 1038 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1039 if (likely(netmem_is_pp(head_netmem))) 1040 page_pool_ref_netmem(head_netmem); 1041 else 1042 page_ref_inc(netmem_to_page(head_netmem)); 1043 } 1044 return 0; 1045 } 1046 1047 static void skb_kfree_head(void *head, unsigned int end_offset) 1048 { 1049 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1050 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1051 else 1052 kfree(head); 1053 } 1054 1055 static void skb_free_head(struct sk_buff *skb) 1056 { 1057 unsigned char *head = skb->head; 1058 1059 if (skb->head_frag) { 1060 if (skb_pp_recycle(skb, head)) 1061 return; 1062 skb_free_frag(head); 1063 } else { 1064 skb_kfree_head(head, skb_end_offset(skb)); 1065 } 1066 } 1067 1068 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1069 { 1070 struct skb_shared_info *shinfo = skb_shinfo(skb); 1071 int i; 1072 1073 if (!skb_data_unref(skb, shinfo)) 1074 goto exit; 1075 1076 if (skb_zcopy(skb)) { 1077 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1078 1079 skb_zcopy_clear(skb, true); 1080 if (skip_unref) 1081 goto free_head; 1082 } 1083 1084 for (i = 0; i < shinfo->nr_frags; i++) 1085 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1086 1087 free_head: 1088 if (shinfo->frag_list) 1089 kfree_skb_list_reason(shinfo->frag_list, reason); 1090 1091 skb_free_head(skb); 1092 exit: 1093 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1094 * bit is only set on the head though, so in order to avoid races 1095 * while trying to recycle fragments on __skb_frag_unref() we need 1096 * to make one SKB responsible for triggering the recycle path. 1097 * So disable the recycling bit if an SKB is cloned and we have 1098 * additional references to the fragmented part of the SKB. 1099 * Eventually the last SKB will have the recycling bit set and it's 1100 * dataref set to 0, which will trigger the recycling 1101 */ 1102 skb->pp_recycle = 0; 1103 } 1104 1105 /* 1106 * Free an skbuff by memory without cleaning the state. 1107 */ 1108 static void kfree_skbmem(struct sk_buff *skb) 1109 { 1110 struct sk_buff_fclones *fclones; 1111 1112 switch (skb->fclone) { 1113 case SKB_FCLONE_UNAVAILABLE: 1114 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1115 return; 1116 1117 case SKB_FCLONE_ORIG: 1118 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1119 1120 /* We usually free the clone (TX completion) before original skb 1121 * This test would have no chance to be true for the clone, 1122 * while here, branch prediction will be good. 1123 */ 1124 if (refcount_read(&fclones->fclone_ref) == 1) 1125 goto fastpath; 1126 break; 1127 1128 default: /* SKB_FCLONE_CLONE */ 1129 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1130 break; 1131 } 1132 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1133 return; 1134 fastpath: 1135 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1136 } 1137 1138 void skb_release_head_state(struct sk_buff *skb) 1139 { 1140 skb_dst_drop(skb); 1141 if (skb->destructor) { 1142 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1143 #ifdef CONFIG_INET 1144 INDIRECT_CALL_4(skb->destructor, 1145 tcp_wfree, __sock_wfree, sock_wfree, 1146 xsk_destruct_skb, 1147 skb); 1148 #else 1149 INDIRECT_CALL_2(skb->destructor, 1150 sock_wfree, xsk_destruct_skb, 1151 skb); 1152 1153 #endif 1154 skb->destructor = NULL; 1155 skb->sk = NULL; 1156 } 1157 nf_reset_ct(skb); 1158 skb_ext_reset(skb); 1159 } 1160 1161 /* Free everything but the sk_buff shell. */ 1162 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1163 { 1164 skb_release_head_state(skb); 1165 if (likely(skb->head)) 1166 skb_release_data(skb, reason); 1167 } 1168 1169 /** 1170 * __kfree_skb - private function 1171 * @skb: buffer 1172 * 1173 * Free an sk_buff. Release anything attached to the buffer. 1174 * Clean the state. This is an internal helper function. Users should 1175 * always call kfree_skb 1176 */ 1177 1178 void __kfree_skb(struct sk_buff *skb) 1179 { 1180 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1181 kfree_skbmem(skb); 1182 } 1183 EXPORT_SYMBOL(__kfree_skb); 1184 1185 static __always_inline 1186 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1187 enum skb_drop_reason reason) 1188 { 1189 if (unlikely(!skb_unref(skb))) 1190 return false; 1191 1192 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1193 u32_get_bits(reason, 1194 SKB_DROP_REASON_SUBSYS_MASK) >= 1195 SKB_DROP_REASON_SUBSYS_NUM); 1196 1197 if (reason == SKB_CONSUMED) 1198 trace_consume_skb(skb, __builtin_return_address(0)); 1199 else 1200 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1201 return true; 1202 } 1203 1204 /** 1205 * sk_skb_reason_drop - free an sk_buff with special reason 1206 * @sk: the socket to receive @skb, or NULL if not applicable 1207 * @skb: buffer to free 1208 * @reason: reason why this skb is dropped 1209 * 1210 * Drop a reference to the buffer and free it if the usage count has hit 1211 * zero. Meanwhile, pass the receiving socket and drop reason to 1212 * 'kfree_skb' tracepoint. 1213 */ 1214 void __fix_address 1215 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1216 { 1217 if (__sk_skb_reason_drop(sk, skb, reason)) 1218 __kfree_skb(skb); 1219 } 1220 EXPORT_SYMBOL(sk_skb_reason_drop); 1221 1222 #define KFREE_SKB_BULK_SIZE 16 1223 1224 struct skb_free_array { 1225 unsigned int skb_count; 1226 void *skb_array[KFREE_SKB_BULK_SIZE]; 1227 }; 1228 1229 static void kfree_skb_add_bulk(struct sk_buff *skb, 1230 struct skb_free_array *sa, 1231 enum skb_drop_reason reason) 1232 { 1233 /* if SKB is a clone, don't handle this case */ 1234 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1235 __kfree_skb(skb); 1236 return; 1237 } 1238 1239 skb_release_all(skb, reason); 1240 sa->skb_array[sa->skb_count++] = skb; 1241 1242 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1243 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1244 sa->skb_array); 1245 sa->skb_count = 0; 1246 } 1247 } 1248 1249 void __fix_address 1250 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1251 { 1252 struct skb_free_array sa; 1253 1254 sa.skb_count = 0; 1255 1256 while (segs) { 1257 struct sk_buff *next = segs->next; 1258 1259 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1260 skb_poison_list(segs); 1261 kfree_skb_add_bulk(segs, &sa, reason); 1262 } 1263 1264 segs = next; 1265 } 1266 1267 if (sa.skb_count) 1268 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1269 } 1270 EXPORT_SYMBOL(kfree_skb_list_reason); 1271 1272 /* Dump skb information and contents. 1273 * 1274 * Must only be called from net_ratelimit()-ed paths. 1275 * 1276 * Dumps whole packets if full_pkt, only headers otherwise. 1277 */ 1278 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1279 { 1280 struct skb_shared_info *sh = skb_shinfo(skb); 1281 struct net_device *dev = skb->dev; 1282 struct sock *sk = skb->sk; 1283 struct sk_buff *list_skb; 1284 bool has_mac, has_trans; 1285 int headroom, tailroom; 1286 int i, len, seg_len; 1287 1288 if (full_pkt) 1289 len = skb->len; 1290 else 1291 len = min_t(int, skb->len, MAX_HEADER + 128); 1292 1293 headroom = skb_headroom(skb); 1294 tailroom = skb_tailroom(skb); 1295 1296 has_mac = skb_mac_header_was_set(skb); 1297 has_trans = skb_transport_header_was_set(skb); 1298 1299 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1300 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1301 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1302 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1303 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1304 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1305 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1306 level, skb->len, headroom, skb_headlen(skb), tailroom, 1307 has_mac ? skb->mac_header : -1, 1308 has_mac ? skb_mac_header_len(skb) : -1, 1309 skb->mac_len, 1310 skb->network_header, 1311 has_trans ? skb_network_header_len(skb) : -1, 1312 has_trans ? skb->transport_header : -1, 1313 sh->tx_flags, sh->nr_frags, 1314 sh->gso_size, sh->gso_type, sh->gso_segs, 1315 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1316 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1317 skb->hash, skb->sw_hash, skb->l4_hash, 1318 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1319 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1320 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1321 skb->inner_network_header, skb->inner_transport_header); 1322 1323 if (dev) 1324 printk("%sdev name=%s feat=%pNF\n", 1325 level, dev->name, &dev->features); 1326 if (sk) 1327 printk("%ssk family=%hu type=%u proto=%u\n", 1328 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1329 1330 if (full_pkt && headroom) 1331 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1332 16, 1, skb->head, headroom, false); 1333 1334 seg_len = min_t(int, skb_headlen(skb), len); 1335 if (seg_len) 1336 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1337 16, 1, skb->data, seg_len, false); 1338 len -= seg_len; 1339 1340 if (full_pkt && tailroom) 1341 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1342 16, 1, skb_tail_pointer(skb), tailroom, false); 1343 1344 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1345 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1346 u32 p_off, p_len, copied; 1347 struct page *p; 1348 u8 *vaddr; 1349 1350 if (skb_frag_is_net_iov(frag)) { 1351 printk("%sskb frag %d: not readable\n", level, i); 1352 len -= skb_frag_size(frag); 1353 if (!len) 1354 break; 1355 continue; 1356 } 1357 1358 skb_frag_foreach_page(frag, skb_frag_off(frag), 1359 skb_frag_size(frag), p, p_off, p_len, 1360 copied) { 1361 seg_len = min_t(int, p_len, len); 1362 vaddr = kmap_atomic(p); 1363 print_hex_dump(level, "skb frag: ", 1364 DUMP_PREFIX_OFFSET, 1365 16, 1, vaddr + p_off, seg_len, false); 1366 kunmap_atomic(vaddr); 1367 len -= seg_len; 1368 if (!len) 1369 break; 1370 } 1371 } 1372 1373 if (full_pkt && skb_has_frag_list(skb)) { 1374 printk("skb fraglist:\n"); 1375 skb_walk_frags(skb, list_skb) 1376 skb_dump(level, list_skb, true); 1377 } 1378 } 1379 EXPORT_SYMBOL(skb_dump); 1380 1381 /** 1382 * skb_tx_error - report an sk_buff xmit error 1383 * @skb: buffer that triggered an error 1384 * 1385 * Report xmit error if a device callback is tracking this skb. 1386 * skb must be freed afterwards. 1387 */ 1388 void skb_tx_error(struct sk_buff *skb) 1389 { 1390 if (skb) { 1391 skb_zcopy_downgrade_managed(skb); 1392 skb_zcopy_clear(skb, true); 1393 } 1394 } 1395 EXPORT_SYMBOL(skb_tx_error); 1396 1397 #ifdef CONFIG_TRACEPOINTS 1398 /** 1399 * consume_skb - free an skbuff 1400 * @skb: buffer to free 1401 * 1402 * Drop a ref to the buffer and free it if the usage count has hit zero 1403 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1404 * is being dropped after a failure and notes that 1405 */ 1406 void consume_skb(struct sk_buff *skb) 1407 { 1408 if (!skb_unref(skb)) 1409 return; 1410 1411 trace_consume_skb(skb, __builtin_return_address(0)); 1412 __kfree_skb(skb); 1413 } 1414 EXPORT_SYMBOL(consume_skb); 1415 #endif 1416 1417 /** 1418 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1419 * @skb: buffer to free 1420 * 1421 * Alike consume_skb(), but this variant assumes that this is the last 1422 * skb reference and all the head states have been already dropped 1423 */ 1424 void __consume_stateless_skb(struct sk_buff *skb) 1425 { 1426 trace_consume_skb(skb, __builtin_return_address(0)); 1427 skb_release_data(skb, SKB_CONSUMED); 1428 kfree_skbmem(skb); 1429 } 1430 1431 static void napi_skb_cache_put(struct sk_buff *skb) 1432 { 1433 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1434 u32 i; 1435 1436 if (!kasan_mempool_poison_object(skb)) 1437 return; 1438 1439 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1440 nc->skb_cache[nc->skb_count++] = skb; 1441 1442 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1443 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1444 kasan_mempool_unpoison_object(nc->skb_cache[i], 1445 skbuff_cache_size); 1446 1447 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1448 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1449 nc->skb_count = NAPI_SKB_CACHE_HALF; 1450 } 1451 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1452 } 1453 1454 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1455 { 1456 skb_release_all(skb, reason); 1457 napi_skb_cache_put(skb); 1458 } 1459 1460 void napi_skb_free_stolen_head(struct sk_buff *skb) 1461 { 1462 if (unlikely(skb->slow_gro)) { 1463 nf_reset_ct(skb); 1464 skb_dst_drop(skb); 1465 skb_ext_put(skb); 1466 skb_orphan(skb); 1467 skb->slow_gro = 0; 1468 } 1469 napi_skb_cache_put(skb); 1470 } 1471 1472 void napi_consume_skb(struct sk_buff *skb, int budget) 1473 { 1474 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1475 if (unlikely(!budget)) { 1476 dev_consume_skb_any(skb); 1477 return; 1478 } 1479 1480 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1481 1482 if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) { 1483 skb_release_head_state(skb); 1484 return skb_attempt_defer_free(skb); 1485 } 1486 1487 if (!skb_unref(skb)) 1488 return; 1489 1490 /* if reaching here SKB is ready to free */ 1491 trace_consume_skb(skb, __builtin_return_address(0)); 1492 1493 /* if SKB is a clone, don't handle this case */ 1494 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1495 __kfree_skb(skb); 1496 return; 1497 } 1498 1499 skb_release_all(skb, SKB_CONSUMED); 1500 napi_skb_cache_put(skb); 1501 } 1502 EXPORT_SYMBOL(napi_consume_skb); 1503 1504 /* Make sure a field is contained by headers group */ 1505 #define CHECK_SKB_FIELD(field) \ 1506 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1507 offsetof(struct sk_buff, headers.field)); \ 1508 1509 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1510 { 1511 new->tstamp = old->tstamp; 1512 /* We do not copy old->sk */ 1513 new->dev = old->dev; 1514 memcpy(new->cb, old->cb, sizeof(old->cb)); 1515 skb_dst_copy(new, old); 1516 __skb_ext_copy(new, old); 1517 __nf_copy(new, old, false); 1518 1519 /* Note : this field could be in the headers group. 1520 * It is not yet because we do not want to have a 16 bit hole 1521 */ 1522 new->queue_mapping = old->queue_mapping; 1523 1524 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1525 CHECK_SKB_FIELD(protocol); 1526 CHECK_SKB_FIELD(csum); 1527 CHECK_SKB_FIELD(hash); 1528 CHECK_SKB_FIELD(priority); 1529 CHECK_SKB_FIELD(skb_iif); 1530 CHECK_SKB_FIELD(vlan_proto); 1531 CHECK_SKB_FIELD(vlan_tci); 1532 CHECK_SKB_FIELD(transport_header); 1533 CHECK_SKB_FIELD(network_header); 1534 CHECK_SKB_FIELD(mac_header); 1535 CHECK_SKB_FIELD(inner_protocol); 1536 CHECK_SKB_FIELD(inner_transport_header); 1537 CHECK_SKB_FIELD(inner_network_header); 1538 CHECK_SKB_FIELD(inner_mac_header); 1539 CHECK_SKB_FIELD(mark); 1540 #ifdef CONFIG_NETWORK_SECMARK 1541 CHECK_SKB_FIELD(secmark); 1542 #endif 1543 #ifdef CONFIG_NET_RX_BUSY_POLL 1544 CHECK_SKB_FIELD(napi_id); 1545 #endif 1546 CHECK_SKB_FIELD(alloc_cpu); 1547 #ifdef CONFIG_XPS 1548 CHECK_SKB_FIELD(sender_cpu); 1549 #endif 1550 #ifdef CONFIG_NET_SCHED 1551 CHECK_SKB_FIELD(tc_index); 1552 #endif 1553 1554 } 1555 1556 /* 1557 * You should not add any new code to this function. Add it to 1558 * __copy_skb_header above instead. 1559 */ 1560 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1561 { 1562 #define C(x) n->x = skb->x 1563 1564 n->next = n->prev = NULL; 1565 n->sk = NULL; 1566 __copy_skb_header(n, skb); 1567 1568 C(len); 1569 C(data_len); 1570 C(mac_len); 1571 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1572 n->cloned = 1; 1573 n->nohdr = 0; 1574 n->peeked = 0; 1575 C(pfmemalloc); 1576 C(pp_recycle); 1577 n->destructor = NULL; 1578 C(tail); 1579 C(end); 1580 C(head); 1581 C(head_frag); 1582 C(data); 1583 C(truesize); 1584 refcount_set(&n->users, 1); 1585 1586 atomic_inc(&(skb_shinfo(skb)->dataref)); 1587 skb->cloned = 1; 1588 1589 return n; 1590 #undef C 1591 } 1592 1593 /** 1594 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1595 * @first: first sk_buff of the msg 1596 */ 1597 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1598 { 1599 struct sk_buff *n; 1600 1601 n = alloc_skb(0, GFP_ATOMIC); 1602 if (!n) 1603 return NULL; 1604 1605 n->len = first->len; 1606 n->data_len = first->len; 1607 n->truesize = first->truesize; 1608 1609 skb_shinfo(n)->frag_list = first; 1610 1611 __copy_skb_header(n, first); 1612 n->destructor = NULL; 1613 1614 return n; 1615 } 1616 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1617 1618 /** 1619 * skb_morph - morph one skb into another 1620 * @dst: the skb to receive the contents 1621 * @src: the skb to supply the contents 1622 * 1623 * This is identical to skb_clone except that the target skb is 1624 * supplied by the user. 1625 * 1626 * The target skb is returned upon exit. 1627 */ 1628 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1629 { 1630 skb_release_all(dst, SKB_CONSUMED); 1631 return __skb_clone(dst, src); 1632 } 1633 EXPORT_SYMBOL_GPL(skb_morph); 1634 1635 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1636 { 1637 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1638 struct user_struct *user; 1639 1640 if (capable(CAP_IPC_LOCK) || !size) 1641 return 0; 1642 1643 rlim = rlimit(RLIMIT_MEMLOCK); 1644 if (rlim == RLIM_INFINITY) 1645 return 0; 1646 1647 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1648 max_pg = rlim >> PAGE_SHIFT; 1649 user = mmp->user ? : current_user(); 1650 1651 old_pg = atomic_long_read(&user->locked_vm); 1652 do { 1653 new_pg = old_pg + num_pg; 1654 if (new_pg > max_pg) 1655 return -ENOBUFS; 1656 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1657 1658 if (!mmp->user) { 1659 mmp->user = get_uid(user); 1660 mmp->num_pg = num_pg; 1661 } else { 1662 mmp->num_pg += num_pg; 1663 } 1664 1665 return 0; 1666 } 1667 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1668 1669 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1670 { 1671 if (mmp->user) { 1672 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1673 free_uid(mmp->user); 1674 } 1675 } 1676 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1677 1678 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1679 bool devmem) 1680 { 1681 struct ubuf_info_msgzc *uarg; 1682 struct sk_buff *skb; 1683 1684 WARN_ON_ONCE(!in_task()); 1685 1686 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1687 if (!skb) 1688 return NULL; 1689 1690 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1691 uarg = (void *)skb->cb; 1692 uarg->mmp.user = NULL; 1693 1694 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1695 kfree_skb(skb); 1696 return NULL; 1697 } 1698 1699 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1700 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1701 uarg->len = 1; 1702 uarg->bytelen = size; 1703 uarg->zerocopy = 1; 1704 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1705 refcount_set(&uarg->ubuf.refcnt, 1); 1706 sock_hold(sk); 1707 1708 return &uarg->ubuf; 1709 } 1710 1711 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1712 { 1713 return container_of((void *)uarg, struct sk_buff, cb); 1714 } 1715 1716 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1717 struct ubuf_info *uarg, bool devmem) 1718 { 1719 if (uarg) { 1720 struct ubuf_info_msgzc *uarg_zc; 1721 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1722 u32 bytelen, next; 1723 1724 /* there might be non MSG_ZEROCOPY users */ 1725 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1726 return NULL; 1727 1728 /* realloc only when socket is locked (TCP, UDP cork), 1729 * so uarg->len and sk_zckey access is serialized 1730 */ 1731 if (!sock_owned_by_user(sk)) { 1732 WARN_ON_ONCE(1); 1733 return NULL; 1734 } 1735 1736 uarg_zc = uarg_to_msgzc(uarg); 1737 bytelen = uarg_zc->bytelen + size; 1738 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1739 /* TCP can create new skb to attach new uarg */ 1740 if (sk->sk_type == SOCK_STREAM) 1741 goto new_alloc; 1742 return NULL; 1743 } 1744 1745 next = (u32)atomic_read(&sk->sk_zckey); 1746 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1747 if (likely(!devmem) && 1748 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1749 return NULL; 1750 uarg_zc->len++; 1751 uarg_zc->bytelen = bytelen; 1752 atomic_set(&sk->sk_zckey, ++next); 1753 1754 /* no extra ref when appending to datagram (MSG_MORE) */ 1755 if (sk->sk_type == SOCK_STREAM) 1756 net_zcopy_get(uarg); 1757 1758 return uarg; 1759 } 1760 } 1761 1762 new_alloc: 1763 return msg_zerocopy_alloc(sk, size, devmem); 1764 } 1765 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1766 1767 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1768 { 1769 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1770 u32 old_lo, old_hi; 1771 u64 sum_len; 1772 1773 old_lo = serr->ee.ee_info; 1774 old_hi = serr->ee.ee_data; 1775 sum_len = old_hi - old_lo + 1ULL + len; 1776 1777 if (sum_len >= (1ULL << 32)) 1778 return false; 1779 1780 if (lo != old_hi + 1) 1781 return false; 1782 1783 serr->ee.ee_data += len; 1784 return true; 1785 } 1786 1787 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1788 { 1789 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1790 struct sock_exterr_skb *serr; 1791 struct sock *sk = skb->sk; 1792 struct sk_buff_head *q; 1793 unsigned long flags; 1794 bool is_zerocopy; 1795 u32 lo, hi; 1796 u16 len; 1797 1798 mm_unaccount_pinned_pages(&uarg->mmp); 1799 1800 /* if !len, there was only 1 call, and it was aborted 1801 * so do not queue a completion notification 1802 */ 1803 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1804 goto release; 1805 1806 len = uarg->len; 1807 lo = uarg->id; 1808 hi = uarg->id + len - 1; 1809 is_zerocopy = uarg->zerocopy; 1810 1811 serr = SKB_EXT_ERR(skb); 1812 memset(serr, 0, sizeof(*serr)); 1813 serr->ee.ee_errno = 0; 1814 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1815 serr->ee.ee_data = hi; 1816 serr->ee.ee_info = lo; 1817 if (!is_zerocopy) 1818 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1819 1820 q = &sk->sk_error_queue; 1821 spin_lock_irqsave(&q->lock, flags); 1822 tail = skb_peek_tail(q); 1823 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1824 !skb_zerocopy_notify_extend(tail, lo, len)) { 1825 __skb_queue_tail(q, skb); 1826 skb = NULL; 1827 } 1828 spin_unlock_irqrestore(&q->lock, flags); 1829 1830 sk_error_report(sk); 1831 1832 release: 1833 consume_skb(skb); 1834 sock_put(sk); 1835 } 1836 1837 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1838 bool success) 1839 { 1840 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1841 1842 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1843 1844 if (refcount_dec_and_test(&uarg->refcnt)) 1845 __msg_zerocopy_callback(uarg_zc); 1846 } 1847 1848 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1849 { 1850 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1851 1852 atomic_dec(&sk->sk_zckey); 1853 uarg_to_msgzc(uarg)->len--; 1854 1855 if (have_uref) 1856 msg_zerocopy_complete(NULL, uarg, true); 1857 } 1858 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1859 1860 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1861 .complete = msg_zerocopy_complete, 1862 }; 1863 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1864 1865 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1866 struct msghdr *msg, int len, 1867 struct ubuf_info *uarg, 1868 struct net_devmem_dmabuf_binding *binding) 1869 { 1870 int err, orig_len = skb->len; 1871 1872 if (uarg->ops->link_skb) { 1873 err = uarg->ops->link_skb(skb, uarg); 1874 if (err) 1875 return err; 1876 } else { 1877 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1878 1879 /* An skb can only point to one uarg. This edge case happens 1880 * when TCP appends to an skb, but zerocopy_realloc triggered 1881 * a new alloc. 1882 */ 1883 if (orig_uarg && uarg != orig_uarg) 1884 return -EEXIST; 1885 } 1886 1887 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1888 binding); 1889 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1890 struct sock *save_sk = skb->sk; 1891 1892 /* Streams do not free skb on error. Reset to prev state. */ 1893 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1894 skb->sk = sk; 1895 ___pskb_trim(skb, orig_len); 1896 skb->sk = save_sk; 1897 return err; 1898 } 1899 1900 skb_zcopy_set(skb, uarg, NULL); 1901 return skb->len - orig_len; 1902 } 1903 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1904 1905 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1906 { 1907 int i; 1908 1909 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1910 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1911 skb_frag_ref(skb, i); 1912 } 1913 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1914 1915 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1916 gfp_t gfp_mask) 1917 { 1918 if (skb_zcopy(orig)) { 1919 if (skb_zcopy(nskb)) { 1920 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1921 if (!gfp_mask) { 1922 WARN_ON_ONCE(1); 1923 return -ENOMEM; 1924 } 1925 if (skb_uarg(nskb) == skb_uarg(orig)) 1926 return 0; 1927 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1928 return -EIO; 1929 } 1930 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1931 } 1932 return 0; 1933 } 1934 1935 /** 1936 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1937 * @skb: the skb to modify 1938 * @gfp_mask: allocation priority 1939 * 1940 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1941 * It will copy all frags into kernel and drop the reference 1942 * to userspace pages. 1943 * 1944 * If this function is called from an interrupt gfp_mask() must be 1945 * %GFP_ATOMIC. 1946 * 1947 * Returns 0 on success or a negative error code on failure 1948 * to allocate kernel memory to copy to. 1949 */ 1950 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1951 { 1952 int num_frags = skb_shinfo(skb)->nr_frags; 1953 struct page *page, *head = NULL; 1954 int i, order, psize, new_frags; 1955 u32 d_off; 1956 1957 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1958 return -EINVAL; 1959 1960 if (!skb_frags_readable(skb)) 1961 return -EFAULT; 1962 1963 if (!num_frags) 1964 goto release; 1965 1966 /* We might have to allocate high order pages, so compute what minimum 1967 * page order is needed. 1968 */ 1969 order = 0; 1970 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1971 order++; 1972 psize = (PAGE_SIZE << order); 1973 1974 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1975 for (i = 0; i < new_frags; i++) { 1976 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1977 if (!page) { 1978 while (head) { 1979 struct page *next = (struct page *)page_private(head); 1980 put_page(head); 1981 head = next; 1982 } 1983 return -ENOMEM; 1984 } 1985 set_page_private(page, (unsigned long)head); 1986 head = page; 1987 } 1988 1989 page = head; 1990 d_off = 0; 1991 for (i = 0; i < num_frags; i++) { 1992 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1993 u32 p_off, p_len, copied; 1994 struct page *p; 1995 u8 *vaddr; 1996 1997 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1998 p, p_off, p_len, copied) { 1999 u32 copy, done = 0; 2000 vaddr = kmap_atomic(p); 2001 2002 while (done < p_len) { 2003 if (d_off == psize) { 2004 d_off = 0; 2005 page = (struct page *)page_private(page); 2006 } 2007 copy = min_t(u32, psize - d_off, p_len - done); 2008 memcpy(page_address(page) + d_off, 2009 vaddr + p_off + done, copy); 2010 done += copy; 2011 d_off += copy; 2012 } 2013 kunmap_atomic(vaddr); 2014 } 2015 } 2016 2017 /* skb frags release userspace buffers */ 2018 for (i = 0; i < num_frags; i++) 2019 skb_frag_unref(skb, i); 2020 2021 /* skb frags point to kernel buffers */ 2022 for (i = 0; i < new_frags - 1; i++) { 2023 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2024 head = (struct page *)page_private(head); 2025 } 2026 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2027 d_off); 2028 skb_shinfo(skb)->nr_frags = new_frags; 2029 2030 release: 2031 skb_zcopy_clear(skb, false); 2032 return 0; 2033 } 2034 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2035 2036 /** 2037 * skb_clone - duplicate an sk_buff 2038 * @skb: buffer to clone 2039 * @gfp_mask: allocation priority 2040 * 2041 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2042 * copies share the same packet data but not structure. The new 2043 * buffer has a reference count of 1. If the allocation fails the 2044 * function returns %NULL otherwise the new buffer is returned. 2045 * 2046 * If this function is called from an interrupt gfp_mask() must be 2047 * %GFP_ATOMIC. 2048 */ 2049 2050 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2051 { 2052 struct sk_buff_fclones *fclones = container_of(skb, 2053 struct sk_buff_fclones, 2054 skb1); 2055 struct sk_buff *n; 2056 2057 if (skb_orphan_frags(skb, gfp_mask)) 2058 return NULL; 2059 2060 if (skb->fclone == SKB_FCLONE_ORIG && 2061 refcount_read(&fclones->fclone_ref) == 1) { 2062 n = &fclones->skb2; 2063 refcount_set(&fclones->fclone_ref, 2); 2064 n->fclone = SKB_FCLONE_CLONE; 2065 } else { 2066 if (skb_pfmemalloc(skb)) 2067 gfp_mask |= __GFP_MEMALLOC; 2068 2069 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2070 if (!n) 2071 return NULL; 2072 2073 n->fclone = SKB_FCLONE_UNAVAILABLE; 2074 } 2075 2076 return __skb_clone(n, skb); 2077 } 2078 EXPORT_SYMBOL(skb_clone); 2079 2080 void skb_headers_offset_update(struct sk_buff *skb, int off) 2081 { 2082 /* Only adjust this if it actually is csum_start rather than csum */ 2083 if (skb->ip_summed == CHECKSUM_PARTIAL) 2084 skb->csum_start += off; 2085 /* {transport,network,mac}_header and tail are relative to skb->head */ 2086 skb->transport_header += off; 2087 skb->network_header += off; 2088 if (skb_mac_header_was_set(skb)) 2089 skb->mac_header += off; 2090 skb->inner_transport_header += off; 2091 skb->inner_network_header += off; 2092 skb->inner_mac_header += off; 2093 } 2094 EXPORT_SYMBOL(skb_headers_offset_update); 2095 2096 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2097 { 2098 __copy_skb_header(new, old); 2099 2100 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2101 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2102 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2103 } 2104 EXPORT_SYMBOL(skb_copy_header); 2105 2106 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2107 { 2108 if (skb_pfmemalloc(skb)) 2109 return SKB_ALLOC_RX; 2110 return 0; 2111 } 2112 2113 /** 2114 * skb_copy - create private copy of an sk_buff 2115 * @skb: buffer to copy 2116 * @gfp_mask: allocation priority 2117 * 2118 * Make a copy of both an &sk_buff and its data. This is used when the 2119 * caller wishes to modify the data and needs a private copy of the 2120 * data to alter. Returns %NULL on failure or the pointer to the buffer 2121 * on success. The returned buffer has a reference count of 1. 2122 * 2123 * As by-product this function converts non-linear &sk_buff to linear 2124 * one, so that &sk_buff becomes completely private and caller is allowed 2125 * to modify all the data of returned buffer. This means that this 2126 * function is not recommended for use in circumstances when only 2127 * header is going to be modified. Use pskb_copy() instead. 2128 */ 2129 2130 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2131 { 2132 struct sk_buff *n; 2133 unsigned int size; 2134 int headerlen; 2135 2136 if (!skb_frags_readable(skb)) 2137 return NULL; 2138 2139 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2140 return NULL; 2141 2142 headerlen = skb_headroom(skb); 2143 size = skb_end_offset(skb) + skb->data_len; 2144 n = __alloc_skb(size, gfp_mask, 2145 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2146 if (!n) 2147 return NULL; 2148 2149 /* Set the data pointer */ 2150 skb_reserve(n, headerlen); 2151 /* Set the tail pointer and length */ 2152 skb_put(n, skb->len); 2153 2154 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2155 2156 skb_copy_header(n, skb); 2157 return n; 2158 } 2159 EXPORT_SYMBOL(skb_copy); 2160 2161 /** 2162 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2163 * @skb: buffer to copy 2164 * @headroom: headroom of new skb 2165 * @gfp_mask: allocation priority 2166 * @fclone: if true allocate the copy of the skb from the fclone 2167 * cache instead of the head cache; it is recommended to set this 2168 * to true for the cases where the copy will likely be cloned 2169 * 2170 * Make a copy of both an &sk_buff and part of its data, located 2171 * in header. Fragmented data remain shared. This is used when 2172 * the caller wishes to modify only header of &sk_buff and needs 2173 * private copy of the header to alter. Returns %NULL on failure 2174 * or the pointer to the buffer on success. 2175 * The returned buffer has a reference count of 1. 2176 */ 2177 2178 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2179 gfp_t gfp_mask, bool fclone) 2180 { 2181 unsigned int size = skb_headlen(skb) + headroom; 2182 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2183 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2184 2185 if (!n) 2186 goto out; 2187 2188 /* Set the data pointer */ 2189 skb_reserve(n, headroom); 2190 /* Set the tail pointer and length */ 2191 skb_put(n, skb_headlen(skb)); 2192 /* Copy the bytes */ 2193 skb_copy_from_linear_data(skb, n->data, n->len); 2194 2195 n->truesize += skb->data_len; 2196 n->data_len = skb->data_len; 2197 n->len = skb->len; 2198 2199 if (skb_shinfo(skb)->nr_frags) { 2200 int i; 2201 2202 if (skb_orphan_frags(skb, gfp_mask) || 2203 skb_zerocopy_clone(n, skb, gfp_mask)) { 2204 kfree_skb(n); 2205 n = NULL; 2206 goto out; 2207 } 2208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2209 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2210 skb_frag_ref(skb, i); 2211 } 2212 skb_shinfo(n)->nr_frags = i; 2213 } 2214 2215 if (skb_has_frag_list(skb)) { 2216 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2217 skb_clone_fraglist(n); 2218 } 2219 2220 skb_copy_header(n, skb); 2221 out: 2222 return n; 2223 } 2224 EXPORT_SYMBOL(__pskb_copy_fclone); 2225 2226 /** 2227 * pskb_expand_head - reallocate header of &sk_buff 2228 * @skb: buffer to reallocate 2229 * @nhead: room to add at head 2230 * @ntail: room to add at tail 2231 * @gfp_mask: allocation priority 2232 * 2233 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2234 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2235 * reference count of 1. Returns zero in the case of success or error, 2236 * if expansion failed. In the last case, &sk_buff is not changed. 2237 * 2238 * All the pointers pointing into skb header may change and must be 2239 * reloaded after call to this function. 2240 * 2241 * Note: If you skb_push() the start of the buffer after reallocating the 2242 * header, call skb_postpush_data_move() first to move the metadata out of 2243 * the way before writing to &sk_buff->data. 2244 */ 2245 2246 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2247 gfp_t gfp_mask) 2248 { 2249 unsigned int osize = skb_end_offset(skb); 2250 unsigned int size = osize + nhead + ntail; 2251 long off; 2252 u8 *data; 2253 int i; 2254 2255 BUG_ON(nhead < 0); 2256 2257 BUG_ON(skb_shared(skb)); 2258 2259 skb_zcopy_downgrade_managed(skb); 2260 2261 if (skb_pfmemalloc(skb)) 2262 gfp_mask |= __GFP_MEMALLOC; 2263 2264 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2265 if (!data) 2266 goto nodata; 2267 size = SKB_WITH_OVERHEAD(size); 2268 2269 /* Copy only real data... and, alas, header. This should be 2270 * optimized for the cases when header is void. 2271 */ 2272 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2273 2274 memcpy((struct skb_shared_info *)(data + size), 2275 skb_shinfo(skb), 2276 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2277 2278 /* 2279 * if shinfo is shared we must drop the old head gracefully, but if it 2280 * is not we can just drop the old head and let the existing refcount 2281 * be since all we did is relocate the values 2282 */ 2283 if (skb_cloned(skb)) { 2284 if (skb_orphan_frags(skb, gfp_mask)) 2285 goto nofrags; 2286 if (skb_zcopy(skb)) 2287 refcount_inc(&skb_uarg(skb)->refcnt); 2288 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2289 skb_frag_ref(skb, i); 2290 2291 if (skb_has_frag_list(skb)) 2292 skb_clone_fraglist(skb); 2293 2294 skb_release_data(skb, SKB_CONSUMED); 2295 } else { 2296 skb_free_head(skb); 2297 } 2298 off = (data + nhead) - skb->head; 2299 2300 skb->head = data; 2301 skb->head_frag = 0; 2302 skb->data += off; 2303 2304 skb_set_end_offset(skb, size); 2305 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2306 off = nhead; 2307 #endif 2308 skb->tail += off; 2309 skb_headers_offset_update(skb, nhead); 2310 skb->cloned = 0; 2311 skb->hdr_len = 0; 2312 skb->nohdr = 0; 2313 atomic_set(&skb_shinfo(skb)->dataref, 1); 2314 2315 /* It is not generally safe to change skb->truesize. 2316 * For the moment, we really care of rx path, or 2317 * when skb is orphaned (not attached to a socket). 2318 */ 2319 if (!skb->sk || skb->destructor == sock_edemux) 2320 skb->truesize += size - osize; 2321 2322 return 0; 2323 2324 nofrags: 2325 skb_kfree_head(data, size); 2326 nodata: 2327 return -ENOMEM; 2328 } 2329 EXPORT_SYMBOL(pskb_expand_head); 2330 2331 /* Make private copy of skb with writable head and some headroom */ 2332 2333 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2334 { 2335 struct sk_buff *skb2; 2336 int delta = headroom - skb_headroom(skb); 2337 2338 if (delta <= 0) 2339 skb2 = pskb_copy(skb, GFP_ATOMIC); 2340 else { 2341 skb2 = skb_clone(skb, GFP_ATOMIC); 2342 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2343 GFP_ATOMIC)) { 2344 kfree_skb(skb2); 2345 skb2 = NULL; 2346 } 2347 } 2348 return skb2; 2349 } 2350 EXPORT_SYMBOL(skb_realloc_headroom); 2351 2352 /* Note: We plan to rework this in linux-6.4 */ 2353 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2354 { 2355 unsigned int saved_end_offset, saved_truesize; 2356 struct skb_shared_info *shinfo; 2357 int res; 2358 2359 saved_end_offset = skb_end_offset(skb); 2360 saved_truesize = skb->truesize; 2361 2362 res = pskb_expand_head(skb, 0, 0, pri); 2363 if (res) 2364 return res; 2365 2366 skb->truesize = saved_truesize; 2367 2368 if (likely(skb_end_offset(skb) == saved_end_offset)) 2369 return 0; 2370 2371 /* We can not change skb->end if the original or new value 2372 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2373 */ 2374 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2375 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2376 /* We think this path should not be taken. 2377 * Add a temporary trace to warn us just in case. 2378 */ 2379 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2380 saved_end_offset, skb_end_offset(skb)); 2381 WARN_ON_ONCE(1); 2382 return 0; 2383 } 2384 2385 shinfo = skb_shinfo(skb); 2386 2387 /* We are about to change back skb->end, 2388 * we need to move skb_shinfo() to its new location. 2389 */ 2390 memmove(skb->head + saved_end_offset, 2391 shinfo, 2392 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2393 2394 skb_set_end_offset(skb, saved_end_offset); 2395 2396 return 0; 2397 } 2398 2399 /** 2400 * skb_expand_head - reallocate header of &sk_buff 2401 * @skb: buffer to reallocate 2402 * @headroom: needed headroom 2403 * 2404 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2405 * if possible; copies skb->sk to new skb as needed 2406 * and frees original skb in case of failures. 2407 * 2408 * It expect increased headroom and generates warning otherwise. 2409 */ 2410 2411 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2412 { 2413 int delta = headroom - skb_headroom(skb); 2414 int osize = skb_end_offset(skb); 2415 struct sock *sk = skb->sk; 2416 2417 if (WARN_ONCE(delta <= 0, 2418 "%s is expecting an increase in the headroom", __func__)) 2419 return skb; 2420 2421 delta = SKB_DATA_ALIGN(delta); 2422 /* pskb_expand_head() might crash, if skb is shared. */ 2423 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2424 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2425 2426 if (unlikely(!nskb)) 2427 goto fail; 2428 2429 if (sk) 2430 skb_set_owner_w(nskb, sk); 2431 consume_skb(skb); 2432 skb = nskb; 2433 } 2434 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2435 goto fail; 2436 2437 if (sk && is_skb_wmem(skb)) { 2438 delta = skb_end_offset(skb) - osize; 2439 refcount_add(delta, &sk->sk_wmem_alloc); 2440 skb->truesize += delta; 2441 } 2442 return skb; 2443 2444 fail: 2445 kfree_skb(skb); 2446 return NULL; 2447 } 2448 EXPORT_SYMBOL(skb_expand_head); 2449 2450 /** 2451 * skb_copy_expand - copy and expand sk_buff 2452 * @skb: buffer to copy 2453 * @newheadroom: new free bytes at head 2454 * @newtailroom: new free bytes at tail 2455 * @gfp_mask: allocation priority 2456 * 2457 * Make a copy of both an &sk_buff and its data and while doing so 2458 * allocate additional space. 2459 * 2460 * This is used when the caller wishes to modify the data and needs a 2461 * private copy of the data to alter as well as more space for new fields. 2462 * Returns %NULL on failure or the pointer to the buffer 2463 * on success. The returned buffer has a reference count of 1. 2464 * 2465 * You must pass %GFP_ATOMIC as the allocation priority if this function 2466 * is called from an interrupt. 2467 */ 2468 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2469 int newheadroom, int newtailroom, 2470 gfp_t gfp_mask) 2471 { 2472 /* 2473 * Allocate the copy buffer 2474 */ 2475 int head_copy_len, head_copy_off; 2476 struct sk_buff *n; 2477 int oldheadroom; 2478 2479 if (!skb_frags_readable(skb)) 2480 return NULL; 2481 2482 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2483 return NULL; 2484 2485 oldheadroom = skb_headroom(skb); 2486 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2487 gfp_mask, skb_alloc_rx_flag(skb), 2488 NUMA_NO_NODE); 2489 if (!n) 2490 return NULL; 2491 2492 skb_reserve(n, newheadroom); 2493 2494 /* Set the tail pointer and length */ 2495 skb_put(n, skb->len); 2496 2497 head_copy_len = oldheadroom; 2498 head_copy_off = 0; 2499 if (newheadroom <= head_copy_len) 2500 head_copy_len = newheadroom; 2501 else 2502 head_copy_off = newheadroom - head_copy_len; 2503 2504 /* Copy the linear header and data. */ 2505 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2506 skb->len + head_copy_len)); 2507 2508 skb_copy_header(n, skb); 2509 2510 skb_headers_offset_update(n, newheadroom - oldheadroom); 2511 2512 return n; 2513 } 2514 EXPORT_SYMBOL(skb_copy_expand); 2515 2516 /** 2517 * __skb_pad - zero pad the tail of an skb 2518 * @skb: buffer to pad 2519 * @pad: space to pad 2520 * @free_on_error: free buffer on error 2521 * 2522 * Ensure that a buffer is followed by a padding area that is zero 2523 * filled. Used by network drivers which may DMA or transfer data 2524 * beyond the buffer end onto the wire. 2525 * 2526 * May return error in out of memory cases. The skb is freed on error 2527 * if @free_on_error is true. 2528 */ 2529 2530 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2531 { 2532 int err; 2533 int ntail; 2534 2535 /* If the skbuff is non linear tailroom is always zero.. */ 2536 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2537 memset(skb->data+skb->len, 0, pad); 2538 return 0; 2539 } 2540 2541 ntail = skb->data_len + pad - (skb->end - skb->tail); 2542 if (likely(skb_cloned(skb) || ntail > 0)) { 2543 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2544 if (unlikely(err)) 2545 goto free_skb; 2546 } 2547 2548 /* FIXME: The use of this function with non-linear skb's really needs 2549 * to be audited. 2550 */ 2551 err = skb_linearize(skb); 2552 if (unlikely(err)) 2553 goto free_skb; 2554 2555 memset(skb->data + skb->len, 0, pad); 2556 return 0; 2557 2558 free_skb: 2559 if (free_on_error) 2560 kfree_skb(skb); 2561 return err; 2562 } 2563 EXPORT_SYMBOL(__skb_pad); 2564 2565 /** 2566 * pskb_put - add data to the tail of a potentially fragmented buffer 2567 * @skb: start of the buffer to use 2568 * @tail: tail fragment of the buffer to use 2569 * @len: amount of data to add 2570 * 2571 * This function extends the used data area of the potentially 2572 * fragmented buffer. @tail must be the last fragment of @skb -- or 2573 * @skb itself. If this would exceed the total buffer size the kernel 2574 * will panic. A pointer to the first byte of the extra data is 2575 * returned. 2576 */ 2577 2578 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2579 { 2580 if (tail != skb) { 2581 skb->data_len += len; 2582 skb->len += len; 2583 } 2584 return skb_put(tail, len); 2585 } 2586 EXPORT_SYMBOL_GPL(pskb_put); 2587 2588 /** 2589 * skb_put - add data to a buffer 2590 * @skb: buffer to use 2591 * @len: amount of data to add 2592 * 2593 * This function extends the used data area of the buffer. If this would 2594 * exceed the total buffer size the kernel will panic. A pointer to the 2595 * first byte of the extra data is returned. 2596 */ 2597 void *skb_put(struct sk_buff *skb, unsigned int len) 2598 { 2599 void *tmp = skb_tail_pointer(skb); 2600 SKB_LINEAR_ASSERT(skb); 2601 skb->tail += len; 2602 skb->len += len; 2603 if (unlikely(skb->tail > skb->end)) 2604 skb_over_panic(skb, len, __builtin_return_address(0)); 2605 return tmp; 2606 } 2607 EXPORT_SYMBOL(skb_put); 2608 2609 /** 2610 * skb_push - add data to the start of a buffer 2611 * @skb: buffer to use 2612 * @len: amount of data to add 2613 * 2614 * This function extends the used data area of the buffer at the buffer 2615 * start. If this would exceed the total buffer headroom the kernel will 2616 * panic. A pointer to the first byte of the extra data is returned. 2617 */ 2618 void *skb_push(struct sk_buff *skb, unsigned int len) 2619 { 2620 skb->data -= len; 2621 skb->len += len; 2622 if (unlikely(skb->data < skb->head)) 2623 skb_under_panic(skb, len, __builtin_return_address(0)); 2624 return skb->data; 2625 } 2626 EXPORT_SYMBOL(skb_push); 2627 2628 /** 2629 * skb_pull - remove data from the start of a buffer 2630 * @skb: buffer to use 2631 * @len: amount of data to remove 2632 * 2633 * This function removes data from the start of a buffer, returning 2634 * the memory to the headroom. A pointer to the next data in the buffer 2635 * is returned. Once the data has been pulled future pushes will overwrite 2636 * the old data. 2637 */ 2638 void *skb_pull(struct sk_buff *skb, unsigned int len) 2639 { 2640 return skb_pull_inline(skb, len); 2641 } 2642 EXPORT_SYMBOL(skb_pull); 2643 2644 /** 2645 * skb_pull_data - remove data from the start of a buffer returning its 2646 * original position. 2647 * @skb: buffer to use 2648 * @len: amount of data to remove 2649 * 2650 * This function removes data from the start of a buffer, returning 2651 * the memory to the headroom. A pointer to the original data in the buffer 2652 * is returned after checking if there is enough data to pull. Once the 2653 * data has been pulled future pushes will overwrite the old data. 2654 */ 2655 void *skb_pull_data(struct sk_buff *skb, size_t len) 2656 { 2657 void *data = skb->data; 2658 2659 if (skb->len < len) 2660 return NULL; 2661 2662 skb_pull(skb, len); 2663 2664 return data; 2665 } 2666 EXPORT_SYMBOL(skb_pull_data); 2667 2668 /** 2669 * skb_trim - remove end from a buffer 2670 * @skb: buffer to alter 2671 * @len: new length 2672 * 2673 * Cut the length of a buffer down by removing data from the tail. If 2674 * the buffer is already under the length specified it is not modified. 2675 * The skb must be linear. 2676 */ 2677 void skb_trim(struct sk_buff *skb, unsigned int len) 2678 { 2679 if (skb->len > len) 2680 __skb_trim(skb, len); 2681 } 2682 EXPORT_SYMBOL(skb_trim); 2683 2684 /* Trims skb to length len. It can change skb pointers. 2685 */ 2686 2687 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2688 { 2689 struct sk_buff **fragp; 2690 struct sk_buff *frag; 2691 int offset = skb_headlen(skb); 2692 int nfrags = skb_shinfo(skb)->nr_frags; 2693 int i; 2694 int err; 2695 2696 if (skb_cloned(skb) && 2697 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2698 return err; 2699 2700 i = 0; 2701 if (offset >= len) 2702 goto drop_pages; 2703 2704 for (; i < nfrags; i++) { 2705 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2706 2707 if (end < len) { 2708 offset = end; 2709 continue; 2710 } 2711 2712 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2713 2714 drop_pages: 2715 skb_shinfo(skb)->nr_frags = i; 2716 2717 for (; i < nfrags; i++) 2718 skb_frag_unref(skb, i); 2719 2720 if (skb_has_frag_list(skb)) 2721 skb_drop_fraglist(skb); 2722 goto done; 2723 } 2724 2725 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2726 fragp = &frag->next) { 2727 int end = offset + frag->len; 2728 2729 if (skb_shared(frag)) { 2730 struct sk_buff *nfrag; 2731 2732 nfrag = skb_clone(frag, GFP_ATOMIC); 2733 if (unlikely(!nfrag)) 2734 return -ENOMEM; 2735 2736 nfrag->next = frag->next; 2737 consume_skb(frag); 2738 frag = nfrag; 2739 *fragp = frag; 2740 } 2741 2742 if (end < len) { 2743 offset = end; 2744 continue; 2745 } 2746 2747 if (end > len && 2748 unlikely((err = pskb_trim(frag, len - offset)))) 2749 return err; 2750 2751 if (frag->next) 2752 skb_drop_list(&frag->next); 2753 break; 2754 } 2755 2756 done: 2757 if (len > skb_headlen(skb)) { 2758 skb->data_len -= skb->len - len; 2759 skb->len = len; 2760 } else { 2761 skb->len = len; 2762 skb->data_len = 0; 2763 skb_set_tail_pointer(skb, len); 2764 } 2765 2766 if (!skb->sk || skb->destructor == sock_edemux) 2767 skb_condense(skb); 2768 return 0; 2769 } 2770 EXPORT_SYMBOL(___pskb_trim); 2771 2772 /* Note : use pskb_trim_rcsum() instead of calling this directly 2773 */ 2774 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2775 { 2776 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2777 int delta = skb->len - len; 2778 2779 skb->csum = csum_block_sub(skb->csum, 2780 skb_checksum(skb, len, delta, 0), 2781 len); 2782 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2783 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2784 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2785 2786 if (offset + sizeof(__sum16) > hdlen) 2787 return -EINVAL; 2788 } 2789 return __pskb_trim(skb, len); 2790 } 2791 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2792 2793 /** 2794 * __pskb_pull_tail - advance tail of skb header 2795 * @skb: buffer to reallocate 2796 * @delta: number of bytes to advance tail 2797 * 2798 * The function makes a sense only on a fragmented &sk_buff, 2799 * it expands header moving its tail forward and copying necessary 2800 * data from fragmented part. 2801 * 2802 * &sk_buff MUST have reference count of 1. 2803 * 2804 * Returns %NULL (and &sk_buff does not change) if pull failed 2805 * or value of new tail of skb in the case of success. 2806 * 2807 * All the pointers pointing into skb header may change and must be 2808 * reloaded after call to this function. 2809 */ 2810 2811 /* Moves tail of skb head forward, copying data from fragmented part, 2812 * when it is necessary. 2813 * 1. It may fail due to malloc failure. 2814 * 2. It may change skb pointers. 2815 * 2816 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2817 */ 2818 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2819 { 2820 /* If skb has not enough free space at tail, get new one 2821 * plus 128 bytes for future expansions. If we have enough 2822 * room at tail, reallocate without expansion only if skb is cloned. 2823 */ 2824 int i, k, eat = (skb->tail + delta) - skb->end; 2825 2826 if (!skb_frags_readable(skb)) 2827 return NULL; 2828 2829 if (eat > 0 || skb_cloned(skb)) { 2830 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2831 GFP_ATOMIC)) 2832 return NULL; 2833 } 2834 2835 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2836 skb_tail_pointer(skb), delta)); 2837 2838 /* Optimization: no fragments, no reasons to preestimate 2839 * size of pulled pages. Superb. 2840 */ 2841 if (!skb_has_frag_list(skb)) 2842 goto pull_pages; 2843 2844 /* Estimate size of pulled pages. */ 2845 eat = delta; 2846 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2847 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2848 2849 if (size >= eat) 2850 goto pull_pages; 2851 eat -= size; 2852 } 2853 2854 /* If we need update frag list, we are in troubles. 2855 * Certainly, it is possible to add an offset to skb data, 2856 * but taking into account that pulling is expected to 2857 * be very rare operation, it is worth to fight against 2858 * further bloating skb head and crucify ourselves here instead. 2859 * Pure masohism, indeed. 8)8) 2860 */ 2861 if (eat) { 2862 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2863 struct sk_buff *clone = NULL; 2864 struct sk_buff *insp = NULL; 2865 2866 do { 2867 if (list->len <= eat) { 2868 /* Eaten as whole. */ 2869 eat -= list->len; 2870 list = list->next; 2871 insp = list; 2872 } else { 2873 /* Eaten partially. */ 2874 if (skb_is_gso(skb) && !list->head_frag && 2875 skb_headlen(list)) 2876 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2877 2878 if (skb_shared(list)) { 2879 /* Sucks! We need to fork list. :-( */ 2880 clone = skb_clone(list, GFP_ATOMIC); 2881 if (!clone) 2882 return NULL; 2883 insp = list->next; 2884 list = clone; 2885 } else { 2886 /* This may be pulled without 2887 * problems. */ 2888 insp = list; 2889 } 2890 if (!pskb_pull(list, eat)) { 2891 kfree_skb(clone); 2892 return NULL; 2893 } 2894 break; 2895 } 2896 } while (eat); 2897 2898 /* Free pulled out fragments. */ 2899 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2900 skb_shinfo(skb)->frag_list = list->next; 2901 consume_skb(list); 2902 } 2903 /* And insert new clone at head. */ 2904 if (clone) { 2905 clone->next = list; 2906 skb_shinfo(skb)->frag_list = clone; 2907 } 2908 } 2909 /* Success! Now we may commit changes to skb data. */ 2910 2911 pull_pages: 2912 eat = delta; 2913 k = 0; 2914 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2915 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2916 2917 if (size <= eat) { 2918 skb_frag_unref(skb, i); 2919 eat -= size; 2920 } else { 2921 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2922 2923 *frag = skb_shinfo(skb)->frags[i]; 2924 if (eat) { 2925 skb_frag_off_add(frag, eat); 2926 skb_frag_size_sub(frag, eat); 2927 if (!i) 2928 goto end; 2929 eat = 0; 2930 } 2931 k++; 2932 } 2933 } 2934 skb_shinfo(skb)->nr_frags = k; 2935 2936 end: 2937 skb->tail += delta; 2938 skb->data_len -= delta; 2939 2940 if (!skb->data_len) 2941 skb_zcopy_clear(skb, false); 2942 2943 return skb_tail_pointer(skb); 2944 } 2945 EXPORT_SYMBOL(__pskb_pull_tail); 2946 2947 /** 2948 * skb_copy_bits - copy bits from skb to kernel buffer 2949 * @skb: source skb 2950 * @offset: offset in source 2951 * @to: destination buffer 2952 * @len: number of bytes to copy 2953 * 2954 * Copy the specified number of bytes from the source skb to the 2955 * destination buffer. 2956 * 2957 * CAUTION ! : 2958 * If its prototype is ever changed, 2959 * check arch/{*}/net/{*}.S files, 2960 * since it is called from BPF assembly code. 2961 */ 2962 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2963 { 2964 int start = skb_headlen(skb); 2965 struct sk_buff *frag_iter; 2966 int i, copy; 2967 2968 if (offset > (int)skb->len - len) 2969 goto fault; 2970 2971 /* Copy header. */ 2972 if ((copy = start - offset) > 0) { 2973 if (copy > len) 2974 copy = len; 2975 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2976 if ((len -= copy) == 0) 2977 return 0; 2978 offset += copy; 2979 to += copy; 2980 } 2981 2982 if (!skb_frags_readable(skb)) 2983 goto fault; 2984 2985 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2986 int end; 2987 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2988 2989 WARN_ON(start > offset + len); 2990 2991 end = start + skb_frag_size(f); 2992 if ((copy = end - offset) > 0) { 2993 u32 p_off, p_len, copied; 2994 struct page *p; 2995 u8 *vaddr; 2996 2997 if (copy > len) 2998 copy = len; 2999 3000 skb_frag_foreach_page(f, 3001 skb_frag_off(f) + offset - start, 3002 copy, p, p_off, p_len, copied) { 3003 vaddr = kmap_atomic(p); 3004 memcpy(to + copied, vaddr + p_off, p_len); 3005 kunmap_atomic(vaddr); 3006 } 3007 3008 if ((len -= copy) == 0) 3009 return 0; 3010 offset += copy; 3011 to += copy; 3012 } 3013 start = end; 3014 } 3015 3016 skb_walk_frags(skb, frag_iter) { 3017 int end; 3018 3019 WARN_ON(start > offset + len); 3020 3021 end = start + frag_iter->len; 3022 if ((copy = end - offset) > 0) { 3023 if (copy > len) 3024 copy = len; 3025 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3026 goto fault; 3027 if ((len -= copy) == 0) 3028 return 0; 3029 offset += copy; 3030 to += copy; 3031 } 3032 start = end; 3033 } 3034 3035 if (!len) 3036 return 0; 3037 3038 fault: 3039 return -EFAULT; 3040 } 3041 EXPORT_SYMBOL(skb_copy_bits); 3042 3043 /* 3044 * Callback from splice_to_pipe(), if we need to release some pages 3045 * at the end of the spd in case we error'ed out in filling the pipe. 3046 */ 3047 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3048 { 3049 put_page(spd->pages[i]); 3050 } 3051 3052 static struct page *linear_to_page(struct page *page, unsigned int *len, 3053 unsigned int *offset, 3054 struct sock *sk) 3055 { 3056 struct page_frag *pfrag = sk_page_frag(sk); 3057 3058 if (!sk_page_frag_refill(sk, pfrag)) 3059 return NULL; 3060 3061 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3062 3063 memcpy(page_address(pfrag->page) + pfrag->offset, 3064 page_address(page) + *offset, *len); 3065 *offset = pfrag->offset; 3066 pfrag->offset += *len; 3067 3068 return pfrag->page; 3069 } 3070 3071 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3072 struct page *page, 3073 unsigned int offset) 3074 { 3075 return spd->nr_pages && 3076 spd->pages[spd->nr_pages - 1] == page && 3077 (spd->partial[spd->nr_pages - 1].offset + 3078 spd->partial[spd->nr_pages - 1].len == offset); 3079 } 3080 3081 /* 3082 * Fill page/offset/length into spd, if it can hold more pages. 3083 */ 3084 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3085 unsigned int *len, unsigned int offset, bool linear, 3086 struct sock *sk) 3087 { 3088 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3089 return true; 3090 3091 if (linear) { 3092 page = linear_to_page(page, len, &offset, sk); 3093 if (!page) 3094 return true; 3095 } 3096 if (spd_can_coalesce(spd, page, offset)) { 3097 spd->partial[spd->nr_pages - 1].len += *len; 3098 return false; 3099 } 3100 get_page(page); 3101 spd->pages[spd->nr_pages] = page; 3102 spd->partial[spd->nr_pages].len = *len; 3103 spd->partial[spd->nr_pages].offset = offset; 3104 spd->nr_pages++; 3105 3106 return false; 3107 } 3108 3109 static bool __splice_segment(struct page *page, unsigned int poff, 3110 unsigned int plen, unsigned int *off, 3111 unsigned int *len, 3112 struct splice_pipe_desc *spd, bool linear, 3113 struct sock *sk) 3114 { 3115 if (!*len) 3116 return true; 3117 3118 /* skip this segment if already processed */ 3119 if (*off >= plen) { 3120 *off -= plen; 3121 return false; 3122 } 3123 3124 /* ignore any bits we already processed */ 3125 poff += *off; 3126 plen -= *off; 3127 *off = 0; 3128 3129 do { 3130 unsigned int flen = min(*len, plen); 3131 3132 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3133 return true; 3134 poff += flen; 3135 plen -= flen; 3136 *len -= flen; 3137 if (!*len) 3138 return true; 3139 } while (plen); 3140 3141 return false; 3142 } 3143 3144 /* 3145 * Map linear and fragment data from the skb to spd. It reports true if the 3146 * pipe is full or if we already spliced the requested length. 3147 */ 3148 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3149 unsigned int *offset, unsigned int *len, 3150 struct splice_pipe_desc *spd, struct sock *sk) 3151 { 3152 struct sk_buff *iter; 3153 int seg; 3154 3155 /* map the linear part : 3156 * If skb->head_frag is set, this 'linear' part is backed by a 3157 * fragment, and if the head is not shared with any clones then 3158 * we can avoid a copy since we own the head portion of this page. 3159 */ 3160 if (__splice_segment(virt_to_page(skb->data), 3161 (unsigned long) skb->data & (PAGE_SIZE - 1), 3162 skb_headlen(skb), 3163 offset, len, spd, 3164 skb_head_is_locked(skb), 3165 sk)) 3166 return true; 3167 3168 /* 3169 * then map the fragments 3170 */ 3171 if (!skb_frags_readable(skb)) 3172 return false; 3173 3174 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3175 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3176 3177 if (WARN_ON_ONCE(!skb_frag_page(f))) 3178 return false; 3179 3180 if (__splice_segment(skb_frag_page(f), 3181 skb_frag_off(f), skb_frag_size(f), 3182 offset, len, spd, false, sk)) 3183 return true; 3184 } 3185 3186 skb_walk_frags(skb, iter) { 3187 if (*offset >= iter->len) { 3188 *offset -= iter->len; 3189 continue; 3190 } 3191 /* __skb_splice_bits() only fails if the output has no room 3192 * left, so no point in going over the frag_list for the error 3193 * case. 3194 */ 3195 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3196 return true; 3197 } 3198 3199 return false; 3200 } 3201 3202 /* 3203 * Map data from the skb to a pipe. Should handle both the linear part, 3204 * the fragments, and the frag list. 3205 */ 3206 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3207 struct pipe_inode_info *pipe, unsigned int tlen, 3208 unsigned int flags) 3209 { 3210 struct partial_page partial[MAX_SKB_FRAGS]; 3211 struct page *pages[MAX_SKB_FRAGS]; 3212 struct splice_pipe_desc spd = { 3213 .pages = pages, 3214 .partial = partial, 3215 .nr_pages_max = MAX_SKB_FRAGS, 3216 .ops = &nosteal_pipe_buf_ops, 3217 .spd_release = sock_spd_release, 3218 }; 3219 int ret = 0; 3220 3221 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3222 3223 if (spd.nr_pages) 3224 ret = splice_to_pipe(pipe, &spd); 3225 3226 return ret; 3227 } 3228 EXPORT_SYMBOL_GPL(skb_splice_bits); 3229 3230 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3231 { 3232 struct socket *sock = sk->sk_socket; 3233 size_t size = msg_data_left(msg); 3234 3235 if (!sock) 3236 return -EINVAL; 3237 3238 if (!sock->ops->sendmsg_locked) 3239 return sock_no_sendmsg_locked(sk, msg, size); 3240 3241 return sock->ops->sendmsg_locked(sk, msg, size); 3242 } 3243 3244 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3245 { 3246 struct socket *sock = sk->sk_socket; 3247 3248 if (!sock) 3249 return -EINVAL; 3250 return sock_sendmsg(sock, msg); 3251 } 3252 3253 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3254 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3255 int len, sendmsg_func sendmsg, int flags) 3256 { 3257 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0; 3258 unsigned int orig_len = len; 3259 struct sk_buff *head = skb; 3260 unsigned short fragidx; 3261 int slen, ret; 3262 3263 do_frag_list: 3264 3265 /* Deal with head data */ 3266 while (offset < skb_headlen(skb) && len) { 3267 struct kvec kv; 3268 struct msghdr msg; 3269 3270 slen = min_t(int, len, skb_headlen(skb) - offset); 3271 kv.iov_base = skb->data + offset; 3272 kv.iov_len = slen; 3273 memset(&msg, 0, sizeof(msg)); 3274 msg.msg_flags = MSG_DONTWAIT | flags; 3275 if (slen < len) 3276 msg.msg_flags |= more_hint; 3277 3278 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3279 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3280 sendmsg_unlocked, sk, &msg); 3281 if (ret <= 0) 3282 goto error; 3283 3284 offset += ret; 3285 len -= ret; 3286 } 3287 3288 /* All the data was skb head? */ 3289 if (!len) 3290 goto out; 3291 3292 /* Make offset relative to start of frags */ 3293 offset -= skb_headlen(skb); 3294 3295 /* Find where we are in frag list */ 3296 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3297 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3298 3299 if (offset < skb_frag_size(frag)) 3300 break; 3301 3302 offset -= skb_frag_size(frag); 3303 } 3304 3305 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3306 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3307 3308 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3309 3310 while (slen) { 3311 struct bio_vec bvec; 3312 struct msghdr msg = { 3313 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3314 flags, 3315 }; 3316 3317 if (slen < len) 3318 msg.msg_flags |= more_hint; 3319 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3320 skb_frag_off(frag) + offset); 3321 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3322 slen); 3323 3324 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3325 sendmsg_unlocked, sk, &msg); 3326 if (ret <= 0) 3327 goto error; 3328 3329 len -= ret; 3330 offset += ret; 3331 slen -= ret; 3332 } 3333 3334 offset = 0; 3335 } 3336 3337 if (len) { 3338 /* Process any frag lists */ 3339 3340 if (skb == head) { 3341 if (skb_has_frag_list(skb)) { 3342 skb = skb_shinfo(skb)->frag_list; 3343 goto do_frag_list; 3344 } 3345 } else if (skb->next) { 3346 skb = skb->next; 3347 goto do_frag_list; 3348 } 3349 } 3350 3351 out: 3352 return orig_len - len; 3353 3354 error: 3355 return orig_len == len ? ret : orig_len - len; 3356 } 3357 3358 /* Send skb data on a socket. Socket must be locked. */ 3359 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3360 int len) 3361 { 3362 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3363 } 3364 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3365 3366 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3367 int offset, int len, int flags) 3368 { 3369 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3370 } 3371 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3372 3373 /* Send skb data on a socket. Socket must be unlocked. */ 3374 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3375 { 3376 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3377 } 3378 3379 /** 3380 * skb_store_bits - store bits from kernel buffer to skb 3381 * @skb: destination buffer 3382 * @offset: offset in destination 3383 * @from: source buffer 3384 * @len: number of bytes to copy 3385 * 3386 * Copy the specified number of bytes from the source buffer to the 3387 * destination skb. This function handles all the messy bits of 3388 * traversing fragment lists and such. 3389 */ 3390 3391 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3392 { 3393 int start = skb_headlen(skb); 3394 struct sk_buff *frag_iter; 3395 int i, copy; 3396 3397 if (offset > (int)skb->len - len) 3398 goto fault; 3399 3400 if ((copy = start - offset) > 0) { 3401 if (copy > len) 3402 copy = len; 3403 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3404 if ((len -= copy) == 0) 3405 return 0; 3406 offset += copy; 3407 from += copy; 3408 } 3409 3410 if (!skb_frags_readable(skb)) 3411 goto fault; 3412 3413 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3414 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3415 int end; 3416 3417 WARN_ON(start > offset + len); 3418 3419 end = start + skb_frag_size(frag); 3420 if ((copy = end - offset) > 0) { 3421 u32 p_off, p_len, copied; 3422 struct page *p; 3423 u8 *vaddr; 3424 3425 if (copy > len) 3426 copy = len; 3427 3428 skb_frag_foreach_page(frag, 3429 skb_frag_off(frag) + offset - start, 3430 copy, p, p_off, p_len, copied) { 3431 vaddr = kmap_atomic(p); 3432 memcpy(vaddr + p_off, from + copied, p_len); 3433 kunmap_atomic(vaddr); 3434 } 3435 3436 if ((len -= copy) == 0) 3437 return 0; 3438 offset += copy; 3439 from += copy; 3440 } 3441 start = end; 3442 } 3443 3444 skb_walk_frags(skb, frag_iter) { 3445 int end; 3446 3447 WARN_ON(start > offset + len); 3448 3449 end = start + frag_iter->len; 3450 if ((copy = end - offset) > 0) { 3451 if (copy > len) 3452 copy = len; 3453 if (skb_store_bits(frag_iter, offset - start, 3454 from, copy)) 3455 goto fault; 3456 if ((len -= copy) == 0) 3457 return 0; 3458 offset += copy; 3459 from += copy; 3460 } 3461 start = end; 3462 } 3463 if (!len) 3464 return 0; 3465 3466 fault: 3467 return -EFAULT; 3468 } 3469 EXPORT_SYMBOL(skb_store_bits); 3470 3471 /* Checksum skb data. */ 3472 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3473 { 3474 int start = skb_headlen(skb); 3475 int i, copy = start - offset; 3476 struct sk_buff *frag_iter; 3477 int pos = 0; 3478 3479 /* Checksum header. */ 3480 if (copy > 0) { 3481 if (copy > len) 3482 copy = len; 3483 csum = csum_partial(skb->data + offset, copy, csum); 3484 if ((len -= copy) == 0) 3485 return csum; 3486 offset += copy; 3487 pos = copy; 3488 } 3489 3490 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3491 return 0; 3492 3493 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3494 int end; 3495 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3496 3497 WARN_ON(start > offset + len); 3498 3499 end = start + skb_frag_size(frag); 3500 if ((copy = end - offset) > 0) { 3501 u32 p_off, p_len, copied; 3502 struct page *p; 3503 __wsum csum2; 3504 u8 *vaddr; 3505 3506 if (copy > len) 3507 copy = len; 3508 3509 skb_frag_foreach_page(frag, 3510 skb_frag_off(frag) + offset - start, 3511 copy, p, p_off, p_len, copied) { 3512 vaddr = kmap_atomic(p); 3513 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3514 kunmap_atomic(vaddr); 3515 csum = csum_block_add(csum, csum2, pos); 3516 pos += p_len; 3517 } 3518 3519 if (!(len -= copy)) 3520 return csum; 3521 offset += copy; 3522 } 3523 start = end; 3524 } 3525 3526 skb_walk_frags(skb, frag_iter) { 3527 int end; 3528 3529 WARN_ON(start > offset + len); 3530 3531 end = start + frag_iter->len; 3532 if ((copy = end - offset) > 0) { 3533 __wsum csum2; 3534 if (copy > len) 3535 copy = len; 3536 csum2 = skb_checksum(frag_iter, offset - start, copy, 3537 0); 3538 csum = csum_block_add(csum, csum2, pos); 3539 if ((len -= copy) == 0) 3540 return csum; 3541 offset += copy; 3542 pos += copy; 3543 } 3544 start = end; 3545 } 3546 BUG_ON(len); 3547 3548 return csum; 3549 } 3550 EXPORT_SYMBOL(skb_checksum); 3551 3552 /* Both of above in one bottle. */ 3553 3554 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3555 u8 *to, int len) 3556 { 3557 int start = skb_headlen(skb); 3558 int i, copy = start - offset; 3559 struct sk_buff *frag_iter; 3560 int pos = 0; 3561 __wsum csum = 0; 3562 3563 /* Copy header. */ 3564 if (copy > 0) { 3565 if (copy > len) 3566 copy = len; 3567 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3568 copy); 3569 if ((len -= copy) == 0) 3570 return csum; 3571 offset += copy; 3572 to += copy; 3573 pos = copy; 3574 } 3575 3576 if (!skb_frags_readable(skb)) 3577 return 0; 3578 3579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3580 int end; 3581 3582 WARN_ON(start > offset + len); 3583 3584 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3585 if ((copy = end - offset) > 0) { 3586 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3587 u32 p_off, p_len, copied; 3588 struct page *p; 3589 __wsum csum2; 3590 u8 *vaddr; 3591 3592 if (copy > len) 3593 copy = len; 3594 3595 skb_frag_foreach_page(frag, 3596 skb_frag_off(frag) + offset - start, 3597 copy, p, p_off, p_len, copied) { 3598 vaddr = kmap_atomic(p); 3599 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3600 to + copied, 3601 p_len); 3602 kunmap_atomic(vaddr); 3603 csum = csum_block_add(csum, csum2, pos); 3604 pos += p_len; 3605 } 3606 3607 if (!(len -= copy)) 3608 return csum; 3609 offset += copy; 3610 to += copy; 3611 } 3612 start = end; 3613 } 3614 3615 skb_walk_frags(skb, frag_iter) { 3616 __wsum csum2; 3617 int end; 3618 3619 WARN_ON(start > offset + len); 3620 3621 end = start + frag_iter->len; 3622 if ((copy = end - offset) > 0) { 3623 if (copy > len) 3624 copy = len; 3625 csum2 = skb_copy_and_csum_bits(frag_iter, 3626 offset - start, 3627 to, copy); 3628 csum = csum_block_add(csum, csum2, pos); 3629 if ((len -= copy) == 0) 3630 return csum; 3631 offset += copy; 3632 to += copy; 3633 pos += copy; 3634 } 3635 start = end; 3636 } 3637 BUG_ON(len); 3638 return csum; 3639 } 3640 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3641 3642 #ifdef CONFIG_NET_CRC32C 3643 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3644 { 3645 int start = skb_headlen(skb); 3646 int i, copy = start - offset; 3647 struct sk_buff *frag_iter; 3648 3649 if (copy > 0) { 3650 copy = min(copy, len); 3651 crc = crc32c(crc, skb->data + offset, copy); 3652 len -= copy; 3653 if (len == 0) 3654 return crc; 3655 offset += copy; 3656 } 3657 3658 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3659 return 0; 3660 3661 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3662 int end; 3663 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3664 3665 WARN_ON(start > offset + len); 3666 3667 end = start + skb_frag_size(frag); 3668 copy = end - offset; 3669 if (copy > 0) { 3670 u32 p_off, p_len, copied; 3671 struct page *p; 3672 u8 *vaddr; 3673 3674 copy = min(copy, len); 3675 skb_frag_foreach_page(frag, 3676 skb_frag_off(frag) + offset - start, 3677 copy, p, p_off, p_len, copied) { 3678 vaddr = kmap_atomic(p); 3679 crc = crc32c(crc, vaddr + p_off, p_len); 3680 kunmap_atomic(vaddr); 3681 } 3682 len -= copy; 3683 if (len == 0) 3684 return crc; 3685 offset += copy; 3686 } 3687 start = end; 3688 } 3689 3690 skb_walk_frags(skb, frag_iter) { 3691 int end; 3692 3693 WARN_ON(start > offset + len); 3694 3695 end = start + frag_iter->len; 3696 copy = end - offset; 3697 if (copy > 0) { 3698 copy = min(copy, len); 3699 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3700 len -= copy; 3701 if (len == 0) 3702 return crc; 3703 offset += copy; 3704 } 3705 start = end; 3706 } 3707 BUG_ON(len); 3708 3709 return crc; 3710 } 3711 EXPORT_SYMBOL(skb_crc32c); 3712 #endif /* CONFIG_NET_CRC32C */ 3713 3714 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3715 { 3716 __sum16 sum; 3717 3718 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3719 /* See comments in __skb_checksum_complete(). */ 3720 if (likely(!sum)) { 3721 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3722 !skb->csum_complete_sw) 3723 netdev_rx_csum_fault(skb->dev, skb); 3724 } 3725 if (!skb_shared(skb)) 3726 skb->csum_valid = !sum; 3727 return sum; 3728 } 3729 EXPORT_SYMBOL(__skb_checksum_complete_head); 3730 3731 /* This function assumes skb->csum already holds pseudo header's checksum, 3732 * which has been changed from the hardware checksum, for example, by 3733 * __skb_checksum_validate_complete(). And, the original skb->csum must 3734 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3735 * 3736 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3737 * zero. The new checksum is stored back into skb->csum unless the skb is 3738 * shared. 3739 */ 3740 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3741 { 3742 __wsum csum; 3743 __sum16 sum; 3744 3745 csum = skb_checksum(skb, 0, skb->len, 0); 3746 3747 sum = csum_fold(csum_add(skb->csum, csum)); 3748 /* This check is inverted, because we already knew the hardware 3749 * checksum is invalid before calling this function. So, if the 3750 * re-computed checksum is valid instead, then we have a mismatch 3751 * between the original skb->csum and skb_checksum(). This means either 3752 * the original hardware checksum is incorrect or we screw up skb->csum 3753 * when moving skb->data around. 3754 */ 3755 if (likely(!sum)) { 3756 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3757 !skb->csum_complete_sw) 3758 netdev_rx_csum_fault(skb->dev, skb); 3759 } 3760 3761 if (!skb_shared(skb)) { 3762 /* Save full packet checksum */ 3763 skb->csum = csum; 3764 skb->ip_summed = CHECKSUM_COMPLETE; 3765 skb->csum_complete_sw = 1; 3766 skb->csum_valid = !sum; 3767 } 3768 3769 return sum; 3770 } 3771 EXPORT_SYMBOL(__skb_checksum_complete); 3772 3773 /** 3774 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3775 * @from: source buffer 3776 * 3777 * Calculates the amount of linear headroom needed in the 'to' skb passed 3778 * into skb_zerocopy(). 3779 */ 3780 unsigned int 3781 skb_zerocopy_headlen(const struct sk_buff *from) 3782 { 3783 unsigned int hlen = 0; 3784 3785 if (!from->head_frag || 3786 skb_headlen(from) < L1_CACHE_BYTES || 3787 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3788 hlen = skb_headlen(from); 3789 if (!hlen) 3790 hlen = from->len; 3791 } 3792 3793 if (skb_has_frag_list(from)) 3794 hlen = from->len; 3795 3796 return hlen; 3797 } 3798 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3799 3800 /** 3801 * skb_zerocopy - Zero copy skb to skb 3802 * @to: destination buffer 3803 * @from: source buffer 3804 * @len: number of bytes to copy from source buffer 3805 * @hlen: size of linear headroom in destination buffer 3806 * 3807 * Copies up to `len` bytes from `from` to `to` by creating references 3808 * to the frags in the source buffer. 3809 * 3810 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3811 * headroom in the `to` buffer. 3812 * 3813 * Return value: 3814 * 0: everything is OK 3815 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3816 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3817 */ 3818 int 3819 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3820 { 3821 int i, j = 0; 3822 int plen = 0; /* length of skb->head fragment */ 3823 int ret; 3824 struct page *page; 3825 unsigned int offset; 3826 3827 BUG_ON(!from->head_frag && !hlen); 3828 3829 /* dont bother with small payloads */ 3830 if (len <= skb_tailroom(to)) 3831 return skb_copy_bits(from, 0, skb_put(to, len), len); 3832 3833 if (hlen) { 3834 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3835 if (unlikely(ret)) 3836 return ret; 3837 len -= hlen; 3838 } else { 3839 plen = min_t(int, skb_headlen(from), len); 3840 if (plen) { 3841 page = virt_to_head_page(from->head); 3842 offset = from->data - (unsigned char *)page_address(page); 3843 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3844 offset, plen); 3845 get_page(page); 3846 j = 1; 3847 len -= plen; 3848 } 3849 } 3850 3851 skb_len_add(to, len + plen); 3852 3853 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3854 skb_tx_error(from); 3855 return -ENOMEM; 3856 } 3857 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3858 3859 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3860 int size; 3861 3862 if (!len) 3863 break; 3864 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3865 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3866 len); 3867 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3868 len -= size; 3869 skb_frag_ref(to, j); 3870 j++; 3871 } 3872 skb_shinfo(to)->nr_frags = j; 3873 3874 return 0; 3875 } 3876 EXPORT_SYMBOL_GPL(skb_zerocopy); 3877 3878 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3879 { 3880 __wsum csum; 3881 long csstart; 3882 3883 if (skb->ip_summed == CHECKSUM_PARTIAL) 3884 csstart = skb_checksum_start_offset(skb); 3885 else 3886 csstart = skb_headlen(skb); 3887 3888 BUG_ON(csstart > skb_headlen(skb)); 3889 3890 skb_copy_from_linear_data(skb, to, csstart); 3891 3892 csum = 0; 3893 if (csstart != skb->len) 3894 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3895 skb->len - csstart); 3896 3897 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3898 long csstuff = csstart + skb->csum_offset; 3899 3900 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3901 } 3902 } 3903 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3904 3905 /** 3906 * skb_dequeue - remove from the head of the queue 3907 * @list: list to dequeue from 3908 * 3909 * Remove the head of the list. The list lock is taken so the function 3910 * may be used safely with other locking list functions. The head item is 3911 * returned or %NULL if the list is empty. 3912 */ 3913 3914 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3915 { 3916 unsigned long flags; 3917 struct sk_buff *result; 3918 3919 spin_lock_irqsave(&list->lock, flags); 3920 result = __skb_dequeue(list); 3921 spin_unlock_irqrestore(&list->lock, flags); 3922 return result; 3923 } 3924 EXPORT_SYMBOL(skb_dequeue); 3925 3926 /** 3927 * skb_dequeue_tail - remove from the tail of the queue 3928 * @list: list to dequeue from 3929 * 3930 * Remove the tail of the list. The list lock is taken so the function 3931 * may be used safely with other locking list functions. The tail item is 3932 * returned or %NULL if the list is empty. 3933 */ 3934 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3935 { 3936 unsigned long flags; 3937 struct sk_buff *result; 3938 3939 spin_lock_irqsave(&list->lock, flags); 3940 result = __skb_dequeue_tail(list); 3941 spin_unlock_irqrestore(&list->lock, flags); 3942 return result; 3943 } 3944 EXPORT_SYMBOL(skb_dequeue_tail); 3945 3946 /** 3947 * skb_queue_purge_reason - empty a list 3948 * @list: list to empty 3949 * @reason: drop reason 3950 * 3951 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3952 * the list and one reference dropped. This function takes the list 3953 * lock and is atomic with respect to other list locking functions. 3954 */ 3955 void skb_queue_purge_reason(struct sk_buff_head *list, 3956 enum skb_drop_reason reason) 3957 { 3958 struct sk_buff_head tmp; 3959 unsigned long flags; 3960 3961 if (skb_queue_empty_lockless(list)) 3962 return; 3963 3964 __skb_queue_head_init(&tmp); 3965 3966 spin_lock_irqsave(&list->lock, flags); 3967 skb_queue_splice_init(list, &tmp); 3968 spin_unlock_irqrestore(&list->lock, flags); 3969 3970 __skb_queue_purge_reason(&tmp, reason); 3971 } 3972 EXPORT_SYMBOL(skb_queue_purge_reason); 3973 3974 /** 3975 * skb_rbtree_purge - empty a skb rbtree 3976 * @root: root of the rbtree to empty 3977 * Return value: the sum of truesizes of all purged skbs. 3978 * 3979 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3980 * the list and one reference dropped. This function does not take 3981 * any lock. Synchronization should be handled by the caller (e.g., TCP 3982 * out-of-order queue is protected by the socket lock). 3983 */ 3984 unsigned int skb_rbtree_purge(struct rb_root *root) 3985 { 3986 struct rb_node *p = rb_first(root); 3987 unsigned int sum = 0; 3988 3989 while (p) { 3990 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3991 3992 p = rb_next(p); 3993 rb_erase(&skb->rbnode, root); 3994 sum += skb->truesize; 3995 kfree_skb(skb); 3996 } 3997 return sum; 3998 } 3999 4000 void skb_errqueue_purge(struct sk_buff_head *list) 4001 { 4002 struct sk_buff *skb, *next; 4003 struct sk_buff_head kill; 4004 unsigned long flags; 4005 4006 __skb_queue_head_init(&kill); 4007 4008 spin_lock_irqsave(&list->lock, flags); 4009 skb_queue_walk_safe(list, skb, next) { 4010 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 4011 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 4012 continue; 4013 __skb_unlink(skb, list); 4014 __skb_queue_tail(&kill, skb); 4015 } 4016 spin_unlock_irqrestore(&list->lock, flags); 4017 __skb_queue_purge(&kill); 4018 } 4019 EXPORT_SYMBOL(skb_errqueue_purge); 4020 4021 /** 4022 * skb_queue_head - queue a buffer at the list head 4023 * @list: list to use 4024 * @newsk: buffer to queue 4025 * 4026 * Queue a buffer at the start of the list. This function takes the 4027 * list lock and can be used safely with other locking &sk_buff functions 4028 * safely. 4029 * 4030 * A buffer cannot be placed on two lists at the same time. 4031 */ 4032 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4033 { 4034 unsigned long flags; 4035 4036 spin_lock_irqsave(&list->lock, flags); 4037 __skb_queue_head(list, newsk); 4038 spin_unlock_irqrestore(&list->lock, flags); 4039 } 4040 EXPORT_SYMBOL(skb_queue_head); 4041 4042 /** 4043 * skb_queue_tail - queue a buffer at the list tail 4044 * @list: list to use 4045 * @newsk: buffer to queue 4046 * 4047 * Queue a buffer at the tail of the list. This function takes the 4048 * list lock and can be used safely with other locking &sk_buff functions 4049 * safely. 4050 * 4051 * A buffer cannot be placed on two lists at the same time. 4052 */ 4053 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4054 { 4055 unsigned long flags; 4056 4057 spin_lock_irqsave(&list->lock, flags); 4058 __skb_queue_tail(list, newsk); 4059 spin_unlock_irqrestore(&list->lock, flags); 4060 } 4061 EXPORT_SYMBOL(skb_queue_tail); 4062 4063 /** 4064 * skb_unlink - remove a buffer from a list 4065 * @skb: buffer to remove 4066 * @list: list to use 4067 * 4068 * Remove a packet from a list. The list locks are taken and this 4069 * function is atomic with respect to other list locked calls 4070 * 4071 * You must know what list the SKB is on. 4072 */ 4073 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4074 { 4075 unsigned long flags; 4076 4077 spin_lock_irqsave(&list->lock, flags); 4078 __skb_unlink(skb, list); 4079 spin_unlock_irqrestore(&list->lock, flags); 4080 } 4081 EXPORT_SYMBOL(skb_unlink); 4082 4083 /** 4084 * skb_append - append a buffer 4085 * @old: buffer to insert after 4086 * @newsk: buffer to insert 4087 * @list: list to use 4088 * 4089 * Place a packet after a given packet in a list. The list locks are taken 4090 * and this function is atomic with respect to other list locked calls. 4091 * A buffer cannot be placed on two lists at the same time. 4092 */ 4093 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4094 { 4095 unsigned long flags; 4096 4097 spin_lock_irqsave(&list->lock, flags); 4098 __skb_queue_after(list, old, newsk); 4099 spin_unlock_irqrestore(&list->lock, flags); 4100 } 4101 EXPORT_SYMBOL(skb_append); 4102 4103 static inline void skb_split_inside_header(struct sk_buff *skb, 4104 struct sk_buff* skb1, 4105 const u32 len, const int pos) 4106 { 4107 int i; 4108 4109 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4110 pos - len); 4111 /* And move data appendix as is. */ 4112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4113 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4114 4115 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4116 skb1->unreadable = skb->unreadable; 4117 skb_shinfo(skb)->nr_frags = 0; 4118 skb1->data_len = skb->data_len; 4119 skb1->len += skb1->data_len; 4120 skb->data_len = 0; 4121 skb->len = len; 4122 skb_set_tail_pointer(skb, len); 4123 } 4124 4125 static inline void skb_split_no_header(struct sk_buff *skb, 4126 struct sk_buff* skb1, 4127 const u32 len, int pos) 4128 { 4129 int i, k = 0; 4130 const int nfrags = skb_shinfo(skb)->nr_frags; 4131 4132 skb_shinfo(skb)->nr_frags = 0; 4133 skb1->len = skb1->data_len = skb->len - len; 4134 skb->len = len; 4135 skb->data_len = len - pos; 4136 4137 for (i = 0; i < nfrags; i++) { 4138 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4139 4140 if (pos + size > len) { 4141 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4142 4143 if (pos < len) { 4144 /* Split frag. 4145 * We have two variants in this case: 4146 * 1. Move all the frag to the second 4147 * part, if it is possible. F.e. 4148 * this approach is mandatory for TUX, 4149 * where splitting is expensive. 4150 * 2. Split is accurately. We make this. 4151 */ 4152 skb_frag_ref(skb, i); 4153 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4154 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4155 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4156 skb_shinfo(skb)->nr_frags++; 4157 } 4158 k++; 4159 } else 4160 skb_shinfo(skb)->nr_frags++; 4161 pos += size; 4162 } 4163 skb_shinfo(skb1)->nr_frags = k; 4164 4165 skb1->unreadable = skb->unreadable; 4166 } 4167 4168 /** 4169 * skb_split - Split fragmented skb to two parts at length len. 4170 * @skb: the buffer to split 4171 * @skb1: the buffer to receive the second part 4172 * @len: new length for skb 4173 */ 4174 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4175 { 4176 int pos = skb_headlen(skb); 4177 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4178 4179 skb_zcopy_downgrade_managed(skb); 4180 4181 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4182 skb_zerocopy_clone(skb1, skb, 0); 4183 if (len < pos) /* Split line is inside header. */ 4184 skb_split_inside_header(skb, skb1, len, pos); 4185 else /* Second chunk has no header, nothing to copy. */ 4186 skb_split_no_header(skb, skb1, len, pos); 4187 } 4188 EXPORT_SYMBOL(skb_split); 4189 4190 /* Shifting from/to a cloned skb is a no-go. 4191 * 4192 * Caller cannot keep skb_shinfo related pointers past calling here! 4193 */ 4194 static int skb_prepare_for_shift(struct sk_buff *skb) 4195 { 4196 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4197 } 4198 4199 /** 4200 * skb_shift - Shifts paged data partially from skb to another 4201 * @tgt: buffer into which tail data gets added 4202 * @skb: buffer from which the paged data comes from 4203 * @shiftlen: shift up to this many bytes 4204 * 4205 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4206 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4207 * It's up to caller to free skb if everything was shifted. 4208 * 4209 * If @tgt runs out of frags, the whole operation is aborted. 4210 * 4211 * Skb cannot include anything else but paged data while tgt is allowed 4212 * to have non-paged data as well. 4213 * 4214 * TODO: full sized shift could be optimized but that would need 4215 * specialized skb free'er to handle frags without up-to-date nr_frags. 4216 */ 4217 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4218 { 4219 int from, to, merge, todo; 4220 skb_frag_t *fragfrom, *fragto; 4221 4222 BUG_ON(shiftlen > skb->len); 4223 4224 if (skb_headlen(skb)) 4225 return 0; 4226 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4227 return 0; 4228 4229 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4230 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4231 4232 todo = shiftlen; 4233 from = 0; 4234 to = skb_shinfo(tgt)->nr_frags; 4235 fragfrom = &skb_shinfo(skb)->frags[from]; 4236 4237 /* Actual merge is delayed until the point when we know we can 4238 * commit all, so that we don't have to undo partial changes 4239 */ 4240 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4241 skb_frag_off(fragfrom))) { 4242 merge = -1; 4243 } else { 4244 merge = to - 1; 4245 4246 todo -= skb_frag_size(fragfrom); 4247 if (todo < 0) { 4248 if (skb_prepare_for_shift(skb) || 4249 skb_prepare_for_shift(tgt)) 4250 return 0; 4251 4252 /* All previous frag pointers might be stale! */ 4253 fragfrom = &skb_shinfo(skb)->frags[from]; 4254 fragto = &skb_shinfo(tgt)->frags[merge]; 4255 4256 skb_frag_size_add(fragto, shiftlen); 4257 skb_frag_size_sub(fragfrom, shiftlen); 4258 skb_frag_off_add(fragfrom, shiftlen); 4259 4260 goto onlymerged; 4261 } 4262 4263 from++; 4264 } 4265 4266 /* Skip full, not-fitting skb to avoid expensive operations */ 4267 if ((shiftlen == skb->len) && 4268 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4269 return 0; 4270 4271 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4272 return 0; 4273 4274 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4275 if (to == MAX_SKB_FRAGS) 4276 return 0; 4277 4278 fragfrom = &skb_shinfo(skb)->frags[from]; 4279 fragto = &skb_shinfo(tgt)->frags[to]; 4280 4281 if (todo >= skb_frag_size(fragfrom)) { 4282 *fragto = *fragfrom; 4283 todo -= skb_frag_size(fragfrom); 4284 from++; 4285 to++; 4286 4287 } else { 4288 __skb_frag_ref(fragfrom); 4289 skb_frag_page_copy(fragto, fragfrom); 4290 skb_frag_off_copy(fragto, fragfrom); 4291 skb_frag_size_set(fragto, todo); 4292 4293 skb_frag_off_add(fragfrom, todo); 4294 skb_frag_size_sub(fragfrom, todo); 4295 todo = 0; 4296 4297 to++; 4298 break; 4299 } 4300 } 4301 4302 /* Ready to "commit" this state change to tgt */ 4303 skb_shinfo(tgt)->nr_frags = to; 4304 4305 if (merge >= 0) { 4306 fragfrom = &skb_shinfo(skb)->frags[0]; 4307 fragto = &skb_shinfo(tgt)->frags[merge]; 4308 4309 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4310 __skb_frag_unref(fragfrom, skb->pp_recycle); 4311 } 4312 4313 /* Reposition in the original skb */ 4314 to = 0; 4315 while (from < skb_shinfo(skb)->nr_frags) 4316 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4317 skb_shinfo(skb)->nr_frags = to; 4318 4319 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4320 4321 onlymerged: 4322 /* Most likely the tgt won't ever need its checksum anymore, skb on 4323 * the other hand might need it if it needs to be resent 4324 */ 4325 tgt->ip_summed = CHECKSUM_PARTIAL; 4326 skb->ip_summed = CHECKSUM_PARTIAL; 4327 4328 skb_len_add(skb, -shiftlen); 4329 skb_len_add(tgt, shiftlen); 4330 4331 return shiftlen; 4332 } 4333 4334 /** 4335 * skb_prepare_seq_read - Prepare a sequential read of skb data 4336 * @skb: the buffer to read 4337 * @from: lower offset of data to be read 4338 * @to: upper offset of data to be read 4339 * @st: state variable 4340 * 4341 * Initializes the specified state variable. Must be called before 4342 * invoking skb_seq_read() for the first time. 4343 */ 4344 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4345 unsigned int to, struct skb_seq_state *st) 4346 { 4347 st->lower_offset = from; 4348 st->upper_offset = to; 4349 st->root_skb = st->cur_skb = skb; 4350 st->frag_idx = st->stepped_offset = 0; 4351 st->frag_data = NULL; 4352 st->frag_off = 0; 4353 } 4354 EXPORT_SYMBOL(skb_prepare_seq_read); 4355 4356 /** 4357 * skb_seq_read - Sequentially read skb data 4358 * @consumed: number of bytes consumed by the caller so far 4359 * @data: destination pointer for data to be returned 4360 * @st: state variable 4361 * 4362 * Reads a block of skb data at @consumed relative to the 4363 * lower offset specified to skb_prepare_seq_read(). Assigns 4364 * the head of the data block to @data and returns the length 4365 * of the block or 0 if the end of the skb data or the upper 4366 * offset has been reached. 4367 * 4368 * The caller is not required to consume all of the data 4369 * returned, i.e. @consumed is typically set to the number 4370 * of bytes already consumed and the next call to 4371 * skb_seq_read() will return the remaining part of the block. 4372 * 4373 * Note 1: The size of each block of data returned can be arbitrary, 4374 * this limitation is the cost for zerocopy sequential 4375 * reads of potentially non linear data. 4376 * 4377 * Note 2: Fragment lists within fragments are not implemented 4378 * at the moment, state->root_skb could be replaced with 4379 * a stack for this purpose. 4380 */ 4381 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4382 struct skb_seq_state *st) 4383 { 4384 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4385 skb_frag_t *frag; 4386 4387 if (unlikely(abs_offset >= st->upper_offset)) { 4388 if (st->frag_data) { 4389 kunmap_atomic(st->frag_data); 4390 st->frag_data = NULL; 4391 } 4392 return 0; 4393 } 4394 4395 next_skb: 4396 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4397 4398 if (abs_offset < block_limit && !st->frag_data) { 4399 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4400 return block_limit - abs_offset; 4401 } 4402 4403 if (!skb_frags_readable(st->cur_skb)) 4404 return 0; 4405 4406 if (st->frag_idx == 0 && !st->frag_data) 4407 st->stepped_offset += skb_headlen(st->cur_skb); 4408 4409 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4410 unsigned int pg_idx, pg_off, pg_sz; 4411 4412 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4413 4414 pg_idx = 0; 4415 pg_off = skb_frag_off(frag); 4416 pg_sz = skb_frag_size(frag); 4417 4418 if (skb_frag_must_loop(skb_frag_page(frag))) { 4419 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4420 pg_off = offset_in_page(pg_off + st->frag_off); 4421 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4422 PAGE_SIZE - pg_off); 4423 } 4424 4425 block_limit = pg_sz + st->stepped_offset; 4426 if (abs_offset < block_limit) { 4427 if (!st->frag_data) 4428 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4429 4430 *data = (u8 *)st->frag_data + pg_off + 4431 (abs_offset - st->stepped_offset); 4432 4433 return block_limit - abs_offset; 4434 } 4435 4436 if (st->frag_data) { 4437 kunmap_atomic(st->frag_data); 4438 st->frag_data = NULL; 4439 } 4440 4441 st->stepped_offset += pg_sz; 4442 st->frag_off += pg_sz; 4443 if (st->frag_off == skb_frag_size(frag)) { 4444 st->frag_off = 0; 4445 st->frag_idx++; 4446 } 4447 } 4448 4449 if (st->frag_data) { 4450 kunmap_atomic(st->frag_data); 4451 st->frag_data = NULL; 4452 } 4453 4454 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4455 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4456 st->frag_idx = 0; 4457 goto next_skb; 4458 } else if (st->cur_skb->next) { 4459 st->cur_skb = st->cur_skb->next; 4460 st->frag_idx = 0; 4461 goto next_skb; 4462 } 4463 4464 return 0; 4465 } 4466 EXPORT_SYMBOL(skb_seq_read); 4467 4468 /** 4469 * skb_abort_seq_read - Abort a sequential read of skb data 4470 * @st: state variable 4471 * 4472 * Must be called if skb_seq_read() was not called until it 4473 * returned 0. 4474 */ 4475 void skb_abort_seq_read(struct skb_seq_state *st) 4476 { 4477 if (st->frag_data) 4478 kunmap_atomic(st->frag_data); 4479 } 4480 EXPORT_SYMBOL(skb_abort_seq_read); 4481 4482 /** 4483 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4484 * @st: source skb_seq_state 4485 * @offset: offset in source 4486 * @to: destination buffer 4487 * @len: number of bytes to copy 4488 * 4489 * Copy @len bytes from @offset bytes into the source @st to the destination 4490 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4491 * call to this function. If offset needs to decrease from the previous use `st` 4492 * should be reset first. 4493 * 4494 * Return: 0 on success or -EINVAL if the copy ended early 4495 */ 4496 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4497 { 4498 const u8 *data; 4499 u32 sqlen; 4500 4501 for (;;) { 4502 sqlen = skb_seq_read(offset, &data, st); 4503 if (sqlen == 0) 4504 return -EINVAL; 4505 if (sqlen >= len) { 4506 memcpy(to, data, len); 4507 return 0; 4508 } 4509 memcpy(to, data, sqlen); 4510 to += sqlen; 4511 offset += sqlen; 4512 len -= sqlen; 4513 } 4514 } 4515 EXPORT_SYMBOL(skb_copy_seq_read); 4516 4517 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4518 4519 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4520 struct ts_config *conf, 4521 struct ts_state *state) 4522 { 4523 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4524 } 4525 4526 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4527 { 4528 skb_abort_seq_read(TS_SKB_CB(state)); 4529 } 4530 4531 /** 4532 * skb_find_text - Find a text pattern in skb data 4533 * @skb: the buffer to look in 4534 * @from: search offset 4535 * @to: search limit 4536 * @config: textsearch configuration 4537 * 4538 * Finds a pattern in the skb data according to the specified 4539 * textsearch configuration. Use textsearch_next() to retrieve 4540 * subsequent occurrences of the pattern. Returns the offset 4541 * to the first occurrence or UINT_MAX if no match was found. 4542 */ 4543 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4544 unsigned int to, struct ts_config *config) 4545 { 4546 unsigned int patlen = config->ops->get_pattern_len(config); 4547 struct ts_state state; 4548 unsigned int ret; 4549 4550 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4551 4552 config->get_next_block = skb_ts_get_next_block; 4553 config->finish = skb_ts_finish; 4554 4555 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4556 4557 ret = textsearch_find(config, &state); 4558 return (ret + patlen <= to - from ? ret : UINT_MAX); 4559 } 4560 EXPORT_SYMBOL(skb_find_text); 4561 4562 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4563 int offset, size_t size, size_t max_frags) 4564 { 4565 int i = skb_shinfo(skb)->nr_frags; 4566 4567 if (skb_can_coalesce(skb, i, page, offset)) { 4568 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4569 } else if (i < max_frags) { 4570 skb_zcopy_downgrade_managed(skb); 4571 get_page(page); 4572 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4573 } else { 4574 return -EMSGSIZE; 4575 } 4576 4577 return 0; 4578 } 4579 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4580 4581 /** 4582 * skb_pull_rcsum - pull skb and update receive checksum 4583 * @skb: buffer to update 4584 * @len: length of data pulled 4585 * 4586 * This function performs an skb_pull on the packet and updates 4587 * the CHECKSUM_COMPLETE checksum. It should be used on 4588 * receive path processing instead of skb_pull unless you know 4589 * that the checksum difference is zero (e.g., a valid IP header) 4590 * or you are setting ip_summed to CHECKSUM_NONE. 4591 */ 4592 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4593 { 4594 unsigned char *data = skb->data; 4595 4596 BUG_ON(len > skb->len); 4597 __skb_pull(skb, len); 4598 skb_postpull_rcsum(skb, data, len); 4599 return skb->data; 4600 } 4601 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4602 4603 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4604 { 4605 skb_frag_t head_frag; 4606 struct page *page; 4607 4608 page = virt_to_head_page(frag_skb->head); 4609 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4610 (unsigned char *)page_address(page), 4611 skb_headlen(frag_skb)); 4612 return head_frag; 4613 } 4614 4615 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4616 netdev_features_t features, 4617 unsigned int offset) 4618 { 4619 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4620 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4621 unsigned int delta_truesize = 0; 4622 unsigned int delta_len = 0; 4623 struct sk_buff *tail = NULL; 4624 struct sk_buff *nskb, *tmp; 4625 int len_diff, err; 4626 4627 skb_push(skb, -skb_network_offset(skb) + offset); 4628 4629 /* Ensure the head is writeable before touching the shared info */ 4630 err = skb_unclone(skb, GFP_ATOMIC); 4631 if (err) 4632 goto err_linearize; 4633 4634 skb_shinfo(skb)->frag_list = NULL; 4635 4636 while (list_skb) { 4637 nskb = list_skb; 4638 list_skb = list_skb->next; 4639 4640 err = 0; 4641 delta_truesize += nskb->truesize; 4642 if (skb_shared(nskb)) { 4643 tmp = skb_clone(nskb, GFP_ATOMIC); 4644 if (tmp) { 4645 consume_skb(nskb); 4646 nskb = tmp; 4647 err = skb_unclone(nskb, GFP_ATOMIC); 4648 } else { 4649 err = -ENOMEM; 4650 } 4651 } 4652 4653 if (!tail) 4654 skb->next = nskb; 4655 else 4656 tail->next = nskb; 4657 4658 if (unlikely(err)) { 4659 nskb->next = list_skb; 4660 goto err_linearize; 4661 } 4662 4663 tail = nskb; 4664 4665 delta_len += nskb->len; 4666 4667 skb_push(nskb, -skb_network_offset(nskb) + offset); 4668 4669 skb_release_head_state(nskb); 4670 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4671 __copy_skb_header(nskb, skb); 4672 4673 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4674 nskb->transport_header += len_diff; 4675 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4676 nskb->data - tnl_hlen, 4677 offset + tnl_hlen); 4678 4679 if (skb_needs_linearize(nskb, features) && 4680 __skb_linearize(nskb)) 4681 goto err_linearize; 4682 } 4683 4684 skb->truesize = skb->truesize - delta_truesize; 4685 skb->data_len = skb->data_len - delta_len; 4686 skb->len = skb->len - delta_len; 4687 4688 skb_gso_reset(skb); 4689 4690 skb->prev = tail; 4691 4692 if (skb_needs_linearize(skb, features) && 4693 __skb_linearize(skb)) 4694 goto err_linearize; 4695 4696 skb_get(skb); 4697 4698 return skb; 4699 4700 err_linearize: 4701 kfree_skb_list(skb->next); 4702 skb->next = NULL; 4703 return ERR_PTR(-ENOMEM); 4704 } 4705 EXPORT_SYMBOL_GPL(skb_segment_list); 4706 4707 /** 4708 * skb_segment - Perform protocol segmentation on skb. 4709 * @head_skb: buffer to segment 4710 * @features: features for the output path (see dev->features) 4711 * 4712 * This function performs segmentation on the given skb. It returns 4713 * a pointer to the first in a list of new skbs for the segments. 4714 * In case of error it returns ERR_PTR(err). 4715 */ 4716 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4717 netdev_features_t features) 4718 { 4719 struct sk_buff *segs = NULL; 4720 struct sk_buff *tail = NULL; 4721 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4722 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4723 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4724 unsigned int offset = doffset; 4725 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4726 unsigned int partial_segs = 0; 4727 unsigned int headroom; 4728 unsigned int len = head_skb->len; 4729 struct sk_buff *frag_skb; 4730 skb_frag_t *frag; 4731 __be16 proto; 4732 bool csum, sg; 4733 int err = -ENOMEM; 4734 int i = 0; 4735 int nfrags, pos; 4736 4737 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4738 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4739 struct sk_buff *check_skb; 4740 4741 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4742 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4743 /* gso_size is untrusted, and we have a frag_list with 4744 * a linear non head_frag item. 4745 * 4746 * If head_skb's headlen does not fit requested gso_size, 4747 * it means that the frag_list members do NOT terminate 4748 * on exact gso_size boundaries. Hence we cannot perform 4749 * skb_frag_t page sharing. Therefore we must fallback to 4750 * copying the frag_list skbs; we do so by disabling SG. 4751 */ 4752 features &= ~NETIF_F_SG; 4753 break; 4754 } 4755 } 4756 } 4757 4758 __skb_push(head_skb, doffset); 4759 proto = skb_network_protocol(head_skb, NULL); 4760 if (unlikely(!proto)) 4761 return ERR_PTR(-EINVAL); 4762 4763 sg = !!(features & NETIF_F_SG); 4764 csum = !!can_checksum_protocol(features, proto); 4765 4766 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4767 if (!(features & NETIF_F_GSO_PARTIAL)) { 4768 struct sk_buff *iter; 4769 unsigned int frag_len; 4770 4771 if (!list_skb || 4772 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4773 goto normal; 4774 4775 /* If we get here then all the required 4776 * GSO features except frag_list are supported. 4777 * Try to split the SKB to multiple GSO SKBs 4778 * with no frag_list. 4779 * Currently we can do that only when the buffers don't 4780 * have a linear part and all the buffers except 4781 * the last are of the same length. 4782 */ 4783 frag_len = list_skb->len; 4784 skb_walk_frags(head_skb, iter) { 4785 if (frag_len != iter->len && iter->next) 4786 goto normal; 4787 if (skb_headlen(iter) && !iter->head_frag) 4788 goto normal; 4789 4790 len -= iter->len; 4791 } 4792 4793 if (len != frag_len) 4794 goto normal; 4795 } 4796 4797 /* GSO partial only requires that we trim off any excess that 4798 * doesn't fit into an MSS sized block, so take care of that 4799 * now. 4800 * Cap len to not accidentally hit GSO_BY_FRAGS. 4801 */ 4802 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4803 if (partial_segs > 1) 4804 mss *= partial_segs; 4805 else 4806 partial_segs = 0; 4807 } 4808 4809 normal: 4810 headroom = skb_headroom(head_skb); 4811 pos = skb_headlen(head_skb); 4812 4813 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4814 return ERR_PTR(-ENOMEM); 4815 4816 nfrags = skb_shinfo(head_skb)->nr_frags; 4817 frag = skb_shinfo(head_skb)->frags; 4818 frag_skb = head_skb; 4819 4820 do { 4821 struct sk_buff *nskb; 4822 skb_frag_t *nskb_frag; 4823 int hsize; 4824 int size; 4825 4826 if (unlikely(mss == GSO_BY_FRAGS)) { 4827 len = list_skb->len; 4828 } else { 4829 len = head_skb->len - offset; 4830 if (len > mss) 4831 len = mss; 4832 } 4833 4834 hsize = skb_headlen(head_skb) - offset; 4835 4836 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4837 (skb_headlen(list_skb) == len || sg)) { 4838 BUG_ON(skb_headlen(list_skb) > len); 4839 4840 nskb = skb_clone(list_skb, GFP_ATOMIC); 4841 if (unlikely(!nskb)) 4842 goto err; 4843 4844 i = 0; 4845 nfrags = skb_shinfo(list_skb)->nr_frags; 4846 frag = skb_shinfo(list_skb)->frags; 4847 frag_skb = list_skb; 4848 pos += skb_headlen(list_skb); 4849 4850 while (pos < offset + len) { 4851 BUG_ON(i >= nfrags); 4852 4853 size = skb_frag_size(frag); 4854 if (pos + size > offset + len) 4855 break; 4856 4857 i++; 4858 pos += size; 4859 frag++; 4860 } 4861 4862 list_skb = list_skb->next; 4863 4864 if (unlikely(pskb_trim(nskb, len))) { 4865 kfree_skb(nskb); 4866 goto err; 4867 } 4868 4869 hsize = skb_end_offset(nskb); 4870 if (skb_cow_head(nskb, doffset + headroom)) { 4871 kfree_skb(nskb); 4872 goto err; 4873 } 4874 4875 nskb->truesize += skb_end_offset(nskb) - hsize; 4876 skb_release_head_state(nskb); 4877 __skb_push(nskb, doffset); 4878 } else { 4879 if (hsize < 0) 4880 hsize = 0; 4881 if (hsize > len || !sg) 4882 hsize = len; 4883 4884 nskb = __alloc_skb(hsize + doffset + headroom, 4885 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4886 NUMA_NO_NODE); 4887 4888 if (unlikely(!nskb)) 4889 goto err; 4890 4891 skb_reserve(nskb, headroom); 4892 __skb_put(nskb, doffset); 4893 } 4894 4895 if (segs) 4896 tail->next = nskb; 4897 else 4898 segs = nskb; 4899 tail = nskb; 4900 4901 __copy_skb_header(nskb, head_skb); 4902 4903 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4904 skb_reset_mac_len(nskb); 4905 4906 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4907 nskb->data - tnl_hlen, 4908 doffset + tnl_hlen); 4909 4910 if (nskb->len == len + doffset) 4911 goto perform_csum_check; 4912 4913 if (!sg) { 4914 if (!csum) { 4915 if (!nskb->remcsum_offload) 4916 nskb->ip_summed = CHECKSUM_NONE; 4917 SKB_GSO_CB(nskb)->csum = 4918 skb_copy_and_csum_bits(head_skb, offset, 4919 skb_put(nskb, 4920 len), 4921 len); 4922 SKB_GSO_CB(nskb)->csum_start = 4923 skb_headroom(nskb) + doffset; 4924 } else { 4925 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4926 goto err; 4927 } 4928 continue; 4929 } 4930 4931 nskb_frag = skb_shinfo(nskb)->frags; 4932 4933 skb_copy_from_linear_data_offset(head_skb, offset, 4934 skb_put(nskb, hsize), hsize); 4935 4936 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4937 SKBFL_SHARED_FRAG; 4938 4939 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4940 goto err; 4941 4942 while (pos < offset + len) { 4943 if (i >= nfrags) { 4944 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4945 skb_zerocopy_clone(nskb, list_skb, 4946 GFP_ATOMIC)) 4947 goto err; 4948 4949 i = 0; 4950 nfrags = skb_shinfo(list_skb)->nr_frags; 4951 frag = skb_shinfo(list_skb)->frags; 4952 frag_skb = list_skb; 4953 if (!skb_headlen(list_skb)) { 4954 BUG_ON(!nfrags); 4955 } else { 4956 BUG_ON(!list_skb->head_frag); 4957 4958 /* to make room for head_frag. */ 4959 i--; 4960 frag--; 4961 } 4962 4963 list_skb = list_skb->next; 4964 } 4965 4966 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4967 MAX_SKB_FRAGS)) { 4968 net_warn_ratelimited( 4969 "skb_segment: too many frags: %u %u\n", 4970 pos, mss); 4971 err = -EINVAL; 4972 goto err; 4973 } 4974 4975 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4976 __skb_frag_ref(nskb_frag); 4977 size = skb_frag_size(nskb_frag); 4978 4979 if (pos < offset) { 4980 skb_frag_off_add(nskb_frag, offset - pos); 4981 skb_frag_size_sub(nskb_frag, offset - pos); 4982 } 4983 4984 skb_shinfo(nskb)->nr_frags++; 4985 4986 if (pos + size <= offset + len) { 4987 i++; 4988 frag++; 4989 pos += size; 4990 } else { 4991 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4992 goto skip_fraglist; 4993 } 4994 4995 nskb_frag++; 4996 } 4997 4998 skip_fraglist: 4999 nskb->data_len = len - hsize; 5000 nskb->len += nskb->data_len; 5001 nskb->truesize += nskb->data_len; 5002 5003 perform_csum_check: 5004 if (!csum) { 5005 if (skb_has_shared_frag(nskb) && 5006 __skb_linearize(nskb)) 5007 goto err; 5008 5009 if (!nskb->remcsum_offload) 5010 nskb->ip_summed = CHECKSUM_NONE; 5011 SKB_GSO_CB(nskb)->csum = 5012 skb_checksum(nskb, doffset, 5013 nskb->len - doffset, 0); 5014 SKB_GSO_CB(nskb)->csum_start = 5015 skb_headroom(nskb) + doffset; 5016 } 5017 } while ((offset += len) < head_skb->len); 5018 5019 /* Some callers want to get the end of the list. 5020 * Put it in segs->prev to avoid walking the list. 5021 * (see validate_xmit_skb_list() for example) 5022 */ 5023 segs->prev = tail; 5024 5025 if (partial_segs) { 5026 struct sk_buff *iter; 5027 int type = skb_shinfo(head_skb)->gso_type; 5028 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5029 5030 /* Update type to add partial and then remove dodgy if set */ 5031 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5032 type &= ~SKB_GSO_DODGY; 5033 5034 /* Update GSO info and prepare to start updating headers on 5035 * our way back down the stack of protocols. 5036 */ 5037 for (iter = segs; iter; iter = iter->next) { 5038 skb_shinfo(iter)->gso_size = gso_size; 5039 skb_shinfo(iter)->gso_segs = partial_segs; 5040 skb_shinfo(iter)->gso_type = type; 5041 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5042 } 5043 5044 if (tail->len - doffset <= gso_size) 5045 skb_shinfo(tail)->gso_size = 0; 5046 else if (tail != segs) 5047 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5048 } 5049 5050 /* Following permits correct backpressure, for protocols 5051 * using skb_set_owner_w(). 5052 * Idea is to tranfert ownership from head_skb to last segment. 5053 */ 5054 if (head_skb->destructor == sock_wfree) { 5055 swap(tail->truesize, head_skb->truesize); 5056 swap(tail->destructor, head_skb->destructor); 5057 swap(tail->sk, head_skb->sk); 5058 } 5059 return segs; 5060 5061 err: 5062 kfree_skb_list(segs); 5063 return ERR_PTR(err); 5064 } 5065 EXPORT_SYMBOL_GPL(skb_segment); 5066 5067 #ifdef CONFIG_SKB_EXTENSIONS 5068 #define SKB_EXT_ALIGN_VALUE 8 5069 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5070 5071 static const u8 skb_ext_type_len[] = { 5072 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5073 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5074 #endif 5075 #ifdef CONFIG_XFRM 5076 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5077 #endif 5078 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5079 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5080 #endif 5081 #if IS_ENABLED(CONFIG_MPTCP) 5082 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5083 #endif 5084 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5085 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5086 #endif 5087 #if IS_ENABLED(CONFIG_INET_PSP) 5088 [SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext), 5089 #endif 5090 }; 5091 5092 static __always_inline unsigned int skb_ext_total_length(void) 5093 { 5094 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5095 int i; 5096 5097 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5098 l += skb_ext_type_len[i]; 5099 5100 return l; 5101 } 5102 5103 static void skb_extensions_init(void) 5104 { 5105 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5106 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5107 BUILD_BUG_ON(skb_ext_total_length() > 255); 5108 #endif 5109 5110 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5111 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5112 0, 5113 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5114 NULL); 5115 } 5116 #else 5117 static void skb_extensions_init(void) {} 5118 #endif 5119 5120 /* The SKB kmem_cache slab is critical for network performance. Never 5121 * merge/alias the slab with similar sized objects. This avoids fragmentation 5122 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5123 */ 5124 #ifndef CONFIG_SLUB_TINY 5125 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5126 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5127 #define FLAG_SKB_NO_MERGE 0 5128 #endif 5129 5130 void __init skb_init(void) 5131 { 5132 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5133 sizeof(struct sk_buff), 5134 0, 5135 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5136 FLAG_SKB_NO_MERGE, 5137 offsetof(struct sk_buff, cb), 5138 sizeof_field(struct sk_buff, cb), 5139 NULL); 5140 skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 5141 5142 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5143 sizeof(struct sk_buff_fclones), 5144 0, 5145 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5146 NULL); 5147 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5148 * struct skb_shared_info is located at the end of skb->head, 5149 * and should not be copied to/from user. 5150 */ 5151 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5152 SKB_SMALL_HEAD_CACHE_SIZE, 5153 0, 5154 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5155 0, 5156 SKB_SMALL_HEAD_HEADROOM, 5157 NULL); 5158 skb_extensions_init(); 5159 } 5160 5161 static int 5162 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5163 unsigned int recursion_level) 5164 { 5165 int start = skb_headlen(skb); 5166 int i, copy = start - offset; 5167 struct sk_buff *frag_iter; 5168 int elt = 0; 5169 5170 if (unlikely(recursion_level >= 24)) 5171 return -EMSGSIZE; 5172 5173 if (copy > 0) { 5174 if (copy > len) 5175 copy = len; 5176 sg_set_buf(sg, skb->data + offset, copy); 5177 elt++; 5178 if ((len -= copy) == 0) 5179 return elt; 5180 offset += copy; 5181 } 5182 5183 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5184 int end; 5185 5186 WARN_ON(start > offset + len); 5187 5188 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5189 if ((copy = end - offset) > 0) { 5190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5191 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5192 return -EMSGSIZE; 5193 5194 if (copy > len) 5195 copy = len; 5196 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5197 skb_frag_off(frag) + offset - start); 5198 elt++; 5199 if (!(len -= copy)) 5200 return elt; 5201 offset += copy; 5202 } 5203 start = end; 5204 } 5205 5206 skb_walk_frags(skb, frag_iter) { 5207 int end, ret; 5208 5209 WARN_ON(start > offset + len); 5210 5211 end = start + frag_iter->len; 5212 if ((copy = end - offset) > 0) { 5213 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5214 return -EMSGSIZE; 5215 5216 if (copy > len) 5217 copy = len; 5218 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5219 copy, recursion_level + 1); 5220 if (unlikely(ret < 0)) 5221 return ret; 5222 elt += ret; 5223 if ((len -= copy) == 0) 5224 return elt; 5225 offset += copy; 5226 } 5227 start = end; 5228 } 5229 BUG_ON(len); 5230 return elt; 5231 } 5232 5233 /** 5234 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5235 * @skb: Socket buffer containing the buffers to be mapped 5236 * @sg: The scatter-gather list to map into 5237 * @offset: The offset into the buffer's contents to start mapping 5238 * @len: Length of buffer space to be mapped 5239 * 5240 * Fill the specified scatter-gather list with mappings/pointers into a 5241 * region of the buffer space attached to a socket buffer. Returns either 5242 * the number of scatterlist items used, or -EMSGSIZE if the contents 5243 * could not fit. 5244 */ 5245 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5246 { 5247 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5248 5249 if (nsg <= 0) 5250 return nsg; 5251 5252 sg_mark_end(&sg[nsg - 1]); 5253 5254 return nsg; 5255 } 5256 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5257 5258 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5259 * sglist without mark the sg which contain last skb data as the end. 5260 * So the caller can mannipulate sg list as will when padding new data after 5261 * the first call without calling sg_unmark_end to expend sg list. 5262 * 5263 * Scenario to use skb_to_sgvec_nomark: 5264 * 1. sg_init_table 5265 * 2. skb_to_sgvec_nomark(payload1) 5266 * 3. skb_to_sgvec_nomark(payload2) 5267 * 5268 * This is equivalent to: 5269 * 1. sg_init_table 5270 * 2. skb_to_sgvec(payload1) 5271 * 3. sg_unmark_end 5272 * 4. skb_to_sgvec(payload2) 5273 * 5274 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5275 * is more preferable. 5276 */ 5277 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5278 int offset, int len) 5279 { 5280 return __skb_to_sgvec(skb, sg, offset, len, 0); 5281 } 5282 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5283 5284 5285 5286 /** 5287 * skb_cow_data - Check that a socket buffer's data buffers are writable 5288 * @skb: The socket buffer to check. 5289 * @tailbits: Amount of trailing space to be added 5290 * @trailer: Returned pointer to the skb where the @tailbits space begins 5291 * 5292 * Make sure that the data buffers attached to a socket buffer are 5293 * writable. If they are not, private copies are made of the data buffers 5294 * and the socket buffer is set to use these instead. 5295 * 5296 * If @tailbits is given, make sure that there is space to write @tailbits 5297 * bytes of data beyond current end of socket buffer. @trailer will be 5298 * set to point to the skb in which this space begins. 5299 * 5300 * The number of scatterlist elements required to completely map the 5301 * COW'd and extended socket buffer will be returned. 5302 */ 5303 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5304 { 5305 int copyflag; 5306 int elt; 5307 struct sk_buff *skb1, **skb_p; 5308 5309 /* If skb is cloned or its head is paged, reallocate 5310 * head pulling out all the pages (pages are considered not writable 5311 * at the moment even if they are anonymous). 5312 */ 5313 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5314 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5315 return -ENOMEM; 5316 5317 /* Easy case. Most of packets will go this way. */ 5318 if (!skb_has_frag_list(skb)) { 5319 /* A little of trouble, not enough of space for trailer. 5320 * This should not happen, when stack is tuned to generate 5321 * good frames. OK, on miss we reallocate and reserve even more 5322 * space, 128 bytes is fair. */ 5323 5324 if (skb_tailroom(skb) < tailbits && 5325 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5326 return -ENOMEM; 5327 5328 /* Voila! */ 5329 *trailer = skb; 5330 return 1; 5331 } 5332 5333 /* Misery. We are in troubles, going to mincer fragments... */ 5334 5335 elt = 1; 5336 skb_p = &skb_shinfo(skb)->frag_list; 5337 copyflag = 0; 5338 5339 while ((skb1 = *skb_p) != NULL) { 5340 int ntail = 0; 5341 5342 /* The fragment is partially pulled by someone, 5343 * this can happen on input. Copy it and everything 5344 * after it. */ 5345 5346 if (skb_shared(skb1)) 5347 copyflag = 1; 5348 5349 /* If the skb is the last, worry about trailer. */ 5350 5351 if (skb1->next == NULL && tailbits) { 5352 if (skb_shinfo(skb1)->nr_frags || 5353 skb_has_frag_list(skb1) || 5354 skb_tailroom(skb1) < tailbits) 5355 ntail = tailbits + 128; 5356 } 5357 5358 if (copyflag || 5359 skb_cloned(skb1) || 5360 ntail || 5361 skb_shinfo(skb1)->nr_frags || 5362 skb_has_frag_list(skb1)) { 5363 struct sk_buff *skb2; 5364 5365 /* Fuck, we are miserable poor guys... */ 5366 if (ntail == 0) 5367 skb2 = skb_copy(skb1, GFP_ATOMIC); 5368 else 5369 skb2 = skb_copy_expand(skb1, 5370 skb_headroom(skb1), 5371 ntail, 5372 GFP_ATOMIC); 5373 if (unlikely(skb2 == NULL)) 5374 return -ENOMEM; 5375 5376 if (skb1->sk) 5377 skb_set_owner_w(skb2, skb1->sk); 5378 5379 /* Looking around. Are we still alive? 5380 * OK, link new skb, drop old one */ 5381 5382 skb2->next = skb1->next; 5383 *skb_p = skb2; 5384 kfree_skb(skb1); 5385 skb1 = skb2; 5386 } 5387 elt++; 5388 *trailer = skb1; 5389 skb_p = &skb1->next; 5390 } 5391 5392 return elt; 5393 } 5394 EXPORT_SYMBOL_GPL(skb_cow_data); 5395 5396 static void sock_rmem_free(struct sk_buff *skb) 5397 { 5398 struct sock *sk = skb->sk; 5399 5400 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5401 } 5402 5403 static void skb_set_err_queue(struct sk_buff *skb) 5404 { 5405 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5406 * So, it is safe to (mis)use it to mark skbs on the error queue. 5407 */ 5408 skb->pkt_type = PACKET_OUTGOING; 5409 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5410 } 5411 5412 /* 5413 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5414 */ 5415 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5416 { 5417 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5418 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5419 return -ENOMEM; 5420 5421 skb_orphan(skb); 5422 skb->sk = sk; 5423 skb->destructor = sock_rmem_free; 5424 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5425 skb_set_err_queue(skb); 5426 5427 /* before exiting rcu section, make sure dst is refcounted */ 5428 skb_dst_force(skb); 5429 5430 skb_queue_tail(&sk->sk_error_queue, skb); 5431 if (!sock_flag(sk, SOCK_DEAD)) 5432 sk_error_report(sk); 5433 return 0; 5434 } 5435 EXPORT_SYMBOL(sock_queue_err_skb); 5436 5437 static bool is_icmp_err_skb(const struct sk_buff *skb) 5438 { 5439 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5440 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5441 } 5442 5443 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5444 { 5445 struct sk_buff_head *q = &sk->sk_error_queue; 5446 struct sk_buff *skb, *skb_next = NULL; 5447 bool icmp_next = false; 5448 unsigned long flags; 5449 5450 if (skb_queue_empty_lockless(q)) 5451 return NULL; 5452 5453 spin_lock_irqsave(&q->lock, flags); 5454 skb = __skb_dequeue(q); 5455 if (skb && (skb_next = skb_peek(q))) { 5456 icmp_next = is_icmp_err_skb(skb_next); 5457 if (icmp_next) 5458 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5459 } 5460 spin_unlock_irqrestore(&q->lock, flags); 5461 5462 if (is_icmp_err_skb(skb) && !icmp_next) 5463 sk->sk_err = 0; 5464 5465 if (skb_next) 5466 sk_error_report(sk); 5467 5468 return skb; 5469 } 5470 EXPORT_SYMBOL(sock_dequeue_err_skb); 5471 5472 /** 5473 * skb_clone_sk - create clone of skb, and take reference to socket 5474 * @skb: the skb to clone 5475 * 5476 * This function creates a clone of a buffer that holds a reference on 5477 * sk_refcnt. Buffers created via this function are meant to be 5478 * returned using sock_queue_err_skb, or free via kfree_skb. 5479 * 5480 * When passing buffers allocated with this function to sock_queue_err_skb 5481 * it is necessary to wrap the call with sock_hold/sock_put in order to 5482 * prevent the socket from being released prior to being enqueued on 5483 * the sk_error_queue. 5484 */ 5485 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5486 { 5487 struct sock *sk = skb->sk; 5488 struct sk_buff *clone; 5489 5490 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5491 return NULL; 5492 5493 clone = skb_clone(skb, GFP_ATOMIC); 5494 if (!clone) { 5495 sock_put(sk); 5496 return NULL; 5497 } 5498 5499 clone->sk = sk; 5500 clone->destructor = sock_efree; 5501 5502 return clone; 5503 } 5504 EXPORT_SYMBOL(skb_clone_sk); 5505 5506 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5507 struct sock *sk, 5508 int tstype, 5509 bool opt_stats) 5510 { 5511 struct sock_exterr_skb *serr; 5512 int err; 5513 5514 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5515 5516 serr = SKB_EXT_ERR(skb); 5517 memset(serr, 0, sizeof(*serr)); 5518 serr->ee.ee_errno = ENOMSG; 5519 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5520 serr->ee.ee_info = tstype; 5521 serr->opt_stats = opt_stats; 5522 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5523 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5524 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5525 if (sk_is_tcp(sk)) 5526 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5527 } 5528 5529 err = sock_queue_err_skb(sk, skb); 5530 5531 if (err) 5532 kfree_skb(skb); 5533 } 5534 5535 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5536 { 5537 bool ret; 5538 5539 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5540 return true; 5541 5542 read_lock_bh(&sk->sk_callback_lock); 5543 ret = sk->sk_socket && sk->sk_socket->file && 5544 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5545 read_unlock_bh(&sk->sk_callback_lock); 5546 return ret; 5547 } 5548 5549 void skb_complete_tx_timestamp(struct sk_buff *skb, 5550 struct skb_shared_hwtstamps *hwtstamps) 5551 { 5552 struct sock *sk = skb->sk; 5553 5554 if (!skb_may_tx_timestamp(sk, false)) 5555 goto err; 5556 5557 /* Take a reference to prevent skb_orphan() from freeing the socket, 5558 * but only if the socket refcount is not zero. 5559 */ 5560 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5561 *skb_hwtstamps(skb) = *hwtstamps; 5562 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5563 sock_put(sk); 5564 return; 5565 } 5566 5567 err: 5568 kfree_skb(skb); 5569 } 5570 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5571 5572 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5573 struct skb_shared_hwtstamps *hwtstamps, 5574 int tstype) 5575 { 5576 switch (tstype) { 5577 case SCM_TSTAMP_SCHED: 5578 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5579 case SCM_TSTAMP_SND: 5580 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5581 SKBTX_SW_TSTAMP); 5582 case SCM_TSTAMP_ACK: 5583 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5584 case SCM_TSTAMP_COMPLETION: 5585 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5586 } 5587 5588 return false; 5589 } 5590 5591 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5592 struct skb_shared_hwtstamps *hwtstamps, 5593 struct sock *sk, 5594 int tstype) 5595 { 5596 int op; 5597 5598 switch (tstype) { 5599 case SCM_TSTAMP_SCHED: 5600 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5601 break; 5602 case SCM_TSTAMP_SND: 5603 if (hwtstamps) { 5604 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5605 *skb_hwtstamps(skb) = *hwtstamps; 5606 } else { 5607 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5608 } 5609 break; 5610 case SCM_TSTAMP_ACK: 5611 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5612 break; 5613 default: 5614 return; 5615 } 5616 5617 bpf_skops_tx_timestamping(sk, skb, op); 5618 } 5619 5620 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5621 const struct sk_buff *ack_skb, 5622 struct skb_shared_hwtstamps *hwtstamps, 5623 struct sock *sk, int tstype) 5624 { 5625 struct sk_buff *skb; 5626 bool tsonly, opt_stats = false; 5627 u32 tsflags; 5628 5629 if (!sk) 5630 return; 5631 5632 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5633 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5634 sk, tstype); 5635 5636 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5637 return; 5638 5639 tsflags = READ_ONCE(sk->sk_tsflags); 5640 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5641 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5642 return; 5643 5644 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5645 if (!skb_may_tx_timestamp(sk, tsonly)) 5646 return; 5647 5648 if (tsonly) { 5649 #ifdef CONFIG_INET 5650 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5651 sk_is_tcp(sk)) { 5652 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5653 ack_skb); 5654 opt_stats = true; 5655 } else 5656 #endif 5657 skb = alloc_skb(0, GFP_ATOMIC); 5658 } else { 5659 skb = skb_clone(orig_skb, GFP_ATOMIC); 5660 5661 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5662 kfree_skb(skb); 5663 return; 5664 } 5665 } 5666 if (!skb) 5667 return; 5668 5669 if (tsonly) { 5670 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5671 SKBTX_ANY_TSTAMP; 5672 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5673 } 5674 5675 if (hwtstamps) 5676 *skb_hwtstamps(skb) = *hwtstamps; 5677 else 5678 __net_timestamp(skb); 5679 5680 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5681 } 5682 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5683 5684 void skb_tstamp_tx(struct sk_buff *orig_skb, 5685 struct skb_shared_hwtstamps *hwtstamps) 5686 { 5687 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5688 SCM_TSTAMP_SND); 5689 } 5690 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5691 5692 #ifdef CONFIG_WIRELESS 5693 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5694 { 5695 struct sock *sk = skb->sk; 5696 struct sock_exterr_skb *serr; 5697 int err = 1; 5698 5699 skb->wifi_acked_valid = 1; 5700 skb->wifi_acked = acked; 5701 5702 serr = SKB_EXT_ERR(skb); 5703 memset(serr, 0, sizeof(*serr)); 5704 serr->ee.ee_errno = ENOMSG; 5705 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5706 5707 /* Take a reference to prevent skb_orphan() from freeing the socket, 5708 * but only if the socket refcount is not zero. 5709 */ 5710 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5711 err = sock_queue_err_skb(sk, skb); 5712 sock_put(sk); 5713 } 5714 if (err) 5715 kfree_skb(skb); 5716 } 5717 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5718 #endif /* CONFIG_WIRELESS */ 5719 5720 /** 5721 * skb_partial_csum_set - set up and verify partial csum values for packet 5722 * @skb: the skb to set 5723 * @start: the number of bytes after skb->data to start checksumming. 5724 * @off: the offset from start to place the checksum. 5725 * 5726 * For untrusted partially-checksummed packets, we need to make sure the values 5727 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5728 * 5729 * This function checks and sets those values and skb->ip_summed: if this 5730 * returns false you should drop the packet. 5731 */ 5732 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5733 { 5734 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5735 u32 csum_start = skb_headroom(skb) + (u32)start; 5736 5737 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5738 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5739 start, off, skb_headroom(skb), skb_headlen(skb)); 5740 return false; 5741 } 5742 skb->ip_summed = CHECKSUM_PARTIAL; 5743 skb->csum_start = csum_start; 5744 skb->csum_offset = off; 5745 skb->transport_header = csum_start; 5746 return true; 5747 } 5748 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5749 5750 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5751 unsigned int max) 5752 { 5753 if (skb_headlen(skb) >= len) 5754 return 0; 5755 5756 /* If we need to pullup then pullup to the max, so we 5757 * won't need to do it again. 5758 */ 5759 if (max > skb->len) 5760 max = skb->len; 5761 5762 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5763 return -ENOMEM; 5764 5765 if (skb_headlen(skb) < len) 5766 return -EPROTO; 5767 5768 return 0; 5769 } 5770 5771 #define MAX_TCP_HDR_LEN (15 * 4) 5772 5773 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5774 typeof(IPPROTO_IP) proto, 5775 unsigned int off) 5776 { 5777 int err; 5778 5779 switch (proto) { 5780 case IPPROTO_TCP: 5781 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5782 off + MAX_TCP_HDR_LEN); 5783 if (!err && !skb_partial_csum_set(skb, off, 5784 offsetof(struct tcphdr, 5785 check))) 5786 err = -EPROTO; 5787 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5788 5789 case IPPROTO_UDP: 5790 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5791 off + sizeof(struct udphdr)); 5792 if (!err && !skb_partial_csum_set(skb, off, 5793 offsetof(struct udphdr, 5794 check))) 5795 err = -EPROTO; 5796 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5797 } 5798 5799 return ERR_PTR(-EPROTO); 5800 } 5801 5802 /* This value should be large enough to cover a tagged ethernet header plus 5803 * maximally sized IP and TCP or UDP headers. 5804 */ 5805 #define MAX_IP_HDR_LEN 128 5806 5807 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5808 { 5809 unsigned int off; 5810 bool fragment; 5811 __sum16 *csum; 5812 int err; 5813 5814 fragment = false; 5815 5816 err = skb_maybe_pull_tail(skb, 5817 sizeof(struct iphdr), 5818 MAX_IP_HDR_LEN); 5819 if (err < 0) 5820 goto out; 5821 5822 if (ip_is_fragment(ip_hdr(skb))) 5823 fragment = true; 5824 5825 off = ip_hdrlen(skb); 5826 5827 err = -EPROTO; 5828 5829 if (fragment) 5830 goto out; 5831 5832 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5833 if (IS_ERR(csum)) 5834 return PTR_ERR(csum); 5835 5836 if (recalculate) 5837 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5838 ip_hdr(skb)->daddr, 5839 skb->len - off, 5840 ip_hdr(skb)->protocol, 0); 5841 err = 0; 5842 5843 out: 5844 return err; 5845 } 5846 5847 /* This value should be large enough to cover a tagged ethernet header plus 5848 * an IPv6 header, all options, and a maximal TCP or UDP header. 5849 */ 5850 #define MAX_IPV6_HDR_LEN 256 5851 5852 #define OPT_HDR(type, skb, off) \ 5853 (type *)(skb_network_header(skb) + (off)) 5854 5855 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5856 { 5857 int err; 5858 u8 nexthdr; 5859 unsigned int off; 5860 unsigned int len; 5861 bool fragment; 5862 bool done; 5863 __sum16 *csum; 5864 5865 fragment = false; 5866 done = false; 5867 5868 off = sizeof(struct ipv6hdr); 5869 5870 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5871 if (err < 0) 5872 goto out; 5873 5874 nexthdr = ipv6_hdr(skb)->nexthdr; 5875 5876 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5877 while (off <= len && !done) { 5878 switch (nexthdr) { 5879 case IPPROTO_DSTOPTS: 5880 case IPPROTO_HOPOPTS: 5881 case IPPROTO_ROUTING: { 5882 struct ipv6_opt_hdr *hp; 5883 5884 err = skb_maybe_pull_tail(skb, 5885 off + 5886 sizeof(struct ipv6_opt_hdr), 5887 MAX_IPV6_HDR_LEN); 5888 if (err < 0) 5889 goto out; 5890 5891 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5892 nexthdr = hp->nexthdr; 5893 off += ipv6_optlen(hp); 5894 break; 5895 } 5896 case IPPROTO_AH: { 5897 struct ip_auth_hdr *hp; 5898 5899 err = skb_maybe_pull_tail(skb, 5900 off + 5901 sizeof(struct ip_auth_hdr), 5902 MAX_IPV6_HDR_LEN); 5903 if (err < 0) 5904 goto out; 5905 5906 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5907 nexthdr = hp->nexthdr; 5908 off += ipv6_authlen(hp); 5909 break; 5910 } 5911 case IPPROTO_FRAGMENT: { 5912 struct frag_hdr *hp; 5913 5914 err = skb_maybe_pull_tail(skb, 5915 off + 5916 sizeof(struct frag_hdr), 5917 MAX_IPV6_HDR_LEN); 5918 if (err < 0) 5919 goto out; 5920 5921 hp = OPT_HDR(struct frag_hdr, skb, off); 5922 5923 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5924 fragment = true; 5925 5926 nexthdr = hp->nexthdr; 5927 off += sizeof(struct frag_hdr); 5928 break; 5929 } 5930 default: 5931 done = true; 5932 break; 5933 } 5934 } 5935 5936 err = -EPROTO; 5937 5938 if (!done || fragment) 5939 goto out; 5940 5941 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5942 if (IS_ERR(csum)) 5943 return PTR_ERR(csum); 5944 5945 if (recalculate) 5946 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5947 &ipv6_hdr(skb)->daddr, 5948 skb->len - off, nexthdr, 0); 5949 err = 0; 5950 5951 out: 5952 return err; 5953 } 5954 5955 /** 5956 * skb_checksum_setup - set up partial checksum offset 5957 * @skb: the skb to set up 5958 * @recalculate: if true the pseudo-header checksum will be recalculated 5959 */ 5960 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5961 { 5962 int err; 5963 5964 switch (skb->protocol) { 5965 case htons(ETH_P_IP): 5966 err = skb_checksum_setup_ipv4(skb, recalculate); 5967 break; 5968 5969 case htons(ETH_P_IPV6): 5970 err = skb_checksum_setup_ipv6(skb, recalculate); 5971 break; 5972 5973 default: 5974 err = -EPROTO; 5975 break; 5976 } 5977 5978 return err; 5979 } 5980 EXPORT_SYMBOL(skb_checksum_setup); 5981 5982 /** 5983 * skb_checksum_maybe_trim - maybe trims the given skb 5984 * @skb: the skb to check 5985 * @transport_len: the data length beyond the network header 5986 * 5987 * Checks whether the given skb has data beyond the given transport length. 5988 * If so, returns a cloned skb trimmed to this transport length. 5989 * Otherwise returns the provided skb. Returns NULL in error cases 5990 * (e.g. transport_len exceeds skb length or out-of-memory). 5991 * 5992 * Caller needs to set the skb transport header and free any returned skb if it 5993 * differs from the provided skb. 5994 */ 5995 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5996 unsigned int transport_len) 5997 { 5998 struct sk_buff *skb_chk; 5999 unsigned int len = skb_transport_offset(skb) + transport_len; 6000 int ret; 6001 6002 if (skb->len < len) 6003 return NULL; 6004 else if (skb->len == len) 6005 return skb; 6006 6007 skb_chk = skb_clone(skb, GFP_ATOMIC); 6008 if (!skb_chk) 6009 return NULL; 6010 6011 ret = pskb_trim_rcsum(skb_chk, len); 6012 if (ret) { 6013 kfree_skb(skb_chk); 6014 return NULL; 6015 } 6016 6017 return skb_chk; 6018 } 6019 6020 /** 6021 * skb_checksum_trimmed - validate checksum of an skb 6022 * @skb: the skb to check 6023 * @transport_len: the data length beyond the network header 6024 * @skb_chkf: checksum function to use 6025 * 6026 * Applies the given checksum function skb_chkf to the provided skb. 6027 * Returns a checked and maybe trimmed skb. Returns NULL on error. 6028 * 6029 * If the skb has data beyond the given transport length, then a 6030 * trimmed & cloned skb is checked and returned. 6031 * 6032 * Caller needs to set the skb transport header and free any returned skb if it 6033 * differs from the provided skb. 6034 */ 6035 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6036 unsigned int transport_len, 6037 __sum16(*skb_chkf)(struct sk_buff *skb)) 6038 { 6039 struct sk_buff *skb_chk; 6040 unsigned int offset = skb_transport_offset(skb); 6041 __sum16 ret; 6042 6043 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6044 if (!skb_chk) 6045 goto err; 6046 6047 if (!pskb_may_pull(skb_chk, offset)) 6048 goto err; 6049 6050 skb_pull_rcsum(skb_chk, offset); 6051 ret = skb_chkf(skb_chk); 6052 skb_push_rcsum(skb_chk, offset); 6053 6054 if (ret) 6055 goto err; 6056 6057 return skb_chk; 6058 6059 err: 6060 if (skb_chk && skb_chk != skb) 6061 kfree_skb(skb_chk); 6062 6063 return NULL; 6064 6065 } 6066 EXPORT_SYMBOL(skb_checksum_trimmed); 6067 6068 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6069 { 6070 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6071 skb->dev->name); 6072 } 6073 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6074 6075 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6076 { 6077 if (head_stolen) { 6078 skb_release_head_state(skb); 6079 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6080 } else { 6081 __kfree_skb(skb); 6082 } 6083 } 6084 EXPORT_SYMBOL(kfree_skb_partial); 6085 6086 /** 6087 * skb_try_coalesce - try to merge skb to prior one 6088 * @to: prior buffer 6089 * @from: buffer to add 6090 * @fragstolen: pointer to boolean 6091 * @delta_truesize: how much more was allocated than was requested 6092 */ 6093 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6094 bool *fragstolen, int *delta_truesize) 6095 { 6096 struct skb_shared_info *to_shinfo, *from_shinfo; 6097 int i, delta, len = from->len; 6098 6099 *fragstolen = false; 6100 6101 if (skb_cloned(to)) 6102 return false; 6103 6104 /* In general, avoid mixing page_pool and non-page_pool allocated 6105 * pages within the same SKB. In theory we could take full 6106 * references if @from is cloned and !@to->pp_recycle but its 6107 * tricky (due to potential race with the clone disappearing) and 6108 * rare, so not worth dealing with. 6109 */ 6110 if (to->pp_recycle != from->pp_recycle) 6111 return false; 6112 6113 if (skb_frags_readable(from) != skb_frags_readable(to)) 6114 return false; 6115 6116 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6117 if (len) 6118 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6119 *delta_truesize = 0; 6120 return true; 6121 } 6122 6123 to_shinfo = skb_shinfo(to); 6124 from_shinfo = skb_shinfo(from); 6125 if (to_shinfo->frag_list || from_shinfo->frag_list) 6126 return false; 6127 if (skb_zcopy(to) || skb_zcopy(from)) 6128 return false; 6129 6130 if (skb_headlen(from) != 0) { 6131 struct page *page; 6132 unsigned int offset; 6133 6134 if (to_shinfo->nr_frags + 6135 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6136 return false; 6137 6138 if (skb_head_is_locked(from)) 6139 return false; 6140 6141 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6142 6143 page = virt_to_head_page(from->head); 6144 offset = from->data - (unsigned char *)page_address(page); 6145 6146 skb_fill_page_desc(to, to_shinfo->nr_frags, 6147 page, offset, skb_headlen(from)); 6148 *fragstolen = true; 6149 } else { 6150 if (to_shinfo->nr_frags + 6151 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6152 return false; 6153 6154 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6155 } 6156 6157 WARN_ON_ONCE(delta < len); 6158 6159 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6160 from_shinfo->frags, 6161 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6162 to_shinfo->nr_frags += from_shinfo->nr_frags; 6163 6164 if (!skb_cloned(from)) 6165 from_shinfo->nr_frags = 0; 6166 6167 /* if the skb is not cloned this does nothing 6168 * since we set nr_frags to 0. 6169 */ 6170 if (skb_pp_frag_ref(from)) { 6171 for (i = 0; i < from_shinfo->nr_frags; i++) 6172 __skb_frag_ref(&from_shinfo->frags[i]); 6173 } 6174 6175 to->truesize += delta; 6176 to->len += len; 6177 to->data_len += len; 6178 6179 *delta_truesize = delta; 6180 return true; 6181 } 6182 EXPORT_SYMBOL(skb_try_coalesce); 6183 6184 /** 6185 * skb_scrub_packet - scrub an skb 6186 * 6187 * @skb: buffer to clean 6188 * @xnet: packet is crossing netns 6189 * 6190 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6191 * into/from a tunnel. Some information have to be cleared during these 6192 * operations. 6193 * skb_scrub_packet can also be used to clean a skb before injecting it in 6194 * another namespace (@xnet == true). We have to clear all information in the 6195 * skb that could impact namespace isolation. 6196 */ 6197 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6198 { 6199 skb->pkt_type = PACKET_HOST; 6200 skb->skb_iif = 0; 6201 skb->ignore_df = 0; 6202 skb_dst_drop(skb); 6203 skb_ext_reset(skb); 6204 nf_reset_ct(skb); 6205 nf_reset_trace(skb); 6206 6207 #ifdef CONFIG_NET_SWITCHDEV 6208 skb->offload_fwd_mark = 0; 6209 skb->offload_l3_fwd_mark = 0; 6210 #endif 6211 ipvs_reset(skb); 6212 6213 if (!xnet) 6214 return; 6215 6216 skb->mark = 0; 6217 skb_clear_tstamp(skb); 6218 } 6219 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6220 6221 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6222 { 6223 int mac_len, meta_len; 6224 void *meta; 6225 6226 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6227 kfree_skb(skb); 6228 return NULL; 6229 } 6230 6231 mac_len = skb->data - skb_mac_header(skb); 6232 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6233 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6234 mac_len - VLAN_HLEN - ETH_TLEN); 6235 } 6236 6237 meta_len = skb_metadata_len(skb); 6238 if (meta_len) { 6239 meta = skb_metadata_end(skb) - meta_len; 6240 memmove(meta + VLAN_HLEN, meta, meta_len); 6241 } 6242 6243 skb->mac_header += VLAN_HLEN; 6244 return skb; 6245 } 6246 6247 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6248 { 6249 struct vlan_hdr *vhdr; 6250 u16 vlan_tci; 6251 6252 if (unlikely(skb_vlan_tag_present(skb))) { 6253 /* vlan_tci is already set-up so leave this for another time */ 6254 return skb; 6255 } 6256 6257 skb = skb_share_check(skb, GFP_ATOMIC); 6258 if (unlikely(!skb)) 6259 goto err_free; 6260 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6261 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6262 goto err_free; 6263 6264 vhdr = (struct vlan_hdr *)skb->data; 6265 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6266 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6267 6268 skb_pull_rcsum(skb, VLAN_HLEN); 6269 vlan_set_encap_proto(skb, vhdr); 6270 6271 skb = skb_reorder_vlan_header(skb); 6272 if (unlikely(!skb)) 6273 goto err_free; 6274 6275 skb_reset_network_header(skb); 6276 if (!skb_transport_header_was_set(skb)) 6277 skb_reset_transport_header(skb); 6278 skb_reset_mac_len(skb); 6279 6280 return skb; 6281 6282 err_free: 6283 kfree_skb(skb); 6284 return NULL; 6285 } 6286 EXPORT_SYMBOL(skb_vlan_untag); 6287 6288 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6289 { 6290 if (!pskb_may_pull(skb, write_len)) 6291 return -ENOMEM; 6292 6293 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6294 return 0; 6295 6296 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6297 } 6298 EXPORT_SYMBOL(skb_ensure_writable); 6299 6300 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6301 { 6302 int needed_headroom = dev->needed_headroom; 6303 int needed_tailroom = dev->needed_tailroom; 6304 6305 /* For tail taggers, we need to pad short frames ourselves, to ensure 6306 * that the tail tag does not fail at its role of being at the end of 6307 * the packet, once the conduit interface pads the frame. Account for 6308 * that pad length here, and pad later. 6309 */ 6310 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6311 needed_tailroom += ETH_ZLEN - skb->len; 6312 /* skb_headroom() returns unsigned int... */ 6313 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6314 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6315 6316 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6317 /* No reallocation needed, yay! */ 6318 return 0; 6319 6320 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6321 GFP_ATOMIC); 6322 } 6323 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6324 6325 /* remove VLAN header from packet and update csum accordingly. 6326 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6327 */ 6328 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6329 { 6330 int offset = skb->data - skb_mac_header(skb); 6331 int err; 6332 6333 if (WARN_ONCE(offset, 6334 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6335 offset)) { 6336 return -EINVAL; 6337 } 6338 6339 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6340 if (unlikely(err)) 6341 return err; 6342 6343 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6344 6345 vlan_remove_tag(skb, vlan_tci); 6346 6347 skb->mac_header += VLAN_HLEN; 6348 6349 if (skb_network_offset(skb) < ETH_HLEN) 6350 skb_set_network_header(skb, ETH_HLEN); 6351 6352 skb_reset_mac_len(skb); 6353 6354 return err; 6355 } 6356 EXPORT_SYMBOL(__skb_vlan_pop); 6357 6358 /* Pop a vlan tag either from hwaccel or from payload. 6359 * Expects skb->data at mac header. 6360 */ 6361 int skb_vlan_pop(struct sk_buff *skb) 6362 { 6363 u16 vlan_tci; 6364 __be16 vlan_proto; 6365 int err; 6366 6367 if (likely(skb_vlan_tag_present(skb))) { 6368 __vlan_hwaccel_clear_tag(skb); 6369 } else { 6370 if (unlikely(!eth_type_vlan(skb->protocol))) 6371 return 0; 6372 6373 err = __skb_vlan_pop(skb, &vlan_tci); 6374 if (err) 6375 return err; 6376 } 6377 /* move next vlan tag to hw accel tag */ 6378 if (likely(!eth_type_vlan(skb->protocol))) 6379 return 0; 6380 6381 vlan_proto = skb->protocol; 6382 err = __skb_vlan_pop(skb, &vlan_tci); 6383 if (unlikely(err)) 6384 return err; 6385 6386 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6387 return 0; 6388 } 6389 EXPORT_SYMBOL(skb_vlan_pop); 6390 6391 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6392 * Expects skb->data at mac header. 6393 */ 6394 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6395 { 6396 if (skb_vlan_tag_present(skb)) { 6397 int offset = skb->data - skb_mac_header(skb); 6398 int err; 6399 6400 if (WARN_ONCE(offset, 6401 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6402 offset)) { 6403 return -EINVAL; 6404 } 6405 6406 err = __vlan_insert_tag(skb, skb->vlan_proto, 6407 skb_vlan_tag_get(skb)); 6408 if (err) 6409 return err; 6410 6411 skb->protocol = skb->vlan_proto; 6412 skb->network_header -= VLAN_HLEN; 6413 6414 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6415 } 6416 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6417 return 0; 6418 } 6419 EXPORT_SYMBOL(skb_vlan_push); 6420 6421 /** 6422 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6423 * 6424 * @skb: Socket buffer to modify 6425 * 6426 * Drop the Ethernet header of @skb. 6427 * 6428 * Expects that skb->data points to the mac header and that no VLAN tags are 6429 * present. 6430 * 6431 * Returns 0 on success, -errno otherwise. 6432 */ 6433 int skb_eth_pop(struct sk_buff *skb) 6434 { 6435 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6436 skb_network_offset(skb) < ETH_HLEN) 6437 return -EPROTO; 6438 6439 skb_pull_rcsum(skb, ETH_HLEN); 6440 skb_reset_mac_header(skb); 6441 skb_reset_mac_len(skb); 6442 6443 return 0; 6444 } 6445 EXPORT_SYMBOL(skb_eth_pop); 6446 6447 /** 6448 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6449 * 6450 * @skb: Socket buffer to modify 6451 * @dst: Destination MAC address of the new header 6452 * @src: Source MAC address of the new header 6453 * 6454 * Prepend @skb with a new Ethernet header. 6455 * 6456 * Expects that skb->data points to the mac header, which must be empty. 6457 * 6458 * Returns 0 on success, -errno otherwise. 6459 */ 6460 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6461 const unsigned char *src) 6462 { 6463 struct ethhdr *eth; 6464 int err; 6465 6466 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6467 return -EPROTO; 6468 6469 err = skb_cow_head(skb, sizeof(*eth)); 6470 if (err < 0) 6471 return err; 6472 6473 skb_push(skb, sizeof(*eth)); 6474 skb_reset_mac_header(skb); 6475 skb_reset_mac_len(skb); 6476 6477 eth = eth_hdr(skb); 6478 ether_addr_copy(eth->h_dest, dst); 6479 ether_addr_copy(eth->h_source, src); 6480 eth->h_proto = skb->protocol; 6481 6482 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6483 6484 return 0; 6485 } 6486 EXPORT_SYMBOL(skb_eth_push); 6487 6488 /* Update the ethertype of hdr and the skb csum value if required. */ 6489 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6490 __be16 ethertype) 6491 { 6492 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6493 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6494 6495 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6496 } 6497 6498 hdr->h_proto = ethertype; 6499 } 6500 6501 /** 6502 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6503 * the packet 6504 * 6505 * @skb: buffer 6506 * @mpls_lse: MPLS label stack entry to push 6507 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6508 * @mac_len: length of the MAC header 6509 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6510 * ethernet 6511 * 6512 * Expects skb->data at mac header. 6513 * 6514 * Returns 0 on success, -errno otherwise. 6515 */ 6516 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6517 int mac_len, bool ethernet) 6518 { 6519 struct mpls_shim_hdr *lse; 6520 int err; 6521 6522 if (unlikely(!eth_p_mpls(mpls_proto))) 6523 return -EINVAL; 6524 6525 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6526 if (skb->encapsulation) 6527 return -EINVAL; 6528 6529 err = skb_cow_head(skb, MPLS_HLEN); 6530 if (unlikely(err)) 6531 return err; 6532 6533 if (!skb->inner_protocol) { 6534 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6535 skb_set_inner_protocol(skb, skb->protocol); 6536 } 6537 6538 skb_push(skb, MPLS_HLEN); 6539 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6540 mac_len); 6541 skb_reset_mac_header(skb); 6542 skb_set_network_header(skb, mac_len); 6543 skb_reset_mac_len(skb); 6544 6545 lse = mpls_hdr(skb); 6546 lse->label_stack_entry = mpls_lse; 6547 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6548 6549 if (ethernet && mac_len >= ETH_HLEN) 6550 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6551 skb->protocol = mpls_proto; 6552 6553 return 0; 6554 } 6555 EXPORT_SYMBOL_GPL(skb_mpls_push); 6556 6557 /** 6558 * skb_mpls_pop() - pop the outermost MPLS header 6559 * 6560 * @skb: buffer 6561 * @next_proto: ethertype of header after popped MPLS header 6562 * @mac_len: length of the MAC header 6563 * @ethernet: flag to indicate if the packet is ethernet 6564 * 6565 * Expects skb->data at mac header. 6566 * 6567 * Returns 0 on success, -errno otherwise. 6568 */ 6569 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6570 bool ethernet) 6571 { 6572 int err; 6573 6574 if (unlikely(!eth_p_mpls(skb->protocol))) 6575 return 0; 6576 6577 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6578 if (unlikely(err)) 6579 return err; 6580 6581 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6582 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6583 mac_len); 6584 6585 __skb_pull(skb, MPLS_HLEN); 6586 skb_reset_mac_header(skb); 6587 skb_set_network_header(skb, mac_len); 6588 6589 if (ethernet && mac_len >= ETH_HLEN) { 6590 struct ethhdr *hdr; 6591 6592 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6593 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6594 skb_mod_eth_type(skb, hdr, next_proto); 6595 } 6596 skb->protocol = next_proto; 6597 6598 return 0; 6599 } 6600 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6601 6602 /** 6603 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6604 * 6605 * @skb: buffer 6606 * @mpls_lse: new MPLS label stack entry to update to 6607 * 6608 * Expects skb->data at mac header. 6609 * 6610 * Returns 0 on success, -errno otherwise. 6611 */ 6612 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6613 { 6614 int err; 6615 6616 if (unlikely(!eth_p_mpls(skb->protocol))) 6617 return -EINVAL; 6618 6619 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6620 if (unlikely(err)) 6621 return err; 6622 6623 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6624 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6625 6626 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6627 } 6628 6629 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6630 6631 return 0; 6632 } 6633 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6634 6635 /** 6636 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6637 * 6638 * @skb: buffer 6639 * 6640 * Expects skb->data at mac header. 6641 * 6642 * Returns 0 on success, -errno otherwise. 6643 */ 6644 int skb_mpls_dec_ttl(struct sk_buff *skb) 6645 { 6646 u32 lse; 6647 u8 ttl; 6648 6649 if (unlikely(!eth_p_mpls(skb->protocol))) 6650 return -EINVAL; 6651 6652 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6653 return -ENOMEM; 6654 6655 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6656 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6657 if (!--ttl) 6658 return -EINVAL; 6659 6660 lse &= ~MPLS_LS_TTL_MASK; 6661 lse |= ttl << MPLS_LS_TTL_SHIFT; 6662 6663 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6664 } 6665 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6666 6667 /** 6668 * alloc_skb_with_frags - allocate skb with page frags 6669 * 6670 * @header_len: size of linear part 6671 * @data_len: needed length in frags 6672 * @order: max page order desired. 6673 * @errcode: pointer to error code if any 6674 * @gfp_mask: allocation mask 6675 * 6676 * This can be used to allocate a paged skb, given a maximal order for frags. 6677 */ 6678 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6679 unsigned long data_len, 6680 int order, 6681 int *errcode, 6682 gfp_t gfp_mask) 6683 { 6684 unsigned long chunk; 6685 struct sk_buff *skb; 6686 struct page *page; 6687 int nr_frags = 0; 6688 6689 *errcode = -EMSGSIZE; 6690 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6691 return NULL; 6692 6693 *errcode = -ENOBUFS; 6694 skb = alloc_skb(header_len, gfp_mask); 6695 if (!skb) 6696 return NULL; 6697 6698 while (data_len) { 6699 if (nr_frags == MAX_SKB_FRAGS) 6700 goto failure; 6701 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6702 order--; 6703 6704 if (order) { 6705 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6706 __GFP_COMP | 6707 __GFP_NOWARN, 6708 order); 6709 if (!page) { 6710 order--; 6711 continue; 6712 } 6713 } else { 6714 page = alloc_page(gfp_mask); 6715 if (!page) 6716 goto failure; 6717 } 6718 chunk = min_t(unsigned long, data_len, 6719 PAGE_SIZE << order); 6720 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6721 nr_frags++; 6722 skb->truesize += (PAGE_SIZE << order); 6723 data_len -= chunk; 6724 } 6725 return skb; 6726 6727 failure: 6728 kfree_skb(skb); 6729 return NULL; 6730 } 6731 EXPORT_SYMBOL(alloc_skb_with_frags); 6732 6733 /* carve out the first off bytes from skb when off < headlen */ 6734 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6735 const int headlen, gfp_t gfp_mask) 6736 { 6737 int i; 6738 unsigned int size = skb_end_offset(skb); 6739 int new_hlen = headlen - off; 6740 u8 *data; 6741 6742 if (skb_pfmemalloc(skb)) 6743 gfp_mask |= __GFP_MEMALLOC; 6744 6745 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6746 if (!data) 6747 return -ENOMEM; 6748 size = SKB_WITH_OVERHEAD(size); 6749 6750 /* Copy real data, and all frags */ 6751 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6752 skb->len -= off; 6753 6754 memcpy((struct skb_shared_info *)(data + size), 6755 skb_shinfo(skb), 6756 offsetof(struct skb_shared_info, 6757 frags[skb_shinfo(skb)->nr_frags])); 6758 if (skb_cloned(skb)) { 6759 /* drop the old head gracefully */ 6760 if (skb_orphan_frags(skb, gfp_mask)) { 6761 skb_kfree_head(data, size); 6762 return -ENOMEM; 6763 } 6764 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6765 skb_frag_ref(skb, i); 6766 if (skb_has_frag_list(skb)) 6767 skb_clone_fraglist(skb); 6768 skb_release_data(skb, SKB_CONSUMED); 6769 } else { 6770 /* we can reuse existing recount- all we did was 6771 * relocate values 6772 */ 6773 skb_free_head(skb); 6774 } 6775 6776 skb->head = data; 6777 skb->data = data; 6778 skb->head_frag = 0; 6779 skb_set_end_offset(skb, size); 6780 skb_set_tail_pointer(skb, skb_headlen(skb)); 6781 skb_headers_offset_update(skb, 0); 6782 skb->cloned = 0; 6783 skb->hdr_len = 0; 6784 skb->nohdr = 0; 6785 atomic_set(&skb_shinfo(skb)->dataref, 1); 6786 6787 return 0; 6788 } 6789 6790 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6791 6792 /* carve out the first eat bytes from skb's frag_list. May recurse into 6793 * pskb_carve() 6794 */ 6795 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6796 gfp_t gfp_mask) 6797 { 6798 struct sk_buff *list = shinfo->frag_list; 6799 struct sk_buff *clone = NULL; 6800 struct sk_buff *insp = NULL; 6801 6802 do { 6803 if (!list) { 6804 pr_err("Not enough bytes to eat. Want %d\n", eat); 6805 return -EFAULT; 6806 } 6807 if (list->len <= eat) { 6808 /* Eaten as whole. */ 6809 eat -= list->len; 6810 list = list->next; 6811 insp = list; 6812 } else { 6813 /* Eaten partially. */ 6814 if (skb_shared(list)) { 6815 clone = skb_clone(list, gfp_mask); 6816 if (!clone) 6817 return -ENOMEM; 6818 insp = list->next; 6819 list = clone; 6820 } else { 6821 /* This may be pulled without problems. */ 6822 insp = list; 6823 } 6824 if (pskb_carve(list, eat, gfp_mask) < 0) { 6825 kfree_skb(clone); 6826 return -ENOMEM; 6827 } 6828 break; 6829 } 6830 } while (eat); 6831 6832 /* Free pulled out fragments. */ 6833 while ((list = shinfo->frag_list) != insp) { 6834 shinfo->frag_list = list->next; 6835 consume_skb(list); 6836 } 6837 /* And insert new clone at head. */ 6838 if (clone) { 6839 clone->next = list; 6840 shinfo->frag_list = clone; 6841 } 6842 return 0; 6843 } 6844 6845 /* carve off first len bytes from skb. Split line (off) is in the 6846 * non-linear part of skb 6847 */ 6848 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6849 int pos, gfp_t gfp_mask) 6850 { 6851 int i, k = 0; 6852 unsigned int size = skb_end_offset(skb); 6853 u8 *data; 6854 const int nfrags = skb_shinfo(skb)->nr_frags; 6855 struct skb_shared_info *shinfo; 6856 6857 if (skb_pfmemalloc(skb)) 6858 gfp_mask |= __GFP_MEMALLOC; 6859 6860 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6861 if (!data) 6862 return -ENOMEM; 6863 size = SKB_WITH_OVERHEAD(size); 6864 6865 memcpy((struct skb_shared_info *)(data + size), 6866 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6867 if (skb_orphan_frags(skb, gfp_mask)) { 6868 skb_kfree_head(data, size); 6869 return -ENOMEM; 6870 } 6871 shinfo = (struct skb_shared_info *)(data + size); 6872 for (i = 0; i < nfrags; i++) { 6873 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6874 6875 if (pos + fsize > off) { 6876 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6877 6878 if (pos < off) { 6879 /* Split frag. 6880 * We have two variants in this case: 6881 * 1. Move all the frag to the second 6882 * part, if it is possible. F.e. 6883 * this approach is mandatory for TUX, 6884 * where splitting is expensive. 6885 * 2. Split is accurately. We make this. 6886 */ 6887 skb_frag_off_add(&shinfo->frags[0], off - pos); 6888 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6889 } 6890 skb_frag_ref(skb, i); 6891 k++; 6892 } 6893 pos += fsize; 6894 } 6895 shinfo->nr_frags = k; 6896 if (skb_has_frag_list(skb)) 6897 skb_clone_fraglist(skb); 6898 6899 /* split line is in frag list */ 6900 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6901 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6902 if (skb_has_frag_list(skb)) 6903 kfree_skb_list(skb_shinfo(skb)->frag_list); 6904 skb_kfree_head(data, size); 6905 return -ENOMEM; 6906 } 6907 skb_release_data(skb, SKB_CONSUMED); 6908 6909 skb->head = data; 6910 skb->head_frag = 0; 6911 skb->data = data; 6912 skb_set_end_offset(skb, size); 6913 skb_reset_tail_pointer(skb); 6914 skb_headers_offset_update(skb, 0); 6915 skb->cloned = 0; 6916 skb->hdr_len = 0; 6917 skb->nohdr = 0; 6918 skb->len -= off; 6919 skb->data_len = skb->len; 6920 atomic_set(&skb_shinfo(skb)->dataref, 1); 6921 return 0; 6922 } 6923 6924 /* remove len bytes from the beginning of the skb */ 6925 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6926 { 6927 int headlen = skb_headlen(skb); 6928 6929 if (len < headlen) 6930 return pskb_carve_inside_header(skb, len, headlen, gfp); 6931 else 6932 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6933 } 6934 6935 /* Extract to_copy bytes starting at off from skb, and return this in 6936 * a new skb 6937 */ 6938 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6939 int to_copy, gfp_t gfp) 6940 { 6941 struct sk_buff *clone = skb_clone(skb, gfp); 6942 6943 if (!clone) 6944 return NULL; 6945 6946 if (pskb_carve(clone, off, gfp) < 0 || 6947 pskb_trim(clone, to_copy)) { 6948 kfree_skb(clone); 6949 return NULL; 6950 } 6951 return clone; 6952 } 6953 EXPORT_SYMBOL(pskb_extract); 6954 6955 /** 6956 * skb_condense - try to get rid of fragments/frag_list if possible 6957 * @skb: buffer 6958 * 6959 * Can be used to save memory before skb is added to a busy queue. 6960 * If packet has bytes in frags and enough tail room in skb->head, 6961 * pull all of them, so that we can free the frags right now and adjust 6962 * truesize. 6963 * Notes: 6964 * We do not reallocate skb->head thus can not fail. 6965 * Caller must re-evaluate skb->truesize if needed. 6966 */ 6967 void skb_condense(struct sk_buff *skb) 6968 { 6969 if (skb->data_len) { 6970 if (skb->data_len > skb->end - skb->tail || 6971 skb_cloned(skb) || !skb_frags_readable(skb)) 6972 return; 6973 6974 /* Nice, we can free page frag(s) right now */ 6975 __pskb_pull_tail(skb, skb->data_len); 6976 } 6977 /* At this point, skb->truesize might be over estimated, 6978 * because skb had a fragment, and fragments do not tell 6979 * their truesize. 6980 * When we pulled its content into skb->head, fragment 6981 * was freed, but __pskb_pull_tail() could not possibly 6982 * adjust skb->truesize, not knowing the frag truesize. 6983 */ 6984 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6985 } 6986 EXPORT_SYMBOL(skb_condense); 6987 6988 #ifdef CONFIG_SKB_EXTENSIONS 6989 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6990 { 6991 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6992 } 6993 6994 /** 6995 * __skb_ext_alloc - allocate a new skb extensions storage 6996 * 6997 * @flags: See kmalloc(). 6998 * 6999 * Returns the newly allocated pointer. The pointer can later attached to a 7000 * skb via __skb_ext_set(). 7001 * Note: caller must handle the skb_ext as an opaque data. 7002 */ 7003 struct skb_ext *__skb_ext_alloc(gfp_t flags) 7004 { 7005 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 7006 7007 if (new) { 7008 memset(new->offset, 0, sizeof(new->offset)); 7009 refcount_set(&new->refcnt, 1); 7010 } 7011 7012 return new; 7013 } 7014 7015 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 7016 unsigned int old_active) 7017 { 7018 struct skb_ext *new; 7019 7020 if (refcount_read(&old->refcnt) == 1) 7021 return old; 7022 7023 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 7024 if (!new) 7025 return NULL; 7026 7027 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 7028 refcount_set(&new->refcnt, 1); 7029 7030 #ifdef CONFIG_XFRM 7031 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 7032 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 7033 unsigned int i; 7034 7035 for (i = 0; i < sp->len; i++) 7036 xfrm_state_hold(sp->xvec[i]); 7037 } 7038 #endif 7039 #ifdef CONFIG_MCTP_FLOWS 7040 if (old_active & (1 << SKB_EXT_MCTP)) { 7041 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7042 7043 if (flow->key) 7044 refcount_inc(&flow->key->refs); 7045 } 7046 #endif 7047 __skb_ext_put(old); 7048 return new; 7049 } 7050 7051 /** 7052 * __skb_ext_set - attach the specified extension storage to this skb 7053 * @skb: buffer 7054 * @id: extension id 7055 * @ext: extension storage previously allocated via __skb_ext_alloc() 7056 * 7057 * Existing extensions, if any, are cleared. 7058 * 7059 * Returns the pointer to the extension. 7060 */ 7061 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7062 struct skb_ext *ext) 7063 { 7064 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7065 7066 skb_ext_put(skb); 7067 newlen = newoff + skb_ext_type_len[id]; 7068 ext->chunks = newlen; 7069 ext->offset[id] = newoff; 7070 skb->extensions = ext; 7071 skb->active_extensions = 1 << id; 7072 return skb_ext_get_ptr(ext, id); 7073 } 7074 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL"); 7075 7076 /** 7077 * skb_ext_add - allocate space for given extension, COW if needed 7078 * @skb: buffer 7079 * @id: extension to allocate space for 7080 * 7081 * Allocates enough space for the given extension. 7082 * If the extension is already present, a pointer to that extension 7083 * is returned. 7084 * 7085 * If the skb was cloned, COW applies and the returned memory can be 7086 * modified without changing the extension space of clones buffers. 7087 * 7088 * Returns pointer to the extension or NULL on allocation failure. 7089 */ 7090 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7091 { 7092 struct skb_ext *new, *old = NULL; 7093 unsigned int newlen, newoff; 7094 7095 if (skb->active_extensions) { 7096 old = skb->extensions; 7097 7098 new = skb_ext_maybe_cow(old, skb->active_extensions); 7099 if (!new) 7100 return NULL; 7101 7102 if (__skb_ext_exist(new, id)) 7103 goto set_active; 7104 7105 newoff = new->chunks; 7106 } else { 7107 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7108 7109 new = __skb_ext_alloc(GFP_ATOMIC); 7110 if (!new) 7111 return NULL; 7112 } 7113 7114 newlen = newoff + skb_ext_type_len[id]; 7115 new->chunks = newlen; 7116 new->offset[id] = newoff; 7117 set_active: 7118 skb->slow_gro = 1; 7119 skb->extensions = new; 7120 skb->active_extensions |= 1 << id; 7121 return skb_ext_get_ptr(new, id); 7122 } 7123 EXPORT_SYMBOL(skb_ext_add); 7124 7125 #ifdef CONFIG_XFRM 7126 static void skb_ext_put_sp(struct sec_path *sp) 7127 { 7128 unsigned int i; 7129 7130 for (i = 0; i < sp->len; i++) 7131 xfrm_state_put(sp->xvec[i]); 7132 } 7133 #endif 7134 7135 #ifdef CONFIG_MCTP_FLOWS 7136 static void skb_ext_put_mctp(struct mctp_flow *flow) 7137 { 7138 if (flow->key) 7139 mctp_key_unref(flow->key); 7140 } 7141 #endif 7142 7143 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7144 { 7145 struct skb_ext *ext = skb->extensions; 7146 7147 skb->active_extensions &= ~(1 << id); 7148 if (skb->active_extensions == 0) { 7149 skb->extensions = NULL; 7150 __skb_ext_put(ext); 7151 #ifdef CONFIG_XFRM 7152 } else if (id == SKB_EXT_SEC_PATH && 7153 refcount_read(&ext->refcnt) == 1) { 7154 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7155 7156 skb_ext_put_sp(sp); 7157 sp->len = 0; 7158 #endif 7159 } 7160 } 7161 EXPORT_SYMBOL(__skb_ext_del); 7162 7163 void __skb_ext_put(struct skb_ext *ext) 7164 { 7165 /* If this is last clone, nothing can increment 7166 * it after check passes. Avoids one atomic op. 7167 */ 7168 if (refcount_read(&ext->refcnt) == 1) 7169 goto free_now; 7170 7171 if (!refcount_dec_and_test(&ext->refcnt)) 7172 return; 7173 free_now: 7174 #ifdef CONFIG_XFRM 7175 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7176 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7177 #endif 7178 #ifdef CONFIG_MCTP_FLOWS 7179 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7180 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7181 #endif 7182 7183 kmem_cache_free(skbuff_ext_cache, ext); 7184 } 7185 EXPORT_SYMBOL(__skb_ext_put); 7186 #endif /* CONFIG_SKB_EXTENSIONS */ 7187 7188 static void kfree_skb_napi_cache(struct sk_buff *skb) 7189 { 7190 /* if SKB is a clone, don't handle this case */ 7191 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7192 __kfree_skb(skb); 7193 return; 7194 } 7195 7196 local_bh_disable(); 7197 __napi_kfree_skb(skb, SKB_CONSUMED); 7198 local_bh_enable(); 7199 } 7200 7201 /** 7202 * skb_attempt_defer_free - queue skb for remote freeing 7203 * @skb: buffer 7204 * 7205 * Put @skb in a per-cpu list, using the cpu which 7206 * allocated the skb/pages to reduce false sharing 7207 * and memory zone spinlock contention. 7208 */ 7209 void skb_attempt_defer_free(struct sk_buff *skb) 7210 { 7211 struct skb_defer_node *sdn; 7212 unsigned long defer_count; 7213 int cpu = skb->alloc_cpu; 7214 unsigned int defer_max; 7215 bool kick; 7216 7217 if (cpu == raw_smp_processor_id() || 7218 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7219 !cpu_online(cpu)) { 7220 nodefer: kfree_skb_napi_cache(skb); 7221 return; 7222 } 7223 7224 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7225 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7226 DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb)); 7227 7228 sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id(); 7229 7230 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7231 defer_count = atomic_long_inc_return(&sdn->defer_count); 7232 7233 if (defer_count >= defer_max) 7234 goto nodefer; 7235 7236 llist_add(&skb->ll_node, &sdn->defer_list); 7237 7238 /* Send an IPI every time queue reaches half capacity. */ 7239 kick = (defer_count - 1) == (defer_max >> 1); 7240 7241 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7242 * if we are unlucky enough (this seems very unlikely). 7243 */ 7244 if (unlikely(kick)) 7245 kick_defer_list_purge(cpu); 7246 } 7247 7248 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7249 size_t offset, size_t len) 7250 { 7251 const char *kaddr; 7252 __wsum csum; 7253 7254 kaddr = kmap_local_page(page); 7255 csum = csum_partial(kaddr + offset, len, 0); 7256 kunmap_local(kaddr); 7257 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7258 } 7259 7260 /** 7261 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7262 * @skb: The buffer to add pages to 7263 * @iter: Iterator representing the pages to be added 7264 * @maxsize: Maximum amount of pages to be added 7265 * 7266 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7267 * extracts pages from an iterator and adds them to the socket buffer if 7268 * possible, copying them to fragments if not possible (such as if they're slab 7269 * pages). 7270 * 7271 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7272 * insufficient space in the buffer to transfer anything. 7273 */ 7274 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7275 ssize_t maxsize) 7276 { 7277 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7278 struct page *pages[8], **ppages = pages; 7279 ssize_t spliced = 0, ret = 0; 7280 unsigned int i; 7281 7282 while (iter->count > 0) { 7283 ssize_t space, nr, len; 7284 size_t off; 7285 7286 ret = -EMSGSIZE; 7287 space = frag_limit - skb_shinfo(skb)->nr_frags; 7288 if (space < 0) 7289 break; 7290 7291 /* We might be able to coalesce without increasing nr_frags */ 7292 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7293 7294 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7295 if (len <= 0) { 7296 ret = len ?: -EIO; 7297 break; 7298 } 7299 7300 i = 0; 7301 do { 7302 struct page *page = pages[i++]; 7303 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7304 7305 ret = -EIO; 7306 if (WARN_ON_ONCE(!sendpage_ok(page))) 7307 goto out; 7308 7309 ret = skb_append_pagefrags(skb, page, off, part, 7310 frag_limit); 7311 if (ret < 0) { 7312 iov_iter_revert(iter, len); 7313 goto out; 7314 } 7315 7316 if (skb->ip_summed == CHECKSUM_NONE) 7317 skb_splice_csum_page(skb, page, off, part); 7318 7319 off = 0; 7320 spliced += part; 7321 maxsize -= part; 7322 len -= part; 7323 } while (len > 0); 7324 7325 if (maxsize <= 0) 7326 break; 7327 } 7328 7329 out: 7330 skb_len_add(skb, spliced); 7331 return spliced ?: ret; 7332 } 7333 EXPORT_SYMBOL(skb_splice_from_iter); 7334 7335 static __always_inline 7336 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7337 size_t len, void *to, void *priv2) 7338 { 7339 __wsum *csum = priv2; 7340 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7341 7342 *csum = csum_block_add(*csum, next, progress); 7343 return 0; 7344 } 7345 7346 static __always_inline 7347 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7348 size_t len, void *to, void *priv2) 7349 { 7350 __wsum next, *csum = priv2; 7351 7352 next = csum_and_copy_from_user(iter_from, to + progress, len); 7353 *csum = csum_block_add(*csum, next, progress); 7354 return next ? 0 : len; 7355 } 7356 7357 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7358 __wsum *csum, struct iov_iter *i) 7359 { 7360 size_t copied; 7361 7362 if (WARN_ON_ONCE(!i->data_source)) 7363 return false; 7364 copied = iterate_and_advance2(i, bytes, addr, csum, 7365 copy_from_user_iter_csum, 7366 memcpy_from_iter_csum); 7367 if (likely(copied == bytes)) 7368 return true; 7369 iov_iter_revert(i, copied); 7370 return false; 7371 } 7372 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7373 7374 void get_netmem(netmem_ref netmem) 7375 { 7376 struct net_iov *niov; 7377 7378 if (netmem_is_net_iov(netmem)) { 7379 niov = netmem_to_net_iov(netmem); 7380 if (net_is_devmem_iov(niov)) 7381 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7382 return; 7383 } 7384 get_page(netmem_to_page(netmem)); 7385 } 7386 EXPORT_SYMBOL(get_netmem); 7387 7388 void put_netmem(netmem_ref netmem) 7389 { 7390 struct net_iov *niov; 7391 7392 if (netmem_is_net_iov(netmem)) { 7393 niov = netmem_to_net_iov(netmem); 7394 if (net_is_devmem_iov(niov)) 7395 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7396 return; 7397 } 7398 7399 put_page(netmem_to_page(netmem)); 7400 } 7401 EXPORT_SYMBOL(put_netmem); 7402