1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/gso.h> 73 #include <net/hotdata.h> 74 #include <net/ip6_checksum.h> 75 #include <net/xfrm.h> 76 #include <net/mpls.h> 77 #include <net/mptcp.h> 78 #include <net/mctp.h> 79 #include <net/page_pool/helpers.h> 80 #include <net/dropreason.h> 81 82 #include <linux/uaccess.h> 83 #include <trace/events/skb.h> 84 #include <linux/highmem.h> 85 #include <linux/capability.h> 86 #include <linux/user_namespace.h> 87 #include <linux/indirect_call_wrapper.h> 88 #include <linux/textsearch.h> 89 90 #include "dev.h" 91 #include "netmem_priv.h" 92 #include "sock_destructor.h" 93 94 #ifdef CONFIG_SKB_EXTENSIONS 95 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 96 #endif 97 98 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 99 100 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 101 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 102 * size, and we can differentiate heads from skb_small_head_cache 103 * vs system slabs by looking at their size (skb_end_offset()). 104 */ 105 #define SKB_SMALL_HEAD_CACHE_SIZE \ 106 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 107 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 108 SKB_SMALL_HEAD_SIZE) 109 110 #define SKB_SMALL_HEAD_HEADROOM \ 111 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 112 113 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 114 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 115 * netmem is a page. 116 */ 117 static_assert(offsetof(struct bio_vec, bv_page) == 118 offsetof(skb_frag_t, netmem)); 119 static_assert(sizeof_field(struct bio_vec, bv_page) == 120 sizeof_field(skb_frag_t, netmem)); 121 122 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 123 static_assert(sizeof_field(struct bio_vec, bv_len) == 124 sizeof_field(skb_frag_t, len)); 125 126 static_assert(offsetof(struct bio_vec, bv_offset) == 127 offsetof(skb_frag_t, offset)); 128 static_assert(sizeof_field(struct bio_vec, bv_offset) == 129 sizeof_field(skb_frag_t, offset)); 130 131 #undef FN 132 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 133 static const char * const drop_reasons[] = { 134 [SKB_CONSUMED] = "CONSUMED", 135 DEFINE_DROP_REASON(FN, FN) 136 }; 137 138 static const struct drop_reason_list drop_reasons_core = { 139 .reasons = drop_reasons, 140 .n_reasons = ARRAY_SIZE(drop_reasons), 141 }; 142 143 const struct drop_reason_list __rcu * 144 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 145 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 146 }; 147 EXPORT_SYMBOL(drop_reasons_by_subsys); 148 149 /** 150 * drop_reasons_register_subsys - register another drop reason subsystem 151 * @subsys: the subsystem to register, must not be the core 152 * @list: the list of drop reasons within the subsystem, must point to 153 * a statically initialized list 154 */ 155 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 156 const struct drop_reason_list *list) 157 { 158 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 159 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 160 "invalid subsystem %d\n", subsys)) 161 return; 162 163 /* must point to statically allocated memory, so INIT is OK */ 164 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 165 } 166 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 167 168 /** 169 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 170 * @subsys: the subsystem to remove, must not be the core 171 * 172 * Note: This will synchronize_rcu() to ensure no users when it returns. 173 */ 174 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 175 { 176 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 177 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 178 "invalid subsystem %d\n", subsys)) 179 return; 180 181 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 182 183 synchronize_rcu(); 184 } 185 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 186 187 /** 188 * skb_panic - private function for out-of-line support 189 * @skb: buffer 190 * @sz: size 191 * @addr: address 192 * @msg: skb_over_panic or skb_under_panic 193 * 194 * Out-of-line support for skb_put() and skb_push(). 195 * Called via the wrapper skb_over_panic() or skb_under_panic(). 196 * Keep out of line to prevent kernel bloat. 197 * __builtin_return_address is not used because it is not always reliable. 198 */ 199 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 200 const char msg[]) 201 { 202 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 203 msg, addr, skb->len, sz, skb->head, skb->data, 204 (unsigned long)skb->tail, (unsigned long)skb->end, 205 skb->dev ? skb->dev->name : "<NULL>"); 206 BUG(); 207 } 208 209 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 210 { 211 skb_panic(skb, sz, addr, __func__); 212 } 213 214 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 215 { 216 skb_panic(skb, sz, addr, __func__); 217 } 218 219 #define NAPI_SKB_CACHE_SIZE 64 220 #define NAPI_SKB_CACHE_BULK 16 221 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 222 223 #if PAGE_SIZE == SZ_4K 224 225 #define NAPI_HAS_SMALL_PAGE_FRAG 1 226 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 227 228 /* specialized page frag allocator using a single order 0 page 229 * and slicing it into 1K sized fragment. Constrained to systems 230 * with a very limited amount of 1K fragments fitting a single 231 * page - to avoid excessive truesize underestimation 232 */ 233 234 struct page_frag_1k { 235 void *va; 236 u16 offset; 237 bool pfmemalloc; 238 }; 239 240 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 241 { 242 struct page *page; 243 int offset; 244 245 offset = nc->offset - SZ_1K; 246 if (likely(offset >= 0)) 247 goto use_frag; 248 249 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 250 if (!page) 251 return NULL; 252 253 nc->va = page_address(page); 254 nc->pfmemalloc = page_is_pfmemalloc(page); 255 offset = PAGE_SIZE - SZ_1K; 256 page_ref_add(page, offset / SZ_1K); 257 258 use_frag: 259 nc->offset = offset; 260 return nc->va + offset; 261 } 262 #else 263 264 /* the small page is actually unused in this build; add dummy helpers 265 * to please the compiler and avoid later preprocessor's conditionals 266 */ 267 #define NAPI_HAS_SMALL_PAGE_FRAG 0 268 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 269 270 struct page_frag_1k { 271 }; 272 273 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 274 { 275 return NULL; 276 } 277 278 #endif 279 280 struct napi_alloc_cache { 281 local_lock_t bh_lock; 282 struct page_frag_cache page; 283 struct page_frag_1k page_small; 284 unsigned int skb_count; 285 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 286 }; 287 288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 290 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 291 }; 292 293 /* Double check that napi_get_frags() allocates skbs with 294 * skb->head being backed by slab, not a page fragment. 295 * This is to make sure bug fixed in 3226b158e67c 296 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 297 * does not accidentally come back. 298 */ 299 void napi_get_frags_check(struct napi_struct *napi) 300 { 301 struct sk_buff *skb; 302 303 local_bh_disable(); 304 skb = napi_get_frags(napi); 305 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 306 napi_free_frags(napi); 307 local_bh_enable(); 308 } 309 310 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 311 { 312 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 313 void *data; 314 315 fragsz = SKB_DATA_ALIGN(fragsz); 316 317 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 318 data = __page_frag_alloc_align(&nc->page, fragsz, 319 GFP_ATOMIC | __GFP_NOWARN, align_mask); 320 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 321 return data; 322 323 } 324 EXPORT_SYMBOL(__napi_alloc_frag_align); 325 326 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 327 { 328 void *data; 329 330 if (in_hardirq() || irqs_disabled()) { 331 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 332 333 fragsz = SKB_DATA_ALIGN(fragsz); 334 data = __page_frag_alloc_align(nc, fragsz, 335 GFP_ATOMIC | __GFP_NOWARN, 336 align_mask); 337 } else { 338 local_bh_disable(); 339 data = __napi_alloc_frag_align(fragsz, align_mask); 340 local_bh_enable(); 341 } 342 return data; 343 } 344 EXPORT_SYMBOL(__netdev_alloc_frag_align); 345 346 static struct sk_buff *napi_skb_cache_get(void) 347 { 348 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 349 struct sk_buff *skb; 350 351 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 352 if (unlikely(!nc->skb_count)) { 353 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 354 GFP_ATOMIC | __GFP_NOWARN, 355 NAPI_SKB_CACHE_BULK, 356 nc->skb_cache); 357 if (unlikely(!nc->skb_count)) { 358 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 359 return NULL; 360 } 361 } 362 363 skb = nc->skb_cache[--nc->skb_count]; 364 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 365 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 366 367 return skb; 368 } 369 370 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 371 unsigned int size) 372 { 373 struct skb_shared_info *shinfo; 374 375 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 376 377 /* Assumes caller memset cleared SKB */ 378 skb->truesize = SKB_TRUESIZE(size); 379 refcount_set(&skb->users, 1); 380 skb->head = data; 381 skb->data = data; 382 skb_reset_tail_pointer(skb); 383 skb_set_end_offset(skb, size); 384 skb->mac_header = (typeof(skb->mac_header))~0U; 385 skb->transport_header = (typeof(skb->transport_header))~0U; 386 skb->alloc_cpu = raw_smp_processor_id(); 387 /* make sure we initialize shinfo sequentially */ 388 shinfo = skb_shinfo(skb); 389 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 390 atomic_set(&shinfo->dataref, 1); 391 392 skb_set_kcov_handle(skb, kcov_common_handle()); 393 } 394 395 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 396 unsigned int *size) 397 { 398 void *resized; 399 400 /* Must find the allocation size (and grow it to match). */ 401 *size = ksize(data); 402 /* krealloc() will immediately return "data" when 403 * "ksize(data)" is requested: it is the existing upper 404 * bounds. As a result, GFP_ATOMIC will be ignored. Note 405 * that this "new" pointer needs to be passed back to the 406 * caller for use so the __alloc_size hinting will be 407 * tracked correctly. 408 */ 409 resized = krealloc(data, *size, GFP_ATOMIC); 410 WARN_ON_ONCE(resized != data); 411 return resized; 412 } 413 414 /* build_skb() variant which can operate on slab buffers. 415 * Note that this should be used sparingly as slab buffers 416 * cannot be combined efficiently by GRO! 417 */ 418 struct sk_buff *slab_build_skb(void *data) 419 { 420 struct sk_buff *skb; 421 unsigned int size; 422 423 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 424 GFP_ATOMIC | __GFP_NOWARN); 425 if (unlikely(!skb)) 426 return NULL; 427 428 memset(skb, 0, offsetof(struct sk_buff, tail)); 429 data = __slab_build_skb(skb, data, &size); 430 __finalize_skb_around(skb, data, size); 431 432 return skb; 433 } 434 EXPORT_SYMBOL(slab_build_skb); 435 436 /* Caller must provide SKB that is memset cleared */ 437 static void __build_skb_around(struct sk_buff *skb, void *data, 438 unsigned int frag_size) 439 { 440 unsigned int size = frag_size; 441 442 /* frag_size == 0 is considered deprecated now. Callers 443 * using slab buffer should use slab_build_skb() instead. 444 */ 445 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 446 data = __slab_build_skb(skb, data, &size); 447 448 __finalize_skb_around(skb, data, size); 449 } 450 451 /** 452 * __build_skb - build a network buffer 453 * @data: data buffer provided by caller 454 * @frag_size: size of data (must not be 0) 455 * 456 * Allocate a new &sk_buff. Caller provides space holding head and 457 * skb_shared_info. @data must have been allocated from the page 458 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 459 * allocation is deprecated, and callers should use slab_build_skb() 460 * instead.) 461 * The return is the new skb buffer. 462 * On a failure the return is %NULL, and @data is not freed. 463 * Notes : 464 * Before IO, driver allocates only data buffer where NIC put incoming frame 465 * Driver should add room at head (NET_SKB_PAD) and 466 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 467 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 468 * before giving packet to stack. 469 * RX rings only contains data buffers, not full skbs. 470 */ 471 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 472 { 473 struct sk_buff *skb; 474 475 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 476 GFP_ATOMIC | __GFP_NOWARN); 477 if (unlikely(!skb)) 478 return NULL; 479 480 memset(skb, 0, offsetof(struct sk_buff, tail)); 481 __build_skb_around(skb, data, frag_size); 482 483 return skb; 484 } 485 486 /* build_skb() is wrapper over __build_skb(), that specifically 487 * takes care of skb->head and skb->pfmemalloc 488 */ 489 struct sk_buff *build_skb(void *data, unsigned int frag_size) 490 { 491 struct sk_buff *skb = __build_skb(data, frag_size); 492 493 if (likely(skb && frag_size)) { 494 skb->head_frag = 1; 495 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 496 } 497 return skb; 498 } 499 EXPORT_SYMBOL(build_skb); 500 501 /** 502 * build_skb_around - build a network buffer around provided skb 503 * @skb: sk_buff provide by caller, must be memset cleared 504 * @data: data buffer provided by caller 505 * @frag_size: size of data 506 */ 507 struct sk_buff *build_skb_around(struct sk_buff *skb, 508 void *data, unsigned int frag_size) 509 { 510 if (unlikely(!skb)) 511 return NULL; 512 513 __build_skb_around(skb, data, frag_size); 514 515 if (frag_size) { 516 skb->head_frag = 1; 517 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 518 } 519 return skb; 520 } 521 EXPORT_SYMBOL(build_skb_around); 522 523 /** 524 * __napi_build_skb - build a network buffer 525 * @data: data buffer provided by caller 526 * @frag_size: size of data 527 * 528 * Version of __build_skb() that uses NAPI percpu caches to obtain 529 * skbuff_head instead of inplace allocation. 530 * 531 * Returns a new &sk_buff on success, %NULL on allocation failure. 532 */ 533 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 534 { 535 struct sk_buff *skb; 536 537 skb = napi_skb_cache_get(); 538 if (unlikely(!skb)) 539 return NULL; 540 541 memset(skb, 0, offsetof(struct sk_buff, tail)); 542 __build_skb_around(skb, data, frag_size); 543 544 return skb; 545 } 546 547 /** 548 * napi_build_skb - build a network buffer 549 * @data: data buffer provided by caller 550 * @frag_size: size of data 551 * 552 * Version of __napi_build_skb() that takes care of skb->head_frag 553 * and skb->pfmemalloc when the data is a page or page fragment. 554 * 555 * Returns a new &sk_buff on success, %NULL on allocation failure. 556 */ 557 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 558 { 559 struct sk_buff *skb = __napi_build_skb(data, frag_size); 560 561 if (likely(skb) && frag_size) { 562 skb->head_frag = 1; 563 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 564 } 565 566 return skb; 567 } 568 EXPORT_SYMBOL(napi_build_skb); 569 570 /* 571 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 572 * the caller if emergency pfmemalloc reserves are being used. If it is and 573 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 574 * may be used. Otherwise, the packet data may be discarded until enough 575 * memory is free 576 */ 577 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 578 bool *pfmemalloc) 579 { 580 bool ret_pfmemalloc = false; 581 size_t obj_size; 582 void *obj; 583 584 obj_size = SKB_HEAD_ALIGN(*size); 585 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 586 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 587 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 588 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 589 node); 590 *size = SKB_SMALL_HEAD_CACHE_SIZE; 591 if (obj || !(gfp_pfmemalloc_allowed(flags))) 592 goto out; 593 /* Try again but now we are using pfmemalloc reserves */ 594 ret_pfmemalloc = true; 595 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 596 goto out; 597 } 598 599 obj_size = kmalloc_size_roundup(obj_size); 600 /* The following cast might truncate high-order bits of obj_size, this 601 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 602 */ 603 *size = (unsigned int)obj_size; 604 605 /* 606 * Try a regular allocation, when that fails and we're not entitled 607 * to the reserves, fail. 608 */ 609 obj = kmalloc_node_track_caller(obj_size, 610 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 611 node); 612 if (obj || !(gfp_pfmemalloc_allowed(flags))) 613 goto out; 614 615 /* Try again but now we are using pfmemalloc reserves */ 616 ret_pfmemalloc = true; 617 obj = kmalloc_node_track_caller(obj_size, flags, node); 618 619 out: 620 if (pfmemalloc) 621 *pfmemalloc = ret_pfmemalloc; 622 623 return obj; 624 } 625 626 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 627 * 'private' fields and also do memory statistics to find all the 628 * [BEEP] leaks. 629 * 630 */ 631 632 /** 633 * __alloc_skb - allocate a network buffer 634 * @size: size to allocate 635 * @gfp_mask: allocation mask 636 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 637 * instead of head cache and allocate a cloned (child) skb. 638 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 639 * allocations in case the data is required for writeback 640 * @node: numa node to allocate memory on 641 * 642 * Allocate a new &sk_buff. The returned buffer has no headroom and a 643 * tail room of at least size bytes. The object has a reference count 644 * of one. The return is the buffer. On a failure the return is %NULL. 645 * 646 * Buffers may only be allocated from interrupts using a @gfp_mask of 647 * %GFP_ATOMIC. 648 */ 649 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 650 int flags, int node) 651 { 652 struct kmem_cache *cache; 653 struct sk_buff *skb; 654 bool pfmemalloc; 655 u8 *data; 656 657 cache = (flags & SKB_ALLOC_FCLONE) 658 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 659 660 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 661 gfp_mask |= __GFP_MEMALLOC; 662 663 /* Get the HEAD */ 664 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 665 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 666 skb = napi_skb_cache_get(); 667 else 668 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 669 if (unlikely(!skb)) 670 return NULL; 671 prefetchw(skb); 672 673 /* We do our best to align skb_shared_info on a separate cache 674 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 675 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 676 * Both skb->head and skb_shared_info are cache line aligned. 677 */ 678 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 679 if (unlikely(!data)) 680 goto nodata; 681 /* kmalloc_size_roundup() might give us more room than requested. 682 * Put skb_shared_info exactly at the end of allocated zone, 683 * to allow max possible filling before reallocation. 684 */ 685 prefetchw(data + SKB_WITH_OVERHEAD(size)); 686 687 /* 688 * Only clear those fields we need to clear, not those that we will 689 * actually initialise below. Hence, don't put any more fields after 690 * the tail pointer in struct sk_buff! 691 */ 692 memset(skb, 0, offsetof(struct sk_buff, tail)); 693 __build_skb_around(skb, data, size); 694 skb->pfmemalloc = pfmemalloc; 695 696 if (flags & SKB_ALLOC_FCLONE) { 697 struct sk_buff_fclones *fclones; 698 699 fclones = container_of(skb, struct sk_buff_fclones, skb1); 700 701 skb->fclone = SKB_FCLONE_ORIG; 702 refcount_set(&fclones->fclone_ref, 1); 703 } 704 705 return skb; 706 707 nodata: 708 kmem_cache_free(cache, skb); 709 return NULL; 710 } 711 EXPORT_SYMBOL(__alloc_skb); 712 713 /** 714 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 715 * @dev: network device to receive on 716 * @len: length to allocate 717 * @gfp_mask: get_free_pages mask, passed to alloc_skb 718 * 719 * Allocate a new &sk_buff and assign it a usage count of one. The 720 * buffer has NET_SKB_PAD headroom built in. Users should allocate 721 * the headroom they think they need without accounting for the 722 * built in space. The built in space is used for optimisations. 723 * 724 * %NULL is returned if there is no free memory. 725 */ 726 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 727 gfp_t gfp_mask) 728 { 729 struct page_frag_cache *nc; 730 struct sk_buff *skb; 731 bool pfmemalloc; 732 void *data; 733 734 len += NET_SKB_PAD; 735 736 /* If requested length is either too small or too big, 737 * we use kmalloc() for skb->head allocation. 738 */ 739 if (len <= SKB_WITH_OVERHEAD(1024) || 740 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 741 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 742 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 743 if (!skb) 744 goto skb_fail; 745 goto skb_success; 746 } 747 748 len = SKB_HEAD_ALIGN(len); 749 750 if (sk_memalloc_socks()) 751 gfp_mask |= __GFP_MEMALLOC; 752 753 if (in_hardirq() || irqs_disabled()) { 754 nc = this_cpu_ptr(&netdev_alloc_cache); 755 data = page_frag_alloc(nc, len, gfp_mask); 756 pfmemalloc = nc->pfmemalloc; 757 } else { 758 local_bh_disable(); 759 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 760 761 nc = this_cpu_ptr(&napi_alloc_cache.page); 762 data = page_frag_alloc(nc, len, gfp_mask); 763 pfmemalloc = nc->pfmemalloc; 764 765 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 766 local_bh_enable(); 767 } 768 769 if (unlikely(!data)) 770 return NULL; 771 772 skb = __build_skb(data, len); 773 if (unlikely(!skb)) { 774 skb_free_frag(data); 775 return NULL; 776 } 777 778 if (pfmemalloc) 779 skb->pfmemalloc = 1; 780 skb->head_frag = 1; 781 782 skb_success: 783 skb_reserve(skb, NET_SKB_PAD); 784 skb->dev = dev; 785 786 skb_fail: 787 return skb; 788 } 789 EXPORT_SYMBOL(__netdev_alloc_skb); 790 791 /** 792 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 793 * @napi: napi instance this buffer was allocated for 794 * @len: length to allocate 795 * 796 * Allocate a new sk_buff for use in NAPI receive. This buffer will 797 * attempt to allocate the head from a special reserved region used 798 * only for NAPI Rx allocation. By doing this we can save several 799 * CPU cycles by avoiding having to disable and re-enable IRQs. 800 * 801 * %NULL is returned if there is no free memory. 802 */ 803 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 804 { 805 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 806 struct napi_alloc_cache *nc; 807 struct sk_buff *skb; 808 bool pfmemalloc; 809 void *data; 810 811 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 812 len += NET_SKB_PAD + NET_IP_ALIGN; 813 814 /* If requested length is either too small or too big, 815 * we use kmalloc() for skb->head allocation. 816 * When the small frag allocator is available, prefer it over kmalloc 817 * for small fragments 818 */ 819 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 820 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 821 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 822 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 823 NUMA_NO_NODE); 824 if (!skb) 825 goto skb_fail; 826 goto skb_success; 827 } 828 829 if (sk_memalloc_socks()) 830 gfp_mask |= __GFP_MEMALLOC; 831 832 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 833 nc = this_cpu_ptr(&napi_alloc_cache); 834 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 835 /* we are artificially inflating the allocation size, but 836 * that is not as bad as it may look like, as: 837 * - 'len' less than GRO_MAX_HEAD makes little sense 838 * - On most systems, larger 'len' values lead to fragment 839 * size above 512 bytes 840 * - kmalloc would use the kmalloc-1k slab for such values 841 * - Builds with smaller GRO_MAX_HEAD will very likely do 842 * little networking, as that implies no WiFi and no 843 * tunnels support, and 32 bits arches. 844 */ 845 len = SZ_1K; 846 847 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 848 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 849 } else { 850 len = SKB_HEAD_ALIGN(len); 851 852 data = page_frag_alloc(&nc->page, len, gfp_mask); 853 pfmemalloc = nc->page.pfmemalloc; 854 } 855 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 856 857 if (unlikely(!data)) 858 return NULL; 859 860 skb = __napi_build_skb(data, len); 861 if (unlikely(!skb)) { 862 skb_free_frag(data); 863 return NULL; 864 } 865 866 if (pfmemalloc) 867 skb->pfmemalloc = 1; 868 skb->head_frag = 1; 869 870 skb_success: 871 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 872 skb->dev = napi->dev; 873 874 skb_fail: 875 return skb; 876 } 877 EXPORT_SYMBOL(napi_alloc_skb); 878 879 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 880 int off, int size, unsigned int truesize) 881 { 882 DEBUG_NET_WARN_ON_ONCE(size > truesize); 883 884 skb_fill_netmem_desc(skb, i, netmem, off, size); 885 skb->len += size; 886 skb->data_len += size; 887 skb->truesize += truesize; 888 } 889 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 890 891 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 892 unsigned int truesize) 893 { 894 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 895 896 DEBUG_NET_WARN_ON_ONCE(size > truesize); 897 898 skb_frag_size_add(frag, size); 899 skb->len += size; 900 skb->data_len += size; 901 skb->truesize += truesize; 902 } 903 EXPORT_SYMBOL(skb_coalesce_rx_frag); 904 905 static void skb_drop_list(struct sk_buff **listp) 906 { 907 kfree_skb_list(*listp); 908 *listp = NULL; 909 } 910 911 static inline void skb_drop_fraglist(struct sk_buff *skb) 912 { 913 skb_drop_list(&skb_shinfo(skb)->frag_list); 914 } 915 916 static void skb_clone_fraglist(struct sk_buff *skb) 917 { 918 struct sk_buff *list; 919 920 skb_walk_frags(skb, list) 921 skb_get(list); 922 } 923 924 static bool is_pp_netmem(netmem_ref netmem) 925 { 926 return (netmem_get_pp_magic(netmem) & ~0x3UL) == PP_SIGNATURE; 927 } 928 929 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 930 unsigned int headroom) 931 { 932 #if IS_ENABLED(CONFIG_PAGE_POOL) 933 u32 size, truesize, len, max_head_size, off; 934 struct sk_buff *skb = *pskb, *nskb; 935 int err, i, head_off; 936 void *data; 937 938 /* XDP does not support fraglist so we need to linearize 939 * the skb. 940 */ 941 if (skb_has_frag_list(skb)) 942 return -EOPNOTSUPP; 943 944 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 945 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 946 return -ENOMEM; 947 948 size = min_t(u32, skb->len, max_head_size); 949 truesize = SKB_HEAD_ALIGN(size) + headroom; 950 data = page_pool_dev_alloc_va(pool, &truesize); 951 if (!data) 952 return -ENOMEM; 953 954 nskb = napi_build_skb(data, truesize); 955 if (!nskb) { 956 page_pool_free_va(pool, data, true); 957 return -ENOMEM; 958 } 959 960 skb_reserve(nskb, headroom); 961 skb_copy_header(nskb, skb); 962 skb_mark_for_recycle(nskb); 963 964 err = skb_copy_bits(skb, 0, nskb->data, size); 965 if (err) { 966 consume_skb(nskb); 967 return err; 968 } 969 skb_put(nskb, size); 970 971 head_off = skb_headroom(nskb) - skb_headroom(skb); 972 skb_headers_offset_update(nskb, head_off); 973 974 off = size; 975 len = skb->len - off; 976 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 977 struct page *page; 978 u32 page_off; 979 980 size = min_t(u32, len, PAGE_SIZE); 981 truesize = size; 982 983 page = page_pool_dev_alloc(pool, &page_off, &truesize); 984 if (!page) { 985 consume_skb(nskb); 986 return -ENOMEM; 987 } 988 989 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 990 err = skb_copy_bits(skb, off, page_address(page) + page_off, 991 size); 992 if (err) { 993 consume_skb(nskb); 994 return err; 995 } 996 997 len -= size; 998 off += size; 999 } 1000 1001 consume_skb(skb); 1002 *pskb = nskb; 1003 1004 return 0; 1005 #else 1006 return -EOPNOTSUPP; 1007 #endif 1008 } 1009 EXPORT_SYMBOL(skb_pp_cow_data); 1010 1011 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 1012 struct bpf_prog *prog) 1013 { 1014 if (!prog->aux->xdp_has_frags) 1015 return -EINVAL; 1016 1017 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1018 } 1019 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1020 1021 #if IS_ENABLED(CONFIG_PAGE_POOL) 1022 bool napi_pp_put_page(netmem_ref netmem) 1023 { 1024 netmem = netmem_compound_head(netmem); 1025 1026 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 1027 * in order to preserve any existing bits, such as bit 0 for the 1028 * head page of compound page and bit 1 for pfmemalloc page, so 1029 * mask those bits for freeing side when doing below checking, 1030 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1031 * to avoid recycling the pfmemalloc page. 1032 */ 1033 if (unlikely(!is_pp_netmem(netmem))) 1034 return false; 1035 1036 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 1037 1038 return true; 1039 } 1040 EXPORT_SYMBOL(napi_pp_put_page); 1041 #endif 1042 1043 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1044 { 1045 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1046 return false; 1047 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1048 } 1049 1050 /** 1051 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1052 * @skb: page pool aware skb 1053 * 1054 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1055 * intended to gain fragment references only for page pool aware skbs, 1056 * i.e. when skb->pp_recycle is true, and not for fragments in a 1057 * non-pp-recycling skb. It has a fallback to increase references on normal 1058 * pages, as page pool aware skbs may also have normal page fragments. 1059 */ 1060 static int skb_pp_frag_ref(struct sk_buff *skb) 1061 { 1062 struct skb_shared_info *shinfo; 1063 netmem_ref head_netmem; 1064 int i; 1065 1066 if (!skb->pp_recycle) 1067 return -EINVAL; 1068 1069 shinfo = skb_shinfo(skb); 1070 1071 for (i = 0; i < shinfo->nr_frags; i++) { 1072 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1073 if (likely(is_pp_netmem(head_netmem))) 1074 page_pool_ref_netmem(head_netmem); 1075 else 1076 page_ref_inc(netmem_to_page(head_netmem)); 1077 } 1078 return 0; 1079 } 1080 1081 static void skb_kfree_head(void *head, unsigned int end_offset) 1082 { 1083 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1084 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1085 else 1086 kfree(head); 1087 } 1088 1089 static void skb_free_head(struct sk_buff *skb) 1090 { 1091 unsigned char *head = skb->head; 1092 1093 if (skb->head_frag) { 1094 if (skb_pp_recycle(skb, head)) 1095 return; 1096 skb_free_frag(head); 1097 } else { 1098 skb_kfree_head(head, skb_end_offset(skb)); 1099 } 1100 } 1101 1102 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1103 { 1104 struct skb_shared_info *shinfo = skb_shinfo(skb); 1105 int i; 1106 1107 if (!skb_data_unref(skb, shinfo)) 1108 goto exit; 1109 1110 if (skb_zcopy(skb)) { 1111 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1112 1113 skb_zcopy_clear(skb, true); 1114 if (skip_unref) 1115 goto free_head; 1116 } 1117 1118 for (i = 0; i < shinfo->nr_frags; i++) 1119 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1120 1121 free_head: 1122 if (shinfo->frag_list) 1123 kfree_skb_list_reason(shinfo->frag_list, reason); 1124 1125 skb_free_head(skb); 1126 exit: 1127 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1128 * bit is only set on the head though, so in order to avoid races 1129 * while trying to recycle fragments on __skb_frag_unref() we need 1130 * to make one SKB responsible for triggering the recycle path. 1131 * So disable the recycling bit if an SKB is cloned and we have 1132 * additional references to the fragmented part of the SKB. 1133 * Eventually the last SKB will have the recycling bit set and it's 1134 * dataref set to 0, which will trigger the recycling 1135 */ 1136 skb->pp_recycle = 0; 1137 } 1138 1139 /* 1140 * Free an skbuff by memory without cleaning the state. 1141 */ 1142 static void kfree_skbmem(struct sk_buff *skb) 1143 { 1144 struct sk_buff_fclones *fclones; 1145 1146 switch (skb->fclone) { 1147 case SKB_FCLONE_UNAVAILABLE: 1148 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1149 return; 1150 1151 case SKB_FCLONE_ORIG: 1152 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1153 1154 /* We usually free the clone (TX completion) before original skb 1155 * This test would have no chance to be true for the clone, 1156 * while here, branch prediction will be good. 1157 */ 1158 if (refcount_read(&fclones->fclone_ref) == 1) 1159 goto fastpath; 1160 break; 1161 1162 default: /* SKB_FCLONE_CLONE */ 1163 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1164 break; 1165 } 1166 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1167 return; 1168 fastpath: 1169 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1170 } 1171 1172 void skb_release_head_state(struct sk_buff *skb) 1173 { 1174 skb_dst_drop(skb); 1175 if (skb->destructor) { 1176 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1177 skb->destructor(skb); 1178 } 1179 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1180 nf_conntrack_put(skb_nfct(skb)); 1181 #endif 1182 skb_ext_put(skb); 1183 } 1184 1185 /* Free everything but the sk_buff shell. */ 1186 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1187 { 1188 skb_release_head_state(skb); 1189 if (likely(skb->head)) 1190 skb_release_data(skb, reason); 1191 } 1192 1193 /** 1194 * __kfree_skb - private function 1195 * @skb: buffer 1196 * 1197 * Free an sk_buff. Release anything attached to the buffer. 1198 * Clean the state. This is an internal helper function. Users should 1199 * always call kfree_skb 1200 */ 1201 1202 void __kfree_skb(struct sk_buff *skb) 1203 { 1204 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1205 kfree_skbmem(skb); 1206 } 1207 EXPORT_SYMBOL(__kfree_skb); 1208 1209 static __always_inline 1210 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1211 enum skb_drop_reason reason) 1212 { 1213 if (unlikely(!skb_unref(skb))) 1214 return false; 1215 1216 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1217 u32_get_bits(reason, 1218 SKB_DROP_REASON_SUBSYS_MASK) >= 1219 SKB_DROP_REASON_SUBSYS_NUM); 1220 1221 if (reason == SKB_CONSUMED) 1222 trace_consume_skb(skb, __builtin_return_address(0)); 1223 else 1224 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1225 return true; 1226 } 1227 1228 /** 1229 * sk_skb_reason_drop - free an sk_buff with special reason 1230 * @sk: the socket to receive @skb, or NULL if not applicable 1231 * @skb: buffer to free 1232 * @reason: reason why this skb is dropped 1233 * 1234 * Drop a reference to the buffer and free it if the usage count has hit 1235 * zero. Meanwhile, pass the receiving socket and drop reason to 1236 * 'kfree_skb' tracepoint. 1237 */ 1238 void __fix_address 1239 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1240 { 1241 if (__sk_skb_reason_drop(sk, skb, reason)) 1242 __kfree_skb(skb); 1243 } 1244 EXPORT_SYMBOL(sk_skb_reason_drop); 1245 1246 #define KFREE_SKB_BULK_SIZE 16 1247 1248 struct skb_free_array { 1249 unsigned int skb_count; 1250 void *skb_array[KFREE_SKB_BULK_SIZE]; 1251 }; 1252 1253 static void kfree_skb_add_bulk(struct sk_buff *skb, 1254 struct skb_free_array *sa, 1255 enum skb_drop_reason reason) 1256 { 1257 /* if SKB is a clone, don't handle this case */ 1258 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1259 __kfree_skb(skb); 1260 return; 1261 } 1262 1263 skb_release_all(skb, reason); 1264 sa->skb_array[sa->skb_count++] = skb; 1265 1266 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1267 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1268 sa->skb_array); 1269 sa->skb_count = 0; 1270 } 1271 } 1272 1273 void __fix_address 1274 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1275 { 1276 struct skb_free_array sa; 1277 1278 sa.skb_count = 0; 1279 1280 while (segs) { 1281 struct sk_buff *next = segs->next; 1282 1283 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1284 skb_poison_list(segs); 1285 kfree_skb_add_bulk(segs, &sa, reason); 1286 } 1287 1288 segs = next; 1289 } 1290 1291 if (sa.skb_count) 1292 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1293 } 1294 EXPORT_SYMBOL(kfree_skb_list_reason); 1295 1296 /* Dump skb information and contents. 1297 * 1298 * Must only be called from net_ratelimit()-ed paths. 1299 * 1300 * Dumps whole packets if full_pkt, only headers otherwise. 1301 */ 1302 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1303 { 1304 struct skb_shared_info *sh = skb_shinfo(skb); 1305 struct net_device *dev = skb->dev; 1306 struct sock *sk = skb->sk; 1307 struct sk_buff *list_skb; 1308 bool has_mac, has_trans; 1309 int headroom, tailroom; 1310 int i, len, seg_len; 1311 1312 if (full_pkt) 1313 len = skb->len; 1314 else 1315 len = min_t(int, skb->len, MAX_HEADER + 128); 1316 1317 headroom = skb_headroom(skb); 1318 tailroom = skb_tailroom(skb); 1319 1320 has_mac = skb_mac_header_was_set(skb); 1321 has_trans = skb_transport_header_was_set(skb); 1322 1323 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1324 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1325 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1326 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1327 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1328 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1329 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1330 level, skb->len, headroom, skb_headlen(skb), tailroom, 1331 has_mac ? skb->mac_header : -1, 1332 has_mac ? skb_mac_header_len(skb) : -1, 1333 skb->mac_len, 1334 skb->network_header, 1335 has_trans ? skb_network_header_len(skb) : -1, 1336 has_trans ? skb->transport_header : -1, 1337 sh->tx_flags, sh->nr_frags, 1338 sh->gso_size, sh->gso_type, sh->gso_segs, 1339 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1340 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1341 skb->hash, skb->sw_hash, skb->l4_hash, 1342 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1343 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1344 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1345 skb->inner_network_header, skb->inner_transport_header); 1346 1347 if (dev) 1348 printk("%sdev name=%s feat=%pNF\n", 1349 level, dev->name, &dev->features); 1350 if (sk) 1351 printk("%ssk family=%hu type=%u proto=%u\n", 1352 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1353 1354 if (full_pkt && headroom) 1355 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1356 16, 1, skb->head, headroom, false); 1357 1358 seg_len = min_t(int, skb_headlen(skb), len); 1359 if (seg_len) 1360 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1361 16, 1, skb->data, seg_len, false); 1362 len -= seg_len; 1363 1364 if (full_pkt && tailroom) 1365 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1366 16, 1, skb_tail_pointer(skb), tailroom, false); 1367 1368 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1369 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1370 u32 p_off, p_len, copied; 1371 struct page *p; 1372 u8 *vaddr; 1373 1374 if (skb_frag_is_net_iov(frag)) { 1375 printk("%sskb frag %d: not readable\n", level, i); 1376 len -= skb_frag_size(frag); 1377 if (!len) 1378 break; 1379 continue; 1380 } 1381 1382 skb_frag_foreach_page(frag, skb_frag_off(frag), 1383 skb_frag_size(frag), p, p_off, p_len, 1384 copied) { 1385 seg_len = min_t(int, p_len, len); 1386 vaddr = kmap_atomic(p); 1387 print_hex_dump(level, "skb frag: ", 1388 DUMP_PREFIX_OFFSET, 1389 16, 1, vaddr + p_off, seg_len, false); 1390 kunmap_atomic(vaddr); 1391 len -= seg_len; 1392 if (!len) 1393 break; 1394 } 1395 } 1396 1397 if (full_pkt && skb_has_frag_list(skb)) { 1398 printk("skb fraglist:\n"); 1399 skb_walk_frags(skb, list_skb) 1400 skb_dump(level, list_skb, true); 1401 } 1402 } 1403 EXPORT_SYMBOL(skb_dump); 1404 1405 /** 1406 * skb_tx_error - report an sk_buff xmit error 1407 * @skb: buffer that triggered an error 1408 * 1409 * Report xmit error if a device callback is tracking this skb. 1410 * skb must be freed afterwards. 1411 */ 1412 void skb_tx_error(struct sk_buff *skb) 1413 { 1414 if (skb) { 1415 skb_zcopy_downgrade_managed(skb); 1416 skb_zcopy_clear(skb, true); 1417 } 1418 } 1419 EXPORT_SYMBOL(skb_tx_error); 1420 1421 #ifdef CONFIG_TRACEPOINTS 1422 /** 1423 * consume_skb - free an skbuff 1424 * @skb: buffer to free 1425 * 1426 * Drop a ref to the buffer and free it if the usage count has hit zero 1427 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1428 * is being dropped after a failure and notes that 1429 */ 1430 void consume_skb(struct sk_buff *skb) 1431 { 1432 if (!skb_unref(skb)) 1433 return; 1434 1435 trace_consume_skb(skb, __builtin_return_address(0)); 1436 __kfree_skb(skb); 1437 } 1438 EXPORT_SYMBOL(consume_skb); 1439 #endif 1440 1441 /** 1442 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1443 * @skb: buffer to free 1444 * 1445 * Alike consume_skb(), but this variant assumes that this is the last 1446 * skb reference and all the head states have been already dropped 1447 */ 1448 void __consume_stateless_skb(struct sk_buff *skb) 1449 { 1450 trace_consume_skb(skb, __builtin_return_address(0)); 1451 skb_release_data(skb, SKB_CONSUMED); 1452 kfree_skbmem(skb); 1453 } 1454 1455 static void napi_skb_cache_put(struct sk_buff *skb) 1456 { 1457 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1458 u32 i; 1459 1460 if (!kasan_mempool_poison_object(skb)) 1461 return; 1462 1463 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1464 nc->skb_cache[nc->skb_count++] = skb; 1465 1466 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1467 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1468 kasan_mempool_unpoison_object(nc->skb_cache[i], 1469 kmem_cache_size(net_hotdata.skbuff_cache)); 1470 1471 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1472 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1473 nc->skb_count = NAPI_SKB_CACHE_HALF; 1474 } 1475 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1476 } 1477 1478 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1479 { 1480 skb_release_all(skb, reason); 1481 napi_skb_cache_put(skb); 1482 } 1483 1484 void napi_skb_free_stolen_head(struct sk_buff *skb) 1485 { 1486 if (unlikely(skb->slow_gro)) { 1487 nf_reset_ct(skb); 1488 skb_dst_drop(skb); 1489 skb_ext_put(skb); 1490 skb_orphan(skb); 1491 skb->slow_gro = 0; 1492 } 1493 napi_skb_cache_put(skb); 1494 } 1495 1496 void napi_consume_skb(struct sk_buff *skb, int budget) 1497 { 1498 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1499 if (unlikely(!budget)) { 1500 dev_consume_skb_any(skb); 1501 return; 1502 } 1503 1504 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1505 1506 if (!skb_unref(skb)) 1507 return; 1508 1509 /* if reaching here SKB is ready to free */ 1510 trace_consume_skb(skb, __builtin_return_address(0)); 1511 1512 /* if SKB is a clone, don't handle this case */ 1513 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1514 __kfree_skb(skb); 1515 return; 1516 } 1517 1518 skb_release_all(skb, SKB_CONSUMED); 1519 napi_skb_cache_put(skb); 1520 } 1521 EXPORT_SYMBOL(napi_consume_skb); 1522 1523 /* Make sure a field is contained by headers group */ 1524 #define CHECK_SKB_FIELD(field) \ 1525 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1526 offsetof(struct sk_buff, headers.field)); \ 1527 1528 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1529 { 1530 new->tstamp = old->tstamp; 1531 /* We do not copy old->sk */ 1532 new->dev = old->dev; 1533 memcpy(new->cb, old->cb, sizeof(old->cb)); 1534 skb_dst_copy(new, old); 1535 __skb_ext_copy(new, old); 1536 __nf_copy(new, old, false); 1537 1538 /* Note : this field could be in the headers group. 1539 * It is not yet because we do not want to have a 16 bit hole 1540 */ 1541 new->queue_mapping = old->queue_mapping; 1542 1543 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1544 CHECK_SKB_FIELD(protocol); 1545 CHECK_SKB_FIELD(csum); 1546 CHECK_SKB_FIELD(hash); 1547 CHECK_SKB_FIELD(priority); 1548 CHECK_SKB_FIELD(skb_iif); 1549 CHECK_SKB_FIELD(vlan_proto); 1550 CHECK_SKB_FIELD(vlan_tci); 1551 CHECK_SKB_FIELD(transport_header); 1552 CHECK_SKB_FIELD(network_header); 1553 CHECK_SKB_FIELD(mac_header); 1554 CHECK_SKB_FIELD(inner_protocol); 1555 CHECK_SKB_FIELD(inner_transport_header); 1556 CHECK_SKB_FIELD(inner_network_header); 1557 CHECK_SKB_FIELD(inner_mac_header); 1558 CHECK_SKB_FIELD(mark); 1559 #ifdef CONFIG_NETWORK_SECMARK 1560 CHECK_SKB_FIELD(secmark); 1561 #endif 1562 #ifdef CONFIG_NET_RX_BUSY_POLL 1563 CHECK_SKB_FIELD(napi_id); 1564 #endif 1565 CHECK_SKB_FIELD(alloc_cpu); 1566 #ifdef CONFIG_XPS 1567 CHECK_SKB_FIELD(sender_cpu); 1568 #endif 1569 #ifdef CONFIG_NET_SCHED 1570 CHECK_SKB_FIELD(tc_index); 1571 #endif 1572 1573 } 1574 1575 /* 1576 * You should not add any new code to this function. Add it to 1577 * __copy_skb_header above instead. 1578 */ 1579 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1580 { 1581 #define C(x) n->x = skb->x 1582 1583 n->next = n->prev = NULL; 1584 n->sk = NULL; 1585 __copy_skb_header(n, skb); 1586 1587 C(len); 1588 C(data_len); 1589 C(mac_len); 1590 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1591 n->cloned = 1; 1592 n->nohdr = 0; 1593 n->peeked = 0; 1594 C(pfmemalloc); 1595 C(pp_recycle); 1596 n->destructor = NULL; 1597 C(tail); 1598 C(end); 1599 C(head); 1600 C(head_frag); 1601 C(data); 1602 C(truesize); 1603 refcount_set(&n->users, 1); 1604 1605 atomic_inc(&(skb_shinfo(skb)->dataref)); 1606 skb->cloned = 1; 1607 1608 return n; 1609 #undef C 1610 } 1611 1612 /** 1613 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1614 * @first: first sk_buff of the msg 1615 */ 1616 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1617 { 1618 struct sk_buff *n; 1619 1620 n = alloc_skb(0, GFP_ATOMIC); 1621 if (!n) 1622 return NULL; 1623 1624 n->len = first->len; 1625 n->data_len = first->len; 1626 n->truesize = first->truesize; 1627 1628 skb_shinfo(n)->frag_list = first; 1629 1630 __copy_skb_header(n, first); 1631 n->destructor = NULL; 1632 1633 return n; 1634 } 1635 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1636 1637 /** 1638 * skb_morph - morph one skb into another 1639 * @dst: the skb to receive the contents 1640 * @src: the skb to supply the contents 1641 * 1642 * This is identical to skb_clone except that the target skb is 1643 * supplied by the user. 1644 * 1645 * The target skb is returned upon exit. 1646 */ 1647 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1648 { 1649 skb_release_all(dst, SKB_CONSUMED); 1650 return __skb_clone(dst, src); 1651 } 1652 EXPORT_SYMBOL_GPL(skb_morph); 1653 1654 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1655 { 1656 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1657 struct user_struct *user; 1658 1659 if (capable(CAP_IPC_LOCK) || !size) 1660 return 0; 1661 1662 rlim = rlimit(RLIMIT_MEMLOCK); 1663 if (rlim == RLIM_INFINITY) 1664 return 0; 1665 1666 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1667 max_pg = rlim >> PAGE_SHIFT; 1668 user = mmp->user ? : current_user(); 1669 1670 old_pg = atomic_long_read(&user->locked_vm); 1671 do { 1672 new_pg = old_pg + num_pg; 1673 if (new_pg > max_pg) 1674 return -ENOBUFS; 1675 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1676 1677 if (!mmp->user) { 1678 mmp->user = get_uid(user); 1679 mmp->num_pg = num_pg; 1680 } else { 1681 mmp->num_pg += num_pg; 1682 } 1683 1684 return 0; 1685 } 1686 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1687 1688 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1689 { 1690 if (mmp->user) { 1691 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1692 free_uid(mmp->user); 1693 } 1694 } 1695 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1696 1697 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1698 { 1699 struct ubuf_info_msgzc *uarg; 1700 struct sk_buff *skb; 1701 1702 WARN_ON_ONCE(!in_task()); 1703 1704 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1705 if (!skb) 1706 return NULL; 1707 1708 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1709 uarg = (void *)skb->cb; 1710 uarg->mmp.user = NULL; 1711 1712 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1713 kfree_skb(skb); 1714 return NULL; 1715 } 1716 1717 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1718 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1719 uarg->len = 1; 1720 uarg->bytelen = size; 1721 uarg->zerocopy = 1; 1722 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1723 refcount_set(&uarg->ubuf.refcnt, 1); 1724 sock_hold(sk); 1725 1726 return &uarg->ubuf; 1727 } 1728 1729 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1730 { 1731 return container_of((void *)uarg, struct sk_buff, cb); 1732 } 1733 1734 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1735 struct ubuf_info *uarg) 1736 { 1737 if (uarg) { 1738 struct ubuf_info_msgzc *uarg_zc; 1739 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1740 u32 bytelen, next; 1741 1742 /* there might be non MSG_ZEROCOPY users */ 1743 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1744 return NULL; 1745 1746 /* realloc only when socket is locked (TCP, UDP cork), 1747 * so uarg->len and sk_zckey access is serialized 1748 */ 1749 if (!sock_owned_by_user(sk)) { 1750 WARN_ON_ONCE(1); 1751 return NULL; 1752 } 1753 1754 uarg_zc = uarg_to_msgzc(uarg); 1755 bytelen = uarg_zc->bytelen + size; 1756 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1757 /* TCP can create new skb to attach new uarg */ 1758 if (sk->sk_type == SOCK_STREAM) 1759 goto new_alloc; 1760 return NULL; 1761 } 1762 1763 next = (u32)atomic_read(&sk->sk_zckey); 1764 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1765 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1766 return NULL; 1767 uarg_zc->len++; 1768 uarg_zc->bytelen = bytelen; 1769 atomic_set(&sk->sk_zckey, ++next); 1770 1771 /* no extra ref when appending to datagram (MSG_MORE) */ 1772 if (sk->sk_type == SOCK_STREAM) 1773 net_zcopy_get(uarg); 1774 1775 return uarg; 1776 } 1777 } 1778 1779 new_alloc: 1780 return msg_zerocopy_alloc(sk, size); 1781 } 1782 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1783 1784 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1785 { 1786 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1787 u32 old_lo, old_hi; 1788 u64 sum_len; 1789 1790 old_lo = serr->ee.ee_info; 1791 old_hi = serr->ee.ee_data; 1792 sum_len = old_hi - old_lo + 1ULL + len; 1793 1794 if (sum_len >= (1ULL << 32)) 1795 return false; 1796 1797 if (lo != old_hi + 1) 1798 return false; 1799 1800 serr->ee.ee_data += len; 1801 return true; 1802 } 1803 1804 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1805 { 1806 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1807 struct sock_exterr_skb *serr; 1808 struct sock *sk = skb->sk; 1809 struct sk_buff_head *q; 1810 unsigned long flags; 1811 bool is_zerocopy; 1812 u32 lo, hi; 1813 u16 len; 1814 1815 mm_unaccount_pinned_pages(&uarg->mmp); 1816 1817 /* if !len, there was only 1 call, and it was aborted 1818 * so do not queue a completion notification 1819 */ 1820 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1821 goto release; 1822 1823 len = uarg->len; 1824 lo = uarg->id; 1825 hi = uarg->id + len - 1; 1826 is_zerocopy = uarg->zerocopy; 1827 1828 serr = SKB_EXT_ERR(skb); 1829 memset(serr, 0, sizeof(*serr)); 1830 serr->ee.ee_errno = 0; 1831 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1832 serr->ee.ee_data = hi; 1833 serr->ee.ee_info = lo; 1834 if (!is_zerocopy) 1835 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1836 1837 q = &sk->sk_error_queue; 1838 spin_lock_irqsave(&q->lock, flags); 1839 tail = skb_peek_tail(q); 1840 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1841 !skb_zerocopy_notify_extend(tail, lo, len)) { 1842 __skb_queue_tail(q, skb); 1843 skb = NULL; 1844 } 1845 spin_unlock_irqrestore(&q->lock, flags); 1846 1847 sk_error_report(sk); 1848 1849 release: 1850 consume_skb(skb); 1851 sock_put(sk); 1852 } 1853 1854 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1855 bool success) 1856 { 1857 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1858 1859 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1860 1861 if (refcount_dec_and_test(&uarg->refcnt)) 1862 __msg_zerocopy_callback(uarg_zc); 1863 } 1864 1865 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1866 { 1867 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1868 1869 atomic_dec(&sk->sk_zckey); 1870 uarg_to_msgzc(uarg)->len--; 1871 1872 if (have_uref) 1873 msg_zerocopy_complete(NULL, uarg, true); 1874 } 1875 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1876 1877 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1878 .complete = msg_zerocopy_complete, 1879 }; 1880 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1881 1882 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1883 struct msghdr *msg, int len, 1884 struct ubuf_info *uarg) 1885 { 1886 int err, orig_len = skb->len; 1887 1888 if (uarg->ops->link_skb) { 1889 err = uarg->ops->link_skb(skb, uarg); 1890 if (err) 1891 return err; 1892 } else { 1893 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1894 1895 /* An skb can only point to one uarg. This edge case happens 1896 * when TCP appends to an skb, but zerocopy_realloc triggered 1897 * a new alloc. 1898 */ 1899 if (orig_uarg && uarg != orig_uarg) 1900 return -EEXIST; 1901 } 1902 1903 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1904 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1905 struct sock *save_sk = skb->sk; 1906 1907 /* Streams do not free skb on error. Reset to prev state. */ 1908 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1909 skb->sk = sk; 1910 ___pskb_trim(skb, orig_len); 1911 skb->sk = save_sk; 1912 return err; 1913 } 1914 1915 skb_zcopy_set(skb, uarg, NULL); 1916 return skb->len - orig_len; 1917 } 1918 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1919 1920 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1921 { 1922 int i; 1923 1924 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1925 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1926 skb_frag_ref(skb, i); 1927 } 1928 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1929 1930 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1931 gfp_t gfp_mask) 1932 { 1933 if (skb_zcopy(orig)) { 1934 if (skb_zcopy(nskb)) { 1935 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1936 if (!gfp_mask) { 1937 WARN_ON_ONCE(1); 1938 return -ENOMEM; 1939 } 1940 if (skb_uarg(nskb) == skb_uarg(orig)) 1941 return 0; 1942 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1943 return -EIO; 1944 } 1945 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1946 } 1947 return 0; 1948 } 1949 1950 /** 1951 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1952 * @skb: the skb to modify 1953 * @gfp_mask: allocation priority 1954 * 1955 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1956 * It will copy all frags into kernel and drop the reference 1957 * to userspace pages. 1958 * 1959 * If this function is called from an interrupt gfp_mask() must be 1960 * %GFP_ATOMIC. 1961 * 1962 * Returns 0 on success or a negative error code on failure 1963 * to allocate kernel memory to copy to. 1964 */ 1965 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1966 { 1967 int num_frags = skb_shinfo(skb)->nr_frags; 1968 struct page *page, *head = NULL; 1969 int i, order, psize, new_frags; 1970 u32 d_off; 1971 1972 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1973 return -EINVAL; 1974 1975 if (!skb_frags_readable(skb)) 1976 return -EFAULT; 1977 1978 if (!num_frags) 1979 goto release; 1980 1981 /* We might have to allocate high order pages, so compute what minimum 1982 * page order is needed. 1983 */ 1984 order = 0; 1985 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1986 order++; 1987 psize = (PAGE_SIZE << order); 1988 1989 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1990 for (i = 0; i < new_frags; i++) { 1991 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1992 if (!page) { 1993 while (head) { 1994 struct page *next = (struct page *)page_private(head); 1995 put_page(head); 1996 head = next; 1997 } 1998 return -ENOMEM; 1999 } 2000 set_page_private(page, (unsigned long)head); 2001 head = page; 2002 } 2003 2004 page = head; 2005 d_off = 0; 2006 for (i = 0; i < num_frags; i++) { 2007 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2008 u32 p_off, p_len, copied; 2009 struct page *p; 2010 u8 *vaddr; 2011 2012 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 2013 p, p_off, p_len, copied) { 2014 u32 copy, done = 0; 2015 vaddr = kmap_atomic(p); 2016 2017 while (done < p_len) { 2018 if (d_off == psize) { 2019 d_off = 0; 2020 page = (struct page *)page_private(page); 2021 } 2022 copy = min_t(u32, psize - d_off, p_len - done); 2023 memcpy(page_address(page) + d_off, 2024 vaddr + p_off + done, copy); 2025 done += copy; 2026 d_off += copy; 2027 } 2028 kunmap_atomic(vaddr); 2029 } 2030 } 2031 2032 /* skb frags release userspace buffers */ 2033 for (i = 0; i < num_frags; i++) 2034 skb_frag_unref(skb, i); 2035 2036 /* skb frags point to kernel buffers */ 2037 for (i = 0; i < new_frags - 1; i++) { 2038 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2039 head = (struct page *)page_private(head); 2040 } 2041 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2042 d_off); 2043 skb_shinfo(skb)->nr_frags = new_frags; 2044 2045 release: 2046 skb_zcopy_clear(skb, false); 2047 return 0; 2048 } 2049 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2050 2051 /** 2052 * skb_clone - duplicate an sk_buff 2053 * @skb: buffer to clone 2054 * @gfp_mask: allocation priority 2055 * 2056 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2057 * copies share the same packet data but not structure. The new 2058 * buffer has a reference count of 1. If the allocation fails the 2059 * function returns %NULL otherwise the new buffer is returned. 2060 * 2061 * If this function is called from an interrupt gfp_mask() must be 2062 * %GFP_ATOMIC. 2063 */ 2064 2065 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2066 { 2067 struct sk_buff_fclones *fclones = container_of(skb, 2068 struct sk_buff_fclones, 2069 skb1); 2070 struct sk_buff *n; 2071 2072 if (skb_orphan_frags(skb, gfp_mask)) 2073 return NULL; 2074 2075 if (skb->fclone == SKB_FCLONE_ORIG && 2076 refcount_read(&fclones->fclone_ref) == 1) { 2077 n = &fclones->skb2; 2078 refcount_set(&fclones->fclone_ref, 2); 2079 n->fclone = SKB_FCLONE_CLONE; 2080 } else { 2081 if (skb_pfmemalloc(skb)) 2082 gfp_mask |= __GFP_MEMALLOC; 2083 2084 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2085 if (!n) 2086 return NULL; 2087 2088 n->fclone = SKB_FCLONE_UNAVAILABLE; 2089 } 2090 2091 return __skb_clone(n, skb); 2092 } 2093 EXPORT_SYMBOL(skb_clone); 2094 2095 void skb_headers_offset_update(struct sk_buff *skb, int off) 2096 { 2097 /* Only adjust this if it actually is csum_start rather than csum */ 2098 if (skb->ip_summed == CHECKSUM_PARTIAL) 2099 skb->csum_start += off; 2100 /* {transport,network,mac}_header and tail are relative to skb->head */ 2101 skb->transport_header += off; 2102 skb->network_header += off; 2103 if (skb_mac_header_was_set(skb)) 2104 skb->mac_header += off; 2105 skb->inner_transport_header += off; 2106 skb->inner_network_header += off; 2107 skb->inner_mac_header += off; 2108 } 2109 EXPORT_SYMBOL(skb_headers_offset_update); 2110 2111 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2112 { 2113 __copy_skb_header(new, old); 2114 2115 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2116 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2117 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2118 } 2119 EXPORT_SYMBOL(skb_copy_header); 2120 2121 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2122 { 2123 if (skb_pfmemalloc(skb)) 2124 return SKB_ALLOC_RX; 2125 return 0; 2126 } 2127 2128 /** 2129 * skb_copy - create private copy of an sk_buff 2130 * @skb: buffer to copy 2131 * @gfp_mask: allocation priority 2132 * 2133 * Make a copy of both an &sk_buff and its data. This is used when the 2134 * caller wishes to modify the data and needs a private copy of the 2135 * data to alter. Returns %NULL on failure or the pointer to the buffer 2136 * on success. The returned buffer has a reference count of 1. 2137 * 2138 * As by-product this function converts non-linear &sk_buff to linear 2139 * one, so that &sk_buff becomes completely private and caller is allowed 2140 * to modify all the data of returned buffer. This means that this 2141 * function is not recommended for use in circumstances when only 2142 * header is going to be modified. Use pskb_copy() instead. 2143 */ 2144 2145 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2146 { 2147 struct sk_buff *n; 2148 unsigned int size; 2149 int headerlen; 2150 2151 if (!skb_frags_readable(skb)) 2152 return NULL; 2153 2154 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2155 return NULL; 2156 2157 headerlen = skb_headroom(skb); 2158 size = skb_end_offset(skb) + skb->data_len; 2159 n = __alloc_skb(size, gfp_mask, 2160 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2161 if (!n) 2162 return NULL; 2163 2164 /* Set the data pointer */ 2165 skb_reserve(n, headerlen); 2166 /* Set the tail pointer and length */ 2167 skb_put(n, skb->len); 2168 2169 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2170 2171 skb_copy_header(n, skb); 2172 return n; 2173 } 2174 EXPORT_SYMBOL(skb_copy); 2175 2176 /** 2177 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2178 * @skb: buffer to copy 2179 * @headroom: headroom of new skb 2180 * @gfp_mask: allocation priority 2181 * @fclone: if true allocate the copy of the skb from the fclone 2182 * cache instead of the head cache; it is recommended to set this 2183 * to true for the cases where the copy will likely be cloned 2184 * 2185 * Make a copy of both an &sk_buff and part of its data, located 2186 * in header. Fragmented data remain shared. This is used when 2187 * the caller wishes to modify only header of &sk_buff and needs 2188 * private copy of the header to alter. Returns %NULL on failure 2189 * or the pointer to the buffer on success. 2190 * The returned buffer has a reference count of 1. 2191 */ 2192 2193 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2194 gfp_t gfp_mask, bool fclone) 2195 { 2196 unsigned int size = skb_headlen(skb) + headroom; 2197 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2198 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2199 2200 if (!n) 2201 goto out; 2202 2203 /* Set the data pointer */ 2204 skb_reserve(n, headroom); 2205 /* Set the tail pointer and length */ 2206 skb_put(n, skb_headlen(skb)); 2207 /* Copy the bytes */ 2208 skb_copy_from_linear_data(skb, n->data, n->len); 2209 2210 n->truesize += skb->data_len; 2211 n->data_len = skb->data_len; 2212 n->len = skb->len; 2213 2214 if (skb_shinfo(skb)->nr_frags) { 2215 int i; 2216 2217 if (skb_orphan_frags(skb, gfp_mask) || 2218 skb_zerocopy_clone(n, skb, gfp_mask)) { 2219 kfree_skb(n); 2220 n = NULL; 2221 goto out; 2222 } 2223 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2224 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2225 skb_frag_ref(skb, i); 2226 } 2227 skb_shinfo(n)->nr_frags = i; 2228 } 2229 2230 if (skb_has_frag_list(skb)) { 2231 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2232 skb_clone_fraglist(n); 2233 } 2234 2235 skb_copy_header(n, skb); 2236 out: 2237 return n; 2238 } 2239 EXPORT_SYMBOL(__pskb_copy_fclone); 2240 2241 /** 2242 * pskb_expand_head - reallocate header of &sk_buff 2243 * @skb: buffer to reallocate 2244 * @nhead: room to add at head 2245 * @ntail: room to add at tail 2246 * @gfp_mask: allocation priority 2247 * 2248 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2249 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2250 * reference count of 1. Returns zero in the case of success or error, 2251 * if expansion failed. In the last case, &sk_buff is not changed. 2252 * 2253 * All the pointers pointing into skb header may change and must be 2254 * reloaded after call to this function. 2255 */ 2256 2257 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2258 gfp_t gfp_mask) 2259 { 2260 unsigned int osize = skb_end_offset(skb); 2261 unsigned int size = osize + nhead + ntail; 2262 long off; 2263 u8 *data; 2264 int i; 2265 2266 BUG_ON(nhead < 0); 2267 2268 BUG_ON(skb_shared(skb)); 2269 2270 skb_zcopy_downgrade_managed(skb); 2271 2272 if (skb_pfmemalloc(skb)) 2273 gfp_mask |= __GFP_MEMALLOC; 2274 2275 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2276 if (!data) 2277 goto nodata; 2278 size = SKB_WITH_OVERHEAD(size); 2279 2280 /* Copy only real data... and, alas, header. This should be 2281 * optimized for the cases when header is void. 2282 */ 2283 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2284 2285 memcpy((struct skb_shared_info *)(data + size), 2286 skb_shinfo(skb), 2287 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2288 2289 /* 2290 * if shinfo is shared we must drop the old head gracefully, but if it 2291 * is not we can just drop the old head and let the existing refcount 2292 * be since all we did is relocate the values 2293 */ 2294 if (skb_cloned(skb)) { 2295 if (skb_orphan_frags(skb, gfp_mask)) 2296 goto nofrags; 2297 if (skb_zcopy(skb)) 2298 refcount_inc(&skb_uarg(skb)->refcnt); 2299 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2300 skb_frag_ref(skb, i); 2301 2302 if (skb_has_frag_list(skb)) 2303 skb_clone_fraglist(skb); 2304 2305 skb_release_data(skb, SKB_CONSUMED); 2306 } else { 2307 skb_free_head(skb); 2308 } 2309 off = (data + nhead) - skb->head; 2310 2311 skb->head = data; 2312 skb->head_frag = 0; 2313 skb->data += off; 2314 2315 skb_set_end_offset(skb, size); 2316 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2317 off = nhead; 2318 #endif 2319 skb->tail += off; 2320 skb_headers_offset_update(skb, nhead); 2321 skb->cloned = 0; 2322 skb->hdr_len = 0; 2323 skb->nohdr = 0; 2324 atomic_set(&skb_shinfo(skb)->dataref, 1); 2325 2326 skb_metadata_clear(skb); 2327 2328 /* It is not generally safe to change skb->truesize. 2329 * For the moment, we really care of rx path, or 2330 * when skb is orphaned (not attached to a socket). 2331 */ 2332 if (!skb->sk || skb->destructor == sock_edemux) 2333 skb->truesize += size - osize; 2334 2335 return 0; 2336 2337 nofrags: 2338 skb_kfree_head(data, size); 2339 nodata: 2340 return -ENOMEM; 2341 } 2342 EXPORT_SYMBOL(pskb_expand_head); 2343 2344 /* Make private copy of skb with writable head and some headroom */ 2345 2346 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2347 { 2348 struct sk_buff *skb2; 2349 int delta = headroom - skb_headroom(skb); 2350 2351 if (delta <= 0) 2352 skb2 = pskb_copy(skb, GFP_ATOMIC); 2353 else { 2354 skb2 = skb_clone(skb, GFP_ATOMIC); 2355 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2356 GFP_ATOMIC)) { 2357 kfree_skb(skb2); 2358 skb2 = NULL; 2359 } 2360 } 2361 return skb2; 2362 } 2363 EXPORT_SYMBOL(skb_realloc_headroom); 2364 2365 /* Note: We plan to rework this in linux-6.4 */ 2366 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2367 { 2368 unsigned int saved_end_offset, saved_truesize; 2369 struct skb_shared_info *shinfo; 2370 int res; 2371 2372 saved_end_offset = skb_end_offset(skb); 2373 saved_truesize = skb->truesize; 2374 2375 res = pskb_expand_head(skb, 0, 0, pri); 2376 if (res) 2377 return res; 2378 2379 skb->truesize = saved_truesize; 2380 2381 if (likely(skb_end_offset(skb) == saved_end_offset)) 2382 return 0; 2383 2384 /* We can not change skb->end if the original or new value 2385 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2386 */ 2387 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2388 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2389 /* We think this path should not be taken. 2390 * Add a temporary trace to warn us just in case. 2391 */ 2392 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2393 saved_end_offset, skb_end_offset(skb)); 2394 WARN_ON_ONCE(1); 2395 return 0; 2396 } 2397 2398 shinfo = skb_shinfo(skb); 2399 2400 /* We are about to change back skb->end, 2401 * we need to move skb_shinfo() to its new location. 2402 */ 2403 memmove(skb->head + saved_end_offset, 2404 shinfo, 2405 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2406 2407 skb_set_end_offset(skb, saved_end_offset); 2408 2409 return 0; 2410 } 2411 2412 /** 2413 * skb_expand_head - reallocate header of &sk_buff 2414 * @skb: buffer to reallocate 2415 * @headroom: needed headroom 2416 * 2417 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2418 * if possible; copies skb->sk to new skb as needed 2419 * and frees original skb in case of failures. 2420 * 2421 * It expect increased headroom and generates warning otherwise. 2422 */ 2423 2424 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2425 { 2426 int delta = headroom - skb_headroom(skb); 2427 int osize = skb_end_offset(skb); 2428 struct sock *sk = skb->sk; 2429 2430 if (WARN_ONCE(delta <= 0, 2431 "%s is expecting an increase in the headroom", __func__)) 2432 return skb; 2433 2434 delta = SKB_DATA_ALIGN(delta); 2435 /* pskb_expand_head() might crash, if skb is shared. */ 2436 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2437 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2438 2439 if (unlikely(!nskb)) 2440 goto fail; 2441 2442 if (sk) 2443 skb_set_owner_w(nskb, sk); 2444 consume_skb(skb); 2445 skb = nskb; 2446 } 2447 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2448 goto fail; 2449 2450 if (sk && is_skb_wmem(skb)) { 2451 delta = skb_end_offset(skb) - osize; 2452 refcount_add(delta, &sk->sk_wmem_alloc); 2453 skb->truesize += delta; 2454 } 2455 return skb; 2456 2457 fail: 2458 kfree_skb(skb); 2459 return NULL; 2460 } 2461 EXPORT_SYMBOL(skb_expand_head); 2462 2463 /** 2464 * skb_copy_expand - copy and expand sk_buff 2465 * @skb: buffer to copy 2466 * @newheadroom: new free bytes at head 2467 * @newtailroom: new free bytes at tail 2468 * @gfp_mask: allocation priority 2469 * 2470 * Make a copy of both an &sk_buff and its data and while doing so 2471 * allocate additional space. 2472 * 2473 * This is used when the caller wishes to modify the data and needs a 2474 * private copy of the data to alter as well as more space for new fields. 2475 * Returns %NULL on failure or the pointer to the buffer 2476 * on success. The returned buffer has a reference count of 1. 2477 * 2478 * You must pass %GFP_ATOMIC as the allocation priority if this function 2479 * is called from an interrupt. 2480 */ 2481 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2482 int newheadroom, int newtailroom, 2483 gfp_t gfp_mask) 2484 { 2485 /* 2486 * Allocate the copy buffer 2487 */ 2488 int head_copy_len, head_copy_off; 2489 struct sk_buff *n; 2490 int oldheadroom; 2491 2492 if (!skb_frags_readable(skb)) 2493 return NULL; 2494 2495 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2496 return NULL; 2497 2498 oldheadroom = skb_headroom(skb); 2499 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2500 gfp_mask, skb_alloc_rx_flag(skb), 2501 NUMA_NO_NODE); 2502 if (!n) 2503 return NULL; 2504 2505 skb_reserve(n, newheadroom); 2506 2507 /* Set the tail pointer and length */ 2508 skb_put(n, skb->len); 2509 2510 head_copy_len = oldheadroom; 2511 head_copy_off = 0; 2512 if (newheadroom <= head_copy_len) 2513 head_copy_len = newheadroom; 2514 else 2515 head_copy_off = newheadroom - head_copy_len; 2516 2517 /* Copy the linear header and data. */ 2518 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2519 skb->len + head_copy_len)); 2520 2521 skb_copy_header(n, skb); 2522 2523 skb_headers_offset_update(n, newheadroom - oldheadroom); 2524 2525 return n; 2526 } 2527 EXPORT_SYMBOL(skb_copy_expand); 2528 2529 /** 2530 * __skb_pad - zero pad the tail of an skb 2531 * @skb: buffer to pad 2532 * @pad: space to pad 2533 * @free_on_error: free buffer on error 2534 * 2535 * Ensure that a buffer is followed by a padding area that is zero 2536 * filled. Used by network drivers which may DMA or transfer data 2537 * beyond the buffer end onto the wire. 2538 * 2539 * May return error in out of memory cases. The skb is freed on error 2540 * if @free_on_error is true. 2541 */ 2542 2543 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2544 { 2545 int err; 2546 int ntail; 2547 2548 /* If the skbuff is non linear tailroom is always zero.. */ 2549 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2550 memset(skb->data+skb->len, 0, pad); 2551 return 0; 2552 } 2553 2554 ntail = skb->data_len + pad - (skb->end - skb->tail); 2555 if (likely(skb_cloned(skb) || ntail > 0)) { 2556 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2557 if (unlikely(err)) 2558 goto free_skb; 2559 } 2560 2561 /* FIXME: The use of this function with non-linear skb's really needs 2562 * to be audited. 2563 */ 2564 err = skb_linearize(skb); 2565 if (unlikely(err)) 2566 goto free_skb; 2567 2568 memset(skb->data + skb->len, 0, pad); 2569 return 0; 2570 2571 free_skb: 2572 if (free_on_error) 2573 kfree_skb(skb); 2574 return err; 2575 } 2576 EXPORT_SYMBOL(__skb_pad); 2577 2578 /** 2579 * pskb_put - add data to the tail of a potentially fragmented buffer 2580 * @skb: start of the buffer to use 2581 * @tail: tail fragment of the buffer to use 2582 * @len: amount of data to add 2583 * 2584 * This function extends the used data area of the potentially 2585 * fragmented buffer. @tail must be the last fragment of @skb -- or 2586 * @skb itself. If this would exceed the total buffer size the kernel 2587 * will panic. A pointer to the first byte of the extra data is 2588 * returned. 2589 */ 2590 2591 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2592 { 2593 if (tail != skb) { 2594 skb->data_len += len; 2595 skb->len += len; 2596 } 2597 return skb_put(tail, len); 2598 } 2599 EXPORT_SYMBOL_GPL(pskb_put); 2600 2601 /** 2602 * skb_put - add data to a buffer 2603 * @skb: buffer to use 2604 * @len: amount of data to add 2605 * 2606 * This function extends the used data area of the buffer. If this would 2607 * exceed the total buffer size the kernel will panic. A pointer to the 2608 * first byte of the extra data is returned. 2609 */ 2610 void *skb_put(struct sk_buff *skb, unsigned int len) 2611 { 2612 void *tmp = skb_tail_pointer(skb); 2613 SKB_LINEAR_ASSERT(skb); 2614 skb->tail += len; 2615 skb->len += len; 2616 if (unlikely(skb->tail > skb->end)) 2617 skb_over_panic(skb, len, __builtin_return_address(0)); 2618 return tmp; 2619 } 2620 EXPORT_SYMBOL(skb_put); 2621 2622 /** 2623 * skb_push - add data to the start of a buffer 2624 * @skb: buffer to use 2625 * @len: amount of data to add 2626 * 2627 * This function extends the used data area of the buffer at the buffer 2628 * start. If this would exceed the total buffer headroom the kernel will 2629 * panic. A pointer to the first byte of the extra data is returned. 2630 */ 2631 void *skb_push(struct sk_buff *skb, unsigned int len) 2632 { 2633 skb->data -= len; 2634 skb->len += len; 2635 if (unlikely(skb->data < skb->head)) 2636 skb_under_panic(skb, len, __builtin_return_address(0)); 2637 return skb->data; 2638 } 2639 EXPORT_SYMBOL(skb_push); 2640 2641 /** 2642 * skb_pull - remove data from the start of a buffer 2643 * @skb: buffer to use 2644 * @len: amount of data to remove 2645 * 2646 * This function removes data from the start of a buffer, returning 2647 * the memory to the headroom. A pointer to the next data in the buffer 2648 * is returned. Once the data has been pulled future pushes will overwrite 2649 * the old data. 2650 */ 2651 void *skb_pull(struct sk_buff *skb, unsigned int len) 2652 { 2653 return skb_pull_inline(skb, len); 2654 } 2655 EXPORT_SYMBOL(skb_pull); 2656 2657 /** 2658 * skb_pull_data - remove data from the start of a buffer returning its 2659 * original position. 2660 * @skb: buffer to use 2661 * @len: amount of data to remove 2662 * 2663 * This function removes data from the start of a buffer, returning 2664 * the memory to the headroom. A pointer to the original data in the buffer 2665 * is returned after checking if there is enough data to pull. Once the 2666 * data has been pulled future pushes will overwrite the old data. 2667 */ 2668 void *skb_pull_data(struct sk_buff *skb, size_t len) 2669 { 2670 void *data = skb->data; 2671 2672 if (skb->len < len) 2673 return NULL; 2674 2675 skb_pull(skb, len); 2676 2677 return data; 2678 } 2679 EXPORT_SYMBOL(skb_pull_data); 2680 2681 /** 2682 * skb_trim - remove end from a buffer 2683 * @skb: buffer to alter 2684 * @len: new length 2685 * 2686 * Cut the length of a buffer down by removing data from the tail. If 2687 * the buffer is already under the length specified it is not modified. 2688 * The skb must be linear. 2689 */ 2690 void skb_trim(struct sk_buff *skb, unsigned int len) 2691 { 2692 if (skb->len > len) 2693 __skb_trim(skb, len); 2694 } 2695 EXPORT_SYMBOL(skb_trim); 2696 2697 /* Trims skb to length len. It can change skb pointers. 2698 */ 2699 2700 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2701 { 2702 struct sk_buff **fragp; 2703 struct sk_buff *frag; 2704 int offset = skb_headlen(skb); 2705 int nfrags = skb_shinfo(skb)->nr_frags; 2706 int i; 2707 int err; 2708 2709 if (skb_cloned(skb) && 2710 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2711 return err; 2712 2713 i = 0; 2714 if (offset >= len) 2715 goto drop_pages; 2716 2717 for (; i < nfrags; i++) { 2718 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2719 2720 if (end < len) { 2721 offset = end; 2722 continue; 2723 } 2724 2725 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2726 2727 drop_pages: 2728 skb_shinfo(skb)->nr_frags = i; 2729 2730 for (; i < nfrags; i++) 2731 skb_frag_unref(skb, i); 2732 2733 if (skb_has_frag_list(skb)) 2734 skb_drop_fraglist(skb); 2735 goto done; 2736 } 2737 2738 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2739 fragp = &frag->next) { 2740 int end = offset + frag->len; 2741 2742 if (skb_shared(frag)) { 2743 struct sk_buff *nfrag; 2744 2745 nfrag = skb_clone(frag, GFP_ATOMIC); 2746 if (unlikely(!nfrag)) 2747 return -ENOMEM; 2748 2749 nfrag->next = frag->next; 2750 consume_skb(frag); 2751 frag = nfrag; 2752 *fragp = frag; 2753 } 2754 2755 if (end < len) { 2756 offset = end; 2757 continue; 2758 } 2759 2760 if (end > len && 2761 unlikely((err = pskb_trim(frag, len - offset)))) 2762 return err; 2763 2764 if (frag->next) 2765 skb_drop_list(&frag->next); 2766 break; 2767 } 2768 2769 done: 2770 if (len > skb_headlen(skb)) { 2771 skb->data_len -= skb->len - len; 2772 skb->len = len; 2773 } else { 2774 skb->len = len; 2775 skb->data_len = 0; 2776 skb_set_tail_pointer(skb, len); 2777 } 2778 2779 if (!skb->sk || skb->destructor == sock_edemux) 2780 skb_condense(skb); 2781 return 0; 2782 } 2783 EXPORT_SYMBOL(___pskb_trim); 2784 2785 /* Note : use pskb_trim_rcsum() instead of calling this directly 2786 */ 2787 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2788 { 2789 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2790 int delta = skb->len - len; 2791 2792 skb->csum = csum_block_sub(skb->csum, 2793 skb_checksum(skb, len, delta, 0), 2794 len); 2795 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2796 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2797 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2798 2799 if (offset + sizeof(__sum16) > hdlen) 2800 return -EINVAL; 2801 } 2802 return __pskb_trim(skb, len); 2803 } 2804 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2805 2806 /** 2807 * __pskb_pull_tail - advance tail of skb header 2808 * @skb: buffer to reallocate 2809 * @delta: number of bytes to advance tail 2810 * 2811 * The function makes a sense only on a fragmented &sk_buff, 2812 * it expands header moving its tail forward and copying necessary 2813 * data from fragmented part. 2814 * 2815 * &sk_buff MUST have reference count of 1. 2816 * 2817 * Returns %NULL (and &sk_buff does not change) if pull failed 2818 * or value of new tail of skb in the case of success. 2819 * 2820 * All the pointers pointing into skb header may change and must be 2821 * reloaded after call to this function. 2822 */ 2823 2824 /* Moves tail of skb head forward, copying data from fragmented part, 2825 * when it is necessary. 2826 * 1. It may fail due to malloc failure. 2827 * 2. It may change skb pointers. 2828 * 2829 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2830 */ 2831 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2832 { 2833 /* If skb has not enough free space at tail, get new one 2834 * plus 128 bytes for future expansions. If we have enough 2835 * room at tail, reallocate without expansion only if skb is cloned. 2836 */ 2837 int i, k, eat = (skb->tail + delta) - skb->end; 2838 2839 if (!skb_frags_readable(skb)) 2840 return NULL; 2841 2842 if (eat > 0 || skb_cloned(skb)) { 2843 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2844 GFP_ATOMIC)) 2845 return NULL; 2846 } 2847 2848 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2849 skb_tail_pointer(skb), delta)); 2850 2851 /* Optimization: no fragments, no reasons to preestimate 2852 * size of pulled pages. Superb. 2853 */ 2854 if (!skb_has_frag_list(skb)) 2855 goto pull_pages; 2856 2857 /* Estimate size of pulled pages. */ 2858 eat = delta; 2859 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2860 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2861 2862 if (size >= eat) 2863 goto pull_pages; 2864 eat -= size; 2865 } 2866 2867 /* If we need update frag list, we are in troubles. 2868 * Certainly, it is possible to add an offset to skb data, 2869 * but taking into account that pulling is expected to 2870 * be very rare operation, it is worth to fight against 2871 * further bloating skb head and crucify ourselves here instead. 2872 * Pure masohism, indeed. 8)8) 2873 */ 2874 if (eat) { 2875 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2876 struct sk_buff *clone = NULL; 2877 struct sk_buff *insp = NULL; 2878 2879 do { 2880 if (list->len <= eat) { 2881 /* Eaten as whole. */ 2882 eat -= list->len; 2883 list = list->next; 2884 insp = list; 2885 } else { 2886 /* Eaten partially. */ 2887 if (skb_is_gso(skb) && !list->head_frag && 2888 skb_headlen(list)) 2889 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2890 2891 if (skb_shared(list)) { 2892 /* Sucks! We need to fork list. :-( */ 2893 clone = skb_clone(list, GFP_ATOMIC); 2894 if (!clone) 2895 return NULL; 2896 insp = list->next; 2897 list = clone; 2898 } else { 2899 /* This may be pulled without 2900 * problems. */ 2901 insp = list; 2902 } 2903 if (!pskb_pull(list, eat)) { 2904 kfree_skb(clone); 2905 return NULL; 2906 } 2907 break; 2908 } 2909 } while (eat); 2910 2911 /* Free pulled out fragments. */ 2912 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2913 skb_shinfo(skb)->frag_list = list->next; 2914 consume_skb(list); 2915 } 2916 /* And insert new clone at head. */ 2917 if (clone) { 2918 clone->next = list; 2919 skb_shinfo(skb)->frag_list = clone; 2920 } 2921 } 2922 /* Success! Now we may commit changes to skb data. */ 2923 2924 pull_pages: 2925 eat = delta; 2926 k = 0; 2927 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2928 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2929 2930 if (size <= eat) { 2931 skb_frag_unref(skb, i); 2932 eat -= size; 2933 } else { 2934 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2935 2936 *frag = skb_shinfo(skb)->frags[i]; 2937 if (eat) { 2938 skb_frag_off_add(frag, eat); 2939 skb_frag_size_sub(frag, eat); 2940 if (!i) 2941 goto end; 2942 eat = 0; 2943 } 2944 k++; 2945 } 2946 } 2947 skb_shinfo(skb)->nr_frags = k; 2948 2949 end: 2950 skb->tail += delta; 2951 skb->data_len -= delta; 2952 2953 if (!skb->data_len) 2954 skb_zcopy_clear(skb, false); 2955 2956 return skb_tail_pointer(skb); 2957 } 2958 EXPORT_SYMBOL(__pskb_pull_tail); 2959 2960 /** 2961 * skb_copy_bits - copy bits from skb to kernel buffer 2962 * @skb: source skb 2963 * @offset: offset in source 2964 * @to: destination buffer 2965 * @len: number of bytes to copy 2966 * 2967 * Copy the specified number of bytes from the source skb to the 2968 * destination buffer. 2969 * 2970 * CAUTION ! : 2971 * If its prototype is ever changed, 2972 * check arch/{*}/net/{*}.S files, 2973 * since it is called from BPF assembly code. 2974 */ 2975 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2976 { 2977 int start = skb_headlen(skb); 2978 struct sk_buff *frag_iter; 2979 int i, copy; 2980 2981 if (offset > (int)skb->len - len) 2982 goto fault; 2983 2984 /* Copy header. */ 2985 if ((copy = start - offset) > 0) { 2986 if (copy > len) 2987 copy = len; 2988 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2989 if ((len -= copy) == 0) 2990 return 0; 2991 offset += copy; 2992 to += copy; 2993 } 2994 2995 if (!skb_frags_readable(skb)) 2996 goto fault; 2997 2998 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2999 int end; 3000 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 3001 3002 WARN_ON(start > offset + len); 3003 3004 end = start + skb_frag_size(f); 3005 if ((copy = end - offset) > 0) { 3006 u32 p_off, p_len, copied; 3007 struct page *p; 3008 u8 *vaddr; 3009 3010 if (copy > len) 3011 copy = len; 3012 3013 skb_frag_foreach_page(f, 3014 skb_frag_off(f) + offset - start, 3015 copy, p, p_off, p_len, copied) { 3016 vaddr = kmap_atomic(p); 3017 memcpy(to + copied, vaddr + p_off, p_len); 3018 kunmap_atomic(vaddr); 3019 } 3020 3021 if ((len -= copy) == 0) 3022 return 0; 3023 offset += copy; 3024 to += copy; 3025 } 3026 start = end; 3027 } 3028 3029 skb_walk_frags(skb, frag_iter) { 3030 int end; 3031 3032 WARN_ON(start > offset + len); 3033 3034 end = start + frag_iter->len; 3035 if ((copy = end - offset) > 0) { 3036 if (copy > len) 3037 copy = len; 3038 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3039 goto fault; 3040 if ((len -= copy) == 0) 3041 return 0; 3042 offset += copy; 3043 to += copy; 3044 } 3045 start = end; 3046 } 3047 3048 if (!len) 3049 return 0; 3050 3051 fault: 3052 return -EFAULT; 3053 } 3054 EXPORT_SYMBOL(skb_copy_bits); 3055 3056 /* 3057 * Callback from splice_to_pipe(), if we need to release some pages 3058 * at the end of the spd in case we error'ed out in filling the pipe. 3059 */ 3060 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3061 { 3062 put_page(spd->pages[i]); 3063 } 3064 3065 static struct page *linear_to_page(struct page *page, unsigned int *len, 3066 unsigned int *offset, 3067 struct sock *sk) 3068 { 3069 struct page_frag *pfrag = sk_page_frag(sk); 3070 3071 if (!sk_page_frag_refill(sk, pfrag)) 3072 return NULL; 3073 3074 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3075 3076 memcpy(page_address(pfrag->page) + pfrag->offset, 3077 page_address(page) + *offset, *len); 3078 *offset = pfrag->offset; 3079 pfrag->offset += *len; 3080 3081 return pfrag->page; 3082 } 3083 3084 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3085 struct page *page, 3086 unsigned int offset) 3087 { 3088 return spd->nr_pages && 3089 spd->pages[spd->nr_pages - 1] == page && 3090 (spd->partial[spd->nr_pages - 1].offset + 3091 spd->partial[spd->nr_pages - 1].len == offset); 3092 } 3093 3094 /* 3095 * Fill page/offset/length into spd, if it can hold more pages. 3096 */ 3097 static bool spd_fill_page(struct splice_pipe_desc *spd, 3098 struct pipe_inode_info *pipe, struct page *page, 3099 unsigned int *len, unsigned int offset, 3100 bool linear, 3101 struct sock *sk) 3102 { 3103 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3104 return true; 3105 3106 if (linear) { 3107 page = linear_to_page(page, len, &offset, sk); 3108 if (!page) 3109 return true; 3110 } 3111 if (spd_can_coalesce(spd, page, offset)) { 3112 spd->partial[spd->nr_pages - 1].len += *len; 3113 return false; 3114 } 3115 get_page(page); 3116 spd->pages[spd->nr_pages] = page; 3117 spd->partial[spd->nr_pages].len = *len; 3118 spd->partial[spd->nr_pages].offset = offset; 3119 spd->nr_pages++; 3120 3121 return false; 3122 } 3123 3124 static bool __splice_segment(struct page *page, unsigned int poff, 3125 unsigned int plen, unsigned int *off, 3126 unsigned int *len, 3127 struct splice_pipe_desc *spd, bool linear, 3128 struct sock *sk, 3129 struct pipe_inode_info *pipe) 3130 { 3131 if (!*len) 3132 return true; 3133 3134 /* skip this segment if already processed */ 3135 if (*off >= plen) { 3136 *off -= plen; 3137 return false; 3138 } 3139 3140 /* ignore any bits we already processed */ 3141 poff += *off; 3142 plen -= *off; 3143 *off = 0; 3144 3145 do { 3146 unsigned int flen = min(*len, plen); 3147 3148 if (spd_fill_page(spd, pipe, page, &flen, poff, 3149 linear, sk)) 3150 return true; 3151 poff += flen; 3152 plen -= flen; 3153 *len -= flen; 3154 } while (*len && plen); 3155 3156 return false; 3157 } 3158 3159 /* 3160 * Map linear and fragment data from the skb to spd. It reports true if the 3161 * pipe is full or if we already spliced the requested length. 3162 */ 3163 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3164 unsigned int *offset, unsigned int *len, 3165 struct splice_pipe_desc *spd, struct sock *sk) 3166 { 3167 int seg; 3168 struct sk_buff *iter; 3169 3170 /* map the linear part : 3171 * If skb->head_frag is set, this 'linear' part is backed by a 3172 * fragment, and if the head is not shared with any clones then 3173 * we can avoid a copy since we own the head portion of this page. 3174 */ 3175 if (__splice_segment(virt_to_page(skb->data), 3176 (unsigned long) skb->data & (PAGE_SIZE - 1), 3177 skb_headlen(skb), 3178 offset, len, spd, 3179 skb_head_is_locked(skb), 3180 sk, pipe)) 3181 return true; 3182 3183 /* 3184 * then map the fragments 3185 */ 3186 if (!skb_frags_readable(skb)) 3187 return false; 3188 3189 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3190 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3191 3192 if (WARN_ON_ONCE(!skb_frag_page(f))) 3193 return false; 3194 3195 if (__splice_segment(skb_frag_page(f), 3196 skb_frag_off(f), skb_frag_size(f), 3197 offset, len, spd, false, sk, pipe)) 3198 return true; 3199 } 3200 3201 skb_walk_frags(skb, iter) { 3202 if (*offset >= iter->len) { 3203 *offset -= iter->len; 3204 continue; 3205 } 3206 /* __skb_splice_bits() only fails if the output has no room 3207 * left, so no point in going over the frag_list for the error 3208 * case. 3209 */ 3210 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3211 return true; 3212 } 3213 3214 return false; 3215 } 3216 3217 /* 3218 * Map data from the skb to a pipe. Should handle both the linear part, 3219 * the fragments, and the frag list. 3220 */ 3221 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3222 struct pipe_inode_info *pipe, unsigned int tlen, 3223 unsigned int flags) 3224 { 3225 struct partial_page partial[MAX_SKB_FRAGS]; 3226 struct page *pages[MAX_SKB_FRAGS]; 3227 struct splice_pipe_desc spd = { 3228 .pages = pages, 3229 .partial = partial, 3230 .nr_pages_max = MAX_SKB_FRAGS, 3231 .ops = &nosteal_pipe_buf_ops, 3232 .spd_release = sock_spd_release, 3233 }; 3234 int ret = 0; 3235 3236 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3237 3238 if (spd.nr_pages) 3239 ret = splice_to_pipe(pipe, &spd); 3240 3241 return ret; 3242 } 3243 EXPORT_SYMBOL_GPL(skb_splice_bits); 3244 3245 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3246 { 3247 struct socket *sock = sk->sk_socket; 3248 size_t size = msg_data_left(msg); 3249 3250 if (!sock) 3251 return -EINVAL; 3252 3253 if (!sock->ops->sendmsg_locked) 3254 return sock_no_sendmsg_locked(sk, msg, size); 3255 3256 return sock->ops->sendmsg_locked(sk, msg, size); 3257 } 3258 3259 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3260 { 3261 struct socket *sock = sk->sk_socket; 3262 3263 if (!sock) 3264 return -EINVAL; 3265 return sock_sendmsg(sock, msg); 3266 } 3267 3268 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3269 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3270 int len, sendmsg_func sendmsg) 3271 { 3272 unsigned int orig_len = len; 3273 struct sk_buff *head = skb; 3274 unsigned short fragidx; 3275 int slen, ret; 3276 3277 do_frag_list: 3278 3279 /* Deal with head data */ 3280 while (offset < skb_headlen(skb) && len) { 3281 struct kvec kv; 3282 struct msghdr msg; 3283 3284 slen = min_t(int, len, skb_headlen(skb) - offset); 3285 kv.iov_base = skb->data + offset; 3286 kv.iov_len = slen; 3287 memset(&msg, 0, sizeof(msg)); 3288 msg.msg_flags = MSG_DONTWAIT; 3289 3290 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3291 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3292 sendmsg_unlocked, sk, &msg); 3293 if (ret <= 0) 3294 goto error; 3295 3296 offset += ret; 3297 len -= ret; 3298 } 3299 3300 /* All the data was skb head? */ 3301 if (!len) 3302 goto out; 3303 3304 /* Make offset relative to start of frags */ 3305 offset -= skb_headlen(skb); 3306 3307 /* Find where we are in frag list */ 3308 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3309 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3310 3311 if (offset < skb_frag_size(frag)) 3312 break; 3313 3314 offset -= skb_frag_size(frag); 3315 } 3316 3317 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3318 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3319 3320 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3321 3322 while (slen) { 3323 struct bio_vec bvec; 3324 struct msghdr msg = { 3325 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3326 }; 3327 3328 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3329 skb_frag_off(frag) + offset); 3330 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3331 slen); 3332 3333 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3334 sendmsg_unlocked, sk, &msg); 3335 if (ret <= 0) 3336 goto error; 3337 3338 len -= ret; 3339 offset += ret; 3340 slen -= ret; 3341 } 3342 3343 offset = 0; 3344 } 3345 3346 if (len) { 3347 /* Process any frag lists */ 3348 3349 if (skb == head) { 3350 if (skb_has_frag_list(skb)) { 3351 skb = skb_shinfo(skb)->frag_list; 3352 goto do_frag_list; 3353 } 3354 } else if (skb->next) { 3355 skb = skb->next; 3356 goto do_frag_list; 3357 } 3358 } 3359 3360 out: 3361 return orig_len - len; 3362 3363 error: 3364 return orig_len == len ? ret : orig_len - len; 3365 } 3366 3367 /* Send skb data on a socket. Socket must be locked. */ 3368 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3369 int len) 3370 { 3371 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3372 } 3373 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3374 3375 /* Send skb data on a socket. Socket must be unlocked. */ 3376 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3377 { 3378 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3379 } 3380 3381 /** 3382 * skb_store_bits - store bits from kernel buffer to skb 3383 * @skb: destination buffer 3384 * @offset: offset in destination 3385 * @from: source buffer 3386 * @len: number of bytes to copy 3387 * 3388 * Copy the specified number of bytes from the source buffer to the 3389 * destination skb. This function handles all the messy bits of 3390 * traversing fragment lists and such. 3391 */ 3392 3393 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3394 { 3395 int start = skb_headlen(skb); 3396 struct sk_buff *frag_iter; 3397 int i, copy; 3398 3399 if (offset > (int)skb->len - len) 3400 goto fault; 3401 3402 if ((copy = start - offset) > 0) { 3403 if (copy > len) 3404 copy = len; 3405 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3406 if ((len -= copy) == 0) 3407 return 0; 3408 offset += copy; 3409 from += copy; 3410 } 3411 3412 if (!skb_frags_readable(skb)) 3413 goto fault; 3414 3415 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3416 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3417 int end; 3418 3419 WARN_ON(start > offset + len); 3420 3421 end = start + skb_frag_size(frag); 3422 if ((copy = end - offset) > 0) { 3423 u32 p_off, p_len, copied; 3424 struct page *p; 3425 u8 *vaddr; 3426 3427 if (copy > len) 3428 copy = len; 3429 3430 skb_frag_foreach_page(frag, 3431 skb_frag_off(frag) + offset - start, 3432 copy, p, p_off, p_len, copied) { 3433 vaddr = kmap_atomic(p); 3434 memcpy(vaddr + p_off, from + copied, p_len); 3435 kunmap_atomic(vaddr); 3436 } 3437 3438 if ((len -= copy) == 0) 3439 return 0; 3440 offset += copy; 3441 from += copy; 3442 } 3443 start = end; 3444 } 3445 3446 skb_walk_frags(skb, frag_iter) { 3447 int end; 3448 3449 WARN_ON(start > offset + len); 3450 3451 end = start + frag_iter->len; 3452 if ((copy = end - offset) > 0) { 3453 if (copy > len) 3454 copy = len; 3455 if (skb_store_bits(frag_iter, offset - start, 3456 from, copy)) 3457 goto fault; 3458 if ((len -= copy) == 0) 3459 return 0; 3460 offset += copy; 3461 from += copy; 3462 } 3463 start = end; 3464 } 3465 if (!len) 3466 return 0; 3467 3468 fault: 3469 return -EFAULT; 3470 } 3471 EXPORT_SYMBOL(skb_store_bits); 3472 3473 /* Checksum skb data. */ 3474 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3475 __wsum csum, const struct skb_checksum_ops *ops) 3476 { 3477 int start = skb_headlen(skb); 3478 int i, copy = start - offset; 3479 struct sk_buff *frag_iter; 3480 int pos = 0; 3481 3482 /* Checksum header. */ 3483 if (copy > 0) { 3484 if (copy > len) 3485 copy = len; 3486 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3487 skb->data + offset, copy, csum); 3488 if ((len -= copy) == 0) 3489 return csum; 3490 offset += copy; 3491 pos = copy; 3492 } 3493 3494 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3495 return 0; 3496 3497 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3498 int end; 3499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3500 3501 WARN_ON(start > offset + len); 3502 3503 end = start + skb_frag_size(frag); 3504 if ((copy = end - offset) > 0) { 3505 u32 p_off, p_len, copied; 3506 struct page *p; 3507 __wsum csum2; 3508 u8 *vaddr; 3509 3510 if (copy > len) 3511 copy = len; 3512 3513 skb_frag_foreach_page(frag, 3514 skb_frag_off(frag) + offset - start, 3515 copy, p, p_off, p_len, copied) { 3516 vaddr = kmap_atomic(p); 3517 csum2 = INDIRECT_CALL_1(ops->update, 3518 csum_partial_ext, 3519 vaddr + p_off, p_len, 0); 3520 kunmap_atomic(vaddr); 3521 csum = INDIRECT_CALL_1(ops->combine, 3522 csum_block_add_ext, csum, 3523 csum2, pos, p_len); 3524 pos += p_len; 3525 } 3526 3527 if (!(len -= copy)) 3528 return csum; 3529 offset += copy; 3530 } 3531 start = end; 3532 } 3533 3534 skb_walk_frags(skb, frag_iter) { 3535 int end; 3536 3537 WARN_ON(start > offset + len); 3538 3539 end = start + frag_iter->len; 3540 if ((copy = end - offset) > 0) { 3541 __wsum csum2; 3542 if (copy > len) 3543 copy = len; 3544 csum2 = __skb_checksum(frag_iter, offset - start, 3545 copy, 0, ops); 3546 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3547 csum, csum2, pos, copy); 3548 if ((len -= copy) == 0) 3549 return csum; 3550 offset += copy; 3551 pos += copy; 3552 } 3553 start = end; 3554 } 3555 BUG_ON(len); 3556 3557 return csum; 3558 } 3559 EXPORT_SYMBOL(__skb_checksum); 3560 3561 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3562 int len, __wsum csum) 3563 { 3564 const struct skb_checksum_ops ops = { 3565 .update = csum_partial_ext, 3566 .combine = csum_block_add_ext, 3567 }; 3568 3569 return __skb_checksum(skb, offset, len, csum, &ops); 3570 } 3571 EXPORT_SYMBOL(skb_checksum); 3572 3573 /* Both of above in one bottle. */ 3574 3575 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3576 u8 *to, int len) 3577 { 3578 int start = skb_headlen(skb); 3579 int i, copy = start - offset; 3580 struct sk_buff *frag_iter; 3581 int pos = 0; 3582 __wsum csum = 0; 3583 3584 /* Copy header. */ 3585 if (copy > 0) { 3586 if (copy > len) 3587 copy = len; 3588 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3589 copy); 3590 if ((len -= copy) == 0) 3591 return csum; 3592 offset += copy; 3593 to += copy; 3594 pos = copy; 3595 } 3596 3597 if (!skb_frags_readable(skb)) 3598 return 0; 3599 3600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3601 int end; 3602 3603 WARN_ON(start > offset + len); 3604 3605 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3606 if ((copy = end - offset) > 0) { 3607 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3608 u32 p_off, p_len, copied; 3609 struct page *p; 3610 __wsum csum2; 3611 u8 *vaddr; 3612 3613 if (copy > len) 3614 copy = len; 3615 3616 skb_frag_foreach_page(frag, 3617 skb_frag_off(frag) + offset - start, 3618 copy, p, p_off, p_len, copied) { 3619 vaddr = kmap_atomic(p); 3620 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3621 to + copied, 3622 p_len); 3623 kunmap_atomic(vaddr); 3624 csum = csum_block_add(csum, csum2, pos); 3625 pos += p_len; 3626 } 3627 3628 if (!(len -= copy)) 3629 return csum; 3630 offset += copy; 3631 to += copy; 3632 } 3633 start = end; 3634 } 3635 3636 skb_walk_frags(skb, frag_iter) { 3637 __wsum csum2; 3638 int end; 3639 3640 WARN_ON(start > offset + len); 3641 3642 end = start + frag_iter->len; 3643 if ((copy = end - offset) > 0) { 3644 if (copy > len) 3645 copy = len; 3646 csum2 = skb_copy_and_csum_bits(frag_iter, 3647 offset - start, 3648 to, copy); 3649 csum = csum_block_add(csum, csum2, pos); 3650 if ((len -= copy) == 0) 3651 return csum; 3652 offset += copy; 3653 to += copy; 3654 pos += copy; 3655 } 3656 start = end; 3657 } 3658 BUG_ON(len); 3659 return csum; 3660 } 3661 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3662 3663 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3664 { 3665 __sum16 sum; 3666 3667 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3668 /* See comments in __skb_checksum_complete(). */ 3669 if (likely(!sum)) { 3670 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3671 !skb->csum_complete_sw) 3672 netdev_rx_csum_fault(skb->dev, skb); 3673 } 3674 if (!skb_shared(skb)) 3675 skb->csum_valid = !sum; 3676 return sum; 3677 } 3678 EXPORT_SYMBOL(__skb_checksum_complete_head); 3679 3680 /* This function assumes skb->csum already holds pseudo header's checksum, 3681 * which has been changed from the hardware checksum, for example, by 3682 * __skb_checksum_validate_complete(). And, the original skb->csum must 3683 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3684 * 3685 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3686 * zero. The new checksum is stored back into skb->csum unless the skb is 3687 * shared. 3688 */ 3689 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3690 { 3691 __wsum csum; 3692 __sum16 sum; 3693 3694 csum = skb_checksum(skb, 0, skb->len, 0); 3695 3696 sum = csum_fold(csum_add(skb->csum, csum)); 3697 /* This check is inverted, because we already knew the hardware 3698 * checksum is invalid before calling this function. So, if the 3699 * re-computed checksum is valid instead, then we have a mismatch 3700 * between the original skb->csum and skb_checksum(). This means either 3701 * the original hardware checksum is incorrect or we screw up skb->csum 3702 * when moving skb->data around. 3703 */ 3704 if (likely(!sum)) { 3705 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3706 !skb->csum_complete_sw) 3707 netdev_rx_csum_fault(skb->dev, skb); 3708 } 3709 3710 if (!skb_shared(skb)) { 3711 /* Save full packet checksum */ 3712 skb->csum = csum; 3713 skb->ip_summed = CHECKSUM_COMPLETE; 3714 skb->csum_complete_sw = 1; 3715 skb->csum_valid = !sum; 3716 } 3717 3718 return sum; 3719 } 3720 EXPORT_SYMBOL(__skb_checksum_complete); 3721 3722 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3723 { 3724 net_warn_ratelimited( 3725 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3726 __func__); 3727 return 0; 3728 } 3729 3730 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3731 int offset, int len) 3732 { 3733 net_warn_ratelimited( 3734 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3735 __func__); 3736 return 0; 3737 } 3738 3739 static const struct skb_checksum_ops default_crc32c_ops = { 3740 .update = warn_crc32c_csum_update, 3741 .combine = warn_crc32c_csum_combine, 3742 }; 3743 3744 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3745 &default_crc32c_ops; 3746 EXPORT_SYMBOL(crc32c_csum_stub); 3747 3748 /** 3749 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3750 * @from: source buffer 3751 * 3752 * Calculates the amount of linear headroom needed in the 'to' skb passed 3753 * into skb_zerocopy(). 3754 */ 3755 unsigned int 3756 skb_zerocopy_headlen(const struct sk_buff *from) 3757 { 3758 unsigned int hlen = 0; 3759 3760 if (!from->head_frag || 3761 skb_headlen(from) < L1_CACHE_BYTES || 3762 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3763 hlen = skb_headlen(from); 3764 if (!hlen) 3765 hlen = from->len; 3766 } 3767 3768 if (skb_has_frag_list(from)) 3769 hlen = from->len; 3770 3771 return hlen; 3772 } 3773 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3774 3775 /** 3776 * skb_zerocopy - Zero copy skb to skb 3777 * @to: destination buffer 3778 * @from: source buffer 3779 * @len: number of bytes to copy from source buffer 3780 * @hlen: size of linear headroom in destination buffer 3781 * 3782 * Copies up to `len` bytes from `from` to `to` by creating references 3783 * to the frags in the source buffer. 3784 * 3785 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3786 * headroom in the `to` buffer. 3787 * 3788 * Return value: 3789 * 0: everything is OK 3790 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3791 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3792 */ 3793 int 3794 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3795 { 3796 int i, j = 0; 3797 int plen = 0; /* length of skb->head fragment */ 3798 int ret; 3799 struct page *page; 3800 unsigned int offset; 3801 3802 BUG_ON(!from->head_frag && !hlen); 3803 3804 /* dont bother with small payloads */ 3805 if (len <= skb_tailroom(to)) 3806 return skb_copy_bits(from, 0, skb_put(to, len), len); 3807 3808 if (hlen) { 3809 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3810 if (unlikely(ret)) 3811 return ret; 3812 len -= hlen; 3813 } else { 3814 plen = min_t(int, skb_headlen(from), len); 3815 if (plen) { 3816 page = virt_to_head_page(from->head); 3817 offset = from->data - (unsigned char *)page_address(page); 3818 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3819 offset, plen); 3820 get_page(page); 3821 j = 1; 3822 len -= plen; 3823 } 3824 } 3825 3826 skb_len_add(to, len + plen); 3827 3828 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3829 skb_tx_error(from); 3830 return -ENOMEM; 3831 } 3832 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3833 3834 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3835 int size; 3836 3837 if (!len) 3838 break; 3839 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3840 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3841 len); 3842 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3843 len -= size; 3844 skb_frag_ref(to, j); 3845 j++; 3846 } 3847 skb_shinfo(to)->nr_frags = j; 3848 3849 return 0; 3850 } 3851 EXPORT_SYMBOL_GPL(skb_zerocopy); 3852 3853 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3854 { 3855 __wsum csum; 3856 long csstart; 3857 3858 if (skb->ip_summed == CHECKSUM_PARTIAL) 3859 csstart = skb_checksum_start_offset(skb); 3860 else 3861 csstart = skb_headlen(skb); 3862 3863 BUG_ON(csstart > skb_headlen(skb)); 3864 3865 skb_copy_from_linear_data(skb, to, csstart); 3866 3867 csum = 0; 3868 if (csstart != skb->len) 3869 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3870 skb->len - csstart); 3871 3872 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3873 long csstuff = csstart + skb->csum_offset; 3874 3875 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3876 } 3877 } 3878 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3879 3880 /** 3881 * skb_dequeue - remove from the head of the queue 3882 * @list: list to dequeue from 3883 * 3884 * Remove the head of the list. The list lock is taken so the function 3885 * may be used safely with other locking list functions. The head item is 3886 * returned or %NULL if the list is empty. 3887 */ 3888 3889 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3890 { 3891 unsigned long flags; 3892 struct sk_buff *result; 3893 3894 spin_lock_irqsave(&list->lock, flags); 3895 result = __skb_dequeue(list); 3896 spin_unlock_irqrestore(&list->lock, flags); 3897 return result; 3898 } 3899 EXPORT_SYMBOL(skb_dequeue); 3900 3901 /** 3902 * skb_dequeue_tail - remove from the tail of the queue 3903 * @list: list to dequeue from 3904 * 3905 * Remove the tail of the list. The list lock is taken so the function 3906 * may be used safely with other locking list functions. The tail item is 3907 * returned or %NULL if the list is empty. 3908 */ 3909 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3910 { 3911 unsigned long flags; 3912 struct sk_buff *result; 3913 3914 spin_lock_irqsave(&list->lock, flags); 3915 result = __skb_dequeue_tail(list); 3916 spin_unlock_irqrestore(&list->lock, flags); 3917 return result; 3918 } 3919 EXPORT_SYMBOL(skb_dequeue_tail); 3920 3921 /** 3922 * skb_queue_purge_reason - empty a list 3923 * @list: list to empty 3924 * @reason: drop reason 3925 * 3926 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3927 * the list and one reference dropped. This function takes the list 3928 * lock and is atomic with respect to other list locking functions. 3929 */ 3930 void skb_queue_purge_reason(struct sk_buff_head *list, 3931 enum skb_drop_reason reason) 3932 { 3933 struct sk_buff_head tmp; 3934 unsigned long flags; 3935 3936 if (skb_queue_empty_lockless(list)) 3937 return; 3938 3939 __skb_queue_head_init(&tmp); 3940 3941 spin_lock_irqsave(&list->lock, flags); 3942 skb_queue_splice_init(list, &tmp); 3943 spin_unlock_irqrestore(&list->lock, flags); 3944 3945 __skb_queue_purge_reason(&tmp, reason); 3946 } 3947 EXPORT_SYMBOL(skb_queue_purge_reason); 3948 3949 /** 3950 * skb_rbtree_purge - empty a skb rbtree 3951 * @root: root of the rbtree to empty 3952 * Return value: the sum of truesizes of all purged skbs. 3953 * 3954 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3955 * the list and one reference dropped. This function does not take 3956 * any lock. Synchronization should be handled by the caller (e.g., TCP 3957 * out-of-order queue is protected by the socket lock). 3958 */ 3959 unsigned int skb_rbtree_purge(struct rb_root *root) 3960 { 3961 struct rb_node *p = rb_first(root); 3962 unsigned int sum = 0; 3963 3964 while (p) { 3965 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3966 3967 p = rb_next(p); 3968 rb_erase(&skb->rbnode, root); 3969 sum += skb->truesize; 3970 kfree_skb(skb); 3971 } 3972 return sum; 3973 } 3974 3975 void skb_errqueue_purge(struct sk_buff_head *list) 3976 { 3977 struct sk_buff *skb, *next; 3978 struct sk_buff_head kill; 3979 unsigned long flags; 3980 3981 __skb_queue_head_init(&kill); 3982 3983 spin_lock_irqsave(&list->lock, flags); 3984 skb_queue_walk_safe(list, skb, next) { 3985 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3986 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3987 continue; 3988 __skb_unlink(skb, list); 3989 __skb_queue_tail(&kill, skb); 3990 } 3991 spin_unlock_irqrestore(&list->lock, flags); 3992 __skb_queue_purge(&kill); 3993 } 3994 EXPORT_SYMBOL(skb_errqueue_purge); 3995 3996 /** 3997 * skb_queue_head - queue a buffer at the list head 3998 * @list: list to use 3999 * @newsk: buffer to queue 4000 * 4001 * Queue a buffer at the start of the list. This function takes the 4002 * list lock and can be used safely with other locking &sk_buff functions 4003 * safely. 4004 * 4005 * A buffer cannot be placed on two lists at the same time. 4006 */ 4007 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4008 { 4009 unsigned long flags; 4010 4011 spin_lock_irqsave(&list->lock, flags); 4012 __skb_queue_head(list, newsk); 4013 spin_unlock_irqrestore(&list->lock, flags); 4014 } 4015 EXPORT_SYMBOL(skb_queue_head); 4016 4017 /** 4018 * skb_queue_tail - queue a buffer at the list tail 4019 * @list: list to use 4020 * @newsk: buffer to queue 4021 * 4022 * Queue a buffer at the tail of the list. This function takes the 4023 * list lock and can be used safely with other locking &sk_buff functions 4024 * safely. 4025 * 4026 * A buffer cannot be placed on two lists at the same time. 4027 */ 4028 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4029 { 4030 unsigned long flags; 4031 4032 spin_lock_irqsave(&list->lock, flags); 4033 __skb_queue_tail(list, newsk); 4034 spin_unlock_irqrestore(&list->lock, flags); 4035 } 4036 EXPORT_SYMBOL(skb_queue_tail); 4037 4038 /** 4039 * skb_unlink - remove a buffer from a list 4040 * @skb: buffer to remove 4041 * @list: list to use 4042 * 4043 * Remove a packet from a list. The list locks are taken and this 4044 * function is atomic with respect to other list locked calls 4045 * 4046 * You must know what list the SKB is on. 4047 */ 4048 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4049 { 4050 unsigned long flags; 4051 4052 spin_lock_irqsave(&list->lock, flags); 4053 __skb_unlink(skb, list); 4054 spin_unlock_irqrestore(&list->lock, flags); 4055 } 4056 EXPORT_SYMBOL(skb_unlink); 4057 4058 /** 4059 * skb_append - append a buffer 4060 * @old: buffer to insert after 4061 * @newsk: buffer to insert 4062 * @list: list to use 4063 * 4064 * Place a packet after a given packet in a list. The list locks are taken 4065 * and this function is atomic with respect to other list locked calls. 4066 * A buffer cannot be placed on two lists at the same time. 4067 */ 4068 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4069 { 4070 unsigned long flags; 4071 4072 spin_lock_irqsave(&list->lock, flags); 4073 __skb_queue_after(list, old, newsk); 4074 spin_unlock_irqrestore(&list->lock, flags); 4075 } 4076 EXPORT_SYMBOL(skb_append); 4077 4078 static inline void skb_split_inside_header(struct sk_buff *skb, 4079 struct sk_buff* skb1, 4080 const u32 len, const int pos) 4081 { 4082 int i; 4083 4084 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4085 pos - len); 4086 /* And move data appendix as is. */ 4087 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4088 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4089 4090 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4091 skb1->unreadable = skb->unreadable; 4092 skb_shinfo(skb)->nr_frags = 0; 4093 skb1->data_len = skb->data_len; 4094 skb1->len += skb1->data_len; 4095 skb->data_len = 0; 4096 skb->len = len; 4097 skb_set_tail_pointer(skb, len); 4098 } 4099 4100 static inline void skb_split_no_header(struct sk_buff *skb, 4101 struct sk_buff* skb1, 4102 const u32 len, int pos) 4103 { 4104 int i, k = 0; 4105 const int nfrags = skb_shinfo(skb)->nr_frags; 4106 4107 skb_shinfo(skb)->nr_frags = 0; 4108 skb1->len = skb1->data_len = skb->len - len; 4109 skb->len = len; 4110 skb->data_len = len - pos; 4111 4112 for (i = 0; i < nfrags; i++) { 4113 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4114 4115 if (pos + size > len) { 4116 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4117 4118 if (pos < len) { 4119 /* Split frag. 4120 * We have two variants in this case: 4121 * 1. Move all the frag to the second 4122 * part, if it is possible. F.e. 4123 * this approach is mandatory for TUX, 4124 * where splitting is expensive. 4125 * 2. Split is accurately. We make this. 4126 */ 4127 skb_frag_ref(skb, i); 4128 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4129 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4130 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4131 skb_shinfo(skb)->nr_frags++; 4132 } 4133 k++; 4134 } else 4135 skb_shinfo(skb)->nr_frags++; 4136 pos += size; 4137 } 4138 skb_shinfo(skb1)->nr_frags = k; 4139 4140 skb1->unreadable = skb->unreadable; 4141 } 4142 4143 /** 4144 * skb_split - Split fragmented skb to two parts at length len. 4145 * @skb: the buffer to split 4146 * @skb1: the buffer to receive the second part 4147 * @len: new length for skb 4148 */ 4149 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4150 { 4151 int pos = skb_headlen(skb); 4152 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4153 4154 skb_zcopy_downgrade_managed(skb); 4155 4156 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4157 skb_zerocopy_clone(skb1, skb, 0); 4158 if (len < pos) /* Split line is inside header. */ 4159 skb_split_inside_header(skb, skb1, len, pos); 4160 else /* Second chunk has no header, nothing to copy. */ 4161 skb_split_no_header(skb, skb1, len, pos); 4162 } 4163 EXPORT_SYMBOL(skb_split); 4164 4165 /* Shifting from/to a cloned skb is a no-go. 4166 * 4167 * Caller cannot keep skb_shinfo related pointers past calling here! 4168 */ 4169 static int skb_prepare_for_shift(struct sk_buff *skb) 4170 { 4171 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4172 } 4173 4174 /** 4175 * skb_shift - Shifts paged data partially from skb to another 4176 * @tgt: buffer into which tail data gets added 4177 * @skb: buffer from which the paged data comes from 4178 * @shiftlen: shift up to this many bytes 4179 * 4180 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4181 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4182 * It's up to caller to free skb if everything was shifted. 4183 * 4184 * If @tgt runs out of frags, the whole operation is aborted. 4185 * 4186 * Skb cannot include anything else but paged data while tgt is allowed 4187 * to have non-paged data as well. 4188 * 4189 * TODO: full sized shift could be optimized but that would need 4190 * specialized skb free'er to handle frags without up-to-date nr_frags. 4191 */ 4192 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4193 { 4194 int from, to, merge, todo; 4195 skb_frag_t *fragfrom, *fragto; 4196 4197 BUG_ON(shiftlen > skb->len); 4198 4199 if (skb_headlen(skb)) 4200 return 0; 4201 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4202 return 0; 4203 4204 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4205 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4206 4207 todo = shiftlen; 4208 from = 0; 4209 to = skb_shinfo(tgt)->nr_frags; 4210 fragfrom = &skb_shinfo(skb)->frags[from]; 4211 4212 /* Actual merge is delayed until the point when we know we can 4213 * commit all, so that we don't have to undo partial changes 4214 */ 4215 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4216 skb_frag_off(fragfrom))) { 4217 merge = -1; 4218 } else { 4219 merge = to - 1; 4220 4221 todo -= skb_frag_size(fragfrom); 4222 if (todo < 0) { 4223 if (skb_prepare_for_shift(skb) || 4224 skb_prepare_for_shift(tgt)) 4225 return 0; 4226 4227 /* All previous frag pointers might be stale! */ 4228 fragfrom = &skb_shinfo(skb)->frags[from]; 4229 fragto = &skb_shinfo(tgt)->frags[merge]; 4230 4231 skb_frag_size_add(fragto, shiftlen); 4232 skb_frag_size_sub(fragfrom, shiftlen); 4233 skb_frag_off_add(fragfrom, shiftlen); 4234 4235 goto onlymerged; 4236 } 4237 4238 from++; 4239 } 4240 4241 /* Skip full, not-fitting skb to avoid expensive operations */ 4242 if ((shiftlen == skb->len) && 4243 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4244 return 0; 4245 4246 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4247 return 0; 4248 4249 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4250 if (to == MAX_SKB_FRAGS) 4251 return 0; 4252 4253 fragfrom = &skb_shinfo(skb)->frags[from]; 4254 fragto = &skb_shinfo(tgt)->frags[to]; 4255 4256 if (todo >= skb_frag_size(fragfrom)) { 4257 *fragto = *fragfrom; 4258 todo -= skb_frag_size(fragfrom); 4259 from++; 4260 to++; 4261 4262 } else { 4263 __skb_frag_ref(fragfrom); 4264 skb_frag_page_copy(fragto, fragfrom); 4265 skb_frag_off_copy(fragto, fragfrom); 4266 skb_frag_size_set(fragto, todo); 4267 4268 skb_frag_off_add(fragfrom, todo); 4269 skb_frag_size_sub(fragfrom, todo); 4270 todo = 0; 4271 4272 to++; 4273 break; 4274 } 4275 } 4276 4277 /* Ready to "commit" this state change to tgt */ 4278 skb_shinfo(tgt)->nr_frags = to; 4279 4280 if (merge >= 0) { 4281 fragfrom = &skb_shinfo(skb)->frags[0]; 4282 fragto = &skb_shinfo(tgt)->frags[merge]; 4283 4284 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4285 __skb_frag_unref(fragfrom, skb->pp_recycle); 4286 } 4287 4288 /* Reposition in the original skb */ 4289 to = 0; 4290 while (from < skb_shinfo(skb)->nr_frags) 4291 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4292 skb_shinfo(skb)->nr_frags = to; 4293 4294 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4295 4296 onlymerged: 4297 /* Most likely the tgt won't ever need its checksum anymore, skb on 4298 * the other hand might need it if it needs to be resent 4299 */ 4300 tgt->ip_summed = CHECKSUM_PARTIAL; 4301 skb->ip_summed = CHECKSUM_PARTIAL; 4302 4303 skb_len_add(skb, -shiftlen); 4304 skb_len_add(tgt, shiftlen); 4305 4306 return shiftlen; 4307 } 4308 4309 /** 4310 * skb_prepare_seq_read - Prepare a sequential read of skb data 4311 * @skb: the buffer to read 4312 * @from: lower offset of data to be read 4313 * @to: upper offset of data to be read 4314 * @st: state variable 4315 * 4316 * Initializes the specified state variable. Must be called before 4317 * invoking skb_seq_read() for the first time. 4318 */ 4319 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4320 unsigned int to, struct skb_seq_state *st) 4321 { 4322 st->lower_offset = from; 4323 st->upper_offset = to; 4324 st->root_skb = st->cur_skb = skb; 4325 st->frag_idx = st->stepped_offset = 0; 4326 st->frag_data = NULL; 4327 st->frag_off = 0; 4328 } 4329 EXPORT_SYMBOL(skb_prepare_seq_read); 4330 4331 /** 4332 * skb_seq_read - Sequentially read skb data 4333 * @consumed: number of bytes consumed by the caller so far 4334 * @data: destination pointer for data to be returned 4335 * @st: state variable 4336 * 4337 * Reads a block of skb data at @consumed relative to the 4338 * lower offset specified to skb_prepare_seq_read(). Assigns 4339 * the head of the data block to @data and returns the length 4340 * of the block or 0 if the end of the skb data or the upper 4341 * offset has been reached. 4342 * 4343 * The caller is not required to consume all of the data 4344 * returned, i.e. @consumed is typically set to the number 4345 * of bytes already consumed and the next call to 4346 * skb_seq_read() will return the remaining part of the block. 4347 * 4348 * Note 1: The size of each block of data returned can be arbitrary, 4349 * this limitation is the cost for zerocopy sequential 4350 * reads of potentially non linear data. 4351 * 4352 * Note 2: Fragment lists within fragments are not implemented 4353 * at the moment, state->root_skb could be replaced with 4354 * a stack for this purpose. 4355 */ 4356 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4357 struct skb_seq_state *st) 4358 { 4359 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4360 skb_frag_t *frag; 4361 4362 if (unlikely(abs_offset >= st->upper_offset)) { 4363 if (st->frag_data) { 4364 kunmap_atomic(st->frag_data); 4365 st->frag_data = NULL; 4366 } 4367 return 0; 4368 } 4369 4370 next_skb: 4371 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4372 4373 if (abs_offset < block_limit && !st->frag_data) { 4374 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4375 return block_limit - abs_offset; 4376 } 4377 4378 if (!skb_frags_readable(st->cur_skb)) 4379 return 0; 4380 4381 if (st->frag_idx == 0 && !st->frag_data) 4382 st->stepped_offset += skb_headlen(st->cur_skb); 4383 4384 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4385 unsigned int pg_idx, pg_off, pg_sz; 4386 4387 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4388 4389 pg_idx = 0; 4390 pg_off = skb_frag_off(frag); 4391 pg_sz = skb_frag_size(frag); 4392 4393 if (skb_frag_must_loop(skb_frag_page(frag))) { 4394 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4395 pg_off = offset_in_page(pg_off + st->frag_off); 4396 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4397 PAGE_SIZE - pg_off); 4398 } 4399 4400 block_limit = pg_sz + st->stepped_offset; 4401 if (abs_offset < block_limit) { 4402 if (!st->frag_data) 4403 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4404 4405 *data = (u8 *)st->frag_data + pg_off + 4406 (abs_offset - st->stepped_offset); 4407 4408 return block_limit - abs_offset; 4409 } 4410 4411 if (st->frag_data) { 4412 kunmap_atomic(st->frag_data); 4413 st->frag_data = NULL; 4414 } 4415 4416 st->stepped_offset += pg_sz; 4417 st->frag_off += pg_sz; 4418 if (st->frag_off == skb_frag_size(frag)) { 4419 st->frag_off = 0; 4420 st->frag_idx++; 4421 } 4422 } 4423 4424 if (st->frag_data) { 4425 kunmap_atomic(st->frag_data); 4426 st->frag_data = NULL; 4427 } 4428 4429 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4430 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4431 st->frag_idx = 0; 4432 goto next_skb; 4433 } else if (st->cur_skb->next) { 4434 st->cur_skb = st->cur_skb->next; 4435 st->frag_idx = 0; 4436 goto next_skb; 4437 } 4438 4439 return 0; 4440 } 4441 EXPORT_SYMBOL(skb_seq_read); 4442 4443 /** 4444 * skb_abort_seq_read - Abort a sequential read of skb data 4445 * @st: state variable 4446 * 4447 * Must be called if skb_seq_read() was not called until it 4448 * returned 0. 4449 */ 4450 void skb_abort_seq_read(struct skb_seq_state *st) 4451 { 4452 if (st->frag_data) 4453 kunmap_atomic(st->frag_data); 4454 } 4455 EXPORT_SYMBOL(skb_abort_seq_read); 4456 4457 /** 4458 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4459 * @st: source skb_seq_state 4460 * @offset: offset in source 4461 * @to: destination buffer 4462 * @len: number of bytes to copy 4463 * 4464 * Copy @len bytes from @offset bytes into the source @st to the destination 4465 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4466 * call to this function. If offset needs to decrease from the previous use `st` 4467 * should be reset first. 4468 * 4469 * Return: 0 on success or -EINVAL if the copy ended early 4470 */ 4471 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4472 { 4473 const u8 *data; 4474 u32 sqlen; 4475 4476 for (;;) { 4477 sqlen = skb_seq_read(offset, &data, st); 4478 if (sqlen == 0) 4479 return -EINVAL; 4480 if (sqlen >= len) { 4481 memcpy(to, data, len); 4482 return 0; 4483 } 4484 memcpy(to, data, sqlen); 4485 to += sqlen; 4486 offset += sqlen; 4487 len -= sqlen; 4488 } 4489 } 4490 EXPORT_SYMBOL(skb_copy_seq_read); 4491 4492 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4493 4494 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4495 struct ts_config *conf, 4496 struct ts_state *state) 4497 { 4498 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4499 } 4500 4501 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4502 { 4503 skb_abort_seq_read(TS_SKB_CB(state)); 4504 } 4505 4506 /** 4507 * skb_find_text - Find a text pattern in skb data 4508 * @skb: the buffer to look in 4509 * @from: search offset 4510 * @to: search limit 4511 * @config: textsearch configuration 4512 * 4513 * Finds a pattern in the skb data according to the specified 4514 * textsearch configuration. Use textsearch_next() to retrieve 4515 * subsequent occurrences of the pattern. Returns the offset 4516 * to the first occurrence or UINT_MAX if no match was found. 4517 */ 4518 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4519 unsigned int to, struct ts_config *config) 4520 { 4521 unsigned int patlen = config->ops->get_pattern_len(config); 4522 struct ts_state state; 4523 unsigned int ret; 4524 4525 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4526 4527 config->get_next_block = skb_ts_get_next_block; 4528 config->finish = skb_ts_finish; 4529 4530 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4531 4532 ret = textsearch_find(config, &state); 4533 return (ret + patlen <= to - from ? ret : UINT_MAX); 4534 } 4535 EXPORT_SYMBOL(skb_find_text); 4536 4537 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4538 int offset, size_t size, size_t max_frags) 4539 { 4540 int i = skb_shinfo(skb)->nr_frags; 4541 4542 if (skb_can_coalesce(skb, i, page, offset)) { 4543 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4544 } else if (i < max_frags) { 4545 skb_zcopy_downgrade_managed(skb); 4546 get_page(page); 4547 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4548 } else { 4549 return -EMSGSIZE; 4550 } 4551 4552 return 0; 4553 } 4554 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4555 4556 /** 4557 * skb_pull_rcsum - pull skb and update receive checksum 4558 * @skb: buffer to update 4559 * @len: length of data pulled 4560 * 4561 * This function performs an skb_pull on the packet and updates 4562 * the CHECKSUM_COMPLETE checksum. It should be used on 4563 * receive path processing instead of skb_pull unless you know 4564 * that the checksum difference is zero (e.g., a valid IP header) 4565 * or you are setting ip_summed to CHECKSUM_NONE. 4566 */ 4567 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4568 { 4569 unsigned char *data = skb->data; 4570 4571 BUG_ON(len > skb->len); 4572 __skb_pull(skb, len); 4573 skb_postpull_rcsum(skb, data, len); 4574 return skb->data; 4575 } 4576 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4577 4578 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4579 { 4580 skb_frag_t head_frag; 4581 struct page *page; 4582 4583 page = virt_to_head_page(frag_skb->head); 4584 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4585 (unsigned char *)page_address(page), 4586 skb_headlen(frag_skb)); 4587 return head_frag; 4588 } 4589 4590 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4591 netdev_features_t features, 4592 unsigned int offset) 4593 { 4594 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4595 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4596 unsigned int delta_truesize = 0; 4597 unsigned int delta_len = 0; 4598 struct sk_buff *tail = NULL; 4599 struct sk_buff *nskb, *tmp; 4600 int len_diff, err; 4601 4602 skb_push(skb, -skb_network_offset(skb) + offset); 4603 4604 /* Ensure the head is writeable before touching the shared info */ 4605 err = skb_unclone(skb, GFP_ATOMIC); 4606 if (err) 4607 goto err_linearize; 4608 4609 skb_shinfo(skb)->frag_list = NULL; 4610 4611 while (list_skb) { 4612 nskb = list_skb; 4613 list_skb = list_skb->next; 4614 4615 err = 0; 4616 delta_truesize += nskb->truesize; 4617 if (skb_shared(nskb)) { 4618 tmp = skb_clone(nskb, GFP_ATOMIC); 4619 if (tmp) { 4620 consume_skb(nskb); 4621 nskb = tmp; 4622 err = skb_unclone(nskb, GFP_ATOMIC); 4623 } else { 4624 err = -ENOMEM; 4625 } 4626 } 4627 4628 if (!tail) 4629 skb->next = nskb; 4630 else 4631 tail->next = nskb; 4632 4633 if (unlikely(err)) { 4634 nskb->next = list_skb; 4635 goto err_linearize; 4636 } 4637 4638 tail = nskb; 4639 4640 delta_len += nskb->len; 4641 4642 skb_push(nskb, -skb_network_offset(nskb) + offset); 4643 4644 skb_release_head_state(nskb); 4645 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4646 __copy_skb_header(nskb, skb); 4647 4648 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4649 nskb->transport_header += len_diff; 4650 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4651 nskb->data - tnl_hlen, 4652 offset + tnl_hlen); 4653 4654 if (skb_needs_linearize(nskb, features) && 4655 __skb_linearize(nskb)) 4656 goto err_linearize; 4657 } 4658 4659 skb->truesize = skb->truesize - delta_truesize; 4660 skb->data_len = skb->data_len - delta_len; 4661 skb->len = skb->len - delta_len; 4662 4663 skb_gso_reset(skb); 4664 4665 skb->prev = tail; 4666 4667 if (skb_needs_linearize(skb, features) && 4668 __skb_linearize(skb)) 4669 goto err_linearize; 4670 4671 skb_get(skb); 4672 4673 return skb; 4674 4675 err_linearize: 4676 kfree_skb_list(skb->next); 4677 skb->next = NULL; 4678 return ERR_PTR(-ENOMEM); 4679 } 4680 EXPORT_SYMBOL_GPL(skb_segment_list); 4681 4682 /** 4683 * skb_segment - Perform protocol segmentation on skb. 4684 * @head_skb: buffer to segment 4685 * @features: features for the output path (see dev->features) 4686 * 4687 * This function performs segmentation on the given skb. It returns 4688 * a pointer to the first in a list of new skbs for the segments. 4689 * In case of error it returns ERR_PTR(err). 4690 */ 4691 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4692 netdev_features_t features) 4693 { 4694 struct sk_buff *segs = NULL; 4695 struct sk_buff *tail = NULL; 4696 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4697 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4698 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4699 unsigned int offset = doffset; 4700 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4701 unsigned int partial_segs = 0; 4702 unsigned int headroom; 4703 unsigned int len = head_skb->len; 4704 struct sk_buff *frag_skb; 4705 skb_frag_t *frag; 4706 __be16 proto; 4707 bool csum, sg; 4708 int err = -ENOMEM; 4709 int i = 0; 4710 int nfrags, pos; 4711 4712 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4713 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4714 struct sk_buff *check_skb; 4715 4716 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4717 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4718 /* gso_size is untrusted, and we have a frag_list with 4719 * a linear non head_frag item. 4720 * 4721 * If head_skb's headlen does not fit requested gso_size, 4722 * it means that the frag_list members do NOT terminate 4723 * on exact gso_size boundaries. Hence we cannot perform 4724 * skb_frag_t page sharing. Therefore we must fallback to 4725 * copying the frag_list skbs; we do so by disabling SG. 4726 */ 4727 features &= ~NETIF_F_SG; 4728 break; 4729 } 4730 } 4731 } 4732 4733 __skb_push(head_skb, doffset); 4734 proto = skb_network_protocol(head_skb, NULL); 4735 if (unlikely(!proto)) 4736 return ERR_PTR(-EINVAL); 4737 4738 sg = !!(features & NETIF_F_SG); 4739 csum = !!can_checksum_protocol(features, proto); 4740 4741 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4742 if (!(features & NETIF_F_GSO_PARTIAL)) { 4743 struct sk_buff *iter; 4744 unsigned int frag_len; 4745 4746 if (!list_skb || 4747 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4748 goto normal; 4749 4750 /* If we get here then all the required 4751 * GSO features except frag_list are supported. 4752 * Try to split the SKB to multiple GSO SKBs 4753 * with no frag_list. 4754 * Currently we can do that only when the buffers don't 4755 * have a linear part and all the buffers except 4756 * the last are of the same length. 4757 */ 4758 frag_len = list_skb->len; 4759 skb_walk_frags(head_skb, iter) { 4760 if (frag_len != iter->len && iter->next) 4761 goto normal; 4762 if (skb_headlen(iter) && !iter->head_frag) 4763 goto normal; 4764 4765 len -= iter->len; 4766 } 4767 4768 if (len != frag_len) 4769 goto normal; 4770 } 4771 4772 /* GSO partial only requires that we trim off any excess that 4773 * doesn't fit into an MSS sized block, so take care of that 4774 * now. 4775 * Cap len to not accidentally hit GSO_BY_FRAGS. 4776 */ 4777 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4778 if (partial_segs > 1) 4779 mss *= partial_segs; 4780 else 4781 partial_segs = 0; 4782 } 4783 4784 normal: 4785 headroom = skb_headroom(head_skb); 4786 pos = skb_headlen(head_skb); 4787 4788 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4789 return ERR_PTR(-ENOMEM); 4790 4791 nfrags = skb_shinfo(head_skb)->nr_frags; 4792 frag = skb_shinfo(head_skb)->frags; 4793 frag_skb = head_skb; 4794 4795 do { 4796 struct sk_buff *nskb; 4797 skb_frag_t *nskb_frag; 4798 int hsize; 4799 int size; 4800 4801 if (unlikely(mss == GSO_BY_FRAGS)) { 4802 len = list_skb->len; 4803 } else { 4804 len = head_skb->len - offset; 4805 if (len > mss) 4806 len = mss; 4807 } 4808 4809 hsize = skb_headlen(head_skb) - offset; 4810 4811 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4812 (skb_headlen(list_skb) == len || sg)) { 4813 BUG_ON(skb_headlen(list_skb) > len); 4814 4815 nskb = skb_clone(list_skb, GFP_ATOMIC); 4816 if (unlikely(!nskb)) 4817 goto err; 4818 4819 i = 0; 4820 nfrags = skb_shinfo(list_skb)->nr_frags; 4821 frag = skb_shinfo(list_skb)->frags; 4822 frag_skb = list_skb; 4823 pos += skb_headlen(list_skb); 4824 4825 while (pos < offset + len) { 4826 BUG_ON(i >= nfrags); 4827 4828 size = skb_frag_size(frag); 4829 if (pos + size > offset + len) 4830 break; 4831 4832 i++; 4833 pos += size; 4834 frag++; 4835 } 4836 4837 list_skb = list_skb->next; 4838 4839 if (unlikely(pskb_trim(nskb, len))) { 4840 kfree_skb(nskb); 4841 goto err; 4842 } 4843 4844 hsize = skb_end_offset(nskb); 4845 if (skb_cow_head(nskb, doffset + headroom)) { 4846 kfree_skb(nskb); 4847 goto err; 4848 } 4849 4850 nskb->truesize += skb_end_offset(nskb) - hsize; 4851 skb_release_head_state(nskb); 4852 __skb_push(nskb, doffset); 4853 } else { 4854 if (hsize < 0) 4855 hsize = 0; 4856 if (hsize > len || !sg) 4857 hsize = len; 4858 4859 nskb = __alloc_skb(hsize + doffset + headroom, 4860 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4861 NUMA_NO_NODE); 4862 4863 if (unlikely(!nskb)) 4864 goto err; 4865 4866 skb_reserve(nskb, headroom); 4867 __skb_put(nskb, doffset); 4868 } 4869 4870 if (segs) 4871 tail->next = nskb; 4872 else 4873 segs = nskb; 4874 tail = nskb; 4875 4876 __copy_skb_header(nskb, head_skb); 4877 4878 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4879 skb_reset_mac_len(nskb); 4880 4881 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4882 nskb->data - tnl_hlen, 4883 doffset + tnl_hlen); 4884 4885 if (nskb->len == len + doffset) 4886 goto perform_csum_check; 4887 4888 if (!sg) { 4889 if (!csum) { 4890 if (!nskb->remcsum_offload) 4891 nskb->ip_summed = CHECKSUM_NONE; 4892 SKB_GSO_CB(nskb)->csum = 4893 skb_copy_and_csum_bits(head_skb, offset, 4894 skb_put(nskb, 4895 len), 4896 len); 4897 SKB_GSO_CB(nskb)->csum_start = 4898 skb_headroom(nskb) + doffset; 4899 } else { 4900 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4901 goto err; 4902 } 4903 continue; 4904 } 4905 4906 nskb_frag = skb_shinfo(nskb)->frags; 4907 4908 skb_copy_from_linear_data_offset(head_skb, offset, 4909 skb_put(nskb, hsize), hsize); 4910 4911 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4912 SKBFL_SHARED_FRAG; 4913 4914 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4915 goto err; 4916 4917 while (pos < offset + len) { 4918 if (i >= nfrags) { 4919 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4920 skb_zerocopy_clone(nskb, list_skb, 4921 GFP_ATOMIC)) 4922 goto err; 4923 4924 i = 0; 4925 nfrags = skb_shinfo(list_skb)->nr_frags; 4926 frag = skb_shinfo(list_skb)->frags; 4927 frag_skb = list_skb; 4928 if (!skb_headlen(list_skb)) { 4929 BUG_ON(!nfrags); 4930 } else { 4931 BUG_ON(!list_skb->head_frag); 4932 4933 /* to make room for head_frag. */ 4934 i--; 4935 frag--; 4936 } 4937 4938 list_skb = list_skb->next; 4939 } 4940 4941 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4942 MAX_SKB_FRAGS)) { 4943 net_warn_ratelimited( 4944 "skb_segment: too many frags: %u %u\n", 4945 pos, mss); 4946 err = -EINVAL; 4947 goto err; 4948 } 4949 4950 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4951 __skb_frag_ref(nskb_frag); 4952 size = skb_frag_size(nskb_frag); 4953 4954 if (pos < offset) { 4955 skb_frag_off_add(nskb_frag, offset - pos); 4956 skb_frag_size_sub(nskb_frag, offset - pos); 4957 } 4958 4959 skb_shinfo(nskb)->nr_frags++; 4960 4961 if (pos + size <= offset + len) { 4962 i++; 4963 frag++; 4964 pos += size; 4965 } else { 4966 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4967 goto skip_fraglist; 4968 } 4969 4970 nskb_frag++; 4971 } 4972 4973 skip_fraglist: 4974 nskb->data_len = len - hsize; 4975 nskb->len += nskb->data_len; 4976 nskb->truesize += nskb->data_len; 4977 4978 perform_csum_check: 4979 if (!csum) { 4980 if (skb_has_shared_frag(nskb) && 4981 __skb_linearize(nskb)) 4982 goto err; 4983 4984 if (!nskb->remcsum_offload) 4985 nskb->ip_summed = CHECKSUM_NONE; 4986 SKB_GSO_CB(nskb)->csum = 4987 skb_checksum(nskb, doffset, 4988 nskb->len - doffset, 0); 4989 SKB_GSO_CB(nskb)->csum_start = 4990 skb_headroom(nskb) + doffset; 4991 } 4992 } while ((offset += len) < head_skb->len); 4993 4994 /* Some callers want to get the end of the list. 4995 * Put it in segs->prev to avoid walking the list. 4996 * (see validate_xmit_skb_list() for example) 4997 */ 4998 segs->prev = tail; 4999 5000 if (partial_segs) { 5001 struct sk_buff *iter; 5002 int type = skb_shinfo(head_skb)->gso_type; 5003 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5004 5005 /* Update type to add partial and then remove dodgy if set */ 5006 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5007 type &= ~SKB_GSO_DODGY; 5008 5009 /* Update GSO info and prepare to start updating headers on 5010 * our way back down the stack of protocols. 5011 */ 5012 for (iter = segs; iter; iter = iter->next) { 5013 skb_shinfo(iter)->gso_size = gso_size; 5014 skb_shinfo(iter)->gso_segs = partial_segs; 5015 skb_shinfo(iter)->gso_type = type; 5016 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5017 } 5018 5019 if (tail->len - doffset <= gso_size) 5020 skb_shinfo(tail)->gso_size = 0; 5021 else if (tail != segs) 5022 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5023 } 5024 5025 /* Following permits correct backpressure, for protocols 5026 * using skb_set_owner_w(). 5027 * Idea is to tranfert ownership from head_skb to last segment. 5028 */ 5029 if (head_skb->destructor == sock_wfree) { 5030 swap(tail->truesize, head_skb->truesize); 5031 swap(tail->destructor, head_skb->destructor); 5032 swap(tail->sk, head_skb->sk); 5033 } 5034 return segs; 5035 5036 err: 5037 kfree_skb_list(segs); 5038 return ERR_PTR(err); 5039 } 5040 EXPORT_SYMBOL_GPL(skb_segment); 5041 5042 #ifdef CONFIG_SKB_EXTENSIONS 5043 #define SKB_EXT_ALIGN_VALUE 8 5044 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5045 5046 static const u8 skb_ext_type_len[] = { 5047 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5048 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5049 #endif 5050 #ifdef CONFIG_XFRM 5051 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5052 #endif 5053 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5054 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5055 #endif 5056 #if IS_ENABLED(CONFIG_MPTCP) 5057 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5058 #endif 5059 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5060 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5061 #endif 5062 }; 5063 5064 static __always_inline unsigned int skb_ext_total_length(void) 5065 { 5066 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5067 int i; 5068 5069 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5070 l += skb_ext_type_len[i]; 5071 5072 return l; 5073 } 5074 5075 static void skb_extensions_init(void) 5076 { 5077 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5078 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5079 BUILD_BUG_ON(skb_ext_total_length() > 255); 5080 #endif 5081 5082 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5083 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5084 0, 5085 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5086 NULL); 5087 } 5088 #else 5089 static void skb_extensions_init(void) {} 5090 #endif 5091 5092 /* The SKB kmem_cache slab is critical for network performance. Never 5093 * merge/alias the slab with similar sized objects. This avoids fragmentation 5094 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5095 */ 5096 #ifndef CONFIG_SLUB_TINY 5097 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5098 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5099 #define FLAG_SKB_NO_MERGE 0 5100 #endif 5101 5102 void __init skb_init(void) 5103 { 5104 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5105 sizeof(struct sk_buff), 5106 0, 5107 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5108 FLAG_SKB_NO_MERGE, 5109 offsetof(struct sk_buff, cb), 5110 sizeof_field(struct sk_buff, cb), 5111 NULL); 5112 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5113 sizeof(struct sk_buff_fclones), 5114 0, 5115 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5116 NULL); 5117 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5118 * struct skb_shared_info is located at the end of skb->head, 5119 * and should not be copied to/from user. 5120 */ 5121 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5122 SKB_SMALL_HEAD_CACHE_SIZE, 5123 0, 5124 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5125 0, 5126 SKB_SMALL_HEAD_HEADROOM, 5127 NULL); 5128 skb_extensions_init(); 5129 } 5130 5131 static int 5132 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5133 unsigned int recursion_level) 5134 { 5135 int start = skb_headlen(skb); 5136 int i, copy = start - offset; 5137 struct sk_buff *frag_iter; 5138 int elt = 0; 5139 5140 if (unlikely(recursion_level >= 24)) 5141 return -EMSGSIZE; 5142 5143 if (copy > 0) { 5144 if (copy > len) 5145 copy = len; 5146 sg_set_buf(sg, skb->data + offset, copy); 5147 elt++; 5148 if ((len -= copy) == 0) 5149 return elt; 5150 offset += copy; 5151 } 5152 5153 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5154 int end; 5155 5156 WARN_ON(start > offset + len); 5157 5158 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5159 if ((copy = end - offset) > 0) { 5160 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5161 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5162 return -EMSGSIZE; 5163 5164 if (copy > len) 5165 copy = len; 5166 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5167 skb_frag_off(frag) + offset - start); 5168 elt++; 5169 if (!(len -= copy)) 5170 return elt; 5171 offset += copy; 5172 } 5173 start = end; 5174 } 5175 5176 skb_walk_frags(skb, frag_iter) { 5177 int end, ret; 5178 5179 WARN_ON(start > offset + len); 5180 5181 end = start + frag_iter->len; 5182 if ((copy = end - offset) > 0) { 5183 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5184 return -EMSGSIZE; 5185 5186 if (copy > len) 5187 copy = len; 5188 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5189 copy, recursion_level + 1); 5190 if (unlikely(ret < 0)) 5191 return ret; 5192 elt += ret; 5193 if ((len -= copy) == 0) 5194 return elt; 5195 offset += copy; 5196 } 5197 start = end; 5198 } 5199 BUG_ON(len); 5200 return elt; 5201 } 5202 5203 /** 5204 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5205 * @skb: Socket buffer containing the buffers to be mapped 5206 * @sg: The scatter-gather list to map into 5207 * @offset: The offset into the buffer's contents to start mapping 5208 * @len: Length of buffer space to be mapped 5209 * 5210 * Fill the specified scatter-gather list with mappings/pointers into a 5211 * region of the buffer space attached to a socket buffer. Returns either 5212 * the number of scatterlist items used, or -EMSGSIZE if the contents 5213 * could not fit. 5214 */ 5215 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5216 { 5217 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5218 5219 if (nsg <= 0) 5220 return nsg; 5221 5222 sg_mark_end(&sg[nsg - 1]); 5223 5224 return nsg; 5225 } 5226 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5227 5228 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5229 * sglist without mark the sg which contain last skb data as the end. 5230 * So the caller can mannipulate sg list as will when padding new data after 5231 * the first call without calling sg_unmark_end to expend sg list. 5232 * 5233 * Scenario to use skb_to_sgvec_nomark: 5234 * 1. sg_init_table 5235 * 2. skb_to_sgvec_nomark(payload1) 5236 * 3. skb_to_sgvec_nomark(payload2) 5237 * 5238 * This is equivalent to: 5239 * 1. sg_init_table 5240 * 2. skb_to_sgvec(payload1) 5241 * 3. sg_unmark_end 5242 * 4. skb_to_sgvec(payload2) 5243 * 5244 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5245 * is more preferable. 5246 */ 5247 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5248 int offset, int len) 5249 { 5250 return __skb_to_sgvec(skb, sg, offset, len, 0); 5251 } 5252 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5253 5254 5255 5256 /** 5257 * skb_cow_data - Check that a socket buffer's data buffers are writable 5258 * @skb: The socket buffer to check. 5259 * @tailbits: Amount of trailing space to be added 5260 * @trailer: Returned pointer to the skb where the @tailbits space begins 5261 * 5262 * Make sure that the data buffers attached to a socket buffer are 5263 * writable. If they are not, private copies are made of the data buffers 5264 * and the socket buffer is set to use these instead. 5265 * 5266 * If @tailbits is given, make sure that there is space to write @tailbits 5267 * bytes of data beyond current end of socket buffer. @trailer will be 5268 * set to point to the skb in which this space begins. 5269 * 5270 * The number of scatterlist elements required to completely map the 5271 * COW'd and extended socket buffer will be returned. 5272 */ 5273 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5274 { 5275 int copyflag; 5276 int elt; 5277 struct sk_buff *skb1, **skb_p; 5278 5279 /* If skb is cloned or its head is paged, reallocate 5280 * head pulling out all the pages (pages are considered not writable 5281 * at the moment even if they are anonymous). 5282 */ 5283 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5284 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5285 return -ENOMEM; 5286 5287 /* Easy case. Most of packets will go this way. */ 5288 if (!skb_has_frag_list(skb)) { 5289 /* A little of trouble, not enough of space for trailer. 5290 * This should not happen, when stack is tuned to generate 5291 * good frames. OK, on miss we reallocate and reserve even more 5292 * space, 128 bytes is fair. */ 5293 5294 if (skb_tailroom(skb) < tailbits && 5295 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5296 return -ENOMEM; 5297 5298 /* Voila! */ 5299 *trailer = skb; 5300 return 1; 5301 } 5302 5303 /* Misery. We are in troubles, going to mincer fragments... */ 5304 5305 elt = 1; 5306 skb_p = &skb_shinfo(skb)->frag_list; 5307 copyflag = 0; 5308 5309 while ((skb1 = *skb_p) != NULL) { 5310 int ntail = 0; 5311 5312 /* The fragment is partially pulled by someone, 5313 * this can happen on input. Copy it and everything 5314 * after it. */ 5315 5316 if (skb_shared(skb1)) 5317 copyflag = 1; 5318 5319 /* If the skb is the last, worry about trailer. */ 5320 5321 if (skb1->next == NULL && tailbits) { 5322 if (skb_shinfo(skb1)->nr_frags || 5323 skb_has_frag_list(skb1) || 5324 skb_tailroom(skb1) < tailbits) 5325 ntail = tailbits + 128; 5326 } 5327 5328 if (copyflag || 5329 skb_cloned(skb1) || 5330 ntail || 5331 skb_shinfo(skb1)->nr_frags || 5332 skb_has_frag_list(skb1)) { 5333 struct sk_buff *skb2; 5334 5335 /* Fuck, we are miserable poor guys... */ 5336 if (ntail == 0) 5337 skb2 = skb_copy(skb1, GFP_ATOMIC); 5338 else 5339 skb2 = skb_copy_expand(skb1, 5340 skb_headroom(skb1), 5341 ntail, 5342 GFP_ATOMIC); 5343 if (unlikely(skb2 == NULL)) 5344 return -ENOMEM; 5345 5346 if (skb1->sk) 5347 skb_set_owner_w(skb2, skb1->sk); 5348 5349 /* Looking around. Are we still alive? 5350 * OK, link new skb, drop old one */ 5351 5352 skb2->next = skb1->next; 5353 *skb_p = skb2; 5354 kfree_skb(skb1); 5355 skb1 = skb2; 5356 } 5357 elt++; 5358 *trailer = skb1; 5359 skb_p = &skb1->next; 5360 } 5361 5362 return elt; 5363 } 5364 EXPORT_SYMBOL_GPL(skb_cow_data); 5365 5366 static void sock_rmem_free(struct sk_buff *skb) 5367 { 5368 struct sock *sk = skb->sk; 5369 5370 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5371 } 5372 5373 static void skb_set_err_queue(struct sk_buff *skb) 5374 { 5375 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5376 * So, it is safe to (mis)use it to mark skbs on the error queue. 5377 */ 5378 skb->pkt_type = PACKET_OUTGOING; 5379 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5380 } 5381 5382 /* 5383 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5384 */ 5385 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5386 { 5387 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5388 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5389 return -ENOMEM; 5390 5391 skb_orphan(skb); 5392 skb->sk = sk; 5393 skb->destructor = sock_rmem_free; 5394 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5395 skb_set_err_queue(skb); 5396 5397 /* before exiting rcu section, make sure dst is refcounted */ 5398 skb_dst_force(skb); 5399 5400 skb_queue_tail(&sk->sk_error_queue, skb); 5401 if (!sock_flag(sk, SOCK_DEAD)) 5402 sk_error_report(sk); 5403 return 0; 5404 } 5405 EXPORT_SYMBOL(sock_queue_err_skb); 5406 5407 static bool is_icmp_err_skb(const struct sk_buff *skb) 5408 { 5409 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5410 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5411 } 5412 5413 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5414 { 5415 struct sk_buff_head *q = &sk->sk_error_queue; 5416 struct sk_buff *skb, *skb_next = NULL; 5417 bool icmp_next = false; 5418 unsigned long flags; 5419 5420 if (skb_queue_empty_lockless(q)) 5421 return NULL; 5422 5423 spin_lock_irqsave(&q->lock, flags); 5424 skb = __skb_dequeue(q); 5425 if (skb && (skb_next = skb_peek(q))) { 5426 icmp_next = is_icmp_err_skb(skb_next); 5427 if (icmp_next) 5428 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5429 } 5430 spin_unlock_irqrestore(&q->lock, flags); 5431 5432 if (is_icmp_err_skb(skb) && !icmp_next) 5433 sk->sk_err = 0; 5434 5435 if (skb_next) 5436 sk_error_report(sk); 5437 5438 return skb; 5439 } 5440 EXPORT_SYMBOL(sock_dequeue_err_skb); 5441 5442 /** 5443 * skb_clone_sk - create clone of skb, and take reference to socket 5444 * @skb: the skb to clone 5445 * 5446 * This function creates a clone of a buffer that holds a reference on 5447 * sk_refcnt. Buffers created via this function are meant to be 5448 * returned using sock_queue_err_skb, or free via kfree_skb. 5449 * 5450 * When passing buffers allocated with this function to sock_queue_err_skb 5451 * it is necessary to wrap the call with sock_hold/sock_put in order to 5452 * prevent the socket from being released prior to being enqueued on 5453 * the sk_error_queue. 5454 */ 5455 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5456 { 5457 struct sock *sk = skb->sk; 5458 struct sk_buff *clone; 5459 5460 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5461 return NULL; 5462 5463 clone = skb_clone(skb, GFP_ATOMIC); 5464 if (!clone) { 5465 sock_put(sk); 5466 return NULL; 5467 } 5468 5469 clone->sk = sk; 5470 clone->destructor = sock_efree; 5471 5472 return clone; 5473 } 5474 EXPORT_SYMBOL(skb_clone_sk); 5475 5476 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5477 struct sock *sk, 5478 int tstype, 5479 bool opt_stats) 5480 { 5481 struct sock_exterr_skb *serr; 5482 int err; 5483 5484 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5485 5486 serr = SKB_EXT_ERR(skb); 5487 memset(serr, 0, sizeof(*serr)); 5488 serr->ee.ee_errno = ENOMSG; 5489 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5490 serr->ee.ee_info = tstype; 5491 serr->opt_stats = opt_stats; 5492 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5493 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5494 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5495 if (sk_is_tcp(sk)) 5496 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5497 } 5498 5499 err = sock_queue_err_skb(sk, skb); 5500 5501 if (err) 5502 kfree_skb(skb); 5503 } 5504 5505 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5506 { 5507 bool ret; 5508 5509 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5510 return true; 5511 5512 read_lock_bh(&sk->sk_callback_lock); 5513 ret = sk->sk_socket && sk->sk_socket->file && 5514 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5515 read_unlock_bh(&sk->sk_callback_lock); 5516 return ret; 5517 } 5518 5519 void skb_complete_tx_timestamp(struct sk_buff *skb, 5520 struct skb_shared_hwtstamps *hwtstamps) 5521 { 5522 struct sock *sk = skb->sk; 5523 5524 if (!skb_may_tx_timestamp(sk, false)) 5525 goto err; 5526 5527 /* Take a reference to prevent skb_orphan() from freeing the socket, 5528 * but only if the socket refcount is not zero. 5529 */ 5530 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5531 *skb_hwtstamps(skb) = *hwtstamps; 5532 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5533 sock_put(sk); 5534 return; 5535 } 5536 5537 err: 5538 kfree_skb(skb); 5539 } 5540 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5541 5542 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5543 const struct sk_buff *ack_skb, 5544 struct skb_shared_hwtstamps *hwtstamps, 5545 struct sock *sk, int tstype) 5546 { 5547 struct sk_buff *skb; 5548 bool tsonly, opt_stats = false; 5549 u32 tsflags; 5550 5551 if (!sk) 5552 return; 5553 5554 tsflags = READ_ONCE(sk->sk_tsflags); 5555 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5556 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5557 return; 5558 5559 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5560 if (!skb_may_tx_timestamp(sk, tsonly)) 5561 return; 5562 5563 if (tsonly) { 5564 #ifdef CONFIG_INET 5565 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5566 sk_is_tcp(sk)) { 5567 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5568 ack_skb); 5569 opt_stats = true; 5570 } else 5571 #endif 5572 skb = alloc_skb(0, GFP_ATOMIC); 5573 } else { 5574 skb = skb_clone(orig_skb, GFP_ATOMIC); 5575 5576 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5577 kfree_skb(skb); 5578 return; 5579 } 5580 } 5581 if (!skb) 5582 return; 5583 5584 if (tsonly) { 5585 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5586 SKBTX_ANY_TSTAMP; 5587 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5588 } 5589 5590 if (hwtstamps) 5591 *skb_hwtstamps(skb) = *hwtstamps; 5592 else 5593 __net_timestamp(skb); 5594 5595 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5596 } 5597 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5598 5599 void skb_tstamp_tx(struct sk_buff *orig_skb, 5600 struct skb_shared_hwtstamps *hwtstamps) 5601 { 5602 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5603 SCM_TSTAMP_SND); 5604 } 5605 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5606 5607 #ifdef CONFIG_WIRELESS 5608 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5609 { 5610 struct sock *sk = skb->sk; 5611 struct sock_exterr_skb *serr; 5612 int err = 1; 5613 5614 skb->wifi_acked_valid = 1; 5615 skb->wifi_acked = acked; 5616 5617 serr = SKB_EXT_ERR(skb); 5618 memset(serr, 0, sizeof(*serr)); 5619 serr->ee.ee_errno = ENOMSG; 5620 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5621 5622 /* Take a reference to prevent skb_orphan() from freeing the socket, 5623 * but only if the socket refcount is not zero. 5624 */ 5625 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5626 err = sock_queue_err_skb(sk, skb); 5627 sock_put(sk); 5628 } 5629 if (err) 5630 kfree_skb(skb); 5631 } 5632 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5633 #endif /* CONFIG_WIRELESS */ 5634 5635 /** 5636 * skb_partial_csum_set - set up and verify partial csum values for packet 5637 * @skb: the skb to set 5638 * @start: the number of bytes after skb->data to start checksumming. 5639 * @off: the offset from start to place the checksum. 5640 * 5641 * For untrusted partially-checksummed packets, we need to make sure the values 5642 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5643 * 5644 * This function checks and sets those values and skb->ip_summed: if this 5645 * returns false you should drop the packet. 5646 */ 5647 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5648 { 5649 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5650 u32 csum_start = skb_headroom(skb) + (u32)start; 5651 5652 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5653 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5654 start, off, skb_headroom(skb), skb_headlen(skb)); 5655 return false; 5656 } 5657 skb->ip_summed = CHECKSUM_PARTIAL; 5658 skb->csum_start = csum_start; 5659 skb->csum_offset = off; 5660 skb->transport_header = csum_start; 5661 return true; 5662 } 5663 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5664 5665 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5666 unsigned int max) 5667 { 5668 if (skb_headlen(skb) >= len) 5669 return 0; 5670 5671 /* If we need to pullup then pullup to the max, so we 5672 * won't need to do it again. 5673 */ 5674 if (max > skb->len) 5675 max = skb->len; 5676 5677 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5678 return -ENOMEM; 5679 5680 if (skb_headlen(skb) < len) 5681 return -EPROTO; 5682 5683 return 0; 5684 } 5685 5686 #define MAX_TCP_HDR_LEN (15 * 4) 5687 5688 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5689 typeof(IPPROTO_IP) proto, 5690 unsigned int off) 5691 { 5692 int err; 5693 5694 switch (proto) { 5695 case IPPROTO_TCP: 5696 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5697 off + MAX_TCP_HDR_LEN); 5698 if (!err && !skb_partial_csum_set(skb, off, 5699 offsetof(struct tcphdr, 5700 check))) 5701 err = -EPROTO; 5702 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5703 5704 case IPPROTO_UDP: 5705 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5706 off + sizeof(struct udphdr)); 5707 if (!err && !skb_partial_csum_set(skb, off, 5708 offsetof(struct udphdr, 5709 check))) 5710 err = -EPROTO; 5711 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5712 } 5713 5714 return ERR_PTR(-EPROTO); 5715 } 5716 5717 /* This value should be large enough to cover a tagged ethernet header plus 5718 * maximally sized IP and TCP or UDP headers. 5719 */ 5720 #define MAX_IP_HDR_LEN 128 5721 5722 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5723 { 5724 unsigned int off; 5725 bool fragment; 5726 __sum16 *csum; 5727 int err; 5728 5729 fragment = false; 5730 5731 err = skb_maybe_pull_tail(skb, 5732 sizeof(struct iphdr), 5733 MAX_IP_HDR_LEN); 5734 if (err < 0) 5735 goto out; 5736 5737 if (ip_is_fragment(ip_hdr(skb))) 5738 fragment = true; 5739 5740 off = ip_hdrlen(skb); 5741 5742 err = -EPROTO; 5743 5744 if (fragment) 5745 goto out; 5746 5747 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5748 if (IS_ERR(csum)) 5749 return PTR_ERR(csum); 5750 5751 if (recalculate) 5752 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5753 ip_hdr(skb)->daddr, 5754 skb->len - off, 5755 ip_hdr(skb)->protocol, 0); 5756 err = 0; 5757 5758 out: 5759 return err; 5760 } 5761 5762 /* This value should be large enough to cover a tagged ethernet header plus 5763 * an IPv6 header, all options, and a maximal TCP or UDP header. 5764 */ 5765 #define MAX_IPV6_HDR_LEN 256 5766 5767 #define OPT_HDR(type, skb, off) \ 5768 (type *)(skb_network_header(skb) + (off)) 5769 5770 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5771 { 5772 int err; 5773 u8 nexthdr; 5774 unsigned int off; 5775 unsigned int len; 5776 bool fragment; 5777 bool done; 5778 __sum16 *csum; 5779 5780 fragment = false; 5781 done = false; 5782 5783 off = sizeof(struct ipv6hdr); 5784 5785 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5786 if (err < 0) 5787 goto out; 5788 5789 nexthdr = ipv6_hdr(skb)->nexthdr; 5790 5791 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5792 while (off <= len && !done) { 5793 switch (nexthdr) { 5794 case IPPROTO_DSTOPTS: 5795 case IPPROTO_HOPOPTS: 5796 case IPPROTO_ROUTING: { 5797 struct ipv6_opt_hdr *hp; 5798 5799 err = skb_maybe_pull_tail(skb, 5800 off + 5801 sizeof(struct ipv6_opt_hdr), 5802 MAX_IPV6_HDR_LEN); 5803 if (err < 0) 5804 goto out; 5805 5806 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5807 nexthdr = hp->nexthdr; 5808 off += ipv6_optlen(hp); 5809 break; 5810 } 5811 case IPPROTO_AH: { 5812 struct ip_auth_hdr *hp; 5813 5814 err = skb_maybe_pull_tail(skb, 5815 off + 5816 sizeof(struct ip_auth_hdr), 5817 MAX_IPV6_HDR_LEN); 5818 if (err < 0) 5819 goto out; 5820 5821 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5822 nexthdr = hp->nexthdr; 5823 off += ipv6_authlen(hp); 5824 break; 5825 } 5826 case IPPROTO_FRAGMENT: { 5827 struct frag_hdr *hp; 5828 5829 err = skb_maybe_pull_tail(skb, 5830 off + 5831 sizeof(struct frag_hdr), 5832 MAX_IPV6_HDR_LEN); 5833 if (err < 0) 5834 goto out; 5835 5836 hp = OPT_HDR(struct frag_hdr, skb, off); 5837 5838 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5839 fragment = true; 5840 5841 nexthdr = hp->nexthdr; 5842 off += sizeof(struct frag_hdr); 5843 break; 5844 } 5845 default: 5846 done = true; 5847 break; 5848 } 5849 } 5850 5851 err = -EPROTO; 5852 5853 if (!done || fragment) 5854 goto out; 5855 5856 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5857 if (IS_ERR(csum)) 5858 return PTR_ERR(csum); 5859 5860 if (recalculate) 5861 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5862 &ipv6_hdr(skb)->daddr, 5863 skb->len - off, nexthdr, 0); 5864 err = 0; 5865 5866 out: 5867 return err; 5868 } 5869 5870 /** 5871 * skb_checksum_setup - set up partial checksum offset 5872 * @skb: the skb to set up 5873 * @recalculate: if true the pseudo-header checksum will be recalculated 5874 */ 5875 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5876 { 5877 int err; 5878 5879 switch (skb->protocol) { 5880 case htons(ETH_P_IP): 5881 err = skb_checksum_setup_ipv4(skb, recalculate); 5882 break; 5883 5884 case htons(ETH_P_IPV6): 5885 err = skb_checksum_setup_ipv6(skb, recalculate); 5886 break; 5887 5888 default: 5889 err = -EPROTO; 5890 break; 5891 } 5892 5893 return err; 5894 } 5895 EXPORT_SYMBOL(skb_checksum_setup); 5896 5897 /** 5898 * skb_checksum_maybe_trim - maybe trims the given skb 5899 * @skb: the skb to check 5900 * @transport_len: the data length beyond the network header 5901 * 5902 * Checks whether the given skb has data beyond the given transport length. 5903 * If so, returns a cloned skb trimmed to this transport length. 5904 * Otherwise returns the provided skb. Returns NULL in error cases 5905 * (e.g. transport_len exceeds skb length or out-of-memory). 5906 * 5907 * Caller needs to set the skb transport header and free any returned skb if it 5908 * differs from the provided skb. 5909 */ 5910 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5911 unsigned int transport_len) 5912 { 5913 struct sk_buff *skb_chk; 5914 unsigned int len = skb_transport_offset(skb) + transport_len; 5915 int ret; 5916 5917 if (skb->len < len) 5918 return NULL; 5919 else if (skb->len == len) 5920 return skb; 5921 5922 skb_chk = skb_clone(skb, GFP_ATOMIC); 5923 if (!skb_chk) 5924 return NULL; 5925 5926 ret = pskb_trim_rcsum(skb_chk, len); 5927 if (ret) { 5928 kfree_skb(skb_chk); 5929 return NULL; 5930 } 5931 5932 return skb_chk; 5933 } 5934 5935 /** 5936 * skb_checksum_trimmed - validate checksum of an skb 5937 * @skb: the skb to check 5938 * @transport_len: the data length beyond the network header 5939 * @skb_chkf: checksum function to use 5940 * 5941 * Applies the given checksum function skb_chkf to the provided skb. 5942 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5943 * 5944 * If the skb has data beyond the given transport length, then a 5945 * trimmed & cloned skb is checked and returned. 5946 * 5947 * Caller needs to set the skb transport header and free any returned skb if it 5948 * differs from the provided skb. 5949 */ 5950 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5951 unsigned int transport_len, 5952 __sum16(*skb_chkf)(struct sk_buff *skb)) 5953 { 5954 struct sk_buff *skb_chk; 5955 unsigned int offset = skb_transport_offset(skb); 5956 __sum16 ret; 5957 5958 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5959 if (!skb_chk) 5960 goto err; 5961 5962 if (!pskb_may_pull(skb_chk, offset)) 5963 goto err; 5964 5965 skb_pull_rcsum(skb_chk, offset); 5966 ret = skb_chkf(skb_chk); 5967 skb_push_rcsum(skb_chk, offset); 5968 5969 if (ret) 5970 goto err; 5971 5972 return skb_chk; 5973 5974 err: 5975 if (skb_chk && skb_chk != skb) 5976 kfree_skb(skb_chk); 5977 5978 return NULL; 5979 5980 } 5981 EXPORT_SYMBOL(skb_checksum_trimmed); 5982 5983 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5984 { 5985 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5986 skb->dev->name); 5987 } 5988 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5989 5990 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5991 { 5992 if (head_stolen) { 5993 skb_release_head_state(skb); 5994 kmem_cache_free(net_hotdata.skbuff_cache, skb); 5995 } else { 5996 __kfree_skb(skb); 5997 } 5998 } 5999 EXPORT_SYMBOL(kfree_skb_partial); 6000 6001 /** 6002 * skb_try_coalesce - try to merge skb to prior one 6003 * @to: prior buffer 6004 * @from: buffer to add 6005 * @fragstolen: pointer to boolean 6006 * @delta_truesize: how much more was allocated than was requested 6007 */ 6008 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6009 bool *fragstolen, int *delta_truesize) 6010 { 6011 struct skb_shared_info *to_shinfo, *from_shinfo; 6012 int i, delta, len = from->len; 6013 6014 *fragstolen = false; 6015 6016 if (skb_cloned(to)) 6017 return false; 6018 6019 /* In general, avoid mixing page_pool and non-page_pool allocated 6020 * pages within the same SKB. In theory we could take full 6021 * references if @from is cloned and !@to->pp_recycle but its 6022 * tricky (due to potential race with the clone disappearing) and 6023 * rare, so not worth dealing with. 6024 */ 6025 if (to->pp_recycle != from->pp_recycle) 6026 return false; 6027 6028 if (skb_frags_readable(from) != skb_frags_readable(to)) 6029 return false; 6030 6031 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6032 if (len) 6033 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6034 *delta_truesize = 0; 6035 return true; 6036 } 6037 6038 to_shinfo = skb_shinfo(to); 6039 from_shinfo = skb_shinfo(from); 6040 if (to_shinfo->frag_list || from_shinfo->frag_list) 6041 return false; 6042 if (skb_zcopy(to) || skb_zcopy(from)) 6043 return false; 6044 6045 if (skb_headlen(from) != 0) { 6046 struct page *page; 6047 unsigned int offset; 6048 6049 if (to_shinfo->nr_frags + 6050 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6051 return false; 6052 6053 if (skb_head_is_locked(from)) 6054 return false; 6055 6056 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6057 6058 page = virt_to_head_page(from->head); 6059 offset = from->data - (unsigned char *)page_address(page); 6060 6061 skb_fill_page_desc(to, to_shinfo->nr_frags, 6062 page, offset, skb_headlen(from)); 6063 *fragstolen = true; 6064 } else { 6065 if (to_shinfo->nr_frags + 6066 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6067 return false; 6068 6069 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6070 } 6071 6072 WARN_ON_ONCE(delta < len); 6073 6074 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6075 from_shinfo->frags, 6076 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6077 to_shinfo->nr_frags += from_shinfo->nr_frags; 6078 6079 if (!skb_cloned(from)) 6080 from_shinfo->nr_frags = 0; 6081 6082 /* if the skb is not cloned this does nothing 6083 * since we set nr_frags to 0. 6084 */ 6085 if (skb_pp_frag_ref(from)) { 6086 for (i = 0; i < from_shinfo->nr_frags; i++) 6087 __skb_frag_ref(&from_shinfo->frags[i]); 6088 } 6089 6090 to->truesize += delta; 6091 to->len += len; 6092 to->data_len += len; 6093 6094 *delta_truesize = delta; 6095 return true; 6096 } 6097 EXPORT_SYMBOL(skb_try_coalesce); 6098 6099 /** 6100 * skb_scrub_packet - scrub an skb 6101 * 6102 * @skb: buffer to clean 6103 * @xnet: packet is crossing netns 6104 * 6105 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6106 * into/from a tunnel. Some information have to be cleared during these 6107 * operations. 6108 * skb_scrub_packet can also be used to clean a skb before injecting it in 6109 * another namespace (@xnet == true). We have to clear all information in the 6110 * skb that could impact namespace isolation. 6111 */ 6112 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6113 { 6114 skb->pkt_type = PACKET_HOST; 6115 skb->skb_iif = 0; 6116 skb->ignore_df = 0; 6117 skb_dst_drop(skb); 6118 skb_ext_reset(skb); 6119 nf_reset_ct(skb); 6120 nf_reset_trace(skb); 6121 6122 #ifdef CONFIG_NET_SWITCHDEV 6123 skb->offload_fwd_mark = 0; 6124 skb->offload_l3_fwd_mark = 0; 6125 #endif 6126 6127 if (!xnet) 6128 return; 6129 6130 ipvs_reset(skb); 6131 skb->mark = 0; 6132 skb_clear_tstamp(skb); 6133 } 6134 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6135 6136 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6137 { 6138 int mac_len, meta_len; 6139 void *meta; 6140 6141 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6142 kfree_skb(skb); 6143 return NULL; 6144 } 6145 6146 mac_len = skb->data - skb_mac_header(skb); 6147 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6148 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6149 mac_len - VLAN_HLEN - ETH_TLEN); 6150 } 6151 6152 meta_len = skb_metadata_len(skb); 6153 if (meta_len) { 6154 meta = skb_metadata_end(skb) - meta_len; 6155 memmove(meta + VLAN_HLEN, meta, meta_len); 6156 } 6157 6158 skb->mac_header += VLAN_HLEN; 6159 return skb; 6160 } 6161 6162 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6163 { 6164 struct vlan_hdr *vhdr; 6165 u16 vlan_tci; 6166 6167 if (unlikely(skb_vlan_tag_present(skb))) { 6168 /* vlan_tci is already set-up so leave this for another time */ 6169 return skb; 6170 } 6171 6172 skb = skb_share_check(skb, GFP_ATOMIC); 6173 if (unlikely(!skb)) 6174 goto err_free; 6175 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6176 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6177 goto err_free; 6178 6179 vhdr = (struct vlan_hdr *)skb->data; 6180 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6181 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6182 6183 skb_pull_rcsum(skb, VLAN_HLEN); 6184 vlan_set_encap_proto(skb, vhdr); 6185 6186 skb = skb_reorder_vlan_header(skb); 6187 if (unlikely(!skb)) 6188 goto err_free; 6189 6190 skb_reset_network_header(skb); 6191 if (!skb_transport_header_was_set(skb)) 6192 skb_reset_transport_header(skb); 6193 skb_reset_mac_len(skb); 6194 6195 return skb; 6196 6197 err_free: 6198 kfree_skb(skb); 6199 return NULL; 6200 } 6201 EXPORT_SYMBOL(skb_vlan_untag); 6202 6203 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6204 { 6205 if (!pskb_may_pull(skb, write_len)) 6206 return -ENOMEM; 6207 6208 if (!skb_frags_readable(skb)) 6209 return -EFAULT; 6210 6211 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6212 return 0; 6213 6214 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6215 } 6216 EXPORT_SYMBOL(skb_ensure_writable); 6217 6218 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6219 { 6220 int needed_headroom = dev->needed_headroom; 6221 int needed_tailroom = dev->needed_tailroom; 6222 6223 /* For tail taggers, we need to pad short frames ourselves, to ensure 6224 * that the tail tag does not fail at its role of being at the end of 6225 * the packet, once the conduit interface pads the frame. Account for 6226 * that pad length here, and pad later. 6227 */ 6228 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6229 needed_tailroom += ETH_ZLEN - skb->len; 6230 /* skb_headroom() returns unsigned int... */ 6231 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6232 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6233 6234 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6235 /* No reallocation needed, yay! */ 6236 return 0; 6237 6238 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6239 GFP_ATOMIC); 6240 } 6241 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6242 6243 /* remove VLAN header from packet and update csum accordingly. 6244 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6245 */ 6246 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6247 { 6248 int offset = skb->data - skb_mac_header(skb); 6249 int err; 6250 6251 if (WARN_ONCE(offset, 6252 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6253 offset)) { 6254 return -EINVAL; 6255 } 6256 6257 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6258 if (unlikely(err)) 6259 return err; 6260 6261 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6262 6263 vlan_remove_tag(skb, vlan_tci); 6264 6265 skb->mac_header += VLAN_HLEN; 6266 6267 if (skb_network_offset(skb) < ETH_HLEN) 6268 skb_set_network_header(skb, ETH_HLEN); 6269 6270 skb_reset_mac_len(skb); 6271 6272 return err; 6273 } 6274 EXPORT_SYMBOL(__skb_vlan_pop); 6275 6276 /* Pop a vlan tag either from hwaccel or from payload. 6277 * Expects skb->data at mac header. 6278 */ 6279 int skb_vlan_pop(struct sk_buff *skb) 6280 { 6281 u16 vlan_tci; 6282 __be16 vlan_proto; 6283 int err; 6284 6285 if (likely(skb_vlan_tag_present(skb))) { 6286 __vlan_hwaccel_clear_tag(skb); 6287 } else { 6288 if (unlikely(!eth_type_vlan(skb->protocol))) 6289 return 0; 6290 6291 err = __skb_vlan_pop(skb, &vlan_tci); 6292 if (err) 6293 return err; 6294 } 6295 /* move next vlan tag to hw accel tag */ 6296 if (likely(!eth_type_vlan(skb->protocol))) 6297 return 0; 6298 6299 vlan_proto = skb->protocol; 6300 err = __skb_vlan_pop(skb, &vlan_tci); 6301 if (unlikely(err)) 6302 return err; 6303 6304 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6305 return 0; 6306 } 6307 EXPORT_SYMBOL(skb_vlan_pop); 6308 6309 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6310 * Expects skb->data at mac header. 6311 */ 6312 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6313 { 6314 if (skb_vlan_tag_present(skb)) { 6315 int offset = skb->data - skb_mac_header(skb); 6316 int err; 6317 6318 if (WARN_ONCE(offset, 6319 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6320 offset)) { 6321 return -EINVAL; 6322 } 6323 6324 err = __vlan_insert_tag(skb, skb->vlan_proto, 6325 skb_vlan_tag_get(skb)); 6326 if (err) 6327 return err; 6328 6329 skb->protocol = skb->vlan_proto; 6330 skb->network_header -= VLAN_HLEN; 6331 6332 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6333 } 6334 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6335 return 0; 6336 } 6337 EXPORT_SYMBOL(skb_vlan_push); 6338 6339 /** 6340 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6341 * 6342 * @skb: Socket buffer to modify 6343 * 6344 * Drop the Ethernet header of @skb. 6345 * 6346 * Expects that skb->data points to the mac header and that no VLAN tags are 6347 * present. 6348 * 6349 * Returns 0 on success, -errno otherwise. 6350 */ 6351 int skb_eth_pop(struct sk_buff *skb) 6352 { 6353 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6354 skb_network_offset(skb) < ETH_HLEN) 6355 return -EPROTO; 6356 6357 skb_pull_rcsum(skb, ETH_HLEN); 6358 skb_reset_mac_header(skb); 6359 skb_reset_mac_len(skb); 6360 6361 return 0; 6362 } 6363 EXPORT_SYMBOL(skb_eth_pop); 6364 6365 /** 6366 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6367 * 6368 * @skb: Socket buffer to modify 6369 * @dst: Destination MAC address of the new header 6370 * @src: Source MAC address of the new header 6371 * 6372 * Prepend @skb with a new Ethernet header. 6373 * 6374 * Expects that skb->data points to the mac header, which must be empty. 6375 * 6376 * Returns 0 on success, -errno otherwise. 6377 */ 6378 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6379 const unsigned char *src) 6380 { 6381 struct ethhdr *eth; 6382 int err; 6383 6384 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6385 return -EPROTO; 6386 6387 err = skb_cow_head(skb, sizeof(*eth)); 6388 if (err < 0) 6389 return err; 6390 6391 skb_push(skb, sizeof(*eth)); 6392 skb_reset_mac_header(skb); 6393 skb_reset_mac_len(skb); 6394 6395 eth = eth_hdr(skb); 6396 ether_addr_copy(eth->h_dest, dst); 6397 ether_addr_copy(eth->h_source, src); 6398 eth->h_proto = skb->protocol; 6399 6400 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6401 6402 return 0; 6403 } 6404 EXPORT_SYMBOL(skb_eth_push); 6405 6406 /* Update the ethertype of hdr and the skb csum value if required. */ 6407 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6408 __be16 ethertype) 6409 { 6410 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6411 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6412 6413 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6414 } 6415 6416 hdr->h_proto = ethertype; 6417 } 6418 6419 /** 6420 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6421 * the packet 6422 * 6423 * @skb: buffer 6424 * @mpls_lse: MPLS label stack entry to push 6425 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6426 * @mac_len: length of the MAC header 6427 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6428 * ethernet 6429 * 6430 * Expects skb->data at mac header. 6431 * 6432 * Returns 0 on success, -errno otherwise. 6433 */ 6434 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6435 int mac_len, bool ethernet) 6436 { 6437 struct mpls_shim_hdr *lse; 6438 int err; 6439 6440 if (unlikely(!eth_p_mpls(mpls_proto))) 6441 return -EINVAL; 6442 6443 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6444 if (skb->encapsulation) 6445 return -EINVAL; 6446 6447 err = skb_cow_head(skb, MPLS_HLEN); 6448 if (unlikely(err)) 6449 return err; 6450 6451 if (!skb->inner_protocol) { 6452 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6453 skb_set_inner_protocol(skb, skb->protocol); 6454 } 6455 6456 skb_push(skb, MPLS_HLEN); 6457 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6458 mac_len); 6459 skb_reset_mac_header(skb); 6460 skb_set_network_header(skb, mac_len); 6461 skb_reset_mac_len(skb); 6462 6463 lse = mpls_hdr(skb); 6464 lse->label_stack_entry = mpls_lse; 6465 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6466 6467 if (ethernet && mac_len >= ETH_HLEN) 6468 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6469 skb->protocol = mpls_proto; 6470 6471 return 0; 6472 } 6473 EXPORT_SYMBOL_GPL(skb_mpls_push); 6474 6475 /** 6476 * skb_mpls_pop() - pop the outermost MPLS header 6477 * 6478 * @skb: buffer 6479 * @next_proto: ethertype of header after popped MPLS header 6480 * @mac_len: length of the MAC header 6481 * @ethernet: flag to indicate if the packet is ethernet 6482 * 6483 * Expects skb->data at mac header. 6484 * 6485 * Returns 0 on success, -errno otherwise. 6486 */ 6487 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6488 bool ethernet) 6489 { 6490 int err; 6491 6492 if (unlikely(!eth_p_mpls(skb->protocol))) 6493 return 0; 6494 6495 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6496 if (unlikely(err)) 6497 return err; 6498 6499 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6500 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6501 mac_len); 6502 6503 __skb_pull(skb, MPLS_HLEN); 6504 skb_reset_mac_header(skb); 6505 skb_set_network_header(skb, mac_len); 6506 6507 if (ethernet && mac_len >= ETH_HLEN) { 6508 struct ethhdr *hdr; 6509 6510 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6511 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6512 skb_mod_eth_type(skb, hdr, next_proto); 6513 } 6514 skb->protocol = next_proto; 6515 6516 return 0; 6517 } 6518 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6519 6520 /** 6521 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6522 * 6523 * @skb: buffer 6524 * @mpls_lse: new MPLS label stack entry to update to 6525 * 6526 * Expects skb->data at mac header. 6527 * 6528 * Returns 0 on success, -errno otherwise. 6529 */ 6530 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6531 { 6532 int err; 6533 6534 if (unlikely(!eth_p_mpls(skb->protocol))) 6535 return -EINVAL; 6536 6537 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6538 if (unlikely(err)) 6539 return err; 6540 6541 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6542 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6543 6544 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6545 } 6546 6547 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6548 6549 return 0; 6550 } 6551 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6552 6553 /** 6554 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6555 * 6556 * @skb: buffer 6557 * 6558 * Expects skb->data at mac header. 6559 * 6560 * Returns 0 on success, -errno otherwise. 6561 */ 6562 int skb_mpls_dec_ttl(struct sk_buff *skb) 6563 { 6564 u32 lse; 6565 u8 ttl; 6566 6567 if (unlikely(!eth_p_mpls(skb->protocol))) 6568 return -EINVAL; 6569 6570 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6571 return -ENOMEM; 6572 6573 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6574 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6575 if (!--ttl) 6576 return -EINVAL; 6577 6578 lse &= ~MPLS_LS_TTL_MASK; 6579 lse |= ttl << MPLS_LS_TTL_SHIFT; 6580 6581 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6582 } 6583 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6584 6585 /** 6586 * alloc_skb_with_frags - allocate skb with page frags 6587 * 6588 * @header_len: size of linear part 6589 * @data_len: needed length in frags 6590 * @order: max page order desired. 6591 * @errcode: pointer to error code if any 6592 * @gfp_mask: allocation mask 6593 * 6594 * This can be used to allocate a paged skb, given a maximal order for frags. 6595 */ 6596 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6597 unsigned long data_len, 6598 int order, 6599 int *errcode, 6600 gfp_t gfp_mask) 6601 { 6602 unsigned long chunk; 6603 struct sk_buff *skb; 6604 struct page *page; 6605 int nr_frags = 0; 6606 6607 *errcode = -EMSGSIZE; 6608 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6609 return NULL; 6610 6611 *errcode = -ENOBUFS; 6612 skb = alloc_skb(header_len, gfp_mask); 6613 if (!skb) 6614 return NULL; 6615 6616 while (data_len) { 6617 if (nr_frags == MAX_SKB_FRAGS - 1) 6618 goto failure; 6619 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6620 order--; 6621 6622 if (order) { 6623 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6624 __GFP_COMP | 6625 __GFP_NOWARN, 6626 order); 6627 if (!page) { 6628 order--; 6629 continue; 6630 } 6631 } else { 6632 page = alloc_page(gfp_mask); 6633 if (!page) 6634 goto failure; 6635 } 6636 chunk = min_t(unsigned long, data_len, 6637 PAGE_SIZE << order); 6638 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6639 nr_frags++; 6640 skb->truesize += (PAGE_SIZE << order); 6641 data_len -= chunk; 6642 } 6643 return skb; 6644 6645 failure: 6646 kfree_skb(skb); 6647 return NULL; 6648 } 6649 EXPORT_SYMBOL(alloc_skb_with_frags); 6650 6651 /* carve out the first off bytes from skb when off < headlen */ 6652 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6653 const int headlen, gfp_t gfp_mask) 6654 { 6655 int i; 6656 unsigned int size = skb_end_offset(skb); 6657 int new_hlen = headlen - off; 6658 u8 *data; 6659 6660 if (skb_pfmemalloc(skb)) 6661 gfp_mask |= __GFP_MEMALLOC; 6662 6663 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6664 if (!data) 6665 return -ENOMEM; 6666 size = SKB_WITH_OVERHEAD(size); 6667 6668 /* Copy real data, and all frags */ 6669 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6670 skb->len -= off; 6671 6672 memcpy((struct skb_shared_info *)(data + size), 6673 skb_shinfo(skb), 6674 offsetof(struct skb_shared_info, 6675 frags[skb_shinfo(skb)->nr_frags])); 6676 if (skb_cloned(skb)) { 6677 /* drop the old head gracefully */ 6678 if (skb_orphan_frags(skb, gfp_mask)) { 6679 skb_kfree_head(data, size); 6680 return -ENOMEM; 6681 } 6682 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6683 skb_frag_ref(skb, i); 6684 if (skb_has_frag_list(skb)) 6685 skb_clone_fraglist(skb); 6686 skb_release_data(skb, SKB_CONSUMED); 6687 } else { 6688 /* we can reuse existing recount- all we did was 6689 * relocate values 6690 */ 6691 skb_free_head(skb); 6692 } 6693 6694 skb->head = data; 6695 skb->data = data; 6696 skb->head_frag = 0; 6697 skb_set_end_offset(skb, size); 6698 skb_set_tail_pointer(skb, skb_headlen(skb)); 6699 skb_headers_offset_update(skb, 0); 6700 skb->cloned = 0; 6701 skb->hdr_len = 0; 6702 skb->nohdr = 0; 6703 atomic_set(&skb_shinfo(skb)->dataref, 1); 6704 6705 return 0; 6706 } 6707 6708 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6709 6710 /* carve out the first eat bytes from skb's frag_list. May recurse into 6711 * pskb_carve() 6712 */ 6713 static int pskb_carve_frag_list(struct sk_buff *skb, 6714 struct skb_shared_info *shinfo, int eat, 6715 gfp_t gfp_mask) 6716 { 6717 struct sk_buff *list = shinfo->frag_list; 6718 struct sk_buff *clone = NULL; 6719 struct sk_buff *insp = NULL; 6720 6721 do { 6722 if (!list) { 6723 pr_err("Not enough bytes to eat. Want %d\n", eat); 6724 return -EFAULT; 6725 } 6726 if (list->len <= eat) { 6727 /* Eaten as whole. */ 6728 eat -= list->len; 6729 list = list->next; 6730 insp = list; 6731 } else { 6732 /* Eaten partially. */ 6733 if (skb_shared(list)) { 6734 clone = skb_clone(list, gfp_mask); 6735 if (!clone) 6736 return -ENOMEM; 6737 insp = list->next; 6738 list = clone; 6739 } else { 6740 /* This may be pulled without problems. */ 6741 insp = list; 6742 } 6743 if (pskb_carve(list, eat, gfp_mask) < 0) { 6744 kfree_skb(clone); 6745 return -ENOMEM; 6746 } 6747 break; 6748 } 6749 } while (eat); 6750 6751 /* Free pulled out fragments. */ 6752 while ((list = shinfo->frag_list) != insp) { 6753 shinfo->frag_list = list->next; 6754 consume_skb(list); 6755 } 6756 /* And insert new clone at head. */ 6757 if (clone) { 6758 clone->next = list; 6759 shinfo->frag_list = clone; 6760 } 6761 return 0; 6762 } 6763 6764 /* carve off first len bytes from skb. Split line (off) is in the 6765 * non-linear part of skb 6766 */ 6767 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6768 int pos, gfp_t gfp_mask) 6769 { 6770 int i, k = 0; 6771 unsigned int size = skb_end_offset(skb); 6772 u8 *data; 6773 const int nfrags = skb_shinfo(skb)->nr_frags; 6774 struct skb_shared_info *shinfo; 6775 6776 if (skb_pfmemalloc(skb)) 6777 gfp_mask |= __GFP_MEMALLOC; 6778 6779 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6780 if (!data) 6781 return -ENOMEM; 6782 size = SKB_WITH_OVERHEAD(size); 6783 6784 memcpy((struct skb_shared_info *)(data + size), 6785 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6786 if (skb_orphan_frags(skb, gfp_mask)) { 6787 skb_kfree_head(data, size); 6788 return -ENOMEM; 6789 } 6790 shinfo = (struct skb_shared_info *)(data + size); 6791 for (i = 0; i < nfrags; i++) { 6792 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6793 6794 if (pos + fsize > off) { 6795 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6796 6797 if (pos < off) { 6798 /* Split frag. 6799 * We have two variants in this case: 6800 * 1. Move all the frag to the second 6801 * part, if it is possible. F.e. 6802 * this approach is mandatory for TUX, 6803 * where splitting is expensive. 6804 * 2. Split is accurately. We make this. 6805 */ 6806 skb_frag_off_add(&shinfo->frags[0], off - pos); 6807 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6808 } 6809 skb_frag_ref(skb, i); 6810 k++; 6811 } 6812 pos += fsize; 6813 } 6814 shinfo->nr_frags = k; 6815 if (skb_has_frag_list(skb)) 6816 skb_clone_fraglist(skb); 6817 6818 /* split line is in frag list */ 6819 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6820 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6821 if (skb_has_frag_list(skb)) 6822 kfree_skb_list(skb_shinfo(skb)->frag_list); 6823 skb_kfree_head(data, size); 6824 return -ENOMEM; 6825 } 6826 skb_release_data(skb, SKB_CONSUMED); 6827 6828 skb->head = data; 6829 skb->head_frag = 0; 6830 skb->data = data; 6831 skb_set_end_offset(skb, size); 6832 skb_reset_tail_pointer(skb); 6833 skb_headers_offset_update(skb, 0); 6834 skb->cloned = 0; 6835 skb->hdr_len = 0; 6836 skb->nohdr = 0; 6837 skb->len -= off; 6838 skb->data_len = skb->len; 6839 atomic_set(&skb_shinfo(skb)->dataref, 1); 6840 return 0; 6841 } 6842 6843 /* remove len bytes from the beginning of the skb */ 6844 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6845 { 6846 int headlen = skb_headlen(skb); 6847 6848 if (len < headlen) 6849 return pskb_carve_inside_header(skb, len, headlen, gfp); 6850 else 6851 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6852 } 6853 6854 /* Extract to_copy bytes starting at off from skb, and return this in 6855 * a new skb 6856 */ 6857 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6858 int to_copy, gfp_t gfp) 6859 { 6860 struct sk_buff *clone = skb_clone(skb, gfp); 6861 6862 if (!clone) 6863 return NULL; 6864 6865 if (pskb_carve(clone, off, gfp) < 0 || 6866 pskb_trim(clone, to_copy)) { 6867 kfree_skb(clone); 6868 return NULL; 6869 } 6870 return clone; 6871 } 6872 EXPORT_SYMBOL(pskb_extract); 6873 6874 /** 6875 * skb_condense - try to get rid of fragments/frag_list if possible 6876 * @skb: buffer 6877 * 6878 * Can be used to save memory before skb is added to a busy queue. 6879 * If packet has bytes in frags and enough tail room in skb->head, 6880 * pull all of them, so that we can free the frags right now and adjust 6881 * truesize. 6882 * Notes: 6883 * We do not reallocate skb->head thus can not fail. 6884 * Caller must re-evaluate skb->truesize if needed. 6885 */ 6886 void skb_condense(struct sk_buff *skb) 6887 { 6888 if (skb->data_len) { 6889 if (skb->data_len > skb->end - skb->tail || 6890 skb_cloned(skb) || !skb_frags_readable(skb)) 6891 return; 6892 6893 /* Nice, we can free page frag(s) right now */ 6894 __pskb_pull_tail(skb, skb->data_len); 6895 } 6896 /* At this point, skb->truesize might be over estimated, 6897 * because skb had a fragment, and fragments do not tell 6898 * their truesize. 6899 * When we pulled its content into skb->head, fragment 6900 * was freed, but __pskb_pull_tail() could not possibly 6901 * adjust skb->truesize, not knowing the frag truesize. 6902 */ 6903 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6904 } 6905 EXPORT_SYMBOL(skb_condense); 6906 6907 #ifdef CONFIG_SKB_EXTENSIONS 6908 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6909 { 6910 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6911 } 6912 6913 /** 6914 * __skb_ext_alloc - allocate a new skb extensions storage 6915 * 6916 * @flags: See kmalloc(). 6917 * 6918 * Returns the newly allocated pointer. The pointer can later attached to a 6919 * skb via __skb_ext_set(). 6920 * Note: caller must handle the skb_ext as an opaque data. 6921 */ 6922 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6923 { 6924 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6925 6926 if (new) { 6927 memset(new->offset, 0, sizeof(new->offset)); 6928 refcount_set(&new->refcnt, 1); 6929 } 6930 6931 return new; 6932 } 6933 6934 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6935 unsigned int old_active) 6936 { 6937 struct skb_ext *new; 6938 6939 if (refcount_read(&old->refcnt) == 1) 6940 return old; 6941 6942 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6943 if (!new) 6944 return NULL; 6945 6946 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6947 refcount_set(&new->refcnt, 1); 6948 6949 #ifdef CONFIG_XFRM 6950 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6951 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6952 unsigned int i; 6953 6954 for (i = 0; i < sp->len; i++) 6955 xfrm_state_hold(sp->xvec[i]); 6956 } 6957 #endif 6958 #ifdef CONFIG_MCTP_FLOWS 6959 if (old_active & (1 << SKB_EXT_MCTP)) { 6960 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6961 6962 if (flow->key) 6963 refcount_inc(&flow->key->refs); 6964 } 6965 #endif 6966 __skb_ext_put(old); 6967 return new; 6968 } 6969 6970 /** 6971 * __skb_ext_set - attach the specified extension storage to this skb 6972 * @skb: buffer 6973 * @id: extension id 6974 * @ext: extension storage previously allocated via __skb_ext_alloc() 6975 * 6976 * Existing extensions, if any, are cleared. 6977 * 6978 * Returns the pointer to the extension. 6979 */ 6980 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6981 struct skb_ext *ext) 6982 { 6983 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6984 6985 skb_ext_put(skb); 6986 newlen = newoff + skb_ext_type_len[id]; 6987 ext->chunks = newlen; 6988 ext->offset[id] = newoff; 6989 skb->extensions = ext; 6990 skb->active_extensions = 1 << id; 6991 return skb_ext_get_ptr(ext, id); 6992 } 6993 6994 /** 6995 * skb_ext_add - allocate space for given extension, COW if needed 6996 * @skb: buffer 6997 * @id: extension to allocate space for 6998 * 6999 * Allocates enough space for the given extension. 7000 * If the extension is already present, a pointer to that extension 7001 * is returned. 7002 * 7003 * If the skb was cloned, COW applies and the returned memory can be 7004 * modified without changing the extension space of clones buffers. 7005 * 7006 * Returns pointer to the extension or NULL on allocation failure. 7007 */ 7008 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7009 { 7010 struct skb_ext *new, *old = NULL; 7011 unsigned int newlen, newoff; 7012 7013 if (skb->active_extensions) { 7014 old = skb->extensions; 7015 7016 new = skb_ext_maybe_cow(old, skb->active_extensions); 7017 if (!new) 7018 return NULL; 7019 7020 if (__skb_ext_exist(new, id)) 7021 goto set_active; 7022 7023 newoff = new->chunks; 7024 } else { 7025 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7026 7027 new = __skb_ext_alloc(GFP_ATOMIC); 7028 if (!new) 7029 return NULL; 7030 } 7031 7032 newlen = newoff + skb_ext_type_len[id]; 7033 new->chunks = newlen; 7034 new->offset[id] = newoff; 7035 set_active: 7036 skb->slow_gro = 1; 7037 skb->extensions = new; 7038 skb->active_extensions |= 1 << id; 7039 return skb_ext_get_ptr(new, id); 7040 } 7041 EXPORT_SYMBOL(skb_ext_add); 7042 7043 #ifdef CONFIG_XFRM 7044 static void skb_ext_put_sp(struct sec_path *sp) 7045 { 7046 unsigned int i; 7047 7048 for (i = 0; i < sp->len; i++) 7049 xfrm_state_put(sp->xvec[i]); 7050 } 7051 #endif 7052 7053 #ifdef CONFIG_MCTP_FLOWS 7054 static void skb_ext_put_mctp(struct mctp_flow *flow) 7055 { 7056 if (flow->key) 7057 mctp_key_unref(flow->key); 7058 } 7059 #endif 7060 7061 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7062 { 7063 struct skb_ext *ext = skb->extensions; 7064 7065 skb->active_extensions &= ~(1 << id); 7066 if (skb->active_extensions == 0) { 7067 skb->extensions = NULL; 7068 __skb_ext_put(ext); 7069 #ifdef CONFIG_XFRM 7070 } else if (id == SKB_EXT_SEC_PATH && 7071 refcount_read(&ext->refcnt) == 1) { 7072 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7073 7074 skb_ext_put_sp(sp); 7075 sp->len = 0; 7076 #endif 7077 } 7078 } 7079 EXPORT_SYMBOL(__skb_ext_del); 7080 7081 void __skb_ext_put(struct skb_ext *ext) 7082 { 7083 /* If this is last clone, nothing can increment 7084 * it after check passes. Avoids one atomic op. 7085 */ 7086 if (refcount_read(&ext->refcnt) == 1) 7087 goto free_now; 7088 7089 if (!refcount_dec_and_test(&ext->refcnt)) 7090 return; 7091 free_now: 7092 #ifdef CONFIG_XFRM 7093 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7094 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7095 #endif 7096 #ifdef CONFIG_MCTP_FLOWS 7097 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7098 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7099 #endif 7100 7101 kmem_cache_free(skbuff_ext_cache, ext); 7102 } 7103 EXPORT_SYMBOL(__skb_ext_put); 7104 #endif /* CONFIG_SKB_EXTENSIONS */ 7105 7106 static void kfree_skb_napi_cache(struct sk_buff *skb) 7107 { 7108 /* if SKB is a clone, don't handle this case */ 7109 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7110 __kfree_skb(skb); 7111 return; 7112 } 7113 7114 local_bh_disable(); 7115 __napi_kfree_skb(skb, SKB_CONSUMED); 7116 local_bh_enable(); 7117 } 7118 7119 /** 7120 * skb_attempt_defer_free - queue skb for remote freeing 7121 * @skb: buffer 7122 * 7123 * Put @skb in a per-cpu list, using the cpu which 7124 * allocated the skb/pages to reduce false sharing 7125 * and memory zone spinlock contention. 7126 */ 7127 void skb_attempt_defer_free(struct sk_buff *skb) 7128 { 7129 int cpu = skb->alloc_cpu; 7130 struct softnet_data *sd; 7131 unsigned int defer_max; 7132 bool kick; 7133 7134 if (cpu == raw_smp_processor_id() || 7135 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7136 !cpu_online(cpu)) { 7137 nodefer: kfree_skb_napi_cache(skb); 7138 return; 7139 } 7140 7141 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7142 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7143 7144 sd = &per_cpu(softnet_data, cpu); 7145 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7146 if (READ_ONCE(sd->defer_count) >= defer_max) 7147 goto nodefer; 7148 7149 spin_lock_bh(&sd->defer_lock); 7150 /* Send an IPI every time queue reaches half capacity. */ 7151 kick = sd->defer_count == (defer_max >> 1); 7152 /* Paired with the READ_ONCE() few lines above */ 7153 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7154 7155 skb->next = sd->defer_list; 7156 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7157 WRITE_ONCE(sd->defer_list, skb); 7158 spin_unlock_bh(&sd->defer_lock); 7159 7160 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7161 * if we are unlucky enough (this seems very unlikely). 7162 */ 7163 if (unlikely(kick)) 7164 kick_defer_list_purge(sd, cpu); 7165 } 7166 7167 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7168 size_t offset, size_t len) 7169 { 7170 const char *kaddr; 7171 __wsum csum; 7172 7173 kaddr = kmap_local_page(page); 7174 csum = csum_partial(kaddr + offset, len, 0); 7175 kunmap_local(kaddr); 7176 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7177 } 7178 7179 /** 7180 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7181 * @skb: The buffer to add pages to 7182 * @iter: Iterator representing the pages to be added 7183 * @maxsize: Maximum amount of pages to be added 7184 * @gfp: Allocation flags 7185 * 7186 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7187 * extracts pages from an iterator and adds them to the socket buffer if 7188 * possible, copying them to fragments if not possible (such as if they're slab 7189 * pages). 7190 * 7191 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7192 * insufficient space in the buffer to transfer anything. 7193 */ 7194 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7195 ssize_t maxsize, gfp_t gfp) 7196 { 7197 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7198 struct page *pages[8], **ppages = pages; 7199 ssize_t spliced = 0, ret = 0; 7200 unsigned int i; 7201 7202 while (iter->count > 0) { 7203 ssize_t space, nr, len; 7204 size_t off; 7205 7206 ret = -EMSGSIZE; 7207 space = frag_limit - skb_shinfo(skb)->nr_frags; 7208 if (space < 0) 7209 break; 7210 7211 /* We might be able to coalesce without increasing nr_frags */ 7212 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7213 7214 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7215 if (len <= 0) { 7216 ret = len ?: -EIO; 7217 break; 7218 } 7219 7220 i = 0; 7221 do { 7222 struct page *page = pages[i++]; 7223 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7224 7225 ret = -EIO; 7226 if (WARN_ON_ONCE(!sendpage_ok(page))) 7227 goto out; 7228 7229 ret = skb_append_pagefrags(skb, page, off, part, 7230 frag_limit); 7231 if (ret < 0) { 7232 iov_iter_revert(iter, len); 7233 goto out; 7234 } 7235 7236 if (skb->ip_summed == CHECKSUM_NONE) 7237 skb_splice_csum_page(skb, page, off, part); 7238 7239 off = 0; 7240 spliced += part; 7241 maxsize -= part; 7242 len -= part; 7243 } while (len > 0); 7244 7245 if (maxsize <= 0) 7246 break; 7247 } 7248 7249 out: 7250 skb_len_add(skb, spliced); 7251 return spliced ?: ret; 7252 } 7253 EXPORT_SYMBOL(skb_splice_from_iter); 7254 7255 static __always_inline 7256 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7257 size_t len, void *to, void *priv2) 7258 { 7259 __wsum *csum = priv2; 7260 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7261 7262 *csum = csum_block_add(*csum, next, progress); 7263 return 0; 7264 } 7265 7266 static __always_inline 7267 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7268 size_t len, void *to, void *priv2) 7269 { 7270 __wsum next, *csum = priv2; 7271 7272 next = csum_and_copy_from_user(iter_from, to + progress, len); 7273 *csum = csum_block_add(*csum, next, progress); 7274 return next ? 0 : len; 7275 } 7276 7277 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7278 __wsum *csum, struct iov_iter *i) 7279 { 7280 size_t copied; 7281 7282 if (WARN_ON_ONCE(!i->data_source)) 7283 return false; 7284 copied = iterate_and_advance2(i, bytes, addr, csum, 7285 copy_from_user_iter_csum, 7286 memcpy_from_iter_csum); 7287 if (likely(copied == bytes)) 7288 return true; 7289 iov_iter_revert(i, copied); 7290 return false; 7291 } 7292 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7293