xref: /linux/net/core/skbuff.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64 
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67 
68 #include "kmap_skb.h"
69 
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72 
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 				  struct pipe_buffer *buf)
75 {
76 	struct sk_buff *skb = (struct sk_buff *) buf->private;
77 
78 	kfree_skb(skb);
79 }
80 
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 				struct pipe_buffer *buf)
83 {
84 	struct sk_buff *skb = (struct sk_buff *) buf->private;
85 
86 	skb_get(skb);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
125 	       here, skb->len, sz, skb->head, skb->data,
126 	       (unsigned long)skb->tail, (unsigned long)skb->end,
127 	       skb->dev ? skb->dev->name : "<NULL>");
128 	BUG();
129 }
130 
131 /**
132  *	skb_under_panic	- 	private function
133  *	@skb: buffer
134  *	@sz: size
135  *	@here: address
136  *
137  *	Out of line support code for skb_push(). Not user callable.
138  */
139 
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
144 	       here, skb->len, sz, skb->head, skb->data,
145 	       (unsigned long)skb->tail, (unsigned long)skb->end,
146 	       skb->dev ? skb->dev->name : "<NULL>");
147 	BUG();
148 }
149 
150 void skb_truesize_bug(struct sk_buff *skb)
151 {
152 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
153 	       "len=%u, sizeof(sk_buff)=%Zd\n",
154 	       skb->truesize, skb->len, sizeof(struct sk_buff));
155 }
156 EXPORT_SYMBOL(skb_truesize_bug);
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@fclone: allocate from fclone cache instead of head cache
169  *		and allocate a cloned (child) skb
170  *	@node: numa node to allocate memory on
171  *
172  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
173  *	tail room of size bytes. The object has a reference count of one.
174  *	The return is the buffer. On a failure the return is %NULL.
175  *
176  *	Buffers may only be allocated from interrupts using a @gfp_mask of
177  *	%GFP_ATOMIC.
178  */
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 			    int fclone, int node)
181 {
182 	struct kmem_cache *cache;
183 	struct skb_shared_info *shinfo;
184 	struct sk_buff *skb;
185 	u8 *data;
186 
187 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	/* Get the HEAD */
190 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
191 	if (!skb)
192 		goto out;
193 
194 	size = SKB_DATA_ALIGN(size);
195 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
196 			gfp_mask, node);
197 	if (!data)
198 		goto nodata;
199 
200 	/*
201 	 * Only clear those fields we need to clear, not those that we will
202 	 * actually initialise below. Hence, don't put any more fields after
203 	 * the tail pointer in struct sk_buff!
204 	 */
205 	memset(skb, 0, offsetof(struct sk_buff, tail));
206 	skb->truesize = size + sizeof(struct sk_buff);
207 	atomic_set(&skb->users, 1);
208 	skb->head = data;
209 	skb->data = data;
210 	skb_reset_tail_pointer(skb);
211 	skb->end = skb->tail + size;
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	atomic_set(&shinfo->dataref, 1);
215 	shinfo->nr_frags  = 0;
216 	shinfo->gso_size = 0;
217 	shinfo->gso_segs = 0;
218 	shinfo->gso_type = 0;
219 	shinfo->ip6_frag_id = 0;
220 	shinfo->frag_list = NULL;
221 
222 	if (fclone) {
223 		struct sk_buff *child = skb + 1;
224 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
225 
226 		skb->fclone = SKB_FCLONE_ORIG;
227 		atomic_set(fclone_ref, 1);
228 
229 		child->fclone = SKB_FCLONE_UNAVAILABLE;
230 	}
231 out:
232 	return skb;
233 nodata:
234 	kmem_cache_free(cache, skb);
235 	skb = NULL;
236 	goto out;
237 }
238 
239 /**
240  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
241  *	@dev: network device to receive on
242  *	@length: length to allocate
243  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
244  *
245  *	Allocate a new &sk_buff and assign it a usage count of one. The
246  *	buffer has unspecified headroom built in. Users should allocate
247  *	the headroom they think they need without accounting for the
248  *	built in space. The built in space is used for optimisations.
249  *
250  *	%NULL is returned if there is no free memory.
251  */
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 		unsigned int length, gfp_t gfp_mask)
254 {
255 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 	struct sk_buff *skb;
257 
258 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 	if (likely(skb)) {
260 		skb_reserve(skb, NET_SKB_PAD);
261 		skb->dev = dev;
262 	}
263 	return skb;
264 }
265 
266 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
267 {
268 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
269 	struct page *page;
270 
271 	page = alloc_pages_node(node, gfp_mask, 0);
272 	return page;
273 }
274 EXPORT_SYMBOL(__netdev_alloc_page);
275 
276 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
277 		int size)
278 {
279 	skb_fill_page_desc(skb, i, page, off, size);
280 	skb->len += size;
281 	skb->data_len += size;
282 	skb->truesize += size;
283 }
284 EXPORT_SYMBOL(skb_add_rx_frag);
285 
286 /**
287  *	dev_alloc_skb - allocate an skbuff for receiving
288  *	@length: length to allocate
289  *
290  *	Allocate a new &sk_buff and assign it a usage count of one. The
291  *	buffer has unspecified headroom built in. Users should allocate
292  *	the headroom they think they need without accounting for the
293  *	built in space. The built in space is used for optimisations.
294  *
295  *	%NULL is returned if there is no free memory. Although this function
296  *	allocates memory it can be called from an interrupt.
297  */
298 struct sk_buff *dev_alloc_skb(unsigned int length)
299 {
300 	/*
301 	 * There is more code here than it seems:
302 	 * __dev_alloc_skb is an inline
303 	 */
304 	return __dev_alloc_skb(length, GFP_ATOMIC);
305 }
306 EXPORT_SYMBOL(dev_alloc_skb);
307 
308 static void skb_drop_list(struct sk_buff **listp)
309 {
310 	struct sk_buff *list = *listp;
311 
312 	*listp = NULL;
313 
314 	do {
315 		struct sk_buff *this = list;
316 		list = list->next;
317 		kfree_skb(this);
318 	} while (list);
319 }
320 
321 static inline void skb_drop_fraglist(struct sk_buff *skb)
322 {
323 	skb_drop_list(&skb_shinfo(skb)->frag_list);
324 }
325 
326 static void skb_clone_fraglist(struct sk_buff *skb)
327 {
328 	struct sk_buff *list;
329 
330 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
331 		skb_get(list);
332 }
333 
334 static void skb_release_data(struct sk_buff *skb)
335 {
336 	if (!skb->cloned ||
337 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
338 			       &skb_shinfo(skb)->dataref)) {
339 		if (skb_shinfo(skb)->nr_frags) {
340 			int i;
341 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
342 				put_page(skb_shinfo(skb)->frags[i].page);
343 		}
344 
345 		if (skb_shinfo(skb)->frag_list)
346 			skb_drop_fraglist(skb);
347 
348 		kfree(skb->head);
349 	}
350 }
351 
352 /*
353  *	Free an skbuff by memory without cleaning the state.
354  */
355 static void kfree_skbmem(struct sk_buff *skb)
356 {
357 	struct sk_buff *other;
358 	atomic_t *fclone_ref;
359 
360 	switch (skb->fclone) {
361 	case SKB_FCLONE_UNAVAILABLE:
362 		kmem_cache_free(skbuff_head_cache, skb);
363 		break;
364 
365 	case SKB_FCLONE_ORIG:
366 		fclone_ref = (atomic_t *) (skb + 2);
367 		if (atomic_dec_and_test(fclone_ref))
368 			kmem_cache_free(skbuff_fclone_cache, skb);
369 		break;
370 
371 	case SKB_FCLONE_CLONE:
372 		fclone_ref = (atomic_t *) (skb + 1);
373 		other = skb - 1;
374 
375 		/* The clone portion is available for
376 		 * fast-cloning again.
377 		 */
378 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
379 
380 		if (atomic_dec_and_test(fclone_ref))
381 			kmem_cache_free(skbuff_fclone_cache, other);
382 		break;
383 	}
384 }
385 
386 static void skb_release_head_state(struct sk_buff *skb)
387 {
388 	dst_release(skb->dst);
389 #ifdef CONFIG_XFRM
390 	secpath_put(skb->sp);
391 #endif
392 	if (skb->destructor) {
393 		WARN_ON(in_irq());
394 		skb->destructor(skb);
395 	}
396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
397 	nf_conntrack_put(skb->nfct);
398 	nf_conntrack_put_reasm(skb->nfct_reasm);
399 #endif
400 #ifdef CONFIG_BRIDGE_NETFILTER
401 	nf_bridge_put(skb->nf_bridge);
402 #endif
403 /* XXX: IS this still necessary? - JHS */
404 #ifdef CONFIG_NET_SCHED
405 	skb->tc_index = 0;
406 #ifdef CONFIG_NET_CLS_ACT
407 	skb->tc_verd = 0;
408 #endif
409 #endif
410 }
411 
412 /* Free everything but the sk_buff shell. */
413 static void skb_release_all(struct sk_buff *skb)
414 {
415 	skb_release_head_state(skb);
416 	skb_release_data(skb);
417 }
418 
419 /**
420  *	__kfree_skb - private function
421  *	@skb: buffer
422  *
423  *	Free an sk_buff. Release anything attached to the buffer.
424  *	Clean the state. This is an internal helper function. Users should
425  *	always call kfree_skb
426  */
427 
428 void __kfree_skb(struct sk_buff *skb)
429 {
430 	skb_release_all(skb);
431 	kfree_skbmem(skb);
432 }
433 
434 /**
435  *	kfree_skb - free an sk_buff
436  *	@skb: buffer to free
437  *
438  *	Drop a reference to the buffer and free it if the usage count has
439  *	hit zero.
440  */
441 void kfree_skb(struct sk_buff *skb)
442 {
443 	if (unlikely(!skb))
444 		return;
445 	if (likely(atomic_read(&skb->users) == 1))
446 		smp_rmb();
447 	else if (likely(!atomic_dec_and_test(&skb->users)))
448 		return;
449 	__kfree_skb(skb);
450 }
451 
452 /**
453  *	skb_recycle_check - check if skb can be reused for receive
454  *	@skb: buffer
455  *	@skb_size: minimum receive buffer size
456  *
457  *	Checks that the skb passed in is not shared or cloned, and
458  *	that it is linear and its head portion at least as large as
459  *	skb_size so that it can be recycled as a receive buffer.
460  *	If these conditions are met, this function does any necessary
461  *	reference count dropping and cleans up the skbuff as if it
462  *	just came from __alloc_skb().
463  */
464 int skb_recycle_check(struct sk_buff *skb, int skb_size)
465 {
466 	struct skb_shared_info *shinfo;
467 
468 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
469 		return 0;
470 
471 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
472 	if (skb_end_pointer(skb) - skb->head < skb_size)
473 		return 0;
474 
475 	if (skb_shared(skb) || skb_cloned(skb))
476 		return 0;
477 
478 	skb_release_head_state(skb);
479 	shinfo = skb_shinfo(skb);
480 	atomic_set(&shinfo->dataref, 1);
481 	shinfo->nr_frags = 0;
482 	shinfo->gso_size = 0;
483 	shinfo->gso_segs = 0;
484 	shinfo->gso_type = 0;
485 	shinfo->ip6_frag_id = 0;
486 	shinfo->frag_list = NULL;
487 
488 	memset(skb, 0, offsetof(struct sk_buff, tail));
489 	skb_reset_tail_pointer(skb);
490 	skb->data = skb->head + NET_SKB_PAD;
491 
492 	return 1;
493 }
494 EXPORT_SYMBOL(skb_recycle_check);
495 
496 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
497 {
498 	new->tstamp		= old->tstamp;
499 	new->dev		= old->dev;
500 	new->transport_header	= old->transport_header;
501 	new->network_header	= old->network_header;
502 	new->mac_header		= old->mac_header;
503 	new->dst		= dst_clone(old->dst);
504 #ifdef CONFIG_INET
505 	new->sp			= secpath_get(old->sp);
506 #endif
507 	memcpy(new->cb, old->cb, sizeof(old->cb));
508 	new->csum_start		= old->csum_start;
509 	new->csum_offset	= old->csum_offset;
510 	new->local_df		= old->local_df;
511 	new->pkt_type		= old->pkt_type;
512 	new->ip_summed		= old->ip_summed;
513 	skb_copy_queue_mapping(new, old);
514 	new->priority		= old->priority;
515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
516 	new->ipvs_property	= old->ipvs_property;
517 #endif
518 	new->protocol		= old->protocol;
519 	new->mark		= old->mark;
520 	__nf_copy(new, old);
521 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
522     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
523 	new->nf_trace		= old->nf_trace;
524 #endif
525 #ifdef CONFIG_NET_SCHED
526 	new->tc_index		= old->tc_index;
527 #ifdef CONFIG_NET_CLS_ACT
528 	new->tc_verd		= old->tc_verd;
529 #endif
530 #endif
531 	new->vlan_tci		= old->vlan_tci;
532 
533 	skb_copy_secmark(new, old);
534 }
535 
536 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
537 {
538 #define C(x) n->x = skb->x
539 
540 	n->next = n->prev = NULL;
541 	n->sk = NULL;
542 	__copy_skb_header(n, skb);
543 
544 	C(len);
545 	C(data_len);
546 	C(mac_len);
547 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
548 	n->cloned = 1;
549 	n->nohdr = 0;
550 	n->destructor = NULL;
551 	C(iif);
552 	C(tail);
553 	C(end);
554 	C(head);
555 	C(data);
556 	C(truesize);
557 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
558 	C(do_not_encrypt);
559 #endif
560 	atomic_set(&n->users, 1);
561 
562 	atomic_inc(&(skb_shinfo(skb)->dataref));
563 	skb->cloned = 1;
564 
565 	return n;
566 #undef C
567 }
568 
569 /**
570  *	skb_morph	-	morph one skb into another
571  *	@dst: the skb to receive the contents
572  *	@src: the skb to supply the contents
573  *
574  *	This is identical to skb_clone except that the target skb is
575  *	supplied by the user.
576  *
577  *	The target skb is returned upon exit.
578  */
579 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
580 {
581 	skb_release_all(dst);
582 	return __skb_clone(dst, src);
583 }
584 EXPORT_SYMBOL_GPL(skb_morph);
585 
586 /**
587  *	skb_clone	-	duplicate an sk_buff
588  *	@skb: buffer to clone
589  *	@gfp_mask: allocation priority
590  *
591  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
592  *	copies share the same packet data but not structure. The new
593  *	buffer has a reference count of 1. If the allocation fails the
594  *	function returns %NULL otherwise the new buffer is returned.
595  *
596  *	If this function is called from an interrupt gfp_mask() must be
597  *	%GFP_ATOMIC.
598  */
599 
600 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
601 {
602 	struct sk_buff *n;
603 
604 	n = skb + 1;
605 	if (skb->fclone == SKB_FCLONE_ORIG &&
606 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
607 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
608 		n->fclone = SKB_FCLONE_CLONE;
609 		atomic_inc(fclone_ref);
610 	} else {
611 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
612 		if (!n)
613 			return NULL;
614 		n->fclone = SKB_FCLONE_UNAVAILABLE;
615 	}
616 
617 	return __skb_clone(n, skb);
618 }
619 
620 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
621 {
622 #ifndef NET_SKBUFF_DATA_USES_OFFSET
623 	/*
624 	 *	Shift between the two data areas in bytes
625 	 */
626 	unsigned long offset = new->data - old->data;
627 #endif
628 
629 	__copy_skb_header(new, old);
630 
631 #ifndef NET_SKBUFF_DATA_USES_OFFSET
632 	/* {transport,network,mac}_header are relative to skb->head */
633 	new->transport_header += offset;
634 	new->network_header   += offset;
635 	new->mac_header	      += offset;
636 #endif
637 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
638 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
639 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
640 }
641 
642 /**
643  *	skb_copy	-	create private copy of an sk_buff
644  *	@skb: buffer to copy
645  *	@gfp_mask: allocation priority
646  *
647  *	Make a copy of both an &sk_buff and its data. This is used when the
648  *	caller wishes to modify the data and needs a private copy of the
649  *	data to alter. Returns %NULL on failure or the pointer to the buffer
650  *	on success. The returned buffer has a reference count of 1.
651  *
652  *	As by-product this function converts non-linear &sk_buff to linear
653  *	one, so that &sk_buff becomes completely private and caller is allowed
654  *	to modify all the data of returned buffer. This means that this
655  *	function is not recommended for use in circumstances when only
656  *	header is going to be modified. Use pskb_copy() instead.
657  */
658 
659 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
660 {
661 	int headerlen = skb->data - skb->head;
662 	/*
663 	 *	Allocate the copy buffer
664 	 */
665 	struct sk_buff *n;
666 #ifdef NET_SKBUFF_DATA_USES_OFFSET
667 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
668 #else
669 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
670 #endif
671 	if (!n)
672 		return NULL;
673 
674 	/* Set the data pointer */
675 	skb_reserve(n, headerlen);
676 	/* Set the tail pointer and length */
677 	skb_put(n, skb->len);
678 
679 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
680 		BUG();
681 
682 	copy_skb_header(n, skb);
683 	return n;
684 }
685 
686 
687 /**
688  *	pskb_copy	-	create copy of an sk_buff with private head.
689  *	@skb: buffer to copy
690  *	@gfp_mask: allocation priority
691  *
692  *	Make a copy of both an &sk_buff and part of its data, located
693  *	in header. Fragmented data remain shared. This is used when
694  *	the caller wishes to modify only header of &sk_buff and needs
695  *	private copy of the header to alter. Returns %NULL on failure
696  *	or the pointer to the buffer on success.
697  *	The returned buffer has a reference count of 1.
698  */
699 
700 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
701 {
702 	/*
703 	 *	Allocate the copy buffer
704 	 */
705 	struct sk_buff *n;
706 #ifdef NET_SKBUFF_DATA_USES_OFFSET
707 	n = alloc_skb(skb->end, gfp_mask);
708 #else
709 	n = alloc_skb(skb->end - skb->head, gfp_mask);
710 #endif
711 	if (!n)
712 		goto out;
713 
714 	/* Set the data pointer */
715 	skb_reserve(n, skb->data - skb->head);
716 	/* Set the tail pointer and length */
717 	skb_put(n, skb_headlen(skb));
718 	/* Copy the bytes */
719 	skb_copy_from_linear_data(skb, n->data, n->len);
720 
721 	n->truesize += skb->data_len;
722 	n->data_len  = skb->data_len;
723 	n->len	     = skb->len;
724 
725 	if (skb_shinfo(skb)->nr_frags) {
726 		int i;
727 
728 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
729 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
730 			get_page(skb_shinfo(n)->frags[i].page);
731 		}
732 		skb_shinfo(n)->nr_frags = i;
733 	}
734 
735 	if (skb_shinfo(skb)->frag_list) {
736 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
737 		skb_clone_fraglist(n);
738 	}
739 
740 	copy_skb_header(n, skb);
741 out:
742 	return n;
743 }
744 
745 /**
746  *	pskb_expand_head - reallocate header of &sk_buff
747  *	@skb: buffer to reallocate
748  *	@nhead: room to add at head
749  *	@ntail: room to add at tail
750  *	@gfp_mask: allocation priority
751  *
752  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
753  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
754  *	reference count of 1. Returns zero in the case of success or error,
755  *	if expansion failed. In the last case, &sk_buff is not changed.
756  *
757  *	All the pointers pointing into skb header may change and must be
758  *	reloaded after call to this function.
759  */
760 
761 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
762 		     gfp_t gfp_mask)
763 {
764 	int i;
765 	u8 *data;
766 #ifdef NET_SKBUFF_DATA_USES_OFFSET
767 	int size = nhead + skb->end + ntail;
768 #else
769 	int size = nhead + (skb->end - skb->head) + ntail;
770 #endif
771 	long off;
772 
773 	BUG_ON(nhead < 0);
774 
775 	if (skb_shared(skb))
776 		BUG();
777 
778 	size = SKB_DATA_ALIGN(size);
779 
780 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
781 	if (!data)
782 		goto nodata;
783 
784 	/* Copy only real data... and, alas, header. This should be
785 	 * optimized for the cases when header is void. */
786 #ifdef NET_SKBUFF_DATA_USES_OFFSET
787 	memcpy(data + nhead, skb->head, skb->tail);
788 #else
789 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
790 #endif
791 	memcpy(data + size, skb_end_pointer(skb),
792 	       sizeof(struct skb_shared_info));
793 
794 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
795 		get_page(skb_shinfo(skb)->frags[i].page);
796 
797 	if (skb_shinfo(skb)->frag_list)
798 		skb_clone_fraglist(skb);
799 
800 	skb_release_data(skb);
801 
802 	off = (data + nhead) - skb->head;
803 
804 	skb->head     = data;
805 	skb->data    += off;
806 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 	skb->end      = size;
808 	off           = nhead;
809 #else
810 	skb->end      = skb->head + size;
811 #endif
812 	/* {transport,network,mac}_header and tail are relative to skb->head */
813 	skb->tail	      += off;
814 	skb->transport_header += off;
815 	skb->network_header   += off;
816 	skb->mac_header	      += off;
817 	skb->csum_start       += nhead;
818 	skb->cloned   = 0;
819 	skb->hdr_len  = 0;
820 	skb->nohdr    = 0;
821 	atomic_set(&skb_shinfo(skb)->dataref, 1);
822 	return 0;
823 
824 nodata:
825 	return -ENOMEM;
826 }
827 
828 /* Make private copy of skb with writable head and some headroom */
829 
830 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
831 {
832 	struct sk_buff *skb2;
833 	int delta = headroom - skb_headroom(skb);
834 
835 	if (delta <= 0)
836 		skb2 = pskb_copy(skb, GFP_ATOMIC);
837 	else {
838 		skb2 = skb_clone(skb, GFP_ATOMIC);
839 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
840 					     GFP_ATOMIC)) {
841 			kfree_skb(skb2);
842 			skb2 = NULL;
843 		}
844 	}
845 	return skb2;
846 }
847 
848 
849 /**
850  *	skb_copy_expand	-	copy and expand sk_buff
851  *	@skb: buffer to copy
852  *	@newheadroom: new free bytes at head
853  *	@newtailroom: new free bytes at tail
854  *	@gfp_mask: allocation priority
855  *
856  *	Make a copy of both an &sk_buff and its data and while doing so
857  *	allocate additional space.
858  *
859  *	This is used when the caller wishes to modify the data and needs a
860  *	private copy of the data to alter as well as more space for new fields.
861  *	Returns %NULL on failure or the pointer to the buffer
862  *	on success. The returned buffer has a reference count of 1.
863  *
864  *	You must pass %GFP_ATOMIC as the allocation priority if this function
865  *	is called from an interrupt.
866  */
867 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
868 				int newheadroom, int newtailroom,
869 				gfp_t gfp_mask)
870 {
871 	/*
872 	 *	Allocate the copy buffer
873 	 */
874 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
875 				      gfp_mask);
876 	int oldheadroom = skb_headroom(skb);
877 	int head_copy_len, head_copy_off;
878 	int off;
879 
880 	if (!n)
881 		return NULL;
882 
883 	skb_reserve(n, newheadroom);
884 
885 	/* Set the tail pointer and length */
886 	skb_put(n, skb->len);
887 
888 	head_copy_len = oldheadroom;
889 	head_copy_off = 0;
890 	if (newheadroom <= head_copy_len)
891 		head_copy_len = newheadroom;
892 	else
893 		head_copy_off = newheadroom - head_copy_len;
894 
895 	/* Copy the linear header and data. */
896 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
897 			  skb->len + head_copy_len))
898 		BUG();
899 
900 	copy_skb_header(n, skb);
901 
902 	off                  = newheadroom - oldheadroom;
903 	n->csum_start       += off;
904 #ifdef NET_SKBUFF_DATA_USES_OFFSET
905 	n->transport_header += off;
906 	n->network_header   += off;
907 	n->mac_header	    += off;
908 #endif
909 
910 	return n;
911 }
912 
913 /**
914  *	skb_pad			-	zero pad the tail of an skb
915  *	@skb: buffer to pad
916  *	@pad: space to pad
917  *
918  *	Ensure that a buffer is followed by a padding area that is zero
919  *	filled. Used by network drivers which may DMA or transfer data
920  *	beyond the buffer end onto the wire.
921  *
922  *	May return error in out of memory cases. The skb is freed on error.
923  */
924 
925 int skb_pad(struct sk_buff *skb, int pad)
926 {
927 	int err;
928 	int ntail;
929 
930 	/* If the skbuff is non linear tailroom is always zero.. */
931 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
932 		memset(skb->data+skb->len, 0, pad);
933 		return 0;
934 	}
935 
936 	ntail = skb->data_len + pad - (skb->end - skb->tail);
937 	if (likely(skb_cloned(skb) || ntail > 0)) {
938 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
939 		if (unlikely(err))
940 			goto free_skb;
941 	}
942 
943 	/* FIXME: The use of this function with non-linear skb's really needs
944 	 * to be audited.
945 	 */
946 	err = skb_linearize(skb);
947 	if (unlikely(err))
948 		goto free_skb;
949 
950 	memset(skb->data + skb->len, 0, pad);
951 	return 0;
952 
953 free_skb:
954 	kfree_skb(skb);
955 	return err;
956 }
957 
958 /**
959  *	skb_put - add data to a buffer
960  *	@skb: buffer to use
961  *	@len: amount of data to add
962  *
963  *	This function extends the used data area of the buffer. If this would
964  *	exceed the total buffer size the kernel will panic. A pointer to the
965  *	first byte of the extra data is returned.
966  */
967 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
968 {
969 	unsigned char *tmp = skb_tail_pointer(skb);
970 	SKB_LINEAR_ASSERT(skb);
971 	skb->tail += len;
972 	skb->len  += len;
973 	if (unlikely(skb->tail > skb->end))
974 		skb_over_panic(skb, len, __builtin_return_address(0));
975 	return tmp;
976 }
977 EXPORT_SYMBOL(skb_put);
978 
979 /**
980  *	skb_push - add data to the start of a buffer
981  *	@skb: buffer to use
982  *	@len: amount of data to add
983  *
984  *	This function extends the used data area of the buffer at the buffer
985  *	start. If this would exceed the total buffer headroom the kernel will
986  *	panic. A pointer to the first byte of the extra data is returned.
987  */
988 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
989 {
990 	skb->data -= len;
991 	skb->len  += len;
992 	if (unlikely(skb->data<skb->head))
993 		skb_under_panic(skb, len, __builtin_return_address(0));
994 	return skb->data;
995 }
996 EXPORT_SYMBOL(skb_push);
997 
998 /**
999  *	skb_pull - remove data from the start of a buffer
1000  *	@skb: buffer to use
1001  *	@len: amount of data to remove
1002  *
1003  *	This function removes data from the start of a buffer, returning
1004  *	the memory to the headroom. A pointer to the next data in the buffer
1005  *	is returned. Once the data has been pulled future pushes will overwrite
1006  *	the old data.
1007  */
1008 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1009 {
1010 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1011 }
1012 EXPORT_SYMBOL(skb_pull);
1013 
1014 /**
1015  *	skb_trim - remove end from a buffer
1016  *	@skb: buffer to alter
1017  *	@len: new length
1018  *
1019  *	Cut the length of a buffer down by removing data from the tail. If
1020  *	the buffer is already under the length specified it is not modified.
1021  *	The skb must be linear.
1022  */
1023 void skb_trim(struct sk_buff *skb, unsigned int len)
1024 {
1025 	if (skb->len > len)
1026 		__skb_trim(skb, len);
1027 }
1028 EXPORT_SYMBOL(skb_trim);
1029 
1030 /* Trims skb to length len. It can change skb pointers.
1031  */
1032 
1033 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1034 {
1035 	struct sk_buff **fragp;
1036 	struct sk_buff *frag;
1037 	int offset = skb_headlen(skb);
1038 	int nfrags = skb_shinfo(skb)->nr_frags;
1039 	int i;
1040 	int err;
1041 
1042 	if (skb_cloned(skb) &&
1043 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1044 		return err;
1045 
1046 	i = 0;
1047 	if (offset >= len)
1048 		goto drop_pages;
1049 
1050 	for (; i < nfrags; i++) {
1051 		int end = offset + skb_shinfo(skb)->frags[i].size;
1052 
1053 		if (end < len) {
1054 			offset = end;
1055 			continue;
1056 		}
1057 
1058 		skb_shinfo(skb)->frags[i++].size = len - offset;
1059 
1060 drop_pages:
1061 		skb_shinfo(skb)->nr_frags = i;
1062 
1063 		for (; i < nfrags; i++)
1064 			put_page(skb_shinfo(skb)->frags[i].page);
1065 
1066 		if (skb_shinfo(skb)->frag_list)
1067 			skb_drop_fraglist(skb);
1068 		goto done;
1069 	}
1070 
1071 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1072 	     fragp = &frag->next) {
1073 		int end = offset + frag->len;
1074 
1075 		if (skb_shared(frag)) {
1076 			struct sk_buff *nfrag;
1077 
1078 			nfrag = skb_clone(frag, GFP_ATOMIC);
1079 			if (unlikely(!nfrag))
1080 				return -ENOMEM;
1081 
1082 			nfrag->next = frag->next;
1083 			kfree_skb(frag);
1084 			frag = nfrag;
1085 			*fragp = frag;
1086 		}
1087 
1088 		if (end < len) {
1089 			offset = end;
1090 			continue;
1091 		}
1092 
1093 		if (end > len &&
1094 		    unlikely((err = pskb_trim(frag, len - offset))))
1095 			return err;
1096 
1097 		if (frag->next)
1098 			skb_drop_list(&frag->next);
1099 		break;
1100 	}
1101 
1102 done:
1103 	if (len > skb_headlen(skb)) {
1104 		skb->data_len -= skb->len - len;
1105 		skb->len       = len;
1106 	} else {
1107 		skb->len       = len;
1108 		skb->data_len  = 0;
1109 		skb_set_tail_pointer(skb, len);
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 /**
1116  *	__pskb_pull_tail - advance tail of skb header
1117  *	@skb: buffer to reallocate
1118  *	@delta: number of bytes to advance tail
1119  *
1120  *	The function makes a sense only on a fragmented &sk_buff,
1121  *	it expands header moving its tail forward and copying necessary
1122  *	data from fragmented part.
1123  *
1124  *	&sk_buff MUST have reference count of 1.
1125  *
1126  *	Returns %NULL (and &sk_buff does not change) if pull failed
1127  *	or value of new tail of skb in the case of success.
1128  *
1129  *	All the pointers pointing into skb header may change and must be
1130  *	reloaded after call to this function.
1131  */
1132 
1133 /* Moves tail of skb head forward, copying data from fragmented part,
1134  * when it is necessary.
1135  * 1. It may fail due to malloc failure.
1136  * 2. It may change skb pointers.
1137  *
1138  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1139  */
1140 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1141 {
1142 	/* If skb has not enough free space at tail, get new one
1143 	 * plus 128 bytes for future expansions. If we have enough
1144 	 * room at tail, reallocate without expansion only if skb is cloned.
1145 	 */
1146 	int i, k, eat = (skb->tail + delta) - skb->end;
1147 
1148 	if (eat > 0 || skb_cloned(skb)) {
1149 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1150 				     GFP_ATOMIC))
1151 			return NULL;
1152 	}
1153 
1154 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1155 		BUG();
1156 
1157 	/* Optimization: no fragments, no reasons to preestimate
1158 	 * size of pulled pages. Superb.
1159 	 */
1160 	if (!skb_shinfo(skb)->frag_list)
1161 		goto pull_pages;
1162 
1163 	/* Estimate size of pulled pages. */
1164 	eat = delta;
1165 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1166 		if (skb_shinfo(skb)->frags[i].size >= eat)
1167 			goto pull_pages;
1168 		eat -= skb_shinfo(skb)->frags[i].size;
1169 	}
1170 
1171 	/* If we need update frag list, we are in troubles.
1172 	 * Certainly, it possible to add an offset to skb data,
1173 	 * but taking into account that pulling is expected to
1174 	 * be very rare operation, it is worth to fight against
1175 	 * further bloating skb head and crucify ourselves here instead.
1176 	 * Pure masohism, indeed. 8)8)
1177 	 */
1178 	if (eat) {
1179 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1180 		struct sk_buff *clone = NULL;
1181 		struct sk_buff *insp = NULL;
1182 
1183 		do {
1184 			BUG_ON(!list);
1185 
1186 			if (list->len <= eat) {
1187 				/* Eaten as whole. */
1188 				eat -= list->len;
1189 				list = list->next;
1190 				insp = list;
1191 			} else {
1192 				/* Eaten partially. */
1193 
1194 				if (skb_shared(list)) {
1195 					/* Sucks! We need to fork list. :-( */
1196 					clone = skb_clone(list, GFP_ATOMIC);
1197 					if (!clone)
1198 						return NULL;
1199 					insp = list->next;
1200 					list = clone;
1201 				} else {
1202 					/* This may be pulled without
1203 					 * problems. */
1204 					insp = list;
1205 				}
1206 				if (!pskb_pull(list, eat)) {
1207 					if (clone)
1208 						kfree_skb(clone);
1209 					return NULL;
1210 				}
1211 				break;
1212 			}
1213 		} while (eat);
1214 
1215 		/* Free pulled out fragments. */
1216 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1217 			skb_shinfo(skb)->frag_list = list->next;
1218 			kfree_skb(list);
1219 		}
1220 		/* And insert new clone at head. */
1221 		if (clone) {
1222 			clone->next = list;
1223 			skb_shinfo(skb)->frag_list = clone;
1224 		}
1225 	}
1226 	/* Success! Now we may commit changes to skb data. */
1227 
1228 pull_pages:
1229 	eat = delta;
1230 	k = 0;
1231 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1232 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1233 			put_page(skb_shinfo(skb)->frags[i].page);
1234 			eat -= skb_shinfo(skb)->frags[i].size;
1235 		} else {
1236 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1237 			if (eat) {
1238 				skb_shinfo(skb)->frags[k].page_offset += eat;
1239 				skb_shinfo(skb)->frags[k].size -= eat;
1240 				eat = 0;
1241 			}
1242 			k++;
1243 		}
1244 	}
1245 	skb_shinfo(skb)->nr_frags = k;
1246 
1247 	skb->tail     += delta;
1248 	skb->data_len -= delta;
1249 
1250 	return skb_tail_pointer(skb);
1251 }
1252 
1253 /* Copy some data bits from skb to kernel buffer. */
1254 
1255 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1256 {
1257 	int i, copy;
1258 	int start = skb_headlen(skb);
1259 
1260 	if (offset > (int)skb->len - len)
1261 		goto fault;
1262 
1263 	/* Copy header. */
1264 	if ((copy = start - offset) > 0) {
1265 		if (copy > len)
1266 			copy = len;
1267 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1268 		if ((len -= copy) == 0)
1269 			return 0;
1270 		offset += copy;
1271 		to     += copy;
1272 	}
1273 
1274 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1275 		int end;
1276 
1277 		WARN_ON(start > offset + len);
1278 
1279 		end = start + skb_shinfo(skb)->frags[i].size;
1280 		if ((copy = end - offset) > 0) {
1281 			u8 *vaddr;
1282 
1283 			if (copy > len)
1284 				copy = len;
1285 
1286 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1287 			memcpy(to,
1288 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1289 			       offset - start, copy);
1290 			kunmap_skb_frag(vaddr);
1291 
1292 			if ((len -= copy) == 0)
1293 				return 0;
1294 			offset += copy;
1295 			to     += copy;
1296 		}
1297 		start = end;
1298 	}
1299 
1300 	if (skb_shinfo(skb)->frag_list) {
1301 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1302 
1303 		for (; list; list = list->next) {
1304 			int end;
1305 
1306 			WARN_ON(start > offset + len);
1307 
1308 			end = start + list->len;
1309 			if ((copy = end - offset) > 0) {
1310 				if (copy > len)
1311 					copy = len;
1312 				if (skb_copy_bits(list, offset - start,
1313 						  to, copy))
1314 					goto fault;
1315 				if ((len -= copy) == 0)
1316 					return 0;
1317 				offset += copy;
1318 				to     += copy;
1319 			}
1320 			start = end;
1321 		}
1322 	}
1323 	if (!len)
1324 		return 0;
1325 
1326 fault:
1327 	return -EFAULT;
1328 }
1329 
1330 /*
1331  * Callback from splice_to_pipe(), if we need to release some pages
1332  * at the end of the spd in case we error'ed out in filling the pipe.
1333  */
1334 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1335 {
1336 	struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1337 
1338 	kfree_skb(skb);
1339 }
1340 
1341 /*
1342  * Fill page/offset/length into spd, if it can hold more pages.
1343  */
1344 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1345 				unsigned int len, unsigned int offset,
1346 				struct sk_buff *skb)
1347 {
1348 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1349 		return 1;
1350 
1351 	spd->pages[spd->nr_pages] = page;
1352 	spd->partial[spd->nr_pages].len = len;
1353 	spd->partial[spd->nr_pages].offset = offset;
1354 	spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1355 	spd->nr_pages++;
1356 	return 0;
1357 }
1358 
1359 static inline void __segment_seek(struct page **page, unsigned int *poff,
1360 				  unsigned int *plen, unsigned int off)
1361 {
1362 	*poff += off;
1363 	*page += *poff / PAGE_SIZE;
1364 	*poff = *poff % PAGE_SIZE;
1365 	*plen -= off;
1366 }
1367 
1368 static inline int __splice_segment(struct page *page, unsigned int poff,
1369 				   unsigned int plen, unsigned int *off,
1370 				   unsigned int *len, struct sk_buff *skb,
1371 				   struct splice_pipe_desc *spd)
1372 {
1373 	if (!*len)
1374 		return 1;
1375 
1376 	/* skip this segment if already processed */
1377 	if (*off >= plen) {
1378 		*off -= plen;
1379 		return 0;
1380 	}
1381 
1382 	/* ignore any bits we already processed */
1383 	if (*off) {
1384 		__segment_seek(&page, &poff, &plen, *off);
1385 		*off = 0;
1386 	}
1387 
1388 	do {
1389 		unsigned int flen = min(*len, plen);
1390 
1391 		/* the linear region may spread across several pages  */
1392 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1393 
1394 		if (spd_fill_page(spd, page, flen, poff, skb))
1395 			return 1;
1396 
1397 		__segment_seek(&page, &poff, &plen, flen);
1398 		*len -= flen;
1399 
1400 	} while (*len && plen);
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Map linear and fragment data from the skb to spd. It reports failure if the
1407  * pipe is full or if we already spliced the requested length.
1408  */
1409 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1410 		      unsigned int *len,
1411 		      struct splice_pipe_desc *spd)
1412 {
1413 	int seg;
1414 
1415 	/*
1416 	 * map the linear part
1417 	 */
1418 	if (__splice_segment(virt_to_page(skb->data),
1419 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1420 			     skb_headlen(skb),
1421 			     offset, len, skb, spd))
1422 		return 1;
1423 
1424 	/*
1425 	 * then map the fragments
1426 	 */
1427 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1428 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1429 
1430 		if (__splice_segment(f->page, f->page_offset, f->size,
1431 				     offset, len, skb, spd))
1432 			return 1;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 /*
1439  * Map data from the skb to a pipe. Should handle both the linear part,
1440  * the fragments, and the frag list. It does NOT handle frag lists within
1441  * the frag list, if such a thing exists. We'd probably need to recurse to
1442  * handle that cleanly.
1443  */
1444 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1445 		    struct pipe_inode_info *pipe, unsigned int tlen,
1446 		    unsigned int flags)
1447 {
1448 	struct partial_page partial[PIPE_BUFFERS];
1449 	struct page *pages[PIPE_BUFFERS];
1450 	struct splice_pipe_desc spd = {
1451 		.pages = pages,
1452 		.partial = partial,
1453 		.flags = flags,
1454 		.ops = &sock_pipe_buf_ops,
1455 		.spd_release = sock_spd_release,
1456 	};
1457 	struct sk_buff *skb;
1458 
1459 	/*
1460 	 * I'd love to avoid the clone here, but tcp_read_sock()
1461 	 * ignores reference counts and unconditonally kills the sk_buff
1462 	 * on return from the actor.
1463 	 */
1464 	skb = skb_clone(__skb, GFP_KERNEL);
1465 	if (unlikely(!skb))
1466 		return -ENOMEM;
1467 
1468 	/*
1469 	 * __skb_splice_bits() only fails if the output has no room left,
1470 	 * so no point in going over the frag_list for the error case.
1471 	 */
1472 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1473 		goto done;
1474 	else if (!tlen)
1475 		goto done;
1476 
1477 	/*
1478 	 * now see if we have a frag_list to map
1479 	 */
1480 	if (skb_shinfo(skb)->frag_list) {
1481 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1482 
1483 		for (; list && tlen; list = list->next) {
1484 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1485 				break;
1486 		}
1487 	}
1488 
1489 done:
1490 	/*
1491 	 * drop our reference to the clone, the pipe consumption will
1492 	 * drop the rest.
1493 	 */
1494 	kfree_skb(skb);
1495 
1496 	if (spd.nr_pages) {
1497 		int ret;
1498 		struct sock *sk = __skb->sk;
1499 
1500 		/*
1501 		 * Drop the socket lock, otherwise we have reverse
1502 		 * locking dependencies between sk_lock and i_mutex
1503 		 * here as compared to sendfile(). We enter here
1504 		 * with the socket lock held, and splice_to_pipe() will
1505 		 * grab the pipe inode lock. For sendfile() emulation,
1506 		 * we call into ->sendpage() with the i_mutex lock held
1507 		 * and networking will grab the socket lock.
1508 		 */
1509 		release_sock(sk);
1510 		ret = splice_to_pipe(pipe, &spd);
1511 		lock_sock(sk);
1512 		return ret;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /**
1519  *	skb_store_bits - store bits from kernel buffer to skb
1520  *	@skb: destination buffer
1521  *	@offset: offset in destination
1522  *	@from: source buffer
1523  *	@len: number of bytes to copy
1524  *
1525  *	Copy the specified number of bytes from the source buffer to the
1526  *	destination skb.  This function handles all the messy bits of
1527  *	traversing fragment lists and such.
1528  */
1529 
1530 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1531 {
1532 	int i, copy;
1533 	int start = skb_headlen(skb);
1534 
1535 	if (offset > (int)skb->len - len)
1536 		goto fault;
1537 
1538 	if ((copy = start - offset) > 0) {
1539 		if (copy > len)
1540 			copy = len;
1541 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1542 		if ((len -= copy) == 0)
1543 			return 0;
1544 		offset += copy;
1545 		from += copy;
1546 	}
1547 
1548 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1549 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1550 		int end;
1551 
1552 		WARN_ON(start > offset + len);
1553 
1554 		end = start + frag->size;
1555 		if ((copy = end - offset) > 0) {
1556 			u8 *vaddr;
1557 
1558 			if (copy > len)
1559 				copy = len;
1560 
1561 			vaddr = kmap_skb_frag(frag);
1562 			memcpy(vaddr + frag->page_offset + offset - start,
1563 			       from, copy);
1564 			kunmap_skb_frag(vaddr);
1565 
1566 			if ((len -= copy) == 0)
1567 				return 0;
1568 			offset += copy;
1569 			from += copy;
1570 		}
1571 		start = end;
1572 	}
1573 
1574 	if (skb_shinfo(skb)->frag_list) {
1575 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1576 
1577 		for (; list; list = list->next) {
1578 			int end;
1579 
1580 			WARN_ON(start > offset + len);
1581 
1582 			end = start + list->len;
1583 			if ((copy = end - offset) > 0) {
1584 				if (copy > len)
1585 					copy = len;
1586 				if (skb_store_bits(list, offset - start,
1587 						   from, copy))
1588 					goto fault;
1589 				if ((len -= copy) == 0)
1590 					return 0;
1591 				offset += copy;
1592 				from += copy;
1593 			}
1594 			start = end;
1595 		}
1596 	}
1597 	if (!len)
1598 		return 0;
1599 
1600 fault:
1601 	return -EFAULT;
1602 }
1603 
1604 EXPORT_SYMBOL(skb_store_bits);
1605 
1606 /* Checksum skb data. */
1607 
1608 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1609 			  int len, __wsum csum)
1610 {
1611 	int start = skb_headlen(skb);
1612 	int i, copy = start - offset;
1613 	int pos = 0;
1614 
1615 	/* Checksum header. */
1616 	if (copy > 0) {
1617 		if (copy > len)
1618 			copy = len;
1619 		csum = csum_partial(skb->data + offset, copy, csum);
1620 		if ((len -= copy) == 0)
1621 			return csum;
1622 		offset += copy;
1623 		pos	= copy;
1624 	}
1625 
1626 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 		int end;
1628 
1629 		WARN_ON(start > offset + len);
1630 
1631 		end = start + skb_shinfo(skb)->frags[i].size;
1632 		if ((copy = end - offset) > 0) {
1633 			__wsum csum2;
1634 			u8 *vaddr;
1635 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1636 
1637 			if (copy > len)
1638 				copy = len;
1639 			vaddr = kmap_skb_frag(frag);
1640 			csum2 = csum_partial(vaddr + frag->page_offset +
1641 					     offset - start, copy, 0);
1642 			kunmap_skb_frag(vaddr);
1643 			csum = csum_block_add(csum, csum2, pos);
1644 			if (!(len -= copy))
1645 				return csum;
1646 			offset += copy;
1647 			pos    += copy;
1648 		}
1649 		start = end;
1650 	}
1651 
1652 	if (skb_shinfo(skb)->frag_list) {
1653 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1654 
1655 		for (; list; list = list->next) {
1656 			int end;
1657 
1658 			WARN_ON(start > offset + len);
1659 
1660 			end = start + list->len;
1661 			if ((copy = end - offset) > 0) {
1662 				__wsum csum2;
1663 				if (copy > len)
1664 					copy = len;
1665 				csum2 = skb_checksum(list, offset - start,
1666 						     copy, 0);
1667 				csum = csum_block_add(csum, csum2, pos);
1668 				if ((len -= copy) == 0)
1669 					return csum;
1670 				offset += copy;
1671 				pos    += copy;
1672 			}
1673 			start = end;
1674 		}
1675 	}
1676 	BUG_ON(len);
1677 
1678 	return csum;
1679 }
1680 
1681 /* Both of above in one bottle. */
1682 
1683 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1684 				    u8 *to, int len, __wsum csum)
1685 {
1686 	int start = skb_headlen(skb);
1687 	int i, copy = start - offset;
1688 	int pos = 0;
1689 
1690 	/* Copy header. */
1691 	if (copy > 0) {
1692 		if (copy > len)
1693 			copy = len;
1694 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1695 						 copy, csum);
1696 		if ((len -= copy) == 0)
1697 			return csum;
1698 		offset += copy;
1699 		to     += copy;
1700 		pos	= copy;
1701 	}
1702 
1703 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1704 		int end;
1705 
1706 		WARN_ON(start > offset + len);
1707 
1708 		end = start + skb_shinfo(skb)->frags[i].size;
1709 		if ((copy = end - offset) > 0) {
1710 			__wsum csum2;
1711 			u8 *vaddr;
1712 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1713 
1714 			if (copy > len)
1715 				copy = len;
1716 			vaddr = kmap_skb_frag(frag);
1717 			csum2 = csum_partial_copy_nocheck(vaddr +
1718 							  frag->page_offset +
1719 							  offset - start, to,
1720 							  copy, 0);
1721 			kunmap_skb_frag(vaddr);
1722 			csum = csum_block_add(csum, csum2, pos);
1723 			if (!(len -= copy))
1724 				return csum;
1725 			offset += copy;
1726 			to     += copy;
1727 			pos    += copy;
1728 		}
1729 		start = end;
1730 	}
1731 
1732 	if (skb_shinfo(skb)->frag_list) {
1733 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1734 
1735 		for (; list; list = list->next) {
1736 			__wsum csum2;
1737 			int end;
1738 
1739 			WARN_ON(start > offset + len);
1740 
1741 			end = start + list->len;
1742 			if ((copy = end - offset) > 0) {
1743 				if (copy > len)
1744 					copy = len;
1745 				csum2 = skb_copy_and_csum_bits(list,
1746 							       offset - start,
1747 							       to, copy, 0);
1748 				csum = csum_block_add(csum, csum2, pos);
1749 				if ((len -= copy) == 0)
1750 					return csum;
1751 				offset += copy;
1752 				to     += copy;
1753 				pos    += copy;
1754 			}
1755 			start = end;
1756 		}
1757 	}
1758 	BUG_ON(len);
1759 	return csum;
1760 }
1761 
1762 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1763 {
1764 	__wsum csum;
1765 	long csstart;
1766 
1767 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1768 		csstart = skb->csum_start - skb_headroom(skb);
1769 	else
1770 		csstart = skb_headlen(skb);
1771 
1772 	BUG_ON(csstart > skb_headlen(skb));
1773 
1774 	skb_copy_from_linear_data(skb, to, csstart);
1775 
1776 	csum = 0;
1777 	if (csstart != skb->len)
1778 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1779 					      skb->len - csstart, 0);
1780 
1781 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1782 		long csstuff = csstart + skb->csum_offset;
1783 
1784 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1785 	}
1786 }
1787 
1788 /**
1789  *	skb_dequeue - remove from the head of the queue
1790  *	@list: list to dequeue from
1791  *
1792  *	Remove the head of the list. The list lock is taken so the function
1793  *	may be used safely with other locking list functions. The head item is
1794  *	returned or %NULL if the list is empty.
1795  */
1796 
1797 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1798 {
1799 	unsigned long flags;
1800 	struct sk_buff *result;
1801 
1802 	spin_lock_irqsave(&list->lock, flags);
1803 	result = __skb_dequeue(list);
1804 	spin_unlock_irqrestore(&list->lock, flags);
1805 	return result;
1806 }
1807 
1808 /**
1809  *	skb_dequeue_tail - remove from the tail of the queue
1810  *	@list: list to dequeue from
1811  *
1812  *	Remove the tail of the list. The list lock is taken so the function
1813  *	may be used safely with other locking list functions. The tail item is
1814  *	returned or %NULL if the list is empty.
1815  */
1816 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1817 {
1818 	unsigned long flags;
1819 	struct sk_buff *result;
1820 
1821 	spin_lock_irqsave(&list->lock, flags);
1822 	result = __skb_dequeue_tail(list);
1823 	spin_unlock_irqrestore(&list->lock, flags);
1824 	return result;
1825 }
1826 
1827 /**
1828  *	skb_queue_purge - empty a list
1829  *	@list: list to empty
1830  *
1831  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1832  *	the list and one reference dropped. This function takes the list
1833  *	lock and is atomic with respect to other list locking functions.
1834  */
1835 void skb_queue_purge(struct sk_buff_head *list)
1836 {
1837 	struct sk_buff *skb;
1838 	while ((skb = skb_dequeue(list)) != NULL)
1839 		kfree_skb(skb);
1840 }
1841 
1842 /**
1843  *	skb_queue_head - queue a buffer at the list head
1844  *	@list: list to use
1845  *	@newsk: buffer to queue
1846  *
1847  *	Queue a buffer at the start of the list. This function takes the
1848  *	list lock and can be used safely with other locking &sk_buff functions
1849  *	safely.
1850  *
1851  *	A buffer cannot be placed on two lists at the same time.
1852  */
1853 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1854 {
1855 	unsigned long flags;
1856 
1857 	spin_lock_irqsave(&list->lock, flags);
1858 	__skb_queue_head(list, newsk);
1859 	spin_unlock_irqrestore(&list->lock, flags);
1860 }
1861 
1862 /**
1863  *	skb_queue_tail - queue a buffer at the list tail
1864  *	@list: list to use
1865  *	@newsk: buffer to queue
1866  *
1867  *	Queue a buffer at the tail of the list. This function takes the
1868  *	list lock and can be used safely with other locking &sk_buff functions
1869  *	safely.
1870  *
1871  *	A buffer cannot be placed on two lists at the same time.
1872  */
1873 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1874 {
1875 	unsigned long flags;
1876 
1877 	spin_lock_irqsave(&list->lock, flags);
1878 	__skb_queue_tail(list, newsk);
1879 	spin_unlock_irqrestore(&list->lock, flags);
1880 }
1881 
1882 /**
1883  *	skb_unlink	-	remove a buffer from a list
1884  *	@skb: buffer to remove
1885  *	@list: list to use
1886  *
1887  *	Remove a packet from a list. The list locks are taken and this
1888  *	function is atomic with respect to other list locked calls
1889  *
1890  *	You must know what list the SKB is on.
1891  */
1892 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1893 {
1894 	unsigned long flags;
1895 
1896 	spin_lock_irqsave(&list->lock, flags);
1897 	__skb_unlink(skb, list);
1898 	spin_unlock_irqrestore(&list->lock, flags);
1899 }
1900 
1901 /**
1902  *	skb_append	-	append a buffer
1903  *	@old: buffer to insert after
1904  *	@newsk: buffer to insert
1905  *	@list: list to use
1906  *
1907  *	Place a packet after a given packet in a list. The list locks are taken
1908  *	and this function is atomic with respect to other list locked calls.
1909  *	A buffer cannot be placed on two lists at the same time.
1910  */
1911 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1912 {
1913 	unsigned long flags;
1914 
1915 	spin_lock_irqsave(&list->lock, flags);
1916 	__skb_queue_after(list, old, newsk);
1917 	spin_unlock_irqrestore(&list->lock, flags);
1918 }
1919 
1920 
1921 /**
1922  *	skb_insert	-	insert a buffer
1923  *	@old: buffer to insert before
1924  *	@newsk: buffer to insert
1925  *	@list: list to use
1926  *
1927  *	Place a packet before a given packet in a list. The list locks are
1928  * 	taken and this function is atomic with respect to other list locked
1929  *	calls.
1930  *
1931  *	A buffer cannot be placed on two lists at the same time.
1932  */
1933 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1934 {
1935 	unsigned long flags;
1936 
1937 	spin_lock_irqsave(&list->lock, flags);
1938 	__skb_insert(newsk, old->prev, old, list);
1939 	spin_unlock_irqrestore(&list->lock, flags);
1940 }
1941 
1942 static inline void skb_split_inside_header(struct sk_buff *skb,
1943 					   struct sk_buff* skb1,
1944 					   const u32 len, const int pos)
1945 {
1946 	int i;
1947 
1948 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1949 					 pos - len);
1950 	/* And move data appendix as is. */
1951 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1952 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1953 
1954 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1955 	skb_shinfo(skb)->nr_frags  = 0;
1956 	skb1->data_len		   = skb->data_len;
1957 	skb1->len		   += skb1->data_len;
1958 	skb->data_len		   = 0;
1959 	skb->len		   = len;
1960 	skb_set_tail_pointer(skb, len);
1961 }
1962 
1963 static inline void skb_split_no_header(struct sk_buff *skb,
1964 				       struct sk_buff* skb1,
1965 				       const u32 len, int pos)
1966 {
1967 	int i, k = 0;
1968 	const int nfrags = skb_shinfo(skb)->nr_frags;
1969 
1970 	skb_shinfo(skb)->nr_frags = 0;
1971 	skb1->len		  = skb1->data_len = skb->len - len;
1972 	skb->len		  = len;
1973 	skb->data_len		  = len - pos;
1974 
1975 	for (i = 0; i < nfrags; i++) {
1976 		int size = skb_shinfo(skb)->frags[i].size;
1977 
1978 		if (pos + size > len) {
1979 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1980 
1981 			if (pos < len) {
1982 				/* Split frag.
1983 				 * We have two variants in this case:
1984 				 * 1. Move all the frag to the second
1985 				 *    part, if it is possible. F.e.
1986 				 *    this approach is mandatory for TUX,
1987 				 *    where splitting is expensive.
1988 				 * 2. Split is accurately. We make this.
1989 				 */
1990 				get_page(skb_shinfo(skb)->frags[i].page);
1991 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1992 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1993 				skb_shinfo(skb)->frags[i].size	= len - pos;
1994 				skb_shinfo(skb)->nr_frags++;
1995 			}
1996 			k++;
1997 		} else
1998 			skb_shinfo(skb)->nr_frags++;
1999 		pos += size;
2000 	}
2001 	skb_shinfo(skb1)->nr_frags = k;
2002 }
2003 
2004 /**
2005  * skb_split - Split fragmented skb to two parts at length len.
2006  * @skb: the buffer to split
2007  * @skb1: the buffer to receive the second part
2008  * @len: new length for skb
2009  */
2010 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2011 {
2012 	int pos = skb_headlen(skb);
2013 
2014 	if (len < pos)	/* Split line is inside header. */
2015 		skb_split_inside_header(skb, skb1, len, pos);
2016 	else		/* Second chunk has no header, nothing to copy. */
2017 		skb_split_no_header(skb, skb1, len, pos);
2018 }
2019 
2020 /**
2021  * skb_prepare_seq_read - Prepare a sequential read of skb data
2022  * @skb: the buffer to read
2023  * @from: lower offset of data to be read
2024  * @to: upper offset of data to be read
2025  * @st: state variable
2026  *
2027  * Initializes the specified state variable. Must be called before
2028  * invoking skb_seq_read() for the first time.
2029  */
2030 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2031 			  unsigned int to, struct skb_seq_state *st)
2032 {
2033 	st->lower_offset = from;
2034 	st->upper_offset = to;
2035 	st->root_skb = st->cur_skb = skb;
2036 	st->frag_idx = st->stepped_offset = 0;
2037 	st->frag_data = NULL;
2038 }
2039 
2040 /**
2041  * skb_seq_read - Sequentially read skb data
2042  * @consumed: number of bytes consumed by the caller so far
2043  * @data: destination pointer for data to be returned
2044  * @st: state variable
2045  *
2046  * Reads a block of skb data at &consumed relative to the
2047  * lower offset specified to skb_prepare_seq_read(). Assigns
2048  * the head of the data block to &data and returns the length
2049  * of the block or 0 if the end of the skb data or the upper
2050  * offset has been reached.
2051  *
2052  * The caller is not required to consume all of the data
2053  * returned, i.e. &consumed is typically set to the number
2054  * of bytes already consumed and the next call to
2055  * skb_seq_read() will return the remaining part of the block.
2056  *
2057  * Note 1: The size of each block of data returned can be arbitary,
2058  *       this limitation is the cost for zerocopy seqeuental
2059  *       reads of potentially non linear data.
2060  *
2061  * Note 2: Fragment lists within fragments are not implemented
2062  *       at the moment, state->root_skb could be replaced with
2063  *       a stack for this purpose.
2064  */
2065 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2066 			  struct skb_seq_state *st)
2067 {
2068 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2069 	skb_frag_t *frag;
2070 
2071 	if (unlikely(abs_offset >= st->upper_offset))
2072 		return 0;
2073 
2074 next_skb:
2075 	block_limit = skb_headlen(st->cur_skb);
2076 
2077 	if (abs_offset < block_limit) {
2078 		*data = st->cur_skb->data + abs_offset;
2079 		return block_limit - abs_offset;
2080 	}
2081 
2082 	if (st->frag_idx == 0 && !st->frag_data)
2083 		st->stepped_offset += skb_headlen(st->cur_skb);
2084 
2085 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2086 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2087 		block_limit = frag->size + st->stepped_offset;
2088 
2089 		if (abs_offset < block_limit) {
2090 			if (!st->frag_data)
2091 				st->frag_data = kmap_skb_frag(frag);
2092 
2093 			*data = (u8 *) st->frag_data + frag->page_offset +
2094 				(abs_offset - st->stepped_offset);
2095 
2096 			return block_limit - abs_offset;
2097 		}
2098 
2099 		if (st->frag_data) {
2100 			kunmap_skb_frag(st->frag_data);
2101 			st->frag_data = NULL;
2102 		}
2103 
2104 		st->frag_idx++;
2105 		st->stepped_offset += frag->size;
2106 	}
2107 
2108 	if (st->frag_data) {
2109 		kunmap_skb_frag(st->frag_data);
2110 		st->frag_data = NULL;
2111 	}
2112 
2113 	if (st->cur_skb->next) {
2114 		st->cur_skb = st->cur_skb->next;
2115 		st->frag_idx = 0;
2116 		goto next_skb;
2117 	} else if (st->root_skb == st->cur_skb &&
2118 		   skb_shinfo(st->root_skb)->frag_list) {
2119 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2120 		goto next_skb;
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * skb_abort_seq_read - Abort a sequential read of skb data
2128  * @st: state variable
2129  *
2130  * Must be called if skb_seq_read() was not called until it
2131  * returned 0.
2132  */
2133 void skb_abort_seq_read(struct skb_seq_state *st)
2134 {
2135 	if (st->frag_data)
2136 		kunmap_skb_frag(st->frag_data);
2137 }
2138 
2139 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2140 
2141 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2142 					  struct ts_config *conf,
2143 					  struct ts_state *state)
2144 {
2145 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2146 }
2147 
2148 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2149 {
2150 	skb_abort_seq_read(TS_SKB_CB(state));
2151 }
2152 
2153 /**
2154  * skb_find_text - Find a text pattern in skb data
2155  * @skb: the buffer to look in
2156  * @from: search offset
2157  * @to: search limit
2158  * @config: textsearch configuration
2159  * @state: uninitialized textsearch state variable
2160  *
2161  * Finds a pattern in the skb data according to the specified
2162  * textsearch configuration. Use textsearch_next() to retrieve
2163  * subsequent occurrences of the pattern. Returns the offset
2164  * to the first occurrence or UINT_MAX if no match was found.
2165  */
2166 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2167 			   unsigned int to, struct ts_config *config,
2168 			   struct ts_state *state)
2169 {
2170 	unsigned int ret;
2171 
2172 	config->get_next_block = skb_ts_get_next_block;
2173 	config->finish = skb_ts_finish;
2174 
2175 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2176 
2177 	ret = textsearch_find(config, state);
2178 	return (ret <= to - from ? ret : UINT_MAX);
2179 }
2180 
2181 /**
2182  * skb_append_datato_frags: - append the user data to a skb
2183  * @sk: sock  structure
2184  * @skb: skb structure to be appened with user data.
2185  * @getfrag: call back function to be used for getting the user data
2186  * @from: pointer to user message iov
2187  * @length: length of the iov message
2188  *
2189  * Description: This procedure append the user data in the fragment part
2190  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2191  */
2192 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2193 			int (*getfrag)(void *from, char *to, int offset,
2194 					int len, int odd, struct sk_buff *skb),
2195 			void *from, int length)
2196 {
2197 	int frg_cnt = 0;
2198 	skb_frag_t *frag = NULL;
2199 	struct page *page = NULL;
2200 	int copy, left;
2201 	int offset = 0;
2202 	int ret;
2203 
2204 	do {
2205 		/* Return error if we don't have space for new frag */
2206 		frg_cnt = skb_shinfo(skb)->nr_frags;
2207 		if (frg_cnt >= MAX_SKB_FRAGS)
2208 			return -EFAULT;
2209 
2210 		/* allocate a new page for next frag */
2211 		page = alloc_pages(sk->sk_allocation, 0);
2212 
2213 		/* If alloc_page fails just return failure and caller will
2214 		 * free previous allocated pages by doing kfree_skb()
2215 		 */
2216 		if (page == NULL)
2217 			return -ENOMEM;
2218 
2219 		/* initialize the next frag */
2220 		sk->sk_sndmsg_page = page;
2221 		sk->sk_sndmsg_off = 0;
2222 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2223 		skb->truesize += PAGE_SIZE;
2224 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2225 
2226 		/* get the new initialized frag */
2227 		frg_cnt = skb_shinfo(skb)->nr_frags;
2228 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2229 
2230 		/* copy the user data to page */
2231 		left = PAGE_SIZE - frag->page_offset;
2232 		copy = (length > left)? left : length;
2233 
2234 		ret = getfrag(from, (page_address(frag->page) +
2235 			    frag->page_offset + frag->size),
2236 			    offset, copy, 0, skb);
2237 		if (ret < 0)
2238 			return -EFAULT;
2239 
2240 		/* copy was successful so update the size parameters */
2241 		sk->sk_sndmsg_off += copy;
2242 		frag->size += copy;
2243 		skb->len += copy;
2244 		skb->data_len += copy;
2245 		offset += copy;
2246 		length -= copy;
2247 
2248 	} while (length > 0);
2249 
2250 	return 0;
2251 }
2252 
2253 /**
2254  *	skb_pull_rcsum - pull skb and update receive checksum
2255  *	@skb: buffer to update
2256  *	@len: length of data pulled
2257  *
2258  *	This function performs an skb_pull on the packet and updates
2259  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2260  *	receive path processing instead of skb_pull unless you know
2261  *	that the checksum difference is zero (e.g., a valid IP header)
2262  *	or you are setting ip_summed to CHECKSUM_NONE.
2263  */
2264 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2265 {
2266 	BUG_ON(len > skb->len);
2267 	skb->len -= len;
2268 	BUG_ON(skb->len < skb->data_len);
2269 	skb_postpull_rcsum(skb, skb->data, len);
2270 	return skb->data += len;
2271 }
2272 
2273 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2274 
2275 /**
2276  *	skb_segment - Perform protocol segmentation on skb.
2277  *	@skb: buffer to segment
2278  *	@features: features for the output path (see dev->features)
2279  *
2280  *	This function performs segmentation on the given skb.  It returns
2281  *	a pointer to the first in a list of new skbs for the segments.
2282  *	In case of error it returns ERR_PTR(err).
2283  */
2284 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2285 {
2286 	struct sk_buff *segs = NULL;
2287 	struct sk_buff *tail = NULL;
2288 	unsigned int mss = skb_shinfo(skb)->gso_size;
2289 	unsigned int doffset = skb->data - skb_mac_header(skb);
2290 	unsigned int offset = doffset;
2291 	unsigned int headroom;
2292 	unsigned int len;
2293 	int sg = features & NETIF_F_SG;
2294 	int nfrags = skb_shinfo(skb)->nr_frags;
2295 	int err = -ENOMEM;
2296 	int i = 0;
2297 	int pos;
2298 
2299 	__skb_push(skb, doffset);
2300 	headroom = skb_headroom(skb);
2301 	pos = skb_headlen(skb);
2302 
2303 	do {
2304 		struct sk_buff *nskb;
2305 		skb_frag_t *frag;
2306 		int hsize;
2307 		int k;
2308 		int size;
2309 
2310 		len = skb->len - offset;
2311 		if (len > mss)
2312 			len = mss;
2313 
2314 		hsize = skb_headlen(skb) - offset;
2315 		if (hsize < 0)
2316 			hsize = 0;
2317 		if (hsize > len || !sg)
2318 			hsize = len;
2319 
2320 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2321 		if (unlikely(!nskb))
2322 			goto err;
2323 
2324 		if (segs)
2325 			tail->next = nskb;
2326 		else
2327 			segs = nskb;
2328 		tail = nskb;
2329 
2330 		__copy_skb_header(nskb, skb);
2331 		nskb->mac_len = skb->mac_len;
2332 
2333 		skb_reserve(nskb, headroom);
2334 		skb_reset_mac_header(nskb);
2335 		skb_set_network_header(nskb, skb->mac_len);
2336 		nskb->transport_header = (nskb->network_header +
2337 					  skb_network_header_len(skb));
2338 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2339 					  doffset);
2340 		if (!sg) {
2341 			nskb->ip_summed = CHECKSUM_NONE;
2342 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2343 							    skb_put(nskb, len),
2344 							    len, 0);
2345 			continue;
2346 		}
2347 
2348 		frag = skb_shinfo(nskb)->frags;
2349 		k = 0;
2350 
2351 		skb_copy_from_linear_data_offset(skb, offset,
2352 						 skb_put(nskb, hsize), hsize);
2353 
2354 		while (pos < offset + len) {
2355 			BUG_ON(i >= nfrags);
2356 
2357 			*frag = skb_shinfo(skb)->frags[i];
2358 			get_page(frag->page);
2359 			size = frag->size;
2360 
2361 			if (pos < offset) {
2362 				frag->page_offset += offset - pos;
2363 				frag->size -= offset - pos;
2364 			}
2365 
2366 			k++;
2367 
2368 			if (pos + size <= offset + len) {
2369 				i++;
2370 				pos += size;
2371 			} else {
2372 				frag->size -= pos + size - (offset + len);
2373 				break;
2374 			}
2375 
2376 			frag++;
2377 		}
2378 
2379 		skb_shinfo(nskb)->nr_frags = k;
2380 		nskb->data_len = len - hsize;
2381 		nskb->len += nskb->data_len;
2382 		nskb->truesize += nskb->data_len;
2383 	} while ((offset += len) < skb->len);
2384 
2385 	return segs;
2386 
2387 err:
2388 	while ((skb = segs)) {
2389 		segs = skb->next;
2390 		kfree_skb(skb);
2391 	}
2392 	return ERR_PTR(err);
2393 }
2394 
2395 EXPORT_SYMBOL_GPL(skb_segment);
2396 
2397 void __init skb_init(void)
2398 {
2399 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2400 					      sizeof(struct sk_buff),
2401 					      0,
2402 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2403 					      NULL);
2404 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2405 						(2*sizeof(struct sk_buff)) +
2406 						sizeof(atomic_t),
2407 						0,
2408 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2409 						NULL);
2410 }
2411 
2412 /**
2413  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2414  *	@skb: Socket buffer containing the buffers to be mapped
2415  *	@sg: The scatter-gather list to map into
2416  *	@offset: The offset into the buffer's contents to start mapping
2417  *	@len: Length of buffer space to be mapped
2418  *
2419  *	Fill the specified scatter-gather list with mappings/pointers into a
2420  *	region of the buffer space attached to a socket buffer.
2421  */
2422 static int
2423 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2424 {
2425 	int start = skb_headlen(skb);
2426 	int i, copy = start - offset;
2427 	int elt = 0;
2428 
2429 	if (copy > 0) {
2430 		if (copy > len)
2431 			copy = len;
2432 		sg_set_buf(sg, skb->data + offset, copy);
2433 		elt++;
2434 		if ((len -= copy) == 0)
2435 			return elt;
2436 		offset += copy;
2437 	}
2438 
2439 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2440 		int end;
2441 
2442 		WARN_ON(start > offset + len);
2443 
2444 		end = start + skb_shinfo(skb)->frags[i].size;
2445 		if ((copy = end - offset) > 0) {
2446 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2447 
2448 			if (copy > len)
2449 				copy = len;
2450 			sg_set_page(&sg[elt], frag->page, copy,
2451 					frag->page_offset+offset-start);
2452 			elt++;
2453 			if (!(len -= copy))
2454 				return elt;
2455 			offset += copy;
2456 		}
2457 		start = end;
2458 	}
2459 
2460 	if (skb_shinfo(skb)->frag_list) {
2461 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2462 
2463 		for (; list; list = list->next) {
2464 			int end;
2465 
2466 			WARN_ON(start > offset + len);
2467 
2468 			end = start + list->len;
2469 			if ((copy = end - offset) > 0) {
2470 				if (copy > len)
2471 					copy = len;
2472 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2473 						      copy);
2474 				if ((len -= copy) == 0)
2475 					return elt;
2476 				offset += copy;
2477 			}
2478 			start = end;
2479 		}
2480 	}
2481 	BUG_ON(len);
2482 	return elt;
2483 }
2484 
2485 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2486 {
2487 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2488 
2489 	sg_mark_end(&sg[nsg - 1]);
2490 
2491 	return nsg;
2492 }
2493 
2494 /**
2495  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2496  *	@skb: The socket buffer to check.
2497  *	@tailbits: Amount of trailing space to be added
2498  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2499  *
2500  *	Make sure that the data buffers attached to a socket buffer are
2501  *	writable. If they are not, private copies are made of the data buffers
2502  *	and the socket buffer is set to use these instead.
2503  *
2504  *	If @tailbits is given, make sure that there is space to write @tailbits
2505  *	bytes of data beyond current end of socket buffer.  @trailer will be
2506  *	set to point to the skb in which this space begins.
2507  *
2508  *	The number of scatterlist elements required to completely map the
2509  *	COW'd and extended socket buffer will be returned.
2510  */
2511 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2512 {
2513 	int copyflag;
2514 	int elt;
2515 	struct sk_buff *skb1, **skb_p;
2516 
2517 	/* If skb is cloned or its head is paged, reallocate
2518 	 * head pulling out all the pages (pages are considered not writable
2519 	 * at the moment even if they are anonymous).
2520 	 */
2521 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2522 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2523 		return -ENOMEM;
2524 
2525 	/* Easy case. Most of packets will go this way. */
2526 	if (!skb_shinfo(skb)->frag_list) {
2527 		/* A little of trouble, not enough of space for trailer.
2528 		 * This should not happen, when stack is tuned to generate
2529 		 * good frames. OK, on miss we reallocate and reserve even more
2530 		 * space, 128 bytes is fair. */
2531 
2532 		if (skb_tailroom(skb) < tailbits &&
2533 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2534 			return -ENOMEM;
2535 
2536 		/* Voila! */
2537 		*trailer = skb;
2538 		return 1;
2539 	}
2540 
2541 	/* Misery. We are in troubles, going to mincer fragments... */
2542 
2543 	elt = 1;
2544 	skb_p = &skb_shinfo(skb)->frag_list;
2545 	copyflag = 0;
2546 
2547 	while ((skb1 = *skb_p) != NULL) {
2548 		int ntail = 0;
2549 
2550 		/* The fragment is partially pulled by someone,
2551 		 * this can happen on input. Copy it and everything
2552 		 * after it. */
2553 
2554 		if (skb_shared(skb1))
2555 			copyflag = 1;
2556 
2557 		/* If the skb is the last, worry about trailer. */
2558 
2559 		if (skb1->next == NULL && tailbits) {
2560 			if (skb_shinfo(skb1)->nr_frags ||
2561 			    skb_shinfo(skb1)->frag_list ||
2562 			    skb_tailroom(skb1) < tailbits)
2563 				ntail = tailbits + 128;
2564 		}
2565 
2566 		if (copyflag ||
2567 		    skb_cloned(skb1) ||
2568 		    ntail ||
2569 		    skb_shinfo(skb1)->nr_frags ||
2570 		    skb_shinfo(skb1)->frag_list) {
2571 			struct sk_buff *skb2;
2572 
2573 			/* Fuck, we are miserable poor guys... */
2574 			if (ntail == 0)
2575 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2576 			else
2577 				skb2 = skb_copy_expand(skb1,
2578 						       skb_headroom(skb1),
2579 						       ntail,
2580 						       GFP_ATOMIC);
2581 			if (unlikely(skb2 == NULL))
2582 				return -ENOMEM;
2583 
2584 			if (skb1->sk)
2585 				skb_set_owner_w(skb2, skb1->sk);
2586 
2587 			/* Looking around. Are we still alive?
2588 			 * OK, link new skb, drop old one */
2589 
2590 			skb2->next = skb1->next;
2591 			*skb_p = skb2;
2592 			kfree_skb(skb1);
2593 			skb1 = skb2;
2594 		}
2595 		elt++;
2596 		*trailer = skb1;
2597 		skb_p = &skb1->next;
2598 	}
2599 
2600 	return elt;
2601 }
2602 
2603 /**
2604  * skb_partial_csum_set - set up and verify partial csum values for packet
2605  * @skb: the skb to set
2606  * @start: the number of bytes after skb->data to start checksumming.
2607  * @off: the offset from start to place the checksum.
2608  *
2609  * For untrusted partially-checksummed packets, we need to make sure the values
2610  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2611  *
2612  * This function checks and sets those values and skb->ip_summed: if this
2613  * returns false you should drop the packet.
2614  */
2615 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2616 {
2617 	if (unlikely(start > skb->len - 2) ||
2618 	    unlikely((int)start + off > skb->len - 2)) {
2619 		if (net_ratelimit())
2620 			printk(KERN_WARNING
2621 			       "bad partial csum: csum=%u/%u len=%u\n",
2622 			       start, off, skb->len);
2623 		return false;
2624 	}
2625 	skb->ip_summed = CHECKSUM_PARTIAL;
2626 	skb->csum_start = skb_headroom(skb) + start;
2627 	skb->csum_offset = off;
2628 	return true;
2629 }
2630 
2631 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2632 {
2633 	if (net_ratelimit())
2634 		pr_warning("%s: received packets cannot be forwarded"
2635 			   " while LRO is enabled\n", skb->dev->name);
2636 }
2637 
2638 EXPORT_SYMBOL(___pskb_trim);
2639 EXPORT_SYMBOL(__kfree_skb);
2640 EXPORT_SYMBOL(kfree_skb);
2641 EXPORT_SYMBOL(__pskb_pull_tail);
2642 EXPORT_SYMBOL(__alloc_skb);
2643 EXPORT_SYMBOL(__netdev_alloc_skb);
2644 EXPORT_SYMBOL(pskb_copy);
2645 EXPORT_SYMBOL(pskb_expand_head);
2646 EXPORT_SYMBOL(skb_checksum);
2647 EXPORT_SYMBOL(skb_clone);
2648 EXPORT_SYMBOL(skb_copy);
2649 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2650 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2651 EXPORT_SYMBOL(skb_copy_bits);
2652 EXPORT_SYMBOL(skb_copy_expand);
2653 EXPORT_SYMBOL(skb_over_panic);
2654 EXPORT_SYMBOL(skb_pad);
2655 EXPORT_SYMBOL(skb_realloc_headroom);
2656 EXPORT_SYMBOL(skb_under_panic);
2657 EXPORT_SYMBOL(skb_dequeue);
2658 EXPORT_SYMBOL(skb_dequeue_tail);
2659 EXPORT_SYMBOL(skb_insert);
2660 EXPORT_SYMBOL(skb_queue_purge);
2661 EXPORT_SYMBOL(skb_queue_head);
2662 EXPORT_SYMBOL(skb_queue_tail);
2663 EXPORT_SYMBOL(skb_unlink);
2664 EXPORT_SYMBOL(skb_append);
2665 EXPORT_SYMBOL(skb_split);
2666 EXPORT_SYMBOL(skb_prepare_seq_read);
2667 EXPORT_SYMBOL(skb_seq_read);
2668 EXPORT_SYMBOL(skb_abort_seq_read);
2669 EXPORT_SYMBOL(skb_find_text);
2670 EXPORT_SYMBOL(skb_append_datato_frags);
2671 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2672 
2673 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2674 EXPORT_SYMBOL_GPL(skb_cow_data);
2675 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2676