1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/gso.h> 73 #include <net/hotdata.h> 74 #include <net/ip6_checksum.h> 75 #include <net/xfrm.h> 76 #include <net/mpls.h> 77 #include <net/mptcp.h> 78 #include <net/mctp.h> 79 #include <net/page_pool/helpers.h> 80 #include <net/dropreason.h> 81 82 #include <linux/uaccess.h> 83 #include <trace/events/skb.h> 84 #include <linux/highmem.h> 85 #include <linux/capability.h> 86 #include <linux/user_namespace.h> 87 #include <linux/indirect_call_wrapper.h> 88 #include <linux/textsearch.h> 89 90 #include "dev.h" 91 #include "sock_destructor.h" 92 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 98 99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 100 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 101 * size, and we can differentiate heads from skb_small_head_cache 102 * vs system slabs by looking at their size (skb_end_offset()). 103 */ 104 #define SKB_SMALL_HEAD_CACHE_SIZE \ 105 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 106 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 107 SKB_SMALL_HEAD_SIZE) 108 109 #define SKB_SMALL_HEAD_HEADROOM \ 110 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 111 112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 113 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 114 * netmem is a page. 115 */ 116 static_assert(offsetof(struct bio_vec, bv_page) == 117 offsetof(skb_frag_t, netmem)); 118 static_assert(sizeof_field(struct bio_vec, bv_page) == 119 sizeof_field(skb_frag_t, netmem)); 120 121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 122 static_assert(sizeof_field(struct bio_vec, bv_len) == 123 sizeof_field(skb_frag_t, len)); 124 125 static_assert(offsetof(struct bio_vec, bv_offset) == 126 offsetof(skb_frag_t, offset)); 127 static_assert(sizeof_field(struct bio_vec, bv_offset) == 128 sizeof_field(skb_frag_t, offset)); 129 130 #undef FN 131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 132 static const char * const drop_reasons[] = { 133 [SKB_CONSUMED] = "CONSUMED", 134 DEFINE_DROP_REASON(FN, FN) 135 }; 136 137 static const struct drop_reason_list drop_reasons_core = { 138 .reasons = drop_reasons, 139 .n_reasons = ARRAY_SIZE(drop_reasons), 140 }; 141 142 const struct drop_reason_list __rcu * 143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 144 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 145 }; 146 EXPORT_SYMBOL(drop_reasons_by_subsys); 147 148 /** 149 * drop_reasons_register_subsys - register another drop reason subsystem 150 * @subsys: the subsystem to register, must not be the core 151 * @list: the list of drop reasons within the subsystem, must point to 152 * a statically initialized list 153 */ 154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 155 const struct drop_reason_list *list) 156 { 157 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 158 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 159 "invalid subsystem %d\n", subsys)) 160 return; 161 162 /* must point to statically allocated memory, so INIT is OK */ 163 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 164 } 165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 166 167 /** 168 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 169 * @subsys: the subsystem to remove, must not be the core 170 * 171 * Note: This will synchronize_rcu() to ensure no users when it returns. 172 */ 173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 174 { 175 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 176 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 177 "invalid subsystem %d\n", subsys)) 178 return; 179 180 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 181 182 synchronize_rcu(); 183 } 184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 185 186 /** 187 * skb_panic - private function for out-of-line support 188 * @skb: buffer 189 * @sz: size 190 * @addr: address 191 * @msg: skb_over_panic or skb_under_panic 192 * 193 * Out-of-line support for skb_put() and skb_push(). 194 * Called via the wrapper skb_over_panic() or skb_under_panic(). 195 * Keep out of line to prevent kernel bloat. 196 * __builtin_return_address is not used because it is not always reliable. 197 */ 198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 199 const char msg[]) 200 { 201 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 202 msg, addr, skb->len, sz, skb->head, skb->data, 203 (unsigned long)skb->tail, (unsigned long)skb->end, 204 skb->dev ? skb->dev->name : "<NULL>"); 205 BUG(); 206 } 207 208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 209 { 210 skb_panic(skb, sz, addr, __func__); 211 } 212 213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 214 { 215 skb_panic(skb, sz, addr, __func__); 216 } 217 218 #define NAPI_SKB_CACHE_SIZE 64 219 #define NAPI_SKB_CACHE_BULK 16 220 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 221 222 #if PAGE_SIZE == SZ_4K 223 224 #define NAPI_HAS_SMALL_PAGE_FRAG 1 225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 226 227 /* specialized page frag allocator using a single order 0 page 228 * and slicing it into 1K sized fragment. Constrained to systems 229 * with a very limited amount of 1K fragments fitting a single 230 * page - to avoid excessive truesize underestimation 231 */ 232 233 struct page_frag_1k { 234 void *va; 235 u16 offset; 236 bool pfmemalloc; 237 }; 238 239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 240 { 241 struct page *page; 242 int offset; 243 244 offset = nc->offset - SZ_1K; 245 if (likely(offset >= 0)) 246 goto use_frag; 247 248 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 249 if (!page) 250 return NULL; 251 252 nc->va = page_address(page); 253 nc->pfmemalloc = page_is_pfmemalloc(page); 254 offset = PAGE_SIZE - SZ_1K; 255 page_ref_add(page, offset / SZ_1K); 256 257 use_frag: 258 nc->offset = offset; 259 return nc->va + offset; 260 } 261 #else 262 263 /* the small page is actually unused in this build; add dummy helpers 264 * to please the compiler and avoid later preprocessor's conditionals 265 */ 266 #define NAPI_HAS_SMALL_PAGE_FRAG 0 267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 268 269 struct page_frag_1k { 270 }; 271 272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 273 { 274 return NULL; 275 } 276 277 #endif 278 279 struct napi_alloc_cache { 280 struct page_frag_cache page; 281 struct page_frag_1k page_small; 282 unsigned int skb_count; 283 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 284 }; 285 286 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 287 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 288 289 /* Double check that napi_get_frags() allocates skbs with 290 * skb->head being backed by slab, not a page fragment. 291 * This is to make sure bug fixed in 3226b158e67c 292 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 293 * does not accidentally come back. 294 */ 295 void napi_get_frags_check(struct napi_struct *napi) 296 { 297 struct sk_buff *skb; 298 299 local_bh_disable(); 300 skb = napi_get_frags(napi); 301 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 302 napi_free_frags(napi); 303 local_bh_enable(); 304 } 305 306 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 307 { 308 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 309 310 fragsz = SKB_DATA_ALIGN(fragsz); 311 312 return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 313 align_mask); 314 } 315 EXPORT_SYMBOL(__napi_alloc_frag_align); 316 317 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 318 { 319 void *data; 320 321 fragsz = SKB_DATA_ALIGN(fragsz); 322 if (in_hardirq() || irqs_disabled()) { 323 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 324 325 data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, 326 align_mask); 327 } else { 328 struct napi_alloc_cache *nc; 329 330 local_bh_disable(); 331 nc = this_cpu_ptr(&napi_alloc_cache); 332 data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 333 align_mask); 334 local_bh_enable(); 335 } 336 return data; 337 } 338 EXPORT_SYMBOL(__netdev_alloc_frag_align); 339 340 static struct sk_buff *napi_skb_cache_get(void) 341 { 342 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 343 struct sk_buff *skb; 344 345 if (unlikely(!nc->skb_count)) { 346 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 347 GFP_ATOMIC, 348 NAPI_SKB_CACHE_BULK, 349 nc->skb_cache); 350 if (unlikely(!nc->skb_count)) 351 return NULL; 352 } 353 354 skb = nc->skb_cache[--nc->skb_count]; 355 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 356 357 return skb; 358 } 359 360 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 361 unsigned int size) 362 { 363 struct skb_shared_info *shinfo; 364 365 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 366 367 /* Assumes caller memset cleared SKB */ 368 skb->truesize = SKB_TRUESIZE(size); 369 refcount_set(&skb->users, 1); 370 skb->head = data; 371 skb->data = data; 372 skb_reset_tail_pointer(skb); 373 skb_set_end_offset(skb, size); 374 skb->mac_header = (typeof(skb->mac_header))~0U; 375 skb->transport_header = (typeof(skb->transport_header))~0U; 376 skb->alloc_cpu = raw_smp_processor_id(); 377 /* make sure we initialize shinfo sequentially */ 378 shinfo = skb_shinfo(skb); 379 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 380 atomic_set(&shinfo->dataref, 1); 381 382 skb_set_kcov_handle(skb, kcov_common_handle()); 383 } 384 385 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 386 unsigned int *size) 387 { 388 void *resized; 389 390 /* Must find the allocation size (and grow it to match). */ 391 *size = ksize(data); 392 /* krealloc() will immediately return "data" when 393 * "ksize(data)" is requested: it is the existing upper 394 * bounds. As a result, GFP_ATOMIC will be ignored. Note 395 * that this "new" pointer needs to be passed back to the 396 * caller for use so the __alloc_size hinting will be 397 * tracked correctly. 398 */ 399 resized = krealloc(data, *size, GFP_ATOMIC); 400 WARN_ON_ONCE(resized != data); 401 return resized; 402 } 403 404 /* build_skb() variant which can operate on slab buffers. 405 * Note that this should be used sparingly as slab buffers 406 * cannot be combined efficiently by GRO! 407 */ 408 struct sk_buff *slab_build_skb(void *data) 409 { 410 struct sk_buff *skb; 411 unsigned int size; 412 413 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 414 if (unlikely(!skb)) 415 return NULL; 416 417 memset(skb, 0, offsetof(struct sk_buff, tail)); 418 data = __slab_build_skb(skb, data, &size); 419 __finalize_skb_around(skb, data, size); 420 421 return skb; 422 } 423 EXPORT_SYMBOL(slab_build_skb); 424 425 /* Caller must provide SKB that is memset cleared */ 426 static void __build_skb_around(struct sk_buff *skb, void *data, 427 unsigned int frag_size) 428 { 429 unsigned int size = frag_size; 430 431 /* frag_size == 0 is considered deprecated now. Callers 432 * using slab buffer should use slab_build_skb() instead. 433 */ 434 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 435 data = __slab_build_skb(skb, data, &size); 436 437 __finalize_skb_around(skb, data, size); 438 } 439 440 /** 441 * __build_skb - build a network buffer 442 * @data: data buffer provided by caller 443 * @frag_size: size of data (must not be 0) 444 * 445 * Allocate a new &sk_buff. Caller provides space holding head and 446 * skb_shared_info. @data must have been allocated from the page 447 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 448 * allocation is deprecated, and callers should use slab_build_skb() 449 * instead.) 450 * The return is the new skb buffer. 451 * On a failure the return is %NULL, and @data is not freed. 452 * Notes : 453 * Before IO, driver allocates only data buffer where NIC put incoming frame 454 * Driver should add room at head (NET_SKB_PAD) and 455 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 456 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 457 * before giving packet to stack. 458 * RX rings only contains data buffers, not full skbs. 459 */ 460 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 461 { 462 struct sk_buff *skb; 463 464 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 465 if (unlikely(!skb)) 466 return NULL; 467 468 memset(skb, 0, offsetof(struct sk_buff, tail)); 469 __build_skb_around(skb, data, frag_size); 470 471 return skb; 472 } 473 474 /* build_skb() is wrapper over __build_skb(), that specifically 475 * takes care of skb->head and skb->pfmemalloc 476 */ 477 struct sk_buff *build_skb(void *data, unsigned int frag_size) 478 { 479 struct sk_buff *skb = __build_skb(data, frag_size); 480 481 if (likely(skb && frag_size)) { 482 skb->head_frag = 1; 483 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 484 } 485 return skb; 486 } 487 EXPORT_SYMBOL(build_skb); 488 489 /** 490 * build_skb_around - build a network buffer around provided skb 491 * @skb: sk_buff provide by caller, must be memset cleared 492 * @data: data buffer provided by caller 493 * @frag_size: size of data 494 */ 495 struct sk_buff *build_skb_around(struct sk_buff *skb, 496 void *data, unsigned int frag_size) 497 { 498 if (unlikely(!skb)) 499 return NULL; 500 501 __build_skb_around(skb, data, frag_size); 502 503 if (frag_size) { 504 skb->head_frag = 1; 505 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 506 } 507 return skb; 508 } 509 EXPORT_SYMBOL(build_skb_around); 510 511 /** 512 * __napi_build_skb - build a network buffer 513 * @data: data buffer provided by caller 514 * @frag_size: size of data 515 * 516 * Version of __build_skb() that uses NAPI percpu caches to obtain 517 * skbuff_head instead of inplace allocation. 518 * 519 * Returns a new &sk_buff on success, %NULL on allocation failure. 520 */ 521 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 522 { 523 struct sk_buff *skb; 524 525 skb = napi_skb_cache_get(); 526 if (unlikely(!skb)) 527 return NULL; 528 529 memset(skb, 0, offsetof(struct sk_buff, tail)); 530 __build_skb_around(skb, data, frag_size); 531 532 return skb; 533 } 534 535 /** 536 * napi_build_skb - build a network buffer 537 * @data: data buffer provided by caller 538 * @frag_size: size of data 539 * 540 * Version of __napi_build_skb() that takes care of skb->head_frag 541 * and skb->pfmemalloc when the data is a page or page fragment. 542 * 543 * Returns a new &sk_buff on success, %NULL on allocation failure. 544 */ 545 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 546 { 547 struct sk_buff *skb = __napi_build_skb(data, frag_size); 548 549 if (likely(skb) && frag_size) { 550 skb->head_frag = 1; 551 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 552 } 553 554 return skb; 555 } 556 EXPORT_SYMBOL(napi_build_skb); 557 558 /* 559 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 560 * the caller if emergency pfmemalloc reserves are being used. If it is and 561 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 562 * may be used. Otherwise, the packet data may be discarded until enough 563 * memory is free 564 */ 565 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 566 bool *pfmemalloc) 567 { 568 bool ret_pfmemalloc = false; 569 size_t obj_size; 570 void *obj; 571 572 obj_size = SKB_HEAD_ALIGN(*size); 573 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 574 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 575 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 577 node); 578 *size = SKB_SMALL_HEAD_CACHE_SIZE; 579 if (obj || !(gfp_pfmemalloc_allowed(flags))) 580 goto out; 581 /* Try again but now we are using pfmemalloc reserves */ 582 ret_pfmemalloc = true; 583 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 584 goto out; 585 } 586 587 obj_size = kmalloc_size_roundup(obj_size); 588 /* The following cast might truncate high-order bits of obj_size, this 589 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 590 */ 591 *size = (unsigned int)obj_size; 592 593 /* 594 * Try a regular allocation, when that fails and we're not entitled 595 * to the reserves, fail. 596 */ 597 obj = kmalloc_node_track_caller(obj_size, 598 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 599 node); 600 if (obj || !(gfp_pfmemalloc_allowed(flags))) 601 goto out; 602 603 /* Try again but now we are using pfmemalloc reserves */ 604 ret_pfmemalloc = true; 605 obj = kmalloc_node_track_caller(obj_size, flags, node); 606 607 out: 608 if (pfmemalloc) 609 *pfmemalloc = ret_pfmemalloc; 610 611 return obj; 612 } 613 614 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 615 * 'private' fields and also do memory statistics to find all the 616 * [BEEP] leaks. 617 * 618 */ 619 620 /** 621 * __alloc_skb - allocate a network buffer 622 * @size: size to allocate 623 * @gfp_mask: allocation mask 624 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 625 * instead of head cache and allocate a cloned (child) skb. 626 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 627 * allocations in case the data is required for writeback 628 * @node: numa node to allocate memory on 629 * 630 * Allocate a new &sk_buff. The returned buffer has no headroom and a 631 * tail room of at least size bytes. The object has a reference count 632 * of one. The return is the buffer. On a failure the return is %NULL. 633 * 634 * Buffers may only be allocated from interrupts using a @gfp_mask of 635 * %GFP_ATOMIC. 636 */ 637 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 638 int flags, int node) 639 { 640 struct kmem_cache *cache; 641 struct sk_buff *skb; 642 bool pfmemalloc; 643 u8 *data; 644 645 cache = (flags & SKB_ALLOC_FCLONE) 646 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 647 648 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 649 gfp_mask |= __GFP_MEMALLOC; 650 651 /* Get the HEAD */ 652 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 653 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 654 skb = napi_skb_cache_get(); 655 else 656 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 657 if (unlikely(!skb)) 658 return NULL; 659 prefetchw(skb); 660 661 /* We do our best to align skb_shared_info on a separate cache 662 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 663 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 664 * Both skb->head and skb_shared_info are cache line aligned. 665 */ 666 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 667 if (unlikely(!data)) 668 goto nodata; 669 /* kmalloc_size_roundup() might give us more room than requested. 670 * Put skb_shared_info exactly at the end of allocated zone, 671 * to allow max possible filling before reallocation. 672 */ 673 prefetchw(data + SKB_WITH_OVERHEAD(size)); 674 675 /* 676 * Only clear those fields we need to clear, not those that we will 677 * actually initialise below. Hence, don't put any more fields after 678 * the tail pointer in struct sk_buff! 679 */ 680 memset(skb, 0, offsetof(struct sk_buff, tail)); 681 __build_skb_around(skb, data, size); 682 skb->pfmemalloc = pfmemalloc; 683 684 if (flags & SKB_ALLOC_FCLONE) { 685 struct sk_buff_fclones *fclones; 686 687 fclones = container_of(skb, struct sk_buff_fclones, skb1); 688 689 skb->fclone = SKB_FCLONE_ORIG; 690 refcount_set(&fclones->fclone_ref, 1); 691 } 692 693 return skb; 694 695 nodata: 696 kmem_cache_free(cache, skb); 697 return NULL; 698 } 699 EXPORT_SYMBOL(__alloc_skb); 700 701 /** 702 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 703 * @dev: network device to receive on 704 * @len: length to allocate 705 * @gfp_mask: get_free_pages mask, passed to alloc_skb 706 * 707 * Allocate a new &sk_buff and assign it a usage count of one. The 708 * buffer has NET_SKB_PAD headroom built in. Users should allocate 709 * the headroom they think they need without accounting for the 710 * built in space. The built in space is used for optimisations. 711 * 712 * %NULL is returned if there is no free memory. 713 */ 714 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 715 gfp_t gfp_mask) 716 { 717 struct page_frag_cache *nc; 718 struct sk_buff *skb; 719 bool pfmemalloc; 720 void *data; 721 722 len += NET_SKB_PAD; 723 724 /* If requested length is either too small or too big, 725 * we use kmalloc() for skb->head allocation. 726 */ 727 if (len <= SKB_WITH_OVERHEAD(1024) || 728 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 729 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 730 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 731 if (!skb) 732 goto skb_fail; 733 goto skb_success; 734 } 735 736 len = SKB_HEAD_ALIGN(len); 737 738 if (sk_memalloc_socks()) 739 gfp_mask |= __GFP_MEMALLOC; 740 741 if (in_hardirq() || irqs_disabled()) { 742 nc = this_cpu_ptr(&netdev_alloc_cache); 743 data = page_frag_alloc(nc, len, gfp_mask); 744 pfmemalloc = nc->pfmemalloc; 745 } else { 746 local_bh_disable(); 747 nc = this_cpu_ptr(&napi_alloc_cache.page); 748 data = page_frag_alloc(nc, len, gfp_mask); 749 pfmemalloc = nc->pfmemalloc; 750 local_bh_enable(); 751 } 752 753 if (unlikely(!data)) 754 return NULL; 755 756 skb = __build_skb(data, len); 757 if (unlikely(!skb)) { 758 skb_free_frag(data); 759 return NULL; 760 } 761 762 if (pfmemalloc) 763 skb->pfmemalloc = 1; 764 skb->head_frag = 1; 765 766 skb_success: 767 skb_reserve(skb, NET_SKB_PAD); 768 skb->dev = dev; 769 770 skb_fail: 771 return skb; 772 } 773 EXPORT_SYMBOL(__netdev_alloc_skb); 774 775 /** 776 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 777 * @napi: napi instance this buffer was allocated for 778 * @len: length to allocate 779 * 780 * Allocate a new sk_buff for use in NAPI receive. This buffer will 781 * attempt to allocate the head from a special reserved region used 782 * only for NAPI Rx allocation. By doing this we can save several 783 * CPU cycles by avoiding having to disable and re-enable IRQs. 784 * 785 * %NULL is returned if there is no free memory. 786 */ 787 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 788 { 789 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 790 struct napi_alloc_cache *nc; 791 struct sk_buff *skb; 792 bool pfmemalloc; 793 void *data; 794 795 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 796 len += NET_SKB_PAD + NET_IP_ALIGN; 797 798 /* If requested length is either too small or too big, 799 * we use kmalloc() for skb->head allocation. 800 * When the small frag allocator is available, prefer it over kmalloc 801 * for small fragments 802 */ 803 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 804 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 805 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 806 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 807 NUMA_NO_NODE); 808 if (!skb) 809 goto skb_fail; 810 goto skb_success; 811 } 812 813 nc = this_cpu_ptr(&napi_alloc_cache); 814 815 if (sk_memalloc_socks()) 816 gfp_mask |= __GFP_MEMALLOC; 817 818 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 819 /* we are artificially inflating the allocation size, but 820 * that is not as bad as it may look like, as: 821 * - 'len' less than GRO_MAX_HEAD makes little sense 822 * - On most systems, larger 'len' values lead to fragment 823 * size above 512 bytes 824 * - kmalloc would use the kmalloc-1k slab for such values 825 * - Builds with smaller GRO_MAX_HEAD will very likely do 826 * little networking, as that implies no WiFi and no 827 * tunnels support, and 32 bits arches. 828 */ 829 len = SZ_1K; 830 831 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 832 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 833 } else { 834 len = SKB_HEAD_ALIGN(len); 835 836 data = page_frag_alloc(&nc->page, len, gfp_mask); 837 pfmemalloc = nc->page.pfmemalloc; 838 } 839 840 if (unlikely(!data)) 841 return NULL; 842 843 skb = __napi_build_skb(data, len); 844 if (unlikely(!skb)) { 845 skb_free_frag(data); 846 return NULL; 847 } 848 849 if (pfmemalloc) 850 skb->pfmemalloc = 1; 851 skb->head_frag = 1; 852 853 skb_success: 854 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 855 skb->dev = napi->dev; 856 857 skb_fail: 858 return skb; 859 } 860 EXPORT_SYMBOL(napi_alloc_skb); 861 862 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 863 int off, int size, unsigned int truesize) 864 { 865 DEBUG_NET_WARN_ON_ONCE(size > truesize); 866 867 skb_fill_netmem_desc(skb, i, netmem, off, size); 868 skb->len += size; 869 skb->data_len += size; 870 skb->truesize += truesize; 871 } 872 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 873 874 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 875 unsigned int truesize) 876 { 877 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 878 879 DEBUG_NET_WARN_ON_ONCE(size > truesize); 880 881 skb_frag_size_add(frag, size); 882 skb->len += size; 883 skb->data_len += size; 884 skb->truesize += truesize; 885 } 886 EXPORT_SYMBOL(skb_coalesce_rx_frag); 887 888 static void skb_drop_list(struct sk_buff **listp) 889 { 890 kfree_skb_list(*listp); 891 *listp = NULL; 892 } 893 894 static inline void skb_drop_fraglist(struct sk_buff *skb) 895 { 896 skb_drop_list(&skb_shinfo(skb)->frag_list); 897 } 898 899 static void skb_clone_fraglist(struct sk_buff *skb) 900 { 901 struct sk_buff *list; 902 903 skb_walk_frags(skb, list) 904 skb_get(list); 905 } 906 907 static bool is_pp_page(struct page *page) 908 { 909 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 910 } 911 912 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 913 unsigned int headroom) 914 { 915 #if IS_ENABLED(CONFIG_PAGE_POOL) 916 u32 size, truesize, len, max_head_size, off; 917 struct sk_buff *skb = *pskb, *nskb; 918 int err, i, head_off; 919 void *data; 920 921 /* XDP does not support fraglist so we need to linearize 922 * the skb. 923 */ 924 if (skb_has_frag_list(skb)) 925 return -EOPNOTSUPP; 926 927 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 928 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 929 return -ENOMEM; 930 931 size = min_t(u32, skb->len, max_head_size); 932 truesize = SKB_HEAD_ALIGN(size) + headroom; 933 data = page_pool_dev_alloc_va(pool, &truesize); 934 if (!data) 935 return -ENOMEM; 936 937 nskb = napi_build_skb(data, truesize); 938 if (!nskb) { 939 page_pool_free_va(pool, data, true); 940 return -ENOMEM; 941 } 942 943 skb_reserve(nskb, headroom); 944 skb_copy_header(nskb, skb); 945 skb_mark_for_recycle(nskb); 946 947 err = skb_copy_bits(skb, 0, nskb->data, size); 948 if (err) { 949 consume_skb(nskb); 950 return err; 951 } 952 skb_put(nskb, size); 953 954 head_off = skb_headroom(nskb) - skb_headroom(skb); 955 skb_headers_offset_update(nskb, head_off); 956 957 off = size; 958 len = skb->len - off; 959 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 960 struct page *page; 961 u32 page_off; 962 963 size = min_t(u32, len, PAGE_SIZE); 964 truesize = size; 965 966 page = page_pool_dev_alloc(pool, &page_off, &truesize); 967 if (!page) { 968 consume_skb(nskb); 969 return -ENOMEM; 970 } 971 972 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 973 err = skb_copy_bits(skb, off, page_address(page) + page_off, 974 size); 975 if (err) { 976 consume_skb(nskb); 977 return err; 978 } 979 980 len -= size; 981 off += size; 982 } 983 984 consume_skb(skb); 985 *pskb = nskb; 986 987 return 0; 988 #else 989 return -EOPNOTSUPP; 990 #endif 991 } 992 EXPORT_SYMBOL(skb_pp_cow_data); 993 994 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 995 struct bpf_prog *prog) 996 { 997 if (!prog->aux->xdp_has_frags) 998 return -EINVAL; 999 1000 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1001 } 1002 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1003 1004 #if IS_ENABLED(CONFIG_PAGE_POOL) 1005 bool napi_pp_put_page(struct page *page) 1006 { 1007 page = compound_head(page); 1008 1009 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 1010 * in order to preserve any existing bits, such as bit 0 for the 1011 * head page of compound page and bit 1 for pfmemalloc page, so 1012 * mask those bits for freeing side when doing below checking, 1013 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1014 * to avoid recycling the pfmemalloc page. 1015 */ 1016 if (unlikely(!is_pp_page(page))) 1017 return false; 1018 1019 page_pool_put_full_page(page->pp, page, false); 1020 1021 return true; 1022 } 1023 EXPORT_SYMBOL(napi_pp_put_page); 1024 #endif 1025 1026 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1027 { 1028 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1029 return false; 1030 return napi_pp_put_page(virt_to_page(data)); 1031 } 1032 1033 /** 1034 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1035 * @skb: page pool aware skb 1036 * 1037 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1038 * intended to gain fragment references only for page pool aware skbs, 1039 * i.e. when skb->pp_recycle is true, and not for fragments in a 1040 * non-pp-recycling skb. It has a fallback to increase references on normal 1041 * pages, as page pool aware skbs may also have normal page fragments. 1042 */ 1043 static int skb_pp_frag_ref(struct sk_buff *skb) 1044 { 1045 struct skb_shared_info *shinfo; 1046 struct page *head_page; 1047 int i; 1048 1049 if (!skb->pp_recycle) 1050 return -EINVAL; 1051 1052 shinfo = skb_shinfo(skb); 1053 1054 for (i = 0; i < shinfo->nr_frags; i++) { 1055 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 1056 if (likely(is_pp_page(head_page))) 1057 page_pool_ref_page(head_page); 1058 else 1059 page_ref_inc(head_page); 1060 } 1061 return 0; 1062 } 1063 1064 static void skb_kfree_head(void *head, unsigned int end_offset) 1065 { 1066 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1067 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1068 else 1069 kfree(head); 1070 } 1071 1072 static void skb_free_head(struct sk_buff *skb) 1073 { 1074 unsigned char *head = skb->head; 1075 1076 if (skb->head_frag) { 1077 if (skb_pp_recycle(skb, head)) 1078 return; 1079 skb_free_frag(head); 1080 } else { 1081 skb_kfree_head(head, skb_end_offset(skb)); 1082 } 1083 } 1084 1085 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1086 { 1087 struct skb_shared_info *shinfo = skb_shinfo(skb); 1088 int i; 1089 1090 if (!skb_data_unref(skb, shinfo)) 1091 goto exit; 1092 1093 if (skb_zcopy(skb)) { 1094 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1095 1096 skb_zcopy_clear(skb, true); 1097 if (skip_unref) 1098 goto free_head; 1099 } 1100 1101 for (i = 0; i < shinfo->nr_frags; i++) 1102 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1103 1104 free_head: 1105 if (shinfo->frag_list) 1106 kfree_skb_list_reason(shinfo->frag_list, reason); 1107 1108 skb_free_head(skb); 1109 exit: 1110 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1111 * bit is only set on the head though, so in order to avoid races 1112 * while trying to recycle fragments on __skb_frag_unref() we need 1113 * to make one SKB responsible for triggering the recycle path. 1114 * So disable the recycling bit if an SKB is cloned and we have 1115 * additional references to the fragmented part of the SKB. 1116 * Eventually the last SKB will have the recycling bit set and it's 1117 * dataref set to 0, which will trigger the recycling 1118 */ 1119 skb->pp_recycle = 0; 1120 } 1121 1122 /* 1123 * Free an skbuff by memory without cleaning the state. 1124 */ 1125 static void kfree_skbmem(struct sk_buff *skb) 1126 { 1127 struct sk_buff_fclones *fclones; 1128 1129 switch (skb->fclone) { 1130 case SKB_FCLONE_UNAVAILABLE: 1131 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1132 return; 1133 1134 case SKB_FCLONE_ORIG: 1135 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1136 1137 /* We usually free the clone (TX completion) before original skb 1138 * This test would have no chance to be true for the clone, 1139 * while here, branch prediction will be good. 1140 */ 1141 if (refcount_read(&fclones->fclone_ref) == 1) 1142 goto fastpath; 1143 break; 1144 1145 default: /* SKB_FCLONE_CLONE */ 1146 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1147 break; 1148 } 1149 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1150 return; 1151 fastpath: 1152 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1153 } 1154 1155 void skb_release_head_state(struct sk_buff *skb) 1156 { 1157 skb_dst_drop(skb); 1158 if (skb->destructor) { 1159 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1160 skb->destructor(skb); 1161 } 1162 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1163 nf_conntrack_put(skb_nfct(skb)); 1164 #endif 1165 skb_ext_put(skb); 1166 } 1167 1168 /* Free everything but the sk_buff shell. */ 1169 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1170 { 1171 skb_release_head_state(skb); 1172 if (likely(skb->head)) 1173 skb_release_data(skb, reason); 1174 } 1175 1176 /** 1177 * __kfree_skb - private function 1178 * @skb: buffer 1179 * 1180 * Free an sk_buff. Release anything attached to the buffer. 1181 * Clean the state. This is an internal helper function. Users should 1182 * always call kfree_skb 1183 */ 1184 1185 void __kfree_skb(struct sk_buff *skb) 1186 { 1187 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1188 kfree_skbmem(skb); 1189 } 1190 EXPORT_SYMBOL(__kfree_skb); 1191 1192 static __always_inline 1193 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1194 { 1195 if (unlikely(!skb_unref(skb))) 1196 return false; 1197 1198 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1199 u32_get_bits(reason, 1200 SKB_DROP_REASON_SUBSYS_MASK) >= 1201 SKB_DROP_REASON_SUBSYS_NUM); 1202 1203 if (reason == SKB_CONSUMED) 1204 trace_consume_skb(skb, __builtin_return_address(0)); 1205 else 1206 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1207 return true; 1208 } 1209 1210 /** 1211 * kfree_skb_reason - free an sk_buff with special reason 1212 * @skb: buffer to free 1213 * @reason: reason why this skb is dropped 1214 * 1215 * Drop a reference to the buffer and free it if the usage count has 1216 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1217 * tracepoint. 1218 */ 1219 void __fix_address 1220 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1221 { 1222 if (__kfree_skb_reason(skb, reason)) 1223 __kfree_skb(skb); 1224 } 1225 EXPORT_SYMBOL(kfree_skb_reason); 1226 1227 #define KFREE_SKB_BULK_SIZE 16 1228 1229 struct skb_free_array { 1230 unsigned int skb_count; 1231 void *skb_array[KFREE_SKB_BULK_SIZE]; 1232 }; 1233 1234 static void kfree_skb_add_bulk(struct sk_buff *skb, 1235 struct skb_free_array *sa, 1236 enum skb_drop_reason reason) 1237 { 1238 /* if SKB is a clone, don't handle this case */ 1239 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1240 __kfree_skb(skb); 1241 return; 1242 } 1243 1244 skb_release_all(skb, reason); 1245 sa->skb_array[sa->skb_count++] = skb; 1246 1247 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1248 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1249 sa->skb_array); 1250 sa->skb_count = 0; 1251 } 1252 } 1253 1254 void __fix_address 1255 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1256 { 1257 struct skb_free_array sa; 1258 1259 sa.skb_count = 0; 1260 1261 while (segs) { 1262 struct sk_buff *next = segs->next; 1263 1264 if (__kfree_skb_reason(segs, reason)) { 1265 skb_poison_list(segs); 1266 kfree_skb_add_bulk(segs, &sa, reason); 1267 } 1268 1269 segs = next; 1270 } 1271 1272 if (sa.skb_count) 1273 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1274 } 1275 EXPORT_SYMBOL(kfree_skb_list_reason); 1276 1277 /* Dump skb information and contents. 1278 * 1279 * Must only be called from net_ratelimit()-ed paths. 1280 * 1281 * Dumps whole packets if full_pkt, only headers otherwise. 1282 */ 1283 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1284 { 1285 struct skb_shared_info *sh = skb_shinfo(skb); 1286 struct net_device *dev = skb->dev; 1287 struct sock *sk = skb->sk; 1288 struct sk_buff *list_skb; 1289 bool has_mac, has_trans; 1290 int headroom, tailroom; 1291 int i, len, seg_len; 1292 1293 if (full_pkt) 1294 len = skb->len; 1295 else 1296 len = min_t(int, skb->len, MAX_HEADER + 128); 1297 1298 headroom = skb_headroom(skb); 1299 tailroom = skb_tailroom(skb); 1300 1301 has_mac = skb_mac_header_was_set(skb); 1302 has_trans = skb_transport_header_was_set(skb); 1303 1304 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1305 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1306 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1307 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1308 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1309 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1310 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1311 level, skb->len, headroom, skb_headlen(skb), tailroom, 1312 has_mac ? skb->mac_header : -1, 1313 has_mac ? skb_mac_header_len(skb) : -1, 1314 skb->mac_len, 1315 skb->network_header, 1316 has_trans ? skb_network_header_len(skb) : -1, 1317 has_trans ? skb->transport_header : -1, 1318 sh->tx_flags, sh->nr_frags, 1319 sh->gso_size, sh->gso_type, sh->gso_segs, 1320 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1321 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1322 skb->hash, skb->sw_hash, skb->l4_hash, 1323 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1324 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1325 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1326 skb->inner_network_header, skb->inner_transport_header); 1327 1328 if (dev) 1329 printk("%sdev name=%s feat=%pNF\n", 1330 level, dev->name, &dev->features); 1331 if (sk) 1332 printk("%ssk family=%hu type=%u proto=%u\n", 1333 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1334 1335 if (full_pkt && headroom) 1336 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1337 16, 1, skb->head, headroom, false); 1338 1339 seg_len = min_t(int, skb_headlen(skb), len); 1340 if (seg_len) 1341 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1342 16, 1, skb->data, seg_len, false); 1343 len -= seg_len; 1344 1345 if (full_pkt && tailroom) 1346 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1347 16, 1, skb_tail_pointer(skb), tailroom, false); 1348 1349 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1350 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1351 u32 p_off, p_len, copied; 1352 struct page *p; 1353 u8 *vaddr; 1354 1355 skb_frag_foreach_page(frag, skb_frag_off(frag), 1356 skb_frag_size(frag), p, p_off, p_len, 1357 copied) { 1358 seg_len = min_t(int, p_len, len); 1359 vaddr = kmap_atomic(p); 1360 print_hex_dump(level, "skb frag: ", 1361 DUMP_PREFIX_OFFSET, 1362 16, 1, vaddr + p_off, seg_len, false); 1363 kunmap_atomic(vaddr); 1364 len -= seg_len; 1365 if (!len) 1366 break; 1367 } 1368 } 1369 1370 if (full_pkt && skb_has_frag_list(skb)) { 1371 printk("skb fraglist:\n"); 1372 skb_walk_frags(skb, list_skb) 1373 skb_dump(level, list_skb, true); 1374 } 1375 } 1376 EXPORT_SYMBOL(skb_dump); 1377 1378 /** 1379 * skb_tx_error - report an sk_buff xmit error 1380 * @skb: buffer that triggered an error 1381 * 1382 * Report xmit error if a device callback is tracking this skb. 1383 * skb must be freed afterwards. 1384 */ 1385 void skb_tx_error(struct sk_buff *skb) 1386 { 1387 if (skb) { 1388 skb_zcopy_downgrade_managed(skb); 1389 skb_zcopy_clear(skb, true); 1390 } 1391 } 1392 EXPORT_SYMBOL(skb_tx_error); 1393 1394 #ifdef CONFIG_TRACEPOINTS 1395 /** 1396 * consume_skb - free an skbuff 1397 * @skb: buffer to free 1398 * 1399 * Drop a ref to the buffer and free it if the usage count has hit zero 1400 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1401 * is being dropped after a failure and notes that 1402 */ 1403 void consume_skb(struct sk_buff *skb) 1404 { 1405 if (!skb_unref(skb)) 1406 return; 1407 1408 trace_consume_skb(skb, __builtin_return_address(0)); 1409 __kfree_skb(skb); 1410 } 1411 EXPORT_SYMBOL(consume_skb); 1412 #endif 1413 1414 /** 1415 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1416 * @skb: buffer to free 1417 * 1418 * Alike consume_skb(), but this variant assumes that this is the last 1419 * skb reference and all the head states have been already dropped 1420 */ 1421 void __consume_stateless_skb(struct sk_buff *skb) 1422 { 1423 trace_consume_skb(skb, __builtin_return_address(0)); 1424 skb_release_data(skb, SKB_CONSUMED); 1425 kfree_skbmem(skb); 1426 } 1427 1428 static void napi_skb_cache_put(struct sk_buff *skb) 1429 { 1430 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1431 u32 i; 1432 1433 if (!kasan_mempool_poison_object(skb)) 1434 return; 1435 1436 nc->skb_cache[nc->skb_count++] = skb; 1437 1438 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1439 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1440 kasan_mempool_unpoison_object(nc->skb_cache[i], 1441 kmem_cache_size(net_hotdata.skbuff_cache)); 1442 1443 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1444 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1445 nc->skb_count = NAPI_SKB_CACHE_HALF; 1446 } 1447 } 1448 1449 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1450 { 1451 skb_release_all(skb, reason); 1452 napi_skb_cache_put(skb); 1453 } 1454 1455 void napi_skb_free_stolen_head(struct sk_buff *skb) 1456 { 1457 if (unlikely(skb->slow_gro)) { 1458 nf_reset_ct(skb); 1459 skb_dst_drop(skb); 1460 skb_ext_put(skb); 1461 skb_orphan(skb); 1462 skb->slow_gro = 0; 1463 } 1464 napi_skb_cache_put(skb); 1465 } 1466 1467 void napi_consume_skb(struct sk_buff *skb, int budget) 1468 { 1469 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1470 if (unlikely(!budget)) { 1471 dev_consume_skb_any(skb); 1472 return; 1473 } 1474 1475 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1476 1477 if (!skb_unref(skb)) 1478 return; 1479 1480 /* if reaching here SKB is ready to free */ 1481 trace_consume_skb(skb, __builtin_return_address(0)); 1482 1483 /* if SKB is a clone, don't handle this case */ 1484 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1485 __kfree_skb(skb); 1486 return; 1487 } 1488 1489 skb_release_all(skb, SKB_CONSUMED); 1490 napi_skb_cache_put(skb); 1491 } 1492 EXPORT_SYMBOL(napi_consume_skb); 1493 1494 /* Make sure a field is contained by headers group */ 1495 #define CHECK_SKB_FIELD(field) \ 1496 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1497 offsetof(struct sk_buff, headers.field)); \ 1498 1499 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1500 { 1501 new->tstamp = old->tstamp; 1502 /* We do not copy old->sk */ 1503 new->dev = old->dev; 1504 memcpy(new->cb, old->cb, sizeof(old->cb)); 1505 skb_dst_copy(new, old); 1506 __skb_ext_copy(new, old); 1507 __nf_copy(new, old, false); 1508 1509 /* Note : this field could be in the headers group. 1510 * It is not yet because we do not want to have a 16 bit hole 1511 */ 1512 new->queue_mapping = old->queue_mapping; 1513 1514 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1515 CHECK_SKB_FIELD(protocol); 1516 CHECK_SKB_FIELD(csum); 1517 CHECK_SKB_FIELD(hash); 1518 CHECK_SKB_FIELD(priority); 1519 CHECK_SKB_FIELD(skb_iif); 1520 CHECK_SKB_FIELD(vlan_proto); 1521 CHECK_SKB_FIELD(vlan_tci); 1522 CHECK_SKB_FIELD(transport_header); 1523 CHECK_SKB_FIELD(network_header); 1524 CHECK_SKB_FIELD(mac_header); 1525 CHECK_SKB_FIELD(inner_protocol); 1526 CHECK_SKB_FIELD(inner_transport_header); 1527 CHECK_SKB_FIELD(inner_network_header); 1528 CHECK_SKB_FIELD(inner_mac_header); 1529 CHECK_SKB_FIELD(mark); 1530 #ifdef CONFIG_NETWORK_SECMARK 1531 CHECK_SKB_FIELD(secmark); 1532 #endif 1533 #ifdef CONFIG_NET_RX_BUSY_POLL 1534 CHECK_SKB_FIELD(napi_id); 1535 #endif 1536 CHECK_SKB_FIELD(alloc_cpu); 1537 #ifdef CONFIG_XPS 1538 CHECK_SKB_FIELD(sender_cpu); 1539 #endif 1540 #ifdef CONFIG_NET_SCHED 1541 CHECK_SKB_FIELD(tc_index); 1542 #endif 1543 1544 } 1545 1546 /* 1547 * You should not add any new code to this function. Add it to 1548 * __copy_skb_header above instead. 1549 */ 1550 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1551 { 1552 #define C(x) n->x = skb->x 1553 1554 n->next = n->prev = NULL; 1555 n->sk = NULL; 1556 __copy_skb_header(n, skb); 1557 1558 C(len); 1559 C(data_len); 1560 C(mac_len); 1561 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1562 n->cloned = 1; 1563 n->nohdr = 0; 1564 n->peeked = 0; 1565 C(pfmemalloc); 1566 C(pp_recycle); 1567 n->destructor = NULL; 1568 C(tail); 1569 C(end); 1570 C(head); 1571 C(head_frag); 1572 C(data); 1573 C(truesize); 1574 refcount_set(&n->users, 1); 1575 1576 atomic_inc(&(skb_shinfo(skb)->dataref)); 1577 skb->cloned = 1; 1578 1579 return n; 1580 #undef C 1581 } 1582 1583 /** 1584 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1585 * @first: first sk_buff of the msg 1586 */ 1587 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1588 { 1589 struct sk_buff *n; 1590 1591 n = alloc_skb(0, GFP_ATOMIC); 1592 if (!n) 1593 return NULL; 1594 1595 n->len = first->len; 1596 n->data_len = first->len; 1597 n->truesize = first->truesize; 1598 1599 skb_shinfo(n)->frag_list = first; 1600 1601 __copy_skb_header(n, first); 1602 n->destructor = NULL; 1603 1604 return n; 1605 } 1606 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1607 1608 /** 1609 * skb_morph - morph one skb into another 1610 * @dst: the skb to receive the contents 1611 * @src: the skb to supply the contents 1612 * 1613 * This is identical to skb_clone except that the target skb is 1614 * supplied by the user. 1615 * 1616 * The target skb is returned upon exit. 1617 */ 1618 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1619 { 1620 skb_release_all(dst, SKB_CONSUMED); 1621 return __skb_clone(dst, src); 1622 } 1623 EXPORT_SYMBOL_GPL(skb_morph); 1624 1625 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1626 { 1627 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1628 struct user_struct *user; 1629 1630 if (capable(CAP_IPC_LOCK) || !size) 1631 return 0; 1632 1633 rlim = rlimit(RLIMIT_MEMLOCK); 1634 if (rlim == RLIM_INFINITY) 1635 return 0; 1636 1637 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1638 max_pg = rlim >> PAGE_SHIFT; 1639 user = mmp->user ? : current_user(); 1640 1641 old_pg = atomic_long_read(&user->locked_vm); 1642 do { 1643 new_pg = old_pg + num_pg; 1644 if (new_pg > max_pg) 1645 return -ENOBUFS; 1646 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1647 1648 if (!mmp->user) { 1649 mmp->user = get_uid(user); 1650 mmp->num_pg = num_pg; 1651 } else { 1652 mmp->num_pg += num_pg; 1653 } 1654 1655 return 0; 1656 } 1657 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1658 1659 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1660 { 1661 if (mmp->user) { 1662 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1663 free_uid(mmp->user); 1664 } 1665 } 1666 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1667 1668 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1669 { 1670 struct ubuf_info_msgzc *uarg; 1671 struct sk_buff *skb; 1672 1673 WARN_ON_ONCE(!in_task()); 1674 1675 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1676 if (!skb) 1677 return NULL; 1678 1679 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1680 uarg = (void *)skb->cb; 1681 uarg->mmp.user = NULL; 1682 1683 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1684 kfree_skb(skb); 1685 return NULL; 1686 } 1687 1688 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1689 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1690 uarg->len = 1; 1691 uarg->bytelen = size; 1692 uarg->zerocopy = 1; 1693 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1694 refcount_set(&uarg->ubuf.refcnt, 1); 1695 sock_hold(sk); 1696 1697 return &uarg->ubuf; 1698 } 1699 1700 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1701 { 1702 return container_of((void *)uarg, struct sk_buff, cb); 1703 } 1704 1705 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1706 struct ubuf_info *uarg) 1707 { 1708 if (uarg) { 1709 struct ubuf_info_msgzc *uarg_zc; 1710 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1711 u32 bytelen, next; 1712 1713 /* there might be non MSG_ZEROCOPY users */ 1714 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1715 return NULL; 1716 1717 /* realloc only when socket is locked (TCP, UDP cork), 1718 * so uarg->len and sk_zckey access is serialized 1719 */ 1720 if (!sock_owned_by_user(sk)) { 1721 WARN_ON_ONCE(1); 1722 return NULL; 1723 } 1724 1725 uarg_zc = uarg_to_msgzc(uarg); 1726 bytelen = uarg_zc->bytelen + size; 1727 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1728 /* TCP can create new skb to attach new uarg */ 1729 if (sk->sk_type == SOCK_STREAM) 1730 goto new_alloc; 1731 return NULL; 1732 } 1733 1734 next = (u32)atomic_read(&sk->sk_zckey); 1735 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1736 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1737 return NULL; 1738 uarg_zc->len++; 1739 uarg_zc->bytelen = bytelen; 1740 atomic_set(&sk->sk_zckey, ++next); 1741 1742 /* no extra ref when appending to datagram (MSG_MORE) */ 1743 if (sk->sk_type == SOCK_STREAM) 1744 net_zcopy_get(uarg); 1745 1746 return uarg; 1747 } 1748 } 1749 1750 new_alloc: 1751 return msg_zerocopy_alloc(sk, size); 1752 } 1753 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1754 1755 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1756 { 1757 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1758 u32 old_lo, old_hi; 1759 u64 sum_len; 1760 1761 old_lo = serr->ee.ee_info; 1762 old_hi = serr->ee.ee_data; 1763 sum_len = old_hi - old_lo + 1ULL + len; 1764 1765 if (sum_len >= (1ULL << 32)) 1766 return false; 1767 1768 if (lo != old_hi + 1) 1769 return false; 1770 1771 serr->ee.ee_data += len; 1772 return true; 1773 } 1774 1775 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1776 { 1777 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1778 struct sock_exterr_skb *serr; 1779 struct sock *sk = skb->sk; 1780 struct sk_buff_head *q; 1781 unsigned long flags; 1782 bool is_zerocopy; 1783 u32 lo, hi; 1784 u16 len; 1785 1786 mm_unaccount_pinned_pages(&uarg->mmp); 1787 1788 /* if !len, there was only 1 call, and it was aborted 1789 * so do not queue a completion notification 1790 */ 1791 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1792 goto release; 1793 1794 len = uarg->len; 1795 lo = uarg->id; 1796 hi = uarg->id + len - 1; 1797 is_zerocopy = uarg->zerocopy; 1798 1799 serr = SKB_EXT_ERR(skb); 1800 memset(serr, 0, sizeof(*serr)); 1801 serr->ee.ee_errno = 0; 1802 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1803 serr->ee.ee_data = hi; 1804 serr->ee.ee_info = lo; 1805 if (!is_zerocopy) 1806 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1807 1808 q = &sk->sk_error_queue; 1809 spin_lock_irqsave(&q->lock, flags); 1810 tail = skb_peek_tail(q); 1811 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1812 !skb_zerocopy_notify_extend(tail, lo, len)) { 1813 __skb_queue_tail(q, skb); 1814 skb = NULL; 1815 } 1816 spin_unlock_irqrestore(&q->lock, flags); 1817 1818 sk_error_report(sk); 1819 1820 release: 1821 consume_skb(skb); 1822 sock_put(sk); 1823 } 1824 1825 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1826 bool success) 1827 { 1828 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1829 1830 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1831 1832 if (refcount_dec_and_test(&uarg->refcnt)) 1833 __msg_zerocopy_callback(uarg_zc); 1834 } 1835 1836 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1837 { 1838 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1839 1840 atomic_dec(&sk->sk_zckey); 1841 uarg_to_msgzc(uarg)->len--; 1842 1843 if (have_uref) 1844 msg_zerocopy_complete(NULL, uarg, true); 1845 } 1846 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1847 1848 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1849 .complete = msg_zerocopy_complete, 1850 }; 1851 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1852 1853 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1854 struct msghdr *msg, int len, 1855 struct ubuf_info *uarg) 1856 { 1857 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1858 int err, orig_len = skb->len; 1859 1860 if (uarg->ops->link_skb) { 1861 err = uarg->ops->link_skb(skb, uarg); 1862 if (err) 1863 return err; 1864 } else { 1865 /* An skb can only point to one uarg. This edge case happens 1866 * when TCP appends to an skb, but zerocopy_realloc triggered 1867 * a new alloc. 1868 */ 1869 if (orig_uarg && uarg != orig_uarg) 1870 return -EEXIST; 1871 } 1872 1873 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1874 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1875 struct sock *save_sk = skb->sk; 1876 1877 /* Streams do not free skb on error. Reset to prev state. */ 1878 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1879 skb->sk = sk; 1880 ___pskb_trim(skb, orig_len); 1881 skb->sk = save_sk; 1882 return err; 1883 } 1884 1885 if (!uarg->ops->link_skb) 1886 skb_zcopy_set(skb, uarg, NULL); 1887 return skb->len - orig_len; 1888 } 1889 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1890 1891 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1892 { 1893 int i; 1894 1895 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1896 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1897 skb_frag_ref(skb, i); 1898 } 1899 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1900 1901 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1902 gfp_t gfp_mask) 1903 { 1904 if (skb_zcopy(orig)) { 1905 if (skb_zcopy(nskb)) { 1906 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1907 if (!gfp_mask) { 1908 WARN_ON_ONCE(1); 1909 return -ENOMEM; 1910 } 1911 if (skb_uarg(nskb) == skb_uarg(orig)) 1912 return 0; 1913 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1914 return -EIO; 1915 } 1916 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1917 } 1918 return 0; 1919 } 1920 1921 /** 1922 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1923 * @skb: the skb to modify 1924 * @gfp_mask: allocation priority 1925 * 1926 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1927 * It will copy all frags into kernel and drop the reference 1928 * to userspace pages. 1929 * 1930 * If this function is called from an interrupt gfp_mask() must be 1931 * %GFP_ATOMIC. 1932 * 1933 * Returns 0 on success or a negative error code on failure 1934 * to allocate kernel memory to copy to. 1935 */ 1936 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1937 { 1938 int num_frags = skb_shinfo(skb)->nr_frags; 1939 struct page *page, *head = NULL; 1940 int i, order, psize, new_frags; 1941 u32 d_off; 1942 1943 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1944 return -EINVAL; 1945 1946 if (!num_frags) 1947 goto release; 1948 1949 /* We might have to allocate high order pages, so compute what minimum 1950 * page order is needed. 1951 */ 1952 order = 0; 1953 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1954 order++; 1955 psize = (PAGE_SIZE << order); 1956 1957 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1958 for (i = 0; i < new_frags; i++) { 1959 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1960 if (!page) { 1961 while (head) { 1962 struct page *next = (struct page *)page_private(head); 1963 put_page(head); 1964 head = next; 1965 } 1966 return -ENOMEM; 1967 } 1968 set_page_private(page, (unsigned long)head); 1969 head = page; 1970 } 1971 1972 page = head; 1973 d_off = 0; 1974 for (i = 0; i < num_frags; i++) { 1975 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1976 u32 p_off, p_len, copied; 1977 struct page *p; 1978 u8 *vaddr; 1979 1980 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1981 p, p_off, p_len, copied) { 1982 u32 copy, done = 0; 1983 vaddr = kmap_atomic(p); 1984 1985 while (done < p_len) { 1986 if (d_off == psize) { 1987 d_off = 0; 1988 page = (struct page *)page_private(page); 1989 } 1990 copy = min_t(u32, psize - d_off, p_len - done); 1991 memcpy(page_address(page) + d_off, 1992 vaddr + p_off + done, copy); 1993 done += copy; 1994 d_off += copy; 1995 } 1996 kunmap_atomic(vaddr); 1997 } 1998 } 1999 2000 /* skb frags release userspace buffers */ 2001 for (i = 0; i < num_frags; i++) 2002 skb_frag_unref(skb, i); 2003 2004 /* skb frags point to kernel buffers */ 2005 for (i = 0; i < new_frags - 1; i++) { 2006 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2007 head = (struct page *)page_private(head); 2008 } 2009 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2010 d_off); 2011 skb_shinfo(skb)->nr_frags = new_frags; 2012 2013 release: 2014 skb_zcopy_clear(skb, false); 2015 return 0; 2016 } 2017 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2018 2019 /** 2020 * skb_clone - duplicate an sk_buff 2021 * @skb: buffer to clone 2022 * @gfp_mask: allocation priority 2023 * 2024 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2025 * copies share the same packet data but not structure. The new 2026 * buffer has a reference count of 1. If the allocation fails the 2027 * function returns %NULL otherwise the new buffer is returned. 2028 * 2029 * If this function is called from an interrupt gfp_mask() must be 2030 * %GFP_ATOMIC. 2031 */ 2032 2033 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2034 { 2035 struct sk_buff_fclones *fclones = container_of(skb, 2036 struct sk_buff_fclones, 2037 skb1); 2038 struct sk_buff *n; 2039 2040 if (skb_orphan_frags(skb, gfp_mask)) 2041 return NULL; 2042 2043 if (skb->fclone == SKB_FCLONE_ORIG && 2044 refcount_read(&fclones->fclone_ref) == 1) { 2045 n = &fclones->skb2; 2046 refcount_set(&fclones->fclone_ref, 2); 2047 n->fclone = SKB_FCLONE_CLONE; 2048 } else { 2049 if (skb_pfmemalloc(skb)) 2050 gfp_mask |= __GFP_MEMALLOC; 2051 2052 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2053 if (!n) 2054 return NULL; 2055 2056 n->fclone = SKB_FCLONE_UNAVAILABLE; 2057 } 2058 2059 return __skb_clone(n, skb); 2060 } 2061 EXPORT_SYMBOL(skb_clone); 2062 2063 void skb_headers_offset_update(struct sk_buff *skb, int off) 2064 { 2065 /* Only adjust this if it actually is csum_start rather than csum */ 2066 if (skb->ip_summed == CHECKSUM_PARTIAL) 2067 skb->csum_start += off; 2068 /* {transport,network,mac}_header and tail are relative to skb->head */ 2069 skb->transport_header += off; 2070 skb->network_header += off; 2071 if (skb_mac_header_was_set(skb)) 2072 skb->mac_header += off; 2073 skb->inner_transport_header += off; 2074 skb->inner_network_header += off; 2075 skb->inner_mac_header += off; 2076 } 2077 EXPORT_SYMBOL(skb_headers_offset_update); 2078 2079 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2080 { 2081 __copy_skb_header(new, old); 2082 2083 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2084 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2085 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2086 } 2087 EXPORT_SYMBOL(skb_copy_header); 2088 2089 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2090 { 2091 if (skb_pfmemalloc(skb)) 2092 return SKB_ALLOC_RX; 2093 return 0; 2094 } 2095 2096 /** 2097 * skb_copy - create private copy of an sk_buff 2098 * @skb: buffer to copy 2099 * @gfp_mask: allocation priority 2100 * 2101 * Make a copy of both an &sk_buff and its data. This is used when the 2102 * caller wishes to modify the data and needs a private copy of the 2103 * data to alter. Returns %NULL on failure or the pointer to the buffer 2104 * on success. The returned buffer has a reference count of 1. 2105 * 2106 * As by-product this function converts non-linear &sk_buff to linear 2107 * one, so that &sk_buff becomes completely private and caller is allowed 2108 * to modify all the data of returned buffer. This means that this 2109 * function is not recommended for use in circumstances when only 2110 * header is going to be modified. Use pskb_copy() instead. 2111 */ 2112 2113 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2114 { 2115 struct sk_buff *n; 2116 unsigned int size; 2117 int headerlen; 2118 2119 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2120 return NULL; 2121 2122 headerlen = skb_headroom(skb); 2123 size = skb_end_offset(skb) + skb->data_len; 2124 n = __alloc_skb(size, gfp_mask, 2125 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2126 if (!n) 2127 return NULL; 2128 2129 /* Set the data pointer */ 2130 skb_reserve(n, headerlen); 2131 /* Set the tail pointer and length */ 2132 skb_put(n, skb->len); 2133 2134 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2135 2136 skb_copy_header(n, skb); 2137 return n; 2138 } 2139 EXPORT_SYMBOL(skb_copy); 2140 2141 /** 2142 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2143 * @skb: buffer to copy 2144 * @headroom: headroom of new skb 2145 * @gfp_mask: allocation priority 2146 * @fclone: if true allocate the copy of the skb from the fclone 2147 * cache instead of the head cache; it is recommended to set this 2148 * to true for the cases where the copy will likely be cloned 2149 * 2150 * Make a copy of both an &sk_buff and part of its data, located 2151 * in header. Fragmented data remain shared. This is used when 2152 * the caller wishes to modify only header of &sk_buff and needs 2153 * private copy of the header to alter. Returns %NULL on failure 2154 * or the pointer to the buffer on success. 2155 * The returned buffer has a reference count of 1. 2156 */ 2157 2158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2159 gfp_t gfp_mask, bool fclone) 2160 { 2161 unsigned int size = skb_headlen(skb) + headroom; 2162 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2163 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2164 2165 if (!n) 2166 goto out; 2167 2168 /* Set the data pointer */ 2169 skb_reserve(n, headroom); 2170 /* Set the tail pointer and length */ 2171 skb_put(n, skb_headlen(skb)); 2172 /* Copy the bytes */ 2173 skb_copy_from_linear_data(skb, n->data, n->len); 2174 2175 n->truesize += skb->data_len; 2176 n->data_len = skb->data_len; 2177 n->len = skb->len; 2178 2179 if (skb_shinfo(skb)->nr_frags) { 2180 int i; 2181 2182 if (skb_orphan_frags(skb, gfp_mask) || 2183 skb_zerocopy_clone(n, skb, gfp_mask)) { 2184 kfree_skb(n); 2185 n = NULL; 2186 goto out; 2187 } 2188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2189 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2190 skb_frag_ref(skb, i); 2191 } 2192 skb_shinfo(n)->nr_frags = i; 2193 } 2194 2195 if (skb_has_frag_list(skb)) { 2196 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2197 skb_clone_fraglist(n); 2198 } 2199 2200 skb_copy_header(n, skb); 2201 out: 2202 return n; 2203 } 2204 EXPORT_SYMBOL(__pskb_copy_fclone); 2205 2206 /** 2207 * pskb_expand_head - reallocate header of &sk_buff 2208 * @skb: buffer to reallocate 2209 * @nhead: room to add at head 2210 * @ntail: room to add at tail 2211 * @gfp_mask: allocation priority 2212 * 2213 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2214 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2215 * reference count of 1. Returns zero in the case of success or error, 2216 * if expansion failed. In the last case, &sk_buff is not changed. 2217 * 2218 * All the pointers pointing into skb header may change and must be 2219 * reloaded after call to this function. 2220 */ 2221 2222 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2223 gfp_t gfp_mask) 2224 { 2225 unsigned int osize = skb_end_offset(skb); 2226 unsigned int size = osize + nhead + ntail; 2227 long off; 2228 u8 *data; 2229 int i; 2230 2231 BUG_ON(nhead < 0); 2232 2233 BUG_ON(skb_shared(skb)); 2234 2235 skb_zcopy_downgrade_managed(skb); 2236 2237 if (skb_pfmemalloc(skb)) 2238 gfp_mask |= __GFP_MEMALLOC; 2239 2240 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2241 if (!data) 2242 goto nodata; 2243 size = SKB_WITH_OVERHEAD(size); 2244 2245 /* Copy only real data... and, alas, header. This should be 2246 * optimized for the cases when header is void. 2247 */ 2248 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2249 2250 memcpy((struct skb_shared_info *)(data + size), 2251 skb_shinfo(skb), 2252 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2253 2254 /* 2255 * if shinfo is shared we must drop the old head gracefully, but if it 2256 * is not we can just drop the old head and let the existing refcount 2257 * be since all we did is relocate the values 2258 */ 2259 if (skb_cloned(skb)) { 2260 if (skb_orphan_frags(skb, gfp_mask)) 2261 goto nofrags; 2262 if (skb_zcopy(skb)) 2263 refcount_inc(&skb_uarg(skb)->refcnt); 2264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2265 skb_frag_ref(skb, i); 2266 2267 if (skb_has_frag_list(skb)) 2268 skb_clone_fraglist(skb); 2269 2270 skb_release_data(skb, SKB_CONSUMED); 2271 } else { 2272 skb_free_head(skb); 2273 } 2274 off = (data + nhead) - skb->head; 2275 2276 skb->head = data; 2277 skb->head_frag = 0; 2278 skb->data += off; 2279 2280 skb_set_end_offset(skb, size); 2281 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2282 off = nhead; 2283 #endif 2284 skb->tail += off; 2285 skb_headers_offset_update(skb, nhead); 2286 skb->cloned = 0; 2287 skb->hdr_len = 0; 2288 skb->nohdr = 0; 2289 atomic_set(&skb_shinfo(skb)->dataref, 1); 2290 2291 skb_metadata_clear(skb); 2292 2293 /* It is not generally safe to change skb->truesize. 2294 * For the moment, we really care of rx path, or 2295 * when skb is orphaned (not attached to a socket). 2296 */ 2297 if (!skb->sk || skb->destructor == sock_edemux) 2298 skb->truesize += size - osize; 2299 2300 return 0; 2301 2302 nofrags: 2303 skb_kfree_head(data, size); 2304 nodata: 2305 return -ENOMEM; 2306 } 2307 EXPORT_SYMBOL(pskb_expand_head); 2308 2309 /* Make private copy of skb with writable head and some headroom */ 2310 2311 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2312 { 2313 struct sk_buff *skb2; 2314 int delta = headroom - skb_headroom(skb); 2315 2316 if (delta <= 0) 2317 skb2 = pskb_copy(skb, GFP_ATOMIC); 2318 else { 2319 skb2 = skb_clone(skb, GFP_ATOMIC); 2320 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2321 GFP_ATOMIC)) { 2322 kfree_skb(skb2); 2323 skb2 = NULL; 2324 } 2325 } 2326 return skb2; 2327 } 2328 EXPORT_SYMBOL(skb_realloc_headroom); 2329 2330 /* Note: We plan to rework this in linux-6.4 */ 2331 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2332 { 2333 unsigned int saved_end_offset, saved_truesize; 2334 struct skb_shared_info *shinfo; 2335 int res; 2336 2337 saved_end_offset = skb_end_offset(skb); 2338 saved_truesize = skb->truesize; 2339 2340 res = pskb_expand_head(skb, 0, 0, pri); 2341 if (res) 2342 return res; 2343 2344 skb->truesize = saved_truesize; 2345 2346 if (likely(skb_end_offset(skb) == saved_end_offset)) 2347 return 0; 2348 2349 /* We can not change skb->end if the original or new value 2350 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2351 */ 2352 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2353 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2354 /* We think this path should not be taken. 2355 * Add a temporary trace to warn us just in case. 2356 */ 2357 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2358 saved_end_offset, skb_end_offset(skb)); 2359 WARN_ON_ONCE(1); 2360 return 0; 2361 } 2362 2363 shinfo = skb_shinfo(skb); 2364 2365 /* We are about to change back skb->end, 2366 * we need to move skb_shinfo() to its new location. 2367 */ 2368 memmove(skb->head + saved_end_offset, 2369 shinfo, 2370 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2371 2372 skb_set_end_offset(skb, saved_end_offset); 2373 2374 return 0; 2375 } 2376 2377 /** 2378 * skb_expand_head - reallocate header of &sk_buff 2379 * @skb: buffer to reallocate 2380 * @headroom: needed headroom 2381 * 2382 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2383 * if possible; copies skb->sk to new skb as needed 2384 * and frees original skb in case of failures. 2385 * 2386 * It expect increased headroom and generates warning otherwise. 2387 */ 2388 2389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2390 { 2391 int delta = headroom - skb_headroom(skb); 2392 int osize = skb_end_offset(skb); 2393 struct sock *sk = skb->sk; 2394 2395 if (WARN_ONCE(delta <= 0, 2396 "%s is expecting an increase in the headroom", __func__)) 2397 return skb; 2398 2399 delta = SKB_DATA_ALIGN(delta); 2400 /* pskb_expand_head() might crash, if skb is shared. */ 2401 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2402 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2403 2404 if (unlikely(!nskb)) 2405 goto fail; 2406 2407 if (sk) 2408 skb_set_owner_w(nskb, sk); 2409 consume_skb(skb); 2410 skb = nskb; 2411 } 2412 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2413 goto fail; 2414 2415 if (sk && is_skb_wmem(skb)) { 2416 delta = skb_end_offset(skb) - osize; 2417 refcount_add(delta, &sk->sk_wmem_alloc); 2418 skb->truesize += delta; 2419 } 2420 return skb; 2421 2422 fail: 2423 kfree_skb(skb); 2424 return NULL; 2425 } 2426 EXPORT_SYMBOL(skb_expand_head); 2427 2428 /** 2429 * skb_copy_expand - copy and expand sk_buff 2430 * @skb: buffer to copy 2431 * @newheadroom: new free bytes at head 2432 * @newtailroom: new free bytes at tail 2433 * @gfp_mask: allocation priority 2434 * 2435 * Make a copy of both an &sk_buff and its data and while doing so 2436 * allocate additional space. 2437 * 2438 * This is used when the caller wishes to modify the data and needs a 2439 * private copy of the data to alter as well as more space for new fields. 2440 * Returns %NULL on failure or the pointer to the buffer 2441 * on success. The returned buffer has a reference count of 1. 2442 * 2443 * You must pass %GFP_ATOMIC as the allocation priority if this function 2444 * is called from an interrupt. 2445 */ 2446 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2447 int newheadroom, int newtailroom, 2448 gfp_t gfp_mask) 2449 { 2450 /* 2451 * Allocate the copy buffer 2452 */ 2453 int head_copy_len, head_copy_off; 2454 struct sk_buff *n; 2455 int oldheadroom; 2456 2457 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2458 return NULL; 2459 2460 oldheadroom = skb_headroom(skb); 2461 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2462 gfp_mask, skb_alloc_rx_flag(skb), 2463 NUMA_NO_NODE); 2464 if (!n) 2465 return NULL; 2466 2467 skb_reserve(n, newheadroom); 2468 2469 /* Set the tail pointer and length */ 2470 skb_put(n, skb->len); 2471 2472 head_copy_len = oldheadroom; 2473 head_copy_off = 0; 2474 if (newheadroom <= head_copy_len) 2475 head_copy_len = newheadroom; 2476 else 2477 head_copy_off = newheadroom - head_copy_len; 2478 2479 /* Copy the linear header and data. */ 2480 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2481 skb->len + head_copy_len)); 2482 2483 skb_copy_header(n, skb); 2484 2485 skb_headers_offset_update(n, newheadroom - oldheadroom); 2486 2487 return n; 2488 } 2489 EXPORT_SYMBOL(skb_copy_expand); 2490 2491 /** 2492 * __skb_pad - zero pad the tail of an skb 2493 * @skb: buffer to pad 2494 * @pad: space to pad 2495 * @free_on_error: free buffer on error 2496 * 2497 * Ensure that a buffer is followed by a padding area that is zero 2498 * filled. Used by network drivers which may DMA or transfer data 2499 * beyond the buffer end onto the wire. 2500 * 2501 * May return error in out of memory cases. The skb is freed on error 2502 * if @free_on_error is true. 2503 */ 2504 2505 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2506 { 2507 int err; 2508 int ntail; 2509 2510 /* If the skbuff is non linear tailroom is always zero.. */ 2511 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2512 memset(skb->data+skb->len, 0, pad); 2513 return 0; 2514 } 2515 2516 ntail = skb->data_len + pad - (skb->end - skb->tail); 2517 if (likely(skb_cloned(skb) || ntail > 0)) { 2518 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2519 if (unlikely(err)) 2520 goto free_skb; 2521 } 2522 2523 /* FIXME: The use of this function with non-linear skb's really needs 2524 * to be audited. 2525 */ 2526 err = skb_linearize(skb); 2527 if (unlikely(err)) 2528 goto free_skb; 2529 2530 memset(skb->data + skb->len, 0, pad); 2531 return 0; 2532 2533 free_skb: 2534 if (free_on_error) 2535 kfree_skb(skb); 2536 return err; 2537 } 2538 EXPORT_SYMBOL(__skb_pad); 2539 2540 /** 2541 * pskb_put - add data to the tail of a potentially fragmented buffer 2542 * @skb: start of the buffer to use 2543 * @tail: tail fragment of the buffer to use 2544 * @len: amount of data to add 2545 * 2546 * This function extends the used data area of the potentially 2547 * fragmented buffer. @tail must be the last fragment of @skb -- or 2548 * @skb itself. If this would exceed the total buffer size the kernel 2549 * will panic. A pointer to the first byte of the extra data is 2550 * returned. 2551 */ 2552 2553 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2554 { 2555 if (tail != skb) { 2556 skb->data_len += len; 2557 skb->len += len; 2558 } 2559 return skb_put(tail, len); 2560 } 2561 EXPORT_SYMBOL_GPL(pskb_put); 2562 2563 /** 2564 * skb_put - add data to a buffer 2565 * @skb: buffer to use 2566 * @len: amount of data to add 2567 * 2568 * This function extends the used data area of the buffer. If this would 2569 * exceed the total buffer size the kernel will panic. A pointer to the 2570 * first byte of the extra data is returned. 2571 */ 2572 void *skb_put(struct sk_buff *skb, unsigned int len) 2573 { 2574 void *tmp = skb_tail_pointer(skb); 2575 SKB_LINEAR_ASSERT(skb); 2576 skb->tail += len; 2577 skb->len += len; 2578 if (unlikely(skb->tail > skb->end)) 2579 skb_over_panic(skb, len, __builtin_return_address(0)); 2580 return tmp; 2581 } 2582 EXPORT_SYMBOL(skb_put); 2583 2584 /** 2585 * skb_push - add data to the start of a buffer 2586 * @skb: buffer to use 2587 * @len: amount of data to add 2588 * 2589 * This function extends the used data area of the buffer at the buffer 2590 * start. If this would exceed the total buffer headroom the kernel will 2591 * panic. A pointer to the first byte of the extra data is returned. 2592 */ 2593 void *skb_push(struct sk_buff *skb, unsigned int len) 2594 { 2595 skb->data -= len; 2596 skb->len += len; 2597 if (unlikely(skb->data < skb->head)) 2598 skb_under_panic(skb, len, __builtin_return_address(0)); 2599 return skb->data; 2600 } 2601 EXPORT_SYMBOL(skb_push); 2602 2603 /** 2604 * skb_pull - remove data from the start of a buffer 2605 * @skb: buffer to use 2606 * @len: amount of data to remove 2607 * 2608 * This function removes data from the start of a buffer, returning 2609 * the memory to the headroom. A pointer to the next data in the buffer 2610 * is returned. Once the data has been pulled future pushes will overwrite 2611 * the old data. 2612 */ 2613 void *skb_pull(struct sk_buff *skb, unsigned int len) 2614 { 2615 return skb_pull_inline(skb, len); 2616 } 2617 EXPORT_SYMBOL(skb_pull); 2618 2619 /** 2620 * skb_pull_data - remove data from the start of a buffer returning its 2621 * original position. 2622 * @skb: buffer to use 2623 * @len: amount of data to remove 2624 * 2625 * This function removes data from the start of a buffer, returning 2626 * the memory to the headroom. A pointer to the original data in the buffer 2627 * is returned after checking if there is enough data to pull. Once the 2628 * data has been pulled future pushes will overwrite the old data. 2629 */ 2630 void *skb_pull_data(struct sk_buff *skb, size_t len) 2631 { 2632 void *data = skb->data; 2633 2634 if (skb->len < len) 2635 return NULL; 2636 2637 skb_pull(skb, len); 2638 2639 return data; 2640 } 2641 EXPORT_SYMBOL(skb_pull_data); 2642 2643 /** 2644 * skb_trim - remove end from a buffer 2645 * @skb: buffer to alter 2646 * @len: new length 2647 * 2648 * Cut the length of a buffer down by removing data from the tail. If 2649 * the buffer is already under the length specified it is not modified. 2650 * The skb must be linear. 2651 */ 2652 void skb_trim(struct sk_buff *skb, unsigned int len) 2653 { 2654 if (skb->len > len) 2655 __skb_trim(skb, len); 2656 } 2657 EXPORT_SYMBOL(skb_trim); 2658 2659 /* Trims skb to length len. It can change skb pointers. 2660 */ 2661 2662 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2663 { 2664 struct sk_buff **fragp; 2665 struct sk_buff *frag; 2666 int offset = skb_headlen(skb); 2667 int nfrags = skb_shinfo(skb)->nr_frags; 2668 int i; 2669 int err; 2670 2671 if (skb_cloned(skb) && 2672 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2673 return err; 2674 2675 i = 0; 2676 if (offset >= len) 2677 goto drop_pages; 2678 2679 for (; i < nfrags; i++) { 2680 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2681 2682 if (end < len) { 2683 offset = end; 2684 continue; 2685 } 2686 2687 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2688 2689 drop_pages: 2690 skb_shinfo(skb)->nr_frags = i; 2691 2692 for (; i < nfrags; i++) 2693 skb_frag_unref(skb, i); 2694 2695 if (skb_has_frag_list(skb)) 2696 skb_drop_fraglist(skb); 2697 goto done; 2698 } 2699 2700 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2701 fragp = &frag->next) { 2702 int end = offset + frag->len; 2703 2704 if (skb_shared(frag)) { 2705 struct sk_buff *nfrag; 2706 2707 nfrag = skb_clone(frag, GFP_ATOMIC); 2708 if (unlikely(!nfrag)) 2709 return -ENOMEM; 2710 2711 nfrag->next = frag->next; 2712 consume_skb(frag); 2713 frag = nfrag; 2714 *fragp = frag; 2715 } 2716 2717 if (end < len) { 2718 offset = end; 2719 continue; 2720 } 2721 2722 if (end > len && 2723 unlikely((err = pskb_trim(frag, len - offset)))) 2724 return err; 2725 2726 if (frag->next) 2727 skb_drop_list(&frag->next); 2728 break; 2729 } 2730 2731 done: 2732 if (len > skb_headlen(skb)) { 2733 skb->data_len -= skb->len - len; 2734 skb->len = len; 2735 } else { 2736 skb->len = len; 2737 skb->data_len = 0; 2738 skb_set_tail_pointer(skb, len); 2739 } 2740 2741 if (!skb->sk || skb->destructor == sock_edemux) 2742 skb_condense(skb); 2743 return 0; 2744 } 2745 EXPORT_SYMBOL(___pskb_trim); 2746 2747 /* Note : use pskb_trim_rcsum() instead of calling this directly 2748 */ 2749 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2750 { 2751 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2752 int delta = skb->len - len; 2753 2754 skb->csum = csum_block_sub(skb->csum, 2755 skb_checksum(skb, len, delta, 0), 2756 len); 2757 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2758 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2759 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2760 2761 if (offset + sizeof(__sum16) > hdlen) 2762 return -EINVAL; 2763 } 2764 return __pskb_trim(skb, len); 2765 } 2766 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2767 2768 /** 2769 * __pskb_pull_tail - advance tail of skb header 2770 * @skb: buffer to reallocate 2771 * @delta: number of bytes to advance tail 2772 * 2773 * The function makes a sense only on a fragmented &sk_buff, 2774 * it expands header moving its tail forward and copying necessary 2775 * data from fragmented part. 2776 * 2777 * &sk_buff MUST have reference count of 1. 2778 * 2779 * Returns %NULL (and &sk_buff does not change) if pull failed 2780 * or value of new tail of skb in the case of success. 2781 * 2782 * All the pointers pointing into skb header may change and must be 2783 * reloaded after call to this function. 2784 */ 2785 2786 /* Moves tail of skb head forward, copying data from fragmented part, 2787 * when it is necessary. 2788 * 1. It may fail due to malloc failure. 2789 * 2. It may change skb pointers. 2790 * 2791 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2792 */ 2793 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2794 { 2795 /* If skb has not enough free space at tail, get new one 2796 * plus 128 bytes for future expansions. If we have enough 2797 * room at tail, reallocate without expansion only if skb is cloned. 2798 */ 2799 int i, k, eat = (skb->tail + delta) - skb->end; 2800 2801 if (eat > 0 || skb_cloned(skb)) { 2802 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2803 GFP_ATOMIC)) 2804 return NULL; 2805 } 2806 2807 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2808 skb_tail_pointer(skb), delta)); 2809 2810 /* Optimization: no fragments, no reasons to preestimate 2811 * size of pulled pages. Superb. 2812 */ 2813 if (!skb_has_frag_list(skb)) 2814 goto pull_pages; 2815 2816 /* Estimate size of pulled pages. */ 2817 eat = delta; 2818 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2819 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2820 2821 if (size >= eat) 2822 goto pull_pages; 2823 eat -= size; 2824 } 2825 2826 /* If we need update frag list, we are in troubles. 2827 * Certainly, it is possible to add an offset to skb data, 2828 * but taking into account that pulling is expected to 2829 * be very rare operation, it is worth to fight against 2830 * further bloating skb head and crucify ourselves here instead. 2831 * Pure masohism, indeed. 8)8) 2832 */ 2833 if (eat) { 2834 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2835 struct sk_buff *clone = NULL; 2836 struct sk_buff *insp = NULL; 2837 2838 do { 2839 if (list->len <= eat) { 2840 /* Eaten as whole. */ 2841 eat -= list->len; 2842 list = list->next; 2843 insp = list; 2844 } else { 2845 /* Eaten partially. */ 2846 if (skb_is_gso(skb) && !list->head_frag && 2847 skb_headlen(list)) 2848 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2849 2850 if (skb_shared(list)) { 2851 /* Sucks! We need to fork list. :-( */ 2852 clone = skb_clone(list, GFP_ATOMIC); 2853 if (!clone) 2854 return NULL; 2855 insp = list->next; 2856 list = clone; 2857 } else { 2858 /* This may be pulled without 2859 * problems. */ 2860 insp = list; 2861 } 2862 if (!pskb_pull(list, eat)) { 2863 kfree_skb(clone); 2864 return NULL; 2865 } 2866 break; 2867 } 2868 } while (eat); 2869 2870 /* Free pulled out fragments. */ 2871 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2872 skb_shinfo(skb)->frag_list = list->next; 2873 consume_skb(list); 2874 } 2875 /* And insert new clone at head. */ 2876 if (clone) { 2877 clone->next = list; 2878 skb_shinfo(skb)->frag_list = clone; 2879 } 2880 } 2881 /* Success! Now we may commit changes to skb data. */ 2882 2883 pull_pages: 2884 eat = delta; 2885 k = 0; 2886 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2887 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2888 2889 if (size <= eat) { 2890 skb_frag_unref(skb, i); 2891 eat -= size; 2892 } else { 2893 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2894 2895 *frag = skb_shinfo(skb)->frags[i]; 2896 if (eat) { 2897 skb_frag_off_add(frag, eat); 2898 skb_frag_size_sub(frag, eat); 2899 if (!i) 2900 goto end; 2901 eat = 0; 2902 } 2903 k++; 2904 } 2905 } 2906 skb_shinfo(skb)->nr_frags = k; 2907 2908 end: 2909 skb->tail += delta; 2910 skb->data_len -= delta; 2911 2912 if (!skb->data_len) 2913 skb_zcopy_clear(skb, false); 2914 2915 return skb_tail_pointer(skb); 2916 } 2917 EXPORT_SYMBOL(__pskb_pull_tail); 2918 2919 /** 2920 * skb_copy_bits - copy bits from skb to kernel buffer 2921 * @skb: source skb 2922 * @offset: offset in source 2923 * @to: destination buffer 2924 * @len: number of bytes to copy 2925 * 2926 * Copy the specified number of bytes from the source skb to the 2927 * destination buffer. 2928 * 2929 * CAUTION ! : 2930 * If its prototype is ever changed, 2931 * check arch/{*}/net/{*}.S files, 2932 * since it is called from BPF assembly code. 2933 */ 2934 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2935 { 2936 int start = skb_headlen(skb); 2937 struct sk_buff *frag_iter; 2938 int i, copy; 2939 2940 if (offset > (int)skb->len - len) 2941 goto fault; 2942 2943 /* Copy header. */ 2944 if ((copy = start - offset) > 0) { 2945 if (copy > len) 2946 copy = len; 2947 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2948 if ((len -= copy) == 0) 2949 return 0; 2950 offset += copy; 2951 to += copy; 2952 } 2953 2954 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2955 int end; 2956 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2957 2958 WARN_ON(start > offset + len); 2959 2960 end = start + skb_frag_size(f); 2961 if ((copy = end - offset) > 0) { 2962 u32 p_off, p_len, copied; 2963 struct page *p; 2964 u8 *vaddr; 2965 2966 if (copy > len) 2967 copy = len; 2968 2969 skb_frag_foreach_page(f, 2970 skb_frag_off(f) + offset - start, 2971 copy, p, p_off, p_len, copied) { 2972 vaddr = kmap_atomic(p); 2973 memcpy(to + copied, vaddr + p_off, p_len); 2974 kunmap_atomic(vaddr); 2975 } 2976 2977 if ((len -= copy) == 0) 2978 return 0; 2979 offset += copy; 2980 to += copy; 2981 } 2982 start = end; 2983 } 2984 2985 skb_walk_frags(skb, frag_iter) { 2986 int end; 2987 2988 WARN_ON(start > offset + len); 2989 2990 end = start + frag_iter->len; 2991 if ((copy = end - offset) > 0) { 2992 if (copy > len) 2993 copy = len; 2994 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2995 goto fault; 2996 if ((len -= copy) == 0) 2997 return 0; 2998 offset += copy; 2999 to += copy; 3000 } 3001 start = end; 3002 } 3003 3004 if (!len) 3005 return 0; 3006 3007 fault: 3008 return -EFAULT; 3009 } 3010 EXPORT_SYMBOL(skb_copy_bits); 3011 3012 /* 3013 * Callback from splice_to_pipe(), if we need to release some pages 3014 * at the end of the spd in case we error'ed out in filling the pipe. 3015 */ 3016 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3017 { 3018 put_page(spd->pages[i]); 3019 } 3020 3021 static struct page *linear_to_page(struct page *page, unsigned int *len, 3022 unsigned int *offset, 3023 struct sock *sk) 3024 { 3025 struct page_frag *pfrag = sk_page_frag(sk); 3026 3027 if (!sk_page_frag_refill(sk, pfrag)) 3028 return NULL; 3029 3030 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3031 3032 memcpy(page_address(pfrag->page) + pfrag->offset, 3033 page_address(page) + *offset, *len); 3034 *offset = pfrag->offset; 3035 pfrag->offset += *len; 3036 3037 return pfrag->page; 3038 } 3039 3040 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3041 struct page *page, 3042 unsigned int offset) 3043 { 3044 return spd->nr_pages && 3045 spd->pages[spd->nr_pages - 1] == page && 3046 (spd->partial[spd->nr_pages - 1].offset + 3047 spd->partial[spd->nr_pages - 1].len == offset); 3048 } 3049 3050 /* 3051 * Fill page/offset/length into spd, if it can hold more pages. 3052 */ 3053 static bool spd_fill_page(struct splice_pipe_desc *spd, 3054 struct pipe_inode_info *pipe, struct page *page, 3055 unsigned int *len, unsigned int offset, 3056 bool linear, 3057 struct sock *sk) 3058 { 3059 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3060 return true; 3061 3062 if (linear) { 3063 page = linear_to_page(page, len, &offset, sk); 3064 if (!page) 3065 return true; 3066 } 3067 if (spd_can_coalesce(spd, page, offset)) { 3068 spd->partial[spd->nr_pages - 1].len += *len; 3069 return false; 3070 } 3071 get_page(page); 3072 spd->pages[spd->nr_pages] = page; 3073 spd->partial[spd->nr_pages].len = *len; 3074 spd->partial[spd->nr_pages].offset = offset; 3075 spd->nr_pages++; 3076 3077 return false; 3078 } 3079 3080 static bool __splice_segment(struct page *page, unsigned int poff, 3081 unsigned int plen, unsigned int *off, 3082 unsigned int *len, 3083 struct splice_pipe_desc *spd, bool linear, 3084 struct sock *sk, 3085 struct pipe_inode_info *pipe) 3086 { 3087 if (!*len) 3088 return true; 3089 3090 /* skip this segment if already processed */ 3091 if (*off >= plen) { 3092 *off -= plen; 3093 return false; 3094 } 3095 3096 /* ignore any bits we already processed */ 3097 poff += *off; 3098 plen -= *off; 3099 *off = 0; 3100 3101 do { 3102 unsigned int flen = min(*len, plen); 3103 3104 if (spd_fill_page(spd, pipe, page, &flen, poff, 3105 linear, sk)) 3106 return true; 3107 poff += flen; 3108 plen -= flen; 3109 *len -= flen; 3110 } while (*len && plen); 3111 3112 return false; 3113 } 3114 3115 /* 3116 * Map linear and fragment data from the skb to spd. It reports true if the 3117 * pipe is full or if we already spliced the requested length. 3118 */ 3119 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3120 unsigned int *offset, unsigned int *len, 3121 struct splice_pipe_desc *spd, struct sock *sk) 3122 { 3123 int seg; 3124 struct sk_buff *iter; 3125 3126 /* map the linear part : 3127 * If skb->head_frag is set, this 'linear' part is backed by a 3128 * fragment, and if the head is not shared with any clones then 3129 * we can avoid a copy since we own the head portion of this page. 3130 */ 3131 if (__splice_segment(virt_to_page(skb->data), 3132 (unsigned long) skb->data & (PAGE_SIZE - 1), 3133 skb_headlen(skb), 3134 offset, len, spd, 3135 skb_head_is_locked(skb), 3136 sk, pipe)) 3137 return true; 3138 3139 /* 3140 * then map the fragments 3141 */ 3142 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3143 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3144 3145 if (__splice_segment(skb_frag_page(f), 3146 skb_frag_off(f), skb_frag_size(f), 3147 offset, len, spd, false, sk, pipe)) 3148 return true; 3149 } 3150 3151 skb_walk_frags(skb, iter) { 3152 if (*offset >= iter->len) { 3153 *offset -= iter->len; 3154 continue; 3155 } 3156 /* __skb_splice_bits() only fails if the output has no room 3157 * left, so no point in going over the frag_list for the error 3158 * case. 3159 */ 3160 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3161 return true; 3162 } 3163 3164 return false; 3165 } 3166 3167 /* 3168 * Map data from the skb to a pipe. Should handle both the linear part, 3169 * the fragments, and the frag list. 3170 */ 3171 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3172 struct pipe_inode_info *pipe, unsigned int tlen, 3173 unsigned int flags) 3174 { 3175 struct partial_page partial[MAX_SKB_FRAGS]; 3176 struct page *pages[MAX_SKB_FRAGS]; 3177 struct splice_pipe_desc spd = { 3178 .pages = pages, 3179 .partial = partial, 3180 .nr_pages_max = MAX_SKB_FRAGS, 3181 .ops = &nosteal_pipe_buf_ops, 3182 .spd_release = sock_spd_release, 3183 }; 3184 int ret = 0; 3185 3186 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3187 3188 if (spd.nr_pages) 3189 ret = splice_to_pipe(pipe, &spd); 3190 3191 return ret; 3192 } 3193 EXPORT_SYMBOL_GPL(skb_splice_bits); 3194 3195 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3196 { 3197 struct socket *sock = sk->sk_socket; 3198 size_t size = msg_data_left(msg); 3199 3200 if (!sock) 3201 return -EINVAL; 3202 3203 if (!sock->ops->sendmsg_locked) 3204 return sock_no_sendmsg_locked(sk, msg, size); 3205 3206 return sock->ops->sendmsg_locked(sk, msg, size); 3207 } 3208 3209 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3210 { 3211 struct socket *sock = sk->sk_socket; 3212 3213 if (!sock) 3214 return -EINVAL; 3215 return sock_sendmsg(sock, msg); 3216 } 3217 3218 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3219 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3220 int len, sendmsg_func sendmsg) 3221 { 3222 unsigned int orig_len = len; 3223 struct sk_buff *head = skb; 3224 unsigned short fragidx; 3225 int slen, ret; 3226 3227 do_frag_list: 3228 3229 /* Deal with head data */ 3230 while (offset < skb_headlen(skb) && len) { 3231 struct kvec kv; 3232 struct msghdr msg; 3233 3234 slen = min_t(int, len, skb_headlen(skb) - offset); 3235 kv.iov_base = skb->data + offset; 3236 kv.iov_len = slen; 3237 memset(&msg, 0, sizeof(msg)); 3238 msg.msg_flags = MSG_DONTWAIT; 3239 3240 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3241 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3242 sendmsg_unlocked, sk, &msg); 3243 if (ret <= 0) 3244 goto error; 3245 3246 offset += ret; 3247 len -= ret; 3248 } 3249 3250 /* All the data was skb head? */ 3251 if (!len) 3252 goto out; 3253 3254 /* Make offset relative to start of frags */ 3255 offset -= skb_headlen(skb); 3256 3257 /* Find where we are in frag list */ 3258 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3259 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3260 3261 if (offset < skb_frag_size(frag)) 3262 break; 3263 3264 offset -= skb_frag_size(frag); 3265 } 3266 3267 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3268 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3269 3270 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3271 3272 while (slen) { 3273 struct bio_vec bvec; 3274 struct msghdr msg = { 3275 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3276 }; 3277 3278 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3279 skb_frag_off(frag) + offset); 3280 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3281 slen); 3282 3283 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3284 sendmsg_unlocked, sk, &msg); 3285 if (ret <= 0) 3286 goto error; 3287 3288 len -= ret; 3289 offset += ret; 3290 slen -= ret; 3291 } 3292 3293 offset = 0; 3294 } 3295 3296 if (len) { 3297 /* Process any frag lists */ 3298 3299 if (skb == head) { 3300 if (skb_has_frag_list(skb)) { 3301 skb = skb_shinfo(skb)->frag_list; 3302 goto do_frag_list; 3303 } 3304 } else if (skb->next) { 3305 skb = skb->next; 3306 goto do_frag_list; 3307 } 3308 } 3309 3310 out: 3311 return orig_len - len; 3312 3313 error: 3314 return orig_len == len ? ret : orig_len - len; 3315 } 3316 3317 /* Send skb data on a socket. Socket must be locked. */ 3318 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3319 int len) 3320 { 3321 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3322 } 3323 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3324 3325 /* Send skb data on a socket. Socket must be unlocked. */ 3326 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3327 { 3328 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3329 } 3330 3331 /** 3332 * skb_store_bits - store bits from kernel buffer to skb 3333 * @skb: destination buffer 3334 * @offset: offset in destination 3335 * @from: source buffer 3336 * @len: number of bytes to copy 3337 * 3338 * Copy the specified number of bytes from the source buffer to the 3339 * destination skb. This function handles all the messy bits of 3340 * traversing fragment lists and such. 3341 */ 3342 3343 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3344 { 3345 int start = skb_headlen(skb); 3346 struct sk_buff *frag_iter; 3347 int i, copy; 3348 3349 if (offset > (int)skb->len - len) 3350 goto fault; 3351 3352 if ((copy = start - offset) > 0) { 3353 if (copy > len) 3354 copy = len; 3355 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3356 if ((len -= copy) == 0) 3357 return 0; 3358 offset += copy; 3359 from += copy; 3360 } 3361 3362 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3363 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3364 int end; 3365 3366 WARN_ON(start > offset + len); 3367 3368 end = start + skb_frag_size(frag); 3369 if ((copy = end - offset) > 0) { 3370 u32 p_off, p_len, copied; 3371 struct page *p; 3372 u8 *vaddr; 3373 3374 if (copy > len) 3375 copy = len; 3376 3377 skb_frag_foreach_page(frag, 3378 skb_frag_off(frag) + offset - start, 3379 copy, p, p_off, p_len, copied) { 3380 vaddr = kmap_atomic(p); 3381 memcpy(vaddr + p_off, from + copied, p_len); 3382 kunmap_atomic(vaddr); 3383 } 3384 3385 if ((len -= copy) == 0) 3386 return 0; 3387 offset += copy; 3388 from += copy; 3389 } 3390 start = end; 3391 } 3392 3393 skb_walk_frags(skb, frag_iter) { 3394 int end; 3395 3396 WARN_ON(start > offset + len); 3397 3398 end = start + frag_iter->len; 3399 if ((copy = end - offset) > 0) { 3400 if (copy > len) 3401 copy = len; 3402 if (skb_store_bits(frag_iter, offset - start, 3403 from, copy)) 3404 goto fault; 3405 if ((len -= copy) == 0) 3406 return 0; 3407 offset += copy; 3408 from += copy; 3409 } 3410 start = end; 3411 } 3412 if (!len) 3413 return 0; 3414 3415 fault: 3416 return -EFAULT; 3417 } 3418 EXPORT_SYMBOL(skb_store_bits); 3419 3420 /* Checksum skb data. */ 3421 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3422 __wsum csum, const struct skb_checksum_ops *ops) 3423 { 3424 int start = skb_headlen(skb); 3425 int i, copy = start - offset; 3426 struct sk_buff *frag_iter; 3427 int pos = 0; 3428 3429 /* Checksum header. */ 3430 if (copy > 0) { 3431 if (copy > len) 3432 copy = len; 3433 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3434 skb->data + offset, copy, csum); 3435 if ((len -= copy) == 0) 3436 return csum; 3437 offset += copy; 3438 pos = copy; 3439 } 3440 3441 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3442 int end; 3443 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3444 3445 WARN_ON(start > offset + len); 3446 3447 end = start + skb_frag_size(frag); 3448 if ((copy = end - offset) > 0) { 3449 u32 p_off, p_len, copied; 3450 struct page *p; 3451 __wsum csum2; 3452 u8 *vaddr; 3453 3454 if (copy > len) 3455 copy = len; 3456 3457 skb_frag_foreach_page(frag, 3458 skb_frag_off(frag) + offset - start, 3459 copy, p, p_off, p_len, copied) { 3460 vaddr = kmap_atomic(p); 3461 csum2 = INDIRECT_CALL_1(ops->update, 3462 csum_partial_ext, 3463 vaddr + p_off, p_len, 0); 3464 kunmap_atomic(vaddr); 3465 csum = INDIRECT_CALL_1(ops->combine, 3466 csum_block_add_ext, csum, 3467 csum2, pos, p_len); 3468 pos += p_len; 3469 } 3470 3471 if (!(len -= copy)) 3472 return csum; 3473 offset += copy; 3474 } 3475 start = end; 3476 } 3477 3478 skb_walk_frags(skb, frag_iter) { 3479 int end; 3480 3481 WARN_ON(start > offset + len); 3482 3483 end = start + frag_iter->len; 3484 if ((copy = end - offset) > 0) { 3485 __wsum csum2; 3486 if (copy > len) 3487 copy = len; 3488 csum2 = __skb_checksum(frag_iter, offset - start, 3489 copy, 0, ops); 3490 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3491 csum, csum2, pos, copy); 3492 if ((len -= copy) == 0) 3493 return csum; 3494 offset += copy; 3495 pos += copy; 3496 } 3497 start = end; 3498 } 3499 BUG_ON(len); 3500 3501 return csum; 3502 } 3503 EXPORT_SYMBOL(__skb_checksum); 3504 3505 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3506 int len, __wsum csum) 3507 { 3508 const struct skb_checksum_ops ops = { 3509 .update = csum_partial_ext, 3510 .combine = csum_block_add_ext, 3511 }; 3512 3513 return __skb_checksum(skb, offset, len, csum, &ops); 3514 } 3515 EXPORT_SYMBOL(skb_checksum); 3516 3517 /* Both of above in one bottle. */ 3518 3519 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3520 u8 *to, int len) 3521 { 3522 int start = skb_headlen(skb); 3523 int i, copy = start - offset; 3524 struct sk_buff *frag_iter; 3525 int pos = 0; 3526 __wsum csum = 0; 3527 3528 /* Copy header. */ 3529 if (copy > 0) { 3530 if (copy > len) 3531 copy = len; 3532 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3533 copy); 3534 if ((len -= copy) == 0) 3535 return csum; 3536 offset += copy; 3537 to += copy; 3538 pos = copy; 3539 } 3540 3541 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3542 int end; 3543 3544 WARN_ON(start > offset + len); 3545 3546 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3547 if ((copy = end - offset) > 0) { 3548 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3549 u32 p_off, p_len, copied; 3550 struct page *p; 3551 __wsum csum2; 3552 u8 *vaddr; 3553 3554 if (copy > len) 3555 copy = len; 3556 3557 skb_frag_foreach_page(frag, 3558 skb_frag_off(frag) + offset - start, 3559 copy, p, p_off, p_len, copied) { 3560 vaddr = kmap_atomic(p); 3561 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3562 to + copied, 3563 p_len); 3564 kunmap_atomic(vaddr); 3565 csum = csum_block_add(csum, csum2, pos); 3566 pos += p_len; 3567 } 3568 3569 if (!(len -= copy)) 3570 return csum; 3571 offset += copy; 3572 to += copy; 3573 } 3574 start = end; 3575 } 3576 3577 skb_walk_frags(skb, frag_iter) { 3578 __wsum csum2; 3579 int end; 3580 3581 WARN_ON(start > offset + len); 3582 3583 end = start + frag_iter->len; 3584 if ((copy = end - offset) > 0) { 3585 if (copy > len) 3586 copy = len; 3587 csum2 = skb_copy_and_csum_bits(frag_iter, 3588 offset - start, 3589 to, copy); 3590 csum = csum_block_add(csum, csum2, pos); 3591 if ((len -= copy) == 0) 3592 return csum; 3593 offset += copy; 3594 to += copy; 3595 pos += copy; 3596 } 3597 start = end; 3598 } 3599 BUG_ON(len); 3600 return csum; 3601 } 3602 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3603 3604 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3605 { 3606 __sum16 sum; 3607 3608 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3609 /* See comments in __skb_checksum_complete(). */ 3610 if (likely(!sum)) { 3611 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3612 !skb->csum_complete_sw) 3613 netdev_rx_csum_fault(skb->dev, skb); 3614 } 3615 if (!skb_shared(skb)) 3616 skb->csum_valid = !sum; 3617 return sum; 3618 } 3619 EXPORT_SYMBOL(__skb_checksum_complete_head); 3620 3621 /* This function assumes skb->csum already holds pseudo header's checksum, 3622 * which has been changed from the hardware checksum, for example, by 3623 * __skb_checksum_validate_complete(). And, the original skb->csum must 3624 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3625 * 3626 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3627 * zero. The new checksum is stored back into skb->csum unless the skb is 3628 * shared. 3629 */ 3630 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3631 { 3632 __wsum csum; 3633 __sum16 sum; 3634 3635 csum = skb_checksum(skb, 0, skb->len, 0); 3636 3637 sum = csum_fold(csum_add(skb->csum, csum)); 3638 /* This check is inverted, because we already knew the hardware 3639 * checksum is invalid before calling this function. So, if the 3640 * re-computed checksum is valid instead, then we have a mismatch 3641 * between the original skb->csum and skb_checksum(). This means either 3642 * the original hardware checksum is incorrect or we screw up skb->csum 3643 * when moving skb->data around. 3644 */ 3645 if (likely(!sum)) { 3646 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3647 !skb->csum_complete_sw) 3648 netdev_rx_csum_fault(skb->dev, skb); 3649 } 3650 3651 if (!skb_shared(skb)) { 3652 /* Save full packet checksum */ 3653 skb->csum = csum; 3654 skb->ip_summed = CHECKSUM_COMPLETE; 3655 skb->csum_complete_sw = 1; 3656 skb->csum_valid = !sum; 3657 } 3658 3659 return sum; 3660 } 3661 EXPORT_SYMBOL(__skb_checksum_complete); 3662 3663 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3664 { 3665 net_warn_ratelimited( 3666 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3667 __func__); 3668 return 0; 3669 } 3670 3671 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3672 int offset, int len) 3673 { 3674 net_warn_ratelimited( 3675 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3676 __func__); 3677 return 0; 3678 } 3679 3680 static const struct skb_checksum_ops default_crc32c_ops = { 3681 .update = warn_crc32c_csum_update, 3682 .combine = warn_crc32c_csum_combine, 3683 }; 3684 3685 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3686 &default_crc32c_ops; 3687 EXPORT_SYMBOL(crc32c_csum_stub); 3688 3689 /** 3690 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3691 * @from: source buffer 3692 * 3693 * Calculates the amount of linear headroom needed in the 'to' skb passed 3694 * into skb_zerocopy(). 3695 */ 3696 unsigned int 3697 skb_zerocopy_headlen(const struct sk_buff *from) 3698 { 3699 unsigned int hlen = 0; 3700 3701 if (!from->head_frag || 3702 skb_headlen(from) < L1_CACHE_BYTES || 3703 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3704 hlen = skb_headlen(from); 3705 if (!hlen) 3706 hlen = from->len; 3707 } 3708 3709 if (skb_has_frag_list(from)) 3710 hlen = from->len; 3711 3712 return hlen; 3713 } 3714 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3715 3716 /** 3717 * skb_zerocopy - Zero copy skb to skb 3718 * @to: destination buffer 3719 * @from: source buffer 3720 * @len: number of bytes to copy from source buffer 3721 * @hlen: size of linear headroom in destination buffer 3722 * 3723 * Copies up to `len` bytes from `from` to `to` by creating references 3724 * to the frags in the source buffer. 3725 * 3726 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3727 * headroom in the `to` buffer. 3728 * 3729 * Return value: 3730 * 0: everything is OK 3731 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3732 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3733 */ 3734 int 3735 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3736 { 3737 int i, j = 0; 3738 int plen = 0; /* length of skb->head fragment */ 3739 int ret; 3740 struct page *page; 3741 unsigned int offset; 3742 3743 BUG_ON(!from->head_frag && !hlen); 3744 3745 /* dont bother with small payloads */ 3746 if (len <= skb_tailroom(to)) 3747 return skb_copy_bits(from, 0, skb_put(to, len), len); 3748 3749 if (hlen) { 3750 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3751 if (unlikely(ret)) 3752 return ret; 3753 len -= hlen; 3754 } else { 3755 plen = min_t(int, skb_headlen(from), len); 3756 if (plen) { 3757 page = virt_to_head_page(from->head); 3758 offset = from->data - (unsigned char *)page_address(page); 3759 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3760 offset, plen); 3761 get_page(page); 3762 j = 1; 3763 len -= plen; 3764 } 3765 } 3766 3767 skb_len_add(to, len + plen); 3768 3769 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3770 skb_tx_error(from); 3771 return -ENOMEM; 3772 } 3773 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3774 3775 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3776 int size; 3777 3778 if (!len) 3779 break; 3780 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3781 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3782 len); 3783 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3784 len -= size; 3785 skb_frag_ref(to, j); 3786 j++; 3787 } 3788 skb_shinfo(to)->nr_frags = j; 3789 3790 return 0; 3791 } 3792 EXPORT_SYMBOL_GPL(skb_zerocopy); 3793 3794 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3795 { 3796 __wsum csum; 3797 long csstart; 3798 3799 if (skb->ip_summed == CHECKSUM_PARTIAL) 3800 csstart = skb_checksum_start_offset(skb); 3801 else 3802 csstart = skb_headlen(skb); 3803 3804 BUG_ON(csstart > skb_headlen(skb)); 3805 3806 skb_copy_from_linear_data(skb, to, csstart); 3807 3808 csum = 0; 3809 if (csstart != skb->len) 3810 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3811 skb->len - csstart); 3812 3813 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3814 long csstuff = csstart + skb->csum_offset; 3815 3816 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3817 } 3818 } 3819 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3820 3821 /** 3822 * skb_dequeue - remove from the head of the queue 3823 * @list: list to dequeue from 3824 * 3825 * Remove the head of the list. The list lock is taken so the function 3826 * may be used safely with other locking list functions. The head item is 3827 * returned or %NULL if the list is empty. 3828 */ 3829 3830 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3831 { 3832 unsigned long flags; 3833 struct sk_buff *result; 3834 3835 spin_lock_irqsave(&list->lock, flags); 3836 result = __skb_dequeue(list); 3837 spin_unlock_irqrestore(&list->lock, flags); 3838 return result; 3839 } 3840 EXPORT_SYMBOL(skb_dequeue); 3841 3842 /** 3843 * skb_dequeue_tail - remove from the tail of the queue 3844 * @list: list to dequeue from 3845 * 3846 * Remove the tail of the list. The list lock is taken so the function 3847 * may be used safely with other locking list functions. The tail item is 3848 * returned or %NULL if the list is empty. 3849 */ 3850 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3851 { 3852 unsigned long flags; 3853 struct sk_buff *result; 3854 3855 spin_lock_irqsave(&list->lock, flags); 3856 result = __skb_dequeue_tail(list); 3857 spin_unlock_irqrestore(&list->lock, flags); 3858 return result; 3859 } 3860 EXPORT_SYMBOL(skb_dequeue_tail); 3861 3862 /** 3863 * skb_queue_purge_reason - empty a list 3864 * @list: list to empty 3865 * @reason: drop reason 3866 * 3867 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3868 * the list and one reference dropped. This function takes the list 3869 * lock and is atomic with respect to other list locking functions. 3870 */ 3871 void skb_queue_purge_reason(struct sk_buff_head *list, 3872 enum skb_drop_reason reason) 3873 { 3874 struct sk_buff_head tmp; 3875 unsigned long flags; 3876 3877 if (skb_queue_empty_lockless(list)) 3878 return; 3879 3880 __skb_queue_head_init(&tmp); 3881 3882 spin_lock_irqsave(&list->lock, flags); 3883 skb_queue_splice_init(list, &tmp); 3884 spin_unlock_irqrestore(&list->lock, flags); 3885 3886 __skb_queue_purge_reason(&tmp, reason); 3887 } 3888 EXPORT_SYMBOL(skb_queue_purge_reason); 3889 3890 /** 3891 * skb_rbtree_purge - empty a skb rbtree 3892 * @root: root of the rbtree to empty 3893 * Return value: the sum of truesizes of all purged skbs. 3894 * 3895 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3896 * the list and one reference dropped. This function does not take 3897 * any lock. Synchronization should be handled by the caller (e.g., TCP 3898 * out-of-order queue is protected by the socket lock). 3899 */ 3900 unsigned int skb_rbtree_purge(struct rb_root *root) 3901 { 3902 struct rb_node *p = rb_first(root); 3903 unsigned int sum = 0; 3904 3905 while (p) { 3906 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3907 3908 p = rb_next(p); 3909 rb_erase(&skb->rbnode, root); 3910 sum += skb->truesize; 3911 kfree_skb(skb); 3912 } 3913 return sum; 3914 } 3915 3916 void skb_errqueue_purge(struct sk_buff_head *list) 3917 { 3918 struct sk_buff *skb, *next; 3919 struct sk_buff_head kill; 3920 unsigned long flags; 3921 3922 __skb_queue_head_init(&kill); 3923 3924 spin_lock_irqsave(&list->lock, flags); 3925 skb_queue_walk_safe(list, skb, next) { 3926 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3927 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3928 continue; 3929 __skb_unlink(skb, list); 3930 __skb_queue_tail(&kill, skb); 3931 } 3932 spin_unlock_irqrestore(&list->lock, flags); 3933 __skb_queue_purge(&kill); 3934 } 3935 EXPORT_SYMBOL(skb_errqueue_purge); 3936 3937 /** 3938 * skb_queue_head - queue a buffer at the list head 3939 * @list: list to use 3940 * @newsk: buffer to queue 3941 * 3942 * Queue a buffer at the start of the list. This function takes the 3943 * list lock and can be used safely with other locking &sk_buff functions 3944 * safely. 3945 * 3946 * A buffer cannot be placed on two lists at the same time. 3947 */ 3948 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3949 { 3950 unsigned long flags; 3951 3952 spin_lock_irqsave(&list->lock, flags); 3953 __skb_queue_head(list, newsk); 3954 spin_unlock_irqrestore(&list->lock, flags); 3955 } 3956 EXPORT_SYMBOL(skb_queue_head); 3957 3958 /** 3959 * skb_queue_tail - queue a buffer at the list tail 3960 * @list: list to use 3961 * @newsk: buffer to queue 3962 * 3963 * Queue a buffer at the tail of the list. This function takes the 3964 * list lock and can be used safely with other locking &sk_buff functions 3965 * safely. 3966 * 3967 * A buffer cannot be placed on two lists at the same time. 3968 */ 3969 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3970 { 3971 unsigned long flags; 3972 3973 spin_lock_irqsave(&list->lock, flags); 3974 __skb_queue_tail(list, newsk); 3975 spin_unlock_irqrestore(&list->lock, flags); 3976 } 3977 EXPORT_SYMBOL(skb_queue_tail); 3978 3979 /** 3980 * skb_unlink - remove a buffer from a list 3981 * @skb: buffer to remove 3982 * @list: list to use 3983 * 3984 * Remove a packet from a list. The list locks are taken and this 3985 * function is atomic with respect to other list locked calls 3986 * 3987 * You must know what list the SKB is on. 3988 */ 3989 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3990 { 3991 unsigned long flags; 3992 3993 spin_lock_irqsave(&list->lock, flags); 3994 __skb_unlink(skb, list); 3995 spin_unlock_irqrestore(&list->lock, flags); 3996 } 3997 EXPORT_SYMBOL(skb_unlink); 3998 3999 /** 4000 * skb_append - append a buffer 4001 * @old: buffer to insert after 4002 * @newsk: buffer to insert 4003 * @list: list to use 4004 * 4005 * Place a packet after a given packet in a list. The list locks are taken 4006 * and this function is atomic with respect to other list locked calls. 4007 * A buffer cannot be placed on two lists at the same time. 4008 */ 4009 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4010 { 4011 unsigned long flags; 4012 4013 spin_lock_irqsave(&list->lock, flags); 4014 __skb_queue_after(list, old, newsk); 4015 spin_unlock_irqrestore(&list->lock, flags); 4016 } 4017 EXPORT_SYMBOL(skb_append); 4018 4019 static inline void skb_split_inside_header(struct sk_buff *skb, 4020 struct sk_buff* skb1, 4021 const u32 len, const int pos) 4022 { 4023 int i; 4024 4025 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4026 pos - len); 4027 /* And move data appendix as is. */ 4028 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4029 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4030 4031 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4032 skb_shinfo(skb)->nr_frags = 0; 4033 skb1->data_len = skb->data_len; 4034 skb1->len += skb1->data_len; 4035 skb->data_len = 0; 4036 skb->len = len; 4037 skb_set_tail_pointer(skb, len); 4038 } 4039 4040 static inline void skb_split_no_header(struct sk_buff *skb, 4041 struct sk_buff* skb1, 4042 const u32 len, int pos) 4043 { 4044 int i, k = 0; 4045 const int nfrags = skb_shinfo(skb)->nr_frags; 4046 4047 skb_shinfo(skb)->nr_frags = 0; 4048 skb1->len = skb1->data_len = skb->len - len; 4049 skb->len = len; 4050 skb->data_len = len - pos; 4051 4052 for (i = 0; i < nfrags; i++) { 4053 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4054 4055 if (pos + size > len) { 4056 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4057 4058 if (pos < len) { 4059 /* Split frag. 4060 * We have two variants in this case: 4061 * 1. Move all the frag to the second 4062 * part, if it is possible. F.e. 4063 * this approach is mandatory for TUX, 4064 * where splitting is expensive. 4065 * 2. Split is accurately. We make this. 4066 */ 4067 skb_frag_ref(skb, i); 4068 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4069 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4070 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4071 skb_shinfo(skb)->nr_frags++; 4072 } 4073 k++; 4074 } else 4075 skb_shinfo(skb)->nr_frags++; 4076 pos += size; 4077 } 4078 skb_shinfo(skb1)->nr_frags = k; 4079 } 4080 4081 /** 4082 * skb_split - Split fragmented skb to two parts at length len. 4083 * @skb: the buffer to split 4084 * @skb1: the buffer to receive the second part 4085 * @len: new length for skb 4086 */ 4087 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4088 { 4089 int pos = skb_headlen(skb); 4090 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4091 4092 skb_zcopy_downgrade_managed(skb); 4093 4094 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4095 skb_zerocopy_clone(skb1, skb, 0); 4096 if (len < pos) /* Split line is inside header. */ 4097 skb_split_inside_header(skb, skb1, len, pos); 4098 else /* Second chunk has no header, nothing to copy. */ 4099 skb_split_no_header(skb, skb1, len, pos); 4100 } 4101 EXPORT_SYMBOL(skb_split); 4102 4103 /* Shifting from/to a cloned skb is a no-go. 4104 * 4105 * Caller cannot keep skb_shinfo related pointers past calling here! 4106 */ 4107 static int skb_prepare_for_shift(struct sk_buff *skb) 4108 { 4109 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4110 } 4111 4112 /** 4113 * skb_shift - Shifts paged data partially from skb to another 4114 * @tgt: buffer into which tail data gets added 4115 * @skb: buffer from which the paged data comes from 4116 * @shiftlen: shift up to this many bytes 4117 * 4118 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4119 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4120 * It's up to caller to free skb if everything was shifted. 4121 * 4122 * If @tgt runs out of frags, the whole operation is aborted. 4123 * 4124 * Skb cannot include anything else but paged data while tgt is allowed 4125 * to have non-paged data as well. 4126 * 4127 * TODO: full sized shift could be optimized but that would need 4128 * specialized skb free'er to handle frags without up-to-date nr_frags. 4129 */ 4130 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4131 { 4132 int from, to, merge, todo; 4133 skb_frag_t *fragfrom, *fragto; 4134 4135 BUG_ON(shiftlen > skb->len); 4136 4137 if (skb_headlen(skb)) 4138 return 0; 4139 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4140 return 0; 4141 4142 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4143 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4144 4145 todo = shiftlen; 4146 from = 0; 4147 to = skb_shinfo(tgt)->nr_frags; 4148 fragfrom = &skb_shinfo(skb)->frags[from]; 4149 4150 /* Actual merge is delayed until the point when we know we can 4151 * commit all, so that we don't have to undo partial changes 4152 */ 4153 if (!to || 4154 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4155 skb_frag_off(fragfrom))) { 4156 merge = -1; 4157 } else { 4158 merge = to - 1; 4159 4160 todo -= skb_frag_size(fragfrom); 4161 if (todo < 0) { 4162 if (skb_prepare_for_shift(skb) || 4163 skb_prepare_for_shift(tgt)) 4164 return 0; 4165 4166 /* All previous frag pointers might be stale! */ 4167 fragfrom = &skb_shinfo(skb)->frags[from]; 4168 fragto = &skb_shinfo(tgt)->frags[merge]; 4169 4170 skb_frag_size_add(fragto, shiftlen); 4171 skb_frag_size_sub(fragfrom, shiftlen); 4172 skb_frag_off_add(fragfrom, shiftlen); 4173 4174 goto onlymerged; 4175 } 4176 4177 from++; 4178 } 4179 4180 /* Skip full, not-fitting skb to avoid expensive operations */ 4181 if ((shiftlen == skb->len) && 4182 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4183 return 0; 4184 4185 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4186 return 0; 4187 4188 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4189 if (to == MAX_SKB_FRAGS) 4190 return 0; 4191 4192 fragfrom = &skb_shinfo(skb)->frags[from]; 4193 fragto = &skb_shinfo(tgt)->frags[to]; 4194 4195 if (todo >= skb_frag_size(fragfrom)) { 4196 *fragto = *fragfrom; 4197 todo -= skb_frag_size(fragfrom); 4198 from++; 4199 to++; 4200 4201 } else { 4202 __skb_frag_ref(fragfrom); 4203 skb_frag_page_copy(fragto, fragfrom); 4204 skb_frag_off_copy(fragto, fragfrom); 4205 skb_frag_size_set(fragto, todo); 4206 4207 skb_frag_off_add(fragfrom, todo); 4208 skb_frag_size_sub(fragfrom, todo); 4209 todo = 0; 4210 4211 to++; 4212 break; 4213 } 4214 } 4215 4216 /* Ready to "commit" this state change to tgt */ 4217 skb_shinfo(tgt)->nr_frags = to; 4218 4219 if (merge >= 0) { 4220 fragfrom = &skb_shinfo(skb)->frags[0]; 4221 fragto = &skb_shinfo(tgt)->frags[merge]; 4222 4223 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4224 __skb_frag_unref(fragfrom, skb->pp_recycle); 4225 } 4226 4227 /* Reposition in the original skb */ 4228 to = 0; 4229 while (from < skb_shinfo(skb)->nr_frags) 4230 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4231 skb_shinfo(skb)->nr_frags = to; 4232 4233 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4234 4235 onlymerged: 4236 /* Most likely the tgt won't ever need its checksum anymore, skb on 4237 * the other hand might need it if it needs to be resent 4238 */ 4239 tgt->ip_summed = CHECKSUM_PARTIAL; 4240 skb->ip_summed = CHECKSUM_PARTIAL; 4241 4242 skb_len_add(skb, -shiftlen); 4243 skb_len_add(tgt, shiftlen); 4244 4245 return shiftlen; 4246 } 4247 4248 /** 4249 * skb_prepare_seq_read - Prepare a sequential read of skb data 4250 * @skb: the buffer to read 4251 * @from: lower offset of data to be read 4252 * @to: upper offset of data to be read 4253 * @st: state variable 4254 * 4255 * Initializes the specified state variable. Must be called before 4256 * invoking skb_seq_read() for the first time. 4257 */ 4258 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4259 unsigned int to, struct skb_seq_state *st) 4260 { 4261 st->lower_offset = from; 4262 st->upper_offset = to; 4263 st->root_skb = st->cur_skb = skb; 4264 st->frag_idx = st->stepped_offset = 0; 4265 st->frag_data = NULL; 4266 st->frag_off = 0; 4267 } 4268 EXPORT_SYMBOL(skb_prepare_seq_read); 4269 4270 /** 4271 * skb_seq_read - Sequentially read skb data 4272 * @consumed: number of bytes consumed by the caller so far 4273 * @data: destination pointer for data to be returned 4274 * @st: state variable 4275 * 4276 * Reads a block of skb data at @consumed relative to the 4277 * lower offset specified to skb_prepare_seq_read(). Assigns 4278 * the head of the data block to @data and returns the length 4279 * of the block or 0 if the end of the skb data or the upper 4280 * offset has been reached. 4281 * 4282 * The caller is not required to consume all of the data 4283 * returned, i.e. @consumed is typically set to the number 4284 * of bytes already consumed and the next call to 4285 * skb_seq_read() will return the remaining part of the block. 4286 * 4287 * Note 1: The size of each block of data returned can be arbitrary, 4288 * this limitation is the cost for zerocopy sequential 4289 * reads of potentially non linear data. 4290 * 4291 * Note 2: Fragment lists within fragments are not implemented 4292 * at the moment, state->root_skb could be replaced with 4293 * a stack for this purpose. 4294 */ 4295 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4296 struct skb_seq_state *st) 4297 { 4298 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4299 skb_frag_t *frag; 4300 4301 if (unlikely(abs_offset >= st->upper_offset)) { 4302 if (st->frag_data) { 4303 kunmap_atomic(st->frag_data); 4304 st->frag_data = NULL; 4305 } 4306 return 0; 4307 } 4308 4309 next_skb: 4310 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4311 4312 if (abs_offset < block_limit && !st->frag_data) { 4313 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4314 return block_limit - abs_offset; 4315 } 4316 4317 if (st->frag_idx == 0 && !st->frag_data) 4318 st->stepped_offset += skb_headlen(st->cur_skb); 4319 4320 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4321 unsigned int pg_idx, pg_off, pg_sz; 4322 4323 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4324 4325 pg_idx = 0; 4326 pg_off = skb_frag_off(frag); 4327 pg_sz = skb_frag_size(frag); 4328 4329 if (skb_frag_must_loop(skb_frag_page(frag))) { 4330 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4331 pg_off = offset_in_page(pg_off + st->frag_off); 4332 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4333 PAGE_SIZE - pg_off); 4334 } 4335 4336 block_limit = pg_sz + st->stepped_offset; 4337 if (abs_offset < block_limit) { 4338 if (!st->frag_data) 4339 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4340 4341 *data = (u8 *)st->frag_data + pg_off + 4342 (abs_offset - st->stepped_offset); 4343 4344 return block_limit - abs_offset; 4345 } 4346 4347 if (st->frag_data) { 4348 kunmap_atomic(st->frag_data); 4349 st->frag_data = NULL; 4350 } 4351 4352 st->stepped_offset += pg_sz; 4353 st->frag_off += pg_sz; 4354 if (st->frag_off == skb_frag_size(frag)) { 4355 st->frag_off = 0; 4356 st->frag_idx++; 4357 } 4358 } 4359 4360 if (st->frag_data) { 4361 kunmap_atomic(st->frag_data); 4362 st->frag_data = NULL; 4363 } 4364 4365 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4366 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4367 st->frag_idx = 0; 4368 goto next_skb; 4369 } else if (st->cur_skb->next) { 4370 st->cur_skb = st->cur_skb->next; 4371 st->frag_idx = 0; 4372 goto next_skb; 4373 } 4374 4375 return 0; 4376 } 4377 EXPORT_SYMBOL(skb_seq_read); 4378 4379 /** 4380 * skb_abort_seq_read - Abort a sequential read of skb data 4381 * @st: state variable 4382 * 4383 * Must be called if skb_seq_read() was not called until it 4384 * returned 0. 4385 */ 4386 void skb_abort_seq_read(struct skb_seq_state *st) 4387 { 4388 if (st->frag_data) 4389 kunmap_atomic(st->frag_data); 4390 } 4391 EXPORT_SYMBOL(skb_abort_seq_read); 4392 4393 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4394 4395 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4396 struct ts_config *conf, 4397 struct ts_state *state) 4398 { 4399 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4400 } 4401 4402 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4403 { 4404 skb_abort_seq_read(TS_SKB_CB(state)); 4405 } 4406 4407 /** 4408 * skb_find_text - Find a text pattern in skb data 4409 * @skb: the buffer to look in 4410 * @from: search offset 4411 * @to: search limit 4412 * @config: textsearch configuration 4413 * 4414 * Finds a pattern in the skb data according to the specified 4415 * textsearch configuration. Use textsearch_next() to retrieve 4416 * subsequent occurrences of the pattern. Returns the offset 4417 * to the first occurrence or UINT_MAX if no match was found. 4418 */ 4419 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4420 unsigned int to, struct ts_config *config) 4421 { 4422 unsigned int patlen = config->ops->get_pattern_len(config); 4423 struct ts_state state; 4424 unsigned int ret; 4425 4426 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4427 4428 config->get_next_block = skb_ts_get_next_block; 4429 config->finish = skb_ts_finish; 4430 4431 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4432 4433 ret = textsearch_find(config, &state); 4434 return (ret + patlen <= to - from ? ret : UINT_MAX); 4435 } 4436 EXPORT_SYMBOL(skb_find_text); 4437 4438 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4439 int offset, size_t size, size_t max_frags) 4440 { 4441 int i = skb_shinfo(skb)->nr_frags; 4442 4443 if (skb_can_coalesce(skb, i, page, offset)) { 4444 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4445 } else if (i < max_frags) { 4446 skb_zcopy_downgrade_managed(skb); 4447 get_page(page); 4448 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4449 } else { 4450 return -EMSGSIZE; 4451 } 4452 4453 return 0; 4454 } 4455 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4456 4457 /** 4458 * skb_pull_rcsum - pull skb and update receive checksum 4459 * @skb: buffer to update 4460 * @len: length of data pulled 4461 * 4462 * This function performs an skb_pull on the packet and updates 4463 * the CHECKSUM_COMPLETE checksum. It should be used on 4464 * receive path processing instead of skb_pull unless you know 4465 * that the checksum difference is zero (e.g., a valid IP header) 4466 * or you are setting ip_summed to CHECKSUM_NONE. 4467 */ 4468 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4469 { 4470 unsigned char *data = skb->data; 4471 4472 BUG_ON(len > skb->len); 4473 __skb_pull(skb, len); 4474 skb_postpull_rcsum(skb, data, len); 4475 return skb->data; 4476 } 4477 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4478 4479 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4480 { 4481 skb_frag_t head_frag; 4482 struct page *page; 4483 4484 page = virt_to_head_page(frag_skb->head); 4485 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4486 (unsigned char *)page_address(page), 4487 skb_headlen(frag_skb)); 4488 return head_frag; 4489 } 4490 4491 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4492 netdev_features_t features, 4493 unsigned int offset) 4494 { 4495 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4496 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4497 unsigned int delta_truesize = 0; 4498 unsigned int delta_len = 0; 4499 struct sk_buff *tail = NULL; 4500 struct sk_buff *nskb, *tmp; 4501 int len_diff, err; 4502 4503 skb_push(skb, -skb_network_offset(skb) + offset); 4504 4505 /* Ensure the head is writeable before touching the shared info */ 4506 err = skb_unclone(skb, GFP_ATOMIC); 4507 if (err) 4508 goto err_linearize; 4509 4510 skb_shinfo(skb)->frag_list = NULL; 4511 4512 while (list_skb) { 4513 nskb = list_skb; 4514 list_skb = list_skb->next; 4515 4516 err = 0; 4517 delta_truesize += nskb->truesize; 4518 if (skb_shared(nskb)) { 4519 tmp = skb_clone(nskb, GFP_ATOMIC); 4520 if (tmp) { 4521 consume_skb(nskb); 4522 nskb = tmp; 4523 err = skb_unclone(nskb, GFP_ATOMIC); 4524 } else { 4525 err = -ENOMEM; 4526 } 4527 } 4528 4529 if (!tail) 4530 skb->next = nskb; 4531 else 4532 tail->next = nskb; 4533 4534 if (unlikely(err)) { 4535 nskb->next = list_skb; 4536 goto err_linearize; 4537 } 4538 4539 tail = nskb; 4540 4541 delta_len += nskb->len; 4542 4543 skb_push(nskb, -skb_network_offset(nskb) + offset); 4544 4545 skb_release_head_state(nskb); 4546 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4547 __copy_skb_header(nskb, skb); 4548 4549 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4550 nskb->transport_header += len_diff; 4551 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4552 nskb->data - tnl_hlen, 4553 offset + tnl_hlen); 4554 4555 if (skb_needs_linearize(nskb, features) && 4556 __skb_linearize(nskb)) 4557 goto err_linearize; 4558 } 4559 4560 skb->truesize = skb->truesize - delta_truesize; 4561 skb->data_len = skb->data_len - delta_len; 4562 skb->len = skb->len - delta_len; 4563 4564 skb_gso_reset(skb); 4565 4566 skb->prev = tail; 4567 4568 if (skb_needs_linearize(skb, features) && 4569 __skb_linearize(skb)) 4570 goto err_linearize; 4571 4572 skb_get(skb); 4573 4574 return skb; 4575 4576 err_linearize: 4577 kfree_skb_list(skb->next); 4578 skb->next = NULL; 4579 return ERR_PTR(-ENOMEM); 4580 } 4581 EXPORT_SYMBOL_GPL(skb_segment_list); 4582 4583 /** 4584 * skb_segment - Perform protocol segmentation on skb. 4585 * @head_skb: buffer to segment 4586 * @features: features for the output path (see dev->features) 4587 * 4588 * This function performs segmentation on the given skb. It returns 4589 * a pointer to the first in a list of new skbs for the segments. 4590 * In case of error it returns ERR_PTR(err). 4591 */ 4592 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4593 netdev_features_t features) 4594 { 4595 struct sk_buff *segs = NULL; 4596 struct sk_buff *tail = NULL; 4597 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4598 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4599 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4600 unsigned int offset = doffset; 4601 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4602 unsigned int partial_segs = 0; 4603 unsigned int headroom; 4604 unsigned int len = head_skb->len; 4605 struct sk_buff *frag_skb; 4606 skb_frag_t *frag; 4607 __be16 proto; 4608 bool csum, sg; 4609 int err = -ENOMEM; 4610 int i = 0; 4611 int nfrags, pos; 4612 4613 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4614 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4615 struct sk_buff *check_skb; 4616 4617 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4618 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4619 /* gso_size is untrusted, and we have a frag_list with 4620 * a linear non head_frag item. 4621 * 4622 * If head_skb's headlen does not fit requested gso_size, 4623 * it means that the frag_list members do NOT terminate 4624 * on exact gso_size boundaries. Hence we cannot perform 4625 * skb_frag_t page sharing. Therefore we must fallback to 4626 * copying the frag_list skbs; we do so by disabling SG. 4627 */ 4628 features &= ~NETIF_F_SG; 4629 break; 4630 } 4631 } 4632 } 4633 4634 __skb_push(head_skb, doffset); 4635 proto = skb_network_protocol(head_skb, NULL); 4636 if (unlikely(!proto)) 4637 return ERR_PTR(-EINVAL); 4638 4639 sg = !!(features & NETIF_F_SG); 4640 csum = !!can_checksum_protocol(features, proto); 4641 4642 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4643 if (!(features & NETIF_F_GSO_PARTIAL)) { 4644 struct sk_buff *iter; 4645 unsigned int frag_len; 4646 4647 if (!list_skb || 4648 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4649 goto normal; 4650 4651 /* If we get here then all the required 4652 * GSO features except frag_list are supported. 4653 * Try to split the SKB to multiple GSO SKBs 4654 * with no frag_list. 4655 * Currently we can do that only when the buffers don't 4656 * have a linear part and all the buffers except 4657 * the last are of the same length. 4658 */ 4659 frag_len = list_skb->len; 4660 skb_walk_frags(head_skb, iter) { 4661 if (frag_len != iter->len && iter->next) 4662 goto normal; 4663 if (skb_headlen(iter) && !iter->head_frag) 4664 goto normal; 4665 4666 len -= iter->len; 4667 } 4668 4669 if (len != frag_len) 4670 goto normal; 4671 } 4672 4673 /* GSO partial only requires that we trim off any excess that 4674 * doesn't fit into an MSS sized block, so take care of that 4675 * now. 4676 * Cap len to not accidentally hit GSO_BY_FRAGS. 4677 */ 4678 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4679 if (partial_segs > 1) 4680 mss *= partial_segs; 4681 else 4682 partial_segs = 0; 4683 } 4684 4685 normal: 4686 headroom = skb_headroom(head_skb); 4687 pos = skb_headlen(head_skb); 4688 4689 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4690 return ERR_PTR(-ENOMEM); 4691 4692 nfrags = skb_shinfo(head_skb)->nr_frags; 4693 frag = skb_shinfo(head_skb)->frags; 4694 frag_skb = head_skb; 4695 4696 do { 4697 struct sk_buff *nskb; 4698 skb_frag_t *nskb_frag; 4699 int hsize; 4700 int size; 4701 4702 if (unlikely(mss == GSO_BY_FRAGS)) { 4703 len = list_skb->len; 4704 } else { 4705 len = head_skb->len - offset; 4706 if (len > mss) 4707 len = mss; 4708 } 4709 4710 hsize = skb_headlen(head_skb) - offset; 4711 4712 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4713 (skb_headlen(list_skb) == len || sg)) { 4714 BUG_ON(skb_headlen(list_skb) > len); 4715 4716 nskb = skb_clone(list_skb, GFP_ATOMIC); 4717 if (unlikely(!nskb)) 4718 goto err; 4719 4720 i = 0; 4721 nfrags = skb_shinfo(list_skb)->nr_frags; 4722 frag = skb_shinfo(list_skb)->frags; 4723 frag_skb = list_skb; 4724 pos += skb_headlen(list_skb); 4725 4726 while (pos < offset + len) { 4727 BUG_ON(i >= nfrags); 4728 4729 size = skb_frag_size(frag); 4730 if (pos + size > offset + len) 4731 break; 4732 4733 i++; 4734 pos += size; 4735 frag++; 4736 } 4737 4738 list_skb = list_skb->next; 4739 4740 if (unlikely(pskb_trim(nskb, len))) { 4741 kfree_skb(nskb); 4742 goto err; 4743 } 4744 4745 hsize = skb_end_offset(nskb); 4746 if (skb_cow_head(nskb, doffset + headroom)) { 4747 kfree_skb(nskb); 4748 goto err; 4749 } 4750 4751 nskb->truesize += skb_end_offset(nskb) - hsize; 4752 skb_release_head_state(nskb); 4753 __skb_push(nskb, doffset); 4754 } else { 4755 if (hsize < 0) 4756 hsize = 0; 4757 if (hsize > len || !sg) 4758 hsize = len; 4759 4760 nskb = __alloc_skb(hsize + doffset + headroom, 4761 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4762 NUMA_NO_NODE); 4763 4764 if (unlikely(!nskb)) 4765 goto err; 4766 4767 skb_reserve(nskb, headroom); 4768 __skb_put(nskb, doffset); 4769 } 4770 4771 if (segs) 4772 tail->next = nskb; 4773 else 4774 segs = nskb; 4775 tail = nskb; 4776 4777 __copy_skb_header(nskb, head_skb); 4778 4779 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4780 skb_reset_mac_len(nskb); 4781 4782 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4783 nskb->data - tnl_hlen, 4784 doffset + tnl_hlen); 4785 4786 if (nskb->len == len + doffset) 4787 goto perform_csum_check; 4788 4789 if (!sg) { 4790 if (!csum) { 4791 if (!nskb->remcsum_offload) 4792 nskb->ip_summed = CHECKSUM_NONE; 4793 SKB_GSO_CB(nskb)->csum = 4794 skb_copy_and_csum_bits(head_skb, offset, 4795 skb_put(nskb, 4796 len), 4797 len); 4798 SKB_GSO_CB(nskb)->csum_start = 4799 skb_headroom(nskb) + doffset; 4800 } else { 4801 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4802 goto err; 4803 } 4804 continue; 4805 } 4806 4807 nskb_frag = skb_shinfo(nskb)->frags; 4808 4809 skb_copy_from_linear_data_offset(head_skb, offset, 4810 skb_put(nskb, hsize), hsize); 4811 4812 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4813 SKBFL_SHARED_FRAG; 4814 4815 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4816 goto err; 4817 4818 while (pos < offset + len) { 4819 if (i >= nfrags) { 4820 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4821 skb_zerocopy_clone(nskb, list_skb, 4822 GFP_ATOMIC)) 4823 goto err; 4824 4825 i = 0; 4826 nfrags = skb_shinfo(list_skb)->nr_frags; 4827 frag = skb_shinfo(list_skb)->frags; 4828 frag_skb = list_skb; 4829 if (!skb_headlen(list_skb)) { 4830 BUG_ON(!nfrags); 4831 } else { 4832 BUG_ON(!list_skb->head_frag); 4833 4834 /* to make room for head_frag. */ 4835 i--; 4836 frag--; 4837 } 4838 4839 list_skb = list_skb->next; 4840 } 4841 4842 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4843 MAX_SKB_FRAGS)) { 4844 net_warn_ratelimited( 4845 "skb_segment: too many frags: %u %u\n", 4846 pos, mss); 4847 err = -EINVAL; 4848 goto err; 4849 } 4850 4851 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4852 __skb_frag_ref(nskb_frag); 4853 size = skb_frag_size(nskb_frag); 4854 4855 if (pos < offset) { 4856 skb_frag_off_add(nskb_frag, offset - pos); 4857 skb_frag_size_sub(nskb_frag, offset - pos); 4858 } 4859 4860 skb_shinfo(nskb)->nr_frags++; 4861 4862 if (pos + size <= offset + len) { 4863 i++; 4864 frag++; 4865 pos += size; 4866 } else { 4867 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4868 goto skip_fraglist; 4869 } 4870 4871 nskb_frag++; 4872 } 4873 4874 skip_fraglist: 4875 nskb->data_len = len - hsize; 4876 nskb->len += nskb->data_len; 4877 nskb->truesize += nskb->data_len; 4878 4879 perform_csum_check: 4880 if (!csum) { 4881 if (skb_has_shared_frag(nskb) && 4882 __skb_linearize(nskb)) 4883 goto err; 4884 4885 if (!nskb->remcsum_offload) 4886 nskb->ip_summed = CHECKSUM_NONE; 4887 SKB_GSO_CB(nskb)->csum = 4888 skb_checksum(nskb, doffset, 4889 nskb->len - doffset, 0); 4890 SKB_GSO_CB(nskb)->csum_start = 4891 skb_headroom(nskb) + doffset; 4892 } 4893 } while ((offset += len) < head_skb->len); 4894 4895 /* Some callers want to get the end of the list. 4896 * Put it in segs->prev to avoid walking the list. 4897 * (see validate_xmit_skb_list() for example) 4898 */ 4899 segs->prev = tail; 4900 4901 if (partial_segs) { 4902 struct sk_buff *iter; 4903 int type = skb_shinfo(head_skb)->gso_type; 4904 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4905 4906 /* Update type to add partial and then remove dodgy if set */ 4907 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4908 type &= ~SKB_GSO_DODGY; 4909 4910 /* Update GSO info and prepare to start updating headers on 4911 * our way back down the stack of protocols. 4912 */ 4913 for (iter = segs; iter; iter = iter->next) { 4914 skb_shinfo(iter)->gso_size = gso_size; 4915 skb_shinfo(iter)->gso_segs = partial_segs; 4916 skb_shinfo(iter)->gso_type = type; 4917 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4918 } 4919 4920 if (tail->len - doffset <= gso_size) 4921 skb_shinfo(tail)->gso_size = 0; 4922 else if (tail != segs) 4923 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4924 } 4925 4926 /* Following permits correct backpressure, for protocols 4927 * using skb_set_owner_w(). 4928 * Idea is to tranfert ownership from head_skb to last segment. 4929 */ 4930 if (head_skb->destructor == sock_wfree) { 4931 swap(tail->truesize, head_skb->truesize); 4932 swap(tail->destructor, head_skb->destructor); 4933 swap(tail->sk, head_skb->sk); 4934 } 4935 return segs; 4936 4937 err: 4938 kfree_skb_list(segs); 4939 return ERR_PTR(err); 4940 } 4941 EXPORT_SYMBOL_GPL(skb_segment); 4942 4943 #ifdef CONFIG_SKB_EXTENSIONS 4944 #define SKB_EXT_ALIGN_VALUE 8 4945 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4946 4947 static const u8 skb_ext_type_len[] = { 4948 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4949 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4950 #endif 4951 #ifdef CONFIG_XFRM 4952 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4953 #endif 4954 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4955 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4956 #endif 4957 #if IS_ENABLED(CONFIG_MPTCP) 4958 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4959 #endif 4960 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4961 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4962 #endif 4963 }; 4964 4965 static __always_inline unsigned int skb_ext_total_length(void) 4966 { 4967 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4968 int i; 4969 4970 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4971 l += skb_ext_type_len[i]; 4972 4973 return l; 4974 } 4975 4976 static void skb_extensions_init(void) 4977 { 4978 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4979 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4980 BUILD_BUG_ON(skb_ext_total_length() > 255); 4981 #endif 4982 4983 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4984 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4985 0, 4986 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4987 NULL); 4988 } 4989 #else 4990 static void skb_extensions_init(void) {} 4991 #endif 4992 4993 /* The SKB kmem_cache slab is critical for network performance. Never 4994 * merge/alias the slab with similar sized objects. This avoids fragmentation 4995 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4996 */ 4997 #ifndef CONFIG_SLUB_TINY 4998 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4999 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5000 #define FLAG_SKB_NO_MERGE 0 5001 #endif 5002 5003 void __init skb_init(void) 5004 { 5005 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5006 sizeof(struct sk_buff), 5007 0, 5008 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5009 FLAG_SKB_NO_MERGE, 5010 offsetof(struct sk_buff, cb), 5011 sizeof_field(struct sk_buff, cb), 5012 NULL); 5013 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5014 sizeof(struct sk_buff_fclones), 5015 0, 5016 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5017 NULL); 5018 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5019 * struct skb_shared_info is located at the end of skb->head, 5020 * and should not be copied to/from user. 5021 */ 5022 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5023 SKB_SMALL_HEAD_CACHE_SIZE, 5024 0, 5025 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5026 0, 5027 SKB_SMALL_HEAD_HEADROOM, 5028 NULL); 5029 skb_extensions_init(); 5030 } 5031 5032 static int 5033 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5034 unsigned int recursion_level) 5035 { 5036 int start = skb_headlen(skb); 5037 int i, copy = start - offset; 5038 struct sk_buff *frag_iter; 5039 int elt = 0; 5040 5041 if (unlikely(recursion_level >= 24)) 5042 return -EMSGSIZE; 5043 5044 if (copy > 0) { 5045 if (copy > len) 5046 copy = len; 5047 sg_set_buf(sg, skb->data + offset, copy); 5048 elt++; 5049 if ((len -= copy) == 0) 5050 return elt; 5051 offset += copy; 5052 } 5053 5054 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5055 int end; 5056 5057 WARN_ON(start > offset + len); 5058 5059 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5060 if ((copy = end - offset) > 0) { 5061 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5062 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5063 return -EMSGSIZE; 5064 5065 if (copy > len) 5066 copy = len; 5067 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5068 skb_frag_off(frag) + offset - start); 5069 elt++; 5070 if (!(len -= copy)) 5071 return elt; 5072 offset += copy; 5073 } 5074 start = end; 5075 } 5076 5077 skb_walk_frags(skb, frag_iter) { 5078 int end, ret; 5079 5080 WARN_ON(start > offset + len); 5081 5082 end = start + frag_iter->len; 5083 if ((copy = end - offset) > 0) { 5084 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5085 return -EMSGSIZE; 5086 5087 if (copy > len) 5088 copy = len; 5089 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5090 copy, recursion_level + 1); 5091 if (unlikely(ret < 0)) 5092 return ret; 5093 elt += ret; 5094 if ((len -= copy) == 0) 5095 return elt; 5096 offset += copy; 5097 } 5098 start = end; 5099 } 5100 BUG_ON(len); 5101 return elt; 5102 } 5103 5104 /** 5105 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5106 * @skb: Socket buffer containing the buffers to be mapped 5107 * @sg: The scatter-gather list to map into 5108 * @offset: The offset into the buffer's contents to start mapping 5109 * @len: Length of buffer space to be mapped 5110 * 5111 * Fill the specified scatter-gather list with mappings/pointers into a 5112 * region of the buffer space attached to a socket buffer. Returns either 5113 * the number of scatterlist items used, or -EMSGSIZE if the contents 5114 * could not fit. 5115 */ 5116 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5117 { 5118 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5119 5120 if (nsg <= 0) 5121 return nsg; 5122 5123 sg_mark_end(&sg[nsg - 1]); 5124 5125 return nsg; 5126 } 5127 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5128 5129 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5130 * sglist without mark the sg which contain last skb data as the end. 5131 * So the caller can mannipulate sg list as will when padding new data after 5132 * the first call without calling sg_unmark_end to expend sg list. 5133 * 5134 * Scenario to use skb_to_sgvec_nomark: 5135 * 1. sg_init_table 5136 * 2. skb_to_sgvec_nomark(payload1) 5137 * 3. skb_to_sgvec_nomark(payload2) 5138 * 5139 * This is equivalent to: 5140 * 1. sg_init_table 5141 * 2. skb_to_sgvec(payload1) 5142 * 3. sg_unmark_end 5143 * 4. skb_to_sgvec(payload2) 5144 * 5145 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5146 * is more preferable. 5147 */ 5148 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5149 int offset, int len) 5150 { 5151 return __skb_to_sgvec(skb, sg, offset, len, 0); 5152 } 5153 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5154 5155 5156 5157 /** 5158 * skb_cow_data - Check that a socket buffer's data buffers are writable 5159 * @skb: The socket buffer to check. 5160 * @tailbits: Amount of trailing space to be added 5161 * @trailer: Returned pointer to the skb where the @tailbits space begins 5162 * 5163 * Make sure that the data buffers attached to a socket buffer are 5164 * writable. If they are not, private copies are made of the data buffers 5165 * and the socket buffer is set to use these instead. 5166 * 5167 * If @tailbits is given, make sure that there is space to write @tailbits 5168 * bytes of data beyond current end of socket buffer. @trailer will be 5169 * set to point to the skb in which this space begins. 5170 * 5171 * The number of scatterlist elements required to completely map the 5172 * COW'd and extended socket buffer will be returned. 5173 */ 5174 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5175 { 5176 int copyflag; 5177 int elt; 5178 struct sk_buff *skb1, **skb_p; 5179 5180 /* If skb is cloned or its head is paged, reallocate 5181 * head pulling out all the pages (pages are considered not writable 5182 * at the moment even if they are anonymous). 5183 */ 5184 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5185 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5186 return -ENOMEM; 5187 5188 /* Easy case. Most of packets will go this way. */ 5189 if (!skb_has_frag_list(skb)) { 5190 /* A little of trouble, not enough of space for trailer. 5191 * This should not happen, when stack is tuned to generate 5192 * good frames. OK, on miss we reallocate and reserve even more 5193 * space, 128 bytes is fair. */ 5194 5195 if (skb_tailroom(skb) < tailbits && 5196 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5197 return -ENOMEM; 5198 5199 /* Voila! */ 5200 *trailer = skb; 5201 return 1; 5202 } 5203 5204 /* Misery. We are in troubles, going to mincer fragments... */ 5205 5206 elt = 1; 5207 skb_p = &skb_shinfo(skb)->frag_list; 5208 copyflag = 0; 5209 5210 while ((skb1 = *skb_p) != NULL) { 5211 int ntail = 0; 5212 5213 /* The fragment is partially pulled by someone, 5214 * this can happen on input. Copy it and everything 5215 * after it. */ 5216 5217 if (skb_shared(skb1)) 5218 copyflag = 1; 5219 5220 /* If the skb is the last, worry about trailer. */ 5221 5222 if (skb1->next == NULL && tailbits) { 5223 if (skb_shinfo(skb1)->nr_frags || 5224 skb_has_frag_list(skb1) || 5225 skb_tailroom(skb1) < tailbits) 5226 ntail = tailbits + 128; 5227 } 5228 5229 if (copyflag || 5230 skb_cloned(skb1) || 5231 ntail || 5232 skb_shinfo(skb1)->nr_frags || 5233 skb_has_frag_list(skb1)) { 5234 struct sk_buff *skb2; 5235 5236 /* Fuck, we are miserable poor guys... */ 5237 if (ntail == 0) 5238 skb2 = skb_copy(skb1, GFP_ATOMIC); 5239 else 5240 skb2 = skb_copy_expand(skb1, 5241 skb_headroom(skb1), 5242 ntail, 5243 GFP_ATOMIC); 5244 if (unlikely(skb2 == NULL)) 5245 return -ENOMEM; 5246 5247 if (skb1->sk) 5248 skb_set_owner_w(skb2, skb1->sk); 5249 5250 /* Looking around. Are we still alive? 5251 * OK, link new skb, drop old one */ 5252 5253 skb2->next = skb1->next; 5254 *skb_p = skb2; 5255 kfree_skb(skb1); 5256 skb1 = skb2; 5257 } 5258 elt++; 5259 *trailer = skb1; 5260 skb_p = &skb1->next; 5261 } 5262 5263 return elt; 5264 } 5265 EXPORT_SYMBOL_GPL(skb_cow_data); 5266 5267 static void sock_rmem_free(struct sk_buff *skb) 5268 { 5269 struct sock *sk = skb->sk; 5270 5271 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5272 } 5273 5274 static void skb_set_err_queue(struct sk_buff *skb) 5275 { 5276 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5277 * So, it is safe to (mis)use it to mark skbs on the error queue. 5278 */ 5279 skb->pkt_type = PACKET_OUTGOING; 5280 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5281 } 5282 5283 /* 5284 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5285 */ 5286 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5287 { 5288 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5289 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5290 return -ENOMEM; 5291 5292 skb_orphan(skb); 5293 skb->sk = sk; 5294 skb->destructor = sock_rmem_free; 5295 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5296 skb_set_err_queue(skb); 5297 5298 /* before exiting rcu section, make sure dst is refcounted */ 5299 skb_dst_force(skb); 5300 5301 skb_queue_tail(&sk->sk_error_queue, skb); 5302 if (!sock_flag(sk, SOCK_DEAD)) 5303 sk_error_report(sk); 5304 return 0; 5305 } 5306 EXPORT_SYMBOL(sock_queue_err_skb); 5307 5308 static bool is_icmp_err_skb(const struct sk_buff *skb) 5309 { 5310 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5311 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5312 } 5313 5314 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5315 { 5316 struct sk_buff_head *q = &sk->sk_error_queue; 5317 struct sk_buff *skb, *skb_next = NULL; 5318 bool icmp_next = false; 5319 unsigned long flags; 5320 5321 if (skb_queue_empty_lockless(q)) 5322 return NULL; 5323 5324 spin_lock_irqsave(&q->lock, flags); 5325 skb = __skb_dequeue(q); 5326 if (skb && (skb_next = skb_peek(q))) { 5327 icmp_next = is_icmp_err_skb(skb_next); 5328 if (icmp_next) 5329 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5330 } 5331 spin_unlock_irqrestore(&q->lock, flags); 5332 5333 if (is_icmp_err_skb(skb) && !icmp_next) 5334 sk->sk_err = 0; 5335 5336 if (skb_next) 5337 sk_error_report(sk); 5338 5339 return skb; 5340 } 5341 EXPORT_SYMBOL(sock_dequeue_err_skb); 5342 5343 /** 5344 * skb_clone_sk - create clone of skb, and take reference to socket 5345 * @skb: the skb to clone 5346 * 5347 * This function creates a clone of a buffer that holds a reference on 5348 * sk_refcnt. Buffers created via this function are meant to be 5349 * returned using sock_queue_err_skb, or free via kfree_skb. 5350 * 5351 * When passing buffers allocated with this function to sock_queue_err_skb 5352 * it is necessary to wrap the call with sock_hold/sock_put in order to 5353 * prevent the socket from being released prior to being enqueued on 5354 * the sk_error_queue. 5355 */ 5356 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5357 { 5358 struct sock *sk = skb->sk; 5359 struct sk_buff *clone; 5360 5361 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5362 return NULL; 5363 5364 clone = skb_clone(skb, GFP_ATOMIC); 5365 if (!clone) { 5366 sock_put(sk); 5367 return NULL; 5368 } 5369 5370 clone->sk = sk; 5371 clone->destructor = sock_efree; 5372 5373 return clone; 5374 } 5375 EXPORT_SYMBOL(skb_clone_sk); 5376 5377 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5378 struct sock *sk, 5379 int tstype, 5380 bool opt_stats) 5381 { 5382 struct sock_exterr_skb *serr; 5383 int err; 5384 5385 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5386 5387 serr = SKB_EXT_ERR(skb); 5388 memset(serr, 0, sizeof(*serr)); 5389 serr->ee.ee_errno = ENOMSG; 5390 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5391 serr->ee.ee_info = tstype; 5392 serr->opt_stats = opt_stats; 5393 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5394 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5395 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5396 if (sk_is_tcp(sk)) 5397 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5398 } 5399 5400 err = sock_queue_err_skb(sk, skb); 5401 5402 if (err) 5403 kfree_skb(skb); 5404 } 5405 5406 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5407 { 5408 bool ret; 5409 5410 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5411 return true; 5412 5413 read_lock_bh(&sk->sk_callback_lock); 5414 ret = sk->sk_socket && sk->sk_socket->file && 5415 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5416 read_unlock_bh(&sk->sk_callback_lock); 5417 return ret; 5418 } 5419 5420 void skb_complete_tx_timestamp(struct sk_buff *skb, 5421 struct skb_shared_hwtstamps *hwtstamps) 5422 { 5423 struct sock *sk = skb->sk; 5424 5425 if (!skb_may_tx_timestamp(sk, false)) 5426 goto err; 5427 5428 /* Take a reference to prevent skb_orphan() from freeing the socket, 5429 * but only if the socket refcount is not zero. 5430 */ 5431 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5432 *skb_hwtstamps(skb) = *hwtstamps; 5433 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5434 sock_put(sk); 5435 return; 5436 } 5437 5438 err: 5439 kfree_skb(skb); 5440 } 5441 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5442 5443 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5444 const struct sk_buff *ack_skb, 5445 struct skb_shared_hwtstamps *hwtstamps, 5446 struct sock *sk, int tstype) 5447 { 5448 struct sk_buff *skb; 5449 bool tsonly, opt_stats = false; 5450 u32 tsflags; 5451 5452 if (!sk) 5453 return; 5454 5455 tsflags = READ_ONCE(sk->sk_tsflags); 5456 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5457 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5458 return; 5459 5460 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5461 if (!skb_may_tx_timestamp(sk, tsonly)) 5462 return; 5463 5464 if (tsonly) { 5465 #ifdef CONFIG_INET 5466 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5467 sk_is_tcp(sk)) { 5468 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5469 ack_skb); 5470 opt_stats = true; 5471 } else 5472 #endif 5473 skb = alloc_skb(0, GFP_ATOMIC); 5474 } else { 5475 skb = skb_clone(orig_skb, GFP_ATOMIC); 5476 5477 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5478 kfree_skb(skb); 5479 return; 5480 } 5481 } 5482 if (!skb) 5483 return; 5484 5485 if (tsonly) { 5486 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5487 SKBTX_ANY_TSTAMP; 5488 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5489 } 5490 5491 if (hwtstamps) 5492 *skb_hwtstamps(skb) = *hwtstamps; 5493 else 5494 __net_timestamp(skb); 5495 5496 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5497 } 5498 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5499 5500 void skb_tstamp_tx(struct sk_buff *orig_skb, 5501 struct skb_shared_hwtstamps *hwtstamps) 5502 { 5503 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5504 SCM_TSTAMP_SND); 5505 } 5506 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5507 5508 #ifdef CONFIG_WIRELESS 5509 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5510 { 5511 struct sock *sk = skb->sk; 5512 struct sock_exterr_skb *serr; 5513 int err = 1; 5514 5515 skb->wifi_acked_valid = 1; 5516 skb->wifi_acked = acked; 5517 5518 serr = SKB_EXT_ERR(skb); 5519 memset(serr, 0, sizeof(*serr)); 5520 serr->ee.ee_errno = ENOMSG; 5521 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5522 5523 /* Take a reference to prevent skb_orphan() from freeing the socket, 5524 * but only if the socket refcount is not zero. 5525 */ 5526 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5527 err = sock_queue_err_skb(sk, skb); 5528 sock_put(sk); 5529 } 5530 if (err) 5531 kfree_skb(skb); 5532 } 5533 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5534 #endif /* CONFIG_WIRELESS */ 5535 5536 /** 5537 * skb_partial_csum_set - set up and verify partial csum values for packet 5538 * @skb: the skb to set 5539 * @start: the number of bytes after skb->data to start checksumming. 5540 * @off: the offset from start to place the checksum. 5541 * 5542 * For untrusted partially-checksummed packets, we need to make sure the values 5543 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5544 * 5545 * This function checks and sets those values and skb->ip_summed: if this 5546 * returns false you should drop the packet. 5547 */ 5548 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5549 { 5550 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5551 u32 csum_start = skb_headroom(skb) + (u32)start; 5552 5553 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5554 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5555 start, off, skb_headroom(skb), skb_headlen(skb)); 5556 return false; 5557 } 5558 skb->ip_summed = CHECKSUM_PARTIAL; 5559 skb->csum_start = csum_start; 5560 skb->csum_offset = off; 5561 skb->transport_header = csum_start; 5562 return true; 5563 } 5564 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5565 5566 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5567 unsigned int max) 5568 { 5569 if (skb_headlen(skb) >= len) 5570 return 0; 5571 5572 /* If we need to pullup then pullup to the max, so we 5573 * won't need to do it again. 5574 */ 5575 if (max > skb->len) 5576 max = skb->len; 5577 5578 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5579 return -ENOMEM; 5580 5581 if (skb_headlen(skb) < len) 5582 return -EPROTO; 5583 5584 return 0; 5585 } 5586 5587 #define MAX_TCP_HDR_LEN (15 * 4) 5588 5589 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5590 typeof(IPPROTO_IP) proto, 5591 unsigned int off) 5592 { 5593 int err; 5594 5595 switch (proto) { 5596 case IPPROTO_TCP: 5597 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5598 off + MAX_TCP_HDR_LEN); 5599 if (!err && !skb_partial_csum_set(skb, off, 5600 offsetof(struct tcphdr, 5601 check))) 5602 err = -EPROTO; 5603 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5604 5605 case IPPROTO_UDP: 5606 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5607 off + sizeof(struct udphdr)); 5608 if (!err && !skb_partial_csum_set(skb, off, 5609 offsetof(struct udphdr, 5610 check))) 5611 err = -EPROTO; 5612 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5613 } 5614 5615 return ERR_PTR(-EPROTO); 5616 } 5617 5618 /* This value should be large enough to cover a tagged ethernet header plus 5619 * maximally sized IP and TCP or UDP headers. 5620 */ 5621 #define MAX_IP_HDR_LEN 128 5622 5623 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5624 { 5625 unsigned int off; 5626 bool fragment; 5627 __sum16 *csum; 5628 int err; 5629 5630 fragment = false; 5631 5632 err = skb_maybe_pull_tail(skb, 5633 sizeof(struct iphdr), 5634 MAX_IP_HDR_LEN); 5635 if (err < 0) 5636 goto out; 5637 5638 if (ip_is_fragment(ip_hdr(skb))) 5639 fragment = true; 5640 5641 off = ip_hdrlen(skb); 5642 5643 err = -EPROTO; 5644 5645 if (fragment) 5646 goto out; 5647 5648 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5649 if (IS_ERR(csum)) 5650 return PTR_ERR(csum); 5651 5652 if (recalculate) 5653 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5654 ip_hdr(skb)->daddr, 5655 skb->len - off, 5656 ip_hdr(skb)->protocol, 0); 5657 err = 0; 5658 5659 out: 5660 return err; 5661 } 5662 5663 /* This value should be large enough to cover a tagged ethernet header plus 5664 * an IPv6 header, all options, and a maximal TCP or UDP header. 5665 */ 5666 #define MAX_IPV6_HDR_LEN 256 5667 5668 #define OPT_HDR(type, skb, off) \ 5669 (type *)(skb_network_header(skb) + (off)) 5670 5671 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5672 { 5673 int err; 5674 u8 nexthdr; 5675 unsigned int off; 5676 unsigned int len; 5677 bool fragment; 5678 bool done; 5679 __sum16 *csum; 5680 5681 fragment = false; 5682 done = false; 5683 5684 off = sizeof(struct ipv6hdr); 5685 5686 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5687 if (err < 0) 5688 goto out; 5689 5690 nexthdr = ipv6_hdr(skb)->nexthdr; 5691 5692 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5693 while (off <= len && !done) { 5694 switch (nexthdr) { 5695 case IPPROTO_DSTOPTS: 5696 case IPPROTO_HOPOPTS: 5697 case IPPROTO_ROUTING: { 5698 struct ipv6_opt_hdr *hp; 5699 5700 err = skb_maybe_pull_tail(skb, 5701 off + 5702 sizeof(struct ipv6_opt_hdr), 5703 MAX_IPV6_HDR_LEN); 5704 if (err < 0) 5705 goto out; 5706 5707 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5708 nexthdr = hp->nexthdr; 5709 off += ipv6_optlen(hp); 5710 break; 5711 } 5712 case IPPROTO_AH: { 5713 struct ip_auth_hdr *hp; 5714 5715 err = skb_maybe_pull_tail(skb, 5716 off + 5717 sizeof(struct ip_auth_hdr), 5718 MAX_IPV6_HDR_LEN); 5719 if (err < 0) 5720 goto out; 5721 5722 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5723 nexthdr = hp->nexthdr; 5724 off += ipv6_authlen(hp); 5725 break; 5726 } 5727 case IPPROTO_FRAGMENT: { 5728 struct frag_hdr *hp; 5729 5730 err = skb_maybe_pull_tail(skb, 5731 off + 5732 sizeof(struct frag_hdr), 5733 MAX_IPV6_HDR_LEN); 5734 if (err < 0) 5735 goto out; 5736 5737 hp = OPT_HDR(struct frag_hdr, skb, off); 5738 5739 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5740 fragment = true; 5741 5742 nexthdr = hp->nexthdr; 5743 off += sizeof(struct frag_hdr); 5744 break; 5745 } 5746 default: 5747 done = true; 5748 break; 5749 } 5750 } 5751 5752 err = -EPROTO; 5753 5754 if (!done || fragment) 5755 goto out; 5756 5757 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5758 if (IS_ERR(csum)) 5759 return PTR_ERR(csum); 5760 5761 if (recalculate) 5762 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5763 &ipv6_hdr(skb)->daddr, 5764 skb->len - off, nexthdr, 0); 5765 err = 0; 5766 5767 out: 5768 return err; 5769 } 5770 5771 /** 5772 * skb_checksum_setup - set up partial checksum offset 5773 * @skb: the skb to set up 5774 * @recalculate: if true the pseudo-header checksum will be recalculated 5775 */ 5776 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5777 { 5778 int err; 5779 5780 switch (skb->protocol) { 5781 case htons(ETH_P_IP): 5782 err = skb_checksum_setup_ipv4(skb, recalculate); 5783 break; 5784 5785 case htons(ETH_P_IPV6): 5786 err = skb_checksum_setup_ipv6(skb, recalculate); 5787 break; 5788 5789 default: 5790 err = -EPROTO; 5791 break; 5792 } 5793 5794 return err; 5795 } 5796 EXPORT_SYMBOL(skb_checksum_setup); 5797 5798 /** 5799 * skb_checksum_maybe_trim - maybe trims the given skb 5800 * @skb: the skb to check 5801 * @transport_len: the data length beyond the network header 5802 * 5803 * Checks whether the given skb has data beyond the given transport length. 5804 * If so, returns a cloned skb trimmed to this transport length. 5805 * Otherwise returns the provided skb. Returns NULL in error cases 5806 * (e.g. transport_len exceeds skb length or out-of-memory). 5807 * 5808 * Caller needs to set the skb transport header and free any returned skb if it 5809 * differs from the provided skb. 5810 */ 5811 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5812 unsigned int transport_len) 5813 { 5814 struct sk_buff *skb_chk; 5815 unsigned int len = skb_transport_offset(skb) + transport_len; 5816 int ret; 5817 5818 if (skb->len < len) 5819 return NULL; 5820 else if (skb->len == len) 5821 return skb; 5822 5823 skb_chk = skb_clone(skb, GFP_ATOMIC); 5824 if (!skb_chk) 5825 return NULL; 5826 5827 ret = pskb_trim_rcsum(skb_chk, len); 5828 if (ret) { 5829 kfree_skb(skb_chk); 5830 return NULL; 5831 } 5832 5833 return skb_chk; 5834 } 5835 5836 /** 5837 * skb_checksum_trimmed - validate checksum of an skb 5838 * @skb: the skb to check 5839 * @transport_len: the data length beyond the network header 5840 * @skb_chkf: checksum function to use 5841 * 5842 * Applies the given checksum function skb_chkf to the provided skb. 5843 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5844 * 5845 * If the skb has data beyond the given transport length, then a 5846 * trimmed & cloned skb is checked and returned. 5847 * 5848 * Caller needs to set the skb transport header and free any returned skb if it 5849 * differs from the provided skb. 5850 */ 5851 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5852 unsigned int transport_len, 5853 __sum16(*skb_chkf)(struct sk_buff *skb)) 5854 { 5855 struct sk_buff *skb_chk; 5856 unsigned int offset = skb_transport_offset(skb); 5857 __sum16 ret; 5858 5859 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5860 if (!skb_chk) 5861 goto err; 5862 5863 if (!pskb_may_pull(skb_chk, offset)) 5864 goto err; 5865 5866 skb_pull_rcsum(skb_chk, offset); 5867 ret = skb_chkf(skb_chk); 5868 skb_push_rcsum(skb_chk, offset); 5869 5870 if (ret) 5871 goto err; 5872 5873 return skb_chk; 5874 5875 err: 5876 if (skb_chk && skb_chk != skb) 5877 kfree_skb(skb_chk); 5878 5879 return NULL; 5880 5881 } 5882 EXPORT_SYMBOL(skb_checksum_trimmed); 5883 5884 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5885 { 5886 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5887 skb->dev->name); 5888 } 5889 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5890 5891 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5892 { 5893 if (head_stolen) { 5894 skb_release_head_state(skb); 5895 kmem_cache_free(net_hotdata.skbuff_cache, skb); 5896 } else { 5897 __kfree_skb(skb); 5898 } 5899 } 5900 EXPORT_SYMBOL(kfree_skb_partial); 5901 5902 /** 5903 * skb_try_coalesce - try to merge skb to prior one 5904 * @to: prior buffer 5905 * @from: buffer to add 5906 * @fragstolen: pointer to boolean 5907 * @delta_truesize: how much more was allocated than was requested 5908 */ 5909 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5910 bool *fragstolen, int *delta_truesize) 5911 { 5912 struct skb_shared_info *to_shinfo, *from_shinfo; 5913 int i, delta, len = from->len; 5914 5915 *fragstolen = false; 5916 5917 if (skb_cloned(to)) 5918 return false; 5919 5920 /* In general, avoid mixing page_pool and non-page_pool allocated 5921 * pages within the same SKB. In theory we could take full 5922 * references if @from is cloned and !@to->pp_recycle but its 5923 * tricky (due to potential race with the clone disappearing) and 5924 * rare, so not worth dealing with. 5925 */ 5926 if (to->pp_recycle != from->pp_recycle) 5927 return false; 5928 5929 if (len <= skb_tailroom(to)) { 5930 if (len) 5931 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5932 *delta_truesize = 0; 5933 return true; 5934 } 5935 5936 to_shinfo = skb_shinfo(to); 5937 from_shinfo = skb_shinfo(from); 5938 if (to_shinfo->frag_list || from_shinfo->frag_list) 5939 return false; 5940 if (skb_zcopy(to) || skb_zcopy(from)) 5941 return false; 5942 5943 if (skb_headlen(from) != 0) { 5944 struct page *page; 5945 unsigned int offset; 5946 5947 if (to_shinfo->nr_frags + 5948 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5949 return false; 5950 5951 if (skb_head_is_locked(from)) 5952 return false; 5953 5954 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5955 5956 page = virt_to_head_page(from->head); 5957 offset = from->data - (unsigned char *)page_address(page); 5958 5959 skb_fill_page_desc(to, to_shinfo->nr_frags, 5960 page, offset, skb_headlen(from)); 5961 *fragstolen = true; 5962 } else { 5963 if (to_shinfo->nr_frags + 5964 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5965 return false; 5966 5967 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5968 } 5969 5970 WARN_ON_ONCE(delta < len); 5971 5972 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5973 from_shinfo->frags, 5974 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5975 to_shinfo->nr_frags += from_shinfo->nr_frags; 5976 5977 if (!skb_cloned(from)) 5978 from_shinfo->nr_frags = 0; 5979 5980 /* if the skb is not cloned this does nothing 5981 * since we set nr_frags to 0. 5982 */ 5983 if (skb_pp_frag_ref(from)) { 5984 for (i = 0; i < from_shinfo->nr_frags; i++) 5985 __skb_frag_ref(&from_shinfo->frags[i]); 5986 } 5987 5988 to->truesize += delta; 5989 to->len += len; 5990 to->data_len += len; 5991 5992 *delta_truesize = delta; 5993 return true; 5994 } 5995 EXPORT_SYMBOL(skb_try_coalesce); 5996 5997 /** 5998 * skb_scrub_packet - scrub an skb 5999 * 6000 * @skb: buffer to clean 6001 * @xnet: packet is crossing netns 6002 * 6003 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 6004 * into/from a tunnel. Some information have to be cleared during these 6005 * operations. 6006 * skb_scrub_packet can also be used to clean a skb before injecting it in 6007 * another namespace (@xnet == true). We have to clear all information in the 6008 * skb that could impact namespace isolation. 6009 */ 6010 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6011 { 6012 skb->pkt_type = PACKET_HOST; 6013 skb->skb_iif = 0; 6014 skb->ignore_df = 0; 6015 skb_dst_drop(skb); 6016 skb_ext_reset(skb); 6017 nf_reset_ct(skb); 6018 nf_reset_trace(skb); 6019 6020 #ifdef CONFIG_NET_SWITCHDEV 6021 skb->offload_fwd_mark = 0; 6022 skb->offload_l3_fwd_mark = 0; 6023 #endif 6024 6025 if (!xnet) 6026 return; 6027 6028 ipvs_reset(skb); 6029 skb->mark = 0; 6030 skb_clear_tstamp(skb); 6031 } 6032 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6033 6034 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6035 { 6036 int mac_len, meta_len; 6037 void *meta; 6038 6039 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6040 kfree_skb(skb); 6041 return NULL; 6042 } 6043 6044 mac_len = skb->data - skb_mac_header(skb); 6045 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6046 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6047 mac_len - VLAN_HLEN - ETH_TLEN); 6048 } 6049 6050 meta_len = skb_metadata_len(skb); 6051 if (meta_len) { 6052 meta = skb_metadata_end(skb) - meta_len; 6053 memmove(meta + VLAN_HLEN, meta, meta_len); 6054 } 6055 6056 skb->mac_header += VLAN_HLEN; 6057 return skb; 6058 } 6059 6060 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6061 { 6062 struct vlan_hdr *vhdr; 6063 u16 vlan_tci; 6064 6065 if (unlikely(skb_vlan_tag_present(skb))) { 6066 /* vlan_tci is already set-up so leave this for another time */ 6067 return skb; 6068 } 6069 6070 skb = skb_share_check(skb, GFP_ATOMIC); 6071 if (unlikely(!skb)) 6072 goto err_free; 6073 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6074 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6075 goto err_free; 6076 6077 vhdr = (struct vlan_hdr *)skb->data; 6078 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6079 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6080 6081 skb_pull_rcsum(skb, VLAN_HLEN); 6082 vlan_set_encap_proto(skb, vhdr); 6083 6084 skb = skb_reorder_vlan_header(skb); 6085 if (unlikely(!skb)) 6086 goto err_free; 6087 6088 skb_reset_network_header(skb); 6089 if (!skb_transport_header_was_set(skb)) 6090 skb_reset_transport_header(skb); 6091 skb_reset_mac_len(skb); 6092 6093 return skb; 6094 6095 err_free: 6096 kfree_skb(skb); 6097 return NULL; 6098 } 6099 EXPORT_SYMBOL(skb_vlan_untag); 6100 6101 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6102 { 6103 if (!pskb_may_pull(skb, write_len)) 6104 return -ENOMEM; 6105 6106 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6107 return 0; 6108 6109 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6110 } 6111 EXPORT_SYMBOL(skb_ensure_writable); 6112 6113 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6114 { 6115 int needed_headroom = dev->needed_headroom; 6116 int needed_tailroom = dev->needed_tailroom; 6117 6118 /* For tail taggers, we need to pad short frames ourselves, to ensure 6119 * that the tail tag does not fail at its role of being at the end of 6120 * the packet, once the conduit interface pads the frame. Account for 6121 * that pad length here, and pad later. 6122 */ 6123 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6124 needed_tailroom += ETH_ZLEN - skb->len; 6125 /* skb_headroom() returns unsigned int... */ 6126 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6127 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6128 6129 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6130 /* No reallocation needed, yay! */ 6131 return 0; 6132 6133 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6134 GFP_ATOMIC); 6135 } 6136 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6137 6138 /* remove VLAN header from packet and update csum accordingly. 6139 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6140 */ 6141 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6142 { 6143 int offset = skb->data - skb_mac_header(skb); 6144 int err; 6145 6146 if (WARN_ONCE(offset, 6147 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6148 offset)) { 6149 return -EINVAL; 6150 } 6151 6152 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6153 if (unlikely(err)) 6154 return err; 6155 6156 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6157 6158 vlan_remove_tag(skb, vlan_tci); 6159 6160 skb->mac_header += VLAN_HLEN; 6161 6162 if (skb_network_offset(skb) < ETH_HLEN) 6163 skb_set_network_header(skb, ETH_HLEN); 6164 6165 skb_reset_mac_len(skb); 6166 6167 return err; 6168 } 6169 EXPORT_SYMBOL(__skb_vlan_pop); 6170 6171 /* Pop a vlan tag either from hwaccel or from payload. 6172 * Expects skb->data at mac header. 6173 */ 6174 int skb_vlan_pop(struct sk_buff *skb) 6175 { 6176 u16 vlan_tci; 6177 __be16 vlan_proto; 6178 int err; 6179 6180 if (likely(skb_vlan_tag_present(skb))) { 6181 __vlan_hwaccel_clear_tag(skb); 6182 } else { 6183 if (unlikely(!eth_type_vlan(skb->protocol))) 6184 return 0; 6185 6186 err = __skb_vlan_pop(skb, &vlan_tci); 6187 if (err) 6188 return err; 6189 } 6190 /* move next vlan tag to hw accel tag */ 6191 if (likely(!eth_type_vlan(skb->protocol))) 6192 return 0; 6193 6194 vlan_proto = skb->protocol; 6195 err = __skb_vlan_pop(skb, &vlan_tci); 6196 if (unlikely(err)) 6197 return err; 6198 6199 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6200 return 0; 6201 } 6202 EXPORT_SYMBOL(skb_vlan_pop); 6203 6204 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6205 * Expects skb->data at mac header. 6206 */ 6207 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6208 { 6209 if (skb_vlan_tag_present(skb)) { 6210 int offset = skb->data - skb_mac_header(skb); 6211 int err; 6212 6213 if (WARN_ONCE(offset, 6214 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6215 offset)) { 6216 return -EINVAL; 6217 } 6218 6219 err = __vlan_insert_tag(skb, skb->vlan_proto, 6220 skb_vlan_tag_get(skb)); 6221 if (err) 6222 return err; 6223 6224 skb->protocol = skb->vlan_proto; 6225 skb->mac_len += VLAN_HLEN; 6226 6227 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6228 } 6229 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6230 return 0; 6231 } 6232 EXPORT_SYMBOL(skb_vlan_push); 6233 6234 /** 6235 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6236 * 6237 * @skb: Socket buffer to modify 6238 * 6239 * Drop the Ethernet header of @skb. 6240 * 6241 * Expects that skb->data points to the mac header and that no VLAN tags are 6242 * present. 6243 * 6244 * Returns 0 on success, -errno otherwise. 6245 */ 6246 int skb_eth_pop(struct sk_buff *skb) 6247 { 6248 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6249 skb_network_offset(skb) < ETH_HLEN) 6250 return -EPROTO; 6251 6252 skb_pull_rcsum(skb, ETH_HLEN); 6253 skb_reset_mac_header(skb); 6254 skb_reset_mac_len(skb); 6255 6256 return 0; 6257 } 6258 EXPORT_SYMBOL(skb_eth_pop); 6259 6260 /** 6261 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6262 * 6263 * @skb: Socket buffer to modify 6264 * @dst: Destination MAC address of the new header 6265 * @src: Source MAC address of the new header 6266 * 6267 * Prepend @skb with a new Ethernet header. 6268 * 6269 * Expects that skb->data points to the mac header, which must be empty. 6270 * 6271 * Returns 0 on success, -errno otherwise. 6272 */ 6273 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6274 const unsigned char *src) 6275 { 6276 struct ethhdr *eth; 6277 int err; 6278 6279 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6280 return -EPROTO; 6281 6282 err = skb_cow_head(skb, sizeof(*eth)); 6283 if (err < 0) 6284 return err; 6285 6286 skb_push(skb, sizeof(*eth)); 6287 skb_reset_mac_header(skb); 6288 skb_reset_mac_len(skb); 6289 6290 eth = eth_hdr(skb); 6291 ether_addr_copy(eth->h_dest, dst); 6292 ether_addr_copy(eth->h_source, src); 6293 eth->h_proto = skb->protocol; 6294 6295 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6296 6297 return 0; 6298 } 6299 EXPORT_SYMBOL(skb_eth_push); 6300 6301 /* Update the ethertype of hdr and the skb csum value if required. */ 6302 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6303 __be16 ethertype) 6304 { 6305 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6306 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6307 6308 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6309 } 6310 6311 hdr->h_proto = ethertype; 6312 } 6313 6314 /** 6315 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6316 * the packet 6317 * 6318 * @skb: buffer 6319 * @mpls_lse: MPLS label stack entry to push 6320 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6321 * @mac_len: length of the MAC header 6322 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6323 * ethernet 6324 * 6325 * Expects skb->data at mac header. 6326 * 6327 * Returns 0 on success, -errno otherwise. 6328 */ 6329 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6330 int mac_len, bool ethernet) 6331 { 6332 struct mpls_shim_hdr *lse; 6333 int err; 6334 6335 if (unlikely(!eth_p_mpls(mpls_proto))) 6336 return -EINVAL; 6337 6338 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6339 if (skb->encapsulation) 6340 return -EINVAL; 6341 6342 err = skb_cow_head(skb, MPLS_HLEN); 6343 if (unlikely(err)) 6344 return err; 6345 6346 if (!skb->inner_protocol) { 6347 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6348 skb_set_inner_protocol(skb, skb->protocol); 6349 } 6350 6351 skb_push(skb, MPLS_HLEN); 6352 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6353 mac_len); 6354 skb_reset_mac_header(skb); 6355 skb_set_network_header(skb, mac_len); 6356 skb_reset_mac_len(skb); 6357 6358 lse = mpls_hdr(skb); 6359 lse->label_stack_entry = mpls_lse; 6360 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6361 6362 if (ethernet && mac_len >= ETH_HLEN) 6363 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6364 skb->protocol = mpls_proto; 6365 6366 return 0; 6367 } 6368 EXPORT_SYMBOL_GPL(skb_mpls_push); 6369 6370 /** 6371 * skb_mpls_pop() - pop the outermost MPLS header 6372 * 6373 * @skb: buffer 6374 * @next_proto: ethertype of header after popped MPLS header 6375 * @mac_len: length of the MAC header 6376 * @ethernet: flag to indicate if the packet is ethernet 6377 * 6378 * Expects skb->data at mac header. 6379 * 6380 * Returns 0 on success, -errno otherwise. 6381 */ 6382 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6383 bool ethernet) 6384 { 6385 int err; 6386 6387 if (unlikely(!eth_p_mpls(skb->protocol))) 6388 return 0; 6389 6390 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6391 if (unlikely(err)) 6392 return err; 6393 6394 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6395 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6396 mac_len); 6397 6398 __skb_pull(skb, MPLS_HLEN); 6399 skb_reset_mac_header(skb); 6400 skb_set_network_header(skb, mac_len); 6401 6402 if (ethernet && mac_len >= ETH_HLEN) { 6403 struct ethhdr *hdr; 6404 6405 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6406 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6407 skb_mod_eth_type(skb, hdr, next_proto); 6408 } 6409 skb->protocol = next_proto; 6410 6411 return 0; 6412 } 6413 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6414 6415 /** 6416 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6417 * 6418 * @skb: buffer 6419 * @mpls_lse: new MPLS label stack entry to update to 6420 * 6421 * Expects skb->data at mac header. 6422 * 6423 * Returns 0 on success, -errno otherwise. 6424 */ 6425 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6426 { 6427 int err; 6428 6429 if (unlikely(!eth_p_mpls(skb->protocol))) 6430 return -EINVAL; 6431 6432 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6433 if (unlikely(err)) 6434 return err; 6435 6436 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6437 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6438 6439 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6440 } 6441 6442 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6443 6444 return 0; 6445 } 6446 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6447 6448 /** 6449 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6450 * 6451 * @skb: buffer 6452 * 6453 * Expects skb->data at mac header. 6454 * 6455 * Returns 0 on success, -errno otherwise. 6456 */ 6457 int skb_mpls_dec_ttl(struct sk_buff *skb) 6458 { 6459 u32 lse; 6460 u8 ttl; 6461 6462 if (unlikely(!eth_p_mpls(skb->protocol))) 6463 return -EINVAL; 6464 6465 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6466 return -ENOMEM; 6467 6468 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6469 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6470 if (!--ttl) 6471 return -EINVAL; 6472 6473 lse &= ~MPLS_LS_TTL_MASK; 6474 lse |= ttl << MPLS_LS_TTL_SHIFT; 6475 6476 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6477 } 6478 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6479 6480 /** 6481 * alloc_skb_with_frags - allocate skb with page frags 6482 * 6483 * @header_len: size of linear part 6484 * @data_len: needed length in frags 6485 * @order: max page order desired. 6486 * @errcode: pointer to error code if any 6487 * @gfp_mask: allocation mask 6488 * 6489 * This can be used to allocate a paged skb, given a maximal order for frags. 6490 */ 6491 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6492 unsigned long data_len, 6493 int order, 6494 int *errcode, 6495 gfp_t gfp_mask) 6496 { 6497 unsigned long chunk; 6498 struct sk_buff *skb; 6499 struct page *page; 6500 int nr_frags = 0; 6501 6502 *errcode = -EMSGSIZE; 6503 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6504 return NULL; 6505 6506 *errcode = -ENOBUFS; 6507 skb = alloc_skb(header_len, gfp_mask); 6508 if (!skb) 6509 return NULL; 6510 6511 while (data_len) { 6512 if (nr_frags == MAX_SKB_FRAGS - 1) 6513 goto failure; 6514 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6515 order--; 6516 6517 if (order) { 6518 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6519 __GFP_COMP | 6520 __GFP_NOWARN, 6521 order); 6522 if (!page) { 6523 order--; 6524 continue; 6525 } 6526 } else { 6527 page = alloc_page(gfp_mask); 6528 if (!page) 6529 goto failure; 6530 } 6531 chunk = min_t(unsigned long, data_len, 6532 PAGE_SIZE << order); 6533 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6534 nr_frags++; 6535 skb->truesize += (PAGE_SIZE << order); 6536 data_len -= chunk; 6537 } 6538 return skb; 6539 6540 failure: 6541 kfree_skb(skb); 6542 return NULL; 6543 } 6544 EXPORT_SYMBOL(alloc_skb_with_frags); 6545 6546 /* carve out the first off bytes from skb when off < headlen */ 6547 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6548 const int headlen, gfp_t gfp_mask) 6549 { 6550 int i; 6551 unsigned int size = skb_end_offset(skb); 6552 int new_hlen = headlen - off; 6553 u8 *data; 6554 6555 if (skb_pfmemalloc(skb)) 6556 gfp_mask |= __GFP_MEMALLOC; 6557 6558 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6559 if (!data) 6560 return -ENOMEM; 6561 size = SKB_WITH_OVERHEAD(size); 6562 6563 /* Copy real data, and all frags */ 6564 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6565 skb->len -= off; 6566 6567 memcpy((struct skb_shared_info *)(data + size), 6568 skb_shinfo(skb), 6569 offsetof(struct skb_shared_info, 6570 frags[skb_shinfo(skb)->nr_frags])); 6571 if (skb_cloned(skb)) { 6572 /* drop the old head gracefully */ 6573 if (skb_orphan_frags(skb, gfp_mask)) { 6574 skb_kfree_head(data, size); 6575 return -ENOMEM; 6576 } 6577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6578 skb_frag_ref(skb, i); 6579 if (skb_has_frag_list(skb)) 6580 skb_clone_fraglist(skb); 6581 skb_release_data(skb, SKB_CONSUMED); 6582 } else { 6583 /* we can reuse existing recount- all we did was 6584 * relocate values 6585 */ 6586 skb_free_head(skb); 6587 } 6588 6589 skb->head = data; 6590 skb->data = data; 6591 skb->head_frag = 0; 6592 skb_set_end_offset(skb, size); 6593 skb_set_tail_pointer(skb, skb_headlen(skb)); 6594 skb_headers_offset_update(skb, 0); 6595 skb->cloned = 0; 6596 skb->hdr_len = 0; 6597 skb->nohdr = 0; 6598 atomic_set(&skb_shinfo(skb)->dataref, 1); 6599 6600 return 0; 6601 } 6602 6603 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6604 6605 /* carve out the first eat bytes from skb's frag_list. May recurse into 6606 * pskb_carve() 6607 */ 6608 static int pskb_carve_frag_list(struct sk_buff *skb, 6609 struct skb_shared_info *shinfo, int eat, 6610 gfp_t gfp_mask) 6611 { 6612 struct sk_buff *list = shinfo->frag_list; 6613 struct sk_buff *clone = NULL; 6614 struct sk_buff *insp = NULL; 6615 6616 do { 6617 if (!list) { 6618 pr_err("Not enough bytes to eat. Want %d\n", eat); 6619 return -EFAULT; 6620 } 6621 if (list->len <= eat) { 6622 /* Eaten as whole. */ 6623 eat -= list->len; 6624 list = list->next; 6625 insp = list; 6626 } else { 6627 /* Eaten partially. */ 6628 if (skb_shared(list)) { 6629 clone = skb_clone(list, gfp_mask); 6630 if (!clone) 6631 return -ENOMEM; 6632 insp = list->next; 6633 list = clone; 6634 } else { 6635 /* This may be pulled without problems. */ 6636 insp = list; 6637 } 6638 if (pskb_carve(list, eat, gfp_mask) < 0) { 6639 kfree_skb(clone); 6640 return -ENOMEM; 6641 } 6642 break; 6643 } 6644 } while (eat); 6645 6646 /* Free pulled out fragments. */ 6647 while ((list = shinfo->frag_list) != insp) { 6648 shinfo->frag_list = list->next; 6649 consume_skb(list); 6650 } 6651 /* And insert new clone at head. */ 6652 if (clone) { 6653 clone->next = list; 6654 shinfo->frag_list = clone; 6655 } 6656 return 0; 6657 } 6658 6659 /* carve off first len bytes from skb. Split line (off) is in the 6660 * non-linear part of skb 6661 */ 6662 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6663 int pos, gfp_t gfp_mask) 6664 { 6665 int i, k = 0; 6666 unsigned int size = skb_end_offset(skb); 6667 u8 *data; 6668 const int nfrags = skb_shinfo(skb)->nr_frags; 6669 struct skb_shared_info *shinfo; 6670 6671 if (skb_pfmemalloc(skb)) 6672 gfp_mask |= __GFP_MEMALLOC; 6673 6674 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6675 if (!data) 6676 return -ENOMEM; 6677 size = SKB_WITH_OVERHEAD(size); 6678 6679 memcpy((struct skb_shared_info *)(data + size), 6680 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6681 if (skb_orphan_frags(skb, gfp_mask)) { 6682 skb_kfree_head(data, size); 6683 return -ENOMEM; 6684 } 6685 shinfo = (struct skb_shared_info *)(data + size); 6686 for (i = 0; i < nfrags; i++) { 6687 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6688 6689 if (pos + fsize > off) { 6690 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6691 6692 if (pos < off) { 6693 /* Split frag. 6694 * We have two variants in this case: 6695 * 1. Move all the frag to the second 6696 * part, if it is possible. F.e. 6697 * this approach is mandatory for TUX, 6698 * where splitting is expensive. 6699 * 2. Split is accurately. We make this. 6700 */ 6701 skb_frag_off_add(&shinfo->frags[0], off - pos); 6702 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6703 } 6704 skb_frag_ref(skb, i); 6705 k++; 6706 } 6707 pos += fsize; 6708 } 6709 shinfo->nr_frags = k; 6710 if (skb_has_frag_list(skb)) 6711 skb_clone_fraglist(skb); 6712 6713 /* split line is in frag list */ 6714 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6715 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6716 if (skb_has_frag_list(skb)) 6717 kfree_skb_list(skb_shinfo(skb)->frag_list); 6718 skb_kfree_head(data, size); 6719 return -ENOMEM; 6720 } 6721 skb_release_data(skb, SKB_CONSUMED); 6722 6723 skb->head = data; 6724 skb->head_frag = 0; 6725 skb->data = data; 6726 skb_set_end_offset(skb, size); 6727 skb_reset_tail_pointer(skb); 6728 skb_headers_offset_update(skb, 0); 6729 skb->cloned = 0; 6730 skb->hdr_len = 0; 6731 skb->nohdr = 0; 6732 skb->len -= off; 6733 skb->data_len = skb->len; 6734 atomic_set(&skb_shinfo(skb)->dataref, 1); 6735 return 0; 6736 } 6737 6738 /* remove len bytes from the beginning of the skb */ 6739 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6740 { 6741 int headlen = skb_headlen(skb); 6742 6743 if (len < headlen) 6744 return pskb_carve_inside_header(skb, len, headlen, gfp); 6745 else 6746 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6747 } 6748 6749 /* Extract to_copy bytes starting at off from skb, and return this in 6750 * a new skb 6751 */ 6752 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6753 int to_copy, gfp_t gfp) 6754 { 6755 struct sk_buff *clone = skb_clone(skb, gfp); 6756 6757 if (!clone) 6758 return NULL; 6759 6760 if (pskb_carve(clone, off, gfp) < 0 || 6761 pskb_trim(clone, to_copy)) { 6762 kfree_skb(clone); 6763 return NULL; 6764 } 6765 return clone; 6766 } 6767 EXPORT_SYMBOL(pskb_extract); 6768 6769 /** 6770 * skb_condense - try to get rid of fragments/frag_list if possible 6771 * @skb: buffer 6772 * 6773 * Can be used to save memory before skb is added to a busy queue. 6774 * If packet has bytes in frags and enough tail room in skb->head, 6775 * pull all of them, so that we can free the frags right now and adjust 6776 * truesize. 6777 * Notes: 6778 * We do not reallocate skb->head thus can not fail. 6779 * Caller must re-evaluate skb->truesize if needed. 6780 */ 6781 void skb_condense(struct sk_buff *skb) 6782 { 6783 if (skb->data_len) { 6784 if (skb->data_len > skb->end - skb->tail || 6785 skb_cloned(skb)) 6786 return; 6787 6788 /* Nice, we can free page frag(s) right now */ 6789 __pskb_pull_tail(skb, skb->data_len); 6790 } 6791 /* At this point, skb->truesize might be over estimated, 6792 * because skb had a fragment, and fragments do not tell 6793 * their truesize. 6794 * When we pulled its content into skb->head, fragment 6795 * was freed, but __pskb_pull_tail() could not possibly 6796 * adjust skb->truesize, not knowing the frag truesize. 6797 */ 6798 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6799 } 6800 EXPORT_SYMBOL(skb_condense); 6801 6802 #ifdef CONFIG_SKB_EXTENSIONS 6803 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6804 { 6805 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6806 } 6807 6808 /** 6809 * __skb_ext_alloc - allocate a new skb extensions storage 6810 * 6811 * @flags: See kmalloc(). 6812 * 6813 * Returns the newly allocated pointer. The pointer can later attached to a 6814 * skb via __skb_ext_set(). 6815 * Note: caller must handle the skb_ext as an opaque data. 6816 */ 6817 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6818 { 6819 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6820 6821 if (new) { 6822 memset(new->offset, 0, sizeof(new->offset)); 6823 refcount_set(&new->refcnt, 1); 6824 } 6825 6826 return new; 6827 } 6828 6829 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6830 unsigned int old_active) 6831 { 6832 struct skb_ext *new; 6833 6834 if (refcount_read(&old->refcnt) == 1) 6835 return old; 6836 6837 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6838 if (!new) 6839 return NULL; 6840 6841 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6842 refcount_set(&new->refcnt, 1); 6843 6844 #ifdef CONFIG_XFRM 6845 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6846 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6847 unsigned int i; 6848 6849 for (i = 0; i < sp->len; i++) 6850 xfrm_state_hold(sp->xvec[i]); 6851 } 6852 #endif 6853 #ifdef CONFIG_MCTP_FLOWS 6854 if (old_active & (1 << SKB_EXT_MCTP)) { 6855 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6856 6857 if (flow->key) 6858 refcount_inc(&flow->key->refs); 6859 } 6860 #endif 6861 __skb_ext_put(old); 6862 return new; 6863 } 6864 6865 /** 6866 * __skb_ext_set - attach the specified extension storage to this skb 6867 * @skb: buffer 6868 * @id: extension id 6869 * @ext: extension storage previously allocated via __skb_ext_alloc() 6870 * 6871 * Existing extensions, if any, are cleared. 6872 * 6873 * Returns the pointer to the extension. 6874 */ 6875 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6876 struct skb_ext *ext) 6877 { 6878 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6879 6880 skb_ext_put(skb); 6881 newlen = newoff + skb_ext_type_len[id]; 6882 ext->chunks = newlen; 6883 ext->offset[id] = newoff; 6884 skb->extensions = ext; 6885 skb->active_extensions = 1 << id; 6886 return skb_ext_get_ptr(ext, id); 6887 } 6888 6889 /** 6890 * skb_ext_add - allocate space for given extension, COW if needed 6891 * @skb: buffer 6892 * @id: extension to allocate space for 6893 * 6894 * Allocates enough space for the given extension. 6895 * If the extension is already present, a pointer to that extension 6896 * is returned. 6897 * 6898 * If the skb was cloned, COW applies and the returned memory can be 6899 * modified without changing the extension space of clones buffers. 6900 * 6901 * Returns pointer to the extension or NULL on allocation failure. 6902 */ 6903 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6904 { 6905 struct skb_ext *new, *old = NULL; 6906 unsigned int newlen, newoff; 6907 6908 if (skb->active_extensions) { 6909 old = skb->extensions; 6910 6911 new = skb_ext_maybe_cow(old, skb->active_extensions); 6912 if (!new) 6913 return NULL; 6914 6915 if (__skb_ext_exist(new, id)) 6916 goto set_active; 6917 6918 newoff = new->chunks; 6919 } else { 6920 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6921 6922 new = __skb_ext_alloc(GFP_ATOMIC); 6923 if (!new) 6924 return NULL; 6925 } 6926 6927 newlen = newoff + skb_ext_type_len[id]; 6928 new->chunks = newlen; 6929 new->offset[id] = newoff; 6930 set_active: 6931 skb->slow_gro = 1; 6932 skb->extensions = new; 6933 skb->active_extensions |= 1 << id; 6934 return skb_ext_get_ptr(new, id); 6935 } 6936 EXPORT_SYMBOL(skb_ext_add); 6937 6938 #ifdef CONFIG_XFRM 6939 static void skb_ext_put_sp(struct sec_path *sp) 6940 { 6941 unsigned int i; 6942 6943 for (i = 0; i < sp->len; i++) 6944 xfrm_state_put(sp->xvec[i]); 6945 } 6946 #endif 6947 6948 #ifdef CONFIG_MCTP_FLOWS 6949 static void skb_ext_put_mctp(struct mctp_flow *flow) 6950 { 6951 if (flow->key) 6952 mctp_key_unref(flow->key); 6953 } 6954 #endif 6955 6956 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6957 { 6958 struct skb_ext *ext = skb->extensions; 6959 6960 skb->active_extensions &= ~(1 << id); 6961 if (skb->active_extensions == 0) { 6962 skb->extensions = NULL; 6963 __skb_ext_put(ext); 6964 #ifdef CONFIG_XFRM 6965 } else if (id == SKB_EXT_SEC_PATH && 6966 refcount_read(&ext->refcnt) == 1) { 6967 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6968 6969 skb_ext_put_sp(sp); 6970 sp->len = 0; 6971 #endif 6972 } 6973 } 6974 EXPORT_SYMBOL(__skb_ext_del); 6975 6976 void __skb_ext_put(struct skb_ext *ext) 6977 { 6978 /* If this is last clone, nothing can increment 6979 * it after check passes. Avoids one atomic op. 6980 */ 6981 if (refcount_read(&ext->refcnt) == 1) 6982 goto free_now; 6983 6984 if (!refcount_dec_and_test(&ext->refcnt)) 6985 return; 6986 free_now: 6987 #ifdef CONFIG_XFRM 6988 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6989 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6990 #endif 6991 #ifdef CONFIG_MCTP_FLOWS 6992 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6993 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6994 #endif 6995 6996 kmem_cache_free(skbuff_ext_cache, ext); 6997 } 6998 EXPORT_SYMBOL(__skb_ext_put); 6999 #endif /* CONFIG_SKB_EXTENSIONS */ 7000 7001 static void kfree_skb_napi_cache(struct sk_buff *skb) 7002 { 7003 /* if SKB is a clone, don't handle this case */ 7004 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7005 __kfree_skb(skb); 7006 return; 7007 } 7008 7009 local_bh_disable(); 7010 __napi_kfree_skb(skb, SKB_CONSUMED); 7011 local_bh_enable(); 7012 } 7013 7014 /** 7015 * skb_attempt_defer_free - queue skb for remote freeing 7016 * @skb: buffer 7017 * 7018 * Put @skb in a per-cpu list, using the cpu which 7019 * allocated the skb/pages to reduce false sharing 7020 * and memory zone spinlock contention. 7021 */ 7022 void skb_attempt_defer_free(struct sk_buff *skb) 7023 { 7024 int cpu = skb->alloc_cpu; 7025 struct softnet_data *sd; 7026 unsigned int defer_max; 7027 bool kick; 7028 7029 if (cpu == raw_smp_processor_id() || 7030 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7031 !cpu_online(cpu)) { 7032 nodefer: kfree_skb_napi_cache(skb); 7033 return; 7034 } 7035 7036 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7037 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7038 7039 sd = &per_cpu(softnet_data, cpu); 7040 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7041 if (READ_ONCE(sd->defer_count) >= defer_max) 7042 goto nodefer; 7043 7044 spin_lock_bh(&sd->defer_lock); 7045 /* Send an IPI every time queue reaches half capacity. */ 7046 kick = sd->defer_count == (defer_max >> 1); 7047 /* Paired with the READ_ONCE() few lines above */ 7048 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7049 7050 skb->next = sd->defer_list; 7051 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7052 WRITE_ONCE(sd->defer_list, skb); 7053 spin_unlock_bh(&sd->defer_lock); 7054 7055 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7056 * if we are unlucky enough (this seems very unlikely). 7057 */ 7058 if (unlikely(kick)) 7059 kick_defer_list_purge(sd, cpu); 7060 } 7061 7062 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7063 size_t offset, size_t len) 7064 { 7065 const char *kaddr; 7066 __wsum csum; 7067 7068 kaddr = kmap_local_page(page); 7069 csum = csum_partial(kaddr + offset, len, 0); 7070 kunmap_local(kaddr); 7071 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7072 } 7073 7074 /** 7075 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7076 * @skb: The buffer to add pages to 7077 * @iter: Iterator representing the pages to be added 7078 * @maxsize: Maximum amount of pages to be added 7079 * @gfp: Allocation flags 7080 * 7081 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7082 * extracts pages from an iterator and adds them to the socket buffer if 7083 * possible, copying them to fragments if not possible (such as if they're slab 7084 * pages). 7085 * 7086 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7087 * insufficient space in the buffer to transfer anything. 7088 */ 7089 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7090 ssize_t maxsize, gfp_t gfp) 7091 { 7092 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7093 struct page *pages[8], **ppages = pages; 7094 ssize_t spliced = 0, ret = 0; 7095 unsigned int i; 7096 7097 while (iter->count > 0) { 7098 ssize_t space, nr, len; 7099 size_t off; 7100 7101 ret = -EMSGSIZE; 7102 space = frag_limit - skb_shinfo(skb)->nr_frags; 7103 if (space < 0) 7104 break; 7105 7106 /* We might be able to coalesce without increasing nr_frags */ 7107 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7108 7109 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7110 if (len <= 0) { 7111 ret = len ?: -EIO; 7112 break; 7113 } 7114 7115 i = 0; 7116 do { 7117 struct page *page = pages[i++]; 7118 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7119 7120 ret = -EIO; 7121 if (WARN_ON_ONCE(!sendpage_ok(page))) 7122 goto out; 7123 7124 ret = skb_append_pagefrags(skb, page, off, part, 7125 frag_limit); 7126 if (ret < 0) { 7127 iov_iter_revert(iter, len); 7128 goto out; 7129 } 7130 7131 if (skb->ip_summed == CHECKSUM_NONE) 7132 skb_splice_csum_page(skb, page, off, part); 7133 7134 off = 0; 7135 spliced += part; 7136 maxsize -= part; 7137 len -= part; 7138 } while (len > 0); 7139 7140 if (maxsize <= 0) 7141 break; 7142 } 7143 7144 out: 7145 skb_len_add(skb, spliced); 7146 return spliced ?: ret; 7147 } 7148 EXPORT_SYMBOL(skb_splice_from_iter); 7149 7150 static __always_inline 7151 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7152 size_t len, void *to, void *priv2) 7153 { 7154 __wsum *csum = priv2; 7155 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7156 7157 *csum = csum_block_add(*csum, next, progress); 7158 return 0; 7159 } 7160 7161 static __always_inline 7162 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7163 size_t len, void *to, void *priv2) 7164 { 7165 __wsum next, *csum = priv2; 7166 7167 next = csum_and_copy_from_user(iter_from, to + progress, len); 7168 *csum = csum_block_add(*csum, next, progress); 7169 return next ? 0 : len; 7170 } 7171 7172 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7173 __wsum *csum, struct iov_iter *i) 7174 { 7175 size_t copied; 7176 7177 if (WARN_ON_ONCE(!i->data_source)) 7178 return false; 7179 copied = iterate_and_advance2(i, bytes, addr, csum, 7180 copy_from_user_iter_csum, 7181 memcpy_from_iter_csum); 7182 if (likely(copied == bytes)) 7183 return true; 7184 iov_iter_revert(i, copied); 7185 return false; 7186 } 7187 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7188