1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 #include <net/mpls.h> 75 #include <net/mptcp.h> 76 #include <net/mctp.h> 77 #include <net/page_pool/helpers.h> 78 #include <net/dropreason.h> 79 80 #include <linux/uaccess.h> 81 #include <trace/events/skb.h> 82 #include <linux/highmem.h> 83 #include <linux/capability.h> 84 #include <linux/user_namespace.h> 85 #include <linux/indirect_call_wrapper.h> 86 #include <linux/textsearch.h> 87 88 #include "dev.h" 89 #include "sock_destructor.h" 90 91 struct kmem_cache *skbuff_cache __ro_after_init; 92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 98 static struct kmem_cache *skb_small_head_cache __ro_after_init; 99 100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 101 102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 104 * size, and we can differentiate heads from skb_small_head_cache 105 * vs system slabs by looking at their size (skb_end_offset()). 106 */ 107 #define SKB_SMALL_HEAD_CACHE_SIZE \ 108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 110 SKB_SMALL_HEAD_SIZE) 111 112 #define SKB_SMALL_HEAD_HEADROOM \ 113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 114 115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 116 EXPORT_SYMBOL(sysctl_max_skb_frags); 117 118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 119 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 120 * netmem is a page. 121 */ 122 static_assert(offsetof(struct bio_vec, bv_page) == 123 offsetof(skb_frag_t, netmem)); 124 static_assert(sizeof_field(struct bio_vec, bv_page) == 125 sizeof_field(skb_frag_t, netmem)); 126 127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 128 static_assert(sizeof_field(struct bio_vec, bv_len) == 129 sizeof_field(skb_frag_t, len)); 130 131 static_assert(offsetof(struct bio_vec, bv_offset) == 132 offsetof(skb_frag_t, offset)); 133 static_assert(sizeof_field(struct bio_vec, bv_offset) == 134 sizeof_field(skb_frag_t, offset)); 135 136 #undef FN 137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 138 static const char * const drop_reasons[] = { 139 [SKB_CONSUMED] = "CONSUMED", 140 DEFINE_DROP_REASON(FN, FN) 141 }; 142 143 static const struct drop_reason_list drop_reasons_core = { 144 .reasons = drop_reasons, 145 .n_reasons = ARRAY_SIZE(drop_reasons), 146 }; 147 148 const struct drop_reason_list __rcu * 149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 150 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 151 }; 152 EXPORT_SYMBOL(drop_reasons_by_subsys); 153 154 /** 155 * drop_reasons_register_subsys - register another drop reason subsystem 156 * @subsys: the subsystem to register, must not be the core 157 * @list: the list of drop reasons within the subsystem, must point to 158 * a statically initialized list 159 */ 160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 161 const struct drop_reason_list *list) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 /* must point to statically allocated memory, so INIT is OK */ 169 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 172 173 /** 174 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 175 * @subsys: the subsystem to remove, must not be the core 176 * 177 * Note: This will synchronize_rcu() to ensure no users when it returns. 178 */ 179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 180 { 181 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 182 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 183 "invalid subsystem %d\n", subsys)) 184 return; 185 186 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 187 188 synchronize_rcu(); 189 } 190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 191 192 /** 193 * skb_panic - private function for out-of-line support 194 * @skb: buffer 195 * @sz: size 196 * @addr: address 197 * @msg: skb_over_panic or skb_under_panic 198 * 199 * Out-of-line support for skb_put() and skb_push(). 200 * Called via the wrapper skb_over_panic() or skb_under_panic(). 201 * Keep out of line to prevent kernel bloat. 202 * __builtin_return_address is not used because it is not always reliable. 203 */ 204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 205 const char msg[]) 206 { 207 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 208 msg, addr, skb->len, sz, skb->head, skb->data, 209 (unsigned long)skb->tail, (unsigned long)skb->end, 210 skb->dev ? skb->dev->name : "<NULL>"); 211 BUG(); 212 } 213 214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 215 { 216 skb_panic(skb, sz, addr, __func__); 217 } 218 219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 220 { 221 skb_panic(skb, sz, addr, __func__); 222 } 223 224 #define NAPI_SKB_CACHE_SIZE 64 225 #define NAPI_SKB_CACHE_BULK 16 226 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 227 228 #if PAGE_SIZE == SZ_4K 229 230 #define NAPI_HAS_SMALL_PAGE_FRAG 1 231 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 232 233 /* specialized page frag allocator using a single order 0 page 234 * and slicing it into 1K sized fragment. Constrained to systems 235 * with a very limited amount of 1K fragments fitting a single 236 * page - to avoid excessive truesize underestimation 237 */ 238 239 struct page_frag_1k { 240 void *va; 241 u16 offset; 242 bool pfmemalloc; 243 }; 244 245 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 246 { 247 struct page *page; 248 int offset; 249 250 offset = nc->offset - SZ_1K; 251 if (likely(offset >= 0)) 252 goto use_frag; 253 254 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 255 if (!page) 256 return NULL; 257 258 nc->va = page_address(page); 259 nc->pfmemalloc = page_is_pfmemalloc(page); 260 offset = PAGE_SIZE - SZ_1K; 261 page_ref_add(page, offset / SZ_1K); 262 263 use_frag: 264 nc->offset = offset; 265 return nc->va + offset; 266 } 267 #else 268 269 /* the small page is actually unused in this build; add dummy helpers 270 * to please the compiler and avoid later preprocessor's conditionals 271 */ 272 #define NAPI_HAS_SMALL_PAGE_FRAG 0 273 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 274 275 struct page_frag_1k { 276 }; 277 278 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 279 { 280 return NULL; 281 } 282 283 #endif 284 285 struct napi_alloc_cache { 286 struct page_frag_cache page; 287 struct page_frag_1k page_small; 288 unsigned int skb_count; 289 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 290 }; 291 292 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 293 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 294 295 /* Double check that napi_get_frags() allocates skbs with 296 * skb->head being backed by slab, not a page fragment. 297 * This is to make sure bug fixed in 3226b158e67c 298 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 299 * does not accidentally come back. 300 */ 301 void napi_get_frags_check(struct napi_struct *napi) 302 { 303 struct sk_buff *skb; 304 305 local_bh_disable(); 306 skb = napi_get_frags(napi); 307 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 308 napi_free_frags(napi); 309 local_bh_enable(); 310 } 311 312 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 313 { 314 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 315 316 fragsz = SKB_DATA_ALIGN(fragsz); 317 318 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 319 } 320 EXPORT_SYMBOL(__napi_alloc_frag_align); 321 322 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 323 { 324 void *data; 325 326 fragsz = SKB_DATA_ALIGN(fragsz); 327 if (in_hardirq() || irqs_disabled()) { 328 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 329 330 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 331 } else { 332 struct napi_alloc_cache *nc; 333 334 local_bh_disable(); 335 nc = this_cpu_ptr(&napi_alloc_cache); 336 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 337 local_bh_enable(); 338 } 339 return data; 340 } 341 EXPORT_SYMBOL(__netdev_alloc_frag_align); 342 343 static struct sk_buff *napi_skb_cache_get(void) 344 { 345 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 346 struct sk_buff *skb; 347 348 if (unlikely(!nc->skb_count)) { 349 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 350 GFP_ATOMIC, 351 NAPI_SKB_CACHE_BULK, 352 nc->skb_cache); 353 if (unlikely(!nc->skb_count)) 354 return NULL; 355 } 356 357 skb = nc->skb_cache[--nc->skb_count]; 358 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache)); 359 360 return skb; 361 } 362 363 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 364 unsigned int size) 365 { 366 struct skb_shared_info *shinfo; 367 368 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 369 370 /* Assumes caller memset cleared SKB */ 371 skb->truesize = SKB_TRUESIZE(size); 372 refcount_set(&skb->users, 1); 373 skb->head = data; 374 skb->data = data; 375 skb_reset_tail_pointer(skb); 376 skb_set_end_offset(skb, size); 377 skb->mac_header = (typeof(skb->mac_header))~0U; 378 skb->transport_header = (typeof(skb->transport_header))~0U; 379 skb->alloc_cpu = raw_smp_processor_id(); 380 /* make sure we initialize shinfo sequentially */ 381 shinfo = skb_shinfo(skb); 382 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 383 atomic_set(&shinfo->dataref, 1); 384 385 skb_set_kcov_handle(skb, kcov_common_handle()); 386 } 387 388 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 389 unsigned int *size) 390 { 391 void *resized; 392 393 /* Must find the allocation size (and grow it to match). */ 394 *size = ksize(data); 395 /* krealloc() will immediately return "data" when 396 * "ksize(data)" is requested: it is the existing upper 397 * bounds. As a result, GFP_ATOMIC will be ignored. Note 398 * that this "new" pointer needs to be passed back to the 399 * caller for use so the __alloc_size hinting will be 400 * tracked correctly. 401 */ 402 resized = krealloc(data, *size, GFP_ATOMIC); 403 WARN_ON_ONCE(resized != data); 404 return resized; 405 } 406 407 /* build_skb() variant which can operate on slab buffers. 408 * Note that this should be used sparingly as slab buffers 409 * cannot be combined efficiently by GRO! 410 */ 411 struct sk_buff *slab_build_skb(void *data) 412 { 413 struct sk_buff *skb; 414 unsigned int size; 415 416 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 417 if (unlikely(!skb)) 418 return NULL; 419 420 memset(skb, 0, offsetof(struct sk_buff, tail)); 421 data = __slab_build_skb(skb, data, &size); 422 __finalize_skb_around(skb, data, size); 423 424 return skb; 425 } 426 EXPORT_SYMBOL(slab_build_skb); 427 428 /* Caller must provide SKB that is memset cleared */ 429 static void __build_skb_around(struct sk_buff *skb, void *data, 430 unsigned int frag_size) 431 { 432 unsigned int size = frag_size; 433 434 /* frag_size == 0 is considered deprecated now. Callers 435 * using slab buffer should use slab_build_skb() instead. 436 */ 437 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 438 data = __slab_build_skb(skb, data, &size); 439 440 __finalize_skb_around(skb, data, size); 441 } 442 443 /** 444 * __build_skb - build a network buffer 445 * @data: data buffer provided by caller 446 * @frag_size: size of data (must not be 0) 447 * 448 * Allocate a new &sk_buff. Caller provides space holding head and 449 * skb_shared_info. @data must have been allocated from the page 450 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 451 * allocation is deprecated, and callers should use slab_build_skb() 452 * instead.) 453 * The return is the new skb buffer. 454 * On a failure the return is %NULL, and @data is not freed. 455 * Notes : 456 * Before IO, driver allocates only data buffer where NIC put incoming frame 457 * Driver should add room at head (NET_SKB_PAD) and 458 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 459 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 460 * before giving packet to stack. 461 * RX rings only contains data buffers, not full skbs. 462 */ 463 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 464 { 465 struct sk_buff *skb; 466 467 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 468 if (unlikely(!skb)) 469 return NULL; 470 471 memset(skb, 0, offsetof(struct sk_buff, tail)); 472 __build_skb_around(skb, data, frag_size); 473 474 return skb; 475 } 476 477 /* build_skb() is wrapper over __build_skb(), that specifically 478 * takes care of skb->head and skb->pfmemalloc 479 */ 480 struct sk_buff *build_skb(void *data, unsigned int frag_size) 481 { 482 struct sk_buff *skb = __build_skb(data, frag_size); 483 484 if (likely(skb && frag_size)) { 485 skb->head_frag = 1; 486 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 487 } 488 return skb; 489 } 490 EXPORT_SYMBOL(build_skb); 491 492 /** 493 * build_skb_around - build a network buffer around provided skb 494 * @skb: sk_buff provide by caller, must be memset cleared 495 * @data: data buffer provided by caller 496 * @frag_size: size of data 497 */ 498 struct sk_buff *build_skb_around(struct sk_buff *skb, 499 void *data, unsigned int frag_size) 500 { 501 if (unlikely(!skb)) 502 return NULL; 503 504 __build_skb_around(skb, data, frag_size); 505 506 if (frag_size) { 507 skb->head_frag = 1; 508 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 509 } 510 return skb; 511 } 512 EXPORT_SYMBOL(build_skb_around); 513 514 /** 515 * __napi_build_skb - build a network buffer 516 * @data: data buffer provided by caller 517 * @frag_size: size of data 518 * 519 * Version of __build_skb() that uses NAPI percpu caches to obtain 520 * skbuff_head instead of inplace allocation. 521 * 522 * Returns a new &sk_buff on success, %NULL on allocation failure. 523 */ 524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 525 { 526 struct sk_buff *skb; 527 528 skb = napi_skb_cache_get(); 529 if (unlikely(!skb)) 530 return NULL; 531 532 memset(skb, 0, offsetof(struct sk_buff, tail)); 533 __build_skb_around(skb, data, frag_size); 534 535 return skb; 536 } 537 538 /** 539 * napi_build_skb - build a network buffer 540 * @data: data buffer provided by caller 541 * @frag_size: size of data 542 * 543 * Version of __napi_build_skb() that takes care of skb->head_frag 544 * and skb->pfmemalloc when the data is a page or page fragment. 545 * 546 * Returns a new &sk_buff on success, %NULL on allocation failure. 547 */ 548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 549 { 550 struct sk_buff *skb = __napi_build_skb(data, frag_size); 551 552 if (likely(skb) && frag_size) { 553 skb->head_frag = 1; 554 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 555 } 556 557 return skb; 558 } 559 EXPORT_SYMBOL(napi_build_skb); 560 561 /* 562 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 563 * the caller if emergency pfmemalloc reserves are being used. If it is and 564 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 565 * may be used. Otherwise, the packet data may be discarded until enough 566 * memory is free 567 */ 568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 569 bool *pfmemalloc) 570 { 571 bool ret_pfmemalloc = false; 572 size_t obj_size; 573 void *obj; 574 575 obj_size = SKB_HEAD_ALIGN(*size); 576 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 577 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 578 obj = kmem_cache_alloc_node(skb_small_head_cache, 579 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 580 node); 581 *size = SKB_SMALL_HEAD_CACHE_SIZE; 582 if (obj || !(gfp_pfmemalloc_allowed(flags))) 583 goto out; 584 /* Try again but now we are using pfmemalloc reserves */ 585 ret_pfmemalloc = true; 586 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 587 goto out; 588 } 589 590 obj_size = kmalloc_size_roundup(obj_size); 591 /* The following cast might truncate high-order bits of obj_size, this 592 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 593 */ 594 *size = (unsigned int)obj_size; 595 596 /* 597 * Try a regular allocation, when that fails and we're not entitled 598 * to the reserves, fail. 599 */ 600 obj = kmalloc_node_track_caller(obj_size, 601 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 602 node); 603 if (obj || !(gfp_pfmemalloc_allowed(flags))) 604 goto out; 605 606 /* Try again but now we are using pfmemalloc reserves */ 607 ret_pfmemalloc = true; 608 obj = kmalloc_node_track_caller(obj_size, flags, node); 609 610 out: 611 if (pfmemalloc) 612 *pfmemalloc = ret_pfmemalloc; 613 614 return obj; 615 } 616 617 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 618 * 'private' fields and also do memory statistics to find all the 619 * [BEEP] leaks. 620 * 621 */ 622 623 /** 624 * __alloc_skb - allocate a network buffer 625 * @size: size to allocate 626 * @gfp_mask: allocation mask 627 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 628 * instead of head cache and allocate a cloned (child) skb. 629 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 630 * allocations in case the data is required for writeback 631 * @node: numa node to allocate memory on 632 * 633 * Allocate a new &sk_buff. The returned buffer has no headroom and a 634 * tail room of at least size bytes. The object has a reference count 635 * of one. The return is the buffer. On a failure the return is %NULL. 636 * 637 * Buffers may only be allocated from interrupts using a @gfp_mask of 638 * %GFP_ATOMIC. 639 */ 640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 641 int flags, int node) 642 { 643 struct kmem_cache *cache; 644 struct sk_buff *skb; 645 bool pfmemalloc; 646 u8 *data; 647 648 cache = (flags & SKB_ALLOC_FCLONE) 649 ? skbuff_fclone_cache : skbuff_cache; 650 651 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 652 gfp_mask |= __GFP_MEMALLOC; 653 654 /* Get the HEAD */ 655 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 656 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 657 skb = napi_skb_cache_get(); 658 else 659 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 660 if (unlikely(!skb)) 661 return NULL; 662 prefetchw(skb); 663 664 /* We do our best to align skb_shared_info on a separate cache 665 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 666 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 667 * Both skb->head and skb_shared_info are cache line aligned. 668 */ 669 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 670 if (unlikely(!data)) 671 goto nodata; 672 /* kmalloc_size_roundup() might give us more room than requested. 673 * Put skb_shared_info exactly at the end of allocated zone, 674 * to allow max possible filling before reallocation. 675 */ 676 prefetchw(data + SKB_WITH_OVERHEAD(size)); 677 678 /* 679 * Only clear those fields we need to clear, not those that we will 680 * actually initialise below. Hence, don't put any more fields after 681 * the tail pointer in struct sk_buff! 682 */ 683 memset(skb, 0, offsetof(struct sk_buff, tail)); 684 __build_skb_around(skb, data, size); 685 skb->pfmemalloc = pfmemalloc; 686 687 if (flags & SKB_ALLOC_FCLONE) { 688 struct sk_buff_fclones *fclones; 689 690 fclones = container_of(skb, struct sk_buff_fclones, skb1); 691 692 skb->fclone = SKB_FCLONE_ORIG; 693 refcount_set(&fclones->fclone_ref, 1); 694 } 695 696 return skb; 697 698 nodata: 699 kmem_cache_free(cache, skb); 700 return NULL; 701 } 702 EXPORT_SYMBOL(__alloc_skb); 703 704 /** 705 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 706 * @dev: network device to receive on 707 * @len: length to allocate 708 * @gfp_mask: get_free_pages mask, passed to alloc_skb 709 * 710 * Allocate a new &sk_buff and assign it a usage count of one. The 711 * buffer has NET_SKB_PAD headroom built in. Users should allocate 712 * the headroom they think they need without accounting for the 713 * built in space. The built in space is used for optimisations. 714 * 715 * %NULL is returned if there is no free memory. 716 */ 717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 718 gfp_t gfp_mask) 719 { 720 struct page_frag_cache *nc; 721 struct sk_buff *skb; 722 bool pfmemalloc; 723 void *data; 724 725 len += NET_SKB_PAD; 726 727 /* If requested length is either too small or too big, 728 * we use kmalloc() for skb->head allocation. 729 */ 730 if (len <= SKB_WITH_OVERHEAD(1024) || 731 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 732 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 733 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 734 if (!skb) 735 goto skb_fail; 736 goto skb_success; 737 } 738 739 len = SKB_HEAD_ALIGN(len); 740 741 if (sk_memalloc_socks()) 742 gfp_mask |= __GFP_MEMALLOC; 743 744 if (in_hardirq() || irqs_disabled()) { 745 nc = this_cpu_ptr(&netdev_alloc_cache); 746 data = page_frag_alloc(nc, len, gfp_mask); 747 pfmemalloc = nc->pfmemalloc; 748 } else { 749 local_bh_disable(); 750 nc = this_cpu_ptr(&napi_alloc_cache.page); 751 data = page_frag_alloc(nc, len, gfp_mask); 752 pfmemalloc = nc->pfmemalloc; 753 local_bh_enable(); 754 } 755 756 if (unlikely(!data)) 757 return NULL; 758 759 skb = __build_skb(data, len); 760 if (unlikely(!skb)) { 761 skb_free_frag(data); 762 return NULL; 763 } 764 765 if (pfmemalloc) 766 skb->pfmemalloc = 1; 767 skb->head_frag = 1; 768 769 skb_success: 770 skb_reserve(skb, NET_SKB_PAD); 771 skb->dev = dev; 772 773 skb_fail: 774 return skb; 775 } 776 EXPORT_SYMBOL(__netdev_alloc_skb); 777 778 /** 779 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 780 * @napi: napi instance this buffer was allocated for 781 * @len: length to allocate 782 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 783 * 784 * Allocate a new sk_buff for use in NAPI receive. This buffer will 785 * attempt to allocate the head from a special reserved region used 786 * only for NAPI Rx allocation. By doing this we can save several 787 * CPU cycles by avoiding having to disable and re-enable IRQs. 788 * 789 * %NULL is returned if there is no free memory. 790 */ 791 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 792 gfp_t gfp_mask) 793 { 794 struct napi_alloc_cache *nc; 795 struct sk_buff *skb; 796 bool pfmemalloc; 797 void *data; 798 799 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 800 len += NET_SKB_PAD + NET_IP_ALIGN; 801 802 /* If requested length is either too small or too big, 803 * we use kmalloc() for skb->head allocation. 804 * When the small frag allocator is available, prefer it over kmalloc 805 * for small fragments 806 */ 807 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 808 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 809 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 810 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 811 NUMA_NO_NODE); 812 if (!skb) 813 goto skb_fail; 814 goto skb_success; 815 } 816 817 nc = this_cpu_ptr(&napi_alloc_cache); 818 819 if (sk_memalloc_socks()) 820 gfp_mask |= __GFP_MEMALLOC; 821 822 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 823 /* we are artificially inflating the allocation size, but 824 * that is not as bad as it may look like, as: 825 * - 'len' less than GRO_MAX_HEAD makes little sense 826 * - On most systems, larger 'len' values lead to fragment 827 * size above 512 bytes 828 * - kmalloc would use the kmalloc-1k slab for such values 829 * - Builds with smaller GRO_MAX_HEAD will very likely do 830 * little networking, as that implies no WiFi and no 831 * tunnels support, and 32 bits arches. 832 */ 833 len = SZ_1K; 834 835 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 836 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 837 } else { 838 len = SKB_HEAD_ALIGN(len); 839 840 data = page_frag_alloc(&nc->page, len, gfp_mask); 841 pfmemalloc = nc->page.pfmemalloc; 842 } 843 844 if (unlikely(!data)) 845 return NULL; 846 847 skb = __napi_build_skb(data, len); 848 if (unlikely(!skb)) { 849 skb_free_frag(data); 850 return NULL; 851 } 852 853 if (pfmemalloc) 854 skb->pfmemalloc = 1; 855 skb->head_frag = 1; 856 857 skb_success: 858 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 859 skb->dev = napi->dev; 860 861 skb_fail: 862 return skb; 863 } 864 EXPORT_SYMBOL(__napi_alloc_skb); 865 866 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 867 int off, int size, unsigned int truesize) 868 { 869 DEBUG_NET_WARN_ON_ONCE(size > truesize); 870 871 skb_fill_netmem_desc(skb, i, netmem, off, size); 872 skb->len += size; 873 skb->data_len += size; 874 skb->truesize += truesize; 875 } 876 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 877 878 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 879 unsigned int truesize) 880 { 881 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 882 883 DEBUG_NET_WARN_ON_ONCE(size > truesize); 884 885 skb_frag_size_add(frag, size); 886 skb->len += size; 887 skb->data_len += size; 888 skb->truesize += truesize; 889 } 890 EXPORT_SYMBOL(skb_coalesce_rx_frag); 891 892 static void skb_drop_list(struct sk_buff **listp) 893 { 894 kfree_skb_list(*listp); 895 *listp = NULL; 896 } 897 898 static inline void skb_drop_fraglist(struct sk_buff *skb) 899 { 900 skb_drop_list(&skb_shinfo(skb)->frag_list); 901 } 902 903 static void skb_clone_fraglist(struct sk_buff *skb) 904 { 905 struct sk_buff *list; 906 907 skb_walk_frags(skb, list) 908 skb_get(list); 909 } 910 911 static bool is_pp_page(struct page *page) 912 { 913 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 914 } 915 916 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 917 unsigned int headroom) 918 { 919 #if IS_ENABLED(CONFIG_PAGE_POOL) 920 u32 size, truesize, len, max_head_size, off; 921 struct sk_buff *skb = *pskb, *nskb; 922 int err, i, head_off; 923 void *data; 924 925 /* XDP does not support fraglist so we need to linearize 926 * the skb. 927 */ 928 if (skb_has_frag_list(skb)) 929 return -EOPNOTSUPP; 930 931 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 932 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 933 return -ENOMEM; 934 935 size = min_t(u32, skb->len, max_head_size); 936 truesize = SKB_HEAD_ALIGN(size) + headroom; 937 data = page_pool_dev_alloc_va(pool, &truesize); 938 if (!data) 939 return -ENOMEM; 940 941 nskb = napi_build_skb(data, truesize); 942 if (!nskb) { 943 page_pool_free_va(pool, data, true); 944 return -ENOMEM; 945 } 946 947 skb_reserve(nskb, headroom); 948 skb_copy_header(nskb, skb); 949 skb_mark_for_recycle(nskb); 950 951 err = skb_copy_bits(skb, 0, nskb->data, size); 952 if (err) { 953 consume_skb(nskb); 954 return err; 955 } 956 skb_put(nskb, size); 957 958 head_off = skb_headroom(nskb) - skb_headroom(skb); 959 skb_headers_offset_update(nskb, head_off); 960 961 off = size; 962 len = skb->len - off; 963 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 964 struct page *page; 965 u32 page_off; 966 967 size = min_t(u32, len, PAGE_SIZE); 968 truesize = size; 969 970 page = page_pool_dev_alloc(pool, &page_off, &truesize); 971 if (!page) { 972 consume_skb(nskb); 973 return -ENOMEM; 974 } 975 976 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 977 err = skb_copy_bits(skb, off, page_address(page) + page_off, 978 size); 979 if (err) { 980 consume_skb(nskb); 981 return err; 982 } 983 984 len -= size; 985 off += size; 986 } 987 988 consume_skb(skb); 989 *pskb = nskb; 990 991 return 0; 992 #else 993 return -EOPNOTSUPP; 994 #endif 995 } 996 EXPORT_SYMBOL(skb_pp_cow_data); 997 998 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 999 struct bpf_prog *prog) 1000 { 1001 if (!prog->aux->xdp_has_frags) 1002 return -EINVAL; 1003 1004 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1005 } 1006 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1007 1008 #if IS_ENABLED(CONFIG_PAGE_POOL) 1009 bool napi_pp_put_page(struct page *page, bool napi_safe) 1010 { 1011 bool allow_direct = false; 1012 struct page_pool *pp; 1013 1014 page = compound_head(page); 1015 1016 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 1017 * in order to preserve any existing bits, such as bit 0 for the 1018 * head page of compound page and bit 1 for pfmemalloc page, so 1019 * mask those bits for freeing side when doing below checking, 1020 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1021 * to avoid recycling the pfmemalloc page. 1022 */ 1023 if (unlikely(!is_pp_page(page))) 1024 return false; 1025 1026 pp = page->pp; 1027 1028 /* Allow direct recycle if we have reasons to believe that we are 1029 * in the same context as the consumer would run, so there's 1030 * no possible race. 1031 * __page_pool_put_page() makes sure we're not in hardirq context 1032 * and interrupts are enabled prior to accessing the cache. 1033 */ 1034 if (napi_safe || in_softirq()) { 1035 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 1036 unsigned int cpuid = smp_processor_id(); 1037 1038 allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid; 1039 allow_direct |= READ_ONCE(pp->cpuid) == cpuid; 1040 } 1041 1042 /* Driver set this to memory recycling info. Reset it on recycle. 1043 * This will *not* work for NIC using a split-page memory model. 1044 * The page will be returned to the pool here regardless of the 1045 * 'flipped' fragment being in use or not. 1046 */ 1047 page_pool_put_full_page(pp, page, allow_direct); 1048 1049 return true; 1050 } 1051 EXPORT_SYMBOL(napi_pp_put_page); 1052 #endif 1053 1054 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 1055 { 1056 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1057 return false; 1058 return napi_pp_put_page(virt_to_page(data), napi_safe); 1059 } 1060 1061 /** 1062 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1063 * @skb: page pool aware skb 1064 * 1065 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1066 * intended to gain fragment references only for page pool aware skbs, 1067 * i.e. when skb->pp_recycle is true, and not for fragments in a 1068 * non-pp-recycling skb. It has a fallback to increase references on normal 1069 * pages, as page pool aware skbs may also have normal page fragments. 1070 */ 1071 static int skb_pp_frag_ref(struct sk_buff *skb) 1072 { 1073 struct skb_shared_info *shinfo; 1074 struct page *head_page; 1075 int i; 1076 1077 if (!skb->pp_recycle) 1078 return -EINVAL; 1079 1080 shinfo = skb_shinfo(skb); 1081 1082 for (i = 0; i < shinfo->nr_frags; i++) { 1083 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 1084 if (likely(is_pp_page(head_page))) 1085 page_pool_ref_page(head_page); 1086 else 1087 page_ref_inc(head_page); 1088 } 1089 return 0; 1090 } 1091 1092 static void skb_kfree_head(void *head, unsigned int end_offset) 1093 { 1094 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1095 kmem_cache_free(skb_small_head_cache, head); 1096 else 1097 kfree(head); 1098 } 1099 1100 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 1101 { 1102 unsigned char *head = skb->head; 1103 1104 if (skb->head_frag) { 1105 if (skb_pp_recycle(skb, head, napi_safe)) 1106 return; 1107 skb_free_frag(head); 1108 } else { 1109 skb_kfree_head(head, skb_end_offset(skb)); 1110 } 1111 } 1112 1113 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 1114 bool napi_safe) 1115 { 1116 struct skb_shared_info *shinfo = skb_shinfo(skb); 1117 int i; 1118 1119 if (skb->cloned && 1120 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 1121 &shinfo->dataref)) 1122 goto exit; 1123 1124 if (skb_zcopy(skb)) { 1125 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1126 1127 skb_zcopy_clear(skb, true); 1128 if (skip_unref) 1129 goto free_head; 1130 } 1131 1132 for (i = 0; i < shinfo->nr_frags; i++) 1133 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 1134 1135 free_head: 1136 if (shinfo->frag_list) 1137 kfree_skb_list_reason(shinfo->frag_list, reason); 1138 1139 skb_free_head(skb, napi_safe); 1140 exit: 1141 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1142 * bit is only set on the head though, so in order to avoid races 1143 * while trying to recycle fragments on __skb_frag_unref() we need 1144 * to make one SKB responsible for triggering the recycle path. 1145 * So disable the recycling bit if an SKB is cloned and we have 1146 * additional references to the fragmented part of the SKB. 1147 * Eventually the last SKB will have the recycling bit set and it's 1148 * dataref set to 0, which will trigger the recycling 1149 */ 1150 skb->pp_recycle = 0; 1151 } 1152 1153 /* 1154 * Free an skbuff by memory without cleaning the state. 1155 */ 1156 static void kfree_skbmem(struct sk_buff *skb) 1157 { 1158 struct sk_buff_fclones *fclones; 1159 1160 switch (skb->fclone) { 1161 case SKB_FCLONE_UNAVAILABLE: 1162 kmem_cache_free(skbuff_cache, skb); 1163 return; 1164 1165 case SKB_FCLONE_ORIG: 1166 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1167 1168 /* We usually free the clone (TX completion) before original skb 1169 * This test would have no chance to be true for the clone, 1170 * while here, branch prediction will be good. 1171 */ 1172 if (refcount_read(&fclones->fclone_ref) == 1) 1173 goto fastpath; 1174 break; 1175 1176 default: /* SKB_FCLONE_CLONE */ 1177 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1178 break; 1179 } 1180 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1181 return; 1182 fastpath: 1183 kmem_cache_free(skbuff_fclone_cache, fclones); 1184 } 1185 1186 void skb_release_head_state(struct sk_buff *skb) 1187 { 1188 skb_dst_drop(skb); 1189 if (skb->destructor) { 1190 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1191 skb->destructor(skb); 1192 } 1193 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1194 nf_conntrack_put(skb_nfct(skb)); 1195 #endif 1196 skb_ext_put(skb); 1197 } 1198 1199 /* Free everything but the sk_buff shell. */ 1200 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1201 bool napi_safe) 1202 { 1203 skb_release_head_state(skb); 1204 if (likely(skb->head)) 1205 skb_release_data(skb, reason, napi_safe); 1206 } 1207 1208 /** 1209 * __kfree_skb - private function 1210 * @skb: buffer 1211 * 1212 * Free an sk_buff. Release anything attached to the buffer. 1213 * Clean the state. This is an internal helper function. Users should 1214 * always call kfree_skb 1215 */ 1216 1217 void __kfree_skb(struct sk_buff *skb) 1218 { 1219 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1220 kfree_skbmem(skb); 1221 } 1222 EXPORT_SYMBOL(__kfree_skb); 1223 1224 static __always_inline 1225 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1226 { 1227 if (unlikely(!skb_unref(skb))) 1228 return false; 1229 1230 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1231 u32_get_bits(reason, 1232 SKB_DROP_REASON_SUBSYS_MASK) >= 1233 SKB_DROP_REASON_SUBSYS_NUM); 1234 1235 if (reason == SKB_CONSUMED) 1236 trace_consume_skb(skb, __builtin_return_address(0)); 1237 else 1238 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1239 return true; 1240 } 1241 1242 /** 1243 * kfree_skb_reason - free an sk_buff with special reason 1244 * @skb: buffer to free 1245 * @reason: reason why this skb is dropped 1246 * 1247 * Drop a reference to the buffer and free it if the usage count has 1248 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1249 * tracepoint. 1250 */ 1251 void __fix_address 1252 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1253 { 1254 if (__kfree_skb_reason(skb, reason)) 1255 __kfree_skb(skb); 1256 } 1257 EXPORT_SYMBOL(kfree_skb_reason); 1258 1259 #define KFREE_SKB_BULK_SIZE 16 1260 1261 struct skb_free_array { 1262 unsigned int skb_count; 1263 void *skb_array[KFREE_SKB_BULK_SIZE]; 1264 }; 1265 1266 static void kfree_skb_add_bulk(struct sk_buff *skb, 1267 struct skb_free_array *sa, 1268 enum skb_drop_reason reason) 1269 { 1270 /* if SKB is a clone, don't handle this case */ 1271 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1272 __kfree_skb(skb); 1273 return; 1274 } 1275 1276 skb_release_all(skb, reason, false); 1277 sa->skb_array[sa->skb_count++] = skb; 1278 1279 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1280 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1281 sa->skb_array); 1282 sa->skb_count = 0; 1283 } 1284 } 1285 1286 void __fix_address 1287 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1288 { 1289 struct skb_free_array sa; 1290 1291 sa.skb_count = 0; 1292 1293 while (segs) { 1294 struct sk_buff *next = segs->next; 1295 1296 if (__kfree_skb_reason(segs, reason)) { 1297 skb_poison_list(segs); 1298 kfree_skb_add_bulk(segs, &sa, reason); 1299 } 1300 1301 segs = next; 1302 } 1303 1304 if (sa.skb_count) 1305 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1306 } 1307 EXPORT_SYMBOL(kfree_skb_list_reason); 1308 1309 /* Dump skb information and contents. 1310 * 1311 * Must only be called from net_ratelimit()-ed paths. 1312 * 1313 * Dumps whole packets if full_pkt, only headers otherwise. 1314 */ 1315 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1316 { 1317 struct skb_shared_info *sh = skb_shinfo(skb); 1318 struct net_device *dev = skb->dev; 1319 struct sock *sk = skb->sk; 1320 struct sk_buff *list_skb; 1321 bool has_mac, has_trans; 1322 int headroom, tailroom; 1323 int i, len, seg_len; 1324 1325 if (full_pkt) 1326 len = skb->len; 1327 else 1328 len = min_t(int, skb->len, MAX_HEADER + 128); 1329 1330 headroom = skb_headroom(skb); 1331 tailroom = skb_tailroom(skb); 1332 1333 has_mac = skb_mac_header_was_set(skb); 1334 has_trans = skb_transport_header_was_set(skb); 1335 1336 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1337 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1338 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1339 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1340 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1341 level, skb->len, headroom, skb_headlen(skb), tailroom, 1342 has_mac ? skb->mac_header : -1, 1343 has_mac ? skb_mac_header_len(skb) : -1, 1344 skb->network_header, 1345 has_trans ? skb_network_header_len(skb) : -1, 1346 has_trans ? skb->transport_header : -1, 1347 sh->tx_flags, sh->nr_frags, 1348 sh->gso_size, sh->gso_type, sh->gso_segs, 1349 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1350 skb->csum_valid, skb->csum_level, 1351 skb->hash, skb->sw_hash, skb->l4_hash, 1352 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1353 1354 if (dev) 1355 printk("%sdev name=%s feat=%pNF\n", 1356 level, dev->name, &dev->features); 1357 if (sk) 1358 printk("%ssk family=%hu type=%u proto=%u\n", 1359 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1360 1361 if (full_pkt && headroom) 1362 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1363 16, 1, skb->head, headroom, false); 1364 1365 seg_len = min_t(int, skb_headlen(skb), len); 1366 if (seg_len) 1367 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1368 16, 1, skb->data, seg_len, false); 1369 len -= seg_len; 1370 1371 if (full_pkt && tailroom) 1372 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1373 16, 1, skb_tail_pointer(skb), tailroom, false); 1374 1375 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1376 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1377 u32 p_off, p_len, copied; 1378 struct page *p; 1379 u8 *vaddr; 1380 1381 skb_frag_foreach_page(frag, skb_frag_off(frag), 1382 skb_frag_size(frag), p, p_off, p_len, 1383 copied) { 1384 seg_len = min_t(int, p_len, len); 1385 vaddr = kmap_atomic(p); 1386 print_hex_dump(level, "skb frag: ", 1387 DUMP_PREFIX_OFFSET, 1388 16, 1, vaddr + p_off, seg_len, false); 1389 kunmap_atomic(vaddr); 1390 len -= seg_len; 1391 if (!len) 1392 break; 1393 } 1394 } 1395 1396 if (full_pkt && skb_has_frag_list(skb)) { 1397 printk("skb fraglist:\n"); 1398 skb_walk_frags(skb, list_skb) 1399 skb_dump(level, list_skb, true); 1400 } 1401 } 1402 EXPORT_SYMBOL(skb_dump); 1403 1404 /** 1405 * skb_tx_error - report an sk_buff xmit error 1406 * @skb: buffer that triggered an error 1407 * 1408 * Report xmit error if a device callback is tracking this skb. 1409 * skb must be freed afterwards. 1410 */ 1411 void skb_tx_error(struct sk_buff *skb) 1412 { 1413 if (skb) { 1414 skb_zcopy_downgrade_managed(skb); 1415 skb_zcopy_clear(skb, true); 1416 } 1417 } 1418 EXPORT_SYMBOL(skb_tx_error); 1419 1420 #ifdef CONFIG_TRACEPOINTS 1421 /** 1422 * consume_skb - free an skbuff 1423 * @skb: buffer to free 1424 * 1425 * Drop a ref to the buffer and free it if the usage count has hit zero 1426 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1427 * is being dropped after a failure and notes that 1428 */ 1429 void consume_skb(struct sk_buff *skb) 1430 { 1431 if (!skb_unref(skb)) 1432 return; 1433 1434 trace_consume_skb(skb, __builtin_return_address(0)); 1435 __kfree_skb(skb); 1436 } 1437 EXPORT_SYMBOL(consume_skb); 1438 #endif 1439 1440 /** 1441 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1442 * @skb: buffer to free 1443 * 1444 * Alike consume_skb(), but this variant assumes that this is the last 1445 * skb reference and all the head states have been already dropped 1446 */ 1447 void __consume_stateless_skb(struct sk_buff *skb) 1448 { 1449 trace_consume_skb(skb, __builtin_return_address(0)); 1450 skb_release_data(skb, SKB_CONSUMED, false); 1451 kfree_skbmem(skb); 1452 } 1453 1454 static void napi_skb_cache_put(struct sk_buff *skb) 1455 { 1456 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1457 u32 i; 1458 1459 if (!kasan_mempool_poison_object(skb)) 1460 return; 1461 1462 nc->skb_cache[nc->skb_count++] = skb; 1463 1464 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1465 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1466 kasan_mempool_unpoison_object(nc->skb_cache[i], 1467 kmem_cache_size(skbuff_cache)); 1468 1469 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1470 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1471 nc->skb_count = NAPI_SKB_CACHE_HALF; 1472 } 1473 } 1474 1475 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1476 { 1477 skb_release_all(skb, reason, true); 1478 napi_skb_cache_put(skb); 1479 } 1480 1481 void napi_skb_free_stolen_head(struct sk_buff *skb) 1482 { 1483 if (unlikely(skb->slow_gro)) { 1484 nf_reset_ct(skb); 1485 skb_dst_drop(skb); 1486 skb_ext_put(skb); 1487 skb_orphan(skb); 1488 skb->slow_gro = 0; 1489 } 1490 napi_skb_cache_put(skb); 1491 } 1492 1493 void napi_consume_skb(struct sk_buff *skb, int budget) 1494 { 1495 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1496 if (unlikely(!budget)) { 1497 dev_consume_skb_any(skb); 1498 return; 1499 } 1500 1501 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1502 1503 if (!skb_unref(skb)) 1504 return; 1505 1506 /* if reaching here SKB is ready to free */ 1507 trace_consume_skb(skb, __builtin_return_address(0)); 1508 1509 /* if SKB is a clone, don't handle this case */ 1510 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1511 __kfree_skb(skb); 1512 return; 1513 } 1514 1515 skb_release_all(skb, SKB_CONSUMED, !!budget); 1516 napi_skb_cache_put(skb); 1517 } 1518 EXPORT_SYMBOL(napi_consume_skb); 1519 1520 /* Make sure a field is contained by headers group */ 1521 #define CHECK_SKB_FIELD(field) \ 1522 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1523 offsetof(struct sk_buff, headers.field)); \ 1524 1525 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1526 { 1527 new->tstamp = old->tstamp; 1528 /* We do not copy old->sk */ 1529 new->dev = old->dev; 1530 memcpy(new->cb, old->cb, sizeof(old->cb)); 1531 skb_dst_copy(new, old); 1532 __skb_ext_copy(new, old); 1533 __nf_copy(new, old, false); 1534 1535 /* Note : this field could be in the headers group. 1536 * It is not yet because we do not want to have a 16 bit hole 1537 */ 1538 new->queue_mapping = old->queue_mapping; 1539 1540 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1541 CHECK_SKB_FIELD(protocol); 1542 CHECK_SKB_FIELD(csum); 1543 CHECK_SKB_FIELD(hash); 1544 CHECK_SKB_FIELD(priority); 1545 CHECK_SKB_FIELD(skb_iif); 1546 CHECK_SKB_FIELD(vlan_proto); 1547 CHECK_SKB_FIELD(vlan_tci); 1548 CHECK_SKB_FIELD(transport_header); 1549 CHECK_SKB_FIELD(network_header); 1550 CHECK_SKB_FIELD(mac_header); 1551 CHECK_SKB_FIELD(inner_protocol); 1552 CHECK_SKB_FIELD(inner_transport_header); 1553 CHECK_SKB_FIELD(inner_network_header); 1554 CHECK_SKB_FIELD(inner_mac_header); 1555 CHECK_SKB_FIELD(mark); 1556 #ifdef CONFIG_NETWORK_SECMARK 1557 CHECK_SKB_FIELD(secmark); 1558 #endif 1559 #ifdef CONFIG_NET_RX_BUSY_POLL 1560 CHECK_SKB_FIELD(napi_id); 1561 #endif 1562 CHECK_SKB_FIELD(alloc_cpu); 1563 #ifdef CONFIG_XPS 1564 CHECK_SKB_FIELD(sender_cpu); 1565 #endif 1566 #ifdef CONFIG_NET_SCHED 1567 CHECK_SKB_FIELD(tc_index); 1568 #endif 1569 1570 } 1571 1572 /* 1573 * You should not add any new code to this function. Add it to 1574 * __copy_skb_header above instead. 1575 */ 1576 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1577 { 1578 #define C(x) n->x = skb->x 1579 1580 n->next = n->prev = NULL; 1581 n->sk = NULL; 1582 __copy_skb_header(n, skb); 1583 1584 C(len); 1585 C(data_len); 1586 C(mac_len); 1587 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1588 n->cloned = 1; 1589 n->nohdr = 0; 1590 n->peeked = 0; 1591 C(pfmemalloc); 1592 C(pp_recycle); 1593 n->destructor = NULL; 1594 C(tail); 1595 C(end); 1596 C(head); 1597 C(head_frag); 1598 C(data); 1599 C(truesize); 1600 refcount_set(&n->users, 1); 1601 1602 atomic_inc(&(skb_shinfo(skb)->dataref)); 1603 skb->cloned = 1; 1604 1605 return n; 1606 #undef C 1607 } 1608 1609 /** 1610 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1611 * @first: first sk_buff of the msg 1612 */ 1613 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1614 { 1615 struct sk_buff *n; 1616 1617 n = alloc_skb(0, GFP_ATOMIC); 1618 if (!n) 1619 return NULL; 1620 1621 n->len = first->len; 1622 n->data_len = first->len; 1623 n->truesize = first->truesize; 1624 1625 skb_shinfo(n)->frag_list = first; 1626 1627 __copy_skb_header(n, first); 1628 n->destructor = NULL; 1629 1630 return n; 1631 } 1632 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1633 1634 /** 1635 * skb_morph - morph one skb into another 1636 * @dst: the skb to receive the contents 1637 * @src: the skb to supply the contents 1638 * 1639 * This is identical to skb_clone except that the target skb is 1640 * supplied by the user. 1641 * 1642 * The target skb is returned upon exit. 1643 */ 1644 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1645 { 1646 skb_release_all(dst, SKB_CONSUMED, false); 1647 return __skb_clone(dst, src); 1648 } 1649 EXPORT_SYMBOL_GPL(skb_morph); 1650 1651 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1652 { 1653 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1654 struct user_struct *user; 1655 1656 if (capable(CAP_IPC_LOCK) || !size) 1657 return 0; 1658 1659 rlim = rlimit(RLIMIT_MEMLOCK); 1660 if (rlim == RLIM_INFINITY) 1661 return 0; 1662 1663 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1664 max_pg = rlim >> PAGE_SHIFT; 1665 user = mmp->user ? : current_user(); 1666 1667 old_pg = atomic_long_read(&user->locked_vm); 1668 do { 1669 new_pg = old_pg + num_pg; 1670 if (new_pg > max_pg) 1671 return -ENOBUFS; 1672 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1673 1674 if (!mmp->user) { 1675 mmp->user = get_uid(user); 1676 mmp->num_pg = num_pg; 1677 } else { 1678 mmp->num_pg += num_pg; 1679 } 1680 1681 return 0; 1682 } 1683 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1684 1685 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1686 { 1687 if (mmp->user) { 1688 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1689 free_uid(mmp->user); 1690 } 1691 } 1692 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1693 1694 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1695 { 1696 struct ubuf_info_msgzc *uarg; 1697 struct sk_buff *skb; 1698 1699 WARN_ON_ONCE(!in_task()); 1700 1701 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1702 if (!skb) 1703 return NULL; 1704 1705 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1706 uarg = (void *)skb->cb; 1707 uarg->mmp.user = NULL; 1708 1709 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1710 kfree_skb(skb); 1711 return NULL; 1712 } 1713 1714 uarg->ubuf.callback = msg_zerocopy_callback; 1715 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1716 uarg->len = 1; 1717 uarg->bytelen = size; 1718 uarg->zerocopy = 1; 1719 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1720 refcount_set(&uarg->ubuf.refcnt, 1); 1721 sock_hold(sk); 1722 1723 return &uarg->ubuf; 1724 } 1725 1726 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1727 { 1728 return container_of((void *)uarg, struct sk_buff, cb); 1729 } 1730 1731 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1732 struct ubuf_info *uarg) 1733 { 1734 if (uarg) { 1735 struct ubuf_info_msgzc *uarg_zc; 1736 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1737 u32 bytelen, next; 1738 1739 /* there might be non MSG_ZEROCOPY users */ 1740 if (uarg->callback != msg_zerocopy_callback) 1741 return NULL; 1742 1743 /* realloc only when socket is locked (TCP, UDP cork), 1744 * so uarg->len and sk_zckey access is serialized 1745 */ 1746 if (!sock_owned_by_user(sk)) { 1747 WARN_ON_ONCE(1); 1748 return NULL; 1749 } 1750 1751 uarg_zc = uarg_to_msgzc(uarg); 1752 bytelen = uarg_zc->bytelen + size; 1753 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1754 /* TCP can create new skb to attach new uarg */ 1755 if (sk->sk_type == SOCK_STREAM) 1756 goto new_alloc; 1757 return NULL; 1758 } 1759 1760 next = (u32)atomic_read(&sk->sk_zckey); 1761 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1762 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1763 return NULL; 1764 uarg_zc->len++; 1765 uarg_zc->bytelen = bytelen; 1766 atomic_set(&sk->sk_zckey, ++next); 1767 1768 /* no extra ref when appending to datagram (MSG_MORE) */ 1769 if (sk->sk_type == SOCK_STREAM) 1770 net_zcopy_get(uarg); 1771 1772 return uarg; 1773 } 1774 } 1775 1776 new_alloc: 1777 return msg_zerocopy_alloc(sk, size); 1778 } 1779 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1780 1781 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1782 { 1783 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1784 u32 old_lo, old_hi; 1785 u64 sum_len; 1786 1787 old_lo = serr->ee.ee_info; 1788 old_hi = serr->ee.ee_data; 1789 sum_len = old_hi - old_lo + 1ULL + len; 1790 1791 if (sum_len >= (1ULL << 32)) 1792 return false; 1793 1794 if (lo != old_hi + 1) 1795 return false; 1796 1797 serr->ee.ee_data += len; 1798 return true; 1799 } 1800 1801 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1802 { 1803 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1804 struct sock_exterr_skb *serr; 1805 struct sock *sk = skb->sk; 1806 struct sk_buff_head *q; 1807 unsigned long flags; 1808 bool is_zerocopy; 1809 u32 lo, hi; 1810 u16 len; 1811 1812 mm_unaccount_pinned_pages(&uarg->mmp); 1813 1814 /* if !len, there was only 1 call, and it was aborted 1815 * so do not queue a completion notification 1816 */ 1817 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1818 goto release; 1819 1820 len = uarg->len; 1821 lo = uarg->id; 1822 hi = uarg->id + len - 1; 1823 is_zerocopy = uarg->zerocopy; 1824 1825 serr = SKB_EXT_ERR(skb); 1826 memset(serr, 0, sizeof(*serr)); 1827 serr->ee.ee_errno = 0; 1828 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1829 serr->ee.ee_data = hi; 1830 serr->ee.ee_info = lo; 1831 if (!is_zerocopy) 1832 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1833 1834 q = &sk->sk_error_queue; 1835 spin_lock_irqsave(&q->lock, flags); 1836 tail = skb_peek_tail(q); 1837 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1838 !skb_zerocopy_notify_extend(tail, lo, len)) { 1839 __skb_queue_tail(q, skb); 1840 skb = NULL; 1841 } 1842 spin_unlock_irqrestore(&q->lock, flags); 1843 1844 sk_error_report(sk); 1845 1846 release: 1847 consume_skb(skb); 1848 sock_put(sk); 1849 } 1850 1851 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1852 bool success) 1853 { 1854 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1855 1856 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1857 1858 if (refcount_dec_and_test(&uarg->refcnt)) 1859 __msg_zerocopy_callback(uarg_zc); 1860 } 1861 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1862 1863 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1864 { 1865 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1866 1867 atomic_dec(&sk->sk_zckey); 1868 uarg_to_msgzc(uarg)->len--; 1869 1870 if (have_uref) 1871 msg_zerocopy_callback(NULL, uarg, true); 1872 } 1873 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1874 1875 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1876 struct msghdr *msg, int len, 1877 struct ubuf_info *uarg) 1878 { 1879 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1880 int err, orig_len = skb->len; 1881 1882 /* An skb can only point to one uarg. This edge case happens when 1883 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1884 */ 1885 if (orig_uarg && uarg != orig_uarg) 1886 return -EEXIST; 1887 1888 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1889 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1890 struct sock *save_sk = skb->sk; 1891 1892 /* Streams do not free skb on error. Reset to prev state. */ 1893 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1894 skb->sk = sk; 1895 ___pskb_trim(skb, orig_len); 1896 skb->sk = save_sk; 1897 return err; 1898 } 1899 1900 skb_zcopy_set(skb, uarg, NULL); 1901 return skb->len - orig_len; 1902 } 1903 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1904 1905 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1906 { 1907 int i; 1908 1909 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1910 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1911 skb_frag_ref(skb, i); 1912 } 1913 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1914 1915 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1916 gfp_t gfp_mask) 1917 { 1918 if (skb_zcopy(orig)) { 1919 if (skb_zcopy(nskb)) { 1920 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1921 if (!gfp_mask) { 1922 WARN_ON_ONCE(1); 1923 return -ENOMEM; 1924 } 1925 if (skb_uarg(nskb) == skb_uarg(orig)) 1926 return 0; 1927 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1928 return -EIO; 1929 } 1930 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1931 } 1932 return 0; 1933 } 1934 1935 /** 1936 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1937 * @skb: the skb to modify 1938 * @gfp_mask: allocation priority 1939 * 1940 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1941 * It will copy all frags into kernel and drop the reference 1942 * to userspace pages. 1943 * 1944 * If this function is called from an interrupt gfp_mask() must be 1945 * %GFP_ATOMIC. 1946 * 1947 * Returns 0 on success or a negative error code on failure 1948 * to allocate kernel memory to copy to. 1949 */ 1950 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1951 { 1952 int num_frags = skb_shinfo(skb)->nr_frags; 1953 struct page *page, *head = NULL; 1954 int i, order, psize, new_frags; 1955 u32 d_off; 1956 1957 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1958 return -EINVAL; 1959 1960 if (!num_frags) 1961 goto release; 1962 1963 /* We might have to allocate high order pages, so compute what minimum 1964 * page order is needed. 1965 */ 1966 order = 0; 1967 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1968 order++; 1969 psize = (PAGE_SIZE << order); 1970 1971 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1972 for (i = 0; i < new_frags; i++) { 1973 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1974 if (!page) { 1975 while (head) { 1976 struct page *next = (struct page *)page_private(head); 1977 put_page(head); 1978 head = next; 1979 } 1980 return -ENOMEM; 1981 } 1982 set_page_private(page, (unsigned long)head); 1983 head = page; 1984 } 1985 1986 page = head; 1987 d_off = 0; 1988 for (i = 0; i < num_frags; i++) { 1989 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1990 u32 p_off, p_len, copied; 1991 struct page *p; 1992 u8 *vaddr; 1993 1994 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1995 p, p_off, p_len, copied) { 1996 u32 copy, done = 0; 1997 vaddr = kmap_atomic(p); 1998 1999 while (done < p_len) { 2000 if (d_off == psize) { 2001 d_off = 0; 2002 page = (struct page *)page_private(page); 2003 } 2004 copy = min_t(u32, psize - d_off, p_len - done); 2005 memcpy(page_address(page) + d_off, 2006 vaddr + p_off + done, copy); 2007 done += copy; 2008 d_off += copy; 2009 } 2010 kunmap_atomic(vaddr); 2011 } 2012 } 2013 2014 /* skb frags release userspace buffers */ 2015 for (i = 0; i < num_frags; i++) 2016 skb_frag_unref(skb, i); 2017 2018 /* skb frags point to kernel buffers */ 2019 for (i = 0; i < new_frags - 1; i++) { 2020 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2021 head = (struct page *)page_private(head); 2022 } 2023 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2024 d_off); 2025 skb_shinfo(skb)->nr_frags = new_frags; 2026 2027 release: 2028 skb_zcopy_clear(skb, false); 2029 return 0; 2030 } 2031 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2032 2033 /** 2034 * skb_clone - duplicate an sk_buff 2035 * @skb: buffer to clone 2036 * @gfp_mask: allocation priority 2037 * 2038 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2039 * copies share the same packet data but not structure. The new 2040 * buffer has a reference count of 1. If the allocation fails the 2041 * function returns %NULL otherwise the new buffer is returned. 2042 * 2043 * If this function is called from an interrupt gfp_mask() must be 2044 * %GFP_ATOMIC. 2045 */ 2046 2047 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2048 { 2049 struct sk_buff_fclones *fclones = container_of(skb, 2050 struct sk_buff_fclones, 2051 skb1); 2052 struct sk_buff *n; 2053 2054 if (skb_orphan_frags(skb, gfp_mask)) 2055 return NULL; 2056 2057 if (skb->fclone == SKB_FCLONE_ORIG && 2058 refcount_read(&fclones->fclone_ref) == 1) { 2059 n = &fclones->skb2; 2060 refcount_set(&fclones->fclone_ref, 2); 2061 n->fclone = SKB_FCLONE_CLONE; 2062 } else { 2063 if (skb_pfmemalloc(skb)) 2064 gfp_mask |= __GFP_MEMALLOC; 2065 2066 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 2067 if (!n) 2068 return NULL; 2069 2070 n->fclone = SKB_FCLONE_UNAVAILABLE; 2071 } 2072 2073 return __skb_clone(n, skb); 2074 } 2075 EXPORT_SYMBOL(skb_clone); 2076 2077 void skb_headers_offset_update(struct sk_buff *skb, int off) 2078 { 2079 /* Only adjust this if it actually is csum_start rather than csum */ 2080 if (skb->ip_summed == CHECKSUM_PARTIAL) 2081 skb->csum_start += off; 2082 /* {transport,network,mac}_header and tail are relative to skb->head */ 2083 skb->transport_header += off; 2084 skb->network_header += off; 2085 if (skb_mac_header_was_set(skb)) 2086 skb->mac_header += off; 2087 skb->inner_transport_header += off; 2088 skb->inner_network_header += off; 2089 skb->inner_mac_header += off; 2090 } 2091 EXPORT_SYMBOL(skb_headers_offset_update); 2092 2093 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2094 { 2095 __copy_skb_header(new, old); 2096 2097 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2098 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2099 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2100 } 2101 EXPORT_SYMBOL(skb_copy_header); 2102 2103 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2104 { 2105 if (skb_pfmemalloc(skb)) 2106 return SKB_ALLOC_RX; 2107 return 0; 2108 } 2109 2110 /** 2111 * skb_copy - create private copy of an sk_buff 2112 * @skb: buffer to copy 2113 * @gfp_mask: allocation priority 2114 * 2115 * Make a copy of both an &sk_buff and its data. This is used when the 2116 * caller wishes to modify the data and needs a private copy of the 2117 * data to alter. Returns %NULL on failure or the pointer to the buffer 2118 * on success. The returned buffer has a reference count of 1. 2119 * 2120 * As by-product this function converts non-linear &sk_buff to linear 2121 * one, so that &sk_buff becomes completely private and caller is allowed 2122 * to modify all the data of returned buffer. This means that this 2123 * function is not recommended for use in circumstances when only 2124 * header is going to be modified. Use pskb_copy() instead. 2125 */ 2126 2127 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2128 { 2129 int headerlen = skb_headroom(skb); 2130 unsigned int size = skb_end_offset(skb) + skb->data_len; 2131 struct sk_buff *n = __alloc_skb(size, gfp_mask, 2132 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2133 2134 if (!n) 2135 return NULL; 2136 2137 /* Set the data pointer */ 2138 skb_reserve(n, headerlen); 2139 /* Set the tail pointer and length */ 2140 skb_put(n, skb->len); 2141 2142 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2143 2144 skb_copy_header(n, skb); 2145 return n; 2146 } 2147 EXPORT_SYMBOL(skb_copy); 2148 2149 /** 2150 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2151 * @skb: buffer to copy 2152 * @headroom: headroom of new skb 2153 * @gfp_mask: allocation priority 2154 * @fclone: if true allocate the copy of the skb from the fclone 2155 * cache instead of the head cache; it is recommended to set this 2156 * to true for the cases where the copy will likely be cloned 2157 * 2158 * Make a copy of both an &sk_buff and part of its data, located 2159 * in header. Fragmented data remain shared. This is used when 2160 * the caller wishes to modify only header of &sk_buff and needs 2161 * private copy of the header to alter. Returns %NULL on failure 2162 * or the pointer to the buffer on success. 2163 * The returned buffer has a reference count of 1. 2164 */ 2165 2166 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2167 gfp_t gfp_mask, bool fclone) 2168 { 2169 unsigned int size = skb_headlen(skb) + headroom; 2170 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2171 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2172 2173 if (!n) 2174 goto out; 2175 2176 /* Set the data pointer */ 2177 skb_reserve(n, headroom); 2178 /* Set the tail pointer and length */ 2179 skb_put(n, skb_headlen(skb)); 2180 /* Copy the bytes */ 2181 skb_copy_from_linear_data(skb, n->data, n->len); 2182 2183 n->truesize += skb->data_len; 2184 n->data_len = skb->data_len; 2185 n->len = skb->len; 2186 2187 if (skb_shinfo(skb)->nr_frags) { 2188 int i; 2189 2190 if (skb_orphan_frags(skb, gfp_mask) || 2191 skb_zerocopy_clone(n, skb, gfp_mask)) { 2192 kfree_skb(n); 2193 n = NULL; 2194 goto out; 2195 } 2196 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2197 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2198 skb_frag_ref(skb, i); 2199 } 2200 skb_shinfo(n)->nr_frags = i; 2201 } 2202 2203 if (skb_has_frag_list(skb)) { 2204 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2205 skb_clone_fraglist(n); 2206 } 2207 2208 skb_copy_header(n, skb); 2209 out: 2210 return n; 2211 } 2212 EXPORT_SYMBOL(__pskb_copy_fclone); 2213 2214 /** 2215 * pskb_expand_head - reallocate header of &sk_buff 2216 * @skb: buffer to reallocate 2217 * @nhead: room to add at head 2218 * @ntail: room to add at tail 2219 * @gfp_mask: allocation priority 2220 * 2221 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2222 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2223 * reference count of 1. Returns zero in the case of success or error, 2224 * if expansion failed. In the last case, &sk_buff is not changed. 2225 * 2226 * All the pointers pointing into skb header may change and must be 2227 * reloaded after call to this function. 2228 */ 2229 2230 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2231 gfp_t gfp_mask) 2232 { 2233 unsigned int osize = skb_end_offset(skb); 2234 unsigned int size = osize + nhead + ntail; 2235 long off; 2236 u8 *data; 2237 int i; 2238 2239 BUG_ON(nhead < 0); 2240 2241 BUG_ON(skb_shared(skb)); 2242 2243 skb_zcopy_downgrade_managed(skb); 2244 2245 if (skb_pfmemalloc(skb)) 2246 gfp_mask |= __GFP_MEMALLOC; 2247 2248 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2249 if (!data) 2250 goto nodata; 2251 size = SKB_WITH_OVERHEAD(size); 2252 2253 /* Copy only real data... and, alas, header. This should be 2254 * optimized for the cases when header is void. 2255 */ 2256 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2257 2258 memcpy((struct skb_shared_info *)(data + size), 2259 skb_shinfo(skb), 2260 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2261 2262 /* 2263 * if shinfo is shared we must drop the old head gracefully, but if it 2264 * is not we can just drop the old head and let the existing refcount 2265 * be since all we did is relocate the values 2266 */ 2267 if (skb_cloned(skb)) { 2268 if (skb_orphan_frags(skb, gfp_mask)) 2269 goto nofrags; 2270 if (skb_zcopy(skb)) 2271 refcount_inc(&skb_uarg(skb)->refcnt); 2272 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2273 skb_frag_ref(skb, i); 2274 2275 if (skb_has_frag_list(skb)) 2276 skb_clone_fraglist(skb); 2277 2278 skb_release_data(skb, SKB_CONSUMED, false); 2279 } else { 2280 skb_free_head(skb, false); 2281 } 2282 off = (data + nhead) - skb->head; 2283 2284 skb->head = data; 2285 skb->head_frag = 0; 2286 skb->data += off; 2287 2288 skb_set_end_offset(skb, size); 2289 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2290 off = nhead; 2291 #endif 2292 skb->tail += off; 2293 skb_headers_offset_update(skb, nhead); 2294 skb->cloned = 0; 2295 skb->hdr_len = 0; 2296 skb->nohdr = 0; 2297 atomic_set(&skb_shinfo(skb)->dataref, 1); 2298 2299 skb_metadata_clear(skb); 2300 2301 /* It is not generally safe to change skb->truesize. 2302 * For the moment, we really care of rx path, or 2303 * when skb is orphaned (not attached to a socket). 2304 */ 2305 if (!skb->sk || skb->destructor == sock_edemux) 2306 skb->truesize += size - osize; 2307 2308 return 0; 2309 2310 nofrags: 2311 skb_kfree_head(data, size); 2312 nodata: 2313 return -ENOMEM; 2314 } 2315 EXPORT_SYMBOL(pskb_expand_head); 2316 2317 /* Make private copy of skb with writable head and some headroom */ 2318 2319 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2320 { 2321 struct sk_buff *skb2; 2322 int delta = headroom - skb_headroom(skb); 2323 2324 if (delta <= 0) 2325 skb2 = pskb_copy(skb, GFP_ATOMIC); 2326 else { 2327 skb2 = skb_clone(skb, GFP_ATOMIC); 2328 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2329 GFP_ATOMIC)) { 2330 kfree_skb(skb2); 2331 skb2 = NULL; 2332 } 2333 } 2334 return skb2; 2335 } 2336 EXPORT_SYMBOL(skb_realloc_headroom); 2337 2338 /* Note: We plan to rework this in linux-6.4 */ 2339 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2340 { 2341 unsigned int saved_end_offset, saved_truesize; 2342 struct skb_shared_info *shinfo; 2343 int res; 2344 2345 saved_end_offset = skb_end_offset(skb); 2346 saved_truesize = skb->truesize; 2347 2348 res = pskb_expand_head(skb, 0, 0, pri); 2349 if (res) 2350 return res; 2351 2352 skb->truesize = saved_truesize; 2353 2354 if (likely(skb_end_offset(skb) == saved_end_offset)) 2355 return 0; 2356 2357 /* We can not change skb->end if the original or new value 2358 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2359 */ 2360 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2361 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2362 /* We think this path should not be taken. 2363 * Add a temporary trace to warn us just in case. 2364 */ 2365 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2366 saved_end_offset, skb_end_offset(skb)); 2367 WARN_ON_ONCE(1); 2368 return 0; 2369 } 2370 2371 shinfo = skb_shinfo(skb); 2372 2373 /* We are about to change back skb->end, 2374 * we need to move skb_shinfo() to its new location. 2375 */ 2376 memmove(skb->head + saved_end_offset, 2377 shinfo, 2378 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2379 2380 skb_set_end_offset(skb, saved_end_offset); 2381 2382 return 0; 2383 } 2384 2385 /** 2386 * skb_expand_head - reallocate header of &sk_buff 2387 * @skb: buffer to reallocate 2388 * @headroom: needed headroom 2389 * 2390 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2391 * if possible; copies skb->sk to new skb as needed 2392 * and frees original skb in case of failures. 2393 * 2394 * It expect increased headroom and generates warning otherwise. 2395 */ 2396 2397 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2398 { 2399 int delta = headroom - skb_headroom(skb); 2400 int osize = skb_end_offset(skb); 2401 struct sock *sk = skb->sk; 2402 2403 if (WARN_ONCE(delta <= 0, 2404 "%s is expecting an increase in the headroom", __func__)) 2405 return skb; 2406 2407 delta = SKB_DATA_ALIGN(delta); 2408 /* pskb_expand_head() might crash, if skb is shared. */ 2409 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2410 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2411 2412 if (unlikely(!nskb)) 2413 goto fail; 2414 2415 if (sk) 2416 skb_set_owner_w(nskb, sk); 2417 consume_skb(skb); 2418 skb = nskb; 2419 } 2420 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2421 goto fail; 2422 2423 if (sk && is_skb_wmem(skb)) { 2424 delta = skb_end_offset(skb) - osize; 2425 refcount_add(delta, &sk->sk_wmem_alloc); 2426 skb->truesize += delta; 2427 } 2428 return skb; 2429 2430 fail: 2431 kfree_skb(skb); 2432 return NULL; 2433 } 2434 EXPORT_SYMBOL(skb_expand_head); 2435 2436 /** 2437 * skb_copy_expand - copy and expand sk_buff 2438 * @skb: buffer to copy 2439 * @newheadroom: new free bytes at head 2440 * @newtailroom: new free bytes at tail 2441 * @gfp_mask: allocation priority 2442 * 2443 * Make a copy of both an &sk_buff and its data and while doing so 2444 * allocate additional space. 2445 * 2446 * This is used when the caller wishes to modify the data and needs a 2447 * private copy of the data to alter as well as more space for new fields. 2448 * Returns %NULL on failure or the pointer to the buffer 2449 * on success. The returned buffer has a reference count of 1. 2450 * 2451 * You must pass %GFP_ATOMIC as the allocation priority if this function 2452 * is called from an interrupt. 2453 */ 2454 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2455 int newheadroom, int newtailroom, 2456 gfp_t gfp_mask) 2457 { 2458 /* 2459 * Allocate the copy buffer 2460 */ 2461 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2462 gfp_mask, skb_alloc_rx_flag(skb), 2463 NUMA_NO_NODE); 2464 int oldheadroom = skb_headroom(skb); 2465 int head_copy_len, head_copy_off; 2466 2467 if (!n) 2468 return NULL; 2469 2470 skb_reserve(n, newheadroom); 2471 2472 /* Set the tail pointer and length */ 2473 skb_put(n, skb->len); 2474 2475 head_copy_len = oldheadroom; 2476 head_copy_off = 0; 2477 if (newheadroom <= head_copy_len) 2478 head_copy_len = newheadroom; 2479 else 2480 head_copy_off = newheadroom - head_copy_len; 2481 2482 /* Copy the linear header and data. */ 2483 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2484 skb->len + head_copy_len)); 2485 2486 skb_copy_header(n, skb); 2487 2488 skb_headers_offset_update(n, newheadroom - oldheadroom); 2489 2490 return n; 2491 } 2492 EXPORT_SYMBOL(skb_copy_expand); 2493 2494 /** 2495 * __skb_pad - zero pad the tail of an skb 2496 * @skb: buffer to pad 2497 * @pad: space to pad 2498 * @free_on_error: free buffer on error 2499 * 2500 * Ensure that a buffer is followed by a padding area that is zero 2501 * filled. Used by network drivers which may DMA or transfer data 2502 * beyond the buffer end onto the wire. 2503 * 2504 * May return error in out of memory cases. The skb is freed on error 2505 * if @free_on_error is true. 2506 */ 2507 2508 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2509 { 2510 int err; 2511 int ntail; 2512 2513 /* If the skbuff is non linear tailroom is always zero.. */ 2514 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2515 memset(skb->data+skb->len, 0, pad); 2516 return 0; 2517 } 2518 2519 ntail = skb->data_len + pad - (skb->end - skb->tail); 2520 if (likely(skb_cloned(skb) || ntail > 0)) { 2521 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2522 if (unlikely(err)) 2523 goto free_skb; 2524 } 2525 2526 /* FIXME: The use of this function with non-linear skb's really needs 2527 * to be audited. 2528 */ 2529 err = skb_linearize(skb); 2530 if (unlikely(err)) 2531 goto free_skb; 2532 2533 memset(skb->data + skb->len, 0, pad); 2534 return 0; 2535 2536 free_skb: 2537 if (free_on_error) 2538 kfree_skb(skb); 2539 return err; 2540 } 2541 EXPORT_SYMBOL(__skb_pad); 2542 2543 /** 2544 * pskb_put - add data to the tail of a potentially fragmented buffer 2545 * @skb: start of the buffer to use 2546 * @tail: tail fragment of the buffer to use 2547 * @len: amount of data to add 2548 * 2549 * This function extends the used data area of the potentially 2550 * fragmented buffer. @tail must be the last fragment of @skb -- or 2551 * @skb itself. If this would exceed the total buffer size the kernel 2552 * will panic. A pointer to the first byte of the extra data is 2553 * returned. 2554 */ 2555 2556 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2557 { 2558 if (tail != skb) { 2559 skb->data_len += len; 2560 skb->len += len; 2561 } 2562 return skb_put(tail, len); 2563 } 2564 EXPORT_SYMBOL_GPL(pskb_put); 2565 2566 /** 2567 * skb_put - add data to a buffer 2568 * @skb: buffer to use 2569 * @len: amount of data to add 2570 * 2571 * This function extends the used data area of the buffer. If this would 2572 * exceed the total buffer size the kernel will panic. A pointer to the 2573 * first byte of the extra data is returned. 2574 */ 2575 void *skb_put(struct sk_buff *skb, unsigned int len) 2576 { 2577 void *tmp = skb_tail_pointer(skb); 2578 SKB_LINEAR_ASSERT(skb); 2579 skb->tail += len; 2580 skb->len += len; 2581 if (unlikely(skb->tail > skb->end)) 2582 skb_over_panic(skb, len, __builtin_return_address(0)); 2583 return tmp; 2584 } 2585 EXPORT_SYMBOL(skb_put); 2586 2587 /** 2588 * skb_push - add data to the start of a buffer 2589 * @skb: buffer to use 2590 * @len: amount of data to add 2591 * 2592 * This function extends the used data area of the buffer at the buffer 2593 * start. If this would exceed the total buffer headroom the kernel will 2594 * panic. A pointer to the first byte of the extra data is returned. 2595 */ 2596 void *skb_push(struct sk_buff *skb, unsigned int len) 2597 { 2598 skb->data -= len; 2599 skb->len += len; 2600 if (unlikely(skb->data < skb->head)) 2601 skb_under_panic(skb, len, __builtin_return_address(0)); 2602 return skb->data; 2603 } 2604 EXPORT_SYMBOL(skb_push); 2605 2606 /** 2607 * skb_pull - remove data from the start of a buffer 2608 * @skb: buffer to use 2609 * @len: amount of data to remove 2610 * 2611 * This function removes data from the start of a buffer, returning 2612 * the memory to the headroom. A pointer to the next data in the buffer 2613 * is returned. Once the data has been pulled future pushes will overwrite 2614 * the old data. 2615 */ 2616 void *skb_pull(struct sk_buff *skb, unsigned int len) 2617 { 2618 return skb_pull_inline(skb, len); 2619 } 2620 EXPORT_SYMBOL(skb_pull); 2621 2622 /** 2623 * skb_pull_data - remove data from the start of a buffer returning its 2624 * original position. 2625 * @skb: buffer to use 2626 * @len: amount of data to remove 2627 * 2628 * This function removes data from the start of a buffer, returning 2629 * the memory to the headroom. A pointer to the original data in the buffer 2630 * is returned after checking if there is enough data to pull. Once the 2631 * data has been pulled future pushes will overwrite the old data. 2632 */ 2633 void *skb_pull_data(struct sk_buff *skb, size_t len) 2634 { 2635 void *data = skb->data; 2636 2637 if (skb->len < len) 2638 return NULL; 2639 2640 skb_pull(skb, len); 2641 2642 return data; 2643 } 2644 EXPORT_SYMBOL(skb_pull_data); 2645 2646 /** 2647 * skb_trim - remove end from a buffer 2648 * @skb: buffer to alter 2649 * @len: new length 2650 * 2651 * Cut the length of a buffer down by removing data from the tail. If 2652 * the buffer is already under the length specified it is not modified. 2653 * The skb must be linear. 2654 */ 2655 void skb_trim(struct sk_buff *skb, unsigned int len) 2656 { 2657 if (skb->len > len) 2658 __skb_trim(skb, len); 2659 } 2660 EXPORT_SYMBOL(skb_trim); 2661 2662 /* Trims skb to length len. It can change skb pointers. 2663 */ 2664 2665 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2666 { 2667 struct sk_buff **fragp; 2668 struct sk_buff *frag; 2669 int offset = skb_headlen(skb); 2670 int nfrags = skb_shinfo(skb)->nr_frags; 2671 int i; 2672 int err; 2673 2674 if (skb_cloned(skb) && 2675 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2676 return err; 2677 2678 i = 0; 2679 if (offset >= len) 2680 goto drop_pages; 2681 2682 for (; i < nfrags; i++) { 2683 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2684 2685 if (end < len) { 2686 offset = end; 2687 continue; 2688 } 2689 2690 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2691 2692 drop_pages: 2693 skb_shinfo(skb)->nr_frags = i; 2694 2695 for (; i < nfrags; i++) 2696 skb_frag_unref(skb, i); 2697 2698 if (skb_has_frag_list(skb)) 2699 skb_drop_fraglist(skb); 2700 goto done; 2701 } 2702 2703 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2704 fragp = &frag->next) { 2705 int end = offset + frag->len; 2706 2707 if (skb_shared(frag)) { 2708 struct sk_buff *nfrag; 2709 2710 nfrag = skb_clone(frag, GFP_ATOMIC); 2711 if (unlikely(!nfrag)) 2712 return -ENOMEM; 2713 2714 nfrag->next = frag->next; 2715 consume_skb(frag); 2716 frag = nfrag; 2717 *fragp = frag; 2718 } 2719 2720 if (end < len) { 2721 offset = end; 2722 continue; 2723 } 2724 2725 if (end > len && 2726 unlikely((err = pskb_trim(frag, len - offset)))) 2727 return err; 2728 2729 if (frag->next) 2730 skb_drop_list(&frag->next); 2731 break; 2732 } 2733 2734 done: 2735 if (len > skb_headlen(skb)) { 2736 skb->data_len -= skb->len - len; 2737 skb->len = len; 2738 } else { 2739 skb->len = len; 2740 skb->data_len = 0; 2741 skb_set_tail_pointer(skb, len); 2742 } 2743 2744 if (!skb->sk || skb->destructor == sock_edemux) 2745 skb_condense(skb); 2746 return 0; 2747 } 2748 EXPORT_SYMBOL(___pskb_trim); 2749 2750 /* Note : use pskb_trim_rcsum() instead of calling this directly 2751 */ 2752 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2753 { 2754 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2755 int delta = skb->len - len; 2756 2757 skb->csum = csum_block_sub(skb->csum, 2758 skb_checksum(skb, len, delta, 0), 2759 len); 2760 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2761 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2762 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2763 2764 if (offset + sizeof(__sum16) > hdlen) 2765 return -EINVAL; 2766 } 2767 return __pskb_trim(skb, len); 2768 } 2769 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2770 2771 /** 2772 * __pskb_pull_tail - advance tail of skb header 2773 * @skb: buffer to reallocate 2774 * @delta: number of bytes to advance tail 2775 * 2776 * The function makes a sense only on a fragmented &sk_buff, 2777 * it expands header moving its tail forward and copying necessary 2778 * data from fragmented part. 2779 * 2780 * &sk_buff MUST have reference count of 1. 2781 * 2782 * Returns %NULL (and &sk_buff does not change) if pull failed 2783 * or value of new tail of skb in the case of success. 2784 * 2785 * All the pointers pointing into skb header may change and must be 2786 * reloaded after call to this function. 2787 */ 2788 2789 /* Moves tail of skb head forward, copying data from fragmented part, 2790 * when it is necessary. 2791 * 1. It may fail due to malloc failure. 2792 * 2. It may change skb pointers. 2793 * 2794 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2795 */ 2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2797 { 2798 /* If skb has not enough free space at tail, get new one 2799 * plus 128 bytes for future expansions. If we have enough 2800 * room at tail, reallocate without expansion only if skb is cloned. 2801 */ 2802 int i, k, eat = (skb->tail + delta) - skb->end; 2803 2804 if (eat > 0 || skb_cloned(skb)) { 2805 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2806 GFP_ATOMIC)) 2807 return NULL; 2808 } 2809 2810 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2811 skb_tail_pointer(skb), delta)); 2812 2813 /* Optimization: no fragments, no reasons to preestimate 2814 * size of pulled pages. Superb. 2815 */ 2816 if (!skb_has_frag_list(skb)) 2817 goto pull_pages; 2818 2819 /* Estimate size of pulled pages. */ 2820 eat = delta; 2821 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2822 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2823 2824 if (size >= eat) 2825 goto pull_pages; 2826 eat -= size; 2827 } 2828 2829 /* If we need update frag list, we are in troubles. 2830 * Certainly, it is possible to add an offset to skb data, 2831 * but taking into account that pulling is expected to 2832 * be very rare operation, it is worth to fight against 2833 * further bloating skb head and crucify ourselves here instead. 2834 * Pure masohism, indeed. 8)8) 2835 */ 2836 if (eat) { 2837 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2838 struct sk_buff *clone = NULL; 2839 struct sk_buff *insp = NULL; 2840 2841 do { 2842 if (list->len <= eat) { 2843 /* Eaten as whole. */ 2844 eat -= list->len; 2845 list = list->next; 2846 insp = list; 2847 } else { 2848 /* Eaten partially. */ 2849 if (skb_is_gso(skb) && !list->head_frag && 2850 skb_headlen(list)) 2851 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2852 2853 if (skb_shared(list)) { 2854 /* Sucks! We need to fork list. :-( */ 2855 clone = skb_clone(list, GFP_ATOMIC); 2856 if (!clone) 2857 return NULL; 2858 insp = list->next; 2859 list = clone; 2860 } else { 2861 /* This may be pulled without 2862 * problems. */ 2863 insp = list; 2864 } 2865 if (!pskb_pull(list, eat)) { 2866 kfree_skb(clone); 2867 return NULL; 2868 } 2869 break; 2870 } 2871 } while (eat); 2872 2873 /* Free pulled out fragments. */ 2874 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2875 skb_shinfo(skb)->frag_list = list->next; 2876 consume_skb(list); 2877 } 2878 /* And insert new clone at head. */ 2879 if (clone) { 2880 clone->next = list; 2881 skb_shinfo(skb)->frag_list = clone; 2882 } 2883 } 2884 /* Success! Now we may commit changes to skb data. */ 2885 2886 pull_pages: 2887 eat = delta; 2888 k = 0; 2889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2890 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2891 2892 if (size <= eat) { 2893 skb_frag_unref(skb, i); 2894 eat -= size; 2895 } else { 2896 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2897 2898 *frag = skb_shinfo(skb)->frags[i]; 2899 if (eat) { 2900 skb_frag_off_add(frag, eat); 2901 skb_frag_size_sub(frag, eat); 2902 if (!i) 2903 goto end; 2904 eat = 0; 2905 } 2906 k++; 2907 } 2908 } 2909 skb_shinfo(skb)->nr_frags = k; 2910 2911 end: 2912 skb->tail += delta; 2913 skb->data_len -= delta; 2914 2915 if (!skb->data_len) 2916 skb_zcopy_clear(skb, false); 2917 2918 return skb_tail_pointer(skb); 2919 } 2920 EXPORT_SYMBOL(__pskb_pull_tail); 2921 2922 /** 2923 * skb_copy_bits - copy bits from skb to kernel buffer 2924 * @skb: source skb 2925 * @offset: offset in source 2926 * @to: destination buffer 2927 * @len: number of bytes to copy 2928 * 2929 * Copy the specified number of bytes from the source skb to the 2930 * destination buffer. 2931 * 2932 * CAUTION ! : 2933 * If its prototype is ever changed, 2934 * check arch/{*}/net/{*}.S files, 2935 * since it is called from BPF assembly code. 2936 */ 2937 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2938 { 2939 int start = skb_headlen(skb); 2940 struct sk_buff *frag_iter; 2941 int i, copy; 2942 2943 if (offset > (int)skb->len - len) 2944 goto fault; 2945 2946 /* Copy header. */ 2947 if ((copy = start - offset) > 0) { 2948 if (copy > len) 2949 copy = len; 2950 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2951 if ((len -= copy) == 0) 2952 return 0; 2953 offset += copy; 2954 to += copy; 2955 } 2956 2957 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2958 int end; 2959 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2960 2961 WARN_ON(start > offset + len); 2962 2963 end = start + skb_frag_size(f); 2964 if ((copy = end - offset) > 0) { 2965 u32 p_off, p_len, copied; 2966 struct page *p; 2967 u8 *vaddr; 2968 2969 if (copy > len) 2970 copy = len; 2971 2972 skb_frag_foreach_page(f, 2973 skb_frag_off(f) + offset - start, 2974 copy, p, p_off, p_len, copied) { 2975 vaddr = kmap_atomic(p); 2976 memcpy(to + copied, vaddr + p_off, p_len); 2977 kunmap_atomic(vaddr); 2978 } 2979 2980 if ((len -= copy) == 0) 2981 return 0; 2982 offset += copy; 2983 to += copy; 2984 } 2985 start = end; 2986 } 2987 2988 skb_walk_frags(skb, frag_iter) { 2989 int end; 2990 2991 WARN_ON(start > offset + len); 2992 2993 end = start + frag_iter->len; 2994 if ((copy = end - offset) > 0) { 2995 if (copy > len) 2996 copy = len; 2997 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2998 goto fault; 2999 if ((len -= copy) == 0) 3000 return 0; 3001 offset += copy; 3002 to += copy; 3003 } 3004 start = end; 3005 } 3006 3007 if (!len) 3008 return 0; 3009 3010 fault: 3011 return -EFAULT; 3012 } 3013 EXPORT_SYMBOL(skb_copy_bits); 3014 3015 /* 3016 * Callback from splice_to_pipe(), if we need to release some pages 3017 * at the end of the spd in case we error'ed out in filling the pipe. 3018 */ 3019 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3020 { 3021 put_page(spd->pages[i]); 3022 } 3023 3024 static struct page *linear_to_page(struct page *page, unsigned int *len, 3025 unsigned int *offset, 3026 struct sock *sk) 3027 { 3028 struct page_frag *pfrag = sk_page_frag(sk); 3029 3030 if (!sk_page_frag_refill(sk, pfrag)) 3031 return NULL; 3032 3033 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3034 3035 memcpy(page_address(pfrag->page) + pfrag->offset, 3036 page_address(page) + *offset, *len); 3037 *offset = pfrag->offset; 3038 pfrag->offset += *len; 3039 3040 return pfrag->page; 3041 } 3042 3043 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3044 struct page *page, 3045 unsigned int offset) 3046 { 3047 return spd->nr_pages && 3048 spd->pages[spd->nr_pages - 1] == page && 3049 (spd->partial[spd->nr_pages - 1].offset + 3050 spd->partial[spd->nr_pages - 1].len == offset); 3051 } 3052 3053 /* 3054 * Fill page/offset/length into spd, if it can hold more pages. 3055 */ 3056 static bool spd_fill_page(struct splice_pipe_desc *spd, 3057 struct pipe_inode_info *pipe, struct page *page, 3058 unsigned int *len, unsigned int offset, 3059 bool linear, 3060 struct sock *sk) 3061 { 3062 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3063 return true; 3064 3065 if (linear) { 3066 page = linear_to_page(page, len, &offset, sk); 3067 if (!page) 3068 return true; 3069 } 3070 if (spd_can_coalesce(spd, page, offset)) { 3071 spd->partial[spd->nr_pages - 1].len += *len; 3072 return false; 3073 } 3074 get_page(page); 3075 spd->pages[spd->nr_pages] = page; 3076 spd->partial[spd->nr_pages].len = *len; 3077 spd->partial[spd->nr_pages].offset = offset; 3078 spd->nr_pages++; 3079 3080 return false; 3081 } 3082 3083 static bool __splice_segment(struct page *page, unsigned int poff, 3084 unsigned int plen, unsigned int *off, 3085 unsigned int *len, 3086 struct splice_pipe_desc *spd, bool linear, 3087 struct sock *sk, 3088 struct pipe_inode_info *pipe) 3089 { 3090 if (!*len) 3091 return true; 3092 3093 /* skip this segment if already processed */ 3094 if (*off >= plen) { 3095 *off -= plen; 3096 return false; 3097 } 3098 3099 /* ignore any bits we already processed */ 3100 poff += *off; 3101 plen -= *off; 3102 *off = 0; 3103 3104 do { 3105 unsigned int flen = min(*len, plen); 3106 3107 if (spd_fill_page(spd, pipe, page, &flen, poff, 3108 linear, sk)) 3109 return true; 3110 poff += flen; 3111 plen -= flen; 3112 *len -= flen; 3113 } while (*len && plen); 3114 3115 return false; 3116 } 3117 3118 /* 3119 * Map linear and fragment data from the skb to spd. It reports true if the 3120 * pipe is full or if we already spliced the requested length. 3121 */ 3122 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3123 unsigned int *offset, unsigned int *len, 3124 struct splice_pipe_desc *spd, struct sock *sk) 3125 { 3126 int seg; 3127 struct sk_buff *iter; 3128 3129 /* map the linear part : 3130 * If skb->head_frag is set, this 'linear' part is backed by a 3131 * fragment, and if the head is not shared with any clones then 3132 * we can avoid a copy since we own the head portion of this page. 3133 */ 3134 if (__splice_segment(virt_to_page(skb->data), 3135 (unsigned long) skb->data & (PAGE_SIZE - 1), 3136 skb_headlen(skb), 3137 offset, len, spd, 3138 skb_head_is_locked(skb), 3139 sk, pipe)) 3140 return true; 3141 3142 /* 3143 * then map the fragments 3144 */ 3145 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3146 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3147 3148 if (__splice_segment(skb_frag_page(f), 3149 skb_frag_off(f), skb_frag_size(f), 3150 offset, len, spd, false, sk, pipe)) 3151 return true; 3152 } 3153 3154 skb_walk_frags(skb, iter) { 3155 if (*offset >= iter->len) { 3156 *offset -= iter->len; 3157 continue; 3158 } 3159 /* __skb_splice_bits() only fails if the output has no room 3160 * left, so no point in going over the frag_list for the error 3161 * case. 3162 */ 3163 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3164 return true; 3165 } 3166 3167 return false; 3168 } 3169 3170 /* 3171 * Map data from the skb to a pipe. Should handle both the linear part, 3172 * the fragments, and the frag list. 3173 */ 3174 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3175 struct pipe_inode_info *pipe, unsigned int tlen, 3176 unsigned int flags) 3177 { 3178 struct partial_page partial[MAX_SKB_FRAGS]; 3179 struct page *pages[MAX_SKB_FRAGS]; 3180 struct splice_pipe_desc spd = { 3181 .pages = pages, 3182 .partial = partial, 3183 .nr_pages_max = MAX_SKB_FRAGS, 3184 .ops = &nosteal_pipe_buf_ops, 3185 .spd_release = sock_spd_release, 3186 }; 3187 int ret = 0; 3188 3189 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3190 3191 if (spd.nr_pages) 3192 ret = splice_to_pipe(pipe, &spd); 3193 3194 return ret; 3195 } 3196 EXPORT_SYMBOL_GPL(skb_splice_bits); 3197 3198 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3199 { 3200 struct socket *sock = sk->sk_socket; 3201 size_t size = msg_data_left(msg); 3202 3203 if (!sock) 3204 return -EINVAL; 3205 3206 if (!sock->ops->sendmsg_locked) 3207 return sock_no_sendmsg_locked(sk, msg, size); 3208 3209 return sock->ops->sendmsg_locked(sk, msg, size); 3210 } 3211 3212 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3213 { 3214 struct socket *sock = sk->sk_socket; 3215 3216 if (!sock) 3217 return -EINVAL; 3218 return sock_sendmsg(sock, msg); 3219 } 3220 3221 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3222 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3223 int len, sendmsg_func sendmsg) 3224 { 3225 unsigned int orig_len = len; 3226 struct sk_buff *head = skb; 3227 unsigned short fragidx; 3228 int slen, ret; 3229 3230 do_frag_list: 3231 3232 /* Deal with head data */ 3233 while (offset < skb_headlen(skb) && len) { 3234 struct kvec kv; 3235 struct msghdr msg; 3236 3237 slen = min_t(int, len, skb_headlen(skb) - offset); 3238 kv.iov_base = skb->data + offset; 3239 kv.iov_len = slen; 3240 memset(&msg, 0, sizeof(msg)); 3241 msg.msg_flags = MSG_DONTWAIT; 3242 3243 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3244 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3245 sendmsg_unlocked, sk, &msg); 3246 if (ret <= 0) 3247 goto error; 3248 3249 offset += ret; 3250 len -= ret; 3251 } 3252 3253 /* All the data was skb head? */ 3254 if (!len) 3255 goto out; 3256 3257 /* Make offset relative to start of frags */ 3258 offset -= skb_headlen(skb); 3259 3260 /* Find where we are in frag list */ 3261 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3262 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3263 3264 if (offset < skb_frag_size(frag)) 3265 break; 3266 3267 offset -= skb_frag_size(frag); 3268 } 3269 3270 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3271 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3272 3273 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3274 3275 while (slen) { 3276 struct bio_vec bvec; 3277 struct msghdr msg = { 3278 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3279 }; 3280 3281 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3282 skb_frag_off(frag) + offset); 3283 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3284 slen); 3285 3286 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3287 sendmsg_unlocked, sk, &msg); 3288 if (ret <= 0) 3289 goto error; 3290 3291 len -= ret; 3292 offset += ret; 3293 slen -= ret; 3294 } 3295 3296 offset = 0; 3297 } 3298 3299 if (len) { 3300 /* Process any frag lists */ 3301 3302 if (skb == head) { 3303 if (skb_has_frag_list(skb)) { 3304 skb = skb_shinfo(skb)->frag_list; 3305 goto do_frag_list; 3306 } 3307 } else if (skb->next) { 3308 skb = skb->next; 3309 goto do_frag_list; 3310 } 3311 } 3312 3313 out: 3314 return orig_len - len; 3315 3316 error: 3317 return orig_len == len ? ret : orig_len - len; 3318 } 3319 3320 /* Send skb data on a socket. Socket must be locked. */ 3321 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3322 int len) 3323 { 3324 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3325 } 3326 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3327 3328 /* Send skb data on a socket. Socket must be unlocked. */ 3329 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3330 { 3331 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3332 } 3333 3334 /** 3335 * skb_store_bits - store bits from kernel buffer to skb 3336 * @skb: destination buffer 3337 * @offset: offset in destination 3338 * @from: source buffer 3339 * @len: number of bytes to copy 3340 * 3341 * Copy the specified number of bytes from the source buffer to the 3342 * destination skb. This function handles all the messy bits of 3343 * traversing fragment lists and such. 3344 */ 3345 3346 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3347 { 3348 int start = skb_headlen(skb); 3349 struct sk_buff *frag_iter; 3350 int i, copy; 3351 3352 if (offset > (int)skb->len - len) 3353 goto fault; 3354 3355 if ((copy = start - offset) > 0) { 3356 if (copy > len) 3357 copy = len; 3358 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3359 if ((len -= copy) == 0) 3360 return 0; 3361 offset += copy; 3362 from += copy; 3363 } 3364 3365 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3366 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3367 int end; 3368 3369 WARN_ON(start > offset + len); 3370 3371 end = start + skb_frag_size(frag); 3372 if ((copy = end - offset) > 0) { 3373 u32 p_off, p_len, copied; 3374 struct page *p; 3375 u8 *vaddr; 3376 3377 if (copy > len) 3378 copy = len; 3379 3380 skb_frag_foreach_page(frag, 3381 skb_frag_off(frag) + offset - start, 3382 copy, p, p_off, p_len, copied) { 3383 vaddr = kmap_atomic(p); 3384 memcpy(vaddr + p_off, from + copied, p_len); 3385 kunmap_atomic(vaddr); 3386 } 3387 3388 if ((len -= copy) == 0) 3389 return 0; 3390 offset += copy; 3391 from += copy; 3392 } 3393 start = end; 3394 } 3395 3396 skb_walk_frags(skb, frag_iter) { 3397 int end; 3398 3399 WARN_ON(start > offset + len); 3400 3401 end = start + frag_iter->len; 3402 if ((copy = end - offset) > 0) { 3403 if (copy > len) 3404 copy = len; 3405 if (skb_store_bits(frag_iter, offset - start, 3406 from, copy)) 3407 goto fault; 3408 if ((len -= copy) == 0) 3409 return 0; 3410 offset += copy; 3411 from += copy; 3412 } 3413 start = end; 3414 } 3415 if (!len) 3416 return 0; 3417 3418 fault: 3419 return -EFAULT; 3420 } 3421 EXPORT_SYMBOL(skb_store_bits); 3422 3423 /* Checksum skb data. */ 3424 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3425 __wsum csum, const struct skb_checksum_ops *ops) 3426 { 3427 int start = skb_headlen(skb); 3428 int i, copy = start - offset; 3429 struct sk_buff *frag_iter; 3430 int pos = 0; 3431 3432 /* Checksum header. */ 3433 if (copy > 0) { 3434 if (copy > len) 3435 copy = len; 3436 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3437 skb->data + offset, copy, csum); 3438 if ((len -= copy) == 0) 3439 return csum; 3440 offset += copy; 3441 pos = copy; 3442 } 3443 3444 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3445 int end; 3446 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3447 3448 WARN_ON(start > offset + len); 3449 3450 end = start + skb_frag_size(frag); 3451 if ((copy = end - offset) > 0) { 3452 u32 p_off, p_len, copied; 3453 struct page *p; 3454 __wsum csum2; 3455 u8 *vaddr; 3456 3457 if (copy > len) 3458 copy = len; 3459 3460 skb_frag_foreach_page(frag, 3461 skb_frag_off(frag) + offset - start, 3462 copy, p, p_off, p_len, copied) { 3463 vaddr = kmap_atomic(p); 3464 csum2 = INDIRECT_CALL_1(ops->update, 3465 csum_partial_ext, 3466 vaddr + p_off, p_len, 0); 3467 kunmap_atomic(vaddr); 3468 csum = INDIRECT_CALL_1(ops->combine, 3469 csum_block_add_ext, csum, 3470 csum2, pos, p_len); 3471 pos += p_len; 3472 } 3473 3474 if (!(len -= copy)) 3475 return csum; 3476 offset += copy; 3477 } 3478 start = end; 3479 } 3480 3481 skb_walk_frags(skb, frag_iter) { 3482 int end; 3483 3484 WARN_ON(start > offset + len); 3485 3486 end = start + frag_iter->len; 3487 if ((copy = end - offset) > 0) { 3488 __wsum csum2; 3489 if (copy > len) 3490 copy = len; 3491 csum2 = __skb_checksum(frag_iter, offset - start, 3492 copy, 0, ops); 3493 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3494 csum, csum2, pos, copy); 3495 if ((len -= copy) == 0) 3496 return csum; 3497 offset += copy; 3498 pos += copy; 3499 } 3500 start = end; 3501 } 3502 BUG_ON(len); 3503 3504 return csum; 3505 } 3506 EXPORT_SYMBOL(__skb_checksum); 3507 3508 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3509 int len, __wsum csum) 3510 { 3511 const struct skb_checksum_ops ops = { 3512 .update = csum_partial_ext, 3513 .combine = csum_block_add_ext, 3514 }; 3515 3516 return __skb_checksum(skb, offset, len, csum, &ops); 3517 } 3518 EXPORT_SYMBOL(skb_checksum); 3519 3520 /* Both of above in one bottle. */ 3521 3522 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3523 u8 *to, int len) 3524 { 3525 int start = skb_headlen(skb); 3526 int i, copy = start - offset; 3527 struct sk_buff *frag_iter; 3528 int pos = 0; 3529 __wsum csum = 0; 3530 3531 /* Copy header. */ 3532 if (copy > 0) { 3533 if (copy > len) 3534 copy = len; 3535 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3536 copy); 3537 if ((len -= copy) == 0) 3538 return csum; 3539 offset += copy; 3540 to += copy; 3541 pos = copy; 3542 } 3543 3544 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3545 int end; 3546 3547 WARN_ON(start > offset + len); 3548 3549 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3550 if ((copy = end - offset) > 0) { 3551 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3552 u32 p_off, p_len, copied; 3553 struct page *p; 3554 __wsum csum2; 3555 u8 *vaddr; 3556 3557 if (copy > len) 3558 copy = len; 3559 3560 skb_frag_foreach_page(frag, 3561 skb_frag_off(frag) + offset - start, 3562 copy, p, p_off, p_len, copied) { 3563 vaddr = kmap_atomic(p); 3564 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3565 to + copied, 3566 p_len); 3567 kunmap_atomic(vaddr); 3568 csum = csum_block_add(csum, csum2, pos); 3569 pos += p_len; 3570 } 3571 3572 if (!(len -= copy)) 3573 return csum; 3574 offset += copy; 3575 to += copy; 3576 } 3577 start = end; 3578 } 3579 3580 skb_walk_frags(skb, frag_iter) { 3581 __wsum csum2; 3582 int end; 3583 3584 WARN_ON(start > offset + len); 3585 3586 end = start + frag_iter->len; 3587 if ((copy = end - offset) > 0) { 3588 if (copy > len) 3589 copy = len; 3590 csum2 = skb_copy_and_csum_bits(frag_iter, 3591 offset - start, 3592 to, copy); 3593 csum = csum_block_add(csum, csum2, pos); 3594 if ((len -= copy) == 0) 3595 return csum; 3596 offset += copy; 3597 to += copy; 3598 pos += copy; 3599 } 3600 start = end; 3601 } 3602 BUG_ON(len); 3603 return csum; 3604 } 3605 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3606 3607 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3608 { 3609 __sum16 sum; 3610 3611 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3612 /* See comments in __skb_checksum_complete(). */ 3613 if (likely(!sum)) { 3614 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3615 !skb->csum_complete_sw) 3616 netdev_rx_csum_fault(skb->dev, skb); 3617 } 3618 if (!skb_shared(skb)) 3619 skb->csum_valid = !sum; 3620 return sum; 3621 } 3622 EXPORT_SYMBOL(__skb_checksum_complete_head); 3623 3624 /* This function assumes skb->csum already holds pseudo header's checksum, 3625 * which has been changed from the hardware checksum, for example, by 3626 * __skb_checksum_validate_complete(). And, the original skb->csum must 3627 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3628 * 3629 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3630 * zero. The new checksum is stored back into skb->csum unless the skb is 3631 * shared. 3632 */ 3633 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3634 { 3635 __wsum csum; 3636 __sum16 sum; 3637 3638 csum = skb_checksum(skb, 0, skb->len, 0); 3639 3640 sum = csum_fold(csum_add(skb->csum, csum)); 3641 /* This check is inverted, because we already knew the hardware 3642 * checksum is invalid before calling this function. So, if the 3643 * re-computed checksum is valid instead, then we have a mismatch 3644 * between the original skb->csum and skb_checksum(). This means either 3645 * the original hardware checksum is incorrect or we screw up skb->csum 3646 * when moving skb->data around. 3647 */ 3648 if (likely(!sum)) { 3649 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3650 !skb->csum_complete_sw) 3651 netdev_rx_csum_fault(skb->dev, skb); 3652 } 3653 3654 if (!skb_shared(skb)) { 3655 /* Save full packet checksum */ 3656 skb->csum = csum; 3657 skb->ip_summed = CHECKSUM_COMPLETE; 3658 skb->csum_complete_sw = 1; 3659 skb->csum_valid = !sum; 3660 } 3661 3662 return sum; 3663 } 3664 EXPORT_SYMBOL(__skb_checksum_complete); 3665 3666 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3667 { 3668 net_warn_ratelimited( 3669 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3670 __func__); 3671 return 0; 3672 } 3673 3674 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3675 int offset, int len) 3676 { 3677 net_warn_ratelimited( 3678 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3679 __func__); 3680 return 0; 3681 } 3682 3683 static const struct skb_checksum_ops default_crc32c_ops = { 3684 .update = warn_crc32c_csum_update, 3685 .combine = warn_crc32c_csum_combine, 3686 }; 3687 3688 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3689 &default_crc32c_ops; 3690 EXPORT_SYMBOL(crc32c_csum_stub); 3691 3692 /** 3693 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3694 * @from: source buffer 3695 * 3696 * Calculates the amount of linear headroom needed in the 'to' skb passed 3697 * into skb_zerocopy(). 3698 */ 3699 unsigned int 3700 skb_zerocopy_headlen(const struct sk_buff *from) 3701 { 3702 unsigned int hlen = 0; 3703 3704 if (!from->head_frag || 3705 skb_headlen(from) < L1_CACHE_BYTES || 3706 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3707 hlen = skb_headlen(from); 3708 if (!hlen) 3709 hlen = from->len; 3710 } 3711 3712 if (skb_has_frag_list(from)) 3713 hlen = from->len; 3714 3715 return hlen; 3716 } 3717 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3718 3719 /** 3720 * skb_zerocopy - Zero copy skb to skb 3721 * @to: destination buffer 3722 * @from: source buffer 3723 * @len: number of bytes to copy from source buffer 3724 * @hlen: size of linear headroom in destination buffer 3725 * 3726 * Copies up to `len` bytes from `from` to `to` by creating references 3727 * to the frags in the source buffer. 3728 * 3729 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3730 * headroom in the `to` buffer. 3731 * 3732 * Return value: 3733 * 0: everything is OK 3734 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3735 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3736 */ 3737 int 3738 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3739 { 3740 int i, j = 0; 3741 int plen = 0; /* length of skb->head fragment */ 3742 int ret; 3743 struct page *page; 3744 unsigned int offset; 3745 3746 BUG_ON(!from->head_frag && !hlen); 3747 3748 /* dont bother with small payloads */ 3749 if (len <= skb_tailroom(to)) 3750 return skb_copy_bits(from, 0, skb_put(to, len), len); 3751 3752 if (hlen) { 3753 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3754 if (unlikely(ret)) 3755 return ret; 3756 len -= hlen; 3757 } else { 3758 plen = min_t(int, skb_headlen(from), len); 3759 if (plen) { 3760 page = virt_to_head_page(from->head); 3761 offset = from->data - (unsigned char *)page_address(page); 3762 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3763 offset, plen); 3764 get_page(page); 3765 j = 1; 3766 len -= plen; 3767 } 3768 } 3769 3770 skb_len_add(to, len + plen); 3771 3772 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3773 skb_tx_error(from); 3774 return -ENOMEM; 3775 } 3776 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3777 3778 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3779 int size; 3780 3781 if (!len) 3782 break; 3783 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3784 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3785 len); 3786 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3787 len -= size; 3788 skb_frag_ref(to, j); 3789 j++; 3790 } 3791 skb_shinfo(to)->nr_frags = j; 3792 3793 return 0; 3794 } 3795 EXPORT_SYMBOL_GPL(skb_zerocopy); 3796 3797 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3798 { 3799 __wsum csum; 3800 long csstart; 3801 3802 if (skb->ip_summed == CHECKSUM_PARTIAL) 3803 csstart = skb_checksum_start_offset(skb); 3804 else 3805 csstart = skb_headlen(skb); 3806 3807 BUG_ON(csstart > skb_headlen(skb)); 3808 3809 skb_copy_from_linear_data(skb, to, csstart); 3810 3811 csum = 0; 3812 if (csstart != skb->len) 3813 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3814 skb->len - csstart); 3815 3816 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3817 long csstuff = csstart + skb->csum_offset; 3818 3819 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3820 } 3821 } 3822 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3823 3824 /** 3825 * skb_dequeue - remove from the head of the queue 3826 * @list: list to dequeue from 3827 * 3828 * Remove the head of the list. The list lock is taken so the function 3829 * may be used safely with other locking list functions. The head item is 3830 * returned or %NULL if the list is empty. 3831 */ 3832 3833 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3834 { 3835 unsigned long flags; 3836 struct sk_buff *result; 3837 3838 spin_lock_irqsave(&list->lock, flags); 3839 result = __skb_dequeue(list); 3840 spin_unlock_irqrestore(&list->lock, flags); 3841 return result; 3842 } 3843 EXPORT_SYMBOL(skb_dequeue); 3844 3845 /** 3846 * skb_dequeue_tail - remove from the tail of the queue 3847 * @list: list to dequeue from 3848 * 3849 * Remove the tail of the list. The list lock is taken so the function 3850 * may be used safely with other locking list functions. The tail item is 3851 * returned or %NULL if the list is empty. 3852 */ 3853 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3854 { 3855 unsigned long flags; 3856 struct sk_buff *result; 3857 3858 spin_lock_irqsave(&list->lock, flags); 3859 result = __skb_dequeue_tail(list); 3860 spin_unlock_irqrestore(&list->lock, flags); 3861 return result; 3862 } 3863 EXPORT_SYMBOL(skb_dequeue_tail); 3864 3865 /** 3866 * skb_queue_purge_reason - empty a list 3867 * @list: list to empty 3868 * @reason: drop reason 3869 * 3870 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3871 * the list and one reference dropped. This function takes the list 3872 * lock and is atomic with respect to other list locking functions. 3873 */ 3874 void skb_queue_purge_reason(struct sk_buff_head *list, 3875 enum skb_drop_reason reason) 3876 { 3877 struct sk_buff_head tmp; 3878 unsigned long flags; 3879 3880 if (skb_queue_empty_lockless(list)) 3881 return; 3882 3883 __skb_queue_head_init(&tmp); 3884 3885 spin_lock_irqsave(&list->lock, flags); 3886 skb_queue_splice_init(list, &tmp); 3887 spin_unlock_irqrestore(&list->lock, flags); 3888 3889 __skb_queue_purge_reason(&tmp, reason); 3890 } 3891 EXPORT_SYMBOL(skb_queue_purge_reason); 3892 3893 /** 3894 * skb_rbtree_purge - empty a skb rbtree 3895 * @root: root of the rbtree to empty 3896 * Return value: the sum of truesizes of all purged skbs. 3897 * 3898 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3899 * the list and one reference dropped. This function does not take 3900 * any lock. Synchronization should be handled by the caller (e.g., TCP 3901 * out-of-order queue is protected by the socket lock). 3902 */ 3903 unsigned int skb_rbtree_purge(struct rb_root *root) 3904 { 3905 struct rb_node *p = rb_first(root); 3906 unsigned int sum = 0; 3907 3908 while (p) { 3909 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3910 3911 p = rb_next(p); 3912 rb_erase(&skb->rbnode, root); 3913 sum += skb->truesize; 3914 kfree_skb(skb); 3915 } 3916 return sum; 3917 } 3918 3919 void skb_errqueue_purge(struct sk_buff_head *list) 3920 { 3921 struct sk_buff *skb, *next; 3922 struct sk_buff_head kill; 3923 unsigned long flags; 3924 3925 __skb_queue_head_init(&kill); 3926 3927 spin_lock_irqsave(&list->lock, flags); 3928 skb_queue_walk_safe(list, skb, next) { 3929 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3930 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3931 continue; 3932 __skb_unlink(skb, list); 3933 __skb_queue_tail(&kill, skb); 3934 } 3935 spin_unlock_irqrestore(&list->lock, flags); 3936 __skb_queue_purge(&kill); 3937 } 3938 EXPORT_SYMBOL(skb_errqueue_purge); 3939 3940 /** 3941 * skb_queue_head - queue a buffer at the list head 3942 * @list: list to use 3943 * @newsk: buffer to queue 3944 * 3945 * Queue a buffer at the start of the list. This function takes the 3946 * list lock and can be used safely with other locking &sk_buff functions 3947 * safely. 3948 * 3949 * A buffer cannot be placed on two lists at the same time. 3950 */ 3951 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3952 { 3953 unsigned long flags; 3954 3955 spin_lock_irqsave(&list->lock, flags); 3956 __skb_queue_head(list, newsk); 3957 spin_unlock_irqrestore(&list->lock, flags); 3958 } 3959 EXPORT_SYMBOL(skb_queue_head); 3960 3961 /** 3962 * skb_queue_tail - queue a buffer at the list tail 3963 * @list: list to use 3964 * @newsk: buffer to queue 3965 * 3966 * Queue a buffer at the tail of the list. This function takes the 3967 * list lock and can be used safely with other locking &sk_buff functions 3968 * safely. 3969 * 3970 * A buffer cannot be placed on two lists at the same time. 3971 */ 3972 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3973 { 3974 unsigned long flags; 3975 3976 spin_lock_irqsave(&list->lock, flags); 3977 __skb_queue_tail(list, newsk); 3978 spin_unlock_irqrestore(&list->lock, flags); 3979 } 3980 EXPORT_SYMBOL(skb_queue_tail); 3981 3982 /** 3983 * skb_unlink - remove a buffer from a list 3984 * @skb: buffer to remove 3985 * @list: list to use 3986 * 3987 * Remove a packet from a list. The list locks are taken and this 3988 * function is atomic with respect to other list locked calls 3989 * 3990 * You must know what list the SKB is on. 3991 */ 3992 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3993 { 3994 unsigned long flags; 3995 3996 spin_lock_irqsave(&list->lock, flags); 3997 __skb_unlink(skb, list); 3998 spin_unlock_irqrestore(&list->lock, flags); 3999 } 4000 EXPORT_SYMBOL(skb_unlink); 4001 4002 /** 4003 * skb_append - append a buffer 4004 * @old: buffer to insert after 4005 * @newsk: buffer to insert 4006 * @list: list to use 4007 * 4008 * Place a packet after a given packet in a list. The list locks are taken 4009 * and this function is atomic with respect to other list locked calls. 4010 * A buffer cannot be placed on two lists at the same time. 4011 */ 4012 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4013 { 4014 unsigned long flags; 4015 4016 spin_lock_irqsave(&list->lock, flags); 4017 __skb_queue_after(list, old, newsk); 4018 spin_unlock_irqrestore(&list->lock, flags); 4019 } 4020 EXPORT_SYMBOL(skb_append); 4021 4022 static inline void skb_split_inside_header(struct sk_buff *skb, 4023 struct sk_buff* skb1, 4024 const u32 len, const int pos) 4025 { 4026 int i; 4027 4028 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4029 pos - len); 4030 /* And move data appendix as is. */ 4031 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4032 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4033 4034 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4035 skb_shinfo(skb)->nr_frags = 0; 4036 skb1->data_len = skb->data_len; 4037 skb1->len += skb1->data_len; 4038 skb->data_len = 0; 4039 skb->len = len; 4040 skb_set_tail_pointer(skb, len); 4041 } 4042 4043 static inline void skb_split_no_header(struct sk_buff *skb, 4044 struct sk_buff* skb1, 4045 const u32 len, int pos) 4046 { 4047 int i, k = 0; 4048 const int nfrags = skb_shinfo(skb)->nr_frags; 4049 4050 skb_shinfo(skb)->nr_frags = 0; 4051 skb1->len = skb1->data_len = skb->len - len; 4052 skb->len = len; 4053 skb->data_len = len - pos; 4054 4055 for (i = 0; i < nfrags; i++) { 4056 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4057 4058 if (pos + size > len) { 4059 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4060 4061 if (pos < len) { 4062 /* Split frag. 4063 * We have two variants in this case: 4064 * 1. Move all the frag to the second 4065 * part, if it is possible. F.e. 4066 * this approach is mandatory for TUX, 4067 * where splitting is expensive. 4068 * 2. Split is accurately. We make this. 4069 */ 4070 skb_frag_ref(skb, i); 4071 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4072 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4073 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4074 skb_shinfo(skb)->nr_frags++; 4075 } 4076 k++; 4077 } else 4078 skb_shinfo(skb)->nr_frags++; 4079 pos += size; 4080 } 4081 skb_shinfo(skb1)->nr_frags = k; 4082 } 4083 4084 /** 4085 * skb_split - Split fragmented skb to two parts at length len. 4086 * @skb: the buffer to split 4087 * @skb1: the buffer to receive the second part 4088 * @len: new length for skb 4089 */ 4090 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4091 { 4092 int pos = skb_headlen(skb); 4093 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4094 4095 skb_zcopy_downgrade_managed(skb); 4096 4097 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4098 skb_zerocopy_clone(skb1, skb, 0); 4099 if (len < pos) /* Split line is inside header. */ 4100 skb_split_inside_header(skb, skb1, len, pos); 4101 else /* Second chunk has no header, nothing to copy. */ 4102 skb_split_no_header(skb, skb1, len, pos); 4103 } 4104 EXPORT_SYMBOL(skb_split); 4105 4106 /* Shifting from/to a cloned skb is a no-go. 4107 * 4108 * Caller cannot keep skb_shinfo related pointers past calling here! 4109 */ 4110 static int skb_prepare_for_shift(struct sk_buff *skb) 4111 { 4112 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4113 } 4114 4115 /** 4116 * skb_shift - Shifts paged data partially from skb to another 4117 * @tgt: buffer into which tail data gets added 4118 * @skb: buffer from which the paged data comes from 4119 * @shiftlen: shift up to this many bytes 4120 * 4121 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4122 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4123 * It's up to caller to free skb if everything was shifted. 4124 * 4125 * If @tgt runs out of frags, the whole operation is aborted. 4126 * 4127 * Skb cannot include anything else but paged data while tgt is allowed 4128 * to have non-paged data as well. 4129 * 4130 * TODO: full sized shift could be optimized but that would need 4131 * specialized skb free'er to handle frags without up-to-date nr_frags. 4132 */ 4133 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4134 { 4135 int from, to, merge, todo; 4136 skb_frag_t *fragfrom, *fragto; 4137 4138 BUG_ON(shiftlen > skb->len); 4139 4140 if (skb_headlen(skb)) 4141 return 0; 4142 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4143 return 0; 4144 4145 todo = shiftlen; 4146 from = 0; 4147 to = skb_shinfo(tgt)->nr_frags; 4148 fragfrom = &skb_shinfo(skb)->frags[from]; 4149 4150 /* Actual merge is delayed until the point when we know we can 4151 * commit all, so that we don't have to undo partial changes 4152 */ 4153 if (!to || 4154 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4155 skb_frag_off(fragfrom))) { 4156 merge = -1; 4157 } else { 4158 merge = to - 1; 4159 4160 todo -= skb_frag_size(fragfrom); 4161 if (todo < 0) { 4162 if (skb_prepare_for_shift(skb) || 4163 skb_prepare_for_shift(tgt)) 4164 return 0; 4165 4166 /* All previous frag pointers might be stale! */ 4167 fragfrom = &skb_shinfo(skb)->frags[from]; 4168 fragto = &skb_shinfo(tgt)->frags[merge]; 4169 4170 skb_frag_size_add(fragto, shiftlen); 4171 skb_frag_size_sub(fragfrom, shiftlen); 4172 skb_frag_off_add(fragfrom, shiftlen); 4173 4174 goto onlymerged; 4175 } 4176 4177 from++; 4178 } 4179 4180 /* Skip full, not-fitting skb to avoid expensive operations */ 4181 if ((shiftlen == skb->len) && 4182 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4183 return 0; 4184 4185 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4186 return 0; 4187 4188 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4189 if (to == MAX_SKB_FRAGS) 4190 return 0; 4191 4192 fragfrom = &skb_shinfo(skb)->frags[from]; 4193 fragto = &skb_shinfo(tgt)->frags[to]; 4194 4195 if (todo >= skb_frag_size(fragfrom)) { 4196 *fragto = *fragfrom; 4197 todo -= skb_frag_size(fragfrom); 4198 from++; 4199 to++; 4200 4201 } else { 4202 __skb_frag_ref(fragfrom); 4203 skb_frag_page_copy(fragto, fragfrom); 4204 skb_frag_off_copy(fragto, fragfrom); 4205 skb_frag_size_set(fragto, todo); 4206 4207 skb_frag_off_add(fragfrom, todo); 4208 skb_frag_size_sub(fragfrom, todo); 4209 todo = 0; 4210 4211 to++; 4212 break; 4213 } 4214 } 4215 4216 /* Ready to "commit" this state change to tgt */ 4217 skb_shinfo(tgt)->nr_frags = to; 4218 4219 if (merge >= 0) { 4220 fragfrom = &skb_shinfo(skb)->frags[0]; 4221 fragto = &skb_shinfo(tgt)->frags[merge]; 4222 4223 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4224 __skb_frag_unref(fragfrom, skb->pp_recycle); 4225 } 4226 4227 /* Reposition in the original skb */ 4228 to = 0; 4229 while (from < skb_shinfo(skb)->nr_frags) 4230 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4231 skb_shinfo(skb)->nr_frags = to; 4232 4233 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4234 4235 onlymerged: 4236 /* Most likely the tgt won't ever need its checksum anymore, skb on 4237 * the other hand might need it if it needs to be resent 4238 */ 4239 tgt->ip_summed = CHECKSUM_PARTIAL; 4240 skb->ip_summed = CHECKSUM_PARTIAL; 4241 4242 skb_len_add(skb, -shiftlen); 4243 skb_len_add(tgt, shiftlen); 4244 4245 return shiftlen; 4246 } 4247 4248 /** 4249 * skb_prepare_seq_read - Prepare a sequential read of skb data 4250 * @skb: the buffer to read 4251 * @from: lower offset of data to be read 4252 * @to: upper offset of data to be read 4253 * @st: state variable 4254 * 4255 * Initializes the specified state variable. Must be called before 4256 * invoking skb_seq_read() for the first time. 4257 */ 4258 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4259 unsigned int to, struct skb_seq_state *st) 4260 { 4261 st->lower_offset = from; 4262 st->upper_offset = to; 4263 st->root_skb = st->cur_skb = skb; 4264 st->frag_idx = st->stepped_offset = 0; 4265 st->frag_data = NULL; 4266 st->frag_off = 0; 4267 } 4268 EXPORT_SYMBOL(skb_prepare_seq_read); 4269 4270 /** 4271 * skb_seq_read - Sequentially read skb data 4272 * @consumed: number of bytes consumed by the caller so far 4273 * @data: destination pointer for data to be returned 4274 * @st: state variable 4275 * 4276 * Reads a block of skb data at @consumed relative to the 4277 * lower offset specified to skb_prepare_seq_read(). Assigns 4278 * the head of the data block to @data and returns the length 4279 * of the block or 0 if the end of the skb data or the upper 4280 * offset has been reached. 4281 * 4282 * The caller is not required to consume all of the data 4283 * returned, i.e. @consumed is typically set to the number 4284 * of bytes already consumed and the next call to 4285 * skb_seq_read() will return the remaining part of the block. 4286 * 4287 * Note 1: The size of each block of data returned can be arbitrary, 4288 * this limitation is the cost for zerocopy sequential 4289 * reads of potentially non linear data. 4290 * 4291 * Note 2: Fragment lists within fragments are not implemented 4292 * at the moment, state->root_skb could be replaced with 4293 * a stack for this purpose. 4294 */ 4295 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4296 struct skb_seq_state *st) 4297 { 4298 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4299 skb_frag_t *frag; 4300 4301 if (unlikely(abs_offset >= st->upper_offset)) { 4302 if (st->frag_data) { 4303 kunmap_atomic(st->frag_data); 4304 st->frag_data = NULL; 4305 } 4306 return 0; 4307 } 4308 4309 next_skb: 4310 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4311 4312 if (abs_offset < block_limit && !st->frag_data) { 4313 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4314 return block_limit - abs_offset; 4315 } 4316 4317 if (st->frag_idx == 0 && !st->frag_data) 4318 st->stepped_offset += skb_headlen(st->cur_skb); 4319 4320 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4321 unsigned int pg_idx, pg_off, pg_sz; 4322 4323 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4324 4325 pg_idx = 0; 4326 pg_off = skb_frag_off(frag); 4327 pg_sz = skb_frag_size(frag); 4328 4329 if (skb_frag_must_loop(skb_frag_page(frag))) { 4330 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4331 pg_off = offset_in_page(pg_off + st->frag_off); 4332 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4333 PAGE_SIZE - pg_off); 4334 } 4335 4336 block_limit = pg_sz + st->stepped_offset; 4337 if (abs_offset < block_limit) { 4338 if (!st->frag_data) 4339 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4340 4341 *data = (u8 *)st->frag_data + pg_off + 4342 (abs_offset - st->stepped_offset); 4343 4344 return block_limit - abs_offset; 4345 } 4346 4347 if (st->frag_data) { 4348 kunmap_atomic(st->frag_data); 4349 st->frag_data = NULL; 4350 } 4351 4352 st->stepped_offset += pg_sz; 4353 st->frag_off += pg_sz; 4354 if (st->frag_off == skb_frag_size(frag)) { 4355 st->frag_off = 0; 4356 st->frag_idx++; 4357 } 4358 } 4359 4360 if (st->frag_data) { 4361 kunmap_atomic(st->frag_data); 4362 st->frag_data = NULL; 4363 } 4364 4365 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4366 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4367 st->frag_idx = 0; 4368 goto next_skb; 4369 } else if (st->cur_skb->next) { 4370 st->cur_skb = st->cur_skb->next; 4371 st->frag_idx = 0; 4372 goto next_skb; 4373 } 4374 4375 return 0; 4376 } 4377 EXPORT_SYMBOL(skb_seq_read); 4378 4379 /** 4380 * skb_abort_seq_read - Abort a sequential read of skb data 4381 * @st: state variable 4382 * 4383 * Must be called if skb_seq_read() was not called until it 4384 * returned 0. 4385 */ 4386 void skb_abort_seq_read(struct skb_seq_state *st) 4387 { 4388 if (st->frag_data) 4389 kunmap_atomic(st->frag_data); 4390 } 4391 EXPORT_SYMBOL(skb_abort_seq_read); 4392 4393 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4394 4395 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4396 struct ts_config *conf, 4397 struct ts_state *state) 4398 { 4399 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4400 } 4401 4402 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4403 { 4404 skb_abort_seq_read(TS_SKB_CB(state)); 4405 } 4406 4407 /** 4408 * skb_find_text - Find a text pattern in skb data 4409 * @skb: the buffer to look in 4410 * @from: search offset 4411 * @to: search limit 4412 * @config: textsearch configuration 4413 * 4414 * Finds a pattern in the skb data according to the specified 4415 * textsearch configuration. Use textsearch_next() to retrieve 4416 * subsequent occurrences of the pattern. Returns the offset 4417 * to the first occurrence or UINT_MAX if no match was found. 4418 */ 4419 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4420 unsigned int to, struct ts_config *config) 4421 { 4422 unsigned int patlen = config->ops->get_pattern_len(config); 4423 struct ts_state state; 4424 unsigned int ret; 4425 4426 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4427 4428 config->get_next_block = skb_ts_get_next_block; 4429 config->finish = skb_ts_finish; 4430 4431 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4432 4433 ret = textsearch_find(config, &state); 4434 return (ret + patlen <= to - from ? ret : UINT_MAX); 4435 } 4436 EXPORT_SYMBOL(skb_find_text); 4437 4438 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4439 int offset, size_t size, size_t max_frags) 4440 { 4441 int i = skb_shinfo(skb)->nr_frags; 4442 4443 if (skb_can_coalesce(skb, i, page, offset)) { 4444 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4445 } else if (i < max_frags) { 4446 skb_zcopy_downgrade_managed(skb); 4447 get_page(page); 4448 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4449 } else { 4450 return -EMSGSIZE; 4451 } 4452 4453 return 0; 4454 } 4455 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4456 4457 /** 4458 * skb_pull_rcsum - pull skb and update receive checksum 4459 * @skb: buffer to update 4460 * @len: length of data pulled 4461 * 4462 * This function performs an skb_pull on the packet and updates 4463 * the CHECKSUM_COMPLETE checksum. It should be used on 4464 * receive path processing instead of skb_pull unless you know 4465 * that the checksum difference is zero (e.g., a valid IP header) 4466 * or you are setting ip_summed to CHECKSUM_NONE. 4467 */ 4468 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4469 { 4470 unsigned char *data = skb->data; 4471 4472 BUG_ON(len > skb->len); 4473 __skb_pull(skb, len); 4474 skb_postpull_rcsum(skb, data, len); 4475 return skb->data; 4476 } 4477 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4478 4479 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4480 { 4481 skb_frag_t head_frag; 4482 struct page *page; 4483 4484 page = virt_to_head_page(frag_skb->head); 4485 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4486 (unsigned char *)page_address(page), 4487 skb_headlen(frag_skb)); 4488 return head_frag; 4489 } 4490 4491 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4492 netdev_features_t features, 4493 unsigned int offset) 4494 { 4495 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4496 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4497 unsigned int delta_truesize = 0; 4498 unsigned int delta_len = 0; 4499 struct sk_buff *tail = NULL; 4500 struct sk_buff *nskb, *tmp; 4501 int len_diff, err; 4502 4503 skb_push(skb, -skb_network_offset(skb) + offset); 4504 4505 /* Ensure the head is writeable before touching the shared info */ 4506 err = skb_unclone(skb, GFP_ATOMIC); 4507 if (err) 4508 goto err_linearize; 4509 4510 skb_shinfo(skb)->frag_list = NULL; 4511 4512 while (list_skb) { 4513 nskb = list_skb; 4514 list_skb = list_skb->next; 4515 4516 err = 0; 4517 delta_truesize += nskb->truesize; 4518 if (skb_shared(nskb)) { 4519 tmp = skb_clone(nskb, GFP_ATOMIC); 4520 if (tmp) { 4521 consume_skb(nskb); 4522 nskb = tmp; 4523 err = skb_unclone(nskb, GFP_ATOMIC); 4524 } else { 4525 err = -ENOMEM; 4526 } 4527 } 4528 4529 if (!tail) 4530 skb->next = nskb; 4531 else 4532 tail->next = nskb; 4533 4534 if (unlikely(err)) { 4535 nskb->next = list_skb; 4536 goto err_linearize; 4537 } 4538 4539 tail = nskb; 4540 4541 delta_len += nskb->len; 4542 4543 skb_push(nskb, -skb_network_offset(nskb) + offset); 4544 4545 skb_release_head_state(nskb); 4546 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4547 __copy_skb_header(nskb, skb); 4548 4549 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4550 nskb->transport_header += len_diff; 4551 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4552 nskb->data - tnl_hlen, 4553 offset + tnl_hlen); 4554 4555 if (skb_needs_linearize(nskb, features) && 4556 __skb_linearize(nskb)) 4557 goto err_linearize; 4558 } 4559 4560 skb->truesize = skb->truesize - delta_truesize; 4561 skb->data_len = skb->data_len - delta_len; 4562 skb->len = skb->len - delta_len; 4563 4564 skb_gso_reset(skb); 4565 4566 skb->prev = tail; 4567 4568 if (skb_needs_linearize(skb, features) && 4569 __skb_linearize(skb)) 4570 goto err_linearize; 4571 4572 skb_get(skb); 4573 4574 return skb; 4575 4576 err_linearize: 4577 kfree_skb_list(skb->next); 4578 skb->next = NULL; 4579 return ERR_PTR(-ENOMEM); 4580 } 4581 EXPORT_SYMBOL_GPL(skb_segment_list); 4582 4583 /** 4584 * skb_segment - Perform protocol segmentation on skb. 4585 * @head_skb: buffer to segment 4586 * @features: features for the output path (see dev->features) 4587 * 4588 * This function performs segmentation on the given skb. It returns 4589 * a pointer to the first in a list of new skbs for the segments. 4590 * In case of error it returns ERR_PTR(err). 4591 */ 4592 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4593 netdev_features_t features) 4594 { 4595 struct sk_buff *segs = NULL; 4596 struct sk_buff *tail = NULL; 4597 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4598 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4599 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4600 unsigned int offset = doffset; 4601 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4602 unsigned int partial_segs = 0; 4603 unsigned int headroom; 4604 unsigned int len = head_skb->len; 4605 struct sk_buff *frag_skb; 4606 skb_frag_t *frag; 4607 __be16 proto; 4608 bool csum, sg; 4609 int err = -ENOMEM; 4610 int i = 0; 4611 int nfrags, pos; 4612 4613 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4614 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4615 struct sk_buff *check_skb; 4616 4617 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4618 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4619 /* gso_size is untrusted, and we have a frag_list with 4620 * a linear non head_frag item. 4621 * 4622 * If head_skb's headlen does not fit requested gso_size, 4623 * it means that the frag_list members do NOT terminate 4624 * on exact gso_size boundaries. Hence we cannot perform 4625 * skb_frag_t page sharing. Therefore we must fallback to 4626 * copying the frag_list skbs; we do so by disabling SG. 4627 */ 4628 features &= ~NETIF_F_SG; 4629 break; 4630 } 4631 } 4632 } 4633 4634 __skb_push(head_skb, doffset); 4635 proto = skb_network_protocol(head_skb, NULL); 4636 if (unlikely(!proto)) 4637 return ERR_PTR(-EINVAL); 4638 4639 sg = !!(features & NETIF_F_SG); 4640 csum = !!can_checksum_protocol(features, proto); 4641 4642 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4643 if (!(features & NETIF_F_GSO_PARTIAL)) { 4644 struct sk_buff *iter; 4645 unsigned int frag_len; 4646 4647 if (!list_skb || 4648 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4649 goto normal; 4650 4651 /* If we get here then all the required 4652 * GSO features except frag_list are supported. 4653 * Try to split the SKB to multiple GSO SKBs 4654 * with no frag_list. 4655 * Currently we can do that only when the buffers don't 4656 * have a linear part and all the buffers except 4657 * the last are of the same length. 4658 */ 4659 frag_len = list_skb->len; 4660 skb_walk_frags(head_skb, iter) { 4661 if (frag_len != iter->len && iter->next) 4662 goto normal; 4663 if (skb_headlen(iter) && !iter->head_frag) 4664 goto normal; 4665 4666 len -= iter->len; 4667 } 4668 4669 if (len != frag_len) 4670 goto normal; 4671 } 4672 4673 /* GSO partial only requires that we trim off any excess that 4674 * doesn't fit into an MSS sized block, so take care of that 4675 * now. 4676 * Cap len to not accidentally hit GSO_BY_FRAGS. 4677 */ 4678 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4679 if (partial_segs > 1) 4680 mss *= partial_segs; 4681 else 4682 partial_segs = 0; 4683 } 4684 4685 normal: 4686 headroom = skb_headroom(head_skb); 4687 pos = skb_headlen(head_skb); 4688 4689 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4690 return ERR_PTR(-ENOMEM); 4691 4692 nfrags = skb_shinfo(head_skb)->nr_frags; 4693 frag = skb_shinfo(head_skb)->frags; 4694 frag_skb = head_skb; 4695 4696 do { 4697 struct sk_buff *nskb; 4698 skb_frag_t *nskb_frag; 4699 int hsize; 4700 int size; 4701 4702 if (unlikely(mss == GSO_BY_FRAGS)) { 4703 len = list_skb->len; 4704 } else { 4705 len = head_skb->len - offset; 4706 if (len > mss) 4707 len = mss; 4708 } 4709 4710 hsize = skb_headlen(head_skb) - offset; 4711 4712 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4713 (skb_headlen(list_skb) == len || sg)) { 4714 BUG_ON(skb_headlen(list_skb) > len); 4715 4716 nskb = skb_clone(list_skb, GFP_ATOMIC); 4717 if (unlikely(!nskb)) 4718 goto err; 4719 4720 i = 0; 4721 nfrags = skb_shinfo(list_skb)->nr_frags; 4722 frag = skb_shinfo(list_skb)->frags; 4723 frag_skb = list_skb; 4724 pos += skb_headlen(list_skb); 4725 4726 while (pos < offset + len) { 4727 BUG_ON(i >= nfrags); 4728 4729 size = skb_frag_size(frag); 4730 if (pos + size > offset + len) 4731 break; 4732 4733 i++; 4734 pos += size; 4735 frag++; 4736 } 4737 4738 list_skb = list_skb->next; 4739 4740 if (unlikely(pskb_trim(nskb, len))) { 4741 kfree_skb(nskb); 4742 goto err; 4743 } 4744 4745 hsize = skb_end_offset(nskb); 4746 if (skb_cow_head(nskb, doffset + headroom)) { 4747 kfree_skb(nskb); 4748 goto err; 4749 } 4750 4751 nskb->truesize += skb_end_offset(nskb) - hsize; 4752 skb_release_head_state(nskb); 4753 __skb_push(nskb, doffset); 4754 } else { 4755 if (hsize < 0) 4756 hsize = 0; 4757 if (hsize > len || !sg) 4758 hsize = len; 4759 4760 nskb = __alloc_skb(hsize + doffset + headroom, 4761 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4762 NUMA_NO_NODE); 4763 4764 if (unlikely(!nskb)) 4765 goto err; 4766 4767 skb_reserve(nskb, headroom); 4768 __skb_put(nskb, doffset); 4769 } 4770 4771 if (segs) 4772 tail->next = nskb; 4773 else 4774 segs = nskb; 4775 tail = nskb; 4776 4777 __copy_skb_header(nskb, head_skb); 4778 4779 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4780 skb_reset_mac_len(nskb); 4781 4782 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4783 nskb->data - tnl_hlen, 4784 doffset + tnl_hlen); 4785 4786 if (nskb->len == len + doffset) 4787 goto perform_csum_check; 4788 4789 if (!sg) { 4790 if (!csum) { 4791 if (!nskb->remcsum_offload) 4792 nskb->ip_summed = CHECKSUM_NONE; 4793 SKB_GSO_CB(nskb)->csum = 4794 skb_copy_and_csum_bits(head_skb, offset, 4795 skb_put(nskb, 4796 len), 4797 len); 4798 SKB_GSO_CB(nskb)->csum_start = 4799 skb_headroom(nskb) + doffset; 4800 } else { 4801 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4802 goto err; 4803 } 4804 continue; 4805 } 4806 4807 nskb_frag = skb_shinfo(nskb)->frags; 4808 4809 skb_copy_from_linear_data_offset(head_skb, offset, 4810 skb_put(nskb, hsize), hsize); 4811 4812 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4813 SKBFL_SHARED_FRAG; 4814 4815 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4816 goto err; 4817 4818 while (pos < offset + len) { 4819 if (i >= nfrags) { 4820 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4821 skb_zerocopy_clone(nskb, list_skb, 4822 GFP_ATOMIC)) 4823 goto err; 4824 4825 i = 0; 4826 nfrags = skb_shinfo(list_skb)->nr_frags; 4827 frag = skb_shinfo(list_skb)->frags; 4828 frag_skb = list_skb; 4829 if (!skb_headlen(list_skb)) { 4830 BUG_ON(!nfrags); 4831 } else { 4832 BUG_ON(!list_skb->head_frag); 4833 4834 /* to make room for head_frag. */ 4835 i--; 4836 frag--; 4837 } 4838 4839 list_skb = list_skb->next; 4840 } 4841 4842 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4843 MAX_SKB_FRAGS)) { 4844 net_warn_ratelimited( 4845 "skb_segment: too many frags: %u %u\n", 4846 pos, mss); 4847 err = -EINVAL; 4848 goto err; 4849 } 4850 4851 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4852 __skb_frag_ref(nskb_frag); 4853 size = skb_frag_size(nskb_frag); 4854 4855 if (pos < offset) { 4856 skb_frag_off_add(nskb_frag, offset - pos); 4857 skb_frag_size_sub(nskb_frag, offset - pos); 4858 } 4859 4860 skb_shinfo(nskb)->nr_frags++; 4861 4862 if (pos + size <= offset + len) { 4863 i++; 4864 frag++; 4865 pos += size; 4866 } else { 4867 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4868 goto skip_fraglist; 4869 } 4870 4871 nskb_frag++; 4872 } 4873 4874 skip_fraglist: 4875 nskb->data_len = len - hsize; 4876 nskb->len += nskb->data_len; 4877 nskb->truesize += nskb->data_len; 4878 4879 perform_csum_check: 4880 if (!csum) { 4881 if (skb_has_shared_frag(nskb) && 4882 __skb_linearize(nskb)) 4883 goto err; 4884 4885 if (!nskb->remcsum_offload) 4886 nskb->ip_summed = CHECKSUM_NONE; 4887 SKB_GSO_CB(nskb)->csum = 4888 skb_checksum(nskb, doffset, 4889 nskb->len - doffset, 0); 4890 SKB_GSO_CB(nskb)->csum_start = 4891 skb_headroom(nskb) + doffset; 4892 } 4893 } while ((offset += len) < head_skb->len); 4894 4895 /* Some callers want to get the end of the list. 4896 * Put it in segs->prev to avoid walking the list. 4897 * (see validate_xmit_skb_list() for example) 4898 */ 4899 segs->prev = tail; 4900 4901 if (partial_segs) { 4902 struct sk_buff *iter; 4903 int type = skb_shinfo(head_skb)->gso_type; 4904 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4905 4906 /* Update type to add partial and then remove dodgy if set */ 4907 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4908 type &= ~SKB_GSO_DODGY; 4909 4910 /* Update GSO info and prepare to start updating headers on 4911 * our way back down the stack of protocols. 4912 */ 4913 for (iter = segs; iter; iter = iter->next) { 4914 skb_shinfo(iter)->gso_size = gso_size; 4915 skb_shinfo(iter)->gso_segs = partial_segs; 4916 skb_shinfo(iter)->gso_type = type; 4917 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4918 } 4919 4920 if (tail->len - doffset <= gso_size) 4921 skb_shinfo(tail)->gso_size = 0; 4922 else if (tail != segs) 4923 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4924 } 4925 4926 /* Following permits correct backpressure, for protocols 4927 * using skb_set_owner_w(). 4928 * Idea is to tranfert ownership from head_skb to last segment. 4929 */ 4930 if (head_skb->destructor == sock_wfree) { 4931 swap(tail->truesize, head_skb->truesize); 4932 swap(tail->destructor, head_skb->destructor); 4933 swap(tail->sk, head_skb->sk); 4934 } 4935 return segs; 4936 4937 err: 4938 kfree_skb_list(segs); 4939 return ERR_PTR(err); 4940 } 4941 EXPORT_SYMBOL_GPL(skb_segment); 4942 4943 #ifdef CONFIG_SKB_EXTENSIONS 4944 #define SKB_EXT_ALIGN_VALUE 8 4945 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4946 4947 static const u8 skb_ext_type_len[] = { 4948 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4949 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4950 #endif 4951 #ifdef CONFIG_XFRM 4952 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4953 #endif 4954 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4955 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4956 #endif 4957 #if IS_ENABLED(CONFIG_MPTCP) 4958 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4959 #endif 4960 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4961 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4962 #endif 4963 }; 4964 4965 static __always_inline unsigned int skb_ext_total_length(void) 4966 { 4967 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4968 int i; 4969 4970 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4971 l += skb_ext_type_len[i]; 4972 4973 return l; 4974 } 4975 4976 static void skb_extensions_init(void) 4977 { 4978 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4979 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4980 BUILD_BUG_ON(skb_ext_total_length() > 255); 4981 #endif 4982 4983 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4984 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4985 0, 4986 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4987 NULL); 4988 } 4989 #else 4990 static void skb_extensions_init(void) {} 4991 #endif 4992 4993 /* The SKB kmem_cache slab is critical for network performance. Never 4994 * merge/alias the slab with similar sized objects. This avoids fragmentation 4995 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4996 */ 4997 #ifndef CONFIG_SLUB_TINY 4998 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4999 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5000 #define FLAG_SKB_NO_MERGE 0 5001 #endif 5002 5003 void __init skb_init(void) 5004 { 5005 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5006 sizeof(struct sk_buff), 5007 0, 5008 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5009 FLAG_SKB_NO_MERGE, 5010 offsetof(struct sk_buff, cb), 5011 sizeof_field(struct sk_buff, cb), 5012 NULL); 5013 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5014 sizeof(struct sk_buff_fclones), 5015 0, 5016 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5017 NULL); 5018 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5019 * struct skb_shared_info is located at the end of skb->head, 5020 * and should not be copied to/from user. 5021 */ 5022 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5023 SKB_SMALL_HEAD_CACHE_SIZE, 5024 0, 5025 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5026 0, 5027 SKB_SMALL_HEAD_HEADROOM, 5028 NULL); 5029 skb_extensions_init(); 5030 } 5031 5032 static int 5033 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5034 unsigned int recursion_level) 5035 { 5036 int start = skb_headlen(skb); 5037 int i, copy = start - offset; 5038 struct sk_buff *frag_iter; 5039 int elt = 0; 5040 5041 if (unlikely(recursion_level >= 24)) 5042 return -EMSGSIZE; 5043 5044 if (copy > 0) { 5045 if (copy > len) 5046 copy = len; 5047 sg_set_buf(sg, skb->data + offset, copy); 5048 elt++; 5049 if ((len -= copy) == 0) 5050 return elt; 5051 offset += copy; 5052 } 5053 5054 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5055 int end; 5056 5057 WARN_ON(start > offset + len); 5058 5059 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5060 if ((copy = end - offset) > 0) { 5061 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5062 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5063 return -EMSGSIZE; 5064 5065 if (copy > len) 5066 copy = len; 5067 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5068 skb_frag_off(frag) + offset - start); 5069 elt++; 5070 if (!(len -= copy)) 5071 return elt; 5072 offset += copy; 5073 } 5074 start = end; 5075 } 5076 5077 skb_walk_frags(skb, frag_iter) { 5078 int end, ret; 5079 5080 WARN_ON(start > offset + len); 5081 5082 end = start + frag_iter->len; 5083 if ((copy = end - offset) > 0) { 5084 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5085 return -EMSGSIZE; 5086 5087 if (copy > len) 5088 copy = len; 5089 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5090 copy, recursion_level + 1); 5091 if (unlikely(ret < 0)) 5092 return ret; 5093 elt += ret; 5094 if ((len -= copy) == 0) 5095 return elt; 5096 offset += copy; 5097 } 5098 start = end; 5099 } 5100 BUG_ON(len); 5101 return elt; 5102 } 5103 5104 /** 5105 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5106 * @skb: Socket buffer containing the buffers to be mapped 5107 * @sg: The scatter-gather list to map into 5108 * @offset: The offset into the buffer's contents to start mapping 5109 * @len: Length of buffer space to be mapped 5110 * 5111 * Fill the specified scatter-gather list with mappings/pointers into a 5112 * region of the buffer space attached to a socket buffer. Returns either 5113 * the number of scatterlist items used, or -EMSGSIZE if the contents 5114 * could not fit. 5115 */ 5116 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5117 { 5118 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5119 5120 if (nsg <= 0) 5121 return nsg; 5122 5123 sg_mark_end(&sg[nsg - 1]); 5124 5125 return nsg; 5126 } 5127 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5128 5129 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5130 * sglist without mark the sg which contain last skb data as the end. 5131 * So the caller can mannipulate sg list as will when padding new data after 5132 * the first call without calling sg_unmark_end to expend sg list. 5133 * 5134 * Scenario to use skb_to_sgvec_nomark: 5135 * 1. sg_init_table 5136 * 2. skb_to_sgvec_nomark(payload1) 5137 * 3. skb_to_sgvec_nomark(payload2) 5138 * 5139 * This is equivalent to: 5140 * 1. sg_init_table 5141 * 2. skb_to_sgvec(payload1) 5142 * 3. sg_unmark_end 5143 * 4. skb_to_sgvec(payload2) 5144 * 5145 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5146 * is more preferable. 5147 */ 5148 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5149 int offset, int len) 5150 { 5151 return __skb_to_sgvec(skb, sg, offset, len, 0); 5152 } 5153 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5154 5155 5156 5157 /** 5158 * skb_cow_data - Check that a socket buffer's data buffers are writable 5159 * @skb: The socket buffer to check. 5160 * @tailbits: Amount of trailing space to be added 5161 * @trailer: Returned pointer to the skb where the @tailbits space begins 5162 * 5163 * Make sure that the data buffers attached to a socket buffer are 5164 * writable. If they are not, private copies are made of the data buffers 5165 * and the socket buffer is set to use these instead. 5166 * 5167 * If @tailbits is given, make sure that there is space to write @tailbits 5168 * bytes of data beyond current end of socket buffer. @trailer will be 5169 * set to point to the skb in which this space begins. 5170 * 5171 * The number of scatterlist elements required to completely map the 5172 * COW'd and extended socket buffer will be returned. 5173 */ 5174 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5175 { 5176 int copyflag; 5177 int elt; 5178 struct sk_buff *skb1, **skb_p; 5179 5180 /* If skb is cloned or its head is paged, reallocate 5181 * head pulling out all the pages (pages are considered not writable 5182 * at the moment even if they are anonymous). 5183 */ 5184 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5185 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5186 return -ENOMEM; 5187 5188 /* Easy case. Most of packets will go this way. */ 5189 if (!skb_has_frag_list(skb)) { 5190 /* A little of trouble, not enough of space for trailer. 5191 * This should not happen, when stack is tuned to generate 5192 * good frames. OK, on miss we reallocate and reserve even more 5193 * space, 128 bytes is fair. */ 5194 5195 if (skb_tailroom(skb) < tailbits && 5196 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5197 return -ENOMEM; 5198 5199 /* Voila! */ 5200 *trailer = skb; 5201 return 1; 5202 } 5203 5204 /* Misery. We are in troubles, going to mincer fragments... */ 5205 5206 elt = 1; 5207 skb_p = &skb_shinfo(skb)->frag_list; 5208 copyflag = 0; 5209 5210 while ((skb1 = *skb_p) != NULL) { 5211 int ntail = 0; 5212 5213 /* The fragment is partially pulled by someone, 5214 * this can happen on input. Copy it and everything 5215 * after it. */ 5216 5217 if (skb_shared(skb1)) 5218 copyflag = 1; 5219 5220 /* If the skb is the last, worry about trailer. */ 5221 5222 if (skb1->next == NULL && tailbits) { 5223 if (skb_shinfo(skb1)->nr_frags || 5224 skb_has_frag_list(skb1) || 5225 skb_tailroom(skb1) < tailbits) 5226 ntail = tailbits + 128; 5227 } 5228 5229 if (copyflag || 5230 skb_cloned(skb1) || 5231 ntail || 5232 skb_shinfo(skb1)->nr_frags || 5233 skb_has_frag_list(skb1)) { 5234 struct sk_buff *skb2; 5235 5236 /* Fuck, we are miserable poor guys... */ 5237 if (ntail == 0) 5238 skb2 = skb_copy(skb1, GFP_ATOMIC); 5239 else 5240 skb2 = skb_copy_expand(skb1, 5241 skb_headroom(skb1), 5242 ntail, 5243 GFP_ATOMIC); 5244 if (unlikely(skb2 == NULL)) 5245 return -ENOMEM; 5246 5247 if (skb1->sk) 5248 skb_set_owner_w(skb2, skb1->sk); 5249 5250 /* Looking around. Are we still alive? 5251 * OK, link new skb, drop old one */ 5252 5253 skb2->next = skb1->next; 5254 *skb_p = skb2; 5255 kfree_skb(skb1); 5256 skb1 = skb2; 5257 } 5258 elt++; 5259 *trailer = skb1; 5260 skb_p = &skb1->next; 5261 } 5262 5263 return elt; 5264 } 5265 EXPORT_SYMBOL_GPL(skb_cow_data); 5266 5267 static void sock_rmem_free(struct sk_buff *skb) 5268 { 5269 struct sock *sk = skb->sk; 5270 5271 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5272 } 5273 5274 static void skb_set_err_queue(struct sk_buff *skb) 5275 { 5276 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5277 * So, it is safe to (mis)use it to mark skbs on the error queue. 5278 */ 5279 skb->pkt_type = PACKET_OUTGOING; 5280 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5281 } 5282 5283 /* 5284 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5285 */ 5286 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5287 { 5288 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5289 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5290 return -ENOMEM; 5291 5292 skb_orphan(skb); 5293 skb->sk = sk; 5294 skb->destructor = sock_rmem_free; 5295 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5296 skb_set_err_queue(skb); 5297 5298 /* before exiting rcu section, make sure dst is refcounted */ 5299 skb_dst_force(skb); 5300 5301 skb_queue_tail(&sk->sk_error_queue, skb); 5302 if (!sock_flag(sk, SOCK_DEAD)) 5303 sk_error_report(sk); 5304 return 0; 5305 } 5306 EXPORT_SYMBOL(sock_queue_err_skb); 5307 5308 static bool is_icmp_err_skb(const struct sk_buff *skb) 5309 { 5310 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5311 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5312 } 5313 5314 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5315 { 5316 struct sk_buff_head *q = &sk->sk_error_queue; 5317 struct sk_buff *skb, *skb_next = NULL; 5318 bool icmp_next = false; 5319 unsigned long flags; 5320 5321 if (skb_queue_empty_lockless(q)) 5322 return NULL; 5323 5324 spin_lock_irqsave(&q->lock, flags); 5325 skb = __skb_dequeue(q); 5326 if (skb && (skb_next = skb_peek(q))) { 5327 icmp_next = is_icmp_err_skb(skb_next); 5328 if (icmp_next) 5329 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5330 } 5331 spin_unlock_irqrestore(&q->lock, flags); 5332 5333 if (is_icmp_err_skb(skb) && !icmp_next) 5334 sk->sk_err = 0; 5335 5336 if (skb_next) 5337 sk_error_report(sk); 5338 5339 return skb; 5340 } 5341 EXPORT_SYMBOL(sock_dequeue_err_skb); 5342 5343 /** 5344 * skb_clone_sk - create clone of skb, and take reference to socket 5345 * @skb: the skb to clone 5346 * 5347 * This function creates a clone of a buffer that holds a reference on 5348 * sk_refcnt. Buffers created via this function are meant to be 5349 * returned using sock_queue_err_skb, or free via kfree_skb. 5350 * 5351 * When passing buffers allocated with this function to sock_queue_err_skb 5352 * it is necessary to wrap the call with sock_hold/sock_put in order to 5353 * prevent the socket from being released prior to being enqueued on 5354 * the sk_error_queue. 5355 */ 5356 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5357 { 5358 struct sock *sk = skb->sk; 5359 struct sk_buff *clone; 5360 5361 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5362 return NULL; 5363 5364 clone = skb_clone(skb, GFP_ATOMIC); 5365 if (!clone) { 5366 sock_put(sk); 5367 return NULL; 5368 } 5369 5370 clone->sk = sk; 5371 clone->destructor = sock_efree; 5372 5373 return clone; 5374 } 5375 EXPORT_SYMBOL(skb_clone_sk); 5376 5377 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5378 struct sock *sk, 5379 int tstype, 5380 bool opt_stats) 5381 { 5382 struct sock_exterr_skb *serr; 5383 int err; 5384 5385 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5386 5387 serr = SKB_EXT_ERR(skb); 5388 memset(serr, 0, sizeof(*serr)); 5389 serr->ee.ee_errno = ENOMSG; 5390 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5391 serr->ee.ee_info = tstype; 5392 serr->opt_stats = opt_stats; 5393 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5394 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5395 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5396 if (sk_is_tcp(sk)) 5397 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5398 } 5399 5400 err = sock_queue_err_skb(sk, skb); 5401 5402 if (err) 5403 kfree_skb(skb); 5404 } 5405 5406 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5407 { 5408 bool ret; 5409 5410 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5411 return true; 5412 5413 read_lock_bh(&sk->sk_callback_lock); 5414 ret = sk->sk_socket && sk->sk_socket->file && 5415 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5416 read_unlock_bh(&sk->sk_callback_lock); 5417 return ret; 5418 } 5419 5420 void skb_complete_tx_timestamp(struct sk_buff *skb, 5421 struct skb_shared_hwtstamps *hwtstamps) 5422 { 5423 struct sock *sk = skb->sk; 5424 5425 if (!skb_may_tx_timestamp(sk, false)) 5426 goto err; 5427 5428 /* Take a reference to prevent skb_orphan() from freeing the socket, 5429 * but only if the socket refcount is not zero. 5430 */ 5431 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5432 *skb_hwtstamps(skb) = *hwtstamps; 5433 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5434 sock_put(sk); 5435 return; 5436 } 5437 5438 err: 5439 kfree_skb(skb); 5440 } 5441 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5442 5443 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5444 const struct sk_buff *ack_skb, 5445 struct skb_shared_hwtstamps *hwtstamps, 5446 struct sock *sk, int tstype) 5447 { 5448 struct sk_buff *skb; 5449 bool tsonly, opt_stats = false; 5450 u32 tsflags; 5451 5452 if (!sk) 5453 return; 5454 5455 tsflags = READ_ONCE(sk->sk_tsflags); 5456 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5457 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5458 return; 5459 5460 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5461 if (!skb_may_tx_timestamp(sk, tsonly)) 5462 return; 5463 5464 if (tsonly) { 5465 #ifdef CONFIG_INET 5466 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5467 sk_is_tcp(sk)) { 5468 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5469 ack_skb); 5470 opt_stats = true; 5471 } else 5472 #endif 5473 skb = alloc_skb(0, GFP_ATOMIC); 5474 } else { 5475 skb = skb_clone(orig_skb, GFP_ATOMIC); 5476 5477 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5478 kfree_skb(skb); 5479 return; 5480 } 5481 } 5482 if (!skb) 5483 return; 5484 5485 if (tsonly) { 5486 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5487 SKBTX_ANY_TSTAMP; 5488 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5489 } 5490 5491 if (hwtstamps) 5492 *skb_hwtstamps(skb) = *hwtstamps; 5493 else 5494 __net_timestamp(skb); 5495 5496 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5497 } 5498 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5499 5500 void skb_tstamp_tx(struct sk_buff *orig_skb, 5501 struct skb_shared_hwtstamps *hwtstamps) 5502 { 5503 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5504 SCM_TSTAMP_SND); 5505 } 5506 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5507 5508 #ifdef CONFIG_WIRELESS 5509 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5510 { 5511 struct sock *sk = skb->sk; 5512 struct sock_exterr_skb *serr; 5513 int err = 1; 5514 5515 skb->wifi_acked_valid = 1; 5516 skb->wifi_acked = acked; 5517 5518 serr = SKB_EXT_ERR(skb); 5519 memset(serr, 0, sizeof(*serr)); 5520 serr->ee.ee_errno = ENOMSG; 5521 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5522 5523 /* Take a reference to prevent skb_orphan() from freeing the socket, 5524 * but only if the socket refcount is not zero. 5525 */ 5526 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5527 err = sock_queue_err_skb(sk, skb); 5528 sock_put(sk); 5529 } 5530 if (err) 5531 kfree_skb(skb); 5532 } 5533 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5534 #endif /* CONFIG_WIRELESS */ 5535 5536 /** 5537 * skb_partial_csum_set - set up and verify partial csum values for packet 5538 * @skb: the skb to set 5539 * @start: the number of bytes after skb->data to start checksumming. 5540 * @off: the offset from start to place the checksum. 5541 * 5542 * For untrusted partially-checksummed packets, we need to make sure the values 5543 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5544 * 5545 * This function checks and sets those values and skb->ip_summed: if this 5546 * returns false you should drop the packet. 5547 */ 5548 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5549 { 5550 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5551 u32 csum_start = skb_headroom(skb) + (u32)start; 5552 5553 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5554 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5555 start, off, skb_headroom(skb), skb_headlen(skb)); 5556 return false; 5557 } 5558 skb->ip_summed = CHECKSUM_PARTIAL; 5559 skb->csum_start = csum_start; 5560 skb->csum_offset = off; 5561 skb->transport_header = csum_start; 5562 return true; 5563 } 5564 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5565 5566 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5567 unsigned int max) 5568 { 5569 if (skb_headlen(skb) >= len) 5570 return 0; 5571 5572 /* If we need to pullup then pullup to the max, so we 5573 * won't need to do it again. 5574 */ 5575 if (max > skb->len) 5576 max = skb->len; 5577 5578 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5579 return -ENOMEM; 5580 5581 if (skb_headlen(skb) < len) 5582 return -EPROTO; 5583 5584 return 0; 5585 } 5586 5587 #define MAX_TCP_HDR_LEN (15 * 4) 5588 5589 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5590 typeof(IPPROTO_IP) proto, 5591 unsigned int off) 5592 { 5593 int err; 5594 5595 switch (proto) { 5596 case IPPROTO_TCP: 5597 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5598 off + MAX_TCP_HDR_LEN); 5599 if (!err && !skb_partial_csum_set(skb, off, 5600 offsetof(struct tcphdr, 5601 check))) 5602 err = -EPROTO; 5603 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5604 5605 case IPPROTO_UDP: 5606 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5607 off + sizeof(struct udphdr)); 5608 if (!err && !skb_partial_csum_set(skb, off, 5609 offsetof(struct udphdr, 5610 check))) 5611 err = -EPROTO; 5612 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5613 } 5614 5615 return ERR_PTR(-EPROTO); 5616 } 5617 5618 /* This value should be large enough to cover a tagged ethernet header plus 5619 * maximally sized IP and TCP or UDP headers. 5620 */ 5621 #define MAX_IP_HDR_LEN 128 5622 5623 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5624 { 5625 unsigned int off; 5626 bool fragment; 5627 __sum16 *csum; 5628 int err; 5629 5630 fragment = false; 5631 5632 err = skb_maybe_pull_tail(skb, 5633 sizeof(struct iphdr), 5634 MAX_IP_HDR_LEN); 5635 if (err < 0) 5636 goto out; 5637 5638 if (ip_is_fragment(ip_hdr(skb))) 5639 fragment = true; 5640 5641 off = ip_hdrlen(skb); 5642 5643 err = -EPROTO; 5644 5645 if (fragment) 5646 goto out; 5647 5648 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5649 if (IS_ERR(csum)) 5650 return PTR_ERR(csum); 5651 5652 if (recalculate) 5653 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5654 ip_hdr(skb)->daddr, 5655 skb->len - off, 5656 ip_hdr(skb)->protocol, 0); 5657 err = 0; 5658 5659 out: 5660 return err; 5661 } 5662 5663 /* This value should be large enough to cover a tagged ethernet header plus 5664 * an IPv6 header, all options, and a maximal TCP or UDP header. 5665 */ 5666 #define MAX_IPV6_HDR_LEN 256 5667 5668 #define OPT_HDR(type, skb, off) \ 5669 (type *)(skb_network_header(skb) + (off)) 5670 5671 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5672 { 5673 int err; 5674 u8 nexthdr; 5675 unsigned int off; 5676 unsigned int len; 5677 bool fragment; 5678 bool done; 5679 __sum16 *csum; 5680 5681 fragment = false; 5682 done = false; 5683 5684 off = sizeof(struct ipv6hdr); 5685 5686 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5687 if (err < 0) 5688 goto out; 5689 5690 nexthdr = ipv6_hdr(skb)->nexthdr; 5691 5692 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5693 while (off <= len && !done) { 5694 switch (nexthdr) { 5695 case IPPROTO_DSTOPTS: 5696 case IPPROTO_HOPOPTS: 5697 case IPPROTO_ROUTING: { 5698 struct ipv6_opt_hdr *hp; 5699 5700 err = skb_maybe_pull_tail(skb, 5701 off + 5702 sizeof(struct ipv6_opt_hdr), 5703 MAX_IPV6_HDR_LEN); 5704 if (err < 0) 5705 goto out; 5706 5707 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5708 nexthdr = hp->nexthdr; 5709 off += ipv6_optlen(hp); 5710 break; 5711 } 5712 case IPPROTO_AH: { 5713 struct ip_auth_hdr *hp; 5714 5715 err = skb_maybe_pull_tail(skb, 5716 off + 5717 sizeof(struct ip_auth_hdr), 5718 MAX_IPV6_HDR_LEN); 5719 if (err < 0) 5720 goto out; 5721 5722 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5723 nexthdr = hp->nexthdr; 5724 off += ipv6_authlen(hp); 5725 break; 5726 } 5727 case IPPROTO_FRAGMENT: { 5728 struct frag_hdr *hp; 5729 5730 err = skb_maybe_pull_tail(skb, 5731 off + 5732 sizeof(struct frag_hdr), 5733 MAX_IPV6_HDR_LEN); 5734 if (err < 0) 5735 goto out; 5736 5737 hp = OPT_HDR(struct frag_hdr, skb, off); 5738 5739 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5740 fragment = true; 5741 5742 nexthdr = hp->nexthdr; 5743 off += sizeof(struct frag_hdr); 5744 break; 5745 } 5746 default: 5747 done = true; 5748 break; 5749 } 5750 } 5751 5752 err = -EPROTO; 5753 5754 if (!done || fragment) 5755 goto out; 5756 5757 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5758 if (IS_ERR(csum)) 5759 return PTR_ERR(csum); 5760 5761 if (recalculate) 5762 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5763 &ipv6_hdr(skb)->daddr, 5764 skb->len - off, nexthdr, 0); 5765 err = 0; 5766 5767 out: 5768 return err; 5769 } 5770 5771 /** 5772 * skb_checksum_setup - set up partial checksum offset 5773 * @skb: the skb to set up 5774 * @recalculate: if true the pseudo-header checksum will be recalculated 5775 */ 5776 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5777 { 5778 int err; 5779 5780 switch (skb->protocol) { 5781 case htons(ETH_P_IP): 5782 err = skb_checksum_setup_ipv4(skb, recalculate); 5783 break; 5784 5785 case htons(ETH_P_IPV6): 5786 err = skb_checksum_setup_ipv6(skb, recalculate); 5787 break; 5788 5789 default: 5790 err = -EPROTO; 5791 break; 5792 } 5793 5794 return err; 5795 } 5796 EXPORT_SYMBOL(skb_checksum_setup); 5797 5798 /** 5799 * skb_checksum_maybe_trim - maybe trims the given skb 5800 * @skb: the skb to check 5801 * @transport_len: the data length beyond the network header 5802 * 5803 * Checks whether the given skb has data beyond the given transport length. 5804 * If so, returns a cloned skb trimmed to this transport length. 5805 * Otherwise returns the provided skb. Returns NULL in error cases 5806 * (e.g. transport_len exceeds skb length or out-of-memory). 5807 * 5808 * Caller needs to set the skb transport header and free any returned skb if it 5809 * differs from the provided skb. 5810 */ 5811 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5812 unsigned int transport_len) 5813 { 5814 struct sk_buff *skb_chk; 5815 unsigned int len = skb_transport_offset(skb) + transport_len; 5816 int ret; 5817 5818 if (skb->len < len) 5819 return NULL; 5820 else if (skb->len == len) 5821 return skb; 5822 5823 skb_chk = skb_clone(skb, GFP_ATOMIC); 5824 if (!skb_chk) 5825 return NULL; 5826 5827 ret = pskb_trim_rcsum(skb_chk, len); 5828 if (ret) { 5829 kfree_skb(skb_chk); 5830 return NULL; 5831 } 5832 5833 return skb_chk; 5834 } 5835 5836 /** 5837 * skb_checksum_trimmed - validate checksum of an skb 5838 * @skb: the skb to check 5839 * @transport_len: the data length beyond the network header 5840 * @skb_chkf: checksum function to use 5841 * 5842 * Applies the given checksum function skb_chkf to the provided skb. 5843 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5844 * 5845 * If the skb has data beyond the given transport length, then a 5846 * trimmed & cloned skb is checked and returned. 5847 * 5848 * Caller needs to set the skb transport header and free any returned skb if it 5849 * differs from the provided skb. 5850 */ 5851 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5852 unsigned int transport_len, 5853 __sum16(*skb_chkf)(struct sk_buff *skb)) 5854 { 5855 struct sk_buff *skb_chk; 5856 unsigned int offset = skb_transport_offset(skb); 5857 __sum16 ret; 5858 5859 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5860 if (!skb_chk) 5861 goto err; 5862 5863 if (!pskb_may_pull(skb_chk, offset)) 5864 goto err; 5865 5866 skb_pull_rcsum(skb_chk, offset); 5867 ret = skb_chkf(skb_chk); 5868 skb_push_rcsum(skb_chk, offset); 5869 5870 if (ret) 5871 goto err; 5872 5873 return skb_chk; 5874 5875 err: 5876 if (skb_chk && skb_chk != skb) 5877 kfree_skb(skb_chk); 5878 5879 return NULL; 5880 5881 } 5882 EXPORT_SYMBOL(skb_checksum_trimmed); 5883 5884 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5885 { 5886 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5887 skb->dev->name); 5888 } 5889 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5890 5891 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5892 { 5893 if (head_stolen) { 5894 skb_release_head_state(skb); 5895 kmem_cache_free(skbuff_cache, skb); 5896 } else { 5897 __kfree_skb(skb); 5898 } 5899 } 5900 EXPORT_SYMBOL(kfree_skb_partial); 5901 5902 /** 5903 * skb_try_coalesce - try to merge skb to prior one 5904 * @to: prior buffer 5905 * @from: buffer to add 5906 * @fragstolen: pointer to boolean 5907 * @delta_truesize: how much more was allocated than was requested 5908 */ 5909 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5910 bool *fragstolen, int *delta_truesize) 5911 { 5912 struct skb_shared_info *to_shinfo, *from_shinfo; 5913 int i, delta, len = from->len; 5914 5915 *fragstolen = false; 5916 5917 if (skb_cloned(to)) 5918 return false; 5919 5920 /* In general, avoid mixing page_pool and non-page_pool allocated 5921 * pages within the same SKB. In theory we could take full 5922 * references if @from is cloned and !@to->pp_recycle but its 5923 * tricky (due to potential race with the clone disappearing) and 5924 * rare, so not worth dealing with. 5925 */ 5926 if (to->pp_recycle != from->pp_recycle) 5927 return false; 5928 5929 if (len <= skb_tailroom(to)) { 5930 if (len) 5931 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5932 *delta_truesize = 0; 5933 return true; 5934 } 5935 5936 to_shinfo = skb_shinfo(to); 5937 from_shinfo = skb_shinfo(from); 5938 if (to_shinfo->frag_list || from_shinfo->frag_list) 5939 return false; 5940 if (skb_zcopy(to) || skb_zcopy(from)) 5941 return false; 5942 5943 if (skb_headlen(from) != 0) { 5944 struct page *page; 5945 unsigned int offset; 5946 5947 if (to_shinfo->nr_frags + 5948 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5949 return false; 5950 5951 if (skb_head_is_locked(from)) 5952 return false; 5953 5954 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5955 5956 page = virt_to_head_page(from->head); 5957 offset = from->data - (unsigned char *)page_address(page); 5958 5959 skb_fill_page_desc(to, to_shinfo->nr_frags, 5960 page, offset, skb_headlen(from)); 5961 *fragstolen = true; 5962 } else { 5963 if (to_shinfo->nr_frags + 5964 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5965 return false; 5966 5967 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5968 } 5969 5970 WARN_ON_ONCE(delta < len); 5971 5972 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5973 from_shinfo->frags, 5974 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5975 to_shinfo->nr_frags += from_shinfo->nr_frags; 5976 5977 if (!skb_cloned(from)) 5978 from_shinfo->nr_frags = 0; 5979 5980 /* if the skb is not cloned this does nothing 5981 * since we set nr_frags to 0. 5982 */ 5983 if (skb_pp_frag_ref(from)) { 5984 for (i = 0; i < from_shinfo->nr_frags; i++) 5985 __skb_frag_ref(&from_shinfo->frags[i]); 5986 } 5987 5988 to->truesize += delta; 5989 to->len += len; 5990 to->data_len += len; 5991 5992 *delta_truesize = delta; 5993 return true; 5994 } 5995 EXPORT_SYMBOL(skb_try_coalesce); 5996 5997 /** 5998 * skb_scrub_packet - scrub an skb 5999 * 6000 * @skb: buffer to clean 6001 * @xnet: packet is crossing netns 6002 * 6003 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 6004 * into/from a tunnel. Some information have to be cleared during these 6005 * operations. 6006 * skb_scrub_packet can also be used to clean a skb before injecting it in 6007 * another namespace (@xnet == true). We have to clear all information in the 6008 * skb that could impact namespace isolation. 6009 */ 6010 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6011 { 6012 skb->pkt_type = PACKET_HOST; 6013 skb->skb_iif = 0; 6014 skb->ignore_df = 0; 6015 skb_dst_drop(skb); 6016 skb_ext_reset(skb); 6017 nf_reset_ct(skb); 6018 nf_reset_trace(skb); 6019 6020 #ifdef CONFIG_NET_SWITCHDEV 6021 skb->offload_fwd_mark = 0; 6022 skb->offload_l3_fwd_mark = 0; 6023 #endif 6024 6025 if (!xnet) 6026 return; 6027 6028 ipvs_reset(skb); 6029 skb->mark = 0; 6030 skb_clear_tstamp(skb); 6031 } 6032 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6033 6034 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6035 { 6036 int mac_len, meta_len; 6037 void *meta; 6038 6039 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6040 kfree_skb(skb); 6041 return NULL; 6042 } 6043 6044 mac_len = skb->data - skb_mac_header(skb); 6045 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6046 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6047 mac_len - VLAN_HLEN - ETH_TLEN); 6048 } 6049 6050 meta_len = skb_metadata_len(skb); 6051 if (meta_len) { 6052 meta = skb_metadata_end(skb) - meta_len; 6053 memmove(meta + VLAN_HLEN, meta, meta_len); 6054 } 6055 6056 skb->mac_header += VLAN_HLEN; 6057 return skb; 6058 } 6059 6060 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6061 { 6062 struct vlan_hdr *vhdr; 6063 u16 vlan_tci; 6064 6065 if (unlikely(skb_vlan_tag_present(skb))) { 6066 /* vlan_tci is already set-up so leave this for another time */ 6067 return skb; 6068 } 6069 6070 skb = skb_share_check(skb, GFP_ATOMIC); 6071 if (unlikely(!skb)) 6072 goto err_free; 6073 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6074 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6075 goto err_free; 6076 6077 vhdr = (struct vlan_hdr *)skb->data; 6078 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6079 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6080 6081 skb_pull_rcsum(skb, VLAN_HLEN); 6082 vlan_set_encap_proto(skb, vhdr); 6083 6084 skb = skb_reorder_vlan_header(skb); 6085 if (unlikely(!skb)) 6086 goto err_free; 6087 6088 skb_reset_network_header(skb); 6089 if (!skb_transport_header_was_set(skb)) 6090 skb_reset_transport_header(skb); 6091 skb_reset_mac_len(skb); 6092 6093 return skb; 6094 6095 err_free: 6096 kfree_skb(skb); 6097 return NULL; 6098 } 6099 EXPORT_SYMBOL(skb_vlan_untag); 6100 6101 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6102 { 6103 if (!pskb_may_pull(skb, write_len)) 6104 return -ENOMEM; 6105 6106 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6107 return 0; 6108 6109 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6110 } 6111 EXPORT_SYMBOL(skb_ensure_writable); 6112 6113 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6114 { 6115 int needed_headroom = dev->needed_headroom; 6116 int needed_tailroom = dev->needed_tailroom; 6117 6118 /* For tail taggers, we need to pad short frames ourselves, to ensure 6119 * that the tail tag does not fail at its role of being at the end of 6120 * the packet, once the conduit interface pads the frame. Account for 6121 * that pad length here, and pad later. 6122 */ 6123 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6124 needed_tailroom += ETH_ZLEN - skb->len; 6125 /* skb_headroom() returns unsigned int... */ 6126 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6127 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6128 6129 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6130 /* No reallocation needed, yay! */ 6131 return 0; 6132 6133 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6134 GFP_ATOMIC); 6135 } 6136 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6137 6138 /* remove VLAN header from packet and update csum accordingly. 6139 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6140 */ 6141 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6142 { 6143 int offset = skb->data - skb_mac_header(skb); 6144 int err; 6145 6146 if (WARN_ONCE(offset, 6147 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6148 offset)) { 6149 return -EINVAL; 6150 } 6151 6152 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6153 if (unlikely(err)) 6154 return err; 6155 6156 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6157 6158 vlan_remove_tag(skb, vlan_tci); 6159 6160 skb->mac_header += VLAN_HLEN; 6161 6162 if (skb_network_offset(skb) < ETH_HLEN) 6163 skb_set_network_header(skb, ETH_HLEN); 6164 6165 skb_reset_mac_len(skb); 6166 6167 return err; 6168 } 6169 EXPORT_SYMBOL(__skb_vlan_pop); 6170 6171 /* Pop a vlan tag either from hwaccel or from payload. 6172 * Expects skb->data at mac header. 6173 */ 6174 int skb_vlan_pop(struct sk_buff *skb) 6175 { 6176 u16 vlan_tci; 6177 __be16 vlan_proto; 6178 int err; 6179 6180 if (likely(skb_vlan_tag_present(skb))) { 6181 __vlan_hwaccel_clear_tag(skb); 6182 } else { 6183 if (unlikely(!eth_type_vlan(skb->protocol))) 6184 return 0; 6185 6186 err = __skb_vlan_pop(skb, &vlan_tci); 6187 if (err) 6188 return err; 6189 } 6190 /* move next vlan tag to hw accel tag */ 6191 if (likely(!eth_type_vlan(skb->protocol))) 6192 return 0; 6193 6194 vlan_proto = skb->protocol; 6195 err = __skb_vlan_pop(skb, &vlan_tci); 6196 if (unlikely(err)) 6197 return err; 6198 6199 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6200 return 0; 6201 } 6202 EXPORT_SYMBOL(skb_vlan_pop); 6203 6204 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6205 * Expects skb->data at mac header. 6206 */ 6207 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6208 { 6209 if (skb_vlan_tag_present(skb)) { 6210 int offset = skb->data - skb_mac_header(skb); 6211 int err; 6212 6213 if (WARN_ONCE(offset, 6214 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6215 offset)) { 6216 return -EINVAL; 6217 } 6218 6219 err = __vlan_insert_tag(skb, skb->vlan_proto, 6220 skb_vlan_tag_get(skb)); 6221 if (err) 6222 return err; 6223 6224 skb->protocol = skb->vlan_proto; 6225 skb->mac_len += VLAN_HLEN; 6226 6227 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6228 } 6229 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6230 return 0; 6231 } 6232 EXPORT_SYMBOL(skb_vlan_push); 6233 6234 /** 6235 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6236 * 6237 * @skb: Socket buffer to modify 6238 * 6239 * Drop the Ethernet header of @skb. 6240 * 6241 * Expects that skb->data points to the mac header and that no VLAN tags are 6242 * present. 6243 * 6244 * Returns 0 on success, -errno otherwise. 6245 */ 6246 int skb_eth_pop(struct sk_buff *skb) 6247 { 6248 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6249 skb_network_offset(skb) < ETH_HLEN) 6250 return -EPROTO; 6251 6252 skb_pull_rcsum(skb, ETH_HLEN); 6253 skb_reset_mac_header(skb); 6254 skb_reset_mac_len(skb); 6255 6256 return 0; 6257 } 6258 EXPORT_SYMBOL(skb_eth_pop); 6259 6260 /** 6261 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6262 * 6263 * @skb: Socket buffer to modify 6264 * @dst: Destination MAC address of the new header 6265 * @src: Source MAC address of the new header 6266 * 6267 * Prepend @skb with a new Ethernet header. 6268 * 6269 * Expects that skb->data points to the mac header, which must be empty. 6270 * 6271 * Returns 0 on success, -errno otherwise. 6272 */ 6273 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6274 const unsigned char *src) 6275 { 6276 struct ethhdr *eth; 6277 int err; 6278 6279 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6280 return -EPROTO; 6281 6282 err = skb_cow_head(skb, sizeof(*eth)); 6283 if (err < 0) 6284 return err; 6285 6286 skb_push(skb, sizeof(*eth)); 6287 skb_reset_mac_header(skb); 6288 skb_reset_mac_len(skb); 6289 6290 eth = eth_hdr(skb); 6291 ether_addr_copy(eth->h_dest, dst); 6292 ether_addr_copy(eth->h_source, src); 6293 eth->h_proto = skb->protocol; 6294 6295 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6296 6297 return 0; 6298 } 6299 EXPORT_SYMBOL(skb_eth_push); 6300 6301 /* Update the ethertype of hdr and the skb csum value if required. */ 6302 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6303 __be16 ethertype) 6304 { 6305 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6306 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6307 6308 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6309 } 6310 6311 hdr->h_proto = ethertype; 6312 } 6313 6314 /** 6315 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6316 * the packet 6317 * 6318 * @skb: buffer 6319 * @mpls_lse: MPLS label stack entry to push 6320 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6321 * @mac_len: length of the MAC header 6322 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6323 * ethernet 6324 * 6325 * Expects skb->data at mac header. 6326 * 6327 * Returns 0 on success, -errno otherwise. 6328 */ 6329 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6330 int mac_len, bool ethernet) 6331 { 6332 struct mpls_shim_hdr *lse; 6333 int err; 6334 6335 if (unlikely(!eth_p_mpls(mpls_proto))) 6336 return -EINVAL; 6337 6338 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6339 if (skb->encapsulation) 6340 return -EINVAL; 6341 6342 err = skb_cow_head(skb, MPLS_HLEN); 6343 if (unlikely(err)) 6344 return err; 6345 6346 if (!skb->inner_protocol) { 6347 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6348 skb_set_inner_protocol(skb, skb->protocol); 6349 } 6350 6351 skb_push(skb, MPLS_HLEN); 6352 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6353 mac_len); 6354 skb_reset_mac_header(skb); 6355 skb_set_network_header(skb, mac_len); 6356 skb_reset_mac_len(skb); 6357 6358 lse = mpls_hdr(skb); 6359 lse->label_stack_entry = mpls_lse; 6360 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6361 6362 if (ethernet && mac_len >= ETH_HLEN) 6363 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6364 skb->protocol = mpls_proto; 6365 6366 return 0; 6367 } 6368 EXPORT_SYMBOL_GPL(skb_mpls_push); 6369 6370 /** 6371 * skb_mpls_pop() - pop the outermost MPLS header 6372 * 6373 * @skb: buffer 6374 * @next_proto: ethertype of header after popped MPLS header 6375 * @mac_len: length of the MAC header 6376 * @ethernet: flag to indicate if the packet is ethernet 6377 * 6378 * Expects skb->data at mac header. 6379 * 6380 * Returns 0 on success, -errno otherwise. 6381 */ 6382 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6383 bool ethernet) 6384 { 6385 int err; 6386 6387 if (unlikely(!eth_p_mpls(skb->protocol))) 6388 return 0; 6389 6390 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6391 if (unlikely(err)) 6392 return err; 6393 6394 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6395 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6396 mac_len); 6397 6398 __skb_pull(skb, MPLS_HLEN); 6399 skb_reset_mac_header(skb); 6400 skb_set_network_header(skb, mac_len); 6401 6402 if (ethernet && mac_len >= ETH_HLEN) { 6403 struct ethhdr *hdr; 6404 6405 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6406 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6407 skb_mod_eth_type(skb, hdr, next_proto); 6408 } 6409 skb->protocol = next_proto; 6410 6411 return 0; 6412 } 6413 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6414 6415 /** 6416 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6417 * 6418 * @skb: buffer 6419 * @mpls_lse: new MPLS label stack entry to update to 6420 * 6421 * Expects skb->data at mac header. 6422 * 6423 * Returns 0 on success, -errno otherwise. 6424 */ 6425 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6426 { 6427 int err; 6428 6429 if (unlikely(!eth_p_mpls(skb->protocol))) 6430 return -EINVAL; 6431 6432 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6433 if (unlikely(err)) 6434 return err; 6435 6436 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6437 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6438 6439 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6440 } 6441 6442 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6443 6444 return 0; 6445 } 6446 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6447 6448 /** 6449 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6450 * 6451 * @skb: buffer 6452 * 6453 * Expects skb->data at mac header. 6454 * 6455 * Returns 0 on success, -errno otherwise. 6456 */ 6457 int skb_mpls_dec_ttl(struct sk_buff *skb) 6458 { 6459 u32 lse; 6460 u8 ttl; 6461 6462 if (unlikely(!eth_p_mpls(skb->protocol))) 6463 return -EINVAL; 6464 6465 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6466 return -ENOMEM; 6467 6468 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6469 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6470 if (!--ttl) 6471 return -EINVAL; 6472 6473 lse &= ~MPLS_LS_TTL_MASK; 6474 lse |= ttl << MPLS_LS_TTL_SHIFT; 6475 6476 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6477 } 6478 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6479 6480 /** 6481 * alloc_skb_with_frags - allocate skb with page frags 6482 * 6483 * @header_len: size of linear part 6484 * @data_len: needed length in frags 6485 * @order: max page order desired. 6486 * @errcode: pointer to error code if any 6487 * @gfp_mask: allocation mask 6488 * 6489 * This can be used to allocate a paged skb, given a maximal order for frags. 6490 */ 6491 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6492 unsigned long data_len, 6493 int order, 6494 int *errcode, 6495 gfp_t gfp_mask) 6496 { 6497 unsigned long chunk; 6498 struct sk_buff *skb; 6499 struct page *page; 6500 int nr_frags = 0; 6501 6502 *errcode = -EMSGSIZE; 6503 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6504 return NULL; 6505 6506 *errcode = -ENOBUFS; 6507 skb = alloc_skb(header_len, gfp_mask); 6508 if (!skb) 6509 return NULL; 6510 6511 while (data_len) { 6512 if (nr_frags == MAX_SKB_FRAGS - 1) 6513 goto failure; 6514 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6515 order--; 6516 6517 if (order) { 6518 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6519 __GFP_COMP | 6520 __GFP_NOWARN, 6521 order); 6522 if (!page) { 6523 order--; 6524 continue; 6525 } 6526 } else { 6527 page = alloc_page(gfp_mask); 6528 if (!page) 6529 goto failure; 6530 } 6531 chunk = min_t(unsigned long, data_len, 6532 PAGE_SIZE << order); 6533 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6534 nr_frags++; 6535 skb->truesize += (PAGE_SIZE << order); 6536 data_len -= chunk; 6537 } 6538 return skb; 6539 6540 failure: 6541 kfree_skb(skb); 6542 return NULL; 6543 } 6544 EXPORT_SYMBOL(alloc_skb_with_frags); 6545 6546 /* carve out the first off bytes from skb when off < headlen */ 6547 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6548 const int headlen, gfp_t gfp_mask) 6549 { 6550 int i; 6551 unsigned int size = skb_end_offset(skb); 6552 int new_hlen = headlen - off; 6553 u8 *data; 6554 6555 if (skb_pfmemalloc(skb)) 6556 gfp_mask |= __GFP_MEMALLOC; 6557 6558 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6559 if (!data) 6560 return -ENOMEM; 6561 size = SKB_WITH_OVERHEAD(size); 6562 6563 /* Copy real data, and all frags */ 6564 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6565 skb->len -= off; 6566 6567 memcpy((struct skb_shared_info *)(data + size), 6568 skb_shinfo(skb), 6569 offsetof(struct skb_shared_info, 6570 frags[skb_shinfo(skb)->nr_frags])); 6571 if (skb_cloned(skb)) { 6572 /* drop the old head gracefully */ 6573 if (skb_orphan_frags(skb, gfp_mask)) { 6574 skb_kfree_head(data, size); 6575 return -ENOMEM; 6576 } 6577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6578 skb_frag_ref(skb, i); 6579 if (skb_has_frag_list(skb)) 6580 skb_clone_fraglist(skb); 6581 skb_release_data(skb, SKB_CONSUMED, false); 6582 } else { 6583 /* we can reuse existing recount- all we did was 6584 * relocate values 6585 */ 6586 skb_free_head(skb, false); 6587 } 6588 6589 skb->head = data; 6590 skb->data = data; 6591 skb->head_frag = 0; 6592 skb_set_end_offset(skb, size); 6593 skb_set_tail_pointer(skb, skb_headlen(skb)); 6594 skb_headers_offset_update(skb, 0); 6595 skb->cloned = 0; 6596 skb->hdr_len = 0; 6597 skb->nohdr = 0; 6598 atomic_set(&skb_shinfo(skb)->dataref, 1); 6599 6600 return 0; 6601 } 6602 6603 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6604 6605 /* carve out the first eat bytes from skb's frag_list. May recurse into 6606 * pskb_carve() 6607 */ 6608 static int pskb_carve_frag_list(struct sk_buff *skb, 6609 struct skb_shared_info *shinfo, int eat, 6610 gfp_t gfp_mask) 6611 { 6612 struct sk_buff *list = shinfo->frag_list; 6613 struct sk_buff *clone = NULL; 6614 struct sk_buff *insp = NULL; 6615 6616 do { 6617 if (!list) { 6618 pr_err("Not enough bytes to eat. Want %d\n", eat); 6619 return -EFAULT; 6620 } 6621 if (list->len <= eat) { 6622 /* Eaten as whole. */ 6623 eat -= list->len; 6624 list = list->next; 6625 insp = list; 6626 } else { 6627 /* Eaten partially. */ 6628 if (skb_shared(list)) { 6629 clone = skb_clone(list, gfp_mask); 6630 if (!clone) 6631 return -ENOMEM; 6632 insp = list->next; 6633 list = clone; 6634 } else { 6635 /* This may be pulled without problems. */ 6636 insp = list; 6637 } 6638 if (pskb_carve(list, eat, gfp_mask) < 0) { 6639 kfree_skb(clone); 6640 return -ENOMEM; 6641 } 6642 break; 6643 } 6644 } while (eat); 6645 6646 /* Free pulled out fragments. */ 6647 while ((list = shinfo->frag_list) != insp) { 6648 shinfo->frag_list = list->next; 6649 consume_skb(list); 6650 } 6651 /* And insert new clone at head. */ 6652 if (clone) { 6653 clone->next = list; 6654 shinfo->frag_list = clone; 6655 } 6656 return 0; 6657 } 6658 6659 /* carve off first len bytes from skb. Split line (off) is in the 6660 * non-linear part of skb 6661 */ 6662 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6663 int pos, gfp_t gfp_mask) 6664 { 6665 int i, k = 0; 6666 unsigned int size = skb_end_offset(skb); 6667 u8 *data; 6668 const int nfrags = skb_shinfo(skb)->nr_frags; 6669 struct skb_shared_info *shinfo; 6670 6671 if (skb_pfmemalloc(skb)) 6672 gfp_mask |= __GFP_MEMALLOC; 6673 6674 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6675 if (!data) 6676 return -ENOMEM; 6677 size = SKB_WITH_OVERHEAD(size); 6678 6679 memcpy((struct skb_shared_info *)(data + size), 6680 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6681 if (skb_orphan_frags(skb, gfp_mask)) { 6682 skb_kfree_head(data, size); 6683 return -ENOMEM; 6684 } 6685 shinfo = (struct skb_shared_info *)(data + size); 6686 for (i = 0; i < nfrags; i++) { 6687 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6688 6689 if (pos + fsize > off) { 6690 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6691 6692 if (pos < off) { 6693 /* Split frag. 6694 * We have two variants in this case: 6695 * 1. Move all the frag to the second 6696 * part, if it is possible. F.e. 6697 * this approach is mandatory for TUX, 6698 * where splitting is expensive. 6699 * 2. Split is accurately. We make this. 6700 */ 6701 skb_frag_off_add(&shinfo->frags[0], off - pos); 6702 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6703 } 6704 skb_frag_ref(skb, i); 6705 k++; 6706 } 6707 pos += fsize; 6708 } 6709 shinfo->nr_frags = k; 6710 if (skb_has_frag_list(skb)) 6711 skb_clone_fraglist(skb); 6712 6713 /* split line is in frag list */ 6714 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6715 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6716 if (skb_has_frag_list(skb)) 6717 kfree_skb_list(skb_shinfo(skb)->frag_list); 6718 skb_kfree_head(data, size); 6719 return -ENOMEM; 6720 } 6721 skb_release_data(skb, SKB_CONSUMED, false); 6722 6723 skb->head = data; 6724 skb->head_frag = 0; 6725 skb->data = data; 6726 skb_set_end_offset(skb, size); 6727 skb_reset_tail_pointer(skb); 6728 skb_headers_offset_update(skb, 0); 6729 skb->cloned = 0; 6730 skb->hdr_len = 0; 6731 skb->nohdr = 0; 6732 skb->len -= off; 6733 skb->data_len = skb->len; 6734 atomic_set(&skb_shinfo(skb)->dataref, 1); 6735 return 0; 6736 } 6737 6738 /* remove len bytes from the beginning of the skb */ 6739 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6740 { 6741 int headlen = skb_headlen(skb); 6742 6743 if (len < headlen) 6744 return pskb_carve_inside_header(skb, len, headlen, gfp); 6745 else 6746 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6747 } 6748 6749 /* Extract to_copy bytes starting at off from skb, and return this in 6750 * a new skb 6751 */ 6752 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6753 int to_copy, gfp_t gfp) 6754 { 6755 struct sk_buff *clone = skb_clone(skb, gfp); 6756 6757 if (!clone) 6758 return NULL; 6759 6760 if (pskb_carve(clone, off, gfp) < 0 || 6761 pskb_trim(clone, to_copy)) { 6762 kfree_skb(clone); 6763 return NULL; 6764 } 6765 return clone; 6766 } 6767 EXPORT_SYMBOL(pskb_extract); 6768 6769 /** 6770 * skb_condense - try to get rid of fragments/frag_list if possible 6771 * @skb: buffer 6772 * 6773 * Can be used to save memory before skb is added to a busy queue. 6774 * If packet has bytes in frags and enough tail room in skb->head, 6775 * pull all of them, so that we can free the frags right now and adjust 6776 * truesize. 6777 * Notes: 6778 * We do not reallocate skb->head thus can not fail. 6779 * Caller must re-evaluate skb->truesize if needed. 6780 */ 6781 void skb_condense(struct sk_buff *skb) 6782 { 6783 if (skb->data_len) { 6784 if (skb->data_len > skb->end - skb->tail || 6785 skb_cloned(skb)) 6786 return; 6787 6788 /* Nice, we can free page frag(s) right now */ 6789 __pskb_pull_tail(skb, skb->data_len); 6790 } 6791 /* At this point, skb->truesize might be over estimated, 6792 * because skb had a fragment, and fragments do not tell 6793 * their truesize. 6794 * When we pulled its content into skb->head, fragment 6795 * was freed, but __pskb_pull_tail() could not possibly 6796 * adjust skb->truesize, not knowing the frag truesize. 6797 */ 6798 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6799 } 6800 EXPORT_SYMBOL(skb_condense); 6801 6802 #ifdef CONFIG_SKB_EXTENSIONS 6803 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6804 { 6805 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6806 } 6807 6808 /** 6809 * __skb_ext_alloc - allocate a new skb extensions storage 6810 * 6811 * @flags: See kmalloc(). 6812 * 6813 * Returns the newly allocated pointer. The pointer can later attached to a 6814 * skb via __skb_ext_set(). 6815 * Note: caller must handle the skb_ext as an opaque data. 6816 */ 6817 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6818 { 6819 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6820 6821 if (new) { 6822 memset(new->offset, 0, sizeof(new->offset)); 6823 refcount_set(&new->refcnt, 1); 6824 } 6825 6826 return new; 6827 } 6828 6829 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6830 unsigned int old_active) 6831 { 6832 struct skb_ext *new; 6833 6834 if (refcount_read(&old->refcnt) == 1) 6835 return old; 6836 6837 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6838 if (!new) 6839 return NULL; 6840 6841 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6842 refcount_set(&new->refcnt, 1); 6843 6844 #ifdef CONFIG_XFRM 6845 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6846 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6847 unsigned int i; 6848 6849 for (i = 0; i < sp->len; i++) 6850 xfrm_state_hold(sp->xvec[i]); 6851 } 6852 #endif 6853 #ifdef CONFIG_MCTP_FLOWS 6854 if (old_active & (1 << SKB_EXT_MCTP)) { 6855 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6856 6857 if (flow->key) 6858 refcount_inc(&flow->key->refs); 6859 } 6860 #endif 6861 __skb_ext_put(old); 6862 return new; 6863 } 6864 6865 /** 6866 * __skb_ext_set - attach the specified extension storage to this skb 6867 * @skb: buffer 6868 * @id: extension id 6869 * @ext: extension storage previously allocated via __skb_ext_alloc() 6870 * 6871 * Existing extensions, if any, are cleared. 6872 * 6873 * Returns the pointer to the extension. 6874 */ 6875 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6876 struct skb_ext *ext) 6877 { 6878 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6879 6880 skb_ext_put(skb); 6881 newlen = newoff + skb_ext_type_len[id]; 6882 ext->chunks = newlen; 6883 ext->offset[id] = newoff; 6884 skb->extensions = ext; 6885 skb->active_extensions = 1 << id; 6886 return skb_ext_get_ptr(ext, id); 6887 } 6888 6889 /** 6890 * skb_ext_add - allocate space for given extension, COW if needed 6891 * @skb: buffer 6892 * @id: extension to allocate space for 6893 * 6894 * Allocates enough space for the given extension. 6895 * If the extension is already present, a pointer to that extension 6896 * is returned. 6897 * 6898 * If the skb was cloned, COW applies and the returned memory can be 6899 * modified without changing the extension space of clones buffers. 6900 * 6901 * Returns pointer to the extension or NULL on allocation failure. 6902 */ 6903 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6904 { 6905 struct skb_ext *new, *old = NULL; 6906 unsigned int newlen, newoff; 6907 6908 if (skb->active_extensions) { 6909 old = skb->extensions; 6910 6911 new = skb_ext_maybe_cow(old, skb->active_extensions); 6912 if (!new) 6913 return NULL; 6914 6915 if (__skb_ext_exist(new, id)) 6916 goto set_active; 6917 6918 newoff = new->chunks; 6919 } else { 6920 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6921 6922 new = __skb_ext_alloc(GFP_ATOMIC); 6923 if (!new) 6924 return NULL; 6925 } 6926 6927 newlen = newoff + skb_ext_type_len[id]; 6928 new->chunks = newlen; 6929 new->offset[id] = newoff; 6930 set_active: 6931 skb->slow_gro = 1; 6932 skb->extensions = new; 6933 skb->active_extensions |= 1 << id; 6934 return skb_ext_get_ptr(new, id); 6935 } 6936 EXPORT_SYMBOL(skb_ext_add); 6937 6938 #ifdef CONFIG_XFRM 6939 static void skb_ext_put_sp(struct sec_path *sp) 6940 { 6941 unsigned int i; 6942 6943 for (i = 0; i < sp->len; i++) 6944 xfrm_state_put(sp->xvec[i]); 6945 } 6946 #endif 6947 6948 #ifdef CONFIG_MCTP_FLOWS 6949 static void skb_ext_put_mctp(struct mctp_flow *flow) 6950 { 6951 if (flow->key) 6952 mctp_key_unref(flow->key); 6953 } 6954 #endif 6955 6956 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6957 { 6958 struct skb_ext *ext = skb->extensions; 6959 6960 skb->active_extensions &= ~(1 << id); 6961 if (skb->active_extensions == 0) { 6962 skb->extensions = NULL; 6963 __skb_ext_put(ext); 6964 #ifdef CONFIG_XFRM 6965 } else if (id == SKB_EXT_SEC_PATH && 6966 refcount_read(&ext->refcnt) == 1) { 6967 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6968 6969 skb_ext_put_sp(sp); 6970 sp->len = 0; 6971 #endif 6972 } 6973 } 6974 EXPORT_SYMBOL(__skb_ext_del); 6975 6976 void __skb_ext_put(struct skb_ext *ext) 6977 { 6978 /* If this is last clone, nothing can increment 6979 * it after check passes. Avoids one atomic op. 6980 */ 6981 if (refcount_read(&ext->refcnt) == 1) 6982 goto free_now; 6983 6984 if (!refcount_dec_and_test(&ext->refcnt)) 6985 return; 6986 free_now: 6987 #ifdef CONFIG_XFRM 6988 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6989 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6990 #endif 6991 #ifdef CONFIG_MCTP_FLOWS 6992 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6993 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6994 #endif 6995 6996 kmem_cache_free(skbuff_ext_cache, ext); 6997 } 6998 EXPORT_SYMBOL(__skb_ext_put); 6999 #endif /* CONFIG_SKB_EXTENSIONS */ 7000 7001 /** 7002 * skb_attempt_defer_free - queue skb for remote freeing 7003 * @skb: buffer 7004 * 7005 * Put @skb in a per-cpu list, using the cpu which 7006 * allocated the skb/pages to reduce false sharing 7007 * and memory zone spinlock contention. 7008 */ 7009 void skb_attempt_defer_free(struct sk_buff *skb) 7010 { 7011 int cpu = skb->alloc_cpu; 7012 struct softnet_data *sd; 7013 unsigned int defer_max; 7014 bool kick; 7015 7016 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7017 !cpu_online(cpu) || 7018 cpu == raw_smp_processor_id()) { 7019 nodefer: __kfree_skb(skb); 7020 return; 7021 } 7022 7023 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7024 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7025 7026 sd = &per_cpu(softnet_data, cpu); 7027 defer_max = READ_ONCE(sysctl_skb_defer_max); 7028 if (READ_ONCE(sd->defer_count) >= defer_max) 7029 goto nodefer; 7030 7031 spin_lock_bh(&sd->defer_lock); 7032 /* Send an IPI every time queue reaches half capacity. */ 7033 kick = sd->defer_count == (defer_max >> 1); 7034 /* Paired with the READ_ONCE() few lines above */ 7035 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7036 7037 skb->next = sd->defer_list; 7038 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7039 WRITE_ONCE(sd->defer_list, skb); 7040 spin_unlock_bh(&sd->defer_lock); 7041 7042 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7043 * if we are unlucky enough (this seems very unlikely). 7044 */ 7045 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 7046 smp_call_function_single_async(cpu, &sd->defer_csd); 7047 } 7048 7049 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7050 size_t offset, size_t len) 7051 { 7052 const char *kaddr; 7053 __wsum csum; 7054 7055 kaddr = kmap_local_page(page); 7056 csum = csum_partial(kaddr + offset, len, 0); 7057 kunmap_local(kaddr); 7058 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7059 } 7060 7061 /** 7062 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7063 * @skb: The buffer to add pages to 7064 * @iter: Iterator representing the pages to be added 7065 * @maxsize: Maximum amount of pages to be added 7066 * @gfp: Allocation flags 7067 * 7068 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7069 * extracts pages from an iterator and adds them to the socket buffer if 7070 * possible, copying them to fragments if not possible (such as if they're slab 7071 * pages). 7072 * 7073 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7074 * insufficient space in the buffer to transfer anything. 7075 */ 7076 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7077 ssize_t maxsize, gfp_t gfp) 7078 { 7079 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 7080 struct page *pages[8], **ppages = pages; 7081 ssize_t spliced = 0, ret = 0; 7082 unsigned int i; 7083 7084 while (iter->count > 0) { 7085 ssize_t space, nr, len; 7086 size_t off; 7087 7088 ret = -EMSGSIZE; 7089 space = frag_limit - skb_shinfo(skb)->nr_frags; 7090 if (space < 0) 7091 break; 7092 7093 /* We might be able to coalesce without increasing nr_frags */ 7094 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7095 7096 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7097 if (len <= 0) { 7098 ret = len ?: -EIO; 7099 break; 7100 } 7101 7102 i = 0; 7103 do { 7104 struct page *page = pages[i++]; 7105 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7106 7107 ret = -EIO; 7108 if (WARN_ON_ONCE(!sendpage_ok(page))) 7109 goto out; 7110 7111 ret = skb_append_pagefrags(skb, page, off, part, 7112 frag_limit); 7113 if (ret < 0) { 7114 iov_iter_revert(iter, len); 7115 goto out; 7116 } 7117 7118 if (skb->ip_summed == CHECKSUM_NONE) 7119 skb_splice_csum_page(skb, page, off, part); 7120 7121 off = 0; 7122 spliced += part; 7123 maxsize -= part; 7124 len -= part; 7125 } while (len > 0); 7126 7127 if (maxsize <= 0) 7128 break; 7129 } 7130 7131 out: 7132 skb_len_add(skb, spliced); 7133 return spliced ?: ret; 7134 } 7135 EXPORT_SYMBOL(skb_splice_from_iter); 7136 7137 static __always_inline 7138 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7139 size_t len, void *to, void *priv2) 7140 { 7141 __wsum *csum = priv2; 7142 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7143 7144 *csum = csum_block_add(*csum, next, progress); 7145 return 0; 7146 } 7147 7148 static __always_inline 7149 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7150 size_t len, void *to, void *priv2) 7151 { 7152 __wsum next, *csum = priv2; 7153 7154 next = csum_and_copy_from_user(iter_from, to + progress, len); 7155 *csum = csum_block_add(*csum, next, progress); 7156 return next ? 0 : len; 7157 } 7158 7159 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7160 __wsum *csum, struct iov_iter *i) 7161 { 7162 size_t copied; 7163 7164 if (WARN_ON_ONCE(!i->data_source)) 7165 return false; 7166 copied = iterate_and_advance2(i, bytes, addr, csum, 7167 copy_from_user_iter_csum, 7168 memcpy_from_iter_csum); 7169 if (likely(copied == bytes)) 7170 return true; 7171 iov_iter_revert(i, copied); 7172 return false; 7173 } 7174 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7175